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Cálculo para Iñaki



Preface

After the publication of Matemática para Iñaki [13], I proposed to keep the
promise expressed in its Prologue and write Cálculo para Iñaki. My intention
was to give a reasoned, very accessible, and colloquial explanation of the main
ideas of calculus, with some historical references, and centered on applications.
Having taught calculus courses for over 40 years, I know that some aspects of
the matter can be hopelessly arid and boring to students and teacher alike. Thus
I also proposed to write a book emphasizing what to me are the more conceptually
important aspects, and interesting applications, leaving aside—whenever possible—
the technicalities and the purely computational. It soon became apparent that I had
led myself into a complicated situation. The intentions I expressed above resulted at
times incongruent and very difficult to reconcile.

The fact is that many of the interesting applications which I insisted on including
(such as the Basel problem and the sum of Gregory’s series) required more
and deeper concepts, slowly distancing me from my original purpose of extreme
accessibility. Thus, this is not the very elementary book that I set out to write,
but rather the best I could do with non-elementary subject matter. However, I have
strived for clarity and colloquiality, and in the end, I am happy with both the content
and the tone of the text.

And so, with a different title and in another language, here it is. To show the spirit
in which the book is written, perhaps it is convenient to list here some of the topics
and applications which I did not want to leave out, and which are not commonly
included in calculus courses:

� A construction of the real numbers
� Riemann’s series theorem (rearrangement theorem)
� Proofs of the irrationality of

√
2, e and π

� Pythagorean triples
� The concept of limit in Ancient Greece
� Snell’s law and the Brachistochrone
� Buffon’s needle
� Growth of the harmonic series
� Gregory’s series
� Stirling’s formula
� Curvature

vii
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� Convexity
� Random walk and the bell curve
� The isoperimetric inequality
� Classical inequalities (AG, Jensen, Young)
� The Basel problem
� Density functions, barycenter, and expectation
� Pappus’ theorem
� The Method of Archimedes
� The catenary
� The Gamma function

The educated reader may notice varying levels of informality and formality in
different parts of the text. My personal inclination is more towards informality:
I would much rather be accused of mathematical incompleteness than of lack
of expository clarity. I will strengthen the hypotheses if this does away with an
inessential technicality. However, at times, formality has permitted the discussion
of important notions. For example, summing well Gregory’s series gave me the
opportunity to talk about uniform convergence, which is much more important than
Gregory’s series.

I am far from being an expert on the history of mathematics. But on re-reading
some of the older sources for this book, I could not help but think that many of
the underlying ideas of Calculus have been developing for 2400 years, certainly
since before the time of Archimedes, although they come of age in the XVIIth
Century. I have tried to point out the origin of some of these ideas in the text, without
pretending that this is a history book.

Finally, my personal views on some of the subject matter included here, and
which need not be shared by others, have also shaped the text. Among them, I must
confess the following: Taylor polynomials of order one and two seem to me the
more important, just as the first and second derivatives are those with immediate
applicability and a clear geometrical significance. Integration is an area where I
do not find formality particularly useful. Although I do address the difficulties of
defining the integral, and I refer to Riemann’s and Lebesgue’s definitions, I adopt
the intuitive idea of integral as the area under a continuous curve which was so
productive until the XIXth Century. Also, I find inequalities are central to analysis,
and I included a chapter discussing a few of them.

This book was transformed from illegible manuscript to elegant LATEXtext by
Pablo Sanches. I have received valuable suggestions and comments from Federico
Poncio, Lara Sánchez Peña, Guillermo Ranea, Vicky Venuti, Damián Pinasco,
Angelines Prieto, and Maite Fernández Unzueta. Finally, Robinson dos Santos has
been a kind and understanding Editor to this rather stubborn author. To all, my
deepest gratitude.

Buenos Aires, Argentina Ignacio Zalduendo
June 10, 2022
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Introduction

2400 Years of Calculus

In the Vth Century BCE, a tremor shook the foundations of Greek mathematics:
the diagonal of a square turned out to be incommensurable with one of its sides.
No unit of measure—no matter how small—would fit an integer number of times
in one and the other. Mathematicians began to discern that rational numbers
were insufficient to describe the lines and curves which appeared so clear to
their intuition. Eudoxus then produces a new theory of proportions to compare
incommensurable magnitudes. His ideas put him elbow-to-elbow with Richard
Dedekind, who, with his “cuts,” formalizes in 1872 the notion of real number which
Eudoxus was seeking 2200 years earlier.

Eudoxus and Archimedes used successfully a notion of limit, which was formally
defined in the XIXth Century. They calculated, using an idea analogous to the
Riemann integral, areas of sections of parabolas and the volume of spheres.
Archimedes explains in his work The Method the way in which he glimpsed some
of his results. His method is very similar to the one used by Bonaventura Cavalieri
in 1635. But Archimedes’ work had been lost in the XIIIth Century and would not
be rediscovered until 1906. The Hindu mathematician Madhava of Sangamagrama
sums in 1400 Gregory’s series, which the Englishman would sum in 1668.

What I mean by all this is that some of the fundamental ideas of calculus are
as old as mathematics. And these ideas, methods, and results have appeared with
greater or lesser clarity, with more or less transcendence, in the minds and in the
works of many mathematicians, separated by thousands of years and thousands of
kilometers. Eudoxus and Dedekind would have understood each other in 5 minutes.

But what is Calculus? Perhaps the leitmotif common to most tools, methods, and
results which form part of the Calculus is the use of magnitudes which are, while
not “infinitely small,” at least “as small as required,” usually in some process calling
for smaller and smaller magnitudes.

An example: suppose we want to find the area between a and b under the curve

xiii
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The problem: our units of area measure (cm2, m2,. . . ) are rectangular and do
not fit well against the curved boundary of what we want to measure. This makes
comparison difficult.

The solution: consider rectangles with base “as small as required,” which will
then adjust better and better to the area under the curve.

Another example: we want to find the line tangent to this curve at the point P .
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The problem: we know how to find lines passing through two points, but here we
only know it passes through P (and we have an intuitive idea of which line we are
referring to).

The solution: consider lines through P and another point Q on the curve, but
then move Q to make it “as close as required” to P . These lines will be closer and
closer to the tangent line.

The first problem originates the part of calculus known as “integral calculus,”
and the second the part is known as “differential calculus.” As we have said, integral
calculus has its origins in Eudoxus and Archimedes. Differential calculus originates
closer to the XVIIth Century with Fermat, Descartes, and others who wished to
solve geometric problems or problems involving maxima and minima.

But in the XVIIth Century, with Newton and Leibniz, something extraordinary
happens: integral and differential calculus are recognized as two sides of the same
coin, inextricably linked through the fundamental theorem of calculus. Integral
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calculus and differential calculus empower each other, and a multitude of results
and applications to the natural sciences appear. Physics takes off, and the world is
now prepared for the Age of Enlightenment, and later, the Industrial Revolution.

The world as we know it would not be even remotely possible without calculus.
But let’s not forget that what today is calculus was rudimentarily present long before
Newton.

“If I have seen further, it is by standing on the shoulders of Giants.”
Sir Isaac Newton, in a letter to Robert Hooke, 1675.

Calculus and Education

But bear in mind also that many of the elementary concepts of Calculus were
absent until centuries after Newton and Leibniz. Concepts such as function and
limit, and the very idea of real number were not formalized until the XIXth Century.
The history of calculus has the curious characteristic of being told backwards: the
logical order of the concepts of calculus—and almost always the order in which
it is taught— is: real number, functions, limit, derivative, and integral, which is
almost the reverse of the historical order except for the idea of limit which although
formalized in the first half of the XIXth Century was always present in some way or
another.

Two hundred years ago there were almost no calculus courses in universities.
These were limited to a few military academies and, after the French Revolution,
to courses at École Polytechnique and École Normale Supérieure (1794). The use-
fulness of calculus and its applicability to the most diverse disciplines (engineering,
physical science, natural science, and even the social sciences) has led to the fact
that the great majority of those who today aspire to a university education must go
through some calculus course. And this is fine; for many of those students, calculus
will be a tool of daily use, and for others, an unavoidable stepping stone, necessary
to advance to other knowledge which requires it.

I believe, however, that calculus has had a negative influence in the education
of those who will not need it. In its eagerness to put all students at the doors
of calculus, secondary school has often left aside, for lack of time and perhaps
lack of usefulness, the more formative parts of elementary mathematics: arithmetic
and geometry. Thus, some of the most beautiful pages of mathematics have been
replaced by subjects such as absolute value inequalities, and methods for factoring
polynomials, justifiable perhaps as a way of preparing students for calculus. In my
opinion, more is lost than gained, and calculus should be left to those who will
actually use it.

One last comment on calculus courses in the XXIst Century: they deserve to
be redesigned from scratch. The typical calculus course today still emphasizes
computations. Differentiation and integration of complicated functions can be done
with any smartphone. When a smartphone can pass a calculus test, we are not
testing (or teaching) correctly. I believe the emphasis must be shifted towards deeper
comprehension of the important concepts, and towards interesting applications.
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We begin by noting some properties of the line as a continuum of
points, and show the difference between this intuitive line and
the line of rational numbers. We then complete the rational line
by constructing the real numbers.

The Rational Line

Let us begin with a line:

We all have an intuitive idea of what the line is, but to talk about Calculus we
need to make precise some of the line’s properties and we need to assign numbers to
the points of this line. This will not be easy, for the usual sets of numbers (natural,
integer, and rational numbers) will not be enough to cover the line that our intuition
conceives.

It is customary to represent the numbers according to their order along a line: the
natural numbers, which we denote by N:

The whole numbers, or integers (Z),

The rational numbers or fractions (Q),
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2 1 The Real Numbers

If we consider the points corresponding to all rational numbers, that is, all those of
the form k

n
with k integer and n natural, we will have what we call the rational line

or the rational points of the line.
The rational line will not be enough. Many points of what we intuitively

recognize as the line are simply not rational points. We will soon see some of these
points. But before we do, it will be convenient to consider some properties and some
subsets of the line.

Density ofQ

The rational line is dense in the line: although they are not all the points, the points
in the line which correspond to rational numbers, are “all over the place,” in the
following sense. Consider two points, a and b, in any part of the line, and as close
together as you wish:

Then there is a point corresponding to a rational number k
n

somewhere between a

and b. To see this we will find n first and then k. Let’s call d the distance between a

and b and find a natural number n which is so large that

1

d
< n.

Thus, 1
n

< d. Consider now all rational numbers p
n

where p is an integer:

· · · −2

n
,
−1

n
, 0,

1

n
,

2

n
, · · · ,

p

n
,
p + 1

n
· · ·

If we set these along our line, we will have a series of points extending infinitely left
and right

such that the distance between one and the next is 1
n

. But then at least one of them
must fall between a and b for the distance between a and b is larger than the distance
between two consecutive numbers in our series. We will then have

for some k. It is in this sense that rational points are dense.
This means that rational points will serve, for example, to approximate as much

as we want, any point a on the line. What do we mean by “as much as we want”?
We mean that if given a small positive number, let’s call it ε, we will be able to find
a rational point whose distance to a is less than ε. And if given a smaller number ε′,
we will also be able to do it, and for an even smaller ε′′, too. . . Why? Because given
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any positive (non-zero) ε, consider the points on the line which are at a distance ε

from a. There are two (one to each side). Let’s call them a − ε and a + ε. As we
have seen, there will be a rational point r between a − ε and a + ε. The distance
from a to r is then smaller than ε:

And the point is, we can do this for any ε.

Some Basic Notions

In the preceding argument there have appeared four basic notions that we should
point out:

The first is the idea of order. Given two different points a and b on the line, one
is further left than the other. If a is to the left of b we will write a < b and we will
say a is smaller than b.

The second notion is distance. In the example above we had a smaller than b and
we said that the distance between them was d. We will measure distances between
points on the line taking as the unit of measure the distance between 0 and 1. For
example, the distance from 3/2 to 2 is 1/2 and the distance from 3 to −1 is 4. In
general, we define the distance between points a and b as the absolute value of their
difference: |a − b|, where “absolute value” is defined by

|x| =
{

x, if x ≥ 0,

−x, if x < 0.

Thus, the distance between a and b is always strictly positive, unless a = b, in
which case it is zero.

The third notion mentioned above is that of open interval: we have drawn the
segment

and are interested specifically in all points that are between a and b, that is, points
x such that a < x < b. The set of such points is called the “open interval a, b,”
and denoted by (a, b). Thus, for example, all points whose distance from a is less
than ε form the open interval (a − ε, a + ε). Note that neither a nor b belong to
the open interval (a, b) for it is not true that a < a nor that b < b. Note also that
(a, b) contains no “first” element: for each x in (a, b), a < x and hence there is a
rational number r such that a < r < x. In other words there is something in (a, b)

smaller than x. Similarly, (a, b) does not have a largest element. We will also use
the “closed interval a, b” which we will denote [a, b] and is made up of all points x

such that a ≤ x ≤ b, in other words, we now include a and b.
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The fourth notion appearing above is that of family of neighborhoods of a point
a: we have considered, given any positive ε, the open interval (a − ε, a + ε):

Imagine that we now consider smaller and smaller values of ε. We will then have
smaller and smaller open intervals. . . all containing the point a. But no point other
than a will be in all of them: indeed, if b �= a, consider ε < |b − a| and we will
have b �∈ (a − ε, a + ε):

The idea of family of neighborhoods of a will be important when we define limit.
There is also another property of the real numbers which we have used: when
we choose a natural number n which is “so large that 1

d
< n,” we are using the

Archimedean property: given any point on the line, there is a natural number which
is larger. We will prove this in the next chapter, after we have actually constructed
the real numbers.

Irrationality of
√
2

We have said above that there are points on the line that do not correspond to
any rational number. Let’s see one of them: on the segment that joins 0 and 1 we
construct a square whose sides measure 1 and then a circle with center at zero and
radius equal to the diagonal of the square:

This circle cuts our line at a point whose distance to zero is equal to the length of
the diagonal of the square. If we call this length x, we know by the Pythagorean
theorem that x2 = 12 + 12 = 2. This number, which we call “the square root of
2” and denote by

√
2, is not rational. There are several ways to see this. Here’s one:

suppose
√

2 is rational (we will reach a contradiction) and write
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√
2 = m

n

with m and n natural numbers. Remember that all fractions may be written in many
ways, for example, 1

2 = 2
4 = 3

6 = · · · . Let’s agree then to write
√

2 = m
n

, using the

smallest value of n possible. Also since 1 <
√

2 < 2, i.e., 1 < m
n

< 2, multiplying

by n we have: n < m < 2n. Now since
√

2 = m
n

, if we square it we get 2 = m2

n2 , in

other words 2n2 = m2. Now calculate:

2(m − n)2 = 2(m2 − 2mn + n2)

= 2m2 − 4mn + 2n2

= 4n2 − 4mn + m2, bearing in mind that 2n2 = m2.

= (2n − m)2.

Then

2 = (2n − m)2

(m − n)2 , that is:
√

2 = 2n − m

m − n
.

But remember that n < m < 2n, so 0 < m − n < n; this last representation of
√

2
as a fraction has a smaller denominator than n, which was the smallest possible. We
have reached a contradiction. This indicates that

√
2 cannot be written as a fraction.

We have therefore found a point on the line that is not a rational point: the point
where the circle cuts the line. Is this an anomaly? How common are non-rational
points on the line? We will see later that they’re much, much more common than
rational points. For now, we will just check that non-rational points are also dense
on the line. To see this take as before two points a < b, and consider the points that
correspond to a√

2
and to b√

2
. Since a√

2
< b√

2
, we know there is a rational number r

between them: a√
2

< r < b√
2

. Thus

a < r
√

2 < b.

But this number r
√

2 is not rational. If it were, say r
√

2 = r ′, we would have√
2 = r ′

r
, which is also rational, being a quotient of rationals. Thus, in any interval

(a, b) there are non-rational points.

From Eudoxus to Dedekind

The rational line—the one that only has rational points—is very deficient if we
compare it to the line of our intuition. Its insufficiency resides in the fact that it’s
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full of holes. This we cannot permit for if we intersect with other curves, as, for
example, in

we want to actually have points of intersection!
In the philosophy of the Pythagoreans everything was number. Whole number,

or a quotient, rational number. It was thought that any pair of magnitudes of any
type, for example, two lengths, were always commensurable, meaning they could
be measured with the same units, in the following sense: given lengths a and b there
would exist a unit r such that a = mr and b = nr . But then the quotient of two
magnitudes would always be rational

a

b
= mr

nr
= m

n
.

However, as we have seen, there was the diagonal of a square a and the length of its
side b to topple all the philosophy of the Pythagoreans. It is said that it was one of the
Pythagoreans, Hippasus of Metapontum who (using the Pythagorean theorem) first
showed the irrationality of

√
2. Things seem to have ended very badly for Hippasus

who according to different versions: a) was assassinated by the other Pythagoreans,
b) committed suicide, or c) drowned at sea after a shipwreck provoked by the gods.

The revolution for Greek mathematics was profound. Arithmetic and numbers
lost weight in favor of Geometry. There was, undeniable, the diagonal of the square
not corresponding to any number. Magnitudes of different types (lengths, areas,
angles) are considered without assigning to them a numerical value. But this is not
easy; consider, for example, triangles of the same fixed height
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and suppose we want to see that their areas, A and B are proportional to the lengths
of their bases, a and b. But the areas are one type of magnitude and the lengths of
their bases another. How do we compare a

b
with A

B
without recurring to the notion

of number? Eudoxus of Cnidos invents a way.
Eudoxus (408 AC–355 AC) was a Greek astronomer and mathematician, a

student of Archytas of Tarentum. He developed the method of exhaustion proposed
by Bryson and Antiphon, and calculated the volumes of pyramids and cones.
He introduced the geometric notion of magnitude, and his theory of proportions
overcame the deficiencies of the rational numbers by what was one of the first
axiomatic presentations of a part of mathematics.

According to his theory of proportions one has a
b

= A
B

if given whole numbers n

and m then:

na is larger, equal to, or less than mb

if and only if nA is larger, equal to, or less than mB, (respectively).

Note that one compares (geometrically) na with mb—magnitudes of the same
type—and nA with mB, also magnitudes of the same type and therefore comparable
by geometric arguments. Note also that (now thinking in terms of “numbers”) a

b
and

A
B

can be irrational, so what Eudoxus’ proportionality criterium finally means is

a

b
is larger, equal to, or less than

m

n

if and only if
A

B
is larger, equal to, or less than

m

n
, (respectively).

In other words, a
b

= A
B

if we would place—on the number line— a
b

and A
B

on the
same side in relation to any rational number m

n
.

Braunschweig, Germany, 1872. Some 2200 years later, Richard Dedekind finally
formalizes the notion of “real number.” For Dedekind each real number is a “cut”:
(I,D), that is, a pair of non-empty subsets of the rational numbers with the
following properties:

(i) the intersection of I and D is empty but their union is the set of all rational
numbers,
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(ii) each element of I is less than each element of D, and
(iii) I does not have a maximum element.

For example, the cut (I,D), where

I = {x ∈ Q : x < 0 or x2 < 2}
and D = {x ∈ Q : x > 0 and x2 > 2}

is the number
√

2. Two real numbers α and β are equal if

α is larger, equal to, or less than
m

n

if and only if β is larger, equal to, or less than
m

n
, (respectively).

In other words, α = β if we would place—on the number line—α and β on the
same side in relation to any rational number m

n
. Separated by 2200 years, Eudoxus

and Dedekind would have understood each other in five minutes.
In the next section we will make a construction of the real numbers different to

Dedekind’s.

The Real Line1

We have seen that if we pretend to equate points on the line with rational numbers
the result is a line full of holes: many points on the line, such as

√
2, simply do not

correspond to rational numbers. In this section we will try to explain what a real
number is. This set of numbers which we will denote R does seem more like the
line (without holes) that we imagine.

2500 years ago, the Greek philosopher Zeno of Elea presented his famous
paradox of Achilles and the turtle. Achilles is of course the fastest man in the world;
the turtle is just any turtle. Zeno argues that if Achilles gives the turtle a head start
and they run a race, Achilles will never catch up with the turtle. Zeno argues that
when Achilles reaches the point A where the turtle started the race, the turtle will
no longer be there, it will be, say, at point B. When Achilles reaches this point the
turtle will have advanced to C, and when Achilles reaches C the turtle will be at
D. . . and thus the turtle will always be in front of Achilles.

Who would you bet on? The turtle? Let’s look then for the error in Zeno’s
argument. For this, say that the race is along the line, Achilles starts at zero and
the turtle starts at the point 1

2 . And suppose also that Achilles is twice as fast as the

1 This section is reprinted from Matemática para Iñaki [13], with kind permission from Fondo de
Cultura Económica.
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turtle, so that in the time that Achilles runs a certain distance, the turtle runs half
that distance. Ready, set, go!

0 1/2 3/4 7/8 1

When Achilles reaches 1
2 , the turtle will be at 3

4 , when Achilles reaches 3
4 , the turtle

will be at 7
8 , and when Achilles gets to 7

8 , the turtle is at 15
16 , and in general, when

Achilles is at the point 2n−1
2n , the turtle is already at 2n+1−1

2n+1 . . . But won’t he catch
her? Yes, he will: the time that it takes to go from one point to the next is smaller
every time, and although there are infinitely many of these time intervals, they add
up to a finite time; the time they take to reach the point 1, which is where Achilles
overtakes the turtle.

The error in Zeno’s argument is to think that adding infinitely many positive
numbers will give infinity. This need not be the case. Consider the lengths just
traveled by Achilles at each step: (from 0 to 1

2 , from 1
2 to 3

4 ,. . . ). These lengths
are: 1

2 , 1
4 , 1

8 , . . . , 1
2n , . . .. Let’s look at the segment between 0 and 1. If we add all

these distances traveled by Achilles, we will get the length of the segment: one.
We will use the following notation: “

∑
” (the Greek letter sigma), means simply

to “add.” We use it when there are many terms to add and it would be unwieldy to
write them all. For example, instead of writing

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10 + a11 + a12,

we will write

12∑

k=1

ak,

which reads “the sum with k from 1 to 12, of the numbers ak .” One begins then with
k equal to 1 and adds a1, then for k = 2 one adds a2, for k = 3 one adds a3. . . until
one reaches k = 12 and adds the last term, a12. Another example. Instead of writing

1

2
+ 1

4
+ 1

8
+ · · · + 1

230 ,

we will write

30∑

k=1

1

2k
.
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We will even add infinitely many terms, which—as we shall see later—sometimes
makes sense. Thus we will write

∞∑

k=1

ak.

An infinite sum such as this one is called a series. I will explain in a special case—
geometric series—what this is about. A geometric series is a series of the particular
form

∞∑

k=0

rk = 1 + r + r2 + r3 + · · · ,

where each term that we are summing is a power of a fixed number r . The series
1
2 + 1

4 + 1
8 + · · · + 1

2n + · · · is of this kind, with r = 1
2 (although we are missing

the first term). Sometimes these sums add up to infinity, for example, when r equals
1. Other times they don’t. We will say a series is summable or convergent when its
partial sums (up to the nth term)

sn =
n∑

k=0

rk

converge to some number s (called the sum of the series). Thus, for example,

sn = 1

2
+ 1

4
+ 1

8
+ · · · + 1

2n
converges to s = 1.

It is easy to see that if 0 < r < 1, the geometric series
∑∞

k=0 rk is summable: note
that

(1 − r)sn = (1 − r)(1 + r + r2 + · · · + rn)

= 1 − r + r − r2 + r2 − r3 + · · · + rn − rn+1

= 1 − rn+1.

Then

sn = 1 − rn+1

1 − r
.

But as 0 < r < 1, rn+1 tends to zero as n grows. Therefore the partial sums sn
converge to 1

1−r
. We will write
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∞∑

k=0

rk = 1

1 − r
.

In the case where r = 1
2 this sums 2. And if instead of summing from k = 0 we

sum from k = 1, it sums 1. In other words

1

2
+ 1

4
+ 1

8
+ 1

16
+ · · · = 1.

Note that not only the terms in the sum get smaller and smaller but also the “tails”∑
k>n

1
2k get smaller. In fact the tail

∑
k>n

1
2k , in which we sum from 1

2n+1 , adds 1
2n :

indeed,

∑

k>n

1

2k
= 1

2n+1
+ 1

2n+2
+ 1

2n+3
+ · · ·

= 1

2n2
+ 1

2n4
+ 1

2n8
+ · · ·

= 1

2n

(
1

2
+ 1

4
+ 1

8
+ · · ·

)

= 1

2n
,

for the sum in parenthesis adds to 1.

Dyadic Series—A Construction ofR

Consider the geometric series with r = 1
2 , but let’s say that now some of the terms

we add and others we don’t. For example:

1

2
+ 0

4
+ 1

8
+ 0

16
+ · · · .

The sum will no longer be 1, but less. In fact by choosing to add or not add each
term, in other words by setting each dk equal to 1 or 0 in the following series

∞∑

k=1

dk

2k
= d1

2
+ d2

4
+ d3

8
+ d4

16
+ · · · ,

we will be able to reach any point between 0 and 1. For us the real numbers between
0 and 1 will be these dyadic series. For example, suppose we want to obtain the
point marked on the line:
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0 1/2 5/8 3/4 1

Since it is larger than 1
2 , we will set d1 = 1; since it’s less than 1

2 + 1
4 , we put d2 = 0;

but as it is larger than 1
2 + 0

4 + 1
8 , we write d3 = 1. . . and thus we may approximate

the point as much as we desire. The series

∞∑

k=0

dk

2k

will correspond to the point we want. The following argument will show how
d1, d2, d3, . . . must be chosen in order for the sum to be a given rational number,
m
n

, between 0 and 1. More importantly, the argument will show that for the sum to
be a rational number, at some point the digits dk will begin to repeat themselves.
Since m

n
< 1, 2m < 2n. Thus if we divide 2m by n, using the division algorithm we

have

2m = d1n + r1 with d1 = 0 or 1, and 0 ≤ r1 < n.

Here d1 is the quotient, and r1 the remainder. Since r1 < n, we have 2r1 < 2n. If
we now divide 2r1 by n (and analogously for r2, r3, . . .) we have

2r1 =d2n + r2 with d2 = 0 or 1, and 0 ≤ r2 < n,

2r2 =d3n + r3 with d3 = 0 or 1, and 0 ≤ r3 < n,

...

2rk−1 =dkn + rk

...

We then have,

m

n
=d1

2
+ r1

2n
(dividing 2m above by 2n)

=d1

2
+ d2

4
+ r2

4n
(dividing 2r1 by 4n)

=d1

2
+ d2

4
+ d3

8
+ r3

8n
(dividing 2r2 by 8n)

...

=d1

2
+ d2

4
+ d3

8
+ · · · + dk

2k
+ rk

2kn
(dividing 2rk−1 by 2kn.)
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Note that rk
2kn

< 1
2k , so in summing more and more terms we have

m

n
=

∞∑

k=1

dk

2k
.

Now, note that each dk depends only on the remainder rk−1 in the previous step. For
this reason the digits dk at some moment start to repeat themselves. Why? Because
the remainders must repeat themselves: there are only n possible remainders:
0, 1, 2, . . . , n − 1. And as soon as one remainder, r , is repeated, all the steps from
that previous appearance of r will be repeated. So each rational number between 0
and 1 corresponds to a sum

∞∑

k=1

dk

2k
,

where the sequence d1, d2, d3, . . . finally repeats itself. But there are of course many
other sequences d1, d2, d3, . . . that never repeat themselves. For example:

1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, . . .

In some sense, almost all sequences are non-repeating sequences, and they corre-
spond to numbers

x =
∞∑

k=1

dk

2k

that are not rational. Considering the set of all such dyadic series we fix all the
“holes” left by the rational numbers between 0 and 1, and if to these we add integers
k, we fill in all the holes between k and k + 1. These numbers that we are filling in
are called irrational (such as

√
2). The rational numbers together with the irrational

numbers form the set of all real numbers. Now at last we have the line with no holes
in it: the real line R.

The Scarcity ofQ

The following heuristic argument will give us an idea of how small the set of rational
numbers is within the real line. We will construct numbers in the interval (0, 1) using
the following probabilistic method: we throw a coin infinitely many times and write
down 1 each time we obtain heads, and 0 when we obtain tails. For example:

0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, . . .
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and now we use this sequence of zeros and ones to obtain the number

∞∑

k=1

dk

2k
, where dk =

{
1, if on the k-th throw we obtained heads,

0, if on the k-th throw we obtained tails.

Thus every number in the interval (0, 1) corresponds to the result of an experiment
which consisted in throwing a coin infinitely many times, and each subset corre-
sponds to a set of possible outcomes of that experiment. For example, the open
interval (0, 1

2 ) is formed by points obtained in experiments where d1 = 0: the
first throw was tails; the rest, whatever. What is the probability of this occurrence?
It is 1

2 . The interval ( 5
8 , 6

8 ) is formed by points obtained in experiments where
d1 = 1, d2 = 0, and d3 = 1: we have obtained heads, tails, heads; and then anything
else. What is the probability of this occurring? It is 1

2 × 1
2 × 1

2 = 1
8 . In general, the

measure of a set A ⊂ (0, 1) is equal to the probability of producing one of its points
with our experiment of throwing a coin infinitely many times.

Say now that A = {r ∈ Q : 0 < r < 1}, the rational numbers of the interval
(0, 1). We have just seen that each of them is obtained with a sequence

d1, d2, d3, d4, . . .

which is finally periodic. You throw a coin infinitely many times; from a certain
moment onward, for example, after the 37th throw, the results start to repeat
themselves. . . and they repeat. . . and repeat. . . and repeat. . . infinitely. What is the
chance of this happening? Zero. That’s the measure of the set of rational numbers:
zero.

The Completeness ofR

“Completeness” is what marks the difference between the real line and the rational
line. We will show here that the real line R, which we have constructed with the
dyadic series, is “complete.”

Given a subset A of R, we say that the number c is a bound or, more precisely,
an upper bound of A if c is to the right of all of set A, in other words if a ≤ c for all
elements a ∈ A. Suppose we have a non-empty set A such that 1 is a bound, but 0
is not. That is, there’s some number a ∈ A such that 0 < a ≤ 1, but nothing to the
right of 1. We will construct a number s which is the least of all upper bounds. We
will write it as

s =
∞∑

k=1

dk

2k
,

by choosing very carefully the dk’s. We will obtain that s is a bound for A, but none
of the partial sums
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sn =
n∑

k=1

dk

2k

will be a bound. Choose the dk’s in the following way:

d1 =
{

0, if 1
2 is a bound,

1, if not.

Thus, s1 = d1
2 is not a bound for A. . .

d2 =
{

0, if s1 + 1
4 is a bound,

1, if not.

Thus, s2 = s1 + d2
4 is not a bound. . . In the n-th step,

dn =
{

0, if sn−1 + 1
2n is a bound,

1, if not.

Thus, sn = sn−1 + dn

2n is not a bound. . .
Note that the partial sums sn are not bounds, and they converge, increasing, to s.

We will see that s is an upper bound. If it were not, we would have s < a for some
element a in the set A. In that case, if n is so large that

1

2n
< a − s,

we will have

sn−1 + 1

2n
≤ s + 1

2n
< a.

Now, since sn−1 + 1
2n is not a bound, we will have chosen dn = 1. This for each

sufficiently large n. Then the sequence . . . dk . . . is finally constant; after a certain
point, a sequence of ones. Consider the last zero: we have m such that dm = 0, and
after that, all ones. Since dm = 0 we know that

sm−1 + 1

2m
is a bound.

But

s =sm−1 + 0

2m
+ 1

2m+1
+ 1

2m+2
+ 1

2m+3
+ · · ·
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=sm−1 + 1

2m

(
1

2
+ 1

4
+ 1

8
+ · · ·

)

=sm−1 + 1

2m
, which is a bound.

Finally, s is the least upper bound, for if c < s were a bound, for sufficiently large
n, c < sn ≤ s, and sn would be a bound, but we know it is not.

The number s we have constructed is the least upper bound of the set A, also
called supremum of A. In other words there is a number s (which may or may not
belong to the set A) such that s is a bound of A, and if b < s, b is not a bound, that
is, there is an element a ∈ A such that b < a ≤ s. The difference between the real
line and the rational line is that on the real line every non-empty subset A that has
an upper bound will also have a least upper bound or supremum. On the rational
line this is not true: for example, the set

A = {r ∈ Q : r2 < 2}

has a bound, but no least upper bound. What happens is that this “least upper bound”
would be s = √

2, but that’s where Q has a hole. This property is usually called the
“Completeness Axiom.” It will be a fundamental tool in several very basic theorems
about real numbers, for example, the theorem on bounded increasing sequences and
Bolzano’s Theorem. We have then, the

Completeness Axiom Every non-empty subset of the real line having an upper
bound has a supremum (a least upper bound).

Cardinality

We take a detour here for a couple of comments about cardinality. How many
elements does a set have? How many eggs are still in the refrigerator? How many
players has the other team brought? We answer these questions by counting: we
point at each player and say “one, two, three,. . . ” until there are no more. What we
do when we count is establish a correspondence between the objects that we wish
to count and some set of natural numbers, {1, 2, 3, . . . , 14}: they have 14 players.
In order to count correctly, the correspondence we establish must be one to one
and onto. Each object corresponds to a different number, each number to a different
object. We are defining what we call a bijective function between the objects that
we wish to count and the set of the first n natural numbers.

Two sets have the same number of elements—the same cardinality—if we can
establish between those two sets a bijective correspondence. Here’s an example
between sets with infinitely many elements:
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Example The set of all integers, Z, and the set of all natural numbers, N, have the
same cardinality. We can establish the following correspondence between them

f : Z −→ N, defined like this: f (k) =
{

2k + 1, if k ≥ 0

−2k, if k < 0.

In a drawing:

–3 –2 –1 0 1 2 3 4 5

1 2 3 4 5

• • • • • • • • •

• • • • •

It may surprise you that N, which is a subset of Z, has as many elements as Z.
Among finite sets this does not happen, but you’ll see that when the sets are infinite
it is not uncommon. Also the correspondences

n �→ 2n �→ 2n − 1

between

N −→ {even natural numbers} −→ {odd natural numbers}

are bijective, thus the three sets have the same cardinality, although we have

N = {even natural numbers} ∪ {odd natural numbers}.

However, not all infinite sets have the same cardinality. Some infinite sets are larger
than others, as we will see below.

When there is a bijective correspondence between N and a set A we will say
that A is countable. Its elements can be numbered with the natural numbers: if
f : N −→ A is bijective, A = {f (1), f (2), f (3), . . .}. If a set is countable, we
usually write

A = {a1, a2, a3, . . .}.

We have seen that Q is, in the sense of measure, a small subset of R: its measure
is zero. We will now see that it is also small in the sense of cardinality. Although
Q and R are both infinite sets, Q is countable but R is not. The infinity of the real
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numbers is larger than that of the rational numbers. As it turns out, there are different
categories of infinity.

Let’s first see that Q is countable. Consider the following table containing all
positive rationals. The numbers on top determine the numerators, those on the left,
the denominators.

1

1

1
1

2 3 4 5 6 7 8 9

2

3

4

5

6

7

1
2

1
3

1
4

1
5

1
6

1
7

3
1

3
2

3
3

3
4

3
5

3
6

3
7

4
1

4
2

4
3

4
4

4
5

4
6

5
1

5
2

5
3

5
4

5
5

6
1

6
2

6
3

7
1 ....

.... .... .... ....

....

.... .... .... .... ....

.... .... .... .... ....

........ .... .... .... ....

............ .... .... .... ....

.... .... ....

.... ....
2
1

2
2

2
3

2
4

2
5

2
6

2
7

Of course, each appears several times, for example, 1
2 = 2

4 = 3
6 = · · · . But

we may visit all positive rational numbers by following the arrows in the graph
and assign an odd natural number to each new fraction that we find (omitting the
rational numbers that we have already numbered). We then number the negative
rationals with the even natural numbers: r2n = −r2n−1. Thus we may write

Q = {r1, r2, r3, . . .}.

But the real numbers are not countable. In fact the open interval (0, 1) of
real numbers between 0 and 1 is uncountable. Let’s see why. Suppose, towards a
contradiction, that (0, 1) were countable, and write

(0, 1) = {x1, x2, x3, . . .}.

Now write the decimal expression of each number:

x1 =0, d11d12d13 . . .
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x2 =0, d21d22d23 . . .

x3 =0, d31d32d33 . . .

...

xn =0, dn1dn2dn3 . . . dnn . . .

...

Choose for each k, a digit dk (say 3, or 7) different from dkk , and define the
number y = ∑∞

k=1
dk

10k . The decimal expression of y is y = 0, d1d2d3 . . .. Clearly
y ∈ (0, 1). But it is not x1, because d1 �= d11, it’s not x2, for d2 �= d22, not x3,
for d3 �= d33, . . . not xn, because dn �= dnn. . . it is none of the xn’s. This is a
contradiction, for we had numbered all the elements in the set (0, 1). Thus (0, 1)

is not countable.

Exercises

1 Prove that

(a) |x + y| ≤ |x| + |y|.
(b) |ax| = |a||x|.
(c) |x| ≥ 0 and = 0 if and only if x = 0.

2 Prove that ||x| − |y|| ≤ |x − y|.

3 Given a natural number n, prove that if n2 is even, then so is n.

4 Another proof of the irrationality of
√

2: start by supposing that
√

2 = m
n

, where
m and n are not both even. . . Use Exercise 3 to arrive at a contradiction.

5 Prove that
√

3 is irrational.

6 Prove that s = sup A if and only if s is an upper bound of A and for each ε > 0
we may find aε ∈ A such that s − ε < aε ≤ s.

7 In analogy to the definition of sup A define i = inf A (infimum of A) setting
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(a) i is a lower bound of A, and
(b) if i < b, b is not a lower bound of A.

If B is a (upper and lower) bounded set, and A ⊂ B, determine (and prove) the
order of

sup A inf A sup B inf B

8 If −A = {−x : x ∈ A}, determine (and prove) the relationships between

sup(−A) − sup A inf(−A) − inf A



2Sequences and Series

In this chapter we introduce the notion of limit of a sequence of
points and study some topological properties of closed intervals
of the real line. We then consider the convergence of series,
including absolute and unconditional convergence.

Sequences

We will need to be precise regarding the limit of a sequence. Actually we have
already seen a few: we have said that the numbers 1

n
tend to zero and also that the

partial sums of the geometric series

sn =
n∑

k=0

rk

tend to 1
1−r

when 0 < r < 1.
In the first decades of the XIXth Century it became clear that the notion of limit,

which had been rudimentary present in mathematics since the times of the ancient
Greeks, required formalization and precise definitions. Bolzano and Cauchy finally
provided mathematics with the notion of limit.

Augustin-Louis Cauchy (1789–1857) was born in Paris at the time of the French
Revolution. His family escaped to Arcueil, where Augustin spent his boyhood. Back
in Paris he studied at the École Polytechnique, and later at the École des Ponts et
Chaussées. Although he worked several years as an engineer, he soon became more
strongly attracted to Physics and Mathematics. A prolific author, he made important
contributions to the foundations of calculus and to complex analysis.
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Limits of Sequences

In general, given a sequence a1, a2, a3, . . . , an, . . . of real numbers (that is, a
function assigning to each natural number n a real number an), we will say that
an tends to a, or that an converges to a (we will write “an −→ a”), or that a is the
limit of the sequence an (limn an = a) if:

Given any neighborhood of a, the sequence an finally stays in that neighborhood.

As you can see, I have emphasized two words which are key in this definition: “any”
and “finally.” Recall that the neighborhoods of a are the open intervals

(a − ε, a + ε), with ε > 0.

When we say that an −→ a it means that—given any ε0 > 0—we will “finally”
have an ∈ (a − ε0, a + ε0) after a certain value of n; say for all n ≥ n0. If given a
smaller value of ε, say ε1 < ε0, the same will happen after a certain (perhaps larger)
value of n: an ∈ (a − ε1, a + ε1) for all n ≥ n1. And if ε2 < ε1, we will have
an ∈ (a − ε2, a + ε2) for all n ≥ n2, etc. Thus we may assure that the distance
between an and a may be made as small as required by simply taking n sufficiently
large:

|an − a| < ε for all n ≥ nε.

Let’s see this in the examples we’ve already mentioned:

Example 1
n

−→ 0. Given 0 < ε < 1, let’s write the dyadic expression of ε:

ε =
∞∑

k=1

dk

2k
,

and consider the smallest index k0 such that dk0 is one. Then,

ε = 1

2k0
+

∞∑

k=k0+1

dk

2k
≥ 1

2k0
>

1

2k0 + 1
,

and for all n > 2k0 we will also have −ε < 1
n

< ε.
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Note that with this we have also proved the Archimedean property: the set of
natural numbers N is not bounded above within the set of real numbers, for if 1 <

a ∈ R, for some n we will have 1
n

< ε = 1
a

, that is: a < n.

Example sn = ∑n
k=0 rk −→ 1

1−r
. Given ε > 0,

1

1 − r
− ε < sn <

1

1 − r
+ ε

if (recall that sn = 1−rn+1

1−r
= 1

1−r
− rn+1

1−r
)

1

1 − r
− ε <

1

1 − r
− rn+1

1 − r
<

1

1 − r
+ ε

that is rn+1

1−r
< ε, in other words when rn+1 < ε(1 − r), which happens if n is

sufficiently large, for r is smaller than 1. Here, the required values of n are n >
log(ε(1−r))

log r
− 1. . . In general, we will not care for the exact value of n necessary, but

simply notice that the inequality will hold for sufficiently large values of n.

Of course not all sequences converge. Two examples:

(i) an = n: becomes larger and larger but does not approach any real number.
(ii) an = (−1)n: is −1 for odd n and 1 for even n; this sequence jumps from 1 to

−1 and back from −1 to 1 repeatedly. . . it cannot remain in any interval (a, b)

of length less than 2.

We now prove the following fact:

Proposition Given two converging sequences, an −→ a and cn −→ c; such that
for all n we have an ≤ cn, then a ≤ c.

Let’s see why: if the conclusion were not to hold, we would have c < a. Consider
then ε > 0 so small that the open intervals (c − ε, c + ε) and (a − ε, a + ε) do not
intersect (ε < a−c

2 will do):

Since cn −→ c and an −→ a, for sufficiently large n, cn will be in the neighborhood
of c and an in the neighborhood of a. We will then have cn < an, contradicting the
fact that an ≤ cn for all n. �
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Among the exercises to this chapter you will find other properties that will also
be useful. For example:

If an −→ a and bn −→ b,

(i) an + bn −→ a + b,
(ii) anbn −→ ab,

(iii) if a = b and an ≤ cn ≤ bn, then cn −→ a = b.

We now come to an important Theorem:

Increasing Bounded Sequence Theorem Every increasing and bounded (from
above) sequence converges.

Let’s see why. If an is an increasing sequence (an ≤ an+1) and is bounded (an ≤
c for all n), consider the set

A = {an : n ∈ N}.

A is a non-empty bounded set (each element of A is ≤ c). Thus, by the completeness
axiom, the supremum of A exists. Call it s. We will check that then an −→ s. To
this end, take ε > 0; we wish to see that

s − ε < an < s + ε

for all sufficiently large n. The right-hand inequality always holds, for an ≤ s for
all n. The left inequality: as s is the supremum of A, nothing smaller than s can be
an upper bound of A. Hence, s − ε is not, so for some n0, s − ε < an0 . But for all n

larger than n0 also, for the sequence an is increasing. Therefore, for all n ≥ n0 we
have

s − ε < an < s + ε.

�
Analogously, every sequence that is decreasing and bounded (below) converges.

These results do not hold in the rational line (which is not complete). For example,
if the decimal expression of

√
2 is

√
2 = 1, d1d2d3 . . . dndn+1 . . .

the sequence (an) with an = 1, d1d2d3 . . . dn is increasing and bounded but does
not converge in Q.

Cantor’s Nested Intervals Theorem

Recall that we have called the set



Sequences 25

[a, b] = {x ∈ R : a ≤ x ≤ b},

the “closed interval a b.”

Cantor’s Nested Intervals Theorem If In = [an, bn] is a sequence of decreasing
closed intervals (that is, In ⊃ In+1 for all n), then the intersection of all these
intervals is non-empty:

⋂

n∈N
In �= ∅.

If, moreover, the lengths of the intervals (bn − an) tend to zero, the intersection
contains only one point.

Let’s see why: the inclusions that we have between our intervals imply that an ≤
an+1 ≤ bn+1 ≤ bn for all n. Thus, the sequence (an) is increasing and bounded
above (by b1), while the sequence (bn) is decreasing and bounded below (by a1).
Thus they both converge. Say an → a and bn → b. Now since for every n, an ≤ bn,
we have a ≤ b, and

[a, b] ⊂
⋂

n∈N
In,

since for every n, an ≤ a ≤ b ≤ bn. Also, if the lengths of the intervals tend to zero,
we will have

b − a ≤ bn − an → 0,

thus a = b, and the intersection contains only one point. �
Note that Cantor’s nested intervals theorem would not hold without complete-

ness. Using, as above, the decimal expression for
√

2, and setting

In =
[

an, an + 1

10n

]

,

we see that it does not hold in Q: in this case we have (using the notation in the
theorem), a = √

2 = b.

Subsequences

We will need the notion of subsequence. We have said that a sequence (an) is a
function assigning a real number an to each natural number n:

1 �→a1
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2 �→a2

3 �→a3

...

For example, the sequence an = (−1)n is the correspondence:

1 �→ − 1

2 �→ 1

3 �→ − 1

4 �→ 1

5 �→ − 1

...

A subsequence of the sequence (an) is a correspondence which consists in first
taking a strictly increasing sequence of indices (n1 < n2 < n3 < · · · ), and then the
original correspondence n �→ an:

1 �→ n1 �→an1

2 �→ n2 �→an2

3 �→ n3 �→an3

...

For example, the sequence 1, 1, 1, 1. . . is a subsequence of an = (−1)n, considering

1 �→ 2 �→(−1)2

2 �→ 4 �→(−1)4

...

k �→ 2k �→(−1)2k

...

and the sequence 1, 1
2 , 1

4 , 1
8 , 1

16 , . . . is a subsequence of an = 1
n

, for we may write
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k �→ 2k �→ 1

2k
.

We will use the notation (ank
) to indicate a subsequence of (an):

k �→ nk �→ ank
,

(where n1 < n2 < n3 . . .).
Note that a non-convergent sequence may have subsequences which do converge.

The following result shows that if the original sequence is contained in a closed
interval, this always happens.

Theorem If (an) ⊂ [a, b], (an) has a subsequence converging to a point of [a, b].

Let’s see why. If the sequence (an) has only finitely many points in its image,
that is, if

{an : n ∈ N} = {c, d, e, f, . . . , z},

doubtless one of them will be repeated infinitely many times. Say, for example, that
d = ank

for infinitely many nk . Then d, d, d, . . . is a convergent subsequence of
(an). If, on the contrary, the image of the sequence ({an : n ∈ N}) has infinitely
many points, we proceed as follows. Split the interval [a, b] into two halves: two
closed intervals of length b−a

2 . One of the two, which we will call I1, contains
infinitely many points of the sequence (an). Now split I1 into half; we have two
closed intervals of length b−a

4 . And, as before, one of them has infinitely many
points of the sequence. Call it I2. Split I2 into two halves, one of which contains
infinitely many points of (an). . . By continuing this process we obtain a sequence of
closed intervals (In) which is decreasing: In ⊃ In+1. Also, the lengths of the In are
b−a
2n , which tend to zero. Thus by Cantor’s nested intervals theorem, there will be

just one point in their intersection:

⋂

n∈N
In = {x}.

But we have chosen the In’s in such a way that each contains infinitely many of the
points of the sequence (an). We may then take a subsequence (ank

) such that

ank
∈ Ik for each k.

This subsequence converges to x. �
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Series

We have seen—in the case of the geometric series
∑∞

k=0 rk , with 0 < r < 1—that
sometimes summing infinitely many numbers makes sense. Other times it doesn’t.
We may ask ourselves, for example, if we can assign a “sum” S to

∞∑

k=0

(−1)k = 1 − 1 + 1 − 1 + 1 − 1 + 1 − · · · = S.

On the one hand, we would expect that S = (1 − 1) + (1 − 1) + · · · = 0, although
also

−S = −1 + 1 − 1 + 1 − 1 + 1 − 1 + · · ·
= −1 + (1 − 1 + 1 − 1 + 1 − 1 · · · )
= −1 + S,

from where S = 1
2 . . .

This means that we need to be more precise about what we mean by the sum of
a series

∑∞
k=1 ak . We will adopt the definition that we used in Chap. 1 to sum the

geometric series. We say that a series converges and that its sum is s, if the sequence
given by its partial sums

sn =
n∑

k=1

ak

tends to the number s. Thus the geometric series
∑∞

k=0 rk converges if 0 < r < 1,
and its sum is 1

1−r
. The series

∑∞
k=0(−1)k has partial sums

n∑

k=0

(−1)k = sn =
{

1, if n is even,

0, if n is odd.

Since the sequence 1, 0, 1, 0, 1, . . . does not converge, this series has no sum. We
then say that the series diverges. We will also say that the series diverges if its partial
sums tend to infinity or minus infinity.

We will need some criteria to determine if a series converges or diverges. We
will also see that even knowing that a series converges, to actually determine its
sum may be a very difficult problem. In any case, it will often happen that we need
only determine if a series converges or not.

The first thing that can be said about a series
∑∞

k=1 ak is that if it converges, then
its terms (the ak) tend to zero:
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an =
n∑

k=1

ak −
n−1∑

k=1

ak = sn − sn−1 −→ s − s = 0.

Note also that its “tails”
∑

k>n ak = s − sn tend to zero. . . Any series whose terms
do not tend to zero will be a divergent series. The opposite is not true: that the terms
ak tend to zero does not assure the convergence of a series. The typical example is
the harmonic series:

∞∑

k=1

1

k
.

It is clear that 1
k

−→ 0; however, the series diverges. Let’s see a couple of proofs of
this (and more will follow in Chaps. 3 and 5).

The Harmonic Series

Nicole Oresme (1323–1382) was an original and influential thinker in various
disciplines, mathematics and economics among them. He was a precursor to
analytic geometry, later formalized by Fermat and Descartes. He was also Bishop
of Lisieux, and counselor to King Charles V of France.

Nicole gave the following proof of the divergence of the harmonic sequence.
Grouping terms, write,

∞∑

k=1

1

k
= 1 + 1

2
+
(

1

3
+ 1

4

)

+
(

1

5
+ 1

6
+ 1

7
+ 1

8

)

+
(

1

9
+ · · · + 1

16

)

+ · · ·

> 1 + 1

2
+ 2

4
+ 4

8
+ 8

16
+ · · ·

= 1 + 1

2
+ 1

2
+ 1

2
+ 1

2
+ · · ·

but this series clearly tends to infinity. We will later see just how fast the harmonic
series tends to infinity.

Another. This is by Pietro Mengoli (XVIIth Century). Bear in mind that in the
harmonic series each term is the harmonic mean ( 2xy

x+y
) of the preceding term and

the following term (just as in the geometric series each term is the geometric mean
(
√

xy) of the preceding and the following term). But the harmonic mean is always
less than the arithmetic mean ( x+y

2 ).
The harmonic mean of the numbers 1

n−1 , 1
n
, 1

n+1 —which is 1
n

—is less than its

arithmetic mean 1
3

(
1

n−1 + 1
n

+ 1
n+1

)
. Therefore
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3

n
<

(
1

n − 1
+ 1

n
+ 1

n + 1

)

.

Thus, if we suppose that
∑∞

k=1
1
k

converges, and call S its sum,

S = 1 +
(

1

2
+ 1

3
+ 1

4

)

+
(

1

5
+ 1

6
+ 1

7

)

+
(

1

8
+ 1

9
+ 1

10

)

+ · · ·

> 1 + 3

3
+ 3

6
+ 3

9
+ · · ·

= 1 +
(

1 + 1

2
+ 1

3
+ 1

4
+ · · ·

)

= 1 + S. Absurd, so the series diverges.

Series of Positive Terms

We will restrict our attention now to series of positive terms, that is series
∑∞

k=1 ak

where ak ≥ 0 for all k. The good thing about series of positive terms is that the
sequence of their partial sums is increasing: since each ak is positive, sn ≤ sn +
an+1 = sn+1. And since the sequence sn is increasing, by the increasing bounded
sequences theorem it will be enough to see that (sn) is a bounded sequence to verify
that the series

∑∞
k=1 ak converges. This will produce several simple criteria which

ensure the convergence of a series of positive terms. First, an example.

Example The series
∑∞

k=1
1
k2 . We may bound its partial sums as follows:

sn < s2n−1 =
2n−1∑

k=1

1

k2

= 1

12
+
(

1

22
+ 1

32

)

+
(

1

42
+ 1

52
+ 1

62
+ 1

72

)

+ · · · +
(

1

(2n−1)2
+ · · · + 1

(2n − 1)2

)

≤ 1 +
(

1

22
+ 1

22

)

+
(

1

42
+ 1

42
+ 1

42
+ 1

42

)

+ · · · +
(

1

(2n−1)2
+ · · · + 1

(2n−1)2

)

= 1 + 2

22
+ 4

42
+ 8

82
+ 16

162
+ · · · + 2n−1

(2n−1)2

= 1 + 1

2
+ 1

4
+ 1

8
+ 1

16
+ · · · + 1

2n−1

which, as we have seen before, is less than two. Then
∑∞

k=1
1
k2 converges. Pietro

Mengoli, whom we have already met above, asked in 1647 for the sum of this series.
This became the very famous “Basel problem,” solved almost ninety years later (in
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1735) by Euler. It is one thing to know that a series is summable, and a very different
thing to actually add it. We will see in Chap. 8 the solution to the Basel problem:
∑∞

k=1
1
k2 = π2

6 .

A general comment before going into the criteria: the convergence or divergence
of a series will never be affected by what happens with finitely many of its terms.
Finitely many terms can always be added. Thus, if the following criteria are
satisfied only by a tail (

∑
k>N ak) of the series, this will be enough to determine

its convergence. The first N terms of a series never affect its convergence.

Comparison Criterion If for all k, ak ≤ cbk and the series
∑∞

k=1 bk converges,
then the series

∑∞
k=1 ak converges.

sn =
n∑

k=1

ak ≤ c

n∑

k=1

bk ≤ c

∞∑

k=1

bk,

so the sequence sn is bounded (and increasing). Thus
∑∞

k=1 ak converges.

Example The series
∑∞

k=1
1

2k+k
. For each k we have 1

2k+k
< 1

2k , and we know that
∑∞

k=1
1
2k converges, so

∑∞
k=1

1
2k+k

also converges.

Root Criterion If for all k, k
√

ak ≤ r < 1, then the series
∑∞

k=1 ak converges.
We have for each k,

ak ≤ rk,

so taking bk = rk and using the comparison criterion, the series
∑∞

k=1 ak is
convergent.

Example The series
∑∞

k=1
kk

(2k+1)k
. We have

k
√

ak = k

√
kk

(2k + 1)k
= k

(2k + 1)
≤ 1

2
< 1,

thus the series
∑∞

k=1
kk

(2k+1)k
converges.

Quotient Criterion If for all k, ak+1
ak

≤ r < 1, then the series
∑∞

k=1 ak converges.
We have for each k,

ak+1 ≤ rak ≤ r2ak−1 ≤ r3ak−2 ≤ · · · ≤ rka1,
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so taking bk+1 = rk , since
∑∞

k=1 rk converges, we can use the comparison criterion
to obtain that

∑∞
k=1 ak converges.

Example The series
∑∞

k=1
1
k! . We have, for each k ≥ 1,

ak+1

ak

= k!
(k + 1)! = 1 · 2 · 3 · · · k

1 · 2 · 3 · · · k · (k + 1)
= 1

k + 1
≤ 1

2
< 1,

thus the series
∑∞

k=1
1
k! converges. In Chap. 3 we will see its sum.

Series with Positive and Negative Terms

If a series has infinitely many positive terms, but also infinitely many negative terms,
it will be convenient for our discussion to distinguish between them. To this end, we
define

a+
k =

{
ak, if ak > 0

0, if ak ≤ 0,

and

a−
k =

{
0, if ak ≥ 0

ak, if ak < 0.

For example, for the series
∑∞

k=1
(−1)k

k
, this is:

ak : −1,
1

2
,
−1

3
,

1

4
,
−1

5
, · · ·

a+
k : 0,

1

2
, 0,

1

4
, 0, · · ·

a−
k : −1, 0,

−1

3
, 0,

−1

5
, · · ·

|ak| : 1,
1

2
,

1

3
,

1

4
,

1

5
, · · ·

Note that a+
k − a−

k = |ak|, the absolute value of ak (the same we used when we
talked about distance). Note also that

n∑

k=1

ak =
n∑

k=1

a+
k +

n∑

k=1

a−
k , and
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n∑

k=1

|ak| =
n∑

k=1

a+
k −

n∑

k=1

a−
k .

We will say that a series
∑∞

k=1 ak is absolutely convergent if the series (of
positive terms)

∑∞
k=1 |ak| is convergent. “Absolute” convergence is stronger than

convergence, in the following sense: if the series
∑∞

k=1 |ak| converges, then the
series

∑∞
k=1 ak also converges. The reason for this is the following: using the

comparison criterion,

since a+
k ≤ |ak| for all k,

∞∑

k=1

a+
k converges, and

since − a−
k ≤ |ak| for all k,

∞∑

k=1

−a−
k converges, and is −

∞∑

k=1

a−
k ,

so
∑∞

k=1 a−
k converges. But then

n∑

k=1

ak =
n∑

k=1

a+
k +

n∑

k=1

a−
k −→

∞∑

k=1

a+
k +

∞∑

k=1

a−
k .

Note that

n∑

k=1

|ak| =
n∑

k=1

a+
k −

n∑

k=1

a−
k ,

so
∑n

k=1 |ak| converges if and only if both
∑n

k=1 a+
k and

∑n
k=1 a−

k converge.
But a series

∑∞
k=1 ak may converge without doing so absolutely, that is, without∑∞

k=1 |ak| converging. The following convergence criterion for “alternating” series
will provide us with an example.

Leibniz Criterion If ak are positive numbers which decrease to zero (0 < · · · ≤
ak+1 ≤ ak ≤ · · · and lim ak = 0), then the series

∞∑

k=1

(−1)kak = −a1 + a2 − a3 + a4 − a5 + · · ·

converges.
Let’s see why: call the partial sums sn = ∑n

k=1(−1)kak . Since

sn = sn−1 + (−1)nan,
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each term added to the partial sums produces a jump to the right—if n is even—or
to the left—if n is odd—. Also, since the ak decrease, these jumps get smaller and
smaller. . . We then have

So, the odd partial sums form an increasing sequence (and are bounded by s2),
while the even partial sums form a decreasing sequence (and are bounded by s1).
By the increasing bounded sequences theorem, they both converge. Say the odd
partial sums tend to a, and the even ones to b (a ≤ b). But for all n, b − a ≤
s2n − s2n−1 = a2n, which tends to zero. Thus a = b and the partial sums (the odd
and the even) converge to the same number. The series is convergent. �

Note also that |sn − a| < an, in other words, the distance between a partial sum
and the limit is smaller than the last term added.

Example Gregory’s series
∑∞

k=0
(−1)k

2k+1 = 1 − 1
3 + 1

5 − 1
7 + · · · . It converges by

Leibniz’ criterion, for ak = 1
2k+1 decrease to zero. In Chap. 5 we will see that its

sum is π
4 .

Example The alternating harmonic series
∑∞

k=1(−1)k 1
k

. It converges, for ak = 1
k

decrease to zero. We will see in Chap. 6 that it adds − ln 2.
This is also an example of a convergent series that is not absolutely convergent

because—as we have seen—
∑∞

k=1
1
k

diverges.

The Riemann Series Theorem

Bernhard Riemann (1826–1866) was a German mathematician. He gave the first
formal definition of the integral and also made important contributions to complex
analysis and differential geometry. His work on analytic number theory includes the
formulation of what is today known as the Riemann hypothesis, perhaps the most
important still unsolved problem in Mathematics.

When we add finitely many numbers we know that altering the order in which
we add these numbers will not change their sum. But when we have infinitely many
terms we will have to be more careful, as the following surprising result of Riemann
shows. In its proof we will use an idea similar to that of the proof of the Leibniz
criterion:
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The Riemann Series Theorem If the series
∑∞

k=1 ak converges, but not abso-
lutely, by changing the order of its terms ak we can obtain as its sum, any real
number we want.

Here’s the proof: First, note that since
∑∞

k=1 ak converges, ak −→ 0. On the
other hand, since

∑∞
k=1 |ak| diverges, both the series of its positive terms

∑∞
k=1 a+

k

and that of its negative terms
∑∞

k=1 a−
k diverge: If both were convergent, so would be

∑∞
k=1 |ak|, if one were convergent but not the other, since

∑n
k=1 ak = ∑n

k=1 a+
k +

∑n
k=1 a−

k ,
∑∞

k=1 ak would not converge. Thus,
∑n

k=1 a+
k tends to ∞ with n, while

∑n
k=1 a−

k tends to −∞.
Take any real number c, and let’s say we want the sum of the terms of our series

to be c. To that end, we will reorder the series as follows: we will add alternately
blocks of positive terms and blocks of negative terms

a+
1 ,a+

2 , a+
3 , a+

4 , a+
5 , · · ·

a−
1 ,a−

2 , a−
3 , a−

4 , a−
5 , · · ·

to approximate c. First, add just enough positive terms to overcome c—say, p1
terms—that is:

p1−1∑

k=1

a+
k ≤ c <

p1∑

k=1

a+
k .

Now, add just enough negative terms (say q1) to pass to the left of c:

p1∑

k=1

a+
k +

q1∑

k=1

a−
k < c ≤

p1∑

k=1

a+
k +

q1−1∑

k=1

a−
k .

Now just enough (say, p2) to overcome c again:

p1∑

k=1

a+
k +

q1∑

k=1

a−
k +

p2−1∑

k=p1+1

a+
k ≤ c <

p1∑

k=1

a+
k +

q1∑

k=1

a−
k +

p2∑

k=p1+1

a+
k .

And then just as many negative terms as is necessary to be on the left of c again, etc.
What will this reordered series add? At each step, the difference between the partial
sum and c is smaller than the last number added. But as ak −→ 0, this difference
becomes smaller and smaller. . . as small as we want. �

For example, by conveniently reordering

−1,
1

2
,
−1

3
,

1

4
,
−1

5
,

1

6
,
−1

7
, · · ·

we can have them sum
√

2, or π . . . or whatever.
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Absolute and Unconditional Convergence

A series
∑∞

k=1 ak is said to be unconditionally convergent if it converges to the
same sum regardless of the order in which its terms are added. By the Riemann
series Theorem we have just seen, such a series will be absolutely convergent. We
see now that the converse is also true.

Theorem If a series converges absolutely, its terms commute.

The proof is the following: Let’s say that the series
∑∞

k=1 ak converges abso-
lutely, and that its sum is s, that is

sn =
n∑

k=1

ak −→ s para n → ∞.

Consider now any reordering a′
1, a

′
2, . . . of the terms of the series. We want to check

that

s′
n =

n∑

k=1

a′
k −→ s (the same as before!) for n → ∞.

To see this, take ε > 0. By the absolute convergence of the series, we will have, for
a sufficiently large N ,

∑

k>N

|ak| < ε.

Consider then M so large that the set {a′
1, a

′
2, . . . , a

′
M } contains the set

{a1, a2, . . . , aN }. Now for all n > M

|s − s′
n| =

∣
∣
∣
∣
∣

∞∑

k=1

ak −
n∑

k=1

a′
k

∣
∣
∣
∣
∣
≤
∑

k>N

|ak| < ε,

for in omitting {a′
1, a

′
2, . . . , a

′
M, . . . , a′

n} we are undoubtedly also omitting
{a1, a2, . . . , aN }. Hence, s′

n −→ s. �

Exercises

1 Prove that s = sup A if and only if s is an upper bound of A and there is a
sequence (an) of elements of A such that an −→ s.

2 Prove that if an −→ c, bn −→ c, and an ≤ cn ≤ bn for all n, then cn −→ c.
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3 Prove that if an −→ a and bn −→ b,

(i) an + bn −→ a + b.
(ii) anbn −→ ab.

4 Given a sequence (xn), bounded from above and below, consider its tails:

An = {xk : k ≥ n}.

(i) Prove that for all n we have An ⊃ An+1.
(ii) Determine the relationship between

sn = sup An in = inf An sn+1 = sup An+1 in+1 = inf An+1.

iii) Prove that (in) converges and that (sn) converges.
iv) If in −→ i and sn −→ s, what is the order relation between i and s?

The number i = lim inf xn is called the limit inferior of xn, and s = lim sup xn is
called the limit superior of xn.

5 Prove that the following are equivalent:

(i) L = lim sup xn.
(ii) for all ε > 0:

(a) there are infinitely many n such that L − ε < xn, and
(b) there are at most finitely many n such that L + ε < xn.

6 We will say that (xn) is a Cauchy sequence if for any ε > 0 there exists an nε

such that if m, n ≥ nε, then

|xm − xn| < ε.

Prove that all Cauchy sequences are bounded.

7 Prove that the following are equivalent:

(i) (xn) converges.
(ii) lim inf xn = lim sup xn.

(iii) (xn) is Cauchy.

8 Which of the following implications hold? (Give a proof or a counterexample)
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(a) an+1 − an −→ 0 ⇒ (an) converges.
(b) |am − an| < 1

n+m
for all n,m ⇒ (an) converges.

(c) |an+1 − an| < 1
2n for all n ⇒ (an) converges.

(d) an+1 − an −→ 0 ⇒ a2n − an −→ 0.

9 An exercise about tails of a series.

(a) Given the geometric series
∑∞

k=0 rk , (with |r| < 1), prove that for each n ∈ N

nth tail is

∑

k>n

rk = rn+1

r
. For example, for r = 1

2
, is

∑

k>n

1

2k
= 1

2n
.

(b) Given the alternating series
∑∞

k=1(−1)kak , (with ak positive and decreasing),

∣
∣
∣
∣
∣

∑

k>n

(−1)kak

∣
∣
∣
∣
∣
= |s − sn| ≤ |an|.

10 Which of the following implications hold? (Give a proof or a counterexample)

(a)
∑

n an < ∞ and nbn < an for all n ⇒ ∑
n bn < ∞.

(b)
∑

n an = ∞ and nbn > an for all n ⇒ ∑
n bn = ∞.

11 If an

bn
−→ L, what can be said about the convergence of

∑
n an,

(i) if
∑

n bn converges?
(ii) if

∑
n bn diverges?

(consider the cases L = 0, L > 0, and L = ∞).

12 It is known that the series
∑

n an converges, but not absolutely. Reorder it so
that

∑
n an = ∞.
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We consider here the elementary functions, and also curves in
the plane and their parametrization. We introduce the notion of
continuity, and present the theorems of Bolzano and of
Weierstrass.

The Elementary Functions

What is the surface area of a square whose sides measure two? Four. And if those
sides measure three? Nine. And if they measure x? x2. This last question (and its
answer) is of a very different type from the first two. It is more abstract. For it refers
to the side of a square whose measure is x—a generic number, in other words, a
number of which we know nothing. But this does not hinder us from giving an—
equally generic—answer. The answers to the first two questions give us the area of
squares of sides two or three. The answer to the more abstract question allows us
to know the area of any square. This is infinitely more useful. Abstraction is what
confers usefulness to mathematics.

When to any “generic” number x we assign (in whatever way) another number,
what we have is a function. If we call f the function of the previous paragraph, then
we will write

f (x) = x2 or x �→ x2

to express that each number x (usually called the variable) is assigned the number
x2 by our function f .

We will return later to the abstract idea of function. But first we should consider
some of the functions known as “elementary functions,” the simplest: polynomials,
the circular functions (sine and cosine), and the exponential function.
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Polynomials

After the “constant” functions (which assign to all numbers x the same number c),
perhaps the simplest are those that are obtained from the variable x by addition and
multiplication; for example,

x �→ x2, x �→ x2 + 3x, x �→ 4x3 − 1

2
x + 5,

these are the polynomials, in general, the functions of the form

f (x) = anx
n + an−1x

n−1 + · · · + a2x
2 + a1x + a0,

where each ai is a fixed real number, independent of x. In this expression, n is the
degree of the polynomial. Note that for each value of x, the value of the function,
f (x), is obtained by summing and multiplying. Many of the other commonly used
functions are not so easy to calculate, and for this reason one of the objectives of
Calculus is to approximate these other functions by means of polynomials.

On the other hand, the simplicity of polynomials makes them “rigid” in the
following sense: consider the polynomials of degree one

f (x) = ax + b,

and say that we wish to find one such that f (1) = −2 and f (3) = 4, that is:

f (1) =a + b = −2

f (3) =3a + b = 4.

We may solve this system of two linear equations with two unknowns and obtain
(with a = 3 and b = −5) the polynomial we want:

f (x) = 3x − 5.

But we cannot ask more of this polynomial (for example, that f (2) = 0. . . ). In
general, to be able to ask more, to impose more conditions, we must permit the
degree of the polynomial to increase. The greater the degree, the lesser the rigidity,
and the greater the possibility of adjusting data or approximating a given function.
We will come back on this matter when we consider Taylor polynomials in Chap. 6.

Circular Functions

It is one thing to define the sine or the cosine of an angle α, and another to define the
sine function or the cosine function. Because the “angle α” is a geometric object,
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but a function must have as its variable a number, not a geometric object. To identify
the angle α with a number, one thing that one can do is measure it. And there are
several ways of doing this, because our angle α can be measured with different units:
sexagesimal degrees (in which the right angle measures 90◦), centesimal degrees (in
which the right angle measures 100◦), or radians (in which the right angle measures
π
2 ). And these different ways of measuring the angle α give rise to different “cosine”
functions and different “sine” functions, as you may have noticed if you’ve used
your calculator a little carelessly.

The circular functions—cosine and sine—which we will define correspond to
measuring angles with radians. Consider in the plane the circle with center at the
origin (the point (0, 0)) and of radius one. Given the number t , we measure from
the point (1, 0) an arc of length t on the circumference (upwards if t is positive,
downwards if t is negative). We thus reach a point p(t) on the circumference:
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The point p(t) has two coordinates. The first we will call cosine of t and the second
sine of t: that is p(t) = (cos t, sin t). To each real number t corresponds a point
p(t) (if t is larger than 2π which is the measure of the complete circumference,
we continue going around the circle). Thus we have defined the “circular functions”
cos t and sin t for any value of t . Several things about these functions can be seen
by simply looking at the above graph. For example,

cos(−t) = cos t

sin(−t) = − sin t

sin(π − t) = sin t

cos(π − t) = − cos t

cos
(π

2
− t

)
= sin t

sin
(π

2
− t

)
= cos t

and, cos2 t + sin2 t = 1.

Note that the usual “triangular” definitions of sine and cosine as relations between
the sides of a right triangle may be derived from the same picture. The hypotenuse
here measures one (the radius), and relations between the sides are the same for all
similar (same shape) triangles.

Later on, we will need the following formulas for sine and cosine of a sum:

sin(x + y) = cos x sin y + cos y sin x

and cos(x + y) = cos x cos y − sin y sin x.

Here is a simple proof for these formulas. Let’s start with the sine of a sum. For this,
calculate the area of the following triangle:
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Area = 1

2
· b cos x · a sin y+ 1

2
· a cos y · b sin x = ab

2
[cos x sin y + cos y sin x] .

Now rotate and calculate the area again:

Area = 1

2
· b · a sin(π − (x + y)) = ab

2
[sin(x + y)] .

Then sin(x + y) = cos x sin y + cos y sin x. For the cosine of a sum,

cos(x + y) = sin
(π

2
− (x + y)

)

= sin
((π

2
− x

)
+ (−y)

)

= sin
(π

2
− x

)
cos(−y) + sin(−y) cos

(π

2
− x

)

= cos x cos y − sin y sin x.

Done!

The Exponential Function: Bernoulli’s Inequality

Leonhard Euler (1707–1783) was born in Basel. His father was a friend of Johann
Bernoulli, one of the foremost mathematicians of the time, who took an interest in
Leonhard’s mathematical education. By age twenty he was working in the recently
created Saint Petersburg Academy of Science. Some years later (1740) he moved
to the Berlin Academy where he worked most of his life (before returning to St.
Petersburg). Although he became blind in 1765, he continued working up to his
death in 1783. Euler was a most prolific mathematician. He published works on
number theory, differential equations, calculus of variations, and graph theory. The
number e, which we will define below, is designated with that letter in his honor.
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The exponential function is surely the most important function in mathematics.
Beyond its theoretical importance, it is present in countless practical applications.
Let’s begin with one of them, compound interest: you put money in the bank, and
the bank promises to pay you 6% annual interest. By the end of the year, for each
dollar invested the bank will give you 6 cents, thus your capital will be multiplied
by (1 + 0, 06). But it would be better for you if the bank gave you 3% every six
months; then the first 3 cents would become part of your capital and would earn
interest during the second semester. By the end of the year your capital would be
multiplied by

(1 + 0, 03)(1 + 0, 03) =
(

1 + 0, 06

2

)2

.

And if capitalized every four months (three periods),

(1 + 0, 02)(1 + 0, 02)(1 + 0, 02) =
(

1 + 0, 06

3

)3

,

and if every three months (four periods),

(

1 + 0, 06

4

)4

.

If capitalization occurred instantly (infinitely many infinitely short periods), by
year’s end your capital would be multiplied by the number

lim
n−→∞

(

1 + 0, 06

n

)n

.

Now, you may object, no bank will give me instantaneous interest. True. But Nature
apparently will: many natural processes involve growth which is proportional, at
any given moment, to the amount present. Thus, it will be important to calculate the
limit

lim
n−→∞

(
1 + x

n

)n

,

which is what we will do now. Say—for the moment—that the growth rate is a fixed
number x, and for every natural number n, set

cn =
(

1 + x

n

)n

.

We want to see if the sequence cn converges, and to what. We will use “Newton’s
formula”:
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(a + b)n =
n∑

k=0

(
n

k

)

an−kbk, where

(
n

k

)

= n!
(n − k)!k!

Let’s begin:

cn =
(

1 + x

n

)n

=
n∑

k=0

(
n

k

)(x

n

)k

(using Newton’s formula)

=
n∑

k=0

xk

k!
n!

(n − k)!nk

=
n∑

k=0

xk

k!
[
n · (n − 1) · · · (n − k + 1)

nk

]

(simplifying the factorials)

=
n∑

k=0

xk

k!
[
n

n
· n − 1

n
· · · n − (k − 1)

n

]

=
n∑

k=0

xk

k!
[(

1 − 1

n

)

· · ·
(

1 − k − 1

n

)]

<

n∑

k=0

xk

k!

<

∞∑

k=0

xk

k! ,

but this series converges absolutely by the quotient criterion:

|x|k+1

(k + 1)! · k!
|x|k = |x|

k + 1
< 1 as soon as k > |x| − 1.

thus the sequence cn is bounded. But also, two things have appeared which deserve
our attention:

(a) the product
[(

1 − 1
n

)
· · ·

(
1 − k−1

n

)]
, for which we will use the notation

k−1∏

j=1

(

1 − j

n

)

,



46 3 Functions

analogous to the summation notation
∑

, but for multiplication,
(b) the function

f (x) =
∞∑

k=0

xk

k! .

If we consider very large n, the product in a) will be close to one, and in our
discussion above the cn’s seem to converge to the function f (x) in (b). This will
indeed be so. But we will need to consider the product closely, and for this we
will use Bernoulli’s inequality.

Jacob Bernoulli (1655–1705) is, with his smaller brother Johann, the two
most notable in a family of extraordinary mathematicians. Jacob made important
contributions to the theory of differential equations, and to the theory of probability.

Bernoulli’s Inequality Given a1, . . . , an, either all positive or all between −1 and
0, then

n∏

i=1

(1 + ai) ≥ 1 +
n∑

i=1

ai.

We will prove this inequality by induction. For n = 1 we have

1 + a1 ≥ 1 + a1.

Now, supposing the inequality valid for n,

n+1∏

i=1

(1 + ai) =
n∏

i=1

(1 + ai) (1 + an+1)

≥
(

1 +
n∑

i=1

ai

)

(1 + an+1)

= 1 +
n∑

i=1

ai + an+1 + an+1

n∑

i=1

ai

≥ 1 +
n+1∑

i=1

ai,

where in the first inequality we have used that 1 + an+1 ≥ 0, and in the second that
all ai’s have the same sign, and thus an+1

∑n
i=1 ai ≥ 0. �
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Note that if the ai’s are all the same, we have: for −1 < a,

(1 + a)n ≥ 1 + na,

which is also usually called Bernoulli’s inequality.

Now set sn = ∑n
k=0

xk

k! , the partial sum of the series in b), and calculate its
difference with cn. Bearing in mind that the first two terms coincide in sn and cn,
we sum for k ≥ 2:

sn − cn =
n∑

k=2

xk

k!
(

1 −
[(

1 − 1

n

)

· · ·
(

1 − k − 1

n

)])

using Bernoulli’s inequality,

≤
n∑

k=2

xk

k!

⎛

⎝1 −
⎡

⎣1 −
k−1∑

j=1

j

n

⎤

⎦

⎞

⎠

=
n∑

k=2

xk

k!

⎛

⎝1

n

k−1∑

j=1

j

⎞

⎠

=
n∑

k=2

xk

k!
1

n

k(k − 1)

2
(sum of the first k − 1 natural numbers)

≤
∞∑

k=2

xk

(k − 2)!
1

2n

=
∞∑

k=0

xk

k!
x2

2n
(renaming indices)

= x2

2n

∞∑

k=0

xk

k! ,

which tends to zero, for the series converges and x2

2n
−→ 0 as n grows.

Thus limn cn = limn sn:

lim
n−→∞

(
1 + x

n

)n =
∞∑

k=0

xk

k! = f (x).

We will call this function f , defined either as the limit of (1 + x
n
)n or as the series

∑∞
k=0

xk

k! , the exponential function. We will now see some of its properties, which
justify the name.
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(i) f (x + y) = f (x)f (y), because:

f (x + y) =
∞∑

k=0

(x + y)k

k!

=
∞∑

k=0

k∑

j=0

1

k!
(

k

j

)

xjyk−j .

As the series converges absolutely, we may reorder its terms. We will do this in
the following way. As is, if we consider the index pairs (k, j), we are summing
along the columns, from left to right in

Instead, let’s sum along the rows, from the bottom up:

=
∞∑

j=0

∞∑

k=j

1

k!
(

k

j

)

xjyk−j

=
∞∑

j=0

∞∑

k=j

1

k!
k!

(k − j)!j !x
jyk−j

=
∞∑

j=0

xj

j !
∞∑

k=j

yk−j

(k − j)!

=
∞∑

j=0

xj

j !
∞∑

i=0

yi

i! (calling k − j, i)

= f (x)f (y).
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(ii) f is always strictly positive, for f (x) = f (x
2 + x

2 ) = f (x
2 )2 ≥ 0, but if

there were an a such that f (a) = 0, we would have f (0) = f (a + (−a)) =
f (a)f (−a) = 0, but this does not happen, because

(iii) f (0) = 1.

We will call “e” the number f (1). That is,

e = lim
n−→∞

(

1 + 1

n

)n

and e =
∞∑

k=0

1

k! .

Note that

ex = lim
n→∞

(

1 + 1

n

)nx

= lim
n→∞

(
1 + x

nx

)nx

= lim
p→∞

(

1 + x

p

)p

= f (x),

so we will use the notation ex for the exponential function. In other words

ex = lim
n−→∞

(
1 + x

n

)n

and ex =
∞∑

k=0

xk

k! .

The number e is one of the most important in mathematics. In decimal notation,
something like

e = 2, 718 . . .

Irrationality of e

The number e is irrational.
To prove this, we suppose it is rational and will reach a contradiction. Write then

e = m
n

. Thus n
m

= e−1 = ∑∞
k=0

(−1)k

k! , and

n(m − 1)! = n

m
m!



50 3 Functions

=
∞∑

k=0

(−1)k

k! m!

=
m∑

k=0

(−1)k

k! m! ± 1

(m + 1)
∓ 1

(m + 1)(m + 2)
± · · ·

Then,

n(m − 1)! −
m∑

k=0

(−1)k

k! m! =

= ± 1

(m + 1)
∓ 1

(m + 1)(m + 2)
± 1

(m + 1)(m + 2)(m + 3)
∓ · · ·

Now, on the left-hand side of the equality we have a whole number, call it p, and
on the right-hand side, an alternating series whose sum we know, from our proof of
the Leibniz criterion, is a number between the first term and the sum of the first two.
Thus,

1

(m + 1)
− 1

(m + 1)(m + 2)
< |p| <

1

(m + 1)

1

(m + 2)
< |p| <

1

(m + 1)
,

but this cannot be, for p is a whole number. We conclude then that e must be
irrational. �

Convergence of
∏∞

k=1(1 + ak) and of
∑∞

k=1 ak

Note that since ex = ∑∞
k=0

xk

k! = 1 + x +∑∞
k=2

xk

k! , it is clear that

1 + x ≤ ex for all x ≥ 0.

We will use this to prove the following:

Proposition If ak ≥ 0 for all k (or if −1 < ak < 0 for all k),
∏∞

k=1(1 + ak)

converges if and only if
∑∞

k=1 ak converges

Here
∏n

k=1(1 + ak) means the product (1 + a1)(1 + a2) . . . (1 + an) and that the
infinite product “converges” means there exists a limit to the “partial products” as
n → ∞. Note that if ak ≥ 0 for all k, both the partial sums

∑n
k=1 ak and the partial

products
∏n

k=1(1 + ak) form increasing sequences (while if −1 < ak < 0 for all k,
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they are decreasing). Thus to check their convergence it will be enough to see that
they are bounded. For each n we have

1 +
n∑

k=1

ak ≤
n∏

k=1

(1 + ak) ≤
n∏

k=1

eak = e
∑n

k=1 ak .

Where the first inequality is Bernoulli’s, and the second is because 1 + x ≤ ex .
Therefore, if

∏∞
k=1(1 + ak) converges, sn = ∑n

k=1 ak is bounded, while if
∑∞

k=1 ak

converges, pn = ∏n
k=1(1 + ak) is bounded. �

For example, if ak = 1
k

noting that

n∏

k=1

(

1 + 1

k

)

=
n∏

k=1

(
k + 1

k

)

= 2

1
· 3

2
· 4

3
· · · n + 1

n
= n + 1 −→ ∞,

we have another proof of the divergence of the harmonic series.

Hyperbolic Functions

The series which defines the exponential function

ex = 1 + x + x2

2! + x3

3! + x4

4! + x5

5! + · · · + xk

k! + · · ·

converges absolutely for any real number x. Then if we add only some of its terms,
we will have a series which also converges absolutely for any real number x.

We may then define the “even part” and the “odd part” of ex by summing only
the even-indexed terms or only the odd-indexed terms:

cosh x =1 + x2

2! + x4

4! + x6

6! + · · · + x2k

(2k)! + · · ·

sinh x =x + x3

3! + x5

5! + x7

7! + · · · + x2k+1

(2k + 1)! + · · ·

By doing this, we obtain the functions hyperbolic cosine and hyperbolic sine (in the
exercises you will see the reason for these names). Clearly the hyperbolic cosine
is an even function, while the hyperbolic sine is an odd function in the following
sense:

cosh(−x) = cosh x

sinh(−x) = − sinh x.
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Adding both series, we obtain ex = cosh x + sinh x, and bearing in mind the
comment we just made regarding their parity, we have e−x = cosh x − sinh x.
From this we immediately obtain another way of writing the hyperbolic functions:

cosh x =ex + e−x

2
, and

sinh x =ex − e−x

2
.

The hyperbolic tangent may be defined by tanh x = sinh x
cosh x

= ex−e−x

ex+e−x .

Injectivity and Inverse Functions

Before introducing other functions we need to consider two basic ideas linked to the
abstract notion of function: domain and injectivity.

We have said that a function f assigns to each real number x another real number
f (x). Often, either for convenience or by necessity, we will not permit the variable
x to take all real values but only some, restricting the values of x to some subset
A ⊂ R. We will call this subset the domain of f .

Thus, for example, if we consider the problem: “of all rectangles with perimeter
four, which has the largest area?”, we will seek the value of x maximizing

area = base × height = x(2 − x) = −x2 + 2x = f (x),

but as neither the base x nor the height 2−x make sense for this problem if they are
negative, we consider only x > 0 and 2 − x > 0. In other words, we put

f : (0, 2) −→ R such that f (x) = −x2 + 2x.

(0, 2) is the domain of f . Another example: we want to study the function g(x) = 1
x

,
but since this function is not defined for the value x = 0, we consider A = {x ∈ R :
x �= 0}, and this is the domain of the function we wish to study:

g : A −→ R such that g(x) = 1

x
.

Another: tan x = sin x
cos x

is defined only when cos x �= 0, so we will have to consider
a domain which does not contain the points π

2 + kπ with k ∈ Z.
Many times we will be interested in—given the value f (x)—recovering x. For

example, for the function g(x) = 1
x

above, if g(x) = 3
2 , what is the value of x? Set

1

x
= 3

2
,
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from where we “solve for x”: x = 2
3 . But it will sometimes happen that it is

impossible to determine x: in the previous example (f (x) = −x2 + 2x), if we
know that f (x) = 3

4 , what is the value of x?

3

4
= − x2 + 2x

0 =x2 − 2x + 3

4
.

Solving for x, we have either x = 1
2 or x = 3

2 . What happens is that the function
f assigns the value 3

4 to two different values of x: f ( 1
2 ) = 3

4 = f ( 3
2 ), so it is not

possible to determine x.
We will say that a function is injective or one-to-one when each f (x) comes from

one unique value of the variable x. Another way of saying this is that x �= y implies
f (x) �= f (y) (in other words, f (x) = f (y) implies x = y). When this happens,
given f (x), it will be possible to solve for x and “recover” its value.

For example, the exponential function f (x) = ex is injective: if x �= y, suppose
x < y and write y = x + h with h > 0. Then

ey = ex+h = exeh > ex, for eh =
∞∑

k=0

hk

k! = 1 +
∞∑

k=1

hk

k! > 1.

This argument actually shows something stronger: the exponential function is
strictly increasing: x < y implies ex < ey .

When a function is not injective in all its domain, we can often consider a smaller
domain in which it is injective. The function

f : R −→ R such that f (x) = x2

is not injective, for f (x) = f (−x) for any x. But if we consider as its domain
A = [0,∞),

f : A −→ R such that f (x) = x2

is injective. Likewise, the functions cos x and sin x are not injective, but restricting
their domains

cos : [0, π ] −→ R

sin :
[
−π

2
,
π

2

]
−→ R

they are.
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The following functions—with the domains given—are injective. I’ve also
written where they take values:

x �→ x2, [0,∞) −→ [0,∞),

x �→ ex, R −→ (0,∞),

x �→ cos x, [0, π ] −→ [−1, 1],
x �→ sin x,

[
−π

2
,
π

2

]
−→ [−1, 1],

x �→ tan x,
(
−π

2
,
π

2

)
−→ R.

Because of their injectivity, in each case it is possible to recover x given y = f (x).
Thus, for example, if y = x2, x = √

y (understanding that this means the positive
root of x2). It is possible to define in each case, the inverse function x = f −1(y)

which recovers x, given y:

y �→ √
y, [0,∞) −→ [0,∞), the square root,

y �→ ln y, (0,∞) −→ R, the natural logarithm,

y �→ arccos y, [−1, 1] −→ [0, π ], the arc cosine,

y �→ arcsin y, [−1, 1] −→
[
−π

2
,
π

2

]
, the arc sine,

y �→ arctan y, R −→
(
−π

2
,
π

2

)
, the arc tangent.

Note that we do not necessarily have a formula to calculate the values of these
functions. But we do know that they exist. For example, we know, because of the
injectivity of f (x) = ex , that there is a unique value of x for which ex = y. We call
this value x = ln y even though we have—as yet—no way of calculating it.

When the values of a function fall within the domain of another, it is possible to
“compose” them, in the following sense:

A
f−→B

g−→ C

x �→ f (x) �→ g(f (x)).

The function x �→ g(f (x)) is called g composed with f and denoted g ◦ f . For
example, if f (x) = x2 and g(x) = ex , we have (g ◦ f )(x) = ex2

. Note that this is
not the same as (f ◦ g)(x) = (ex)2 = e2x . If f has an inverse f −1, composing one
with the other we obtain the “identity” function: x �→ x. For example,

arcsin(sin x) = x and eln y = y.
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Curves in the Plane: Parametrized Curves

We need to consider curves in the plane. We will use the following three ways to
describe a curve C ⊂ R2.

(a) The parametric form: C is the image of a function

p : R −→ R2,

where p(t) “draws” the curve C as the “parameter” t moves.
(b) The implicit form: C is the set of points of the plane on which a function

F : R2 −→ R

is zero.
(c) As the graph of a function: C = {(x, f (x)) : x ∈ R}, where

f : R −→ R.

Example But let’s see one particular example represented in each of these three
forms: the circumference C centered at (0, 0) and of radius 1.

(a) In parametric form: C is the image of p : [0, 2π ] −→ R2 where:

p(t) = (cos t, sin t).

In this representation the point p(t) moves along the circumference anti-
clockwise, from the point (1, 0) and does one full turn as t moves from 0 to
2π . One could parametrize the circumference in many other ways; we will see
another way below.

(b) In implicit form: the circumference C is formed by the points (x, y) of the plane
whose distance from (0, 0) is one. We may write

1 = distance from (0, 0) to (x, y) =
√

x2 + y2,

so these points are those which verify the equation x2 + y2 = 1. Thus the
circumference is the set of points (x, y) where the function

F(x, y) = x2 + y2 − 1

is zero.
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(c) As the graph of a function: the upper half of the circumference C may be
described as the set of points (x, f (x)), where f : [−1, 1] −→ R is

f (x) =
√

1 − x2.

The lower half is the graph of g(x) = −√
1 − x2.

As we see in this example, one of the limitations of this form of representation
is that there are many curves which are not graphs of functions. All three ways of
representing curves C ⊂ R2 are useful and we will use, in any given case, that which
is most convenient.

The Cycloid

We consider now another example of curve, which we will use later in Chap. 4:
the Cycloid. Take a circumference of radius r centered at (0,−r). The point A of
the circumference is resting on the x-axis coinciding with (0, 0). But now we begin
to roll the circumference along the x-axis, without sliding, and we mark the curve
described by point A. This is a cycloid. Let’s parametrize it.

Say that the circumference has turned t radians. This turn comprises an arc of
length rt , so the circumference has moved to the right by this amount. Where is
point A now? It has moved to the right rt −r sin t ; and its height is now −r +r cos t .
Its new position is therefore (rt − r sin t,−r + r cos t).

Thus the cycloid may be parametrized by p : [0, 2π ] → R2:

p(t) = r(t − sin t,−1 + cos t).

Finally, the cycloid looks like this
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(after two turns, that is t ∈ [0, 4π ]).

Pythagorean Triples

We will use a “rational” parametrization of the circumference to obtain all
Pythagorean triples. Recall that the Pythagorean Theorem states that given a right
triangle, the area of the square whose side is the hypotenuse is equal to the sum
of the areas of the squares on the other two sides (the legs). This holds for any
right triangle; the lengths of its sides can be natural, rational, or irrational numbers.
However, the usual example is the triangle whose sides measure 3, 4, and 5. A triple
such as this one, in which the lengths of the hypotenuse and both legs of the right
triangle are all natural numbers, is called a Pythagorean triple. If we have natural
numbers a, b, and c such that a2 + b2 = c2, dividing by c2 we have

(a

c

)2 +
(

b

c

)2

= 1,

thus, having a Pythagorean triple is like having a “rational point” of the circum-
ference. That is, a point on the circumference whose coordinates are both rational
numbers. We will define a parametrization p : [0, 1] −→ R2 of the circumference
(actually of the upper right-hand quarter of the circumference) which has the
property of making the rational numbers t on the interval [0, 1] correspond to the
rational points p(t) of the circumference. To do this let’s begin by looking at the
following drawing:
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We want to make t correspond to Pt , on the intersection of the circumference and
the line y = t (x + 1) (which goes through (−1, 0) and (0, t), as in the drawing).
Let’s find that intersection:

x2 + y2 = 1

x2 + (t (x + 1))2 = 1

x2 + t2(x2 + 2x + 1) = 1

(t2 + 1)x2 + 2t2x + (t2 − 1) = 0,

from which (finding the roots of this quadratic equation), we obtain x = −1 (which
corresponds to the point of intersection (−1, 0)) or

x = −2t2 +√
4t4 − 4(t4 − 1)

2(t2 + 1)
= −t2 + 1

t2 + 1
,

which corresponds to the point of intersection (−t2+1
t2+1

, 2t
t2+1

). We define then

p : [0, 1] −→ R2 such that p(t) =
(−t2 + 1

t2 + 1
,

2t

t2 + 1

)

.

Note that if t is rational, so are the coordinates of the point p(t). Now, if P = (a, b)

is a rational point of the circumference, looking at

we see that, by triangle similarity, t = t
1 = b

1+a
, which is therefore rational. Thus

the rational numbers of [0, 1] correspond to the rational points of the first quadrant
of the circumference. We have then, for any rational t
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(−t2 + 1

t2 + 1

)2

+
(

2t

t2 + 1

)2

= 1,

then

(1 − t2)2 + (2t)2 = (1 + t2)2.

Setting t = m
n

, and multiplying by n4

(n2 − m2)2 + (2mn)2 = (n2 + m2)2, with m ≤ n,

so n2 − m2, 2mn, n2 + m2 is a Pythagorean triple for any pair of natural numbers
m < n. We may thus describe all Pythagorean triples (up to multiples). For example,
for m = 356 and n = 921, we obtain the triple

721505 655752 974977.

Continuity

In Chap. 1 we justified the need for completeness, and for passing from the rational
line to the real line, by saying that we wanted there to actually be intersection in a
situation such as

However, this drawing implicitly verifies a second condition which is essential
for the curve not to jump from one side of the line to the other: continuity. A function
is continuous when small changes of the variable x produce small changes of the
values f (x), in other words the values f (x) do not jump around; they rather have a
certain quality of permanence which we will formalize as follows.

We will say that a function f is continuous at the point s if

f (s) < v ⇒ f (x) < v for all x in some neighborhood of s

and f (s) > u ⇒ f (x) > u for all x in some neighborhood of s.

When f has this property at all points s in its domain, we simply say that f is
continuous.
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For example, the function f (x) = 2x is continuous: if u < 2s < v, we obtain
u < 2x < v whenever u

2 < x < v
2 , which happens for x sufficiently close to s, for

u
2 < s < v

2 .
The following Lemma will connect what we have seen on convergent sequences,

with the properties of continuous functions.

Lemma If xn → s and f is continuous at s, then f (xn) → f (s).

To see why, let’s start by taking any ε > 0. Since

f (s) − ε < f (s) < f (s) + ε,

the continuity of f at s assures us that for all x in some neighborhood of s—say
(s − δ, s + δ)—we will also have

f (s) − ε < f (x) < f (s) + ε.

But, on the other hand, since xn → s, for n sufficiently large (say n ≥ n0) xn are in
the neighborhood (s − δ, s + δ). Thus,

f (s) − ε < f (xn) < f (s) + ε, for all n ≥ n0.

In other words, |f (xn) − f (s)| < ε for sufficiently large n. �

Bolzano andWeierstrass

Bernardus Placidus Johann Gonzal Nepomuk (!) Bolzano (1781–1848) was born in
Prague. Mathematician and philosopher, he gave the first formal definition of limit
and recognized in modern terms, the completeness property of the real numbers.

Continuity, together with the completeness of the real line, will ensure the
existence of intersections, according to the following theorem.

Bolzano’s Theorem if f : [a, b] −→ R is continuous, f (a) < 0 and f (b) > 0,
then for some s ∈ (a, b), f (s) = 0.

Let’s see the proof: consider the set

A = {x ∈ [a, b] : f (x) < 0}.

A is non-empty (a ∈ A) and bounded above (by b).
The completeness axiom therefore assures the existence in [a, b], of the supre-

mum of A: call it s. We will see that f (s) = 0:
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If f (s) < 0, since f is continuous at s the same would hold for any x close to s

(that is, f (x) < 0 for all x ∈ (s − ε, s + ε)). But then (s − ε, s + ε) ⊂ A and we
would have s < x ∈ A: s would not be an upper bound of A.

If f (s) > 0, since f is continuous at s the same would hold for any x close to s

(that is, f (x) > 0 for all x ∈ (s − ε, s + ε)). But then we would have elements x,
bounds of A, smaller than s: then s would not be the smallest upper bound of A.

Only one possibility is left: f (s) = 0. �
The following theorem is also very important.

Weierstrass’ Theorem If f : [a, b] −→ R is continuous, f attains a maximum
value in [a, b] (that is: there exists a y ∈ [a, b] such that f (y) ≥ f (x) for all
x ∈ [a, b]).

Let’s see why: we will first see that the set of values attained by the function is
bounded above; and then we will see that its supremum is one of the values attained.

First consider the set

A = {f (x) : x ∈ [a, b]}.

We will prove that A is bounded above. If it were not, there would exist for each n ∈
N an element xn ∈ [a, b] such that n < f (xn). As the sequence (xn) is contained in
the closed interval [a, b], it has a subsequence (xnk

) which converges to a point x in
[a, b]. Since f is continuous, f (xnk

) → f (x). But this cannot be, because for all k,
nk < f (xnk

), so f (xnk
) cannot converge to any real number.

So A is bounded above and non-empty. By completeness, it has a supremum
s = sup A. Take—for each n—yn ∈ [a, b] such that

s − 1

n
< f (yn) ≤ s.

Again, (yn) has a convergent subsequence; say ynk
→ y ∈ [a, b]. Then

s − 1

nk

< f (ynk
) ≤ s

↓ ↓
s ≤ f (y) ≤ s.

Thus, f (y) = s and the maximum s is attained on an element of [a, b]. �
An analogous argument proves that every continuous function on an closed

interval also attains its minimum value.
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Limits

We will say that the limit of f (x) as x tends to s is L and we will write

lim
x−→s

f (x) = L

if

Given any neighborhood V of L, f (x) ∈ V for all x sufficiently close to s (but
different to s).

Example limx−→0 cos x = 1.

The following drawing shows that for any ε > 0, if x is small enough, cos x will
be between 1 − ε and 1:

There is a way of expressing the continuity of f at s in terms of limits:

Proposition f is continuous at s if and only if limx−→s f (x) = f (s).

Let’s see why: Say that f is continuous at s and take (f (s) − ε, f (s) + ε) a
neighborhood of f (s). Since f (s) > f (s) − ε, then also f (x) > f (s) − ε for all x

sufficiently close to s. And since f (s) < f (s) + ε, also f (x) < f (s) + ε for all x

sufficiently close to s. Thus f (x) ∈ (f (s) − ε, f (s) + ε) for all x close to s.
On the other hand, if we know that limx−→s f (x) = f (s), given u < f (s), let ε

be so small that u < f (s) − ε. But we know that f (x) ∈ (f (s) − ε, f (s) + ε) for
all x close to s. In particular, u < f (x) for all x close to s. The same if v > f (s).
Thus, f is continuous at s, according to our definition. �

Limits in Ancient Greece: The Area of a Circle

The notion of limit, as we know it today, was formalized by Bolzano in 1817. It is,
however, an ancient idea. Greek mathematicians such as Antiphon, Bryson, Eudoxus
and Archimedes used arguments of the following type: suppose they want to prove
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that α = β. They start by constructing two sequences of positive numbers An and
Bn such that, for each n,

An ≤ α ≤ Bn

An ≤ β ≤ Bn. (3.1)

Then if, given any number c larger than one, they could find an n for which Bn

An
< c,

they would conclude that α = β.
The conclusion is correct, for if in (3.1) we divide by An, we have

1 ≤ α

An

≤ Bn

An

< c

1 ≤ β

An

≤ Bn

An

< c,

and then

|α − β| ≤ |α − An| + |An − β|
= (α − An) + (β − An)

= An

(
α

An

− 1

)

+ An

(
β

An

− 1

)

< An(c − 1) + An(c − 1)

< α(c − 1) + β(c − 1)

= (α + β)(c − 1),

but (c − 1) can be as small as required, so α = β. Let’s see a concrete example of
this type of argument.

Example Area of a circle of radius r.

Consider a circle of radius r, and call A its area and C the length of its
circumference. We will use the method described above to prove that 2A = rC.
We begin by inscribing and circumscribing n-sided regular polygons in our circle.
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let’s take a closer look at the following portion of the picture:

Comparing the areas of inscribed polygon, circle, and circumscribed polygon in this
portion, we see that

r cos xr sin x <
A

n
< r2 tan x

and comparing the lengths of the boundaries, we have

2r sin x <
C

n
< 2r tan x.

Multiply the first by 2n and the second by rn, to obtain
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2nr2 cos x sin x <2A < 2nr2 tan x

2nr2 sin x <rC < 2nr2 tan x.

Thus, both 2A and rC are between

An = 2nr2 cos x sin x and Bn = 2nr2 tan x.

But

Bn

An

= 2nr2 tan x

2nr2 cos x sin x
= 1

cos2 x
−→ 1

as n grows, for the angle x will get smaller as we increase the number of sides n of
our polygons. Then, for any c > 1 we will find n such that Bn

An
< c, and we conclude

that 2A = rC.
Now, C = 2πr (for this is how π is defined), so what we have proved is that

2A = r2πr = 2πr2, that is, the area of the circle of radius r is

A = πr2.

I should note here that their argument would have been slightly different: sine
and cosine were invented by Indian mathematicians of the Vth Century; the Greeks
used the “chord” (as in the chord of a bow. . . chordx = 2 sin x

2 ).

Note also that An

2 and Bn

2 are—respectively—the areas of the inscribed and
circumscribed n-polygons, so for r = 1, we have An −→ 2A = C = 2π .
Archimedes uses this fact to approximate π : he starts with n = 6 and doubles
the number of sides of the polygons: 12, 24, 48, 96. His approximation of π was
unsurpassed for centuries.

Three Important Limits

This is a good place to calculate some limits that we will need in the next chapter.

(i) limx−→0
sin x

x
= 1:

Look again at the (upper half of) the last figure, and consider r = 1,
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As the area of the smaller triangle is less than that of the portion of circle, which
in turn is less than the area of the larger triangle, we have

sin x cos x

2
<

x

2π
π <

tan x

2
.

Multiplying by two,

sin x cos x < x <
sin x

cos x
.

From the first inequality, sin x
x

< 1
cos x

. From the second, cos x < sin x
x

. Thus,

cos x <
sin x

x
<

1

cos x
.

Now, as x −→ 0, cos x −→ 1, and we have

1 ≤ lim
x−→0

sin x

x
≤ 1.

(ii) limx−→0
cos x−1

x
= 0:

To see this, set

(cos x − 1)(cos x + 1)

x
= cos2 x − 1

x
= − sin2 x

x
= sin x

x
(− sin x).

Then,

cos x − 1

x
= sin x

x

(− sin x)

(cos x + 1)
,

which, if x −→ 0, tends to 1 · 0
2 = 0.

(iii) limx−→0
ex−1

x
= 1:

Write
ex − 1

x
= 1

x

( ∞∑

k=0

xk

k! − 1

)

= 1

x

∞∑

k=1

xk

k!

=
∞∑

k=1

xk−1

k!
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= 1 +
∞∑

k=2

xk−1

k!

= 1 + x

∞∑

k=2

xk−2

k! ,

which, as x −→ 0 tends to 1 + 0 · something (note that the series converges
absolutely by the quotient criterion).

Exercises

1 We have seen that if xn = 1
2

360◦
n

is half of the angle containing one side of the
inscribed n-sided regular polygon,

An

2
= n cos xn sin xn −→ π.

Do as Archimedes: starting with the hexagon (n = 6), double repeatedly the number
of sides to approximate π . Hint: use the half-angle formulas (which may be deduced
from cos(x + x) = cos x cos x − sin x sin x)

cos
(x

2

)
=
√

1 + cos x

2
sin

(x

2

)
=
√

1 − cos x

2
.

2 By using the properties of the exponential function, prove that

ln(xy) = ln x + ln y,

ln xc = c ln x.

3 Show that the functions cosh x and sinh x verify the following equality

(cosh x)2 − (sinh x)2 = 1.

Thus, the function p : R −→ R2 given by p(t) = (cosh t, sinh t) parametrizes a
hyperbola (which justifies their name).

4 Find the image sets of the hyperbolic functions, and prove that their inverse
functions are
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arccosh y = ln

(

y +
√

y2 − 1

)

arcsinh y = ln

(

y +
√

y2 + 1

)

arctanh y =1

2
ln

(
1 + y

1 − y

)

.

5 The Fibonacci sequence (Fn) is defined by: F0 = 1, F1 = 1, and for all n ≥ 2,
Fn = Fn−2+Fn−1. Prove that if x, y,w, z are consecutive numbers of the Fibonacci
sequence, then (xz, 2yw, xz + 2y2) is a Pythagorean triple.

6 f is called increasing if x ≤ y implies f (x) ≤ f (y), and decreasing if x ≤ y

implies f (x) ≥ f (y). Which of the following are true? Prove those that are, and
give a counterexample to those that are not.

(a) if f and g are increasing, then so is f + g.
(b) if f and g are increasing, then so is fg.
(c) if f (x) ≤ f (x + 1) for all x, f is increasing.

7 Consider the function

f (x) =
{

x, if x ∈ Q

−x, if x �∈ Q.

(i) Prove that it is neither increasing nor decreasing in any interval.
(ii) Find its inverse function f −1.

(iii) Conclude that g ◦ f may be increasing though f and g are not.

8 Study the continuity of the function of Exercise 7.

9 Define a function that is continuous only at the point a. Define another that is
continuous only at a and b.

10 Recall that the set of rational numbers is countable, and consider a numbering
of Q:
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Q = {r1, r2, r3, . . .}.

Now, for each x ∈ R, set Sx = {n ∈ N : rn ≤ x}, and define f : R −→ R by

f (x) =
∑

n∈Sx

1

2n
,

where we are adding over all indices n ∈ Sx . Prove that

(i) the function f is strictly increasing (x < y implies f (x) < f (y)).
(ii) f is discontinuous at each point a ∈ Q.

(iii) f is continuous at each point b �∈ Q.

11 Prove that if f and g are continuous at s, then f + g is continuous at s.

12 Let f : [a, b] −→ [c, d] be increasing and bijective (injective and onto). Prove
that:

(i) its inverse f −1 es increasing, and
(ii) f is continuous.

13 Let f and g be continuous on the interval [a, b]. If f (a) > g(a) and f (b) <

g(b), prove that there is a c ∈ (a, b) such that f (c) = g(c).

14 Prove that there are infinitely many values of x for which x cos x = 1.

15 Consider if Bolzano’s and Weierstrass’ theorems hold for the following func-
tions, and why.

f : [−1, 1] → R given by f (x) =
{

1
x
, if x �= 0

1, if x = 0

and

g : (−1, 1) → R given by g(x) = x.

16 Suppose f is defined and bounded close to a, and for each n ∈ N set
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mn = inf

{

f (x) : x ∈
(

a − 1

n
, a + 1

n

)}

Mn = sup

{

f (x) : x ∈
(

a − 1

n
, a + 1

n

)}

.

Show that

(i) mn ≤ Mn for all n,
(ii) (mn) is increasing and (Mn) is decreasing.

Conclude that, since f is bounded near a, (mn) and (Mn) converge. Call

lim inf
x−→a

f (x) = lim
n−→∞ mn,

lim sup
x−→a

f (x) = lim
n−→∞ Mn.

Show that if lim infx−→a f (x) = L = lim supx−→a f (x), then

lim
x−→a

f (x) = L.
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In this chapter we introduce the derivative, and its geometric
counterpart, the tangent line. After seeing some of its properties,
we present the Mean Value Theorems and some of their
consequences.

Derivative

Pierre de Fermat (1607–1665) was a lawyer and worked on his mathematics in
his free time. He gave impulse, as did Descartes, to analytic geometry. His work
on maxima and minima of functions and on tangents foreshadow the notion of
derivative, which he used in particular cases. Newton recognizes that his first ideas
on calculus came from Fermat’s tangent method. He also contributed to number
theory. He enunciated the famous “Fermat’s Last Theorem” (xn + yn = zn does
not admit whole number solutions for n ≥ 3), which was proved 357 years later by
Andrew Wiles.

The idea of derivative appears in the XVIIth Century in the work of Pierre de
Fermat and others, in general in relation to questions like: How do the values of a
function f vary close to a given point? The central problem is then, to study change
near a given value of the variable.

Consider the case of a moving body. Say that f (t) is the distance traveled by that
body from a certain initial moment until time t . If we wish to know the distance
covered between the instant t = t0 and the instant t = t1 this will be f (t1) − f (t0).
And if what we are interested in is the mean speed with which the body has moved,
it will be speed = distance

time

f (t1) − f (t0)

t1 − t0
,

where we have divided the distance covered by the elapsed time.
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If we wish to know the mean speed between the instant t = t0 and another
moment a little later, say t1 = t0 + h (for a “small” h), we will calculate:

f (t0 + h) − f (t0)

h
,

and if we set smaller and smaller values of h,

lim
h→0

f (t0 + h) − f (t0)

h

will approximate something like “the speed at the moment t = t0.”

Tangents

Another type of problem related with the question of how and how much the values
of a function f vary are the problems of tangents. Consider the following graph of
a function f

Clearly the function “changes little” close to the point a and “changes very much”
close to b. And this is reflected by the slope of the lines tangent to the graph of f at
those points: smaller slope = “little change,” larger slope = “larger change.” Having
the line tangent to the graph of f at the point (a, f (a)) would simplify our question
regarding the velocity of change in f close to the point a. Why? Because the tangent
line will be the graph of a linear function such as y = px+q (a polynomial of degree
1) whose growth depends solely on its “slope” p.

The following two functions coincide at a = 1. Imagine that you want to know
which function grows faster near that point,

x3 + 6x or 4x2 + 2x + 1.

This is not evident. . . However, if you ask yourself which grows faster close to a = 1:

9x − 2 or 10x − 3
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clearly it is the second, for it has a larger slope. These linear functions correspond to
the tangents of the previous functions at a = 1, thus it is the second (4x2 + 2x + 1)
which is growing faster at a = 1. One of the characteristics of differential calculus
is precisely its capacity to simplify problems by “linearizing” functions.

Thus we will try to define the line tangent to the graph of a function f at the
point (a, f (a)). This is the line which “best fits” the graph of f at that point:

That is, it is the line L such that:

(i) goes through the point (a, f (a)), and which
(ii) has, at that point, the same “slope” as f .

A line is determined by two points on it, or also by its slope and one point on it.
So conditions i) and ii) determine the line that we are looking for. . . the problem
here is that we do not know the “slope.” So what we will do is look at the slopes of
lines which are close to the one we are looking for, and hope that their slopes will
approximate the slope we want. Consider then the line Lh which goes through point
(a, f (a)), and also (a + h, f (a + h)):
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The slope of this line is α
β

, that is,

f (a + h) − f (a)

h
.

Now, if we take smaller and smaller h, a + h will approximate a, and hopefully the
line Lh will approximate L. Thus we may consider that the slope of L is

lim
h→0

f (a + h) − f (a)

h
.

Note the similarity with “speed” defined above. The slope of the tangent L is the
speed of the change in f . We will then propose the following definition:

The derivative of f at a is the number

f ′(a) = lim
h→0

f (a + h) − f (a)

h

(or equivalently: f ′(a) = limx→a
f (x)−f (a)

x−a
).

Several comments are in order:

(i) The existence of this limit is not assured. In the exercises you will see
an example where it does not exist. When it does, we will say that f is
differentiable at a.

(ii) When f is differentiable at a, the tangent line L exists and has slope f ′(a).
This line (again, see exercises) has an equation that can be expressed in any of
the following ways:

y = f ′(a)x + (f (a) − f ′(a) · a)

y = f ′(a)(x − a) + f (a)

y = f (a) + f ′(a)(x − a).

(iii) Note that when f is differentiable at a, in the quotient (called “difference
quotient”):

f (a + h) − f (a)

h

both the numerator and the denominator, considered separately, tend to zero
with h. This always happens and says absolutely nothing about the value of
f ′(a).

(iv) Looking at the definition of f ′(a), we see that this number depends on the
value of the function at a and at points x which are “very close” to a.
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Nothing occurring at a (fixed) positive distance from a has any relevance to
the derivative of f at a.

(v) When f is differentiable at x for all x in its domain, we will say simply that
f is differentiable. In this case, a function sending each x to the value f ′(x) is
defined. We denote it by f ′, and call this function the derivative of f .

Finally, another important property:

Proposition When f is differentiable at a, it is necessarily continuous at a.

To see this, write:

f (x) = f (a) + f (x) − f (a)

x − a
(x − a)

and note that if x → a, we have:

lim
x→a

f (x) = f (a) + lim
x→a

f (x) − f (a)

x − a
lim
x→a

(x − a)

lim
x→a

f (x) = f (a) + f ′(a) · 0 = f (a)

which says precisely—as we have seen in Chap. 3—that f is continuous at a. Note
that if f were not differentiable at a, limx→a

f (x)−f (a)
x−a

could be infinite or non-
existent, and the equality would not hold. �

Newton–Raphson

Let’s see an interesting application of the idea of tangent line: The Newton–Raphson
method for finding a zero of a function f . Say f : R −→ R is differentiable, and
we want to find point a where f (a) = 0. Observe the graph below
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Take any point x1, and consider the tangent line to the graph of f at point
(x1, f (x1)). Now call x2 the point of intersection of this line with the x-axis.
Repeat the process to obtain x3. Then, x4, etc. At least in this drawing, the points
x1, x2, x3, . . . seem to converge to the point a where f is zero. Let’s see how to pass
from xn to xn+1: observing the triangle T we see that

f ′(xn) = f (xn)

xn − xn+1
.

From here we can solve for xn+1 in terms of xn:

xn − xn+1 = f (xn)

f ′(xn)

xn − f (xn)

f ′(xn)
= xn+1,

and this gives us an algorithm to construct the sequence (xn). We see in the first line
that, if xn −→ a (and f ′(a) �= 0),

0 = a − a = f (a)

f ′(a)
, and then f (a) = 0.

So if (xn) converges, it converges to a point where f vanishes. For the sequence
(xn) to converge, it must happen that

|xn − xn+1| = |f (xn)|
|f ′(xn)|

becomes smaller and smaller. . . This doesn’t always happen; we will later see a
condition that assures the convergence of the sequence (xn). For now, let’s see an
example.

Example Approximation of the square root of c.

We wish to find the point a = √
c, that is, a zero of the function f (x) = x2 − c.

Let’s use the Newton–Raphson method:

xn+1 = xn − x2
n − c

2xn

= 2x2
n − x2

n + c

2xn

= x2
n + c

2xn

,
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we construct the sequence x1, x2, x3, . . ., and we will see that xn −→ √
c. In

other words, we have a method for approximating
√

c. This is usually called the
Babylonian method, for this is how they did it. . . without knowing about tangents, or
Newton, or Raphson. If you approximate

√
10 by this method starting with x1 = 3,

in a couple of steps you will have 3, 1623 . . ., which is within one ten-thousandths
of the true value.

Derivatives of the Elementary Functions

We will calculate the derivatives of some elementary functions. We leave several
others as exercises at the end of the chapter.

The Derivative of f (x) = xn: f ′(x) = nxn−1:
Take the difference quotient

(x + h)n − xn

h
= 1

h

[
n∑

k=0

(
n

k

)

xn−khk − xn

]

= 1

h

[
n∑

k=1

(
n

k

)

xn−khk

]

= 1

h

[

h

n∑

k=1

(
n

k

)

xn−khk−1

]

= nxn−1 +
n∑

k=2

(
n

k

)

xn−khk−1

= nxn−1 + h

n∑

k=2

(
n

k

)

xn−khk−2

which tends to nxn−1 as h → 0.

Derivative of the Sine Function If f (x) = sin(x), f ′(x) = cos(x).
Take the difference quotient

sin(x + h) − sin(x)

h
= sin(x) · cos(h) + cos(x) · sin(h) − sin(x)

h

= sin(x) ·
(

cos(h) − 1

h

)

+ cos(x) ·
(

sin(h)

h

)
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which, when h → 0, converges to sin(x) · 0 + cos(x) · 1 = cos(x), bearing in mind
the limits seen in Chap. 3.

Derivative of the Cosine Function If f (x) = cos(x), f ′(x) = − sin(x).
Take the difference quotient

cos(x + h) − cos(x)

h
= cos(x) · cos(h) − sin(x) · sin(h) − cos(x)

h

= cos(x) ·
(

cos(h) − 1

h

)

− sin(x) ·
(

sin(h)

h

)

which tends to cos(x) · 0 − sin(x) · 1 = − sin(x) as h → 0.

Derivative of the Exponential Function If f (x) = ex, f ′(x) = ex (ex is its own
derivative!).

Take the difference quotient

ex+h − ex

h
= exeh − ex

h

= ex

[
eh − 1

h

]

which, when h → 0, tends to ex (for eh−1
h

→ 1).
We also leave as an exercise the following.

Proposition If f and g are differentiable, then so are their sum, product and
quotient, and

(i) (f + g)′(x) = f ′(x) + g′(x),
(ii) (fg)′(x) = f ′(x) · g(x) + f (x) · g′(x),

(iii)
(

f
g

)′
(x) = f ′(x)·g(x)−f (x)g′(x)

g(x)2 . �

With (iii), we can now differentiate the function tan x = sin(x)
cos(x)

:

(tan x)′ = cos(x) cos(x) − (sin(x))(− sin(x))

cos2(x)
= cos2(x) + sin2(x)

cos2(x)
= 1

cos2(x)
.
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The Chain Rule

We now return to another operation that can be performed with functions: composi-
tion. Recall that we have defined

(g ◦ f )(x) = g(f (x)).

We will see how to differentiate a composition of functions. The resulting formula,
known as “the chain rule,” is very important both for the theory and in applications.
Its theoretical relevance will become apparent immediately, when we use it to cal-
culate the derivatives of some inverse functions (logarithm, arcsine, arccosine,. . . )
and in Chap. 5, when we see how to integrate by “changing variables” (also known
as substitution).

Its importance in applications stems from the fact that it is often convenient, when
a function can be considered as depending on different variables, to understand the
rate of change of the function when varying one or the other. An example: a balloon
is inflated by injecting air into it at a constant rate. We want to know how the radius
of the balloon changes over time. The radius of the balloon may be considered as a
function of its volume. We have: r = r(v) and v = v(t) (where r is the radius, v the
volume, and t is time). So,

r = r(v(t))

in other words, the radius is—through composition—a function of time. The chain
rule will tell us how the speed at which these variables change are linked.

The Chain Rule If f is a function differentiable at x and g is a function differen-
tiable at f (x), then g ◦ f is differentiable at x and

(g ◦ f )′(x) = g′(f (x)) · f ′(x).

Let’s see why. Write k = f (x + h) − f (x). And note two things. The first: since f

is continuous at x, as h → 0 then also k → 0 . The second: f (x + h) = f (x) + k.
Now let’s consider the difference quotient:

(g ◦ f )(x + h) − (g ◦ f )(x)

h
= g(f (x + h)) − g(f (x))

h

= g(f (x) + k) − g(f (x))

k
· k

h

= g(f (x) + k) − g(f (x))

k
· f (x + h) − f (x)

h

which, as h → 0 (and therefore k → 0) tends to g′(f (x)).f ′(x). �
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Coming back to the example of the balloon, r = r(v), but through composition,
r = r(v(t)), the chain rule tells us

(r ◦ v)′(t) = r ′(v(t)) v′(t).

Sometimes this is written using the notation

dr

dt
= dr

dv

dv

dt
,

which might be a valid mnemonic device, but we should not think that an arithmetic
simplification is at work here. What would, in that case, be the meaning of dv? We
will come back to such questions when we see integration by substitution.

Derivative of the Inverse Function

We now calculate the derivative of the inverse function f −1 of f . We will use the
notation y = f (x), x = f −1(y). Recall that the values of x and y correspond
univocally through f and f −1; to each x corresponds a y, and to each y an x.

If we compose f with f −1 we obtain the “identity” function: y → y, that is

y = (f ◦ f −1)(y).

Differentiating (using the chain rule),

1 = (f ◦ f −1)′(y) = f ′(f −1(y))(f −1)′(y).

From which

(f −1)′(y) = 1

f ′(f −1(y))
= 1

f ′(x)
.

And we have a problem: this formula tells us the derivative of f −1 at the point y in
terms of the derivative of f at the point x corresponding to y. But normally we want
to express the derivative of f −1 in terms of its own variable, y. This is sometimes
easy, and other times not so much. Let’s see some examples:

Derivative of the Square Root (
√

y)′ = 1
2
√

y
.

Indeed,

(
√

y)′ = 1

(x2)′
= 1

2x
= 1

2
√

y
.
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Derivative of the Natural Logarithm (ln)′(y) = 1
y

.
We have

(ln)′(y) = 1

(ex)′
= 1

ex
= 1

y
.

Derivative of arc sine (arcsin)′(y) = 1√
1−y2

.

We have

(arcsin)′(y) = 1

(sin(x))′
= 1

cos(x)
.

To express this in terms of the variable y: from cos2 x + sin2 x = 1 we have cos x =√
1 − sin2 x = √

1 − y2, and then

(arcsin)′(y) = 1
√

1 − y2
.

Derivative of arc cosine (arccos)′(y) = −1√
1−y2

.

(arccos)′(y) = 1

(cos(x))′
= 1

− sin(x)
.

Again, from cos2 x + sin2 x = 1 we have sin x = √
1 − cos2 x = √

1 − y2, and
then

(arccos)′(y) = −1
√

1 − y2

Derivative of arc tangent (arctan)′(y) = 1
1+y2 ,

(arctan)′(y) = 1

(tan(x))′
= cos2 x.

To write this in terms of the variable y, if in 1 = cos2 x + sin2 x we divide by cos2 x

we obtain,
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1

cos2 x
= 1 + tan2 x

= 1 + y2.

Then (arctan)′(y) = 1
1+y2 .

We should note that these formulas are valid for:

√ :(0,∞) → R

ln :(0,∞) → R

arcsin :(−1, 1) → (−π

2
,
π

2
)

arccos :(−1, 1) → (0, π)

arctan :R → (−π

2
,
π

2
).

For example, when giving the formula for (arcsin)′(y) we solved for cos x using
that it is positive (otherwise, we would have written cos x = −√1 − y2), but this is
true because x ∈ (−π

2 , π
2 ).

Another application of the chain rule:

The Derivative of f (x) = xc (for x > 0)
Applying logarithm, ln(xc) = c ln x and if we now differentiate:

1

xc
(xc)′ = c

x
, from which

(xc)′ = c

x
xc = cxc−1.

The Derivative of a Parametrized Curve

We end this section with a comment on parametrized curves and their tangents. We
know how to find the line tangent to the graph of a function f at the point (a, f (a)).
It is the line that goes through that point and whose slope is f ′(a). But suppose that
our curve is parametrized by p : R → R2 such that:

p(t) = (x(t), y(t)).
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In other words x(t) and y(t) are simply the first and second coordinates of p(t).
How can we find the line tangent to this curve? Imagine that the curve is the graph
of a function f , although this function is unknown to us. Since p(t) is in the graph
of f we have y(t) = f (x(t)). We would like to know f ′(x). Let’s use the chain
rule:

y′(t) = f ′(x(t))x′(t).

From which:

f ′(x(t)) = y′(t)
x′(t)

.

In other words, the slope of the tangent to a curve parametrized by p(t) =
(x(t), y(t)), at the point p(t0) is given by y′(t0)

x′(t0) (unless of course x′(t0) is zero,

but this happens only when the tangent is vertical). With the data p(t0) and y′(t0)
x′(t0) we

can find the tangent line, without need of knowing f . Note also that the direction of
this tangent line is given by the vector (1,

y′(t0)
x′(t0) ), which is the same as the direction

given by the vector (x′(t0), y′(t0)) = p′(t0). Thus the parametric form of the line
tangent to the curve at p(t0) is [p′(t0)] + p(t0).

Example The Circumference.

Say that we have the circumference centered at (0, 0) and of radius one, and are
looking for the line tangent to this circumference at the point ( 1√

2
, 1√

2
). We know

the circumference is parametrized by p : [0, 2π ] → R2 with:

p(t) = (x(t), y(t)) = (cos t, sin t)

and the point ( 1√
2
, 1√

2
) is p(π

4 ). The slope of the tangent will then be:

y′(π
4 )

x′(π
4 )

= cos(π
4 )

− sin(π
4 )

= −1

and the tangent line is: y = −x + √
2.

Example The Cycloid.

Recall that the cycloid is parametrized by p[0, 2π ] → R2:

p(t) = r(t − sin t,−1 + cos t).

We then have



84 4 The Derivative

p′(t) = r(1 − cos t,− sin t).

Its tangent at the point p(t) will have slope

− sin t

1 − cos t
.

We will use this later, when we consider the problem of the “brachistochrone.”

First Derivative, Tangent Line, and Growth

Among the more important applications of Calculus are the problems of extrema,
that is, finding maxima and minima of a function. When we talked about continuity,
we proved that all continuous functions reach a maximum and a minimum on any
closed interval. That theorem, however, did not tell us how to find it. It is one thing
to know that something exists, and a very different thing to know where it is.

Some extrema problems may be dealt with by using the arithmetic-geometric
inequality. Among the exercises there is an example. However, the notion of
derivative gives us a very powerful tool applicable to any differentiable function.
Intuitively, what we are interested in is clear. Imagine the graph of a function that
reaches a minimum at the point c.

Since there the tangent line will be horizontal (the slope will be zero), we will
have f ′(c) = 0. In the proof of the following theorem, we will see that this is so.
But this theorem will also allow us to prove very important related results: the Mean
Value Theorems.

TheMean Value Theorems

Rolle’s Theorem If h : [a, b] → R is continuous, differentiable in (a, b), and
h(a) = h(b), then at some point c ∈ (a, b) the derivative of h is zero.

Let’s see. By Weierstrass’ theorem h reaches a maximum and a minimum on
[a, b]. If the maximum and the minimum coincide with h(a) = h(b), we will have
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h(a) = h(x) = h(b) for every x; h is constant, and h′(x) = 0 at every point.
If, however, an extreme—say a minimum—is reached at c ∈ (a, b), let’s calculate
h′(c). Consider the difference quotient

h(c + t) − h(c)

t
.

The numerator is ≥ 0, for since h(c) is minimum, h(c + t) ≥ h(c). When the
denominator t is positive and tends to zero, the difference quotient will be positive,
and tend to h′(c), so h′(c) ≥ 0. When the denominator t is negative and tends to
zero, the difference quotient will be negative, and tend to h′(c), so h′(c) ≤ 0. Thus
h′(c) = 0. If at c we have a maximum, the proof is analogous. �

The argument in the proof shows that if f is differentiable, and has a maximum or
a minimum at c, then f ′(c) = 0. Thus the vanishing of the derivative is a necessary
(not sufficient!) condition for a differentiable function f to have an extrema at a
point. The points where the derivative of f vanishes are possible extrema of f .
Such points are called critical points of f .

Cauchy’s Mean Value Theorem If f and g are continuous on [a, b], and differ-
entiable in (a, b), there is a point c ∈ (a, b) where:

(f (b) − f (a))g′(c) = (g(b) − g(a))f ′(c),

and if g(a) �= g(b),

f (b) − f (a)

g(b) − g(a)
= f ′(c)

g′(c)
.

The proof is simple: consider the function

h(x) = (f (b) − f (a))g(x) − (g(b) − g(a))f (x).

This function is differentiable. Calculate h(a) and h(b):

h(a) = f (b)g(a) − f (a)g(a) − g(b)f (a) + g(a)f (a)

= f (b)g(a) − g(b)f (a),

h(b) = f (b)g(b) − f (a)g(b) − g(b)f (b) + g(a)f (b)

= g(a)f (b) − f (a)g(b).

Thus, h(a) = h(b) and by Rolle’s Theorem the derivative of h vanishes at some
point c:

0 = h′(c) = (f (b) − f (a))g′(c) − (g(b) − g(a))f ′(c),
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thus (f (b) − f (a))g′(c) = (g(b) − g(a))f ′(c), and if g(a) �= g(b),

f (b) − f (a)

g(b) − g(a)
= f ′(c)

g′(c)
.

�

Lagrange’s Mean Value Theorem If f is continuous on [a, b], and differentiable
in (a, b), there is a point c ∈ (a, b) where:

f (b) − f (a) = f ′(c)(b − a).

For a proof, simply apply the previous theorem with g(x) = x. �
Like Rolle’s Theorem, both Cauchy’s and Lagrange’s theorems have a clear

geometric interpretation. In the case of Cauchy’s consider the curve parametrized
by p : [a, b] −→ R2, p(t) = (g(t), f (t)), the line through p(a) and p(b) has
direction given by p′(c)

and in the case of Lagrange’s, the line through (a, f (a)) and (b, f (b)) has the slope
of the tangent line at (c, f (c))
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Now, if f is differentiable, and its derivative is larger than zero in the interval
(a, b), it will be increasing in this interval: if x < y, f (y)−f (x) = f ′(c)(y −x) >

0, for both f ′(c) and y −x are positive. Likewise, if f has negative derivative in the
interval (a, b) it will be decreasing in that interval. And if f ′ vanishes in (a, b), it is
because the function f is constant in that interval.

Example The function f (x) = 1
4x4 − x3 has derivative f ′(x) = x3 − 3x2 =

x2(x − 3). This derivative is zero at x = 0 and at x = 3, the critical points of f .
Now, f ′ is < 0 for x ∈ (−∞, 0) and for x ∈ (0, 3). And it is positive in (3,∞).
Thus, f decreases until x = 3, and then grows. It will have a minimum at 3. Note
that at x = 0 its tangent is horizontal, but there is no extrema there:

L’Hôpital’s Rule

Positive derivative indicates growth; a negative one, a decline; and the size of this
derivative (which is the slope of the tangent line) a larger or lesser velocity in that
growth. Sometimes, to compare the velocity of growth of a function f with that of
g one uses the quotient f

g
. For example, which function tends more rapidly to zero

(as x → 0), f (x) = x2 or g(x) = x? Setting f (x)
g(x)

= x2

x
= x → 0, we see that the

numerator decreases faster. But what if it is not possible to “simplify” as we have
done in the second equality? Suppose for a moment that f (a) = g(a) = 0, and that
both f and g are differentiable at a. Then

f (x)

g(x)
= f (x) − f (a)

g(x) − g(a)
=

f (x) − f (a)

x − a
g(x) − g(a)

x − a

,

and when x → a,
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lim
x→a

f (x)

g(x)
= f ′(a)

g′(a)
.

This is known as L’Hôpital’s Rule. However, our hypotheses are excessive. With
more work we can obtain the following stronger version which does not even require
that the functions be defined at a.

L’Hôpital’s Rule (Bernoulli) If f and g are defined and differentiable near a, and

lim
x→a

f (x) = lim
x→a

g(x) = 0 (A)

or lim
x→a

f (x) = lim
x→a

g(x) = ∞ (B),

and limx→a
f ′(x)
g′(x)

= L exists, then limx→a
f (x)
g(x)

= L. Let’s see why: consider the
interval (x, a) and set

m(x) = inf
f ′(c)
g′(c)

for c ∈ (x, a), and

M(x) = sup
f ′(c)
g′(c)

for c ∈ (x, a).

For each y with x < y < a, by the Mean Value Theorem (Cauchy), there is a c such
that x < c < y with (in case (A)):

m(x) ≤ f ′(c)
g′(c)

= f (x) − f (y)

g(x) − g(y)
=

f (x)

g(x)
− f (y)

g(x)

1 − g(y)

g(x)

≤ M(x).

Having y → a,m(x) ≤ f (x)

g(x)
≤ M(x), by (A).

And now having x → a, L ≤ lim
x→a

f (x)

g(x)
≤ L.

In case (B),

m(x) ≤ f ′(c)
g′(c)

= f (y) − f (x)

g(y) − g(x)
=

f (y)

g(y)
− f (x)

g(y)

1 − g(x)

g(y)

≤ M(x).

Having y → a,m(x) ≤ lim inf
y→a

f (y)

g(y)
≤ M(x),
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and now when x → a, L ≤ lim inf
y→a

f (y)

g(y)
≤ L.

And analogously for lim sup (see Exercise 16 of Chap. 3). In both cases,
limx→a

f (x)
g(x)

= L = limx→a
f ′(x)
g′(x)

. �

Example limx→0 x ln x:

x ln x = ln x

1
x

→ ∞
∞

f ′

g′ :
1
x

− 1
x2

= − x2

x
= −x → 0,

then limx→0 x ln x = 0.

Among the exercises we’ll see more examples. We should comment here on a
notation commonly used in relation to “speed of decay” or “speed of decline.” We
will write f (x) = ◦(g(x)), if f (x)

g(x)
tends to zero as x tends to zero. This helps to

express the speed of decay of f : we write f (x) = ◦(x) if f decreases faster than x,
and f (x) = ◦(x2) if f decreases more rapidly than x2.

Snell’s Law

Let’s start with a typical extrema problem: we want to go, in the least possible time,
from point A on one bank of a river to point B on the opposite bank. The river is a

kilometers wide, and point B is c kilometers further East.

We have a rowboat to cross the river, and we can row at 5 km/h, but—once on the
other side—we can run at 13 km/h. Where do we disembark? We can disembark at
any point, say x km East of A, and run the rest of the way (c − x kilometers). How
do we choose x to minimize the time?

Let’s express the time T as a function of x. Recall that speed = space
time , so time =

space
speed .
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If we disembark at point X we row
√

x2 + a2 km at 5 km/h, and then run c − x

km at 13 km/h. This will take us:

T (x) = time rowing + time running

=
√

x2 + a2

5
+ c − x

13
.

To find the minimum of this function, we look for the value of x for which the
derivative vanishes.

T ′(x) = x

5
√

x2 + a2
− 1

13
= 0

that is,

13x = 5
√

x2 + a2

169x2 = 25(x2 + a2)

(169 − 25)x2 = 25a2

144x2 = 25a2

12x = 5a

x = 5a

12
.

One may verify that T ′ < 0 in (0, 5a
12 ) and T ′ > 0 in ( 5a

12 ,∞), so at 5a
12 we do

have a minimum. We shall disembark at x = 5a
12 .

We now change our problem by setting point B, b km South of its original
location:
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The problem is more complicated. But now our intention will not be to find x,
but rather to make a geometric comment. Our function T (x) is now (say our speed
in the water is v1 and on land, v2):

T (x) = e1

v1
+ e2

v2
=

√
x2 + a2

v1
+
√

(c − x)2 + b2

v2
.

Differentiating,

T ′(x) = x

v1
√

x2 + a2
− c − x

v2

√
(c − x)2 + b2

=
x
e1

v1
−

c−x
e2

v2

= sin α

v1
− sin β

v2
.

The time will be minimized when sin α
v1

= sin β
v2

. This is called Snell’s Law. It is the
law that light rays must obey while passing through media of different density, in
which their speed is different (larger density, lesser speed). This is the cause of the
“refraction” of light and explains why submerged objects seem to us to be where
they are not.

real apparent

The name Snell’s Law is linked to this property of refraction of light. However,
it is useful to remember that it is not a physical law, but a mathematical one which
must be obeyed by any object if it is to go from one point to another in the least
possible time. We will use it now to solve the “Brachistochrone problem.” This law
has the name of the XVIth Century Dutch mathematician, Willebrord Snell. As often
happens in the history of Calculus, it was already known to the Xth Century Persian
mathematician Ibn Sahl.
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The Brachistochrone

Johann Bernoulli (1667–1748) was, as was his brother Jacob, one of the first to
study the consequences of Leibniz’ calculus. The two brothers competed, often
bitterly, to obtain results. The brachistochrone problem, posed by Johann, was one
of the first to pave the way to what today is the calculus of variations.

Johann set, in 1696, the following challenge to “the most brilliant mathematicians
in the world”:

“Given two points A and B in a vertical plane, what is the curve traced out by a point acted
on only by gravity, which starts at A and reaches B in the shortest time?”

Such a curve is called “brachistochrone” (brachistos = “shortest”; cronos =
“time”). Today there are many people in the world that can solve this problem.
In 1696 there were six: Johann Bernoulli himself, his brother Jacob, L’Hôpital,
Leibniz, Newton, and von Tschirnhaus (Galileo had tried it in 1638, unsuccessfully).

Let’s find which curve it is. Say it is parametrized by p(t) = (x(t), y(t)), (that
is, y is the height of the point). Recall from Physics courses that:

Potential Energy = mgy(t)

Kinetic Energy = 1

2
mv(t)2,

where m is the point’s mass, g is gravity’s acceleration (which we consider positive),
and v the point’s velocity. As the point falls, its potential energy is transformed into
kinetic energy, but the principle of conservation of energy tells us that:

Potential Energy + Kinetic Energy = constant = mgy(0)

mgy(t) + 1

2
mv(t)2 = mgy(0)
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1

2
mv(t)2 = −mg(y(t) − y(0))

v(t)2 = −2g(y(t) − y(0)).

At any given moment our point is moving along the curve (x(t), y(t)), whose slope
is y′(t)

x′(t) = − a
b

.

And as the point goes from one point to another in the least possible time, it
obeys Snell’s Law: its velocity v is such that:

c = v

sin α
is constant

= vh

b
.

Then c2 = v2h2

b2

= v2 b2 + a2

b2

= v2
(

1 +
(a

b

)2
)

= v2
(

1 + y′(t)2

x′(t)2

)

.

In other words

(y(t) − y(0))

(

1 + y′(t)2

x′(t)2

)

= k

must be a constant.
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This is a differential equation: an equation involving the derivatives of unknown
functions x and y. We want to find the functions that verify this equation (just as
f (x) = ex verifies the equation f −f ′ = 0). As it turns out, the cycloid verifies the
brachistochrone equation. Recall that we parametrized it as follows:

p(t) = r(t − sin t, cos t − 1),

from where

p′(t) = r(1 − cos t,− sin t), and then:
y′(t)
x′(t)

= − sin t

1 − cos t
.

But

(y(t) − y(0))

(

1 + y′(t)2

x′(t)2

)

= r(cos t − 1)

(

1 + sin2 t

(1 − cos t)2

)

= r(cos t − 1)

[
(1 − cos t)2 + sin2 t

(1 − cos t)2

]

= r(cos t − 1)

[
1 − 2 cos t + cos2 t + sin2 t

(1 − cos t)2

]

= r(cos t − 1)

[
2(1 − cos t)

(1 − cos t)2

]

= 2r(cos t − 1)

(1 − cos t)

= −2r, which is constant.

Christian Huygens had posed (and solved) in 1659 the tautochrone problem
(tauto = same, cronos = time): to find the curve that a point would move along
(to its end) in the same amount of time, no matter where it starts. The tautochrone
is (again!) the cycloid.

Exercises

1 Write the equation of the line that:

(i) Contains the point (a, f (a)), and
(ii) has slope f ′(a).

2 Use the Newton–Raphson method to find (approximately):
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(i) Zeros of f (x) = x3 − 3x + 4,
(ii) Zeros of f (x) = x4 + x2 − 6x + 2,

(iii)
√

10.

3 If L is the line tangent to the graph of f at (x, f (x)), What is the point of
intersection of L and the x-axis?

4 Using the difference quotient, calculate the derivative at point a of:

(i) the constant function f (x) = c,
(ii) the function f (x) = x2,

(iii) the function f (x) = √
x (Hint: 1 =

√
a+h+√

a√
a+h+√

a
).

5 The function f has the property: |f (x)| ≤ x2 for all x. Prove that f is
differentiable at a = 0, and f ′(0) = 0.

6 Let f (x) = |x|. Prove that f is differentiable at a if a > 0 or if a < 0, but not if
a = 0.

7 Suppose f and g are differentiable. Prove the formulas for

(i) Derivative of a sum: (f + g)′(x) = f ′(x) + g′(x).
(ii) Derivative of a product: (fg)′(x) = f ′(x)g(x) + f (x)g′(x).

(Hint: 0 = −f (x)g(x + h) + f (x)g(x + h)).

(iii) Derivative of a quotient:
(

f
g

)′
(x) = f ′(x)·g(x)−f (x)g′(x)

g(x)2 .

(Hint: 0 = −f (x)g(x) + f (x)g(x)).

8 Prove the following formulas for the derivatives of the hyperbolic functions.

(sinh x)′ = cosh x

(cosh x)′ = sinh x

(tanh x)′ = 1

(cosh x)2 .

9 Given the function f : (r1, r2) −→ R,

f (x) = −x2 + (r1 + r2)x − r1r2 = (r2 − x)(x − r1),

find its maximum,

(i) without using derivatives (use the arithmetic-geometric inequality:
√

ab ≤
a+b

2 ).
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(ii) using derivatives.

10 Find two positive numbers whose sum is 9 and have the largest possible product.

11 Prove that for all x ≥ 1, 2
√

x − 2 ≤ x − 1.

12 Of all the points in the graph of y = √
2x, which is closest to (4, 0)? At what

distance is it?

13 The ellipse of radii a and b is given by the equation

x2

a2 + y2

b2 = 1.

What is the rectangle (with sides parallel to the axes) of largest area which can be
inscribed in this ellipse?

14 We wish to construct a rectangular window, topped by a semicircle. If the
perimeter is to be 4 meters, what will its dimensions be if the rectangular part is
to have the largest possible area?

15 We have a rectangle with a 12cm perimeter. A cylinder is obtained by rotating
it around one of its sides. What dimensions must the rectangle have in order for the
cylinder to have the largest possible volume?

16 What dimensions (radius and height) will a cone have if it is the cone of largest
volume inscribed in a sphere of radius 2?

17 What dimensions (radius and height) will a cylinder have if it is the cylinder of
largest volume inscribed in a sphere of radius 2?

18 Of all the segments that go from the x-axis to the y-axis and contain the point
P = (a, b) (with a > 0 and b > 0), which is the shortest?

19 A rectangular sheet of paper is 20cm high and 10cm wide. We fold it by taking
the bottom right corner to the left side of the sheet. What is the least possible length
the fold can have?

20 Reflection of light. Observe the following diagram:
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A ray of light must go from point A to a mirror, and then to point B. What will be
the relation between angles α and β? (NOTE: light wants to go as fast as possible).

21 Bearing in mind that

ln(ax) = x ln a,

(a) Differentiate both sides of the equality.
(b) Solve for (ax)′.

What is the derivative of f (x) = ax?

22 A cylindrical water tank has a radius of 40cm and a height of one meter. It is
being filled at a rate of 4 litres per minute. What is the rate of change of the height
of the water in the tank?

23 Another water tank is shaped like an inverted cone, 2 meters high and with a
radius of one meter (at its roof). It is being filled at a rate of 4 litres per minute.

(a) What is the rate of change of the height of the water in the tank when this height
is 50cm?

(b) What is the rate of change of the height of the water in the tank when this height
is 1,20m?

24 Given the function

f (x) =
{

x2 sin 1
x
, if x �= 0

0, if x = 0,

(i) prove that f ′(0) = 0 (Hint: Exercise 5),
(ii) calculate f ′(x) for x �= 0,
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(iii) Is f ′ continuous at x = 0?

25 Order of decay: We will say that f (x) → 0 “as (x − a)n” when x → a, if

lim
x→a

f (x)

(x − a)n
= c, a non − zero real number.

We will say that f (x) is as “o (x − a)n” (and write f (x) = ◦(x − a)n), if

lim
x→a

f (x)

(x − a)n
= 0.

Study the order of decay of the following functions at the points indicated in each
case.

(i) f (x) = sin3 x at the point a = 0.
(ii) f (x) = (ln x)2 at the point a = 1.

(iii) f (x) = (x − 2)3 cos x at the point a = 2.
(iv) f (x) = (cos x − 1)2 at the point a = 0.

26 Show that the difference between f and its tangent line at a:

f (x) − [
f (a) + f ′(a)(x − a)

]

is as ◦(x − a).
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We now consider the notion of integral, and its relation to areas.
The Fundamental Theorem of Calculus places the integral as an
antiderivative and allows for some consequences of our
knowledge of derivatives to integration. We give a short
presentation of uniform convergence. The length of a
parametrized curve is also defined.

Measure and Integral

The idea of “integration” is as old as mathematics: it starts with the necessity of
measuring areas delimited by curves. The problem is that our units of surface area,
for example, square meters or square feet, do not fit well on such surfaces and this
makes comparison difficult. However, Greek mathematicians invented methods to
calculate exactly areas and volumes of a wide range of geometric figures. As we
have seen in Chap. 3, Antiphon, Eudoxus, and Archimedes used successfully the
idea of “exhaustion” to fill up an area they wished to measure with objects whose
measure they knew, and then used some notion of limit to obtain the total area.
Archimedes, and in the XVIIth Century, Cavalieri, used the idea of area as a sum
of lines which we will see in Chap. 8. The contemporaries of Newton and Leibniz
did not doubt the existence of an “area under a curve” and used the Fundamental
Theorem of Calculus to calculate it. In a few pages we will go down that path. But
before that, I would like to stop and tell you about some of the notions of integral and
to show you some of the difficulties implicit in the subject (which we will avoid!).

In the mid-nineteenth century Calculus was needing a formalization of many of
its concepts. Among them the integral, which was being used by mathematicians
since the XVIIth Century. There have appeared since then various definitions of
integral: the Riemann integral, the Darboux integral, the Riemann–Stieltjes integral,
the Lebesgue integral, the Daniell integral, the Henstock–Kurzweil integral. . . To
understand some of these ideas and to comprehend the origin and importance of the
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notion of “measure” we will comment only two of them: the Riemann integral and
the Lebesgue integral.

The Riemann Integral (1854)
Consider a positive function f defined on some closed interval [a, b]. We wish to
find the area under the graph of f . We split the interval [a, b] into n sub-intervals
using a = x0 < x1 < · · · < xn = b and we take in each small interval a point
ti ∈ [xi, xi+1]. Then we define the Riemann sum corresponding to this selection of
xi’s and ti’s:

n−1∑

i=0

f (ti)(xi+1 − xi).

As we see in the picture, the Riemann sum corresponds to the sum of areas of
rectangles with base [xi, xi+1] and height f (ti). One would expect that if we make
the intervals on the bases smaller and smaller, the area will adjust to the area under
the graph of f . The function f will be said to be Riemann integrable and its integral
will be the number I when this happens: for each ε > 0 there exists a δ > 0 which
assures that if (xi+1 − xi) < δ for every i, then

∣
∣
∣
∣
∣

n−1∑

i=0

f (ti)(xi+1 − xi) − I

∣
∣
∣
∣
∣
< ε.

This happens whenever f is continuous, and also sometimes when it is not.
However, it is easy to find functions that are not Riemann integrable, for example,
the indicator function of the rational numbers:
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f (x) =
{

1, if x ∈ Q

0, if x �∈ Q.

The Lebesgue Integral (1904)
Consider the same function as above, but now instead of partitioning the interval
[a, b], we partition the range of the function with a1 < a2 < a3 < · · · < an, and
consider the subsets of [a, b] given by

Ak = {x ∈ [a, b] : ak ≤ f (x) < ak+1},

as in the picture

Now consider the sums

n−1∑

k=1

akm(Ak),

where m(Ak) is the measure of the set Ak . The sets Ak are in general not intervals,
as can be seen in the picture. One expects that these sums will converge to the
integral of f when you partition the range of f more finely (the definition is
actually a bit more complicated). In any case, the Lebesgue integral requires the
development a measure theory in order to consider the measure m(Ak) for a wide
range of possible subsets Ak ⊂ [a, b]. This is not a disadvantage but a strength
of the Lebesgue integral, for by enlarging the class of subsets whose measures
can be used we also enlarge the class of functions which may be integrated. For
example, in the case of the indicator function of the rational numbers, for a1 = 1

2
and a2 = 1, one has A1 = Q ∩ [a, b] which measures 0, and in fact the function is
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Lebesgue integrable and its integral is 0. Every Riemann integrable function is also
Lebesgue integrable. But the true strength of the Lebesgue integral is not that there
are more integrable functions, but rather the existence of very strong and easy to
use theorems which permit the interchange of the integral with limits of a sequence
of functions (

∫
lim fn = lim

∫
fn). Also, the Lebesgue integral may be defined in

many situations—where there is an adequate theory of measure—over sets which
may be more abstract than [a, b], for example, probability spaces. We will not enter
here into these subjects. To end this discussion, I want to show one of the difficulties
in the idea of more general integrals.

A Non-measurable Set
One of the requirements of measure theory is that if m is a measure, and
A1, A2, A3, . . . are countably many disjoint sets (i.e., Ai ∩ Aj = ∅ for i �= j ),
which can be measured, then

m

(
⋃

k

Ak

)

=
∑

k

m(Ak),

in other words the measure of the union is the sum of the measures. We will see now
that for the usual measure on the real line (for which m([a, b]) = b − a) there are
subsets which are non-measurable. We will construct one such set: the Vitali set.

Define for real numbers x, y, the relation: x ∼ y if x − y is rational. This is an
equivalence relation, in other words:

(i) x ∼ x: indeed, x − x = 0, which is rational.
(ii) If x ∼ y, then y ∼ x: if x − y is rational, so is y − x.

(iii) If x ∼ y and y ∼ z, then x ∼ z: if x − y and y − z are rational, so is
x − z = (x − y) + (y − z).

The equivalence class of a number x is {y : x ∼ y} that is, the set of all
elements which are equivalent to x. We construct the Vitali set V ⊂ [0, 1]
by taking exactly one element from each equivalence class. We will suppose—
towards a contradiction—that V is measurable, and call m(V ) its measure. Now
if Q ∩ [−1, 1] = {r1, r2, r3, . . .} (remember that Q ∩ [−1, 1] is countable), we set

Vk = V + rk.

These are translates of V , so they measure the same: m(Vk) = m(V ). Note also that
Vi ∩ Vj = ∅ for i �= j : if x ∈ Vi ∩ Vj , we would have v + ri = x = v′ + rj , and
then v − v′ = rj − ri , a rational number. But then we would have v ∼ v′, but as
in V there’s only one element of each equivalence class, this means that v = v′ and
therefore ri = rj , which is absurd, for i �= j . Let’s now see that
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[0, 1] ⊂
⋃

k

Vk ⊂ [−1, 2].

The first inclusion is because if x ∈ [0, 1], there exists v ∈ V such that x ∼ v, in
other words x − v ∈ Q∩ [−1, 1]; x − v = rk for some k, and then x = v + rk ∈ Vk .
The second inclusion is because for each k, Vk = V + rk ⊂ [0, 1] + [−1, 1] =
[−1, 2]. Then

m([0, 1]) ≤ m

(
⋃

k

Vk

)

=
∑

k

m(Vk) ≤ m([−1, 2]),

that is,

1 ≤
∑

k

m(V ) ≤ 3,

which cannot happen if m(V ) = 0, or if m(V ) > 0. Thus m(V ) does not exist: V is
not measurable.

The Area Under a Curve
Let’s return now to the innocence of the XVIIth Century, and consider a continuous
function f : [a, b] → R taking positive values. I will ask you to accept that the area
of the region under the graph of f really exists. It does, because all continuous
functions on [a, b] are Riemann integrable. The area under the graph could be
calculated using the Riemann integral (but won’t be):

This area is a number which we will call the integral of f between a and b and
which we will denote by:

∫ b

a

f or by
∫ b

a

f (x) dx.

It is clear that if a ≤ c ≤ b,
∫ b

a
f = ∫ c

a
f + ∫ b

c
f ,
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in other words: the area between a and b is equal to the area between a and c plus
the area between c and b. This, for functions f ≥ 0. If f is negative in some interval
[a, b], we define its integral as the negative number:

∫ b

a

f = −
∫ b

a

(−f ).

Note that (−f ) ≥ 0. We may consider that with this definition, the areas under the
x axis are subtracted. For example,

∫ π

0 cos x dx = 0:

The interesting thing would be to be able to calculate, for example, the area
∫ π

2
0 cos x dx. We have mentioned that the Greeks were able to calculate many areas,

in general approximating them by simpler regions whose areas they knew. But in the
XVIIth Century something truly extraordinary happened: the idea of integral met the
idea of derivative, and this gave rise to the Fundamental Theorem of Calculus.
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The Fundamental Theorem of Calculus

Admitting, as by now should be clear, that Calculus is a set of ideas and concepts
that crystallized along many centuries, Newton and Leibniz are usually assigned
the “invention” of Calculus. In both mathematicians (and many books have been
written about the priority dispute) appear the general ideas of derivative and integral,
and more importantly, the connection between them: the Fundamental Theorem
of Calculus, although Barrow who was Newton’s teacher, and James Gregory had
already seen it in particular cases.

Gottfried Leibniz (1646–1716), was born in Leipzig, Germany. He was a
mathematician and philosopher, but he also made important contributions to other
disciplines, among them physics, biology, and history. The diversity and extension
of his work is enormous. He was also the inventor of several mechanical calculating
machines.

Isaac Newton (1643–1727), was born in Woolsthorpe, England. In 1665 Cam-
bridge University, where Newton studied, was closed due to an epidemic of bubonic
plague. Newton went back home to Woolsthorpe, where in less than two years he
invented calculus and made other important discoveries in optics, physics, and
astronomy. He was not yet 25. Twenty years later, in 1687, he published these and
other results in his great masterpiece Mathematical principles of natural philosophy,
commonly called the Principia. There he describes the universal law of gravitation,
sets the foundations of classical mechanics, and applies his results to the movement
of the planets and the tides.

Isaac Barrow (1630–1677), was a Professor at Cambridge. He occupied his
chair only six years, and was succeeded by Newton in 1669. In his Lectures on
Geometry he gives a version of the Fundamental Theorem of Calculus.

Say that f : R → R is continuous, and fix a ∈ R. Then, for any x > a we may
consider

∫ x

a
f . This defines a new function F : [a,∞) → R setting:

F(x) =
∫ x

a

f.

That is, for each x, F(x) is the area under the graph of f between a and x.
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If one asks how F increases or decreases when we move x, it is reasonable to
think that if f is large, F will grow rapidly; if f is small, F will grow more slowly;
if f is negative F will decrease (we will be subtracting areas). But more precisely:

Fundamental Theorem of Calculus If f is continuous and F(x) = ∫ x

a
f , then F

is differentiable and F ′ = f .

Let’s prove the theorem: we must consider the quotient F(x+h)−F(x)
h

, and see
what happens when h tends to zero. Look at the following graph and consider

F(x + h) − F(x) =
∫ x+h

x

f.

That is, the area under f between x and x + h. If the minimum of f in [x, x + h]
is mh, and the maximum of f in [x, x + h] is Mh, clearly the area under f will be
between the areas of the two rectangles:

mhh ≤ F(x + h) − F(x) ≤ Mhh

So

mh ≤ F(x + h) − F(x)

h
≤ Mh.

What will happen when h tends to zero? The interval [x, x+h] becomes smaller and
smaller and, since f is continuous, all values taken by f in this interval (including
mh and Mh) become closer and closer to f (x):
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f (x) = lim
h→0

mh ≤ lim
h→0

F(x + h) − F(x)

h
≤ lim

h→0
Mh = f (x).

Thus F ′(x) = f (x), and we are done. �
Let’s say now that we want to calculate

∫ b

a
f . This is F(b), but we do not know F .

But suppose that we know some function G whose derivative is f ; that is G′ = f .
This is what we call a primitive of f . Since F is also a primitive of f , for F ′ = f ,
it turns out the G and F will differ by a constant. Thus to know G will be almost
like knowing F . This is the content of the following Corollary to the Fundamental
Theorem of Calculus.

Barrow’s Rule If G is a primitive of f,

∫ b

a

f = G(b) − G(a).

Let’s see why. Since both G and F are primitives of f ,

(G − F)′ = G′ − F ′ = f − f = 0.

Then, G − F is a constant, k. So, G = F + k. Now,

G(b) − G(a) = (F (b) + k) − (F (a) + k) = F(b) − F(a) = F(b) =
∫ b

a

f.

�

Example We wish to calculate
∫ π

2
0 cos x dx. And we know that (sin x)′ = cos x.

Then by Barrow’s rule:

∫ π
2

0
cos x dx = sin

(π

2

)
− sin(0) = 1.

Great! And we have a long list of primitives. . . as long as our list of derivatives. The

notation G(x)

∣
∣
∣
b

a
is usually used to indicate G(b) − G(a). Thus, for example,

∫ b

1

1

x
dx = ln x

∣
∣
∣
b

1
= ln b − ln 1 = ln b

∫ b

0
x2 dx = 1

3
x3
∣
∣
∣
b

0
= 1

3
b3 − 1

3
03 = 1

3
b3.
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A Pause for Comments

First, a comment on notation. We have defined the integral only for functions f

continuous on a closed interval [a, b]. The “ingredients” of our definition are the
function f and the interval [a, b]. Thus, economy of design would indicate that
these should also be the ingredients of our notation:

∫ b

a

f.

This is fine for abstract functions such as f . However, many of our more concrete
functions simply cannot be named without reference to a variable: we do not say
“the function f which assigns to each real number its square,” we say x2. Similarly,
we do not write “cos,” we write cos t . When integrating such functions we will use
the standard notation, as in

∫ 1

0
x2 dx and

∫ π/2

0
cos t dt.

The notation
∫ b

a
f (x) dx also helps to indicate which is the variable of integration

(the variable of the function we are integrating) in situations where there could be
some ambiguity, such as

∫ 2

0
xt2 dx = 2t2 and

∫ 2

0
xt2 dt = 8

3
x.

There are historical reasons and, as we shall see later, also practical reasons
for this notation. It is due to Leibniz and was rapidly adopted by Continental
mathematicians. Sir Isaac never used it. The use of capitalization for primitives,
as in G′ = g, is due to Newton and appears in his Principia.

But note that “dx” and “dt” have, by themselves, no meaning at all, and that there
is no multiplication involved in “f (x) dx.” When integrating an abstract function f ,
as will happen in the proofs of some elementary theorems we will, for clarity’s sake,
shed the variable and write

∫ b

a
f .

With respect to the Fundamental Theorem of Calculus, as we have mentioned,
both Barrow and Gregory had known of this result in special cases (and in a more
geometric setting). But, as so often happens with Calculus, precursor results are
found much further back. Nicole Oresme—whom we have met in Chap. 2—proved
in 1361 (and perhaps before him, the Merton scholars at Oxford), the Merton
acceleration theorem regarding uniformly accelerated movement: the distance f (t)

covered by an object moving with linearly increasing velocity v(t)
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would be (b − a) times the velocity at the midpoint m. That is, in our notation,

f (b) − f (a) = (b − a)v(m) =
∫ b

a

v(t) dt.

Since f ′ = v, this is Barrow’s rule in a very particular case. We have mentioned
above that in the first half of the XVIIth Century Bonaventura Cavalieri heuristically
conceived areas as a “sum of lines.” As we will see in Chap. 8, this also put him close
to the Fundamental Theorem of Calculus.

It is hard to exaggerate the importance of the Fundamental Theorem of Calculus,
both from the practical point of view—for it provides a method to effectively
calculate innumerable integrals—and from the theoretical point of view, for it is
the nexus between the two most important notions in Calculus: the derivative and
the integral. The procedure we used to prove the theorem is also important, and you
will see that we will repeat it in several occasions: when we talk about length of
curves, volumes, surfaces, and center of mass. Like Cavalieri, we may consider the
area under the graph of a non-negative continuous function f : [a, b] −→ R as a
sum of vertical segments of length f (x):
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One might ask if the same area could be considered a sum of horizontal segments.

The answer is yes and that it may be useful to do so. But let’s see what the length
of the segment AB is: it’s the same as that of its projection on the x-axis, the set
{x ∈ [a, b] : f (x) ≥ y}. If we call m{f (x) ≥ y} the measure of this segment, the
area under the curve may be written as

∫ c

0
m{f (x) ≥ y} dy,

where c is the maximum value of f on [a, b].
We may justify this a little better by a procedure analogous to the one we used

to prove the Fundamental Theorem of Calculus. Call A(y) the area under the graph
from height 0 to height y:

Thus, A(y + h) − A(y) is the area of the horizontal strip
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Now, call mh the smallest horizontal length within that strip and Mh the largest.
We then have

mh h ≤ A(y + h) − A(y) ≤ Mh h

and

mh ≤ A(y + h) − A(y)

h
≤ Mh.

Having h tend to zero,

m{f (x) ≥ y} ≤ lim
h→0

A(y + h) − A(y)

h
≤ m{f (x) ≥ y}.

Then A′(y) = m{f (x) ≥ y}, and the area under the curve is

A(c) = A(c) − A(0) =
∫ c

0
A′(y) dy =

∫ c

0
m{f (x) ≥ y} dy.

We may then write:

∫ b

a

f (x) dx =
∫ c

0
m{f (x) ≥ y} dy.

This is sometimes called the layer-cake representation.

Buffon’s Needle

Georges Louis Leclerc, Count of Buffon (1707–1788) liked to have a drink with
his friends. Between one glass and the next, questions came up such as: How much
would you bet that if I throw this needle into the air it will fall intersecting a groove
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between two boards of this table? To bet intelligently, the Count needed to know
the probabilities. Let’s analyze the problem: we have a table made with boards of
a certain width (to fix a measure, say that this width is 1). We drop on the table a
needle of length � ≤ 1, (� is the length of the needle measured in the unit “width of
a board”) and see how it falls:

Does it intersect a groove or not? This depends on two things:

(i) The distance d from the center of the needle to the closest groove, and
(ii) The angle x of the needle with respect to the horizontal.

If the vertical distance h is larger or equal to d, the needle will intersect a groove.
This distance h is �

2 sin x. Therefore the needle will touch a groove if d ≤ �
2 sin x.

Now, d will have values between 0 and 1
2 , while x will be between 0 and π (parallel

to a groove and, after half a turn, again parallel). Thus, each possible position of the
needle corresponds to a point in the rectangle [0, π ] × [0, 1

2 ]:

And the needle will touch a groove if d ≤ �
2 sin x, in other words (x, d) ∈ A, and if

not, it won’t. Therefore the probability of the falling needle intersecting a groove is
the ratio

area(A)

area of the rectangle
.

The area of the rectangle is π
2 ; and the area of A is:
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∫ π

0

�

2
sin x dx = −�

2
cos x

∣
∣
∣
π

0

= −�

2
cos π + �

2
cos 0

= �

2
+ �

2

= �.

Then the probability of the needle touching a groove is 2�
π

. Now the good Count
knows the odds.

Irrationality of π

We have seen that
√

2 and e are irrational numbers. Let’s see now that π is also
irrational. This was proved by Johann Lambert in the XVIIIth Century; the proof
we give here is by the mathematician Ivan Niven (1947) [10]. We will use higher
order derivatives of a function f : f (2) denotes f ′′, f (3) = f ′′′,. . . , f (k) the k-th
derivative of f .

The Number π Is Irrational
Suppose to the contrary, that π = a

b
, with a, b ∈ N, and we will reach a

contradiction. Having fixed such a and b, we may define—for any n ∈ N—the
function

f (x) = 1

n! (x(a − bx))n .

Note several things regarding this f :

(i) f (0) = 0 = f (π).
(ii) f (x) > 0 in the interval (0, π).

(iii) f (x) = f (π − x). Note that x(a − bx) = xb(π − x).
(iv) f reaches its maximum (within (0, π)) at π

2 , where its value is (aπ/4)n

n! , for by

the arithmetic-geometric inequality x(π − x) ≤ (
π
2

)2.

Also, f (k)(0) and f (k)(π) are whole numbers. To see this, note that f is a
polynomial of degree 2n:

f (x) = 1

n!
(
cnx

n + cn+1x
n+1 + · · · + c2nx

2n
)

, with ck ∈ Z,

so if we differentiate f k times, we will have, for x = 0:
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f (k)(0) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if 0 ≤ k < n

k!
n!ck, if n ≤ k ≤ 2n

0, if k > 2n.

Analogously, differentiating f (π − x), we have f (k)(π − x) = (−1)kf (k)(x), and

f (k)(π) = (−1)kf (k)(0)

is also a whole number for any k.
Now define

F(x) = f (x) − f ′′(x) + f (4)(x) − · · · + (−1)nf (2n)(x).

Note that F(π)+F(0) is a whole number, and that F(x)+F ′′(x) = f (x). Calculate

[F ′(x) sin x − F(x) cos x]′ = F ′′(x) sin x + F ′(x) cos x − F ′(x) cos x + F(x) sin x

= (F ′′(x) + F(x)) sin x

= f (x) sin x.

Thus, F ′(x) sin x − F(x) cos x is a primitive of f (x) sin x, and then

0 <

∫ π

0
f (x) sin x dx = [F ′(x) sin x − F(x) cos x]

∣
∣
∣
π

0

= −F(π)(−1) + F(0)(1)

= F(π) + F(0),

which is a whole number. Moreover, it is a natural number, for the integral is
positive. But, on the other hand,

∫ π

0
f (x) sin x dx < πf

(π

2

)
= π

(aπ/4)n

n! −−−→
n→∞ 0,

and then for large n,
∫ π

0 f (x) sin x dx cannot be a natural number. We have reached
a contradiction. Thus π is not rational. �

Improper Integrals

Until now we have considered only integrals of continuous functions defined
on closed intervals and therefore, by Weierstrass’ Theorem, functions which are
bounded on bounded intervals. We are now interested in integrating functions which
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are continuous on non-closed intervals, such as (0, 1), (a, b] or (0,∞). Functions
continuous on such intervals need not be bounded. We will call these integrals
improper integrals. They include, for example,

∫ 1

0

1√
x

dx and
∫ ∞

1

1

x2
dx.

What we do in cases like these is consider the integrals on smaller closed intervals,
and then take limits. Thus, for example, we will write

∫ 1

0

1√
x

dx = lim
a→0

∫ 1

a

1√
x

dx

and

∫ ∞

1

1

x2 dx = lim
b→∞

∫ b

1

1

x2 dx,

if these limits exist! Let’s see some examples

Example Integrals of xc.

Consider first the interval (0, 1]: for c = −1 we have

∫ 1

0

1

x
dx = lim

a→0

∫ 1

a

1

x
dx = lim

a→0
ln x

∣
∣
∣
1

a
= lim

a→0
(− ln a) = ∞.

For c �= −1,

∫ 1

0
xc dx = lim

a→0

∫ 1

a

xc dx = lim
a→0

xc+1

c + 1

∣
∣
∣
1

a
= lim

a→0

(
1

c + 1
− ac+1

c + 1

)

=

⎧
⎪⎪⎨

⎪⎪⎩

1
c+1 , if c > −1 (c + 1 > 0)

∞, if c < −1 (c + 1 < 0).

On the interval [1,∞): for c = −1 we have

∫ ∞

1

1

x
dx = lim

b→∞ ln x

∣
∣
∣
b

1
= lim

b→∞ ln b = ∞
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For c �= −1,

∫ ∞

1
xc dx = lim

b→∞

∫ b

1
xc dx = lim

b→∞
xc+1

c + 1

∣
∣
∣
b

1
= lim

b→∞

(
bc+1

c + 1
− 1

c + 1

)

=

⎧
⎪⎪⎨

⎪⎪⎩

∞, if c > −1 (c + 1 > 0)

−1
c+1 , if c < −1 (c + 1 < 0).

Thus, for example, the area under the graph of 1
x

is infinite over (0, 1] and also
over [1,∞); but

∫ 1

0

1√
x

dx = 2 and
∫ ∞

1

1

x2 dx = 1.

We will sometimes simply write (if F ′ = f ),
∫∞

a
f = F(x)

∣
∣
∣
∞
a

instead of

limb→∞ F(x)

∣
∣
∣
b

a
.

Let’s turn to another convergence criterion for series with positive terms. This
one is called the Integral Criterion.

Integral Criterion If f : [1,∞) → R is continuous, positive, and decreasing,

∞∑

k=1

f (k) converges ⇐⇒
∫ ∞

1
f < ∞.

To see why we need only take a look at the picture

and note that

∫ n+1

2
f ≤

n∑

k=2

f (k) ≤
∫ n

1
f.

�
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Using this criterion we may see (for the fourth time!) that the harmonic series∑∞
k=1

1
k

diverges, for
∫∞

1
1
x

dx = ∞. But we also see that
∑∞

k=1
1
k2 converges, for

∫∞
1

1
x2 dx ≤ ∞. In fact,

∑∞
k=1

1
kα converges for any α > 1.

The same ideas will help us understand just how rapidly the partial sums of the
harmonic series tend to infinity. If in the above picture we put f (x) = 1

x
, we obtain

the inequalities

∫ n+1

2

1

x
dx <

n∑

k=2

1

k
<

∫ n

1

1

x
dx.

Thus,

ln(n + 1) − ln 2 <

n∑

k=2

1

k
< ln n,

and adding 1,

ln(n + 1) + 1 − ln 2 <

n∑

k=1

1

k
< ln n + 1.

Now divide everything by ln n,

ln(n + 1)

ln n
+ 1 − ln 2

ln n
<

(∑n
k=1

1
k

ln n

)

< 1 + 1

ln n
.

Both the left-hand side and the right-hand side tend to 1. Therefore, given any ε > 0
we have, for sufficiently large n,

1 − ε <

(∑n
k=1

1
k

ln n

)

< 1 + ε.

Then, for large n,

(1 − ε) ln n <

n∑

k=1

1

k
< (1 + ε) ln n,

so the harmonic series grows like ln n.

If we define xn = ∑∞
k=1

1
k
−ln(n+1), it is easy to check by looking at the picture

above that the sequence (xn) is increasing and bounded, thus convergent. Its limit is
called γ , Euler’s constant.
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Integration and Sums: Linearity of the Integral

Having established the relationship between integral and derivative through the
Fundamental Theorem of Calculus, some of the things we know about derivatives
translate into results regarding integrals. This is what will happen with the relation
between integration and sums, integration and products, and integration and com-
position of functions. We begin with integration and sums.

If c and d are constants, and f and g continuous functions,

∫ b

a

(cf + dg) = c

∫ b

a

f + d

∫ b

a

g.

To see this: if F is a primitive of f and G a primitive of g, (cF + dG) is a
primitive of cf + dg: (cF + dG)′ = cF ′ + dG′ = cf + dg. Then

∫ b

a

(cf + dg) = (cF + dG)

∣
∣
∣
b

a
= cF (b) + dG(b) − cF (a) − dG(a)

= c(F (b) − F(a)) + d(G(b) − G(a))

= c

∫ b

a

f + d

∫ b

a

g.

�
And we also have the following.

Mean Value Theorem for Integrals
∫ b

a
f = f (c)(b − a) for some c ∈ (a, b).

Indeed, if F is a primitive of f ,

∫ b

a

f = F(b) − F(a) = F ′(c)(b − a) = f (c)(b − a)

for some c ∈ (a, b), by Lagrange’s Mean Value Theorem. �

Uniform Convergence—TheWeierstrassM-Test

In Chap. 2, we have seen what it means for a sequence of numbers to converge. We
said xn −→ a (or limn xn = a) if the following happens: for all ε > 0, there is
a natural number nε such that if n ≥ nε, the distance between xn and a is smaller
than ε:

|xn − a| < ε.
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We now ask ourselves how we could define the convergence of a sequence of
functions fn to another function f . For each x, the sequence fn(x) is a sequence of
numbers, so we will want fn(x) −→ f (x). We could use any of the following two
options, (A) or (B):

(A) For all x and all ε > 0, there is an nε such that, if n ≥ nε,
|fn(x) − f (x)| < ε.

(B) For all ε > 0, there is an nε such that, if n ≥ nε, |fn(x) − f (x)| < ε for all x.

As you can see, the only difference between these definitions is that in the first “for
all x” is at the beginning, and in the second, it is at the end. It is a big difference. In
(A), given x and ε we ask for the existence of nε. This nε depends on x and on ε.
On the other hand, in (B), we ask for the existence of nε given only ε, and the final
inequality must hold for all x. In other words: in (A), the nε depends on ε and on x,
while in (B) the nε depends only on ε. This is stronger, for the same nε works for
every x.

The first form of convergence, (A), is called pointwise convergence; the second,
(B), is called uniform convergence. As we have mentioned, if fn −→ f uniformly,
then fn −→ f pointwise also. But the converse is not true. Let’s see an example:

Example Define fn : [0, 1] −→ R thus: fn(x) = xn, and set

f (x) =
{

0, if x < 1

1, if x = 1.

Then fn −→ f pointwise, but not uniformly. Let’s see: take ε > 0. We wish to see
for which values of n we will have

|fn(x) − f (x)| < ε.

On x = 1 all the fn’s and f are 1, so the difference here is zero. For x < 1, the
inequality

|fn(x) − f (x)| = xn < ε

is, applying logarithm,

n ln x < ln ε

n >
ln ε

ln x
(note that ln x is negative!).

Thus, the value of n from which |fn(x) − f (x)| < ε depends on ε and on x. . . but
notice how it depends on x: as x tends to 1, ln x is closer to zero, and the quotient
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ln ε
ln x

tends to infinity. . . there will be no value of n which works for all x. fn −→ f

pointwise, but not uniformly.
Note something else: the functions fn in this example are all continuous, but the

limit function f is not. However, we have the following.

Proposition If fn are continuous, and fn −→ f uniformly, the limit function f

will be continuous.

Let’s see a proof of this: Say we have fn continuous, converging uniformly to f .
We prove the continuity of f at any point s. If f (s) < v, take ε <

v−f (s)
2 (so that

f (s) + 2ε < v). For this ε there is an n such that |fn(x) − f (x)| < ε for all x. In
particular, fn(s) < f (s)+ ε; and as fn is continuous, for all x in a neighborhood of
s we will also have fn(x) < f (s) + ε. Now,

f (x) = (f (x) − fn(x)) + fn(x)

< ε + fn(x)

< ε + f (s) + ε

= f (s) + 2ε

< v.

This happens for every x in a neighborhood of s. Analogously, if f (s) > u, we will
also have f (x) > u for all x in a neighborhood of s. f is continuous. �

Suppose that fn are continuous, and fn −→ f pointwise. The example above
shows that f may not be continuous at a, so limx−→a f (x) �= f (a). Then

lim
x−→a

lim
n−→∞ fn(x) = lim

x−→a
f (x) �= f (a) = lim

n−→∞ fn(a) = lim
n−→∞ lim

x−→a
fn(x).

This shows us something very important that you must not forget:

Limits do NOT commute

and there are so many limit processes in analysis: summing a series, differentiating,
integrating. . . the commutation of these processes is to be handled with extreme care.
The theorem we have just seen relating uniform convergence and continuity shows
that uniform convergence permits the commutation of some limits. We will see later
on that something similar happens with uniform convergence and integration. The
following is a criterion which will help us sum a series of functions.

The Weierstrass M-Test Given functions fk : B −→ R, if there are positive
numbers Mk such that supx∈B |fk(x)| ≤ Mk for all k, and

∑∞
k=1 Mk converges,

then
∑∞

k=1 fk(x) converges absolutely and uniformly on B.
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Let’s prove this. For each x ∈ B the series
∑∞

k=1 fk(x) converges absolutely
by the comparison criterion: |fk(x)| ≤ Mk and

∑∞
k=1 Mk converges. Write then

f (x) = ∑∞
k=1 fk(x). We want to see that the partial sums

∑n
k=1 fk of the series

converge uniformly to f . Given ε > 0 take nε so large that
∑

k>nε
Mk < ε. We

then have, for any x ∈ B,

∣
∣
∣
∣
∣
f (x) −

nε∑

k=1

fk(x)

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
∣

∑

k>nε

fk(x)

∣
∣
∣
∣
∣
∣
≤
∑

k>nε

|fk(x)| ≤
∑

k>nε

Mk < ε.

Thus,
∑n

k=1 fk converges uniformly to f as n grows. �
Note then that if the functions fk are continuous, so is f . One last example:

Example Geometric series on [−b, b], with b < 1.

Consider fk : [−b, b] −→ R such that fk(x) = xk . Then sup[−b,b] |xk| ≤ bk ,
and

∑∞
k=1 bk = b

1−b
< ∞. Thus,

n∑

k=0

xk −→ 1

1 − x

absolutely and uniformly on [−b, b], by the Weierstrass M-test.
Karl Weierstrass (1815–1897) was a German mathematician who gave impor-

tant results on uniform convergence and on the foundations of mathematics. He was
also one of the founders of the calculus of variations.

We mention now a result on the integration of a limit of functions: the integral
of a uniform limit of functions will be the limit of the integrals of these functions.
Recall that we integrate only continuous functions. There are more general versions
of this theorem for Riemann integrable or Lebesgue integrable functions. We will
also see, by an example, that if the convergence is not uniform, this result may not
hold. First, the theorem:

Uniform Convergence and Integration If the continuous functions fn converge
uniformly to f on [a, b], then

∫ b

a

f = lim
n→∞

∫ b

a

fn.

Let’s see: note that the function f is continuous, and we have

∣
∣
∣
∣

∫ b

a

fn −
∫ b

a

f

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ b

a

(fn − f )

∣
∣
∣
∣ ≤

∫ b

a

|fn − f |, (*)

but given ε > 0 there exists nε such that for all larger n, one has
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|fn(x) − f (x)| < ε,

This for all x ∈ [a, b]. Thus,

(∗) <

∫ b

a

ε = ε(b − a),

which may be made as small as required. �
Let’s see what may happen if the convergence is only pointwise.

Example Take fn : (0, 1] → R such that fn(x) = x
1
n −1

n
. Note that since the

exponent is larger than −1, the (improper) integrals of these functions exist over
(0, 1]. We have, in fact

∫ 1

0
fn = lim

a→0

∫ 1

a

x
1
n
−1

n
dx

= lim
a→0

x
1
n |1a

= lim
a→0

(
n
√

1 − n
√

a)

= 1,

so limn→∞
∫ 1

0 fn = 1. But the functions fn converge pointwise to zero on (0, 1], so

∫ 1

0
lim

n→∞ fn =
∫ 1

0
0 = 0.

What happens is that the convergence of the fn to zero in this example is not
uniform:

for
x

1
n
−1

n
< ε, we must have

x
1
n
−1 < nε

(
1

n
− 1

)

ln x < ln(nε)

ln x >
ln(nε)

( 1
n

− 1)
= − ln(nε)

(1 − 1
n
)
,

but for x close to zero, since ln x → −∞, we need larger and larger n for this
inequality to hold. There is no nε that works for all x.
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Gregory’s Series

James Gregory (1638–1675), Scottish mathematician, found the Taylor series of
various trigonometric functions, and also gave an early version of the Fundamental
Theorem of Calculus.

We saw in Chap. 2 that Gregory’s series,
∑∞

k=0
(−1)k

2k+1 converges, by the Leibniz
criterion for alternating series. We’ll now see what it converges to, as an application
of the results we have seen on uniform convergence. Gregory proved this result in
1668. It was, however, known to the Hindu mathematician Madhava of Sangama-
grama in the XIVth Century.

Sum of Gregory’s Series
∑∞

k=0
(−1)k

2k+1 = π
4 .

Recall that arctan t is a primitive of 1
1+t2 . Thus,

π

4
= arctan 1 = lim

b→1
arctan b

= lim
b→1

∫ b

0

1

1 + t2 dt

= lim
b→1

∫ b

0

1

1 − (−t2)
dt , which, written as a geometric series is

= lim
b→1

∫ b

0

∞∑

k=0

(−t2)k dt

= lim
b→1

∫ b

0

∞∑

k=0

(−1)kt2k dt

= lim
b→1

∞∑

k=0

(−1)k
∫ b

0
t2k dt, for on [−b, b] the convergence is uniform

= lim
b→1

∞∑

k=0

(−1)k
t2k+1

2k + 1

∣
∣
∣
b

0

= lim
b→1

∞∑

k=0

(−1)k
b2k+1

2k + 1
. (*)

Call f (b) = ∑∞
k=0(−1)k b2k+1

2k+1 . In order to commute the limit and the series in (∗),
we need to prove that f is a continuous function on [0, 1]. It is there a uniform limit

of continuous functions: if we set fn(x) = ∑n
k=0(−1)k x2k+1

2k+1 , we have
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|f (x) − fn(x)| =
∣
∣
∣
∣
∣

∑

k>n

(−1)k
x2k+1

2k + 1

∣
∣
∣
∣
∣
,

but, being an alternating series, its tail is smaller than the last term added

∣
∣
∣
∣
x2n+3

2n + 3
− x2n+1

2n + 1

∣
∣
∣
∣ <

x2n+1

2n + 1
≤ 1

2n + 1
< ε

if n > nε (independently of x). Then

(∗) = lim
b→1

f (b) = f (1) =
∞∑

k=0

(−1)k

2k + 1
.

Therefore,

∞∑

k=0

(−1)k

2k + 1
= π

4
.

�
Note that in the proof we have commuted an integral and an infinite series. We

have been able to do this because, as we saw when discussing the Weierstrass M-
test, the geometric series converges uniformly for b < 1.

Integration and Products: Integration by Parts

From the formula for the derivative of a product, we immediately obtain a very
useful integration method, called integration by parts.

Integration by Parts If F is a primitive of f, and G is a primitive of g,

∫ b

a

f G = F(x)G(x)

∣
∣
∣
b

a
−
∫ b

a

Fg.

Indeed, since (FG)′ = F ′G + FG′ = f G + Fg,

F(x)G(x)

∣
∣
∣
b

a
=
∫ b

a

(FG)′ =
∫ b

a

f G +
∫ b

a

Fg, from where

∫ b

a

f G = F(x)G(x)

∣
∣
∣
b

a
−
∫ b

a

Fg.

�
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Let’s see a couple of examples.

Example An integral formula for n!:

n! =
∫ ∞

0
e−t tn dt.

We calculate the integral using parts n times,

∫ ∞

0
e−t tn dt = −e−t tn

∣
∣
∣
∞
0

−
∫ ∞

0
−e−t ntn−1 dt

= 0 − 0 + n

∫ ∞

0
e−t tn−1 dt = · · ·

· · · = n!
∫ ∞

0
e−t dt

= n!(−e−t )

∣
∣
∣
∞
0

= n!

Example A primitive for ln x.

Consider f = 1, and G = ln x, so (setting F = x, g = 1
x

):

∫ b

a

ln x dx = x ln x

∣
∣
∣
b

a
−
∫ b

a

1 dx = (x ln x − x)

∣
∣
∣
b

a
.

In other words, a primitive of ln x is (x ln x − x).

Stirling’s Formula

An interesting application is (a weak form of) Stirling’s Formula. If you take a
calculator and calculate n! for larger and larger values of n, you will soon find the
limits of your calculator: n! grows extremely fast. But, how fast? Using an argument
similar to that which we have seen when talking about the “Integral Criterion,” we
write

ln(n!) = ln(1 · 2 · 3 · · · n) =
n∑

k=1

ln k ≈
∫ n

1
ln x dx

= (x ln x − x)

∣
∣
∣
n

1
= n ln n − n + 1

≈ n ln n − n,
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and applying the exponential function,

n! ≈ en ln n−n = nn

en
,

a useful formula which we will turn to later on. Actually, Stirling proved something
more precise regarding the growth of n!:

n! ≈ nn

en

√
2πn

which we will see in Chap. 8.

Integration and Composition: Integration by Substitution

The formulas for derivative of a sum and for derivative of a product had impor-
tant consequences when we related them—through the Fundamental Theorem of
Calculus—with the integral. The first gave us the linearity of the integral, while
the second gave us the method of integration by parts. We will now see what
consequence the chain rule has for integration. Recall that the composition of
functions lets us think of a function as depending on one or another variable, in
the following sense:

if we think that t ∈ [c, d] and x = g(t) ∈ [a, b], the function f may be considered
as depending on the variable x writing f (x), or the variable t , writing f (g(t));
where x = g(t) expresses how x varies while moving t . The integral

∫ b

a

f

depends only on the function f and the interval [a, b]. But if we wish to integrate
f considering that its variable moves in the interval [c, d], we must apply g to
transform this interval into [a, b]. Here the function g′ has a role to play, for it



Integration and Composition: Integration by Substitution 127

measures the velocity with which g changes the variable t for the variable x. But
let’s see what the theorem says.

Change of Variables Theorem If g : [c, d] → [a, b] is such that g(c)= a, g(d)= b,
and g′ is continuous, then for any continuous f : [a, b] → R,

∫ b

a

f =
∫ d

c

(f ◦ g)g′.

It is easy to see why. Say F is a primitive of f . Then, by the chain rule, (F ◦ g)

is a primitive of (f ◦ g)g′: indeed, (F ◦ g)′(t) = f (g(t))g′(t). So

∫ b

a

f = F(b) − F(a) = F(g(d)) − F(g(c)) =
∫ d

c

(f ◦ g)g′.

�

A Note on Notation

There is notation regarding the Change of Variables Theorem intended to help in its
use and application. It is, for example, common practice to use x(t) instead of g(t),
and to write the theorem in the form

∫ b

a

f (x) dx =
∫ d

c

f (x(t))x′(t) dt.

The notation “dx” and “dt” is indicative of how we name the variable in the
interval over which we are integrating. By themselves, “dx” and “dt” do not have
any meaning. Beyond its theoretical importance the Change of Variables Theorem
provides a method for calculating integrals known as integration by “substitution,”
in which a complicated expression is substituted by a simpler one. For instance,

Example Calculate

∫ 2

0
tet2

dt.

We proceed to “substitute” x for t2 (because we know a primitive for ex but not one
for et2

:

x = x(t) = t2

differentiating,
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x′(t) = 2t.

Also, since x(0) = 0 and x(2) = 4, we may finally write

∫ 2

0
tet2

dt =
∫ 2

0

x′(t)
2

ex(t) dt

= 1

2

∫ 4

0
ex dx = 1

2
ex
∣
∣
∣
4

0
= 1

2
(e4 − 1).

The dt and dx notation serves nicely to mechanize the procedure:

x = t2

dx

dt
= x′(t) = 2t

dx = 2t dt,

then

∫ 2

0
tet2

dt = 1

2

∫ 2

0
et2

2t dt = 1

2

∫ 4

0
ex dx . . .

Note, however, that dx
dt

= x′(t) and the “algebraic” manipulation dx = x′(t) dt

are simply useful mnemonic devices reflecting the result of the Change of Variables
Theorem.

Length of Curves. The Catenary

We will see now how to define the length of a curve on the plane (parametrized by a
differentiable function). Let’s start with a curve on the plane which is parametrized
by p : [a, b] → R2, where p(t) = (x(t), y(t)):
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If we call L(t) the length of the curve from p(a) to p(t), L(t + h) − L(t) is the
length along the curve from p(t) to p(t + h) which, when h is small, is like the
distance between p(t) and p(t + h):

L(t + h) − L(t) ≈
√

(x(t + h) − x(t))2 + (y(t + h) − y(t))2.

If we divide by h,

L(t + h) − L(t)

h
≈
√
(

x(t + h) − x(t)

h

)2

+
(

y(t + h) − y(t)

h

)2

,

and now have h tend to zero,

L′(t) =
√

x′(t)2 + y′(t)2.

Thus the length of the curve is

L(b) = L(b) − L(a) =
∫ b

a

L′(t) dt =
∫ b

a

√

x′(t)2 + y′(t)2 dt.

Example Length of the cycloid.

Recall that we had parametrized the cycloid by setting

p : [0, 2π ] → R2 such that p(t) = (rt − r sin t, r cos t − r).

Hence,

x′(t)2 = (r − r cos t)2 = r2 − 2r2 cos t + r2 cos2 t

y′(t)2 = (−r sin t)2 = r2 sin2 t,

so that x′(t)2 + y′(t)2 = 2r2(1 − cos t) = 2r22 sin2 t
2 (using formula for the cosine

of double angles: 1 − cos 2α = 2 sin2 α). Then the length of the cycloid is

∫ 2π

0

√

4r2 sin2 t

2
dt =

∫ 2π

0
2r sin

t

2
dt

with the change of variables u = t

2
: = 2r

∫ π

0
sin u 2du

= 4r (− cos u)

∣
∣
∣
∣

π

0

= 8r.
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Note that if a curve is the graph of a function f , we may parametrize it by setting
p : [a, b] −→ R2, p(t) = (t, f (t)), and its length over a segment [a, b] is then

∫ b

a

√

1 + f ′(t)2 dt.

If we hang a chain from its two ends, we will see that the chain, under its own
weight, forms a curve, a kind of “U,” called a catenary. We want to determine
exactly what kind of curve the catenary is. For this, suppose the catenary is the
graph of a function f as in the drawing

Given any x, the segment of chain which is above the interval [0, x] is subject
to three forces which are in equilibrium: the tensions T0 at (0, f (0)) and Tx at
(x, f (x)); and the weight P of the segment of chain between 0 and x, which is
proportional to the length of that piece: ρ�(x) (where �(x) is the length of chain
from (0, f (0)) to (x, f (x))). Bearing in mind that T0 is horizontal, P is vertical, and
Tx may be considered the sum of a horizontal component, and a vertical component,
we have

T0 =(−F0, 0)

P =(0,−ρ�(x))

Tx =(Fx cos α, Fx sin α).

Since the chain is balanced, the forces are canceled and we have

F0 =Fx cos α

ρ�(x) =Fx sin α.

Then,
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f ′(x) = the slope of the graph at (x, f (x)) = Fx sin α

Fx cos α
= ρ�(x)

F0
.

Putting a = F0
ρ

, we have

af ′(x) = �(x) =
∫ x

0

√

1 + f ′(t)2 dt.

If we now differentiate, by the Fundamental Theorem of Calculus, we obtain

af ′′(x) =
√

1 + f ′(x)2,

and squaring,

a2f ′′(x)2 =1 + f ′(x)2

a2f ′′(x)2 − f ′(x)2 =1.

But this differential equation is verified by f (x) = a cosh
(

x
a

)
. Indeed we have

f ′(x) = sinh
(x

a

)

and f ′′(x) =1

a
cosh

(x

a

)
,

so that

a2f ′′(x)2 − f ′(x)2 =
(

cosh
(x

a

))2 −
(

sinh
(x

a

))2 = 1,

as we have seen in Exercise 3 of Chap. 3. Therefore, the catenary is the graph of the
hyperbolic cosine!

Area Enclosed by a Simple Closed Curve

We will give an application of the Change of Variables Theorem to the calculation
of the area enclosed by a simple closed curve. Here simple means that the curve does
not intersect itself, while closed refers to the fact that it starts and ends at the same
point. Thus if p : [t0, t1] −→ R2 is a parametrization of the curve, p(t0) = p(t1),
and p is otherwise one-to-one.

We will suppose that our parametrization is such that p(t) moves along the curve
leaving the enclosed area to the left. We also suppose that this area is comprised
between the graph of a function f above, and the graph of another function g below:
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Many regions may be presented as a finite union of such areas and our results
will be valid for those as well:

If our parametrization is p(t) = (x(t), y(t)), we have x(t0) = b, x(t) = a, and
for t0 ≤ t ≤ t , y(t) = f (x(t)). Thus, if F is a primitive of f , we have, as in the
Change of Variables Theorem,

∫ b

a

f = F(b) − F(a) =(F ◦ x)(t0) − (F ◦ x)(t)

= − [
(F ◦ x)(t) − (F ◦ x)(t0)

]

= −
∫ t

t0

(f ◦ x)x′

= −
∫ t

t0

yx′.

Likewise, if G is a primitive of g, since for t ≤ t ≤ t1, y(t) = g(x(t)),

∫ b

a

g = G(b) − G(a) =(G ◦ x)(t1) − (G ◦ x)(t)
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=
∫ t1

t

(g ◦ x)x′

=
∫ t1

t

yx′.

Then the area A enclosed by the curve is

A =
∫ b

a

f −
∫ b

a

g = −
∫ t

t0

yx′ −
∫ t1

t

yx′ = −
∫ t1

t0

yx′.

Note that, integrating by parts, we may also write

A = −
∫ t1

t0

yx′ = −yx

∣
∣
∣
t1

t0
+
∫ t1

t0

y′x =
∫ t1

t0

y′x

for since p(t0) = p(t1), yx

∣
∣
∣
t1

t0
= 0. We have then

A = −
∫ t1

t0

yx′ =
∫ t1

t0

xy′.

Example area of an ellipse of radii a and b.

We may parametrize its boundary by p : [0, 2π ] −→ R2 with p(t) =
(a cos t, b sin t). Then,

A =
∫ 2π

0
xy′ = ab

∫ 2π

0
cos2 t dt = abπ.

Exercises

1 Without integrating, give a geometric argument to justify the equality

∫ 1

0
x

1
n dx +

∫ 1

0
xn dx = 1.

2 Without calculating the integral, find maxima and minima of

F(x) =
∫ x

0
sin t dt.
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3 Calculate the derivatives of the following functions

(i)
∫ x2

0 u du.

(ii)
∫ x+π

x
cos u du.

(iii)
∫ x

0 xeu du.

4 Without integrating, show that the following expressions are equal:

∫ x

0
f (u)(x − u) du and

∫ x

0

[∫ u

0
f (t) dt

]

du.

5 Without integrating, show that

∫ ax

x

1

t
dt

is a constant (x > 0 y a > 1).

6 Calculate the following improper integrals:

(i)
∫ 1

2
3

1
3x−2 dx.

(ii)
∫ 1
−1

1√|x| dx.

(iii)
∫∞

0 x4e−x5
dx.

7 Study the convergence of the series

∞∑

k=1

ke−k2
.

8 Estimate
(3n

n

)
for large values of n.

9 Estimate using Stirling’s formula:

(i) 2 · 4 · 6 · · · (2n).
(ii) 1 · 3 · 5 · · · (2n − 1).

(iii) limn−→∞ 1·3·5···(2n−1)
2·4·6···(2n)

.
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10 Calculate the integrals

(i)
∫ π

0 x cos x dx.

(ii)
∫ 1

0 xex dx.
(iii)

∫ π

0 x2 sin x dx.

(iv)
∫ 2

1 x2 ln x dx.
(v)

∫ π

0 e2x sin x dx.

11 Calculate the integrals

(i)
∫ 1

0 e−2x dx.

(ii)
∫ 1

0
3x

(x2+1)7 dx.

(iii)
∫ 4

1
x√
x+1

dx.

(iv)
∫ 2

1 xe−3x2
dx.

12 Calculate the integrals

(i)
∫ 2π

0 sin nx cos mx dx.

(ii)
∫ 2π

0 cos nx cos mx dx.

13 Show that the area between the cycloid and the x-axis is three times the area of
the circle that generates the cycloid.

14 Prove that the area under the graph of cosh x over the interval [a, b] is the same
as the length of the curve over that interval.

15 Consider a parametrization p : [a, b] −→ R2 of a curve C of length L such that
p′(t) = (x′(t), y′(t)) �= 0 for all t ∈ (a, b). We define

s(t) =
∫ t

a

√

x′(u)2 + y′(u)2 du.

s(t) is then the length of the curve from p(a) to p(t). Note that by the Fundamental
Theorem of Calculus s′(t) = √

x′(t)2 + y′(t)2 > 0 so s : [a, b] −→ [0, L] is
strictly increasing, and thus has an inverse s−1 : [0, L] −→ [a, b]. The function p =
p ◦ s−1 is another parametrization of C known as the arc length reparametrization.
If we write p(s) = (x(s), y(s)), prove that
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(i) For each s ∈ (0, L), we have x′(s)2 + y′(s)2 = 1.
(ii) The length of C from p(0) to p(α) is α.

16 If A = (a1, a2), B = (b1, b2), and C = (c1, c2), show that the area of the
triangle

is A = 1
2 [a1b2 − a2b1 + b1c2 − b2c1 + a2c1 − a1c2] (parametrize, even if p(t) is

not differentiable everywhere. . . ).
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The second derivative and the Taylor polynomial of order two
are presented. We discuss the relationship between this
polynomial and the notion of curvature. We give an application
of the second order Taylor polynomial to random walk and the
bell curve. Higher order Taylor polynomials and Taylor series
are introduced.

Second Derivative, Best-Fitting Parabola, and Curvature

When we proved that π is irrational we used “higher order derivatives,” f (n), of a
function f . There are functions that are not so differentiable; for example, it may
happen that f ′ exists but may not be differentiable, in which case f ′′ does not exist.
In this chapter we will suppose that our functions are infinitely differentiable, in
other words, f ′, f ′′, . . . f (n), . . . , exist. But now what we want to ask ourselves is:
what meaning does f ′′ have for our function f ? (Just as f ′ > 0 means f grows,
and f ′ < 0 means f decreases).

Recall that when we talked about the line tangent to the graph of f at the point
(a, f (a)),

y = y(x) = f (a) + f ′(a)(x − a)

we said that this was the straight line with the “best fit” to the graph of f at that
point, because

(i) (a, f (a)) is on the line, and
(ii) it has, at that point, the same slope as f

in other words,
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(i) y(a) = f (a).
(ii) y′(a) = f ′(a).

You cannot ask more of a straight line. . . Lines are of the form y = C +B(x −a)

and by imposing those two conditions i) and ii) you are fixing B and C. However, a
parabola is of the form

y = y(x) = C + B(x − a) + A(x − a)2

and therefore you can ask three things of it. Let’s ask that a parabola verify

(i) y(a) = f (a),
(ii) y′(a) = f ′(a),

(iii) y′′(a) = f ′′(a).

Bearing in mind that y′(x) = B + 2A(x − a), and y′′(x) = 2A, we have

(i) f (a) = y(a) = C,
(ii) f ′(a) = y′(a) = B,

(iii) f ′′(a) = y′′(a) = 2A.

Thus, the parabola

y(x) = f (a) + f ′(a)(x − a) + 1

2
f ′′(a)(x − a)2

is the one that best fits the graph of f near the point (a, f (a)). It verifies:

(i) (a, f (a)) is on the parabola,
(ii) the parabola has, at that point, the same slope as f , and

(iii) the parabola has, at that point, the same curvature as f .

Note that we have not yet defined curvature. This will be a geometric notion
depending completely on f ′(a) and f ′′(a), and thus determined by the best-fitting
parabola, the Taylor polynomial of order two.

The Taylor Polynomial of Order Two

The degree two polynomial that we have just defined is called the Taylor polynomial
of order two. It deserves a couple of comments:

(a) How well does the parabola y(x) fit f (x)? Consider the difference f (x)− y(x)

and let’s divide it by (x − a)2:
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f (x) − y(x)

(x − a)2 .

We are dividing by something very small: when x is near to a, (x − a) is very
small, and (x − a)2 is smaller still. However, if we have x → a:

f (x) − y(x)

(x − a)2 −−−−−→ 0

0
apply L’Hôpital’s rule

f ′(x) − y′(x)

2(x − a)
−−−−−→ 0

0
again L’Hôpital

f ′′(x) − y′′(x)

2
−−−−−→ 0

2
= 0.

So when x → a, the difference f (x) − y(x) tends to zero, even when divided
by (x − a)2. We write then f (x) − y(x) = ◦((x − a)2):

f (x) = f (a) + f ′(a)(x − a) + 1

2
f ′′(a)(x − a)2 + ◦((x − a)2).

We will also write

f (x) ≈ f (a) + f ′(a)(x − a) + 1

2
f ′′(a)(x − a)2

to indicate that (close to a) equality “almost” holds.
Sometimes in the formula for the Taylor polynomial we will put x = a + h,

so we have

f (a + h) = f (a) + f ′(a)h + 1

2
f ′′(a)h2 + ◦(h2).

For example, for the function f (t) = t ln t (for which f ′(t) = ln t + t 1
t

=
ln t + 1, and f ′′(t) = 1

t
), we obtain

(a + h) ln(a + h) = a ln a + (ln a + 1)h + 1

2

1

a
h2 + ◦(h2)

≈ a ln a + h ln a + h + h2

2a

which we will use below.
(b) Suppose the function f has a critical point at a: f ′(a) = 0. Then

f (x) ≈ f (a) + 1

2
f ′′(a)(x − a)2
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f (x) − f (a) ≈ 1

2
f ′′(a)(x − a)2.

Then (since a is a critical point) the difference f (x) − f (a) has the same sign
as f ′′(a): if f ′′(a) > 0, f has a minimum at a; and if f ′′(a) < 0, in a there will
be a maximum. If f ′′(a) = 0, we can say nothing.

Curvature
We have said above that the tangent line has the same slope as the graph of f ,
and that the best-fitting parabola has the same curvature as f . We now address the
problem of the precise definition of curvature. We want to assign to each point on
a curve, a number—the curvature at that point—which measures how fast the curve
deviates from a straight line.

The first thing we can say about curvature is that it is not captured by the second
derivative. Indeed, consider the parabola defined by ax2 + bx + c:

At all of its points its second derivative is the same: 2a. Yet surely we would agree
that its curvature—whatever it may be—is not the same at point P as at point Q.

So what exactly is curvature? Let’s begin by considering circles:

Two things we can agree on. The first is that a circle has the same curvature at all
of its points: we can rotate a circle around its center, taking any of its points to any
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other. . . each has an analogous position with respect to the circle as a whole. The
second is that smaller circles are more curved than larger circles. Consequently, we
will use the radius of a circle to define its curvature at all of its points. We do this in
the following way: at any point of a circle of radius r , the curvature of the circle is

κ = 1

r
.

Now we will use this to extend our definition of curvature to parabolas, and finally,
to the graph of an arbitrary function f .

The Curvatures of a Parabola
We will define and calculate the curvature of a parabola at different points, say at
points P and Q as in our picture above.

Consider first the point P , where the parabola has its minimum. Our parabola is
given by f (x) = ax2, and the point P is (0, 0).

A small circle above the x-axis, centered on the y-axis and tangent at P will lie
above the graph of f . But if we enlarge the circle, at some point this will no longer
be so. Close to P , part of the circle will be below the parabola. The largest circle
which remains above f close to the point P is called the osculating circle (from
the Latin osculum=kiss) and we will consider its curvature as the curvature of f

at P . Now let’s calculate it. The circles with (large or small) radii r which we are
interested in are those centered at (0, r):

x2 + (y − r)2 = r2.

And we seek the largest r such that y ≥ ax2 near (0, 0). Thus we want the largest r

for which

y = −
√

r2 − x2 + r ≥ ax2.

Set h(x) = −ax2 − √
r2 − x2 + r . This function h measures the vertical difference

between the circle and the graph of f . Clearly h(0) = 0. For small values of r our
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discussion above says that this value must be a minimum, as the circle is above f .
Differentiating h we have

h′(x) = −2ax + x√
r2 − x2

= x

(
1√

r2 − x2
− 2a

)

so h′(0) = 0 and

h′′(x) =
(

1√
r2 − x2

− 2a

)

+ x

(
1√

r2 − x2
− 2a

)′
.

Thus

h′′(0) = 1

r
− 2a

which will be positive for small r (and h(0) will be a minimum) and negative for
large r (and h(0) will be a maximum: the circle is now below the parabola). The
limiting case (h′′(0) = 0) occurs when r = 1

2a
. Thus we conclude that the curvature

of f at P = (0, 0) is

κ = 1

r
= 2a = f ′′(0).

Now consider point Q of the parabola. To this end we take the parabola to be the
graph of f (x) = ax2 + bx, and Q = (0, 0):

Our circles will now be centered on the line perpendicular to f at Q: y = − 1
b
x,

(since f ′(0) = b). The circle thus centered and of radius r is (note that α depends
on r)

(x − α)2 +
(
y + α

b

)2 = r2 = α2 + α2

b2 = α2
(

1 + 1

b2

)

.
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We repeat our discussion above, and now we have

y = −
√

α2

(

1 + 1

b2

)

− (x − α)2 − α

b
≥ ax2 + bx.

We set

h(x) = −ax2 − bx −
√

α2

(

1 + 1

b2

)

− (x − α)2 − α

b
.

And we now seek the largest r such that h has a minimum at 0. Doing the
computations (see Exercise 2) we now conclude that the limiting case (h′′(0) = 0)
occurs when

h′′(0) = −2a − b(1 + b2)

α
= 0.

That is,

α = −b(1 + b2)

2a
.

But since r2 = α2(1 + 1
b2 ),

r = |α|
√

1 + 1

b2 = b(1 + b2)

2a

√
1 + b2

b2 = (1 + b2)3/2

2a

and the curvature at point Q is then

κ = 1

r
= 2a

(1 + b2)3/2
,

which for the parabola f is

κ = f ′′(0)

(1 + f ′(0)2)3/2 .

Note that the same formula holds for the point P , where we had f ′(0) = 0.
Accordingly, we define the curvature of the graph of f at the point (x, f (x)) as
the curvature of the best-fitting parabola at that point

κ(x) = |f ′′(x)|
(1 + f ′(x)2)3/2

.

The signed curvature is defined as f ′′(x)

(1+f ′(x)2)3/2 .
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RandomWalk and the Gauss Curve
Back in Chap. 1 we flipped a coin infinitely many times to generate a random point
on the interval (0, 1) and to see that it was almost never rational. We will now use
that coin to generate a “random walk”: you stand at zero on the real line and toss a
coin; if heads you take a step to your right, if tails, a step to your left. And now, from
where you are, you do it again. And again. And again. And again. . . n times. You
have had a random walk. Where have you arrived? Let’s see. If you have thrown k

heads, and therefore n − k tails, you are at the point

k − (n − k) = −n + 2k

(k steps to the right and n − k steps to the left). You are at some whole number
between −n and n. But if, say, a is one of those points, What is the probability that
you’re standing at a? The total number of possible random walks is the number of
possible results of throwing a coin n times: 2 × 2 × · · · × 2 = 2n. How many of
these walks take you to the point a = −n+2k? To have reached that point you must
have obtained k = n+a

2 heads in the n tosses. In other words, of the 2n walks,
(
n
k

)

take you to a. The probability of being there after n throws is therefore

(
n
k

)

2n
=
(

n
n+a

2

)

2n
.

Note that if n is even, so is a, and if n is odd, so is a. Therefore n + a will always
be even.

If you have visited a science museum you have probably seen a “Galton board”:
a small ball falls, hits a nail and goes either right or left, hits another nail and again
goes right or left, then another. . . n times. And the balls accumulate at the foot of
the board forming a beautiful Gauss curve,

which is the graph of the function f (x) = e− x2
2 . Magic! No: random walk. Let’s

see why. Say that 2n balls are dropped (and each one of them has its random walk).
According to our discussion above, the column of balls over point a should have a
height of about

(
n

n+a
2

)
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balls. To fix a unit of measure, we compare this column over point a with the column
over 0 (the central column) which will have around

(
n
n
2

)
balls. In this unit of measure,

the height of the column over a is

Ha =

(
n

n+a
2

)

(
n
n
2

) =
n!

(
n+a

2

)! (n−a
2

)!
n!

(
n
2

)! (n
2

)!
=

(n

2

)
!
(n

2

)
!

(
n + a

2

)

!
(

n − a

2

)

!
.

To facilitate our computations we will write p = n
2 and c = a

2 . Thus, the height
over a is

Ha = p!p!
(p + c)!(p − c)! = (p − c + 1) . . . p

(p + 1) . . . (p + c)

Taking ln,

ln Ha =
p∑

j=p−c+1

ln j −
p+c∑

j=p+1

ln j

≈
∫ p

p−c

ln t dt −
∫ p+c

p

ln t dt

=(t ln t − t)

∣
∣
∣
p

p−c
− (t ln t − t)

∣
∣
∣
p+c

p

=p ln p − p − (p − c) ln(p − c) + (p − c) − (p + c) ln(p + c) + (p + c) + p ln p − p

=2p ln p − (p − c) ln(p − c) − (p + c) ln(p + c).

Now we use the Taylor polynomial of order 2 of t ln t at p, which tells us that

(p + h) ln(p + h) ≈ p ln p + h ln p + h + h2

2p
:

ln Ha ≈ 2p ln p −
(

p ln p − c ln p − c + c2

2p

)

−
(

p ln p + c ln p + c + c2

2p

)

= −c2

p
, which in terms of n and a is

= − a2

2n

= −
[

a√
n

]2

2
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Then Ha ≈ e−
[

a√
n

]2

2 . But, just us we “normalized” the height over 0 dividing by the
number of balls, let’s normalize the width of the board by setting x = a√

n
(in other

words dividing the width which was 2n by 2
√

n). When we now look at the board
we see

e− x2
2 .

Nothing more predictable than randomness, if it’s repeated sufficiently many
times. Hence, the importance of Statistics. The Gauss curve, or bell curve, appears
in many real world situations which start with random walks: particles that move
a little to one side and then to another; for example: the heat equation, and finance
(where stocks and bonds go up a little, down a little. . . ). We will see more on the
Gauss curve and Normal distribution in Chap. 8.

Carl Friedrich Gauss (1777–1855) is generally considered one of the three great-
est mathematicians (with Newton and Archimedes). He contributed an enormous
number of results in many areas of mathematics: differential geometry, statistics,
algebra; and also in mechanics, electrostatics, and geodesics. Among his results is
the Fundamental Theorem of Algebra (every polynomial has a complex root), and
his Theorema Egregium on the curvature of surfaces.

Before going on to Taylor series expansions, we give one more application of
the Taylor polynomial of order two: when we saw the Newton–Raphson method for
finding a zero, a, of the function f , we constructed a sequence (xn). We may use
the Taylor polynomial of order two of f to obtain a condition that will assure the
convergence of that sequence (xn) to the point a. Consider the Taylor polynomial of
order two of f at xn:

f (x) ≈ f (xn) + f ′(xn)(x − xn) + f ′′(xn)

2
(x − xn)

2.

At the point x = a, which is a zero of f ,

0 = f (a) ≈ f (xn) + f ′(xn)(a − xn) + f ′′(xn)

2
(a − xn)

2.

If we divide by f ′(xn), (recall that xn+1 = xn − f (xn)
f ′(xn)

)

0 ≈ f (xn)

f ′(xn)
+ a − xn + f ′′(xn)

2f ′(xn)
(a − xn)

2

= (a − xn+1) + f ′′(xn)

2f ′(xn)
(a − xn)

2,

from which
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|xn+1 − a| ≈ |f ′′(xn)|
2|f ′(xn)| |xn − a|2.

Thus if close to point a we have that |f ′′(x)|
2|f ′(x)| ≤ M , and |xn − a| is small, then

|xn+1 − a| ≤ M|xn − a|2

and the sequence (xn) will converge to a.

The Taylor Series

Near the point (a, f (a)) the tangent line is the line that best approximates the
function f , and the Taylor polynomial of order two is the parabola which best
approximates f . Which would be the n-degree polynomial best approximating f ?
This will be the Taylor polynomial of order n of f at a. We had asked two things of
the tangent line:

y(a) = f (a)

y′(a) = f ′(a),

and three things of the Taylor polynomial of order two:

y(a) = f (a)

y′(a) = f ′(a)

y′′(a) = f ′′(a).

For the Taylor polynomial of order n we will require the following n+1 conditions:

y(a) = f (a)

y′(a) = f ′(a)

...

y(n)(a) = f (n)(a)

in other words, that the derivatives of all orders up to n coincide with those of f at
point a. Close to a, the difference between f and its Taylor polynomial of order n

will be so small that (applying L’Hôpital n times..)
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f (x) − y(x)

(x − a)n
→ 0

0

f ′(x) − y′(x)

n(x − a)n−1
→ 0

0

...

f (n)(x) − y(n)(x)

n! → 0

n! = 0,

so that f (x) − y(x) tends to zero even when divided by (x − a)n. We will write

f (x) = y(x) + ◦((x − a)n).

But, how do we find this polynomial? Let’s write

y(x) = c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)n

and impose the conditions y(a) = f (a), y′(a) = f ′(a), . . . , y(n)(a) = f (n)(a).
We will then obtain the necessary coefficients ck . For example, after differentiating
y(x) three times:

y(3)(x) = 3 · 2 · c3 + 4 · 3 · 2 · c2(x − a) + · · · + n(n − 1)(n − 2)cn(x − a)n−3

y(3)(a) = 3!c3

and we will have c3 = y(3)(a)
3! = f (3)(a)

3! . Following in this manner we have, in
general, that

ck = f (k)(a)

k!
so the Taylor polynomial of order n of f at a is

y(x) =
n∑

k=0

f (k)(a)

k! (x − a)k

and we will have

f (x) =
n∑

k=0

f (k)(a)

k! (x − a)k + ◦((x − a)n).

Now, when you approximate something, it is very important to know the size of
your error. Thus, we want to have some kind of bound for the difference f (x)−y(x)
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between f and its Taylor polynomials. There are several formulas for this. Let’s see
one of them:

Say that b is a point close to a. We may write the difference at b as

f (b) − y(b) = M(b − a)n+1.

Indeed, for this we need only put

M = f (b) − y(b)

(b − a)n+1 .

If we consider the function

g(x) = f (x) − y(x) − M(x − a)n+1,

we see that g(a) = 0. But also g′(a) = 0, g′′(a) = 0, . . . , g(n)(a) = 0. This is
because the derivatives of f and of y coincide at a, up to order n; and also the
derivatives of (x − a)n+1, up to order n, vanish at a. Now, from our definition of M ,
g(b) = 0 = g(a), and by Rolle’s Theorem, g′(c1) = 0 for some c1 between a and
b. Thus, applying Rolle’s Theorem repeatedly, g′(c1) = 0 = g′(a), then g′′(c2) = 0
with c2 between a and c1, g′′(c2) = 0 = g′′(a), then g′′′(c3) = 0 with c3 between
a and c2, etc. . . . until g(n)(cn) = 0 = g(n)(a), and then g(n+1)(c) = 0 with c

between a and cn. But g(n+1)(x) = f (n+1)(x) − M(n + 1)!, for y was an n-degree
polynomial. Then we can write another expression for M:

0 = g(n+1)(c) = f (n+1)(c) − M(n + 1)!

M = f (n+1)(c)

(n + 1)! with c between a and b.

We then have f (b) = y(b) + f (n+1)(c)
(n+1)! (b − a)n+1, with c between a and b. But we

can do this for any b, so

f (x) = y(x) + f (n+1)(c)

(n + 1)! (x − a)n+1,

with c between a and x (and c depending on x). Finally,

f (x) =
n∑

k=0

f (k)(a)

k! (x − a)k + f (n+1)(c)

(n + 1)! (x − a)n+1,

with the last term—the error—similar to the others, except that the derivative of f

is evaluated at c instead of a. . . And c is a point between a and x, which depends on
x, but is unknown to us.
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At this stage one must ask oneself: What happens if we take larger and larger n?
Will we have

f (x) =
∞∑

k=0

f (k)(a)

k! (x − a)k?

The answer is that even when f is differentiable infinitely many times, this
series may or may not converge; or even, may converge but not to f (x) (among
the exercises, you will find an example of this). However, for many useful and
interesting functions, including ex , cos x, sin x, ln x, all polynomials . . . the answer
is yes: one may write, close to the point a, the Taylor series expansion:

f (x) =
∞∑

k=0

f (k)(a)

k! (x − a)k.

Let’s call Rn(x) the difference between f (x) and its Taylor polynomial of order
n. We have seen above that

Rn(x) = f (x) −
n∑

k=0

f (k)(a)

k! (x − a)k

= f (n+1)(c)

(n + 1)! (x − a)n+1,

where c ∈ (a, x). Then, if for any c ∈ (a − r, a + r) and all n ∈ N, we have

|f (n+1)(c)| ≤ Kr,

then we will have, for all x ∈ (a − r, a + r)

|Rn(x)| ≤ Kr |x − a|n+1

(n + 1)! ≤ Kr

rn+1

(n + 1)!

and then Rn(x) −→ 0 for n tending to infinity, for Kr
rn+1

(n+1)! −→ 0. Thus, the Taylor
series of f at a will converge to f in (a − r, a + r).

Example Taylor series of 1
1−x

at a = 0.

The derivatives of f :

f (x) =(1 − x)−1 f (0) = 1

f ′(x) = − (1 − x)−2 f ′(0) = 1
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f ′′(x) =2(1 − x)−3 f ′′(0) = 2

f ′′′(x) =3 · 2(1 − x)−4 f ′′′(0) = 3!
...

...

f (k)(x) =k!(1 − x)−(k+1) f (k)(0) = k!

1

1 − x
= f (x) =

∞∑

k=0

f (k)(0)

k! xk =
∞∑

k=0

xk.

Note that in this case the Taylor series at 0 converges to f in (−1, 1). It does not
converge, however, for x far from a = 0. For example, if x = 2 we have

−1 = 1

1 − 2
�=

∞∑

k=0

2k = ∞.

Example The Taylor series of f (x) = ln x at a = 1.

Derivatives of f :

f (x) = ln x f (1) = 0

f ′(x) = 1

x
= x−1 f ′(1) = 1

f ′′(x) = − x−2 f ′′(1) = −1

f ′′′(x) =2x−3 f ′′′(1) = 2

...
...

f (k)(x) =(−1)k+1(k − 1)!x−k f (k)(1) = (−1)k+1(k − 1)!

The Taylor series is

∞∑

k=0

f (k)(1)

k! (x − 1)k =
∞∑

k=1

(−1)k+1

k
(x − 1)k

which, by Leibniz’ criterion for alternating series, converges if |x − 1| < 1. Let’s
consider the error term of order n at x = 2:
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Rn(2) = f (n+1)(c)

(n + 1)! (2 − 1)n+1

= (−1)n+2n!
(n + 1)!cn+1

= (−1)n

n + 1

1

cn+1 −→ 0, for n −→ ∞ and any c ∈ (1, 2).

Thus, the Taylor series converges to the function on x = 2, and we have

ln 2 =
∞∑

k=1

(−1)k+1

k
= 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− . . .

In Chap. 2, we saw that the alternating harmonic series was convergent, by Leibniz’
criterion. Now we know it converges to − ln 2.

The convergence of the Taylor series of a function f to the function f at all
points may also happen. Functions for which this happens are called entire, and
these include ex , cos x, sin x. In a sense, these functions are surprisingly rigid:
consider the graph of an entire function f :

And consider that f (x) = ∑∞
k=0

f (k)(a)
k! (x − a)k . On the right-hand side of the

equality, all the “information” about the function f is contained in its derivatives
f (k)(a) at the point a. And these depend only on what happens in a neighborhood
of a, as small as we want . . . This means that if we know f in any interval around
a, we know f everywhere.

Example The Taylor series of f (x) = sin x at a = 0.

Derivatives of f :

f (x) = sin x f (0) = 0

f ′(x) = cos x f ′(0) = 1

f ′′(x) = − sin x f ′′(0) = 0



The Taylor Series 153

f ′′′(x) = − cos x f ′′′(0) = −1

f (4)(x) = sin x f (4)(0) = 0

...
...

Note that for any value of c and for all n ∈ N, we have

|f (n+1)(c)| ≤ 1.

Then,

|Rn(x)| ≤ |x|n+1

(n + 1)! −→ 0 for any x ∈ R.

Thus, the Taylor series of sin x at 0 tends to sin x at all points:

sin x =
∞∑

k=0

(−1)k

(2k + 1)!x
2k+1 = x − 1

3!x
3 + 1

5!x
5 − 1

7!x
7 + . . .

Exercises

1 Prove that a is a double root of a polynomial P if and only if a is a root of P and
of P ′.

2 Complete the computations of the discussion of curvature of the parabola, by
calculating the second derivative of

h(x) = −ax2 − bx −
√

α2

(

1 + 1

b2

)

− (x − α)2 − α

b
.

3 Calculate the curvature of

(i) f (x) = x2 at (0, 0).
(ii) f (x) = x4 at (0, 0). Interpret. . .

(iii) a circle of radius r at any of its points, by applying the curvature formula to
f (x) = √

r2 − x2.

4 Curvature of a parametrized curve: Let p(t) = (x(t), y(t)), where y(t) =
f (x(t)). By using the chain rule translate the curvature formula to obtain
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κ = |x′y′′ − x′′y′|
(x′2 + y′2)3/2 .

5 Calculate the Taylor polynomial of order three of 1
x+1 at a = 0. Setting x = 1

10 ,

estimate the decimal expression of 10
11 .

6 Calculate the Taylor series at a = 0 of the following functions, and study their
convergence.

i) cos x.
ii)

√
x + 1.

iii) 1
1+x2 .

7 Prove that all derivatives of the function

f (x) =
{

e
− 1

x2 , if x �= 0

0, if x = 0

vanish at zero. Conclude that the Taylor series of f at a = 0 converges, but not to f .



7Convexity and the Isoperimetric Inequality

In this chapter we consider some important inequalities. We
begin with the Arithmetic-Geometric inequality and convexity
and finally present the Isoperimetric Inequality.

The Arithmetic-Geometric Inequality

The Arithmetic-Geometric inequality (or AG inequality) is one of the simplest and
most useful inequalities, as well as the source of many other important variations.
We have seen among the exercises of Chap. 4 that it can be used to solve some
optimization problems without the use of differentiation. The AG inequality says
that if a and b are positive numbers, then

√
ab ≤ a + b

2
,

that is, the geometric mean is always less than the arithmetic mean. The proof is
simple: given any two numbers x and y,

0 ≤ (x − y)2

= x2 − 2xy + y2,

from where 2xy ≤ x2 + y2

xy ≤ x2 + y2

2
,

thus, given positive a and b, we may take x = √
a and y = √

b, to obtain
√

ab ≤
a+b

2 . Note that equality occurs only if a and b are equal.
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Convexity

After the definition of the Taylor polynomial of order two of f , our second comment
supposed that a was a critical point. Even without supposing this, we can write

f (x) ≈ f (a) + f ′(a)(x − a) + 1

2
f ′′(a)(x − a)2, so

f (x) − [f (a) + f ′(a)(x − a)] ≈ 1

2
f ′′(a)(x − a)2

which shows that the relative position of the graph of f and of its tangent lines is
linked to the sign of the second derivative of f . The notion of convexity of a function
is very important in analysis and in many applications. It can be expressed in several
ways:

Theorem The following are equivalent:

(i) the lines tangent to the graph of f remain under the graph,
(ii) for all x < y and all 0 ≤ t ≤ 1,

f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y),

(iii) f ′ is increasing,
(iv) f ′′ ≥ 0.

We will show that (i) implies (ii), (ii) implies (iii), (iii) implies (i). And clearly,
we already know that (iii) is equivalent to (iv).

That (i) implies (ii): Take a = tx + (1 − t)y, and note that then

x − a = x − tx − (1 − t)y = (1 − t)(x − y)

y − a = y − tx − (1 − t)y = t (y − x).

As all tangent lines remain below f ,

f (a) + f ′(a)(x − a) = f (a) + f ′(a)(1 − t)(x − y) ≤ f (x)

f (a) + f ′(a)(y − a) = f (a) + f ′(a)t (y − x) ≤ f (y).

Now, if we multiply the first inequality by t , the second by (1 − t) and add:

f (tx + (1 − t)y) = f (a) ≤ tf (x) + (1 − t)f (y).

That (ii) implies (iii): Say that w < z, and take x and y such that

w < x < y < z.
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We first consider the three points to the right (x < y < z), and write y =
tx + (1 − t)z; we can do this by setting t = z−y

z−x
, and 1 − t = y−x

z−x
. Then by ii)

f (y) = f (tx + (1 − t)z) ≤ tf (x) + (1 − t)f (z)

=
(

z − y

z − x

)

f (x) +
(

y − x

z − x

)

f (z),

from where

f (y)(z − x) ≤ f (x)(z − y) + f (z)(y − x) (∗)

Now, adding and subtracting x in (z − y):

= f (x)((z − x) + (x − y)) + f (z)(y − x)

= f (x)(z − x) + f (x)(x − y) + f (z)(y − x).

Then

(f (y) − f (x))(z − x) ≤ (f (z) − f (x))(y − x), and

f (y) − f (x)

y − x
≤ f (z) − f (x)

z − x
. (7.1)

If, instead, in (∗) we add and subtract z in (y − x), we analogously obtain

f (z) − f (x)

z − x
≤ f (z) − f (y)

z − y
. (7.2)

And now, from (7.1) and (7.2):

f (y) − f (x)

y − x
≤ f (z) − f (y)

z − y
. (A)

We now consider the three points to the left (w < x < y) and do exactly the
same, to obtain

f (x) − f (w)

x − w
≤ f (y) − f (x)

y − x
. (B)

From ( A ) and ( B ):

f (x) − f (w)

x − w
≤ f (z) − f (y)

z − y
= f (y) − f (z)

y − z
.

Now, having x → w and y → z,



158 7 Convexity and the Isoperimetric Inequality

f ′(w) ≤ f ′(z),

so f ′ is increasing.
Finally that iii) implies i): Measure the difference g(x) between the graph of f

and the tangent line at the point (a, f (a)):

g(x) = f (x) − f (a) − f ′(a)(x − a)

= f ′(c)(x − a) − f ′(a)(x − a)

= (f ′(c) − f ′(a))(x − a)

where in the second equality we used Lagrange’s Mean Value Theorem. Note that
c is between a and x. If x > a (and therefore c > a and f ′(c) ≥ f ′(a)), g(x) is
the product of two positive numbers: g(x) ≥ 0. If x < a (and therefore c < a and
f ′(c) ≤ f ′(a)), g(x) is the product of two negative numbers: g(x) ≥ 0. In any case,
the tangent line remains below the graph of f . This completes the proof. �

Some comments:

(a) A function is said to be convex if it verifies the equivalent conditions in the
Theorem, and concave if it verifies the “opposite” conditions: tangent lines
below the graph, ≥ in ii), f ′ decreasing, f ′′ ≤ 0. Note that with condition
ii) we can define convexity even for non-differentiable functions.

(b) We may think of convexity of f as the following property: “f applied to an
arithmetic mean of x and y is less than an arithmetic mean of f (x) and f (y).”
There is a related notion, but stronger than convexity, called log-convexity. A
function f is said to be log-convex if the function ln f (x) is convex. Let’s see
what this means: it must happen, for x < y and 0 ≤ t ≤ 1 that

ln(f (tx + (1 − t)y)) ≤ t ln f (x) + (1 − t) ln f (y).

If we apply the exponential function to this inequality, we find that this is
equivalent to

f (tx + (1 − t)y) ≤ f (x)tf (y)(1−t),

which we may think of as: “f applied to an arithmetic mean of x and y is less
than a geometric mean of f (x) and f (y).” Since geometric means are smaller
than arithmetic means, it turns out that if f is log-convex, then it is also convex:

f (tx + (1 − t)y) ≤ f (x)tf (y)(1−t) ≤ tf (x) + (1 − t)f (y).

Thus, log-convexity is a strong form of convexity.

As applications, we mention some other important inequalities.
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Young, Hölder, Jensen, Cauchy–Schwarz. . .

We start with the inequalities of Young and Heinz. These are generalizations of the
Arithmetic-Geometric inequality.

Young’s Inequality if 1
p

+ 1
q

= 1, ab ≤ ap

p
+ bq

q
.

Let’s see

ab = eln(ab)

= eln a+ln b

= e
1
p

p ln a+ 1
q
q ln b

= e
1
p

ln ap+ 1
q

ln bq

.

But ex is a convex function, for (ex)′′ = ex > 0. Then, since 1
p

+ 1
q

= 1,

≤ 1

p
eln(ap) + 1

q
eln(bq )

= ap

p
+ bq

q
.

�
Another way (which we have mentioned above) of writing Young’s inequality is

atb1−t ≤ ta + (1 − t)b si 0 ≤ t ≤ 1.

To see this, take p = 1
t

and q = 1
1−t

. Set x = a
1
p and y = b

1
q . Then

atb1−t = xy ≤ xp

p
+ yq

q
= ta + (1 − t)b.

Heinz’ Inequality

√
ab ≤ atb1−t + a1−t bt

2
≤ a + b

2
.

Because

√
ab =

√
ata1−t bt b1−t =

√(
atb1−t

) (
a1−t bt

)
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≤ atb1−t + a1−t bt

2

≤ ta + (1 − t)b + (1 − t)a + tb

2

= a + b

2

the first inequality is AG, the second is Young’s. �

The Arithmetic-Geometric Inequality for n Numbers

n
√

a1 · · · an ≤ a1 + · · · + an

n
.

Note that ln x is a concave function. Indeed, if we differentiate it twice,

(ln x)′′ = −1

x2
< 0.

Now, if we consider positive numbers a1, a2, . . . , an,

ln

(
1

n

n∑

i=1

ai

)

= ln

(
n∑

i=1

1

n
ai

)

≥ 1

n

n∑

i=1

ln(ai)

= ln

⎛

⎝

[
n∏

i=1

ai

] 1
n

⎞

⎠ .

Applying ex ,

a1 + · · · + an

n
≥ n

√
a1 · · · an.

�

Hölder’s Inequality If f is a continuous function defined on the interval [a, b], we
define for any value of r (with 1 ≤ r < ∞),

‖f ‖r =
(∫ b

a

|f (t)|r dt

) 1
r

.
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Note that for r = 2 this is a generalization to “many variables” of the way we

measure distances on the plane: d((x1, x2); (0, 0)) =
√

x2
1 + x2

2 . Doing this with
different values of r , represents different ways of measuring the “size” of a function
f . This is important in many applications which we will not go into here. What
Hölder’s inequality then says is the following:

If
1

p
+ 1

q
= 1, then ‖fg‖1 ≤ ‖f ‖p‖g‖q .

To prove this, note first that dividing f by ‖f ‖p, and g by ‖g‖q , we may suppose
that ‖f ‖p = ‖g‖q = 1. Now by Young’s inequality, we have, for all t ∈ [a, b],

|f (t)||g(t)| ≤ |f (t)|p
p

+ |g(t)|q
q

.

Integrating on both sides,

‖fg‖1 =
∫ b

a

|f (t)||g(t)| dt ≤
∫ b

a

|f (t)|p
p

dt +
∫ b

a

|g(t)|q
q

dt

= 1

p
‖f ‖p

p + 1

q
‖g‖q

q

= 1

p
+ 1

q

= 1

= ‖f ‖p‖g‖q .

�

Two more inequalities valid for convex functions: Jensen’s and the Hermite-
Hadamard inequality:

Jensen’s Inequality If f is convex and 0 < ai < 1, Then

f

(∑n
i=1 aixi

∑n
i=1 ai

)

≤
∑n

i=1 aif (xi)
∑n

i=1 ai

.

Let’s see why. Suppose first that
∑n

i=1 ai = 1. We proceed by induction on n.
For n = 2 (note that a1 + a2 = 1 means that a2 = 1 − a1):

f (a1x1 + a2x2) ≤ a1f (x1) + a2f (x2).
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For n > 2, our inductive hypothesis tells us that the conclusion is valid for n − 1
terms. Note that

∑n−1
i=1 ai = 1 − an and write

f

(
n∑

i=1

aixi

)

= f

(
n−1∑

i=1

aixi + anxn

)

= f

(

(1 − an)

∑n−1
i=1 aixi

(1 − an)
+ anxn

)

≤ (1 − an)f

(
n−1∑

i=1

ai

1 − an

xi

)

+ anf (xn)

≤ (1 − an)

n−1∑

i=1

ai

1 − an

f (xi) + anf (xn)

=
n∑

i=1

aif (xi).

Now, if
∑n

i=1 ai is not one, replace each aj by
aj∑n
i=1 ai

. �

The Hermite-Hadamard Inequality If f is convex,

f

(
a + b

2

)

≤ 1

b − a

∫ b

a

f ≤ f (a) + f (b)

2
.

To see the first inequality, call p = a+b
2 . We know that the tangent line at

(p, f (p)) remains below the graph of f :

f (p) + f ′(p)(x − p) ≤ f (x)

f (p) + f ′(p)x − f ′(p)p ≤ f (x).

Integrating between a and b:

f (p)(b − a) + f ′(p)
x2

2

∣
∣
∣
b

a
− f ′(p)p(b − a) ≤

∫ b

a

f (x) dx

f (p)(b − a) + f ′(p)
b2 − a2

2
− f ′(p)

(a + b)

2
(b − a) ≤

∫ b

a

f (x) dx

f (p)(b − a) + f ′(p)
1

2
(b2 − a2) − f ′(p)

1

2
(a + b)(b − a) ≤

∫ b

a

f (x) dx
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f (p)(b − a) ≤
∫ b

a

f (x) dx

f

(
a + b

2

)

= f (p) ≤ 1

b − a

∫ b

a

f (x) dx.

To see the second inequality, use the change of variables

x : [0, 1] → [a, b] such that x(t) = tb + (1 − t)a,

and bear in mind that x′(t) = b − a, so

1

b − a

∫ b

a

f (x) dx = 1

b − a

∫ 1

0
f (tb + (1 − t)a)(b − a) dt

=
∫ 1

0
f (tb + (1 − t)a) dt

≤
∫ 1

0
tf (b) + (1 − t)f (a) dt

= f (b)

∫ 1

0
tdt + f (a)

∫ 1

0
1 − t dt

= f (b)
t2

2

∣
∣
∣
1

0
+ f (a) − f (a)

t2

2

∣
∣
∣
1

0

= f (b)

2
+ f (a) − f (a)

2

= f (a) + f (b)

2
.

�

Lastly, we will need the following inequality when we prove the isoperimetric
inequality in the next section.

The Cauchy–Schwarz Inequality This is the inequality

|xw + yz| ≤
√

x2 + y2
√

w2 + z2.

Let’s prove it. Applying the AG inequality to (xz)2 and (yw)2 we obtain

xywz =
√

(xz)2(yw)2 ≤ x2z2 + y2w2

2

which is 2xywz ≤ x2z2 + y2w2.
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Summing x2w2 + y2z2, we have

2xywz + x2w2 + y2z2 ≤ x2z2 + y2w2 + x2w2 + y2z2

(xw + yz)2 ≤ x2
(
w2 + z2

)
+ y2

(
w2 + z2

)

=
(
x2 + y2

) (
w2 + z2

)
,

and taking square root:

|xw + yz| ≤
√

x2 + y2
√

w2 + z2.

Note that the equality holds if and only if |xz| = |yw|, in other words,

x

y
= ±w

z
.

�

The Isoperimetric Inequality

This is the inequality

A ≤ L2

4π
,

where, given any plane figure, A is its area, and L its perimeter. The meaning of this
important inequality is that of all plane figures with a given perimeter, the one with
the largest area is the circle: observe that for a circle, the equality holds.

But let’s start with the case of rectangles. The analogous property for rectangles
is that of all rectangles with a given perimeter, the one with the largest area is the
square. This property is equivalent to the AG inequality.

To see this equivalence, suppose first that the AG inequality holds, and consider
a rectangle, say of base b and height a. Its area is ab. And the AG inequality tells us
(when squared) that

area of the rectangle = ab ≤
(

a + b

2

)2

=
(

2(a + b)

4

)2

,

which is the area of the square of side 2(a+b)
4 (the one with the same perimeter as

the rectangle).
Let’s try the other way around. So now suppose that the isoperimetric property

for rectangles holds: of all rectangles with a given perimeter, the one with largest
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area is the square. Take positive numbers a and b (suppose a ≤ b). Consider now
the rectangle

and “reorder” the lengths of its sides to obtain a square with the same perimeter:

Compare their areas:

area of the rectangle ≤ area of the square

ab ≤
(

a + b − a

2

)2

=
(

2a + b − a

2

)2

=
(

a + b

2

)2

,

which, taking square roots, gives us the Arithmetic-Geometric inequality.
Note that the isoperimetric inequality for rectangles may be written as

A ≤ L2

16
.

Since 4π < 16, this is “finer” than the general isoperimetric inequality, but
of course, it is only applicable to rectangles. . . Finer still, but only applicable to
triangles, is the following.

Santaló’s Inequality

A ≤ L2

12
√

3
,
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which is also related to the AG inequality, in its three-number version: 3
√

abc ≤
a+b+c

3 . To prove Santaló’s inequality, write the area A of a triangle in terms of its

semiperimeter s. The semiperimeter is half the sum of its sides: s = L
2 = α+β+γ

2 .
Heron’s formula, from the elementary geometry that they should have taught us at
school, says that the area of the triangle is

A = √
s(s − α)(s − β)(s − γ ).

Thus,

A2 = s(s − α)(s − β)(s − γ )

≤ s

(
s − α + s − β + s − γ

3

)3

= s

(
3s − 2s

3

)3

= s
( s

3

)3

= s4

27
,

from which, taking square roots,

A ≤ s2

3
√

3
= L2

12
√

3
,

which is Santaló’s inequality. �
Note that equality holds when α = β = γ , that is, of all triangles with a given

perimeter, the one with the largest area is the equilateral triangle.
We now come to the general isoperimetric inequality. The proof we give is due

to Erhard Schmidt [11], as it appears in Manfredo Do Carmo [7].

Isoperimetric Inequality Given a plane region of area A and perimeter L,

A ≤ L2

4π
.

Let’s prove this. Consider a region of area A, enclosed by a simple closed curve C
of length L. We center the region on the y-axis, and draw a circumference centered
at (0, 0) of the same width (say 2r) as our region.
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Parametrize C by arc length: p : [0, L] −→ R2 so that p(s) = (x(s), y(s))

(see Exercise 15 of Chap. 5). Now parametrize the circumference using the same
first coordinate x(s), that is: q : [0, L] −→ R2 with q(s) = (x(s), z(s)), where
z(s) = ±√r2 − x(s)2. Note that we then have: x2 + z2 = r2, and x′2 + y′2 = 1.
The formulas for the area enclosed by a curve (Chap. 5) tell us that

πr2 =
∫ L

0
zx′ and A = −

∫ L

0
xy′.

We then have, using the AG inequality,

2
√

πr2
√

A ≤ πr2 + A =
∫ L

0
zx′ −

∫ L

0
xy′

=
∫ L

0
(zx′ − xy′)

≤
∫ L

0

√
z2 + x2

√

x′2 + y′2

=
∫ L

0
r · 1
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= rL,

where the last inequality is by Cauchy–Schwarz. Squaring, we have 4πr2A ≤ r2L2,
from which

A ≤ L2

4π
.

�
Note that for equality to hold, we must have x

y′ = ± z
x′ , that is,

xx′ = ±y′√r2 − x2,

a differential equation verified by (x(s), y(s)) = (r cos( s
r
), c + r sin( s

r
)): a

circumference of radius r centered at (0, c).

Exercises

1 Prove that f is convex if and only if −f is concave.

2 Prove that the sum of convex functions is convex.

3 Prove the inequality:

x ln x + y ln y ≥ (x + y) ln

(
x + y

2

)

, for all x, y > 0.

4 Prove that if f and g are convex, then the function h(x) = max{f (x), g(x)} is
convex. What about min{f (x), g(x)}?

5 We have mentioned that even for non-differentiable functions, convexity may be
defined by: ii) for all x < y and all 0 ≤ t ≤ 1,

f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y).

Prove that such a function will always be continuous (Hint: see ii) ⇒ iii) of the
equivalences).
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6 Let α1, . . . , αn > 0 be such that
∑n

i=1 αi = 1. Prove the generalized Arithmetic-
Geometric inequality:

a
α1
1 · · · aαn

n ≤ α1a1 + · · · + αnan, for ai > 0.

7 Prove that

(i) xa is log-convex if a ≤ 0.
(ii) xa is log-concave if a ≥ 0.

(iii) e−x2
is log-concave.

8 Prove that if f and g are log-concave (resp. log-convex) then their product, fg,
is log-concave (resp. log-convex).

9 A subset A of the plane is said to be convex if given any two points P,Q ∈ A,
the segment joining them, PQ is completely contained in A. Given a set A, whose
boundary is a closed curve (parametrized anti-clockwise, as in the figure by p(t) =
(x(t), y(t))),

(i) Show that A is convex if and only if x′y′′ − y′x′′ > 0.
(ii) Deduce that the convexity of A can be determined knowing only its boundary.

10 Show that the sequence xn =
(

1 + 1
n

)n

is increasing. Hint: use the AG

inequality for the n + 1 numbers

1,

(

1 + 1

n

)

, ...,

(

1 + 1

n

)
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We give here some applications of the integral to the calculation
of volumes and surface areas. Density functions, expectation
and barycenter are also briefly considered.

Volume

We have seen in Chap. 3 how Eudoxus and other Greek mathematicians calculated
areas and volumes by the process of exhaustion, approximating from within and
without the area which they wanted to calculate. In the XVIIth Century Bonavantura
Cavalieri (1598–1647) had an idea that was strongly criticized at the time: he
considered an area as a “sum of lines” and a volume as a “sum of areas.” Thus,
for example, the area under the parabola y = x2 between 0 and a (which for us is∫ a

0 x2 dx) was for Bonaventura

omn.x2 (omnes lineae = all the lines),

but while we calculate this using Barrow’s rule, Bonavantura compared with other
“omnes lineae” already known to him. For example, if we consider the pyramid of
square base a × a, and height a, the area of a horizontal cut at distance x from the

vertex (which is a square of sides x) is x2. Thus the pyramid (whose volume is a3

3 ),
has volume = “sum of areas”.
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and therefore the area under the parabola y = x2 between 0 and a is also a3

3 .
If in comparing two bodies A and B, Cavalieri found that the areas of the

corresponding sections were proportional:

Bx = kAx

he considered that the volumes, being a “sum of areas,” would be equally
proportional

vol(B) = k vol(A)

(with the same constant k), for

vol(B) = omn Bx = omn kAx = k vol(A).

This let Cavalieri deduce the value of an unknown volume from one that he knew.
Cavalieri’s ideas are akin to those in Archimedes’ Method, which we will talk about
later, but which was unknown at the time. Like several mathematicians of the XVIIth
Century (Wallis, Barrow, Pascal, Gregory) Cavalieri came very close to relating
integral and derivative. In fact, we can justify Cavalieri’s idea of volume as a sum
of areas by the same argument with which we proved the Fundamental Theorem of
Calculus: say we have a body as in the following picture



Volume 173

z

a x b x

y

and suppose that for each x between a and b the area of the vertical cut, which we
will call A(x), varies continuously. Then the body’s volume will be

Volume =
∫ b

a

A(x) dx.

To see why, define for each x

V (x) = volume of the body fromatox.

Then V (x + h) − V (x) is the volume of a “slice” of the body, of width h (between
x and x + h). Then

h min
x≤t≤x+h

A(t) ≤ V (x + h) − V (x) ≤ h max
x≤t≤x+h

A(t),

so

min
x≤t≤x+h

A(t) ≤ V (x + h) − V (x)

h
≤ max

x≤t≤x+h
A(t)

and having h tend to zero we have, by the continuity of A,

A(x) ≤ V ′(x) ≤ A(x).

In other words, V ′ = A: V is a primitive of A. Therefore

Volumen = V (b) = V (b) − V (a) =
∫ b

a

A(x) dx

. . . something like the sum of areas.
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Double Integrals

Volume Under the Graph of f (x, y) Consider a continuous function of two
variables, f : R2 → R. Its graph is a surface in 3-space R3.

graph =
{

(x, y, f (x, y)) : (x, y) ∈ R2
}

more or less as in the picture

z

c

d

y

a x b x

If we want to find the volume under the graph of f (and over the rectangle [a, b] ×
[c, d]), by Cavalieri, we must calculate

∫ b

a

A(x) dx.

But what is A(x)? It is the area of the “section” of the body by a vertical plane
perpendicular to the x-axis. And the area of this cut is the area under the function
with variable y (x is fixed): f (x, y) between c and d, that is:

A(x) =
∫ d

c

f (x, y) dy.

Thus, the volume under the graph of f over rectangle [a, b] × [c, d] is

∫ b

a

[∫ d

c

f (x, y) dy

]

dx,

which is a “double integral.” It is in fact, two integrals: we first integrate f (x, y)

considering that the variable is y (and x is fixed); and then integrate over the variable
x. Note that we could repeat the whole argument interchanging the roles of x and
y, with sections perpendicular to the y-axis instead of the x-axis. We would then



Volume 175

obtain that the volume under the graph of f over rectangle [a, b] × [c, d] is

∫ d

c

[∫ b

a

f (x, y) dx

]

dy.

Thus we have the equality

∫ b

a

∫ d

c

f (x, y) dy dx =
∫ d

c

∫ b

a

f (x, y) dx dy,

which is called Fubini’s Theorem.
Let’s do an example: say we want the volume under the graph of f (x, y) = exy2

over the rectangle [0, 1] × [0, 2]. Calculate

∫ 1

0

∫ 2

0
exy2 dy dx =

∫ 1

0
ex y3

3

∣
∣
∣
∣

2

0
dx

=
∫ 1

0
ex

(
8

3

)

dx

= 8

3
ex

∣
∣
∣
∣

1

0

= 8

3
(e − 1).

The Basel Problem

Let’s come back to the problem posed by Pietro Mengoli in 1644, and solved by
Euler in 1735: calculate the sum of the series

∑∞
k=1

1
k2 . The proof we give is by

Tom Apostol [2].

Basel Problem
∑∞

k=1
1
k2 = π2

6 .
To see this we will calculate—in two different ways—the double integral

∫ 1

0

∫ 1

0

1

1 − xy
dx dy

over the square [0, 1)×[0, 1). The first will give us the left-hand side of the equality,
and the second will give us the right-hand side.

The first: since this is an improper integral, we consider
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lim
b→1

∫ b

0

∫ b

0

1

1 − xy
dx dy = lim

b→1

∫ b

0

∫ b

0

∞∑

k=0

xkyk dx dy,

which, since the geometric series converges uniformly in [−b, b], is

= lim
b→1

∞∑

k=0

∫ b

0

∫ b

0
xkyk dx dy

= lim
b→1

∞∑

k=0

∫ b

0
xkdx

∫ b

0
ykdy

= lim
b→1

∞∑

k=0

xk+1

k + 1

∣
∣
∣
b

0

yk+1

k + 1

∣
∣
∣
b

0

= lim
b→1

∞∑

k=0

(
bk+1

k + 1

)2

= lim
b→1

∞∑

k=1

b2k

k2

=
∞∑

k=1

1

k2
,

for the function f (x) = ∑∞
k=1

x2k

k2 is continuous by the Weierstrass M-test: x2k

k2 ≤
1
k2 , which is summable.

Now we calculate the integral in the second way: we will use different coordi-
nates; u and v as in the figure
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Note also that—by symmetry of 1
1−xy

—the integral over the square is twice the
integral over the triangle of vertices (0, 0), (0, 1), (1, 1). We integrate first over the
left half of this triangle, and later over the right half. Note that

u = √
2x + 1√

2
(y − x) = 1√

2
(y + x)

v = 1√
2
(y − x).

Thus, u + v = √
2y while u − v = √

2x, from where x = 1√
2
(u − v) and

y = 1√
2
(u + v). The function to integrate is then

1

1 − xy
= 1

1 − 1
2 (u2 − v2)

= 2

2 − u2 + v2 .

A primitive of 1
a+v2 is 1√

a
arctan( v√

a
). We integrate over the left half of the triangle:

0 ≤ u ≤
√

2

2

0 ≤ v ≤ u

We have

∫
√

2
2

0

∫ u

0

2

2 − u2 + v2 dv du =
∫

√
2

2

0

2√
2 − u2

arctan

(
v√

2 − u2

) ∣
∣
∣
u

0
du

=
∫

√
2

2

0
2 arctan

(
u√

2 − u2

)
du√

2 − u2
= (∗).

Now, use the substitution u = √
2 sin t . Then

u√
2 − u2

=
√

2 sin t
√

2 − 2 sin2 t
=

√
2 sin t√
2 cos t

= sin t

cos t
= tan t

du√
2 − u2

=
√

2 cos tdt
√

2 − 2 sin2 t
=

√
2 cos tdt√
2 cos t

= dt

so,

(∗) =
∫ π

6

0
2 arctan(tan t) dt =

∫ π
6

0
2t dt = t2

∣
∣
∣

π
6

0
= π2

36
.
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Now, the integral over the right half of the triangle:

√
2

2
≤ u ≤ √

2

0 ≤ v ≤ −u + √
2.

We then have

∫ √
2

√
2

2

∫ −u+√
2

0

2

2 − u2 + v2 dv du =
∫ √

2

√
2

2

2√
2 − u2

arctan

(
v√

2 − u2

) ∣
∣
∣
−u+√

2

0
du

=
∫ √

2

√
2

2

2 arctan

(
−u + √

2√
2 − u2

)
du√

2 − u2
= (∗).

Now use the substitution u = √
2 cos 2t . Then

−u + √
2√

2 − u2
=

√
2(1 − cos 2t)√

2 sin 2t
= 2 sin2 t

2 sin t cos t
= tan t

du√
2 − u2

= −2
√

2 sin 2t dt√
2 sin 2t

= −2 dt

so,

(∗) =
∫ 0

π
6

2 arctan(tan t)(−2) dt = 2
∫ π

6

0
2t dt = 2t2

∣
∣
∣

π
6

0
= 2

π2

36
.

Finally, the integral is

∞∑

k=1

1

k2 = 2

[
π2

36
+ 2

π2

36

]

= 6π2

36
= π2

6
.

�

Solids of Revolution

We want to see now how to calculate the volume of a solid of revolution, that is, a
body obtained by revolving around an axis, a region enclosed between this axis and
a curve:
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Note that for each x, A(x) is the area of a circle of radius f (x), so the volume of
the solid of revolution will be

∫ b

a

πf (x)2 dx.

Example The volume of a sphere of radius r

We obtain the sphere by revolving the semicircle

around the x-axis. Here, the distance from (0, 0) to the point (x, f (x)) is r , so
x2 + f (x)2 = r2. Thus, f (x)2 = r2 − x2 and the volume of the sphere will be

∫ r

−r

πf (x)2 dx =
∫ r

−r

π(r2 − x2) dx

= π

∫ r

−r

r2 − x2 dx

= π

(

2r2r − x3

3

∣
∣
∣
∣

r

−r

)

= π

(

2r3 −
[
r3

3
− (−r)3

3

])

= π

(

2r3 − 2

3
r3
)

= π

(
6

3
r3 − 2

3
r3
)
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= 4

3
πr3.

Example The volume of a torus.

By revolving around the x-axis a circle that does not intersect it, we obtain a
torus. Its volume will depend on the distance from the axis to the center of the
circle, R, and on the radius of the circle, r . We will calculate the volume as the
difference between two solids of revolution:

The circumference centered at (0, R) and of radius r has equation x2 + (y − R)2 =
r2, so

y − R = ±
√

r2 − x2

y = R ±
√

r2 − x2.

Thus we take f (x) = R + √
r2 − x2 and g(x) = R − √

r2 − x2.

Vol = π

∫ r

−r

(R +
√

r2 − x2)2 − (R −
√

r2 − x2)2 dx

= π

∫ r

−r

R2 + 2R
√

r2 − x2 + r2 − x2 − R2 + 2R
√

r2 − x2 − r2 + x2 dx

= 4πR

∫ r

−r

√
r2 − x2 dx

= 4πR · 1

2
(area of the circle centered at (0, 0) with radius r)

= 4πR
1

2
πr2
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= 2πRπr2.

Note that this is the area of the circle of radius r multiplied by the length traveled
by its center (0, R) while revolving around the x-axis. We will soon see that this is
a special case of a beautiful result known as “Pappus’ Theorem.”

Example The volume of Gabriel’s trumpet.

Evangelista Torricelli (1608–1647) gave, using Cavalieri’s principle, the follow-
ing example, which shows that by revolving a region of infinite area, one may obtain
a body of finite volume. Recall that the improper integral

∫∞
1

1
x

dx is infinite; but
now revolve the graph of f (x) = 1

x
around the x-axis:

The volume of this solid of revolution is

π

∫ ∞
1

1

x2
dx = π lim

b−→∞

∫ b

1

1

x2
dx = π lim

b−→∞

(

− 1

x

) ∣
∣
∣
b

1
= π lim

b−→∞

(

−1

b
+ 1

)

= π.

As you will see in the Exercises, Gabriel’s trumpet also has infinite surface area.

Integration of e− x2
2

By using solids of revolution, we will calculate the value of an extremely important
integral: the area under the curve that we have called the “Gauss curve” or “bell

curve” in Chap. 6. As there is no explicit primitive of e− x2
2 , in order to calculate this

integral, we will evaluate in two different ways the solid of revolution obtained by
making half the Gauss curve rotate around the y-axis:
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The solid obtained is the region over the (x, z)-plane and under the graph of the

function f : R2 → R given by f (x, z) = e− x2+z2
2 . This volume is

∫ ∞

−∞

∫ ∞

−∞
e− x2+z2

2 dz dx =
∫ ∞

−∞

∫ ∞

−∞
e− x2

2 e− z2
2 dz dx

=
∫ ∞

−∞
e− x2

2 dx

∫ ∞

−∞
e− z2

2 dz

= I 2,

where I is the integral we want to evaluate:

I =
∫ ∞

−∞
e− x2

2 dx.

We now consider this region as a solid of revolution. If we are to rotate the curve
around the y-axis we must present it as the graph of a function of the variable y. For
this, we solve for x as a function of y:

y = e− x2
2

ln y = −x2

2

−2 ln y = x2

√−2 ln y = x

(note that 0 < y ≤ 1, where ln y is negative). Then the volume will be

π

∫ 1

0
−2 ln y dy = −2π lim

a→0

∫ 1

a

ln y dy

= −2π lim
a→0

(y ln y − y)

∣
∣
∣
∣

1

a

= −2π lim
a→0

[−1 − a ln a + a]

= 2π

for, by L’Hôpital, a ln a → 0. Thus, I 2 = 2π , and we have

∫ ∞

−∞
e− x2

2 dx = √
2π.
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Density Functions, Barycenter, and Expectation

In the following sections, two analogous instances of density functions will appear,
and I believe they deserve a common presentation.

First we will talk about density of mass and barycenter. Suppose we have a rod
extending from point a to point b, and set

m(x) = mass of the rod from a to x.

Thus, for example, m(a) = 0, and m(b) is the total mass of the rod. Then the weight
of the rod segment from c to d

may be expressed as m(d)−m(c). And if the function m(x) were differentiable (we
will suppose that it is), this is

mass of the rod from c to d = m(d) − m(c) =
∫ d

c

m′(x) dx.

We will write ρ instead of m′ and will call this the density function of the rod: a
large value of ρ(x) indicates large specific weight close to the point x, while a small
ρ(x) indicates low specific weight.

The second instance of density function will appear a few pages later, when we
talk about probability. Suppose we have a random variable X (think of this as the
possible numerical result of an experiment) that may take values between a and b

(we may also have −∞ < X < ∞ in some cases). And suppose that for each x

between a and b,

F(x) = probability that a ≤ X ≤ x.

For example, F(a) = 0 (we will suppose that there are no isolated values which X

attains with positive probability), and F(b) = 1, because with probability 1, X will
take values between a and b. Just as with the mass m, the probability that X takes a
value between c and d may be expressed as F(d) − F(c). And if we suppose that
the function F is differentiable, we will have

probability that c ≤ X ≤ d = F(d) − F(c) =
∫ d

c

F ′(x) dx,

F ′ = f is what is known as the probability density function of the variable X.
In both of these instances—density of mass and density of probability—we will

define two absolutely analogous notions:

the barycenter c = 1

m(b)

∫ b

a

x ρ(x) dx,
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and the expectation μ =
∫ b

a

x f (x) dx.

Center of Mass or Barycenter

Suppose we have a rod that goes from point x1 to point x2 of the real line, and that it
has a weight m1 at one end and a weight m2 at the other (and is otherwise massless).
At what point will the rod have its center of gravity? In other words, at what point c

can it be supported so that it is balanced?

The law of the lever (Archimedes again!) tells us that the moments (force times
distance) must be equal. In other words, m1(c − x1) = m2(x2 − c). From here we
obtain the center of gravity:

m1(c − x1) + m2(c − x2) = 0

m1c − m1x1 + m2c − m2x2 = 0

(m1 + m2)c = m1x1 + m2x2

c = m1x1 + m2x2

m1 + m2
.

So, to have a mass m1 at x1 and a mass m2 at x2 is like having the total mass m1+m2
at c.

Suppose now that instead of having mass concentrated at points x1 and x2, we
have mass from a to b, of varying density. How do we find the center of mass of
the rod? Let’s call c(x) the center of mass of the rod from a to x, in other words the
point that would be the center of mass if the rod were cut at point x. Also, call m(x)

the total mass of the rod from a to x. We need first c(x + h):

Say d is the center of mass of the rod segment between x and x + h. Then, just as
with the lever, c(x + h) will be

c(x + h) = m(x)c(x) + [m(x + h) − m(x)]d
m(x + h)

although we do not know d but we do know that x < d < x + h. Hence,
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m(x)c(x) + [m(x + h) − m(x)]x
m(x + h)

≤ c(x + h)

≤ m(x)c(x) + [m(x + h) − m(x)](x + h)

m(x + h)
.

Then if we multiply by m(x + h) and subtract m(x)c(x),

[m(x +h)−m(x)]x ≤ m(x +h)c(x +h)−m(x)c(x) ≤ [m(x +h)−m(x)](x +h).

Dividing by h,

m(x + h) − m(x)

h
x ≤ m(x + h)c(x + h) − m(x)c(x)

h
≤ m(x + h) − m(x)

h
(x+h)

and if we now have h tend to 0,

m′(x)x ≤ (mc)′(x) ≤ m′(x)x.

Therefore mc is a primitive of xm′(x). As we have said before m′(x) is the specific
weight of the rod at the point x. We call this “density” at x and we denote it by ρ(x).
We then have that mc is a primitive of xρ(x), so

m(b)c(b) = m(b)c(b) − m(a)
︸ ︷︷ ︸

=0

c(a) =
∫ b

a

xρ(x) dx,

and we find the center of mass of the rod

c(b) = 1

m(b)

∫ b

a

xρ(x) dx

which we may also write

c(b) =

∫ b

a

xρ(x) dx

∫ b

a

ρ(x) dx

,

where ρ is the density of the rod. Analogously, for a plane region A which has
density ρ(x, y), we define its center of mass as

c =

∫∫

A

(x, y)ρ(x, y) dx dy

∫∫

A

ρ(x, y) dx dy

.
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Example Center of mass of a cone of height h and radius r .

The center of mass will be on the central axis which we will think of as a rod of
length h and variable density ρ(x) proportional to the section area.

thus, as r
h

= rx
x

, rx = rx
h

and we set ρ(x) = kπ r2x2

h2 . Then

c =

∫ h

0
kπ

r2

h2
x3 dx

∫ h

0
kπ

r2

h2 x2 dx

=
x4

4

∣
∣
∣
∣

h

0

x3

3

∣
∣
∣
∣

h

0

= 3

4
h.

Therefore the barycenter will be at 1
4 of the height from the base. An interesting fact

may be read from our result: the barycenter does not depend on r , in other words it
does not depend on the shape of the cone (slender or wider).

Example Stability of a beer can.

Like the Count of Buffon, you also like to have a drink with friends. Let’s say
that the drink comes in a cylindrical can. Before you start, the can will be full and its
barycenter will be at the center. When you have finished it and the can is empty, its
barycenter will also be at the center. But it was not always so. When it was half-full,
the center of gravity was lower. So the question is: When was the can most stable?
In other words, When was its barycenter the lowest possible?

Let’s say the height of the can is 1. We will calculate its center of gravity, c(h),
when the liquid is at height h (0 ≤ h ≤ 1), and then we will look for the value of
h for c(h) to be minimum. Consider then the can full up to level h as a rod with
density

ρ =
{

k, if x ≤ h

1, if x > h,

where k > 1. Note that when the can is full (h = 1) its weight is
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∫ 1

0
k dx = k,

but when it’s empty (h = 0) its weight is

∫ 1

0
1 dx = 1.

So k = weight of the full can
weight of the empty can . Fine. When it’s full up to level h the barycenter is at

c(h) =

∫ 1

0
xρ(x) dx

∫ 1

0
ρ(x) dx

=

∫ h

0
kx dx +

∫ 1

h

x dx

∫ h

0
k dx +

∫ 1

h

1 dx

=
k x2

2

∣
∣
∣
∣

h

0
+ x2

2

∣
∣
∣
∣

1

h

kh + (1 − h)

=
1
2kh2 + 1

2 − h2

2

(k − 1)h + 1

= 1

2

(k − 1)h2 + 1

(k − 1)h + 1
.

Now we search for the minimum of c(h). Differentiate and set equal to zero

c′(h) = 1

2

[
2(k − 1)h((k − 1)h + 1) − ((k − 1)h2 + 1)(k − 1)

[(k − 1)h + 1]2

]

= 0

this happens when

0 = 2(k − 1)2h2 + 2(k − 1)h − (k − 1)2h2 − (k − 1)

= (k − 1)[2(k − 1)h2 + 2h − (k − 1)h2 − 1]
= (k − 1)[(k − 1)h2 + 2h − 1]

which is zero for h = −2+√
4+4(k−1)

2(k−1)
= −2+2

√
k

2(k−1)
=

√
k−1

k−1 . For example, if the full

can is nine times as heavy as the empty can, this is h = 1
4 .
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Pappus’ Theorem

Pappus of Alexandria (290–350) was the last of the classical Greek geometers. Let’s
see one of Pappus’ theorems.

Pappus’ Theorem If A is a plane region over the x-axis and S is the solid of
revolution obtained by rotating A around the x-axis, then

Vol(S) = area(A) · 2πȳ,

where ȳ is the distance from the center of mass of A to the x-axis.

We will do the proof for a region limited above by the graph of a continuous
function f , and limited below by the graph of another, g:

For
∫∫

A
ρ(x, y) dy dx = área(A), we set the density as a constant: ρ = 1. We

calculate ȳ.

ȳ =

∫ b

a

∫ f (x)

g(x)

y dy dx

∫∫

A

dy dx

=

∫ b

a

y2

2

∣
∣
∣
∣

f (x)

g(x)

dx

area(A)

=
1
2

∫ b

a

f (x)2 − g(x)2 dx

area (A)

=
π

∫ b

a

f (x)2 dx − π

∫ b

a

g(x)2 dx

2πarea (A)

= vol(S)

2πarea (A)
.

Then

vol(S) = area(A) · 2πȳ.

�
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Note that then the volume of S is the area of A times the length of the circle
described by rotating the barycenter of A around the x-axis.

Example The volume of a torus (again!).
We obtain the torus by rotating the circle of center (0, R) and radius r , which

clearly has its barycenter at (0, R) and whose area is πr2. Therefore by Pappus’
theorem, the volume of the torus will be

vol(torus) = πr2 · 2πR.

Example Center of mass of a semicircle of radius r .

Clearly, by symmetry, the barycenter will be on the y-axis. Say it is the point
c = (0, ȳ). We will calculate ȳ using Pappus’ theorem. On rotating the semicircle,
we obtain a sphere of radius r . Thus its volume is

4

3
πr3 = πr2

2
2πȳ,

from which we obtain ȳ = 4
3π

r , and therefore c = (0, 4
3π

r).

Example Barycenter of a triangle T with vertices at (0, 0), (−1, 0) and (−1, 1).

Clearly, the barycenter will be on the median y = x + 1. But Pappus will give us
the distance to the x-axis: the area of T is 1

2 , and the volume of the cone generated
by rotating the triangle around the x-axis is 1

3π . Then

2π
1

2
ȳ = 1

3
π

ȳ = 1

3

and for this to be on the median: 1
3 = x + 1, from where x = − 2

3 . Therefore the
barycenter we will be at the point (− 2

3 , 1
3 ).
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TheMethod

In 1229, in Jerusalem, a monk scraped and cleaned some old parchments, in
order to copy on them a liturgical text. The monk didn’t know it, but what he
was erasing to make room for the new text was the only remaining copy in the
world of Archimedes’ The Method. The original text of Archimedes (from the
IIIrd Century BC) had been transcribed to this parchment in the Xth Century in
Constantinople. The old text could barely be seen under the new, but in 1906 a
Danish academic studying it discovered Archimedes’ barely visible lost work. Since
then the Archimedes palimpsest, as it is now known, has been submitted to all kinds
of image analysis and has been recovered completely.

The Method is a letter from Archimedes to Eratosthenes of Cyrene, a mathemati-
cian in the Library of Alexandria:

Seeing that you are a sincere student . . . I have thought it convenient to write to you
in detail, explaining a method which will allow you to investigate some mathematical
problems through the use of mechanics.

Archimedes then goes on to explain the method which allowed him to guess the
value of areas and volumes which he later proved rigorously through exhaustion.
Archimedes had discovered the Law of the Lever, and used it to calculate volumes
and areas as follows: having a body B of known volume, and wanting to discover
the volume of A he would “balance them”:

Being of the same width, for each x take sections Bx and Ax ; if for each x, Bx at a
distance x from the fulcrum F is balanced by Ax at a distance k from the fulcrum,
by Archimedes’ Law of the Lever

xBx = kAx for each x
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then the body B times the horizontal distance x̄ from its barycenter to F balances
the body A at the distance k from F :

x̄B = kA

from where vol(A) = x̄
k

vol(B).
But let’s do an example. We wish to calculate the area A under f (x) = x2

between 0 and 1. We balance it with the Triangle T of vertices (0, 0), (−1, 0) and
(−1, 1) from the last example:

For any given x, we have the relationship between the sections Tx = x and Ax = x2:

xTx = 1 · Ax.

Therefore, it must be that x̄ · area (T) = area (A):

2

3
· 1

2
= area(A).

In our notation:
∫ 1

0 x2 dx = 1
3 .

But this is almost the same that Cavalieri did! Yes, but Cavalieri did it in
1635. . . The Method, written 2000 years before, had been lost for four centuries
and would continue lost another three.

Archimedes of Syracuse (287 a.C.–212 a.C.) was one of the greatest mathemati-
cians. Born in Syracuse (Sicily), he visited Alexandria in his youth, and there met
mathematicians with which he maintained contact all his life. He calculated volumes
and areas of many figures. He also approximated the number π to an exactness
not improved until the XIXth Century. He discovered the Law of the Lever and
“Archimedes’ principle” on the flotation of bodies. His mechanical devices served
to defend his city from the Romans during the Punic Wars.
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Surface Area

We will calculate areas of a certain type of surface: the surfaces that correspond to
solids of revolution; that is, surfaces which are obtained by revolving a curve around
an axis. We need to recall, from elementary geometry, that the surface of a “conical
frustum” (see picture)

may be written in terms of the radii r and R, and the “slant height” A, as πA(r +R).
Now consider the surface obtained by revolving the graph of f around the x-axis:

Note first that the slant height A in the picture measures, by Pythagoras’ Theorem,

A =
√

h2 + (f (x + h) − f (x))2.

Call S(x) the area of the surface between a and x, and calculate

S(x + h) − S(x) =
= area between x and x + h

≈ area of the frustum of radii f (x) and f (x + h) and slant heightA

= πA (f (x) + f (x + h))

= π

√

h2 + (f (x + h) − f (x))2 (f (x) + f (x + h)) .
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Then

S(x + h) − S(x)

h
= π

√

1 +
[
f (x + h) − f (x)

h

]2

(f (x) + f (x + h))

which, as h → 0,

S′(x) = π

√

1 + f ′(x)2 2f (x).

Thus, the surface area between a and b is

S(b) = S(b) − S(a) = 2π

∫ b

a

f (x)

√

1 + f ′(x)2 dx.

Example Surface of a sphere of radius r .

Revolve, around the x-axis, the semicircumference

which is the graph of the function f (x) = √
r2 − x2. Calculate its derivative:

f ′(x) = −x√
r2 − x2

,

thus, the surface area of the sphere is

= 2π

∫ r

−r

√
r2 − x2

√

1 + x2

r2 − x2
dx

= 2π

∫ r

−r

√
r2 − x2

√
r2

r2 − x2 dx

= 2π

∫ r

−r

r dx = 2πr(r + r) = 4πr2.

Note that if we only integrate between a and b we have
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2πr(b − a).

Thus, the surface of a “spherical strip” coincides with the surface of the correspond-
ing “cylindrical strip” of radius r:

Normal Distribution. Gauss, Laplace, and Stirling

If you practice kicking a ball trying to hit a post, and write down for each shot by
how much you missed (−2, if two meters to the left, 1.5 if a meter and a half to the
right. . . ) you will have a list of numbers from which you will be able to read these
results

(a) Its mean. If close to zero, you will have missed to the left and to the right more
or less equally. If the mean is positive, you’ll know what to do to correct your
shots.

(b) You will have an idea of the dispersion of your shots. You’ll find many
−2, 3,−1, 0, 5

4 ,− 1
2 , . . ., but probably few 28,−37, . . ..

To make precise these ideas of mean and dispersion, it is customary to define
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the mean μ = 1

n

n∑

i=1

xi

and the standard deviation σ =
√
√
√
√1

n

n∑

i=1

(xi − μ)2.

Clearly μ is the mean, and σ indicates how much dispersion there is with respect to
this mean: large σ indicates much dispersion; small σ indicates that your shots are
all similar. What you probably want in your shots is μ = 0 and small σ .

If you repeated this experiment a very large number of times, you would have a
very good idea of the probability of shooting to the left of a point x meters from the
post—for any x. Call this probability F(x). And graph its derivative F ′ = f . This
is called the density function of your probability, which might look something like
this

If you now ask yourself: what is the probability of my shot falling between three
meters left of the post and two meters to its right (between x = −3 and x = 2)?, it
would be reasonable to compare the area below the curve between −3 and 2 with
the total area under the curve (which is one)

∫ 2
−3 f

∫∞
−∞ f

=
∫ 2

−3
f.

In general, given a random variable X, and its probability density function f , the
probability that c ≤ X ≤ d will be

∫ d

c

f (x) dx.

The expected value (or mean, or barycenter) of X is

μ =
∫ ∞

−∞
x f (x) dx,

while its standard deviation is

σ =
(∫ ∞

−∞
(x − μ)2 f (x) dx

) 1
2

.
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When we talked about random walk and the Galton board, we discovered Gauss’

bell curve: the graph of the function e− x2
2 . Later we calculated the area under this

curve, which was

∫ ∞

−∞
e− x2

2 dx = √
2π.

Thus, the function

1√
2π

e− x2
2

is positive and its integral from −∞ to ∞ is one. This is the density function of the
probability distribution called normal, 0, 1, (denoted N(0, 1)). This distribution has
mean μ = 0 and standard deviation σ = √

1. More generally, the normal, μ, σ 2

distribution, (denoted N(μ, σ 2)), has density function

1√
2πσ 2

e
− 1

2
(x−μ)2

σ2 . (*)

Of course your shots to the post need not have normal distribution. But, like the
balls in Galton’s board, in the mean, they will. The normal distribution is important
because there is a theorem—the Central Limit Theorem—that assures that if a
process is repeated many times, a bell curve will appear. . . Note that I am not giving
the statement of the theorem, and we will delve into these matters no further.

To see that the integral over the whole line of the function in (∗) is one, calculate

∫ ∞

−∞
e
− 1

2
(x−μ)2

σ2 dx.

We use the change of variables t = x−μ
σ

. Thus,

∫ ∞

−∞
e
− 1

2
(x−μ)2

σ2 dx =
∫ ∞

−∞
e− 1

2 t2
σ dt = σ

√
2π =

√
2πσ 2.

In the exercises, you will see that the density function

f (x) = 1√
2πσ 2

e
− 1

2
(x−μ)2

σ2 ,

of the N(μ, σ 2) distribution has expected value μ and standard deviation σ . On the
other hand, the first derivative of f vanishes on μ, where f reaches a maximum,
while its second derivative vanishes at μ − σ and μ + σ . Most of the area under f

is close to μ, in terms of σ ; for example,
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∫ μ+3σ

μ−3σ

f ≈ 0.997 . . .

This will help to prove the following.

Laplace’s Method If f has a unique maximum at the point x0 of (a, b), and
f ′′(x0) < 0, then for large values of n,

∫ b

a

enf (x) dx ≈ enf (x0)

√
2π

n|f ′′(x0)| .

We give an idea of the proof: approximating f by its Taylor polynomial of order
two at x0, for x near x0 we have

f (x) ≈ f (x0) + f ′(x0)(x − x0) + f ′′(x0)

2
(x − x0)

2

= f (x0) + f ′′(x0)

2
(x − x0)

2

= f (x0) − |f ′′(x0)|(x − x0)
2

2

thus, nf (x) ≈ nf (x0) − n|f ′′(x0)|(x−x0)
2

2 , and

∫ b

a

enf (x) dx ≈
∫ b

a

enf (x0)e− n|f ′′(x0)|(x−x0)2

2 dx

= enf (x0)

∫ b

a

e

− 1
2

(x−x0)2
[

1
n|f ′′(x0)|

]

dx

so we are integrating between a and b a normal N(x0,
1

n|f ′′(x0)| ). But for large n the
standard deviation σ will be very small, so this is almost like integrating from −∞
to ∞. Then

∫ b

a

enf (x) dx ≈ enf (x0)

∫ ∞

−∞
e

− 1
2

(x−x0)2
[

1
n|f ′′(x0)|

]

dx = enf (x0)

√
2π

n|f ′′(x0)| .

�
As an application, let’s see Stirling’s formula. Recall the integral formula we saw

for n! when studying integration by parts:

n! =
∫ ∞

0
e−t tndt.
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And let’s use Laplace’s method to approximate n!:

n! =
∫ ∞

0
tne−t dt setting t = nx, we have

= nnn

∫ ∞

0
xne−nx dx

= nnn

∫ ∞

0
en ln xe−nx dx

= nnn

∫ ∞

0
en ln x−nx dx

= nnn

∫ ∞

0
en(ln x−x) dx.

Consider then the function f (x) = ln x − x. Its first derivative is f ′(x) = 1
x

−
1, which vanishes at x0 = 1; its second derivative is f ′′(x) = − 1

x2 < 0. Then,
applying Laplace’s method,

nnn

∫ ∞

0
en(ln x−x) dx ≈ nnne−n

√
2π

n| − 1| = nn

en

√
2πn2

n
= nn

en

√
2πn.

And we obtain Stirling’s Formula:

n! ≈ nn

en

√
2πn.

Exercises

1 Calculate the volume of a cone of radius r and height h.

2 Calculate the volumes of the solids of revolution obtained by revolving around
the x-axis the regions under the following curves.

(a) y = √
x (d) y = sin x

(b) y = x1/4 (e) y = cos x

(c) y = x2 (f ) y = sin x + cos x.

3 Draw the region R = {(x, y) : 0 ≤ x ≤ 2, 1
4x2 ≤ y ≤ 1}. Calculate the

volume of the solid of revolution obtained by revolving R around
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(a) the y-axis,
(b) the line x = 2.

4 Calculate the surface area of Gabriel’s trumpet.

5 We have a rod on the x-axis, extending from x = 0 to x = L. Calculate its center
of mass if its density is given by:

(a) ρ(x) = 1,
(b) ρ(x) = 1 between x = 0 and x = L/2, and ρ(x) = 2 between x = L/2 and

x = L,
(c) ρ(x) = x,
(d) ρ(x) = x between x = 0 and x = L/2, and ρ(x) = L/2 between x = L/2 and

x = L.

6 For each region R and density ρ, calculate its barycenter

(a) R = [0, b] × [0, h]; with ρ(x, y) = 1,

(b) R limited by y = x2, x + y = 2; with ρ(x, y) = 1,

(c) R limited by y2 = x + 3, y2 = 5 − x; with ρ(x, y) = 1,

(d) R limited by y = sin2 x, y = 0, 0 ≤ x ≤ π; with ρ(x, y) = 1,

(e) R limited by y = ex, y = 0, 0 ≤ x ≤ a; with ρ(x, y) = xy.

7 Calculate the barycenter of a triangle ABC.

8 Given the density function of the N(μ, σ 2) distribution:

1√
2πσ 2

e
(x−μ)2

2σ2 ,

calculate:

(i) its maximum,
(ii) its intervals of growth and decay,

(iii) its intervals of convexity and concavity,
(iv) its expected value,
(v) its standard deviation.
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We end with a presentation of the Gamma function and a few of
its properties, including Weierstrass’ formula.

The Gamma Function

If one wishes to extend the definition of “n!” to other values of the variable (beyond
the natural numbers), it makes sense—given the integral expression for n! which we
saw in Chap. 5—to attempt

x! =
∫ ∞

0
e−t tx dt.

This is of course, an improper integral. Note that for large values of t , e−t tx is
very small, and the function is integrable; while near zero, it is like tx , and will be
integrable for x > −1. So the definition makes sense for x ∈ (−1,∞). In general,
the domain (0,∞) is preferred, and so x is replaced by x − 1. Hence the definition
of the Gamma function:

�(x) =
∫ ∞

0
e−t tx−1 dt.

The � function is very important in several branches of mathematics, and appears
also in many applications. Let’s see some of its properties. We know that �(1) = 1
and �(n + 1) = n!. Integrating by parts, it is easy to see that

�(x + 1) = x�(x), for x > 0.
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�(0) is not defined, but we may use the equality �(x) = �(x+1)
x

to define � in the
interval (−1, 0), and then in (−2,−1), (−3,−2). . . Thus, we consider � defined
on all real numbers except {0,−1,−2,−3, . . .}. One value of � which is easy to
calculate is �( 1

2 ) = √
π (see the Exercises).

Also, � is log-convex (and therefore, convex). To see this, if 0 ≤ α ≤ 1,

�(αx + (1 − α)y) =
∫ ∞

0
e−t tαx+(1−α)y−α−(1−α) dt

=
∫ ∞

0
e−tα−t (1−α)tαx−αt(1−α)y−(1−α) dt

=
∫ ∞

0

(
e−t tx−1

)α (
e−t ty−1

)(1−α)

dt

≤
(∫ ∞

0
e−t tx−1 dt

)α (∫ ∞

0
e−t ty−1 dt

)1−α

= �(x)α�(y)1−α,

(for the inequality, we have used Hölder, from Chap. 7).
The log-convexity together with the equality �(x + 1) = x�(x) and �(1) = 1

characterize the � function.

Weierstrass’ Formula

We will now see a formula that presents the � function as a product. It will be useful
to us in a couple of applications of the � function.

Weierstrass’ Formula

�(x) = 1

x

∞∏

k=1

(1 + 1
k
)x

(1 + x
k
)

.

We check it for 0 < x ≤ 1 (it then generalizes to other values through �(x + 1) =
x�(x)). Write first

�(n + x + 1) = �((1 − x)(n + 1) + x(n + 2))

≤ �(n + 1)1−x�(n + 2)x

= �(n + 1)1−x(n + 1)x�(n + 1)x

= (n + 1)x�(n + 1)

= (n + 1)xn! (9.1)
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On the other hand,

n! = �(n + 1) = �(x(n + x) + (1 − x)(n + x + 1))

≤ �(n + x)x�(n + x + 1)1−x

= (n + x)−x�(n + x + 1)x�(n + x + 1)1−x

= (n + x)−x�(n + x + 1). (9.2)

Joining (9.2) and (9.1),

(n + x)x ≤ �(n + x + 1)

n! ≤ (n + 1)x.

Now, dividing by nx ,

(
1 + x

n

)x ≤ �(n + x + 1)

n!nx
≤
(

1 + 1

n

)x

. (9.3)

But since

�(n + x + 1) =(n + x)�(n + x) = (n + x)(n + x − 1)�(n + x − 1)

= · · ·
=(n + x)(n + x − 1) · · · (x + 1)x�(x),

we may put, in (9.3)

(
1 + x

n

)x ≤ (n + x)(n + x − 1) · · · (x + 1)x

n!nx
�(x) ≤

(

1 + 1

n

)x

,

and taking limn→∞,

1 ≤ lim
n→∞

(n + x)(n + x − 1) · · · (x + 1)x

n!nx
�(x) ≤ 1.

Then,

�(x) = nx n!
x(x + 1) · · · (x + n)

.

Consider the first of the two factors, nx . Since nx

(n+1)x
tends to one, we will write

(n + 1)x instead of nx ; and with n + 1 written thus

n + 1 = n + 1

n

n

n − 1

n − 1

n − 2
· · · 2

1
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=
(

1 + 1

n

)(

1 + 1

n − 1

)(

1 + 1

n − 2

)

· · ·
(

1 + 1

1

)

=
n∏

k=1

(

1 + 1

k

)

,

so

(n + 1)x =
n∏

k=1

(

1 + 1

k

)x

.

Consider now the second factor.

n!
x(x + 1)(x + 2) · · · (x + n)

= 1

x

1

x + 1

2

x + 2
· · · n

x + n

= 1

x

n∏

k=1

1
(
1 + x

k

) , for
k

x + k
=
(

1 + x

k

)−1
.

Then,

�(x) = lim
n→∞

n∏

k=1

(

1 + 1

k

)x 1

x

n∏

k=1

1
(
1 + x

k

)

= 1

x
lim

n→∞

n∏

k=1

(
1 + 1

k

)x

(
1 + x

k

)

= 1

x

∞∏

k=1

(
1 + 1

k

)x

(
1 + x

k

) .

�
Let’s see a consequence of Weierstrass’ formula:

Relation Between �(x) and sin x We calculate, using Weierstrass’ formula,
�(x)�(1 − x):

�(x)�(1 − x) = �(x)�(−x)(−x)

= 1

x

−x

−x

∞∏

k=1

(
1 + 1

k

)x (
1 + 1

k

)−x

(
1 + x

k

) (
1 + −x

k

)

= 1

x

∞∏

k=1

1
(

1 − x2

k2

) .
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Then,

�(x)�(1 − x)x

∞∏

k=1

(

1 − x2

k2

)

= 1.

Note that x
∏∞

k=1

(
1 − x2

k2

)
vanishes on x = 0, 1, 2, . . .. Euler saw that this was

none other than sin(πx)
π

, so that

�(x)�(1 − x) sin(πx) = π.

If you equate the product expression of sin(πx) to its Taylor series, and look at
the coefficient of x2, you will arrive at the original solution—Euler’s—of the Basel
problem.

Growth of the Harmonic Series, Again

One last consequence of Weierstrass’ formula: we know that

n∑

k=1

1

k
→ ∞

as n grows; but we wish to see how fast. To this end, take logarithm in Weierstrass’
formula:

ln �(x) = − ln x +
∞∑

k=1

[

x ln

(

1 + 1

k

)

− ln
(

1 + x

k

)]

.

Differentiating,

�′(x)

�(x)
= − 1

x
+

∞∑

k=1

[

ln(1 + 1

k
) −

1
k

(1 + x
k
)

]

= − 1

x
+

∞∑

k=1

[

ln(
k + 1

k
) − 1

k + x

]

= − 1

x
+

∞∑

k=1

[

ln(k + 1) − ln k − 1

k
+ 1

k
− 1

k + x

]

.

Now, for x = 1:
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�′(1) = −1 + lim
n→∞

[
n∑

k=1

(ln(k + 1) − ln k) −
n∑

k=1

1

k
+

n∑

k=1

(
1

k
− 1

k + 1

)]

= −1 + lim
n→∞

[

ln(n + 1) −
n∑

k=1

1

k
+ 1 − 1

n + 1

]

= −1 + lim
n→∞

[

ln(n + 1) −
n∑

k=1

1

k

]

+ 1.

Finally,

−�′(1) = lim
n→∞

[
n∑

k=1

1

k
− ln(n + 1)

]

= γ, (Euler ′s constant),

which tells us that
∑n

k=1
1
k

grows as ln n.

Exercises

1 Calculate

(i) �(7).

(ii)
�( 16

3 )

�( 10
3 )

.

2 Show that �( 1
2 ) = √

π . Hint: use the change of variables u = √
2t .

3 Prove that �(x + 1) = x�(x) for all x > 0.
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Barrow, Isaac, 105, 108, 172
Barrow’s rule, 107, 109, 171
Barycenter, viii, 183–191, 195, 199
Basel problem, vii, viii, 30, 31, 175–178, 205
Bell curve, viii, 146, 181, 196
Bernoulli, Jacob, 46
Bernoulli, Johann, 43, 92
Bernoulli’s inequality, 43–49, 51
Best-fitting parabola, 137–147
Bijective function, 16
Bolzano, Bernardus, 21, 60–62
Bolzano’s theorem, 16, 60–61, 69
Bound, 14–16, 19, 20, 23–25, 30, 31, 34, 36,

37, 45, 51, 60, 61, 69, 70, 115, 117,
148

Brachistochrone, vii, 84, 91–94
Bryson, 7, 62
Buffon, Georges Louis Leclerc count of, 111,

186
Buffon’s needle, vii, 111–113

C
Cantor’s nested intervals theorem, 24–25, 27
Cardinality, 16–19
Catenary, 128–131, viii
Cauchy, Augustin-Louis, 21
Cauchy–Schwarz inequality, 163–164, 168
Cauchy sequence, 37
Cauchy’s mean value theorem, 85–86, 88
Cavalieri, Bonaventura, xiii, 99, 109, 171, 172,

174, 181, 191
Center of mass, 109, 184–186, 188, 199

of a cone, 186
of a semicircle, 189

Chain rule, 79–80, 82, 126, 127, 153
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Chain rule mnemonic device, 80
Change of variables theorem, 127, 131, 132
Chord, 65
Circle, 4, 5, 41, 42, 63, 64, 66, 140–142, 153,

164, 180, 181, 189
Circular functions, 39–43
Circumscribed polygon, 64
Closed interval, 3, 25, 27, 61, 84, 100, 108,

114, 115
Commensurable, 6
Comparison criterion, 31–33, 116, 121
Complete, 14, 42, 153, 158
Completeness, 14–16, 59, 60
Completeness axiom, 16, 24, 60, 61
Composition of functions, 79, 126
Compound interest, 44
Concave function, 160
Conical frustum, 192
Constant, 15, 40, 79, 85, 87, 92–95, 107, 118,

134, 172, 188
Continuity, 59–62, 68, 84, 120, 173
Continuous, viii, 59–62, 68, 69, 75, 79, 84–86,

98, 100, 103, 105, 106, 108, 109,
114–116, 118, 120, 121, 123, 127,
160, 168, 174, 176, 188

Continuous at a point, 59
Convergent, 10, 27, 31, 33–35, 60, 61, 152
Converges, 10, 22, 24, 27, 28, 30–38, 44, 45,

47, 48, 50, 51, 61, 67, 76, 78, 116,
117, 120, 121, 123, 124, 151, 152,
154, 176

Convex function, 161, 168
Convexity, vii, 155–169, 199, 202
Convex subset, 169
Cosine, 39–43, 65, 78, 129
Countable, 17, 18, 68, 102
Critical point, 85, 87, 139, 140, 156
Curvature, vii, 137–147, 153
Curve, vii, xiii–xv, 6, 55–59, 82–84, 86, 92–94,

99, 109–111, 128–133, 135, 140,
141, 144–147, 153–154, 166, 167,
169, 178, 181, 182, 192, 195, 196,
198

Cycloid, 56–57, 83, 94, 129, 135

D
Decreasing, 24, 25, 27, 33, 34, 38, 51, 68, 70,

87, 89, 106, 116, 137, 158
Dedekind cut, xiii, 5–8
Dedekind, Richard, xiii, 7, 8
Degree, 40, 41, 72, 113, 138
Dense, 2, 5
Density, 2–3, 91, 183–186, 188, 199

Density function, viii, 183–191, 195, 196, 199
Derivative and growth, 84–98
Derivative of a function, 113
Derivative of a function at a point, 73–76
Derivative of a parameterized curve, 82–84
Derivative of the inverse function, 80–82
Derivatives of the elementary functions, 77–78
Descartes, Rene, xv, 29, 71
Difference quotient, 74, 77–79, 85, 95
Differentiable, 75, 78, 79, 84–88, 95, 106, 128,

137, 150, 183
Differentiable at a point, 74, 75, 87, 95
Differential equation, 44, 46, 131, 168
Distance, 2–4, 9, 22, 32, 34, 55, 71, 75, 96,

108, 112, 118, 129, 161, 171, 179,
180, 184, 188–191

Divergence of the harmonic series, 29, 51
Diverges, 28–30, 34, 35, 38, 117
Division algorithm, 12
Domain, 52–54, 59, 75, 201
Double integral, 174–175
Dyadic series, 11–14

E
e, vii, 44, 49, 50, 113
Ellipse, 96, 133
Entire function, 152
Equivalence class, 102
Equivalence relation, 102
Eratosthenes of Cyrene, 190
Eudoxus of Cnidos, 7
Euler, Leonhard, 31, 43, 175, 205
Exhaustion, 7, 99, 171, 190
Expectation, viii, 183–191
Expected value, 195, 196, 199
Exponential function, 39, 43–49, 51, 53, 67,

78, 126, 158

F
Factorial, 45
Family of neighborhoods, 4
Fermat, Pierre de, xv, 29, 71
Fibonacci sequence, 68
Fubini’s theorem, 175
Functions, 16, 39–54, 71, 100, 137, 155, 174,

201
Fundamental Theorem of Calculus, xv,

104–114, 118, 131

G
Galileo Galilei, 92
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Galton board, 144, 196
Gamma function, viii, 201–206
Gamma function and sine, 204–205
Gauss, Carl Friedrich, 146, 194–198
Gauss curve, 144–147, 181
Geometric mean, 29, 155, 158
Geometric series, 10, 11, 21, 28, 29, 38, 121,

123, 124, 176
Graph of a function, 55, 56, 73, 82, 84, 130,

131, 182
Gregory, James, 105, 108, 172
Gregory’s series, vii, viii, 34, 123–124

H
Harmonic mean, 29
Harmonic series, vii, 29–30, 34, 51, 117, 152,

205–206
Heinz’ inequality, 159–160
Hermite-Hadamard inequality, 162–163
Heron’s formula, 166
Higher order derivatives, 137
Hölder’s inequality, 160–161
Huygens, Christian, 94
Hippasus of Metapontum, 6
Hyperbola, 67
Hyperbolic cosine, 51, 131
Hyperbolic functions, 51–52, 67, 95
Hyperbolic sine, 51
Hyperbolic tangent, 52
Hypotenuse, 42, 57

I
Ibn Sahl, 91
Identity function, 54, 80
Implicit form, 55
Improper integrals, 114–118, 122, 134, 175,

181, 201
Increasing, 15, 16, 24–26, 30, 31, 34, 50, 53,

68–70, 87, 108, 135, 156, 158
Increasing bounded sequence theorem, 24, 34
Infimum, 19
Infinite sum, 10
Injective, 53, 54, 69
Inscribed polygon, 64
Integer, xiii, 1, 2, 13, 17
Integral, viii, 34, 99–133, 171–198, 201
Integral criterion, 116–117
Integration, viii, xvi, 80, 99, 108, 118–133,

181–182, 197
Integration by parts, 124–126, 197
Integration by substitution, 80, 126–133

Intermediate value theorem, see Bolzano’s
theorem, 16, 39–54

Inverse function, 52–54, 68, 79–82
Irrationality of e, 49–50
Irrationality of Pi, 113–114
Irrationality of square root of 2, 4–6
Isoperimetric inequality, viii, 155–168

J
Jensen’s inequality, 161–162

K
Kinetic energy, 92

L
Lagrange’s mean value theorem, 86–87, 118,

158
Lambert, Johann, 113
Laplace, Pierre-Simon, 194–198
Laplace’s method, 197–198
Law of the lever, 184, 190, 191
Layer cake representation, 111
Least upper bound, 16
Lebesgue integral, 99–102
Leibniz criterion, 33–34, 50, 151
Leibniz, Gottfried Wilhelm, xv, xvi, 34, 50, 92,

99, 105, 108, 123, 151, 152
Length of a cycloid, 129
Length of curves, 128–131
L’Hôpital’s, Guillaume de, 87–89, 139
L’Hôpital’s rule, 87–89, 139
Limits, vii, xiii, xvi, 4, 21–24, 34, 37, 44, 47,

50, 60, 62–67, 74, 78, 99, 102, 115,
120, 121, 123, 125, 196

Limitf, 120
Limit inferior, 37
Limits and continuity, 120
Limits in ancient Greece, 62–65
Limits of sequences, 22–24
Limit superior, 37
Limsup, 37, 70, 89
Lines, xiii-xvi, 1–16, 24, 58–60, 72–76, 82–94,

98, 99, 102, 109, 137, 138, 140, 142,
144, 147, 156, 158, 162, 171, 194,
196

Linearity of the integral, 118–124, 126
Line tangent to the graph of a function, 72, 73,

82, 95, 137
Logarithm, 54, 79, 81, 82, 119, 205
Log-convex function, 169
Lower bound, 20
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M
Madhava of Sangamagrama, xiii
Maximum, 8, 61, 84, 85, 95, 106, 110, 113,

140, 142, 196, 197, 199
Mean, 29, 72, 84, 155, 158, 194–196
Mean value theorem for integrals, 118
Mean value theorems, 84–86, 88, 158
Mean value theorems geometric interpretation,

86
Measure, xiii, xiv, 3, 4, 6, 14, 17, 39, 41, 42,

57, 99–104, 110, 112, 127, 140, 141,
145, 158, 161, 192

Measure theory, 101, 102
Mengoli, Pietro, 29, 30, 175
Merton acceleration theorem, 108
Merton scholars, 108
Minimum, 61, 84, 85, 87, 90, 106, 140–143,

186, 187
Moments, 13, 14, 44, 71, 72, 87, 93, 184

N
n!, 45, 113, 114, 125, 126, 145, 148, 197, 198,

201–204
Natural logarithm, 54, 81
Natural number, 1, 2, 4, 5, 16–19, 22, 23, 25,

44, 47, 57, 59, 114, 118, 201
Newton, Isaac, xv, xvi, 71, 77, 92, 99, 105,

108, 146
Newton–Raphson method, 75–77, 94, 146
Newton’s formula, 44, 45
Niven, Ivan, 113
Non-measurable set, 102
Normal distribution, 146, 194–199

O
One-to-one, 53, 131
Onto, 16, 69
Open interval, 3, 4, 18, 22, 23
Order, viii, xvi, 1, 3, 12, 16, 20, 34–37, 74, 96,

101, 113, 123, 137, 138, 145–154,
156, 181, 190, 197

Order of decay, 98
Oresme, Nicole, 29, 108
Osculating circle, 141

P
Pappus of Alexandria, 188
Pappus’ theorem, viii, 181, 188–190
Parametric form, 55, 83
Parametrization, 39, 57, 131, 132, 135
Parametrized curve, 55–59, 82–84, 153

Partial sums, 10, 14, 15, 21, 28, 30, 33–35, 47,
50, 117, 121

Pascal, Blaise, 172
Pi, vii, 35, 65, 67, 113–114, 137, 191
Pointwise convergence, 119
Polynomial, viii, xvi, 39, 72, 113, 138–150,

153, 154, 156, 197
Potential energy, 92
Primitive, 107, 108, 114, 118, 123–125, 127,

132, 173, 177, 181, 185
Pythagorean theorem, 6, 57
Pythagorean triple, vii, 57–59, 68
Pythagoreans, 4, 6

Q
Quotient, 5, 6, 12, 31, 45, 67, 74, 77–79, 85,

87, 95, 106, 119
Quotient criterion, 31, 45, 67

R
Radian, 41, 56
Random walk, viii, 137, 144, 146, 196
Rational line, 1–8, 16, 24
Rational number, xiii, 1–8, 12–14, 18, 57, 58,

68, 100–102, 113
Rational point of the circumference, 58
Rational points, 2, 3, 5, 57, 58
Real line, 8–11, 13, 14, 16, 21, 59, 60, 102,

144, 184
Real number, vii, viii, xvi, 1–20, 22, 23, 25,

35, 40, 42, 51, 52, 60, 61, 98, 102,
108, 202

Reflection of light, 96
Refraction of light, 91
Remainder, 12, 13
Riemann integral, xiii, 99, 100, 103
Riemann series theorem, 34–35
Riemann sum, 100
Riemann, Bernhard, 34
Rolle’s theorem, 84–86, 149
Root criterion, 31

S
Santaló’s inequality, 165–166
Scarcity, 13–14
Second derivative and curvature, 137–138
Sequence, 13–14, 21–38, 44, 45, 50, 60–62,

68, 76, 77, 102, 117–119, 146
Series, 10, 28–36, 45, 116, 146, 175, 205
Series of positive terms, 30–32
Series with positive and negative terms, 32–34
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Simple closed curve, 131–133, 166
Sine, 39–42, 51, 54, 65, 77, 81
Slant height, 192
Slope, 72–74, 82–84, 86, 87, 93, 94, 131, 137,

138, 140
Snell’s law, vii, 89–91, 93
Snell, Willebrord, 91
Solids of revolution, 178–182, 192, 198
Speed, 71, 72, 74, 79, 89, 91
Speed at a given moment, 91
Square root, 4, 54, 76, 80, 164–166
Square root of 2, 4
Standard deviation, 195–197, 199
Stirling’s formula, vii, 125–126, 134, 197, 198
Strictly increasing, 26, 53, 69, 135
Subsequences, 25–27, 61
Sum of a series, 10, 47, 175
Summable, 10, 31, 176
Supremum, 16, 24, 61
Surface area, 39, 99, 171, 181, 192–194, 199
Surface of a sphere, 193

T
Tail of a sequence, 37
Tail of a series, 38
Tangent, xiv, xv, 52, 54, 71–77, 81–95, 98,

137, 140, 141, 147, 156, 158, 162
Tangent line, xv, 71, 74–76, 83–94, 98, 140,

147, 156, 158, 162
Tautochrone, 94
Taylor error term of order n, 151
Taylor polynomial of order n, 147, 148, 150
Taylor polynomial of order two, 138–147, 156
Taylor series, 123, 137, 146–154, 205
Taylor series expansion, 146, 150
Tends to, 10, 22, 28, 29, 34, 35, 47, 62, 66, 67,

77–79, 85, 89, 106, 119, 120, 139,
148, 153, 203

Terms of a series, 31
Theory of proportions, xiii, 7

Torricelli, Evangelista, 181
Trigonometric functions, 123

U
Unconditional convergence, 21, 36
Uncountable, 18
Uniform convergence, viii, 99, 118–123
Uniform convergence and integration, 121–122
Upper bound, 14–16, 19, 24, 36, 61

V
Variable, 39–41, 52, 53, 59, 71, 79–81, 108,

126–129, 131, 132, 161, 163, 174,
182, 183, 186, 195, 196, 201, 206

Vitali set, 102
Volume, xiii, 7, 79, 96, 99, 109, 171–182,

189–191, 198
Volume as sum of areas, 172, 173
Volume of a sphere, 179
Volume of a torus, 180, 189
Volume of gabriel’s trumpet, 181
von Tschirnhaus, Ehrenfried Walther, 92

W
Wallis, John, 172
Weierstrass M-test, 120, 121, 176
Weierstrass’ formula, 201–205
Weierstrass’ theorem, 61, 69, 84, 114
Weierstrass, Karl, 121, 124

Y
Young’s inequality, 159, 161

Z
Zeno of Elea, 8
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