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Preface

This text is intended for the introductory three- or four-hour one-semester sopho-
more level differential equations course traditionally taken by students majoring
in science or engineering. The prerequisite is the standard course in elementary
calculus.

Engineering students frequently take a course on and use the Laplace transform
as an essential tool in their studies. In most differential equations texts, the Laplace
transform is presented, usually toward the end of the text, as an alternative method
for the solution of constant coefficient linear differential equations, with particular
emphasis on discontinuous or impulsive forcing functions. Because of its placement
at the end of the course, this important concept is not as fully assimilated as one
might hope for continued applications in the engineering curriculum. Thus, a goal
of the present text is to present the Laplace transform early in the text, and use it
as a tool for motivating and developing much of the remaining differential equation
concepts for which it is particularly well suited.

There are several rewards for investing in an early development of the Laplace
transform. The standard solution methods for constant coefficient linear differential
equations are immediate and simplified. We are able to provide a proof of the
existence and uniqueness theorems which are not usually given in introductory texts.
The solution method for constant coefficient linear systems is streamlined, and we
avoid having to introduce the notion of a defective or nondefective matrix or develop
generalized eigenvectors. Even the Cayley–Hamilton theorem, used in Sect. 9.6, is
a simple consequence of the Laplace transform. In short, the Laplace transform is
an effective tool with surprisingly diverse applications.

Mathematicians are well aware of the importance of transform methods to
simplify mathematical problems. For example, the Fourier transform is extremely
important and has extensive use in more advanced mathematics courses. The
wavelet transform has received much attention from both engineers and mathe-
maticians recently. It has been applied to problems in signal analysis, storage and
transmission of data, and data compression. We believe that students should be
introduced to transform methods early on in their studies and to that end, the Laplace
transform is particularly well suited for a sophomore level course in differential
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vi Preface

equations. It has been our experience that by introducing the Laplace transform
near the beginning of the text, students become proficient in its use and comfortable
with this important concept, while at the same time learning the standard topics in
differential equations.

Chapter 1 is a conventional introductory chapter that includes solution techniques
for the most commonly used first order differential equations, namely, separable and
linear equations, and some substitutions that reduce other equations to one of these.
There are also the Picard approximation algorithm and a description, without proof,
of an existence and uniqueness theorem for first order equations.

Chapter 2 starts immediately with the introduction of the Laplace transform as
an integral operator that turns a differential equation in t into an algebraic equation
in another variable s. A few basic calculations then allow one to start solving some
differential equations of order greater than one. The rest of this chapter develops
the necessary theory to be able to efficiently use the Laplace transform. Some
proofs, such as the injectivity of the Laplace transform, are delegated to an appendix.
Sections 2.6 and 2.7 introduce the basic function spaces that are used to describe the
solution spaces of constant coefficient linear homogeneous differential equations.

With the Laplace transform in hand, Chap. 3 efficiently develops the basic theory
for constant coefficient linear differential equations of order 2. For example, the
homogeneous equation q.D/y D 0 has the solution space Eq that has already
been described in Sect. 2.6. The Laplace transform immediately gives a very easy
procedure for finding the test function when teaching the method of undetermined
coefficients. Thus, it is unnecessary to develop a rule-based procedure or the
annihilator method that is common in many texts.

Chapter 4 extends the basic theory developed in Chap. 3 to higher order
equations. All of the basic concepts and procedures naturally extend. If desired, one
can simultaneously introduce the higher order equations as Chap. 3 is developed or
very briefly mention the differences following Chap. 3.

Chapter 5 introduces some of the theory for second order linear differential equa-
tions that are not constant coefficient. Reduction of order and variation of parameters
are topics that are included here, while Sect. 5.4 uses the Laplace transform to
transform certain second order nonconstant coefficient linear differential equations
into first order linear differential equations that can then be solved by the techniques
described in Chap. 1.

We have broken up the main theory of the Laplace transform into two parts
for simplicity. Thus, the material in Chap. 2 only uses continuous input functions,
while in Chap. 6 we return to develop the theory of the Laplace transform for
discontinuous functions, most notably, the step functions and functions with jump
discontinuities that can be expressed in terms of step functions in a natural way.
The Dirac delta function and differential equations that use the delta function are
also developed here. The Laplace transform works very well as a tool for solving
such differential equations. Sections 6.6–6.8 are a rather extensive treatment of
periodic functions, their Laplace transform theory, and constant coefficient linear
differential equations with periodic input function. These sections make for a good
supplemental project for a motivated student.
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Chapter 7 is an introduction to power series methods for linear differential
equations. As a nice application of the Frobenius method, explicit Laplace inversion
formulas involving rational functions with denominators that are powers of an
irreducible quadratic are derived.

Chapter 8 is primarily included for completeness. It is a standard introduction to
some matrix algebra that is needed for systems of linear differential equations. For
those who have already had exposure to this basic algebra, it can be safely skipped
or given as supplemental reading.

Chapter 9 is concerned with solving systems of linear differential equations.
By the use of the Laplace transform, it is possible to give an explicit formula for
the matrix exponential eAt D L�1

˚
.sI �A/�1� that does not involve the use of

eigenvectors or generalized eigenvectors. Moreover, we are then able to develop
an efficient method for computing eAt known as Fulmer’s method. Another thing
which is somewhat unique is that we use the matrix exponential in order to solve a
constant coefficient system y0 D AyCf .t/, y.t0/ D y0 by means of an integrating
factor. An immediate consequence of this is the existence and uniqueness theorem
for higher order constant coefficient linear differential equations, a fact that is not
commonly proved in texts at this level.

The text has numerous exercises, with answers to most odd-numbered exercises
in the appendix. Additionally, a student solutions manual is available with solutions
to most odd-numbered problems, and an instructors solution manual includes
solutions to most exercises.

Chapter Dependence

The following diagram illustrates interdependence among the chapters.
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Suggested Syllabi

The following table suggests two possible syllabi for one semester courses.

3-Hour Course

Sections 1.1–1.6
Sections 2.1–2.8
Sections 3.1–3.6
Sections 4.1–4.3
Sections 5.1–5.3, 5.6
Sections 6.1–6.5

Sections 9.1–9.5

4-Hour Course

Sections 1.1–1.7
Sections 2.1–2.8
Sections 3.1–3.7
Sections 4.1–4.4
Sections 5.1–5.6
Sections 6.1–6.5
Sections 7.1–7.3
Sections 9.1–9.5, 9.7

Further Reading

Section 4.5

Sections 6.6–6.8
Section 7.4
Section 9.6
Sections A.1, A.5

Chapter 8 is on matrix operations. It is not included in the syllabi given above
since some of this material is sometimes covered by courses that precede differential
equations. Instructors should decide what material needs to be covered for their
students. The sections in the Further Reading column are written at a more advanced
level. They may be used to challenge exceptional students.

We routinely provide a basic table of Laplace transforms, such as Tables 2.6
and 2.7, for use by students during exams.
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Chapter 1
First Order Differential Equations

1.1 An Introduction to Differential Equations

Many problems of science and engineering require the description of some
measurable quantity (position, temperature, population, concentration, electric
current, etc.) as a function of time. Frequently, the scientific laws governing such
quantities are best expressed as equations that involve the rate at which that quantity
changes over time. Such laws give rise to differential equations. Consider the
following three examples:

Example 1 (Newton’s Law of Heating and Cooling). Suppose we are interested
in the temperature of an object (e.g., a cup of hot coffee) that sits in an environment
(e.g., a room) or space (called, ambient space) that is maintained at a constant
temperature Ta. Newton’s law of heating and cooling states that the rate at which
the temperature T .t/of the object changes is proportional to the temperature
difference between the object and ambient space. Since rate of change of T .t/ is
expressed mathematically as the derivative, T 0.t/,1 Newton’s law of heating and
cooling is formulated as the mathematical expression

T 0.t/ D r.T .t/ � Ta/;

where r is the constant of proportionality. Notice that this is an equation that relates
the first derivativeT 0.t/ and the function T .t/ itself. It is an example of a differential
equation. We will study this example in detail in Sect. 1.3.

Example 2 (Radioactive decay). Radioactivity results from the instability of the
nucleus of certain atoms from which various particles are emitted. The atoms then

1In this text, we will generally use the prime notation, that is, y0, y00, y000 (and y.n/ for derivatives

of order greater than 3) to denote derivatives, but the Leibnitz notation dy
dt , d2y

dt2 , etc. will also be
used when convenient.

W.A. Adkins and M.G. Davidson, Ordinary Differential Equations,
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2 1 First Order Differential Equations

decay into other isotopes or even other atoms. The law of radioactive decay states
that the rate at which the radioactive atoms disintegrate is proportional to the total
number of radioactive atoms present. If N.t/ represents the number of radioactive
atoms at time t , then the rate of change ofN.t/ is expressed as the derivativeN 0.t/.
Thus, the law of radioactive decay is expressed as the equation

N 0.t/ D ��N.t/:
As in the previous example, this is an equation that relates the first derivativeN 0.t/
and the functionN.t/ itself, and hence is a differential equation. We will consider it
further in Sect. 1.3.

As a third example, consider the following:

Example 3 (Newton’s Laws of Motion). Suppose s.t/ is a position function of
some body with mass m as measured from some fixed origin. We assume that as
time passes, forces are applied to the body so that it moves along some line. Its
velocity is given by the first derivative, s0.t/, and its acceleration is given by the
second derivative, s00.t/. Newton’s second law of motion states that the net force
acting on the body is the product of its mass and acceleration. Thus,

ms00.t/ D Fnet.t/:

Now in many circumstances, the net force acting on the body depends on time, the
object’s position, and its velocity. Thus, Fnet.t/ D F.t; s.t/; s0.t//, and this leads to
the equation

ms00.t/ D F.t; s.t/; s0.t//:

A precise formula for F depends on the circumstances of the given problem.
For example, the motion of a body in a spring-body-dashpot system is given by
ms00.t/C�s0.t/C ks.t/ D f .t/, where � and k are constants related to the spring
and dashpot and f .t/ is some applied external (possibly) time-dependent force. We
will study this example in Sect. 3.6. For now though, we just note that this equation
relates the second derivative to the function, its derivative, and time. It too is an
example of a differential equation.

Each of these examples illustrates two important points:

• Scientific laws regarding physical quantities are frequently expressed and best
understood in terms of how that quantity changes.

• The mathematical model that expresses those changes gives rise to equations that
involve derivatives of the quantity, that is, differential equations.

We now give a more formal definition of the types of equations we will be studying.
An ordinary differential equation is an equation relating an unknown function
y.t/, some of the derivatives of y.t/, and the variable t , which in many applied
problems will represent time. The domain of the unknown function is some interval
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of the real line, which we will frequently denote by the symbol I .2 The order
of a differential equation is the order of the highest derivative that appears in the
differential equation. Thus, the order of the differential equations given in the above
examples is summarized in the following table:

Differential equation Order

T 0.t / D r.T .t/� Ta/ 1

N 0.t / D ��N.t/ 1

ms00.t / D F.t; s.t /; s0.t // 2

Note that y.t/ is our generic name for an unknown function, but in concrete cases,
the unknown function may have a different name, such as T .t/, N.t/, or s.t/ in the
examples above. The standard form for an ordinary differential equation is obtained
by solving for the highest order derivative as a function of the unknown function
y D y.t/, its lower order derivatives, and the independent variable t . Thus, a first
order ordinary differential equation is expressed in standard form as

y0.t/ D F.t; y.t//; (1)

a second order ordinary differential equation in standard form is written

y00.t/ D F.t; y.t/; y0.t//; (2)

and an nth order differential equation is expressed in standard form as

y.n/.t/ D F.t; y.t/; : : : ; y.n�1/.t//: (3)

The standard form is simply a convenient way to be able to talk about various
hypotheses to put on an equation to insure a particular conclusion, such as existence
and uniqueness of solutions (discussed in Sect. 1.7) and to classify various types
of equations (as we do in this chapter, for example) so that you will know which
algorithm to apply to arrive at a solution. In the examples given above, the equations

T 0.t/ D r.T .t/ � Ta/;

N 0.t/ D ��N.t/
are in standard form while the equation in Example 3 is not. However, simply
dividing by m gives

s00.t/ D 1

m
F.t; s.t/; s0.t//;

a second order differential equation in standard form.

2Recall that the standard notations from calculus used to describe an interval I are .a; b/, Œa; b/,
.a; b�, and Œa; b� where a < b are real numbers. There are also the infinite length intervals
.�1; a/ and .a; 1/ where a is a real number or ˙1.
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In differential equations involving the unknown function y.t/, the variable t is
frequently referred to as the independent variable, while y is referred to as the
dependent variable, indicating that y has a functional dependence on t . In writing
ordinary differential equations, it is conventional to suppress the implicit functional
evaluations y.t/, y0.t/, etc. and write y, y0, etc. Thus the differential equations in
our examples above would be written

T 0 D r.T � Ta/;

N 0 D ��N;
and s00 D 1

m
F.t; s; s0/;

where the dependent variables are respectively, T , N , and s.
Sometimes we must deal with functions u D u.t1; t2; : : : ; tn/ of two or more

variables. In this case, a partial differential equation is an equation relating u,
some of the partial derivatives of u with respect to the variables t1, : : : , tn, and
possibly the variables themselves. While there may be a time or two where we
need to consider a partial differential equation, the focus of this text is on the
study of ordinary differential equations. Thus, when we use the term differential
equation without a qualifying adjective, you should assume that we mean ordinary
differential equation.

Example 4. Consider the following differential equations. Determine their order,
whether ordinary or partial, and the standard form where appropriate:

1. y0 D 2y 2. y0 � y D t

3. y00 C siny D 0 4. y.4/ � y00 D y

5. ay00 C by0 C cy D A cos!t .a ¤ 0/ 6.
@2u

@x2
C @2u

@y2
D 0

I Solution. Equations (1)–(5) are ordinary differential equations while (6) is a
partial differential equation. Equations (1) and (2) are first order, (3) and (5) are
second order, and (4) is fourth order. Equation (1) is in standard form. The standard
forms for (2)–(5) are as follows:

2. y0 D y C t 3. y00 D � sin y

4. y.4/ D y00 C y 5. y00 D �b
a
y0 � c

a
y C A

a
cos!t J

Solutions

In contrast to algebraic equations, where the given and unknown objects are
numbers, differential equations belong to the much wider class of functional
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equations in which the given and unknown objects are functions (scalar functions or
vector functions) defined on some interval. A solution of an ordinary differential
equation is a function y.t/ defined on some specific interval I � R such that
substituting y.t/ for y and substituting y0.t/ for y0, y00.t/ for y00, etc. in the
equation gives a functional identity. That is, an identity which is satisfied for all
t 2 I . For example, if a first order differential equation is given in standard form as
y0 D F.t; y/, then a function y.t/ defined on an interval I is a solution if

y0.t/ D F.t; y.t// for all t 2 I :
More generally, y.t/, defined on an interval I , is a solution of an nth order
differential equation expressed in standard form by y.n/ D F.t; y; y0; : : : ; y.n�1//
provided

y.n/.t/ D F.t; y.t/; : : : ; y.n�1/.t// for all t 2 I :
It should be noted that it is not necessary to express the given differential equation
in standard form in order to check that a function is a solution. Simply substitute
y.t/ and the derivatives of y.t/ into the differential equation as it is given. The
general solution of a differential equation is the set of all solutions. As the following
examples will show, writing down the general solution to a differential equation can
range from easy to difficult.

Example 5. Consider the differential equation

y0 D y � t: (4)

Determine which of the following functions defined on the interval .�1;1/ are
solutions:

1. y1.t/ D t C 1

2. y2.t/ D et

3. y3.t/ D t C 1 � 7et

4. y4.t/ D t C 1C cet where c is an arbitrary scalar.

I Solution. In each case, we calculate the derivative and substitute the results in
(4). The following table summarizes the needed calculations:

Function y0.t / y.t/� t

y1.t/ D t C 1 y0

1.t / D 1 y1.t/� t D t C 1� t D 1

y2.t/ D et y0

2.t / D et y2.t /� t D et � t

y3.t/ D t C 1� 7et y0

3.t / D 1� 7et y3.t /� t D t C 1� 7et � t D 1� 7et

y4.t / D t C 1C cet y0

4.t / D 1C cet y4.t /� t D t C 1C cet � t D 1C cet

For yi .t/ to be a solution of (4), the second and third entries in the row for yi .t/
must be the same. Thus, y1.t/, y3.t/, and y4.t/ are solutions while y2.t/ is not a
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t

y

c = 0

c = −1

c = .4

Fig. 1.1 The solutions
yg.t / D t C 1C cet of
y0 D y � t for various c

solution. Notice that y1.t/ D y4.t/ when c D 0 and y3.t/ D y4.t/ when c D �7.
Thus, y4.t/ actually already contains y1.t/ and y3.t/ by appropriate choices of the
constant c 2 R, the real numbers. J

The differential equation given by (4) is an example of a first order linear
differential equation. The theory of such equations will be discussed in Sect. 1.4,
where we will show that all solutions to (4) are included in the function

y4.t/ D t C 1C cet ; t 2 .�1;1/

of the above example by appropriate choice of the constant c. We call this the
general solution of (4) and denote it by yg.t/. Figure 1.1 is the graph of yg.t/ for
various choices of the constant c.

Observe that the general solution is parameterized by the constant c, so that there
is a solution for each value of c and hence there are infinitely many solutions of
(4). This is characteristic of many differential equations. Moreover, the domain is
the same for each of the solutions, namely, the entire real line. With the following
example, there is a completely different behavior with regard to the domain of the
solutions. Specifically, the domain of each solution varies with the parameter c and
is not the same interval for all solutions.

Example 6. Consider the differential equation

y0 D �2t.1C y/2: (5)

Show that the following functions are solutions:

1. y1.t/ D �1
2. y2.t/ D �1C .t2 � c/�1, for any constant c
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t

y

c = −1

t

y

c = 0

t

y

c = 1

Fig. 1.2 The solutions y2.t/ D �1C .t 2 � c/�1 of y0 D �2t.1C y/2 for various c

I Solution. Let y1.t/ D �1. Then y0
1.t/ D 0 and �2t.1Cy1.t//

2 D �2t.0/ D 0,
which is valid for all t 2 .�1;1/. Hence, y1.t/ D �1 is a solution.

Now let y2.t/ D �1C .t2 � c/�1. Straightforward calculations give

y0
2.t/ D �2t.t2 � c/�2; and

�2t.1C y2.t//
2 D �2t.1C .�1C .t2 � c/�1//2 D �2t.t2 � c/�2:

Thus, y0
2.t/ D �2t.1 C y2.t//

2 so that y2.t/ is a solution for any choice of the
constant c. J

Equation (5) is an example of a separable differential equation. The theory of
separable equations will be discussed in Sect. 1.3. It turns out that there are no
solutions to (5) other than y1.t/ and y2.t/, so that these two sets of functions
constitute the general solution yg.t/. Notice that the intervals on which y2.t/ is
defined depend on the constant c. For example, if c < 0, then y2.t/ D �1C .t2 �
c/�1 is defined for all t 2 .�1;1/. If c D 0, then y2.t/ D �1C t�2 is defined on
two intervals: t 2 .�1; 0/ or t 2 .0;1/. Finally, if c > 0, then y2.t/ is defined on
three intervals: .�1;�p

c/, .�p
c;

p
c/, or .

p
c;1/. Figure 1.2 gives the graph

of y2.t/ for various choices of the constant c.
Note that the interval on which the solution y.t/ is defined is not at all apparent

from looking at the differential equation (5).

Example 7. Consider the differential equation

y00 C 16y D 0: (6)

Show that the following functions are solutions on the entire real line:

1. y1.t/ D cos 4t
2. y2.t/ D sin 4t
3. y3.t/ D c1 cos 4t C c2 sin 4t , where c1 and c2 are constants.

Show that the following functions are not solutions:

4. y4.t/ D e4t

5. y5.t/ D sin t .
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I Solution. In standard form, (6) can be written as y00 D �16y, so for y.t/ to be
a solution of this equation means that y00.t/ D �16y.t/ for all real numbers t . The
following calculations then verify the claims for the functions yi .t/, .1 � i � 5/:

1. y00
1 .t/ D d2

dt2
.cos 4t/ D d

dt
.�4 sin 4t/ D �16 cos4t D �16y1.t/

2. y00
2 .t/ D d2

dt2
.sin 4t/ D d

dt
.4 cos 4t/ D �16 sin 4t D �16y2.t/

3. y00
3 .t/ D d2

dt2
.c1 cos 4t C c2 sin 4t/ D d

dt
.�4c1 sin 4t C 4c2 cos 4t/

D �16c1 cos 4t � 16c2 sin 4t D �16y3.t/

4. y00
4 .t/ D d2

dt2
.e4t / D d

dt
.4e4t / D 16e4t ¤ �16y4.t/

5. y00
5 .t/ D d2

dt2
.sin t/ D d

dt
.cos t/ D � sin t ¤ �16y5.t/ J

It is true, but not obvious, that letting c1 and c2 vary over all real numbers in y3.t/ D
c1 cos 4t C c2 sin 4t produces all solutions to y00 C 16y D 0, so that y3.t/ is the
general solution of (6) . This differential equation is an example of a second order
constant coefficient linear differential equation. These equations will be studied in
Chap. 3.

The Arbitrary Constants

In Examples 5 and 6, we saw that the solution set of the given first order equation
was parameterized by an arbitrary constant c (although (5) also had an extra solution
y1.t/ D �1), and in Example 7, the solution set of the second order equation
was parameterized by two constants c1 and c2. To understand why these results are
not surprising, consider what is arguably the simplest of all first order differential
equations:

y0 D f .t/;

where f .t/ is some continuous function on some interval I . Integration of both
sides produces a solution

y.t/ D
Z
f .t/ dt C c; (7)

where c is a constant of integration and
R
f .t/ dt is any fixed antiderivative of f .t/.

The fundamental theorem of calculus implies that all antiderivatives are of this form
so (7) is the general solution of y0 D f .t/. Generally speaking, solving any first
order differential equation will implicitly involve integration. A similar calculation
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for the differential equation

y00 D f .t/

gives y0.t/ D R
f .t/ dt C c1 so that a second integration gives

y.t/ D
Z
y0.t/ dt C c2 D

Z �Z
f .t/ dt C c1

�
dt C c2

D
Z �Z

f .t/ dt

�
dt C c1t C c2;

where c1 and c2 are arbitrary scalars. The fact that we needed to integrate twice
explains why there are two scalars. It is generally true that the number of parameters
(arbitrary constants) needed to describe the solution set of an ordinary differential
equation is the same as the order of the equation.

Initial Value Problems

As we have seen in the examples of differential equations and their solutions
presented in this section, differential equations generally have infinitely many
solutions. So to specify a particular solution of interest, it is necessary to specify
additional data. What is usually convenient to specify for a first order equation
is an initial value t0 of the independent variable and an initial value y.t0/ for
the dependent variable evaluated at t0. For a second order equation, one would
specify an initial value t0 for the independent variable, together with an initial value
y.t0/ and an initial derivative y0.t0/ at t0. There is an obvious extension to higher
order equations. When the differential equation and initial values are specified, one
obtains what is known as an initial value problem. Thus, a first order initial value
problem in standard form is

y0 D F.t; y/; y.t0/ D y0; (8)

while a second order equation in standard form is written

y00 D F.t; y; y0/; y.t0/ D y0; y0.t0/ D y1: (9)

Example 8. Determine a solution to each of the following initial value problems:

1. y0 D y � t , y.0/ D �3
2. y00 D 2 � 6t , y.0/ D �1, y0.0/ D 2



10 1 First Order Differential Equations

I Solution.
1. Recall from Example 5 that for each c 2 R, the function y.t/ D t C 1 C cet

is a solution for y0 D y � t . This is the function y4.t/ from Example 5. Thus,
our strategy is just to try to match one of the constants c with the required initial
condition y.0/ D �3. Thus,

�3 D y.0/ D 1C ce0 D 1C c

requires that we take c D �4. Hence,

y.t/ D t C 1 � 4et

is a solution of the initial value problem.
2. The second equation is asking for a function y.t/ whose second derivative is the

given function 2 � 6t . But this is precisely the type of problem we discussed
earlier and that you learned to solve in calculus using integration. Integration of
y00 gives

y0.t/ D
Z
y00.t/ dt C c1 D

Z
.2 � 6t/ dt C c1 D 2t � 3t2 C c1;

and evaluating at t D 0 gives the equation

2 D y0.0/ D .2t � 3t2 C c1/
ˇ̌
tD0 D c1:

Thus, c1 D 2 and y0.t/ D 2t � 3t2 C 2: Now integrate again to get

y.t/ D
Z
y0.t/ dt D

Z
.2C 2t � 3t2/ dt D 2t C t2 � t3 C c0;

and evaluating at t D 0 gives the equation

�1 D y.0/ D .2t C t2 � t3 C c0/
ˇ̌
tD0 D c0:

Hence, c0 D �1 and we get y.t/ D �1 C 2t C t2 � t3 as the solution of our
second order initial value problem. J

Some Concluding Comments

Because of the simplicity of the second order differential equation in the previous
example, we indicated a rather simple technique for solving it, namely, integration
repeated twice. This was not possible for the other examples, even of first order
equations, due to the functional dependencies between y and its derivatives. In
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general, there is not a single technique that can be used to solve all differential
equations, where by solve we mean to find an explicit functional description of
the general solution yg.t/ as an explicit function of t , possibly depending on
some arbitrary constants. Such a yg.t/ is sometimes referred to as a closed form
solution. There are, however, solution techniques for certain types or categories
of differential equations. In this chapter, we will study categories of first order
differential equations such as:

• Separable
• Linear
• Homogeneous
• Bernoulli
• Exact

Each category will have its own distinctive solution technique. For higher order
differential equations and systems of first order differential equations, the concept
of linearity will play a very central role for it allows us to write the general solution
in a concise way, and in the constant coefficient case, it will allow us to give a
precise prescription for obtaining the solution set. This prescription and the role of
the Laplace transform will occupy the two main important themes of the text. The
role of the Laplace transform will be discussed in Chap. 2. In this chapter, however,
we stick to a rather classical approach to first order differential equations and, in
particular, we will discuss in the next section direction fields which allow us to give
a pictorial explanation of solutions.
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Exercises

1–3. In each of these problems, you are asked to model a scientific law by means
of a differential equation.

1. Malthusian Growth Law. Scientists who study populations (whether popula-
tions of people or cells in a Petri dish) observe that over small periods of time,
the rate of growth of the population is proportional to the population present.
This law is called the Malthusian growth law. Let P.t/ represent the number
of individuals in the population at time t . Assuming the Malthusian growth law,
write a differential equation for which P.t/ is the solution.

2. The Logistic Growth Law. The Malthusian growth law does not account for
many factors affecting the growth of a population. For example, disease,
overcrowding, and competition for food are not reflected in the Malthusian
model. The goal in this exercise is to modify the Malthusian model to take
into account the birth rate and death rate of the population. Let P.t/ denote the
population at time t . Let b.t/ denote the birth rate and d.t/ the death rate at
time t .

(a) Suppose the birth rate is proportional to the population. Model this state-
ment in terms of b.t/ and P.t/.

(b) Suppose the death rate is proportional to the square of the population.
Model this statement in terms of d.t/ and P.t/.

(c) The logistic growth law states that the overall growth rate is the difference
of the birth rate and death rate, as given in parts (a) and (b). Model this law
as a differential equation in P.t/.

3. Torricelli’s Law. Suppose a cylindrical container containing a fluid has a drain
on the side. Torricelli’s law states that the change in the height of the fluid
above the middle of the drain is proportional to the square root of the height.
Let h.t/ denote the height of the fluid above the middle of the drain. Determine
a differential equation in h.t/ that models Torricelli’s law.

4–11. Determine the order of each of the following differential equations. Write the
equation in standard form.

4. y2y0 D t3

5. y0y00 D t3

6. t2y0 C ty D et

7. t2y00 C ty0 C 3y D 0

8. 3y0 C 2y C y00 D t2

9. t.y.4//3 C .y000/4 D 1

10. y0 C t2y D ty4

11. y000 � 2y00 C 3y0 � y D 0

12–18. Following each differential equation are four functions y1, : : : , y4.
Determine which are solutions to the given differential equation.
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12. y0 D 2y

(a) y1.t/ D 0

(b) y2.t/ D t2

(c) y3.t/ D 3e2t

(d) y4.t/ D 2e3t

13. ty0 D y

(a) y1.t/ D 0

(b) y2.t/ D 3t

(c) y3.t/ D �5t
(d) y4.t/ D t3

14. y00 C 4y D 0

(a) y1.t/ D e2t

(b) y2.t/ D sin 2t
(c) y3.t/ D cos.2t � 1/
(d) y4.t/ D t2

15. y0 D 2y.y � 1/
(a) y1.t/ D 0

(b) y2.t/ D 1

(c) y3.t/ D 2

(d) y4.t/ D 1
1�e2t

16. 2yy0 D 1

(a) y1.t/ D 1

(b) y2.t/ D t

(c) y3.t/ D ln t
(d) y4.t/ D p

t � 4

17. 2yy0 D y2 C t � 1

(a) y1.t/ D p�t
(b) y2.t/ D �p

et � t
(c) y3.t/ D p

t

(d) y4.t/ D �p�t

18. y0 D y2 � 4yt C 6t2

t2

(a) y1.t/ D t

(b) y2.t/ D 2t

(c) y3.t/ D 3t

(d) y4.t/ D 3t C 2t2

1C t
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19–25. Verify that each of the given functions y.t/ is a solution of the given
differential equation on the given interval I . Note that all of the functions depend
on an arbitrary constant c 2 R.

19. y0 D 3y C 12; y.t/ D ce3t � 4, I D .�1;1/

20. y0 D �y C 3t ; y.t/ D ce�t C 3t � 3 I D .�1;1/

21. y0 D y2�y; y.t/ D 1=.1�cet / I D .�1;1/ if c < 0, I D .� ln c; 1/

if c > 0
22. y0 D 2ty; y.t/ D cet

2
, I D .�1;1/

23. y0 D �ey � 1; y.t/ D � ln.cet � 1/ with c > 0, I D .� ln c;1/

24. .t C 1/y0 C y D 0; y.t/ D c.t C 1/�1, I D .�1;1/

25. y0 D y2; y.t/ D .c � t/�1, I D .�1; c/

26–31. Solve the following differential equations.

26. y0 D t C 3

27. y0 D e2t � 1
28. y0 D te�t

29. y0 D t C 1

t
30. y00 D 2t C 1

31. y00 D 6 sin 3t

32–38. Find a solution to each of the following initial value problems. See
Exercises 19–31 for the general solutions of these equations.

32. y0 D 3y C 12, y.0/ D �2
33. y0 D �y C 3t , y.0/ D 0

34. y0 D y2 � y, y.0/ D 1=2

35. .t C 1/y0 C y D 0, y.1/ D �9
36. y0 D e2t � 1, y.0/ D 4

37. y0 D te�t , y.0/ D �1
38. y00 D 6 sin 3t , y.0/ D 1, y0.0/ D 2
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1.2 Direction Fields

Suppose

y0 D F.t; y/ (1)

is a first order differential equation (in standard form), where F.t; y/ is defined in
some region of the .t; y/-plane. The geometric interpretation of the derivative of a
function y.t/ at t0 as the slope of the tangent line to the graph of y.t/ at .t0; y.t0//
provides us with an elementary and often very effective method for the visualization
of the solution curves (WD graphs of solutions) to (1). The visualization process
involves the construction of what is known as a direction field or slope field for the
differential equation. For this construction, we proceed as follows.

Construction of Direction Fields

1. Solve the given first order differential equation for y0 to put it in the standard
form y0 D F.t; y/.

2. Choose a grid of points in a rectangular region

R D f.t; y/ W a � t � bI c � y � d g

in the .t; y/-plane whereF.t; y/ is defined. This means imposing a graph-paper-
like grid of vertical lines t D ti for a D t1 < t2 < � � � < tN D b and horizontal
lines y D yj for c D y1 < y1 < � � � < yM D d . The points .ti ; yj / where the
grid lines intersect are the grid points.

3. At each point .t; y/, the number F.t; y/ represents the slope of a solution curve
through this point. For example, if y0 D y2 � t so that F.t; y/ D y2 � t , then at
the point .1; 1/ the slope is F.1; 1/ D 12 � 1 D 0, at the point .2; 1/ the slope is
F.2; 1/ D 12 � 2 D �1, and at the point .1;�2/ the slope is F.1;�2/ D 3.

4. Through the grid point .ti ; yj /, draw a small line segment having the slope
F.ti ; yj /. Thus, for the equation y0 D y2 � t , we would draw a small line
segment of slope 0 through .1; 1/, slope �1 through .2; 1/, and slope 3 through
.1;�2/. With a graphing calculator, one of the computer mathematics programs
Maple, Mathematica, or MATLAB, or with pencil, paper, and a lot of patience,
you can draw line segments of the appropriate slope at all of the points of the
chosen grid. The resulting picture is called a direction field for the differential
equation y0 D F.t; y/.

5. With some luck with respect to scaling and the selection of the .t; y/-rectangle
R, you will be able to visualize some of the line segments running together to
make a graph of one of the solution curves.
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Fig. 1.3 Direction field and some solutions for y0 D y � 2

6. To sketch a solution curve of y0 D F.t; y/ from a direction field, start with
a point P0 D .t0; y0/ on the grid, and sketch a short curve through P0 with
tangent slope F.t0; y0/. Follow this until you are at or close to another grid point
P1 D .t1; y1/. Now continue the curve segment by using the updated tangent
slope F.t1; y1/. Continue this process until you are forced to leave your sample
rectangle R. The resulting curve will be an approximate solution to the initial
value problem y0 D F.t; y/, y.t0/ D y0. Generally speaking, more accurate
approximations are obtained by taking finer grids. The solutions are sometimes
called trajectories.

Example 1. Draw the direction field for the differential equation y0 D y�2. Draw
several solution curves on the direction field.

I Solution. We have chosen a rectangle R D f.t; y/ W �4 � t; y � 4g for
drawing the direction field, and we have chosen to use 16 sample points in each
direction, which gives a total of 256 grid points where a slope line will be drawn.
Naturally, this is being done by computer and not by hand. Figure 1.3 gives the
completed direction field with five solution curves drawn. The solutions that are
drawn in are the solutions of the initial value problems

y0 D y � 2; y.0/ D y0;

where the initial value y0 is 0, 1, 2, 2:5, and 3, reading from the bottom solution to
the top. J

You will note in this example that the line y D 2 is a solution. In general,
any solution to (1) of the form y.t/ D y0, where y0 is a constant, is called an
equilibrium solution. Its graph is called an equilibrium line. Equilibrium solutions
are those constant functions y.t/ D y0 determined by the constants y0 for
which F.t; y0/ D 0 for all t . For example, Newton’s law of heating and cooling
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Fig. 1.4 Direction field and some solutions for y0 D �t=y

(Example 1 of Sect. 1.1) is modeled by the differential equation T 0 D r.T � Ta/

which has an equilibrium solution T .t/ D Ta. This conforms with intuition since
if the temperature of the object and the temperature of ambient space are the same,
then no change in temperature takes place. The object’s temperature is then said to
be in equilibrium.

Example 2. Draw the direction field for the differential equation yy0 D �t . Draw
several solution curves on the direction field and deduce the family of solutions.

I Solution. Before we can draw the direction field, it is necessary to first put the
differential equation yy0 D �t into standard form by solving for y0. Solving for y0
gives the equation

y0 D � t

y
: (2)

Notice that this equation is not defined for y D 0, even though the original equation
is. Thus, we should be alert to potential problems arising from this defect. Again we
have chosen a rectangle R D f.t; y/ W �4 � t; y � 4g for drawing the direction
field, and we have chosen to use 16 sample points in each direction. Figure 1.4
gives the completed direction field and some solutions. The solutions which are
drawn in are the solutions of the initial value problems yy0 D �t , y.0/ D ˙1, ˙2,
˙3. The solution curves appear to be circles centered at .0; 0/. In fact, the family
of such circles is given by t2 C y2 D c, where c > 0. We can verify that functions
determined implicity by the family of circles t2 C y2 D c are indeed solutions. For,
by implicit differentiation of the equation t2 C y2 (with respect to the t variable),
we get 2t C 2yy0 D 0 and solving for y0 gives (2). Solving t2 C y2 D c implicitly
for y gives two families of continuous solutions, specifically, y1.t/ D p

c � t2

(upper semicircle) and y2.t/ D �p
c � t2 (lower semicircle). For both families

of functions, c is a positive constant and the functions are defined on the interval
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Fig. 1.5 Graph of
f .t; y/ D c

.�p
c;

p
c/. For the solutions drawn in Fig. 1.4, the constant c is 1,

p
2, and

p
3.

Notice that, although y1 and y2 are both defined for t D ˙p
c, they do not satisfy

the differential equation at these points since y0
1 and y0

2 do not exist at these points.
Geometrically, this is a reflection of the fact that the circle t2 C y2 D c has a
vertical tangent at the points .˙p

c; 0/ on the t-axis. This is the “defect” that you
were warned could occur because the equation yy0 D �t , when put in standard
form y0 D �t=y, is not defined for y D 0. J

Note that in the examples given above, the solution curves do not intersect. This
is no accident. We will see in Sect. 1.7 that under mild smoothness assumptions on
the function F.t; y/, it is absolutely certain that the solution curves (trajectories) of
an equation y0 D F.t; y/ can never intersect.

Implicitly Defined Solutions

Example 2 is one of many examples where solutions are sometimes implicitly de-
fined. Let us make a few general remarks when this occurs. Consider a relationship
between the two variables t and y determined by the equation

f .t; y/ D c: (3)

We will say that a function y.t/ defined on an interval I is implicitly defined by (3)
provided

f .t; y.t// D c for all t 2 I . (4)

This is a precise expression of what we mean by the statement:

Solve the equation f .t; y/ D c for y as a function of t .

To illustrate, we show in Fig. 1.5 a typical graph of the relation f .t; y/ D c, for a
particular c. We observe that there are three choices of solutions that are continuous
functions. We have isolated these and call them y1.t/, y2.t/, and y3.t/. The graphs
of these are shown in Fig. 1.6. Observe that the maximal intervals of definition for
y1, y2, and y3 are not necessarily the same.
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Graph of y1(t) Graph of y2(t) Graph of y3(t)

Fig. 1.6 Graphs of functions implicitly defined by f .t; y/ D c

By differentiating3 (4) with respect to t (using the chain rule from multiple
variable calculus), we find

@f

@t
.t; y.t//C @f

@y
.t; y.t//y0.t/ D 0:

Since the constant c is not present in this equation, we conclude that every function
implicitly defined by the equation f .t; y/ D c, for any constant c, is a solution of
the same first order differential equation

@f

@t
C @f

@y
y0 D 0: (5)

We shall refer to (5) as the differential equation for the family of curves
f .t; y/ D c. One valuable technique that we will encounter in Sect. 1.6 is that
of solving a first order differential equation by recognizing it as the differential
equation of a particular family of curves.

Example 3. Find the first order differential equation for the family of hyperbolas

ty D c

in the .t; y/-plane.

I Solution. Implicit differentiation of the equation ty D c gives

y C ty0 D 0

as the differential equation for this family. In standard form, this equation is y0 D
�y=t . Notice that this agrees with expectations, since for this simple family ty D c,
we can solve explicitly to get y D c=t (for t ¤ 0) so that y0 D �c=t2 D �y=t .

J

It may happen that it is possible to express the solution for the differential
equation y0 D F.t; y/ as an explicit formula, but the formula is sufficiently
complicated that it does not shed much light on the nature of the solution. In such

3In practice, this is just implicit differentiation.
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Fig. 1.7 Direction field and some solutions for y0 D 2t�4
3y2�4

a situation, constructing a direction field and drawing the solution curves on the
direction field can sometimes give useful insight concerning the solutions. The
following example is a situation where the picture is more illuminating than the
formula.

Example 4. Verify that

y3 � 4y � t2 C 4t D c (6)

defines an implicit family of solutions to the differential equation

y0 D 2t � 4

3y2 � 4
:

I Solution. Implicit differentiation gives

3y2y0 � 4y0 � 2t C 4 D 0;

and solving for y0, we get

y0 D 2t � 4

3y2 � 4
:

Solving (6) involves a messy cubic equation which does not necessarily shed great
light upon the nature of the solutions as functions of t . However, if we compute
the direction field of y0 D 2t�4

3y2�4 and use it to draw some solution curves, we see
information concerning the nature of the solutions that is not easily deduced from
the implicit form given in (6). For example, Fig. 1.7 gives the direction field and
some solutions. Some observations that can be deduced from the picture are:

• In the lower part of the picture, the curves seem to be deformed ovals centered
about the point P � .2; �1:5/.

• Above the point Q � .2; 1:5/, the curves no longer are closed but appear to
increase indefinitely in both directions. J
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Exercises

1–3. For each of the following differential equations, use some computer math
program to sketch a direction field on the rectangle R D f.t; y/ W �4 � t; y � 4g
with integer coordinates as grid points. That is, t and y are each chosen from the set
f�4; �3; �2; �1; 0; 1; 2; 3; 4g.

1. y0 D t

2. y0 D y2

3. y0 D y.y C t/

4–9. A differential equation is given together with its direction field. One solution
is already drawn in. Draw the solution curves through the points .t; y/ as indicated.
Keep in mind that the trajectories will not cross each other in these examples.

4. y0 D 1 � y2
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5. y0 D y � t
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6. y0 D �ty
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7. y0 D y � t2
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8. y0 D ty2
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9. y0 D ty

1C y
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10–13. For the following differential equations, determine the equilibrium solu-
tions, if they exist.

10. y0 D y2

11. y0 D y.y C t/

12. y0 D y � t

13. y0 D 1 � y2

14. The direction field given in Problem 5 for y0 D y � t suggests that there may
be a linear solution. That is a solution of the form y D at C b. Find such a
solution.

15. Below is the direction field and some trajectories for y0 D cos.y C t/. The
trajectories suggest that there are linear solutions that act as asymptotes for the
nonlinear trajectories. Find these linear solutions.

=cos(t+ )
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16–19. Find the first order differential equation for each of the following families
of curves. In each case, c denotes an arbitrary real constant.

16. 3t2 C 4y2 D c

17. y2 � t2 � t3 D c

18. y D ce2t C t

19. y D ct3 C t2
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1.3 Separable Differential Equations

In the next few sections, we will concentrate on solving particular categories of
first order differential equations by means of explicit formulas and algorithms.
These categories of equations are described by means of restrictions on the function
F.t; y/ that appears on the right-hand side of a first order ordinary differential
equation given in standard form

y0 D F.t; y/: (1)

The first of the standard categories of first order equations to be studied is the class
of equations with separable variables, that is, equations of the form

y0 D h.t/g.y/: (2)

Such an equation is said to be a separable differential equation or just separable,
for short. Thus, (1) is separable if the right-hand side F.t; y/ can be written as a
product of a function of t and a function of y. Most functions of two variables cannot
be written as such a product, so being separable is rather special. However, a number
of important applied problems turn out to be modeled by separable differential
equations. We will explore some of these at the end of this section and in the
exercises.

Example 1. Identify the separable equations from among the following list of
differential equations:

1. y0 D t2y2 2. y0 D y � y2

3. y0 D t � y

t C y
4. y0 D t

y

5. .2t � 1/.y2 � 1/y0 C t � y � 1C ty D 0 6. y0 D f .t/

7. y0 D p.t/y 8. y00 D ty

I Solution. Equations (1), (2) and (4)–(7) are separable. For example, in (2),
h.t/ D 1 and g.y/ D y � y2; in (4), h.t/ D t and g.y/ D 1=y; and in (6),
h.t/ D f .t/ and g.y/ D 1. To see that (5) is separable, we bring all terms not
containing y0 to the other side of the equation, that is,

.2t � 1/.y2 � 1/y0 D �t C y C 1 � ty D �t.1C y/C 1C y D .1C y/.1 � t/:

Solving this equation for y0 gives

y0 D .1 � t/

.2t � 1/
� .1C y/

.y2 � 1/ ;
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which is separable with h.t/ D .1 � t/=.2t � 1/ and g.y/ D .1 C y/=.y2 � 1/.
Equation (3) is not separable because the right-hand side cannot be written as
product of a function of t and a function of y. Equation (8) is not a separable
equation, even though the right-hand side is ty D h.t/g.y/, since it is a second
order equation and our definition of separable applies only to first order equations.

J

Equation (2) in the previous example is worth emphasizing since it is typical of
many commonly occurring separable differential equations. What is special is that
it has the form

y0 D g.y/; (3)

where the right-hand side depends only on the dependent variable y. That is, in
(2), we have h.t/ D 1. Such an equation is said to be autonomous or time
independent. Some concrete examples of autonomous differential equations are
the law of radioactive decay, N 0 D ��N ; Newton’s law of heating and cooling,
T 0 D r.T � Ta/; and the logistic growth model equation P 0 D .a � bP /P. These
examples will be studied later in this section.

To motivate the general algorithm for solving separable differential equations, let
us first consider a simple example.

Example 2. Solve

y0 D �2t.1C y/2: (4)

(See Example 6 of Sect. 1.1 where we considered this equation.)

I Solution. This is a separable differential equation with h.t/ D �2t and g.y/ D
.1 C y/2. We first note that y.t/ D �1 is an equilibrium solution. (See Sect. 1.2.)
To proceed, assume y ¤ �1. If we use the Leibniz form for the derivative, y0 D dy

dt ,
then (4) can be rewritten as

dy

dt
D �2t.1C y/2:

Dividing by .1C y/2 and multiplying by dt give

.1C y/�2 dy D �2t dt: (5)

Now integrate both sides to get

�.1C y/�1 D �t2 C c;

where c is the combination of the arbitrary constants of integration from both sides.
To solve for y, multiply both sides by �1, take the reciprocal, and then add �1.
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We then get y D �1C .t2 � c/�1, where c is an arbitrary scalar. Remember that we
have the equilibrium solution y D �1 so the solution set is

y D �1C .t2 � c/�1;
y D �1;

where c 2 R. J

We note that the t and y variables in (5) have been separated by the equal sign,
which is the origin of the name of this category of differential equations. The left-
hand side is a function of y times dy and the right-hand side is a function of t times
dt . This process allows separate integration to give an implicit relationship between
t and y. This can be done more generally as outlined in the following algorithm.

Algorithm 3. To solve a separable differential equation,

y0 D h.t/g.y/;

perform the following operations:

Solution Method for Separable Differential Equations

1. Determine the equilibrium solutions. These are all of the constant solutions
y D y0 and are determined by solving the equation g.y/ D 0 for y0.

2. Separate the variables in a form convenient for integration. That is, we
formally write

1

g.y/
dy D h.t/ dt

and refer to this equation as the differential form of the separable
differential equation.

3. Integrate both sides, the left-hand side with respect to y and the right-hand
side with respect to t .4 This yields

Z
1

g.y/
dy D

Z
h.t/ dt;

which produces the implicit solution

Q.y/ D H.t/C c;

whereQ.y/ is an antiderivative of 1=g.y/ andH.t/ is an antiderivative of
h.t/. Such antiderivatives differ by a constant c.

4. (If possible, solve the implicit relation explicitly for y.) ut
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Note that Step 3 is valid as long as the antiderivatives exist on an interval. From
calculus, we know that an antiderivative exists on an interval as long as the integrand
is a continuous function on that interval. Thus, it is sufficient that h.t/ and g.y/ are
continuous on appropriate intervals in t and y, respectively, and we will also need
g.y/ ¤ 0 in order for 1=g.y/ to be continuous.

In the following example, please note in the algebra how we carefully track the
evolution of the constant of integration and how the equilibrium solution is folded
into the general solution set.

Example 4. Solve
y0 D 2ty: (6)

I Solution. This is a separable differential equation: h.t/ D 2t and g.y/ D y.
Clearly, y D 0 is an equilibrium solution. Assume now that y ¤ 0. Then (6) can be
rewritten as dy

dt D 2ty. Separating the variables by dividing by y and multiplying
by dt gives

1

y
dy D 2t dt:

Integrating both sides gives

ln jyj D t2 C k0; (7)

where k0 is an arbitrary constant. We thus obtain a family of implicitly defined
solutions y. In this example, we will not be content to leave our answer in this
implicit form but rather we will solve explicitly for y as a function of t . Carefully
note the sequence of algebraic steps we give below. This same algebra is needed
in several examples to follow. We first exponentiate both sides of (7) (remembering
that eln x D x for all positive x, and eaCb D eaeb for all a and b) to get

jyj D elnjyj D et
2Ck0 D ek0et

2 D k1e
t 2 ; (8)

where k1 D ek0 is a positive constant, since the exponential function is positive.
Next we get rid of the absolute values to get

y D ˙ jyj D ˙k1et 2 D k2et
2

; (9)

4Technically, we are treating y D y.t/ as a function of t and both sides are integrated with respect
to t , but the left-hand side becomes an integral with respect to y using the change of variables
y D y.t/, dy D y0dt .
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where k2 D ˙k1 is a nonzero real number. Now note that the equilibrium solution
y D 0 can be absorbed into the family y D k2et

2
by allowing k2 D 0. Thus, the

solution set can be written
y D cet

2

; (10)

where c is an arbitrary constant. J
Example 5. Find the solutions of the differential equation

y0 D �t
y
:

(This example was considered in Example 2 of Sect. 1.2 via direction fields.)

I Solution. We first rewrite the equation in the form dy
dt D �t=y and separate the

variables to get
y dy D �t dt:

Integration of both sides gives
R
y dy D � R

t dt or 1
2
y2 D � 1

2
t2 C c. Multiplying

by 2 and adding t2 to both sides, we get

y2 C t2 D c;

where we write c instead of 2c since twice an arbitrary constant c is still an arbitrary
constant. This is the standard equation for a circle of radius

p
c centered at the

origin, for c > 0. Solving for y gives

y D ˙
p
c � t2;

the equations for the half circles we obtained in Example 2 of Sect. 1.2. J

It may happen that a formula solution for the differential equation y0 D F.t; y/

is possible, but the formula is sufficiently complicated that it does not shed much
light on the nature of the solutions. In such a situation, it may happen that
constructing a direction field and drawing the solution curves on the direction field
gives useful insight concerning the solutions. The following example is such a
situation.

Example 6. Find the solutions of the differential equation

y0 D 2t � 4

3y2 � 4
:

I Solution. Again we write y0 as dy
dt and separate the variables to get

.3y2 � 4/ dy D .2t � 4/ dt:
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Integration gives
y3 � 4y D t2 � 4t C c:

Solving this cubic equation explicitly for y is possible, but it is complicated and
not very revealing so we shall leave our solution in implicit form.5 The direction
field for this example was given in Fig. 1.7. As discussed in Example 6 of Sect. 1.2,
the direction field reveals much more about the solutions than the explicit formula
derived from the implicit formula given above. J

Example 7. Solve the initial value problem

y0 D y2 C 1

t2
; y.1/ D 1=

p
3:

Determine the maximum interval on which this solution is defined.

I Solution. Since y2 C 1 � 1, there are no equilibrium solutions. Separating the
variables gives

dy

y2 C 1
D dt

t2
;

and integration of both sides gives tan�1 y D � 1
t

C c. In this case, it is a simple
matter to solve for y by applying the tangent function to both sides of the equation.
Since tan.tan�1 y/ D y, we get

y.t/ D tan

�
�1
t

C c

�
:

To find c, observe that 1=
p
3 D y.1/ D tan.�1 C c/, which implies that c � 1 D

�=6, so c D 1C �=6. Hence,

y.t/ D tan

�
�1
t

C 1C �

6

�
:

To determine the maximum domain on which this solution is defined, note that the
tangent function is defined on the interval .��=2; �=2/, so that y.t/ is defined for
all t satisfying

��
2
< �1

t
C 1C �

6
<
�

2
:

5The formula for solving a cubic equation is known as Cardano’s formula after Girolamo Cardano
(1501–1576), who was the first to publish it.
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Since � 1
t

C 1C �
6

is increasing and the limit as t ! 1 is 1C �
6
< �

2
, the second

of the above inequalities is valid for all t > 0. The first inequality is solved to give
t > 3=.3 C 2�/. Thus, the maximum domain for the solution y.t/ is the interval
.3=.3C 2�/; 1/. J

Radioactive Decay

In Example 2 of Sect. 1.1, we discussed the law of radioactive decay, which states:
If N.t/ is the quantity6 of radioactive isotopes at time t , then the rate of decay is
proportional toN.t/. Since rate of change is expressed as the derivative with respect
to the time variable t , it follows that N.t/ is a solution to the differential equation

N 0 D ��N;

where � is a constant. You will recognize this as a separable differential equation,
which can be written in differential form with variables separated as

dN

N
D �� dt:

Integrating the left side with respect to N and the right side with respect to t leads
to ln jN j D ��t C k0; where k0 is an arbitrary constant. As in Example 4, we can
solve for N as a function of t by applying the exponential function to both sides of
ln jN j D ��t C k0. This gives

jN j D elnjN j D e��tCk0 D ek0e��t D k1e��t ;

where k1 D ek0 is a positive constant. Since N D ˙ jN j D ˙k1e��t , we conclude
thatN.t/ D ce��t , where c is an arbitrary constant. Notice that this family includes
the equilibrium solution N D 0 when c D 0. Further, at time t D 0, we have
N.0/ D ce0 D c. The constant c therefore represents the quantity of radioactive
isotopes at time t D 0 and is denoted N0. In summary, we find

N.t/ D N0e��t : (11)

The constant � is referred to as the decay constant. However, most scientists prefer
to specify the rate of decay by another constant known as the half-life of the
radioactive isotope. The half-life is the time, � , it takes for half the quantity to decay.
Thus, � is determined by the equationN.�/ D 1

2
N0 or N0e��� D 1

2
N0. Eliminating

6N.t/ could represent the number of atoms or the mass of radioactive material at time t .
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N0 gives e��� D 1
2
, which can be solved for � by applying the logarithm function

ln to both sides of the equation to get ��� D ln.1=2/ D � ln 2 so

� D ln 2

�
; (12)

an inverse proportional relationship between the half-life and decay constant. Note,
in particular, that the half-life does not depend on the initial amount N0 present.
Thus, it takes the same length of time to decay from 2 g to 1 g as it does to decay
from 1 g to 1/2 g.

Carbon 14, 14C, is a radioactive isotope of carbon that decays into the stable
nonradioactive isotope nitrogen-14, 14N, and has a half-life of 5730 years. Plants
absorb atmospheric carbon during photosynthesis, so the ratio of 14C to normal
carbon in plants and animals when they die is approximately the same as that in
the atmosphere. However, the amount of 14C decreases after death from radioactive
decay. Careful measurements allow the date of death to be estimated.7

Example 8. A sample of wood from an archeological site is found to contain 75%
of 14C (per unit mass) as a sample of wood found today. What is the age of the wood
sample.

I Solution. At t D 0, the total amount, N0, of carbon-14 in the wood sample
begins to decay. Now the quantity is 0:75N0. This leads to the equation 0:75N0 D
N0e��t . Solving for t gives t D � ln 0:75

�
. Since the half-life of 14C is 5730 years,

(12) gives the decay constant � D ln 2
5730

. Thus, the age of the sample is

t D 5730 � ln 0:75

ln 2
� 2378

years. If the wood sample can be tied to the site, then an archeologist might be able
to conclude that the site is about 2378 years old. J

Newton’s Law of Heating and Cooling

Recall that Newton’s law of heating and cooling (Example 1 of Sect. 1.1) states
that the rate of change of the temperature, T .t/, of a body is proportional to the

7There are limitations, however. The ratio of 14C to other forms of carbon in the atmosphere is
not constant as originally supposed. This variation is due, among other things, to changes in the
intensity of the cosmic radiation that creates 14C. To compensate for this variation, dates obtained
from radiocarbon laboratories are now corrected using standard calibration tables.
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difference between that body and the temperature of ambient space. This law thus
states that T .t/ is a solution to the differential equation

T 0 D r.T � Ta/;

where Ta is the ambient temperature and r is the proportionality constant. This
equation is separable and can be written in differential form as

dT

T � Ta
D r dt:

Integrating both sides leads to ln jT � Taj D rt C k0; where k0 is an arbitrary
constant. Solving for T � Ta is very similar to the algebra we did in Example 4. We
can solve for T � Ta as a function of t by applying the exponential function to both
sides of ln jT � Taj D rt C k0. This gives

jT � Taj D elnjT�Taj D ertCk0 D ek0ert D k1ert ;

where k1 D ek0 is a positive constant. Since T � Ta D ˙ jT � Taj D ˙k1ert , we
conclude that T .t/ � Ta D cert , where c is an arbitrary constant. Notice that this
family includes the equilibrium solution T D Ta when c D 0. In summary, we find

T .t/ D Ta C cert : (13)

Example 9. A turkey, which has an initial temperature of 40ı (Fahrenheit), is
placed into a 350ı oven. After one hour, the temperature of the turkey is 100ı. Use
Newton’s law of heating and cooling to find

1. The temperature of the turkey after 2 h
2. How many hours it takes for the temperature of the turkey to reach 170ı

I Solution. In this case, the oven is the surrounding medium and has a constant
temperature of Ta D 350ı so (13) gives

T .t/ D 350C cert :

The initial temperature is T .0/ D 40ı, and this implies 40 D 350 C c and hence
c D �310. To determine r , note that we are given T .1/ D 100. This implies 100 D
T .1/ D 350 � 310er , and solving for r gives r D ln 25

31
� �0:21511. To answer

question (1), compute T .2/ D 350 � 310e2r � 148:39ı. To answer question (2),
we want to find t so that T .t/ D 170, that is, solve 170 D T .t/ D 350 � 310ert .
Solving this gives rt D ln 18

31
so t � 2:53 h � 2 h 32 min. J
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The Malthusian Growth Model

Let P.t/ represent the number of individuals in a population at time t . Two factors
influence its growth: the birth rate and the death rate. Let b.t/ and d.t/ denote the
birth and death rates, respectively. Then P 0.t/ D b.t/ � d.t/: In the Malthusian
growth model, the birth and death rates are assumed to be proportional to the
number in the population. Thus

b.t/ D ˇP.t/ and d.t/ D ıP.t/; (14)

for some real constants ˇ and ı. We are thus led to the differential equation

P 0.t/ D .ˇ � ı/P.t/ D rP.t/; (15)

where r D ˇ � ı. Except for the notation, this equation is the same as the equation
that modeled radioactive decay. The same calculation gives

P.t/ D P0e
rt ; (16)

for the solution of this differential equation, where P0 D P.0/ is the initial
population. The constant r is referred to as the Malthusian parameter.

Example 10. Suppose 50 bacteria are placed in a Petri dish. After 30min there are
120 bacteria. Assume the Malthusian growth model. How many bacteria will there
be after 2 h? After 6 h?

I Solution. The initial population is P0 D 50. After 30min we have 120 D
P.30/ D P0ert jtD30 D 50e30r . This implies that the Malthusian parameter is
r D 1

30
ln 12

5
. In 120 min, we have

P.120/ D P0ert
ˇ̌
tD120

D 50e
120
30 ln 12

5 � 1; 659:

In 6 h or 360min, we have

P.360/ D P0e
rt

ˇ̌
tD360

D 50e
360
30 ln 12

5 � 1; 826; 017: J

While the Malthusian model may be a reasonable model for short periods of
time, it does not take into account growth factors such as disease, overcrowding,
and competition for food that come into play for large populations and are not seen
in small populations. Thus, while the first calculation in the example above may be
plausible, it is likely implausible for the second calculation.
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The Logistic Growth Model

Here we generalize the assumptions made in the Malthusian model about the birth
and death rates.8 In a confined environment, resources are limited. Hence, it is
reasonable to assume that as a population grows, the birth and death rates will
decrease and increase, respectively. From (14), the per capita birth rate in the
Malthusian model, b.t/=P.t/ D ˇ, is constant. Now assume it decreases linearly
with the population, that is, b.t/=P.t/ D ˇ � kˇP.t/; for some positive constant
kˇ . Similarly, assume the per capita death rate increases linearly with the population,
that is, d.t/=P.t/ D ı C kıP.t/, for some positive constant kı. We are then led to
the following birth and death rate models:

b.t/ D .ˇ � kˇP.t//P.t/ and d.t/ D .ı C kıP.t//P.t/: (17)

Since the rate of change of population is the difference between the birth rate and
death rate, we conclude

P 0.t/ D b.t/� d.t/

D ..ˇ � ı/ � .kˇ C kı/P.t//P.t/

D .ˇ � ı/
�
1 � kˇ C kı

ˇ � ı
P.t/

�
P.t/

D r

�
1 � P.t/

m

�
P.t/; (18)

where we set r D ˇ � ı and m D .ˇ � ı/=.kˇ C kı/ . Equation (18) shows that
under the assumption (17), the population is a solution of the differential equation

P 0 D r

�
1 � P

m

�
P; (19)

which is known as the logistic differential equation or the Verhulst population
differential equation in its classical form. The parameter r is called the Malthusian
parameter; it represents the rate at which the population would grow if it were
unencumbered by environmental constraints. The number m is called the carrying
capacity of the population, which, as explained below, represents the maximum
population possible under the given model.

8A special case was discussed in Exercise 2 of Sect. 1.1.
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To solve the logistic differential equation (19), first note that the equation is
separable since the right-hand side of the equation depends only on the dependent
variable P . Next observe there are two equilibrium solutions obtained by constant
solutions of the equation

r

�
1 � P

m

�
P D 0:

These equilibrium (constant) solutions are P.t/ D 0 and P.t/ D m. Now proceed
to the separation of variables algorithm. Separating the variables in (19) gives

1�
1 � P

m

�
P

dP D r dt:

In order to integrate the left-hand side of this equation, it is first necessary to use
partial fractions to get

1�
1 � P

m

�
P

D m

.m � P/P
D 1

m � P C 1

P
:

Thus, the separated variables form of (19) suitable for integration is
�

1

m� P
C 1

P

�
dP D r dt:

Integrating the left side with respect to P and the right side with respect to t gives

� ln jm� P j C ln jP j D ln jP=.m � P/j D rt C k;

where k is the constant of integration. Using the same algebraic techniques
employed in Example 4 and the earlier examples on radioactive decay and Newton’s
law of cooling, we get

P

m � P D cert ;

for some real constant c. To solve for P , note that

P D cert .m � P/ D cmert � Pcert H) P.1C cert / D cmert :

This gives

P.t/ D cmert

1C cert

D cm

e�rt C c
; (20)
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where the second equation is obtained from the first by multiplying the numerator
and denominator by e�rt .

The equilibrium solution P.t/ D 0 is obtained by setting c D 0. The equilibrium
solution P.t/ D m does not occur for any choice of c, so this solution is an extra
one. Also note that since r D ˇ � ı > 0 assuming that the birth rate exceeds the
death rate, we have limt!1 e�rt D 0 so

lim
t!1P.t/ D lim

t!1
cm

e�rt C c
D cm

c
D m;

independent of c ¤ 0. What this means is that if we start with a positive population,
then over time, the population will approach a maximum (sustainable) populationm.
This is the interpretation of the carrying capacity of the environment.

When t D 0, we get P.0/ D cm
1Cc and solving for c gives c D P.0/

m�P.0/ .
Substituting c into (20) and simplifying give

P.t/ D mP.0/

P.0/C .m � P.0//e�rt : (21)

Equation (21) is called the logistic equation. That is, the logistic equation refers to
the solution of the logistic differential equation. Below is its graph. You will note
that the horizontal line P D m is an asymptote. You can see from the graph that
P.t/ approaches the limiting populationm as t grows.

0

0

m

The graph of the logistic equation: P.t/ D mP.0/

P.0/C .m � P.0//e�rt

Example 11. Suppose biologists stock a lake with 200 fish and estimate the
carrying capacity of the lake to be 10;000 fish. After two years, there are 2;500
fish. Assume the logistic growth model and estimate how long it will take for there
to be 9;000 fish.
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I Solution. The initial population is P.0/D 200 and the carrying capacity is
mD 10;000. Thus, the logistic equation, (21), is

P.t/ D mP.0/

P.0/C .m � P.0//e�rt D 2;000;000

200C 9;800e�rt D 10;000

1C 49e�rt :

Now let t D 2 (assume that time is measured in years). Then we get 2;500 D
10;000=.1C 49e�2r/, and solving for r gives r D 1

2
ln 49

3
. Now we want to know

for what t is P.t/ D 9;000. With r as above the equation P.t/ D 9;000 can be
solved for t to give

t D 2 ln 441

ln 49
3

� 4:36 years:

The logistics growth model predicts that the population of fish will reach 9;000 in
4:36 years. J
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Exercises

1–9. In each of the following problems, determine whether or not the equation is
separable. Do not solve the equations!

1. y0 D 2y.5 � y/
2. yy0 D 1 � y

3. t2y0 D 1 � 2ty
4.
y0

y
D y � t

5. ty0 D y � 2ty
6. y0 D ty2 � y2 C t � 1

7. .t2 C 3y2/y0 D �2ty
8. y0 D t2 C y2

9. et y0 D y3 � y
10–30. Find the general solution of each of the following differential equations.
If an initial condition is given, find the particular solution that satisfies this initial
condition.

10. yy0 D t , y.2/ D �1
11. .1 � y2/� tyy0 D 0

12. y3y0 D t

13. y4y0 D t C 2

14. y0 D ty2

15. y0 C .tan t/y D tan t , ��
2
< t < �

2

16. y0 D tmyn, wherem and n are positive integers, n ¤ 1.
17. y0 D 4y � y2

18. yy0 D y2 C 1

19. y0 D y2 C 1

20. tyy0 C t2 C 1 D 0

21. y C 1C .y � 1/.1C t2/y0 D 0

22. 2yy0 D et

23. .1 � t/y0 D y2

24. dy
dt � y D y2; y.0/ D 0:

25. y0 D 4ty2; y.1/ D 0

26. dy
dx D xyC2y

x
; y.1/ D e

27. y0 C 2yt D 0; y.0/ D 4

28. y0 D cot y
t
; y.1/ D �

4

29. .u2C1/
y

dy
du D u; y.0/ D 2

30. ty � .t C 2/y0 D 0

31. Solve the initial value problem

y0 D y2 C 1

t2
y.1/ D p

3:
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Determine the maximum interval .a; b/ on which this solution is defined. Show
that limt!b� y.t/ D 1.

32–34. Radioactive Decay

32. A human bone is found in a melting glacier. The carbon-14 content of the bone
is only one-third of the carbon-14 content in a similar bone today. Estimate the
age of the bone? The half-life of C-14 is 5,730 years.

33. Potassium-40 is a radioactive isotope that decays into a single argon-40 atom
and other particles with a half-life of 1:25 billion years. A rock sample was
found that contained 8 times as many potassium-40 atoms as argon-40 atoms.
Assume the argon-40 only comes from radioactive decay. Date the rock to the
time it contained only potassium-40.

34. Cobalt 60 is a radioactive isotope used in medical radiotherapy. It has a half-life
of 5:27 years. How long will it take for a sample of cobalt 60 to reduce to 30%
of the original?

35–40. In the following problems, assume Newton’s law of heating and cooling.

35. A bottle of your favorite beverage is at room temperature, 70ıF, and it is then
placed in a tub of ice water at time t D 0. After 30min, the temperature is 55ı.
Assuming Newton’s law of heating and cooling, when will the temperature drop
to 45ı.

36. A cup of coffee, brewed at 180ı (Fahrenheit), is brought into a car with inside
temperature 70ı. After 3min, the coffee cools to 140ı. What is the temperature
2 min later?

37. The temperature outside a house is 90ı, and inside it is kept at 65ı. A thermo-
meter is brought from the outside reading 90ı, and after 2min, it reads 85ı. How
long will it take to read 75ı? What will the thermometer read after 20min?

38. A cold can of soda is taken out of a refrigerator with a temperature of 40ı
and left to stand on the counter top where the temperature is 70ı. After 2 h the
temperature of the can is 60ı. What was the temperature of the can 1 h after it
was removed from the refrigerator?

39. A large cup of hot coffee is bought from a local drive through restaurant and
placed in a cup holder in a vehicle. The inside temperature of the vehicle is
70ı Fahrenheit. After 5min the driver spills the coffee on himself and receives
a severe burn. Doctors determine that to receive a burn of this severity, the
temperature of the coffee must have been about 150ı. If the temperature of
the coffee was 142ı six minutes after it was sold what was the temperature at
which the restaurant served it.

40. A student wishes to have some friends over to watch a football game. She wants
to have cold beer ready to drink when her friends arrive at 4 p.m. According to
her taste, the beer can be served when its temperature is 50ı. Her experience
shows that when she places 80ı beer in the refrigerator that is kept at a constant
temperature of 40ı, it cools to 60ı in an hour. By what time should she put the
beer in the refrigerator to ensure that it will be ready for her friends?
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41–43. In the following problems, assume the Malthusian growth model.

41. The population of elk in a region of a national forest was 290 in 1980 and 370
in 1990. Forest rangers want to estimate the population of elk in 2010. They
assume the Malthusian growth model. What is their estimate?

42. The time it takes for a culture of 40 bacteria to double its population is 3 h. How
many bacteria are there at 30 h?

43. If it takes 5 years for a certain population to triple in size, how long does it take
to double in size?

44–47. In the following problems, assume the logistic growth model.

44. The population of elk in a region of a national forest was 290 in 1980 and 370
in 1990. Experienced forest rangers estimate that the carrying capacity of the
population of elk for the size and location of the region under consideration
is 800. They want to estimate the population of elk in 2010. They assume the
logistic growth model. What is their estimate?

45. A biologist is concerned about the rat population in a closed community in a
large city. Initial readings 2 years ago gave a population of 2;000 rats, but now
there are 3;000. The experienced biologist estimates that the community cannot
support more than 5;000. The alarmed mayor tells the biologist not to reveal
that to the general public. He wants to know how large the population will be at
election time two years from now. What can the biologist tell him?

46. Assuming the logistics equation P.t/ D mP0
P0C.m�P0/e�rt , suppose P.0/ D P0,

P.t0/ D P1, and P.2t0/ D P2. Show

m D P1 .P1.P0 C P2/� 2P0P2/

P 2
1 � P0P2

;

r D 1

t0
ln

�
P2.P1 � P0/
P0.P2 � P1/

�
:

47. Four hundred butterflies are introduced into a closed community of the rain-
forest and subsequently studied. After 3 years, the population increases to 700,
and 3 years thereafter, the population increases to 1;000. What is the carrying
capacity?
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1.4 Linear First Order Equations

A first order differential equation that can be written in the form

y0 C p.t/y D f .t/ (1)

is called a linear first order differential equation or just linear, for short. We
will say that (1) is the standard form for a linear differential equation.9 We
will assume that the coefficient function, p, and the forcing function, f , are
continuous functions on an interval I . In later chapters, the continuity restrictions
will be removed. Equation (1) is homogeneous if the forcing function is zero on
I and nonhomogeneous if the forcing function f is not zero. Equation (1) is
constant coefficient provided the coefficient function p is a constant function, that
is, p.t/ D p0 2 R for all t 2 I .

Example 1. Characterize the following list of first order differential equations:

1. y0 D y � t 2. y0 C ty D 0

3. y0 D sec t 4. y0 C y2 D t

5. ty0 C y D t2 6. y0 � 3
t
y D t4

7. y0 D 7y 8. y0 D tan.ty/

I Solution. The presence of the term y2 in (4) and the presence of the term tan.ty/
in (8) prevent them from being linear. Equation (1), (5), and (7) can be written
y0 � y D �t , y0 C .1=t/y D t , and y0 � 7y D 0, respectively. Thus, all but (4)
and (8) are linear. Equations (2) and (7) are homogeneous. Equations (1), (3), (5),
and (6) are nonhomogeneous. Equations (1), (3), and (7) are constant coefficient.
The interval of continuity for the forcing and coefficient functions is the real line for
(1), (2), (7); an interval of the form .��

2
Cm�; �

2
Cm�/,m an integer, for (3); and

.�1; 0/ or .0;1/ for (5) and (6). J

Notice (2), (3), and (7) are also separable. Generally, this occurs when either the
coefficient function, p.t/, is zero or the forcing function, f .t/, is zero. Thus, there
is an overlap between the categories of separable and linear differential equations.

9This conflicts with the use of the term standard form, given in Sect. 1.1, where we meant a first
order differential equation written in the form y0 D F.t; y/. Nevertheless, in the context of first
order linear differential equations, we will use the term standard form to mean an equation written
as in (1).
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A Solution Method for Linear Equations

Consider the following two linear differential equations:

ty0 C 2y D 4; (2)

t2y0 C 2ty D 4t: (3)

They both have the same standard form

y0 C 2

t
y D 4

t
(4)

so they both have the same solution set. Further, multiplying (4) by t and t2 gives (2)
and (3), respectively. Now (2) is simpler than (3) in that it does not have a needless
extra factor of t . However, (3) has an important redeeming property that (2) does
not have, namely, the left-hand side is a perfect derivative, by which we mean that
t2y0 C 2ty D .t2y/0. Just apply the product rule to check this. Thus, (3) can be
rewritten in the form

.t2y/0 D 4t; (5)

and it is precisely this form that leads to the solution: Integrating both sides with
respect to t gives t2y D 2t2 C c and dividing by t2 gives

y D 2C ct�2; (6)

where c is an arbitrary real number. Of course, we could have multiplied (4) by any
function, but of all functions, it is only �.t/ D t2 (up to a multiplicative scalar) that
simplifies the left-hand side as in (5).

The process just described generalizes to an arbitrary linear differential equation
in standard form

y0 C py D f: (7)

That is, we can find a function � so that when the left side of (7) is multiplied by
�, the result is a perfect derivative .�y/0 with respect to the t variable. This will
require that

�y0 C �py D .�y/0 D �y0 C �0y: (8)

Such a function� is called an integrating factor. To find�, note that simplifying (8)
by canceling �y0 gives �py D �0y, and we can cancel y (assuming that y.t/ ¤ 0)
to get

�0 D �p; (9)
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a separable differential equation for the unknown function �. Separating variables
gives �0=� D p and integrating both sides gives ln j�j D P , where P D R

p dt
is any antiderivative of p. Taking the exponential of both sides of this equation
produces a formula for the integrating factor

� D eP D e
R
p dt I (10)

namely, � is the exponential of any antiderivative of the coefficient function. For
example, the integrating factor �.t/ D t2 found in the example above is derived as
follows: the coefficient function in (4) is p.t/ D 2=t . An antiderivative is P.t/ D
2 ln t D ln t2 and hence �.t/ D eP.t/ D eln t 2 D t2.

Once an integrating factor is found, we can solve (7) in the same manner as the
example above. First multiplying (7) by the integrating factor gives �y0 C �py D
�f . By (8), �y0 C �py D .�y/0 so we get

.�y/0 D �f: (11)

Integrating both sides of this equation gives �y D R
�f dt C c, and hence,

y D 1

�

Z
�f dt C c

�
;

where c is an arbitrary constant.
It is easy to check that the formula we have just derived is a solution. Further, we

have just shown that any solution takes on this form. We summarize this discussion
in the following theorem:

Theorem 2. Let p and f be continuous functions on an interval I . A function y is
a solution of the first order linear differential equation y0 C py D f on I if and
only if

Solution of First Order Linear Equations

y D 1

�

R
�f dt C c

�
;

where c 2 R, P is any antiderivative of p on the interval I , and � D eP .

The steps needed to derive the solution when dealing with concrete examples are
summarized in the following algorithm.

Algorithm 3. The following procedure is used to solve a first order linear differen-
tial equation.
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Solution Method for First Order Linear Equations

1. Put the given linear equation in standard form: y0 C py D f .
2. Find an integrating factor, �: To do this, compute an antiderivative
P D R

p dt and set � D eP .
3. Multiply the equation (in standard form) by �: This yields

�y0 C �0y D �f:

4. Simplify the left-hand side: Since .�y/0 D �y0 C �0y, we get

.�y/0 D �f:

5. Integrate both sides of the resulting equation: This yields

�y D
Z
�f dt C c:

6. Divide by � to get the solution y:

y D 1

�

Z
�f dt C c

�
: (12)

Remark 4. You should not memorize formula (12). What you should remember
instead is the sequence of steps in Algorithm 3, and apply these steps to each
concretely presented linear first order differential equation.

Example 5. Find all solutions of the differential equation

t2y0 C ty D 1

on the interval .0;1/.

I Solution. We shall follow Algorithm 3 closely. First, we put the given linear
differential equation in standard form to get

y0 C 1

t
y D 1

t2
: (13)

The coefficient function is p.t/ D 1=t and its antiderivative is P.t/ D ln jt j D ln t
(since we are on the interval .0; 1/, t D jt j). It follows that the integrating factor
is �.t/ D eln t D t . Multiplying (13) by �.t/ D t gives

ty0 C y D 1

t
:
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Next observe that the left side of this equality is equal to d
dt .ty/. Thus,

d

dt
.ty/ D 1

t
:

Now take antiderivatives of both sides to get

ty D ln t C c;

where c 2 R. Now dividing by the integrating factor �.t/ D t gives the solution

y.t/ D ln t

t
C c

t
: J

Example 6. Find all solutions of the differential equation

y0 D .tan t/y C cos t

on the interval I D .��
2
; �
2
/.

I Solution. We first write the given equation in standard form to get

y0 � .tan t/y D cos t:

The coefficient function is p.t/ D � tan t (it is a common mistake to forget the
minus sign). An antiderivative isP.t/ D � ln sec t D ln cos t . It follows that�.t/ D
eln cos t D cos t is an integrating factor. We now multiply by � to get .cos t/y0 �
.sin t/y D cos2 t , and hence,

..cos t/y/0 D cos2 t:

Integrating both sides, taking advantage of double angle formulas, gives

.cos t/y D
Z

cos2 t dt D
Z
1

2
.cos 2t C 1/ dt

D 1

2
t C 1

4
sin 2t C c

D 1

2
.t C sin t cos t/C c:
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Dividing by the integrating factor �.t/ D cos t gives the solution

y D 1

2
.t sec t C sin t/C c sec t: J

Example 7. Find the solution of the differential equation

y0 C y D t;

with initial condition y.0/ D 2.

I Solution. The given differential equation is in standard form. The coefficient
function is the constant function p.t/ D 1. Thus, �.t/ D e

R
1 dt D et . Multiplying

by et gives et y0 C et y D tet which is

.et y/0 D tet :

Integrating both sides gives et y D R
tet dt D tet � et C c, where

R
tet dt is

calculated using integration by parts. Dividing by et gives

y D t � 1C ce�t :

Now the initial condition implies 2 D y.0/ D 0� 1C c and hence c D 3. Thus,

y D t � 1C 3e�t : J

Initial Value Problems

In many practical problems, an initial value may be given. As in Example 7 above,
the initial condition may be used to determine the arbitrary scalar in the general
solution once the general solution has been found. It can be useful, however, to
have a single formula that directly encodes the initial value in the solution. This is
accomplished by the following corollary to Theorem 2, which also establishes the
uniqueness of the solution.

Corollary 8. Let p and f be continuous on an interval I , t0 2 I , and y0 2 R.
Then the unique solution of the initial value problem

y0 C py D f; y.t0/ D y0 (14)
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is given by

y.t/ D e�P.t/
Z t

t0

eP.u/f .u/ du C y0e
�P.t/; (15)

where P.t/ D R t
t0
p.u/ du.

Proof. Let y be given by (15). Since P is an antiderivative of p, it follows that
� D eP is an integrating factor. Replacing eP and e�P in the formula by � and
��1, respectively, we see that y has the form given in Theorem 2. Hence, y.t/ is a
solution of the linear first order equation y0 C p.t/y D f .t/. Moreover, P.t0/ DR t0
t0
p.u/ du D 0, and

y.t0/ D y0e
�P.t0/ C e�P.t0/

Z t0

t0

eP.u/f .u/ du D y0;

so that y.t/ is a solution of the initial value problem given by (14). As to uniqueness,
suppose that y1.t/ is any other such solution. Set y2.t/ D y.t/ � y1.t/. Then

y0
2 C py2 D y0 � y0

1 C p.y � y1/

D y0 C py � .y0
1 C py1/

D f � f D 0:

Further, y2.t0/ D y.t0/ � y1.t0/ D 0. It follows from Theorem 2 that y2.t/ D
ce� QP .t/ for some constant c 2 R and an antiderivative QP.t/ of p.t/. Since y2.t0/ D
0 and e� QP .t0/ 6D 0, it follows that c D 0. Thus, y.t/ � y1.t/ D y2.t/ D 0 for all
t 2 I . This shows that y1.t/ D y.t/ for all t 2 I , and hence, y.t/ is the only
solution of (14). ut
Example 9. Use Corollary 8 to find the solution of the differential equation

y0 C y D t;

with initial condition y.0/ D 2.

I Solution. The coefficient function is p.t/ D 1. Thus, P.t/ D R t
0
p.u/ du D

ujt0 D t , eP.t/ D et and e�P.t/ D e�t . Let y be given as in the corollary. Then

y.t/ D e�P.t/
Z t

t0

eP.u/f .u/ du C y0e�P.t/

D e�t
Z t

0

ueu du C 2e�t
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D e�t .ueu � eu/jt0 C 2e�t

D e�t �
tet � et � .�1/� C 2e�t

D t � 1C e�t C 2e�t D t � 1C 3e�t :

Rather than memorizing (15), it is generally easier to remember Algorithm 3 and
solve such problems as we did in Example 7. J

Example 10. Find the solution of the initial value problem

y0 C y D 1

1� t
;

with y.0/ D 0 on the interval .�1; 1/.

I Solution. By Corollary 8, the solution is

y.t/ D e�t
Z t

0

eu

1 � u
du:

Since the function eu

1�u has no closed form antiderivative on the interval .�1; 1/,
we might be tempted to stop at this point and say that we have solved the equation.
While this is a legitimate statement, the present representation of the solution is
of little practical use, and a further detailed study is necessary if you are “really”
interested in the solution. Any further analysis (numerical calculations, qualitative
analysis, etc.) would be based on what type of information you are attempting to
ascertain about the solution. J

Analysis of the General Solution Set

For a linear differential equation y0 C py D f , where p and f are continuous
functions on an interval I , Theorem 2 gives the general solution

y D ��1
Z
�f dt C c��1;

where � D eP , P D R
p dt , and c is an arbitrary constant. We see that the solution

is the sum of two parts.
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The Particular Solution

When we set c D 0 in the general solution above, we get a single fixed solution
which we denote by yp. Specifically,

yp D ��1
Z
�f dt D e�P

Z
eP f dt:

This solution is called a particular solution. Keep in mind though that there are
many particular solutions depending on the antiderivative chosen for

R
eP f dt .

Once an antiderivative is fixed, then the particular solution is determined.

The Homogeneous Solutions

When we set f D 0 in y C py D f , we get what is called the associated
homogeneous equation, y0 Cpy D 0. Its solution is then obtained from the general
solution. The integral reduces to 0 since f D 0 so all that is left is the second
summand ce�P . We set

yh D c��1 D ce�P :

This solution is called the homogeneous solution. The notation is sometimes used
a bit ambiguously. Mostly, we think of yh as a family of functions parameterized by
c. Yet, there are times when we will have a specific c in mind and then yh will be an
actual function. It will be clear from the context which is meant.

The General Solution

The relationship between the general solution yg of y0 C py D f , a particular
solution yp of this equation, and the a homogeneous solution yh, is usually
expressed as

yg D yp C yh: (16)

What this means is that every solution to y0 C py D f can be obtained by starting
with a single particular solution yp and adding to that the homogeneous solution yh.
The key observation is the following. Suppose that y1 and y2 are any two solutions
of y0 C py D f . Then

.y2 � y1/
0 C p.y2 � y1/ D .y0

2 C py2/ � .y0
1 C py1/

D f � f

D 0;
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so that y2 � y1 is a homogeneous solution. Let yh D y2 � y1. Then y2 D y1 C yh.
Therefore, given a solution y1.t/ of y0 C p.t/y D f .t/, any other solution y2 is
obtained from y1 by adding a homogeneous solution yh.

Mixing Problems

Example 11. Suppose a tank contains 10L of a brine solution (salt dissolved in
water). Assume the initial concentration of salt is 100 g/L. Another brine solution
flows into the tank at a rate of 3L/min with a concentration of 400 g/L. Suppose the
mixture is well stirred and flows out of the tank at a rate of 3L/min. Let y.t/ denote
the amount of salt in the tank at time t . Find y.t/. The following diagram may be
helpful to visualize this problem.

Salt Water

I Solution. Here again is a situation in which it is best to express how a quantity
like y.t/ changes. If y.t/ represents the amount (in grams) of salt in the tank, then
y0.t/ represents the total rate of change of salt in the tank with respect to time. It is
given by the difference of two rates: the input rate of salt in the tank and the output
rate of salt in the tank. Thus,

y0 D input rate � output rate: (17)

Both the input rate and output rate of salt are determined by product of the flow rate
of the brine and the concentration of the brine solution. Specifically,

amount of salt

unit of time
D volume of brine

unit of time
� amount of salt

volume of brine
; (18)

In this example, the units of measure are liters(L), grams(g), and minutes(min).
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Input Rate of Salt Since the inflow rate is 3 L/min and the concentration is fixed
at 400 g/L we have

input rate D 3
L

min
� 400 g

L
D 1200

g

min
:

Output Rate of Salt The outflow rate is likewise 3 L/min. However, the concen-
tration of the solution that leaves the tank varies with time. Since the amount of salt
in the tank is y.t/ g and the volume of fluid is always 10 L (the inflow and outflow
rates are the same (3 L/min) so the volume never changes), the concentration of the
fluid as it leaves the tank is y.t/

10

g
L . We thus have

output rate D 3
L

min
� y.t/

10

g

L
D 3y.t/

10

g

min
:

The initial amount of salt in the tank is y.0/ D 100
g
L � 10 L D 1000 g. Equation

(17) thus leads us to the following linear differential equation

y0 D 1; 200� 3y

10
; (19)

with initial value y.0/ D 1;000.
In standard form, (19) becomes y0C 3

10
y D 1;200. Multiplying by the integrating

factor, e3t=10, leads to .e3t=10y/0 D 1;200e3t=10: Integrating and dividing by the
integrating factor give

y.t/ D 4;000C ce� 3
10 t :

Finally, the initial condition implies 1;000 D y.0/ D 4;000 C c so c D �3;000.
Hence,

y.t/ D 4;000� 3;000e� 3
10 t : (20)

Below we give the graph of (20), representing the amount of salt in the tank at time t .
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You will notice that limt!1.4;000� 3;000e�3t=10/ D 4;000 as indicated by the
horizontal asymptote in the graph. In the long term, the concentration of the brine
in the tank approaches 4;000 g

10 L D 400 g=L. This is expected since the brine coming
into the tank has concentration 400 g/L. J

Problems like Example 11 are called mixing problems and there are many varia-
tions. There is nothing special about the use of a salt solution. Any solvent with
a solute will do. For example, one might want to study a pollutant flowing into a
lake (the tank) with an outlet feeding a water supply for a town. In Example 11,
the inflow and outflow rates were the same but we will consider examples where
this is not the case. We will also consider situations where the concentration of
salt in the inflow is not constant but varies as a function f of time. This function
may even be discontinuous as will be the case in Chap. 6. In Chap. 9, we consider
the case where two or more tanks are interconnected. Rather than memorize some
general formulas, it is best to derive the appropriate differential equation on a case
by case basis. Equations (17) and (18) are the basic principles to model such mixing
problems.

Example 12. A large tank contains 100 gal of brine in which 50 lbs of salt are
dissolved. Brine containing 2 lbs of salt per gallon flows into the tank at the rate
of 6 gal/min. The mixture, which is kept uniform by stirring, flows out of the tank
at the rate of 4 gal/min. Find the amount of salt in the tank at the end of t minutes.
After 50min, how much salt will be in the tank and what will be the volume of
brine? (The units here are abbreviated: gallon(s)=gal, pound(s) =lbs, and minute(s)
= min.)

I Solution. Let y.t/ denote the number of pounds of salt in the tank after t
minutes. Note that in this problem, the difference between inflow and outflow rates
is 2 gal/min. At time t , there will be V.t/ D 100 C 2t gal of brine, and so the
concentration (in lbs/gal) will then be

y.t/

V .t/
D y.t/

100C 2t
:
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We use (18) to compute the input and output rates of salt:

Input Rate

input rate D 6
gal

min
� 2 lbs

gal
D 12

lbs

min
:

Output Rate

output rate D 4
gal

min
� y.t/

100C 2t

lbs

gal
D 4y.t/

100C 2t

lbs

min
:

Applying (17) yields the initial value problem

y0.t/ D 12 � 4y.t/

100C 2t
; y.0/ D 50:

Simplifying and putting in standard form give y0 C 2
50Ct y D 12. The coefficient

function is p.t/ D 2
50Ct , P.t/ D R

p.t/ dt D 2 ln.50 C t/ D ln.50 C t/2, and
the integrating factor is �.t/ D .50 C t/2. Thus, ..50 C t/2y/0 D 12.50 C t/2.
Integrating and simplifying give

y.t/ D 4.50C t/C c

.50C t/2
:

The initial condition y.0/ D 50 implies c D �3.50/3 so

y D 4.50C t/ � 3.50/3

.50C t/2
:

After 50min, there will be y.50/ D 400� 3
8
100 D 362:5 lbs of salt in the tank and

200 gal of brine. J
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Exercises

1–25. Find the general solution of the given differential equation. If an initial
condition is given, find the particular solution which satisfies this initial condition.

1. y0 C 3y D et , y.0/ D �2
2. .cos t/y0 C .sin t/y D 1, y.0/ D 5

3. y0 � 2y D e2t , y.0/ D 4

4. ty0 C y D et

5. ty0 C y D et , y.1/ D 0

6. ty0 Cmy D t ln.t/, where m is a constant

7. y0 D � y

t
C cos.t2/

8. y0 C 2y D sin t

9. y0 � 3y D 25 cos 4t

10. t.t C 1/y0 D 2C y

11. z0 D 2t.z � t2/
12. y0 C ay D b, where a and b are constants

13. y0 C y cos t D cos t , y.0/ D 0

14. y0 � 2

t C 1
y D .t C 1/2

15. y0 � 2

t
y D t C 1

t
, y.1/ D �3

16. y0 C ay D e�at , where a is a constant

17. y0 C ay D ebt , where a and b are constants and b ¤ �a
18. y0 C ay D tne�at , where a is a constant

19. y0 D y tan t C sec t

20. ty0 C 2y ln t D 4 ln t

21. y0 � n

t
y D et tn

22. y0 � y D te2t , y.0/ D a

23. ty0 C 3y D t2, y.�1/ D 2

24. y0 C 2ty D 1, y.0/ D 1

25. t2y0 C 2ty D 1, y.2/ D a

26–33. Mixing Problems

26. A tank contains 100 gal of brine made by dissolving 80 lb of salt in water. Pure
water runs into the tank at the rate of 4 gal/min, and the mixture, which is kept
uniform by stirring, runs out at the same rate. Find the amount of salt in the tank
at any time t . Find the concentration of salt in the tank at any time t .
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27. A tank contains 10 gal of brine in which 2 lb of salt is dissolved. Brine
containing 1 lb of salt per gallon flows into the tank at the rate of 3 gal/min,
and the stirred mixture is drained off the tank at the rate of 4 gal/min. Find the
amount y.t/ of salt in the tank at any time t .

28. A tank holds 10L of pure water. A brine solution is poured into the tank at a
rate of 1L/min and kept well stirred. The mixture leaves the tank at the same
rate. If the brine solution has a concentration of 10 g of salt per liter, what will
the concentration be in the tank after 10min.

29. A 30-L container initially contains 10L of pure water. A brine solution
containing 20 g of salt per liter flows into the container at a rate of 4L/min.
The well-stirred mixture is pumped out of the container at a rate of 2L/min.

(a) How long does it take for the container to overflow?
(b) How much salt is in the tank at the moment the tank begins to overflow?

30. A 100-gal tank initially contains 10 gal of fresh water. At time t D 0, a
brine solution containing 0:5 lb of salt per gallon is poured into the tank at the
rate of 4 gal/min while the well-stirred mixture leaves the tank at the rate of
2 gal/min.

(a) Find the time T it takes for the tank to overflow.
(b) Find the amount of salt in the tank at time T .
(c) If y.t/ denotes the amount of salt present at time t , what is limt!1 y.t/?

31. For this problem, our tank will be a lake and the brine solution will be polluted
water entering the lake. Thus, assume that we have a lake with volume V which
is fed by a polluted river. Assume that the rate of water flowing into the lake
and the rate of water flowing out of the lake are equal. Call this rate r , let c be
the concentration of pollutant in the river as it flows into the lake, and assume
perfect mixing of the pollutant in the lake (this is, of course, a very unrealistic
assumption).

(a) Write down and solve a differential equation for the amount P.t/ of
pollutant in the lake at time t and determine the limiting concentration of
pollutant in the lake as t ! 1.

(b) At time t D 0, the river is cleaned up, so no more pollutant flows into the
lake. Find expressions for how long it will take for the pollution in the lake
to be reduced to (i) 1/2 and (ii) 1/10 of the value it had at the time of the
cleanup.

(c) Assuming that Lake Erie has a volume V of 460 km3 and an inflow–outflow
rate of r D 175 km3/year, give numerical values for the times found in Part
(b). Answer the same question for Lake Ontario, where it is assumed that
V D 1640 km3 and r D 209 km3/year.

32. Two tanks, Tank 1 and Tank 2, are arranged so that the outflow of Tank 1 is
the inflow of Tank 2. Each tank initially contains 10 L of pure water. A brine
solution with concentration 100 g/L flows into Tank 1 at a rate of 4L/min. The
well-stirred mixture flows into Tank 2 at the same rate. In Tank 2, the mixture is
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well stirred and flows out at a rate of 4L/min. Find the amount of salt in Tank 2
at any time t . The following diagram may be helpful to visualize this problem.

Tank 1

Tank 2

33. Two large tanks, Tank 1 and Tank 2, are arranged so that the outflow of Tank 1
is the inflow of Tank 2, as in the configuration of Exercise 32. Tank 1 initially
contains 10 L of pure water while Tank 2 initially contains 5 L of pure water. A
brine solution with concentration 10 g/L flows into Tank 1 at a rate of 4L/min.
The well-stirred mixture flows into Tank 2 at a rate of 2L/min. In Tank 2, the
mixture is well stirred and flows out at a rate of 1 liter per minute. Find the
amount of salt in Tank 2 before either Tank 1 or Tank 2 overflows.



62 1 First Order Differential Equations



1.5 Substitutions 63

1.5 Substitutions

Just as a complicated integral may be simplified into a familiar integral form by
a judicious substitution, so too may a differential equation. Generally speaking,
substitutions take one of two forms. Either we replace y in y0 D F.t; y/ by some
function y D �.t; v/ to get a differential equation v0 D G.t; v/ in v and t , or we set
z D  .t; y/ for some expression  .t; y/ that appears in the formula for F.t; y/,
resulting in a differential equation z0 D H.t; z/ in z and t . Of course, the goal is
that this new differential equation will fall into a category where there are known
solution methods. Once the unknown function v (or z) is determined, then y can be
determined by y D �.t; v/ (or implicitly by z D  .t; y/). In this section, we will
illustrate this procedure by discussing the homogeneous and Bernoulli equations,
which are simplified to separable and linear equations, respectively, by appropriate
substitutions.

Homogeneous Differential Equations

A homogeneous differential equation10 is a first order differential equation that can
be written in the form

y0 D f
�y
t

�
; (1)

for some function f . To solve such a differential equation, we use the substitution
y D tv, where v D v.t/ is some unknown function and rewrite (1) as a differential
equation in terms of t and v. By the product rule, we have y0 D v C tv0. Substituting
this into (1) gives v C tv0 D f .tv=t/ D f .v/, a separable differential equation for
which the variables t and v may be separated to give

dv

f .v/� v
D dt

t
: (2)

Once v is found we may determine y by the substitution y D tv. It is not useful to
try to memorize (2). Rather, remember the substitution method that leads to it. As
an illustration, consider the following example.

Example 1. Solve the following differential equation:

y0 D t C y

t � y
:

10Unfortunately, the term “homogeneous” used here is the same term used in Sect. 1.4 to describe
a linear differential equation in which the forcing function is zero. These meanings are different.
Usually, context will determine the appropriate meaning.
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I Solution. This differential equation is neither separable nor linear. However, it
is homogeneous since we can write the right-hand side as

t C y

t � y
D .1=t/

.1=t/

t C y

t � y D 1C .y=t/

1� .y=t/
;

which is a function of y=t . Let y D tv, so that y0 D v C tv0. The given differential
equation can then be written as

v C tv0 D 1C v

1� v
:

Now subtract v from both sides and simplify to get

tv0 D 1C v

1� v
� v D 1C v2

1 � v
:

Separating the variables gives

dv

1C v2
� v dv

1C v2
D dt

t
:

Integrating both sides gives us tan�1 v � .1=2/ ln.1C v2/ D ln tC c. Now substitute
v D y=t to get the implicit solution

tan�1.y=t/ � 1

2
ln.1C .y=t/2/ D ln t C c:

This may be simplified slightly (multiply by 2 and combine the ln terms) to get

2 tan�1.y=t/�ln.t2Cy2/ D 2c: J

A differential equation y0 D F.t; y/ is homogeneous if we can write F.t; y/ D
f .y=t/, for some function f . This is what we did in the example above. To help
identify situations where the identification F.t; y/ D f .y=t/ is possible, we
introduce the concept of a homogeneous function. A function p.t; y/ is said to be
homogeneous of degree n if p.˛t; ˛y/ D ˛np.t; y/, for all ˛ > 0. To simplify the
terminology, we will call a homogeneous function of degree zero just homogeneous.
For example, the polynomials t3 C ty2 and y3 are both homogeneous of degree 3.
Their quotient F.t; y/ D .t3 C ty2/=y3 is a homogeneous function. Indeed, if
˛ > 0, then

F.˛t; ˛y/ D .˛t/3 C .˛t/.˛y/2

.˛y/3
D ˛3

˛3
t3 C ty2

y3
D F.t; y/:
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In fact, it is easy to see that the quotient of any two homogeneous functions of the
same degree is a homogeneous function. Suppose t > 0 and let ˛ D 1=t . For a
homogeneous function F , we have

F.t; y/ D F

�
1

t
t;
1

t
y

�
D F

�
1;
y

t

�
:

Similarly, if t < 0 and ˛ D �1=t then

F.t; y/ D F

��1
t
t;

�1
t
y

�
D F

�
�1;�y

t

�
:

Therefore, if F.t; y/ is homogeneous, then F.t; y/ D f .t=y/ where

f
�y
t

�
D

8<
:
F

�
1;
y

t

�
if t > 0;

F
�
�1;�y

t

�
if t < 0

so that we have the following useful criterion for identifying homogeneous func-
tions:

Lemma 2. If F.t; y/ is a homogeneous function, then it can be written in the form

F.t; y/ D f
�y
t

�
;

for some function f . Furthermore, the differential equation y0 D F.t; y/ is a
homogeneous differential equation.

Example 3. Solve the following differential equation

y0 D t2 C 2ty � y2

2t2
:

I Solution. Since the numerator and denominator are homogeneous of degree
2, the quotient is homogeneous. Letting y D tv and dividing the numerator and
denominator of the right-hand side by t2, we obtain

v C tv0 D 1C 2v � v2

2
:

Subtracting v from both sides gives tv0 D 1�v2

2
. There are two equilibrium solutions:

v D ˙1. If v ¤ ˙1, separate the variables to get

2 dv

1 � v2
D dt

t
;
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and apply partial fractions to the left-hand side to conclude

dv

1 � v
C dv

1C v
D dt

t
:

Integrating gives � ln j1 � vj C ln j1C vj D ln jt j C c; exponentiating both sides
gives 1Cv

1�v D kt for k ¤ 0, and simplifying leads to v D kt�1
ktC1 , k ¤ 0. Substituting

y D vt gives the solutions

y D kt2 � t
kt C 1

; k ¤ 0;

whereas the equilibrium solutions v D ˙1 produce the solutions y D ˙t . Note that
for k D 0, we get the solution y D �t , which is one of the equilibrium solutions,
but the equilibrium solution y D t does not correspond to any choice of k. J

Bernoulli Equations

A differential equation of the form

y0 C p.t/y D f .t/yn; (3)

is called a Bernoulli equation.11 If n D 0, this equation is linear, while if n D 1,
the equation is both separable and linear. Thus, we will assume n ¤ 0; 1. Note, also,
that if n > 0, then y D 0 is a solution. Start by dividing (3) by yn to get

y�ny0 C p.t/y1�n D f .t/: (4)

Use the coefficient of p.t/ as a new dependent variable. That is, use the substitution
z D y1�n. Thus, z is treated as a function of t and the chain rule gives z0 D .1 �
n/y�ny0, which is the first term of (4) multiplied by 1 � n. Therefore, substituting
for z and multiplying by the constant .1 � n/ give,

z0 C .1� n/p.t/z D .1 � n/f .t/; (5)

which is a linear first order differential equation in the variables t and z. Equation
(5) can then be solved by Algorithm 3 of Sect. 1.4, and the solution to (3) is obtained
by solving z D y1�n for y (and including y D 0 in the case n > 0).

Example 4. Solve the Bernoulli equation y0 C y D 5.sin 2t/y2.

11Named after Jakoub Bernoulli (1654–1705).
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I Solution. Note first that y D 0 is a solution since n D 2 > 0. After dividing our
equation by y2, we get y�2y0 C y�1 D 5 sin 2t . Let z D y�1. Then z0 D �y�2y0
and substituting gives �z0 C z D 5 sin 2t . In the standard form for linear equations,
this becomes

z0 � z D �5 sin 2t:

We can apply Algorithm 3 of Sect. 1.4 to this linear differential equation. The
integrating factor will be e�t . Multiplying by the integrating factor gives .e�t z/0 D
�5e�t sin 2t . Now integrate both sides to get

e�t z D
Z

�5e�t sin 2t dt D .sin 2t C 2 cos2t/e�t C c;

where
R �5e�t sin 2t dt is computed by using integration by parts twice. Hence,

z D sin 2t C 2 cos 2t C cet :

Now go back to the original function y by solving z D y�1 for y to get

y D z�1 D .sin 2t C 2 cos 2t C cet /�1 D 1

sin 2t C 2 cos 2t C cet
:

This function y, together with y D 0, constitutes the general solution of y0 C y D
5.sin 2t/y2. J

Remark 5. We should note that in the z variable, the solution z D sin t�cos tCcet

is valid for all t in R. This is to be expected. Since z0 � z D �5 sin 2t is linear and
the coefficient function, p.t/ D 1, and the forcing function, f .t/ D �5 sin 2t , are
continuous on R, Theorem 2 of Sect. 1.2 implies that any solution will be defined
on all of R. However, in the y variable, things are very different. The solution y D
1=.sin t�cos tCcet / to the given Bernoulli equation is valid only on intervals where
the denominator is nonzero. This is precisely because of the inverse relationship
between y and z: the location of the zeros of z is precisely where y has a vertical
asymptote. In the figure below, we have graphed a solution in the z variable and
the corresponding solution in the y D 1=z variable. Note that in the y variable, the
intervals of definition are determined by the zeros of z. Again, it is not at all evident
from the differential equation, y0 �y D �2.sin t/y2, that the solution curves would
have “chopped up” intervals of definition. The linear case as described in Theorem
2 of Sect. 1.4 is thus rather special.
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Linear Substitutions

Consider a differential equation of the form

y0 D f .at C by C c/; (6)

where a, b, c are real constants. Let z D at C by C c. Then z0 D a C by0 so
y0 D .z0 � a/=b. Substituting gives .z0 � a/=b D f .z/ which in standard form is

z0 D bf .z/C a;

a separable differential equation. Consider the following example.

Example 6. Solve the following differential equation:

y0 D .t C y C 1/2:

I Solution. Let z D t C y C 1. Then z0 D 1 C y0 so y0 D z0 � 1. Substituting
gives z0 � 1 D z2, and in standard form, we get the separable differential equation
z0 D 1C z2. Separating variables gives

dz

1C z2
D dt:
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Integrating gives tan�1 z D tCc. Thus, z D tan.tCc/. Now substitute z D tCyC1
and simplify to get the solution

y D �t � 1C tan.t C c/: J

Substitution methods are a general way to simplify complicated differential
equations into familiar forms. These few that we have discussed are just some of
many examples that can be solved by the technique of substitution. If you ever come
across a differential equation you cannot solve, try to simplify it into a familiar form
by finding the right substitution.
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Exercises

1–8. Find the general solution of each of the following homogeneous equations. If
an initial value is given, also solve the initial value problem.

1. t2y0 D y2 C yt C t2, y.1/ D 1

2. y0 D 4t � 3y
t � y

3. y0 D y2 � 4yt C 6t2

t2
, y.2/ D 4

4. y0 D y2 C 2yt

t2 C yt

5. y0 D 3y2 � t2

2ty

6. y0 D t2 C y2

ty
, y.e/ D 2e

7. ty0 D y C p
t2 � y2

8. t2y0 D yt C y
p
t2 C y2

9–17. Find the general solution of each of the following Bernoulli equations. If an
initial value is given, also solve the initial value problem.

9. y0 � y D ty2, y.0/ D 1

10. y0 C y D y2, y.0/ D 1

11. y0 C ty D ty3

12. y0 C ty D t3y3

13. .1 � t2/y0 � ty D 5ty2

14. y0 C y

t
D y2=3

15. yy0 C ty2 D t , y.0/ D �2
16. 2yy0 D y2 C t � 1
17. y0 C y D ty3

18. Write the logistic differential equation P 0 D r.1 � P
m
/P ((19) of Sect. 1.3) as

a Bernoulli equation and solve it using the technique described in this section.

19–22. Use an appropriate linear substitution to solve the following differential
equations:

19. y0 D .2t � 2y C 1/�1

20. y0 D .t � y/2

21. y0 D 1

.t C y/2

22. y0 D sin.t � y/
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23–26. Use the indicated substitution to solve the given differential equation.

23. 2yy0 D y2 C t � 1, z D y2 C t � 1 (Compare with Exercise 16.)

24. y0 D tany C 2 cos t

cosy
, z D sin y

25. y0 C y ln y D ty, z D lny
26. y0 D �ey � 1, z D e�y
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1.6 Exact Equations

When y.t/ is any function defined implicitly by an equation

V.t; y/ D c;

that is,
V.t; y.t// D c

for all t in an interval I , implicit differentiation of this equation with respect to t
shows that y.t/ satisfies the equation

0 D d

dt
c D d

dt
V .t; y.t// D @V

@t
.t; y.t//C @V

@y
.t; y.t//y0.t/;

and thus is a solution of the differential equation

@V

@t
C @V

@y
y0 D 0:

For example, any solution y.t/ of the equation y2 C 2yt � y2 D c is a solution of
the differential equation

.2y � 2t/C .2y C 2t/y0 D 0:

Conversely, suppose we are given a differential equation

M CNy0 D 0; (1)

where M and N are functions of the two variables t and y. If there is a function
V.t; y/ for which

M D @V

@t
and N D @V

@y
; (2)

then we can work backward from the implicit differentiation in the previous
paragraph to conclude that any implicitly defined solution of

V.t; y/ D c; (3)

for c an arbitrary constant, is a solution of the differential equation (1). To summa-
rize, if the given functionsM and N in (1) are such that there is a function V.t; y/
for which equations (2) are satisfied, then the solution of the differential equation
(1) is given by the implicitly defined solutions to (3). In this case, we will say that
the differential equationM CNy0 D 0 is an exact differential equation.
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Suppose we are given a differential equationM CNy0 D 0, but we are not given
a priori that M D @V=@t and N D @V=@t . How can we determine if there is such a
function V.t; y/, and if there is, how can we find it? That is, is there a criterion for
determining if a given differential equation is exact, and if so, is there a procedure
for producing the function V.t; y/ that determines the solution via V.t; y/ D c.
The answer to both questions is yes.

A criterion for exactness comes from the equality of mixed partial derivatives.
Recall (from your calculus course) that all functions V.t; y/ whose second partial
derivatives exist and are continuous satisfy12

@

@y

�
@V

@t

�
D @

@t

�
@V

@y

�
: (4)

If the equationMCNy0 D 0 is exact, then, by definition, there is a function V.t; y/
such that @V=@t D M and @V=@y D N , so (4) gives

@M

@y
D @

@y

�
@V

@t

�
D @

@t

�
@V

@y

�
D @N

@t
:

Hence, a necessary condition for exactness of M CNy0 D 0 is

@M

@y
D @N

@t
: (5)

We now ask if this condition is also sufficient for the differential equation M C
Ny0 D 0 to be exact. That is, if (5) is true, can we always find a function V.t; y/
such that M D @V=@t and N D @V=@y? We can easily find V.t; y/ such that

@V

@t
D M (6)

by integrating M with respect to the t variable. After determining V.t; y/ so that
(6) holds, can we also guarantee that @V=@y D N ? Integrating (6) with respect to t ,
treating the y variable as a constant, gives

V D
Z
M dt C �.y/: (7)

The function �.y/ is an arbitrary function of y that appears as the “integration
constant” since any function of y goes to 0 when differentiated with respect to t .
The “integration constant” �.y/ can be determined by differentiating V in (7) with
respect to y and equating this expression to N since @V=@y D N if the differential

12This equation is known as Clairaut’s theorem (after Alexis Clairaut (1713–1765)) on the equality
of mixed partial derivatives.
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equation is exact. Thus (since integration with respect to t and differentiation with
respect to y commute)

@V

@y
D @

@y

Z
M dt C d�

dy
D

Z
@M

@y
dt C d�

dy
D N: (8)

That is,

d�

dy
D N �

Z
@M

@y
dt: (9)

The verification that the function on the right is really a function only of y (as it
must be if it is to be the derivative d�

dy of a function of y) is where condition (5) is
needed. Indeed, using (5)

N �
Z
@M

@y
dt D N �

Z
@N

@t
dt D N � .N C  .y// D � .y/: (10)

Hence, (9) is a valid equation for determining �.y/ in (7).
We can summarize our conclusions in the following result.

Theorem 1 (Criterion for exactness). A first order differential equation

M.t; y/CN.t; y/y0 D 0

is exact if and only if

@M

@y
D @N

@t
: (11)

If this condition is satisfied, then the general solution of the differential equation is
given by V.t; y/ D c, where V.t; y/ is determined by (7) and (9).

The steps needed to derive the solution of an exact equation when dealing with
concrete examples are summarized in the following algorithm.

Algorithm 2. The following procedure is used to solve an exact differential
equation.
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Solution Method for Exact Equations

1. Check the equationM CNy0 D 0 for exactness: To do this, check if

@M

@y
D @N

@t
:

2. Integrate the equationM D @V=@t with respect to t to get

V.t; y/ D
Z
M.t; y/ dt C �.y/; (12)

where the “integration constant” �.y/ is a function of y.

3. Differentiate this expression for V.t; y/ with respect to y, and set it equal
to N :

@

@y

�Z
M.t; y/ dt

�
C d�

dy
D @V

@y
D N.t; y/:

4. Solve this equation for d�
dy :

d�

dy
D N.t; y/ � @

@y

�Z
M.t; y/ dt

�
: (13)

5. Integrate d�
dy to get �.y/ and then substitute in (12) to find V.t; y/.

6. The solution of M CNy0 D 0 is then given by

V.t; y/ D c; (14)

where c is an arbitrary constant.

It is worthwhile to emphasize that the solution to the exact equationM CNy0 D 0

is not the function V.t; y/ found by the above procedure but rather the functions
y.t/ defined by the implicit relation V.t; y/ D c.

Example 3. Determine if the differential equation

.3t2 C 4ty � 2/C .2t2 C 6y2/y0 D 0

is exact. If it is exact, solve it.

I Solution. This equation is in the standard formM CNy0 withM.t; y/ D 3t2C
4ty � 2 and N.t; y/ D 2t2 C 6y2. Then

@M

@y
D 4t D @N

@t
;
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so the exactness criterion is satisfied and the equation is exact. To solve the equation,
follow the solution procedure by computing

V.t; y/ D
Z
.3t2 C 4ty � 2/ dt C �.y/ D t3 C 2t2y � 2t C �.y/;

where �.y/ is a function only of y that is yet to be computed. Now differentiate this
expression with respect to y to get

@V

@y
D 2t2 C d�

dy
:

But since the differential equation is exact, we also have

@V

@y
D N.t; y/ D 2t2 C 6y2;

and combining these last two expressions, we conclude

d�

dy
D 6y2:

Integrating with respect to y gives �.y/ D 2y3 C c0, so that

V.t; y/ D t3 C 2t2y � 2t C 2y3 C c0;

where c0 is a constant. The solutions of the differential equation are then given by
the relation V.t; y/ D c, that is,

t3 C 2t2y � 2t C 2y3 D c;

where the constant c0 has been incorporated in the constant c. J

What happens if we try to solve the equation M.t; y/ C N.t; y/y0 D 0 by the
procedure outlined above without first verifying that it is exact? If the equation is
not exact, you will discover this fact when you get to (9), since d�

dy will not be a
function only of y, as the following example illustrates.

Example 4. Try to solve the equation .t � 3y/C .2t C y/y0 D 0 by the solution
procedure for exact equations.

I Solution. Note that M.t; y/ D t � 3y and N.t; y/ D 2t C y. First apply (12)
to get

V.t; y/ D
Z
M.t; y/; dt D

Z
.t � 3y/ dt D t2

2
� 3ty C �.y/;
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and then determine �.y/ from (13):

d�

dy
D N.t; y/� @

@y

Z
M.t; y/ dt D .2t Cy/� @

@y

�
t2

2
� 3ty C �.y/

�
D y� t:

But we see that there is a problem since d�
dy D y � t involves both y and t . This is

where it becomes obvious that you are not dealing with an exact equation, and you
cannot proceed with this procedure. Indeed, @M=@y D �3 ¤ 2 D @N=@t , so that
this equation fails the exactness criterion (11). J

Integrating Factors

The differential equation
3y2 C 8t C 2tyy0 D 0 (15)

can be written in the form M CNy0 D 0 where

M D 3y2 C 8t and N D 2ty:

Since

@M

@y
D 6y;

@N

@t
D 2y;

the equation is not exact. However, if we multiply (15) by t2, we arrive at an
equivalent differential equation

3y2t2 C 8t3 C 2t3yy0 D 0; (16)

that is exact. Indeed, in the new equation,M D 3y2t2 C 8t3 and N D 2t3y so that
the exactness criterion is satisfied:

@M

@y
D 6yt2 D @N

@t
:

Using the solution method for exact equations, we find

V.t; y/ D
Z �

3y2t2 C 8t3
�

dt D y2t3 C 2t4 C �.y/;

where

@V

@y
D 2yt3 C d�

dy
D N D 2t3y:
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Thus, d�
dy D 0 so that

V.t; y/ D y2t3 C 2t4 C c0:

Therefore, incorporating the constant c0 into the general constant c, we have

y2t3 C 2t4 D c;

as the solution of (16) and, hence, also of the equivalent equation (15). Thus,
multiplication of the nonexact equation (15) by the function t2 has produced an
exact equation (16) that is easily solved.

This suggests the following question. Can we find a function �.t; y/ so that
multiplication of a nonexact equation

M CNy0 D 0 (17)

by � produces an equation
�M C �Ny0 D 0 (18)

that is exact? When there is such a �, we call it an integrating factor for (17).
The exactness criterion for (18) is

@.�M/

@y
D @.�N/

@t
:

Written out, this becomes

�
@M

@y
CM

@�

@y
D �

@N

@t
CN

@�

@t
;

which implies
@�

@t
N � @�

@y
M D

�
@M

@y
� @N

@t

�
�: (19)

Thus, it appears that the search for an integrating factor for the nonexact ordinary
differential equation (17) involves the solution of (19), which is a partial differential
equation for �. In general, it is quite difficult to solve (19). However, there are some
special situations in which it is possible to use (19) to find an integrating factor �.
One such example occurs if � is a function only of t . In this case, @�=@t D d�=dt
and @�=@y D 0 so (19) can be written as

1

�

d�

dt
D @M=@y � @N=@t

N
: (20)

Since the left-hand side of this equation depends only on t , the same must be true
of the right-hand side. We conclude that we can find an integrating factor � D �.t/
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consisting of a function only of t provided the right-hand side of (20) is a function
only of t . If this is true, then we put

@M=@y � @N=@t

N
D p.t/; (21)

so that (20) becomes the linear differential equation �0 D p.t/�, which has the
solution

�.t/ D e
R
p.t/ dt : (22)

After multiplication of (17) by this �.t/, the resulting equation is exact, and the
solution is obtained by the solution method for exact equations.

Example 5. Find an integrating factor for the equation

3y2 C 8t C 2tyy0 D 0:

I Solution. This equation is (15). Since

@M=@y � @N=@t

N
D 6y � 2y

2ty
D 2

t
;

is a function of only t , we conclude that an integrating factor is

�.t/ D e
R
.2=t/ dt D e2 ln t D t2:

This agrees with what we already observed in (16). J

Similar reasoning gives a criterion for (17) to have an integrating factor�.y/ that
involves only the variable y. Namely, if the expression

@M=@y � @N=@t
�M (23)

is a function of only y, say q.y/, then

�.y/ D e
R
q.y/ dy (24)

is a function only of y that is an integrating factor for (17).

Remark 6. A linear differential equation y0 C p.t/y D f .t/ can be rewritten in
the form M C Ny0 D 0 where M D p.t/y � f .t/ and N D 1. In this case,
@M=@y D p.t/ and @N=@t D 0 so a linear equation is never exact unless p.t/ D 0.
However,

@M=@y � @N=@t

N
D p.t/
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so there is an integrating factor that depends only on t :

�.t/ D e
R
p.t/ dt :

This is exactly the same function that we called an integrating factor for the linear
differential equation in Sect. 1.4. Thus, the integrating factor for a linear differential
equation is a special case of the concept of an integrating factor to transform a
general equation into an exact one.
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Exercises

1–9. Determine if the equation is exact, and if it is exact, find the general solution.

1. .y2 C 2t/C 2tyy0 D 0

2. y � t C .t C 2y/y0 D 0

3. 2t2 � y C .t C y2/y0 D 0

4. y2 C 2tyy0 C 3t2 D 0

5. .3y � 5t/C 2yy0 � ty0 D 0

6. 2ty C .t2 C 3y2/y0 D 0, y.1/ D 1

7. 2ty C 2t3 C .t2 � y/y0 D 0

8. t2 � y � ty0 D 0

9. .y3 � t/y0 D y

10. Find conditions on the constants a, b, c, d which guarantee that the differential
equation .at C by/ D .ct C dy/y0 is exact.



84 1 First Order Differential Equations



1.7 Existence and Uniqueness Theorems 85

1.7 Existence and Uniqueness Theorems

Let us return to the general initial value problem

y0 D F.t; y/; y.t0/ D y0; (1)

introduced in Sect. 1.1. We want to address the existence and uniqueness of solutions
to (1). The main theorems we have in mind put certain relatively mild conditions on
F to insure that a solution exists, is unique, and/or both. We say that a solution exists
if there is a function y D y.t/ defined on an interval containing t0 as an interior
point and satisfying (1). We say that a solution is unique if there is only one such
function y D y.t/. Why are the concepts of existence and uniqueness important?
Differential equations frequently model real-world systems as a function of time.
Knowing that a solution exists means that the system has predictable future states.
Further, when that solution is also unique, then for each future time there is only
one possible state, leaving no room for ambiguity.

To illustrate these points and some of the theoretical aspects of the existence and
uniqueness theorems that follow, consider the following example.

Example 1. Show that the following two functions satisfy the initial value problem

y0 D 3y2=3; y.0/ D 0: (2)

1. y.t/ D 0

2. y.t/ D t3

I Solution. Clearly, the constant function y.t/ D 0 for t 2 R is a solution. For the
second function y.t/ D t3, observe that y0 D 3t2 while 3y2=3 D 3.t3/2=3 D 3t2.
Further, y.0/ D 0. It follows that both of the functions y.t/ D 0 and y.t/ D t3 are
solutions of (2). J

If this differential equation modeled a real-world system, we would have
problems accurately predicting future states. Should we use y.t/ D 0 or y.t/ D t3?
It is even worse than this, for further analysis of this differential equation reveals that
there are many other solutions from which to choose. (See Example 9.) What is it
about (2) that allows multiple solutions? More precisely, what conditions could we
impose on (1) to guarantee that a solution exists and is unique? These questions are
addressed in Picard’s existence and uniqueness theorem, Theorem 5, stated below.

Thus far, our method for proving the existence of a solution to an ordinary
differential equation has been to explicitly find one. This has been a reasonable
approach for the categories of differential equations we have introduced thus far.
However, there are many differential equations that do not fall into any of these
categories, and knowing that a solution exists is a fundamental piece of information
in the analysis of any given initial value problem.
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Suppose F.t; y/ is a continuous function of .t; y/ in the rectangle

R WD f.t; y/ W a � t � b ; c � y � d g

and .t0; y0/ is an interior point of R. The key to the proof of existence and
uniqueness is the fact that a continuously differentiable function y.t/ is a solution
of (1) if and only if it is a solution of the integral equation

y.t/ D y0 C
Z t

t0

F .u; y.u// du: (3)

To see the equivalence between (1) and (3), assume that y.t/ is a solution to (1), so
that

y0.t/ D F.t; y.t//

for all t in an interval containing t0 as an interior point and y.t0/ D y0. Replace t by
u in this equation, integrate both sides from t0 to t , and use the fundamental theorem
of calculus to get

Z t

t0

F .u; y.u// du D
Z t

t0

y0.u/ du D y.t/ � y.t0/ D y.t/ � y0;

which implies that y.t/ is a solution of (3). Conversely, if y.t/ is a continuously
differentiable solution of (3), it follows that

g.t/ WD F.t; y.t//

is a continuous function of t sinceF.t; y/ is a continuous function of t and y. Apply
the fundamental theorem of calculus to get

y0.t/ D d

dt
y.t/ D d

dt

�
y0 C

Z t

t0

F .u; y.u// du

�

D d

dt

�
y0 C

Z t

t0

g.u/ du

�
D g.t/ D F.t; y.t//;

which is what it means for y.t/ to be a solution of (1). Since

y.t0/ D y0 C
Z t0

t0

F .u; y.u// du D y0;

y.t/ also satisfies the initial value in (1).
We will refer to (3) as the integral equation corresponding to the initial

value problem (1) and conversely, (1) is referred to as the initial value problem
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corresponding to the integral equation (3). What we have shown is that a solution
to the initial value problem is a solution to the corresponding integral equation and
vice versa.

Example 2. Find the integral equation corresponding to the initial value problem

y0 D t C y; y.0/ D 1:

I Solution. In this case, F.t; y/ D t C y, t0 D 0 and y0 D 1. Replace the
independent variable t by u in F.t; y.t// to get F.u; y.u// D u C y.u/. Thus, the
integral equation (3) corresponding to this initial value problem is

y.t/ D 1C
Z t

0

.u C y.u// du: J

For any continuous function y, define

T y.t/ D y0 C
Z t

t0

F .u; y.u// du:

That is, T y is the right-hand side of (3) for any continuous function y. Given a
function y, T produces a new function T y. If we can find a function y so that
T y D y, we say y is a fixed point of T . A fixed point y of T is precisely a solution
to (3) since if y D T y, then

y D T y D y0 C
Z t

t0

F .u; y.u/ du;

which is what it means to be a solution to (3). To solve equations like the integral
equation (3), mathematicians have developed a variety of so-called “fixed point
theorems” for operators such as T , each of which leads to an existence and/or
uniqueness result for solutions to an integral equation. One of the oldest and most
widely used of the existence and uniqueness theorems is due to Émile Picard (1856–
1941). Assuming that the function F.t; y/ is sufficiently “nice,” he first employed
the method of successive approximations. This method is an iterative procedure
which begins with a crude approximation of a solution and improves it using a step-
by-step procedure that brings us as close as we please to an exact and unique solution
of (3). The process should remind students of Newton’s method where successive
approximations are used to find numerical solutions to f .t/ D c for some function
f and constant c. The algorithmic procedure follows.

Algorithm 3. Perform the following sequence of steps to produce an approximate
solution of (3), and hence to the initial value problem, (1).
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Picard Approximations

1. A rough initial approximation to a solution of (3) is given by the constant
function

y0.t/ WD y0:

2. Insert this initial approximation into the right-hand side of (3) and obtain
the first approximation

y1.t/ WD y0 C
Z t

t0

F .u; y0.u// du:

3. The next step is to generate the second approximation in the same way,
that is,

y2.t/ WD y0 C
Z t

t0

F .u; y1.u// du:

4. At the nth stage of the process, we have

yn.t/ WD y0 C
Z t

t0

F .u; yn�1.u// du;

which is defined by substituting the previous approximation yn�1.t/ into
the right-hand side of (3).

In terms of the operator T introduced above, we can write

y1 D T y0
y2 D T y1 D T 2y0

y3 D T y2 D T 3y0

:::

The result is a sequence of functions y0.t/; y1.t/; y2.t/; : : :, defined on an interval
containing t0. We will refer to yn as the nth Picard approximation and the sequence
y0.t/; y1.t/; : : : ; yn.t/ as the first n Picard approximations. Note that the first
n Picard approximations actually consist of n C 1 functions, since the starting
approximation y0.t/ D y0 is included.

Example 4. Find the first three Picard approximations for the initial value problem

y0 D t C y; y.0/ D 1:
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I Solution. The corresponding integral equation was computed in Example 2:

y.t/ D 1C
Z t

0

.u C y.u// du:

We have

y0.t/ D 1

y1.t/ D 1C
Z t

0

.u C y0.u// du

D 1C
Z t

0

.u C 1/ du

D 1C
�

u2

2
C u

�ˇ̌
ˇ̌t
0

D 1C t2

2
C t D 1C t C t2

2
:

y2.t/ D 1C
Z t

0

�
u C 1C u C u2

2

�
du D 1C

Z t

0

�
1C 2u C u2

2

�
du

D 1C
�

u C u2 C u3

6

�ˇ̌
ˇ̌t
0

D 1C t C t2 C t3

6
:

y3.t/ D 1C
Z t

0

�
u C 1C u C u2 C u3

6

�
du D 1C

Z t

0

�
1C 2u C u2 C u3

6

�
du

D 1C
�

u C u2 C u3

3
C u4

24

�ˇ̌
ˇ̌t
0

D 1C t C t2 C t3

3
C t4

24
: J

It was one of Picard’s great contributions to mathematics when he showed that
the functions yn.t/ converge to a unique, continuously differentiable solution y.t/
of the integral equation, (3), and thus of the initial value problem, (1), under the mild
condition that the function F.t; y/ and its partial derivative Fy.t; y/ WD @

@y
F.t; y/

are continuous functions of .t; y/ on the rectangle R.

Theorem 5 (Picard’s Existence and Uniqueness Theorem).13 Let F.t; y/ and
Fy.t; y/ be continuous functions of .t; y/ on a rectangle

R D f.t; y/ W a � t � b ; c � y � d g :

If .t0; y0/ is an interior point of R, then there exists a unique solution y.t/ of

y0 D F.t; y/ ; y.t0/ D y0;

13A proof of this theorem can be found in G.F. Simmons’ book Differential Equations with
Applications and Historical Notes, 2nd edition McGraw-Hill, 1991.
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on some interval Œa0; b0� with t0 2 Œa0; b0� 	 Œa; b�. Moreover, the sequence of
approximations y0.t/ WD y0

yn.t/ WD y0 C
Z t

t0

F .u; yn�1.u// du;

computed by Algorithm 3 converges uniformly14 to y.t/ on the interval Œa0; b0�.

Example 6. Consider the initial value problem

y0 D t C y y.0/ D 1:

For n � 1, find the nth Picard approximation and determine the limiting function
y D limn!1 yn. Show that this function is a solution and, in fact, the only solution.

I Solution. In Example 4, we computed the first three Picard approximations:

y1.t/ D 1C t C t2

2
;

y2.t/ D 1C t C t2 C t3

3Š
;

y3.t/ D 1C t C t2 C t3

3
C t4

4Š
:

It is not hard to verify that

y4.t/ D 1C t C t2 C t3

3
C t4

12
C t5

5Š

D 1C t C 2

�
t2

2Š
C t3

3Š
C t4

4Š

�
C t5

5Š

and inductively,

yn.t/ D 1C t C 2

�
t2

2Š
C t3

3Š
C � � � C tn

nŠ

�
C tnC1

.nC 1/Š
:

14Uniform convergence is defined as follows: for all � > 0, there exists n0 such that the maximal
distance between the graph of the functions yn.t/ and the graph of y.t/ (for t 2 Œa0; b0�) is less
than � for all n � n0. We will not explore in detail this kind of convergence, but we will note that
it implies pointwise convergence. That is, for each t 2 Œ˛0; ˇ0� yn.t/ ! y.t/.
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Recall from calculus that et D P1
nD0

tn

nŠ
, so the part in parentheses in the expression

for yn.t/ is the first n terms of the expansion of et minus the first two:

t2

2Š
C t3

3Š
C � � � C tn

nŠ
D

�
1C t C t2

2Š
C t3

3Š
C � � � C tn

nŠ

�
� .1C t/:

Thus,

y.t/ D lim
n!1yn.t/ D 1C t C 2.et � .1C t// D �1 � t C 2et :

It is easy to verify by direct substitution that y.t/ D �1 � t C 2et is a solution
to y0 D t C y with initial value y.0/ D 1. Moreover, since the equation y0 D
t C y is a first order linear differential equation, the techniques of Sect. 1.4 show
that y.t/ D �1 � t C 2et is the unique solution since it is obtained by an explicit
formula. Alternatively, Picard’s theorem may be applied as follows. Consider any
rectangle R about the point .0; 1/. Let F.t; y/ D t C y. Then Fy.t; y/ D 1. Both
F.t; y/ and Fy.t; y/ are continuous functions on the whole .t; y/-plane and hence
continuous on R. Therefore, Picard’s theorem implies that y.t/ D limn!1 yn.t/ is
the unique solution of the initial value problem

y0 D t C y y.0/ D 1:

Hence, y.t/ D �1 � t C 2et is the only solution. J
Example 7. Consider the Riccati equation

y0 D y2 � t

with initial condition y.0/ D 0. Determine whether Picard’s theorem applies on
a rectangle containing .0; 0/. What conclusions can be made? Determine the first
three Picard approximations.

I Solution. Here, F.t; y/ D y2 � t and Fy.t; y/ D 2y are continuous on all of
R
2 and hence on any rectangle that contains the origin. Thus, by Picard’s Theorem,

the initial value problem

y0 D y2 � t ; y.0/ D 0

has a unique solution on some interval I containing 0. Picard’s theorem does not
tell us on what interval the solution is defined, only that there is some interval.
The direction field for y0 D y2 � t with the unique solution through the origin is
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given below and suggests that the maximal interval Imax on which the solution exists
should be of the form Imax D .a;1/ for some �1 � a < �1. However, without
further analysis of the problem, we have no precise knowledge about the maximal
domain of the solution.

Next we show how Picard’s method of successive approximations works in this
example. To use this method, we rewrite the initial value problem as an integral
equation. In this example, F.t; y/ D y2 � t , t0 D 0 and y0 D 0. Thus, the
corresponding integral equation is

y.t/ D
Z t

0

.y.u/2 � u/ du: (4)

We start with our initial approximation y0.t/ D 0, plug it into (4), and obtain our
first approximation

y1.t/ D
Z t

0

.y0.u/
2 � u/ du D �

Z t

0

u du D �1
2
t2:

The second iteration yields

y2.t/ D
Z t

0

.y1.u/
2 � u/ du D

Z t

0

�
1

4
u4 � u

�
du D 1

4 � 5 t
5 � 1

2
t2:

Since y2.0/ D 0 and

y2.t/
2 � t D 1

42 � 52 t
10 � 1

4 � 5 t
7 C 1

4
t4 � t D 1

42 � 52 t
10 � 1

4 � 5 t
7 C y0

2.t/ � y0
2.t/

if t is close to 0, it follows that the second iterate y2.t/ is already a “good”
approximation of the exact solution for t close to 0. Since

y2.t/
2 D 1

42 � 52 t
10 � 1

4 � 5t
7 C 1

4
t4;
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it follows that

y3.t/ D
Z t

0

�
1

42 � 52 u10 � 1

4 � 5u7 C 1

4
u4 � u

�
du

D 1

11 � 42 � 52 t
11 � 1

4 � 5 � 8 t
8 C 1

4 � 5 t
5 � 1

2
t2:

According to Picard’s theorem, the successive approximations yn.t/ converge to-
ward the exact solution y.t/, so we expect that y3.t/ is an even better approximation
of y.t/ for t close enough to 0. The graphs of y1, y2, and y3 are given below.
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Although the Riccati equation looks rather simple in form, its solution cannot be
obtained by methods developed in this chapter. In fact, the solution is not expressible
in terms of elementary functions but requires special functions such as the Bessel
functions. The calculation of the Picard approximations does not reveal a pattern by
which we might guess what the nth term might be. This is rather typical. Only in
special cases can we expect to find a such a general formula for yn. J

If one only assumes that the function F.t; y/ is continuous on the rectangle
R, but makes no assumptions about Fy.t; y/, then Guiseppe Peano (1858–1932)
showed that the initial value problem (1) still has a solution on some interval I with
t0 2 I 	 Œa; b�. However, in this case, the solutions are not necessarily unique.

Theorem 8 (Peano’s Existence Theorem15). Let F.t; y/ be a continuous func-
tions of .t; y/ on a rectangle

15For a proof see, for example, A.N. Kolmogorov and S.V. Fomin, Introductory Real Analysis,
Chap. 3, Sect. 11, Dover 1975.
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R D f.t; y/ W a � t � b ; c � y � d g :

If .t0; y0/ is an interior point of R, then there exists a solution y.t/ of

y0 D F.t; y/ ; y.t0/ D y0;

on some interval Œa0; b0� with t0 2 Œa0; b0� 	 Œa; b�.

Let us reconsider the differential equation introduced in Example 1.

Example 9. Consider the initial value problem

y0 D 3y2=3 ; y.t0/ D y0: (5)

Discuss the application of Picard’s existence and uniqueness theorem and Peano’s
existence theorem.

I Solution. The function F.t; y/ D 3y2=3 is continuous for all .t; y/, so Peano’s
existence theorem shows that the initial value problem (5) has a solution for all
possible initial values y.t0/ D y0. Moreover, Fy.t; y/ D 2

y1=3
is continuous on

any rectangle not containing a point of the form .t; 0/. Thus, Picard’s existence and
uniqueness theorem tells us that the solutions of (5) are unique as long as the initial
value y0 is nonzero. Assume that y0 ¤ 0. Since the differential equation y0 D 3y2=3

is separable, we can rewrite it in the differential form

1

y2=3
dy D 3dt;

and integrate the differential form to get

3y1=3 D 3t C c:

Thus, the functions y.t/ D .t C c/3 for t 2 R are solutions for y0 D 3y2=3. Clearly,
the equilibrium solution y.t/ D 0 does not satisfy the initial condition. The constant
c is determined by y.t0/ D y0. We get c D y

1=3
0 �t0, and thus y.t/ D .tCy1=30 �t0/3

is the unique solution of if y0 6D 0. If y0 D 0, then (5) admits more than one solution.
Two of them are given in Example 1. However, there are many more. In fact, the
following functions are all solutions:

y.t/ D

8̂
<̂
ˆ̂:
.t � ˛/3 if t < ˛

0 if ˛ � t � ˇ

.t � ˇ/3 if t > ˇ;

(6)
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where t0 2 Œ˛; ˇ�. The graph of one of these functions (where ˛ D �1, ˇ D 1)
is depicted below. What changes among the different functions is the length of the
straight line segment joining ˛ to ˇ on the t-axis.
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α = −1 and β = 1

J
Picard’s theorem, Theorem 5, is called a local existence and uniqueness theorem

because it guarantees the existence of a unique solution in some subinterval I 	
Œa; b�. In contrast, the following important variant of Picard’s theorem yields a
unique solution on the whole interval Œa; b�.

Theorem 10. Let F.t; y/ be a continuous function of .t; y/ that satisfies a
Lipschitz condition on a strip S D f.t; y/ W a � t � b ; �1 < y < 1g. That is,
assume that

jF.t; y1/ � F.t; y2/j � Kjy1 � y2j

for some constantK > 0 and for all .t; y1/ and .t; y2/ in S. If .t0; y0/ is an interior
point of S, then there exists a unique solution of

y0 D F.t; y/ ; y.t0/ D y0;

on the interval Œa; b�.

Example 11. Show that the following differential equations have unique solutions
on all of R:

1. y0 D esin ty , y.0/ D 0

2. y0 D jtyj, y.0/ D 0
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I Solution. For each differential equation, we will show that Theorem 10 applies
on the strip S D f.t; y/ W �a � t � a ; �1 < y < 1g and thus guarantees
a unique solution on the interval Œ�a; a�. Since a is arbitrary, the solution exists
on R.

1. Let F.t; y/ D esin ty . Here we will use the fact that the partial derivative of F
with respect to y exists so we can apply the mean value theorem:

F.t; y1/ � F.t; y2/ D Fy.t; y0/.y1 � y2/; (7)

where y1 and y2 are real numbers with y0 between y1 and y2. Now focus on the
partial derivative Fy.t; y/ D esin ty t cos.ty/. Since the exponential function is
increasing, the largest value of esin ty occurs when sin is at its maximum value of
1. Since jcos tyj � 1 and jt j � a, we have

ˇ̌
Fy.t; y/

ˇ̌ D ˇ̌
esin ty t cos ty

ˇ̌ � e1a D
ea. Now take the absolute value of (7) to get

jF.t; y1/ � F.t; y2/j D ˇ̌
esin ty1 � esin ty2

ˇ̌ � ea jy1 � y2j :

It follows that F.t; y/ D esin ty satisfies the Lipschitz condition with K D ea.
Theorem 10 now implies that y0 D esin ty , with y.0/ D 0 has a unique solution
on the interval Œ�a; a�. Since a is arbitrary, a solution exists and is unique on all
of R.

2. Let F.t; y/ D jtyj : Here F does not have a partial derivative at .0; 0/.
Nevertheless, it satisfies a Lipschitz condition for

jF.t; y1/� F.t; y2/j D jjty1j � jty2jj � jt j jy1 � y2j � a jy1 � y2j ;

since the maximum value of t on Œ�a; a� is a. It follows that F.t; y/ D jtyj
satisfies the Lipschitz condition with K D a. Theorem 10 now implies that

y0 D jtyj y.0/ D 0;

has a unique solution on the interval Œ�a; a�. Since a is arbitrary, a solution exists
and is unique on all of R. J

Remark 12.
1. When Picard’s theorem is applied to the initial value problem y0 D esin ty , y.0/ D
0, we can only conclude that there is a unique solution in an interval about the
origin. Theorem 10 thus tells us much more, namely, that the solution is in fact
defined on the entire real line.

2. In the case of y0 D jtyj, y.0/ D 0, Picard’s theorem does not apply at all since
the absolute value function is not differentiable at 0. Nevertheless, Theorem 10
tells us that a unique solution exists on all of R. Now that you know this, can you
guess what that unique solution is?
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The Geometric Meaning of Uniqueness

The theorem on existence and uniqueness of solutions of differential equations,
Theorem 5, has a particularly useful geometric interpretation. Suppose that y0 D
F.t; y/ is a first order differential equation for which Picard’s theorem applies. If
y1.t/ and y2.t/ denote two different solutions of y0 D F.t; y/, then the graphs of
y1.t/ and y2.t/ can never intersect. The reason for this is just that if .t0; y0/ is a
point of the plane which is common to both the graph of y1.t/ and that of y2.t/,
then both of these functions will satisfy the initial value problem

y0 D F.t; y/; y.t0/ D y0:

But if y1.t/ and y2.t/ are different functions, this will violate the uniqueness
provision of Picard’s theorem.

To underscore this point, consider the following contrasting example: The
differential equation

ty0 D 3y (8)

is linear (and separable). Thus, it is easy to see that y.t/ D ct3 is its general solution.
In standard form, (8) is

y0 D 3y

t
(9)

and the right-hand side, F.t; y/ D 3y=t , is continuous provided t ¤ 0. Thus,
assuming t ¤ 0, Picard’s theorem applies to give the conclusion that the initial
value problem y0 D 3y=t ; y.t0/ D y0 has a unique local solution, given by y.t/ D
.y0=t

3
0 /t

3. However, if t0 D 0, Picard’s theorem provides no information about the
existence and uniqueness of solutions. Indeed, in its standard form, (9), it is not
meaningful to talk about solutions of this equation at t D 0 since F.t; y/ D 3y=t

is not even defined for t D 0. But in the originally designated form, (8), where
the t appears as multiplication on the left side of the equation, then an initial value
problem starting at t D 0 makes sense, and moreover, the initial value problem

ty0 D 3y ; y.0/ D 0

has infinitely many solutions of the form y.t/ D ct3 for any c 2 R, whereas the
initial value problem

ty0 D 3y ; y.0/ D y0

has no solution if y0 6D 0. See the figure below, where we have graphed the function
y.t/ D ct3 for several values of c. Notice that all of them pass through the origin
(i.e., y.0/ D 0), but none pass through any other point on the y-axis.
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Thus, the situation depicted above where several solutions of the same differen-
tial equation go through the same point (in this case .0; 0/) can never occur for a
differential equation which satisfies the hypotheses of Theorem 5.

The above remark can be exploited in the following way. The constant function
y1.t/ D 0 is clearly a solution to the differential equation y0 D y3 C y. Since
F.t; y/ D y3 C y has continuous partial derivatives, Picard’s theorem applies.
Hence, if y2.t/ is a solution of the equation for which y2.0/ D 1, the above
observation takes the form of stating that y2.t/ > 0 for all t . This is because, in
order for y.t/ to ever be negative, it must first cross the t-axis, which is the graph
of y1.t/, and we have observed that two solutions of the same differential equation
can never cross.
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Exercises

1–4. Write the corresponding integral equation for each of the following initial value
problems.

1. y0 D ty; y.1/ D 1

2. y0 D y2 y.0/ D �1
3. y0 D t � y

t C y
; y.0/ D 1

4. y0 D 1C t2; y.0/ D 0

5–9. Find the first n Picard approximations for the following initial value problems.

5. y0 D ty; y.1/ D 1; n D 3

6. y0 D t � y; y.0/ D 1; n D 4

7. y0 D t C y2; y.0/ D 0; n D 3

8. y0 D y3 � y; y.0/ D 1; n D 3

9. y0 D 1C .t � y/2; y.0/ D 0; n D 5

10–14. Which of the following initial value problems are guaranteed a unique
solution by Picard’s theorem (Theorem 5)? Explain.

10. y0 D 1C y2; y.0/ D 0

11. y0 D p
y; y.1/ D 0

12. y0 D p
y; y.0/ D 1

13. y0 D t � y

t C y
; y.0/ D �1

14. y0 D t � y

t C y
; y.1/ D �1

15. Determine a formula for the nth Picard approximation for the initial value
problem

y0 D ay; y.0/ D 1;

where a 2 R. What is the limiting function y.t/ D limn!1 yn.t/. Is it a
solution? Are there other solutions that we may have missed?

16. (a) Find the exact solution of the initial value problem

y0 D y2; y.0/ D 1:

(b) Calculate the first three Picard approximations y1.t/, y2.t/, and y3.t/ and
compare these results with the exact solution.

17. Determine whether the initial value problem

y0 D cos.t C y/; y.t0/ D y0;

has a unique solution defined on all of R.
18. Consider the linear differential equation y0 C p.t/y D f .t/, with initial

condition y.t0/ D y0, where p.t/ and f .t/ are continuous on an interval
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I D Œa; b� containing t0 as an interior point. Use Theorem 10 to show that
there is unique solution defined on Œa; b�.

19. (a) Find the general solution of the differential equation

ty0 D 2y � t:

Sketch several specific solutions from this general solution.
(b) Show that there is no solution satisfying the initial condition y.0/ D 2.

Why does this not contradict Theorem 5?
20. (a) Let t0, y0 be arbitrary and consider the initial value problem

y0 D y2; y.t0/ D y0:

Explain why Theorem 5 guarantees that this initial value problem has a
solution on some interval jt � t0j � h.

(b) Since F.t; y/ D y2 and Fy.t; y/ D 2y are continuous on all of the
.t; y/�plane, one might hope that the solutions are defined for all real
numbers t . Show that this is not the case by finding a solution of y0 D y2

which is defined for all t 2 R and another solution which is not defined for
all t 2 R. (Hint: Find the solutions with .t0; y0/ D .0; 0/ and .0; 1/.)

21. Is it possible to find a function F.t; y/ that is continuous and has a continuous
partial derivativeFy.t; y/ on a rectangle containing the origin such that the two
functions y1.t/ D t and y2.t/ D t2 � 2t are both solutions to y0 D F.t; y/ on
an interval containing 0?

22. Is it possible to find a function F.t; y/ that is continuous and has a continuous
partial derivative Fy.t; y/ on a rectangle containing .0; 1/ such that the two
functions y1.t/ D .t C 1/2 and the constant function y2.t/ D 1 are both
solutions to y0 D F.t; y/ on an interval containing 0?

23. Show that the function

y1.t/ D
(
0; for t < 0

t3 for t � 0

is a solution of the initial value problem ty0 D 3y, y.0/ D 0. Show that y2.t/ D
0 for all t is a second solution. Explain why this does not contradict Theorem 5.



Chapter 2
The Laplace Transform

2.1 Laplace Transform Method: Introduction

The method for solving a first order linear differential equation y0 C p.t/y D f .t/

(Algorithm 3 of Sect. 5) involves multiplying the equation by an integrating factor
�.t/ D e

R
p.t/ dt chosen so that the left-hand side of the resulting equation becomes

a perfect derivative .�.t/y/0. Then the unknown function y.t/ can be retrieved by
integration. When p.t/ D k is a constant, �.t/ D ekt is an exponential function.
Unfortunately, for higher order linear equations, there is not a corresponding type of
integrating factor. There is, however, a useful method involving multiplication by an
exponential function that can be used for solving an nth order constant coefficient
linear differential equation, that is, an equation

y.n/ C an�1y.n�1/ C � � � C a1y0 C a0y D f .t/ (1)

in which a0, a1, : : :, an�1 are constants. The method proceeds by multiplying (1)
by the exponential term e�st , where s is another variable, and then integrating the
resulting equation from 0 to 1, to obtain the following equation involving the
variable s:

Z 1

0

e�st
�
y.n/ C an�1y

.n�1/ C � � � C a1y
0 C a0y

�
dt D

Z 1

0

e�st f .t/ dt: (2)

The integral
R1

0
e�st f .t/ dt is called the Laplace transform of f .t/, and we will

denote the Laplace transform of the function f .t/ by means of the corresponding
capital letter F.s/ or the symbol L ff .t/g .s/. Thus,

L ff .t/g .s/ D
Z 1

0

e�st f .t/ dt D F.s/: (3)

W.A. Adkins and M.G. Davidson, Ordinary Differential Equations,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-3618-8 2,
© Springer Science+Business Media New York 2012
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Note that F.s/ is a function of the new variable s, while the original function f .t/

is a function of the variable t . The integral involved is an improper integral since the
domain of integration is of infinite length; at this point, we will simply assume that
the integrals in question exist for all real s greater than some constant a.

Before investigating the left-hand side of (2), we will first calculate a couple of
simple Laplace transforms to see what the functions F.s/ may look like.

Example 1. Find the Laplace transform of f .t/ D eat and g.t/ D teat .

I Solution. First, we find the Laplace transform of f .t/ D eat .

F.s/ D L ff .t/g .s/ D
Z 1

0

e�st eat dt

D
Z 1

0

e.a�s/t dt D lim
r!1

Z r

0

e.a�s/t dt

D lim
r!1

e.a�s/t

a � s

ˇ
ˇ
ˇ
ˇ

r

0

D lim
r!1

�
e.a�s/r

a � s
� 1

a � s

�

D 1

s � a
C lim

r!1
e.a�s/r

a � s

D 1

s � a
;

provided a� s < 0, that is, s > a. In this situation, the limit of the exponential term
is 0. Therefore,

L ˚eat
�

.s/ D 1

s � a
for s > a: (4)

A similar calculation gives the Laplace transform of g.t/ D teat , except that
integration by parts will be needed in the calculation:

G.s/ D L ˚teat
�

.s/ D
Z 1

0

e�st .teat / dt D
Z 1

0

te.a�s/t dt

D lim
r!1

 
te.a�s/t

a � s

ˇ
ˇ
ˇ
ˇ

r

0

�
Z r

0

e.a�s/t

a � s
dt

!

D lim
r!1

�
te.a�s/t

a � s
� e.a�s/t

.a � s/2

�r

0

D lim
r!1

�
re.a�s/r

a � s
� e.a�s/r

.a � s/2
C 1

.a � s/2

�

D 1

.a � s/2
for s > a:
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Therefore,

L ˚teat
�

.s/ D 1

.s � a/2
for s > a: (5)

J

In each of these formulas, the parameter a represents any real number. Thus,
some specific examples of (4) and (5) are

L f1g D 1

s
s > 0 a D 0 in (4);

L ˚e2t
� D 1

s � 2
s > 2 a D 2 in (4);

L ˚e�2t
� D 1

s C 2
s > �2 a D �2 in (4);

L ftg D 1

s2
s > 0 a D 0 in (5);

L ˚te2t
� D 1

.s � 2/2
s > 2 a D 2 in (5);

L ˚te�2t
� D 1

.s C 2/2
s > �2 a D �2 in (5):

We now turn to the left-hand side of (2). Since the integral is additive, we can
write the left-hand side as a sum of terms

aj

Z 1

0

e�st y.j / dt D ajL
˚
y.j /

�
.s/: (6)

For now, we will not worry about whether the solution function y.t/ is such that
the Laplace transform of y.j / exists. Ignoring the constant, the j D 0 term is
the Laplace transform of y.t/, which we denote by Y.s/, and the j D 1 term
is the Laplace transform of y0.t/, and this can also be expressed in terms of
Y.s/ D L fy.t/g .s/ by use of integration by parts:

Z 1

0

e�st y0.t/ dt D e�st y.t/
ˇ
ˇ1
0
C s

Z 1

0

e�st y.t/ dt

D lim
t!1 e�st y.t/ � y.0/C sY.s/:

We will now further restrict the type of functions that we consider by requiring that

lim
t!1 e�st y.t/ D 0:

We then conclude that

L ˚y0.t/� .s/ D
Z 1

0

e�st y0.s/ dt D sY.s/� y.0/: (7)
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Table 2.1 Basic Laplace
transform formulas f(t)  ! F.s/ D L ff .t/g .s/

1. 1  ! 1

s

2. t n  ! nŠ

snC1

3. eat  ! 1

s � a

4. t neat  ! nŠ

.s � a/nC1

5. cos bt  ! s

s2 C b2

6. sin bt  ! b

s2 C b2

7. af .t/C bg.t/  ! aF.s/C bG.s/

8. y0.t /  ! sY.s/ � y.0/

9. y00.t /  ! s2Y.s/� sy.0/ � y0.0/

By use of repeated integration by parts, it is possible to express the Laplace
transforms of all of the derivatives y.j / in terms of Y.s/ and values of y.k/.t/ at
t D 0. The formula is

L ˚y.n/.t/
�

.s/ D
Z 1

0

e�st y.n/ dt

D snY.s/� .sn�1y.0/C sn�2y0.0/C � � � C syn�2.0/C yn�1.0//;

(8)

with the important special case for n D 2 being

L ˚y00.t/� .s/ D s2Y.s/� sy.0/ � y0.0/: (9)

The Laplace transform method for solving (1) is to use (8) to replace each
Laplace transform of a derivative of y.t/ in (2) with an expression involving Y.s/

and initial values. This gives an algebraic equation in Y.s/. Solve for Y.s/, and
hopefully recognize Y.s/ as the Laplace transform of a known function y.t/. This
latter recognition involves having a good knowledge of Laplace transforms of a
wide variety of functions, which can be manifested by means of a table of Laplace
transforms. A small table of Laplace transforms, Table 2.1, is included here for use
in some examples. The table will be developed fully and substantially expanded,
starting in the next section. For now, we will illustrate the Laplace transform method
by solving some differential equations of orders 1 and 2. The examples of order 1
could also be solved by the methods of Chap. 1.

Example 2. Solve the initial value problem

y0 C 2y D e�2t ; y.0/ D 0; (10)

by the Laplace transform method.
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I Solution. As in (2), apply the Laplace transform to both sides of the given
differential equation. Thus,

L ˚y0 C 2y
�

.s/ D L ˚e�2t
�

.s/: (11)

The right-hand side of this equation is

L ˚e�2t
�

.s/ D 1

s C 2
;

which follows from (4) with a D �2. The left-hand side of (11) is

L ˚y0 C 2y
�

.s/ D L ˚y0�C 2L fyg D sY.s/ � y.0/C 2Y.s/ D .s C 2/Y.s/;

where Y.s/ D L fy.t/g .s/. Thus, (11) becomes

.s C 2/Y.s/ D 1

s C 2
;

which can be solved for Y.s/ to give

Y.s/ D 1

.s C 2/2
:

From (5) with a D �2, we see that Y.s/ D L ˚te�2t
�

.s/, which suggests that
y.t/ D te�2t . By direct substitution, we can check that y.t/ D te�2t is, in fact, the
solution of the initial value problem (10). J

Example 3. Solve the second order initial value problem

y00 C 4y D 0; y.0/ D 1; y0.0/ D 0; (12)

by the Laplace transform method.

I Solution. As in the previous example, apply the Laplace transform to both sides
of the given differential equation. Thus,

L ˚y00 C 4y
�

.s/ D L f0g D 0: (13)

The left-hand side is

L ˚y00 C 4y
�

.s/ D L ˚y00�C 4L fyg D s2Y.s/ � sy.0/ � y0.0/C 4Y.s/

D �s C .s2 C 4/Y.s/;

where Y.s/ D L fy.t/g .s/. Thus, (13) becomes

.s2 C 4/Y.s/� s D 0;



106 2 The Laplace Transform

which can be solved for Y.s/ to give

Y.s/ D s

s2 C 4
:

Item 5, with b D 2, in Table 2.1, shows that Y.s/ D L fcos 2tg .s/, which suggests
that the solution y.t/ of the differential equation is y.t/ D cos 2t . Straightforward
substitution again shows that this function satisfies the initial value problem. J

Here is a slightly more complicated example.

Example 4. Use the Laplace transform method to solve

y00 C 4y0 C 4y D 2te�2t ; (14)

with initial conditions y.0/ D 1 and y0.0/ D �3.

I Solution. Let Y.s/ D L fy.t/g where, as usual, y.t/ is the unknown solution.
Applying the Laplace transform to both sides of (14) gives

L ˚y00 C 4y0 C 4y
�

.s/ D L ˚2te�2t
�

;

which, after applying items 7–9 from Table 2.1 to the left-hand side, and item 4 to
the right-hand side, gives

s2Y.s/� sy.0/ � y0.0/C 4.sY.s/� y.0//C 4Y.s/ D 2

.s C 2/2
:

Now, substituting the initial values gives the algebraic equation

s2Y.s/� s C 3C 4.sY.s/� 1/C 4Y.s/ D 2

.s C 2/2
:

Collecting terms, we get

.s2 C 4s C 4/Y.s/ D s C 1C 2

.s C 2/2

and solving for Y.s/, we get

Y.s/ D s C 1

.s C 2/2
C 2

.s C 2/4
:

This Y.s/ is not immediately recognizable as a term in the table of Laplace
transforms. However, a simple partial fraction decomposition, which will be studied
in more detail later in this chapter, gives
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Y.s/ D s C 1

.s C 2/2
C 2

.s C 2/4

D .s C 2/� 1

.s C 2/2
C 2

.s C 2/4

D 1

s C 2
� 1

.s C 2/2
C 2

.s C 2/4
:

Each of these terms can be identified as the Laplace transform of a function in
Table 2.1. That is, item 4 with a D �2 and n D 0, 1, and 3 gives

L ˚e�2t
�

.s/ D 1

s C 2
; L ˚te�2t

�
.s/ D 1

.s C 2/2
; and L ˚t3e�2t

� D 3Š

.s C 4/4
:

Thus, we recognize

Y.s/ D L
	

e�2t � te�2t C 1

3
t3e�2t




;

which suggests that

y.t/ D e�2t � te�2t C 1

3
t3e�2t ;

is the solution to (14). As before, substitution shows that this function is in fact a so-
lution to the initial value problem. J

The examples given illustrate how to use the Laplace transform to solve the nth
order constant coefficient linear differential equation (1). The steps are summarized
as the following algorithm.

Algorithm 5. Use the following sequence of steps to solve (1) by means of the
Laplace transform.

Laplace Transform Method

1. Set the Laplace transform of the left-hand side of the equation equal to the
Laplace transform of the function on the right-hand side.

2. Letting Y.s/ D L fy.t/g .s/, where y.t/ is the unknown solution to (1),
use the derivative formulas for the Laplace transform to express the
Laplace transform of the left-hand side of the equation as a function
involving Y.s/, some powers of s, and the initial values y.0/, y0.0/, etc.

3. Now solve the resulting algebraic equation for Y.s/.
4. Identify Y.s/ as the Laplace transform of a known function y.t/. This may

involve some algebraic manipulations of Y.s/, such as partial fractions, for
example, so that you may identify individual parts of Y.s/ from a table of
Laplace transforms, such as the short Table 2.1 reproduced above.
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The Laplace transform is quite powerful for the types of differential equations to
which it applies. However, steps 1 and 4 in the above summary will require a more
extensive understanding of Laplace transforms than the brief introduction we have
presented here. We will start to develop this understanding in the next section.
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Exercises

1–14. Solve each of the following differential equations using the Laplace trans-
form method. Determine both Y.s/ D L fy.t/g and the solution y.t/.

1. y0 � 4y D 0; y.0/ D 2

2. y0 � 4y D 1; y.0/ D 0

3. y0 � 4y D e4t ; y.0/ D 0

4. y0 C ay D e�at ; y.0/ D 1

5. y0 C 2y D 3et ; y.0/ D 2

6. y0 C 2y D te�2t ; y.0/ D 0

7. y00 C 3y0 C 2y D 0, y.0/ D 3, y0.0/ D �6

8. y00 C 5y0 C 6y D 0, y.0/ D 2, y0.0/ D �6

9. y00 C 25y D 0, y.0/ D 1, y0.0/ D �1

10. y00 C a2y D 0, y.0/ D y0, y0.0/ D y1

11. y00 C 8y0 C 16y D 0, y.0/ D 1, y0.0/ D �4

12. y00 � 4y0 C 4y D 4e2t , y.0/ D �1, y0.0/ D �4

13. y00 C 4y0 C 4y D e�2t , y.0/ D 0, y0.0/ D 1

14. y00 C 4y D 8, y.0/ D 2, y0.0/ D 1
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2.2 Definitions, Basic Formulas, and Principles

Suppose f .t/ is a continuous function defined for all t � 0. The Laplace transform
of f is the function F.s/ D L ff .t/g .s/ defined by the improper integral equation

F.s/ D L ff .t/g .s/ D
Z 1

0

e�st f .t/ dt WD lim
r!1

Z r

0

e�st f .t/ dt (1)

provided the limit exists at s. It can be shown that if the Laplace transform exists at
s D N , then it exists for all s � N .1 This means that there is a smallest number N ,
which will depend on the function f , so that the limit exists whenever s > N .

Let us consider this equation somewhat further. The function f with which
we start will sometimes be called the input function. Generally, “t” will denote
the variable for an input function f , while the Laplace transform of f , denoted
L ff .t/g .s/,2 is a new function (the output function or transform function), whose
variable will usually be “s”. Thus, (1) is a formula for computing the value of the
function L ff g at the particular point s, so that, for example, F.2/ D L ff g .2/ DR1

0
e�2t f .t/ dt provided s D 2 is in the domain of L ff .t/g.

When possible, we will use a lowercase letter to denote the input function
and the corresponding uppercase letter to denote its Laplace transform. Thus, F.s/

is the Laplace transform of f .t/, Y.s/ is the Laplace transform of y.t/, etc. Hence,
there are two distinct notations that we will be using for the Laplace transform of
f .t/; if there is no confusion, we use F.s/, otherwise we will write L ff .t/g .s/.

To avoid the notation becoming too heavy-handed, we will frequently write
L ff g rather than L ff g .s/. That is, the variable s may be suppressed when the
meaning is clear. It is also worth emphasizing that, while the input function f must
have a domain that includes Œ0; 1/, the Laplace transform L ff g .s/ D F.s/ is
only defined for all sufficiently large s, and the domain will depend on the particular
input function f . In practice, this will not be an issue, and we will generally not
emphasize the particular domain of F.s/.

Functions of Exponential Type

The fact that the Laplace transform is given by an improper integral imposes
restrictions on the growth of the integrand in order to insure convergence. A function

1A nice proof of this fact can be found on page 442 of the text Advanced Calculus (second edition)
by David Widder, published by Prentice Hall (1961).
2Technically, f is the function while f .t/ is the value of the function f at t . Thus, to be correct, the
notation should be L ff g .s/. However, there are times when the variable t needs to be emphasized
or f is given by a formula such as in L

˚
e2t
�

.s/. Thus, we will freely use both notations:
L ff .t/g .s/ and L ff g .s/.
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f on Œ0;1/ is said to be of exponential type with order a if there is a constant K

such that
jf .t/j � Keat

for all t 2 Œ0;1/: If the order is not important to the discussion, we will just say f

is of exponential type. The idea here is to limit the kind of growth that we allow f

to have; it cannot grow faster than a multiple of an exponential function. The above
inequality means

�Keat � f .t/ � Keat ;

for all t 2 Œ0;1/ as illustrated in the graph below. Specifically, the curve, f .t/, lies
between the upper and lower exponential functions, �Keat and Keat .

f

Keat

f

−Keat

As we will see below, limiting growth in this way will assure us that f has
a Laplace transform. If f .t/ is a bounded function, then there is a K so that
jf .t/j � K which implies that f .t/ is of exponential type of order a D 0. Hence,
all bounded functions are of exponential type. For example, constant functions,
cos bt and sin bt are of exponential type since they are bounded. Notice that if f

is of exponential type of order a and a < 0, then limt!1 f .t/ D 0 and hence
it is bounded. Since exponential type is a concept used to restrict the growth of a
function, we will be interested only in exponential type of order a � 0.

The set of all functions of exponential type has the property that it is closed
under addition and scalar multiplication. We will often see this property on sets of
functions. A set F of functions (usually defined on some interval I ) is a linear
space (or vector space) if it is closed under addition and scalar multiplication. More
specifically, F is a linear space if

• f1 C f2 2 F ,
• cf1 2 F ,
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whenever f1; f2 2 F and c is a scalar. If the scalars in use are the real numbers,
then F is referred to as a real linear space. If the scalars are the complex numbers,
then F is a complex linear space. Unless otherwise stated, linear spaces will be real.

Proposition 1. The set of functions of exponential type is a linear space.

Proof. Suppose f1 and f2 are of exponential type and c 2 R is a scalar. Then there
are constants K1, K2, a1, and a2 so that f1.t/ � K1ea1t and f2.t/ � K2ea2t . Now
let K D K1 CK2 and let a be the larger of a1 and a2. Then

jf1.t/C f2.t/j � jf2.t/j C jf2.t/j � K1ea1t CK2ea2t � K1eat CK2eat D Keat :

It follows that f1 C f2 is of exponential type. Further,

jcf1.t/j � jcj jf1.t/j � jcjK1ea1t :

It follows that cf1 is of exponential type. Thus, the set of all functions of exponential
type is closed under addition and scalar multiplication, that is, is a linear space. ut
Lemma 2. Suppose f is of exponential type of order a. Let s > a, then

lim
t!1f .t/e�st D 0:

Proof. Choose K so that jf .t/j � Keat . Let s > a. Then

ˇ
ˇf .t/e�st

ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ
f .t/

eat
e�.s�a/t

ˇ
ˇ
ˇ
ˇ � Ke�.s�a/t :

Taking limits gives the result since limt!1 e�.s�a/t D 0 because �.s�a/ < 0. ut
Proposition 3. Let f be a continuous function of exponential type with order a.
Then the Laplace transform F.s/ D Lff .t/g.s/ exists for all s > a and, moreover,
lims!1 F.s/ D 0.

Proof. Let f be of exponential type of order a. Then jf .t/j � Keat , for some K ,
so jf .t/e�st j � Ke�.s�a/t and

jF.s/j D
ˇ
ˇ
ˇ
ˇ

Z 1

0

e�st f .t/ dt

ˇ
ˇ
ˇ
ˇ �

Z 1

0

e�st jf .t/j dt � K

Z 1

0

e�.s�a/t dt D K

s � a
;

provided s > a. This shows that the integral converges absolutely, and hence the
Laplace transform F.s/ exists for s > a, and in fact jF.s/j � K=.s � a/. Since
lims!1K=.s � a/ D 0, it follows that lims!1 F.s/ D 0: ut

It should be noted that many functions are not of exponential type. For example,
in Exercises 39 and 40, you are asked to show that the function y.t/ D et 2

is not of
exponential type and does not have a Laplace transform. Proposition 3 should not be
misunderstood. The restriction that f be of exponential type is a sufficient condition
to guarantee that the Laplace transform exists. If a function is not of exponential
type, it still may have a Laplace transform. See, for example, Exercise 41.
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Lemma 4. Suppose f is a continuous function defined on Œ0;1/ of exponential
type of order a � 0. Then any antiderivative of f is also of exponential type and
has order a if a > 0.

Proof. Suppose jf .t/j � Keat , for some K and a. Let g.t/ D R t

0
f .u/ du. Suppose

a > 0. Then

jg.t/j �
Z t

0

jf .u/j du �
Z t

0

Keau du D K

a
.eat � 1/ � K

a
eat :

It follows that g is of exponential type of order a. If a D 0, then jf j � K for some
K . The antiderivative g defined above satisfies jgj � Kt . Let b > 0. Then since
u � eu (for u nonnegative), we have bt � ebt . So jgj � Kt � .K=b/ebt . It follows
that g is of exponential type of order b for any positive b. Since any antiderivative
of f has the form g.t/ C C for some constant C and constant functions are of
exponential type, the lemma follows by Proposition 1. J

We will restrict our attention to continuous input functions in this chapter. In
Chap. 6, we ease this restriction and consider Laplace transforms of discontinuous
functions.

Basic Principles and Formulas

A particularly useful property of the Laplace transform, both theoretically and
computationally, is that of linearity. Specifically,

Theorem 5. The Laplace transform is linear. In other words, if f and g are
functions of exponential type and a and b are constants, then

Linearity of the Laplace Transform

L faf C bgg D aL ff g C bL fgg :

Proof. By Proposition 1, the function af C bg is of exponential type and, by
Proposition 3, has a Laplace transform. Since (improper) integration is linear, we
have

L faf C bgg .s/ D
Z 1

0

e�st .af .t/C bg.t// dt

D a

Z 1

0

e�st f .t/ dt C b

Z 1

0

e�st g.t/ dt

D aL ff g .s/C bL fgg .s/: ut
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The input derivative principles we derive below are the cornerstone principles of
the Laplace transform. They are used to derive basic Laplace transform formulas
and are the key to the Laplace transform method to solve differential equations.

Theorem 6. Suppose f .t/ is a differentiable function on Œ0;1/ whose derivative
f 0.t/ is continuous and of exponential type of order a � 0. Then

The Input Derivative Principle

The First Derivative

L ff 0.t//g .s/ D sL ff .t/g .s/ � f .0/; s > a:

Proof. By Lemma 4, f .t/ is of exponential type. By Proposition 3, both f .t/ and
f 0.t/ have Laplace transforms. Using integration by parts (let u D e�st , dv D
f 0.t/ dt), we get

L ˚f 0.t/� .s/ D
Z 1

0

e�st f 0.t/ dt

D e�st f .t/
ˇ
ˇ1
0
�
Z 1

0

�se�st f .t/ dt

D �f .0/C s

Z 1

0

e�st f .t/ dt D sL ff .t/g .s/ � f .0/:

For a function g.t/ defined of Œa; 1/, we use the notation g.t/j1a to mean
lim

t!1.g.t/ � g.a//. J

Observe that if f 0.t/ also satisfies the conditions of the input derivative principle,
then we get

L ˚f 00.t/� .s/ D sL ˚f 0.t/� � f 0.0/

D s .sL ff .t/g � f .0// � f 0.0/

D s2L ff .t/g � sf .0/� f 0.0/:

We thus get the following corollary:

Corollary 7. Suppose f .t/ is a differentiable function on Œ0; 1/ with continuous
second derivative of exponential type of order a � 0. Then

Input Derivative Principle

The Second Derivative

L ff 00.t/g .s/ D s2L ff .t/g .s/ � sf .0/ � f 0.0/; s > a:
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Repeated applications of Theorem 6 give the following:

Corollary 8. Suppose f .t/ is a differentiable function on Œ0;1/ with continuous
nth derivative of exponential type of order a � 0. Then

Input Derivative Principle

The nth Derivative

L ˚f .n/.t/
� D snL ff .t/g � sn�1f .0/ � � � � � sf .n�2/.0/� f .n�1/.0/;

for s > a:

We now compute the Laplace transform of some specific input functions that will
be used frequently throughout the text.

Formula 9. Verify the Laplace transform formula:

Constant Functions

L f1g .s/ D 1

s
; s > 0:

H Verification. For the constant function 1, we have

L f1g .s/ D
Z 1

0

e�st � 1 dt D lim
r!1

e�t s

�s

ˇ
ˇ
ˇ
ˇ

r

0

D lim
r!1

e�rs � 1

�s
D 1

s
for s > 0. N

For the limit above, we have used the basic fact that

lim
r!1 erc D

(
0 if c < 0

1 if c > 0.

Formula 10. Assume n is a nonnegative integer. Verify the Laplace transform
formula:

Power Functions

L ftng .s/ D nŠ

snC1
; s > 0:

H Verification. Let b > 0. Since u � eu for u � 0, it follows that bt � ebt for
all t � 0. Thus, t � ebt =b and tn � ebnt =bn. Since b is any positive number,
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it follows that tn is of exponential type of order a for all a > 0 and thus has a
Laplace transform for s > 0. Let f .t/ D tn and observe that f .k/.0/ D 0 for
k D 1; : : : ; n � 1 and f .n/.t/ D nŠ. Apply the nth order input derivative formula,
Corollary 8, to get

nŠ

s
D L fnŠg .s/

D L ˚f .n/.t/
�

.s/

D snL ftng � sn�1f .0/ � � � � � f .n�1/.0/

D snL ftng .s/:

It follows that

L ftng .s/ D nŠ

snC1
; s > 0: N

Example 11. Find the Laplace transform of

f .t/ D 3 � 4t C 6t3:

I Solution. Here we use the linearity and the basic Laplace transforms determined
above:

L ˚3 � 4t C 6t3
� D 3L f1g � 4L ftg C 6L ˚t3

�

D 3

�
1

s

�

� 4

�
1

s2

�

C 6

�
3Š

s4

�

D 3

s
� 4

s2
C 36

s4
: J

The formula for the Laplace transform of tn is actually valid even if the exponent
is not an integer. Suppose that ˛ 2 R is any real number. Then use the substitution
t D x=s in the Laplace transform integral to get

L ft˛g D
Z 1

0

t˛e�st dt D
Z 1

0

�x

s

�˛

e�x dx

s
D 1

s˛C1

Z 1

0

x˛e�x dx .s > 0/:

The improper integral on the right converges as long as ˛ > �1, and it defines a
function known as the gamma function or generalized factorial function evaluated
at ˛ C 1. Thus, � .ˇ/ D R1

0
xˇ�1e�x dx is defined for ˇ > 0, and the Laplace

transform of the general power function is as follows:
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Formula 12. If ˛ > �1, then

General Power Functions

L ft˛g .s/ D � .˛ C 1/

s˛C1
; s > 0:

If n is a positive integer, then � .nC 1/ D nŠ (see Exercise 42) so Formula 10 is
a special case of Formula 12.

Formula 13. Assume a 2 R. Verify the Laplace transform formula:

Exponential Functions

L feat g .s/ D 1

s � a
; s > a:

H Verification. If s > a, then

L ˚eat
�

.s/ D
Z 1

0

e�st eat dt D
Z 1

0

e�.s�a/t dt D e�.s�a/t

�.s � a/

ˇ
ˇ
ˇ
ˇ

1

0

D 1

s � a
: N

Formula 14. Let b 2 R. Verify the Laplace transform formulas:

Cosine Functions

L fcos btg .s/ D s

s2 C b2
; for s > 0:

and

Sine Functions

L fsin btg .s/ D b

s2 C b2
; for s > 0:

H Verification. Since both sin bt and cos bt are bounded continuous functions, they
are of exponential type and hence have Laplace transforms. Let f .t/ D cos bt . Then
f 0.t/ D �b sin bt and f 00.t/ D �b2 cos bt . The input derivative principle for the
second derivative, Corollary 7, implies

�b2L fcos btg .s/ D L ˚f 00.t/� .s/ D s2L ff .t/g � sf .0/� f 0.0/

D s2L fcos btg � s.1/ � .0/

D s2L fcos btg � s:



2.2 Definitions, Basic Formulas, and Principles 119

Now subtract s2L fcos btg from both sides and combine terms to get

�.s2 C b2/L fcos btg D �s:

Solving for L fcos btg gives

L fcos btg D s

s2 C b2
:

A similar calculation verifies the formula for L fsin btg : N

Example 15. Find the Laplace transform of

2e6t C 3 cos 2t � 4 sin 3t:

I Solution. We use the linearity of the Laplace transform together with the
formulas derived above to get

L ˚2e6t C 3 cos 2t � 4 sin 3t
� D 2L ˚e6t

�C 3L fcos 2tg � 4L fsin 3tg

D 2

s � 6
C 3

�
s

s2 C 22

�

� 4

�
3

s2 C 32

�

D 2

s � 6
C 3s

s2 C 4
� 12

s2 C 9
: J

Formula 16. Let n be a nonnegative integer and a 2 R. Verify the following
Laplace transform formula:

Power-Exponential Functions

L ftneat g .s/ D nŠ

.s � a/nC1
; for s > a:

H Verification. Notice that

L ˚tneat
�

.s/ D
Z 1

0

e�st tneat dt D
Z 1

0

e�.s�a/t tn dt D L ftng .s � a/:

What this formula says is that the Laplace transform of the function tneat evaluated
at the point s is the same as the Laplace transform of the function tn evaluated at the
point s � a. Since L ftng .s/ D nŠ=snC1, we conclude

L ˚tneat
�

.s/ D nŠ

.s � a/nC1
; for s > a: N
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If the function tn in Formula 16 is replaced by an arbitrary input function f .t/

with a Laplace transform F.s/, then we obtain the following:

Theorem 17. Suppose f has Laplace transform F.s/. Then

First Translation Principle

L feat f .t/g .s/ D F.s � a/

Proof.

L ˚eat f .t/
�

.s/ D
Z 1

0

e�st eat f .t/ dt

D
Z 1

0

e�.s�a/f .t/ dt

D L ff .t/g .s � a/ D F.s � a/: ut

In words, this formula says that to compute the Laplace transform of the product
of f .t/ and eat , it is only necessary to take the Laplace transform of f .t/ (namely,
F.s/) and replace the variable s by s � a, where a is the coefficient of t in the
exponential multiplier. It is convenient to use the following notation:

L ˚eat f .t/
�

.s/ D F.s/js 7!s�a

to indicate this substitution.

Formula 18. Suppose a; b 2 R. Verify the Laplace transform formulas

L ˚eat cos bt
�

.s/ D s � a

.s � a/2 C b2

and

L ˚eat sin bt
�

.s/ D b

.s � a/2 C b2
:

H Verification. From Example 14, we know that

L fcos btg .s/ D s

s2 C b2
and L fsin btg .s/ D b

s2 C b2
:

Replacing s by s � a in each of these formulas gives the result. N

Example 19. Find the Laplace transform of

2e�t sin 3t and e3t cos
p

2t:
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I Solution. Again we use linearity of the Laplace transform and the formulas
derived above to get

L ˚2e�t sin 3t
� D 2

3

s2 C 32

ˇ
ˇ
ˇ
ˇ
s 7!sC1

D 6

.s C 1/2 C 9
D 6

s2 C 2s C 10
;

L
n
e3t cos

p
2t
o
D s

s2 Cp2
2

ˇ
ˇ
ˇ
ˇ
ˇ
s 7!s�3

D s � 3

.s � 3/2 C 2
D s � 3

s2 � 6s C 11
: J

We now introduce another useful principle that can be used to compute some
Laplace transforms.

Theorem 20. Suppose f .t/ is an input function and F.s/ D L ff .t/g .s/ is the
transform function. Then

Transform Derivative Principle

L f�tf .t/g .s/ D d

ds
F.s/:

Proof. By definition, F.s/ D R1
0

e�st f .t/ dt , and thus,

F 0.s/ D d

ds

Z 1

0

e�st f .t/ dt

D
Z 1

0

d

ds
.e�st /f .t/ dt

D
Z 1

0

e�st .�t/f .t/ dt D L f�tf .t/g .s/:

Interchanging the derivative and the integral can be justified. ut
Repeated application of the transform derivative principle gives

Transform nth-Derivative Principle

.�1/nL ftnf .t/g .s/ D dn

dsn
F.s/:

Example 21. Use the transform derivative principle to compute

L ft sin tg .s/:
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I Solution. A direct application of the transform derivative principle gives

L ft sin tg .s/ D �L f�t sin tg

D � d

ds
L fsin tg .s/

D � d

ds

1

s2 C 1

D � �2s

.s2 C 1/2
D 2s

.s2 C 1/2
: J

Example 22. Compute the Laplace transform of t2e2t in two different ways: using
the first translation principle and the transform derivative principle.

I Solution. Using the first translation principle, we get

L ˚t2e2t
�

.s/ D L ˚t2
�

.s/
ˇ
ˇ
s 7!s�2

D 2

.s � 2/3
:

Using the transform derivative principle, we get

L ˚t2e2t
� D d2

ds2

1

s � 2
D d

ds

�1

.s � 2/2
D 2

.s � 2/3
: J

Suppose f .t/ is a function and b is a positive real number. The function g.t/ D
f .bt/ is called the dilation of f by b. If the domain of f includes Œ0;1/, then
so does any dilation of f since b is positive. The following theorem describes the
Laplace transform of a dilation.

Theorem 23. Suppose f .t/ is an input function and b is a positive real number.
Then

The Dilation Principle

L ff .bt//g .s/ D 1

b
L ff .t/g .s=b/:

Proof. This result follows from a change in variable in the definition of the Laplace
transform:

L ff .bt/g .s/ D
Z 1

0

e�st f .bt/ dt

D
Z 1

0

e�.s=b/rf .r/
dr

b

D 1

b
L ff .t/g .s=b/ :
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Table 2.2 Basic Laplace transform formulas (We are assuming n is a
nonnegative integer and a and b are real)

f .t/  ! F.s/ D L ff .t/g .s/

1. 1  ! 1

s

2. t n  ! nŠ

snC1

3. eat  ! 1

s � a

4. t neat  ! nŠ

.s � a/nC1

5. cos bt  ! s

s2 C b2

6. sin bt  ! b

s2 C b2

7. eat cos bt  ! s � a

.s � a/2 C b2

8. eat sin bt  ! b

.s � a/2 C b2

Table 2.3 Basic Laplace transform principles

Linearity L faf .t/C bg.t/g D aL ff g C bL fgg
Input derivative principles L ff 0.t /g .s/ D sL ff .t/g � f .0/

L ff 00.t /g .s/ D s2L ff .t/g � sf .0/� f 0.0/

First translation principle L feat f .t/g D F.s � a/

Transform derivative principle L f�tf .t/g .s/ D d

ds
F.s/

The dilation principle L ff .bt/g .s/ D 1

b
L ff .t/g .s=b/:

To get the second line, we made the change of variable t D r=b. Since b > 0, the
limits of integration remain unchanged. ut

Example 24. The formula L ˚ sin t
t

�
.s/ D cot�1.s/ will be derived later (in

Sect. 5.4). Assuming this formula for now, determine L ˚ sin bt
t

�
.s/.

I Solution. By linearity and the dilation principle, we have

L
	

sin bt

t




.s/ D bL
	

sin bt

bt




.s/

D b
1

b
L
	

sin t

t


 ˇˇ
ˇ
ˇ
s 7!s=b

D cot�1.s/
ˇ
ˇ
s 7!s=b

D cot�1.s=b/: J

We now summarize in Table 2.2 the basic Laplace transform formulas and, in
Table 2.3, the basic Laplace transform principles we have thus far derived. The
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student should learn these well as they will be used frequently throughout the text
and exercises. With the use of these tables, we can find the Laplace transform of
many functions. As we continue, several new formulas will be derived. Appendix C
has a complete list of Laplace transform formulas and Laplace transform principles
that we derive.
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Exercises

1–4. Compute the Laplace transform of each function given below directly from
the integral definition given in (1).

1. 3t C 1

2. 5t � 9et

3. e2t � 3e�t

4. te�3t

5–18. Use Table 2.2 and linearity to find the Laplace transform of each given
function.

5. 5e2t

6. 3e�7t � 7t3

7. t2 � 5t C 4

8. t3 C t2 C t C 1

9. e�3t C 7te�4t

10. t2e4t

11. cos 2t C sin 2t

12. et .t � cos 4t/

13. .te�2t /2

14. e�t=3 cos
p

6t

15. .t C e2t /2

16. 5 cos 3t � 3 sin 3t C 4

17.
t4

e4t

18. e5t .8 cos 2t C 11 sin 2t/

19–23. Use the transform derivative principle to compute the Laplace transform of
the following functions.

19. te3t

20. t cos 3t

21. t2 sin 2t

22. te�t cos t

23. tf .t/ given that F.s/ D L ff g .s/ D ln

�
s2

s2 C 1

�

24–25. Use the dilation principle to find the Laplace transform of each function.
The given Laplace transforms will be established later.

24. 1�cos 5t
t

; given L ˚ 1�cos t
t

� D 1
2

ln
�

s2

s2C1

�

25. Ei.6t/; given L fEi.t/g D ln.sC1/

s
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26–31. Use trigonometric or hyperbolic identities to compute the Laplace transform
of the following functions.

26. cos2 bt (Hint: cos2 � D 1
2
.1C cos 2�/)

27. sin2 bt

28. sin bt cos bt

29. sin at cos bt

30. cosh bt (Recall that cosh bt D .ebt C e�bt /=2.)
31. sinh bt (Recall that sinh bt D .ebt � e�bt /=2.)

32–34. Use one of the input derivative formulas to compute the Laplace transform
of the following functions.

32. eat

33. sinh bt

34. cosh bt

35. Use the input derivative formula to derive the Laplace transform formula

L
nR t

0 f .u/ du
o
D F.s/=s. Hint: Let g.t/ D R t

0 f .u/ du and note that g0.t/ D
f .t/. Now apply the input derivative formula to g.t/.

36–41. Functions of Exponential Type: Verify the following claims.

36. Suppose f is of exponential type of order a and b > a. Show f is of
exponential type of order b.

37. Show that the product of two functions of exponential type is of exponential
type.

38. Show that the definition given for a function of exponential type is equivalent
to the following: A continuous function f on Œ0;1/ is of exponential type of
order a if there are constants K � 0 and N � 0 such that jf .t/j � Keat for all
t � N (i.e., we do not need to require that N D 0).

39. Show that the function y.t/ D et 2
is not of exponential type.

40. Verify that the function f .t/ D et 2
does not have a Laplace transform. That

is, show that the improper integral that defines F.s/ does not converge for any
value of s.

41. Let y.t/ D sin.et 2
/. Why is y.t/ of exponential type? Compute y0.t/ and

show that it is not of exponential type. Nevertheless, show that y0.t/ has a
Laplace transform. The moral: The derivative of a function of exponential type
is not necessarily of exponential type, and there are functions that are not of
exponential type that have a Laplace transform.

42. Recall from the discussion for Formula 12 that the gamma function is defined
by the improper integral

� .ˇ/ D
Z 1

0

xˇ�1e�x dx; .ˇ > 0/:
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(a) Show that � .1/ D 1.
(b) Show that � satisfies the recursion formula � .ˇ C 1/ D ˇ� .ˇ/.

(Hint: Integrate by parts.)
(c) Show that � .nC 1/ D nŠ when n is a nonnegative integer.

43. Show that
R1

0 e�x2
dx D p�=2.

(Hint: Let I be the integral and note that

I 2 D
�Z 1

0

e�x2

dx

��Z 1

0

e�y2

dy

�

D
Z 1

0

Z 1

0

e�.x2Cy2/ dx dy:

Then evaluate the integral using polar coordinates.)
44. Use the integral from Exercise 43 to show that � . 1

2
/ D p� . Then compute

each of the following:

(a) � . 3
2
/ (b) � . 5

2
/ (c) L ˚pt

�
(d) L ˚t3=2

�
.
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2.3 Partial Fractions: A Recursive Algorithm
for Linear Terms

A careful look at Table 2.2 reveals that the Laplace transform of each function we
considered is a rational function. Laplace inversion, which is discussed in Sect. 2.5,
will involve writing rational functions as sums of those simpler ones found in the
table.

All students of calculus should be familiar with the technique of obtaining the
partial fraction decomposition of a rational function. Briefly, a given proper rational
function3 p.s/=q.s/ is a sum of partial fractions of the form

Aj

.s � r/j
and

Bks C Ck

.s2 C cs C d/k
;

where Aj , Bk , and Ck are constants. The partial fractions are determined by the
linear factors, s � r , and the irreducible quadratic factors, s2 C cs C d , of the
denominator q.s/, where the powers j and k occur up to the multiplicity of the
factors. After finding a common denominator and equating the numerators, we
obtain a system of linear equations to solve for the undetermined coefficients
Aj , Bk , Ck . Notice that the degree of the denominator determines the number of
coefficients that are involved in the form of the partial fraction decomposition. Even
when the degree is relatively small, this process can be very tedious and prone to
simple numerical mistakes.

Our purpose in this section and the next is to provide an alternate algorithm for
obtaining the partial fraction decomposition of a rational function. This algorithm
has the advantage that it is constructive (assuming the factorization of the denom-
inator), recursive (meaning that only one coefficient at a time is determined), and
self-checking. This recursive method for determining partial fractions should be
well practiced by the student. It is the method we will use throughout the text and is
an essential technique in solving nonhomogeneous differential equations discussed
in Sect. 3.5. You may wish to review Appendix A.2 where notation and results about
polynomials and rational functions are given.

In this section, we will discuss the algorithm in the linear case, that is, when the
denominator has a linear term as a factor. In Sect. 2.4, we discuss the case where the
denominator has an irreducible quadratic factor.

Theorem 1 (Linear Partial Fraction Recursion). Suppose a proper rational
function can be written in the form

p0.s/

.s � r/nq.s/

3A rational function is the quotient of two polynomials. A rational function is proper if the degree
of the numerator is less than the degree of the denominator.
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and q.r/ ¤ 0. Then there is a unique number A1 and a unique polynomial p1.s/

such that
p0.s/

.s � r/nq.s/
D A1

.s � r/n
C p1.s/

.s � r/n�1q.s/
: (1)

The number A1 and the polynomial p1.s/ are given by

A1 D p0.s/

q.s/

ˇ
ˇ
ˇ
ˇ
sDr

D p0.r/

q.r/
and p1.s/ D p0.s/� A1q.s/

s � r
: (2)

Proof. After finding a common denominator in (1) and equating numerators, we
get the polynomial equation p0.s/ D A1q.s/C .s � r/p1.s/. Evaluating at s D r

gives p0.r/ D A1q.r/, and hence A1 D p0.r/

q.r/
. Now that A1 is determined, we have

p0.s/� A1q.s/ D .s � r/p1.s/, and hence p1.s/ D p0.s/�A1q.s/

s�r
. ut

Notice that in the calculation of p1, it is necessary that p0.s/ � A1q.s/ have a
factor of s � r . If such a factorization does not occur when working an example,
then an error has been made. This is what is meant when we stated above that this
recursive method is self-checking. In practice, we frequently factor p0.s/ �A1q.s/

and delete the s� r factor. However, for large degree polynomials, it may be best to
use the division algorithm for polynomials or synthetic division.

An application of Theorem 1 produces two items:

• The partial fraction of the form

A1

.s � r/n

• A remainder term of the form

p1.s/

.s � r/n�1q.s/

such that the original rational function p0.s/=.s � r/nq.s/ is the sum of these two
pieces. We can now repeat the process on the new rational function p1.s/=..s �
r/n�1q.s//, where the multiplicity of .s � r/ in the denominator has been reduced
by 1, and continue in this manner until we have removed completely .s � r/ as a
factor of the denominator. In this manner, we produce a sequence,

A1

.s � r/n
; : : : ;

An

.s � r/
;

which we will refer to as the .s � r/-chain for p0.s/=..s � r/nq.s//. The number
of terms, n, is referred to as the length of the chain. The chain table below
summarizes the data obtained.
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The .s � r/-chain

p0.s/

.s � r/nq.s/

A1

.s � r/n

p1.s/

.s � r/n�1.s/q.s/

A2

.s � r/n�1

:::
:::

pn�1.s/

.s � r/q.s/

An

.s � r/

pn.s/

q.s/

Notice that the partial fractions are placed in the second column while the remainder
terms are placed in the first column under the previous remainder term. This form is
conducive to the recursion algorithm. From the table, we get

p0.s/

.s � r/nq.s/
D A1

.s � r/n
C � � � C An

.s � r/
C pn.s/

q.s/
:

By factoring another linear term out of q.s/, the process can be repeated through all
linear factors of q.s/. In the examples that follow, we will organize one step of the
recursion process as follows:

Partial Fraction Recursion Algorithm
by a Linear Term

p0.s/

.s � r/nq.s/
D A1

.s � r/n
C p1.s/

.s � r/n�1q.s/

where A1 D p0.s/

q.s/

ˇ
ˇ
ˇ
ˇ
sDr

D �

and p1.s/ D 1

s � r
.p0.s/� A1q.s// D �
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The curved arrows indicate where the results of calculations are inserted. First, A1

is calculated and inserted in two places: in the .s � r/-chain and in the calculation
for p1.s/. Afterward, p1.s/ is calculated and the result inserted in the numerator of
the remainder term. Now the process is repeated on p1.s/=..s�r/n�1q.s// until the
.s � r/-chain is completed.

Consider the following examples.

Example 2. Find the partial fraction decomposition for

s � 2

.s � 3/2.s � 4/
:

I Solution. We will first compute the .s � 3/ -chain. According to Theorem 1, we
can write

s � 2

.s � 3/2.s � 4/
D A1

.s � 3/2
C p1.s/

.s � 3/.s � 4/

where A1 D s � 2

s � 4

ˇ
ˇ
ˇ
ˇ
sD3

D �1

and p1.s/ D 1

s � 3
.s � 2 � .�1/.s � 4// D 1

s � 3
.2s � 6/ D 2:

We thus get

s � 2

.s � 3/2.s � 4/
D �1

.s � 3/2
C 2

.s � 3/.s � 4/
:

We now repeat the recursion algorithm on the remainder term 2
.s�3/.s�4/

to get

2

.s � 3/.s � 4/
D A2

s � 3
C p2.s/

s � 4

where A1 D 2

s � 4

ˇ
ˇ
ˇ
ˇ
sD3

D �2

and p2.s/ D 1

s � 3
.2 � .�2/.s � 4// D 1

s � 3
.2s � 6/ D 2:
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Putting these calculations together gives the .s � 3/-chain

The .s � 3/ -chain

s � 2

.s � 3/2.s � 4/

�1

.s � 3/2

2

.s � 3/.s � 4/

�2

.s � 3/

2

s � 4

The .s � 4/-chain has length one and is given as the remainder entry in the .s � 3/-
chain; thus

s � 2

.s � 3/2.s � 4/
D �1

.s � 3/2
� 2

.s � 3/
C 2

s � 4
: J

A more substantial example is given next. The partial fraction recursion algo-
rithm remains exactly the same so we will dispense with the curved arrows.

Example 3. Find the partial fraction decomposition for

16s

.s C 1/3.s � 1/2
:

Remark 4. Before we begin with the solution, we remark that the traditional
method for computing the partial fraction decomposition introduces the equation

16s

.s C 1/3.s � 1/2
D A1

.s C 1/3
C A2

.s C 1/2
C A3

s C 1
C A4

.s � 1/2
C A5

s � 1

and, after finding a common denominator, requires the simultaneous solution to a
system of five equations in five unknowns, a doable task but one prone to simple
algebraic errors.

I Solution. We will first compute the .sC 1/ -chain. According to Theorem 1, we
can write

16s

.s C 1/3.s � 1/2
D A1

.s C 1/3
C p1.s/

.s C 1/2.s � 1/2
;

where A1 D 16s

.s � 1/2

ˇ
ˇ
ˇ
ˇ
sD�1

D �16

4
D �4
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and p1.s/ D 1

s C 1
.16s � .�4/.s � 1/2/

D 4

s C 1
.s2 C 2s C 1/ D 4.s C 1/:

We now repeat the recursion step on the remainder term 4.sC1/

.sC1/2.s�1/2 to get

4.s C 1/

.s C 1/2.s � 1/2
D A2

.s C 1/2
C p2.s/

.s C 1/.s � 1/2
;

where A2 D 4.s C 1/

.s � 1/2

ˇ
ˇ
ˇ
ˇ
sD�1

D 0

4
D 0

and p2.s/ D 1

s C 1
.4.s C 1/� .0/.s � 1/2/ D 4:

Notice here that we could have canceled the .sC1/ term at the beginning and arrived
immediately at 4

.sC1/.s�1/2 . Then no partial fraction with .sC1/2 in the denominator
would occur. We chose though to continue the recursion step to show the process.
The recursion process is now repeated on 4

.sC1/.s�1/2 to get

4

.s C 1/.s � 1/2
D A3

s C 1
C p3.s/

.s � 1/2
;

where A3 D 4

.s � 1/2

ˇ
ˇ
ˇ
ˇ
sD�1

D 4

4
D 1

and p3.s/ D 1

s C 1
.4 � .1/.s � 1/2/

D �1

s C 1
.s2 � 2s � 3/ D �1

s C 1
.s C 1/.s � 3/ D �.s � 3/:

Putting these calculations together gives the .s C 1/ -chain

The .s C 1/ -chain

16

.s C 1/3.s � 1/2

�4

.s C 1/3

4.s C 1/

.s C 1/2.s � 1/2

0

.s C 1/2

4

.s C 1/.s � 1/2

1

.s C 1/

�.s � 3/

.s � 1/2
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We now compute the .s � 1/ -chain for the remainder �.s�3/

.s�1/2 . It is implicit that
q.s/ D 1.

�.s � 3/

.s � 1/2
D A4

.s � 1/2
C p4.s/

s � 1
;

where A4 D � .s � 3/

1

ˇ
ˇ
ˇ
ˇ
sD1

D 2

and p4.s/ D 1

s � 1
.�.s � 3/� .2// D 1

s � 1
.�s C 1/ D �1:

The .s � 1/ -chain is thus

The .s � 1/ -chain

�.s � 3/

.s � 1/2

2

.s � 1/2

�1

.s � 1/

We now have
�.s � 3/

.s � 1/2
D 2

.s � 1/2
C �1

s � 1
;

and putting this chain together with the s C 1 -chain gives

16s

.s C 1/3.s � 1/2
D �4

.s C 1/3
C 0

.s C 1/2
C 1

s C 1
C 2

.s � 1/2
C �1

s � 1
: J

Product of Distinct Linear Factors

Let p.s/=q.s/ be a proper rational function. Suppose q.s/ is the product of distinct
linear factors, that is,

q.s/ D .s � r1/ � � � .s � rn/;
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where r1; : : : rn are distinct scalars. Then each chain has length one and the partial
fraction decomposition has the form

p.s/

q.s/
D A1

s � r1

C � � � C An

.s � rn/
:

The scalar Ai is the first and only entry in the .s � ri / -chain. Thus,

Ai D p.s/

qi .s/

ˇ
ˇ
ˇ
ˇ
sDri

D p.ri /

qi .ri /
;

where qi .s/ D q.s/=.s � ri / is the polynomial obtained from q.s/ by factoring
out .s � ri /. If we do this for each i D 1; : : : ; n, it is unnecessary to calculate any
remainder terms.

Example 5. Find the partial fraction decomposition of

�4sC 14

.s � 1/.s C 4/.s � 2/
:

I Solution. The denominator q.s/ D .s � 1/.sC 4/.s � 2/ is a product of distinct
linear factors. Each partial fraction is determined as follows:

• For
A1

s � 1
: A1 D �4s C 14

.s C 4/.s � 2/

ˇ
ˇ
ˇ
ˇ
sD1

D 10

�5
D �2

• For
A2

s C 4
: A2 D �4s C 14

.s � 1/.s � 2/

ˇ
ˇ
ˇ
ˇ
sD�4

D 30

30
D 1

• For
A3

s � 2
: A3 D �4s C 14

.s � 1/.s C 4/

ˇ
ˇ
ˇ
ˇ
sD2

D 6

6
D 1

The partial fraction decomposition is thus

�4s C 14

.s � 1/.s C 4/.s � 2/
D �2

s � 1
C 1

s C 4
C 1

s � 2
: J

Linear Partial Fractions and the Laplace Transform Method

In the example, notice how linear partial fraction recursion facilitates the Laplace
transform method.
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Example 6. Use the Laplace transform method to solve the following differential
equation:

y00 C 3y0 C 2y D e�t ; (3)

with initial conditions y.0/ D 1 and y0.0/ D 3.

I Solution. We will use the Laplace transform to turn this differential equation in
y into an algebraic equation in Y.s/ D L fy.t/g. Apply the Laplace transform to
both sides. For the left-hand side, we get

L ˚y00 C 3y0 C 2y
� D L ˚y00�C 3L ˚y0�C 2L fyg
D s2Y.s/ � sy.0/ � y0.0/C 3.sY.s/� y.0//C 2Y.s/

D .s2 C 3s C 2/Y.s/ � s � 6:

The first line uses the linearity of the Laplace transform, the second line uses the
first and second input derivative principles, and the third line uses the given initial
conditions and then simplifies the result. Since L fe�t g D 1=.s C 1/, we get the
algebraic equation

.s2 C 3s C 2/Y.s/� s � 6 D 1

s C 1
;

from which it is easy to solve for Y.s/. Since s2 C 3s C 2 D .s C 1/.s C 2/,
we get

Y.s/ D s C 6

.s C 1/.s C 2/
C 1

.s C 1/2.s C 2/
:

We are now left with the task of finding an input function whose Laplace transform
is Y.s/. To do this, we first compute the partial fraction decomposition of each term.
The first term sC6

.sC1/.sC2/
has denominator which is a product of two distinct linear

terms. Each partial fraction is determined as follows:

• For
A1

s C 1
: A1 D s C 6

s C 2

ˇ
ˇ
ˇ
ˇ
sD�1

D 5

1
D 5

• For
A2

s C 2
: A2 D s C 6

s C 1

ˇ
ˇ
ˇ
ˇ
sD�2

D 4

�1
D �4

The partial fraction decomposition is thus

s C 6

.s C 1/.s C 2/
D 5

s C 1
� 4

s C 2
:
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For the second term 1
.sC1/2.sC2/

, we compute the .s C 1/-chain

The .s C 1/ -chain

1

.s C 1/2.s C 2/

1

.s C 1/2

�1

.s C 1/.s C 2/

�1

s C 1

1

s C 2

from which we get

1

.s C 1/2.s C 2/
D 1

.s C 1/2
� 1

s C 1
C 1

s C 2
:

It follows that

Y.s/ D 4

s C 1
� 3

s C 2
C 1

.s C 1/2
:

Now we can determine the input function y.t/ directly from the basic Laplace
transform table, Table 2.2. We get

y.t/ D 4e�t � 3e�2t C te�t :

This is the solution to (3). J
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Exercises

1–11. For each exercise below, compute the chain table through the indicated linear
term.

1.
5s C 10

.s � 1/.s C 4/
; (s � 1)

2.
10s � 2

.s C 1/.s � 2/
; (s � 2)

3.
1

.s C 2/.s � 5/
; (s � 5)

4.
5s C 9

.s � 1/.s C 3/
; (s C 3)

5.
3s C 1

.s � 1/.s2 C 1/
; (s � 1)

6.
3s2 � s C 6

.s C 1/.s2 C 4/
; (s C 1)

7.
s2 C s � 3

.s C 3/3
; (s C 3)

8.
5s2 � 3s C 10

.s C 1/.s C 2/2
; (s C 2)

9.
s

.s C 2/2.s C 1/2
; (s C 1)

10.
16s

.s � 1/3.s � 3/2
; (s � 1)

11.
1

.s � 5/5.s � 6/
; (s � 5)

12–32. Find the partial fraction decomposition of each proper rational function.

12.
5s C 9

.s � 1/.s C 3/

13.
8C s

s2 � 2s � 15

14.
1

s2 � 3s C 2

15.
5s � 2

s2 C 2s � 35
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16.
3s C 1

s2 C s

17.
2s C 11

s2 � 6s � 7

18.
2s2 C 7

.s � 1/.s � 2/.s � 3/

19.
s2 C s C 1

.s � 1/.s2 C 3s � 10/

20.
s2

.s � 1/3

21.
7

.s C 4/4

22.
s

.s � 3/3

23.
s2 C s � 3

.s C 3/3

24.
5s2 � 3s C 10

.s C 1/.s C 2/2

25.
s2 � 6s C 7

.s2 � 4s � 5/2

26.
81

s3.s C 9/

27.
s

.s C 2/2.s C 1/2

28.
s2

.s C 2/2.s C 1/2

29.
8s

.s � 1/.s � 2/.s � 3/3

30.
25

s2.s � 5/.s C 1/

31.
s

.s � 2/2.s � 3/2

32.
16s

.s � 1/3.s � 3/2
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33–38. Use the Laplace transform method to solve the following differential
equations. (Give both Y.s/ and y.t/:)

33. y00 C 2y0 C y D 9e2t , y.0/ D 0, y0.0/ D 0

34. y00 C 3y0 C 2y D 12e2t , y.0/ D 1, y0.0/ D �1

35. y00 � 4y0 � 5y D 150t , y.0/ D �1, y0.0/ D 1

36. y00 C 4y0 C 4y D 4 cos 2t , y.0/ D 0, y0.0/ D 1

37. y00 � 3y0 C 2y D 4, y.0/ D 2, y0.0/ D 3

38. y00 � 3y0 C 2y D et , y.0/ D �3, y0.0/ D 0
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2.4 Partial Fractions: A Recursive Algorithm for Irreducible
Quadratics

We continue the discussion of Sect. 2.3. Here we consider the case where a real
rational function has a denominator with irreducible quadratic factors.

Theorem 1 (Quadratic Partial Fraction Recursion). Suppose a real proper ra-
tional function can be written in the form

p0.s/

.s2 C cs C d/nq.s/
;

where s2 C cs C d is an irreducible quadratic that is factored completely out of
q.s/. Then there is a unique linear term B1s C C1 and a unique polynomial p1.s/

such that

p0.s/

.s2 C cs C d/nq.s/
D B1s C C1

.s2 C cs C d/n
C p1.s/

.s2 C cs C d/n�1q.s/
: (1)

If aC ib is a complex root of s2C csC d , then B1sCC1 and the polynomial p1.s/

are given by

B1s C C1jsDaCbi D
p0.s/

q.s/

ˇ
ˇ
ˇ
ˇ
sDaCbi

and p1.s/ D p0.s/� .B1s C C1/q.s/

s2 C cs C d
: (2)

Proof. After finding a common denominator in (1) and equating numerators, we get
the polynomial equation

p0.s/ D .B1s C C1/q.s/C .s2 C cs C d/p1.s/: (3)

Evaluating at s D aC ib gives p0.aC ib/ D .B1.aC ib/C C1/.q.aC ib//, and
hence,

B1.aC ib/C C1 D p0.aC ib/

q.aC ib/
: (4)

Equating the real and imaginary parts of both sides of (4) gives the equations

B1aC C1 D Re

�
p0.aC ib/

q.aC ib/

�

;

B1b D Im

�
p0.aC ib/

q.aC ib/

�

:

Since b ¤ 0 because the quadratic s2 C cs C d has no real roots, these equations
can be solved for B1 and C1, so both B1 and C1 are determined by (4). Now solving
for p1.s/ in (3) gives
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p1.s/ D p0.s/ � .B1s C C1/q.s/

s2 C cs C d
: ut

An application of Theorem 1 produces two items:

• The partial fraction of the form

B1s C C1

.s2 C cs C d/n

• A remainder term of the form

p1.s/

.s2 C cs C d/n�1q.s/

such that the original rational function p0.s/=.ssCasCb/nq.s/ is the sum of these
two pieces. We can now repeat the process in the same way as the linear case.

The result is called the .s2 C cs C d/-chain for the rational function p0.s/=.s2C
cs C d/nq.s/. The table below summarizes the data obtained.

The .s2 C cs C d/-chain

p0.s/

.s2 C cs C d/nq.s/

B1s C C1

.s2 C cs C d/n

p1.s/

.s2 C cs C d/n�1q.s/

B2s C C2

.s2 C cs C d/n�1

:::
:::

pn�1.s/

.s2 C cs C d/ q.s/

Bns C Cn

.s2 C cs C d/

pn.s/

q.s/

From this table, we can immediately read off the following decomposition:

p0.s/

.s2 C cs C d/nq.s/
D B1s C C1

.s2 C cs C d/n
C � � � C Bns C Cn

.s2 C cs C d/
C pn.s/

q.s/
:

In the examples that follow, we will organize one step of the recursion algorithm
as follows:
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Partial Fraction Recursion Algorithm
by a Quadratic Term

p0.s/

.s2 C cs C d/nq.s/
D B1s C C1

.s2 C cs C d/n
C p1.s/

.s2 C cs C d/n�1q.s/

where B1s C C1jsDaCbi D
p0.s/

q.s/

ˇ
ˇ
ˇ
ˇ
sDaCbi

) B1 D � and C1 D �

and p1.s/ D 1

s2 C cs C d
.p0.s/ � .B1s C C1/q.s// D �

As in the linear case, the curved arrows indicate where the results of calculations
are inserted. First, B1 and C1 are calculated and inserted in two places: in the .s2 C
csCd/-chain and in the calculation for p1.s/. Afterward, p1.s/ is calculated and the
result inserted in the numerator of the remainder term. Now the process is repeated
on p1.s/=..s2 C cs C d/n�1q.s// until the .s2 C cs C d/-chain is completed.

Here are some examples of this process in action.

Example 2. Find the partial fraction decomposition for

5s

.s2 C 4/.s C 1/
:

I Solution. We have a choice of computing the linear chain through s C 1 or
the quadratic chain through s2 C 4. It is usually easier to compute linear chains.
However, to illustrate the recursive algorithm for the quadratic case, we will
compute the .s2 C 4/-chain. The roots of s2 C 4 are s D ˙2i. We need only focus
on one root and we will choose s D 2i.

According to Theorem 1, we can write

5s

.s2 C 4/.s C 1/
D B1s C C1

.s2 C 4/
C p1.s/

s C 1
;

where B1.2i/C C1 D 5s

s C 1

ˇ
ˇ
ˇ
ˇ
sD2i
D 10i

2iC 1

D .10i/.�2iC 1/

.2iC 1/.�2iC 1/
D 20C 10i

5
D 4C 2i

) B1 D 1 and C1 D 4
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and p1.s/ D 1

s2 C 4
.5s � .s C 4/.s C 1//

D 1

s2 C 4
.�s2 � 4/ D �1:

It follows now that

5s

.s2 C 4/.s C 1/
D s C 4

.s2 C 4/
C �1

s C 1
: J

Note that in the above calculation, B1 and C1 are determined by comparing the
real and imaginary parts of the complex numbers 2B1i C C1 D 2i C 4 so that the
imaginary parts give 2B1 D 2 so B1 D 1 and the real parts give C1 D 4.

Example 3. Find the partial fraction decomposition for

30sC 40

.s2 C 1/2.s2 C 2s C 2/
:

Remark 4. We remark that since the degree of the denominator is 6, the traditional
method of determining the partial fraction decomposition would involve solving a
system of six equations in six unknowns.

I Solution. First observe that both factors in the denominator, s2 C 1 and s2 C
2s C 2 D .s C 1/2 C 1, are irreducible quadratics. We begin by determining the
s2 C 1 -chain. Note that s D i is a root of s2 C 1.

Applying the recursive algorithm gives

30s C 40

.s2 C 1/2.s2 C 2s C 2/
D B1s C C1

.s2 C 1/2
C p1.s/

.s2 C 1/.s2 C 2s C 2/
;

where B1iC C1 D 30s C 40

.s2 C 2s C 2/

ˇ
ˇ
ˇ
ˇ
sDi

D 30iC 40

1C 2i

D .40C 30i/.1� 2i/

.1C 2i/.1 � 2i/
D 100� 50i

5
D 20� 10i

) B1 D �10 and C1 D 20

and p1.s/ D 1

s2 C 1
.30s C 40 � .�10s C 20/.s2 C 2s C 2//

D 1

s2 C 1
.10s.s2 C 1// D 10s:
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We now repeat the recursion algorithm on the remainder term

10s

.s2 C 1/.s2 C 2s C 2/
:

10s

.s2 C 1/.s2 C 2s C 2/
D B2s C C2

.s2 C 1/
C p2.s/

.s2 C 2s C 2/
;

where B2iC C2 D 10s

.s2 C 2s C 2/

ˇ
ˇ
ˇ
ˇ
sDi

D 10i

1C 2i

D .10i/.1� 2i/

.1C 2i/.1� 2i/
D 20C 10i

5
D 4C 2i

) B2 D 2 and C2 D 4

and p2.s/ D 1

s2 C 1
.10s � .2s C 4/.s2 C 2s C 2//

D 1

s2 C 1
.�2.s C 4/.s2 C 1// D �2.s C 4/:

We can now write down the .s2 C 1/-chain.

The .s2 C 1/-chain

30s C 40

.s2 C 1/2.s2 C 2s C 2/

�10s C 20

.s2 C 1/2

10s

.s2 C 1/.s2 C 2s C 2/

2s C 4

.s2 C 1/

�2.s C 4/

.s2 C 2s C 2/

Since the last remainder term is already a partial fraction, we obtain

30s C 40

.s2 C 1/2.s2 C 2s C 2/
D �10s C 20

.s2 C 1/2
C 2s C 4

s2 C 1
C �2s � 8

.s C 1/2 C 1
: J
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Quadratic Partial Fractions and the Laplace Transform Method

In the following example, notice how quadratic partial fraction recursion facilitates
the Laplace transform method.

Example 5. Use the Laplace transform method to solve

y00 C 4y D cos 3t; (5)

with initial conditions y.0/ D 0 and y0.0/ D 0.

I Solution. Applying the Laplace transform to both sides of (5) and substituting
the given initial conditions give

.s2 C 4/Y.s/ D s

s2 C 9

and thus

Y.s/ D s

.s2 C 4/.s2 C 9/
:

Using quadratic partial fraction recursion, we obtain the .s2 C 4/-chain

The .s2 C 4/-chain

s

.s2 C 4/.s2 C 9/

s=5

s2 C 4

�s=5

s2 C 9

It follows from Table 2.2 that

y.t/ D 1

5
.cos 2t � cos 3t/:

This is the solution to (5). J
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Exercises

1–6. For each exercise below, compute the chain table through the indicated
irreducible quadratic term.

1.
1

.s2 C 1/2.s2 C 2/
I .s2 C 1/

2.
s3

.s2 C 2/2.s2 C 3/
I .s2 C 2/

3.
8sC 8s2

.s2 C 3/3.s2 C 1/
I .s2 C 3/

4.
4s4

.s2 C 4/4.s2 C 6/
I .s2 C 4/

5.
1

.s2 C 2s C 2/2.s2 C 2s C 3/2
; (s2 C 2s C 2)

6.
5s � 5

.s2 C 2s C 2/2.s2 C 4s C 5/
; (s2 C 2s C 2)

7–16. Find the decomposition of the given rational function into partial fractions
over R.

7.
s

.s2 C 1/.s � 3/

8.
4s

.s2 C 1/2.s C 1/

9.
9s2

.s2 C 4/2.s2 C 1/

10.
9s

.s2 C 1/2.s2 C 4/

11.
2

.s2 � 6s C 10/.s � 3/

12.
30

.s2 � 4s C 13/.s � 1/

13.
25

.s2 � 4s C 8/2.s � 1/

14.
s

.s2 C 6s C 10/2.s C 3/2

15.
s C 1

.s2 C 4s C 5/2.s2 C 4s C 6/2
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16.
s2

.s2 C 5/3.s2 C 6/2

Hint: Let u D s2.

17–20. Use the Laplace transform method to solve the following differential
equations. (Give both Y.s/ and y.t/:)

17. y00 C 4y0 C 4y D 4 cos 2t , y.0/ D 0, y0.0/ D 1

18. y00 C 6y0 C 9y D 50 sin t , y.0/ D 0, y0.0/ D 2

19. y00 C 4y D sin 3t , y.0/ D 0, y0.0/ D 1

20. y00 C 2y0 C 2y D 2 cos t C sin t , y.0/ D 0, y0.0/ D 0
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2.5 Laplace Inversion

In this section, we consider Laplace inversion and the kind of input functions that
can arise when the transform function is a rational function. Given a transform
function F.s/, we call an input function f .t/ the inverse Laplace transform of
F.s/ if L ff .t/g .s/ D F.s/. We say the inverse Laplace transform because in
most circumstances, it can be chosen uniquely. One such circumstance is when the
input function is continuous. We state this fact as a theorem. For a proof of this
result, see Appendix A.1

Theorem 1. Suppose f1.t/ and f2.t/ are continuous functions defined on Œ0;1/

with the same Laplace transform. Then f1.t/ D f2.t/.

It follows from this theorem that if a transform function has a continuous
input function, then it can have only one such input function. In Chap. 6, we will
consider some important classes of discontinuous input functions, but for now, we
will assume that all input functions are continuous and we write L�1 fF.s/g for
the inverse Laplace transform of F . That is, L�1 fF.s/g is the unique continuous
function f .t/ that has F.s/ as its Laplace transform. Symbolically,

Defining Property of the Inverse Laplace Transform

L�1 fF.s/g D f .t/ ” L ff .t/g D F.s/:

We can thus view L�1 as an operation on transform functions F.s/ that produces
input functions f .t/. Because of the defining property of the inverse Laplace
transform, each formula for the Laplace transform has a corresponding formula for
the inverse Laplace transform.

Example 2. List the corresponding inverse Laplace transform formula for each
formula in Table 2.2.

I Solution. Each line of Table 2.4 corresponds to the same line in Table 2.2. J

By identifying the parameters n, a, and b in specific functions F.s/, it is possible to
read off L�1 fF.s/g D f .t/ from Table 2.4 for some F.s/.

Example 3. Find the inverse Laplace transform of each of the following functions
F.s/:

1.
6

s4
2.

2

.s C 3/3
3.

5

s2 C 25
4.

s � 1

.s � 1/2 C 4

I Solution.

1. L�1
˚

6
s4

� D t3 (n D 3 in Formula 2)
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2. L�1
n

2
.sC3/3

o
D t2e�3t (n D 2, a D �3 in Formula 4)

3. L�1
n

5
s2C25

o
D sin 5t (b D 5 in Formula 6)

4. L�1
n

s�1
.s�1/2C4

o
D et cos 2t (a D 1, b D 2 in Formula 7) J

It is also true that each Laplace transform principle recorded in Table 2.3 results
in a corresponding principle for the inverse Laplace transform. We will single out
the linearity principle and the first translation principle at this time.

Theorem 4 (Linearity). The inverse Laplace transform is linear. In other words, if
F.s/ and G.s/ are transform functions with continuous inverse Laplace transforms
and a and b are constants, then

Linearity of the Inverse Laplace Transform

L�1 faF.s/C bG.s/g D aL�1 fF.s/g C bL�1 fG.s/g :

Proof. Let f .t/ D L�1 fF.s/g and g.t/ D L�1 fG.s/g. Since the Laplace
transform is linear by Theorem 5 of Sect. 2.2, we have

L f.af .t/C bg.t/g D aL ff .t/g C bL fg.t/g D aF.s/C bG.s/:

Since af .t/C bg.t/ is continuous, it follows that

L�1 faF.s/C bG.s/g D af .t/C bg.t/ D aL�1 fF.s/g C bL�1 fG.s/g : ut
Theorem 5. If F.s/ has a continuous inverse Laplace transform, then

Inverse First Translation Principle

L�1 fF.s � a/g D eatL�1 fF.s/g

Proof. Let f .t/ D L�1 fF.s/g. Then the first translation principle (Theorem 17 of
Sect. 2.2) gives

L ˚eat f .t/
� D F.s � a/;

and applying L�1 to both sides of this equation gives

L�1 fF.s � a/g D eat f .t/ D eatL�1 fF.s/g : ut
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Table 2.4 Basic inverse
Laplace transform formulas
(We are assuming n is a
nonnegative integer and a and
b are real)

1. L�1

	
1

s




D 1

2. L�1

	
nŠ

snC1




D t n

3. L�1

	
1

s � a




D eat

4. L�1

	
nŠ

.s � a/nC1




D t neat

5. L�1

	
s

s2 C b2




D cos bt

6. L�1

	
b

s2 C b2




D sin bt

7. L�1

	
s � a

.s � a/2 C b2




D eat cos bt

8. L�1

	
b

.s � a/2 C b2




D eat sin bt

Suppose p.s/=q.s/ is a proper rational function. Its partial fraction decomposi-
tion is a linear combination of the simple (real) rational functions, by which we
mean rational functions of the form

1

.s � a/k
;

b

..s � a/2 C b2/k
; and

s � a

..s � a/2 C b2/k
; (1)

where a; b are real, b > 0, and k is a positive integer. The linearity of the inverse
Laplace transform implies that Laplace inversion of rational functions reduces to
finding the inverse Laplace transform of the three simple rational functions given
above. The inverse Laplace transforms of the first of these simple rational functions
can be read off directly from Table 2.4, while the last two can be determined from
this table if k D 1. To illustrate, consider the following example.

Example 6. Suppose

F.s/ D 5s

.s2 C 4/.s C 1/
:

Find L�1 fF.s/g :
I Solution. Since F.s/ does not appear in Table 2.4 (or the equivalent Table 2.2),
the inverse Laplace transform is not immediately evident. However, using the
recursive partial fraction method we found in Example 2 of Sect. 2.4 that

5s

.s2 C 4/.s C 1/
D s C 4

.s2 C 4/
� 1

s C 1

D s

s2 C 22
C 2

2

s2 C 22
� 1

s C 1
:
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By linearity of the inverse Laplace transform and perusal of Table 2.4, it is now
evident that

L�1

	
5s

.s2 C 4/.s C 1/




D cos 2t C 2 sin 2t � e�t : J

When irreducible quadratics appear in the denominator, their inversion is best
handled by completing the square and using the first translation principle as
illustrated in the following example.

Example 7. Find the inverse Laplace transform of each rational function

1.
4s � 8

s2 C 6s C 25
2.

2

s2 � 4s C 7
:

I Solution. In each case, the denominator is an irreducible quadratic. We will
complete the square and use the translation principle.

1. Completing the square of the denominator gives

s2 C 6s C 25 D s2 C 6s C 9C 25 � 9 D .s C 3/2 C 42:

In order to apply the first translation principle with a D �3, the numerator must
also be rewritten with s translated. Thus, 4s�8 D 4.sC3�3/�8 D 4.sC3/�20.
We now get

L�1

	
4s � 8

s2 C 6s C 25




D L�1

	
4.s C 3/� 20

.s C 3/2 C 42




D e�3tL�1

	
4s � 20

s2 C 42




D e�3t

�

4L
	

s

s2 C 42




� 5L
	

4

s2 C 42


�

D e�3t .4 cos 4t � 5 sin 4t/:

Notice how linearity of Laplace inversion is used here.
2. Completing the square of the denominator gives

s2 � 4sC 7 D s2 � 4s C 4C 3 D .s � 2/2 Cp3
2
:

We now get

L�1

	
2

s2 � 4s C 7




D L�1

(
2

.s � 2/2 Cp3
2

)

D e2tL�1

(
2

s2 Cp3
2

)
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D e2t 2p
3
L�1

( p
3

s2 Cp3
2

)

D 2p
3

e2t sin
p

3t: J

In the examples above, the first translation principle reduces the calculation of
the inverse Laplace transform of a simple rational function involving irreducible
quadratics with a translated s variable to one without a translation. More generally,
the inverse first translation principle gives

L�1

	
b

..s � a/2 C b2/k




D eatL�1

	
b

.s2 C b2/k




;

L�1

	
s � a

..s � a/2 C b2/k




D eatL�1

	
s

.s2 C b2/k




:

(2)

Table 2.4 does not contain the inverse Laplace transforms of the functions on the
right unless k D 1. Unfortunately, explicit formulas for these inverse Laplace
transforms are not very simple for a general k � 1. There is however a recursive
method for computing these inverse Laplace transform formulas which we now
present. This method, which we call a reduction of order formula, may remind you
of reduction formulas in calculus for integrating powers of trigonometric functions
by expressing an integral of an nth power in terms of integrals of lower order powers.

Proposition 8 (Reduction of Order formulas). If b ¤ 0 is a real number and
k � 1 is a positive integer, then

L�1

	
1

.s2 C b2/kC1




D �t

2kb2
L�1

	
s

.s2 C b2/k




C 2k � 1

2kb2
L�1

	
1

.s2 C b2/k




;

L�1

	
s

.s2 C b2/kC1




D t

2k
L�1

	
1

.s2 C b2/k




:

Proof. Let f .t/ D L�1
n

1

.s2Cb2/k

o
. Then the transform derivative principle

(Theorem 20 of Sect. 2.2) applies to give

L ftf .t/g D � d

ds
.L ff .t/g/ D � d

ds

�
1

.s2 C b2/k

�

D 2ks

.s2 C b2/kC1
:
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Now divide by 2k and take the inverse Laplace transform of both sides to get

L�1

	
s

.s2 C b2/kC1




D t

2k
f .t/ D t

2k
L�1

	
1

.s2 C b2/k




;

which is the second of the required formulas.

The first formula is done similarly. Let g.t/ D L�1
n

s

.s2Cb2/k

o
. Then

L ftg.t/g D � d

ds
.L fg.t/g/ D � d

ds

�
s

.s2 C b2/k

�

D � .s2 C b2/k � 2ks2.s2 C b2/k�1

.s2 C b2/2k

D 2s2k � .s2 C b2/

.s2 C b2/kC1
D .2k � 1/.s2 C b2/� 2kb2

.s2 C b2/kC1

D 2k � 1

.s2 C b2/k
� 2kb2

.s2 C b2/kC1
:

Divide by 2kb2, solve for the second term in the last line, and apply the inverse
Laplace transform to get

L�1

	
1

.s2 C b2/kC1




D �t

2kb2
g.t/C .2k � 1/

2kb2
L�1

	
1

.s2 C b2/k




D �t

2kb2
L�1

	
s

.s2 C b2/k




C .2k � 1/

2kb2
L�1

	
1

.s2 C b2/k




;

which is the first formula. ut
These equations are examples of one step recursion relations involving a pair of

functions, both of which depend on a positive integer k. The kth formula for both
families implies the .k C 1/st. Since we already know the formulas for

L�1

	
1

.s2 C b2/k




and L�1

	
s

.s2 C b2/k




; (3)

when k D 1, the reduction formulas give the formulas for the case k D 2, which, in
turn, allow one to calculate the formulas for k D 3, etc. With a little work, we can
calculate these inverse Laplace transforms for any k � 1.

To see how to use these formulas, we will evaluate the inverse Laplace transforms
in (3) for k D 2.
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Formula 9. Use the formulas derived above to verify the following formulas:

L�1

	
1

.s2 C b2/2




D 1

2b3
.�bt cos bt C sin bt/;

L�1

	
s

.s2 C b2/2




D t

2b
sin bt:

H Verification. Here we use the reduction of order formulas for k D 1 to get

L�1

	
1

.s2 C b2/2




D �t

2b2
L�1

	
s

s2 C b2




C 1

2b2
L�1

	
1

s2 C b2




D �t

2b2
cos bt C 1

2b3
sin bt

D 1

2b3
.�bt cos bt C sin bt/;

and L�1

	
s

.s2 C b2/2




D t

2
L�1

	
1

s2 C b2




D t

2b
sin bt: N

Using the calculations just done and applying the reduction formulas for k D 2

will then give the inverse Laplace transforms of (3) for k D 3. The process can then
be continued to get formulas for higher values of k. In Table 2.5, we provide the
inverse Laplace transform for the powers k D 1; : : : ; 4. You will be asked to verify
them in the exercises. In Chap. 7, we will derive a closed formula for each value k.

By writing

cs C d

.s2 C b2/kC1
D c

s

.s2 C b2/kC1
C d

1

.s2 C b2/kC1
;

the two formulas in Proposition 8 can be combined using linearity to give a single
formula:

Corollary 10. Let b, c, and d be real numbers and assume b ¤ 0. If k � 1 is a
positive integer, then

L�1

	
cs C d

.s2 C b2/kC1




D t

2kb2
L�1

	 �ds C cb2

.s2 C b2/k




C 2k � 1

2kb2
L�1

	
d

.s2 C b2/k




:

As an application of this formula, we note the following result that expresses the

form of L�1
n

csCd

.s2Cb2/k

o
in terms of polynomials, sines, and cosines.
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Table 2.5 Inversion formulas involving irreducible quadratics

L�1

	
b

.s2 C b2/k




 ! b

.s2 C b2/k

sin bt  ! b

.s2 C b2/

1
2b2 .sin bt � bt cos bt/  ! b

.s2 C b2/2

1
8b4

�
.3� .bt/2/ sin bt � 3bt cos bt

�  ! b

.s2 C b2/3

1
48b6

�
.15� 6.bt/2/ sin bt � .15bt � .bt/3/ cos bt

�  ! b

.s2 C b2/4

L�1

	
s

.s2 C b2/k




 ! s

.s2 C b2/k

cos bt  ! s

.s2 C b2/
1

2b2 bt sin bt  ! s

.s2 C b2/2

1
8b4

�
bt sin bt � .bt/2 cos bt

�  ! s

.s2 C b2/3

1
48b6

�
.3bt � .bt/3/ sin bt � 3.bt/2 cos bt

�  ! s

.s2 C b2/4

Corollary 11. Let b, c, and d be real numbers and assume b ¤ 0. If k � 1 is a
positive integer, then there are polynomials p1.t/ and p2.t/ of degree at most k � 1

such that

L�1

	
cs C d

.s2 C b2/k




D p1.t/ sin bt C p2.t/ cos bt: (4)

Proof. We prove this by induction. If k D 1, this is certainly true since

L�1

	
cs C d

s2 C b2




D d

b
sin bt C c cos bt;

and thus, p1.t/ D d=b and p2.t/ D c are constants and hence polynomials of
degree 0 D 1 � 1. Now suppose for our induction hypothesis that k � 1 and that
(4) is true for k. We need to show that this implies that it is also true for k C 1. By
this assumption, we can find polynomials p1.t/, p2.t/, q1.t/, and q2.t/ of degree at
most k � 1 so that

L�1

	 �ds C cb2

.s2 C b2/k




D p1.t/ sin bt C p2.t/ cos bt

and L�1

	
d

.s2 C b2/k




D q1.t/ sin bt C q2.t/ cos bt:
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By Corollary 10,

L�1

	
cs C d

.s2 C b2/kC1




D t

2kb2
L�1

	 �ds C cb2

.s2 C b2/k




C 2k � 1

2kb2
L�1

	
d

.s2 C b2/k




D t

2kb2
.p1.t/ sin bt C p2.t/ cos bt/

C2k � 1

2kb2
.q1.t/ sin bt C q2.t/ cos bt/

D P1.t/ sin bt C P2.t/ cos bt;

where

P1.t/ D t

2kb2
p1.t/C 2k � 1

2kb2
q1.t/ and P2.t/ D t

2kb2
p2.t/C 2k � 1

2kb2
q2.t/:

Observe that P1.t/ and P2.t/ are obtained from the polynomials pi .t/, qi .t/ by
multiplying by a term of degree at most 1. Hence, these are polynomials whose
degrees are at most k, since the pi .t/, qi .t/ have degree at most k�1. This completes
the induction argument. ut
It follows from the discussion thus far that the inverse Laplace transform of any
rational function can be computed by means of a partial fraction expansion followed
by use of the formulas from Table 2.4. For partial fractions with irreducible
quadratic denominator, the recursion formulas, as collected in Table 2.5, may be
needed. Here is an example.

Example 12. Find the inverse Laplace transform of

F.s/ D 6s C 6

.s2 � 4sC 13/3
:

I Solution. We first complete the square: s2 � 4s C 13 D s2 � 4s C 4 C 9 D
.s � 2/2 C 32. Then

L�1 fF.s/g D L�1

	
6s C 6

..s � 2/2 C 32/3




D L�1

	
6.s � 2/C 18

..s � 2/2 C 32/3




D e2t

�

6L�1

	
s

.s2 C 32/3




C 6L�1

	
3

.s2 C 32/3


�
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D 6e2t

8 � 34

�
3t sin 3t � .3t/2 cos 3t C .3 � .3t/2/ sin 3t � 3.3t/ cos 3t

�

D e2t

36

�
.1C t � 3t2/ sin 3t � .3t C 3t2/ cos 3t

�
:

The third line is obtained from Table 2.5 with b D 3 and k D 3. J

Irreducible Quadratics and the Laplace Transform Method

We conclude with an example that uses the Laplace transform method, quadratic
partial fraction recursion, and Table 2.5 to solve a second order differential equation.

Example 13. Use the Laplace transform method to solve the following differential
equation:

y00 C 4y D 9t sin t;

with initial conditions y.0/ D 0, and y0.0/ D 0.

I Solution. Table 2.5 gives L f9t sin tg D 18s=.s2 C 1/2. Now apply the Laplace
transform to the differential equation to get

.s2 C 4/Y.s/ D 18s

.s2 C 1/2

and hence

Y.s/ D 18s

.s2 C 1/2.s2 C 4/
:

Using quadratic partial fraction recursion, we obtain the .s2 C 1/-chain

The .s2 C 1/-chain

18s

.s2 C 1/2.s2 C 4/

6s

.s2 C 1/2

�6s

.s2 C 1/.s2 C 4/

�2s

s2 C 1

2s

s2 C 4
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Thus,

Y.s/ D 6s

.s2 C 1/2
C �2s

s2 C 1
C 2s

s2 C 4
:

Laplace inversion with Table 2.5 gives

y.t/ D 3t sin t � 2 cos t C 2 cos 2t: J
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Exercises

1–18. Compute L�1 fF.s/g .t/ for the given proper rational function F.s/.

1.
�5

s

2.
3

s � 4

3.
3

s2
� 4

s3

4.
4

2s C 3

5.
3s

s2 C 4

6.
2

s2 C 3

7.
2s � 5

s2 C 6s C 9

8.
2s � 5

.s C 3/3

9.
6

s2 C 2s � 8

10.
s

s2 � 5s C 6

11.
2s2 � 5s C 1

.s � 2/4

12.
2s C 6

s2 � 6s C 5

13.
4s2

.s � 1/2.s C 1/2

14.
27

s3.s C 3/

15.
8s C 16

.s2 C 4/.s � 2/2

16.
5s C 15

.s2 C 9/.s � 1/

17.
12

s2.s C 1/.s � 2/

18.
2s

.s � 3/3.s � 4/2
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19–24. Use the first translation principle and Table 2.2 (or Table 2.4) to find the
inverse Laplace transform.

19.
2s

s2 C 2s C 5

20.
1

s2 C 6s C 10

21.
s � 1

s2 � 8s C 17

22.
2s C 4

s2 � 4s C 12

23.
s � 1

s2 � 2s C 10

24.
s � 5

s2 � 6s C 13

25–34. Find the inverse Laplace transform of each rational function. Either the
reduction formulas, Proposition 8, or the formulas in Table 2.5 can be used.

25.
8s

.s2 C 4/2

26.
9

.s2 C 9/2

27.
2s

.s2 C 4s C 5/2

28.
2s C 2

.s2 � 6s C 10/2

29.
2s

.s2 C 8s C 17/2

30.
s C 1

.s2 C 2s C 2/3

31.
1

.s2 � 2s C 5/3

32.
8s

.s2 � 6s C 10/3

33.
s � 4

.s2 � 8s C 17/4

34.
2

.s2 C 4s C 8/3
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35–38. Use the Laplace transform method to solve the following differential
equations. (Give both Y.s/ and y.t/:)

35. y00 C y D 4 sin t , y.0/ D 1, y0.0/ D �1

36. y00 C 9y D 36t sin 3t , y.0/ D 0, y0.0/ D 3

37. y00 � 3y D 4t2 cos t , y.0/ D 0, y0.0/ D 0

38. y00 C 4y D 32t cos 2t , y.0/ D 0, y0.0/ D 2

39–44. Verify the following assertions. In each assertion, assume a, b, c are distinct.
These are referred to as Heaviside expansion formulas of the first kind.

39. L�1

	
1

.s � a/.s � b/




D eat

a � b
C ebt

b � a

40. L�1

	
s

.s � a/.s � b/




D aeat

a � b
C bebt

b � a

41. L�1

	
1

.s � a/.s � b/.s � c/




D eat

.a � b/.a � c/
C ebt

.b � a/.b � c/
C

ect

.c � a/.c � b/

42. L�1

	
s

.s � a/.s � b/.s � c/




D aeat

.a � b/.a � c/
C bebt

.b � a/.b � c/
C

cect

.c � a/.c � b/

43. L�1

	
s2

.s � a/.s � b/.s � c/




D a2eat

.a � b/.a � c/
C b2ebt

.b � a/.b � c/
C

c2ect

.c � a/.c � b/

44. L�1

	
sk

.s � r1/ � � � .s � rn/




D rk
1 er1t

q0.r1/
C � � � C rk

n ernt

q0.rn/
, where

q.s/ D .s � r1/ � � � .s � rk/. Assume r1; : : : ; rn are distinct.

45–50. Verify the following assertions. These are referred to as Heaviside expan-
sion formulas of the second kind.

45. L�1

	
1

.s � a/2




D teat

46. L�1

	
s

.s � a/2




D .1C at/eat

47. L�1

	
1

.s � a/3




D t2

2
eat
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48. L�1

	
s

.s � a/3




D
�

t C at2

2

�

eat

49. L�1

	
s2

.s � a/3




D
�

1C 2at C a2t2

2

�

eat

50. L�1

	
sk

.s � a/n




D
�
Pk

lD0

�
k
l

�
ak�l

tn�l�1

.n � l � 1/Š

�

eat
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2.6 The Linear Spaces Eq: Special Cases

Let q.s/ be any fixed polynomial. It is the purpose of this section and the next to
efficiently determine all input functions having Laplace transforms that are proper
rational functions with q.s/ in the denominator. In other words, we want to describe
all the input functions y.t/ such that

L fy.t/g .s/ D p.s/

q.s/
;

where p.s/ may be any polynomial whose degree is less than that of q.s/. It turns
out that our description will involve in a simple way the roots of q.s/ and their
multiplicities and will involve the notion of linear combinations and spanning sets,
which we introduce below. To get an idea why we seek such a description, consider
the following example of a second order linear differential equation. The more
general theory of such differential equations will be discussed in Chaps. 3 and 4.

Example 1. Use the Laplace transform to find the solution set for the second order
linear differential equation

y00 � 3y0 � 4y D 0: (1)

I Solution. Notice in this example that we are not specifying the initial conditions
y.0/ and y0.0/. We may consider them arbitrary. Our solution set will be a family
of solutions parameterized by two arbitrary constants (cf. the discussion in Sect. 1.1
under the subheading The Arbitrary Constants). We apply the Laplace transform to
both sides of (1) and use linearity to get

L ˚y00� � 3L ˚y0� � 4L fyg D 0:

Next use the input derivative principles:

L ˚y0.t/� .s/ D sL fy.t/g .s/� y.0/;

L ˚y00.t/� .s/ D s2L fy.t/g .s/� sy.0/ � y0.0/

to get
s2Y.s/� sy.0/ � y0.0/� 3.sY.s/� y.0//� 4Y.s/ D 0;

where as usual we set Y.s/ D L fy.t/g .s/. Collect together terms involving Y.s/

and simplify to get

.s2 � 3s � 4/Y.s/ D sy.0/C y0.0/� 3y.0/: (2)

The polynomial coefficient of Y.s/ is s2 � 3s � 4 and is called the characteristic
polynomial of (1). To simplify the notation, let q.s/ D s2�3s�4. Solving for Y.s/

gives
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Y.s/ D sy.0/C y0.0/� 3y.0/

s2 � 3s � 4
D p.s/

q.s/
; (3)

where p.s/ D sy.0/C y0.0/� 3y.0/. Observe that p.s/ can be any polynomial of
degree 1 since the initial values are unspecified and arbitrary. Our next step then is
to find all the input functions whose Laplace transform has q.s/ in the denominator.
Since q.s/ D s2 � 3s � 4 D .s � 4/.s C 1/, we see that the form of the partial
fraction decomposition for p.s/

q.s/
is

Y.s/ D p.s/

q.s/
D c1

1

s � 4
C c2

1

s C 1
:

Laplace inversion gives
y.t/ D c1e4t C c2e�t ; (4)

where c1 and c2 are arbitrary real numbers, that depend on the initial conditions y.0/

and y0.0/. We encourage the student to verify by substitution that y.t/ is indeed a
solution to (1). We will later show that all such solutions are of this form. We may
now write the solution set as

˚
c1e4t C c2e�t W c1; c2 2 R

�
: (5)

J
Let us make a few observations about this example. First observe that the

characteristic polynomial q.s/ D s2 � 3s � 4, which is the coefficient of Y.s/

in (2), is easy to read off directly from the left side of the differential equation
y00�3y0�4y D 0; the coefficient of each power of s in q.s/ is exactly the coefficient
of the corresponding order of the derivative in the differential equation. Second,
with the characteristic polynomial in hand, we can jump to (3) to get the form of
Y.s/, namely, Y.s/ is a proper rational function with the characteristic polynomial
in the denominator. The third matter to deal with in this example is to compute y.t/

knowing that its Laplace transform Y.s/ has the special form p.s/

q.s/
. It is this third

matter that we address here. In particular, we find an efficient method to write down
the solution set as given by (5) directly from any characteristic polynomial q.s/. The
roots of q.s/ and their multiplicity play a decisive role in the description we give.

For any polynomial q.s/, we let Rq denote all the proper rational functions that
may be written as p.s/

q.s/
for some polynomial p.s/. We let Eq denote the set of all

input functions whose Laplace transform is in Rq . In Example 1, we found the
Eq D

˚
c1e4t C c2e�t W c1; c2 2 R

�
, where q.s/ D s2 � 3s � 4. If c1 D 1 and c2 D 0

then the function e4t D 1e4t C 0e�t 2 Rq . Observe though that L ˚e4t
� D 1

s�4
. At

first glance, it appears that L ˚e4t
�

is not in Eq . However, we may write

L ˚e4t
�

.s/ D 1

s � 4
D 1 .s C 1/

.s � 4/.s C 1/
D s C 1

q.s/
:

Thus, L ˚e4t
�

.s/ 2 Rq and indeed e4t is in Eq . In a similar way, e�t 2 Eq .
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Recall from Sect. 2.2 the notion of a linear space of functions, namely, closure
under addition and scalar multiplication.

Proposition 2. Both Eq and Rq are linear spaces.

Proof. Suppose p1.s/

q.s/
and p2.s/

q.s/
are in Rq and c 2 R. Then deg p1.s/ and deg p2.s/

are less than deg q.s/. Further,

• p1.s/

q.s/
C p2.s/

q.s/
D p1.s/Cp2.s/

q.s/
. Since addition of polynomials does not increase the

degree, we have deg.p1.s/ C p2.s// < deg q.s/. It follows that p1.s/Cp2.s/

q.s/
is in

Rq .

• c
p1.s/

q.s/
D cp1.s/

q.s/
is proper and has denominator q.s/; hence, it is in Rq .

It follows that Rq is closed under addition and scalar multiplication, and hence, Rq

is a linear space. Now suppose f1 and f2 are in Eq and c 2 R. Then L ff1g 2 Rq

and L ff2g 2 Rq . Further,

• L ff1 C f2g D L ff1g C L ff2g 2 Rq . From this, it follows that f1 C f2 2 Eq .
• L fcf1g D cL ff1g 2 Rq . From this it follows that cf1 2 Eq .

It follows that Eq is closed under addition and scalar multiplication, and hence, Eq

is a linear space. ut

Description of Eq for q.s/ of Degree 2

The roots of a real polynomial of degree 2 occur in one of three ways:

1. Two distinct real roots as in Example 1
2. A real root with multiplicity two
3. Two complex roots

Let us consider an example of each type.

Example 3. Find Eq for each of the following polynomials:

1. q.s/ D s2 � 3s C 2

2. q.s/ D s2 � 2s C 1

3. q.s/ D s2 C 2s C 2

I Solution. In each case, deg q.s/ D 2; thus

Rq D
	

p.s/

q.s/
W deg p.s/ � 1




:
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1. Suppose f .t/ 2 Eq . Since q.s/ D s2� 3sC 2 D .s� 1/.s� 2/, a partial fraction
decomposition of L ff .t/g .s/ D p.s/

q.s/
has the form p.s/

.s�1/.s�2/
D c1

s�1
C c2

s�2
.

Laplace inversion then gives f .t/ D L�1
n

p.s/

q.s/

o
D c1et C c2e2t . On the other

hand, we have et 2 Eq since L fet g D 1
s�1
D s�2

.s�1/.s�2/
D s�2

q.s/
2 Rq . Similarly,

e2t 2 Eq . Since Eq is a linear space, it follows that all functions of the form
c1et C c2e2t are in Eq . From these calculations, it follows that

Eq D
˚
c1et C c2e2t W c1; c2 2 R

�
:

2. Suppose f .t/ 2 Eq . Since q.s/ D s2 � 2s C 1 D .s � 1/2, a partial fraction
decomposition ofL ff .t/g .s/ D p.s/

q.s/
has the form p.s/

.s�1/2 D c1

s�1
C c2

.s�1/2 . Laplace

inversion then gives f .t/ D L�1
n

p.s/

q.s/

o
D c1et C c2tet . On the other hand, we

have et 2 Eq since L fet g D 1
s�1
D s�1

.s�1/2 D s�1
q.s/
2 Rq . Similarly L ftet g D

1
.s�1/2 2 Rq so tet 2 Eq . Since Eq is a linear space, it follows that all functions

of the form c1et C c2tet are in Eq . From these calculations, it follows that

Eq D
˚
c1et C c2tet W c1; c2 2 R

�
:

3. We complete the square in q.s/ to get q.s/ D .s C 1/2 C 1, an irreducible
quadratic. Suppose f .t/ 2 Eq . A partial fraction decomposition of L ff .t/g D
p.s/

q.s/
has the form

p.s/

.s C 1/2 C 1
D as C b

.s C 1/2 C 1

D a.s C 1/C b � a

.s C 1/2 C 1

D c1

s C 1

.s C 1/2 C 1
C c2

1

.s C 1/2 C 1
;

where c1 D a and c2 D b � a. Laplace inversion then gives

f .t/ D L�1

	
p.s/

q.s/




D c1e�t sin t C c2e�t cos t:

On the other hand, we have e�t cos t 2 Eq since L fe�t cos tg D sC1
.sC1/2C1

2 Rq .

Similarly, we have e�t sin t 2 Eq . Since Eq is a linear space, it follows that all
functions of the form c1e�t cos t C c2e�t sin t are in Eq . It follows that

Eq D
˚
c1e�t sin t C c2e�t cos t W c1; c2 2 R

�
: J
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In Example 3, we observe that Eq takes the form

Eq D fc1�1 C c2�2 W c1; c2 2 Rg ;

where

in case (1) �1.t/ D et and �2.t/ D e2t

in case (2) �1.t/ D et and �2.t/ D tet

in case (3) �1.t/ D e�t sin t and �2.t/ D e�t cos t

We introduce the following useful concepts and notation that will allow us to
rephrase the results of Example 3 in a more convenient way and, as we will see, will
generalize to arbitrary polynomials q.s/. Suppose F is a linear space of functions
and S D f�1; : : : ; �ng � F a subset. A linear combination of S is a sum of the
following form:

c1�1 C � � � C cn�n;

where c1; : : : ; cn are scalars in R. Since F is a linear space (closed under addition
and scalar multiplication), all such linear combinations are back in F . The span of
S, denoted Span S, is the set of all such linear combinations. Symbolically, we write

Span S D fc1�1 C � � � C cn�n W c1; : : : ; cn 2 Rg :

If every function in F can be written as a linear combination of S, then we say S
spans F . Alternately, S is referred to as a spanning set for F . Thus, there are two
things that need to be checked to determine whether S is a spanning set for F :

• S � F .
• Each function in F is a linear combination of functions in S.

Returning to Example 3, we can rephrase our results in the following concise
way. For each q.s/, define Bq as given below:

1: q.s/ D s2 � 3s C 2 D .s � 1/.s � 2/ Bq D
˚
et ; e2t

�

2: q.s/ D s2 � 2s C 1 D .s � 1/2 Bq D fet ; tet g
3: q.s/ D .s C 1/2 C 1 Bq D fe�t cos t; e�t sin tg

Then, in each case,
Eq D Span Bq:

Notice how efficient this description is. In each case, we found two functions that
make up Bq . Once they are determined, then Eq D Span Bq is the set of all linear
combinations of the two functions in Bq and effectively gives all those functions
whose Laplace transforms are rational functions with q.s/ in the denominator. The
set Bq is called the standard basis of Eq .

Example 3 generalizes in the following way for arbitrary polynomials of
degree 2.
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Theorem 4. Suppose q.s/ is a polynomial of degree two. Define the standard basis
Bq according to the way q.s/ factors as follows:

1: q.s/ D .s � r1/.s � r2/ Bq D fer1t ; er2t g
2: q.s/ D .s � r/2 Bq D fert ; tert g
3: q.s/ D ..s � a/2 C b2/ Bq D feat cos bt; eat sin btg

We assume r1, r2, r , a, and b are real, r1 ¤ r2, and b > 0. Let Eq be the set
of input functions whose Laplace transform is a rational function with q.s/ in the
denominator. Then

Eq D Span Bq:

Remark 5. Observe that these three cases may be summarized in terms of the roots
of q.s/ as follows:

1. If q.s/ has distinct real roots r1 and r2, then Bq D fer1t ; er2t g.
2. If q.s/ has one real root r with multiplicity 2, then Bq D fert ; tert g.
3. If q.s/ has complex roots a ˙ bi , then Bq D feat cos bt; eat sin btg. Since

sin.�bt/ D � sin bt and cos.�bt/ D cos bt , we may assume b > 0.

Proof. The proof follows the pattern set forth in Example 3.

1. Suppose f .t/ 2 Eq . Since q.s/ D .s�r1/.s�r2/, a partial fraction decomposition
of L ff .t/g .s/ D p.s/

q.s/
has the form p.s/

.s�1/.s�2/
D c1

s�r1
C c2

s�r2
. Laplace inversion

then gives f .t/ D L�1
n

p.s/

q.s/

o
D c1er1t C c2er2t . On the other hand, we have

er1t 2 Eq since L fer1t g D 1
s�r1
D s�r2

.s�r1/.s�r2/
D s�r2

q.s/
2 Rq . Similarly, er2t 2 Eq .

It now follows that

Eq D
˚
c1er1t C c2er2t W c1; c2 2 R

�
:

2. Suppose f .t/ 2 Eq . Since q.s/ D .s � r/2, a partial fraction decomposition of
L ff .t/g .s/ D p.s/

q.s/
has the form p.s/

.s�r/2 D c1

s�r
C c2

.s�r/2 . Laplace inversion then

gives f .t/ D L�1
n

p.s/

q.s/

o
D c1ert C c2tert . On the other hand, we have ert 2 Eq

since L fert g D 1
s�r
D s�r

.s�r/2 D s�r
q.s/
2 Rq . Similarly, L ftert g .s/ D 1

.s�r/2 2
Rq so tert 2 Eq . It now follows that

Eq D
˚
c1ert C c2tert W c1; c2 2 R

�
:

3. Suppose f .t/ 2 Eq . A partial fraction decomposition of L ff .t/g D p.s/

q.s/
has the

form
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p.s/

..s � a/2 C b2/
D cs C d

..s � a/2 C b2/

D c.s � a/C d C ca

..s � a/2 C b2/

D c1

s � a

.s � a/2 C b2
C c2

b

.s � a/2 C b2
;

where c1 D c and c2 D dCca
b

. Laplace inversion then gives

f .t/ D L�1

	
p.s/

q.s/




D c1eat cos bt C c2eat sin bt:

On the other hand, since L feat cos btg D s�a
.s�a/2Cb2 2 Rq , we have eat cos bt 2

Eq . Similarly, we have eat sin bt 2 Eq . It follows that

Eq D
˚
c1e�t sin t C c2e�t cos t W c1; c2 2 R

�
:

In each case, Eq D Span Bq , where Bq is prescribed as above. ut
This theorem makes it very simple to find Bq and thus Eq when deg q.s/ D 2.

The prescription boils down to finding the roots and their multiplicities.

Example 6. Find the standard basis Bq of Eq for each of the following
polynomials:

1. q.s/ D s2 C 6s C 5

2. q.s/ D s2 C 4s C 4

3. q.s/ D s2 C 4s C 13

I Solution. 1. Observe that q.s/ D s2 C 6s C 5 D .s C 1/.s C 5/. The roots are
r1 D �1 and r2 D �5. Thus, Bq D

˚
e�t ; e�5t

�
and Eq D Span Bq .

2. Observe that q.s/ D s2C4sC4 D .sC2/2. The root is r D �2 with multiplicity
2. Thus, Bq D

˚
e�2t ; te�2t

�
and Eq D Span Bq .

3. Observe that q.s/ D s2 C 4s C 13 D .s C 2/2 C 32 is an irreducible
quadratic. Its roots are �2˙ 3i. Thus, Bq D

˚
e�2t cos 3t; e�2t sin 3t

�
and Eq D

Span Bq. J

As we go forward, you will see that the spanning set Bq for Eq , for any
polynomial q.s/, will be determined precisely by the roots of q.s/ and their
multiplicities. We next consider two examples of a more general nature: when
q.s/ is (1) a power of a single linear term and (2) a power of a single irreducible
quadratic.
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Power of a Linear Term

Let us now consider a polynomial which is a power of a linear term.

Proposition 7. For r 2 R, let

q.s/ D .s � r/n:

Then
Bq D

˚
ert ; tert ; : : : ; tn�1ert

�

is a spanning set for Eq .

Remark 8. Observe that Bq only depends on the single root r and its multiplicity
n. Further, Bq has exactly n functions which is the same as the degree of q.s/.

Proof. Suppose f .t/ 2 Eq . Then a partial fraction decomposition of L ff .t/g .s/ D
p.s/

q.s/
has the form

p.s/

.s � r/n
D a1

1

s � r
C a2

1

.s � r/2
C � � � C an

1

.s � r/n
:

Laplace inversion then gives

f .t/ D L�1

	
p.s/

q.s/




D a1ert C a2tert C a3

t2

2Š
ert C � � � C an

tn�1

.n � 1/Š
ert

D c1ert C c2tert C c3t2ert C � � � C cntn�1ert ;

where, in the second line, we have relabeled the constants ak

kŠ
D ck . Observe that

L ˚tkert
� D kŠ

.s � r/kC1
D kŠ.s � r/n�k�1

.s � r/n
2 Eq:

If
Bq D

˚
ert ; tert ; : : : ; tn�1ert

�

then it follows that

Eq D Span Bq: ut
Example 9. Let q.s/ D .s � 5/4. Find all functions f so that L ff g .s/ has q.s/ in
the denominator. In other words, find Eq .

I Solution. We simply observe from Proposition 7 that

Bq D
˚
e5t ; te5t ; t2e5t ; t3e5t

�

and hence Eq D Span Bq. J



2.6 The Linear Spaces Eq : Special Cases 175

Power of an Irreducible Quadratic Term

Let us now consider a polynomial which is a power of an irreducible quadratic
term. Recall that any irreducible quadratic s2 C cs C d may be written in the form
.s � a/2 C b2, where a˙ b are the complex roots.

Lemma 10. Let n be a nonnegative integer; a, b real numbers; and b > 0. Let
q.s/ D ..s � a/2 C b2/n. Then

tkeat cos bt 2 Eq and tkeat sin bt 2 Eq;

for all k D 0; : : : ; n � 1.

Proof. We use the translation principle and the transform derivative principle to get

L ˚tkeat cos bt
�

.s/ D L ˚tk cos bt
�

.s � a/

D .�1/kL fcos btg.k/
ˇ
ˇ
ˇ
s 7!.s�a/

D .�1/k

�
s

s2 C b2

�.k/
ˇ
ˇ
ˇ
ˇ
ˇ
s 7!.s�a/

:

An induction argument which we leave as an exercise gives that
�

s
s2Cb2

�.k/

is a

proper rational function with denominator .s2C b2/kC1. Replacing s by s � a gives

L ˚tkeat cos bt
�

.s/ D p.s/

..s � a/2 C b2/kC1
;

for some polynomial p.s/ with deg p.s/ < 2.k C 1/. Now multiply the numerator
and denominator by ..s � a/2 C b2/n�k�1 to get

L ˚tkeat cos bt
�

.s/ D p.s/..s � a/2 C b2/n�k�1

..s � a2/2 C b2/n
;

for k D 0; : : : ; n � 1. Since the degree of the numerator is less that 2.k C 1/ C
2.n�k�1/ D 2n, it follows that L ˚tkeat cos bt

� 2 Eq . A similar calculation gives
L ˚tkeat sin bt

� 2 Eq . ut

Proposition 11. Let
q.s/ D ..s � a/2 C b2/n

and assume b > 0. Then

Bq D
˚
eat cos bt; eat sin bt; teat cos bt; teat sin bt;

: : : ; tn�1eat cos bt; tn�1eat sin bt
�

is a spanning set for Eq .
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Remark 12. Since cos.�bt/ D cos bt and sin.�bt/ D � sin bt , we may assume
that b > 0. Observe then that Bq depends only on the root a C ib, where b > 0, of
q.s/ and the multiplicity n. Also Bq has precisely 2n functions which is the degree
of q.s/.

Proof. By Lemma 10, each term in Bq is in Eq . Suppose f .t/ 2 Eq and
L ff .t/g .s/ D p.s/

q.s/
for some polynomial p.s/. A partial fraction decomposition

of p.s/

q.s/
has the form

p.s/

q.s/
D a1s C b1

..s � a/2 C b2/
C a2s C b2

..s � a/2 C b2/2
C � � � C ans C bn

..s � a/2 C b2/n
: (6)

By Corollary 11 of Sect. 2.5 and the first translation principle, (2) of Sect. 2.5, the
inverse Laplace transform of a term aksCbk

..s�a/2Cb2/k has the form

L�1

	
aks C bk

..s � a/2 C b2/k




D pk.t/eat cos bt C qk.t/eat sin bt;

where pk.t/ and qk.t/ are polynomials of degree at most k�1. We apply the inverse
Laplace transform to each term in (6) and add to get

L�1

	
p.s/

q.s/




D p.t/eat cos bt C q.t/eat sin bt;

where p.t/ and q.t/ are polynomials of degree at most n � 1. This means that

f .t/ D L�1
n

p.s/

q.s/

o
is a linear combination of functions from Bq as defined above.

It follows now that

Eq D Span Bq: ut

Example 13. Let q.s/ D ..s � 3/2 C 22/3. Find all functions f so that L ff g .s/

has q.s/ in the denominator. In other words, find Eq .

I Solution. We simply observe from Proposition 11 that

Bq D
˚
e3t cos 2t; e3t sin 2t; te3t cos 2t; te3t sin 2t; t2e3t cos 2t; t2e3t sin 2t;

�

and hence Eq D Span Bq. J
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Exercises

1–25. Find the standard basis Bq of Eq for each polynomial q.s/.

1. q.s/ D s � 4

2. q.s/ D s C 6

3. q.s/ D s2 C 5s

4. q.s/ D s2 � 3s � 4

5. q.s/ D s2 � 6s C 9

6. q.s/ D s2 � 9s C 14

7. q.s/ D s2 � s � 6

8. q.s/ D s2 C 9s C 18

9. q.s/ D 6s2 � 11sC 4

10. q.s/ D s2 C 2s � 1

11. q.s/ D s2 � 4s C 1

12. q.s/ D s2 � 10s C 25

13. q.s/ D 4s2 C 12s C 9

14. q.s/ D s2 C 9

15. q.s/ D 4s2 C 25

16. q.s/ D s2 C 4s C 13

17. q.s/ D s2 � 2s C 5

18. q.s/ D s2 � s C 1

19. q.s/ D .s C 3/4

20. q.s/ D .s � 2/5

21. q.s/ D s3 � 3s2 C 3s � 1

22. q.s/ D .s C 1/6

23. q.s/ D .s2 C 4s C 5/2

24. q.s/ D .s2 � 8s C 20/3

25. q.s/ D .s2 C 1/4
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2.7 The Linear Spaces Eq: The General Case

We continue the discussion initiated in the previous section. Let q.s/ be a fixed
polynomial. We want to describe the linear space Eq of continuous functions
that have Laplace transforms that are rational functions and have q.s/ in the
denominator. In the previous section, we gave a description of Eq in terms of a
spanning set Bq for polynomials of degree 2, a power of a linear term, and a power
of an irreducible quadratic. We take up the general case here.

Exponential Polynomials

Let n be a nonnegative integer, and a; b 2 R, and assume b � 0. We will refer to
functions of the form

tneat cos bt and tneat sin bt;

defined on R, as simple exponential polynomials. We introduced these functions in
Lemma 10 of Sect. 2.6. Note that if b D 0, then tneat cos bt D tneat , and if both
a D 0 and b D 0, then tneat cos bt D tn. Thus, the terms

tneat and tn

are simple exponential polynomials for all nonnegative integers n and real numbers
a. If n D 0 and a D 0, then tneat cos bt D cos bt and tneat sin bt D sin bt . Thus,
the basic trigonometric functions

cos bt and sin bt

are simple exponential polynomials. For example, all of the following functions are
simple exponential polynomials:

1. t3 2. t5 cos 2t 3. e�3t 4. t2e2t 5. t4e�8t sin 3t

while none of the following are simple exponential polynomials:

6. t
1
2 7.

sin 2t

cos 2t
8. tet 2

9. sin.et / 10.
et

t

We refer to any linear combination of simple exponential polynomials as an
exponential polynomial. In other words, an exponential polynomial is a function in
the span of the simple exponential polynomials. We denote the set of all exponential
polynomials by E . All of the following are examples of exponential polynomials
and are thus in E :
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1. et C 2e2t C 3e3t 2. t2et sin 3t C 2te7t cos 5t 3. 1 � t C t2 � t3 C t4

4. t � 2t cos 3t 5. 3e2t C 4te2t 6. 2 cos 4t � 3 sin 4t

Definition of Bq

Recall that we defined Eq to be the set of input functions whose Laplace transform
is in Rq . We refine slightly our definition. We define Eq to be the set of exponential
polynomials whose Laplace transform is in Rq . That is,

Eq D
˚
f 2 E W L ff g 2 Rq

�
:

Thus, each function in Eq is defined on the real line even though the Laplace
transform only uses the restriction to Œ0;1/.4 We now turn our attention to
describing Eq in terms of a spanning set Bq . In each of the cases we considered
in the previous section, Bq was made up of simple exponential polynomials. This
will persist for the general case as well. Consider the following example.

Example 1. Let q.s/ D .s � 1/3.s2 C 1/2. Find a set Bq of simple exponential
polynomials that spans Eq .

I Solution. Recall that Eq consists of those input functions f .t/ such that L ff .t/g
is in Rq . In other words, L ff .t/g .s/ D p.s/

q.s/
, for some polynomial p.s/ with degree

less than that of q.s/. A partial fraction decomposition gives the following form:

p.s/

.s � 1/3.s2 C 1/2
D a1

s � 1
C a2

.s � 1/2
C a3

.s � 1/3
C a4s C a5

s2 C 1
C a6s C a7

.s2 C 1/2

D p1.s/

.s � 1/3
C p2.s/

.s2 C 1/2
;

where p1.s/ is a polynomial of degree at most 2 and p2.s/ is a polynomial of degree
at most 3. This decomposition allows us to treat Laplace inversion of p.s/

.s�1/3.s2C1/2

in terms of the two pieces: p1.s/

.s�1/3 and p2.s/

.s2C1/2 . In the first case, the denominator is
a power of a linear term, and in the second case, the denominator is a power of an
irreducible quadratic. From Propositions 7 and 11 of Sect. 2.6, we get

L�1

	
p1.s/

q1.s/




D c1et C c2tet C c3t2et ;

4In fact, any function which has a power series with infinite radius of convergence, such as an
exponential polynomial, is completely determined by it values on Œ0;1/. This is so since f .t/ D
P1

nD0
f .n/.0/

nŠ
t n and f .n/.0/ are computed from f .t/ on Œ0;1/.
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L�1

	
p2.s/

q2.s/




D c4 cos t C c5 sin t C c6t cos t C c7t sin t;

where c1; : : : ; c7 are scalars, q1.s/ D .s � 1/3, and q2.s/ D .s2 C 1/2. It follows
now by linearity of the inverse Laplace transform that

f .t/ D L�1

	
p.s/

.s � 1/3.s2 C 1/2




D c1et C c2tet C c3t2et C c4 cos t C c5 sin t C c6t cos t C c7t sin t:

Thus, if
Bq D

˚
et ; tet ; t 2et ; cos t; sin t; t cos t; t sin t

�

then the above calculation gives Eq D Span Bq . Also observe that we have shown
that Bq D Bq1 [ Bq2 . Further, the order of Bq , which is 7, matches the degree of
q.s/. J

From this example, we see that Bq is the collection of simple exponential
polynomials obtained from both Bq1 and Bq2 , where q1.s/ D .s � 1/3 and q2.s/ D
.s2C1/2 are the factors of q.s/. More generally, suppose that q.s/ D q1.s/ � � �qR.s/,
where qi .s/ is a power of a linear term or a power of an irreducible quadratic term.
Further assume that there is no repetition among the linear or quadratic terms. Then
a partial fraction decomposition can be written in the form

p.s/

q.s/
D p1.s/

q1.s/
C � � � C pR.s/

qR.s/
:

We argue as in the example above and see that L�1
n

p.s/

q.s/

o
is a linear combination of

those simple exponential polynomial gotten from Bq1 ; : : : ;BqR . If we define

Bq D Bq1 [ � � � [ BqR

then we get the following theorem:

Theorem 2. Let q.s/ be a fixed polynomial of degree n. Suppose q.s/ D
q1.s/ � � �qR.s/ where qi .s/ is a power of a linear or an irreducible term and
there is no repetition among the terms. Define Bq D Bq1 [ � � � [ BqR . Then

Span Bq D Eq:

Further, the degree of p.s/ is the same as the order of Bq .

Proof. The essence of the proof is given in the argument in the previous paragraph.
More details can be found in Appendix A.3. ut
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It is convenient to also express Bq in terms of the roots of q.s/ and their
multiplicities. We put this forth in the following algorithm.

Algorithm 3. Let q.s/ be a polynomial. The following procedure is used to
construct Bq , a spanning set of Eq .

Description of Bq

Given a polynomial q.s/:

1. Factor q.s/ and determine the roots and their multiplicities.

2. For each real root r with multiplicity m, the spanning set Bq will contain
the simple exponential functions:

ert ; tert ; : : : ; tm�1ert :

3. For each complex root a ˙ ib (b > 0) with multiplicity m, the spanning
set Bq will contain the simple exponential functions:

eat cos bt; eat sin bt; : : : ; tm�1eat cos bt; tm�1eat sin bt:

Example 4. Find Bq if

1. q.s/ D 4.s � 3/2.s � 6/

2. q.s/ D .s C 1/.s2 C 1/

3. q.s/ D 7.s � 1/3.s � 2/2..s � 3/2 C 52/2

I Solution.
1. The roots are r1 D 3 with multiplicity 2 and r2 D 6 with multiplicity 1. Thus,

Bq D
˚
e3t ; te3t ; e6t

�
:

2. The roots are r D �1 with multiplicity 1 and a ˙ ib D 0˙ i . Thus, a D 0 and
b D 1. We now get

Bq D
˚
e�t ; cos t; sin t

�
:

3. The roots are r1 D 1 with multiplicity 3, r2 D 2 with multiplicity 2, and a˙ib D
3˙ 5i with multiplicity 2. We thus get

Bq D
˚
et ; tet ; t 2et ; e2t ; te2t ; e3t cos 5t; e3t sin 5t; te3t cos 5t; te3t sin 5t

�
: J
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Laplace Transform Correspondences

We conclude this section with two theorems. The first relates E and R by way of the
Laplace transform. The second relates Eq and Rq . The notion of linearity is central
so we establish that E and R are linear spaces. First note the following lemma.

Lemma 5. Suppose S is a set of functions on an interval I . Let F D Span S. Then
F is a linear space.

Proof. If f and g are in Span S, then there are scalars a1; : : : ; an and b1; : : : ; bm so
that

f D a1f1 C � � � C anfn and g D b1g1 C � � � C bmgm;

where f1; : : : ; fn and g1; : : : ; gm are in S. The sum

f C g D a1f1 C � � � C anfn C b1g1 C � � � C bmgm;

is again a linear combination of function in S, and hence f C g 2 Span S. In
a similar way, if c is a scalar and f D a1f1 C � � � C anfn is in Span S, then
cf D ca1f1C� � �Ccanfn is a linear combinations of functions in S, and hence cf 2
Span S. It follows that Span S is closed under addition and scalar multiplication and
hence is a linear space. ut

Recall that we defined the set E of exponential polynomials as the span of the set
of all simple exponential polynomials. Lemma 5 gives the following result.

Proposition 6. The set of exponential polynomials E is a linear space.

Proposition 7. The set R of proper rational functions is a linear space.

Proof. Suppose p1.s/

q1.s/
and p2.s/

q2.s/
are in R and c 2 R. Then

• p1.s/

q1.s/
C p2.s/

q2.s/
D p1.s/q2.s/Cp2.s/q1.s/

q1.s/q2.s/
is again a proper rational function and hence

in R.
• c

p1.s/

q1.s/
D cp1.s/

q1.s/
is a again a proper rational function and hence in R.

It follows that R is closed under addition and scalar multiplication, and hence R is
a linear space. ut
Theorem 8. The Laplace transform

L W E ! R

establishes a linear one-to-one correspondence between the linear space of expo-
nential polynomials, E , and the linear space of proper rational functions, R.
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Remark 9. This theorem means the following:

1. The Laplace transform is linear, which we have already established.
2. The Laplace transform of each f 2 E is a rational function.
3. For each proper rational function r 2 R, there is a unique exponential

polynomial f 2 E so that L ff g D r .

Proof. By Lemma 10 of Sect. 2.6, the Laplace transforms of the simple exponential
polynomials tneat cos bt and tneat sin bt are in R. Let � 2 E . There are simple
exponential polynomials �1; : : : ; �m such that � D c1�1 C � � � C cm�m, where
c1; : : : ; cm 2 R. Since the Laplace transform is linear, we have L f�g D c1L ff1g C
� � � C cmL f�mg. Now each term L f�i g 2 R. Since R is a linear space, we
L f�g 2 R: It follows that the Laplace transform of any exponential polynomial
is a rational function.

On the other hand, a proper rational function is a linear combination of the simple
rational functions given in (1) in Sect. 2.5. Observe that

L�1 f1=.s � a/ng .s/ D tn�1

.n � 1/Š
eat

is a scalar multiple of a simple exponential polynomial. Also, Corollary 11 of
Sect. 2.5 and the first translation principle establish that both 1=..s � a/2 C b2/k

and s=..s�a/2Cb2/k have inverse Laplace transforms that are linear combinations
of tneat sin bt and tneat cos bt for 0 � k < n. It now follows that the inverse
Laplace transform of any rational function is an exponential polynomial. Since
the Laplace transform is one-to-one by Theorem 1 of Sect. 2.5, it follows that the
Laplace transform establishes a one-to-one correspondence between E and R. ut

We obtain by restricting the Laplace transform the following fundamental
theorem.

Theorem 10. The Laplace transform establishes a linear one-to-one correspon-
dence between Eq and Rq . In other words,

L W Eq ! Rq

is one-to-one and onto.
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Exercises

1–11. Determine which of the following functions are in the linear space E of
exponential polynomials.

1. t2e�2t

2. t�2e2t

3. t=et

4. et =t

5. t sin
�
4t � �

4

�

6. .t C et /2

7. .t C et /�2

8. tet=2

9. t1=2et

10. sin 2t=e2t

11. e2t = sin 2t

12–28. Find the standard basis Bq of Eq for each polynomial q.s/.

12. q.s/ D s3 C s

13. q.s/ D s4 � 1

14. q.s/ D s3.s C 1/2

15. q.s/ D .s � 1/3.s C 7/2

16. q.s/ D .s C 8/2.s2 C 9/3

17. q.s/ D .s C 2/3.s2 C 4/2

18. q.s/ D .s C 5/2.s � 4/2.s C 3/2

19. q.s/ D .s � 2/2.s C 3/2.s C 3/

20. q.s/ D .s � 1/.s � 2/2.s � 3/3

21. q.s/ D .s C 4/2.s2 C 6s C 13/2

22. q.s/ D .s C 5/.s2 C 4s C 5/2

23. q.s/ D .s � 3/3.s2 C 2s C 10/2

24. q.s/ D s3 C 8

25. q.s/ D 2s3 � 5s2 C 4s � 1

26. q.s/ D s3 C 2s2 � 9s � 18

27. q.s/ D s4 C 5s2 C 6

28. q.s/ D s4 � 8s2 C 16
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29–33. Verify the following closure properties of the linear space of proper rational
functions.

29. Multiplication. Show that if r1.s/ and r2.s/ are in R, then so is r1.s/r2.s/.
30. Translation. Show that if r.s/ is in R, so is any translation of r.s/, that is,

r.s � a/ 2 R for any a.
31. Differentiation. Show that if r.s/ is in R, then so is the derivative r 0.s/.
32. Let q.s/ D .s � a/2 C b2. Suppose r.s/ 2 Rqn but r.s/ … Rqn�1 . Then

r 0.s/ 2 RqnC1 but r 0.s/ … Rqn .
33. Let q.s/ D .s � a/2 C b2. Let r 2 Rq . Then r.n/ 2 RqnC1 but not in Rqn .

34–38. Verify the following closure properties of the linear space of exponential
polynomials.

34. Multiplication. Show that if f and g are in E , then so is fg.
35. Translation. Show that if f is in E , so is any translation of f , i.e. f .t � t0/ 2 E ,

for any t0.
36. Differentiation. Show that if f is in E , then so is the derivative f 0.
37. Integration. Show that if f is in E , then so is

R
f .t/ dt . That is, any

antiderivative of f is in E .
38. Show that E is not closed under inversion. That is, find a function f so that 1=f

is not in E .

39–41. Let q.s/ be a fixed polynomial. Verify the following closure properties of
the linear space Eq .

39. Differentiation. Show that if f is in Eq , then f 0 is in Eq .
40. Show that if f is in Eq , then the nth derivative of f , f .n/, is in Eq .
41. Show that if f 2 Eq , then any translate is in Eq . That is, if t0 2 R, then f .t �

t0/ 2 Eq .
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2.8 Convolution

Table 2.3 shows many examples of operations defined on the input space that
induce via the Laplace transform a corresponding operation on transform space,
and vice versa. For example, multiplication by �t in input space corresponds to
differentiation in transform space. If F.s/ is the Laplace transform of f .t/, then
this correspondence can be indicated as follows:

�tf .t/ ! d

ds
F.s/:

Our goal in this section is to study another such operational identity. Specifically,
we will be concentrating on the question of what is the operation in the input space
that corresponds to ordinary multiplication of functions in the transform space. Put
more succinctly, suppose f .t/ and g.t/ are input functions with Laplace transforms
F.s/ and G.s/, respectively. What input function h.t/ corresponds to the product
H.s/ D F.s/G.s/ under the Laplace transform? In other words, how do we fill in
the following question mark in terms of f .t/ and g.t/?

h.t/ D ‹  ! F.s/G.s/:

You might guess that h.t/ D f .t/g.t/. That is, you would be guessing that
multiplication in the input space corresponds to multiplication in the transform
space. This guess is wrong as you can quickly see by looking at almost any example.
For a concrete example, let

F.s/ D 1=s and G.s/ D 1=s2:

Then H.s/ D F.s/G.s/ D 1=s3 and h.t/ D t2=2. However, f .t/ D 1, g.t/ D t ,
and, hence, f .t/g.t/ D t . Thus h.t/ ¤ f .t/g.t/.

Suppose f and g are continuous functions on Œ0;1/. We define the convolution
(product), .f � g/.t/, of f and g by the following integral:

.f � g/.t/ D
Z t

0

f .u/g.t � u/ du: (1)

The variable of integration we chose is u but any variable other than t can be used.
Admittedly, convolution is an unusual product. It is not at all like the usual product
of functions where the value (or state) at time t is determined by knowing just the
value of each factor at time t . Rather, (1) tells us that the value at time t depends on
knowing the values of the input function f and g for all u between 0 and t . They
are then “meshed” together to give the value at t .
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The following theorem, the convolution theorem, explains why convolution is so
important. It is the operation of convolution in input space that corresponds under
the Laplace transform to ordinary multiplication of transform functions.

Theorem 1 (The Convolution Theorem). Let f .t/ and g.t/ be continuous func-
tions of exponential type. Then f � g is of exponential type. Further, if F.s/ D
L ff .t/g .s/ and G.s/ D L fg.t/g .s/, then

The Convolution Principle

L f.f � g/.t/g .s/ D F.s/G.s/

or .f � g/.t/ D L�1 fF.s/ �G.s//g .t/:

The second formula is just the Laplace inversion of the first formula. The proof
of the convolution principle will be postponed until Chap. 6, where it is proved for
a broader class of functions.

Let us consider a few examples that confirm the convolution principle.

Example 2. Let n be a positive integer, f .t/ D tn, and g.t/ D 1. Compute the
convolution f � g and verify the convolution principle.

I Solution. Observe that L ftng .s/ D nŠ=snC1, L f1g .s/ D 1=s, and

f � g.t/ D
Z t

0

f .u/g.t � u/ du D
Z t

0

un � 1 du D unC1

nC 1

ˇ
ˇ
ˇ
ˇ

t

0

D tnC1

nC 1
:

Further,

L ff � gg .s/ D L
	

tnC1

nC 1




.s/ D 1

nC 1

.nC 1/Š

snC2
D nŠ

snC1
� 1

s

D L ff g � L fgg

thus verifying the convolution principle. J

Example 3. Compute t2 � t3 and verify the convolution principle.

I Solution. Here we let f .t/ D t3 and g.t/ D t2 in (1) to get

t3 � t2 D
Z t

0

f .u/g.t � u/ du D
Z t

0

u3.t � u/2 du

D
Z t

0

t2u3 � 2tu4 C u5 du D t6

4
� 2

t6

5
C t6

6
D t6

60
:
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Additionally,

L ff � gg .s/ D L
	

t6

60




.s/ D 1

60

6Š

s7
D 3Š

s4
� 2

s3

D L ff g � L fgg : J

Example 4. Let f .t/ D sin t and g.t/ D 1. Compute .f � g/.t/ and verify the
convolution principle.

I Solution. Observe that F.s/ D L fsin tg D 1=.s2 C 1/, G.s/ D L f1g D 1=s,
and

.f � g/.t/ D
Z t

0

f .u/g.t � u/ du D
Z t

0

sin u du D � cos ujt0 D 1 � cos t:

Further,

L ff � gg .s/ D L f1 � cos tg .s/ D 1

s
� s

s2 C 1

D s2 C 1 � s2

s.s2 C 1/
D 1

s.s2 C 1/
D 1

s2 C 1
� 1

s

D L ff g � L fgg : J

Properties of the Convolution Product

Convolution is sometimes called the convolution product because it behaves in many
ways like an ordinary product. In fact, below are some of its properties:

Commutative property: f � g D g � f

Associative property: .f � g/ � h D f � .g � h/

Distributive property: f � .g C h/ D f � g C f � h

f � 0 D 0 � f D 0

Indeed, these properties of convolution are easily verified from the definition
given in (1). For example, the commutative property is verified by a change of
variables:

f � g.t/ D
Z t

0

f .u/g.t � u/ du

Let x D t � u then dx D �dt and we get
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D
Z 0

t

f .t � x/g.x/ .�1/dx

D
Z t

0

g.x/f .t � x/ dx

D g � f:

It follows, for example, that

tn � 1.t/ D
Z t

0

un du D
Z t

0

.u � t/n du D tn � 1:

Both integrals are equal. The decision about which one to use depends on which
you regard as the easiest to compute. You should verify the other properties listed.

There is one significant difference that convolution has from the ordinary product
of functions, however. Examples 2 and 4 imply that the constant function 1

does not behave like a multiplicative identity. In fact, no such “function” exists.5

Nevertheless, convolution by f .t/ D 1 is worth singling out as a special case of the
convolution principle.

Theorem 5. Let g.t/ be a continuous function of exponential type and G.s/ its
Laplace transform. Then .1 � g/.t/ D R t

0
g.u/ du and

Input Integral Principle

L
nR t

0
g.u/ du

o
D G.s/

s
:

Proof. Since .1 � g/.t/ D R t

0 g.u/ du, the theorem follows directly from the
convolution principle. However, it is noteworthy that the input integral principle
follows from the input derivative principle. Here is the argument. Since g is of
exponential type, so is any antiderivative by Lemma 4 of Sect. 2.2. Suppose h.t/ DR t

0 g.u/ du. Then h0.t/ D g.t/, and h.0/ D 0 so the input derivative principle gives

G.s/ D L fg.t/g D L ˚h0.t/� D sH.s/ � h.0/ D sH.s/:

Hence, H.s/ D .1=s/G.s/, and thus,

L
	Z t

0

g.u/ du




D L fh.t/g .s/ D 1

s
G.s/: ut

5In Chap. 6, we will discuss a so-called “generalized function” that will act as a multiplicative
identity for convolution.
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Remark 6. The requirement that g be of exponential type can be relaxed. It can be
shown that if g is continuous on Œ0;1/ and has a Laplace transform so does any
antiderivative, and the input integral principle remains valid.6

The input integral and convolution principles can also be used to compute
the inverse Laplace transform of rational functions. Consider the following two
examples

Example 7. Find the inverse Laplace transform of

1

s.s2 C 1/
:

I Solution. Instead of using partial fractions, we will use the input integral

principle. Since L�1
n

1
s2C1

o
D sin t , we have

L�1

	
1

s.s2 C 1/




D
Z t

0

sin u du

D � cos ujt0 D 1 � cos t: J
Example 8. Compute the inverse Laplace transform of s

.s�1/.s2C9/
:

I Solution. The inverse Laplace transforms of s
s2C9

and 1
s�1

are cos 3t and et ,
respectively. The convolution theorem now gives

L�1

	
s

.s � 1/.s2 C 9/




D cos 3t � et

D
Z t

0

cos 3u et�u du

D et

Z t

0

e�u cos 3u du

D et

10
.�e�u cos 3uC 3e�u sin 3u/jt0

D 1

10
.� cos 3t C 3 sin 3t C et /:

The computation of the integral involves integration by parts. We leave it to the
student to verify this calculation. Of course, this calculation agrees with Laplace
inversion using the method of partial fractions. J

6For a proof, see Theorem 6 and the remark that follows on page 450 of the text Advanced Calculus
(second edition) by David Widder, published by Prentice Hall (1961).
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Table 2.11 contains several general convolution formulas. The next few formulas
verify some of the entries.

Formula 9. Verify the convolution product

eat � ebt D eat � ebt

a � b
; (2)

where a ¤ b, and verify the convolution principle.

H Verification. Use the defining equation (1) to get

eat � ebt D
Z t

0

eaueb.t�u/ du D ebt

Z t

0

e.a�b/u du D eat � ebt

a � b
:

Observe that

L
	

eat � ebt

a � b




D 1

a � b

�
1

s � a
� 1

s � b

�

D 1

.s � a/.s � b/
D 1

s � a
� 1

s � b

D L ˚eat
� � L ˚ebt

�
;

so this calculation is in agreement with the convolution principle. N

Formula 10. Verify the convolution product

eat � eat D teat (3)

and verify the convolution principle.

H Verification. Computing from the definition:

eat � eat D
Z t

0

eauea.t�u/ du D eat

Z t

0

du D teat :

As with the previous example, note that the calculation

L ˚teat
� D 1

.s � a/2
D L ˚eat

�L ˚eat
�

;

which agrees with the convolution principle. N

Remark 11. Since

lim
a!b

eat � ebt

a � b
D d

da
eat D teat ;
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the previous two examples show that

lim
a!b

eat � ebt D teat D eat � eat ;

so that the convolution product is, in some sense, a continuous operation.

Formula 12. Verify the following convolution product where m; n � 0:

tm � tn D mŠ nŠ

.mC nC 1/Š
tmCnC1:

H Verification. Our method for this computation is to use the convolution theorem,
Theorem 1. We get

L ftm � tng D L ftmgL ftng D mŠ

smC1

nŠ

snC1
D mŠ nŠ

smCnC2
:

Now take the inverse Laplace transform to conclude

tm � tn D L�1

	
mŠ nŠ

smCnC2




D mŠ nŠ

.mC nC 1/Š
tmCnC1: N

As special cases of this formula, note that

t2 � t3 D 1

60
t6 and t � t4 D 1

30
t6:

The first was verified directly in Example 3.
In the next example, we revisit a simple rational function whose inverse Laplace

transform can be computed by the techniques of Sect. 2.5.

Example 13. Compute the inverse Laplace transform of 1
.s2C1/2 .

I Solution. The inverse Laplace transform of 1=.s2 C 1/ is sin t . By the convolu-
tion theorem, we have
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L�1

	
1

.s2 C 1/2




D sin t � sin t:

D
Z t

0

sin u sin.t � u/ du

D
Z t

0

sin u.sin t cos u � sin u cos t/ du

D sin t

Z t

0

sin u cos u du� cos t

Z t

0

sin2 u du

D
 

sin t
sin2 t

2
� cos t

t � sin t cos t

2

!

D sin t � t cos t

2
: J

Now, one should see how to handle 1=.s2C1/3 and even higher powers: repeated
applications of convolution. Let f �k denote the convolution of f with itself k times.
In other words,

f �k D f � f � � � � � f; k times:

Then it is easy to see that

L�1

	
1

.s2 C 1/kC1




D sin�.kC1/ t

and L�1

	
s

.s2 C 1/kC1




D cos t � sin�k t:

These rational functions with powers of irreducible quadratics in the denominator
were introduced in Sect. 2.5 where recursion formulas were derived.

Computing convolution products can be tedious and time consuming. In Table
2.11, we provide a list of common convolution products. Students should familiarize
themselves with this list so as to know when they can be used.
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Exercises

1–4. Use the definition of the convolution to compute the following convolution
products.

1. t � t

2. t � t3

3. 3 � sin t

4. .3t C 1/ � e4t

5–9. Compute the following convolutions using the table or the convolution princi-
ple.

5. sin 2t � e3t

6. .2t C 1/ � cos 2t

7. t2 � e�6t

8. cos t � cos 2t

9. e2t � e�4t

10–15. Use the convolution principle to determine the following convolutions and
thus verify the entries in the convolution table.

10. t � tn

11. eat � sin bt

12. eat � cos bt

13. sin at � sin bt

14. sin at � cos bt

15. cos at � cos bt

16–21. Compute the Laplace transform of each of the following functions.

16. f .t/ D R t

0
.t � x/ cos 2x dx

17. f .t/ D R t

0
.t � x/2 sin 2x dx

18. f .t/ D R t

0
.t � x/3e�3x dx

19. f .t/ D R t

0
x3e�3.t�x/ dx

20. f .t/ D R t

0
sin 2x cos.t � x/ dx

21. f .t/ D R t

0 sin 2x sin 2.t � x/ dx
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22–31. In each of the following exercises, use the convolution theorem to compute
the inverse Laplace transform of the given function.

22.
1

.s � 2/.s C 4/

23.
1

s2 � 6s C 5

24.
1

.s2 C 1/2

25.
s

.s2 C 1/2

26.
1

.s C 6/s3

27.
2

.s � 3/.s2 C 4/

28.
s

.s � 4/.s2 C 1/

29.
1

.s � a/.s � b/
a ¤ b

30.
G.s/

s C 2

31. G.s/
s

s2 C 2

32. Let f be a function with Laplace transform F.s/. Show that

L�1

	
F.s/

s2




D
Z t

0

Z x1

0

f .x2/ dx2 dx1:

More generally, show that

L�1

	
F.s/

sn




D
Z t

0

Z x1

0

: : :

Z xn�1

0

f .xn/ dxn : : : dx2 dx1:

33–38. Use the input integral principle or, more generally, the results of Problem
32 to compute the inverse Laplace transform of each function.

33.
1

s2.s2 C 1/

34.
1

s2.s2 � 4/
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35.
1

s3.s C 3/

36.
1

s2.s � 2/2

37.
1

s.s2 C 9/2

38.
1

s3 C s2
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2.9 Summary of Laplace Transforms and Convolutions

Laplace transforms and convolutions presented in Chap. 2 are summarized in Tables
2.6–2.11.

Table 2.6 Laplace transform rules

f .t/ F.s/ Page

Definition of the Laplace transform
1. f .t/ F.s/ D R1

0 e�st f .t/ dt 111

Linearity

2. a1f1.t/C a2f2.t/ a1F1.s/C a2F2.s/ 114

Dilation principle

3. f .at/
1

a
F
� s

a

�
122

First Translation principle

4. eat f .t/ F.s � a/ 120

Input derivative principle: first order

5. f 0.t / sF.s/ � f .0/ 115

Input derivative principle: second order

6. f 00.t / s2F.s/� sf .0/� f 0.0/ 115

Input derivative principle: nth order

7. f .n/.t / snF.s/ � sn�1f .0/ � sn�2f 0.0/ �
� � � � sf .n�2/.0/� f .n�1/.0/

116

Transform derivative principle: first order

8. tf .t/ �F 0.s/ 121

Transform derivative principle: second order

9. t 2f .t/ F 00.s/

Transform derivative principle: nth order

10. t nf .t/ .�1/nF .n/.s/ 121

Convolution principle

11. .f � g/.t/

D R t

0 f .�/g.t � �/ d�

F.s/G.s/ 188

Input integral principle

12.
R t

0 f .v/dv
F.s/

s
190
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Table 2.7 Basic Laplace transforms

f .t/ F.s/ Page

1. 1
1

s
116

2. t
1

s2

3. t n .n D 0; 2; 3; : : :/
nŠ

snC1
116

4. t ˛ .˛ > 0/
� .˛C 1/

s˛C1
118

5. eat
1

s � a
118

6. teat
1

.s � a/2

7. t neat .n D 1; 2; 3; : : :/
nŠ

.s � a/nC1
119

8. sin bt
b

s2 C b2
118

9. cos bt
s

s2 C b2
118

10. eat sin bt
b

.s � a/2 C b2
120

11. eat cos bt
s � a

.s � a/2 C b2
120

Table 2.8 Heaviside formulas

f .t/ F.s/

1.
rk

1 er1t

q0.r1/
C � � � C rk

n ernt

q0.rn/
,

sk

.s � r1/ � � � .s � rn/
,

q.s/ D .s � r1/ � � � .s � rn/ r1; : : : ; rn; distinct

2.
eat

a � b
C ebt

b � a

1

.s � a/.s � b/

3.
aeat

a � b
C bebt

b � a

s

.s � a/.s � b/

4.
eat

.a � b/.a � c/
C ebt

.b � a/.b � c/
C ect

.c � a/.c � b/

1

.s � a/.s � b/.s � c/

5.
aeat

.a � b/.a � c/
C bebt

.b � a/.b � c/
C cect

.c � a/.c � b/

s

.s � a/.s � b/.s � c/

(continued)
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Table 2.8 (continued)

6.
a2eat

.a � b/.a � c/
C b2ebt

.b � a/.b � c/
C c2ect

.c � a/.c � b/

s2

.s � a/.s � b/.s � c/

7.
�Pk

lD0

�
k

l

�
ak�l tn�l�1

.n�l�1/Š

�
eat

sk

.s � a/n

8. teat
1

.s � a/2

9. .1C at/eat
s

.s � a/2

10.
t 2

2
eat

1

.s � a/3

11.

�

t C at2

2

�

eat
s

.s � a/3

12.

�

1C 2at C a2t2

2

�

eat
s2

.s � a/3

In each case, a, b, and c are distinct. See Page 165.

Table 2.9 Laplace transforms involving irreducible quadratics

f .t/ F.s/

1. sin bt
b

.s2 C b2/

2.
1

2b2
.sin bt � bt cos bt/

b

.s2 C b2/2

3.
1

8b4

�
.3� .bt/2/ sin bt � 3bt cos bt

� b

.s2 C b2/3

4.
1

48b6

�
.15� 6.bt/2/ sin bt � .15bt � .bt/3/ cos bt

� b

.s2 C b2/4

5. cos bt
s

.s2 C b2/

6.
1

2b2
bt sin bt

s

.s2 C b2/2

7.
1

8b4

�
bt sin bt � .bt/2 cos bt

� s

.s2 C b2/3

8.
1

48b6

�
.3bt � .bt/3/ sin bt � 3.bt/2 cos bt

� s

.s2 C b2/4

Table 2.10 Reduction of order formulas

L�1

	
1

.s2 C b2/kC1




D �t

2kb2
L�1

	
s

.s2 C b2/k




C 2k � 1

2kb2
L�1

	
1

.s2 C b2/k




L�1

	
s

.s2 C b2/kC1




D t

2k
L�1

	
1

.s2 C b2/k




See Page 155.
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Table 2.11 Basic convolutions

f .t/ g.t/ .f � g/.t/ Page

1. f .t/ g.t/ f � g.t/ D R t

0 f .u/g.t � u/ du 187

2. 1 g.t/
R t

0 g.�/ d� 190

3. tm tn mŠnŠ
.mCnC1/Š

tmCnC1 193

4. t sin at
at � sin at

a2

5. t 2 sin at
2

a3

�
cos at � .1� a2t2

2
/
�

6. t cos at
1� cos at

a2

7. t 2 cos at
2

a3
.at � sin at/

8. t eat
eat � .1C at/

a2

9. t 2 eat
2

a3

�
eat �

�
aC at C a2t2

2

��

10. eat ebt
1

b � a
.ebt � eat / a ¤ b 192

11. eat eat teat 192

12. eat sin bt
1

a2 C b2
.beat � b cos bt � a sin bt/ 195

13. eat cos bt
1

a2 C b2
.aeat � a cos bt C b sin bt/ 195

14. sin at sin bt
1

b2 � a2
.b sin at � a sin bt/ a ¤ b 195

15. sin at sin at
1

2a
.sin at � at cos at/ 195

16. sin at cos bt
1

b2 � a2
.a cos at � a cos bt/ a ¤ b 195

17. sin at cos at
1

2
t sin at 195

18. cos at cos bt
1

a2 � b2
.a sin at � b sin bt/ a ¤ b 195

19. cos at cos at
1

2a
.at cos at C sin at/ 195



Chapter 3
Second Order Constant Coefficient Linear
Differential Equations

This chapter begins our study of second order linear differential equations, which
are equations of the form

a.t/y00 C b.t/y0 C c.t/y D f .t/; (1)

where a.t/, b.t/, c.t/, called the coefficient functions, and f .t/, known as the
forcing function, are all defined on a common interval I . Equation (1) is frequently
made into an initial value problem by imposing initial conditions: y.t0/ D y0 and
y0.t0/ D y1, where t0 2 I . Many problems in mathematics, engineering, and the
sciences may be modeled by (1) so it is important to have techniques to solve these
equations and to analyze the resulting solutions. This chapter will be devoted to
the simplest version of (1), namely the case where the coefficient functions are
constant. In Chap. 2, we introduced the Laplace transform method that codifies in
a single procedure a solution method for (1), in the case where f 2 E and initial
values y.0/ and y0.0/ are given. However, it will be our approach going forward
to first find the general solution to (1), without regard to initial conditions. When
initial conditions are given, they determine a single function in the general solution
set. The Laplace transform will still play a central role in most all that we do.

We wish to point out that our development of the Laplace transform thus far
allows us to easily handle nth order constant coefficient linear differential equations
for arbitrary n. Nevertheless, we will restrict our attention in this chapter to the
second order case, which is the most important case for applications. Understanding
this case well will provide an easy transition to the more general case to be studied
in Chap. 4.

W.A. Adkins and M.G. Davidson, Ordinary Differential Equations,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-3618-8 3,
© Springer Science+Business Media New York 2012
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3.1 Notation, Definitions, and Some Basic Results

For the remainder of this chapter, we will assume that the coefficient functions in
(1) are constant. Thus, our focus will be the equation

ay00 C by0 C cy D f .t/; (1)

where a, b, and c are real numbers and the forcing function f .t/ is a continuous
function on an interval I . We assume the leading coefficient a is nonzero, otherwise
(1) is first order. Equation (1) is called a second order constant coefficient linear
differential equation.

The left-hand side of (1) is made up of a combination of differentiations and
multiplications by constants. To be specific and to introduce useful notation, let D

denote the derivative operator: D.y/ D y0. In a similar way, let D2 denote the
second derivative operator: D2.y/ D D.Dy/ D Dy0 D y00. If

L D aD2 C bD C c; (2)

where a, b, and c are the same constants given in (1), then

L.y/ D ay00 C by0 C cy:

We call L a (second order) constant coefficient linear differential operator.
Another useful way to describe L is in terms of the polynomial q.s/ D as2 CbsCc:
L is obtained from q by substituting D for s. We will write L D q.D/. For this
reason, L is also called a polynomial differential operator. Equation (1) can now
be rewritten

L.y/ D f or q.D/y D f:

The polynomial q is referred to as the characteristic polynomial of L and will play
a fundamental role in determining the solution set to (1).

The operator L can be thought of as taking a function y that has at least 2

continuous derivatives and producing a continuous function.

Example 1. Suppose L D D2 � 4D C 3. Find

L.tet /; L.et /; and L.e3t /:

I Solution.

• L.tet / D D2.tet / � 4D.tet / C 3.tet /

D D.et C tet / � 4.et C tet / C 3tet

D 2et C tet � 4et � 4tet C 3tet

D �2et :
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• L.et / D D2.et / � 4D.et / C 3.et /

D et � 4et C 3et

D 0:

• L.e3t / D D2.e3t / � 4D.e3t / C 3.e3t /

D 9e3t � 12e3t C 3e3t

D 0: J
The adjective “linear” describes an important property that L satisfies. To explain

this, let us start with the familiar derivative operator D. One learns early on in
calculus the following two properties:

1. If y1 and y2 are continuously differentiable functions, then

D.y1 C y2/ D D.y1/ C D.y2/:

2. If y is a continuously differentiable function and c is a scalar, then

D.cy/ D cD.y/:

Simply put, D preserves addition and scalar multiplication of functions. When an
operation on functions satisfies these two properties, we call it linear. The second
derivative operator D2 is also linear:

D2.y1 C y2/ D D.Dy1 C Dy2/ D D2y1 C D2y2

D2.cy/ D D.D.cy// D DcDy D cD2y:

It is easy to verify that sums and scalar products of linear operators are also linear
operators, which means that any polynomial differential operator is linear. This is
formalized in the following result.

Proposition 2. The operator

L D aD2 C bD C c

is linear. Specifically,

1. If y1 and y2 have sufficiently many derivatives, then

L.y1 C y2/ D L.y1/ C L.y2/:

2. If y has sufficiently many derivatives and c is a scalar, then

L.cy/ D cL.y/:
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Proof. Suppose y, y1, and y2 are 2-times differentiable functions and c is a scalar.
Then

L.y1 C y2/ D aD2.y1 C y2/ C bD.y1 C y2/ C c.y1 C y2/

D a.D2y1 C D2y2/ C b.Dy1 C Dy2/ C c.y1 C y2/

D aD2y1 C bDy1 C cy1 C aD2y2 C bDy2 C cy2

D Ly1 C Ly2:

Thus L preserves addition. In a similar way, L preserves scalar multiplication and
hence is linear. ut
To illustrate the power of linearity, consider the following example.

Example 3. Let L D D2 � 4D C 3. Use linearity to determine

L.3et C 4tet C 5e3t /:

I Solution. Recall from Example 1 that

• L.et / D 0.
• L.tet / D �2et .
• L.e3t / D 0.

Using linearity, we obtain

L.3et C 4tet C 5e3t / D 3L.et / C 4L.tet / C 5L.e3t /

D 3 � 0 C 4 � .�2et / C 5 � 0

D �8et : J

Solutions

An important consequence of linearity is that the set of all solutions to (1) has a
particularly simple structure. We begin the description of that structure with the
special case where the forcing function is identically zero. In this case, (1) becomes

L.y/ D 0 (3)

and we refer to such an equation as homogeneous.

Proposition 4. Suppose L is a linear differential operator. Then the solution set
to Ly D 0 is a linear space. Specifically, suppose y, y1, and y2 are solutions to
Ly D 0 and k is a scalar. Then y1 C y2 and ky are solutions to Ly D 0.
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Proof. By Proposition 2, we have

L.y1 C y2/ D L.y1/ C L.y2/ D 0 C 0 D 0

L.ky/ D kL.y/ D k � 0 D 0:

These equations show that the solution set is closed under addition and scalar
multiplication and hence is a linear space. ut
Example 5. Use Example 1 to find as many solutions as possible to the homoge-
neous equation Ly D 0, where

L D D2 � 4D C 3:

I Solution. In Example 1, we found that L.et / D 0 and L.e3t / D 0. Now using
Proposition 4, we have

c1et C c2e3t

is a solution to Ly D 0, for all scalars c1 and c2. In other words,

L.c1et C c2e3t / D 0;

for all scalars c1 and c2. We will later show that all of the solutions to Ly D 0 are
of this form. J

It is hard to overemphasize the importance of Proposition 4, since it indicates that
once a few specific solutions to L.y/ D 0 are known, then all linear combinations
are likewise solutions. This gives a strategy for describing all solutions to L.y/ D 0

provided we can find a few distinguished solutions. The linearity proposition will
also allow for a useful way to describe all solutions to the general differential
equation L.y/ D f .t/ by reducing it to the homogeneous differential equation
L.y/ D 0, which we refer to as the associated homogeneous differential equation.
The following theorem describes this relationship.

Theorem 6. Suppose L is a linear differential operator and f is a continuous
function. If yp is a fixed particular solution to L.y/ D f and yh is any solution
to the associated homogeneous differential equation L.y/ D 0, then

yp C yh

is a solution to L.y/ D f . Furthermore, any solution y to L.y/ D f has the form

y D yp C yh:

Proof. Suppose yp satisfies L.yp/ D f and yh satisfies L.yh/ D 0. Then by
linearity,

L.yp C yh/ D L.yp/ C L.yh/ D f C 0 D f:
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Thus yp C yh is a solution to L.y/ D f . On the other hand, suppose y.t/ is any
solution to L.y/ D f . Let yh D y � yp. Then, again by linearity,

L.yh/ D L.y � yp/ D L.y/ � L.yp/ D f � f D 0:

Thus, yh.t/ is a solution to L.y/ D 0 and y D yp C yh. ut
This theorem actually provides an effective strategy for describing the solution

set to a second order linear constant coefficient differential equation, which we for-
malize in the following algorithm. By an abuse of language, we will sometimes refer
to solutions of the associated homogeneous equation L.y/ D 0 as homogeneous
solutions.

Algorithm 7. The general solution to a linear differential equation

L.y/ D f .t/

can be found as follows:

Solution Method for Second Order Linear Equations

1. Find all the solutions yh to the associated homogeneous differential
equation Ly D 0.

2. Find one particular solution yp to L.y/ D f .

3. Add the particular solution to the homogeneous solutions:

yp C yh:

As yh varies over all homogeneous solutions, we obtain all solutions to
L.y/ D f

Example 8. Use Algorithm 7 to solve

y00 � 4y0 C 3y D �2et :

I Solution. The left-hand side can be written L.y/, where L is the linear
differential operator

L D D2 � 4D C 3:

From Example 5, we found that

yh.t/ D c1et C c2e3t ;
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where c1, c2 2 R, are all the solutions to the associated homogeneous equation
L.y/ D 0. By Example 1, a particular solution to L.y/ D �2et is yp.t/ D tet . By
Theorem 6, we have

yp.t/ C yh.t/ D tet C c1et C c2e3t

is a solution to L.y/ D 2et , for all scalars c1 and c2. J

The strategy outlined in Algorithm 7 is the strategy we will follow. Section 3.3
will be devoted to determining solutions to the associated homogeneous differential
equation. Sections 3.4 and 3.5 will show effective methods for finding a particular
solution when the forcing function f .t/ 2 E is an exponential polynomial. A more
general method is found in Sect. 5.6.

Initial Value Problems

Suppose L is a constant coefficient linear differential operator, f .t/ is a function
defined on an interval I , and t0 2 I . To the equation

L.y/ D f

we can associate initial conditions of the form

y.t0/ D y0; and y0.t0/ D y1:

The differential equation L.y/ D f , together with the initial conditions, is called
an initial value problem, just as in the case of first order differential equations.
After finding the general solution to L.y/ D f , the initial conditions are used to
determine specific values for the arbitrary constants that parameterize the solution
set. Here is an example.

Example 9. Use Example 8 to find the solution to the following initial value
problem

L.y/ D �2et ; y.0/ D 1; y0.0/ D �2;

where L D D2 � 4D C 3.

I Solution. In Example 8, we verified that

y.t/ D tet C c1et C c2e3t ;

is a solution to L.y/ D �2et for every c1, c2 2 R. Observe that y0.t/ D et C tet C
c1et C 3c2e3t . Setting t D 0 in both y.t/ and y0.t/ gives

1 D y.0/ D c1 C c2

�2 D y0.0/ D 1 C c1 C 3c2:
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Solving these equations gives c1 D 3, and c2 D �2. Thus, y.t/ D tet C3et �2e3t is
a solution to the given initial value problem. The existence and uniqueness theorem
given below implies it is the only solution. J

Initial Values Not Based at the Origin

You may have noticed that the initial conditions in the examples given in Chap. 2 and
in Example 9 above are given at t0 D 0. If the initial conditions are given elsewhere,
then a simple translation can be used to shift the initial conditions back to the origin
as follows. Suppose f is a function defined on an interval Œa; b�, t0 2 Œa; b�, and the
initial conditions are given by y.t0/ D y0 and y0.t0/ D y1. Let g.t/ D f .t C t0/

and w.t/ D y.t C t0/ . Then w0.t/ D y0.t C t0/ and w00.t/ D y00.t C t0/. The initial
value problem given by (1) in y becomes

aw00 C bw0 C cw D g;

with initial conditions w.0/ D y.t0/ D y0 and w0.0/ D y0.t0/ D y1. We now solve
for w; it has initial conditions at 0. The function y.t/ D w.t � t0/ will then be the
solution to the original initial value problem on the interval Œa; b/. Thus, it is not
restrictive to give examples and base our results for initial values at t0 D 0.

The Existence and Uniqueness Theorem

The existence and uniqueness theorem, as expressed by Corollary 8 of Sect. 1.4,
for first order linear differential equations has an extension for second order linear
differential equations. Its proof will be given in Chap. 9 in a much broader setting.

Theorem 10 (The Existence and Uniqueness Theorem). Suppose f .t/ is a
continuous real-valued function on an interval I . Let t0 2 I . Then there is a unique
real-valued function y defined on I satisfying

ay00 C by0 C cy D f .t/; (4)

with initial conditions y.t0/ D y0 and y0.t0/ D y1. If f .t/ is of exponential type, so
are the solution y.t/ and its derivatives y0.t/ and y00.t/. Furthermore, if f .t/ is in
E , then y.t/ is also in E .

You will notice that the kind of solution we obtain depends on the kind of forcing
function. In particular, when the forcing function is an exponential polynomial, then
so is the solution. This theorem thus provides the basis for applying the Laplace
transform method. Specifically, when the Laplace transform is applied to both sides
of (4), we presumed in previous examples that the solution y and its first and second
derivative have Laplace transforms. The existence and uniqueness theorem thus
justifies the Laplace transform method when the forcing function is of exponential
type or, more specifically, an exponential polynomial.
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Exercises

1–10. Determine which of the following are second order constant coefficient linear
differential equations. In those cases where it is, write the equation in the form
L.y/ D f .t/, give the characteristic polynomial, and state whether the equation is
homogeneous.

1. y00 � yy0 D 6

2. y00 � 3y0 D et

3. y000 C y0 C 4y D 0

4. y00 C sin.y/ D 0

5. ty0 C y D ln t

6. y00 C 2y0 C 3y D e�t

7. y00 � 7y0 C 10y D 0

8. y0 C 8y D t

9. y00 C 2 D cos t

10. 2y00 � 12y0 C 18y D 0

11–14. For the linear operator L, determine L.y/.

11. L D D2 C 3D C 2.

(a) y D et

(b) y D e�t

(c) y D sin t

12. L D D2 � 2D C 1.

(a) y D 4et

(b) y D cos t

(c) y D �e2t

13. L D D2 C 1.

(a) y D �4 sin t

(b) y D 3 cos t

(c) y D 1

14. L D D2 � 4D C 8.

(a) y D e2t

(b) y D e2t sin 2t

(c) y D e2t cos 2t

15. Suppose L is a polynomial differential operator of order 2 and

• L.cos 2t/ D 10 sin 2t

• L.et / D 0

• L.e4t / D 0.

Use this information to find other solutions to L.y/ D 10 sin 2t .
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16. Suppose L is a polynomial differential operator of order 2 and

• L.te3t / D 5e3t

• L.e3t / D 0

• L.e�2t / D 0:

Use this information to find other solutions to L.y/ D 5e3t .

17. Let L be as in Exercise 15. Use the results there to solve the initial value
problem

L.y/ D 10 sin 2t;

where y.0/ D 1 and y0.0/ D �3.
18. Let L be as in Exercise 16. Use the results there to solve the initial value

problem
L.y/ D 5e3t ;

where y.0/ D �1 and y0.0/ D 8.
19. If L D aD2 C bD C c where a, b, c are real numbers, then show that

L.ert / D .ar2 C br C c/ert . That is, the effect of applying the operator L

to the exponential function ert is to multiply ert by the number ar2 C br C c.

20–21. Use the existence and uniqueness theorem to establish the following.

20. Suppose �.t/ is a solution to

y00 C ay0 C by D 0;

where a and b are real constants. Show that if the graph of � is tangent to the
t-axis, then � D 0.

φ

21. More generally, suppose �1 and �2 are solutions to

y00 C ay0 C by D f;
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where a and b are real constants and f is a continuous function on an interval
I. Show that if the graphs of �1 and �2 are tangent at some point, then �1 D �2.

φ1 φ2



216 3 Second Order Constant Coefficient Linear Differential Equations



3.2 Linear Independence 217

3.2 Linear Independence

In Sects. 2.6 and 2.7, we introduced Bq , for any polynomial q, and referred to it as
the standard basis of the linear space Eq . For a linear space, F , of functions defined
on an interval I , a basis of F is a subset B that satisfies two properties:

1. Span B D F .
2. B is linearly independent.

The notion of a spanning set was developed in Sect. 2.6 where we showed that Bq

spanned the linear space Eq . It is the purpose of this section to explain the notion
of linear independence and consider some of its consequences. We will then show
that Bq is linearly independent, thus justifying that Bq is a basis of Eq in the precise
sense given above.

A set of functions ff1; : : : ; fng, defined on some interval I , is said to be linearly
independent if the equation

a1f1 C � � � C anfn D 0 (1)

implies that all the coefficients a1; : : : ; an are zero. Otherwise, we say that
ff1; : : : ; fng is linearly dependent.1

One must be careful about this definition. We do not try to solve equation (1) for
the variable t . Rather, we are given that this equation is valid for all t 2 I . With
this information, the focus is on what this says about the coefficients a1; : : : ; an: are
they all necessarily zero or not.

We illustrate the definition with a very simple example.

Example 1. Show that the set fet ; e�t g defined on R is linearly independent.

I Solution. Consider the equation

a1et C a2e�t D 0; (2)

for all t 2 R. In order to conclude linear independence, we need to show that a1

and a2 are zero. There are many ways this can be done. Below we show three
approaches. Of course, only one is necessary.

Method 1: Evaluation at Specified Points

Let us evaluate (2) at two points: t D 0 and t D 1:

1A grammatical note: We say f1; : : : ; fn are linearly independent (dependent) if the set
ff1; : : : ; fng is linearly independent (dependent).
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t D 0; a1 C a2 D 0;

t D 1; a1.e/ C a2.1=e/ D 0:

Multiply the first equation by e and subtract the result from the second equation. We
get a2..1=e/ � e/ D 0. So a2 D 0 and this in turn gives a1 D 0. Thus, fet ; e�t g is
linearly independent.

Method 2: Differentiation

Take the derivative of (2) to get a1et � a2e�t D 0. Evaluating equation (2) and the
derivative at t D 0 gives

a1 C a2 D 0;

a2 � a2 D 0:

The only solution to these equations is a1 D 0 and a2 D 0. Hence, fet ; e�t g
is linearly independent. (This method will be discussed more generally when we
introduce the Wronskian below.)

Method 3: The Laplace Transform

Here we take the Laplace transform of (2) to get

a1

s � 1
C a2

s C 1
D 0;

which is an equation valid for all s > 1 (since the Laplace transform of et is valid for
s > 1). However, as an equation of rational functions, Corollary 7 of Appendix A.2
implies equality for all s ¤ 1; �1. Now consider the limit as s approaches 1. If
a1 is not zero, then a1

s�1
has an infinite limit while the second term a2

sC1
has a finite

limit. But this cannot be as the sum is 0. It must be that a1 D 0 and therefore
a2

sC1
D 0. This equation in turn implies a2 D 0. Now it follows that fet ; e�t g is

linearly independent. (This method is a little more complicated than Methods 1 and
2 but will be the method we use to prove Bq is linearly independent.) J

Remark 2. Let us point out that when we are asked to determine whether a set
of two functions ff1; f2g is linearly dependent, it is enough to see that they are
multiples of each other. For if ff1; f2g is linearly dependent, then there are constants
c1 and c2, not both zero, such that c1f1 C c2f2 D 0. By renumbering the functions
if necessary, we may assume c1 ¤ 0. Then f1 D � c2

c1
f2. Hence, f1 and f2 are

multiples of each other. On the other hand, if one is a multiple of the other, that is,
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if f1 D mf2, then f1 � mf2 D 0 and this implies linear dependence. Thus, it is
immediate that et and e�t are linearly independent since they are not multiples of
each other.

Example 3. Show that the set fet ; cos t; sin tg is linearly independent.

I Solution. We will use method 3 to show linear independence. Suppose a1et C
a2 cos t C a3 sin t D 0. Take the Laplace transform to get

a1

s � 1
C a2s C a3

s2 C 1
D 0;

valid for all s ¤ 1; i; �i , by Corollary 7 of Appendix A.2. Now consider the limit as
s approaches 1. If a1 ¤ 0, then the first term becomes infinite while the second term
is finite. Since the sum is 0, this is impossible so a1 D 0. Thus a2sCa3

s2C1
D 0. Now

consider the limit as s approaches i . If either a2 or a3 is nonzero, then the quotient
becomes infinite which cannot be. Thus we have a2 D a3 D 0. It now follows that
fet; cos t; sin tg is linearly independent. J

Let us consider an example of a set that is not linearly independent.

Example 4. Show that the set fet ; e�t ; et C e�t g is linearly dependent.

I Solution. To show that a set is linearly dependent, we need only show that we
can find a linear combination that adds up to 0 with coefficients not all zero. One
such is

.1/et C .1/e�t C .�1/.et C e�t / D 0:

The coefficients, highlighted by the parentheses, are 1; 1; and �1 and are not all
zero. Thus, fet ; e�t ; et C e�t g is linearly dependent. The dependency is clearly seen
in that the third function is the sum of the first two. J

This example illustrates the following more general theorem.

Theorem 5. A set of functions ff1; : : : ; fng is linearly dependent if and only if one
of the functions is a linear combination of the others.

Proof. Let us assume that one of the functions, f1 say, is a linear combination of the
other functions. Then we can write f1 D a2f2 C � � � C anfn, which is equivalent to

f1 � a2f2 � a3f3 � � � � � anfn D 0:

Since not all of the coefficients are zero (the coefficient of f1 is 1), it follows
that ff1; : : : ; fng is linearly dependent. On the other hand, suppose ff1; : : : ; fng
is linearly dependent. Then there are scalars, not all zero, such that a1f1 C � � � C an

fn D 0. By reordering if necessary, we may assume that a1 ¤ 0. Now we can solve
for f1 to get

f1 D �a2

a1

f2 � � � � � �an

a1

fn;

Thus, one of the functions is a linear combination of the others. ut
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Solving Equations Involving Linear Combinations

Linear independence is precisely the requirement we need to be able to solve for
coefficients involving a linear combination of functions. Consider the following
example:

Example 6. Suppose we are given the following equation:

.c1 C 4/et � .c2 C 1/e�t D 3et � 4c1e�t ;

valid for all t 2 R. Determine c1 and c2.

I Solution. Subtracting the right side from both sides gives

.c1 C 1/et C .4c1 � c2 � 1/e�t D 0: (3)

In Example 1, we showed that fet ; e�t g is linear independent. Thus, we can now say
that the coefficients in (3) are zero, giving us

c1 C 1 D 0

4c1 � c2 � 1 D 0

Solving these equations simultaneously gives c1 D �1 and c2 D �5. J

Notice that the equations obtained by setting the coefficients equal to zero in (3) are
the same as equating corresponding coefficients in the original equations: c1C4 D 3

and �.c2 C 1/ D �4c1. More generally, we have the following theorem:

Theorem 7. Suppose ff1; : : : ; fng is a linearly independent set. If

a1f1 C � � � C anfn D b1f1 C � � � C bnfn

then a1 D b1, a2 D b2, : : :, an D bn.

Proof. The given equation implies

.a1 � b1/f1 C � � � C .an � bn/fn D 0:

Linear independence implies that the coefficients are zero. Thus, a1 D b1, a2 D b2,
: : :, an D bn. ut
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The Linear Independence of Bq

Let q.s/ D s2 � 1 D .s � 1/.s C1/. Then Bq D fet ; e�t g. In Example 2, we showed
that Bq is linearly independent and used that fact in Example 6. In like manner, if
q.s/ D .s � 1/.s2 C 1/, then Bq D fet ; cos t; sin tg, and we showed in Example 3
that it too was linearly independent. The following theorem establishes the linear
independence of Bq for any polynomial q. The method of proof is based on Method
3 in Example 2 and can be found in Appendix A.3.

Theorem 8. Let q be a nonconstant polynomial. View Bq as a set of functions on
I D Œ0; 1/. Then Bq is linearly independent.

One useful fact about linearly independent sets is that any subset is also linearly
independent. Specifically,

Theorem 9. Suppose S is a finite set of functions on an interval I which is linearly
independent. Then any subset of S is also linearly independent.

Proof. Suppose S D ff1; : : : ; fng is linearly independent and supposeSı is a subset
of S. We may assume by reordering if necessary that Sı D ff1; : : : ; fkg, for some
k � n. Suppose c1f1 C � � � ckfk D 0 for some constants c1; : : : ; ck . Let ckC1 D
� � � D cn D 0. Then c1f1 C � � � cnfn D 0. Since S is linearly independent, c1; : : : ; cn

are all zero. It follows that Sı is linearly independent. ut
Since Bq is linearly independent, it follows from Theorem 9 that any subset is

also linearly independent.

Example 10. Show that the following sets are linearly independent:

1.
˚
et ; e�t ; te2t

�

2.
˚
et ; e�t ; te3t

�

3. fcos t; sin 2tg
I Solution.

1. Let q.s/ D .s � 1/.s C 1/.s � 2/2. Then Bq D ˚
et ; e�t ; e2t ; te2t

�
and˚

et ; e�t ; te2t
� � Bq . Theorem 9 implies linear independence.

2. Let q.s/ D .s � 1/.s C 1/.s � 3/2. Then Bq D ˚
et ; e�t ; e3t ; te3t

�
and˚

et ; e�t ; te3t
� � Bq . Linear independence follows from Theorem 9.

3. Let q.s/ D .s2 C 1/.s2 C 4/. Then Bq D fcos t; sin t; cos 2t; sin 2tg and
fcos t; sin 2tg � Bq . Linear independence follows from Theorem 9. J
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Restrictions to Subintervals

It is important to keep in mind that the common interval of definition of a set of
functions plays an implicit role in the definition of linear independence. Consider
the following example.

Example 11. Let f1.t/ D jt j and f2.t/ D t . Show that ff1; f2g is linearly
independent if the interval of definition is I D R and linearly dependent if
I D Œ0; 1/:

I Solution. Suppose the interval of definition is I D R. Suppose

c1f1.t/ C c2f2.t/ D c1 jt j C c2t D 0:

Evaluation at t D 1 and t D �1 gives

c1 C c2 D 0

c1 � c2 D 0

These equations reduce to c1 D 0 and c2 D 0. Thus, ff1; f2g is linearly independent
on I D R. On the other hand, suppose I D Œ0; 1/. Then f1.t/ D t D f2.t/ (on I ).
Lemma 5 implies ff1; f2g is linearly dependent. J

Admittedly, the previous example is rather special. However, it does teach us
that we cannot presume that restricting to a smaller interval will preserve linear
independence. On the other hand, if a set of functions is defined on an interval I

and linearly independent when restricted to a subset of I , then the set of functions
is linearly independent on I . For example, Theorem 8 says that the set Bq is linearly
independent on Œ0; 1/ yet defined on all of R. Thus, Bq is linearly independent as
functions on R.

The Wronskian

Suppose f1; : : : ; fn are functions on an interval I with n � 1 derivatives. The
Wronskian of f1; : : : ; fn is given by

w.f1; : : : ; fn/.t/ D det

2

6
6
6
4

f1.t/ f2.t/ : : : fn.t/

f 0
1 .t/ f 0

2 .t/ : : : f 0
n.t/

:::
:::

: : :
:::

f
.n�1/

1 .t/ f
.n�1/

2 .t/ : : : f
.n�1/.t/

n

3

7
7
7
5

:

Clearly, the Wronskian is a function on I . We sometimes refer to the n � n matrix
given above as the Wronskian matrix and denote it by W.f1; : : : ; fn/.t/.
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Example 12. Find the Wronskian of the following sets of functions:

1. ft; 1=tg
2.

˚
e2t ; e�t

�

3. fet ; e�t ; et C e�t g
I Solution.

1. w.t; 1=t/ D det

�
t 1=t

1 �1=t2

�
D �1

t
� 1

t
D �2

t
:

2. w.e2t ; e�t / D det

�
e2t e�t

2e2t �e�t

�
D �et � 2et D �3e�t :

3.

w.et ; e�t ; et C e�t / D det

2

4
et e�t et C e�t

et �e�t et � e�t

et e�t et C e�t

3

5

D et det

��e�t et � e�t

e�t et C e�t

�

�et det

�
e�t et C e�t

e�t et C e�t

�

Cet det

�
e�t et C e�t

�e�t et � e�t

�

D et .�2/ � et .0/ C et .2/ D 0: J

Theorem 13. Suppose f1; f2; : : : ; fn are functions on an interval I with n � 1

derivatives. Suppose the Wronskian w.f1; f2; : : : ; fn/ is nonzero for some t0 2 I .
Then ff1; f2; : : : ; fng is linearly independent.

Proof. 2Suppose c1; c2; : : : ; cn are scalars such that

c1f1 C c2f2 C � � � C cnfn D 0 (4)

on I . We must show that the coefficients c1; : : : ; cn are zero. Consider the n � 1

derivatives of (4):

2We assume in this proof some familiarity with matrices and determinants. See Chap. 8 for details.
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c1f1 C � � � C c2f2 D 0

c1f
0

1 C � � � C c2f
0

2 D 0
:::

:::
:::

:::

c1f
.n�1/

1 C � � � C cnf
.n�1/

n D 0

We can write this system in matrix form as

W.f1; : : : ; fn/c D 0;

where W.f1; : : : ; fn/ is the n � n Wronskian matrix,

c D

2

6
4

c1

:::

cn

3

7
5 ; and 0 D

2

6
4

0
:::

0

3

7
5 :

Since w.f1; : : : ; fn/.t0/ ¤ 0, it follows that the Wronskian matrix at t0,
W.f1; : : : ; fn/.t0/, is invertible. Thus,

c D W �1.f1; : : : ; fn/.t0/0 D 0:

This means c1; : : : ; cn are zero and ff1; : : : ; fng is linearly independent. ut
In Example 12, we saw that w.t; 1=t/ D �2=t2 and w.e2t ; e�t / D �3e�t ,

both nonzero functions. Hence, ft; 1=tg and
˚
e2t ; e�t

�
are linearly independent. A

frequent mistake in the application of Theorem 13 is to assume the converse is
true. Specifically, if the Wronskian, w.f1; : : : ; fn/, is zero, we may not conclude
that f1; : : : ; fn are linearly dependent. In Example 12, we saw that w.et ; e�t ; et C
e�t / D 0. We cannot conclude from Theorem 13 that fet ; e�t ; et C e�t g is linearly
dependent. Nevertheless, linear dependence was shown in Example 4. However,
Exercises 26 and 27 give a simple example of two linearly independent functions
with zero Wronskian. If we add an additional assumption to the hypothesis of
Theorem 13, then the converse will hold. This is the content of Theorem 8 of
Sect. 3.3 given in the next section for the case n D 2 and, generally, in Theorem 6
of Sect. 4.2.

We conclude this section with a summary of techniques that can be used to show
linear independence or dependence. Suppose S D ff1; : : : ; fng is a set of functions
defined on an interval I .
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To Show that S is Linearly Independent

1. Evaluate a linear combination of S at selected points in I to get a linear
system. If the solution is trivial, that is, all coefficients are zero, then S is
linearly independent.

2. Compute the Wronskian, w.f1; : : : ; fn/. If it is nonzero, then S is linearly
independent.

3. If S � Bq for some q, then S is linearly independent.

To Show that S is Linearly Dependent

1. Show there is a linear relation among the functions f1; : : : ; fn. That is,
show that one of the functions is a linear combination of the others.

2. Warning: If the Wronskian, w.f1; : : : ; fn/, is zero, you cannot conclude
that S is linearly dependent.
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Exercises

1–13. Determine whether the given set of functions is linearly independent or
linearly dependent. Unless otherwise indicated, assume the interval of definition
is I D R.

1.
˚
t; t2

�

2.
˚
et ; e2t

�

3.
˚
et ; etC2

�

4. fln 2t; ln 5tg, on I D .0; 1/

5.
˚
ln t2; ln t5

�

6. fcos.t C �/; cos.t � �/g
7. ft; 1=tg, on I D Œ0; 1/

8.
˚
1; t; t2

�

9.
˚
1; 1=t; 1=t2

�
on I D .0; 1/

10.
˚
cos2 t; sin2 t; 1

�

11. fet ; 1; e�t g
12. fet ; et sin 2tg
13.

˚
t2et ; t 3et ; t 4et

�

14–21. Compute the Wronskian of the following set of functions.

14.
˚
e3t ; e5t

�

15. ft; t ln tg, I D .0; 1/

16. ft cos.3 ln t/; t sin.3 ln t/g, I D .0; 1/

17.
˚
t10; t20

�

18.
˚
e2t ; e3t ; e4t

�

19. fer1t ; er2t ; er3t g
20.

˚
1; t; t2

�

21.
˚
1; t; t2; t3

�

22–25. Solve the following equations for the unknown coefficients.

22. .a C b/ cos 2t � 3 sin 2t D 2 cos 2t C .a � b/ sin 2t

23. .25c1 C 10c2/e2t C 25c2te2t D 25te2t

24. 3a1t � a2t ln t3 D .a2 C 1/t C .a1 � a2/t ln t5

25. a1 C 3t � a2t2 D a2 C a1t � 3t2
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26–27. In these two problems, we see an example of two linearly independent
functions with zero Wronskian.

26. Verify that y.t/ D t3 and y2.t/ D jt3j are linearly independent on .�1; 1/.
27. Show that the Wronskian, w.y1; y2/.t/ D 0 for all t 2 R.
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3.3 Linear Homogeneous Differential Equations

In this section, we focus on determining the solution set to a homogeneous second
order constant coefficient linear differential equation. Recall that if q.s/ is a
polynomial, we have defined the linear space Eq to be the set of all exponential
polynomials whose Laplace transform is in Rq , that is, can be written with
denominator q.s/. (See Sects. 2.6 and 2.7.) Moreover, we have developed a very
specific description of the space Eq by giving what we have called a standard basis
Bq of Eq so that

Span Bq D Eq:

Lemma 1. Let q.s/ D as2 C bs C c. If y is a function whose second derivative is
of exponential type, then

L fq.D/yg D q.s/L fyg .s/ � p.s/;

where p.s/ D ay0s C .ay1 C by0/ is a polynomial of degree 1.

Proof. If y00.t/ is of exponential type, then so are y.t/ and y0.t/ by Lemma 4
of Sect. 2.2. We let L fy.t/g D Y.s/ and apply linearity and the input derivative
principles to get

L fq.D/yg D L ˚
ay00 C by0 C cy

�

D aL ˚
y00.t/

� C bL ˚
y0.t/

� C cL fy.t/g
D as2Y.s/ � asy0 � ay1 C bsY.s/ � by0 C cY.s/

D .as2 C bs C c/Y.s/ � ay0s � ay1 � by0

D q.s/Y.s/ � p.s/;

where p.s/ D ay0s C .ay1 C by0/: ut
Theorem 2. Let q.s/ be a polynomial of degree 2. Then the solution set to

q.D/y D 0

is Eq .

Proof. The forcing function f .t/ D 0 is in E . Thus, by Theorem 10 of Sect. 3.1,
any solution to q.D/y D 0 is in E . Suppose y is a solution. By Lemma 1 we have
L fq.D/yg .s/ D q.s/Lfyg.s/ � p.s/ D 0 where p(s) is a polynomial of degree at
most 1 depending on the initial values y.0/ and y0.0/. Solving for Lfyg gives

Lfyg.s/ D p.s/

q.s/
2 Rq:
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This implies y 2 Eq . On the other hand, suppose y 2 Eq . Then Lfyg.s/ D p.s/

q.s/
2

Rq , and by Lemma 1, we have

Lfq.D/yg.s/ D q.s/
p.s/

q.s/
� p1.s/ D p.s/ � p1.s/;

where p1.s/ is a polynomial that depends on the initial conditions. Note, however,
that p.s/ � p1.s/ is a polynomial in R, the set of proper rational functions, and
therefore must be identically 0. Thus, Lfq.D/yg D 0 and this implies q.D/y D 0

on Œ0; 1/. Since q.D/y and 0 are exponential polynomials and equal of Œ0; 1/,
they are equal on all of R. It follows that the solution set to q.D/y D 0 is Eq . ut

Combining Theorem 2 and the prescription for the standard basis Bq given in
Theorem 4 of Sect. 2.6, we get the following corollary.

Corollary 3. Suppose q.s/ D c2s2 C c1s C c0 is a polynomial of degree 2. If

1. q.s/ D c2.s � r1/.s � r2/, where r1 ¤ r2 are real, then Bq D fer1t ; er2t g.
2. q.s/ D c2.s � r/2 then Bq D fert ; tert g.
3. q.s/ D c2..s � a/2 C b2/, b > 0, then Bq D feat cos bt; eat sin btg.

In each case, the solution set to

q.D/y D 0

is given by Eq D Span Bq . That is, if Bq D fy1.t/; y2.t/g, then

Eq D fc1y1.t/ C c2y2.t/ W c1; c2 2 Rg :

Remark 4. Observe that the solutions to q.D/y D 0 in these three cases may be
summarized in terms of the roots of q.s/ as follows:

1. If q.s/ has distinct real roots r1 and r2, then all solutions are given by

y.t/ D c1er1t C c2er2t W c1; c2 2 R:

2. If q.s/ has one real root r with multiplicity 2, then all solutions are given by

y.t/ D c1ert C c2te
rt W c1; c2 2 R:

3. If q.s/ has complex roots a ˙ bi , then all solutions are given by

y.t/ D c1e
at cos bt C c2eat sin bt W c1; c2 2 R:

Example 5. Find the general solution to the following differential equations:

1. y00 C 3y0 C 2y D 0
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2. y00 C 2y0 C y D 0

3. y00 � 6y0 C 10y D 0

I Solution. 1. The characteristic polynomial for y00 C 3y0 C 2y D 0 is

q.s/ D s2 C 3s C 2 D .s C 1/.s C 2/:

The roots are �1 and �2. The standard basis for Eq is
˚
e�t ; e�2t

�
. Thus, the

solutions are
y.t/ D c1e�t C c2e�2t W c1; c2 2 R:

2. The characteristic polynomial of y00 C 2y0 C y D 0 is

q.s/ D s2 C 2s C 1 D .s C 1/2;

which has root s D �1 with multiplicity 2. The standard basis for Eq is
fe�t ; te�t g. The solutions are

y.t/ D c1e�t C c2te�t W c1; c2 2 R:

3. The characteristic polynomial for y00 � 6y0 C 10y D 0 is

q.s/ D s2 � 6s C 10 D .s � 3/2 C 1:

From this, we see that the roots of q are 3 C i and 3 � i . The standard basis for
Eq is

˚
e3t cos t; e3t sin t

�
: Thus, the solutions are

y.t/ D c1e3t cos t C c2e3t sin t W c1; c2 2 R: J

These examples show that it is a relatively easy process to write down the solution
set to a homogeneous constant coefficient linear differential equation once the
characteristic polynomial has been factored. We codify the process in the following
algorithm.

Algorithm 6. Given a second order constant coefficient linear differential equation

q.D/y D 0;

the solution set is determined as follows:
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Solution Method for
Second Order Homogeneous Linear Equations

1. Determine the characteristic polynomial, q.s/.
2. Factor q.s/ according to the three possibilities: distinct real roots, a double

root, complex roots.
3. Construct Bq D fy1.t/; y2.t/g as given in Sect. 2.6.
4. The solutions y.t/ are all linear combinations of the functions in the

standard basis Bq . In other words,

y.t/ D c1y1.t/ C c2y2.t/;

for c1; c2 2 R.

Initial Value Problems

Now suppose initial conditions, y.0/ D y0 and y0.0/ D y1, are associated to a
differential equation q.D/y D 0. To determine the unique solution guaranteed by
Theorem 10 of Sect. 3.1, we first find the general solution in terms of the standard
basis, Bq. Then the undetermined scalars given in the solution can be determined by
substituting the initial values into y.t/ and y0.t/. This gives an alternate approach to
using the Laplace transform method which incorporates the initial conditions from
the beginning.

Example 7. Solve the initial value problem

y00 C 2y0 C y D 0;

with initial conditions y.0/ D 2 and y0.0/ D �3.

I Solution. We first find the general solution. Observe that q.s/ D s2 C 2s C
1 D .s C 1/2 is the characteristic polynomial for y00 C 2y0 C y D 0. Thus, Bq D
fe�t ; te�t g and any solution is of the form y.t/ D c1e�t C c2te�t . Observe that
y0.t/ D �c1e�t C c2.e�t � te�t /. Now evaluate both equations at t D 0 to get

c1 D 2

�c1 C c2 D �3;

which implies that c1 D 2 and c2 D �1. Thus, the unique solution is

y.t/ D 2e�t � te�t : J
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Abel’s Formula

We conclude this section with a converse to Theorem 13 of Sect. 3.2 in the second
order case.

Theorem 8 (Abel’s Formula). Let q.s/ D s2 C bs C c and suppose f1 and f2 are
solutions to q.D/y D 0. Then the Wronskian satisfies

w.f1; f2/ D Ke�bt ; (1)

for some constant K and ff1; f2g is linearly independent if and only if w.f1; f2/ is
nonzero.

Proof. First observe that since f1 is a solution to q.D/y D 0 we have f 00
1 D �bf 0

1 �
cf1 and similarly for f2. To simplify the notation let w D w.f1; f2/ D f1f

0
2 �f2f

0
1 .

Then the product rule gives

w0 D f 0
1 f 0

2 C f1f
00

2 � .f 0
2 f 0

1 C f2f 00
1 /

D f1f
00

2 � f2f
00

1

D f1.�bf 0
2 � cf2/ � f2.�bf 0

1 � cf1/

D �b.f1f
0

2 � f2f 0
1 /

D �bw:

Therefore, w satisfies the differential equation w0 C bw D 0. By Theorem 2 of
Sect. 1.4, there is a constant K so that

w.t/ D Ke�bt :

This gives (1). If K ¤ 0, then w ¤ 0 and it follows from Theorem 13 of Sect. 3.2
that ff1; f2g is a linearly independent set.

Now suppose that w D 0. We may assume f1 and f2 are nonzero functions for
otherwise it is automatic that ff1; f2g is linearly dependent. Let t0 be a real number
where either f1.t0/ or f2.t0/ is nonzero and define z.t/ D f2.t0/f1.t/�f1.t0/f2.t/.
Then z is a solution to q.D/y D 0 and

z.t0/ D f2.t0/f1.t0/ � f1.t0/f2.t0/ D 0

z0.t0/ D f2.t0/f 0
1 .t0/ � f1.t0/f

0
2 .t0/ D 0:

The second line is obtained because w D 0. By the uniqueness and existence
theorem, Theorem 10 of Sect. 3.1, it follows that z.t/ D 0. This implies that ff1; f2g
is linearly dependent. ut
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Remark 9. Notice that we require the leading coefficient of q.s/ be one. If q.s/ D
as2 C bs C c, then the Wronskian is a multiple of e

�bt
a : Equation (1) is known

as Abel’s formula. Notice that the Wronskian is never zero or identically zero,
depending on K . This will persist in the generalizations that you will see later.
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Exercises

1–12. Determine the solution set to the following homogeneous differential equa-
tions. Write your answer as a linear combination of functions from the standard
basis.

1. y00 � y0 � 2y D 0

2. y00 C y0 � 12y D 0

3. y00 C 10y0 C 24y D 0

4. y00 � 4y0 � 12y D 0

5. y00 C 8y0 C 16y D 0

6. y00 � 3y0 � 10y D 0

7. y00 C 2y0 C 5y D 0

8. 2y00 � 12y0 C 18y D 0

9. y00 C 13y0 C 36y D 0

10. y00 C 8y0 C 25y D 0

11. y00 C 10y0 C 25y D 0

12. y00 � 4y0 � 21y D 0

13–16. Solve the following initial value problems.

13. y00 � y D 0, y.0/ D 0, y0.0/ D 1

14. y00 � 3y0 � 10y D 0, y.0/ D 5, y0.0/ D 4

15. y00 � 10y0 C 25y D 0, y.0/ D 0, y0.0/ D 1

16. y00 C 4y0 C 13y D 0, y.0/ D 1, y0.0/ D �5

17–22. Determine a polynomial q so that Bq is the given set of functions. Compute
the Wronskian and determine the constant K in Abel’s formula.

17.
˚
e3t ; e�7t

�

18. fer1t ; er2t g
19.

˚
e3t ; te3t

�

20. fert ; tert g
21. fet cos 2t; et sin 2tg
22. feat cos bt; eat sin btg
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3.4 The Method of Undetermined Coefficients

In this section (and the next), we address the second part of Algorithm 7 of Sect. 3.3,
namely, finding a particular solution to

q.D/y D f .t/: (1)

We will assume the characteristic polynomial q.s/ has degree 2. If we assume,
f .t/ 2 E then the existence and uniqueness theorem, Theorem 10 of Sect. 3.1,
implies that a solution y.t/ D yp.t/ to (1) is in E . Therefore, the form of yp.t/ is

yp.t/ D a1y1.t/ C � � � C anyn.t/;

where each yi .t/, for i D 1; : : : n, is a simple exponential polynomial and the
coefficients a1; : : : ; an are to be determined. We call yp a test function. The method
of undetermined coefficients can be broken into two parts. First, determine which
simple exponential polynomials, y1.t/; : : : ; yn.t/, will arise in a test function.
Second, determine the coefficients, a1, : : :, an.

Before giving the general procedure let us consider the essence of the method in
a simple example.

Example 1. Find the general solution to

y00 � y0 � 6y D e�t : (2)

I Solution. Let us begin by finding the solution set to the associated homogeneous
equation

y00 � y0 � 6y D 0: (3)

Observe that the characteristic polynomial is q.s/ D s2 � s � 6 D .s � 3/.s C 2/.
Thus, Bq D ˚

e3t ; e�2t
�

and a homogeneous solution is of the form

yh D c1e3t C c2e�2t : (4)

Let us now find a particular solution to y00 � y0 � 6y D e�t . Since any particular
solution will do, consider the case where y.0/ D 0 and y0.0/ D 0: Since f .t/ D
e�t 2 E , we conclude by the uniqueness and existence theorem, Theorem 10 of
Sect. 3.1, that the solution y.t/ is in E . We apply the Laplace transform to both
sides of (2) and use Lemma 1 of Sect. 3.3 to get

q.s/L fy.t/g .s/ D 1

s C 1
;
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Solving for L fy.t/g gives

L fy.t/g .s/ D 1

.s C 1/q.s/
D 1

.s C 1/.s � 3/.s C 2/
:

It follows that y.t/ 2 E.sC1/.s�3/.sC2/. It is easy to see that B.sC1/.s�3/.sC2/ D˚
e�t ; e3t ; e�2t

�
. Thus,

y.t/ D a1e�t C a2e3t C a3e�2t ;

for some a1, a2, and a3. Observe now that a2e3t Ca3e�2t is a homogeneous solution.
This means then that the leftover piece

yp.t/ D a1e�t

is a particular solution for some a1 2 R. This is the test function. Let us now
determine a1 by plugging yp.t/ into the differential equation. First, observe that
y0

p.t/ D �a1e�t and y00
p .t/ D a1e�t . Thus, (3) gives

e�t D y00
p � y0

p � 6yp

D a1e�t C a1e�t � 6a1e�t

D �4a1e�t :

From this we conclude 1 D �4a1 or a1 D �1=4. Therefore,

yp.t/ D �1

4
e�t

is a particular solution and the general solution is obtained by adding the homoge-
neous solution to it. Thus, the functions

y.t/ D yp.t/ C yh.t/ D �1

4
e�t C c1e3t C c2e�2t ;

where c1 and c2 are real numbers, make up the set of all solutions. J

Remark 2. Let v.s/ D .s C 1/ be the denominator of L fe�t g. Then v.s/q.s/ D
.s C 1/.s � 3/.s C 2/, and the standard basis for Evq is

˚
e�t ; e3t ; e�2t

�
. The

standard basis for Eq is
˚
e3t ; e�2t

�
. Observe that the test function yp.t/ is made

up of functions from the standard basis of Evq that are not in the standard basis of
Eq . This will always happen. The general argument is in the proof of the following
theorem.

Theorem 3. Suppose L D q.D/ is a polynomial differential operator and f 2 E .
If L ff g D u=v, and Bq is the standard basis for Eq , then there is a particular
solution yp.t/ to

L.y/ D f .t/

which is a linear combination of terms that are in Bqv but not in Bq .
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Proof. By Theorem 10 of Sect. 3.1, any solution to L.y/ D f .t/ is in E , and hence,
it and its derivatives have Laplace transforms. Thus,

L fq.D/yg D L ff g D u.s/

v.s/

H) q.s/L fyg � p.s/ D u.s/

v.s/
by Lemma 1 of Sect. 3.3

H) L fy.t/g D p.s/

q.s/
C u.s/

q.s/v.s/
D u.s/ C p.s/v.s/

q.s/v.s/
:

It follows that y.t/ is in Eqv and hence a linear combination of terms in Bqv. Since
Bq � Bqv, we can write y.t/ D yh.t/ C yp.t/, where yh.t/ is a linear combination
of terms in Bq and yp.t/ is a linear combination of terms in Bqv but not in Bq. Since
yh.t/ is a homogeneous solution, it follows that yp.t/ D y.t/ � yh.t/ is a particular
solution of L.y/ D f .t/ of the required form. ut

Theorem 3 is the basis for the following algorithm.

Algorithm 4. A general solution to a second order constant coefficient differential
equation

q.D/.y/ D f .t/

can be found by the following method.

The Method of Undetermined Coefficients

1. Compute the standard basis, Bq , for Eq .
2. Determine the denominator v so that L ff g D u=v. This means that

f .t/ 2 Ev.
3. Compute the standard basis, Bvq , for Evq .
4. The test function, yp.t/, is the linear combination with arbitrary coeffi-

cients of functions in Bvq that are not in Bq .
5. The coefficients in yp.t/ are determined by plugging yp.t/ into the

differential equation q.D/.y/ D f .t/.
6. The general solution is given by

y.t/ D yp.t/ C yh.t/;

where yh.t/ is an arbitrary function in Eq .

Example 5. Find the general solution to y00 � 5y0 C 6y D 4e2t :
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I Solution. The characteristic polynomial is

q.s/ D s2 � 5s C 6 D .s � 2/.s � 3/

and the standard basis for Eq is Bq D ˚
e2t ; e3t

�
. Since L ˚

4e2t
� D 4=.s � 2/, we

have v.s/ D s � 2 so v.s/q.s/ D .s � 2/2.s � 3/ and the standard basis for Evq is
Bvq D ˚

e2t ; te2t ; e3t
�
. The only function in Bvq that is not in Bq is te2t . Therefore,

our test function is yp.t/ D a1te2t : A simple calculation gives

yp D a1te2t

y0
p D a1e2t C 2a1te2t

y00
p D 4a1e2t C 4a1te2t :

Substitution into y00 � 5y0 C 6y D 4e2t gives

4e2t D y00
p � 5y0

p C 6yp

D .4a1e2t C 4a1te2t / � 5.a1e2t C 2a1te2t / C 6.a1te2t /

D �a1e2t :

From this, it follows that a1 D �4 and yp D �4te2t . The general solution is thus
given by

y.t/ D yp.t/ C yh.t/ D �4te2t C c1e2t C c2e3t ;

where c1 and c2 are arbitrary real constants. J

Remark 6. Based on Example 1, one might have expected that the test function in
Example 5 would be yp D c1e2t . But this cannot be since e2t is a homogeneous
solution, that is, L.e2t / D 0, so it cannot possibly be true that L.a1e2t / D 4e2t .
Observe that v.s/ D s � 2 and q.s/ D .s � 2/.s C 3/ share a common root, namely,
s D 2, so that the product has root s D 2 with multiplicity 2. This produces te2t

in the standard basis for Evq that does not appear in the standard basis for Eq . In
Example 1, all the roots of vq are distinct so this phenomenon does not occur.
There is thus a qualitative difference between the cases when v.s/ and q.s/ have
common roots and the cases where they do not. However, Algorithm 4 does not
distinguish this difference. It will always produce a test function that leads to a
particular solution.

Example 7. Find the general solution to

y00 � 3y0 C 2y D 2tet :

I Solution. The characteristic polynomial is

q.s/ D s2 � 3s C 2 D .s � 1/.s � 2/:
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Hence, the standard basis for Eq is Bq D ˚
et ; e2t

�
. The Laplace transform of 2tet

is 2=.s � 1/2 so v.s/ D .s � 1/2, and thus, v.s/q.s/ D .s � 1/3.s � 2/. Therefore,
y.t/ 2 Evq , which has standard basis Bvq D ˚

et ; tet ; t 2et ; e2t
�
. Since tet and t2et

are the only functions in Bvq but not in Bq , it follows that our test function has the
form yp.t/ D a1tet Ca2t2et for unknown constants a1 and a2. We determine a1 and
a2 by plugging yp.t/ into the differential equation. A calculation of derivatives gives

yp D a1tet C a2t2et

y0
p D a1et C .a1 C 2a2/tet C a2t2et

y00
p D .2a1 C 2a2/et C .a1 C 4a2/tet C a2t

2et :

Substitution into y00 � 3y0 C 2y D 2tet gives

2tet D y00
p � 3y0

p C 2yp

D .�a1 C 2a2/et � 2a2tet :

Here is an example where we invoke the linear independence of Bvq . By Theorems 7
and 8 of Sect. 3.2, we have that the coefficients a1 and a2 satisfy

�a1 C 2a2 D 0

�2a2 D 2:

From this, we find a2 D �1 and a1 D 2a2 D �2. Hence, a particular solution is

yp.t/ D �2te�t � t2e�t

and the general solution is

y.t/ D yp.t/ C yh.t/ D �2te�t � t2e�t C c1et C c2e2t ;

where c1 and c2 are arbitrary real constants. J
Linearity is particularly useful when the forcing function f .t/ is a sum of terms.

Here is the general principle, sometimes referred to as the superposition principle.

Theorem 8 (Superposition Principle). Suppose yp1 is a solution to L.y/ D f1

and yp2 is a solution to L.y/ D f2, where L is a linear differential operator. Then
a1yp1 C a2yp2 is a solution to Ly D a1f1 C a2f2:

Proof. By linearity,

L.a1yp1 Ca2yp2 / D a1L.yp1/Ca2L.yp2 / D a1f1Ca2f2: ut
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Example 9. Find the general solution to

y00 � 5y0 C 6y D 12 C 4e2t : (5)

I Solution. Theorem 8 allows us to find a particular solution by adding together
the particular solutions to

y00 � 5y0 C 6y D 12 (6)

and

y00 � 5y0 C 6y D 4e2t : (7)

In both cases, the characteristic polynomial is q.s/ D s2 �5sC6 D .s�2/.s�3/. In
(6), the Laplace transform of 12 is 12=s. Thus, v.s/ D s, q.s/v.s/ D s.s �2/.s �3/,
and Bqv D ˚

1; e2t ; e3t
�
. The test function is yp1 D a. It is easy to see that yp1 D

2. In Example 5, we found that yp2 D �4te2t is a particular solution to (7). By
Theorem 8, yp D 2 � 4te2t is a particular solution to (5). Thus,

y D 2 � 4te2t C c1e2t C c2e3t

is the general solution. J
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Exercises

1–9. Given q.s/ and v.s/ below, determine the test function yp for the differential
equation q.D/y D f , where Lf D u=v.

1. q.s/ D s2 � s � 2 v.s/ D s � 3

2. q.s/ D s2 C 6s C 8; v.s/ D s C 3

3. q.s/ D s2 � 5s C 6; v.s/ D s � 2

4. q.s/ D s2 � 7s C 12; v.s/ D .s � 4/2

5. q.s/ D .s � 5/2; v.s/ D s2 C 25

6. q.s/ D s2 C 1; v.s/ D s2 C 4

7. q.s/ D s2 C 4; v.s/ D s2 C 4

8. q.s/ D s2 C 4s C 5; v.s/ D .s � 1/2

9. q.s/ D .s � 1/2; v.s/ D s2 C 4s C 5

10–24. Find the general solution for each of the differential equations given below.

10. y00 C 3y0 � 4y D e2t

11. y00 � 3y0 � 10y D 7e�2t

12. y00 C 2y0 C y D et

13. y00 C 2y0 C y D e�t

14. y00 C 3y0 C 2y D 4

15. y00 C 4y0 C 5y D e�3t

16. y00 C 4y D 1 C et

17. y00 � y D t2

18. y00 � 4y0 C 4y D et

19. y00 � 4y0 C 4y D e2t

20. y00 C y D 2 sin t

21. y00 C 6y0 C 9y D 25te2t

22. y00 C 6y0 C 9y D 25te�3t

23. y00 C 6y0 C 13y D e�3t cos 2t

24. y00 � 8y0 C 25y D 104 sin 3t

25–28. Solve each of the following initial value problems.

25. y00 � 5y0 � 6y D e3t , y.0/ D 2, y0.0/ D 1

26. y00 C 2y0 C 5y D 8e�t , y.0/ D 0, y0.0/ D 8

27. y00 C y D 10e2t , y.0/ D 0, y0.0/ D 0

28. y00 � 4y D 2 � 8t , y.0/ D 0, y0.0/ D 5
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3.5 The Incomplete Partial Fraction Method

In this section, we provide an alternate method for finding the solution set to the
nonhomogeneous differential equation

q.D/.y/ D f .t/; (1)

where f 2 E . This alternate method begins with the Laplace transform method and
exploits the efficiency of the partial fraction decomposition algorithm developed in
Sects. 2.3 and 2.4. However, the partial fraction decomposition applied to Y.s/ D
Lfyg.s/ is not needed to its completion. We therefore refer to this method as the
incomplete partial fraction method. For purposes of illustration and comparison to
the method of undetermined coefficients let us reconsider Example 5 of Sect. 3.4.

Example 1. Find the general solution to

y00 � 5y0 C 6y D 4e2t :

I Solution. Our goal is to find a particular solution yp.t/ to which we will add the
homogeneous solutions yh.t/. Since any particular solution will do, we begin by
applying the Laplace transform with initial conditions y.0/ D 0 and y0.0/ D 0. The
characteristic polynomial is q.s/ D s2 � 5s C 6 D .s � 2/.s � 3/ and L ˚

4e2t
� D

4=.s � 2/. If, as usual, we let Y.s/ D Lfyg.s/ and take the Laplace transform of the
differential equation with the given initial conditions, then q.s/Y.s/ D 4=.s � 2/

so that

Y.s/ D 4

.s � 2/q.s/
D 4

.s � 2/2.s � 3/
:

In the table below, we compute the .s � 2/-chain for Y.s/ but stop when the
denominator reduces to q.s/ D .s � 2/.s C 3/.

Incomplete .s � 2/-chain

4

.s � 2/2.s � 3/

�4

.s � 2/2

p.s/

.s � 2/.s � 3/

The table tells us that

4

.s � 2/2.s � 3/
D �4

.s � 2/2
C p.s/

.s � 2/.s � 3/
:
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There is no need to compute p.s/ and finish out the table since the inverse Laplace
transform of p.s/

.s�2/.s�3/
D p.s/

q.s/
is in Eq and hence a solution of the associated

homogeneous equation. If Yp.s/ D �4
.s�2/2 , then yp.t/ D L�1fYpg.t/ D �4te2t

is a particular solution. By linearity, we get the general solution:

y.t/ D �4te2t C c1e2t C c2e3t : J

Observe that the particular solution yp.t/ we have obtained here is exactly what
we derived using the method of undetermined coefficients in Example 5 of Sect. 3.4
and is obtained by one iteration of the partial fraction decomposition algorithm.

The Incomplete Partial Fraction Method

We now proceed to describe the procedure generally. Consider the differential
equation

q.D/.y/ D f .t/;

where q.s/ is a polynomial of degree 2 and f 2 E . Suppose L ff g D u.s/=v.s/.
Since we are only interested in finding a particular solution, we can choose initial
conditions that are convenient for us. Thus, we will assume that y.0/ D 0 and
y0.0/ D 0, and as usual, let Y.s/ D Lfyg.s/. Then applying the Laplace transform
to the differential equation q.D/.y/ D f .t/ and solving for Y.s/ give

Y.s/ D u.s/

v.s/q.s/
:

Let us consider the linear case where v.s/ D .s � �/m and u.s/ has no factors of
s � � . (The quadratic case, v.s/ D .s2 C cs Cd/m is handled similarly.) This means
f .t/ D p.t/e�t, where the degree of p is m � 1. It could be the case that � is a root
of q.s/ with multiplicity j , in which case we can write

q.s/ D .s � �/j q� .s/;

where q� .�/ ¤ 0. Thus,

Y.s/ D u.s/

.s � �/mCj q� .s/
:

For convenience, let p0.s/ D u.s/. We now iterate the partial fraction decompo-
sition algorithm until the denominator is q.s/. This occurs after m iterations. The
incomplete .s � �/-chain is given by the table below.



3.5 The Incomplete Partial Fraction Method 247

Incomplete .s � �/-chain

p0.s/

.s � �/mCj q� .s/

A1

.s � �/mCj

p1.s/

.s � �/mCj �1q� .s/

A2

.s � �/mCj �1

:::
:::

pm�1.s/

.s � �/j C1q� .s/

Am

.s � �/j C1

pm.x/

.s � �/j q� .s/

The last entry in the first column has denominator q.s/ D .s � �/j q� .s/, and
hence, its inverse Laplace transform is a solution of the associated homogeneous
equation. It follows that if Yp.s/ D A1

.s��/mCj C � � � C Am

.s��/j C1 , then

yp.t/ D A1

.m C j � 1/Š
tmCj �1e�t C � � � C Am

.j /Š
tj �1e�t

is a particular solution.

To illustrate this general procedure, let us consider two further examples.

Example 2. Find the general solution to

y00 C 4y0 C 4y D 2te�2t :

I Solution. The characteristic polynomial is q.s/ D s2 C 4s C 4 D .s C 2/2 and
Lf2te�2t g D 2=.s C 2/2: Again assume y.0/ D 0 and y0.0/ D 0 then

Y.s/ D 2

.s C 2/4
:

But this term is a partial fraction. In other words, the incomplete .s C 2/-chain for
Y.s/ degenerates:
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Incomplete .s C 2/-chain

2

.s C 2/4

2

.s C 2/4

0

Let Yp.s/ D 2=.s C 2/4: Then a particular solution is

yp.t/ D L�1fYpg.t/ D 2

3Š
t3e�2t D t3

3
e�2t :

The homogeneous solution can be read off from the roots of q.s/ D .s C 2/2. Thus,
the general solution is

y D 1

3
t3e�2t C c1e�2t C c2te�2t : J

Example 3. Find the general solution to

y00 C 4y D 16te2t

I Solution. The characteristic polynomial is q.s/ D s2 C 4 and

L ˚
16te2t

�
.s/ D 16

.s � 2/2
:

Again assume y.0/ D 0 and y0.0/ D 0. Then

Y.s/ D 16

.s2 C 4/.s � 2/2
:

The incomplete s � 2-chain for Y.s/ is:

Incomplete s � 2 -chain

16

.s2 C 4/.s � 2/2

2

.s � 2/2

�2.s C 2/

.s2 C 4/.s � 2/

�1

s � 2

p.s/

s2 C 4
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Let Yp.s/ D 2
.s�2/2 � 1

s�2
. Then yp.t/ D 2te2t � e2t . The homogeneous solutions

are yh D c1 cos 2t C c2 sin 2t . Thus, the general solution is

y.t/ D yp.t/ C yh.t/ D 2te2t � e2t C c1 cos 2t C c2 sin 2t: J
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Exercises

1–12. Use the incomplete partial fraction method to solve the following differential
equations.

1. y00 � 4y D e�6t

2. y00 C 2y0 � 15y D 16et

3. y00 C 5y0 C 6y D e�2t

4. y00 C 3y0 C 2y D 4

5. y00 C 2y0 � 8y D 6e�4t

6. y00 C 3y0 � 10y D sin t

7. y00 C 6y0 C 9y D 25te2t

8. y00 � 5y0 � 6y D 10te4t

9. y00 � 8y0 C 25y D 36te4t sin.3t/

10. y00 � 4y0 C 4y D te2t

11. y00 C 2y0 C y D cos t

12. y00 C 2y0 C 2y D et cos t
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3.6 Spring Systems

In this section, we illustrate how a second order constant coefficient differential
equation arises from modeling a spring-body-dashpot system. This model may arise
in a simplified version of a suspension system on a vehicle or a washing machine.
Consider the three main objects in the diagram below: the spring, the body, and the
dashpot (shock absorber).

We assume the body only moves vertically without any twisting. Our goal is to
determine the motion of the body in such a system. Various forces come into play.
These include the force of gravity, the restoring force of the spring, the damping
force of the dashpot, and perhaps an external force. Let us examine each of these
forces and how they contribute to the overall motion of the body.

Force of Gravity

First, assume that the body has mass m. The force of gravity, FG, acts on the body
by the familiar formula

FG D mg; (1)

where g is the acceleration due to gravity. Our measurements will be positive in the
downward direction so FG is positive.

Restoring Force

When a spring is suspended with no mass attached, the end of the spring will lie at a
reference point (u D 0). When the spring is stretched or compressed, we will denote
the displacement by u. The force exerted by the spring that acts in the opposite
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direction to a force that stretches or compresses a spring is called the restoring force.
It depends on the displacement and is denoted by FR.u/. Hooke’s law says that the
restoring force of many springs is proportional to the displacement, as long as the
displacement is not too large. We will assume this. Thus, if u is the displacement we
have

FR.u/ D �ku; (2)

where k is a positive constant, called the spring constant. When the displacement
is positive (downward), the restoring force pulls the body upward, hence the
negative sign.

To determine the spring constant k, consider the effect of a body of mass m

attached to the spring and allowed to come to equilibrium (i.e., no movement). It
will stretch the spring a certain distance, u0, as illustrated below:

u0

u = 0

u = u0 mass m
(at equilibrium)

At equilibrium, the restoring force of the spring will cancel the gravitational force
on the mass m. Thus, we get

FR.u0/ C FG D 0: (3)

Combining equations (1), (2), and (3) gives us mg � ku0 D 0, and hence,

k D mg

u0

: (4)

Damping Force

In any practical situation, there will be some kind of resistance to the motion
of the body. In our system, this resistance is represented by a dashpot, which in
many situations is a shock absorber. The force exerted by the dashpot is called the
damping force, FD. It depends on a lot of factors, but an important factor is the
velocity of the body. To see that this is reasonable, imagine the difference in the
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forces against your body when you dive into a swimming pool off a 3-meter board
and when you dive from the side of the pool. The greater the velocity when you
enter the pool the greater the force that decelerates your body. We will assume that
the damping force is proportional to the velocity. We thus have

FD D ��v D ��u0;

where v D u0 is velocity and � is a positive constant known as the damping
constant. The damping force acts in a direction opposite the velocity, hence the
negative sign.

External Forces and Newton’s Law of Motion

We will let f .t/ denote an external force acting on the body. For example, this
could be the varying vertical forces acting on a suspension system of a vehicle due
to driving over a bumpy road. If a D u00 is acceleration, then Newton’s second law
of motion says that the total force of a body, given by mass times acceleration, is the
sum of the forces acting on that body. We thus have

Total Force D FG C FR C FD C External Force;

which implies the equation

mu00 D mg � ku � �u0 C f .t/:

Equation (4) implies mg D �ku0: Substituting and combining terms give

mu00 C �u0 C k.u � u0/ D f .t/:

If y D u � u0, then y measures the displacement of the body from the equilibrium
point, u0. In this new variable, we obtain

my00 C �y0 C ky D f .t/: (5)

This second order constant coefficient differential equation is a mathematical
model for the spring-body-dashpot system. The solutions that can be obtained vary
dramatically depending on the constants m, �, and k, and, of course, the external
force, f .t/. The initial conditions,

y.0/ D y0 and y0.0/ D v0

represent the initial position, y.0/ D y0, and the initial velocity, y0.0/ D v0, of the
given body. Once the constants, external force, and initial conditions are determined,
the uniqueness and existence theorem, Theorem 10 of Sect. 3.1, guarantees a unique
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Table 3.1 Units of measure in metric and English systems

System Time Distance Mass Force

Metric seconds (s) meters (m) kilograms (kg) newtons (N)
English seconds (s) feet (ft) slugs (sl) pounds (lbs)

Table 3.2 Derived quantities

Quantity Formula

velocity (v) distance / time
acceleration (a) velocity /time
force (F) mass � acceleration
spring constant (k) force / distance
damping constant (�) force /velocity

solution. Of course, we should always keep in mind that (5) is a mathematical model
of a real phenomenon and its solution is an approximation to what really happens.
However, as long as our assumptions about the spring and damping constants are in
effect, which usually require that y.t/ and y0.t/ be relatively small in magnitude,
and the mass of the spring is negligible compared to the mass of the body, the
solution will be a reasonably good approximation.

Units of Measurement

Before we consider specific examples, we summarize the two commonly used units
of measurement: The English and metric systems. Table 3.1 summarizes the units.

The main units of the metric system are kilograms and meters while in the
English system they are pounds and feet. The time unit is common to both. Table 3.2
summarizes quantities derived from these units.

In the metric system, one Newton of force (N) will accelerate a 1 kilogram mass
(kg) 1 m/s2. In the English system, a 1 pound force (lb) will accelerate a 1 slug mass
(sl) 1 ft/s2. To compute the mass of a body in the English system, one must divide
the weight by the acceleration due to gravity, which is g D 32 ft/s2 near the surface
of the earth. Thus, a body weighing 64 lbs has a mass of 2 slugs. To compute the
force a body exerts due to gravity in the metric system, one must multiply the mass
by the acceleration due to gravity, which is g D 9:8 m/s2. Thus, a 5 kg mass exerts
a gravitational force of 49 N.

The units for the spring constant k and damping constant � are given according
to the following table.

k �

Metric N/m N s/m

English lbs/ft lbs s/ft



3.6 Spring Systems 257

Example 1. 1. A dashpot exerts a damping force of 10 pounds when the velocity
of the mass is 2 feet per second. Find the damping constant.

2. A dashpot exerts a damping force of 6 Newtons when the velocity is 40

centimeters per second. Find the damping constant.
3. A body weighing 4 pounds stretches a spring 2 inches. Find the spring constant.
4. A mass of 8 kilograms stretches a spring 20 centimeters. Find the spring constant.

I Solution. 1. The force is 10 pounds and the velocity is 2 feet per second. The
damping constant is given by � D force=velocity D 10=2 D 5 lbs s/ft.

2. The force is 6 Newtons and the velocity is :4 meters per second The damping
constant is given by � D force=velocity D 6=:4 D 15 N s/m.

3. The force is 4 pounds. A length of 2 inches is 1=6 foot. The spring constant is
k D force=distance D 4=.1=6/ D 24 lbs/ft.

4. The force exerted by a mass of 8 kilograms is 8 � 9:8 D 78:4 Newtons. A
length of 20 centimeters is :2 meters. The spring constant is given by k D
force=distance D 78:4=:2 D 392 N/m. J

Example 2. A spring is stretched 20 centimeters by a force of 5 Newtons. A body
of mass 4 kilogram is attached to such a spring with an accompanying dashpot.
At t D 0, the mass is pulled down from its equilibrium position a distance of 50

centimeters and released with a downward velocity of 1 meter per second. Suppose
the damping force is 5 Newtons when the velocity of the body is :5 meter per second.
Find a mathematical model that represents the motion of the body.

I Solution. We will model the motion by (5). Units are converted to the kilogram-
meter units of the metric system. The mass is m D 4. The spring constant k is given
by k D 5=.:2/ D 25. The damping constant is given by � D 5=:5 D 10. Since
no external force is mentioned, we may assume it is zero. The initial conditions are
y.0/ D :5 and y0.0/ D 1. The following equation

4y00.t/ C 10y0.t/ C 25y D 0; y.0/ D :5; y0.0/ D 1

represents the model for the motion of the body. J

Example 3. A body weighing 4 pounds will stretch a spring 3 in. This same body
is attached to such a spring with an accompanying dashpot. At t D 0, the mass is
pulled down from its equilibrium position a distance of 1 foot and released. Suppose
the damping force is 8 pounds when the velocity of the body is 2 feet per second.
Find a mathematical model that represents the motion of the body.

I Solution. Units are converted to the pound-foot units in the English system. The
mass is m D 4=32 D 1=8 slugs. The spring constant k is given by k D 4=.3=12/ D
16. The damping constant is given by � D 8=2 D 4. Since no external force is
mentioned, we may assume it is zero. The initial conditions are y.0/ D 1 and
y0.0/ D 0. The following equation
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1

8
y00.t/ C 4y0.t/ C 16y D 0; y.0/ D 1; y0.0/ D 0

models the motion of the body. J

Let us now turn our attention to an analysis of (5). The zero-input response
models the motion of the body with no external forces. We refer to this motion
as free motion (f .t/ � 0). Otherwise, we refer to the motion as forced motion
(f .t/ ¤ 0). In turn, each of these are divided into undamped (� D 0) and damped
(� ¤ 0).

Undamped Free Motion

When the damping constant is zero and there is no externally applied force, the
resulting motion of the object is called undamped free motion or simple harmonic
motion. This is an idealized situation, for seldom, if ever, will a system be free of
any damping effects. Nevertheless, (5) becomes

my00 C ky D 0; (6)

with m > 0 and k > 0. The characteristic polynomial of this equation is q.s/ D
ms2 C k D m.s2 C k=m/ D m.s2 C ˇ2/, where ˇ D p

k=m. Further, we have
Bq D fsin ˇt; cos ˇtg. Hence, (6) has the general solution

y D c1 cos ˇt C c2 sin ˇt: (7)

Using the trigonometric identity cos.ˇt � ı/ D cos.ˇt/ cos ı C sin.ˇt/ sin ı, (7)
can be rewritten as

y D A cos.ˇt � ı/; (8)

where c1 D A cos ı and c2 D A sin ı. Solving these equations for A and ı gives

A D
q

c2
1 C c2

2 and tan ı D c2=c1. Therefore, the graph of y.t/ satisfying (6) is a

pure cosine function with frequency ˇ and with period

T D 2�

ˇ
D 2�

r
m

k
:

The numbers A and ı are commonly referred to as the amplitude and phase angle of
the system. Equation (8) is called the phase-amplitude form of the solution to (6).
From (8), we see that A is the maximum possible value of the function y.t/, and
hence the maximum displacement from equilibrium, and that jy.t/j D A precisely
when t D .ı C n�/=ˇ, where n 2 Z.
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The graph of (8) is given below and well represents the oscillating motion of the
body. This idealized kind of motion occurs ubiquitously in the sciences.

A

y(t)

T

δ
β

Example 4. Find the amplitude, phase angle, and frequency of the damped free
motion of a spring-body-dashpot system with unit mass and spring constant 3.
Assume the initial conditions are y.0/ D �3 and y0.0/ D 3.

I Solution. The initial value problem that models such a system is

y00 C 3y D 0; y.0/ D �3; y0.0/ D 3:

An easy calculation gives y D �3 cos
p

3t C p
3 sin

p
3t . The amplitude is given

by A D ..�3/2 C .
p

3/2/
1
2 D 2

p
3 and the phase angle is given implicitly by

tan ı D �p
3=3 hence ı D ��=6. Thus,

y D 2
p

3 cos
�p

3t C �

6

�
: J

Damped Free Motion

In this case, we include the damping term � y0 with � > 0. In applications, the
coefficient � represents the presence of friction or resistance, which can never be
completely eliminated. Thus, we want solutions to the differential equation

my00 C �y0 C ky D 0: (9)

The characteristic polynomial q.s/ D ms2 C �s C k has roots r1 and r2 given by
the quadratic formula

r1; r2 D �� ˙ p
�2 � 4mk

2m
: (10)

The nature of the solutions of (9) are determined by whether the discriminant D D
�2�4mk is negative (complex roots), zero (double root), or positive (distinct roots).
We say that the system is
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• Underdamped if D < 0.
• Critically damped if D D 0.
• Overdamped if D > 0.

Let us consider each of these cases separately.

Underdamped Systems

When � is between 0 and
p

4mk then D < 0, the damping is not sufficient to
overcome the oscillatory behavior that we saw in the undamped case, � D 0. The
resulting motion is called underdamped free motion. Observe that in this case we
can write

q.s/ D m

�
s2 C �

m
s C k

m

�
D m..s � ˛/2 C ˇ2/;

where ˛ D � �

2m
and ˇ D

p
4mk��2

2m
: Since Bq D fe˛t cos ˇt; e˛t sin ˇtg, the

solution to (9) is

y.t/ D e˛t .c1 cos ˇt C c2 sin ˇt/ ;

which can be rewritten as

y.t/ D Ae˛t cos.ˇt � ı/; (11)

where A D
q

c2
1 C c2

2 and tan ı D c2=c1, as we did earlier for the undamped case.
Again we refer to (11) as the phase-amplitude form of the solution. A typical graph
of (11) is given below.

y(t)

−Aeαt

Aeαt

Notice that y appears to be a cosine curve in which the amplitude oscillates between
Ae˛t and �Ae˛t . The motion of the body passes through equilibrium at regular
intervals. Since ˛ < 0, the amplitude decreases with time. One may imagine the
suspension on an automobile with rather weak shock absorbers. A push on the
fender will send the vehicle oscillating as in the graph above.
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Critically Damped Systems

If � D p
4mk, then the discriminant D is zero. At this critical point, the damping

is just large enough to overcome oscillatory behavior. The resulting motion is called
critically damped free motion. Observe that the characteristic polynomial can be
written

q.s/ D m.s � r/2;

where r D ��=2m < 0. Since Bq D fert ; ter tg the general solution of (9) is

y.t/ D c1ert C c2tert D .c1 C c2t/ert : (12)

In this case, there is no oscillatory behavior. In fact, the system will pass through
equilibrium only if t D �c1=c2, and since t > 0, this only occurs if c1 and c2 have
opposite signs. The following graph represents the two possibilities.

system passes through
equililbrium

system does not pass
through equililbrium

Overdamped Systems

When � >
p

4mk, then the discriminant D is positive. The resulting motion is
called overdamped free motion. The characteristic polynomial q.s/ has two distinct
real roots:

r1 D �� C p
�2 � 4mk

2m
and r2 D �� � p

�2 � 4mk

2m
:

Both roots are negative. Since Bq D fer1t ; er2t g, the general solution of (9) is

y.t/ D c1er1t C c2er2t : (13)

The graphs shown for the critically damped case are representative of the possible
graphs for the present case as well.

Notice that in all three cases

lim
t!1 y.t/ D 0

and thus, the motion of y.t/ dies out as t increases.
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Undamped Forced Motion

Undamped forced motion refers to the motion of a body governed by a differential
equation

my00 C ky D f .t/;

where f .t/ is a nonzero forcing function. We will only consider the special case
where the forcing function is given by f .t/ D F0 cos !t where F0 is a nonzero
constant. Thus, we are interested in describing the solutions of the differential
equation

my00 C ky D F0 cos !t; (14)

where, as usual, m > 0 and k > 0. Imagine an engine embedded within a spring-
body-dashpot system. The spring system has a characteristic frequency ˇ D p

k=m

while the engine exerts a cyclic force with frequency !.
To make things a little easier, we will assume the initial conditions are y.0/ D 0

and y0.0/ D 0. Applying the Laplace transform to (14) gives

Y.s/ D 1

ms2 C k

F0s

s2 C !2
D F0

mˇ

ˇ

s2 C ˇ2

s

s2 C !2
: (15)

Then the convolution theorem, Theorem 1 of Sect. 2.8, shows that

y.t/ D L�1.Y.s// D F0

mˇ
sin ˇt � cos !t: (16)

The following convolution formula comes from Table 2.11:

sin ˇt � cos !t D

8
ˆ̂
<

ˆ̂
:

ˇ

ˇ2 � !2
.cos !t � cos ˇt/ if ˇ ¤ !

1

2
t sin !t if ˇ D !.

(17)

Combining equations (16) and (17) gives

y.t/ D

8
ˆ̂
<

ˆ̂
:

F0

m.ˇ2 � !2/
.cos !t � cos ˇt/ if ˇ ¤ !

F0

2m!
t sin !t if ˇ D !.

(18)

We will first consider the case ˇ ¤ ! in (18). Notice that, in this case, the solution
y.t/ is the sum of two cosine functions with equal amplitude

	D F0=m.ˇ2 � !2/


,

but different frequencies ˇ and !. Recall the trigonometric identity

cos.� � �/ � cos.� C �/ D 2 sin � sin �:
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If we set � � � D !t and � C � D ˇt and solve for � D .ˇ C !/t=2 and
� D .ˇ � !/t=2, we see that we can rewrite the first part of (18) in the form

y.t/ D 2F0

a.ˇ2 � !2/
sin

.ˇ � !/t

2
sin

.ˇ C !/t

2
: (19)

One may think of the function y.t/ as a sine function, namely, sin..ˇ C !/t=2/

(with frequency .ˇ C !/=2), which is multiplied by another function, namely,

2F0

a.ˇ2 � !2/
sin

.ˇ � !/t

2
;

which functions as a time varying amplitude function.
An interesting case is when ˇ is close to ! so that ˇ C ! is close to 2! and

ˇ�! is close to 0. In this situation, one sine function changes very rapidly, while the
other, which represents the change in amplitude, changes very slowly as is illustrated
below. (In order for the solution to be periodic, we must also require that ˇ=! be a
rational number. Periodicity of the solution is further discussed in Sect. 6.8.)

One might observe this type of motion in an unbalanced washing machine. The
spinning action exerts a cyclic force, F0 cos !t , on the spring system which operates
at a characteristic frequency ˇ which is close to !. The chaotic motion that
results settles down momentarily only to repeat itself again. In music, this type of
phenomenon, known as beats, can be heard when one tries to tune a piano. When
the frequency of vibration of the string is close to that of the tuning fork, one hears
a pulsating beat which disappears when the two frequencies coincide. The piano is
slightly out of tune.

In the case where the input frequency and characteristic frequency are equal,
ˇ D !, in (18), the solution

y.t/ D F0

2a!
t sin !t

is unbounded as t ! 1 as illustrated below.
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The resulting amplification of vibration eventually becomes large enough to destroy
the mechanical system. This is a manifestation of resonance discussed further in
Sects. 4.5 and 6.8.
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Exercises

Assume forces are in pounds or newtons and lengths are in feet or meters.

1–4. Assume Hooke’s law.

1. A body weighing 16 lbs stretches a spring 6 in. Find the spring constant.
2. The spring constant of a certain spring is k D 20 lbs/ft. If a body stretches the

spring 9 inches, how much does it weigh?
3. A mass of 40 kilograms stretches a spring 80 centimeters. Find the spring

constant.
4. The spring constant of a certain spring is k D 784 N/m. How far will a mass of

20 kilograms stretch the spring?

5–8. Assume the damping force of a dashpot is proportional to the velocity of the
body.

5. A dashpot exerts a damping force of 4 lbs when the velocity of the mass is 6

inches per second. Find the damping constant.
6. A dashpot exerts a damping force of 40 Newtons when the velocity is 30

centimeters per second. Find the damping constant.
7. A dashpot has a damping constant � D 100 lbs s/ft and decelerates a body by

4 ft per second. What was the force exerted by the body?
8. A force of 40 N is applied on a body connected to a dashpot having a damping

constant � D 200 N s/m. By how much will the dashpot decelerates the body?

9–14. For each exercise, investigate the motion of the mass. For undamped or
underdamped motion, express the solution in the amplitude-phase form: that is,
y D Ae˛t cos.ˇt C �/.

9. A spring is stretched 10 centimeters by a force of 2 Newtons. A body of mass
6 kilogram is attached to such a spring with no dashpot. At t D 0, the mass
is pulled down from its equilibrium position a distance of 10 centimeters and
released. Find a mathematical model that represents the motion of the body and
solve. Determine the resulting motion. What is the amplitude, frequency, and
phase shift?

10. A body of mass 4 kg will stretch a spring 80 centimeters. This same body is
attached to such a spring with an accompanying dashpot. Suppose the damping
force is 98 N when the velocity of the body is 2 m/s. At t D 0, the mass is given
an initial upward velocity of 50 centimeters per second from its equilibrium
position. Find a mathematical model that represents the motion of the body and
solve. Determine the resulting motion. After release, does the mass every cross
equilibrium? If so, when does it first cross equilibrium?

11. A body weighing 16 pounds will stretch a spring 6 inches. This same body is
attached to such a spring with an accompanying dashpot. Suppose the damping
force is 4 pounds when the velocity of the body is 2 feet per second. At t D 0,
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the mass is pulled down from its equilibrium position a distance of 1 foot and
released with a downward velocity of 1 foot per second. Find a mathematical
model that represents the motion of the body and solve.

12. A body weighing 32 pounds will stretch a spring 2 feet. This same body is
attached to such a spring with an accompanying dashpot. Suppose the damping
constant is 8 lbs s/ft. At t D 0, the mass is pulled up from its equilibrium
position a distance of 1 foot and released. Find a mathematical model that
represents the motion of the body and solve. Determine the resulting motion.
After release, does the mass every cross equilibrium?

13. A body weighing 2 pounds will stretch a spring 4 inches. This same body
is attached to such a spring with no accompanying dashpot. At t D 0, the
body is pushed downward from equilibrium with a velocity of 8 inches per
second. Find a mathematical model that represents the motion of the body and
solve. Determine the resulting motion. After release does the mass every cross
equilibrium?

14. A spring is stretched 1 m by a force of 5 N. A body of mass 2 kg is attached
to the spring with, accompanying dashpot. Suppose the damping force of the
dashpot is 6 N when the velocity of the body is 1 m/s. At t D 0, the mass is
pulled down from its equilibrium position a distance of 10 centimeters and given
an initial downward velocity of 10 centimeters per second. Find a mathematical
model that represents the motion of the body and solve. Determine the resulting
motion. After release, does the mass every cross equilibrium?

15. Suppose m, �, and k are positive. Show that the roots of the polynomial q.s/ D
ms2 C �s C k

1. Are negative if the roots are real.
2. Have negative real parts if the roots are complex.

Conclude that a solution to my00 C �y0 C ky D 0 satisfies

lim
t!1 y.t/ D 0:

16. Prove that a solution to an overdamped or critically damped system

my00 C �y0 C ky D 0

crosses equilibrium at most once regardless of the initial conditions.
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3.7 RCL Circuits

In this section, we consider RCL series circuits. These are simple electrical circuits
with a resistor, capacitor, and inductor connected to a power source in series. The
diagram below gives the basic components which we discuss below.

−
+

V

R

C

L

Charge

A charge is a fundamental property of matter that exhibits electrostatic attraction or
repulsion. An electron is said to have a charge of �1 and a proton has a charge of
C1. A coulomb, abbreviated C, the basic unit of measuring charge, is equivalent to
the charge of about 6:242 � 1018 protons.

Current

The rate at which charged particles flow through a conductor is called current. Thus,
if q.t/ represents the charge at a cross section in the circuit at time t , then current,
I.t/, is given by

I.t/ D q0.t/:

Current is measured in amperes, abbreviated amp, which is coulombs per second,
coulomb/s. In conventional flow, I.t/ is positive when charge flows from the
positive terminal of the supply V .

Voltage

As electrons move through a circuit, they exchange energy with its components.
The standard unit of energy is the joule, abbreviated J. Voltage is defined to be the
quotient between energy and charge and is measured in joules per coulomb, J/C. We
let E.t/ be the source voltage, V, in the diagram.
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The charge, current, and voltage all obey basic fundamental laws with respect to
the components in a RCL circuit. We discuss these laws for each component below.

Resistor

As current flows through a resistor, energy is exchanged (usually in the form of heat)
resulting in a voltage drop. The voltage drop, VR, from one side of the resistor to the
other is governed by Ohm’s law:

VR.t/ D RI.t/; (1)

where R is a positive constant called the resistance of the resistor. The unit of
resistance, called the ohm and abbreviated �, is measured in voltage per ampere,
V/A. For example, a resistor of 1 � will cause a voltage drop of 1 V if the current
is 1 A.

Capacitor

A capacitor consists of two parallel conducting plates separated by a thin insulator.
Current flows into a plate increasing the positive charge on one side and the negative
charge on the other. The result is an electric field in the insulator between the plates
that stores energy. That energy comes from a voltage drop across the capacitor and
is governed by the capacitor law:

VC.t/ D 1

C
q.t/;

where q.t/ is the charge on the capacitor and C is a positive constant called the
capacitance of the capacitor. The unit of capacitance, called a farad and abbreviated
F, is measured in charge per voltage, C/V. For example, a 1-farad capacitor will hold
a charge of 1 C at a voltage drop of 1 volt. Since a coulomb is so large, capacitance is
sometimes measured in millifarad (1 mF D 10�3 F) or microfarad (1 �F D 10�6F).

Inductor

An inductor is typically built by wrapping a conductor such as copper wire in the
shape of a coil around a core of ferromagnetic material.3 As a current flows, a

3Sometimes other materials are present.
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Table 3.3 Standard units of measurement for RCL circuits

Unit of unit relation to
Quantity Symbol measurement symbol other units

Energy Joule J
Time t Second s
Charge q Coulomb C
Voltage E or V Volt V J/C
Current I Ampere A C/s
Resistance R Ohm � V/A
Capacitance C Farad F C/V
Inductance L Henry H V/(A/s)

magnetic field about the inductor forms which stores energy and resists any change
in current. The resulting voltage drop is governed by Faraday’s law:

VL D LI 0.t/; (2)

where L is a positive constant called the inductance of the inductor. The unit of
inductance, called the henry and abbreviated H, is measured in voltage per change
in ampere, V/(A/s). For example, an inductor with an inductance of 1 H produces a
voltage drop of 1 V when the current through the inductor changes at a rate of 1 A/s.

Table 3.3 summarizes the standard units of measurement for RCL circuits.

Kirchoff’s Laws

There are two laws that govern the behavior of the current and voltage drops in a
closed circuit due to Gustaf Kirchoff.

Kirchoff’s Current Law

The sum of the currents flowing into and out of a point on a closed circuit is zero.

Kirchoff’s Voltage Law

The sum of the voltage drops around a closed circuit is zero.
The voltage drop across the voltage source is �E.t/ in conventional flow. Thus,

Kirchoff’s voltage law implies VR C VC C VL � E D 0. Now using Ohm’s law, the
capacitor law, and Faraday’s law, we get

RI.t/ C 1

C
q.t/ C LI 0.t/ D E.t/: (3)
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Table 3.4 Spring-body-mass and RCL circuit correspondence

Spring system RCL circuit

my00 C �y0 C ky D f .t/ Lq00 C Rq0 C .1=C/q D E.t/

Displacement y Charge q

Velocity y0 Current q0 D I

Mass m Inductance L

Damping constant � Resistance R

Spring constant k (Capacitance)�1 1=C

Forcing function f .t/ Applied voltage E.t/

Now using the fact that q0.t/ D I.t/, we can rewrite (3) to get

Lq00.t/ C Rq0.t/ C 1

C
q.t/ D E.t/: (4)

In many applications, we are interested in the current I.t/. If we differentiate (4)
and use I.t/ D q0.t/, we get

LI 00.t/ C RI 0 C 1

C
I D E 0.t/: (5)

Frequently, we are given the initial charge on the capacitor q.0/ and the initial
current I.0/. By evaluating (3) at t D 0, we obtain I 0.0/.

The equations that model RCL circuits, (4) and (5), and the equation that models
the spring-body-dashpot system, (5) of Sect. 3.6, are essentially the same. Both are
second order constant coefficient linear differential equations. Table 3.4 gives the
correspondence between the coefficients. The formulas in the coefficients m, �, and
k that describe concepts such as harmonic motion; underdamped, critically damped,
and overdamped motion; resonance; etc. for spring systems, have a correspondence
in the coefficients R, C , and L for RCL simple circuits. For example, simple
harmonic motion with frequency ˇ D p

k=m in a spring system occurs when there
is no dashpot. Likewise, simple harmonic motion with frequency ˇ D 1=

p
LC in

an RCL circuit occurs when there is no resistor.

Example 1. A circuit consists of a capacitor and inductor joined in series as
illustrated.

1F

0.25H
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There is no voltage supply. Suppose the capacitor has a capacitance of 1 F and
initial charge of q.0/ D 0:2 C. Suppose the inductor has inductance 0:25 H. If there
is no initial current find the current, I.t/, at time t . What is the system frequency,
amplitude, and phase angle? What is the charge on the capacitor at time t D �=4.

I Solution. We use (5) to model the current and get

0:25I 00 C I D 0: (6)

We have I.0/ D 0. To determined I 0.0/, we evaluate (3) at t D 0 and use I.0/ D 0,
q.0/ D 0:2, and E.0/ D 0 to get 0:2 C 0:25I 0.0/ D 0, and hence, I 0.0/ D
�0:2=0:25 D �0:8: We now multiply (6) by 4 to get the following initial value
problem:

I 00 C 4I D 0; I.0/ D 0; I 0.0/ D �0:8:

A simple calculation gives

I.t/ D �0:4 sin 2t D 0:4 cos
�
2t C �

2

�
:

From the phase-amplitude form, it follows that the system frequency is 2, the
amplitude is 0:4, and the phase angle is ��=2 (see the explanation after 3.6.(8)
where these terms are defined). Since

q.t/ � 0:2 D q.t/ � q.0/

D
Z t

0

I.	/ d	

D .�0:4/
� cos 2	

2

ˇ
ˇ
ˇ
ˇ

t

0

D 0:2.cos 2t � 1/

it follows that q.t/ D 0:2 cos 2t . Hence, the charge on the capacitor at t D �=4 is
q.�=4/ D 0 coulombs. J

Example 2. A resistor, capacitor, and inductor, are connected in series with a
voltage supply of 14 V as illustrated below.

−
+

14V

9Ω

1
14 F

1H
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Find the charge on the capacitor at time t if the initial charge and initial current
are 0. In the long term, what will be the charge on the capacitor and the current in
the circuit.

I Solution. We have q.0/ D 0 and q0.0/ D I.0/ D 0. Equation (4) gives

q00 C 9q0 C 14q D 14; q.0/ D 0; q0.0/ D 0:

The Laplace transform method gives

Q.s/ D 14

s.s C 2/.s C 7/
D 1

s
C 2

5

1

s C 7
� 7

5

1

s C 2
:

Hence,

q.t/ D 1 C 2

5
e�7t � 7

5
e�2t :

Observe that lim
t!1 q.t/ D 1: This means that in the long term the charge on the

capacitor will be 1C. Since I.t/ D q0.t/ D 14
5

	
e�2t � e�7t



and lim

t!1 I.t/ D 0,

there will be no current flowing in the long term. J
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Exercises

1–4. Find the current and charge for each RCL series circuit from the data given
below. Where appropriate, express the current in phase-amplitude form: that is,
I.t/ D Ae�˛t cos.ˇt � ı/.

1. R D 10 �, C D 5 mF, L D 0:25 H, V D 6 V, q.0/ D 0 C, I.0/ D 0 A.
2. R D 5 �, C D :025 F, L D 0:1 H, V D 0 V, q.0/ D 0:01 C, I.0/ D 0 A.
3. R D 4 �, C D :05 F, L D 0:2 H, V D 25 sin 5t V, q.0/ D 0 C, I.0/ D 2 A.
4. R D 11 �, C D 1=30 F, L D 1 H, V D 10e�5t V, q.0/ D 1 C, I.0/ D 2 A.

5. An RCL circuit consists of a 0:1-H inductor and a 0:1-F capacitor. The capacitor
will fail if it reaches a charge greater than 2 C. Assume there is no initial
charge on the capacitor and no initial current. A voltage supply is connected
to the circuit with alternating current given by V D .1=10/ cos5t . Determine
the charge and whether the capacitor will fail.

6. An RCL circuit consists of a 0:1-H inductor and a 0:1-F capacitor. The capacitor
will fail if it reaches a charge greater than 2 C. Assume there is no initial
charge on the capacitor and no initial current. A voltage supply is connected
to the circuit with alternating current given by V D .1=10/ cos10t . Determine
the charge and whether the capacitor will fail.





Chapter 4
Linear Constant Coefficient Differential
Equations

Two springs systems (without dashpots) are coupled as illustrated in the diagram
below:

y1 = 0
y1(t)

y2(t)

m1

m2

y2 = 0

Let y1 and y2 denote the displacements of the bodies of mass m1 and m2 from
their equilibrium positions, y1 D 0 and y2 D 0, respectively, where distances are
measured in the downward direction. In these coordinates, y1.t/ and y2.t/ � y1.t/

represent the length the upper and lower springs are stretched at time t . There are
two spring forces acting on the upper body. By Hooke’s law, the force of the upper
spring is �k1y1.t/ while the force of the lower spring is given by k2.y2.t/ � y1.t//,
where k1 and k2 are the respective spring constants. Newton’s law of motion then
implies

m1y
00
1 .t/ D �k1y1.t/ C k2.y2.t/ � y1.t//:

W.A. Adkins and M.G. Davidson, Ordinary Differential Equations,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-3618-8 4,
© Springer Science+Business Media New York 2012
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The lower spring alone exerts a force of �k2.y2.t/ � y1.t// on the lower body.
Again Newton’s law of motion implies

m1y
00
2 .t/ D �k2.y2.t/ � y1.t//:

We are thus led to the following differential equations:

m1y
00
1 .t/ C .k1 C k2/y1.t/ D k2y2.t/

m2y
00
2 .t/ C k2y2.t/ D k2y1.t/: (1)

Equation (1) is an example of a coupled system1 of differential equations. Notice
the dependency of each equation on the other: the solution of one equation becomes
(up to a multiplicative constant) the forcing function of the other equation. In
Sect. 4.4, we will show that both y1 and y2 satisfy the fourth order differential
equation

y.4/ C .a C b C c/y00 C cay D 0; (2)

where a D k1=m1, b D k2=m2, and c D k2=m2. It will be the work of this chapter
to show solution methods for constant coefficient nth order linear differential
equations such as given in (2), for n D 4. We will return to the coupled spring
problem presented above in Sect. 4.4.

Much of the theoretical work that we do here is a simple extension of the
work done in Chap. 3 where we focussed on the second order constant coefficient
differential equations. Thus, our presentation will be brief.

1In Chap. 9, we will study first order coupled systems in greater detail.
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4.1 Notation, Definitions, and Basic Results

Suppose a0; : : : ; an are scalars, an ¤ 0, and f is a function defined on some
interval I . A differential equation of the form

any.n/ C an�1y.n�1/ C � � � C a1y0 C a0y D f .t/; (1)

is called a constant coefficient nth order linear differential equation. The constants
a0; : : : ; an are called the coefficients, and an is called the leading coefficient. By
dividing by an, if necessary, we can assume that the leading coefficient is 1. When
f D 0, we call (1) homogeneous, otherwise, it is called nonhomogeneous.

The left-hand side of (1) is made up of a linear combination of differentiations
and multiplications by constants. If D denotes the derivative operator as in Sect. 3.3,
then Dk.y/ D y.k/. Let

L D anDn C � � � C a1D C a0; (2)

where a0; : : : an are the same constants given in (1). Then L.y/ D any.n/ C � � � C
a1y0 C a0y and (1) can be rewritten

L.y/ D f:

We call L in (2) a linear constant coefficient differential operator of order n

(assuming, of course, that an ¤ 0). Since L is a linear combination of powers of D,
we will sometimes refer to it as a polynomial differential operator. Specifically, if

q.s/ D ansn C an�1sn�1 C � � � C a1s C a0;

then q is a polynomial of order n. Since L is obtained from q by substituting D for
s, and we will write L D q.D/: The polynomial q is referred as the characteristic
polynomial of L. The operator L takes a function y that has at least n continuous
derivatives and produces a continuous function.

Example 1. Suppose L D D3 C D. Find

L.sin t/; L.cos t/; L.1/; and L.et /

I Solution. • L.sin t/ D D3.sin t/ C D.sin t/

D � cos t C cos t

D 0:

• L.cos t/ D D3.cos t/ C D.cos t/

D sin t � sin t

D 0:
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• L.1/ D D3.1/ C D.1/

D 0:

• L.et / D D3.et / C D.et /

D .et / C .et /

D 2et : J

We say a function y is a homogeneous solution of L if Ly D 0. Example 1 shows
that sin t , cos t , and 1 are homogeneous solutions of L D D3 C D:

Linearity and Consequences

It is easy to show by induction that Dk.y1 C y2/ D Dky1 C Dky2 and Dkcy D
cDky. The proofs of Propositions 2 and 4 of Sect. 3.3 and Theorem 6 of Sect. 3.3
extend to give what we put below in one theorem.

Theorem 2. 1. The operator

L D anDn C : : : C a1D C a0

given by (2) is linear. Specifically,

a. If y1 and y2 have n derivatives, then

L.y1 C y2/ D L.y1/ C L.y2/:

b. If y has n derivatives and c is a scalar, then

L.cy/ D cL.y/:

2. If y1 and y2 are homogeneous solutions of L and c1 and c2 are scalars, then

c1y1 C c2y2

is a homogeneous solution.
3. Suppose f is a function. If yp is a fixed particular solution to Ly D f and yh is

any solution to the associated homogeneous differential equation Ly D 0, then

yp C yh

is a solution to Ly D f . Furthermore, any solution y to Ly D f has the form

y D yp C yh:
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Given a constant coefficient linear differential equation Ly D f , we call
Ly D 0 the associated homogeneous differential equation. The following algo-
rithm follows from Theorem 2 and outlines an effective strategy for finding the
solution set to Ly D f .

Algorithm 3. The general solution to a linear differential equation

Ly D f

can be found as follows:

Solution Method for nth Order Linear Equations

1. Find all the solutions to the associated homogeneous differential equation
Ly D 0

2. Find one particular solution yp

3. Add the particular solution to the homogeneous solutions:

yp C yh:

As yh varies over all homogeneous solutions, we obtain all solutions to
Ly D f .

You should notice that this is the same strategy as in the second order case
discussed in Algorithm 7 of Sect. 3.3. This is the strategy we will follow. Section 4.2
will be devoted to determining solutions to the associated homogeneous differential
equation. Section 4.3 will show how to find a particular solution.

Example 4. Use Algorithm 3 and Example 1 to find solutions to

y000 C y0 D 2et :

I Solution. The left-hand side can be written Ly, where L is the differential
operator

L D D3 C D:

From Example 1, we found

• L.et / D 2et ,

• L.sin t/ D 0,

• L.cos t/ D 0,

• L.1/ D 0.
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Notice that the first equation tells us that a particular solution is yp D et . The second,
third, and fourth equations give sin t , cos t , and 1 as solutions to the associated
homogeneous differential equation Ly D 0. Thus, for each scalar c1, c2, and c3,
the function yh D c1 sin t C c2 cos t C c3 is a homogeneous solution. Now applying
Algorithm 3, we have

y D yp C yh D et C c1 sin t C c2 cos t C c3

is a solution to Ly D 2et , for all scalars c1, c2, and c3. At this point, we cannot say
that this is the solution set, but, in fact, it is. J

Initial Value Problems

Suppose L is a constant coefficient linear differential operator of order n and f is a
function defined on an interval I . Let t0 2 I . To the equation

Ly D f

we can associate initial conditions of the form

y.t0/ D y1; y0.t0/ D y1; : : : ; y.n�1/.t0/ D yn�1:

We refer to the initial conditions and the differential equation Ly D f as an initial
value problem, just as in the second order case.

Theorem 5 (The Existence and Uniqueness Theorem). Suppose p is an nth
order real polynomial, L D p.D/, and f is a continuous real-valued function
on an interval I . Let t0 2 I . Then there is a unique real-valued function y defined
on I satisfying

Ly D f y.t0/ D y0; y0.t0/ D y1; : : : ; y.n�1/.t0/ D yn�1; (3)

where y0; y1; : : : ; yn�1 2 R, If I � Œ0; 1/ and f has a Laplace transform then
so does the solution y. Furthermore, if f is in E , then y is in E .

When n D 2, we get the statement of the existence and uniqueness theorem,
Theorem 10 of Sect. 3.1. Theorem 5 will be proved in a more general context in
Sect. 9.5.

Example 6. Use Example 4 to find the solution to the following initial value
problem:

Ly D 2et ; y.0/ D 2; y0.0/ D 2; y00.0/ D 3;

where L D D3 C D.
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I Solution. In Example 4, we verified that

y D et C c1 sin t C c2 cos t C c3

is a solution to Ly D 2et for all scalars c1, c2, and c3. The initial conditions imply
the following system:

1 C c2 C c3 D y.0/ D 2

1 C c1 D y0.0/ D 2

1 � c2 D y00.0/ D 3

Solving this system gives c1 D 1, c2 D �2, and c3 D 3. It follows that

y D et C sin t � 2 cos t C 3

and the existence and uniqueness theorem implies that y is the unique solution. J
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Exercises

1–4. Determine which of the following are constant coefficient linear differential
equations. In these cases, write the equation in the form Ly D f and, determine
the order, the characteristic polynomial, and whether they are homogeneous.

1. y000 � 3y0 D et

2. y.4/ C y0 C 4y D 0

3. y.4/ C y4 D 0

4. y.5/ C ty00 � 3y D 0

5–8. For the linear operator L, determine L.y/.

5. L D D3 � 4D

(a) y D e2t

(b) y D e�2t

(c) y D 2

6. L D D � 2

(a) y D e�2t

(b) y D 3e2t

(c) y D tan t

7. L D D4 C 5D2 C 4

(a) y D e�t

(b) y D cos t

(c) y D sin 2t

8. L D D3 � D2 C D � 1

(a) y D et

(b) y D tet

(c) y D cos t

(d) y D sin t

9. Suppose L is a polynomial differential operator and

• L.te2t / D 8e2t

• L.e2t / D 0

• L.e�2t / D 0

• L.1/ D 0

Use this information to find other solutions to Ly D 8e2t .
10. Suppose L is a polynomial differential operator and

• L.sin t/ D �15 sin t

• L.e2t / D 0
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• L.e�2t / D 0

• L.sin 2t/ D 0

• L.cos 2t/ D 0

Use this information to find other solutions to Ly D �15 sin t .
11. Let L be as in Exercise 9. Use the results there to solve the initial value problem

Ly D 8e2t ;

where y.0/ D 2, y0.0/ D �1, and y00.0/ D 16.
12. Let L be as in Exercise 10. Use the results there to solve the initial value

problem
Ly D �15 sin t;

where y.0/ D 0, y0.0/ D 3, y00.0/ D �16, and y000.0/ D �9.
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4.2 Linear Homogeneous Differential Equations

Suppose L D q.D/ where q.s/ D ansn C � � � C a1s C a0. As we will see in this
section, the characteristic polynomial, q, plays a decisive role in determining the
solution set to Ly D 0.

Lemma 1. Let q.s/ D ansn C� � �Ca1s Ca0. If y is a function whose nth derivative
is of exponential type, then

L fq.D/yg D q.s/L fyg � p.s/;

where p.s/ is a polynomial of degree at most n � 1 and depends on the coefficients
of q and the initial conditions y.0/; y0.0/; : : : ; y.n�1/.0/.

Proof. If y.n/ is of exponential type, then so are all derivatives y.k/, k D 0; 1; : : :

n � 1 by Lemma 4 of Sect. 2.2. By the nth transform derivative principle, Corol-
lary 8 of Sect. 2.2, we have

L ˚
y.k/

�
.s/ D skL fyg .s/ � pk.s/;

where pk.s/ is a polynomial of order at most k � 1 depending on the initial
conditions y.0/; y0.0/; : : : ; y.k�1/. Let L fy.t/g D Y.s/. Then

L fq.D/yg .s/ D anL
˚
y.n/

� C � � � C a1L
˚
y0� C a0L fyg

D ansnY.s/ C � � � C a1sY.s/ C a0Y.s/ � p.s/

D q.s/Y.s/ � p.s/;

where p.s/ D anpn C � � � C a0p0 is a polynomial of degree at most n � 1 and
depends on the initial values y.0/; y0.0/; : : : ; y.n�1/.0/. ut

We now turn our attention to the solution set to

Ly D 0: (1)

By Theorem 5 of Sect. 4.1, any solution to Lfyg D 0 is in E . Suppose y is such a
solution. By Lemma 1, we have LfLyg D q.s/Lfyg � p.s/ D 0. Solving for Lfyg
gives

Lfyg.s/ D p.s/

q.s/
2 Rq:

It follows that y 2 Eq . Now suppose y 2 Eq . Then Lfyg.s/ D p.s/

q.s/
2 Rq and

LfLyg.s/ D q.s/
p.s/

q.s/
� p1.s/ D p.s/ � p1.s/;
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where p1.s/ is a polynomial that depends on the initial conditions. Note, however,
that p.s/ � p1.s/ is a polynomial in R and therefore must be identically 0. Thus,
LfLyg D 0 and this implies Ly D 0. The discussion given above implies the
following theorem.

Theorem 2. Let q.s/ be the characteristic polynomial of a linear differential
operator q.D/ of order n. Then the solution set to

q.D/y D 0

is Eq . Thus, if Bq D fy1; y2; : : : ; yng is the standard basis of Eq , then a solution to
q.D/y D 0 is of the form

y D c1y1 C c2y2 C � � � C cnyn;

where c1, c2, . . . , cn are scalars.

The following algorithm codifies the procedure needed to find the solution set.

Algorithm 3. Given an nth order constant coefficient linear differential equation

q.D/y D 0

the solution set is determined as follows:

Solution Method for nth order Homogeneous Linear Differential
Equations

1. Determine the characteristic polynomial, q.s/.
2. Factor q.s/ and construct Bq D fy1; y2; : : : ; yng.
3. The solution set Eq is the set of all linear combinations of the functions in

the standard basis Bq . In other words,

Eq D Span Bq D fc1y1.t/ C � � � C cnyn.t/ W c1; : : : ; cn 2 Rg :

Example 4. Find the general solution to the following differential equations:

1. y000 C y0 D 0

2. y.4/ � y D 0

3. y.5/ � 8y.3/ C 16y0 D 0

I Solution. 1. The characteristic polynomial for y000 C y0 D 0 is

q.s/ D s3 C s D s.s2 C 1/:
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The standard basis is Bq D f1; cos t; sin tg. Thus the solution set is

Eq D fc1 C c2 cos t C c3 sin t W c1; c2; c3 2 Rg :

2. The characteristic polynomial for y.4/ � y D 0 is

q.s/ D s4 � 1 D .s2 C 1/.s � 1/.s C 1/:

The standard basis is Bq D fcos t; sin t; et ; e�t g. Thus, the solution set is

Eq D ˚
c1 cos t C c2 sin t C c3et C c4e�t W c1; c2; c3; c4 2 R

�
:

3. The characteristic polynomial for y.5/ � 8y.3/ C 16y0 D 0 is

q.s/ D s5 � 8s3 C 16s D s.s4 C 8s2 C 16/ D s.s2 � 4/2 D s.s � 2/2.s C 2/2:

The standard basis is Bq D ˚
1; e2t ; te2t ; e�2t ; te�2t

�
. Thus, the solution set is

Eq D ˚
c1 C c2e2t C c3te2t C c4e�2t C c5te�2t W c1; : : : ; c5 2 R

�
: J

Initial Value Problems

Let q.D/y D 0 be a homogeneous constant coefficient differential equation, where
deg p D n. Suppose y.t0/ D y0; : : : ; y.n�1/.t0/ D yn�1 are initial conditions. The
existence and uniqueness Theorem 5 of Sect. 4.1 states there is a unique solution to
the initial value problem. However, the general solution is a linear combination of
the n functions in the standard basis Eq . It follows then that the initial conditions
uniquely determine the coefficients.

Example 5. Find the solution to

y000 � 4y00 C 5y0 � 2y D 0I y.0/ D 1; y0.0/ D 2; y00.0/ D 0:

I Solution. The characteristic polynomial is q.s/ D s3�4s2C5s�2 and factors as

q.s/ D .s � 1/2.s � 2/:

The basis for Eq is
˚
et ; tet ; e2t

�
and the general solution is

y D c1et C c2tet C c3e2t :
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We first calculate the derivatives and simplify to get

y.t/ D c1et C c2tet C c3e2t

y0.t/ D .c1 C c2/et C c2tet C 2c3e2t

y00.t/ D .c1 C 2c2/et C c2tet C 4c3e2t :

To determine the coefficients c1, c2, and c3, we use the initial conditions. Evaluating
at t D 0 gives

1 D y.0/ D c1 C c3

2 D y0.0/ D c1 C c2 C 2c3

0 D y00.0/ D c1 C 2c2 C 4c3:

Solving these equations gives c1 D 4, c2 D 4, and c3 D �3. The unique solution is
thus

y.t/ D 4et C 4tet � 3e2t : J

Abel’s Formula

Theorem 6 (Abel’s Formula). Let q.s/ D sn C an�1sn�1 C � � � C a1s C a0 and
suppose f1; f2; : : : ; fn are solutions to q.D/y D 0. Then the Wronskian satisfies

w.f1; f2; : : : ; fn/ D Ke�an�1t ; (2)

for some constant K and ff1; f2; : : : ; fng is linearly independent if and only if
w.f1; f2; : : : ; fn/ is nonzero.

Proof. The essential idea of the proof is the same as the proof of Abel’s Formula
for n D 2 (see Theorem 8 of Sect. 3.3). First observe that since f1 is a solution
to q.D/y D 0, we have f

.n/
1 D �an�1f

.n�1/
1 � an�2f

.n�2/
1 � � � � � a1f

0
1 � a0f1

and similarly for f2; : : : ; fn. To simplify the notation, let w D w.f1; f2; : : : ; fn/

and let F D f1; f2; : : : ; fn be the first row of the Wronskian matrix W.f1; : : : ; fn/.
Then F .k/ D f

.k/
1 ; : : : ; f

.k/
n is the k C 1st row of the Wronskian matrix, for all

k D 1; 2; : : : ; n � 1, and

F .n/ D �an�1F .n�1/ � an�2F .n�2/ � � � � � a1F 0 � a0F : (3)
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We can thus write

w D det

2

6
6
66
6
6
6
6
4

F

F 0
F 00

:::

F .n�2/

F .n�1/

3

7
7
77
7
7
7
7
5

:

The derivative of w is the sum of the determinants of the matrices obtained by
differentiating each row one at a time. Thus,

w0 D det

2

6
6
6
66
6
6
6
4

F 0
F 0
F 00

:::

F .n�2/

F .n�1/

3

7
7
7
77
7
7
7
5

C det

2

6
6
6
66
6
6
6
4

F

F 00
F 00

:::

F .n�2/

F .n�1/

3

7
7
7
77
7
7
7
5

C � � � C det

2

6
6
6
66
6
6
6
4

F

F 0
F 00

:::

F .n�1/

F .n�1/

3

7
7
7
77
7
7
7
5

C det

2

6
6
6
66
6
6
6
4

F

F 0
F 00

:::

F .n�2/

F .n/

3

7
7
7
77
7
7
7
5

All determinants but the last are zero because the matrices have two equal rows.
Using (3) and linearity of the determinant gives

w0 D �an�1 det

2

6
6
6
66
4

F

F 0
:::

F .n�2/

F .n�1/

3

7
7
7
77
5

� an�2 det

2

6
6
6
66
4

F

F 0
:::

F .n�2/

F .n�2/

3

7
7
7
77
5

� � � � � a0 det

2

6
6
6
66
4

F

F 0
:::

F .n�2/

F

3

7
7
7
77
5

D �an�1w:

The first determinant is w and the remaining determinants are zero, again because
the matrices have two equal rows. Therefore, w satisfies the differential equation
w0 C an�1w D 0. By Theorem 2 of Sect. 1.5, there is a constant K so that

w.t/ D Ke�an�1t :

If w ¤ 0, then it follows from Theorem 13 of Sect. 3.2 that ff1; f2; : : : ; fng is a
linearly independent set.

If w D 0, then the Wronskian matrix at t D 0 is singular and there are scalars
c1; : : : ; cn, not all zero, so that
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W.0/

2

6
6
6
4

c1

c2

:::

cn

3

7
7
7
5

D

2

6
6
6
66
4

F .0/

F 0.0/

F 00.0/
:::

F .n�1/.0/

3

7
7
7
77
5

2

6
6
6
4

c1

c2

:::

cn

3

7
7
7
5

D

2

6
6
6
4

0

0
:::

0

3

7
7
7
5

:

Let z.t/ D c1f1.t/ C : : : cnfn.t/. Then z is a linear combination of f1; : : : ; fn and
hence is a solution to q.D/y D 0. Further, from the matrix product given above,
z.0/ D 0; z0.0/ D 0; : : : ; z.n�1/.0/ D 0. By the uniqueness and existence theorem,
Theorem 5 of Sect. 4.1, it follows that z.t/ D 0 for all t 2 R. This implies that
ff1; f2; : : : ; fng is linearly dependent. ut
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Exercises

1–9. Determine the solution set to the following homogeneous differential
equations. Write your answer as a linear combination of functions from the standard
basis.

1. y000 � y D 0

2. y000 � 6y00 C 12y0 � 8y D 0

3. y.4/ � y D 0

4. y000 C 2y00 C y0 D 0

5. y.4/ � 5y00 C 4y D 0

6. .D � 2/.D2 � 25/y D 0

7. .D C 2/.D2 C 25/y D 0

8. .D2 C 9/3y D 0

9. .D C 3/.D � 1/.D C 3/2y D 0

10–11. Solve the following initial value problems.

10. y000 C y00 � y0 � y D 0,
y.0/ D 1, y0.0/ D 4, y00.0/ D �1

11. y.4/ � y D 0,
y.0/ D �1, y0.0/ D 6, y00.0/ D �3, y000.0/ D 2
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4.3 Nonhomogeneous Differential Equations

In this section, we are concerned with determining a particular solution to

q.D/y D f;

where q.s/ is a polynomial of degree n and f 2 E . In Chap. 3, we discussed two
methods for the second order case: The method of undetermined coefficients and
the incomplete partial fraction method. Both of these methods are not dependent on
the degree of q so extend quite naturally.

The Method of Undetermined Coefficients

Theorem 1. Suppose L D q.D/ is a polynomial differential operator and f 2 E .
SupposeLf D u

v . Let Bq denote the standard basis for Eq . Then there is a particular
solution yp to

Ly D f

which is a linear combination of terms in Bqv but not in Bq .

Proof. By Theorem 5 of Sect. 4.1, any solution to Ly D f is in E and hence has a
Laplace Transform. Thus,

L fq.D/g y/ D L ff g D u.s/

v.s/

q.s/L fyg � p.s/ D u.s/

v.s/
by Lemma 1 of Sect. 4.2

L fyg D D p.s/

q.s/
C u.s/

q.s/v.s/
D u.s/ C p.s/v.s/

q.s/v.s/
:

It follows that y is in Eqv and hence a linear combination of terms in Bqv. Since
Bq � Bqv, we can write y D yh C yp, where yh is the linear combination of terms
in Bq and yp is a linear combination of terms in Bqv but not in Bq . Since yh is a
homogeneous solution, it follows that yp D y � yh is a particular solution of the
required form. ut

If f�1; : : : ; �mg are the functions in Bqv but not in Bq, then a linear combination

a1�1 C � � � C am�m

will be referred to as a test function.
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Example 2. Find the general solution to

y.4/ � y D 4 cos t:

I Solution. The characteristic polynomial is q.s/ D s4 � 1 D .s2 C 1/.s2 � 1/ D
.s2 C 1/.s � 1/.s C 1/. It follows that Bq D fcos t; sin t; et ; e�t g, and hence, the
homogeneous solutions take the form

yh D c1 cos t C c2 sin t C c3et C c4e�t :

For the particular solution, note that L fcos tg D s
s2C1

. Let v.s/ D s2 C 1 be the
denominator. Then q.s/v.s/ D .s2 C 1/2.s � 1/.s C 1/ and

Bqv D ˚
cos t; t cos t; sin t; t sin t; et ; e�t

�
:

The only functions in Bqv that are not in Bq are t cos t and t sin t . It follows that a test
function takes the form yp D a1t cos t C a2t sin t . The coefficients are determined
by substituting yp into the given differential equation. To that end, observe that

yp D a1t cos t C a2t sin t

y0
p D a1.cos t � t sin t/ C a2.sin t C t cos t/

y00
p D a1.�2 sin t � t cos t/ C a2.2 cos t � t sin t/

y000
p D a1.�3 cos t C t sin t/ C a2.�3 sin t � t cos t/

y.4/
p D a1.4 sin t C t cos t/ C a2.�4 cos t C t sin t/

and thus,
y.4/

p � yp D 4a1 sin t C �4a2 cos t D 4 cos t:

The linear independence of fcos t; sin tg and Theorem 7 of Sect. 3.2 imply

4a1 D 0

�4a2 D 4:

Hence, a1 D 0 and a2 D �1 from which we get

yp D �t sin t:
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The general solution is thus

y D yp C yh D �t sin t C c1 cos t C c2 sin t C c3et C c4e�t : J

We can summarize Theorem 1 and the previous example in the following
algorithm.

Algorithm 3. If
q.D/y D f;

where q is a polynomial of degree n and f 2 E , then the general solution can be
obtained as follows:

The Method of Undetermined Coefficients

1. Compute the standard basis, Bq , for Eq .
2. Determine v so that L ff g D u

v : That is, f 2 Ev.
3. Compute the standard basis, Bvq , for Evq .
4. The test function, yp is the linear combination with arbitrary coefficients

of functions in Bvq that are not in Bq .
5. The coefficients in yp are determined by plugging yp into the differential

equation q.D/y D f .
6. The general solution is given by

yp C yh;

where yh 2 Eq .

The Incomplete Partial Fraction Method

The description of the incomplete partial fraction method given in Sect. 3.5 was
independent of the degree of q and so applies equally well here. To summarize the
method, we record the following algorithm.

Algorithm 4. If
q.D/y D f;

where q is a polynomial of degree n and f 2 E , then the general solution can be
obtained as follows:
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The Incomplete Partial Fraction Method

1. Compute L ff g D u
v :

2. With trivial initial conditions assumed, write L fyg D u
qv .

3. Apply the partial fraction algorithm on u
qv until the denominator of the

remainder term is q.
4. A particular solution yp is obtained by adding up the inverse Laplace

transform of the resulting partial fractions.
5. The general solution is given by

yp C yh;

where yh 2 Eq .

To illustrate this general procedure, let us consider two examples.

Example 5. Find the general solution to

y000 � 2y00 C y0 D tet :

I Solution. The characteristic polynomial is q.s/ D s3 � 2s2 C s D s.s � 1/2

and Lftet g D 1
.s�1/2 : Assuming trivial initial conditions, y.0/ D 0, y0.0/ D 0, and

y00.0/ D 0, we get

Y.s/ D L fyg D 1

.s � 1/4s
:

The incomplete .s � 1/-chain for Y.s/ is

Incomplete .s � 1/-chain

1

.s � 1/4s

1

.s � 1/4

�1

.s � 1/3s

�1

.s � 1/3

p.s/

.s � 1/2s
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There is no need to compute p.s/ since the denominator is q.s/ D .s � 1/2s and
the resulting inverse Laplace transform is a homogeneous solution. Let Yp.s/ D

1
.s�1/4 � 1

.s�1/3 : Then a particular solution is

yp D L�1fYpg D 1

3Š
t3et � 1

2Š
t2et :

Since Bq D f1; et ; e�t g, we get the general solution

y D 1

6
t3et � 1

2
t2et C c1 C c2et C c2tet : J

Example 6. Find the general solution to

y.4/ � y D 4 cos t:

I Solution. The characteristic polynomial is q.s/ D s4 �1 D .s2 �1/.s2 C1/ and
L f4 cos tg D 4s

s2C1
: Again assume y.0/ D 0 and y0.0/ D 0. Then

Y.s/ D 4s

.s2 � 1/.s2 C 1/2
:

Using the irreducible quadratic partial fraction method, we obtain the incomplete
.s2 C 1/-chain for Y.s/:

Incomplete .s2 C 1/-chain

4s

.s2 � 1/.s2 C 1/2

�2s

.s2 C 1/2

p.s/

.s2 � 1/.s2 C 1/

By Table 2.9, we have

yp D L�1

� �2s

.s2 C 1/2

�
D �t sin t:

The homogeneous solution as yh D c1et C c2e�t C c3 cos t C c4 sin t , and thus, the
general solution is

y D yp C yh D �t sin t C c1et C c2e�t C c3 cos t C c4 sin t: J
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Exercises

1–4. Given q and v below, determine the test function yp for the differential equation
q.D/y D f , where Lf D u

v .

1. q.s/ D s3 � s v.s/ D s C 1

2. q.s/ D s3 � s2 � s C 1 v.s/ D s � 1

3. q.s/ D s3 � s v.s/ D s � 2

4. q.s/ D s4 � 81 v.s/ D s2 C 9

5–8. Use the method of undetermined coefficients to find the general solution for
each of the differential equations given below.

5. y000 � y0 D et

6. y000 � y00 C y0 � y D 4 cos t

7. y.4/ � 5y00 C 4y D e2t

8. y.4/ � y D et C e�t

9–14. Use the incomplete partial fraction method to solve the following differential
equations.

9. y000 � y0 D et

10. y000 � 4y00 C 4y0 D 4te2t

11. y000 C 4y0 D t

12. y.4/ � 5y00 C 4y D e2t

13. y000 � y00 C y0 � y D 4 cos t

14. y.4/ � y D et C e�t
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4.4 Coupled Systems of Differential Equations

Suppose L1 D q1.D/ and L2 D q2.D/ are polynomial differential operators of
order m and n, respectively. A system of two differential equations of the form

L1y1 D �1y2

L2y2 D �2y1 (1)

is an example of a coupled system of differential equations. We assume �1 and �2

are scalars. Typically, there are initial conditions

y1.0/ D a0; y0
1.0/ D a1; : : : ; y

.m�1/
1 .0/ D am�1

y2.0/ D b0; y0
2.0/ D b1; : : : ; y

.n�1/
2 .0/ D bn�1 (2)

each given up to one less than the order of the corresponding differential operator.
Notice how the solution of one equation becomes the input (up to a scalar multiple)
of the other. The spring system given in the introduction provides an example
where L1 and L2 are both of order 2. It is the goal of this section to show how
such systems together with the initial conditions can be solved using higher order
constant coefficient differential equations.2 The result is a uniqueness and existence
theorem. We will then return to the coupled spring problem considered in the
introduction.

The solution method we describe here involves a basic fact about the algebra of
polynomial differential operators.

The Commutativity of Polynomial Differential Operators

Just as polynomials can be multiplied and factored, so too polynomial differential
operators. Consider a very simple example. Suppose q1.s/ D s�1 and q2.s/ D s�2.
Then q1.D/ D D � 1 and q2.D/ D D � 2. Observe,

.D � 1/.D � 2/y D .D � 1/.y0 � 2y/

D .D � 1/y0 � .D � 1/.2y/

D y00 � y0 � .2y0 � 2y/

2There are other methods. For example, in the exercises, a nice Laplace transform approach
will be developed. Theoretically, this is a much nicer approach. However, it is not necessarily
computationally easier. In Chap. 9, we will consider systems of first order differential equations
and show how (1) can fit in that context.
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D y00 � 3y0 C 2y

D .D2 � 3D C 2/y D q.D/y;

where q.s/ D s2 � 3s C 2 D .s � 1/.s � 2/. Therefore, q.D/ D .D � 1/.D � 2/,
and since there was nothing special about the order, we can also write q.D/ D
.D � 2/.D � 1/. More generally, if q.s/ D q1.s/q2.s/, then the corresponding
differential operators multiply to give q.D/ D q1.D/q2.D/. This discussion leads
to the following commutative principle: If L1 D q1.D/ and L2 D q2.D/ are
polynomial differential operators, then

L1L2 D L2L1:

Extending the Initial Conditions

Suppose y1 and y2 are solutions to (1) satisfying the initial values given in (2).
It turns out then that these equations determine the initial conditions y

.k/
1 .0/ and

y
.k/
2 .0/ for all k D 1; 2; : : :. To see this, suppose L1 D q1.D/ D cmDm C� � � c1D C

c0. Now evaluate L1y1 D �1y2 at t D 0 to get L1y1.0/ D �y2.0/ or

cmy
.m/
1 .0/ C cm�1y

.m�1/
1 .0/ C : : : c0y1.0/ D �1y2.0/:

Since all initial values except y
.m/
1 .0/ are known, we can solve for y

.m/
1 .0/. Hence,

let am D y
.m/
1 .0/ be the unique solution to L1y1.0/ D �1y2.0/. Now differentiate

the equation L1y1 D �1y2 and evaluate at t D 0 to get

cmy.mC1/.0/ C cm�1y.m/.0/ C : : : c0y
0
1.0/ D �1y

0
2.0/:

Now, all initial values except y.mC1/.0/ are known. We define amC1 D y.mC1/.0/

to be the unique solution to DL1y1.0/ D �1Dy2.0/. We can repeat this procedure
recursively up to the .n � 1/st derivative of y2 to get am D y

.m/
1 .0/; : : : ; anCm�1 D

y
.nCm�1/
1 .0/ where anCk is the unique solution to

DkL1y1.0/ D �1D
ky2.0/:

In a similar way, we can recursively extend the initial values of y2 to get
bn D y

.n/
2 .0/; : : : ; bnCm�1 D y

.nCm�1/
2 .0/ where bmCk is the unique solution to

DkL2y2.0/ D �2D
ky1.0/. It is important to notice that this procedure does not

actually depend on explicitly knowing the functions y1 and y2: the values of anCk

and bmCk only depend on the recursive solutions to DkL1y1.0/ D �1Dy2.0/ and
DkL2y2.0/ D �2Dy1.0/, respectively. It is also useful to observe that since the
values of ak D y

.k/
1 .0/ and bk D y

.k/
2 .0/ are now known for k D 0; : : : ; n C m � 1,
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we can repeat the recursion process indefinitely to compute all higher order values
of ak and bk. The key thing to note is that ak and bk are the (recursive) solutions to

DkL1y1.0/ D �1D
ky2.0/ and DkL1y1.0/ D �1D

ky2.0/; (3)

respectively.
The following example illustrates the process outlined above.

Example 1. Consider the coupled system of differential equations

y0
1.t/ C 3y1.t/ D 4y2.t/ (4)

y00
2 .t/ C 3y2.t/ D 2y1.t/; (5)

with initial conditions y1.0/ D 3, y2.0/ D 1, and y0
2.0/ D 3. Determine the

extended initial values y
.k/
1 .0/ and y

.k/
2 .0/, for k D 0; : : : ; 4.

I Solution. We evaluate (4) at t D 0 to get y0
1.0/ C 3y1.0/ D 4y2.0/. Since

y1.0/ D 3 and y2.0/ D 1, it follows that y0
1.0/ D �5. Apply D to (4) at t D 0 to

get y00
1 .0/ C 3y0

1.0/ D 4y0
2.0/. Since y0

1.0/ D �5 and y0
2.0/ D 3, we get y00

1 .0/ D
27. Now evaluate (5) at t D 0 to get y00

2 .0/ C 3y2.0/ D 2y1.0/. It follows that
y00

2 .0/ D 3. Apply D to (5) at t D 0 to get y000
2 .0/ C 3y0

2.0/ D 2y0
1.0/ which gives

y000
2 .0/ D �19. Apply D2 to (5) at t D 0 to get y

.4/
2 .0/ C 3y00

2 .0/ D 2y00
1 .0/ which

implies y
.4/
2 .0/ D 45. Now apply D2 to (4) at t D 0 to get y000

1 .0/ C 3y00
1 .0/ D

4y00
2 .0/ which implies y000

1 .0/ D �69. Finally, apply D3 to (4) at t D 0 to get

y
.4/
1 .0/ C 3y000

1 .0/ D 4y000
2 .0/ which implies y

.4/
1 .0/ D 131. The following table

summarizes the data obtained.

y1.0/ D 3 y2.0/ D 1

y0
1.0/ D �5 y0

2.0/ D 3

y00
1 .0/ D 27 y00

2 .0/ D 3

y000
1 .0/ D �69 y000

2 .0/ D �19

y
.4/
1 .0/ D 131 y

.4/
2 .0/ D 45: (6)

With patience, it is possible to compute any initial value for y1 or y2 at t D 0. J

We are now in a position to state the main theorem.

Theorem 2. Suppose L1 and L2 are polynomial differential operators of order m

and n, respectively. The unique solution .y1; y2/ to the coupled system of differential
equations

L1y1 D �1y2 (7)

L2y2 D �2y1 (8)
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with initial conditions

y1.0/ D a0; y0
1.0/ D a1; : : : ; y

.m�1/
1 .0/ D am�1

y2.0/ D b0; y0
2.0/ D b1; : : : ; y

.n�1/
2 .0/ D bn�1 (9)

is given as follows: Extend the initial values ak and bk , for k D 1; : : : n C m � 1,
as determined by (3). Let L D L1L2 � �1�2. Then y1 and y2 are the homogeneous
solutions to Ly D 0 with initial conditions y

.k/
1 .0/ D ak and y

.k/
2 .0/ D bk , k D

0; : : : ; n C m � 1, respectively.

Proof. First, let us suppose that .y1; y2/ is a solution to the coupled system and
satisfies the given initial conditions. Then y1 and y2 satisfy the initial conditions
given by (3). Now apply L2 to (7) and L1 to (8) to get

L2L1y1 D �1L2y2 D �1�2y1

L1L2y2 D �2L1y1 D �1�2y2:

Both of these equations imply that y1 and y2 are solutions to Ly D 0, where L D
L1L2 � �1�2, satisfying the initial conditions ak D y

.k/
1 .0/ and bk D y

.k/
2 .0/,

k D 0; : : : ; n C m � 1. By the uniqueness part of Theorem 5 of Sect. 4.1, y1 and
y2 are uniquely determined. To show that solutions exist, suppose y1 and y2 are the
solutions to Ly D 0 with initial conditions (obtained recursively) ak D y

.k/
1 .0/ and

bk D y
.k/
2 .0/, k D 1; 2; : : : ; n C m � 1. We will show that L1y1 D �1y2. The

argument that L2y2 D �1y1 is similar. Let z1 D L1y1 and z2 D �1y2. Then

L1L2z1 D L1L1L2y1 D �1�2L1y1 D �1�2z1

L1L2z2 D �1L1L2y2 D �1�1�2y2 D �1�2z2

It follows that z1 and z2 are homogeneous solutions to Ly D 0. By (3), z1 and z2

satisfy the same initial values for all k D 0; : : : ; n C m � 1. By the existence and
uniqueness theorem, Theorem 5 of Sect. 4.1, we have z1 D z2. ut
Algorithm 3. Suppose L1 and L2 are polynomial differential operators of order m

and n, respectively. Then the solution to (1) with initial conditions given by (2) is
given by the following algorithm:

Solution Method for Coupled Systems

1. Extend (recursively) the initial conditions y
.k/
1 .0/ and y

.k/
2 .0/, for k D

1; 2; : : : ; n C m � 1.
2. Let L D L1L2 � �1�2 and solve

Ly D 0;

for each set of initial conditions.
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Example 4. Solve the following coupled system:

y0
1 C 3y1 D 4y2

y00
2 C 3y2 D 2y1;

y1.0/ D 3, y2.0/ D 1, and y0
2.0/ D 3.

I Solution. In Example 1, we extended the initial values (see (6), where we will
only need the first 3 rows). We let L1 D DC3 and L2 D D2C3. Then y1 and y2 are
homogeneous solutions to L D L1L2�8 D D3C3D2C3DC1. The characteristic
polynomial is q.s/ D s3 C 3s2 C 3s C 1 D .s C 1/3. Since Bq D ˚

e�t ; te�t ; t 2e�t
�

it follows that the homogeneous solutions take the form

y D c1e�t C c2te�t C c3t
2e�t :

To find y1, we set y1 D c1e�t Cc2te�t Cc3e�t . We compute y0
1 and y00

1 and substitute
the initial conditions y1.0/ D 3, y0

1.0/ D �5, and y00
1 .0/ D 27 to get the following

system:

c1 D 3

�c1 C c2 D �5

c1 � 2c2 C 2c3 D 27:

A short calculation gives c1 D 3, c2 D �2, and c3 D 10. It follows that y1.t/ D
.3 � 2t C 10t2/e�t . In a similar way, setting y2 D c1e�t C c2te�t C c3e�t leads to
the system

c1 D 1

�c1 C c2 D 3

c1 � 2c2 C 2c3 D 3:

A short calculation gives c1 D 1, c2 D 4, and c3 D 5, and hence, y2.t/ D .1C4t C
5t2/e�t . It follows that

y1.t/ D .3 � 2t C 10t2/e�t and y2.t/ D .1 C 4t C 5t2/e�t

are the solutions to the coupled system. J

Coupled Spring Systems

We now return to the problem posed at the beginning of this chapter. Two springs
systems (without dashpots) are coupled as illustrated in the diagram below:
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y1 = 0
y1(t)

y2(t)

m1

m2

y2 = 0

If y1 and y2 denote the displacements of the bodies of mass m1 and m2 from their
equilibrium positions, y1 D 0 and y2 D 0, then we showed that y1 and y2 satisfy

m1y
00
1 .t/ C .k1 C k2/y1.t/ D k2y2.t/

m2y
00
2 .t/ C k2y2.t/ D k2y1.t/: (10)

If we divide each equation by the leading coefficient and let

a D k1

m1

; b D k2

m1

; and c D k2

m2

; (11)

then we get the coupled system

L1y1 D by2; (12)

L2y2 D cy1; (13)

where L1 D D2 C a C b and L2 D D2 C c. We observe that

L D L1L2 � bc

D D4 C .a C b C c/D2 C ac:

As to initial conditions, suppose we are given that y1.0/ D A0, y0
1.0/ D A1,

y2.0/ D B0, and y0
2.0/ D B1. Then (12) and its derivative imply

y00
1 .0/ D �.a C b/y1.0/ C by2.0/ D �.a C b/A0 C bB0

y000
1 .0/ D �.a C b/y0

1.0/ C by0
2.0/ D �.a C b/A1 C bB1:
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In a similar way, (13) implies

y00
2 .0/ D �cy2.0/ C cy1.0/ D �cB0 C cA0

y000
2 .0/ D �cy0

2.0/ C cy0
1.0/ D �cB1 C cA1:

Summarizing, we obtain that y1 and y2 both satisfy the same 4th order differen-
tial equation

y.4/ C .a C b C c/y00 C acy D 0 (14)

with initial conditions

y1.0/ D A0 y2.0/ D B0

y0
1.0/ D A1 y0

2.0/ D B1

y00
1 .0/ D �.a C b/A0 C bB0 y00

2 .0/ D �cB0 C cA0

y000
1 .0/ D �.a C b/A1 C bB1 y000

2 .0/ D �cB1 C cA1: (15)

Example 5. Consider the coupled spring system with m1 D 3, m2 D 4, k1 D 9,
and k2 D 12. At t D 0, both masses are pulled downward a distance of 1m from
equilibrium and released without imparting any momentum. Determine the motion
of the system.

I Solution. From (11), we get

a D 9

3
D 3; b D 12

3
D 4; and c D 12

4
D 3: (16)

Thus, y1 and y2 satisfy the following coupled system of differential equations:

y00
1 C 7y1 D 4y2

y00
2 C 3y2 D 3y1:

By Theorem 2, y1 and y2 are homogeneous solutions to the 4th degree equation
q.D/y D 0 where q.s/ D .s2 C7/.s2 C3/�12 D s4 C10s2 C9 D .s2 C1/.s2 C9/.
It follows that y1 and y2 are linear combinations of Bq D fcos t; sin t; cos 3t; sin 3tg.
By (15), the initial conditions of y1 and y2 at t D 0 up to order 3 are

y1.0/ D 1 y2.0/ D 1

y0
1.0/ D 0 y0

2.0/ D 0

y00
1 .0/ D �3 y00

2 .0/ D 0

y000
1 .0/ D 0 y000

2 .0/ D 0:

Therefore, if y1 D c1 cos t C c2 sin t C c3 cos 3t C c4 sin 3t , then the coefficients
satisfy
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c1 C c3 D 1

c2 C 3c4 D 0

�c1 C �9c3 D �3

�c2 � 27c4 D 0

from which we get c1 D 3
4
, c2 D 0, c3 D 1

4
, and c4 D 0. It follows that

y1.t/ D 3

4
cos t C 1

4
cos 3t:

On the other hand, if y2 D c1 cos t C c2 sin t C c3 cos 3t C c4 sin 3t , then the
coefficients satisfy

c1 C c3 D 1

c2 C 3c4 D 0

�c1 C �9c3 D 0

�c2 � 27c4 D 0

from which we get c1 D 9
8
, c2 D 0, c3 D �1

8
, and c4 D 0. It follows that

y2.t/ D 9

8
cos t � 1

8
cos 3t:

Since y1 and y2 are periodic with period 2� , the motion of the masses (given below)
are likewise periodic. Their graphs are simultaneously given below.

t

y

y2

y1
2π

J
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Exercises

1–8. Solve the following coupled systems.

1.

y0
1 � 6y1 D �4y2

y0
2 D 2y1

with initial conditions y1.0/ D 2 and y2.0/ D �1.
2.

y0
1 � 3y1 D �4y2

y0
2 C y2 D y1

with initial conditions y1.0/ D 1 and y2.0/ D 1.
3.

y0
1 D 2y2

y0
2 D �2y1

with initial conditions y1.0/ D 1 and y2.0/ D �1.
4.

y0
1 � 2y1 D 2y2

y00
2 C 2y0

2 C y2 D �2y1;

with initial conditions y1.0/ D 3, y2.0/ D 0, and y0
2.0/ D 3.

5.

y0
1 C 4y1 D 10y2

y00
2 � 6y0

2 C 23y2 D 9y1;

with initial conditions y1.0/ D 0, y2.0/ D 2, and y0
2.0/ D 2.

6.

y0
1 � 2y1 D �2y2

y00
2 C y0

2 C 6y2 D 4y1;

with initial conditions y1.0/ D 1, y2.0/ D 5, and y0
2.0/ D 4.
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7.

y00
1 C 2y0

1 C 6y1 D 5y2

y00
2 � 2y0

2 C 6y2 D 9y1;

with initial conditions y1.0/ D 0, y0
1.0/ D 0, y2.0/ D 6, and y0

2.0/ D 6.
8.

y00
1 C 2y1 D �3y2

y00
2 C 2y0

2 � 9y2 D 6y1;

with initial conditions y1.0/ D �1, y0
1.0/ D �4, y2.0/ D 1, and y0

2.0/ D 2.

9–10. Solve the coupled spring systems for the given parameters m1, m2, k1, and
k2 and initial conditions.

9. m1 D 2, m2 D 1, k1 D 4, and k2 D 2 with initial conditions y1.0/ D 3,
y0

1.0/ D 3, y2.0/ D 0, and y0
2.0/ D 0

10. m1 D 4, m3 D 1, k1 D 8, and k2 D 12 with initial conditions y1.0/ D 1,
y0

1.0/ D 0, y2.0/ D 6, and y0
2.0/ D 0

11. The Laplace Transform Method for Coupled Systems: In this exercise, we will
see how the Laplace transform may be used to solve a coupled system:

L1y1 D �1y2

L2y2 D �2y1

with initial conditions

y1.0/ D a0; y0
1.0/ D a1; : : : ; y

.m�1/
1 .0/ D am�1

y2.0/ D b0; y0
2.0/ D b1; : : : ; y

.n�1/
2 .0/ D bn�1:

Let L1 D q1.D/ and L2 D q2.D/ be polynomial differential operators. Let
Y1 D L fy1g and Y2 D L fy2g. Suppose L fL1y1g .s/ D q1.s/Y1.s/�p1.s/ and
L fL2y2g .s/ D q2.s/Y2.s/ � p2.s/, where p1.s/ and p2.s/ are polynomials
determined by the initial conditions.

1. Show that Y1 and Y2 satisfy the following matrix relation:

�
q1.s/ ��1

��2 q2.s/

� �
Y1.s/

Y2.s/

�
D

�
p1.s/

p2.s/

�
:
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2. Show that this system has a solution given by

Y1.s/ D p1.s/q2.s/ C �1p2.s/

q1.s/q2.s/ � �1�2

;

Y2.s/ D p2.s/q1.s/ C �2p1.s/

q1.s/q2.s/ � �1�2

:

12–16. Use the Laplace transform method developed in Exercise 11 to solve the
following coupled systems.

12.

y0
1 D �y2

y0
2 � 2y2 D y1

with initial conditions y1.0/ D 1 and y2.0/ D �1.
13.

y0
1 � y1 D �2y2

y0
2 � y2 D 2y1

with initial conditions y1.0/ D 2 and y2.0/ D �2.
14.

y0
1 � 2y1 D �y2

y00
2 � y0

2 C y2 D y1

with initial conditions y1.0/ D 0, y2.0/ D �1, and y0
2.0/ D 2.

15.

y0
1 C 2y1 D 5y2

y00
2 � 2y0

2 C 5y2 D 2y1

with initial conditions y1.0/ D 1, y2.0/ D 0, and y0
2.0/ D 3.

16.

y00
1 C 2y1 D �3y2

y00
2 C 2y0

2 � 9y2 D 6y1

with initial conditions y1.0/ D 10, y0
1.0/ D 0, y2.0/ D 10, and y0

2.0/ D 0.



312 4 Linear Constant Coefficient Differential Equations



4.5 System Modeling 313

4.5 System Modeling

Mathematical modeling involves understanding how a system works mathemati-
cally. By a system, we mean something that takes inputs and produces outputs such
as might be found in the biological, chemical, engineering, and physical sciences.
The core of modeling thus involves expressing how the outputs of a system can be
mathematically described as a function of the inputs. The following system diagram
represents the inputs coming in from the left of the system and outputs going out on
the right.

System y(t)f(t)

For the most part, inputs and outputs will be quantities that are time dependent; they
will be represented as functions of t . There are occasions, however, where other
parameters such as position or frequency are used in place of time. An input-output
pair, .f .t/; y.t//, implies a relationship which we denote by

y.t/ D ˚.f /.t/:

Notice that ˚ is an operation on the input function f and produces the output
function y. In a certain sense, understanding ˚ is equivalent to understanding the
workings of the system. Frequently, we identify the system under study with ˚

itself. Our goal in modeling then is to give an explicit mathematical description
of ˚ .

In many settings, a mathematical model can be described implicitly by a constant
coefficient linear differential equation and its solution gives an explicit description.
For example, the mixing problems in Sect. 1.5, spring systems in Sect. 3.6, RCL
circuits in Sect. 3.7, and the coupled spring systems in Sect. 4.4 are each modeled by
constant coefficient linear differential equations and have common features which
we explore in this section. To get a better idea of what we have in mind, let us
reconsider the mixing problem as an example.

Example 1. Suppose a tank holds 10 liters of a brine solution with initial concen-
tration a=10 grams of salt per liter. (Thus, there are a grams of salt in the tank,
initially.) Pure water flows in an intake tube at a rate of b liters per minute and the
well-mixed solution flows out of the tank at the same rate. Attached to the intake is
a hopper containing salt. The amount of salt entering the intake is controlled by a
valve and thus varies as a function of time. Let f .t/ be the rate (in grams of salt per
minute) at which salt enters the system. Let y.t/ represent the amount of salt in the
tank at time t . Find a mathematical model that describes y.

I Solution. As in Chap. 1, our focus is on the way y changes. Observe that

y0 D input rate � output rate:
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Salt

Pure Water

By input rate, we mean the rate at which salt enters the system and this is just f .t/.
The output rate is the rate at which salt leaves the system and is given by the product
of the concentration of salt in the tank, y.t/=10, and the flow rate b. We are thus led
to the following initial value problem:

y0 C b

10
y D f .t/; y.0/ D a: (1)

In this system, f .t/ is the input function and y.t/ is the output function. Incorpo-
rating this mathematical model in a system diagram gives the following implicit
description:

Solve y + b

10
y = f(t)

y(0) = a
y(t).f(t)

Using Algorithm 3 in Sect. 1.5 to solve (1) gives

y.t/ D ae
�bt
10 C e� bt

10

Z t

0

f .x/e
bx
10 dx

D ae
�bt
10 C

Z t

0

f .x/e� b.t�x/
10 dx

D ah.t/ C f � h.t/;

where h.t/ D e
�bt
10 and f � h denotes the convolution of f with h. We therefore

arrive at an explicit mathematical model ˚ for the mixing system:

˚.f /.t/ D ah.t/ C f � h.t/: J

As we shall see, this simple example illustrates many of the main features shared
by all systems modeled by a constant coefficient differential equation. You notice
that the output consists of two pieces: ah.t/ and f � h.t/. If a D 0, then the initial
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state of the system is zero, that is, there is no salt in the tank at time t D 0. In this
case, the output is

y.t/ D ˚.f /.t/ D f � h.t/: (2)

This output is called the zero-state response; it represents the response of the system
by purely external forces of the system and not on any nonzero initial condition or
state. The zero-state response is the particular solution to q.D/y D f , y.0/ D 0,
where q.s/ D s C b=10.

On the other hand, if f D 0, the output is ah.t/. This output is called the zero-
input response; it represents the response based on purely internal conditions of the
system and not on any external inputs. The zero-input response is the homogeneous
solution to q.D/y D 0 with initial condition y.0/ D a. The total response is the
sum of the zero-state response and the zero-input response.

The function h is called the unit impulse response function. It is the zero-input
response with a D 1 and completely characterizes the system. Alternatively, we can
understand h in terms of the mixing system by opening the hopper for a very brief
moment just before t D 0 and letting 1 gram of salt enter the intake. At t D 0,
the amount of salt in the tank is 1 gram and no salt enters the system thereafter.
The expression “unit impulse” reflects the fact that a unit of salt (1 gram) enters the
system and does so instantaneously, that is, as an impulse. Such impulsive inputs
are discussed more thoroughly in Chap. 6. Over time, the amount of salt in the tank
will diminish according to the unit impulse response h D e

�bt
10 as illustrated in the

graph below:

Once h is known, the zero-state response for an input f is completely determined
by (2). One of the main points of this section will be to show that in all systems
modeled by a constant coefficient differential equation, the zero-state response is
given by this same formula, for some h. We will also show how to find h.

With a view to a more general setting, let q.D/ be an nth order differential
operator with leading coefficient one and let a D .a0; a1; : : : ; an�1/ be a vector of n

scalars. Suppose ˚ is a system. We say ˚ is modeled by q.D/ with initial state a if
for each input function f , the output function y D ˚.f / satisfies q.D/y D f , and
y.0/ D a0; y0.0/ D a1; : : : ; y.n�1/.0/ D an�1: Sometimes we say that the initial
state of ˚ is a. By the existence and uniqueness theorem, Theorem 5 of Sect. 4.1, y

is unique. In terms of a system diagram we have
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Solve q(D)y = f
with initial state a y(t).f(t)

The definitions of zero-state response, zero-input response, and total response
given above naturally extend to this more general setting.

The Zero-Input Response

First, we consider the response of the system with no external inputs, that is, f .t/ D
0. This is the zero-input response and is a result of internal initial conditions of the
system only. For example, the initial conditions for a spring system are the initial
position and velocity, and for RCL circuits, they are the initial charge and current.
In the mixing system we described earlier, the only initial condition is the amount
of salt a in the tank at time t D 0.

The zero-input response is the solution to

q.D/y D 0; y.0/ D a0; y0.0/ D a1; : : : ; y.n�1/.0/ D an�1:

By Theorem 2 of Sect. 4.2, y is a linear combination of functions in the standard
basis Bq . The roots �1; : : : ; �k 2 C of q are called the characteristic values and the
functions in the standard basis are called the characteristic modes of the system.
Consider the following example.

Example 2. For each problem below, a system is modeled by q.D/ with initial
state a. Plot the characteristic values in the complex plane, determine the zero-input
response, and graph the response.

a. q.D/ D D C 3, a D 2

b. q.D/ D .D � 3/.D C 3/, a D .0; 1/

c. q.D/ D .D C 1/2 C 4, a D .1; 3/

d. q.D/ D D2 C 4, a D .1; 2/

e. q.D/ D .D2 C 4/2, a D .0; 0; 0; 1/.

I Solution. The following table summarizes the calculations that we ask the reader
to verify.



4.5 System Modeling 317

Characteristic
Values

Zero-input
Response

Graph

-3

y = 2e−3t

-3 3

y =
1
6

(e3t − e−3t)

-1+2i

-1-2i

y = e−t(cos(2t) + 2sin(2t))

y =     (2tcos(2t) + sin(2t))

y = cos(2t) + sin(2t)

2i

-2i

a

b

c

d

e
2i

-2i

2

2
1
16
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In part (e), we have indicated the multiplicity of ˙2i by a 2 to the right of the
characteristic value. J

The location of the characteristic values in the complex plane is related to an
important notion called system stability.

Stability

System stability has to do with the long-term behavior of a system. If the zero-
input response of a system, for all initial states, tends to zero over time, then we
say the system is asymptotically stable. This behavior is seen in the mixing system
of Example 1. For any initial state a, the zero-input response y.t/ D ae

�bt
10 has

limiting value 0 as t ! 1. In the case a D 2 and b D 30, the graph is the
same as that given in Example 2a. Notice that the system in Example 2c is also
asymptotically stable since the zero-input response always takes the form y.t/ D
e�t .A sin.2t/ C B cos.2t//. The function t ! A sin.2t/ C B cos.2t/ is bounded,
so the presence of e�t guarantees that the limit value of y.t/ is 0 as t ! 1. In both
Example 2a and 2c, the characteristic values lie in the left-half side of the complex
plane. More generally, suppose tke˛t cos ˇt is a characteristic mode for a system. If
� D ˛ C iˇ and ˛ < 0, then

lim
t!1 tke˛t cos ˇt D 0;

for all nonnegative integers k. A similar statement is true for tke˛t sin ˇt . On the
other hand, if ˛ > 0, then the characteristic modes, tke˛t cos ˇt and tke˛t sin ˇt , are
unbounded. Thus, a system is asymptotically stable if and only if all characteristic
values lie to the left of the imaginary axis.

If a system is not asymptotically stable but the zero-input response is bounded for
all possible initial states, then we say the system is marginally stable. Marginal sta-
bility is seen in Example 2d and occurs when one or more of the characteristic values
lie on the imaginary axis and have multiplicity exactly one. Those characteristic
values that are not on the imaginary axis must be to the left of the imaginary axis.

We say a system is unstable if there is an initial state in which the zero-input
response is unbounded over time. This behavior can be seen in Example 2b and 2e.
Over time, the response becomes unbounded. Of course, in a real physical system,
this cannot happen. The system will break or explode when it passes a certain
threshold. Unstable systems occur for two distinct reasons. First, if one of the
characteristic values is � D ˛Ciˇ and ˛ > 0, then � lies in the right-half side of the
complex plane. In this case, the characteristic mode is of the form tke˛t cos ˇt or
tke˛t sin ˇt . This function is unbounded as a function of t . This is what happens in
Example 2b. Second, if one of the characteristic values � D iˇ lies on the imaginary
axis and, in addition, the multiplicity is greater than one, then the characteristic
modes are of the form tk cos.ˇt/ or tk sin.ˇt/, k � 1. These modes oscillate
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unboundedly as a function of t > 0, as in Example 2e. Remember, it only takes
one unbounded characteristic mode for the whole system to be unstable.

Example 3. Determine the stability of each system modeled by q.D/ below:

1. q.D/ D .D C 1/2.D C 3/

2. q.D/ D .D2 C 9/.D C 4/

3. q.D/ D .D C 4/2.D � 5/

4. q.D/ D .D2 C 1/.D2 C 9/2

I Solution. 1. The characteristic values are � D �1 with multiplicity 2 and � D
�3. The system is asymptotically stable.

2. The characteristic values are � D ˙3i and � D �4. The system is marginally
stable.

3. The characteristic values are � D �4 with multiplicity 2 and � D 5. The system
is unstable.

4. The characteristic values are � D ˙i and � D ˙3i with multiplicity 2. The
system is unstable. J

The Unit Impulse Response Function

Suppose ˚ is a system modeled by q.D/, an nth order constant coefficient
differential operator. The unit impulse response function h.t/ is the zero-input
response to ˚ when the initial state of the system is a D .0; : : : ; 0; 1/. More
specifically, h.t/ is the solution to

q.D/y D 0 y.0/ D 0; : : : ; y.n�2/.0/ D 0; y.n�1/.0/ D 1:

If n D 1, then y.0/ D 1 as in the mixing system discussed in the beginning of this
section. In this simple case, h.t/ is a multiple of a single characteristic mode. For
higher order systems, however, the unit impulse response function is a homogeneous
solution to q.D/y D 0 and, hence, a linear combination of the characteristic modes
of the system.

Example 4. Find the unit impulse response function for a system ˚ modeled by

q.D/ D .D C 1/.D2 C 1/:

I Solution. It is an easy matter to apply the Laplace transform method to
q.D/y D 0 with initial condition y.0/ D 0, y0.0/ D 0, and y00.0/ D 1. We get
q.s/Y.s/ � 1 D 0: A short calculation gives
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Y.s/ D 1

q.s/
D 1

.s C 1/.s2 C 1/
D 1

4

�
2

s C 1
C �2s C 2

s2 C 1

�
:

The inverse Laplace transform is y.t/ D 1
2
.e�t C sin t � cos t/: The unit impulse

response function is thus

h.t/ D 1

2
.e�t C sin t � cos t/: J

Observe in this example that h.t/ D L�1
n

1
q.s/

o
.t/. It is not hard to see that this

formula extends to the general case. We record this in the following theorem. The
proof is left to the reader.

Theorem 5. Suppose a system ˚ is modeled by a constant coefficient differential
operator q.D/. The unit impulse response function, h.t/, of the system ˚ is given by

h.t/ D L�1

�
1

q.s/

�
.t/:

The Zero-State Response

Let us now turn our attention to a system ˚ in the zero-state and consider the zero-
state response. This occurs precisely when a D 0, that is, all initial conditions
of the system are zero. We should think of the system as initially being at rest.
We continue to assume that ˚ is modeled by an nth order constant coefficient
differential operator q.D/. Thus, for each input f .t/, the output y.t/ satisfies
q.D/y D f with y and its higher derivatives up to order n � 1 all zero at t D 0.
An important feature of ˚ in this case is its linearity.

Proposition 6. Suppose ˚ is a system modeled by q.D/ in the zero-state. Then ˚

is linear. Specifically, if f , f1, and f2 are input functions and c is a scalar, then

1. ˚.f1 C f2/ D ˚.f1/ C ˚.f2/

2. ˚.cf / D c˚.f /.

Proof. If f is any input function, then ˚.f / D y if and only if q.D/y D f and
y.0/ D y0.0/ D � � � D y.n�1/.0/ D 0. If y1 and y2 are the zero-state response
functions to f1 and f2, respectively, then the linearity of q.D/ implies

q.D/.y1 C y2/ D q.D/y1 C q.D/y2 D f1 C f2:

Furthermore, since the initial state of both y1 and y2 are zero, so is the initial state
of y1 C y2. This implies ˚.f1 C f2/ D y1 C y2: In a similar way,
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q.D/.cy/ D cq.D/y D cf;

by the linearity of q.D/. The initial state of cy is clearly zero. So ˚.cf / D c˚.f /:

ut
The following remarkable theorem gives an explicit formula for ˚ in terms of

convolution with the unit-impulse response function.

Theorem 7. Suppose ˚ is a system modeled by q.D/ in the zero-state. If f is a
continuous input function on an interval which includes zero, then the zero-state
response is given by the convolution of f with the unit impulse response function h.
That is,

˚.f /.t/ D f � h.t/ D
Z t

0

f .x/h.t � x/ dx:

If, in addition, we were to assume that f has a Laplace transform, then the proof
would be straightforward. Indeed, if y.t/ is the zero-state response, then the Laplace
transform method would give q.s/L fyg D L ff g WD F.s/ and therefore

L fyg .s/ D 1

q.s/
F.s/:

The convolution theorem then gives y.t/ D ˚.f /.t/ D h � f:

For the more general case, let us introduce the following helpful lemma.

Lemma 8. Suppose f is continuous on a interval I containing 0. Suppose h is
differentiable on I . Then

.f � h/0.t/ D f .t/h.0/ C f � h0:

Proof. Let y.t/ D f � h.t/. Then

�y

�t
D y.t C �t/ � y.t/

�t

D 1

�t

�Z tC�t

0

f .x/h.t C �t � x/ dx �
Z t

0

f .x/h.t � x/ dx

�

D
Z t

0

f .x/
h.t C �t � x/ � h.t � x/

�t
dx

C 1

�t

Z tC�t

t

f .x/h.t C �t � x/ dx:

We now let �t go to 0. The first summand has limit
R t

0
f .x/h0.t � x/ dx D f �

h0.t/. By the fundamental theorem of calculus, the limit of the second summand is
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obtained by evaluating the integrand at x D t , thus getting f .t/h.0/: The lemma
now follows by adding these two terms. ut
Proof (of Theorem 7). Let h.t/ be the unit impulse response function. Then
h.0/ D h0.0/ D � � � D h.n�2/.0/ D 0 and h.n�1/.0/ D 1. Set y.t/ D f � h.t/.
Repeated applications of Lemma 8 to y gives

y0 D f � h0 C h.0/f D f � h0

y00 D f � h00 C h0.0/f D f � h00

:::

y.n�1/ D f � h.n�1/ C h.n�2/.0/f D f � h.n�1/

y.n/ D f � h.n/ C h.n�1/.0/f D f � h.n/ C f:

From this it follows that

q.D/y D f � q.D/h C f D f;

since q.D/h D 0. It is easy to check that y is in the zero-state. Therefore,

˚.f / D y D f � h: ut

At this point, let us make a few remarks on what this theorem tells us. The most
remarkable thing is the fact that ˚ is precisely determined by the unit impulse
response function h. From a mathematical point of view, knowing h means you
know how the system ˚ works in the zero-state. Once h is determined, all output
functions, that is, system responses, are given by the convolution product, f �h, for
an input function f . Admittedly, convolution is an unusual product. It is not at all
like the usual product of functions where the value (or state) at time t is determined
by knowing just the value of each factor at time t . Theorem 7 tells us that the state
of a system response at time t depends on knowing the values of the input function
f for all x between 0 and t . The system “remembers” the whole of the input f up
to time t and “meshes” those inputs with the internal workings of the system, as
represented by the impulse response function h, to give f � h.t/.

Since the zero-state response, f � h, is a solution to q.D/y D f , with zero
initial state, it is a particular solution. In practice, computing convolutions can be
time consuming and tedious. In the following examples, we will limit the inputs to
functions in E and use Table C.7.

Example 9. A system ˚ is modeled by q.D/. Find the zero-state response for the
given input function:
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(a) q.D/ D D C 2 and f .t/ D 1

(b) q.D/ D D2 C 4D C 3 and f .t/ D e�t

(c) q.D/ D D2 C 4 and f .t/ D cos.2t/

I Solution. (a) The characteristic polynomial is q.s/ D s C 2, and therefore,
the characteristic mode is e�2t . It follows that h.t/ D Ae�2t and with initial
condition h.0/ D 1, we get h.t/ D e�2t : The system response, y.t/, for the
input 1 is

y.t/ D e�2t � 1.t/ D 1

2
.1 � e�2t /:

(b) The characteristic polynomial is q.s/ D s2 C 4s C 3 D .s C 1/.s C 3/: The
characteristic modes are e�3t and e�t . Thus, h.t/ has the form h.t/ D Ae�t C
Be�3t . The initial conditions h.0/ D 0 and h0.0/ D 1 imply

h.t/ D 1

2
.e�t � e�3t /:

The system response to the input function f .t/ D e�t is

y.t/ D 1

2
.e�t � e�3t / � e�t D 1

2
te�t � 1

4
e�t C 1

4
e�3t :

(c) It is easy to verify that the impulse response function is h.t/ D 1
2

sin.2t/: The
system response to the input function f .t/ D cos.2t/ is

y.t/ D 1

2
sin.2t/ � cos.2t/ D 1

4
t sin.2t/: J

Bounded-In Bounded-Out

In Example 9a, we introduce a bounded input, f .t/ D 1, and the response
y.t/ D 1

2
.1�e�2t / is also bounded, by 1

2
, in fact. On the other hand, in Example 9c,

we introduce a bounded input, f .t/ D cos 2t , yet the response y.t/ D 1
4
t sin 2t

oscillates unboundedly. We say that a system ˚ is BIBO-stable if for every bounded
input f .t/ the response function y.t/ is likewise bounded. (BIBO stands for
“bounded input bounded output.”) Note the following theorem. An outline of the
proof is given in the exercises.

Theorem 10. Suppose ˚ is an asymptotically stable system. Then ˚ is BIBO-
stable.

Unstable systems are of little practical value to an engineer designing a “safe”
system. In an unstable system, a set of unintended initial states can lead to an
unbounded response that destroys the system entirely. Even marginally stable
systems can have bounded input functions that produce unbounded output functions.
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This is seen in Example 9c, where the system response to the bounded input
f .t/ D cos.2t/ is the unbounded function y.t/ D 1

4
t sin.2t/. Asymptotically stable

systems are thus the “safest” systems since they are BIBO-stable. They produce at
worst a bounded response to a bounded input. However, this is not to say that the
response cannot be destructive. We will say more about this in the following topic.

Resonance

We now come to a very interesting and important phenomenon called resonance.
Loosely speaking, resonance is the phenomenon that occurs when a system reacts
very energetically to a relatively mild input. Resonance can sometimes be catas-
trophic for the system. For example, a wine glass has a characteristic frequency at
which it will vibrate. You can hear this frequency by rubbing your moistened finger
around the rim of the glass to cause it to vibrate. An opera singer who sings a note at
this same frequency with sufficient intensity can cause the wine glass to vibrate so
much that it shatters. Resonance can also be used to our advantage as is familiar to
a musician tuning a musical instrument to a standard frequency given, for example,
by a tuning fork. Resonance occurs when the instrument is “in tune.”

The characteristic values of a system ˚ are sometimes referred to as the
characteristic frequencies As we saw earlier, the internal workings of a system
are governed by these frequencies. A system that is energized tends to operate at
these frequencies. Thus, when an input function matches an internal frequency, the
system response will generally be quite energetic, even explosive.

A dramatic example of this occurs when a system is marginally stable. Consider
the following example.

Example 11. A zero-state system ˚ is modeled by the differential equation

.D2 C 1/y D f:

Determine the impulse response function h and the system response to the following
inputs:

1. f .t/ D sin.�t/

2. f .t/ D sin.1:25t/

3. f .t/ D sin.t/.

Discuss the resonance that occurs.

I Solution. The characteristic values are ˙i with multiplicity one. Thus, the
system is marginally stable. The unit impulse response h.t/ is the solution to
.D2 C 1/y D 0 with initial conditions y.0/ D 0 and y0.0/ D 1. The Laplace
transform gives H.s/ D 1

s2C1
, and hence, h.t/ D sin.t/:
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Fig. 4.1 Input and response functions with dissimilar frequencies

The three inputs all have amplitude 1 but different frequencies. We will use the
convolution formula

sin.at/ � sin.bt/ D

8
ˆ̂
<

ˆ̂
:

a sin.bt/ � b sin.at/

a2 � b2
if b ¤ a

sin.at/ � at cos.at/

2a
if a D b

from Table 2.11.

1. Consider the input function f .t/ D sin.�t/; its frequency is � . The system
response is

y.t/ D sin.�t/ � sin.t/ D � sin.t/ � sin.�t/

�2 � 1
:

The graph of the input function together with the response is given in Fig. 4.1.
The graph of the input function is dashed and has amplitude 1 while the response
function has an amplitude less than 1. No resonance is occurring here, and this
is reflected in the fact that the inputs characteristic frequency, � , is far from the
systems characteristic frequency 1. We also note that the response function is not
periodic. This is reflected in the fact that the quotient of the frequencies �

1
D �

is not rational. We will say more about periodic functions in Chap. 6.
2. Next we take the input function to be f .t/ D sin.1:25t/. Its frequency is 1:25

and is significantly closer to the characteristic frequency. The system response is

y.t/ D sin.1:25t/ � sin.t/ D 1:25 sin.t/ � sin.1:1t/

0:5625
:

The graph of the input function together with the response is given in Fig. 4.2.
In this graph, we needed to scale back significantly to see the response function.
Notice how the amplitude of the response is significantly higher than that of the
input. Also notice how the response comes in pulses. This phenomenon is known



326 4 Linear Constant Coefficient Differential Equations

Fig. 4.2 Input and response functions with similar yet unequal frequencies. Beats occur

Fig. 4.3 Input and response functions with equal frequencies. Resonance occurs

as beats and is familiar to musicians who try to tune an instrument. When the
frequency of vibration of the string is close but not exactly equal to that of the
tuning fork, one hears a pulsating beat. The instrument is out of tune.

3. We now consider the input function f .t/ D sin t . Here the input frequency
matches exactly the characteristic frequency. The system response is

y.t/ D sin.t/ � sin.t/ D sin.t/ � t cos.t/

2
:

The presence of t in t cos.t/ implies that the response will oscillate without
bound as seen in Fig. 4.3.

Again in this graph, we needed to scale back to see the enormity of the response
function. This is resonance in action. In physical systems, resonance can be so
energetic that the system may fall apart. Because of the significant damage that can
occur, systems designers must be well aware of the internal characteristic values
or frequencies of their system and the likely kinds of inputs it may need to deal
with. J
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Fig. 4.4 Asymptotically stable system with resonance

As a final example, we consider resonance in an asymptotically stable system.

Example 12. A zero-state system ˚ is modeled by the differential equation

..D C 0:1/2 C 1/y D f:

Determine the impulse response function h and the system response to the input
function f .t/ D e�0:1t cos.t/: Discuss the resonance that occurs.

I Solution. The characteristic values are �0:1 ˙ i and lie in the left-hand side of
the complex plane. Thus, the system is asymptotically stable. The characteristic
modes are

˚
e�0:1t sin t; e�0:1t cos t

�
. A straightforward calculation gives the unit

impulse response function

h.t// D e�0:1t sin.t/:

The input function f .t/ D e�0:1t cos.t/ is a characteristic mode, and the response
function is

y.t/ D h � f .t/ D 1

2
te�0:1t sin.t/:

Figure 4.4 shows the graph. Notice the initial energetic response. This is a
manifestation of resonance even though the response dies out in time. If the response
passes a certain threshold, the system may break. On the other hand, resonance can
be used in a positive way as in tuning a radio to a particular frequency. Again, system
designers must be well aware of the resonance effect. J
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Exercises

1–12. For each problem, a system is modeled by q.D/ with initial state a.
Determine the zero-input response. Determine whether the system is asymptotically
stable, marginally stable, or unstable.

1. q.D/ D D C 5, a D 10

2. q.D/ D D � 2, a D 2

3. q.D/ D D2 � 4D C 3, a D .2; 4/

4. q.D/ D D2 C 5D C 4, a D .0; 3/

5. q.D/ D D2 C 4D C 5, a D .0; 1/

6. q.D/ D D2 C 9, a D .1; 1/

7. q.D/ D D2 C 6D C 9, a D .1; 1/

8. q.D/ D D2 C D � 2, a D .1; �2/

9. q.D/ D D2 � 2D C 2, a D .1; 2/

10. q.D/ D D3 C D2, a D .1; �1; 1/

11. q.D/ D .D C 1/.D2 C 1/, a D .1; �1; 1/

12. q.D/ D D4 � 1, a D .0; 1; 0; �1/

13–17. For each problem, a system is modeled by q.D/. Determine the unit impulse
response function.

13. q.D/ D D C 1

14. q.D/ D D2 C 4

15. q.D/ D D2 � 4

16. q.D/ D D2 C 2D C 5

17. q.D/ D D3 C D

18–20. In this set of problems, we establish that an asymptotically stable system
modeled by q.D/, for some constant coefficient differential operator, is BIBO-
stable.

18. Let k be a nonnegative integer and ˛ 2 R. Show that
Z t

0

xke˛x dx D C C p.t/e˛t ;

where C is a constant and p.t/ is a polynomial of degree k. Show that C C
p.t/e˛t is a bounded function of Œ0; 1/ if ˛ < 0.

19. Suppose � D ˛ C iˇ is a complex number and ˛ < 0. Let k be a nonnegative
integer and suppose f is a bounded function on Œ0; 1/. Show that tke˛t cos ˇt �
f and tke˛t sin ˇt � f are bounded functions.

20. Suppose a system modeled by a constant coefficient differential operator is
asymptotically stable. Show it is BIBO-stable.





Chapter 5
Second Order Linear Differential Equations

In this chapter, we consider the broader class of second order linear differential
equations that includes the constant coefficient case. In particular, we will consider
differential equations of the following form:

a2.t/y
00 C a1.t/y0 C a0.t/y D f .t/: (1)

Notice that the coefficients a0.t/, a1.t/, and a2.t/ are functions of the independent
variable t and not necessarily constants. This difference has many important
consequences, the main one being that there is no general solution method as in
the constant coefficient case. Nevertheless, it is still linear and, as we shall see, this
implies that the solution set has a structure similar to the constant coefficient case.

In order to find solution methods, one must put some rather strong restrictions on
the coefficient functions a0.t/, a1.t/ and a2.t/. For example, in the following list,
the coefficient functions are polynomial of a specific form. The equations in this list
are classical and have important uses in the physical and engineering sciences.

t2y00 C ty0 C .t2 � �2/y D 0 Bessel’s equation of index �

ty00 C .1 � t/y0 C �y D 0 Laguerre’s equation of index �

.1 � t2/y00 � 2ty0 C ˛.˛ C 1/y D 0 Legendre’s equation of index ˛

.1 � t2/y00 � ty0 C ˛2y D 0 Chebyshev’s equation of index ˛

y00 � 2ty0 C 2�y D 0 Hermite’s equation of index �.

Unlike the constant coefficient case, the solutions to these equations are not, in
general, expressible in terms of algebraic combinations of polynomials, trigono-
metric, or exponential functions, nor their inverses. Nevertheless, the general theory
implies that solutions exist and traditionally have been loosely categorized as special
functions. In addition to satisfying the differential equation for the given index,
there are other interesting and important functional relations as the index varies. We
will explore some of these relations.

W.A. Adkins and M.G. Davidson, Ordinary Differential Equations,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-3618-8 5,
© Springer Science+Business Media New York 2012
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5.1 The Existence and Uniqueness Theorem

In this chapter, we will assume that the coefficient functions a0.t/, a1.t/, and a2.t/
and the forcing function f .t/ are continuous functions on some common interval
I . We also assume that a2.t/ ¤ 0 for all t 2 I . By dividing by a2.t/, when
convenient, we may assume that the leading coefficient function is 1. In this case,
we say that the differential equation is in standard form. We will adopt much of the
notation that we used in Sects. 3.1 and 4.1. In particular, let D denote the derivative
operator and let

L D a2.t/D2 C a1.t/D C a0.t/: (1)

Then (1) in the introductory paragraph can be written as Ly D f . If f D 0, then the
equation Ly D f D 0 is called homogeneous. Otherwise, it is nonhomogeneous.
We can think of L as an operation on functions. If y 2 C2.I /, in other words if y
is a function on an interval I having a second order continuous derivative, then Ly

produces a continuous function.

Example 1. Suppose L D tD2 C 2D C t . Find

L

�
cos t

t

�
; L

�
sin t

t

�
; L.sin t/; and L.e�t /:

I Solution. The following table gives the first and second derivatives for each
function:

y D cos t

t
y0 D �t sin t � cos t

t2
y00 D �t

2 cos t C 2t sin t C 2 cos t

t3

y D sin t

t
y0 D t cos t � sin t

t2
y00 D �t

2 sin t � 2t cos t C 2 sin t

t3

y D sin t y0 D cos t y00 D � sin t

y D e�t y0 D �e�t y00 D e�t :

It now follows that

• L

�
cos t

t

�
D t
�t2 cos t C 2t sin t C 2 cos t

t3
C 2�t sin t � cos t

t2
C t cos t

t

D �t
3 cos t C 2t2 sin t C 2t cos t � 2t2 sin t � 2t cos t C t3 cos t

t3

D 0

• L

�
sin t

t

�
D t
�t2 sin t � 2t cos t C 2 sin t

t3
C 2 t cos t � sin t

t2
C t sin t

t

D �t
3 sin t � 2t2 cos t C 2t sin t C 2t2 cos t � 2t sin t C t3 sin t

t3

D 0
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• L.sin t/ D t.� sin t/C 2.cos t/C t sin t D 2 cos t

• L.e�t / D te�t C 2.�e�t /C te�t D .2t � 2/e�t J

The most important general property that we can say about L is that it is linear.

Proposition 2. The operator

L D a2.t/D2 C a1.t/D C a0.t/
given by (1) is linear. Specifically,

1. If y1 and y2 have second order continuous derivatives, then

L.y1 C y2/ D L.y1/CL.y2/:

2. If y has a second order continuous derivative and c is a scalar, then

L.cy/ D cL.y/:

Proof. The proof of this proposition is essentially the same as the proof of
Proposition 2 of Sect. 3.3. We only need to remark that multiplication by a function
ak.t/ preserves addition and scalar multiplication in the same way as multiplication
by a constant. ut

We call L a second order linear differential operator. Proposition 4 of Sect. 3.3
and Theorem 6 of Sect. 3.3 are two important consequences of linearity for the
constant coefficient case. The statement and proof are essentially the same. We
consolidate these results and Algorithm 7 of Sect. 3.3 into the following theorem:

Theorem 3. Suppose L is a second order linear differential operator and y1 and y2
are solutions to Ly D 0. Then c1y1 C c2y2 is a solution to Ly D 0, for all scalars
c1 and c2. Suppose f is a continuous function. If yp is a fixed particular solution to
Ly D f and yh is any solution to the associated homogeneous differential equation
Ly D 0, then

y D yp C yh

is a solution to Ly D f . Furthermore, any solution to Ly D f has this same form.
Thus, to solve Ly D f , we proceed as follows:

1. Find all the solutions to the associated homogeneous differential equation
Ly D 0.

2. Find one particular solution yp.
3. Add the particular solution to the homogeneous solutions.

As an application of Theorem 3, consider the following example.

Example 4. Let L D tD2C 2DC t . Use Theorem 3 and the results of Example 1
to write the most general solution to

Ly D 2 cos t:
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I Solution. In Example 1, we showed that yp D sin t was a particular solution and
y1 D cos t=t and y2 D sin t=t are homogeneous solutions. By Theorem 3, we have
that yh D c1

�
cos t
t

�C c2 � sin t
t

�
is also a homogeneous solution and

y D yp C yh D sin t C c1
�

cos t

t

�
C c2

�
sin t

t

�

are solutions to Ly D 2 cos t . We will soon see it is the general solution. J

Again, suppose L is a second order linear differential operator and f is a function
defined on an interval I . Let t0 2 I . To the equation

Ly D f
we can associate initial conditions of the form

y.t0/ D y0; and y0.t0/ D y1:

We refer to the initial conditions and the differential equation Ly D f as an initial
value problem.

Example 5. Let L D tD2 C 2D C t . Solve the initial value problem

Ly D 2 cos t; y.�/ D 1; y0.�/ D �1:

I Solution. By Example 4, all functions of the form

y D sin t C c1 cos t

t
C c2 sin t

t

are solutions. Thus, we only need to find constants c1 and c2 that satisfy the initial
conditions. Since

y0 D cos t C c1
��t sin t � cos t

t2

�
C c2

�
t cos t � sin t

t2

�
;

we have

0C c1
��1
�

�
C c2.0/ D y.�/ D 1

�1C c1
�
1

�2

�
C c2

���
�2

�
D y0.�/ D �1;

which imply c1 D �� and c2 D �1. The solution to the initial value problem is

y D sin t � � cos t

t
� sin t

t
: J
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In the case where the coefficient functions of L are constant, we have an
existence and uniqueness theorem. (See Theorem 10 of Sect. 3.1.) In the present
case, we still have the existence and uniqueness theorem; however, its proof is
beyond the scope of this book.1

Theorem 6 (Uniqueness and Existence). Suppose a0.t/, a1.t/, a2.t/, and f are
continuous functions on an open interval I and a2.t/ ¤ 0 for all t 2 I . Suppose
t0 2 I and y0 and y1 are fixed real numbers. Let L D a2.t/D2 C a1.t/D C a0.t/.
Then there is one and only one solution to the initial value problem

Ly D f; y.t0/ D y0; y0.t0/ D y1:

Theorem 6 does not tell us how to find any solution. We must develop procedures
for this. Let us explain in more detail what this theorem does say. Under the
conditions stated, the existence and uniqueness theorem says that there always
is a solution to the given initial value problem. The solution is at least twice
differentiable on I and there is no other solution. In Example 5, we found y D
sin t � � cos t

t
� cos t

t
is a solution to ty00C 2y0C ty D 2 cos t with initial conditions

y.�/ D 1 and y0.�/ D �1. Notice, in this case, that y is, in fact, infinitely
differentiable on any interval not containing 0. The uniqueness part of Theorem 6
implies that there are no other solutions. In other words, there are no potentially
hidden solutions, so that if we can find enough solutions to take care of all possible
initial values, then Theorem 6 provides the theoretical underpinnings to know that
we have found all possible solutions and need look no further. Compare this theorem
with the discussion in Sect. 1.7 where we saw examples (in the nonlinear case) of
initial value problems which had infinitely many distinct solutions.

1For a proof, see Theorems 1 and 3 on pages 104–105 of the text An Introduction to Ordinary
Differential Equations by Earl Coddington, published by Prentice Hall, (1961).
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Exercises

1–11. For each of the following differential equations, determine if it is linear
(yes/no). For each of those which are linear, further determine if the equation is
homogeneous (homogeneous/nonhomogeneous) and constant coefficient (yes/no).
Do not solve the equations.

1. y00 C y0y D 0
2. y00 C y0 C y D 0
3. y00 C y0 C y D t2
4. y00 C ty0 C .1C t2/y2 D 0
5. 3t2y00 C 2ty0 C y D e2t

6. y00 Cpy0 C y D t
7. y00 Cpty0 C y D pt
8. y00 � 2y D ty
9. y00 C 2y C t sin y D 0

10. y00 C 2y0 C .sin t/y D 0
11. t2y00 C ty0 C .t2 � 5/y D 0
12–13. For the given differential operator L, compute L.y/ for each given y.

12. L D tD2 C 1
1. y.t/ D 1
2. y.t/ D t
3. y.t/ D e�t
4. y.t/ D cos 2t

13. L D t2D2 C tD � 1
1. y.t/ D 1

t

2. y.t/ D 1
3. y.t/ D t
4. y.t/ D t r

14. The differential equation t2y00 C ty0 � y D t
1
2 ; t > 0 has a solution of the

form yp.t/ D C t 12 : Find C .
15. The differential equation ty00C .t �1/y0�y D t2e�t has a solution of the form

yp.t/ D C t2e�t : Find C .
16. Let L.y/ D .1C t2/y00 � 4ty0 C 6y

1. Check that y.t/ D t is a solution to the differential equation L.y/ D 2t .
2. Check that y1.t/ D 1 � 3t2 and y2.t/ D t � t 3

3
are two solutions to the

differential equation L.y/ D 0.
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3. Using the results of Parts (1) and (2), find a solution to each of the following
initial value problems:

a. .1C t2/y00 � 4ty C 6y D 2t , y.0/ D 1, y0.0/ D 0.

b. .1C t2/y00 � 4ty C 6y D 2t , y.0/ D 0, y0.0/ D 1.

c. .1C t2/y00 � 4ty C 6y D 2t , y.0/ D �1, y0.0/ D 4.

d. .1C t2/y00 � 4tyC 6y D 2t , y.0/ D a, y0.0/ D b, where a, b 2 R.

17. Let L.y/ D .t � 1/y00 � ty0 C y:

1. Check that y.t/ D e�t is a solution to the differential equation L.y/ D
2te�t .

2. Check that y1.t/ D et and y2.t/ D t are two solutions to the differential
equation L.y/ D 0.

3. Using the results of Parts (1) and (2), find a solution to each of the following
initial value problems:

a. .t � 1/y00 � ty0 C y D 2te�t y.0/ D 0, y0.0/ D 0.

b. .t � 1/y00 � ty0 C y D 2te�t y.0/ D 1, y0.0/ D 0.

c. .t � 1/y00 � ty0 C y D 2te�t y.0/ D 0, y0.0/ D 1.

d. .t � 1/y00� ty0Cy D 2te�t , y.0/ D a, y0.0/ D b, where a, b 2 R.

18. Let L.y/ D t2y00 � 4ty0 C 6y:

1. Check that y.t/ D 1
6
t5 is a solution to the differential equation L.y/ D t5.

2. Check that y1.t/ D t2 and y2.t/ D t3 are two solutions to the differential
equation L.y/ D 0.

3. Using the results of Parts (1) and (2), find a solution to each of the following
initial value problems:

a. t2y00 � 4ty0 C 6y D t5, y.1/ D 1, y0.1/ D 0.

b. t2y00 � 4ty0 C 6y D t5, y.1/ D 0, y0.1/ D 1.

c. t2y00 � 4ty0 C 6y D t5, y.1/ D �1, y0.1/ D 3.

d. t2y00 � 4ty0 C 6y D t5, y.1/ D a, y0.1/ D b, where a, b 2 R.

19–24. For each of the following differential equations, find the largest interval on
which a unique solution of the initial value problem

a2.t/y
00 C a1.t/y0 C a0.t/y D f .t/

is guaranteed by Theorem 6, if initial conditions, y.t0/ D y1; y0.t0/ D y1, are given
at t0.

19. t2y00 C 3ty0 � y D t4 (t0 D �1/
20. y00 � 2y0 � 2y D 1C t2

1 � t2 (t0 D 2/
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21. .sin t/y00 C y D cos t (t0 D �
2
/

22. .1C t2/y00 � ty0 C t2y D cos t (t0 D 0/
23. y00 Cpty0 �pt � 3y D 0 (t0 D 10/
24. t.t2 � 4/y00 C y D et (t0 D 1/
25. The functions y1.t/ D t2 and y2.t/ D t3 are two distinct solutions of the initial

value problem

t2y00 � 4ty0 C 6y D 0; y.0/ D 0; y0.0/ D 0:

Why does this not violate the uniqueness part of Theorem 6?
26. Let y.t/ be a solution of the differential equation

y00 C a1.t/y0 C a0.t/y D 0:

We assume that a1.t/ and a0.t/ are continuous functions on an interval I , so
that Theorem 6 implies that a solution y is defined on I . Show that if the graph
of y.t/ is tangent to the t-axis at some point t0 of I , then y.t/ D 0 for all t 2 I .
Hint: If the graph of y.t/ is tangent to the t-axis at .t0; 0/, what does this say
about y.t0/ and y0.t0/?

27. More generally, let y1.t/ and y2.t/ be two solutions of the differential equation

y00 C a1.t/y0 C a0.t/y D f .t/;

where, as usual, we assume that a1.t/, a0.t/, and f .t/ are continuous functions
on an interval I , so that Theorem 6 implies that y1 and y2 are defined on I .
Show that if the graphs of y1.t/ and y2.t/ are tangent at some point t0 of I ,
then y1.t/ D y2.t/ for all t 2 I .
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5.2 The Homogeneous Case

In this section, we are concerned with a concise description of the solution set of the
homogeneous linear differential equation

L.y/ D a2.t/y00 C a1.t/y0 C a0.t/y D 0 (1)

The main result, Theorem 2 given below, shows that we will in principle be able
to find two linearly independent functions y1 and y2 such that all solutions to (1)
are of the form c1y1 C c2y2, for some constants c1 and c2. This is just like the
second order constant coefficient case. In fact, if q.s/ is a characteristic polynomial
of degree 2, then Bq D fy1; y2g is a set of two linearly independent functions
that span the solution set of the corresponding homogeneous constant coefficient
differential equation. In Sect. 3.2, we introduced the concept of linear independence
for a set of n functions. Let us recall this important concept in the case n D 2.

Linear Independence

Two functions y1 and y2 defined on some interval I are said to be linearly
independent if the equation

c1y1 C c2y2 D 0 (2)

implies that c1 and c2 are both 0. Otherwise, we call y1 and y2 linearly dependent.

Example 1. Show that the functions

y1.t/ D cos t

t
and y2.t/ D sin t

t
;

defined on the interval .0;1/ are linearly independent.

I Solution. The equation c1 cos t
t
C c2 sin t

t
D 0 on .0;1/ implies c1 cos t C c2 sin t

D 0. Evaluating at t D �
2

and t D � gives

c2 D 0

�c1 D 0:

It follows that y1 and y2 are independent. J

In Sect. 3.2, we provided several other examples that we encourage the student
to reconsider by way of review.
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The Main Theorem for the Homogeneous Case

Theorem 2. Let L D a2.t/D2Ca1.t/DCa0.t/, where a0.t/, a1.t/, and a2.t/ are
continuous functions on an interval I . Assume a2.t/ ¤ 0 for all t 2 I .

1. There are two linearly independent solutions to Ly D 0.
2. If y1 and y2 are any two linearly independent solutions to Ly D 0, then any

homogeneous solution y can be written y D c1y1 C c2y2, for some c1; c2 2 R.

Proof. Let t0 2 I . By Theorem 6 of Sect. 5.1, there are functions, 1 and 2, that are
solutions to the initial value problems L.y/ D 0, with initial conditions y.t0/ D 1;
y0.t0/ D 0, and y.t0/ D 0; y0.t0/ D 1, respectively. Suppose c1 1 C c2 2 D 0:

Then
c1 1.t0/C c2 2.t0/ D 0:

Since  1.t0/ D 1 and  2.t0/ D 0, it follows that c1 D 0. Similarly, we have

c1 
0
1.t0/C c2 0

2.t0/ D 0:

Since  0
1.t0/ D 0 and  0

2.t0/ D 1, it follows that c2 D 0: Therefore,  1 and  2 are
linearly independent. This proves (1).

Suppose y is a homogeneous solution. Let r D y.t0/ and s D y0.t0/. By
Theorem 3 of Sect. 5.1, the function r 1 C s 2 is a solution to Ly D 0.
Furthermore,

r 1.t0/C s 2.t0/ D r
and r 0

1.t0/C s 0
2.t0/ D s:

This means the r 1 C s 2 and y satisfy the same initial conditions. By the
uniqueness part of Theorem 6 of Sect. 5.1, they are equal. Thus, y D r 1 C s 2,
that is, every homogeneous solution is a linear combination of  1 and  2.

Now suppose y1 and y2 are any two linearly independent homogeneous solutions
and suppose y is any other solution. From the argument above, we can write

y1 D a 1 C b 2;
y2 D c 1 C d 2;

which in matrix form can be written

�
y1
y2

	
D
�
a b

c d

	 �
 1
 2

	
:

We multiply both sides of this matrix equation by the adjoint


d �b�c a

�
to obtain
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�
d �b
�c a

	 �
y1
y2

	
D
�
ad � bc 0

0 ad � bc
	 �
 1
 2

	
D .ad � bc/

�
 1
 2

	
:

Suppose ad � bc D 0. Then

dy1 � by2 D 0

and � cy1 C ay2 D 0:

But since y1 and y2 are independent, this implies that a; b; c; and d are zero, which
in turn implies that y1 and y2 are both zero. But this cannot be. We conclude that
ad � bc ¤ 0. We can now write  1 and  2 each as a linear combination of y1 and
y2. Specifically, �

 1

 2

	
D 1

ad � bc
�
d �b
�c a

	 �
y1

y2

	
:

Since y is a linear combination of 1 and 2, it follows that y is a linear combination
of y1 and y2. ut
Remark 3. The matrix



a b
c d

�
that appears in the proof above appears in other

contexts as well. If y1 and y2 are functions, recall from Sect. 3.2 that we defined
the Wronskian matrix by

W.y1; y2/.t/ D
�
y1.t/ y2.t/

y0
1.t/ y

0
2.t/

	

and the Wronskian by

w.y1; y2/.t/ D detW.y1; y2/.t/:

If y1 and y2 are as in the proof above, then the relations

y1 D a 1 C b 2;
y2 D c 1 C d 2;

in the proof, when evaluated at t0 imply that

�
a c

b d

	
D
�
y1.t0/ y2.t0/

y0
1.t0/ y

0
2.t0/

	
D W.y1; y2/.t0/:

Since it was shown that ad �bc ¤ 0, we have w.y1; y2/ ¤ 0. On the other hand,
given any two differentiable functions, y1 and y2 (not necessarily homogeneous
solutions of a linear differential equation), whose Wronskian is a nonzero function,
then it is easy to see that y1 and y2 are independent. For suppose t0 is chosen so that
w.y1; y2/.t0/ ¤ 0 and c1y1 C c2y2 D 0. Then c1y0

1 C c2y0
2 D 0, and we have
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�
0

0

	
D
�
c1y1.t0/C c2y2.t0/
c1y

0
1.t0/C c2y0

2.t0/

	
D W.y1; y2/

�
c1
c2

	
:

Simple matrix algebra2 gives c1 D 0 and c2 D 0. Hence, y1 and y2 are linearly
independent.

We have thus shown the following proposition.

Proposition 4. Suppose L satisfies the conditions of Theorem 2. Suppose y1 and
y2 are solutions to Ly D 0. Then y1 and y2 are linearly independent if and only if

w.y1; y2/ ¤ 0:

The following theorem extends Abel’s theorem given in Theorem 8 of Sect. 3.3.
You are asked to prove this in the exercises.

Theorem 5 (Abel’s Formula). Suppose f1 and f2 are solutions to the second
order linear differential equation

y00 C a1.t/y0 C a0.t/y D 0;

where a0 and a1 are continuous functions on an interval I . Let t0 2 I . Then

w.f1; f2/.t/ D Ke� R t
t0
a1.x/ dx; (3)

for some constant K . Furthermore, if initial conditions y.t0/ and y0.t0/ are given,
then

K D w.f1; f2/.t0/:

Remark 6. Let us now summarize what Theorems 3, 6 of Sect. 5.1, and 2 tell us.
In order to solve L.y/ D f (satisfying the continuity hypotheses), we first need to
find a particular solution yp, which exists by the existence and uniqueness theorem.
Next, Theorem 2 says that if y1 and y2 are any two linearly independent solutions
of the associated homogeneous equation L.y/ D 0, then all of the solutions of
the associated homogeneous equation are of the form c1y1 C c2y2. Theorem 3 of
Sect. 5.1 now tells us that the general solution to L.y/ D f is of the form

˚
yp C c1y1 C c2y2 W c1; c2 2 R

�
:

Furthermore, any set of initial conditions uniquely determines the constants c1
and c2.

2cf. Chapter 8 for a discussion of matrices.
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A set fy1; y2g of linearly independent solutions to the homogeneous equation
L.y/ D 0 is called a fundamental set for the second order linear differential
operator L. A fundamental set is a basis of the linear space of homogeneous
solutions (cf. Sect. 3.2 for the definition of a basis). Furthermore, the standard basis,
Bq , in the context of constant coefficient differential equations, is a fundamental set.

In the following sections, we will develop methods, under suitable assumptions,
for finding a fundamental set for L and a particular solution to the differential
equation L.y/ D f . For now, let us illustrate the main theorems with a couple
of examples.

Example 7. Consider the differential equation

t2y00 C ty0 C y D 0:

Suppose y1.t/ D cos.ln t/ and y2.t/ D sin.ln t/ are solutions. Determine the solu-
tion set.

I Solution. We begin by computing the Wronskian of fcos ln t; sin ln tg:

w.cos ln t; sin ln t/ D det

0
B@

cos ln t sin ln t

� sin ln t

t

cos ln t

t

1
CA

D cos2 ln t C sin2 ln t

t

D 1

t
:

Proposition 4 implies that fcos.ln t/; sin.ln t/g is linearly independent on .0; 1/
and thus a fundamental set for L.y/ D 0. Theorem 2 now implies that

fc1 cos.ln t/C c2 sin.ln t/ W c1; c2 2 Rg

is the solution set. J
Example 8. Consider the differential equation

ty00 C 2y0 C ty D 2 cos t:

Determine the solution set.

I Solution. By Example 1 of Sect. 5.1, a particular solution is yp D sin t , and y1 D
cos t
t

and y2 D sin t
t

are homogeneous solutions. By Example 1, the homogeneous
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solutions y1 and y2 are linearly independent. By Theorem 2, all homogeneous
solutions are of the form

yh D c1y1 C c2y2 D c1 cos t

t
C c2 sin t

t
:

It follows from linearity, Theorem 3 of Sect. 5.1, that the solution set is


y D yp C yh D sin t C c1 cos t

t
C c2 sin t

t
; c1; c2 2 R

�
: J
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Exercises

1–6. Determine if each of the following pairs of functions are linearly independent
or linearly dependent.

1. y1.t/ D 2t , y2.t/ D 5t
2. y1.t/ D 2t , y2.t/ D 5t
3. y1.t/ D ln t , y2.t/ D t ln t on the interval .0;1/
4. y1.t/ D e2tC1, y2.t/ D e2t�3
5. y1.t/ D ln.2t/, y2.t/ D ln.5t/ on the interval .0;1/
6. y1.t/ D ln t2, y2.t/ D ln t5

7–9. For each exercise below, verify that the functions f1 and f2 satisfy the given
differential equation. Verify Abel’s formula as given in Theorem 5 of Sect. 5.2 for
the given initial point t0. Determine the solution set.

7. .t � 1/y00 � ty0 C y D 0, f1.t/ D et � t , f2.t/ D t , t0 D 0
8. .1C t2/y00 � 2ty0 C 2y D 0, f1.t/ D 1 � t2, f2.t/ D t , t0 D 1
9. t2y00 C ty0 C 4y D 0, f1.t/ D cos.2 ln t/, f2.t/ D sin.2 ln t/, t0 D 1

10. Prove Abel’s formula as stated in Theorem 5. Hint, carefully look at the proof
of Abel’s formula given in the second order constant coefficient case (cf.
Theorem 8 of Sect. 3.3).

11. 1. Verify that y1.t/ D t3 and y2.t/ D jt3j are linearly independent on
.�1; 1/.

2. Show that the Wronskian, w.y1; y2/.t/ D 0, for all t 2 R.
3. Explain why Parts (a) and (b) do not contradict Proposition 4.
4. Verify that y1.t/ and y2.t/ are solutions to the linear differential equation
t2y00 � 2ty0 D 0, y.0/ D 0; y0.0/ D 0.

5. Explain why Parts (a), (b), and (d) do not contradict the existence and
uniqueness theorem, Theorem 6 of Sect. 5.1.
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5.3 The Cauchy–Euler Equations

When the coefficient functions of a second order linear differential equation are
nonconstant, the corresponding equation can become very difficult to solve. In
order to expect to find solutions, one must put certain restrictions on the coefficient
functions. A class of nonconstant coefficient linear differential equations, known as
Cauchy–Euler equations, have solutions that are easy to obtain.

A Cauchy–Euler equation is a second order linear differential equation of the
following form:

at2y00 C bty0 C cy D 0; (1)

where a; b, and c are real constants and a ¤ 0. When put in standard form, we
obtain

y00 C b

at
y0 C c

at2
y D 0:

The functions b
at

and c
at2

are continuous everywhere except at 0. Thus, the existence
and uniqueness theorem guarantees that solutions exist in either of the intervals
.�1; 0/ or .0;1/. To work in a specific interval, we will assume t > 0. We will
refer to L D at2D2 C btD C c as a Cauchy–Euler operator.

The Laplace transform method does not work in any simple fashion here.
However, the simple change in variable t D ex will transform equation (1) into
a constant coefficient linear differential equation. To see this, let Y.x/ D y.ex/.
Then the chain rule gives

Y 0.x/ D exy0.ex/

and Y 00.x/ D exy0.ex/C .ex/2y00.ex/

D Y 0.x/C .ex/2y00.ex/:

Thus,

a.ex/2y00.ex/ D aY 00.x/ � aY 0.x/

bexy0.ex/ D bY 0.x/

cy.ex/ D cY.x/:

Addition of these terms gives

a.ex/2y00.ex/C bexy0.ex/C cy.ex/ D aY 00.x/� aY 0.x/C bY 0.x/C cY.x/
D aY 00.x/C .b � a/Y 0.x/C cY.x/:

With t replaced by ex in (1), we now obtain

aY 00.x/C .b � a/Y 0.x/C cY.x/ D 0: (2)
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The polynomial
Q.s/ D as2 C .b � a/s C c

is the characteristic polynomial of (2) and known as the indicial polynomial of (1).
Equation (2) is a second order constant coefficient differential equation and by now
routine to solve. Its solutions depend on the wayQ.s/ factors. We consider the three
possibilities.

Q Has Distinct Real Roots

Suppose r1 and r2 are distinct roots to the indicial polynomial Q.s/. Then er1x and
er2x are solutions to (2). Solutions to (1) are obtained by the substitution x D ln t :
we have er1x D er1 ln t D t r1 and similarly er2x D t r2 . Since t r1 is not a multiple
of t r2 , they are independent, and hence,

ft r1 ; t r2g

is a fundamental set for L.y/ D 0.

Example 1. Find a fundamental set and general solution for the equation t2y00 �
2y D 0.

I Solution. The indicial polynomial is Q.s/ D s2 � s � 2 D .s � 2/.sC 1/ and it
has 2 and�1 as roots, and thus,

˚
t2; t�1

�
is a fundamental set for this Cauchy–Euler

equation. The general solution is y D c1t2 C c2t�1: J

Q Has a Double Root

Suppose r is a double root of Q. Then erx and xerx are independent solutions to
(2). The substitution x D ln t then gives t r and t r ln t as independent solutions to
(1). Hence,

ft r ; t r ln tg
is a fundamental set for L.y/ D 0.

Example 2. Find a fundamental set and the general solution for the equation
4t2y00 C 8ty0 C y D 0.

I Solution. The indicial polynomial is Q.s/ D 4s2 C 4s C 1 D .2s C 1/2 and
has � 1

2
as a root with multiplicity 2. Thus, ft� 1

2 ; t� 1
2 ln tg is a fundamental set. The

general solution is y D c1t� 1
2 C c2t� 1

2 ln t: J
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Q Has Conjugate Complex Roots

SupposeQ has complex roots ˛˙ iˇ, where ˇ ¤ 0. Then e˛x cosˇx and e˛x sinˇx
are independent solutions to (2). The substitution x D ln t then gives

ft˛ cos.ˇ ln t/; t˛ sin.ˇ ln t/g

as a fundamental set for Ly D 0.

Example 3. Find a fundamental set and the general solution for the equation t2y00C
ty0 C y D 0.

I Solution. The indicial polynomial is Q.s/ D s2 C 1 which has ˙i as complex
roots. Theorem 4 implies that fcos ln t; sin ln tg is a fundamental set. The general
solution is y D c1 cos ln t C c2 sin ln t . J

We now summarize the above results into one theorem.

Theorem 4. Let L D at2D2 C btD C c, where a; b; c 2 R and a ¤ 0. Let
Q.s/ D as2 C .b � a/s C c be the indicial polynomial.

1. If r1 and r2 are distinct real roots of Q.s/, then

ft r1 ; t r2g

is a fundamental set for L.y/ D 0.
2. If r is a double root of Q.s/, then

ft r ; t r ln tg

is a fundamental set for L.y/ D 0.
3. If ˛ ˙ iˇ are complex conjugate roots of Q.s/, ˇ ¤ 0, then

ft˛ sin.ˇ ln t/; t˛ cos.ˇ ln t/g

is a fundamental set for L.y/ D 0.
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Exercises

1–11. Find the general solution of each of the following homogeneous
Cauchy–Euler equations on the interval .0; 1/.
1. t2y00 C 2ty0 � 2y D 0
2. 2t2y00 � 5ty0 C 3y D 0
3. 9t2y00 C 3ty0 C y D 0
4. t2y00 C ty0 � 2y D 0
5. 4t2y00 C y D 0
6. t2y00 � 3ty0 � 21y D 0
7. t2y00 C 7ty0 C 9y D 0
8. t2y00 C y D 0
9. t2y00 C ty0 � 4y D 0

10. t2y00 C ty0 C 4y D 0
11. t2y00 � 3ty0 C 13y D 0
12–15. Solve each of the following initial value problems.

12. t2y00 C 2ty0 � 2y D 0,

y.1/ D 0, y0.1/ D 1
13. 4t2y00 C y D 0,

y.1/ D 2, y0.1/ D 0
14. t2y00 C ty0 C 4y D 0,

y.1/ D �3, y0.1/ D 4
15. t2y00 � 4ty0 C 6y D 0,

y.0/ D 1, y0.0/ D �1
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5.4 Laplace Transform Methods

In this section, we will develop some further properties of the Laplace transform and
use them to solve some linear differential equations with nonconstant coefficient
functions. However, we will see that the use of the Laplace transform is limited.
Several new Laplace transform rules and formulas are developed in this section. For
quick reference Tables 5.1 and 5.2 in Sect. 5.7 summarize these results.

Let us begin by recalling an important definition we saw in Sect. 2.2. A
continuous function f on Œ0;1/ is said to be of exponential type with order a
if there is a constantK such that

jf .t/j � Keat

for all t 2 Œ0;1/: If the order is not important to the discussion, we will just say f
is of exponential type. A function of exponential type has limited growth; it cannot
grow faster than a multiple of an exponential function. The above inequality means

�Keat � f .t/ � Keat ;

for all t 2 Œ0;1/ as illustrated in Fig. 5.1, where the boldfaced curve, f .t/, lies
between the upper and lower exponential functions. If f is of exponential type,
then Proposition 3 of Sect. 2.2 tells us that F.s/ D L ff g .s/ exists and

lim
s!1F.s/ D 0:

t

Fig. 5.1 The exponential function Keat bounds f .t/
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Asymptotic Values

An interesting property of the Laplace transform is that certain limiting values of
f .t/ can be deduced from its Laplace transform and vice versa.

Theorem 1 (Initial Value Theorem). Suppose f and its derivative f 0 are of
exponential order. Let F.s/ D Lff .t/g.s/: Then

Initial Value Principle

f .0/ D lim
s!1 sF.s/:

Proof. Let H.s/ D Lff 0.t/g.s/. By Proposition 3 of Sect. 2.2, we have

0 D lim
s!1H.s/ D lim

s!1.sF.s/ � f .0// D lim
s!1.sF.s/ � f .0//:

This implies the result. ut
Example 2. Verify the initial value theorem for f .t/ D cosat .

I Solution. On the one hand, cosat jtD0 D 1. On the other hand,

sLfcos atg.s/ D s2

s2 C a2

which has limit 1 as s !1. J

Theorem 3 (Final Value Theorem). Suppose f and f 0 are of exponential type
and limt!1 f .t/ exists. If F.s/ D Lff .t/g.s/, then

Final Value Principle

lim
t!1f .t/ D lim

s!0
sF.s/:

Proof. Let H.s/ D Lff 0.t/g.s/ D sF.s/� f .0/. Then sF.s/ D H.s/C f .0/ and

lim
s!0

sF.s/ D lim
s!0

H.s/C f .0/

D lim
s!0

lim
M!1

Z M

0

e�st f 0.t/ dt C f .0/

D lim
M!1

Z M

0

f 0.t/ dt C f .0/
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D lim
M!1f .M/� f .0/C f .0/

D lim
M!1f .M/:

The interchange of the limit operations in line 2 above can be justified for functions
of exponential type. ut

Integration in Transform Space

The transform derivative principle, Theorem 20 of Sect. 2.2, tells us that multipli-
cation of an input function by �t induces differentiation of the Laplace transform.
One might expect then that division by �t will induce integration in the transform
space. This idea is valid but we must be careful about assumptions. First, if f .t/
has a Laplace transform, it is not necessarily the case that f .t/=t will likewise. For
example, the constant function f .t/ D 1 has Laplace transform 1

s
but f .t/

t
D 1

t
does

not have a Laplace transform. Second, integration produces an arbitrary constant of
integration. What is this constant? The precise statement is as follows:

Theorem 4 (Integration in Transform Space). Suppose f is of exponential type
with order a and f .t/

t
has a continuous extension to 0, that is, limt!0C

f .t/

t
exists.

Then f .t/

t
is of exponential type with order a and

Transform Integral Principle

L
n
f .t/

t

o
.s/ D R1

s
F .�/ d�;

where s > a.

Proof. Let L D limt!0C
f .t/

t
and define

h.t/ D
(
f .t/

t
if t > 0

L if t D 0 :

Since f is continuous, so is h. Since f is of exponential type with order a, there is
a K so that jf .t/j � Keat . Since 1

t
� 1 on Œ1;1/,

jh.t/j D
ˇ̌̌
ˇf .t/t

ˇ̌̌
ˇ � jf .t/j � Keat ;

for all t � 1. Since h is continuous on Œ0; 1�, it is bounded by B , say. Thus, jh.t/j �
B � Beat for all t 2 Œ0; 1�. If M is the larger of K and B , then
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jh.t/j �M eat ;

for all t 2 Œ0;1/, and hence h is of exponential type. Let H.s/ D Lfh.t/g.s/ and
F.s/ D L ff .t/g .s/. Then, since �th.t/ D �f .t/, we have, by Theorem 20 of
Sect. 2.2, H 0.s/ D �F.s/. ThusH is an antiderivative of �F , and we have

H.s/ D �
Z s

a

F .�/ d� C C:

Proposition 3 of Sect. 2.2 implies 0 D lims!1H.s/ D � R1
a
F.�/ d� C C , and

hence, C D R1
a
F.�/ d� . Therefore,

L

f .t/

t

�
.s/ D H.s/

D
Z a

s

F .�/ d� C
Z 1

a

F.�/ d�

D
Z 1

s

F .�/ d�: ut

The Laplace transform of several new functions can now be deduced from this
theorem. Consider an example.

Example 5. Find L ˚ sin t
t

�
.

I Solution. Since limt!0
sin t
t
D 1, Theorem 4 applies to give

L


sin t

t

�
.s/ D

Z 1

s

1

�2 C 1 d�

D tan�1 � j1s
D �

2
� tan�1.s/

D tan�1 1
s
:

The last line can be seen by considering the right triangle

θ

π
2

− θ
s

1

where � D tan�1 s. J
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Solving Linear Differential Equations

We now consider by example how one can use the Laplace transform method to
solve some differential equations.

Example 6. Find a solution of exponential type that solves

ty00 � .1C t/y0 C y D 0:

I Solution. Note that the existence and uniqueness theorem implies that solutions
exist on intervals that do not contain 0. We presume that such a solution has a
continuous extension to t D 0 and is of exponential type. Let y be such a solution.
Let y.0/ D y0, y0.0/ D y1, and Y.s/ D L fy.t/g .s/. Application of transform
derivative principle, Theorem 20 of Sect. 2.2, to each component of the differential
equation gives

L ˚ty00� D �.s2Y.s/� sy.0/ � y0.0//0

D �.2sY.s/C s2Y 0.s/� y.0//
L ˚�.1C t/y0� D Lf�y0g C Lf�ty0g

D �sY.s/C y0 C .sY.s/� y0/0
D sY 0.s/ � .s � 1/Y.s/C y0

L fyg D Y.s/:

The sum of the left-hand terms is given to be 0. Thus, adding the right-hand terms
and simplifying give

.s � s2/Y 0.s/C .�3s C 2/Y.s/C 2y0 D 0;

which can be rewritten in the following way:

Y 0.s/C 3s � 2
s.s � 1/Y.s/ D

2y0

s.s � 1/ :

This equation is a first order linear differential equation in Y.s/. Since 3s�2
s.s�1/ D

2
s
C 1

s�1 , it is easy to see that an integrating factor is I D s2.s � 1/, and hence,

.IY.s//0 D 2y0s:

Integrating and solving for Y give

Y.s/ D y0

s � 1 C
c

s2.s � 1/ :
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The inverse Laplace transform is y.t/ D y0et C c.et � t � 1/. For simplicity, we
can write this solution in the form

y.t/ D c1et C c2.t C 1/;

where c1 D y0 C c and c2 D �c. It is easy to verify that et and t C 1 are linearly
independent and solutions to the given differential equation. J

Example 7. Find a solution of exponential type that solves

ty00 C 2y0 C ty D 0:

I Solution. Again, assume y is a solution of exponential type. Let Y.s/ D
Lfy.t/g.s/. As in the preceding example, we apply the Laplace transform and
simplify. The result is a simple linear differential equation:

Y 0.s/D �y0
s2 C 1;

where y0 is the initial conditiony.0/Dy0. Integration gives Y.s/Dy0.� tan�1 sCC/.
By Proposition 3 of Sect. 2.2, we have 0 D lims!1 Y.s/ D y0

���
2
C C � which

implies C D �
2

and

Y.s/ D y0
��
2
� tan�1 s

�
D y0 tan�1 1

s
:

By Example 5, we get

y.t/ D y0 sin t

t
: J

Theorem 2 of Sect. 5.2 implies that there are two linearly independent solutions.
The Laplace transform method has found only one, namely, sin t

t
. In Sect. 5.5, we

will introduce a technique that will find another independent solution. When applied
to this example, we will find y.t/ D cos t

t
is another solution. (cf. Example 2 of

Sect. 5.5.) It is easy to check that the Laplace transform of cos t
t

does not exist,
and thus, the Laplace transform method cannot find it as a solution. Furthermore,
the constant of integration, C , in this example cannot be arbitrary because of
Proposition 3 of Sect. 2.2. It frequently happens in examples that C must be
carefully chosen.

We observe that the presence of the linear factor t in Examples 6 and 7
produces a differential equation of order 1 which can be solved by techniques
learned in Chapter 1. Correspondingly, the presence of higher order terms, tn,
produces differential equations of order n. For example, the Laplace transform
applied to the differential equation t2y00 C 6y D 0 gives, after a short calculation,
s2Y 00.s/C 4sY 0.s/C 8Y.s/ D 0. The resulting differential equation in Y.s/ is still
second order and no simpler than the original. In fact, both are Cauchy–Euler. Thus,
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when the coefficient functions are polynomial of order greater than one, the Laplace
transform method will generally be of little use. For this reason, we will usually limit
our examples to second order linear differential equations with coefficient functions
that are linear terms, that is, of the form at C b. Even with this restriction, we still
will need to solve a first order differential equation in Y.s/ and determine its inverse
Laplace transform; not always easy problems.

Laguerre Polynomials

The Laguerre polynomial, `n.t/, of order n is the polynomial solution to
Laguerre’s differential equation

ty00 C .1 � t/y0 C ny D 0;

where y.0/ D 1 and n is a nonnegative integer.

Proposition 8. The nth Laguerre polynomial is given by

`n.t/ D
nX

kD0
.�1/k

 
n

k

!
tk

kŠ

and

L f`n.t/g .s/ D .s � 1/n
snC1 :

Proof. Taking the Laplace transform of Laguerre’s differential equation gives

.s2 � s/Y 0.s/C .s � .1C n//Y.s/ D 0

and hence, Y.s/ D C .s�1/n
snC1 : By the initial value theorem,

1 D y.0/ D lim
s!1C

s.s � 1/n
snC1 D C:

Now using the binomial theorem, we get .s�1/n DPn
kD0

�
n
k

�
.�1/ksn�k and hence

Y.s/ D Pn
kD0.�1/k

�
n

k

�
1

skC1 . It now follows by inversion that y.t/ D `n.t/ DPn
kD0.�1/k

�
n
k

�
tk

kŠ
. ut

It is easy to see that the first five Laguerre polynomials are:

`0.t/ D 1
`1.t/ D 1 � t
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`2.t/ D 1 � 2t C t2

2

`3.t/ D 1 � 3t C 3t2

2
� t

3

6

`4.t/ D 1 � 4t C 3t2 � 2t
3

3
C t4

24
:

Below are their graphs on the interval Œ0; 6�.

◦

1

2

3

4

Define the following differential operators:

Eı D 2tD2 C .2 � 2t/D � 1;
EC D tD2 C .1 � 2t/D C .t � 1/;
E� D tD2 CD:

Theorem 9. We have the following differential relationships among the Laguerre
polynomials:

1. Eı`n D �.2nC 1/`n
2. EC`n D �.nC 1/`nC1
3. E�`n D �n`n�1.

Proof.
1. Let An D tD2 C .1 � t/D C n be Laguerre’s differential equation. Then

from the defining equation of the Laguerre polynomial `n, we have An`n D 0.
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Multiply this equation by 2 and add �.1 C 2n/`n to both sides. This gives
Eı`n D �.2nC 1/`n

2. A simple observation gives EC D An � tD � .1 � t � n/. Since An`n D 0, it
is enough to verify that t`0

n C .1 � t � n/`n D .n C 1/`nC 1. This we do in
transform space. Let Ln D L f`ng :

L ˚t`0
n C .1 � t � n/`n

�
.s/ D �.sLn.s/� `n.0//0 C .1� n/Ln.s/C L0

n.s/

D �.Ln C sL0
n/C .1 � n/Ln C L0

n

D �.s � 1/L0
n � nLn

D �.s � 1/
n

snC2 .ns � .nC 1/.s � 1/� ns/
D .nC 1/L f`nC1g .s/:

3. This equation is proved in a similar manner as above. We leave the details to the
exercises. J

For a differential operatorA, letA2y D A.Ay/, A3y D A.A.Ay//, etc. It is easy
to verify by induction and the use of Theorem 9 that

.�1/n
nŠ

EnC`ı D `n:

The operator EC is called a creation operator since successive applications to `ı
creates all the other Laguerre polynomials. In a similar way, it is easy to verify that

Em�`n D 0;

for all m > n. The operator E� is called an annihilation operator.
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Exercises

1–4. For each of the following functions, show that Theorem 4 applies and use it to
find its Laplace transform.

1.
ebt � eat

t

2. 2
cos bt � cosat

t

3. 2
cos bt � cosat

t2

4.
sin at

t

5–10. Use the Laplace transform to find solutions to each of the following
differential equations. In some cases, you may find two independent solutions, and
in other cases, you may only find one solution. It may be useful to have the following
table for quick reference:

ty  ! �Y 0.s/

ty0  ! �sY 0.s/ � Y.s/
ty00  ! �s2Y 0.s/ � 2sY.s/C y0
ty000  ! �s3Y 0.s/ � 3s2Y.s/C 2sy0 C y1

y  ! Y.s/

y0  ! sY.s/ � y0
y00  ! s2Y.s/ � sy0 � y1

5. ty00 C .t � 1/y0 � y D 0
6. ty00 C .1C t/y0 C y D 0
7. ty00 C .2C 4t/y0 C .4C 4t/y D 0
8. ty00 � 2y0 C ty D 0
9. ty00 � 4y0 C ty D 0, assume y.0/ D 0

10. ty00 C .2C 2t/y0 C .2C t/y D 0
11–16. Use the Laplace transform to find solutions to each of the following
differential equations. Use the results of Exercises 1 to 4.

11. �ty00 C .t � 2/y0 C y D 0
12. �ty00 � 2y0 C ty D 0
13. ty00 C .2 � 5t/y0 C .6t � 5/y D 0
14. ty00 C 2y0 C 9ty0 D 0
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15. ty000 C 3y00 C ty0 C y D 0
16. ty00 C .2C t/y0 C y D 0
17–25. Laguerre Polynomials: Each of these problems develops further properties
of the Laguerre polynomials.

17. The Laguerre polynomial of order n can be defined in another way: `n.t/ D
1
nŠ

et d
n

dtn
.e�t tn/. Show that this definition is consistent with the definition in the

text.
18. Verify (3) in Theorem 9:

E�`n D �n`n�1:

19. The Lie bracket ŒA;B� of two differential operators A and B is defined by

ŒA;B� D AB � BA:

Show the following:

• ŒEı; EC� D �2EC:
• ŒEı; E�� D 2E�:
• ŒEC; E�� D Eı:

20. Show that the Laplace transform of `n.at/, a 2 R, is .s�a/n
snC1 .

21. Verify that
nX

kD0

 
n

k

!
ak`k.t/.1 � a/n�k D `n.at/:

22. Show that Z t

0

`n.x/ dx D `n.t/ � `nC1.t/:

23. Verify the following recursion formula:

`nC1.t/ D 1

nC 1 ..2nC 1 � t/`n.t/ � n`n�1.t// :

24. Show that Z t

0

`n.x/`m.t � x/ dx D `mCn.t/ � `mCnC1.t/:

25. Show that Z 1

t

e�x`n.x/ dx D e�t .`n.t/ � `n�1.t// :
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5.5 Reduction of Order

It is a remarkable feature of linear differential equations that one nonzero
homogeneous solution can be used to obtain a second independent solution. Suppose
L D a2.t/D2 C a1.t/D C a0.t/ and suppose y1.t/ is a known nonzero solution. It
turns out that a second independent solution will take the form

y2.t/ D u.t/y1.t/; (1)

where u.t/ is to be determined. By substituting y2 into Ly D 0, we find that u.t/
must satisfy a second order differential equation, which, by a simple substitution,
can be reduced to a first order separable differential equation. After u.t/ is found,
(1) gives y2.t/, a second independent solution.

The procedure is straightforward. We drop the functional dependence on t to
make the notation simpler. The product rule gives

y0
2 D u0y1 C uy0

1

and y00
2 D u00y1 C 2u0y0

1 C uy00
1 :

Substituting these equations into Ly2 gives

Ly2 D a2y00
2 C a1y0

2 C a0y2
D a2.u00y1 C 2u0y0

1 C uy00
1 /C a1.u0y1 C uy0

1/C a0uy1
D u00a2y1 C u0.2a2y0

1 C a1y1/C u.a2y
00
1 C a1y0

1 C a0y1/
D u00a2y1 C u0.2a2y0

1 C a1y1/:

In the third line above, the coefficient of u is zero because y1 is assumed to be a
solution to Ly D 0. The equation Ly2 D 0 implies

u00a2y1 C u0.2a2y0
1 C a1y1/ D 0; (2)

another second order differential equation in u. One obvious solution to (2) is u.t/ a
constant, implying y2 is a multiple of y1. To find another independent solution, we
use the substitution v D u0 to get

v0a2y1 C v.2a2y
0
1 C a1y1/ D 0;

a first order separable differential equation in v. This substitution gives this
procedure its name: The product reduction of order. It is now straightforward to
solve for v. In fact, separating variables gives

v0

v
D �2y

0
1

y1
� a1
a2
:
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From this, we get

v D 1

y21
e� R

a1=a2 :

Since v D u0, we integrate v to get

u D
Z

1

y21
e� R

a1=a2 ; (3)

which is independent of the constant solution. Substituting (3) into (1) then gives
a new solution independent of y1. Admittedly, (3) is difficult to remember and not
very enlightening. In the exercises, we recommend following the procedure we have
outlined above. This is what we shall do in the examples to follow.

Example 1. The function y1.t/ D et is a solution to

.t � 1/y00 � ty0 C y D 0:

Use reduction of order to find another independent solution and write down the
general solution.

I Solution. Let y2.t/ D u.t/et . Then

y0
2.t/ D u0.t/et C u.t/et

y00
2 .t/ D u00.t/et C 2u0.t/et C u.t/et :

Substitution into the differential equation .t � 1/y00 � ty0 C y D 0 gives

.t � 1/.u00.t/et C 2u0.t/et C u.t/et / � t.u0.t/et C u.t/et /C u.t/et D 0

which simplifies to
.t � 1/u00 C .t � 2/u0 D 0:

Let v D u0. Then we get .t � 1/v0 C .t � 2/v D 0. Separating variables gives

v0

v
D �.t � 2/

t � 1 D �1C 1

t � 1
with solution v D e�t .t � 1/. Integration by parts gives u.t/ D R

v.t/ dt D �te�t .
Substitution gives

y2.t/ D u.t/et D �te�tet D �t:
It is easy to verify that this is indeed a solution. Since our equation is homogeneous,
we know �y2.t/ D t is also a solution. Clearly t and et are independent. By
Theorem 2 of Sect. 5.2, the general solution is

y.t/ D c1t C c2et : J
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Example 2. In Example 7 of Sect. 5.4, we showed that y1 D sin t
t

is a solution to

ty00 C 2y0 C ty D 0:

Use reduction of order to find a second independent solution and write down the
general solution.

I Solution. Let y2.t/ D u.t/ sin t
t
: Then

y0
2.t/ D u0.t/

sin t

t
C u.t/

t cos t � sin t

t2

y00
2 .t/ D u00.t/

sin t

t
C 2u0.t/

t cos t � sin t

t2
C u.t/

�t2 sin t � 2t cos t C 2 sin t

t3
:

We next substitute y2 into ty00 C 2y0 C ty D 0 and simplify to get

u00.t/ sin t C 2u0.t/ cos t D 0:

Let v D u0. Then we get v0.t/ sin t C 2v.t/ cos t D 0. Separating variables gives

v0

v
D �2 cos t

sin t

with solution
v.t/ D csc2.t/:

Integration gives u.t/ D R v.t/ dt D � cot.t/, and hence,

y2.t/ D �.cot t/
sin t

t
D � cos t

t
:

By Theorem 2 of Sect. 5.2, the general solution can be written as

c1
sin t

t
C c2 cos t

t
:

Compare this result with Examples 4 of Sect. 5.1 and 7 of Sect. 5.4. J

We remark that the constant of integration in the computation of u was chosen
to be 0 in both examples. There is no loss in this for if a nonzero constant, c say,
is chosen, then y2 D uy1 C cy1. But cy1 is already known to be a homogeneous
solution. We gain nothing by adding a multiple of it in y2.
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Exercises

1–16. For each differential equation and the given solution, use reduction of order
to find a second independent solution and write down the general solution.

1. t2y00 � 3ty0 C 4y D 0,

y1.t/ D t2
2. t2y00 C 2ty0 � 2y D 0,

y1.t/ D t
3. 4t2y00 C y D 0;
y1.t/ D

p
t

4. t2y00 C 2ty0 D 0,

y1.t/ D 1
t

5. t2y00 � t.t C 2/y0 C .t C 2/y D 0;
y1.t/ D t

6. t2y00 � 4ty0 C .t2 C 6/y D 0,

y1.t/ D t2 cos t

7. ty00 � y0 C 4t3y D 0,

y1.t/ D sin t2

8. ty00 � 2.t C 1/y0 C 4y D 0,

y1.t/ D e2t

9. y00 � 2.sec2 t/ y D 0,

y1.t/ D tan t

10. ty00 C .t � 1/y0 � y D 0,

y1.t/ D e�t

11. y00 � .tan t/y0 � .sec2 t/y D 0,

y1.t/ D tan t

12. .1C t2/y00 � 2ty0 C 2y D 0,

y1.t/ D t
13. .cos 2t C 1/y00 � 4y D 0, t 2 .��=2; �=2/,

y1.t/ D sin 2t
1Ccos 2t

14. t2y00 � 2ty0 C .t2 C 2/y D 0;
y1.t/ D t cos t

15. .1 � t2/y00 C 2y D 0, �1 < t < 1,

y1.t/ D 1 � t2
16. .1 � t2/y00 � 2ty0 C 2y D 0, �1 < t < 1,

y1.t/ D t



372 5 Second Order Linear Differential Equations



5.6 Variation of Parameters 373

5.6 Variation of Parameters

Let L be a second order linear differential operator. In this section, we address
the issue of finding a particular solution to a nonhomogeneous linear differential
equation L.y/ D f , where f is continuous on some interval I . It is a pleasant
feature of linear differential equations that the homogeneous solutions can be used
decisively to find a particular solution. The procedure we use is called variation of
parameters and, as you shall see, is akin to the method of reduction of order.

Suppose, in particular, that L D D2 C a1.t/D C a0.t/, that is, we will assume
that the leading coefficient function is 1, and it is important to remember that this
assumption is essential for the method we develop below. Suppose fy1; y2g is a
fundamental set for L.y/ D 0. We know then that all solutions of the homogeneous
equation L.y/ D 0 are of the form c1y1 C c2y2. To find a particular solution yp to
L.y/ D f , the method of variation of parameters makes two assumptions. First,
the parameters c1 and c2 are allowed to vary (hence the name). We thus replace
the constants c1 and c2 by functions u1.t/ and u2.t/, and assume that the particular
solution yp, takes the form

yp.t/ D u1.t/y1.t/C u2.t/y2.t/: (1)

The second assumption is

u0
1.t/y1.t/C u0

2.t/y2.t/ D 0: (2)

What is remarkable is that these two assumptions consistently lead to explicit
formulas for u1.t/ and u2.t/ and hence a formula for yp.

To simplify notation in the calculations that follow, we will drop the “t” in
expressions like u1.t/, etc. Before substituting yp into L.y/ D f , we first calculate
y0

p and y00
p :

y0
p D u0

1y1 C u1y
0
1 C u0

2y2 C u2y
0
2

D u1y
0
1 C u2y

0
2;

where we used (2) to simplify. Now for the second derivative

y00
p D u0

1y
0
1 C u1y

00
1 C u0

2y
0
2 C u2y

00
2 :

We now substitute yp into L.y/:

L.yp/ D y00
p C a1y0

p C a0yp

D u0
1y

0
1 C u1y

00
1 C u0

2y
0
2 C u2y

00
2 C a1.u1y0

1 C u2y
0
2/C a0.u1y1 C u2y2/

D u0
1y

0
1 C u0

2y
0
2 C u1.y

00
1 C a1y0

1 C a0y1/C u2.y
00
2 C a1y0

2 C a0y2/
D u0

1y
0
1 C u0

2y
0
2:
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In the second to the last equation, the coefficients of u1 and u2 are zero because y1
and y2 are assumed to be homogeneous solutions. The second assumption, (2), and
the equation L.yp/ D f now lead to the following system:

u0
1y1 C u0

2y2 D 0

u0
1y

0
1 C u0

2y
0
2 D f

which can be rewritten in matrix form as�
y1 y2
y0
1 y

0
2

	 �
u0
1

u0
2

	
D
�
0

f

	
: (3)

The leftmost matrix in (3) is none other than the Wronskian matrix, W.y1; y2/,
which has a nonzero determinant because fy1; y2g is a fundamental set (cf.
Proposition 4 of Sect. 5.2). By Cramer’s rule, we can solve for u0

1 and u0
2. We obtain

u0
1 D

�y2f
w.y1; y2/

;

u0
2 D

y1f

w.y1; y2/
:

We now obtain an explicit formula for a particular solution:

yp.t/ D u1y1 C u2y2

D
�Z �y2f

w.y1; y2/

�
y1 C

�Z
y1f

w.y1; y2/

�
y2:

The following theorem consolidates these results with Theorem 6 of Sect. 5.1.

Theorem 1. Let L D D2C a1.t/DC a0.t/, where a1.t/ and a0.t/ are continuous
on an interval I . Suppose fy1; y2g is a fundamental set of solutions for L.y/ D 0.
If f is continuous on I , then a particular solution, yp, to L.y/ D f is given by the
formula

yp D
�Z �y2f

w.y1; y2/

�
y1 C

�Z
y1f

w.y1; y2/

�
y2: (4)

Furthermore, the solution set to L.y/ D f becomes
˚
yp C c1y1 C c2y2 W c1; c2 2 R

�
:

Remark 2. Equation (4), which gives an explicit formula for a particular solution,
is too complicated to memorize, and we do not recommend students to do this.
Rather, the point of variation of parameters is the method that leads to (4), and our
recommended starting point is (3). You will see such matrix equations as we proceed
in the text.
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We will illustrate the method of variation of parameters with two examples.

Example 3. Find the general solution to the following equation:

t2y00 � 2y D t2 ln t:

I Solution. In standard form, this becomes

y00 � 2

t2
y D ln t:

The associated homogeneous equation is y00� .2=t2/y D 0 or, equivalently, t2y00�
2y D 0 and is a Cauchy–Euler equation. The indicial polynomial is Q.s/ D s2 �
s�2 D .s�2/.sC1/, which has 2 and�1 as roots. Thus,

˚
t�1; t2

�
is a fundamental

set to the homogeneous equation y00 � .2=t2/y D 0, by Theorem 4 of Sect. 5.3. Let
yp D t�1u1.t/C t2u2.t/. Our starting point for determining u1 and u2 is the matrix
equation

�
t�1 t2
�t�2 2t

	 �
u0
1

u0
2

	
D
�
0

ln t

	

which is equivalent to the system

t�1u0
1 C t2u0

2 D 0

�t�2u0
1 C 2tu0

2 D ln t:

Multiplying the bottom equation by t and then adding the equations together give
3t2u0

2 D t ln t , and hence,

u0
2 D

1

3t
ln t:

Substituting u0
2 into the first equation and solving for u0

1 give

u0
1 D �

t2

3
ln t:

Integration by parts leads to

u1 D �1
3

�
t3

3
ln t � t

3

9

�

and a simple substitution gives

u2 D 1

6
.ln t/2:
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We substitute u1 and u2 into (1) to get

yp.t/ D �1
3

�
t3

3
ln t � t

3

9

�
t�1 C 1

6
.ln t/2t2 D t2

54
.9.ln t/2 � 6 ln t C 2/:

It follows that the solution set is


t2

54
.9.ln t/2 � 6 ln t C 2/C c1t�1 C c2t2 W c1; c2 2 R

�
: J

Example 4. Find the general solution to

ty00 C 2y0 C ty D 1:

Use the results of Example 2 of Sect. 5.5.

I Solution. Example 2 of Sect. 5.5 showed that

y1.t/ D sin t

t
and y2.t/ D cos t

t

are homogeneous solutions to ty00C 2y0C ty D 0. Let yp D sin t
t

u1.t/C cos t
t

u2.t/.
Then 2

664
sin t

t

cos t

t

t cos t � sin t

t2
�t sin t � cos t

t2

3
775
"

u0
1.t/

u0
2.t/

#
D
2
4 01
t

3
5 :

(We get 1=t in the last matrix because the differential equation in standard form is
y00 C .2=t/y0 C y D 1=t:) From the matrix equation, we get the following system:

sin t

t
u0
1.t/C

cos t

t
u0
2.t/ D 0;

t cos t � sin t

t2
u0
1.t/C

�t sin t � cos t

t2
u0
2.t/ D

1

t
:

The first equation gives
u0
1.t/ D �.cot t/u0

2.t/:

If we multiply the first equation by t , the second equation by t2, and then add, we get

.cos t/u0
1.t/ � .sin t/u0

2.t/ D 1:

Substituting in u0
1.t/ and solving for u0

2.t/ give u0
2.t/ D � sin t , and thus, u0

1.t/ D
cos t: Integration gives
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u1.t/ D sin t;

u2.t/ D cos t:

We now substitute these functions into yp to get

yp.t/ D sin t

t
sin t C cos t

t
cos t

D sin2 t C cos2 t

t

D 1

t
:

The general solution is

y.t/ D 1

t
C c1 sin t

t
C c2 cos t

t
: J
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Exercises

1–5. Use variation of parameters to find a particular solution and then write down
the general solution. Next solve each using the method of undetermined coefficients
or the incomplete partial fraction method.

1. y00 C y D sin t
2. y00 � 4y D e2t

3. y00 � 2y0 C 5y D et

4. y00 C 3y0 D e�3t

5. y00 � 3y0 C 2y D e3t

6–16. Use variation of parameters to find a particular solution and then write down
the general solution. In some exercises, a fundamental set fy1; y2g is given.

6. y00 C y D tan t

7. y00 � 2y0 C y D et

t
8. y00 C y D sec t

9. t2y00 � 2ty0 C 2y D t4
10. ty00 � y0 D 3t2 � 1

y1.t/ D 1 and y2.t/ D t2
11. t2y00 � ty0 C y D t
12. y00 � 4y0 C 4y D e2t

t 2C1
13. y00 � .tan t/y0 � .sec2 t/y D t

y1.t/ D tan t and y2.t/ D sec t
14. ty00 C .t � 1/y0 � y D t2e�t

y1.t/ D t � 1 and y2.t/ D e�t
15. ty00 � y0 C 4t3y D 4t5

y1 D cos t2 and y2.t/ D sin t2

16. y00 � y D 1
1Ce�t

17. Show that the constants of integration in the formula for yp in Theorem 1 can
be chosen so that a particular solution can be written in the form:

yp.t/ D
Z t

a

ˇ̌
ˇ̌�y1.x/ y2.x/

y1.t/ y2.t/

	ˇ̌ˇ̌
ˇ̌
ˇ̌�y1.x/ y2.x/

y0
1.x/ y0

2.x/

	ˇ̌ˇ̌
f .x/dx;

where a and t are in the interval I , and the absolute value signs indicate the
determinant.

18–21. For each problem below, use the result of Problem 17, with a D 0, to obtain
a particular solution to the given differential equation in the form given. Solve the
differential equation using the Laplace transform method and compare.
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18. y00 C a2y D f .t/
19. y00 � a2y D f .t/
20. y00 � 2ay0 C a2y D f .t/
21. y00 � .aC b/y0 C aby D f .t/; a ¤ b
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5.7 Summary of Laplace Transforms

Laplace transforms and rules presented in Chap. 5 are summarized in Tables 5.1 and
5.2.

Table 5.1 Laplace transform rules

Assumptions Result Page

Initial value theorem
1. f , f 0 of exponential order f .0/ D lim

s!1
sF.s/ 356

Final value theorem
2. f , f 0 of exponential order and lim

t!1
f .t/ D lim

s!0
sF.s/ 356

limt!1 f .t/ exists

Transform integral formula

3. f of exponential order and L
n
f .t/

t

o
.s/ D R1

s F .�/ d� 357
f .t/

t
has a continuous extension to 0

Table 5.2 Laplace transforms

f .t/ F.s/ Page

1.
sin t

t
tan�1

1

s
358

2.
sin at

t
tan�1

�a
s

�
365

3.
ebt � eat

t
ln
� s � a

s � b

�
365

4. 2
cos bt � cos at

t
ln

�
s2 C a2

s2 C b2

�
365

5. 2
cos bt � cos at

t 2
s ln

�
s2 C b2

s2 C a2

�
� 2b tan�1

�
b

s

�
365

C2a tan�1
�a
s

�

Laguerre polynomials

6. `n.t/ D Pn
kD0.�1/k

�
n
k

�
tk

kŠ

.s � 1/n

snC1
361

7. `n.at/
.s � a/n

snC1
366





Chapter 6
Discontinuous Functions and the Laplace
Transform

Our focus in this chapter is a study of first and second order linear constant
coefficient differential equations

y0 C ay D f .t/;

y00 C ay0 C by D f .t/;

where the input or forcing function f .t/ is more general than we have studied so far.
These types of forcing functions arise in applications only slightly more complicated
than those we have already considered. For example, imagine a mixing problem (see
Example 11 of Sect. 1.4 and the discussion that followed it for a review of mixing
problems) where there are two sources of incoming salt solutions with different
concentrations as illustrated in the following diagram.

Salt Mixture1 Salt Mixture2

Initially, the first source may be flowing for several minutes. Then the second source
is turned on at the same time the first source is turned off. Such a situation will result
in a differential equation y0 C ay D f .t/ where the input function has a graph
similar to the one illustrated in Fig. 6.1. The most immediate observation is that the
input function is discontinuous. Nevertheless, the Laplace transform methods we
will develop will easily handle this situation, leading to a formula for the amount of
the salt in the tank as a function of time.

As a second example, imagine that a sudden force is applied to a spring-mass
dashpot system (see Sect. 3.6 for a discussion of these systems). For example, hit
the mass attached to the spring with a hammer, which is a very good idealization of

W.A. Adkins and M.G. Davidson, Ordinary Differential Equations,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-3618-8 6,
© Springer Science+Business Media New York 2012
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0

1

0 1 2 3 4
t

y

Concentration 1

Concentration 2

Fig. 6.1 The graph of
discontinuous input function
f .t/ where salt of
concentration level 1 enters
until time t D 2, at which
time the concentration
switches to a different level

what happens to the shock absorber on a car when the car hits a bump in the road.
Modeling this system will lead to a differential equation of the form

y00 C ay0 C by D f .t/;

where the forcing function is what we will refer to as an instantaneous impulse
function. Such a function has a “very large” (or even infinite) value at a single instant
t D t0 and is 0 for other times. Such a function is not a true function, but its effect on
systems can be analyzed effectively via the Laplace transform methods developed
later in this chapter.

This chapter will develop the necessary background on the types of discontinuous
functions and impulse functions which arise in basic applications of differential
equations. We will start by describing the basic concepts of calculus for these more
general classes of functions.
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6.1 Calculus of Discontinuous Functions

Piecewise Continuous Functions

A function f .t/ has a jump discontinuity at a point t D a if the left-hand limit
f .a�/ D limt!a� f .t/ and the right-hand limit f .aC/ D limt!aC

f .t/ both exist
(as real numbers, not ˙1) and

f .aC/ ¤ f .a�/:

The difference f .aC/�f .a�/ is frequently referred to as the jump in f .t/ at
tDa. Functions with jump discontinuities are typically described by using different
formulas on different subintervals of the domain. For example, the function f .t/

defined on the interval Œ0; 3� by

f .t/ D

8
ˆ̂
<

ˆ̂
:

t3 if 0 � t < 1;

1 � t if 1 � t < 2;

1 if 2 � t � 3

has a jump discontinuity at t D 1 since f .1�/ D 1 ¤ f .1C/ D 0 and at t D 2

since f .2�/ D �1 ¤ f .2C/ D 1. The jump at t D 1 is �1 and the jump at t D 2

is 2. The graph of f .t/ is given in Fig. 6.2. On the other hand, the function

g.t/ D
(

1=.1 � t/ if 0 � t < 1;

t if 1 � t � 2:

defined on the interval Œ0; 2� has a discontinuity at t D 1, but it is not a jump
discontinuity since limt!1� g.t/ D 1 does not exist.

We will say that a function f .t/ is piecewise continuous on a closed interval
Œa; b� if f .t/ is continuous except for possibly finitely many jump discontinuities.

0

0.5

1.0

-0.5

-1.0

3.02.52.01.51.00.5
t

y

Fig. 6.2 A piecewise
continuous function
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For convenience, it will not be required that f .t/ be defined at the jump discon-
tinuities. Suppose a1, : : :, an are the locations of the jump discontinuities in the
interval Œa; b� and assume ai < aiC1, for each i . On the interval .ai ; aiC1/, we can
extend f .t/ to a continuous function on the closed interval Œai ; aiC1� by defining
f .ai / D lim

t!a
C

i
f .t/ and f .aiC1/ D limt!a�

iC1
f .t/. Since a continuous function

on a closed interval is bounded and there are only finitely many jump discontinuities,
we have the following property of piecewise continuous functions.

Proposition 1. If f .t/ is a piecewise continuous function on Œa; b�, then f .t/ is
bounded.

How do we compute the derivative and integral of a piecewise continuous
function?

Integration of Piecewise Continuous Functions

If f .t/ is a piecewise continuous function on the interval Œa; b� and the jump
discontinuities are located at a1 < : : : < ak , we may let a0 D a and akC1 D b,
and, as we observed above, f .t/ extends to a continuous function on the each closed
interval Œai ; aiC1�. Thus, we can define the definite integral of f .t/ on Œa; b� by the
formula

bZ

a

f .t/ dt D
a1Z

a0

f .t/ dt C
a2Z

a1

f .t/ dt C � � � C
akC1Z

ak

f .t/ dt:

Example 2. Find
R t

0
f .u/ du for all t 2 Œ0; 1/ where f .t/ is the piecewise

continuous function defined by

f .t/ D
(

1 if 0 � t < 1;

0 if 1 � t < 1:

I Solution. The function f .t/ is given by different formulas on each of the
intervals Œ0; 1/ and Œ1; 1/. We will therefore break the calculation into two cases. If
t 2 Œ0; 1/, then

tZ

0

f .u/ du D
tZ

0

1 du D t:

It t 2 Œ1; 1/, then
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0

1

t

y

0

1

0 1 2 3 0 1 2 3
t

y

y =y = f(t) t
0 f(u)du

Fig. 6.3 The graph of the piecewise continuous function f .t/ and its integral
R t

0 f .u/ du

tZ

0

f .u/ du D
1Z

0

f .u/ du C
tZ

1

f .u/ du

D 1 C
tZ

1

0 du D 1:

Piecing these functions together gives

tZ

0

f .u/ du D
(

t if 0 � t < 1

1 if 1 � t < 1:

The graph of this function of t is shown in Fig. 6.3. J
Notice that the function

R t

0
f .u/ du is a continuous function of t , even though the

integrand f .t/ is discontinuous. This is always true as long as the function f .t/ has
only jump discontinuities, which is formalized in the following result.

Proposition 3. If f .t/ is a piecewise continuous function on an interval Œa; b� and
c; t 2 Œa; b�, then the integral

R t

c
f .u/ du exists and is a continuous function in the

variable t .

Proof. The integral exists as discussed above. Let F.t/ D R t

c
f .u/ du: Since f .t/

is piecewise continuous on Œa; b�, it is bounded by Proposition 1. We may then
suppose jf .t/j � B , for some B > 0. Let � > 0. Then

jF.t C �/ � F.t/j �
tC�Z

t

jf .u/j du �
tC�Z

t

B du D B�:

Therefore, lim�!0 F.t C �/ D F.t/, and hence, F.tC/ D F.t/. In a similar way,
F.t�/ D F.t/. This establishes the continuity of F . ut
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1

1
t

y

1−1−1

−1

t

y

y = fy = f(t) (t)

1

Fig. 6.4 The graph of the piecewise continuous function f .t/ and its derivative f 0.t /

Differentiation of Piecewise Continuous Functions

In the applications, we will consider functions that are differentiable except at
finitely many points in any interval Œa; b� of finite length. In this case we will use
the symbol f 0.t/ to denote the derivative of f .t/ even though it may not be defined
at some points. For example, the absolute value function

f .t/ D jt j D
(

�t if � 1 < t < 0

t if 0 � t < 1:

This function is continuous on .�1; 1/ and differentiable at all points except
t D 0. Then

f 0.t/ D
(

�1 if � 1 < t < 0

1 if 0 < t < 1:

Notice that f 0.t/ is not defined at t D 0, but the derivative of this discontinuous
function has produced a function with a jump discontinuity where the derivative
does not exist. See Fig. 6.4. Compare this with Fig. 6.3, where we have seen that
integrating a function with jump discontinuities produces a continuous function.

Differential Equations and Piecewise Continuous Functions

We now look at some examples of solutions to constant coefficient linear differential
equations with piecewise continuous forcing functions. We start with the first order
equation y0 C ay D f .t/ where a is a constant and f .t/ is a piecewise continuous
function. An equation of this type has a unique solution for each initial condition
provided the input function is continuous, which is the situation for f .t/ on each
subinterval on which it is continuous. To be able to extend the initial condition in
a unique manner across each jump discontinuity, we shall define a function y.t/ to
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0

1

2

0 1 2 3
t

yFig. 6.5 The graph of the
solution to Example 4

be a solution to y0 C ay D f .t/ if y.t/ is continuous and satisfies the differential
equation except at the jump discontinuities of the of the input function f .t/.

Example 4. Find a solution to

y0 C 2y D f .t/ D
(

4 if 0 � t < 1

0 if 1 � t < 1;
y.0/ D 1: (1)

I Solution. The procedure will be to solve the differential equation separately
on each of the subintervals where f .t/ is continuous and then piece the solution
together to make a continuous solution. Start with the interval Œ0 1/ which includes
the initial time t D 0. On this first subinterval, f .t/ D 4, so the differential
equation to be solved is y0 C 2y D 4. The solution uses the integrating factor
technique developed in Sect. 1.4. Multiplying both sides of y0 C 2y D 4 by the
integrating factor, e2t , leads to .e2t y/0 D 4e2t . Integrating and solving for y.t/

gives y.t/ D 2 C ce�2t , and the initial condition y.0/ D 1 implies that c D �1 so
that

y D 2 � e�2t ; 0 � t < 1:

On the interval Œ1; 1/, the differential equation to solve is y0 C 2y D 0, which has
the general solution y.t/ D ke�2t . To produce a continuous function, we need to
choose k so that this solution will match up with the solution found for the interval
Œ0; 1/. To do this, let y.1/ D y.1�/ D 2 � e�2. This value must match the value
y.1/ D ke�2 computed from the formula on Œ1; 1/. Thus, 2 � e�2 D ke�2 and
solving for k gives k D 2e2 � 1. Therefore, the solution on the interval Œ1; 1/ is
y.t/ D .2e2 � 1/e�2t . Putting the two pieces together gives the solution

y.t/ D
(

2 � e�2t if 0 � t < 1

.2e2 � 1/e�2t if 1 � t < 1:

The graph of this solution is shown in Fig. 6.5, where the discontinuity of the
derivative of y.t/ at t D 1 is evident by the kink at that point. J
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The method we used here insures that the solution we obtain is continuous and
the initial condition at t D 0 determines the subsequent initial conditions at the
points of discontinuity of f . We also note that the initial condition at t D 0, the left-
hand endpoint of the domain, was chosen only for convenience; we could have taken
the initial value at any point t0 � 0 and pieced together a continuous function on
both sides of t0. That this can be done in general is stated in the following theorem.

Theorem 5. Suppose f .t/ is a piecewise continuous function on an interval Œ˛; ˇ�

and t0 2 Œ˛; ˇ�. There is a unique continuous function y.t/ which satisfies the initial
value problem

y0 C ay D f .t/; y.t0/ D y0:

Proof. Follow the method illustrated in the example above to construct a continuous
solution. To prove uniqueness, suppose y1.t/ and y2.t/ are two continuous solu-
tions. If y.t/ D y1.t/ � y2.t/, then y.t0/ D 0 and y.t/ is a continuous solution to
y0 Cay D 0. On the interval containing t0 on which f .t/ is continuous, y.t/ D 0 by
the existence and uniqueness theorem. The initial value at the endpoint of adjacent
intervals is thus 0. Continuing in this way, we see that y.t/ is identically 0 on Œ˛; ˇ�

and hence y1.t/ D y2.t/. ut
Now consider a second order constant coefficient differential equation with a

piecewise continuous forcing function. Our method is similar to the one above,
however, we demand more out of our solution. Since the solution of a second
order equation with continuous input function is determined by the initial values
of both y.t/ and y0.t/, it will be necessary to extend both of these values across the
jump discontinuity in order to obtain a unique solution with a discontinuous input
function. Thus, if f .t/ is a piecewise continuous function, then we will say that a
function y.t/ is a solution to

y00 C ay0 C by D f .t/;

if y.t/ is continuous, has a continuous derivative, and satisfies the differential
equation except at the discontinuities of the forcing function f .t/.

Example 6. Find a solution y to

y00 C y D f .t/ D
(

1 if 0 � t < �

0 if � � t < 1;
y.0/ D 1; y0.0/ D 0:

I Solution. The general solution to the differential equation y00 C y D 1 on the
interval Œ0; �/ is y.t/ D 1 C a cos t C b sin t , and the initial conditions y.0/ D 1,
y0.0/ D 0 imply a D 0, b D 0, so the solution on Œ0; �/ is y.t/ D 1. Taking limits
as t ! �� gives y.�/ D 1, y0.�/ D 0. On the interval Œ�; 1/, the differential
equation y00 Cy D f .t/ becomes y00 Cy D 0 with the initial conditions y.�/ D 1,
y0.�/ D 0. The general solution on this interval is thus y.t/ D a cos t Cb sin t , and
taking into account the values at t D � gives a D �1, b D 0. Piecing these two
solutions together gives
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Fig. 6.6 The graph of the solution y.t/ to Example 4 is shown in (a), while the derivative y0.t / is
graphed in (b). Note that the derivative y0.t / is continuous, but it is not differentiable at t D �

y.t/ D
(

1 if 0 � t < �

� cos t if � � t < 1:

Its derivative is

y0.t/ D
(

0 if 0 � t < �

sin t if � � t < 1:

Figure 6.6 gives (a) the graph of the solution and (b) the graph of its derivative.
The solution is differentiable on the interval Œ0; 1�, and the derivative is continuous
on Œ0; 1/. However, the kink in the derivative at t D � indicates that the second
derivative is not continuous. J

In direct analogy to the first order case we considered above, we are led to the
following theorem. The proof is omitted.

Theorem 7. Suppose f is a piecewise continuous function on an interval Œ˛; ˇ� and
t0 2 Œ˛; ˇ�. There is a unique continuous function y.t/ with continuous derivative
which satisfies

y00 C ay0 C by D f .t/; y.t0/ D y0; y0.t0/ D y1:

Piecing together solutions in the way that we described above is at best tedious.
Later in this chapter, the Laplace transform method for solving differential equations
will be extended to provide a simpler alternate method for solving differential
equations like the ones above. It is one of the hallmarks of the Laplace transform.
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Exercises

1–8. Match the following functions that are given piecewise with their graphs and
determine where jump discontinuities occur.

1. f .t/ D

8
ˆ̂
<

ˆ̂
:

1 if 0 � t < 4

�1 if 4 � t < 5

0 if 5 � t � 6

2. f .t/ D

8
ˆ̂
<

ˆ̂
:

t if 0 � t < 1

2 � t if 1 � t < 2

1 if 2 � t � 6

3. f .t/ D
(

t=3 if 0 � t < 3

2 � t=3 if 3 � t � 6

4. f .t/ D t � n for n � t � n C 1 and 0 � n � 5

5. f .t/ D
(

1 if 2n � t < 2n C 1

0 if 2n C 1 � t < 2n C 2
for 0 � n � 2

6. f .t/ D

8
ˆ̂
<

ˆ̂
:

t2 if 0 � t < 2

4 if 2 � t < 3

7 � t if 3 � t � 6

7. f .t/ D

8
ˆ̂
<

ˆ̂
:

1 � t if 0 � t < 2

3 � t if 2 � t < 4

5 � t if 4 � t � 6

8. f .t/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

1 if 0 � t < 2

3 � t if 2 � t < 3

2.t � 3/ if 3 � t < 4

2 if 4 � t < 1
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Graphs for problems 1 through 8
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9–12. Compute the indicated integral.

9.
R 5

0
f .t/ dt , where f .t/ D

8
ˆ̂
<

ˆ̂
:

t2 � 4 if 0 � t < 2

0 if 2 � t < 3

�t C 3 if 3 � t < 5

10.
R 2

0
f .u/ du, where f .u/ D

(
2 � u if 0 � u < 1

u3 if 1 � u < 2
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11.
R 2�

0 jsin xj dx

12.
R 3

0 f .w/ dw where f .w/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

w if 0 � w < 1

1
w if 1 � w < 2

1
2

if 2 � w < 1
13–16. Compute the indicated integral (See problems 1–8 for the appropriate
formula to match with each graph.)

13.
R 5

2
f .t/ dt; where the graph of f is

0

1

2

0 1 2 3 4 5 6
t

14.
R 6

0
f .t/ dt; where the graph of f is

0

1

−1

1 2 3 4 5 6
t

15.
R 6

0
f .u/ du; where the graph of f is

0

1

0 1 2 3 4 5 6
t

16.
R 6

0
f .t/ dt; where the graph of f is

0

2

4

0 1 2 3 4 5 6
t
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17–20. Of the following four piecewise-defined functions, determine which ones

(a) Satisfy the differential equation

y0 C 4y D f .t/ D
(

4 if 0 � t < 2

8t if 2 � t < 1;

except at the point of discontinuity of f

(b) Are continuous
(c) Are continuous solutions to the differential equation with initial condition

y.0/ D 2. Do not solve the differential equation

17. y.t/ D

8

<̂

:̂

1 if 0 � t < 2

2t � 1
2

� 5
2
e�4.t�2/ if 2 � t < 1

18. y.t/ D

8

<̂

:̂

1 C e�4t if 0 � t < 2

2t � 1
2

� 5
2
e�4.t�2/ C e�4t if 2 � t < 1

19. y.t/ D

8

<̂

:̂

1 C e�4t if 0 � t < 2

2t � 1
2

� 5e�4.t�2/

2
if 2 � t < 1

20. y.t/ D

8

<̂

:̂

2e�4t if 0 � t < 2

2t � 1
2

� 5
2
e�4.t�2/ C e�4t if 2 � t < 1

21–24. Of the following four piecewise-defined functions, determine which ones

(a) satisfy the differential equation

y00 � 3y0 C 2y D f .t/ D
(

et if 0 � t < 1

e2t if 1 � t < 1;

except at the point of discontinuity of f

(b) Are continuous
(c) Have continuous derivatives
(d) Are continuous solutions to the differential equation with initial condition

y.0/ D 0 and y0.0/ D 0 and have continuous derivatives. Do not solve the
differential equation.
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21. y.t/ D
(

�tet � et C e2t if 0 � t < 1

te2t � 2et if 1 � t < 1

22. y.t/ D

8

<̂

:̂

�tet � et C e2t if 0 � t < 1

te2t � 3et � 1
2
e2t if 1 � t < 1

23. y.t/ D
(

�tet � et C e2t if 0 � t < 1

te2t C etC1 � et � e2t � e2t�1 if 1 � t < 1

24. y.t/ D
(

�tet C et � e2t if 0 � t < 1

te2t C etC1 C et � e2t�1 � 3e2t if 1 � t < 1
25–30. Solve the following differential equations.

25. y0 � y D

8
ˆ̂
<

ˆ̂
:

1 if 0 � t < 2;

�1 if 2 � t < 4;

0 if 4 � t < 1
y.0/ D 0

26. y0 C 3y D
(

t if 0 � t < 1

1 if 1 � t < 1;
y.0/ D 0

27. y0 � y D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0 if 0 � t < 1

t � 1 if 1 � t < 2

3 � t if 2 � t < 3

0 if 3 � t < 1;

y.0/ D 0

28. y0 C y D
(

sin t if 0 � t < �

0 if � � t < 1 y.�/ D �1

29. y00 � y D
(

t if 0 � t < 1

0 if 1 � t < 1;
y.0/ D 0; y0.0/ D 1

30. y00 � 4y0 C 4y D
(

0 if 0 � t < 2

4 if 2 � t < 1 y.0/ D 1; y0.0/ D 0

31. Suppose f is a piecewise continuous function on an interval Œ˛; ˇ�. Let a 2
Œ˛; ˇ� and define y.t/ D y0CR t

a f .u/ du. Show that y is a continuous solution to

y0 D f .t/ y.a/ D y0
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32. Suppose f is a piecewise continuous function on an interval Œ˛; ˇ�. Let a 2
Œ˛; ˇ� and define y.t/ D y0 C e�at

R t

a
eauf .u/ du: Show that y is a continuous

solution to
y0 C ay D f .t/ y.a/ D y0

33. Let f .t/ D
(

sin.1=t/ if t ¤ 0

0 if t D 0

(a) Show that f is bounded.
(b) Show that f is not continuous at t D 0.
(c) Show that f is not piecewise continuous.
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6.2 The Heaviside Class H

In Chap. 2, the Laplace transform was introduced and extensively studied for the
class of continuous functions of exponential type. We now want to broaden the range
of applicability of the Laplace transform method for solving differential equations
by allowing for some discontinuous forcing functions. Thus, we say a function f .t/

is piecewise continuous on Œ0; 1/ if f .t/ is piecewise continuous on each closed
subinterval Œ0; b� for all b > 0. In addition, we will maintain the growth condition
so that convergence of the integrals defining the Laplace transform is guaranteed.
Thus, we will define the Heaviside class to be the set H of all piecewise continuous
functions on Œ0; 1/ of exponential type. Specifically, f 2 H if:

1. f is piecewise continuous on Œ0; 1/.
2. There are constants K and a such that jf .t/j � Keat for all t � 0.

One can show H is a linear space, that is, closed under addition and scalar
multiplication (see Exercises 43–44). It is to this class H of functions that we extend
the Laplace transform. The first observation is that the argument of Proposition 3 of
Sect. 2.2 guaranteeing the existence of the Laplace transform extends immediately
to functions in H.

Proposition 1. For f 2 H of exponential type of order a, the Laplace transform
F.s/ D R1

0 e�st f .t/ dt exists for s > a, and lims!1 F.s/ D 0.

Proof. The finite integral
R N

0
e�st f .t/ dt exists because f is piecewise continuous

on Œ0; N �. Since f is also of exponential type, there are constants K � 0 and a such
that jf .t/j � Keat for all t � 0. Thus, for all s > a,

jF.s/j �
1Z

0

je�st f .t/j dt �
1Z

0

je�st Keat j dt D K

1Z

0

e�.s�a/t dt D K

s � a
:

This shows that the integral converges absolutely, and hence, the Laplace transform
exists for s > a and F.s/ � K=.s � a/. It follows that

lim
s!1 F.s/ D 0: ut

Many of the properties of the Laplace transform that were discussed in Chap. 2, and
collected in Table 2.3, for continuous functions carry over to the Heaviside class
without change in statement or proof. Some of these properties are summarized
below.
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Linearity L faf C bgg = aL ff g C bL fgg :

The first translation principle L fe�at f .t/g .s/ = L ff .t/g .s � a/:

Differentiation in transform space L.�tf .t// =
d

ds
F.s/;

L f.�t/nf .t/g = F .n/.s/:

The dilation principle L ff .bt/g .s/ =
1

b
L ff .t/g .s=b/.

The important input derivative formula is not on the above list because of a
subtlety to be considered in the next section. For now, we will look at some direct
computations of Laplace transforms of functions in H and a useful tool (the second
translation theorem) for avoiding most direct calculations.

As might be expected, computations using the definition to compute Laplace
transforms of even simple piecewise continuous functions can be tedious.

Example 2. Use the definition to compute the Laplace transform of

f .t/ D
(

t2 if 0 � t < 1;

2 if 1 � t < 1:

I Solution. Clearly, f is piecewise continuous and bounded; hence, it is in the
Heaviside class. We can thus proceed with the definition confident, by Proposition 1,
that the improper integral will converge. We have

L ff .t/g .s/ D
1Z

0

e�st f .t/ dt

D
1Z

0

e�st t 2 dt C
1Z

1

e�st 2 dt

For the first integral, we need integration by parts twice:

1Z

0

e�st t 2 dt D t2e�st

�s

ˇ
ˇ
ˇ
ˇ

1

0

C 2

s

1Z

0

e�st t dt

D e�s

�s
C 2

s

0

@
te�st

�s

ˇ
ˇ
ˇ
ˇ

1

0

C 1

s

1Z

0

e�st dt

1

A
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yFig. 6.7 The graph of the
Heaviside function h.t/ (also
called the unit step function)

D �e�s

s
C 2

s

 

�e�s

s
� 1

s2
e�st

ˇ
ˇ
ˇ
ˇ

1

0

!

D �e�s

s
� 2e�s

s2
C 2

s3
� 2e�s

s3
:

The second integral is much simpler, and we get

1Z

1

e�st 2 dt D 2e�s

s
:

Now putting the two pieces together and simplifying gives

L ff .t/g .s/ D 2

s3
C e�s

�

� 2

s3
� 2

s2
C 1

s

�

: J

As we saw for the Laplace transform of continuous functions, calculations
directly from the definition are rarely needed since the Heaviside function that we
introduce next will lead to a Laplace transform principle that will allow for the
use of our previously derived formulas and make calculations like the one above
unnecessary. The unit step function or Heaviside function is defined on the real
line by

h.t/ D
(

0 if t < 0;

1 if 0 � t < 1:

The graph of this function is given in Fig. 6.7.
Clearly, h.t/ is piecewise continuous, and it is bounded so it is of exponential

type, and hence, h.t/ 2 H. In addition to h.t/ itself, it will be necessary to consider
the translations h.t � c/ of h.t/ for all c � 0. From the definition of h.t/, we see

h.t � c/ D
(

0 if � 1 � t < c;

1 if c � t < 1:

Note that the graph of h.t � c/ is just the graph of h.t/ translated c units to the
right. The graphs of two examples are given in Fig. 6.8.
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Fig. 6.9 The graph of the on–off switch �Œa; b/.t /

More complicated functions can be built from the Heaviside function. The most
important building block is the characteristic function �Œa; b/.t/ on the interval
Œa; b/ defined by

�Œa; b/.t/ D
(

1 if t 2 Œa; b/;

0 if t … Œa; b/:

The characteristic function �Œa;b/.t/ serves as the model for an on–off switch at
t D a (on) and t D b (off). That is, �Œa; b/.t/ is 1 (the on state) for t in the interval
Œa; b/ and 0 (the off state) for t not in Œa; b/. Because of this, we shall also refer to
�Œa; b/.t/ as an on–off switch. A graph of a typical on–off switch is given in Fig. 6.9.

Here are some useful relationships between the on-off switches �Œa; b/.t/ and the
Heaviside function h.t/. All are obtained by direct comparison of the value of the
function on the left with that on the right.

1. �Œ0; 1/.t/ D h.t/, and if these functions are restricted to the interval Œ0; 1/

(rather than defined on all of R), then

�Œ0; 1/.t/ D h.t/ D 1: (1)

2. If 0 � a < 1, then
�Œa; 1/.t/ D h.t � a/: (2)

3. If 0 � a < b < 1, then

�Œa; b/.t/ D h.t � a/ � h.t � b/: (3)
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Using on–off switches, we can easily describe functions defined piecewise. The
strategy is to write f .t/ as a sum of terms of the form fi .t/�Œai ; aiC1/.t/ if fi .t/

is the formula used to describe f .t/ on the subinterval Œai ; aiC1/. Then using the
relationships listed above, it is possible to write f .t/ in terms of translates of the
Heaviside function h.t/. Here are some examples.

Example 3. Write the piecewise-defined function

f .t/ D
(

t2 if 0 � t < 1;

2 if 1 � t < 1:

in terms of on–off switches and in terms of translates of the Heaviside function.

I Solution. In this piecewise function, t2 is in the on state only in the interval Œ0; 1/

and 2 is in the on state only in the interval Œ1; 1/. Thus,

f .t/ D t2�Œ0;1/.t/ C 2�Œ1;1/.t/:

Now rewriting the on–off switches in terms of the Heaviside functions using (1)–(3),
we obtain

f .t/ D t2.h.t/ � h.t � 1// C 2h.t � 1/

D t2h.t/ C .2 � t2/h.t � 1/

D t2 C .2 � t2/h.t � 1/: J

Example 4. Write the piecewise-defined function

f .t/ D

8
ˆ̂
<

ˆ̂
:

cos t if 0 � t < �;

1 if � � t < 2�;

0 if 2� � t < 1:

in terms of on–off switches and in terms of translates of the Heaviside function.

I Solution. The function is defined by different formulas on each of the intervals
Œ0; �/, Œ�; 2�/, and Œ2�; 1/. Thus,

f .t/ D cos t�Œ0; �/.t/ C 1�Œ�; 2�/.t/ C 0�Œ2�; 1/.t/

D cos t.h.t/ � h.t � �// C .h.t � �/ � h.t � 2�//

D .cos t/h.t/ C .1 � cos t/h.t � �/ � h.t � 2�/

D cos t C .1 � cos t/h.t � �/ � h.t � 2�/: J
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Fig. 6.10 The graphs of (a) h.t �1/f .t/, (b) f .t �1/, and (c) h.t �1/f .t �1/ for f .t/ D 2t �t 2

In the above descriptions, there are functions of the form g.t/h.t � c/ and
g.t/�Œa; b/.t/. How do the graphs of these functions correspond to the graph of g.t/?
Here is an example.

Example 5. Compare the graph of each of the following functions to the graph of
f .t/ D 2t � t2:

(a) h.t � 1/f .t/ (b) f .t � 1/ (c) h.t � 1/f .t � 1/

I Solution. The graphs are given in Fig. 6.10.
The graph of f .t/ is given first. Now, (a) h.t � 1/f .t/ simply cuts off the graph of
f .t/ at t D 1 and replaces it with the line y D 0 for t < 1, (b) f .t � 1/ just shifts
the graph of f .t/ 1 unit to the right, and (c) h.t � 1/f .t � 1/ shifts the graph of
f .t/ 1 unit to the right and then cuts off the resulting graph at t D 1 and replaces it
with the line y D 0 for t < 1. J

Functions of the form h.t � c/f .t � c/, namely, translation of f by c and then
truncation of the resulting graph for t < c, as illustrated for t D 1 in the previous
example, are precisely the special type of functions in the Heaviside class H for
which it is possible to compute the Laplace transform in an efficient manner. Since
any piecewise-defined function will be reducible to functions of this form, it will
provide an effective method of computation. Let us start by computing the Laplace
transform of a translated Heaviside function h.t � c/.

Formula 6. If c � 0 is any nonnegative real number, verify the Laplace transform
formula:

Translates of the Heaviside function

L fh.t � c/g .s/ D e�sc

s
; s > 0:
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H Verification. For the Heaviside function h.t � c/, we have

L fh.t � c/g .s/ D
1Z

0

e�st h.t � c/ dt D
1Z

c

e�st dt

D lim
r!1

e�t s

�s

ˇ
ˇ
ˇ
ˇ

r

c

D lim
r!1

e�rs � e�sc

�s
D e�sc

s
for s > 0. N

Combining Formula 6 with linearity gives the following formula.

Formula 7. If 0 � a < b < 1, then

The on–off switch

L ˚�Œa; b/.t/
�

.s/ D e�as

s
� e�bs

s
; s > 0:

Formula 6 is a special case of what is known as the second translation principle.

Theorem 8. Suppose f .t/ 2 H is a function with Laplace transform F.s/. Then

Second translation principle

L ff .t � c/h.t � c/g .s/ D e�scF .s/:

In terms of the inverse Laplace transform, this is equivalent to

Inverse second translation principle

L�1 fe�scF .s/g D f .t � c/h.t � c/:

Proof. The calculation is straightforward and involves a simple change of variables:

L ff .t � c/h.t � c/g .s/ D
1Z

0

e�st f .t � c/h.t � c/ dt

D
1Z

c

e�st f .t � c/ dt
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D
1Z

0

e�s.tCc/f .t/ dt .t 7! t C c/

D e�sc

1Z

0

e�st f .t/ dt

D e�scF .s/ ut

As with the notation used with the first translation theorem, it is frequently
convenient to express the inverse second translation theorem in the following
format:

L�1 fe�scF .s/g D h.t � c/L�1 fF.s/gˇˇ
t!t�c

:

That is, take the inverse Laplace transform of F.s/, replace t by t � c, and then
multiply by the translated Heaviside function.

In practice, it is more common to encounter expressions written in the form
g.t/h.t � c/, rather than the nicely arranged format f .t � c/h.t � c/. But if f .t/

is replaced by g.t C c/ in Theorem 8, then we obtain the (apparently) more general
version of the second translation principle.

Corollary 9.
L fg.t/h.t � c/g D e�scL fg.t C c/g :

A simple example of this occurs when g D 1. Then L fh.t � cg D e�scL f1g D
e�sc=s, which agrees with Formula 6 found above. When c D 0, then
L fh.t � 0/g D 1=s which is the same as the Laplace transform of the constant
function 1. This is consistent since h.t � 0/ D h.t/ D 1 for t � 0.

Now we give some examples of using these formulas.

Example 10. Find the Laplace transform of

f .t/ D
(

t2 if 0 � t < 1;

2 if 1 � t < 1
using the second translation principle. This Laplace transform was previously
computed directly from the definition in Example 2.

I Solution. In Example 3, we found f .t/ D t2 C .2 � t2/h.t � 1/: By Corollary 9,
we get

L ff g D 2

s3
C e�sL ˚2 � .t C 1/2

�

D 2

s3
C e�sL ˚�t2 � 2t C 1

�

D 2

s3
C e�s

�

� 2

s3
� 2

s2
C 1

s

�

J
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Example 11. Find the Laplace transform of

f .t/ D

8
ˆ̂
<

ˆ̂
:

cos t if 0 � t < �;

1 if � � t < 2�;

0 if 2� � t < 1:

I Solution. In Example 4, we found

f .t/ D cos t C .1 � cos t/h.t � �/ � h.t � 2�/:

By Corollary 9, we get

F.s/ D s

s2 C 1
C e�s�L f1 � cos.t C �/g � e�2s�

s

D s

s2 C 1
C e�s�

�
1

s
C s

s2 C 1

�

� e�2s�

s
:

In the second line, we have used the fact that cos.t C �/ D � cos t . J

Uniqueness of the Inverse Laplace Transform

Theorem 8 gives a formula for the inverse Laplace transform of a function e�scF .s/.
Such an explicit formula is suggestive of some type of uniqueness for the Laplace
transform, that is, L ff .t/g D L fg.t/g H) f .t/ D g.t/, which is Theorem 1
of Sect. 2.5 for continuous functions. By expanding the domain of the Laplace
transform L to include the possibly discontinuous functions in the Heaviside class
H, the issue of uniqueness is made somewhat more subtle because changing the
value of a function at a single point will not change the integral of the function, and
hence, the Laplace transform will not change. Therefore, instead of talking about
equality of functions, we will instead consider the concept of essential equality of
functions. Two functions f1.t/ and f2.t/ are said to be essentially equal on Œ0; 1/

if for each subinterval Œ0; N / they are equal as functions except at possibly finitely
many points. For example, the functions

f1.t/ D
(

1 if 0 � t < 1;

2 if 1 � t < 1;
f2.t/ D

8
ˆ̂
<

ˆ̂
:

1 if 0 � t < 1;

3 if t D 1;

2 if 1 < t < 1;

and

f3.t/ D
(

1 if 0 � t � 1;

2 if 1 < t < 1;
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are essentially equal for they are equal everywhere except at tD1, where f1.1/D2,
f2.1/D3, and f3.1/D1. Two functions that are essentially equal have the same
Laplace transform. This is because the Laplace transform is an integral operator
and integration cannot distinguish functions that are essentially equal. The Laplace
transforms of f1.t/, f2.t/, and f3.t/ in our example above are all .1 C e�s/=s. Here
is our problem: Given a transform, like .1 C e�s/=s, how do we decide what “the”
inverse Laplace transform is. It turns out that if F.s/ is the Laplace transform of
two functions f1.t/, f2.t/ 2 H, then f1.t/ and f2.t/ are essentially equal. Since
for most practical situations it does not matter which one is chosen, we will make
a choice by always choosing the function that is right continuous at each point. A
function f .t/ in the Heaviside class is said to be right continuous at a point a if
we have

f .a/ D f .aC/ D lim
t!aC

f .t/;

and it is right continuous on Œ0; 1/ if it is right continuous at each point in
Œ0; 1/. In the example above, f1.t/ is right continuous while f2.t/ and f3.t/ are
not. The function f3.t/ is, however, left continuous, using the obvious definition of
left continuity. If we decide to use right continuous functions in the Heaviside class,
then the correspondence with its Laplace transform is one-to-one. We summarize
this discussion as a theorem:

Theorem 12. If F.s/ is the Laplace transform of a function in H, then there is a
unique right continuous function f .t/ 2 H such that L ff .t/g D F.s/. Any two
functions in H with the same Laplace transform are essentially equal.

All the translates h.t � c/ of the Heaviside function h.t/ are right continuous,
so any piecewise function written as a sum of products of a continuous function
and a translated Heaviside function are right continuous. In fact, the convention of
using right continuous functions just means that the inverse transforms of functions
in H will be written as sums of f .t � c/h.t � c/, as given in the second translation
principle Theorem 8.

Example 13. Find the inverse Laplace transform of

F.s/ D e�s

s2
C e�3s

s � 4

and write it as a right continuous piecewise-defined function.

I Solution. The inverse Laplace transforms of 1=s2 and 1=.s�4/ are, respectively,
t and e4t . By Theorem 8, the inverse Laplace transform of F.s/ is

L�1 fF.s/g D h.t � 1/ L�1

�
1

s2

�ˇ
ˇ
ˇ
ˇ
t!t�1

C h.t � 3/ L�1

�
1

s � 4

� ˇ
ˇ
ˇ
ˇ
t!t�3

D h.t � 1/ .t/jt!t�1 C h.t � 3/ .e4t /
ˇ
ˇ
t!t�3

D .t � 1/h.t � 1/ C e4.t�3/h.t � 3/:
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On the interval Œ0; 1/, both t � 1 and e4.t�3/ are off. On the interval Œ1; 3/ only t � 1

is on. On the interval Œ3; 1/, both t � 1 and e4.t�3/ are on. Thus,

L�1 fF.s/g D

8
ˆ̂
<

ˆ̂
:

0 if 0 � t < 1

t � 1 if 1 � t < 3

t � 1 C e4.t�3/ if 3 � t < 1
: J
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Exercises

1–8. Graph each of the following functions defined by means of the unit step
function h.t � c/ and/or the on–off switches �Œa; b/.

1. f .t/ D 3h.t � 2/ � h.t � 5/

2. f .t/ D 2h.t � 2/ � 3h.t � 3/ C 4h.t � 4/

3. f .t/ D .t � 1/h.t � 1/

4. f .t/ D .t � 2/2h.t � 2/

5. f .t/ D t2h.t � 2/

6. f .t/ D h.t � �/ sin t

7. f .t/ D h.t � �/ cos 2.t � �/

8. f .t/ D t2�Œ0; 1/.t/ C .2 � t/�Œ1; 3/.t/ C 3�Œ3; 1/.t/

9–27. For each of the following functions f .t/, (a) express f .t/ in terms of on–off
switches �Œa; b/.t/, (b) express f .t/ in terms of translates h.t � c/ of the Heaviside
function h.t/, and (c) compute the Laplace transform F.s/ D L ff .t/g.

9. f .t/ D
(

0 if 0 � t < 2

t � 2 if 2 � t < 1

10. f .t/ D
(

0 if 0 � t < 2

t if 2 � t < 1

11. f .t/ D
(

0 if 0 � t < 2

t C 2 if 2 � t < 1

12. f .t/ D
(

0 if 0 � t < 4

.t � 4/2 if 4 � t < 1

13. f .t/ D
(

0 if 0 � t < 4

t2 if 4 � t < 1

14. f .t/ D
(

0 if 0 � t < 4

t2 � 4 if 4 � t < 1

15. f .t/ D
(

0 if 0 � t < 2

.t � 4/2 if 2 � t < 1
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16. f .t/ D
(

0 if 0 � t < 4

et�4 if 4 � t < 1

17. f .t/ D
(

0 if 0 � t < 4

et if 4 � t < 1

18. f .t/ D
(

0 if 0 � t < 6

et�4 if 6 � t < 1

19. f .t/ D
(

0 if 0 � t < 4

tet if 4 � t < 1

20. f .t/ D

8
ˆ̂
<

ˆ̂
:

1 if 0 � t < 4

�1 if 4 � t < 5

0 if 5 � t < 1

21. f .t/ D
(

t if 0 � t < 1

2 � t if 1 � t < 1

22. f .t/ D

8
ˆ̂
<

ˆ̂
:

t if 0 � t < 1

2 � t if 1 � t < 2

1 if 2 � t < 1

23. f .t/ D

8
ˆ̂
<

ˆ̂
:

t2 if 0 � t < 2

4 if 2 � t < 3

7 � t if 3 � t < 1

24. f .t/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

1 if 0 � t < 2

3 � t if 2 � t < 3

2.t � 3/ if 3 � t < 4

2 if 4 � t < 1

25. f .t/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

t if 0 � t < 1

t � 1 if 1 � t < 2

t � 2 if 2 � t < 3
:::
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26. f .t/ D
(

1 if 2n � t < 2n C 1

0 if 2n C 1 � t < 2n C 2

27. f .t/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

1 � t if 0 � t < 2

3 � t if 2 � t < 4

5 � t if 4 � t < 6
:::

28–42. Compute the inverse Laplace transform of each of the following functions.

28.
e�3s

s � 1

29.
e�3s

s2

30.
e�3s

.s � 1/3

31.
e��s

s2 C 1

32.
se�3�s

s2 C 1

33.
e��s

s2 C 2s C 5

34.
e�s

s2
C e�2s

.s � 1/3

35.
e�2s

s2 C 4

36.
e�2s

s2 � 4

37.
se�4s

s2 C 3s C 2

38.
e�2s C e�3s

s2 � 3s C 2
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39.
1 � e�5s

s2

40.
1 C e�3s

s4

41. e��s
2s C 1

s2 C 6s C 13

42. .1 � e��s/
2s C 1

s2 C 6s C 13

43–44. These exercises show that the Heaviside class H is a linear space.

43. Suppose f1 and f2 are piecewise continuous on Œ0; 1/ and c 2 R. Show f1 C
cf2 is piecewise continuous on Œ0; 1/.

44. Suppose f1; f2 2 H and c 2 R. Show that f1 C cf2 2 H and hence, H is a
linear space.
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6.3 Laplace Transform Method for f .t/ 2 H

The differential equations that we will solve by means of the Laplace transform are
first and second order constant coefficient linear differential equations with a forcing
function f .t/ 2 H:

y0 C ay D f .t/;

y00 C ay0 C by D f .t/:

To employ this method, it will be necessary to compute the Laplace transform of
derivatives of functions in H. That is, we need to know the extent to which the input
derivative formula

L ˚f 0.t/
� D sL ff .t/g � f .0/

is valid when f .t/ is in the Heaviside class H. Recall that for f .t/ 2 H, the symbol
f 0.t/ is used to denote the derivative of f .t/ if f .t/ is differentiable except possibly
at a finite number of points on each interval of the form Œ0; N �. Thus, f 0.t/ will be
(possibly) undefined for finitely many points in Œ0; N �.

Example 1. Verify that the input derivative formula is not valid for the on–off
switch function

f .t/ D �Œ0; 1/.t/ D
(

1 if 0 � t < 1;

0 if t � 1:

H Verification. From the definition, it is clear that f 0.t/ D 0 for all t ¤ 1; it is
not differentiable, or even continuous, at t D 1. Thus, L ff 0.t/g D 0. However, by
Formula 7 of Sect. 6.2, L ff .t/g D F.s/ D .1 � e�s/=s so that

sF.s/ � f .0/ D 1 � e�s � 1 D e�s ¤ 0 D L ˚f 0.t/
�

: N

Example 2. Verify that the input derivative formula is valid for the following
function

f .t/ D
(

1 if 0 � t < 1;

t if t � 1:

See Fig. 6.11

H Verification. Write f .t/ in the standard form using translates of the Heaviside
function h.t/ to get

f .t/ D �Œ0; 1/.t/ C th.t � 1/ D 1 C .t � 1/h.t � 1/:

Thus,

sF.s/ � f .0/ D s

�
1

s
C e�s

s2

�

� 1 D e�s

s
D L fh.t � 1/g D L ˚f 0.t/

�
;

since f 0.t/ D h.t � 1/. Therefore, the input derivative principle is satisfied for this
function f .t/. N
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1
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y

y = fy = f(t)

Fig. 6.11 A continuous f .t/

with discontinuous derivative

Thus, we have an example of a piecewise continuous function (Example 1) for
which the input derivative principle fails, and another example (Example 2) for
which the input derivative principle holds. What is the significant difference between
these two simple examples? For one thing, the second example has a continuous
f .t/, while that of the first example is discontinuous. It turns out that this is the
feature that needs to be included. That is, the derivative need not be continuous, but
the function must.

Theorem 3. Suppose f .t/ is a continuous function on Œ0; 1/ such that both f .t/

and f 0.t/ are in H. Then

The input derivative principle

The first derivative

L ff 0.t/g .s/ D sL ff .t/g .s/ � f .0/:

Proof. We begin by computing
R N

0
e�st f 0.t/ dt . This computation requires a

careful analysis of the points where f 0.t/ is discontinuous. There are only finitely
many such discontinuities on the interval Œ0; N /, which will be labeled a1, : : :, ak ,
and we may assume ai < aiC1. If we let a0 D 0 and akC1 D N , then we obtain

Z N

0

e�st f 0.t/ dt D
kX

iD0

Z aiC1

ai

e�st f 0.t/ dt;

and integration by parts gives

NZ

0

e�st f 0.t/ dt D
kX

iD0

0

@f .t/e�st
ˇ
ˇaiC1

ai
C s

aiC1Z

ai

e�st f .t/ dt

1

A

D
kX

iD0

.f .a�
iC1/e

�saiC1 � f .aC
i /e�sai / C s

NZ

0

e�st f .t/ dt
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D
kX

iD0

.f .aiC1/e�saiC1 � f .ai /e�sai / C s

NZ

0

e�st f .t/ dt

D f .N /e�Ns � f .0/ C s

NZ

0

e�st f .t/ dt:

Since f .t/ is continuous, we have f .aC
i / D f .ai / and f .a�

iC1/ D f .aiC1/ which
allows us to go from the second to the third line. The telescoping nature of the sum
in line 3 allows it to collapse to f .akC1/e�sakC1 � f .a0/e�sa0 D f .N /e�Ns � f .0/

which produces the final line. Now take the limit as N goes to infinity and the result
follows. ut

If f .t/ 2 H, then the definite integral g.t/ D R t

0
f .u/ du is continuous, in

the Heaviside class, and moreover, g.0/ D 0. Thus, applying the input derivative
principle to the function g.t/ 2 H gives the input integral principle:

Corollary 4. Suppose f .t/ is a function defined on Œ0; 1/ such f .t/ 2 H, and
F.s/ D L ff .t/g .s/, then

The input integral principle

L
�

tR

0

f .u/ du

�

.s/ D F.s/

s
:

The second order input derivative principle is an immediate corollary of the first,
as long as we are careful to identify the appropriate hypotheses that f .t/ must
satisfy.

Corollary 5. If f .t/ and f 0.t/ are continuous and f .t/, f 0.t/, and f 00.t/ are in
H, then

Input derivative principle

The second derivative

L ff 00.t/g D s2L ff .t/g � sf .0/ � f 0.0/:

We are now in a position to illustrate the Laplace transform method for solving
first and second order constant coefficient differential equations

y0 C ay D f .t/;

y00 C ay0 C by D f .t/
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with a forcing function f .t/ that is possibly discontinuous. In order to apply the
Laplace transform method, we will need to take the Laplace transform of a potential
solution y.t/. To apply the input derivative formula to y.t/, it is necessary to know
that y.t/ is continuous and y0.t/ 2 H for the first order equation and both y.t/ and
y0.t/ are continuous while y00.t/ 2 H for the second order equation. These facts
were proved in Theorems 5 and 7 of Sect. 6.1, and hence, these theorems provide
the theoretical underpinnings for applying the Laplace transform method formally.
Here are some examples.

Example 6. Solve the following first order differential equation:

y0 C 2y D f .t/; y.0/ D 1;

where

f .t/ D
(

0 if 0 � t < 1;

t if 1 � t < 1:

I Solution. We first rewrite f .t/ in terms of Heaviside functions:

f .t/ D t �Œ1;1/.t/ D t h.t � 1/:

By Corollary 9 of Sect. 6.2 of the second translation principle, its Laplace trans-
form is

F.s/ D L fth.t � 1/g D e�sL ft C 1g D e�s

�
1

s2
C 1

s

�

D e�s

�
s C 1

s2

�

:

Let Y.s/ D L fy.t/g where y.t/ is the solution to the differential equation. Since the
analysis done above shows that y.t/ satisfies the hypotheses of the input derivative
principle, we can apply the Laplace transform to the differential equation and
conclude

sY.s/ � y.0/ C 2Y.s/ D e�s

�
s C 1

s2

�

:

Solving for Y.s/ gives

Y.s/ D 1

s C 2
C e�s s C 1

s2.s C 2/
:

A partial fraction decomposition gives

s C 1

s2.s C 2/
D 1

4

1

s
C 1

2

1

s2
� 1

4

1

s C 2
;
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0

1

2

0 1 2 3 4
t

yFig. 6.12 The graph of the
solution to Example 6

and the second translation principle (Theorem 8 of Sect. 6.2) gives

y.t/ D L�1

�
1

s C 2

�

C 1

4
L�1

�

e�s 1

s

�

C 1

2
L�1

�

e�s 1

s2

�

� 1

4
L�1

�

e�s 1

s C 2

�

D e�2t C 1

4
h.t � 1/ C 1

2
.t � 1/h.t � 1/ � 1

4
e�2.t�1/h.t � 1/:

D
8
<

:

e�2t if 0 � t < 1

e�2t C 1

4
.2t � 1/ � 1

4
e�2.t�1/ if 1 � t < 1:

The graph of y.t/ is shown in Fig. 6.12, where the discontinuity of the forcing
function f .t/ at time t D 1 is reflected in the abrupt change in the direction of
the tangent line of the graph of y.t/ at t D 1. J

We now consider a mixing problem of the type mentioned in the introduction to
this chapter.

Example 7. Suppose a tank holds 10 gal of pure water. There are two input sources
of brine solution: the first source has a concentration of 2 lbs of salt per gallon while
the second source has a concentration of 3 lbs of salt per gallon. The first source
flows into the tank at a rate of 1 gal/min for 5 min after which it is turned off and
simultaneously the second source is turned on at a rate of 1 gal/min. The well-mixed
solution flows out of the tank at a rate of 1 gal/min. Find the amount of salt in the
tank at any time t.

I Solution. A pictorial representation of the problem is the following diagram.

Salt Mixture 1
0.5 lbs/Gal; 1 Gal/min

0 ≤ t <5

Salt Mixture 2
2.5 lbs/Gal; 1 Gal/min

t ≥ 5

1 Gal/min
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Letting y.t/ denote the amount of salt in the tank at time t , measured in pounds,
apply the fundamental balance principle for mixing problems (see Example 11
of Sect. 1.4). This principle states that the rate of change of y.t/ comes from the
difference between the rate salt is being added and the rate salt is being removed.
Symbolically,

y0.t/ D rate in � rate out:

Recall that the input and output rates of salt are the product of the concentration
of salt and the flow rates of the mixtures. The rate at which salt is being added
depends on the interval of time. For the first five minutes, source one adds salt at
a rate of 0.5 lbs/min, and after that, source two takes over and adds salt at a rate of
2.5 lbs/min. Since the flow rate in is 1 gal/min, the rate at which salt is being added
is given by the function

f .t/ D
(

0:5 if 0 � t < 5;

2:5 if 5 � t < 1:

The concentration of salt at time t is y.t/=10 lbs/gal, and since the flow rate out is
1 gal/min, it follows that the rate at which salt is being removed is y.t/=10 lbs/min.
Since initially there is pure water, it follows that y.0/ D 0, and therefore, we have
that y.t/ satisfies the following initial value problem:

y0 D f .t/ � y.t/

10
; y.0/ D 0:

Rewriting f .t/ in terms of translates of the Heaviside function gives

f .t/ D 0:5�Œ0;5/.t/ C 2:5�Œ5;1/.t/

D 0:5.h.t/ � h.t � 5// C 2:5h.t � 5/

D 0:5 C 2h.t � 5/:

Applying the Laplace transform to the differential equation and solving for Y.s/ D
L fy.t/g .s/ gives

Y.s/ D
 

1

s C 1
10

!�
0:5 C 2e�5s

s

�

D 0:5
�
s C 1

10

�
s

C e�5s 2
�
s C 1

10

�
s

D 5

s
� 5

s C 1
10

C e�5s 20

s
� e�5s 20

s C 1
10

:
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Fig. 6.13 The solution to a mixing problem with discontinuous input function

Taking the inverse Laplace transform of Y.s/ gives

y.t/ D 5 � 5e� t
10 C 20h.t � 5/ � 20e� t�5

10 h.t � 5/

D
(

5 � 5e� t
10 if 0 � t < 5;

25 � 5e� t
10 � 20e� t�5

10 if 5 � t < 1:

The graph of y is given in Fig. 6.13. As expected, we observe that the solution
is continuous, but the kink at t D 5 indicates that there is a discontinuity of the
derivative at this point. This occurred when the flow of the second source, which
had a higher concentration of salt, was turned on. J

Here is an example of a second order equation.

Example 8. Solve the following second order initial value problem

y00 C 4y D f .t/; y.0/ D 0; y0.0/ D 1

where

f .t/ D
(

1 if 0 � t < �;

sin t if t � �:

I Solution. First note that

f .t/ D �Œ0; �/.t/ C .sin t/�Œ�; 1/.t/

D 1 � h.t � �/ C .sin t/h.t � �/;
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so that

F.s/ D L ff .t/g

D 1

s
� e��s

s
C e��sL fsin.t C �/g

D 1

s
� e��s

s
C e��sL f� sin tg

D 1

s
� e��s

s
C e��s 1

s2 C 1
:

Letting Y.s/ D L fy.t/g .s/, where y.t/ is the solution to the initial value problem,
and taking the Laplace transform of the differential equation gives

s2Y.s/ � 1 C 4Y.s/ D 1

s
� e��s

s
C e��s 1

s2 C 1
:

Now solve for Y.s/ to get

Y.s/ D 1

s2 C 4
C 1

s.s2 C 4/
.1 � e��s/ C e��s 1

.s2 C 1/.s2 C 4/
:

The solution is completed by taking the inverse Laplace transform, using the second
translation theorem:

y.t/ D L�1 fY.s/g

D 1

2
sin 2t C L�1

�
1

s.s2 C 4/

�

� h.t � �/L�1

�
1

s.s2 C 4/

�

.t � �/

Ch.t � �/L�1

�
1

.s2 C 1/.s2 C 4/

�

.t � �/:

Computing the partial fractions in the usual manner

1

s.s2 C 4/
D

1
4

s
�

1
4
s

s2 C 4
and

1

.s2 C 1/.s2 C 4/
D

1
3

s2 C 1
�

1
3

s2 C 4

and substituting these into the inverse Laplace transforms gives

y.t/ D 1

2
sin 2t C 1

4
� 1

4
cos 2t � 1

4
h.t � �/ .1 � cos 2.t � �//

C1

3
h.t � �/

�

sin.t � �/ � 1

2
sin 2.t � �/

�

:
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Fig. 6.14 The graph of the solution y.t/ to Example 8 is shown along with the graph of the
derivative y0.t /. Note that the derivative y0.t / is continuous, but it is not differentiable at t D � ,
signifying that the second derivative y00.t / is not continuous at t D �

Evaluating this piecewise gives

y.t/ D

8

<̂

:̂

1
2

sin 2t C 1
4

� 1
4

cos 2t if 0 � t < �;

� 1
3

sin t C 1
3

sin 2t if t � �:

The graph of the solution y.t/ and its derivative y0.t/ are given in Fig. 6.14. J
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Exercises

1–12. Solve each of the following initial value problems.

1. y0 C 2y D
(

0 if 0 � t < 1

�3 if t � 1
; y.0/ D 0

2. y0 C 5y D
(

�5 if 0 � t < 1

5 if t � 1
; y.0/ D 1

3. y0 � 3y D

8
ˆ̂
<

ˆ̂
:

0 if 0 � t < 2

2 if 2 � t < 3

0 if t � 3

; y.0/ D 0

4. y0 C 2y D
(

t if 0 � t < 1

0 if 1 � t < 1 ; y.0/ D 0

5. y0 � 4y D
(

12et if 0 � t < 1

12e if 1 � t < 1 ; y.0/ D 2

6. y0 C 3y D
(

10 sin t if 0 � t < �

0 if � � t < 1 ; y.0/ D �1

7. y00 C 9y D h.t � 3/, y.0/ D 0, y0.0/ D 0

8. y00 � 5y0 C 4y D
(

1 if 0 � t < 5

0 if t � 5
; y.0/ D 0; y0.0/ D 1

9. y00 C 5y0 C 6y D

8
ˆ̂
<

ˆ̂
:

0 if 0 � t < 1

6 if 1 � t < 3

0 if t � 3

; y.0/ D 0; y0.0/ D 0

10. y00 C 9y D h.t � 2�/ sin t , y.0/ D 1, y0.0/ D 0

11. y00 C 2y0 C y D h.t � 3/, y.0/ D 0, y0.0/ D 1

12. y00 C 2y0 C y D
(

e�t if 0 � t < 4

0 if 4 � t < 1 ; y.0/ D 0, y0.0/ D 0
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13–15. Mixing Problems

13. Suppose a tank holds 4 gal of pure water. There are two input sources of brine
solution: the first source has a concentration of 1 lb of salt per gallon while the
second source has a concentration of 5 lbs of salt per gallon. The first source
flows into the tank at a rate of 2 gal/min for 3 min after which it is turned off,
and simultaneously, the second source is turned on at a rate of 2 gal/min. The
well-mixed solution flows out of the tank at a rate of 2 gal/min. Find the amount
of salt in the tank at any time t.

14. Suppose a tank holds a brine solution consisting of 1 kg salt dissolved in 4 L
of water. There are two input sources of brine solution: the first source has a
concentration of 2 kg of salt per liter while the second source has a concentration
of 3 kg of salt per liter. The first source flows into the tank at a rate of 4 L/min
for 5 min after which it is turned off, and simultaneously, the second source is
turned on at a rate of 4 L/min. The well-mixed solution flows out of the tank at
a rate of 4 L/min. Find the amount of salt in the tank at any time t.

15. Suppose a tank holds a brine solution consisting of 2 kg salt dissolved in 10 L
of water. There are two input sources of brine solution: the first source has a
concentration of 1 kg of salt per liter while the second source is pure water.
The first source flows into the tank at a rate of 3 L/min for 2 min. Thereafter,
it is turned off and simultaneously the second source is turned on at a rate of
3 L/min for 2 min. Thereafter, it is turned off and simultaneously the first source
is turned back on at a rate of 3 L/min and remains on. The well-mixed solution
flows out of the tank at a rate of 3 L/min. Find the amount of salt in the tank at
any time t.

16. Suppose a ¤ 0. Show that the solution to

y0 C ay D A�Œ˛;ˇ/; y.0/ D y0

is

y.t/ D y0e�at C A

a

8
ˆ̂
<

ˆ̂
:

0 if 0 � t < ˛;

1 � e�a.t�˛/ if ˛ � t < ˇ;

e�a.t�ˇ/ � e�a.t�˛/ if ˇ � t < 1:
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6.4 The Dirac Delta Function

In applications, we may encounter an input into a system we wish to study that
is very large in magnitude, but applied over a short period of time. Consider, for
example, the following mixing problem:

Example 1. A tank holds 10 gal of a brine solution in which each gallon contains
2 lbs of dissolved salt. An input source begins pouring fresh water into the tank at a
rate of 1 gal/min and the thoroughly mixed solution flows out of the tank at the same
rate. After 5 min, 3 lbs of salt are poured into the tank where it instantly mixes into
the solution. Find the amount of salt in the tank at any time t .

This example introduces a sudden action, namely, the sudden input of 3 lbs of
salt at time t D 5 min. If we imagine that it actually takes 1 second to do this, then
the average rate of input of salt would be 3 lbs=s D 180 lbs=min: Thus, we see a
high magnitude in the rate of input of salt over a short interval. Moreover, the rate
multiplied by the duration of input gives the total input.

More generally, if r.t/ represents the rate of input over a time interval Œa; b�, then
R b

a
r.t/ dt would represent the total input. A unit input means that this integral is 1.

Let t D c � 0 be fixed and let � be a small positive number. Imagine a constant
input rate over the interval Œc; c C �/ and 0 elsewhere. The function dc;� D 1

�
�Œc;cC�/

represents such an input rate with constant input 1=� over the interval Œc; c C �/ (cf.
Sect. 6.2 where the on–off switch �Œa;b/ is discussed). The constant 1=� is chosen so
that the total input is

1Z

0

dc;� dt D 1

�

cC�Z

c

1 dt D 1

�
� D 1:

For example, if � D 1
60

min, then 3d5;� would represent the input of 3 lbs of salt over
a 1-s interval beginning at t D 5.

Figure 6.15 shows the graphs of dc;� for � D 2; 0:5; and 0:1. The area of the
region under each line segment is 1. The main idea will be to take smaller and
smaller values of �, that is, we want to imagine the total input being concentrated
at the point c. We would like to define the Dirac delta function by ıc.t/ D
lim�!0C

dc;�.t/: However, the pointwise limit would give

ıc.t/ D
(

1 if t D c;

0 elsewhere:

In addition, we would like to have the property that

1Z

0

ıc.t/ dt D lim
�!0

1Z

0

dc;� dt D 1:
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Fig. 6.15 Approximation to a delta function

Of course, there is really no such function with this property. (Mathematically,
we can make precise sense out of this idea by extending the Heaviside class to
a class that includes distributions or generalized functions. We will not pursue
distributions here as it will take us far beyond the introductory nature of this text.)
Nevertheless, this is the idea we want to develop. We will consider first order
constant coefficient differential equations of the form

y0 C ay D f .t/;

where f involves the Dirac delta function ıc . It turns out that the main problem lies
in the fact that the solution is not continuous, so Theorem 3 of Sect. 6.3 does not
apply. Nevertheless, we will justify that we can apply the usual Laplace transform
method in a formal way to produce the desired solutions. The beauty of doing this
is found in the ease in which we can work with the “Laplace transform” of ıc .

We define the Laplace transform of ıc by the formula:

L fıcg D lim
�!0

L fdc;�g :

Theorem 2. The Laplace transform of ıc is

L fıcg D e�cs:

Proof. We begin with dc;�:

L fdc;�g D 1

�
L fh.t � c/ � h.t � c � �/g

D 1

�

�
e�cs � e�.cC�/s

s

�

D e�cs

s

�
1 � e��s

�

�

:
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We now take limits as � goes to 0 and use L’Hospital’s rule to obtain:

L fıcg D lim
�!0

L fdc;�g D e�cs

s

�

lim
�!0

1 � e��s

�

�

D e�cs

s
� s D e�cs: ut

We remark that when c D 0 we have L fı0g D 1. By Proposition 1 of Sect. 6.2,
there is no Heaviside function with this property. Thus, to reiterate, even though
L fıcg is a function, ıc is not. We will frequently write ıc.t/ D ı.t � c/ and ı D ı0.

The Dirac delta function allows us to model the mixing problem from Example 1
as a first order linear differential equation.

I Solution. Setting up the differential equation in Example 1: Let y.t/ be the
amount of salt in the tank at time t . Then y.0/ D 20 and y0 is the difference of
the input rate and the output rate. The only input of salt occurs at t D 5. If the salt
were input over a small interval, Œ5; 5 C �/ say, then 3

�
�Œ5;5C�/ would represent the

input of 3 lbs of salt over a period of � minutes. If we let � go to zero, then 3ı5

would represent the input rate. The output rate is y.t/=10. We are thus led to the
differential equation:

y0 C y

10
D 3ı5; y.0/ D 20:

The solution to this differential equation will continue below and fall out of the
slightly more general discussion we now give. J

Differential Equations of the Form y 0 C ay D kıc

We will present progressively three procedures for solving

y0 C ay D kıc; y.0/ D y0: (1)

The last one, the formal Laplace transform method, is the simplest and is, in part,
justified by the methods that precede it. The formal method will thereafter be used
to solve (1) and will be extended to second order equations.

Limiting Procedure

In our first approach, we solve the equation

y0 C ay D k

�
�Œc;cC�/; y.0/ D y0
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and call the solution y� . Since ıc D lim�!0
1
�
�Œc;cC�/ , we let y.t/ D lim�!0 y� .

Then y.t/ will be the solution to y0 Cay D kıc; y.0/ D y0: We will assume a ¤ 0

and leave the case a D 0 to the reader. Recall from Exercise 16 of Sect. 6.3 the
solution to

y0 C ay D A�Œ˛; ˇ/; y.0/ D y0;

is

y.t/ D y0e�at C A

a

8
ˆ̂
<

ˆ̂
:

0 if 0 � t < ˛;

1 � e�a.t�˛/ if ˛ � t < ˇ;

e�a.t�ˇ/ � e�a.t�˛/ if ˇ � t < 1:

We let A D k
�
, ˛ D c, and ˇ D c C � to get

y�.t/ D y0e�at C k

a�

8
ˆ̂
<

ˆ̂
:

0 if 0 � t < c;

1 � e�a.t�c/ if c � t < c C �;

e�a.t�c��/ � e�a.t�c/ if c C � � t < 1:

The computation of lim�!0 y� is done on each interval separately. If 0 � t � c,
then y� D y0e�at is independent of �, and hence,

lim
�!0

y�.t/ D y0e�at 0 � t � c:

If c < t < 1, then for � small enough, c C � < t and thus

y�.t/ D y0e�at C k

a�
.e�a.t�c��/ � e�a.t�c// D y0e�at C k

a
e�a.t�c/ ea� � 1

�
:

Since limt!�
ea��1

�
D a, we get

lim
�!0

y�.t/ D y0e�at C ke�a.t�c/; c < t < 1:

We thus obtain

y.t/ D
(

y0e�at if 0 � t � c;

y0e�at C ke�a.t�c/ if c < t < 1:

Observe that there is a jump discontinuity in y.t/ at t D c with jump k.

Extension of Input Derivative Principle

In this method, we want to focus on the differential equation, y0 C ay D 0, on the
entire interval Œ0; 1/ with the a priori knowledge that there is a jump discontinuity
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in y.t/ at t D c with jump k. Recall from Theorem 3 of Sect. 6.3 that when y is
continuous and both y and y0 are in H, we have the formula

L ˚y0� .s/ D sY.s/ � y.0/:

We cannot apply this theorem as stated for y is not continuous. But if y has a single
jump discontinuity at t D c, we can prove a slight generalization.

Theorem 3. Suppose y and y0 are in H and y is continuous except for one jump
discontinuity at t D c with jump k. Then

L ˚y0� .s/ D sY.s/ � y.0/ � ke�cs :

Proof. Let N > c. Then integration by parts gives

NZ

0

e�st y0.t/ dt D
cZ

0

e�st y0.t/ dt C
NZ

c

e�st y0.t/ dt

D e�st y.t/jc0 C s

cZ

0

e�st y.t/ dt

Ce�st y.t/jNc C s

NZ

c

e�st y.t/ dt

D s

NZ

0

e�st y.t/ dt C e�sN y.N / � y.0/

�e�sc.y.cC/ � y.c�//:

We take the limit as N goes to infinity and obtain

L ˚y0� D sL fyg � y.0/ � ke�cs ;

where k D y.cC/ � y.c�/ is the jump of y.t/ at t D c. ut
We apply this theorem to the initial value problem

y0 C ay D 0; y.0/ D y0

with the knowledge that the solution y has a jump discontinuity at tDc with jump k.
Apply the Laplace transform to the differential equation to obtain

sY.s/ � y.0/ � ke�cs C aY.s/ D 0:
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Solving for Y gives

Y.s/ D y0

s C a
C k

e�cs

s C a
:

Applying the inverse Laplace transform gives the solution

y.t/ D y0e�at C ke�a.t�c/h.t � c/

D
(

y0e�at if 0 � t < c;

y0e�at C ke�a.t�c/ if c � t < 1:

The Formal Laplace Transform Method

We now return to the differential equation

y0 C ay D kıc; y.0/ D y0

and apply the Laplace transform method directly. From Theorem 2, the Laplace
transform of kıc is ke�cs . This is precisely the term found in Theorem 3 where
the assumption of a single jump discontinuity is assumed. Thus, the presence of
kıc automatically encodes the jump discontinuity in the solution. Therefore, we can
(formally) proceed without any advance knowledge of jump discontinuities. The
Laplace transform of

y0 C ay D kıc; y.0/ D y0

gives
sY.s/ � y.0/ C aY.s/ D ke�cs:

Solving for Y.s/, we get

Y.s/ D y0

s C a
C k

e�cs

s C a
:

Apply the inverse Laplace transform as above to get

y.t/ D
(

y0e�at if 0 � t < c;

y0e�at C ke�a.t�c/ if c � t < 1:

Observe that the same result is obtained in each procedure and justifies the formal
Laplace transform method, which is thus the preferred method to use. We now use
this method to solve the mixing problem given in Example 1.

I Solution. We apply the Laplace transform method to

y0 C y

10
D 3ı5; y.0/ D 20
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Fig. 6.16 Graph of the solution to the mixing problem

to get

sY.s/ � 20 C 1

10
Y.s/ D 3e�5s:

Solving for Y.s/ gives

Y.s/ D 20

s C 1
10

C 3e�5s

s C 1
10

and Laplace inversion gives

y.t/ D 20e�t=10 C 3e�.t�5/=10h.t � 5/

D
(

20e�t=10 if 0 � t � 5;

20e�t=10 C 3e�.t�5/=10 if 5 < t < 1:

The graph is given in Fig. 6.16 where the jump of 3 is clearly seen at t D 5. J

Impulse Functions

An impulsive force is a force with high magnitude introduced over a short period of
time. For example, a bat hitting a ball or a spike in electricity on an electric circuit
both involve impulsive forces and are best represented by the Dirac delta function.
We consider the effect of the introduction of impulsive forces into spring systems
and how they lead to second order differential equations of the form

my00 C �y0 C ky D Kıc.t/:
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As we will soon see, the effect of an impulsive force introduces a discontinuity not
in y but its derivative y0.

If F.t/ represents a force which is 0 outside a time interval Œa; b�, then
R1

0
F.t/ dt D R b

a
F.t/ dt represents the total impulse of the force F.t/ over that

interval. A unit impulse means that this integral is 1. If F is given by the acceleration
of a constant mass, then F.t/ D ma.t/ D my00.t/, where m is the mass and
a.t/ D y00.t/ is the acceleration of the object given by the position function y.t/.
The total impulse

bZ

a

F.t/ dt D
bZ

a

ma.t/ dt D my0.b/ � my0.a/

represents the change of momentum. (Momentum is the product of mass and
velocity). Now imagine a constant force is introduced over a very short period of
time with unit impulse. We then model the force by dc;� D 1

�
�Œc;cC�/ . Letting � go to

0 then leads to the Dirac delta function ıc to represent the instantaneous change of
momentum. Since momentum is proportional to velocity, we see that such impacts
lead to discontinuities in the derivative y0.

Example 4 (See Sect. 3.6 for a discussion of spring-mass-dashpot systems). A
spring is stretched 49 cm when a 1 kg mass is attached. The body is pulled to
10 cm below its spring-body equilibrium and released. We assume the system is
frictionless. After 3 s, the mass is suddenly struck by a hammer in a downward
direction with total impulse of 1 kg�m/s. Find the motion of the mass.

I Solution. Setting up the differential equation: We will work in units of kg, m,
and s. Thus, the spring constant k is given by 1.9:8/ D k 49

100
, so that k D 20. An

external force to the system occurs as an impulse at t D 3 which may be represented
by the Dirac delta function ı3. The initial conditions are given by y.0/ D 0:10 and
y0.0/ D 0, and since the system is frictionless, the initial value problem is

y00 C 20y D ı3; y.0/ D 0:10; y0.0/ D 0:

We will return to the solution of this problem after we discuss the more general
second order case. J

Equations of the Form y 00 C ay 0 C by D Kıc

Our goal is to solve

y00 C ay0 C by D Kıc; y.0/ D y0; y0.0/ D y1 (2)
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using the formal Laplace transform method discussed above for first order differ-
ential equations. As we discussed, the effect of Kıc is to introduce a single jump
discontinuity in y0 at t D c with jump K . Therefore, the solution to (2) is equivalent
to solving

y00 C ay0 C by D 0

with the advanced knowledge that y0 has a jump discontinuity at t D c. If we apply
Theorem 3 to y0, we obtain

L ˚y00� D sL ˚y0�� y0.0/ � Ke�sc

D s2Y.s/ � sy.0/ � y0.0/ � Ke�sc:

Therefore, the Laplace transform of y00 C ay0 C by D 0 leads to

.s2 C as C b/Y.s/ � sy.0/ � y0.0/ � Ke�sc D 0:

On the other hand, if we (formally) proceed with the Laplace transform of (2)
without foreknowledge of discontinuities in y0, we obtain the equivalent equation

.s2 C as C b/Y.s/ � sy.0/ � y0.0/ D Ke�sc:

Again, the Dirac function ıc encodes the jump discontinuity automatically. If we
proceed as usual, we obtain

Y.s/ D sy.0/ C y0.0/

s2 C as C b
C Ke�sc

s2 C as C b
:

The inversion will depend on the way the characteristic polynomial factors.
We now return to Example 4. The equation we wish to solve is

y00 C 20y D ı3; y.0/ D 0:10; y0.0/ D 0:

I Solution. We apply the formal Laplace transform to obtain

Y.s/ D 0:1s

s2 C 20
C e�3s

s2 C 20
:

The inversion gives

y.t/ D 1

10
cos

	p
20 t



C 1p

20
sin
	p

20 .t � 3/



h.t � 3/

D 1

10
cos

	p
20 t



C
8
<

:

0 if 0 � t < 3;

1p
20

sin
	p

20 .t � 3/



if 3 � t < 1:
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Fig. 6.17 Harmonic motion with impulse function

Figure 6.17 gives the graph of the solution. You will note that y is continuous, but
the little kink at t D 3 indicates the discontinuity of y0. This is precisely when the
impulse to the system was delivered. J
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Exercises

1–10. Solve each of the following initial value problems.

1. y0 C 2y D ı1.t/; y.0/ D 0

2. y0 � 3y D 3 C ı2.t/; y.0/ D �1

3. y0 � 4y D ı4.t/; y.0/ D 2

4. y0 C y D ı1.t/ � ı3.t/; y.0/ D 0

5. y00 C 4y D ı�.t/; y.0/ D 0; y0.0/ D 1

6. y00 � y D ı1.t/ � ı2.t/; y.0/ D 0; y0.0/ D 0

7. y00 C 4y0 C 3y D 2ı2.t/; y.0/ D 1; y0.0/ D �1

8. y00 C 4y D ı�.t/ � ı2�.t/; y.0/ D 1; y0.0/ D 0

9. y00 C 4y0 C 4y D 3ı1.t/; y.0/ D �1; y0.0/ D 3

10. y00 C 4y0 C 5y D 3ı�.t/; y.0/ D 0; y0.0/ D 1

11–13. Mixing Problems.

11. Suppose a tank is filled with 12 gal of pure water. A brine solution with
concentration 2 lbs salt per gallon flows into the tank at a rate of 3 gal/min and
the well-stirred solution flows out of the tank at the same rate. In addition, at
t D 3 min, 4 lbs of salt is instantly poured into the tank where it immediately
dissolves. Find the amount of salt, y.t/, in the tank at any time t .

12. A tank holds 10 L of a brine solution in which each liter contains 1 kg of
dissolved salt. A brine solution with concentration 0:5 kg/L is poured into the
tank at a rate of 2 L/min, and the thoroughly mixed solution flows out of the
tank at the same rate. After 2 min, 1 L of salt is poured into the tank where it
instantly mixes into the solution. Find the amount of salt, y.t/, in the tank at
any time t .

13. A tank holds 1 gal of pure water. Pure water flows into the tank at a rate of
1 gal/min, and the well-stirred mixture flows out of the tank at the same rate. At
t D 0; 2; 4; 6 min, 1 lb of salt is instantly added to the tank where it immediately
dissolves. Find the amount, y.t/, of salt in the tank at time t . How much salt is
in the tank just after the last addition at t D 6 min?

14–17. Spring Problems

14. A spring is stretched 6 in. when a 1-lb object is attached. The 1-lb object is
pulled to 12 in. below its spring-body equilibrium and released. We assume
the system is frictionless. After 5� seconds, the mass is suddenly struck by
a hammer in a downward direction with total impulse of 1 slug �ft/s. Find the
motion of the object. Determine the amplitudes before and after the hammer
impact.

15. A spring is stretched 1 m by a force of 8 N. A body of mass 2 kg is attached
to the spring with accompanying dashpot. Suppose the damping force of the
dashpot is 8 N when the velocity of the body is 1 m/s. At t D 0, the mass is
pulled down from its equilibrium position a distance of 10 cm and given an
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initial downward velocity of 5 cm/s. After 4 s, the mass is suddenly struck by a
hammer in a downward direction with total impulse of 2 kg�m/s. Determine the
resulting motion.

16. A 1-Newton force will stretch a spring 1 m. A body of mass 1 kg is attached
to the spring and allowed to come to rest. There is no dashpot. At time t D
0; 2�; 4�; 6� , a hammer impacts the mass in the downward direction with a
magnitude of 1 kg m/s. Find the equation of motion and provide a graph on the
interval Œ0; 10�/.

17. A 1-Newton force will stretch a spring 1 m. A body of mass 1 kg is attached
to the spring and allowed to come to rest. There is no dashpot. At time t D
0; �; 2�; 3�; 4�; 5� , a hammer impacts the mass in the downward direction
with a magnitude of 1 kg m/s. Find the equation of motion and provide a graph
on the interval Œ0; 6�/. Explain.

18–20. In these problems, we justify the Laplace transform method for solving
y0 C ay D kıc , y.0/ D y0 in a way different from the limiting procedure and the
extension of the input derivative principle introduced in the text.

18. On the interval Œ0; c/, solve y0 C ay D 0 with initial value y.0/ D y0.
19. On the interval Œc; 1/, solve y0Cay D 0 with initial value y.c/Ck, where y.c/

is the value of y.t/ at t D c obtained from Exercise 18 for the interval Œ0; c�.
20. Piece together the solutions obtained from Exercise 18 for the interval Œ0; c/ and

from Exercise 19 for the interval Œc; 1/ and verify that it is the same obtained
from the formal Laplace transform method.
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6.5 Convolution

In this section, we extend to the Heaviside class the definition of convolution that
we introduced in Sect. 2.8. The importance of convolution is that it is precisely the
operation in input space that corresponds via the Laplace transform to the ordinary
product in transform space. This is the essence of the convolution principle stated
in Theorem 1 of Sect. 2.8 and which will be proved here for the Heaviside class.
We will then consider further extensions to the Dirac delta functions ıc and explore
some very pleasant properties.

Given two functions f and g in H, the function

u 7! f .u/g.t � u/

is continuous except for perhaps finitely many points on each interval of the form
Œ0; t �. Therefore, the integral

tZ

0

f .u/g.t � u/ du

exists for each t > 0. The convolution of f and g is given by

f � g.t/ D
tZ

0

f .u/g.t � u/ du:

We will not make the argument but it can be shown that f � g is in fact continuous.
Since there are numbers K , L, a, and b such that

jf .t/j � Keat and jg.t/j � Lebt ;

it follows that

jf � g.t/j �
tZ

0

jf .u/j jg.t � u/j du

� KL

tZ

0

eaueb.t�u/ du

D KLebt

tZ

0

e.a�b/u du

D KL

(
tebt if a D b
eat �ebt

a�b
if a ¤ b

:
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This shows that f � g is of exponential type since both tebt and eat �ebt

a�b
are

exponential polynomials. It follows now that f � g 2 H.
Several important properties we listed in Sect. 2.5 extend to H. For convenience,

we restate them here: Suppose f , g, and h are in H. Then

1. .f C h/ � g D f � g C h � g

2. .cf / � g D c.f � g/, for c a scalar
3. f � g D g � f

4. .f � g/ � h D f � .g � h/

5. f � 0 D 0:

The Sliding Window

When one of the functions, g say, is an on–off switch, then convolution takes a
particularly simple form. Suppose g D �Œa;b/ . Then g.t/ D 1 if and only if a �
t < b. Hence, g.t � u/ D 1 if and only if a � t � u < b which is equivalent to
t �b < u � t �a: Thus, g.t �u/ D �.t�b;t�a�.u/ is an on–off switch on the interval
.t � b; t � a� which slides to the right as t increases. It follows that

f � g.t/ D
tZ

0

f .u/�.t�b;t�a�.u/ du:

One can think of g.t � u/ as a horizontally sliding window by which a portion of f

is turned on. That portion is then measured by integration. To illustrate this, consider
the following example.

Example 1. Let f .t/ D .t � 3/h.t � 3/ and g.t/ D �Œ1;2/.t/. Find the convolution
f � g.

I Solution. In this case, g.t � u/ D �Œ1;2/.t � u/ D �.t�2;t�1�.u/. If t < 4, then
t � 2 < t � 1 < 3 so g.t � u/ turns on that part of f which is 0. Thus,

f � g.t/ D 0; if 0 � t < 4;

as illustrated in Fig. 6.18.
If 4 � t < 5, then t � 2 < 3 � t � 1. Thus, g.t � u/ turns of that part of f which

is 0 on the interval .t � 2; 3/ and which is u � 3 on the interval Œ3; t � 1/. Thus,

f � g.t/ D
t�1Z

t�2

f .u/ du D
t�1Z

3

u � 3 du

D .u � 3/2

2

ˇ
ˇ
ˇ
ˇ

t�1

3

D .t � 4/2

2
; 4 � t < 5:

This is illustrated in Fig. 6.19.
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Now when t � 5, then 3 � t �2. Thus, g.t �u/ turns on that portion of f which
is u � 3 on the interval .t � 2; t � 1� and

f � g.t/ D
t�1Z

t�2

.u � 3/ du

D .u � 3/2

2

ˇ
ˇ
ˇ
ˇ

t�1

t�2

D 2t � 9

2
; 5 � t < 1:

This is illustrated in Fig. 6.20. Finally, we piece together the convolution to get

f � g D

8
ˆ̂
<

ˆ̂
:

0 if 0 � t < 4
.t�2/2

2
if 4 � t < 5

2t�9
2

if 5 � t < 1
: (1)

The graph of f � g is given in Fig. 6.21. J
Theorem 2 (The Convolution Theorem). Suppose f and g are in H and F and
G are their Laplace transforms, respectively. Then

L ff � gg .s/ D F.s/G.s/

or, equivalently,

L�1 fF.s/G.s/g .t/ D .f � g/.t/:

Proof. For any f 2 H, we will define f .t/ D 0 for t < 0. By Theorem 8 of
Sect. 6.2,

e�st G.s/ D L fg.u � t/h.u � t/g :

Therefore,

F.s/G.s/ D
1Z

0

e�st f .t/ dt G.s/

D
1Z

0

e�st G.s/f .t/ dt

D
1Z

0

L fg.u � t/h.u � t/g .s/f .t/ dt

D
1Z

0

1Z

0

e�sug.u � t/h.u � t/f .t/ du dt: (2)
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3t−1t−2
t

yFig. 6.18 When t � 1 < 3,
the on–off switch �.t�2;t�1�
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is zero. Hence, f � g.t/ D 0

for all 0 � t < 4. Notice how
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following figures
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t

yFig. 6.19 When 4 < t < 5,
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yFig. 6.20 When 5 � t , then
3 < t � 2 < t � 1 and the
on–off switch �.t�2;t�1� turns
on that portion of f that is the
line u � 3. Hence, f � g.t/ D
R t�1

t�2 .u � 3/ du D 2t�9
2

for
5 � t < 1
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ˆ̂
<

ˆ̂
:

0 if 0 � t < 4

.t�2/2

2
if 4 � t < 5

2t�9
2

if 5 � t < 1
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A theorem in calculus1 tells us that we can switch the order of integration in (2)
when f and g are in H. Thus, we obtain

F.s/G.s/ D
1Z

0

1Z

0

e�sug.u � t/h.u � t/f .t/ dt du

D
1Z

0

uZ

0

e�sug.u � t/f .t/ dt du

D
1Z

0

e�su.f � g/.u/ du

D L ff � gg .s/: ut

There are a variety of uses for the convolution theorem. For one, it is sometimes
a convenient way to compute the convolution of two functions f and g using the
formula .f � g/.t/ D L�1 fF.s/G.s/g : In the following example, we rework
Example 1 in this way.

Example 3. Compute the convolution f � g where

f .t/ D .t � 3/h.t � 3/ and g.t/ D �Œ1;2/:

I Solution. The Laplace transforms of f and g are, respectively,

F.s/ D e�3s

s2
and G.s/ D e�s

s
� e�2s

s
:

The product simplifies to

F.s/G.s/ D e�4s

s3
� e�5s

s3
:

Its inverse Laplace transform is

.f � g/.t/ D L�1 fF.s/G.s/g .t/

D .t � 4/2

2
h.t � 4/ � .t � 5/2

2
h.t � 5/

1cf. Vector Calculus, Linear Algebra, and Differential Forms, J.H. Hubbard and B.B Hubbard,
page 444.
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D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0 if 0 � t < 4

.t�2/2

2
if 4 � t < 5

2t�9
2

if 5 � t < 1

: J

Convolution and the Dirac Delta Function

We would like to extend the definition of convolution to include the Dirac delta
functions ıc , c � 0. Recall that we formally defined the Dirac delta function by

ıc.t/ D lim
�!0

dc;�.t/;

where dc;� D 1
�
�Œc;cC�/: In like manner, for f 2 H, we define

f � ıc.t/ D lim
�!0

f � dc;�.t/:

Theorem 4. For f 2 H,

f � ıc.t/ D f .t � c/h.t � c/;

where the equality is understood to mean essentially equal.

Proof. Let f 2 H. Then

f � dc;�.t/ D
tZ

0

f .u/dc;�.t � u/ dt

D 1

�

tZ

0

f .u/�Œc;cC�/.t � u/ du

D 1

�

tZ

0

f .u/�Œt�c��;t�c/.u/ du

Now suppose t < c. Then �Œt�c��;t�c/.u/ D 0, for all u 2 Œ0; t/. Thus, f � dc;� D 0.
On the other hand, if t > c, then for � small enough, we have

f � dc;�.t/ D 1

�

t�cZ

t�c��

f .u/ du:
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Let t be such that t � c is a point of continuity of f . Then by the fundamental
theorem of calculus

lim
�!0

1

�

t�cZ

t�c��

f .u/ du D f .t � c/:

Since f has only finitely many jump discontinuities on any finite interval, it follows
that f � ıc is essentially equal to f .t � c/h.t � c/. ut

The special case c D 0 produces the following pleasant corollary.

Corollary 5. For f 2 H, we have

f � ı0 D f:

This corollary tells us that this extension to the Dirac delta function gives an
identity under the convolution product. We thus have a correspondence between
the multiplicative identities in input space and transform space under the Laplace
transform since L fı0g D 1.

Remark 6. Notice that when f .t/ D 1, in Theorem 4, we get

1 � ıc D h.t � c/:

This can be reexpressed as

tZ

0

ıc.u/ du D h.t � c/:

Thus, the integral of the Dirac delta function is the unit step function shifted by c.
Put another way, the derivative of the unit step function, h.t � c/, is the Dirac delta
function, ıc .

The Impulse Response Function

Suppose q.s/ is a polynomial of degree n. The solution �.t/ to the initial value
problem

q.D/y D ı0 y.0/ D 0; y0.0/ D 0; : : : ; y.n�1/.0/ D 0; (3)

is called the unit impulse response function. In the case where deg q.s/ D 2, the
unit impulse response function may be viewed as the response to a mass-spring
dashpot system initially at rest but hit with a hammer of impulse 1 at t D 0 as
represented by the Dirac delta function ı0. Applying the Laplace transform to (3),
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we get Y.s/ D 1
q.s/

, and thus the unit impulse response function is given by the
Laplace inversion formula

�.t/ D L�1

�
1

q.s/

�

:

Let f 2 H (or f could be a Dirac delta function) and let us consider the general
differential equation

q.D/y D f; y.0/ D y0; y0.0/ D y1; y.n�1/.0/ D yn�1: (4)

Let F.s/ D L ff .t/g. Applying the Laplace transform to both sides gives

q.s/Y.s/ � p.s/ D F.s/;

where p.s/ is a polynomial that depends on the initial conditions and has degree at
most n � 1. Solving for Y.s/ gives

Y.s/ D p.s/

q.s/
C F.s/

q.s/
: (5)

Let

Yh.s/ D p.s/

q.s/
and Yp.s/ D F.s/

q.s/
:

If yh.t/ D L�1 fYh.s/g, then yh is the homogeneous solution to (4). Specifically, yh

is the solution to (4) when f D 0 but with the same initial conditions. We sometimes
refer to yh as the zero-input solution.

On the other hand, let yp.t/ D L�1
˚
Yp.s/

�
. Then yp is the solution to (4) when

all the initial conditions are zero, sometimes referred to as the zero-state. We refer
to yp as the zero-state solution. Since Y.s/ D 1

q.s/
F .s/, we get by the convolution

theorem
yp.t/ D � � f .t/: (6)

This tells us that the solution to a system in the zero-state is completely determined
by convolution of the input function with the unit impulse response function.

We summarize this discussion in the following theorem:

Theorem 7. Let f 2 H (or a linear combination of Dirac delta functions). The
solution to (4) can be expressed as

yh C yp;

where yh is the zero-input solution, that is, the homogeneous solution to (4) (with
the same initial conditions), and yp D � � f is the zero-state solution given by
convolution of the unit impulse response function � and the input function f .
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Remark 8. In Exercises 15–21, we outline a proof that the homogeneous solution
yh can be expressed as a linear combination of

˚
�; � 0; : : : ; �.n�1/

�

and provide formulas for the coefficients in terms of the initial conditions. The
reader is encouraged to explore these exercises. It follows then that both yh and
yp are directly determined by the unit impulse response function, �.

As an example of the techniques we have developed in this section, consider the
differential equation that solved the mixing problem given in Example 1 of Sect. 6.4.

Example 9. Solve the following differential equation:

y0 C 1

10
y D 3ı5 y.0/ D 20:

I Solution. The characteristic polynomial is q.s/ D s C 1=10, and therefore, the

unit impulse response function is �.t/ D L�1
n

1
sC1=10

o
D e�1=10t . The zero-state

solution is yp D � � 3ı5 D 3e�.t�5/=10h.t � 5/ by Theorem 4. It is straightforward
to see that the homogeneous solution is yh D 20e�1=10t . We thus get

y.t/ D 20e�t=10 C 3e�.t�5/=10h.t � 5/

D
(

20e�t=10 if 0 � t � 5;

20e�t=10 C 3e�.t�5/=10 if 5 < t < 1: J
Example 10. Solve the following differential equation:

y00 C 4y D �Œ0;1/ y.0/ D 0 and y0.0/ D 0:

I Solution. The homogeneous solution to

y00 C 4y D 0 y.0/ D 0 and y0.0/ D 0

is the trivial solution yh D 0. The unit impulse response function is

�.t/ D L�1

�
1

s2 C 4

�

D 1

2
sin 2t:

By Theorem 7, the solution is

y.t/ D � � �Œ0;1/

D
tZ

0

1

2
sin.2u/�Œ0;1/.t � u/ du
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D 1

2

tZ

0

sin.2u/�.t�1;t �.u/ du

D 1

2

8
ˆ̂
<

ˆ̂
:

tR

0

sin 2u du if 0 � t < 1

tR

t�1

sin 2u du if 1 � t < 1

D 1

4

(
1 � cos 2t if 0 � t < 1

cos 2.t � 1/ � cos 2t if 1 � t < 1 : J

In the following, we revisit Example 4 of Sect. 6.4.

Example 11. Solve the differential equation

y00 C 20y D ı3; y.0/ D 0:1; y0.0/ D 0;

that models the spring problem given in Exercise 4 of Sect. 6.4.

I Solution. The characteristic polynomial is q.s/ D s2 C20. So the homogeneous
solution is yh D c1 cos

p
20t C c2 sin

p
20t . The initial conditions easily imply that

c1 D 1
10

and c2 D 0. So yh D 1
10

cos
p

20t . The unit impulse response function is

�.t/ D L�1

�
1

s2 C 20

�

D 1p
20

sin
p

20t:

It follows from Theorem 4 and 7 that

yp.t/ D � � ı3.t/

D 1p
20

.sin
p

20.t � 3//h.t � 3/:

It follows now that the solution to the spring problem in Example 4 of Sect. 6.4 is

y.t/ D 1

10
cos

	p
20 t



C 1p

20
sin
	p

20 .t � 3/



h.t � 3/

D 1

10
cos

	p
20 t



C
8
<

:

0 if 0 � t < 3;

1p
20

sin
	p

20 .t � 3/



if 3 � t < 1: J
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Exercises

1–8. Find the convolution of the following pairs of functions.

1. f .t/ D et and g.t/ D �Œ0;1/.t/

2. f .t/ D sin t and g.t/ D h.t � �/

3. f .t/ D th.t � 1/ and g.t/ D �Œ3;4/.t/

4. f .t/ D t and g.t/ D .t � 1/h.t � 1/

5. f .t/ D �Œ0;2/ and g.t/ D �Œ0;2/

6. f .t/ D cos t and g.t/ D ı�=2

7. f .t/ D sin t and g.t/ D ı0 C ı�

8. f .t/ D te2t and g.t/ D ı1 � ı2

9–14. Find the unit impulse response function � and use Theorem 7 to solve the
following differential equations.

9. y0 � 3y D h.t � 2/; y.0/ D 2

10. y0 C 4y D ı3; y.0/ D 1

11. y0 C 8y D �Œ3;5/; y.0/ D �2

12. y00 � y D ı1.t/ � ı2.t/; y.0/ D 0; y0.0/ D 0

13. y00 C 9y D �Œ0;2�/; y.0/ D 1; y0.0/ D 0.
14. y00 � 6y0 C 9y D ı3; y.0/ D �1; y0.0/ D �3

15–21. Suppose q.s/ D ansnCan�1sn�1C� � �Ca1sCa0, an ¤ 0. In these exercises,
we explore properties of the unit impulse response function � for q.D/y D ı0.

15. Show that � is the solution to the homogeneous differential equation

q.D/y D 0

with initial conditions

y.0/ D 0

y0.0/ D 0

:::

y.n�2/.0/ D 0

y.n�1/.0/ D 1=an:

16. Show that L ˚�.k/
� D sk

q.s/
, 0 � k < n, and hence �.k/ 2 Eq .

17. Show that
˚
�; � 0; : : : ; �.n�1/

�
is a linearly independent subset of Eq .
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18. Show that
˚
�; � 0; : : : ; �.n�1/

�
spans Eq .

19. Show that
˚
�; � 0; : : : ; �.n�1/

�
is a basis of Eq .

20. Show that the Wronskian of �; � 0; : : : ; �.n�1/ is given by the following formula:

w.�; � 0; : : : ; �.n�1// D .�1/b n
2 c

an
n

e
�an�1

an
t ;

where bxc is the largest integer less than or equal to x.

21. Let y be the solution to q.D/y D 0 with initial conditions

y.0/ D y0

y0.0/ D y1

:::

y.n�1/.0/ D yn�1:

Since y 2 Eq , we may write

y D c0� C c1�
0 C � � � C cn�1�

.n�1/:

Show that

cl D
n�l�1X

kD0

akClC1yk:

22–26. Use the result of Exercise 21 to find the homogeneous solution to each of
the following differential equations. It may be helpful to organize the computation
of the coefficients in the following way: Let 0 � l � n � 1 and write

a0 a1 � � � al alC1 alC2 � � � an

y0 y1 � � � yn�l�1 � � � yn

c0 c1 � � � cl � � �

In the first row, put the coefficients of q.s/ starting with the constant coefficient
on the left. In the second row, put the initial conditions with y0 under alC1, y1

under alC2, etc. Multiply terms that overlap in the first two rows and add. Put the
result in cl . Now shift the second row of initial conditions to the right one place and
repeat to get clC1. Repeating this will give all the coefficients c0; : : : ; cn�1 needed
in y D Pn�1

lD0 cl�
.l/:
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22. y00 C 9y D 0; y.0/ D 1; y0.0/ D 2

23. y00 � 2y0 C y D 0; y.0/ D 2; y0.0/ D �3

24. y00 C 4y0 C 3y D 0; y.0/ D �1; y0.0/ D 1

25. y000 C y0 D 0; y.0/ D 1; y0.0/ D 0; y00.0/ D 4

26. q.D/y D 0 where q.s/ D .s � 1/4 and y.0/ D 0; y0.0/ D 1; y00.0/ D 0, and
y000.0/ D �1
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6.6 Periodic Functions

In modeling mechanical and other systems, it frequently happens that the forcing
function repeats over time. Periodic functions best model such repetition.

A function f defined on Œ0; 1/ is said to be periodic if there is a positive number
p such that f .t C p/ D f .t/ for all t in the domain of f . We say p is a period of
f . If p > 0 is a period of f and there is no smaller period, then we say p is the
fundamental period of f although we will usually just say the period. The interval
Œ0; p/ is called the fundamental interval. If there is no such smallest positive p for a
periodic function, then the period is defined to be 0. The constant function f .t/ D 1

is an example of a periodic function with period 0. The sine function is periodic
with period 2�: sin.t C 2�/ D sin.t/. Knowing the sine on the interval Œ0; 2�/

implies knowledge of the function everywhere. Similarly, if we know f is periodic
with period p > 0 and we know the function on the fundamental interval, then we
know the function everywhere. Figure 6.22 illustrates this point.

The Sawtooth Function

A particularly useful periodic function is the sawtooth function. With it, we may
express other periodic functions simply by composition. Let p > 0. The saw tooth
function is given by

htip D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

t if 0 � t < p

t � p if p � t < 2p

t � 2p if 2p � t < 3p
:::

:

y

p 2p 3p 4p 5p

Fig. 6.22 An example of a periodic function with period p. Notice how the interval Œ0; p/

determines the function everywhere



454 6 Discontinuous Functions and the Laplace Transform

y

p

p 2p 3p 4p 5p

Fig. 6.23 The sawtooth
function htip with period p

1

π 2π 3π 4π 5π

Fig. 6.24 The rectified sine
wave: sin.hti�/

It is periodic with period p. Its graph is given in Fig. 6.23. The sawtooth function
htip is obtained by extending the function y D t on the interval Œ0; p/ periodically
to Œ0; 1/. More generally, given a function f defined on the interval Œ0; p/, then the
composition of f and htip is the periodic extension of f to Œ0; 1/. It is given by
the formula

f .htip/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

f .t/ if 0 � t < p

f .t � p/ if p � t < 2p

f .t � 2p/ if 2p � t < 3p
:::

:::

:

In applications, it is useful to rewrite this piecewise function as

1X

nD0

f .t � np/�Œnp;.nC1/p/.t/:

For example, Fig. 6.24 is the graph of y D sin.hti�/. This function, which is
periodic with period � , is known as the rectified sine wave.

The Staircase Function

Another function that will be particularly useful is the staircase function. For p >

0, it is defined as follows:

Œt �p D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

0 if t 2 Œ0; p/

p if t 2 Œp; 2p/

2p if t 2 Œ2p; 3p/
:::

:

Its graph is given in Fig. 6.25.
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y

p

p 2p

2p

3p

3p

4p

4p

5p

Fig. 6.25 The staircase
function: Œt �p

y
1

2 3 41

Fig. 6.26 The graph of
1 � e�t and 1 � e�Œt �:5

The staircase function is not periodic. It is useful in expressing piecewise
functions that are like steps on intervals of length p. For example, if f is a function
on Œ0; 1/, then f .Œt �p/ is a function whose value on Œnp; .n C 1/p/ is the constant
f .np/. Thus,

f .Œt �p/ D
1X

nD0

f .np/�Œnp;.nC1/p/.t/:

Figure 6.26 illustrates this idea with the function f .t/ D 1 � e�t and p D 0:5.
Observe that the staircase function and the sawtooth function are related by

< t >pD t � Œt �p:

The Laplace Transform of Periodic Functions

Not surprisingly, the formula for the Laplace transform of a periodic function is
determined by the fundamental interval.

Theorem 1. Let f be a periodic function in H and p > 0 a period of f . Then

L ff g .s/ D 1

1 � e�sp

pZ

0

e�st f .t/ dt:
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y

1

c 2c 3c 4c 5c 6c

Fig. 6.27 The graph of the square-wave function swc

Proof.

L ff g .s/ D
1Z

0

e�st f .t/ dt

D
pZ

0

e�st f .t/ dt C
1Z

p

e�st f .t/ dt:

However, the change of variables t ! tCp in the second integral and the periodicity
of f gives

1Z

p

e�st f .t/ dt D
1Z

0

e�s.tCp/f .t C p/ dt

D e�sp

1Z

0

e�st f .t/ dt

D e�spL ff g .s/:

Therefore,

L ff g .s/ D
pZ

0

e�st f .t/ dt C e�spL ff g .s/:

Solving for L ff g gives the desired result. ut
Example 2. Find the Laplace transform of the square-wave function swc given by

swc.t/ D
(

1 if t 2 Œ2nc; .2n C 1/c/

0 if t 2 Œ.2n C 1/c; .2n C 2/c/
for each integer n:

I Solution. The square-wave function swc is periodic with period 2c. Its graph is
given in Fig. 6.27 and, by Theorem 1, its Laplace transform is
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L fswcg .s/ D 1

1 � e�2cs

2cZ

0

e�st swc.t/ dt

D 1

1 � e�2cs

cZ

0

e�st dt

D 1

1 � .e�cs/2

1 � e�cs

s

D 1

1 C e�cs

1

s
: J

Example 3. Find the Laplace transform of the sawtooth function < t >p.

I Solution. Since the sawtooth function is periodic with period p and since
< t >pD t for 0 � t < p, Theorem 1 gives

L ˚htip

�
.s/ D 1

1 � e�sp

pZ

0

e�st t dt:

Integration by parts gives

pZ

0

e�st t dt D te�st

�s
jp0 � 1

�s

pZ

0

e�st dt

D �pe�sp

s
� 1

s2
e�st jp0

D �pe�sp

s
� e�sp � 1

s2
:

With a little algebra, we obtain

L ˚< t >p

�
.s/ D 1

s2

�

1 � spe�sp

1 � e�sp

�

: J

As mentioned above, it frequently happens that we build periodic functions by
restricting a given function f to the interval Œ0; p/ and then extending it to be
periodic with period p: f .htip/. Suppose now that f 2 H. We can then express the
Laplace transform of f .htip/ in terms of the Laplace transform of f . The following
corollary expresses this relationship and simplifies unnecessary calculations like the
integration by parts that we did in the previous example.
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Corollary 4. Let p > 0. Suppose f 2 H. Then

L ˚f .htip/
�

.s/ D 1

1 � e�sp
L ff .t/ � f .t/h.t � p/g :

Proof. The function f .t/ � f .t/h.t � p/ D f .t/.1 � h.t � p// is the same as f

on the interval Œ0; p/ and 0 on the interval Œp; 1/: Therefore,

pZ

0

e�st f .t/ dt D
1Z

0

e�st .f .t/ � f .t/h.t � p// dt D L ff .t/ � f .t/h.t � p/g :

The result now follows from Theorem 1. ut
Let us return to the sawtooth function in Example 3 and see how Corollary 4

simplifies the calculation of its Laplace transform.

L ˚htip

�
.s/ D 1

1 � e�sp
L ft � th.t � p/g

D 1

1 � e�sp

�
1

s2
� e�spL ft C pg

�

D 1

1 � e�sp

�
1

s2
� e�sp 1 C sp

s2

�

D 1

s2

�

1 � spe�sp

1 � e�sp

�

:

The last line requires a few algebraic steps.

Example 5. Find the Laplace transform of the rectified sine wave

sin.hti�/:

See Fig. 6.24.

I Solution. Corollary 4 gives

L fsin.hti�/g D 1

1 � e��s
L fsin t � sin t h.t � �/g

D 1

1 � e��s

�
1

s2 C 1
� e��sL fsin.t C �/g

�

D 1

1 � e��s

�
1 C e��s

s2 C 1

�

;

where we use the fact that sin.t C �/ D � sin.t/: J
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Periodic Extensions of the Dirac Delta Function

We will also consider in the applications inputs that are periodic extensions of the
Dirac delta function. For example,

ıc.htip/ D ıc C ıcCp C ıcC2p C ıcC3p C � � � ;

where 0 � c < p is the periodic extension of the Dirac delta function, ıc . An
important case is when c D 0. Then ı0.htip/, is the periodic extension of ı0 with
period p and represents a unit impulse at each multiple of t D p. Another important
example is

.ı0 � ıp/.hti2p/ D ı0 � ıp C ı2p � ı3p C � � � ;

the periodic extension of ı0 � ıp with period 2p which represents a unit impulse at
each even multiple of p and a negative unit impulse at odd multiples of p.

Proposition 6. The Laplace transforms of ı0.htip/ and .ı0 � ıp/.hti2p/ are given
by the following formulas:

L ˚ı0.htip/
� D 1

1 � e�ps
;

L ˚.ı0 � ıp/.hti2p/
� D 1

1 C e�ps
:

Proof. Let r be a fixed real or complex number. Recall that the geometric series

1X

nD0

rn D 1 C r C r2 C r3 C � � �

converges to 1
1�r

when jr j < 1. We can now compute the Laplace transforms.

L ˚ı0.htip/
� D 1 C e�ps C e�2ps C e�3ps C � � �

D
1X

nD0

.e�ps/n

D 1

1 � e�ps
:
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Similarly,

L ˚.ı0 � ıp/.hti2p/
� D 1 � e�ps C e�2ps � e�3ps C � � �

D
1X

nD0

.�e�ps/n

D 1

1 C e�ps
: ut

The Inverse Laplace Transform

The inverse Laplace transform of functions of the form

1

1 � e�sp
F.s/

is not always a straightforward matter to find unless, of course, F.s/ is of the form
L ff .t/ � f .t/h.t � p/g so that Corollary 4 can be used. Usually, though, this is
not the case. Since

1

1 � e�sp
D

1X

nD0

e�snp ;

we can write
1

1 � e�sp
F.s/ D

1X

nD0

e�snpF.s/:

If f D L�1 fF g, then a termwise computation gives

L�1

�
1

1 � e�sp
F.s/

�

D
1X

nD0

L�1 fe�snpF.s/g D
1X

nD0

f .t � np/h.t � np/:

For t in an interval of the form ŒNp; .N C 1/p/, the function h.t � np/ is 1 for
n D 0; : : : ; N and 0 otherwise. We thus obtain

L�1

�
1

1 � e�sp
F.s/

�

D
1X

N D0

 
NX

nD0

f .t � np/

!

�ŒNp;.N C1/p/:

A similar argument gives

L�1

�
1

1 C e�sp
F.s/

�

D
1X

N D0

 
NX

nD0

.�1/nf .t � np/

!

�ŒNp;.N C1/p/ :

For reference, we record these results in the following theorem:
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Theorem 7. Let p > 0 and suppose L ff .t/g D F.s/. Then

1. L�1
˚

1
1�e�sp F .s/

� D P1
N D0

	PN
nD0 f .t � np/



�ŒNp;.N C1/p/:

2. L�1
˚

1
1Ce�sp F .s/

� D P1
N D0

	PN
nD0.�1/nf .t � np/



�ŒNp;.N C1/p/:

Example 8. Find the inverse Laplace transform of

1

.1 � e�2s/s
:

I Solution. If f .t/ D 1, then F.s/ D 1
s

is its Laplace transform. We thus have

L�1

�
1

.1 � e�2s/s

�

D
1X

N D0

 
NX

nD0

f .t � 2n/

!

�Œ2N;2.N C1//

D
1X

N D0

.N C 1/�Œ2N;2.N C1//

D 1 C 1

2

1X

N D0

2N�Œ2N;2.N C1//

D 1 C 1

2
Œt �2: J

Remark 9. Generally, it will not be possible to express the final answer in a nice
closed form as in Example 8; one may have to settle for an infinite sum as given in
Theorem 7.
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Exercises

1–5. Reexpress each sum in terms of the sawtooth function htip and/or the staircase
function Œt �p . (Since t � htip D Œt �p , there are more than one equivalent answer.)

1.
P1

nD0.t � n/2�Œn;.nC1//.t/

2.
P1

nD0.t � n/2�Œ2n;2.nC1//.t/

3.
P1

nD0 n2�Œ3n;3.nC1//.t/

4.
P1

nD0 e8n�Œ4n;4.nC1//.t/

5.
P1

nD0.t C n/�Œ2n;2.nC1//.t/

6–10. Find the Laplace transform of each periodic function.

6. f .hti2/ where f .t/ D t2

7. f .hti3/ where f .t/ D et

8. f .hti2/ where f .t/ D
(

t if 0 � t < 1

2 � t if 1 � t < 2

9. f .hti2p/ where f .t/ D
(

1 if 0 � t < p

�1 if p � t < 2p

10. f .hti�/ where f .t/ D cos t

11–14. Find the Laplace transform of f .Œt �p/, where Œt �p is the staircase function.

11. f .Œt �p/ where f .t/ D t . That is, find the Laplace transform of the staircase
function Œt �p .

12. f .Œt �1/ where f .t/ D et

13. f .Œt �2/ where f .t/ D e�t

14. f .Œt �3/ where f .t/ D t2. Hint: Use the fact that
P1

nD0 n2xn D x.1Cx/

.1�x/3 for
jxj < 1.

15. Suppose f 2 H. Show that

Lff .Œt �p/g D 1 � e�ps

s

1X

nD0

f .np/e�nps:
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16–18. Find the inverse Laplace transform of each function.

16.
e�2s

s.1 � e�2s/

17.
1 � e�4.s�2/

.1 � e�4s/.s � 2/

18.
1

.1 � e�4s/.s � 2/

19. Let F.s/ D 1
.sCa/.1Ce�ps/

. Show that

L�1fF.s/g D e�at

8

<̂

:̂

1Cea.N C1/p

1Ceap if t 2 ŒNp; .N C 1/p/; (N even)

1�ea.N C1/p

1Ceap if t 2 ŒNp; .N C 1/p/; (N odd)

D e�at

0

@
1 C .�1/

Œt�p
p ea.Œt �pCp/

1 C eap

1

A :

(Use the fact that 1 C x C x2 C � � � C xN D 1�xN C1

1�x
.)

20. In the text, we stated that the constant function 1 is periodic with period 0. Here
is another example: Let Q denote the set of rational numbers. Let

�Q.t/ D
(

1 if t 2 Q

0 if t … Q

:

Show that � is periodic with period q for each positive q 2 Q. Conclude that
�Q has fundamental period 0.
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6.7 First Order Equations with Periodic Input

We now turn our attention to two examples of mixing problems with periodic input
functions. Each example will be modeled by a first order differential equation of the
form

y0 C ay D f .t/;

where f .t/ is a periodic function.

Example 1. Suppose a tank contains 10 gal of pure water. Two input sources
alternately flow into the tank for 1-min intervals. The first input source begins
flowing at t D 0. It consists of a brine solution with concentration 1 lb salt per
gallon and flows (when on) at a rate of 5 gal/min. The second input source is pure
water and flows (when on) at a rate of 5 gal/min. The tank has a drain with a constant
outflow of 5 gal/min. Let y.t/ denote the total amount of salt at time t . Find y.t/

and for large values of t determine how y.t/ fluctuates.

I Solution. The input rate of salt is given piecewise by the formula

5 sw1.t/ D
(

5 if 2n � t < 2n C 1/

0 if 2n C 1 � t < 2n C 2
:

The output rate is given by
y.t/

10
� 5:

This leads to the first order differential equation

y0 C 1

2
y D 5 sw1.t/ y.0/ D 0:

A calculation using Example 2 of Sect. 6.6 shows that the Laplace transform is

Y.s/ D 5
1

1 C e�s

1

s
�
s C 1

2

� ;

and a partial fraction decomposition of 1
s.sC1=2/

gives

Y.s/ D 10
1

1 C e�s

1

s
� 10

1

1 C e�s

1

s C 1
2

:

Now apply the inverse Laplace transform. To simplify the calculations, let

Y1.s/ D 10
1

1 C e�s

1

s
;
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Y2.s/ D 10
1

1 C e�s

1

s C 1
2

:

Then Y.s/ D Y1.s/ � Y2.s/. By Example 2 of Sect. 6.6, we have

L�1 fY1.s/g D 10 sw1.t/:

By Theorem 7 of Sect. 6.6, the inverse Laplace transform of the second expression is

L�1 fY2.s/g D 10

1X

N D0

NX

nD0

.�1/ne� 1
2 .t�n/�ŒN;N C1/

D 10e� 1
2 t

1X

N D0

NX

nD0

	
�e

1
2


n

�ŒN;N C1/

D 10e� 1
2 t

1X

N D0

1 �
	
�e

1
2


N C1

1 C e
1
2

�ŒN;N C1/

D 10e� 1
2 t

1 C e
1
2

(
1 C e

N C1
2 if t 2 ŒN; N C 1/ (N even)

1 � e
N C1

2 if t 2 ŒN; N C 1/ (N odd)
:

Finally, we put these two expression together to get our solution

y.t/ D 10 sw1.t/ � 10e� 1
2 t

1 C e
1
2

(
1 C e

N C1
2 if t 2 ŒN; N C 1/ (N even)

1 � e
N C1

2 if t 2 ŒN; N C 1/ (N odd)

D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

10 � 10
e� 1

2 t C e
�tCN C1

2

1 C e
1
2

if t 2 ŒN; N C 1/ (N even)

�10
e� 1

2 t � e
�tCN C1

2

1 C e
1
2

if t 2 ŒN; N C 1/ (N odd)

:

The graph of y.t/, obtained with the help of a computer, is presented in Fig. 6.28.
The solution is sandwiched in between a lower and upper curve. The lower curve,
l.t/, is obtained by setting t D m to be an even integer in the formula for the solution
and then continuing it to all reals. We obtain

l.m/ D 10 � 10
e� 1

2 m C e
�mCmC1

2

1 C e
1
2

D 10 � 10
e� 1

2 m C e
1
2

1 C e
1
2
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Fig. 6.28 A mixing problem with square-wave input function

and thus

l.t/ D 10 � 10
e� 1

2 t C e
1
2

1 C e
1
2

:

In a similar way, the upper curve, u.t/, is obtained by setting t D m� to be slight
smaller than an odd integer and continuing to all reals. We obtain

u.t/ D �10
e� 1

2 t � e
1
2

1 C e
1
2

:

An easy calculation gives

limt!1 l.t/ D 10 � 10e
1
2

1Ce
1
2

' 3:78 and limt!1 u.t/ D 10e
1
2

1Ce
1
2

' 6:22:

This means that the salt fluctuation in the tank varies between 3:78 and 6:22 lbs for
large values of t . J

In practice, it is not always possible to know the input function, f .t/, precisely.
Suppose though that it is known that f is periodic with period p. Then the total input
on all intervals of the form Œnp; .nC1/p/ is

R .nC1/p

np
f .t/ dt D h, a constant. On the

interval Œ0; p/, we could model the input with a Dirac delta function concentrated at
a point, c say, and then extend it periodically. We would then obtain a sum of Dirac
delta functions of the form

a.t/ D h.ıc C ıcCp C ıcC2p C � � � /

that may adequately represent the input for the system we are trying to model.
Additional information may justify distributing the total input over two or more
points in the interval and extend periodically. Whatever choices are made, the
solution will need to be analyzed in the light of empirical data known about the
system. Consider the example above. Suppose that it is known that the input is
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periodic with period 2 and total input 5 on the fundamental interval. Suppose
additionally that you are told that the distribution of the input of salt is on the first
half of each interval. We might be led to try to model the input on Œ0; 2/ by 5

2
ı0 C 5

2
ı1

and then extend periodically to obtain

a.t/ D 5

2

1X

nD0

ın:

Of course, the solution modeled by the input function a.t/ will differ from the
solution obtained using input function 5 sw1 as given in Example 1. What is true
though is that both exhibit similar long-term behavior. This can be observed in the
following example.

Example 2. Suppose a tank contains 10 gal of pure water. Pure water flows into the
tank at a rate of 5 gal/min. The tank has a drain with a constant outflow of 5 gal/min.
Suppose 5

2
lbs of salt is put in the tank each minute whereupon it instantly and

uniformly dissolves. Assume the level of fluid in the tank is always 10 gal. Let
y.t/ denote the total amount of salt at time t . Find y.t/ and for large values of t

determine how y.t/ fluctuates.

I Solution. As discussed above, the input function is 5
2

P1
nD1 ın, and therefore,

the differential equation that models this system is

y0 C 1

2
y D 5

2

1X

nD1

ın; y.0/ D 0:

The Laplace transform leads to

Y.s/ D 5

2

1X

nD0

e�sn 1

s C 1
2

;

and inverting the Laplace transform and using Theorem 7 of Sect. 6.6 give

y.t/ D 5

2
e� 1

2 t

1X

N D0

 
NX

nD0

	
e� 1

2 .t�n/


!

�ŒN;N C1/

D 5

2
e� 1

2 t

1X

N D0

 
NX

nD0

	
e

1
2


n

!

�ŒN;N C1/

D 5

2
e� 1

2 t

1X

N D0

1 � e
N C1

2

1 � e
1
2

�ŒN;N C1/

D
5
	

e� 1
2 t � e� 1

2 .t�Œt �1�1/



2
	
1 � e

1
2


 :
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Fig. 6.29 A mixing problem with a periodic Dirac delta function: The solution to the differential
equation y0 C 1

2
y D 5

2

P
1

nD1 ın; y.0/ D 0

The graph of this equation is given in Fig. 6.29. The solution is sandwiched in
between a lower and upper curve. The upper curve, u.t/, is obtained by setting
t D m to be an integer in the formula for the solution and then continuing it to all
reals. We obtain

u.m/ D 5

2
	
1 � e� 1

2



	

e� m
2 � e

�mCmC1
2



D 5

2
	
1 � e� 1

2



	

e� m
2 � e

1
2




and thus

u.t/ D 5

2
	
1 � e� 1

2



	

e� t
2 � e

1
2



:

In a similar way, the upper curve, l.t/, is obtained by setting t D .m C 1/� (slightly
less than the integer m C 1) and continuing to all reals. We obtain

l.t/ D 5

2
	
1 � e� 1

2



	

e� t
2 � 1



:

An easy calculation gives

limt!1 u.t/ D �5e
1
2

2

�

1�e
1
2

� ' 6:35 and limt!1 l.t/ D �5

2

�

1�e
1
2

� ' 3:85:

This means that the salt fluctuation in the tank varies between 3:85 and 6:35 lbs for
large values of t . J
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A comparison of the solutions in these examples reveals similar long-term
behavior in the fluctuation of the salt content in the tank. Remember though that each
problem that is modeled must be weighed against hard empirical data to determine
if the model is appropriate or not. Also, we could have modeled the instantaneous
input by assuming the input was concentrated at a single point, rather than two
points. The results are not as favorable. These other possibilities are explored in the
exercises.
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Exercises

1–3. Solve the following mixing problems.

1. Suppose a tank contains 10 gal of pure water. Two input sources alternately
flow into the tank for 2-min intervals. The first input source begins flowing at
t D 0. It is a brine solution with concentration 2 lbs salt per gallon and flows
(when on) at a rate of 4 gal/min. The second input source is a brine solution with
concentration 1 lb salt per gallon and flows (when on) at a rate of 4 gal/min. The
tank has a drain with a constant outflow of 4 gal/min. Let y.t/ denote the total
amount of salt at time t . Find y.t/ and for large values of t determine how y.t/

fluctuates.
2. Suppose a tank contains 10 gal of brine in which 20 lbs of salt are dissolved.

Two input sources alternately flow into the tank for 1-min intervals. The first
input source begins flowing at t D 0. It is a brine solution with concentration
1 lb salt per gallon and flows (when on) at a rate of 2 gal/min. The second input
source is a pure water and flows (when on) at a rate of 2 gal/min. The tank has a
drain with a constant outflow of 2 gal/min. Let y.t/ denote the total amount of
salt at time t . Find y.t/ and for large values of t determine how y.t/ fluctuates.

3. Suppose a tank contains 10 gal of pure water. Pure water flows into the tank at
a rate of 5 gal/min. The tank has a drain with a constant outflow of 5 gal/min.
Suppose 5 lbs of salt is put in the tank every other minute beginning at t D 0

whereupon it instantly and uniformly dissolves. Assume the level of fluid in the
tank is always 10 gal. Let y.t/ denote the total amount of salt at time t . Find
y.t/ and for large values of t determine how y.t/ fluctuates.

4–5. Solve the following harvesting problems.

4. In a certain area of the Louisiana swamp, a population of 2;500 alligators is
observed. Given adequate amounts of food and space, their population will
follow the Malthusian growth model. After 12 months, scientists observe that
there are 3;000 alligators. Alarmed by their rapid growth, the Louisiana Wildlife
and Fisheries institutes the following hunting policy for a specialized group of
alligator hunters: Hunting is allowed in only an odd-numbered month, and the
total number of alligators taken is limited to 80. Assuming the limit is attained
in each month allowed and uniformly over the month, determine a model that
gives the population of alligators. Solve that model. How many alligators are
there at the beginning of the fifth year? (Assume a population of 3;000 alligators
at the beginning of the initial year.)

5. Assume the premise of Exercise 4, but instead of the stated hunting policy
in odd-numbered months, assume that the Louisiana Wildlife and Fisheries
contracts an elite force of Cajun alligator hunters to take out 40 alligators at the
beginning of each month. (You may assume this is done instantly on the first
day of each month.) Determine a model that gives the population of alligators.
Solve that model. How many alligators are there at the beginning of the fifth
year?
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6.8 Undamped Motion with Periodic Input

In Sect. 3.6, we discussed various kinds of motion of a spring-body-dashpot system
modeled by the differential equation

my00 C �y0 C ky D f .t/:

Undamped motion led to the differential equation

my00 C ky D f .t/: (1)

In particular, we explored the case where f .t/ D F0 cos !t and were led to the
solution

y.t/ D

8

<̂

:̂

F0

a.ˇ2�!2/
.cos !t � cos ˇt/ if ˇ ¤ !;

F0

2a!
t sin !t if ˇ D !,

(2)

where ˇ D
q

k
m

: The case where ˇ is close to but not equal to ! gave rise to the
notion of beats, while the case ˇ D ! gave us resonance. Since cos !t is periodic,
the system that led to (1) is an example of undamped motion with periodic input. In
this section, we will explore this phenomenon with two further examples: a square-
wave periodic function, swc , and a periodic impulse function, ı0.htic/ D P1

nD0 ınc .
Both examples are algebraically tedious, so you will be asked to fill in some of the
algebraic details in the exercises. To simplify the notation, we will rewrite (1) as

y00 C ˇ2y D g.t/

and assume y.0/ D y0.0/ D 0.

Undamped Motion with Square-Wave Forcing Function

Example 1. A constant force of r units for c units of time is applied to a mass-
spring system with no damping force that is initially at rest. The force is then
released for c units of time. This on–off force is extended periodically to give a
periodic forcing function with period 2c. Describe the motion of the mass.

I Solution. The differential equation which describes this system is

y00 C ˇ2y D r swc.t/; y.0/ D 0; y0.0/ D 0; (3)
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where swc is the square-wave function with period 2c and ˇ2 is the spring constant.
By Example 2 of Sect. 6.6, the Laplace transform leads to the equation

Y.s/ D r
1

1 C e�sc

1

s.s2 C ˇ2/
D r

ˇ2

1

1 C e�sc

�
1

s
� s

s2 C ˇ2

�

:

D r

ˇ2

1

1 C e�sc

1

s
� r

ˇ2

1

1 C e�sc

s

s2 C ˇ2
: (4)

Let

F1.s/ D r

ˇ2

1

1 C e�sc

1

s
and F2.s/ D r

ˇ2

1

1 C e�sc

s

s2 C ˇ2
:

Then Y.s/ D F1.s/ � F2.s/. Again, by Example 2 of Sect. 6.6, we have

f1.t/ D r

ˇ2
swc.t/: (5)

By Theorem 7 of Sect. 6.6, we have

f2.t/ D r

ˇ2

1X

N D0

 
NX

nD0

.�1/n cos.ˇt � nˇc/

!

�ŒNc;.N C1/c/: (6)

We consider two cases.

ˇc Is not an Odd Multiple of �

Lemma 2. Suppose v is not an odd multiple of � and let ˛ D sin.v/

1Ccos.v/
. Then

1:

NX

nD0

.�1/n cos.u C nv/ D 1

2
.cos u C ˛ sin u/

C .�1/N

2
.cos.u C N v/ � ˛ sin.u C N v// :

2:

NX

nD0

.�1/n sin.u C nv/ D 1

2
.sin u � ˛ cos.u//

C .�1/N

2
.sin.u C N v/ C ˛ cos.u C N v// :

Proof. The proof of the lemma is left as an exercise. ut
Let u D ˇt and v D �ˇc. Then ˛ D � sin.ˇc/

1Ccos .ˇc/
: In this case, we can apply part

(1) of the lemma to (6) to get
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f2.t/ D r

2ˇ2

1X

N D0

.cos ˇt C ˛ sin ˇt/ �ŒNc;N C1/c

C r

2ˇ2

1X

N D0

.�1/N .cos ˇ.t � Nc/ � ˛ sin ˇ.t � Nc// �ŒNc;N C1/c

D r

2ˇ2
.cos ˇt C ˛ sin ˇt/

C r

2ˇ2
.�1/Œt=c�1 .cos ˇhtic � ˛ sin ˇhtic/:

Let

y1.t/ D r

ˇ2
swc.t/ � r

2ˇ2
.�1/Œt=c�1 .cos ˇhtic � ˛ sin ˇhtic/

D r

2ˇ2

�
2 swc.t/ � .�1/Œt=c�1 .cos ˇhtic � ˛ sin ˇhtic/

�

and

y2.t/ D � r

2ˇ2
.cos ˇt C ˛ sin ˇt/:

Then

y.t/ D f1.t/ � f2.t/ D y1.t/ C y2.t/

D r

2ˇ2

�
2 swc.t/ � .�1/Œt=c�1 .cos ˇhtic � ˛ sin ˇhtic/

�

� r

2ˇ2
.cos ˇt C ˛ sin ˇt/: (7)

A quick check shows that y1 is periodic with period 2c and y2 is periodic with
period 2�

ˇ
. Clearly, y2 is continuous, and since the solution y.t/ is continuous by

Theorem 7 of Sect. 6.1, so is y1. The following lemma will help us determine when
y is a periodic solution.

Lemma 3. Suppose g1 and g2 are continuous periodic functions with periods
p1 > 0 and p2 > 0, respectively. Then g1 C g2 is periodic if and only if p1

p2
is a

rational number.

Proof. If p1

p2
D m

n
is rational, then np1 D mp2 is a common period of g1 and g2 and

hence is a period of g1 C g2. It follows that g1 C g2 is periodic. The opposite
implication, namely, that the periodicity of g1 C g2 implies p1

p2
is rational, is a

nontrivial fact. We do not include a proof. ut
Using this lemma, we can determine precisely when the solution y D y1 C y2

is periodic. Namely, y is periodic precisely when 2c
2�=ˇ

D cˇ

�
is rational. Consider



476 6 Discontinuous Functions and the Laplace Transform

–2

–1

0

1

2

3

4

10 20 30 40 50 60
x

Fig. 6.30 The graph of (8) with c D 3�
2

: a periodic solution

–2

–1

0

1

2

3

4

10 20 30 40 50 60
x

Fig. 6.31 The graph of (9): a nonperiodic solution

the following illustrative example. Set r D 2, c D 3�
2

, and ˇ D 1. Then cˇ

�
D 3

2
is

rational. Further, ˛, defined in Lemma 2, is 1 and

y.t/ D 2 swc.t/ � .�1/Œt=c�1 .coshtic � sinhtic/ � .cos t C sin t/: (8)

This function is graphed simultaneously with the forcing function in Fig. 6.30. The
solution is periodic with period 4c D 6� . Notice that there is an interval where
the motion of the mass is stopped. This occurs in the interval Œ3c; 4c/. The constant
force applied on the interval Œ2c; 3c/ gently stops the motion of the mass by the time
t D 3c. Since the force is 0 on Œ3c; 4c/, there is no movement. At t D 4c, the force
is reapplied and the process thereafter repeats itself. This phenomenon occurs in all
cases where the solution y is periodic.

Now consider the following example that illustrates a nonperiodic solution. Set
r D 2, c D 5, and ˇ D 1 in (7). Then

y.t/ D 2 sw5.t/ � .�1/Œt=5�1 .coshti5 � ˛ sinhti5/ � cos t � ˛ sin t; (9)

where ˛ D � sin 5
1Ccos 5

. Further, cˇ

�
D 5

�
is irrational so y.t/ is not periodic. This is

clearly seen in the rather erratic motion given by the graph of y.t/ in Fig. 6.31.
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Fig. 6.32 The graph of (8) with c D 9�
8

: the beats are evident here

In Sect. 3.6, we observed that when the characteristic frequency of the spring
is close to but not equal to the frequency of the forcing function, cos.!t/, then
one observes vibrations that exhibit a beat. This phenomenon likewise occurs for
the square-wave forcing function. Let r D 2, c D 9�

8
, and ˇ D 1. Recall that

frequency is merely the reciprocal of the period so when these frequencies are close,
so are their periods. The period of the spring is 2�

ˇ
D 2� while the period of the

forcing function is 2c D 9�
4

: their periods are close and likewise their frequencies.
Figure 6.32 gives a graph of y in this case. Again it is evident that the motion of the
mass stops on the last subinterval before the end of its period. More interesting is the
fact that y oscillates with an amplitude that varies with time and produces “beats”.

ˇc Is an Odd Multiple of �

We now return to equation (6) in the case ˇc is an odd multiple of � . Things reduce
substantially because cos.ˇt � Nˇc/ D .�1/N cos.ˇt/ and we get

f2.t/ D r

ˇ2

1X

N D0

NX

nD0

cos.ˇt/�ŒNc;.N C1/c/

D r

ˇ2

1X

N D0

.N C 1/�ŒNc;.N C1/c/ cos.ˇt/

D r

ˇ2
.Œt=c�1 C 1/ cos.ˇt/:



478 6 Discontinuous Functions and the Laplace Transform

–2

–1

0

1

2

5 10 15 20 25 30
x

Fig. 6.33 The graph of (10) with r D 2, ˇ D � , and c D 3: resonance is evident here

The solution now is

y.t/ D f1.t/ � f2.t/

D r

ˇ2
.swc.t/ � Œt=c�1 cos.ˇt/ � cos.ˇt//

D r

ˇ2

(
1 � .n C 1/ cos.ˇt/ if t 2 Œcn; c.n C 1//; n even

�.n C 1/ cos.ˇt/ if t 2 Œcn; c.n C 1//; n odd:
: (10)

The presence of the factor n C 1 implies that y.t/ is unbounded. Figure 6.33
gives the graph of this in the case where r D 2, ˇ D � , and c D 3. Resonance
becomes clearly evident. Of course, this is an idealized situation; the system would
eventually fail. J

Undamped Motion with Periodic Impulses

Example 4. A mass-spring system with no damping force is acted upon at rest by
an impulse force of r units at all multiples of c units of time starting at t D 0.
(Imagine a hammer exerting blows to the mass at regular intervals.) Describe the
motion of the mass.

I Solution. The differential equation that describes this system is given by

y00 C ˇ2y D r

1X

nD0

ınc y.0/ D 0; y0.0/ D 0;

where, again, ˇ2 is the spring constant. The Laplace transform gives
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Y.s/ D r

ˇ

1X

nD0

e�ncs ˇ

s2 C ˇ2
:

By Theorem 7 of Sect. 6.6,

y.t/ D r

ˇ

1X

N D0

NX

nD0

sin.ˇt � nˇc/�ŒNc;.N C1/c/: (11)

Again we will consider two cases. J

ˇc Is not a Multiple of 2�

Lemma 5. Suppose v is not a multiple of 2� . Let � D sin v
1�cos v . Then

1.
PN

nD0 sin.u C nv/ D 1
2

.sin u C � cos u C sin.u C N v/ � � cos.u C N v//.

2.
PN

nD0 cos.u C nv/ D 1
2

.cos u � � sin u C cos.u C N v/ C � sin.u C N v// :

Let u D ˇt and v D �ˇc. By the first part of Lemma 5, we get

y.t/ D r

2ˇ

1X

N D0

.sin ˇt C � cos ˇt/ �ŒNc;.N C1/c/

C r

2ˇ

1X

N D0

.sin ˇ.t � Nc/ � � cos ˇ.t � Nc// �ŒNc;.N C1/c/

D r

2ˇ
.sin ˇt C � cos ˇt C sin ˇhtic � � cos ˇhtic/ ; (12)

where � D � sin ˇc

1�cos ˇc
: Lemma 3 implies that the solution will be periodic when

c
2�=ˇ

D ˇc

2�
is rational. Consider the following example. Let r D 2, ˇ D 1, and

c D 3�
2

. Equation (12) becomes

y.t/ D sin t C cos t C sinhtic � coshtic (13)

and its graph is given in Fig. 6.34. The period is 6� D 4c. Observe that on
the interval Œ3c; 4c/, the motion of the mass is completely stopped. At t D 3c,
the hammer strikes and imparts a velocity that stops the mass dead in its track.
At t D 4c, the process begins to repeat itself. As in the previous example, this
phenomenon occurs in all cases where the solution y is periodic, that is, when

c
2�=.ˇ/

D ˇc

2�
is rational.
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Fig. 6.34 The graph of (13): c D 3�
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Fig. 6.35 The graph of (14): a nonperiodic solution

Now consider the following example that illustrates a nonperiodic solution. Set
r D 2, c D 4, and ˇ D 1 in (12). Then

y.t/ D sin t � � cos t C sinhti4 � � coshti4; (14)

where � D � sin 4
1�cos 4

. Further, cˇ

2�
D 2

�
is irrational so y.t/ is not periodic. The graph

of y.t/ in is given Fig. 6.35. Observe that the impulses given every 4 units suddenly
changes the direction of the motion in a most erratic way.

When the period of the forcing function is close to that of the period of the spring,
the beats in the solution can again be seen. For example, if c D 9

8
.2�/ D 9�

4
, ˇ D 1,

and r D 2, then (12) becomes

y.t/ D sin t �
	p

2 C 1



cos t C sinhtic C
	p

2 C 1



coshtic (15)

and Fig. 6.36 shows its graph.
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Fig. 6.36 The graph of (15) with c D 9�
4

. A solution that demonstrates beats
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Fig. 6.37 The graph of (16) with r D 2, c D 2� , and ˇ D 4. Resonance is evident

ˇc Is a Multiple of 2�

In this case, (11) simplifies to

y.t/ D r

ˇ
.sin ˇt C Œt=c�1 sin ˇt/ (16)

D r

ˇ
.n C 1/ sin ˇt t 2 Œcn; c.n C 1//: (17)

The presence of the factor nC1 implies that y.t/ is unbounded; resonance is present.
Figure 6.37 gives a graph of the solution when c D 2� , ˇ D 4, and r D 2.
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Exercises

1–6. For the parameters ˇ, r , and c given in each problem below, determine the
solution y.t/ to the differential equation

y00 C ˇ2y D r swc.t/; y.0/ D 0; y0.0/ D 0;

which models undamped motion with square-wave forcing function. Is the solution
periodic or nonperiodic? Does it exhibit resonance?

1. r D 4, c D 1, ˇ D p
2

2. r D 2, c D 2� , ˇ D 1=�

3. r D 2, c D 2, ˇ D �

4. r D 4, c D 1, ˇ D �=2

5. r D 2, c D 1, ˇ D �

6. r D 3, c D 5� , ˇ D 1

7–12. For the parameters ˇ, r and c given in each problem below determine the
solution y.t/ to the differential equation

y00 C ˇ2y D r

1X

nD0

ınc; y.0/ D 0; y0.0/ D 0;

which models undamped motion with a periodic impulse function. Is the solution
periodic or non periodic? Does it exhibit resonance?

7. r D 2, c D � , ˇ D 1

8. r D 1, c D 2, ˇ D �=4

9. r D 2, c D 1, ˇ D 1

10. r D 2, c D p
2, ˇ D �=2

11. r D 2, c D 2� , ˇ D 1

12. r D 2, c D 4, ˇ D �

13–16. Euler’s formula
ei	 D cos 	 C i sin 	

is very useful in establishing Lemmas 2 and 5. These exercises guide you through
the verifications.

13. Suppose 	 is not a multiple of 2� . Let � D �.	/ D sin 	
1�cos 	

. Use Euler’s formula
to show that

NX

nD0

cos n	 D 1

2
.1 C cos N	 C � sin N	/ ;

NX

nD0

sin n	 D 1

2
.sin N	 C �.1 � cos N	// :
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(Hint: Expand
PN

nD0

�
ei	
�n

in two different ways and equate real and imaginary

parts, use the formula 1Cx Cx2 C� � � xN D xN C1�1
x�1

, and use the trigonometric
sum and difference formulas.)

14. Suppose 	 is not an odd multiple of � . Let ˛ D ˛.	/ D sin 	
1Ccos 	

. Show that

NX

nD0

.�1/n cos n	 D 1

2

�
1 C .�1/N .cos N	 � ˛ sin N	/

�
;

NX

nD0

.�1/n sin n	 D 1

2

��˛ C .�1/N .sin N	 C ˛ cos N	/
�

:

15. Prove Lemma 5. Namely, suppose v is not a multiple of 2� . Let � D sin v
1�cos v .

Then

1.
PN

nD0 cos.u C nv/ D 1
2

.cos u � � sin u C cos.u C N v/ C � sin.u C N v//.

2.
PN

nD0 sin.u C nv/ D 1
2

.sin u C � cos u C sin.u C N v/ � � cos.u C N v//.

16. Prove Lemma 2. Namely, suppose v is not an odd multiple of � and let ˛ D
sin.v/

1Ccos.v/
. Then

1:

NX

nD0

.�1/n cos.u C nv/ D 1

2
.cos u C ˛ sin u/

C .�1/N

2
.cos.u C N v/ � ˛ sin.u C N v// :

2:

NX

nD0

.�1/n sin.u C nv/ D 1

2
.sin u � ˛ cos.u//

C .�1/N

2
.sin.u C N v/ C ˛ cos.u C N v// :
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6.9 Summary of Laplace Transforms

Laplace transforms and convolutions presented in Chap. 6 are summarized in Tables
6.1–6.3.

Table 6.1 Laplace transform rules

f .t/ F.s/ Page

Second translation principle

1. f .t � c/h.t � c/ e�scF.s/ 405

Corollary to the second translation principle

2. g.t/h.t � c/ e�scL fg.t C c/g/ 405

Periodic functions

3. f .t/, periodic with period p
1

1 � e�sp

R p

0 e�st f .t/ dt 455

4. f .htip/
1

1 � e�sp
L ff .t/ � f .t/h.t � p/g 458

Staircase functions

5. f .Œt �p/
1 � e�ps

s

P
1

nD0 f .np/e�nps 463

Transforms involving
1

1 ˙ e�sp

6.
1P

N D0

NP

nD0

f .t � np/�ŒNp;.N C1/p/

1

1 � e�sp
F.s/ 461

7.
1P

N D0

NP

nD0

.�1/nf .t � np/�ŒNp;.N C1/p/

1

1 C e�sp
F.s/ 461
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Table 6.2 Laplace transforms

f .t/ F.s/ Page

The Heaviside function

1. h.t � c/
e�sc

s
404

The on–off switch

2. �Œa;b/

e�as

s
� e�bs

s
405

The Dirac delta function
3. ıc e�cs 428
The square-wave function

4. swc

1

1 C e�cs

1

s
456

The sawtooth function

5. htip
1
s2

	

1 � spe�sp

1�e�sp




457

Periodic Dirac delta functions

6. ı0.htip/ 1
1�e�ps 459

Alternating periodic Dirac delta functions

7. .ı0 � ıp/.hti2p/ 1
1Ce�ps 459

Table 6.3 Convolutions

f .t/ g.t/ .f � g/.t/ Page

1. f .t/ g.t/ f � g.t/ D R t

0 f .u/g.t � u/ du 439
2. f ıc.t/ f .t � c/h.t � c/ 444
3. f ı0.t/ f .t/ 445



Chapter 7
Power Series Methods

Thus far in our study of linear differential equations, we have imposed severe
restrictions on the coefficient functions in order to find solution methods. Two
special classes of note are the constant coefficient and Cauchy–Euler differential
equations. The Laplace transform method was also useful in solving some differ-
ential equations where the coefficients were linear. Outside of special cases such
as these, linear second order differential equations with variable coefficients can be
very difficult to solve.

In this chapter, we introduce the use of power series in solving differential
equations. Here is the main idea. Suppose a second order differential equation

a2.t/y
00 C a1.t/y0 C a0.t/y D f .t/

is given. Under the right conditions on the coefficient functions, a solution can be
expressed in terms of a power series which takes the form

y.t/ D
1X

nD0

cn.t � t0/
n;

for some fixed t0. Substituting the power series into the differential equation gives
relationships among the coefficients fcng1

nD0, which when solved gives a power
series solution. This technique is called the power series method. While we may
not enjoy a closed form solution, as in the special cases thus far considered, power
series methods imposes the least restrictions on the coefficient functions.

W.A. Adkins and M.G. Davidson, Ordinary Differential Equations,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-3618-8 7,
© Springer Science+Business Media New York 2012
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7.1 A Review of Power Series

We begin with a review of the main properties of power series that are usually
learned in a first year calculus course.

Definitions and Convergence

A power series centered at t0 in the variable t is a series of the form

1X

nD0

cn.t � t0/
n D c0 C c1.t � t0/ C c2.t � t0/

2 C � � � : (1)

The center of the power series is t0, and the coefficients are the constants fcng1
nD0.

Frequently, we will simply refer to (1) as a power series. Let I be the set of real
numbers where the series converges. Obviously, t0 is in I , so I is nonempty. It turns
out that I is an interval and is called the interval of convergence. It contains an open
interval of the form .t0 � R; t0 C R/ and possibly one or both of the endpoints. The
number R is called the radius of convergence and can frequently be determined by
the ratio test.

The Ratio Test for Power Series Let
P1

nD0 cn.t � t0/
n be a given power series and

suppose L D limn!1
ˇ̌
ˇ cnC1

cn

ˇ̌
ˇ : Define R in the following way:

R D 0 if L D 1;

R D 1 if L D 0;

R D 1
L

if 0 < L < 1:

Then

1 The power series converges only at t D t0 if R D 0.

2 The power series converges absolutely for all t 2 R if R D 1.

3 The power series converges absolutely when jt � t0j < R and diverges when
jt � t0j > R if 0 < R < 1.

If R D 0, then I is the degenerate interval Œt0; t0�, and if R D 1, then I D
.�1; 1/. If 0 < R < 1, then I is the interval .t0 � R; t0 C R/ and possibly the
endpoints, t0 � R and t0 C R, which one must check separately using other tests of
convergence.

Recall that absolute convergence means that
P1

nD0 jcn.t � t0/
nj converges and

implies the original series converges. One of the important advantages absolute
convergence gives us is that we can add up the terms in a series in any order we
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please and still get the same result. For example, we can add all the even terms and
then the odd terms separately. Thus,

1X

nD0

cn.t � t0/
n D

X

n odd

cn.t � t0/n C
X

n even

cn.t � t0/n

D
1X

nD0

c2nC1.t � t0/
2nC1 C

1X

nD0

c2n.t � t0/2n:

Example 1. Find the interval of convergence of the power series

1X

nD1

.t � 4/n

n2n
:

I Solution. The ratio test gives

ˇ̌
ˇ̌cnC1

cn

ˇ̌
ˇ̌ D n2n

.n C 1/2nC1
D n

2.n C 1/
! 1

2

as n ! 1. The radius of convergence is 2. The interval of convergence has 4 as the
center, and thus, the endpoints are 2 and 6. When t D 2, the power series reduces toP1

nD1
.�1/n

n
, which is the alternating harmonic series and known to converge. When

t D 6, the power series reduces to
P1

nD0
1
n

, which is the harmonic series and known
to diverge. The interval of convergence is thus I D Œ 2; 6/. J

Example 2. Find the interval of convergence of the power series

J0.t/ D
1X

nD0

.�1/nt2n

22n.nŠ/2
:

I Solution. Let u D t2. We apply the ratio test to
P1

nD0
.�1/nun

22n.nŠ/2 to get

ˇ̌
ˇ̌cnC1

cn

ˇ̌
ˇ̌ D 22n.nŠ/2

22.nC1/..n C 1/Š/2
D 1

4.n C 1/2
! 0

as n ! 1. It follows that R D 1 and the series converges for all u. Hence,P1
nD0

.�1/nt2n

22n.nŠ/2 converges for all t and I D .�1; 1/. J

In each example, the power series defines a function on its interval of con-
vergence. In Example 2, the function J0.t/ is known as the Bessel function of
order 0 and plays an important role in many physical problems. More generally,
let f .t/ D P1

nD0 cn.t � t0/
n for all t 2 I . Then f is a function on the interval

of convergence I , and (1) is its power series representation. A simple example
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of a power series representation is a polynomial defined on R. In this case, the
coefficients are all zero except for finitely many. Other well-known examples from
calculus are:

et D
1X

nD0

tn

nŠ
D 1 C t C t2

2
C t3

3Š
C � � � ; (2)

cos t D
1X

nD0

.�1/nt2n

.2n/Š
D 1 � t2

2
C t4

4Š
� � � � ; (3)

sin t D
1X

nD0

.�1/nt2nC1

.2n C 1/Š
D t � t3

3Š
C t5

5Š
� � � � ; (4)

1

1 � t
D

1X

nD0

tn D 1 C t C t2 C � � � ; (5)

ln t D
1X

nD1

.�1/.nC1/.t � 1/n

nŠ
D .t � 1/ � .t � 1/2

2
C .t � 1/3

3
� � � � : (6)

Equations (2), (3), and (4) are centered at 0 and have interval of convergence
.�1; 1/. Equation (5), known as the geometric series, is centered at 0 and has
interval of convergence .�1; 1/. Equation (6) is centered at 1 and has interval of
convergence .0; 2 �.

Index Shifting

In calculus, the variable x in a definite integral
R b

a
f .x/ dx is called a dummy

variable because the value of the integral is independent of x. Sometimes it is
convenient to change the variable. For example, if we replace x by x � 1 in the
integral

R 2

1
1

xC1
dx, we obtain

2Z

1

1

x C 1
dx D

x�1D2Z

x�1D1

1

x � 1 C 1
d.x � 1/ D

3Z

2

1

x
dx:

In like manner, the index n in a power series is referred to as a dummy variable
because the sum is independent of n. It is also sometimes convenient to make a
change of variable, which, for series, is called an index shift. For example, in the
series

P1
nD0.n C 1/tnC1, we replace n by n � 1 to obtain

1X

nD0

.n C 1/tnC1 D
n�1D1X

n�1D0

.n � 1 C 1/tn�1C1 D
1X

nD1

ntn:
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The lower limit n D 0 is replaced by n � 1 D 0 or n D 1. The upper limit n D 1
is replace by n � 1 D 1 or n D 1. The terms .n C 1/tnC1 in the series go to
.n � 1 C 1/tn�1C1 D ntn.

When a power series is given is such a way that the index n in the sum is the
power of .t � t0/, we say the power series is written in standard form. Thus,P1

nD1 ntn is in standard form while
P1

nD0.n C 1/tnC1 is not.

Example 3. Make an index shift so that the series
P1

nD2
tn�2

n2 is expressed as a
series in standard form.

I Solution. We replace n by n C 2 and get

1X

nD2

tn�2

n2
D

nC2D1X

nC2D2

tnC2�2

.n C 2/2
D

1X

nD0

tn

.n C 2/2
: J

Differentiation and Integration of Power Series

If a function can be represented by a power series, then we can compute its derivative
and integral by differentiating and integrating each term in the power series as noted
in the following theorem.

Theorem 4. Suppose

f .t/ D
1X

nD0

cn.t � t0/
n

is defined by a power series with radius of convergence R > 0. Then f is
differentiable and integrable on .t0 � R; t0 C R/ and

f 0.t/ D
1X

nD1

ncn.t � t0/
n�1 (7)

and
Z

f .t/ dt D
1X

nD0

cn

.t � t0/
nC1

n C 1
C C: (8)

Furthermore, the radius of convergence for the power series representations of f 0
and

R
f are both R.

We note that the presence of the factor n in f 0.t/ allows us to write

f 0.t/ D
1X

nD0

ncn.t � t0/
n�1

since the term at n D 0 is zero. This observation is occasionally used. Consider the
following examples.
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Example 5. Find a power series representation for 1
.1�t /2 in standard form.

I Solution. If f .t/ D 1
1�t

, then f 0.t/ D 1
.1�t /2 . If follows from Theorem 4 that

1

.1 � t/2
D d

dt

1X

nD0

tn D
1X

nD1

ntn�1 D
1X

nD0

.n C 1/tn: J

Example 6. Find the power series representation for ln.1 � t/ in standard form.

I Solution. For t 2 .�1; 1/, ln.1 � t/ D � R 1
1�t

C C . Thus,

ln.1 � t/ D C �
Z 1X

nD0

tn dt D C �
1X

nD0

tnC1

n C 1
D C �

1X

nD1

tn

n
:

Evaluating both side at t D 0 gives C D 0. It follows that

ln.1 � t/ D �
1X

nD1

tn

n
: J

The Algebra of Power Series

Suppose f .t/ D P1
nD0 an.t � t0/

n and g.t/ D P1
nD0 bn.t � t0/n are power series

representation of f and g and converge on the interval .t0 � R; t0 C R/ for some
R > 0. Then

f .t/ D g.t/ if and only if an D bn;

for all n D 1; 2; 3; : : : : Let c 2 R. Then the power series representation of f ˙ g,
cf , fg, and f =g are given by

f .t/ ˙ g.t/ D
1X

nD0

.an ˙ bn/.t � t0/n; (9)

cf .t/ D
1X

nD0

can.t � t0/
n; (10)

f .t/g.t/ D
1X

nD0

cn.t � t0/n where cn D a0bn C a1bn�1 C � � � C anb0; (11)

and
f .t/

g.t/
D

1X

nD0

dn.t � t0/
n; g.a/ ¤ 0; (12)
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where each dn is determined by the equation f .t/ D g.t/
P1

nD0 dn.t � t0/n. In
(9), (10), and (11), the series converges on the interval .t0�R; t0CR/. For division of
power series, (12), the radius of convergence is positive but may not be as large as R.

Example 7. Compute the power series representations of

cosh t D et C e�t

2
and sinh t D et � e�t

2
:

I Solution. We write out the terms in each series, et and e�t , and get

et D 1 C t C t2

2Š
C t3

3Š
C t4

4Š
C � � � ;

e�t D 1 � t C t2

2Š
� t3

3Š
C t4

4Š
� � � � ;

et C e�t D 2 C 2
t2

2Š
C 2

t4

4Š
C � � � ;

et � e�t D 2t C 2
t3

3Š
C 2

t5

5Š
C � � � :

It follows that

cosh t D
1X

nD0

t2n

.2n/Š
and sinh t D

1X

nD0

t2nC1

.2n C 1/Š
: J

Example 8. Let y.t/ D P1
nD0 cntn. Compute

.1 C t2/y00 C 4ty0 C 2y

as a power series.

I Solution. We differentiate y twice to get

y0.t/ D
1X

nD1

cnntn�1 and y00.t/ D
1X

nD2

cnn.n � 1/tn�2:

In the following calculations, we shift indices as necessary to obtain series in
standard form:

t2y00 D
1X

nD2

cnn.n � 1/tn D
1X

nD0

cnn.n � 1/tn;

y00 D
1X

nD2

cnn.n � 1/tn�2 D
1X

nD0

cnC2.n C 2/.n C 1/tn;
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4ty0 D
1X

nD1

4cnntn D
1X

nD0

4cnntn;

2y D
1X

nD0

2cntn:

Notice that the presence of the factors n and n � 1 in the first series allows us to
write it with a starting point n D 0 instead of n D 2, similarly for the third series.
Adding these results and simplifying gives

.1 C t2/y00 C 4ty0 C 2y D
1X

nD0

..cnC2 C cn/.n C 2/.n C 1// tn: J

A function f is said to be an odd function if f .�t/ D �f .t/ and even if
f .�t/ D f .t/. If f is odd and has a power series representation with center 0,
then all coefficients of even powers of t are zero. Similarly, if f is even, then all the
coefficients of odd powers are zero. Thus, f has the following form:

f .t/ D a0 C a2t
2 C a4t4 C : : : D

1P
nD0

a2nt2n f -even;

f .t/ D a1t C a3t3 C a5t5 C : : : D
1P

nD0

a2nC1t2nC1 f -odd.

For example, the power series representations of cos t and cosh t reflect that they
are even, while those of sin t and sinh t reflect that they are odd functions.

Example 9. Compute the first four nonzero terms in the power series representa-
tion of

tanh t D sinh t

cosh t
:

I Solution. Division of power series is generally complicated. To make things
a little simpler, we observe that tanh t is an odd function. Thus, its power series
expansion is of the form tanh t D P1

nD1 d2nC1t
2nC1 and satisfies sinh t D

cosh t
P1

nD0 d2nC1t
2nC1. By Example 7, this means

�
t C t3

3Š
C t5

5Š
C � � �

�
D
�

1 C t2

2Š
C t4

4Š
C � � �

� �
d1t C d3t

3 C d5t
5 C � � � �

D
�

d1t C
�

d3 C d1

2Š

�
t3 C

�
d5 C d3

2Š
C d1

4Š

�
t5 C � � �

�
:
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We now equate coefficients to get the following sequence of equations:

d1 D 1

d3 C d1

2Š
D 1

3Š

d5 C d3

2Š
C d1

4Š
D 1

5Š

d7 C d5

2Š
C d3

4Š
C d1

6Š
D 1

7Š

:::

Recursively solving these equations gives d1 D 1, d3 D �1
3

, d5 D 2
15

, and d7 D �17
315

.
The first four nonzero terms in the power series expansion for tanh t is thus

tanh t D t � 1

3
t3 C 2

15
t5 � 17

315
t7 C � � � : J

Identifying Power Series

Given a power series, with positive radius of convergence, it is sometimes possible
to identify it with a known function. When we can do this, we will say that it is
written in closed form. Usually, such identifications come by using a combination
of differentiation, integration, or the algebraic properties of power series discussed
above. Consider the following examples.

Example 10. Write the power series

1X

nD0

t2nC1

nŠ

in closed form.

I Solution. Observe that we can factor out t and associate the term t2 to get

1X

nD0

t2nC1

nŠ
D t

1X

nD0

.t2/n

nŠ
D tet 2

;

from (2). J
Example 11. Write the power series

1X

nD1

n.�1/nt2n

in closed form.
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I Solution. Let z.t/ D P1
nD1 n.�1/nt2n: Then dividing both sides by t gives

z.t/

t
D

1X

nD1

n.�1/nt2n�1:

Integration will now simplify the sum:

Z
z.t/

t
dt D

1X

nD1

Z
n.�1/nt2n�1 dt

D
1X

nD1

.�1/n t2n

2

D 1

2

1X

nD1

.�t2/n

D 1

2

�
1

1 C t2
� 1

�
C c;

where the last line is obtained from the geometric series by adding and subtracting
the n D 0 term and c is a constant of integration. We now differentiate this equation
to get

z.t/

t
D 1

2

d

dt

�
1

1 C t2
� 1

�

D �t

.1 C t2/2
:

It follows now that

z.t/ D �t2

.1 C t2/2
:

It is straightforward to check that the radius of convergence is 1 so we get the
equality

�t2

.1 C t2/2
D
X1

nD1
n.�1/nt2n;

on the interval .�1; 1/. J

Taylor Series

Suppose f .t/ D P1
nD0 cn.t � t0/

n, with positive radius of converge. Theorem 4
implies that the derivatives, f .n/, exist for all n D 0; 1; : : :. Furthermore, it is easy
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to check that f .n/.t0/ D nŠcn and thus cn D f .n/.t0/

nŠ
: Therefore, if f is represented

by a power series, then it must be that

f .t/ D
1X

nD0

f .n/.t0/

nŠ
.t � t0/n: (13)

This series is called the Taylor series of f centered at t0.
Now let us suppose that f is a function on some domain D and we wish to find a

power series representation centered at t0 2 D. By what we have just argued, f will
have to be given by its Taylor Series, which, of course, means that all higher order
derivatives of f at t0 must exist. However, it can happen that the Taylor series may
not converge to f on any interval containing t0 (see Exercises 28–29 where such an
example is considered). When (13) is valid on an open interval containing t0, we call
f analytic at t0. The properties of power series listed above shows that the sum,
difference, scalar multiple, and product of analytic functions is again analytic. The
quotient of analytic functions is likewise analytic at points where the denominator
is not zero. Derivatives and integrals of analytic functions are again analytic.

Example 12. Verify that the Taylor series of sin t centered at 0 is that given in (4).

I Solution. The first four derivatives of sin t and their values at 0 are as follows:

order n sin.n/.t/ sin.n/.0/

n D 0 sin t 0

n D 1 cos t 1

n D 2 � sin t 0

n D 3 � cos t �1

n D 4 sin t 0

The sequence 0; 1; 0; �1 thereafter repeats. Hence, the Taylor series of sin t is

0 C 1t C 0
t2

2Š
� t3

3Š
C 0

t4

4Š
C 1

t5

5Š
C � � � D

1X

nD0

t2nC1

.2n C 1/Š
;

as in (4). J
Given a function f , it can sometimes be difficult to compute the Taylor series

by computing f .n/.t0/ for all n D 0; 1; : : :. For example, compute the first
few derivatives of tanh t , considered in Example 9, to see how complicated the
derivatives become. Additionally, determining whether the Taylor series converges
to f requires some additional information, for example, the Taylor remainder
theorem. We will not include this in our review. Rather we will stick to examples
where we derive new power series representations from existing ones as we did in
Examples 5–9.
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Rational Functions

A rational function is the quotient of two polynomials and is analytic at all points
where the denominator is nonzero. Rational functions will arise in many examples.
It will be convenient to know what the radius of convergence about a point t0. The
following theorem allows us to determine this without going through the work of
determining the power series. The proof is beyond the scope of this text.

Theorem 13. Suppose p.t/

q.t/
is a quotient of two polynomials p and q. Suppose

q.t0/ ¤ 0. Then the power series expansion for p

q
about t0 has radius of convergence

equal to the closest distance from t0 to the roots (including complex roots) of q.

Example 14. Find the radius of convergence for each rational function about the
given point.

1. t
4�t

about t0 D 1

2. 1�t
9�t 2 about t0 D 2

3. t 3

t2C1
about t0 D 2

I Solution.

1. The only root of 4 � t is 4. Its distance to t0 D 1 is 3. The radius of convergence
is 3.

2. The roots of 9�t2 are 3 and �3. Their distances to t0 D 2 is 1 and 5, respectively.
The radius of convergence is 1.

3. The roots of t2 C 1 are i and �i. Their distances to t0 D 2 are j2 � i j D p
5 and

j2 C i j D p
5. The radius of convergence is

p
5. J
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Exercises

1–9. Compute the radius of convergence for the given power series.

1.
1P

nD0

n2.t � 2/n

2.
1P

nD1

tn

n

3.
1P

nD0

.t � 1/n

2nnŠ

4.
1P

nD0

3n.t � 3/n

n C 1

5.
1P

nD0

nŠtn

6.
1P

nD0

.�1/nt2n

.2n C 1/Š

7.
1P

nD0

.�1/nt2nC1

.2n/Š

8.
1P

nD0

nntn

nŠ

9.
1P

nD0

nŠtn

1 � 3 � 5 � � � .2n C 1/

10–16. Find the Taylor series for each function with center t0 D 0.

10.
1

1 C t2

11.
1

t � a

12. eat

13.
sin t

t

14.
et � 1

t

15. tan�1 t

16. ln.1 C t2/
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17–20. Find the first four nonzero terms in the Taylor series with center 0 for each
function.

17. tan t

18. sec t

19. et sin t

20. et cos t

21–25. Find a closed form expression for each power series.

21.
1P

nD0

.�1/n nC1
nŠ

tn

22.
1P

nD0

3n�2
nŠ

tn

23.
1P

nD0

.n C 1/tn

24.
1P

nD0

t2nC1

2n � 1

25.
1P

nD0

t2nC1

.2n C 1/.2n � 1/

26. Redo Exercises 19 and 20 in the following way. Recall Euler’s formula ei t D
cos t C i sin t and write et cos t and et sin t as the real and imaginary parts of
et ei t D e.1Ci /t expanded as a power series.

27. Use the power series (with center 0) for the exponential function and expand
both sides of the equation eat ebt D e.aCb/t . What well-known formula arises
when the coefficients of tn

nŠ
are equated?

28–29. A test similar to the ratio test is the root test.

The Root Test for Power Series. Let
P1

nD0 cn.t � t0/
n be a given power series and

suppose L D limn!1 n
pjcnj: Define R in the following way:

R D 1
L

if 0 < L < 1;

R D 0 if L D 1;

R D 1 if L D 0.

Then

i. The power series converges only at t D t0 if R D 0.

ii. The power series converges for all t 2 R if R D 1.

iii. The power series converges if jt � t0j < R and diverges if jt � t0j > R:
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28. Use the root test to determine the radius of convergence of
P1

nD0
tn

nn .
29. Let cn D 1 if n is odd and cn D 2 if n is even. Consider the power seriesP1

nD0 cntn. Show that the ratio test does not apply. Use the root test to determine
the radius of convergence.

30–34. In this sequence of exercises, we consider a function that is infinitely
differentiable but not analytic. Let

f .t/ D
(

0 if t � 0

e
�1
t if t > 0

:

30. Compute f 0.t/ and f 00.t/ and observe that f .n/.t/ D e
�1
t pn. 1

t
/ where pn is a

polynomial, n D 1; 2. Find p1 and p2.
31. Use mathematical induction to show that f .n/.t/ D e

�1
t pn. 1

t
/ where pn is a

polynomial.
32. Show that limt!0C f .n/.t/ D 0. To do this, let u D 1

t
in f .n/.t/ D e

�1
t pn. 1

t
/

and let u ! 1. Apply L’Hospital’s rule.
33. Show that f n.0/ D 0 for all n D 0; 1; : : :.
34. Conclude that f is not analytic at t D 0 though all derivatives at t D 0 exist.
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7.2 Power Series Solutions About an Ordinary Point

A point t0 is called an ordinary point of Ly D 0 if we can write the differential
equation in the form

y00 C a1.t/y
0 C a0.t/y D 0; (1)

where a0.t/ and a1.t/ are analytic at t0. If t0 is not an ordinary point, we call it a
singular point.

Example 1. Determine the ordinary and singular points for each of the following
differential equations:

1. y00 C 1
t2�9

y0 C 1
tC1

y D 0.
2. .1 � t2/y00 � 2ty0 C n.n C 1/y D 0, where n is an integer.
3. ty00 C .sin t/y0 C .et � 1/y D 0.

I Solution.
1. Here a1.t/ D 1

t2�9
is analytic except at t D ˙3. The function a0 D 1

tC1
is

analytic except at t D �1. Thus, the singular points are �3, 3, and �1. All other
points are ordinary.

2. This is Legendre’s equation. In standard form, we find a1.t/ D �2t
1�t 2 and a0.t/ D

n.nC1/

1�t 2 . They are analytic except at 1 and �1. These are the singular points and
all other points are ordinary.

3. In standard form, a1.t/ D sin t
t

and a0.t/ D et �1
t

. Both of these are analytic
everywhere. (See Exercises 13 and 14 of Sect. 7.1.) It follows that all points are
ordinary. J

In this section, we restrict our attention to ordinary points. Their importance is
underscored by the following theorem. It tells us that there is always a power series
solution about ordinary points.

Theorem 2. Suppose a0.t/ and a1.t/ are analytic at t0, both of which converge for
jt � t0j < R. Then there is a unique solution y.t/, analytic at t0, to the initial value
problem

y00 C a1.t/y0 C a0.t/y D 0; y.t0/ D ˛; y0.t0/ D ˇ: (2)

If

y.t/ D
1X

nD0

cn.t � t0/
n

then c0 D ˛, c1 D ˇ, and all other ck , k D 2; 3; : : :, are determined by c0 and c1.
Furthermore, the power series for y converges for jt � t0j < R.

Of course the uniqueness and existence theorem, Theorem 6 of Sect. 5.1, implies
there is a unique solution. What is new here is that the solution is analytic at t0. Since
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the solution is necessarily unique, it is not at all surprising that the coefficients are
determined by the initial conditions. The only hard part about the proof, which we
omit, is showing that the solution converges for jt � t0j < R. Let y1 be the solution
with initial conditions y.t0/ D 1 and y0.t0/ D 0 and y2 the solution with initial
condition y.t0/ D 0 and y0.t0/ D 1. Then it is easy to see that y1 and y2 are
independent solutions, and hence, all solutions are of the form c1y1 C c2y2. (See
Theorem 2 of Sect. 5.2) The power series method refers to the use of this theorem
by substituting y.t/ D P1

nD0 cn.t � t0/n into (2) and determining the coefficients.
We illustrate the use of Theorem 2 with a few examples. Let us begin with a

familiar constant coefficient differential equation.

Example 3. Use the power series method to solve

y00 C y D 0:

I Solution. Of course, this is a constant coefficient differential equation. Since
q.s/ D s2 C1 and Bq D fcos t; sin tg, we get solution y.t/ D c1 sin t Cc2 cos t . Let
us see how the power series method gives the same answer. Since the coefficients
are constant, they are analytic everywhere with infinite radius of convergence.
Theorem 2 implies that the power series solutions converge everywhere. Let y.t/ DP1

nD0 cntn be a power series about t0 D 0. Then

y0.t/ D
1X

nD1

cnntn�1

and y00.t/ D
1X

nD2

cnn.n � 1/tn�2:

An index shift, n ! n C 2, gives y00.t/ D P1
nD0 cnC2.n C 2/.n C 1/tn. Therefore,

the equation y00 C y D 0 gives

1X

nD0

.cn C cnC2.n C 2/.n C 1//tn D 0;

which implies cn C cnC2.n C 2/.n C 1/ D 0, or, equivalently,

cnC2 D �cn

.n C 2/.n C 1/
for all n D 0; 1; : : :: (3)

Equation (3) is an example of a recurrence relation: terms of the sequence are
determined by earlier terms. Since the difference in indices between cn and cnC2 is
2, it follows that even terms are determined by previous even terms and odd terms
are determined by previous odd terms. Let us consider these two cases separately.
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The Even Case

n D 0 c2 D �c0

2�1
n D 2 c4 D �c2

4�3 D c0

4�3�2�1 D c0

4Š

n D 4 c6 D �c4

6�5 D �c0

6Š

n D 6 c8 D �c6

8�7 D c0

8Š
:::

:::

More generally, we can see that

c2n D .�1/n c0

.2n/Š
:

The Odd Case

n D 1 c3 D �c1

3�2
n D 3 c5 D �c3

5�4 D c1

5�4�3�2 D c1

5Š

n D 5 c7 D �c5

7�6 D �c1

7Š

n D 7 c9 D �c7

9�8 D c1

9Š
:::

:::

Similarly, we see that

c2nC1 D .�1/n c1

.2n C 1/Š
:

Now, as we mentioned in Sect. 7.1, we can change the order of absolutely convergent
sequences without affecting the sum. Thus, let us rewrite y.t/ D P1

nD0 cntn in
terms of odd and even indices to get

y.t/ D
1X

nD0

c2nt2n C
1X

nD0

c2nC1t
2nC1

D c0

1X

nD0

.�1/n

.2n/Š
t2n C c1

1X

nD0

.�1/n

.2n C 1/Š
t2nC1

D c0 cos t C c1 sin t;

where the first power series in the second line is that of cos t and the second power
series is that of sin t (See (3) and (4) of Sect. 7.1). J
Example 4. Use the power series method with center t0 D 0 to solve

.1 C t2/y00 C 4ty0 C 2y D 0:

What is a lower bound on the radius of convergence?

I Solution. We write the given equation in standard form to get

y00 C 4t

1 C t2
y0 C 2

1 C t2
y D 0:

Since the coefficient functions a1.t/ D 4t
1Ct 2 and a2.t/ D 2

1Ct 2 are rational functions
with nonzero denominators, they are analytic at all points. By Theorem 13 of
Sect. 7.1, it is not hard to see that they have power series expansions about t0 D 0

with radius of convergence 1. By Theorem 2, the radius of convergence for a
solution, y.t/ D P1

nD0 cntn is at least 1. To determine the coefficients, it is easier
to substitute y.t/ directly into .1 C t2/y00 C 4ty0 C 2y D 0 instead of its equivalent
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standard form. The details were worked out in Example 8 of Sect. 7.1. We thus
obtain

.1 C t2/y00 C 4ty0 C 2y D
1X

nD0

..cnC2 C cn/.n C 2/.n C 1// tn D 0:

From this equation, we get cnC2 C cn D 0 for all n D 0; 1; � � � . Again we consider
even and odd cases.

The Even Case

n D 0 c2 D �c0

n D 2 c4 D �c2 D c0

n D 4 c6 D �c0

More generally, we can see that

c2n D .�1/nc0:

The Odd Case

n D 1 c3 D �c1

n D 3 c5 D �c3 D c1

n D 5 c7 D �c1

Similarly, we see that

c2nC1 D .�1/nc1:

It follows now that

y.t/ D c0

1X

nD0

.�1/nt2n C c1

1X

nD0

.�1/nt2nC1:

As we observed earlier, each of these series has radius of convergence at least 1. In
fact, the radius of convergence of each is 1. J

A couple of observations are in order for this example. First, we can relate the
power series solutions to the geometric series, (5) of Sect. 7.1, and write them in
closed form. Thus,

1X

nD0

.�1/nt2n D
1X

nD0

.�t2/n D 1

1 C t2
;

1X

nD0

.�1/nt2nC1 D t

1X

nD0

.�t2/n D t

1 C t2
:

It follows now that the general solution is y.t/ D c0
1

1Ct 2 C c1
t

1Ct 2 . Second,
since a1.t/ and a0.t/ are continuous on R, the uniqueness and existence theorem,
Theorem 6 of Sect. 5.1, guarantees the existence of solutions defined on all of R. It
is easy to check that these closed forms, 1

1Ct 2 and t
1Ct 2 , are defined on all of R and

satisfy the given differential equation.
This example illustrates that there is some give and take between the uniqueness

and existence theorem, Theorem 6 of Sect. 5.1, and Theorem 2 above. On the one
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hand, Theorem 6 of Sect. 5.1 may guarantee a solution, but it may be difficult or
impossible to find without the power series method. The power series method,
Theorem 2, on the other hand, may only find a series solution on the interval of
convergence, which may be quite smaller than that guaranteed by Theorem 6 of
Sect. 5.1. Further analysis of the power series may reveal a closed form solution
valid on a larger interval as in the example above. However, it is not always possible
to do this. Indeed, some recurrence relations can be difficult to solve and we must be
satisfied with writing out only a finite number of terms in the power series solution.

Example 5. Discuss the radius of convergence of the power series solution about
t0 D 0 to

.1 � t/y00 C y D 0:

Write out the first five terms given the initial conditions

y.0/ D 1 and y0.0/ D 0:

I Solution. In standard form, the differential equation is

y00 C 1

1 � t
y D 0:

Thus, a1.t/ D 0, a0.t/ D 1
1�t

, and t0 D 0 is an ordinary point. Since a0.t/ is
represented by the geometric series, which has radius of convergence 1, it follows
that any solution will have radius of convergence at least 1. Let y.t/ D P1

nD0 cntn.
Then y00 and �ty00 are given by

y00.t/ D
1X

nD0

cnC2.n C 2/.n C 1/tn;

�ty00.t/ D
1X

nD2

�cnn.n � 1/tn�1;

D
1X

nD0

�cnC1.n C 1/ntn:

It follows that

.1 � t/y00 C y D
1X

nD0

.cnC2.n C 2/.n C 1/ � cnC1.n C 1/n C cn/tn;

which leads to the recurrence relations

cnC2.n C 2/.n C 1/ � cnC1.n C 1/n C cn D 0;
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for all n D 0; 1; 2; : : : : This recurrence relation is not easy to solve generally. We
can, however, compute any finite number of terms. First, we solve for cnC2:

cnC2 D cnC1

n

n C 2
� cn

1

.n C 2/.n C 1/
: (4)

The initial conditions y.0/ D 1 and y0.0/ D 0 imply that c0 D 1 and c1 D 0.
Recursively applying (4), we get

n D 0 c2 D c1 � 0 � c0
1
2

D � 1
2
;

n D 1 c3 D c2
1
3

� c1
1
6

D � 1
6
;

n D 2 c4 D c3
1
2

� c2
1
12

D � 1
24

;

n D 3 c5 D c4
3
5

� c3
1
20

D � 1
60

:

It now follows that the first five terms of y.t/ is

y.t/ D 1�1

2
t2�1

6
t3� 1

24
t4� 1

60
t5: J

In general, it may not be possible to find a closed form description of cn.
Nevertheless, we can use the recurrence relation to find as many terms as we desire.
Although this may be tedious, it may suffice to give an approximate solution to a
given differential equation.

We note that the examples we gave are power series solutions about t0 D 0.
We can always reduce to this case by a substitution. To illustrate, consider the
differential equation

ty00 � .t � 1/y0 � ty D 0: (5)

It has t0 D 1 as an ordinary point. Suppose we wish to derive a power series
solution about t0 D 1. Let y.t/ be a solution and let Y.x/ D y.x C 1/. Then
Y 0.x/ D y0.x C 1/ and Y 00.x/ D y00.x C 1/. In the variable x, (5) becomes
.x C 1/Y 00.x/ � xY 0.x/ � .x C 1/Y.x/ D 0 and x0 D 0 is an ordinary point. We
solve Y.x/ D P1

nD0 cnxn as before. Now let x D t � 1. That is, y.t/ D Y.t � 1/ DP1
nD0 cn.t � 1/n is the series solution to (5) about t0 D 1.

Chebyshev Polynomials

We conclude this section with the following two related problems: For a nonnegative
integer n, expand cos nx and sin nx in terms of just cos x and sin x. It is an easy
exercise (see Exercises 12 and 13) to show that we can write cos nx as a polynomial
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in cos x and we can write sin nx as a product of sin x and a polynomial in cos x.
More specifically, we will find polynomials Tn and Un such that

cos nx D Tn.cos x/;

sin.n C 1/x D sin x Un.cos x/: (6)

(The shift by 1 in the formula defining Un is intentional.) The polynomials Tn and
Un are called the Chebyshev polynomials of the first and second kind, respectively.
They each have degree n. For example, if n D 2, we have cos 2x D cos2 x�sin2 x D
2 cos2 x � 1. Thus, T2.t/ D 2t2 � 1; if t D cos x, we have

cos 2x D T2.cos x/:

Similarly, sin 2x D 2 sin x cos x: Thus, U1.t/ D 2t and

sin 2x D sin xU1.cos x/:

More generally, we can use the trigonometric summation formulas

sin.x C y/ D sin x cos y C cos x sin y;

cos.x C y/ D cos x cos y � sin x sin y;

and the basic identity sin2 x C cos2 x D 1 to expand

cos nx D cos..n � 1/x C x/ D cos..n � 1/x/ sin x � sin..n � 1/x/ sin x:

Now expand cos..n � 1/x/ and sin..n � 1/x/ and continue inductively to the point
where all occurrences of cos kx and sin kx, k > 1, are removed. Whenever sin2 x

occurs, replace it by 1 � cos2 x. In the table below, we have done just that for some
small values of n. We include in the table the resulting Chebyshev polynomials of
the first kind, Tn.

n cos nx Tn.t/

0 cos 0x D 1 T0.t/ D 1

1 cos 1x D cos x T1.t/ D t

2 cos 2x D 2 cos2 x � 1 T2.t/ D 2t2 � 1

3 cos 3x D 4 cos3 x � 3 cos x T3.t/ D 4t3 � 3t

4 cos 4x D 8 cos4 x � 8 cos2 x C 1 T4.t/ D 8t4 � 8t2 C 1
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In a similar way, we expand sin.nC1/x. The following table gives the Chebyshev
polynomials of the second kind, Un, for some small values of n.

n sin.n C 1/x Un.t/

0 sin 1x D sin x U0.t/ D 1

1 sin 2x D sin x.2 cos x/ U1.t/ D 2t

2 sin 3x D sin x.4 cos2 x � 1/ U2.t/ D 4t2 � 1

3 sin 4x D sin x.8 cos3 x � 4 cos x/ U3.t/ D 8t3 � 4t

4 sin 5x D sin x.16 cos4 x � 12 cos2 x C 1/ U4.t/ D 16t4 � 12t2 C 1

The method we used for computing the tables is not very efficient. We will use
the interplay between the defining equations, (6), to derive second order differential
equations that will determine Tn and Un. This theme of using the interplay between
two related families of functions will come up again in Sect. 7.4.

Let us begin by differentiating the equations that define Tn and Un in (6). For the
first equation, we get

LHS:
d

dx
cos nx D �n sin nx D �n sin xUn�1.cos x/;

RHS:
d

dx
Tn.cos x/ D T 0

n.cos x/.� sin x/:

Equating these results, simplifying, and substituting t D cos x gives

T 0
n.t/ D nUn�1.t/: (7)

For the second equation, we get

LHS:
d

dx
sin.n C 1/x D .n C 1/ cos.n C 1/x D .n C 1/TnC1.cos x/;

RHS:
d

dx
sin xUn.cos x/ D cos xUn.cos x/ C sin xU 0

n.cos x/.� sin x/

D cos xUn.cos x/ � .1 � cos2 x/U 0
n.cos x/:

It now follows that .n C 1/TnC1.t/ D tUn.t/ � .1 � t2/U 0
n.t/. Replacing n by n � 1

gives

nTn.t/ D tUn�1.t/ � .1 � t2/U 0
n�1.t/: (8)
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We now substitute (7) and its derivative T 00
n .t/ D nU 0

n�1.t/ into (8). After
simplifying, we get that Tn satisfies

.1 � t2/T 00
n .t/ � tT 0

n C n2Tn.t/ D 0: (9)

By substituting (7) into the derivative of (8) and simplifying we get that Un satisfies

.1 � t2/U 00
n .t/ � 3tU 0

n C n.n C 2/Un.t/ D 0: (10)

The differential equations

.1 � t2/y00.t/ � ty0 C ˛2y.t/ D 0 (11)

.1 � t2/y00.t/ � 3ty0 C ˛.˛ C 2/y.t/ D 0 (12)

are known as Chebyshev’s differential equations. Each have t0 D ˙1 as singular
points and t0 D 0 is an ordinary point. The Chebyshev polynomial Tn is a
polynomial solution to (11) and Un is a polynomial solution to (12), when ˛ D n.

Theorem 6. We have the following explicit formulas for Tn and Un;

T2n.t/ D n.�1/n

nX

kD0

.�1/k .n C k � 1/Š

.n � k/Š

.2t/2k

.2k/Š
;

T2nC1.t/ D 2n C 1

2
.�1/n

nX

kD0

.�1/k .n C k/Š

.n � k/Š

.2t/2kC1

.2k C 1/Š
;

U2n.t/ D .�1/n

nX

kD0

.�1/k .n C k/Š

.n � k/Š

.2t/2k

.2k/Š
;

U2nC1.t/ D .�1/n

nX

kD0

.�1/k .n C k C 1/Š

.n � k/Š

.2t/2kC1

.2k C 1/Š
:

Proof. Let us first consider Chebyshev’s first differential equation, for general ˛.
Let y.t/ D P1

kD0 cktk . Substituting y.t/ into (11), we get the following relation
for the coefficients:

ckC2 D �.˛2 � k2/ck

.k C 2/.k C 1/
:

Let us consider the even and odd cases.
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The Even Case

c2 D �˛2 � 02

2 � 1
c0

c4 D �˛2 � 22

4 � 3
c2 D .˛2 � 22/.˛2 � 02/

4Š
c0

c6 D �˛2 � 42

6 � 5
c4 D � .˛2 � 42/.˛2 � 22/.˛2 � 02/

6Š
c0

:::

More generally, we can see that

c2k D .�1/k .˛2 � .2k � 2/2/ � � � .˛2 � 02/

.2k/Š
c0:

By factoring each expression ˛2 � .2j /2 that appears in the numerator into
22
�

˛
2

C j
� �

˛
2

� j
�

and rearranging factors, we can write

c2k D .�1/k ˛

2

�
˛
2

C k � 1
� � � � � ˛

2
� 1

� �
˛
2

� �
˛
2

C 1
� � � � � ˛

2
� k C 1

�

.2k/Š
22kc0:

The Odd Case

c3 D � .˛2 � 12/

3 � 2
c1

c5 D � .˛2 � 32/

5 � 4
c3 D .˛2 � 32/.˛2 � 12/

5Š
c1

c7 D � .˛2 � 52/

7 � 6
c5 D � .˛2 � 52/.˛2 � 32/.˛2 � 12/

7Š
c1

:::

Similarly, we see that

c2kC1 D .�1/k .˛2 � .2k � 1/2/ � � � .˛2 � 12/

.2k C 1/Š
c1:

By factoring each expression ˛2 � .2j � 1/2 that appears in the numerator into
22
�

˛�1
2

C j
� �

˛�1
2

� .j � 1/
�

and rearranging factors, we get

c2kC1 D .�1/k

�
˛�1

2
C k

� � � � �˛�1
2

� .k � 1/
�

.2k C 1/Š
22kc1:
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Let

y0 D ˛

2

1X

kD0

.�1/k

�
˛
2

C k � 1
� � � � �˛

2
� k C 1

�

.2k/Š
.2t/2k

and

y1 D 1

2

1X

kD0

.�1/k

�
˛�1

2
C k

� � � � � ˛�1
2

� .k � 1/
�

.2k C 1/Š
.2t/2kC1:

Then the general solution to Chebyshev’s first differential equation is

y D c0y0 C c1y1:

It is clear that neither y0 nor y1 is a polynomial if ˛ is not an integer.

The Case ˛ D 2n

In this case, y0 is a polynomial while y1 is not. In fact, for k > n, the numerator
in the sum for y0 is zero, and hence,

y0.t/ D n

nX

kD0

.�1/k .n C k � 1/ � � � .n � k C 1/

.2k/Š
.2t/2k

D n

nX

kD0

.�1/k .n C k � 1/Š

.n � k/Š

.2t/2k

.2k/Š
:

It follows T2n.t/ D c0y0.t/, where c0 D T2n.0/. To determine T2n.0/, we evaluate
the defining equation T2n.cos x/ D cos 2nx at x D �

2
to get T2n.0/ D cos n� D

.�1/n: The formula for T2n now follows.

The Case ˛ D 2n C 1

In this case, y1 is a polynomial while y0 is not. Further,

y1.t/ D 1

2

nX

kD0

.�1/k .n C k/ � � � .n � k C 1/

.2k C 1/Š
.2t/2kC1

D 1

2

nX

kD0

.�1/k .n C k/Š

.n � k/Š

.2t/2kC1

.2k C 1/Š
:



516 7 Power Series Methods

It now follows that T2nC1.t/ D c1y1.t/. There is no constant coefficient term in
y1. However, y0

1.0/ D 1 is the coefficient of t in y1. Differentiating the defining
equation T2nC1.cos x/ D cos..2nC1/x/ at x D �

2
gives T 0

2nC1.0/ D .2nC1/.�1/n:

Let c1 D .2n C 1/.�1/n. The formula for T2nC1 now follows. The formulas for Un

follow from (7) which can be written Un D 1
nC1

T 0
nC1. ut
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Exercises

1–4. Use the power series method about t0 D 0 to solve the given differential
equation. Identify the power series with known functions. Since each is constant
coefficient, use the characteristic polynomial to solve and compare.

1. y00 � y D 0

2. y00 � 2y0 C y D 0

3. y00 C k2y D 0, where k 2 R

4. y00 � 3y0 C 2y D 0

5–10. Use the power series method about t0 D 0 to solve each of the following
differential equations. Write the solution in the form y.t/ D c0y0.t/ C c1y1.t/,
where y0.0/ D 1, y0

0.0/ D 0 and y1.0/ D 0, y0
1.t/ D 1. Find y0 and y1 in closed

form.

5. .1 � t2/y00 C 2y D 0 �1 < t < 1

6. .1 � t2/y00 � 2ty0 C 2y D 0 �1 < t < 1

7. .t � 1/y00 � ty0 C y D 0

8. .1 C t2/y00 � 2ty0 C 2y D 0

9. .1 C t2/y00 � 4ty0 C 6y D 0

10. .1 � t2/y00 � 6ty0 � 4y D 0

11–19. Chebyshev Polynomials:

11. Use Euler’s formula to derive the following identity known as de Moivre’s
formula:

.cos x C i sin x/n D cos nx C i sin nx;

for any integer n.
12. Assume n is a nonnegative integer. Use the binomial theorem on de Moivre’s

formula to show that cos nx is a polynomial in cos x and that

Tn.t/ D
b n

2 cX

kD0

 
n

2k

!
tn�2k.1 � t2/k:

13. Assume n is a nonnegative integer. Use the binomial theorem on de Moivre’s
formula to show that sin.nC1/x is a product of sin x and a polynomial in cos x

and that

Un.t/ D
b n

2 cX

kD0

 
n C 1

2k C 1

!
tn�2k.1 � t2/k:

14. Show that

.1 � t2/Un.t/ D tTnC1.t/ � TnC2.t/:
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15. Show that

UnC1.t/ D tUn.t/ C TnC1.t/:

16. Show that

TnC1.t/ D 2tTn.t/ � Tn�1.t/:

17. Show that

UnC1.t/ D 2tUn.t/ � Un�1.t/:

18. Show that

Tn.t/ D 1

2
.Un.t/ � Un�2.t// :

19. Show that

Un.t/ D 1

2
.Tn.t/ � TnC2.t// :
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7.3 Regular Singular Points and the Frobenius Method

Recall that the singular points of a differential equation

y00 C a1.t/y0 C a0.t/y D 0 (1)

are those points for which either a1.t/ or a0.t/ is not analytic. Generally, they are
few in number but tend to be the most important and interesting. In this section, we
will describe a modified power series method, called the Frobenius Method, that
can be applied to differential equations with certain kinds of singular points.

We say that the point t0 is a regular singular point of (1) if

1. t0 is a singular point.
2. A1.t/ D .t � t0/a1.t/ and A0.t/ D .t � t0/2a0.t/ are analytic at t0.

Note that by multiplying a1.t/ by t � t0 and a0.t/ by .t � t0/
2, we “restore” the

analyticity at t0. In this sense, a regular singularity at t0 is not too bad. A singular
point that is not regular is called irregular.

Example 1. Show t0 D 0 is a regular singular point for the differential equation

t2y00 C t sin ty0 � 2.t C 1/y D 0: (2)

I Solution. Let us rewrite (2) by dividing by t2. We get

y00 C sin t

t
y0 � 2.t C 1/

t2
:

While a1.t/ D sin t
t

is analytic at 0 (see Exercise 13, of Sect. 7.1) the coefficient

function a0.t/ D �2.tC1/

t2 is not. However, both ta1.t/ D t sin t
t

D sin t and t2a0.t/ D
t2 �2.tC1/

t2 D �2.1 C t/ are analytic at t0 D 0. It follows that t0 D 0 is a regular
singular point. J

In the case of a regular singular point, we will rewrite (1): multiply both sides by
.t � t0/2 and note that

.t � t0/
2a1.t/ D .t � t0/A1.t/ and .t � t0/

2a0.t/ D A0.t/:

We then get

.t � t0/2y00 C .t � t0/A1.t/y
0 C A0.t/y D 0: (3)

We will refer to this equation as the standard form of the differential equation when
t0 is a regular singular point. By making a change of variable, if necessary, we can
assume that t0 D 0. We will restrict our attention to this case. Equation (3) then
becomes

t2y00 C tA1.t/y
0 C A0.t/y D 0: (4)
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When A1.t/ and A0.t/ are constants then (4) is a Cauchy–Euler equation. We
would expect that any reasonable adjustment to the power series method should able
to handle this simplest case. Before we describe the adjustments let us explore, by
an example, what goes wrong when we apply the power series method to a Cauchy–
Euler equation. Consider the differential equation

2t2y00 C 5ty0 � 2y D 0: (5)

Let y.t/ D P1
nD0 cntn. Then

2t2y00 D
1X

nD0

2n.n � 1/cntn;

5ty0 D
1X

nD0

5ncntn;

�2y D
1X

nD0

�2cntn:

Thus,

2t2y00 C 5ty0 � 2y D
1X

nD0

.2n.n � 1/ C 5n � 2/cntn D
1X

nD0

.2n � 1/.n C 2/cntn:

Equation (5) now implies .2n � 1/.n C 2/cn D 0, and hence cn D 0, for all
n D 0; 1; : : :. The power series method has failed; it has only given us the trivial
solution. With a little forethought, we could have seen the problem. The indicial
polynomial for (5) is 2s2 C5s �2 D .2s �1/.s C2/. The roots are 1

2
and �2. Thus,

a fundamental set is
n
t

1
2 ; t�2

o
and neither of these functions is analytic at t0 D 0.

Our assumption that there was a power series solution centered at 0 was wrong!
Any modification of the power series method must take into account that

solutions to differential equations about regular singular points can have fractional
or negative powers of t , as in the example above. It is thus natural to consider
solutions of the form

y.t/ D t r

1X

nD0

cntn; (6)

where r is a constant to be determined. This is the starting point for the Frobenius
method. We may assume that c0 is nonzero for if c0 D 0, we could factor out a
power of t and incorporate it into r . Under this assumption, we call (6) a Frobenius
series. Of course, if r is a nonnegative integer, then a Frobenius series is a power
series.
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Recall that the fundamental sets for Cauchy–Euler equations take the form

ft r1 ; t r2 g ; ft r ; t r ln tg ; and ft˛ cos ˇ ln t; t˛ sin ˇ ln tg:

(cf. Sect. 5.3). The power of t depends on the roots of the indicial polynomial.
For differential equations with regular singular points, something similar occurs.
Suppose A1.t/ and A0.t/ have power series expansions about t0 D 0 given by

A1.t/ D a0 C a1t C a2t2 C � � � and A0.t/ D b0 C b1t C b2t
2 C � � �:

The polynomial
q.s/ D s.s � 1/ C a0s C b0 (7)

is called the indicial polynomial associated to (4) and extends the definition given
in the Cauchy–Euler case.1 Its roots are called the exponents of singularity and, as
in the Cauchy–Euler equations, indicate the power to use in the Frobenius series. A
Frobenius series that solves (4) is called a Frobenius series solution.

Theorem 2 (The Frobenius Method). Suppose t0 D 0 is a regular singular point
of the differential equation

t2y00 C tA1.t/y
0 C A0.t/y D 0:

Suppose r1 and r2 are the exponents of singularity.

The Real Case: Assume r1 and r2 are real and r1 � r2. There are three cases to
consider:

1. If r1 � r2 is not an integer, then there are two Frobenius solutions of the form

y1.t/ D t r1

1X

nD0

cntn and y2.t/ D t r2

1X

nD0

Cntn:

2. If r1 � r2 is a positive integer, then there is one Frobenius series solution of the
form

y1.t/ D t r1

1X

nD0

cntn

and a second independent solution of the form

y2.t/ D �y1.t/ ln t C t r2

1X

nD0

Cntn:

1If the coefficient of t 2y00 is a number c other than 1, we take the indicial polynomial to be q.s/ D
cs.s � 1/ C a0s C b0.
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It can be arranged so that � is either 0 or 1. When � D 0, there are two Frobenius
series solution. When � D 1, then a second independent solution is the sum of a
Frobenius series and a logarithmic term. We refer to these as the nonlogarithmic
and logarithmic cases, respectively.

3. If r1 � r2 D 0, let r D r1 D r2. Then there is one Frobenius series solution of the
form

y1.t/ D t r

1X

nD0

cntn

and a second independent solution of the form

y2.t/ D y1.t/ ln t C t r

1X

nD0

Cntn:

The second solution y2 is also referred to as a logarithmic case.

The Complex Case: If the roots of the indicial polynomial are distinct complex
numbers, r and r say, then there is a complex-valued Frobenius series solution of
the form

y.t/ D t r

1X

nD0

cntn;

where the coefficients cn may be complex. The real and imaginary parts of y.t/,
y1.t/, and y2.t/, respectively, are linearly independent solutions.

Each series given for all five different cases has a positive radius of convergence.

Remark 3. You will notice that in each case, there is at least one Frobenius
solution. When the roots are real, there is a Frobenius solution for the larger of the
two roots. If y1 is a Frobenius solution and there is not a second Frobenius solution,
then a second independent solution is the sum of a logarithmic expression y1.t/ ln t

and a Frobenius series. This fact is obtained by applying reduction of order. We
will not provide the proof as it is long and not very enlightening. However, we will
consider an example of each case mentioned in the theorem. Read these examples
carefully. They will reveal some of the subtleties involved in the general proof and,
of course, are a guide through the exercises.

Example 4 (Real Roots Not Differing by an Integer). Use Theorem 2 to solve
the following differential equation:

2t2y00 C 3t.1 C t/y0 � y D 0: (8)

I Solution. We can identify A1.t/ D 3 C 3t and A0.t/ D �1. It is easy to see that
t0 D 0 is a regular singular point and the indicial equation

q.s/ D 2s.s � 1/ C 3s � 1 D .2s2 C s � 1/ D .2s � 1/.s C 1/:
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The exponents of singularity are thus 1
2

and �1, and since their difference is not an
integer, Theorem 2 tells us there are two Frobenius solutions: one for each exponent
of singularity. Before we specialize to each case, we will first derive the general
recurrence relation from which the indicial equation falls out. Let

y.t/ D t r

1X

nD0

cntn D
1X

nD0

cntnCr :

Then

y0.t/ D
1X

nD0

.n C r/cntnCr�1 and y00.t/ D
1X

nD0

.n C r/.n C r � 1/cntnCr�2:

It follows that

2t2y00.t/ D t r

1X

nD0

2.n C r/.n C r � 1/cntn;

3ty0.t/ D t r

1X

nD0

3.n C r/cntn;

3t2y0.t/ D t r

1X

nD0

3.n C r/cntnC1 D t r

1X

nD1

5.n � 1 C r/cn�1tn;

�y.t/ D t r

1X

nD0

�cntn:

The sum of these four expressions is 2t2y00 C 3t.1 C t/y0 � 1y D 0. Notice that
each term has t r as a factor. It follows that the sum of each corresponding power
series is 0. They are each written in standard form so the sum of the coefficients with
the same powers must likewise be 0. For n D 0, only the first, second, and fourth
series contribute constant coefficients (t0), while for n � 1, all four series contribute
coefficients for tn. We thus get

n D 0 .2r.r � 1/ C 3r � 1/c0 D 0;

n � 1 .2.n C r/.n C r � 1/ C 3.n C r/ � 1/cn C 3.n � 1 C r/cn�1 D 0:

Now observe that for n D 0, the coefficient of c0 is the indicial polynomial q.r/ D
2r.r �1/C3r �1 D .2r �1/.r C1/, and for n � 1, the coefficient of cn is q.nCr/.
This will happen routinely. We can therefore rewrite these equations in the form

n D 0 q.r/c0 D 0

n � 1 q.n C r/cn C 3.n � 1 C r/cn�1 D 0: (9)
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Since a Frobenius series has a nonzero constant term, it follows that q.r/ D 0

implies r D 1
2

and r D �1, the exponents of singularity derived in the beginning.
Let us now specialize to these cases individually. We start with the larger of the two.

The Case r D 1
2
. Let r D 1

2
in the recurrence relation given in (9). Observe that

q.nC 1
2
/ D 2n .nC 3

2
/ D n.2nC3/ and is nonzero for all positive n since the only

roots are 1
2

and �1. We can therefore solve for cn in the recurrence relation and get

cn D �3.n � 1
2
/

n.2n C 3/
cn�1 D

��3

2

�
.2n � 1/

n.2n C 3/
cn�1: (10)

Recursively applying (10), we get

n D 1 c1 D
��3

2

�
1

5
c0 D

��3

2

�
3

1 � .5 � 3/
c0;

n D 2 c2 D
��3

2

�
3

2 � 7
c1 D

��3

2

�2 3

2 � .7 � 5/
c0;

n D 3 c3 D
��3

2

�
5

3 � 9
c2 D

��3

2

�3 5 � 3

.3 � 2/.9 � 7 � 5/
c0 D

��3

2

�3 3

.3Š/.9 � 7/
c0;

n D 4 c4 D
��3

2

�
7

4 � 11
c2 D

��3

2

�4 3

.4Š/.11 � 9/
c0:

Generally, we have cn D ��3
2

�n 3
nŠ.2nC3/.2nC1/

c0. We let c0 D 1 and substitute cn

into the Frobenius series with r D 1
2

to get

y1.t/ D t
1
2

1X

nD0

��3

2

�n
3

nŠ.2n C 3/.2n C 1/
tn:

The Case r D �1. In this case, q.n C r/ D q.n � 1/ D .2n � 3/.n/ is again
nonzero for all positive integers n. The recurrence relation in (9) simplifies to

cn D �3
n � 2

.2n � 3/.n/
cn�1: (11)

Recursively applying (11), we get

n D 1 c1 D �3 �1
�1�1 c0 D �3c0

n D 2 c2 D 0c1 D 0

n D 3 c3 D 0

:::
:::

Again, we let c0 D 1 and substitute cn into the Frobenius series with r D �1 to get
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y2.t/ D t�1 .1 � 3t/ D 1 � 3t

t
:

Since y1 and y2 are linearly independent, the solutions to (8) is the set of all linear
combinations. J

Before proceeding to our next example let us make a couple of observations that
will apply in general. It is not an accident that the coefficient of c0 is the indicial
polynomial q. This will happen in general, and since we assumed from the outset
that c0 ¤ 0, it follows that if a Frobenius series solution exists, then q.r/ D 0; that
is, r must be an exponent of singularity. It is also not an accident that the coefficient
of cn is q.n C r/ in the recurrence relation. This will happen in general as well. If
we can guarantee that q.n C r/ is not zero for all positive integers n, then we obtain
a consistent recurrence relation, that is, we can solve for cn to obtain a Frobenius
series solution. This will always happen for r1, the larger of the two roots. For the
smaller root r2, we need to be more careful. In fact, in the previous example, we
were careful to point out that q.n C r2/ ¤ 0 for n > 0. However, if the roots differ
by an integer, then the consistency of the recurrence relation comes into question in
the case of the smaller root. The next two examples consider this situation.

Example 5 (Real Roots Differing by an Integer: The Nonlogarithmic Case).
Use Theorem 2 to solve the following differential equation:

ty00 C 2y0 C ty D 0:

I Solution. We first multiply both sides by t to put in standard form. We get

t2y00 C 2ty0 C t2y D 0 (12)

and it is easy to verify that t0 D 0 is a regular singular point. The indicial polynomial
is q.s/ D s.s � 1/ C 2s D s2 C s D s.s C 1/. It follows that 0 and �1 are the
exponents of singularity. They differ by an integer so there may or may not be a
second Frobenius solution. Let

y.t/ D t r

1X

nD0

cntn:

Then

t2y00.t/ D t r

1X

nD0

.n C r/.n C r � 1/cntn;

2ty0.t/ D t r

1X

nD0

2.n C r/cntn;



526 7 Power Series Methods

t2y.t/ D t r

1X

nD2

cn�2tn:

The sum of the left side of each of these equations is t2y00 C 2ty0 C t2y D 0, and,
therefore, the sum of the series is zero. We separate the n D 0, n D 1, and n � 2

cases and simplify to get

n D 0 .r.r C 1//c0 D 0;

n D 1 ..r C 1/.r C 2//c1 D 0;

n � 2 ..n C r/.n C r C 1//cn C cn�2 D 0: (13)

The n D 0 case tells us that r D 0 or r D �1, the exponents of singularity.
The Case r D 0. If r D 0 is the larger of the two roots, then the n D 1 case in

(13) implies c1 D 0. Also q.n C r/ D q.n/ D n.n C 1/ is nonzero for all positive
integers n. The recurrence relation simplifies to

cn D �cn�2

.n C 1/n
:

Since the difference in indices in the recurrence relation is 2 and c1 D 0, it follows
that all the odd terms, c2nC1, are zero. For the even terms, we get

n D 2 c2 D �c0

3 � 2

n D 4 c4 D �c2

5 � 4
D c0

5Š

n D 6 c6 D �c4

7 � 6
D �c0

7Š
;

and generally, c2n D .�1/n

.2nC1/Š
c0: If we choose c0 D 1, then

y1.t/ D
1X

nD0

.�1/nt2n

.2n C 1/Š

is a Frobenius solution (with exponent of singularity 0).

The Case r D �1. In this case, we see something different in the recurrence
relation. For in the n D 1 case, (13) gives the equation

0 � c1 D 0:

This equation is satisfied for all c1. There is no restriction on c1 so we will choose
c1 D 0, as this is most convenient. The recurrence relation becomes
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cn D �cn�2

.n � 1/n
; n � 2:

A calculation similar to what we did above gives all the odd terms c2nC1 zero and

c2n D .�1/n

.2n/Š
c0:

If we set c0 D 1, we find the Frobenius solution with exponent of singularity �1

y2.t/ D
1X

nD0

.�1/nt2n�1

.2n/Š
:

It is easy to verify that y1.t/ D sin t
t

and y2.t/ D cos t
t

. Since y1 and y2 are linearly
independent, the solutions to (12) is the set of all linear combinations of y1

and y2. J

The main difference that we saw in the previous example from that of the first
example was in the case of the smaller root r D �1. We had q.n � 1/ D 0 when
n D 1, and this leads to the equation c1 � 0 D 0. We were fortunate in that any c1 is a
solution and choosing c1 D 0 leads to a second Frobenius solution. The recurrence
relation remained consistent. In the next example, we will not be so fortunate. (If c1

were chosen to be a fixed nonzero number, then the odd terms would add up to a
multiple of y1; nothing is gained.)

Example 6 (Real Roots Differing by an Integer: The Logarithmic Case). Use
Theorem 2 to solve the following differential equation:

t2y00 � t2y0 � .3t C 2/y D 0: (14)

I Solution. It is easy to verify that t0 D 0 is a regular singular point. The indicial
polynomial is q.s/ D s.s � 1/ � 2 D s2 � s � 2 D .s � 2/.s C 1/. It follows that
2 and �1 are the exponents of singularity. They differ by an integer so there may or
may not be a second Frobenius solution. Let

y.t/ D t r

1X

nD0

cntn:

Then

t2y00.t/ D t r

1X

nD0

.n C r/.n C r � 1/cntn;
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�t2y0.t/ D t r

1X

nD1

�.n � 1 C r/cn�1t
n;

�3ty.t/ D t r

1X

nD1

�3cn�1t
n;

�2y.t/ D t r

1X

nD0

�2cntn:

As in the previous examples, the sum of the series is zero. We separate the n D 0

and n � 1 cases and simplify to get

n D 0 .r � 2/.r C 1/c0 D 0;

n � 1 ..n C r � 2/.n C r C 1//cn � .n C r C 2/cn�1 D 0: (15)

The n D 0 case tells us that r D 2 or r D �1, the exponents of singularity.

The Case r D 2. Since r D 2 is the larger of the two roots, the n � 1 case in
(15) implies cn D nC4

n.nC3/
cn�1. We then get

n D 1 c1 D 5

1 � 4
c0

n D 2 c2 D 6

2 � 5
c1 D 6

2Š � 4
c0

n D 3 c3 D 7

3 � 6
c2 D 7

3Š � 4
c0;

and generally, cn D nC4
nŠ�4 c0: If we choose c0 D 4, then

y1.t/ D t2

1X

nD0

n C 4

nŠ
tn D

1X

nD0

n C 4

nŠ
tnC2 (16)

is a Frobenius series solution; the exponent of singularity is 2. (It is easy to see that
y1.t/ D .t3 C 4t2/et but we will not use this fact.)

The Case r D �1. The recurrence relation in (15) simplifies to

n.n � 3/cn D �.n C 1/cn�1:

In this case, there is a problem when n D 3. Observe

n D 1 �2c1 D 2c0 hence c1 D �c0;

n D 2 �2c2 D 3c1 hence c2 D 3
2
c0;

n D 3 0 � c3 D 4c2 D 6c0; )(



7.3 Regular Singular Points and the Frobenius Method 529

In the n D 3 case, there is no solution since c0 ¤ 0. The recurrence relation is
inconsistent and there is no second Frobenius series solution. However, Theorem 2
tells us there is a second independent solution of the form

y.t/ D y1.t/ ln t C t�1

1X

nD0

cntn: (17)

Although the calculations that follow are straightforward, they are more involved
than in the previous examples. The idea is simple though: substitute (17) into
(14) and solve for the coefficients cn, n D 0; 1; 2; : : :. If y.t/ is as in (17), then
a calculation gives

t2y00 D t2y00
1 ln t C 2ty0

1 � y1 C t�1

1X

nD0

.n � 1/.n � 2/cntn;

�t2y0 D �t2y0
1 ln t � ty1 C t�1

1X

nD1

�.n � 2/cn�1t
n;

�3ty D �3ty1 ln t C t�1

1X

nD1

�3cn�1t
n;

�2y D �2y1 ln t C t�1

1X

nD0

�2cntn:

The sum of the terms on the left is zero since we are assuming a y is a solution.
The sum of the terms with ln t as a factor is also zero since y1 is the solution, (16),
we found in the case r D 2. Observe also that the n D 0 term only occurs in the
first and fourth series. In the first series, the constant term is .�1/.�2/c0 D 2c0,
and in the fourth series, the constant term is .�2/c0 D �2c0. Since the n D 0 terms
cancel, we can thus start all the series at n D 1. Adding these terms together and
simplifying gives

0 D 2ty0
1 � .t C 1/y1

C t�1
1P

nD1

.n.n � 3//cn � .n C 1/cn�1/ tn:
(18)

Now let us calculate the power series for 2ty0
1 � .t C 1/y1 and factor t�1 out of the

sum. A short calculation and some index shifting gives

2ty0
1 D

1X

nD0

2.n C 4/.n C 2/

nŠ
tnC2 D t�1

1X

nD3

2.n C 1/.n � 1/

.n � 3/Š
tn;
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�y1 D
1X

nD0

�n C 4

nŠ
tnC2 D t�1

1X

nD3

� n C 1

.n � 3/Š
tn;

�ty1 D
1X

nD0

�n C 4

nŠ
tnC3 D t�1

1X

nD3

�n.n � 3/

.n � 3/Š
tn:

Adding these three series and simplifying gives

2ty0
1 � .t C 1/y1 D t�1

1X

nD3

.n C 3/.n � 1/

.n � 3/Š
tn:

We now substitute this calculation into (18), cancel out the common factor t�1,
and get

1X

nD3

.n C 3/.n � 1/

.n � 3/Š
tn C

1X

nD1

.n.n � 3/cn � .n C 1/cn�1/t
n D 0:

We separate out the n D 1 and n D 2 cases to get:

n D 1 �2c1 � 2c0 D 0 hence c1 D �c0;

n D 2 �2c2 � 3c1 D 0 hence c2 D 3
2
c0:

For n � 3, we get

.n C 3/.n � 1/

.n � 3/Š
C n.n � 3/cn � .n C 1/cn�1 D 0

which we can rewrite as

n.n � 3/cn D .n C 1/cn�1 � .n C 3/.n � 1/

.n � 3/Š
n � 3: (19)

You should notice that the coefficient of cn is zero when n D 3. As observed
earlier, this led to an inconsistency of the recurrence relation for a Frobenius series.
However, the additional term .nC3/.n�1/

.n�3/Š
that comes from the logarithmic term results

in consistency but only for a specific value of c2. To see this, let n D 3 in (19) to
get 0 D 0c3 D 4c2 � 12 and hence c2 D 3. Since c2 D 3

2
c0, we have that c0 D 2

and c1 D �2. We now have 0c3 D 4c2 � 12 D 0, and we can choose c3 to be any
number. It is convenient to let c3 D 0. For n � 4, we can write (19) as

cn D n C 1

n.n � 3/
cn�1 � .n C 3/.n � 1/

n.n � 3/.n � 3/Š
n � 4: (20)
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Such recurrence relations are generally very difficult to solve in a closed form.
However, we can always solve any finite number of terms. In fact, the following
terms are easy to check:

n D 0 c0 D 2; n D 4 c4 D �21
4

n D 1 c1 D �2; n D 5 c5 D �19
4

n D 2 c2 D 3; n D 6 c6 D �163
72

n D 3 c3 D 0; n D 7 c7 D �53
72

:

We substitute these values into (17) to obtain (an approximation to) a second linearly
independent solution

y2.t/ D y1.t/ ln t Ct�1

�
2 � 2t C 3t2 � 21

4
t4 � 19

4
t5 � 163

72
t6 � 53

72
t7 � � �

�
: J

A couple of remarks are in order. By far the logarithmic cases are the most tedious.
In the case just considered, the difference in the roots is 2 � .�1/ D 3 and it was
precisely at n D 3 in the recurrence relation where c0 is determined in order to
achieve consistency. After n D 3, the coefficients are nonzero so the recurrence
relation is consistent. In general, it is at the difference in the roots where this junction
occurs. If we choose c3 to be a nonzero fixed constant, the terms that would arise
with c3 as a coefficient would be a multiple of y1, and thus, nothing is gained.
Choosing c3 D 0 does not exclude any critical part of the solution.

Example 7 (Real roots: Coincident). Use Theorem 2 to solve the following
differential equation:

t2y00 � t.t C 3/y0 C 4y D 0: (21)

I Solution. It is easy to verify that t0 D 0 is a regular singular point. The indicial
polynomial is q.s/ D s.s � 1/ � 3s C 4 D s2 � 4s C 4 D .s � 2/2. It follows that
2 is a root with multiplicity two. Hence, r D 2 is the only exponent of singularity.
There will be only one Frobenius series solution. A second solution will involve a
logarithmic term. Let

y.t/ D t r

1X

nD0

cntn:
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Then

t2y00.t/ D t r

1X

nD0

.n C r/.n C r � 1/cntn;

�t2y0.t/ D t r

1X

nD1

.n C r � 1/cn�1t
n;

�3ty0.t/ D t r

1X

nD0

�3cn.n C r/tn;

4y.t/ D t r

1X

nD0

4cntn:

As in previous examples, the sum of the series is zero. We separate the n D 0 and
n � 1 cases and simplify to get

n D 0 .r � 2/2c0 D 0;

n � 1 .n C r � 2/2cn D .n C r � 1/cn�1: (22)

The Case r D 2. Equation (22) implies r D 2 and

cn D n C 1

n2
cn�1 n � 1:

We then get
n D 1 c1 D 2

12 c0;

n D 2 c2 D 3
22 c1 D 3�2

22�12 c0;

n D 3 c3 D 4
32 c2 D 4�3�2

32�22�12 c0;

and generally,

cn D .n C 1/Š

.nŠ/2
c0 D n C 1

nŠ
c0:

If we choose c0 D 1, then

y1.t/ D t2

1X

nD0

n C 1

nŠ
tn (23)

is a Frobenius series solution (with exponent of singularity 2). This is the only
Frobenius series solution.

A second independent solution takes the form

y.t/ D y1.t/ ln t C t2

1X

nD0

cntn: (24)
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The ideas and calculations are very similar to the previous example. A straight-
forward calculation gives

t2y00 D t2y00
1 ln t C 2ty0

1 � y1 C t2

1X

nD0

.n C 2/.n C 1/cntn;

�t2y0 D �t2y0
1 ln t � ty1 C t2

1X

nD1

�.n C 1/cn�1t
n;

�3ty0 D �3ty0
1 ln t � 3y1 C t2

1X

nD0

�3.n C 2/cntn;

4y D 4y1 ln t C t2

1X

nD0

4cntn:

The sum of the terms on the left is zero since we are assuming a y is a solution. The
sum of the terms with ln t as a factor is also zero since y1 is a solution. Observe also
that the n D 0 terms occur in the first, third, and fourth series. In the first series the
coefficient is 2c0, in the third series the coefficient is �6c0, and in the fourth series
the coefficient is 4c0. We can thus start all the series at n D 1 since the n D 0 terms
cancel. Adding these terms together and simplifying gives

0 D 2ty0
1 � .t C 4/y1 C t2

1P
nD1

�
n2cn � .n C 1/cn�1

�
tn: (25)

Now let us calculate the power series for 2ty0
1 � .t C 4/y1 and factor t2 out of the

sum. A short calculation and some index shifting gives

2ty0
1 � .t C 4/y1 D t2

1X

nD1

n C 2

.n � 1/Š
tn: (26)

We now substitute this calculation into (25), cancel out the common factor t2, and
equate coefficients to get

n C 2

.n � 1/Š
C n2cn � .n C 1/cn�1 D 0:

Since n � 1, we can solve for cn to get the following recurrence relation:

cn D n C 1

n2
cn�1 � n C 2

n.nŠ/
; n � 1:

As in the previous example, such recurrence relations are difficult to solve in a
closed form. There is no restriction on c0 so we may assume it is zero. The first few
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terms thereafter are as follows:

n D 0 c0 D 0; n D 4 c4 D �173

288
;

n D 1 c1 D �3; n D 5 c5 D �187

1200
;

n D 2 c2 D �13

4
; n D 6 c6 D �463

14400
;

n D 3 c3 D �31

18
; n D 7 c7 D �971

176400
:

We substitute these values into (24) to obtain (an approximation to) a second
linearly independent solution

y2.t/ D y1.t/ ln t �
�

3t3 C 13

4
t4 C 31

18
t5 C 173

288
t6 C 187

1200
t7 C 463

14400
t8 C � � �

�
:

J

Since the roots in this example are coincident, their difference is 0. The juncture
mentioned in the example that proceeded this one thus occurs at n D 0 and so we
can make the choice c0 D 0. If c0 is chosen to be nonzero, then y2 will include an
extra term c0y1. Thus nothing is gained.

Example 8 (Complex Roots). Use Theorem 2 to solve the following differential
equation:

t2.t C 1/y00 C ty0 C .t C 1/3y D 0: (27)

I Solution. It is easy to see that t0 D 0 is a regular singular point. The indicial
polynomial is q.s/ D s.s � 1/ C s C 1 D s2 C 1 and has roots r D ˙i. Thus, there
is a complex-valued Frobenius solution, and its real and imaginary parts will be two
linear independent solutions to (27). A straightforward substitution gives

t3y00 D t r

1X

nD1

.n C r � 1/.n C r � 2/cn�1t
n;

t2y00 D t r

1X

nD0

.n C r/.n C r � 1/cntn;

ty0 D t r

1X

nD0

.n C r/cntn;

y D t r

1X

nD0

cntn;
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3ty D t r

1X

nD1

3cn�1t
n;

3t2y D t r

1X

nD2

3cn�2t
n;

t3y D t r

1X

nD3

cn�3t
n:

As usual, the sum of these series is zero. Since the index of the sums have different
starting points, we separate the cases n D 0, n D 1, n D 2, and n � 3 to get, after
some simplification, the following:

n D 0 .r2 C 1/c0 D 0;

n D 1 ..r C 1/2 C 1/c1 C .r.r � 1/ C 3/c0 D 0;

n D 2 ..r C 2/2 C 1/c2 C ..r C 1/r C 3/c1 C 3c0 D 0;

n � 3 ..r C n/2 C 1/cn C ..r C n � 1/.r C n � 2/ C 3/cn�1

C 3cn�2 C cn�3 D 0:

The n D 0 case implies that r D ˙i. We will let r Di (the r D �i case will give
equivalent results). As usual, c0 is arbitrary but nonzero. For simplicity, let us fix
c0 D 1. Substituting these values into the cases, n D 1 and n D 2 above, gives
c1 D i and c2 D �1

2
. The general recursion relation is

..i C n/2 C 1/cn C ..i C n � 1/.i C n � 2/ C 3/cn�1 C 3cn�2 C cn�3 D 0 (28)

from which we see that cn is determined as long as we know the previous three
terms. Since c0, c1, and c2 are known, it follows that we can determine all cn’s.
Although (28) is somewhat tedious to work with, straightforward calculations give
the following values:

n D 0 c0 D 1; n D 3 c3 D �i
6

D i3

3Š
;

n D 1 c1 D i; n D 4 c4 D 1
24

D i4

4Š
;

n D 2 c2 D �1
2

D i2

2Š
; n D 5 c5 D i

120
D i5

5Š
:

We will leave it as an exercise to verify by mathematical induction that cn D in

nŠ
.

It follows now that

y.t/ D t i

1X

nD0

in

nŠ
tn D t i ei t :
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We assume t > 0. Therefore, we can write t i D ei ln t and

y.t/ D ei.tCln t /:

By Euler’s formula, the real and imaginary parts are

y1.t/ D cos.t C ln t/ and y2.t/ D sin.t C ln t/:

It is easy to see that these functions are linearly independent solutions. We remark
that the r D �i case gives the solution y.t/ D e�i.tCln t /. Its real and imaginary
parts are, up to sign, the same as y1 and y2 given above. J
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Exercises

1–5. For each problem, determine the singular points. Classify them as regular or
irregular.

1. y00 C t
1�t 2 y0 C 1

1Ct
y D 0

2. y00 C 1�t
t

y0 C 1�cos t
t 3 y D 0

3. y00 C 3t.1 � t/y0 C 1�et

t
y D 0

4. y00 C 1
t
y0 C 1�t

t 3 y D 0

5. ty00 C .1 � t/y0 C 4ty D 0

6–10. Each differential equation has a regular singular point at t D 0. Determine the
indicial polynomial and the exponents of singularity. How many Frobenius solutions
are guaranteed by Theorem 2? How many could there be?

6. 2ty00 C y0 C ty D 0

7. t2y00 C 2ty0 C t2y D 0

8. t2y00 C tet y0 C 4.1 � 4t/y D 0

9. ty00 C .1 � t/y0 C �y D 0

10. t2y00 C 3t.1 C 3t/y0 C .1 � t2/y D 0

11–14. Verify the following claims that were made in the text.

11. In Example 5, verify the claims that y1.t/ D sin t
t

and y2.t/ D cos t
t

.

12. In Example 8, we claimed that the solution to the recursion relation

..i C n/2 C 1/cn C ..i C n � 1/.i C n � 2/ C 3/cn�1 C 3cn�2 C cn�3 D 0

was cn D in

nŠ
. Use mathematical induction to verify this claim.

13. In Remark 3, we stated that the logarithmic case could be obtained by a
reduction of order argument. Consider the Cauchy–Euler equation

t2y00 C 5ty0 C 4y D 0:

One solution is y1.t/ D t�2. Use reduction of order to show that a second
independent solution is y2.t/ D t�2 ln t; in harmony with the statement for the
appropriate case of the theorem.

14. Verify the claim made in Example 6 that y1.t/ D .t3 C 4t2/et

15–26. Use the Frobenius method to solve each of the following differential
equations. For those problems marked with a (*), one of the independent solutions
can easily be written in closed form. For those problems marked with a (**), both
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independent solutions can easily be written in closed form. In each case below we
let y D t r

P1
nD0 cntn where we assume c0 ¤ 0 and r is the exponent of singularity.

15. ty00 �2y0 C ty D 0 (**) (real roots, differ by integer, two Frobenius solutions)

16. 2t2y00 � ty0 C .1 C t/y D 0 (**) (real roots, do not differ by an integer, two
Frobenius solutions)

17. t2y00 � t.1 C t/y0 C y D 0, (*) (real roots, coincident, logarithmic case)

18. 2t2y00 � ty0 C .1 � t/y D 0 (**) (real roots, do not differ by an integer, two
Frobenius solutions)

19. t2y00 C t2y0 � 2y D 0 (**) (real roots, differ by integer, two Frobenius
solutions)

20. t2y00 C 2ty0 � a2t2y D 0 (**) (real roots, differ by integer, two Frobenius
Solutions)

21. ty00 C .t � 1/y0 � 2y D 0, (*) (real roots, differ by integer, logarithmic case)

22. ty00 � 4y D 0 (real roots, differ by an integer, logarithmic case)

23. t2.�t C 1/y00 C .t C t2/y0 C .�2t C 1/y D 0 (**) (complex)

24. t2y00 C t.1 C t/y0 � y D 0, (**) (real roots, differ by an integer, two Frobenius
solutions)

25. t2y00 C t.1 � 2t/y0 C .t2 � t C 1/y D 0 (**) (complex)

26. t2.1 C t/y00 � t.1 C 2t/y0 C .1 C 2t/y D 0 (**) (real roots, equal, logarithmic
case)
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7.4 Application of the Frobenius Method:
Laplace Inversion Involving Irreducible Quadratics

In this section, we return to the question of determining formulas for the Laplace
inversion of

b

.s2 C b2/kC1
and

s

.s2 C b2/kC1
; (1)

for k a nonnegative integer. Recall that in Sect. 2.5, we developed reduction of order
formulas so that each inversion could be recursively computed. In this section, we
will derive a closed formula for the inversion by solving a distinguished second
order differential equation, with a regular singular point at t D 0, associated to each
simple rational function given above. Table 7.1 of Sect. 7.5 summarizes the Laplace
transform formulas we obtain in this section.

To begin with, we use the dilatation principle to reduce the simple quadratic
rational functions given in (1) to the case b D 1. Recall the dilation principle,
Theorem 23 of Sect. 2.2. For an input function f .t/ and b a positive number, we
have

L ff .bt/g .s/ D 1

b
L ff .t/g .s=b/:

The corresponding inversion formula gives

L�1 fF.s=bg D bf .bt/; (2)

where as usual L ff g D F .

Proposition 1. Suppose b > 0. Then

L�1

�
b

.s2 C b2/kC1

�
.t/ D 1

b2k
L�1

�
1

.s2 C 1/kC1

�
.bt/;

L�1

�
s

.s2 C b2/kC1

�
.t/ D 1

b2k
L�1

�
s

.s2 C 1/kC1

�
.bt/:

Proof. We simply apply (2) to get

L�1

�
b

.s2 C b2/kC1

�
.t/ D b

b2.kC1/
L�1

�
1

..s=b/2 C 1/kC1

�
.t/

D 1

b2k
L�1

�
1

.s2 C 1/kC1

�
.bt/:

A similar calculation holds for the second simple rational function. ut
It follows from Proposition 1 that we only need to consider the cases

s

.s2 C 1/kC1
and

1

.s2 C 1/kC1
: (3)
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We now define Ak.t/ and Bk.t/ as follows:

Ak.t/ D 2kkŠL�1

�
1

.s2 C 1/kC1

�

Bk.t/ D 2kkŠL�1

�
s

.s2 C 1/kC1

�
: (4)

The factor 2kkŠ will make the resulting formulas a little simpler.

Lemma 2. For k � 1, we have

Ak.t/ D �t2Ak�2.t/ C .2k � 1/Ak�1.t/; k � 2; (5)

Bk.t/ D tAk�1.t/; (6)

Ak.0/ D 0; (7)

Bk.0/ D 0: (8)

Proof. Let b D 1 in Proposition 8 of Sect. 2.5, use the definition of Ak and Bk , and
simplify to get

Ak.t/ D �tBk�1.t/ C .2k � 1/Ak�1.t/;

Bk.t/ D tAk�1.t/:

Equation (6) is the second of the two above. Now replace k by k � 1 in (6) and
substitute into the first equation above to get (5). By the initial value theorem,
Theorem 1 of Sect. 5.4, we have

Ak.0/ D 2kkŠ lim
s!1

s

.s2 C 1/kC1
D 0;

Bk.0/ D 2kkŠ lim
s!1

s2

.s2 C 1/kC1
D 0: ut

Proposition 3. Suppose k � 1. Then

A0
k.t/ D Bk.t/; (9)

B 0
k.t/ D 2kAk�1.t/ � Ak.t/: (10)

Proof. By the input derivative principle and the Lemma above, we have

1

2kkŠ
L ˚A0

k.t/
� D 1

2kkŠ
.sL fAk.t/g � Ak.0//

D s

.s2 C 1/kC1

D 1

2kkŠ
L fBk.t/g :
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Equation (9) now follows. In a similar way, we have

1

2kkŠ
L ˚B 0

k.t/
� D 1

2kkŠ
.sL fBk.t/g � Bk.0//

D s2

.s2 C 1/kC1

D 1

.s2 C 1/k
� 1

.s2 C 1/kC1

D 2k

2kkŠ
L fAk�1.t/g � 1

2kkŠ
L fAk.t/g :

Equation (10) now follows. ut
Proposition 4. With notation as above, we have

tA00
k � 2kA0

k C tAk D 0; (11)

t2B 00
k � 2ktB 0

k C .t2 C 2k/Bk D 0: (12)

Proof. We first differentiate equation (9) and then substitute in (10) to get

A00
k D B 0

k D 2kAk�1 � Ak:

Now multiply this equation by t and simplify using (6) and (9) to get

tA00
k D 2ktAk�1 � tAk D 2kBk � tAk D 2kA0

k � tAk:

Equation (11) now follows. To derive equation (12), first differentiate equation (11)
and then multiply by t to get

t2A000
k C .1 � 2k/tA00

k C t2A0
k C tAk D 0:

From (11), we get tAk D �tA00
k C2kA0

k which we substitute into the equation above
to get

t2A000
k � 2ktA00

k C .t2 C 2k/A0
k D 0:

Equation (12) follows now from (9). ut
Proposition 4 tells us that Ak and Bk both satisfy differential equations with a

regular singular point at t0 D 0. We know from Corollary 11 of Sect. 2.5 that Ak

and Bk are sums of products of polynomials with sin t and cos t (see Table 2.5 for
the cases k D 0; 1; 2; 3). Specifically, we can write

Ak.t/ D p1.t/ cos t C p2.t/ sin t; (13)

Bk.t/ D q1.t/ cos t C q2.t/ sin t; (14)
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where p1, p2, q1, and q2 are polynomials of degree at most k. Because of the
presence of the sin and cos functions, the Frobenius method will produce rather
complicated power series and it will be very difficult to recognize these polynomial
factors. Let us introduce a simplifying feature that gets to the heart of the polynomial
coefficients. We will again assume some familiarity of complex number arithmetic.
By Euler’s formula, ei t D cos t C i sin t and e�it D cos t � i sin t . Adding these
formulas together and dividing by 2 gives a formula for cos t . Similarly, subtracting
these formula and dividing by 2i gives a formula for sin t . Specifically, we get

cos t D ei t C e�it

2
;

sin t D ei t � e�it

2i
:

Substituting these formulas into (13) and simplifying gives

Ak.t/ D p1.t/ cos t C p2.t/ sin t

D p1.t/
ei t C e�it

2
C p2.t/

ei t � e�it

2i

D p1.t/ � ip2.t/

2
ei t C p1.t/ C ip2.t/

2
e�it

D ak.t/

2
ei t C ak.t/

2
ei t

D Re.ak.t/ei t /;

where ak.t/ D p1.t/� ip2.t/ is a complex-valued polynomial, which we determine
below. Observe that since p1 and p2 have degrees at most k, it follows that ak.t/ is
a polynomial of degree at most k. In a similar way, we can write

Bk.t/ D Re.bk.t/ei t /;

for some complex-valued polynomial bk.t/ whose degree is at most k. We
summarize the discussion above for easy reference.

Proposition 5. There are complex-valued polynomials ak.t/ and bk.t/ so that

Ak.t/ D Re.ak.t/ei t /;

Bk.t/ D Re.bk.t/ei t /:

We now proceed to show that ak.t/ and bk.t/ satisfy second order differential
equations with a regular singular point at t0 D 0. The Frobenius method will give
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only one polynomial solution in each case, which we identify with ak.t/ and bk.t/.
From there, it is an easy matter to use Proposition 5 to find Ak.t/ and Bk.t/.

First a little Lemma.

Lemma 6. Suppose p.t/ is a complex-valued polynomial and Re.p.t/ei t / D 0 for
all t 2 R. Then p.t/ D 0 for all t .

Proof. Write p.t/ D ˛.t/Ciˇ.t/, where ˛.t/ and ˇ.t/ are real-valued polynomials.
Then the assumption that Re.p.t/ei t / D 0 becomes

˛.t/ cos t � ˇ.t/ sin t D 0: (15)

Let t D 2�n in (15). Then we get ˛.2�n/ D 0 for each integer n. This means
˛.t/ has infinitely many roots, and this can only happen when a polynomial is zero.
Similarly, if t D �

2
C 2�n is substituted into 15, then we get ˇ

�
�
2

C 2�n
� D 0,

for all n. We similarly get ˇ.t/ D 0. It now follows that p.t/ D 0. ut
Proposition 7. The polynomials ak.t/ and bk.t/ satisfy

ta00
k C 2.i t � k/a0

k � 2kiak D 0;

t2b00
k C 2t.i t � k/b0

k � 2k.i t � 1/bk D 0:

Proof. Let us start with Ak . Since differentiation respects the real and imaginary
parts of complex-valued functions, we have

Ak.t/ D Re.ak.t/ei t /;

A0
k.t/ D Re..ak.t/ei t /0/ D Re..a0

k.t/ C iak.t//ei t /;

A00
k.t/ D Re..a00

k .t/ C 2ia0
k.t/ � ak.t//ei t /:

It follows now from Proposition 4 that

0 D tA00
k.t/ � 2kA0

k.t/ C tAk.t/

D t Re.ak.t/ei t /00 � 2k Re.ak.t/ei t /0 C t Re.ak.t/ei t /

D Re..t.a00
k .t/ C 2ia0

k.t/ � ak.t// � 2k.a0
k.t/ C iak.t// C tak.t//ei t /

D Re
�
.ta00

k .t/ C 2.i t � k/a0
k.t/ � 2kiak.t//ei t

�
:

Now, Lemma 6 implies

ta00
k .t/ C 2.i t � k/a0

k.t/ � 2kiak.t/ D 0:

The differential equation in bk is done similarly and left as an exercise (see
Exercise 3). ut
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Each differential equation involving ak and bk in Proposition 7 is second order
and has t0 D 0 as a regular singular point. Do not be troubled by the presence of
complex coefficients; the Frobenius method applies over the complex numbers as
well.

The following lemma will be useful in determining the coefficient needed in the
Frobenius solutions given below for ak.t/ and bk.t/.

Lemma 8. The constant coefficient of ak.t/ is given by

ak.0/ D �i
.2k/Š

kŠ2k
:

The coefficient of t in bk is given by

b0
k.0/ D �i

.2.k � 1//Š

.k � 1/Š2.k�1/
:

Proof. Replace k by k C 2 in (5) to get

AkC2 D .2k C 3/AkC1 � t2Ak;

for all t and k � 1. Lemma 6 gives that ak satisfies the same recursion relation:

akC2.t/ D .2k C 3/akC1.t/ � t2ak.t/:

If t D 0, we get akC2.0/ D .2k C 3/akC1.0/. Replace k by k � 1 to get

akC1.0/ D .2k C 1/ak.0/:

By Table 2.5, we have

A1.t/ D 21.1Š/L�1

�
1

.s2 C 1/2

�

D sin t � t cos t

D Re..�t � i/ei t /:

Thus, a1.t/ D �t � i and a1.0/ D �i . The above recursion relation gives the
following first four terms:

a1.0/ D �i; a3.0/ D 5a2.0/ D �5 � 3 � i;

a2.0/ D 3a1.0/ D �3i; a4.0/ D 7a3.0/ D �7 � 5 � 3 � i:
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Inductively, we get

ak.0/ D �.2k � 1/ � .2k � 3/ � � �5 � 3 � i

D �i
.2k/Š

kŠ2k
:

For any polynomial p.t/, the coefficient of t is given by p0.0/. Thus, b0
k.0/ is the

coefficient of t in bk.t/. On the other hand, (6) implies bkC1.t/ D tak.t/, and hence,
the coefficient of t in bkC1.t/ is the same as the constant coefficient, ak.0/ of ak.t/.
Replacing k by k � 1 and using the formula for ak.0/ derived above, we get

b0
k.0/ D ak�1.0/ D �i

.2.k � 1//Š

.k � 1/Š2.k�1/
: ut

Proposition 9. With the notation as above, we have

ak.t/ D �i

2k

kX

nD0

.2k � n/Š

nŠ.k � n/Š
.�2it/n

and bk.t/ D �i t

2k�1

k�1X

nD0

.2.k � 1/ � n/Š

nŠ.k � 1 � n/Š
.�2it/n:

Proof. By Proposition 7, ak.t/ is the polynomial solution to the differential equation

ty00 C 2.i t � k/y0 � 2kiy D 0 (16)

with constant coefficient ak.0/ as given in Lemma 8. Multiplying equation (16)
by t gives t2y00 C 2t.i t � k/y0 � 2kity D 0 which is easily seen to have a regular
singular point at t D 0. The indicial polynomial is given by q.s/ D s.s�1/�2ks D
s.s � .2k C 1//. It follows that the exponents of singularity are 0 and 2k C 1. We
will show below that the r D 0 case gives a polynomial solution. We leave it to the
exercises (see Exercise 1) to verify that the r D 2k C 1 case gives a nonpolynomial
Frobenius solution. We thus let

y.t/ D
1X

nD0

cntn:

Then

ty00.t/ D
1X

nD1

.n/.n C 1/cnC1t
n;

2ity0.t/ D
1X

nD1

2incntn;
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�2ky0.t/ D
1X

nD0

�2k.n C 1/cnC1t
n;

�2iky.t/ D
1X

nD0

�2ikcntn:

By assumption, the sum of the series is zero. We separate the n D 0 and n � 1 cases
and simplify to get

n D 0 �2kc1 � 2ikc0 D 0;

n � 1 .n � 2k/.n C 1/cnC1 C 2i.n � k/cn D 0: (17)

The n D 0 case tells us that c1 D �ic0. For 1 � n � 2k � 1, we have

cnC1 D �2i.k � n/

.2k � n/.n C 1/
cn:

Observe that ckC1 D 0, and hence, cn D 0 for all k C 1 � n � 2k � 1. For
n D 2k we get from the recursion relation 0c2kC1 D 2ikck D 0. This implies that
c2kC1 can be arbitrary. We will choose c2kC1 D 0. Then cn D 0 for all n � k C 1,
and hence, the solution y is a polynomial. We make the usual comment that if ckC1

is chosen to be nonzero, then those terms with ckC1 as a factor will make up the
Frobenius solution for exponent of singularity r D 2k C 1. Let us now determine
the coefficients cn for 0 � n � k. From the recursion relation, (17), we get

n D 0 c1 D �ic0;

n D 1 c2 D �2i.k � 1/

.2k � 1/2
c1 D 2.�i/2.k � 1/

.2k � 1/2
c0 D .�2i/2k.k � 1/

.2k/.2k � 1/2
c0;

n D 2 c3 D �2i.k � 2/

.2k � 2/3
c2 D .�2i/3k.k � 1/.k � 2/

2k.2k � 1/.2k � 2/3Š
c0;

n D 3 c4 D �2i.k � 3/

.2k � 3/4
c3 D .�2i/4k.k � 1/.k � 2/.k � 3/

2k.2k � 1/.2k � 2/.2k � 3/4Š
c0:

and generally,

cn D .�2i/nk.k � 1/ � � � .k � n C 1/

2k.2k � 1/ � � � .2k � n C 1/nŠ
c0 n D 1; : : : ; k:

We can write this more compactly in terms of binomial coefficients as

cn D .�2i/n
�

k
n

�
�

2k

n

�
nŠ

c0:
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It follows now that

y.t/ D c0

kX

nD0

.�2i/n
�

k
n

�
�

2k
n

�
nŠ

tn:

The constant coefficient is c0. Thus, we choose c0 D ak.0/ as given in Lemma 8.
Then y.t/ D ak.t/ is the polynomial solution we seek. We get

ak.t/ D ak.0/

kX

nD0

.�2i/n
�

k
n

�
�

2k
n

�
nŠ

tn

D
kX

nD0

�i
.2k/Š

kŠ2k

.�2i/n
�

k
n

�
�

2k

n

�
nŠ

tn

D �i

2k

kX

nD0

.2k � n/Š

.k � n/ŠnŠ
.�2it/n:

It is easy to check that (6) has as an analogue the equation bkC1.t/ D tak.t/.
Replacing k by k � 1 in the formula for ak.t/ and multiplying by t thus establishes
the formula for bk.t/. ut

For x 2 R, we let bxc denote the greatest integer function of x. It is defined to
be the greatest integer less than or equal to x. We are now in a position to give a
closed formula for the inverse Laplace transforms of the simple rational functions
given in (4).

Theorem 10. For the simple rational functions, we have

L�1

�
1

.s2 C 1/kC1

�
.t/ D sin t

22k

b k
2 cX

mD0

.�1/m

 
2k � 2m

k

!
.2t/2m

.2m/Š

� cos t

22k

b k�1
2 cX

mD0

.�1/m

 
2k � 2m � 1

k

!
.2t/2mC1

.2m C 1/Š
;

L�1

�
s

.s2 C 1/kC1

�
.t/ D 2t sin t

k � 22k

b k�1
2 cX

mD0

.�1/m

 
2k � 2m � 2

k � 1

!
.2t/2m

.2m/Š

� 2t cos t

k � 22k

b k�2
2 cX

mD0

.�1/m

 
2k � 2m � 3

k � 1

!
.2t/2mC1

.2m C 1/Š
:

The first formula is valid for k � 0, and the second formula is valid for k � 1. Sums
where the upper limit is less than 0 (which occur in the cases k D 0 and 1) should
be understood to be 0.
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Proof. From Proposition 9, we can write

ak.t/ D 1

2k

kX

nD0

.2k � n/Š

nŠ.k � n/Š
.�1/nC1.i/nC1.2t/n:

It is easy to see that the real part of ak consists of those terms where n is odd.
The imaginary part consists of those terms where n is even. The odd integers from
n D 0; : : : ; k can be written n D 2m C 1 where m D 0; : : : ; b k�1

2
c. Similarly, the

even integers can be written n D 2m, where m D 0; : : : ; b k
2
c. We thus have

Re.ak.t// D 1

2k

b k�1
2 cX

mD0

.2k � 2m � 1/Š

.2m C 1/Š.k � 2m � 1/Š
.�1/2mC2.i/2mC2.2t/2mC1

D �1

2k

b k�1
2 cX

mD0

.2k � 2m � 1/Š

.2m C 1/Š.k � 2m � 1/Š
.�1/m.2t/2mC1

and

Im.ak.t// D 1

i

1

2k

b k
2 cX

mD0

.2k � 2m/Š

.2m/Š.k � 2m/Š
.�1/2mC1.i/2mC1.2t/2m

D �1

2k

b k
2 cX

mD0

.2k � 2m/Š

.2m/Š.k � 2m/Š
.�1/m.2t/2m:

Now Re.ak.t/ei t / D Re.ak.t// cos t � Im.ak.t// sin t . It follows from Proposi-
tions 5 that

L�1

�
1

.s2 C 1/kC1

�
D 1

2kkŠ
Re.ak.t/ei t /

D 1

2kkŠ
Re.ak.t// cos t � 1

2kkŠ
Im.ak.t// sin t

D � cos t

22k

b k�1
2 cX

mD0

.2k � 2m � 1/Š

kŠ.2m C 1/Š.k � 2m � 1/Š
.�1/m.2t/2mC1

C sin t

22k

b k
2 cX

mD0

.2k � 2m/Š

kŠ.2m/Š.k � 2m/Š
.�1/m.2t/2m
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D � cos t

22k

b k�1
2 cX

mD0

 
2k � 2m � 1

k

!
.�1/m .2t/2mC1

.2m C 1/Š

C sin t

22k

b k
2 cX

mD0

 
2k � 2m

k

!
.�1/m .2t/2m

.2m/Š
:

A similar calculation gives the formula for L�1
n

s

.s2C1/kC1

o
. ut

We conclude with the following corollary which is immediate from
Proposition 1.

Corollary 11. Let b > 0, then

L�1

�
b

.s2 C b2/kC1

�
.t/ D sin bt

.2b/2k

b k
2 cX

mD0

.�1/m

 
2k � 2m

k

!
.2bt/2m

.2m/Š

� cos bt

.2b/2k

b k�1
2 cX

mD0

.�1/m

 
2k � 2m � 1

k

!
.2bt/2mC1

.2m C 1/Š
;

L�1

�
s

.s2 C b2/kC1

�
.t/ D 2bt sin bt

k � .2b/2k

b k�1
2 cX

mD0

.�1/m

 
2k � 2m � 2

k � 1

!
.2bt/2m

.2m/Š

�2bt cos bt

k � .2b/2k

b k�2
2 cX

mD0

.�1/m

 
2k � 2m � 3

k � 1

!
.2bt/2mC1

.2m C 1/Š
:
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Exercises

1–3. Verify the following unproven statements made in this section.

1. Verify the statement made that the Frobenius solution to

ty00 C 2.i t � k/y0 � 2kiy D 0

with exponent of singularity r D 2k C 1 is not a polynomial.
2. Verify the second inversion formula

L�1

�
s

.s2 C b2/kC1

�
.t/ D 1

b2k
L�1

�
s

.s2 C 1/kC1

�
.bt/

given in Proposition 1.
3. Verify the second differential equation formula

t2b00
k C 2t.i t � k/b0

k � 2k.i t � 1/bk D 0

given in Proposition 7.

4–15. This series of exercises leads to closed formulas for the inverse Laplace
transform of

1

.s2 � 1/kC1
and

s

.s2 � 1/kC1
:

Define Ck.t/ and Dk.t/ by the formulas

1

2kkŠ
L fCk.t/g .s/ D 1

.s2 � 1/kC1

and
1

2kkŠ
L fDk.t/g .s/ D s

.s2 � 1/kC1
:

4. Show that Ck and Dk are related by

DkC1.t/ D tCk.t/:

5. Show that Ck and Dk satisfy the recursion formula

Ck.t/ D tDk�1.t/ � .2k � 1/Ck�1.t/:

6. Show that Ck satisfies the recursion formula

CkC2.t/ D t2Ck.t/ � .2k C 3/CkC1.t/:
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7. Show that Dk satisfies the recursion formula

DkC2.t/ D t2Dk.t/ � .2k C 1/DkC1.t/:

8. For k � 1, show that

Ck.0/ D 0;

Dk.0/ D 0:

9. Show that for k � 1,

1. C 0
k.t/ D Dk.t/:

2. D0
k.t/ D 2kCk�1.t/ C Ck.t/:

10. Show the following:

1. tC 00
k .t/ � 2kC 0

k.t/ � tCk.t/ D 0:

2. t2D00
k .t/ � 2ktD0

k.t/ C .2k � t2/Dk.t/ D 0:

11. Show that there are polynomials ck.t/ and dk.t/, each of degree at most k, such
that

1. Ck.t/ D ck.t/et � ck.�t/e�t :

2. Dk.t/ D dk.t/et C dk.�t/e�t :

12. Show the following:

1. tc00
k .t/ C .2t � 2k/c0

k.t/ � 2kck.t/ D 0:

2. td 00
k .t/ C 2t.t � k/d 0

k.t/ � 2k.t � 1/dk.t/ D 0:

13. Show the following:

1. ck.0/ D .�1/k.2k/Š

2kC1kŠ
.

2. d 0
k.0/ D .�1/k�1.2.k � 1//Š

2k.k � 1/Š
.

14. Show the following:

1. ck.t/ D .�1/k

2kC1

kX

nD0

.2k � n/Š

nŠ.k � n/Š
.�2t/n:

2. dk.t/ D .�1/k

2kC1

kX

nD1

.2k � n � 1/Š

.n � 1/Š.k � n/Š
.�2t/n:
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15. Show the following:

1. L�1

�
1

.s2 � 1/kC1

�
.t/ D .�1/k

22kC1kŠ

kX

nD0

.2k � n/Š

nŠ.k � n/Š

�
.�2t/net � .2t/ne�t

�
.

2. L�1

�
s

.s2 � 1/kC1

�
.t/ D .�1/k

22kC1kŠ

kX

nD1

.2k � n � 1/Š

.n � 1/Š.k � n/Š

�
.�2t/net C .2t/ne�t

�
.
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7.5 Summary of Laplace Transforms

Table 7.1 Laplace transforms

f .t/ F.s/ Page

Laplace transforms involving the quadratic s2 C b2

1.
sin bt

.2b/2k

b k
2 cP

mD0

.�1/m
�

2k�2m
k

� .2bt/2m

.2m/Š

b

.s2 C b2/kC1
549

� cos bt

.2b/2k

b k�1
2 cP

mD0

.�1/m
�

2k�2m�1
k

� .2bt/2mC1

.2m C 1/Š

2.
2bt sin bt

k � .2b/2k

b k�1
2 cP

mD0

.�1/m
�

2k�2m�2
k�1

� .2bt/2m

.2m/Š

s

.s2 C b2/kC1
549

�2bt cos bt

k � .2b/2k

b k�2
2 cP

mD0

.�1/m
�

2k�2m�3
k�1

�
.2bt/2mC1

.2mC1/Š

Laplace transforms involving the quadratic s2 � b2

3.
.�1/k

22kC1kŠ

kP
nD0

.2k � n/Š

nŠ.k � n/Š
..�2t/net � .2t/ne�t /

1

.s2 � 1/kC1
553

4.
.�1/k

22kC1kŠ

kP
nD1

.2k � n � 1/Š

.n � 1/Š.k � n/Š
..�2t/net C .2t/ne�t /

s

.s2 � 1/kC1
553





Chapter 8
Matrices

Most students by now have been exposed to the language of matrices. They arise
naturally in many subject areas but mainly in the context of solving a simultaneous
system of linear equations. In this chapter, we will give a review of matrices, systems
of linear equations, inverses, determinants, and eigenvectors and eigenvalues. The
next chapter will apply what is learned here to linear systems of differential
equations.

W.A. Adkins and M.G. Davidson, Ordinary Differential Equations,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-3618-8 8,
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8.1 Matrix Operations

A matrix is a rectangular array of entities and is generally written in the following
way:

X D

2
664

x11 � � � x1n

:::
: : :

:::

xm1 � � � xmn

3
775 :

We let R denote the set of entities that will be in use at any particular time. Each xij

is in R, and in this text, R can be one of the following sets:

R or C The scalars

RŒt � or CŒt � Polynomials with real or complex entries

R.s/ or C.s/ The real or complex rational functions

C k.I;R/ or C k.I;C/ Real- or complex-valued functions

with k continuous derivatives

Notice that addition and multiplication are defined on R. Below we will extend
these operations to matrices.

The following are examples of matrices.

Example 1.

A D
"

1 0 3

2 �1 4

#
; B D

h
1 �1 9

i
; C D

"
i 2 � i

1 0

#
;

D D

2
664

sin t

cos t

tan t

3
775 ; E D

2
664

s

s2 � 1

1

s2 � 1

�1

s2 � 1

s C 2

s2 � 1

3
775 :

It is a common practice to use capital letters, like A, B , C , D, and E , to denote
matrices. The size of a matrix is determined by the number of rows m and the
number of columns n and written m�n. In Example 1, A is a 2�3 matrix, B is a 1�3

matrix, C and E are 2�2 matrices, and D is a 3�1 matrix. A matrix is square if the
number of rows is the same as the number of columns. Thus, C and E are square
matrices. An entry in a matrix is determined by its position. If X is a matrix, the
.i; j / entry is the entry that appears in the i th row and j th column. We denote it in
two ways: entij .X/ or more simply Xij . Thus, in Example 1, A1 3 D 3, B1 2 D �1,
and C2 2 D 0. We say that two matrices X and Y are equal if the corresponding
entries are equal, that is, Xi j D Yi j , for all indices i and j . Necessarily, X and Y

must be the same size. The main diagonal of a square n � n matrix X is the vector
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formed from the entries Xi i , for i D 1; : : : ; n. The main diagonal of C is .i; 0/ and
the main diagonal of E is . s

s2�1
; sC2

s2�1
/. A matrix is said to be a real matrix if each

entry is real and a complex matrix if each entry is complex. Since every real number
is also complex, every real matrix is also a complex matrix. Thus, A and B are real
( and complex) matrices while C is a complex matrix.

Even though a matrix is a structured array of entities in R, it should be viewed as
a single object just as a word is a single object though made up of many letters. We
let Mm;n.R/ denote the set of all m � n matrices with entries in R. If the focus is
on matrices of a certain size and not on the entries, we will sometimes write Mm;n.
The following definitions highlight various kinds of matrices that commonly arise:

1. A diagonal matrix D is a square matrix in which all entries off the main diagonal
are 0. We can say this in another way:

Di j D 0 if i ¤ j :

Examples of diagonal matrices are:

"
1 0

0 4

# 2
664

et 0 0

0 e4t 0

0 0 1

3
775

2
66666664

1

s
0 0 0

0
2

s � 1
0 0

0 0 0 0

0 0 0
�1

s � 2

3
77777775

:

It is convenient to write diag.d1; : : : ; dn/ to represent the diagonal n � n matrix
with .d1; : : : ; dn/ on the diagonal. Thus, the diagonal matrices listed above are
diag.1; 4/, diag.et ; e4t ; 1/, and diag. 1

s
; 2

s�1
; 0; � 1

s�2
/, respectively.

2. The zero matrix 0 is the matrix with each entry 0. The size is usually determined
by the context. If we need to be specific, we will write 0m;n to mean the m�n zero
matrix. Note that the square zero matrix, 0n;n is diagonal and is diag.0; : : : ; 0/.

3. The identity matrix, I , is the square matrix with ones on the main diagonal and
zeros elsewhere. The size is usually determined by the context, but if we want to
be specific, we write In to denote the n � n identity matrix. The 2 � 2 and the
3 � 3 identity matrices are

I2 D
"

1 0

0 1

#
; I3 D

2
664

1 0 0

0 1 0

0 0 1

3
775 :

4. We say a square matrix is upper triangular if each entry below the main diagonal
is zero. We say a square matrix is lower triangular if each entry above the main
diagonal is zero. The matrices
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"
1 2

0 3

#
and

2
664

1 3 5

0 0 3

0 0 �4

3
775

are upper triangular, and

"
4 0

1 1

#
and

2
664

0 0 0

2 0 0

1 1 �7

3
775

are lower triangular.
5. Suppose A is an m � n matrix. The transpose of A, denoted At , is the n � m

matrix obtained by turning the rows of A into columns. In terms of the entries
we have, more explicitly,

.At /i j D Aj i :

This expression reverses the indices of A. Simple examples are

2
664

2 3

9 0

1 4

3
775

t

D
"

2 9 1

3 0 4

# "
et

e�t

#t

D
h
et e�t

i
2
664

1

s

2

s3

2

s2

3

s

3
775

t

D

2
664

1

s

2

s2

2

s3

3

s

3
775 :

Matrix Algebra

There are three matrix operations that make up the algebraic structure of matrices:
addition, scalar multiplication, and matrix multiplication.

Addition

Suppose A and B are two matrices of the same size. We define matrix addition,
A C B , entrywise by the following formula:

.A C B/i j D Ai j C Bi j :

Thus, if

A D
"

1 �2 0

4 5 �3

#
and B D

"
4 �1 0

�3 8 1

#
;
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then

A C B D
"

1 C 4 �2 � 1 0 C 0

4 � 3 5 C 8 �3 C 1

#
D
"

5 �3 0

1 13 �2

#
:

Corresponding entries are added. Addition preserves the size of matrices. We can
symbolize this in the following way:

C W Mm;n.R/ � Mm;n.R/ ! Mm;n.R/:

Addition satisfies the following properties:

Proposition 2. Suppose A, B , and C are m � n matrices. Then

A C B D B C A; (commutative)

.A C B/ C C D A C .B C C /; (associative)

A C 0 D A; (additive identity)

A C .�A/ D 0: (additive inverse)

Scalar Multiplication

Suppose A is an matrix and c 2 R. We define scalar multiplication, c � A, (but
usually we will just write cA), entrywise by the following formula

.cA/i j D cAi j :

For example,

�2

2
664

1 9

�3 0

2 5

3
775 D

2
664

�2 �18

6 0

�4 �10

3
775 :

Scalar multiplication preserves the size of matrices. Thus,

� W R � Mm;n.R/ ! Mm;n.R/:

Scalar multiplication satisfies the following properties:

Proposition 3. Suppose A and B are matrices of the same size. Suppose c1; c2 2 R.
Then

c1.A C B/ D c1A C c1B; (distributive)

.c1 C c2/A D c1A C c2A; (distributive)
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c1.c2A/ D .c1c2/A; (associative)

1A D A; (1 is a multiplicative identity)

0A D 0:

Matrix Multiplication

Matrix multiplication is more complicated than addition and scalar multiplication.
We will define it in two stages: first on row and column matrices and then on general
matrices.

A row matrix or row vector is a matrix which has only one row. Thus, row vectors
are in M1;n. Similarly, a column matrix or column vector is a matrix which has only
one column. Thus, column vectors are in Mm;1. We frequently will denote column
and row vectors by lower case boldface letters like v or x instead of capital letters.
It is unnecessary to use double subscripts to indicate the entries of a row or column
matrix: if v is a row vector, then we write vi for the i th entry instead of v1 i . Similarly
for column vectors. Suppose v 2 M1;n and w 2 Mn;1: We define the product v � w
(or preferably vw) to be the scalar given by

vw D v1w1 C � � � C vnwn:

Even though this formula looks like the scalar product or dot product that you likely
have seen before, keep in mind that v is a row vector while w is a column vector.
For example, if

v D
h
1 3 �2 0

i
and w D

2
66664

1

3

0

9

3
77775

;

then
vw D 1 � 1 C 3 � 3 C .�2/ � 0 C 0 � 9 D 10:

Now suppose that A is any matrix. It is often convenient to distinguish the rows
of A in the following way. Let Rowi .A/ denotes the i th row of A. Then

A D

2
666664

Row1.A/

Row2.A/
:::

Rowm.A/

3
777775

:

In a similar way, if B is another matrix, we can distinguish the columns of B . Let
Colj .B/ denote the j th column of B , then
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B D
h
Col1.B/ Col2.B/ � � � Colp.B/

i
:

Now let A 2 Mmn and B 2 Mnp. We define the matrix product of A and B to
be the m � p matrix given entrywise by enti j .AB/ D Rowi .A/ Colj .B/: In other
words, the .i; j /-entry of the product of A and B is the i th row of A times the j th
column of B . We thus have

AB D

2
666664

Row1.A/ Col1.B/ Row1.A/ Col2.B/ � � � Row1.A/ Colp.B/

Row2.A/ Col1.B/ Row2.A/ Col2.B/ � � � Row2.A/ Colp.B/
:::

:::
: : :

:::

Rowm.A/ Col1.B/ Rowm.A/ Col2.B/ � � � Rowm.A/ Colp.B/

3
777775

:

Notice that each entry of AB is given as a product of a row vector and a column
vector. Thus, it is necessary that the number of columns of A (the first matrix)
match the number of rows of B (the second matrix). This common number is n.
The resulting product is an m � p matrix. We thus write

� W Mm;n.R/ � Mn;p.R/ ! Mm;p.R/:

In terms of the entries of A and B , we have

enti j .AB/ D Rowi .A/ Colj .B/ D
nX

kD1

enti k.A/entk j .B/ D
nX

kD1

Ai;kBk;j :

Example 4.

1. If A D

2
664

2 1

�1 3

4 �2

3
775 and B D

"
2 1

2 �2

#
, then AB is defined because the number of

columns of A is the number of rows of B . Further, AB is a 3 � 2 matrix and

AB D

2
6666666666666664

h
2 1

i"2

2

# h
2 1

i " 1

�2

#

h
�1 3

i"2

2

# h
�1 3

i " 1

�2

#

h
4 �2

i"2

2

# h
4 �2

i " 1

�2

#

3
7777777777777775

D

2
664

6 0

4 �7

4 8

3
775 :
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2. If A D
"

et 2et

e2t 3e2t

#
and B D

"
�2

1

#
, then

AB D
"

�2et C 2et

�2e2t C 3e2t

#
D
"

0

e2t

#
:

Notice in the definition (and the example) that in a given column of AB , the
corresponding column of B appears as the second factor. Thus,

Colj .AB/ D A Colj .B/: (1)

Similarly, in each row of AB , the corresponding row of A appears and we get

Rowi .A/B D Rowi .AB/: (2)

Notice too that even though the product AB is defined, it is not necessarily true
that BA is defined. This is the case in part 1 of the above example due to the fact
that the number of columns of B (2) does not match the number of rows of A (3).
Even when AB and BA are defined, it is not necessarily true that they are equal.
Consider the following example:

Example 5. Suppose

A D
"

1 2

0 3

#
and B D

"
2 1

4 �1

#
:

Then

AB D
"

1 2

0 3

#"
2 1

4 �1

#
D
"

10 �1

12 �3

#

while

BA D
"

2 1

4 �1

#"
1 2

0 3

#
D
"

2 7

4 5

#
:

These products are not the same. This example shows that matrix multiplication is
not commutative. On the other hand, there can be two special matrices A and B for
which AB D BA. In this case, we say A and B commute. For example, if

A D
"

1 �1

1 1

#
and B D

"
1 1

�1 1

#
;
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then

AB D
"

2 0

0 2

#
D BA:

Thus A and B commute. However, such occurrences are special. The other
properties that we are used to in an algebra are valid. We summarize them in the
following proposition.

Proposition 6. Suppose A, B , and C are matrices whose sizes are such that each
line below is defined. Suppose c1; c2 2 R. Then

A.BC / D .AB/C; (associatvie)

A.cB/ D .cA/B D c.AB/; (commutes with scalar multiplication)

.A C B/C D AC C BC; (distributive)

A.B C C / D AB C AC; (distributive)

IA D AI D A: (I is a multiplicative identity)

We highlight two useful formulas that follow from these algebraic properties. If
A is an m � n matrix, then

Ax D x1 Col1.A/ C � � � xn Coln.A/; where x D

2
664

x1

:::

xn

3
775 (3)

and
yA D y1Row1.A/ C � � � ymRowm.A/; wherey D Œy1 � � � ym� : (4)

Henceforth, we will use these algebraic properties without explicit reference. The
following result expresses the relationship between multiplication and transposition
of matrices

Theorem 7. Let A and B be matrices such that AB is defined. Then Bt At is defined
and

Bt At D .AB/t :

Proof. The number of columns of Bt is the same as the number of rows of B while
the number of rows of At is the number of columns of A. These numbers agree since
AB is defined so Bt At is defined. If n denotes these common numbers, then

.Bt At /i j D
nX

kD1

.Bt/i k.At /k j D
nX

kD1

Aj kBk i D .AB/j i D ..AB/t /i j :

All entries of At Bt and .AB/t agree so they are equal. ut



8.1 Matrix Operations 567

Exercises

1–3. Let A D
"

2 �1 3

1 0 4

#
, B D

2
664

1 �1

2 3

�1 2

3
775, and C D

2
664

0 2

�3 4

1 1

3
775. Compute the

following matrices.

1. B C C , B � C , 2B � 3C

2. AB , AC , BA, CA

3. A.B C C /, AB C AC , .B C C /A

4. Let A D

2
664

2 1

3 4

�1 0

3
775 and B D

2
664

1 2

�1 1

1 0

3
775. Find C so that 3A C C D 4B .

5–9. Let A D

2
664

3 �1

0 �2

1 2

3
775, B D

"
2 1 1 �3

0 �1 4 �1

#
, and C D

2
66664

2 1 2

1 3 1

0 1 8

1 1 7

3
77775

. Find the

following products.

5. AB

6. BC

7. CA

8. Bt At

9. ABC

10. Let A D
h
1 4 3 1

i
and B D

2
66664

1

0

�1

�2

3
77775

. Find AB and BA.

11–13. Let A D

2
664

1 2 5

2 4 10

�1 �2 �5

3
775, B D

"
1 0

4 �1

#
, C D

"
3 �2

3 �2

#
. Verify the

following facts:

11. A2 D 0

12. B2 D I2

13. C 2 D C
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14–15. Compute AB � BA in each of the following cases.

14. A D
"

0 1

1 1

#
, B D

"
1 0

1 1

#

15. A D

2
664

2 1 0

1 1 1

�1 2 1

3
775, B D

2
664

3 1 �2

3 �2 4

�3 5 �1

3
775

16. Let A D
"

1 a

0 1

#
and B D

"
1 0

b 1

#
. Show that there are no numbers a and b so

that AB � BA D I , where I is the 2 � 2 identity matrix.

17. Suppose that A and B are 2 � 2 matrices.

1. Show by example that it need not be true that .A C B/2 D A2 C 2AB C B2.
2. Find conditions on A and B to insure that the equation in Part (a) is valid.

18. If A D
"

0 1

1 1

#
, compute A2 and A3.

19. If B D
"

1 1

0 1

#
, compute Bn for all n.

20. If A D
"

a 0

0 b

#
, compute A2, A3, and more generally, An for all n.

21. Let A D
"

v1

v2

#
be a matrix with two rows v1 and v2. (The number of columns of

A is not relevant for this problem.) Describe the effect of multiplying A on the
left by the following matrices:

.a/

"
0 1

1 0

#
.b/

"
1 c

0 1

#
.c/

"
1 0

c 1

#
.d/

"
a 0

0 1

#
.e/

"
1 0

0 a

#

22. Let E.�/ D
"

cos � sin �

� sin � cos �

#
. Show that E.�1 C �2/ D E.�1/E.�2/:

23. Let F.�/ D
"

cosh � sinh �

sinh � cosh �

#
. Show that F.�1 C �2/ D F.�1/F.�2/:

24. Let D D diag.d1; : : : ; dn/ and E D diag.e1; : : : ; en/. Show that

DE D diag.d1e1; : : : ; dnen/:
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8.2 Systems of Linear Equations

Most students have learned various techniques for finding the solution of a
system of linear equations. They usually include various forms of elimination and
substitutions. In this section, we will learn the Gauss-Jordan elimination method. It
is essentially a highly organized method involving elimination and substitution that
always leads to the solution set. This general method has become the standard for
solving systems. At first reading, it may seem to be a bit complicated because of its
description for general systems. However, with a little practice on a few examples,
it is quite easy to master. We will as usual begin with our definitions and proceed
with examples to illustrate the needed concepts. To make matters a bit cleaner, we
will stick to the case where R D R: Everything we do here will work for R D C ,
R.s/, or C.s/ as well. (A technical difficulty for general R is the lack of inverses.)

If x1; : : : ; xn are variables, then the equation

a1x1 C � � � C anxn D b

is called a linear equation in the unknowns x1; : : : ; xn. A system of linear equations
is a set of m linear equations in the unknowns x1; : : : ; xn and is written in the form

a1 1x1 C a1 2x2 C � � � C a1 nxn D b1

a2 1x1 C a2 2x2 C � � � C a2 nxn D b2

:::
:::

:::
:::

am 1x1 C am 2x2 C � � � C am nxn D bm:

(1)

The entries ai j are in R and are called coefficients. Likewise, each bj is in R. A
key observation is that (1) can be rewritten in matrix form as:

Ax D b; (2)

where

A D

2
666664

a1 1 a1 2 � � � a1 n

a2 1 a2 2 � � � a2 n

:::
:::

:::

am 1 am 2 � � � am n

3
777775

; x D

2
666664

x1

x2

:::

xn

3
777775

; and b D

2
666664

b1

b2

:::

bm

3
777775

:

We call A the coefficient matrix, x the variable matrix, and b the output matrix.
Any column vector x with entries in R that satisfies equation (1) (or, equivalently,
equation (2)) is called a solution. If a system has a solution, we say it is consistent;
otherwise, it is inconsistent. The solution set is the set of all solutions. The system
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is said to be homogeneous if b D 0, otherwise it is called nonhomogeneous. The
homogeneous case is especially important. We call the solution set to

Ax D 0

the null space of A and denote it by NS.A/. Another important matrix associated
with (2) is the augmented matrix:

ŒA j b � D

2
666664

a1 1 a1 2 � � � a1 n b1

a2 1 a2 2 � � � a2 n b2

:::
:::

:::
:::

am 1 am 2 � � � am n bm

3
777775

;

where the vertical line only serves to separate A from b.

Example 1. Write the coefficient, variable, output, and augmented matrices for the
following system:

�2x1 C 3x2 � x3 D 4

x1 � 2x2 C 4x3 D 5:

Determine whether the following vectors are solutions:

v1 D

2
664

�3

0

2

3
775 ; v2 D

2
664

7

7

3

3
775 ; v3 D

2
664

10

7

1

3
775 ; v4 D

"
2

1

#
:

I Solution. The coefficient matrix is A D
"

�2 3 �1

1 �2 4

#
, the variable matrix

is x D

2
664

x1

x2

x3

3
775 ; the output matrix is b D

"
4

5

#
; and the augmented matrix is

"
�2 3 �1 4

1 �2 4 5

#
. The system is nonhomogeneous. Notice that

Av1 D
"

4

5

#
and Av2 D

"
4

5

#
while Av3 D

"
0

0

#
:

Therefore, v1 and v2 are solutions, v3 is not a solution but since Av3 D 0, we have
v3 is in the null space of A. Finally, v4 is not the right size and thus cannot be a
solution. J



8.2 Systems of Linear Equations 571

Remark 2. When only 2 or 3 variables are involved in an example, we will
frequently use the variables x, y, and z instead of the subscripted variables x1, x2,
and x3.

Linearity

It is convenient to think of Rn as the set of column vectors Mn;1.R/. If A is an m�n

real matrix, then for each column vector x 2 R
n, the product, Ax, is a column vector

in R
m. Thus, the matrix A induces a map which we also denote just by A W Rn ! R

m

given by matrix multiplication. It satisfies the following important property.

Proposition 3. The map A W Rn ! R
m is linear. In other words,

1. A.x C y/ D A.x/ C A.y/

2. A.cx/ D cA.x/

for all x; y 2 R
n and c 2 R.

Proof. This follows directly from Propositions 3 and 6 of Sect. 8.1. ut
Linearity is an extremely important property for it allows us to describe the

structure of the solution set to Ax D b in a particularly nice way.

Proposition 4. With A, x, and b as above, we have two possibilities. Either the
solution set to Ax D b is the empty set or we can write all solutions in the following
form:

xp C xh;

where xp is a fixed particular solution and xh is any vector in NS.A/.

Remark 5. We will write the solution set to Ax D b, when it is nonempty, as

xp C NS.A/:

Proof. Suppose xp is a fixed particular solution and xh 2 NS.A/. Then A.xpCxh/ D
Axp C Axh D b C 0 D b: This implies that xp C xh is a solution. On the other hand,
suppose x is a solution to Ax D b. Let xh D x � xp. Then Axh D A.x � xp/ D
Ax � Axp D b � b D 0: This means that xh is in the null space of A and we get
x D xp C xh: ut
Remark 6. The solution set being empty is a legitimate possibility. For example,
the simple equation 0x D 1 has empty solution set. The system of equations
AxD0 is called the associated homogeneous system. It should be mentioned that the
particular solution xp is not necessarily unique. In Chap. 5, we saw a similar theorem
for a second order differential equation Ly D f . That theorem provided a strategy
for solving such differential equations: First we solved the homogeneous equation
Ly D 0 and second found a particular solution (using variation of parameters or
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undetermined coefficients). For a linear system of equations, the matter is much
simpler; the Gauss-Jordan method will give the whole solution set at one time. We
will see that it has the above form.

Homogeneous Systems

The homogeneous case, Ax D 0, is of particular interest. Observe that x D 0 is
always a solution so NS.A/ is never the empty set. But much more is true.

Proposition 7. The solution set, NS.A/, to a homogeneous system Ax D 0 is a
linear space. In other words, if x and y are solutions to the homogeneous system
and c is a scalar, then x C y and cx are also solutions.

Proof. Suppose x and y are in NS.A/. Then A.xCy/ D AxCAy D 0C0 D 0: This
shows that x C y 2 NS.A/. Now suppose c 2 R. Then A.cx/ D cAx D c0 D 0:

Hence cx 2 NS.A/. Thus NS.A/ is a linear space. ut
Corollary 8. The solution set to a general system of linear equations, Ax D b, is
either

1. Empty
2. Unique
3. Infinite

Proof. The associated homogeneous system Ax D 0 has solution set, NS.A/, that
is either equal to the trivial set f0g or an infinite set. To see this suppose that x is a
nonzero solution to Ax D 0, then by Proposition 7, all multiples, cx, are in NS.A/

as well. Therefore, by Proposition 4, if there is a solution to Ax D b, it is unique or
there are infinitely many. ut

The Elementary Equation and Row Operations

We say that two systems of equations are equivalent if their solution sets are the
same. This definition implies that the variable matrix is the same for each system.

Example 9. Consider the following systems of equations:

2x C 3y D 5

x � y D 0
and

x D 1

y D 1:

The solution set to the second system is transparent. For the first system, there
are some simple operations that easily lead to the solution: First, switch the two
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equations around. Next, multiply the equation x � y D 1 by �2 and add the result
to the second equation. We then obtain

x � y D 0

5y D 5

Next, multiply the second equation by 1
5

to get y D 1. Then add this equation to
the first. We get x D 1 and y D 1. Thus, they both have the same solution set,

namely, the single vector

"
1

1

#
: They are thus equivalent. When used in the right

way, these kinds of operations can transform a complicated system into a simpler
one. We formalize these operations in the following definition:

Suppose Ax D b is a given system of linear equations. The following three
operations are called elementary equation operations:

1. Switch the order in which two equations are listed.
2. Multiply an equation by a nonzero scalar.
3. Add a multiple of one equation to another.

Notice that each operation produces a new system of linear equations but leaves
the size of the system unchanged. Furthermore, we have the following proposition.

Proposition 10. An elementary equation operation applied to a system of linear
equations is an equivalent system of equations.

Proof. Suppose S is a system of equations and S 0 is a system obtained from S

by switching two equations. A vector x is a solution to S if and only if it satisfies
each equation in the system. If we switch the order of two of the equations, then x
still satisfies each equation, and hence is a solution to S 0. Notice that applying the
same elementary equation operation to S 0 produces S . Hence, a solution to S 0 is a
solution to S . It follows that S and S 0 are equivalent. The proof for the second and
third elementary equation operations is similar. ut

The main idea in solving a system of linear equations is to perform a finite
sequence of elementary equation operations to transform a system into simpler
system where the solution set is transparent. Proposition 10 implies that the solution
set of the simpler system is the same as original system. Let us consider our example
above.

Example 11. Use elementary equation operations to transform

2x C 3y D 5;

x � y D 0

into
x D 1;

y D 1:
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I Solution.

2x C 3y D 5

x � y D 0

Switch the order of the two equations.

x � y D 0

2x C 3y D 5

Add �2 times the first equation to the

second equation.

x � y D 0

5y D 5

Multiply the second equation by 1
5
.

x � y D 0

y D 1

Add the second equation to the first.

x D 1

y D 1 J

Each operation produces a new system equivalent to the first by Proposition
10. The end result is a system where the solution is transparent. Since y D 1

is apparent in the fourth system, we could have stopped and used the method of
back substitution, that is, substitute y D 1 into the first equation and solve for x.
However, it is in accord with the Gauss–Jordan elimination method to continue as
we did to eliminate the variable y in the first equation of the fourth system.

You will notice that the variables x and y play no prominent role in any of
the calculations. They merely serve as placeholders for the coefficients, some of
which change with each operation. We thus simplify the notation by performing
the elementary operations on just the augmented matrix. The elementary equation
operations become the elementary row operations which act on the augmented
matrix of the system.

The elementary row operations on a matrix are:

1. Switch two rows
2. Multiply a row by a nonzero constant
3. Add a multiple of one row to another

The following notations for these operations will be useful:

1. pij - switch rows i and j

2. mi .a/ - multiply row i by a ¤ 0

3. tij .a/ - add to row j the value of a times row i

The effect of pij on a matrix A is denoted by pij .A/. Similarly for the other
elementary row operations.
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The corresponding operations when applied to the augmented matrix for the
system in Example 11 becomes:

"
2 3 5

1 �1 0

#
p1 2�!

"
1 �1 0

2 3 5

#
t1 2.�2/����!

"
1 �1 0

0 5 5

#

m2.1=5/�����!

"
1 �1 0

0 1 1

#
t2 1.1/���!

"
1 0 1

0 1 1

#
:

Above each arrow is the notation for the elementary row operation performed to
produce the next augmented matrix. The sequence of elementary row operations
chosen follows a certain strategy: Starting from left to right and top down, one tries
to isolate a 1 in a given column and produce 0’s above and below it. This corresponds
to isolating and eliminating variables.

Let us consider three illustrative examples. The sequence of elementary row
operation we perform is in accord with the Gauss–Jordan method which we will
discuss in detail later on in this section. For now, verify each step. The end result
will be an equivalent system for which the solution set will be transparent.

Example 12. Consider the following system of linear equations:

2x C 3y C 4z D 9

x C 2y � z D 2
:

Find the solution set and write it in the form xp C NS.A/:

I Solution. We first will write the augmented matrix and perform a sequence of
elementary row operations:

"
2 3 4 9

1 2 �1 2

#
p1 2�!

"
1 2 �1 2

2 3 4 9

#
t1 2.�2/����!

"
1 2 �1 2

0 �1 6 5

#

m2.�1/����!

"
1 2 �1 2

0 1 �6 �5

#
t2 1.�2/����!

"
1 0 11 12

0 1 �6 �5

#
:

The last augmented matrix corresponds to the system

x C 11z D 12

y � 6z D �5:

In the first equation, we can solve for x in terms of z, and in the second equation,
we can solve for y in terms of z. We refer to z as a free variable and let z D ˛ be a
parameter in R. Then we obtain
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x D 12 � 11˛

y D �5 C 6˛

z D ˛:

In vector form, we write

x D

2
664

x

y

z

3
775 D

2
664

12 � 11˛

�5 C 6˛

˛

3
775 D

2
664

12

�5

0

3
775C ˛

2
664

�11

6

1

3
775 :

The vector, xp D

2
64

12

�5

0

3
75 is a particular solution ( corresponding to ˛ D 0) while all

multiples of the vector

2
64

�11

6

1

3
75 gives the null space of A. We have thus written the

solution in the form xpC NS.A/. In this case, there are infinitely many solutions. J

Example 13. Find the solution set for the system

3x C 2y C z D 4

2x C 2y C z D 3

x C y C z D 0:

I Solution. Again we start with the augmented matrix and apply elementary row
operations. Occasionally, we will apply more than one operation at a time. When this
is so, we stack the operations above the arrow with the topmost operation performed
first followed in order by the ones below it:

2
664

3 2 1 4

2 2 1 3

1 1 1 0

3
775 p1 3�!

2
664

1 1 1 0

2 2 1 3

3 2 1 4

3
775

t1 2.�2/

t1 3.�3/

���!

2
664

1 1 1 0

0 0 �1 3

0 �1 �2 4

3
775

p2 3�!

2
664

1 1 1 0

0 �1 �2 4

0 0 �1 3

3
775

m2.�1/

m3.�1/

���!

2
664

1 1 1 0

0 1 2 �4

0 0 1 �3

3
775

t3 2.�2/

t3 1.�1/

���!

2
664

1 1 0 3

0 1 0 2

0 0 1 �3

3
775 t2 1.�1/����!

2
664

1 0 0 1

0 1 0 2

0 0 1 �3

3
775 :
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The last augmented matrix corresponds to the system

x D 1

y D 2

z D �3:

The solution set is transparent: x D

2
664

1

2

�3

3
775 : In this example, we note that NS.A/ D

f0g, and the system has a unique solution. J

Example 14. Solve the following system of linear equations:

x C 2y C 4z D �2

x C y C 3z D 1

2x C y C 5z D 2:

I Solution. Again we begin with the augmented matrix and perform elementary
row operations.

2
664

1 2 4 �2

1 1 3 1

2 1 5 2

3
775

t1 2.�1/

t1 3.�2/

���!

2
664

1 2 4 �2

0 �1 �1 3

0 �3 �3 6

3
775

m2.�1/����!

2
664

1 2 4 �2

0 1 1 �3

0 �3 �3 6

3
775 t2 3.3/���!

2
664

1 2 4 �2

0 1 1 �3

0 0 0 �3

3
775

m3.�1=3/

�����!

2
664

1 2 4 �2

0 1 1 �3

0 0 0 1

3
775

t3 1.2/

t3 2.3/

t2 1.�2/

���!

2
664

1 0 2 0

0 1 1 0

0 0 0 1

3
775 :

The system that corresponds to the last augmented matrix is

x C 2z D 0

y C z D 0

0 D 1:

The last equation, which is shorthand for 0x C0y C0z D 1, clearly has no solution.
Thus, the system has no solution. J



578 8 Matrices

Reduced Matrices

These last three examples typify what happens in general and illustrate the three
possible outcomes discussed in Corollary 8: infinitely many solutions, a unique
solution, or no solution at all. The most involved case is when the solution set
has infinitely many solutions. In Example 12, a single parameter ˛ was needed to
parameterize the set of solutions. However, in general, there may be many param-
eters needed. We will always want to use the least number of parameters possible,
without dependencies among them. In each of the three preceding examples, it was
transparent what the solution was by considering the system determined by the last
listed augmented matrix. The last matrix was in a certain sense reduced as simple as
possible.

We say that a matrix is in row echelon form (REF) if the following three
conditions are satisfied:

1. The nonzero rows lie above the zero rows.
2. The first nonzero entry in a nonzero row is 1. (We call such a 1 a leading one.)
3. For any two adjacent nonzero rows, the leading one of the upper row is to the

left of the leading one of the lower row. (We say the leading ones are in echelon
form.)

We say a matrix is in row reduced echelon form (RREF) if it also satisfies

4. The entries above each leading one are zero.

Example 15. Determine which of the following matrices are row echelon form,
row reduced echelon form, or neither. For the matrices in row echelon form,
determine the columns (C) of the leading ones. If a matrix is not in row reduced
echelon form, explain which conditions are violated.

.1/

2
664

1 0 �3 11 2

0 0 1 0 3

0 0 0 1 4

3
775 .2/

2
664

0 1 0 1 4

0 0 1 0 2

0 0 0 0 0

3
775 .3/

2
664

0 1 0

0 0 0

0 0 1

3
775

.4/

2
664

1 0 0 4 3 0

0 2 1 2 0 2

0 0 0 0 0 0

3
775 .5/

"
1 1 2 4 �7

0 0 0 0 1

#
.6/

2
664

0 1 0 2

1 0 0 �2

0 0 1 0

3
775
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I Solution.

1. (REF): Leading ones are in the first, third, and fourth columns. It is not reduced
because there is a nonzero entry above the leading one in the third column.

2. (RREF): The leading ones are in the second and third columns.
3. Neither: The zero row is not at the bottom.
4. Neither: The first nonzero entry in the second row is not 1.
5. (REF): Leading ones are in the first and fifth columns. It is not reduced because

there is a nonzero entry above the leading one in the fifth column.
6. Neither: The leading ones are not in echelon form. J

Suppose a matrix A transforms by elementary row operations into a matrix A0
which is in row reduced echelon form. We will sometimes say that A row reduces
to A0. The rank of A, denoted RankA, is the number of nonzero rows in A0. The
definition of row reduced echelon form is valid for arbitrary matrices and not just
matrices that come from a system of linear equations, that is, the augmented matrix.
Suppose though that we consider a system Ax D b, where A is an m � n matrix.
Suppose the augmented matrix ŒAjb� is row reduced to a matrix ŒA0jb0�. Let r D
RankA and rb D RankŒAjb�. The elementary row operations that row reduce ŒAjb�

to ŒA0jb0� are the same elementary row operations the row reduce A to A0. Further,
A0 is row reduced echelon form. Hence, r is the number of nonzero rows in A0 and
r � rb. Consider the following possibilities:

1. If r < rb, then there is a row of the form Œ0 � � � 0j1� in ŒA0jb0� in which case
rb D r C 1. Such a row translates into the equation

0x1 C � � � C 0xn D 1;

which means the system is inconsistent. This is what occurs in Example 14.
Recall that the augmented matrix row reduces as follows:

2
664

1 2 4 �2

1 1 3 1

2 1 5 2

3
775 ! � � � !

2
664

1 0 2 0

0 1 1 0

0 0 0 1

3
775 ;

where ! � � � ! denotes the sequence of elementary row operations used. Notice
that Rank.A/ D 2 while the presence of Œ000j1� in the last row of ŒA0jb0� gives
RankŒAjb� D 3. There are no solutions.

2. Suppose r D rb. The variables that correspond to the columns where the leading
ones occur are called the leading variables or dependent variables. Since each
nonzero row has a leading one, there are r leading variables. All of the other
variables are called free variables, and we are able to solve each leading variable
in terms of the free variables and so there are solutions. The system Ax D b is
consistent. Consider two subcases:
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a. Suppose r < n. Since there are a total of n (the number of columns of A)
variables, there are n � r free variables and hence infinitely many solutions.
This is what occurs in Example 12. Recall

"
2 3 4 9

1 2 �1 2

#
! � � � !

"
1 0 11 12

0 1 �6 �5

#
:

Here, we have r D RankA D RankŒAjb�=2 and n D 3. There is exactly
n � r D 3 � 2 D 1 free variable.

b. Now suppose r D n. Then every variable is a leading variable. There are no
free variables so there is a unique solution. This is what occurs in Example 13.
Recall 2

664
3 2 1 4

2 2 1 3

1 1 1 0

3
775 ! � � � !

2
664

1 0 0 1

0 1 0 2

0 0 1 �3

3
775 :

Here we have r D RankA D RankŒAjb� D 3 and n D 3. There are no free
variables. The solution is unique.

We summarize our discussion in the following proposition.

Proposition 16. Let A be an m � n matrix and b an n � 1 column vector. Let
r D RankA and rb D RankŒAjb�:

1. If r < rb, then Ax D b is inconsistent.
2. If r D rb, then Ax D b is consistent. Further,

a. if r < n, there are n�r > 0 free variables and hence infinitely many solutions.
b. if r D n, there is exactly one solution.

Example 17. Suppose the following matrices are obtained by row reducing the
augmented matrix of a system of linear equations. Identify the leading and free
variables and write down the solution set. Assume the variables are x1; x2; : : :.

.1/

2
664

1 1 4 0 2

0 0 0 1 3

0 0 0 0 0

3
775 .2/

"
1 1 0 1

0 0 0 0

#

.3/

2
664

1 0 0 3

0 1 0 4

0 0 1 5

3
775 .4/

2
66666664

1 0 1

0 1 2

0 0 1

0 0 0

0 0 0

3
77777775
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I Solution. 1. The zero row provides no information and can be ignored. The
variables are x1; x2; x3; and x4. The leading ones occur in the first and fourth
column. Therefore, x1 and x4 are the leading variables. The free variables are
x2 and x3. Let ˛ D x2 and ˇ D x3: The first row implies the equation
x1 Cx2 C4x3 D 2. We solve for x1 and obtain x1 D 2 � x2 � 4x3 D 2 � ˛ � 4ˇ.
The second row implies the equation x4 D 3. Thus,

x D

2
66664

x1

x2

x3

x4

3
77775

D

2
66664

2 � ˛ � 4ˇ

˛

ˇ

3

3
77775

D

2
66664

2

0

0

3

3
77775

C ˛

2
66664

�1

1

0

0

3
77775

C ˇ

2
66664

�4

0

1

0

3
77775

;

where ˛ and ˇ are arbitrary parameters in R.
2. x1 is the leading variable. ˛ D x2 and ˇ D x3 are free variables. The first row

implies x1 D 1 � ˛. The solution is

x D

2
664

1 � ˛

˛

ˇ

3
775 D

2
664

1

0

0

3
775C ˛

2
664

�1

1

0

3
775C ˇ

2
664

0

0

1

3
775 ;

where ˛ and ˇ are in R:

3. The leading variables are x1, x2, and x3. There are no free variables. The solution
set is

x D

2
664

3

4

5

3
775 :

4. The row
h
0 0 1

i
implies the solution set is empty. J

The Gauss–Jordan Elimination Method

Now that you have seen several examples, we present the Gauss-Jordan elimination
method for any matrix. It is an algorithm to transform any matrix to row reduced
echelon form using a finite number of elementary row operations. When applied to
an augmented matrix of a system of linear equations, the solution set can be readily
discerned. It has other uses as well so our description will be for an arbitrary matrix.

Algorithm 18. The Gauss–Jordan Elimination Method Let A be a matrix.
There is a finite sequence of elementary row operations that transform A to a matrix
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in row reduced echelon form. There are two stages of the process: (1) The first
stage is called Gaussian elimination and transforms a given matrix to row echelon
form, and (2) the second stage is called Gauss–Jordan elimination and transforms
a matrix in row echelon form to row reduced echelon form.

From A to REF: Gaussian Elimination

1. Let A1 D A. If A1 D 0, then A is in row echelon form.
2. If A1 ¤ 0, then in the first nonzero column from the left ( say the j th column),

locate a nonzero entry in one of the rows (say the i th row with entry a):

a. Multiply that row by the reciprocal of that nonzero entry: mi.1=a/.
b. Permute that row with the top row: p1 i . There is now a 1 in the .1; j / entry.
c. If b is a nonzero entry in the .i; j / position for i ¤ 1, add �b times the first

row to the i th row: t1 j .�b/. Do this for each row below the first.
The transformed matrix will have the following form:

2
666664

0 � � � 0 1 � � � � �
0 � � � 0 0
:::

: : :
::: A2

0 � � � 0 0

3
777775

:

The *’s in the first row are unknown entries, and A2 is a matrix with fewer
rows and columns than A1.

3. If A2 D 0, we are done. The above matrix is in row echelon form.
4. If A2 ¤ 0, apply step (2) to A2. Since there are zeros to the left of A2 and the

only elementary row operations we apply affect the rows of A2 (and not all of
A), there will continue to be zeros to the left of A2. The result will be a matrix of
the form 2

666666664

0 � � � 0 1 � � � � � � � � � � �
0 0 � � � 0 1 � � � � �

:::
: : :

::: 0 0 � � � 0 0
:::

:::
:::

::: A3

0 � � � 0 0 0 � � � 0 0

3
777777775

:

5. If A3 D 0, we are done. Otherwise, continue repeating step (2) until a matrix
Ak D 0 is obtained.

From REF to RREF: Gauss–Jordan Elimination

1. The leading ones now become apparent in the previous process. We begin with
the rightmost leading one. Suppose it is in the kth row and l th column. If there
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is a nonzero entry (b say) above that leading one, we add �b times the kth row
to it: tk j .�b/. We do this for each nonzero entry in the l th column. The result is
zeros above the rightmost leading one. (The entries to the left of a leading one
are zeros. This process preserves that property.)

2. Now repeat the process described above to each leading one moving right to left.
The result will be a matrix in row reduced echelon form.

Example 19. Use the Gauss–Jordan method to row reduce the following matrix to
row reduced echelon form: 2

66664

2 3 8 0 4

3 4 11 1 8

1 2 5 1 6

�1 0 �1 0 1

3
77775

:

I Solution. The Gauss–Jordan algorithm produces

2
66664

2 3 8 0 4

3 4 11 1 8

1 2 5 1 6

�1 0 �1 0 1

3
77775

p13�!

2
66664

1 2 5 1 6

3 4 11 1 8

2 3 8 0 4

�1 0 �1 0 1

3
77775

t1 2.�3/

t1 3.�2/

t1 4.1/

���!
2
66664

1 2 5 1 6

0 �2 �4 �2 �10

0 �1 �2 �2 �8

0 2 4 1 7

3
77775

m2.�1=2/������!

2
66664

1 2 5 1 6

0 1 2 1 5

0 �1 �2 �2 �8

0 2 4 1 7

3
77775

t2 3.1/

t2 4.�2/

���!

2
66664

1 2 5 1 6

0 1 2 1 5

0 0 0 �1 �3

0 0 0 �1 �3

3
77775

m3.�1/

t3 4.1/

���!

2
66664

1 2 5 1 6

0 1 2 1 5

0 0 0 1 3

0 0 0 0 0

3
77775

t3 2.�1/

t3 1.�1/

���!

2
66664

1 2 5 0 3

0 1 2 0 2

0 0 0 1 3

0 0 0 0 0

3
77775

t2 1.�2/����!

2
66664

1 0 1 0 �1

0 1 2 0 2

0 0 0 1 3

0 0 0 0 0

3
77775

:
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In the first step, we observe that the first column is nonzero so it is possible to
produce a 1 in the upper left-hand corner. This is most easily accomplished by
p1;3. The next set of operations produces 0’s below this leading one. We repeat
this procedure on the submatrix to the right of the zeros. We produce a one in the
2; 2 position by m2.� 1

2
/, and the next set of operations produce zeros below this

second leading one. Now notice that the third column below the second leading one
is zero. There are no elementary row operations that can produce a leading one in the
.3; 3/ position that involve just the third and fourth row. We move over to the fourth
column and observe that the entries below the second leading one are not both zero.
The elementary row operation m3.�1/ produces a leading one in the .3; 4/ position
and the subsequent operation produces a zero below it. At this point, A has been
transformed to row echelon form. Now starting at the rightmost leading one, the 1

in the .3; 4/ position, we use operations of the form t3 i .a/ to produce zeros above
that leading one. This is applied to each column that contains a leading one. The
result is in row reduced echelon form. J

The student is encouraged to go carefully through Examples 12–14. In each of
those examples, the Gauss–Jordan Elimination method was used to transform the
augmented matrix to the matrix in row reduced echelon form.

A Basis of the Null Space

When the Gauss-Jordan elimination method is used to compute the null space of A,
the solution space takes the form

f˛1v1 C � � � C ˛kvk W ˛1; : : : ; ˛k 2 Rg : (3)

We simplify the notation and write Span fv1; : : : ; vkg for the set of all linear
combinations of v1; : : : ; vk given by (3). The vectors v1; : : : ; vk turn out to also
be linearly independent. The notion of linear independence for linear spaces of
functions was introduced earlier in the text and that same notion extends to vectors
in R

n.
Before we give the definition of linear independence, consider the following

example.

Example 20. Find the null space of

A D

2
66664

2 3 1 4

1 1 �1 2

3 5 3 6

4 5 �1 8

3
77775

:
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I Solution. We augment A with the zero vector and row reduce:

2
66664

2 3 1 4 �2 0

1 1 �1 2 3 0

3 5 3 6 �7 0

4 5 �1 8 4 0

3
77775 p1 2

�!

2
66664

1 1 �1 2 3 0

2 3 1 4 �2 0

3 5 3 6 �7 0

4 5 �1 8 4 0

3
77775

t1 2.�2/

t1 3.�3/

t1 4.�4/

���!

2
66664

1 1 �1 2 3 0

0 1 3 0 �8 0

0 2 6 0 �16 0

0 1 3 0 �8 0

3
77775

t2 3.�2/

t2 4.�1/

���!

2
66664

1 1 �1 2 3 0

0 1 3 0 �8 0

0 0 0 0 0 0

0 0 0 0 0 0

3
77775

t2 1.�1/

���!

2
66664

1 0 �4 2 11 0

0 1 3 0 �8 0

0 0 0 0 0 0

0 0 0 0 0 0

3
77775

:

If the variables are x1; : : : ; x5, then x1 and x2 are the leading variables and x3, x4,
and x5 are the free variables. Let ˛ D x3, ˇ D x4, and � D x5. Then

2
66666664

x1

x2

x3

x4

x5

3
77777775

D

2
66666664

4˛ � 2ˇ � 11�

�3˛ C 8�

˛

ˇ

�

3
77777775

D ˛

2
66666664

4

�3

1

0

0

3
77777775

C ˇ

2
66666664

�2

0

0

1

0

3
77777775

C �

2
66666664

�11

8

0

0

1

3
77777775

:

It follows that

NS.A/ D Span

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

2
66666664

4

�3

1

0

0

3
77777775

;

2
66666664

�2

0

0

1

0

3
77777775

;

2
66666664

�11

8

0

0

1

3
77777775

9>>>>>>>=
>>>>>>>;

: J

We say that vectors v1; : : : ; vk in R
n are linearly independent if the equation

a1v1 C � � � C akvk D 0

implies that the coefficients a1; : : : ; ak are all zero. Otherwise, they are said to be
linearly dependent.
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Example 21. Show that the vectors

v1 D

2
66666664

4

�3

1

0

0

3
77777775

; v2 D

2
66666664

�2

0

0

1

0

3
77777775

; and v3 D

2
66666664

�11

8

0

0

1

3
77777775

that span the null space in Example 20 are linearly independent.

I Solution. The equation a1v1 C a2v2 C a3v3 D 0 means
2
66666664

4a1 � 2a3 � 11a3

�3a1 C 8a3

a1

a2

a3

3
77777775

D

2
66666664

0

0

0

0

0

3
77777775

:

From the last three rows, it is immediate that a1 D a2 D a3 D 0. This implies the
linear independence. J

Suppose V is a linear subspace of Rn. By this we mean that V is in R
n and is

closed under addition and scalar multiplication. That is, if

1. v1, v2 are in V , then so is v1 C v2

2. c 2 R and v 2 V , then cv 2 V .

We say that the set of vectors B D fv1; : : : ; vkg forms a basis of V if B is linearly
independent and spans V . Thus, in Example 20, the set fv1; v2; v3g is a basis of
NS.A/. We observe that the number of vectors is three: one for each free variable.

Theorem 22. Suppose A is an m � n matrix of rank r then there are n � r vectors
that form a basis of the null space of A.

Proof. Suppose ŒAj0� is row reduced to ŒRj0�, in row reduced echelon form. By
Theorem 16, there are n � r free variables. Let k D n � r . Suppose f1; : : : ; fk are
the columns of R that do not contain leading ones. Then xf1 ; : : : ; xfk

are the free
variables. Let ˛j D xfj , j D 1; : : : ; k be parameters. Solving for x in Rx D 0 in
terms of the free variables, we get vectors v1; : : : ; vk such that

x D ˛1v1 C � � � C ˛kvk:

It follows that v1; : : : ; vk span NS.A/. Since R is in row reduced echelon form, the
f th

j entry of vj is one while the f th
j entry of vi is zero, when i ¤ j . If a1v1 C

� � � C akvk D 0, then the f th
j entry of the left-hand side is aj , and hence, aj D 0,

j D 1; : : : k. It follows that v1; : : : ; vk are linearly independent and hence form a
basis of NS.A/. ut



8.2 Systems of Linear Equations 587

Exercises

1–2. For each system of linear equations, identify the coefficient matrix A, the
variable matrix x, the output matrix b, and the augmented matrix ŒAjb�.

1.
x C 4y C 3z D 2

x C y � z D 4

2x C z D 1

y � z D 6

2.
2x1 � 3x2 C 4x3 C x4 D 0

3x1 C 8x2 � 3x3 � 6x4 D 1

3. Suppose A D

2
66664

1 0 �1 4 3

5 3 �3 �1 �3

3 �2 8 4 �3

�8 2 0 2 1

3
77775

, x D

2
66666664

x1

x2

x3

x4

x5

3
77777775

, and b D

2
66664

2

1

3

�4

3
77775

: Write out

the system of linear equations that corresponds to Ax D b:

4–9. In the following, matrices identify those that are in row reduced echelon form.
If a matrix is not in row reduced echelon form, find a single elementary row
operation that will transform it to row reduced echelon form and write the new
matrix.

4. A D

2
664

1 0 1

0 0 0

0 1 �4

3
775

5. A D
"

1 0 4

0 1 2

#

6. A D
"

1 2 1 0 1

0 1 3 1 1

#

7. A D

2
664

0 1 0 3

0 0 2 6

0 0 0 0

3
775
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8. A D

2
664

0 1 1 0 3

0 0 0 1 2

0 0 0 0 0

3
775

9. A D

2
664

1 0 1 0 3

0 1 3 4 1

3 0 3 0 9

3
775

10 –18. Use the Gauss-Jordan elimination method to row reduce each matrix.

10.

2
664

1 2 3 1

�1 0 3 �5

0 1 1 0

3
775

11.

2
664

2 1 3 1 0

1 �1 1 2 0

0 2 1 1 2

3
775

12.

2
66664

0 �2 3 2 1

0 2 �1 4 0

0 6 �7 0 �2

0 4 �6 �4 �2

3
77775

13.

2
66664

1 2 1 1 5

2 4 0 0 6

1 2 0 1 3

0 0 1 1 2

3
77775

14.

2
664

�1 0 1 1 0 0

�3 1 3 0 1 0

7 �1 �4 0 0 1

3
775

15.

2
66666664

1 2 4

2 4 8

�1 2 0

1 6 8

0 4 4

3
77777775
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16.

2
66664

5 1 8 1

1 1 4 0

2 0 2 1

4 1 7 1

3
77775

17.

2
664

2 8 0 0 6

1 4 1 1 7

�1 �4 0 1 0

3
775

18.

2
66664

1 �1 1 �1 1

1 1 �1 �1 1

�1 �1 1 1 �1

1 1 �1 1 �1

3
77775

19–25. Solve the following systems of linear equations:

19.
x C 3y D 2

5x C 3z D �5

3x � y C 2z D �4

20.
3x1 C 2x2 C 9x3 C 8x4 D 10

x1 C x3 C 2x4 D 4

�2x1 C x2 C x3 � 3x4 D �9

x1 C x2 C 4x3 C 3x4 D 3

21.
�x C 4y D �3x

x � y D �3y

22.
�2x1 � 8x2 � x3 � x4 D �9

�x1 � 4x2 � x4 D �8

x1 C 4x2 C x3 C x4 D 6

23.
2x C 3y C 8z D 5

2x C y C 10z D 3

2x C 8z D 4
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24.
x1 C x2 C x3 C 5x4 D 3

x2 C x3 C 4x4 D 1

x1 C x3 C 2x4 D 2

2x1 C 2x2 C 3x3 C 11x4 D 8

2x1 C x2 C 2x3 C 7x4 D 7

25.
x1 C x2 D 3 C x1

x2 C 2x3 D 4 C x2 C x3

x1 C 3x2 C 4x3 D 11 C x1 C 2x2 C 2x3

26–32. For each of the following matrices A, find a basis of the null space.

26. A D
"

1 2

2 4

#

27. A D
"

1 3

3 5

#

28. A D

2
664

2 6

1 3

�1 �3

3
775

29. A D
"

1 3 1

1 4 1

#

30. A D

2
664

1 1 3 �2

1 4 1 1

4 7 10 �5

3
775

31. A D

2
66664

�1 2 1 1

6 �2 3 1

2 �1 0 4

5 1 7 �9

3
77775



8.2 Systems of Linear Equations 591

32. A D

2
66664

2 3 1 9 3

0 1 �3 4 0

2 1 7 1 3

4 4 8 10 6

3
77775

33. Suppose the homogeneous system Ax D 0 has the following two solutions:2
664

1

1

2

3
775 and

2
664

1

�1

0

3
775. Is

2
664

5

�1

4

3
775 a solution? Why or why not?

34. For what value of k will the following system have a solution:

x1 C x2 � x3 D 2

2x1 C 3x2 C x3 D 4

x1 � 2x2 � 10x3 D k

35–36. Let A D

2
664

1 3 4

�2 1 7

1 1 0

3
775, b1 D

2
664

1

0

0

3
775, b2 D

2
664

1

1

0

3
775 and b3 D

2
664

1

1

1

3
775 :

35. Solve Ax D bi ; for each i D 1; 2; 3.
36. Solve the above systems simultaneously by row reducing

ŒAjb1jb2jb3� D

2
664

1 3 4 1 1 1

�2 1 7 0 1 1

1 1 0 0 0 1

3
775



592 8 Matrices



8.3 Invertible Matrices 593

8.3 Invertible Matrices

Let A be a square matrix. A matrix B is said to be an inverse of A if BA D AB D I .
In this case, we say A is invertible or nonsingular. If A is not invertible, we say A

is singular.

Example 1. Suppose

A D
"

3 1

�4 �1

#
:

Show that A is invertible and an inverse is

B D
"

�1 �1

4 3

#
:

I Solution. Observe that

AB D
"

3 1

�4 �1

#"
�1 �1

4 3

#
D
"

1 0

0 1

#

and

BA D
"

�1 �1

4 3

#"
3 1

�4 �1

#
D
"

1 0

0 1

#
: J

The following proposition says that when A has an inverse, there can only be
one.

Proposition 2. Let A be an invertible matrix. Then the inverse is unique.

Proof. Suppose B and C are inverses of A. Then

B D BI D B.AC / D .BA/C D IC D C: ut
Because of uniqueness, we can properly say the inverse of A when A is invertible.

In Example 1, the matrix B D
 

�1 �1

4 3

!
is the inverse of A; there are no others. It

is standard convention to denote the inverse of A by A�1.
We say that B is a left inverse of A if BA D I and a right inverse if AB D I .

For square matrices, we have the following proposition which we will not prove.
This proposition tells us that it is enough to check that either AB D I or BA D I .
It is not necessary to check both products.

Proposition 3. Suppose A is a square matrix and B is a left or right inverse of A.
Then A is invertible and A�1 D B .
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For many matrices, it is possible to determine their inverse by inspection. For
example, the identity matrix In is invertible and its inverse is In: InIn D In.
A diagonal matrix diag.a1; : : : ; an/ is invertible if each ai ¤ 0, i D 1; : : : ; n.

The inverse then is simply diag
�

1
a1

; : : : ; 1
an

�
. However, if one of the ai is zero,

then the matrix in not invertible. Even more is true. If A has a zero row, say the
i th row, then A is not invertible. To see this, we get from (2) of Sect. 8.1 that
Rowi .AB/ D Rowi .A/B D 0: Hence, there is no matrix B for which AB D I .
Similarly, a matrix with a zero column cannot be invertible.

Proposition 4. Let A and B be invertible matrices. Then

1. A�1 is invertible and .A�1/�1 D A.
2. AB is invertible and .AB/�1 D B�1A�1:

Proof. Suppose A and B are invertible. The symmetry of the equation A�1A D
AA�1 D I says that A�1 is invertible and .A�1/�1 D A. We also have

.B�1A�1/.AB/ D B�1.A�1A/B D B�1IB D B�1B D I:

This shows .AB/�1 D B�1A�1. ut
The following corollary easily follows by induction:

Corollary 5. If A D A1 � � � Ak is the product of invertible matrices, then A is
invertible and A�1 D A�1

k � � � A�1
1 :

The Elementary Matrices

When an elementary row operation is applied to the identity matrix I , the resulting
matrix is called an elementary matrix.

Example 6. Show that each of the following matrices are elementary matrices:

E1 D
"

1 0

0 3

#
; E2 D

2
664

1 0 0

0 1 0

0 2 1

3
775 ; E3 D

2
66664

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

3
77775

:
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I Solution. We have

m2.3/I D
"

1 0

0 3

#
D E1;

t2 3.2/I D

2
664

1 0 0

0 1 0

0 2 1

3
775 D E2;

p1 2I D

2
66664

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

3
77775

D E3;

where the size of the identity matrix matches the size of the given matrix. J

The following example shows a useful relationship between an elementary row
operation and left multiplication by the corresponding elementary matrix.

Example 7. Use the elementary matrices in Example 6 to show that multiplying a
matrix A on the left by Ei produces the same effect as applying the corresponding
elementary row operation to A.

I Solution. 1. Let A D
"

A1

A2

#
. Then E1A D

"
A1

3A2

#
D m2.3/A.

2. Let A D

2
664

A1

A2

A3

3
775. Then E2A D

2
664

A1

A2

2A2 C A3

3
775 D t2 3.2/A.

3. Let A D

2
66664

A1

A2

A3

A4

3
77775

. Then E3A D

2
66664

A2

A1

A3

A4

3
77775

D p1 2A. J

This important relationship is summarized in general as follows:

Proposition 8. Let e be an elementary row operation. That is, let e be one of pi j ,
ti j .a/, or mi.a/. Let E D eI be the elementary matrix obtained by applying e to
the identity matrix. Then

e.A/ D EA:
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In other words, when A is multiplied on the left by the elementary matrix E , it is the
same as applying the elementary row operation e to A.

If E D eI is an elementary matrix, then we can apply a second elementary
row operation to E to get I back. For example, consider the elementary matrices in
Example 6. It is easy to see that

m2.1=3/E1 D I; t2 3.�2/E2 D I; and p1 2E3 D I:

In general, each elementary row operation is reversible by the another elementary
row operation. Switching two rows is reversed by switching those two rows again,
thus p�1

i j D pi j . Multiplying a row by a nonzero constant is reversed by multiplying
that same row by the reciprocal of that nonzero constant, thus .mi .a//�1 D
mi.1=a/. Finally, adding a multiple of a row to another is reversed by adding the
negative multiple of first row to the second, thus .ti j .a//�1 D ti j .�a/. If e is an
elementary row operation, we let e�1 denote the inverse row operation. Thus,

ee�1A D A;

for any matrix A. These statements imply

Proposition 9. An elementary matrix is invertible and the inverse is an elementary
matrix.

Proof. Let e be an elementary row operation and e�1 its inverse elementary row
operation. Let E D e.I / and B D e�1I . By Proposition 8, we have

EB D E.e�1I / D ee�1I D I:

It follows the E is invertible and E�1 D B D e�1.I / is an elementary matrix. ut
We now have a useful result that will be used later.

Theorem 10. Let A by an n � n matrix. Then the following are equivalent:

1. A is invertible.
2. The null space of A, NS.A/, consists only of the zero vector.
3. A row reduces (by Gauss–Jordan) to the identity matrix.

Proof. Suppose A is invertible and c 2 NS.A/. Then Ac D 0. Multiply both sides
by A�1 to get

c D A�1Ac D A�10 D 0:

Thus, the null space of A consists only of the zero vector.
Suppose now that the null space of A is trivial. Then the system Ax D 0 is

equivalent to
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x1 D 0

x2 D 0

: : :

xn D 0

Thus, the augmented matrix ŒA j 0� reduces to ŒI j 0�. The same elementary row
operations row reduces A to the identity.

Now suppose A row reduces to the identity. Then there is a sequence of
elementary matrices, E1; : : : ; Ek , (corresponding to the elementary row operations)
such that E1 � � � EkA D I . Let B D E1 � � � Ek . Then BA D I and this implies A is
invertible. ut
Corollary 11. Suppose A is an n � n matrix. If the null space of A is not the zero
vector, then A row reduces to a matrix that has a zero row.

Proof. Suppose A transforms by elementary row operations to R which is in row
reduced echelon form. The system Ax D 0 has infinitely many solutions, and this
only occurs if there are one or more free variables in the system Rx D 0. The
number of leading variables which is the same as the number of nonzero rows is
thus less than n. Hence, there are some zero rows. ut

Inversion Computations

Let ei be the column vector with 1 in the i th position and 0’s elsewhere. By
Equation 8.1.(1), the equation AB D I implies that A Coli .B/ D Coli .I / D ei .
This means that the solution to Ax D ei is the i th column of the inverse of A, when
A is invertible. We can thus compute the inverse of A one column at a time using
the Gauss–Jordan elimination method on the augmented matrix ŒAjei �. Better yet,
though, is to perform the Gauss–Jordan elimination method on the matrix ŒAjI �,
that is, the matrix A augmented with I . If A is invertible, it will reduce to a matrix
of the form ŒI jB� and B will be A�1. If A is not invertible, it will not be possible to
produce the identity in the first slot.

We illustrate this in the following two examples.

Example 12. Determine whether the matrix

A D

2
664

2 0 3

0 1 1

3 �1 4

3
775

is invertible. If it is, compute the inverse.
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I Solution. We will augment A with I and follow the procedure outlined above:

2
664

2 0 3 1 0 0

0 1 1 0 1 0

3 �1 4 0 0 1

3
775

t1 3.�1/

p1 3

���!

2
664

1 �1 1 �1 0 1

0 1 1 0 1 0

2 0 3 1 0 0

3
775

t1 3.�2/

t2 3.�2/

���!
2
664

1 �1 1 �1 0 1

0 1 1 0 1 0

0 0 �1 3 �2 �2

3
775

m3.�1/

t3 2.�1/

t3 1.�1/

���!

2
664

1 �1 0 2 �2 �1

0 1 0 3 �1 �2

0 0 1 �3 2 2

3
775 t2 1.1/

��!

2
664

1 0 0 5 �3 �3

0 1 0 3 �1 �2

0 0 1 �3 2 2

3
775 :

It follows that A is invertible and A�1 D

2
664

5 �3 �3

3 �1 �2

�3 2 2

3
775 : J

Example 13. Let A D

2
664

1 �4 0

2 1 3

0 �7 3

3
775 : Determine whether A is invertible. If it is, find

its inverse.

I Solution. Again, we augment A with I and row reduce:

2
664

1 �4 0 1 0 0

2 1 3 0 1 0

0 9 3 0 0 1

3
775

t1 2.�2/

t2 3.�1/

���!

2
664

1 �4 0 1 0 0

0 9 3 �2 1 0

0 0 0 2 �1 1

3
775 :

We can stop at this point. Notice that the row operations produced a 0 row in the
reduction of A. This implies A cannot be invertible. J

Solving a System of Equations

Suppose A is a square matrix with a known inverse. Then the equation Ax D b
implies x D A�1Ax D A�1b and thus gives the solution.
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Example 14. Solve the following system:

2x C C 3z D 1

y C z D 2

3x � y C 4z D 3:

I Solution. The coefficient matrix is

A D

2
664

2 0 3

0 1 1

3 �1 4

3
775

whose inverse we computed in the example above:

A�1 D

2
664

5 �3 �3

3 �1 �2

�3 2 2

3
775 :

The solution to the system is thus

x D A�1b D

2
664

5 �3 �3

3 �1 �2

�3 2 2

3
775

2
664

1

2

3

3
775 D

2
664

�10

�5

7

3
775 : J
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Exercises

1–12. Determine whether the following matrices are invertible. If so, find the
inverse:

1.

"
1 1

3 4

#

2.

"
3 2

4 3

#

3.

"
1 �2

2 �4

#

4.

"
1 �2

3 �4

#

5.

2
664

1 2 4

0 1 �3

2 5 5

3
775

6.

2
664

1 1 1

0 1 2

0 0 1

3
775

7.

2
664

1 2 3

4 5 1

�1 �1 1

3
775

8.

2
664

1 0 �2

2 �2 0

1 2 �1

3
775

9.

2
66664

1 3 0 1

2 2 �2 0

1 �1 0 4

1 2 3 9

3
77775



602 8 Matrices

10.

2
66664

�1 1 1 �1

1 �1 1 �1

1 1 �1 �1

�1 �1 �1 1

3
77775

11.

2
66664

0 1 0 0

1 0 1 0

0 1 1 1

1 1 1 1

3
77775

12.

2
66664

�3 2 �8 2

0 2 �3 5

1 2 3 5

1 �1 1 �1

3
77775

13–18. Solve each system Ax D b, where A and b are given below, by first
computing A�1 and applying it to Ax D b to get x D A�1b:

13. A D
"

1 1

3 4

#
b D

"
2

3

#

14. A D

2
664

1 1 1

0 1 2

0 0 1

3
775 b D

2
664

1

0

�3

3
775

15. A D

2
664

1 0 �2

2 �2 0

1 2 �1

3
775 b D

2
664

�2

1

2

3
775

16. A D

2
664

1 �1 1

�2 5 �2

0 2 �1

3
775 b D

2
664

1

1

1

3
775

17. A D

2
66664

1 3 0 1

2 2 �2 0

1 �1 0 4

1 2 3 9

3
77775

b D

2
66664

1

0

�1

2

3
77775
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18. A D

2
66664

0 1 0 0

1 0 1 0

0 1 1 1

1 1 1 1

3
77775

b D

2
66664

1

�1

�2

1

3
77775

19. Suppose A is an invertible matrix. Show that At is invertible and give a formula
for the inverse.

20. Let E.�/ D
"

cos � sin �

� sin � cos �

#
. Show E.�/ is invertible and find its inverse.

21. Let F.�/ D
"

sinh � cosh �

cosh � sinh �

#
: Show F.�/ is invertible and find its inverse.

22. Suppose A is invertible and AB D AC . Show that B D C . Give an example
of a nonzero matrix A (not invertible) with AB D AC , for some B and C , but
B ¤ C .
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8.4 Determinants

In this section, we will discuss the definition of the determinant and some of its
properties. For our purposes, the determinant is a very useful number that we can
associate to a square matrix. The determinant has an wide range of applications.
It can be used to determine whether a matrix is invertible. Cramer’s rule gives the
unique solution to a system of linear equations as the quotient of determinants. In
multidimensional calculus, the Jacobian is given by a determinant and expresses
how area or volume changes under a transformation. Most students by now are

familiar with the definition of the determinant for a 2 � 2 matrix: Let A D
"

a b

c d

#
:

The determinant of A is given by

det.A/ D ad � bc:

It is the product of the diagonal entries minus the product of the off diagonal entries.

For example, det

"
1 3

5 �2

#
D 1 � .�2/ � 5 � 3 D �17:

The definition of the determinant for an n � n matrix is decidedly more
complicated. We will present an inductive definition. Let A be an n � n matrix and
let A.i; j / be the matrix obtained from A by deleting the i th row and j th column.
Since A.i; j / is an .n � 1/ � .n � 1/ matrix, we can inductively define the .i; j /

minor, Minori j .A/, to be the determinant of A.i; j /:

Minori j .A/ D det.A.i; j //:

The following theorem, whose proof we omit, is the basis for the definition of
the determinant.

Theorem 1 (Laplace Expansion Formulas). Suppose A is an n � n matrix. Then
the following numbers are all equal and we call this number the determinant of A:

det A D
nX

j D1

.�1/iCj ai;j Minori j .A/ for each i

and

det A D
nX

iD1

.�1/iCj ai;j Minori j .A/ for each j :

Any of these formulas can thus be taken as the definition of the determinant. In
the first formula, the index i is fixed and the sum is taken over all j . The entries ai;j

thus fill out the i th row. We therefore call this formula the Laplace expansion of
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the determinant along the ith row or simply a row expansion. Since the index i can
range from 1 to n, there are n row expansions. In a similar way, the second formula
is called the Laplace expansion of the determinant along the jth column or simply
a column expansion and there are n column expansions. The presence of the factor
.�1/iCj alternates the signs along the row or column according as i C j is even or
odd. The sign matrix 2

666664

C � C � � �
� C � � � �
C � C � � �

:::
:::

:::
: : :

3
777775

is a useful tool to organize the signs in an expansion.
It is common to use the absolute value sign jAj to denote the determinant of A.

This should not cause confusion unless A is a 1 � 1 matrix, in which case we will
not use this notation.

Example 2. Find the determinant of the matrix

A D

2
664

1 2 �2

3 �2 4

1 0 5

3
775 :

I Solution. For purposes of illustration, we compute the determinant in two ways.
First, we expand along the first row:

det A D 1 �
ˇ̌
ˇ̌
ˇ
�2 4

0 5

ˇ̌
ˇ̌
ˇ � 2

ˇ̌
ˇ̌
ˇ
3 4

1 5

ˇ̌
ˇ̌
ˇC .�2/

ˇ̌
ˇ̌
ˇ
3 �2

1 0

ˇ̌
ˇ̌
ˇ D 1 � .�10/ � 2 � .11/ � 2.2/ D �36:

Second, we expand along the second column:

det A D .�/2

ˇ̌
ˇ̌
ˇ
3 4

1 5

ˇ̌
ˇ̌
ˇC .�2/

ˇ̌
ˇ̌
ˇ
1 �2

1 5

ˇ̌
ˇ̌
ˇ .�/0

ˇ̌
ˇ̌
ˇ
1 �2

3 4

ˇ̌
ˇ̌
ˇ D .�2/ � 11 � 2 � .7/ D �36:

Of course, we get the same answer; that is what the theorem guarantees. Observe
though that the second column has a zero entry which means that we really only
needed to compute two minors. In practice, we usually try to use an expansion along
a row or column that has a lot of zeros. Also note that we use the sign matrix to adjust
the signs on the appropriate terms. J
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Properties of the Determinant

The determinant has many important properties. The three listed below show how
the elementary row operations affect the determinant. They are used extensively to
simplify many calculations.

Proposition 3. Let A be an n � n matrix. Then

1. det pi;j .A/ D � det A:

2. det mi.a/.A/ D a det A:

3. det ti;j .A/ D det A:

Proof. We illustrate the proof for the 2 � 2 case. Let A D
"

r s

t u

#
: We then have

1. jp1;2.A/j D
ˇ̌
ˇ̌
ˇ
t u

r s

ˇ̌
ˇ̌
ˇ D ts � ru D �jAj.

2. jm1.a/.A/j D
ˇ̌
ˇ̌
ˇ
ar as

t u

ˇ̌
ˇ̌
ˇ D aru � ast D ajAj.

3. jt1;2.a/.A/j D
ˇ̌
ˇ̌
ˇ

r s

t C ar u C as

ˇ̌
ˇ̌
ˇ D r.u C as/ � s.t C ar/ D ru � st D jAj: ut

Another way to express 2. is

20. If A0 D mi .a/A then det A D 1
a

det A0.

Corollary 4. Let E be an elementary matrix. Consider the three cases: If

1. E D pi j I , then det E D �1.
2. E D mi.a/I , then det E D a.
3. E D ti j I , then det E D 1.

Furthermore,
det EA D det E det A:

Proof. Let A D I in Proposition 3 to get the stated formulas for det E . Now let
A be an arbitrary square matrix. The statement det EA D det E det A is now just
a restatement of Proposition 3 and the fact that eA D EA for an elementary row
operation e and its associated elementary matrix E . ut

Further important properties include:

Proposition 5. 1. det A D det At .
2. If A has a zero row (or column), then det A D 0.
3. If A has two equal rows (or columns), then det A D 0.
4. If A is upper or lower triangular, then the determinant of A is the product of the

diagonal entries.
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Proof. 1. The transpose changes row expansions to column expansions and column
expansions to row expansions. By Theorem 1, they are all the same.

2. All coefficients of the minors in an expansion along a zero row (column) are zero
so the determinant is zero.

3. If the i th and j th rows are equal, then det A D det.pi;j A/ D � det A and this
implies det A D 0. If A has two equal columns, then At has two equal rows.
Thus, det A D det At D 0.

4. Suppose A is upper triangular. Expansion along the first column gives
a11Minor11.A/. But Minor11.A/ is an upper triangular matrix of size one less
than A. By induction, det A is the product of the diagonal entries. Since the
transpose changes lower triangular matrices to upper triangular matrices, we get
that the determinant of a lower triangular matrix is likewise the product of the
diagonal entries. ut

Example 6. Use elementary row operations to find det A if

.1/ A D

2
664

2 4 2

�1 3 5

0 1 1

3
775 and .2/ A D

2
66664

1 0 5 1

�1 2 1 3

2 2 16 6

3 1 0 1

3
77775

:

I Solution. Again we will write the elementary row operation that we have used
above the equal sign.

.1/

ˇ̌
ˇ̌
ˇ̌
ˇ̌

2 4 2

�1 3 5

0 1 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

m1. 1
2 /

D
2

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 2 1

�1 3 5

0 1 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

t12.1/

D
2

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 2 1

0 5 6

0 1 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

p23

D �2

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 2 1

0 1 1

0 5 6

ˇ̌
ˇ̌
ˇ̌
ˇ̌

t23.�5/

D �2

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 2 1

0 1 1

0 0 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ D �2

For the first equality, we have used (30) above, and in the last equality, we have
used the fact that the last matrix is upper triangular and its determinant is the product
of the diagonal entries:



8.4 Determinants 609

.2/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 0 5 1

�1 2 1 3

2 2 16 6

3 1 0 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

t12.1/

t13.�2/

t14.�3/

D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 0 5 1

0 2 6 4

0 2 6 4

0 1 �15 �2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

D 0;

with the last equality because two rows are equal. J
In the following example, we use elementary row operations to zero out entries

in a column and then use a Laplace expansion formula.

Example 7. Find the determinant of

A D

2
66664

1 4 2 �1

2 2 3 0

�1 1 2 4

0 1 3 2

3
77775

:

I Solution.

det.A/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 4 2 �1

2 2 3 0

�1 1 2 4

0 1 3 2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

t1;2.�2/

t1;3.1/

D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 4 2 �1

0 �6 �1 2

0 5 4 3

0 1 3 2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

�6 �1 2

5 4 3

1 3 2

ˇ̌
ˇ̌
ˇ̌
ˇ̌

t3;1.6/

t3;2.�5/

D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

0 17 14

0 �11 �7

1 3 2

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
ˇ

17 14

�11 �7

ˇ̌
ˇ̌
ˇ D �119 C 154 D 35; J

The following two theorems state very important properties about the
determinant.

Theorem 8. A square matrix A is invertible if and only if det A ¤ 0.

Proof. Apply Gauss–Jordan to A to get R, a matrix in row reduce echelon form.
There is a sequence of elementary row operations e1; : : : ; ek such that

e1 � � � ekA D R:
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Let Ei D ei I , i D 1; : : : ; k be the corresponding elementary matrices. Then

E1 � � � EkA D R:

By repeatedly using Corollary 4, we get

det E1 det E2 � � � det Ek det A D det R:

Now suppose A is invertible. By Theorem 10 of Sect. 8.3, R D I . Since each factor
det Ei ¤ 0 by Corollary 4, it follows that det A ¤ 0. On the other hand, if A is not
invertible, then R has a zero row by Theorem 10 of Sect. 8.3 and Corollary 11 of
Sect. 8.3. By Proposition 5, we have det R D 0. Since each factor Ei has a nonzero
determinant, it follows that det A D 0. ut
Theorem 9. If A and B are square matrices of the same size, then

det.AB/ D det A det B:

Proof. We consider two cases.

1. Suppose A is invertible. Then there is a sequence of elementary matrices such
that A D E1 � � � Ek . Now repeatedly use Corollary 4 to get

det AB D det E1 � � � EkB D det E1 � � � det Ek det B D det A det B:

2. Now suppose A is not invertible. Then AB is not invertible for otherwise there
would be a C such that .AB/C D I . But by associativity of the product, we
have A.BC / D I , and this implies A is invertible (with inverse BC ). Now by
Theorem 8, we have det AB D 0 and det A D 0 and the result follows. ut

The Cofactor and Adjoint Matrices

Again, let A be a square matrix. We define the cofactor matrix, Cof.A/, of A to
be the matrix whose .i; j /-entry is .�1/iCj Minori;j . We define the adjoint matrix,
Adj.A/, of A by the formula Adj.A/ D .Cof.A//t : The important role of the adjoint
matrix is seen in the following theorem and its corollary.

Theorem 10. For A a square matrix, we have

A Adj.A/ D Adj.A/ A D det.A/I:

Proof. The .i; j / entry of A Adj.A/ is

nX
kD0

Ai k.Adj.A//k j D
nX

kD0

.�1/kCj Ai kMinorj k.A/:
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When i D j , this is a Laplace expansion formula and is hence det A by Theorem
1. When i ¤ j , this is the expansion of a determinant for a matrix with two equal
rows and hence is zero by Proposition 5. ut

The following corollary immediately follows.

Corollary 11 (The Adjoint Inversion Formula). If det A ¤ 0, then

A�1 D 1

det A
Adj.A/:

The inverse of a 2�2 matrix is a simple matter: Let A D
"

a b

c d

#
: Then Adj.A/ D

"
d �b

�c a

#
and if det.A/ D ad � bd ¤ 0, then

A�1 D 1

ad � bc

"
d �b

�c a

#
: (1)

For an example, suppose A D
"

1 �3

�2 1

#
: Then det.A/ D 1 � .6/ D �5 ¤ 0 so A

is invertible and A�1 D �1
5

"
1 3

2 1

#
D
"�1

5
�3
5

�2
5

�1
5

#
:

The general formula for the inverse of a 3 � 3 is substantially more complicated
and difficult to remember. Consider though an example.

Example 12. Let

A D

2
664

1 2 0

1 4 1

�1 0 3

3
775 :

Find its inverse if it is invertible.

I Solution. We expand along the first row to compute the determinant and get

det.A/ D 1 det

"
4 1

0 3

#
� 2 det

"
1 1

�1 3

#
D 1.12/ � 2.4/ D 4: Thus, A is invertible.
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The cofactor of A is Cof.A/ D

2
664

12 �4 4

�6 3 �2

2 �1 2

3
775 and Adj.A/ D Cof.A/t D

2
664

12 �6 2

�4 3 �1

4 �2 2

3
775 : The inverse of A is thus

A�1 D 1

4

2
664

12 �6 2

�4 3 �1

4 �2 2

3
775 D

2
664

3 �3
2

1
2

�1 3
4

�1
4

1 �1
2

1
2

3
775 : J

In our next example, we will consider a matrix with entries in R D RŒs�. Such
matrices will arise naturally in Chap. 9.

Example 13. Let

A D

2
664

1 2 1

0 1 3

1 1 2

3
775 :

Find the inverse of the matrix

sI � A D

2
664

s � 1 �2 �1

0 s � 1 �3

�1 �1 s � 2

3
775 :

I Solution. A straightforward computation gives

det.sI � A/ D .s � 4/.s2 C 1/:

The matrix of minors for sI � A is
2
664

.s � 1/.s � 2/ � 3 �3 s � 1

�2.s � 2/ � 1 .s � 1/.s � 2/ � 1 �.s � 1/ � 2

6 C .s � 1/ �3.s � 1/ .s � 1/2

3
775 :
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After simplifying, we obtain the cofactor matrix

2
664

s2 � 3s � 1 3 s � 1

2s � 3 s2 � 3s C 1 s C 1

s C 5 3s � 3 .s � 1/2

3
775 :

The adjoint matrix is
2
664

s2 � 3s � 1 2s � 3 s C 5

3 s2 � 3s C 1 3s � 3

s � 1 s C 1 .s � 1/2

3
775 :

Finally, we obtain the inverse:

.sI � A/�1 D

2
664

s2�3s�1
.s�4/.s2C1/

2s�3
.s�4/.s2C1/

sC5
.s�4/.s2C1/

3
.s�4/.s2C1/

s2�3sC1
.s�4/.s2C1/

3s�3
.s�4/.s2C1/

s�1
.s�4/.s2C1/

sC1
.s�4/.s2C1/

.s�1/2

.s�4/.s2C1/

3
775 : J

Cramer’s Rule

We finally consider a well-known theoretical tool used to solve a system Ax D b
when A is invertible. Let A.i; b/ denote the matrix obtained by replacing the i th
column of A with the column vector b. We then have the following theorem:

Theorem 14. Suppose det A ¤ 0: Then the solution to Ax D b is given coordinate-
wise by the formula

xi D det A.i; b/

det A
:

Proof. Since A is invertible, we have

xi D .A�1b/i D
nX

kD1

.A�1/i kbk

D 1

det A

nX
kD1

.�1/iCkMinork i .A/bk

D 1

det.A/

nX
kD1

.�1/iCkbkMinork i .A/ D det A.i; b/

det A
: ut
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The following example should convince you that Cramer’s rule is mainly a
theoretical tool and not a practical one for solving a system of linear equations.
The Gauss–Jordan elimination method is usually far more efficient than computing
n C 1 determinants for a system Ax D b, where A is n � n.

Example 15. Solve the following system of linear equations using Cramer’s rule:

x C y C z D 0

2x C 3y � z D 11

x C z D �2

I Solution. We have

det A D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 1 1

2 3 �1

1 0 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D �3;

det A.1; b/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

0 1 1

11 3 �1

�2 0 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D �3;

det A.2; b/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 0 1

2 11 �1

1 �2 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D �6;

and det A.3; b/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 1 0

2 3 11

1 0 �2

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D 9;

where b D

2
664

0

11

�2

3
775. Since det A ¤ 0, Cramer’s rule gives

x1 D det A.1; b/

det A
D �3

�3
D 1;

x2 D det A.2; b/

det A
D �6

�3
D 2;

and

x3 D det A.3; b/

det A
D 9

�3
D �3: J
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Exercises

1–9. Find the determinant of each matrix given below in three ways: a row
expansion, a column expansion, and using row operations to reduce to a triangular
matrix.

1.

"
1 4

2 9

#

2.

"
1 1

4 4

#

3.

"
3 4

2 6

#

4.

2
664

1 1 �1

1 4 0

2 3 1

3
775

5.

2
664

4 0 3

8 1 7

3 4 1

3
775

6.

2
664

3 98 100

0 2 99

0 0 1

3
775

7.

2
66664

0 1 �2 4

2 3 9 2

1 4 8 3

�2 3 �2 4

3
77775

8.

2
66664

�4 9 �4 1

2 3 0 �4

�2 3 5 �6

�3 2 0 1

3
77775
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9.

2
66664

2 4 2 3

1 2 1 4

4 8 4 6

1 9 11 13

3
77775

10–15. Find the inverse of .sI � A/ and determine for which values of s det.sI �
A/ D 0:

10.

"
1 2

1 2

#

11.

"
3 1

1 3

#

12.

"
1 1

�1 1

#

13.

2
664

1 0 1

0 1 0

0 3 1

3
775

14.

2
664

1 �3 3

�3 1 3

3 �3 1

3
775

15.

2
664

0 4 0

�1 0 0

1 4 �1

3
775

16–24. Use the adjoint formula for the inverse for the matrices given below.

16.

"
1 4

2 9

#

17.

"
1 1

4 4

#

18.

"
3 4

2 6

#
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19.

2
664

1 1 �1

1 4 0

2 3 1

3
775

20.

2
664

4 0 3

8 1 7

3 4 1

3
775

21.

2
664

3 98 100

0 2 99

0 0 1

3
775

22.

2
66664

0 1 �2 4

2 3 9 2

1 4 8 3

�2 3 �2 4

3
77775

23.

2
66664

�4 9 �4 1

2 3 0 �4

�2 3 5 �6

�3 2 0 1

3
77775

24.

2
66664

2 4 2 3

1 2 1 4

4 8 4 6

1 9 11 13

3
77775

25–28. Use Cramer’s rule to solve the system Ax D b for the given matrices A

and b.

25. A D
"

1 1

3 4

#
b D

"
2

3

#

26. A D

2
664

1 1 1

0 1 2

0 0 1

3
775 b D

2
664

1

0

�3

3
775
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27. A D

2
664

1 0 �2

2 �2 0

1 2 �1

3
775 b D

2
664

�2

1

2

3
775

28. A D

2
66664

1 3 0 1

2 2 �2 0

1 �1 0 4

1 2 3 9

3
77775

b D

2
66664

1

0

�1

2

3
77775
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8.5 Eigenvectors and Eigenvalues

Suppose A is a square n � n matrix. Again, it is convenient to think of Rn as the set
of column vectors Mn;1.R/. If v 2 R

n, then A transforms v to a new vector Av as
seen below.

As illustrated, A rotates and compresses (or stretches) a given vector v. However, if
a vector v points in the right direction, then A acts in a much simpler manner.

We say that s is an eigenvalue of A if there is a nonzero vector v in R
n such that

Av D sv: (1)

The vector v is called an eigenvector1 associated to s. The pair .s; v/ is called an
eigenpair. One should think of eigenvectors as the directions for which A acts by
stretching or compressing vectors by the length determined by the eigenvalue s: if
s > 1, the eigenvector is stretched; if 0 < s < 1, then the eigenvector is compressed;
if s < 0, the direction of the eigenvector is reversed; and if s D 0, the eigenvector is
in the null space of A. See the illustration below.

v

Av

s > 1

Av

v

0 < s < 1

Av

v

s = 0

Av

v

−1 < s < 0

Av

v

s < −1

This notion is very important and has broad applications in mathematics, computer
science, physics, engineering, and economics. For example, the Google page rank
algorithm is based on this concept.

1Eigenvectors and eigenvalues are also called characteristic vectors and characteristic values,
respectively.
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In this section, we discuss how to find the eigenpairs for a given matrix A. We
begin with a simple example.

Example 1. Suppose A D
"

�3 1

�4 2

#
: Let

v1 D
"

2

8

#
; v2 D

"
1

1

#
; v3 D

"
1

�1

#
; and v4 D

"
0

0

#
:

Show that v1 and v2 are eigenvectors for A. What are the associated eigenvalues?
Show that v3 and v4 are not eigenvectors.

I Solution. We simply observe that

1.

Av1 D
"

�3 1

�4 2

#"
2

8

#
D
"

2

8

#
D 1

"
2

8

#
:

Thus, v1 an eigenvector with eigenvalue 1.

2.

Av2 D
"

�3 1

�4 2

#"
1

1

#
D
"

�2

�2

#
D �2

"
1

1

#
:

Thus, v2 an eigenvector with eigenvalue �2.

3.

Av3 D
"

�3 1

�4 2

#"
1

�1

#
D
"

�4

�6

#
:

We see that Av3 is not a multiple of v3. It is not an eigenvector.
4. Eigenvectors must be nonzero so v4 is not an eigenvector. J

To find the eigenvectors and eigenvalues for A, we analyze (1) a little closer. Let
us rewrite it as sv � Av D 0. By inserting the identity matrix, we get sI v � Av D 0,
and by the distributive property, we see (1) is equivalent to

.sI � A/v D 0: (2)

Said another way, a nonzero vector v is an eigenvector for A if and only if it is in
the null space of sI � A for an eigenvalue s. Let Es be the null space of sI � A; it
is called the eigenspace for A with eigenvalue s. So once an eigenvalue is known,
the corresponding eigenspaces are easily computed. How does one determine the
eigenvalues? By Theorems 10 of Sect. 8.3 and 8 of Sect. 8.4, s is an eigenvalue if
and only if

det.sI � A/ D 0: (3)
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As a function of s, we let cA.s/ D det.sI � A/; it is called the characteristic
polynomial ofA, for it is a polynomial of degree n (assuming A is an n � n

matrix). The matrix sI � A is called the characteristic matrix, and (3) is called
the characteristic equation. By solving the characteristic equation, we determine
the eigenvalues.

Example 2. Determine the characteristic polynomial, cA.s/, for

A D
"

�3 1

�4 2

#
;

as given in Example 1. Find the eigenvalues and corresponding eigenspaces.

I Solution. The characteristic matrix is

sI � A D
"

s C 3 �1

4 s � 2

#
;

and the characteristic polynomial is given as follows:

cA.s/ D det.sI � A/ D det

"
s C 3 �1

4 s � 2

#

D .s C 3/.s � 2/ C 4 D s2 C s � 2 D .s C 2/.s � 1/:

The characteristic equation is .s C2/.s � 1/ D 0, and hence, the eigenvalues are �2

and 1. The eigenspaces, Es , are computed as follows:

E�2: We let s D �2 in the characteristic matrix and row reduce the corresponding
augmented matrix Œ�2I � Aj0� to get the null space of �2I � A. We get

"
1 �1 0

4 �4 0

#
t1 2.�4/

���!

"
1 �1 0

0 0 0

#
:

If x and y are the variables, then y is a free variable. Let y D ˛. Then x D y D ˛.
From this, we see that

E�2 D Span

("
1

1

#)
:

E1: We let s D 1 in the characteristic matrix and row reduce the corresponding
augmented matrix Œ1I � Aj0� to get the null space of 1I � A. We get
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"
4 �1 0

4 �1 0

#
m1.1=4/

���!

"
1 �1=4 0

4 �1 0

#
t1 2.�4/

���!

"
1 �1=4 0

0 0 0

#
:

Again y D ˛ is the free variable and x D 1
4
˛. It follows that the null space of

1I � A is all multiples of the vector

"
1=4

1

#
. Since we are considering all multiples

of a vector, we can clear the fraction (by multiplying by 4) and write

E1 D Span

("
1

4

#)
:

We will routinely do this. J

Remark 3. In Example 1, we found that the vector v1 D
"

2

8

#
was an eigenvector

with eigenvalue 1. We observe that v1 D 2

"
1

4

#
2 E1. In like manner, v2 D

"
1

1

#
2

E�2.

Example 4. Determine the characteristic polynomial for

A D

2
664

3 �1 1

3 �1 3

1 �1 3

3
775 :

Find the eigenvalues and corresponding eigenspaces.

I Solution. The characteristic matrix is

sI � A D

2
664

�3 1 �1

�3 s C 1 �3

�1 1 s � 3

3
775 ;

and the characteristic polynomial is calculated by expanding along the first row as
follows:

cA.s/ D det.sI � A/ D det

2
664

s � 3 1 �1

�3 s C 1 �3

�1 1 s � 3

3
775

D .s � 3/..s C 1/.s � 3/ C 3/ � .�3.s � 3/ � 3/ � .�3 C s C 1/
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D s3 � 5s2 C 8s � 4 D .s � 1/.s � 2/2:

It follows that the eigenvalues are 1 and 2. The eigenspaces, Es , are computed as
follows:

E1: We let s D 1 in the characteristic matrix and row reduce the corresponding
augmented matrix ŒI � Aj0�. We forego the details but we get

2
664

1 0 �1 0

0 1 �3 0

0 0 0 0

3
775 :

If x, y, and z are the variables, then z is the free variable. Let z D ˛. Then x D ˛,
y D 3˛, and z D ˛. From this, we see that

E1 D Span

8̂
<̂
ˆ̂:

2
664

1

3

1

3
775

9>>=
>>;

:

E2: We let s D 2 in the characteristic matrix and row reduce the corresponding
augmented matrix Œ2I � Aj0� to get

2
664

1 �1 1 0

0 0 0 0

0 0 0 0

3
775 :

Here we see that y D ˛ and z D ˇ are free variable and x D ˛ � ˇ. It follows that
the null space of 2I � A is

E2 D Span

8̂
<̂
ˆ̂:

2
664

1

1

0

3
775 ;

2
664

�1

0

1

3
775

9>>=
>>;

: J

For a diagonal matrix, the eigenpairs are simple to find. Let

A D diag.a1; : : : ; an/ D

2
666664

a1 0 � � � 0

0 a2 0
:::

: : : 0

0 0 � � � an

3
777775

:
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Let ei be the column vector in R
n with 1 in the i th position and zeros elsewhere; ei

is the i th column of the identity matrix In. A simple calculation gives

Aei D ai ei :

Thus, for a diagonal matrix, the eigenvalues are the diagonal entries and the
eigenvectors are the coordinate axes in R

n. In other words, the coordinate axes point
in the directions for which A scales vectors.

If A is a real matrix, then it can happen that the characteristic polynomial have
complex roots. In this case, we view A a complex matrix and make all computation
over the complex numbers. If Cn denotes the n � 1 column vectors with entries in
C, then we view A as transforming vectors v 2 C

n to vectors Av 2 C
n.

Example 5. Determine the characteristic polynomial for

A D
"

2 �5

1 �2

#
:

Find the eigenvalues and corresponding eigenspaces.

I Solution. The characteristic matrix is

sI � A D
"

s � 2 5

�1 s C 2

#
;

and the characteristic polynomial is given as follows:

cA.s/ D det.sI � A/ D det

"
s � 2 5

�1 s C 2

#

D .s � 2/.s C 2/ C 5 D s2 C 1:

The eigenvalues are ˙i . The eigenspaces, Es , are computed as follows:

Ei : We let s D i in the characteristic matrix and row reduce the corresponding
augmented matrix ŒiI � Aj0�. We get

"
i � 2 5 0

�1 i C 2 0

#
p1 2

m1.�1/

���!

"
1 �i � 2 0

i � 2 5 0

#

t1 2.�.i�2//

������!

"
1 �i � 2 0

0 0 0

#
:

If x and y are the variables, then y is a free variable. Let y D ˛. Then x D ˛.i C2/.
From this, we see that
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Ei D Span

("
i C 2

1

#)
:

E�i : We let s D �i in the characteristic matrix and row reduce the corresponding
augmented matrix Œ�iI � Aj0�. We get

"
�i � 2 5 0

�1 �i C 2 0

#
p1 2

m1.�1/

���!

"
1 i � 2 0

�i � 2 5 0

#

t1 2.iC2/

����!

"
1 i � 2 0

0 0 0

#
:

Again y D ˛ is the free variable and x D .2 � i/˛. It follows that

E�i D Span

("
2 � i

1

#)
: J

Remark 6. It should be noted in this example that the eigenvalues and eigenvectors
are complex conjugate of one another. In other words, if s D i is an eigenvalue,

then s D �i is another eigenvalue. Further, if v D ˛

"
i C 2

1

#
is an eigenvector with

eigenvalue i , then v D ˛

"
�i C 2

1

#
is an eigenvector with eigenvalue i D �i and

vice versa. The following theorem shows that this happens in general as long as A is
a real matrix. Thus, E�i may be computed by simply taking the complex conjugate
of Ei .

Theorem 7. Suppose A is a real n � n matrix with a complex eigenvalue s. Then s

is an eigenvalue and

Es D Es:

Proof. Suppose s is a complex eigenvalue and v 2 Es is a corresponding
eigenvector. Then Av D sv. Taking complex conjugates and keeping in mind that
A D A since A is real, we get Av D Av D sv D s v. It follows that v 2 Es and
Es � Es . This argument is symmetric so Es � Es . These two statements imply
Es D Es . ut
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Exercises

1–7. For each of the following matrices A determine the characteristic polynomial,
the eigenvalues, and the eigenspaces.

1. A D
"

2 0

�1 1

#

2. A D
"

�6 �5

7 6

#

3. A D
"

0 �1

1 2

#

4. A D
"

7 4

�16 �9

#

5. A D
"

9 12

�8 �11

#

6. A D
"

1 �2

2 1

#

7. A D
"

20 �15

30 �22

#

8–13. For the following problems, A and its characteristic polynomial are given.
Find the eigenspaces for each eigenvalue.

8. A D

2
664

3 �2 2

9 �7 9

5 �4 6

3
775, cA.s/ D .s C 1/.s � 1/.s � 2/

9. A D

2
664

8 �5 5

0 �2 0

�10 5 �7

3
775, cA.s/ D .s C 2/2.s � 3/

10. A D

2
664

1 1 �1

0 �1 4

0 �2 5

3
775, cA.s/ D .s � 1/2.s � 3/



628 8 Matrices

11. A D

2
664

2 0 0

2 �3 6

1 �3 6

3
775, cA.s/ D s.s � 2/.s � 3/

12. A D

2
664

�6 11 �16

4 �4 8

7 �10 16

3
775, cA.s/ D .s � 2/3

13. A D

2
664

�8 13 �19

8 �8 14

11 �14 22

3
775, cA.s/ D .s � 2/.s2 � 4s C 5/



Chapter 9
Linear Systems of Differential Equations

9.1 Introduction

In previous chapters, we have discussed ordinary differential equations in a single
unknown function, y.t/. These are adequate to model real-world systems as they
evolve in time, provided that only one state, that is, the number y.t/, is needed
to describe the system. For instance, we might be interested in the temperature
of an object, the concentration of a pollutant in a lake, or the displacement of a
weight attached to a spring. In each of these cases, the system we wish to describe
is adequately represented by a single function of time. However, a single ordinary
differential equation is inadequate for describing the evolution over time of a system
with interdependent subsystems, each with its own state. Consider such an example.

Example 1. Two tanks are interconnected as illustrated below.

Tank1 Tank2

1 gal/min

4 gal/min

3 gal/min

3 gal/min
→

→

→

→

Assume that Tank 1 contains 10 gallons of brine in which 2 pounds of salt are
initially dissolved and Tank 2 initially contains 10 gallons of pure water. Moreover,
the mixtures are pumped between the two tanks, 4 gal/min from Tank 1 to Tank

W.A. Adkins and M.G. Davidson, Ordinary Differential Equations,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-3618-8 9,
© Springer Science+Business Media New York 2012

629
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2 and 1 gal/min going from Tank 2 back to Tank 1. Assume that a brine mixture
containing 1 lb salt/gal enters Tank 1 at a rate of 3 gal/min, and the well-stirred
mixture is removed from Tank 2 at the same rate of 3 gal/min. Let y1.t/ be the
amount of salt in Tank 1 at time t and let y2.t/ be the amount of salt in Tank 2 at
time t . Determine how y1 and y2 and their derivatives are related.

I Solution. The underlying principle is the same as that of the single tank mixing
problem. Namely, we apply the balance equation

y0.t/ D input rate � output rate

to the amount of salt in each tank. If y1.t/ denotes the amount of salt at time t in
Tank 1, then the concentration of salt at time t in Tank 1 is c1.t/ D .y1.t/=10/

lb/gal. Similarly, the concentration of salt in Tank 2 at time t is c2.t/ D .y2.t/=10/

lb/gal. The input and output rates are determined by the product of the concentration
and the flow rate of the fluid at time t . The relevant rates of change are summarized
in the following table.

From To Rate

Outside Tank 1 (1 lb/gal) � (3 gal/min) D 3 lb/min

Tank 1 Tank2
y1.t/

10
lb/gal � 4 gal/min D 4y1.t/

10
lb/min

Tank 2 Tank 1
y2.t/

10
lb/gal � 1 gal/min D y2.t/

10
lb/min

Tank 2 Outside
y2.t/

10
lb/gal � 3 gal/min D 3y2.t/

10
lb/min

The data for the balance equations can then be read from the following table:

Tank Input rate Output rate

1 3 C y2.t/

10

4y1.t/

10

2
4y1.t/

10

4y2.t/

10

Putting these data in the balance equations then gives

y0
1.t/ D � 4

10
y1.t/ C 1

10
y2.t/ C 3;

y0
2.t/ D 4

10
y1.t/ � 4

10
y2.t/:

These equations thus describe the relationship between y1 and y2 and their
derivatives. We observe also that the statement of the problem includes initial
conditions, namely, y1.0/ D 2 and y2.0/ D 0. J
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These two equations together comprise an example of a (constant coefficient)
linear system of ordinary differential equations. Notice that two states are involved:
the amount of salt in each tank, y1.t/ and y2.t/. Notice also that y0

1 depends not
only on y1 but also y2 and likewise for y0

2. When such occurs, we say that y1 and
y2 are coupled. In order to find one, we need the other. This chapter is devoted to
developing theory and solution methods for such equations. Before we discuss such
methods, let us lay down the salient definitions, notation, and basic facts.
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9.2 Linear Systems of Differential Equations

A system of equations of the form

y0
1.t/ D a11.t/y1.t/ C � � � C a1n.t/yn.t/ C f1.t/

y0
2.t/ D a21.t/y1.t/ C � � � C a2n.t/yn.t/ C f2.t/

:::

y0
n.t/ D an1.t/y1.t/ C � � � C ann.t/yn.t/ C fn.t/;

(1)

where aij .t/ and fi .t/ are functions defined on some common interval, is called
a first order linear system of ordinary differential equations or just linear
differential system, for short. If

y.t/ D

2
64

y1.t/
:::

yn.t/

3
75 ; A.t/ D

2
64

a11.t/ � � � a1n.t/
:::

: : :
:::

an1.t/ � � � ann.t/

3
75 ; and f .t/ D

2
64

f1.t/
:::

fn.t/

3
75

then (1) can be written more succinctly in matrix form as

y 0.t/ D A.t/y.t/ C f .t/: (2)

If A.t/ D A is a matrix of constants, the linear differential system is said to
be constant coefficient. A linear differential system is homogeneous if f D 0;
otherwise it is nonhomogeneous. The homogeneous linear differential system
obtained from (2) (equivalently (1)) by setting f D 0 (equivalently setting each
fi .t/ D 0), namely,

y 0 D A.t/y ; (3)

is known as the associated homogeneous equation for the system (2).
As was the case for a single differential equation, it is conventional to suppress

the independent variable t in the unknown functions yi .t/ and their derivatives y0
i .t/.

Thus, (1) and (2) would normally be written as

y0
1 D a11.t/y1 C � � � C a1n.t/yn C f1.t/

y0
2 D a21.t/y1 C � � � C a2n.t/yn C f2.t/

:::

y0
n D an1.t/y1 C � � � C ann.t/yn C fn.t/;

(4)

and
y 0 D A.t/y C f .t/; (5)

respectively.
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Example 1. For each of the following systems, determine which is a linear
differential system. If it is, write it in matrix form and determine whether it is
homogeneous and whether it is constant coefficient:

1.
y0

1 D .1 � t/y1 C et y2 C .sin t/y3 C 1

y0
2 D 3y1 C ty2 C .cos t/y3 C te2t

y0
3 D y3

2.
y0

1 D ay1 � by1y2

y0
2 D �cy1 C dy1y2

3.

y0
1 D � 4

10
y1 C 1

10
y2 C 3

y0
2 D 4

10
y1 � 4

10
y2

I Solution. 1. This is a linear differential system with

A.t/ D
2
4

1 � t et sin t

3 t cos t

0 0 1

3
5 and f .t/ D

2
4

1

te2t

0

3
5 :

Since f ¤ 0, this system is nonhomogeneous, and since A.t/ is not a constant
function, this system is not a constant coefficient linear differential system.

2. This system is not a linear differential system because of the presence of the
products y1y2.

3. This is a linear differential system with

A.t/ D A D
"� 4

10
1
10

4
10

� 4
10

#
and f D

"
3

0

#
:

It is constant coefficient but nonhomogeneous. This is the linear differential
system we introduced in Example 1 of Sect. 9.1. J

If all the entry functions of A.t/ and f .t/ are defined on a common interval, I ,
then a vector function y , defined on I , that satisfies (2) (or, equivalently, (1)) is a
solution. A solution of the associated homogeneous equation y 0 D A.t/y of (2)
is referred to as a homogeneous solution to (2). Note that a homogeneous solution
to (2) is not a solution of the given equationy 0 D A.t/yCf .t/, but rather a solution
of the related equation y 0 D A.t/y .

Example 2. Consider the following first order system of ordinary differential
equations:

y0
1 D 3y1 � y2

y0
2 D 4y1 � 2y2: (6)
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Let

y.t/ D
�

e2t

e2t

�
and z.t/ D

�
e�t

4e�t

�
:

Show that y.t/, z.t/, and w.t/ D c1y.t/ C c2z.t/, where c1 and c2 are scalars, are
solutions to (6).

I Solution. Let A D
�
3 �1

4 �2

�
. Then (6) can be written

y 0 D Ay:

This system is a constant coefficient homogeneous linear differential system. For

y.t/ D
�

e2t

e2t

�
, we have on the one hand

y 0.t/ D
�
2e2t

2e2t

�

and on the other hand,

Ay.t/ D
�
3 �1

4 �2

� �
e2t

e2t

�
D
�

3e2t � e2t

4e2t � 2e2t

�
D
�
2e2t

2e2t

�
:

It follows that y 0 D Ay, and hence, y is a solution.

For z.t/ D
�

e�t

4e�t

�
, we have on the one hand

z0.t/ D
� �e�t

�4e�t

�

and on the other hand,

Az.t/ D
�
3 �1

4 �2

� �
e�t

4e�t

�
D
�
3e�t � 4e�t

4e�t � 8e�t

�
D
� �e�t

�4e�t

�
:

Again, it follows that z is a solution.
Suppose c1 and c2 are any constants and w.t/ D c1y.t/ C c2z.t/. Since

differentiation is linear, we have w0.t/ D c1y
0.t/ C c2z0.t/. Since matrix

multiplication is linear, we have

Aw.t/ D c1Ay.t/ C c2Az.t/ D c1y
0.t/ C c2z0.t/ D w0.t/:

It follows that w.t/ is a solution. J
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Example 3. Consider the following first order system of ordinary differential
equations:

y0
1 D 3y1 � y2 C 2t

y0
2 D 4y1 � 2y2 C 2: (7)

1. Verify that yp.t/ D
��2t C 1

�4t C 5

�
is a solution of (7).

2. Verify that zp.t/ D 2yp.t/ D
� �4t C 2

�8t C 10

�
is not a solution to (7).

3. Verify that yg.t/ D w.t/ C yp.t/ is a solution of (7), where w.t/ is the general
solution of (6) from the previous example.

I Solution. We begin by writing (7) in matrix form as:

y 0 D Ay C f ;

where A D
�
3 �1

4 �2

�
and f D

�
2t

2

�
. Note that the associated homogeneous linear

differential system, that is, the equation y 0 D Ay obtained by setting f D 0, is the
system from the previous example.

1. On the one hand,

y 0
p.t/ D

��2

�4

�
;

and on the other hand,

AypCf D
�
3 �1

4 �2

� ��2t C 1

�4t C 5

�
C
�
2t

2

�
D
�

3.�2t C 1/ � .�4t C 5/ C 2t

4.�2t C 1/ � 2.�4t C 5/ C 2

�

D
��2

�4

�
:

Since y 0
p D Ayp C f , it follows that yp is a solution to (7).

2. On the one hand,

z0
p D

��4

�8

�
;

and on the other hand,

Azp C f D
�
3 �1

4 �2

� � �4t C 2

�8t C 10

�
C
�
2t

2

�



9.2 Linear Systems of Differential Equations 637

D
�

3.�4t C 2/ � .�8t C 10/ C 2t

4.�4t C 2/ � 2.�8t C 10/ C 2

�

D
��2t � 4

�10

�
:

Since z0
p ¤ Azp C f , zp is not a solution.

3. Since y 0 D Ay is the homogeneous linear differential system associated to (7),
we know from the previous example that w is a solution to the homogeneous
equation y 0 D Ay. Since differentiation is linear, we have

y 0
g D w0 C y 0

p

D Aw C Ayp C f

D A.w C yp/ C f

D Ayg C f :

It follows that yg is a solution to (7). J

These two examples illustrate the power of linearity, a concept that we have
repeatedly encountered, and are suggestive of the following general statement.

Theorem 4. Consider the linear differential system

y 0 D A.t/y C f .t/: (8)

1. If y1 and y2 are solutions to the associated homogeneous linear differential
system

y 0 D A.t/y ; (9)

and c1 and c2 are constants, then c1y1 C c2y2 is also a solution to (9).
2. If yp is a fixed particular solution to (8) and yh is any homogeneous solution

(i.e., any solution to (9)), then
yh C yp

is also a solution to (8) and all solutions to (8) are of this form.

Proof. Let L D D � A.t/ be the operator on vector-valued functions given by

Ly D .D � A.t//y D y 0 � A.t/y :

Then L is linear since differentiation and matrix multiplication are linear. The rest
of the proof follows the same line of argument given in the proof of Theorem 6 of
Sect. 3.1. ut

Linear differential systems also satisfy the superposition principle, an analogue
to Theorem 8 of Sect. 3.4.
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Theorem 5. Suppose yp1
is a solution to y 0 D A.t/yCf 1.t/ and yp2

is a solution
to y 0 D A.t/y C f 2.t/. Then y D yp1

.t/ C yp2
.t/ is a solution to y 0 D A.t/y C

f 1.t/ C f 2.t/:

Proof. Let L D D � A.t/ be as above. Then linearity implies

L.yp1
C yp2

/ D Lyp1
CLyp2

D f 1.t/ C f 2.t/: ut

Initial Value Problems

For a linear differential system y 0 D A.t/y C f .t/, assume the entries of A.t/ and
f .t/ are defined on a common interval I . Let t0 2 I . When we associate to a linear
differential system an initial value y.t0/ D y0, we call the resulting problem an
initial value problem. The mixing problem we discussed in the introduction to this
chapter is an example of an initial value problem:

y 0 D Ay C f ; y.0/ D y0;

where A D
"� 4

10
1
10

4
10

� 4
10

#
, f .t/ D

�
3

0

�
, and y.0/ D

�
2

0

�
.

Linear Differential Equations and Systems

For each linear ordinary differential equation Ly D f with initial conditions, we
can construct a corresponding linear system with initial condition. The solution of
one will imply the solution of the other. The following example will illustrate the
procedure.

Example 6. Construct a first order linear differential system with initial value from
the second order differential equation

y00 C ty0 C y D sin t y.0/ D 1; y0.0/ D 2:

I Solution. If y.t/ is a solution to the second order equation, form a vector

function y.t/ D
�
y1.t/

y2.t/

�
by setting y1.t/ D y.t/ and y2.t/ D y0.t/. Then

y0
1.t/ D y0.t/ D y2.t/;

y0
2.t/ D y00.t/ D �y.t/ � ty0.t/ C sin t D �y1.t/ � ty2.t/ C sin t:
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The second equation is obtained by solving y00 C ty0 C y D sin t for y00 and
substituting y1 for y and y2 for y0. In vector form, this equation becomes

y 0 D A.t/y C f ;

where A.t/ D
�

0 1

�1 �t

�
, f .t/ D

�
0

sin t

�
, and y.0/ D

�
1

2

�
. J

The solution to the first order differential system implies a solution to the original

second order differential equation and vice versa. Specifically, if y D
�
y1

y2

�
is a

solution of the system, then the first entry of y , namely, y1, is a solution of the
second order equation, and conversely, as illustrated in the above example, if y is

a solution of the second order equation, then y D
�

y

y0
�

is a solution of the linear

system.
Linear differential equations of order n are transformed into linear systems in a

similar way.

Extension of Basic Definitions and Operations to Matrix-Valued
Functions

It is convenient to state most of our results on linear systems of ordinary differential
equations in the language of matrices. To this end, we extend several definitions
familiar for real-valued functions to matrix-(or vector-)valued functions. Let v.t/ be
an n�m matrix-valued function with entries vi;j .t/, for i D 1 : : : n and j D 1 : : : m.

1. v.t/ is defined on an interval I of R if each vij .t/ is defined on I .
2. v.t/ is continuous on an interval I of R if each vij .t/ is continuous on I . For

instance, the matrix

v.t/ D

2
64

1

t C 2
cos 2t

e�2t
1

.2t � 3/2

3
75

is continuous on each of the intervals I1 D .�1; �2/, I2 D .�2; 3=2/ and
I3 D .3=2; 1/, but it is not continuous on the interval I4 D .0; 2/.

3. v.t/ is differentiable on an interval I of R if each vij .t/ is differentiable on
I . Moreover, v0.t/ D Œa0

ij .t/�. That is, the matrix v.t/ is differentiated by
differentiating each entry of the matrix. For instance, for the matrix

v.t/ D
�

et sin t t2 C 1

ln t cos t sinh t

�
;



640 9 Linear Systems of Differential Equations

we have

v0.t/ D
�

et cos t 2t

1=t � sin t cosh t

�
:

4. An antiderivative of v.t/ is a matrix-valued function V.t/ (necessarily of the
same size) such that V 0.t/ D v.t/. Since the derivative is calculated entry by
entry, so likewise is the antiderivative. Thus, if

v.t/ D
2
4

e4t sin t

2t ln t

cos 2t 5

3
5 ;

then an antiderivative is

V.t/ D
Z

v.t/dt D

2
664

1
4
e4t C c11 � cos t C c12

t2 C c21 t ln t � t C c22

1
2
sin 2t C c31 5t C c32

3
775

D

2
664

1
4
e4t � cos t

t2 t ln t � t

1
2
sin 2t 5t

3
775C C;

where C is the matrix of constants Œcij �. Thus, if v.t/ is defined on an interval I

and V1.t/ and V2.t/ are two antiderivatives of v.t/, then they differ by a constant
matrix.

5. The integral of v.t/ on the interval Œa; b� is computed by computing the integral

of each entry of the matrix over Œa; b�, that is,
R b

a
v.t/ dt D

hR b

a
vij .t/ dt

i
. For

the matrix v.t/ of item 2 above, this gives

Z 1

0

v.t/ dt D

2
66664

Z 1

0

1

t C 2
dt

Z 1

0

cos 2t dt

Z 1

0

e�2t dt

Z 1

0

1

.2t � 3/2
dt

3
77775

D
2
4

ln 3
2

1
2

sin 2

1
2
.1 � e�2/ 1

3

3
5 :

6. If each entry vij .t/ of v.t/ is of exponential type (recall the definition on
page 111), we can take the Laplace transform of v.t/, by taking the Laplace
transform of each entry. That is, L.v.t//.s/ D �L.vij .t//.s/

�
. For example, if

v.t/ D
�

te�2t cos 2t

e3t sin t .2t � 3/2

�
, this gives

L.v.t//.s/ D
" L �te�2t

�
.s/ L.cos 2t/.s/

L.e3t sin t/.s/ L �.2t � 3/2
�

.s/

#
D
2
4

1
.sC2/2

2
s2C4

1
.s�3/2C1

9s2�12sC8
s3

3
5 :
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7. We define the inverse Laplace transform entry by entry as well. For example, if

V.s/ D
"

1
s�1

1
.s�1/2

s
s2C4

2
.s�1/2C4

#
;

then

L�1 fV.s/g .t/ D
�

et tet

cos 2t et sin 2t

�
:

8. Finally, we extend convolution to matrix products. Suppose v.t/ and w.t/ are
matrix-valued functions such that the usual matrix product v.t/w.t/ is defined.
We define the convolution v.t/ � w.t/ as follows:

.v.t/ � w.t//i;j D
X

k

vi;k � wk;j .t/:

Thus, in the matrix product, we replace each product of terms by the convolution
product. For example, if

v.t/ D
�

et e2t

�e2t 2et

�
and w.t/ D

�
3et

�et

�
;

then

v � w.t/ D
�

et e2t

�e2t 2et

�
�
�

3et

�et

�

D
"

3et � et � e2t � et

�3e2t � et � 2et � et

#

D
"

3tet � .e2t � et /

�3.e2t � et / � 2tet

#

D tet

�
3

�2

�
C .e2t � et /

��1

�3

�
:

Alternately, if we write

v.t/ D et

�
1 0

0 2

�
C e2t

�
0 1

�1 0

�
and w.t/ D et

�
3

�1

�
;

then the preceding calculations can be performed as follows:

v � w.t/ D
�

et

�
1 0

0 2

�
C e2t

�
0 1

�1 0

�	
� et

�
3

�1

�
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D et � et

�
1 0

0 2

� �
3

�1

�
C e2t � et

�
0 1

�1 0

� �
3

�1

�

D tet

�
3

�2

�
C .e2t � et /

��1

�3

�
:

The following theorem extends basic operations of calculus and Laplace trans-
forms to matrix-valued functions.

Theorem 7. Assume v.t/ and w.t/ are matrix-valued functions, g.t/ is a real-
valued function, and A is a matrix of constants.

1. Suppose v is differentiable and the product Av.t/ is defined. Then Av.t/ is
differentiable and

.Av.t//0 D Av0.t/:

2. Suppose v is differentiable and the product v.t/A is defined. Then v.t/A is
differentiable and

.v.t/A/0 D v0.t/A:

3. Suppose the product, v.t/w.t/, is defined and v and w are both differentiable.
Then

.v.t/w.t//0 D v0.t/w.t/ C v.t/w0.t/:

4. Suppose the composition v.g.t// is defined. Then .v.g.t///0 D v0.g.t//g0.t/.
5. Suppose v is integrable over the interval Œa; b� and the product Av.t/ is defined.

Then Av.t/ is integrable over the interval Œa; b� and

Z b

a

Av.t/ dt D A

Z b

a

v.t/ dt:

6. Suppose v is integrable over the interval Œa; b� and the product v.t/A is defined.
The v.t/A is integrable over the interval Œa; b� and

Z b

a

v.t/A dt D
 Z b

a

v.t/ dt

!
A:

7. Suppose v.t/ is defined on Œ0; 1/, has a Laplace transform, and the product
Av.t/ is defined. Then Av.t/ has a Laplace transform and

L fAv.t/g .s/ D AL fv.t/g .s/:

8. Suppose v.t/ is defined on Œ0; 1/, has a Laplace transform, and the product
v.t/A is defined. Then v.t/A has a Laplace transform and

L fv.t/Ag .s/ D .L fv.t/g .s//A:
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9. Suppose v.t/ is defined on Œ0; 1/ and v0.t/ exists and has a Laplace transform.
Then

L ˚v0.t/



.s/ D sL fv.t/g .s/ � v.0/:

10. The convolution theorem extends as well: Suppose v.t/ and w.t/ have Laplace
transforms and v � w.t/ is defined. Then

L fv � w.t/g .s/ D L fv.t/g .s/ � L fw.t/g .s/:

Remark 8. Where matrix multiplication is involved in these formulas it is impor-
tant to preserve the order of the multiplication. It is particularly worth emphasizing
this dependency on the order of multiplication in the product rule for the derivative
of the product of matrix-valued functions (formula (3) above). Also note that
formula (4) is just the chain rule in the context of matrix-valued functions.
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Exercises

1-6. For each of the following systems of differential equations, determine if it is
linear. For each of those which are linear, write it in matrix form; determine if the
equation is (1) homogeneous or nonhomogeneous and (2) constant coefficient. Do
not try to solve the equations.

1.
y0

1 D y2

y0
2 D y1y2

2.
y0

1 D y1 C y2 C t2

y0
2 D �y1 C y2 C 1

3.
y0

1 D .sin t/y1

y0
2 D y1 C .cos t/y2

4.
y0

1 D t sin y1 � y2

y0
2 D y1 C t cos y2

5.

y0
1 D y1

y0
2 D 2y1 C y4

y0
3 D y4

y0
4 D y2 C 2y3

6.
y0

1 D 1

2
y1 � y2 C 5

y0
2 D �y1 C 1

2
y2 � 5

7–10. Verify that the given vector function y.t/ D
�
y1.t/

y2.t/

�
is a solution to the

given linear differential system with the given initial value.

7.

y 0 D
�
5 �2

4 �1

�
yI y.0/ D

�
0

1

�
; y.t/ D

�
et � e3t

2et � e3t

�
:

8.

y 0 D
�
3 �1

4 �1

�
yI y.0/ D

�
1

0

�
; y.t/ D

�
et C 2tet

4tet

�
:

9.

y 0 D
�
2 �1

3 �2

�
y C

�
et

et

�
I y.0/ D

�
1

3

�
; y.t/ D

�
e�t C tet

3e�t C tet

�
:
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10.

y D
�

0 1

�1 0

�
y C

�
t

�t

�
; y.0/ D

�
1

1

�
; y.t/ D

�
1 � t C 2 sin t

�1 � t C 2 cos t

�
:

11–15. Rewrite each of the following initial value problems for an ordinary
differential equation as an initial value problem for a first order system of ordinary
differential equations.

11. y00 C 5y0 C 6y D e2t ; y.0/ D 1, y0.0/ D �2.
12. y00 C k2y D 0; y.0/ D �1; y0.0/ D 0

13. y00 � k2y D A cos !t; y.0/ D 0, y0.0/ D 0

14. ay00 C by0 C cy D 0; y.0/ D ˛, y0.0/ D ˇ

15. t2y00 C 2ty0 C y D 0; y.1/ D �2, y0.1/ D 3

16–21. Compute the derivative of each of the following matrix functions.

16. A.t/ D
�

cos 2t sin 2t

� sin 2t cos 2t

�

17. A.t/ D
�

e�3t t

t2 e2t

�

18. A.t/ D
2
4

e�t te�t t 2e�t

0 e�t te�t

0 0 e�t

3
5

19. y.t/ D
2
4

t

t2

ln t

3
5

20. A.t/ D
�
1 2

3 4

�

21. v.t/ D �
e�2t ln.t2 C 1/ cos 3t

�

22–25. For each of the following matrix functions, compute the requested integral.

22. Compute
R �

2

0 A.t/ dt if A.t/ D
�

cos 2t sin 2t

� sin 2t cos 2t

�
.

23. Compute
R 1

0
A.t/ dt if A.t/ D 1

2

�
e2t C e�2t e2t � e�2t

e�2t � e2t e2t C e�2t

�
.
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24. Compute
R 2

1
y.t/ dt if y.t/ D

2
4

t

t2

ln t

3
5.

25. Compute
R 5

1
A.t/ dt if A.t/ D

�
1 2

3 4

�
.

26. On which of the following intervals is the matrix function A.t/ D�
t .t C 1/�1

.t � 1/�2 t C 6

�
continuous?

(a) I1 D .�1; 1/ (b) I2 D .0; 1/ (c) I3 D .�1; 1/

(d) I4 D .�1; �1/ (e) I5 D .2; 6/

27–32. Compute the Laplace transform of each of the following matrix functions.

27. A.t/ D
�

1 t

t2 e2t

�

28. A.t/ D
�

cos t sin t

� sin t cos t

�

29. A.t/ D
�

t3 t sin t te�t

t 2 � t e3t cos 2t 3

�

30. A.t/ D
2
4

t

t2

t3

3
5

31. A.t/ D et

�
1 �1

�1 1

�
C e�t

��1 1

1 �1

�

32. A.t/ D
2
4

1 sin t 1 � cos t

0 cos t sin t

0 � sin t cos t

3
5

33–36. Compute the inverse Laplace transform of each matrix function:

33.

�
1

s

2

s2

6

s3

�

34.

2
64

1

s

1

s2

s

s2 � 1

s

s2 C 1

3
75
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35.

2
664

2s

s2 � 1

2

s2 � 1

2

s2 � 1

2s

s2 � 1

3
775

36.

2
6666664

1

s � 1

1

s2 � 2s C 1

4

s3 C 2s2 � 3s

1

s2 C 1

3s

s2 C 9

1

s � 3

3
7777775
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9.3 The Matrix Exponential and Its Laplace Transform

One of the most basic Laplace transforms that we learned early on was that of the
exponential function:

L ˚eat

 D 1

s � a
: (1)

This basic formula has proved to be a powerful tool for solving constant coefficient
linear differential equations of order n. Our goal here is to extend (1) to the case
where the constant a is replaced by an n � n matrix A. The resulting extension
will prove to be an equally powerful tool for solving linear systems of differential
equations with constant coefficients.

Let A be an n � n matrix of scalars. Formally, we define the matrix exponential,
eAt, by the formula

eAt D I C At C A2t2

2Š
C A3t3

3Š
C � � � (2)

When A is a scalar, this definition is the usual power series expansion of the
exponential function. Equation (2) is an infinite sum of n � n matrices: The first
term I is the n � n identity matrix, the second term is the n � n matrix At , the third
term is the n � n matrix A2t2

2Š
, and so forth. To compute the sum, one must compute

each .i; j / entry and add the corresponding terms. Thus, the .i; j / entry of eAt is

.eAt/i;j D .I /i;j C t.A/i;j C t2

2Š
.A2/i;j C � � � ; (3)

which is a power series centered at the origin. To determine this sum, one must be
able to calculate the .i; j / entry of all the powers of A. This is easy enough for
I D A0 and A D A1. For the .i; j / entry of A2, we get the i th row of A times
the j th column of A. For the higher powers, A3, A4, etc., the computations become
more complicated and the resulting power series is difficult to identify, unless A

is very simple. However, one can see that each entry is some power series in the
variable t and thus defines a function (if it converges). In Appendix A.4, we show
that the series in (3) converges absolutely for all t 2 R and for all matrices A so that
the matrix exponential is a well-defined matrix function defined on R. However,
knowing that the series converges is a far cry from knowing the sum of the series.

In the following examples, A is simple enough to allow the computation of eAt.

Example 1. Let A D
2
4

2 0 0

0 3 0

0 0 �1

3
5. Compute eAt.
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I Solution. In this case, the powers of the matrix A are easy to compute. In fact

A D
2
4

2 0 0

0 3 0

0 0 �1

3
5 ; A2 D

2
4

4 0 0

0 9 0

0 0 1

3
5 ; � � � ; An D

2
4

2n 0 0

0 3n 0

0 0 .�1/n

3
5 ;

so that

eAt D I C At C 1

2
A2t2 C 1

3Š
A3t3 C � � �

D
2
4

1 0 0

0 1 0

0 0 1

3
5C

2
4

2 0 0

0 3 0

0 0 �1

3
5 t C 1

2Š

2
4

4 0 0

0 9 0

0 0 1

3
5 t2 C 1

3Š

2
4

8 0 0

0 27 0

0 0 �1

3
5 t3 C � � �

D

2
64

1 C 2t C 4t2

2
C � � � 0 0

0 1 C 3t C 9t2

2
C � � � 0

0 0 1 � t C t 2

2
C � � �

3
75

D
2
4

e2t 0 0

0 e3t 0

0 0 e�t

3
5 : J

Example 2. Let A D
�
0 1

0 0

�
. Compute eAt.

I Solution. In this case, A2 D
�
0 1

0 0

� �
0 1

0 0

�
D
�
0 0

0 0

�
D 0 and An D 0 for all

n � 2. Hence,

eAt D I C At C 1

2
A2t2 C 1

3Š
A3t3 C � � �

D I C At

D
�
1 t

0 1

�
:

Note that in this case, the individual entries of eAt are not exponential
functions. J

Example 3. Let A D
�

0 1

�1 0

�
. Compute eAt.
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I Solution. The first few powers of A are A2 D
��1 0

0 �1

�
, A3 D

�
0 �1

1 0

�
,

A4 D
�
1 0

0 1

�
D I2, A5 D A, A6 D A2, etc. That is, the powers repeat with period

4. Thus,

eAt D I C At C 1

2
A2t2 C 1

3Š
A3t3 C � � �

D
�
1 0

0 1

�
C
�

0 t

�t 0

�
C 1

2

��t2 0

0 �t2

�
C 1

3Š

�
0 �t3

t3 0

�
C 1

4Š

�
t4 0

0 t4

�
C � � �

D
2
4

1 � 1
2
t2 C 1

4Š
t4 C � � � t � 1

3Š
t3 C 1

5Š
t5 C � � �

�t C 1
3Š

t3 � 1
5Š

t5 C � � � 1 � 1
2
t2 C 1

4Š
t4 C � � �

3
5

D
�

cos t sin t

� sin t cos t

�
:

(cf. (3) and (4) of Sect. 7.1). In this example also, the individual entries of eAt are
not themselves exponential functions. J

Do not let Examples 1–3 fool you. Unless A is very special, it is difficult to
directly determine the entries of An and use this to compute eAt. In the following
subsection, we will compute the Laplace transform of the matrix exponential
function. The resulting inversion formula provides an effective method for explicitly
computing eAt.

The Laplace Transform of the Matrix Exponential

Let A be an n � n matrix of scalars. As discussed above, each entry of eAt

converges absolutely on R. From a standard theorem in calculus, we have that eAt is
differentiable and the derivative can be computed termwise. Thus,

d

dt
eAt D d

dt

�
I C At C A2t2

2Š
C A3t3

3Š
C : : :

	

D A C A2t

1Š
C A3t2

2Š
C A4t3

3Š
C : : :

D A

�
I C At C A2t2

2Š
C A3t3

3Š
C : : :

	

D AeAt:
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By factoring A out on the right-hand side in the second line, we also get

d

dt
eAt D eAtA:

Appendix A.4 shows that each entry is of exponential type and thus has a Laplace
transform. Now apply the derivative formula

d

dt
eAt D AeAt;

and the first derivative principle for the Laplace transform of matrix-valued func-
tions (Theorem 7 of Sect. 9.2) applied to v.t/ D eAt, to get

AL ˚eAt

 D L ˚AeAt


 D L
�

d

dt
eAt

�
D sL ˚eAt


 � I;

where we have used v.0/ D eAtjtD0 D I . Combining terms gives

.sI � A/L ˚eAt

 D I

and thus,

L ˚eAt

 D .sI � A/�1:

This is the extension of (1) mentioned above. We summarize this discussion in the
following theorem.

Theorem 4. Let A be an n � n matrix. Then eAt is a well-defined matrix-valued
function and

L ˚eAt

 D .sI � A/�1: (4)

The Laplace inversion formula is given by

eAt D L�1
˚
.sI � A/�1



: (5)

The matrix .sI � A/�1 is called the resolvent matrix of A. It is a function
of s, defined for all s for which the inverse exists. Let cA.s/ D det.sI � A/.
It is not hard to see that cA.s/ is a polynomial of degree n. We call cA.s/ the
characteristic polynomial of A. As a polynomial of degree n, it has at most n

roots. The roots are called characteristic values or eigenvalues of A. Thus, if
s is larger than the absolute value of all the eigenvalues of A then sI � A is
invertible and the resolvent matrix is defined. By the adjoint formula for matrix
inversion, Corollary 11 of Sect. 8.4 each entry of .sI � A/�1 is the quotient of a
cofactor of sI � A and the characteristic polynomial cA.s/, hence, a proper rational
function. Thus, eAt is a matrix of exponential polynomials. The Laplace inversion
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formula given in Theorem 4 now provides a method to compute explicitly the matrix
exponential without appealing to the power series expansion given by (2). It will
frequently involve partial fraction decompositions of each entry of the resolvent
matrix. Consider the following examples.

Example 5. Let A D
�

3 4

�2 �3

�
: Compute the resolvent matrix .sI � A/�1 and

use the Laplace inversion formula to compute eAt.

I Solution. The characteristic polynomial is

cA.s/ D det.sI � A/

D det

�
s � 3 �4

2 s C 3

�

D .s � 3/.s C 3/ C 8

D s2 � 1 D .s � 1/.s C 1/:

The adjoint formula for the inverse thus gives

.sI � A/�1 D 1

.s � 1/.s C 1/

�
s C 3 4

�2 s � 3

�

D

2
64

s C 3

.s � 1/.s C 1/

4

.s � 1/.s C 1/�2

.s � 1/.s C 1/

s � 3

.s � 1/.s C 1/

3
75

D 1

s � 1

�
2 2

�1 �1

�
C 1

s C 1

��1 �2

1 2

�
;

where the third line is obtained by computing partial fractions of each entry in the
second line.

To compute the matrix exponential, we use the Laplace inversion formula from
Theorem 4 to get

eAt D L�1
˚
.sI � A/�1




D et

�
2 2

�1 �1

�
C e�t

��1 �2

1 2

�

D
�

2et � e�t 2et � 2e�t

�et C e�t �et C 2e�t

�
: J

As a second example, we reconsider Example 3.
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Example 6. Let A D
�

0 1

�1 0

�
: Compute the resolvent matrix .sI � A/�1 and use

the Laplace inversion formula to compute eAt.

I Solution. The characteristic polynomial is

cA.s/ D det.sI � A/

D det

�
s �1

1 s

�

D s2 C 1:

The adjoint formula for the inverse thus gives

.sI � A/�1 D 1

s2 C 1

�
s 1

�1 s

�

D

2
664

s

s2 C 1

1

s2 C 1

�1

s2 C 1

s

s2 C 1

3
775 :

Using the inversion formula, we get

eAt D L�1
˚
.sI � A/�1




D
�

cos t sin t

� sin t cos t

�
; J

Theorem 4 thus gives an effective method for computing the matrix exponential.
There are many other techniques. In the next section, we discuss a useful alternative
that circumvents the need to compute partial fraction decompositions.
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Exercises

1–7. Use the power series definition of the matrix exponential to compute eAt for
the given matrix A.

1. A D
�
1 0

0 �2

�

2. A D
�
3 �1

9 �3

�

3. A D
�
0 1

1 0

�

4. A D
�
1 �1

0 1

�

5. A D
�
1 1

1 1

�

6. A D
2
4

0 2 0

1 0 �1

0 2 0

3
5

7. A D
2
4

0 1 0

�1 0 0

0 0 2

3
5

8–13. For each matrix A given below

(i) Compute the resolvent matrix .sI � A/�1.
(ii) Compute the matrix exponential eAt D L�1

˚
.sI � A/�1



.

8. A D
�
1 0

0 2

�

9. A D
�

1 �1

�2 2

�

10. A D
�
1 1

1 1

�

11. A D
�

3 5

�1 �1

�

12. A D
�
4 �10

1 �2

�

13.

2
4

0 1 1

0 0 1

0 0 0

3
5
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14. Suppose A D
�
M 0

0 N

�
where M is an r � r matrix and N is an s � s matrix.

Show that eAt D
�

eMt 0

0 eNt

�
.

15–16. Use Exercise 14 to compute the matrix exponential for each A.

15. A D
2
4

0 1 0

�1 0 0

0 0 2

3
5

16. A D

2
664

1 1 0 0

1 1 0 0

0 0 1 �1

0 0 �2 2

3
775
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9.4 Fulmer’s Method for Computing eAt

The matrix exponential is fundamental to much of what we do in this chapter.
It is therefore useful to have efficient techniques for calculating it. Here we will
present a small variation on a technique1 due to Fulmer2 for computing the matrix
exponential, eAt. It is based on the knowledge of what types of functions are included
in the individual entries of eAt. This knowledge is derived from our understanding
of the Laplace transform formula

eAt D L�1
˚
.sI � A/�1



:

Assume that A is an n � n constant matrix. Let cA.s/ D det.sI � A/ be the
characteristic polynomial of A. The characteristic polynomial has degree n, and by
the adjoint formula for matrix inversion, cA.s/ is in the denominator of each term of
the inverse of sI �A. Therefore, each entry in .sI �A/�1 belongs to RcA , and hence,
each entry of the matrix exponential, eAt D L�1

˚
.sI � A/�1



, is in EcA . Recall

from Sects. 2.6 and 2.7 that if q.s/ is a polynomial, then Rq is the set of proper
rational functions that can be written with denominator q.s/, and Eq is the set of all
exponential polynomials f .t/ with L ff .t/g 2 Rq . If BcA D f�1; �2; : : : ; �ng is
the standard basis of EcA , then it follows that

eAt D M1�1 C � � � C Mn�n;

where Mi is an n � n matrix for each index i D 1; : : : ; n. Fulmer’s method is a
procedure to determine the coefficient matrices M1; : : : ; Mn.

Before considering the general procedure and its justification, we illustrate
Fulmer’s method with a simple example. If

A D
�

3 5

�1 �1

�
;

then the characteristic polynomial is

cA.s/ D det.sI � A/ D s2 � 2s C 2 D .s � 1/2 C 1

1There are many other techniques. For example, see the articles “Nineteen Dubious Ways to
Compute the Exponential of a Matrix” in Siam Review, Vol 20, no. 4, pp 801-836, October 1978
and “Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later”
in Siam Review, Vol 45, no. 1, pp 3-49, 2003.
2Edward P. Fulmer, Computation of the Matrix Exponential, American Mathematical Monthly, 82
(1975) 156–159.



658 9 Linear Systems of Differential Equations

and the standard basis is BcA D fet cos t; et sin tg. It follows that

eAt D M1et cos t C M2et sin t: (1)

Differentiate (1) to get

AeAt D M1.et cos t � et sin t/ C M2.et sin t C et cos t/ (2)

and evaluate (1) and (2) at t D 0 to get the system

I D M1

A D M1 C M2:
(3)

It is immediate that M1 D I D
�
1 0

0 1

�
and M2 D A�M1 D A�I D

�
2 5

�1 �2

�
.

Substituting these matrices into (1) gives

eAt D
�
1 0

0 1

�
et cos t C

�
2 5

�1 �2

�
et sin t

D
�

et sin t C 2et cos t 5et sin t

�et sin t et sin t � 2et cos t

�
:

Compare the results here to those obtained in Exercise 11 in Sect. 9.3.

The General Case. Let A be an n � n matrix and cA.s/ its characteristic
polynomial. Suppose BcA D f�1; : : : ; �ng. Reasoning as we did above, there are
matrices M1; : : : ; Mn so that

eAt D M1�1.t/ C : : : C Mn�n.t/: (4)

We need to find these matrices. By taking n � 1 derivatives, we obtain a system of
linear equations (with matrix coefficients)

eAt D M1�1.t/ C � � � C Mn�n.t/

AeAt D M1�
0
1.t/ C � � � C Mn�0

n.t/

:::

An�1eAt D M1�
.n�1/
1 .t/ C � � � C Mn�.n�1/

n .t/:

Now we evaluate this system at t D 0 to obtain
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I D M1�1.0/ C � � � C Mn�n.0/

A D M1�
0
1.0/ C � � � C Mn�0

n.0/

:::

An�1 D M1�
.n�1/
1 .0/ C � � � C Mn�.n�1/

n .0/:

(5)

At this point, we want to argue that it is always possible to solve (5) by showing
that the coefficient matrix is invertible. However, in the examples and exercises, it
is usually most efficient to solve (5) by elimination of variables. Let

W D

2
64

�1.0/ : : : �n.0/
:::

: : :
:::

�
.n�1/
1 .0/ : : : �

.n�1/
n .0/

3
75 :

Then W is the Wronskian of �1; : : : ; �n at t D 0. Since �1, : : :, �n are solutions
to the linear homogeneous constant coefficient differential equation cA.D/.y/ D 0

(by Theorem 2 of Sect. 4.2) and since they are linearly independent (BcA is a basis
of EcA), Abel’s formula, Theorem 6 of Sect. 4.2, applies to show the determinant of
W is nonzero so W is invertible. The above system of equations can now be written:

2
6664

I

A
:::

An�1

3
7775 D W

2
6664

M1

M2

:::

Mn

3
7775 :

Therefore, 2
6664

M1

M2

:::

Mn

3
7775 D W �1

2
6664

I

A
:::

An�1

3
7775 :

Having solved for M1; : : : ; Mn, we obtain eAt.

Remark 1. Note that this last equation implies that each matrix Mi is a polynomial
in the matrix A since W �1 is a constant matrix. Specifically, Mi D pi .A/ where

pi.s/ D Rowi .W
�1/

2
6664

1

s
:::

sn�1

3
7775 :
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The following algorithm outlines Fulmer’s method.

Algorithm 2 (Fulmer’s Method).

Computation of eAt Where A Is a Given n � n Constant Matrix.

1. Compute the characteristic polynomial cA.s/ D det.sI � A/.
2. Determine the standard basis BcA D f�1; : : : ; �ng of EcA .
3. We then have

eAt D M1�1.t/ C � � � C Mn�n.t/ (6)

where Mi i D 1; : : : ; n are n � n matrices.
4. Take the derivative of (6) n � 1 times and evaluate each resulting equation

at t D 0 to get a system of matrix equations.
5. Solve the matrix equations for M1; : : : ; Mn.

Example 3. Find the matrix exponential, eAt, if A D
�

2 1

�4 6

�
.

I Solution. The characteristic polynomial is cA.s/ D .s � 2/.s � 6/ C 4 D s2 �
8s C 16 D .s � 4/2. Hence, BcA D ˚

e4t ; te4t



and it follows that

eAt D M1e4t C M2te4t :

Differentiating and evaluating at t D 0 gives

I D M1

A D 4M1 C M2:

It follows that

M1 D I D
�
1 0

0 1

�
and M2 D A � 4I D

��2 1

�4 2

�
:

Thus,

eAt D M1e4t C M2te4t

D
�
1 0

0 1

�
e4t C

��2 1

�4 2

�
te4t

D
�

e4t � 2te4t te4t

�4te4t e4t C 2te4t

�
: J

As a final example, consider the following 3 � 3 matrix.
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Example 4. Find the matrix exponential, eAt, if A D
2
4

0 0 1

0 2 0

1 0 0

3
5 :

I Solution. The characteristic polynomial is

cA.s/ D det

2
4

s 0 �1

0 s � 2 0

�1 0 s

3
5

D .s � 2/ det

�
s �1

�1 s

�

D .s � 2/.s2 � 1/ D .s � 2/.s � 1/.s C 1/:

It follows that BcA D ˚
e2t ; et ; e�t



and

eAt D M1e2t C M2et C M3e�t :

Differentiating twice gives

AeAt D 2M1e2t C M2et � M3e�t

A2eAt D 4M1e2t C M2et C M3e�t

and evaluating at t D 0 gives

I D M1 C M2 C M3

A D 2M1 C M2 � M3

A2 D 4M1 C M2 C M3:

It is an easy exercise to solve for M1, M2, and M3. We get

M1 D A2 � I

3
D .A � I /.A C I /

3
D
2
4

0 0 0

0 1 0

0 0 0

3
5 ;

M2 D �A2 � A � 2I

2
D � .A � 2I /.A C I /

2
D
2
4

1
2

0 1
2

0 0 0
1
2

0 1
2

3
5 ;

M3 D A2 � 3A C 2I

6
D .A � 2I /.A � I /

6
D
2
4

1
2

0 � 1
2

0 0 0

� 1
2

0 1
2

3
5 :



662 9 Linear Systems of Differential Equations

It follows now that

eAt D e2t M1 C et M2 C e�t M3

D
2
4

cosh t 0 sinh t

0 e2t 0

sinh t 0 cosh t

3
5 : J
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Exercises

1–19. Use Fulmer’s method to compute the matrix exponential eAt.

1. A D
�
2 �1

1 0

�

2. A D
��1 2

�3 4

�

3. A D
�

2 1

�4 �2

�

4. A D
�

1 1

�2 4

�

5. A D
�
4 �10

1 �2

�

6. A D
�
4 �1

1 2

�

7. A D
��9 11

�7 9

�

8. A D
��5 �8

4 3

�

9. A D
�

26 39

�15 �22

�

10. A D
�
3 �3

2 �2

�

11. A D
��3 1

�1 �1

�

12. A D
�
6 �4

2 0

�

13. A D
2
4

1 0 �1

0 1 0

2 0 �2

3
5, where cA.s/ D s.s � 1/.s C 1/

14. A D
2
4

3 �1 �1

�1 1 1

2 �1 0

3
5, where cA.s/ D .s � 1/2.s � 2/

15. A D
2
4

1 � 1
2

0

1 1 �1

0 1
2

1

3
5, where cA.s/ D .s � 1/.s2 � 2s C 2/
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16. A D
2
4

2 1 0

�1 2 1

0 1 2

3
5, where cA.s/ D .s � 2/3

17. A D
2
4

�1 �2 1

4 0 �2

�2 �2 2

3
5, where cA.s/ D .s � 1/.s2 C 4/

18. A D

2
664

4 1 �2 0

0 4 0 �2

4 0 �2 1

0 4 0 �2

3
775, where cA.s/ D s2.s � 2/2

19. A D

2
664

�1 1 1 0

�1 �1 0 1

�1 0 1 1

0 �1 �1 1

3
775, where cA.s/ D .s2 C 1/2

20–22. Suppose A is a 2 � 2 real matrix with characteristic polynomial cA.s/ D
det.sI � A/ D s2 C bs C c. In these exercises, you are asked to derive a general
formula for the matrix exponential eAt. We distinguish three cases.

20. Distinct Real Roots: Suppose cA.s/ D .s � r1/.s � r2/ with r1 and r2 distinct
real numbers. Show that

eAt D A � r2I

r1 � r2

er1t C A � r1I

r2 � r1

er2t :

21. Repeated Root: Suppose cA.s/ D .s � r/2. Show that

eAt D .I C .A � rI /t/ ert :

22. Complex Roots: Suppose cA.s/ D .s � ˛/2 C ˇ2 where ˇ ¤ 0. Show that

eAt D I e˛t cos ˇt C .A � ˛I/

ˇ
e˛t sin ˇt:
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9.5 Constant Coefficient Linear Systems

In this section, we turn our attention to solving a first order constant coefficient
linear differential system

y 0 D Ay C f ; y.t0/ D y0: (1)

The solution method parallels that of Sect. 1.4. Specifically, the matrix exponential
e�At serves as an integrating factor to simplify the equivalent system

y 0 � Ay D f : (2)

The result is the existence and uniqueness theorem for such systems. As a corollary,
we obtain the existence and uniqueness theorems for ordinary constant coefficient
linear differential equations, as stated in Sects. 3.1 and 4.1.

We begin with a lemma that lists the necessary properties of the matrix
exponential to implement the solution method.

Lemma 1. Let A be an n � n matrix. The following statements then hold:

1. eAt
ˇ̌
tD0

D I .
2. d

dt
eAt D AeAt D eAtA for all t 2 R.

3. eA.tCa/ D eAteAa D eAaeAt for all t; a 2 R.
4. eAt is an invertible matrix with inverse

�
eAt
��1 D e�At for all t 2 R.

Proof. Items 1. and 2. were proved in Sect. 9.3. Fix a 2 R and let

˚.t/ D e�At eA.tCa/:

Then

˚ 0.t/ D �Ae�At eA.tCa/ C e�At AeA.tCa/

D �Ae�At eA.tCa/ C Ae�At eA.tCa/ D 0;

which follows from the product rule and part 2. It follows that ˚ is a constant matrix
and since ˚.0/ D e�A0eAa D eAa by part 1, we have

e�At eA.tCa/ D eAa; (3)

for all t; a 2 R. Now let a D 0 then e�At eAt D I . From this, it follows that eAt is
invertible and

�
eAt
��1 D e�At . This proves item 4. Further, from (3), we have

eA.tCa/ D .e�At /�1eAa D eAteAa:

This proves item 3. ut
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To solve (1), multiply (2) by e�At to get

e�Aty 0.t/ � e�At Ay.t/ D e�Atf .t/: (4)

By the product rule and Lemma 1, part 2, we have

.e�Aty/0.t/ D �e�At Ay.t/ C e�Aty 0.t/:

We can thus rewrite (4) as

.e�Aty/0.t/ D e�Atf .t/:

Now change the variable from t to u and integrate both sides from t0 to t to get

e�Aty.t/ � e�At0y.t0/ D
Z t

t0

.e�Auy/0.u/ du D
Z t

t0

e�Auf .u/ du:

Now add e�At0y.t0/ to both sides and multiply by the inverse of e�At , which is eAt

by Lemma 1, part 4, to get

y.t/ D eAte�At0y.t0/ C eAt
Z t

t0

e�Auf .u/ du:

Now use Lemma 1, part 3, to simplify. We get

y.t/ D eA.t�t0/y0 C
Z t

t0

eA.t�u/ f .u/ du: (5)

This argument shows that if there is a solution, it must take this form. However, it is
a straightforward calculation to verify that (5) is a solution to (1). We thereby obtain

Theorem 2 (Existence and Uniqueness Theorem). Let A be an n � n constant
matrix and f .t/ an R

n-valued continuous function defined on an interval I . Let
t0 2 I and y0 2 R

n. Then the unique solution to the initial value problem

y 0.t/ D Ay.t/ C f .t/; y.t0/ D y0; (6)

is the function y.t/ defined for t 2 I by

Solution to a First Order Differential System

y.t/ D eA.t�t0/y0 C R t

t0
eA.t�u/f .u/ du:

(7)
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Let us break up this general solution into its two important parts. First, when
f D 0, (6) reduces to y 0.t/ D Ay.t/, the associated homogeneous equation. Its
solution is the homogeneous solution given simply by

yh D eA.t�t0/y0:

Let y0 D ei , the column vector with 1 in the i th position and 0’s elsewhere. Define
y i D eA.t�t0/ei . Then y i is the i th column of eA.t�t0/. This means that each column
of eA.t�t0/ is a solution to the associated homogeneous equation. Furthermore, if

y0 D

2
6664

a1

a2

:::

an

3
7775 ;

then
yh D eA.t�t0/y0 D a1y1 C a2y2 C � � � C anyn

is a linear combination of the columns of eAt and all homogeneous solutions are of
this form.

The other piece of the general solution is the particular solution:

yp.t/ D
Z t

t0

eA.t�u/f .u/ du: (8)

We then get the familiar formula

y D yh C yp:

The general solution to y 0 D Ay C f is thus obtained by adding all possible
homogeneous solutions to one fixed particular solution.

When t0 D 0, the particular solution yp of (8) becomes the convolution product
of eAt and f .t/. We record this important special case as a corollary.

Corollary 3. Let A be an n�n constant matrix and f .t/ an R
n-valued continuous

function defined on an interval I containing the origin. Let y0 2 R
n. The unique

solution to

y 0.t/ D Ay.t/ C f .t/; y.0/ D y0;

is the function defined for t 2 I by

y.t/ D eAty0 C eAt � f .t/: (9)

When each entry of f is of exponential type, then the convolution theorem,
Theorem 1 of Sect. 2.8, can be used to compute yp D eAt � f .t/. Let us consider a
few examples.
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Example 4. Solve the following linear system of differential equations:

y0
1 D �y1 C 2y2 C et

y0
2 D �3y1 C 4y2 � 2et ; (10)

with initial conditions y1.0/ D 1 and y2.0/ D 1.

I Solution. We begin by writing the given system in matrix form:

y 0 D Ay C f ; y.0/ D y0 (11)

where

A D
��1 2

�3 4

�
; f .t/ D

�
et

�2et

�
D et

�
1

�2

�
; and y0 D

�
1

1

�
:

The characteristic polynomial is

cA.s/ D det.sI � A/ D det

�
s C 1 �2

3 s � 4

�
D s2 � 3s C 2 D .s � 1/.s � 2/: (12)

Therefore,

.sI � A/�1 D

2
664

s � 4

.s � 1/.s � 2/

2

.s � 1/.s � 2/

�3

.s � 1/.s � 2/

s C 1

.s � 1/.s � 2/

3
775

D 1

s � 1

�
3 �2

3 �2

�
C 1

s � 2

��2 2

�3 3

�
:

It now follows that

eAt D L�1
˚
.sI � A/�1


 D et

�
3 �2

3 �2

�
C e2t

��2 2

�3 3

�
:

By Corollary 3, the homogeneous part of the solution is given by

yh D eAty0

D
�

et

�
3 �2

3 �2

�
C e2t

��2 2

�3 3

�	�
1

1

�

D et

�
1

1

�
:
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To compute yp we will use two simple convolution formulas: et � et D tet and
e2t � et D e2t � et . By Corollary 3, we have

yp.t/ D eAt � f .t/

D
�

et

�
3 �2

3 �2

�
C e2t

��2 2

�3 3

�	
� et

�
1

�2

�

D et � et

�
3 �2

3 �2

� �
1

�2

�
C e2t � et

��2 2

�3 3

� �
1

�2

�

D tet

�
7

7

�
C .e2t � et /

��6

�9

�

D
�
7tet C 6et � 6e2t

7tet C 9et � 9e2t

�
:

Now, adding the homogeneous and particular solutions together leads to the
solution:

y.t/ D yh.t/ C yp.t/ D eAty.0/ C eAt � f .t/

D
�

et

et

�
C
�
7tet C 6et � 6e2t

7tet C 9et � 9e2t

�

D
�

7tet C 7et � 6e2t

7tet C 10et � 9e2t

�
: (13)

J

Example 5. Find the general solution to the following system of differential
equations:

y0
1 D y2 C t

y0
2 D �y1 � t

I Solution. If

A D
�

0 1

�1 0

�
; f .t/ D

�
t

�t

�
;

the given system can be expressed as

y 0 D Ay C f :

By Example 6 of Sect. 9.3, we have eAt D
�

cos t sin t

� sin t cos t

�
. If y0 D

�
a1

a2

�
then

yh D eAty0 D
�

cos t sin t

� sin t cos t

� �
a1

a2

�
D a1

�
cos t

� sin t

�
C a2

�
sin t

cos t

�
:
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Further,

yp D eAt � f .t/ D
�

cos t sin t

� sin t cos t

�
�
�

t

�t

�
D
�

.cos t/ � t � .sin t/ � t

�.sin t/ � t � .cos t/ � t

�
:

Table 2.11 gives formulas for the convolutions .cos t/ � t and .sin t/ � t . However,
we will use the convolution principle to make these computations. First,

L f.cos t/ � tg D s

.s2 C 1/

1

s2
D 1

.s2 C 1/s
D 1

s
� s

s2 C 1
;

and L f.sin t/ � tg D 1

.s2 C 1/s2
D 1

s2
� 1

s2 C 1
;

so that .cos t/ � t D 1 � cos t and .sin t/ � t D t � sin t . Therefore,

yp D
�

1 � cos t � .t � sin t/

�.t � sin t/ � .1 � cos t/

�
:

By Corollary 3, the general solution is thus

y.t/ D a1

�
cos t

� sin t

�
C a2

�
sin t

cos t

�
C
�

1 � t � cos t C sin t

�1 � t C sin t C cos t

�
;

which we can rewrite more succinctly as

y.t/ D .a1 � 1/

�
cos t

� sin t

�
C .a2 C 1/

�
sin t

cos t

�
C
�

1 � t

�1 � t

�

D ˛1

�
cos t

� sin t

�
C ˛2

�
sin t

cos t

�
C
�

1 � t

�1 � t

�

after relabeling the coefficients. J
Example 6. Solve the following system of equations:

y0
1 D 2y1 C y2 C 1=t y1.1/ D 2

y0
2 D �4y1 � 2y2 C 2=t y2.1/ D 1

on the interval .0; 1/.

I Solution. We can write the given system as y 0 D Ay C f , where

A D
�

2 1

�4 �2

�
; f .t/ D

�
1=t

2=t

�
; and y.1/ D

�
2

1

�
:
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Observe that f is continuous on .0; 1/. The characteristic polynomial is

cA.s/ D det

�
s � 2 �1

4 s C 2

�
D s2 (14)

and BcA D f1; tg. Therefore, eAt D M1 C M2t and its derivative is AeAt D M2.
Evaluating at t D 0 gives M1 D I and M2 D A. Fulmer’s method now gives

eAt D I C At D
"

1 C 2t t

�4t 1 � 2t

#
:

It follows that

yh.t/ D eA.t�1/y.1/ D
�
1 C 2.t � 1/ t � 1

�4.t � 1/ 1 � 2.t � 1/

� �
2

1

�
D
�

2 C 5.t � 1/

1 � 10.t � 1/

�
:

The following calculation gives the particular solution:

yp.t/ D
Z t

1

eA.t�u/f .u/ du

D eAt
Z t

1

e�Auf .u/ du

D eAt
Z t

1

�
1 � 2u �u

4u 1 C 2u

� �
1=u
2=u

�
du

D eAt
Z t

1

"
1
u � 4

2
u C 8

#
du

D
�
1 C 2t t

�4t 1 � 2t

� �
ln t � 4.t � 1/

2 ln t C 8.t � 1/

�

D
�
.1 C 4t/ ln t � 4t C 4

.2 � 8t/ ln t C 8t � 8

�
:

Where in line 2 we used Lemma 1 to write eA.t�u/ D eAte�Au: We now get

y.t/ D yh.t/ C yp.t/

D
�

2 C 5.t � 1/

1 � 10.t � 1/

�
C
�
.1 C 4t/ ln t � 4t C 4

.2 � 8t/ ln t C 8t � 8

�

D
�

1 C t C .1 C 4t/ ln t

3 � 2t C .2 � 8t/ ln t

�
;

valid for all t > 0. J
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Example 7. Solve the mixing problem introduced at the beginning of this chapter
in Example 1 of Sect. 9.1. Namely,

y0
1.t/ D �4

10
y1.t/ C 1

10
y2.t/ C 3

y0
2.t/ D 4

10
y1.t/ � 4

10
y2.t/;

with initial condition y1.0/ D 2 and y2.0/ D 0. Also, determine the amount of salt
in each tank at time t D 10.

I Solution. In matrix form, this system can be written as

y 0.t/ D Ay.t/ C f .t/;

where

A D
"�4=10 1=10

4=10 �4=10

#
; f .t/ D

"
3

0

#
; and y0 D y.0/ D

"
2

0

#
:

We let the reader verify that

eAt D e�2t=10

"
1=2 1=4

1 1=2

#
C e�6t=10

"
1=2 �1=4

�1 1=2

#
:

The homogeneous solution is

yh.t/ D eAty0 D
 

e�2t=10

"
1=2 1=4

1 1=2

#
C e�6t=10

"
1=2 �1=4

�1 1=2

#!"
2

0

#

D e�2t=10

�
1

2

�
C e�6t=10

�
1

�2

�
:

We use the fact that e�2t=10 � 1 D 5 � 5e�2t=10 and e�6t=10 � 1 D 1
3
.5 � 5e�6t=10/

to get

yp D eAt �
�
3

0

�
D 3eAt �

�
1

0

�

D 3
�
e�2t=10 � 1

� "1=2 1=4

1 1=2

#"
1

0

#
C 3

�
e�6t=10 � 1

� "1=2 �1=4

�1 1=2

#"
1

0

#
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D 3
�
5 � 5e�2t=10

� �1=2

1

�
C �

5 � 5e�6t=10
� �1=2

�1

�

D
�
10

10

�
� e�2t=10

�
15=2

15

�
� e�6t=10

�
5=2

�5

�
:

We now obtain the solution:

y.t/ D yh.t/ C yp.t/

D
�
10

10

�
C e�2t=10

��13=2

�13

�
C e�6t=10

��3=2

3

�
:

At time t D 10, we have

y.10/ D
�
10 � .13=2/e�2 � .3=2/e�6

10 � 13e�2 C 3e�6

�
D
�
9:117

8:248

�
:

At t D 10 minutes, Tank 1 contains 9:117 pounds of salt and Tank 2 contains 8.248
pounds of salt. J

We now summarize in the following algorithm the procedure for computing the
solution to a constant coefficient first order system.

Algorithm 8. Given a constant coefficient first order system,

y 0 D Ay C f ; y.t0/ D y0

we proceed as follows to determine the solution set.

Solution Method for a Constant Coefficient
First Order System

1. Determine eAt: This may be done by the inverse Laplace transform formula
eAt D L�1

˚
.sI � A/�1



or by Fulmer’s method.

2. Determine the homogeneous part yh.t/ D eA.t�t0/y.t0/:

3. Determine the particular solution yp.t/ D R t

t0
eA.t�u/f .u/ du. It is some-

times useful to use eA.t�u/ D eAte�Au.

4. The general solution is yg D yh C yp.
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Eigenvectors and Eigenvalues

When the initial condition y0 D v is an eigenvector for A, then the solution to
y 0 D Ay , y.0/ D v, takes on a very simple form.

Lemma 9. Suppose A is an n � n matrix and v is an eigenvector with eigenvalue
�. Then the solution to

y 0 D Ay; y.0/ D v

is
y D e�t v:

In other words,
eAtv D e�t v:

Proof. Let y.t/ D e�t v. Then y0.t/ D �e�t v and Ay.t/ D e�t Av D �e�t v.
Therefore, y 0.t/ D Ay.t/. By the uniqueness and existence theorem, we have

eAtv D e�t v: ut

Example 10. Let A D
�
1 2

2 4

�
. Find the solution to

y 0.t/ D Ay.t/; y.0/ D
�
1

2

�
:

I Solution. We observe that

�
1

2

�
is an eigenvector of A with eigenvalue 5:

�
1 2

2 4

� �
1

2

�
D
�

5

10

�
D 5

�
1

2

�
:

Thus,

y.t/ D e5t

�
1

2

�
;

is the unique solution to y 0 D Ay, y.0/ D
�
1

2

�
. J

More generally, we have

Theorem 11. Suppose v D c1v1 C � � � C ckvk , where v1, : : :, vk are eigenvectors of
A with corresponding eigenvalues �1; : : : ; �k . Then the solution to

y 0 D Ay; y.0/ D v
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is
y D c1e�1t v1 C � � � C c2e�kt vk:

Proof. By Theorem 2, the solution is y.t/ D eAtv. By linearity and Lemma 9, we get

y.t/ D eAtv D c1eAtv1 C � � � C ckeAt vk

D c1e�1tv1 C � � � C cke�kt vk: ut

Existence and Uniqueness Theorems

We conclude this section with the existence and uniqueness theorems referred to
earlier in the text, namely, Theorem 10 of Sect. 3.1 and Theorem 5 of Sect. 4.1.

For convenience of expression, we will say that an R
n-valued function f is an

exponential polynomial if each component fi of f is an exponential polynomial.
Similarly, we say that an R

n-valued function f is of exponential type if each
component fi of f is of exponential type.

Corollary 12. Suppose f is an exponential polynomial. Then the solution to

y 0.t/ D Ay.t/ C f .t/; y.t0/ D y0

is an exponential polynomial defined on R.

Proof. The formula for the solution is given by (7) in Theorem 2. Each entry in
eAt is an exponential polynomial. Therefore, each entry of eA.t�t0/ D eAte�At0 is
a linear combination of entries of eAt, hence an exponential polynomial. It follows
that eA.t�t0/y0 is an exponential polynomial. The function u ! eA.t�u/f .u/ is a
translation and product of exponential polynomials. Thus, by Exercises 34 and 35
of Sect. 2.7 it is in E , and by Exercise 37 of Sect. 2.7 we have

R t

t0
eA.t�u/f .u/ du is

in E . Thus, each piece in (7) is an exponential polynomial so the solution y.t/ is an
exponential polynomial. ut
Corollary 13. Suppose f is of exponential type. Then the solution to

y 0.t/ D Ay.t/ C f .t/; y.t0/ D y0

is of exponential type.

Proof. By Proposition 1 of Sect. 2.2, Exercise 37 of Sect. 2.2, and Lemma 4 of Sect.
2.2, we find that sums, products, and integrals of functions that are of exponential
type are again of exponential type. Reasoning as above, we obtain the result. ut
Theorem 14 (The Existence and Uniqueness Theorem for Constant Coefficient
Linear Differential Equations). Suppose f .t/ is a continuous real-valued func-
tion on an interval I . Let t0 2 I . Then there is a unique real-valued function y
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defined on I satisfying

any.n/ C an�1y.n�1/ C � � � a1y
0 C a0y D f .t/; (15)

with initial conditions y.t0/ D y0, y0.t0/ D y1, : : : y.n�1/ D yn�1. If f .t/ is of
exponential type, so is the solution y.t/ and its derivatives y.i/.t/, for i D 1, : : :,
n � 1. Furthermore, if f .t/ is in E , then y.t/ is also in E .

Proof. We may assume an D 1 by dividing by an, if necessary. Let y1 D y, y2 D
y0, : : : , yn D y.n�1/, and let y be the column vector with entries y1, : : :, yn. Then
y0

1 D y0 D y2, : : : , y0
n�1 D y.n�1/ D yn, and

y0
n D y.n/ D �a0y � a1y0 � a2y00 � � � � � an�1y.n�1/ C f

D �a0y1 � a1y2 � a2y3 � � � � � an�1yn C f:

It is simple to check that y is a solution to (15) if and only if y is a solution to (1),
where

A D

2
666664

0 1 0 � � � 0

0 0 1 � � � 0
:::

:::

0 0 � � � 0 1

�a0 �a1 � � � �an�2 �an�1

3
777775

; f D

2
666664

0

0
:::

0

f

3
777775

; and y0 D

2
666664

y0

y1

:::

yn�2

yn�1

3
777775

:

By Theorem 2, there is a unique solution y. The first entry, y, in y is the unique
solution to (15). If f is an exponential polynomial, then f is likewise, and
Corollary 12 implies that y is an exponential polynomial. Hence, y1 D y, y2 D y0,
: : :, yn D y.n�1/ are all exponential polynomials. If f is of exponential type, then
so is f , and Corollary 13 implies y is of exponential type. This, in turn, implies y,
y0, : : : , yn�1 are each of exponential type. ut
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Exercises

1–9. Solve the homogeneous systems y 0 D Ay , y.0/ D y0, for the given A

and y0.

1. A D
��1 0

0 3

�
; y.0/ D

�
1

�2

�

2. A D
�

0 2

�2 0

�
; y.0/ D

�
1

�1

�

3. A D
�
2 1

0 2

�
; y.0/ D

��1

2

�

4. A D
��1 2

�2 �1

�
; y.0/ D

�
1

0

�

5. A D
�
2 �1

3 �2

�
; y.0/ D

�
1

3

�

6. A D
�
2 �5

1 �2

�
; y.0/ D

�
1

�1

�

7. A D
�
3 �4

1 �1

�
; y.0/ D

�
1

1

�

8. A D
2
4

�1 0 3

0 2 0

0 0 1

3
5; y.0/ D

2
4

1

1

2

3
5

9. A D
2
4

0 4 0

�1 0 0

1 4 �1

3
5; y.0/ D

2
4

2

1

2

3
5

10–17. Use Corollary 3 to solve y 0 D Ay C f for the given matrix A, forcing
function f , and initial condition y.0/.

10. A D
�
2 �1

3 �2

�
, f .t/ D

�
et

et

�
, y.0/ D

�
1

3

�

11. A D
��1 2

�2 �1

�
, f .t/ D

�
5

0

�
, y.0/ D

�
1

0

�

12. A D
�
2 �5

1 �2

�
, f .t/ D

�
2 cos t

cos t

�
, y.0/ D

�
1

�1

�

13. A D
��1 �4

1 �1

�
, f .t/ D

�
4

1

�
, y.0/ D

�
2

�1

�

14. A D
�
2 1

1 2

�
, f .t/ D

�
et

�et

�
, y.0/ D

�
1

1

�

15. A D
�

5 2

�8 �3

�
, f .t/ D

�
t

�2t

�
, y.0/ D

�
0

1

�
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16. A D
2
4

�2 2 1

0 �1 0

2 �2 �1

3
5, f .t/ D

2
4

e�2t

0

�e�2t

3
5, y.0/ D

2
4

2

1

1

3
5

17. A D
2
4

0 1 1

1 1 �1

�2 1 3

3
5, f .t/ D

2
4

e2t

e2t

�e2t

3
5, y.0/ D

2
4

0

0

0

3
5

18–21. Solve each mixing problem.

18. Two tanks are interconnected as illustrated below.

Tank 1 Tank 2

2
gal
min

2
gal
min

→

→

Assume that Tank 1 contains 1 gallon of brine in which 4 pounds of salt
are initially dissolved and Tank 2 initially contains 1 gallon of pure water.
Moreover, at time t D 0, the mixtures are pumped between the two tanks,
each at a rate of 2 gal/min. Assume the mixtures are well stirred. Let y1.t/ be
the amount of salt in Tank 1 at time t and let y2.t/ be the amount of salt in
Tank 2 at time t . Determine y1, y2. Find the amount of salt in each tank after 30

seconds.
19. Two tanks are interconnected as illustrated below.

Tank 2Tank 1

2
gal
min

2
gal
min

2
gal
min

→

→

→

Assume that Tank 1 contains 1 gallon of brine in which 4 pounds of salt is
initially dissolved and Tank 2 contains 2 gallons of pure water. Moreover, the
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mixture from Tank 1 is pumped into Tank 2 at a rate of 2 gal/min. Assume that
a brine mixture containing 1 lb salt/gal enters Tank 1 at a rate of 2 gal/min and
the well-stirred mixtures in both tanks are removed from Tank 2 at the same
rate. Let y1.t/ be the amount of salt in Tank 1 at time t and let y2.t/ be the
amount of salt in Tank 2 at time t . Determine y1 and y2. Determine when the
concentration of salt in Tank 2 is 1=2 lbs/gal.

20. Two tanks are interconnected as illustrated below.

Tank 1 Tank 2

1 gal
min

2
gal
min

2
gal
min

→

→

→
←

←

1
gal
min

1
gal
min

Assume that Tank 1 contains 1 gallon of pure water and Tank 2 contains 1 gallon
of brine in which 4 pounds of salt is initially dissolved. Moreover, the mixture
from Tank 1 is pumped into Tank 2 at a rate of 1 gal/min. Assume that a brine
mixture containing 4 lb salt/gal enters Tank 1 at a rate of 2 gal/min and pure
water enters Tank 2 at a rate of 1 gal/min. Assume the tanks are well stirred.
Brine is removed from Tank 1 at the rate 1 gal/min and from Tank 2 at a rate of
2 gal/min. Let y1.t/ be the amount of salt in Tank 1 at time t and let y2.t/ be
the amount of salt in Tank 2 at time t . Determine y1 and y2. Determine when
the amount of salt in Tank 2 is at a minimum. What is the minimum?

21. Two tanks are interconnected as illustrated below.

Tank 1 Tank 2

3

5

2 2

4 gal
min→

→

→

←

←

gal
min

gal
min

gal
min

gal
min
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Assume initially that Tank 1 and Tank 2 each contains 1 gallon of pure water.
Moreover, the mixture from Tank 1 is pumped into Tank 2 at a rate of 5 gal/min
and the mixture from Tank 2 is pumped into Tank 1 at a rate of 3 gal/min.
Assume that a brine mixture containing 1 lb salt/gal enters both tanks at a rate
of 2 gal/min. Assume the tanks are well stirred. Brine is removed from Tank 2
at the rate 4 gal/min. Let y1.t/ be the amount of salt in Tank 1 at time t and let
y2.t/ be the amount of salt in Tank 2 at time t . Determine y1 and y2.
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9.6 The Phase Plane

This section addresses some of the qualitative features of homogeneous solutions
to constant coefficient systems of differential equations. We restrict our attention to
the case n D 2 and write the dependent variables in the form

z.t/ D
�
x.t/

y.t/

�
:

Thus, if z.0/ D z0, then the initial value problem that we consider is

z0.t/ D Az.t/; z.0/ D z0; (1)

where A is a 2 � 2 matrix. We will think of each z.t/ as a point .x.t/; y.t// in the
Euclidean plane, usually referred to as the phase plane in this context.3 The set of
points f.x.t/; y.t// W t 2 Rg traces out a path or orbit, and to each path, we can
associate a direction: the one determined by t increasing. Such directed paths are
called trajectories. The phase portrait shows trajectories for various initial values
in the phase plane. The shape of the paths, the direction of the trajectories, and
equilibrium solutions are some of the qualitative features in which we are interested.
As we will see, the eigenvalues of A play a decisive role in determining many of
important characteristics of the phase portrait.

Affine Equivalence

Our study of the phase portrait for z0 D Az can be simplified by considering an
affine equivalent system w0 D Bw, where B is a 2 � 2 matrix that has a particularly
simple form. Let P be a 2 � 2 invertible matrix. The change in variables

z D P w (2)

is called an affine transformation. 4More specifically, if

P D
�
p11 p12

p21 p22

�
; z D

�
x

y

�
; and w D

�
u
v

�
;

3See the article “The Tangled Tale of Phase Space” by David D. Nolte (published in Physics Today,
April 2010) for an account of the history of ‘phase space’.
4More generally, an affine transformation is a transformation of the form z D P w C w0, where
P is an invertible matrix and w0 is a fixed translation vector. For our purposes, it will suffice to
assume w0 D 0.
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then the equation z D P w becomes

x D p11u C p12v;

y D p21u C p22v:

Since P is invertible, we also have w D P �1z. Thus, we are able to go from one set
of variables to the other. Since P is a constant matrix, we have the following

w0 D P �1z0 D P �1Az D P �1AP w: (3)

If we set B D P �1AP , then (3) becomes

w0 D Bw (4)

and the associated initial condition becomes w0 D w.0/ D P �1z0: Once w is
determined, we are able to recover z by the equation z D P w, and vice versa, once
z is determined, we are able to recover w by the equation w D P �1z. The idea is
to find an affine transformation P in such a way that B D P �1AP is particularly
simple, for example, diagonal, something “close to diagonal”, or something that
is distinctively simple5 (see “Jordan Canonical Forms” below for a description of
exactly what we mean). Two matrices A and B are called similar if there is an
invertible matrix P such that B D P �1AP .

Affine transformations are important for us because certain shapes in the .u; v/

phase plane are preserved in the .x; y/ phase plane. Specifically, if z D P w is an
affine transformation, then

1. A line in the .u; v/ phase plane is transformed to a line in the .x; y/ phase plane.
If the line in the .u; v/ plane goes through the origin, then so does the transformed
line.

2. An ellipse in the .u; v/ phase plane is transformed to an ellipse in the .x; y/ phase
plane. (In particular, a circle is transformed to an ellipse.)

3. A spiral in the .u; v/ phase plane is transformed to a spiral in the .x; y/ phase
plane.

4. A power curve6 in the .u; v/ phase plane is transformed to a power curve in the
.x; y/ phase plane, for example, parabolas and hyperbolas.

5. A tangent line L to a curve C in the .u; v/ phase plane is transformed to the
tangent line P.L/ to the curve P.C / in the .x; y/ phase plane.

5Many texts take this approach to solve constant coefficient systems. Our development of the
Laplace transform allows us to get at the solution rather immediately. However, to understand
some of the qualitative features, we make use of the notion of affine equivalence.
6By a power curve we mean the graph of a relation Ax C By D .Cx C Dy/p , where p is a real
number and all constants and variables are suitably restricted so the power is well defined.
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6. A curve C that lies in a region R in the .u; v/ phase plane is transformed to a
curve P.C / that lies in the region P.R/ in the .x; y/ phase plane.

You will be guided through a proof of these statements in the exercises. In view
of the discussion above, we say that the phase portraits of z0 D Az and z0 D Bz are
affine equivalent if A and B are similar.

To illustrate the value of affine equivalence, consider the following example.

Example 1. Discuss the phase portrait for the linear differential system

z0.t/ D Az.t/;

where

A D
�
4 1

2 5

�
:

I Solution. The characteristic polynomial of A is cA.s/ D s2 � 9s C 18 D .s � 3/

.s � 6/. The eigenvalues of A are thus 3 and 6. By Fulmer’s method, we have eAt D
M e3t C N e6t from which we get

I D M C N

A D 3M C 6N:

From these equations, it follows that

M D 1

3
.6I � A/ D 1

3

�
2 �1

�2 1

�

N D 1

3
.A � 3I / D 1

3

�
1 1

2 2

�
:

Hence,

eAt D 1

3

�
2 �1

�2 1

�
e3t C 1

3

�
1 1

2 2

�
e6t :

A short calculation gives the solution to z0.t/ D Az.t/ with initial value z.0/ D�
c1

c2

�
as

x.t/ D 1

3
.2c1 � c2/e3t C 1

3
.c1 C c2/e6t

y.t/ D �1

3
.2c1 � c2/e3t C 2

3
.c1 C c2/e

6t (5)
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The orbits f.x.t/; y.t// W t 2 Rg are difficult to describe in general except for a
few carefully chosen initial values. Notice that

1. If c1 D 0 and c2 D 0, then x.t/ D y.t/ D 0 so that the origin .0; 0/ is a
trajectory.

2. If c2 D �c1 ¤ 0, then x.t/ D c1e3t and y.t/ D �c1e3t . This means that the
trajectory is of the form

.x.t/; y.t// D .c1e3t ; �c1e3t / D c1e3t .1; �1/:

The function e3t is positive and increasing as a function of t . Thus, if c1 is
positive, then the trajectory is a half-line in the fourth quadrant consisting of all
positive multiples of the vector .1; �1/ and pointing away from the origin. This
is the trajectory marked A in Fig. 9.1 in the .x; y/ phase plane. If c1 is negative,
then the trajectory is a half-line in the second quadrant consisting of all positive
multiples of the vector .�1; 1/ and pointing away from the origin.

3. If c2 D 2c1 ¤ 0, then x.t/ D c1e6t and y.t/ D 2c1e6t . This means that the
trajectory is of the form

.x.t/; y.t// D .c1e6t ; 2c1e6t / D c1e6t .1; 2/:

Again e6t is positive and increasing as a function of t . Thus, if c1 is positive, the
trajectory is a half-line in the first quadrant consisting of all positive multiples of
the vector .1; 2/ and pointing away from the origin. This is the trajectory marked
D in Fig. 9.1 in the .x; y/ phase plane. If c1 is negative, then the trajectory is
a half-line in the third quadrant consisting of all positive multiples of the vector
.�1; �2/ and pointing away from the origin.

For initial values other than the ones listed above, it is rather tedious to directly
describe the trajectories. Notice though how a change in coordinates simplifies
matters significantly. In (5), we can eliminate e6t by subtracting y(t) from twice
x.t/ and we can eliminate e3t by adding x.t/ and y.t/. We then get

2x.t/ � y.t/ D .2c1 � c2/ e3t D k1e3t ;

x.t/ C y.t/ D .c1 C c2/ e6t D k2e6t ; (6)

where k1 D 2c1 � c2 and k2 D c1 C c2. Now let

u D 2x � y

v D x C y
D
�
2 �1

1 1

� �
x

y

�
:

The matrix

�
2 �1

1 1

�
is invertible and we can thus solve for

�
x

y

�
to get
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A

B

CD

(u,v) phase plane

u =  3u

v =  6v

A

B

C

D

(x,y) phase plane

x =   4x  +  y
y =   2x  +  5y

Fig. 9.1 Affine equivalent phase portraits

�
x

y

�
D 1

3

�
1 1

�1 2

� �
u
v

�
:

Let P D 1

3

�
1 1

�1 2

�
: This is the affine transformation that implements the change

in variables that we need. A simple calculation gives

B D P �1AP D 1

3

�
2 �1

1 1

� �
4 1

2 5

� �
1 1

�1 2

�
D
�
3 0

0 6

�
; (7)

a diagonal matrix consisting of the eigenvalues 3 and 6.
We make an important observation about P here: Since A has two distinct

eigenvalues, there are two linearly independent eigenvectors. Notice that the first
column of P is an eigenvector with eigenvalue 3 and the second column is an
eigenvector with eigenvalue 6. The importance of this will be made clear when we
talk about Jordan canonical forms below.

If w D
�

u
v

�
, then

w0 D Bw;

and the initial condition is given by

w.0/ D P �1z.0/ D
�
2 �1

1 1

� �
c1

c1

�
D
�
2c1 � c2

c1 C c2

�
D
�
k1

k2

�
:
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The equations for w0 D Bw are simply

u0 D 3u;

v0 D 6v:

The solutions can be computed directly and are

u.t/ D k1e3t and v.t/ D k2e6t ;

which are also consistent with (6). In these variables, it is a simple matter to compute
the phase portrait. Let us first take care of some special cases. Notice that

1. If k1 D 0 and k2 D 0, then u.t/ D v.t/ D 0 so that the origin .0; 0/ is a
trajectory.

2. If k1 ¤ 0 and k2 D 0, then the trajectory is of the form

.u.t/; v.t// D k1e3t .1; 0/:

As before, we observe that e3t is positive and increasing. Thus, if k1 is positive,
the trajectory is the positive u-axis pointing away from the origin. This is the
trajectory marked A in Fig. 9.1 in the .u; v/ phase plane. If k1 is negative, then
the trajectory is the negative u-axis pointing away from the origin.

3. If k1 D 0 and k2 ¤ 0 then the trajectory is of the form

.u.t/; v.t// D k2e6t .0; 1/:

Again e6t is positive and increasing. Thus if k2 is positive, then the trajectory is
the positive y-axis pointing away from the origin. This is the trajectory marked
D in Fig. 9.1 in the .u; v/ phase plane. If k2 is negative, then the trajectory is the
negative y-axis pointing away from the origin.

Now assume k1 ¤ 0 and k2 ¤ 0. Since e3t and e6t take on all positive real
numbers and are increasing, the trajectories .u.t/; v.t// D .k1e3t ; k2e6t / are located
in the quadrant determined by the initial value .k1; k2/ and are pointed in the
direction away from the origin. To see what kinds of curves arise, let us determine
how u.t/ and v.t/ are related. For notation’s sake, we drop the “t” in u.t/ and v.t/.
Observe that k2u2 D k2

1k2e6t D k2
1v, and hence,

v D k2

k2
1

u2:

Hence, a trajectory is that portion of a parabola that lies in the quadrant determined
by the initial value .k1; k2/. In Fig. 9.1, the two trajectories marked B and C are
those trajectories that go through .4; 3/ and .1; 1/, respectively. The other unmarked
trajectories are obtained from initial values, .˙1; ˙1/ and .˙4; ˙3/.
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Now to determine the trajectories in the .x; y/ phase plane for z0 D Az, we utilize
the affine transformation P. Since

P

�
u
v

�
D u

3

�
1

�1

�
C v

3

�
1

2

�
;

it follows that the region determined by the first quadrant in the .u; v/ phase plane
transforms to the region consisting of all sums of nonnegative multiples of .1; �1/

and nonnegative multiples of .1; 2/. We have shaded those regions in Fig. 9.1. An
affine transformation such as P transforms parabolas to parabolas and preserves
tangent lines. The parabola marked B in the .u; v/ plane lies in the first quadrant
and is tangent to the trajectory marked A at the origin. Therefore, the transformed
trajectory in the .x; y/ phase plane must (1) lie in the shaded region, (2) be a
parabola, and (3) be tangent to trajectory A at the origin. It is similarly marked
B. Now consider the region between trajectory B and D in the .u; v/ phase plane.
Trajectory C lies in this region and must therefore transform to a trajectory which
(1) lies in the region between trajectory B and D in the .x; y/ phase plane, (2)
is a parabola, and (3) is tangent to trajectory A at the origin. We have marked it
correspondingly C. The analysis of the other trajectories in the .u; v/ phase plane is
similar; they are each transformed to parabolically shaped trajectories in the .x; y/

phase plane. J

Jordon Canonical Forms

In the example above, we showed by (7) that A is similar to a diagonal matrix. In
general, this cannot always be done. However, in the theorem below, we show that
A is similar to one of four forms, called the Jordan Canonical Forms.

Theorem 2. Let A be a real 2 � 2 matrix. Then there is an invertible matrix P so
that P �1AP is one of the following matrices:

1. J1 D
�
�1 0

0 �2

�
,
�1; �2 2 R

�1 ¤ �2

;

2. J2 D
�
� 0

1 �

�
, � 2 R;

3. J3 D
�
� 0

0 �

�
, � 2 R,

4. J4 D
�

˛ �ˇ

ˇ ˛

�
, ˛ 2 R; ˇ > 0.

Furthermore, the affine transformation P may be determined correspondingly as
follows:

1. If A has two distinct real eigenvalues, �1 and �2, then the first column of P is an
eigenvector for �1 and the second column of P is an eigenvector for �2.
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2. If A has only one real eigenvalue � with eigenspace of dimension 1, then the first
column of P may be chosen to be any vector v that is not an eigenvector and the
second column of P is .A � �I/v.

3. If A has only one real eigenvalue with eigenspace of dimension 2 then A is J3.
Hence, P may be chosen to be the identity.

4. If A has a complex eigenvalue, then one of them is of the form ˛ � iˇ with ˇ > 0.
If w is a corresponding eigenvector, then the first column of P is the real part of
w and the second column of P , is the imaginary part of w.

Remark 3. Any one of the four matrices, J1; : : : ; J4 is called a Jordan matrix.
Note that the affine transformation P is not unique.

Proof. We consider the eigenvalues of A. There are four possibilities.

1. Suppose A has two distinct real eigenvalues �1 and �2. Let v1 be an eigenvector
with eigenvalue �1 and v2 an eigenvector with eigenvalue �2. Let P D �

v1 v2

�
,

the matrix 2 � 2 matrix with v1 the first column and v2 the second column. Then

AP D �
Av1 Av2

� D �
�1v1 �2v2

� D �
v1 v2

� ��1 0

0 �2

�
D PJ1:

Now multiply both sides on the left by P �1 to get P �1AP D J1.
2. Suppose A has only a single real eigenvalue �. Then the characteristic polyno-

mial is cA.s/ D .s ��/2. Let E� be the eigenspace for � and suppose further that
E� ¤ R

2. Let v1 be a vector outside of E�. Then .A � �I/v1 ¤ 0. However, by
the Cayley-Hamilton theorem (see Appendix A.5), .A � �I/.A � �I/v1 D .A �
�I/2v1 D 0. It follows that .A � �I/v1 is an eigenvector. Let v2 D .A � �I/v1.
Then Av1 D ..A � �I/ C �I/v1 D v2 C �v1 and Av2 D �v2. Let P D �

v1 v2

�
be the matrix with v1 in the first column and v2 in the second column. Then

AP D �
Av1 Av2

� D �
v2 C �v1 �v2

� D �
v1 v2

� �� 0

1 �

�
D PJ2:

Now multiply both sides on the left by P �1 to get P �1AP D J2.
3. Suppose A has only a single real eigenvalue � and the eigenspace E� D R

2.
Then Av D �v for all v 2 R

2. This means A must already be J3 D �I .
4. Suppose A does not have a real eigenvalue. Since A is real, the two complex

eigenvalues are of the form ˛Ciˇ and ˛�iˇ, with ˇ > 0. Let w be an eigenvector
in the complex plane C2 with eigenvalue ˛ � iˇ. Let v1 be the real part of w and
v2 the imaginary part of w. Then w D v1 C iv2 and since

A.v1 C iv2/ D .˛ � iˇ/.v1 C iv2/ D .˛v1 C ˇv2/ C i.�ˇv1 C ˛v2/

we get

Av1 D ˛v1 C ˇv2;

Av2 D �ˇv1 C ˛v2:
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Let P D �
v1 v2

�
. Then

AP D �
Av1 Av2

� D �
˛v1 C ˇv2 �ˇv1 C ˛v2

� D �
v1 v2

� �˛ �ˇ

ˇ ˛

�
D PJ4:

Now multiply both sides on the left by P �1 to get P �1AP D J4. ut
Example 4. For each of the following matrices, determine an affine transformation
P so the P �1AP is a Jordan matrix:

1. A D
�

6 �2

�3 7

�
2. A D

��5 2

�2 �1

�
3. A D

��5 �8

4 3

�

I Solution. 1. The characteristic polynomial is cA.s/ D .s � 6/.s � 7/ � 6 D
s2 � 13s C 36 D .s � 4/.s � 9/. There are two distinct eigenvalues, 4 and 9. It is

an easy calculation to see that v1 D
�
1

1

�
is an eigenvector with eigenvalue 4 and

v2 D
��2

3

�
is an eigenvector with eigenvalue 9. Let

P D �
v1 v2

� D
�
1 �2

1 3

�
:

Then an easy calculation gives

P �1AP D
�
4 0

0 9

�
:

2. The characteristic polynomial is cA.s/ D .s C 3/2. Thus, � D �3 is the only

eigenvalue. Since A � �3I D
��2 2

�2 2

�
, it is easy to see that all eigenvectors are

multiples of

�
1

1

�
. Let v1 D

�
1

�1

�
. Then v1 is not an eigenvector. Let

v2 D .A � �I/v D
��2 2

�2 2

� �
1

�1

�
D
��4

�4

�
:

Let

P D �
v1 v2

� D
�

1 �4

�1 �4

�
:
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Then an easy calculation gives

P �1AP D
��3 0

1 �3

�
:

3. The characteristic polynomial is cA.s/ D s2 C 2s C 17 D .s C 1/2 C 16 so the
eigenvalues are �1 ˙ 4i . We compute an eigenvector with eigenvalue �1 � 4i .
To do this, we solve

..�1 � 4i/I � A/

�
a

b

�
D
�
0

0

�

for a and b. This is equivalent to

.4 � 4i/a C 8b D 0;

�4a C .�4 � 4i/b D 0:

If we choose b D 1, then a D �8

4 � 4i
D �8.4 C 4i/

.4 � 4i/.4 C 4i/
D �1� i . Therefore,

v D
��1 � i

1

�
D
��1

1

�
C i

��1

0

�

is an eigenvector for A with eigenvalue �1 � 4i . Let v1 D
��1

1

�
and v2 D

��1

0

�

be the real and imaginary parts of v. Let

P D �
v1 v2

� D
��1 �1

1 0

�
:

Then

P �1AP D
��1 �4

4 �1

�
: J

Notice in the following example the direct use of affine equivalence.

Example 5. Discuss the phase portrait for the linear differential system

z0.t/ D Az.t/;

where

A D
��5 �8

4 3

�
:
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I Solution. The characteristic polynomial is

cA.s/ D s2 C 2s C 17 D .s C 1/2 C 16:

It is straightforward to determine that

eAt D e�t

�
cos 4t � sin 4t 2 sin 4t

sin 4t cos 4t C sin 4t

�
:

For a given initial condition z.0/ D
�
c1

c2

�
, we have

x.t/ D e�t .c1 cos 4t C .2c2 � c1/ sin 4t/

y.t/ D e�t ..c1 C c2/ sin 4t C c2 cos 4t/:

The phase plane portrait for this system is very difficult to directly deduce without
the help of an affine transformation. In Example 4, part 3, we determined

P D
��1 �1

1 0

�

and

B D P �1AP D
��1 �4

4 �1

�
:

In the new variables z D P w, we get w0 D Bw; and the initial condition is
given by

w.0/ D P �1z.0/ D
�

0 1

�1 �1

� �
c1

c2

�
D
�

c2

�c1 � c2

�
:

Let

�
k1

k2

�
D
�

c2

�c1 � c2

�
. A straightforward calculation gives

eBt D e�t

�
cos 4t � sin 4t

sin 4t cos 4t

�

and

�
u
v

�
D eBt

�
k1

k2

�
D e�t

�
k1 cos 4t � k2 sin 4t

k1 sin 4t C k2 cos 4t

�
:
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(u,v) phase plane

u =  −u − 4v

v =    4u − v

(x,y) phase plane

x =  −5x  −  8y

y =    4x  +  3y

Fig. 9.2 Spiral phase portraits

If � is the angle made by the vector .k1; k2/ and the positive u-axis, then

cos � D k1q
k2

1 C k2
2

and sin � D k2q
k2

1 C k2
2

:

We can then express u and v as

u.t/ D
q

k2
1 C k2

2e�t .cos � cos 4t � sin � sin 4t/ D
q

k2
1 C k2

2e�t .cos.4t C �//;

v.t/ D
q

k2
1 C k2

2e�t .cos � sin 4t C sin � cos 4t/ D
q

k2
1 C k2

2e�t .sin.4t C �//;

Now observe that
u2.t/ C v2.t/ D .k2

1 C k2
2/e�2t :

If u2.t/ C v2.t/ were constant, then the trajectories would be circles. However, the
presence of the factor e�2t shrinks the distance to the origin as t increases. The
result is that the trajectory is a spiral pointing toward the origin. We show two such
trajectories in Fig. 9.2 in the .u; v/ phase plane.

Notice that the trajectories in the .u; v/ phase plane rotate one onto another. By
this we mean if we rotate a fixed trajectory, you will get another trajectory. In fact,
all trajectories can be obtained by rotating a fixed one. Specifically, if we rotate a
trajectory by an angle � . Then the matrix that implements that rotation is given by

R.�/ D
�

cos � � sin �

sin � cos �

�
:
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It is a nice property about rotation matrices that they commute. In other words, if �1

and �2 are two angles, then

R.�1/R.�2/ D R.�2/R.�1/:

Now observe that eBt D e�t R.4t/. When we apply R.�/ to w, we get

R.�/w.t/ D e�t R.�/R.4t/k D e�t R.4t/ .R.�/k/ D eBt .R.�/k/: (8)

Thus, R.�/w.t/ is the solution to w0 D Bw with just a different initial condition,
namely, R.�/k.

Now to see what is going on in .x; y/ phase plane, we use the affine map P .
In the .u; v/ phase plane, we have drawn a gray circle centered at the origin (it is
not a trajectory). Suppose its radius is k. Recall that an affine transformation maps
circles to ellipses. Specifically, since w D P �1z, we have u D y and v D �x � y.
From this we get

k2 D u2 C v2 D y2 C x2 C 2xy C y2 D x2 C 2xy C 2y2:

This equation defines an ellipse. That ellipse is drawn in gray in the .x; y/ phase
plane. The trajectories in the .x; y/ phase plane are still spirals that point toward the
origin but elongate in the direction of the semimajor axis of the ellipse. J

Critical Points

A solution for which the associated path

f.x.t/; y.t//; t 2 Rg

is just a point is called an equilibrium solution or critical point. This means then
that x.t/ D c1 and y.t/ D c2 for all t 2 R and occurs if and only if

Ac D 0; c D
�
c1

c2

�
: (9)

If A is nonsingular, that is, det A ¤ 0, then (9) implies c D 0. In the phase portrait,
the origin is an orbit and it is the only orbit consisting of a single point. On the other
hand, if A is singular, then the solutions to (9) consists of the whole plane in the
case A D 0 and a line through the origin in the case A ¤ 0. If A D 0, then the
phase portrait is trivial; each point in the plane is an orbit. If A ¤ 0 (but singular),
then each point on the line is an orbit and off that line there will be nontrivial orbits.
We will assume A is nonsingular for the remainder of this section and develop the
case where A is nonzero but singular in the exercises.
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0 < λ1 < λ2 λ1 < λ2 < 0λ1 < 0 < λ2

unstable node saddle stable node

Fig. 9.3 Phase portrait for the canonical system J1

The Canonical Phase Portraits

In view of Theorem 2, all phase portraits are affine equivalent to just a few simple
types. These types are referred to as the canonical phase portraits. There are
four of them (if we do not take into account directions associated with the paths)
corresponding to each of the four Jordan canonical forms. Let us consider each
case.

J1 W In J1, we will order the eigenvalues �1 and �2 to satisfy �1 < �2. Since
det A ¤ 0, neither �1 nor �2 are zero. The solutions to z0 D J1z are x.t/ D c1e�1t

and y.t/ D c2e�2t . Therefore, the trajectories lie on the power curve defined by

jy.t/j D K jx.t/j
�2
�1 (a similar calculation was done in Example 1). The shape of

the trajectories are determined by p D �2=�1. Refer to Fig. 9.3 for the phase portrait
for each of the following three subcases:

1. Suppose 0 < �1 < �2. Then x.t/ and y.t/ become infinite as t gets large. The
trajectories lie on the curve jyj D K jxjp , p > 1. All of the trajectories point
away from the origin; the origin is said to be an unstable node.

2. Suppose �1 < 0 < �2. Then x.t/ approaches zero while y.t/ becomes infinite as
t gets large. The trajectories lie on the curve jyj D K= jxjq , where q D �p > 0.
The origin is said to be a saddle.

3. Suppose �1 < �2 < 0. Then x.t/ and y.t/ approach zero as t gets large. The
trajectories lie on the curve jyj D K jxjp , 0 < p < 1. In this case, all the
trajectories point toward the origin; the origin is said to be a stable node.

J2 W It is straightforward to see that the solutions to z0 D J2z are x.t/ D c1e�t and
y.t/ D .c1t C c2/e�t . Observe that if c1 D 0, then x.t/ D 0 and y.t/ D c2e�t .
If c2 > 0, then the positive y-axis is a trajectory, and if c2 < 0, then the negative
y-axis is a trajectory. Now assume c1 ¤ 0. We can solve for y in terms of x as
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λ < 0
stable improper node

λ > 0
unstable improper node

Fig. 9.4 Phase portrait for
the canonical system J2

follows. In the equation, x.t/ D c1e�t , we get t D 1
�

ln


x
c1

�
. Substituting into y.t/

gives

y D x

�
ln

�
x

c1

	
C c2x

c1

: (10)

Note that if c1 > 0, then x > 0 and the trajectory lies in the right half plane, and
if c1 < 0, then x < 0 and the trajectory lies in the left half plane. An easy exercise
shows that the graph of Equation (10) has a vertical tangent at the origin; the origin
is called an improper node. Now refer to Fig. 9.4 for the phase portrait for each of
the following two subcases:

1. Suppose � < 0. Then x.t/ and y.t/ approach zero as t gets large. Thus, all
trajectories point toward the origin. In this case, the origin is stable. If c1 < 0,
then the trajectory is concave upward and has a single local minimum. If c1 > 0,
then the trajectory is concave downward and has a single local maximum.

2. Suppose � > 0. Then x.t/ and y.t/ approach infinity as t gets large. Thus,
all trajectories point away from the origin. In this case, the origin is unstable. If
c1 < 0, then the trajectory is concave downward and has a single local maximum.
If c1 > 0, then the trajectory is concave upward and has a single local minimum.

J3 W It is straightforward to see that the solutions to z0 D J3z are x.t/ D c1e�t and
y.t/ D c2e�t . Thus, the orbits are of the form .x.t/; y.t// D e�t .c1; c2/ and hence
are rays from the origin through the initial condition .c1; c2/. The origin is called a
star node. Now refer to Fig. 9.5 for the phase portrait for each of the following two
subcases:

1. If � < 0, then x.t/ and y.t/ approach zero as x gets large. All trajectories point
toward the origin. In this case, the origin is a stable star node.

2. If � > 0, then x.t/ and y.t/ approach infinity as x gets large. All trajectories
point away from the origin. In this case, the origin is an unstable star node.

J4 W By a calculation similar to the one done in Example 5, it is easy to see that the
solutions to z0 D J3z are x.t/ D e˛t .c1 cos ˇt � c2 sin ˇt/ D jcj e˛t cos.ˇt C �/
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λ < 0
stable star node

λ > 0
unstable star node

Fig. 9.5 Phase portrait for the canonical system J3

α < 0
stable spiral node

α = 0
center

α > 0
unstable spiral node

Fig. 9.6 Phase portrait for the canonical system J4

and y.t/ D e˛t .c1 sin ˇt C c2 cos ˇt/ D jcj e˛t sin.ˇt C�/, where jcj D
q

c2
1 C c2

2

and � is the angle made by the vector .c1; c2/ and the x-axis. From this it follows
that

x2 C y2 D jcj2 e2˛t

and the trajectories are spirals if ˛ ¤ 0. Now refer to Fig. 9.6 for the phase portrait
for each of the following three subcases:

1. If ˛ < 0, then x.t/ and y.t/ approach zero as t gets large. Thus, the trajectories
point toward the origin; the origin is called a stable spiral node.

2. If ˛ D 0, then x2 C y2 D jcj2 and the trajectories are circles with center at the
origin; the origin is simply called a center.

3. If ˛ > 0, then x.t/ and y.t/ approach infinity as t gets large. Thus, the
trajectories point away from the origin; the origin is called a unstable spiral
node.
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Classification of Critical Points

Now let A be any nonsingular matrix. The critical point .0; 0/ is classified as a node,
center, or saddle according to whether the critical point in its affine equivalent is a
node, center, or saddle. In like manner, we extend the adjectives proper, improper,
stable, unstable, spiral, and star. Thus, in Example 1, the origin is an unstable
node, and in Example 5, the origin is stable spiral node. Below we summarize the
classification of the critical points in terms of the eigenvalues of A.

Classification of critical points

Jordan form Eigenvalues of A Critical point

J1 W �1 ¤ �2

�1 < �2 < 0 Stable node
�1 < 0 < �2 Saddle
0 < �1 < �2 Unstable node

J2 W � ¤ 0

� < 0 Stable improper node
� > 0 Unstable improper node

J3 W � ¤ 0

� < 0 Stable star node
� > 0 Unstable star node

J4 W ˛ ˙ iˇ; ˇ > 0

˛ < 0 Stable spiral node
˛ D 0 Center
˛ > 0 Unstable spiral node

Example 6. Classify the critical points for the system z0 D Az where

1. A D
�

6 �2

�3 7

�
2. A D

��5 2

�2 �1

�
3. A D

��5 �8

4 3

�

I Solution. 1. In Example 4 part (1), we found that A is of type J1 with positive
eigenvalues, �1 D 4 and �2 D 9. The origin is an unstable node.

2. In Example 4 part (2), we found that A is of type J2 with single eigenvalue,
� D �3. Since it is negative, the origin is an improper stable node.

3. In Example 4 part (3), we found that A is of type J4 with eigenvalue, � D �1 ˙
4i . Since the real part is negative, the origin is a stable star node. J
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Exercises

1–10. For each of the following matrices A determine an affine transformation P

and a Jordan matrix J so that J D P �1AP . Then classify the critical point of A.

1. A D
�

2 3

�1 �2

�

2. A D
��3 2

�2 1

�

3. A D
��5 �2

5 1

�

4. A D
�
2 �2

4 �2

�

5. A D
�
2 0

0 2

�

6. A D
�

4 1

�1 2

�

7. A D
�

5 3

�1 1

�

8. A D
�
1 �2

4 �5

�

9. A D
�

3 1

�8 �1

�

10. A D
��3 0

0 �3

�

11–14. In the following exercises we examine how an affine transformation
preserves basic kinds of shapes. Let P be an affine transformation.

11. The general equation of a line is Du C Ev C F D 0, with D and E not both
zero. Show that the change of variable z D P w transforms a line L in the .u; v/

plane to a line P.L/ in the .x; y/ plane. If the line goes through the origin show
that the transformed line also goes through the origin.

12. The general equation of a conic section is given by

Au2 C Buv C C v2 C Du C Ev C F D 0;

where A, B , and C are not all zero. Let � D B2 � 4AC be the discriminant.
If

1. � < 0 the graph is an ellipse.
2. � D 0 the graph is a parabola.
3. � > 0 the graph is a hyperbola.
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Show that the change of variable z D P w transforms an ellipse to an ellipse, a
parabola to a parabola, and a hyperbola to a hyperbola.

13. Suppose C is a power curve, i.e., the graph of a relation Au C Bv D .C u C
Dv/p , where p is a real number and the variables are suitably restricted so the
power is well defined. Show that P.C / is again a power curve.

14. Suppose C is a differentiable curve with tangent line L at the point .u0; v0/ in
the .u; v/ plane. Show that P.L/ is a tangent line to the curve P.C / at the point
P.u0; v0/.

15–19. In this set of exercises we consider the phase portraits when A is non zero
but singular. Thus assume det A D 0 and A ¤ 0.

15. Show that A is similar to one of the following matrices:

J1 D
�
0 0

0 �

�
; � ¤ 0 or J2 D

�
0 0

1 0

�
:

(Hint: Since 0 is an eigenvalue consider two cases: the second eigenvalue is
nonzero or it is 0. Then mimic what was done for the cases J1 and J2 in
Theorem 2.)

16. Construct the Phase Portrait for J1 D
�
0 0

0 �

�
.

17. Construct the Phase Portrait for J2 D
�
0 0

1 0

�
.

18. Suppose det A D 0 and A is similar to J1. Let � be the nonzero eigenvalue.
Show that the phase portrait for A consists of equilibrium points on the zero
eigenspace and half lines parallel to the eigenvector for the nonzero eigenvalue
� with one end at an equilibrium point. If � > 0 then the half lines point away
from the equilibrium point and if � < 0 they point toward the equilibrium
point.

19. Suppose det A D 0 and A is similar to J2. Show that the phase portrait for A

consists of equilibrium points on the zero eigenspace and lines parallel to the
eigenspace.

20–23. In this set of problems we consider some the properties mentioned in the text
about the canonical phase portrait J2. Let .c1; c2/ be a point in the plane but not on

the y axis and let � ¤ 0. Let y D x

�
ln

�
x

c1

	
C c2x

c1

:

20. If c1 > 0 show lim
x!0C

y D 0 and if c1 < 0 lim
x!0�

y D 0.

21. Show that y has a vertical tangent at the origin.
22. Show that y has a single critical point.
23. Assume c1 > 0 and hence x > 0. Show y is concave upward on .0; 1/ if � > 0

and y is concave downward on .0; 1/ if � < 0.
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9.7 General Linear Systems

In this section, we consider the broader class of linear differential systems where
the coefficient matrix A.t/ in

y 0.t/ D A.t/y.t/ C f .t/ (1)

is a function of t and not necessarily a constant matrix. Under rather mild conditions
on A.t/ and the forcing function f .t/, there is an existence and uniqueness
theorem. The linearity of (1) implies that the structure of the solution set is very
similar to that of the constant coefficient case. However, it can be quite difficult to
find solution methods unless rather strong conditions are imposed on A.t/.

An Example: The Mixing Problem

The following example shows that a simple variation of the mixing problem
produces a linear differential system with nonconstant coefficient matrix.

Example 1. Two tanks are interconnected as illustrated below.

Tank1 Tank2

1

1

2

1
→

→

→

→

←

←

1

2

L
min

L
min

L
min

L
min

L
min

L
min

Assume that Tank 1 initially contains 1 liter of brine in which 8 grams of salt are
dissolved and Tank 2 initially contains 1 liter of pure water. The mixtures are then
pumped between the two tanks, 1 L/min from Tank 1 to Tank 2 and 1 L/min from
Tank 2 back to Tank 1. Assume that a brine mixture containing 6 grams salt/L enters
Tank 1 at a rate of 2 L/min, and the well-stirred mixture is removed from Tank 1 at
the rate of 1 L/min. Assume that a brine mixture containing 10 grams salt/L enters
Tank 2 at a rate of 2 L/min and the well-stirred mixture is removed from Tank 2 at
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the rate of 1 L/min. Let y1.t/ be the amount of salt in Tank 1 at time t and let y2.t/

be the amount of salt in Tank 2 at time t . Determine a linear differential system that
describes how y1, y2, and their derivatives are related.

I Solution. In this example, the amount of brine solution is not constant. The
net increase of brine in each tank is one liter per minute. Thus, if v1.t/ and v2.t/

represent the amount of brine in Tank 1 and Tank 2, respectively, then v1.t/ D
v2.t/ D 1 C t . Further, the concentration of salt in each tank is given by y1.t/

1Ct
and

y2.t/

1Ct
. As usual, y0

1 and y0
2 are the differences between the input rate of salt and the

output rate of salt, and each rate is the product of the flow rate and the concentration.
The relevant rates of change are summarized in the following table.

From To Rate
Outside Tank 1 (6 g/L)�(2 L/min) D 12 g/min

Tank 1 Outside

�
y1.t/

1 C t
g/L

	
� .1L/min/ D y1.t/

1 C t
g/min

Tank 1 Tank2

�
y1.t/

1 C t
g/L

	
� (1 L/min) D y1.t/

1 C t
g/min

Tank 2 Tank 1

�
y2.t/

1 C t
g/L

	
� (1 L/min) D y2.t/

1 C t
g/min

Tank 2 Outside

�
y2.t/

10
g/L

	
� 1 L/min D y2.t/

1 C t
g/min

Outside Tank 2 (10 g/L) � (2 L/min) D 20 g/min

The input and output rates are given as follows:

Tank Input rate Output rate

1 12 C y2.t/

1 C t

2y1.t/

1 C t

2 20 C y1.t/

1 C t

2y2.t/

1 C t

We thus obtain

y0
1.t/ D �2

1 C t
y1.t/ C 1

1 C t
y2.t/ C 12;

y0
2.t/ D 1

1 C t
y1.t/ � 2

1 C t
y2.t/ C 20:

The initial conditions are y1.0/ D 8 and y2.0/ D 0. We may now write the linear
differential system in the form

y 0 D A.t/y.t/ C f .t/; y.0/ D y0;
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where

A.t/ D

2
664

�2

1 C t

1

1 C t

1

1 C t

�2

1 C t

3
775 ; f .t/ D

�
12

20

�
; and y.0/ D

�
8

0

�
:

We will show how to solve this nonconstant linear differential system later in this
section. J

The Existence and Uniqueness Theorem

The following theorem is the fundamental result for linear systems. It guarantees
that solutions exist, and if we can find a solution to a initial value problem by any
means whatsoever, then we know that we have found the only possible solution.

Theorem 2 (Existence and Uniqueness). 7Suppose that the n�n matrix function
A.t/ and the n � 1 matrix function f .t/ are both continuous on an interval I in R.
Let t0 2 I . Then for every choice of the vector y0, the initial value problem

y 0 D A.t/y C f .t/; y.t0/ D y0;

has a unique solution y.t/ which is defined on the same interval I .

Remark 3. How is this theorem related to existence and uniqueness theorems we
have stated previously?

• If A.t/ D A is a constant matrix, then Theorem 2 is precisely Theorem 2 of Sect.
9.5 where we have actually provided a solution method and a formula.

• If n D 1, then this theorem is just Corollary 8 of Sect. 1.5. In this case, we
have actually proved the result by exhibiting a formula for the unique solution.
However, for general n, there is no formula like (15) of Sect. 1.5, unless A.t/

satisfies certain stronger conditions.
• Theorem 6 of Sect. 5.1 is a corollary of Theorem 2. Indeed, if n D 2,

A.t/ D
"

0 1

� a0.t/

a2.t/
� a1.t/

a2.t/

#
; f .t/ D

�
0

f .t/

�
; y0 D

�
y0

y1

�
; and y D

�
y

y0
�

;

7A proof of this result can be found in the text An Introduction to Ordinary Differential Equations
by Earl Coddington, Prentice Hall, (1961), Page 256.
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then the second order linear initial value problem

a2.t/y00 C a1.t/y
0 C a0.t/y D f .t/; y.t0/ D y0; y0.t0/ D y1

has the solution y.t/ if and only if the first order linear system

y 0 D A.t/y C f .t/; y.t0/ D y0

has the solution y.t/ D
�

y.t/

y0.t/

�
. You should convince yourself of the validity of

this statement.

Linear Homogeneous Differential Equations

In Theorem 4 of Sect. 9.2, we showed that each solution to (1) takes the form y D
yh C yp, where yh is a solution to the associated homogeneous system

y 0.t/ D A.t/y.t/ (2)

and yp is a fixed particular solution. We now focus on the solution set to (2).

Theorem 4. If the n�n matrix A.t/ is continuous on an interval I , then the solution
set to (2) is a linear space of dimension n. In other words,

1. There are n linearly independent solutions.
2. Given any set of n linear independent solutions f�1;�2; : : : ;�ng, then any other

solution � can be written as

� D c1�1 C � � � C cn�n

for some scalars c1, : : :, cn 2 R.

Proof. Let ei be the n � 1 matrix with 1 in the i th position and zeros elsewhere. By
the existence and uniqueness theorem, there is a unique solution,  i .t/, to (2) with
initial condition y.t0/ D ei . We claim f 1; 2; : : : ; ng is linearly independent. To
show this, let

� .t/ D �
 1.t/  2.t/ � � �  n.t/

�
: (3)

Then � is an n � n matrix of functions with � .t0/ D �
 1.t0/ � � �  n.t0/

� D�
e1 � � � en

� D I; the n � n identity matrix. Now suppose there are scalars
c1; : : : ; cn such that c1 1 C � � � C cn n D 0; valid for all t 2 I . We can reexpress
this as � .t/c D 0, where c is the column vector
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c D

2
64

c1

:::

cn

3
75 : (4)

Now evaluate at t D t0 to get c D Ic D �.t0/c D 0. This implies
f 1; 2; : : : ; ng is linearly independent. Now suppose that  is any solution to
(2). Let �.t/ D � .t/ .t0/. Then � is a linear combination of  1; : : : ; n, hence
a solution, and �.t0/ D � .t0/ .t0/ D  .t0/. Since � and  satisfy the same
initial condition, they are equal by the existence and uniqueness theorem. It follows
that every solution, y.t/, to (2) is a linear combination of  1; : : : ; n and may be
expressed as

y.t/ D � .t/y.t0/; (5)

where y.t0/ is the initial condition, expressed as a column vector.
Now suppose that f�1;�2; : : : ;�ng is any set of n linearly independent solutions

of (2). We wish now to show that any solution may be expressed as a linear
combination of f�1;�2; : : : ;�ng.8 By (5), we have

�i .t/ D � .t/�i .t0/;

for each i D 1; : : : ; n. Let ˚.t/ be the n � n matrix given by

˚.t/ D �
�1.t/ �2.t/ � � � �n.t/

�
: (6)

Now we can write
˚.t/ D � .t/˚.t0/:

We claim ˚.t0/ is invertible. Suppose not. Then there would be a column matrix c
as in (4), where c1; : : : ; cn are not all zero, such that ˚.t0/c D 0. But this implies

c1�1.t/ C � � � C cn�n.t/ D ˚.t/c D � .t/˚.t0/c D 0:

This contradicts the linear independence of f�1; : : : ;�ng. It follows that˚.t0/ must
be invertible. We can thus write

� .t/ D ˚.t/.˚.t0//
�1: (7)

Now suppose � is a solution to (2). Then (5) and (7) give

�.t/ D � .t/�.t0/ D ˚.t/.˚.t0//
�1�.t0/;

which when multiplied out is a linear combination of the �1; : : : ;�n. ut

8This actually follows from a general result in linear algebra.
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We will say that an n � n matrix function ˚.t/ is a fundamental matrix for a
homogeneous system y 0.t/ D A.t/y.t/ if its columns form a linearly independent
set of solutions, as in (6). A matrix function � .t/ is the standard fundamental
matrix at t D t0 if it is a fundamental matrix and � .t0/ D I , the n � n identity
matrix, as in (3). Given a fundamental matrix ˚.t/ Theorem 4, shows that the
solution set to the homogeneous system y 0.t/ D A.t/y.t/ is the span9 of the
columns of ˚.t/.

Theorem 5. Suppose A.t/ is an n � n continuous matrix function on an interval I .
A matrix function ˚.t/ is a fundamental matrix for y 0.t/ D A.t/y.t/ if and only if

˚ 0.t/ D A.t/˚.t/ and det˚.t/ ¤ 0;

for at least one t 2 I . If this is true for one t 2 I , it is in fact true for all t 2 I .
The standard fundamental matrix � .t/ at t D t0 is uniquely characterized by the
equations

� 0.t/ D A.t/� .t/ and � .t0/ D I:

Furthermore, given a fundamental matrix ˚.t/, the standard fundamental matrix
� .t/ at t D t0 is given by the formula

� .t/ D ˚.t/ .˚.t0//
�1 :

Proof. Suppose ˚.t/ D �
�1 � � � �n

�
is a fundamental matrix for y 0.t/ D

A.t/y.t/. Then

˚ 0.t/ D �
�0

1.t/ � � � �0
n.t/

�

D �
A.t/�1.t/ � � � A.t/�n.t/

�

D A.t/
�
�1.t/ � � � �n.t/

�

D A.t/˚.t/:

As in the proof above,˚.t0/ is invertible which implies det˚.t0/ ¤ 0. Since t0 2 I

is arbitrary, it follows that ˚.t/ has nonzero determinant for all t 2 I. Now suppose
that ˚.t/ is a matrix function satisfying ˚ 0.t/ D A.t/˚.t/ and det˚.t/ ¤ 0, for
some point, t D t0 say. Then the above calculation gives that each column �i .t/

of ˚.t/ satisfies �0
i .t/ D A.t/�.t/. Suppose there are scalars c1; : : : ; cn such that

c1�1 C � � � C cn�n D 0 as a function on I . If c is the column vector given as in (4),
then

˚.t0/c D c1�1.t0/ C � � � C cn�n.t0/ D 0:

9Recall that “span” means the set of all linear combinations.
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Since det˚.t0/ ¤ 0, it follows that˚.t0/ is invertible. Therefore, c D 0 and˚.t/ is
a fundamental matrix. Now suppose � 1 and � 2 are standard fundamental matrices
at t0. As fundamental matrices, their i th columns both are solutions to y 0.t/ D
A.t/y.t/ and evaluate to ei at t0. By the existence and uniqueness theorem, they are
equal. It follows that the standard fundamental matrix is unique. Finally, (7) gives
the final statement � .t/ D ˚.t/ .˚.t0//�1. ut

In the case A.t/ D A is a constant, the matrix exponential eAt is the standard
fundamental matrix at t D 0 for the system y 0 D Ay . This follows from
Lemma 9.5.1. More generally, eA.t�t0/ is the standard fundamental matrix at t D t0.

Example 6. Show that

˚.t/ D
�

e2t e�t

2e2t �e�t

�

is a fundamental matrix for the system y 0 D
�
0 1

2 1

�
y . Find the standard

fundamental matrix at t D 0.

I Solution. We first observe that

˚ 0.t/ D
�

e2t e�t

2e2t �e�t

�0
D
�
2e2t �e�t

4e2t e�t

�

and

A˚.t/ D
�
0 1

2 1

� �
e2t e�t

2e2t �e�t

�
D
�
2e2t �e�t

4e2t e�t

�
:

Thus,˚ 0.t/ D A˚.t/. Observe also that

˚.0/ D
�
1 1

2 �1

�

and this matrix has determinant �3. By Theorem 5, ˚.t/ is a fundamental matrix.
The standard fundamental matrix at t D 0 is given by

� .t/ D ˚.t/ .˚.0//�1

D
�

e2t e�t

2e2t �e�t

� �
1 1

2 �1

��1

D �1

3

�
e2t e�t

2e2t �e�t

� ��1 �1

�2 1

�

D 1

3

�
e2t C 2e�t e2t � e�t

2e2t � 2e�t 2e2t C e�t

�
:
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The reader is encouraged to compute eAt where A D
�
0 1

2 1

�
and verify that

� .t/ D eAt. J
Example 7. Show that

˚.t/ D
�

t2 t3

2t 3t2

�

is a fundamental matrix for the system y 0 D A.t/y where

A.t/ D
�

0 1

�6=t2 4=t

�
:

Solve the system with initial condition y.1/ D
�
3

7

�
. Find the standard fundamental

matrix at t D 1.

I Solution. Note that

˚ 0.t/ D
�
2t 3t2

2 6t

�
D
�

0 1

�6=t2 4=t

� �
t2 t3

2t 3t2

�
D A.t/˚.t/;

while

det˚.1/ D
�
1 1

2 3

�
D 1 ¤ 0:

Hence, ˚.t/ is a fundamental matrix. The general solution is of the form y.t/ D
˚.t/c, where c D

�
c1

c2

�
. The initial condition implies

�
3

7

�
D
�
1 1

2 3

� �
c1

c2

�
D
�

c1 C c2

2c1 C 3c2

�
:

Solving for c gives c1 D 2 and c2 D 1. Thus,

y.t/ D 2

�
t2

2t

�
C
�

t3

3t2

�
D
�

2t2 C t3

4t C 3t2

�
:

The standard fundamental matrix is given by

� .t/ D ˚.t/ .˚.1//�1 D
�

t2 t3

2t 3t2

� �
1 1

2 3

��1
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D
�

t2 t3

2t 3t2

� �
3 �1

�2 1

�

D
�
3t2 � 2t3 �t2 C t3

6t � 6t2 �2t C 3t2

�
:

Observe that ˚.0/ D
�
0 0

0 0

�
which has determinant 0. Why does this not prevent

˚.t/ from being a fundamental matrix? J
You will recall that in Sect. 9.5, we used the inverse of the matrix exponential�

etA
��1 D e�tA as an integrating factor for the constant coefficient system y 0 D

AyCf . As observed above, the matrix exponential etA is the standard fundamental
matrix at t D 0. In the more general context, we will show that the inverse of any
fundamental matrix˚.t/ is an integrating factor for the system y 0.t/ D A.t/y.t/C
f .t/. To show this, however, particular care must be taken when calculating the
derivative of the inverse of a matrix-valued function.

Lemma 8. Suppose ˚.t/ is a differentiable and invertible n � n matrix-valued
function. Then

d

dt
.˚.t//�1 D �.˚.t//�1˚ 0.t/.˚.t//�1:

Remark 9. Observe the order of the matrix multiplications. We are not assuming
that ˚.t/ and its derivative˚ 0.t/ commute.

Proof. We apply the definition of the derivative:

d

dt
.˚.t//�1 D lim

h!0

.˚.t C h//�1 � .˚.t//�1

h

D lim
h!0

.˚.t C h//�1 ˚.t/ �˚.t C h/

h
.˚.t//�1

D � .˚.t C h//�1 lim
h!0

˚.t C h/ �˚.t/

h
.˚.t//�1

D �.˚.t//�1˚ 0.t/.˚.t//�1:

The second line is just a careful factoring of the first line. To verify this step, simply
multiply out the second line. ut

If ˚.t/ is a scalar-valued function, then Lemma 8 reduces to the usual chain rule
formula, d

dt .˚.t//�1 D �.˚.t//�2˚ 0.t/, since ˚ and ˚ 0 commute. For a matrix-
valued function, we may not assume that ˚ and ˚ 0 commute.
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Nonhomogeneous Linear Systems

We are now in a position to consider the solution method for the general linear
system y 0.t/ D A.t/y.t/ C f .t/ which we write in the form

y 0.t/ � A.t/y.t/ D f .t/: (8)

Assume A.t/ and f .t/ are continuous on an interval I and an initial condition
y.t0/ D y0 is given. Suppose ˚.t/ is a fundamental matrix for the associated
homogeneous system y 0.t/ D A.t/y.t/. Then .˚.t//�1 will play the role of an
integrating factor and we will be able mimic the procedure found in Sect. 1.4. First
observe from Lemma 8 and the product rule that we get

�
.˚.t//�1y.t/

�0 D .˚.t//�1y 0.t/ � .˚.t//�1˚ 0.t/.˚.t//�1y.t/

D .˚.t//�1y 0.t/ � .˚.t//�1A.t/˚.t/.˚.t//�1y.t/

D .˚.t//�1y 0.t/ � .˚.t//�1A.t/y.t/

D .˚.t//�1.y 0.t/ � A.t/y.t//:

Thus, multiplying both sides of (8) by .˚.t//�1 gives

�
.˚.t//�1y.t/

�0 D .˚.t//�1f .t/:

Now change the variable from t to u and integrate both sides from t0 to t where
t 2 I . We get

Z t

t0

�
.˚.u//�1y.u/

�0
du D

Z t

t0

.˚.u//�1f .u/ du:

The left side simplifies to
�
˚.t/�1y.t/

�� �˚.t0/
�1y.t0/

�
. Solving for y.t/, we get

y.t/ D ˚.t/.˚.t0//�1y0 C˚.t/

Z t

t0

.˚.u//�1f .u/ du:

It is convenient to summarize this discussion in the following theorem.

Theorem 10. Suppose A.t/ is an n�n matrix-valued function on an interval I and
f .t/ is a R

n-valued valued function, both continuous on an interval I . Let ˚.t/ be
any fundamental matrix for y 0.t/ D A.t/y.t/ and let t0 2 I . Then

y.t/ D ˚.t/.˚.t0//
�1y0 C˚.t/

Z t

t0

.˚.u//�1f .u/ du; (9)
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is the unique solution to

y 0.t/ D A.t/y.t/ C f .t/; y.t0/ D y0:

Analysis of the General Solution Set

The Particular Solution

When we set y0 D 0, we obtain a single fixed solution which we denote by yp.
Specifically,

yp.t/ D ˚.t/

Z t

t0

.˚.u//�1f .u/ du: (10)

This is called a particular solution.

The Homogeneous Solution

When we set f D 0, we get the homogeneous solution yh. Specifically,

yh.t/ D ˚.t/.˚.t0//
�1y0: (11)

Recall from Theorem 5 that the standard fundamental matrix at t0 is � .t/ D
˚.t/.˚.t0//

�1. Thus, the homogeneous solution with initial value yh.t0/ D y0

is given by
yh.t/ D � .t/y0:

On the other hand, if we are interested in the set of homogeneous solutions, then we
let y0 vary. However, Theorem 5 states the ˚.t0/ is invertible so as y0 varies over
R

n, so does .˚.t0//
�1y0. Thus, if we let c D .˚.t0//

�1y0, then we have that the
set of homogeneous solution is

f˚.t/c W c 2 R
ng :

In other words, the set of homogeneous solution is the set of all linear combinations
of the columns of ˚.t/, as we observed earlier.

Example 11. Solve the system y 0.t/ D A.t/y.t/ C f .t/ where

A.t/ D
�

0 1

�6=t2 4=t

�
and f .t/ D

�
t2

t

�
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I Solution. In Example 7, we verified that

˚.t/ D
�

t2 t3

2t 3t2

�

is a fundamental matrix. It follows that the homogeneous solutions are of the form

yh.t/ D c1

�
t2

2t

�
C c2

�
t3

3t2

�
;

where c1 and c2 are real scalars. To find the particular solution, it is convenient to
set t0 D 1 and use (10). We get

yp.t/ D ˚.t/

Z t

1

.˚.u//�1f .u/ du

D ˚.t/

Z t

1

�
3=u2 �1=u

�2=u3 1=u2

� �
u2

u

�
du

D ˚.t/

Z t

1

�
2

�1=u

�
du

D
�

t2 t3

2t 3t2

� �
2.t � 1/

� ln t

�

D
�

2t3 � 2t2 � t3 ln t

4t2 � 4t � 3t2 ln t

�
D �2

�
t2

2t

�
C 2

�
t3

3t2

�
C
� �t3 ln t

�2t2 � 3t2 ln t

�
:

It follows that the general solution may be written as

y.t/ D yh.t/ C yp.t/

D .c1 � 2/

�
t2

2t

�
C .c2 C 2/

�
t3

3t2

�
C
� �t3 ln t

�2t2 � 3t2 ln t

�

D C1

�
t2

2t

�
C C2

�
t3

3t2

�
C
� �t3 ln t

�2t2 � 3t2 ln t

�
;

where the last line is just a relabeling of the coefficients. In Example (7), we
computed the standard fundamental matrix � .t/. It could have been used in place
of˚.t/ in the above computations. However, the simplicity of˚.t/ made it a better
choice. J

This example emphasized the need to have a fundamental matrix in order to go
forward with the calculations of the particular and homogeneous solutions, (10)
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and (11), respectively. Computing a fundamental matrix is not always an easy task.
In order to find a closed expression for it, we must place strong restrictions on the
coefficient matrix A.t/. Let us consider one such restriction.

The Coefficient Matrix is a Functional Multiple of a Constant
Matrix

Proposition 12. Suppose a.t/ is a continuous function on an interval I . Let

A.t/ D a.t/A;

where A is a fixed n � n constant matrix. Then a fundamental matrix, ˚.t/, for
y 0.t/ D A.t/y.t/ is given by the formula

˚.t/ D eb.t/A; (12)

where b.t/ is an antiderivative of a.t/. If b.t/ D R t

t0
a.u/ du, that is, b.t/ is chosen

so that b.t0/ D 0, then (12) is the standard fundamental matrix at t0.

Proof. Let

˚.t/ D eb.t/A D I C b.t/A C b2.t/A2

2Š
C � � � :

Termwise differentiation gives

˚ 0.t/ D b0.t/A C 2b.t/b0.t/
A2

2Š
C 3b2.t/b0.t/

A3

3Š
C � � �

D a.t/A

�
I C b.t/A C b2.t/A2

2Š
C � � �

	

D A.t/˚.t/:

Since the matrix exponential is always invertible, it follows from Theorem 5 that
˚.t/ is a fundamental matrix. If b.t/ is chosen so that b.t0/ D 0, then ˚.t0/ D
eAujuD0 D I , and hence,˚.t/ is the standard fundamental matrix at t0. ut
Remark 13. We observe that ˚.t/ may be computed by replacing u in euA with
b.t/.

Example 14. Suppose A.t/ D .tan t/A, where

A D
�

2 3

�1 �2

�
:

Find a fundamental matrix for y 0.t/ D A.t/y.t/. Assume t 2 .� �
2
; �

2
/.
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I Solution. We first compute eAu. The characteristic polynomial is

cA.s/ D det .sI � A/ D det

�
s � 2 �3

1 s C 2

�
D s2 � 1 D .s � 1/.s C 1/:

It follows that BcA D feu; e�ug. Using Fulmer’s method, we have eAu D euM1 C
e�uM2. Differentiating and evaluating at u D 0 gives

I D M1 C M2;

A D M1 � M2:

It follows that M1 D 1
2
.A C I / D 1

2

�
3 3

�1 �1

�
and M2 D 1

2
.I � A/ D

1
2

��1 �3

1 3

�
. Thus,

eAu D 1

2
eu

�
3 3

�1 �1

�
C e�u

��1 �3

1 3

�
:

Since ln sec t is an antiderivative of tan t , we have by Proposition 12

˚.t/ D 1

2
eln sec t

�
3 3

�1 �1

�
C 1

2
e� ln sec t

��1 �3

1 3

�

D 1

2

�
3 sec t � cos t 3 sec t � 3 cos t

� sec t C cos t � sec t C 3 cos t

�
;

is the fundamental matrix for y 0.t/ D A.t/y.t/: J

Example 15. Solve the mixing problem introduced at the beginning of this section.
Specifically, solve

y 0 D A.t/y.t/ C f .t/; y.0/ D y0;

where

A.t/ D
2
4� 2

1Ct
1

1Ct

1
1Ct

� 2
1Ct

3
5 ; f .t/ D

�
12

20

�
; and y.0/ D

�
8

0

�
:

Determine the concentration of salt in each tank after 3 minutes. In the long term,
what are the concentrations of salt in each tank?

I Solution. Let a.t/ D 1
tC1

. Then A.t/ D a.t/A where A D
��2 1

1 �2

�
: The

characteristic polynomial of A is



9.7 General Linear Systems 715

cA.s/ D det.sI � A/ D det

�
s C 2 �1

�1 s C 2

�
D .s C 1/.s C 3/:

A short calculation gives the resolvent matrix

.sI � A/�1 D 1

.s C 1/.s C 3/

�
s C 2 1

1 s C 2

�

D 1

2.s C 1/

�
1 1

1 1

�
C 1

2.s C 3/

�
1 �1

�1 1

�

and hence

eAu D e�u

2

�
1 1

1 1

�
C e�3u

2

�
1 �1

�1 1

�
:

Since ln.t C 1/ is an antiderivative of a.t/ D 1
tC1

, we have by Proposition 12

˚.t/ D eln.tC1/A

D e� ln.tC1/

2

�
1 1

1 1

�
C e�3.ln.tC1//

2

�
1 �1

�1 1

�

D 1

2.t C 1/

�
1 1

1 1

�
C 1

2.t C 1/3

�
1 �1

�1 1

�

D 1

2.t C 1/3

�
.t C 1/2 C 1 .t C 1/2 � 1

.t C 1/2 � 1 .t C 1/2 C 1

�

a fundamental matrix for y 0.t/ D A.t/y.t/. Observe that ˚.0/ D I is the 2 � 2

identity matrix so that, in fact, ˚.t/ is the standard fundamental matrix at t D 0.
The homogeneous solution is now easily calculated:

yh.t/ D ˚.t/y0

D 1

2.t C 1/3

�
.t C 1/2 C 1 .t C 1/2 � 1

.t C 1/2 � 1 .t C 1/2 C 1

� �
8

0

�

D 4

.t C 1/3

�
.t C 1/2 C 1

.t C 1/2 � 1

�
:

A straightforward calculation gives

.˚.u//�1 D u C 1

2

�
.u C 1/2 C 1 1 � .u C 1/2

1 � .u C 1/2 .u C 1/2 C 1

�
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and

.˚.u//�1f .u/ D u C 1

2

�
.u C 1/2 C 1 1 � .u C 1/2

1 � .u C 1/2 .u C 1/2 C 1

� �
12

20

�

D
�

16.u C 1/ � 4.u C 1/3

16.u C 1/ C 4.u C 1/3

�
:

For the particular solution, we have

yp.t/ D ˚.t/

Z t

0

.˚.u//�1f .u/ du

D ˚.t/

"
8.u C 1/2 � .u C 1/4

8.u C 1/2 C .u C 1/4

#ˇ̌
ˇ̌
ˇ
t

0

D 1

2.t C 1/3

"
.t C 1/2 C 1 .t C 1/2 � 1

.t C 1/2 � 1 .t C 1/2 C 1

#"
8.t C 1/2 � .t C 1/4 � 7

8.t C 1/2 C .t C 1/4 � 9

#

D 1

.t C 1/3

�
7.t C 1/4 � 8.t C 1/2 C 1

9.t C 1/4 � 8.t C 1/2 � 1

�
:

Putting the homogeneous and particular solutions together gives

y.t/ D yh.t/ C yp.t/

D 4

.t C 1/3

�
.t C 1/2 C 1

.t C 1/2 � 1

�
C 1

.t C 1/3

�
7.t C 1/4 � 8.t C 1/2 C 1

9.t C 1/4 � 8.t C 1/2 � 1

�

D 1

.t C 1/3

�
7.t C 1/4 � 4.t C 1/2 C 5

9.t C 1/4 � 4.t C 1/2 � 5

�
:

Finally, the amount of fluid in each tank is v1.t/ D v2.t/ D t C 1. Thus, the
concentration of salt in each tank is given by

1

t C 1
y.t/ D 1

.t C 1/4

�
7.t C 1/4 � 4.t C 1/2 C 5

9.t C 1/4 � 4.t C 1/2 � 5

�
:

Evaluating at t D 3 gives concentrations

"
1733
256

2235
256

#
D
"

6:77

8:73

#
:
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In the long term, the concentrations are obtained by taking limits

lim
t!1

1

.t C 1/4

�
7.t C 1/4 � 4.t C 1/2 C 5

9.t C 1/4 � 4.t C 1/2 � 5

�
D
�
7

9

�
:

Of course, the tank overflows in the long term, but for a sufficiently large tank,
we can expect that the concentrations in each tank will be near 7g/L and 9g/L,
respectively, for large values of t . J
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Exercises

1–7. For each of the following pairs of matrix functions ˚.t/ and A.t/, verify that
˚.t/ is a fundamental matrix for the system y 0 D A.t/y . Use this fact to solve
y 0 D A.t/y with the given initial conditions y.t0/ D y0. Next, determine the
standard fundamental matrix at t0.

1. ˚.t/ D
�

e�t e2t

e�t 4e2t

�
, A.t/ D

��2 1

�4 3

�
, y.0/ D

�
1

�2

�

2. ˚.t/ D
�

e2t 3e3t

e2t 2e3t

�
, A.t/ D

�
5 �3

2 0

�
, y.0/ D

�
2

1

�

3. ˚.t/ D
�

sin.t2=2/ cos.t2=2/

cos.t2=2/ � sin.t2=2/

�
, A.t/ D

�
0 t

�t 0

�
, y.0/ D

�
1

0

�

4. ˚.t/ D
�
1 C t2 3 C t2

1 � t2 �1 � t2

�
, A.t/ D

�
t t

�t �t

�
, y.0/ D

�
4

0

�

5. ˚.t/ D
��t cos t �t sin t

t sin t �t cos t

�
, A.t/ D

�
1=t 1

�1 1=t

�
, y.�/ D

�
1

�1

�

6. ˚.t/ D et

�
1 t2

�1 1 � t2

�
, A.t/ D

�
1 C 2t 2t

�2t 1 � 2t

�
, y.0/ D

�
1

0

�

7. ˚.t/ D
�

1 .t � 1/et

�1 et

�
, A.t/ D

�
1 1

1=t 1=t

�
, y.1/ D

��3

4

�

8–12. For each problem below, compute the standard fundamental matrix for the
system y 0.t/ D A.t/y.t/ at the point given in the initial value. Then solve the initial
value problem y 0.t/ D A.t/y.t/ C f .t/, y.t0/ D y0.

8. A.t/ D 1

t

�
1 0

0 1

�
, f .t/ D

�
1

t

�
, y.1/ D

�
1

2

�

9. A.t/ D 1

t

�
0 �1

1 2

�
, f .t/ D

�
1

�1

�
, y.1/ D

�
2

0

�

10. A.t/ D 2t

t2 C 1

�
2 3

�1 �2

�
, f .t/ D

��3t

t

�
, y.0/ D

�
1

�1

�

11. A.t/ D
�

3 sec t 5 sec t

� sec t �3 sec t

�
, f .t/ D

�
0

0

�
, y.0/ D

�
2

1

�

12. A.t/ D
�

t t

�t �t

�
, f .t/ D

�
4t

4t

�
, y.0/ D

�
4

0

�
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13–14. Solve the following mixing problems.

13. Two tanks are interconnected as illustrated below.

Tank 1 Tank 2

1

1

1

2 L
min

→

→

→
←

←

2

1 L
min

L
min

L
min

L
min

L
min

→

Assume that Tank 1 contains 2 Liters of pure water and Tank 2 contains 2 Liters
of brine in which 20 grams of salt is initially dissolved. Moreover, the mixture
is pumped from each tank to the other at a rate of 1 L/min. Assume that a brine
mixture containing 6 grams salt/L enters Tank 1 at a rate of 1 L/min and pure
water enters Tank 2 at a rate of 1 L/min. Assume the tanks are well stirred. Brine
is removed from Tank 1 at the rate 2 L/min and from Tank 2 at a rate of 2 L/min.
Let y1.t/ be the amount of salt in Tank 1 at time t and let y2.t/ be the amount
of salt in Tank 2 at time t . Determine y1 and y2. What is the concentration of
salt in each tank after 1 minute?

14. Two tanks are interconnected as illustrated below.

Tank 1 Tank 2

1

3

4 2

3
L

min
→

→

→

→

←
L

min

L
min

L
min

L
min

Assume initially that Tank 1 contains 2 Liters of pure water and Tank 2 contains
1 Liter of pure water. Moreover, the mixture from Tank 1 is pumped into Tank 2



9.7 General Linear Systems 721

at a rate of 3 L/min and the mixture from Tank 2 is pumped into Tank 1 at a rate
of 1 L/min. Assume that a brine mixture containing 7 grams salt/L enters Tank 1
at a rate of 4 L/min and a brine mixture containing 14 grams salt/L enters Tank
2 at a rate of 2 L/min. Assume the tanks are well stirred. Brine is removed from
Tank 2 at the rate 3 L/min. Let y1.t/ be the amount of salt in Tank 1 at time t

and let y2.t/ be the amount of salt in Tank 2 at time t . Determine y1 and y2.
Find the concentration of salt in each tank after 3 minutes. Assuming the tanks
are large enough, what are the long-term concentrations of brine?





Appendix A
Supplements

A.1 The Laplace Transform is Injective

In this section, we prove Theorem 1 of Sect. 2.5 that states that the Laplace transform
is injective on the set of Laplace transformable continuous functions.1 Specifically,
the statement is

Theorem 1. Suppose f1 and f2 are continuous functions on Œ0; 1/ and have
Laplace transforms. Suppose

L ff1g D L ff2g :

Then f1 D f2.

The proof of this statement is nontrivial. It requires a well-known result from
advanced calculus which we will assume: the Weierstrass approximation theorem.

Theorem 2 (The Weierstrass Approximation Theorem). Suppose h is a contin-
uous function on Œ0; 1�. Then for any � > 0, there is a polynomial p such that

jh.t/ � p.t/j < �;

for all t in Œ0; 1�.

In essence, the Weierstrass approximation theorem states that a continuous
function can be approximated by a polynomial to any degree of accuracy.

1The presentation here closely follows that found in Advanced Calculus by David Widder,
published by Prentice Hall, 1961.

W.A. Adkins and M.G. Davidson, Ordinary Differential Equations,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-3618-8,
© Springer Science+Business Media New York 2012
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Lemma 3. Suppose h.t/ is a continuous function so that

Z 1

0

tnh.t/ dt D 0;

for each nonnegative integer n. Then h.t/ D 0 for all t 2 Œ0; 1�.

Proof. Let � > 0. By the Weierstrass approximation theorem, there is a polynomial
p so that

jh.t/ � p.t/j < �;

for all t in Œ0; 1�. Since a polynomial is a linear combination of powers of t , it follows
by the linearity of the integral that

R 1

0
p.t/h.t/ dt D 0. Now observe,

Z 1

0

.h.t//2 dt D
Z 1

0

h.t/.h.t/ � p.t// dt

�
Z 1

0

jh.t/j jh.t/ � p.t/j dt

� �

Z 1

0

jh.t/j dt:

Since � is arbitrary, it follows that
R 1

0
.h.t//2 dt can be made as small as we like.

This forces
R 1

0 .h.t//2 dt D 0. Since .h.t//2 � 0, it follows that .h.t//2 D 0, for all
t 2 Œ0; 1�. Therefore, h.t/ D 0 for all t 2 Œ0; 1�. ut
Theorem 4. Suppose f is a continuous function on the interval Œ0; 1/, F.s/ D
L ff .t/g .s/ for s � a and F.a C nl/ D 0 for all n D 0; 1; : : :, for some l > 0.
Then f � 0.

Proof. Let g.t/ D R t

0
e�auf .u/ du. Since F.a/ D 0, it follows that lim

t!1 g.t/ D 0.

Write

F.a C nl/ D
Z 1

0

e�.aCnl/t f .t/ dt D
Z 1

0

e�nlt e�at f .t/ dt

and compute using integration by parts with u D e�nlt and dv D e�at f .t/. Since
du D �nle�nlt and v D R t

0
e�auf .u/ du D g.t/, we have

F.a C nl/ D e�nlt g.t/
ˇ̌1
0

C nl

Z 1

0

e�nlt g.t/ dt:

D nl

Z 1

0

e�nlt g.t/ dt:
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Since F.a C nl/ D 0 we have

Z 1

0

e�nlt g.t/ dt D 0;

for all n D 1; 2; : : :. Now let x D e�lt . Then dx D �le�lt dt D �lx dt and
t D � 1

l
ln x D 1

l
ln 1

x
. Substituting and simplifying, we get

Z 1

0

xn�1g

�
1

l
ln

1

x

�
dx D 0;

for all n D 1; 2; : : :. By Lemma 3, it follows that g
�

1
l

ln 1
x

� D 0 for all x 2 Œ0; 1�,
and hence, g.t/ D 0 on Œ0; 1/. Since 0 D g0.t/ D e�at f .t/ it follows now that
f .t/ D 0 for all t 2 Œ0; 1/.

Proof (Proof of Theorem 1). Suppose f .t/ D f1.t/ � f2.t/. Then L ff g .s/ D 0

for all s. By Theorem, 4 it follows that f is zero and so f1 D f2. ut

A.2 Polynomials and Rational Functions

A polynomial of degree n is a function of the form

p.s/ D ansn C an�1sn�1 C � � � C a1s C a0;

where an ¤ 0. The coefficients a0; : : : ; an may be real or complex. We refer to
an as the leading coefficient. If the coefficients are all real, we say p.s/ is a real
polynomial. The variable s may also be real or complex. A root of p.s/ is a scalar
r such that p.r/ D 0. Again r may be real or complex. If r is a root of p.s/, then
there is another polynomial p1.s/ of degree n � 1 such that

p.s/ D .s � r/p1.s/:

The polynomial p1.s/ may be obtained by the standard procedure of division of
polynomials.

Even though the coefficients may be real, the polynomial p.s/ may only have
nonreal complex roots. For example, s2 C 1 only has i and �i as roots. Notice in
this example that the roots are complex conjugates. This always happens with real
polynomials.

Proposition 1. Suppose p.s/ is a real polynomial and r 2 C is a root. Then Nr is
also a root.

Proof. Suppose p.s/ D ansn C � � � C a1s C a0, with each coefficient in R. We are
given that p.r/ D 0 from which follows
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p.Nr/ D an Nrn C � � � C a1 Nr C a0

D anrn C � � � C a1r C a0

D anrn C � � � C a1r C a0

D p.r/ D 0 D 0:

Thus Nr is also a root. ut
The fundamental theorem of algebra addresses the question of whether a

polynomial has a root.

Theorem 2 (Fundamental Theorem of Algebra). Let p.s/ be a polynomial of
degree greater than 0. Then p.s/ has a root r 2 C.

The following corollary follows immediately from the fundamental theorem of
algebra.

Corollary 3. Let p.s/ be a polynomial of degree n and n � 1. Then there are roots
r1; : : : ; rn 2 C such that

p.s/ D an.s � r1/ � � � .s � rn/;

where an is the leading coefficient of p.s/.

Each term of the form s � r is called a linear term: if r 2 R it is a real linear
term, and if r 2 C, it is a complex linear term. An irreducible quadratic is a
real polynomial p.s/ of degree 2 that has no real roots. In this case, we may write
p.s/ D as2 C bs C c as a sum of squares by a procedure called completing the
square:

p.s/ D as2 C bs C c

D a

�
s2 C b

a
s C c

a

�

D a

�
s2 C b

a
s C b2

4a2
C 4ca � b2

4a2

�

D a

0
@
�

s C b

2a

�
C
 p

4ca � b2

2a

!2
1
A

D a
�
.s � ˛/2 C ˇ2

�
;

where we set ˛ D � b
2a

and ˇ D
p

4ca�b2

2a
. From this form, we may read off the

complex roots r D ˛ C iˇ and Nr D ˛ � iˇ. We further observe that as2 C bs C c D
a.s � .˛ C iˇ//.s � .˛ � iˇ//:
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Corollary 4. If p.s/ is a real polynomial, then p.s/ is a product of real linear terms
or irreducible quadratics.

Proof. By fundamental theorem of algebra, p.s/ is a product of linear factors of
the form s � r . By Proposition 1, we have for each nonreal linear factor s � r a
corresponding nonreal factor s � Nr of p.s/. As observed above, .s � r/.s � Nr/ is an
irreducible quadratic. It follows then that p.s/ is a product of real linear terms and
irreducible quadratics.

Corollary 5. Suppose p.s/ is a polynomial of degree n and has m > n roots. Then
p.s/ D 0 for all s 2 R.

Proof. This is an immediate consequence of Corollary 3. ut
Corollary 6. Suppose p1.s/ and p2.s/ are polynomials and equal for all s > A,
for some real number A. Then p1.s/ D p2.s/, for all s 2 R.

Proof. The polynomial p1.s/ � p2.s/ has infinitely many roots so must be zero,
identically. Hence, p1.s/ D p2.s/ for all s 2 R. ut

A rational function is a quotient of two polynomials, that is, it takes the form
p.s/

q.s/
. A rational function is proper if the degree of the numerator is less than the

degree of the denominator.

Corollary 7. Suppose p1.s/

q1.s/
and p2.s/

q2.s/
are rational functions that are equal for all

s > A for some real number A. Then they are equal for all s such that q1.s/q2.s/ ¤
0.

Proof. Suppose
p1.s/

q1.s/
D p2.s/

q2.s/

for all s > A. Then
p1.s/q2.s/ D p2.s/q1.s/;

for all s > A. Since both sides are polynomials, this implies that p1.s/q2.s/ D
p2.s/q1.s/ for all s 2 R. Dividing by q1.s/q2.s/ gives the result. ut

A.3 Bq Is Linearly Independent and Spans Eq

Bq Spans Eq

This subsection is devoted to a detailed proof of Theorem 2 of Sect. 2.7. To begin,
we will need a few helpful lemmas.
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Lemma 1. Suppose q.s/ is a polynomial which factors in the following way:
q.s/ D q1.s/q2.s/. Then

Bq1 � Bq;

Rq1 � Rq;

Eq1 � Eq:

(Of course, the same inclusions for q2 are valid.)

Proof. Since any irreducible factor (linear or quadratic) of q1 is a factor of q, it
follows by the way Bq is defined using linear and irreducible quadratic factors
of q.s/ that Bq1 � Bq . Suppose p1.s/=q1.s/ 2 Rq1 . Then p1.s/=q1.s/ D
p1.s/q2.s/=q1.s/q2.s/ D p1.s/q2.s/=q.s/ 2 Rq . It follows that Rq1 � Rq . Finally,
if f 2 Eq1 , then L ff g 2 Rq1 � Rq . Hence, f 2 Eq and therefore Eq1 � Eq . ut
Lemma 2. Let q.s/ be a polynomial of degree n � 1. Then

Bq � Eq:

Proof. We proceed by induction on the degree of q.s/. If the degree of q.s/ D 1,
then we can write q.s/ D a.s � �/, and in this case, Bq D ˚

e�t
�
. Since

L ˚e�t
� D 1

s � �
D a

a.s � �/
D a

q.s/
2 Rq

it follows that e�t 2 Eq . Hence, Bq � Eq . Now suppose deg q.s/ > 1. According to
the fundamental theorem of algebra q.s/ must have a linear or irreducible quadratic
factor. Thus, q.s/ factors in one of the following ways:

1. q.s/ D .s � �/kq1.s/, where k � 1 and q1.s/ does not contain s � � as a factor.
2. q.s/ D ..s � ˛/2 C ˇ2/kq1.s/, where k � 1 and q1.s/ does not contain .s �

˛/2 C ˇ2 as a factor.

Since the degree of q1 is less than the degree of q, we have in both cases by induction
that Bq1 � Eq1 : Lemma 1 implies that Bq1 � Eq .

Case 1: q.s/ D .s � �/kq1.s/. Let f 2 Bq be a simple exponential polynomial.
Then either f .t/ D t r e�t , for some nonnegative integer r less than k, or f 2 Bq1 �
Eq . If f .t/ D t r e�t then, L ff g D rŠ=.s � �/rC1 2 R.s��/rC1 � Rq by Lemma 1.
Thus, f 2 Eq , and hence Bq � Eq .

Case 2: q.s/ D ..s � ˛/2 C ˇ2/kq1.s/. Let f 2 Bq . Then either f .t/ D
t r e˛t trig ˇt , where trig is sin or cos and r is a nonnegative integer less than k,
or f 2 Bq1 � Eq . If f .t/ D t r e˛t trig ˇt , then by Lemma 10 of Sect. 2.6,
L ff .t/g 2 R..s�˛/2Cˇ2/k and hence, by Lemma 1, L ff .t/g 2 Rq . It follows that
f 2 Eq . Hence Bq � Eq . ut
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Proof (of Theorem 2 of Sect. 2.7). Since Eq is a linear space by Proposition 2 of
Sect. 2.6 and Bq � Eq by Lemma 2, we have

Span Bq � Eq:

To show Eq � Span Bq , we proceed by induction on the degree of q. Suppose
deg q.s/ D 1. Then q.s/ may be written q.s/ D a.s � �/, for some constants
a ¤ 0 and � 2 R and Bq D ˚

e�t
�
. If f 2 Eq , then L ff g D c=.a.s � �//, for

some constant c, and hence, f D .c=a/e�t . So f 2 Span Bq and it follows that
Eq D Span Bq.

Now suppose deg q > 1. Then q.s/ factors in one of the following ways:

1. q.s/ D .s � �/kq1.s/, where k � 1 and q1.s/ does not contain s � � as a factor.
2. q.s/ D ..s � ˛/2 C ˇ2/kq1.s/, where k � 1 and q1.s/ does not contain .s �

˛/2 C ˇ2 as a factor.

Since the degree of q1, is less than the degree of q we have in both cases by induction
that Eq1 D Span Bq1 .

Consider the first case: q.s/ D .s � �/kq1.s/. If f 2 Eq , then L ff g has a partial
fraction decomposition of the form

L ff g .s/ D A1

s � �
C � � � C Ak

.s � �/k
C p1.s/

q1.s/
;

for some constants A1; : : : ; Ak and polynomial p1.s/. Taking the inverse Laplace
transform, it follows that f is a linear combination of terms in

˚
e�t ; : : : ; tk�1e�t

�
and a function in Eq1 . But since Eq1 D Span Bq1 and Bq D ˚

e�t ; : : : ; tk�1e�t
�[Bq1 ,

it follows that f 2 Span Bq and hence Eq D Span Bq .
Now consider the second case: q.s/ D ..s � ˛/2 C ˇ2/kq1.s/. If f 2 Eq , then

L ff g has a partial fraction decomposition of the form

L ff g .s/ D A1s C B1

.s � ˛/2 C ˇ2
C � � � C Aks C Bk

..s � ˛/2 C ˇ2/k
C p1.s/

q1.s/
;

for some constants A1; : : : ; Ak , B1; : : : ; Bk and polynomial p1.s/. Taking the
inverse Laplace transform, it follows from Corollary 11 of Sect. 2.5 that f is a linear
combination of terms in

˚
e˛t cos ˇt; e˛t sin ˇt; : : : ; tk�1e˛t cos ˇt; tk�1e˛t sin ˇt

�

and a function in Eq1 . But since Eq1 D Span Bq1 and

Bq D ˚
e˛t cos ˇt; e˛t sin ˇt; : : : ; tk�1e˛t cos ˇt; tk�1e˛t sin ˇt

� [ Bq1

it follows that f 2 Span Bq and hence Eq D Span Bq . ut
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The Linear Independence of Bq

Let q.s/ be a nonconstant polynomial. This subsection is devoted to showing that
Bq is linearly independent. To that end, we derive a sequence of lemmas that will
help us reach this conclusion.

Lemma 3. Suppose q.s/ D .s � �/mq1.s/ where .s � �/ is not a factor of q1.s/.
Suppose f1 2 E.s��/m , f2 2 Eq1 , and

f1 C f2 D 0:

Then f1 D 0 and f2 D 0.

Proof. Let F1.s/ D L ff1g .s/ and F2.s/ D L ff2g .s/. Then F1.s/ D p.s/

.s��/r , for
some r � m and some polynomial p.s/ with no factor of s � �. Similarly, F2.s/ D
p1.s/

q1.s/
, for some polynomial p1.s/. Thus,

p.s/

.s � �/r
C p1.s/

q1.s/
D 0: (1)

By Corollary 7 of Appendix A.2, equation (1) holds for all s different from � and
the roots of q1.s/. Since q1.s/ contains no factor of s � �, it follows that q1.�/ ¤ 0.
Consider the limit as s approaches � in (1). The second term approaches the finite
value p1.�/=q1.�/. Since the sum is 0, the limit of the left side is 0 and this implies
that the limit of the first term is finite as well. But this can only happen if p.s/ D 0.
It follows that F1.s/ D 0 and hence f1 D 0. This in turn implies that f2 D 0. ut
Lemma 4. Suppose q.s/ D ..s � ˛/2 C ˇ2/mq1.s/ where .s � ˛/2 C ˇ2 is not a
factor of q1.s/. Suppose f1 2 E..s�˛/Cˇ2/m , f2 2 Eq1 , and

f1 C f2 D 0:

Then f1 D 0 and f2 D 0.

Proof. Let F1.s/ D L ff1g .s/ and F2.s/ D L ff2g .s/. Then F1.s/ D p.s/

..s�˛/2Cˇ2/r ,

for some r � m and some polynomial p.s/ with no factor of .s�˛/2Cˇ2. Similarly,
F2.s/ D p1.s/

q1.s/
, for some polynomial p1.s/. Thus,

p.s/

..s � ˛/2 C ˇ2/m
C p1.s/

q1.s/
D 0: (2)

Again, by Corollary 7 of Appendix A.2, equation (2) holds for all s different from
˛ ˙ i ˇ and the roots of q1.s/. Since q1.s/ contains no factor of .s � ˛/2 C ˇ2

it follows that q1.˛ C iˇ/ ¤ 0. Consider the limit as s approaches the complex
number ˛ C iˇ in (2). The second term approaches a finite value. Since the sum is
0, the limit of the left side is 0 and this implies that the limit of the first term is finite
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as well. But this can only happen if p.s/ D 0. It follows that F1.s/ D 0 and hence
f1 D 0. This in turn implies that f2 D 0. ut
Lemma 5. Let q.s/ D .s � �/m. Then Bq is linearly independent.

Proof. By definition, Bq D ˚
e�t ; te�t ; : : : ; tm�1e�t

�
. Suppose

c0e�t C � � � C cm�1t
m�1e�t D 0:

Dividing both sides by e�t gives

c0 C c1t C � � � C cm�1t
m�1 D 0:

Evaluating the at t D 0 gives c0 D 0. Taking the derivative of both sides and
evaluating at t D 0 gives c1 D 0. In general, taking the r th derivative of both sides
and evaluating at t D 0 gives cr D 0, for r D 1; 2; : : : ; m D 1. It follows that all of
the coefficients are necessarily 0, and this implies linear independence. ut
Lemma 6. Let q.s/ D ..s � ˛/2 C ˇ2/m. Then Bq is linearly independent.

Proof. By definition, Bq D ˚
e˛t cos ˇt; e˛t sin ˇt; : : : ; tm�1e˛t cos ˇt; tm�1e˛t

sin ˇt
�
. A linear combination of Bq set to 0 takes the form

p1.t/e˛t cos ˇt C p2.t/e˛t sin ˇt D 0; (3)

where p1 and p2 are polynomials carrying the coefficients of the linear combination.
Thus, it is enough to show p1 and p2 are 0. Dividing both sides of Equation (3) by
e˛t gives

p1.t/ cos ˇt C p2.t/ sin ˇt D 0: (4)

Let m be an integer. Evaluating at t D 2�m
ˇ

gives p1

�
2�m

ˇ

�
D 0, since sin 2�m D 0

and cos 2�m D 1. It follows that p1 has infinitely many roots. By Corollary 5, of
Sect. A.2 this implies p1 D 0. In a similar way, p2 D 0. ut
Theorem 7. Let q be a nonconstant polynomial. View Bq as a set of functions on
I D Œ0; 1/. Then Bq is linearly independent.

Proof. Let k be the number of roots of q. Our proof is by induction on k. If q has but
one root, then q.s/ D .s � �/n and this case is taken care of by Lemma 5. Suppose
now that k > 1. We consider two cases. If q.s/ D .s � �/mq1.s/, where q1.s/

has no factor of s � �, then a linear combination of functions in Bq has the form
f1.t/ C f2.t/, where f1.t/ D c0e�t C � � � C cm�1t

m�1e�t is a linear combination of
functions in B.s��/m and f2.t/ is a linear combination of functions in Bq1 . Suppose

f1.t/ C f2.t/ D 0:

By Lemma 3, f1 is identically zero and by Lemma 5, the coefficients c0; : : : ; cm�1

are all zero. It follows that f2 D 0. Since q1.s/ has one fewer root than q, it follows
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by induction the coefficients of the functions in Bq1 that make up f2 are all zero. If
follows that Bq is linearly independent.

Now suppose q.s/ D ..s � ˛/2 C ˇ2/mq1.s/, where q1.s/ has no factor of
.s � ˛/2 C ˇ2. Then a linear combination of functions in Bq has the form f1.t/ C
f2.t/, where f1.t/ D c0e˛t cos ˇt C� � �Ccm�1tm�1e˛t cos ˇt Cd0e˛t sin ˇt C� � �C
dm�1t

m�1e˛t sin ˇt is a linear combination of functions in B..s�˛/2Cˇ/m and f2.t/ is
a linear combination of functions in Bq1 . Suppose

f1.t/ C f2.t/ D 0:

By Lemma 4 f1 is identically zero, and by Lemma 6 the coefficients c0; : : : ; cm�1

and d0; : : : ; dm�1 are all zero. It follows that f2 D 0. By induction, the coefficients
of the functions in Bq1 that make up f2 are all zero. If follows that Bq is linearly
independent. ut

A.4 The Matrix Exponential

In this section, we verify some properties of the matrix exponential that have been
used in Chap. 9.

First, we argue that the matrix exponential

eA D I C A C A2

2Š
C A3

3Š
C � � � C An

nŠ
C � � �

converges absolutely for all n � n matrices A. By this we mean that each
entry of eA converges absolutely. For convenience, let E D eA. Let a D
max

˚ˇ̌
Ai;j

ˇ̌ W 1 � i; j � n
�
. If a D 0, then A D 0 and the series that defines eA

reduces to I , the n � n identity. We will thus assume a > 0. Consider the .i; j /

entry of A2. We have

ˇ̌
.A2/i;j

ˇ̌ D
ˇ̌
ˇ̌
ˇ

nX
lD1

Ai;lAl;j

ˇ̌
ˇ̌
ˇ

�
nX

lD1

jAi;l j
ˇ̌
Al;j

ˇ̌

�
nX

lD1

a2 D na2:
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In a similar way, the .i; j / entry of A3 satisfies

ˇ̌
.A3/i;j

ˇ̌ D
ˇ̌
ˇ̌
ˇ

nX
lD1

Ai;l .A
2/l;j

ˇ̌
ˇ̌
ˇ

�
nX

lD1

jAi;l j
ˇ̌
.A2/l;j

ˇ̌

�
nX

lD1

ana2 D n2a3:

By induction, we have ˇ̌
.Ak/i;j

ˇ̌ � nk�1ak:

It follows from this estimate that

ˇ̌
Ei;j

ˇ̌ D
ˇ̌
ˇ̌.I /i;j C .A/i;j C .A2/i;j

2Š
C .A3/i;j

3Š
� � �
ˇ̌
ˇ̌

� ıi;j C ˇ̌
.A/i;j

ˇ̌C
ˇ̌
.A2/i;j

ˇ̌
2Š

C
ˇ̌
.A3/i;j

ˇ̌
3Š

� � �

� ıi;j C a C na2

2Š
C n2a3

3Š
C n3a4

4Š
C � � �

D ıi;j C
1X

kD1

nk�1ak

kŠ

� 1 C 1

n

1X
kD0

.na/k

kŠ
D 1 C 1

n
ean:

It follows now that the series for Ei;j converges absolutely.
If we replace A by At , we get that each entry of eAt is an absolutely convergent

power series in t with infinite radius of convergence. Furthermore, the last inequality
above shows that the .i; j / entry of eAt is bounded by 1 C 1

n
eant and hence of

exponential type.

A.5 The Cayley–Hamilton Theorem

Theorem 1 (Cayley–Hamilton). Let A be an n � n matrix and cA.s/ its charac-
teristic polynomial. Then

cA.A/ D 0:

The following lemma will be helpful for the proof.
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Lemma 2. Let j be a nonnegative integer and let a 2 C. Then

Dl
�
t j eat

� jtD0 D Dj t l jtDa:

Proof. The derivative formula Dl .yeat / D
�
.D C a/l y

�
eat implies

Dl .t j eat /jtD0 D ..D C a/l tj /jtD0

D
lX

kD0

�
l

k

�
al�k.Dktj /jtD0

D

8̂
<
:̂

0 if l < j

al�j lŠ

.l � j /Š
if l � j

D Dj t l jtDa: ut

Proof (of Cayley-Hamilton Theorem). Let cA.s/ be the characteristic polynomial
of A. Suppose �1; � � � ; �m are the roots of cA with corresponding multiplicities
r1; � � � ; rm. Then

BcA D ˚
t j e�kt W j D 0; : : : ; rk � 1; k D 1; : : : ; m

�

is the standard basis for EcA . As in Fulmer’s method, Sect. 9.4, we may assume that
there are n � n matrices Mj;k; j D 0; : : : ; rk � 1; k D 1; : : : ; m; so that

eAt D
mX

kD1

rk�1X
j D0

tj e�kt Mj;k:

Differentiating both sides l times and evaluating at t D 0 gives

Al D
mX

kD1

rk�1X
j D0

Dl
�
t j e�kt

� jtD0Mj;k D
mX

kD1

rk�1X
j D0

Dj t l jtD�k
Mj;k;

with the second equality coming from Lemma 2. Now let p.s/ D c0 C c1s C � � � C
cN sN D PN

lD0 cl s
l be any polynomial. Then

p.A/ D
NX

lD0

cl A
l

D
NX

lD0

mX
kD1

rk�1X
j D0

clDj t l jtD�k
Mj;k
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D
mX

kD1

rk�1X
j D0

Dj

 
NX

lD0

cl t
l

!
jtD�k

Mj;k

D
mX

kD1

rk�1X
j D0

p.j /.�k/Mj;k: (1)

For the characteristic polynomial, we have cA.s/ D Qm
kD1.s � �k/rk , and hence,

c
.j /
A .�k/ D 0 for all j D 0; : : : ; rk � 1 and k D 1; : : : m. Now let p.s/ D cA.s/ in

Equation (1) to get

cA.A/ D
mX

kD1

rk�1X
j D0

c
.j /
A .�k/Mj;k D 0:

ut





Appendix B
Selected Answers

Section 1.1

1. P 0 D kP

3. h0.t/ D �
p

h.t/

5. order: 2; Standard form: y00 D t3=y0.

7. order: 2; Standard form: y00 D �.3y C ty0/=t2.

9. order: 4; standard form: y.4/ D 3
p

.1 � .y000/4/=t .

11. order: 3; standard form: y000 D 2y00 � 3y0 C y.

13. y1, y2, and y3

15. y1, y2, and y4

17. y1, y2, and y4

19.

y0.t/ D 3ce3t

3y C 12 D 3.ce3t � 4/ C 12 D 3ce3t � 12 C 12 D 3ce3t :

Note that y.t/ is defined for all t 2 R.

21.

y0.t/ D cet

.1 � cet /2

W.A. Adkins and M.G. Davidson, Ordinary Differential Equations,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-3618-8,
© Springer Science+Business Media New York 2012

737
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y2.t/ � y.t/ D 1

.1 � cet /2
� 1

1 � cet
D 1 � .1 � cet /

.1 � cet /2
D cet

.1 � cet /2
:

If c � 0, then the denominator 1 � cet > 0 and y.t/ has domain R. If c > 0,
then 1�cet D 0 if t D ln 1

c
D � ln c. Thus, y.t/ is defined either on the interval

.�1; � ln c/ or .� ln c; 1/.

23.

y0.t/ D �cet

cet � 1

�ey � 1 D �e� ln.cet �1/ � 1 D �1

cet � 1
� 1 D �cet

cet � 1
:

25.

y0.t/ D �.c � t/�2.�1/ D 1

.c � t/2

y2.t/ D 1

.c � t/2
:

The denominator of y.t/ is 0 when t D c. Thus, the two intervals where y.t/ is
defined are .�1; c/ and .c; 1/.

27. y.t/ D e2t

2
� t C c.

29. y.t/ D t C ln jt j C c

31. y.t/ D � 2
3

sin 3t C c1t C c2

33. y.t/ D 3e�t C 3t � 3

35. y.t/ D �18.t C 1/�1

37. y.t/ D �te�t � e�t .
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Section 1.2

1. y0 D t

−5 −4 −3 −2 −1 0 1 2 3 4 55
−5

−4

−3

−2

−1

0

1

2

3

4

5

t

y

3. y0 D y.y C t/

−5 −4 −3 −2 −1 0 1 2 3 4 55
−5

−4

−3

−2

−1

0

1

2

3

4

5

t

y

5.

−5 −4 −3 −2 −1 0 1 2 3 4 55
−5

−4

−3

−2

−1

0

1

2

3

4

5

t

y
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7.

−5 −4 −3 −2 −1 0 1 2 3 4 55
−5

−4

−3

−2

−1

0

1

2

3

4

5

t

y

9.

−5 −4 −3 −2 −1 0 1 2 3 4 55
−5

−4

−3

−2

−1

0

1

2

3

4

5

t

y

11. y D 0

13. y D ˙1

15. y D �t C .2n C 1/� , n 2 Z

17. 2yy0 � 2t � 3t2 D 0

19. y0 D 3y

t
� t .

Section 1.3

1. Separable

3. Not separable

5. Separable

7. Not separable



B Selected Answers 741

9. Separable

11. t2.1 � y2/ D c, c a real constant

13. y5 D 5
2
t2 C 10t C c, c a real constant

15. y D 1 � c cos t , c any real constant

17. y D 4ce4t

1Cce4t , c a real number, and y D 4

19. y D tan.t C c/, c a real constant

21. ln.y C 1/2 � y D tan�1 t C c, c a real constant, and y D �1

23. y D 1
lnj1�t jCc

, c real constant

25. y D 0

27. y D 4e�t 2

29. y D 2
p

u2 C 1

31. y.t/ D tan
�� 1

t
C 1 C �

3

�
, .a; b/ D .6=.6 C 5�/; 6=.6 � �//.

33. 	 212 million years old

35. 	 64 min

37. t 	 8:2 min and T .20/ 	 67:7ı

39. 	 205:5ı

41. 602

43. 	 3:15 years

45. 3857

47. 1; 400

Section 1.4

1. y D 1
4
et � 9

4
e�3t :

3. y D te2t C 4e2t :

5. y D et

t
� e

t
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7. y D sin.t2/

2t
C c

t
:

9. y D 4 sin 4t � 3 cos 4t C ce3t

11. z D t2 C 1 C cet 2

13. y D 1 � e� sin t

15. y D �t � 1
2

� 3
2
t�2:

17. y D 1
aCb

ebt C ce�at

19. y D .t C c/ sec t

21. y D tnet C ctn

23. y D 1
5
t2 � 9

5
t�3

25. y.t/ D 1
t

C .4a � 2/t�2

27. y D .10 � t/ � 8
104 .10 � t/4; for 0 � t � 10. After 10 min, there is no salt in

the tank.

29. (a) 10 min, (b) 	 533:33 g

31. (a) Differential equation: P 0.t/ C .r=V /P.t/ D rc. If P0 denotes the initial
amount of pollutant in the lake, then P.t/ D Vc C .P0 � Vc/e�.r=V /t . The
limiting concentration is c.

(b) t1=2 D .V=r/ ln 2; t1=10 D .V=r/ ln 10

(c) Lake Erie: t1=2 D 1:82 years, t1=10 D 6:05 years, Lake Ontario: t1=2 D 5:43

years, t1=10 D 18:06 years

33. y2.t/ D 10.5 C t/ � 500 ln.5Ct /

5Ct
C 500 ln 5�250

5Ct

Section 1.5

1. y D t tan.ln jt j C �=4/

3. y D 2t

5. y D ˙t
p

1 C kt , k 2 R

7. y D t sin.ln jt j C c/ and y D ˙t

9. y D 1

1 � t
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11. y D ˙ 1p
1 C cet 2

and y D 0

13. y D 1

�5 C c
p

1 � t2
and y D 0.

15. y D �
p

1 C 3e�t 2

17. y D ˙ 1q
t C 1

2
C ce2t

and y D 0

19. �2y C ln j2t � 2yj D c, c 2 R and y D t

21. y � tan�1.t C y/ D c, c 2 R

23. y D ˙p
ket � t , k 2 R

25. y D et�1Cce�t
, c 2 R

Section 1.6

1. t2 C ty2 D c

3. Not Exact

5. Not Exact

7. .y � t2/2 � 2t4 D c

9. y4 D 4ty C c

Section 1.7

1. y.t/ D 1 C R t

1
uy.u/ du

3. y.t/ D 1 C R t

0

u � y.u/

u C y.u/
du
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5.

y0.t/ D 1

y1.t/ D 1 C t2

2

y2.t/ D 5

8
C t2

4
C t4

8

y3.t/ D 29

48
C 5t2

16
C t4

16
C t6

48
:

7. y1.t/ D t2

2
; y2.t/ D t2

2
C t5

20
; y3.t/ D t2

2
C t5

20
C t8

160
C t11

4400
.

9.

y0.t/ D 0

y1.t/ D t C t3

3

y2.t/ D t C t7

7 � 32

y3.t/ D t C t15

15 � 72 � 34

y4.t/ D t C t31

31 � 152 � 74 � 38

y5.t/ D t C t63

63 � 312 � 154 � 78 � 316

11. Not guaranteed unique

13. Unique solution

15.

y0.t/ D 1

y1.t/ D 1 C at

y2.t/ D 1 C at C a2t2

2

y3.t/ D 1 C at C a2t2

2
C a3t3

3Š
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:::

yn.t/ D 1 C at C a2t2

2
C � � � C antn

nŠ
:

y.t/ D limn!1 yn.t/ D eat ; it is a solution; there are no other solutions.

17. Yes

19. 1. y.t/ D t C ct2.
2. Every solution satisfies y.0/ D 0. There is no contradiction to Theorem 5

since, in standard form, the equation is y0 D 2

t
y � 1 D F.t; y/ and F.t; y/

is not continuous for t D 0.

21. No

Section 2.1

1. Y.s/ D 2
s�4

and y.t/ D 2e4t

3. Y.s/ D 1
.s�4/2 and y.t/ D te4t

5. Y.s/ D 1
sC2

C 1
s�1

and y.t/ D e�2t C et

7. Y.s/ D 3sC3
s2C3sC2

D 3.sC1/

.sC1/.sC2/
D 3

sC2
and y.t/ D 3e�2t

9. Y.s/ D s�1
s2C25

and y.t/ D �1
5

sin 5t C cos 5t

11. Y.s/ D 1
sC4

and y.t/ D e�4t

13. Y.s/ D 1
.sC2/2 C 1

.sC2/3 D 1
.sC2/2 C 1

2
2

.sC2/3 and y.t/ D te�2t C 1
2
t2e�2t

Section 2.2

Compute the Laplace transform of each function given below directly from the
integral definition given in (1).

1.
3

s2
C 1

s

3.
1

s � 2
� 3

s C 1
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5.
5

s � 2

7.
2

s3
� 5

s2
C 4

s

9.
1

s C 3
C 7

.s C 4/2

11.
s C 2

s2 C 4

13.
2

.s C 4/3

15.
2

s3
C 2

.s � 2/2
C 1

s � 4

17.
24

.s C 4/5

19.
1

.s � 3/2

21.
12s2 � 16

.s2 C 4/3

23.
2s

s2 C 1
� 2

s

25.
ln.s C 6/ � ln 6

s

27.
2b2

s.s2 C 4b2/

29.
1

2

�
a � b

s2 C .a � b/2
C a C b

s2 C .a C b/2

�

31.
b

s2 � b2

33.
b

s2 � b2

(a) Show that � .1/ D 1.
(b) Show that � satisfies the recursion formula � .ˇ C 1/ D ˇ� .ˇ/.

(Hint: Integrate by parts.)
(c) Show that � .n C 1/ D nŠ when n is a nonnegative integer.
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Section 2.3

1.

The s � 1 -chain

5s C 10

.s � 1/.s C 4/

3

s � 1

2

s C 4

3.

The s � 5 -chain

1

.s C 2/.s � 5/

1=7

.s � 5/

�1=7

.s C 2/

5.

The s � 1 -chain

3s C 1

.s � 1/.s2 C 1/

2

s � 1

�2s C 1

s2 C 1

7.

The s C 3 -chain

s2 C s � 3

.s C 3/3

3

.s C 3/3

s � 2

.s C 3/2

�5

.s C 3/2

1

s C 3

1

s C 3

0
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9.

The s C 1 -chain

s

.s C 2/2.s C 1/2

�1

.s C 1/2

s C 4

.s C 2/2.s C 1/

3

s C 1

�3s � 8

.s C 2/2

11.

The s � 5 -chain

1

.s � 5/5.s � 6/

�1

.s � 5/5

1

.s � 5/4.s � 6/

�1

.s � 5/4

1

.s � 5/3.s � 6/

�1

.s � 5/3

1

.s � 5/2.s � 6/

�1

.s � 5/2

1

.s � 5/.s � 6/

�1

s � 5

1

s � 6

13.
13=8

s � 5
� 5=8

s C 3

15.
23

12.s � 5/
C 37

12.s C 7/

17.
25

8.s � 7/
� 9

8.s C 1/

19.
1

2.s C 5/
� 1

2.s � 1/
C 1

s � 2

21.
7

.s C 4/4
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23.
3

.s C 3/3
� 5

.s C 3/2
C 1

s C 3

25.
1

54

�
5

s � 5
C 21

.s C 1/2
C 3

.s � 5/2
� 5

s C 1

�

27.
�2

.s C 2/2
� 3

s C 2
� 1

.s C 1/2
C 3

s C 1

29.
12

.s � 3/3
C �14

.s � 3/2
C 15

s � 3
C �16

s � 2
C 1

s � 1

31.
2

.s � 2/2
C 5

s � 2
C 3

.s � 3/2
� 5

s � 3

33. Y.s/ D �3
.sC1/2 � 1

sC1
C 1

s�2
and y.t/ D �3te�t � e�t C e2t

35. Y.s/ D �30
s2 C 24

s
� 26

sC1
C 1

s�5
and y.t/ D �30t C 24 � 26e�t C e5t

37. Y.s/ D 2s�3
.s�1/.s�2/

C 4
s.s�1/.s�2/

D 2
s

C 3
s�2

� 3
s�1

and y.t/ D 2 C 3e2t � 3et

Section 2.4

1.

The s2 C 1 -chain

1

.s2 C 1/2.s2 C 2/

1

.s2 C 1/2

�1

.s2 C 1/.s2 C 2/

�1

.s2 C 1/

1

s2 C 2
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3.

The s2 C 3 -chain

8s C 8s2

.sC3/3.s2 C 1/

12 � 4s

.s2 C 3/3

4.s � 1/

.s2 C 3/2.s2 C 1/

2 � 2s

.s2 C 3/2

2.s � 1/

.s2 C 3/.s2 C 1/

1 � s

s2 C 3

s � 1

s2 C 1

5.

The s2 C 2s C 2 -chain

1

.s2 C 2s C 2/2.s2 C 2s C 3/2

1

.s2 C 2s C 2/2

�.s2 C 2s C 4/

.s2 C 2s C 2/.s2 C 2s C 3/2

�2

s2 C 2s C 2

2s2 C 4s C 7

.s2 C 2s C 3/2

7.
1

10

�
3

s � 3
C 1 � 3s

s2 C 1

�

9.
9s2

.s2 C 4/2.s2 C 1/
D 12

.s2 C 4/2
C 1

s2 C 4
� 1

s C 1

11.
2

s � 3
C 6 � 2s

.s � 3/2 C 1

13.
�5s C 15

.s2 � 4s C 8/2
C �s C 3

s2 � 4s C 8
C 1

s � 1

15.
s C 1

.s2 C 4s C 6/2
C 2s C 2

s2 C 4s C 6
C s C 1

.s2 C 4s C 5/2
� 2s C 2

s2 C 4s C 5

17. Y.s/ D 1
.sC2/2 C 4s

.s2C4/.sC2/2 D 1
s2C4

and y.t/ D 1
2

sin 2t

19. Y.s/ D 1
s2C4

C 3
.s2C9/.s2C4/

D 8
5

1
s2C4

� 3
5

1
s2C9

and y.t/ D 4
5

sin 2t � 1
5

sin 3t
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Section 2.5

1. �5

3. 3t � 2t2

5. 3 cos 2t

7. �11te�3t C 2e�3t

9. e2t � e�4t

11.
�1

6
t3e2t C 3

2
t2e2t C 2te2t

13. tet C et C te�t � e�t

15. 4te2t � e2t C cos 2t � sin 2t

17. 3 � 6t C e2t � 4e�t

19. 2e�t cos 2t � e�t sin 2t

21. e4t cos t C 3e4t sin t

23. et cos 3t

25. 2t sin 2t

27. 2te�2t cos t C .t � 2/e�2t sin t

29. 4te�4t cos t C .t � 4/e�4t sin t

31.
1

256

�
.3 � 4t2/et sin 2t � 6tet cos 2t

�

33.
1

48

�
.�t3 C 3t/e4t sin t � 3t2e4t cos t

�

35. y.t/ D cos t � sin t C 2.sin t � t cos t/ D cos t C sin t � 2t cos t

37. Y.s/ D 8s

.s2 C 1/3
and y.t/ D t sin t � t2 cos t

Section 2.6

1. Bq D ˚
e4t
�
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3. Bq D ˚
1; e�5t

�

5. Bq D ˚
e3t ; te3t

�

7. Bq D ˚
e3t ; e�2t

�

9. Bq D ˚
et=2; e4t=3

�

11. Bq D
n
e.2Cp

3/t ; e.2�p
3/t
o

13. Bq D ˚
e�3t=2; te�3t=2

�

15. Bq D fcos.5t=2/; sin.5t=2/g
17. Bq D fet cos 2t; et sin 2tg
19. Bq D ˚

e�3t ; te�3t ; t2e�3t ; t3e�3t
�

21. Bq D ˚
et ; tet ; t 2et

�

23. Bq D ˚
e�2t cos t; e�2t sin t; te�2t cos t; te�2t sin t

�

25. Bq D ˚
cos t; sin t; t cos t; t sin t; t2 cos t; t2 sin t; t3 cos t; t3 sin t

�

Section 2.7

1. Yes

3. Yes

5. Yes

7. No

9. No

11. No

13. Bq D fet ; e�t ; cos t; sin tg
15. Bq D ˚

et ; tet ; t 2et ; e�7t ; te�7t
�

17. Bq D ˚
e�2t ; te�2t ; t2e�2t ; cos 2t; sin 2t; t cos 2t; t sin 2t

�

19. Bq D ˚
e2t ; te2t ; e�3t ; te�3t ; t2e�3t

�
.

21. Bq D ˚
e�4t ; te�4t ; e�3t cos 2t; e�3t sin 2t; te�3t cos 2t; te�3t sin 2t

�
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23. Bq D ˚
e3t ; te3t ; t2e3t ; e�t cos 3t; e�t sin 3t; te�t cos 3t; te�t sin 3t

�

25. Bq D ˚
et=2; et ; tet

�

27. Bq D
n
cos

p
3t; sin

p
3t; cos

p
2t; sin

p
2t
o

Section 2.8

1.
t3

6

3. 3.1 � cos t/

5. 1
13

.2e3t � 2 cos 2t � 3 sin 2t/

7. 1
108

.18t2 � 6t � 6 � e�6t /

9. 1
6
.e2t � e�4t /

11. 1
a2Cb2 .beat � b cos bt � a sin bt/

13.

8<
:

b sin at�a sin bt
b2�a2 if b ¤ a

sin at�at cos at
2a

if b D a

15.

8<
:

a sin at�b sin bt
a2�b2 if b ¤ a

1
2a

.at cos at C sin at/ if b D a

17. F.s/ D 4

s3.s2 C 4/

19. F.s/ D 6

s4.s C 3/

21. F.s/ D 4

.s2 C 4/2

23.
1

4
.�et C e5t /

25.
1

2
t sin t
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27.
1

13
.2e3t � 2 cos 2t � 3 sin 2t/

29.
eat � ebt

a � b

31.
Z t

0

g.x/ cos
p

2.t � x/ dx

33. t � sin t

35.
1

54
.2 � 6t C 9t2 � 2e�3t /

37.
1

162
.2 � 3t sin 3t � 2 cos 3t/

Section 3.1

1. No

3. No

5. No

7. Yes; .D2 � 7D C 10/.y/ D 0, q.s/ D s2 � 7s C 10, homogeneous

9. Yes; D2.y/ D �2 C cos t , q.s/ D s2, nonhomogeneous

11. (a) 6et

(b) 0

(c) sin t � 3 cos t

13. (a) 0

(b) 0

(c) 1

15. y.t/ D cos 2t C c1et C c2e4t where c1, c2 are arbitrary constants.

17. y.t/ D cos 2t C et � e4t

19. L.ert / D .ar2 C br C c/ert
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Section 3.2

1. Linearly independent

3. Linearly dependent

5. Linearly dependent

7. Linearly independent

9. Linearly independent

11. Linearly independent

13. Linearly independent

15. t

17. 10t29

19. e.r1Cr2Cr3/t .r3 � r1/.r3 � r2/.r2 � r1/

21. 12

23. c1 D �2=5, c2 D 1

25. a1 D 3, a2 D 3

Section 3.3

1. y.t/ D c1e2t C c2e�t

3. y.t/ D c1e�4t C c2e�6t

5. y.t/ D c1e�4t C c2te�4t

7. y.t/ D c1e�t cos 2t C c2e�t sin 2t

9. y.t/ D c1e�9t C c2e�4t

11. y.t/ D c1e�5t C c2te�5t

13. y D et �e�t

2

15. y D te5t
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17. q.s/ D s2 C 4s � 21, w.e3t ; e�7t / D �10e�4t , K D �10.

19. q.s/ D s2 � 6s C 9, w.e3t ; te3t / D e6t , K D 1.

21. q.s/ D s2 � 2s C 5, w.et cos 2t; et sin 2t/ D 2e2t , K D 2.

Section 3.4

1. yp.t/ D a1e3t

3. yp.t/ D a1te2t

5. yp.t/ D a1 cos 5t C a2 sin 5t

7. yp.t/ D a1t cos 2t C a2t sin 2t

9. yp.t/ D a1e�2t cos t C a2e�2t sin t

11. y D �te�2t C c1e�2t C c2e5t

13. y D 1
2
t2e�t C c1e�t C c2te�t

15. y D 1
2
e�3t C c1e�2t cos t C c2e�2t sin t

17. y D �t2 � 2 C c1et C c2e�t

19. y D 1
2
t2e2t C c1e2t C c2te2t .

21. y D te2t � 2
5
e2t C c1e�3t C c2te�3t

23. y D 1
4
te�3t sin.2t/ C c1e�3t cos.2t/ C c2e�3t sin.2t/

25. y D �1
12

e3t C 10
21

e6t C 135
84

e�t

27. y D 2e2t � 2 cos t � 4 sin t

Section 3.5

1. y D 1
32

e�6t C c1e2t C c2e�2t

3. y D te�2t C c1e�2t C c2e�3t

5. y D �te�4t C c1e2t C c2e�4t
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7. y D te2t � 2
5
e2t C c1e�3t C c2te�3t

9. y D �3t2e4t cos 3t C te4t sin 3t C c1e4t cos 3t C c2e4t sin 3t

11. y D 1
2

sin t C c1e�t C c2te�t

Section 3.6

1. k D 32 lbs/ft

3. k D 490 N/m

5. � D 8 lbs s/ft

7. 400 lbs

9. 6y00 C 20y D 0; y.0/ D :1; y0.0/ D 0; y D 1
10

cos
q

10
3

t , undamped free or

simple harmonic motion; A D 1=10, ˇ D p
10=3, and � D 0

11. 1
2
y00 C 2y0 C 32y D 0; y.0/ D 1; y0.0/ D 1; y D e�2t cos

p
60t C

3p
60

e�2t sin
p

60t D
q

23
20

e�2t cos.
p

60t C �/, where � D arctan
p

60=20 	
:3695 ; underdamped free motion.

13. y00 C 96y D 0; y.0/ D 0; y0.0/ D 2=3; y D
p

6
36

sin
p

96t Dp
6

36
cos

�p
96t � �

2

�
; undamped free or simple harmonic motion and crosses

equilibrium.

Section 3.7

1. q.t/ D � 3
100

e�20t cos 20t � 3
100

e�3t sin 20t C 3
100

and I.t/ D 6
5
e�20t cos.20t �

�=2/

3. q.t/ D 4
5
e�10t C 7te�10t � 4

5
cos 5t C 3

5
sin 5t and I.t/ D �e�10t � 70te�10t C

4 sin 5t C 3 cos 5t

5. q.t/ D 1
75

.cos 25t � cos 100t/; the capacitor will not overcharge.
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Section 4.1

1. Yes; .D3 � 3D/y D et , order 3, q.s/ D s3 � 3s, nonhomogeneous

3. No

5. (a) 0

(b) 0

(c) 0

7. (a) 10e�t

(b) 0

(c) 0

9. y.t/ D te2t C c1e2t C c2e�2t C c3

11. y.t/ D te2t C e2t C 2e�2t � 1

Section 4.2

1. y.t/ D c1e�t C c2e� 1
2 t cos

p
3

2
t C c3e� 1

2 t sin
p

3
2

t

3. y.t/ D c1et C c2e�t C c3 sin t C c4 cos t

5. y.t/ D c1et C c2e�t C c3e2t C c4e�2t

7. y.t/ D c1e�2t C c2 cos 5t C c3 sin 5t

9. y.t/ D c1et C c2e�3t C c3te�3t C c4t
2e�3t

11. y D et � 3e�t C cos t C 2 sin t

Section 4.3

1. y D cte�t

3. y D ce2t

5. y D 1
2
tet C c1e�t C c2et C c3

7. y D 1
12

te2t C c1et C c2e�t C c3e2t C c4e�2t

9. y D 1
2
tet C c1e�t C c2et C c3
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11. y D t 2

8
C c1 C c2 cos 2t C c3 sin 2t

13. y D �t.sin t C cos t/ C c1et C c2 cos t C c2 sin t

Section 4.4

1. y1.t/ D �4e2t C 6e4t and y2.t/ D �4e2t C 3e4t

3. y1.t/ D cos 2t � sin 2t and y2.t/ D � cos 2t C sin 2t

5. y1.t/ D �20e�t C 40et � 20e2t and y2.t/ D �6e�t C 20et � 12e2t

7. y1.t/ D 3e�t � 3 cos 3t C sin 3t and y2.t/ D 3e�t C 3 cos 3t C 3 sin 3t

9. y1.t/ D cos t Csin t C2 cos 2t Csin 2t and y2.t/ D 2 cos t C2 sin t �2 cos 2t �
sin 2t

13. y1.t/ D 2et cos 2t C 2et sin 2t and y2.t/ D �2et cos 2t C 2et sin 2t

15. y1.t/ D 20 � 19 cos t � 2 sin t and y2.t/ D 8 � 8 cos t C 3 sin t

Section 4.5

1. y.t/ D 10e�5t , asymptotically stable

3. y.t/ D et C e3t , unstable

5. y.t/ D e�2t sin.t/, stable

7. y.t/ D e�3t C 4te�3t , stable

9. y.t/ D et .sin.t/ C cos.t//, unstable

11. y.t/ D e�t , marginally stable

13. y.t/ D e�t

15. y.t/ D 1
4
.e2t � e�2t /

17. y.t/ D 1 � cos.t/
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Section 5.1

1. Not linear

3. Yes, nonhomogeneous, yes

5. Yes, nonhomogeneous, no

7. Yes, nonhomogeneous, no

9. Not linear

11. Yes, homogeneous, no

13. 1. L. 1
t
/ D 0

2. L.1/ D �1

3. L.t/ D 0

4. L.t r / D .r2 � 1/tr

15. C D �1
2

17. (3) a. y.t/ D e�t � et C 2t

(3) b. y.t/ D e�t C .0/et C .1/t D e�t C t

(3) c. y.t/ D e�t C �et C 3t

(3) d. y.t/ D e�t C .a � 1/et C .b � a C 2/t

19. .�1; 0/

21. .0; �/

23. .3; 1/

25. The initial condition occurs at t D 0 which is precisely where a2.t/ D t2 has a
zero. Theorem 6 does not apply.

27. The assumptions say that y1.t0/ D y2.t0/ and y0
1.t0/ D y0

2.t0/. Both y1 and
y2 therefore satisfies the same initial conditions. By the uniqueness part of
Theorem 6 y1 D y2.

Section 5.2

1. Dependent; 2t and 5t are multiples of each other.

3. Independent

5. Independent
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11. 1. Suppose at3 C b
ˇ̌
t3
ˇ̌ D 0 on .�1; 1/. Then for t D 1 and t D �1 we get

a C b D 0

�a C b D 0:

These equations imply a D b D 0. So y1 and y2 are linearly independent.

2. Observe that y0
1.t/ D 3t2 and y0

2.t/ D
(

�3t2 if t < 0

3t2 if t � 0:
If t < 0,

then w.y1; y2/.t/ D det

�
t3 �t3

3t2 �3t2

�
D 0. If t � 0, then w.y1; y2/.t/ D

det

�
t3 t3

3t2 3t2

�
D 0. It follows that the Wronskian is zero for all t 2

.�1; 1/.
3. The condition that the coefficient function a2.t/ be nonzero in Theorem 2

and Proposition 4 is essential. Here the coefficient function, t2, of y00 is zero
at t D 0, so Proposition 4 does not apply on .�1; 1/. The largest open
intervals on which t2 is nonzero are .�1; 0/ and .0; 1/. On each of these
intervals, y1 and y2 are linearly dependent.

4. Consider the cases t < 0 and t � 0. The verification is then straightforward.
5. Again the condition that the coefficient function a2.t/ be nonzero is essential.

The uniqueness and existence theorem does not apply.

Section 5.3

1. The general solution is y.t/ D c1t C c2t
�2:

3. The general solution is y.t/ D c1t
1
3 C c2t

1
3 ln t:

5. The general solution is y.t/ D c1t
1
2 C c2t

1
2 ln t:

7. y.t/ D c1t�3 C c2t
�3 ln t

9. The general solution is y.t/ D c1t
2 C c2t

�2:

11. The general solution is y.t/ D c1t
2 cos.3 ln t/ C c2t

2 sin.3 ln t/:

13. y D 2t1=2 � t1=2 ln t

15. No solution is possible.
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Section 5.4

1. ln
� s � a

s � b

�

3. s ln

�
s2 C b2

s2 C a2

�
� 2b tan�1

�
b

s

�
C 2a tan�1

�a

s

�

5. y D c1e�t C c2.t � 1/

7. y.t/ D c1e�2t .

9. y.t/ D c1

�
.3 � t2/ sin t � 3t cos t

�

11. y.t/ D c1

et � 1

t
:

13. y.t/ D c1

�
e3t � e2t

t

�
:

15. y.t/ D c1

sin t

t
C c2

1 � cos t

t

Section 5.5

1. y2.t/ D t2 ln t , and the general solution can be written y.t/ D c1t
2 C c2t2 ln t .

3. y2.t/ D p
t ln t , and the general solution can be written y.t/ D c1

p
t C c C

2
p

t ln t .

5. y2.t/ D tet . The general solution can be written y.t/ D c1t C c2tet .

7. y2.t/ D �1
2

cos t2. The general solution can be written y.t/ D c1 sin t2 C
c2 cos t2.

9. y2.t/ D �1 � t tan t . The general solution can be written y.t/ D c1 tan t C
c2.1 C t tan t/.

11. y2.t/ D � sec t . The general solution can be written y.t/ D c1 tan t C c2 sec t .

13. y2 D �1 � t sin 2t
1Ccos 2t

. The general solution can be written y.t/ D c1
sin 2t

1Ccos 2t
C

c2

�
1 C t sin 2t

1Ccos 2t

�
.
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15. y2.t/ D 1
2
t C 1

4
.1 � t2/ ln

�
1Ct
1�t

�
, and the general solution can be written

y D c1.1 � t2/ C c2

�
1

2
t C 1

4
.1 � t2/ ln

�
1 C t

1 � t

��
:

Section 5.6

1. The general solution is y.t/ D �1
2

t cos t C c1 cos t C c2 sin t .

3. The general solution is y.t/ D 1
4
et C c1et cos 2t C c2et sin 2t:

5. The general solution is y.t/ D 1
2
e3t C c1et C c2e2t .

7. The general solution is y.t/ D t ln tet C c1et C c2tet .

9. The general solution is y.t/ D t 4

6
C c1t C c2t

2.

11. The general solution is y.t/ D t
2

ln2 t C c1t C c2t ln t .

13. The general solution is y.t/ D t 2

2
tan t C t C c1 tan t C c2 sec t .

15. The general solution is y.t/ D t2 C c1 cos t2 C c2 sin t2.

19. yp.t/ D 1
a
f .t/ 
 sinh at

21. yp.t/ D 1
a�b

f .t/ 
 .eat � ebt /

Section 6.1

1. Graph (c)

3. Graph (e)

5. Graph (f)

7. Graph (h)

9. -22/3

11. 4

13. 11/2
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15. 5

17. A, B true. C false.

19. A is true. B and C are false.

21. A and B are true. C and D are false.

23. A, B, C, D are all true.

25. y.t/ D

8̂
<̂
ˆ̂:

�1 C et if 0 � t < 2;

1 � 2et�2 C et if 2 � t < 4

et�4 � 2et�2 C et if 4 � t < 1:

27. y.t/ D

8̂
ˆ̂̂<
ˆ̂̂̂
:

0 if 0 � t < 1;

�t C et�1 if 1 � t < 2;

t � 2 � 2et�2 C et�1 if 2 � t < 3

et�3 � 2et�2 C et�1 if 3 � t < 1:

29. y.t/ D
(

�t C et � e�t if 0 � t < 1;

et � et�1 � e�1 1 � t < 1:

Section 6.2

1.0

1

2

3

0 1 2 3 4 5 6 7 8
t

y

3. 0

1

2

0 1 2 3
t

y
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5. 0

2

4

6

8

0 1 2 3
t

y

7.

0

1

�1

� 2� 3�
t

y

9. (a) .t � 2/	Œ2; 1/.t/; (b) .t � 2/h.t � 2/; (c) e�2s=s2.

11. (a) .t C 2/	Œ2; 1/.t/; (b) .t C 2/h.t � 2/; (c) e�2s

�
1

s2
C 4

s

�
.

13. (a) t2	Œ4; 1/.t/; (b) t2h.t � 4/; (c) e�4s

�
2

s3
C 8

s2
C 16

s

�
.

15. (a) .t � 4/2	Œ2; 1/.t/; (b) .t � 4/2h.t � 2/; (c) e�2s

�
2

s3
� 4

s2
C 4

s

�
.

17. (a) et 	Œ4; 1/.t/; (b) et h.t � 4/; (c) e�4.s�1/
1

s � 1
.

19. (a) tet 	Œ4; 1/.t/; (b) tet h.t � 4/;

(c) e�4.s�1/

�
1

.s � 1/2
C 4

s � 1

�
.

21. (a) t	Œ0;1/.t/ C .2 � t/	Œ1;1/.t/; (b) t C .2 � 2t/h.t � 1/;

(c)
1

s2
� 2e�s

s2
.

23. (a) t2	Œ0; 2/.t/ C 4	Œ2 3/.t/ C .7 � t/	Œ3; 1/.t/;

(b) t2 C .4 � t2/h.t � 2/ C .3 � t/h.t � 3/;

(c)
2

s3
� e�2s

�
2

s3
C 4

s2

�
� e�3s

s2
.
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25. (a)
P1

nD0.t � n/	Œn;nC1/.t/; (b) t �P1
nD1 h.t � n/;

(c)
1

s2
� e�s

s.1 � e�s/
.

27. (a)
P1

nD0.2n C 1 � t/	Œ2n;2nC2/.t/; (b) �.t C 1/ C 2
P1

nD0 h.t � 2n/;

(c) � 1

s2
� 1

s
C 2

s.1 � e�2s/
.

29. .t � 3/h.t � 3/ D
(

0 if 0 � t < 3;

t � 3 if t � 3:

31. h.t � �/ sin.t � �/

D
(

0 if 0 � t < �;

sin.t � �/ if t � �
D
(

0 if 0 � t < �;

� sin t if t � �:

33. 1
2
e�.t��/ sin 2.t � �/h.t � �/ D

(
0 if 0 � t < �;

1
2
e�.t��/ sin 2t if t � �:

35. 1
2
h.t � 2/ sin 2.t � 2/ D

(
0 if 0 � t < 2;

1
2

sin 2.t � 2/ if t � 2:

37. h.t � 4/
�
2e�2.t�4/ � e�.t�4/

�

D
(

0 if 0 � t < 4;

2e�2.t�4/ � e�.t�4/ if t � 4:

39. t � .t � 5/h.t � 5/ D
(

t if 0 � t < 5;

5 if t � 5:

41. h.t � �/e�3.t��/
�
2 cos 2.t � �/ � 5

2
sin 2.t � �/

�

D
(

0 if 0 � t < �;

e�3.t��/
�
2 cos 2t � 5

2
sin 2t

�
if t � �:

Section 6.3

1. y D
(

0 if 0 � t < 1

� 3
2

�
1 � e�2.t�1/

�
if 1 � t < 1
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3. y D

8̂
<̂
ˆ̂:

0 if 0 � t < 2

2
3

�
e3.t�2/ � 1

�
if 2 � t < 3

2
3

�
e3.t�2/ � e3.t�3/

�
if 3 � t < 1

5. y D
(

6e4t � 4et if 0 � t < 1

6e4t � e4t�3 � 3e if 1 � t < 1

7. y D
(

0 if 0 � t < 3

1
9
.1 � cos 3.t � 3// if 3 � t < 1 :

9. y D

8̂
<̂
ˆ̂:

0 if 0 � t < 1

1 � 3e�2.t�1/ C 2e�3.t�1/ if 1 � t < 3

3e�2.t�3/ � 3e�2.t�1/ � 2e�3.t�3/ C 2e�3.t�1/ if 3 � t < 1

11. y D
(

te�t if 0 � t < 3

1 C te�t � .t � 2/e�.t�3/ if 3 � t < 1

13. y.t/ D
(

4 � 4e
�t
2 if 0 � t < 3

20 � 4e
�t
2 � 16e

�.t�3/
2 if t � 3:

15. y.t/ D

8̂
<̂
ˆ̂:

10 � 8e�3t=10 if 0 � t < 2

10e�3.t�2/=10 � 8e�3t=10 if 2 � t < 4

10 � 8e�3t=10 C 10e�3.t�2/=10 � 10e�3.t�4/=10 if 4 � t < 1

Section 6.4

1. y D
(

0 if 0 � t < 1

e�2.t�1/ if 1 � t < 1

3. y D
(

2e4t if 0 � t < 4

2e4t C e4.t�4/ if 4 � t < 1

5. y D
(

1
2

sin 2t if 0 � t < �;

sin 2t if t � �:
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7. y D
(

e�t if 0 � t < 2

e�t C e�.t�2/ � e�3.t�2/ if 2 � t < 1 :

9. y D
(

te�2t � e�2t if 0 � t < 1

te�2t � e�2t C 3.t � 1/e�2.t�1/ if 1 � t < 1

11. y D
(

24 � 24e� 1
4 t if 0 � t < 3

24 � 24e� 1
4 t C 4e� 1

4 .t�3/ if 3 � t < 1

13. y D

8̂
ˆ̂̂<
ˆ̂̂̂
:

e�t if 0 � t < 2

e�t C e�.t�2/ if 2 � t < 4

e�t C e�.t�2/ C e�.t�4/ if 4 � t < 6

e�t C e�.t�2/ C e�.t�4/ C e�.t�6/ if 6 � t < 1

and y.6/D1:156 lbs.

15. y D
(

1
10

e�2t if 0 � t < 4
1
10

e�2t C .t � 4/e�2.t�4/ if 4 � t < 1

17. y D

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

sin t if 0 � t < �

0 if � � t < 2�

sin t if 2� � t < 3�

0 if 3� � t < 4�

sin t if 4� � t < 5�

0 if 5� � t < 1:

The graph is given below.

0

1

�1

� 2� 3� 4� 5� 6�

At t D 0, the hammer imparts a velocity to the system causing harmonic
motion. At t D � , the hammer strikes in precisely the right way to stop the
motion. Then at t D 2� , the process repeats.

19. y D y0e�at C ke�a.t�c/
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Section 6.5

1. f 
 g.t/ D
(

et � 1 if 0 � t < 1

et � et�1 if 1 � t < 1

5. f 
 g D

8̂
<̂
ˆ̂:

t if 0 � t < 2

�t C 4 if 2 � t < 4

0 if 4 � t < 1

7. f 
 g D
(

sin t if 0 � t < �

0 if � � t < 1

9. 
.t/ D e3t , y D
(

2e3t if 0 � t < 1
2e3t C 1

3

�
e3.t�2/ � 1

�
if 1 � t < 1

11. 
.t/ D e�8t , y D

8̂
<̂
ˆ̂:

�2e�8t if 0 � t < 3

�2e�8t C 1
8

�
1 � e�8.t�3/

�
if 3 � t < 5

�2e�8t C 1
8

�
e�8.t�5/ � e�8.t�3/

�
if 5 � t < 1

13. y D 1
9

(
1 � cos 3t if 0 � t < 2�

0 if 2� � t < 1
23. y D 2et � 7tet

25. y D 5 � 4 cos t

Section 6.6

1. .hti1/
2

3. 1
9
.Œt �3/2

5. hti2 C 3
2
Œt �2

7. L ff .hti3/g D 1�e�3.s�1/

1�e�3s
1

s�1

9. L ˚f .hti2p/
� D 1�e�ps

1Ce�ps
1
s

11. L ˚Œt �p� D p

s.eps�1/
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13. y D 1�e�2s

1�e�2.sC1/
1
s

17. L�1
n

1�e�4.s�2/

.1�e�4s /.s�2/

o
D e2hti4

Section 6.7

1.

y.t/ D 10 � 10e
�2t

5 C 10 sw2.t/ � 10e
�2t

5

1 C e
4
5

�
1 C e

4
5 .�1/Œt=2�1 e

2
5 Œt �2

�

The amount of salt fluctuates from 13:10 pounds to 16:90 pounds in the long
term.

3. y.t/ D 5e� 1
2 t e

1
2 Œt �2C1�1

e�1
, and the salt fluctuation in the tank varies between 2:91

and 7:91 pounds for large values of t .

5. The mathematical model is

y0 D ry � 40ı0.hti1/; y.0/ D 3000;

where r D 1
12

ln 6
5
. The solution to the model is

y.t/ D 3000ert � 40
ert � e�r.Œt �1�tC1/

1 � e�r

and at the beginning of 60 months, there are y.60/ 	 3477 alligators.

Section 6.8

1.

y.t/ D 2
�
2 sw1.t/ � .�1/Œt �1 .coshti1 � ˛ sinhti1/

�
�2 .cos t C ˛ sin t// ;

where ˛ D � sin
p

2

1Ccos
p

2
. Motion is nonperiodic.

3. y.t/ D 1
�2

�
2 sw2.t/ � cos �t

�
.�1/Œt=2�1 C 1

��
, the motion is periodic.

5. y.t/ D 2
�2 .sw1.t/ � Œt �1 cos �t � cos �t/, with resonance.
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7.

y.t/ D sin t C sinhti�

D .1 C .�1/Œt=��1 / sin t:

Motion is periodic.

9.

y.t/ D sin t C � cos t C sinhti1 � � coshti1;

where � D � sin 1
1�cos 1

. The motion is nonperiodic.

11.
y.t/ D 2.sin t/.1 C Œt=2��1/:

Resonance occurs.

Section 7.1

1. R D 1

3. R D 1
5. R D 0

7. R D 1
9. R D 2

11. �
1P

nD0

tn

anC1

13.
1P

nD0

.�1/nt2n

.2nC1/Š

15.
1P

nD0

.�1/n t2nC1

2nC1

17. tan t D 1 C 1
3
t3 C 2

15
t5 C 17

315
t7 C � � �

19. et sin t D t C t2 C 1
3
t3 � 1

30
t5 C � � �

21. .1 � t/e�t
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23. f .t/ D 1
.1�t /2

25. f .t/ D � t
2

C t 2�1
4

ln
�

1Ct
1�t

�

27. The binomial theorem: .a C b/n D Pn
kD0

�
n
k

�
akbn�k

Section 7.2

1. y.t/ D c0

1P
nD0

t2n

.2n/Š
C c1

1P
nD0

t2nC1

.2nC1/Š
D c0 cosh t C c1 sinh t

3. y.t/ D c0

1P
nD0

.�1/n k2nt2n

.2n/Š
C c1

1P
nD0

.�1/n k2nC1t2nC1

.2nC1/Š
D c0 cos kt C c1 sin kt

5. y.t/ D c0.1 � t2/ � c1

1P
nD0

t2nC1

.2nC1/.2n�1/
D c0.1 � t2/ � c1

�
t
2

C t 2�1
4

ln
�

1�t
1Ct

��

7. y.t/ D c0

�
1 CP1

nD2
tn

nŠ

�C c1t D c0.et � t/ C c1t

9. y.t/ D c0.1 � 3t2/ C c1.t � t 3

3
/

Section 7.3

1. �1 and 1 are regular singular points.

3. There are no singular points.

5. 0 is a regular singular point.

7. q.s/ D s.s C 1/. The exponents of singularity are 0 and �1. Theorem 2
guarantees one Frobenius solution but there could be two.

9. q.s/ D s2. The exponent of singularity is 0 with multiplicity 2. Theorem 2
guarantees that there is one and only one Frobenius solution.

15. y1.t/ D P1
mD0

.�1/m.2mC2/t2mC3

.2mC3/Š
D .sin t � t cos t/ and y2.t/ DP1

mD0
.�1/mC1.2m�1/t2m

.2m/Š
D .t sin t C cos t/
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17. y1.t/ D P1
nD0

1
nŠ

tnC1 D tet and y2.t/ D
�
tet ln t � t

P1
nD1

sntn

nŠ

�
, where sn D

1 C 1
2

C 1
3

C � � � 1
n

.

19. y1.t/ D P1
nD0

.�1/n.nC1/tn

.nC3/Š
D
�

.tC2/e�t

t
C t�2

t

�
and y2.t/ D t�1.1 � t

2
/ D

1
2

�
2�t

t

�

21. y1.t/ D t2 and y2.t/ D t2 ln t C
�
�1 C 2t � t 3

3
CP1

nD4
2.�1/ntn

nŠ.n�2/

�

23. The complex Frobenius series is y.t/ D .t i C �
1�2i
1C2i

�
t1Ci /; the real and

imaginary parts are y1.t/ D �3 cos ln t � 4 sin ln t C 5t cos ln t and y2.t/ D
�3 sin ln t C 4 cos ln t C 5t sin ln t .

25. The complex Frobenius solution is y.t/ D P1
nD0

tnCi

nŠ
D t i et ; the real and

imaginary parts are y1.t/ D et cos ln t and y2.t/ D et sin ln t .

Section 7.4

Section 8.1

1. B C C D
2
4 1 1

�1 7

0 3

3
5, B � C D

2
4 1 �3

5 �1

�2 1

3
5, and 2B � 3C D

2
4 2 �8

13 �6

�5 1

3
5

3. A.B C C / D AB C AC D
	
3 4

1 13



, .B C C /A D

2
43 �1 7

3 1 25

5 0 12

3
5

5. AB D
2
46 4 �1 �8

0 2 �8 2

2 �1 9 �5

3
5

7. CA D

2
664

8 0

4 �5

8 14

10 11

3
775
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9. ABC D
2
4 8 9 �48

4 0 �48

�2 3 40

3
5 :

15.

2
40 0 1

3 �5 �1

0 0 5

3
5

17. (a) Choose, for example, A D
	
0 1

0 0



and B D

	
0 0

1 0



.

(b) .A C B/2 D A2 C 2AB C B2 precisely when AB D BA.

19. Bn D
	
1 n

0 1




21. (a)

	
0 1

1 0



A D

	
v2

v1



; the two rows of A are switched. (b)

	
1 c

0 1



A D

	
v1 C cv2

v2



; to the first row is added c times the second row while the second

row is unchanged. (c) To the second row is added c times the first row while
the first row is unchanged. (d) The first row is multiplied by a while the second
row is unchanged. (e) The second row is multiplied by a while the first row is
unchanged.

Section 8.2

1. A D

2
664

1 4 3

1 1 �1

2 0 1

0 1 �1

3
775, x D

2
4x

y

z

3
5, b D

2
664

2

4

1

6

3
775, and ŒAjb� D

2
664

1 4 3 2

1 1 �1 4

2 0 1 1

0 1 �1 6

3
775.

3.

x1 � x3 C 4x4 C 3x5 D 2

5x1 C 3x2 � 3x3 � x4 � 3x5 D 1

3x1 � 2x2 C 8x3 C 4x4 � 3x5 D 3

�8x1 C 2x2 C 2x4 C x5 D �4

5. RREF

7. m2.1=2/.A/ D
2
40 1 0 3

0 0 1 3

0 0 0 0

3
5
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9. t1;3.�3/.A/ D
2
41 0 1 0 3

0 1 3 4 1

0 0 0 0 0

3
5

11.

2
41 0 0 �11 �8

0 1 0 �4 �2

0 0 1 9 6

3
5

13.

2
664

1 2 0 0 3

0 0 1 0 2

0 0 0 1 0

0 0 0 0 0

3
775

15.

2
666664

1 0 2

0 1 1

0 0 0

0 0 0

0 0 0

3
777775

17.

2
41 4 0 0 3

0 0 1 0 1

0 0 0 1 3

3
5

19.

2
4x

y

z

3
5 D

2
4�1

1

0

3
5C ˛

2
4�3

1

5

3
5, ˛ 2 R

21.

	
x

y



D ˛

	�2

1



, ˛ 2 R

23.

2
4x

y

z

3
5 D

2
4 14=3

1=3

�2=3

3
5

25.

2
40

3

4

3
5C ˛

2
41

0

0

3
5, ˛ 2 R

27. ;

29.

8<
:
2
4�1

0

1

3
5
9=
;
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31.

8̂
<̂
ˆ̂:

2
664

�34

�40

39

1

3
775

9>>=
>>;

33. The equation

2
4 5

�1

4

3
5 D a

2
41

1

2

3
5 C b

2
4 1

�1

0

3
5 has solution a D 2 and b D 3. By

Proposition 7

2
4 5

�1

4

3
5, is a solution.

35. If xi is the solution set for Ax D bi , then x1 D
2
4�7=2

7=2

�3=2

3
5, x2 D

2
4�3=2

3=2

�1=2

3
5, and

x3 D
2
4 7

�6

3

3
5.

Section 8.3

1.

	
4 �1

�3 1




3. Not invertible

5. Not invertible

7.

2
4�6 5 13

5 �4 �11

�1 1 3

3
5

9.

2
664

�29 39=2 �22 13

7 �9=2 5 �3

�22 29=2 �17 10

9 �6 7 �4

3
775

11.

2
664

0 0 �1 1

1 0 0 0

0 1 1 �1

�1 �1 0 1

3
775
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13. x D
	

5

�3




15. x D 1
10

2
416

11

18

3
5

17. x D

2
664

19

�4

15

�6

3
775

19. .At /�1 D .A�1/t

21. F.�/�1 D F.��/

Section 8.4

1. 1

3. 10

5. �21

7. 2

9. 0

11. 1
s2�6sC8

	
s � 3 1

1 s � 3



s D 2; 4

13. 1
.s�1/3

2
4.s � 1/2 3 s � 1

0 .s � 1/2 0

0 3.s � 1/ .s � 1/2

3
5 s D 1

15. 1
s3Cs2C4sC4

2
4 s2 C s 4s C 4 0

�s � 1 s2 C s 0

s � 4 4s C 4 s2 C 4

3
5 s D �1; ˙2i

17. no inverse

19. 1
8

2
4 4 �4 4

�1 3 �1

�5 �1 3

3
5

21. 1
6

2
42 �98 9502

0 3 �297

0 0 6

3
5
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23. 1
15

2
664

55 �95 44 �171

50 �85 40 �150

70 �125 59 �216

65 �115 52 �198

3
775

25. x D
	

5

�3




27. x D 1
10

2
416

11

18

3
5

Section 8.5

1. The characteristic polynomial is cA.s/ D .s�1/.s�2/. The eigenvalues are thus

s D 1; 2. The eigenspaces are E1 D Span

�	
0

1


�
and E2 D Span

�	
1

�1


�
.

3. The characteristic polynomial is cA.s/ D s2 � 2s C 1 D .s � 1/2. The only

eigenvalue is s D 1. The eigenspace is E1 D Span

�	
1

�1


�
.

5. The characteristic polynomial is cA.s/ D s2 C 2s � 3 D .s C 3/.s � 1/. The

eigenvalues are thus s D �3; 1. The eigenspaces are E�3 D Span

�	
1

�1


�
and

E1 D Span

�	�3

2


�
.

7. The characteristic polynomial is cA.s/ D s2 C 2s C 10 D .s C 1/2 C 32.
The eigenvalues are thus s D �1 ˙ 3i . The eigenspaces are E�1C3i D
Span

�	
7 C i

10


�
and E�1�3i D Span

�	
7 � i

10


�
.

9. The eigenvalues are s D �2; 3. E�2 D Span

8<
:
2
41

2

0

3
5 ;

2
40

1

1

3
5
9=
;, E3 D

Span

8<
:
2
4 1

0

�1

3
5
9=
;,



B Selected Answers 779

11. The eigenvalues are s D 0; 2; 3. E0 D NS.A/ D Span

8<
:
2
40

2

1

3
5
9=
;, E2 D

Span

8<
:
2
42

2

1

3
5
9=
;, E3 D Span

8<
:
2
40

1

1

3
5
9=
; .

13. We write cA.s/ D .s � 2/..s � 2/2 C 1/ to see that the eigenvalues are

s D 2; 2 ˙ i . E2 D Span

8<
:
2
42

3

1

3
5
9=
;, E2Ci D Span

8<
:
2
4�4 C 3i

4 C 2i

5

3
5
9=
;, E2�i D

Span

8<
:
2
4�4 � 3i

4 � 2i

5

3
5
9=
; .

Section 9.2

1. Nonlinear

3. y 0 D
	

sin t 0

1 cos t



y; linear and homogeneous, but not constant coefficient.

5. y 0 D

2
664

1 0 0 0

2 0 0 1

0 0 0 1

0 1 2 0

3
775y; linear, constant coefficient, homogeneous.

11. y 0 D
	

0 1

�6 �5



y C

	
0

e2t



; y.0/ D

	
1

�2



:

13. y 0 D
	

0 1

k2 0



y C

	
0

cos !t



; y.0/ D

	
0

0



.

15. y 0 D
	

0 1

� 1
t2 � 2

t



y; y.1/ D

	�2

3



.

17. A0.t/ D
	�3e�3t 1

2t 2e2t




19. y 0.t/ D
2
4 1

2t

t�1

3
5
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21. v0.t/ D
h
�2e�2t 2t

t2C1
�3 sin 3t

i

23. 1
4

	
e2 � e�2 e2 C e�2 � 2

2 � e2 � e�2 e2 � e�2




25.

	
4 8

12 16




27.

"
1
s

1
s2

2
s3

1
s�2

#

29.

"
3Š
s4

2s
.s2C1/2

1
.sC1/2

2�s
s3

s�3
s2�6sC13

3
s

#

31. 2
s2�1

	
1 �1

�1 1




33.

1 2t 3t2

�

35.

"
et C e�t et � e�t

et � e�t et C e�t

#

Section 9.3

1. eAt D
	

et 0

0 e�2t




3. eAt D
	

cosh t sinh t

sinh t cosh t




5. eAt D
"

1
2

C 1
2
e2t � 1

2
C 1

2
e2t

� 1
2

C 1
2
e2t 1

2
C 1

2
e2t

#

7. eAt D
2
4 cos t sin t 0

� sin t cos t 0

0 0 e2t

3
5

9. .sI � A/�1 D
"

s�2
s.s�3/

�1
s.s�3/

�2
s.s�3/

s�1
s.s�3/

#
and eAt D

"
2
3

C 1
3
e3t 1

3
� 1

3
e3t

2
3

� 2
3
e3t 1

3
C 2

3
e3t

#
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11. .sI � A/�1 D
"

sC1
.s�1/2C1

5
.s�1/2C1

�1
.s�1/2C1

s�3
.s�1/2C1

#

and eAt D
	

et cos t C 2et sin t 5et sin t

�et sin t et cos t � 2et sin t




13. .sI � A/�1 D

2
664

1
s

1
s2

sC1
s3

0 1
s

1
s2

0 0 1
s

3
775 and eAt D

2
64

1 t t C t 2

2

0 1 t

0 0 1

3
75

15. eAt D
2
4 cos t sin t 0

� sin t cos t 0

0 0 e2t

3
5

Section 9.4

1. eAt D
	

et C tet �tet

tet et � tet




3. eAt D
"

1 C 2t t

�4t 1 � 2t

#

5. eAt D
	

et cos t C 3et sin t �10et sin t

et sin t et cos t � 3et sin t




7. eAt D 1
4

	�7e2t C 11e�2t 11e2t � 11e�2t

�7e2t C 7e�2t 11e2t � 7e�2t




9. eAt D
	

e2t cos 3t C 8e2t sin 3t 13e2t sin 3t

�5e2t sin 3t e2t cos 3t � 8e2t sin 3t




11. eAt D
	

e�2t � te�2t te�2t

�te�2t e�2t C te�2t




13. eAt D
2
4 2 � e�t 0 �1 C e�t

0 et 0

2 � 2e�t 0 �1 C 2e�t

3
5

15. eAt D 1
2

2
4et C et cos t �et sin t et � et cos t

2et sin t 2et cos t �2et sin t

et � et cos t et sin t et C et cos t

3
5
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17. eAt D
2
4 �et C 2 cos 2t � sin 2t et � cos 2t

2 sin 2t cos 2t � sin 2t

�2et C 2 cos 2t � sin 2t 2et � cos 2t

3
5

19. eAt D

2
664

cos t � t cos t sin t � t sin t t cos t t sin t

� sin t C t sin t cos t � t cos t �t sin t t cos t

�t cos t �t sin t cos t C t cos t sin t C t sin t

t sin t �t cos t � sin t � t sin t cos t C t cos t

3
775

Section 9.5

1. y.t/ D
	

e�t

�2e3t




3. y.t/ D
	�e2t C 2te2t

2e2t




5. y.t/ D
	

e�t

3e�t




7. y.t/ D
	

et � 2tet

et � tet




9. y.t/ D

2
64

2 cos 2t C 2 sin 2t

cos 2t � sin 2t

2 cos 2t C 2 sin 2t

3
75

11. y.t/ D
	

1 C 2e�t sin 2t

�2 C 2e�t cos 2t




13. y.t/ D
	

2e�t cos 2t C 4e�t sin 2t

1 C e�t sin 2t � 2e�t cos 2t




15. y.t/ D
	

2tet C et � t � 1

�4tet � et C 2t C 2




17. y.t/ D
2
4 tet

2te2t � e2t C et

�2te2t C tet

3
5
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19. y1.t/ D 1 C 3e�2t , y2.t/ D 2 C 4e�t � 6e�2t , t D 9:02 seconds.

21. y1.t/ D y2.t/ D 1 � e�2t

Section 9.6

1. P D
	

1 3

�1 �1



, J D P �1AP D

	�1 0

0 1



, and the critical point is saddle.

3. P D
	�3 �1

5 0



, J D

	�2 �1

1 �2



, and the origin is a stable spiral node.

5. A is of type J3. The origin is an unstable star node.

7. P D
	

1 3

�1 �1



, J D P �1AP D

	
2 0

0 4



, and the origin is an unstable node.

9. P D
	�1 1

4 0



, J D P �1AP D

	
1 �2

2 1



, and the origin is an unstable star node.

Section 9.7

1. ˚.t/ is a fundamental matrix, y.t/ D
	

2e�t � e2t

2e�t � 4e2t



, and the standard

fundamental matrix at t D 0 is � .t/ D 1

3

	
4e�t � e2t �e�t C e2t

4e�t � 4e2t �e�t C 4e2t



.

3. ˚.t/ is a fundamental matrix, y.t/ D
	

cos.t2=2/

� sin.t2=2/



, and the standard

fundamental matrix at t D 0 is � .t/ D
	

cos.t2=2/ sin.t2=2/

� sin.t2=2/ cos.t2=2/



.

5. ˚.t/ is a fundamental matrix, y.t/ D t

�

	� cos t C sin t

cos t C sin t



, and the standard

fundamental matrix at t D � is � .t/ D 1

�

	�t cos t �t sin t

t sin t �t cos t



.
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7. ˚.t/ is a fundamental matrix, y.t/ D
	

.t � 1/et�1 � 3

et�1 C 3



, and the standard

fundamental matrix at t D 1 is � .t/ D
	
1 C .t � 1/et�1 .t � 1/et�1

�1 C et�1 et�1



.

9. � .t/ D
	
t � t ln t �t ln t

t ln t t C t ln t



and y.t/ D

	
2t � t ln t

t ln t




11. � .t/ D
	

sec2 t C 3 sec t tan t C tan2 t 5 sec t tan t

� sec t tan t sec2 t � 3 sec t tan t C tan2 t



and

y.t/ D
	
2 sec2 t C 11 sec t tan t C 2 tan2 t

sec2 t � 5 sec t tan t C tan2 t



.

13. y1.t/ D 4.2�t/C.2�t/2� 3

4
.2�t/4 and y2.t/ D 2.2�t/C.2�t/2C 3

4
.2�t/3.

The concentration (grams/L) of salt in Tank 1 after 1 min is
17

4
and in Tank 2

is
15

4
.



Appendix C
Tables

C.1 Laplace Transforms

Table C.1 Laplace transform rules

f .t/ F.s/ Page

Definition of the Laplace transform
1. f .t/ F.s/ D R1

0 e�st f .t/ dt 111
Linearity
2. a1f1.t/ C a2f2.t/ a1F1.s/ C a2F2.s/ 114
Dilation principle

3. f .at/
1

a
F
� s

a

�
122

Translation principle
4. eat f .t/ F.s � a/ 120
Input derivative principle: first order
5. f 0.t / sF.s/ � f .0/ 115
Input derivative principle: second order
6. f 00.t / s2F.s/ � sf .0/ � f 0.0/ 115
Input derivative principle: nth order
7. f .n/.t / snF.s/ � sn�1f .0/ � sn�2f 0.0/ � � � � �

sf .n�2/.0/ � f .n�1/.0/

116

Transform derivative principle: first order
8. tf .t/ �F 0.s/ 121
Transform derivative principle: second order
9. t 2f .t/ F 00.s/

Transform derivative principle: nth order
10. t nf .t/ .�1/nF .n/.s/ 121
Convolution principle
11. .f � g/.t/ D R t

0 f ./g.t � / d F.s/G.s/ 188
Input integral principle

12.
R t

0 f .v/dv
F.s/

s
190

(continued)

W.A. Adkins and M.G. Davidson, Ordinary Differential Equations,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-3618-8,
© Springer Science+Business Media New York 2012

785



786 C Tables

Table C.1 (continued)

f .t/ F.s/ Page

Transform integral formula

13.
f .t/

t

R1

s F .�/ d� 357

f .t/

t
has a continuous extension to 0

Second translation principle
14. f .t � c/h.t � c/ e�scF.s/ 405
Corollary to the second translation principle
15. g.t/h.t � c/ e�scL fg.t C c/g/ 405
Periodic functions

16. f .t/,

R p

0 e�st f .t/ dt

1 � e�sp
455

periodic with period p

17. f .htip/
L ff .t/ � f .t/h.t � p/g

1 � e�sp
458

Staircase functions

18. f .Œt �p/
1 � e�ps

s

1P
nD0

f .np/e�nps 463

Transforms involving
1

1 ˙ e�sp

19.
1P

N D0

NP
nD0

f .t � np/	ŒNp;.N C1/p/

1

1 � e�sp
F.s/ 461

20.
1P

N D0

NP
nD0

.�1/nf .t � np/	ŒNp;.N C1/p/

1

1 C e�sp
F.s/ 461

Table C.2 Laplace transforms

f .t/ F.s/ Page

1. 1
1

s
116

2. t
1

s2

3. t n .n D 0; 2; 3; : : :/
nŠ

snC1
116

4. t ˛ .˛ > 0/
� .˛ C 1/

s˛C1
118

5. eat
1

s � a
118

6. teat
1

.s � a/2

7. t neat .n D 1; 2; 3; : : :/
nŠ

.s � a/nC1
119

8. sin bt
b

s2 C b2
118

9. cos bt
s

s2 C b2
118
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Table C.2 (continued)

f .t/ F.s/ Page

10. eat sin bt
b

.s � a/2 C b2
120

11. eat cos bt
s � a

.s � a/2 C b2
120

12.
sin t

t
tan�1

1

s
358

13.
sin at

t
tan�1

�a

s

�
365

14.
ebt � eat

t
ln
� s � a

s � b

�
365

15. 2
cos bt � cos at

t
ln

�
s2 C a2

s2 C b2

�
365

16. 2
cos bt � cos at

t 2
s ln

�
s2 C b2

s2 C a2

�
� 2b tan�1

�
b

s

�

C2a tan�1
�a

s

�
365

Laguerre polynomials

17. `n.t/ D Pn
kD0.�1/k

�
n
k

�
tk

kŠ

.s � 1/n

snC1
361

18. `n.at/
.s � a/n

snC1
366

The Heaviside function

19. h.t � c/
e�sc

s
404

The on-off switch

20. 	Œa;b/

e�as

s
� e�bs

s
405

The Dirac delta function
21. ıc e�cs 428
The square-wave function

22. swc

1

1 C e�cs

1

s
456

The sawtooth function

23. htip

1

s2

�
1 � spe�sp

1 � e�sp

�
457

Periodic dirac delta functions

24. ı0.htip/
1

1 � e�ps
459

Alternating periodic dirac delta functions

25. .ı0 � ıp/.hti2p/
1

1 C e�ps
459

The matrix exponential
26. eAt .sI � A/�1 459
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Table C.3 Heaviside formulas

f .t/ F.s/

Heaviside formulas of the first kind

1.
eat

a � b
C ebt

b � a

1

.s � a/.s � b/

2.
aeat

a � b
C bebt

b � a

s

.s � a/.s � b/

3.
eat

.a � b/.a � c/
C ebt

.b � a/.b � c/
C ect

.c � a/.c � b/

1

.s � a/.s � b/.s � c/

4.
aeat

.a � b/.a � c/
C bebt

.b � a/.b � c/
C cect

.c � a/.c � b/

s

.s � a/.s � b/.s � c/

5.
a2eat

.a � b/.a � c/
C b2ebt

.b � a/.b � c/
C c2ect

.c � a/.c � b/

s2

.s � a/.s � b/.s � c/

6.
rk

1 er1t

q0.r1/
C � � � C rk

n ernt

q0.rn/
,

sk

.s � r1/ � � � .s � rn/
,

q.s/ D .s � r1/ � � � .s � rn/ r1; : : : ; rn; distinct

Heaviside formulas of the second kind

7. teat
1

.s � a/2

8. .1 C at/eat
s

.s � a/2

9.
t 2

2
eat

1

.s � a/3

10.

�
t C at2

2

�
eat

s

.s � a/3

11.

�
1 C 2at C a2t2

2

�
eat

s2

.s � a/3

12.
�Pk

lD0

�
k

l

�
ak�l tn�l�1

.n�l�1/Š

�
eat

sk

.s � a/n

In each case, a, b, and c are distinct. See Page 165.

Table C.4 Laplace transforms involving irreducible quadratics

f .t/ F.s/

1. sin bt
b

.s2 C b2/

2.
1

2b2
.sin bt � bt cos bt/

b

.s2 C b2/2

3.
1

8b4

�
.3 � .bt/2/ sin bt � 3bt cos bt

� b

.s2 C b2/3

4.
1

48b6

�
.15 � 6.bt/2/ sin bt � .15bt � .bt/3/ cos bt

� b

.s2 C b2/4

5. cos bt
s

.s2 C b2/

6.
1

2b2
bt sin bt

s

.s2 C b2/2

7.
1

8b4

�
bt sin bt � .bt/2 cos bt

� s

.s2 C b2/3

8.
1

48b6

�
.3bt � .bt/3/ sin bt � 3.bt/2 cos bt

� s

.s2 C b2/4
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Table C.5 Reduction of order formulas

L�1

�
1

.s2 C b2/kC1

�
D �t

2kb2
L�1

�
s

.s2 C b2/k

�
C 2k � 1

2kb2
L�1

�
1

.s2 C b2/k

�

L�1

�
s

.s2 C b2/kC1

�
D t

2k
L�1

�
1

.s2 C b2/k

�

See Page 155.

Table C.6 Laplace transforms involving quadratics

f .t/ F.s/ Page

Laplace transforms involving the quadratic s2 C b2

1.
sin bt

.2b/2k

b k
2 cP

mD0

.�1/m
�

2k�2m

k

� .2bt/2m

.2m/Š

� cos bt

.2b/2k

b k�1
2 cP

mD0

.�1/m
�

2k�2m�1
k

� .2bt/2mC1

.2m C 1/Š

b

.s2 C b2/kC1
549

2.
2bt sin bt

k � .2b/2k

b k�1
2 cP

mD0

.�1/m
�

2k�2m�2
k�1

� .2bt/2m

.2m/Š

�2bt cos bt

k � .2b/2k

b k�2
2 cP

mD0

.�1/m
�

2k�2m�3
k�1

�
.2bt/2mC1

.2mC1/Š

s

.s2 C b2/kC1
549

Laplace transforms involving the quadratic s2 � b2

3.
.�1/k

22kC1kŠ

kP
nD0

.2k � n/Š

nŠ.k � n/Š
..�2t/net � .2t/ne�t /

1

.s2 � 1/kC1
553

4.
.�1/k

22kC1kŠ

kP
nD1

.2k � n � 1/Š

.n � 1/Š.k � n/Š
..�2t/net C .2t/ne�t /

s

.s2 � 1/kC1
553

C.2 Convolutions

Table C.7 Convolutions

f .t/ g.t/ .f � g/.t/ Page

1. f .t/ g.t/ f � g.t/ D R t

0 f .u/g.t � u/ du 187
2. 1 g.t/

R t

0 g./ d 190

3. tm tn mŠnŠ
.mCnC1/Š

tmCnC1 193

4. t sin at
at � sin at

a2

5. t 2 sin at
2

a3
.cos at � .1 � a2t2

2
//

6. t cos at
1 � cos at

a2

7. t 2 cos at
2

a3
.at � sin at/

(continued)
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Table C.7 (continued)

f .t/ g.t/ .f � g/.t/ Page

8. t eat
eat � .1 C at/

a2

9. t 2 eat
2

a3
.eat � .a C at C a2t2

2
//

10. eat ebt
1

b � a
.ebt � eat / a ¤ b 192

11. eat eat teat 192

12. eat sin bt
1

a2 C b2
.beat � b cos bt � a sin bt/ 195

13. eat cos bt
1

a2 C b2
.aeat � a cos bt C b sin bt/ 195

14. sin at sin bt
1

b2 � a2
.b sin at � a sin bt/ a ¤ b 195

15. sin at sin at
1

2a
.sin at � at cos at/ 195

16. sin at cos bt
1

b2 � a2
.a cos at � a cos bt/ a ¤ b 195

17. sin at cos at
1

2
t sin at 195

18. cos at cos bt
1

a2 � b2
.a sin at � b sin bt/ a ¤ b 195

19. cos at cos at
1

2a
.at cos at C sin at/ 195

20. f ıc.t/ f .t � c/h.t � c/ 444
21. f ı0.t/ f .t/ 445



Symbol Index

Bq standard basis of Eq 171
cA.s/ characteristic polynomial of A 652
	Œa; b/ characteristic function or on-off switch 402
C complex numbers 559
dc;� approximation to the Dirac delta function 427
D derivative operator 205
ıc.t/ Dirac delta function 428
E linear space of exponential polynomials 179
eAt matrix exponential 649
Eq exponential polynomials whose Laplace transform is in Rq 168
F a generic linear space of functions 112
Fnet net force acting on a body 2
f .t/ forcing function 2
F.s/ Laplace transform of f .t/ 111
f 
 g f convolved with g 439
f �k convolution of f , k times 194
H Heaviside class 399
h.t � c/ translate of the Heaviside function 401
h.t/ Heaviside function 401
L differential operator 205
L The Laplace transform 111
L ff .t/g Laplace transform of f .t/ 111
`n Laguerre polynomial of order n 361
L�1 inverse Laplace transform 151
L�1 fF.s/g inverse Laplace transform of F.s/ 151
NS.A/ null space of A 570
˚.t/ fundamental matrix 706
� .t/ standard fundamental matrix 706
Q rational numbers 464
q.D/ polynomial differential operator 205
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792 C Symbol Index

R Real numbers 6
Rq rational functions with q in the denominator 168
S generic spanning set 171
swc square wave function 456
Tn Chebyshev polynomial 511
Œt �p Stair case function on intervals of length p 454
htip sawtooth function with period p 453
Un Chebyshev polynomial 511
W.f1; : : : ; fn/ Wronskian matrix of f1 : : : ; fn 222
w.f1; : : : ; fn/ Wronskian 222
y generic unknown function to a differential system 633
y generic unknown function in a differential equation 3
yg general solution to a differential equation 11
yh homogeneous solution for a linear differential system 667
yh homogeneous solution to a linear differential equation 53
yp particular solution for a linear differential system 667
yp particular solution to a linear differential equation 53



Index

A
Abel’s formula

nth-order, 288
second order, 233, 344

absolute convergence, 489
acceleration, 256
adjoint, 610
adjoint inversion formula, 611
affine equivalence, 681
affine transformation, 681
algorithm

description of Bq , 182
exact equations, 75
first order linear equations, 47
Fulmer’s method for eAt , 660
Gauss-Jordon, 581
incomplete partial fraction method

nth-order, 296
Laplace transform method, 107
method of undetermined coefficients

nth-order, 295
second order, 239

partial fraction
linear recursion, 131
quadratic recursion, 145

Picard Approximation, 87
separable differential equation, 29
solution method for nth order linear

differential equations, 279
solution method for nth order homogeneous

linear equations, 286
solution method for constant coefficient

first order system, 673
solution method for coupled systems, 304
solution method for second order

homogeneous differential equations,
231

solution method for second order linear
differential equations, 209

amplitude, 258
analytic at t0, 498
annihilation operator, 363
associated homogeneous differential equation,

53, 208, 279, 633
associated homogeneous system, 571
asymptotically stable, 318
augmented matrix, 570
autonomous, 28

B
back substitution, 574
balance equation, 630
basis, 217
beats, 263, 326, 477, 481
Bernoulli equation, 66
Bernoulli, Jakoub, 66
Bessel function of order 0, 490
Bessel’s differential equation, 331
Bounded Input Bounded Output, 323
Bq

definition, 180
linear independence, 221, 730

C
canonical phase portraits, 694
Cardano’s formula, 32
Cardano, Girolamo, 32
carrying capacity, 37
Cauchy-Euler

equation, 349
fundamental set, 351
operator, 349
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794 Index

Cayley-Hamilton theorem, 688, 733
center, 489, 696
chain, 130
characteristic equation, 621
characteristic frequency, 324
characteristic function, 402
characteristic matrix, 621
characteristic modes, 316
characteristic polynomial, 167, 205,

621, 652
characteristic values, 316, 652
Chebyshev polynomials, 510
Chebyshev’s differential equation, 331, 513
	Œa; b/, 402
Clairaut’s theorem, 74
Clairaut, Alexis, 74
closed form, 496
coefficient function, 45, 203, 331
coefficient matrix, 569
cofactor, 610
column expansion, 606
completing the square, 726
consistent, 569
constant coefficient linear differential equation

second order, 205
constant coefficient system, 633
constant function, 116
continuous function, 45, 86
convolution, 187, 439

properties, 189
theorem, 188, 262, 441

coupled spring systems, 305
coupled system, 276
Cramer’s rule, 374, 613
creation operator, 363
critical point, 693
critically damped system, 261
current, 267

D
damped free motion, 259
damped motion, 258
damping constant, 255
damping force, 254
damping term, 259
dc;� , 427
decay constant, 33
dependent variable, 4, 579
D, 205
derivative operator, 205, 277
determinant

definition: 2 � 2 case, 605
definition: general case, 605

elementary row operations, 607
properties, 607

differential equation
autonomous, 28
Bernoulli, 66
Chebyshev, 513
constant coefficient

nth-order, 277
second order, 205

dependent variable, 4
discontinuous forcing function, 389
equilibrium solution, 18
exact, 73
family of curves, 21
first order solution curve, 17
general solution, 5
geoemetric interpretation, 97
homogeneous, 208, 277
homogenous, 63

second order, 333
independent variable, 4
initial value problem, 203, 232
integrating factor, 46

exact equation, 79
linear, 45

coefficient function, 45
constant coefficient, 45
forcing function, 45
general solution, 53
homogeneous, 45
homogeneous solution, 53
inhomogeneous, 45
initial value problem, 50
particular solution, 53
standard form, 45, 333

logistic, 37
nonhomogeneous, 277
order, 3
ordinary, 2
partial, 4
second order linear

initial conditions, 203
separable, 27

differential form, 29
solution, 5
solution method for nth order homogeneous

linear equations, 286
solution method for nth order linear

differential equations, 279
solution method for constant coefficient

first order system, 673
solution method for second order

homogeneous linear equations,
232
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solution method for second order linear
differential equations, 209

solution method for separable, 29
solution of first order linear, 47, 666
standard form, 3
Verhulst equation, 37

differential system
associated homogeneous equation, 667
associated homogeneous system, 704
coupled system, 301
general solution, 667
homogeneous solution, 634, 667
particular solution, 667
solution, 634

dilation, 122
dilation principle, 122
ıc , 428
Dirac delta function, 427
direction field, 17

trajectories, 18
discriminant, 259
displacement, 253
distributions, 428

E
echelon form, 578
eigenspace, 620
eigenvalue, 619
eigenvalues, 652
eigenvector, 619
elementary equation operations, 573
elementary matrix, 594
elementary row operations, 574

notation, 574
English system, 256
Eq , 168

description
degree 2, 169

power of a linear term, 174
power of an irreducible quadratic term, 175
spanning set, 171

equality of mixed partial derivatives, 74
equilibrium, 19
equilibrium line, 18
equilibrium solution, 18, 693
equivalent, 572
essentially equal, 407
exactness criterion, 75
existence and uniqueness, 85

general systems, 703
systems, 666

existence and uniqueness theorem, 703
nth order differential equation, 675

nth-order, 280
Picard, 89
second order, 211

non constant coefficients, 336
eAt , 649
exponential function, 118
exponential polynomial, 179

simple, 179
exponential type, 112, 126, 355,

746
exponents of singularity, 521
external force, 255

F
final value principle, 356
first translation principle, 120
fixed point, 87
Fomin, S. V., 93
force of gravity, 253
forced motion, 258
forcing function, 45, 203, 333
formal Laplace transform method, 432
free motion, 258
free variable, 575, 579
frequency, 258, 477
Frobenius method, 519, 521
Frobenius series, 520

solution, 521
F.s/, 111
f � g, 439
Fulmer’s method, 657, 660
Fulmer, Edward P., 657
functional equation, 5
functional identity, 5
fundamental interval, 453
fundamental matrix, 706
fundamental period, 453
fundamental set, 345, 373
fundamental theorem of algebra, 726
fundamental theorem of calculus, 8

G
gamma function, 117, 126
Gauss-Jordan elimination method, 581
Gauss-Jordon elimination, 582
Gaussian elimination, 582
general power function, 118
general solution, 53
generalized factorial function, 117
generalized functions, 428
gravitational force, 256
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H
H, 399
h.t/, 401
h.t � c/, 401
half-life, 33
Heaviside class, 399
Heaviside formulas

first kind, 165
second kind, 165

Heaviside function, 401, 404
Hermite’s differential equation, 331
homogeneous, 64, 570
homogeneous differential equation, 63
homogeneous of degree n, 64
homogeneous solution, 53, 209, 634, 711
homogeneous system, 633

I
improper node, 695
impulse functions, 433
incomplete partial fraction method, 245, 295
inconsistent, 569
independent variable, 4
index shift, 491
indicial polynomial, 350, 521

conjugate complex roots, 351
distinct real roots, 350
double root, 350

initial conditions, 203, 210, 280, 335
initial state, 315
initial value principle, 356
initial value problem, 9, 50, 210, 280, 335, 638

second order, 203
initial values

not based at the origin, 211
input derivative principle, 115, 416
input function, 111
input integral principle, 417
input-output rate, 54
integral equation, 86
integrating factor, 46, 48

exact equation, 79
interval of convergence, 489
inverse (of a matrix), 593
inverse Laplace transform, 151

definition, 151
first translation principle, 152
linearity, 152
reduction of order formula, 155
second translation principle, 405
uniquenss, 407

inversion formulas involving irreducible
quadratics, 158

irreducible quadratic, 539, 726
irregular singular point, 519

J
Jordan canonical forms, 687
Jordan matrix, 688
jump, 385
jump discontinuity, 385

K
Kolmogorov, A. N., 93

L
`n, 361
Laguerre polynomial, 361
Laguerre’s differential equation, 331, 361
Laplace expansion formula, 605
Laplace transform, 101, 111

constant function, 116
convolution theorem, 188
correspondences, 183
cosine function, 118
dilation principle, 122
exponential functions, 118
final value principle, 356
first translation principle, 120
general power functions, 118
initial value principle, 356
injective, 723
input derivative principle, 115, 416
input integral principle, 190, 417
inverse, 151
linearity, 114
power functions, 116
Power-Exponential Functions, 119
second translation principle, 405
sine function, 118
transform derivative principle, 121
transform integral principle, 357

Laplace transform method, 104
coupled systems, 310
formal, 432

law of radioactive decay, 2
leading one, 578
leading variables, 579
left inverse, 593
Legendre’s differential equation, 331
length, 130
linear, 206, 571
linear combination, 171
linear conbination
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solving equations, 220
linear dependence

summary, 224
linear differential operator

second order, 334
linear equation, 569
linear homogeneous system

fundamental matrix, 706
linear independence

restriction to subintervals, 222
summary, 224

linear independence of Bq , 221
linear space, 112
linear substitutions, 69
linear system of ordinary differential equations,

633
linear term, 726
linearity

Laplace transform, 114
linearly dependent, 217, 341

vectors in R
n, 585

linearly independent, 217, 341
vectors in R

n, 585
Lipschitz condition, 95
logistic differential equation, 37
logistic equation, 39
logistic growth law, 13, 37, 43, 741
L, 111
L�1, 151

M
Malthusian growth law, 13, 36, 43, 741
Malthusian parameter, 36, 37
Maple, 17
marginally stable, 318
mass, 256
Mathematica, 17
mathematical model, 313
MATLAB, 17
matrix, 559

addition, 561
adjoint, 610
augmented, 570
characteristic equation, 621
characteristic polynomial, 621, 652
coefficient, 569
cofactor, 610
column matrix, 563
column vector, 563
commute, 565
completing the square, 726
complex, 560
diagonal, 560

identity, 560
inverse, 593
inversion computations, 597
invertible, 593
Jordan, 688
lower triangular, 560
main diagonal, 559
minor, 605
product, 564
rank, 579
real, 560
resolvent, 652
row matrix, 563
row vector, 563
scalar multiplication, 562
similar, 682
size, 559
square, 559
standard fundamental, 706
transpose, 561
upper triangular, 560
variable, 569
vector product, 563
zero, 560

matrix exponential, 649, 732
matrix function

antiderivative, 640
continuous, 639
differentiable, 639
inverse Laplace transform, 641
Laplace transform, 640

method of successive approximations, 87
method of undetermined coefficients

nth-order, 293
second order, 237

metric system, 256
mixing problem, 54, 59, 419

input-output rate, 54

N
Newton, 256
Newton’s law of heating and cooling, 1, 34, 42,

741
Newton’s second law of motion, 2, 255
nonhomogeneous, 570
nonhomogeneous system, 633
nonsingular, 593
null space, 570

O
on-off switch, 402, 405
orbit, 681
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ordinary point, 505
output function, 111
output matrix, 569
overdamped system, 261

P
partial fraction, 129

.s � r/-chain, 130

.s2 C cs C d/-chain, 144
chain, 130
distinct linear factors, 135
Laplace transform method, 136, 148, 160
length, 130
linear recursion, 130
linear recursion algorithm, 131
quadratic recursion, 143
quadratic recursion algorithm, 145

particular solution, 53, 711
path, 681
Peano’s existence theorem, 93
Peano, Guiseppe, 93
period, 258, 453
periodic function, 453
phase angle, 258
phase plane, 681
phase portrait, 681

canonical, 694
phase-amplitude form, 258
Picard, Émile, 87
piecewise continuous, 385, 399
pointwise convergence, 90
polynomial

coefficients, 725
irreducible quadratic, 726
leading coefficient, 725
linear term, 726
root, 725

polynomial differential operator, 205, 277
commutativity, 301

polynomial of degree n, 725
power function, 116
power series, 489

absolute convergence, 489
analytic, 498
center, 489
centered at t0, 489
closed form, 496
coefficients, 489
differential equation

standard form, 519
even function, 495
index shift, 491
interval of convergence, 489

method, 487, 506
odd function, 495
ordinary point, 505
radius of convergence, 489
ratio test, 489
representation, 490
singular point, 505
standard form, 492

power-exponential functions, 119
proper rational function, 129

Q
q.D/, 205

R
radioactive decay, 42, 741

decay constant, 33
half-life, 33

radius of convergence, 489
rank, 579
Rate in - Rate out, 630
ratio test, 489
rational function, 129, 499, 727

proper, 129
simple, 153

RCL circuits
current, 267

rectified sine wave, 454
recurrence relation, 506
reduced matrix, 578
reduction of order, 367

inverse Laplace transform, 155
regular singular point, 519
resolvent matrix, 652
resonance, 264, 324, 478, 481

asymptotically stable, 327
restoring force, 254
Riccati equation, 91
right continuous, 408
right inverse, 593
root, 725
row echelon form, 578
row expansion, 606
row reduced echelon form, 578
row reduces, 579
Rq , 168

S
saddle, 694
sawtooth function, 453
second translation principle, 405
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separable differential equation, 27
separable variables, 27
sign matrix, 606
similar, 682
Simmons, G.F., 89
simple exponential polynomials, 179
simple harmonic motion, 258
simple rational function, 153
singular, 593
singular point, 505
sliding window, 440
slope field, see direction field
slug, 256
solution, 569, 634

exists, 85
unique, 85
zero-state, 446

solution set, 569
span, 171
spanning set, 171
special functions, 331
spring constant, 254
spring-body-mass system, 253
square-wave function, 456
swc , 456
stability, 318
stable, 695
stable node, 694
stable spiral node, 696
stable star node, 695
staircase function, 454
standard basis, 171
standard fundamental matrix, 706
star node, 695
summary

classification of critical points, 697
linear dependence, 224
linear independence, 224

superposition principle, 241
linear systems, 637

system diagram, 313
system of linear equations, 569

T
Taylor Series, 498
test function, 237, 239, 293
Tn, 511
Torricelli’s law, 13

total impulse, 434
total response, 315
Œt �p , 454
htip, 453
trajectories, 18, 681
transform derivative principle, 121
transform function, 111
transform integral principle, 357

U
Un, 511
undamped forced motion, 262
undamped free motion, 258
undamped motion, 258

periodic impulses, 478
periodic input, 473

underdamped system, 260
uniform convergence, 90
unit impulse response function, 315, 319, 445
unit step function, 401
units of measurement, 256
unstable, 318, 695
unstable node, 694
unstable spiral node, 696
unstable star node, 695

V
variable matrix, 569
variation of parameters, 373
vector space, 112
Verhulst population equation, 37

W
Weierstrass approximation theorem, 723
Widder, David, 111
Wronskian, 222, 343
Wronskian matrix, 222, 343, 374

Z
zero-input response, 315
zero-input solution, 446
zero-state, 446
zero-state response, 315
zero-state solution, 446
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