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PREFACE

This text is devoted to the study of single and multivariable calculus. While applications
from the sciences, engineering, and economics are often used to motivate or illustrate
mathematical ideas, the emphasis is on the three basic concepts of calculus: limit,
derivative, and integral.

This edition is the result of a collaborative effort with S.L. Salas, who scrutinized
every sentence for possible improvement in precision and readability. His gift for writing
and his uncompromising standards of mathematical accuracy and clarity illuminate the
beauty of the subject while increasing its accessibility to students. It has been a pleasure
for me to work with him.

FEATURES OF THE TENTH EDITION

Precision and Clarity

The emphasis is on mathematical exposition; the topics are treated in a clear and
understandable manner. Mathematical statements are careful and precise; the basic
concepts and important points are not obscured by excess verbiage.

Balance of Theory and Applications

Problems drawn from the physical sciences are often used to introduce basic concepts
in calculus. In turn, the concepts and methods of calculus are applied to a variety of
problems in the sciences, engineering, business, and the social sciences through text
examples and exercises. Because the presentation is flexible, instructors can vary the
balance of theory and applications according to the needs of their students.

Accessibility

This text is designed to be completely accessible to the beginning calculus student with-
out sacrificing appropriate mathematical rigor. The important theorems are explained
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and proved, and the mathematical techniques are justified. These may be covered or
omitted according to the theoretical level desired in the course.

Visualization

The importance of visualization cannot be over-emphasized in developing students’
understanding of mathematical concepts. For that reason, over 1200 illustrations ac-
company the text examples and exercise sets.

Technology

The technology component of the text has been strengthened by revising existing exer-
cises and by developing new exercises. Well over half of the exercise sets have problems
requiring either a graphing utility or a computer algebra system (CAS). Technology
exercises are designed to illustrate or expand upon the material developed within the
sections.

Projects

Projects with an emphasis on problem solving offer students the opportunity to investi-
gate a variety of special topics that supplement the text material. The projects typically
require an approach that involves both theory and applications, including the use of
technology. Many of the projects are suitable for group-learning activities.

Early Coverage of Differential Equations

Differential equations are formally introduced in Chapter 7 in connection with applica-
tions to exponential growth and decay. First-order linear equations, separable equations,
and second linear equations with constant coefficients, plus a variety of applications,
are treated in a separate chapter immediately following the techniques of integration
material in Chapter 8.

CHANGES IN CONTENT AND ORGANIZATION

In our effort to produce an even more effective text, we consulted with the users of the
Ninth Edition and with other calculus instructors. Our primary goals in preparing the
Tenth Edition were the following:

1. Improve the exposition. As noted above, every topic has been examined for possible
improvement in the clarity and accuracy of its presentation. Essentially every section
in the text underwent some revision; a number of sections and subsections were
completely rewritten.

2. Improve the illustrative examples. Many of the existing examples have been mod-
ified to enhance students’ understanding of the material. New examples have been
added to sections that were rewritten or substantially revised.

3. Revise the exercise sets. Every exercise set was examined for balance between drill
problems, midlevel problems, and more challenging applications and conceptual
problems. In many instances, the number of routine problems was reduced and new
midlevel to challenging problems were added.

Specific changes made to achieve these goals and meet the needs of today’s students
and instructors include:



Comprehensive Chapter-End Review Exercise Sets

The Skill Mastery Review Exercise Sets introduced in the Ninth Edition have been
expanded into chapter-end exercise sets. Each chapter concludes with a comprehensive
set of problems designed to test and to re-enforce students’ understanding of basic
concepts and methods developed within the chapter. These review exercise sets average
over 50 problems per set.

Precalculus Review (Chapter 1)

The content of this chapter—inequalities, basic analytic geometry, the function concept
and the elementary functions—is unchanged. However, much of the material has been
rewritten and simplified.

Limits (Chapter 2)

The approach to limits is unchanged, but many of the explanations have been revised.
The illustrative examples throughout the chapter have been modified, and new examples
have been added.

Differentiation and Applications (Chapters 3 and 4)

There are some significant changes in the organization of this material. Realizing that
our treatments of linear motion, rates of change per unit time, and the Newton-Raphson
method depended on an understanding of increasing/decreasing functions and the con-
cavity of graphs, we moved these topics from Chapter 3 (the derivative) to Chapter 4
(applications of the derivative). Thus, Chapter 3 is now a shorter chapter which focuses
solely on the derivative and the processes of differentiation, and Chapter 4 is expanded
to encompass all of the standard applications of the derivative—curve-sketching, opti-
mization, linear motion, rates of change, and approximation. As in all previous editions,
Chapter 4 begins with the mean-value theorem as the theoretical basis for all the appli-
cations.

Integration and Applications (Chapters 5 and 6)

In a brief introductory section, area and distance are used to motivate the definite
integral in Chapter 5. While the definition of the definite integral is based on upper and
lower sums, the connection with Riemann sums is also given. Explanations, examples,
and exercises throughout Chapters 5 and 6 have been modified, but the content and
organization remain as in the Ninth Edition.

The Transcendental Functions, Techniques of Integration
(Chapters 7 and 8)

The coverage of the inverse trigonometric functions (Chapter 7) has been reduced
slightly. The treatment of powers of the trigonometric functions (Chapter 8) has been
completely rewritten. The optional sections on first-order linear differential equations
and separable differential equations have been moved to Chapter 9, the new chapter on
differential equations.

Some Differential Equations (Chapter 9)

This new chapter is a brief introduction to differential equations and their applications.
In addition to the coverage of first-order linear equations and separable equations noted
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above, we have moved the section on second-order linear homogeneous equations with
constant coefficients from the Ninth Edition’s Chapter 18 to this chapter.

Sequences and Series (Chapters 11 and 12)

Efforts were made to reduce the overall length of these chapters through rewriting
and eliminating peripheral material. Eliminating extraneous problems reduced several
exercise sets. Some notations and terminology have been modified to be consistent with
common usage.

Vectors and Vector Calculus (Chapters 13 and 14)

The introduction to vectors in three-dimensional space has been completely rewrit-
ten and reduced from two sections to one. The parallel discussion of vectors in two-
and three-dimensional space has been eliminated—the primary focus is on three-
dimensional space. The treatments of the dot product, the cross product, lines and
planes in Chapter 13, and vector calculus in Chapter 14 are unchanged.

Functions of Several Variables, Gradients, Exireme Values
(Chapters 15 and 16); Multiple Integrails, Line and Surface Integrals
(Chapters 16 and 17)

The basic content and organization of the material in these four chapters remain as in the
ninth edition. Improvements have been made in the exposition, examples, illustrations,
and exercises.

Differential Equations (Chapter 19)

This chapter continues the study of differential equations begun in Chapter 9. The
sections on Bernoulli, homogeneous and exact equations have been rewritten, and
elementary numerical methods are now covered in a separate section. The section on
second-order linear nonhomogeneous equations picks up from the treatment of linear
homogeneous equations in the new Chapter 9. The applications section—vibrating
mechanical systems—is unchanged.

SUPPLEMENTS

An Instructor’s Solutions Manual, ISBN 0470127309, includes solutions for all prob-
lems in the text.

A Student Solutions Manual, ISBN 0470105534, includes solutions for selected prob-
lems in the text.

A Companion Web site, www.wiley.com/college/salas, provides a wealth of resources
for students and instructors, including:

» PowerPoint Slides for important ideas and graphics for study and note taking.

 Online Review Quizzes to enable students to test their knowledge of key concepts.
For further review diagnostic feedback is provided that refers to pertinent sections of
the text.

« Animations comprise a series of interactive Java applets that allow students to explore
the geometric significance of many major concepts of Calculus.

* Algebra and Trigonometry Refreshers is a self-paced, guided review of key algebra
and trigonometry topics that are essential for mastering calculus.


http://www.wiley.com/college/salas

< Personal Response System Questions provide a convenient source of questions to
use with a variety of personal response systems.

 Printed Test Bank contains static tests which can be printed for quick tests.

» Computerized Test Bank includes questions from the printed test bank with algo-
rithmically generated problems.

WILEYPLUS

Expect More from Your Classroom Technology

This text is supported by WileyPLUS—a powerful and highly integrated suite of teach-
ing and learning resources designed to bridge the gap between what happens in the
classroom and what happens at home. WileyPLUS includes a complete online version
of the text, algorithmically generated exercises, all of the text supplements, plus course
and homework management tools, in one easy-to-use website.

Organized Around the Everyday Activities You Perform in Class,
WileyPLUS Helps You:

Prepare and present: WileyPLUS lets you create class presentations quickly and
easily using a wealth of Wiley-provided resources, including an online version of the
textbook, PowerPoint slides, and more. You can adapt this content to meet the needs
of your course.

Create assignments: WileyPLUS enables you to automate the process of assigning
and grading homework or quizzes. You can use algorithmically generated problems
from the text’s accompanying test bank, or write your own.

Track student progress: An instructor’s grade book allows you to analyze individual
and overall class results to determine students’ progress and level of understanding.

Promote strong problem-solving skills: WileyPLUS can link homework problems to
the relevant section of the online text, providing students with context-sensitive help.
WileyPLUS also features mastery problems that promote conceptual understanding
of key topics and video walkthroughs of example problems.

Provide numerous practice opportunities: Algorithmically generated problems pro-
vide unlimited self-practice opportunities for students, as well as problems for home-
work and testing.

Support varied learning styles: WileyPLUS includes the entire text in digital format,
enhanced with varied problem types to support the array of different student learning
styles in today’s classroom.

Administer your course: You can easily integrate WileyPLUS with another course
management system, grade books, or other resources you are using in your class,
enabling you to build your course your way.

WileyPLUS Includes A Wealth of Instructor and Student Resources:

Student Solutions Manual: Includes worked-out solutions for all odd-numbered prob-
lems and study tips.

Instructor’s Solutions Manual: Presents worked out solutions to all problems.

PowerPoint Lecture Notes: In each section of the book a corresponding set of lecture
notes and worked out examples are presented as PowerPoint slides that are tied to
the examples in the text.

PREFACE ®m Xi



Xii

PREFACE

View an online demo at www.wiley.com/college/wileyplus or contact your local
Wiley representative for more details.

The Wiley Faculty Network—Where Faculty Connect

The Wiley Faculty Network is a faculty-to-faculty network promoting the effective use
of technology to enrich the teaching experience. The Wiley Faculty Network facilitates
the exchange of best practices, connects teachers with technology, and helps to enhance
instructional efficiency and effectiveness. The network provides technology training
and tutorials, including WileyPLUS training, online seminars, peer-to-peer exchanges
of experiences and ideas, personalized consulting, and sharing of resources.

Connect with a Colleague

Wiley Faculty Network mentors are faculty like you, from educational institutions
around the country, who are passionate about enhancing instructional efficiency and
effectiveness through best practices. You can engage a faculty mentor in an online
conversation at www.wherefacultyconnect.com.

Connect with the Wiley Faculty Network

Web: www.wherefacultyconnect.com
Phone: 1-866-FACULTY
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CHAPTER

e PRECALCULUS REVIEW

5

In this chapter we gather together for reference and review those parts of elementary
mathematics that are necessary for the study of calculus. We assume that you are
familiar with most of this material and that you don’t require detailed explanations. But
first a few words about the nature of calculus and a brief outline of the history of the
subject.

M 1.1 WHAT IS CALCULUS?

To a Roman in the days of the empire, a “calculus” was a pebble used in counting and
gambling. Centuries later, “calculare” came to mean “to calculate,” “to compute,” “to
figure out.” For our purposes, calculus is elementary mathematics (algebra, geometry,
trigonometry) enhanced by the limit process.

Calculus takes ideas from elementary mathematics and extends them to a more
general situation. Some examples are on pages 2 and 3. On the left-hand side you will
find an idea from elementary mathematics; on the right, this same idea as extended by
calculus.

It is fitting to say something about the history of calculus. The origins can be traced
back to ancient Greece. The ancient Greeks raised many questions (often paradoxical)
about tangents, motion, area, the infinitely small, the infinitely large—questions that
today are clarified and answered by calculus. Here and there the Greeks themselves
provided answers (some very elegant), but mostly they provided only questions.

Elementary Mathematics Calculus
slope of a line slope of a curve
y=mx+b y = f(x)

(Table continues)
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tangent line to
acircle

S~

tangent line to a more
general curve

area of a region bounded
by line segments

o

area of a region bounded
by curves

length of a line segment

/—\/‘

length of a curve

|
|
|

e

volume of
a rectangular solid

)

volume of a solid
with a curved boundary

motion along a straight
line with constant velocity

D

motion along a curved
path with varying velocity

work done by
a constant force

work done by
a varying force
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mass of an object mass of an object

of constant density of varying density
N\
center of a sphere center of gravity of

a more general solid

After the Greeks, progress was slow. Communication was limited, and each scholar
was obliged to start almost from scratch. Over the centuries, some ingenious solutions
to calculus-type problems were devised, but no general techniques were put forth.
Progress was impeded by the lack of a convenient notation. Algebra, founded in the
ninth century by Arab scholars, was not fully systematized until the sixteenth century.
Then, in the seventeenth century, Descartes established analytic geometry, and the stage
was set.

The actual invention of calculus is credited to Sir Isaac Newton (1642-1727),
an Englishman, and to Gottfried Wilhelm Leibniz (1646-1716), a German. Newton’s
invention is one of the few good turns that the great plague did mankind. The plague
forced the closing of Cambridge University in 1665, and young Isaac Newton of Trinity
College returned to his home in Lincolnshire for eighteen months of meditation, out
of which grew his method of fluxions, his theory of gravitation, and his theory of light.
The method of fluxions is what concerns us here. A treatise with this title was written
by Newton in 1672, but it remained unpublished until 1736, nine years after his death.
The new method (calculus to us) was first announced in 1687, but in vague general
terms without symbolism, formulas, or applications. Newton himself seemed reluctant
to publish anything tangible about his new method, and it is not surprising that its
development on the Continent, in spite of a late start, soon overtook Newton and went
beyond him.

Leibniz started his work in 1673, eight years after Newton. In 1675 he initiated the
basic modern notation: dxand /. His first publications appeared in 1684 and 1686. These
made little stir in Germany, but the two brothers Bernoulli of Basel (Switzerland) took
up the ideas and added profusely to them. From 1690 onward, calculus grew rapidly and
reached roughly its present state in about a hundred years. Certain theoretical subtleties
were not fully resolved until the twentieth century.

M 1.2 REVIEW OF ELEMENTARY MATHEMATICS

In this section we review the terminology, notation, and formulas of elementary math-
ematics.

Sets

A set is a collection of distinct objects. The objects in a set are called the elements or
members of the set. We will denote sets by capital letters A, B, C, ... and use lowercase
letters a, b, c, . .. to denote the elements.
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For a collection of objects to be a set it must be well-defined; that is, given any
object x, it must be possible to determine with certainty whether or not x is an element
of the set. Thus the collection of all even numbers, the collection of all lines parallel
to a given line I, the solutions of the equation x? = 9 are all sets. The collection of all
intelligent adults is not a set. It’s not clear who should be included.

Notions and Notation

the objectxisinthesetA x € A
the object x isnotinthesetA  x ¢ A
the set of all x which satisfy property P {x : P}
(x x> =9} = {-3,3))
A is a subset of B, A is contained in B ACB
B contains A BDA
theunionofAandB  AUB
(AUB={x:xeAorxeB})
the intersectionof AandB AN B
(ANB={x:x€ Aandx € B})
the empty set

These are the only notions from set theory that you will need at this point.

Real Numbers

Classification

positive integers’  1,2,3, ...
integers 0,1,-1,2,-2,3,-3,...
rational numbers p/q, with p, q integers, q # 0;
for example, 5/2, —19/7, —4/1 = —4
irrational numbers real numbers that are not rational;
for example /2, V7,

Decimal Representation

Each real number can be expressed as a decimal. To express a rational number p/q as
a decimal, we divide the denominator g into the numerator p. The resulting decimal
either terminates or repeats:

3 27 43
are terminating decimals;
% = 0.6666 - -- = 0.6, g =1.363636--- = 1.36, and

116 TAE
— =3.135135... =3.135
37

are repeating decimals. (The bar over the sequence of digits indicates that the sequence
repeats indefinitely.) The converse is also true; namely, every terminating or repeating
decimal represents a rational number.

TAlso called natural numbers.
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The decimal expansion of an irrational number can neither terminate nor repeat.
The expansions

V2 = 1.414213562 - - - and m = 3.141592653 - - -

do not terminate and do not develop any repeating pattern.

If we stop the decimal expansion of a given number at a certain decimal place,
then the result is a rational number that approximates the given number. For instance,
1.414 = 1414/1000 is a rational number approximation to /2 and 3.14 = 314/100 is
a rational number approximation to . More accurate approximations can be obtained
by using more decimal places from the expansions.

The Number Line (Coordinate Line, Real Line)

On a horizontal line we choose a point O. We call this point the origin and assign to it

coordinate 0. Now we choose a point U to the right of O and assign to it coordinate 1. 0 1
See Figure 1.2.1. The distance between O and U determines a scale (a unit length). We \ \
go on as follows: the point a units to the right of O is assigned coordinate a; the point 0 U
a units to the left of O is assigned coordinate —a. Figure 1.2.1

In this manner we establish a one-to-one correspondence between the points of a
line and the numbers of the real number system. Figure 1.2.2 shows some real numbers
represented as points on the number line. Positive numbers appear to the right of 0,
negative numbers to the left of 0.

\ L | \
-2 7 -1 =2 0 2 V5 3

\ \
1 1 3
4 2 4 2
Figure 1.2.2
Order Propetrties
(i) Eithera <b,b <a,ora="h. (trichotomy)

(i) Ifa<bandb <c,thena < c.

(iii) Ifa < b, thena + ¢ < b + c for all real numbers c.
(iv) Ifa <bandc > 0, thenac < bc.

(v) Ifa <bandc < 0,thenac > bc.

(Techniques for solving inequalities are reviewed in Section 1.3.)

Density

Between any two real numbers there are infinitely many rational numbers and infinitely
many irrational numbers. In particular, there is no smallest positive real number.

Absolute Value

Ial={ a, ifazo
—a, ifa<0.
other characterizations la| = max{a, —a};|a| = va2.
geometric interpretation |a] = distance between a and 0;
|a — c| = distance between a and c.
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properties (i) |a| =0iffa=0."
(i) | —al = [al.

(iii) |ab| = [a[[b].
(iv) la+ b|b5 lal + lblli; (the triangle inequality)'f
(V) lla] = Ib]| < la —D]. (a variant of the triangle inequality)

(vi) |al]® = |a?| = a2

Techniques for solving inequalities that feature absolute value are reviewed in
Section 1.3.

Intervals

Suppose that a < b. The open interval (a, b) is the set of all numbers between a and b:

(a,b)={x:a <x <b}.

a b
The closed interval [a, b] is the open interval (a, b) together with the endpoints a
and b:
[a,b] ={x:a <x <b}. . .
There are seven other types of intervals:
(@a,b] ={x:a <x <b}, 2 :
[a,b) ={x:a <x <D} . ;

(@, 00) = {x:a < x},

[a,00) = {x 1a < X},

(—o0,b) = {x : x < b},

(—oo,b] = {x:x <b}, o

(—00, 00) = the set of real numbers.

Interval notation is easy to remember: we use a square bracket to include an end-
point and a parenthesis to exclude it. On a number line, inclusion is indicated by a solid
dot, exclusion by an open dot. The symbols co and —oo, read “infinity” and “negative
infinity” (or “minus infinity”), do not represent real numbers. In the intervals listed
above, the symbol oo is used to indicate that the interval extends indefinitely in the pos-
itive direction; the symbol —oo is used to indicate that the interval extends indefinitely
in the negative direction.

Open and Closed

Any interval that contains no endpoints is called open: (a,b), (a, o0), (—o0, b),
(—o0, 00) are open. Any interval that contains each of its endpoints (there may be
one or two) is called closed: [a, b], [a, c0), (—o0, b] are closed. The intervals (a, b]
and [a, b) are called half-open (half-closed): (a, b] is open on the left and closed on the
right; [a, b) is closed on the left and open on the right. Points of an interval that are not
endpoints are called interior points of the interval.

By “iff” we mean “if and only if.” This expression is used so often in mathematics that it’s convenient to
have an abbreviation for it.

"1The absolute value of the sum of two numbers cannot exceed the sum of their absolute values. This is
analogous to the fact that in a triangle the length of one side cannot exceed the sum of the lengths of the
other two sides.
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Boundedness
A set S of real numbers is said to be:
(i) Bounded above if there exists a real number M such that
X <M for all X €S;

such a number M is called an upper bound for S.
(if) Bounded below if there exists a real number m such that

m < X for all X € S;

such a number m is called a lower bound for S.
(iii) Bounded if it is bounded above and below.!

Note that if M is an upper bound for S, then any number greater than M is also an
upper bound for S, and if m is a lower bound for S, than any number less than m is also
a lower bound for S.

Examples The intervals (—oo, 2] and (—oo, 2) are both bounded above by 2 (and
by every number greater than 2), but these sets are not bounded below. The set of
positive integers {1, 2, 3, ...} is bounded below by 1 (and by every number less than 1),
but the set is not bounded above; there being no number M greater than or equal to all
positive integers, the set has no upper bound. All finite sets of numbers are bounded—
(bounded below by the least element and bounded above by the greatest). Finally, the
set of all integers, {---, -3, —2,—-1,0, 1, 2, 3, - - -}, isunbounded in both directions; it
is unbounded above and unbounded below. i

Factorials

Let n be a positive integer. By n factorial, denoted n!, we mean the product of the
integers from n down to 1:

nl=nn-1)(n—-2)---3-2-1.
In particular
1'=1,21=2.1=2,3'=3.2-1=6,4'=4.3.2.1=24, andsoon.

For convenience we define 0! = 1.

Algebra
Powers and Roots
p factors
a real, p a positive integer al=a, aP=a-a----- a

a#0: a%=1 aP=1/aP
laws of exponents  aP™@ =aPa9, aP~%=aPa9, (a%)P =a"

areal, g odd al/d, called the gth root of a, is the number b such
thatbd = a

anonnegative, g even  a'/9 is the nonnegative number b such that b% = a
notation  a'/9 can be written /a (al/? is written ,/a)
rational exponents  aP/d = (al/9)P

fIn defining bounded above, bounded below, and bounded we used the conditional “if,” not “iff.” We could
have used “iff,” but that would have been unnecessary. Definitions are by their very nature “iff”” statements.
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Examples
20=1,2'=1,22=2.2=4,22=2.2.2=8, andsoon
23 =25.22=32.8=256, 2 °=27%=1/22=1/4
(22)° =22 =28 = 64, (2%)2 = 2%° = 2° = 64
813 =2, (—8)Y3 = —-2,16Y2 = /16 = 4, 16Y/* =2
8% = (813 =2°=32, 8 =(83) 5 =25=1/2=1/32 0

Basic Formulas

(a+ b)? = a® + 2ab + b?

(a—b)? =a’® — 2ab + b?

(a+b)® = a®+ 3a%b + 3ab? +b®

(a —b)® = a® — 3a%b + 3ab? — b®

a?—b?>=(a—b)a+bh)

a® —bd = (a—h)@*+ab+b?

a* —b* = (a — b)(@> + ab + ab® + b®)
More generally:

a"—b"=(@-b)@" t+a"%b+---+ab" 24+ b"1)
Quadratic Equations
The roots of a quadratic equation
ax>+bx+c=0  witha#0

are given by the general quadratic formula

r— —b + /b% — 4ac
= s .

If b> — 4ac > 0, the equation has two real roots; if b> — 4ac = 0, the equation has one
real root; if b2 — 4ac < 0, the equation has no real roots, but it has two complex roots.

Geometry

Elementary Figures

Triangle Equilateral Triangle

b S
area = 1bh area = £./3 s?
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Rectangle Rectangular Solid
w
h w
I I
area = lw
perimeter = 2| + 2w volume = Iwh
diagonal = /12 + w? surface area = 2lw + 2lh + 2wh
Square Cube
X X
X
X X
area = x?
perimeter = 4x volume = x3
diagonal = x+/2 surface area = 6x?
Circle Sphere
area = mrr? volume = 3713
circumference = 2 surface area = 4xr?

Sector of a Circle: radius r, central angle & measured in radians (see Section 1.6).

arc length =ro area = 1r2g

(Table continues)
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Right Circular Cylinder

Right Circular Cone

volume = 7r2h
lateral area = 2zrrh

total surface area = 27rr2 + 2xrh

volume = Zrrr2h

slant height = +/r2 + h?

lateral area = wr+/r2 4+ h?

total surface area = wr? + 7r/r2 + h?2

EXERCISES 1.2

Exercises 1-10. Is the number rational or irrational?

1. 2. 6.

3.2.131313... =213 4.2 -3.

5.0. 6. T — 2.

7. 78. 8. 0.125.

9. —/9. 10. (v2 = V/3) (V2 + V/3)

Exercises 11-16. Replace the symbol *x by <, >, or = to make
the statement true.

11. 2%0.75. 12.0.33 % .
13. V2 x 1.414. 14. 4 % \/16.
15. —% x —0.285714. 16. 7 x 2.
Exercises 17-23. Evaluate

17. 16]. 18. | — 4.
19.|—-3-7]. 20. | —5| — 8.
21. | =5+ -8|. 22. 12 — 7.
23. 15— +/5].

Exercises 24-33. Indicate on a number line the numbers x that
satisfy the condition.

24.x >3 25.x < -3,

26. -2 <x <3. 27. x% < 16.

28. x% > 16. 29. x| < 0.

30. x2 > 0. 31 |x —4| <2.

32. Ix+1] > 3. 33. |x+3|] <0.
Exercises 34-40. Sketch the set on a number line.

34. [3, o). 35. (—00, 2).

36. (—4, 3]. 37.[-2,3]U[1, 5].
38.[-3.9)n(3.3] 39. (—00, —1) U (=2, o0).

40. (—o0, 2) N [3, 00).

Exercises 41-47. State whether the set is bounded above,
bounded below, bounded. If a set is bounded above, give an
upper bound; if it is bounded below, give a lower bound; if it is
bounded, give an upper bound and a lower bound.

bSO. Rework Exercise 49 with xo = 3 and x, =

41.{0,1, 2,3, 4}. 42.{0,-1,-2,-3,...}.
43. The set of even integers.
44, {x : x < 4} 45, {x : x% > 3}.

46. {an1 'n :1,2,3...}.
47. The set of rational numbers less than +/2.
Exercises 48-50.

b48. Order the following numbers and place them on a number

line: ¥/, 2v™, /2,37, o

_ 17 + 2x3 4
[>49. Let xo=2 and define x,= 7 for n=
n—-1
1,2,3,4,... Find at least five values for x,. Is the set
S = {Xo, X1, X2, ..., Xn, ...} bounded above, bounded be-

low, bounded? If so, give a lower bound and/or an upper
bound for S. If n is a large positive integer, what is the ap-
proximate value of x,?

231 + 4x3
X1

Exercises 51-56. Write the expression in factored form.

51. x? — 10x + 25. 52. 9x2 — 4.

53. 8x° + 64. 54. 27x3 — 8.

55. 4x% + 12x + 9. 56. 4x* + 4x2 + 1.

Exercises 57-64. Find the real roots of the equation.

57.x2—x —2=0. 58.x2 -9 =0.
59. x2 —6x +9=0. 60. 2x2 —5x —3 =0.
61. x2 —2x +2=0. 62. x> +8x +16 =0.
63. x2 +4x +13=0. 64.x2 —2x +5=0.
Exercises 65-69. Evaluate.
5!

65. 5! 66. 8l

8! 9!
67. L 68. 60"

7!
69. o



70.

71.

72.

73.

74,

75.

76.
T7.

78.

Show that the sum of two rational numbers is a rational num-
ber.

Show that the sum of a rational number and an irrational
number is irrational.

Show that the product of two rational numbers is a rational
number.

Is the product of a rational number and an irrational number
necessarily rational? necessarily irrational?

Show by example that the sum of two irrational numbers (a)
can be rational; (b) can be irrational. Do the same for the
product of two irrational numbers.

Prove that +/2 is irrational. HINT: Assume that ~/2 = p/q
with the fraction written in lowest terms. Square both sides
of this equation and argue that both p and g must be divisible
by 2.

Prove that +/3 is irrational.

Let S be the set of all rectangles with perimeter P. Show that
the square is the element of S with largest area.

Show that if a circle and a square have the same perime-
ter, then the circle has the larger area. Given thatacircleand a
rectangle have the same perimeter, which has the larger area?

1.3 REVIEW OF INEQUALITIES
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The following mathematical tidbit was first seen by one of the
authors many years ago in Granville, Longley, and Smith, Ele-
ments of Calculus, now a Wiley book.

79. Theorem (a phony one): 1 = 2.

PROOF (a phony one): Let a and b be real numbers, both
different from 0. Suppose now that a = b. Then

ab = b?
ab —a? = b? — a?
alb—a)=(b+a)b—a)
a=b+a.
Since a = b, we have
a=2a.
Division by a, which by assumption is not 0, gives
1=2 1

What is wrong with this argument?

All our work with inequalities is based on the order properties of the real numbers given
in Section 1.2. In this section we work with the type if inequalities that arise frequently
in calculus, inequalities that involve a variable.
To solve an inequality in x is to find the numbers x that satisfy the inequality. These

numbers constitute a set, called the solution set of the inequality.

We solve inequalities much as we solve an equation, but there is one important
difference. We can maintain an inequality by adding the same number to both sides,
or by subtracting the same number from both sides, or by multiplying or dividing both
sides by the same positive number. But if we multiply or divide by a negative number,
then the inequality is reversed:

X < 2,

note, the inequality is reversed

X—2<4 gives X < 6, X+2<4
1 .
EX <4 gives X < 8,
1 .
but — EX <4 gives x > —8.
Example 1 Solve the inequality

—3(4—x) < 12.

SOLUTION  Multiplying both sides of the inequality by —%, we have

4 —x > —4,

Subtracting 4, we get

—X > —8.

(the inequality has been reversed)
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To isolate x, we multiply by —1. This gives

X < 8. (the inequality has been reversed again)

The solution set is the interval (—oco, 8]. 1

8

There are generally several ways to solve a given inequality. For example, the last
inequality could have been solved as follows:

—-3(4 —x) < 12,
—12 +3x <12,
3X < 24, (we added 12)
X < 8. (we divided by 3)

To solve a quadratic inequality, we try to factor the quadratic. Failing that, we can
complete the square and go on from there. This second method always works.
Example 2  Solve the inequality

x> —4x +3>0.
SOLUTION  Factoring the quadratic, we obtain
(x=1)(x —3) > 0.

The product (x — 1)(x — 3) is zero at 1 and 3. Mark these points on a number line
(Figure 1.3.1). The points 1 and 3 separate three intervals:

(—o00,1), 1, 3), (3, 00).

++++++++++++0- - ——— O++++++++++++

1 3

Figure 1.3.1

On each of these intervals the product (x — 1)(x — 3) keeps a constant sign:
on (—oo,1) [totheleftof1]  signof (x —1)(x —3) = (=)(—) = +;
on (1,3) [betweenland3] signof (x —1)(x —3) = (+)(-) = —;
on (3,00) [totherightof3] signof (x — 1)(x — 3) = (H)(+) = +.
The product (x — 1)(x — 3) is positive on the open intervals (—oo, 1) and (3, co). The
solution set is the union (—oo, 1) U (3, 00). 1

1 3

Example 3  Solve the inequality
X2 —2x +5<0.

SOLUTION Not seeing immediately how to factor the quadratic, we use the method
that always works: completing the square. Note that

X2 —2X+5=(X>—2x+1)+4=(x—-1)>°+4.
This tells us that
x2—2x+5>4  forall real x,

and thus there are no numbers that satisfy the inequality we are trying to solve. To put
it in terms of sets, the solution set is the empty set @.
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In practice we frequently come to expressions of the form
(x —a)(x —ap) ... (x —an)*

ki, ko, ..., Kk, positive integers, a; < a; < --- < an. Such an expression is zero at

ai, az, ..., an. It is positive on those intervals where the number of negative factors is

even and negative on those intervals where the number of negative factors is odd.
Take, for instance,

(X +2)(x = 1)(x — 3).
This product is zero at —2, 1, 3. It is

negative on  (—oo, —2), (3 negative terms)
positive on (-2,1), (2 negative terms)
negative on (1, 3), (1 negative term)
positive on (3, 00). (0 negative terms)
See Figure 1.3.2
————— O++++++++++++++++++++0-—-—-—-————————0++++
> 1 3
Figure 1.3.2

Example 4 Solve the inequality
(x +3)°(x — 1)(x — 4)? < 0.

SOLUTION Weview (x 4+ 3)°(x — 1)(x — 4)? asthe product of three factors: (x + 3)°,
(x — 1), (x — 4)%. The product is zero at —3, 1, 4. These points separate the intervals

(—o0, —3), (-3,1), (1, 4), (4, 00).

On each of these intervals the product keeps a constant sign:

positi_ve on (—oo, =3), (2 negative factors)

negative on (-3, 1), (1 negative factor)

positiveon (1, 4), (0 negative factors)

positive on (4, o). (0 negative factors)
See Figure 1.3.3.

++++++++0-——-——-———————— O+++++++++0++++++++
3 1 2
Figure 1.3.3

The solution set is the open interval (—3,1). [ 3 1

This approach to solving inequalities will be justified in Section 2.6

Inequalities and Absolute Value

Now we take up inequalities that involve absolute values. With an eye toward developing
the concept of limits (Chapter 2), we introduce two Greek letters: § (delta) and e
(epsilon).

13



14 m CHAPTER 1 PRECALCULUS REVIEW

As you know, for each real number a

la| = max{a, —a}, |a|] = Va2

a3 al = { a ifa>0.

—a, ifa<0,

We begin with the inequality
IX| <&

where § is some positive number. To say that |X| < § is to say that x lies within § units
of 0 or, equivalently, that x lies between —§ and §. Thus

e
-0 0 0
[x| <o

(1.3.2) IX] <6 iff -8 <X <.

The solution set is the open interval (-3, é).
To say that [x — c| < § is to say that x lies within § units of c or, equivalently, that
X lies between ¢ — § and ¢ + 8. Thus

(1.33) | [x—c|<$ iff C—5<X<CH3§.

The solution set is the open interval (c — §, ¢ + 8).
Somewhat more delicate is the inequality

0<|x—c|] <.

Here we have |x — c¢| < & with the additional requirement that x # c. Consequently,

(1.3.4) O<|x—c|<$ iff c—d<Xx<c¢C or C<X<C+H+3.

The solution set is the union of two open intervals: (c — §, ¢) U (c, ¢ + §).
The following results are an immediate consequence of what we just showed.

1 1 1.
X s iff — 2 <x <3
. <52 1 iff 24< ) 26' [solution set: (_%,%)]
ool MR [solution set: (4, 6)]
O<|x—=5 <1 iff 4<x<5 or 5<x <6 [solution set: (4. 5) U (5. 6)]

Example 5 Solve the inequality
X +2] < 3.

SOLUTION  Once we recognize that |X 4 2| = |[x — (—2)|, we are in familiar territory.
X —(—=2)] <3 iff —2-3<x<-2+3 iff —5<x <1l
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The solution set is the open interval (=5, 1). 1

Example 6 Solve the inequality
|3x — 4] < 2.

SOLUTION  Since

13x —4] = [3(x — 3)| = 13||x — 3| =3|x — 3
the inequality can be written

3x — 3| <2

This gives

Wl

—|—%, 2 ox <2

x-3l<5 3-5<x< g

The solution set is the open interval (%, 2).

ALTERNATIVE SOLUTION  There is usually more than one way to solve an inequality.
In this case, for example, we can write

[3x —4] < 2
as
—2<3x—-4<2
and proceed from there. Adding 4 to the inequality, we get
2 <3x < 6.

Division by 3 gives the result we had before:

%<X<2. J

Let e > 0. If you think of |a| as the distance between a and 0, then

(1.3.5) la] >¢ iff a>¢ or a< —e. —€ 0 €
|la]>e

Example 7 Solve the inequality
|2X + 3] > 5.

SOLUTION In general
la] > € iff a>e or a< —e.
So here
2X+3>5 or 2X +3 < —5.
The first possibility gives 2x > 2 and thus

X > 1.

15
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EXERCISES 1.3

The second possibility gives 2x < —8 and thus

X < —4
The total solution is therefore the union
(=00, —4) U (1,00). 41

-4 1
We come now to one of the fundamental inequalities of calculus: for all real numbers
aand b,

(1.3.6) la+b| < |a] + |b].

This is called the triangle inequality in analogy with the geometric observation that “in
any triangle the length of each side is less than or equal to the sum of the lengths of the
other two sides.”

PROOF OF THE TRIANGLE INEQUALITY The key here is to think of |x| as v/x2.
Note first that

(a+b)* = a% +2ab + b? < |af* + 2[al|b| + [b]* = (ja| + [b])’.
Comparing the extremes of the inequality and taking square roots, we have

V(@+h)? < lal + bl (Exercise 51)

The result follows from observing that
v@+hbZ=la+bl. QO

Here is a variant of the triangle inequality that also comes up in calculus: for all
real numbers a and b,

(1.3.7) |lal — |bl| < |a—bl.

The proof is left to you as an exercise.

Exercises 1-20. Solve the inequality and mark the solution set Exercises 21-36. Solve the inequality and express the solution
on a number line. set as an interval or as the union of intervals.
1.243x <5. 2. 1(2x+3) <6. 2L Ix] < 2. 22 |x| = 1.
3, 16x + 64 < 16. 4.3x+5 > L(x —2) 23. x| > 3. 24 x =1 <1.
. L 25. x —2| < 3. 26. [x — 3| < 2.
5. 5(1+x) < 3(1—x). 6.3x —2 <1+ 6X. .

) ) 27.0 < |x] < 1. 28.0 < x| < 3.
7.x—=1<0. 8. x*4+9x +20 < 0. L .
9.x2—x—6>0. 10 x2 — 4y — 5 = 0. 29.0 < [x—=2| < 3. 30.0 < [x =3l <2
11. 262+ x —1 < 0. 12.3x2 4+ 4x — 4 > 0. .0 <x =3 <8 3. [3% — 5[ <3,

13. x(x — 1)(x — 2) > 0. 14. x(2x — 1)(3x —5) < 0. 33 [2x+1] < 3. 34, 5x — 3| < L.

15. %% — 2x% 4 x > 0. 16. X2 — dx 4+ 4 < 0. 35. |2x + 5] > 3. X fhfII36.|3x+1|>hS. | f
3y 2 2y 2 Exercises 37-42. Each of the following sets is the solution of an

17 =2)(x +3)° < 0. 18 x5 = 3)(x +4)" > 0. inequality of the form | x — ¢ |< 8. Find c and é.

19. x2(x — 2)(x +6) > 0. 20. 7x(x — 4)? < 0.
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37. (-3, 3). 38. (-2, 2). 52. Show that |a — b| < |a| + |b| for all real numbers a and b.
39. (=3,7). 40. (0, 4). 53. Show that ||a] — [b|| < |a — b| for all real numbers a and b.
41. (~7,3). 42. (a, b). HINT: Calculate |ja] — [b]|".
Exercises 43-46. Determine all numbers A > 0 for which the 54. Show that |a + b| = |a| + |b] iffab > 0.
statement is true. 55. Show that
43.If [x — 2| < 1, then |2x — 4| < A. a b
44, 1f |x — 2| < A, then |2x — 4] < 3. it O=a<b,  then =i
45 1T x4 1] < A, then |3x + 3] < 4. 56. Let a, b, ¢ be nonnegative numbers. Show that
46. If |x + 1| < 2, then |3x + 3| < A.
47. Arrange the following in order :1, x, /X, 1/x, 1/4/X, given if a<bdc, then a < b + ¢ )
that: () x > 1;(b) 0 < x < 1. l1+a~1+4+b 1+c
48. Given that x > 0, compare 57. Show that if a and b are real numbers and a < b, then
a < (a+Dhb)/2 <b. The number (a+b)/2 is called the
/ X + arithmetic mean of a and b.
58. Given that 0 < a < b, show that
49. Suppose that ab > 0. Show that if a < b, then1/b < 1/a. ath
50. Given that a > 0 and b > 0, show that if a% < b?, then a<+ab< 5 <bh.

a<h.
51. Show that if 0 < a < b, then \/a < v/b.

M 1.4 COORDINATE PLANE; ANALYTIC GEOMETRY

Rectangular Coordinates

The one-to-one correspondence between real numbers and points on a line can be used
to construct a coordinate system for the plane. In the plane, we draw two number lines
that are mutually perpendicular and intersect at their origins. Let O be the point of
intersection. We set one of the lines horizontally with the positive numbers to the right
of O and the other vertically with the positive numbers above O. The point O is called
the origin, and the number lines are called the coordinate axes. The horizontal axis
is usually labeled the x-axis and the vertical axis is usually labeled the y-axis. The
coordinate axes separate four regions, which are called quadrants. The quadrants are
numbered I, I1, 11, IV in the counterclockwise direction starting with the upper right
quadrant. See Figure 1.4.1.

Rectangular coordinates are assigned to points of the plane as follows (see Figure
1.4.2.). The point on the x-axis with line coordinate a is assigned rectangular coordinates
(a, 0). The point on the y-axis with line coordinate b is assigned rectangular coordinates
(0, b). Thus the origin is assigned coordinates (0, 0). A point P not on one of the
coordinate axes is assigned coordinates (a, b) provided that the line I; that passes
through P and is parallel to the y-axis intersects the x-axis at the point with coordinates
(a, 0), and the I, that passes through P and is parallel to the x-axis intersects the y-axis
at the point with coordinates (0, b).

This procedure assigns an ordered pair of real numbers to each point of the plane.
Moreover, the procedure is reversible. Given any ordered pair (a, b) of real numbers,
there is a unique point P in the plane with coordinates (a, b).

To indicate P with coordinates (a, b) we write P(a, b). The number a is called the
x-coordinate (the abscissa); the number b is called the y-coordinate (the ordinate). The
coordinate system that we have defined is called a rectangular coordinate system. It
is often referred to as a Cartesian coordinate system after the French mathematician
René Descartes (1596-1650).

The number +/ab is called the geometric mean of a and b.

Figure 1.4.1

Ip
——1

Qlc, d)
Figure 1.4.2
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P1(x1, y7)
M(x, y)

Po(Xo, ¥o)

Midpoint: M = (Xo_wzw yogyl)

Figure 1.4.4

Distance and Midpoint Formulas

Let Po(Xo, Yo) and Pi(x1, y1) be points in the plane. The formula for the distance
d(Pg, P1) between Py and P, follows from the Pythagorean theorem:

d(Po, P1) = v/IX1 — Xol2 + [y1 — YoI2 = v/(X1 — X0)2 + (Y1 — Yo)?.

(Figure 1.4.3)
Loja? = a?
y
Pl(Xl, yl)
\
\
| ly1 = Yol
PO(XM |
,,,,,,,,,,,,,,,,,,,, o
‘Xl B XO‘ P(xq, Yo)
X

Distance : d(Po, P1) = /(X1 — X0)? + (Y1 — Yo)?
Figure 1.4.3

Let M(x, y) be the midpoint of the line segment Py P;. That

Xo + X1 Yo+ Y1
X = and =
2 y 2

follows from the congruence of the triangles shown in Figure 1.4.4

Lines

(i) Slope Let | be the line determined by Py(Xo, Yo) and Pi(X1, y1). If I'is not vertical,
then x; # Xo and the slope of | is given by the formula

m = Y1 — YO'
X1 — Xo (Figure 1.4.5)

With 0 (as indicated in the figure) measured counterclockwise from the x-axis,
m = tan6.'

The angle 6 is called the inclination of I. If | is vertical, then § = 7 /2 and the slope of
I is not defined.

(i) Intercepts If a line intersects the x-axis, it does so at some point (a, 0). We call a
the x-intercept. If a line intersects the y-axis, it does so at some point (0, b). We call b
the y-intercept. Intercepts are shown in Figure 1.4.6.

TThe trigonometric functions are reviewed in Section 1.6.
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y y y

PolXo, ¥o)  P1(x, y1)

y1-Y
m=-:-2=-0

X1=%o

6=0

Figure 1.4.5

(iii) Equations

vertical line  x = a.
horizontal line y =bh.

point-slope form  y — yo = m(X — Xo).

slope-intercept form  y = mx + b. (y =batx = 0)
. X

two-intercept form a + % =1 (x-intercept a; y-intercept b)

general form  Ax+ By +C =0. (A and B not both 0)

(iv) Parallel and Perpendicular Nonvertical Lines

parallel mi = mo.
perpendicular mim, = —1.

(v) The Angle Between Two Lines The angle between two lines that meet at right
angles is /2. Figure 1.4.7 shows two lines (l1, I, with inclinations 6, 6,) that intersect
but not at right angles. These lines form two angles, marked « and = — « in the figure.
The smaller of these angles, the one between 0 and /2, is called the angle between I,
and l,. This angle, marked « in the figure, is readily obtained from 6; and 6,.

If neither I; nor I is vertical, the angle o between I; and I, can also be obtained
from the slopes of the lines:

The derivation of this formula is outlined in Exercise 75 of Section 1.6.
Example 1 Find the slope and the y-intercept of each of the following lines:

l;:20x — 24y — 30 =0, I, :2x =3 =0, I3:4y+5=0.

SOLUTION  The equation of I, can be written

5
y=g§X—

Mo

y I

/

(0, b)

x-intercept a y-intercept b

Figure 1.4.6

Figure 1.4.7
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This is in the form y = mx + b. The slope is 2, and the y-intercept is —2.
The equation of I, can be written

_ 3
X=3.
The line is vertical and the slope is not defined. Since the line does not cross the y-axis,
the line has no y-intercept.

The third equation can be written

The line is horizontal. The slope is 0 and the y-intercept is —%. The three lines are
drawn in Figure 1.4.8.

_=ON W<
N W<
N W<

-2 -2
-3 -3 -3
v=$x-3
Figure 1.4.8

Example 2 Write an equation for the line I, that is parallel to
l;:3x —5y+8=0
and passes through the point P (-3, 2).
SOLUTION  The equation for I; can be written
y=3x+2

The slope of I, is % The slope of |, must also be % (For nonvertical parallel lines, m; = m5.)

Since |, passes through (—3, 2) with slope % we can use the point-slope formula
and write the equation as

y—2=3(x+3). O
Example 3  Write an equation for the line that is perpendicular to
Il :x—4y+8=0
and passes through the point P (2, —4).
SOLUTION  The equation for I; can be written

y=3iX+2.
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The slope of I, is L. The slope of I, is therefore —4. (For nonvertical perpendicular

4
lines, mym, = —1.)

Since |, passes through (2, —4) with slope —4, we can use the point-slope formula
and write the equation as

y+4=—-4x—-2). 1
Example 4 Show that the lines
l;:3x —4y +8=0 and l,:12x — 5y —12=0

intersect and find their point of intersection.

SOLUTION  The slope of Iy is % and the slope of I, is 1—52 Since | and I, have different
slopes, they intersect at a point.
To find the point of intersection, we solve the two equations simultaneously:

3Xx—4y+8=0
12x — 5y — 12 = 0.

Multiplying the first equation by —4 and adding it to the second equation, we obtain

11y —44 =0
y =4.

Substituting y = 4 into either of the two given equations, we find that x = % The lines
intersect at the point (8,4). 0

Circle, Ellipse, Parabola, Hyperbola

These curves and their remarkable properties are thoroughly discussed in Section 10.1.
The information we give here suffices for our present purposes.

Circle

ary x
Y

X2 +y2 = r2 (x-h)2 + (y - k2 =r2

Figure 1.4.9

21
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Ellipse
y
y
b
b
a a
\_/ X X
232 22
¥+E—1,a>b ¥+E—1,b>a
Figure 1.4.10
Parabola
y y
X
X
y=ax%a>0 y=ax%a<0
y=ax’+bx+c,a>0 y=ax’+bx+c,a<0
Figure 1.4.11
Hyperbola
y y

Figure 1.4.12
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Remark  The circle, the ellipse, the parabola, and the hyperbola are known as the
conic sections because each of these configurations can be obtained by slicing a “double
right circular cone” by a suitably inclined plane. (See Figure 1.4.13.) [

< L L
- 7 g

<

P p ¢

\
|
|
|

h

circle ellipse parabola hyperbola
Figure 1.4.13
EXERCISES 1.4
Exercises 1-4. Find the distance between the points. 26. below the x-axis.
1. Py(0,5), Pi(6, —3). 2.P(2,2), Pi(5,5). Exercises 27-28. Write a}n equation for the vertical line 3 units
3. Po(5,-2), Pi(-3,2). 4. Py(2,7), Py(—4,7). 27. to the |(.‘3ft of the y-ax|s.,
Exercises 5-8. Find the midpoint of the line segment Py P;. 28. to the right of the y-axis.
Exercises 29-34. Find an equation for the line that passes
5. Po(2,4), P4(6,8). 6. Po(3, 1), Py(-1,5). ; ,
; PO(2 )3 1F(> 7) 3 o PO( 3 ) b ;( ) through the point P(2, 7) and is
' 0_( - —3), _1( > —3). ' Ol(a’ ). P ,a).. 29. parallel to the x-axis.
Exercises 9—14. Find the slope of the line through the points. .
30. parallel to the y-axis.
9. Po(—2,5), Pi(4.1). 10. Po(4, =3), Pi(=2,-7). .
31. parallel to the line 3y — 2x + 6 = 0.
. perpendicular to the liney — 2x +5 = 0.
13. P(x0,0), Q(O0, o). 14. 0(0,0), P(xo, Yo). Perp el he li /
Exercises 15-20. Find the slope and y-intercept. 33. perpendicular tf)t elinedy —2x +6=0.
15,y = 2x — 4. 16.6 —5x = 0. 34. parallel to the line y — 2x 4+ 5 = 0.
17.3y = X +6. 18.6y — 3x +8 = 0. Exercises _35—38. Determine the point(s) where the line inter-
sects the circle.
19.7x — 3y +4=0. 20.y =3. By —x. x24yvio1
Exercises 21-24. Write an equation for the line with 36. y=Xx ) y 2_ '4
21. slope 5 and y-intercept 2. y=mX. Xty 2_ '2
22. slope 5 and y-intercept —2. 37.4x+3y =24, Xx"4y" =25
38.y=mx+b, x24y?=0"n2

23. slope —5 and y-intercept 2.
24. slope —5 and y-intercept —2.

Exercises 25-26. Write an equation for the horizontal line
3 units

25. above the x-axis.

Exercises 39-42. Find the point where the lines intersect.
39.11:4x -y —-3=0, Il,:3x—-4y+1=0.

40. 1 :3x+y—5=0, Il:7x—10y +27 =0.

41. 1 :4x—y+2=0, 1,:19x+y=0.
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42. 1 :5x —6y+1=0, 1,:8x+5y+2=0.

43. Find the area of the triangle with vertices (1, —2), (-1, 3),
(2,4).

44. Find the area of the triangle with vertices (—1, 1), (3, v2),
(2, -1).

45, Determine the slope of the line that intersects the circle
x? 4 y? = 169 only at the point (5, 12).

46. Find an equation for the line which is tangent to the circle
x% 4+ y2 — 2x 4+ 6y — 15 = 0 at the point (4, 1). HINT: A
line is tangent to a circle at a point P iff it is perpendicular
to the radius at P.

47. The point P(1, —1) ison acircle centered at C(—1, 3). Find
an equation for the line tangent to the circle at P.

Exercises 48-51. Estimate the point(s) of intersection.
48. 11 :3x —4y =7, I, —5x+2y =11.

49.1; :241x +3.29y =5, 1,:5.13x —4.27y = 13.
50. 1, :2x —3y =5, circle: x2 +y2 =4,

51. circle : x> +y?2 =9, parabola:y = x? — 4x +5.

Exercises 52-53. The perpendicular bisector of the line seg-
ment P Q is the line which is perpendicular to P Q and passes
through the midpoint of P Q. Find an equation for the perpen-
dicular bisector of the line segment that joins the two points.

52. P(~1,3), Q(3,—4).
53. P(L, —4), Q(4,9).

Exercises 54-56. The points are the vertices of a triangle. State
whether the triangle is isosceles (two sides of equal length), a
right triangle, both of these, or neither of these.

54. Po(—4,3), Pi(—4,-1), P(2,1).
55. Po(—2,5), Pi(1,3), P2(-1,0).
56. Po(—1,2), P1(1,3), P2(4,1).

57. Show that the distance from the origin to the line Ax + By +
C = 0is given by the formula

IC]
do,l) = ——.
Oh=—r e
58. An equilateral triangle is a triangle the three sides of which
have the same length. Given that two of the vertices of an
equilateral triangle are (0, 0) and (4, 3), find all possible lo-
cations for a third vertex. How many such triangles are there?

59. Show that the midpoint M of the hypotenuse of a right tri-
angle is equidistant from the three vertices of the triangle.
HINT: Introduce a coordinate system in which the sides of
the triangle are on the coordinate axes; see the figure.

M 1.5 FUNCTIONS

60.

61.

62.

63.

64.

65.

66.

(a0 X

A median of a triangle is a line segment from a vertex to the
midpoint of the opposite side. Find the lengths of the medi-
ans of the triangle with vertices (-1, —2), (2, 1), (4, —3).
The vertices of a triangle are (1, 0), (3, 4), (—1, 6). Find the
point(s) where the medians of this triangle intersect.

Show that the medians of a triangle intersect in a single point
(called the centroid of the triangle). HINT: Introduce a co-
ordinate system such that one vertex is at the origin and one
side is on the positive x-axis; see the figure.

y
(a, b)

© 0) X

Prove that each diagonal of a parallelogram bisects the other.
HINT: Introduce a coordinate system with one vertex at the
origin and one side on the positive x-axis.

P1(X1, Y1), P2(X2, ¥2), Pa(Xs, y3), Ps(X4, y4) are the vertices
of a quadrilateral. Show that the quadrilateral formed by
joining the midpoints of adjacent sides is a parallelogram.

Except in scientific work, temperature is usually measured
in degrees Fahrenheit (F) or in degrees Celsius (C). The re-
lation between F and C is linear. (In the equation that relates
F to C, both F and C appear to the first degree.) The freezing
point of water in the Fahrenheit scale is 32°F; in the Celsius
scale it is 0°C. The boiling point of water in the Fahrenheit
scale is 212°F; in the Celsius scale it is 100°C. Find an equa-
tion that gives the Fahrenheit temperature F in terms of the
Celsius temperature C. Is there a temperature at which the
Fahrenheit and Celsius readings are equal? If so, find it.

In scientific work, temperature is measured on an absolute
scale, called the Kelvin scale (after Lord Kelvin, who initi-
ated this mode of temperature measurement). The relation
between Fahrenheit temperature F and absolute temperature
Kislinear. Giventhat K = 273° when F = 32°,and K = 373°
when F = 212°, express K in terms of F. Then use your result
in Exercise 65 to determine the connection between Celsius
temperature and absolute temperature.

The fundamental processes of calculus (called differentiation and integration) are pro-
cesses applied to functions. To understand these processes and to be able to carry them
out, you have to be comfortable working with functions. Here we review some of the
basic ideas and the nomenclature. We assume that you are familiar with all of this.



Functions can be applied in a very general setting. At this stage, and throughout the
first thirteen chapters of this text, we will be working with what are called real-valued
functions of a real variable, functions that assign real numbers to real numbers.

Domain and Range

Let’s suppose that D is some set of real numbers and that f is a function defined on D.
Then f assigns a unique number f (x) to each number x in D. The number f (x) is called
the value of f at x, or the image of x under f. The set D, the set on which the function is
defined, is called the domain of f, and the set of values taken on by f is called the range
of f. In set notation

dom (f) =D, range (f) = {f(x) : x € D}.
We can specify the function f by indicating exactly what f (x) is for each x in D.
Some examples. We begin with the squaring function
f(x) = x2, for all real numbers x.

The domain of f is explicitly given as the set of real numbers. Particular values taken
on by f can be found by assigning particular values to x. In this case, for example,

f(4) = 4% = 16, f(—=3) = (—3)? =09, f(0) = 0% = 0.

As x runs through the real numbers, x2 runs through all the nonnegative numbers. Thus
the range of f is [0, 0o). In abbreviated form, we can write

dom () = (—o0, 00), range (f) = [0, o0)

and we can say that f maps (—oo, 0o) onto [0, co).
Now let’s look at the function g defined by

g(x) = vV2x + 4, x € [0, 6].
The domain of g is given as the closed interval [0, 6]. At x = 0, g takes on the value 2:
9g0)=+v2-0+4=+4=2
at x = 6, g has the value 4:
9(6) =v2 - 6+4=+16=4.

As x runs through the numbers in [0, 6], g(x) runs through the numbers from 2 to 4.
Therefore, the range of g is the closed interval [2, 4]. The function g maps [0, 6] onto
[2, 4].

Some functions are defined piecewise. As an example, take the function h, defined
by setting

2x +1, ifx <0
h(x):{ X2, ifx=>0.

As explicitly stated, the domain of h is the set of real numbers. As you can verify, the
range of h is also the set of real numbers. Thus the function h maps (—oo, co) onto
(—00, 00). A more familiar example is the absolute value function f (x) = |x|. Here

X, ifx>0
f(x)z{—x, if x <O.

The domain of this function is (—oo, co) and the range is [0, co).

Remark Functionsare often given by equations of the formy = f (x) withx restricted
to some set D, the domain of f. In this setup x is called the independent variable (or
the argument of the function) and y, clearly dependent on X, is called the dependent
variable. O
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The Graph of a Function

If f is a function with domain D, then the graph of f is the set of all points P(x, f(x))
with x in D. Thus the graph of f is the graph of the equation y = f (x) with x restricted
to D; namely

the graph of f = {(x,y):x € D,y = f(x)}.

The most elementary way to sketch the graph of a function is to plot points. We plot
enough points so that we can “see” what the graph may look like and then connect the
points with a “curve.” Of course, if we can identify the curve in advance (for example,
if we know that the graph is a straight line, a parabola, or some other familiar curve),
then it is much easier to draw the graph.

The graph of the squaring function

f(x) = x2, X € (—00, 00)

is the parabola shown in Figure 1.5.1. The points that we plotted are indicated in the
table and marked on the graph. The graph of the function

g(x) = v2x + 4, x € [0, 6]

is the arc shown in Figure 1.5.2

y
6 -
(6, 4)
4 7P(x, N2x + 4)
(4,N12)

24 (2,V8)

| | |

2 4 6 X

Figure 1.5.1 Figure 1.5.2

The graph of the function

2x + 1, ifx <0
h(x) ={ X2, ifx >0

and the graph of the absolute value function are shown in Figures 1.5.3 and 1.5.4.

Although the graph of a function is a “curve” in the plane, not every curve in the
plane is the graph of a function. This raises a question: How can we tell whether a curve
is the graph of a function?

A curve C which intersects each vertical line at most once is the graph of a function:
for each P(x, y) € C, define f(x) = y. A curve C which intersects some vertical line
more than once is not the graph of a function: If P(x, y1) and P(x, y,) are both on C,
then how can we decide what f(x) is? Is it y;; oris it y,?

These observations lead to what is called the vertical line test: a curve C in the
plane is the graph of a function iff no vertical line intersects C at more than one point.
Thus circles, ellipses, hyperbolas are not the graphs of functions. The curve shown in
Figure 1.5.5 is the graph of a function, but the curve shown in Figure 1.5.6 is not the
graph of a function.
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x | Ixl
0|0
111
-1 |1
y
-1, 1) (1, 1)
| |
-1 1 X
_/2x+1, x<0
hx) = X2, x>0
Ix| = X, x=0
(-2, -3) X, x<0
Figure 1.5.3 Figure 1.5.4
y y

NS )
/ NS

Figure 1.5.5 Figure 1.5.6

Graphing calculators and computer algebra systems (CAS) are valuable aids to
graphing, but, used mindlessly, they can detract from the understanding necessary for
more advanced work. We will not attempt to teach the use of graphing calculators or
the ins and outs of computer software, but technology-oriented exercises will appear
throughout the text.

Even Functions, Odd Functions; Symmetry

For even integers n, (—x)" = x"; for odd integers n, (—x)" = —x". These simple ob-
servations prompt the following definitions:

A function f is said to be even if

f(—x)= f(x)  forall x € dom (f);
a function f is said to be odd if

f(—x)=—-1(x) for all x € dom (f).

The graph of an even function is symmetric about the y-axis, and the graph of an
odd function is symmetric about the origin. (Figures 1.5.7 and 1.5.8.)
The absolute value function is even:

fF(=x) =1—xI = x| = f(x).
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(=x, f(=x))
|
|

\ x_/
T
|
|
|

[
0dd function

Even function

(x, f(x))

Figure 1.5.7 Figure 1.5.8

y Its graph is symmetric about the y-axis. (See Figure 1.5.4.) The function f (x) = 4x — x3
3 is odd:
y=4x-x3
2 f(—=x) = 4(—x) — (—x3) = —4x + x% = —(4x — x3) = — f (x).
1
| | The graph, shown in Figure 1.5.9, is symmetric about the origin.
2\ 1 12 X
3 Convention on Domains
Figure 1.5.9 If the domain of a function f is not explicitly given, then by convention we take as
e domain the maximal set of real numbers x for which f(x) is a real number. For the
function f(x) = x3 + 1, we take as domain the set of real numbers. For g(x) = /X,
we take as domain the set of nonnegative numbers. For
1
h(x)= ——
="
we take as domain the set of all real numbers x # 2. In interval notation.
dom(f) = (—o0,00), dom(g) =[0,00), and dom(h) = (—o0,2)U (2, c0).
The graphs of the three functions are shown in Figure 1.5.10.
y y y
P(x, VX)
(0,/1)‘
X X —1‘
P(x, x3 + 1) (O, *5)
fx)=x3+1) g(x) = Vx
Figure 1.5.10
Example 1 Give the domain of each function:
(@ f(x)= X6 (b) g(x) = ~ 1

SOLUTION (a) You can see that f(x) is a real number iff x> + x — 6 # 0. Since
X2+ x —6=(x+3)(x —2),
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the domain of f is the set of real numbers other than —3 and 2. This set can be expressed
as

(o0, =3) U (=3,2) U (2, ).
(b) For g(x) to be a real number, we need
4-x*>0 and x#1.

Since 4 — x? > 0iff x? < 4iff —2 < x < 2, the domain of g is the set of all numbers x
in the closed interval [—2, 2] other than x = 1. This set can be expressed as the union
of two half-open intervals:

[-2,1)u(1,2]. 4
Example 2 Give the domain and range of the function:

f(x) = J%Jrs.

SOLUTION  Firstwe look for the domain. Since /2 — x isareal number iff2 — x > 0,
we need x < 2. Butat x =2, +/2 — x = 0 and its reciprocal is not defined. We must
therefore restrict x to x < 2. The domain is (—oo, 2).

Now we look for the range. As x runs through (—oo, 2), /2 — x takes on all positive
values and so does its reciprocal. The range of f is therefore (5, oo). The function f
maps (—oo, 2) onto (5, 0c0). 1

Functions are used in applications to show how variable quantities are related. The
domain of a function that appears in an application is dictated by the requirements of
the application.

Example 3 U.S. Postal Service regulations require that the length plus the girth Girth
(the perimeter of a cross section) of a package for mailing cannot exceed 108 inches. f

A rectangular box with a square end is designed to meet the regulation exactly (see & |

Figure 1.5.11). Express the volume V of the box as a function of the edge length of the & A

square end and give the domain of the function. / '

SOLUTION  Let x denote the edge length of the square end and let h denote the length
of the box. The girth is the perimeter of the square, or 4x. Since the box meets the
regulations exactly,

4x +h =108  andtherefore  h = 108 — 4x. Figure 1.5.11

The volume of the box is given by V = x2h and so it follows that
V(x) = x%(108 — 4x) = 108x? — 4x3,

Since neither the edge length of the square end nor the length of the box can be negative,
we have

x>0 and h =108 — 4x > 0.

The second condition requires x < 27. The full requirement on x, 0 < x < 27, gives
dom(V) =1[0,27]. O

Example 4 A soft-drink manufacturer wants to fabricate cylindrical cans. (See
Figure 1.5.12.) The can is to have a volume of 12 fluid ounces, which we take to be
approximately 22 cubic inches. Express the total surface area S of the can as a function
of the radius and give the domain of the function. Figure 1.5.12
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SOLUTION  Let r be the radius of the can and h the height. The total surface area (top,
bottom, and lateral area) of a right circular cylinder is given by the formula
S =2nr% 4 2xrh.
Since the volume V = 7rr?h is to be 22 cubic inches, we have

22
mr’h=22 and  h=—
r
and therefore
22 44
S(r) = 27r? 4 27r (—2) =27r? + —. (square inches)
Tr r

Since r can take on any positive value, dom (S) = (0, c0).

EXERCISES 1.5

Exercises 1-6. Calculate (a) f (0), (b) f (1), (c) f (—2), (d) f(3/2). 33. f(x) = 2x. 34. f(x) =2x + 1.
2% —1 35. f(x) = ix +2. 36. f(x) = —ix —3.
1 F(x) = 2x2 — 3x + 2. 2. f(x)= 2= 2 2
x2+4 37. f(x) = V4 — 2. 38. f(x) =49 —x2.
3. f(X) = /X2 4+ 2x. 4. f(x) = |x + 3| — 5x. 39. f(x) =x%2—x —6. 40. f(x) = |x —1J.
5. f(x) = 2x 6. f(x)=1— 1 Exercises 41-44. Sketch the graph and give the domain and
' X + 2| +x2° ' (x +1)% range of the function.
Exercises 7-10. Calculate (a) f(—x), (b) f(1/x), (c) f(a + b). ~1, x<0
7. £(x) = x% — 2x 8. f(x) = —— HIO=1 1 xso0
' - ' ' T x2+1 ,
X X x<0
—_ 2 -— ’ —
9. f(x) =14 x2 10.f(x)_|X2_1|. 2.fx)=11_x x>0
Exercises 11 and 12. Calculate f(a+h) and [f(a+h)—
f(a)]/h forh 0. 1+x, 0<xx<1
1 _ X, l<x<2
— 2x2 _ _ = 43. f(x) = )
11. f(x) = 2x2 — 3x. 12. (0 = . x) i1 2ex
Exercises 13-18. Find the number(s) x, if any, where f takes on
the value 1. X2, X <0
13. f(x) =2 —x|. 14. f(x) = V/1+x. 44, f(x)=4{ 1 0<x<2
15. f(X) = X2 + 4x + 5. 16. f(x) =44 10x — x2. X, 2<X
17. f(x) = 2 . 18. f(x) = i_ Exercises 45-48. State whether the curve is the graph of a func-
Vx2 -5 ] tion. If it is, give the domain and the range.
Exercises 19-30. Give the domain and range of the function. 45.
19. f(x) = |x|. 20. g(x) = x? — 1.
21, f(x) = 2x — 3. 22. g(x) = /X +5. g
1 4 3
23. f(x) = 2 24. g(x) = < 2
25. f(x) =1 —x. 26. g(x) = V/x —3. /\
_ _ L1 /i | |
27. f(x)_«/71—x—1. 28. g(x)_«/xl—l—l. = _2/_1 T 3 3 x
-1+
29. f(x) = . 30. g(x) = .
W=7 W= T o
Exercises 31-40. Give the domain of the function and sketch 3L
the graph.

31 f(x) = 1. 32, f(x) = —1.



46.

47.

NN W<
\

48. y

2L
3+

Exercises 49-54. State whether the function is odd, even, or
neither.

49. f(x) = x5. 50. f(x) =x%+1.
51. g(x) = x(x — 1). 52. g(x) = x(x? + 1).
x2 1
53. f(x)=1_|X|. 54, F(x)=x+;.
55. f(x) = 75 56. f(x) = v/x — x3.

57. The graph of f(x) = x®+ $x® —12x — 6 looks some-
thing like this:

(a) Use a graphing utility to sketch an accurate graph of f.
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(b) Find the zero(s) of f (the values of x such that f(x) = 0)
accurate to three decimal places.

(c) Find the coordinates of the points marked A and B, ac-
curate to three decimal places.

[>58. The graph of f(x) = —x* + 8x? + x — 1 looks something

like this:

(a) Use a graphing utility to sketch an accurate graph of f.

(b) Find the zero(s) of f, if any. Use three decimal place
accuracy.

(¢) Find the coordinates of the points marked A and B, ac-
curate to three decimal places.

QExercises 59 and 60. Use a graphing utility to draw several views

of the graph of the function. Select the one that most accurately
shows the important features of the graph. Give the domain and
range of the function.
59. f(x) = |x% — 3x? — 24x + 4.
60. f(x) = +/x3 —8.
61. Determine the range of y = x? — 4x — 5:
(@) by writing y in the form (x — a)? + b.
(b) by first solving the equation for x.
2X

62. Determine the range of y = 2

o ) b
(a) by writing y in the form a + —x
(b) by first solving the equation for x.
63. Express the area of a circle as a function of the circumfer-
ence.

64. Express the volume of a sphere as a function of the surface
area.

65. Express the volume of a cube as a function of the area of one
of the faces.

66. Express the volume of a cube as a function of the total surface
area.

67. Express the surface area of a cube as a function of the length
of the diagonal of a face.

68. Express the volume of a cube as a function of one of the
diagonals.

69. Express the area of an equilateral triangle as a function of
the length of a side.

70. A right triangle with hypotenuse c is revolved about one of
its legs to form a cone. (See the figure.) Given that x is the
length of the other leg, express the volume of the cone as a
function of x.
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71.

72

73.

74.

~
- SR

[

)

A Norman window is a window in the shape of a rectangle
surmounted by a semicircle. (See the figure.) Given that the
perimeter of the window is 15 feet, express the area as a
function of the width x.

X

. A window has the shape of a rectangle surmounted by an

equilateral triangle. Given that the perimeter of the window
is 15 feet, express the area as a function of the length of one
side of the equilateral triangle.

Express the area of the rectangle shown in the accompanying
figure as a function of the x-coordinate of the point P.

y
(0, b) ¢

P(x, y)

A right triangle is formed by the coordinate axes and a line
through the point (2,5). (See the figure.) Express the area of
the triangle as a function of the x-intercept.

75.

76.

77.

y
R

(x,0) X

Astring 28 inches long is to be cut into two pieces, one piece
to form a square and the other to form a circle. Express the
total area enclosed by the square and circle as a function of
the perimeter of the square.

A tank in the shape of an inverted cone is being filled with
water. (See the figure.) Express the volume of water in the
tank as a function of the depth h.

Suppose that a cylindrical mailing container exactly meets
the U.S. Postal Service regulations given in Example 3. (See
the figure.) Express the volume of the container as a function
of the radius of an end.

M 1.6 THE ELEMENTARY FUNCTIONS

The functions that figure most prominently in single-variable calculus are the polyno-
mials, the rational functions, the trigonometric functions, the exponential functions,
and the logarithm functions. These functions are generally known as the elementary
functions. Here we review polynomials, rational functions, and trigonometric functions.
Exponential and logarithm functions are introduced in Chapter 7.

Polynomials

We begin with a nonnegative integer n. A function of the form

P(x) = anx" +a,_1x" 14  +ax +ag

for all real x,
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where the coefficients a,, a1, ..., a1, g are real numbers and a, # 0is called a (real)
polynomial of degree n.
If n = 0, the polynomial is simply a constant function:

P(x) = ao for all real x.

Nonzero constant functions are polynomials of degree 0. The function P(x) = 0 for all
real x is also a polynomial, but we assign no degree to it.

Polynomials satisfy a condition known as the factor theorem: if P is a polynomial
and r is a real number, then

P(r)=0 iff (x —r) is a factor of P(x).

The real numbers r at which P(x) = 0 are called the zeros of the polynomial.
The linear functions

P(x) =ax +b, a0

are the polynomials of degree 1. Such a polynomial has only one zero: r = —b/a. The
graph is the straight line y = ax + b.
The quadratic functions

P(x) = ax? + bx +c, a#0

are the polynomials of degree 2. The graph of such a polynomial is the parabola y =
ax? + bx +c. Ifa > 0, the vertex is the lowest point on the curve; the curve opens up.
If a < 0, the vertex is the highest point on the curve. (See Figure 1.6.1.)

vertex

w/\
a>0 a<0

Figure 1.6.1

The zeros of the quadratic function P(x) = ax? + bx + c are the roots of the quadratic
equation

ax’+bx +c=0.

The three possibilities are depicted in Figure 1.6.2. Here we are taking a > 0.

A\ N\

b2 - 4ac>0 b2 -4ac=0 b2 - 4ac<0
two real roots one real root no real roots
Figure 1.6.2

Polynomials of degree 3 have the form P (x) = ax® + bx? + cx +d, a # 0. These
functions are called cubics. In general, the graph of a cubic has one of the two following
shapes, again determined by the sign of a (Figure 1.6.3). Note that we have not tried to

33
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locate these graphs with respect to the coordinate axes. Our purpose here is simply to
indicate the two typical shapes. You can see, however, that for a cubic there are three

possibilities: three real roots, two real roots, one real root. (Each cubic has at least one
real root.)

a>0 Cubics a<0

Figure 1.6.3

Polynomials become more complicated as the degree increases. In Chapter 4 we
use calculus to analyze polynomials of higher degree.

Rational Functions

A rational function is a function of the form

_ Pk
T QW)

where P and Q are polynomials. Note that every polynomial P is a rational function:
P(x) = P(x)/1 s the quotient of two polynomials. Since division by 0 is meaningless,
arational function R = P/Q is not defined at those points x (if any) where Q(x) = 0; R
is defined at all other points. Thus, dom (R) = {x : Q(x) # 0}.

Rational functions R = P/Q are more difficult to analyze than polynomials and
more difficult to graph. In particular, we have to examine the behavior of R near the
zeros of the denominator and the behavior of R for large values of x, both positive and
negative. If, for example, the denominator Q is zero at x = a but the numerator P is
not zero at x = a, then the graph of R tends to the vertical as x tends to a and the
line x = a is called a vertical asymptote. If as x becomes very large positive or very
large negative the values of R tend to some number b, then the line y = b is called a
horizontal asymptote. Vertical and horizontal asymptotes are mentioned here only in
passing. They will be studied in detail in Chapter 4. Below are two simple examples.

(i) The graph of

R(x)

1 1

R(X)=x2—4x+4: (x —2)2

is shown in Figure 1.6.4. The line x = 2 is a vertical asymptote; the line y = 0 (the
x-axis) is a horizontal asymptote.

(if) The graph of

X2 X2

1 X - D)X +1)

R(x) = 2

is shown in Figure 1.6.5. The lines x = 1 and x = —1 are vertical asymptotes; the
line y = 1 is a horizontal asymptote.
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X=2
2 X

|
1

1
(x) =
(x-2)2|

|
I
I
|
I
I
|
I
I
|
|
I
|
I

Figure 1.6.4 Figure 1.6.5

The Trigonometric Functions

Radian Measure Degree measure, traditionally used to measure angles, has a serious
drawback. It is artificial; there is no intrinsic connection between a degree and the
geometry of a rotation. Why choose 360° for one complete revolution? Why not 100°?
or 400°?

There is another way of measuring angles that is more natural and lends itself better
to the methods of calculus: measuring angles in radians.

Angles arise from rotations. We will measure angles by measuring rotations. Sup-
pose that the points of the plane are rotated about some point 0. The point O remains
fixed, but all other points P trace out circular arcs on circles centered at 0. The farther P
is from 0, the longer the circular arc (Figure 1.6.6). The magnitude of a rotation about
0 is by definition the length of the arc generated by the rotation as measured on a circle
at a unit distance from 0.

Now let 6 be any real number. The rotation of radian measure 6 (we shall simply call
it the rotation 6) is by definition the rotation of magnitude || in the counterclockwise Figure 1.6.6
direction if 6 > 0, in the clockwise direction if & < 0. If 6 = 0, there is no movement;
every point remains in place.

In degree measure a full turn is effected over the course of 360°. In radian measure,

a full turn is effected during the course of 2 radians. (The circumference of a circle
of radius 1 is 27.) Thus

0

27 radians = 360 degrees
one radian = 360/2x degrees = 57.30°
one degree = 27r/360 radians = 0.0175 radians.

The following table gives some common angles (rotations) measured both in de-
grees and in radians.

degrees 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360°

A1, 0)

radians 0 T

(11

T T %n 27

Bl
)
W=
Q
N
St
wIN
Q
I
S
[21[4;]

Cosine and Sine  In Figure 1.6.7 you can see a circle of radius 1 centered at the origin

of a coordinate plane. We call this the unit circle. On the circle we have marked the

point A (1, 0). Figure 1.6.7
Now let 6 be any real number. The rotation 6 takes A (1, 0) to some point P, also on

the unit circle. The coordinates of P are completely determined by 6 and have names
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P(cos 6, sin )

AL, 0)

Figure 1.6.8

related to 6. The second coordinate of P is called the sine of 6 (we write sin 8) and the
first coordinate of P is called the cosine of 6 (we write cos 0). Figure 1.6.8 illustrates
the idea. To simplify the diagram, we have taken 6 from 0 to 27.

For each real 6, the rotation 6 and the rotation 6 + 27 take the point A to exactly
the same point P. It follows that for each 6,

sin(6 + 2w) = siné, cos(f + 27) = cos 6.

In Figure 1.6.9 we consider two rotations: a positive rotation 6 and its negative
counterpart —6. From the figure, you can see that

sin(—0) = —sino, cos(—60) = cosé.

The sine function is an odd function and the cosine function is an even function.
In Figure 1.6.10 we have marked the effect of consecutive rotations of %n radians:

(a,b) - (=b,a) — (—a, —h) — (b, —a).
In each case, (x, y) — (—VY, X). Thus,
sin(® + 37) = cos o, cos(d + 37) = —sine.

A rotation of 7 radians takes each point to the point antipodal to it: (x, y) — (=X, —V).
Thus

sin(@ + ) = —sino, cos(f 4+ ) = —cosh.

y y
(=b, a)
P(cos 6, sin 6)
0 (a,b)
] X (—a, —b) X
Q(cos(-6), sin(-6))
(b, -a)
Figure 1.6.9 Figure 1.6.10

Tangent, Cotangent, Secant, Cosecant  There are four other trigonometric functions:
the tangent, the cotangent, the secant, the cosecant. These are obtained as follows:

sing coso 1
tang = —, cotd = ——, secl) = —, CcsCH = —.
cos 6 sin6 cos sing
The most important of these functions is the tangent. Note that the tangent function is
an odd function

sin(—0)  —sin6

tan(—0) = = = —tano
(=0) cos(—6) cos 6
and repeats itself every 7 radians:
sin(® —sing
tan(® + ) = G+ _ =tané.

cos( +mw) —cosf
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Particular Values The values of the sine, cosine, and tangent at angles (rotations)
frequently encountered are given in the following table.

0 %n %n %n %n %n %n gn T %n 2
sine 0 1 1p 1. Vi 32 1 -1 0
wso 1 35 1o R I
tang 0 153 1 3 — —-vi -1 -i5 0 -—— O

The (approximate) values of the trigonometric functions for any angle 6 can be obtained
with a hand calculator or from a table of values.

Identities Below we list the basic trigonometric identities. Some are obvious; some
have just been verified; the rest are derived in the exercises.

(i) unit circle
sin®0 +cos?H = 1, tan’0 + 1 = sec® 6, 1+ cot?6 = csc? 6.
(the first identity is obvious; the other two follow from the first)
(ii) periodicity®
sin(@ + 2z) = sin o, cos(f + 2x) = cosé, tan(f + ) =tand
(iii) odd and even

sin(—0) = —sing, cos(—6) = cosé, tan(—6) = —tané.
(the sine and tangent are odd functions; the cosine is even)

(iv) sines and cosines

sin(@ + ) = —sinf, cos(d + ) = —cosé,
sin(® + 37) = cos®, cos(f + 3m) = —siné,
sin(3w — 0) = cos®, cos(3m — 6) = sino.
(only the third pair of identities still has to be verified)

(v) addition formulas

sin(a + B) = sina cos B + cosa sin B,
sin(f@ — B) = sina cos B — cosa sin B,
cos(a + B) = cosa cos B — sina sin B,
cos(ae — B) = cosa cos B + sina sin B.
(taken up in the exercises)

(vi) double-angle formulas

sin20 = 2sinfcosh, €os20 = cos®H —sin®f = 2cos?H —1 =1 — 2sin?6.

(follow from the addition formulas)

A function f with an unbounded domain is said to be periodic if there exists a number p > 0 such that,
if 6 is in the domain of f, then & + p is in the domain and f (0 + p) = (). The least number p with this
property (if there is a least one) is called the period of the function. The sine and cosine have period 27.
Their reciprocals, the cosecant and secant, also have period 27r. The tangent and cotangent have period 7.

37
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(vii) half-angle formulas

sin6 = (1 —cos20), cos?6 = 3(1 + cos20)

(follow from the double-angle formulas)

In Terms of a Right Triangle  For angles 6 between 0 and /2, the trigonometric func-

adjacent side

tions can also be defined as ratios of the sides of a right triangle. (See Figure 1.6.11.)
0 ite sid hypotenuse
sing = OPPOSHE Side e, csc O = _yporenuse. : u-s, ,
3 hypotenuse opposite side
2 adjacent side hypotenuse ]
a c0sf) = ———, seCc 0 = ——, (Exercise 81)
g hypotenuse adjacent side
opposite side adjacent side
] tan = —, cot g = ——.
adjacent side opposite side

Figure 1.6.11

Figure 1.6.12

Arbitrary Triangles Leta, b, ¢ be the sides of atriangle and let A, B, C be the opposite
angles. (See Figure 1.6.12.)

area ab sinC = Zac sin B = 1bc sin A.

. sinA  sinB  sinC
law of sines = =
a

b ~— ¢ (taken up in the exercises)

law of cosines a2 = b2 + ¢2 — 2bc cos A,
b? = a2 4+ ¢2 — 2accos B,
c2 =a?+hb%—2abcosC.

Graphs  Usually we work with functions y = f (x) and graph them in the xy-plane. To
bring the graphs of the trigonometric functions into harmony with this convention, we
replace 6 by x and write y = sinx, y = cosx, y = tan x. (These are the only functions
that we are going to graph here.) The functions have not changed, only the symbols:
x is the rotation that takes A(1, 0) to the point P(cos x, sin x). The graphs of the sine,
cosine, and tangent appear in Figure 1.6.13.

The graphs of sine and cosine are waves that repeat themselves on every interval
of length 25r. These waves appear to chase each other. They do chase each other. In the
chase the cosine wave remains %7‘( units behind the sine wave:

cosx = sin(x + 3).

Changing perspective, we see that the sine wave remains %n units behind the cosine
wave:

sinx = cos(x + 37).
All these waves crest at y = 1, drop down to y = —1, and then head up again.

The graph of the tangent function consists of identical pieces separated every =
units by asymptotes that mark the points x where cosx = 0.
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y =sin x
period 2

cosine

y = CO0S X
period 27

y

tangent

27

|
|
I
I
I
I
|
|
-7 |
I
I
|
|
I
I
I

| |
| |
I I
I I
I I
I I
| |
| |
f f
I I
I I
I I
| |
| |
I I
I I
I I

y = tan x
period

vertical asymptotes x = (n + l)n, nan integer

2

Figure 1.6.13

EXERCISES 1.6

Exercises 1-10. State whether the function is a polynomial, a
rational function (but not a polynomial), or neither a polynomial
nor a rational function. If the function is a polynomial, give the
degree.

1L f(x)=3. 2. f(x) =1+ 3x.
2 _
3.9(x) = % 4. h(x) = Xﬁ“_
5 F(x)= % 6. f(x)=5x*—nx2+ 3.
7100 = VRWREY, Byt 28
X+2
9. f(x) = X’fjll. 10. h(x) = (ﬁt?—w.

Exercises 11-16. Determine the domain of the function and
sketch the graph.

11. f(x) =3x — 3. 12. f(x) =

X+1
13. g(x) = x2 — x — 6. 14, F(x) = x® —x.

15. f(x) =

1
N 16. g(x)=x+;.

Exercises 17-22. Convert the degree measure into radian mea-
sure.

17. 225°. 18. —210°.
19. —300°. 20. 450°.
21. 15°. 22. 3.

Exercises 23-28. Convert the radian measure into degree mea-
sure.

23. =37 /2. 24. 57 /4.
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25. 577/3. 26. —117/6.
27. 2. 28. —4/3.

29. Show that in a circle of radius r, a central angle of 6 radians
subtends an arc of length ro.

30. Show that in a circular disk of radius r, a sector with a central
angle of 6 radians has area %rze. Take 6 between 0 and 27.
HINT: The area of the circle is r2.

Exercises 31-38. Find the number(s) x in the interval [0, 27]
which satisfy the equation.

31.sinx =1/2. 32.cosx = —1/2.

33. tanx/2 = 1. 34, V/sin’x = 1.

35. cosx = /2/2. 36. sin2x = —+/3/2.

37. cos2x = 0. 38. tanx = —+/3.
bExercises 39-44. Evaluate to four decimal place accuracy.

39. sin51°. 40. cos 17°.

41. sin(2.352). 42. cos(—13.461).

43. tan72.4°. 44. cot(7.311).

bExercises 45-52. Find the solutions x that are in the interval

[0, 27]. Express your answers in radians and use four decimal
place accuracy.

45, sinx = 0.5231.
47. tanx = 6.7192.
49, secx = —4.4073.

46. cosx = —0.8243.
48. cotx = —3.0649.
50. cscx = 10.260.

bExercises 51-52. Solve the equation f(x) = yo for xin [0, 27]

by using a graphing utility. Display the graph of f and the line
y = Yo in one figure; then use the trace function to find the
point(s) of intersection.

51. f(x) =sin3x; yo=—1/v2.

52. f(x) =cos3x; yo=13

Exercises 53-58. Give the domain and range of the func-
tion.

53. f(x) = |sinx]|

55. f(x) = 2cos 3x.
57. f(x) = 1+ tan®x.

54. g(x) = sin’x + cos? X.
56. F(x) = 1+sinx.

58. h(x) = v/cos? .
Exercises 59-62. Determine the period. (The least positive num-
ber p for which f(x + p) = f(x) for all x.)

59. f(x) =sinmx. 60. f(x) = cos2x.

61. f(x) = cos ix. 62. f(x) = sin 3x.

Exercises 63—68. Sketch the graph of the function.
63. f(x) = 3sin2x. 64. f(x) =1+sinx.
65. g(x) = 1 — cosx. 66. F(x) = tan 3x.
67. f(x) = v/sin?x.
Exercises 69-74. State whether the function is odd, even, or
neither.

69. f(x) =sin3x.

71. f(x) =14 cos2x.

68. g(x) = —2cosXx.

70. g(x) = tanx.
72. g(X) = secx.

COS X
74. h(x) = 2l
75. Suppose that I; and |, are two nonvertical lines. If mim, =
—1,thenly and |, intersect at right angles. Show that if I, and
I, do not intersect at right angles, then the angle « between

I; and I, (see Section 1.4) is given by the formula

73. f(x) = x3 +sinx.

m; —my
1+mim,

tana = ‘

HINT: Derive the identity

tan6, — tan 6,
tan(0y — ) = ————
1+ tan 6, tan 6,
by expressing the right side in terms of sines and cosines.

Exercises 76-79. Find the point where the lines intersect and
determine the angle between the lines.

76.11:4x —y—-3=0, I,:3x—4y+1=0.

77.11:3x4+y—-5=0, I,:7x—10y +27=0.

78.11:4x —y+2=0, I,:19x+y=0.

79.11:5x —6y+1=0, 1,:8x+5y+2=0.

1, x rational .
is periodic

80. Show that the function f(x) = {0 « irrational

but has no period.

81. Verify that, for angles 6 between 0 and /2, the definition
of the trigonometric functions in terms of the unit circle and
the definitions in terms of a right triangle are in agreement.
HINT: Set the triangle as in the figure.

y

(cos @, sin )

|
I
.

LAyl
NI

The setting for Exercises 82, 83, 84 is a triangle with sides
a, b, c and opposite angles A, B, C.

82. Show that the area of the triangle is given by the formula
A = }absinC.

83. Confirm the law of sines:
sin A B sin B . sinC
a b ¢

HINT: Drop a perpendicular from one vertex to the opposite
side and use the two right triangles formed.

84. Confirm the law of cosines:
a? =b? +c? — 2bccos A.

HINT: Drop a perpendicular from angle B to side b and use
the two right triangles formed.



85.

86.

87.

88.

89.

90.

[>91.

Verify the identity
cos(e — B) = cosa cos B + sina sin B.

HINT: With P and Q as in the accompanying figure, calculate
the length of P Q by applying the law of cosines.

, Q(cos f, sin B)

P(cos «, sin «) e
A1, 0)

Use Exercise 85 to show that

cos(a + B) = cosa cos B — sina sin B.

Verify the following identities:
sin(3 — 6) = cos,

Verify that

cos(3w — ) = sin.

sin(a 4+ B) = sina cos B + cosa sin B.
HINT: sin(e + B) = cos[(37 — a) — B].
Use Exercise 88 to show that

sinfw — B) = sina cos B — cosa sin B.

It has been said that “all of trigonometry lies in the undula-
tions of the sine wave.” Explain.

(a) Use a graphing utility to graph the polynomials
f(x) =x*+2x3 —5x2 —3x + 1,
g(x) = —x* +x3+4x2 —3x + 2.

(b) Based on your graphs in part (a), make a conjecture
about the general shape of the graphs of polynomials of
degree 4.

(c) Test your conjecture by graphing

fx)=x*—4x®>+4x+2 and g(x) = —x*

1.7 COMBINATIONS OF FUNCTIONS
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Conjecture a property shared by the graphs of all poly-
nomials of the form

P(x) = x* 4+ ax® + bx? + cx +d.

Make an analogous conjecture for polynomials of the
form.

Q(x) = —x* +ax® + bx? +cx +d.

[>92. (a) Use a graphing utility to graph the polynomials.

f(x) = x> —7x3+6x +2,
g(x) = —x® +5x* — 3x — 3.

(b) Based on your graphs in part (a), make a conjecture
about the general shape of the graph of a polynomial of
degree 5.

(c) Now graph

P(x)=x>+ax* +bx3+cx? +dx +e

for several choices of a, b, c,d,e. (For example, try
a=b=c=d=e=0.) How do these graphs com-
pare with your graph of f from part (a)?

593. (a) Use agraphing utility to graph fa(x) = Acos x for sev-

eral values of A; use both positive and negative values.
Compare your graphs with the graph of f(x) = cosx.

(b) Now graph fg(x) = cos Bx for several values of B.
Since the cosine function is even, it is sufficient to use
only positive values for B. Use some values between 0
and 1 and some values greater than 1. Again, compare
your graphs with the graph of f(x) = cos x.

(c) Describe the effects that the coefficients A and B have
on the graph of the cosine function.

[>94. Let fo(x) =x",n=1,2,3....

(a) Using a graphing utility, draw the graphs of f, for
n =2, 4,6 inone figure, and in another figure draw the
graphs of f, forn =1, 3, 5.

(b) Based on your results in part (a), make a general sketch
of the graph of f,, for even n and for odd n.

(c) Given a positive integer k, compare the graphs of f, and
frea on [0, 1] and on (1, o0).

In this section we review the elementary ways of combining functions.

Algebraic Combinations of Functions

Here we discuss with some precision ideas that were used earlier without comment.
On the intersection of their domains, functions can be added and subtracted:

(f +9)(x) = f(x) +9(x),

they can be multiplied:

(fg)(x) = f(x)g(x);

(f —9)(x) = f(x) —g(x);
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and, at the points where g(x) # 0, we can form the quotient:

(s)00= 30>

a special case of which is the reciprocal:

1
(5)®= g
Example 1 Let

f(X)=+/x+3 and g(x) =v5—x—2.
(a) Give the domain of f and of g.
(b) Determine the domain of f + g and specify (f + g)(x).
(c) Determine the domain of f/g and specify (f/g)(x).

SOLUTION

(@) We can form /x + 3 iff x +3 > 0, which holds iff x > —3. Thus dom(f) =
[—3, o0). We can form /5 —x — 2 iff 5— x > 0, which holds iff x < 5. Thus
dom(g) = (—o0, 5].

(b) dom(f 4 g) = dom(f) N dom(g) = [—3, 00) N (—o0, 5] = [-3, 5],
(F+9)xX)=fT(X)+9g(X) =vV/xX+3+V/5—x—2.

(c) To obtain the domain of the quotient, we must exclude from [ —3, 5] the numbers
x at which g(x) = 0. There is only one such number: x = 1. Therefore

dom (é) ={xe[-35]:x#£1}=[-3,1)U(L,5],

(-t T
9(x) 5—x—-2
We can multiply functions f by real numbers « and form what are called scalar

multiples of f:

@F)(x) = af (x).

With functions f and g and real numbers « and g8, we can form linear combinations:

(af + BY)(x) = af (x) + Bg(x).

These are just specific instances of the products and sums that we defined at the begin-
ning of the section.
You have seen all these algebraic operations many times before:

(i) The polynomials are simply finite linear combinations of powers x", each of which
is a finite product of identity functions f (x) = x. (Here we are taking the point of
view that x° = 1.)

(if) The rational functions are quotients of polynomials.
(iii) The secant and cosecant are reciprocals of the cosine and the sine.
(iv) The tangent and cotangent are quotients of sine and cosine.

Vertical Translations (Vertical Shifts) Adding a positive constant c to a function raises
the graph by c units. Subtracting a positive constant ¢ from a function lowers the graph
by c units. (Figure 1.7.1.)
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/\/\/\y:cosx+2

AN PN N\
./ . X

y=cosx—2

Figure 1.7.1

Composition of Functions

You have seen how to combine functions algebraically. There is another (probably less
familiar) way to combine functions, called composition. To describe it, we begin with
two functions, f and g, and a number x in the domain of g. By applying g to x, we get
the number g(x). If g(x) is in the domain of f, then we can apply f to g(x) and thereby
obtain the number f(g(x)).

Whatis f(g(x))? Itis the result of first applying g to x and then applying f to g(x).
The idea is illustrated in Figure 1.7.2. This new function—it takes x in the domain of g
to g(x) in the domain of f, and assigns to it the value f (g(x))—is called the composition
of f with g and is denoted by f o g. (See Figure 1.7.3.) The symbol f o g is read “f
circleg.”

Figure 1.7.2 Figure 1.7.3

DEFINITION 1.7.1 COMPOSITION

Let f and g be functions. For those x in the domain of g for which g(x) is
in the domain of f, we define the composition of f with g, denoted f o g, by
setting

(f o 9)(x) = f(9(x)).

In set notation,

dom(f o g) = {x € dom(g) : g(x) € dom(f)}

Example 2 Suppose that

g(x) = x? (the squaring function)
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and

f(x) =x+3. (the function that adds 3)
Then

(fog)(x) = F(g(x)) = g(x) +3 = x* +3.

Thus, f o g is the function that first squares and then adds 3.
On the other hand, the composition of g with f gives

(9o H)(x) = g(f(x) = (x +3)%

Thus, g o f is the function that first adds 3 and then squares.
Since f and g are everywhere defined, both f o g and g o f are also everywhere
defined. Note that g o f isnotthe sameas f og. [

Example 3 Let f(x) =x? —1and g(x) = +/3 —x.

The domain of g is (—oo, 3]. Since f is everywhere defined, the domain of f o g
is also (—oo, 3]. On that interval

(fog)x) = f(gx) = (v3—x)" —1=@-x)—1=2-x.

Since g(f(x)) = /3 — f(x), we can form g( f (x)) only for those x in the domain
of f for which f(x) < 3. As you can verify, this is the set [-2, 2]. On [-2, 2]

(g0 HE) =g(F()) =v3— (@ —1)=Va—x2. 0

Horizontal Translations (Horizontal Shifts)

Adding a positive constant ¢ to the argument of a function shifts the graph c units left:
the function g(x) = f(x + c) takes on at x the value that f takes onat x + c. Subtracting
a positive constant ¢ from the argument of a function shifts the graph ¢ units to the
right: the function h(x) = f(x — c) takes on at x the value that f takes onat x — c. (See
Figure 1.7.4.)

) 2 X

gx) =f(x+2) h(x)=f(x—-2)
Figure 1.7.4

We can form the composition of more than two functions. For example, the triple
composition f o g o h consists of first h, then g, and then f:

(f ogoh)(x) = flg(h(x))].



1.7 COMBINATIONS OF FUNCTIONS m 45

We can go on in this manner with as many functions as we like.

Example 4 If f(x) = % g(x) =x?+1, h(x)=cosx,

1 1
then (fogoh)(x) = flg(:(x”] T () MEE+1
= o 11

Example 5 Find functions f and g such that f o g = F given that
F(X) = (x + 1)°.
A SOLUTION  The function consists of first adding 1 and then taking the fifth power.
We can therefore set
g(x) =x+1 (adding 1)

and 5
f(x) =x>. (taking the fifth power)

As you can see,
(fog)(x) = f(g(x)) = [9()]° = (x +1)°.

Example 6 Find three functions f, g, h such that f o g o h = F given that

1
F(x) = .
() IX]+3

A SOLUTION F takes the absolute value, adds 3, and then inverts. Let h take the
absolute value:

set h(x) = |x|.
Let g add 3:
set g(x) =x + 3.
Let f do the inverting:

1
t f(x)=-.
se (x) <
With this choice of f, g, h, we have

(f o goh)x) = flah(x))] = ! !

1
gh()) ~ h()+3 x| +3

EXERCISES 1.7

Exercises 1-8. Set f (x) = 2x? — 3x + 1and g(x) = x2 + 1/x. 7. (f 0 @)(2). 8. (g o f)(1).
Calculate the indicated value. Exercises 9-12. Determine f +g, f —g, f - g, f/g, and give
L (f +9)). 2. (f —g)(=1). the domain of each
f 9. f(x)=2x -3, g(x) =2 —X.
3.(1-9)(-2). 4. <§> @ 10. f(x) =x2 -1, g(xX) =x + 1/x.

6 <f+29)(_1). 11 f(x) =/x =1, g(X) =x — /X + 1.

1
5 (2f —30)(3). f 12. f(x) = sin’x, g(x) = cos2x.
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13. Given that f(x) = x + 1//X and g(x) = /X — 2/, find
(@) 6f +3g,(b) f —g,(c) f/g.
14. Given that

1—-x, x<1 . 0, x<?2
f(x):{Zx—l, X > 1, a”dg(x)—{—l, X > 2,

find f +g, f —g, f-g. HINT: Break up the domains of
the two functions in the same manner.

Exercises 15-22. Sketch the graph with f and g as shown in the

figure.
y
f
I
| |
| .
a b c X
15. 2g. 16. %f.
17. —f. 18.0-g.
19. —2g. 20. f 4+ 9.
21. f —g. 22. f 4+ 2g.

Exercises 23-30. Form the composition f o g and give the do-
main.

23. f(x) =2x+5, g(x)= x>

24. f(x) =x%, g(x)=2x+5.

25. f(x) = X, g(x) =x?+5.

26. f(x) =x24+x, g(x)= /X

27. T(x) =1/x, g(x) = (x —2)/x.
28. f(x)=1/(x — 1), g(x)=x>2
29. f(x) =1 —x2, g(x) = cos2x.

30. f(x)=+/1—x, g(x)=2cosx forx € [0, 2x].
Exercises 31-34. Form the composition f o g o h and give the
domain.

31 f(x)=4x, g(x)=x-1, hx)=x2
32. f(x)=x—1, g(x)=4x, h(x)=x2
1 1 )
33. f(X)—; g(x)_2x+1’ h(x) = x*.
X + 1 1 )
34. f(X)—T» g(x)_Zx——i-l’ h(x) = x“.
Exercises 35-38. Find f such that f o g = F given that
1+ x2 1+ x*
35. g(x) = T F(x) = 112

36. g(x) = x2, F(x) =ax®+b.

37. g(x) = 3x, F(x) = 2sin3x.

38. g(x) = —x2, F(x) = Va2 + x2.

Exercises 39-42. Find g such that f o g = F given that
39, f(x) =x3, F(x) = (L—1/x*)%

40.

41.
42.

1 1
f(x)=x+ =, F(x) =a’x? + —.
(x) + (x) t 2

fX)=x24+1, FX)=@x3 -1+ 1.
f(x) =sinx, F(x) =sinl/x.

Exercises 43-46. Find f ogandgo f.

43,
44,
45.
46.
47.
48,
49,
50.
51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

f(x) = VX, g(x) = X2

f(x) =3x+1, g(x) = x°

f(x) =1—x2, g(x)=sinx.

fx)=x*+1, g(x) =vx -1

Find g given that (f + g)(x) = f(x) +c.

Find f given that (f o g)(x) = g(x) +c.

Find g given that (fg)(x) = cf (x).

Find f given that (f o g)(x) = cg(x).

Take f as a function on [0, a] with range [0, b] and take g as

defined below. Compare the graph of g with the graph of f;
give the domain of g and the range of g.

(@ g(x) = f(x=3). (b) g(x) =3f(x +4).

(©) 9(x) = f(2x). () 9(x) = f(3x).

Suppose that f and g are odd functions. What can you con-
clude about f - g?

Suppose that f and g are even functions. What can you con-
clude about f - g?

Suppose that f is an even function and g is an odd function.
What can you conclude about f - g?

For x > 0, f is defined as follows:

x, 0
X

f(x) = {1’

How is f defined for x < 0 if (a) f is even? (b) f is odd?
For x > 0, f(x) = x? — x. How is f defined for x < 0 if
(@) f iseven? (b) f is odd?

Given that f is defined for all real numbers, show that the
function g(x) = f(x) + f(—x) is an even function.
Given that f is defined for all real numbers, show that the
function h(x) = f(x) — f(—x) is an odd function.
Show that every function defined for all real numbers can be
written as the sum of an even function and an odd function.

<x<1
> 1.

For x # 0, 1, define
1
fix) =x,  f(x)= < fa(x) =1-x,
1 x—1 X
fa(x) = 1—_x f5(x) = ~ fo(x) = X1

This family of functions is closed under composition; that
is, the composition of any two of these functions is again one
of these functions. Tabulate the results of composing these
functions one with the other by filling in the table shown in
the figure. To indicate that f; o f; = fi, write “f,” in the
ith row, jth column. We have already made two entries in the
table. Check out these two entries and then fill in the rest of
the table.
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fl
f2
f3 f6
fs fo
f5
f6
. 3x
bExeruses 61-62. Set f(x)=x%—4,g(x) = % h(x) =
2 ) -
VX +4, and k(x) = 3+—XX Use a CAS to find the indicated
composition.
61. (@) fog; (b)gok; (c) fokog.
62.(@)go f; (b)kog; (c)go fok.

[> Exercises 63 and 64. Set f(x) = x?and F(x) = (x —a)? +b.

63. (@) Choose a value for a and, using a graphing utility, graph
F for several different values of b. Be sure to choose

M 1.8 ANOTE ON MATHEMATICAL PROOF;
MATHEMATICAL INDUCTION

Mathematical Proof

both positive and negative values. Compare your graphs
with the graph of f, and describe the effect that varying
b has on the graph of F.

(b) Now fix a value of b and graph F for several values of a;
again, use both positive and negative values. Compare
your graphs with the graph of f, and describe the effect
that varying a has on the graph of F.

(c) Choose values for a and b, and graph —F. What effect
does changing the sign of F have on the graph?

64. For all values of a and b, the graph of F is a parabola which
opens upward. Find values for a and b such that the parabola
will have x-intercepts at —% and 2. Verify your result alge-
braically.

[> Exercises 65-66. Set f(x) = sinx.
65. (@) Using a graphing utility, graph cf for c = —3, -2,
—1, 2, 3. Compare your graphs with the graph of f.
(b) Nowgraphg(x) = f(cx)forc = -3, -2, -3, %, 3,
Compare your graphs with the graph of f.
66. (@) Using a graphing utility, graph g(x) = f(x —c) for
c= —3m, —%m, 37, 3, m, 2r. Compare your graphs
with the graph of f.
(b) Now graph g(x) = af (bx —c) for several values of
a, b, c. Describe the effect of a, the effect of b, the effect
of c.

2,3.

The notion of proof goes back to Euclid’s Elements, and the rules of proof have changed
little since they were formulated by Aristotle. We work in a deductive system where
truth is argued on the basis of assumptions, definitions, and previously proved results.
We cannot claim that such and such is true without clearly stating the basis on which

we make that claim.

A theorem is an implication; it consists of a hypothesis and a conclusion:

if (hypothesis). . ., then (conclusion).. ..

Here is an example:

If a and b are positive numbers, then ab is positive.

A common mistake is to ignore the hypothesis and persist with the conclusion: to insist,

for example, that ab > 0 just because a and b are numbers.

Another common mistake is to confuse a theorem
if A, then B
with its converse

if B, then A.

The fact that a theorem is true does not mean that its converse is true: While it is true

that

if a and b are positive numbers, then ab is positive,
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it is not true that
if ab is positive, then a and b are positive numbers;

[(—2)(—3) is positive but —2 and —3 are not positive].

A third, more subtle mistake is to assume that the hypothesis of a theorem repre-
sents the only condition under which the conclusion is true. There may well be other
conditions under which the conclusion is true. Thus, for example, not only is it true that

if a and b are positive numbers, then ab is positive
but it is also true that
if a and b are negative numbers, then ab is positive.
In the event that a theorem
if A, then B
and its converse
if B, then A
are both true, then we can write
Aifandonly if B or more briefly A iff B.
We know, for example, that
if x>0, then |x| = x;
we also know that
if |x|=x, then x > 0.
We can summarize this by writing
x>0 iff IX] = X.
Remark We’ll use “iff” frequently in this text but not in definitions. As stated earlier
in a footnote, definitions are by their very nature iff statements. For example, we can
say that “a number r is called a zero of P if P(r) = 0;” we don’t have to say “a number
r is called a zero of P iff P(r) = 0.” In this situation, the “only if” part is taken for
granted. 1
A final point. One way of proving
if A, then B
is to assume that
(D) A holds and B does not hold
and then arrive at a contradiction. The contradiction is taken to indicate that (1) is a
false statement and therefore
if A holds, then B must hold.

Some of the theorems of calculus are proved by this method.

Calculus provides procedures for solving a wide range of problems in the physical
and social sciences. The fact that these procedures give us answers that seem to make
sense is comforting, but it is only because we can prove our theorems that we can have
confidence in the mathematics that is being applied. Accordingly, the study of calculus
should include the study of some proofs.
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Mathematical Induction

Mathematical induction is a method of proof which can be used to show that certain
propositions are true for all positive integers n. The method is based on the following
axiom:

1.8.1 AXIOM OF INDUCTION
Let S be a set of positive integers. If

(A) 1€ S,and
(B) k € Simpliesthatk +1 € S,

then all the positive integers are in S.

You can think of the axiom of induction as a kind of “domino theory.” If the first
domino falls (Figure 1.8.1), and if each domino that falls causes the next one to fall,
then, according to the axiom of induction, each domino will fall.

A
i
/

Fe————y—————
/

domino theory

Figure 1.8.1

While we cannot prove that this axiom is valid (axioms are by their very nature
assumptions and therefore not subject to proof), we can argue that it is plausible.

Let’s assume that we have a set S that satisfies conditions (A) and (B). Now let’s
choose a positive integer m and “argue” that m € S.

From (A) we know that 1 € S. Since 1 € S, we know that 1 + 1 € S, and thus that
(14+1)+ 1€ S, andsoon. Since m can be obtained from 1 by adding 1 successively
(m — 1) times, it seems clear thatm € S.

To prove that a given proposition is true for all positive integers n, we let S be
the set of positive integers for which the proposition is true. We prove first that 1 € S;
that is, that the proposition is true for n = 1. Next we assume that the proposition is
true for some positive integer k, and show that it is true for k 4 1; that is, we show
thatk € S impliesthatk 4+ 1 € S. Then by the axiom of induction, we conclude that S
contains the set of positive integers and therefore the proposition is true for all positive
integers.

Example 1T We’ll show that

_ n(n+1)

1+2+34+---+n for all positive integers n.
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SOLUTION  Let S be the set of positive integers n for which

1
1+2+3+-.-+n:”(”2+ ).
Then 1 € S since
11+ 1)
1= .
2
Next, we assume that k € S; that is, we assume that
k(k +1

14243 +k= (2+ ),

Adding up the first k + 1 integers, we have

14243+ +k+k+1D)=[1+2+3+---+k]+(k+1)
k(k + 1)
T2
k(k+1)+2(k+1)
- 2
k+21k+2)
=
and so k + 1 € S. Thus, by the axiom of induction, we can conclude that all positive
integers are in S; that is, we can conclude that

_n(n+1)

+(k+1) (by the induction hypothesis)

1+2434---+n for all positive integersn. 1

Example 2  We’ll show that, if x > — 1, then

(1 +x)" > 1+ nx forall positive integers n.

SOLUTION We take x > —1 and let S be the set of positive integers n for which
1+x)">1+nx.

Since
A+x)!=1+1-x,

we have 1 € S.
We now assume that k € S. By the definition of S,

(1 +x)¢ > 1+kx.
Since
A+ =1+ x) A +x) > @+ k)1 +x) (explain)
and
L+ k)L +x) =14 (k+1)x +kx® > 1+ (k + 1)x,
we can conclude that
(1 +x) > 14 (k+ 1)x

and thus thatk +1 € S.
We have shown that

leS and that keS implies k+1eS.
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By the axiom of induction, all positive integers are in S.

Remark An induction does not have to begin with the integer 1. If, for example,
you want to show that some proposition is true for all integers n > 3, all you have to
do is show that it is true for n = 3, and that, if it is true for n =k, then it is true for
n =k + 1. (Now you are starting the chain reaction by pushing on the third domino.)

4

EXERCISES 1.8

Exercises 1-10. Show that the statement holds for all positive
integers n.

1.2n < 2", 2.14+2n < 3",
L2042t 22 3ol g

3
4.1+3+5+---+(2n—-1)=n2%
5.12422+32+ .- 4+n?=in(n+1)(2n +1).
6

B4 3B 4 =1+ 24+3 4 )2
HINT: Use Example 1.

B2 (1) <int <3428 4. 4 nd

~

8.12422+. -+ (N—-12 <in®<124224...4n%

9.i+i+i+-~-+i>\/ﬁ.
vi V2 /3 v
10_i+i+i+...+ = n .
1.2 2-3 3-4 nn+1) n+1

11. For what integers n is 3°"*1 + 2"*+2 divisible by 7? Prove that
your answer is correct.

12. For what integers n is 9" — 8n — 1 divisible by 64? Prove
that your answer is correct.

B CHAPTER 1. REVIEW EXERCISES

13. Find a simplifying expression for the product

(1-3)(-5)(-3)

and verify its validity for all integers n > 2.
14. Find a simplifying expression for the product

(1-%)(-5) (1)

and verify its validity for all integers n > 2.

15. Prove that an N-sided convex polygon has %N(N —3) di-
agonals. Take N > 3.

16. Prove that the sum of the interior angles in an N -sided convex
polygon is (N — 2)180°. Take N > 2.

17. Prove that all sets with n elements have 2" subsets. Count
the empty set @ and the whole set as subsets.

18. Show that, given a unit length, for each positive integer n,
a line segment of length ./n can be constructed by straight
edge and compass.

19. Find the first integer n for which n? — n + 41 is not a prime
number.

Exercises 1-4. Is the number rational or irrational?

1.1.25, 2. J16/9.
3.v/5+1 4.1.001001001....

Exercises 5-8. State whether the set is bounded above, bounded
below, bounded. If the setis bounded above, give an upper bound;
if it is bounded below, give a lower bound; if it is bounded, give
an upper bound and a lower bound.

5.5={1,3,5,7,---}.

6. S={x:x <1}

7.5={x:]x+2| <3}
8.S={-1/n)":n=1,2,3,--}.

Exercises 9-12. Find the real roots of the equation.
9.2x2+x—-1=0. 10. X2 +2x +5=0.
11. x? — 10x + 25 = 0. 12.9x3 —x = 0.

Exercises 13-22. Solve the inequality. Express the solution as
an interval or as the union of intervals. Mark the solution on a
number line.

13.5x — 2 < 0.
15.x2 —x — 6> 0.

14.3x +5 < 1(4 — x).
16. x(x? — 3x +2) < 0.

x+1 X2 —4x +4
— > 0. 18, — <0.
(x+2)(x—2)> X2 —2x -3~
19. [x — 2| < 1. 20. 13x — 2| > 4.
2 5
21, |—— | >2 22, |—— 1.
x+4’> x+1‘<

Exercises 23-24. (a) Find the distance between the points P, Q.
(b) Find the midpoint of the line segment P Q.

23. P(2, —3), Q(L. 4). 24. P(—3, —4), Q(~1, 6).
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Exercises 25-28. Find an equation for the line that passes
through the point (2, —3) and is

25. parallel to the y-axis.

26. parallel to the liney = 1.

27. perpendicular to the line 2x — 3y = 6.

28. parallel to the line 3x + 4y = 12.

Exercises 29-30. Find the point where the lines intersect.

29. 1y : x — 2y = —4, I, :3x +4y = 3.

30. 11 :4x —y = -2, I, :3x +2y =0.

31. Find the point(s) where the line y = 8x — 6 intersects the
parabola y = 2x2.

32. Find an equation for the line tangent to the circle
2.2 —
X“+y +2x -6y —-3=0

at the point (2, 1).
Exercises 33—-38. Give the domain and range of the function.
33. f(x) =4 —x2 34, f(x)=3x —2.
35. f(x) = VX — 4. 36. f(x) = 2v/1—4x2
37. f(x) = V1 +4x2. 38. f(x) = [2x + 1.

Exercises 39-40. Sketch the graph and give the domain and
range of the function.

4—2x, x<2
39'f(x)={x—2 X>2"
X242, x<0
40. f(X):{Z—xz X>0"

Exercises 41-44. Find the number(s) x in the interval [0, 27]
which satisfy the equation.
41.sinx = —1. 42. cos2x = —1.
43. tan(x/2) = —1. 44, sin3x = 0.
Exercises 45-48. Sketch the graph of the function.
45, f(x) = cos2x. 46. f(x) = —cos2x.
47. f(x) = 3cos 2x. 48. f(x) =  cos 2x.

Exercises 49-51. Form the combinations f +g, f —g, f -
g, f/g and specify the domain of combination.

49. f(x) =3x+2, g(x)=x%-1
50. f(x) =x%—4, g(x)=x+1/x.
51. f(x) =cos®x, g(x)=sin2x, forx e [0, 2x].

Exercises 52-54. Form the compositions f o g and g o f, and
specify the domain of each of these combinations.

52. f(x)=x%—2x, g(x)=x+1.
53. f(X) =X +1, g(x)=x?-05.
54. f(x) =+/1—x2, g(x)=sin2x.

55. (a) Write an equation in x and y for an arbitrary line | that
passes through the origin.
(b) Verify that if P(a, b) lieson | and « is a real number,
then the point Q(«a, «b) also lies on I.
(c) What additional conclusion can you draw if « > 0? if
o < 0?

56. The roots of a quadratic equation. You can find the roots of
a quadratic equation by resorting to the quadratic formula.
The approach outlined below is more illuminating. Since di-
vision by the leading coefficient does not alter the roots of
the equation, we can make the coefficient 1 and work with
the equation

x> +ax +b=0.

(@) Show that the equation x? 4 ax + b = 0 can be written
as
(x—a)Y—p2=0, or
(x—a)>=0, or
x—a)+p2=0.

HINT: Set « = —a/2, complete the square, and go on
from there.

(b) What are the roots of the equation (x — «)> — g2 = 0?

(c) What are the roots of the equation (x — «)? = 0?

(d) Show that the equation (x — «)? + 2 = 0 has no real
roots.

57. Knowing that
la+b| <|a|+|b|] forallreala,b
show that
la| — |b| < |a—b| forallreala,b.

58. (@) Express the perimeter of a semicircle as a function of
the diameter.
(b) Express the area of a semicircle as a function of the
diameter.



CHAPTER

M 2.1 THE LIMIT PROCESS (AN INTUITIVE INTRODUCTION)

We could begin by saying that limits are important in calculus, but that would be a
major understatement. Without limits, calculus would not exist. Every single notion of
calculus is a limit in one sense or another. For example,

What is the slope of a curve? It is the limit of slopes of secant lines. (Figure 2.1.1.)

What is the length of a curve? It is the limit of the lengths of polygonal paths inscribed
in the curve. (Figure 2.1.2)

What is the area of a region bounded by a curve? It is the limit of the sum of areas of Figure 2.1.1
approximating rectangles. (Figure 2.1.3)

1 approximating 3 approximating X Figure 2.1.2

region R rectangle rectangles

8 approximating x 14 approximating X x
rectangles rectangles
Figure 2.1.3

53
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The Idea of Limit

Technically there are several limit processes, but they are all very similar. Once you
master one of them, the others will pose few difficulties. The limit process that we start
with is the one that leads to the notion of continuity and the notion of differentiability.
At this stage our approach is completely informal. All we are trying to do here is lay
an intuitive foundation for the mathematics that begins in Section 2.2

We start with a number ¢ and a function f defined at all numbers x near ¢ but not
necessarily at ¢ itself. In any case, whether or not f is defined at ¢ and, if so, how is
totally irrelevant.

Now let L be some real number. We say that the limit of f(x) asx tendstocisL
and write

XI|_r)nC f(x)=1L
provided that (roughly speaking)
as x approaches c, f(x) approaches L
or (somewhat more precisely) provided that
f(x) is close to L for all x # ¢ which are close to c.

Let’s look at a few functions and try to apply this limit idea. Remember, our work
at this stage is entirely intuitive.

Example 1T Set f(x) = 4x + 5 and take ¢ = 2. As x approaches 2, 4x approaches
8 and 4x + 5 approaches 8 4+ 5 = 13. We conclude that

lim f(x) = 13. O
X—2

Example 2 Set f(x) =+/1—x and take ¢ = —8. As x approaches —8, 1 — x
approaches 9 and +/1 — x approaches 3. We conclude that

lim f(x)=3.
X——8

If for that same function we try to calculate
lim f(x),

X—2
we run into a problem. The function f(x) = +/1 — x is defined only for x < 1. It is
therefore not defined for x near 2, and the idea of taking the limit as x approaches 2
makes no sense at all:

Iim2 f(x) does not exist. [
X—

Example 3

. x3—2x+4 5
lim ———— = —.
x—3 X241 2

First we work with the numerator: as x approaches 3, x® approaches 27, —2x approaches
—6, and x3 — 2x + 4 approaches 27 — 6 + 4 = 25. Now for the denominator: as x
approaches 3, x? + 1 approaches 10. The quotient (it would seem) approaches 25,/10 =
5/2. 1
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The curve in Figure 2.1.4 represents the graph of a function f. The number c is on

the x-axis and the limit L is on the y-axis. As x approaches c along the x-axis, f(x)
approaches L along the y-axis.

Figure 2.1.4

As we have tried to emphasize, in taking the limit of a function f as x tends to c,
it does not matter whether f is defined at c and, if so, how it is defined there. The only
thing that matters is the values taken on by f at numbers x near c. Take a look at the
three cases depicted in Figure 2.1.5. In the first case, f(c) = L. In the second case, f
is not defined at c. In the third case, f is defined at c, but f(c) # L. However, in each
case

lim f(x) =1L
X—C

because, as suggested in the figures,

as x approaches c, f(x) approaches L.

(a) (b) (c)
Figure 2.1.5

2
Example 4 Set f(x) = );

at 3: at 3, both numerator and_denominator are 0. But that doesn’t matter. For x # 3,
and therefore for all x near 3,

?? and letc = 3. Note that the function f is not defined

=9  (x=3(x+3)

X + 3.
X —3 X—3 +
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y o 2_9 i
Therefore, if x is close to 3, then =X + 3isclose to 3 + 3 = 6. We conclude
f(x) -
VR that
N lim 2_g—lim(erS)—6
£(x) x—=3 X —3  x—3 e

I
I
|
I
I
|
I
I
|
|

|
|
A i The graph of f is shown in Figure 2.1.6. 1
B !
L \
X == 3=<-X X
Example 5
Figure 2.1.6  y3_g
lim =12.
x—2 X — 2

3 _

. X*—8 . . .
The function f(x) = is undefined at x = 2. But, as we said before, that doesn’t

matter. For all x # 2,

3 _ (X2 +2x 4+ 4
X" -8 _ (x=2)0C+2x+ ):x2+2x+4.
X —2 X —2

Therefore,
3

lim

— i 2 —
lim — _lm(x +2x+4)=12. 1

3X—4, x#0
10, x =0,

It does not matter that f (0) = 10. For x = 0, and thus for all x near 0,
f(x)=3x—4 and therefore Iing) f(x) = Iinz) (Bx—4)=-4. 1
X— X—

Example 6 If f(x) = { then Iirrz) f(x) = —4.

One-Sided Limits

Numbers x near c fall into two natural categories: those that lie to the left of ¢ and those
that lie to the right of c. We write

lim f(x)=1L [The left-hand limit of f(x) as x tends to ¢ is L.]

X—C~

to indicate that
as x approaches c¢ from the left, f(x) approaches L.
We write

lim f(x) =L [The right-hand limit of f(x) as x tends to ¢ is L.]

X—Cc*t

to indicate that

as x approaches ¢ from the right, f(x) approaches L.

The left-hand limit is sometimes written Ii;‘n f (x) and the right-hand limit, Iii"n f(x).
XfTc XJc
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As an example, take the function indicated in Figure 2.1.7. As x approaches 5 from y
the left, f(x) approaches 2; therefore fp—————————— f
I
1 |
. [ |
= \]
Xl_lgl f(x)=2. AL i
|
As x approaches 5 from the right, f(x) approaches 4; therefore f B / }
. o] —— | | l
XI_I>n51+ f(X) =4 X—=—=» h=e—=X X
Figure 2.1.7
The full limit, Iim5 f(x), does not exist: consideration of x < 5 would force the limit to
X—
be 2, but consideration of x > 5 would force the limit to be 4.
For a full limit to exist, both one-sided limits have to exist and they have to be equal.
Example 7 For the function f indicated in Figure 2.1.8,
y
X_!l(r_nz)f f(x)=5 and X_!l(r_nz)+ f(x) =5. 7 -
In this case °r .
e L
Iim2 f(x) =5. f 2 /\
X—— —
L1 I
It does not matter that f(—2) = 3. -2 4 X
Examining the graph of f near x = 4, we find that
. . Figure 2.1.8
lim f(x)=7 whereas lim f(x)=2.
X—4- X—4+
Since these one-sided limits are different,
Iim4 f(x) does not exist.
X—
Example 8 Set f(x) = x/|x|. Note that f(x) =1 for x > 0, and f(x) = —1 for y
X < 0:
1
1, ifx>0 _ N A O
f(x)= { ~1, ifx <0, (Figure 2.1.9) . X
Let’s try to apply the limit process at different numbers c.
If ¢ < 0, then for all x sufficiently closeto ¢, x < Oand f(x) = —1. It follows that fx) =%
forc <0 .
Figure 2.1.9
lim f(x) = lim (-1) = —1.
X—C X—C

If ¢ > 0, then for all x sufficiently close to ¢, x > 0 and f(x) = 1. It follows that for
c<0

lim f(x) = lim (1) = 1.
X—C X—C
However, the function has no limit as x tends to O:

lim f(x)=-1 but Iirg f(x)y=1. 4
Xx—0+

x—0~
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Figure 2.1.11

Example 9 We refer to the function indicated in Figure 2.1.10 and examine the
behavior of f(x) for x close to 3 and x close to 7.

As x approaches 3 from the left or from the right, f(x) becomes arbitrarily large
and cannot stay close to any number L. Therefore

Iim3 f(x) does not exist.
X—

As x approaches 7 from the left, f (x) becomes arbitrarily large negative and cannot
stay close to any number L. Therefore

Iim7 f(x) does not exist.
X—

The same conclusion can be reached by noting that as x approaches 7 from the right,
f(x) becomes arbitrarily large. 1

Remark To indicate that f(x) becomes arbitrarily large, we can write f(x) — oco.
To indicate that f(x) becomes arbitrarily large negative, we can write f(x) — —oo.

Go back to Figure 2.1.10, and note that for the function depicted there the following
statements hold:

asx — 3, f(x)— oo and asx — 37, f(x) = .
Consequently,
asx — 3, f(x) = oc.
Also,
asx —7, fx)— - and asx — 77, f(x) = oo.

We can therefore write

asx — 7, [f(X)] = oc0. O

Example 10 We set

and examine the behavior of f(x) (a) as x tends to 4 and then (b) as x tends to 2.
(a) Asxtends to 4, x — 2 tends to 2 and the quotient tends to 1/2. Thus

. 1
im0 =3

(b) As x tends to 2 from the left, f(x) — —oo. (See Figure 2.1.11.) As x tends to 2
from the right, f(x) — oo. The function can have no numerical limit as x tends to
2. Thus

Iim2 f(x) does not exist.
X—

However, it is true that

asx — 2, [f(X)] = oc0. [
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1-x2, x<1

Exomple 11 Set f(x) = {1/(X -1), x>1
Forx <1, f(x) =1 —x% Thus

lim f(x)=0.

X—1-

Forx > 1, f(x) = 1/(x — 1). Therefore,as x — 17, f(x) — oo. The function has no
numerical limitas x — 1:

Iim1 f(x) does not exist.
X—

We now assert that

iy fo0 =2

To see this, note that for x close to 1.5, x > 1 and therefore f(x) = 1/(x — 1). It follows
that

. ] 1
xI—I>T5f(X)=xI—I>T5x—1 :EZZ'

See Figure 2.1.12. 1

Example 12 Here we set f(x) = sin (;r/x) and show that the function can have no
limitas x — 0.

y

y = sin(m/x)

A
— Y

Figure 2.1.13

The function is not defined at x = 0, but, as you know, that’s irrelevant. What keeps
f from having a limit as x — 0 is indicated in Figure 2.1.13. As x — 0, f(x) keeps
oscillating between y = 1 and y = —1 and therefore cannot remain close to any one
number L.F

In our final example we rely on a calculator and deduce a limit from numerical
calculation.

fWe can approach x = 0

2

2
b b = d b bersby = ———
y numbers a, an y numbers by, el

an+1

n=0,1,23,....Asyou can check, f(a,) = 1and f(b,) = —1. This confirms the oscillatory behavior
of f nearx = 0.

/—1

Figure 2.1.12
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Example 13 Let f(x) = (sinx)/x. If we try to evaluate f at 0, we get the mean-
ingless ratio 0/0; f is not defined at x = 0. However, f is defined for all x # 0, and so
we can consider

. sinx

lim —.

x—0 X
We select numbers that approach 0 closely from the left and numbers that approach 0
closely from the right. Using a calculator, we evaluate f at these numbers. The results
are tabulated in Table 2.1.1.

N Table 2.1.1
(Left side) (Right side)

x (radians) sinx x (radians) sinx
-1 0.84147 1 0.84147
—-0.5 0.95885 0.5 0.95885
-0.1 0.99833 0.1 0.99833
—0.01 0.99998 0.01 0.99998
—0.001 0.99999 0.001 0.99999

These calculations suggest that

. sinx . sinx
lim — =1 and lim — =1
x—0- X x—0t X
and therefore that
sin X
lim — =1.
x—=0 X

The graph of f, shown in Figure 2.1.14, supports this conclusion. A proof that this limit
is indeed 1 is given in Section 2.5. [

\ /N

N

Figure 2.1.14

If you have found all this to be imprecise, you are absolutely right. Our work so
far has been imprecise. In Section 2.2 we will work with limits in a more coherent
manner.
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Exercises 1-10. You are given a number c and the graph of a

function f. Use the graph to find
@ lim f(x) (o) lim f(x) (c) lel f(x) (d) f(c)
X—>C~ x—ct —

l.c=2.

N=

y =f(x)

4, ¢c=4.
y \
| \
B }y:f(x)
\
i |
1*
L | M/T |
/ ;4 g
/ |
- \
|
— \
|
I~ \
|
5c=-2
| y
\ L
\
} - y=f®
‘ —
L L L
/ 2 x
| L
\ L
\
‘ L
\
| L
\
6.c=1
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y =f(x)

7.c=1.
y
1
||
8.c=-1
9.¢c=2
y
1
||
10. ¢ = 3.

Exercises 11-12. Give the values of ¢ for which lim f(x) does
X—C

not exist.
11.

12.

Exercises 13-49. Decide on intuitive grounds whether or not the

indicated limit exists; evaluate the limit if it does exist.

13. lim(2x — 1).
x—0

15. Iimz(x2 —2X + 4).
X—>—

17. lim (|x] — 2).
Xx——3

19. lim .
x—>1 X + 1
21. lim ——.
x—-1X4+1
23. lim 2 =8
x—>3 X —3
X —3
25. lim ——.
x—3 X2 —6X +9
X —2
27. lim

x—>2X2 —3x +2°

1
29. lim <x + —).
x—0 X

Ey2
31 lim X =%,
x—0
2 _
33, lim L.
x—>1 X —1
Cox3-1
35. lim

Xx—1 X—|—l

14

16.

18.

20.

22.

24.

26.

28.

30.

32.

34.

36.

. lim(2 — 5x).

x—1
lim /X2 4+ 2x + 1.
X—4

.1
lim —.
x—0 |X|
lim .
x—>—1X 4+ 1
lim .
x—=23X — 6

. X2—6x+9
lim ———.
Xx—3 X—3

o X2—=3x+2
lim ————.
X—2 X —2
lim — X2
x—>1%x2 —3x +2°

. < 1)
lim{x+—).
Xx—1 X

. Xx—3
lim .
X~>36—2X
oox8-1
lim .
x—1 X —1
fim X1
Xx—1 X2—1.
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4. Esti
37 lim (<) f(x) = 1, x#0 [>54. Estimate
x—0 3, x=0 . 2c0SX — 2+ X2 .
3 1 ||n2) — (radian measure)
38. lim f(x); f(x)= ’é X< . _ ! X
x—1 » X > L by evaluating the quotientatx = 41, +0.1, +-0.01, £0.0001,
2 +0.0001.
39, lim f(x); fg=1% X#4 o o
x—4 0, x=4 QSS. (a) Use a graphing utility to estimate I|m4 f(x):
X—
. —x2, x<0 2
: = ’ 2x¢ — 11x + 12
40. )!TO f(x); f(x) X2 x> 0. (i) F(x) = X );4— ;
. X%, x<0 2
41, lim f(x); f(x) = ’ .. 22Xt —11x +12
x—0 1+X, X >O (") f(X)—m
42 lim f(x);  f(x)= 2x, x <1 (b) Use a CAS to find each of the limits in part (a).
] ' x2+1, x>1. . . . .
QSG. (a) Use a graphing utility to estimate lim f(x):
43 0im f(x); fy=1 % x=1 o
gl () 100 =1 +2, x>1. (i) F00 = 3x2 —10x — 8
) %, x <1 "~ 5x2416x — 16’
44, lim f(x); f(x) = ’ -
x—0 X+1, x>1 (i) 100 5x2 — 26X + 24
i fx)=—————.
45, lim f(x); f(x) = 2, X rational 4x2 —11x — 20
" x>0 ' — | -2, xirrational. (b) Use a CAS to find each of the limits in part (a).
i 57. (a) Use a graphing utility to estimate lim f(x):
46 1im £ F(x) = 2x, x rational [>57. (a) graphing y lim (x)
x—1 2, x irrational. ,
. V6 —X—X . X —4x + 4
N M) 100 = 22X Gy 1y = =X
47 IIn]_T X_2 X — 6—X
X— —
b) Use a CAS to find each of the limits in part (a).
. X2 4+5-430 (
48. lim —_5 [>58. (a) Use a graphing utility to estimate lim (x)
X—
s, tim XL 2x — JIB—x 22X
- lim —- ) fo) = X VI8 X. 0 ) = 2o VX
w1 /2K F 22 M) 10 =73 i )= ===,

Exercises 50-54. After estimating the limit using the prescribed
values of x, validate or improve your estimate by using agraphing
utility.

950. Estimate

. 1—cosx
lim ——
Xx—0

by evaluating the quotientatx = +1, +0.1, +0.01, +0.001.
951. Estimate

(radian measure)

. tan2x
lim
x—0 X
by evaluating the quotientatx = +1, +0.1, +0.01, +0.001.
PSZ. Estimate

(radian measure)

. X —sinx
lim ———

(radian measure)
x—0 X3

after evaluating the quotient at x = +1, +0.1, +0.01,
40.001, 4-0.0001.

553. Estimate
x32 1

x“—ml x—1
by evaluating the quotientatx = 0.9, 0.99, 0.99, 0.9999 and
atx = 1.1,1.01, 1.001, 1.0001.

(b) Use a CAS to find each of the limits in part (a).

b Exercises 59-62. Use a graphing utility to find at least one num-
ber c at which lim f(x) does not exist.
X—C

X+1
59. f(x) = .
®) =S
|6x% — x — 35]
60. f(x) = o — X =9l
() 2Xx —5
IX|
61. f(x) = .
) = T axd T 13x% 7 26x% 7 36x 1 72
3 _ 29x2 4 15x + 1
62.f(x):5x X<+ 15x + 18

X3 —OX2 £ 27x — 27 °
963. Use a graphing utility to draw the graphs of

f(x) = %sinx and g(x) = xsin (%)

for x # 0 between —r /2 and r /2. Describe the behavior of
f(x) and g(x) for x close to 0.

564. Use a graphing utility to draw the graphs of

f(x) = %tanx and g(x) = x tan (%)

for x # 0 between —mr /2 and /2. Describe the behavior of
f(x) and g(x) for x close to 0.
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M 2.2 DEFINITION OF LIMIT

In Section 2.1 we tried to give you an intuitive feeling for the limit process. However,
our description was too vague to be called “mathematics.” We relied on statements such
as

“as x approaches c, f(x) approachesL”

and
“f(x) is close to L forall x # ¢ which are close to c.”

But what exactly do these statements mean? What are we saying by stating that “ f (x)
approaches L”? How close is close?

In this section we formulate the limit process in a coherent manner and, by so doing,
establish a foundation for more advanced work.

As before, in taking the limit of f(x) as x approaches ¢, we don’t require that
f be defined at c, but we do require that f be defined at least on an open interval
(c — p, ¢+ p) except possibly at c itself.

c-p C c+p X
To say that
lim f(x) =L
X—C

is to say that | f (x) — L| can be made as small as we choose, less than any ¢ > 0 we

choose, by restricting x to a sufficiently small set of the form (c — 8, ¢) U (c, ¢ + §), by

restricting x by an inequality of the form 0 < |x — c¢| < 8 with § > 0 sufficiently small.
Phrasing this idea precisely, we have the following definition.

DEFINITION 2.2.1 THE LIMIT OF A FUNCTION

Let f be a function defined at least on an open interval (c — p, ¢ + p) except
possibly at c itself. We say that

lim f(x) =L

X—C

if for each € > 0, there exists a § > 0 such that
if 0<|x—c| <3, then [f(x)—L| <e.

Figure 2.2.1

Figures 2.2.1 and 2.2.2 illustrate this definition.

y y y y
Te 5 0 f(x)
L E L ‘ﬁﬁ‘ L L
X
| | [ \ ( \
\ c X \ c X \ RS \ S T x
| For each € >0 there exists 6 > 0 such that, if 0<|x—-cl<d, then [f(x) - L| <e. |

Figure 2.2.2
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Except in the case of a constant function, the choice of § depends on the previous
choice of €. We do not require that there exists a number § which “works” for all ¢, but
rather, that for each e there exists a § which “works” for that particular e.

In Figure 2.2.3, we give two choices of ¢ and for each we display a suitable §. For
a é to be suitable, all points within § of ¢ (with the possible exception of ¢ itself) must
be taken by the function f to within e of L. In part (b) of the figure, we began with a
smaller € and had to use a smaller §.

Figure 2.2.3

The § of Figure 2.2.4 is too large for the given €. In particular, the points marked
X1 and x» in the figure are not taken by f to within ¢ of L.

y
f(Xz) f
L+l /17
L - (RN
f(xl) | }
| |
1 1
c-0 X1 c X2c+09 X
Figure 2.2.4
As these illustrations suggest, the limit process can be described entirely in terms y

of open intervals. (See Figure 2.2.5.)

Let f be defined at least on an open interval (c — p, ¢ + p) except
possibly at c itself. We say that

(2.2.2) lim f(x) =1L
X—C
if for each open interval (L — €, L + €) there is an open interval

(c — 8, ¢ + §) such that all the numbers in (c — 8, ¢ + 8), with the
possible exception of c itself, are mapped by f into (L — €, L + €).

Figure 2.2.5

Next we apply the €, § definition of limit to a variety of functions. At first you may
find the €, § arguments confusing. It usually takes a little while for the ¢, § idea to take
hold.
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y

3+e

3-¢€

x—2

lim@2x-1)=3

Figure 2.2.6

L1

f(x)=2-3x

e

-1+6

lim(2-3x)=5

x—-1

Figure 2.2.7

Example 1 Show that

|irT12(2X -1)=3. (Figure 2.2.6)
X—

Finding a §. Let € > 0. We seek a number § > 0 such that
if 0<|x—2| <3, then [(2x — 1) — 3] < e.
What we have to do first is establish a connection between
[(2x — 1) — 3] and X — 2]|.
The connection is evident:
(%) [(2x — 1) — 3| = 12x — 4| = 2|x — 2|.

To make |(2x — 1) — 3] less than €, we need to make 2|x — 2| < ¢, which we can
accomplish by making |x — 2| < /2. This suggests that we choose § = %e.

Showing that the § “works” If 0 < |x — 2| < 3¢, then 2|x — 2| < € and, by
(%), |2x —1) -3 <e. O

Remark In Example 1 we chose § = %e, but we could have chosen any positive

number § less than %e. In general, if a certain §* “works” for a given ¢, then any § less

than §* will also work. [

Example 2 Show that

Iim1(2 —3x) =5. (Figure 2.2.7)
X——

Finding a §. Let € > 0. We seek a number § > 0 such that
if 0<x—=(-1) <8, then [(2—3x)—5] <e.
To find a connection between
Ix—(=1)I and  |(2—3x)—5|,
we simplify both expressions:
X — (=) =[x + 1]

and

I(2—=3x) =5/ =|—3x =3 =|-3[IXx+1 =3]x +1|.
We can conclude that
(k) [(2 —3x) — 5] = 3|x — (-1)|.

We can make the expression on the left less than € by making [x — (—1)]| less than €/3.
This suggests that we set § = %e.

Showing that the § “works.” If 0 < |x — (—1)] < %e, then 3|x — (—1)| < € and, by
(x%), [(2—3x)—5] <e. O

Three Basic Limits

Here we apply the ¢, § method to confirm three basic limits that are intuitively obvious.
(If the €, 8§ method did not confirm these limits, then the method would have been
thrown out a long time ago.)
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Example 3  For each number c, y
f(x) =x
C+€ =T
| |
(2.2.3) limx =c. (Figure 2.2.8) c— | !
X—C cmel ‘77774
| L
PROOF Let ¢ be a real number and let ¢ > 0. We must find a § > 0 such that c-86 ¢ c+b X
if O<|x—c|<3$, then X —c| < e. limx=c
Obviously we can choose § = €. 1 Figure 2.2.8
Example 4  For each real number ¢
y
(2.2.4) lim x| = |c|. (Figure 2.2.9) \mmaana ¢+ €
X=>C [ \ — el
=N ic-e /T =
| |
| |
PROOF Let ¢ be a real number and let e > 0. We seek a § > 0 such that N
— X
if O0<|x—c|l<§, then  |x| —Icl| <e. R P
Since Figure 2.2.9
[1X] = [cl| < 1x —cl. [-3.7]
we can choose § = e, for
if O<|x—c|<e, then lIX] —lcl| <e. 1
y
Example 5 For each constant k S R
—k () = k
e
| |
(2.2.5) limk = k. (Figure 2.2.10) R B
X—C c-86 C C+46 X
lim k =k
proOF Here we are dealing with the constant function Figure 2.2.10
f(x) =k.

Lete > 0. We must find a § > 0 such that
if 0<|x—c| <, then lk — k| < e.
Since |k — k| = 0, we always have
lk — k| <€
no matter how § is chosen; in short, any positive number will do for §. [
Usually €, § arguments are carried out in two stages. First we do a little scratch
work, labeled “finding a §” in Examples 1 and 2. This scratch work involves working

backward from | f (x) — L| < € to find a § > 0 sufficiently small so that we can begin
with the inequality 0 < |x —c| < § and arrive at | f(x) — L| < €. This first stage is
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y
f(x) = %2
9+ef———— T
I/l
9 — I /1
I/ |
9-¢ef————— ‘*\
\
[
[
[
[
[
[
/3N X
3-8 3+6
Figure 2.2.11

T 4-5 4 445 X
limVx = 2

X—4

Figure 2.2.12

just preliminary, but it shows us how to proceed in the second stage. The second stage
consists of showing that the § “works” by verifying that, for our choice of é, it is true
that

if 0<|x—c| <, then [f(x)—L| <e.

The next two examples will give you a better feeling for this idea of working backward
tofindas.

Example 6
limx?=9 (Figure 2.2.11)
Xx—3

Finding a §. Let e > 0. We seek a § > 0 such that
if 0<|x—3<3, then X2 — 9| < e.
The connection between |x — 3| and |x? — 9| can be found by factoring:
x2 —9 = (x +3)(x — 3),
and thus,
(+) X? = 9] = |x +3|x — 3]

At this point, we need to get an estimate for the size of |x + 3| for x close to 3. For
convenience, we’ll take x within one unit of 3.
If [ x —3] <1,then2 < x < 4 and

X +3] < X[+ 18 =x+3<T.
Therefore, by (),
(skk) if  |x—3 <1, then  |x?2—9| <7|x —3|.
If, in addition, |[x — 3| < ¢/7, then it will follow that
X2 — 9| < 7(¢/7) = €.

This means that we can let § = the minimum of 1 and €/7.
Showing that the § “works.” Let € > 0. Choose § = min{1, ¢/7} and assume that

0<|x =3 <3d.
Then
Ix =3 <1 and X — 3| < ¢€/7.
By (xx),
X2 — 9| < 7|x — 3|,
and since |x — 3| < €/7, we have
X2 — 9| < 7(¢/7) = €. |

Example 7
lim /X = 2. (Figure 2.2.12)
X—4

Finding a §. Let e > 0. We seek a § > 0 such that
if  0<|x—4 <3, then [VX —2| <e.



To be able to form /X, we need to have x > 0. To ensure this, we must have § < 4.
(Explain.)

Remembering that we must have § < 4, let’s move on to find a connection between
Ix — 4] and |/X — 2|. With x > 0, we can form /x and write

X —4=(Vx) - 22 =(VX+2(Wx —-2).
Taking absolute values, we have
Ix —4] = [VX +2||v/x = 2].
Since |/X + 2| > 2 > 1, it follows that
VX —2] < |X — 4.

This lastinequality suggests that we can simply set§ < €. Butremember the requirement
8 < 4. We can meet both requirements on § by setting § = the minimum of 4 and ¢.
Showing that the & “works.” Let € > 0. Choose § = min{4, ¢} and assume that

0<|x—4| <3.
Since § < 4, we have x > 0, and so /X is defined. Now, as shown above,
X — 4] = |VX + 2|[v/X = 2|,
Since |/X + 2| > 2 > 1, we can conclude that
VX —2] < |x —4.

Since [x — 4| < Sand § < ¢, itdoes follow that |x — 2| <e. 1

There are several different ways of formulating the same limit statement. Sometimes
one formulation is more convenient, sometimes another. In particular, it is useful to
recognize that the following four statements are equivalent:

(i) lim () =L (i) lim f(c+h) =L

(2.2.6) T A
(iii) )!m(f(x)—L):O (iv) )!m|f(x)—L|:0.

The equivalence of (i) and (ii) is illustrated in Figure 2.2.13: simply think of h as
being the signed distance from ¢ to x. Then x = ¢ + h, and x approaches c iff h
approaches 0. It is a good exercise in €, § technique to prove that (i) is equivalent
to (ii).

Example 8 For f(x) = x?, we have

limx?=9 lim@B+h)?=9

x—3 h—0
lim (x2—9) =0 lim[x?—9]=0. 1
X—3 x—3

We come now to the ¢, § definitions of one-sided limits. These are just the usual
€, § statements, except that for a left-hand limit, the § has to “work™ only for x to
the left of ¢, and for a right-hand limit, the § has to “work” only for x to the right
of c.
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h<0, h>0

f—»f——ﬂ

| | |

X C X X

Figure 2.2.13
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1

| | |
-2 -1 1 2 X
-1

Figure 2.2.14

Figure 2.2.15

DEFINITION 2.2.7 LEFT-HAND LIMIT

Let f be a function defined at least on an open interval of the form (c — p, c).
We say that

lim f(x) =L

X—C~

if for each € > 0 there exists a § > 0 such that

if c—d<Xx<g, then [f(x)—L| <e.

DEFINITION 2.2.8 RIGHT-HAND LIMIT

Let f be a function defined at least on an open interval of the form (c, ¢ + p).
We say that

lim f(x)=1L
X—ct
if for each € > 0 there exists a § > 0 such that
if C<X<C+$§ then [f(x)—L| <e.

As our intuitive approach in Section 2.1 suggested,

229 | limf(x)=L iff lim f(x)=L  and lim f(x)=L.
X—C X—C~ x—ct

The result follows from the fact that any & that “works” for the limit will work for
both one-sided limits, and any § that “works” for both one-sided limits will work for
the limit.

Example 9 For the function defined by setting
2X + 1, x <0

f)=1"

X —X X >0 (Figure 2.2.14)

Iirrz) f (x) does not exist.

X—>

PROOF The left- and right-hand limits at O are as follows:
lim f(x)= lim 2x+1) =1 lim f(x)= lim (x* —x)=0.
fig 00 = lip @cet=1 - lim, 10 = lig 6¢ =0 =0

Since these one-sided limits are different, Iim0 f(x) does not exist. 1
X—

Example 10 For the function defined by setting

1+x2,  x<1
g(x) = 3, x=1 (Figure 2.2.15)
4 — 2x, X > 1,

lim g(x) = 2.
x—1



PROOF The left- and right-hand limits at 1 are as follows:
lim g(x) = lim (1 +x?) =2,
Xx—1- X—1-

Thus, Iim1 g(x) = 2. NOTE: It does not matter that g(1) # 2.
X—

lim g(x) = lim (4 — 2x) = 2.
Xx—1t Xx—1t+

a
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At an endpoint of the domain of a function we can’t take a (full) limit and we can’t
take a one-sided limit from the side on which the function is not defined, but we can
try to take a limit from the side on which the function is defined. For example, it makes

no sense to write

lim /X or lim /X.

x—0 x—0~

But it does make sense to try to find

lim VX.

x—0+

As you probably suspect, this one-sided limit exists and is 0.

EXERCISES 2.2

(Figure 2.2.16)

y f(0) =X
T X
limVx =0
x— 0%
Figure 2.2.16

Exercises 1-20. Decide in the manner of Section 2.1 whether or
not the indicated limit exists. Evaluate the limits that do exist.

2
1. lim ——. 2 1im 3 +X)
x—=1X+1 x—0 2X
1
3 tim X9 4. lim ——
x—>0  2Xx2 x—4 /X + 1
x4 —1 -
5. lim . 6. lim .
x—1 X —1 x—>—lX+1
2
-1
7. lim i. 8. lim Xi.
x—0 |X| x—>1x2 —2x +1
. Ix] X =
9. lim = 10-im %3
. X+3 . X
11. Iim ——. 12, lim —
x—3+ X2 — Tx + 12 x—0- |X|
VX =1
13 lim XX =2 14. lim V9= xZ.
Xx—1t X X—3—
. . 2x—1, x<2
15. lim f(x) if f(x) = {X2 % xao
. . 1, x<-1
16. X_IJTlf f(x)if f(x) = {x Y2 X1
. . _} 3, xaninteger
17 >!Lmz FO It T(x) = 1, otherwise.
2 x<3
18. lim f(x) if f(x) = 7, x=3
X3 2X+3, x> 3.
. . _} 3, xaninteger
19. >!|—r>nz Fe)IF ) = 1, otherwise.
. . x2, x<1
20. )!Lmz f(x)if f(x) = 5. x > 1.

21. Which of the 8’ displayed in the figure “works” for the

given €?

/7 c-5; A\

[
[
[
[
[
[
[
\
[
[
\
{ { l A A A
C / c+d, \ X
c-03 C—8; C+9; C+d3

22. For which of the €’ given in the figure does the specified §

work?

Exercises 23-26. Find the largest § that “works” for the given €.

23. lim2x =2; e =0.1.
Xx—1

25. lim 1x = 1; € = 0.01.
X—2

24. lim5x = 20; ¢ = 0.5.
X—4

26. XI|_r>nzéx =% e=01



72 m CHAPTER 2 LIMITS AND CONTINUITY

927. The graphs of f(x) = /X and the horizontal lines y = 1.5
and y = 2.5 are shown in the figure. Use a graphing utility
to find a § > 0 which is such that

if O<|x—4 <3, then [v/X —2| < 0.5.

y

2.5
2F——————— — —
1.5

X

NG

. The graphs o X) = 2x< and the horizontal lines y =1
28. Th hs of f(x) = 2x? and the hori Ili
and y = 3 are shown in the figure. Use a graphing utility to
find a8 > 0 which is such that

if  O0<|x+1] <8, then  [2x>—2| < 1.
y
3
———|2
| 1
|
-1 X

bExercises 29-34. For each of the limits stated and the €’s
given, use a graphing utility to find a § > 0 which is such that
if 0 < |x —c| <4, then | f(x) — L| < €. Draw the graph of f
together with the vertical lines x =c —§,x =c+§ and the
horizontal linesy =L —e,y =L +e.

29. lim (X2 +x +1) =4; € =05, € = 0.25.
X—2

30. lim (x* +4x +2) =2; € =05, € = 0.25.
X—>—

_1

30 lim = =2 ¢ =05, ¢ = 0.25.
Xx—1 X — 1

32, 1im 172 _ 2 ¢ —05. e—0.1
x—-12X + 4

sin3

33, lim 22X 3 ¢ =025, € =0.1.

x—0 X

34. lim tan(x/4) = L€ = 05, € = 0.1,
X—>

Give an ¢, § proof for the following statements.

35. lim(2x —5) = 3. 36. lim(3x — 1) =5.
x—4 X—2

37. lim(6x —7) = 11. 38. lim(2 — 5x) = 2.
X—3 x—0

39. lim |1 — 3x| = 5. 40. lim |x — 2| = 0.
X—2 X—2

41. Let f be some function for which you know only that
if 0<|x—3 <1, then |f(x) —5| <0.1.
Which of the following statements are necessarily true?
(@) If|x —3| <1, then|f(x)—5] <0.1.
(b) If|x —2.5| < 0.3,then | f(x) — 5] < 0.1.
(¢) lim f(x) =5.
x—3
(d) If0 < |x—3] <2,then|f(x)—5 <0.1.
(e) If0 < |x — 3] <0.5,then | f(x) — 5] < 0.1.
(f) 1f0 < |x —3| <1 then|f(x)—5| < (0.1).
(@) IfO < |x =3 <1,then|f(x)—5] <0.2.
(h) If0 < |x — 3| < 1, then | f(x) — 4.95| < 0.05.
0 IfXIi_r>n3 f(x)=1L,then49 <L <5.1L
42. Suppose that|A — B| < e foreache > 0.Provethat A = B.
HINT: Suppose that A 5 B and sete = 3|A — B|.

Exercises 43-44. Give the four limit statements displayed in
(2.2.6), taking

1 X
43. f = — =3 44, f = —
() x—1’C () X242’
45, Prove that
(2.2.10) lim f(x)=0, iff lim|f(x)]=0.
X—C X—C

46. (a) Prove that
if limf(x)=L, then lim]|f(x)]=]L]|.
X—C X—C
(b) Show that the converse is false. Give an example where
lim | f(x)] = |L]| and limf(x)=M#£L,
X—C X—C

and then give an example where
le | f(x)] exists but )!me f(x) does not exist.
47. Give an ¢, § proof that statement (i) in (2.2.6) is equivalent
to (ii).
48. Give an ¢, § proof of (2.2.9).
49. (a) Show that XI|_r>nc\/i = /cforeachc > 0.
HINT: If x and c are positive, then

X —C| 1
OSI«/_—x/EIZTXJM/6 <%|X—C|~
(b) Show that XI_i)ry+ JX=0.
Give an ¢, § proof for the following statements.
50. lim x? = 4. 51. lim x® = 1.
X—>2 x—1
52. XI|_r)n3 VX +1=2. 53. XI_@ V/3—x=0.

54. Prove that, for the function

(x) = X, X rational
g\x) = 0, xirrational,

lim g(x) = 0.
x—0



55. The function

F(x) = 1, xrational
10, xirrational

is called the Dirichlet function. Prove that for no number ¢
does lim f(x) exist.
X—C

Prove the limit statement.

56. lim f(x)=L iff lim f(c—|h|)=L.
X—C~ h—0

57. lim f(x)=L iff lim f(c+h|)=L.
X—Ct h—0

58. lim f(x) =L iff lim[f(x)—L]=0.
X—C X—C

59. Suppose thatxlimC f(x)=L.

(@) Prove thatif L > 0, then f(x) > 0 for all x # ¢ in an
interval of the form (c — y, ¢ + y).
HINT: Use an ¢, § argument, setting ¢ = L.
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(b) Prove that if L < 0, then f(x) < 0 for all x # c in an
interval of the form (c — y, ¢ + y).

60. Prove or give a counterexample: if f(c) > 0 and lim f(x)
X—C

exists, then f(x) > 0 for all x in an interval of the form
(c—y,c+y).

61. Suppose that f(x) < g(x) forallx € (c — p, ¢ + p), except
possibly at c itself.

(a) Prove that xIlmC f(x) < xIlmC g(x), provided each of these

limits exist.
(b) Supposethat f(x) < g(x)forallx € (c — p, ¢+ p),ex-
cept possibly at c itself. Does it follow that XI|mC f(x) <

IimC g(x)?
X—
62. Prove that if lim f(x) = L, then there are positive numbers
X—C
§ and B such that if 0 < |[x —c| < 8, then | f(x)| < B.

As you probably gathered by working through the previous section, it can become
rather tedious to apply the ¢, § definition of limit time and time again. By proving some
general theorems, we can avoid some of this repetitive work. Of course, the theorems
themselves (at least the first ones) will have to be proved by ¢, § methods.

We begin by showing that if a limit exists, it is unique.

THEOREM 2.3.1 THE UNIQUENESS OF A LIMIT

If lim f(x) =L and lim f(x) =M,

X—C X—C

then L =M.

prOOF We show L = M by proving that the assumption L # M leads to the false

conclusion that
IL— M| <|L— M|

Assume that L # M. Then |[L — M|/2 > 0. Since lel f(x) = L, we know that

there exists a §; > 0 such that

(D) if 0<|x—c| <éy, then

1f(x)— L| <|L —M]|/2.

(Here we are using [L — M|/2 as€.)

Since xI|mC f(x) = M, we know that there exists a §, > 0 such that

2 if 0 < |x—c| <y, then

1f(x)— L] < |L —M]/2.

(Again, we are using |L — M|/2 as€.)

Now let x; be a number that satisfies the inequality

0 < |X1 — ¢| < minimum of §; and §,.

Then, by (1) and (2),

L—M
o)) — L] < =M

and [f(x1) — M| <

L — M
5
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It follows that

IL=M| = |[L = f(x)]+[f(x1) = M]]
< L= f(x)l+[f(x1) = M|
by the triangle
inequalityJ
L-—M L-—M
=|f(x1)—L|-i-|f(x1)—M|<| > |+| > |=|L—M|.
jal = | —al — 1

THEOREM 2.3.2

If lim f(x) = L and lim g(x) = M, then
X—C X—C

(i) lim [F00) +g0)] = L+ M,

(i) XI|mc [af (X)] = L || a real number

(iii) lim [f(x)g(x)] = LM.

PROOF Let e > 0. To prove (i), we must show that there exists a § > 0 such that
if 0<|x—c| <, then [f(X)+g(x)]—[L+ M]| <e.
Note that

(%) ILFC) +90)] = [L + M| = [[f(x) = L]+ [9(x) — M]|
= [f(x) = LI+ 19(x) — M.

We can make |[f(x)+ g(Xx)] —[L + M]]| less than ¢ by making |f(x) — L| and
|g(x) — M| each less than Ze. Since € > 0, we know that 3¢ > 0. Since

limf(x) =1L and llrnC gx) =M,

X—C
we know that there exist positive numbers §; and &, such that

if O0<|x—c|<3é, then 1f(x) = L| < 3¢
and

if  0<|x—c|<3éy, then 19(x) — M| < %e.
Now we set § = the minimum of §; and &, and note that, if 0 < |x — ¢| < §, then

[f(x)—L| < %e and |g(x) — M| < %e.
Thus, by (),
I[F0) +90()] = [L +M]| <e.
In summary, by setting § = min{dy, 82}, we find that
if O<|x—c|<$ then [[f(xX)+9g(X)] —[L + M]| <e.

This completes the proof of (i). For proofs of (ii) and (iii), see the supplement to this
section. [
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If you are wondering about XIimc[ f(x) — g(x)], note that

f(x) —g(x) = f(x) + (=1)g(x),
and so the result

2.3.3) lim[f () — gl =L — M

follows from (i) and (ii).
Theorem 2.3.2 can be extended (by mathematical induction) to any finite collection
of functions; in particular, if

lim fy(x) = Lq, lim fa(x) = Lo, lim f,(x) = Ly,
X—C X—C X—C

and oy, ao, ..., ap are real numbers, then

lim ey f1(x) + a2 f2(X) + - - - + an T (X)]

(2.3.4)

=a by +aplo+ - +anln.
Also,
(2.3.5) >!me[fl(x) fo(x)--- fa(xX)] = LiLy--- Ly.

For each polynomial P(x) = a,x" + - - - 4+ a;x + ap and each real number ¢

(2.3.6) 1|rnC P(x) = P(c).

prOOF We already know that

limx =c.
X—C

From (2.3.5) we know that

lim x*=ck  for each positive integer k.
X—C

We also know that XIlmc ap = ao. It follows from (2.3.4) that
lim [apx" + - - -+ ai;X + ag] = anc” + - - - + asc + a,
X—C

which says that
lim P(x) = P(c).
X—C

A function f for which )!lmc f(x) = f(c)issaid to be continuous at c. What we just

showed is that polynomials are continuous at each number c. Continuous functions,
our focus in Section 2.4, have a regularity and a predictability not shared by other
functions.

75
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Examples
lim (5x2 —12x +2) = 5(1)> — 12(1) + 2 = 5,
X—

lim (14x5 — 7x% 4 2x + 8) = 14(0)° — 7(0)> + 2(0) + 8 = 8,
X—

lim_ 23 +x2—2x —3) =2(-1)°* + (-1 -2(-1)-3=-2. 1
X——

We come now to reciprocals and quotients.

THEOREM 2.3.7

1 1
If limg(x) =M with M #0, then lim — = —,
X—>cg( ) ;é X—C g(X) M
PROOF Given in the supplement to this section. 1
Examples
Iiml—1 lim LI Iiml— ! _1 a
x—4x2 16’ x—>2x3—1 7’ x—>-3 x| |—=3 3

Once you know that reciprocals present no trouble, quotients become easy to handle.

THEOREM 2.3.8

_ - _ B : f)_ L
IfJimfe)=L and limg()=M with M0, then lim =~ =17

PROOF The key here is to observe that the quotient can be written as a product:

fx) _ f(x )_
900 g’

. . 1 1
With )!me f(x)=L and lec ) =V
the product rule [part (iii) of Theorem 2.3.2] gives
f(x) 1 L

—=—. U
x“—>cg(x) I'M M

This theorem on quotients applied to the quotient of two polynomials gives us the
limit of a rational function. If R = P /Q where P and Q are polynomials and c is a real
number, then

239 | limR(x) = lim P(x) _ P(0)

X—C X—C Q(X) Q(C) = R(C), prOVided Q(C) #0.
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This says that a rational function is continuous at all numbers ¢ where the denominator
is different from zero.

Examples
3x-5 6-5 1 x3—3x2 27-27

Iim—-—=-—= -, I|m = =0. 4
x—»2x24+1 441 5 x—3 1 —x2 1-9

There is no point looking for a limit that does not exist. The next theorem gives a
condition under which a quotient does not have a limit.

THEOREM 2.3.10

If )!lmc f(x) =L with L # 0and )!lmc g(x) =0, then I|m ((

)) does not exist.

PROOF Suppose, on the contrary, that there exists a real number K such that

f
fim 1)
x—c¢ g(x)
Then
L= I|m f(x) = I|m g(x) - ( ) = limg(x) - lim Q =0-K=0.
( ) X—C x—c g(X)
This contradicts our assumption that L £ 0. O
Examples From Theorem 2.3.10 you can see that
lim im= =T and  lim>
x—>1X —1’ x—2 X2 —4° x—>0;

all fail to exist. 1

Now we come to quotients where both the numerator and denominator tend to zero.
Such quotients will be particularly important to us as we go on.

Example 1 Evaluate the limits that exist:

X2 _x_6 (x% — 3x — 4)? x+1
@ lm——a  OIn"——— O o

X—3 X —3 X—4 X —4 ’
SOLUTION
(a) First we factor the numerator:

X2—x—6  (x+2)(x —3)
Xx—3 x—3

For x # 3,

X2 —x—6

=X 2.
X —3 +
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Therefore
X2 —x—6
I. —_— = I. 2 = .
xl—rg X—3 xl—rg (x+2)=5

(b) Note that
(X2 —=3x—4)2  [(x+1D(x -4  (x+1)?*(x —4)

X —4 X —4 X —4
Thus for x # 4,

(x> —3x —4)* )
7_(x+1) (x —4).

It follows that
L (x2—3x—4)2 ) B
fim =g = lim e -9 =o
(c) Since

X+1 X+1 X+1

(X2 +7x +5)2  [(2x +5) (X + 12 (2x +5)2(x + 1)’
forx # —1,
X+1 1

(2x2 +7x +5)2  (2x +5)2(x + 1)

As X — —1, the denominator tends to 0 but the numerator tends to 1. It follows from
Theorem 2.3.10 that

im ——M does not exist.
x—-1(2x + 5)2(x + 1)

Therefore

X+1

im ———— does not exist. 1
x—-1(2X2 + 7x + 5)2

Example 2 Justify the following assertions.

- lx—=1/2 1 ox—=9
@ x—2 ~ 2 O M x—3=¢
SOLUTION
(a) Forx # 2,
2—X
1/x=1/2 "oy —(x—=2) -1

X —2 X—2 2X(x—2) 2x°
Thus

=-7

. 1/x—1)/2 i -1 1
fim 20 =22 — i [ 2

(b) Before working with the fraction, we remind you that for each positive number ¢

lim /X = J/C. (Exercise 49, Section 2.2)
X—C



Now to the fraction. First we “rationalize” the denominator:

X—9 x—9 X+3 (x—-9)(/x+3)
JX—3 JXx—-3 Jx+3 X—9
It follows that
lmf_ _I|m[f+3]_6

Remark

a
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=JX+3 (x#9).

In this section we phrased everything in terms of two-sided limits. Although

we won’t stop to prove it, analogous results carry over to one-sided limits.

EXERCISES 2.3

1. Given that
lim f(x) =2,
X—C

limg(x) = —
X—C

limh(x) =0,
X—C

evaluate the limits that exist. If the limit does not exist, state

how you know that.

(@ lim[f(x) —g(x)].

(b) lim[f ().

. f(x) h(x)
© Jim <00 @ Jim +59°
f(x) 1
© Jim 10 O M 69— 900"
2. Given that
lim f(x)=3, lmg(x)=0, limh(x)=-

evaluate the limits that exist. If the limit does not exist, state

how you know that.

(8) lim[3f (x) - 2h()].

(b) lim[h()T.

h(x ) 9(x)
© Jim @ Jim 60
4
(e) leC T —h(x) () )!'_rpc[3+ S[69) 8

. When asked to evaluate

. 1 1 1
lim{-—= ,
x—4\ X 4 X—4

. oo . 1 1
Moe replies that the limit is zero since Im]1 <71z 0
X—

and cites Theorem 2.3.2 as justification. Verify that the limit
is actually — & and identify Moes error.

. When asked to evaluate

oo xXZ4x-—12
lim ———,
X—3 X—3

Moe says that the limit does not exist since Iirr13(x —-3)=0
X—

and cites Theorem 2.3.10 (limit of a quotient) as justifica-
tion. Verify that the limit is actually 7 and identify Moe’s
error.

Exercises 5-38. Evaluate the limits that exist.
5. lim 3.

6. lim(5 — 4x)2.
X—3

X—2

7.

11.

13. i

15.

17.

19.

21. lim

lim (x2 +3x — 7).
X——4

. lim |[x2 —8.

Xx—>+/3

- < 4)
lim((x——).
x—0 X

x24+1
lim .
x—>0 X —1

lim .
X—2 X2 4

. 1
'!erg)h <1+H>.

X2

lim
Xx—2 X — 2

vx-2

x—4 X —4

X2—X—6

23. lim

25. lim

27. lim

M v
1—1/h?
h—0 1—1/h"
1-1/h
h—01+1/h’

t? 4+ 6t +5

29. lim

31 lim

33.

35. i

37.

38.

t>—1t2 43t 4+ 2°

t+a/t
t%Ot—i—b/t.

lim ——.
x—1 x4 —1

8.

lim 3|x —1].
X——2

x2+1

10. lim

12.
14.
16.
18.
20.
22.
24. lim
26. lim
28. lim
30. lim
32 li
34 h- 0

36. lim

x—-13X5 4+ 4'
lim 2%
X—5 4X

XZ

lim ——.
x—0 X2 =+ 1

. 1
h"i%“(l‘ﬁ)-

lim
X—2 X — 4

_ v _R)
lim u
X——2 X+ 2

lim -1
xal[—l
x2—-x—6
S
1—-1/h?
h—01+1/h2’
1+1/h
h—01+1/h2’
N
X—2

X—2+
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39. Evaluate the limits that exist.

@ pm (5-3)
o (-3 (=)}
© (5 -7)=-2)

om| (-3 ()]

40. Evaluate the limits that exist.

X4 x 412 X4 x—12
@M~ O Tg
(X2 +x—12)? X2 x—12
O~ x5 OMa—y

41. Giventhat f(x) = x? — 4x, evaluate the limits that exist.

() lim M (b) lim M
x—4 X —4 x—>1  x—=1
- fx) = Q) - f(x) = ()
R S I L

42. Given that f(x) = x3, evaluate the limits that exist.

_f(x)— f(3) X)) = fQ)
e L
() — f(3) 00— (1)
@M=z~ O

43. Show by example that )[i_rpc[f(x) + g(x)] can exist even if
)!l_r)nc f(x) and )!l_rpc g(x) do not exist.

44, Show by example that XIiﬁmc[f(x)g(x)] can exist even if
)!me f(x) and )!me g(x) do not exist.

Exercises 45-51. True or false? Justify your answers.
45, If Iimc[f(x) + g(x)] exists but Iirrl f (x) does not exist, then
X— X—
IimC g(x) does not exist.
X—

46. If XIirrl[f(x) + g(x)] and XI|mC f (x) exist, then it can happen
that XIlrnC g(x) does not exist.

47. If )!lmc V/ f(x) exists, then llmc f(x) exists.

48. IfxlimC f(x) exists, then XIimc,/f(x) exists.

49. Ifxli_r)nc f (x) exists, then xI|_r)nC % exists.
50. If f(x) < g(x) forall x # c, then XILmC f(x) < XILmC g(x).
51. If f(x) < g(x) forall x # c, then )[l_rpc f(x) < )!l_r)nc g(x).
52. (a) Verify that

max{ f (x), g(x)} = 3{[f(x) +g()] + | f (x) = g(I}.

(b) Find a similar expression for min { f (x), g(x)}.

53. Let h(x) = min{ f(x), g(x)} and H(x) = max{ f (x), g(x)}.
Show that

if limf(x)=L and limg(x)=1L,
X—C X—C

then limh(x)=L and limH(X)=L.
X—C X—C

HINT: Use Exercise 52.

54. (Stability of limit) Let f be a function defined on some in-
terval (c — p, ¢ + p). Now change the value of f at a finite
number of points Xy, Xz, ..., X, and call the resulting func-
tion g.

(a) Show thatif lim f(x) = L, then lim g(x) = L.
X—C X—C
(b) Show that if XIlmc does not exist, then XIlmC g(x) does not
exist.
55. (a) Suppose that XIlmC f(x)=0 and XIimc[f(x)g(x)] =1
Prove that XI|mc g(x) does not exist.
(b) Suppose that XIlmC f(x)=L #0and xIimc[f(x)g(x)] =
1. Does XI|rnC g(x) exist, and if so, what is it?

56. Let f be a function defined at least on an interval

(c — p, ¢+ p). Suppose that for each function g

XIimc[f(x) + g(x)] does not exist if XI|mc g(x)
does not exist.

Show that )!lmc f(x) does exist.

(Difference quotients) Let f be a function and let c and ¢ + h
be numbers in an interval on which f is defined. The expression

f(c+h)— f(c)
h

is called a difference quotient for f. (Limits of difference quo-
tientsash — 0 are at the core of Chapter 3.) In Exercises 57-60,
calculate

lim f(c+h)— f(c)
h—0 h

for the function f and the number c.
57. f(x) =2x2—-3x; c=2.

58. f(x) =x3+1, c=-1

59. f(x) =4/X; c=4

60. f(x)=1/(x+1); c=1.

61. Calculate

i 10— 160
h—0 h

for each of the following functions:

@ f(x)=x.
(b) f(x)=x2
(c) f(x)=x5.
(d) f(x)=x*

(e) f(x) =x",n an arbitrary positive integer.
Make a guess and confirm your guess by induction.
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*SUPPLEMENT TO SECTION 2.3

PROOF OF THEOREM 2.3.2 (lI)

We consider two cases: o # 0and « = 0. If & # 0, then ¢/|«| > 0 and, since
lim £(x) = L,

we know that there exists § > 0 such that,

if  O<|x—c|<s  then |f(x)—L|<|€—|.
o

From the last inequality, we obtain
] f(x)—L| <€ and thus laf(X) —al| <e.
The case o = 0 was treated before. (2.2.5)
PROOF OF THEOREM 2.3.2 (li)
We begin with a little algebra:
f0)9(x) — LM] = [[f(x)g(x) = F)M] + [f ()M — LM]|
= [f(x)g(x) = FIM] + [f(x)M — LM]|
= [f)Ig(x) = M+ [M][ f(x) — L|
= [FI9(X) = M+ (L + M) f(x) — L.
Now let e > 0. Since XILmC f(x)=Land xIme g(x) = M, we know the following:
1. There exists §; > 0 such that, if 0 < |[x — c| < 81, then
[f(x)—L| <1 and thus [f(X)] <14]|L]|.

2. There exists §, > 0 such that

l6
if 0 — ) th - M 2 .
[ <X —c| <& en  [g(x) | < <1+||_|

3. There exists 83 > 0 such that

16
if 0<|x—c|<3ds, then f(x)—L 2 )
<| | < &3 | f(x) |<<1+|M|

We now set § = min{éy, 8,, 83} and observe that, if 0 < |x —c| < &, then

) —LMI < [fOOI9(X) — M]+ (14 M) f(x) — L|

Lo Lo -
< (1+|L|)<1+|L|> +(1+|M|)<1+|M|> —e. U
by (1) — Loy @ T by 3)

PROOF OF THEOREM 2.3.7
For g(x) # 0,

‘ 1 1] 1g)— M|
gx) M 190)IIM|
Choose 8; > 0 such that

. M
if 0<|x—c|<éy, then lg(x) — M| < |T|
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Figure 2.4.1

For such x,
M| 1 2
9(x)| > —— so that -
=7 9 M|
and thus
1 1| 19(x) =M 2
gx) M|~ — M| = —=[g(x) — M|.
‘Q(X) M‘ 90OIIM] |M|2|g(x) | = z190) = M|

Now let € > 0 and choose §, > 0 such that

MZ
if 0<|x—c| <éy, then lg(x) — M| < 76.

Setting § = min{8y, 8>}, we find that
1 1

if 0<|x—c| <, then ‘——— <e.
gx) M

W 2.4 CONTINUITY

In ordinary language, to say that a certain process is “continuous” is to say that it
goes on without interruption and without abrupt changes. In mathematics the word
“continuous” has much the same meaning.

The concept of continuity is so important in calculus and its applications that we
discuss it with some care. First we treat continuity at a point ¢ (a number c), and then
we discuss continuity on an interval.

Continuity at a Point

The basic idea is as follows: We are given a function f and a number c. We calculate
(if we can) both lim f(x) and f(c). If these two numbers are equal, we say that f is
X—C

continuous at c. Here is the definition formally stated.

DEFINITION 2.4.1

Let f be a function defined at least on an open interval (¢ — p, ¢ + p). We say
that f is continuous at c if

lim £ (x) = (c).

If the domain of f contains an interval (c — p, ¢ + p), then f can fail to be con-
tinuous at ¢ for only one of two reasons: either

(i) fhas a limit as x tends to c, butxlirrl f(x) £ f(c), or
(ii) fhas no limit as x tends to c.

In case (i) the number c is called a removable discontinuity. The discontinuity can be
removed by redefining f at c. If the limit is L, redefine f at c to be L.

In case (ii) the number c is called an essential discontinuity. You can change the value of
f at a billion points in any way you like. The discontinuity will remain. (Exercise 51.)

The function depicted in Figure 2.4.1 has a removable discontinuity at c. The dis-
continuity can be removed by lowering the dot into place (i.e., by redefining f atctobeL).



The functions depicted in Figures 2.4.2, 2.4.3, and 2.4.4 have essential disconti-
nuities at ¢. The discontinuity in Figure 2.4.2 is, for obvious reasons, called a jump
discontinuity. The functions of Figure 2.4.3 have infinite discontinuities.

Figure 2.4.3

In Figure 2.4.4, we have tried to portray the Dirichlet function

F(x) = 1, X rational
-] -1, X irrational

At no point c does f have a limit. Each point is an essential discontinuity. The function
is everywhere discontinuous.

Most of the functions that you have encountered so far are continuous at each point
of their domains. In particular, this is true for polynomials P,

lim P(x) = P(c), [(236)]
for rational functions (quotients of polynomials) R = P/Q,

200 — tim P00 _ PO
AR =M 300 = Q)

and for the absolute value function,

= R(c) provided Q(c) #0, [23.9)]

lim |x| = |c|. [(2.2.4)]
X—C

As you were asked to show earlier (Exercise 49, Section 2.2),
lim /X = 4/c for each ¢ > 0.

X—C

This makes the square-root function continuous at each positive number. What happens
at ¢ = 0, we discuss later.
With f and g continuous at c, we have

lim f(x)=f(c)  limg(x) = g(c)
and thus, by the limit theorems,
lim[f(x) +90()] = () +9(c),  lm[f(x) —g(x)] = f(c) —9(c)
xIi_rpc[ozf(x)] =af(c) foreachreal o XIi_r;nc[f(x)g(x)] = f(c)g(c)
and, it g(c) #0,  lim[f(x)/g()] = f(c)/g(c)-

2.4 CONTINUITY = 83

y
—
f
|
c X
Figure 2.4.2
y
1
b X
Figure 2.4.4
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We summarize all this in a theorem.

THEOREM 2.4.2
If f and g are continuous at c, then

(i) f + giscontinuous at c;
(i) f — g iscontinuous at c;
(iii) «f is continuous at c for each real «;
(iv) f - g iscontinuous at c;
(v) f/gis continuous at c provided g(c) # 0.

These results can be combined and extended to any finite number of functions.

. X3 —x . .
Example 1 The function F(x) = 3|x| + —————— + 4 is continuous at all real

X2 —5X +6
numbers other than 2 and 3. You can see this by noting that
F=3f4+g/h+Kk
where
fx)=Ix, gx)=x*—x, hx)=x2-5x+6,  k(x)=4.

Since f, g, h, k are everywhere continuous, F is continuous except at 2 and 3, the
numbers at which h takes on the value 0. (At those numbers F is not defined.)

Our next topic is the continuity of composite functions. Before getting into this,
however, let’s take a look at continuity in terms of ¢, §. A direct translation of

XI|_r)nC f(x) = f(c)
into €, § terms reads like this: for each € > 0, there exists a § > 0 such that
if 0<|x—c|]<3$, then [f(x) — f(c)] <e.
Here the restriction 0 < |x — c| is unnecessary. We can allow |x — c| = 0 because then
x =c¢, f(x) = f(c), and thus | f(x) — f(c)| = 0. Being 0, | f (x) — f(c)| is certainly

less than e.
Thus, an €, § characterization of continuity at ¢ reads as follows:

for each € > 0 there exists a § > 0 such that

(2.4.3) f is continuous at ¢ |f{ it [x—c|l<s, then |f(x)— f(c) <e.

In intuitive terms
f is continuous at ¢ if for x close to c, f(x) is close to f(c).

We are now ready to take up the continuity of composite functions. Remember the
defining formula: (f o g)(x) = f(g(x)). (You may wish to review Section 1.7.)



THEOREM 2.4.4

If g is continuous at ¢ and f is continuous at g(c), then the composition f o g
is continuous at c.

The idea here is as follows: with g continuous at ¢, we know that
for x close to ¢, g(x) is close to g(c);
from the continuity of f at g(c), we know that
with g(x) close to g(c), f(g(x)) is close to f(g(c)).
In summary,
with x close to ¢, f(g(x)) is close to f(g(c)).

The argument we just gave is too vague to be a proof. Here, in contrast, is a proof.
We begin with € > 0. We must show that there exists a number § > 0 such that

if X —c| < 6, then [ f(g(x)) — f(g(c))| < e.

In the first place, we observe that, since f is continuous at g(c), there does exist a
number §; > 0 such that

) if  [t—gc) <&, then  |f(t) = f(g(c))l <e.

With é; > 0, we know from the continuity of g at c that there exists a number § > 0
such that

2 if X —c| < 3§, then lg(x) — g(c)| < 8.
Combining (2) and (1), we have what we want: by (2),
if X —c| <6, then lg(x) — g(c)| < &1
so that by (1)
1 1(9(x)) — T(9(e))| < e.

This proof is illustrated in Figure 2.4.5. The numbers within § of ¢ are taken by g
to within 8; of g(c), and then by f to within € of f(g(c)).

Figure 2.4.5

It’s time to look at some examples.

2.4 CONTINUITY

85
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Example 2 The function F(x) = is continuous at all numbers greater

than 3. To see this, note that F = f o g, where

f) =X  and g(x):);zj;.

Now, take any ¢ > 3. Since g is a rational function and g is defined at c, g is continuous
at c. Also, since g(c) is positive and f is continuous at each positive number, f is
continuous at g(c). By Theorem 2.4.4, F is continuous atc. 1

The continuity of composites holds for any finite number of functions. The only
requirement is that each function be continuous where it is applied.

Example 3 The function F(x) = is continuous everywhere except

XZ
at x = £3, where it is not defined. To see this, note that F = f o g o k o h, where

f(x)=%, g(x) =5—x, k(x) = /X, h(x) = x? + 16,

and observe that each of these functions is being evaluated only where it is continuous.
In particular, g and h are continuous everywhere, f is being evaluated only at nonzero
numbers, and K is being evaluated only at positive numbers. 1

Just as we considered one-sided limits, we can consider one-sided continuity.

DEFINITION 2.4.5 ONE-SIDED CONTINUITY
A function f is called

continuous from the left at ¢ if lim f(x) = f(c).
X—C™
It is called
continuous from the right at ¢ if lim f(x) = f(c).
X—ct

The function of Figure 2.4.6 is continuous from the right at 0; the function of Figure
2.4.7 is continuous from the left at 1.

-

X 1 X
f(x) = Vx g(x) =1 —x
Figure 2.4.6 Figure 2.4.7

It follows from (2.2.9) that a function is continuous at c iff it is continuous from both
sides at c. Thus



f is continuous at ¢ iff f(c), lim f(x), lim f(x)
X—>C~ x—ct

(2.4.6) .
all exist and are equal.

Example 4 Determine the discontinuities, if any, of the following function:

2x + 1, x<0
f(x) = 1, 0<x<1 (Figure 2.4.8)
X2 +1, x> 1.

SOLUTION Clearly f is continuous at each point in the open intervals
(=00, 0), (0, 1), (1, 00). (On each of these intervals f is a polynomial.) Thus, we have
to check the behavior of f at x = 0 and x = 1. The figure suggests that f is continuous
at 0 and discontinuous at 1. Indeed, that is the case:

f(0) =1, lim f(x)= lim@2x +1) =1, lim f(x)= lim (1) =1.
X—0— Xx—0— x—0+ Xx—0+
This makes f continuous at 0. The situation is different at x = 1:
lim f(x)=Ilim (1)=1 and lim f(x)= lim (x>+1)=2.
Xx—1- X—1- Xx—1t+ Xx—1+
Thus f has an essential discontinuity at 1, a jump discontinuity.

Example 5 Determine the discontinuities, if any, of the following function:

x3, x < -1
X2 —2, -1l<x<l1
f(x) = 66—x, l<x<4
, 4 <x<7
7—X
5x + 2, X >7.

SOLUTION It should be clear that f is continuous at each point of the open intervals
(=00, —1),(-1,1),(1,4),(4,7), (7, 00). All we have to check is the behavior of f at
x =-=1,1,4,7. To do so, we apply (2.4.6).

The function is continuous at x = —1 since f(—1) = (-1)° = —1,

lim f(x)= lim (x% = —1, and lim f(x)= lim (x?-2)=—1.
X—>—1- X——1- X——1t X——1*

Our findings at the other three points are displayed in the following chart. Try to verify
each entry.

c f(c) lim f(x) lim f(x) Conclusion
X—C~ X—ct

1 5 -1 5 discontinuous

4 not defined 2 2 discontinuous

7 37 does not exist 37 discontinuous

The discontinuity at x = 4 isremovable: if we redefine f at4tobe 2, then f becomes
continuous at 4. The numbers 1 and 7 are essential discontinuities. The discontinuity at
1 is a jump discontinuity; the discontinuity at 7 is an infinite discontinuity: f(x) — oo
asx — 7-. 1

2.4 CONTINUITY m 87

| | |

_7 1 2 X

Figure 2.4.8
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Continuity on Intervals

A function f is said to be continuous on an interval if it is continuous at each interior

contain.
For example:

(i) The function

A

-1 1 X

y point of the interval and one-sidedly continuous at whatever endpoints the interval may

f(x) =+v1-x2

is continuous on [—1, 1] because it is continuous at each point of (-1, 1), con-

F00 =N = tinuous from the right at —1, and continuous from the left at 1. The graph of the
Figure 2.4.9 function is the semicircle shown in Figure 2.4.9.
(if) The function
1
f(X) = ——
V1—x2
is continuous on (—1, 1) because it is continuous at each point of (—1, 1). It is not
continuous on [—1, 1) because it is not continuous from the right at —1. It is not
continuous on (—1, 1] because it is not continuous from the left at 1.
(iii) The function graphed in Figure 2.4.8 is continuous on (—oo, 1] and continuous on
(1, 00). It is not continuous on [1, co) because it is not continuous from the right
at 1.
(iv) Polynomials, being everywhere continuous, are continuous on (—oo, co).
Continuous functions have special properties not shared by other functions. Two
of these properties are featured in Section 2.6. Before we get to these properties, we
prove a very useful theorem and revisit the trigonometric functions.
EXERCISES 2.4

1. The graph of f is given in the figure.

(a) Atwhich points is f discontinuous?

(b) For each point of discontinuity found in (a), determine
whether f is continuous from the right, from the left, or
neither.

(c) Which, if any, of the points of discontinuity found in (a)
is removable? Which, if any, is a jump discontinuity?

y I
|
41— |
|
3¢ }
|
21 ! f
|
|
1— I
A -1 |
\ \ \ \ \ \ \ \ \ }
-5/ -4 -3 -2 1 2 3 4 51,6
-1 ° }
ol |
|
|

2. The graph of g is given in the figure. Determine the intervals
on which g is continuous.

N ow <

._.
\

Exercises 3-16. Determine whether or not the function is contin-
uous at the indicated point. If not, determine whether the discon-
tinuity is a removable discontinuity or an essential discontinuity.
If the latter, state whether it is a jump discontinuity, an infinite
discontinuity, or neither.



3.f(x)=x3—-5x+1;, x=2
4.9(x) =/(x —1)2+5 x=1
5. f(x)=+x2+9; x=3.
6. f(x)=14—x?; x=2
X244, x<?2 _
7.f(x)_{ 3 xoo X=2
_[x*+5, x<2 B
8. h(x) = 3 x> 2 X=2
X244, x<?2
9. g(x) = 5 x=2 x=2
X3, X > 2
X245, x<2
10. g(x) = 10, x=2 x=2
1+x3 x>2
[x —1]
11.f(x)=!x_1’ x#1 x =1
0, x=1;
1—-x, x<1
12. f(x) = 1, x=1, x=1.
x2 -1, x>1;
x2—1 1
1B.h)={ 311 7 b x=-1
-2, x=-1;
L 1
14.g(x)={x+1’ X# - X = —1.
0, x=-1,;
X +2
Bt =1x2—a XF2 x=2
4, X =2;
—x2, x<0
16. f(x) = 0, x=0 x=0
1/x2, x> 0;

Exercises 17-28. Sketch the graph and classify the discontinu-
ities (if any) as being removable or essential. If the latter, is it a
jump discontinuity, an infinite discontinuity, or neither.

17. f(x) = |x —1].

19. f(x) =

20. f(x) =

21. f(x) =

22. g(x) =

18. h(x) = x> —1].

x2—4
, X #£2
X—2 7
4, X =2.
X—3
—, X+#3,-3
x2 -9 7
1
5’ X=3,—3
X+ 2
, X#£-2,3
X2 —X—6 7
1
-z, X=-2,3.
2x—1, x<1
0, x=1
1/x2, x> 1.
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X < -1
-l<x<1
1, 1<x.

1, x<-=2
—2<Xx<4
4 < X.

23. f(x) =

24. g(x) =

1, x<0
X2, 0<x <1
1, 1<x<?2
X, 2<X.

25. h(x) =

X < -1
3, x=-1
-l<x<1
1<x.

26. g(x) =

X <=2
—2<x<1,
l<x<3
3 <X

2X +9,
X241,
3x —1,
X + 6,

27. f(x) =

X < -3
-3 <x<-1
X2 —-2x, —1<x<3
2x — 3, 3 <X.
Sketch a graph of a function f that satisfies the following
conditions:
1. dom(f) =[-3,3].
3. f has an infinite discontinuity at —1 and a jump discon-
tinuity at 2.
4. f isright continuous at —1 and left continuous at 2.

X+7,

Ix —2],

28. g(x) =

29.

30. Sketch a graph of a function f that satisfies the following

conditions:

1. dom(f) =[-2,2].

2. f(-2)=f(-)=f1)=f(2=0.

3. f has an infinite discontinuity at —2, a jump disconti-
nuity at —1, a jump discontinuity at 1, and an infinite
discontinuity at 2.

4. f is continuous from the right at —1 and continuous from
the left at 1.

Exercises 31-34. If possible, define the function at 1 so that it
becomes continuous at 1.

x?—1 1
1. f(x) = . 2. f(x) = —.
3 TX)=——7 82. Tx)=—7
x—1 (x — 1)
T T
X2, x<1 _ . .
35. Let f(x) = { AX—3. x>1. Find A given that f is con-

tinuous at 1.

2y2
36. Let f(x) = {(1 —AA))(x’ i § g For what values of A is f

continuous at 2?



[> 40. Set f(x) =
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37. Give necessary and sufficient conditions on A and B for the
function

Ax—B, x<1
f(x) = X, l<x<2
Bx2— A, 2<x

to be continuous at x = 1 but discontinuous at X = 2.

38. Give necessary and sufficient conditions on A and B for the
function in Exercise 37 to be continuous at x = 2 but dis-
continuous at x = 1.

l1+cx, x<2

[>39. Set f(x) = {C_X, X =2

f continuous on (—oo, co). Use a graphing utility to verify
your result.

Find a value of c that makes

1—cx +dx2, x<-1
x24+x, —1 < x <2 Findvalues of
cx?+dx +4, x=>2.
cand d that make f continuous on (—oo, co). Use a graphing
utility to verify your result.
Exercises 41-44. Define the function at 5 so that it becomes
continuous at 5.

VX+4-3 X+4-3
5 . D —

41. f(x) = 42. f(x) =

J2X—1-3
X—5
VX2 —Tx +16 — /6
X =5)WXx+1

Exercises 45-47. At what points (if any) is the function contin-
uous?

43, f(x) =

44. f(x) =

1, X rational
45. f(x) = {o, x irrational.

X, X rational
46. g(x) = [O, X irrational.

2X, X an integer
47.h(x) = {xz, otherwise.

48. The following functions are important in science and engi-
neering:

1. The Heaviside function H¢(x) = {

2. The unit pulse function

0, x<¢
1, x>c.

Pes) = ZTHo() — Hose (L

(a) Graph H¢ and P, .

(b) Determine where each of the functions is continuous.

(c) Find lim Hc(x) and lim H(x). What can you say
X—C~ x—ct

about XI|mC H(x)?
49. (Important) Prove that

f is continuous at ¢ iff rl]mg) f(c+h) = f(c).

50. (Important) Let f and g be continuous at c. Prove that if:
(@) f(c) > 0, then there exists § > 0 such that
f(x) > 0forall x € (c —§,c+39).
(b) f(c) < 0, then there exists § > 0 such that
f(x) <Oforallx € (c —4,c+9).
(c) f(c) < g(c), then there exists § > 0 such that
f(x) < g(x)forall x € (c —§,c+3).
51. Suppose that f has an essential discontinuity at c. Change
the value of f as you choose at any finite number of points
X1, X2, . .., Xn and call the resulting function g. Show that g
also has an essential discontinuity at c.

52. (a) Prove that if f is continuous everywhere, then |f| is
continuous everywhere.
(b) Give an example to show that the continuity of | f | does
not imply the continuity of f.
(c) Give an example of a function f such that f is continu-
ous nowhere, but | f | is continuous everywhere.

53. Suppose the function f has the property that there exists a
number B such that
[ f(x) — f(c)l < Blx —c
for all x in the interval (c — p, ¢ 4+ p). Prove that f is con-
tinuous at c.
54. Suppose the function f has the property that
() = FOI < Ix =t
for each pair of points x, t in the interval (a, b). Prove that f
is continuous on (a, b).
55. Prove that if
lim f(c+h)— f(c)
h—0 h
exists, then f is continuous at c.
56. Suppose that the function f is continuous on (—oo0, 00).
Show that f can be written
f = fo+ fo,

where f. is an even function which is continuous on
(—00,00) and fq is an odd function which is continuous
on (—oo, 00).

[> Exercises 57-60. The function f is not defined at x = 0. Use a

graphing utility to graph f. Zoom in to determine whether there
is a number k such that the function

F(x) = { f(x|2: iig

is continuous at x = 0. If so, what is k? Support your conclusion
by calculating the limit using a CAS.

sin 5x
57. f(x) = .
() sin 2x
2
58. f = —.
() 1 — cos 2x
sin x
59. f(X) = —.
(x) X
X Sin 2x
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M 2.5 THE PINCHING THEOREM; TRIGONOMETRIC LIMITS

Figure 2.5.1 shows the graphs of three functions f, g, h. Suppose that, as suggested by
the figure, for x close to c, f is trapped between g and h. (The values of these functions
at c itself are irrelevant.) If, as x tends to c, both g(x) and h(x) tend to the same limit
L, then f(x) also tends to L. This idea is made precise in what we call the pinching
theorem.

Figure 2.5.1

THEOREM 2.5.1 THE PINCHING THEOREM
Let p > 0. Suppose that, for all x such that 0 < |x —c| < p,

h(x) < f(x) < g(x).

limh(x) =L and XI|mC g(x) =L,

X—C
then
)!l_rpc f(x)=L.

PROOF Lete > 0. Let p > 0 be such that
if 0<I|x—c|<p, then h(x) < f(x) < g(x).

Choose §; > 0 such that

if 0<|x—c|<éy, then L—e<h(X)<L+e.
Choose 8, > 0 such that

if 0<|x—c| <y, then L—e<g(X)<L+e
Let § = min{p, 81, 82}. For x satisfying 0 < |x — c| < 8, we have

L—e<hX)=<f(x)<g(x) <L+e,

and thus

[f(X)— Ll <e. O
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Remark  With straightforward modifications, the pinching theorem holds for one-
sided limits. We do not spell out the details here because throughout this section we
will be working with two-sided limits. 1

We come now to some trigonometric limits. All calculations are based on radian
measure.
As our first application of the pinching theorem, we prove that

(2.5.2) limsinx = 0.
x—0

prooF To follow the argument, see Figure 2.5.2.1
For small x # 0

0 < |sinx| = length of BP < length of AP < length of AP = |x|.
Thus, for such x

0 < |sinx| < [X].

0 B A
\ X ]
IXI 7
4\ isin x| X
B ‘A /
| 1 \
x>0 x<0 P
Figure 2.5.2
Since
lim0=0 and lim|x| =0,
x—0 x—0
we know from the pinching theorem that
lim|sinx] =0 and therefore limsinx =0. 1
x—0 x—0
From this it follows readily that
(2.5.3) limcosx = 1.
x—0

PrROOF In general, cos? x + sin?x = 1. For x close to 0, the cosine is positive and we

have
cosX = v/1 —sin®x.

As X tends to 0, sin x tends to 0, sin? X tends to 0, and therefore cos x tendsto 1.

fRecall that in a circle of radius 1, a central angle of x radians subtends an arc of length |x|.
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Next we show that the sine and cosine functions are everywhere continuous; which
is to say, for all real numbers c,

(2.5.4) lim sinx =sinc and lim cosx = cosc.

X—C X—C

PROOF Take any real number c. By (2.2.6) we can write
)!erlsinx as rI]i%n%sin(ch h).
This form of the limit suggests that we use the addition formula
sin(c +h) =sinc cosh + cosc sinh.
Since sin ¢ and cos ¢ are constants, we have
r!Ln}) sin(c + h) = (sin c)(r!iﬁm0 cosh) + (cos C)(r!iﬂ?) sinh)

= (sinc)(1) + (cosc)(0) = sinc.

The proof that lemc cosx = cosc is leftto you. [

The remaining trigonometric functions
sinx COS X

ta - > = -, X=— = —

sin X COS X sin X

are all continuous where defined. Justification? They are all quotients of continuous
functions.

We turn now to two limits, the importance of which will become clear in
Chapter 3:

(2.5.5) lim——=1 and lim — =0

Remark  These limits were investigated by numerical methods in Section 2.1, the
first in the text, the second in the exercises. [

prOOF We show that

sin
lim 20X
x—=>0 X y
by using some simple geometry and the pinching theorem. For any x satisfying O 1) Q
0 < x < /2 (see Figure 2.5.3), length of PB = sinx, length of OB = cos x, and .
length OA = 1. Since triangle OAQ is a right triangle, tan x = QA/1 = QA.
Now ! tan x
1 1 [ }
area of triangle OAP = >(1)sin x =  sin X X
1 1 ' l i
area of sector OAP = E(1)2x = 5X Ol cos x—| /‘* X
1
. 1 1 sin x |
area of triangle OAQ = 5(1) tan x = 2505 X" Figure 2.5.3
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Since triangle OAP C sector OAP C triangle OAQ (and these are all proper contain-
ments), we have

1. 1 1sinx
—SiNX < =X < ——
2 2 2 CoS X
X 1
_— < —
SiINX  COSX

sin X
COSX < ~ < 1.

This inequality was derived for x > 0, but since
sin(—x) _ —sinx _ sinx
-X =X X

€0s (—X) = cos X and

this inequality also holds for x < 0.
We can now apply the pinching theorem. Since

limcosx =1 and liml=1,
x—0 x—0
we can conclude that
sin X
lim —=1.
x—=0 X
Now let’s show that
. 1—cosx
lim——=0
x—0 X

For small x # 0, cos x is close to 1 and so cos x # —1. Therefore, we can write

1—cosx  (1—cosx) (1+cosx)’
X o X 1+ cos x

1 — cos?x

X(1 + cosx)

sin® x
X(1 + cosx)

B sin x sin x
O\ x 1+4cosx /)’

. sinx . sin x 0
lim— =1 and Iim —— = - =0,
x—0 X x—0 1 + COS X 2

Since

it follows that

. 1—cosx _
ImT:O. a

x—0

"This “trick” is a fairly common procedure with trigonometric expressions. Itis much like using “conjugates”
to revise algebraic expressions:

3 3 4-V2 34-V2
4442 4+V2 4-V2 1
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Remark The limit statements in (2.5.5) can be generalized as follows:

For each number a #£ 0

2.5.6 . sinax . 1-—cosax
( ) lim =1 lim — =0.
x—0 axX x—0 ax

Exercise 38.
We are now in a position to evaluate a variety of trigonometric limits.

sin 4x . 1—cos2x
and lim ————.
3X x—0 5x

Example 1 Find Iirrg)
X—

SOLUTION  To calculate the first limit, we “pair off” sin 4x with 4x and use (2.5.6):

sin 4x B 4 sin4x B 4 sin4x

3X 4  3X 3 4x

Therefore,
lim sin 4x —lim [i ' sin4x} _ 4 | sindx f(l) _ 4
x—0 3X x—>0[3  4x 3x—0 4x 3 3
The second limit can be obtained the same way:
fm 2 = fim S = S B = S0 =0.

Example 2 Find Iin?)x cot 3x.
X—>

SOLUTION  We begin by writing

cos3x 1 3x
X cot3X = X sin3x — 3 (sin3x> (cos 3x).
Since
sin 3x =1 gives lim 3 =1,
x—=0  3X x—0 Sin 3x

and Iing) cos 3x = cos 0 = 1, we see that
X—

. 1. 3x . 1 1
= == ==. O
lim x cot3x 3 Xll_lj?) (sinSx) Il_rg)(cos3x) 3(1)(1) 3

x—0 X

i _1
Example 3 Find lim M
X—>w/4 (X _ %7‘[)

sin(x — g7)  |sin(x — 37) 1
x—imy2
We know that

SOLUTION

95
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Since lim (x — 37) = 0, you can see by Theorem 2.3.10 that
X—m /4
. sin(x — 37) _
I|m4 —— 7 does not exist.
o (x = gm)
2
Example 4 Find lim ———.
x—0secx — 1
SOLUTION  The evaluation of this limit requires a little imagination. Since both the
numerator and denominator tend to zero as x tends to zero, it is not clear what happens
to the fraction. However, we can rewrite the fraction in a more amenable form by
multiplying both numerator and denominator by sec x + 1.
x2 X2 secx + 1
secx —1 secx —1 \secx +1
_ x®(secx +1)  x3(secx +1)
T osec2x —1  tan?x —1
_ x%cos?x(secx + 1)
B sin® x
= ( X )z(coszx)(secx +1)
~ \sinx '
Since each of these factors has a limit as x tends to 0, the fraction we began with has a
limit:
lim — X — lim ( X )2 lim cos?x - lim(secx + 1) = (L)) = 2.
x—0seCX —1 x—0\sinx/ x—0 x—0 N T
EXERCISES 2.5
Exercises 1-32. Evaluate the limits that exist. .1 —sec?2x .
. 19. lim ——. 20. lim .
. sin3x .2X x—0 X2 x—0 2X CSC X
L Im}J X 2 Ilrrz) sinx’ 2X% + X 1 — cos 4x
X— X— —
«in3x 21. lim ——=. 22. lim — ==,
3. lim — . 4, lim . x—>0  SINX Xx—0 X
x—0 Sin 5x x—0  2X i tan 3x o4 Tim x2(1 )
5. fim SN4X 6. lim SN 3 23 Im  Bx - lim x*(1 + cot” 3x).
e NG 25. lim X —1 26. lim L0
7. lim sinx ) 8. lim sInx "x—>0 XSecx " x—n/4 X
x—0 X x—0 X2 B . 9
; § 2.2 . sinx . sin® x
. sInX . sIn® X 27. lim ——. 28. lim ——.
9. le " 10. le VPR x—m/4 X x—0 X(1 — cosx)
_sin?3x _ tan?3x 29 lim S%5* 30 lim SM*
11. )!ER) 5y2 . 12. )!l_r)T(]) a2 . X—>7/2 X — %JT X—1 X — T
. . oosin(x+im)—1
13. lim . 14. lim . 4 - : 1o —x-1 1
oM tan 3x oM ot 3x 31. XETM X—%n - HINT: X + 7w =X — 37 + 57.
cosx —1
15. lim x csc x. 16. lim —————. i ir)—
x—0 x—0  2X 32. lim M
. x2 X2 —2x x=>7/6 X—§7
17 M o 18. hm 33. Show that lim cos x = cosc for all real numbers c.



Exercises 34-37. Evaluate the limit, taking a and b as nonzero
constants.

. sinax . 1—cosax
34. lim . 35. lim ————.
x—0 bX x—0 bx
. sinax cos ax
36. lim — . . .
x—0 Sin bx x—0 €0S bx

38. Show that
if Iim0 f(x)=1L, then IirrgJ f(ax) = L foreacha # 0.
X— X—>
HINT: Let € > 0. If §; > 0 “works” for the first limit, then
8§ = &1/]al “works” for the second limit.
Exercises 39-42. Evaluate rI\inz)[f(c +h) — f(c)]/h.
39. f(x) =sinx, ¢ = /4. HINT: Use the addition formula for
the sine function.
40. f(x) =cosx,c = /3.
41. f(x) = cos2x,c = 7 /6.
42, f(x) =sin3x,¢c =m/2.
43. Show that Iin%xsin(l/x) = 0. HINT: Use the pinching
X—
theorem.
44, Show that lim (x — ) cos?[1/(x — )] = 0.
X—>1m
45. Show that Iirnl |[x —1|sinx = 0.
X—
46. Let f be the Dirichlet function

F(x) = 1, x rational
10, xirrational.

Show that Iimoxf(x) =0.
X—
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47. Prove that if there is a number B such that | f (x)| < B for
all x # 0, then Iin?)xf (x) = 0. NOTE: Exercises 43-46 are
X—

special cases of this general result.

48. Prove that if there is a number B such that | f (x)/x| < B for
all x # 0, then Iirrg) f(x)=0.
X—

49. Prove that if there is a number B such that
[f(x) —L|/|x —c| < B forall x # c, then lim f(x) = L.
X—C

50. Given that lim f(x) = 0 and |g(x)| < B for all x in an in-
terval (c — p, ¢ + p), prove that

lim £ ()g(x) = 0.

[> Exercises 51-52. Use the limit utility in a CAS to evaluate the

limit.
_ 2
51, lim 20X — 1%
x—>0  sin2x
52. lim X
x—0 X
X
53. Use a graphing utility to plot f(x) = on[-0.2,0.2].
p> graphing utility to plot f(x) = ——on[ ]

Estimate Iimo f(x); use the zoom function if necessary.
X—

Verify your result analytically.
tan x

+ X
[-0.2,0.2]. Estimate Iing) f(x); use the zoom function if
X—

necessary. Verify your result analytically.

[>54.

Use a graphing utility to plot f(x) =

A function which is continuous on an interval does not “skip” any values, and thus its

graph is an “unbroken curve.” There are no “holes” in it and no “jumps.” This idea is y

expressed coherently by the intermediate-value theorem.

THEOREM 2.6.1

THE INTERMEDIATE-VALUE THEOREM

fb) = ————— /
K

f(a)*f/\ﬁ‘

|
If f is continuous on [a, b] and K is any number between f (a) and f (b), then a ¢

there is at least one number c in the interval (a, b) such that f(c) = K.

We illustrate the theorem in Figure 2.6.1. What can happen in the discontinuous y
case is illustrated in Figure 2.6.2. There the number K has been “skipped.”
It’s a small step from the intermediate-value theorem to the following observation:

““continuous functions map intervals onto intervals.”

A proof of the intermediate-value theorem is given in Appendix B. We will assume

the result and illustrate its usefulness. Figure 2.6.2
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y = tan x

Figure 2.6.4

Here we apply the theorem to the problem of locating the zeros of a function. In
particular, suppose that the function f is continuous on [a, b] and that either

f@<0<f() or f(b)<0<f(a) (Figure 2.6.3)

Then, by the intermediate-value theorem, we know that the equation f(x) = 0 has at
least one root between a and b.

Figure 2.6.3

Example 1T Weset f(x) = x? —2.Since f(1) = —1 < 0and f(2) =2 > 0, there
exists a number ¢ between 1 and 2 such that f(c) = 0. Since f increases on [1, 2], there
is only one such number. This is the number we call /2.

So far we have shown only that +/2 lies between 1 and 2. We can locate /2 more
precisely by evaluating f at 1.5, the midpoint of the interval [1, 2]. Since f(1.5) =
0.25 > 0and f (1) < 0, we know that +/2 lies between 1 and 1.5. We now evaluate f at
1.25, the midpoint of [1, 1.5]. Since f(1.25) = —0.438 < O and f(1.5) > 0, we know
that +/2 lies between 1.25 and 1.5. Our next step is to evaluate f at 1.375, the midpoint
of [1.25, 1.5]. Since f(1.375) = —0.109 < 0 and f(1.5) > 0, we know that +/2 lies
between 1.375 and 1.5. We now evaluate f at 1.4375, the midpoint of [1.375, 1.5].
Since f(1.4375) = 0.066 > 0 and f(1.375) < 0, we know that /2 lies between 1.375
and 1.4375. The average of these two numbers, rounded off to two decimal places, is
1.41. A calculator gives v/2 = 1.4142. So we are not far off.

The method used in Example 1 is called the bisection method. It can be used to
locate the roots of a wide variety of equations. The more bisections we carry out, the
more accuracy we obtain.

As you will see in the exercise section, the intermediate-value theorem gives us
results that are otherwise elusive, but, as our next example makes clear, the theorem
has to be applied with some care.

Example 2 The function f(x) = 2/x takes on the value —2 at x = —1 and it takes
on the value 2 at x = 1. Certainly 0 lies between —2 and 2. Does it follow that f takes
on the value 0 somewhere between —1 and 1? No: the function is not continuous on
[—1, 1], and therefore it can and does skip the number 0.

Boundedness; Extreme Values

A function f is said to be bounded or unbounded on a set | in the sense in which the
set of values taken on by f on the set | is bounded or unbounded.
For example, the sine and cosine functions are bounded on (—oo, c0):

—l<sinx<l1 and —1l<cosx <1 forall x € (—o0, 00).

Both functions map (—oo, co) onto [—1, 1].
The situation is markedly different in the case of the tangent. (See Figure 2.6.4.)
The tangent function is bounded on [0, = /4]; on [0, 7/2) it is bounded below but
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not bounded above; on (—m/2, 0] it is bounded above but not bounded below; on y
(—=m/2, /2) it is unbounded both below and above.

Example 3 Let

1/x2 x>0 1
a6 = { %
0, x=0. (Figure 2.6.5) e g
Itis clear that g isunbounded on [0, c0). (It is unbounded above.) However, it is bounded 1 2 3 X

on [1, co). The function maps [0, co) onto [0, co), and it maps [1, oo) onto (0, 1]. 1
Figure 2.6.5
A function may take on a maximum value; it may take on a minimum value; it may
take on both a maximum value and a minimum value; it may take on neither.
Here are some simple examples:

F(x) = 1, X rational
—]0, X irrational

takes on both a maximum value (the number 1) and a minimum value (the number 0)
on every interval of the real line.
The function

fx)=x* xe(0,5]

takes on a maximum value (the number 25), but it has no minimum value.
The function

f(x):%, X € (0, o)

has no maximum value and no minimum value.

For a function continuous on a bounded closed interval, the existence of both a
maximum value and a minimum value is guaranteed. The following theorem is funda-
mental.

THEOREM 2.6.2 THE EXTREME-VALUE THEOREM

If f is continuous on a bounded closed interval [a, b], then on that interval f
takes on both a maximum value M and a minimum value m.

For obvious reasons, M and m are called the extreme values of the function.
The result is illustrated in Figure 2.6.6. The maximum value M is taken on at the
point marked d, and the minimum value m is taken on at the point marked c.

[ A
ob———

Figure 2.6.6

In Theorem 2.6.2, the full hypothesis is needed. If the interval is not bounded, the
result need not hold: the cubing function f(x) = x3 has no maximum on the interval
[0, 00). If the interval is not closed, the result need not hold: the identity function
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y f (x) = x has no maximum and no minimum on (0, 2). If the function is not continuous,
5+ the result need not hold. As an example, take the function
n f 3, x=1
3L e ° f(x)=1x, l<x<5
3, X = 5.

The graph is shown in Figure 2.6.7. The function is defined on [1, 5], but it takes on
neither a maximum value nor a minimum value. The function maps the closed interval
[1, 5] onto the open interval (1, 5).

One final observation. From the intermediate-value theorem we know that

*“continuous functions map intervals onto intervals.”

Now that we have the extreme-value theorem, we know that

f: [a, b] = [m, M]

we devote Chapter 3.
Figure 2.6.8

EXERCISES 2.6

*““continuous functions map bounded closed intervals [a, b] onto bounded closed
intervals [m, M].”” (See Figure 2.6.8.)

Of course, if f is constant, then M = m and the interval [m, M] collapses to a point.
A proof of the extreme-value theorem is given in Appendix B. Techniques for

determining the maximum and minimum values of functions are developed in Chapter

4. These techniques require an understanding of “differentiation,” the subject to which

Exercises 1-8. Use the intermediate-value theorem to show that
there is a solution of the given equation in the indicated interval.

[EnN

© 00O N O O B~ WwN

10.

11.

12.

C2x3 —4x24+5x —4=0; [1,2].
xP—x—-1=0; [-1,1].
.sinx +2cosx —x>=0; [0,7/2].
2tanx —x =1; [0, m/4].

1 . 1
X224 =0 [1.1]
XB xR =1, [-1,1].
xE=UX+2 [1,2]
VXT—3x—-2=0; [3,5].

. Let f(x) = x5 — 2x? 4 5x. Show that there is a number ¢

such that f(c) = 1.

1 1
Let f(x) = - + 7 Show that there is a number
¢ € (1, 4) such that f(c) = 0.

Show that the equation x® — 4x + 2 = 0 has three distinct
roots in [—3, 3] and locate the roots between consecutive
integers.

Use the intermediate-value theorem to prove that there exists
a positive number ¢ such that ¢ = 2.

Exercises 13-24. Sketch the graph of a function f that is defined
on [0, 1] and meets the given conditions (if possible).

13.

14,

15.

16.

17.

18.

19.
20.

21.
22.
23.

f is continuous on [0, 1], minimum value 0, maximum
value 3.

f is continuous on [0, 1), minimum value 0, no maximum
value.

f is continuous on (0, 1), takes on the values 0 and 1, but
does not take on the value 3.

f is continuous on [0, 1], takes on the values —1 and 1, but
does not take on the value 0.

f is continuous on [0, 1], maximum value 1, minimum
value 1.

f is continuous on [0, 1] and nonconstant, takes on no integer
values.

f is continuous on [0, 1], takes on no rational values.

f is not continuous on [0, 1], takes on both a maximum value
and a minimum value and every value in between.

f is continuous on (0, 1), takes on only two distinct values.
f is continuous on (0, 1), takes on only three distinct values.

f is continuous on (0, 1), and the range of f is an unbounded
interval.



24.

25.

26.

27.

28.

29.

30.

3L

f is continuous on [0, 1], and the range of f is an unbounded
interval.

(Fixed-point property) Show that if f is continuous on
[0, 1] and 0 < f(x) < 1 for all x € [0, 1], then there ex-
ists at least one point ¢ in [0, 1] at which f(c) =c.
HINT: Apply the intermediate-value theorem to the function
g(x) =x — f(x).

Given that f and g are continuous on [a, b], that f(a) <
g(a), and g(b) < f(b), show that there exists at least one
number c in (a, b) such that f(c) = g(c). HINT: Consider
f(x) — g(x).

From Exercise 25 we know that if f is continuous on
[0, 1] and 0 < f(x) < 1 for all x € [0, 1], then the graph
of f intersects the diagonal of the unit square that joins the
vertices (0, 0) and (1, 1). (See the figure.) Show that under
these conditions

(a) the graph of f also intersects the other diagonal of the
unit square

(b) and, more generally, if g is continuous on [0, 1] with
g(0) =0and g(1) =1, or with g(0) = 1 and g(1) = 0,
then the graph of f intersects the graph of g.

Use the intermediate-value theorem to prove that every real

number has a cube root. That is, prove that for any real num-

ber a there exists a number ¢ such that ¢® = a.

The intermediate-value theorem can be used to prove that
each polynomial equation of odd degree
X" +an X" T+ +ax+ag=0 withnodd
has at least one real root. Show that the cubic equation
> +ax? +bx +c=0

has at least one real root.

Let n be a positive integer.

(@) Provethatif0 <a <b,thena” <b".
HINT: Use mathematical induction.

(b) Prove that every nonnegative real number x has a unique
nonnegative nth root x/",
HINT: The existence of x'/" can be seen by applying the
intermediate-value theorem to the function f (t) = t" for
t > 0. The uniqueness follows from part (a).

The temperature T (in °C) at which water boils depends on

the elevation above sea level. The formula

T(h) = 100.862 — 0.0415v/h + 431.03

32.

33.

34.

35.
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gives the approximate value of T as a function of the el-
evation h measured in meters. Use the intermediate-value
theorem to show that water boils at about 98°C at an eleva-
tion of between 4000 and 4500 meters.

Assume that at any given instant, the temperature on the
earth’s surface varies continuously with position. Prove that
there is at least one pair of points diametrically opposite
each other on the equator where the temperature is the same.
HINT: Form a function that relates the temperature at dia-
metrically opposite points of the equator.

Let C denote the set of all circles with radius less than or
equal to 10 inches. Prove that there is at least one member
of C with an area of exactly 250 square inches.

Fix a positive number P. Let R denote the set of all rect-
angles with perimeter P. Prove that there is a member of
‘R that has maximum area. What are the dimensions of the
rectangle of maximum area? HINT: Express the area of an
arbitrary element of R as a function of the length of one of
the sides.

Given a circle C of radius R. Let F denote the set of all
rectangles that can be inscribed in C. Prove that there is a
member of F that has maximum area.

[> Exercises 36-39. Use the intermediate-value theorem to esti-

mate the location of the zeros of the function. Then use a graph-
ing utility to approximate these zeros to within 0.001.

36.
37.
38.
39.

[> Exercises 40-43. Determine whether the function f satisfies the

f(x) =2x3 +4x — 4.
f(x) =x%—5x +3.
f(x) =x>—3x +1.

H 1
f(x) =x3—2sinx + 3.

hypothesis of the intermediate-value theorem on the interval
[a, b]. If it does, use a graphing utility or a CAS to find a number
cin(a, b) such that f(c) = %[f(a) + f()].

40.

41.

42.
43.

X+1

f(X) - XZ—H, [—2, 3]
4x + 3
f(X) = m, [—3, 2]
f(x) =secx; [—m,27].
f(x) =sinx —3cos2x; [n/2,2r]

QExercises 44-47. Use a graphing utility to graph f on the given

interval. Is f bounded? Does it have extreme values? If so, what
are these extreme values?

X3 —8x+6
44, f(x) = = X T, .
x) Xl [0, 5]
2X
in2
46. f(x) = S':‘(zx; [—7/2,7/2].
47, f(x) = 22905X Lo g

x2
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B PROJECT 2.6 The Bisection Method for Finding the Roots of f(x) =0

If the function f is continuous on [a, b], and if f(a) and f(b)
have opposite signs, then, by the intermediate-value theorem, the
equation f(x) = 0 has at least one root in (a, b). For simplicity,
let’s assume that there is only one such root and call it c. How can
we estimate the location of c? The intermediate-value theorem
itself gives us no clue. The simplest method for approximating c
is called the bisection method. It is an iterative process—a basic
step is iterated (carried out repeatedly) until ¢ is approximated
with as much accuracy as we wish.

Itis standard practice to label the elements of successive ap-
proximations by using subscripts n = 1, 2, 3, and so forth. We
begin by setting u; = a and v; = b. Now bisect [ug, v1]. If c is
the midpoint of [uy, v1], then we are done. If not, then c lies in

of [uz, v2], then we are done. If not, then c lies in one of the
halves of [uy, vo]. Call that half [us, v3] and continue. The first
three iterations for a particular function are shown in the figure.

After n bisections, we are examining the midpoint m, of
the interval [uy, vn]. Therefore, we can be certain that

Vn-1—Un-1) _b_a
2 n

1

1
|C_mn|S§(Vn_Un)=§<

Thus, m,, approximates ¢ to within (b — a)/2". If we want m,, to
approximate ¢ to within a given number ¢, then we must carry
out the iteration to the point where

one of the halves of [uy, v1]. Call it [uy, v-]. If ¢ is the midpoint b-a <ec.
2n
y y y
/\ | ?/\ | A |
a=u my b=v; X m, b=v, X us mb X

Problem 1. In Example 1 we used the function f (x) = x? — 2
and the bisection method to obtain an estimate of +/2 accurate
to within two decimal places.

(a) Suppose we want a numerical estimate accurate to within
0.001. How many iterations would be required to achieve
this accuracy?

(b) How many iterations would be required to obtain a numeri-
cal estimate accurate to within 0.0001? 0.00001?

Problem 2. The function f(x) = x® 4+ x — 9 has one zero c.
Locate c between two consecutive integers.

(a) How many iterations of the bisection method would be re-
quired to approximate ¢ to within 0.01? Use the bisection
method to approximate c to within 0.01.

(b) How many iterations would be required to approximate c to
within 0.001? 0.0001?

Problem 3. The function f(x) =sinx + x + 3 has one zero
c. Locate ¢ between two consecutive integers.

(a) How many iterations of the bisection method would be re-
quired to approximate ¢ to within 0.01? Use the bisection
method to approximate c to within 0.01.

(b) How many iterations would be required to approximate c to
within 0.00001? 0.000001?

The following modification of the bisection method is some-
times used. Suppose that the function f, continuous on [a, b],
has exactly one zero c in the interval (a, b). The line connecting
(a, f(a))and (b, f(b))isdrawn and the x- intercept is used as the
first approximation for c instead of the midpoint of the interval.
The process of bisection is then applied and continued until the
desired degree of accuracy is obtained.

Problem 4. Carry out three iterations of the modified bisection
method for the functions given in Problems 1, 2, and 3. How does
this method compare with the bisection method in terms of the
rate at which the approximations converge to the zero c?
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Exercises 1-30. State whether the limit exists; evaluate the limit
if it does exist.

. x2-3 ) X2+ 4
1. lim 2. lim —.
x—3 X 4+ 3 x—2 X2 4+ 2x +1
_ 2y 2 _
3.1 (x 3). 4, imxig.
x—=3 X +3 x—>3 X2 —5Xx 4+ 6
o x=2 . X]
5. lim . 6. lim .
Xx—21 |X - 2| Xx—>—2X —2
. 1 1-—x . A/Xx=3
7. lim| - — . 8. lim .
x—0 \ X X x—3+ |X — 3|
_ 3 _
o tim X =1 10, lim =1
x—1 X x—1|x3 — 1|
-1 2_92x—3
11, 1im YX =1, 12, 1im X=X =0
x—»1 X —1 x—3+ /X —3
- 2_ - - -
13 lim YX =23 14, lim YX+5-3
x—3+ X—3 x—4 X —4
x3—8 5X
15. lim —. 16. lim — .
x—2 X4 —3x2 -4 x—0 Sin 2X
. tan?2x )
17. lim 18. lim x csc 4x.
x—0 3X2 Xx—0
2_3
19, lim = —>X 20. lim 22X
x—0 tanx X—1/2 2K — T
sin 3x 5x2
21. lim ————. 22. lim ———.
x—0 5X2 — 4x x—0 1 — €0s 2X
2
—4
23 lim X7 24, lim X =2
x—-m SinX x—2 X3 —8
25, tim 272 26. lim L= 2/% |
x—2- |x2 — 4| x—21—4/x2
2 _ 2
27, tim X% +2 28, lim ==/
x—1t X =1 x—3 1+ 3X
. . XxX+1, x<1
29.XILrp2f(x) |ff(x)_:3X_X2’ K- 1

3+X, X< =2
30. lim f(x) if f(x) = 5, x=-2.
X==2 X2 -3, X>-2

31. Let f be some function for which you know only that
if 0<|x—2] <1, then |f(x)—4|<0.1

Which of the following statements are necessarily true?
@ If 0<|x—2]<1, then |f(x)—4|=<0.1L
(b) If 0<|x—2] <3, then |f(x)—4|<0.05.
() If 0<|x—25/<0.2, then |f(x)—4]<0.1
(dIf 0<|x—15 <1, then |f(x)—4|<O0.1L
(e) If )!Lmz f(x)=L, then 39<L <41

2x? —3ax+x—a—1

32. Find a number a for which lim ex-
x—3 X2 —2x —3

ists and then evaluate the limit.

33. (a) Sketch the graph of

3x + 4, Xx < -1
—2X — 2, —l<x<?2
f(x) = 2X, X > 2
x?2 X=-1,2

’

(b) Evaluate the limits that exist.
@) lim f(x).
X——1-
(i) lim f(x).
X——1t
(i) im  f(x).
x——1
(iv) lim f(x).
X—2~
(v) lim f(x).
X—2+
(vi)lim f(x).
X—2
(c) (i) Isf continuous from the left at —1? Is f continuous
from the right at —1?

(ii) Is f continuous from the left at 2? Is f continuous
from the right at 2?

. COS X . . .
34. (a) Does Img) cos <T> exist? If so, what is the limit?
X—

. sin x . . o
(b) Does |ITTE] cos (%) exist? If so, what is the limit?
X—

2X2—1, x<2
35. Set f(x) = A, x =2 Forwhatvaluesof Aand
x3 —2BX, X > 2.
B is f continuous at 2?

36. Give necessary and sufficient conditions on A and B for the

function
Ax + B, X < -1
f(x) = 2X, —-1<x=x<2
2Bx — A, 2 <X
to be continuous at x = —1 but discontinuous at x = 2.

Exercises 37-40. The function f is continuous everywhere ex-
ceptata. If possible, define f ata so that it becomes continuous
ata.

x3—2x — 15
37 f(x)= — "2 a—_3
() X+3 7
UXF1-2
38, f(x) = % a=3

39.f(x)=s'”X”X, a=0.

40, f(x) = L2 C08% XCZOSX
41. A function f is defined on the interval [a, b]. Which of the
following statements are necessarily true?
(@) If f(a) > 0and f(b) < 0, then there must exist at least
one number c in (a, b) for which f(c) = 0.

, a=0~0.
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(b) If fiscontinuouson [a, b]with f(a) < Oand f(b) > 0,
then there must exist at least one number c in (a, b) for
which f(c) =0.

(c) If fiscontinuouson (a, b) with f(a) > Oand f(b) < 0,
then there must exist at least one number c in (a, b), for
which f(c) = 0.

(d) If f is continuous on [a, b] with f(c) =0 for some
number c in (a, b), then f(a) and f(b) have opposite
signs.

Exercises 42-43. Use the intermediate-value theorem to show
that the equation has a solution in the interval specified.

42.x3 —-3x —4=0, [2,3].

43.2cosx —x +1, [1,2].

Exercises 44-46. Give an ¢, § proof for each statement.
44, Iimz(5x —4)=6.
X—

45. lim |2x + 5| = 3.
X——4

46.
47.
48.

49,

50.

Iirng VX —=5=2.

X—

Prove that if Iirr?)[f(x)/x] exists, then Iinz) f(x)=0.
X— X—

Prove that if lim g(x) =1 and if f is continuous at I, then
X—C

lim f(g(x)) = f(I). HINT: See Theorem 2.4.4.

X—C

A function f is continuous at all x > 0. Can f take on the

value zero at and only

(a) at the positive integers?

(b) at the reciprocals of the positive integers?

If the answer is yes, sketch a figure that supports your answer;

if the answer is no, prove it.

Two functions f and g are everywhere defined. Can they

both be everywhere continuous

(a) if they differ only at a finite number of points?

(b) if they differ only on a bounded closed interval [a, b]?

(c) if they differ only on a bounded open interval (a, b)?
Justify your answers.



CHAPTER

M 3.1 THE DERIVATIVE

Introduction

We begin with a function f. On the graph of f we choose a point (x, f(x))and a nearby
point (x + h, f(x + h)). (See Figure 3.1.1.) Through these two points we draw a line.
We call this line a secant line because it cuts through the graph of f.! The figure shows
this secant line first with h > 0 and then with h < 0.

7/
secant line x, f(x‘)%_\(‘x +h, f(x+h))

(x+h, f(x+h))

h>0
h>0

Figure 3.1.1

Whether h is positive or negative, the slope of the secant line is the difference quotient

f(x +h) — f(x)
h .

(Check this out.)

T The word “secant” comes from the Latin “secare,” to cut.

105
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Figure 3.1.2

If we let h tend to zero (from one side or the other), then ideally the point
(x + h, f(x + h)) slides along the curve toward (x, f(x)), x + h tends to x, f(x + h)
tends to f(x), and the slope of the secant

*) f(x+hg— f(x)

tends to a limit that we denote by f’(x). While (x) represents the slope of the approach-
ing secant, the number f’(x) represents the slope of the graph at the point (x, f(x)).
What we call “differential calculus” is the implementation of this idea.

Derivatives and Differentiation

DEFINITION 3.1.1
A function f is said to be differentiable at x if

lim f(x+h)— f(x)
h—0 h

If this limit exists, it is called the derivative of fat x and is denoted by f’(x).

exists.

As indicated in the introduction, the derivative

f(x+h)— f(x)

h
represents slope of the graph of f at the point (x, f(x)). The line that passes through
the point (x, f(x)) with slope f’(x) is called the tangent line at the point (x, f(x)).
(This line is marked by dashes in Figure 3.1.1.)

e = Jin

Example 1 We begin with a linear function
fx)=mx+b.

The graph of this function is the line y = mx + b, a line with constant slope m. We
therefore expect f’(x) to be constantly m. Indeed it is: for h # 0,

f(x+h)—f(x) _ [m(x+h)+b]—[mx+b] mh

h h h ™
and therefore
f h) — f
Fx) = lim TN =T e o
h—0 h h—0
Example 2 Now we look at the squaring function
f(x) = x2. (Figure 3.1.2)

To find f’(x), we form the difference quotient

f(x +h)— f(x) (x+h)>—x?
h N h

This prime notation goes back to the French mathematician Joseph-Louis Lagrange (1736-1813). Other
notations are introduced later.



and take the limit as h — 0. Since
(x4+h?2—x2  (x24+2xh+h?) —x?  2xh+h?
h - h - h

=2X+h,

we have
f(x+h)— f(x)

— 2% +h.
h X+

Therefore

f(x+h)— f(x)
h

The slope of the graph changes with x. For x < 0, the slope is negative and the

curve tends down; at x = 0, the slope is 0 and the tangent line is horizontal; for x > 0,
the slope is positive and the curve tends up. [

f(x):ALrg =r!|_r310(2x+h)=2x.

Example 3 Here we look for f’(x) for the square-root function

f(xX) = VX, x > 0. (Figure 3.1.3)

Since f’(x) is a two-sided limit, we can expect a derivative at most for x > 0.
We take x > 0 and form the difference quotient

f(x+h)— f(x) x+h—Jx
h N h ’
We simplify this expression by multiplying both numerator and denominator by

/X +h + /X. This gives us
fcHh) = F(x) _ <«/x+ —ﬁ) (N/’x+h'+ﬁ>

h h VXF R+ X
o (x+h)y=-x 1
T h(WXFh+X) X Fh+ X

It follows that

£(x) = lim f(x+h)—f(x) im 1 1
N h The0 X +HhA4 X 2%

At each point of the graph to the right of the origin the slope is positive. As x increases,
the slope diminishes and the graph flattens out. [

The derivative f’ is a function, its value at x being f’(x). However, this function
f’ is defined only at those numbers x where f is differentiable. As you just saw in
Example 3, while the square-root function is defined on [0, oo), its derivative f’ is
defined only on (0, c0):

f(x) = /X forall x > 0; f'(x) = only for x > 0.

1
2./X
To differentiate a function f is to find its derivative f’.

Example 4 Let’s differentiate the reciprocal function
1
)= ; (Figure 3.1.4)
We begin by forming the difference quotient
1 1
P+ - f09 _ xh  x
h h )
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x
&6‘\%6“
%

)
Qo

(x, \x)

square-root function

Figure 3.1.3

1
slope — —
XZ

tangent

1
y=x

Figure 3.1.4
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Now we simplify:

1 1 X X +h —h
x+h x _ x(x+h) x(x+h) x(x+h) = -1
h - h ~ h ~ x(x+h)’
It follows that
oy o T+ —f(x) -1 1
i) = Jim h =lm x(x+h)  x2

The graph of the function consists of two curves. On each curve the slope, —1/x?,
is negative: large negative for x close to 0 (each curve steepens as x approaches 0 and
tends toward the vertical) and small negative for x far from 0 (each curve flattens out
as x moves away from 0 and tends toward the horizontal). T

Evaluating Derivatives

Example 5 We take f(x) = 1 — x? and calculate f'(—2).
We can first find f’(x):

f(x +h) — f(x)

f'(x) = lim K
1— (X +h)] —[1—x? _2xh — h?
TP e L) el e T — lim(—2x — h) = —2x
h—0 h h—0 h h—0

and then substitute —2 for x:

f'(—=2) = —2(-2) = 4.
We can also evaluate f’(—2) directly:
f(=2+h)— f(-2)

(-2 = lim K
1— (=2 +hy2]— [1— (~2)? 4h — h?
T €l G ) e el ) T —lim(4—hy=4. 0
h—0 h h—0 h h—0

Example 6 Let’sfind f'(—3) and f’(1) given that

X2, x <1

) = {2x—1, x > 1.
By definition,

f(=34h) — f(—3)
- .

For all x sufficiently close to —3, f(x) = x2. Thus

7'(=3) = lim

, o (—3+h)2—(—3)2_. (9—6h+h2)—9_. _
F = fim = iy = fim s e =6
Now let’s find

vy i T(L+h)— f(1)

) = fim ==

Since f is not defined by the same formula on both sides of 1, we will evaluate this
limit by taking one-sided limits. Note that f (1) = 1% = 1.
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To the left of 1, f(x) = x2. Thus

_ 2 _
lim f(L+h)— f(2) — 1im 1+h) 1
h—0- h h—0- h

 (1+2h+h) -1

= hI_|)n37(2 +h)=2.

To the right of 1, f(x) = 2x — 1. Thus

fim ~EEW = T@, PAFN ==L

h—0+ h h—0+ h h—0+
The limit of the difference quotient exists and is 2:
f(l+h)— (1)
— =

f'(1) = m?) 2. 1
Tangent Lines

If f is differentiable at c, the line that passes through the point (c, f(c)) with slope
f’(c) is the tangent line at that point. As an equation for this line we can write

@3.1.2) y — f(c) = f'(c)(x —¢). (point-slope form)

This is the line through (c, f(c)) that best approximates the graph of f near the point
(c, f(c)).

Example 7 We go back to the square-root function

f(x) = vx

and write an equation for the tangent line at the point (4, 2).
As we showed in Example 3, forx > 0
1
f'(X) = ——=.

=57

Thus f'(4) = ;11 The equation for the tangent line at the point (4, 2) can be written
y—2=3(x—-4). U
Example 8 We differentiate the function
f(x) = x® — 12x

and seek the points of the graph where the tangent line is horizontal. Then we write an
equation for the tangent line at the point of the graph where x = 3.
First we calculate the difference quotient:

f(x +h)— f(x)  [(x+h)®—12(x +h)] — [x* — 12x]
h - h
_ x3+4+3x%h 4 3xh? + h® — 12x — 12h — x3 4 12x
- h

2h +3xh%2 +h3 — 12h
_ +Xh+ = 3x% 4+ 3xh + h? — 12.

109
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(-2, 16)
| | /
-2 2 X
/(x) =x3-12x
(2, -16)
Figure 3.1.5

yV
X
% " .

Figure 3.1.6

no derivative at O

Figure 3.1.7

Now we take the limitas h — 0:
f(x+h)— f(x)

T i 2 2 _ay2 _
f(x)_r!l_rpO - _r!'_%(?’x + 3xh +h* —12) = 3x“ — 12.

The function has a horizontal tangent at the points (x, f(x)) where f’(x) = 0. In
this case

f'(x)=0 iff 3x?>-12=0 iff x==+2.
The graph has a horizontal tangent at the points
(=2, f(=2)) = (-2, 16) and 2, 1(2)) = (2, —16).
The graph of f and the horizontal tangents are shown in Figure 3.1.5.

The point on the graph where x = 3 is the point (3, f(3)) = (3, —9). The slope at
this pointis f/(3) = 15, and the equation of the tangent line at this point can be written
y+9=15(x —3). O

A Note on Vertical Tangents

The cube-root function
f(x) =x¥3
is everywhere continuous, but as we show below, it is not differentiable at x = 0. The
difference quotient at x = 0,
f(O+h)—f(0) h? -0 1

h h h2/3’
increases without bound as h — 0. In the notation established in Section 2.1,
f(0+h)— f(0)
—n =

ash — 0,

Thus f is not differentiable at x = 0.
The behavior of f at x = 0 is depicted in Figure 3.1.6. For reasons geometrically
evident, we say that the graph of f has a vertical tangent at the origin.

Differentiability and Continuity

A function can be continuous at a number x without being differentiable there. Viewed
geometrically, this can happen for only one of two reasons: either the tangent line at
(x, f(x)) is vertical (you just saw an example of this), or there is no tangent line at
(x, f(x)). The lack of a tangent line at a point of continuity is illustrated below.

The graph of the absolute value function

f(x) = Ix|

is shown in Figure 3.1.7. The function is continuous at O (it is continuous everywhere),
but it is not differentiable at O:

f(O+h)—f(0)_|O+h|—|O|_M_ -1, h<O0
h - h “h 1, h>0
so that
im fOED O O+ - 1O
h—0- h h—0+ h
and thus

i FO+0) — 1(0)

does not exist.
h—0 h

T Vertical tangents will be considered in detail in Section 4.7.



The lack of differentiability at O is evident geometrically. At x = 0 the graph
changes direction abruptly and there is no tangent line.
Another example of this sort of behavior is offered by the function

X2, x <1

%X + %, x> 1 (Figure 3.1.8)

f(x) = {
As you can check, the function is everywhere continuous, but at the point (1, 1) the
graph has an abrupt change of direction. The calculation below confirms that f is not
differentiable at x = 1:

fl+h) - f1 1+h2—1 h2 + 2h
T Gl Rl O TR C )l S T BTN S
h—0- h h—0— h h—0- h—0-
f@+h)-f@Q) 3@+ +3-1 /1) 1
dp Sy =i =i () =5

Since these one-sided limits are different,

i FAD) — £(2)

does not exist.
h—0 h

For our last example,

f(x) = [x® — 6x2 + 8x| + 3, (Figure 3.1.9)

we used a graphing utility.” So doing, itappeared that f is differentiable except, possibly,
atx =0, at x = 2, and at x = 4. There abrupt changes in direction seem to occur. By
zooming in near the point (2, f(2)), we confirmed that the left-hand limits and right-
hand limits of the difference quotient both exist at x = 2 but are not equal. See Figure
3.1.10. A similar situation was seen at x = 0 and x = 4. From the look of it, f fails to
be differentiable at x = 0, at x = 2, and at x = 4.

Although not every continuous function is differentiable, every differentiable func-
tion is continuous.

THEOREM 3.1.3

If f is differentiable at x, then f is continuous at x.

pROOF For h = 0 and x + h in the domain of f,

f(x+h)— f(x)'

f(x+h)— f(x)= o

h.

With f differentiable at x,

f h) — f
i (x + g ) _ o,

Since lim h = 0, we have
h—0

lim [ (x+h) — ()] = [m f(x+hg_ f(x)] : [r!iinoh} — f/(x)-0=0.

T 1t wasn’t necessary to use a graphing utility here, but we figured that the use of it might make for a pleasant
change of pace

3.1 THEDERIVATIVE m 111

y

|
1 X

no derivative at 1

Figure 3.1.8

L
A
>
A
o
o
A
<

A
~
o

Figure 3.1.9

1.997 <x<2.003, 2.996 <y <3.006

Figure 3.1.10
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It follows that

lim f h)=f
h'ﬂ% (x+h) (), (2.2.6)

and thus f is continuous at x. [

EXERCISES 3.1

Exercises 1-10. Differentiate the function by forming the dif-
ference quotient

f(x+h)— f(x)

h
and taking the limit as h tends to 0.
1. f(x)=2—3x. 2. f(x) =k, k constant.
3. f(x) =5x — x2. 4, f(x) =2x3+ 1.
5. f(x) = x*. 6. f(x)=1/(x +3).
7. f(x) =X -1 8. f(x) =x3—4x.
9. f(x) =1/x2 10. f(x) = 1/VX.

Exercises 11-16. Find f’(c) by forming the difference quotient
f(c+h)— f(c)
h
and taking the limitash — 0.
11, f(X) =x? —4x; ¢ =3.
13. fx)=2x3+1,c=1

12. f(x)=7x —x%, ¢ =2

14. f(x)=5—-x* c=—1.
8

it c=-2. 16. f(x)=+6—-x;c=2.

Exercises 17-20. Write an equation for the tangent line at

(c, £(c)).

17. f(x) =5x —x%, c=4. 18 f(X)=/X; c=4.

19. f(x) =1/x% ¢ = —2. 20. f(x)=5—-x% c=2.

21. The graph of f is shown below.

15. f(x) =

y

(a) At which numbers c is f discontinuous? Which of the
discontinuities is removable?

(b) At which numbers c is f continuous but not differen-
tiable?

22. Exercise 21 for the function f graphed below.

y
ol
L f
\ \ \ \
2 -1 1 2 3 4\ X

Exercises 23-28. Draw the graph of f; indicate where f is not
differentiable.

23. f(x) = [x + 1.
25. f(x) = v/IX.

27.f(x):{2 X%, x<1 28.f(x):{x2

—X, x>1

24, f(x) =|2x — 5.
26. f(x) =|x% —4|.

-1, x<2
3, X>2.

Exercises 29-32. Find f’(c) if it exists.

4x, x <1
29.f00=1,0.5 yop ©=L

3%, x<1
0.0 =}os11 x>, ©°=1

. x+1, x=<-1 _
31. f(x) = X+1)2 x> —1; c=-1.
_1y2

2. 1) =1 2 zig c=3.

Exercises 33—-38. Sketch the graph of the derivative of the func-
tion indicated.

33.

(2,-2)




34.
y
2 \
2\ X
35.
y
2, 2)
X
(=2,-2)
36.
y
X
-2
37.
y
I S ——
X
-1
38.
y
(-2, 2) (2, 2)
X

39. Show that

X2, x<1
f(X)ZIZX, X>1

is not differentiable at x = 1.
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40. Set
_(x+1? x<o0
F(x) = {(x —1)2, x>0
(a) Determine f’(x) for x # 0.
(b) Show that f is not differentiable at x = 0.
41. Find A and B given that the function
x3, x<1
f(x)z{Ax+B, X > 1.
is differentiable at x = 1.
42. Find A and B given that the function
x2 -2, x<2
f()():{Bx24—Ax, X > 2
is differentiable at x = 2.

Exercises 43-48. Give an example of a function f that is defined
for all real numbers and satisfies the given conditions.

43. f/(x) = 0 for all real x.

44, f/(x) = 0 forall x # 0; f/(0) does not exist.

45, f/(x) exists for all x £ —1; f’(—1) does not exist.

46. f/(x) exists for all x = +1; neither (1) nor f’(—1) exists.
47. f'(1) =2and f(1) = 7.

48. f/(x) = 1forx < Oand f’(x) = —1forx > 0.

X2 —x, x<2
2X —2, X > 2.

(a) Show that f is continuous at 2.
(b) Is f differentiable at 2?

50. Let f(x) = x4/X, x > 0. Calculate f’(x) for each x > 0.

49. Set f(x) = {

1-x%, x<0
51. Set f(x) = { X2 x> 0.
(@) Is f differentiable at 0?
(b) Sketch the graph of f.

52. Set
F(x) = X, X rational (x) = X<, X rational
10, xirrational, 9x) = 0, x irrational.

’

(a) Show that f is not differentiable at 0.
(b) Show that g is differentiable at 0 and give g’(0).

(Normal lines) If the graph of f has a tangent line at (c, f(c)),
then

(3.1.4) the line through (c, f(c)) that is perpendicular
to the tangent line is called the normal line.

53. Write an equation for the normal line at (c, f(c)) given that
the tangent line at this point
(a) is horizontal;
(b) has slope f’(c) # 0;
(c) is vertical.

54. All the normals through a circular arc pass through one point.
What is this point?

55. Asyousaw in Example 7, theliney — 2 = %(x —4)istangent
to the graph of the square-root function at the point (4, 2).
Write an equation for the normal line through this point.
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56. (A follow-up to Exercise 55) Sketch the graph of the square-
root function displaying both the tangent and the normal at
the point (4, 2).

57. The lines tangent and normal to the graph of the squaring
function at the point (3, 9) intersect the x-axis at points s
units apart. What is s?

58. The graph of the function f (x) = +/1 — x2 is the upper half
of the unit circle. On that curve (see the figure below) we
have marked a point P(x, y).

y

normal
P(x, y)

tangent

(-1, 0) (1,00 X

(a) What is the slope of the normal at P? Express your an-
swer in terms of x and y.

(b) Deduce from (a) the slope of the tangent at P. Express
your answer in terms of x and y.

(c) Confirm your answer in (b) by calculating

V1I-(x+h2-J1-x2
: :

HINT: First rationalize the numerator of the difference quo-
tient by multiplying both numerator and denominator by

V1I—(x+h)24+J/1-x2

/() = lim

50. Let ()= | *"/X) X0 and g0 = xf 0.
The graphs of f and g are indicated in the figures below.
y
y=x
f
\V) X
y=-X
y
y=x2
9
X
y=-x?

(a) Show that f and g are both continuous at 0.
(b) Show that f is not differentiable at 0.
(c) Show that g is differentiable at 0 and give g’(0).

(Important). By definition
f(c+h)— f(c)
h
provided this limit exists. Setting x = ¢ + h, we can write

/() = lim

f'(c) = lim M

X—C X —2C

3.1.5)

This is an alternative definition of derivative which has advan-
tages in certain situations. Convince yourself of the equivalence
of both definitions by calculating f’(c) by both methods.

60. f(x) =x3+1; c=2. 61. f(x)=x2-3x;c=1.
62. f(x)=+v1+x;¢c=3. 63 f(x)=x¥3 c=—-1

[> 65. Set f(x) = x*2 and consider the difference quotient

f2+h)—1(2)
" .
(a) Use a graphing utility to graph D for h # 0. Estimate
f’(2) to three decimal places from the graph.
(b) Create a table of values to estimate t!m}) D(h). Estimate

D(h) =

f’(2) to three decimal places from the table.
(c) Compare your results from (a) and (b).

[> 66. Exercise 65 with f(x) = x?/3.
b67. Use the definition of the derivative with a CAS to find f’(x)

in general and f’(c) in particular.
@ f(x)=+5x —4; c=3.
(b) f(x) =2—x2+4x*—x5 c=-2.

© f() = 2;3; ¢=

[> 68. Use a CAS to evaluate, if possible,

f(c+h)— f(c)

[CRILESS.
@ f(x)=x—-1+2;c=1.
(b) FX)=(x+2°°—-1; c=-2.
(©) f(x)=(x—-3%+3, c=3.

[>69. Let f(x) = 5x? — 7x% on [-1, 1].

(a) Use a graphing utility to draw the graph of f.

(b) Use the trace function to approximate the points on the
graph where the tangent line is horizontal.

(c) Use a CAS to find f’(x).

(d) Useasolvertosolve the equation f’(x) = 0and compare
what you find to what you found in (b).

[> 70. Exercise 69 with f(x) = x° + x? — 4x + 3 on [-2, 2].
[>71. Set f(x) = 4x — x5

(a) Use a CAS to find f/(g). Then find equations for the
tangent T and the normal N at the point (3, f(3)).
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(b) Use a graphing utility to display N, T, and the graph of (a) Show that
f in one figure. . 3
(c) Note that T is a good approximation to the graph of f if Fx) = x*,
for x close to % Determine the interval on which the (b) Prove by induction that for each positive integer n,
vertical separation between T and the graph of f is of .
absolute value less than 0.01. f(x)=x

72.1f f(x) =X, then f'(x) =1-x°=1. HINT:
If f(x)=x? then f'(x) = 2x! = 2x.

M 3.2 SOME DIFFERENTIATION FORMULAS

Calculating the derivative of

6x% —1
f(x)=(x3+2x —3)(4x%+1 fXx) = ——
(X) = (x°+2x — 3)(4x“ + 1) or (x) BT 1

by forming the appropriate difference quotient
f(x+h)— f(x)
h

and then taking the limit as h tends to 0 is somewhat laborious. Here we derive some
general formulas that enable us to calculate such derivatives quite quickly and easily.
We begin by pointing out that constant functions have derivative identically O:

3.2.1) if f(x)=o, «oanyconstant, then f'(x)=0 forallx,

and the identity function f(x) = x has constant derivative 1:

3.2.2) if f(x)=x, then f'(x)=1 forallx.

prOOF For f(X) = «,

co e ) =) a—a
Fe) = fim ———— = im —— = ino=0.
For f(x) = x,
f(x +h)— f h) — h
Fx) = fim SO =10 e KW =X D imi—1 o
h—0 h h—0 h h—-0h h—0

Remark These results can be verified geometrically. The graph of a constant function
f(x) = « is a horizontal line, and the slope of a horizontal line is 0. The graph of the
identity function f(x) = x is the graph of the line y = x. The line has slope 1.

THEOREM 3.2.3 DERIVATIVES OF SUMS AND SCALAR MULTIPLES

Let o be a real number. If f and g are differentiable at x, then f + g and «f
are differentiable at x. Moreover,

(f+9/() =) +gx) and  (af)(x)=af'(x).

has derivative f/(x) = nx""L.

(X +h)F —x T = x(x +-h) —x - x¥ +h(x + h)~.
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prROOF To verify the first formula, note that
(f+9)x+h)—(f +9)(x) _ [F(x+h)+g(x+h)]—[f(x)+9g(Xx)]

h h
f(x+h)—f(x) gx+h)—gK)
= + .
h h
By definition,
lim P+ hz ™ _ ) and mw — g'(x).
Thus
i (HDOED =400 _ ) g

which means that
(f+9)Y(x) = F'(x) + g'(x).
To verify the second formula, we must show that

r!Ln?J (f)(x + hg — (af)(x) — wf'(x).

This follows directly from the fact that

(@f)x +h)— (@f)(x)  af(x+h)—af(x) [f(x+h)—f(x)} .
h - h -« h '

Remark In this section and in the next few sections we will derive formulas for
calculating derivatives. It will be to your advantage to commit these formulas to memory.
You may find it useful to put these formulas into words. According to Theorem 3.2.3,

*““the derivative of a sum is the sum of the derivatives™ and
““the derivative of a scalar multiple is the scalar multiple of the derivative” 1

Since f —g = f 4 (—g), it follows that if f and g are differentiable at x, then
f — g is differentiable at x, and

(3.2.4) (f —9)(x) = f'(x) — g'(x).

“The derivative of a difference is the difference of the derivatives.”

These results can be extended by induction to any finite collection of functions: if
fi1, fa, ..., fy are differentiable at x, and a1, as, ..., oy are numbers, then the linear
combination aq f1 + oo fo 4 ... 4 ay , is differentiable at x and

(3.25) | (afi+azfot 4 o) (X) = o1 F/(X) + o £(X) + - - + an T/(X).

“The derivative of a linear combination is the linear combination of the
derivatives”’
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THEOREM 3.2.6 THE PRODUCT RULE

If f and g are differentiable at x, then so is their product, and
(f-9)(x) = F()g'(x) + g(x) f'(x).

“The derivative of a product is the first function times the derivative of the
second plus the second function times the derivative of the first?”

prooF We form the difference quotient
(f-9)x+h) = (f-9)(x) _ Flx+h)g(x +h) — F(x)g(x)
h h
_ fx+h)g(x +h) — F(x +h)g(x) + f(x +h)g(x) — f(x)g(x)
N h

and rewrite it as
F(x + ) [g(x +hg — g(x)] () [ f(x — hg — f(x)]

[Here we have added and subtracted f (x + h)g(x) in the numerator and then regrouped
the terms so as to display the difference quotients for f and g.] Since f is differentiable
at x, we know that f is continuous at x (Theorem 3.1.5) and thus

'!Ln?) f(x +h) = f(x). (Exercise 49, Section 2.4)
Since
r!i_rﬂ) w =g'(x) and r!m fx+ hg — ) = f(x),
we obtain
i (90 = (- 9)) _
h—0 h
lim (s +h)m[w] +9(X)h'L”E)[f(X+hg_ f(x)}

= f()g'0) +g(x) f'(x).

Using the product rule, it is not hard to show that

for each positive integer n
3.2.7) S B
p(x) = x" has derivative p’(x) = nx"".

In particular,

p(x) = x has derivative ~ p'(x)=1=1-x°1

p(x) =x?  hasderivative  p'(x) = 2x,

p(x) =x3  has derivative p'(x) = 3x2,

p(x) =x*  hasderivative  p'(x) = 4x°,
and so on.

fInthis setting we are following the convention that x° is identically 1 even though in itself 0° is meaningless.
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PROOF OF (3.2.7) We proceed by induction on n. If n = 1, then we have the identity
function

p(x) =X,
which we know has derivative
pP(x)=1=1-x"

This means that the formula holds for n = 1.

We assume now that the result holds for n = k; that is, we assume that if p(x) = x*,
then p’(x) = kx*~1, and go on to show that it holds for n = k + 1. We let

p(x) — Xk+1
and note that
p(x) = x - xk.
Applying the product rule (Theorem 3.2.6) and our induction hypothesis, we obtain
p'(x) = x - kxk"T 4 xK. 1= (k + 1)x*.
This shows that the formula holds for n = k + 1.
By the axiom of induction, the formula holds for all positive integers n. 1
Rem_ark Formula (3.2.7) can be obtained without induction. From the difference
quotient

px+h)—p(x) _ (x+h)"—x"
h B h ’

apply the formula
a"—b"=@-b)@ t+a" b+ - +ab" 2 +b"t), (section12)

and you’ll see that the difference quotient becomes the sum of n terms, each of which
tends to x"~* as h tends to zero.

The formula for differentiating polynomials follows from (3.2.5) and (3.2.7):

If P(X) = anX" + ap_1 X"t 4 .- 4+ apx? 4+ arx + ag,
3.2.8)
then P/(x) = napx"t + (N — Day_1x" 2 + - + 2a,X + ay.
For example,
P(x)=12x>—6x —2  hasderivative ~ P’(x) = 36x> — 6
and

Q(x) = ix* —2x?+x+5  hasderivative  Q'(X) = x° —4x + 1.

Example 1 Differentiate F(x) = (x® — 2x + 3)(4x? + 1) and find F'(-1).

SOLUTION We have a product F(x) = f(x)g(x) with
f(x)=x>—2x+3 and g(x)=4x>+1.
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The product rule gives
F'(x) = f(x)g'(x) +g(x) f'(x)
= (x® — 2x + 3)(8x) + (4x% + 1)(3x% — 2)
= 8x* — 16x? + 24x + 12x* —5x? — 2
= 20x* — 21x% 4 24x — 2.
Setting x = —1, we have
F/(—1) = 20(—1)* — 21(=1)2 +24(-1) —2=20—-21—24—2=—27. 1

Example 2 Differentiate F(x) = (ax + b)(cx + d), where a, b, c, d are constants.

SOLUTION  We have a product F(x) = f(x)g(x) with
f(x)=ax+b and g(x) = cx +d.
Again we use the product rule
F'(x) = f(x)g'(x) + g(x) f'(x).
In this case
F'(x) = (ax 4+ b)c + (cx + d)a = 2acx + bc + ad.

We can also do this problem without using the product rule by first carrying out the
multiplication

F(x) = acx? 4+ bcx + adx + bd
and then differentiating
F'(x) =2acx +bc+ad. 1

Example 3 Suppose that g is differentiable at each x and that
F(x) = (x3 — 5x)g(x). Find F’(2) given that g(2) = 3and g’(2) = —1.
SOLUTION  Applying the product rule, we have

F/(x) = [(x* = 5x)g(x)]' = (x* = 5x)g'(x) + g(x)(3x* — 5).
Therefore,

F'(2)=(-29'2)+ M9 = (-2)(-1) + (NE) =23. 1

\We come now to reciprocals.

THEOREM 3.2.9 THE RECIPROCAL RULE
If g is differentiable at x and g(x) # 0, then 1/g is differentiable at x and

5) @m0

PROOF Since g is differentiable at x, g is continuous at x. (Theorem 3.1.5) Since
g(x) # 0, we know that 1/g is continuous at x and thus that

lim ! _ 1!
=0 g(x +h)  g(x)’
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For h different from 0 and sufficiently small, g(x + h) 0. The continuity of g at x and
the fact that g(x) # 0 guarantee this. (Exercise 50, Section 2.4) The difference quotient
for 1/g can be written

1 1 1 7 1T9g(x)—g(x+h)
h [g(x+h) - @] - ﬁ[ g(x +h)g(x) }
_[9x+h)—9g(x) 1
N _[ h } g(x +Mg(x)’
As h tends to zero, the right-hand side (and thus the left) tends to
9'(x)
9P

Using the reciprocal rule, we can show that Formula (3.2.7) also holds for negative

integers:

for each negative integer n,
(3.2.10) o .
p(x) = x" has derivative p'(x) = nx""".

This formula holds at all x except, of course, at x = 0, where no negative power is even
defined. In particular, for x # 0,

p(x) = x~*
p(X) =X
pex) =x"° has derivative p'(x) = —3x 4,

has derivative ~ p/(x) = (—1)x % = —x 2,

3

2 hasderivative  p'(x) = —2x 3,

and so on.

PROOF OF (3.2.10) Note that
p(x) = % where g(x) =x""and — n is a positive integer.

The rule for reciprocals gives

g(x)  (=nx Y

— = — —n—1yy2n _ n-1
FIE o (nx )X nx

p'(x) =

5 6
Example 4 Differentiate f(x) = 2T X and find f’(%).

SOLUTION  To apply (3.2.10), we write
f(x) =5x2 —6xL.
Differentiation gives
f/(x) = —10x > + 6x 2.
Back in fractional notation,

, 10 6

Setting x = 1, we have

H)=-

%+i2=—80+24=—56. ]
2

(3)
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Example 5 Differentiate f(x) = , Where a, b, ¢ are constants.

ax?+bx+c
SOLUTION Here we have a reciprocal f(x) = 1/g(x) with
g(x) = ax® + bx +c.

The reciprocal rule (Theorem 3.2.9) gives

g'(x) 2ax +b

TOME T [x2tbxtcl

f(x) =

Finally we come to quotients in general.

THEOREM 3.2.11 THE QUOTIENT RULE

If f and g are differentiable at x and g(x) £ 0, then the quotient f/g is
differentiable at x and

B g0 ) — 0
(6) )= (GO

“The derivative of a quotient is the denominator times the derivative of the
numerator minus the numerator times the derivative of the denominator, all
divided by the square of the denominator.”

Since f/g = f(1/g), the quotient rule can be obtained from the product and re-
ciprocal rules. The proof of the quotient rule is left to you as an exercise. Finally, note
that the reciprocal rule is just a special case of the quotient rule. [Take f(x) = 1.]

From the quotient rule you can see that all rational functions (quotients of polyno-
mials) are differentiable wherever they are defined.

6x2—1

Example 6 Differentiate F(X) = ——.
o] ifferentiate F(x) 11

SOLUTION  Here we are dealing with a quotient F(x) = f(x)/g(x). The quotientrule,

g(x) f'(x) — f(x)g'(x)
[a()F? ’

F'(x) =

gives

(x* 4 5x + 1)(12x) — (6x% — 1)(4x> + 5)
(x4 +5x + 1)?

_ —12x° 4+ 4x® +30x% + 12x +5

N (x4 4+ 5x + 1)2

F'(x) =

Example 7 Find equations for the tangent and normal lines to the graph of
3x
1-—2x

f(x) =
at the point (2, f(2)) = (2, —2).
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SOLUTION We need to find f’(2). Using the quotient rule, we get

L @-220@) -3%(-2) 3
P = (1= 2x)? N

This gives
o 3 3 1
"O=m2pr =y~ 3

As an equation for the tangent, we can write

y—(-2) = %(x —2), which simplifies to y+2= %(x —2).
The equation for the normal line can be writteny +2 = —3(x —2). X
Example 8 Find the points on the graph of
4x
f(x) = ——
)= 273
where the tangent line is horizontal.

SOLUTION  The quotient rule gives
, (X2 4+ 4)(4) — 4x(2x) 16 —4x?
f'(x) = = .
(x2 4 4)? (x? 4 4)?
The tangent line is horizontal only at the points (x, f(x)) where f’(x) = 0. Therefore,
we set f’(x) = 0 and solve for x:

y
16 — 4x2 : .
1V\ —X:O iff 16 — 4x> =0 iff X = £2.
x x (x2 +4)?

-2 2 X
-1 The tangent line is horizontal at the points where x = —2 or x = 2. These are the points
Figure 3.2.1 (-2, f(—=2)) =(-2,-1)and (2, f(2)) = (2,1). See Figure 3.2.1.
Remark  Some expressions are easier to differentiate if we rewrite them in more
convenient form. For example, we can differentiate
X°—2x  x4-=2
f(x) = =
) =~ .
by the quotient rule, or we can write
f(x)=(x*—2)x7?
and use the product rule; even better, we can write
f(x)=x3—2x7!
and proceed from there:
f/(x) =3x2+2x72.
EXERCISES 3.2
Exercises 1-20. Differentiate. x* x2 X% x
6. F(X) = — — — + — — —.
LFX) =1—x 2. F(x) = 2(1 + x). 4 3 2 1 i
1 (x=+2)
3FX)=11x°—6x3+8. 4. F(x)= % LREX)=-23 8.F(X)="—3—

5. F(x) =ax®+bx 4+c; a,b,cconstant. 9. G(x) = (x2 — 1)(x — 3).



1 x3
10. F(x) = x — ~. 11. - .
0. F(x) =x x G(x) <
ax —b
12. F(x) = X ; a,b,c,d constant.
cx —d
x2—1 x4 411
13. - . 14. = T
3Gk 2X +3 c0) x+1
543
15. G(X)=(x* — 2X)(2x +5). 16. G(x) = ~* 1X
6—1 1 4
17. G(x) = o2/ 18.G(x) = —

—2
19. G(x) = (9x® — 8x°) (x + %)

o= (1) (14 2)

Exercises 21-26. Find f’(0) and f’(1).

2

o

21, f(x) = > 22. f(x) =x3(x 4+ 1).
1—x? 2x2+x+1
23. f = —. 24, f(X) = ———.
) 1+ x? ) X2 +2x+1
b
25. f(x) = ax + . a,b,c,d constant.
cx +d
Z4b
26. f(x) = w; a, b, ¢ constant.
cX?+bx +a

Exercises 27-30. Find f’(0) given that h(0) = 3 and h’(0) = 2.
27. f(x) = xh(x). 28. f(x) = 3x2h(x) — BX.

29. f(x) = h(x) — 30. f(x)=hXx)+ ——
h( ) h( )
Exercises 31-34. Find an equation for the tangent line at the
point (c, f(c)).

31, f(x) = XX?; c— 4

—2Xx+1)(4x —5); c=2.

32. f(x) = (x5
33 f(x)=(x2-3)(5x —x3); c=1
10

34, f(x):xz—y; c=-2.

Exercises 35-38. Find the point(s) where the tangent line is

horizontal.
35. f(x) = (x —2)(x? —x —11).
16 5x

36. f(x) =x%— —. 37. f(x) = .
0 =x"=< ) =371

38. f(x) =

Exercises 39-42. Find all x at which (@) f'(x)=0;
(b) f/(x) > 0; (c) f'(x) <O.

(x +2)(x? —2x — 8).

39. f(x) =x*—8x%+3. 40. f(x) = 3x* —4x% — 2.
4 X2 —2x+4
41. f = —. 42. f = .

Exercises 43-44. Find the points where the tangent to the
graph of

43. f(x) = —x? — 6 is parallel to the line y = 4x — 1.
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44. f(x) = x3 — 3x is perpendicular to the line 5y — 3x = 8.
Exercises 45-48. Find a function f with the given derivative.
45, f/(x) = 3x% +2x + 1. 46. f'(x) = 4x3 — 2x + 4.

48. f/(x) = x4 +2x8 +—

1
47. f/(x) = 2x%2 — 3x — =.
x) X X < 2U%

2

49. Find A and B given that the derivative of

Ax®4+Bx+2, x<2
f(x) = ,
Bxc— A, x>2

is everywhere continuous. HINT: First of all, f must be
continuous.

50. Find A and B given that the derivative of

Ax? + B,

f0) X < -1
X) =
Bx® 4+ Ax +4,

X >-1

is everywhere continuous.

51. Find the area of the triangle formed by the x-axis, the tangent
to the graph of f(x) = 6x — x? at the point (5, 5), and the
normal through this point (the line through this point that is
perpendicular to the tangent).

52. Find the area of the triangle formed by the x-axis and the
lines tangent and normal to the graph of f(x) =9 — x? at
the point (2, 5).

53. Find A, B, C such that the graph of f(x) = Ax?+ Bx +C
passes through the point (1, 3) and is tangent to the line
4x + y = 8 at the point (2, 0).

54. Find A, B, C, D such that the graph of f(x) = Ax3 + Bx? +
Cx + D istangent to the line y = 3x — 3 at the point (1, 0)
and is tangent to the line y = 18x — 27 at the point (2, 9).

55. Find the point where the line tangent to the graph of
the quadratic function f(x) = ax? + bx + c is horizontal.
NOTE: This gives a way to find the vertex of the parabola
y = ax?+bx +c.

56. Find conditions on a, b, ¢, d which guarantee that the graph
of the cubic p(x) = ax® + bx? + cx + d has:

(a) exactly two horizontal tangents.
(b) exactly one horizontal tangent.
(c) no horizontal tangents.

57. Find the points (c, f(c)) where the line tangent to the graph
of f(x) = x®— x is parallel to the secant line that passes
through the points (—1, f(—1)) and (2, f(2)).

58. Find the points (c, f(c)) where the line tangent to the graph
of f(x) = x/(x 4 1) is parallel to the secant line that passes
through the points (1, f (1)) and (3, f(3)).

59. Let f(x) = 1/x, x > 0. Show that the triangle that is formed
by each line tangent to the graph of f and the coordinate axes
has an area of 2 square units.

60. Find two lines through the point (2, 8) that are tangent to the
graph of f(x) = x5.

61. Find equations for all the lines tangent to the graph of
f(x) = x® — x that pass through the point (—2, 2).
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62.

63.

64.

65.
66.

Set f(x) = x5.

(a) Find an equation for the line tangent to the graph of f at
(c, f(c)),c #0.

(b) Determine whether the tangent line found in (a) inter-
sects the graph of f at a point other than (c, c®).

If it does, find the x-coordinate of the second point of inter-
section.

Given two functions f and g, show that if f and f + g are
differentiable, then g is differentiable. Give an example to
show that the differentiability of f + g does not imply that
f and g are each differentiable.

We are given two functions f and g, with f and f - g differ-
entiable. Does it follow that g is differentiable? If not, find
a condition that guarantees that g is differentiable if both f
and f - g are differentiable.

Prove the validity of the quotient rule.

Verify that, if f, g, h are differentiable, then

(fgh)(x) = F'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)’"(x).

67.

68.

69.

HINT: Apply the product rule to [ f (x)g(x)]h(x).

Use the result in Exercise 66 to find the derivative of
F(x) = (x2 + 1L + (1/x)](2x® — x + 1).

Use the result in Exercise 66 to find the derivative of
G(x) = /X[1/(1 + 2x)](x2 + x — 1).

Use the product rule to show that if f is differentiable, then

g(x) =[f(x)]> has derivative g'(x) = 2f(x) f'(x).

70.

Use the result in Exercise 69 to find the derivative of
g(x) = (x® — 2x2 + x +2)2.

bExercises 71-74. Use a CAS to find where f’(x) =0,
f’(x) > 0, f/(x) < 0. Verify your results with a graphing utility.

71.
72.

73.

[> 75.

[> 76.

2

f(x) = .

X+1
f(x) = 8x° — 60x* + 150x3 — 125x2.

x4 — 16 x3+1
f(x) = Ve 74, f(x) = vt

Set f(x) =sinx.

(a) Estimate f’(x) at x =0,x =n/6,X = /4, X = 7/3,
and x = /2 using the difference quotient

f(x+h)— f(x)
h
taking h = 4-0.001.

(b) Compare the estimated values of f’(x) found in (a) with
the values of cos x at each of these points.

(c) Use your results in (b) to guess the derivative of the sine
function.

Let f(x) = x*+x3 —5x2 + 2.

(a) Use a graphing utility to graph f on the interval [—4, 4]
and estimate the x-coordinates of the points where the
tangent line to the graph of f is horizontal.

(b) Use a graphing utility to graph | f |. Are there any points
where f isnot differentiable? If so, estimate the numbers
where f fails to be differentiable.

M 3.3 THE d/dx NOTATION; DERIVATIVES OF HIGHER ORDER

The d/dx Notation

So far we have indicated the derivative by a prime. There are, however, other notations
that are widely used, particularly in science and in engineering. The most popular of
these is the “double-d” notation of Leibniz.! In the Leibniz notation, the derivative of
a function y is indicated by writing

dy . . .
— f funct f
ix i y is a function of x,
dy . . .
— f funct ft
it i y is a function of t,
d_y if is a function of z
dz y ’
and so on. Thus,
. dy . 1 2 dy 1
VS —_— = 2. = =, — = —— = —_— = —
Ify_X’dx 3ty t27 dt t3’ ify =vz. dz 2z

t Gottfried Wilhelm Leibniz (1646-1716), the German mathematician whose role in the creation of calculus

was outlined on page 3.
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The symbols

d d d
x4 and so forth
are also used as prefixes before expressions to be differentiated. For example,
d 3 _ ay? d 2 _ d 5 !
&(x — 4x) = 3x° — 4, ﬁ(t +3t+1)=2t+3, E(Z — 1) =5z"
In the Leibniz notation the differentiation formulas read:
d d d d d
G L0+ 9001 = T LH0T+ L9001 g lef ()] = g [F0OL.

d d d
LF00g00T = £00)7[9601 + 90071001,

d 1 1 d
dx [@] = “Tgeop dx 00

o 100 0011001~ f(X);—X[g(x)]‘

dx Lg(x) [90)]?
Often functions f and g are replaced by u and v and the x is left out altogether. Then
the formulas look like this:

i(u Jrv)zd—quﬂ i(au):ozd—u
dx dx = dx’ dx dx’
—(uv) = ud—u —|—vd—u,

dx dx dx
du dv

d /1 1 dv d uy Vax " Yax
dx (V) T vidx’ dx (V) 2
The only way to develop a feeling for this notation is to use it. Below we work out some
examples.
3x -1
5X +2°

Example 1 Find g—i fory =

SOLUTION We use the quotient rule:

(5x + 2)dd—x(3x —1)—(3x — 1)dd_x(5x +2)

dy

dx (5X + 2)2
CBx+2)3)-@Bx—-1B) 1
N (5x + 2)2 — (Bx +2)2°

Example 2 Find j—i fory = (x® 4+ 1)(3x° + 2x — 1).

SOLUTION  Here we use the product rule:
d d d
% = (C+ D@ +2X ~ D+ B+ 2~ D (C + 1)
= (X3 4+ 1)(15x* + 2) + (3x° + 2x — 1)(3x?)
= (15x" 4 15x* + 2x3 4+ 2) 4 (9% + 6x3 — 3x?)

= 24x7 +15x* +8x% —3x2+2.

125
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Example 3 Find % (t3 - >

t2—1
SOLUTION

d t d d t
— (3= = — () —- — [ ——
dt( t2—1> dt( ) dt (tz—l

_ a2 [(tz Ok t(2t)} g, 1
(

©-1?

22— 12

Example 4 Find j—z for u=x(x+ L)(x + 2).

SOLUTION  You can think of u as

X(x+DI(x+2) oras x[(x+1)(x+2)].

From the first point of view,

d_u =[x(x +1)]AQ) + (x + Z)dd—x[x(x +1)]

dx

=X(X + 1) + (X + 2)[x(1) + (x + 1)(1)]
(*) =X(X + 1)+ (X + 2)(2x + 1).

From the second point of view,

du d
X xd—X[(x + )X +2)] + (x + 1)(x + 2)(1)
=X[(X+ 1))+ X +2)D)]+ X+ 1)(x +2)
() =X(2x +3) + (x + 1)(x + 2).

Both () and (x*) can be multiplied out to give

du

— = 3X? 4+ 6X +2.

dx

Alternatively, this same result can be obtained by first carrying out the multiplication

and then differentiating

U=x(Xx+1x+2) =x(x2+3x +2) = x343x% + 2x

so that
du

— =3x’+4+6x+2. 1

dx

Example 5 Evaluate dy/dx at x = 0and x = 1 given that y =

dy  (x2—4)2x —x?(2x)

2

X2

8x

SOLUTION
& - (X2 —
dy 8-0
A = —_—= —— =
=0 T T

Remark The notation

ay?

07— 4
dy 8-1 8

- T@oar T o
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is sometimes used to emphasize the fact that we are evaluating the derivative dy/dx at
X = a. Thus, in Example 5, we have

d—y =0 and d—y =—— [
dx|y_o dx|_; 9

Derivatives of Higher Order

Aswe noted in Section 3.1, when we differentiate a function f we get a new function f’,
the derivative of f. Now suppose that f’ can be differentiated. If we calculate (f)’, we
get the second derivative of f. This is denoted f”. So long as we have differentiability,
we can continue in this manner, forming the third derivative of f, written f””, and so on.
The prime notation is not used beyond the third derivative. For the fourth derivative of
f, we write f® and more generally, for the nth derivative we write f ™. The functions
frof7 7, @ . £ are called the derivatives of f of orders 1,2,3,4,...,n,
respectively. For example, if f(x) = x°, then

f/(x) =5x% f7(x)=20x3, f”(x)=60x%, f@(x)=120x, f®(x)=120.
In this case, all derivatives of orders higher than five are identically zero. As a variant
of this notation, you can write y = x® and then

y =5x* y"=20x3 y”=60x% andsoon.

Since each polynomial P has a derivative P’ that is in turn a polynomial, and each
rational function Q has a derivative Q’ that is in turn a rational function, polynomials
and rational functions have derivatives of all orders. In the case of a polynomial of
degree n, derivatives of order greater than n are all identically zero. (Explain.)

In the Leibniz notation the derivatives of higher order are written

d?y d (dy dy _ d (d%
d _ d (dy Sy _ % (%) andsoon
02 = dx (dx)’ 0 = dx <dx2> and so on

or
d? d[d dd d [ d?
Below we work out some examples.
Example 6 If f(x) = x* —3x~1 + 5, then
f/(x) =4x3+3x"2 and f'(x)=12x>—6x"3.
Example 7

d

d—x(x5 —4x3 4+ 7x) =5x* —12x2 + 7,

¢’ (x5 —4x34+7x) = d (5x* — 12x% 4+ 7) = 20x3 — 24x
dx? T dx B ’

d3 d
R(XS —4x3 4+ 7x) = &(20x3 — 24x) = 60x? —24. 11

Example 8 Finally, we consider y = x 1. In the Leibniz notation

2 3 4
dy d%y Y et Y _oas
dx3

_— = —_ = -3
dx ’ dx? X7 dx4

127
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On the basis of these calculations, we are led to the general result

dy

—2 = (=1)"nIx""1. [Recall thatn! =n(n —1)(n —2)---3-2-1]

dxn

In Exercise 61 you are asked to prove this result. In the prime notation we have

y/ — _X—2’

In general

EXERCISES 3.3

y// — 2X ,

-3

y'=—6x%  y®=24x5 ..

y® = (—1)"nix "L,

N

Exercises 1-10. Find dy/dx.
1y=3x*—x>+1

3y —x 1 4y — 2X
¥= X V=1
5 v — X
=1
X2
6.y = -2 1). 7.y =
y =X(X—-2)(x+1) y=1_"«
X 2—X
8.y= .
y (1+x>( 3 )
x3+1 x2
9 y=—-—. 10. y = .
Y =1 y (1+x)
Exercises 11-22. Find the indicated derivative.
d d
11. &(ZX —5). 12. &(5X + 2).
d
13. —[(3x2 = xH(2 .
3 OIX[(3X X77)(2x + 9)]
14, d"ix[(zx2 +3xh(2x — 3x 2.
d t4 d /2t +1
15 — | ———— ). 16. — .
dt (2t3—1> dt( t4 )
d 2u d u?
17 — [ —— ). 18. — [ —— ).
du <1—2u> du <u3+1>
d u u d
19, — | —— — . 20. —[u?(1 — ud)(1 - ud)].
9du(u—l u+1) Odu[u( u =l

3 2 3 2 _
21.i(x + X +x+1>. 2. d (x + X 4+ X 1).

dx \x3—x2+x -1 dx \x3 —x2+x+1

Exercises 23-26. Evaluate dy/dx at x = 2.
23.y = (X + )X+ 2)(x + 3).
24,y = (X + 1)(x2 4 2)(x3 + 3).

(x —1)(x —2) 2.y = (x2+1)(x2—2).

25.y = .
>y (X +2) X2 +2

Exercises 27-32. Find the second derivative.
27. f(x) = 7x3 — 6x°.
28. f(x) = 2x5 — 6x* 4+ 2x — 1.
x2 -3

v
3L f(x) = (x2 =2)(x 2 +2).
32, f(x) = (2% — 3) <2X +3>.

X

30. f(x) =x%— i

29. f(x) = =

Exercises 33-38. Find d3y/dx3.
3B y=2x3+ X2+ x+1.

34,y = (1 +5x)% 35. y = (2x — 5)2.
36.y=¢x*— 1x2+x 3.
1 X4+ 2
7.y=x3- . 38.y = .
y=x'—13 y X

Exercises 39-44. Find the indicated derivative.
d d 2
39. ax [xd—x(x —X )].

40 4 (x? — 3x)i(x +x7h
" dx? dx '
d4
41. W[3x —x4.

d5
42, OI?[ax“ +bx3 + cx? 4+ dx +e].

d2 d2 .

d?3 [1 d?

44, —_ | =
dx3 | x dx2

(x*— 5X2):|.

Exercises 45-48. Find a function y = f(x) for which:
2

45, y" = 4x3 — x? + 4x. 46.y/=x—F+3.

dy . 4 dy 5 5
47. =2 =s5x4 4 — 48. 2 =4x5— = _2.
dx Xt X5 dx X x4
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49. Find a quadratic polynomial p with p(1) =3, p'(1) = -2,
and p”(1) = 4.

Find a cubic polynomial p with p(—1) =0, p/(—1) = 3,
p”(—=1) = —2,and p”(-1) = 6.

Set f(x) = x", n a positive integer.

(@) Find f®(x) fork = n.

(b) Find f®(x) fork > n.

(c) Find f®(x) fork < n.

Let p be an arbitrary polynomial

50.

51.

52.

P(X) = anX" +an_1X""1 + - +aiX + ag, a # 0.

(@) Find (d"/dxM[p(x)].

(b) What is (d¥/dx*)[p(x)] for k > n?
x2, x>0

0, x<0°

(a) Show that f is differentiable at 0 and give f’(0).
(b) Determine f’(x) for all x.

(c) Show that f”(0) does not exist.

(d) Sketch the graph of f and f'.

53. Set f(x) = {

setgy = | ¥ 0
=10, x<o.
(a) Find g’(0) and g”(0).
(b) Determine g’(x) and g”(x) for all other x.

(c) Show that g”’(0) does not exist.
(d) Sketch the graphs of g, g’, g”.

55. Show that in general

(f-9)"(x) # £(x)g"(x) + £"(x)g(x).
56. Verify the identity

54.

F()g"(x) = £/ (x)g(x) = ;—X[f(x)g/(x) = F/()g(x)]-

Exercises 57-60. Find the numbers x for which (a) f”(x) =0,
(b) f7(x) >0, (c) f"(x) <O.
57. f(x) = x5

59. f(x) = x* +2x3 — 12x2.
61. Prove by induction that

58. f(x) = x*.

. dy
if y=x71, then — = (=1)"nix "1
y g =D
62. Calculate y’, y”, y” fory = 1/x2. Use these results to guess
a formula for y(™ for each positive integer n, and then prove
the validity of your conjecture by induction.

Let u, v, w be differentiable functions of x. Express the
derivative of the product uvw in terms of the functions
u, v, w, and their derivatives.

63.

dl’]
64. (a) Find W(x”) forn =1, 2,3, 4,5. Give the general for-

mula.

60. f(x) = x*+3x3—6x% —x.

65.

[> 66.

[>67.

[>71.

[>72.

. Set f(x) =x*—x%—

129

dn+1
(b) Give the general formula for W(x”).
Set f(x) = L Find a formula for ﬂ[f(x)].
1-— dxn
Set f(x) = l;x Use a CAS to find a formula for
1+x

dn
rdalc)!

Set f(x) = x3 —x.

(a) Use a graphing utility to display in one figure the graph
of f and the linel : x — 2y +12 = 0.

(b) Find the points on the graph of f where the tangent is
parallel to I.

(c) Verify the results you obtained in (b) by adding these
tangents to your previous drawing.

. Set f(x) = x* —x2.

(a) Use a graphing utility to display in one figure the graph
of f and the linel : x —2y —4 =0.

(b) Find the points on the graph of f where the normal is
perpendicular to I.

(c) Verify the results you obtained in (b) by adding these
normals to your previous drawing.

. Set f(x) =x3+x2 —4x + 1.

(a) Calculate f'(x).

(b) Use a graphing utility to display in one figure the graphs
of f and f’. If possible, graph f and f’ in different
colors.

(c) What can you say about the graph of f where f/(x) < 0?
What can you say about the graph of f where f’(x) > 0?

5x? —x — 2.

(a) Calculate f’(x).

(b) Use a graphing utility to display in one figure the graphs
of f and f’. If possible, graph f and f’ in different
colors.

(c) What can you say about the graph of f where f/(x) < 0?
What can you say about the graph of f where f/(x) > 0?

Set f(x) = 2x® —3x2 4+ 3x +3.

(a) Calculate f’(x).

(b) Use a graphing utility to display in one figure the graphs
of f and f’. If possible, graph f and f’ in different
colors.

(c) What can you say about the graph of f where f/(x) = 0?

(d) Find the x-coordinate of each point where the tangent to
the graph of f is horizontal by finding the zeros of f’to
three decimal places.

Set f(x) = 2x% —3x2 4+ 4x + 1.

(a) Calculate f'(x).

(b) Use a graphing utility to display in one figure the graphs
of f and f’. If possible, graph f and f’ in different
colors.

(c) What can you say about the graph of f where f/(x) = 0?

(d) Find the x-coordinate of each point where the tangent to
the graph of f is horizontal by finding the zeros of f’to
three decimal places.
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y

Y1

Yo

Y1 = Yo =m(X; —Xq)

Figure 3.4.1

M 3.4 THE DERIVATIVE AS A RATE OF CHANGE

In the case of a linear function y = mx + b, the graph is a straight line and the slope
m measures the steepness of the line by giving the rate of climb of the line, the rate of
change of y with respect to x.

As x changes from X to X1, y changes m times as much:

Y1 — Yo = M(Xy — Xo) (Figure 3.4.1)

Thus the slope m gives the change in y per unit change in x.
In the more general case of a differentiable function

y = f(x)
the graph is a curve. The slope
dy
- — f
ix (x)

still gives the rate of change of y with respect to x, but this rate of change can vary
from point to point. At X = x; (see Figure 3.4.2) the rate of change of y with respect
to x is f’(x,); the steepness of the graph is that of a line of slope f'(x;). At x = xp, the
rate of change of y with respect to x is f’(x;); the steepness of the graph is that of a
line of slope f’(x2). At x = X3, the rate of change of y with respect to x is f’(x3); the
steepness of the graph is that of a line of slope f’(x3).

Figure 3.4.2

The derivative as a rate of change is one of the fundamental ideas of calculus.
Keep it in mind whenever you see a derivative. This section is only introductory. We’ll
develop the idea further as we go on.

Example 1 The area of a square is given by the formula A = x? where x is the
length of a side. As x changes, A changes. The rate of change of A with respect to x is
the derivative

dA  d , ,

i dx(x ) = 2X.
When x = % this rate of change is %: the area is changing at half the rate of x. When
X = % the rate of change of A with respect to x is 1: the area is changing at the same rate
as X. When x = 1, the rate of change of A with respect to x is 2 : the area is changing
at twice the rate of x.

In Figure 3.4.3 we have plotted A against x. The rate of change of A with respect

to x at each of the indicated points appears as the slope of the tangent line.

Example 2 An equilateral triangle of side x has area

_1 2 Check this out.
A= ;V3x2 ( )
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A
m=2
1= m=1
m=1
|
1 A 1 X
4 2
A=x2 x>0
Figure 3.4.3

The rate of change of A with respect to x is the derivative

dA
— = 2V/3x.

dx
When x = 24/3, the rate of change of A with respect to x is 3. In other words, when
the side has length 24/3, the area is changing three times as fast as the length of the
side. 1

-2
x2

Example 3 Sety = X

(a) Find the rate of change of y with respect to x at x = 2.
(b) Find the value(s) of x at which the rate of change of y with respect to x is 0.

SOLUTION  The rate of change of y with respectto x is given by the derivative, dy/dx:

dy X2(1) — (x —2)(2x)  —x*+4x 4 —x

dx x4 x4 X3

@) Atx =2,

dy 4-2
dx 23

1

. dy 4 —x
(b) Setting ax = 0, we have v

with respecttox atx =41is0. [

= 0, and therefore x = 4. The rate of change of y

Example 4 Suppose that we have a right circular cylinder of changing dimen-
sions. (Figure 3.4.4.) When the base radius is r and the height is h, the cylinder has
volume

V = nr2h. Figure 3.4.4
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If r remains constant while h changes, then V can be viewed as a function of h.
The rate of change of V with respect to h is the derivative

v
dh

wrl.

If h remains constant while r changes, then V can be viewed as a function of r. The
rate of change of V with respect to r is the derivative

dv

Suppose now that r changes but V is kept constant. How does h change with respect
to r? To answer this, we express h in terms of r and V:

VAR
h=—5==r2
r T

Since V is held constant, h is now a function of r. The rate of change of h with respect

to r is the derivative

dh 2V 2(mr?h 2h
—_ :__r—3:_7(n )I’_SZ——. d
dr b4 bid r
EXERCISES 3.4
1. Find the rate of change of the area of a circle with respect to 13. The area of a sector in a circle is given by the formula

10.

11.

12.

the radius r. What is the rate whenr = 2?

. Find the rate of change of the volume of a cube with respect

to the length s of a side. What is the rate when s = 4?

. Find the rate of change of the area of a square with respect

to the length z of a diagonal. What is the rate when z = 4?

. Find the rate of change of y = 1/x with respect to x at
X =-1

. Find the rate of change of y = [x(x + 1)]~* with respect to
Xatx = 2.

. Find the values of x at which the rate of change of y =

x3 — 12x2 + 45x — 1 with respect to x is zero.

. Find the rate of change of the volume of a sphere with respect

to the radius r.

. Find the rate of change of the surface area of a sphere with

respect to the radius r. What is this rate of change when
r = ro? How must ro be chosen so that the rate of change is
1?

. Find xo given that the rate of change of y = 2x%2 +x — 1

with respect to x at x = Xq is 4.
Find the rate of change of the area A of a circle with respect
to (a) the diameter d; (b) the circumference C.

Find the rate of change of the volume V of a cube with respect
to

(a) the length w of a diagonal on one of the faces.
(b) the length z of one of the diagonals of the cube.

The dimensions of a rectangle are changing in such a way
that the area of the rectangle remains constant. Find the rate
of change of the height h with respect to the base b.

14.

15.

16.

A = 3r29 where r is the radius and ¢ is the central angle
measured in radians.

(a) Find the rate of change of A with respectto 6 if r remains
constant.

(b) Find the rate of change of A with respectto r if 6 remains
constant.

(c) Find the rate of change of # with respect to r if A remains
constant.

The total surface area of a right circular cylinder is given by
the formula A = 27r(r + h) where r is the radius and h is
the height.

(a) Find the rate of change of A with respectto h if r remains
constant.

(b) Find the rate of change of A with respectto r if h remains
constant.

(c) Find the rate of change of h with respect to r if A remains
constant.

For what value of x is the rate of change of

y = ax? + bx + ¢ with respect to x
the same as the rate of change of

z = bx? + ax + ¢ with respect to x?

Assume that a, b, ¢ are constant with a # b.

Find the rate of change of the product f(x)g(x)h(x) with
respect to x at x = 1 given that

f(1)=0, 9(1)=2
f=1 g@)=-1

h(l) = —2,
h(l) =0
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In this section we take up the differentiation of composite functions. Until we get to
Theorem 3.5.6, our approach is completely intuitive—no real definitions, no proofs,
just informal discussion. Our purpose is to give you some experience with the standard
computational procedures and some insight into why these procedures work. Theorem
3.5.6 puts this all on a sound footing.

Suppose that y is a differentiable function of u and u in turn is a differentiable
function of x. Then y is a composite function of x. Does y have a derivative with
respect to x? Yes it does, and dy/dx is given by a formula that is easy to remember:

dy dydu

3.5.1) dx — dudx’

This formula, known as the chain rule, says that

“the rate of change of y with respect to x is the rate of change of y with respect
to u times the rate of change of u with respect to x.”

Plausible as all this sounds, remember that we have proved nothing. All we have done
is assert that the composition of differentiable functions is differentiable and given you
a formula—a formula that needs justification and is justified at the end of this section.
Before using the chain rule in elaborate computations, let’s confirm its validity in
some simple instances.
If y = 2u and u = 3x, then y = 6x. Clearly

4y _g_p.g_dydu
dx ~dudx’
and so, in this case, the chain rule is confirmed:
dy _ dydu
dx  dudx’
Ify =udandu = x?, then y = (x?)3 = x5. This time
dy s dy 2 2\2 ; du
- = _ = = = —_— = 2
ix 6x°, a 3u 3(x“)* = 3x°, ix X
and once again
dy 5 4 dy du
-7 _ — 2 ->--
dx Ox" = 3x- 2x du dx
Example 1 Find dy/dx by the chain rule given that
_l o u=xt
u+1
SOLUTION
dy D@ -@-H@Q) _ 2 odu_
du (u+1)2 (u+1)? dx
so that
dy _dydy [ 2 T, ax
dx  dudx [ (u+1)2 (x241)2°

133
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Remark  We would have obtained the same result without the chain rule by first
writing y as a function of x and then differentiating:

with  y= U=l i = x2, wehave y= -1
u+1 x2+1
and
dy (x4 1)2x — (x2 — 1)2x 4x
dx (x2 + 1) T X2t 12

Suppose now that you were asked to calculate
d 2 100
— e et B
3 [0 = 1]

You could expand (x? — 1)1 into a polynomial by using the binomial theorem (that’s
assuming that you are familiar with the theorem and are adept at applying it) or you
could try repeated multiplication, but in either case you would have a terrible mess on
your hands: (x2 — 1)!% has 101 terms. Using the chain rule, we can derive a formula
that will render such calculations almost trivial.

By the chain rule, we can show that, if u is a differentiable function of x and nis a
positive or negative integer, then

d du
5.2 — (u™ — n-1--
(3.5.2) dx(u ) =nu x

If n is a positive integer, the formula holds without restriction. If n is negative, the
formula is valid except at those numbers where u(x) = 0.

PROOF Set'y = u". In this case,

dy _ dydu
dx  dudx
gives
d, . d ,.du a_du
— = — — = —.
dx(u ) du(u )dx nu dx
To calculate

d 2 100

(k2 —1

ix [(x )1
we set u = x? — 1. Then by our formula

O:Jl—x[(x2 — 1)1 = 100(x? — 1)990:]'—)((x2 — 1) = 100(x? — 1)%2x = 200x(x? — 1)%.

Remark  While it is clear that (3.5.2) is the only practical way to calculate the
derivative of y = (x? — 1)'%, you do have a choice when differentiating a similar, but
simpler, function such as y = (x? — 1)*. By (3.5.2)

d

S 0¢ 1 = 40— 1

On the other hand, if we were to first expand the expression (x2 — 1)*, we would get

(x% — 1) = 4(x? — 1)%2x = 8x(x? — 1),

y =x%—4x5 4 6x* —4x? 41
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and then

d
S _ gx7 — 24x5 4 24x3 — 8x.
dx
As a final answer, this is correct but somewhat unwieldy. To reconcile the two results,

note that 8x is a factor of dy/dx:

dy 6 4 2
—= =8 -3 3xc—1
ix X (x X"+ 3x ),
and the expression in parentheses is (x? — 1)% multiplied out. Thus,
dy 2 3
—= =8 -1

as we saw above. However, (3.5.2) gave us this neat, compact result much more effi-
ciently. O

Here are additional examples of a similar sort.

Example 2
-3 —4 —4
i x+1 =-3 x+E ix+1 =-3 x+E 1—i .o Qa
dx X X dx X X X2
Example 3
Of'—x[l +QR+3X)°P=3[1+02+ 3x)5]2;—x[1 + (2 4+ 3x)°].
Since
dd_x[l +(@2+3x)°] =52+ 3x)4(f—x(2 +3x) = 5(2 + 3x)*(3) = 15(2 + 3x)*,
we have

;—Xn + (24 3%)°P = 3[1 + (2 + 3x)°T[15(2 + 3x)]

=452+ 3x)[1+ (2 +3x)°]>. 1

Example 4 Calculate the derivative of f(x) = 2x3(x? — 3)*.
SOLUTION Here we need to use the product rule and the chain rule:
d 3(y2 41 _ 3 d 2 4 2 4 d 3
d_x[2X (x=—3)"] = 2x d—x[(x —3)"1+ (x==3) d_x(2X )
= 2x3[4(x? — 3)3(2x)] + (x2 — 3)*(6x?)
= 16x*(x2 — 3)3 + 6x2(x2 — 3)* = 2x3(x2 — 3)}(11x?> —9). 1
The formula
dy _ dydu

dx  dudx
can be extended to more variables. For example, if x itself depends on s, then we have

65 oy _ dydu
e ds dudxds’

135
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If, in addition, s depends on t, then

354 dy dydudxds
- dt  dudxdsdt’

and so on. Each new dependence adds a new link to the chain.

Example 5 Finddy/ds giventhaty =3u +1, u=x"2, x =1 —s.

SOLUTION
dy du 3 dx
TR T G
Therefore
dy dydudx _3 -3 -3
—_——_= ———— = —_ — = = —_ [
= o g = @A) =6 =61 —5) .

Example 6 Find dy/dt att = 9 given that
u+2
y =

s :3—72, = t
T u=(3s—7) s=41

SOLUTION  As you can check,

dy 3 du ds 1
= — =6(3s -7 — =
TR TR AR TR S - i W
Att =9, we have s = 3 and u = 4, so that
dy 3 1 du ds 1 1
= = = —=609-7)=12 — ==
du (4-1)2 3’ ds ( ) ' dt 2,9 6
Thus, att =9,
dy dyduds 1 1 2
—=———=|—]12)(z)=—-=. 4
dt dudsdt ( 3)( )(6> 3

Example 7 Gravel is being poured by a conveyor onto a conical pile at the constant
rate of 607t cubic feet per minute. Frictional forces within the pile are such that the
height is always two-thirds of the radius. How fast is the radius of the pile changing at
the instant the radius is 5 feet?

SOLUTION  The formula for the volume V of a right circular cone of radius r and
height h is

V = %m’zh.
However, in this case we are told that h = %r, and so we have
_ 2 3

Since gravel is being poured onto the pile, the volume, and hence the radius, are
functions of time t. We are given that dV /dt = 607 and we want to find dr/dt at the
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instant r = 5. Differentiating (x) with respect to t by the chain rule, we get

dv. dvdr s o dr
G a6
Solving for dr/dt and using the fact that dV /dt = 607, we find that
dr  180r 90

dt — 27r2  y2
Whenr =5,
dr _ 90 90

— =— =—=236.

dt (52 25
Thus, the radius is increasing at the rate of 3.6 feet per minute at the instant the radius
isbfeet. O

So far we have worked entirely in Leibniz’s notation. What does the chain rule
look like in prime notation? Let’s go back to the beginning. Once again, let y be a
differentiable function of u: say

y = f(u).
Let u be a differentiable function of x: say
u = g(x).

Then

y = f(u)= (@) = (f o9)(x)
and, according to the chain rule (as yet unproved),

dy _ dydu
dx  dudx’
Since
dy _ d _ / dy _ f/ Y dU —
G = Rl =(fogy(), o =1W="10ex). 5 =90
the chain rule can be written
(3.5.5) (fog)(x) = f'(g(x)) g'(x).

The chain rule in prime notation says that

““the derivative of a composition f o g at x is the derivative of f at g(x) times the
derivative of g at x””

In Leibniz’s notation the chain rule appears seductively simple, to some even

obvious. “After all, to prove it, all you have to do is cancel the du’s”:
dy dy dd
dx — dd dx’

Of course, this is just nonsense. What would one cancel from

(fog)(x) = t'(g(x)g'(x)?

Although Leibniz’s notation is useful for routine calculations, mathematicians generally
turn to prime notation where precision is required.

137
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Itis time for us to be precise. How do we know that the composition of differentiable
functions is differentiable? What assumptions do we need? Under what circumstances

is it true that

(fog)(x) = t'(g(x)g'(x)?

The following theorem provides the definitive answer.

THEOREM 3.5.6 THE CHAIN-RULE THEOREM

If g is differentiable at x and f is differentiable at g(x), then the composition
f o g is differentiable at x and

(fog)(x) = f(g(x))g'(x).

A proof of this theorem appears in the supplement to this section. The argument is
not as easy as “canceling” the du’s.
One final point. The statement

is often written

EXERCISES 3.5

(fog)(x) = f(g(x)g'(x)

d
ax LT O] = F(g(x)g' ().

Exercises 1-6. Differentiate the function: (a) by expanding be-
fore differentiation, (b) by using the chain rule. Then reconcile
your results.
1y =(x>+1>
3.y =(2x+1)°.
5.y =(x+x1)2

2.y = (x8 =172
4,y = (x> +1)>%
6. y = (3x% — 2x)2.
Exercises 7-20. Differentiate the function.

7. f(x) = (1 —2x)"L. 8. f(x) = (1 + 2x)°.

1\?
10. f(x):(x2+ﬁ).

1 4

14. f(t) = (t —t?)5.

4x + 3\
16. f(x) = (5x—2> .

9. f(x) = (x5 —x10)%,
1 4
11. f(x) = (x — ;) .
13. f(x) = (x — x3 +x%)%

15. f(t) = (t71 +t=2)%

4
17. f(x) = (Xf—il) .

18. f(x) = [(2x + 1)? + (x + 1)?].

3 2 -1
19, f(x):(x—+x—+5) .

3 2 1
20. f(x) = [(6x + x5)~1 + x]2.

Exercises 21-24. Find dy/dx at x = 0.

21y u=2x+1

T 1+u?’
1
22.y:u+a, u=(3x+1*

23y = 1_”4u, u = (5x2 + )%
24.y=ud—u+1 u= i;i
Exercises 25-26. Find dy /dt.
25.y:1;—$, u=1+x% x=2t—5.
26.y =1+U2, u:ijr—xz, X = 5t + 2.

Exercises 27-28. Find dy/dx at x = 2.
27.y =(s +3)%,s =/t =3, t =x2
1 1

8.y=——,s=t——, t=Jx.

8.y 1-5s’ > t VX

Exercises 29-38. Evaluate the following, given that

f(0)=1, f'(0)=2, f(1)=0, f'(1)=1,
fQ =1, f'(2) =1,

9(0)=2, g'(0)=1, g(1)=1. g'(1)=0,
99=1 g@ =1,

h(0)=1, h'(0) =2, h(1)=2, h'(1)=1,
h(2) =0, h'(2) =2,



29.
31.
33.
35.
37.

(f 2 9)(0). 30. (f 0 @) (D).
(f09)(2). 32. (g o £)(0).
(9o f) (D). 34.(go f)(2).
(f ohY(0). 36. (f ohog)(L).
(go f oh)(2). 38. (goh o f)(0).

Exercises 39-42. Find f”(x).

39.
40.

41.

42.

f(x) = (x3+x)*
f(x) = (x? — 5x + 2)1°,

F(x) = (1:()3.

f(x)=vx2+1 (recall that;—x[ﬁ] = %)

Exercises 43-46. Express the derivative in prime notation.

43.

45,

d
&[f(xz—kl)].

“al (5]

d [f(x)—1
46. d_x[f(x)ﬂ]

d 2
S ILTO0P + 11

Exercises 47-50. Determine the values of x for which

@

47.
49.

f/(x) = 0; (b) f'(x) > 0; (c) f'(x) < O.
f(x)=(1+x?)72 48. f(x) = (1 — x?)%
f(x) =x(1+x?)1. 50. f(x) = x(1 —x?)%.

Exercises 51-53. Find a formula for the nth derivative.

51.

53.
54.

y 1-x y 1+x

y = (a+bx)"; napositive integer, a, b constants.
= , a,b,cconstants.

y bx +c¢

Exercises 55-58. Find a function y = f(x) with the given
derivative. Check your answer by differentiation.

55.
57.

59.

60.

61.

62.

y' = 3(x% + 1)%(2x).
dy

56. y' = 2x(x? — 1).
dy

— o(x3 _ 2 — ay2(y3 2

ix 2(x° — 2)(3x%). 58. x 3X°(x7 4+ 2)°.

A function L has the property that L’(x) = 1/x for x # 0.
Determine the derivative with respect to x of L(x? + 1).

Let f and g be differentiable functions such that f’(x) =
g(x) and g’'(x) = f(x), and let

H(x) = [f ()T — [g()1*.

Find H'(x).
Let f and g be differentiable functions such that f’(x) =
g(x)and g’'(x) = — f(x), and let

T(x) = [F 1 + [90)1%

Find T'(x).
Let f be adifferentiable function. Use the chain rule to show
that:

(a) if f iseven, then f’is odd.
(b) if f isodd, then f’ is even.

63.

64.

65.

66.

67.

68.

69.

[> 70.
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The number a is called a double zero (or a zero of multiplicity
2) of the polynomial P if

P(x) = (x — a)*q(x) a@) # 0.
Prove that if a is a double zero of P, then a is a zero of both
P and P/, and P”(a) # 0.

The number a is called a triple zero (or a zero of multiplicity
3) of the polynomial P if

P(x) = (x —a)°q(x) q(a) # 0.
Prove that if a is a triple zero of P, then a is a zero of P, P’,
and P”,and P”(a) # 0.
The number a is called a zero of multiplicity k of the poly-
nomial P if

P(x) = (x —a)“q(x) q(a) # 0.
Use the results in Exercises 63 and 64 to state a theorem
about a zero of multiplicity k.

An equilateral triangle of side length x and altitude h has
area A given by

V3
A="x?
4x

and

and

and

EN
= ==,

Find the rate of change of A with respect to h and determine
this rate of change when h = 2./3.

Asairis pumped into a spherical balloon, the radius increases
at the constant rate of 2 centimeters per second. What is the
rate of change of the balloon’s volume when the radius is
10 centimeters? (The volume V of a sphere of radius r is
%m’s.)

Air is pumped into a spherical balloon at the constant rate
of 200 cubic centimeters per second. How fast is the surface
area of the balloon changing when the radius is 5 centime-
ters? (The surface area S of a sphere of radius r is 47r2.)

Newton’s law of gravitational attraction states that if two
bodies are at a distance r apart, then the force F exerted by
one body on the other is given by

k

where Kk is a positive constant. Suppose that, as a function of
time, the distance between the two bodies is given by

r(t) = 49t — 4.9t2,

where X

0<t<10.

(a) Find the rate of change of F with respect to t.

(b) Show that (F or)'(3) = —(F o r)/(7).

Set f(x) = J1—x.

(a) Use a CAS to find f/(9). Then find an equation for the
line | tangent to the graph of f at the point (9, f(9)).

(b) Use a graphing utility to display | and the graph of f in
one figure.

(c) Note that | is a good approximation to the graph of f for
x close to 9. Determine the interval on which the vertical
separation between | and the graph of f is of absolute
value less than 0.01.
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1 H ivati H ’
P> 71. Set f(x) = _ [>73. Use a CAS to express the following derivatives in f
1+ x2 notation.

(a) Use a CAS to find f’(1). Then find an equation for the @) i [f (E)] (b) i [f (XZ - 1)]
line | tangent to the graph of f at the point (1, f(1)). dx x/)| dx x2+1)]
(b) Use a graphing utility to display | and the graph of f in d f(x)
one figure. (© |10
(c) Note that | is a good approximation to the graph of f for . . Lo
x close to 1. Determine the interval on which the vertical 574' Use a CAS to find the following derivatives:

. ; d d
separation between | and the graph of f is of absolute a) — [ug(us(x))], b) — [uy(us(us(x))],
separation between (@ g Tt () g [ua(Ua(us())]

d
D (©) 1 1032 (Us(usC)]
[ 72. Use a CAS to find ™ [XZW(XZ + 1)4]. 42
xLoox [ 75. Use a CAS to find a formula for L CON!

“SUPPLEMENT TO SECTION 3.5

To prove Theorem 3.5.6, it is convenient to use a slightly different formulation of derivative.

THEOREM 3.5.7
The function f is differentiable at x iff
lim f(tz— f(x)

t—X

exists.

If this limit exists, itis f'(x).

PROOF Fix x. For each t # x in the domain of f, define

G(t) = M

Note that
f(x+h)— f(x)

G(x +h) = H

and therefore

f is differentiable at x iff rl]m?) G(x + h) exists.
The result follows from observing that
limG(x+h)=1L iff limG(t)=1L.
h—0 t—X
For the equivalence of these two limits we refer you to (2.2.6). 1

PROOF OF THEOREM 3.5.6 By Theorem 3.5.7 it is enough to show that
f(gt)) — f
i w(? X@a»

t—x

= f'(9(x))g'(x).
We begin by defining an auxiliary function F on the domain of f by setting

fy) = f(g00)
Foy =1 y—g - V79X
FEe). Y = ()



F is continuous at g(x) since

lim F(y)= lim
y—>9g(x) W) y—g(x)

y —9(x)

fly) — f(9(x))
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and the right-hand side is (by Theorem 3.5.7) f’(g(x)), which is the value of F at g(x). For

t #£ X,

fg(®) — f(9(x))
X

1= 8 ey |

1)

g(t) — g(x)
t—X

|

To see this we note that, if g(t) = g(x), then both sides are 0. If g(t) # g(x), then

fg(®) — f(9(x)

T R )

k]

so that again we have equality.

Since g, being differentiable at x, is continuous at x and since F is continuous at g(x), we

know that the composition F o g is continuous at x. Thus

lim F(g(t)) = F(g(x)) = f'(9(x)).
(- by our definition of F

This, together with (1), gives

jim L9 = OO _ 40039100 2

t—x

B PROJECT 3.5 ON THE DERIVATIVE OF u"

If n is a positive or negative integer and the function u is
differentiable at x, then by the chain rule

d . n1d
d_x[u(x)] =n[u(x)] ld—X[U(X)]v

except that, if n is negative, the formula fails at those numbers
X where u(x) = 0.
We can obtain this result without appealing to the chain rule
by using the product rule and carrying out an induction on n.
Let u be a differentiable function of x. Then

d d
S EF = 60 - u()
d d
= 060 L TOGO] + U0 < [u00)
d
= 2000 &[0}
9 uoor = L - ueor
dx T dx

d d
= u(X)&[U(X)]2 + [U(X)]ZE[U(X)]

d d
_ 2= 27
= 20 W00+ [WEOP - u(o)]
d
— 22
= 3P U]
Problem 1. Show that
d 4 5 d
G WO = 4GP - [u(ol.
Problem 2. Show by induction that
i[u(x)]n = n[u(x)]“*li[u(x)] for all positive integersn.
dx dx
Problem 3. Show that if n is a negative integer, then

d . n1d
LG0T = n[u(OT"™" —[u()]

except at those numbers x where u(x) = 0. HINT: Problem 2
and the reciprocal rule.
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M 3.6 DIFFERENTIATING THE TRIGONOMETRIC FUNCTIONS

An outline review of trigonometry—definitions, identities, and graphs—appears in
Chapter 1. As indicated there, the calculus of the trigonometric functions is simplified
by the use of radian measure. We will use radian measure throughout our work and
refer to degree measure only in passing.

The derivative of the sine function is the cosine function:

3.6.1) i(sinx)—cosx
6. Ix = .

PROOF Fix any number x. For h # 0,
sin(x +h) —sinx _ [sinx cosh + cosx sinh] — [sin x]
h N h
cosh -1 sinh

=SinNX——— 4+ COSX ——.
ho h

Now, as shown in Section 2.5
. cosh-1 . sinh
lim——=0 and lim — =1.
h—0 h h—0 h

Since x is fixed, sin x and cos x remain constant as h approaches zero. It follows that
. sin(x + h) —sinx . . cosh—1 sinh
lim = lim [ sihx —— + cosXx——

h—0 h h—0
. . cosh—-1 . sinh
=sinx | lim ——— ) 4+cosx [ lim — ).
h—0 h h—0 h

lim sin(x + h) —sinx
h—0 h

Thus

= (sinx)(0) + (cosx)(1) = cosx. I

The derivative of the cosine function is the negative of the sine function:

3.6.2) i(cosx) = —sinx
o dx N '

PROOF Fix any number x. For h # 0,
cos(x + h) = cosx cosh — sinxsinh.

Therefore
co h) —co cos x cosh — sinx sinh] — [co
lim s(x + h) SX:Iim[ S X COS sinx sinh] — [cos X]
h—0 h h—0 h
. cosh—-1 . . sinh
=cosxX | lim ——— ) —sinx { lim —
h—0 h h—0 h
= —sinx.

Example 1 To differentiate f(x) = cosx sinx, we use the product rule:
d d
f/ = —(si i —_
(x) = cos x ix (sinx) + sinx ix (cosx)

= cosx(cos x) + sinx(—sinx) = cos?x —sinx.
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We come now to the tangent function. Since tan x = sin x/ cos x, we have

d . . d
d cosx&(smx)—smx&(cosx) cos2 X + sin? x 1 ,
—(tanx) = > = 5 = ——— =secX.
dx C0S? X COS? X €0s? X

The derivative of the tangent function is the secant squared:

d 2
(3.6.3) d—x(tan X) = Sec” X.

The derivatives of the other trigonometric functions are as follows:

d
— (cotx) = — csc?
dX(co X) Csc” X,
d

(3.6.4) d—x(sec X) = sec x tanx,
d (cscx) = —cscx cotx
dx h ’

The verification of these formulas is left as an exercise.
It is time for some sample problems.

Example 2 Find f'(r/4) for f(x) = x cotx.
SOLUTION Wk first find f’(x). By the product rule,
d d
/ oy e - _ 2
f (x)_xdx(cotx)+cotxdx(x) X CSC” X + cOot X.
Now we evaluate f’ at 7r/4:

f/(rr/4) = —%(ﬁ)2 f1=1- % a

Example 3 Find a4 [l_ﬂ}
dx tan x

SOLUTION By the quotient rule,

tan? x
tan x (— sec x tan x) — (1 — sec x)(sec? x)
- tan? x
sec x(sec? x — tan? x) — sec? x
tan? x
secx —sec’x  secx(l — secx)
tan? x - tan? x

dx -

d d
i 1 _ secx tanxd—x(l—secx)—(1—secx)d—x(tanx)
tan x

(sec?x — tan?x = 1) —

Example 4 Find an equation for the line tangent to the curve y = cos x at the point
where X = 7/3.

143
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SOLUTION  Since cosm/3 = 1/2, the point of tangency is (ir/3, 1/2). To find the
slope of the tangent line, we evaluate the derivative
dy

—— = —sinx
dx

at x = /3. This gives m = —+/3/2. The equation for the tangent line can be written
1 \/§ T
y-3=-7 (x-3) -
Example 5 Set f(x) = x + 2sinx. Find the numbers x in the open interval (0, 2r)
at which (a) f'(x) =0, (b) f'(x) >0, (c) f'(x) <O0.

SOLUTION The derivative of f is the function

f'(x) = 1+ 2cosx.

The only numbers in (0, 27) at which f/(x) = 0 are the numbers at which cos x = —% :
x = 2 /3 and x = 47 /3. These numbers separate the interval (0, 2) into three open
subintervals (0, 27t/3), (270 /3, 47 /3), (47 /3, 27r). On each of these subintervals f’

keeps a constant sign. The sign of f’ is recorded below:

signoff’" ++++++++0----—-—-— O++++++++

0 2n/3 4n/3 2n
Answers:

(@ f'(x)=0atx =2x/3and x = 4x/3.

(b) f'(x) > 0on (0,27 /3) U (47/3, 21).

(c) f'(x) <0on(2n/3,4n/3). 1

The Chain Rule Applied to the Trigonometric Functions

If f isadifferentiable function of u and u is a differentiable function of x, then, as you
saw in Section 3.5,

d d du ,du
d_x[f(x)] = m[f(u)]d_x = f (u)d_x'

Written in this form, the derivatives of the six trigonometric functions appear as follows:

d (sinu)—cosudu d (cosu) = sinudu
dx N dx’ dx N dx’
d du d du
3.65 — = sec’u— — — —csciu—
( ) dX(tanu) sec udx’ dX(cotu) csc udx’
i(secu) = secu tan ud—u i(cscu) = —cscucotud—u
dx N dx’ dx N dx’

Example 6 g
d—X(cos 2X) = —sin 2xd—X(2x) = —-2sin2x. 4

Example 7
d 2 _ 2 2 d 2
d—X[sec(x + 1)] = sec(x” + 1) tan(x“ + 1)d_x(x +1)
= 2xsec(x®> + 1) tan(x®> +1). 0



Example 8
d - 3 _ d - 3
a(sm TX) = &(sm 7TX)

d
= 3(sin nx)zd—x(sin X)

= 3(sin7x)? cos wx ;—X(nx)
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= 3(sinwx)?coswx(rr) = 3w sin x cosx. [

Our treatment of the trigonometric functions has been based entirely on radian
measure. When degrees are used, the derivatives of the trigonometric functions contain

the extra factor 1%'0;1 = 0.0175.

Example 9 Find 0:]l—x(sin x°).

SOLUTION  Since x° = %7 radians,

d , . d .
d—x(sm X°) = d—x(sm 7557TX) = 78577 COS

1 o
mTFCOSX . ;|

The extra factor ﬁn is a disadvantage, particularly in problems where it occurs
repeatedly. This tends to discourage the use of degree measure in theoretical work.

EXERCISES 3.6

Exercises 1-12. Differentiate the function.

1.y =3cosx —4secx. 2.y = X% secx.
3.y =x3cscx. 4.y =sin’x.
5.y = cos?t. 6.y = 3t?tant.
7.y =sin* V. 8.y =ucscu?.
9.y =tanx?. 10. y = cos /X.
11. y = [x + cotwx]*. 12. y = [x% — sec 2x]°.
Exercises 13-24. Find the second derivative.
13. y =sinx. 14. y = cosX.
15. y = cosx 16. y = tan® 27 x.
1+sinx
17. y = cos® 2u. 18. y = sin®3t.
19. y =tan2t. 20. y = cot4u.
sinx
21. y = x?sin3x. 2.y=——.

y y 1 —cosx
23.y = sin®x + cos? x. 24,y =sec® x — tan’ x.
Exercises 25-30. Find the indicated derivative.

4 4
25. ——(sinx). 26. — .
5 OIX4(smx) 6 dX4(cosx)

d d? d[ d
27. — [t2——(tcos3t)|. 28. — [t—(cost?)|.

gt [Catean] 2 i)

d . d .
29. &[f(sm 3x)]. 30. &[Sln(f(Sx))].

Exercises 31-36. Find an equation for the line tangent to the
curve at the point with x coordinate a.

3l.y=sinx; a=0. 32.y=tanx; a=m/6.
33.y=cotx; a=mn/6. 34.y=cosx; a=0.
35.y=secx; a=umxn/4 36.y=cscx; a=umx/3.

Exercises 37-46. Determine the numbers x between 0 and 27
where the line tangent to the curve is horizontal.

37.y = cosX. 38. y =sinx.
39. y =sinx + +/3cosx. 40. y = cosx — +/3sinx.
41. y =sin?x. 42.y = cos? X.

43. y =tanx — 2x.

45. y = 2secx +tanx.
Exercises 47-50. Find all x in (0, 27) at which (a) f’(x) = 0;
(b) f'(x) > 0; (c) f'(x) <O.
47. f(X) = x + 2cosX.

49. f(x) =sinXx + cosx.
Exercises 51-54. Find dy/dt (a) by the chain rule and (b) by
writing y as a function of t and then differentiating.

51.y =u®—1, u=secx, x = xt.

52.y =[3(1 +u)l®, u=cosx, x = 2t.

53.y =[3(1—u)]*, u=cosx, x = 2t.

54.y =1—u? u=cscx, x = 3t.

44. y = 3cotx + 4x.
46. y = cotx — 2cscX.

48. f(x) = x —+/2sinx.
50. f(x) =sinx — cosx.



146 m CHAPTER 3 THE DERIVATIVE; THE PROCESS OF DIFFERENTIATION

55.

56.

57.

58.

59.

60.

It can be shown by induction that the nth derivative of the
sine function is given by the formula

(—1)"-D/2¢cosx,
(—=1)"2sinx,

n odd

dxn n even.

ﬂ(sin X) = :

Persuade yourself that this formula is correct and obtain a
similar formula for the nth derivative of the cosine function.

Verify the following differentiation formulas:

d
(a) &(cotx) = —cse? X.
(b) dd—x(sec X) = secx tan x.

d
c) —(cscx) = —Ccsc X cot .
(©) g (ese)
Use the identities
LT . T
cosX = sin (E — x) and sinx = cos <§ — x)

to give an alternative proof of (3.6.2).
The double-angle formula for the sine function takes the
form:sin2x = 2sin x cos x. Differentiate this formulato ob-
tain a double-angle formula for the cosine function.
Set f(x) = sin x. Show that finding f’(0) from the definition
of derivative amounts to finding

sinx

lim —.
x—=0 X

(see Section 2.5)

Set f(x) = cosx. Show that finding f’(0) from the defini-
tion of derivative amounts to finding
. cosx—1
lim ———.

x—0

Exercises 61-66. Find a function f with the given derivative.
Check your answer by differentiation.

61.
62.
63.
64.
65.
66.

67.

68.

f’(x) = 2cosx — 3sinx.

f/(x) = sec? x — csc? x.

f’(x) = 2cos2x + sec x tan x.

f’(x) = sin3x — csc 2x cot 2x.

f/(x) = 2x cos(x?) — 25sin 2x.

f/(x) = x2sec?(x®) + 2 sec 2x tan 2x.

xsin(1/x),
0,

In Exercise 62, Section 3.1, you were asked to show that f

is continuous at 0 but not differentiable there, and that g is
differentiable at 0. Both f and g are differentiable at each

X # 0.

(a) Find f’(x) and g’(x) for x # 0.

(b) Show that g’ is not continuous at 0.
x>0

x < 0.

Set (x) = { XZ0 andg(x) = xf(x).

COS X,
Set f(x) = [ax b
(a) For what values of a and b is f differentiable at 0?
(b) Using the values of a and b you found in part (a), sketch
the graph of f.

69.

70.

71.

72.

73.

74.

[> 75.

_ sinx, 0<x<27/3
Setg(x) = {ax +b, 27/3 <x <27
(a) For what values of a and b is g differentiable at 277 /3?
(b) Using the values of a and b you found in part (a), sketch
the graph of g.
| 1+acosx, x<m/3
Set f(x) = {b Fsin(x/2). X > /3.
(a) For what values of a and b is f differentiable at 7z /3?
(b) Using the values of a and b you found in part (a), sketch
the graph of f.

Let y = Asinwt + B coswt where A, B, w are constants.
Show that y satisfies the equation
d?y 2

A simple pendulum consists of a mass m swinging at the
end of a rod or wire of negligible mass. The figure shows a
simple pendulum of length L. The angular displacement 6
at time t is given by a trigonometric expression:

0(t) = Asin(wt + ¢)

where A, w, ¢ are constants.

(a) Show that the function 6 satisfies the equation

d
(Except for notation, this is the equation of Exercise 71.)
(b) Show that 6 can be written in the form

o(t) = Asinwt + B cos wt

where A, B, w are constants.

An isosceles triangle has two sides of length c. The angle
between them is x radians. Express the area A of the trian-
gle as a function of x and find the rate of change of A with
respect to x.

A triangle has sides of length a and b, and the angle between
them is x radians. Given that a and b are kept constant, find
the rate of change of the third side c with respect to x. HINT:
Use the law of cosines.

Let f(x) = coskx, k a positive integer. Use a CAS to find

dn

(@ g F0ol,

(b) all positive integers m for which y = f(x) is a solution
of the equation y” + my = 0.

. UseaCAStoshowthaty = Acos+/2x + B sin+/2x isaso-

lution of the equation y” + 2y = 0. Find A and B given that
y(0) = 2 and y’(0) = —3. Verify your results analytically.
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977. Let f(x) =sinx —cos2x for0 < x < 2rx. b Exercises 79-80. Find an equation for the line | tangent to the
() Use a graphing utility to estimate the points on the graph ~ 9raph of  at the point with x-coordinate c. Use a graphing util-
where the tangent is horizontal. ity to display | and the graph of f in one figure. Note that | is a
(b) Use a CAS to estimate the numbers x at which f/(x) = 0. good approximation to the graph of f for x close to c. Determine
(c) Reconcile your results in (a) and (b). the interval on which the vertical separation between | and the
graph of f is of absolute value less than 0.01.
[> 78. Exercise 77 with f(x) = sinx — sin®x for 0 < x < 2. 79. f(x) =sin x; ¢ =0. 80. f(x) =tan x; ¢ = /4.

M 3.7 IMPLICIT DIFFERENTIATION; RATIONAL POWERS

Up to this point we have been differentiating functions defined explicitly in terms of an
independent variable. We can also differentiate functions not explicitly given in terms
of an independent variable.

Suppose we know that y is a differentiable function of x and satisfies a particular
equation in x and y. If we find it difficult to obtain the derivative of y, either because the
calculations are burdensome or because we are unable to express y explicitly in terms
of x, we may still be able to obtain dy/dx by a process called implicit differentiation. -1 | 1 X

This process is based on differentiating both sides of the equation satisfied by x and y. y=r1-»
Figure 3.7.1
Example 1T We know that the function y = +/1 — x2 (Figure 3.7.1) satisfies the °
equation y
x> +y?=1 (Figure 3.7.2)
We can obtain dy/dx by carrying out the differentiation in the usual manner, or we can
do it more simply by working with the equation x? 4 y? = 1.
Differentiating both sides of the equation with respect to x (remembering that y is (10 10

a differentiable function of x), we have -
d , , d, , d
ax ") T g ) = @ /
dy
2x4+2y— =0
X + ydx

—— X +y?=1
T (by the chain rule) Figure 3.7.2
dy X N
dx — y’

We have obtained dy /dx interms of x and y. Usually this is as far as we can go. Here

we can go further since we have y explicitly in terms of x. The relation y = +/1 — x?2
gives

dy X

dx  J1-—x2
Verify this result by differentiating y = +/1 — x2. in the usual manner. [
Example 2 Assume that y is a differentiable function of x which satisfies the given
equation. Use implicit differentiation to express dy/dx in terms of x and y.

(@2x%y —y*+1=x+2y. (b)cos(x —y) = (2x + 1)*y.

SOLUTION
(a) Differentiating both sides of the equation with respect to x, we have
dy dy dy
22y a2y _ et
xdx+4xy 3y ix 1+2dx
————
i) 1

(by the product rule) (by the chain rule)

(2x?% — 3y? — 2)g—§ =1 —4xy.
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Therefore
dy 1—4xy
dx  2x2—3y2 -2
(b) We differentiate both sides of the equation with respect to x:

. dy s dy 2
— — 1—-—1=(2 1°— + 3(2 1)%(2
sinfi — ) |1 £ | = @+ 175 + 3x-+ D7)y
(by the chain rule) 1 d
[sin(x —y) — (2x + 1)3]d—)): = 6(2x + 1)%y +sin(x — ).
Thus
, dy  6(2x +1)?y +sin(x —y)
dx — sin(x —y)—(2x +1)3 °
2L
1,2 Example 3 Figure 3.7.3 shows the curve 2x3 + 2y® = 9xy and the tangent line at
\( the point (1, 2). What is the slope of the tangent line at that point?
[ L1
=3 2 -1 12 3 X SOLUTION We wantdy/dx where x = 1and y = 2. We proceed by implicit differ-
entiation:
2L 2 ,dy dy
6 6y"— =9x—+9
X° + 6y dax de + 9y
2¢ +2y = 9y 2x2 +2y2d—y = 3xd—y + 3y.
Figure 3.7.3 dx dx
Setting x = 1l and y = 2, we have
dy _dy dy dy 4
24+48-2=3-2416 5-7 —4 y_z
+ dx dx +o dx ' dx 5

The slope of the tangent line at the point (1, 2) is4/5. 1
We can also find higher derivatives by implicit differentiation.
Example 4 The function y = (4 + x?)%/3 satisfies the equation
yP —x% =4,
Use implicit differentiation to express d2y/dx? in terms of x and y.
SOLUTION Differentiation with respect to x gives

(*) Zd_y — 2% =
3y ix x =0.
Differentiating again, we have

d /dy dy\ d
2 Y (YUY N E a2y o
3y dx (dx) + <dx) dx(3y )-2=0

(by the product rule) )
d?y dy\?

dx
Since () gives
dy  2x
dx ~ 3y?’
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we have
2

d<y 2x \?
2— _— — =
3y Ix? + 6y (3y2) 2=0.

As you can check, this gives

d?y  6y® —8x? .
dx2 ~ 9y5
Remark  If we differentiate x> + y2 = —1 implicitly, we find that
dy dy X
2 2y— =0 d theref — = ——.
X+2y and therefore  —— y

However, the result is meaningless. It is meaningless because there is no real-valued
function y of x that satisfies the equation x? + y?> = —1. Implicit differentiation can be
applied meaningfully to an equation in x and y only if there is a differentiable function
y of x that satisfies the equation.

Rational Powers
You have seen that the formula

d ny __ n-1
dx(x ) = nx

holds for all real x if n is a positive integer and for all x = 0 if n is a negative integer.
For x # 0, we can stretch the formula to n = 0 (and it is a bit of a stretch) by writing

d o _d 0 oyl
&(x)_&(l)_O_OX .

The formula can then be extended to all rational exponents p/q:

d p
3.7.1 = (xP/ay — Ey(p/a)-1
( ) dX (X ) q X

The formula applies to all x # 0 where xP/9 is defined.

DERIVATION OF (3.7.1) We operate under the assumption that the function y = x/9 is
differentiable at all x where x*/9 is defined. (This assumption is readily verified from
considerations explained in Section 7.1.)
From y = x'/9 we get
y9 =x.

Implicit differentiation with respect to x gives

dy
-1-7 _1
ay dx
and therefore
y _Loa_ tiaam - Liwer,
dx g q q

So far we have shown that

d vay_ L am
dx(x )_qx .

The function y = xP/9 is a composite function:

y = xP/4 = (xl/9yP,

149
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Applying the chain rule, we have

dx
as asserted. [

1
dy _ p(xl/q)p_l;_x(xl/q) _ pX(p_l)/an(l/q)_l _ apx(p/q)_l

Here are some simple examples:
d , d d
/3y _ 2,-1/3 5/2y __ 5.3/2 —7/9\ _ _7,-16/9

If u is a differentiable function of x, then, by the chain rule

d p du
3.7.2 — (uP/9y = (p/a)-1--
G712 dx e q . dx

The verification of this is left to you. The result holds on every open x-interval where
u(P/9-1 js defined.

Example 5

(a);—x[(l + x5 = (1 + x2) 45 (2x) = Ex(1 + x?)~5.

d
(0) 5 [(L — ¥ = B(1 = x?)73(-20) = —4x(1 — x?) 7.
d
(©) g [0 =X = G0 = x?) 34 (=2x) = —3x(1 = x?) %%
The first statement holds for all real x, the second for all x # £1, and the third only for
xe(=1,1). O

Example 6

d X 12 1 X -2 g X
dx <1+x2> :§<1+x2> d_x<1+x2>

L x TP+ x3)(1) - x(2x)

S 2\1+x2 (1 + x2)2

1 /14x2\"? 1%

) X (14 x2)2

B 1—x?

- 2X1/2(1+X2)3/2.

The result holds forall x > 0. O

EXERCISES 3.7
Preliminary note. In many of the exercises below you are asked 1. x24+y2=4. 2.x34+y®—3xy =0.
to use implicit differentiation. We assure you that in each case 3. 4x2 4 9y? = 36. 4. X+ Sy =4
there is a function y = y(x) that satisfies the indicated equation 5. x* + 4x%y 4y = 1. 6.x2 — X2y + xy? + Y2 = 1.

and has the requisite derivative(s).

Exercises 1-10. Use implicit differentiation to express dy/dx 7.(x—y?-y=0. 8. (y +3x)? —4x = 0.
in terms of x and y. 9.sin(x +y) = xy. 10. tanxy = xy.



Exercises 11-16. Express d2?y/dx? in terms of x and y.
11. y? 4+ 2xy = 16. 12. x% — 2xy +4y%? = 3.
13. y?2 4+ xy —x? =9, 14. x2 — 3xy = 18.

15. 4tany = x3. 16. sin?x 4 cos?y = 1.

Exercises 17-20. Evaluate dy/dx and d2y/dx? at the point in-
dicated.

17.x2 -4y =9; (5,2).

18. X2 +4xy +y3 +5=0; (2, -1).

19. cos(x +2y) =0; (x/6, 7/6).

20. x =sin’y; (3, 7/4).

Exercises 21-26. Find equations for the tangent and normal lines
at the point indicated.

21.2x +3y =5; (-2,3).

22.9x2 +4y?> =72; (2,3).

23. x2 +xy +2y?=28; (—2,-3).
24. x3 —axy + 3ay? =3a% (a,a).

25.x =cosy; (3.%).
26. tanxy =x; (1, %).

Exercises 27-32. Find dy/dx.
27.y = (x3 + 1)¥2,

29.y = v/2x2 + 1. 30. y = (x + 1)3(x 4 2)%/3,
3Ly=+v2-x2/3—-x2. = 32.y=,(x"—x+1)°

Exercises 33-36. Carry out the differentiation.

d 1 d [3x +1
2
35.1<L>. 36.i< X H).
dx X2+ 1 dx X

37. (Important) Show the general form of the graph.
(@) f(x) =xY", napositive even integer.
(b) f(x) =x¥", n apositive odd integer.
(¢) f(x) =x%", nanodd integer greater than 1.
Exercises 38—42. Find the second derivative.

28.y = (x + )3,

38.y = a2+ x2, 39. y = Ja + bx.
40. y = x+/a? — x2. 41,y = /Xtan V/X.
42,y = /X sin/X.

43. Showthatall normalsto the circle x2 + y? = r? pass through
the center of the circle.

44, Determine the x-intercept of the tangent to the parabola
y% = x at the point where x = a.
The angle between two curves is the angle between their tangent

lines at the point of intersection. If the slopes are m; and mj,
then the angle of intersection « can be obtained from the formula

Mz — My
1+mim,

tana = ‘

45. At what angles do the parabolas y? = 2px + p? and
y% = p? — 2px intersect?
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46. At what angles does the line y = 2x intersect the curve
x% — xy + 2y? = 28?

47. The curves y = x? and x = y* intersect at the points (1, 1)
and (0, 0). Find the angle between the curves at each of these
points.

48. Find the angles at which the circles (x — 1)> + y? = 10 and
X2 + (y — 2)? = 5 intersect.

Two curves are said to be orthogonal iff, at each point of inter-

section, the angle between them is a right angle. Show that the

curves given in Exercises 49 and 50 are orthogonal.

49. The hyperbola x? — y2 = 5and the ellipse 4x% + 9y? = 72.
50. The ellipse 3x? 4 2y? = 5and y® = x2.

HINT: The curves intersect at (1, 1) and (—1, 1)
Two families of curves are said to be orthogonal trajectories (of
each other) if each member of one family is orthogonal to each

member of the other family. Show that the families of curves
given in Exercises 51 and 52 are orthogonal trajectories.

51. The family of circles x? + y? = r? and the family of lines
y = mx.

52. The family of parabolas x = ay? and the family of ellipses
x24+ 1y =h.

53. Find equations for the lines tangent to the ellipse
4x%> +y?> =72 that are perpendicular to the line
X+2y+3=0.

54. Find equations for the lines normal to the hyperbola
4x% — y2 = 36 that are parallel to the line 2x + 5y — 4 = 0.

55. The curve (x2 + y?)? = x? — y? is called a lemniscate. The
curve is shown in the figure. Find the four points of the curve
at which the tangent line is horizontal.

1,0 (1,0 X

56. The curve x?/3 + y?/3 = a?/3 is called an astroid. The curve
is shown in the figure.
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(a) Find the slope of the graph at an arbitrary point (x1, y1),
which is not a vertex.

(b) At what points of the curve is the slope of the tangent
line 0, 1, —1?

57. Show that the sum of the x- and y-intercepts of any line
tangent to the graph of

xY/2 4 ylz — ¢l/2

is constant and equal to c.

[> 60.

bExercises 61 and 62. Use a graphing utility to determine where

61.

[>63.

Exercise 59 with f(x) = 3v/x2.

@ f'x)=0; () f'(x) >0; (c) f'(x) <0,
. X241
f(x) = xv/x2 + 1. 62. f(x) = o

A graphing utility in parametric mode can be used to graph
some equations in x and y. Draw the graph of the equation

58. A circle of radius 1 with center on the y-axis is inscribed x2 + y? = 4firstby setting x =t, y = /4 — t? and then by
in the parabola y = 2x2. See the figure. Find the points of settingx =t,y = —v/4 —t2,
contact. [> Exercises 64-67. Use a CAS to find the slope of the line tangent
y to the curve at the given point. Use a graphing utility to draw the
curve and the tangent line together in one figure.
64. 3x2 +4y2 =16; P(2,1).
65. 4x2 — y?2 =20; P(3,4).
\ 66. 2siny —cosx =0; P(0, x/6).
1
(0, a) 67. VX2 +Jy2 =4; P(1,3V3).
b68. (a) Use a graphing utility to draw the graph of the equation
x3 +y3 = 6xy.
L 5 (b) Use a CAS to find equations for the lines tangent to the
y=2x curve at the points where x = 3.
(c) Draw the graph of the equation and the tangent lines in
X one figure.
69. (a) Use a graphing utility to draw the figure-eight curve
[>59. Set f(x) = 3¥/x. Use a CAS to [>69. (@) graphing y4 , g g
. f(h) — f(0) Xt =x—y°.
(@) Findd(h) = ———=. ) . .
. . . (b) Find the x-coordinates of the points of the graph where
(b) Find lim d(h) and lim d(h). the tangent line is horizontal.
() Is there a tangent line at (0, 0)? Explain. [>70. Use a graphing utility to draw the curve (2 — x)y? = x°.
(d) Use a graphing utility to draw the graph of f on[-2, 2]. Such a curve is called a cissoid.
l CHAPTER 3. REVIEW EXERCISES
Exercises 1-4. Differentiate by taking the limit of the appropri- _ 2 3 _sin2x
ate difference quotient. 17. h(t) = tsect® + 2t% 18.y = 14cosx’
L f(x) =x3—4x +3. 2. f(x) = vVI+2x. 19 s 323t 20. 1 — 02 /35— 0
1 ' 243t ' '
3.9(xX) = ——. 4. F(x) = xsinx. X sin 2x
X—2 21. £(0) = cot(30 + 7). 2. y="""""
(6) = cot(30 + ) V=T
Exercises 5-22. Find the derivative. Exercises 23-26. Find f’(c).
5.y =x%3 - 7253, 6.y = 2x3/4 — 4x~Y4, 23. f(X) = IX + /X, C =64
142 2 - X% c=
7.y=%. 8. (1) = (2 — 3t2)%. 24. f(x) = xv8—x2 C—Zi
) 25. f(x) = x%sinzx; c==.
1 b 6
a —3X X 26. f(x) =cot3x; c= ke
11.y = (a + %) : 12. y = x4/2 4+ 3X. Exercises 27-30. Find equations for the lines tangent and normal
X to the graph of f at the point indicated.
13. y =tan/2x + L. 14. g(x) = x2 cos(2x — 1). 27 f(X) =23 —x2+3; (L, 4).
15 F() = (X + 22VKET2. 16,y = X 28 f() = X3, (L1,-5)
R T =55 Y



29. f(x) = (x +1)sin2x; (0,0).
30. f(x) =xv/1+x%  (1,V2).
Exercises 31-34. Find the second derivative.

31. f(x) = cos (2 — X). 32. f(x) = (x2 +4)%2.
33. y = Xxsinx. 34. g(u) = tan® u.
Exercises 35-36. Find a formula for the nt" derivative.
35.y = (a—bx)". 36.y

“bx+c

Exercises 37-40. Use implicit differentiation to express dy/dx

in terms of x and y.

37. x%y +xy =2. 38. tan (x + 2y) = x?y.

39. 2x3 + 3x cosy = 2xy. 40. x2 4 3x /Y = 1+ X/y.

Exercises 41-42. Find equations for the lines tangent and normal

to the curve at the point indicated.

41. x> +2xy —3y? =9; (3,2).

42.ysin2x —xsiny = 7, (37, 3n).

Exercises 43-44. Find all x at which (a) f’(x) = 0;

(b) f'(x) > 0; (c)f'(x) <O.

43. f(x) = x® — 9x2 + 24x + 3.

2X
44, f = —-.
) 1+ 2x2

Exercises 45-46. Find all x in (0, 27) at which (a) f’(x) = 0;

(b) f'(x) >0; (c)f’'(x) <O.

45, f(x) = x +sin2x 46. f(x) = +/3x — 2COS X.

47. Find the points on the curve y = 3x%?2 where the inclination
of the tangent line is (a) /4, (b) 60°, (c) /6.

48. Find equations for all tangents to the curve y = x3 that pass
through the point (0, 2).

49. Find equations for all tangents to the curve y = x3 — x that
pass through the point (—2, 2).

50. Find A, B, C given that the curve y = Ax?+ Bx +C
passes through the point (1, 3) and is tangent to the line
X —y + 1 =0 at the point (2, 3).

51. Find A, B, C, D given that the curve y = Ax3 + Bx? +
Cx + D is tangent to the line y = 5x — 4 at the point (1, 1)
and is tangent to the line y = 9x at the point (—1, —9).
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52. Show that d /dx(x ") = —n/x"*! for all positive integers n
by showing that

i 171 17 n
h—oh [ (x+h)M  xn |  xn+l’

Exercises 53-57. Evaluate the following limits. HINT: Apply
either Definition 3.1.1 or (3.1.5).

(L+h2—21+h)+1

53. lim
h—0 h
P 1
v — sin (3 h)— 3
54. lim M 55. lim &
h—0 h h—0 h
5_32 i
56. lim > . 57. lim —%
x—2 X —2 X—=>1 X — I

58. The figure is intended to depict a function f which is con-
tinuous on [xg, co) and differentiable on (o, 00).

1
1
1
:
c d

e
1
1
1
1
.
b

QO f==-===

For each x € (o, co) define
M (x) = maximum value of f on [xo, X].
m(x) = minimum value of f on [xo, X].
a. Sketchthegraphof M and specify the number(s) at which
M fails to be differentiable.

b. Sketch the graph of m and specify the number(s) at which
m fails to be differentiable.
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M 4.1 THE MEAN-VALUE THEOREM

We come now to the mean-value theorem. From this theorem flow most of the results
that give power to the process of differentiation.

THEOREM 4.1.1 THE MEAN-VALUE THEOREM

If f is differentiable on the open interval (a, b) and continuous on the closed
interval [a, b], then there is at least one number c in (a, b) for which
f(b) — f(a)
f'(c) = ———.
(©) b_a

Note that for this number
f(b) — f(a) = f'(c)(b —a).
The quotient
f(b) — f(a)
b—a
is the slope of the line | that passes through the points (a, f(a)) and (b, f(b)). To say
that there is at least one number ¢ for which
f(b) — f(a)
f'(c) = ———=
(©) b a
is to say that the graph of f has at least one point (c, f(c)) at which the tangent line is
parallel to the line I. See Figure 4.1.1.

TThe theorem was first stated and proved by the French mathematician Joseph-Louis Lagrange (1736-1813).
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\§
Kaﬂ%e“

(b, f(b))

Figure 4.1.1

We will prove the mean-value theorem in steps. First we will show that if a function
f has a nonzero derivative at some point Xg, then, for x close to xp, f(x) is greater than
f (Xo) on one side of xqg and less than f (o) on the other side of Xg.

THEOREM 4.1.2

Suppose that f is differentiable at xq. If /(o) > 0, then
f(xo —h) < f(x0) < f(xo+h)

for all positive h sufficiently small. If f’(xo) < 0, then
f(xo —h) > f(xo) > f(xo+h)

for all positive h sufficiently small.

PROOF We take the case f’(xg) > 0 and leave the other case to you. By the definition
of the derivative,

li
k—0

im f(xo+k|2 — f(Xo) — (o).

With f’(xo) > 0 we can use f’(Xo) itself as € and conclude that there exists § > 0 such

that

f (o + k) — f(Xo)
k

if 0 < |kl <8, then — f'(x0)| < f'(x0).

For such k we have
f(xo + k) — f(xo)

—f'(x0) < — f'(x0) < f'(Xo)

k
and thus
oo 1ot 0=10D o )
In particular,
" f(Xo + k) — f(xo) ~o.

k
We have shown that (%) holds for all numbers k which satisfy the condition
0< |kl <é.1f0O<h<é,then0 < |h] <§and 0 < | — h| < &. Consequently,
f(Xo+h)—f(X0)>0 and f(Xo—h)—f(Xo)>

0.
h —h

1585
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a

C

Figure 4.1.2

tangent

b

The first inequality shows that
f(xog+h)— f(xg) >0 and therefore f(xo) < f(xo+ h).
The second inequality shows that

f(xo—h)— f(x0) <0 and therefore f(xo—h) < f(Xp). 4

Next we prove a special case of the mean-value theorem, known as Rolle’s theorem
[after the French mathematician Michel Rolle (1652-1719), who first announced the
result in 1691]. In Rolle’ theorem we make the additional assumption that f(a) and
f (b) are both 0. (See Figure 4.1.2.) In this case the line through (a, f(a)) and (b, f (b))
is horizontal. (It is the x-axis.) The conclusion is that there is a point (c, f(c)) at which
the tangent line is horizontal.

THEOREM 4.1.3 ROLLE'S THEOREM

Suppose that f is differentiable on the open interval (a, b) and continuous on
the closed interval [a, b]. If f(a) and f(b) are both 0, then there is at least one
number c in (a, b) for which

f/(c) = 0.

prooF If f is constantly O on [a, b], then f’(c) = 0 for all ¢ in (a, b). If f is not con-
stantly O on [a, b], then f takes on either some positive values or some negative values.
We assume the former and leave the other case to you.

Since f is continuous on [a, b], f must take on a maximum value at some point
¢ of [a, b] (Theorem 2.6). This maximum value, f(c), must be positive. Since f(a)
and f(b) are both 0, ¢ cannot be a and it cannot be b. This means that ¢ must lie in
the open interval (a, b) and therefore f’(c) exists. Now f’(c) cannot be greater than
0 and it cannot be less than 0 because in either case f would have to take on values
greater than f(c). (This follows from Theorem 4.1.2.) We can conclude therefore that
f'(c)=0. O

Remark Rolle’s theorem is sometimes formulated as follows:

Suppose that g is differentiable on the open interval (a, b) and continuous on
the closed interval [a, b]. If g(a) = g(b), then there is at least one number ¢
in (a, b) for which

g'(c) = 0.

That these two formulations are equivalent is readily seen by setting f (x) = g(x) — g(a)
(Exercise 44). 1

Rolle’s theorem is not just a stepping stone toward the mean-value theorem. Itis in
itself a useful tool.

Example 1 We use Rolle’s theorem to show that p(x) = 2x2 + 5x — 1 has exactly
one real zero.
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SOLUTION  Since p is a cubic, we know that p has at least one real zero (Exercise 29,
Section 2.6). Suppose that p has more than one real zero. In particular, suppose that
p(a) = p(b) = 0 where aand b are real numbers and a # b. Without loss of generality,
we can assume that a < b. Since every polynomial is everywhere differentiable, p is
differentiable on (a, b) and continuous on [a, b]. Thus, by Rolle’s theorem, there is a
number c in (a, b) for which p’(c) = 0. But

p(x)=6x>+5>5  forallx,

and p’(c) cannot be 0. The assumption that p has more than one real zero has led to a
contradiction. We can conclude therefore that p has only one real zero.

We are now ready to give a proof of the mean-value theorem.

PROOF OF THE MEAN-VALUE THEOREM W create a function g that satisfies the conditions
of Rolle’s theorem and is so related to f that the conclusion g’(c) = 0 leads to the

conclusion
£(0) = f(bg - f(a)‘ . (b, (b))
—a
The function (a, f(a
f(b) — f(a |
mmzfm—[ll—ila—m+f@}
b—a a X b
Figure 4.1.3

is exactly such a function. A geometric view of g(x) is given in Figure 4.1.3. The line
that passes through (a, f(a)) and (b, f (b)) has equation

y = M(x —a)+ f(a).

[This is not hard to verify. The slope is right, and, at x = a, y = f(a).] The difference

f(b)— f
00 = 160~ | 10— P+ 162

is simply the vertical separation between the graph of f and the line featured in the
figure.

If f is differentiable on (a, b) and continuous on [a, b], then so is g. As you can
check, g(a) and g(b) are both 0. Therefore, by Rolle’s theorem, there is at least one
number c in (a, b) for which g’(c) = 0. Since

f(b)— f
g0 = 00 - 01
we have
f(b)— f
g0 = ') - 0
Since ¢g’(c) = 0,
10— (@

Example 2 The function

f(x) =+1-—x, —-1<x<1
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Figure 4.1.4

—

satisfies the conditions of the mean-value theorem: it is differentiable on (—1, 1) and
continuous on [—1, 1]. Thus, we know that there exists a number ¢ between —1 and 1
at which

f(1) - f(-1) 1
fo)= 1D 15
1-(=1 sz(l)zo, f(=1) = V2

What is ¢ in this case? To answer this, we differentiate f. By the chain rule,

1
f'(X) = ————.
®) 24/1—x
The condition f'(c) = —3+/2 gives
1 1
- =_Z2
2J/1—c 2

Solve this equation for ¢ and you’ll find that ¢ = %

The tangent line at (3, f(3)) = (3, 3+/2) is parallel to the secant line that passes
through the endpoints of the graph. (Figure 4.1.4) 1

Example 3 Suppose that f is differentiable on (1, 4), continuous on [1, 4], and
f(1) = 2. Giventhat 2 < f’(x) < 3forall xin (1,4), what is the least value that f can
take on at 4? What is the greatest value that f can take on at 4?

SOLUTION By the mean-value theorem, there is at least one number ¢ between 1 and
4 at which
f(4)— f(1) = f'(c)(4 — 1) =3f'(c).
Solving this equation for f(4), we have
f(4)= f(1)+3f'(c).
Since f’(x) > 2 for every x in (1, 4), we know that f’(c) > 2. It follows that
f(4)>24+3(2) =8.
Similarly, since f’(x) < 3 for every x in (1, 4), we know that f’(c) < 3, and therefore
f(4) <2+33) =11
We have shown that f (4) is at least 8 and no more than 11. [0
Functions which do not satisfy the hypotheses of the mean-value theorem (dif-

ferentiability on (a, b), continuity on [a, b]) may fail to satisfy the conclusion of the
theorem. This is demonstrated in the Exercises.

EXERCISES 4.1

Exercises 1-4. Show that f satisfies the conditions of Rolle’s
theorem on the indicated interval and find all numbers ¢ on the
interval for which f’(c) = 0.

1 f(x)=x3-x; [0,1].

2. f(x) =x*—2x2-8; [-2,2].

3. f(x) =sin2x; [0, 2x].

4. f(x) = x?° —2x¥3; 0, 8].

Exercises 5-10. Verify that f satisfies the conditions of the
mean-value theorem on the indicated interval and find all num-
bers c that satisfy the conclusion of the theorem.

5. f(x)=x%  [1,2].

6. f(x) =3/x —4x; [1,4].

7. f(x) =x% [1,3].

8. f(x) =x%3 [4,8].



9.
10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

f(x)=+1-x2 [0,1].
f(x)=x%-3x; [-1,1].
Determine whether the function f(x) = v/1 — x2/(3 + x?)

satisfies the conditions of Rolle’s theorem on the interval
[—1, 1]. If so, find the numbers ¢ for which f’(c) = 0.

The function f(x) = x%°% — 1 has zeros at x = —1 and at
x =1

(@) Show that f’ has no zeros in (—1, 1).

(b) Show that this does not contradict Rolle’s theorem.

Does there exist a differentiable function f with f(0) =
2, f(2) =5, and f'(x) <1 forall x in (0, 2)? If not, why
not?

Does there exist a differentiable function f with f(x) =1
onlyatx =0, 2, 3,and f'(x) = Oonlyatx = —1, 3/4, 3/2?
If not, why not?

Suppose that f is differentiable on (2, 6) and continuous on
[2,6]. Giventhat1 < f’(x) < 3forall xin (2, 6), show that

4< f(6)— f(2) < 12.

Find a point on the graph of f(x) = x? 4+ x + 3, x between
—1and 2, where the tangent line is parallel to the line through
(—1,3)and (2, 9).

Sketch the graph of

2Xx+2, x<-1

um:{

x3—x, x>-1

and find the derivative. Determine whether f satisfies the
conditions of the mean-value theorem on the interval [—3, 2]
and, if so, find the numbers c that satisfy the conclusion of
the theorem.

Sketch the graph of

2 4+ x3,
3X,

x<1
r0={2"5 5
and find the derivative. Determine whether f satisfies the
conditions of the mean-value theorem on the interval [—1, 2]
and, if so, find the numbers c that satisfy the conclusion of
the theorem.

Set f(x) = Ax?> 4+ Bx + C. Show that, for any interval
[a, b], the number c that satisfies the conclusion of the mean-
value theorem is (a + b)/2, the midpoint of the interval.
Set f(x) = x~1, a = —1, b = 1. Verify that there is no num-
ber ¢ for which

f(b) — f(a)

"O=—"=2

Explain how this does not violate the mean-value theorem.
Exercise 20 with f(x) = |x].

Graph the function f(x) =|2x —1] —3. Verify that
f(—1) =0= f(2) and yet f’(x) is never 0. Explain how
this does not violate Rolle’s theorem.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
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Show that the equation 6x* — 7x +1 = 0 does not have
more than two distinct real roots.

Show that the equation 6x5 4 13x + 1 = 0 has exactly one
real root.

Show that the equation x® + 9x? + 33x — 8 = 0 has exactly
one real root.

(a) Letf be differentiable on (a, b). Prove that if f'(x) £ 0
for each x € (a,b), then f has at most one zero in
(a, b).

(b) Let f be twice differentiable on (a, b). Prove that if
f”(x) # 0 for each x € (a, b), then f has at most two
zeros in (a, b).

Let P(x) = apnx" + - -- +a1x + ap be a nonconstant poly-

nomial. Show that between any two consecutive roots of the

equation P’(x) = 0 there is at most one root of the equation

P(x) =0.

Let f be twice differentiable. Show that, if the equation

f (x) = 0 has n distinct real roots, then the equation f'(x) =

0 has at least n — 1 distinct real roots and the equation

f”(x) = 0 has at least n — 2 distinct real roots.

A number c is called a fixed point of f if f(c) = c. Prove that

if f is differentiable on an interval | and f’(x) < 1 for all

x € I, then f has at most one fixed point in I. HINT: Form

g(x) = f(x) —x.

Show that the equation x® + ax + b = 0 has exactly one real

root if a > 0 and at most one real root between —1+/3]a|

and 1+v/3Jal ifa < 0.

Set f(x) = x3 —3x +b.

(@) Show that f(x) =0 for at most one number x in
[-1,1].

(b) Determine the values of b which guaranteethat f (x) = 0
for some number x in [—1, 1].

Set f(x) =x% —3a’x 4+ b,a > 0. Show that f(x) = 0 for

at most one number x in [—a, a].

Show that the equation x" 4+ ax + b = 0, n an even positive

integer, has at most two distinct real roots.

Show that the equation x" + ax + b = 0, n an odd positive

integer, has at most three distinct real roots.

Given that | f'(x)| < 1 for all real numbers x, show that

[ f(x1) — f(x2)| < X1 — x2| for all real numbers x; and X».

Let f be differentiable on an open interval I. Prove that, if

f’(x) = 0forall xin I, then f is constant on 1.

Let f be differentiable on (a, b) with f(a) = f(b) = 0and
f’(c) = 0 forsome cin (a, b). Show by example that f need
not be continuous on [a, b].

Prove that for all real x and y

(@) |cosx —cosy| < |x —yl.

(b) |sinx —siny| < |x —y|.

Let f be differentiable on (a, b) and continuous on [a, b].

(a) Prove that if there is a constant M such that f'(x) < M
forall x € (a, b), then

f(b) < f(a)+ M(b — a).
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40.

41.

42.

43.

44.

45.

(b) Prove that if there is a constant m such that f’(x) > m
forall x € (a, b), then

f(b) > f(a)+m(b — a).

This result is known as the Cauchy mean-value theorem. It
reduces to the mean-value theorem if g(x) = x. HINT: To
prove the result, set

F(x) = [f(b) — f(a)lg(x) — [9(b) — g(@)] f (x).

(c) Parts (a) and (b) together imply that if there exists a [> Exercises 46-47. Show that the given function satisfies the

constant K such that | f/(x)| < K on (a, b), then
fa)— K(b—a) < f(b) < f(a)+ K(b—a).

Show that this is the case.

Suppose that f and g are differentiable functions and
f(x)g’(x) — g(x) f’(x) has no zeros on some interval I. As-
sume that there are numbers a, b in I with a < b for which
f(a) = f(b) =0, and that f has no zeros in (a, b). Prove
that if g(a) £ 0 and g(b) # 0, then g has exactly one zero
in (a, b). HINT: Suppose that g has no zeros in (a, b) and
consider h = f/g. Then consider k = g/f.

Suppose that f and g are nonconstant, everywhere differ-
entiable functions and that f" = g and g’ = — f. Show that
between any two consecutive zeros of f there is exactly one
zero of g and between any two consecutive zeros of g there
is exactly one zero of f.

(Important) Use the mean-value theorem to show that if f
is continuous at x and at x + h and is differentiable between
these two numbers, then

f(x +h)— f(x)= f'(x +6h)h

for some number 6 between 0 and 1. (In some texts this is
how the mean-value theorem is stated.)

Leth > 0. Suppose f is continuous on [Xo — h, xo + h] and
differentiable on (xo — h, Xo + h). Show that if

lim f'(x) =L,

X—>Xo

then f is differentiable at xo and f’(xo) = L. HINT: Exer-
cise 42.

Suppose that g is differentiable on (a, b) and continuous on
[a, b]. Without appealing to the mean-value theorem, show
that if g(a) = g(b), then there is at least one number ¢ in
(a, b) for which g’(c) = 0. HINT: Figure out a way to use
Rolle’s theorem.

(Generalization of the mean-value theorem) Suppose that
f and g both satisfy the hypotheses of the mean-value the-
orem. Prove that if g’ has no zeros in (a, b), then there is at
least one number c in (a, b) for which

f(b)— f(a)  f(c)
ab)—g@ g(c)’

hypotheses of Rolle’s theorem on the indicated interval. Use
a graphing utility to graph f’ and estimate the number(s) ¢
where f’(c) = 0. Round off your estimates to three decimal
places.

46. f(x) = 2x> +3x%2 - 3x — 2;
47. f(x) =1 —x3® — cos (7x/2);

[-2,1].
[0, 1].

[>48. Set f(x) = x* — x® 4+ x® — x. Find a number b, if possible,

such that Rolle’s theorem is satisfied on [0, b]. If such a num-
ber b exists, find a number c that confirms Rolle’s theorem
on [0, b] and use a graphing utility to draw the graph of f
together with the line y = f(c).

[> 49. Exercise 49 with f(x) = x* + x° + x? — x.
bExercises 50-52. Use a CAS. Find the x-intercepts of the graph.

Between each pair of intercepts, find, if possible, a number c that
confirms Rolle’s theorem.

X2 — x
50. f ==
() X2 42X +2
x4 — 16
51. f = —.
) X2 +4

52. f(x) = 125x” — 300x® — 760x> + 2336x* + 80x° —
4288x? + 3840x — 1024.
Suppose that the function f satisfies the hypotheses of the mean-
value theorem on an interval [a, b]. We can find the numbers ¢
that satisfy the conclusion of the mean-value theorem by finding
the zeros of the function
f(b) — f(a)
X) = f'(X) - ——=.
900 = F'(x) — —p—

bExercises 53-54. Use a graphing utility to graph the function g

that corresponds to the given f on the indicated interval. Esti-
mate the zeros of g to three decimal places. For each zero c in
the interval, graph the line tangent to the graph of f at (c, f(c)),
and graph the line through (a, f(a)) and (b, f(b)). Verify that
these lines are parallel.

53, f(x) = x* — 7x%+ 2;
54. f(x) = xcosx +4sinx;

[1, 3].
[—7/2, 7/2].

bExercises 55-56. The function f satisfies the hypotheses of the

mean-value theorem on the given interval [a, b]. Use a CAS to
find the number(s) c that satisfy the conclusion of the theorem.
Then graph the function, the line through the endpoints (a, f(a))
and (b, f (b)), and the tangent line(s) at (c, f(c)).

55. f(x) =x®—x2+x—1; [1,4]

56. f(x) =x*—2x3—x2—x+1; [-2 3]

M 4.2 INCREASING AND DECREASING FUNCTIONS

We are going to talk about functions “increasing” or “decreasing” on an interval. To
place our discussion on a solid footing, we will define these terms.
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a

and 1 an infinite number of times.
If f is a differentiable function, then we can determine the intervals on which f

increases and the intervals on which f decreases by examining the sign of the first

derivative.

THEOREM 4.2.2
Suppose that f is differentiable on an open interval I.

(i) If f/(x) > Oforall xin I, then f increases on I.
(i) If f’(x) < Oforall xin I, then f decreases on I.
(iii) If f/(x) = 0 forall x in I, then f is constant on I.

y
DEFINITION 4.2.1
A function f is said to 3 &
- 2
(i) increase on the interval | if for every two numbers x, Xz in |, ‘%’% Qg?
T & S
X1 < X2 implies that f(x1) < f(x2);
(ii) decrease on the interval | if for every two numbers Xy, X, in |,
X
X1 < X2 implies that f(x1) > f(x2).
Figure 4.2.1
Preliminary Examples
(a) The squaring function
f(x) = x2 (Figure 4.2.1)
decreases on (—oo, 0] and increases on [0, co). constant
(b) The function
1, x<0 . T X
— ’ Figure 4.2.2
f(x)—{x, x>0 (Fig ) _
Figure 4.2.2
is constant on (—oo, 0); there it neither increases nor decreases. On [0, co) the
function increases. y o
. . £
(c) The cubing function 2
f(x) = x3 (Figure 4.2.3) £
is everywhere increasing.
(d) In the case of the Dirichlet function, :
1, X rational ;
— ’ ! ; (Figure 4.2.4)
9(x) {0, X irrational, °
there is no interval on which the function increases and no interval on which the §
function decreases. On every interval the function jumps back and forth between 0 2
Figure 4.2.3
y

Dirichlet function

Figure 4.2.4

PROOF Choose any two numbers x; and x; in | with X; < X,. Since f is differentiable
on |, it is continuous on I. Therefore we know that f is differentiable on (x1, x2) and
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continuous on [Xy, X2]. By the mean-value theorem there is a number ¢ in (X, Xp) for
which

= 2=

In (i), f’(x) > 0 for all x. Therefore, f’(c) > 0 and we have

f — f
w >0, which implies that f(x1) < f(xo).
2— Al

In (ii), f’(x) < 0 forall x. Therefore, f’(c) < 0 and we have

f(x2) — f(x1) _

0, which implies that f(x1) > f(x2).
Xo — X1

In (iii), f’(x) = 0 for all x. Therefore, f’(c) = 0 and we have

M =0, which implies that f(x)) = f(xp). 4O

X2 — X1
Remark In Section 3.2 we showed that if f is constant on an open interval I, then
f’(x) = O0forall x e I. Part (iii) of Theorem 4.2.2 gives the converse: if f'(x) = 0 for
all x in an open interval I, then f is constant on I. Combining these two statements, we
can assert that

if | is an open interval, then

f is constant on | iff f'(x)=0forall x € I.

a

Theorem 4.2.2 is useful but doesn’t tell the complete story. Look, for example, at

the function f(x) = x2. The derivative f’(x) = 2x is negative for x in (—oo, 0), zero
at x = 0, and positive for x in (0, co). Theorem 4.2.2 assures us that

f decreases on (—oo, 0) and increases on (0, o),
but actually
f decreases on (—oo, 0] and increases on [0, c0).

To get these stronger results, we need a theorem that applies to closed intervals.
To extend Theorem 4.2.2 so that it works for an arbitrary interval I, the only
additional condition we need is continuity at the endpoint(s).

THEOREM 4.2.3

Suppose that f is differentiable on the interior of an interval | and continuous
on all of I.

(i) If f/(x) > 0 for all x in the interior of I, then f increases on all of I.

(i) If f’(x) < 0 for all x in the interior of I, then f decreases on all of I.
(iii) If f/(x) = 0 for all x in the interior of I, then f is constant on all of I.

The proof of this theorem is a simple modification of the proof of Theorem 4.2.2.
It is time for examples.
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Example 1 The function f(x) = /1 — x2 has derivative f’(x) = —x/+/1 — x2. y
Since f’(x) > 0 for all x in (—1,0) and f is continuous on [—1, 0], f increases on ¢
[—1, 0]. Since f’(x) < 0 for all x in (0, 1) and f is continuous on [0, 1], f decreases ‘7@%
on [0, 1]. The graph of f is the semicircle shown in Figure 4.2.5. 1 %}
Example 2 The function f(x) = 1/x is defined for all x # 0. The derivative L
f/(x) = —1/x? is negative for all x 0. Thus the function f decreases on (—oo, 0)
and on (0, c0). (See Figure 4.2.6.) Note that we did not say that f decreases on
(=00, 0) U (0, 00); it does not. If Xx; < 0 < Xp, then f(x1) < f(x2). [ Figure 4.2.5
Example 3 The function g(x) = x5 — 3x* — 4x® + 22x2 — 24x + 6 is a polyno-
mial. It is therefore everywhere continuous and everywhere differentiable. Y f
Differentiation gives o
[
Q.
g'(x) = 4x* — 12x3 — 12x° 4+ 44x — 24 SSing
= 4(x* — 3x% — 3x? 4 11x — 6)
= 4(x + 2)(x — 1)*(x — 3). ™ X
f@$
The derivative g’ takes on the value 0 at —2, at 1, and at 3. These numbers determine w’gq
four intervals on which g’ keeps a constant sign:
(o0, -2), (-2,1), (1,3), (3,00).
Figure 4.2.6
The sign of g’ on these intervals and the consequences for g are as follows:
sign of g': e+ttt ttd 0 O-——————- O+++++++ y
behavior of g: increases —E decreases T decreases § increases X (-2, 100.4)
Since g is everywhere continuous, g increases on (—oo, —2], decreases on [—2, 3], and
increases on [3, co). (See Figure 4.2.7.) [
g
Example 4 Let f(x) = x — 2sinx, 0 < x < 2. Find the intervals on which f in-
creases and the intervals on which f decreases. (1,-2.2)
N_| /
SOLUTION Inthis case f'(x) =1 — 2cosx. Setting f’(x) = 0, we have \‘\./ '
(3, -24.6)
1—2cosx =0 and therefore COSX = %
Figure 4.2.7

The only numbers in [0, 2] at which the cosine takes on the value 1/2 are x = /3
and x = 57/3. It follows that on the intervals (0, 7 /3), (7 /3, 57/3), (57/3, 27), the
derivative f’ keeps a constant sign. The sign of f’ and the behavior of f are recorded

below.
signof f*  ————————— O+++++++++++++++++++++++++++0-————————
0 r i 5z 2 X
) 3 .
behavior of f: decreases increases s decreases

Since f is continuous throughout, f decreases on [0, 7/3], increases on
[7/3, 57/3], and decreases on [57/3, 27]. (See Figure 4.2.8.) 1
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\

1 2 x
Figure 4.2.9
y
5
2~
/ -
| |
12 X
Figure 4.2.10

51 5t

y (3v3+\/§)

— wly

-3)

wlN
Wy

Figure 4.2.8

While the theorems we have proven have wide applicability, they do not tell the
whole story.

Example 5 The function

x3, x<1

f(x):{%x+2, x> 1
is graphed in Figure 4.2.9. Obviously there is a discontinuity at x = 1. The derivative
f/(x) is
3x2 on (—o0, 1), nonexistent at x = 1, 2 on (1, c0).

Since f’(x) > 0on (—oo, 0) and f is continuous on (—oo, 0], f increases on (—oo, 0]
(Theorem 4.2.3). Since f’(x) > 0 on (0, 1) and is continuous on [0, 1), f increases
on [0, 1) (Theorem 4.2.3). Since f increases on (—oo, 0] and on [0, 1), f increases
on (—oo, 1). (We don’t need a theorem to tell us that.) Since f’(x) > 0 on (1, o)
and f is continuous on [1, co), f increases on [1, co). (Theorem 4.2.3) That f in-
creases on (—oo, 00) is not derivable from the theorems we’ve stated but is obvious by
inspection.

Example 6 The function

X+2 x<1

g(X) = X3, x> 1

is graphed in Figure 4.2.10. Again, there is a discontinuity at x = 1. Note that g'(x) is
% on (—o0, 1), nonexistentat x = 1, 3x2 on (1, 00).

The function g increases on (—oo, 1) and on [1, co) but does not increase on (—oo, 00).
The figure makes this clear.

Equality of Derivatives
If two differentiable functions differ by a constant,
f(x)=9(x)+C,
then their derivatives are equal:
f'(x) = g'(x).
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The converse is also true. In fact, we have the following theorem.

THEOREM 4.2.4
(i) Let I be an open interval. If f/(x) = g’(x) for all x in I, then f and g differ
by a constant on I.

(ii) Let | be an arbitrary interval. If f’(x) = g’(x) for all x in the interior of I,
and f and g are continuous on |, then f and g differ by a constant on I.

prOOF Set H = f — g. For the first assertion apply (iii) of Theorem 4.2.2 to H. For
the second assertion apply (iii) of Theorem 4.2.3 to H. We leave the details as an

exercise. [

We illustrate the theorem in Figure 4.2.11. At points with the same x-coordinate the y
slopes are equal, and thus the curves have the same steepness. The separation between
the curves remains constant; the curves are “parallel.”

f
N
Example 7 Find f given that f'(x) = 6x%> — 7x — 5 for all real x and f(2) = 1. 1T —g() = C

SOLUTION Itis not hard to find a function with the required derivative: / X X
d 2x3 — zx2 — 5% | =6x% —7x — 5. Figure 4.2.11
dx 2

By Theorem 4.2.4 we know that f(x) differs from g(x) = 2x3 — %xz — 5x only by

some constant C. Thus we can write
f(x) =2x*— Ix? —5x + C.
To evaluate C we use the fact that f(2) = 1. Since f(2) = 1 and
f(2) =2(2)% - (2 -5(2)+C=16—-14-10+C =—-8+C,
we have —8 + C = 1. Therefore, C = 9. The function
f(x)=2x3—Ix2—5x+9

is the function with the specified properties.

EXERCISES 4.2

Exercises 1-24. Find the intervals on which f increases and the 13. f(x) = [x? —5]. 14. f(x) = x?(L +x)%
intervals on which f decreases. X —1 16
15. f(x) = . 16. f(x) = x>+ =.
3 _ 3 ay2 X+ 1 X2
1 f(x) =x°—3x+2. 2. f(x) =x°—3x°+6.
1 [14x2
_ < oy _ )3
3. f(X)—X+X- 4. f(x) = (x =3)°. 17. f(x) = Pt 18. f(x) =[x +1||x —2|.
5. f(X):X3(1+X). 6. f(X):X(X+1)(X+2) 19. f(X)=X—COSX, OSX 527_[
7. f(x) = (x + D4 8. f(x):2x—x—12. 20. f(x) =x+sinx, 0<x <2m.
1 X 21. f(x) =cos2x +2cosx, 0<x <.
9. f(X):|X_2|. 10. f(X):m. 22 f(X):COSZX, 0<x <.
W21 x2 23. f(x) = +/3x —cos2x, 0<x <.
11. f(x)=x2_1. 12. f(x)=X2+1. 24. f(x) =sin’x —+/3sinx, 0<x <.
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Exercises 25-32. Define f on the domain indicated given the
following information.

25. (—o0, 00); f'(x)=x%2—-1; f()=2.

26. (—o0, 0); f'(x)=2x—-5; f(2)=4.

27. (—00, 00);  f/(X) = 5x* 4+ 4x3 +3x2 4+ 2x + 1;
f(0) = 5.

28.(0,00); f/(x)=4x"3%; f(1)=0.

29. (0, 00); f'(x) =x¥3—x%¥2; f(0)=1.

30. (0, 00); f/(x)=x"°-5x"%5% f(1)=0.

31. (o0, 00); f'(x)=2+sinx; f(0)=3.

32. (—00,0); f/(x) =4x +cosx; f(0)=1.

Exercises 33-36. Find the intervals on which f increases and
the intervals on which f decreases.

X+ 7, X <=3

33 f(x)={ Ix+1, -3<x<l1

5—2x, 1<x.

(x—12 x<1

34. f(x) = 5—x, 1<x<3
7—-2x, 3=<X.
4-x2, x<1

35. f(x) = 7—2x, 1<x<3
3x —10, 3 <x.
X+2, x<0

(x—12 0<x<3

36. f(x) = 8—x, 3<x<7
2x—9, 7<x

6, x=0,3,7.

Exercises 37-40. The graph of f’ is given. Draw a rough sketch
of the graph of f given that f(0) = 1.

37. y . 38, y

39.

Exercises 41-42. The graph of a function f is given. Sketch
the graph of f’. Give the intervals on which f’(x) > 0 and the
intervals on which f’(x) < 0.

41.

-2 -1 1 2 X

42.

Exercises 43-46. Sketch the graph of a differentiable function f

that satisfies the given conditions, if possible. If it’s not possible,

explain how you know it’s not possible.

43. f(x) > 0forall x, f(0) =1, and f'(x) < 0 for all x.

44. f(1) = -1, f'(x) < 0forall x # 1,and f’(1) = 0.

45. f(-1) =4, f(2) =2,and f’(x) > O forall x.

46. f(x) =0onlyatx = landatx =2, f(3) =4, f(5) = —1.

Exercises 47-50. Either prove the assertion or show that the

assertion is not valid by giving a counterexample. A pictorial

counterexample suffices.

47. (a) If f increases on [a, b] and increases on [b, c], then f
increases on [a, c].

(b) If f increases on [a, b] and increases on (b, c], then f

increases on [a, c].

48. (a) If f decreases on [a, b] and decreases on [b, c], then f
decreases on [a, c].

(b) If f decreases on [a, b) and decreases on [b, c], then f
decreases on [a, c].
49. (a) If f increases on (a, b), then there is no number x in
(a, b) at which f’(x) < 0.
(b) If f increases on (a, b), then there is no number x in
(a, b) at which f’(x) = 0.
50. If f/(x) =0atx =1,x =2,x = 3, thenf cannot possibly
increase on [0, 4].
51. Set f(x) = x —sinx.
(a) Show that f increases on (—oo, ©0).
(b) Usetheresultinpart (a) toshow thatsinx < x on (0, co)
and sinx > x on (—oo, 0).

52. Prove Theorem 4.2.4.



53.Set f(x) =sec®?x and g(x)=tan®x on the interval
(=%, ). Show that f'(x) = g'(x) forall xin (=%, 7).

54. Having carried out Exercise 53, you know from Theorem
4.2.4 that there exists a constant C such that f(x) — g(x) =
C forall xin (—m/2, 7 /2). What is C?

55. Suppose that for all real x
f'(x) = —g(x) g'(x) = f(x).
(a) Show that f2(x) + g2(x) = C for some constant C.
(b) Suppose that f(0) = 0and g(0) = 1. What is C?
(c) Give an example of a pair of functions that satisfy parts
(a) and (b).
56. Assume that f and g are differentiable on the interval (—c, ¢)
and f(0) = g(0).
(@) Show that if f’(x) > g’(x) for all x € (0,c), then
f(x) > g(x) forall x € (0, ¢).
(b) Show that if f’(x) > g’(x) for all x € (—c,0), then
f(x) < g(x) forall x € (—c, 0).
57. Show that tan x > x for all x € (0, 7/2).
58. Show that 1 — x2/2 < cosx for all x € (0, c0).

59. Let n be an integer greater than 1. Show that (1 + x)" >
1+ nx forall x < 0.

60. Show that x — x3/6 < sinx forall x > 0.
61. It follows from Exercises 51 and 60 that

and

x —#x3 <sinx < x forallx > 0.

M 4.3 LOCAL EXTREME VALUES
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Use this result to estimate sin4°. (The x above is in radians).
62. (a) Show thatcosx < 1 — 3x2+ 4x* forall x > 0.
(b) It follows from part (a) and Exercise 58 that
1-3x2 <cosx <1—3x>+ Lx* forallx > 0.
Use this result to estimate cos 6°. (The x above is in radians.)

b Exercises 63-66. Use agraphing utility to graph f and its deriva-
tive f’ onthe indicated interval. Estimate the zeros of f’to three
decimal places. Estimate the subintervals on which f increases
and the subintervals on which f decreases.

63. f(x) =3x* —10x3 —4x2 +10x +9; [-2,5].
64. f(x) =2x3—x2—13x —6; [-3,4].

65. f(x) = xcosx —3sin2x; [0, 6].

66. f(x) =x*+3x3 —2x2+4x +4; [-5,3].

bExercises 67-70. Use a CAS to find the numbers x at which

@ f(0)=0 (b)f(x)>0, (c)f(x)<D0.
67. f(x) =cos®x, 0 < x < 2r. 2y
X X% —

70. f(x) = 8x> — 36x* + 6x3 + 73x% + 48x + 9.
b?l. Use a graphing utility to draw the graph of

f(x) = sinxsin (x + 2) — sin®(x + 1).

From the graph, what do you conclude about f and f’? Con-
firm your conclusions by calculating f'.

In many problems in economics, engineering, and physics it is important to determine
how large or how small a certain quantity can be. If the problem admits a mathematical
formulation, it is often reducible to the problem of finding the maximum or minimum
value of some function.

Suppose that f is a function defined at some number c. We call ¢ an interior point
of the domain of f provided f is defined not only at ¢ but at all numbers within an open
interval (c — 8, ¢ + §). This being the case, f is defined at all numbers x within § of c.

DEFINITION 4.3.1 LOCAL EXTREME VALUES

Suppose that f is a function and c is an interior point of the domain. The
function f is said to have a local maximum at ¢ provided that

f(c) > f(x) for all x sufficiently close to c.
The function f is said to have a local minimum at ¢ provided that
f(c) < f(x) for all x sufficiently close to c.

The local maxima and minima of f comprise the local extreme values of f.

We illustrate these notions in Figure 4.3.1. A careful look at the figure suggests that
local maxima and minima occur only at points where the tangent is horizontal [ f'(c) =
0] or where there is no tangent line [ f’(c) does not exist]. This is indeed the case.
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local maximum = 3

/ \

f(x) =3 -x2
Figure 4.3.2

y

/ h
local

maximum

local
maximum local
l minimum

local
minimum

/ X1 Xo X3 X4 X

Figure 4.3.1

THEOREM 4.3.2

Suppose that c is an interior point of the domain of f. If f hasalocal maximum
or local minimum at c, then

f’'(c)=0 or f’(c) does not exist.

PROOF Let’s suppose that f has a local extreme value at ¢, and let’s suppose that f’(c)
exists. If f'(c) > 0 or f’(c) < 0, then, by Theorem 4.1.2, there must be points x; and
X arbitrarily close to ¢ for which

f(x1) < f(c) < f(x2).

This makes it impossible for a local maximum or a local minimum to occur at c.
Therefore, if f’(c) exists, it must have the value 0. The only other possibility is that
f’(c) does not exist. 1

On the basis of this result, we make the following definition (an important one):

DEFINITION 4.3.3 CRITICAL POINT
The interior points ¢ of the domain of f for which
f'(c)=0 or f’(c) does not exist

are called the critical points for f.f

As a consequence of Theorem 4.3.2, in searching for local maxima and local
minima, the only points we need to consider are the critical points.

We illustrate the technique for finding local maxima and minima by some examples.
In each case the first step is to find the critical points.

Example 1 For
f(x)=3-— X2, (Figure 4.3.2)

T Also called the critical numbers for f. We prefer the term “critical point” because it is more in consonance
with the term used in the study of functions of several variables.



the derivative

f(x) = —
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exists everywhere. Since f’(x) = 0 only at x = 0, the number 0 is the only critical

point. The number f(0) = 3 is a local maximum.

In the case of

a

|

local minimum = 2

Example 2 -1 X
_ _|x+1L x<-1 Figure 4.3.3 Slx+ 1 +2
f(x)_|x+1|+2_{ 43 x> 1. (Fig ) Ix+1] +
. .. . Fi 4.3.3
differentiation gives 'gure
-1, X < -1 y |
f/(x) = { does not exist, X=-1 |
1, X > —1. \
|
This derivative is never 0. It fails to exist only at —1. The number —1 is the only critical }
point. The value f(—1) = 2 is a local minimum. l
1 X
— |
1 |
Example 3 Figure 4.3.4 shows the graph of the function f(x) = 1 |
The domain is (—oo, 1) U (1, 00). The derivative - \
1 f(x) = —
f'X)=——=
) (x —1)? .
Figure 4.3.4
exists throughout the domain of f and is never 0. Thus there are no critical points. In
particular, 1 is not a critical point for f because 1 is not in the domain of f. Since f has
no critical points, there are no local extreme values. 1 y
caution The fact that c is a critical point for f does not gurantee that f(c) is a local
extreme value. This is made clear by the next two examples. 1 L
Example 4 In the case of the function
f(x) = x3, (Figure 4.3.5)
the derivative f’(x) = 3x? is 0 at 0, but f(0) = 0 is not a local extreme value. The fx) =x3
function is everywhere increasing. 1 Figure 4.3.5
Example 5 The function
f(x) —2X 435, x<2 (Figure 4.3.6)
X) = 3.
—ix+2, X > 2
is everywhere decreasing. Although 2 is a critical point [ f/(2) does not exist], f(2) =1 :
is not a local extreme value. [ B
|
There are two widely used tests for determining the behavior of a function at a 2 4 g
critical point. The first test (given in Theorem 4.3.4) requires that we examine the ox+5, x<2
sign of the first derivative on both sides of the critical point. The second test (given in o) = {JX +2, x22
Theorem 4.3.5) requires that we examine the sign of the second derivative at the critical :
point itself. Figure 4.3.6
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THEOREM 4.3.4 THE FIRST-DERIVATIVE TEST

Suppose that c is a critical point for f and f is continuous at c. If there is a
positive number § such that:

(i) f’'(x) > O0forall xin(c—4,c)and f'(x) < 0forall xin(c, c+ 8), then

f (c) is a local maximum. (Figures 4.3.7 and 4.3.8)
(i) f’(x) <Oforallxin(c—48,c)and f’(x) > 0forall xin (c, c + 8), then
f (c) is a local minimum. (Figures 4.3.9 and 4.3.10)

(iii) f’(x) keeps constant sign on (c — §, ¢) U (c, ¢ + §), then f(c) is not a
local extreme value.

f'ic)=0 f'(c) does not exist

Figure 4.3.7 Figure 4.3.8

local minimum

local minimum

c X c X
f'(c)=0 f'(c) does not exist
Figure 4.3.9 Figure 4.3.10

PROOF The result is a direct consequence of Theorem 4.2.3.

Example 6 The function f(x) = x* — 2x has derivative
f/(x) = 4x3 — 6x% = 2x2(2x — 3).

The only critical points are 0 and % The sign of ' is recorded below.

signof f@ ————-—————————— O-——-—————— O++++++++++++++
behavior of f: decreases (=) decreases g increases X
|
3 X
z Since f’ keeps the same sign on both sides of 0, f(0) = 0 is not a local extreme
value. However, f(g) = —% is a local minimum. The graph of f appears in Figure
. 4311 O
BaN 3 27
3 -5) Example 7 The function f(x) = 2x5/3 + 5x2/3 is defined for all real x. The deriva-

tive of f is given by

f/(x) = 2x?/° 4 Dx~1/% = Wx-13(x + 1), x # 0.

f(x) = x4 -2x3

Figure 4.3.11
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Since f/(—1) = 0 and f’(0) does not exist, the critical points are —1 and 0. The sign
of f’ is recorded below. (To save space in the diagram, we write “dne” for “does not
exist.”)

signof f'*  +++++++++++++++0--—-—-———————— dne+++++++++++++

behavior of f: increases -1 decreases 0 increases X

Inthis case f(—1) = 3isalocal maximumand f(0) = O is a local minimum. The
graph appears in Figure 4.3.12.

Remark Note that the first-derivative test can be used at ¢ only if f is continuous
at ¢. The function

_J1+2x, x=1 Figure 4.3.13
f(x)_{S_X’ x=1 (Figure 4.3.13)

has no derivative at x = 1. Therefore 1 is a critical point. While it is true that f/(x) > 0
for x <1 and f/(x) <0 for x > 1, it does not follow that f(1) is a local maxi-
mum. The function is discontinuous at x = 1 and the first-derivative test does not

apply. O

There are cases where it is difficult to determine the sign of f’ on both sides of a
critical point. If f is twice differentiable, then the following test may be easier to apply.

THEOREM 4.3.5 THE SECOND-DERIVATIVE TEST
Suppose that f’(c) = 0 and f”(c) exists.

(i) If f7(c) > 0O, then f(c) is a local minimum.
(ii) If £”(c) < 0, then f(c) is a local maximum.

(Note that no conclusion is drawn if f”(c) = 0.)

prOOF We handle the case f”(c) > 0. The other is left as an exercise. (Exercise 32)
Since f” is the derivative of f’, we see from Theorem 4.1.2 that there exists a § > 0
such that, if

C—38 <Xy <C<Xp<C+38,

then
f'(x1) < f'(c) < f'(xa).
Since f’(c) = 0, we have
f'(x) <0 forx in(c—§,¢) and f'(x)>0 for x in (c, c + 8).
By the first-derivative test, f(c) is a local minimum.
Example 8 For f(x) = 2x® — 3x? — 12x + 5 we have
f/(x) = 6x% —6x — 12 = 6(x> — x —2) = 6(x — 2)(Xx + 1)

and
f”(x) = 12x — 6.

<

=N W koo

f(x) = 2x53 + 5x2/3

Figure 4.3.12

/

I |
12345\X

flx) = 1+2x,x<1
5-x, x>1

Figure 4.3.13



172 m CHAPTER 4 THE MEAN-VALUE THEOREM; APPLICATIONS OF THE FIRST AND SECOND DERIVATIVES

The critical points are 2 and —1; the first derivative is 0 at each of these points. Since
f”(2) =18 > O0and f”(—1) = —18 < 0, we can conclude from the second-derivative
test that f(2) = —15 is a local minimum and f(—1) = 12 is a local maximum.

Comparing the First- and Second-Derivative Tests

The first-derivative test is more general than the second-derivative test. The first-
derivative test can be applied at a critical point ¢ even if f is not differentiable at ¢
(provided of course that f is continuous at c). In contrast, the second-derivative test
can be applied at c only if f is twice differentiable at ¢, and, even then, the test gives us
information only if f”(c) # 0.

Example 9 Set f(x) = x*3. Here f'(x) = $x/3 so that

f'(0) =0, f'(x) <0 for x <0, f'(x) >0 for x > 0.
By the first-derivative test, f (0) = 0isalocal minimum. We cannot get this information
from the second-derivative test because f”(x) = gx*m is not definedatx =0.

Example 10 To show what can happen if the second derivative is zero at a critical
point ¢, we examine the functions

f(x) =x3, g(x) = x*, h(x) = —x*. (Figure 4.3.14)
y y y
f(x)=x3 g(x) = x4
X X X
h(x) = x4
Figure 4.3.14

In each case x = 0 is a critical point:
f/(x) = 3x2, g'(x) = 4x3, h'(x) = —4x3,
f’(0) =0, g’'(0) =0, h’(0) = 0.
In each case the second derivative is zero at x = 0:
f7(x) = 6x, g”(x) = 12x2, h”(0) = —12x2,
f”(0) =0, g”’(0) =0, h”(0) = 0.

The first function, f(x) = x3, has neither a local maximum nor a local minimum at
x = 0. The second function, g(x) = x*, has derivative g'(x) = 4x3. Since

g(x) <0 for x <0, g(x)>0 for X > 0,

g(0) isalocal minimum. (The first-derivative test.) The last function, being the negative
of g, has a local maximumat x =0. [



4.3 LOCAL EXTREME VALUES m 173

EXERCISES 4.3
Exercises 1-28. Find the critical points and the local extreme
values.
Lfx)=x3+3x -2 2. f(x) = 2x* — 4x? + 6.
1 3
f(x) = =, 4, f(x) =x>— =.
3. f(x) x+X xX) =x v
5. f(x) = x2(1 —x). 6. f(x) = (1 —x)?(1+ x).
14+x 2—3x
7. f(x) = . Cf(X) = ,
%) 1—x 8104 2+X
2
9. f(X) = —. 10. f(x) = |x? — 16].
=5 0= pc 161
X —2
11 f(x) = x3(1 — x)2. 12. f(x) = .
() =x(1 - %) 0=(52)
13. f(X) = (1 —2x)(x —1)%. 14, f(x) = (L —x)(1 +x)%.
2
15.f(x)zlx+x. 16. f(x) = x YT =x.
17. f(x) =x2¥2+x 18. f(x) = t 1
' N ' ' Tx4+1 x-=2
19. f(x)=|x —=3|+[2x+1|. 20. f(x) = x"/® — 7x1/3,
X3
21, f(x) = x?® +2x7173, 22. f(x) = .
(x) = x/° 4+ 2x x) 1
23. f(x) =sinx +cosx, 0<x < 27.
24. f(x)=x4cos2x, 0<x <m.
25. f(x) =sin®x —/3sinx, 0<x <.
26. f(x) =sin’x, 0<x < 2r.
27. f(x) =sinxcosx —3sinx +2x, 0 <x < 27«.

28.

f(x) = 2sin®x —3sinx, 0<x < .

Exercises 29-30. The graph of f’ is given. (a) Find the intervals
on which f increases and the intervals on which f decreases.
(b) Find the local maximum(s) and the local minimum(s) of f.
Sketch the graph of f given that f(0) = 1.

29.

30.

y

#

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Let f and g be the differentiable functions, with graphs
shown below. The point c is the point in the interval [a, b]
where the vertical separation between the two curvesis great-
est. Show that the line tangent to the graph of f at x = c is
parallel to the line tangent to the graph of g at x = c.

Prove the validity of the second-derivative test in the case
that f”(c) < 0.

Let f(x) = ax?+ bx 4 c,a # 0. Show that f has a local
maximum at X = —b/(2a) if a < 0 and a local minimum
thereifa > 0.

Let f(x) =ax®+bx2+cx +d,a # 0. Under what con-
ditions on a, b, ¢ will f have: (1) two local extreme values,
(2) only one local extreme value, (3) no local extreme values?

Find the critical points and the local extreme values of the
polynomial

P(x) = x* — 8x3 + 22x2 — 24x + 4.

Show that the equation P(x) = 0 has exactly two real roots,
both positive.

A function f has derivative
f/(x) = x3(x — 1)’(x + 1)(x — 2).

At what numbers x, if any, does f have a local maximum?

A local minimum?

Suppose that p(x) = anX" +aq_1X" T +--- +ax +ag

has critical points —1,1, 2,3, and corresponding values

p(—1) =6, p(1) =1, p(2) = 3, p(3) = 1. Sketch a possi-

ble graph for p if: (&) n is odd, (b) n is even.

Suppose that f(x) = Ax? + Bx + C has a local minimum

at x = 2 and the graph passes through the points (—1, 3) and

(3,—1).Find A, B, C.

Find a and b given that f(x) = ax/(x2 + b?) has a local

minimum at x = —2 and f’(0) = 1.

Let f(x) =xP(1 —x)%, p and q integers greater than or

equal to 2.

(a) Show that the critical points of f are 0, p/(p +q), 1.

(b) Show that if p is even, then f has a local minimum
at 0.
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(c) Show that if g is even, then f has a local minimum at 1.
(d) Show that f has a local maximum at p/(p + q) for all
p and g under consideration.

41. Prove that a polynomial of degree n has at most n — 1 local
extreme values.

42. Let y = f(x) be differentiable and suppose that the graph
of f does not pass through the origin. The distance D from
the origin to a point P(x, f(x)) of the graph is given by

X2+ [f(X)]%

Show that if D has a local extreme value at c, then the line
through (0, 0) and (c, f(c)) is perpendicular to the line tan-
gent to the graph of f at (c, f(c)).

43. Show that f(x) = x* — 7x2 — 8x — 3 has exactly one criti-
cal point ¢ in the interval (2, 3).

44, Show that f(x) = sinx + %xz — 2x has exactly one critical
point c in the interval (2, 3).

ax2+b

[>45. Set f(x) = o d’ d # 0. Use a CAS to show that f has

a local minimum at x = 0 if ad — bc > 0 and a local max-
imum at x = 0 ifad — bc < 0. Confirm this by calculating
ad — bc for each of the functions given below and using a
graphing utility to draw the graph.

22 43 3 2x2
@ fx)= :_—J;Z. () f(x) = ﬁ
46. Set
_ [ x%sin(1/x), x #0.
f(x)—{ 0, x=0.

Earlier we stated that f is differentiable at 0 and that
f’(0) = 0. Show that f has neither a local maximum nor
a local minimum at x = 0.

bExercises 47-49. Use a graphing utility to graph the function

on the indicated interval. (a) Use the graph to estimate the crit-
ical points and local extreme values. (b) Estimate the intervals
on which the function increases and the intervals on which the
function decreases. Round off your estimates to three decimal
places.

47. f(x) = 3x% — 7x® — 14x + 24; [-3, 4].

48. f(x) = |3x® +x? — 10x + 2| + 3x; [-4,4].

8sin2x

= [-3.3],
2

49100 =

bExercises 50-52. Find the local extreme values of f by using a

graphing utility to draw the graph of f and noting the numbers
x at which f/(x) = 0.

50. f(x) = —x° + 13x* — 67x3 + 171x? — 216x + 108.

51. f(x) = x?/3x — 2.

52. f(x) = cos? 2x.

[> Exercises 53-54. The derivative ' of a function f is given. Use

a graphing utility to graph f’ on the indicated interval. Estimate
the critical points of f and determine at each such point whether
f has a local maximum, a local minimum, or neither. Round off
your estimates to three decimal places.

53. f/(x) = sin?x + 2sin2x; [-2,2].

54. f/(x) = 2x3 + x2 — 4x + 3; [—4, 4].

M 4.4 ENDPOINT EXTREME VALUES; ABSOLUTE EXTREME VALUES

We will work with functions defined on an interval or on an interval with a finite number

of points removed.

A number c is called the left endpoint of the domain of f if f is defined at ¢ but
undefined to the left of c. We call ¢ the right endpoint of the domain of f if f is defined
at ¢ but undefined to the right of c.

The assumptions made on the structure of the domain guarantee that if ¢ is the left
endpoint of the domain, then f is defined at least on an interval [c, ¢ 4 §), and if c is
the right endpoint, then f is defined at least on an interval (c — 8, c].

Endpoints of the domain can give rise to what are called endpoint extreme values.
Endpoint extreme values (illustrated in Figures 4.4.1-4.4.4) are defined below.

endpoint
maximum |

endpoint
minimum |
|

|
|
I
I
I
I
|
|
c

Figure 4.4.1

|
I
I
I
I
|
|
C

Figure 4.4.2
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endpoint /\ endpoint
| maximum | minimum

| |
| |
I I
I I
I I
I I
| |
| |
c c

Figure 4.4.3 Figure 4.4.4

DEFINITION 4.4.1 ENDPOINT EXTREME VALUES

If ¢ is an endpoint of the domain of f, then f is said to have an endpoint
maximum at ¢ provided that

f(c) > f(x) for all x in the domain of f sufficiently close to c.
It is said to have an endpoint minimum at ¢ provided that

f(c) < f(x) for all x in the domain of f sufficiently close to c.

Endpoints in the domain of a continuous function which is differentiable at all
points of the domain near that endpoint can be tested by examining the sign of the
first derivative at nearby points and then reasoning as we did in Section 4.3. Suppose,
for example, that c is a left endpoint and that f is continuous from the right at c. If
f’(x) < Oatall nearby x > c, then f decreases on an interval [c, ¢ + &) and f(c) is an
endpoint maximum. (Figure 4.4.1) If, on the other hand, f’(x) > 0 atall nearby x > c,
then f increases on an interval [c, ¢ + §) and f(c) is an endpoint minimum. (Figure
4.4.2) Similar reasoning can be applied to right endpoints.

Absolute Maxima and Absolute Minima

Whether or not a function f has a local extreme value or an endpoint extreme value at
some point ¢ depends entirely on the behavior of f at ¢ and at points close to c. Absolute
extreme values, which we define below, depend on the behavior of the function on its
entire domain.

We begin with a number d in the domain of f. Here d can be an interior point or
an endpoint.

DEFINITION 4.4.2 ABSOLUTE EXTREME VALUES

The function f is said to have an absolute maximum at d provided that
f(d) > f(x) for all x in the domain of f;

f is said to have an absolute minimum at d provided that
f(d) < f(x) for all x in the domain of f.

A function can be continuous on an interval (or even differentiable there) without taking
on an absolute maximum or an absolute minimum. All we can say in general is that if f
takes on an absolute extreme value, then it does so at a critical point or at an endpoint.
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Figure 4.4.5

There are, however, special conditions that guarantee the existence of absolute
extreme values. From Section 2.6 we know that continuous functions map bounded
closed intervals [a, b] onto bounded closed intervals [m, M]; M is the maximum value
taken on by f on [a, b] and m is the minimum value. If [a, b] constitutes the entire
domain of f, then, clearly, M is the absolute maximum and m is the absolute minimum.

For a function continuous on a bounded closed interval [a, b], the absolute extreme
values can be found as indicated below.

Step 1. Find the critical points ¢y, Cy, .. .. (These are the numbers in the open interval
(a, b) at which the derivative is zero or does not exist.)

Step 2. Calculate f(a), f(c1), f(c),..., f(b).

Step 3. The greatest of these numbers is the absolute maximum value of f and the least

of these numbers is the absolute minimum.
Example 1 Find the critical points of the function
f(x)=1+4x>—1x* xe[-13]
Then find and classify all the extreme values.

SOLUTION  Since f iscontinuous and the entire domain is the bounded closed interval
[—1, 3], we know that f has an absolute maximum and an absolute minimum. To find
the critical points of f, we differentiate:

f/(x) = 8x — 2x3 = 2x(4 — x?) = 2x(2 — X)(2 + X).

The numbers x in (—1, 3) at which f’(x) =0are x =0and x = 2. Thus, 0 and 2 are
the critical points.
The sign of f’ and the behavior of f are as follows:

’ ettt O+ +++++++0--—-—-—
sign of f | 1 1 |

behavior of f —1 decreases O increases 2 decreases 3 X

Taking the endpoints into consideration, we have:

f(-1) =1+4(-1)% - 3(-1)* =1 is an endpoint maximum;
f(0)=1 is a local minimum;
f(2) =144 - 32 =9 is a local maximum;

f(3)=1+4@3)°—3(B3)*=—2 isanendpoint minimum.

The least of these extremes, f(3) = —%, is the absolute minimum; the greatest of these
extremes, f(2) =9, is the absolute maximum. The graph of the function is shown in
Figure 4.45. 1O

Example 2 Find the critical points of the function

X2 42X + 2, —1<x<0
f(x) =
X% —2X +2, 0<x<2.
Then find and classify all the extreme values.

SOLUTION  Since f is continuous on its entire domain, which is the bounded closed
interval [—%, 2], we know that f has an absolute maximum and an absolute minimum.
Differentiating f, we see that f’(x) is

2x +2o0n (—3.0), nonexistent at x = 0, 2x —20n (0, 2).
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This makes x = 0 a critical point. Since f’(x) = 0atx =1, 1 is a critical point.
The sign of f’ and the behavior of f are as follows:

177

sign of " ++++++dne-————-—————————— O+++++++
behavior of f: _z increases 8 decreases T increases g X Y
0,2 (2, 2)
Therefore ©2
f(-3)=3-1+2=2 is an endpoint minimum;
f(0)=2 is a local maximum; (g g)
1,1
fl)=1-2+42=1 is a local minimum;
f(2) =2 is an endpoint maximum. % { é
- X

The least of these extremes, f (1) = 1, is the absolute minimum; the greatest of these 2
extremes, f(0) = f(2) = 2, is the absolute maximum. The graph of the function is
shown in Figure 4.4.6. Figure 4.4.6

Behavior of f(x) as x — oo and as x — —oo.

We now state four definitions. Once you grasp the first one, the others become trans-
parent.
To say that

as X — 00, f(x) > o0

is to say that, as x increases without bound, f(x) becomes arbitrarily large. More
precisely, given any positive number M, there exists a positive number K such that

if x> K, then f(x) > M.
For example, as x — oo,
X2 — o0, 1+ x2 > oo, tan(z—i)aoo
2 x2
To say that
as X — 00, f(x) > —o0

is to say that, as x increases without bound, f(x) becomes arbitrarily large negative:
given any negative number M, there exists a positive number K such that

if X > K, then f(x) < M.
For example, as x — oo,
—x* > —o0, 1— X — —o0, tan (Xiz — %) — —00.
To say that
as X — —00, f(x) > o0

is to say that, as x decreases without bound, f(x) becomes arbitrarily large: given any
positive number M, there exists a negative number K such that

if x <K, then f(x) > M.
For example, as x — —o0,
1
X% — 00, V1 —X— o0, tan<%—ﬁ>—>oo.
Finally, to say that

as X — —00, f(x) > —o0
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(2, 4\2)

Figure 4.4.7

6\><

is to say that, as x decreases without bound, f(x) becomes arbitrarily large negative:
given any negative number M, there exists a negative number K such that,

if x <K, then f(x) < M.
For example, as x — —oo,

3

X® — —00, —v/1—X - —o0, tan(——%)e—oo.

X2
Remark As you can readily see, f(x) > —oo iff —f(X) > c0. 1

Suppose now that P is a nonconstant polynomial:
P(X) = anX" + ap_1X" " + - +ax +a (an #0, n > 1).
For large |x| — that is, for large positive x and for large negative x — the leading term
a,x" dominates. Thus, what happens to P(x) as x — oo depends entirely on what
happens to a,x". (You are asked to confirm this in Exercise 43.)
Example 3

(@) Asx — oo, 3x* —100x® 4 2x — 5 — oo since 3x* — oo.
(b) Asx — —oo, 5x3 +12x2 +80 — —oco since 5x° — —oco. [

Finally, we point out that if f(x) — oo, then f cannot have an absolute maximum
value, and if f(x) — —oo, then f cannot have an absolute minimum value.

Example 4 Find the critical points of the function
f(x) = 6/X — X/X.
Then find and classify all the extreme values.
SOLUTION  The domain is [0, co). To simplify the differentiation, we use fractional
exponents:
f(x) = 6xY2% — x%2,
On (0, 00)
3,10 _ 329
2 2./X

Since f’(x) = 0 at x = 2, we see that 2 is a critical point.
The sign of f’ and the behavior of f are as follows:

f/(x) = 3x 12 — (Verify this.)

signoff: +++++++0----—-—-—-—

behavior of f: O  increases 1 decreases X

Therefore,
f(0) = 0 is an endpoint minimum;
f(2) = 6+/2 — 24/2 = 4+/2 is a local maximum.

Since f(x) = /X(6 — X) — —o0 as X — oo, the function has no absolute minimum
value. Since f increases on [0, 2] and decreases on [2, 0o), the local maximum is the
absolute maximum. The graph of f appears in Figure 4.4.7.
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A Summary for Finding All the Extreme Values (Local, Endpoint,
and Absolute) of a Continuous Function f

Step 1. Find the critical points — the interior points c at which f’(c) = 0 or f’(c) does
not exist.

Step 2. Test each endpoint of the domain by examining the sign of the first derivative
at nearby points.

Step 3. Test each critical point ¢ by examining the sign of the first derivative on both
sides of c¢ (the first-derivative test) or by checking the sign of the second
derivative at c itself (second-derivative test).

Step 4. If the domain is unbounded on the right, determine the behavior of f(x) as
X — oo; if unbounded on the left, check the behavior of f(x) as x — —oc.

Step 5. Determine whether any of the endpoint extremes and local extremes are abso-
lute extremes.

Example 5 Find the critical points of the function
f(x) = 2(x® — 3x2 — 6x +2), X € [-2, 00).

The find and classify all the extreme values.

SOLUTION  To find the critical points, we differentiate:
f/(x) = $(3x2 — 3x — 6) = 3(x + 1)(x — 2).

Since f/(x) =0 at x = —1 and x = 2, the numbers —1 and 2 are critical points.
The sign of f’ and the behavior of f are as follows:

sign of f" +ttdtt 0 O+++++++

behavior of f: -2 increases -1 decreases 2 increases X

We can see from the sign of f’ that
f(—2)=3(-8-6+124+2)=0 is an endpoint minimum;
f(-1)=3(-1-3+6+2)=24  isalocal maximum;
f2)=328-6-12+2)=-2 is a local minimum.

The function takes on no absolute maximum value since f(x) — oo as X — oo;
f(2) = —2 is the absolute minimum value. The graph of f is shown in Figure
4.48.

(2,-2)
Figure 4.4.8
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Example 6 Find the critical points of the function
f(x) = sin x — sin?x, x € [0, 2x].
Then find and classify all the extreme values.

SOLUTION  On the interval (0, 27)
f'(x) = cosx — 2sinx cosx = cos x(1 — 2sinx).
Setting f’(x) = 0, we have
cosx(1 —2sinx) = 0.

This equation is satisfied by the numbers x at which cos x = 0 and the numbers x at
which sinx = % On (0, 27), the cosine is 0 only at x = /2 and x = 37/2, and the
sine is % only at x = 7r/6 and x = 5r/6. The critical points, listed in order, are

/6, /2, 57 /6, 3 /2.
The sign of f’ and the behavior of f are as follows:

sign of f" +++0-—-———- O++++++0-—-—--—-———————— O+++++++++
- O O >
0 z z 2 3z 2r X
6 2 6 2
behavior of f: increases decreases increases decreases increases
Therefore
f(0) =0 isanendpoint minimum;  f(x/6) = % is a local maximum;
f(z/2) =0 isalocal minimum;  f(57/6) = % is a local maximum;

f(37/2) = —2 isalocal minimum;  f(2x) =0 isan endpoint maximum.

Note that f (7 /6) = f(57/6) = ;11 is the absolute maximum and f (37/2) = —2 is the
absolute minimum. The graph of the function is shown in Figure 4.4.9. [

y
0.25—
| il | |
i3 ki3 51 T 3z X
6 3 5 2 o
1
-2
Figure 4.4.9
EXERCISES 4.4
Exercises 1-30. Find the critical points. Then find and classify 3. f(x)=x2—4x+1, xe][0,3]

all the extreme values.

1. f(x) =X +2.
2. f(X)=x-1x —2).

4, f(x)=2x>+5x -1, xe[-2,0].

1 1
5. f(x) =x2+ =, 6. f(x) = =.
x)=x +X (x) x+x2
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1
7.f(x)=x2+;, X € [55.2].
1

8. f(x)=x+x—2, x[1, v2].

9. fX)=(x—-1)(x—-2), xe][0,2].
10. f(x) = (x —1?(x —2)%, x <[0,4].

X
11 f(X) = m, X e [—3, 1]
X2
12. f(X) = m, X € [—1, 2]
13. f(x) = (x — /%)% 14. f(x) = x+/4 — x2.
1
15. f(X) = x/3 —x. 16. f(x):f—ﬁ.

17. f(x)=1— Ix — 1.

18. f(x) = (4x — 1)¥3(2x — 1)%5.

19. f(x) =sin’x —+/3cos x, 0<x <.
20. f(x)=cot x +x, 0=<x <.

21. f(x) =2cos®x +3cos x, 0<x<um.
22. f(x) =sin2x —x, 0<x <m.

23. f(x) =tanx —x, —imr<x<}i

3 _§7T

24. f(x) =sin’x —sin’x, 0<x < Zr.

-2x, 0<x<1
25. fx)={x—-3, 1l<x<4
5—X%X, 4<x<T.

X+9, —-8<x<-3
26. f(x)= 1 x2+x, —-3<x<2
5x — 4, 2 <X <bh.

x2+4+1, —-2<x<-1
27. f(x) = 954+2x —x?, —1<x<3
X —1, 3 <X <6.

2-2x —x%2, —2<x<0
28. f(x) = [x —2|, 0<x<3
;(x—23, 3=<x=<4

X+1], -3<x<0
20. f(x)={x?—4x+2, 0<x<3
2x — 17, 3<x <4

—x2, 0<x<1
30. f(x) =43 —2x, 1l<x<2
—3x%, 2<x<3

Exercises 31-34. Sketch the graph of an everywhere differen-
tiable function that satisfies the given conditions. If you find that
the conditions are contradictory and therefore no such function
exists, explain your reasoning.

31. Local maximum at —1, local minimum at 1, f(3) = 6 the
absolute maximum, no absolute minimum.

32. (0) = 1 the absolute minimum, local maximum at 4, local
minimum at 7, no absolute maximum.

33.
34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

f(1)= f(3) =0, f’(x) > 0forall x.
f’(x) = 0 at each integer x; f has no extreme values.

Show that the cubic p(x) = x3 + ax? + bx + ¢ has extreme
values iff a®> > 3b.

Let r be a rational number, r > 1, and set

fX)=@Q+x) —@Q+rx) for x > —1.
Show that 0 is a critical point for f and show that f(0) =0
is the absolute minimum value.

Suppose that c is a critical point for f and f’(x) > 0 for
X # c. Show that if f(c) is a local maximum, then f is not
continuous at c.

What can you conclude about a function f continuous on
[a, b], if for some c in (a, b), f(c) is both a local maximum
and a local minimum?

Suppose that f is continuous on [a, b] and f(a) = f(b).
Show that f has at least one critical point in (a, b).

Suppose that ¢; < ¢; and that f takes on local maxima at ¢;
and c,. Prove that if f is continuous on [cy, c;], then there
is at least one point ¢ in (¢, ¢;) at which f takes on a local
minimum.

Give an example of a nonconstant function that takes on
both its absolute maximum and absolute minimum on every
interval.

Give an example of a nonconstant function that has an infi-
nite number of distinct local maxima and an infinite number
of distinct local minima.

Let P be a polynomial with positive leading coefficient:
P(x) = a,x" +an_1xn_1+...+alx+ao’ n>1.

Clearly, as x — oo, a,x" — oo. Show that, as x — oo,
P(x) — oo by showing that, given any positive number M,
there exists a positive number K such that, if x > K, then
P(x) > M.

Show that of all rectangles with diagonal of length c, the
square has the largest area.

Let p and g be positive rational numbers and set f(x) =
xP(1 —x)4,0 < x < 1. Find the absolute maximum value
of f.

The sum of two numbers is 16. Find the numbers given that
the sum of their cubes is an absolute minimum.

If the angle of elevation of a cannon is # and a projectile
is fired with muzzle velocity v ft/sec, then the range of the
projectile is given by the formula

v2sin 260

R=——— feet.
32

What angle of elevation maximizes the range?

A piece of wire of length L is to be cut into two pieces,

one piece to form a square and the other piece to form an

equilateral triangle. How should the wire be cut so as to

(a) maximize the sum of the areas of the square and the
triangle?
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(b) minimize the sum of the areas of the square and the

triangle?

bExercises 49-52. Use a graphing utility to graph the function on

remon [a, b] (Theorem 2.6.2). If the hypothesis is satisfied, find
the absolute maximum value M and the absolute minimum value
m. If the hypothesis is not satisfied, find M and m if they exist.

the indicated interval. Estimate the critical points of the func- 53. 1(x) 1—-2—x, ifl<x<?2 [a.b] — [L.3]
tion and classify the extreme values. Round off your estimates - TX) = — . o lapr=1d, 5]
to three decimal places. 1=vx=2, M2<x=3
49. f(x) = x3 —4x 4+ 2xsinx; [-2.5,3]. %x—ﬂ—g, if0<x <3
50. f(x) =x*—7x*+10x +3; [-3,3]. 5. ) = VX=3+42 if3<x<4 (2, o7 = 0. 4]
51. f(x) = xcos2x — cos?x; [—m, 7] .
H 1 ifl<x<4
52. f(x) = 5x%3 +3x5° +1; [-3,1]. 55 f(x) = | 2% T h = a. bl = [1.6l.
) VX =342, if4<x<6; [a. bl = [1.6]

bExercises 53-55. Use a graphing utility to determine whether

the function satisfies the hypothesis of the extreme-value theo-

- 6

W 4.5 SOME MAX-MIN PROBLEMS

The techniques of the preceding two sections can be brought to bear on a wide variety of
max-min problems. The key idea is to express the quantity to be maximized or minimized
as a function of one variable. If the function is differentiable, we can differentiate and
analyze the results. We begin with a geometric example.

Example 1 Anisosceles triangle has a base of 6 units and a height of 12 units. Find
the maximum possible area for a rectangle that is inscribed in the triangle and has one
side resting on the base of the triangle. What are the dimensions of the rectangle(s) of
maximum area?

SOLUTION  Figure 4.5.1 shows the isosceles triangle and a rectangle inscribed in the
specified manner. In Figure 4.5.2 we have introduced a rectangular coordinate system.
With x and y as in the figure, the area of the rectangle is given by the product

A = 2xy.
This is the quantity we want to maximize. To do this we have to express A as a function
Since the point (x, y) lies on the line that passes through (0, 12) and (3, 0),
y =12 — 4x. (Verify this.)
The area of the rectangle can now be expressed entirely in terms of x:
A(X) = 2x(12 — 4x) = 24x — 8x2.

Since x and y represent lengths, x and y cannot be negative. As you can check, this

Our problem can now be formulated as follows: find the absolute maximum of the

Figure 4.5.1
y
(0, 12) of only one variable.
(X, y) %, y)
y
) restricts x to the closed interval [0, 3].
X X (3,0 X
Figure 4.5.2 function

A(X) = 24x — 8x?, x € [0, 3].

The derivative
A'(x) = 24 — 16x

is defined for all x € (0, 3). Setting A’(x) = 0, we have

24—16x =0  whichimplies  x = 3.
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The only critical pointis x = g Evaluating A at the endpoints of the interval and at the
critical point, we have:

A(0) = 24(0) — 8(0)> = 0,

A3 =24(3)-8(3)" =18

A(3) = 24(3) — 8(3)? = 0.
The function has an absolute maximum of 18, and this value is taken on at x = % At
x = 2, the base 2x = 3 and the height y = 12 — 4x = 6.

The maximum possible area is 18 square units. The rectangle that produces this
area has a base of 3 units and a height of 6 units.

The example we just considered suggests a basic strategy for solving max-min
problems.

Strategy

Step 1. Draw a representative figure and assign labels to the relevant quantities.
Step 2. Identify the quantity to maximized or minimized and find a formula for it.

Step 3. Expressthe quantity to be maximized or minimized interms of asingle variable;
use the conditions given in the problem to eliminate the other variable(s).

Step 4. Determine the domain of the function generated by Step 3.
Step 5. Apply the techniques of the preceding sections to find the extreme value(s).

Example 2 A paint manufacturer wants cylindrical cans for its specialty enamels.
The can is to have a volume of 12 fluid ounces, which is approximately 22 cubic inches.
Find the dimensions of the can that will require the least amount of material. See
Figure 4.5.3.

SOLUTION Let r be the radius of the can and h the height. The total surface area
(top, bottom, lateral area) of a circular cylinder of radius r and height h is given by the
formula

S = 27r? + 2xrh.

This is the quantity that we want to minimize.
Since the volume V = 7r?h is to be 22 cubic inches, we require that

22

7r?h = 22 and thus h=—.
Tr

It follows from these equations that r and h must both be positive. Thus, we want to
minimize the function

S(r)=2nr2+2nr E =2nr2+ﬁ, r € (0, c0).
r2 r

Differentiation gives

ds 44 Amrd— 44 Arrd —11)
— =dgr — — = = .
dr r2 r2 r2

Figure 4.5.3
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R

Figure 4.5.4

The derivative is 0 where 7rr® — 11 = 0, which is the point ro = (11/7)Y/3. Since

ds negative for r<ro
ar is 0 at r=rg
r positive for  r > ro,

S decreases on (0, ro] and increases on [rg, 0o). Therefore, the function S is minimized
by setting r = ro = (11/7)Y/3.
The dimensions of the can that will require the least amount of material are as
follows:
radius r = (11/7)*® = 1.5 inches, heighth = 2 2(11 /7)Y
) ’ m(11/m)?/3
= 3inches.

The can should be as wide as itis tall. [

Example 3 A window in the shape of rectangle capped by a semicircle is to have
perimeter p. Choose the radius of the semicircular part so that the window admits the
most light.

SOLUTION  We take the point of view that the window which admits the most light is
the one with maximum area. As in Figure 4.5.4, we let x be the radius of the semicircular
part and y be the height of the rectangular part. We want to express the area

A = Zx% + 2Xy

as a function of x alone. To do this, we must express y in terms of x.
Since the perimeter is p, we have

p=2X42y+mX
and thus
y=3lp—@+m)xl]

Since x and y represent lengths, these variables must be nonnegative. For both x and y
to be nonnegative, we must have 0 < x < p/(2 + n).
The area can now be expressed in terms of x alone:

A(X) = 2x% + 2xy
= 2x%+2x {3[p — 2+ 7)x]}
= 1ax% + pX — 2+ 7)x% = px — (24 37) X2
We want to maximize the function
A(X) = px — (2+ 37) X2, 0<x<p/(2+mn).
The derivative
A(X)=p—(4+m)X

isOonlyatx = p/(4 + x). Since A(0) = A[p/(2 + )] = 0, and since A’(x) > 0 for
0<x<p/(d+m)and A'(x) <0 for p/(4+ ) < x < p/(2+ m), the function A
is maximized by setting x = p/(4 + ). For the window to have maximum area, the
radius of the semicircular part must be p/(4 + 7). 1

Example 4 The highway department is asked to construct a road between point
A and point B. Point A lies on an abandoned road that runs east-west. Point B is 3
miles north of the point of the old road that is 5 miles east of A. The engineering
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division proposes that the road be constructed by restoring a section of the old road
from A to some point P and constructing a new road from P to B. Given that the cost of
restoring the old road is $2,000,000 per mile and the cost of a new road is $4,000,000
per mile, how much of the old road should be restored so as to minimize the cost of the
project.

SOLUTION  Figure 4.5.5 shows the geometry of the problem. Notice that we have
chosen a straight line joining P and B rather than some curved path. (The shortest
connection between two points is provided by the straight-line path.) We let x be the
amount of old road that will be restored. Then

V94 (5 —x)2 = /34 — 10x + x2

is the length of the new part. The total cost of constructing the two sections of
road is

C(x) = 2-10% +4-10°[34 — 10x + x?]*?, 0<x<5.

We want to find the value of x that minimizes this function.
Differentiation gives

C'(x) =2-10°+4-10°(3) [34 — 10x + x*]""/(2x — 10)
4.10%(x — 5)

=2.10° , 0<x<5.
L T e A
Setting C’(x) = 0, we find that
2(x —5
14 (x —5) ~0

[34 — 10X + x2]1/2
2(x — 5) = —[34 — 10x + x?]%/?
4(x% — 10X + 25) = 34 — 10x + x?
3x% —30x 4+ 66 =0
x2 —10x +22 = 0.

By the general quadratic formula, we have

10 £+ ,/100 — 4(22
X = > ( ):5:|:\/§.

The value x =5+ /3 is not in the domain of our function; the value we want is
X = 5 — /3. We analyze the sign of C’:

signof C: ———————-— O+++++
—_— e ————>
behavior of C: 0 5-3 5 X
decreases increases

Since the function is continuous on [0, 5], it decreases on [0, 5 — +/3] and increases
on [5— +/3,5]. The number x =5 — /3 = 3.27 gives the minimum value of C.
The highway department will minimize its costs by restoring 3.27 miles of the old
road. O

Example 5 (The angle of incidence equals the angle of reflection.) Figure 4.5.6
depicts light from point A reflected by a mirror to point B. Two angles have been
marked: the angle of incidence, 6;, and the angle of reflection, 6;. Experiment shows

>0
>

Figure 4.5.5

Figure 4.5.6
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A (al, a2)

Figure 4.5.7

that 6; = 6. Derive this result by postulating that the light travels from A to the mirror
and then on to B by the shortest possible path."

SOLUTION  We write the length of the path as a function of x. In the setup of Figure
457,

L(x) = \/(X —a;)?+a3 + \/(X —Db1)2+bZ,  xe[a bl

Differentiation gives

L/(x) = X—a " X —by .
\/(x —a1)?+aj3 \/(x —b1)? 4 bj
Therefore
L =0 iff X% bioX
\/(x —a1)? +aj \/(x — by)? + b3
iff sing; = sin6; (see the figure)
iff 9| = Qr.

That L(x) is minimal when 6; = 6, can be seen by noting that L”(x) is always positive,

a2 b2
2 + 2
[(x —a1)? +a3]¥2  [(x — by)? + b3]3/2

L"(x) = >0,

and applying the second-derivative test. [

(We must admit that there is a much simpler way to do Example 5, a way that
requires no calculus at all. Can you find it?)

Now we will work out a simple problem in which the function to be maximized is
defined not on an interval or on a union of intervals, but on a discrete set of points, in
this case a finite collection of integers.

Example 6 A small manufacturer of fine rugs has the capacity to produce 25 rugs
per week. Assume (for the sake of this example) that the production of the rugs per
week leads to an annual profit which, measured in thousands of dollars, is given by the
function P = 100n — 600 — 3n2. Find the level of weekly production that maximizes P.

SOLUTION  Since n is an integer, it makes no sense to differentiate
P = 100n — 600 — 3n?

with respect to n.

Table 4.5.1, compiled by direct calculation, shows the profit P that corresponds to
each production level n from 8 to 25. (For n < 8, P is negative; 25 is full capacity.) The
table shows that the largest profit comes from setting production at 17 units per week.

We can avoid the arithmetic required to construct the table by considering the
function

f(x) = 100x — 600 — 3x?, 8 < x < 25.
TThis is a special case of Fermat’s principle of least time, which says that, of all (neighboring) paths, light

chooses the one that requires the least time. If light passes from one medium to another, the geometrically
shortest path is not necessarily the path of least time.
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N Table 4.5.1
n P n P n P
8 8 14 212 20 200
9 57 15 225 21 177

10 100 16 232 22 148
11 137 17 233 23 113
12 168 18 228 24 72
13 193 19 217 25 25

For integral values of x, the function agrees with P. It is continuous on [8, 25] and
differentiable on (8, 25) with derivative

f/(x) = 100 — 6x.

Obviously, f'(x) = 0atx = 1 = 16Z. Since f'(x) > 0on (8, 16%) and is continuous

atthe endpoints, f increaseson[8, 16%].Since f/(x) < 0on (162, 25)and is continuous

at the endpoints, f decreases on [162, 25]. The largest value of f corresponding to an
integer value of x will therefore occur at x = 16 or at x = 17. Direct calculation of
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f(16) and f(17) shows that the choice x = 17 is correct. 1

EXERCISES 4.5

10.

11.

. Find the greatest possible value of xy given that x and y are

both positive and x + y = 40.

. Find the dimensions of the rectangle of perimeter 24 that has

the largest area.

. A rectangular garden 200 square feet in area is to be fenced

off against rabbits. Find the dimensions that will require the
least amount of fencing given that one side of the garden is
already protected by a barn.

. Find the largest possible area for a rectangle with base on

the x-axis and upper vertices on the curve y = 4 — x?,

. Find the largest possible area for a rectangle inscribed in a

circle of radius 4.

. Find the dimensions of the rectangle of area A that has the

smallest perimeter.

. How much fencing is needed to define two adjacent rectan-

gular playgrounds of the same width and total area 15,000
square feet?

. A rectangular warehouse will have 5000 square feet of floor

space and will be separated into two rectangular rooms by an
interior wall. The cost of the exterior walls is $150 per linear
foot and the cost of the interior wall is $100 per linear foot.
Find the dimensions that will minimize the cost of building
the warehouse.

. Rework Example 3; this time assume that the semicircular

portion of the window admits only one-third as much light
per square foot as does the rectangular portion.

A rectangular plot of land is to be defined on one side by
a straight river and on three sides by post-and-rail fencing.
Eight hundred feet of fencing are available. How should the
fencing be deployed so as to maximize the area of the plot?

Find the coordinates of P that maximize the area of the rect-
angle shown in the figure.

12.

13.

14.

15.

16.
17.

18.

X

Atriangle is to be formed as follows: the base of the triangle
is to lie on the x-axis, one side is to lie on the line y = 3x,
and the third side is to pass through the point (1, 1). Assign a
slope to the third side that maximizes the area of the triangle.

A triangle is to be formed as follows: two sides are to lie on
the coordinate axes and the third side is to pass through the
point (2, 5). Assign a slope to the third side that minimizes
the area of the triangle.

Show that, for the triangle of Exercise 13, it is impossible
to assign a slope to the third side that maximizes the area of
the triangle.

What are the dimensions of the base of the rectangular box
of greatest volume that can be constructed from 100 square
inches of cardboard if the base is to be twice as long as it is
wide? Assume that the box has a top.

Exercise 15 under the assumption that the box has no top.

Find the dimensions of the isosceles triangle of largest area
with perimeter 12.

Find the point(s) on the parabolay = %xz closest to the point
(0, 6).



188 m CHAPTER 4 THE MEAN-VALUE THEOREM; APPLICATIONS OF THE FIRST AND SECOND DERIVATIVES

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Find the point(s) on the parabola x = y? closest to the point
(0, 3).

Find A and B given that the function y = Ax~%/2 4 Bx'/?
has a minimum of 6 at x = 9.

Find the maximal possible area for a rectangle inscribed in
the ellipse 16x2 + 9y? = 144,

Find the maximal possible area for a rectangle inscribed in
the ellipse b?x? + a?y? = a?b2.

A pentagon with a perimeter of 30 inches is to be constructed
by adjoining an equilateral triangle to a rectangle. Find the
dimensions of the rectangle and triangle that will maximize
the area of the pentagon.

A 10-foot section of gutter is made from a 12-inch-wide strip
of sheet metal by folding up 4-inch strips on each side so
that they make the same angle with the bottom of the gutter.
Determine the depth of the gutter that has the greatest car-
rying capacity. Caution: There are two ways to sketch the
trapezoidal cross section. (See the figure.)

From a 15 x 8 rectangular piece of cardboard four congru-
ent squares are to be cut out, one at each corner. (See the
figure.) The remaining crosslike piece is then to be folded
into an open box. What size squares should be cut out so as
to maximize the volume of the resulting box?

T T -
- L—— ’
8

| ull

| |

\ 15 \
A page is to contain 81 square centimeters of print. The mar-
gins at the top and bottom are to be 3 centimeters each and,
at the sides, 2 centimeters each. Find the most economical
dimensions given that the cost of a page varies directly with
the perimeter of the page.

Let ABC be a triangle with vertices A =(-3,0),
B = (0, 6),C = (3, 0). Let P be a point on the line segment
that joins B to the origin. Find the position of P that mini-
mizes the sum of the distances between P and the vertices.

Solve Exercise 27 with A =(-6,0),B = (0, 3),
C =(6,0).

An 8-foot-high fence is located 1 foot from a building. De-
termine the length of the shortest ladder that can be leaned
against the building and touch the top of the fence.

Two hallways, one 8 feet wide and the other 6 feet wide, meet
at right angles. Determine the length of the longest ladder
that can be carried horizontally from one hallway into the
other.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

A rectangular banner is to have a red border and a rectangu-
lar white center. The width of the border at top and bottom
is to be 8 inches, and along the sides 6 inches. The total area
is to be 27 square feet. Find the dimensions of the banner
that maximize the area of the white center.

Conical paper cups are usually made so that the depth is v/2
times the radius of the rim. Show that this design requires
the least amount of paper per unit volume.

Asstring 28 inches long is to be cut into two pieces, one piece
to form a square and the other to form a circle. How should
the string be cut so as to (a) maximize the sum of the two
areas? (b) minimize the sum of the two areas?

What is the maximum volume for a rectangular box (square
base, no top) made from 12 square feet of cardboard?

The figure shows a cylinder inscribed in a right circular cone
of height 8 and base radius 5. Find the dimensions of the
cylinder that maximize its volume.

A

4 |
£1 I
|
1
|
[l

As a variant of Exercise 35, find the dimensions of the cylin-
der that maximize the area of its curved surface.

A rectangular box with square base and top is to be made to
contain 1250 cubic feet. The material for the base costs 35
cents per square foot, for the top 15 cents per square foot, and
for the sides 20 cents per square foot. Find the dimensions
that will minimize the cost of the box.

What is the largest possible area for a parallelogram in-
scribed in a triangle ABC in the manner of the figure?

C

A B

Find the dimensions of the isosceles triangle of least area
that circumscribes a circle of radius r.

What is the maximum possible area for a triangle inscribed
in a circle of radius r?

The figure shows a right circular cylinder inscribed in a
sphere of radius r. Find the dimensions of the cylinder that
maximize the volume of the cylinder.




42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

As a variant of Exercise 41, find the dimensions of the
right circular cylinder that maximize the lateral area of the
cylinder.

A right circular cone is inscribed in a sphere of radius r as
in the figure. Find the dimensions of the cone that maximize
the volume of the cone.

What is the largest possible volume for a right circular cone
of slant height a?

A power line is needed to connect a power station on the
shore of a river to an island 4 kilometers downstream and 1
kilometer offshore. Find the minimum cost for such a line
given that it costs $50,000 per kilometer to lay wire under
water and $30,000 per kilometer to lay wire under ground.

Atapestry 7 feethigh hangs onawall. The lower edge is 9 feet
above an observer’s eye. How far from the wall should the
observer stand to obtain the most favorable view? Namely,
what distance from the wall maximizes the visual angle of
the observer? HINT: Use the formula for tan (A — B).

An object of weight W is dragged along a horizontal plane by
means of a force P whose line of action makes an angle 6 with
the plane. The magnitude of the force is given by the formula
W
p___ MW
usiné 4 cos o
where 1 denotes the coefficient of friction. Find the value of
6 that minimizes P.
The range of a projectile fired with elevation angle 6 at an
inclined plane is given by the formula
R 2v2 cos 6 sin(® — «)

- g cos? o
where « is the inclination of the target plane, and v and g
are constants. Calculate 6 for maximum range.

Two sources of heat are placed s meters apart—a source of
intensity a at A and a source of intensity b at B. The intensity
of heat at a point P on the line segment between A and B is
given by the formula

! n b
X2 (s —=x)%’
where X is the distance between P and A measured in me-

ters. At what point between A and B will the temperature be
lowest?

The distance from a point to a line is the distance from that
point to the closest point of the line. What point of the line
Ax 4+ By + C = 0 is closest to the point (x1, y1)? What is
the distance from (xy, y1) to the line?

Letf be a differentiable function defined on an open interval
I. Let P(a, b) be a point not on the graph of f. Show that if

52.

53.

54.

55.

56.

57.

58.

59.

60.

61
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PQisthe longest or shortest line segment that joins P to the
graph of f, then P Q is perpendicular to the graph of f.

Draw the parabolay = x2. Onthe parabolamark apoint P
O. Through P draw the normal line. The normal line inter-
sects the parabola at another point Q. Show that the distance

between P and Q is minimized by setting P = (i@ %)

For each integer n, set f(n) = 6n* — 16n° 4 9n2. Find the
integer n that minimizes f(n).

A local bus company offers charter trips to Blue Mountain
Museum at a fare of $37 per person if 16 to 35 passengers
sign up for the trip. The company does not charter trips for
fewer than 16 passengers. The bus has 48 seats. If more than
35 passengers sign up, then the fare for every passenger is
reduced by 50 cents for each passenger in excess of 35 that
signs up. Determine the number of passengers that generates
the greatest revenue for the bus company.

The Hotwheels Rent-A-Car Company derives an average
net profit of $12 per customer if it services 50 customers or
fewer. If it services more than 50 customers, then the average
net profit is decreased by 6 cents for each customer over 50.
What number of customers produces the greatest total net
profit for the company?

A steel plant has the capacity to produce x tons per day of
low-grade steel and y tons per day of high-grade steel where
40 — 5x
T 10—x

Given that the market price of low-grade steel is half that of
high-grade steel, show that about 5% tons of low-grade steel
should be produced per day for maximum revenue.

The path of a ball is the curve y = mx — z&5(m? + 1)x>.
Here the origin is taken as the point from which the ball
is thrown and m is the initial slope of the trajectory. At a
distance which depends on m, the ball returns to the height
from which it was thrown. What value of m maximizes this
distance?

Given the trajectory of Exercise 57, what value of m maxi-
mizes the height at which the ball strikes a vertical wall 300
feet away?

A truck is to be driven 300 miles on a freeway at a con-
stant speed of v miles per hour. Speed laws require that
35 < v < 70. Assume that the fuel costs $2.60 per gallon and
isconsumed at the rate of 1 4 (W%)VZ gallons per hour. Given
that the driver’s wages are $20 per hour, at what speed should
the truck be driven to minimize the truck owner’s expenses?

A tour boat heads out on a 100-kilometer sight-seeing trip.
Given that the fixed costs of operating the boat total $2500
per hour, that the cost of fuel varies directly with the square
of the speed of the boat, and at 10 kilometers per hour the
cost of the fuel is $400 per hour, find the speed that mini-
mizes the boat owner’s expenses. Is the speed that minimizes
the owner’s expenses dependent on the length of the trip?

. Anoil drumisto be made in the form of aright circular cylin-

der to contain 167 cubic feet. The uprightdrumis to be taller
than it is wide, but not more than 6 feet tall. Determine the
dimensions of the drum that minimize surface area.
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62. The cost of erecting a small office building is $1,000,000
for the first story, $1,100,000 for the second, $1,200,000 for
the third, and so on. Other expenses (lot, basement, etc.) are
$5,000,000. Assume that the annual rent is $200,000 per
story. How many stories will provide the greatest return on
investment?*

963. Points A and B are opposite points on the shore of a circular

lake of radius 1 mile. Maggie, now at point A, wants to reach
point B. She can swim directly across the lake, she can walk
along the shore, or she can swim part way and walk part way.

[>65. Set f(x) = x? — x and let P be the point (4, 3).

(a) Use a graphing utility to draw f and mark P.

(b) Use a CAS to find the point(s) on the graph of f that are
closest to P.

(c) Let Q be a point which satisfies part (b). Determine the
equation for the line Ipq through P and Q; then display
in one figure the graph of f, the point P, and the line lpg.

(d) Determinethe equation of the line Iy normal to the graph

of f at (Q, f(Q)).

(e) Compare lpg and ly.

Given that Maggie can swim at the rate of 2 miles per hour [ 66. Exercise 65 with f (x) = x — x3and P(1, 8).

and walks at the rate of 5 miles per hour, what route should
she take to reach point B as quickly as possible? (No running
allowed.)

564. Our friend Maggie of Exercise 63 finds a row boat. Given

that she can row at the rate of 3 miles per hour, what route
should she take now? Row directly across, walk all the way,
or row part way and walk part way?

THere by “return on investment” we mean the ratio of income to cost.

967. Find the distance D(x) from a point (x,y) on the line

y + 3x = 7 to the origin. Use a graphing utility to draw
the graph of D and then use the trace function to estimate
the point on the line closest to the origin.

b68. Find the distance D(x) from a point (x, y) on the graph

of f(x)=4—x? to the point P(4,3). Use a graphing
utility to draw the graph of D and then use the trace
function to estimate the point on the graph of f closest
to P.

B PROJECT 4.5 Flight Paths of Birds

Ornithologists studying the flight of birds have determined that
certain species tend to avoid flying over large bodies of water
during the daylight hours of summer. A possible explanation for
this is that it takes more energy to fly over water than land be-
cause on a summer day air typically rises over land and falls over
water. Suppose that a bird with this tendency is released from
an island that is 6 miles from the nearest point A of a straight
shoreline. It flies to a point B on the shore and then flies along
the shore to its nesting area C, which is 12 miles from A. (See
the figure.)

s

Let W denote the energy per mile required to fly over water, and
let L denote the energy per mile required to fly over land.

Problem 1. Show that the total energy E expended by the bird
in flying from the island to its nesting area is given by

E(x) = W+/36 4+ x2 + L(12 — x),
where x is the distance from A to B measured in miles.

Problem 2. Suppose that W = 1.5L; that is, suppose it takes
50% more energy to fly over water than over land.

0<x<12

(a) Use the methods of Section 4.5 to find the point B to which
the bird should fly to minimize the total energy expended.

(b) Use agraphing utility to graph E, and then find the minimum
value to confirm your result in part (a). Take L = 1.

Problem 3. In general, suppose W = kL, k > 1.
(a) Findthe point B (as a function of k) to which the bird should
fly to minimize the total energy expended.

(b) Use a graphing utility to experiment with different values of
k to find out how the point B moves as k increases/decreases.
Take L = 1.

(c) Find the value(s) of k such that the bird will minimize the
total energy expended by flying directly to its nest.

(d) Are there any values of k such that the bird will minimize
the total energy expended by flying directly to the point A
and then along the shore to C?

M 4.6 CONCAVITY AND POINTS OF INFLECTION

We begin with a sketch of the graph of a function f, Figure 4.6.1. To the left of ¢; and
between ¢, and c3, the graph “curves up” (we call it concave up); between c; and ¢y,
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and to the right of cs, the graph “curves down” (we call it concave down). These terms
deserve a precise definition.

Cor\(:a“e

ol—-———
-

ol — —

N

ol—-————

w

Figure 4.6.1

DEFINITION 4.6.1 CONCAVITY

Let f be a function differentiable on an open interval 1. The graph of f is said
to be concave up on | if f” increases on I; it is said to be concave down on |

if £/ decreases on I.

Stated more geometrically, the graph is concave up on an open interval where the slope
increases and concave down on an open interval where the slope decreases.

One more observation: where concave up, the tangent line lies below the graph;
where concave down, the tangent line lies above the graph. (Convince yourself of this
by adding some tangent lines to the curve shown in Figure 4.6.1.)

Points that join arcs of opposite concavity are called points of inflection. The graph
in Figure 4.6.1 has three of them: (c;, f(c1)), (c2, f(c2)), (c3, f(c3)). Here is the formal

definition:

DEFINITION 4.6.2 POINT OF INFLECTION

Let f be a function continuous at ¢ and differentiable near c. The point
(c, f(c)) is called a point of inflection if there exists a § > 0 such that the
graph of f is concave in one sense on (c — 8, ¢) and concave in the opposite

sense on (c, ¢ + 8).

Example 1 The graph of the quadratic function f (x) = x? — 4x + 3 is concave up
everywhere since the derivative f/(x) = 2x — 4 is everywhere increasing. (See Figure

4.6.2.) The graph has no point of inflection.

Example 2 For the cubing function f(x) = x3, the derivative
f/(x) = 3x? decreases on (—oo, 0] and increases on [0, o).

Thus, the graph of f is concave down on (—oo, 0) and concave up on (0, co). The
origin, (0, 0) = (0, f(0)), isapointof inflection, the only point of inflection. (See Figure

46.3) O

If f is twice differentiable, we can determine the concavity of the graph from the
sign of the second derivative.

N,
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f(x) =x2-4x+3

Figure 4.6.2
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point of
inflection

THEOREM 4.6.3
Suppose that f is twice differentiable on an open interval I.

(i) If £7(x) > 0 for all x in I, then f’ increases on I, and the graph of f is
concave up.

(i) If f”(x) < 0 for all x in I, then f’ decreases on |, and the graph of f is
concave down.

PROOF Apply Theorem 4.2.2 to the function f’. U

The following result gives us a way of identifying possible points of inflection.

THEOREM 4.6.4
If the point (c, f(c)) is a point of inflection, then
f”(c)=0 or f”(c) doesnotexist.

1 2 3

f(x) =x3-6x2+9x+1

Figure 4.6.4

PROOF Suppose that (c, f(c)) is a point of inflection. Let’s assume that the graph of f
is concave up to the left of ¢ and concave down to the right of c¢. The other case can be
handled in a similar manner.

In this situation f’ increases on an interval (c — &, ¢) and decreases on an interval
(c,c+9).

Suppose now that f”(c) exists. Then f’ is continuous at c. It follows that f’
increases on the half-open interval (c — §, ¢] and decreases on the half-open interval
[c, ¢ + §8). This says that f’ has alocal maximum at c. Since by assumption f”(c) exists,
f”(c) = 0. (Theorem 4.3.2 applied to f'.)

We have shown that if f”(c) exists, then f”(c) = 0. The only other possibility is
that f”(c) does not exist. (Such is the case for the function examined in Example 4
below.) 0

Example 3  For the function
f(x) =x3—6x>+9x +1 (Figure 4.6.4)
we have
f/(x) = 3x2 — 12x + 9 = 3(x?> — 4x + 3)
and
f’(x) = 6x — 12 = 6(x — 2).

Note that f”(x) =0 only at x = 2, and f” keeps a constant sign on (—oo, 2) and on
(2, o0). The sign of f” on these intervals and the consequences for the graph of f are
as follows:

signof f': ——----- - O+++++++++++++++++++

graph of f: concave down 2 concave up X
point of
inflection

The point (2, f(2)) = (2, 3) is a point of inflection. 1
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Example 4 For 1.2’
2 -
— 2y5/3 _ i
f(x) = 3x 5x (Figure 4.6.5) boint of
[ inflection/
we have | | | | .
2 -1 1
’ _ 2/3 " _10,-1/3
f/(x) = 5x 5 and f"(x) = Fx 3 / o
The second derivative does not exist at x = 0. Since oL
soon s | negative, forx <0 1,-2)
() is { positive, forx > 0, f () = 3x53 - 5x
Figure 4.6.5

the graph is concave down on (—oo, 0) and concave up on (0, co). Since f is continuous
at 0, the point (0, f(0)) = (0, 0) is a point of inflection. 1

caution The fact that f”(c) =0 or f”(c) does not exist does not guarantee that
(c, f(c)) is a point of inflection. (The statement that constitutes Theorem 4.6.4 is not
an iff statement.) As you can verify, the function f(x) = x* satisfies the condition
f”(0) = 0O, but the graph is always concave up and there are no points of inflection.
If f is discontinuous at ¢, then f”(c) does not exist, but (c, f(c)) cannot be a point of
inflection. A point of inflection occurs at ¢ iff f is continuous at ¢ and the point (c, f(c))
joins arcs of opposite concavity.

Example 5 Determine the concavity and find the points of inflection (if any) of the
graph of
f(x) = x +cosx, x € [0, 2r].
SOLUTION  For x € [0, 2], we have
f'(x) =1—sinx and f”(x) = —cos x.

On the interval under consideration f”(x) = Oonlyatx = 7/2and x = 37/2,and f”
keeps constant sign on (0, /2), on (r /2, 37 /2), and on (37 /2, 27r). The sign of f” on
these intervals and the consequences for the graph of f are as follows:

signof f";: —-———-—-—--—-—-- O+++++++++++++++++++0-—-—-——————
graph of f: 0O z z 3 or X
2 2
concave concave concave
down up down X

f(x) =x + cosx

The points (7/2, f(7/2)) = (7/2,7/2), and (37 /2, f(37/2)) = (37/2, 37/2) )
are points of inflection. The graph of f is shown in Figure 4.6.6. Figure 4.6.6

EXERCISES 4.6

1. The graph of a function f is given in the figure. (a) Deter-
mine the intervals on which f increases and the intervals on f
which f decreases; (b) determine the intervals on which the
graph of f is concave up, the intervals on which the graph c d K
is concave down, and give the x-coordinate of each point of | | | | | | |

inflection. a b \/ m n p
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2. Exercise 1 applied to the function f graphed below.

f
N
d m n X

3. The figure below gives the graph of a function f, the graph of
its first derivative f’, and the graph of its second derivative
f”, but not in the correct order. Which curve is the graph of
which function?

2 "

1
b
/
b

o

L

©

,

4. A function f is continuous on [—4, 4] and twice differen-
tiable on (—4, 4). Some information on f, f’,and f” is tab-
ulated below:

9. f(x) = x4 — Ix2 10. f(x) = x3(1 —x).

X X+2
1110 = . 12. 10 = - .
6X
13. f =(1-x)?1 2. 14 f = —.
3 (X)) =(1-x)(1+x) (x) 21
1-UX
15. f = . 16. f = (x — 3)1/5,
(x) 15 % (x)=(x—-3)
17. £(x) = (x + 2)%3, 18. f(x) = x4 — x2.
19. f(x) =sin’x, x €0, 7].
20. f(x) =2cos?x —x2, x €[0, x].
21. f(x) =x%+sin2x, x [0, x].
22. f(x) =sin*x, x e][0, 7].

bExercises 23-26. Find the points of inflection of the graph of f

by using a graphing utility.
x*—81
x2

23. f(x) =

24, f(x) =sin’x —cosx, —2m <X < 27.
25. f(x) = x® 4+ 9x* 4 26x° + 18x% — 27x — 27.

X
26. f(x) N

Exercises 27-34. Find: (a) the intervals on which f increases
and the intervals on which f decreases; (b) the local maxima and
the local minima; (c) the intervals on which the graph is concave
up and the intervals on which the graph is concave down; (d)
the points of inflection. Use this information to sketch the graph
of f.

27. f(x) = x% — 9x.

2X
29. f(X) = ——.
®) x2+1
31. f(x) = x +sinx,

28. f(x) = 3x* 4 4x3 + 1.
30. f(x) = x¥3(x — 6)%3.

X € [~m, 7]

32. f(x) =sinx +cosx, x € [0, 2x].
x3, x<1
33. f(x):{Sx—Z, X > 1.
2x+4, x<-1
34. f(x)_{B—xz, X > —1.

x |(4-2] -2 (-2,0) 0 0,2) 2, 4)
f/(x) | positive 0 negative | negative | negative 0 | negative
f”(x) | negative | negative | negative 0 positive 0 | negative

(a) Give the x-coordinates of the local maxima and minima
of f.
(b) Give the x-coordinates of the points of inflection of the
graph of f.
(c) Giventhat f(0) = 0, sketch a possible graph for f.
Exercises 5-22. Describe the concavity of the graph and find
the points of inflection (if any).

1
5 f(x)=-.
(x) x

7. f(x)=x3—3x +2

1
6. f(x)= —.
(x) x+x

8. f(x) =2x% —5x + 2.

Exercises 35-38. Sketch the graph of a continuous function f

that satisfies the given conditions.

3. f0)=1, () =-1;f'(0)=f'(2)=0, f'(x) >0 for
x—=1>1,f'x) <0 for |x—1<1;f"(x) <0 for
x <1, f"(x) > 0forx > 1.

36. f”(x) >0 if |x]>2, f’(x) <0 if |x] <2;f'(0)=0,
f'(x) > 0ifx <0, f'(x) <0ifx > 0; f(0) =1, f(-2) =
f(2) = % f(x) > O forall x, f isan even function.

37. f7(x) < 0ifx <0, f"(x) > 0ifx > 0; f'(-1) = f'(1) =
0, f’(0) does not exist, f’(x) >0 if |x] >1f'(x) <0



38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

4.7 VERTICAL AND HORIZONTAL ASYMPTOTES; VERTICAL TANGENTS AND CUSPS &

if Xx|<1lXx=#£0);f(-1)=2fQ1)=-2;f
function.
f(-2)=6,f(1)=2,f3)=4,f'1)=f'(B)=0, f'x) <
0if x—=2]>1,f'x)>0if [x—-2| <1, f"(x) <0 if
X+1l <lorx >2 f"(x)>0if|x =1 <lorx < —2.
Find d given that (d, f(d)) is a point of inflection of the
graph of

is an odd

f(x) =(x —a)(x —b)(x —c).
Find c given that the graph of f(x) = cx? + x~2 has a point
of inflection at (1, f(1)).

Find a and b given that the graph of f(x) = ax®+ bx?
passes through the point (—1, 1) and has a point of inflection
1

where X = 3

Determine A and B so that the curve
y — AXl/Z 4 Bx—l/z

has a point of inflection at (1, 4).
Determine A and B so that the curve

y = Acos2x + Bsin 3x

has a point of inflection at (7 /6, 5).

Find necessary and sufficient conditions on A and B for
f(x)=Ax®2+Bx +C

(a) to decrease between A and B with graph concave up.
(b) to increase between A and B with graph concave down.
Find a function f with f’(x) = 3x? — 6x + 3 for all real x
and (1, —2) a point of inflection. How many such functions
are there?

Set f(x) = sinx. Show that the graph of f is concave down
above the x-axis and concave up below the x-axis. Does
g(x) = cos x have the same property?

Set p(x) = x3 +ax? + bx +c.

195

(&) Show that the graph of p has exactly one point of inflec-
tion. What is x at that point?

(b) Show that p has two local extreme values iff a®> > 3b.

(c) Show that p cannot have only one local extreme value.

48. Show that if a cubic polynomial p(x) = x® + ax? 4+ bx +¢
has a local maximum and a local minimum, then the mid-
point of the line segment that connects the local high point
to the local low point is a point of inflection.

49. (a) Sketch the graph of a function that satisfies the fol-
lowing conditions: for all real x, f(x) > 0, f’(x) > 0,
f”(x) > 0; f(0) = 1.
(b) Does there exist a function which satisfies the condi-
tions: f(x) >0, f'(x) <0, f”(x) <0 for all real x?
Explain.

50. Prove that a polynomial of degree n can have at most n — 2
points of inflection.

bExercises 51-54. Use a graphing utility to graph the function on

the indicated interval. (a) Estimate the intervals where the graph
is concave up and the intervals where it is concave down. (b)
Estimate the x-coordinate of each point of inflection. Round off
your estimates to three decimal places.

51. f(x) =x*—-5x24+3; [-4,4].

52. f(x) = xsinx; [-2n,27].

53. f(x) =14 x% —2xcosx; [-m, 7]
54. f(x) = x¥3(x?> —4); [-5,5].

bExercises 55-58. Use a CAS to determine where:

M 4.7 VERTICAL AND HORIZONTAL ASYMPTOTES;

VERTICAL TANGENTS AND CUSPS

Vertical and Horizontal Asymptotes

In Figure 4.7.1 you can see the graph of

As x — ¢, f(x) — oo; that is, given any positive number M, there exists a positive

f(x)

X —c]

number § such that

The line x = c is called a vertical asymptote. Figure 4.7.2 shows the graph of

if 0<|x—c|] <8, then

9(x) = R

for x close to c.

f(x) > M.

for x close to c.

(@ f"(x)=0, (b) f7(x) >0,
© f(x) <0.
55. f(x) =2c0s?x —cosx, 0<x <27,
f X
56. = .
) x4 —1
57. f(x) = x* — 4x% + 6x7 — 4x° + x5,
58. f(x) = x+/16 — x2.
y s
|
!
!
!
!
!
|
| vertical
‘ asymptote
l/x =C
("2 X
!

Figure 4.7.1
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vertical
asymptote
X=c

- | o——

Figure 4.7.2

X

4

vertical
asymptote
X

|
|
|
|
|
|
|
|
|
|
t
|
|
|
|
|
|
|
|
|

Figure 4.7.5

y | ,
‘ |
‘ |
‘ |
‘ |
‘ |
| i |
| vertical Vertlcatl ol f
f | asymptote asymptote,
} X=c X=c }
e L~
g } } g
‘ |
‘ |
‘ |
Figure 4.7.3 Figure 4.7.4

Inthiscase,asx — ¢, g(x) — —oo.Again, theline x = ciscalled avertical asymptote.
\ertical asymptotes can arise from one-sided behavior. With f and g as in Figure
4.7.3, we write

asx — ¢, f(x) > o0 and g(x) » —oo.
With f and g as in Figure 4.7.4, we write
asx — ¢, f(x) > o0 and g(x) - —oo.
In each case the line x = c is a vertical asymptote for both functions.
Example 1 The graph of
x+6  3(x+2)
X2 —-2x -8 (Xx+2)(x —4)

has a vertical asymptote at x = 4: as X — 4T, f(x) > oo and as X — 47, f(x) —
—o0. The vertical line x = —2 is not a vertical asymptote sinceas x — —2, f(x) tends
to a finite limit: Iim2 f(x) = Iim23/(x —4)=—-1 (Figure4.75) 1

X—— X—>—

f(x) =

2

From your knowledge of trigonometry you know that as x — /27, tanx — oo
and as x — /2%, tanx — —oo. Therefore the line x = /2 is a vertical asymptote.
In fact, the lines x = (2n + 1)7/2,n =0, £1, £2, .. ., are all vertical asymptotes for
the tangent function. (Figure 4.7.6)

Figure 4.7.6
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The graph of a function can have a horizontal asymptote. Such is the case
(see Figures 4.7.7 and 4.7.8) if, as x — oo or as X — —oo, f(X) tends to a finite
limit.

horizontal asymptote horizontal
e asymptote
f DR
\
N
as X — oo, f(x) > L X
as X — —oo, f(X) > L X y
Figure 4.7.7 Figure 4.7.8 }
|
Example 2 Figure 4.7.9 shows the graph of the function orivontal |
!
X asymptotey = 1| |
f(x) = S smm=ee ===
= — .
} vertical
As X — 27, f(X) > —o0; as x — 2T, f(x) — oo. The line x =2 is a vertical \ jS}“;PtOte
asymptote. } -
As X — 00, }
X 1 o0 =%
f(x) = - 1 ?
x—=2 1-2/x Figure 4.7.9
The same holds true as x — —oo. The line y = 1 is a horizontal asymptote. 1
Example 3 Figure 4.7.10 shows the graph of the function Y
COS X
fx)=——, x>0
0)== JANEAN
\/ N— X
Asx — 07, cosx — 1,1/x — oo, and \/
COS X 1
f(x):—:(cosx)(—)—>oo. f(x) =<
X X
The line x = 0 (the y-axis) is a vertical asymptote. Figure 4.7.10
As X — 00,
COS X 1
o =X o 2
IX] |X]
and therefore
COS X
f(x) = ~ 0

The line y = 0 (the x-axis) is a horizontal asymptote. In this case the graph does not
stay to one side of the asymptote. Instead, it wiggles about it with oscillations of ever
decreasing amplitude.

Example 4 Here we examine the behavior of

X1 X X+ 1= X
X2 —2x+1  (x—=1)2 °

g9(x)
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First, two observations: (a) Because of the presence of /X, g is not defined for
negative numbers. The domain of g is [0, 1) U (1, 00). (b) On its domain, g remains
positive.

Asx — 1,

X+1—VX—>1, (x —1)% -0, and  g(x) — oo.

Thus, the line x = 1 is a vertical asymptote.
AS X — 00,

X+1-—yx 1+1/x—-1/Yx 0
= e
X2 —2x +1 X —2+1/x

(The numerator tends to 1 and the denominator tends to co.) The line y = 0 (the x-axis)
is a horizontal asymptote.

g(x) =

The behavior of a rational function
anX" + - +arX +ag
bxk - - +byx 4 bo

as X — oo and as x — —oo is readily understood after division of numerator and
denominator by the highest power of x that appears in the configuration.

R(x) = (an # 0, b # 0)

Examples
(a) Forx =0, set
xt—ax® -1 1/x—4/x2—1/x°
2x% — X 2—1/x4
Both as x — oo and as x — —oo0,
1/x —4/x>—1/x> =0, 2-1/x*=2  and f(x)—0.
(b) Forx # 0, set

f(x) =

x2—3x+1 1-3/x+1/x?
4x2 — 1 4 —1/x2
Both as x — oo and as x — —oo,
1—-3/x+1/x? -1, 4—1/x% - 4, and f(x) — 1/4.
(c) Forx #0, set

f(X) =

f(x) = 3 —Tx*+1  3-7/x+1/x°
S x2—-9  1/x—9/x8
Note that for large positive x, f(x) is positive, but for large negative x, f(x)
is negative. As X — oo, the numerator tends to 3, the denominator tends to 0, and
the quotient, being positive, tends to oco; as x — —oo, the numerator still tends to
3, the denominator still tends to 0, and the quotient, being negative this time, tends
t0 —oco0. 4

Vertical Tangents; Vertical Cusps

Suppose that f is a function continuous at x = c. We say that the graph of f has a
vertical tangent at the point (c, f(c)) if

as x—¢c¢ f'X)—=> o0 or f'(X)— —occ.



4.7 VERTICAL AND HORIZONTAL ASYMPTOTES; VERTICAL TANGENTS AND CUSPS

Examples (Figure 4.7.11)

(@) The graph of the cube-root function f (x) = x*/3 has a vertical tangent at the point
(0, 0):
as x — 0, f'(x) = 2x 723 - o0.
The vertical tangent is the line x = 0 (the y-axis).
(b) The graph of the function f(x) = (2 — x)'/® has a vertical tangent at the point
(2,0):
as X — 2, f'(x) =12 —x)™° > —o0.

The vertical tangent is the line x = 2. 1

|
| vertical tangent

— | X=2

|
vertical tangent |
x=0
‘% X i\X
|
|
I
5

f(x) =x1/3 f(x) = (2 —=x)1/
(@ (b)

Figure 4.7.11

Occasionally you will see a graph tend to the vertical from one side, come to a
sharp point, and then virtually double back on itself on the other side. Such a pattern
signals the presence of a “vertical cusp.”

Suppose that f is continuous at x = ¢. We say that the graph of f has a vertical
cusp at the point (c, f(c)) if

as x tends to ¢ from one side, f'(x) — oo
and

as x tends to ¢ from the other side, f'(x) — —oo.

Examples (Figure 4.7.12)

(a) Thefunction f (x) = x?/3iscontinuousatx = 0and has derivative f'(x) = Zx /3.
As x — 01, f/(x) — oo; as x — 07, f/(x) — —oo. This tells us that the graph
of f has a vertical cusp at the point (0, 0).

(b) The function f(x) =2 — (x —1)?/° is continuous at x = 1 and has derivative
f/(x)=—2(x —1)73/°. Asx — 17, f'(x) > oo;asx — 1+, f'(x) > —oo. The
graph has a vertical cusp at the point (1, 2).

y y 1,2)

e

f(x) =x23 f(x)=2-(x-1)?5

Figure 4.7.12
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EXERCISES 4.7

1. The graph of a function f is given in the figure.

@ Asx —» -1, f(x)—>?
(b) Asx - 17, f(x)—>?
() Asx — 1, f(x)—=>?
(d) Asx — oo, f(x) >?
(&) Asx - —oo, f(x)—>?

(f) What are the vertical asymptotes?
(9) What are the horizontal asymptotes?

2. The graph of a function f is given in the figure.

(@ Asx — oo, f(x) =>?

(b) Asx — bt, f(x) —>?

(c) What are the vertical asymptotes?

(d) What are the horizontal asymptotes?

(e) Give the numbers c, if any, at which the graph of f has
a vertical tangent.

(f) Give the numbers c, if any, at which the graph of f has
a vertical cusp.

Exercises 3—20. Find the vertical and horizontal asymptotes
3

3x x1/3
13. f(x):m. 14. f(x):m.
15t = — Y 16 f = X
Zﬁ—X—l X2 —1
17. f(x) = VX +4 — JX. 18. f(X) = /X — /X = 2.
sin x 1
19. f(X) = ——. 20. f(X) = —.
9. 1) sinx —1 0. 1(x) secx —1

3, f(x) = 3xx—1 4100 = .
5. f(x) = X_zz. 6. f(x):x24—:_1.
2
7. f(x) = Xzig. 8. f(x) = MLX_X.
2x —1\?2 4x2
3 3
11 f(x) = ﬁ 12, f(x) = (1_’(2)() .

Exercises 21-34. Determine whether or not the graph of f has
a vertical tangent or a vertical cusp at c.

21. f(x) = (x +3)*%; c=-3.
22. f(x) =3+x%5% c=0.

23. f(x)=(2—-x)% c=2
24 f(X)=(x+1)73; c=-1
25, f(x) =2x%% —x85;, c=0.

26. f(x)=(x —5)"% c¢=5.
27. f(X) = (x +2)7%3;, c=-2

28. f(x)=4—-(2—-x)%¥"; c=2
20. f(x) =[x =1[; c=1

30. f(x)=x(x —D¥3; c=1
31 f(x)=|(x +8)%; c=-8.
32. f(X) =+4—-x2;, c=2.

X342, x<0
33 f(x) = c=0.

1—x¥5 x>0;
1+ V=X, x <0

34. f(x) = —0.
@x —x»)Y3, x> 0;

Exercises 35-38. Sketch the graph of the function, showing all
asymptotes.

X+1 1
Cf(x) = . LX) = ——.
35. f(x) v— 36. f(x) X+ 17
X X—2
7. f(x) = ——. LX) = ——-—.
3 x) T 38. f(x) 2 _5x 16

bExercises 39-42. Find (a) the intervals on which f increases

and the intervals on which f decreases, and (b) the intervals on
which the graph of f is concave up and the intervals on which
it is concave down. Also, determine whether the graph of f has
any vertical tangents or vertical cusps. Confirm your results with
a graphing utility.

39. f(x) =x — 3x/3,

41. f(x) = x5/3 — 3x?2,

40. f(x) = x?3 — x173,

42. £(x) = VIXI.

Exercises 43-46. Sketch the graph of a function f that satis-

fies the given conditions. Indicate whether the graph of f has

any horizontal or vertical asymptotes, and whether the graph

has any vertical tangents or vertical cusps. If you find that no

function can satisfy all the conditions, explain your reasoning.

43. f(x)>1 for all x, f(0)=1; f"(x)<0 for all x=#0;
f'(x) > ccasx — 0", f/(x) > —ccasx — 0.



44, 1(0)=0,f(3)= f(-3)=0; f(X) > —oc0 as x — 1,
f(x) > —ocasx - —1, f(x) > lasx — oo, f(Xx) > 1
asx — —oo; f”(x) < 0forall x # +1.

45. f(0)=0; f(x) > —lasx — oo, f(X) > Llasx - —o0;
f/(x) > —oc as x — 0; f”(x) <0 for x <0, f”"(x) >0
for x > 0; f is an odd function.

46. f(0) =1; f(x) > 4asx — oo, f(X) > —ccasx - — oo;
f'(xX) > ccasx — 0; f”(x) > 0forx <0, f”(x) <O for
X > 0.

47. Let p and q be positive integers, q odd, p < q. Let f(x) =
xP/4. Specify conditions on p and g so that
(a) the graph of f has a vertical tangent at (0, 0).
(b) the graph of f has a vertical cusp at (0, 0).

48. (Oblique asymptotes) Let r(x) = p(x)/q(x) be a rational
function. If (degree of p) = (degree of q) + 1, then r can be
written in the form

r(x)=ax +b+ % with  (degree Q) < (degree q).
Show that [r(x) — (ax + b)] — 0 both as x — oo and as
X — —oo. Thus the graph of f “approaches the line y =
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ax +b” both as x — oo and as x — —oo. The line y =
ax + b is called an oblique asymptote.

Exercises 49-52. Sketch the graph of the function showing all
vertical and oblique asymptotes.

2_4 X% 4 3% — 2

49, f) = =% 50, f(x) = 2~ ¥ =2
x+1

x8 14 x —3x?

1f) = —— . 2 f(x) = X
5L 100 = g 52. () =

bExercises 53-54. Use a CAS to find the oblique asymptotes.

Then use a graphing utility to draw the graph of f and its asymp-
totes, and thereby confirm your findings.

X —4x® —2x2 4 2x + 2
X3 — X '
5x3 —3x? +4x — 4
X241

53. f(x) =

54. f(x) =

bExercises 55-56. Use a graphing utility to determine whether

or not the graph of f has a horizontal asymptote. Confirm your
findings analytically.

55. f(X) = /X2 4+2x —Xx.  56. f(x) = /X% —x2 —x2.

During the course of the last few sections you have seen how to find the extreme values
of a function, the intervals on which a function increases, and the intervals on which
it decreases; how to determine the concavity of a graph and how to find the points of
inflection; and, finally, how to determine the asymptotic properties of a graph. This
information enables us to sketch a pretty accurate graph without having to plot point

after point after point.

Before attempting to sketch the graph of a function, we try to gather together the
information available to us and record it in an organized form. Here is an outline of the

procedure we will follow to sketch the graph of a function f.

(1) Domain Determine the domain of f; identify endpoints; find the vertical asymp-
totes; determine the behavior of f as x — oo and as X — —oo0.

(2) Intercepts Determine the x- and y-intercepts of the graph. [The y-intercept is the
value f(0); the x-intercepts are the solutions of the equation f(x) = 0.]

(3) Symmetry/periodicity If f is an even function [ f(—x) = f(x)], then the graph
of f is symmetric about the y-axis; if f isan odd function [ f (—x) = — f(x)], then
the graph of f is symmetric about the origin. If f is periodic with period p, then

the graph of f replicates itself on intervals of length p.

(4) First derivative Calculate f’. Determine the critical points; examine the sign of
f’ to determine the intervals on which f increases and the intervals on which f

decreases; determine the vertical tangents and cusps.

(5) Secondderivative Calculate f”. Examinethe sign of f” to determine the intervals
on which the graph is concave up and the intervals on which the graph is concave

down; determine the points of inflection.

(6) Points of interest and preliminary sketch  Plot the points of interestina preliminary
sketch: intercept points, extreme points (local extreme points, absolute extreme

points, endpoint extreme points), and points of inflection.

(7) Thegraph Sketchthe graph of f by connecting the points in a preliminary sketch,
making sure that the curve “rises,” “falls,” and “bends” in the proper way. You may

wish to verify your sketch by using a graphing utility.
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Figure 4.8.1 gives some examples of elements to be included in a preliminary

sketch
y y y
2, 4)
3, 2) \
4, 1)
X X X
local maximum: (2, 4) point of inflection: (3, 2) endpoint minimum: (4, 1)
Figure 4.8.1

Example 1 Sketch the graph of f(x) = ix* —2x2 4 .

SOLUTION

(1) Domain Thisisapolynomial function; so its domain is the set of all real numbers.
Since the leading termis %x“, f(x) — oobothasx — ooandasx — —oo. There
are no asymptotes.

(2) Intercepts The y-intercept is f(0) =
equation f(x) = 0:

. To find the x-intercepts, we solve the

|

=22+ I=0.
x*—8x2+7=0,

(x> —1(x?>—=7) =0,

(x +1)(x = D(x + V7)(x —+/7) =0,

The x-intercepts are x = 1 and x = ++/7.
(3) Symmetry/periodicity Since

f(—x) = F(—x)* = 2(—x?) + { = Ix* —2x® + L = f(x),

f isan even function, and its graph is symmetric about the y-axis; f isnota periodic
function.
(4) First derivative

f/(x) = x3 — 4x = x(x2 — 4) = x(x 4+ 2)(x — 2).

The critical points are x = 0, x = +2. The sign of f’ and behavior of f:

signof f: ———————————— O++++++++++0--—-—-———- O++++++++++
behavior of f: decreases -2 increases 0 decreases 2 increases X
local local local
minimum maximum minimum

(5) Second derivative

f”(x)=3x2—4=3(x—%) (x+%).
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The sign of f” and the concavity of the graph of f:

signof f""+++++++++++++++0-—-———--—-———————— O+++++++++++++
concavity: concave % concave % concave X
up down Y up
point of point of
inflection inflection

(6) Points of interest and preliminary sketch (Figure 4.8.2)
(0.2):  y-intercept point.
(—=1,0), (1,0), (—/7,0), (~/7,0):  x-intercept points.
(0, 5y:  local maximum point.
(-2,-9),(2,—2):  local and absolute minimum points.
(—2/+/3,—17/36), (2/+/3, —=17/36) :  points of inflection.

(7) Thegraph Since the graph is symmetric about the y-axis, we can sketch the graph
for x > 0, and then obtain the graph for x < 0 by a reflection in the y-axis. See
Figure 4.8.3. 1

«7,0 5
(o)
o 2 , 2,-2
(2-3) (2-3) L= dxt-2e s ] '
Figure 4.8.2 Figure 4.8.3

Example 2 Sketch the graph of f(x) = x* —4x3+1, -1 <x <5.

SOLUTION

(1) Domain The domain is [—1, 5); —1 is the left endpoint, and 5 is a “missing”
right endpoint. There are no asymptotes. We do not consider the behavior of f as
X — =00 since f is defined only on [—1, 5).

(2) Intercepts The y-intercept is f(0) = 1. To find the x-intercepts, we must solve

the equation
x*—4ax®+1=0.

We cannot do this exactly, but we can verify that f(0) > 0 and f (1) < 0, and that
f(3) < 0and f(4) > 0. Thus there are x-intercepts in the interval (0, 1) and in the
interval (3, 4). We could find approximate values for these intercepts, but we won’t
stop to do this since our aim here is a sketch of the graph, not a detailed drawing.

(3) Symmetry/periodicity The graph is not symmetric about the y-axis: f(—x) #

f(x). It is not symmetric about the origin: f(—x) # — f(x). The function is not
periodic.

m 203
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(4) Firstderivative Forx € (—1,5)
f/(x) = 4x3 — 12x2 = 4x%(x — 3).

The critical points are x = 0 and x = 3.

signoff* - ---—---0---------"-"-"-"-"-"-"-"-"---—- O+++++++++++++
behavior of f: —1 decreases O decreases 3 increases 5
endpoint no local missing
maximum extreme minimum endpoint

(5) Second derivative.
f7(x) = 12x% — 24x = 12x(x — 2).
The sign of f” and the concavity of the graph of f:

sign of f™: ++++++0--—-——-———————— O+++++++++++++++++++
concavity: —I concave 6 concave 5 concave 5 X
y UP  point down point up
f f
(5, 126)p inflection inflection
(6) Points of interest and preliminary sketch (Figure 4.8.4)
Hf) ©. 1) 0,1): y-intercept point; point of inflection with horizontal tangent.
S“‘\ ~ (—1,6) :  endpoint maximum point.
«*‘(2, _15) (2, -15): point of inflection.
(3,—26): local and absolute minimum point.
@3, -26) As x approaches the missing endpoint 5 from the left, f (x) increases toward a value
Figure 4.8.4 of 126. _ o _

(7) The graph Since the range of f makes a scale drawing impractical, we must be
content with a rough sketch as in Figure 4.8.5. In cases like this, it is particularly
important to give the coordinates of the points of interest.

y (5, 126) ¥2_3
Example 3 Sketch the graph of f(x) = v
SOLUTION
2 o,
i (1) Domain The domain of f consists of all x # 0, the set (—oo, 0) U (0, 00). The
X y-axis (the line x = 0) is a vertical asymptote: f(x) - ocoasx — 0~ and f(x) —
(2, -15) —o00 as X — 0T. The x-axis (the line y = 0) is a horizontal asymptote: f(x) — 0
both as x — oo and as X — —oo.
(3, -26) (2) Intercepts. Thereisnoy-interceptsincef isnot defined at x = 0. The x-intercepts
Figure 4.8.5 are x = /3,

(3) Symmetry Since

(—x)> -3 x?2 -3
f(—x) = = — = —f(x
the graph is symmetric about the origin; f is not periodic.
(4) Firstderivative. Itis easier to calculate f’if we first rewrite f(x) using negative
exponents:

X2

3
=xt-3x7?

f(x) =

X3



4.8 SOME CURVE SKETCHING

gives

9 —x?

’ -2 —4
f'(X) = —Xx""+9" = v

The critical points of f are x = +3. NOTE: x = 0 is not a critical point since 0 is
not in the domain of f.
The sign of f’ and the behavior of f:

signof f* - —————-———— O++++++++++++dne++++++++++++0-—--—-—————
behavior of f: decreases -3 increases 0 increases 3 decreases X
local local
minimum maximum

(5) Second derivative

2(x* —18) _ 2(x —3v2)(x +3v2)

" _ -3 -5 _
f7(x) =2x7° —36x > = NG 5

The sign of f” and the concavity of the graph of f:

signof f": —————— O++++++++++++dne———————————— O++++++++
concavity: concave -32 concave 0 concave 3V2 concave X
down  point of up down point of up
inflection inflection

(6) Points of interest and preliminary sketch (Figure 4.8.6)

(—+/3,0),(+/3,0):  x-intercept points.
(—3,-2/9): local minimum point.
(3,2/9): local maximum point.
(—3v/2, —54/2/36), (3v/2,5+/2/36) :  points of inflection.
(7) The graph See Figure 4.8.7. 1

y y

(2. 52 - (32

2 |
.2 _
— 0.2 o \Z . (3\@,53%2)
~3 [0l Lot L/
L L 141 lgl 1 | '3 3 X
4 3 2" 172 3 4 X ~
* - ( 5o
9

Figure 4.8.6 Figure 4.8.7

Example 4 Sketch the graph of f(x) = 2x%2 — 3x%3.

SOLUTION

1. Domain The domain of f is the set of real numbers. Since we can express f(x) as
$x2/3(x — 5), we see that, as x — oo, f(x) — co,andasx — —oo, f(x) — —oo.
There are no asymptotes.
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2. Intercepts Since f(0) = 0, the graph passes through the origin. Thus x = 0 is an
x-intercept and y = 0 is the y-intercept; x = 5 is also an x-intercept.

3. Symmetry/periodicity There is no symmetry; f is not periodic.

4, First derivative
X—2
x1/3 "

The critical points are x = 0 and x = 2. The sign of f’ and the behavior of f:

f/(x) = x?3 —2x~¥8 =

signof f: +++++dne---——————-———————————————— O++++++++
behavior of f: increases 0 decreases 2 increases X
local local
maximum minimum

Note that, as x — 0~, f’(x) — oo, and as x — 0T, f’(x) - —oo. Since f is con-
tinuous at x = 0, and f(0) = 0, the graph of f has a vertical cusp at (0, 0).

5. Second derivative
f7(x) = 5x713 4 2x =43 = 2x~4B3(x + 1).

The sign of f” and the concavity of the graph of f:

signof f*: ———-——-— O+++++++++++++++++++++++++dne+++++++
concavity: concave -1 concave 0 concave X
down point up up
of
inflection

6. Points of interest and preliminary sketch (Figure 4.8.8)
(0,0): y-intercept point, local maximum point; vertical cusp.
(0,0), (5,0): x-intercepts points.
(2, —9v/4/5):  local minimum point, f(2) = —2.9.
(-1, —18/5) : point of inflection.
7. The graph See Figure 4.8.9. 1

y y
Jl y I N )J_{S - -
L —;e) (2\32/9)
Figure 4.8.8 Figure 4.8.9

Example 5 Sketch the graph of f(x) = sin2x — 2sinx.

SOLUTION

(1) Domain The domain of f is the set of all real numbers. There are no asymptotes
and, as you can verify, the graph of f oscillates between $+/3 and —2+/3 both as
X — oo and as x — —oo.
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(2) Intercepts The y-interceptis f(0) = 0. To find the x-intercepts, we set f(x) = 0:
Sin2x — 2sinX = 2siN X CoS X — 2sinx
= 2sinx(cosx —1) = 0.

Since sinx = 0 at all integral multiples of = and cos x = 1 at all integral multiples
of 27, the x-intercepts are the integral multiples of : all x = +nx.
(3) Symmetry/periodicity Since the sine is an odd function,

f(—x) = sin(—2x) — 2sin(—x) = —sin2x + 2sinx = — f (x).

Thus, f is an odd function and the graph is symmetric about the origin. Also, f is
periodic with period 25r. On the basis of these two properties, it would be sufficient
to sketch the graph of f on the interval [0, 7z]. The result could then be extended to
the interval [, 0] using the symmetry, and then to (—oo, co) using the period-
icity. However, for purposes of illustration here, we will consider f on the interval
[—7, 7].

(4) First derivative

f/(x) = 2cos 2x — 2.¢os x
= 2(2cos®x — 1) — 2cosx
=4c0s?Xx —2C0SX — 2
= 2(2cosx + 1)(cosx — 1).

The critical points in [—m, ] are x = =27 /3, X =0, x = 27/3.

sign of f: +++++++++0---— - ———— O-——--—-——- O+++++++++0
behavior of f: -z increases -2z decreases 0 decreases 27 increases T X
3 3
local local
maximum minimum

(5) Second derivative
f”(x) = —4sin2x + 2sinx
= —8sinx cosx + 2sinx
= 2sinx(—4cosx + 1).

f’(x) =0 at x = —m, 0, 7, and at the numbers x in [—7m, 7] where cosx = %
which are approximately +1.3. The sign of f” and the concavity of the graph on
[, 7]:
signoff* 0--—----—--—-—-—-—-—— O+++++0----- O+++++++++++++0 y
concavity: i 1.3 0 1.3 x X (_3,,1 E\@) |
concave concave concave concave 3 ’\2
down up down up |
point of  point of  point of \
inflection inflection inflection (-1.3,1.4) L
(6) Points of interest and preliminary sketch (Figure 4.8.10) —4—L 1 ~e 1 1 4,
“m _2 13 13 2z 7w X
(0,0): y-intercept point. ° N 3
(—m,0), (0,0), (;r, 0): x-intercept points; (0, 0) is also a point of inflection. (1.3, -1.4)
(—37,24/3):  local and absolute maximum point; $+/3 = 2.6. , Y,
2 3 i ; 3 ~ B (5”"5 3)
(37, —5«/5): local and absolute minimum point; —5«/§ =~ -2.6.

(—1.3,1.4), (1.3, —1.4): points of inflection (approximately). Figure 4.8.10
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= (-1.3,1.4)

Figure 4.8.11

(2r-2
377 2

3)

Figure 4.8.12

(7) The graph The graph of f on the interval [—7, ] is shown in Figure 4.8.11. An
indication of the complete graph is given in Figure 4.8.12.

EXERCISES 4.8

Exercises 1-54. Sketch the graph of the function using the ap-

proach presented in this section.

1. f(x) = (x —2)%

LX) =x3—2x2+x+ 1.

4, f(x) =x3—9x24+24x — 7.

5. f(x) =x®+6x2, xe[-4, 4]

6. f(x) =x*—8x%, xe(0,0).

7. f(x) = 5x3 — 1x2 —10x — L.

8. f(x) = x(x2 + 4)2.

9. f(x)=x2+§. 10. f(x) =
11 f(x) = XX_24. 12, f(x) =
13. f(x) =2X—x, x¢€][0,4].

14. f(x) = 2x — /X, x€[0,9].

15. f(x) =2+ (x + 1)%5.  16. f(X) = 2+ (x + 1)7/5.
17. f(x) = 3x° 4 5x3. 18. f(x) = 3x* + 4x%.
19 f(x) =1+ (x —2)°%3. 20, f(x) = 1+ (x — 2)*3.

x2 2x2
21 f(x) = ———. 22. f(x) =
%) X244 ) x+1
X X
23 f(X) = ————. 24. f(x) = .
() (x + 3)? ) x2+1
25 )= * 26, F(x) = ——
' T x2—4 ' T x3—x

27. f(x) = x4/1—X.

28. f(x) = (x —1)* = 2(x — 1)2.

29. f(x) =x +sin2x, x €[0,x].

30. f(x) =cos®x +6¢cosx, x e[0,x].
31. f(x) =cos*x, x e]0,n].

2. f(x)=1—-(x —2)2

1

X — —.
X
X+ 2
X3

32.
33.
34.
35.
36.
38.
40.
42.

44,

46.

48.
49,
50.
51.

52.
53.

54.
55.

f(x) = +/3x —cos2x, x e [0, n].

f(x) = 2sin®x + 3sinx, x € [0, 7].

f(x) =sin*x, xel[0,x].

f(x) = (x +1)* = 3(x + 1)* + 3(x + 1).

f(x) = x3(x + 5)%. 37. f(x) = x3(5 — x)®.

f(x) =4 —|2x — x?|. 39. f(x)=3—|x2—1]|.

f(x) =x — x5, 41. f(x) = x(x — 1)V/5.

f(x) = x2(x — 7)¥/3. 43. f(x) = x2 — 6x*/3.
2X X

0= 4. 10) = [ —.

X x?2
0=/ — 110 = e

f(x) =3cos4x, x €[0,x].

f(x) =2sin3x, x € [0, x].

f(x) =3+2cotx +csc?x, x € (0, 3).
f(x) =2tanx —sec?x, x € (0, 7).
f(x) = 2cosx + sin® x.

sin x
f(x) = 1

T Xe(—m,m).
—SIinx ( )

f(x) = 1 X € (—m, ).

—CosX,’
Given: f is everywhere continuous, f is differentiable at all
x # 0, f(0) =0, and the graph of f’ is as indicated below.

\. /.
1‘\3/3




(a) Determine the intervals on which f increases and the
intervals on which it decreases; find the critical points
of f.

(b) Sketchthe graph of f”; determine the intervals on which
the graph of f is concave up and those on which it is con-

57.Set f(x) = =
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3 _ y1/3

. Show that f(x)—x®>—0 as
X — too. This says that the graph of f is asymptotic to
the parabola y = x2. Sketch the graph of f and feature this
asymptotic behavior.

cave down. 58. The lines y = (b/a)x and y = —(b/a)x are called asymp-
56. Set X_z - y_z .
sin(1/x), x #0 a2 p2
F0 = 0, x=0
’ ’ (a) Draw a figure that illustrates this asymptotic behavior.
(b) Show that the first-quadrant arc of the hyperbola, the
G(X) _ X sin(l/x), X 7é 0 curve
- 0, x=0, b
y = S /x2 — a2,
[ x2sin(1/x), x#0 is indeed asymptotic to the line y = (b/a)x by showing
HO) = 0, x=0. that
(a) Sketchafigure that shows the general nature of the graph E,/XZ —a?— Ex —-0 as X — oo.
of F. a a
(b) Sketch a figure that shows the general nature of the graph (c) Proceeding as in part (b), show that the second-quadrant
of G. arc of the hyperbola is asymptotic to the line y =
(c) Sketch afigure that shows the general nature of the graph —(b/a)x by taking a suitable limit as x — —oo. (The
of H. asymptotic behavior in the other quadrants can be veri-

(d) Which of these functions is continuous at 0?

(e) Which of these functions is differentiable at 0? try.)

W 4.9 VELOCITY AND ACCELERATION; SPEED

Suppose that an object (some solid object) moves along a straight line. On the line of
motion we choose a point of reference, a positive direction, a negative direction, and a
unit distance. This gives us a coordinate system by which we can indicate the position
of the object at any given time. Using this coordinate system, we denote by x(t) the
position of the object at time t.f There is no loss in generality in taking the line of
motion as the x-axis. We can arrange this by choosing a suitable frame of reference.

You have seen that the derivative of a function gives the rate of change of that
function at the point of evaluation. Thus, if x(t) gives the position of the object at time
t and the position function is differentiable, then the derivative x'(t) gives the rate of
change of the position function at time t. We call this the velocity at time t and denote
it by v(t). In symbols,

@9.1) u(t) = X(1).

Velocity at a particular time t (some call it “instantaneous velocity” at time t) can
be obtained as the limit of average velocities. At time t the object is at x(t) and at time
t+hitisatx(t +h). Ifh > 0, then [t, t + h] is a time interval and the quotient

X(t+h)—x(t)  x(t+h)—x(t)
t+h)—t h

TIf the object is larger than a point mass, we can choose a spot on the object and view the location of that
spot as the position of the object. In a course in physics an object is usually located by the position of its
center of mass. (Section 17.6.)

fied in an analogous manner, or by appealing to symme-
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gives the average velocity during this time interval. If h < 0, then [t + h, t] is a time
interval and the quotient
x(t) —x(t+h)  x(t) —x(t+h)
t—(t+h) —h ’

which also can be written

X(t +h) —x(t)

B E—
gives the average velocity during this time interval. Thus, whether h is positive or
negative, the difference quotient

X(t +h) — x(t)

h
gives the average velocity of the object during the time interval of length |h| that begins
or ends at t. The statement
X(t 4+ h) — x(t)
h

expresses the velocity at time t as the limit as h — 0 of these average velocities.

If the velocity function is itself differentiable, then its rate of change with respect
to time is called the acceleration; in symbols,

u(t) = X'(0) = lim

4.9.2) a(t) = v'(t) = x"(t).

In the Leibniz notation,

_du_dx

= dx and

49.3 =X .
“.5.3) - =0 T e

The magnitude of the velocity, by which we mean the absolute value of the velocity, is
called the speed of the object:

4.9.4) speed at time t = v(t) = |v(t)].

The four notions that we have just introduced — position, velocity, acceleration,
speed — provide the framework for the description of all straight-line motion." The
following observations exploit the connections that exist between these fundamental
notions:

(1) Positive velocity indicates motion in the positive direction (x is increasing). Negative
velocity indicates motion in the negative direction (x is decreasing).

(2) Positive acceleration indicates increasing velocity (increasing speed in the positive
direction, decreasing speed in the negative direction). Negative acceleration indi-
cates decreasing velocity (decreasing speed in the positive direction, increasing
speed in the negative direction).

"Extended by vector methods (Chapter 14), these four notions provide the framework for the description
of all motion.
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(3) If the velocity and acceleration have the same sign, the object is speeding up, but
if the velocity and acceleration have opposite signs, the object is slowing down.

PROOF OF (1) Note that v = x’. If v > 0, then x’ > 0 and x increases. If v < 0, then
X" < 0 and x decreases. [

PROOF OF (2) Note that

_ v, inthe positive direction
V= —v, inthe negative direction.

Suppose that a > 0. Then v increases. In the positive direction, v = v and therefore v
increases; in the negative direction, v = —v and therefore v decreases.

Suppose thata < 0. Then v decreases. In the positive direction, v = v and therefore
v decreases; in the negative direction, v = —v and therefore v increases. [

PROOF OF (3) Note that

d
v> =v? and a(vz) = 2vv’ = 2va.

If v and a have the same sign, then va > 0and v? = v? increases. Therefore v increases,
which means the object is speeding up. If v and a have opposite sign, then va < 0
and v? = v? decreases. Therefore v decreases, which means the object is slowing
down. O

Example T An object moves along the x-axis; its position at each time t given by
the function

x(t) = t3 — 12t? + 36t — 27.

Let’s study the motion from timet =0 totimet = 9.
The object starts out at 27 units to the left of the origin:

x(0) = 0° — 12(0)% 4 36(0) — 27 = —27
and ends up 54 units to the right of the origin:
x(9) = 9° — 12(9)% 4 36(9) — 27 = 54.
We find the velocity function by differentiating the position function:
v(t) = x/(t) = 3t? — 24t 4 36 = 3(t — 2)(t — 6).
We leave it to you to verify that

positive for0 <t <2

0, att=2
v(t) is { negative, for2 <t <6
0, att=6

positive, for6 <t <9.

We can interpret all this as follows: the object begins by moving to the right [v(t) is
positive for 0 <t < 2]; it comes to a stop at time t = 2[v(2) = 0]; it then moves left
[v(t) is negative for 2 < t < 6]; it stops at time t = 6[v(6) = 0]; it then moves right
and keeps going right [v(t) > 0 for6 <t < 9].
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Figure 4.9.3
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We find the acceleration by differentiating the velocity:
a(t) = v'(t) = 6t — 24 = 6(t — 4).
We note that

negative, for0 <t <4
a(t)is 0, att=4
positive, for4 <t <9.

At the beginning the velocity decreases, reaching a minimum at time t = 4. Then the
velocity starts to increase and continues to increase.

Figure 4.9.1 shows a diagram for the sign of the velocity and a corresponding
diagram for the sign of the acceleration. Combining the two diagrams, we have a brief
description of the motion in convenient form. The direction of the motion at each time
t € [0, 9] is represented schematically in Figure 4.9.2.

signofv(i):+++++0 - - - - - - - - - —— O++++++++++
0 2 6 9 t
object object object
moving moving moving
right left right
signofa(t): - — - - - - - - - - — O+++++++++++++++
0 4 9 t
velocity velocity
decreasing increasing
| | | | |
sign of v(t): } + } - } - } + }
| | | | |
sign of a(t):} - } - } + } + }
| | | | |
0 2 4 6 9 t
motion of  to the to the to the to the
object right, left, left, right,
slowing speeding slowing speeding
down up down up
Figure 4.9.1
ot=9

[
=27 0 5 54 x(t)

Figure 4.9.2

Another way to represent the motion is to graph x as a function of t, as we do in
Figure 4.9.3. The velocity v(t) = x’(t) then appears as the slope of the curve. From
the figure, we see that we have positive velocity fromt = 0 up to t = 2, zero velocity
at time t = 2, then negative velocity up to t = 6, zero velocity at t = 6, then positive
velocity to t = 9. The acceleration a(t) = v'(t) can be read from the concavity of the
curve. Where the graph is concave down (fromt = 0 to t = 4), the velocity decreases;
where the graph is concave up (fromt = 4tot = 9), the velocity increases. The speed
is reflected by the steepness of the curve. The speed decreases fromt =0to t = 2,
increases fromt = 2tot = 4, decreases fromt =4tot = 6, increases fromt = 6 to
t=9. O
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A few words about units. The units of velocity, speed, and acceleration depend on
the units used to measure distance and the units used to measure time. The units of
velocity are units of distance per unit time:

feet per second, meters per second, miles per hour, and so forth.
The units of acceleration are units of distance per unit time per unit time:

feet per second per second, meters per second per second,

miles per hour per hour, and so forth.

Free Fall Near the Surface of the Earth

(In what follows, the line of motion is clearly vertical. So, instead of writing x(t) to y

indicate position, we’ll follow custom and write y(t). Velocity is then y’(t), acceleration

is y”(t), and speed is |y'(t)].) °
Imagine an object (for example, a rock or an apple) falling to the ground. (Figure

4.9.4.) We will assume that the object is in free fall; namely, that the gravitational pull

on the object is constant throughout the fall and that there is no air resistance.

m 213

Galileo’s formula for the free fall gives the height of the object at each time t of

the fall:
Figure 4.9.4

(4.9.5) y(t) = —29t2 + vot + Yo

where g is a positive constant the value of which depends on the units used to measure
time and the units used to measure distance. '

Let’s examine this formula. First, the point of reference is at ground level and the
positive y direction is up. Next, since y(0) = Yo, the constant y, represents the height
of the object at time t = 0. This is called the initial position. Differentiation gives

y'(t) = —gt + vo.

Since y’(0) = vy, the constant vy gives the velocity of the object at time t = 0. This is
called the initial velocity. A second differentiation gives

y'(t) = —g.

This indicates that the object falls with constant negative acceleration —g.

The constant g is a gravitational constant. If time is measured in seconds and
distance in feet, then g is approximately 32 feet per second per second; if time is
measured in seconds and distance in meters, then g is approximately 9.8 meters per

f1n practice, neither of these conditions is ever fully met. Gravitational attraction near the surface of the
earth does vary somewhat with altitude, and there is always some air resistance. Nevertheless, in the setting
in which we will be working, the results that we obtain are good approximations of the actual motion.

T Galileo Galilei (1564-1642), a great Italian astronomer and mathematician, is popularly known today for
his early experiments with falling objects. His astronomical observations led him to support the Copernican
view of the solar system. For this he was brought before the Inquisition.

§The value of this constant varies slightly with latitude and elevation. It is approximately 32 feet per second
per second at the equator, elevation zero. In Greenland it is about 32.23.
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second per second. In making numerical calculations, we will take g as 32 feet per
second per second or as 9.8 meters per second per second. Equation 4.9.5 then reads

y(t) = —16t> + ot +yo  (distance in feet)
or

y(t) = 4.9t + vot +yo.  (distance in meters)

Example 2 A stone is dropped from a height of 98 meters. In how many seconds
does it hit the ground? What is the speed at impact?

SOLUTION Here yo = 98 and vg = 0. Consequently, we have
y(t) = —4.9t% + 98.
To find the time t at impact, we set y(t) = 0. This gives
—49t24+98=0, t?2=20, t=4+20==425.

We disregard the negative value and conclude that it takes 2/5 = 4.47 seconds for the
stone to hit the ground.
The velocity at impact is the velocity at time t = 2+/5. Since

u(t) = y'(t) = —9.8t,
we have
v(2+/5) = —(19.6)v/5 = —43.83.

The speed at impact is about 43.83 meters per second.

Example 3 Anexplosion causes some debris to rise vertically with an initial velocity
of 72 feet per second.

(a) In how many seconds does this debris attain maximum height?
(b) What is this maximum height?

(c) What is the speed of the debris as it reaches a height of 32 feet (i) going up?
(ii) coming back down?

SOLUTION  Since we are measuring distances in feet, the basic equation reads
y(t) = —16t2 + vot + yo.

Here yo = 0 (it starts at ground level) and vy = 72 (the initial velocity is 72 feet per
second). The equation of motion is therefore

y(t) = —16t% + 72t.
Differentiation gives
v(t) = y/(t) = —32t + 72.

The maximum height is attained when the velocity is 0. This occursattimet = ;—g =3,

Since y(%) = 81, the maximum height attained is 81 feet.
To answer part (c), we must find those times t for which y(t) = 32. Since

y(t) = —16t% + 72t,
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the condition y(t) = 32 yields —16t? 4+ 72t = 32, which simplifies to

16t> — 72t + 32 = 0.

This quadratic has two solutions, t = 1 and t = 4. Since v(3) = 56 and v(4) = —56,
the velocity going up is 56 feet per second and the velocity coming down is —56 feet

per second. In each case the speed is 56 feet per second. 1

EXERCISES 4.9

Exercises 1-6. An object moves along a coordinate line, its posi-
tion at each time t > 0 given by x(t). Find the position, velocity,
and acceleration at time to. What is the speed at time t,?
LX(t)=443t—1t% t=5
2.x(t) =5t —t3;, tp=3.
18 2t
3X(t)=——=; th=1 4.X(t) = ——=; th=3.
W=tz b W=tz b
5.x(t) = (12 +5t)(t? +t —2); to=1.
6. x(t) = (12 — 3t)(t? + 3t); to=2.
Exercises 7-10. An object moves along the x-axis, its position

at each time t > 0 given by x(t). Determine the times, if any, at
which (a) the velocity is zero, (b) the acceleration is zero.

7.x(t) = 5t + 1. 8. x(t) = 4t —t + 3.
9. x(t) =t —6t24+9t — 1. 10. x(t) = t* — 4t% 4 4t% 4 2.

Exercises 11-20. Objects A, B, C move along the x-axis. Their
positions x(t) from time t = 0 to time t = t3 have been graphed
in the figure as functions of t.

x(t)

. object C
7

object A

N\tg
R object B

11. Which object begins farthest to the right?
12. Which object finishes farthest to the right?
13. Which object has the greatest speed at time t;?

14. Which object maintains the same direction during the time
interval [ty, t3]?

15. Which object begins moving left?

16. Which object finishes moving left?

17. Which object changes direction at time t,?

18. Which object speeds up throughout the time interval [0, t;]?
19. Which objects slow down during the time interval [t;, t,]?

20. Which object changes direction during the time interval
[t2, t].

Exercises 21-28. An object moves along the x-axis, its po-
sition at each time t > 0 given by x(t). Determine the time
interval(s), if any, during which the object satisfies the given
condition.

21. x(t) = t* — 12t3 4 28t?; moves right.

22, x(t) = t3 — 12t + 21t; moves left.

23. x(t) = 5t* — t°; speeds up.

24. x(t) = 6t% — t*; slows down.

25. x(t) = t® — 6t2 — 15t; moves left slowing down.

26. x(t) = t® — 6t2 — 15t; moves right slowing down.

27. x(t) = t* — 8t3 — 16t2; moves right speeding up.

28. x(t) = t* — 8t3 — 16t2; moves left speeding up.

Exercises 29-32. An object moves along a coordinate line, its
position at each time t > 0 being given by x(t). Find the times t
at which the object changes direction.

29. x(t) = (t +1)%(t —9)%.  30. x(t) =t(t — 8)°.

31 x(t) = (t3 — 12t)*. 32. x(t) = (t> — 8t + 15)°.
Exercises 33—-38. An object moves along the x-axis, its position
ateach time t given by x(t). Determine those times fromt = O to

t = 2z at which the object is moving to the right with increasing
speed.

33. x(t) = sin3t. 34. x(t) = cos 2t.

35. x(t) = sint — cost. 36. x(t) = sint 4 cost.
37. x(t) =t + 2cost. 38. x(t) =t — +/2sint.

In Exercises 39-52, neglect air resistance. For the numerical cal-
culations, take g as 32 feet per second per second or as 9.8 meters
per second per second.

39. An object is dropped and hits the ground 6 seconds later.
From what height, in feet, was it dropped?

40. Supplies are dropped from a stationary helicopter and sec-
onds later hit the ground at 98 meters per second. How high
was the helicopter?

41. An object is projected vertically upward from ground level
with velocity v. Find the height in meters attained by the
object.

42. An object projected vertically upward from ground level re-
turns to earth in 8 seconds. Give the initial velocity in feet
per second.

43. An object projected vertically upward passes every height
less than the maximum twice, once on the way up and once
on the way down. Show that the speed is the same in each
direction. Measure height in feet.
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44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55

56.

57.

An object is projected vertically upward from the ground.
Show that it takes the object the same amount of time to
reach its maximum height as it takes for it to drop from that
height back to the ground. Measure height in meters.

A rubber ball is thrown straight down from a height of 224
feet at a speed of 80 feet per second. If the ball always re-
bounds with one-fourth of its impact speed, what will be the
speed of the ball the third time it hits the ground?

A ball is thrown straight up from ground level. How high
will the ball go if it reaches a height of 64 feet in 2 seconds?

A stone is thrown upward from ground level. The initial
speed is 32 feet per second. (a) In how many seconds will
the stone hit the ground? (b) How high will it go? (c) With
what minimum speed should the stone be thrown so as to
reach a height of at least 36 feet?

To estimate the height of a bridge, a man drops a stone into
the water below. How high is the bridge (a) if the stone hits
the water 3 seconds later? (b) if the man hears the splash
3 seconds later? (Use 1080 feet per second as the speed of
sound.)

A falling stone is at a certain instant 100 feet above the
ground. Two seconds later it is only 16 feet above the ground.
(a) From what height was it dropped? (b) If it was thrown
down with an initial speed of 5 feet per second, from what
height was it thrown? (c) If it was thrown upward with an
initial speed of 10 feet per second, from what height was it
thrown?

A rubber ball is thrown straight down from a height of 4 feet.
If the ball rebounds with one-half of its impact speed and re-
turns exactly to its original height before falling again, how
fast was it thrown originally?

Ballast dropped from a balloon that was rising at the rate of
5 feet per second reached the ground in 8 seconds. How high
was the balloon when the ballast was dropped?

Had the balloon of Exercise 51 been falling at the rate of
5 feet per second, how long would it have taken for the bal-
last to reach the ground?

Two race horses start a race at the same time and finish in a
tie. Prove that there must have been at least one time t dur-
ing the race at which the two horses had exactly the same
speed.

Suppose that the two horses of Exercise 53 cross the finish
line together at the same speed. Show that they had the same
acceleration at some instant during the race.

. A certain tollroad is 120 miles long and the speed limit is

65 miles per hour. If a driver’s entry ticket at one end of the
tollroad is stamped 12 noon and she exits at the other end at
1:40 p.m., should she be given a speeding ticket? Explain.

At 1:00 p.m. a car’s speedometer reads 30 miles per hour and
at 1:15 p.m. it reads 60 miles per hour. Prove that the car’s
acceleration was exactly 120 miles per hour per hour at least
once between 1:00 and 1:15.

A car is stationary at a toll booth. Twenty minutes later, at a
point 20 miles down the road, the car is clocked at 60 mph.
Explain how you know that the car must have exceeded the

58.

59.

[> 60.

60-mph speed limit some time before being clocked at 60
mph.

The results of an investigation of a car accident showed that
the driver applied his brakes and skidded 280 feet in 6 sec-
onds. If the speed limit on the street where the accident
occurred was 30 miles per hour, was the driver exceeding
the speed limit at the instant he applied his brakes? Explain.
HINT: 30 miles per hour = 44 feet per second.

(Simple harmonic motion) A bob suspended from a spring
oscillates up and down about an equilibrium point, its verti-
cal position at time t given by

y(t) = Asin (ot + o)

where A, w, ¢ are positive constants. (This is an idealiza-
tion in which we are disregarding friction.)

0

.

L -

(a) Show that at all times t the acceleration of the bob y”(t)
is related to the position of the bob by the equation

y'(t) + 0?y(t) = 0.

(b) Itis clear that the bob oscillates from —A to A, and the
speed of the bob is zero at these points. At what posi-
tion does the bob attain maximum speed? What is this
maximum speed?

(c) What are the extreme values of the acceleration func-
tion? Where does the bob attain these extreme values?

An object moves along the x-axis, its position fromt = 0 to
t = 5 given by

x(t) = t3 — 7t + 10t + 5.

(a) Determine the velocity function v. Use a graphing utility
to graph v as a function of t.

(b) Use the graph to estimate the times when the object is
moving right and the times when it is moving left.

(c) Use the graphing utility to graph the speed v of the ob-

ject as a function of t. Estimate the time(s) when the

object stops. Estimate the maximum speed fromt = 1

tot =4.

Determine the acceleration function a and use the graph-

ing utility to graph itas a function of t. Estimate the times

when the object is speeding up and the times when it is

slowing down.

Graph the velocity and acceleration functions on the

same set of axes and use the graphs to estimate the times

when the object is speeding up and the times when it is

slowing down.

(d)

©)
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B PROJECT 4.9A Angular Velocity; Uniform Circular Motion

As a particle moves along a circle of radius r, it effects a change
in the central angle, marked 6 in Figure A. We measure 6 in
radians. The angular velocity, w, of the particle is the time
rate of change of ; that is, w = d6/dt. Circular motion with
constant, positive angular velocity is called uniform circular
motion.

Problem 1. A particle in uniform circular motion traces out a
circular arc. The time rate of change of the length of that arc is
called the speed of the particle. What is the speed of a particle
that moves around a circle of radius r with constant, positive
angular velocity w?

Problem 2. The kinetic energy, KE, of a particle of mass m is
given by the formula

KE = %mv2

where v is the speed of the particle. Suppose the particle in Prob-
lem 1 has mass m. What is the kinetic energy of the particle?

Figure A

TThe symbol w is the lowercase Greek letter “omega.”

Problem 3. A point P moves uniformly along the circle
x2 + y? = r? with constant angular velocity w. Find the x- and
y-coordinates of P at time t given that the motion starts at time
t = 0with & = 6y. Then find the velocity and acceleration of the
projection of P onto the x-axis and onto the y-axis. [The projec-
tion of P onto the x-axis is the point (x, 0); the projection of P
onto the y-axis is the point (0, y).]

Problem 4. Figure B shows a sector in a circle of radius r. The
sector is the union of the triangle T and the segment S. Suppose
that the radius vector rotates counterclockwise with a constant
angular velocity of w radians per second. Show that the area of
the sector changes at a constant rate but that the area of T and
the area of S do not change at a constant rate.

/2

Figure B

Problem 5. Take S and T as in Problem 4. While the area of S
and the area of T change at different rates, there is one value of
0 between 0 and = at which both areas change at the same rate.
Find this value of 6.

B PROJECT 4.9B Energy of a Falling Body (Near the Surface of the Earth)

If we lift an object, we counteract the force of gravity. In so do-
ing, we increase what physicists call the gravitational potential
energy of the object. The gravitational potential energy of an
object is defined by the formula

GPE = weight x height.

Since the weight of an object of mass m is mg where g is the
gravitational constant (we take this from physics), we can write

GPE = mgy

where y is the height of the object.

If we lift an object and release it, the object drops. As it
drops, it loses height and therefore loses gravitational potential
energy, but its speed increases. The speed with which the object

falls gives the object a form of energy called kinetic energy, the
energy of motion. The kinetic energy of an object in motion is
given by the formula

KE = fmu?

where v is the speed of the object. For straight-line motion with
velocity v we have v? = v? and therefore

KE = smv?.
Problem 1. Prove the law of conservation of energy:
GPE + KE = C, constant.

HINT: Differentiate the expression GPE + KE and use the fact
that dv/dt = —g.
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Problem 2. An object initially at rest falls freely from height given by

Yo. Show that the speed of the object at height y is given by

y(t) = =39t + yo.

=./2 -y). . . .
Y 900 =) Calculate the speed of the object from this equation and show
Problem 3. According to the results in Section 4.9, the po- that the result obtained is equivalent to the result obtained in
sition of an object that falls from rest from a height yo is Problem 2.

(X, y)

M 4.10 RELATED RATES OF CHANGE PER UNIT TIME

In Section 4.9 we studied straight-line motion and defined velocity as the rate of change
of position with respect to time and acceleration as the rate of change of velocity with
respect to time. In this section we work with other quantities that vary with time. The
fundamental point is this: if Q is any quantity that varies with time, then the derivative
dQ/dt gives the rate of change of that quantity with respect to time.

Example 1 A spherical balloon is expanding. Given that the radius is increasing at
the rate of 2 inches per minute, at what rate is the volume increasing when the radius
is 5 inches?

SOLUTION  Find dV /dt when r = 5 inches, given that dr /dt = 2 in./min and

V = %nr3. (volume of a sphere of radius r)

Both r and V are functions of t. Differentiating V = %nr3 with respect to t, we have
dv ,dr

A
a7

Setting r = 5 and dr/dt = 2, we find that
dv
o 47 (5%)2 = 2007,

When the radius is 5 inches, the volume is increasing at the rate of 200z cubic inches
per minute.

Example 2 A particle moves clockwise along the unit circle x? + y? = 1. As it
passes through the point (1/2, +/3/2), its y-coordinate decreases at the rate of 3 units
per second. At what rate does the x-coordinate change at this point?

SOLUTION Find dx/dt when x =1/2 and y = +/3/2, given that dy/dt = —3
units/sec and

X% + y2 =1. (equation of circle)

Differentiating x? 4 y? = 1 with respect to t, we have

dx dy dx dy
2xa+2ya_0 and thus XE”E—O'
Setting x = 1/2, y = +/3/2, and dy/dt = —3, we find that
1dx /3

3 dx
st T =0 andtherefore = 3V3.

As the object passes through the point (1/2, +/3/2), the x-coordinate increases at the
rate 3/3 units per second. [l
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Example 3 A 13-foot ladder leans against the side of a building, forming an angle 6
with the ground. Given that the foot of the ladder is being pulled away from the building
at the rate of 0.1 feet per second, what is the rate of change of 6 when the top of the
ladder is 12 feet above the ground?

13 ft
SOLUTION  Find d6/dt when y = 12 feet, given that dx /dt = 0.1 ft/sec and ’
cosf = X
S 13 ,
Differentiation with respect to t gives []
ang 80 _ 1dx "
dt  13dt’
Wheny = 12, sin 6 = 1. Setting sin® = 1 and dx/dt = 0.1, we have
12\ do 1 do 1
—=)—-—=-=(01 and thus — =
(13) at ~ 130 @ T 120
When the top of the ladder is 12 feet above the ground, 6 decreases at the rate of ﬁlo
radians per second (about half a degree per second).
Example 4  Two ships, one heading west and the other east, approach each other on ~— ship
parallel courses 8 nautical miles apart.! Given that each ship is cruising at 20 nautical
miles per hour (knots), at what rate is the distance between them diminishing when the
ships are 10 nautical miles apart? y 8 miles

SOLUTION  Lety be the distance between the ships measured in nautical miles. Since

the ships are moving in opposite directions at the rate of 20 knots each, their horizontal

separation (see the figure) is decreasing at the rate of 40 knots. Thus, we want to find ship -
dy/dt when y = 10, given that dx /dt = —40 knots. (We take dx/dt as negative since

X is decreasing.) The variables x and y are related by the equation

x? 4+ 8% = y2. (Pythagorean theorem)
Differentiating x? 4 82 = y? with respect to t, we find that
ZXZ—: +0= Zy%—i/ and consequently x?j—); = y((jj—)t/.
When y = 10, x = 6. (Explain.) Setting x = 6, y = 10, and dx /dt = —40, we have
dy dy
—40) = 10— h = _ o,
6(—40) 0 at so that it

(Note that dy/dt is negative since y is decreasing.) When the two ships are 10 miles
apart, the distance between them is diminishing at the rate of 24 knots.

The preceding examples were solved by the same general method, a method that
we recommend to you for solving problems of this type.
Step 1. Draw a suitable diagram, and indicate the quantities that vary.

Step 2. Specify in mathematical form the rate of change you are looking for, and record
all relevant information.

Step 3. Find an equation that relates the relevant variables.
Step 4. Differentiate with respect to time t the equation found in Step 3.
Step 5. State the final answer in coherent form, specifying the units that you are using.

The international nautical mile measures 6080 feet.
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Example 5 A conical paper cup 8 inches across the top and 6 inches deep is full of
water. The cup springs a leak at the bottom and loses water at the rate of 2 cubic inches
per minute. How fast is the water level dropping when the water is exactly 3 inches
deep?

SOLUTION We begin with a diagram that represents the situation after the cup has
been leaking for awhile. (Figure 4.10.1.) We label the radius and height of the remaining
“cone of water” r and h. We can relate r and h by similar triangles. (Figure 4.10.2.)
We measure r and h in inches. Now we seek dh/dt when h = 3, given that dV /dt =
—2in®/ min,

r 4 2

qa f-c_<
an h=6 3

Using the second equation to eliminate r from the first equation, we have

1 [/2h\? 4
V =—-7 <—) h:—jThB_

1
V = §nr2h (volume of cone) (similar triangles)

3 3 27
Differentiation with respect to t gives
dv. 4 dh
— = _mwh?>—.
at 9" dt
Settingh = 3and dV /dt = —2, we have
4 dh dh 1
—2=- 2 _ h —_—=——
971(3) i and thus i o=

When the water is exactly 3 inches deep, the water level is dropping at the rate of 1/2x
inches per minute (about 0.16 inches per minute). 1

Example 6 A balloon leaves the ground 500 feet away from an observer and rises
vertically at the rate of 140 feet per minute. At what rate is the inclination of the
observer’s line of sight increasing when the balloon is exactly 500 feet above the ground?

SOLUTION Let x be the altitude of the balloon and 6 the inclination of the observer’s
line of sight. Find d@/dt when x = 500, given that dx /dt = 140 ft/min and

X
tang = 500"
Differentiation with respect to t gives
SeC2 Qd_e — id_x
dt 500 dt

When x = 500, the triangle is isosceles. This implies that & = /4 and sect = /2.
Setting secd = +/2 and dx /dt = 140, we have

do 1
2 = (14
(\/—) dt 500( 0
When the balloon is exactly 500 feet above the ground, the inclination of the observer’s
line of sight is increasing at the rate of 0.14 radians per minute (about 8 degrees per
minute).

and therefore ((jj—f = 0.14.

Example 7 A water trough with vertical cross section in the form of an equilateral
triangle is being filled at a rate of 4 cubic feet per minute. Given that the trough is
12 feet long, how fast is the level of the water rising when the water reaches a depth of
11 feet?

2
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SOLUTION  Let x be the depth of the water measured in feet and V the volume of V
water measured in cubic feet. Find dx /dt when x = 3,2, given that dV /dt = 4 ft3/min. /"4
1/2 3
area of cross section = 2 (7)%) X = \/?_xz. W/

3
volume of water = 12 (\/?_x2> = 4/3%2.

Differentiation of V = 4+/3x2 with respect to t gives
dv dx
— = 8V3x—.
dt V3 dt
Setting x = 3/2 and dV /dt = 4, we have
3 dx dx 1 1 ‘
4=8/3(=)— dth D = /3. cross section of trough
f(z) R C
When the water reaches a depth of 1% feet, the water level is rising at the rate of
§+/3 feet per minute (about 0.19 feet per minute).

EXERCISES 4.10

1. A point moves along the line x 4+ 2y = 2. Find (a) the rate 8. The volume of a spherical balloon is increasing at the con-
of change of the y-coordinate, given that the x-coordinate stant rate of 8 cubic feet per minute. How fast is the radius
is increasing at the rate of 4 units per second; (b) the rate increasing when the radius is exactly 10 feet? How fast is
of change of the x-coordinate, given that the y-coordinate is the surface area increasing at that time?
decreasing at the rate of 2 units per second. 9. At a certain instant the side of an equilateral triangle is «

2. A particle is moving in the circular orbit x> + y? = 25. As centimeters long and increasing at the rate of k centimeters
it passes through the point (3, 4), its y-coordinate is decreas- per minute. How fast is the area increasing?
ing at the rate of 2 units per second. At what rate is the 10. The dimensions of a rectangle are changing in such a way
x-coordinate changing? that the perimeter remains 24 inches. Show that when the

3. A particle is moving along the parabola y? = 4(x + 2). As it area is 32 square inches, the area is either increasing or de-
passes through the point (7, 6), its y-coordinate is increasing creasing 4 times as fast as the length is increasing.
at the rate of 3 units per second. How fast is the x-coordinate 11. A rectangle is inscribed in a circle of radius 5 inches. If the
changing at this instant? length of the rectangle is decreasing at the rate of 2 inches

4. A particle is moving along the parabola 4y = (x + 2)? in per second, how fast is the area changing when the length is
such a way that its x-coordinate is increasing at the constant 6 inches?
rate of 2 units per second. How fast is the particle’s distance 12. A boat is held by a bow line that is wound about a bollard
from the point (—2, 0) changing as it passes through the point 6 feet higher than the bow of the boat. If the boat is drifting
(2,4)? away at the rate of 8 feet per minute, how fast is the line

5 A partic]e is mo\/ing a|0ng the e||ipse X2/16 + y2/4 =1. unWinding when the bow is 30 feet from the bollard?

At each time t its x- and y-coordinates are given by x = 13. Two boats are racing with constant speed toward a finish
4cost,y = 2sint. At what rate is the particle’s distance marker, boat A sailing from the south at 13 mph and boat
from the origin changing at time t? At what rate is this dis- B approaching from the east. When equidistant from the
tance from the origin changing when t = 7 /4? marker, the boats are 16 miles apart and the distance be-

6. A particle is moving along the curve y = x./X, x > 0. Find tween them is decreasing at the rate of 17 mph. Which boat
the points on the curve, if any, at which both coordinates are will win the race?
changing at the same rate. 14. A spherical snowball is melting in such a manner that its ra-

dius is changing at a constant rate, decreasing from 16 cm to
into a smaller cube. Given that the volume decreases at the 10 cm in 30 minutes. How fast is the volume of the snowball

rate of 2 cubic meters per minute, find the rate of change changing when the radius is 12 cm?

of an edge of the cube when the volume is exactly 27 cubic 15. A 13-foot ladder is leaning against a vertical wall. If the
meters. What is the rate of change of the surface area of the bottom of the ladder is being pulled away from the wall
cube at that instant? at the rate of 2 feet per second, how fast is the area of the

7. A heap of rubbish in the shape of a cube is being compacted
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16.

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

triangle formed by the wall, the ground, and the ladder chang-
ing when the bottom of the ladder is 12 feet from the wall?

A ladder 13 feet long is leaning against a wall. If the foot of
the ladder is pulled away from the wall at the rate of 0.5 feet
per second, how fast will the top of the ladder be dropping
when the base is 5 feet from the wall?

. A tank contains 1000 cubic feet of natural gas at a pres-

sure of 5 pounds per square inch. Find the rate of change
of the volume if the pressure decreases at a rate of 0.05
pounds per square inch per hour. (Assume Boyle’s law:
pressure x volume = constant.)

The adiabatic law for the expansion of airis PV 14 = C. At
a given instant the volume is 10 cubic feet and the pressure
is 50 pounds per square inch. At what rate is the pressure
changing if the volume is decreasing at a rate of 1 cubic foot
per second?

A man standing 3 feet from the base of a lamppost casts a
shadow 4 feet long. If the man is 6 feet tall and walks away
from the lamppost at a speed of 400 feet per minute, at what
rate will his shadow lengthen? How fast is the tip of his
shadow moving?

A light is attached to the wall of a building 64 feet above
the ground. A ball is dropped from that height, but 20 feet
away from the side of the building. The height y of the ball at
time t is given by y(t) = 64 — 16t2. Here we are measuring
y in feet and t in seconds. How fast is the shadow of the ball
moving along the ground 1 second after the ball is dropped?

An object that weighs 150 pounds on the surface of the earth
will weigh 150(1 + Wloor)*2 pounds when it is r miles above
the earth. Given that the altitude of the object is increasing
at the rate of 10 miles per minute, how fast is the weight
decreasing when the object is 400 miles above the surface?

In the special theory of relativity the mass of a particle mov-
ing at speed v is given by the expression

m
J1—v?%/c?

where m is the mass at rest and c is the speed of light. At
what rate is the mass of the particle changing when the speed
of the particle is %c and is increasing at the rate of 0.01c per
second?

Water is dripping through the bottom of a conical cup 4
inches across and 6 inches deep. Given that the cup loses
half a cubic inch of water per minute, how fast is the water
level dropping when the water is 3 inches deep?

Water is poured into a conical container, vertex down, at the
rate of 2 cubic feet per minute. The container is 6 feet deep
and the open end is 8 feet across. How fast is the level of the
water rising when the container is half full?

At what rate is the volume of a sphere changing at the instant
when the surface area is increasing at the rate of 4 square
centimeters per minute and the radius is increasing at the
rate of 0.1 centimeter per minute?

Water flows from a faucet into a hemispherical basin 14
inches in diameter at the rate of 2 cubic inches per second.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
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How fast does the water rise (a) when the water is exactly
halfway to the top? (b) just as it runs over? (The volume of
aspherical segment is given by wrh? — 2rh® where r is the
radius of the sphere and h is the depth of the segment.)

The base of an isosceles triangle is 6 feet. Given that the
altitude is 4 feet and increasing at the rate of 2 inches per
minute, at what rate is the vertex angle changing?

As a boy winds up the cord, his kite is moving horizontally
ata height of 60 feet with a speed of 10 feet per minute. How
fast is the inclination of the cord changing when the cord is
100 feet long?

A revolving searchlight % mile from a straight shoreline
makes 1 revolution per minute. How fast is the light moving
along the shore as it passes over a shore point 1 mile from
the shore point nearest to the searchlight?

Avrevolving searchlight 1 mile from a straight shoreline turns

at the rate of 2 revolutions per minute in the counterclock-

wise direction.

(&) How fast is the light moving along the shore when it
makes an angle of 45° with the shore?

(b) How fast is the light moving when the angle is 90°?

A man starts at a point A and walks 40 feet north. He then
turns and walks due east at 4 feet per second. A searchlight
placed at A follows him. At what rate is the light turning 15
seconds after the man started walking east?

The diameter and height of aright circular cylinder are found
at a certain instant to be 10 centimeters and 20 centimeters,
respectively. If the diameter is increasing at the rate of 1
centimeter per second, what change in height will keep the
volume constant?

A horizontal trough 12 feet long has a vertical cross section
in the form of a trapezoid. The bottom is 3 feet wide, and
the sides are inclined to the vertical at an angle with sine ‘g‘
Given that water is poured into the trough at the rate of 10
cubic feet per minute, how fast is the water level rising when
the water is exactly 2 feet deep?

Two cars, car A traveling east at 30 mph and car B traveling
north at 22.5 mph, are heading toward an intersection I. At
what rate is the angle 1AB changing when cars A and B are
300 feet and 400 feet, respectively, from the intersection?

A rope 32 feet long is attached to a weight and passed over a
pulley 16 feet above the ground. The other end of the rope is
pulled away along the ground at the rate of 3 feet per second.
At what rate is the angle between the rope and the ground
changing when the weight is exactly 4 feet off the ground?

A slingshot is made by fastening the two ends of a 10-inch
rubber strip 6 inches apart. If the midpoint of the strip is
drawn back at the rate of 1 inch per second, at what rate is
the angle between the segments of the strip changing 8 sec-
onds later?

. A balloon is released 500 feet away from an observer. If the

balloon rises vertically at the rate of 100 feet per minute and
at the same time the wind is carrying it away horizontally at
the rate of 75 feet per minute, at what rate is the inclination
of the observer’s line of sight changing 6 minutes after the
balloon has been released?



38. A searchlight is continually trained on a plane that flies di-
rectly above it at an altitude of 2 miles at a speed of 400
miles per hour. How fast does the light turn 2 seconds after
the plane passes directly overhead?

39. A baseball diamond is a square 90 feet on a side. A player
is running from second base to third base at the rate of 15
feet per second. Find the rate of change of the distance from
the player to home plate at the instant the player is 10 feet
from third base. (If you are not familiar with baseball, skip
this problem.)

40. An airplane is flying at constant speed and altitude on a line
that will take it directly over a radar station on the ground.
Atthe instant the plane is 12 miles from the station, it is noted
that the plane’s angle of elevation is 30° and is increasing at
the rate of 0.5° per second. Give the speed of the plane in
miles per hour.

41. An athlete is running around a circular track of radius 50
meters at the rate of 5 meters per second. A spectator is

M 4.11 DIFFERENTIALS

4.11 DIFFERENTIALS = 223

200 meters from the center of the track. How fast is the
distance between the two changing when the runner is ap-
proaching the spectator and the distance between them is
200 meters?

Exercises 42—-44. Here x and y are functions of t and are related
as indicated. Obtain the desired derivative from the information
given.

42. 2xy? — y = 22. Given that ?j_)t/ =—-2whenx =3andy =

dx
2, find —.
, fin it
43. x — /X :4.Giventhat(:j—¥:3whenx:8andy:2,
dx
find —.
dt
44. sinx = 4cosy — 1. Given that c:j—: = —1when x = 7 and
. dy
= —, find —.
=3

In Figure 4.11.1 we have sketched the graph of a differentiable function f and below it

the tangent line at the point (x, f(x)).
y

/(—h»
| | |

\
\ \
X X+h

(X + h, f(x + h)) T
} - f(x + h) = f(x)
| f'(x)h ¢

(x, f(x) :
\

Figure 4.11.1

As the figure suggests, for small h # 0, f(x +h) — f(x), the change in f from x to

X 4 h can be approximated by the product f’(x)h:

@.11.1) f(x +h) — f(x)= f'(x)h.

How good is this approximation? It is good in the sense that, for small h the difference

between the two quantities,
[f(x+h)— ()] — f'(x)h,

is small compared to h. How small compared to h? Small enough compared to h that

its ratio to h, the quotient

[f(x+h)— f(x)] = f'(x)h
- :
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tends to 0 as h tends to O:

o L) = F001 = F/0oh o e+ = £00 . f/0oh

h—0 h h—0 h h—0 h
= f'(x)— f'(x) =0.
The quantities f(x 4+ h) — f(x) and f’(x)h have names:

DEFINITION 4.11.2

For h £ 0 the difference f(x + h) — f(x) is called the increment of f from x
to x + h and is denoted by Af:

Af = f(x +h)— f(x).!

The product f’(x)h is called the differential of f at x with increment h and is
denoted by df :

df = f/(x)h.

Display 4.11.1 says that, for small h, Af and df are approximately equal:
Af =df.
How close is the approximation? Close enough (as we just showed) that the quotient
Af —df
h

tends to O as h tends to 0.
Let’s see what all this amounts to in a very simple case. The area of a square of
side x is given by the function

f(x) = x2, X > 0.

If the length of each side increases from x to x + h, the area increases from f(x) to
f (x 4 h). The change in area is the increment Af:

" " " Af = f(x+h)— f(x)
= (x +h)? = x?
X x2 xh = (x> 4+ 2xh + h?) — x?
= 2xh + h?,
X h As an estimate for this change, we can use the differential
Figure 4.11.2 df = f'(x)h = 2xh. (Figure 4.11.2)

Theerror of this estimate, the difference between the actual change A f and the estimated
change df, is the difference

Af —df =h?
As promised, the error is small compared to h in the sense that
Af —df  h?
_— = — = h
h h

tends to 0 as h tends to 0.

TA is a Greek letter, the capital of 5. Af is read “delta f.”



Example 1 Use a differential to estimate the change in f (x) = x%/5
(a) as x increases from 32 to 34, (b) as x decreases from 1 to %

SOLUTION  Since f/(x) = 2x~3/° = 2/(5x%?), we have
(a) We set x = 32 and h = 2. The differential then becomes
2 4
f=—-(2)=-—-=0.1
5(32)3/5( ) 40

A change in x from 32 to 34 increases the value of f by approximately 0.1. For com-
parison, our hand calculator gives

Af = f(34) — (32) = 4.0982 — 4 = 0.0982.

(b)Wesetx =landh = —%. In this case, the differential is
2 1 2
df = ———< | ——= ) =—— = -0.04.
5(1)3/5 ( 10) 50

A change in x from 1 to 1% decreases the value of f by approximately 0.04. For com-
parison, our hand calculator gives

Af = £(0.9) — f(1) = (0.9)%° — (1)¥° = 0.9587 — 1 = —0.0413.

Example 2 Use a differential to estimate: (a) /104, (b) cos 40°.

SOLUTION
(a) We know that +/100 = 10. We need an estimate for the increase of
f(x) = vx
as x increases from 100 to 104. Here
1 h
f'(x) = —= and df = f'(x)h = —.
() =3 NG ()h = 2 NG
With x =100 and h = 4, df becomes
4 1
2/100 5

A change in x from 100 to 104 increases the value of the square root by approximately
0.2. It follows that

4/104 = /100 4+ 0.2 = 10+ 0.2 = 10.2.
As you can check, (10.2)? = 104.04. Our estimate is not far off.
(b) Let f(x) = cosx, where as usual x is given in radians. We know that cos45° =
cos (r/4) = +/2/2. Converting 40° to radians, we have

b b b T
40° =45° —5° = — — (—) 5= — — — radians.
4 180 4 36
We use a differential to estimate the change in cosx as x decreases from /4 to

(r/4) — (7 /36):
f'(x) = —sinx and df = f’(x)h = —hsinx.

4.11 DIFFERENTIALS

m 225
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EXERCISES 4.11

Withx = /4 and h = —7 /36, df is given by

4t == (-2 )sin () = %g _ J;_f ~ 0.0617.

A decrease in x from /4 to (w/4) — (;r/36) increases the value of the cosine by
approximately 0.0617. Therefore,

c0s40° = cos45° + 0.0617 = 0.7071 + 0.0616 = 0.7688.
Our hand calculator gives cos40° = 0.7660. [

Example 3 A metal sphere with a radius of 10 cm is to be covered by a 0.02 cm
coating of silver. Approximately how much silver will be required?

SOLUTION  We will use a differential to estimate the increase in the volume of a sphere
if the radius is increased from 10 cm to 10.02 cm. The volume of a sphere of radius r
is given by the formula V = %rrr3. Therefore
dV = 4xrh.
Taking r = 10 and h = 0.02, we have
dV = 47(10)?(0.02) = 87 = 25.133.
It will take approximately 25.133 cubic cm of silver to coat the sphere. 1

Example 4 A metal cube is heated and the length of each edge is thereby increased
by 0.1%. Use a differential to show that the surface area of the cube is then increased
by about 0.2%.

SOLUTION Let x be the initial length of an edge. The initial surface area is then
S(x) = 6x2. As the length increases from x to x + h, the surface area increases from
S(x) to S(x + h). We will estimate the ratio

AS  S(x+h) —S(x)
s S(x)
by
d—SS taking h = 0.001x.

Here

S(x) =6x%,  dS=12xh = 12x(0.001x),
and therefore

dS  12x(0.001x)

S 6x2

If the length of each edge is increased by 0.1%, the surface area is increased by about
0.2%. O

= 0.002.

1. Use a differential to estimate the change in the volume of bExercises 3-8. Use a differential to estimate the value of the in-
a cube caused by an increase h in the length of each side. dicated expression. Then compare your estimate with the result
Interpret geometrically the error of your estimate AV — dV. given by a calculator.

2. Use a differential to estimate the area of a ring of inner radius
r and width h. What is the exact area? 3. /1002. 4.1/+4/24.5.



5. J/15.5. 6. (26)23.
7. (33)3/° 8. (33)~/5.

b Exercises 9-12. Use a differential to estimate the value of the ex-

pression. (Remember to convert to radian measure.) Then com-
pare your estimate with the result given by a calculator.

9. sin 46°. 10. cos 62°.
11. tan 28° 12. sin43°.
13. Estimate f (2.8) giventhat f(3) =2and f'(x) = (x3 + 5)%/°.
14. Estimate f(5.4) given that f(5) = 1and f'(x) = v/x2 + 2.

15. Find the approximate volume of a thin cylindrical shell with
open ends given that the inner radius is r, the height is h, and
the thickness is t.

16. The diameter of a steel ball is measured to be 16 centime-
ters, with a maximum error of 0.3 centimeters. Estimate by
differentials the maximum error (a) in the surface area as
calculated from the formula S = 4xr?; (b) in the volume as
calculated from the formula V = %nr3.

17. Abox is to be constructed in the form of a cube to hold 1000
cubic feet. Use a differential to estimate how accurately the
inner edge must be made so that the volume will be correct
to within 3 cubic feet.

18. Use differentials to estimate the values of x for which
(@ vx+1—.x <0.01L
(b) Vx +1—¥x <0.002.

19. A hemispherical dome with a 50-foot radius will be given
a coat of paint 0.01 inch thick. The contractor for the job
wants to estimate the number of gallons of paint that will be
needed. Use a differential to obtain an estimate. (There are
231 cubic inches in a gallon.)

20. View the earth as a sphere of radius 4000 miles. The volume
of ice that covers the north and south poles is estimated to
be 8 million cubic miles. Suppose that this ice melts and the
water produced distributes itself uniformly over the surface
of the earth. Estimate the depth of this water.

21. The period P of the small oscillations of a simple pendulum
is related to the length L of the pendulum by the equation

P=2r E
fs

where g is the (constant) acceleration of gravity. Show that
a small change dL in the length of a pendulum produces a
change dP in the period that satisfies the equation

dP 1dL

P 2L
22. Suppose that the pendulum of a clock is 90 centimeters long.
Use the result in Exercise 21 to determine how the length

of the pendulum should be adjusted if the clock is losing 15
seconds per hour.

23. A pendulum of length 3.26 feet goes through one complete
oscillation in 2 seconds. Use Exercise 21 to find the approx-
imate change in P if the pendulum is lengthened by 0.01
feet.
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24. A metal cube is heated and the length of each edge is thereby
increased by 0.1%. Use a differential to show that the volume
of the cube is then increased by about 0.3%.

25. We want to determine the area of a circle by measuring
the diameter x and then applying the formula A = 17x2.
Use a differential to estimate how accurately we must mea-
sure the diameter for our area formula to yield a result that
is accurate within 1%.

26. Estimate by differentials how precisely x must be determined
(a) for our calculation of x" to be accurate within 1%; (b)
for our estimate of x/" to be accurate within 1%. (Here n is
a positive integer.)

Little-o(h) Let g be a function defined at least on some open in-

terval that contains the number 0. We say that g(h) is little-o(h)

and write g(h) = o(h) to indicate that, for small h, g(h) is so
small compared to h that

Iim@=

h—0 h 0.

27. Determine whether the statement is true.
(@) h® =o(h)
2

h

(¢) h¥3 =o(h).
28. Show that if g(h) = o(h), then rlllrrz) g(h) =0.

29. Show that if g1(h) = o(h) and g,(h) = o(h), then

91(n)gz(h) = o(h).

30. The figure shows the graph of a differentiable function f and
a line with slope m that passes through the point (x, f(x)).
The vertical separation at x -+ h between the line with slope
m and the graph of f has been labeled g(h).

g1(h) + g2(h) = o(h) and

slope m

(a) Calculate g(h).

(b) Show that, of all lines that pass through (x, f(x)), the
tangent line is the line that best approximates the graph
of f near the point (x, f(x)) by showing that

gthy=o(h) iff m=fx).
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Here we dispense with g(h) and call o(h) any expression in h
which, for small h, is so small compared to h that

31. (A differentiable function is locally almost linear.) If f is a
linear function,

f(x) = mx + b,
then
f(x +h)— f(x) =mh.

Show that

a function f is differentiable at x iff there

4.11.3) exists a number m such that

f(x +h) — f(x) = mh + o(h).

What is m here?

B PROJECT4.11 Marginal Cost, Marginal Revenue, Marginal Profit

In business and economics we recognize that costs, revenues,
and profits depend on many factors. Of special interest to us
here is the study of how costs, revenues, and profits are affected
by changes in production and sales. In this brief section we make
the simplifying assumption that all production is sold and there-
fore units sold = units produced.

Suppose that C(x) represents the cost of producing x units.
Although x is usually a nonnegative integer, in theory and prac-
tice it is convenient to assume that C(x) is defined for x in some
interval and that the function C is differentiable. In this context,
the derivative C’(x) is called the marginal cost at X.

This terminology deserves some explanation. The differ-
ence C(x + 1) — C(x) represents the cost of increasing produc-
tion from x units to x + 1 units and, as such, gives the cost of
producing the (x + 1)-st unit. The derivative C’(x) is called the
marginal cost at x because it provides an estimate for the cost
of the (x + 1)-st unit: in general,

C(x +h) —C(x) = C'(x)h. (differential estimate)

At h = 1 this estimate reads
C(x+1)—C(x)=C'(x).
Thus, as asserted,
C’(x) = cost of (x + 1)-stunit. [

By studying the marginal cost function C’, we can obtain an
overall view of the changing cost patterns.

Similarly, if R(x) represents the revenue obtained from the
sale of x units, then the derivative R’(x), called the marginal
revenue at x, provides an estimate for the revenue obtained from
the sale of the (x + 1)-st unit.

If C = C(x) and R = R(x) are the cost and revenue func-
tions associated with the production and sale of x units, then the
function

P(x) = R(x) = C(x)

is called the profit function. The points x (if any) at which C(x) =
R(x) — that is, the values at which “cost” = “revenue”—

are called break-even points. The derivative P’(x) is called the
marginal profit at x. By Theorem 4.3.2, maximum profit occurs
at a point where P’(x) = 0, a point where the marginal profit is
zero, which, since

P’(x) = R'(x) — C'(x).

is a point where the marginal revenue R’(x) equals the marginal
cost C’(x).

Aword about revenue functions. The revenue obtained from
the sale of x units at an average price p(x) is the product of x
and p(x):

R(x) = xp(x).

In classical supply-demand theory, if too many units are sold,
the price at which they can be sold comes down. It may come
down so much that the product xp(x) starts to decrease. If the
market is flooded with units, p(x) tends to zero and revenues are
severely impaired. Thus it is that the revenue R(x) increases with
X up to a point and then decreases. The figure gives a graphical
representation of a pair of cost and revenue functions, shows
the break-even points, and indicates the regions of profit and
loss.

RC

— profit

break-even
points

/" loss




Problem 1. A manufacturer determines that the total cost of
producing x units per hour is given by the function

X2
C(x) = 2000 + 50x — 20 (dollars)
What is the marginal cost at production level 20 units per hour?
What is the exact cost of producing the 21st component?

Problem 2. A manufacturer determines that the costs and rev-
enues that result from the production and sale of x units per day
are given by the functions

C(x)=12,000+30x and  R(x) = 650x — 5x.

Find the profit function and determine the break-even points.
Find the marginal profit function and determine the produc-
tion/sales level for maximum profit.

Problem 3. The cost and revenue functions for the production
and sale of x units are

X2
R(x) = 20x — —.
(x) X~ &5
(a) Find the profit function and determine the break-even
points.
(b) Find the marginal profit function and determine the produc-
tion level at which the marginal profit is zero.

(c) Sketchthe costand revenue functions in the same coordinate
system and indicate the regions of profit and loss. Estimate
the production level that produces maximum profit.

C(x) = 4x + 1400 and
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Problem 4. The cost and revenue functions are
C(x) = 3000 + 5x and R(x) = 60x — 2x/X,

with x measured in thousands of units.

(a) Use a graphing utility to graph the cost function together
with the revenue function. Estimate the break-even points.

(b) Graph the profit function and estimate the production level
that yields the maximum profit.

Problem 5. The cost and revenue functions are
10x

CX)=4+075x  and X
(x) = 4+0.75x 1+0.25x2°

R(x) =

with x measured in hundreds of units.

(a) Use a graphing utility to graph the cost function together
with the revenue function. Estimate the break-even points.

(b) Graph the profit function and estimate the production level
that yields the maximum profit. Exactly how many units
should be produced to maximize profit?

Problem 6. Let C(x) be the cost of producing x units. The av-
erage cost per unit is A(x) = C(x)/x. Show that if C"(x) > 0,
then the average cost per unit is a minimum at the production
levels x where the marginal cost equals the average cost per unit.

Problem7. Let R(x) be the revenue that results from the sale of
X units. The average revenue per unit is B(x) = R(x)/x. Show
that if R”(x) < 0, then the average revenue per unit is a max-
imum at the values x where the marginal revenue equals the
average revenue per unit.

M 4.12 NEWTON-RAPHSON APPROXIMATIONS

Figure 4.12.1 shows the graph of a function f. Since the graph of f crosses the x-axis
at x = ¢, the number c is a solution (root) of the equation f(x) = 0. In the setup of
Figure 4.12.1, we can approximate c as follows: Start at x; (see the figure). The tangent
line at (x1, f(x1)) intersects the x-axis at a point x, which is closer to ¢ than x;. The
tangent line at (xo, f(xy)) intersects the x-axis at a point x3, which in turn is closer to

¢ than x». In this manner, we obtain numbers X1, Xs, X3, ..

more closely approximate c.

.» Xn» Xn+1, Which more and

Figure 4.12.1
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y ="f(x,)

\
\
}
\ y=f(x)
\
|

Figure 4.12.2

(le f(Xl))

y =f(x)
Figure 4.12.6

There is an algebraic connection between x, and X, that we now develop. The
tangent line at (Xn, f(Xn)) has the equation

y — f(Xn) = f'(Xn)(X — Xp).
The x-intercept of this line, x,,1, can be found by setting y = 0:
0 - f(Xn) == f/(Xn)(Xn+1 - Xn).

Solving this equation for x,1, we have

f(xn)

4.12.1 = — .
( ) Xn+1 = Xn (%)

This method of locating a root of an equation f(x) =0 is called the Newton-
Raphson method. The method does not work in all cases. First, there are some conditions
that must be placed on the function f. Clearly, f must be differentiable at points near the
root c. Also, if f'(x,) = 0 for some n, then the tangent line at (xn, f(x,)) is horizontal
and the next approximation x,; cannot be calculated. See Figure 4.12.2. Thus, we will
assume that f’(x) # 0 at points near c.

The method can also fail for other reasons. For example, it can happen that the
first approximation x; produces a second approximation x,, which in turn takes us back
to x3. In this case the approximations simply alternate between x; and x,. See Figure
4.12.3. Another type of difficulty can arise if f’(x1) is close to zero. In this case the
second approximation x, can be worse than x, the third approximation x3 can be worse
than x,, and so forth. See Figure 4.12.4.

y

y =f(x)

o
x
N

Figure 4.12.4 Figure 4.12.5

There is a condition that guarantees that the Newton-Raphson method will work.
Suppose that f is twice differentiable and that f(x) f”(x) > 0 for all x between c and
X1. If f(x) > 0 for such x, then f”(x) > 0 for such x and (as shown in Section 4.6)
the graph bends up, and we have the situation pictured in Figure 4.12.5. On the other
hand, if f(x) < 0 for such x, then f”(x) < 0 for such x and (as shown in Section 4.6)
the graph bends down, and we have the situation pictured in Figure 4.12.6. In each of
these cases the approximations X1, Xz, Xs, .. . tend to the root c.

Example 1 The number +/3 is a root of the equation x> — 3 = 0. We will estimate
V/3 by applying the Newton-Raphson method to the function f(x) = x? — 3 starting
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at x, = 2. [As you can check, f(x)f”(x) > 0on (+/3, 2) and therefore we can be sure
that the method applies.] Since f’(x) = 2x, the Newton-Raphson formula gives

x2—-3\ x2+3
Xn+1 = Xn — = o
n

2Xn

Successive calculations with this formula (using a calculator) are given in the following

table:
2
n Xn Xn4+1 = in—xts
1 2 1.75000
2 1.75000 1.73214
3 1.73214 1.73205

Since (1.73205)? = 2.999997, the method has generated
V3 in only three steps.

EXERCISES 4.12

a very accurate estimate of

[> Exercises 1-8. Use the Newton-Raphson method to estimate a

root of the equation f(x) = 0 starting at the indicated value of
X: (a) Express xn41 in terms of x,. (b) Give x4 rounded off to
five decimal places and evaluate f at that approximation.

1. f(x)=x>—-24; x;=5.

2.f(X)=x3—4x+1;, xy =2

3. f(x)=x3-25; x3=3. 4 f(x)=x>-30; x;=2.
5. f(x) =cosx —x; x3 =1

6. f(x) =sinx —x% x;=1.

7.f()=Vx+3—-x; x31=1

8. f(x)=x+tanx; x; =2

9. The function f(x) =x¥3 is 0 at x = 0. Verify that the

condition f(x)f”(x) > O fails everywhere. Show that the
Newton-Raphson method starting at any number x; # 0 fails
to generate numbers that approach the solution x = 0. De-
scribe the numbers X1, X2, X3, . . . that the method generates.

10. What results from the application of the Newton-Raphson
method to a function f if the starting approximation x; is
precisely the desired zero of f?

[>11. Set f(x) = 2x3 — 3x? — 1.

(&) Show that the equation f(x) = 0 has a root between 1
and 2.

(b) Show that the Newton-Raphson method process started
at x; = 1 fails to generate numbers that approach the
root that lies between 1 and 2.

(c) Estimate this root by starting at x; = 2. Determine x4
rounded off to four decimal places and evaluate f(xs).

[ 12. The function f(x) = x* — 2x® — £ has two zeros, one at a

point a between 0 and 2, and the other at —a. (f is an even

function.)

(@) Show that the Newton-Raphson method fails in the
search for a if we start at x = % What are the outputs
X1, X2, X3, ... in this case?

(b) Estimate a by starting at x; = 2. Determine x4 rounded
off to five decimal places and evaluate f(xs).
13. Set f(x) = x? —a, a > 0. The roots of the equation f (x) =
0 are +./a.
(@) Show that if x; is any initial estimate for /a, then the
Newton-Raphson method gives the iteration formula

X —1x+a n>1
n+l—2 n Xn’ - L.

(b) Take a = 5. Starting at x; = 2, use the formula in part
(a) to calculate x4 to five decimal places and evaluate
f (Xq).
14. Set f(x) = x* — a, k a positive integer, a > 0. The number
al’k is a root of the equation f(x) = 0.
(@) Show that if x; is any initial estimate for al/¥, then the
Newton-Raphson method gives the iteration formula

1 a
Xnp1 = i |:(k = Dxn + F] .
Note that for k = 2 this formula reduces to the formula
given in Exercise 13.
(b) Use the formula in part (a) to approximate y23. Begin
at x; = 3 and calculate x4 rounded off to five decimal
places. Evaluate f(xs).

1
15. Set f(x):;—a,a;«éo.

(@) Apply the Newton-Raphson method to derive the itera-
tion formula

Xnp1 = 2Xn — ax?, n>1.

Note that this formula provides a method for calculating
reciprocals without recourse to division.

(b) Use the formulain part (a) to calculate 1/2.7153 rounded
off to five decimal places.
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16. Set f(x) = x* — 7x? — 8x — 3.
(a) Showthatf hasexactly one critical point c in the interval
(2, 3).
(b) Use the Newton-Raphson method to estimate c by calcu-
lating x3. Round off your answer to four decimal places.
Does f have a local maximum at c, a local minimum, or
neither?

17. Set f(x) =sinx + $x? — 2x.
(a) Showthatf hasexactly one critical point c in the interval
(2, 3).
(b) Use the Newton-Raphson method to estimate ¢ by calcu-
lating x3. Round off your answer to four decimal places.

Bl CHAPTER 4. REVIEW EXERCISES

Does f have a local maximum at ¢, a local minimum, or
neither?

18. Approximations to sz can be obtained by applying
the Newton-Raphson method to f(x) = sinx starting at
X1 = 3.
(a) Find x4 rounded off to four decimal places.
(b) What are the approximations if we start at x; = 6?

19. The equation x + tanx = 0 has an infinite number of pos-
itive roots rq, ro, rs, ..., ry slightly larger than (n — %)n’.
Use the Newton-Raphson method to find r; and r; to three
decimal place accuracy.

Exercises 1-2. Show that f satisfies the conditions of Rolle’s
theorem on the indicated interval and find all the numbers ¢ on
the interval for which f’(c) = 0.

1 fx)=x3—x; [-1,1].

2. f(x) =sinx4+cosx —1; [0, 2x].
Exercises 3-6. Verify that f satisfies the conditions of the mean-
value theorem on the indicated interval and find all the numbers
c that satisfy the conclusion of the theorem.

f(x)=x3—2x+1; [-23]

4. f(x) =/x—-1; [2,5].

5. f(x) = zfi 2, 4].

7. Set f(x) = x3 —x. Note that f(—1) = f(1) =0. Ver-
ify that there does not exist a number ¢ in (-1, 1) for
which f’(c) = 0. Explain how this does not violate Rolle’s
theorem.

8. Set f(x) = (x + 1)/(x — 2). Show that there does not exist
anumber cin (1, 4) for which f(4) — (1) = f'(c)(4 — 1).
Explain how this does not violate the mean-value theorem.

9. Does there exist a differentiable function f with f(1) =
5, f(4)=1,and f'(x) > —1forall xin (1, 4)? If not, how
do you know?

10. Let f(x) = x® — 3x + k, k constant.

a. Show that f(x) = 0 for at most one x in [—1, 1].

b. For what values of k does f (x) = 0 forsomex in[—1, 1]?
Exercises 11-16. Find the intervals on which f increases and
the intervals on which f decreases; find the critical points and
the local extreme values.

11 f(x) =2x3 +3x2 + 1.

6. f(x) =x%4 [0, 16].

12. f(x) = x* —4x + 3.

13 f(X) = (x +2%(x — 1)%. 14 f(x)=x+%.

15. f(x) = —.
) 1+ x?

16. f(x) =sinx —cosx, 0<x < 2.

Exercises 17-22. Find the critical points. Then find and classify

all the extreme values.

17. f(x) =x*+2x2 +x +1; xe[-21].

18. f(x) =x*—8x?2+2; xe[-1,3]
4

19. f(x) = x2 + oz X€ [1, 4].

20. f(x) =cos®x +sinx; x € [0, 2x].

21 f(x) =x4/1—=X; X € (—o00,1].
2

X
22. f(X) = ——;

®) ="
Exercises 23-25. Find all vertical, horizontal, and oblique (see
Exercises 4.7) asymptotes.

X € (2, 00).

3x2 — 9x x2—4
23. f =\ 24, f ==\
M= )= T 5+
4
25. f = .
(x) &1

Exercises 26-28. Determine whether or not the graph of f has
a vertical tangent or a vertical cusp at c.

26. f(x)=(x—1)°%5 c=1
27. f(x) = 2x7/5 —5x?5;, ¢ =0.
28. f(x) =3x32+x); c=0.
Exercises 29-36. Sketch the graph of the function using the
approach outlined in Section 4.8.
29. f(x) =6+4x% —3x%  30. f(x) =3x> —5x3+ 1.
2X
31 f(x) = 4
33. f(x) = x4 —Xx.
35. f(x) =sinx ++/3cosx, x € [0, 2x].
36. f(x) =sin?x —cosx, x € [0, 2x].
37. Sketch the graph of a function f that satisfies the following
conditions:

32. f(x) = x¥3(x — 10).
34, f(x) =x*—2x2 +3.

f(-1) =3, f(0)=0, f(2)=—4;
f'(-1) = f'(2)=0;
f'(x) >0forx < —landforx > 2, f'(x) <0
if —1<x<2;

f7(x) <0forx < 3, f”(x) > 0forx > 3.



38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Given that the surface area of a sphere plus the surface area
of a cube is constant, show that the sum of the volumes is
minimized by letting the diameter of the sphere equal the
length of a side of the cube. What dimensions maximize the
sum of the volumes?

A closed rectangular box with a square base is to be built
subject to the following conditions: the volume is to be 27
cubic feet, the area of the base may not exceed 18 square
feet, the height of the box may not exceed 4 feet. Determine
the dimensions of the box (a) for minimal surface area; (b)
for maximal surface area.

The line through P (1, 2) intersects the positive x-axis at
A(a, 0) and the positive y-axis at B(0, b). Determine the
values of a and b that minimize the area of the triangle OAB.

A right circular cylinder is generated by revolving a rectan-
gle of given perimeter P about one of its sides. What dimen-
sions of the rectangle will generate the cylinder of maximum
volume?

A printed page is to have a total area of 80 square inches. The
margins at the top and on the sides are to be 1 inch each; the
bottom margin isto be 1.5 inches. Determine the dimensions
of the page that maximize the area available for print.

An object moves along a coordinate line, its position at
time t given by the function x(t) =t + 2 cost. Find those
times from t =0 to t = 27 when the object is slowing
down.

An object moves along a coordinate line, its position at
time t given by the function x(t) = (4t — 1)(t — 1)%,t > 0.
(a) When is the object moving to the right? When to the left?
When does it change direction? (b) What is the maximum
speed of the object when moving left?

An object moves along a coordinate line, its position at time
t given by the function x(t) = +/t + 1,t > 0. (a) Show that
the acceleration is negative and proportional to the cube of
the velocity. (b) Use differentials to obtain numerical es-
timates for the position, velocity, and acceleration at time
t = 17. Base your estimate ont = 15.

A rocket is fired from the ground straight up with an initial
velocity of 128 feet per second. (a) When does the rocket
reach maximum height? What is maximum height? (b) When
does the rocket hit the ground and at what speed?

Ballast dropped from a balloon that was rising at the rate of
8 feet per second reached the ground in 10 seconds. How
high was the balloon when the ballast was released?

48.

49.

50.

51.

52.

53.

54.

55.
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A ball thrown straight up from the ground reaches a height
of 24 feet in 1 second. How high will the ball go?

A boy walks on a straight, horizontal path away from a light
that hangs 12 feet above the path. How fast does his shadow
lengthen if he is 5 feet tall and walks at the rate of 168 feet
per minute?

The radius of a cone increases at the rate of 0.3 inches per
minute, but the volume remains constant. At what rate does
the height of the cone change when the radius is 4 inches
and the height is 15 inches?

A railroad track crosses a highway at an angle of 60°. A lo-
comotive is 500 feet from the intersection and moving away
from it at the rate of 60 miles per hour. A car is 500 feet from
the intersection and moving toward it at the rate of 30 miles
per hour. What is the rate of change of the distance between
them?

A square is inscribed in a circle. Given that the radius of the
circle is increasing at the rate of 5 centimeters per minute, at
what rate is the area of the square changing when the radius
is 10 centimeters?

A horizontal water trough 12 feet long has a vertical cross
section in the form of an isosceles triangle (vertex down).
The base and height of the triangle are each 2 feet. Given
that water is being drained out of the trough at the rate of
3 cubic feet per minute, how fast is the water level falling
when the water is 1.5 feet deep?

Use a differential to estimate f (3.8) giventhat f (4) = 2and
f'(x) = ¥3x — 4.
Use a differential to estimate f(4.2) given that f(x) =

VX 1/VX.

Exercises 56-57. Use a differential to estimate the value of the

expression.
56. +/83. 57. tan43°.
58. A spherical tank with a diameter of 20 feet will be given a

coat of paint 0.05 inches thick. Estimate by a differential the
amount of paint needed. (Assume that there are 231 cubic
inches in a gallon.)

[> Exercises 59-60. Use the Newton-Raphson method to estimate
a root of f(x) = 0 starting at the indicated value: (a) Express
Xny1 in terms of x,. (b) Give x4 rounded off to five decimal
places and evaluate f at that approximation.

59.
60.

f(x)=x3—-10; x;=2.
f(x) =xsinx —cosx; x;=1.
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CHAPTER

M 5.1 AN AREA PROBLEM; A SPEED-DISTANCE PROBLEM

An Area Problem

In Figure 5.1.1 you can see a region 2 bounded above by the graph of a continuous
function f, bounded below by the x-axis, bounded on the left by the line x = a, and
bounded on the right by the line x = b. The question before us is this: What number,
if any, should be called the area of Q?

y

y =f(x)

Figure 5.1.1

To begin to answer this question, we split up the interval [a, b] into a finite number
of subintervals

[X0, X211, [X1. %21, - - ., [Xn—1, Xn] with Aa=Xg <Xy <---<Xp=Dh.
This breaks up the region €2 into n subregions:
Q1,Q2, ..., Q. (Figure 5.1.2)

We can estimate the total area of © by estimating the area of each subregion ; and
adding up the results. Let’s denote by M; the maximum value of f on [x;_1, X;] and by
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Q1 Q; Q3 Q,

a=Xg X3 Xo X3 Xo=b X

Figure 5.1.2

m; the minimum value. (We know that there are such numbers because f is continuous.)
Consider now the rectangles r; and R; of Figure 5.1.3. Since

r € Q CR;,

we must have

|
I
|
|
|
|
|
I
|
1
X:

Figure 5.1.3

areaof rj < areaof Q; < area of R;.

Since the area of a rectangle is the length times the width,

m;(X; — Xi—1) < area of Q; < M;(xj — Xj_1).

Setting AX; = Xj — Xj_1, We have

miAX; < area of Qi < M;AX;.

This inequality holds fori = 1,i = 2, ..., i = n. Adding up these inequalities, we get

on the one hand

(5.1.1)

MiAXy + MyAXo + -+« +m,AX, < area of Q,

and on the other hand

(5.1.2)

area of @ < MiAX1 4+ MyAXo + -+ + My AX,.

A sum of the form

M1 AX1 + MaAXy 4+ -+« + My AXp (Figure 5.1.4)
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is called a lower sum for f. A sum of the form
M1AX1 + MaAXy + -+ - + My AX, (Figure 5.1.5)

is called an upper sum for f.

y y
X X
area of shaded region is a area of shaded region is an
lower sum for f upper sum for f
Figure 5.1.4 Figure 5.1.5

Inequalities 5.1.1 and 5.1.2 together tell us that for a number to be a candidate for
the title “area of 2,” it must be greater than or equal to every lower sum for f and it
must be less than or equal to every upper sum. It can be proven that with f continuous
on [a, b] there is one and only one such number. This number we call the area of .

A Speed-Distance Problem

If an object moves at a constant speed for a given period of time, then the total distance
traveled is given by the familiar formula

distance = speed x time.

Suppose now that during the course of the motion the speed v does not remain constant;
suppose that it varies continuously. How can we calculate the distance traveled in that
case?

To answer this question, we suppose that the motion begins at time a, ends at time
b, and during the time interval [a, b] the speed varies continuously.

As in the case of the area problem, we begin by breaking up the interval [a, b] into
a finite number of subintervals:

[to. ], [tr. 2], ..., [thos, ta]  with  a=t <ty <--- <t =h.

On each subinterval [tj_1, t;] the object attains a certain maximum speed M; and a
certain minimum speed m;. (How do we know this?) If throughout the time inter-
val [tj_1, tj] the object were to move constantly at its minimum speed, m;, then it
would cover a distance of mjAt; units. If instead it were to move constantly at its
maximum speed, M;, then it would cover a distance of M;At; units. As it is, the ac-
tual distance traveled, call it sj, must lie somewhere in between; namely, we must
have

mij Aty <sj < MjAt;.
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The total distance traveled during full the time interval [a, b], call it s, must be the sum
of the distances traveled during the subintervals [tj_1, t;]; thus we must have

S=S+S+ - +5Sn.
Since

miAt; <s; < MiAly
my Aty < s < MaAty,

mpAt, < sr; < MpAt,,
it follows by the addition of these inequalities that
M1At; + MeAty + - - - + My Aty <5 < MjAt + MaAty + - - - + M, At,.
A sum of the form
miAt; + maAty 4 - - + myAt,
is called a lower sum for the speed function. A sum of the form
MiAty + Mo At 4 - - - + M AL,

is called an upper sum for the speed function. The inequality we just obtained for s tells
us that s must be greater than or equal to every lower sum for the speed function, and
it must be less than or equal to every upper sum. As in the case of the area problem,
it turns out that there is one and only one such number, and this is the total distance
traveled.

M 5.2 THE DEFINITE INTEGRAL OF A CONTINUOUS FUNCTION

The process we used to solve the two problems in Section 5.1 is called integration,
and the end results of this process are called definite integrals. Our purpose here is to
establish these notions in a more general way. First, some auxiliary notions.

(5.2.1) By a partition of the closed interval [a, b], we mean a finite
subset of [a, b] which contains the points a and b.

We index the elements of a partition according to their natural order. Thus, if we say
that

P = {Xo, X1, X2, ..., Xn_1, Xn} is a partition of [a, b],
you can conclude that
Aa=Xg<Xy < -<Xn=h.
Example 1 The sets
{0, 1}, {0, % 1} {0, % % 1} {0,
are all partitions of the interval [0, 1]. 1

NN
Wi
Nl
oolun
RN
_—

If P = {Xo, X1, X2, ..., Xn_1, Xn} IS & partition of [a, b], then P breaks up [a, b]
into n subintervals

[Xo, X11, [X1, %21, - . . » [Xn—1, Xn] of lengths AX1, AXo, ..., AXy.

m 237
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Suppose now that f is continuous on [a, b]. Then on each subinterval [X;_1, X;]
the function f takes on a maximum value, M;, and a minimum value, m;.

The number
Ut (P) = M1AXy + MaAXp + -+ - + My Axy
5.2.2) is called the P upper sum for f, and the number

Lt (P) =miAX; + MaAXp + - - + My AXy

is called the P lower sum for f.

Example 2 The function f(x) =1+ x? is continuous on [0, 1]. The partition
P ={0, %, 3,1} breaks up [0, 1] into three subintervals

50 10
[X0. X1 =[0. 3] [x1. %] = 3. 3], [X2. xs] = [3.1]
of lengths
Axy=3-0=1, Ap=3-1=1 Axz=1-3=1
Since f increases on [0, 1], it takes on its maximum value at the right endpoint of each
subinterval:

Mi=f(3)=2  M=f(3)=2 My=f()=2
The minimum values are taken on at the left endpoints:
m=f0)=1 m=f(})=2  m=1(3)=2.
Thus
Ut (P) = MiAXs + MaAXo + MpAxs =32 (3) + 2 (D) +2(}) =Z =152
and
L (P) =miAXy +MoAXo + M3Axs =1(3) + 2 (3) + & (3) = & = 1.20.

For a geometric interpretation of these sums, see Figure 5.2.1. [

y y
|
; |
B —t
13 1 X 1 3 1 X
2 4 2 4
upper sum lower sum

(a) (b)
Figure 5.2.1
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Example 3 The function f(x) = coszx is continuous on [0, 3]. The partition y
P={0.1. 7. 3 2 2} breaks up [0, 2] into five subintervals 1
[Xo. x1] = [0, £]. [X1. x2] = [£. 1], [X2. xs] = [, 3],
[x3, xa] = [%, %], [X4, Xs] = [% %]
of lengths
Axy = %, AXp = 5, Axz = 1, AXg = £, AXs = 15.

o=
Hl=

| =
wN—
Slwpb—
x

See Figure 5.2.2.
The maximum values of f on these subintervals are as follows:

M; = f(0) =cos0 =1, My = f(%)ZCOS%n:l\/ﬁ,

Ms = f(}) =cosinr =1v2, My = f (%) =cosinr =0,

Ms = f(3) =cosim = —3. Figure 5.2.2

and the minimum values are as follows:

my=f(3) =cosgr =3v8  mo=f(3) =cosir =32
My = f(z) =cosgm =0, ms=f(3)=cosfm=—.
ms = f(§) = cos fm = —3v2

Therefore
Ut (P)=1() +3v3(%5) +3v2(3) +0(3) + (=3) () =037
and
L (P) = 3v3(3) +3v2(5) +0(3) + (=3) (5) + (— 3v2) () =0.06. 1

Both in Example 2 and in Example 3 the separation between U (P) and L ¢ (P)
was quite large. Had we added more points to the partitions we chose, the upper sums
would have been smaller, the lower sums would have been greater, and the separation
between them would have been lessened.

By an argument that we omit here (it appears in Appendix B.4), it can be proved
that, with f continuous on [a, b], there is one and only one number | that satisfies the
inequality

Li(P) <1 <U¢(P) for all partitions P of [a, b].

This is the number we want.

DEFINITION 5.2.3 THE DEFINITE INTEGRAL OF A CONTINUOUS
FUNCTION

Let f be continuous on [a, b]. The unique number | that satisfies the inequality
Lt(P) <1 <U¢(P)  forall partitions P of [a, b]

is called the definite integral (or more simply the integral) of f fromato b

and is denoted by
b
/ f(x) dx.
a
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The symbol | dates back to Leibniz and is called an integral sign. It is really an
elongated S—as in Sum. The numbers a and b are called the limits of integration (a is
the lower limit and b is the upper limit)," and we will speak of integrating a function
f from a to b. The function f being integrated is called the integrand. This is not the
only notation. Some mathematicians omit the dx and simply write fab f. We will keep
the dx. As we go on, you will see that it does serve a useful purpose.

In the expression
b
/ f(x) dx
a

the letter x is a “dummy variable”; in other words, it can be replaced by any letter not
already in use. Thus, for example,

/abf(x)d(x), /abf(t) dt, /abf(z)dz

all denote exactly the same quantity, the definite integral of f from a to b.

From the introduction to this chapter, you know that if f is nonnegative and con-
tinuous on [a, b], then the integral of f from x = a to x = b gives the area below the
graph of f fromx =atox =bh:

A= bfxdx.
IS

You also know that if an object moves with continuous speed v(t) = |v(t)| from time
t = atotimet = b, then the integral of the speed function v gives the distance traveled
by the object during that time period:

s:/abv(t) dtz/ab|v(t)|dt.

We’ll come back to these applications and introduce others as we go on. Right now we
carry out some computations.

Example 4 (The integral of a constant function)

b
(5.2.4) / k dx = k(b — a).
a

In this case the integrand is the constant function f(x) = k. To verify the formula, we
take P = {Xo, X1, ..., Xn} as an arbitrary partition of [a, b]. Since f is constantly k on
[a, b], f is constantly k on each subinterval [xj_1, X;]. Thus both m; and M; are k, and
both L ¢ (P) and U (P) are

KAXy + KkAXy + -+« + KAXp = K(AX1 + AXo + - - - 4+ AXy) = k(b — a).
explain 1

Therefore it is certainly true that

Li(P) =k(b—a) = U¢(P).

TThere is no connection between the term “limit” as used here and the limits introduced in Chapter 2.
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Since this inequality holds for all partitions P of [a, b], we can conclude that

/bf(x)dx=k(b—a). Q

y
For example,
! _ _ _ fx) =k
3dx=3[1—-(-1)]=3(2) =6 and Kl
-1
10
4
If k > 0, the region between the graph and the x-axis is a rectangle of height k : oo
erected onthe interval [a, b]. (Figure 5.2.3.) The integral gives the area of this rectangle. Figure 5.2.3
Example 5 (The integral of the identity function)
b
(5.2.5) f x dx = Z(b* — a?).
a

Here the integrand is the identity function f(x) = x. (Figure 5.2.4.) To verify the y
formulawe take P = {Xoq, X1, ..., Xp} as an arbitrary partition of [a, b]. On each subin-
terval [Xj_1, Xj], the function f (x) = x has a maximum value M; and a minimum value £ = x
m;. Since f is an increasing function, the maximum value occurs at the right endpoint
of the subinterval and the minimum value occurs at the left endpoint. Thus M; = X;
and m; = Xxj_z. It follows that | |

Ui (P) = X1 AX1 + X2AXp + - -+ + Xn AXp : P "
and

Lt (P) = XoAXy + X1 AXa + -+ - + Xn_1AXp. Figure 5.2.4

For each index i

(%)

Xji—1 < %(Xi +Xi—1) < Xi. (explain)

Multiplication by AXj = Xj — Xj_1 gives

which we write as

Xi—1AXj < %(Xi + Xi—1)(Xi — Xi—1) < Xi AXi,

2 2

1
Xi—1AXi < 3(X7 — X{_1) < Xi AXi.

Summing fromi = 1toi = n, we find that
(+5) Li(P) = 30 = x3) + 306G = xg) + -+ 3 (6§ = xq_1) < Us(P).

The sum in the middle collapses to

Consequently

106 —x5) = 3(0° — %),

Lt (P) < 3(b? —a?) < U¢(P).
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y

area of shaded region: f;’x dx =

1
5 (b?-a?)
Figure 5.2.5
y
o [
f(x) =x2

area of shaded region: f? x2dx = ?

Figure 5.2.6

a b X

Since P was chosen arbitrarily, we can conclude that this inequality holds for all parti-
tions P of [a, b]. It follows that

b
/ xdx = 1(b* —a%). o

a
For example,

3 2
/xdx:%[Bz—(—l)z]z%(8)=4 and /xdx:%[22—(—2)2]:0.

-1 2

If the interval [a, b] lies to the right of the origin, then the region below the graph of
f(x) =x, X € [a, b]

is the trapezoid shown in Figure 5.2.5. The integral

b
/xdx
a

gives the area of this trapezoid: A = (b — a)[3(a + b)] = 3(b* — a?).
Example 6
3
/ x2dx = 2. (Figure 5.2.6)
1

Let P = {Xo, X1, ..., Xn} be an arbitrary partition of [1, 3]. On each subinterval
[Xi—1, xi] the function f(x) = x? has a maximum M; = x? and a minimum m; = x2 ;.
It follows that

Us(P) = foxl +-+ x,fon
and

Li(P) = X3 AXy + - - - 4+ X2 AX,.
For each indexi,1 <i <n,

32, < X2+ X1 + X2 < 32 (Verify this)

Division by 3 gives

2 1(y2 ) i 2 2
P < 5 Fxioaxi +x7) < x{

X
We now multiply this inequality by Ax;j = Xj — Xj—1. The middle term then becomes

%(Xiz_l + Xi—1Xi + Xiz)(Xi —Xi—1) = %(X.3 - Xi3_1),

and shows that
XP A < (X0 —x2,) < X2AX.
The sum of the terms on the left is Lt (P). The sum of all the middle terms collapses
to 2:
3

2

1(u3 w3, v3_ o3 3.3 1(y3 3\ _ 1723 13
06 =x0+X3 =X+ X3 =X 4) = 5(x3 = %) =533 - 1) =2,

3
The sum of the terms on the right is U¢ (P). Clearly, then,

Li(P) < 2 < Us(P).
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Since P was chosen arbitrarily, we can conclude that this inequality holds for all parti-
tions P of [1, 3]. It follows that

3
/ x?dx=2. 0
1

The Integral as the Limit of Riemann Sums

For a function f continuous on [a, b], we have defined the definite integral

/abf(x)dx

as the unique number that satisfies the inequality
b
L¢(P) < / f(x)dx < U¢(P) for all partitions P of [a, b].
a

This method of obtaining the definite integral (squeezing toward it with upper and lower
sums) is called the Darboux method.

There is another way to obtain the integral that, in some respects, has distinct
advantages. Take a partition P = {Xo, X1, ..., X5} of [a, b]. P breaks up [a, b] into n
subintervals

[XO9 Xl]v [X17 X2]9 ceey [anlﬁ Xn]
of lengths
AX1, AXo, ..., AXp.

Now pick a point x; from [Xo, X1] and form the product f (x;)Ax1; pick a point x5 from
[x1, X2] and form the product f(x;)AXz; go on in this manner until you have formed
the products

f(x)AX,  FX3)AXa, ..., T(X)AX,.
The sum of these products
S*(P) = f(x))Axs + f(x3)AXe + -+ + F(X7)Axq

is called a Riemann sum.’t Since m; < f(x) < M; for each index i, it’s clear that :
(5.2.6) Lt (P) = S*(P) = Ut (P).

/
This inequality holds for all partitions P of [a, b]. i
Example 7 Let f(x) = x2 x € [1,3]. Take P = {1, 3,2, 3} and set Lo

xi=% x=I x=% (Figure 5.27) AEER R

Here Axy = %, AX, = 3, Axs = 1. Therefore ;Z >
SP)=F3)3+f(D) 3+ 1=213)+2(3) +2(1) =L =8.5625. Figure 5.2.7

T After the French mathematician J. G. Darboux (1842-1917).
T After the German mathematician G. F. B. Riemann (1826-1866).
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In Example 6 we showed that
3
/x%ngﬁﬁzg_g=§;&%1
1
Our Riemann approximation is pretty good. =l

For each partition P of [a, b], we define || P ||, the norm of P, by setting
[Pl =maxAxi, i=12,...,n.

The definite integral of f is the limit of Riemann sums in the following sense: given
any € > 0, there exists a § > 0 such that

b
it |P|<s then |S*(P)—/ ) dx| < e
a

no matter how the x;* are chosen within the [x;_1, X;].
We can express this by writing

b
5.2.7 f(x)dx = lim S*(P),
(5.2.7) A (x) om (P)

which in expanded form reads
b
/ f(x)dx = ||F|vi||mo[f (xF)Axs + f(X3)AXa + -+ + F (X)) AXq].
a g

A proof that the definite integral of a continuous function is the limit of Riemann
sums in the sense just explained is given in Appendix B.5. Figure 5.2.8 illustrates the
idea. Here the base interval is broken up into eight subintervals. The point x; is chosen
from [Xo, X1], X5 from [X1, X2], and so on.

y

Figure 5.2.8

While the integral represents the area under the curve, the Riemann sum represents the
sum of the areas of the shaded rectangles. The difference between the two can be made
as small as we wish (less than €) simply by making the maximum length of the base
subintervals sufficiently small—that is, by making || P || sufficiently small.

This approach to the definite integral was invented by Riemann some years before
Darboux began his work. For this reason the integral we have been studying is called
the Riemann integral.
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Remark  The process of integration can be extended to discontinuous functions so
long as they are not “too” discontinuous.’ Basically there are two ways to do this: One
way is to extend the meaning of upper and lower sums. Another way, more accessible
to us with the tools at hand, is to continue with Riemann sums. This is the course we’ll

follow when we return to this subject. (Project 5.5.) O

fWhat we mean by this will be touched upon in Project 5.5.

EXERCISES 5.2

Exercises 1-10. Calculate L (P) and U; (P).

1L f(x)=2x, xe[0,1; P={0 1 1.1}

2. fx)=1-x, xe[0,2;, P={0% 312}

3. f(x)=x% xe[-1,0]; P={-1-1 -7.0}.

4. f(x)=1-x% xe[0,1]; P={03.3.1}.

5 fx)=1+x% xe[0,1; P={0 1 1}.

6. fX)=vx, xe[0,1]; P=1{0 %, 5, =, 2,1}
7.fx)=x% xe[-11; P={-1-%.%. 3.1}

8. f(x)=x?, xe[-11]; P={-1,-% -1 111}
9. fx)=sinx, xe[0,x]; P={0,%n i 7}.

10. f(x)=cos x, x €[0,7]; P ={0, 37, i x}.

11. Let f be a function continuous on [—1, 1] and take P as a

partition of [—1, 1]. Show that each of the following three
statements is false.

@) L¢(P) =3and Us(P) = 2.

() Li(P)=3, Us(P)=6, and /1f(x)dx:2.
-1

() Ly(P)=3, Us(P)=6, and /1 f(x)dx = 10.
-1

12. (a) Giventhat P = {xg, X1, ..., Xp} is an arbitrary partition
of [a, b], find L¢(P) and U (P) for f(x) = x + 3.
(b) Use your answers to part (a) to evaluate

/abf(x)dx.

13. Exercise 12 taking f(x) = —3x.
14. Exercise 12 taking f (x) = 1 + 2x.

Exercises 15-18. Express the limit as a definite integral over the
indicated interval.

lim [(x?+2x1 —3) Axg + (X3 + 22 — 3) Axg + - -+

CIPI—0
+ (x2+ 2%y —3) Axa];  [-1.2].

16 'li”rﬂo [(x§ —3%0) Axy + (X§ —3x1) AXp + - -
+ (x3_; — 3xn—1) AXa]; [0, 3].
17. lim [(7)*sin(@t] +1) Aty + (&)*sin(2t; +1) Atz + - -
+(t1)?sin(2tr 4+ 1) Aty] where t* € [ti_1, ],
i=12,....n; [0,2r]

18. lim | Y2 Atj+ L2 Aty + -4 —L 1 At
|P||»0[(tf)2+1 T+t ? t2+1""
where t"e[t_q,t],i=1,2,....n; [1,4].

19. Let Q be the region below the graph of f(x) =x2,x e
[0, 1]. Draw a figure showing the Riemann sum S*(P) as
an estimate for this area. Take P = {0, 1, 1, 2,1} and set

boox=b ox=i xi=g

20. Let €2 be the region below the graph of f(x) = %x +1,xe
[0, 2]. Draw a figure showing the Riemann sum S*(P) as
an estimate for this area. Take P = {0, 3, 2,1, 3, 2} and let
the x;* be the midpoints of the subintervals.

21. Let f(x) =2x,x € [0,1]. Take P = {0, }, 7. 3. %, 1} and
set

*
Xy =

N=f =g X=3 xi=% ¥=}
Calculate the following:
@ Li(P). (b)S*(P). (c)Us(P).

22. Taking f as in Exercise 21, determine
1
/ f(x) dx.
0
1

x2 dx
0
using upper and lower sums. HINT:
b* —a* = (b® + b%a + ba? 4+ a%)(b — a).

24. Evaluate
1
/ x* dx
0

using upper and lower sums.
Exercises 25-30. Assume that f and g are continuous, that
a < b,andthat fab f(x)dx > fabg(x) dx. Which of the statements

necessarily holds for all partitions P of [a, b]? Justify your an-
swer.

25. Ly(P) < Us(P).

27. Ly(P) < /bf(x)dx.

23. Evaluate

26. Ly(P) < L¢(P).

28. Ug(P) < U;(P).

29. U¢(P) > /bg(x)dx. 30. Ug(P) < /bf(x)dx.

31. A partition P = {Xo, X1, X2, ..., Xn_1, Xn} Of [a, b] is said
to be regular if the subintervals [xj_1, xi] all have the same
length Ax = (b —a)/n. Let P = {Xo, X1, ..., Xn_1, Xn} be
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aregular partition of [a, b]. Show that if f is continuous and
increasing on [a, b], then
Ut (P) — L¢(P)=[f(b) — f(a)] Ax.

32. Let P = {Xg, X1, X2, ..., Xn_1, Xn} be a regular partition of
the interval [a, b]. (See Exercise 31.) Show that if f is con-
tinuous and decreasing on [a, b], then

Ut (P) — Li(P) = [f(a) — f(b)] Ax.

[>33. Set f(x) =1+ x2,

(a) Verify that f increases on [0, 2].
(b) Let P = {Xo, X1, ..., Xn_1, Xn} be a regular partition of
[0, 2]. Determine a value of n such that

05/2 f(x)dx — L¢(P) < 0.1.
0

(c) Use a programmable calculator or computer to calculate
joz f (x) dx with an error of less than 0.1.

[>34. Set f(x) =1/(1 +x?).

(a) Verify that f decreases on [0, 1].
(b) Let P = {Xo, X1, ..., Xn—1, Xn} be a regular partition of
[0, 2]. Determine a value of n such that

05/2 f(x)dx — L¢(P) < 0.1.
0

(c) Use a programmable calculator or computer to calculate

fol f (x) dx with an error of less than 0.05. NOTE: You
will see in Chapter 7 that the exact value of this integral
is /4.

35. Show by induction that for each positive integer k,
14243+ +k=2k(k+1).
36. Show by induction that for each positive integer k,
12422+ 3+ + k= Fk(k + 1)(2k + 1).

37. Let P = {Xo, X1, X2, ..., Xn—1, Xn} be a regular partition of
the interval [0, b], and set f(x) = x.

(a) Show that

b2
Li(P)= 5[0+ 14243+ +(n 1)

(b) Show that

b2
Ut (P) = F[1+2—|r3—|r~~~—|rn].
(c) Use Exercise 35 to show that
Li(P) = 3b*(L—[IP]) and U¢(P) = 3b*(L+PI).
(d) Show that for all choices of x;*-points
b
HFI)i”rnOS"‘(P) = 1b? and therefore / xdx = 1p%.
g 0

38. Let P = {Xg, X1, X2, ..., Xn_1, Xn} be a regular partition of
[0, b], and let f(x) = x2.

(a) Show that

b3
Li(P) = F[OZ+1Z+22+'“+(n_1)2]'

(b) Show that

Us(P) = :—2[12+22+32+--~+n2].

(c) Use Exercise 36 to show that
Li(P) = gb*2—3||P||+IP?)  and
Ur(P) = ¢b*Q2+3IIPII +IPI7).

(d) show that for all choices of x;*-points

b
||F|’ium ,S(P) = % and therefore / x?dx = b3,
- 0

39. Let f be a function continuous on [a,b]. Show that
if P is a partition of [a,b], then L¢(P),U¢(P), and
%[Lf (P) 4+ U (P)] are all Riemann sums.

Exercises 40-43. Using a regular partition P with 10 subinter-
vals, estimate the integral

(@) by L¢(P)and by U¢(P), (b) by 3[L+(P)+ U+ (P)],
(c) by S*(P) using the midpoints of the subintervals. How
does this result compare with your result in part (b)?

2 1
40./ (x® + 2) dx. 41./ VX dx.
0 0

2 1 1
42, / ——dx. 43. / sinmx dx.
0o 1+x2 0

W 5.3 THE FUNCTION F(x) = [*f(t)dt

The evaluation of the definite integral

/abf(x)dx

directly from upper and lower sums or from Riemann sums is usually a laborious and
difficult process. Try, for example, to evaluate

5 2% 4y
3 2
X° 4+ X — dx or ——dx
'/2‘ ( 1—X2) /1/21—X2
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from such sums. Theorem 5.4.2, called the fundamental theorem of integral calculus,
gives us another way to evaluate such integrals. This other way depends on a connection
between integration and differentiation described in Theorem 5.3.5. Along the way we
will pick up some information that is of interest in itself.

THEOREM 5.3.1

Suppose that f is continuous on [a, b], and P and Q are partitions of [a, b]. If
Q D P, then

Li(P)=Li(Q) and  Uf(Q) = Ut (P).

This result can be justified as follows: By adding points to a partition, we make the
subintervals [xj_1, xj] smaller. This tends to make the minima, m;, larger and the
maxima, M;, smaller. Thus the lower sums are made bigger, and the upper sums are
made smaller. The idea is illustrated (for a positive function) in Figures 5.3.1 and 5.3.2.

as points are added to a partition, the lower sums tend to get bigger

Figure 5.3.1

as points are added to a partition, the upper sums tend to get smaller
Figure 5.3.2
The next theorem says that the integral is additive on intervals.

THEOREM 5.3.2

If f is continuouson[a,b]anda < c < b, then

/acf(t)dtJrfcbf(t)dt:/abf(t)dt.

For nonnegative functions f, this theorem is easily understood in terms of area. The | |
area of part | in Figure 5.3.3 is given by

/ o dt ¢ ¢ °
a ’ Figure 5.3.3
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the area of part 1l by

f(t)dt;
C
and the area of the entire region by
b
f(t)dt
a
The theorem says that
the area of part | + the area of part Il = the area of the entire region. 1

The fact that the additivity theorem is so easy to understand does not relieve us of
the necessity to prove it. Here is a proof.

PROOF OF THEOREM 5.3.2  TO prove the theorem, we need only show that for each partition
P of [a, b]

c b
Lf(P)§/ f(t) dt+/ f(t) dt < Us (P). (Why?)
a C
We begin with an arbitrary partition of [a, b]:
P = {Xo, X1, ..., Xn}.
Since the partition Q = P U {c} contains P, we know from Theorem 5.3.1 that

M Li(P) < Ls(Q) and  U¢(Q) < U¢(P).
The sets

Qi:=QnN[ac] and  Q2=QnNIc,b]

are partitions of [a, c] and [c, b], respectively. Moreover

2  Li(Q1)+ Lt (Q2) = Lt (Q) and U (Q1) + Ut (Q2) = Ut (Q).

Since
c b
u@nsffmmSUd%) and u@gs/fmmsuwmx
we have
c b
h@ﬂ+h@ﬂ§/fmm+ffmmsude¢MQﬁ

and thus by (2),

c b
LA@S/fmm+/f®m§m@)

c

Therefore, by (1),

Lf(P)5/Cf(t)dt+/bf(t)dt§Uf(P). 0
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Until now we have integrated only from left to right: from a number a to a number
b greater than a. We integrate in the other direction by defining

a b
(5.3.3) /b f(t)dt=— f f(t) dt.

The integral from any number to itself is defined to be zero:

C
(5.3.4) / f(t) dt = 0.
Cc

With these additional conventions, the additivity condition

/acf(t)dt+/cbf(t)dt:/abf(t)dt

holds for all choices of a, b, ¢ from an interval on which f is continuous, no matter
what the order of a, b, ¢ happens to be. We have left the proof of this to you as an
exercise. (Exercise 16)

We are now ready to state the all-important connection that exists between integra-
tion and differentiation. Our first step is to point out that if f is continuous on [a, b]
and c is any number in [a, b], then for each x in [a, b], the integral

/fo(t)dt

is a number, and consequently we can define a function F on [a, b] by setting

F(x):/x f(t) dt.

THEOREM 5.3.5

Let f be continuous on [a, b] and let c be any number in [a, b]. The function
F defined on [a, b] by setting

F(x):/x f(t) dt

is continuous on [a, b], differentiable on (a, b), and has derivative
F'(x) = f(x) forallxin(a,b).

prooF We will prove the theorem for the special case where the integration that defines
F is begun at the left endpoint a; namely, we will prove the theorem for the following
function:

X
— (The more general case is
F(x) = /a f(t)dt. left to you as Exercise 34.)

We begin with x in the half-open interval [a, b) and show that

h) —
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A pictorial argument that applies to the case where f > 0 is roughed out in Figure
5.3.4.

f00 }f(x+h)

a x” h S x+h b

F(x) = area from a to x and F(x + h) = area from a to x + h. Therefore
F(x + h) — F(x) = area from x to x + h. For small h this is approximately f(x) h. Thus

F(x+h) - F(x) . . f(x) h
. is approximately h

= f(x).

Figure 5.3.4

Now to a proof. Fora < x < x +h < b,

/axf(t)dt+/xx+hf(t)dt:/ax+hf(t)dt.

-/ath(t)dt—/ax f(t)olt:/xx+h f(t) dt,

which, by the definition of F, gives

Therefore

x+h
M F(x+h) — F(x):/ f(t)dt.

On the interval [x, x + h], an interval of length h, f takes on a maximum value My
and a minimum value my. On [x, x + h], the product Myh is an upper sum for f and
myh is a lower sum for f. (Use the partition {x, x + h}.) Therefore

x+h
mh-hs/ f(t)dt < My - h.
X

It follows from (1) and the fact that h is positive that
o F(x +h) — F(x) -
h
Since f is continuous on [x, x + h],

Mp.

lim my = f(x) = lim My
h—0+ h—0+
and thus
@ lim F(x +h) — F(x)
h—0+t h

This last statement follows from the “pinching theorem,” Theorem 2.5.1, which,
as we remarked in Section 2.5, applies also to one-sided limits. In a similar manner we
can prove that, for x in the half-open interval (a, b],

- lim F(x +h) — F(x)
h—0- h

For x in the open interval (a, b), both (2) and (3) hold, and we have
F(x + hg - F(x) _ f0.

= f(x).

— f(x).

F/(x) = lim
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This proves that F is differentiable on (a, b) and has derivative F'(x) = f ().
All that remains to be shown is that F is continuous from the right at a and contin-
uous from the left at b. Limit (2) at x = a gives
lim F(a+h)—F()
h—0+ h

= f(a).

Now, for h > 0,
F@+h)—F(@)
h

F(@a+h)—-F(a) = h,

and so

. . F(a+h)— F(a)
i F@ -+~ Fi = i ( |

h

h) = f(a)-hl_l)rgh =0.
Therefore

hlirg+ F(a+h) = F().
This shows that F is continuous from the right at x = a. The continuity of F from the

left at x = b can be shown in a similar manner by applying limit (3)atx =hb. O

X
Example 1 The function F(x) = / (2t + t?) dt for all x e [—1, 5] has derivative
-1

F'(x) =2x+x?  forallx e (—1,5). 1

Example 2  For all real x, define
X
F(x) = / sinst dt.
0
Find F'(2) and F'(—3).
SOLUTION By Theorem 5.3.5,
F'(x) = sinmx for all real x.

Thus, F'(2) =sin(37) = 3v2and F/(— }) =sin(—37)=-1. O

Example 3 Set
1
F(x) :/ ——dt for all real numbers x.
o 1+1t2

(a) Find the critical points of F and determine the intervals on which F increases and
the intervals on which F decreases.

(b) Determine the concavity of the graph of F and find the points of inflection (if any).
(c) Sketch the graph of F.
SOLUTION

(a) To find the intervals on which F increases and the intervals on which F decreases,
we examine the first derivative of F. By Theorem 5.3.5,

1
F'(x) = 112 for all real x.

m 251
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Since F’(x) > Oforallreal x, F increases on (—oo, 00); there are no critical points.
(b) To determine the concavity of the graph and to find the points of inflection, we use

the second derivative

Figure 5.3.5

EXERCISES 5.3

sign of F™:

—2X

F//(X) = —(1 i X2)2 .

The sign of F” and the behavior of the graph of F are as follows:

behavior of graph:

4
0
concave 1 concave
up . down
point
of
inflection

(c) Since F(0) = 0and F’(0) = 1, the graph passes through the origin with slope 1. A
sketch of the graph is shown in Figure 5.3.5. As you’ll see in Chapter 7, the graph
has two horizontal asymptotes: y = fr andy = —17.

1. Given that

1 2 5
/Of(x)dx:ﬁ, /(;f(x)dx:4, /Zf(x)dx:l,

find the following:
5 2 5
(@) /Of(x)dx. (b) /1f(x)dx. () /1f(x)dx.

0 0 1
(d) /Of(x)dx. (e) /2f(x)dx. () /Sf(x)dx.
2. Given that

/14f(x)dx:5, /34f(x)dx:7, /lgf(x)dx:ll,
find the following:

8 3 3
@ /4 f(x)dx. (b) [1 f(x)dx. (c) /1 f(x)dx.

8 4 4
@) /3 fx)dx. (o) /8 fx)dx.  (f) /4 f (x) dx.

3. Use upper and lower sums to show that

2
0.5</d—x<1.
1 X

4. Use upper and lower sums to show that

Iodx
0.6 — < 1.
</(; 1+ x2 =

5. Forx > —1,set F(x) = [ tv/t + Ldt.
@ Find F(0). (b) Find F'(x). (c) Find F'(2).
(d) Express F(2) as an integral of t4/t + 1.
(e) Express —F(x) as an integral of ty/t + 1.

6. Let F(x) = [tsintdt.

(@) Find F(r). (b) Find F'(x). (c) Find F'(ix).

(d) Express F(27) as an integral of t sint.
(e) Express —F(x) as an integral of t sint.
Exercises 7-12. Calculate the following for each F given below:

@ F'(=1. (b) F(0. (¢ F(3) () F'(x).
X 0
0 X

1 X
9. F(x):/ ty/t2+1dt.  10. F(x):/ sintdt.
1

X

X X
11. F(x):/ cos t dt. 12. F(x):/ (t +1)3dt.
1 2

13. Show that statements (a) and (b) are false.
(@) Ug(Py) =4 forthe partition P, ={0,1, 3,2
Us(P;) =5 forthe partition P, ={0,%,1,3,2}.
(b) L(P;) =5 forthe partiton P;={0,1,3,2
Li(P,) =4 forthe partition P, ={0,1 1,2 2}
14. (a) Which continuous functions f defined on [a, b], have
the property that £ (P) = U (P) for some partition P?
(b) Which continuous functions f defined on [a, b] have

the property that £ ¢ (P) = U+ (Q) for some partitions P
and 97

15. Which continuous functions f defined on [a, b] have the
property that all lower sums £ (P) are equal?

16. Show that if f is continuous on an interval I, then

/acf(t)dt—i—/cbf(t)dt:/abf(t)dt

for every choice of a, b, ¢ from I. HINT: Assume a < b and
consider the four cases: c=a,c=b,c <a,b <c. Then
consider what happensifa > bora = b.



Exercises 17 and 18. Find the critical points for F and, at each
critical point, determine whether F has a local maximum, a local

minimum, or neither.
*t—4
18. F(x):f dt.

17 F(x)—/xt_ldt
' o 1427 o 1412

X
19. For x > 0, set F(x) = / (2/t) dt.
1

(a) Find the critical points for F, if any, and determine the
intervals on which F increases and the intervals on which
F decreases.

(b) Determine the concavity of the graph of F and find the
points of inflection, if any.

(c) Sketch the graph of F.

X
20. Let F(x) = / t(t — 3)%dt.
0

(a) Find the critical points for F and determine the inter-
vals on which F increases and the intervals on which F
decreases.

(b) Determine the concavity of the graph of F and find the
points of inflection, if any.

(c) Sketch the graph of F.

21. Suppose that f isdifferentiable with f’(x) > 0forall x, and
suppose that f(1) = 0. Set

F(x) = /Oxf(t)dt.

Justify each statement.

(a) F is continuous.

(b) F is twice differentiable.

(c) x = Llisacritical point for F.

(d) F takes on a local minimum at x = 1.
(e) F1) <.

Make a rough sketch of the graph of F.

22. Suppose that g is differentiable with g’(x) < 0 for all
x <1,¢9'(1) =0, and g’(x) > 0 for all x > 1, and suppose
that g(1) = 0. Set

X
G(x) = / g(t) dt.
0
Justify each statement.
(a) G is continuous.
(b) G is twice differentiable.
(c) x = Llisacritical point for G.

(d) The graph of G is concave down for x < 1 and concave
up for x > 1.

(e) G is an increasing function.
Make a rough sketch of the graph of G.

23. (a) Sketch the graph of the function
2 —X,
(ORS Fi

X

f(t)dt, —1 < x < 3, and sketch

-1<x<0
0<x<3.

(b) Calculate F(x) = /

the graph of F.
(c) What can you conclude about f and F at x = 0?

24.
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(a) Sketch the graph of the function

X2 4 X,
f(x) = {2X+

X
(b) Calculate F(x) = / f(t)dt, 0 < x < 3,and sketch the
0
graph of F.
(c) What can you conclude about f and F at x = 1?

0<x<l1
l<x<3.

Exercises 25-28. Calculate F’(x).

25.

26.

217.

28.

29.

30.

3L

32.

33.

34.

35.

HINT: Set u=x3 and use the
chain rule.

F(x):/msx\/l—tzdt.
1
F(x):/l(t—sinzt)dt.

VX g2
F(x) = ——dt.
®) /0 1+1t4

X3
F(x)/ tcost dt.
0

X sin 2t .
Set F(x) = 2x +/ ——dt. Determine
0

1412
@ F(0). (b) F(0). () F"(0).
Set F(x) = 2x + /x %2:2 dt. Determine
0
@ F(0). (b) F'(x).

Assume that f is continuous and

x 2X
f = .
/o (t)dt Ty

(a) Determine f(0).
(b) Find the zeros of f, if any.
Assume that f is continuous and

X
/ f(t)dt =sinx — x cosx.
0

() Determine f(37). (b) Find f'(x).
(A mean-value theorem for integrals) Show that if f is con-

tinuous on [a, b], then there is a least one number cin (a, b)
for which

/b f(x)dx = f(c)(b — a).

We proved Theorem 5.3.5 only in the case that the integra-
tion which defines F is begun at the left endpoint a. Show
that the result still holds if the integration is begun at an
arbitrary point ¢ € (a, b).

Let f be continuous on [a, b]. For each x € [a, b] set

F(x)=/xf(t)dt, and G(x)=/dxf(t)dt

taking ¢ and d from [a, b].
(a) Show that F and G differ by a constant.
(b) Show that F(x) — G(x) = fcd f(t)dt.
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36. Let f be everywhere continuous and set

F(x) = /OX |:t flt f(u)du] dt. of F”.

(©) F"(x). (d) F"(1).
bExercises 37-40. Use a CAS to carry out the following steps:
(@) Solve the equation F’(x) = 0. Determine the intervals on

Find () F'(x).

(b) F'(1).

on which the graph of F is concave down. Produce a
figure that displays both the graph of F and the graph

37. F(x) = fx(t2 — 3t — 4)dt.
0

38. F(x) :/ (2 —3cost)dt, x €[0,2r]
0

which F increases and the intervals on which F decreases. o
Produce a figure that displays both the graph of F and the 39. F(x) = / sin2tdt, x € [0, 27]
X

graph of F'.

0
(b) Solve the equation F”(x) = 0. Determine the intervals on 40. F(x) = / 2 — t)%dt.
which the graph of F is concave up and the intervals X

M 5.4 THE FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS

The natural setting for differentiation is an open interval. For functions f defined on
an open interval, the antiderivatives of f are simply the functions with derivative f.
For continuous functions defined on a closed interval [a, b], the term “antiderivative”
takes into account the endpoints a and b.

DEFINITION 5.4.1  ANTIDERIVATIVE ON (a, b)

Let f be continuous on [a, b]. A function G is called an antiderivative for f
on [a, b] if

G is continuous on [a, b] and G'(x) = f(x) for all x € (a, b).

Theorem 5.3.5 tells us that if f is continuous on [a, b], then

Hm:/ﬂmm

is an antiderivative for f on [a, b]. This gives us a prescription for constructing anti-
derivatives. It tells us that we can construct an antiderivative for f by integrating f.

The theorem below, called the “fundamental theorem,” goes the other way. It gives
us a prescription, not for finding antiderivatives, but for evaluating integrals. It tells us
that we can evaluate the integral

b
/ f(t)dt
a

from any antiderivative of f by evaluating the antiderivative at b and at a.

THEOREM 5.4.2 THE FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS

Let f be continuous on [a, b]. If G is any antiderivative for f on [a, b], then

/%mm:G@—G@.
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PROOF From Theorem 5.3.5 we know that the function
X
F(x) = / f(t)dt
a

is an antiderivative for f on [a, b]. If G is also an antiderivative for f on [a, b], then
both F and G are continuous on [a, b] and satisfy F’(x) = G’(x) for all x in (a, b).
From Theorem 4.2.4 we know that there exists a constant C such that

F(x)=G(x)+C forall x in [a, b].
Since F(a) =0,
G@)+C=0 and thus C =-G(a).
It follows that
F(x) =G(x) —G(a)  forallxin[a,b].
In particular,

b
/f(t)dt:F(b):G(b)—G(a). 0

We now evaluate some integrals by applying the fundamental theorem. In each case
we use the simplest antiderivative we can think of.

4
Example 1 Evaluate/ x2dx.
1

SOLUTION  As an antiderivative for f(x) = x2, we can use the function
G(x) = x5 (Verify this.)
By the fundamental theorem,

/AXZdX =GM#)-G()=3@4°-3;0°=F —3=21
1

NOTE: Any other antiderivative of f(x) = x? has the form H(x) = %x3 + C for
some constant C. Had we chosen such an H instead of G, then we would have had

/4x2dx =H@®-HQ)=[3@*+C]-[31)*+C]=%+C—3-C=21;
1

the C’s would have canceled out. [

/2
Example 2 Evaluate/ sin x dx.
0

SOLUTION Here we use the antiderivative G(x) = — cos x:
/2
/ sinx dx = G(r/2) — G(0)
° — —cos(r/2) —[—cos(0)] =0 — (=1) = 1.
Notation Expressions of the form G(b) — G(a) are conveniently written
b

aco].

In this notation
4 4
/ X2 dx = [gxﬂl =l@p-tap =21
1

and

/2 7/2
f sinx dx = [ — CO0S x] = —c0s(/2) —[—cos(0)]=1. O
0 0

m 255
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To calculate

/:)f(x)dx

by the fundamental theorem, we need to find an antiderivative for f. We do this by
working back from the results of differentiation.
For rational r,

;—X(x”l) =(r +1)x".

d /x'*t ;
&(r+1)_x'

is an antiderivative for f (x) = x".

Thus, if r £ —1,

This tells us that
r+1

G(X)ZH—l

Some common trigonometric antiderivatives are listed in Table 5.4.1. Note that in
each case the function on the left is the derivative of the function on the right.

M Table 5.4.1
Function Antiderivative Function Antiderivative
sin x — COS X COS X sin x
sec? x tan x csc? x —cotx
sec X tan x Sec X CSC X cot X — CSC X

We continue with computations.

_2=2 2
Zd_XZ/ZX—st: V[t S -
L X3 L —2 ], 2x2 |, 8 2 8’
1 - 1
5/3 _ | 3+8/3 _ 3 8/3 3 8/3 _ 3
/Ot/dt__gt/]o_g(l)/ — 3R =2.

/3 r /3 —
/ sec’t dt = tant] —tan T —tan - =3 (-1)=+3+1.

- /4 3 4
/2 r /2
/ csc x cotx dx = —cscx] =—csc£—[—cscz]=—1—(—2)=l.
/6 L /6 2 6

1
Example 3 Evaluate / (2x — 6x* + 5)dx.
0

SOLUTION  As an antiderivative we use G(x) = x2 — £x° + 5x:

L

1 1
/ (2x — 6x* + 5)dx = [xz— §x5+5x]0= 1-845=2.
0
1
Example 4 Evaluate / (x — 1)(x +2) dx.
-1

SOLUTION First we carry out the indicated multiplication:
Xx—1DXx+2)=x>+x—2.
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As an antiderivative we use G(x) = ix3 + 1x? — 2x:

! 1

/ (x-Dx+2dx =3+ p 2] =-¥
1 —

We now give some slightly more complicated examples. The essential step in each

case is the determination of an antiderivative. Check each computation in detail.

2 X4 1 2 2
/ Xer dx =/ (X2 +x7?)dx = [%x3—x—1]1=1—67.
1 1

3

/:de — /ls(x — )2 dx = [%(x _ 1)3/2]j _ 16

1 1 1
fo(zl—ﬁ)zdx=f0 (16—8ﬁ+x)dx=[16x—%x3/2+§x2] =&,

/;z_a_i(_jitz)zzflz_(t—i_z)zmz[(t—i_z)1]i:_1_12'

The Linearity of the Integral

The preceding examples suggest some simple properties of the integral that are used
regularly in computations. Throughout, take f and g as continuous functions and « and
B as constants.

I. Constants may be factored through the integral sign:

b b
(5.4.3) / af(x)dx:a/ f(x) dx.
a a
For example,
4 4 3 [x3/2 4
/ $ /X dx = ;/ x2dx =S | | =2[@)¥?-)¥?]=2%B-1]=2
1 1 713/21
/4 /4
/ 2cosx dx = 2/ cos X dx = 2[sinx]’0”4 =2 [sin T sino]
0 0 4
= 2? =/2.
Il. The integral of a sum is the sum of the integrals:
b b b
(5.4.4) / [f(X)+g(x)]dx = / f(x)dx+/ g(x) dx.
a a a
For example,

/2 /2 /2
/ (sinx+cosx)dx=f sinxdx-i-/ cos x dx
0 0 0

/2 . /2
= [— cos x]o + [sin x]g

= (—cosm/2) — (—cos0) +sinz/2 —sin0
=14+1=2
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I11. The integral of a linear combination is the linear combination of the integrals:

b b b
(5.4.5) /[af(x)+,Bg(x)] dx=a/ f(x)dx+ﬁ/ g(x) dx.

This applies to the linear combination of more than two functions. For example,

1 1 1 1
/(2x—6x4—|—5)dx=2/ xdx—6/ x4dx+/ 5 dx
0 0 0 0

1

x27" x5 !
=2|%=| —6|= 5x| =1-845=2,
2], ol5 ][] et

This is the result obtained in Example 3.

Properties | and Il are particular instances of Property I11. To prove 11, let F be an
antiderivative for f and let G be an antiderivative for g. Then, since

[aF(x) + BG(X)] = aF'(x) + BG'(X) = af (X) + BY(x),
it follows that o F + BG is an antiderivative for af + Bg. Therefore,

b
/ [wf (X) + Bg(x)] dx = [aF(x) 4 ,BG(X)]:

= [«F(b) + BG(b)] — [«F(a) + AG(a)]
= a[F(b) — F(@)] + B[G(b) — G(a)]

=a/abf(x)dx+ﬂ/abg(x)dx.

/4
Example 5 Evaluate / secx[2tanx — 5sec x]dx.
0
SOLUTION

/4 /4
/ secx[2tanx—SSecx]dx=/ [2sec x tan x — 5sec? x] dx
0 0

/4 /4
=2/ secxtanxdx—S/ sec? x dx
0 0

/4 /4
= 2[secx] —S[tanx]
0 0

= 2[3ec% —seco] —S[tan% —tanO]

=2[vV2—-1]-5[1-0]=2v2-7. 1

EXERCISES 5.4

Exercises 1-34. Evaluate the integral.

1 1 4 4
1./ (2x — 3) dx. 2.f (3x + 2) dx. 5./ 2./X dx. e./ Ix dx.
0 0 1 0
0 2 5 2 3
3./ 5x4dx. 4./ (2x + x?) dx. 7./ 2/x — 1dx. 8./ (5 +5x) dx.
_ 1 1 1

1
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0
10. / (t3 +t2) dt.
1

1
12. / 7x8dx.
1

1
14. / (x¥* — 2x/2) dx.
0

0
9. / (X + 1)(x —2) dx.
-2
2 4
11. /; <3t + t—z) dt.
1
13./ (x¥2% — x¥2) dx.
0
1 a
15./ (x + 1)Ydx. 16./ (a®x — x®) dx.
0 0
a 1
17./ (Va — /x)%dx. 18./ (x — 2)%dx.
0 -1

26—t 8 1
19./ dt. 20./ x? — = ) dx.
1 13 1 x?

2 1
21.[ 2x(x2 + 1)dx. 22./ 3x2(x® 4 1) dx.
1 0

/2
23. / €os X dx.
0

24, / 3sinx dx.
0

/4 /3
25. f 2sec? xdx. 26. / sec X tan x dx.
0 /6
/4 /3
27. / cscucotudu. 28. / —csc? udu.
/6 /4
2 T
20. / sin x dx. 30. / 1 cosx dx.
0 0

/3 2
31. / (—x—25ec2x> dx.
0 T

/2
32./ cscx(cotx — 3cscx) dx.
/4

3 d g
33./0 [R(\/4+x2)]dx. 34./0 [&(smsx)]dx.

Exercises 35-38. Calculate the derivative with respect to x
(a) without integrating; that is, using the results of Section 5.3;
(b) by integrating and then differentiating the result.

X X
35./ (t +2)2dt. 36./ (cost —sint) dt.
1 0

2x+1 2
37. / fsecutanudu. 38 / t(t — 1) dt.
1 x2

39. Define a function F on [1, 8] such that F’'(x) = 1/x and
(@ F(@)=0; ()F@)=-3

40. Defineafunction F on [0, 4] such that F'(x) = +/1 + x2and
@ F@B)=0; (b)F@) =1

Exercises 41-44. Verify that the function is nonnegative on the

given interval, and then calculate the area below the graph on

that interval.

41. f(x) =4x —x?; [0, 4].

42. f(x) =x/x+1; [1,9]

43. f(x) =2cosx; [-m/2,7/4].
44, f(x) =secxtanx; [0, /3]

Exercises 45-48. Evaluate.

5 5
45. (a) /z(x—3)dx. (b)/2 [x — 3| dx.

2
(b)/ |2x + 3] dx.
-4

2
(b) f Ix% — 1| dx.
-2

b
cos X dx. (b) | cos x| dx.
—1/2 —1/2
Exercises 49-52. Determine whether the calculation is valid. If
it is not valid, explain why it is not valid.

2 21
49./ X COSX dX = [x sinx —kcosx]o
0

46. (a) /_ j(2x +3)dx.
47. (a) /Zz(x2 — 1) dx.

48. (a)

=1-1=0.

0

2 —17? 1 1
1. | Zdx=|-—| =—=-(=Z)=o0.
> /,szdX [2x2]_2 8 <8> °

2 1 2
52. / [X|dx = [—x|x|] =2—-(-2)=0.
) 2 2

53. An object starts at the origin and moves along the x-axis
with velocity

2 21
50./ seczxdx:[tanx] =0-0=0.
0

v(t) =10t —t?, 0 <t <10.
(a) What is the position of the object at any time t,
0<t<10?

(b) When is the object’s velocity a maximum, and what is
its position at that time?

54. The velocity of a bob suspended on a spring is given:
v(t) = 3sint +4cost, t>0.
At time t = 0, the bob is one unit below the equilibrium
position. (See the figure.)

(a) Determine the position of the bob at each time t > 0.
(b) What is the bob’s maximum displacement from the equi-
librium position?

0+ equilibrium

position

1

I

\

\

\

+

\

\

\

\

\

4

| \
Exercises 55-58. Evaluate the integral.

4
. _J2x+1, 0<x<1
55./O f(x)dx; f(x)_{ A—x 1=x<4

4 2
. ] 24x5, -2<
56. /_Zf(x)dx, f(x)_{%x+2, 0<x <4
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T ] | 1+2cosx,
o7 /,n/z Flagdx: 1) = {(B/n)x 11

3n/2 2sinx, 0<x<m/2
58-/O f(x)dx; f(x):{2+cosx,7r/2<><§3”/2~

—m/2 <X <m/3
/3 <X <m.

X+2, —-2<x<0
59. Let f(x) = 2, 0<x<l1
4—-2x, 1l<x<2,

and set g(x) = /.X f(t)dt.
-2

(a) Carry out the integration.

(b) Sketch the graphs of f and g.

(c) Where is f continuous? Where is f differentiable?
Where is g differentiable?

2—-x2, —1<x<1
60. Let f(x) = 1, 1<x<3
2x —5, 3<x<5b

and let g(x) = /x f(t)dt.
-1

y =f(x)

a b x
Figure 5.5.1
y (5.5.1)
y =Vx
Example 1
tox =1.
1 X
Figure 5.5.2
y
y=4-x2
below by the x-axis.
The area of the region is 3:
-2 2 X

Figure 5.5.3

(a) Carry out the integration.

(b) Sketch the graphs of f and g.

(c) Where is f continuous? Where is f differentiable?
Where is g differentiable?

61. (Important) If f isa function and its derivative f’ is contin-
uous on [a, b], then

/bf’(t)dt: f(b) — f(a).

a
Explain the reasoning here.

62. Let f be a function such that f’ is continuous on [a, b].
Show that

b
1
/ f(t)f'(t)dt = E[fz(b) — f%(a)].
a
63. Given that f has a continuous derivative, compare

d [~ X d
d—x[/a f(t)dt] to /aa[f(t)]dt.

64. Given that f is a continuous function, set F(x) =
fox xf(t)dt. Find F’(x). HINT: The answer is not x f (x).

M 5.5 SOME AREA PROBLEMS

The calculations of area that we carry out in this section are all based on what you
already know: if f is continuous and nonnegative on [a, b], then the area under the

Q graph of f from x = a to x = b is given by the integral of f from x =a to x = b;
namely, with € as in Figure 5.5.1

b
area of Q =/ f(x) dx.
a

Find the area below the graph of the square-root function from x =0

SOLUTION The graph is pictured in Figure 5.5.2. The area below the graph is %:

1 1 1
/0 ﬁdx:/o x¥2dx = [%xw] =% 0

0

Example 2 Find the area of the region bounded above by the curve y = 4 — x? and

SOLUTION  The curve intersects the x-axis at x = —2 and x = 2. See Figure 5.5.3.

2 2
/_2(4 — x%)dx = [4x — %xe‘]_z =2
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NOTE: The region is symmetric with respect to the y-axis. Therefore, the area of the
region can be stated as 2 f02(4 — x?)dx:

2 2
_ %2 — _ 13 = _8) _ofl6) _ 32
2/0 (4—x9dx = 2[4x — 1x?] =2(8 &) =2(¥) = 2.
We’ll have more to say about the symmetry considerations in Section 5.8 [

Now we calculate the areas of somewhat more complicated regions. To avoid
excessive repetitions, let’s agree at the outset that throughout this section the symbols
f, g, h represent continuous functions.

y =f(x) y =f(x)

|
|
|
|
|
|
b X a b X a b X

area of Q = area of Q; — area of Q,

Figure 5.5.4
Look at the region €2 shown in Figure 5.5.4. The upper boundary of €2 is the graph
of a nonnegative function f and the lower boundary is the graph of a nonnegative

function g. We can obtain the area of Q2 by calculating the area of €2; and subtracting
off the area of ©2,. Since

b b
area of Q; = / f(x)dx and areaof Q; = / g(x) dx,
a a

we have

b b
areaon:/ f(x)dx—/ g(x) dx.
a a

We can combine the two integrals and write

b
(5.5.2) area of Q = / [T(x) —g(x)]dx.

a y

y=x+2

Example 3 Find the area of the region bounded above by the line y = x + 2 and
bounded below by the parabola y = x2.
SOLUTION  The region is shown in Figure 5.5.5. The limits of integration were found
by solving the two equations simultaneously: y=x2

X 42 = x? iff x2—x—-2=0
iff x+D(xx—-—2)=0 -1 2 X
iff X=-1 or X=2. Figure 5.5.5
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y

y=f(x
[
i a
1
a \\_’_\///

Figure 5.5.6

y

Q

y=9g(x) +C

ok

o

Figure 5.5.7

ol ————

The area of the region is given by the integral

/_2 [(x +2) — x*]dx = [%XZ +2x — %x3]2

. .
8 1 1 9
=<2+4—§>—(z—2+§>=z 0

We derived Formula5.5.2 under the assumption that f and g were both nonnegative,
but that assumption is unnecessary. The formula holds for any region €2 that has

an upper boundary of the form y = f(x), X € [a, b]
and

a lower boundary of the form y = g(x), x € [a, b].

To see this, take € as in Figure 5.5.6. Obviously, 2 is congruent to the region
marked ' in Figure 5.5.7; Q' is © raised C units. Since Q' lies entirely above the
x-axis, the area of Q' is given by the integral

/ 1100+ C1 - [900 + Cl) dx = / 100 — gel o
Since area of = area of &/,
areaof 2 = [ 100 — 900
as asserted.

Example 4 Find the area of the region shown in Figure 5.5.8.

y

y =sin x

BNE———

y = Cos X

Figure 5.5.8

SOLUTION From x = 7 /4 to x = 5 /4 the upper boundary is the curve y = sinx
and the lower boundary is the curve y = cos x. Therefore
5 /4
area of Q =/ [sinx — cos x] dx
/4
5 /4

—2J2. 1

= [— COS X — sinx]
/4

Example 5 Find the area between
y = 4x and y =X

fromx = —2tox = 2.
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SOLUTION A rough sketch of the region appears in Figure 5.5.9. The drawing is not !
to scale. What matters to us is that y = x* is the upper boundary fromx = —2tox =0,
but it is the lower boundary from x = 0 to x = 2. Therefore

|
|
¢ 3 ? 3 |
area:/z[x —4x]dx+/0[4x—x]dx y‘:X3
- . 1
0 2 2| 2 X
— |14 _oy2 2 _ 1.4 \
_[4x 2X ]_2+[2x X ]O | L
=[0—(—4)]+[4-0]=8. O |
Example 6 Use integrals to represent the area of the region Q = Q; U ©, shaded .
in Figure 5.5.10. Figure 5.5.9
SOLUTION From x = atox = b, the curve y = f(x) is above the x-axis. Therefore y
b y =f(x)
area of Q; = / f(x) dx. ‘
a |
|
From x = b tox = c, the curve y = f(x) is below the x-axis. The upper boundary for | Q,
Q, is the curve y = 0 (the x-axis) and the lower boundary is the curve y = f(x). Thus \ ‘
a b c X
c c Q, |
area of Q, :/ [0— f(X)]dx = —/ f(x) dx.
b b
The area of Q is the sum of these two areas:
Figure 5.5.10

b c
areaon:/ f(x)dx—/ f(x)dx. &
a b

Figure 5.5.11 shows the graph of a function that crosses the x-axis repeatedly. The
area between the graph of f and the x-axis from x = a to x = e is the sum

area of Q1 + area of Q, + area of Q3 + area of Q4.

Figure 5.5.11

By the reasoning applied in Example 6, this area is

/abf(x)dx‘/bc f(x)dx+/cd 1‘(><)dX—/de f () dx.

What is the geometric significance of

e
/ f(x) dx?
a
Answer: Since

/ae f(x)dx:/abf(x)der/bC f(x)dij/Cd f(x)dx+/de f (x) dx,
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y

we have

e
/ f(x) dx = area of 2; — area of Q, + area of Q3 — area of Q4
a
= area of (1 U Q3) — area of (2, U Q4).

For a function that changes sign, the region between the graph and the x-axis has
two parts: the part above the x-axis and the part below the x-axis. The integral gives the
area of the part above the x-axis minus the area of the part below the x-axis.

3
Example 7 Evaluate / (x2 — 2x) dx and interpret the result in terms of areas.
1

Then find the area between the graph of f(x) = x? — 2x and the x-axis from x = —1

tox = 3.

Q SOLUTION  The graph of f(x) = x? — 2x is shown in Figure 5.5.12. Routine calcu-
lation gives

Figure 5.5.12 3 1 3 4
/ (x? —2x)dx = [—x3—x2] =_.
1 3 ., 3

This integral represents the area of (21 U ©23) minus the area of ;.
The area between the graph of f and the x-axis from x = —1 to x = 3 is the sum

A = area of Q1 + area of Q, + area of Q3

_[° 2 _ [_ ? 2 _ ] ’ 2 _
_./_1()( 2x) dx + /O(X 2x) dx +/2 (x* —2x)dx

0 2 3
— 2 _ —x? 2 _
_/l(x 2x)dx+/0 (2x —x )der‘/2 (x° —2x)dx

0 2 3
=[}x3—xz] +|:X2—1X3i| +[}X3—X2} =ﬂ+i+ﬁ=4. a
3 B Sl E , 3 3

We come now to Figure 5.5.13. We leave it to you to convince yourself that the
area A of the shaded part is as follows:

w

b c
A=/a[f(x)_g(x)]dx+/b [900) — f(x)] dx

d e
+/C [f(x)—g(x)]dx+A [h(x) —g(x)]dx. =

y=g(x)

y = h(x)

Figure 5.5.13
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EXERCISES 5.5
Exercises 1-10. Find the area between the graph of f and the
X-axis.
1L fx)=2+x% xel0,1].
2. f(x)=(x+2)72% xel0,2].
3.f(x)=+x+1, xe[3,8]
4, f(x) =x?(3+x), xelo,8].
5. f(x)=(@2x2+1)%, xel0,1].
6. f(x)=1(x+1)"Y2 xe[o,8].
7.f(x)=x2—4, xell2].
8. f(x) =cosx, X e [3m i7].
9. f(x)=sinx, xe|[in, 3]
10. f(x)=x3+1, xe[-2 -1].
Exercises 11-26. Sketch the region bounded by the curves and
find its area.
1.y =%, y=x2
12. y = 6x — X2, y =2x.
13.y=5—-x% y=3-—x.
14.y =8, y=x%+2x.
15,y =8—x2, y=x2
16.y = /X, y=1ix.
17.x3 —10y2 =0, x—-y=0.
18.y? —27x =0, x+y=0.
19.x —y?+3=0, x—2y=0.
20. y2 =2x,x —y = 4.
2L.y=x, y=2x, y=4
2.y =x% y=—-JX, x=A4
23.y =cosx, Yy =4x?—nx2
24,y =sinx, y=mx—x2
25.y =X, y=sinx, X=umx/2.
26.y=x+1 y=cosx, Xx=m.
27. The graph of f(x) = x?> — x — 6 is shown in the accompa-

nying figure.

N R —
x

28.

29.

30.

[>31.

[>32.

33.

(a) Evaluate ff3 f (x) dx and interpret the result in terms of
areas.

(b) Find the area between the graph of f and the x-axis from
X =-3tox =4.

(c) Find the area between the graph of f and the x-axis from
X=-2tox =3.

The graph of f(x) = 2sinx, x € [—n/2, 37 /4] is shown in

the accompanying figure.

(a) Evaluate ff;jg
areas.

(b) Find the area between the graph of f and the x-axis from
X =—m/21t0X = 3r /4.

(c) Find the area between the graph of f and the x-axis from
X=-—-m/2tox =0.

Set f(x) = x® —x.

(a) Evaluate ffz f(x) dx.
(b) Sketch the graph of f and find the area between the graph
and the x-axis from x = —2to x = 2.

Set f(X) = cosx + sinx.

(a) Evaluate /7 f(x)dx.

(b) Sketchthe graph of f and find the area between the graph
and the x-axis fromx = —7 to x = 7.

Set f(x) = x3 —4x + 2.

(2) Evaluate [°, f(x)dx.

(b) Use a graphing utility to graph f and estimate the
area between the graph and the x-axis from x = —2 to
x = 3. Use two decimal place accuracy in your approxi-
mations.

(c) Are your answers to parts (a) and (b) different? If so,
explain why.

Set f(x) = 3x2 — 2COSX.

(a) Evaluate ffﬁz f(x) dx.

(b) Use a graphing utility to graph f and estimate the area
between the graph and the x-axis from x = —n/2 to
x = /2. Use two decimal place accuracy in your ap-
proximations.

(c) Are your answers to parts (a) and (b) different? If so,
explain why.

2
Set f(x) = { ; b

f (x) dx and interpret the result in tems of

0<x<l1
1l<x<3.
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Sketch the graph of f and find the area between the graph
and the x-axis.
3%, 0=x<1
34. Set f(x) = {4_)(2’ 1ox<2.-
Sketch the graph of f and find the area between the graph
and the x-axis.

35. Sketch the region bounded by the x-axis and the curves
y =sinx and y =cosx with x € [0, 7/2], and find its
area.

36. Sketch the region boundedby y = 1andy = 1 + cos x with
x € [0, ], and find its area.

937. Use a graphing utility to sketch the region bounded by the

curves y = x3 4 2x and y = 3x + 1 with x < [0, 2], and
estimate its area. Use two decimal place accuracy in your
approximations.

538. Use a graphing utility to sketch the region bounded by the

curvesy = x* —2x?andy = 4 — x? with x € [-2, 2], and
estimate its area. Use two decimal place accuracy in your
approximations.

39. A sketch of the curves y = x*—x2—12 and y="h is
shown in the figure.

(a) Use a graphing utility to get an accurate drawing of
y =x*—x2—12.

(b) Find the area of region II.

(c) Estimate h so that region | and region Il have equal
areas.

y
\ / y= h
region |
) 2 X
region Il
-12

40. A sketch of the curves y = x3 — x* and y = h is shown in
the figure. Estimate h so that region | and region Il have
equal areas.

m
y=h
region |1 \

1 X

B PROJECT 5.5 Integrability; Integrating Discontinuous Functions

Integrability

We begin with a function f defined on a closed interval [a, b].
Whether or not f is continuous on [a, b], we can form arbitrary
Riemann sums

S*(P) = f(X))AXy + f(X])AX + - + F(X)AXp.

If these Riemann sums tend to a finite limit | in the sense already
explained (5.2.7), then we say that f is (Riemann) integrable on

[a, b] and set
b
/ f(x)dx = 1.
a

A complete explanation of which functions are integrable
and which functions are not integrable is beyond the scope
of this text. Roughly speaking, a function is integrable iff it
is not “too” discontinuous. Thus, for example, the Dirichlet
function

F(x) = 1, xrational
— 10, xirrational

(which, as you know, is everywhere discontinuous) is not in-
tegrable on [a, b]: choosing the x; to be rational, we have

f(x;") = 1 forall i, and therefore
S*(P) = ()Axs + (D)AXz +--- + (1)Axy = b —a;

choosing the x;* to be irrational, we have f(x;*) = 0 forall i, and
therefore

S*(P) = (0)AXy + (0)AXp + - - - + (0)AXn = O.

Clearly the S*(P) do nottend to a limitas || P || = max Ax; tends
to 0. On the other hand, it can be shown that if f is bounded and
has at most an enumerable set of discontinuities

X1y X2y ooy Xny v v s

then f is integrable on [a, b]. In particular, bounded functions
with only a finite number of discontinuities are integrable. These
are the only functions we will be working with.

Remark  Were this a treatise in advanced mathematics, we
would have to elaborate on the notion of integrability. But this
is not a treatise in advanced mathematics; it is a text in calculus,
and for calculus the integration of discontinuous functions is not
very important. What is important to us in calculus is the link
between integration and differentiation described in Theorem
5.3.5and Theorem 5.4.2. This link is broken at the points where
the integrand is discontinuous. [



Integrating Discontinuous Functions

Figure A shows three rectangles: the closed rectangle Ry, the
rectangle R, obtained from R; by removing the rightmost side,
and the rectangle Rz obtained from R; by removing both sides.

y y
1
|
h R1 R, |
|
|
a b X a b X
y
1
| |
\ R3 |
| |
| |
a b X
Figure A

The area of Ry is (b —a)h. What is the area of R,? We
obtain R, by removing a line segment, which is a set of area 0.
It follows that the area of R, is also (b — a)h. Thus Rz also has
area (b — a)h.

It is only a small step from these considerations to the fol-
lowing observation: If a region 2 has area A, then every region
which differs from by only a finite number of line segments
also has area A.

In what follows we will begin by integrating over a closed
interval [a, b] functions g that differ from a continuous function
f at only a finite number of points. By restricting ourselves to
nonnegative functions, we can interpret the integral as the area
under the graph and conclude that

/abg(x)dx = /abf(x)dx.

Figure B shows the graph of

I, x=0
gx)=4{x, 0<x<1
3 x=1
y
1
e °
|

Figure B

5.5 SOME AREA PROBLEMS m 267

On [0, 1] g differs from the identity function f (x) = x only

atx = 0 and x = 1. Therefore

! ! 1 21 1
/0 g(x)dx:/0 xdx=[§x ]ozi'

Figure C shows the graph of

0, x=-1

X2, —1<x<0
gx)=4 1, x=0

X2, 0<x<1

0, x=1.

y

R 3

X
Figure C

On [—1, 1] g differs from the squaring function f(x) = x2
onlyatx = —1,x = 0, x = 1. Therefore

! ' 2 1 31 2
xdx=/ X“dx =|3x =z
/_19” 1 [3¢] =2

We come now to a slightly different situation. Figure D
shows the graph of

X, X €][0,1)
x—1, xe€[l2)
gx) =43 x—-2, xel2,3)
X—3, Xe€[3,4)
0, x=4.

This functions has jump discontinuities at x =1, Xx =2, x =
3, x = 4. We can integrate g on [0, 4] by integrating from inte-
ger to integer and adding up the results:

/OAQ(X)dx:/ledx+/12(x—l)dx+/23(x_2)dx
JFf;(X—S)dx.

Since the area under each line segment is % the integral of g
addsupto4(3) =2.
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y

1 2 3 4 X

Figure D

Problem 1. (The greatestinteger functions) The expression [x)
is used to denote the greatest integer less than x.

a. Sketch the graph of the function g(x) = [x) and integrate g
fromx =0tox =5.

The expression [x] is used to denote the greatest integer less than

or equal to x.

b. Sketch the graph of g(x) = [x] and integrate g from x =0
tox =5.

c. Sketch the graph of h(x) = [x] — [x) and integrate h from
x=0tox =5.

Problem 2. Graph the function g and evaluate the integral of
g over the interval on which it is defined.

a (X) = 2—x, 0=<x<1
: IX)=124x, 1<x<2

X2, 0<x<?2

b. g(x)_{x7 2 <x <5.
cosx, 0<X<im
c. g(x)={sinx, im<x<mw
5 T <X <27,

Problem 3. For each of the functions g in Problem 2, form the
integral

G(x) = /0 g(t)dt.

a. Show that for the first function, G is not differentiable at
X =1

b. Show that for the second function, G is not differentiable at
X =2.

c. Show that for the third function, G is not differentiable at
X = %n and not differentiable at x = .

HINT: In each case show that at the selected value of x

G -G, . GX+h) -G
N

M 5.6 INDEFINITE INTEGRALS

We begin with a continuous function f. If F is an antiderivative for f on [a, b], then

M

If C is a constant, then
b
a

[F&)+C| =[F®) +Cl-[F@+Cl=F(b) - Fa) = [F(x)]

/bf(x)dx= [F(x)]:.

b
o

Thus we can replace (1) by writing

/bf(x)dx=[F(x)+C]

b
o

If we have no particular interest in the interval [a, b] but wish instead to emphasize that
F is an antiderivative for f, which on open intervals simply means that F' = f, then
we omit the a and the b and simply write

/ f(x)dx = F(x) +C.

Antiderivatives expressed in this manner are called indefinite integrals. The constant
C is called the constant of integration; it is an arbitrary constant and we can assign
to it any value we choose. Each value of C gives a particular antiderivative, and each
antiderivative is obtained from a particular value of C.

For rational r different from —1 we have

Xr+1
/xrdx = +C.
r+1
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In particular,
/dex =3x+C and /ﬁdx =2x¥2+C.

Table 5.6.1 gives the antiderivatives of Table 5.4.1 expressed as indefinite integrals.

N Table 5.6.1
/sinxdx:—cosx+C /cosxdx:sinx+c
/seczxdx:tanx—i—c /csczxdx:—cotx—i—c
/secxtanxdx:secx+c /cscxcotxdx:—cscx+c

The calculation of indefinite integrals is a linear process. Unless « and 8 are both
zero,

G.6.1) /[af(x)+ﬂg(x)]dx:a/ f(x)dx+ﬁfg(x)dxi

The equation holds in the following sense: if F and G are antiderivatives for f and g,
then

/[af(x) + Bg(x)]dx = aF(x) + BG(x) + C
and
a/ FQdx + B / 9(x) dx = o[F(x) + C1] + BIG(x) + C2]

— aF(X) + BG(X) + aCy + BC,.

With « and B8 not both zero, «C; + BC; is an arbitrary constant that we can denote by
C thereby confirming (5.6.1). O

Example 1 Calculate [[5x%? — 2 csc? x] dx.
SOLUTION

/[5x3/2 —2csc?x]dx = 5/ x¥2dx — Z/CSCZX dx

=5(%)x>% + C; — 2(—cotx) + C,
= 2x%2 + 2cotx + C.
writing C for C; + C, 1

Example 2 Find f giventhat f'(x) = x3+2and f(0) = 1.

SOLUTION Since f’is the derivative of f, f is an antiderivative for f’. Thus

f(x):/(x3+2)dx=%x4+2x+c

 Explain how (5.6.1) fails if « and 8 are both zero.

m 269
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for some value of the constant C. To evaluate C, we use the fact that f(0) = 1. Since
f(0)=1 and f(0)=1(0)*+2(0)+C =C,
we see that C = 1. Therefore
f(x)=3x*+2x+1.

Example 3 Find f given that
f7(x) = 6x — 2, f'(1) = -5, and f(1) =3.
SOLUTION First we get f’ by integrating f”:

f/(x) :/(GX —2)dx =3x2 - 2x +C.

Since
f'(1)=-5 and f'(1)=3(1)>-2(1)+C=1+C,
we have
—-5=1+4C and thus C =-6.
Therefore

f/(x) = 3x% — 2x — 6.
Now we get f by integrating f':

f(X)=/(3X2—2x—6)dx=x3—x2—6x+K.

(We are writing the constant of integration as K because we used C before and it would
be confusing to assign to C two different values in the same problem.) Since

f(l)=3 and f(l):(1)3—(1)2—6(1)+K:—6+K,
we have
3=-6+K and thus K =09.

Therefore
f(x)=x3—x2—6x+4+9. 1

Application to Motion

Example 4  An object moves along a coordinate line with velocity
v(t) =2 — 3t +t? units per second.

Its initial position (position at time t = 0) is 2 units to the right of the origin. Find the
position of the object 4 seconds later.

SOLUTION  Let x(t) be the position (coordinate) of the object at time t. We are given
that x(0) = 2. Since x'(t) = v(t),

x(t):/v(t)dt:/(2—3t+t2)dt=2t—§t2+%t3+C.
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Since x(0) = 2 and x(0) = 2(0) — 2(0)* + £(0)* + C = C, we have C = 2 and
x(t) =2t — 32+ i34 2.

The position of the object at time t = 4 is the value of this function att = 4:
X(4) =2(4) — 342+ (4 +2=T73.

At the end of 4 seconds the object is 7% units to the right of the origin.
The motion of the object is represented schematically in Figure 5.6.1. [

LN

o
—
N
w
IN
o
o
~
[00]
<

Figure 5.6.1

Recall that the speed v is the absolute value of velocity (Section 4.9):
speed at time t = v(t) = |v(t)],

and the integral of the speed function gives the distance traveled (Section 5.1):

b
(5.6.2) / |v(t)| dt = distance traveled from timet = a totimet = b.
a

Example 5 An object moves along the x-axis with acceleration a(t) = 2t — 2 units
per second per second. Its initial position (position at time t = 0) is 5 units to the right
of the origin. One second later the object is moving left at the rate of 4 units per second.

(a) Find the position of the object at time t = 4 seconds.
(b) How far does the object travel during these 4 seconds?

SOLUTION (a) Let x(t) and v(t) denote the position and velocity of the object at time
t. We are given that x(0) = 5 and v(1) = —4. Since v/(t) = a(t),

u(t) = /a(t)dt: /(Zt —2)dt=t>—-2t+C.
Since
v(1)=—4 and v(l)=(1)?-2(1)+C=-1+C,
we have C = —3 and therefore
v(t) =t? -2t — 3.
Since x'(t) = v(t),

x(t)=/v(t)dt=/(tz—zt—3)dt=§t3—t2—3t+K.

Since
x(0)=5 and  x(0) = 1(0)*—(0)>—3(0) + K =K,

m 271



272 m CHAPTER 5 INTEGRATION

we have K = 5. Therefore
X(t) = 3t° —t2 -3t +5.

As you can check, x(4) = —g. At time t = 4 the object is g units to the left of the
origin.
(b) The distance traveled from timet = O tot = 4 is given by the integral

4 4
s=/ |v(t)|dt:/ It — 2t — 3| dt.
0 0

To evaluate this integral, we first remove the absolute value sign. As you can verify,

—(t? — 2t — 3), 0<t<3

2 —
It _Zt_?"—{ ?-2t—3 3<t<4

Thus

3 4
s=/ (3+2t—t2)dt+/(t2—2t—3)dt
0 3
1.1° T1 4 34
=[3t+t>2—=t3 3ot -3t ==,
e -ge] 43 =3

During the 4 seconds the object travels a distance of 3 units.
The motion of the object is represented schematically in Figure 5.6.2.

|

wio [—
o
o— e
b3

Figure 5.6.2

QUESTION  The object in Example 5leaves x = 5attimet = Oandarrivesatx = —g

attimet = 4. The separation between x = 5andx = —2isonly |5 — (—32)| = . How
is it possible that the object travels a distance of % units?

ANSWER  The object does not maintain a fixed direction. It changes direction at time
t = 3. You can see this by noting that the velocity function

vt)=t2 -2t —3=(t-3)(t +1)
changes signs att = 3.

Example 6 Find the equation of motion for an object that moves along a straight
line with constant acceleration a from an initial position x, with initial velocity vo.

SOLUTION  Call the line of the motion the x-axis. Here a(t) = a at all times t. To find
the velocity we integrate the acceleration:

v(t) :/adt: at+C.
The constant C is the initial velocity vy:
vw=v0)=a-0+C=C.
We see therefore that

v(t) = at + vp.
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To find the position function, we integrate the velocity:
X(t) = /v(t)dt = /(at+ vo) dt = 1at? + vot + K.

The constant K is the initial position xg:
X0=X(0)=%a‘02+v0'0+K =K.
The equation of motion can be written

(5.6.3) X(t) = 3at> + vot + xo." | 0

fIn the case of a free-falling body, a = —g and we have Galileo’s equation for free fall. See (4.9.5). There
we denoted the initial position by y, (instead of by xg) because there the motion was viewed as taking place
along the y-axis.

EXERCISES 5.6
Exercises 1-18. Calculate. 30. f7(x) =sinx, f'(0)=-2, f(0)=1.
3. f'x)=2x—-3, f(2Q=-1, f(@0)=3.
1./%. 2 /(x—l)zdx. (x) =2 (2) ©
x4 2. f'x)=5—-4x, f()=1, f(@O)=-2.
3. /(ax + b) dx. 4. /(aX2 + b) dx. 33. Compare dix [/ f(x)dx] to / dd—x[f(x)] dx.
3
5. / 1dX . 6. / (X XJsr l) dx. 34. Calculate
VX f [£0)9"(x) = g(x) ()] dx.
7 [ (=22 g [ (vx— 1)
: X2 X. : B Ty : 35. An object moves along a coordinate line with velocity
v(t) = 6t? — 6 units per second. Its initial position (posi-
9. /(t —a)(t — b)dt. 10. /(t2 —a)(t? —b)dt. tionattime t = 0) is 2 units to the left of the origin. (a) Find
, ) the position of the object 3 seconds later. (b) Find the total
11 / (t* —a)(t” —b) dt 12 /(2—ﬁ)(2+ﬁ)dx. distance traveled by the object during those 3 seconds.
Vi 36. An object moves along a coordinate line with acceleration

, . a(t) = (t + 2)° units per second per second. (a) Find the ve-
13. /g(x)g (x) dx. 14. /S'” X cos x dx. locity function given that the initial velocity is 3 units per
second. (b) Find the position function given that the initial

15. /tan X sec? X dXx. ) g (X)z . velocity is 3 units per second and the initial position is the
[9(x)] origin.
) g
17 / 4 dx 3x dx 37. An object moves along a coordinate line with acceleration
) o@x 4127 AR a(t) = (t 4+ 1)~Y/2 units per second per second. (a) Find the

velocity function given that the initial velocity is 1 unit per

Exercises 19-32. Find f from the information given. second. (b) Find the position function given that the initial

19. f'(x)=2x -1, f(@)=4. velocity is 1 unit per second and the initial position is the

20. f'(x)=3—4x, f(1)=6. origin.

21. f'(x) =ax+b, f(2)=0. 38. An object moves along a coordinate line with velocity

22. f'(x) =ax?+bx +c, f(0)=0. v(t) = t(1 — t) units per second. Its initial position is 2 units
, . to the left of the origin. (a) Find the position of the object

23. '(x) =sinx,  f(0) =2. 10 seconds later. (b) Find the total distance traveled by the

24. f'(x) = cosx, f(r)=3. object during those 10 seconds.

25 f'(x)=6x—-2, f'(0)=1 f(0)=2 39. A car traveling at 60 mph decelerates at 20 feet per second

26. f/(x) = —12x2, f(0)=1, f(0)=2. per second. (a) How long does it take for the car to come to

27 f' () =x2 —x, f'(1)=0, f(1)=2 a complete stop? (b) What distance is required to bring the

car to a complete stop?

28. f"(x)=1-— f'2)=1, f(@2)=0. . L .
N(X) X , ) ’ 2) 40. An object moves along the x-axis with constant acceleration.
29. f(x) = cosx, f(0)=1 f(0)=2 Express the position x(t) in terms of the initial position xg,
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the initial velocity v, the velocity v(t), and the elapsed
time t.

41. An object moves along the x-axis with constant acceleration
a. Verify that

[v(t)]? = vZ + 2a[x(t) — Xo].

42. A bobsled moving at 60 mph decelerates at a constant rate
to 40 mph over a distance of 264 feet and continues to decel-
erate at that same rate until it comes to a full stop. (a) What
is the acceleration of the sled in feet per second per second?
(b) How long does it take to reduce the speed to 40 mph? (c)
How long does it take to bring the sled to a complete stop
from 60 mph? (d) Over what distance does the sled come to
a complete stop from 60 mph?

43. Inthe AB-run, minicars start from a standstill at point A, race
along a straight track, and come to a full stop at point B one-
half mile away. Given that the cars can accelerate uniformly
to a maximum speed of 60 mph in 20 seconds and can brake
at a maximum rate of 22 feet per second per second, what is
the best possible time for the completion of the AB-run?

Exercises 44-46. Find the general law of motion of an object
that moves in a straight line with acceleration a(t). Write x, for
the initial position and v, for the initial velocity.

44. a(t) =sint. 45. a(t) = 2A + 6Bt.
46. a(t) = cost.

47. Asa particle moves about the plane, its x-coordinate changes
at the rate of t> — 5 units per second and its y-coordinate
changes at the rate of 3t units per second. If the particle is
at the point (4, 2) when t = 2 seconds, where is the particle
4 seconds later?

48. Asa particle moves about the plane, its x-coordinate changes
at the rate of t — 2 units per second and its y-coordinate
changes at the rate of /t units per second. If the particle is
at the point (3, 1) when t = 4 seconds, where is the particle
5 second later?

49. A particle moves along the x-axis with velocity v(t) =

At + B. Determine A and B given that the initial velocity
of the particle is 2 units per second and the position of the

particle after 2 seconds of motion is 1 unit to the left of the
initial position.

50. A particle moves along the x-axis with velocity v(t) =
At? + 1. Determine A given that x(1) = x(0). Compute the
total distance traveled by the particle during the first second.

51. An object moves along a coordinate line with velocity
v(t) = sint units per second. The object passes through the
origin at time t = /6 seconds. When is the next time: (a)
that the object passes through the origin? (b) that the object
passes through the origin moving from left to right?

52. Exercise 51 with v(t) = cost.

53. An automobile with varying velocity v(t) moves in a fixed
direction for 5 minutes and covers a distance of 4 miles.
What theorem would you invoke to argue that for at least
one instant the speedometer must have read 48 miles per
hour?

54. A speeding motorcyclist sees his way blocked by a haywagon
some distance s ahead and slams on his brakes. Given that
the brakes impart to the motorcycle a constant negative ac-
celeration a and that the haywagon is moving with speed v,
in the same direction as the motorcycle, show that the mo-
torcyclist can avoid collision only if he is traveling at a speed
less than vy + +/2]als.

55. Find the velocity v(t) given that a(t) = 2[v(t)]? and vg # 0.

Exercises 56 and 57. Find and compare

c%x(/ f(x)dx) and /(S—X[f(x)] dx.

2 3 4
56. f(x):% 57. f(x) = cosx — 2sinx.
[> Exercises 58-61. Use a CAS to find f from the information
given.
1
58 )= YL fy=2
VX

59. f/(x) =cosx —2sinx; f(x/2)=2.
60. f”(x) =3sinx +2cosx; f(0)=0, f'(0)=0.
61. f”(x) =5—-3x +x2, f(0)= -3, f'(0) = 4.

M 5.7 WORKING BACK FROM THE CHAIN RULE;
THE u-SUBSTITUTION

To differentiate a composite function, we apply the chain rule. To integrate the outputs
of the chain rule, we have to apply the chain rule in reverse. This process requires some

ingenuity.

Example 1

Calculate

/(x2 — 1)*x dx.

SOLUTION  From the chain rule we know that

%[(x2 —1)°] =5(x% — 1)*2x = 10(x? — 1)*x.
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Working back from this, we have
/(x2 —1)*xdx = 55 / 10(x* — 1)*x dx = (x> — 1)°+ C.

You can check the result by differentiation. [

Example 2 Calculate
/ sin x cos x dx.
SOLUTION  Since
%[sin Xx] = cosx,
we know from the chain rule that
j—x[sin3 x] = 3sin?x cos x.
Working back from this, we have
/sinzx cos x dx = %/33in2xcosxdx = lsin®x +C.

You can check the result by differentiation. [

Example 3 Calculate
/ 2x2sin (x3 + 1) dx.
SOLUTION  Since
:—X[cos X] = —sinx,
we know that
%[cos (x® 4+ 1)] = —sin (x® + 1) 3x%.
Therefore
/ 2x%sin (x® + 1) dx = —2 / —sin (x® + 1) 3x?dx = —% cos (x* + 1) + C.

You can check the result by differentiation. [

We carried out these integrations by making informed guesses based on our expe-
rience with the chain rule. The underlying principle can be stated as follows:

THEOREM 5.7.1
If f isa continuous function and F’ = f, then
/ f(u(x))u’(x)dx = F(u(x)) +C

forall functionsu = u(x) which have values in the domain of f and continuous
derivative u’

m 275
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prOOF The key here is the chain rule. If f is continuous and F' = f, then

/ fux)HU'(x)dx = / F'u(x)u'(x)dx = / ;—X[F(u(x))] dx = F(u(x)) +C.
by the chain ruleJ

The u-substitution, described below, offers a somewhat mechanical way of carrying
out such calculations. Set

u = u(x), du = u’(x) dx.
Then write

/f(u(x))u’(x)dx:f f(uldu=F@u)+C=F@uXx)+C. O

T where F' =

Below we carry out some integrations by u-substitution. In each case the first step is
to discern a function u = u(x) which, up to a multiplicative constant, puts our integral
in the form

/ f (u(x))u’(x) dx.

Example 4 Calculate

1
/ —(3 500 dx.

SOLUTION Set u =3+4+5x, du=>5dx. Then

1 1 /1 1
_* _dx=—(Zdu) =Zud
Brox2 T (5 ”) 50
and
1

1 1 1
- _dx==-fuldu=—-Z-ul4C=———" _4C. U
/(3+5x)2 X 5/” u=-guot 5(3+5x) |
Example 5 Calculate/xzx/4+x3 dx.

SOLUTION Set u =4+ x3, du = 3x2dx. Then

X2/ 4+ x3dx = (4 4+ x*)2 x%dx = tu¥/2du
—_—
ul/2 % du

and
/xzx/4+x3 dx = %/u”zdu =232+ C=24+x3¥2+C. 1

Example 6 Calculate / 2x3sec?(x* 4 1) dx.

SOLUTION Set u = x*+1, du = 4x3dx. Then

2x3sec?(x* + 1) dx = 2sec*(x* + 1) x®dx = 2 sec?u du
—_—

sec?u i du
and

/2x3sec2(x4+1)dx= %/seczu du=ftanu+C=1tan(x*+1)+C. 1
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Example 7 Calculate / sec® x tan x dx.

SOLUTION We can write sec®x tan x dx as sec?x sec x tan x dx. Setting

U = Secx, du = secx tan x dx,
we have
sec®x tan x dx = sec? x (sec x tan x) dx = u?du.
—_—
u? du
Therefore

/sec3xtanxdx=/u2du=%u3+c =lsec®x+C. O

Remark Every integral that we have calculated by a u-substitution can be calcu-
lated without it. All that’s required is a firm grasp of the chain rule and some ca-
pacity for pattern recognition. Suggestion: redo these calculations without using a
u-substitution.

2
Example 8 Evaluate / (x? — 1)(x® — 3x + 2)%dx.
0

SOLUTION We need to find an antiderivative for the integrand. The indefinite
integral

/(x2 — 1)(x® — 3x + 2)%dx
gives the set of all antiderivatives, and so we will calculate this first. Set
u=x3-3x+2, du = (3x? — 3)dx = 3(x? — 1) dx.
Then
(x? = 1)(x® — 3x + 2)%dx = (x> — 3x +2)* (x* — 1) dx = Ludu.

It follows that
/(x2 —1)(x3 —3x +2)%dx = %/u3du =Sut+C=4(x3—3x+2)*+C.

To evaluate the definite integral, we need only one antiderivative. We choose the
one with C = 0. This gives

2 2
/ (x2 — 1)(x® — 3x + 2)%dx = [%(x:’ 3+ 2)4]0 —20. O
0

b
The Definite Integral/ f(u(x))u’(x) dx
a

We can evaluate a definite integral of the form

/b f (u(x))u’(x) dx

m 277
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by first calculating the corresponding indefinite integral as we did in Example 8 or by
employing the following formula:

b u(b)
(5.7.2) / f(u(x))u’(x)dx:/() f(u) du.

This formula is called the change-of-variables formula. The formula can be used to

evaluate fab f(u(x))u’(x)dx provided that u’ is continuous on [a, b] and f is contin-
uous on the set of values taken on by u on [a, b]. Since u is continuous, this set is an
interval that contains a and b.

PROOF Let F be an antiderivative for f. Then F’' = f and

b b
/ f(u(x))u’(x)dx:/ F'(u(x)) u’(x) dx

a
b u(b)
a

= [Fue)], = Fue) - Fue) = [ fwdu.

u(a)
We redo Example 8, this time using the change-of-variables formula.
2
Example 9 Evaluate / (x%2 — 1)(x3 — 3x +2)*dx.
0

SOLUTION  As before, set u = x3 — 3x + 2, du = 3(x?> — 1) dx. Then
2 3 3_ 1
(x* = 1)(x* — 3x 4+ 2)° = zud du.
AtX =0,u=2. At Xx = 2, u = 4. Therefore,

2 4
/ (x> —1)(x* —3x +2)%dx = %/ usdu
0 2
12

4
- [ 1 u4]2 =1l@—L@*=20. 0

1/2
Example 10 Evaluate/ cos® 7 x sin 7w x dx.
0

SOLUTION Setu = coszx,du = —m sinwx dx. Then

cos® wx sinx dx = cos® wx sinwx dx = —Luddu.
u ~Ldu
s

Atx =0,u=1 Atx =1/2,u = 0. Therefore

1/2 0 1 1
/ cos® wx sinwx dx = —E/ uddu = l/ uddu = l [Eu‘l} — i 0
0 T J1 7 Jo 7|4 1, 4m

The u-substitution can be applied to every integral with a continuous integrand:

/ f(x)dx = / f (u(x))u’(x) dx.
T "set u(x) = x
Of course there is no point to this. A u-substitution should be made only if it facilitates

the integration. In the next two examples we have to use a little imagination to find a
useful substitution.
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Example 11 Calculate/x(x —3)°dx.

SOLUTION Set u=x —3. Then du=dx and x =u+ 3.
Now

x(x — 3)°dx = (u + 3)u’du = (u® + 3u®) du
and

/x(x —3)%dx = /(u6 +3u®) du

W+t +Cc=3(x-3)"+i(x-3°f+C. 1

V3
Example 12 Evaluate/ x°v/x2 + 1dx.
0

SOLUTION Set u=x2+ 1. Then du =2xdx and x2=u — 1.

Now
X>Vx2+1ldx= x* Vx 2(u—1°/u du.

241 xdx =
ng—a
-1 v 3du

Atx =0,u=1. Atx = +/3,u = 4. Thus
V3 4
/ x°Vx2+1dx = 3 f;'(u— 1) /udu
0
=1 (%2 — 2u¥2 1 u2)du

4
_ 12gm2 _ ays2 4 232
_ 3z g 4 3]’

4
- [u3/2(%u2—§u+%)]l:%§. a
EXERCISES 5.7
Exercises 1-20. Calculate. /' _3ja,u1/8 | 1\-2 4x +6
17. | x 727 (xH* + 1) “dx. 18. | ———adx.
1[ dx 2/ dx VX2 4+3x +1
RN AN TE N 19 / LRSI 0 [ X 4
) oVIT=aixE ) Va+bxt
3. /\/Zx + 1dx. 4, /«/ax + b dx.
Exercises 21-26. Evaluate.
3/4 2 4 1 0
5 f (8x + )™ 6. / 2ax(ax” + b)"dx. 21. / X2 + 1)° d. 22. / 3X3(4 + ) dx.
0 -1
t 3t
7./7dt. 8./7dt. /1 r /3 r
4t2 4+ 9)2 12 4+ 1)2 23. ———— dr. 24, ——dr.
(412 +9) (t2+1) L A2y . Ji7ri6
9. [ x2(1 + x3)Y4dx. 10. /x”’lx/a + bx dx. a 0 3\ 2
/ ( ) 25. / yva2 —y2dy. 26. / y? (1 - %) dy.
0 —a
1 [ — s, o [ B s . .
(1+5s2)3 36 —5s2 Exercises 27-30. Find the area below the graph of f.
X X2 27. f(X) =x+/2x2+1, x €0, 2].
13. / ——dx. 14, / ————dx. X
2 — x3)2/3 28. f = —— 0, 2].
NrET =) 0= Gare X<l

15. f5x(x2 +1) 3 dx. 16. /2x3(1 —xHV4dx. 29. f(x) =x31+x?3 xell2].



280 m CHAPTER 5 INTEGRATION

2X +5
(X + 2)2(x + 3)?’
Exercises 31-37. Calculate.

31. /x\/x +1dx. [setu=x+1]
32. /ZX\/X — 1dx. 33. /x\/2x — 1dx.

30. f(x) = x € [0, 1].

1
34./t2t+38dt. 35./—dx
( ) VXX + X

0 1 X + 3
36./ x3(x% + 1)% dx. 37./ dx.
-1 ( ) 0o V/X+1
5 2
38. ———dx
/2 VX =1
39. Find an equation y = f (x) for the curve that passes through
the point (0, 1) and has slope

d_y = Xv/X2 + 1.

dx

40. Find an equation y = f (x) for the curve that passes through
the point (4, 1) and has slope

dy 1

dx 22X+ VXP

Exercises 41-64. Calculate.

41, /cos(3x + 1) dx. 42. /sin 27X dXx.
43, /cscznx dx. 44, /sec 2X tan 2x dx.
45, /sin(3—2x)dx. 46. /sm X €OS X dX.
47. /cos“xsinx dx. 48. /xsec
49 smf
NG

50. /csc (1 —2x)cot (1 — 2x) dx.
51 /\/1+sinxcosxdx 52 SiLdx

' ' ") JI+Fcosx
53. /sin X COS X dX. 54, /sinznx cos X dx.
55, /sin 7TX COS% 7T X dX. 56. /(1 + tan? x) sec? x dx.

57. / x sin® x2 cos x? dx.

58. / x sin*(x? — ) cos (x? — ) dx.

sec? x csc? 2x
59. | ——dx —dx
1+ tanx /2 + cot 2x
61. / c0s (/%) g4y 62. / SN (A7) g,
X X

63. /xztan(x3 + ) sec® (x* + ) dx.

64. f(x sin? x — x2sinx cos x) dx.

Exercises 65-70. Evaluate.

bd /3
65. / sin* x cos x dx. 66. / sec X tan x dx.
-7 —7/3
1/3 1
67. / sec? x dx. 68. / cos? Zx sin Zx dx.
1/4 0 2 2
/2 T
69. / sin x cos® x dx. 70. / X oS x2dx.
0 0

71. Derive the formula
/sinzxdx: Ix —Lsin2x + C.
HINT: Recall the half-angle formula
sin?0 = (1 — cos 20).
72. Derive the formula

/coszxdx:%x+%sin2x+c.

Calculate.

73. /cos2 5x dX. 74. /sin2 3x dx.

2
76./ sin® x dx.
0

Exercises 77-81. Find the area between the curves.

/2
75. / cos? 2x dx.
0

77.y =cosx, y=-—sinx, x=0, x=2%.
78.y =cosmX, y=sinmX, x=0, x=%.
79.y =cos?mx, y=sin®zx, x=0, Xx=4i.
80.y =cos?nx, y=—sinzx, x=0, Xx=31.
81.y =csc®mwx, Yy =sec’mx, x=%, X=3‘—1,

82. Calculate

/ sin x cos x dx.

(a) Setting u = sinx.
(b) Setting u = cos x.
(c) Reconcile your answers to parts (a) and (b).

83. Calculate

/ sec? x tan x dx

(a) Setting u = sec x.
(b) Setting u = tanx.
(c) Reconcile your answers to parts (a) and (b).

84. Let f be a continuous function, ¢ a real number. Show that

b+c b
(@) /6; f(x—c)dx:/a f(x)dx,
and, if ¢ # 0, ) .
(b) %/ac f(x/c)dx:/a f(x) dx.
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For Exercises 85 and 86 reverse the roles of x and u in (5.7.2) quadrant is the region below the curve y = +/r2 — x2,x ¢
and write “®) b [0, r]. Therefore
f — | f '(u) du. '
/X(a) (x) dx /a (x(u))x'(u) du A 4/0 —c

85. (The area of a circular region) The circle x2 + y%2 = r2 en-
closes a circular disc of radius r. Justify the familiar formula ) ] sr pn oy
A = rr? by integration. HINT: The quarter-disk in the first 86. Find the area enclosed by the ellipse b“x* + a®y* = a“b”.

Set X =rsinu,dx =r cosu du.

M 5.8 ADDITIONAL PROPERTIES OF THE DEFINITE INTEGRAL

We come now to some properties of the definite integral that we’ll make use of time and
time again. Some of the properties are pretty obvious; some are not. All are important.

I. The integral of a nonnegative continuous function is nonnegative:

b
(5.8.1) if f(x) >0 forallx € [a,b], then / f(x)dx > 0.
a

The integral of a positive continuous function is positive:

b
(5.8.2) if f(x) >0 forall x €[a,b], then / f(x)dx > 0.
a

Reasoning: (5.8.1) holds because in this case all of the lower sums L ¢(P) are
nonnegative; (5.8.2) holds because in this case all the lower sums are positive.

I1. The integral is order-preserving: for continuous functions f and g,

b b
(5.8.3) if f(x) <g(x)forallx €[a,b], then f f(x)dx 5/ g(x)dx
a a

and

b b
(5.8.4) if f(x) <g(x) forall x €[a,b], then / f(x)dx</ g(x) dx.
a a

PROOF OF (5.8.3) If f(x) <g(x) on [a,b], then f(x)— f(x)>0 on [a,b].
Thus by (5.8.1)

b
/ [900) — f(X)]dx = 0.

/abg(x)dx—/abf(x)dxzo

/: f(x)dx < /abg(x)dx.

The proof of (5.8.4) is similarly simple. 1

This gives

and shows that
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I11. Just as the absolute value of a sum of numbers is less than or equal to the sum of
the absolute values of those numbers,

[Xg 4+ Xo + -+ 4+ Xn| < [Xg| + [X2] + - - + [Xal,

the absolute value of an integral of a continuous function is less than or equal to
the integral of the absolute value of that function:

b b

/ f(x) dx 5/ [ f(x)]dx.
a a

PROOF OF (5.8.5) Since —| f(x)| < f(x) < |f(x)|, it follows from (5.8.3) that

_/ab|f(x)|dx5/abf(x)dxg/abu(x)mx.

This pair of inequalities is equivalent to (5.8.5). 1

(5.8.5)

IV. If f is continuous on [a, b], then

b
(5.8.6) m(b —a) < / f(x)dx < M(b—a)

where m is the minimum value of f on [a, b] and M is the maximum.

Reasoning: m(b — a) is a lower sum for f and M(b — a) is an upper sum.

You know from Theorem 5.3.5 that, if f is continuous on [a, b], then for all

X € (a, b)
d X
i (/a f(t)dt) — f(x).

Below we give an extension of this result that plays a large role in Chapter 7.

V. If f is continuous on [a, b] and u is a differentiable function of x with values in
[a, b], then for all u(x) € (a, b)

u(x)
(5.8.7) dd—x ( /a f(t)dt) = FU))U'(X).

PROOF OF (5.8.7) Since f is continuous on [a, b], the function

u
F(u) = / f(t)dt
a
is differentiable on (a, b) and
F'(u) = f(u).
This we know from Theorem 5.3.5. The result that we are trying to prove follows from
noting that

u(x)
/ f(t)dt = F(u(x))
a
and applying the chain rule:

u(x)
dd_x (/; f(t) dt) = dd—X[F(u(x))] — Fup)U'(x) = FUU'(x). 2
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d (1
Example 1 Fmd&(/0 1—+tdt).

SOLUTION At this stage you probably cannot carry out the integration: it requires the
natural logarithm function. (Not introduced in this text until Chapter 7.) But for our
purposes, that doesn’t matter. By (5.8.7),

d S| 1 3x2
— dt) = X?=—"—""— 0
dx <f0 1+t ) 14 x8 X 14 x3

d x 1
Example 2 Find — —— _dt).
xample Find ix (/X PRY dt)

SOLUTION  The idea is to express the integral in terms of integrals that have constant
lower limits of integration. Once we have done that, we can apply (5.8.7). In this case,
we choose 0 as a convenient lower limit. Then, by the additivity of the integral,

X 1 2X 1 2X 1
——dt ——dt= ——dt.
/0 1412 +/X 1+4t2 /0 1+t2
2X 1 2x 1 X 1
/ dt:/ dt—/ dt.
. 1412 o 1+t o 1+1t2

Differentiation gives

d /ZX 1 it) — d /Zx 1 ot d /X 1 ot
dx \Jy 1412 Cdx \Jy 1412 dx \Jo 1+1t2
1 1 2 1

- 1—|—(2x)2(2)_ W= 5 110
by (5.8.7) —J

Thus

VI. Now a few words about the role of symmetry in integration. Suppose that f is

continuous on an interval of the form [—a, a], a closed interval symmetric about /
the origin.

a S a

(5.8.8) (@) if fisoddon[—a,a], then f(x)dx = 0. - Q, i
—a
a a
(b) if fisevenon[—a,a], then f(x)dx = 2/ f(x) dx. fodd
—a 0
Figure 5.8.1

These assertions can be verified by a simple change of variables. (Exercise 34.)
Here we look at these assertions from the standpoint of area. For convenience we y
refer to Figures 5.8.1 and 5.8.2.

For the odd function,

a a
f)dx= [ fFx)dx+ / f(x) dx = area of ©; — area of Q, = 0. | % P2 |
—a —a 0 -2 a x
For the even function,
a a feven
3 f(x) dx = area of Q; + area of 2, = 2(area of ;) = 2/0 f(x)dx. O Figure 5.8.2
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Suppose we were asked to evaluate

/ (sinx — x cos x)3dx.

/g

A laborious calculation would show that this integral is zero. We don’t have to carry
out that calculation. The integrand is an odd function, and the interval of integration is
symmetric about the origin. Thus we can tell immediately that the integral is zero:

EXERCISES 5.8

(sinx — x cosx)%dx = 0.

-7

Assume that f and g are continuous on [a, b] and

/abf(x)dx > /abg(x)dx.

Answer questions 1-6, giving supporting reasons.

1. Does it necessarily follow that f;[f(x) —g(x)]dx > 0?

2. Does it necessarily follow that f(x) > g(x) for all x €
[a, b]?

3. Does it necessarily follow that f(x) > g(x) for at least some
x € [a, b]?

4. Does it necessarily follow that

/abf(x)dx /abg(x)dx

5. Does it necessarily follow that fab| f(x)|dx > fab|g(x)|dx?

> ?

6. Does it necessarily follow that f;’| f(x)|dx > fab g(x) dx?
Assume that f is continuous on [a, b] and

/abf(x)dx:o.

Answer questions 7-15, giving supporting reasons.
7. Does it necessarily follow that f(x) = 0 forall x € [a, b]?

8. Does it necessarily follow that f(x) = 0 for at least some
x € [a, b]?

9. Does it necessarily follow that f:| f(x)]dx = 0?

10. Does it necessarily follow that | fab f(x)dx] = 0?
11. Must all upper sums U ¢ (P) be nonnegative?

12. Must all upper sums U ¢ (P) be positive?

13. Can a lower sum L ¢ (P) be positive?

14. Does it necessarily follow that f;[f(x)]2 dx = 0?

15. Does it necessarily follow that fab[f(x) +1]dx=b —a?
16. Derive a formula for

dd_x </u(bx) f(t)dt)

given that u is differentiable and f is continuous.

Exercises 17-23. Calculate.

1+x? x2
7.9 L B / dry
dx 0 V2t +5 dx 1 t
d a Xt
19. — / f(t dt). 20. f .
dx<x v (0 «/l+t2>
3 qj 4
21. a4 f ﬂdt ) 22. a4 / sint?dt ).
dx \Jye t dx \VJianx
d (¥

24. Show that
d v(x)
— (/ f(t) dt) = f(uX))v'(x) — fU)u'(x)
dx u(x)
given that u and v are differentiable and f is continuous.
Exercises 25-28. Calculate. HINT: Exercise 24.

x? X24x
o5, 4 f dary ze.i/ )
dx \Jy t dx \Jx 2+ 4/t

d 2X d 1/x
27. — </ tv/1+412 dt). 28. Ix (/ cos 2t dt).
t 3x

dx \Jtanx
30. (Important) Prove that, if f is continuous on [a, b] and

a
><|Q'

29. Prove (5.8.4).

b
/|f(x)|dx=o,

then f(x) = Oforall xin [a, b]. HINT: Exercise 50, Section
2.4,

31. Find H’ (2) given that

x3—4 X
H(x :f dt.
( ) 2X 1+\/f

32. Find H’ (3) given that

H(x) = %/:[m — 3H/(t)] dt.
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33. (a) Let f be continuous on [—a, 0]. Use a change of variable

a a
b fxdx=2/ f(x)dx if f iseven.
to show that (b) . (x) ; x)

0 a Exerci -38. Evaluate usi t iderations.
/ F(x) dx = / f(—x) dx. xerc:Ts/ef 35-38. Evaluate using symrr;e r;;sconsmera ions
e 35./ (X -+ sin 2x) dx. 36./ —dt.
(b) Let f be continuous on [—a, a]. Show that —n/4 314t
a a /3
/ f(x)dx = / [f(x)+ f(—=x)]dx. 37. f (1 + x? —cosx) dx.
—a 0 —n/3
H H _ _ /4
34. Let f be a function continuous on [—a, a]. Prove the state 38, (X2 — 2% + sin x + cos 2x) dx.
ment basing your argument on Exercise 33. i

a

@) f(x)dx=0 if f isodd.
—a

M 5.9 MEAN-VALUE THEOREMS FOR INTEGRALS;
AVERAGE VALUE OF A FUNCTION

We begin with a result that we asked you to prove earlier. (Exercise 33, Section 5.3.)

THEOREM 5.9.1 THE FIRST MEAN-VALUE THEOREM FOR INTEGRALS

If f is continuous on [a, b], then there is at least one number c in (a, b) for
which

b
/ f(x)dx = f(c)(b — a).

This number f(c) is called the average value (or mean value) of fon [a, b].

We now have the following identity:

b
(5.9.2) / f (x) dx = (the average value of f on[a, b]) - (b — a).
a

This identity provides a powerful, intuitive way of viewing the definite integral.
Think for a moment about area. If f is constant and positive on [a, b], then &, the
region below the graph, is a rectangle. Its area is given by the formula

a
area = (the constant value of f)-(b — a)

Figure 5.9.1
area of = (the constant value of f on[a,b])- (b —a). (Figure5.9.1)

If f is now allowed to vary continuously on [a, b], then we have

b
area of Q :/ f(x) dx,
a

and the area formula reads

area of = (the average value of f on [a, b]) - (b — a). (Figure 5.9.2)
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%

|
|
|
|
a c b X

Figure 5.9.2

Think now about motion. If an object moves along a line with constant speed v
during the time interval [a, b], then

distance traveled = (the constant value of v on [a, b]) - (b — a).
If the speed v varies, then we have

b
distance traveled = / v(t) dt,
a

and the formula reads

distance traveled = (the average speed on [a, b]) - (b — a).

Let’s calculate some simple averages. Writing fa,4 for the average value of f on
[a, b], we have

1 b
favg = m/; f(x) dx.
The average value of a constant function f(x) = k is, of course, k:

1 b k b k
fovg = mf kdx= g [x], = g5 0 - =k

The average value of a constant multiple of the identity function f(x) = ax is the
arithmetical average of the values taken on by the function at the endpoints of the
interval:

1 " 1 ra_,1P
favg_b—a/ao‘de_b—a[Ex ]a

1 fa,, .1 ebtea  f(H)+ ()
_b—a[z(b a)]_ 2 2

What is the average value of the squaring function f (x) = x2?

1 b 1 [x37° 1 /b¥—ad
favg:b_a/axzdxzb—a[g]=b—a( 3 )
a

1 [(b*>+ab+a?)(b—a)
b—a[ 3

The average value of the squaring function on [a,b] is not %(b2+a2); it is
%(b2 +ab +a?). On [1, 3] the values of the squaring function range from 1 to 9.
While the arithmetic average of these two values is 5, the average value of the squaring
function on the entire interval [1, 3] is not 5; it is %

] = (b? + ab + a?).
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There isanextension of Theorem 5.9.1 which, as you’ll see, is useful in applications.

THEOREM 5.9.3 THE SECOND MEAN-VALUE THEOREM FOR INTEGRALS

If f and g are continuous on [a, b] and g is nonnegative, then there is a number
cin (a, b) for which

b b
/ f(x)g(x)dx = f(c)/ g(x) dx.

This number f (c) is called the g-weighted average of f on [a, b].

We will prove this theorem (and thereby obtain a proof of Theorem 5.9.1) at the end of
this section. First, some physical considerations.

The Mass of aRod Imagine a thin rod (a straight material wire of negligible thickness)
lying on the x-axis from x = a to x = b. If the mass density of the rod (the mass per
unit length) is constant, then the total mass M of the rod is simply the density A times
the length of the rod: M = A(b — a)." If the density A varies continuously from point
to point, say A = A(x), then the mass of the rod is the average density of the rod times
the length of the rod:

M = (average density) - (length).

This is an integral:

b
(5.9.4) M =/ A(x) dx.
a

The Center of Mass of aRod  Continue with that same rod. If the rod is homogeneous
(constant density), then the center of mass of the rod (we denote this point by xy) is
simply the midpoint of the rod:

XM = %(a + b). (the average of x from a to b)

If the rod is not homogeneous, the center of mass is still an average, but now a weighted
average, the density-weighted average of x from a to b; namely, x, is the point for
which

XM /ab A(X)dx = /ab XA(X) dx.

Since the integral on the left is M, we have

b
(5.9.5) XmM =/ XA(X) dx.
a

Example 1T Arod of length L is placed on the x-axis from x = 0to x = L. Find the
mass of the rod and the center of mass given that the density of the rod varies directly
as the distance from the x = 0 endpoint of the rod.

TThe symbol A is the Greek letter “lambda.”
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SOLUTION Here A(x) = kx where k is some positive constant. Therefore
L L
M =/ kx dx = [ 3kx?] = 3kL2
0 0
and
L L L
XmM =/ x(kx) dx =/ kx2dx = [%kx?’] = kL2,
0 0 0

Division by M gives xu L.

_2 L
x—3L

M

=2
-3
\
0

In this instance the center of mass is to the right of the midpoint. This makes sense.
After all, the density increases from left to right. Thus mass accumulates near the right
tip of therod.

We know from physics that, close to the surface of the earth, where the force of
gravity is given by the familiar formula W = mg, the center of mass is the center of
gravity. This is the balance point. For the rod of Example 1, the balance point is at
X = %L. Supported at that point, the rod will be in balance.

Later (in Project 10.6) you will see that a projectile fired at an angle follows a
parabolic path. (Here we are disregarding air resistance.) Suppose that a rod is hurled
into the air end over end. Certainly not every point of the rod can follow a parabolic
path. What moves in a parabolic path is the center of mass of the rod.

We go back now to Theorem 5.9.3 and prove it. [There is no reason to construct a
separate proof for Theorem 5.9.1. It is Theorem 5.9.3 with g(x) identically 1.]

PROOF OF THEOREM 5.9.3  Since f is continuous on [a, b], f takes on a minimum value
m on [a, b] and a maximum value M. Since g is nonnegative on [a, b],

mg(x) < f(x)g(x) < Mg(x) for all x in [a, b].

Therefore

/ " mg(x) dx < / 10000 d < / " M g0 dx

and
b b b
m/ g(x)dxg/ f(x)g(x)dx < M/ g(x) dx.

We know that fab g(x)dx > 0. If fab g(x)dx = 0, then, by the inequality we just de-
rived, fab f(x)g(x)dx = 0 and the theorem holds for all choices of c in (a,b). If
/2 g(x)dx > 0, then

b
/f(x)g(x)dx
m< 22

<2 <M
/ g(x) dx
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and by the intermediate-value theorem (Theorem 2.6.1) there exists a number cin (a, b)
for which

b

/ f(x)g(x) dx

a 5 .
g(x) dx

f(c) =

Obviously, then,

b b
f(c)/ g(x)dx:/ f(x)g(x)dx. =

EXERCISES 5.9

Exercises 1-12. Determine the average value of the function on
the indicated interval and find an interior point of this interval at
which the function takes on its average value.

1. fx)=mx+b, xel0,c]

© 00 N O O b W N

I el
w N kO

[Eny
N

15.

16.

17.

18.

Cf(x)=x%, xe[-1,1]
Cfx)=x3, xe[-1,1].
Cf(x)=x72, xe[l,4]
fX)=1x], xe[-2,2]
Cf(x)=xY3, xe[-8,8].
f(x)=2x—x2, xe][0,2].
. f(x)=3-2x, x¢€][0,3].
Cfx) =X, xe[0,9].
Cf(x)=4-x2, xe[-22].
. f(x) =sinx, x €][0,2r].

. f(x) =cosx, xe]0,n].

. Let f(x) = x", n a positive integer. Determine the average

value of f on the interval [a, b].

. Given that f is continuous on [a, b], compare

f(o)b—a)  and /bf(x)dx.

(a) if f is constant on [a, b]; (b) if f increases on [a, b];
(c) if f decreases on [a, b].

Suppose that f has a continuous derivative on [a, b]. What
is the average value of f’ on [a, b]?

Determine whether the assertion is true or false on an arbi-
trary interval [a, b] on which f and g are continuous.

(@ (f + g)avg = favg + Qavg-

(b) (Olf)avg = Olfavg-

(C) (fg)avg = (favg)(gavg)-

(d) (fg)avg = (favg)/gavg)-

Let P(x,y) be an arbitrary point on the curve y = x2.

Express as a function of x the distance from P to the origin
and calculate the average of this distance as x ranges from 0

to +/3.

Let P(x, y) be an arbitrary point on the line y = mx. Ex-
press as a function of x the distance from P to the origin

and calculate the average of this distance as x ranges from
Oto 1.

19. A stone falls from rest in a vacuum for t seconds. (Section
4.9). (a) Compare its terminal velocity to its average ve-
locity; (b) compare its average velocity during the first %t
seconds to its average velocity during the next %t seconds.

20. Let f be continuous. Show that, if f isan odd function, then
its average value on every interval of the form [—a, a] is
zero.

21. Suppose that f is continuous on [a, b] and fab f(x)dx =0.
Prove that there is at least one number c in (a, b) for which
f(c)=0.

22. Show that the average value of the functions f(x) = sinwx
and g(x) = cosmx is zero on every interval of length 2n, n
a positive integer.

23. An object starts from rest at the point xo and moves along
the x-axis with constant acceleration a.

(a) Derive formulas for the velocity and position of the ob-
jectateachtimet > 0.

(b) Show that the average velocity over any time interval
[t1, t2] is the arithmetic average of the initial and final
velocities on that interval.

24. Find the point on the rod of Example 1 that breaks up that
rod into two pieces of equal mass. (Observe that this point
is not the center of mass.)

25. A rod 6 meters long is placed on the x-axis from x =0 to
X = 6. The mass density is 12/4/x + 1 kilograms per meter.
(a) Find the mass of the rod and the center of mass.
(b) What is the average mass density of the rod?

26. For a rod that extends from x = a to x = b and has mass
density A = A(x), the integral

/b(x — c)A(x)dx

gives what is called the mass moment of the rod about the
point x = c. Show that the mass moment about the center of
mass is zero. (The center of mass can be defined as the point
about which the mass moment is zero.)
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217.

28.

29.

30.

31.

32.

33

35.

A rod of length L is placed on the x-axis from x =0 to
x = L. Find the mass of the rod and the center of mass if the
mass density of the rod varies directly: (a) as the square root
of the distance from x = 0; (b) as the square of the distance
fromx = L.

A rod of varying mass density, mass M, and center of
mass Xy, extends from x = a to x = b. A partition P =
{Xo, X1, ..., Xn} Of [a, b] decomposes the rod into n pieces
in the obvious way. Show that, if the n pieces have masses
M1, Mg, ..., M, and centers of mass Xy, Xmys - - - » XM, »
then

XmMM = Xm, M1 + Xm, M2 4 - - - + X, M.

A rod that has mass M and extends from x =0to x =L
consists of two pieces with masses M, M,. Given that the
center of mass of the entire rod is at x = %L and the center
of mass of the first piece isat x = %L, determine the center
of mass of the second piece.

A rod that has mass M and extends from x =0to x =L
consists of two pieces. Find the mass of each piece given
that the center of mass of the entire rod is at x = %L, the
center of mass of the first piece isat x = %L, and the center
of mass of the second piece is at x = %L.

A rod of mass M and length L is to be cut from a long piece
that extends to the right from x = 0. Where should the cuts
be made if the density of the long piece varies directly as the
distance from x = 0? (Assume that M > kL2 where k is
the constant of proportionality in the density function.)

Is the conclusion of Theorem 5.9.3 valid if g is negative
throughout [a, b]? If so, prove it.

. Prove Theorem 5.9.1 without invoking Theorem 5.9.3.
34.

Let f be continuous on [a, b]. Let a < ¢ < b. Prove that
f(c) = hliry+ (average value of f on[c —h, ¢ + h]).

Prove that two distinct continuous functions cannot have the
same average on every interval.

Bl CHAPTER 5. REVIEW EXERCISES

36.

37.

[> 3.
[>40.
[>41.

. Let f(x) =x3

The arithmetic average of n numbers is the sum of the num-
bers divided by n. Let f be a function continuous on [a, b].
Show that the average value of f on [a, b] is the limit of
arithmetic averages of values taken on by f on [a, b] in the
following sense: Partition [a, b] into n subintervals of equal
length (b — a)/n and let S*(P) be a corresponding Riemann
sum. Show that S*(P)/(b — a) is an arithmetic average of
n values taken on by f and the limit of these arithmetic
averages as | P|| — 0 is the average value of f on [a, b].
A partition P = {Xo, X1, X2, ..., Xn} Of [a,b] breaks up
[a, b] into n subintervals

[Xo0, X1, [X1, X2l - . ., [Xn=1, Xn]-

Show that if f is continuous on [a, b], then there are n num-
bers x;* € [Xj_1, X;] such that

b
/ F) dx = F )AL + FOG)AXs + -+« + F(X)AXn.
a

(Thus each partition P of [a, b] gives rise to a Riemann sum

which is exactly equal to the definite integral.)

—x+1forx e [-1,2].

(a) Find the average value of f on this interval.

(b) Estimate with three decimal place accuracy a number ¢
in the interval at which f takes on its average value.

(c) Use a graphing utility to illustrate your results with a
figure similar to Figure 5.9.2.

Exercise 38 taking f(x) = sinx with x € [0, ].

Exercise 38 taking f(x) = 2cos 2x with x € [z /4, 7 /6].

Set f(x) = —x* 4 10x? + 25.

(a) Estimate the numbers a and b with a < b for which
f(a) = f(b) =0.

(b) Use a graphing utility to draw the graph of f on [a, b].

(c) Estimate the numbers c in (a, b) for which

/b f(x)dx = f(c)(b — a).

. Exercise 41 taking f (x) = 8 + x? — x4

Exercises 1-22. Calculate.

1

3. /t2(1+t3)1° dt.

x3—2x +1

NG dx. 2. f(x3/5 —3x53) dx.

4. f (1 + 2/%)? dx.

2/3 _ 1y
(ttT) 6. /‘x\/x2 — 2dx.
7. /x\/z — x dx. 8. /XZ(Z + 2x3)* dx.

1+ x)°

o [ M0,

COS X
11, | ———dx 12. /sec@—tan@zde.
V14sinx )
13. /(tan39—cot30)2d0. 14. /xsm x? cos x2 dx.
1
15. —dx. 1 X.
S /1+0052x o 6 / —sm2x
17. /secsnxtannx dx. 18. /ax\/l+bx2dx.

19.

21.

/ax«/l+bx dx. 20. /ax2v1+bx dx.
g(x)g’'(x) g'(x)
71+gz(x) dx 22. / 500 dx.
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Exercises 23-28. Evaluate.

2 1
X
23. x2 — 2x + 3) dx. 24, / — = dx.
[1( ) o (x2+1)3

/4 /8
25. / sin2x cos2xdx.  26. / (tan? 2x + sec? 2x) dx.
0 0

2
27. f (x2 +1)(x® + 3x — 6)3 dx.
0

8 1/3\2
(1 +x173)

29. Assume that f is a continuous function and that

2 3 5
/Of(x)dx:S, /(;f(x)dx:l, /3f(x)dx:8.

(@) Find /5’ f (x) dx.
(b) Find f; f(x)dx.
(c) Explain how we know that f(x) > 4 for at least one x in
[3, 5].
(d) Explain how we know that f(x) < O for at least one x in
[2, 3].
30. Let f be a function continuous on [—2, 8] and let g(x) =

8 8
f(x)+3. If/ f(x)dx = 4, what is/ g(x)dx?
_2 -2

Exercises 31-36. Sketch the region bounded by the curves and
find its area.

3l.y=4—x%y=x+2
32.y=4—-x2,x+y+2=0.

33. y2=x, x=23y.

34. y = /X, the x-axis, y = 6 — Xx.

35. y = x3, the x-axis, x + y = 2.

36. 4y =x> —x*, x+y+1=0.

Exercises 37-41. Carry out the differentiation.

d X dt d Xt
37. — ). 38, — — .
dx </o 1+t2> dx (/0 1+t2)
d <t d sinx gt
39-&</X —1+t2>' o (] e)

d COS X dt
41. — .
dx (/0 1- t2>

42. Ateach point (x, y) of acurve y the slope is x+/x2 + 1. Find
an equation y = f(x) for y given that y passes through the
point (O, 1).

X 1

43. Let F(x) _/o T

(a) Does F take on the value 0? If so, where?

(b) Show that F increases (—oo, 00).

(c) Determine the concavity of the graph of F.

(d) Sketch the graph of F.

44, Assume that f is a continuous function and that

dt, X real

X
/ tf(t)dt = xsinx + cosx — 1.
0

(a) Find f (). (b) Calculate f'(x).
Exercises 44-46. Find the average value of f on the indicated
interval.

X .
44, f(x) = N [0, 4].
45. f(x) =x +2sinx; [0, 7]

46. Find the average value of f(x) = cosx on every closed in-
terval of length 27.

Exercises 47-50. Let f be a function continuous on [«, 8] and
let ©2 be the region between the graph of f and the x-axis from
X =« to x = B. Draw a figure. Do not assume that f keeps
constant sign.

47. Write an integral over [«, 8] that gives the area of the portion
of Q that lies above the x-axis minus the area of the portion
of  that lies below the x-axis.

48. Write an integral over [, 8] that gives the area of Q.

49. Write an integral over [«, 8] that gives the area of the portion
of Q that lies above the x-axis.

50. Write an integral over [«, 8] that gives the area of the portion
of Q2 that lies below the x-axis.

51. A rod extends from x = 0to x = a, a > 0. Find the center
of mass if the density of the rod varies directly as the distance
from x = 2a.

52. A rod extends from x = 0to x = a, a > 0. Find the center
of mass if the density of the rod varies directly as the distance
from x = Za.
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Representative Rectangles
You have seen that the definite integral can be viewed as the limit of Riemann sums:

b
M /f(x)dx:llgi”mo[f(xf)Ax1+f(x§)sz+---+f(xr’,‘)Axn].
a e

With x;* chosen arbitrarily from [x;_1, X;], you can think of f(x;") as a representative
value of f for that interval. If f is positive, then the product
f (") Axi

gives the area of the representative rectangle shown in Figure 6.1.1. Formula (1) tells
us that we can approximate the area under the curve as closely as we wish by adding
up the areas of representative rectangles. (Figure 6.1.2)

y

y =f(x)

f(x*)
|
a XN b X
Xio1}es] Xi

Ax

Figure 6.1.1 Figure 6.1.2

Figure 6.1.3 shows a region Q bounded above by the graph of a function f and
bounded below by the graph of a function g. As you know, we can obtain the area of Q2

292
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by integrating the vertical separation f(x) — g(x) fromx = atox = b:

b
A= / [f(x) —g(x)]dx.
a
In this case the approximating Riemann sums are of the form

[f(xD) = g(x)]axa + [f(xz) = g(x3)]axz + - + [ (x7) — g (x7) Jaxn.

y y
y=f(x)
y=f(x)
/
|
|
| %) — g (%)
} } | } |
\ \ \ A \
s v
} | } [ |
I 1 I (| 1
a b X a | b X
AX
Figure 6.1.3
Here a representative rectangle has
height f(x") —a(x"). width AXi,
and area
[F(x") —a(x")]axi.
Example 1 Find the area A of the set shaded in Figure 6.1.4. y
2,8
SOLUTION  From x = —1to x = 2 the vertical separation is the difference oy
2x2 — (x* — 2x2). Therefore Y=
2 2
A= / [2x? — (x* — 2x))]dx = / (4x? — x*) dx
-1 -1
4 1 2 32 32 4 1 27 e y=xio e
3
~[pe- 4], = [3-9)-[-4+4]-% o \
\ \ \
-1 1/ 2 X
Areas Obtained by Integration with Respect to y

We can interchange the roles played by x and y. In Figure 6.1.5 you see a region 2,
the boundaries of which are given not in terms of x but in terms of y. Here we set the
representative rectangles horizontally and calculate the area of the region as the limit
of sums of the form

[F(yi) = G(yi)]ay +[F(¥5) = G(¥3)]Ayz + - + [F(¥) — G(va)]Ayn.
These are Riemann sums for the integral of F — G. The area formula now reads
d
A= [ 1F) - GMay.
o]

In this case we are integrating with respect to y the horizontal separation F(y) — G(y)
fromy=ctoy=d.

Figure 6.1.4
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(1, 1)

3

x=3-2y2

(1,-1) x=y2

Figure 6.1.6

Figure 6.1.5

Example 2 Find the area of the region bounded on the left by the curve x = y? and
bounded on the right by the curve x = 3 — 2y?2.

SOLUTION  The region is sketched in Figure 6.1.6. The points of intersection can be
found by solving the two equations simultaneously:

x=y? and  x=3-2y?
together imply that
y ==+1

The points of intersection are (1, 1) and (1, —1). The easiest way to calculate the area
is to set our representative rectangles horizontally and integrate with respect to y. We
then find the area of the region by integrating the horizontal separation

(3—2y%) —y* =3 -3y
fromy=—-1toy =1:

1 1
A=/ (3—3y2)dy=[3y—y3] — 4.
_1 -1

NOTE: Our solution did not take advantage of the symmetry of the region. The region
is symmetric about the x-axis (the integrand is an even function of y), and so

1 1
A:2/(3—3y2)dy:2[3y—y3] —4 O
0 0

Example 3 Calculate the area of the region bounded by the curves x = y? and
x —y = 2 first (a) by integrating with respect to x and then (b) by integrating with
respect to y.

SOLUTION  Simple algebra shows that the two curves intersect at the points (1, —1)
and (4, 2).

(a) To obtain the area of the region by integration with respect to x, we set the repre-
sentative rectangles vertically and express the bounding curves as functions of x.
Solving x = y? fory we get y = &./X; y = /X is the upper half of the parabola
and y = —./x is the lower half. The equation of the line can be written y = x — 2.
(See Figure 6.1.7.)



(4, 2)
y=x-2
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(1,-1) 1

y=-x

Figure 6.1.7

Figure 6.1.8

The upper boundary of the region is the curve y = /Xx. However, the lower
boundary consists of two parts: y = —/x fromx =0tox =1, and y = x — 2

from x = 1to x = 4. Thus, we use two integrals:

1 4
Azfom—<—ﬁ)]clx+/1 JX— (x — 2)dx

1 4 1 4
=2/ ﬁdx+/ (ﬁ—x+2)dx=[‘§‘x3/2]0+[§x3/2—%x2+2x]1=§.
0 1

(b) To obtain the area by integration with respect to y, we set the representative rectan-
gles horizontally. (See Figure 6.1.8.) The right boundary is the line x =y + 2 and

the left boundary is the curve x = y2. Since y ranges

from —1to 2,

m 295

2 2
A= /l[(y +2)-yldy =3y +2y - 3y°| =%
In this instance integration with respect to y was the more efficient route to take.
EXERCISES 6.1
Exercises 1-14. Sketch the region bounded by the curves. Rep- 18. x +y =2y?, y=x5
resent the area of the region by one or more integrals (a) in terms 19.x+y—y3=0, x—y+y>=0.
of x; (b) in terms of y. Evaluation not required. 20.8x = y3, 8 = 2y° +y2 —2y.
Ly=x* y=x+2 2.y =x% y=—4x 21.y =cosx, y=sec’X, X € [-n/4 n/4].
3.y=x% y=2x% 4y=yx, y=xi 22.y =sin®x, y=tan’x, x e [-m/4 /4]
5.y=—VX, y=x-6, y=0. HINT: sin?x = (1 — cos 2x).
6.x=y% x=3y+2 7.y=Ix], 3y—-x=8 23.y =2cosx, y=sin2x, X e [-x, x].
8.y=x, y=2x, y=3. 24.y =sinx, y=sin2x, x e [0,7/2].
9.x+4=y> x=5 10.x =1yl, x=2. 25.y =sin*xcosx, x € [0,7/2].
1lLy=2x, x+y=9, y=x-1 26.y =sin2x, y=cos2x, X € [0, /4]
_ 43 — 2 _
L2.y= X1’3 y=x jx L Exercises 27-28. Use integration to find the area of the triangle
B.y=x"% y=x"+x-1 with the given vertices.
4. y=x+1 y+3x=13, 3y+x+1=0. 27.(0,0), (1, 3), (3, 1).

Exercises 15-26. Sketch the region bounded by the curves and
calculate the area of the region.

15. 4x =4y —y?, 4x —y =0.
16. x +y2—4=0, x+y=2.
17. x =y?, x=12—-2y2

28.(0,1),(2,0),(3,4).

29. Use integration to find the area of the trapezoid with vertices

(-2,-2),(1,1),(5

1. (7. -2).

30. Sketch the region bounded by y = x3,y = —x, and y = 1.
Find the area of the region.
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31. Sketch the region bounded by y =6 — x2, y = x (x < 0),
and y = —x(x > 0). Find the area of the region.

32. Find the area of the region bounded by the parabolas x? =
4py and y? = 4px, p a positive constant.

33. Sketch the region bounded by y = x?and y = 4. This region
is divided into two subregions of equal area by a line y = c.
Find c.

34. The region between y =cosx and the x-axis for x €
[0, /2] is divided into two subregions of equal area by a
line x = c. Find c.

Exercises 35-38. Represent the area of the given region by one
or more integrals.

35. The region in the first quadrant bounded by the x-axis, the
line y = +/3x, and the circle x? + y? = 4.

36. The region in the first quadrant bounded by the y-axis, the
line y = +/3x, and the circle x2 + y2 = 4.

37. The region determined by the intersection of the circles
x2+y2=4and (x —2)2 4+ (y —2)2 = 4.

38. The region in the first quadrant bounded by the x-axis, the
parabola y = x2/3, and the circle x? + y? = 4,

39. Take a > 0,b > 0, n a positive integer. A rectangle with
sides parallel to the coordinate axes has one vertex at the
origin and opposite vertex on the curve y = bx" at a point
where x = a. Calculate the area of the part of the rectangle
that lies below the curve. Show that the ratio of this area to
the area of the entire rectangle is independent of a and b, and
depends solely on n.

40. (a) Calculate the area of the region in the first quadrant
bounded by the coordinate axes and the parabola y =
14+a—ax?a>0.

(b) Determine the value of a that minimizes this area.

b41. Use a graphing utility to draw the region bounded by the

curves y = x* —2x? and y = x + 2. Then find (approxi-
mately) the area of the region.

942. Use a graphing utility to sketch the region bounded by the

curvesy = sinxandy = |x — 1|. Thenfind (approximately)
the area of the region.

43. A section of rain gutter is 8 feet long. Vertical cross sec-
tions of the gutter are in the shape of the parabolic region
bounded by y = ‘—;x2 and y = 4, with x and y measured in
inches. What is the volume of the rain gutter?

HINT: V = (cross-sectional area) x length.

44, (a) Calculate the area A of the region bounded by the graph

of f(x) = 1/x? and the x-axis with x € [1, b].
(b) What happensto Aasb — co?

45, (a) Calculate the area A of the region bounded by the graph

of f(x) = 1//X and the x-axis with x € [1, b].
(b) What happensto Aasb — oco?

46. (a) Letr > 1, r rational. Calculate the area A of the region
bounded by the graph of f(x) = 1/x" and the x-axis
with x € [1, b]. What happens to Aas b — co?

(b) Let 0 <r < 1,r rational. Calculate the area A of the
region bounded by the graph of f(x) = 1/x" and the
x-axis with x € [1, b]. What happens to Aas b — co?

M 6.2 VOLUME BY PARALLEL CROSS SECTIONS;
DISKS AND WASHERS

Figure 6.2.1 shows a plane region 2 and a solid formed by translating 2 along a line
perpendicular to the plane of €. Such a solid is called a right cylinder with cross

section €.

Figure 6.2.1

If © has area A and the solid has height h, then the volume of the solid is a simple

product:

V=A-h.

(cross-sectional area - height)
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Two elementary examples are given in Figure 6.2.2.

V = (nr2)h = (cross-sectional area) - height V= (I-w) - h = (cross-sectional area) - height

Figure 6.2.2

To calculate the volume of a more general solid, we introduce a coordinate axis and
then examine the cross sections of the solid that are perpendicular to that axis. In Figure
6.2.3 we depict a solid and a coordinate axis that we label the x-axis. As in the figure,
we suppose that the solid lies entirely between x = a and x = b. The figure shows an
arbitrary cross section perpendicular to the x-axis. By A(x) we mean the area of the
cross section at coordinate x.

If the cross-sectional area A(x) varies continuously with x, then we can find the
volume V of the solid by integrating A(x) from x = a to x = b:

A (x)
/ area

Figure 6.2.3

b
©.2.1) v :/ A(X) dx.
a

DERIVATION OF THE FORMULA Let P = {Xo, X1, X2, ..., Xn} be a partition of [a, b].
On each subinterval [x;_1, X;] choose a point x;*. The solid from x;_; to x; can be
approximated by a slab of cross-sectional area A(x;") and thickness Ax;. The volume
of this slab is the product

A(Xi*)AXi. (Figure 6.2.4)

The sum of these products,

Figure 6.2.4

A(XD) Axs + A(X3) AXz + - - + A(XT) Axn,

is a Riemann sum which approximates the volume of the entire solid. As ||P| — O,
such Riemann sums converge to

/ab Ax)dx. O

Remark  (Average-value point of view) Formula (6.2.1) can be written

6.2.2) V = (average cross-sectional area) - (b — a).
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Example 1 Find the volume of the pyramid of height h given that the base of the
pyramid is a square with sides of length r and the apex of the pyramid lies directly
above the center of the base

SOLUTION  Set the x-axis as in Figure 6.2.5. The cross section at coordinate x is a
square. Let s denote the length of the side of that square. By similar triangles

= %r and therefore S = r h
hox ~h =X

ol
!

=
o

Figure 6.2.5

The area A(x) of the square at coordinate x is s2 = (r?/h?)(h — x)?. Thus

" re " 2 r2f (h—x)° " 1

Example 2 The base of a solid is the region enclosed by the ellipse

X2 y2

Find the volume of the solid given that each cross section perpendicular to the x-axis
is an isosceles triangle with base in the region and altitude equal to one-half the base.

SOLUTION  Set the x-axis as in Figure 6.2.6. The cross section at coordinate X is an
isosceles triangle with base P Q and altitude %P Q. The equation of the ellipse can be
written

Since
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/\\\\\\\\ -
/>‘\\‘l
X=-a // 2y
-
X P
X=a
Figure 6.2.6

the isosceles triangle has area

We can find the volume of the solid by integrating A(x) fromx = —atox = a:

V =/1A(x)dx =2/a A(x)dx

_ 2 02T, X3 4,
/(a )dx—a12 [ax—g}():gab. a
Example 3 The base of a solid is the region between the parabolas
x=y? and x=3-2y%

Find the volume of the solid given that the cross sections perpendicular to the x-axis
are squares.

SOLUTION  The solid is pictured in Figure 6.2.7. The two parabolas intersect at (1, 1)
and (1, —1). From x = 0 to x = 1 the cross section at coordinate x has area

A(X) = (2y)? = 4y? = 4x.

x=0 x=1 x=3
Figure 6.2.7

= 299
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(Here we are measuring the span across the first parabola x = y2.) The volume of the
solidfromx =0tox =11is

Vi = /014x dx = [2x2]; —2.

From x = 1to x = 3, the cross section at coordinate x has area
A(X) = (2y)? = 4y? = 2(3 — X) = 6 — 2x.

(Here we are measuring the span across the second parabola x = 3 — 2y?.) The volume
of the solid fromx = 1tox = 3 is

3 3
J— —_— —_— — 2 f—
vz_/1 (6 — 2x) dx [ax X ]1 4.
The total volume is

Vi+Vo,=6. 1

Solids of Revolution: Disk Method

Suppose that f is nonnegative and continuous on [a, b]. (See Figure 6.2.8.) If we revolve
about the x-axis the region bounded by the graph of f and the x-axis, we obtain a solid.

y y

T =

Figure 6.2.8

The volume of this solid is given by the formula

(6.2.3) V = /bn[f(x)]zdx.

VERIFICATION The cross section at coordinate x is a circular disk of radius f(x). The
area of this disk is [ f (x)]°. We can get the volume of the solid by integrating this
functionfromx =atox =b. O

Among the simplest solids of revolution are the circular cone and sphere.

Example 4 We can generate a circular cone of base radius r and height h by
revolving about the x-axis the region below the graph of

f(x) = %X, 0<x<h. (Figure 6.2.9)
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y
(h, )
y = X
| -
P | . _ <.
I | TN
| : |
Figure 6.2.9
By (6.2.3),
h 2 2 ph 2 ry3h
r r r2 [x
volumeofcone:/ 7| —x dx:L/ xdx = 2 | 2 = 1nr¢h. O
. " lh hz J, he |3,

Example 5 A sphere of radius r can be obtained by revolving about the x-axis the
region below the graph of

f(x) =vr2—x2 —r<x<r. (Draw a figure.)

Therefore
.

2,2 2, 1,3] 4
volume of sphere :/ m(ré —x?)dx = n[r X — §x3] = gmrd.
—r =r

NOTE: Archimedes derived this formula (by somewhat different methods) in the third
century B.c.

We can interchange the roles played by x and y. By revolving about the y-axis the
region of Figure 6.2.10, we obtain a solid of cross-sectional area A(y) = 7 [g(y)]? and
volume

d
.24 V= [ x[g(y)I2 dy.

«

A

Figure 6.2.10

m 301
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Example 6 Let  be the region bounded below by the curve y = x?/® 4 1, bounded
to the left by the y-axis, and bounded above by the line y = 5. Find the volume of the
solid generated by revolving 2 about the y-axis. (See Figure 6.2.11.)

y

(8, 5)

y=x28+1

Figure 6.2.11

SOLUTION To apply (6.2.4) we need to express the right boundary of Q as a
function of y:

y=x24+1 gives x?®*=y—1 andthus x = (y —1)*2
The volume of the solid obtained by revolving €2 about the y-axis is given by the integral

5 5
_ 24y _ _\3/272
v—/1 [o(y)] dy-n/l[(y 1)¥2Pdy

o -7
_n/1(y—l)3dy_n[ 2 i|1_647r Q

Solids of Revolution: Washer Method

The washer method is a slight generalization of the disk method. Suppose that f and g
are nonnegative continuous functions with g(x) < f(x) for all x in [a, b]. (See Figure
6.2.12.) If we revolve the region 2 about the x-axis, we obtain a solid. The volume of

Figure 6.2.12
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this solid is given by the formula

(6.2.5)

b
V= / ([ 0OF — [g)1) dx.

(washer method about the x-axis)

VERIFICATION The cross section at coordinate x is a circular ring (in this setting we call
it a washer) of outer radius f (x), inner radius g(x), and area

A(x) = 7 [F (I = 7 [90)TF = = ([f )1 — [9()]%).

We can get the volume of this solid by integrating A(x) fromx =atox =b. 1

As before, we can interchange the roles played by x and y. By revolving the region
depicted in Figure 6.2.13 about the y-axis, we obtain a solid of volume

(6.2.6)

d
V= / Z([(FO)F — [G(y)P) dy.

(washer method about the y-axis)

-l (y) —]
of |

y |5 __

Figure 6.2.13

Example 7 Find the volume of the solid generated by revolving the region between

y=x* and y=2x

(a) about the x-axis. (b) about the y-axis.

SOLUTION  The curves intersect at the points (0, 0) and (2, 4).

(&) We refer to Figure 6.2.14. For each x from 0 to 2, the x cross section is a washer of
outer radius 2x and inner radius x2. By (6.2.5),

2 2
v :/ 7[(2x)? — (x?)?]dx = 7[/ (4x? — x*dx = n[gx3 — %x5] =%
0 0

= 303
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y
(2, 4)
C y
‘——F o - (2,.4)
{ \
7‘; - i
S
/1
( ‘ :
Wy
Figure 6.2.14 Figure 6.2.15

(b) The solid is depicted in Figure 6.2.15. For each y from 0 to 4, the y cross section is
a washer of outer radius ,/y and inner radius %y. By (6.2.6),

v =/04n (V92 = (3y)*] dy =n/04(y— 1y?) dy

4
= x4y’ -4y} =r. O

EXERCISES 6.2

Exercises 1-16. Sketch the region €2 bounded by the curves and
find the volume of the solid generated by revolving this region
about the x-axis.

lLy=x, y=0, x=1L1

2.x+y=3, y=0, x=0

3y=x? y=9 4, y=x3 y=8, x=0.
5.y =X, y=x5 6.y =x% y=x8
7.y=x% x+y=10, y=1

B.y=VX, x+y=6, y=1

9.y=x% y=x-+2 10.y=x% y=2-x
11.y=+v4—x2, y=0. 12.y=1—1|x|, y=0.
13.y=secx, x=0, x=gz7, y=0.
14.y=cscx, x=31m, x=37, y=0.

15.y =cosx, y=Xx+1 x= 1.

[N

16.y =sinx, x=3m, x=3m, y=0.
Exercises 17-26. Sketch the region 2 bounded by the curves and

find the volume of the solid generated by revolving this region
about the y-axis.

17.y=2x, y=4, x=0.
18. x+3y=6, x=0, y=0.
19.x=y% x=8, y=0.

20.
22.
24,
25.
217.

28.

29.

30.

3L

xzyZ’ X = 4. 21_y:\/§’ y:x3.
y=x2 y=x3 23.y=X, y=2X, X=4
X+y=3 2x+y=6, x=0.

x=y2, x=2-y2  26.x=9-y2 x=0.

The base of a solid is the disk bounded by the circle
x2 + y? =r2. Find the volume of the solid given that the
cross sections perpendicular to the x-axis are: (a) squares;
(b) equilateral triangles.

The base of a solid is the region bounded by the ellipse
4x% +9y? = 36. Find the volume of the solid given that
cross sections perpendicular to the x-axis are: (a) equilateral
triangles; (b) squares.

The base of a solid is the region bounded by y = x? and
y = 4. Find the volume of the solid given that the cross sec-
tions perpendicular to the x-axis are: (a) squares; (b) semi-
circles; (c) equilateral triangles.

The base of a solid is the region between the parabolas
x = y2and x = 3 — 2y?. Find the volume of the solid given
that the cross sections perpendicular to the x-axis are:

(a) rectangles of height h;  (b) equilateral triangles;
(c) isosceles right triangles, hypotenuse on the xy-plane.

Carry out Exercise 29 with the cross sections perpendicular
to the y-axis.



32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.
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Carry out Exercise 30 with the cross sections perpendicular
to the y-axis.

The base of a solid is the triangular region bounded by the
y-axis and the lines x + 2y = 4, x — 2y = 4. Find the vol-
ume of the solid given that the cross sections perpendicular
to the x-axis are: (a) squares; (b) isosceles right triangles
with hypotenuse on the xy-plane.

The base of a solid is the region bounded by the ellipse
h?x? + a?y? = a?b?. Find the volume of the solid given that
the cross sections perpendicular to the x-axis are: (a) isosce-
les right triangles, hypotenuse on the xy-plane; (b) squares;
(c) isosceles triangles of height 2.

The base of a solid is the region bounded by y = 2+/sinx
and the x-axis with x € [0, /2]. Find the volume of the
solid given that cross sections perpendicular to the x-axis are:
(a) equilateral triangles; (b) squares.

The base of a solid is the region bounded by y = sec x and
y = tanx with x € [0, 7/4]. Find the volume of the solid
given that cross sections perpendicular to the x-axis are:
(a) semicircles; (b) squares.

Find the volume enclosed by the surface obtained by revolv-
ing the ellipse b?x? 4- a?y? = a%h? about the x-axis.

Find the volume enclosed by the surface obtained by revolv-
ing the ellipse b?x? + a?y? = ab? about the y-axis.
Derive a formula for the volume of the frustum of a right
circular cone in terms of the height h, the lower base radius
R, and the upper base radius r. (See the figure.)

Find the volume enclosed by the surface obtained by re-
volving the equilateral triangle with vertices (0, 0), (a, 0),
(3a. 3+/3a) about the x-axis.

A hemispherical basin of radius r feet is being used to store
water. To what percent of capacity is it filled when the water
is:

(a) ir feet deep? (b) ir feet deep?

A sphere of radius r is cut by two parallel planes: one, a units
above the equator; the other, b units above the equator. Find
the volume of the portion of the sphere that lies between the
two planes. Assume thata < b.

A sphere of radius r is cut by a plane h units above the equa-
tor. Take 0 < h < r. The top portion is called a cap. Derive
the formula for the volume of a cap.

A hemispherical punch bowl 2 feet in diameter is filled to
within 1 inch of the top. Thirty minutes after the party starts,
there are only 2 inches of punch left at the bottom of the bowl.
(@) How much punch was there at the beginning?

(b) How much punch was consumed?

45.

46.

47.

48.

Let f(x) =x"22forx > 0.

(a) Sketch the graph of f.

(b) Calculate the area of the region bounded by the graph
of f and the x-axis fromx = 1tox = b. Take b > 1.

(c) The region in part (b) is rotated about the x-axis. Find
the volume of the resulting solid.

(d) What happens to the area of the region as b — co?
What happens to the volume of the solid?

This is a continuation of Exercise 45.

(a) Calculate the area of the region bounded by the graph of
f and the x-axisfromx =ctox = 1. Take0 < ¢ < 1.

(b) The region in part (a) is rotated about the x-axis. Find
the volume of the resulting solid.

(c) What happens to the area of the region as ¢ — 01?
What happens to the volume of the solid?

With x and y measured in feet, the configuration shown in the
figure is revolved about the y-axis to form a parabolic con-
tainer, no top. Given that a liquid is poured into the container
at the rate of two cubic feet per minute, how fast is the level of
the liquid rising when the depth of the liquid is 1 foot? 2 feet?

y
3
2 y=x2-1
1=
|
1 2 X

Let x = f(y) be continuous and positive on the interval
[0, b]. The configuration in the figure is revolved about the
y-axis to form a container, no top. Suppose that the con-
tainer is filled with water which then evaporates at a rate
proportional to the area of the surface of the water. Show
that the water level drops at a constant rate.

o <

x= f(y)

. Set f(x) = x%and g(x) = 2x,x > 0.

(a) Use a graphing utility to display the graphs of f and g
in one figure.

(b) Use a CAS to find the points of intersection of the two
graphs.

(c) UseaCAS to find the area of the region bounded by the
two graphs.
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50.

51.

52.

53.

54.

55.

56.

57.

(d) The region in part (c) is revolved about the x-axis. Use
a CAS to find the volume of the resulting solid.

Carry out Exercise 49 taking f(x) = +/2x — 1 and g(x) =
X2 —4x + 4.

The region between the graph of f(x) = /X and the x-axis,
0 < x < 4, isrevolved about the line y = 2. Find the volume
of the resulting solid.

The region bounded by the curves y = (x —1)? and
y =x+1 is revolved about the line y = —1. Find the
volume of the resulting solid.

The region between the graph of y = sinx and the x-axis,
0 < x < m,isrevolved aboutthe liney = 1. Find the volume
of the resulting solid.

The region bounded by y =sinx and y = cosx, with
/4 < x <, is revolved about the line y = 1. Find the
volume of the resulting solid.

The region bounded by the curves y = x2 — 2x and y = 3x
is revolved about the line y = —1. Find the volume of the
resulting solid.

Find the volume of the solid generated by revolving the
region bounded by y = x? and x = y?: (a) about the line
x = —2; (b) about the line x = 3.

Find the volume of the solid generated by revolving the
region bounded by y? = 4x and y = x: (a) about the x-axis;
(b) about the line x = 4.

58. Find the volume of the solid generated by revolving the
region bounded by y = x? and y = 4x: (a) about the line
x = 5; (b) about the line x = —1.

59. Find the volume of the solid generated by revolving the
region OAB in the figure about: (a) the x-axis; (b) the line
AB; (c) the line CA; (d) the y-axis.

y
C(0, 8) A4, 8)
Ny = x32
0 B(4, 0) X

60. Find the volume of the solid generated by revolving the
region OAC in the figure accompanying Exercise 59 about:
(a) the y-axis; (b) the line CA, (c) the line AB; (d) the x-axis.

M 6.3 VOLUME BY THE SHELL METHOD

Figure 6.3.1 shows the region 2 below the curve y = 5x — x® from x =0 to x = 1.
By revolving €2 about the y-axis we obtain a solid of revolution. This solid has a certain
volume. Call it V. To calculate V by the washer method we would have to express
the curved boundary of € in the form x = ¢(y), and this we can’t do: given that
y = 5x — x°, we have no way of expressing x in terms of y. Thus, in this instance,
the washer method fails. Below we introduce another method of calculating volume, a
method by which we can avoid the difficulty just cited. It is called the shell method.
To describe the shell method of calculating volumes, we begin with a solid cylinder
of radius R and height h, and from it we cut out a cylindrical core of radius r. (Figure

Since the original cylinder has volume 7 R?h and the piece removed has volume
wr2h, the cylindrical shell that remains has volume

6.3.1) 7R2%h — 7r’h = 7h(R +r)(R — ).

Now let [a, b] be an interval with a > 0 and let f be a nonnegative function con-
tinuous on [a, b]. If the region bounded by the graph of f and the x-axis is revolved
about the y-axis, then a solid is generated. (Figure 6.3.3) The volume of this solid can

y
4 —
Q
1 g 6.3.2)
Figure 6.3.1
aFr——._
We will use this shortly.
h
v be obtained from the formula
Figure 6.3.2

b
6.3.2) V =/ 2 x f(x)dx.
a
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This is called the shell-method formula.

y y

Figure 6.3.3

DERIVATION OF THE FORMULA We take a partition P = {Xq, X1, ..., X} of [a, b] and con-
centrate on what happens on the ith subinterval [x;_1, xj]. Recall that when we form a
Riemann sum we are free to choose x;* as any point from [x;_1, X;]. For convenience we

take x;" as the midpoint %(xi,l + Xi). The representative rectangle of height f(x;*) and
base Ax; (see Figure 6.3.2) generates acylindrical shell of height f (x;*), innerradiusr =
Xj_1,and outer radius R = x;. We can calculate the volume of this shell by (6.3.1). Since

h = f(x) and R+r =X +Xi_1 = 2X and R—r = AX,
the volume of this shell is
Th(R+r)(R —r) = 27x" f (X) AX.

The volume of the entire solid can be approximated by adding up the volumes of these
shells:

V = 2] f(X]) Axy + 215 £ (X3) AXp + -+ - + 27X T (X2) AXq.

The sum on the right is a Riemann sum. As || P || — 0, such Riemann sums converge to
b
/ 2rxf(x)dx.
a

Remark (Average-value point of view) To give some geometric insight into the shell-
method formula, we refer to Figure 6.3.4. As the region below the graph of f is revolved
about the y-axis, the vertical line segment at x generates a cylindrical surface of radius x,
height f (x), and lateral area 2z x f (x). As x ranges from x = a to x = b, the cylindrical
surfaces form a solid. The shell-method formula

b
\Y :/ 2 x f(x)dx
a

: ‘4X

f(x) f(x)

l

Figure 6.3.4
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\
\
\
\
1 x 4 X

Figure 6.3.5

states that the volume of this solid can be expressed by writing

633 Vv — ( the average lateral area of ) (b—a)

the component cylindrical surfaces

This is the point of view we’ll take.

Example 1 The region bounded by the graph of f(x) = 4x — x? and the x-axis
from x =1 to x = 4 is revolved about the y-axis. Find the volume of the resulting
solid.

SOLUTION  See Figure 6.3.5. The line segment x units from the y-axis, 1 < x < 4,
generates a cylinder of radius x, height f (x), and lateral area 2z x f (x). Thus

4 4 4
V= / 27x(4x — x?)dx = Zn/ (4x? — x3)dx = 271[%X3 — %x“]l =87 0O
1 1
The shell-method formula can be generalized. With 2 the region from x = a to
x = b shown in Figure 6.3.6, the volume generated by revolving 2 about the y-axis is
given by the formula

b
6.3.4) V = / 2ax[f(x) — g(x)] dx. (shell method about the y-axis)
a

The integrand 2z x[ f (x) — g(x)] is the lateral area of the cylindrical surface, which is
at a distance x from the axis of rotation.

As usual, we can interchange the roles played by x and y. With 2 the region from
y = ctoy = d shown in Figure 6.3.7, the volume generated by revolving €2 about the
x-axis is given by the formula

d
6.3.5) V = / 2 y[F(y) — G(y)]dy. (shell method about the x-axis)
e

y x=Gl(y) x = F(y)

F(y)-G(y)

.

y =f(x)

Figure 6.3.6 Figure 6.3.7
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The integrand 2y [F(y) — G(y)] is the lateral area of the cylindrical surface, which
is at a distance y from the axis of rotation.

Example 2 Find the volume of the solid generated by revolving the region between
y=x* and y=2x
(a) about the y-axis, (b) about the x-axis.

SOLUTION  The curves intersect at the points (0, 0) and (2, 4).

(&) We refer to Figure 6.3.8. For each x from 0 to 2 the line segment at a distance x
from the y-axis generates a cylindrical surface of radius x, height (2x — x?), and
lateral area 27 x(2x — x?). By (6.3.4),

2 2
V= f 27x(2x — x%)dx = Zn/ (2x? — x3)dx = 2n[§x3 — %x“]z =
0 0 0

(b) We begin by expressing the bounding curves as functions of y. We write x = ,/y
for the right boundary and x = %y for the left boundary. (See Figure 6.3.9.) For
each y from 0 to 4 the line segment at a distance y from the x-axis generates a
cylindrical surface of radius y, height (,/y — %y), and lateral area 2y (,/y — %y).

By (6.3.5),

4 4
Vv =/O 2ny(f—%y)dy=ﬂ/0 (2y*% — y?)dy

_ ﬂ[gywz . %yS] _ 64

4
=Fr. U
o 15

Figure 6.3.8 Figure 6.3.9

Example 3 A round hole of radius r is drilled through the center of a half-ball of
radius a (r < a). Find the volume of the remaining solid.

SOLUTION A half-ball of radius a can be formed by revolving about the y-axis the
first quadrant region bounded by x? 4 y? = a%. What remains after the hole is drilled
is the solid formed by revolving about the y-axis only that part of the region which is
shaded in Figure 6.3.10.

X2 +y2=a?
r a X
Figure 6.3.10
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y (a) By the washer method. We refer to Figure 6.3.11.
Jari—r? ) Jar—r?
varer) V=/ n([ az—yz] —r2>dy=n/ (@ —r?—y?dy
x=VaZ - y? 0 0
/a2—r2
2 2 1 2

yE—- =n[(a —r )y—§y3]0 = tm(a® —r?)%2.

r a % (b) By the shell method. We refer to Figure 6.3.12.

a
Figure 6.3.11 \% =/ 2w xv/a? — x2dx.
r

Setu=2a%2—x2, du=—-2xdx. Atx =r,u=a2a?—r?;atx =a,u = 0. There-
fore,

a 0
(r,NaZ—r2) V = / 2rxva? —x2dx = —n/
r a

a2_r2
ut?du = Jr/ ut?du
2_p2 0

y=aZ - x2 a?—r?
_ n[%uw]o = 27 (a® — r2)2,
Ifr =0, noholeisdrilledand V = %na3, the volume of the entire half-ball.
r X a

In our last example we revolve a region about a line parallel to the y-axis.

Figure 6.3.12 . -
9 Example 4 The region Q between y = /X and y = x?,0 < x < 1, is revolved
about the line x = —2. (See Figure 6.3.13.) Find the volume of the solid which is
generated.
y
)
1— y =X
y =x2
Q
| | |
_ X 1 X
X=-2
Figure 6.3.13

SOLUTION We use the shell method. For each x in [0, 1] the line segment at x
generates a cylindrical surface of radius x 4 2, height /X — x?, and lateral area
21 (X + 2)(y/X — x?). Therefore

1
v =/ 277 (X + 2)(v/X — x?) dx
0
1
=27r/ (x¥% 4 2x1/2 — x® — 2x?) dx
0

1
— 2v5/2 4 4y3/2 _ ly4 23| _ 49
_Zn[5x + 3X X 5X ]0_ 27 d
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Remark We began this section by explaining that the washer method does not provide
a way for us to calculate the volume generated by revolving about the y-axis the region
shown in Figure 6.3.1. By the shell method we can easily calculate this volume:

1 1
V = / 27X (5% — x°)dx = 271/ (5x? — x®) dx = 2n[§x3 —
0 0

EXERCISES 6.3

1
A
x| = Gx 0

~ie

Exercises 1-12. Sketch the region 2 bounded by the curves and
use the shell method to find the volume of the solid generated
by revolving 2 about the y-axis.

lLy=x, y=0 x=1

2.x4+y=3, y=0, x=0.

Jy=yX, x=4, y=0.

4.y=x3 x=2, y=0

5y=%, y=x3 6.y =x2 y=x3
7T.y=x, y=2x, y=4

8.y=x, y=1 x+y=6.

9x=y2 XxX=y+2 10.x =y2, x=2-y.
Lx=,9-y2 x=0.

12.x=1y], x=2-Yy2

Exercises 13-24. Sketch the region €2 bounded by the curves and
use the shell method to find the volume of the solid generated
by revolving 2 about the x-axis.

13.x4+3y=6, y=0, x=0.
4. y=x, y=5 x=0.
15,y =x% y=09

17.y = JX, y=x5

19.y =x%, y=x+2.
2L.y=x, y=2x, x=4.
22.y =X, xX4+y=8, x=1.

23.y=+1—x2, x+y=1

24,y =x%, y=2—|x|.

Exercises 25-30. The figure shows three regions within the unit
square. Express the volume obtained by revolving the indicated
region about the indicated line: (a) by an integral with respect to

X; (b) by an integral with respect to y. Calculate each volume by
evaluating one of these integrals

16.y=x3 y=8, x=0.
18.y =x?, y=x/3
20.y=x% y=2-x.

y

(1,1

1

26. Q1, the liney = 2.
27. Q5, the x-axis. 28. Q,, the line x = —3.
29. Q3, the y-axis. 30. Q3, the liney = —1.

31. Use the shell method to find the volume enclosed by the sur-
face obtained by revolving the ellipse b?x? + a%y? = ab?
about the y-axis.

32. Carry out Exercise 31 with the ellipse revolved about the
X-axis.

33. Find the volume enclosed by the surface generated by re-
volving the equilateral triangle with vertices (0, 0), (a, 0),
(3a, 2+/3a) about the y-axis.

34. A ball of radius r is cut into two pieces by a horizontal plane
a units above the center of the ball. Determine the volume
of the upper piece by using the shell method.

35. Carry out Exercise 59 of Section 6.2, this time using the shell
method.

36. Carry out Exercise 60 of Section 6.2, this time using the shell
method.

37. (a) Verify that F(x) = x sin x 4+ cosx is an antiderivative
of f(x) = xcosx.
(b) Find the volume generated by revolving about the y-
axis the region between y = cosx and the x-axis, 0 <
X <m/2.
38. (a) Sketch the region in the right half-plane that is outside
the parabola y = x? and is between the lines y = x + 2
andy = 2x — 2.
(b) The region in part (a) is revolved about the y-axis. Use
the method that you find most practical to calculate the
volume of the solid generated.

For Exercises 39-42, set

25. Q4, the y-axis.

B V3x, 0<x<1
f(x)_{ 4-x2, 1<x<2,
and let © be the region between the graph of f and the x-axis.
(See the figure.)

(1,43)
y=V3x

y=V4-x2
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39.

40.
41.

42.

43.

44,

45.

46.

47.

Revolve 2 about the y-axis. through the paraboloid. Find the volume of the solid that re-
(a) Express the volume of the resulting solid as an integral mains: (a) by integrating with respect to x; (b) by integrating

in x. with respect to y.
(b) Express the volume of the resulting solid as an integral & 48. (a) Draw the graph of f(x) = sin7x?, x € [-3, 3].

iny. (b) Let €2 be the region bounded by the graph of f and the
(c) Calculate the volume of the solid by evaluating one of x-axis with x € [0, 1]. If Q is revolved about the x-axis

these integrals. and the disk method is used to calculate the volume, then
Carry out Exercise 39 for Q revolved about the x-axis. the resulting integral cannot be readily evaluated by the
Carry out parts (a) and (b) of Exercise 39 for © revolved fu_ndamental theorem of calculus. Use a CAS to estimate
about the line x = 2. this v_olume. .

. (c) If @ is revolved about the y-axis and the shell method
Carry out parts (a) and (b) of Exercise 39 for 2 revolved is used to calculate the volume, then the resulting in-
about the liney = —1. tegral can be evaluated by the fundamental theorem of
Let  be the circular disk (x —b)> +y? <a? 0 <a < b. calculus. Calculate this volume.
The doughnut-shaped region generated by revolving 2 about 549. Set f(x) = sinx and g(x) = %x.
they-ams_@ca!led ator_us. Express the volume of the torus as: () Use a graphing utility to display the graphs of f and g
(a) adefinite integral in x. in one figure.
(b) a definite integral in y. (b) Use a CAS to find the points of intersection of the two
The circular disk x2 + y? < a2, a > 0, is revolved about the graphs.
line x = a. Find the volume of the resulting solid. (c) UseaCAS to find the area of the region bounded by the
Letrand h be positive numbers. The region in the first quad- two graphs. _ _
rant bounded by the line x /r + y/h = 1 and the coordinate (d) The region in part (c) is revolved about the y-axis. Use
axes is rotated about the y-axis. Use the shell method to de- a CAS to find the volume of the resulting solid.
rive the formula for the volume of a cone of radius r and _ _3_1
height h. PSO. Set f(x) = 7()( 17 and g(x) = 5 — 3X.
A hole is drilled through the center of a ball of radius r, leav- (a) Use a graphing utility to display the graphs of f and g
ing a solid with a hollow cylindrical core of height h. Show in one figure. ) ) )
that the volume of this solid is independent of the radius of (b) Use a CAS to find the points of intersection of the two
the ball. graphs. _ o _
The region € in the first quadrant bounded by the parabola © Useda CtAt‘)S todf'g% ﬂ;ﬁ area ﬁf the region in the first
y = r? — x? and the coordinate axes is revolved about the q gl_l;]a rant boun et y the grapl) Sa bout th is U
y-axis. The resulting solid is called a paraboloid. A vertical () C;rggtlo?' 'g fﬁr (CI) 1S revfotr\]/e a (I)tl'J € }’.’;‘X'S' se
hole of radius a, a < r, centered along the y-axis, is drilled a 0 Tind the volume ot the resulting solid.
M 6.4 THE CENTROID OF A REGION; PAPPUS'S THEOREM
ON VOLUMES
The Centroid of a Region

y In Section 5.9 you saw how to locate the center of mass of a thin rod. Suppose now

Figure 6.4.1

that we have a thin distribution of matter, a plate, laid out in the xy-plane in the shape
of some region Q. (Figure 6.4.1) If the mass density of the plate varies from point to
point, then the determination of the center of mass of the plate requires the evaluation
of a double integral. (Chapter 17) If, however, the mass density of the plate is constant

~ throughout €2, then the center of mass depends only on the shape of 2 and falls on a
point (X, y) that we call the centroid. Unless 2 has a very complicated shape, we can
locate the centroid by ordinary one-variable integration.

We will use two guiding principles to locate the centroid of a plane region. The first
is obvious. The second we take from physics; the result conforms to physical intuition
and is easily justified by double integration

Principle 1: Symmetry

If the region has an axis of symmetry, then the centroid (X, y)

lies somewhere along that axis. In particular, if the region has a center, then the center

is the centroid.
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Principle 2: Additivity If the region, having area A, consists of a finite number of y
pieces with areas Aq, ..., A, and centroids (X1, V;), ..., Xn, V,,), then

64.1) | XA=X1A1+--+XAy and VA=V, A+ -+, A

We are now ready to bring the techniques of calculus into play. Figure 6.4.2 shows
the region €2 under the graph of a continuous function f. Denote the area of Q2 by A.
The centroid (X, y) of 2 can be obtained from the following formulas:

QD
o
>

Figure 6.4.2

b b
6.4.2) 7A=/ xf (x)dx, 7A=/ IF ()2 dx.
a

a

DERIVATION To derive these formulas we choose a partition P = {Xg, X1, ..., Xn} of y
[a, b]. This breaks up [a, b] into n subintervals [x;_1, Xi]. Choosing x;" as the midpoint

of [xi_1, Xi], we form the midpoint rectangles R; shown in Figure 6.4.3. The area of R;

is f(x) Ax;, and the centroid of R; is its center (x;*, % f(x")). By (6.4.1), the centroid

(Xp, ¥,p) of the union of all these rectangles satisfies the following equations:

VoA = L[ F(x5)] Ay + -+ 3[ £ (x3)]* Axn. — ‘\\ -
-1
X

o

X X
*

(Here Ap represents the area of the union of the n rectangles.) As ||P|| — 0, the union i

of rectangles tends to the shape of © and the equations we just derived tend to the .

formulas given in (6.4.2). 1 Figure 6.4.3
Before we start looking for centroids, we should explain what we are looking for.

We learn from physics that, in our world of W = mg, the centroid of a plane region

is the balance point of the plate €2, at least in the following sense: If © has centroid

(X, Y), then the plate 2 can be balanced on the line x = X and it can be balanced on the

liney =Y. If (X,V) is actually in 2, which is not necessarily the case, then the plate

can be balanced at this point.

Example 1 Locate the centroid of the quarter-disk shown in Figure 6.4.4. y

SOLUTION  The quarter-disk is symmetric about the line y = x. Therefore we know
that X =Y. Here

r r r
7A=/0 L1 (0)]%dx =/0 3% =) dx = §[rix - 1] =4t
b(x) = ViT—x? —

Since A = 37r?,

Figure 6.4.4

1.3
_ zr 4r
y = 3 =

127 3.°
27r 3

The centroid of the quarter-disk is the point

4r  4r
37317 /)"
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NOTE: It is almost as easy to calculate X A:

r r
YA:/ xf(x)dx:/ Xv/r2 —x2dx
0 0

0
_ _%/ u2du [u = (r2 — x?), du = —2x dx]
r

2

0
— 1(2,,3/2 _ 1.3
= —§[§“ ! ]rz =3
and proceed from there.
Example 2 Locate the centroid of the triangular region shown in Figure 6.4.5.
SOLUTION  The hypotenuse lies on the line

h
- ——x+h.
y=—px+

Hence

. b b/ h 1

Figure 6.4.5 YA:/ xf(x)dX:/ ——x24hx )dx = Zb%h
0 o \ b 6

and

B b1 L b h2 ) 2h2 ) 1
yA=/0 z[f(X)]ZdX=§/O (@X - xth )dx=6bh2'

Since A = 1bh, we have

ip2h 1ph?
— 6 1 i 6 1
X = =3b  and y = =3h
2bh Zbh
The centroid is the point (3b, zh). =
y Figure 6.4.6 shows the region €2 between the graphs of two continuous functions f

and g. In this case, if 2 has area A and centroid (X, y), then

b b
643 | RA= [ x1100-g00ldx. FA= [ AITOOR - oGP dx.

VERIFICATION  Let Ay be the area below the graph of f and let Ay be the area below the
Figure 6.4.6 graph of g. Then, in obvious notation,
Therefore
b b b
XA =XiAr —XgAq =/ xf(x)dx —/ Xg(x) dx :/ X[ f(x) —g(x)]dx
a a a
and

b b
TA=TiAc = Toho = | ALT00Fdx— [ 3g00P dx

a

b
- / LIF R - [00P) dx. 0

a
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Example 3 Locate the centroid of the region shown in Figure 6.4.7. y @, 4
SOLUTION Here there is no symmetry we can appeal to. We must carry out the N,
calculations. b0 = 2x
2 2 9 V)
A =/ [f(x) — g(x)] dx =/ (2% — x?)dx = [xz— %x3] =4,
0 0 0
2 2 2 g(x) = x2
— 2 3 2 1 4
XZ/O x[f(x)—g(x)]dx:/0 (2x —x)dx=[§x3—zx4]0=§,
2 1 1 ? 2 4 114 1 2 32 "
VA — 1 2 2 _ 1 _ _ 1143 __ 1,5 _ 32
yA —fo 2([FOQI" = [9()]7) dx = zfo (4x° = x")dx = 2[3x 5X ]0 = iE. Figure 6.4.7

Thereforex = 4/3 =1landy

% /% = &. The centroid is the point (1, §).

Pappus’s Theorem on Volumes

All the formulas that we have derived for volumes of solids of revolution are simple
corollaries to an observation made by a brilliant ancient Greek, Pappus of Alexandria
(circa 300 A.D.).

THEOREM 6.4.4 PAPPUS'S THOREM ON VOLUMES'

A plane region is revolved about an axis that lies in its plane. If the region does
not cross the axis, then the volume of the resulting solid of revolution is the
area of the region multiplied by the circumference of the circle described by
the centroid of the region:

V =27RA

where A is the area of the region and R is the distance from the axis of revolution
to the centroid of the region. (See Figure 6.4.8.)

axis
axis

]

centroid

Figure 6.4.8

Basically we have derived only two formulas for the volumes of solids of revolution:

The Washer-Method Formula If the region € of Figure 6.4.6 is revolved about the
x-axis, the resulting solid has volume

b
Vy = [ ([ 0O — [g)) dx.

a

TThis theorem is found in Book VII of Pappus’s Mathematical Collection, largely a survey of ancient
geometry to which Pappus made many original contributions (among them this theorem). Much of what
we know today of Greek geometry we owe to Pappus.
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The Shell-Method Formula 1If the region 2 of Figure 6.4.6 is revolved about the y-axis,
the resulting solid has volume

b
Vy = /a 2o x[f(x) — g(x)] dx.

Note that

b
Ve = / ([ 0OF — [g()1?) dx

a
b
= 271/ S([FOO1 — [9(x)]?) dx = 27YA = 27 RA
a
and
b J—
Vy = / 2ax[f(x) — g(x)]dx = 27XA = 27 RA,
a
as asserted by Pappus. 1

Remark In stating Pappus’s theorem, we assumed a complete revolution. If  is only
partially revolved about a given axis, then the volume of the resulting solid is simply
the area of Q2 multiplied by the length of the circular arc described by the centroid.

Applying Pappus’s Theorem

Example 4 Earlier we saw that the region in Figure 6.4.7 has area ‘—; and centroid

(1, g) Find the volumes of the solids formed by revolving this region (a) about the
y-axis, (b) about the line y = 5.

SOLUTION

(a) We have already calculated this volume by two methods: by the washer method
and by the shell method. The result was V = %n. Now we calculate the volume by

Pappus’s theorem. Here we have R = 1 and A = g Therefore

V =27(1)(3) = .

: s} 8 17 4
(b) Inthiscase R =5 — ¢ = % and A = 3. Therefore
V=27()(3) =&
Example 5 Find the volume of the torus generated by revolving the circular disk

(x —h)Y? +(y —k)? <r? h,k>r (Figure 6.4.9)

(a) about the x-axis, (b) about the y-axis.

SOLUTION  The centroid of the disk is the center (h, k). This lies k units from the
x-axis and h units from the y-axis. The area of the disk is wr2. Therefore

@) Vy = 27 (k)(wr2) = 272kr2.  (b) Vy = 2 (h)(wr?) = 272hr2. O
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y

Figure 6.4.9

Example 6 Locate the centroid of the half-disk
x24+y?<r’  y>0

by appealing to Pappus’s theorem.

SOLUTION  Since the half-disk is symmetric about the y-axis, we know that X = 0.

All we need is y.

If we revolve the half-disk about the x-axis, we obtain a solid ball of volume g‘nr3.

The area of the half-disk is %nrz. By Pappus’s theorem
%’nr3 =21y (%nrz) .

Simple division gives y = 4r/3x.

Remark Centroids of solids of revolution are introduced in Project 6.4.

EXERCISES 6.4

Exercises 1-14. Sketch the region bounded by the curves. Lo-
cate the centroid of the region and find the volume generated by
revolving the region about each of the coordinate axes.

Ly=yx, y=0, x=4.
Ly =x2, y=x13 4.y =x3, y= X
y=2x, y=2, x=3. 6.y=3x, y=6, x=1
y=x242, y=6, x=0.

y=x241, y=1, x=3.

X+ =1 x+y=1

10y =+1—x2, x+y=1

1l.y=x% y=0, x=1, x=2

12.y=x3 y=1 x=8

B3.y=x, x+y=6, y=1

4. y=x, y=2x, x=3.

Exercises 15-24 Locate the centroid of the bounded region
determined by the curves.

2.y=x3 y=0, x=2

© 00 N O W

15.y = 6x — x2, y=x. 16. y=4x —x?, y=2x-3.
17.x2 =4y, x—2y+4=0.

18.y =x%, 2x—y+3=0.

19. y® =x2, 2y =x. 20. y2=2x, y=x—x2
21,y =x?—2x, y+6x —x2

22.y =6x —x?, Xx+y=6.

23.x+1=0, x+y?>=0.

24 x+ Jy=+a, x=0, y=0.

25. Let ©2 be the annular region (ring) formed by the circles
x24+y2 =4

(a) Locate the centroid of 2. (b) Locate the centroid of the
first-quadrant part of Q2. (c) Locate the centroid of the upper
half of Q.

26. The ellipse b?x? 4 a?y? = a’b? encloses a region of area
srab. Locate the centroid of the upper half of the region.
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27. The rectangle in the accompanying figure is revolved about
the line marked I. Find the volume of the resulting solid.

28. In Example 2 of this section you saw that the centroid of the
triangle in Figure 6.4.5 is at the point (b, th).

(a) \erify that the line segments that join the centroid to the
vertices divide the triangle into three triangles of equal
area.

(b) Find the distance d from the centroid of the triangle to
the hypotenuse.

(c) Find the volume generated by revolving the triangle
about the hypotenuse.

29. The triangular region in the figure is the union of two right
triangles Q1, Q2. Locate the centroid: (a) of 1, (b) of Q»,
(c) of the entire region.

y

30. Find the volume of the solid generated by revolving the en-
tire triangular region of Exercise 29. (a) about the x-axis;
(b) about the y-axis.

31. (a) Find the volume of the ice-cream cone of Figure A.

(A right circular cone topped by a solid hemisphere.)
(b) Find X for the region € in Figure B.

y

Figure B

32. Theregion 2 in the accompanying figure consists of a square
S of side 2r and four semidisks of radius r. Locate the cen-
troid of each of the following.

@ . ) . © SUQ. (d) SUQs
(e) SUQUQs. f) SUQLUQ,.
(9) SUQLUQ U Qs.
YA
o
-~ 1RO et é“"'QZ' >
o

33. Give an example of a region that does not contain its
centroid.

34. The centroid of a triangular region can be located without
integration. Find the centroid of the region shown in the
accompanying figure by applying Principles 1 and 2. Then
verify that this point X, ¥ lies on each median of the triangle,
two-thirds of the distance from the vertex to the opposite
side.

(b, h)

(0, 0) (a', 0)

535. Use a graphing utility to draw the graphs of y = ¢X and

y = x3 for x > 0. Let Q be the region bounded by the two

curves. Use a CAS to find:

(a) the area of Q.

(b) the centroid of 2; plot the centroid.

(c) the volume of the solid generated by revolving €2 about
the x-axis.

(d) the volume of the solid generated by revolving €2 about
the y-axis.

[> 36. Exercise 35 with y = x2 — 2x +4and y = 2x + 1.
b37. Use a graphing utility to draw the graphs of y = 16 — 8x

and y = x* — 5x2 + 4. Let Q be the region bounded by the
two curves. Use a CAS to find:

(a) the area of Q. (b) the centroid of 2.

[>38. Exercise 37 with y=2+X+2 and y=3(5x*+

3x —2).
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B PROJECT 6.4 Centroid of a Solid of Revolution

If a solid is homogeneous (constant mass density), then the cen-
ter of mass depends only on the shape of the solid and is called
the centroid. In general, determination of the centroid of a solid
requires triple integration. (Chapter 17.) However, if the solid
is a solid of revolution, then the centroid can be found by one-
variable integration.

Let © be the region shown in the figure and let T be the
solid generated by revolving €2 around the x-axis. By symme-
try, the centroid of T is on the x-axis. Thus the centroid of T is
determined solely by its x-coordinate X.

y

Problem 1. Show that XV = fab ax[f(x)]? dx where V is the
volume of T.

HINT: Use the following principle: if a solid of volume V con-
sists of a finite number of pieces with volumes Vi, Vo, ..., V,
and the pieces have centroids X1, X, ..., X5, thenXV = X;V; +
XoVo + -+ + X V.

Now revolve €2 around the y-axis and let S be the resulting
solid. By symmetry, the centroid of S lies on the y-axis and is
determined solely by its y-coordinate y.

Problem 2. Show that yV = fabnx[f(x)]zdx where V is the
volume of S.

Problem 3. Use the results in Problems 1 and 2 to locate the
centroid of each of the following solids:

(a) A solid cone of base radius r and height h.
(b) A ball of radius r.

(c) The solid generated by revolving about the x-axis the first-
quadrant region bounded by the ellipse b?x2 + a2y? = a2b?
and the coordinate axes.

(d) The solid generated by revolving the region below the graph
of f(x) = /X, x € [0, 1], (i) about the x-axis; (ii) about the
y-axis.

(e) The solid generated by revolving the region below the graph
of f(x) =4 —x2,x € [0, 2], (i) about the x-axis; (ii) about
the y-axis.

M 6.5 THE NOTION OF WORK

We begin with a constant force F directed along some line that we call the x-axis. By
convention we view F as positive if it acts in the direction of increasing x and negative

if it acts in the direction of decreasing x. (Figure 6.5.1)

F>0

- >

F<O0

Figure 6.5.1

Suppose now that an object moves along the x-axis from x = a to x = b subject
to this constant force F. The work done by F during the displacement is by definition

the force times the displacement:

6.5.1) W=F-(b—a).

It is not hard to see that, if F acts in the direction of the motion, then W > 0, but
if F acts against the motion, then W < 0. Thus, for example, if an object slides off a
table and falls to the floor, then the work done by gravity is positive (earth’s gravity
points down). But if an object is lifted from the floor and raised to tabletop level, then
the work done by gravity is negative. However, the work done by the hand that lifts the

object is positive.
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To repeat, if an object moves from x = a to x = b subject to a constant force F,
then the work done by F is the constant value of F times b — a. What is the work done
by F if F does not remain constant but instead varies continuously as a function of x?
As you would expect, we then define the work done by F as the average value of F

timesb — a:
b
6.5.2) W = / f(x)dx. i
a (Figure 6.5.2)

| [} { WN\ANW»D {
a b a b

constant force variaEIe force

W=F.(b-a) W =[F(0 d

Figure 6.5.2

Hooke’s Law

You can sense a variable force in the action of a steel spring. Stretch a spring within
its elastic limit and you feel a pull in the opposite direction. The greater the stretching,
the harder the pull of the spring. Compress a spring within its elastic limit and you
feel a push against you. The greater the compression, the harder the push. According to
Hooke’s law (Robert Hooke, 1635-1703), the force exerted by the spring can be written

F(x) = —kx

where k is a positive number, called the spring constant, and x is the displacement from
the equilibrium position. The minus sign indicates that the spring force always acts in
the direction opposite to the direction in which the spring has been deformed (the force
always acts so as to restore the spring to its equilibrium state).

Remark Hooke’ law is only an approximation, but it is a good approximation for
small displacements. In the problems that follow, we assume that the restoring force of
the spring is given by Hooke’s law.

Example 1 A spring of natural length L, compressed to length %L, exerts a
force Fy.

(a) Find the work done by the spring in restoring itself to natural length.
(b) What work must be done to stretch the spring to length % L?

SOLUTION  Place the spring on the x-axis so that the equilibrium point falls at the
origin. View compression as a move to the left. (See Figure 6.5.3.)

Our first step is to determine the spring constant. Compressed %L units to the left,
the spring exerts a force Fq. Thus, by Hooke’s law

Fo=F(—gL) = —k (—§L) = gkL.
Therefore k = 8Fy/L. The force law for this spring reads

F(x) = — (?) X
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WW

WW

Figure 6.5.3 Figure 6.5.4

(a) To find the work done by this spring in restoring itself to equilibrium, we integrate
F(x) fromx = —iL tox =0

0 0 8F 8Fo [x27° LF
w=/ F(x)dx:/ —(—O)xdx=——0[x—] =2,
L e L L 2], 16

(b) We refer to Figure 6.5.4. To stretch the spring, we must counteract the force of the
spring. The force exerted by the spring when stretched x units is

F(x) =— <?) X

To counter this force, we must apply the opposite force

o= (%)

The work we must do to stretch the spring to Iength L|_ can be found by integrating
—F(x)fromx =0tox = L

L/10 L/10 /8F 8F 27L/10 LE
W:/ —F(x)dx:/ "0 ) xdx = -2 X =—2 10
0 0 L L 2 1o 25

Units The unit of work is the work done by a unit force which displaces an object a
unit distance in the direction of the force. If force is measured in pounds and distance
is measured in feet, then the work is given in foot-pounds. In the Sl system force is
measured in newtons, distance is measured in meters, and work is given in newton-
meters. These are called joules. There are other units used to quantify work, but for our
purposes foot-pounds and joules are sufficient. '

Example 2  Stretched % meter beyond its natural length, a certain spring exerts a
restoring force with a magnitude of 10 newtons. What work must be done to stretch the
spring an additional $ meter?

SOLUTION  Place the spring on the x-axis so that the equilibrium point falls at the
origin. View stretching as a move to the right and assume Hooke’s law: F(x) = —kx.
When the spring is stretched % meter, it exerts a force of —10 newtons (10 newtons

to the left). Therefore, —10 = —k(3) and k = 30.

fThe term “newton” deserves definition. In general, force is measured by the acceleration that it imparts.
The definition of a newton of force is made on that basis; namely, a force is said to measure 1 newton if it
acts in the positive direction and imparts an acceleration of 1 meter per second per second to a mass of 1
kilogram.

m 321
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— == s [ 50
H o
H

50 % AX; 1553;71
H
% Axy |2

AXy | %
X 0
Figure 6.5.5

To find the work necessary to stretch the spring an additional % meter, we integrate

the opposite force —F (x) = 30x fromx = 1 to x = 2:

2/3 2/3
W = / 30x dx = 30[%x2] =5joules. I

1/3 1/3
Counteracting the Force of Gravity

To lift an object we must counteract the force of gravity. Therefore, the work required
to lift an object is given by the equation

(6.5.3) work = (weight of the object) x (distance lifted).

If an object is lifted from level x = a to level x = b and the weight of the object
varies continuously with x—say the weight is w(x)—then the work done by the lifting
force is given by the integral

b
(6.5.4) W =/ w(x) dx.
a

This is just a special case of (6.5.2).

Example 3 A 150-pound bag of sand is hoisted from the ground to the top of a
50-foot building by a cable of negligible weight. Given that sand leaks out of the bag
at the rate of 0.75 pounds for each foot that the bag is raised, find the work required to
hoist the bag to the top of the building.

SOLUTION  Once the bag has been raised x feet, the weight of the bag has been reduced
to 150 — 0.75x pounds. Therefore

50 50
W= [ (150—0.75x)dx = [150x - %(0.75)x2]0
0

= 150(50) — %(0.75)(50)2 = 6562.5 foot-pounds

Example 4 What is the work required to hoist the sandbag of Example 3 given that
the cable weighs 1.5 pounds per foot?

SOLUTION  To the work required to hoist the sandbag of Example 3, which we found
to be 6562.5 foot-pounds, we must add the work required to hoist the cable.

Instead of trying to apply (6.5.4), we go back to fundamentals. We partition the
interval [0,50] as in Figure 6.5.5 and note that the ith piece of cable weighs 1.5Ax;
pounds and is approximately 50 — x;* feet from the top of the building. Thus the work
required to lift this piece to the top is approximately

(1.5)Ax;i (50 — x{) = 1.5(50 — x;) Ax; foot-pounds.

TThe weight of an object of mass m is the product mg where g is the magnitude of the acceleration due to
gravity. The value of g is approximately 32 feet per second per second; in the metric system, approximately
9.8 meters per second per second.
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It follows that the work required to hoist the entire cable is approximately
1.5(50 — x{)Ax1 4+ 1.5(50 — x3)AXz + - - - + 1.5(50 — x) Ax, foot-pounds.

This sum is a Riemann sum which, as max Ax; — 0, converges to the definite integral
50 50
/ 1.5(50 — x)dx = 1.5[50x . %xz]o — 1875.
0

The work required to hoist the cable is 1875 foot-pounds.
The work required to hoist the sandbag by this cable is therefore

6562.5 foot-pounds + 1875 foot-pounds = 8437.5 foot-pounds. 1

Remark We just found that a hanging 50-foot cable that weighs 1.5 pounds per foot
can be lifted to the point from which it hangs by doing 1875 foot-pounds of work. This
result can be obtained by viewing the weight of the entire cable as concentrated at the
center of mass of the cable: The cable weighs 1.5 x 50 = 75 pounds. Since the cable
is homogeneous, the center of mass is at the midpoint of the cable, 25 feet below the
suspension point. The work required to lift 75 pounds a distance of 25 feet is

75 pounds x 25 feet = 1875 foot-pounds.

We have found that this simplification works. But how come? To understand why
this simplification works, we reason as follows: Initially the cable hangs from a sus-
pension point 50 feet high. The work required to lift the bottom half of the cable to
the 25-foot level can be offset exactly by the work done in lowering the top half of the
cable to the 25-foot level. Thus, without doing any work (on a net basis), we can place
the entire cable at the 25-foot level and proceed from there.

(NOTE: In Exercise 31 you are asked to extend the center-of-mass argument to the
nonhomogeneous case.)

Pumping Out a Tank Figure 6.5.6 depicts a storage tank filled to within a feet of the
top with some liquid. Assume that the liquid is homogeneous and weighs ot pounds ¢
per cubic foot. Suppose now that this storage tank is pumped out from above so that
the level of the liquid drops to b feet below the top of the tank. How much work has a
been done?

For each x € [a, b], we let

A(x) = cross-sectional area x feet below the top of the tank,

s(x) = distance that the x-level must be lifted.

We let P = {Xq, X1, ..., Xy} be an arbitrary partition of [a, b] and focus our attention
on the ith subinterval [x;_1, x;i]. (Figure 6.5.7) Taking x;" as an arbitrary point in the ith
subinterval, we have

Figure 6.5.6

A(x;")Ax; = approximate volume of the ith layer of liquid,
o A(x{")Ax; = approximate weight of this volume,

s(x;") = approximate distance this weight is to be lifted.

TThe symbol o is the lowercase Greek letter “sigma.”
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Figure 6.5.8

Figure 6.5.7

Therefore

os(X{")A(x")Ax; = approximate work (weight x distance) required to pump out
this layer of liquid.

The work required to pump out all the liquid can be approximated by adding up all
these terms:

W = os(X7)A(X])AX1 + 0S(X3)A(X3)AXa + - - - + oS(X7) A(X) AXp.

The sum on the right is a Riemann sum. As ||P|| — 0, such Riemann sums converge
to give

b
(6.5.5) W :/ os(x) A(x) dx.
a

We use this result in Example 5.

Example 5 A hemispherical water tank of radius 10 feet is being pumped out.
(See Figure 6.5.8.) Find the work done in lowering the water level from 2 feet below
the top of the tank to 4 feet below the top of the tank given that the pump is placed (a)
at the top of the tank, (b) 3 feet above the top of the tank.

SOLUTION  Take 62.5 pounds per cubic foot as the weight of water. From the figure
you can see that the cross section x feet below the top of the tank is a disk of radius
4/100 — x2. The area of this disk is

A(x) = 7 (100 — x2).

In case (a) we have s(x) = x. Therefore

4
W = / 62.57x(100 — x?) dx = 33,750 7 = 106, 029 foot-pounds.
2



In case (b) we have s(x) = x + 3. Therefore
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4
W = / 62.57 (x + 3)(100 — x?)dx = 67,750 = = 212, 843 foot-pounds.
2

Suggestion: Work out Example 5 without invoking Formula (6.5.5). Simply construct
the pertinent Riemann sums.

EXERCISES 6.5

Exercises 1-2. An object moves along the x-axis coordinatized
in feet under the action of a force of F(x) pounds. Find the work
done by F in moving the object from x = a to x = b.

1.
2.

FX)=x(x2+1)% a=1b=4
F(x)=2xv/x+1, a=3b=8.

Exercises 3-6. An object moves along the x-axis coordina-
tized in meters under the action of a force of F(x) newtons.
Find the work done by F in moving the object from x = a to

X =b.
3. F(X) = X/X2 + 7, a= =3.
4. F(x) = x% + cos 2x; a=0,b=in.
5. F(x) = x +sin2x; a=imb=m.
COS 2X 1
6.F(x):m; a:O,b:En
7. A 600-pound force compresses a 10-inch automobile coil

10.

11.

12.

13.

exactly 1 inch. How much work must be done to compress
that coil to 5 inches?

. Five foot-pounds of work are needed to stretch a certain

spring from 1 foot beyond natural length to 3 feet beyond
natural length. How much stretching beyond natural length
is achieved by a 6-pound force?

. Stretched 4 feet beyond natural length, a certain spring ex-

erts a restoring force of 200 pounds. How much work is re-
quired to stretch the spring: (a) 1 foot beyond natural length?
(b) 13 feet beyond natural length?

A certain spring has natural length L. Given that W is the
work required to stretch the spring from L feet to L +a
feet, find the work required to stretch the spring: (a) from L
feet to L 4 2a feet; (b) from L feet to L + na feet; (c) from
L + a feet to L + 2a feet; (d) from L 4 a feet to L + na
feet.

Find the natural length of a spring given that the work re-
quired to stretch it from 2 feet to 2.1 feet is one-half of the
work required to stretch it from 2.1 feet to 2.2 feet.

A cylindrical tank of height 6 feet standing on a base of ra-
dius 2 feet is full of water. Find the work required to pump
the water: (a) to an outlet at the top of the tank; (b) to a level
of 5 feet above the top of the tank. (Take the weight of water
as 62.5 pounds per cubic foot.)

A cylindrical tank of radius 3 feet and length 8 feet is laid
out horizontally. The tank is half full of oil that weighs
60 pounds per cubic foot.

[> 14.

15.

16.

17.

18.

19.

20.

21.

22.

(a) Verify that the work done in pumping out the oil to the
top of the tank is given by the integral

3
960/ (X +3)v/9 — x2 dx.
0

Evaluate this integral by evaluating the integrals

3 3
/ Xv/9 — x2 dx and / V9 —x2dx
0 0

separately.
(b) What is the work required to pump out the oil to a level
4 feet above the top of the tank?

Exercise 12 with the same tank laid out horizontally. Use a
CAS for the integration.

Calculate the work required to hoist the cable of Example 4
by applying (6.5.4).

In the coordinate system used to derive (6.5.5) the lig-
uid moves in the negative direction. How come W is
positive?

A conical container (vertex down) of radius r feet and height
h feet is full of liquid that weighs o pounds per cubic foot.
Find the work required to pump out the top %h feet of liquid:
(a) to the top of the tank; (b) to a level k feet above the top
of the tank.

What is the work done by gravity if the tank of Exercise 17
is completely drained through an opening at the bottom?

A container of the form obtained by revolving the parabola
y = %xz, 0 < x < 4, about the y-axis is full of water. Here
x and y are given in meters. Find the work done in pumping
the water: (a) to an outlet at the top of the tank; (b) to an
outlet 1 meter above the top of the tank. Take o = 9800.

The force of gravity exerted by the earth on a mass m at a
distance r from the center of the earth is given by Newton’s
formula,

mM
rz
where M is the mass of the earth and G is the universal grav-

itational constant. Find the work done by gravity in pulling
amassmfromr =rytor =r,.

A chain that weighs 15 pounds per foot hangs to the ground
from the top of an 80-foot building. How much work is re-
quired to pull the chain to the top of the building?

A box that weighs w pounds is dropped to the floor from
a height of d feet. (a) What is the work done by gravity?

F=-G

)
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23.

24.

25.

26

217.

28.

29.

30.

3L

32

(b) Show that the work is the same if the box slides to the
floor along a smooth inclined plane. (By saying “smooth,”
we are saying disregard friction.)

A 200-pound bag of sand is hoisted at a constant rate by a

chain from ground level to the top of a building 100 feet

high.

(&) How much work is required to hoist the bag if the weight
of the chain is negligible?

(b) How much work is required to hoist the bag if the chain
weighs 2 pounds per foot?

Suppose that the bag in Exercise 23 has a tear in the bottom

and sand leaks out at a constant rate so that only 150 pounds

of sand are left when the bag reaches the top.

(a) How much work is required to hoist the bag if the weight
of the chain is negligible?

(b) How much work is required to hoist the bag if the chain
weighs 2 pounds per foot?

A 100-pound bag of sand is lifted for 2 seconds at the rate
of 4 feet per second. Find the work done in lifting the bag if
the sand leaks out at the rate of half a pound per second.

. A rope is used to pull up a bucket of water from the bottom

of a 40-foot well. When the bucket is full of water, it weighs
40 pounds; however, there is a hole in the bottom, and the
water leaks out at the constant rate of % gallon for each
10 feet that the bucket is raised. Given that the weight of
the rope is negligible, how much work is done in lifting the
bucket to the top of the well? (Assume that water weighs
8.3 pounds per gallon.)

A rope of length | feet that weighs o pounds per foot is lying
on the ground. What is the work done in lifting the rope so
that it hangs from a beam: (a) | feet high; (b) 21 feet high?

A load of weight w is lifted from the bottom of a shaft h feet
deep. Find the work done given that the rope used to hoist
the load weighs o pounds per foot.

An 800-pound steel beam hangs from a 50-foot cable which
weighs 6 pounds per foot. Find the work done in winding
20 feet of the cable about a steel drum.

A water container initially weighing w pounds is hoisted by
a crane at the rate of n feet per second. What is the work
done if the container is raised m feet and the water leaks out
constantly at the rate of p gallons per second? (Assume that
the water weighs 8.3 pounds per gallon.)

A chain of variable mass density hangs to the ground from
the top of a building of height h. Show that the work required
to pull the chain to the top of the building can be obtained by
assuming that the weight of the entire chain is concentrated
at the center of mass of the chain.

. An object moves along the x-axis. At x = a it has velocity

va, and at x = b it has velocity vp. Use Newton’s second law
of motion, F = ma = m(dv/dt), to show that

g 12 1 5
W = F(x)dx = -muvg — -muyg.
a 2 2

The term %mv2 is called the kinetic energy of the object.
What you have been asked to show is that the work done on

an object equals the change in kinetic energy of that object.
This is an important result.

33. An object of mass m is dropped from a height h. Express the
impact velocity in terms of the gravitational constant g and
the height h.

In Exercises 34-37 use the relation between work and kinetic
energy given in Exercise 32.

34. The same amount of work on two objects results in the speed
of one being three times that of the other. How are the masses
of the two objects related?

35. A major league baseball weighs 5 0z. How much work is
required to throw a baseball at a speed of 95 mph? (The
ball’s mass is its weight in pounds divided by 32 ft /sec?, the
acceleration due to gravity.)

36. How much work is required to increase the speed of a 2000-
pound vehicle from 30 mph to 55 mph?

37. The speed of an earth satellite at an altitude of 100 miles is
approximately 17,000 mph. How much work is required to
launch a 1000-Ib satellite into a 100-mile orbit?

(Power) Power is work per unit time. Suppose an object moves
along the x-axis under the action of a force F. The work done by
F in moving the object from x = a to arbitrary x is given by the
integral

X
W = / F(u)du.
a
Viewing position as a function of time, setting x = x(t), we have

dw dx
P = = FxO) g = FxOI v().

This is called the power expended by the force F. If force is
measured in pounds, distance in feet, and time in seconds, then
power is given in foot-pounds per second. If force is measured
in newtons, distance in meters, and time in seconds, then power
is given in joules per second. These are called watts. Commonly
used in engineering is the term horsepower:

1 horsepower = 550 foot-pounds per second
= 746 watts.

38. (@) Assume constant acceleration. What horsepower must
an engine produce to accelerate a 3000-pound truck
from 0 to 60 miles per hour (88 feet per second) in
15 seconds along a level road?

(b) What horsepower must the engine produce if the road
rises 4 feet for every 100 feet of road?
HINT: Integration is not required to answer these questions.

39. A cylindrical tank set vertically with height 10 feet and ra-

dius 5 feet is half-filled with water. Given that a 1-horsepower
pump can do 550 foot-pounds of work per second, how long
will it take a %-horsepower pump:

(a) to pump the water to an outlet at the top of the tank?
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(b) to pump the water to a point 5 feet above the top of the (a) How much work is required to pump the oil to the top
tank? of the tank?
40. A storage tank in the form of a hemisphere topped by a (b) How long would it take a 5 -horsepower motor to empty
cylinder is filled with oil that weighs 60 pounds per cubic out the tank?
foot. The hemisphere has a 4-foot radius; the height of the 41. Show that the rate of change of the kinetic energy of an object
cylinder is 8 feet. is the power of the force expended on it.

M “6.6 FLUID FORCE

If you pour oil into a container of water, you’ll see that the oil soon rises to the top. Oil S

weighs less than water. —y _
For any fluid, the weight per unit volume is called the weight density of the fluid. \/ liquid level

We’ll denote this by the Greek letter o. — -7

An object submerged in a fluid experiences a compressive force that acts at right
angles to the surface of the body exposed to the fluid. (It is to counter these compressive
forces that submarines have to be built so structurally strong.)

Fluid in a container exerts a downward force on the base of the container. What is 'y
the magnitude of this force? It is the weight of the column of fluid directly above it.

(Figure 6.6.1.) If a container with base area A is filled to a depth h by a fluid of weight Figure 6.6.1
density o, the downward force on the base of the container is given by the product

‘ = ‘

6.6.1) F =ohA.

Fluid force acts not only on the base of the container but also on the walls of the
container. In Figure 6.6.2, we have depicted a vertical wall standing against a body of
liquid. (Think of it as the wall of a container or as a dam at the end of a lake.) We want
to calculate the force exerted by the liquid on this wall.

level of

Figure 6.6.2

As in the figure, we assume that the liquid extends from depth a to depth b, and
we let w(x) denote the width of the wall at depth x. A partition P = {Xg, X1, ..., Xn}
of [a, b] of small norm subdivides the wall into n narrow horizontal strips. (See Figure
6.6.3.)

We can estimate the force on the ith strip by taking x;" as the midpoint of [x;_1, Xi].
Then

w(x;") = the approximate width of the ith strip

and
w(x;")Ax; = the approximate area of the ith strip.
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Figure 6.6.3

Since this strip is narrow, all the points of the strip are approximately at depth x;". Thus,
using (6.6.1), we can estimate the force on the ith strip by the product

oXiW(X")AXi.
Adding up all these estimates, we have an estimate for the force on the entire wall:
F = ox'W(X")AXy + o X3W(X5)AXa + - - - + o X W (X)) AXp.

The sum on the right is a Riemann sum for the integral

b
/ o Xw(x) dx.

As ||P|| — 0, such Riemann sums converge to that integral. Thus we have

b
(6.6.2) fluid force against the wall = / oXW(X) dx.
a

The Weight Density of Water The weight density o of water is approximately
62.5 pounds per cubic foot; equivalently, about 9800 newtons per cubic meter. We’ll
use these values in carrying out computations.

Example 1T A cylindrical water main 6 feet in diameter is laid out horizontally.
(Figure 6.6.4) Given that the main is capped half-full, calculate the fluid force on
the cap.

Figure 6.6.4
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SOLUTION Here o = 62.5 pounds per cubic foot. From the figure we see that
w(x) = 24/9 — x2. The fluid force on the cap can be calculated as follows:

3 3
F= / (62.5)x(2v/9 — x2) dx = 62.5/ 2x+/9 — x2dx = 1125pounds.
0 0

Example 2 A metal plate in the form of a trapezoid is affixed to a vertical
dam as in Figure 6.6.5. The dimensions shown are in meters. Calculate the fluid
force on the plate taking the weight density of water as 9800 newtons per cubic
meter.

water level

Figure 6.6.5

SOLUTION  First we find the width of the plate x meters below the water level. By
similar triangles (see Figure 6.6.6),

t=2(8-x) sothat w(x)=8+2t=16—x.

0 water level

fzﬁ
TN ./

Figure 6.6.6
The fluid force against the plate is
8 8
/ 9800x (16 — x) dx = 9800/ (16x — x?)dx
4 4

8
= 9800[8x* — 4x°| 2,300,000 newtons.

m 329
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EXERCISES *6.6

1

10.

11.

12.

A rectangular plate 8 feet by 6 feet is submerged vertically
in a tank of water, an 8-foot edge at the surface of the water.
Find the force of the water on each side of the plate.

. A square plate 6 feet by 6 feet is submerged vertically in a

tank of water, one edge parallel to the surface of the water.
Calculate the fluid force on each side of the plate given that
the center of the plate is 4 feet below the surface of the water.

. A vertical dam at the end of a reservoir is in the form of an

isosceles trapezoid: 100 meters across at the surface of the
water, 60 feet across at the bottom. Given that the reservoir is
20 meters deep, calculate the force of the water on the dam.

. A square metal plate 5 meters by 5 meters is affixed to the

lowermost portion of the dam of Exercise 3. What is the
force of the water on the plate?

. A plate in the form of an isosceles trapezoid 4 meters at the

top, 6 meters at the bottom, and 3 meters high has its upper
edge 10 meters below the top of the dam of Exercise 3.
Calculate the force of the water on this plate.

. A vertical dam in the shape of a rectangle is 1000 feet wide

and 100 feet high. Calculate the force on the dam given that
(a) the water at the dam is 75 feet deep;
(b) the water at the dam is 50 feet deep.

. Each end of a horizontal oil tank is elliptical, with horizon-

tal axis 12 feet long, vertical axis 6 feet long. Calculate the
force on an end when the tank is half full of oil that weighs
60 pounds per cubic foot.

. Each vertical end of a vat is a segment of a parabola (vertex

down) 8 feet across the top and 16 feet deep. Calculate the
force on an end when the vat is full of liquid that weighs 70
pounds per cubic foot.

. The vertical ends of a water trough are isosceles right trian-

gles with the 90° angle at the bottom. Calculate the force on
an end of the trough when the trough is full of water given
that the legs of the triangle are 8 feet long.

The vertical ends of a water trough are isosceles triangles 5
feet across the top and 5 feet deep. Calculate the force on an
end when the trough is full of water.

The ends of a water trough are semicircular disks with radius
2 feet. Calculate the force of the water on an end given that
the trough is full of water.

The ends of a water trough have the shape of the parabolic
segment bounded by y = x? — 4 and y = 0; the measure-
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

ments are in feet. Assume that the trough is full of water and
set up an integral that gives the force of the water on an end.

A horizontal cylindrical tank of diameter 8 feet is half full
of oil that weighs 60 pounds per cubic foot. Calculate the
force on an end.

Calculate the force on an end of the tank of Exercise 13
when the tank is full of oil.

A rectangular metal plate 10 feet by 6 feet is affixed to a ver-
tical dam, the center of the plate 11 feet below water level.
Calculate the force on the plate given that (a) the 10-foot
sides are horizontal, (b) the 6-foot sides are horizontal.

A vertical cylindrical tank of diameter 30 feet and height
50 feet is full of oil that weighs 60 pounds per cubic foot.
Calculate the force on the curved surface.

A swimming pool is 8 meters wide and 14 meters long. The
pool is 1 meter deep at the shallow end and 3 meters deep at
the deep end; the depth increases linearly from the shallow
end to the deep end. Given that the pool is full of water,
calculate

(a) the force of the water on each of the sides,

(b) the force of the water on each of the ends.

Relate the force on a vertical dam to the centroid of the
submerged surface of the dam.

Two identical metal plates are affixed to a vertical dam. The
centroid of the first plate is at depth hy, and the centroid of
the second plate is at depth h,. Compare the forces on the two
plates given that the two plates are completely submerged.

Show that if a plate submerged in a liquid makes an angle 6

with the vertical, then the force on the plate is given by the
formula

b
F :/ o X W(x)seco dx
a

where o is the weight density of the liquid and w(x) is the
width of the plate at depth x,a < x < b.

Find the force of the water on the bottom of the swimming
pool of Exercise 17.

The face of arectangular dam at the end of a reservoir is 1000
feet wide, 100 feet tall, and makes an angle of 30° with the
vertical. Find the force of the water on the dam given that
(a) the water level is at the top of the dam;

(b) the water at the dam is 75 feet deep.

Exercises 1-4. Sketch the region bounded by the curves. Rep-
resent the area of the region by one or more definite integrals (a)
in terms of x; (b) in terms of y. Find the area of the region using
the more convenient representation.

1

y=2—X2, y=—X

oA W N

y=x3, y=-x,y=1
Y2 =2(x—-1),x—y=5

yP=x% x-3y+4=0

. Find the area of the region bounded by y = sinx and y =

cos x between consecutive intersections of the two graphs.



6. Find the area of the region bounded by y = tan? x and the
x-axis fromx =0to x = w /4.

7. The curve y? = x(1 — x)? is shown in the figure. Find the
area of the loop.

8. The curve x¥/2 + y1/2 = al/2 is shown in the figure. Find the
area of the region bounded by the curve and the coordinate
axes.

(0, a) T

(a, 0) X

9. The base of a solid is the disk bounded by the circle
x2 + y? =r2. Find the volume of the solid given that the
cross sections perpendicular to the x-axis are: (a) semicir-
cles; (b) isosceles right triangles with hypotenuse on the
xy-plane.

10. The base of a solid is the region bounded by the equilateral
triangle of side length a with one vertex at the origin and
altitude along the positive x-axis. Find the volume of the
solid given that cross-sections perpendicular to the x-axis
are squares with one side on the base of the solid.

11. The base of a solid is the region in the first quadrant bounded
by the coordinate axes and the line 2x + 3y = 6. Find the
volume of the solid given that the cross sections perpendic-
ular to the x-axis are semicircles.

12. A solid in the shape of a right circular cylinder of radius 3
has its base on the xy-plane. A wedge is cut from the cylinder
by a plane that passes through a diameter of the base and is
inclined to the xy-plane at an angle of 30°. Find the volume
of the wedge.

Exercises 13-24. Sketch the region € bounded by the curves
and find the volume of the solid generated by revolving €2 about
the axis indicated.

13.x2 =4y, y=3x; Xx-axis.
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14.x2 =4y, y=1x; y-axis.

15.y=x3% y=1x=0; x-axis.
16.y=x3 y=1x=0; y-axis.
17.y =secx, y=0, 0<x <m/4; x-axis.
18.y =cosx, —m/2 <X <m/2; X-axis.
19.y =sinx?, 0<x <., y-axis.
20.y =cosx?, 0<Xx<.m/2;, y-axis.
21.y =3x —x%, y=x%—3x, y-axis.
22.y=3x—x? y=x>-3x, x=4
23.y=(x—1?% y=x+1; x-axis.
24y =x%—2x, y=23x; y-axis.

Exercises 25-30. The figure shows three regions within the rect-
angle bounded by the coordinate axes and the lines x = 4 and
y = 2. Express the volume obtained by revolving the indicated
region about the indicated line: (a) by an integral with respect to
x; (b) by an integral with respect to y. Calculate each volume by
evaluating one of these integrals

25. Qq; the x-axis.

27. Qy; the line x = —1. 28. Q,; the y-axis.

29. Q3; the y-axis. 30. Q3; the liney = —2.

Exercises 31-34. Find the centroid of the bounded region deter-

mined by the curves.

3l.y=4—-x% y=0.

3. y=x2—4, y=2x-x2

34.y=cosx, y=0 fromx=—-n/2t0x =x/2.

Exercises 35-36. Sketch the region bounded by the curves. De-

termine the centroid of the region and the volume of the solid

generated by revolving the region about each of the coordinate

axes.

3Boy=x, y=2-x2

36.y=x3 x=vy3 0<x<l.

37. An object moves along the x-axis from x = 0to x = 3 sub-
ject to a force F(x) = x+/7 + x2. Given that x is measured
in feet and F in pounds, determine the work done by F.

38. One of the springs that supports a truck has a natural length
of 12 inches. Given that a force of 8000 pounds compresses
this spring % inch, find the work required to compress the
spring from 12 inches to 9 inches.

26. Q1; theliney = 2.

32.y=x3, y=4x.

0<x<l1
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39.

40.

41.

42.

The work required to stretch a spring from 9 inches to
10 inches is 1.5 times the work needed to stretch the spring
from 8 inches to 9 inches. What is the natural length of the
spring?

A conical tank 10 feet deep and 8 feet across the top is filled
with water to a depth of 5 feet. Find the work done in pump-
ing the water (a) to an outlet at the top of the tank; (b) to
an outlet 1 foot below the top of the tank. Take o = 62.5
pounds per cubic foot as the weight density of water.

A 25-foot chain that weighs 4 pounds per foot hangs from
the top of a tall building. How much work is required to pull
the chain to the top of the building?

A bucket that weighs 5 pounds when empty rests on the
ground filled with 60 pounds of sand. The bucket is lifted
to the top of a 20 foot building at a constant rate. The sand
leaks out of the bucket at a constant rate and only two-thirds
of the sand remains when the bucket reaches the top. Find
the work done in lifting the bucket of sand to the top of the
building.

43.

44,

45.

A spherical oil tank of radius 10 feet is half full of oil that
weighs 60 pounds per cubic foot. Find the work required to
pump the oil to an outlet at the top of the tank.

A rectangular fish tank has length 1 meter, width % meter,
depth % meter. Given that the tank is full of water, find

(a) the force of the water on each of the sides of the tank;
(b) the force of the water on the bottom of the tank.

Take the weight density of water as 9800 newtons per cubic
meter.

A vertical dam is in the form of an isosceles trapezoid 300

meters across the top, 200 meters across the bottom, 50 me-

ters high.

(&) What is the force of the water on the face of the dam
when the water level is even with the top of the dam?

(b) What is the force of the water on the dam when the water
level is 10 meters below the the top of the dam?

Take the weight density of water as 9800 newtons per cubic

meter.
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Some real numbers satisfy polynomial equations with integer coefficients:
% satisfies the equation 5x — 3 =0;
/2 satisfies the equation  x? —2 = 0.

Such numbers are called algebraic. There are, however, numbers that are not algebraic,
among them 7. Such numbers are called transcendental.
Some functions satisfy polynomial equations with polynomial coefficients:
X - .
f(x)=—— satisfies the equation (TX 4+ v/2) f(x) — x = 0;
X+ \/z
f(x) = 2¢/x —3x?  satisfies the equation [ (x)]* 4 6x2 f (x) + (9x* — 4x) = 0.

Such functions are called algebraic. There are, however, functions that are not alge-
braic. Such functions are called transcendental. You are already familiar with some
transcendental functions—the trigonometric functions. In this chapter we introduce
other transcendental functions: the logarithm function, the exponential function, and
the trigonometric inverses. But first, a little more on functions in general.

M 7.1 ONE-TO-ONE FUNCTIONS; INVERSES

One-to-One Functions

A function can take on the same value at different points of its domain. Constant
functions, for example, take on the same value at all points of their domains. The
quadratic function f(x) = x? takes on the same value at —c as it does at c; so does the
absolute-value function g(x) = |x|. The function

f(x) =1+ (X —3)(x —5)
takes on the same value at x = 5 as it does at X = 3:

f@) =1, (5 =1

333
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yd

AN
/12

f is not one-to-one:  f(x;) = f(x,)

Figure 7.1.1

7 :

f is one-to-one

Figure 7.1.2

Figure 7.1.3

Functions for which this kind of repetition does not occur are called one-to-one
functions.

DEFINITION 7.1.1

A function f is said to be one-to-one if there are no two distinct numbers in
the domain of f at which f takes on the same value.

f(x1) = f(x2) implies X1 = Xa.

Thus, if T is one-to-one and X1, X, are different points of the domain, then

f(x1) # f(x2).

The functions

fx)=x3 and f(x) = VX

are both one-to-one. The cubing function is one-to-one because no two distinct numbers
have the same cube. The square-root function is one-to-one because no two distinct
nonnegative numbers have the same square root.

There isasimple geometric test, called the horizontal line test, which can be used to
determine whether a function is one-to-one. Look at the graph of the function. If some
horizontal line intersects the graph more than once, then the function is not one-to-one.
(Figure 7.1.1) If, on the other hand, no horizontal line intersects the graph more than
once, then the function is one-to-one (Figure 7.1.2).

Inverses

We begin with a theorem about one-to-one functions.

THEOREM 7.1.2

If f is a one-to-one function, then there is one and only one function g defined
on the range of f that satisfies the equation

f(g(x)) = x for all x in the range of f.

PROOF The proof is straightforward. If x is in the range of f, then f must take on the
value x at some number. Since f is one-to-one, there can be only one such number. We
have called that number g(x). &

The function that we have named g in the theorem is called the inverse of f and is
usually denoted by the symbol f 1.

DEFINITION 7.1.3 INVERSE FUNCTION

Let f be aone-to-one function. The inverse of f, denoted by f ~?, is the unique
function defined on the range of f that satisfies the equation

f(f1(x)) = x for all x in the range of f. (Figure 7.1.3)
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Remark The notation f 1 for the inverse function is standard, at least in the United
States. Unfortunately, there is the danger of confusing f —! with the reciprocal of f,
that is, with 1/f (x). The “—1" in the notation for the inverse of f is not an exponent;
f ~1(x) does not mean 1/f (x). On those occasions when we want to express 1/f (x)
using the exponent —1, we will write [ f(x)]~%.

Example 1 You have seen that the cubing function
f(x)=x3

is one-to-one. Find the inverse.

SOLUTION Wesety = f~1(x) and apply f to both sides:

f(y) =x
y? =x (f is the cubing function)
y = x13.

Recalling that y = f ~1(x), we have
f1(x) = x13.

The inverse of the cubing function is the cube-root function. The graphs of f (x) = x3
and f~%(x) = x/% are shown in Figure 7.1.4.

Figure 7.1.4

Remark We sety = f~%(x) to avoid clutter. It is easier to work with a single letter
y than with the expression f~1(x).

Example 2 Show that the linear function
y=3x—-5
is one-to-one. Then find the inverse.
SOLUTION  To show that f is one-to-one, let’s suppose that
f(x1) = f(x2).
Then
X1 —5=3x,—5

3x1 = 3%z
X1 = Xz.
The function is one-to-one since
f(x1) = T(x2) implies X1 = Xa.

(Viewed geometrically, the result is obvious. The graph is a line with slope 3 and as
such cannot be intersected by any horizontal line more than once.)
Now let’s find the inverse. To do this, we set y = f ~%(x) and apply f to both sides:

fy) =x
3y —5=x
3y=x+5

y=3ix+32.
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y

5/3

Figure 7.1.5

Recalling that y = f~%(x), we have
f1(x) = Ix + 3.
The graphs of f and f ~* are shown in Figure 7.1.5.

Example 3 Find the inverse of the function
f(x)=@1—-x3) 42
SOLUTION Wesety = f~1(x) and apply f to both sides:
f(y) =x
Q-y)P+2=x
L-y)P=x-2
1-y®=(x—2)
y=1—-(x-2)°
y=1[1-(x-2P".
Recalling that y = f ~1(x), we have

f1(x) = [1 — (x — 2)°]*3.

Example 4 Show that the function
Fx)=x5+2x34+3x -4
is one-to-one.
SOLUTION = Setting F(x1) = F(x2), we have
X2 4+ 2x3 +3x; — 4 = x5 +2x3 + 3x, — 4
X2 4+ 2x3 + 3x; = x5 + 2x3 + 3x,.

How to go on from here is far from clear. The algebra becomes complicated.
Here is another approach. Differentiating F, we get

F'(x) = 5x* + 6x% + 3.

Note that F’(x) > O for all x and therefore F is an increasing function. Increasing
functions are clearly one-to-one: x; < X, implies F(x;) < F(x2), and so F(x;) cannot
possibly equal F(x;). X

Remark In Example 4 we used the sign of the derivative to test for one-to-oneness.
For functions defined on an interval, the sign of the derivative and one-to-oneness can
be summarized as follows: functions with positive derivative are increasing functions
and therefore one-to-one; functions with negative derivative are decreasing functions
and therefore one-to-one. 1

Suppose that the function f has an inverse. Then, by definition, f ! satisfies the
equation

(7.1.4) f(f1(x)) =x for all x in the range of f.
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It is also true that

(7.1.5) f1(f(x)) = x for all x in the domain of f.

PROOF Take x in the domain of f and set y = f(x). Sincey is the range of f,
F(Fiy) =y
This means that
FOEH(F(0) = f(x)

andtellsusthat f takes onthe same valueat f ~(f (x)) asitdoes atx. With f one-to-one,
this can only happen if

F1f(x) =x. O

Equation (7.1.5) tells us that f~* undoes what is done by f:
f takes x to f(x); f 1 takes f(x) back to x. (Figure 7.1.6)

Equation (7.1.4) tells us that f undoes what is done by f—1:
f 1 takes x to f ~1(x); f takes f ~1(x) backto x.  (Figure 7.1.7)

It is evident from this that

domainof f " =rangeof f  and  range of f ! = domain of f.

The Graphs of fand 1

The graph of f consists of points (x, f(x)). Since f~! takes on the value x at f(x),
the graph of f ~* consists of points ( f (x), x). If, as usual, we use the same scale on the
y-axis as we do on the x-axis, then the points (x, f(x)) and (f(x), x) are symmetric
with respect to the line y = x. (Figure 7.1.8.) Thus we see that

the graph of f 1 is the graph of f reflected in the line y = x.

This idea pervades all that follows.

Example 5 Sketch the graph of f ! for the function f graphed in Figure 7.1.9.

SOLUTION  First we draw the line y = x. Then we reflect the graph of f in that line.
The result is shown in Figure 7.1.10. O

Continuity and Differentiability of Inverses

Let f be a one-to-one function. Then f has an inverse, f~1. Suppose, in addition, that
f is continuous. Since the graph of f has no “holes” or “gaps,” and since the graph of
f L is simply the reflection of the graph of f in the line y = x, we can conclude that
the graph of ! also has no holes or gaps; namely, we can conclude that f ! is also
continuous. We state this result formally; a proof is given in Appendix B.3.

—_
05

x 0

f-1(f(x) = x
Figure 7.1.6
x=f(f-1(x)

Figure 7.1.8
y

Figure 7.1.10
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THEOREM 7.1.6

Let f beaone-to-one function defined onanopen interval I. If f is continuous,
then its inverse f ! is also continuous.

Now suppose that f is differentiable. Is f % necessarily differentiable? Let’s as-
sume so for the moment.
From the definition of inverse, we know that

f(f1(x)) =x for all x in the range of f.
Differentiation gives

d _
rld =1
However, by the chain rule,
d
&[f(f‘l(X))] = f(F ) (F ) ().

Therefore

fOE e (F Y (X) =1,
and, if f'(f~1(x)) # 0,

7.1.7) (f 1Y) =

1
fr(f=1(x))’

For a geometric understanding of this relation, we refer you to Figure 7.1.11.

y

Figure 7.1.11

The graphs of f and f~! are reflections of each other in the line y = x. The tangent
lines I, and I, are also reflections of each other. From the figure,

f-1(x) — b
X—b

so that (f ~1)'(x) and f’(f~%(x)) are indeed reciprocals.

X—Db

(f 71 (x) = slope of I; = ETEY

f/(f~1(x)) = slope of I, =
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The figure shows two tangents intersecting the line y = x ata common point. If the
tangents have slope 1, they do not intersect that line at all. However, in that case, both
graphs have slope 1, the derivatives are 1, and the relation holds. One more observation.
We have assumed that f'(f ~%(x)) # 0. If f/(f ~1(x)) = 0, then the tangent to the graph
of f at (f~%(x), x) is horizontal, and the tangent to the graph of f ! at (x, f ~*(x)) is
vertical. In this case f ! is not differentiable at x.

Formula (7.1.7) has an unwieldy look about it; too many fussy little symbols. The
following characterization of (f =)’ may be easier to understand.

THEOREM 7.1.8

Let f be a one-to-one function differentiable on an open interval I. Let a be a
point of I and let f(a) = b. If f’(a) # 0, then f 1 is differentiable at b and

(f(b) =

1
fr(@)’

This theorem, proven in Appendix B.3, places our discussion on a firm footing.

Remark Note thata = f ~(b), and therefore

1 1

(Y0 = ) = TGy

Thisissimply (7.1.7)atx =b. O

We rely on Theorem 7.1.8 when we cannot solve for f ~* explicitly and yet we want
to evaluate (f ~1)’ at a particular number.

Example 6 The function f(x):x3+%x is differentiable and has range
(=00, 00).

(a) Show that f is one-to-one.

(b) Calculate (f~1)(9).

SOLUTION

(a) Toshow that f is one-to-one, we note that
f'(x)=3x>+3>0  forallreal x.

Thus f is an increasing function and therefore one-to-one.

(b) To calculate (f~1)(9), we want to find a number a for which f(a) = 9. Then
(1Y (9) is simply 1/f'(a).
The assumption f(a) = 9 gives
a®+1a=9
and tells us a = 2. (We must admit that this example was contrived so that the algebra
would be easy to carry out.) Since f'(2) = 3(2)? + § = 2, we conclude that

1 2
i 0

(f—l)/(g) = @ =% 25

m 339
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EXERCISES 7.1

Finally, a few words about differentiating inverses in the Leibniz notation. Suppose
that y is a one-to-one function of x:

y = y(x).
Then x is a one-to-one function of y:
X = X(y).
Moreover,
yx(y) =y for all y in the domain of x.

Assuming that y is a differentiable function of x and x is a differentiable function of y,
we have

y'(x()X'(y) =1,
which, if y’'(x(y)) # 0, gives

X'(y) = :
y'(x(y))
In the Leibniz notation, we have
719 dx 1
o dy — dy/dx’

The rate of change of x with respect to y is the reciprocal of the rate of change of y with
respect to x.

Where are these rates of change to be evaluated? Given that y(a) = b, the right
side is to be evaluated at x = a and the left side at y = b.

Exercises 1-26. Determine whether or not the function is one-

1.

© N g w

11.
13.

1
to-one and, if so, find the inverse. If the function has an inverse, 23. 1(x) = x31+1° 24. 1(x) = 1—x L
give the domain of the inverse. X +2 1
25. f(x)= . 26. f(x)= PRI
f(x) = 5x + 3. 2. f(x)=3x +5. x+1 (x+1)
1 _y2 5 27. What is the relation between a one-to-one function f and the
f0g =1-x% 4100 =x". function (f-1)-12
fx)=x5+1 6. f(x)=x2—-3x+2
f(x) =1+3%% 8. f(x)=x3-1 Exercises 28-31. Sketch the graph of the inverse of the function
f(x) = (1 —x)> 10. f(x) = (1 —x)~ graphed below.
f(x)=(x+17>+2 12. f(x) = (4x — 1)3. 28. 20.
f(x) = x%/5, 14. f(x)=1—(x —2)13. y y
f(x) = (2 — 3x)%. 16. f(x) = (2 — 3x?)%.

15.

17

18

19.

21.

Cf(x) =sinx,x e [—% %]

. f(x) =cosx,x € [—% %]

f(x) = % 20.

1
FX)=x+ . 22.

1 [
< =
_ X 1 X
F(x) = —. \

—X

[N

f(x) =

><‘><



30. 31.

32. (a) Show that the composition of two one-to-one functions,
f and g, is one-to-one.
(b) Express (f o g)~* interms of f~and g~
33. (a) Let f(x) = £x®+ x? + kx, k a constant. For what val-
ues of k is f one-to-one?
(b) Let g(x) = x® + kx? + x, k a constant. For what values
of k is g one-to-one?
34. (a) Suppose that f has an inverse, f(2) =5, and f'(2) =
—2 Whatis (f~1)(5)?
(b) Suppose that f has an inverse, f(2) = —3,and f'(2) =
2.1fg=1/f"1 whatis g'(—3)?

Exercises 35-44. Verify that f has an inverse and find ( f ~1)(c).
3. fx)=x3+1, c=0.
36. f(x)=1-2x—x3, c=4

7. fx)=x+2yX, x>0; c=8.

38. f(x) =sinx, —37 <x < ir; c=-3.
39. f(x) =2x 4+ cosx; cC=um.

3
20 f6)=*T2 x-1, c=3

x—1

41. f(X)=tanX,—%71<X<%7r; c=+/3.
42. f(x)=x5+2x3+2x; c= 5.

1
43.f(x):3x—ﬁ, x>0, c=2.
44, f(x)=x —m +cosx, O0<x<2m; c=-1

Exercises 45-47. Find a formula for (f~)'(x) given that f is
one-to-one and its derivative satisfies the equation given.

45, f'(x) = f(x). 46. f'(x) =1+ [f(X)]%

47. F'(x) = VI - [T (]2

48. Set

x3—1, x<0
f(x):{x2 xio.

(a) Sketch the graph of f and verify that f is one-to-one.
(b) Find f~1,
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ax +b

cx+d’

49. (a) Show that f is one-to-one iff ad — bc # 0.
(b) Suppose that ad — bc # 0. Find 1.

50. Determine the constants a, b, ¢, d for which f = 1.
51. Set

For Exercises 49 and 50, let f(x) =

f(x)=/2X\/1+t2dt.

(a) Show that f has an inverse.
(b) Find (f~1)(0).
52. Set

2X
fx)= | V16+t4dt.
1

(a) Show that f has an inverse.
(b) Find (f~1)(0).
53. Let f be a twice differentiable one-to-one function and set
g=fL
(a) Show that

f"[g(x)]
(flotn®

(b) Suppose that the graph of f is concave up (down). What
can you say then about the graph of f—1?

54. Let P be a polynomial of degree n.

(a) Can P have an inverse if n is even? Support your answer.

(b) Can P have an inverse if nis odd? If so, give an example.
Then give an example of a polynomial of odd degree that
does not have an inverse.

55. The function f(x) =sinx, —n/2 <X < /2, is one-to-
one, differentiable, and its derivative does not take on the
value 0. Thus f has a differentiable inverse y = f~1(x).
Find dy/dx by setting f(y) = x and differentiating implic-
itly. Express the result as a function of x.

56. Exercise 55 for f(x) =tanx, —7/2 < X < 7 /2.

9'(x) = -

Exercises 57-60. Find f 1.
57. f(x) =44+3/x -1, x>1.

X
58. f(X) = —— —5/2.
(x) 15 X # =5/
59. f(x) = I8 —x +2.
1—x
60. f(x) = .
) 1+x

QExerCises 61-64. Use a graphing utility to draw the graph of f.

Show that f is one-to-one by consideration of f’. Draw a figure
that displays both the graph of f and the graph of 1.

61. f(x)=x3+3x+2 62. f(x)=x%5—1
63. f(x) =4sin2x, —-x/4<x <m/4.
64. f(x)=2—cos3x, 0=<x<m/3.
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You have seen that if n is an integer different from —1, then the function f(x) = x" is

a derivative:
o i xn+1
dx \n+1/"

This formula breaks down if n = —1, for then n +1 = 0 and the right side of the
formula is meaningless.
No function that we have studied so far has derivative x 1 = 1/x. However, we

can easily construct one: set
X
1
L(x)=/ —dt.
1t

From Theorem 5.3.5 we know that L is differentiable and

1
y L'(x) = . for all x > 0.

This function has a remarkable property that we’ll get to in a moment. First some
preliminary observations: Make sure you understand them.

(1) L is defined for all x > 0.
(2) Since

1
L'(x) = " forall x > 0,

1 x t .
Xt L increases on (0, co).

v (3) L(x)isnegativeif0 <x <1, L(1)=0, L(x)Iispositiveforx > 1.
(4) Forx > 1, L(x) gives the area of the region shaded in Figure 7.2.1.

area of shaded region = L(x) =

Figure 7.2.1

Now to the remarkable property.

THEOREM 7.2.1
For all positive numbers a and b,
L(ab) = L(a) + L(b).

pROOF Setb > 0. For all x > 0, L(xb) and L(x) have the same derivative:

d 1 1 d
gy LD = b= == - [LKX)].
X xb X dx
chain rule J
Therefore the two functions differ by some constant C:
L(xb) = L(x) +C. (Theorem 4.2.4)
We can evaluate C by setting x = 1:

L) =L(L-b)=L(1)+C=C.
|_(1):0—T
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It follows that, for all x > 0,
L(x -b) = L(x) + L(b).

We get the statement made in the theorem by setting x =a. X

From Theorem 7.2.1 and the fact that L (1) = O, it readily follows that

(1) for all positive numbers b, L(1/b) = —L(b)
(7.2.2) | and
(2) for all positive numbers a and b, L(a/b) = L(a) — L(b).

PROOF
(1) 0=L@A)=L(b-1/b)=L(b)+ L(1/b) and therefore L(1/b) = —L(b);
(2) L(@/b)=L(@-1/b)=L(@)+ L(1/b)=L(a)— L(b). 1

We now prove that

for all positive numbers a and all rational numbers p/q,
(7.2.3)

L(@"/9) = qEL(a).

PROOF You have seen that d[L(x)]/dx = 1/x. By the chain rule,

d 1 d 1 p _ p /1 d[p
CTL(xPNY] = = (xPlAy— = (D xa-l _FE () 2| E )
dx[ 0l xP/a dx(x ) xP/a (q)x q \ X dx [ g %)
(37.0)
Since L(xP/9) and qEL(x) have the same derivative, they differ by a constant:

L(x"/4) = qEL(X)—i-C.

Since both functions are zero at x = 1, C = 0. Therefore L(xP/%) = apL(x) for all

x > 0. We get the theorem as stated by setting x =a. [

The domain of L is (0, co). What is the range of L?

(7.2.4) The range of L is (—oo, 00).

PROOF Since L is continuous on (0, co), we know from the intermediate-value theorem
that it “skips” no values. Thus, the range of L is an interval. To show that the interval
is (—o0, 00), we need only show that the interval is unbounded above and unbounded
below. We can do this by taking M as an arbitrary positive number and showing that L
takes on values greater than M and values less than —M.

m 343
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Figure 7.2.2

Let M be an arbitrary positive number. Since

L(2)=/12%dt

is positive (explain), we know that some positive multiple of L(2) must be greater than
M; namely, we know that there exists a positive integer n such that

nL(2) > M.
Multiplying this equation by —1, we have
—nL(2) < =M.
Since
nL(2) = L(2") and —nL(2)=L(2™"), (7.2.3)
we have

LEY>M and LE2™") <-—M.

This proves that the range of L is unbounded in both directions. Since the range of L is
an interval, it must be (—oo, 00), the set of all real numbers. 1

The Number e

Since the range of L is (—oo, 0o) and L is an increasing function (and therefore one-to-
one), we know that L takes on as a value every real number and it does so only once. In
particular, there is one and only one real number at which L takes on the value 1. This
unique number is denoted throughout the world by the letter ef.

Figure 7.2.2 locates e on the number line: the area under the curve y = 1/t from
t=1tot =-eisexactly 1.

The Logarithm Function

Since

e
1
L(e) =/ —dt =1,
1t
we see from (7.2.3) that

for all rational numbers p/q

(7.2.5) L(eP/9) = ap.

The function that we have labeled L is known as the natural logarithm function, or
more simply as the logarithm function, and from now on L (x) will be written In x. Here
are the arithmetic properties of the logarithm function that we have already established.
Both a and b represent arbitrary positive real numbers.

In(1) =0, In(e) = 1,
(7.2.6) In(ab) =Ina+In b, In(l/b) = —1In b’
In@/b) = Ina —Inb,  InaP/d = qu a

T After the celebrated Swiss mathematician Leonhard Euler (1707-1783), considered by many the greatest
mathematician of the eighteenth century.
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The Graph of the Logarithm Function

You know that the logarithm function

X
1
Inx:/ —dt
1t

has domain (0, 00), range (—oo, o), and derivative

d 1 y
d—(ln X)=-. yox
X X 2= Jie y=Inx
For small x the derivative is large (near 0, the curve is steep); for large x the derivative 1 /7
is small (far out, the curve flattens out). At x = 1 the logarithm is 0 and its derivative // S
1/x is 1. [The graph crosses the x-axis at the point (1, 0), and the tangent line at that 7 /1 2 3 4 5 x
point is parallel to the line y = x.] The second derivative, /’,1
d? 1 -2
—(Inx) = ——,
dx2( ) X2 3
is negative on (0, co). (The graph is concave down throughout.) We have sketched the Figure 7.2.3

graph in Figure 7.2.3. The y-axis is a vertical asymptote:

asx — 07, Inx — —o0. y

Example 1 We use upper and lower sums to estimate
2 dt

1

In2 = (Figure 7.2.4)

from the partition

10° 10° 10° 10° 10’ 10’ 10° 10° 10° 10° 10 — 1 2 t
Using a calculator, we find that Figure 7.2.4
1 (10 10 10 10 10 10 10 10 10 10
LiP) =5 (gt o+t tutststrtwtito
1 1 1 1 1 1 1 1 1 1
=ntutiatutstietntetstsg>0668
and
1 (10 10 10 10 10 10 10 10 10 10
UP)=p(p+u+o+tntutststots s
1 1 1 1 1 1 1 1 1 1
:l_0+ﬁ+ﬁ+l_3+ﬂ+l_5+ﬁ+ﬁ+l_8+ﬁ < 0.719
We know then that
0.668 < L(P) <In2 <U;(P) < 0.719.
The average of these two estimates,
2(0.668 + 0.719) = 0.6935,
is not far off. Rounded off to four decimal places, our calculator gives In2 = 0.6931.
u
N Table 7.2.1
Table 7.2.1 gives the natural logarithms of the integers 1 through 10 rounded off to n Inn n Inn
the nearest hundredth. 1 0.00 6 1.79
) ) ) 2 069 7 19
Example 2  Use the properties of logarithms and Table 7.2.1 to estimate the follow- 3 110 8 508
Ing: 4 139 | 9 220
(@ In0.2.  (b) IN0.25.  (c) In2.4.  (d) In9o. 5 161 | 10 230
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SOLUTION

1 ~
(@ In0.2=Ing =—In5=-161

(b) IN0.25=1In% = —In4 = —1.39.

© In24=In2=1n3 = 1n34+In4—In5=0.88.
(d) In90 = In[(9)(10)] = In9 + In10 = 4.50. 1

Example 3 Estimate e on the basis of Table 7.2.1.
SOLUTION We know that Ine = 1. From the table you can see that

3In3—-1In10= 1.

The expression on the left can be written
IN3*—IN10 =127 —In10=In% = In2.7.
This tells us that In2.7 = 1 and thereforee = 2.7. 1

Remark

It can be shown that e is an irrational number, in fact a transcendental

number. The decimal expansion of e to twelve decimal places reads

e = 2.718281828459." 1

fExercise 66 in Section 12.6 guides you through a proof of the irrationality of e. A proof that e is transcen-
dental is beyond the reach of this text.

EXERCISES 7.2

Exercises 1-10. Estimate the logarithm on the basis of Table
7.2.1; check your results on a calculator.

1. In20. 2. In16.
3. In1.6. 4. In3*.
5. In0.1. 6. In2.5.
7. In7.2. 8. In/630.
9. Inv/2 10. In0.4.

11. Verify that the area under the curve y = 1/x from x =1
to x = 2 equals the area from x =2 to x = 4, the area
from x = 3 to x = 6, the area from x =4 to x = 8, and,
more generally, the area from x = k to x = 2k. Draw some
figures.

12. Verify that the area under the curve y = 1/x fromx = 1to
x = m equals the area from x = 2to x = 2m, the area from
X = 3to x = 3m, and, more generally, the area from x = k
to x = km.

13. Estimate

15
dt
In1.5:/ —
; t

by using the approximation %[L #(P) + U (P)] with

14. Estimate

25
In2.5 :/ d—t
1 t

by using the approximation 3[L {(P) + U (P)] with

15. Taking In 5 = 1.61, use differentials to estimate
(@ In5.2, (b)In4.8, (c)In5.5.

16. Taking In 10 = 2.30, use differentials to estimate
(@ In10.3, (b)In9.6, (c)In1l.
Exercises 17-22. Solve the equation for x.
17. Inx = 2. 18. Inx = —1.
19. 2 —Inx)Inx = 0. 20. Inx =1In(2x —1).
2L In[(2x + 1)(x + 2)] = 2In(x + 2).
22.2In(x +2) — 3 Inx* = 1.
23. Show that

. Inx
lim
x—1X —1

=1.

Inx Inx —Inl
HINT: Note that 1=

and interpret the limit

as a derivative.



Exercises 24-25. Let n be a positive integer greater than 2. Draw
relevant figures.

24. Find the greatest integer k for which

1+1+ +1 Inn
— e P _< .
2 3 k

25. Find the least integer k for which

Inn 1+1+1+ +1
< p— p— P —.
2 3 k

b Exercises 26-28. A function g is given. (i) Use the intermediate-
value theorem to conclude that there is a number r in the indicated
interval at which g(r) = Inr. (ii) Use a graphing utility to draw a
figure that displays both the graph of the logarithm and the graph
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Differentiating and Graphing
We know that for x > 0
1

d
a(lnx) =
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of g on the indicated interval. Find r accurate to four decimal
places.

26.g(x)=2x-3; [1,2].
27. g(x) =sinx; [2,3].

28. g(x) = X—lz; [1,2].

bExercises 29-30. Estimate the limit numerically by evaluating

the function at the indicated values of x. Then use a graphing
utility to zoom in on the graph and justify your estimate.
Inx

29. Iile 1; x=14+05,1+0.1,1+0.01,1+0.001,
X— —
1+ 0.0001.

30. Iirg VXInx; x =0.5, 0.1, 0.01, 0.001, 0.0001.
x—0+

As usual, we differentiate composite functions by the chain rule. Thus

d d 2X
—[In(L+x)] = —(l+x*) =
dx[n( +x%)l 1+x2dx( +x9) 1+x
and
d d 3
—IJIn(1 = —(1 = —
dx[n( +3x] 1+3xdx( +3%) 1+ 3x

Example 1 Determine the domain and find f’(x) for

f(x) = In(xv/4 + x2).

forall x > —z.

for all real x

1
3

SOLUTION  For x to be in the domain of f, we must have x+/4 + x2 > 0, and thus we
must have X > 0. The domain of f is the set of positive numbers.
Before differentiating f, we make use of the special properties of the logarithm:

f(x) =In(xv4+x2) =Inx+In[4+x*)"]=1Inx + 1 In(4+x?).

From this we see that
1 1 1 X

4 + 2x2 y

1
)=+

_. . 2X
2 4+x2 4 + x2

Example 2 Sketch the graph of
f(x) =In|x|.

SOLUTION  The function, defined at all x # 0, is an even function: f(—x) = f(x) for

all x # 0. The graph has two branches:

y = In(—x), x <0 and y =Inx,
Each branch is the mirror image of the other. (Figure 7.3.1.)

:§+ T X@+x2)

y =In (=x) y=1Inx

]

X

X > 0. y=Inlx

a Figure 7.3.1
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|
1 1
e

f(x)=xInx

Figure 7.3.2

Example 3  (Important) Show that

d 1
7.3.1 —(I = for all 0.
(7.3.1) dX(n|x|) < orall x #

SOLUTION Forx > 0,

d d 1
d—X(In [x]) = d—x(lnx) =<

For x < 0, we have |x| = —x > 0, and therefore
d d 1d 1 1
G nix) = lin(0) = =20 = (S )y =1

Applying the chain rule, we have

d d —3x2 3x?
—(In|1—x3) = —(1-x*= =
dx(n| X7 1—x3dx( x) 1—-x3 x3-1
and
d x—1 d d 1 1

Example 4 Set f(x) = xInx.

(a) Give the domain of f and indicate where f takes on the value 0. (b) On what
intervals does f increase? decrease? (c) Find the extreme values of f. (d) Determine
the concavity of the graph and give the points of inflection. (e) Sketch the graph of f.

SOLUTION  Since the logarithm function is defined only for positive numbers, the
domain of f is (0, co). The function takes onthe valueOatx = 1: f(1) =1In1 =0.
Differentiating f, we have

1
f’(x)=x~;+lnx=1+lnx.

To find the critical points of f, we set f/(x) = 0:
1
1+Inx =0, Inx = -1, X = e (verify this)

Since the logarithm is an increasing function, the sign chart for f’ looks like this:

signof f': —————-—— O+++++++++++++++++++++

-0

behavior of f:  decreases & increases

f decreases on (0, 1/e] and increases on [1/e, oo). Therefore

1 1 1 1. 1
f(l/e) = . In <e> = e(Inl Ine) = = 273 0.368

is a local minimum for f and the absolute minimum.

Since f”(x) = 1/x > 0for x > 0, the graph of f is concave up throughout. There
are no points of inflection.

You can verify numerically that lim x Inx = 0. Finally note that as x — oo,
XxInx — oo. x=07

A sketch of the graph of f is shown in Figure 7.3.2. 1
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4
Example 5 Set f(x) = In (XX_ 1).

(a) Specify the domain of f. (b) On what intervals does f increase? decrease? (c) Find

the extreme values of f. (d) Determine the concavity of the graph and find the points
of inflection. (e) Sketch the graph, specifying the asymptotes if any.

SOLUTION  Since the logarithm function is defined only for positive numbers, the
domain of f isthe open interval (1, o).
Making use of the special properties of the logarithm, we write

fxX)=Inx*—In(x —1) =4Inx —In(x — 1).
Differentiation gives

Lo 41 3x—4
f(x)_;_x—l_x(x—l)

won 4 1 __(x—2)(3x—2)
P ==t o ™ ™ e -1y

Since f is defined only for x > 1, we disregard all x < 1. Note that f'(x) =0 at
x = 4/3 (critical point) and we have:

signof f': ——————-— O+++++++++++++++

behavior of f: 1

w|s o
>

decreases increases

Thus f decreases on (1, %] and increases on [2, o). The number
f(3) =4In4—-3In3=2.25

is a local minimum and the absolute minimum. There are no other extreme values.
Testing for concavity: observe that f”(x) = 0 at x = 2. (We ignore x = 2/3 since
2/3 is not part of the domain of f.) The sign chart for f” looks like this:

signof f": +4+++++++++++++++4++++0-———-——————

concavity: 1 concave up 2 concave down

The graph is concave up on (1, 2) and concave down on (2, o). The point
2, f(2)=(2,4In2) = (2,2.77)
is a point of inflection, the only point of inflection.
Before sketching the graph, we note that the derivative
1
x—1
is very large negative for x close to 1 and very close to O for x large. This tells us that

the graph is very steep for x close to 1 and very flat for x large. See Figure 7.3.3. The
line x = 1is a vertical asymptote: as x — 1%, f(x) - co. 1

f’(x):;—

Integration
The integral counterpart of (7.3.1) takes the form

1
(7.3.2) / ;dx =In|x| + C.

The relation is valid on every interval that does not include 0.

=1

vertical asymptote x

point of inflection

minimum value = 2.25

—

Figure 7.3.3
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Integrals of the form

1
—du
u

u’(x) . .
/ ) dx withu(x) #0 can be written /

by setting
u = u(x), du = u’(x)dx.
2

1 ad dx.

Example 6 Calculate/

SOLUTION  Up to a constant factor, x? is the derivative of 1 — 4x3. Therefore, we set
u=1-4x3, du = —12x2dx.

X , [ du 1 1 3
1—4x3dx:_ﬁ T:—ﬁln|u|+C=—ﬁln|1—4x |+C. [

2 2
6x° + 2
Example 7 Evaluate f XKEFE g,
1 X3 + X + 1

SOLUTION Set u=x3+x+1, du=(3x?+1)dx.
Atx =1, u=3;atx =2, u=11.

2 6x2 42 1 dy 1
—dx =2 — =2|Inju
/1 x3+x+1 /3 u [ | |]3
=2(In11—In3)=2In(Y). 0
Here is an example of a different sort.

|
Example 8 Calculate/%dx.

SOLUTION  Since 1/x is the derivative of In x, we set

1
u=Inx, du = —dx.
X

This gives

Inx
/de=/“dU=%u2+C=%anx)2+c. o

Integration of the Trigonometric Functions
We repeat Table 5.6.1:

/sinxdx:—cosx+C /cosxdx:sinx+C
/seczxdx=tanx+C /csczxdx=—cotx+c

/secxtanx dx =secx +C /cscxcotx dx = —cscx +C
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Now that you are familiar with the logarithm function, we can add four more basic

formulas to the table:

/tanx dx = —In|jcosx|+C =In|secx|+C
(7.3.3) /cotx dx =In|sinx| +C
/secx dx =Inj|secx +tanx|+C

/cscx dx =Injcscx —cotx|+C

The derivation of these formulas runs as follows:
sin X

/tanx dx = [ ——dx (setu = cosx, du = —sinx dx)

COS X

d
=_/_u=—ln|u|+C
u

1
= —Injcosx|+C =1In —‘+C
COS X
=In|secx|+ C.
COS X .
/Cotx dx :/,—dx (setu = sinx, du = cosx dx)
SIn X

du .
=/T=In|u|-|-C=In|smx|+C.

i Sec X + tanx
secx dx = | secXx —— dx
sec X 4+ tan x

/ sec x tan x + sec? x
B sec X + tan x

[setu = secx + tanx, du = (sec x tan x + sec? x) dx]

du
=/T=In|u|+C=In|secx+tanx|+C.

The derivation of the formula for / cscx dx is left to you.

Example 9 Calculate/cotnx dx.

SOLUTION Setu ==mx, du=mdx.

1 1 . 1 .
/cotnxdx:—/cotu du= —In|sinu|+C = —In|sinzx| + C.
T b

T

TOnly experience prompts us to multiply numerator and denominator by sec x + tan x.

o
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Remark  The u-substitution simplifies many calculations, but you will find with
experience that you can carry out many of these integrations without it. 1

/8
Example 10 Evaluate/ sec 2x dx.
0

SOLUTION  As you can check, % In|sec2x + tan 2x| is an antiderivative for sec 2x.
Therefore

/8 /8
/ sec 2x dx=%[ln|sec2x +tan2x|]0
0

=i(W2+1)-In1]=1n(2+1) =044 0

sec? 3x
Example 11 Calculate | ——
P / 1 + tan 3x

SOLUTION Setu =1+tan3x, du = 3sec?3x dx.

/15_3&:);)( /— $Inju/+C=%Injl+tan3x|+C. o
Logarithmic Differentiation
We can differentiate a lengthy product
g(X) = g1(X)g2(x) - - - gn(X)

by first writing

In1g()1 = In (191 0)1192()1 - - - 19 (X))

= In[g2(X)[ + In{g2(X)[ + - - - + In[gn(x)|
and then differentiating:
g'(x) _ 9i(x) %) 9(x)

9(x)  gi(x) " g2(x) gn(x)’
Multiplication by g(x) then gives

(7.3.4) g'(x) = g()(glgxi 328**328)

The process by which g’(x) was obtained is called logarithmic differentiation.
Logarithmic differentiation is valid at all points x where g(x) # 0. At points x where
g(x) = 0, the process fails.

A product of n factors,

9(x) = 92(x)g2(X) - - - gn(X)
can, of course, also be differentiated by repeated applications of the product rule,
Theorem 3.2.6. The great advantage of logarithmic differentiation is that it readily
gives us an explicit formula for the derivative, a formula that’s easy to remember and
easy to work with.

Example 12 Calculate the derivative of
g(x) = x(x = 1)(x = 2)(x —3)
by logarithmic differentiation.
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SOLUTION  We can write down g’(x) directly from Formula (7.3.4):

g/(x)=X(X—1)(X—2)(X—3)(%+Xi1+xi2+xi3);

or we can go through the process by which we derived Formula (7.3.4):

InjgxX)|=In|x|+Injx =1 +Injx —2] +In|x — 3|,
"(x 1 1 1 1
g'(x) _ n

gx) x x-—1 x—2 x_3

g’(x):x(x—l)(x—2)(x—3)(%+Xilﬁ—xiz+Xi3>. a

The result is valid at all numbers x other than 0, 1, 2, 3. These are the numbers where
gx)=0. 4

Logarithmic differentiation can be applied to quotients.

Example 13 Calculate the derivative of
(x2 + 1)3(2x — 5)?
(7 + 57

g(x) =
by logarithmic differentiation.
SOLUTION  OQur first step is to write

g(x) = (x? + 1)3(2x — B5)* (x> +5)2.

Then, according to (7.3.4),

o (P4 1PX =52 [3(x2 +1)%(2x) 22X —5)(2)  (—2)(x? +5)~3(2x)
900 = (x2 +5)? [ (x2+1)3 (2x —5)2 (X2 +5)72 ]
(X +1)°%@2x —5)? [ 6x 4 4x
T (x2+5) (x2+1 2x—5_x2+5)'

We don’t have to rely on (7.3.4). We can simply write

In|g(x)| = In|(x? + 3)%| + In|(2x — 5)%| — In|(x? + 5)?|
=3In|x>+1|+2In|2x =5/ — 2In|x?> + 5]

and go on from there:

g'(x)  3(2x) 2(2) 2(2x)
g(x) x2+1 ' 2x—-5 x2+5

') = g(x) 6X n 4 B 4x
G =0\ a1 " x—5 x2+5)/)°

The result is valid at all numbers x other than g At this number g(x) =0. O
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EXERCISES 7.3

That logarithmic differentiation fails at the points where a product g(x) is 0 is not
a serious deficiency because at these points we can easily apply the product rule. For
example, suppose that g(a) = 0. Then one of the factors of g(x) is 0 at x = a. We write
that factor in front and call it g1 (x). We then have

g(x) = 91(x)[g2(X) - - - gn(X)]
By the product rule,

with g1(a) =0.

d
9'(x) = 9u(¥) 5 [92(x) - Gn ()] + 91 (X) [G2() - - G (¥)].

Since g;(a) =0,
g'(a) = 91(a)[g2(a) - - - gn(@)]-
We go back to the function of Example 12 and calculate the derivative of
9(x) = x(x = 1)(x = 2)(x —3)

at x = 3 by the method just described. Since it is the factor x — 3thatisOatx = 3, we
write

9(x) = (x = 3) [x(x = 1)(x = 2)].
By the product rule,
d
9'(x) = (x — S)d—X[X(X =D = 2)] + 1[x(x — 1)(x — 2)].
Therefore
g(3)=3B-1)(3-2)=6.

Exercises 1-14. Determine the domain and find the derivative.

1. f(x) =In4x. 2.
3. f(x) =In(x3+1). 4,
5. f(x) =Inv/1+x2 6.
7. f(x) =In|x* —1|. 8.
9. f(x) = (2x +1)%In(2x + 1).
X+ 2
10. f = . 11.
0. f(x)=1In a1
12. f(x)=In¥xZ ¥ 1. 13.
14. f(x) = cos (Inx).
Exercises 15-36. Calculate.
15. f dx . 16.
X+1
X
17. /—3_)(2 dx. 18.
19. /tan3x dx. 20.
21. /xsecxzdx. 22
23 24,

X
. /-mdx.

25/ sinx - / sec? 2x <
F(x) = In(2x + 1). J 2+cosx A tanax
2

f(x) = In[(x + 1)%]. 27,/ dx. 28. f—;( dx.
f(x) = (Inx)°. ’ ";f( §:c2_x tlan 2x
f(x) = In(Inx). 9 /x(lnx)z 30 / 1tsecax

1 g [ o
Fx) = —. sinXx + cos x

Inx

HINT: Setu = 1 + /X.

1
£(x) = sin (Inx). 32'/ﬁ(1+ﬁ)dx'

tan (1
a3 [ Y ax. 34, / an(inx) 4.
14+ x/X
dx
3y’ 35. /(1+secx)2dx. 36. /(3—cscx)2dx.
X+1
/ ; dx. Exercises 37-46. Evaluate.
€ dx ¢ dx
37. —_ 38. —_—
/sec%nxdx. L x /1 X
2
csc? x 39, /e dx. 40. /1( 11 )dx
2 + cotx e X 0 X +1 X+ 2
5 13
/'”(”a)dx, 41. / X dx. 42./ tan X dx.
X +a 4 X2 =1 1/4



/2 COS X /2
43, / —_dx 44, / (1 + csc x)?dx.
x/6 L1+ sinX /4

/2 € 1In
45. / cotx dx. 46. / nx dx.
/4 1 X

47. Pinpoint the error in the following:

5 1 5
/1 mdx: [In|x—2|]lzln3.

In(1+ x)
X

48. Show that Iin?J = 1 from the definition of deriva-
X—

tive.

Exercises 49-52. Calculate the derivative by logarithmic differ-
entiation and then evaluate g’ at the indicated value of x.

49. g(x) = (X2 + 1%(x — 1)°3% x =1
50. g(x) = x(x +a)(x + b)(x + c);
x4 (x —1)

X = —h.

x-Dx-27°
52 g(X) = [m} , X = 2

Exercises 53-56. Sketch the region bounded by the curves and
find its area.

53.y =secx, y=2, x=0, x=mu/6.
54.y = csCimX, y=X, X=3.

55,y =tanx, y=1 x=0.

56.y =secx, y=cosx, x=0, x=7.

Exercises 57-58. Find the area of the part of the first quadrant

that lies between the curves.

57.x4+4y—-5=0 and xy=1.

58.x+y—3=0 and xy=2

59. The region bounded by the graph of f(x) = 1/4/1+ x and
the x-axis for 0 < x < 8 is revolved about the x-axis. Find
the volume of the resulting solid.

60. The region bounded by the graph of f(x) = 3/(1 + x2) and
the x-axis for 0 < x < 3 is revolved about the y-axis. Find
the volume of the resulting solid.

61. The region bounded by the graph of f(x) = ./sec x and the
x-axis for —7/3 < x < /3 is revolved about the x-axis.
Find the volume of the resulting solid.

62. The region bounded by the graph of f(x) = tanx and the
x-axisfor 0 < x < m/4isrevolved about the x-axis. Find the
volume of the resulting solid.

63. A particle moves along a coordinate line with acceleration
a(t) = —(t + 1)~2 feet per second per second. Find the dis-
tance traveled by the particle during the time interval [0, 4]
given that the initial velocity v(0) is 1 foot per second.

64. Exercise 63 taking v(0) as 2 feet per second.

Exercises 65-66. Find a formula for the nth derivative.

dn dn
65. ——(Inx). 66. X [In(1 —x)].

dxn
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67. Show that [cscx dx =In|cscx — cotx|+ C using the
methods of this section.

68. (a) Show that for n = 2, (7.3.4) reduces to the product rule
(3.2.6) except at those points where g(x) = 0.
(b) Show that (7.3.4) applied to

g1(x)
g2(x)

9(x) =

reduces to the quotientrule (3.2.10) except at those points
where g(x) = 0.

Exercises 69-74. (i) Find the domain of f, (ii) find the intervals
on which the function increases and the intervals on which it
decreases, (iii) find the extreme values, (iv) determine the con-
cavity of the graph and find the points of inflection, and, finally,
(v) sketch the graph, indicating asymptotes.

69. f(x)=1In(4 —x). 70. f(x)=x—Inx.

71. f(x) = x?Inx. 72. f(x) =In(4 —x)%

X x3
73, f(x)=|n[m]. 74, f(x)=|n[x_1]

75. Show that the average slope of the logarithm curve from

X=atox=bis
1 In b
b—a aj’

76. (a) Show that f(x) = In2x and g(x) = In 3x have the same
derivative.
(b) Calculate the derivative of F(x) = Inkx, where k is any
positive number.
(c) Explain these results in terms of the properties of loga-
rithms.

bExercises 77-80. Use a graphing utility to graph f on the indi-

cated interval. Estimate the x-intercepts of the graph of f and
the values of x where f has either a local or absolute extreme
value. Use four decimal place accuracy in your answers.

77. f(x) = /XInx; (0, 10].
78. T(x) = x%Inx; (0, 2].

79. f(x) =sin(Inx); (1, 100].
80. f(x) = x%In(sinx); (0, 2].

bSl. A particle moves along a coordinate line with acceleration

a(t) =4 —2(t + 1) + 3/(t + 1) feet per second per second
fromt=0tot =3.

(a) Find the velocity v of the particle at each time t during
the motion given that v(0) = 2.

(b) Use a graphing utility to graph v and a together.

(c) Estimate the time t at which the particle has maximum
velocity and the time at which it has minimum velocity.
Use four decimal place accuracy.

[>82. Exercise 81 with a(t) = 2cos 2(t + 1) 4 2/(t + 1) feet per

second per second fromt =0tot = 7.

[>83. Set f(x) =1/x and g(x) = —x? + 4x — 2.

(a) Use a graphing utility to graph f and g together.
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(b) Use a CAS to find the points where the two graphs inter- bExercises 85-86. Use a CAS to find (i) f’(x)and f”(x); (ii) the

sect. points where f, f”and f” are zero; (iii) the intervals on which
(c) Use a CAS to find the area of the region bounded by the f, f”and f” are positive, negative; (iv) the extreme values of f.
two graphs. | 1421
grep 85. f(x) = . 86. f(x)= — %
[ 84. Exercise 83 taking f (x) = and g(x) = |x — 2|. X 2¥/Inx

Figure 7.4.1

M 7.4 THE EXPONENTIAL FUNCTION

Rational powers of e already have an established meaning: by eP/4 we mean the qgth

root of e raised to the pth power. But what is meant by evZore™
Earlier we proved that each rational power eP/9 has logarithm p/q:

(7.4.1) IneP/d = ap.

The definition of e* for z irrational is patterned after this relation.

DEFINITION 7.4.2
If z is irrational, then by e* we mean the unique number that has logarithm z:

Ine? = z.

What is ev2? Itis the unique number that has logarithm +/2. What is €7 ? It is the unique
number that has logarithm 5. Note that e* now has meaning for every real value of x:
it is the unique number that has logarithm x.

DEFINITION 7.4.3
The function
E(x) = e* for all real x

is called the exponential function.

Some properties of the exponential function are listed below.
(1) In the first place,

(7.4.4) Ine* = x for all real x

Writing L(x) = Inx and E(x) = €%, we have
L(E(x)) = x for all real x.

This says that the exponential function is the inverse of the logarithm function.

(2) The graph of the exponential function appears in Figure 7.4.1. It can be obtained
from the graph of the logarithm by reflection in the line y = x.
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(3) Since the graph of the logarithm lies to the right of the y-axis, the graph of the
exponential function lies above the x-axis:

(7.4.5) e*>0 for all real x.

(4) Since the graph of the logarithm crosses the x-axis at (1, 0), the graph of the
exponential function crosses the y-axis at (0, 1):

Inl=0  gives e’=1.

(5) Since the y-axis is a vertical asymptote for the graph of the logarithm function, the
x-axis is a horizontal asymptote for the graph of the exponential function:

asx — —oo, e*—0.

(6) Since the exponential function is the inverse of the logarithm function, the logarithm
function is the inverse of the exponential function; thus

(7.4.6) e"X — x forall x > 0.

You can verify this equation directly by observing that both sides have the same
logarithm:

In(e™) = Inx
since, for all real t, Ine* =t.
You know that for rational exponents

e(P/a+1/5) _ aP/a  gr/s.

This property holds for all exponents, including irrational exponents

THEOREM 7.4.7

b

edth — g2 . g for all real a and b.

PROOF
Ine®™® —a+b =1Ine? +Ine® = In(e? - e).
The one-to-oneness of the logarithm function gives

edth — g2 . gb 1

We leave it to you to verify that

1
(7.4.8) e P = — and e P=_,

We come now to one of the most important results in calculus. It is marvelously
simple.
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THEOREM 7.4.9

The exponential function is its own derivative: for all real x,

d X\ _ X
d—x(e)_e.

prOOF The logarithm function is differentiable, and its derivative is never 0. It follows
(Section 7.1) that its inverse, the exponential function, is also differentiable. Knowing
this, we can show that

d

— (") =¢*

ax &)
by differentiating both sides of the identity

Ine* = x.
On the left-hand side, the chain rule gives

1d

d
—(IneX) = ).
dx(ne ) ex dx(e )
On the right-hand side, the derivative is 1:
d
—(x)=1.
)

Equating these derivatives, we have

1d, d «
— — () = |
= OIX(e )=1  andthus dx(e y=¢e*. 1

Compositions are differentiated by the chain rule.
Example 1
(a) i(e"x) = ek"i(kx) = ek = ke

ddX d)fj 1 | 1

—(eV¥) — V¥ — VX VX
®) gD =R =e () .

2x) T2
© dd—x(e—*z):e—xzf—x(—xz)ze-xz(—2x>=—2x e, O

The relation
i(eX) =¢*  andits corollary i(e"x) =k e
dx dx

have important applications to engineering, physics, chemistry, biology, and economics.
We take up some of these applications in Section 7.6.

Example 2 Let f(x) = xe™* for all real x.

(a) On what intervals does f increase? decrease?

(b) Find the extreme values of f.

(c) Determine the concavity of the graph and find the points of inflection.
(d) Sketch the graph indicating the asymptotes if any.
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SOLUTION
f(x) = xe™,
f'(x) =xe™*(-1)+e* =1 —x)e™*,
£7/(x) = (1 — x)e (1) —e™* = (x — 2)e~™.

Since e™* > 0 for all x, we have f’(x) = 0 only at x = 1. (critical point) The sign of
f” and the behavior of f are as follows:

signof f's +++++++++++++++++++4+40----- -

behavior of f: increases 1 decreases

The function f increases on (—oo, 1] and decreases on [1, co). The number

1 1

f(l)==-=~_"—"_2=0.368

&) e 272

is a local maximum and the absolute maximum. The function has no other extreme
values.

The sign of f” and the concavity of the graph of f are as follows:

signoffv—-—————-—-——— - O+++++++

concavity: concave down 2 concave up

The graph is concave down on (—oo, 2) and concave up on (2, co). The point

(2, fQ) =222 = <2 ) ~(2,0.27)

" (2.72)2
is a point of inflection, the only point of inflection. In Section 11.6 we show that as
X — 00, f(x)=x/e* — 0. Accepting this result for now, we conclude that the x-axis
is a horizontal asymptote. The graph is given in Figure 7.4.2. 1

y

| |

1 2 horizontal asymptote X
y=0

f(x) = xe~x

Figure 7.4.2

Example 3 Let f(x) = e~**/2 for all real x.

(a) Determine the symmetry of the graph and find the asymptotes.

(b) On what intervals does f increase? decrease?

(c) Find the extreme values.

(d) Determine the concavity of the graph and find the points of inflection.
(e) Sketch the graph.

m 359
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f(x) = e-x?2

Figure 7.4.3

SOLUTION  Since f(—x) =e (%2 = ¢=X*/2 = f(x), f is an even function. Thus
the graph is symmetric about the y-axis. As x — o0, e**/2 — 0. Therefore, the
x-axis is a horizontal asymptote. There are no vertical asymptotes.

Differentiating f, we have

f/(x) = e X"/2(—x) = —xe /2
f7(x) = —x(—xe ¥/ —e**/2 = (x2 — 1)e /2,

Since e=**/2 > 0 for all x, we have f’(x) = 0 only at x = 0 (critical point). The sign of
f’ and the behavior of f are as follows:

signof f's ++++++++++++++++++++0- -

behavior of f: increases 0 decreases

The function increases on (—oo, 0] and decreases [0, co). The number
f(0)=e’=1

is a local maximum and the absolute maximum. The function has no other extreme
values.

Now consider f”(x) = (x2 — 1)e~**/2. The sign of f” and the concavity of the
graph of f are as follows:

signof f": +++++++40---—-———————— O+++++++
concavity: -1 0 1 X
concave point concave point concave
up of down of up
inflection inflection

The graph of f is concave up on (—oco, —1) and on (1, co); the graph is concave down
on (-1, 1). The points (—1, e~*/?) and (1, e~/?) are points of inflection.
The graph of f is the bell-shaped curve sketched in Figure 7.4.3.1 1

The integral counterpart of Theorem 7.4.9 takes the form

(7.4.10) /exdx =e*+C.

In practice
/e”(x)u’(x)dx is reduced to /e“du
by setting
u = u(x), du = u’(x)dx.
Example 4 Find/9e3xdx.
SOLUTION Setu =3x, du=3dx.

/9e3xdx=3/e”du=3e“+c=3e3X+C.

Bell-shaped curves play a big role in probability and statistics.
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If you recognize at the very beginning that
d
3e3x — e3>< ,
&)
then you can dispense with the u-substitution and simply write

/9e3de :3/3e3de =3¥+C. O

E le5 Find [ £ 4
xampie Fin — aX.
P /ﬁ
1

SOLUTION Setu = /X, du= —=dx.
VX 2./X
JX
e
S _dx=2[e"du=2e"+C=2ev"4+C.
NG / " "

If you recognize from the start that

1 [evX
_i_zi@@,
2\ JX dx
then you can dispense with the u-substitution and integrate directly:

V&3 1 [evX
e—dx=2/—(e—)dx=2eﬁ+c. 0
2 \ A&

. e3X
Example 6 Fmd/mdx.

SOLUTION We can put this integral in the form
1
/— du
u

u=e>+1, du = 3e¥dx.

by setting

Then

a3 L 1 . . ,
/7e3x+1dx=§/adu=§lnIUI+C=§In(ex+1)+c. 0

Example 7 Evaluate

V/2In3
/ xe**/2dx.

0

SOLUTION Setu = —1x2, du= —x dx.

At x=0,u=0; atx =+/2In3, u= —1In3.Thus

V2In3 ) —In3 —In3
/ xe ¥ /zdx=—/ e“du=_[e“]0 =1-eM=1— .o Q
0 0

W=
I
[NIN]

m 361
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EXERCISES 7.4

1
Example 8 Evaluate/ eX(e* + 1)Y/5dx.

SOLUTION Setu =¢e*+1,

At x=0, u=2;

1 e+1
/ e*(e* + 1)M°dx = / ut/Sdu = [§u6/5]
0 2

atx =1,

du = e*dx.
u=-e+ 1 Thus
e+1
, = 2[(e +1)%5 —2%5].

Exercises 1-24. Differentiate.

1y=e?,

3.y =e’"1

5.y =¢e*Inx.

7.y =x"te™X,
9.y =3 +e).

11. y = ev¥In yX.
13.y = (e + 1)2
15. y = (x% — 2x + 2)e*.

17 =1
AR I
19.y:e4|nx.

21. f(x) = sin(e%).
23. f(x) = e > cosx.

Exercises 25-42. Calculate.

25. /eZde.
27. /ekxdx.
29. /xexzdx.
31./6:/: dx.
33. /Inexdx.

4
35. dx.
| &
37

eX
.| ———dx.
| o
er
39. ———dx.
/2e2X+3 X
41. /cos xesin X dx.

Exercises 43-52. Evaluate.

1
43. / e*dx.
0

10.
12.
14.
16.

18.

20.
22.
24.

26.

28.

30

32

34.

36.

38.

40.

42

44,

© o s N

Ly = 392X+l.
y =267,
y = x2%eX,
y = eVl
y =3 —e™).
y = (3—2e)3
y = (e2x _ e—ZX)Z'
y = x2eX — xe¥’.
e —1
Y= et
y = Ine®.
f(X) — esin2x.

f(x) = In(cose?).

/efzxdx.
/eax+b dx.
./xe‘xzdx.

p2VvX
=

/e'” Xdx.
e)(
dx.
[
Xeax2
/76‘”‘2 dx
+1

/‘ sin (e=%) dx

dx.

e2X

. / e *[1 + cos(e )] dx.

1
/ e dx.
0

45.

47.

49

5L

53.

54,

55.

56.

57.

58.

In2 X
e
/ dx
o e +1

1
46.f xe " dx.
0
14_ X
48./ ® dx.
o €f

1 eX
50. dx.
/0 4 — X X

Inw/4
52. / e* sece* dx.
0

Inm
/ e % dx.
0

1 Ax
e 1
/ + dx.
o €

1
/ x(e¥ 4 2) dx.
0

Let a be a positive constant.

(@) Find a formula for the nth derivative of f(x) = e?*.
(b) Find a formula for the nth derivative of f(x) =e~2.

A particle moves along a coordinate line, its position at time
t given by the function

x(t)= Ae' +Be™. (A>0,B>0k>0)

(a) Find the times t at which the particle is closest to the
origin.

(b) Show that the acceleration of the particle is proportional
to the position coordinate. What is the constant of pro-
portionality?

A rectangle has one side on the x-axis and the upper two ver-

tices on the graph of y = e**. Where should the vertices be

placed so as to maximize the area of the rectangle?

A rectangle has two sides on the positive x- and y-axes and

one vertex at a point P that moves along the curve y = €* in

such a way that y increases at the rate of % unit per minute.

How is the area of the rectangle changing when y = 3?

Set f(x) =e*".

(a) What is the symmetry of the graph?

(b) Onwhat intervals does the function increase? decrease?

(c) What are the extreme values of the function?

(d) Determine the concavity of the graph and find the points
of inflection.

(e) The graph has a horizontal asymptote. What is it?

(f) Sketch the graph.

Let Q2 be the region below the graph of y = e* from x =0
tox =1

(a) Find the volume of the solid generated by revolving 2
about the x-axis.



(b) Set up the definite integral that gives the volume of the
solid generated by revolving €2 about the y-axis using the
shell method. (You will see how to evaluate this integral
in Section 8.2.)

59. Let 2 be the region below the graph of y = e~ fromx = 0
tox =1.

(a) Find the volume of the solid generated by revolving
about the y-axis.

(b) Form the definite integral that gives the volume of the
solid generated by revolving 2 about the x-axis using
the disk method. (At this point we cannot carry out the
integration.)

Exercises 60-63. Sketch the region bounded by the curves and
find its area.

60.x =e¥, x=e?Y, x=4
6l.y=¢eX y=e¥ y=c¢e*
62.y=¢€¢*, y=e, y=x, x=0.
63.x=¢Y, y=1 y=2, x=2

Exercises 64—68. Determine the following: (i) the domain; (ii)
the intervals on which f increases, decreases; (iii) the extreme
values; (iv) the concavity of the graph and the points of inflection.
Then sketch the graph, indicating all asymptotes.

64. f(x) = (1 — x)e*. 65. f(x) = e/,

66. f(x) = x%e . 67. f(x) =x%Inx.

68. f(x) = (x —x%)e™*

69. For each positive integer n find the number x, for which
o eXdx =n.

70. Find the critical points and the extreme values. Take k as a
positive integer.
(@ f(x)=x*Inx, x > 0.
(b) f(x)=xke™, x real.

71. Take a > 0 and refer to the figure.

y

— pax =e-ax
y=e | y

tangent tangent

(a) Find the points of tangency, marked A and B.
(b) Find the area of region I.
(c) Find the area of region II.

72.
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Prove that for all x > 0 and all positive integers n
X2 X3

e* >1+X+§+§+”

Recall thatn! =n(n —1)(n —2)---3-2- 1.

Xn
4 —.
n!

X X
HINT: eX=1+/ etdt>1+f dt = 1+x
0 0

X X
ex=1+/ewt>1+/(LHMt
0 0

2

X
:1+x+?, and so on.

73. Prove that, if n is a positive integer, then

e* > x" forall x sufficiently large.

HINT: Exercise 72.

[ 74. Set f(x) = e~ and g(x) = X2,

[>75

(a) Use a graphing utility to draw a figure that displays the
graphs of f and g.

(b) Estimate the x-coordinates a and b (a < b) of the two
points where the curves intersect. Use four decimal place
accuracy.

(c) Estimate the area between the two curves from x = a to
x =bh.

. Exercise 74 with f(x) = e* and g(x) = 4 — x2.

b Exercises 76—78. Use a graphing utility to draw a figure that dis-
plays the graphs of f and g. The figure should suggest that f and g
are inverses. Show that this is true by verifying that f (g(x)) = x
for each x in the domain of g.

76
77
78

[>79

[> 80.
[>81.

Cfx)=e%, gx)=Inyx; x>0
f)=e, g)=+Inx; x=>1.
) =¢e2 gx)=2+Inx; x>0.

. Set f(x) = sine*. (a) Find the zeros of f. (b) Use a graphing
utility to graph f.
Exercise 79 with f(x) = es"* — 1,
Set f(x) =e*and g(x) = Inx.
(a) Use a graphing utility to draw a figure that displays the
graphs of f and g.
(b) Estimate the x-coordinate of the point where the two
graphs intersect.
(c) Estimate the slopes at the point of intersection.
(d) Are the curves perpendicular to each other?
. (@) Use a graphing utility to draw a figure that displays the
graphs of f(x) = 10e * and g(x) = 7 — e*.
(b) Find the x-coordinates aand b (a < b) of the two points
where the curves intersect.
(c) Usea CAS to find the area between the two curves from
Xx=atox =h.

. Use a CAS to calculate the integral.

@) fljex (b) fe—X<1;Xex>4dx.
O [

dx.

dx.
c0s2 X
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B PROJECT 7.4 Some Rational Bounds for the Number e

The purpose of this project is to lead you through a proof that,
for each positive integer n

1 n 1 n+1
(1+_) SES(H_) .
n n

It will follow that

1+ <e<(1+1)
1

4
9

(7.4.11)

1+3)P<e<(1+3)
1+if<e<(1+21)°,  andsoon.

The proof outlined below is based directly on the definition of
the logarithm function

X
Inx:/ ldt, x>0
.t

and on the characterization of e as the unique number for which

e
1

/—dt:l.
p

The proof has two steps.

Step 1. Show that for each positive integer n,

1 1 1
—— <In(1l+—-)<-.
n+1 n n

HINT:  For all numbers tin [1, 1+ 1],

1
1+

=

—~| =

<1

Sl

Step 2. Show that

1 n 1 n+1
() 2e=o0)
n n

by applying the exponential function to each entry in the inequal-
ity derived in Step 1.

The bounds that we have derived for e are simple, elegant,
and easy to remember, but they do not provide a very efficient
method for calculating e. For example, rounded off to seven
decimal places,

1 100 1 101
14— ) 27048138 and (14 —
( + 100) an ( + 100)

= 2.7318620.

Apparently a lot of accuracy here, but it doesn’t help us much in
finding a decimal expansion for e. It tells us only that, rounded
off to one decimal place, e = 2.7. For a more accurate decimal
expansion of e, we need to resort to very large values of n. A
much more efficient way of calculating e is given in Section 12.6.

B 7.5 ARBITRARY POWERS; OTHER BASES

Arbitrary Powers: The Function f(x) = x"

The elementary notion of exponent applies only to rational numbers. Expressions such

as

2173, 7745, 712

make sense, but so far we have attached no meaning to expressions such as

102, 27,

7-V3, €.

The extension of our sense of exponent to allow for irrational exponents is conveniently
done by making use of the logarithm function and the exponential function. The heart
of the matter is to observe that for x > 0 and p/q rational,

xP/a — a(p/a)Inx

(To verify this, take the logarithm of both sides.) We define x* for irrational z by setting

We can now state that

X% = ezlnx.

(7.5.1)

— g Inx for all real numbers r.

X >0, then
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In particular,

10«/5 — e\/i InlO’ 27‘[ _ e]r In2 77«/5 — ef\/g In7’

ne — eelnn.

’

With this extended sense of exponent, the usual laws of exponents still hold:

(7'52) XF+S — XrXS, Xr—s =, (XF)S — er

PROOF
X+ — e(r+s)|n>< — erlnx 'eslnx — XrXS,

rinx r
Xr—s — e(r—s)ln>< — erlnx 'e—slnx _ € _ X

T oeshnx T ys

(Xr)s — eslnxr — erslnx —x'S. 0

The differentiation of arbitrary powers follows the pattern established for rational
powers; namely, for each real number r and each x > 0

d
7.5. —(x") =rx""L
(7.5.3) dx(x) rx

PROOF
d r d rinx rinx d r
—(xN=—(e =e™M _(rinx)=x"-— =rx""1.
dx ) dx( ) dx( ) X

Another way to see this is to write f(x) = x" and use logarithmic differentiation:

Inf(x)=riInx

f'(x) r

f(x) x

, rf(x) rx' .
f'(x) = = =X .o

Thus
da

d (xﬁ> =V2x¥71  and "

dx

As usual, we differentiate compositions by the chain rule. Thus

(x™) = ax™ L

dd—x |2 +5)"%] = V362 + 5)ﬁ-10|°'—x(x2 +5) = 2/3x(x? +5)Y% 1.

Example 1 Find dd_x [(x* + 1)*].

SOLUTION  One way to find this derivative is to observe that (x? + 1)3* = e3x In(<+1)
and then differentiate:

d 2 X7
d—X[(x +1)%*] =

d 3x In (x?+1) 3x In (x?4-1) 2X 2
—|e =e 3X - 3In(x+1
dx [ ] x2+1 +3In(x*+1)

— e+ [ 2 et
= (x*+1) x2+1+ nxc+1)|.
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Another way to find this derivative is to set f(x) = (x? 4+ 1)%*, take the logarithm of
both sides, and proceed from there

In f(x)=3x-In(x?>+1)

f/(x) 2X 6x?
00 = x-X2+1+[In(x2+1)](3):X2+1+3In(x2+1)
f(x)_f(x)[ X —|—3In(x +1)]

2

= (X2 + 1) [ o

X2+1+3In(x2+1)]. Q

Each derivative formula gives rise to a companion integral formula. The integral
version of (7.5.3) takes the form

Xr+1
7.5.4 x"dx = C, for r #£ —1.
( ) / ] + #
Note the exclusion of r = —1. What is the integral if r = —1?

Example 2 Fmd/m

SOLUTION Setu =2x*+1, du=8x%dx.
x3 1 1/ut" (2x* + 1)t~
—~ __dx==|uT"du==> c=-"_""__4+cC. 1
/(2x4+1)” X 8/” y 8(1—7r>+ sl—n)

Base p: The Function f(x) = p*

To form the function f(x) = x", we take a positive variable x and raise it to a constant
power r. To form the function f(x) = p*, we take a positive constant p and raise it to
a variable power x. Since 1* = 1 for all x, the function is of interest only if p # 1.

Functions of the form f(x) = p* are called exponential functions with base p. The
high status enjoyed by Euler’s number e comes from the fact that

d X X
d—X(e ) =¢*.
For other bases the derivative has an extra factor:
(7.5.5) i(|ox)= p*Inp
h dx '
PROOF

—(p)— (X'”") e"PInp=p*inp. 1
For example,

d X\ __ nX d X\ X
&(2)_2 In2 and &(10)_10 In 10.
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The next differentiation requires the chain rule:
d

2 2 d 2
3x 3x 2 3x
_dX (2 ) =2 (In 2)—dx(3X ) = 6X2 In2.

The integral version of (7.5.5) reads

1
X _ X
(7.5.6) / p*dx = o 0 p* + C.

The formula holds for all positive numbers p different from 1. For example,

1
2%dx = —2* +C.
/ X In2 +

Example 3 Find/xS‘dex.

SOLUTION Setu = —x2, du= —2x dx.

1 1 1
/xS‘dex = —E/SUdu =5 (ﬁ) 5" 4+ C

-1 2
=—5*4+C. O
2In5 +

2
Example 4 Evaluate / 32~14x.
1

SOLUTION Set u=2x—1, du=2dx.
At x=1, u=1, atx=2, u=3.Thus
3

2 13 171 12
32x‘1dx=—/ ddu=>|— 3| = =—-=10923. 1
/1 2 )1 2[In3 ]1 In3

Base p: The Function f(x) = log, x
If p> 0, then
Inp =tinp  forallt.
If p is also different from 1, then In p # 0, and we have
In pt
% —t.

This indicates that the function

satisfies the relation
f(p)=t  forallrealt.

In view of this, we call
Inx
Inp
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the logarithm of x to the base p and write

In x

7.5.7 log, x = ——
(7.5.7) 0gy X = i

The relation holds for all x > 0 and assumes that p is a positive number different
from 1. For example,
In32  In2> 5In2

I 2: = = =
09z 3 In2 In2 In2

and

In() In10! —In10 1
IN100  In10? 2In10 2
We can obtain these same results more directly from the relation

10900 (%) .

(7.5.8) log, p' =t.

Accordingly
log,32 =10g,2° =5 and 109,00 () = 10g05(100~Y/2) = —1

Since log,, x and In x differ only by a constant factor, there is no reason to introduce
new differentiation and integration formulas. For the record, we simply point out that

d [Inx 1
(Iogp )_ (Inp)lenp'

If p is e, the factor In p is 1 and we have

d
g 00 %) =

The logarithm to the base e, In = log,, is called the natural logarithm (or simply the
logarithm) because it is the logarithm with the simplest derivative.

Example 5 Calculate

d d
@ g ossx). 0 L lop@e+ Dl @ [ o
SOLUTION
In|x| 1

@ 30005 0) = [Tl | =

In(3 1
6 llog,a¢° +1)]——X[%}

1 6x

(3x2+1)ln2dx(3 + )_(3x2+1)ln2'

by the chain rule )

1 1 1 In|x|
= -_— f— I .
© /x In 1OdX In10 de In10 +C =logy x| +C. 1
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Exercises 1-8. Evaluate.

1. log, 64.
3. 10ggy 3.
5. logs 1.
7. logs 125.

2. log, &.
4. log,, 0.01.
6. log; 0.2.
8. log, 4°.

Exercises 9-12. Show that the identity holds.

9. log, xy = log, x + log, y.
1
10. log,, il log, X.

12. log,, 3 = log, x —log, y.

Exercises 13-16. Find the numbers x which satisfy the equation.

13. 10* = e*.
15. log, 10 = log, 100.

11. log, x¥ =y log, x.

14. logs X = 0.04.
16. log, 2 = log; .

17. Estimate In a given that e < a < e®.
18. Estimate e° given that Inx; < b < Inx,.

Exercises 19-28. Differentiate.
19. f(x) = 3%,

21. f(x) = 253X,

23. g(x) = /logs x.

25. f(x) = tan(logs x).

27. F(x) = cos(2* + 27%).
Exercises 29-35. Calculate.

29. /3XdX.

31, /(x3+3‘x)dx.

dx
33 | ——.
fxlns

3. [ log, x*

——dx.
X

20. g(x) = 43¢,
22. F(x) = 52+,
24. h(x) = 75",

logyg X
26. g(x) = ?(120 .

28. h(x) = a~* cosbx.

30. /Z’de.

32. /xlO‘dex.

34, / 105 X .
X

36. Show that, if a, b, c are positive, then

log, ¢ = log, b log, c

provided that a and b are both different from 1.

Exercises 37-40. Find f’(e).
37. f(x) = logs x.
39. f(x) =In(Inx).

Exercises 41-42. Calculate f’(x) by first taking the logarithm

of both sides.
41. f(x) = p~.
Exercises 43-52. Calculate.

d X
43. [(x +1)]

d Inx
45. - [(nx)"™].

38. f(x) = xlog; x.
40. f(x) = logs(log, x).

42. F(x) = pa®,

d X
44, d—X[(In x)*].

o5 ()]

d sinx d (x2+1)
47, dx[x 1. 48. dX[(cosx) 1.
d ; C0Ss X d (x?)
49. dX[(smx) 1. 50. dX[x 1.
d d
) Sec x
51. —dX[x 1. 52. —dx[(tan X)*].

53. Show that
1 X
as X — oo, (1—1—;) — €.

HINT: Since the logarithm function has derivative 1 at
X =1,

InA+h)—In1 In(T+h)
h ~ " h

Exercises 54-58. Draw a figure that displays the graphs of both
functions.

54, f(x) =¢e* and g(x)=3*.

55. f(x) =¢e* and g(x)=2%.

56. f(x)=Inx and g(x) = log;x.
57. f(x) =2¢ and g(x) = log, X.
58. f(x)=Inx and g(x) = log, x.

ash — 0, 1.

Exercises 59-65. Evaluate.

2
59./ 27%dx.
1
1
60./ 4% dx.
0
4 dx
61./1 -
2
62./ p*/2 dx.
0

1
63. / X101 dx.
0

1 5p\/m
64./ dx.
0o VX+1

1
65./ (2° + x?) dx.
0

Exercises 66—68. Give the exact value.
66. 71/In7l 67. 5(In17)/(|n5)_

68. (16)Y/!n2.

969. (a) Use a graphing utility to draw a figure that displays the

graphs of both f(x) = 2% and g(x) = x? — 1.

(b) Use a CAS to find the x-coordinates of the three points
where the curves intersect.

(c) Use a CAS to find the area of the bounded region that
lies between the two curves.

[> 70. Exercise 69 for f(x) =2 and g(x) = 1/x2.
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B 7.6 EXPONENTIAL GROWTH AND DECAY

We begin by comparing exponential change to linear change. Let y = y(t) be a function
of time t.
If y is a linear function, a function of the form

y(t) =kt + C, (k, C constants)
then y changes by the same additive amount during all periods of the same duration:
y(t + At) = k(t + At) + C = (kt + C) + kAt = y(t) + kAt.

During every period of length At, y changes by the same amount k At.
If y is a function of the form

y(t) = (o - (k, C constants)
theny changes by the same multiplicative factor during all periods of the same duration:
y(t + At) = Cekt+at) _ cgktgkat _ ekAty(t)_

During every period of length At, y changes by the factor ekt
Functions of the form

f(t) = Celt
have the property that the derivative f’(t) is proportional to f(t):
f/(t) = CkeXt = kCeK' = kf(t).
Moreover, they are the only such functions:

THEOREM 7.6.1
If

f/(t) = kf(t) foralltinsome interval,
then there is a constant C such that

f(t) = Cek forall t in that interval.

PROOF W assume that
f'(t) = kf(t)
and write
f'(t) — kf(t) =0.
Multiplying this equation by e, we have

(%) e U f/(t) —ke ¥ f(t) = 0.
Observe now that the left side of this equation is the derivative
Sl ety i)

Equation (x) can therefore be written
do
f()] =0.
Gl ro1=0

It follows that
e fit)=C for some constant C.



7.6 EXPONENTIAL GROWTH AND DECAY m 371
Multiplication by ekt gives
f(t)=Ce'. 0

Remark Inthe study of exponential growth or decay, time is usually measured from
time t = 0. The constant C is the value of f attimet = O:

f(0) =Cce’ =C.
This is called the initial value of f. Thus the exponential f (t) = CeXt can be written
f(t)= f(0)eX. 0

Example 1 Find f(t) given that f'(t) = 2f(t) forall tand f(0) = 5.

SOLUTION The fact that f’(t) = 2f(t) tells us that f(t) = Ce?" where C is some
constant. Since f(0) = C =5, we have f(t) =5e*. O

Population Growth

Under ideal conditions (unlimited space, adequate food supply, immunity to disease,
and so on), the rate of increase of a population P at time t is proportional to the size of
the population at time t. That is,

P'(t) = kP(t)

where k > 0 is a constant, called the growth constant. Thus, by our theorem, the size
of the population at any time t is given by

P(t) = P(0)e",

and the population is said to grow exponentially. This is a model of uninhibited growth.
In reality, the rate of increase of a population does not continue to be proportional to the
size of the population. After some time has passed, factors such as limitations on space
or food supply, diseases, and so forth set in and affect the growth rate of the population.

Example 2 In 1980 the world population was approximately 4.5 billion and in the
year 2000 it was approximately 6 billion. Assume that the world population at each
time t increases at a rate proportional to the world population at time t. Measure t in
years after 1980.

(a) Determine the growth constant and derive a formula for the population at time t.

(b) Estimate how long it will take for the world population to reach 9 billion (double
the 1980 population).

(c) Theworld population for 2002 was reported to be about 6.2 billion. What population
did the formula in part (a) predict for the year 2002?

SOLUTION Let P(t) be the world population in billions t years after 1980. Since
P(0)=45= % the basic equation P’(t) = kP (t) gives

P(t) = JeX.
(a) Since P(20) = 6, we have
Je?% =6, 20k=In¥=In3,  k=ZIn3=0.0143.
The growth constant k is approximately 0.0143. The population t years after 1980

IS
P(t) o~ 260.0143t‘
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(b) To find the value of t for which P(t) = 9, we set 3e%014% = o

B In2
"~ 0.0143

Based on the data given, the world population should reach 9 billion approximately
48% years after 1980—around midyear 2028. (As of January 1, 2002, demographers
were predicting that the world population would peak at 9 billion in the year 2070
and then start to decline.)

(c) The population predicted for the year 2002 is
P(22) ~ 260'0143(22) — ge0.3146 >~ 6.164

billion, not far off the reported figure of 6.2 billion. 1

00143t _ o 0.0143t = In2, and = 48.47.

Bacterial Colonies

Example 3 The size of a bacterial colony increases at a rate proportional to the size
of the colony. Suppose that when the first measurement is taken, time t = 0, the colony
occupies an area of 0.25 square centimeters and 8 hours later the colony occupies 0.35
square centimeters.

(a) Estimate the size of the colony t hours after the initial measurement is taken. What
is the expected size of the colony at the end of 12 hours?

(b) Find the doubling time, the time it takes for the colony to double in size.

SOLUTION Let S(t) be the size of the colony at time t, size measured in square
centimeters, t measured in hours. The basic equation S'(t) = kS(t) gives

S(t) = S(0) .
Since S(0) = 0.25, we have
S(t) = (0.25) ek,
We can evaluate the growth constant k from the fact that S(8) = 0.35:
0.35 = (0.25) e%, e =14, 8k = In(1.4)
and therefore
k=3%In(1.4) =0.042.

(a) The size of the colony at time t is
S(t) = (0.25)e%%2  square centimeters.
The expected size of the colony at the end of 12 hours is
S(12) = (0.25) 204212 = (0.25) %504 = 0.41 square centimeters.

(b) To find the doubling time, we seek the value of t for which S(t) = 2(0.25) = 0.50.
Thus we set

(0.25) %042 — 0.50

and solve for t:
In2

= 16.50.
0.042 650

g4t — o 0.042t = In2, t =

The doubling time is approximately 16% hours. [
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Remark  There is a way of expressing S(t) that uses the exact value of k. We have
seen that k =  In (1.4). Therefore
S(t) = (0.25)e/®NA4 — (0.25)eM @A™ _ (0 25)(1.4)/8.

We leave it to you as an exercise to verify that the population function derived in
Example 2 can be written P(t) = g (%)t/zo' 0
Radioactive Decay

Although different radioactive substances decay at different rates, each radioactive
substance decays at a rate proportional to the amount of the substance present: if A(t)
is the amount present at time t, then

A'(t) = kA(t) for some constant k.

Since A decreases, the constant k, called the decay constant, is a negative number. From
general considerations already explained, we know that

A(t) = A(0) et

where A(0) is the amount present at time t = 0.
The half-life of a radioactive substance is the time T it takes for half of the substance
to decay. The decay constant k and the half-life T are related by the equation

(7.6.2) kKT =—1In2.

PROOF The relation A(T) = ZA(0) gives
ZA(0) = A(0)e"T, ekt =1, kT =—In2.

Example 4 Today we have Aq grams of a radioactive substance with a half-life of
8 years.

(a) How much of this substance will remain in 16 years?

(b) How much of the substance will remain in 4 years?

(c) What is the decay constant?

(d) How much of the substance will remain in t years?

SOLUTION We know that exponentials change by the same factor during all time

periods of the same length.

(a) During the first 8 years Ag will decrease to %Ao, and during the following 8 years
it will decrease to 3 (3 Ao) = 7 Ao. Answer: ;Ao grams.

(b) In 4 years Ao will decrease to some fractional multiple o Ag and in the following 4
years to a? Ag. Since o = 3, o = +/2/2. Answer: (v/2/2) Ao grams.

(c) Ingeneral, KT = —In2. Here T = 8 years. Answer: k = —% In2.

(d) In general, A(t) = A(0)eX!. Here A(0) = Ag and k = —% In2. Answer: A(t) =
Aoef%(IHZ)t. a

Example 5 Cobalt-60 is a radioactive substance used extensively in radiology. It
has a half-life of 5.3 years. Today we have a sample of 100 grams.
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(a) Determine the decay constant of cobalt-60.
(b) How much of the 100 grams will remain in t years?
(c) How long will it take for 90% of the sample to decay?

SOLUTION
(a) Equation (7.6.2) gives

—In2 —1In2
k = = —— = -0.131.
T 5.3

(b) Given that A(0) = 100, the amount that will remain in t years is
A(t) = 100e 0131,

(c) If 90% of the sample decays, then 10%, which is 10 grams, remains. We seek the
time t at which

100e 0131 — 10,

We solve this equation for t:

In(0.1)
~ —0.431
It will take approximately 17.6 years for 90% of the sample to decay.

e ™Bt—=-01,  -0131t=In(0.1), t =176.

Compound Interest

Consider money invested at annual interest rate r. If the accumulated interest is credited
once a year, then the interest is said to be compounded annually; if twice a year, then
semiannually; if four times a year, then quarterly. The idea can be pursued further.
Interest can be credited every day, every hour, every second, every half-second, and
so on. In the limiting case, interest is credited instantaneously. Economists call this
continuous compounding.

The economists’” formula for continuous compounding is a simple exponential:

(7.6.3) A(t) = Age™.

Here t is measured in years,
Ag = A(0) = the initial investment,
r = the annual interest rate expressed as a decimal,
A(t) = the principal at time t.
A DERIVATION OF THE COMPOUND INTEREST FORMULA  Fix t and take h as a small time incre-
ment. Then
A(t +h) — A(t) = interest earned from time t to time t + h.

Had the principal remained A(t) from time t to time t + h, the interest earned during
this time period would have been

rh A(t).
Had the principal been A(t + h) throughout the time interval, the interest earned would
have been
rh At + h).
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The actual interest earned must be somewhere in between:
rhA(t) < A(t +h) — A(t) < rh At + h).
Dividing by h, we get
A(t +h) — A(t)
h

If A varies continuously, then, as h tends to zero, rA(t + h) tends to rA(t) and (by the
pinching theorem) the difference quotient in the middle must also tend to rA(t):

o ACER) — AQt)
h—0 h

rA(t) < <TrA(t +h).

= rA(t).

This says that
A'(t) = rA(t).

Thus, with continuous compounding, the principal increases at a rate proportional to
the amount present and the growth constant is the interest rate r. Now, it follows that

A(t) = Ce".

If Ag is the initial investment, we have C = Aq and therefore A(t) = Age™. 1

Remark  Frequency of compounding affects the return on principal, but (on modest
sums) not very much. Listed below are the year-end values of $1000 invested at 6%
under various forms of compounding:

(a) Annual compounding: 1000(1 + 0.06) = $1060.

(b) Quarterly compounding: 1000[1 + (.06/4)]* = $1061.36.

(c) Monthly compounding: 1000[1 + (.06/12)]*?> = $1061.67.

(d) Continuous compounding: 1000e%% = $1061.84.

Example 6 $1000 is deposited in a bank account that yields 5% compounded
continuously. Estimate the value of the account 6 years later. How much interest will
have been earned during that 6-year period?

SOLUTION Here Ag = 1000 and r = 0.05. The value of the account t years after the
deposit is made is given by the function

A(t) = 1000 %%,
At the end of the sixth year, the value of the account will be
A(6) = 1000e%%® — 1000 % = 1349.86.
Interest earned: $349.86. [

Example 7 How long does it take to double your money at interest rate r com-
pounded continuously?

SOLUTION During t years an initial investment Ag grows in value to
A(t) = Age™.
You double your money once you have reached the time period t for which
Age™ = 2A,.
Solving this equation for t, we have
In2 _ 0.69

et =2, rt =In2, t=—>""_ 0
r r

12
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0.69

For example, at 8% an investment doubles in value in c22 = 8.625 years.

0.08

Remark A popular estimate for the doubling time at an interest rate «% is the rule

of 72:

72
doubling time = —.
o

According to this rule, the doubling time at 8% is approximately %2 = 9 years. Here is

how the rule originated:

069 69 _ 72
/100 o  «

For rough calculations 72 is preferred to 69 because 72 has more divisors.!

fThis way of calculating doubling time is too inaccurate for our purposes. We will not use it.

EXERCISES 7.6

b NOTE: Some of these exercises require a calculator or graphing
utility.

1

10.

Find the amount of interest earned by $500 compounded
continuously for 10 years:

(a) at 6%, (b) at 8%, (c) at 10%.

. How long does it take for a sum of money to double if com-

pounded continuously:

(a) at 6%? (b) at 8%? (c) at 10%?

. At what rate r of continuous compounding does a sum of

money triple in 20 years?

. At what rate r of continuous compounding does a sum of

money double in 10 years?

. Show that the population function derived in Example 2 can

be written P(t) = % (%)t/zo.

. A biologist observes that a certain bacterial colony triples

every 4 hours and after 12 hours occupies 1 square centime-

ter.

(a) How much area was occupied by the colony when first
observed?

(b) What is the doubling time for the colony?

. A population P of insects increases at a rate proportional to

the current population. Suppose there are 10,000 insects at

time t = 0 and 20,000 insects a week later.

(a) Findan expression for the number P (t) of insects at each
timet > 0.

(b) How many insects will there be in % year? In 1 year?

. Determine the time period in which y = Ce*t changes by a

factor of q.

. The population of a certain country increases at the rate

of 3.5% per year. By what factor does it increase every 10
years? What percentage increase per year will double the
population every 15 years?

According to the Bureau of the Census, the population of
the United States in 1990 was approximately 249 million

11.

12.

13.

14.

15.

16.

17.

and in 2000, 281 million. Use this information to estimate
the population in 1980. (The actual figure was about 227
million.)

Use the data of Exercise 10 to predict the population for
2010. Compare the prediction for 2001 with the actual re-
ported figure of 284.8 million.

Use the data of Exercise 10 to estimate how long it will take
for the U.S population to double.

Itis estimated that the arable land on earth can support a max-
imum of 30 billion people. Extrapolate from the data given
in Example 2 to estimate the year when the food supply will
become insufficient to support the world population. (Rest
assured that there are strong reasons to believe that such
extrapolations are invalid. Conditions change.)

Water is pumped into a tank to dilute a saline solution. The
volume of the solution, call it V, is kept constant by continu-
ous outflow. The amount of salt in the tank, call it s, depends
on the amount of water that has been pumped in; call this x.
Given that

ds S

dx VvV’

find the amount of water that must be pumped into the tank
to eliminate 50% of the salt. Take V as 10,000 gallons.

A 200-liter tank initially full of water develops a leak at the
bottom. Given that 20% of the water leaks out in the first
5 minutes, find the amount of water left in the tank t min-
utes after the leak develops if the water drains off at a rate
proportional to the amount of water present.

What is the half-life of a radioactive substance if it takes 5
years for one-third of the substance to decay?

Two years ago there were 5 grams of a radioactive substance.
Now there are 4 grams. How much will remain 3 years from
now?



18.

19.

20.

21.

22.

23.

24.

A year ago there were 4 grams of a radioactive substance.
Now there are 3 grams. How much was there 10 years
ago?

Suppose the half-life of a radioactive substance is n years.
What percentage of the substance present at the start of a
year will decay during the ensuing year?

A radioactive substance weighed n grams at time t = 0. To-
day, 5 years later, the substance weighs m grams. How much
will it weigh 5 years from now?

The half-life of radium-226 is 1620 years. What percentage
of a given amount of the radium will remain after 500 years?
How long will it take for the original amount to be reduced
by 75%?

Cobalt-60 has a half-life of 5.3 years. What percentage of
a given amount of cobalt will remain after 8 years? If you
have 100 grams of cobalt now, how much was there 3 years
ago?

(The power of exponential growth) Imagine two racers com-
peting on the x-axis (which has been calibrated in me-
ters), a linear racer LIN [position function of the form
x1(t) = kt + C] and an exponential racer EXP [position
function of the form x,(t) = ek! + C]. Suppose that both
racers start out simultaneously from the origin, LIN at
1 million meters per second, EXP at only 1 meter per second.
In the early stages of the race, fast-starting LIN will move
far ahead of EXP, but in time EXP will catch up to LIN, pass
her, and leave her hopelessly behind. Show that this is true
as follows:

(a) Express the position of each racer as a function of time,
measuring t in seconds.

(b) Show that LIN’ lead over EXP starts to decline about
13.8 seconds into the race.

(c) Show that LIN is still ahead of EXP some 15 seconds
into the race but far behind 3 seconds later.

(d) Show that, once EXP passes LIN, LIN can never catch
up.

(The weakness of logarithmic growth) Having been soundly
beaten in the race of Exercise 23, LIN finds an opponent
she can beat, LOG, the logarithmic racer [position function
x3(t) = kIn(t + 1) 4+ C]. Once again the racetrack is the x-
axis calibrated in meters. Both racers start out at the origin,
LOG at 1 million meters per second, LIN at only 1 meter
per second. (LIN is tired from the previous race.) In this
race LOG will shoot ahead and remain ahead for a long
time, but eventually LIN will catch up to LOG, pass her,
and leave her permanently behind. Show that this is true as
follows:

(a) Express the position of each racer as a function of time
t, measuring t in seconds.

(b) Show that LOG’s lead over LIN starts to decline 10% — 1
seconds into the race.

(c) Show that LOG is still ahead of LIN 10" — 1 seconds
into the race but behind LIN 108 — 1 seconds into the
race.

(d) Show that, once LIN passes LOG, LOG can never catch

up.

25.

26.

217.

28.

29.

30.

3L

32.

33.
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Atmospheric pressure p varies with altitude h according to
the equation

dp .

an = kp where Kk is a constant.

Given that p is 15 pounds per square inch at sea level and
10 pounds per square inch at 10,000 feet, find p at: (a) 5000
feet; (b) 15,000 feet.

The compound interest formula

Q = Pe"
can be written

P=0Qe .

In this formulation we have P as the investment required to-
day to obtain Q in t years. In this sense P dollars is present
value of Q dollars to be received t years from now. Find the
present value of $20,000 to be received 4 years from now.
Assume continuous compounding at 4%.

Find the interest rate r needed for $6000 to be the present
value of $10,000 8 years from now.

You are 45 years old and are looking forward to an annual
pension of $50,000 per year at age 65. What is the present-
day purchasing power (present value) of your pension if
money can be invested over this period at a continuously
compounded interest rate of: (a) 4%? (b) 6%? (c) 8%?

The cost of the tuition, fees, room, and board at XYZ Col-
lege is currently $25,000 per year. What would you expect
to pay 3 years from now if the costs at XYZ are rising at
the continuously compounded rate of: (a) 5%? (b) 8%? (c)
12%?

A boat moving in still water is subject to a retardation pro-
portional to its velocity. Show that the velocity t seconds
after the power is shut off is given by the formula v = ae*!
where « is the velocity at the instant the power is shut off.

A boat is drifting in still water at 4 miles per hour; 1 minute
later, at 2 miles per hour. How far has the boat drifted in that
1 minute? (See Exercise 30.)

During the process of inversion, the amount A of raw sugar
present decreases at a rate proportional to A. During the first
10 hours, 1000 pounds of raw sugar have been reduced to
800 pounds. How many pounds will remain after 10 more
hours of inversion?

The method of carbon dating makes use of the fact that all
living organisms contain two isotopes of carbon, carbon-
12, denoted 2C (a stable isotope), and carbon-14, denoted
14C (a radioactive isotope). The ratio of the amount of 4C
to the amount of *2C is essentially constant (approximately
1/10,000). When an organism dies, the amount of 12C present
remains unchanged, but the *4C decays at a rate proportional
to the amount present with a half-life of approximately 5700
years. This change in the amount of *C relative to the amount
of $2C makes it possible to estimate the time at which the
organism lived. A fossil found in an archaeological dig was
found to contain 25% of the original amount of *C. What
is the approximate age of the fossil?
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34. The Dead Sea Scrolls are approximately 2000 years old. How 36. f/(t) =sintf(t). 37. f/(t) = costf(t).

much of the original *C remains in them? 38. Let g be a function everywhere continuous and not identi-
Exercises 35-37. Find all the functions f that satisfy the equa- cally zero. Show that if f’(t) = g(t) f (t) for all real t, then
tion for all real t. either f is identically zero or f does not take on the value
35. f/(t) = tf(t). HINT: Write f’(t) — tf(t) = 0 and multiply Zero.

the equation by e /2.

M 7.7 THE INVERSE TRIGONOMETRIC FUNCTIONS

Arc Sine

y =sin x

Figure 7.7.1

Figure 7.7.1 shows the sine wave. Clearly the sine function is not one-to-one: it takes
on every value from —1 to 1 an infinite number of times. However, on the interval
[—%n, %n] it takes on every value from —1 to 1, but only once. (See the solid part of
the wave.) Thus the function
y =sinx, x € [—3m 3]

maps the interval [—%71, %yr] onto [—1, 1] in a one-to-one manner and has an inverse
that maps [—1, 1] back to [—%n, %n], also in a one-to-one manner. The inverse is called
the arc sine function:

y = arcsin x, x €[-1,1]
is the inverse of the function
y =sinx, x € [—3m ix].

These functions are graphed in Figure 7.7.2. Each graph is the reflection of the other
inthe liney = x.

y y
1.0
1=
| | | |
1 1 X -1 1 X
- 5T
1
i
2
y=§nhX€LJﬂ,lﬂ] y =arcsinx, xe[-1, 1]
272

Figure 7.7.2
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Since these functions are inverses, = Table 7.7.1
X sinx
(7.7.1) forall x e [-1,1], sin (arcsin x) = x 1. 1
2
i -4
and _in W
b
1.1 L. 0 0
(7.7.2) forall x € [—3m, 3], arcsin (sinx) = x. . )
57 2
r 3
Table 7.7.1 gives some representative values of the sine function from x = —%n T V3
tox = %7‘[. Reversing the order of the columns, we have a table for the arc sine. (Table in 1
7.7.2)
On the basis of Table 7.7.2 one could guess that for all x € [—1, 1]
N Table 7.7.2
arcsin (—x) = — arcsin (x). X arcsin
This is indeed the case. Being the inverse of an odd function (sin (—x) = —sinx for -1 —3m
all x € [—3m, x]), the arc sine is itself an odd function. (We leave it to you to verify 13 1
this.) 2 3
V2 i
1 1
Example 1 Calculate if defined: 2 G
L L 0 0
(a) arcsin (sin 55r) (b) arcsin (sin £r) . L
(c) sin (arcsin 3) (d) arcsin (sin 27) 1\2/5 °
. . 1 ln
(e) sin (arcsin2). : 1
V3 37
SOLUTION 1 in

(a) Since i is in the interval [— 37, 37], we know from (7.7.2) that

arcsin (sin £7) = L.

(b) Since L isnotintheinterval [— 3, $7], we cannotapply (7.7.2) directly. However,

In = m + 27 andsin (37 + 27) = sin (7). Therefore

arcsin (sin Zrr) = arcsin (sin i) = 3.
from (7.7.2) )
(c) From (7.7.1),

sin (arcsin §) = 1.

(d) Since 27 is not within the interval [—37, 2], we cannot apply (7.7.2) directly.
However, 27 = 2 — 7. Therefore
arcsin (sin 2) = arcsin [sin (—i7)] = — .
from (7.7.2) )

(e) The expression sin (arcsin 2) makes no sense since 2 is not in the domain of the arc
sine. (There is no angle with sine 2.) The arc sine is defined only on [-1, 1]. 1
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x (0<x<1)

x (-1 <x<0)

Since the derivative of the sine function,
d .
—(sinXx) = cos X,
dx( )

is nonzero on (—%n, %71), the arc sine function is differentiable on the open interval
(-1, 1)f. We can find the derivative as follows: reading from the accompanying figure

y = arcsin x
siny = x
dy
2 -1
cosydx
dy 1 1
dx cosy J1—x2
Thus
(7.7.3) d (arcsinx) = !
7. ix ==
Example 2
d 1 d 6x
—(arcsin3x?) = —— - —(3x?) = ——.
ax ) V1 —(3x?)? dx : V1I-9x4

the chain rule

NOTE: We continue with the convention that if the domain of a function f is not
specified explicitly, then it is understood to be the maximal set of real numbers x for
which f(x) is a real number. In this case, the domain is the set of real numbers x for
which —1 < 3x2 < 1. This is the interval [-1/+/3, 1/+/3]. 1

The integral counterpart of (7.7.3) reads

dx
(7.7.4) f ———— =arcsinx + C.
J1—x2
Example 3  Show that fora > 0
(7.7.5) / dx = arcsin X +C
. Jaz—x2 a '

SOLUTION We change variables so that a? is replaced by 1 and we can use (7.7.4).
To this end we set

au =x, adu=dx.

Section 7.1.
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Then
/ dx _ adu _ adu
Vaz—x2 ) Jaz—a2uiz av1-—u2
sincea > 0 J
du X
= | ——— =arcsinu+C =arcsin—+C. [
/ V1 —u? a
Example 4 Evaluate/
P J——><2
SOLUTION By (7.7.5),
/ dx = arcsin = +C
Vh—x2 2 '
It follows that
X 73 V3 T T
—————dx = |arcsin = =arcsin— —arcsin0=— —-0=—.
/0 /4 — X2 [ 2]0 2 3 3

Arc Tangent

Although not one-to-one on its full domain, the tangent function is one-to-one on the
open interval (—%n, %n) and on that interval the function takes on as a value every real
number. (See Figure 7.7.3.) Thus the function

y = tanx, x € (—3m, in)

maps the interval (—%n, %n) onto (—oo, 0o) in a one-to-one manner and has an inverse

that maps (—oo, oo) back to (—%n, %n), also in a one-to-one manner. This inverse is
called the arc tangent: the arc tangent function

y = arctan x, X € (—00, 00)

N
NN
<

<
I
(NI

y = tan-1x, xreal

_ 1.1
y_tanx,xe( 271:, 27[)

Figure 7.7.3

m 381
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X (x=0)

X (x<0)

is the inverse of the function

y=tanx, xe (-3 i7).

These functions are graphed in Figure 7.7.3.

Each graph is the reflection of the other in the line y = x. While the tangent has
vertical asymptotes, the inverse tangent has horizontal asymptotes. Both functions are
odd functions.

Since these functions are inverses,

(7.7.6) for all real numbers x tan (arctan x) = x
and
(7.7.7) forallx € (—3m, i), arctan (tan x) = x.

Itis hard to make a mistake with (7.7.6) since that relation holds for all real numbers,
but the application of (7.7.7) requires some care since it applies only to x in (—%n, %7{).
Thus, while arctan (tan $7r) = 2, arctan (tan L) # 7. To calculate arctan (tan L),
we use the fact that the tangent function has period 7. Therefore
arctan (tan {r) = arctan (tan 27) = 2x.
The final equality holds since ¢7 € (—37, 37).
Since the derivative of the tangent function,
d 2
&(tanx) =Sec’ X = 02X’
is never 0 on (—%n, %n), the arc tangent function is everywhere differentiable. (Section
7.1) We can find the derivative as we did for the arc sine: reading from the figure

y = arctan x
tany =X
dy
2
2 -1
sec”y ix
dy 1 2 1
X sezy YT 1
We have found that
(7.7.8) d (arctan x) =
o dx T 14x2
Example 5
! d

(f—x[arctan (ax? 4+ bx +c)] = (ax? + bx +c¢)

1+ (@x2+bx +c)? dx

by the chain rule
2ax +b

T 1+ (@x2+bx +c)?
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The integral counterpart of (7.7.8) reads

dx
(7.7.9) / = arctanx + C.
14+ x2

Example 6 Show that, fora # 0,

(7.7.10) / dx = 1arctamX +C
" a?+x?2 a a '

SOLUTION We change variables so that a? is replaced by 1 and we can use (7.7.9).
We set

au = X, adu =dx.

/ dx _/ adu _1/ du
a?+x2 ) a?+a2u?2 a) 1+4u?

1 1 X
:—arctanu+C=aarctana+C. a

a
779 —

Then

2 dx
Example 7 Evaluate f —_—
0 4+ X2

SOLUTION By (7.7.10),

/dx —/ dx —1arctanX+C
44x2 ] 224x2 2 2

and therefore

fz dx__ 1arctanX 2— 1arctanl 1arctan0—n a
o 4+x2 |2 21, 2 2 8
Arc Cosine, Arc Cotangent, Arc Secant, Arc Cosecant

These functions are not as important to us as the arc sine and arc tangent, but they do
deserve some attention.

Arc Cosine While the cosine function is not one-to-one, it is one-to-one on [0, 7] and
maps that interval onto [—1, 1]. (Figure 1.6.13) The arc cosine function

y = arccosXx, X e[-1,1]
is the inverse of the function
y = COSX, x € [0, 7].

Arc Cotangent  The cotangent function is one-to-one on (0, ) and maps that interval
onto (—oo0, c0). The arc cotangent function

y = arccotx, X € (—00, 00)
is the inverse of the function
y = cotX, x € (0, 7).

m 383
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Arc Secant, Arc Cosecant These functions can be defined explicitly in terms of the
arc cosine and the arc sine. For |x| > 1, we set

arcsec x = arccos (1/x), arccsc x = arcsin (1/x).
In the Exercises you are asked to show that for all |x| > 1

sec (arcsec x) = X and csc (arccsc x) = X.

Relations to 17

Where defined
arcsin X + arccosx = 3,
(7.7.11) arctan x -+ arccotx = 2,
arcsecx + arcescx = 3.

We derive the first relation; the other two we leave to you. (Exercises 73, 74.)
Our derivation is based on the identity

cos6 = sin (%” - 9) . (Section 1.6)
Suppose that y = arccos x. Then
COSy = X with y € [0, 7]
and therefore
sin(37 —y) =x  with (37 —y) e [-3m. 37].
It follows that
arcsinx = 37 —y, arcsinx +y = 3, arcsinx + arccosx = 3
as asserted. O

Derivatives
i(arcsin X) = ; i(arccos X) = —;
dx J1—x2 dx V1-—x2
(7.7.12) i(arctan X) = ——, i(arccotx) = o
dx 1+ x2 dx 1+ x?
d 1 d 1
d—X(arcsec X) = m d—x(arccsc X) = —m.

VERIFICATION The derivatives of the arc sine and the arc tangent were calculated ear-
lier. That the derivatives of the arc cosine and the arc cotangent are as stated follows
immediately from (7.7.11). Once we show that

1
X|v/Xx2 =1

d
d—X(arcsec X) =
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the last formula will follow from (7.7.11). Hence we focus on the arc secant. Since
arcsec x = arccos (1/x),

the chain rule gives

i(arcsec X) = S S . i (E)
dx /T (@/x)2 dx \x

x2—1\ x2) x2/x2-1
This tells us that
1
d : , forx > 1
d—x(arcsec X)=q XX~ 1
_— forx < —1.
—Xa/X2 -1
The statement
d (arcsecx) = !
dx CxWX2—1

is just a summary of this result.

Remark on Notation  The expressions arcsin X, arctan x, arccos x, and So on are some-
times written sin~ x, tan~! x, cos~! x, and soon.

EXERCISES 7.7

m 385

Exercises 1-9. Determine the exact value. 1
27. g(x) = x?arcsec™* (;) 28. 6 = arctan <1

1. (a) arctan 0; (b) arcsin (—+/3/2). N
2. (a) arcsec 2; (b) arctan (+/3). 29. y = sin[arcsec (Inx)]. 30)-( f(x) =e* ~
3. (a) arccos (—%); (b) arcsec (—+/2). 31. f(x) = +/c? — x2 + carcsin <E) Take ¢ > 0.
. 1

4. (a) sec (arcsec [—2/+/3]); (b) sec (arccos [-3]). 3.y = X _ arcsin (5) Take ¢ = 0.
5. () cos (arcsec 2); (b) arctan (sec0). c? — x? c
6. (a) arcsin (sin [117/6]); (b) arctan (tan [117 /4]). 33. 1f0 < x < 1, thenarcsin x is the radian measure of the acute
7 721/6): b in T3 /6 angle that has sine x. We can construct an angle of radian

- (a) arccos (s_ec [3 7]/6); (b) arcsec (sin [4 7/6]). measure arcsin x by drawing a right triangle with a side of
8. (a) cos (arcsin [£]); (b) sec (arctan [3]). length x and hypotenuse of length 1. Use the accompanying
9. (a) sin (2 arccos [1]); (b) cos (2arcsin [£]). figure to determine the following:

10. (a) What are the domain and range of the arc cosine?
(b) What are the domain and range of the arc cotangent?

Exercises 11-32. Differentiate. 1
11. y = arctan (X + 1). 12. y = arctan /X. X
13. f(x) = arcsec (2x?). 14. f(x) = e* arcsinx. arcsin x\
15. f(x) = x arcsin 2x. 16. f(x) = edctanx,
17. u = (arcsin x). 18. v = arctaneX. (a) sin (arcsinx).

arctan x (b) cos (arcsin x).
By=——. 20. y = arcsec vx* + 2. (c) tan (arcsinx)

d) cot i

21. f(x) = +arctan 2x. 22. f(x) = In(arctan x). ge; ggc 22:2:2 );())
23. y = arctan (Inx). 24. g(x) = arcsec (cosx + 2). () csc (arcsinx).

1
+r2)

25. 0 = arcsin(v/1 — r2). 26. 6 — arcsin <r r ) 34. 1f0 < x < 1, thenarctan x is the radian measure of the acute

+1

angle with tangent x. We can construct an angle of radian
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35.

36.

37.

38.

measure arctan x by drawing a right triangle with legs of
length x and 1. Use the accompanying figure to determine
the following:

arctan x

1

(a) tan (arctanx)
(c) sin(arctanx)
(e) sec(arctanx)

Calculate / ;
Jaz — (x +b)?

HINT: Setau = x + b.

(b) cot (arctan x)
(d) cos (arctan x)
(f) csc (arctan x).

dx taking a > 0.

Calculate / Wler)Z dx taking a > 0.

Showthat/ ;dx = '1 arcsec‘i‘ +C,
[X|v/X2 — a2 a a

taking a > 0.

(a) Verify, without reference to right triangles, that for all

x| >1

sec (arcsec X) = X and csc (arcsec x) = X.

(b) What is the range of the arc secant? (The arc secant is
the inverse of the secant restricted to this set.)

(c) What is the range of the arc cosecant? (The arc cosecant

is the inverse of the cosecant restricted to this set.)

Exercises 39-52. Evaluate.

1 1
39./ _dx 40./ _dx
0o 1+x2 1 14+ x2
1/4/2 1
0 V1 —x2 0 V4 —x2
5 8
43./ _ax 44./ _dx
o 25+ X2 5 xv/x2— 16
3/2 5
45./ _ax 46./ A
0 9+4X2 2 9+(X—2)2
47 /3 dx 48 fﬁ ax
“Jap x/16x2 =9 “Ji (x=3)VXZ—6x +8
-2 In3 —X
49./ dix 50./ &
-3 J4—(x+3)? 2 ~/1—e
2 ox 1/2 1
51. — dx. 52./ ———dx
/o 1+ e 0 /3 —4x?
Exercise 53-62. Calculate.
X sec? x
53./7dx 54. ———dx
V1 —x4 V9 — tan? x

55.

57.

59.

61.

63.

64.

65.

66.

67.

68.

69.

70.

71.

dx
56. | ——.
/1-i-X4 VAx —x2
2y
[ o, [ gy
9 4 tan“ x 3+ sin“x
resin x arctan x
60. | ———dx.
/«/ —x2 /1—|—x2 X
L P .
X 1—(Inx>2 X[1+ (Inx)7]
Find the area below the curve y = 1/4/4 — x2 fromx = —1

tox = 1.

Find the area below the curve y = 3/(9 + x?) fromx = —3
tox = 3.

Sketch the region bounded above by y = 8/(x? + 4) and
bounded below by 4y = x?. What is the area of this region?

The region below the curve y = 1/+/4 + x2 from x = 0 to
x = 2 is revolved about the x-axis. Find the volume of the
resulting solid.

The region in Exercise 66 is revolved about the y-axis. Find
the volume of the resulting solid.

The region below the curve y = 1/x?v/xZ — 9 from x =
24/310 x = 6 is revolved about the y-axis. Find the volume
of the resulting solid.

A billboard k feet wide is perpendicular to a straight road
and is s feet from the road. From what point on the road
would a motorist have the best view of the billboard; that
is, at what point on the road (see the figure) is the angle 6
subtended by the billboard a maximum?

o

A person walking along a straight path at the rate of 6 feet
per second is followed by a spotlight that is located 30 feet
from the path. How fast is the spotlight turning at the instant
the person is 50 feet past the point on the path that is closest
to the spotlight?

(a) Show that

2

a X
— 2 /a2 _x2 in(Z
F(x) = az —x2+ 2arcsm<a),a>0

aZz — x2,

a
Va2 —x2dx
-a

is an antiderivative for f(x) =
(b) Use the result in part (a) to calculate

and interpret your result as an area.
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a-+x
f(x) = arctan <m) ,X # 1/a.

1
how that f'(x) = —— 1/a.
(a) Show that f'(x) 1+X2,x7é /a

(b) Show that there is no constant C such that f(x) =
arctan x 4+ C for all x # 1/a.
(c) Find constants C; and C, such that

f(x) =arctanx +C; forx <1/a
f(x) =arctanx +C, forx > 1/a.

73. Show, without reference to right triangles, that
arctan x + arccotx = %7( for all real x.
HINT: Use the identity coté = tan (37 — 6).
74. Show, without reference to right triangles, that
arcsec X + arccscx = for |x| > 1.

75. The statement

8 1
/ dx = arcsin3 — arcsin0 = arcsin 3
0

V1 —x2
is nonsensical since the sine function does not take on the
value 3. Where did we go wrong here?
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976. Evaluate

. arcsinx
lim
x—0 X
numerically. Justify your answer by other means.
[> 77. Estimate the integral

0.5 1
/ dx
0 /1-—x2
by using the partition {0, 0.1, 0.2, 0.3, 0.4, 0.5} and the in-
termediate points
xj=0.05 x;=0.15 x5 =0.25
X3 =0.35 x&=0.45.

Note that the sine of your estimate is close to 0.5. Explain
the reason for this.

1
978. Use a graphing utility to draw the graph of f(x) = T332

+x2
on [0, 10].
(a) Calculate fO” f (x)dx forn = 1000, 2500, 5000, 10,000.

(b) What number are these integrals approaching?
(c) Determine the value of

to
lim / dx.
t—oo Jo 1+ X2

B PROJECT 7.7 Refraction

Dip a straight stick in a pool of water and it appears to bend.
Only in a vacuum does light travel at speed ¢ (the famous ¢
of E = mc?). Light does not travel as fast through a material
medium. The index of refraction n of a medium relates the speed
of light in that medium to c:

c
n= speed of light in the medium

index of refraction n;

index of refraction n,

When light travels from one medium to another, it changes di-
rection; we say that light is refracted. Experiment shows that the
angle of refraction 6, is related to the angle of incidence 6; by
Snell’s law:

njsind = n; siné,.

Like the law of reflection (see Example 5, Section 4.5), Snell’s
law of refraction can be derived from Fermat’s principle of least
time.

Problem 1. A light beam passes from a medium with index of
refraction ny through a plane sheet of material with top and
bottom faces parallel and then out into some other medium
with index of refraction n,. Show that Snell’s law implies the
nisin6; = n,sin#, regardless of the thickness of the sheet or

its index of refraction.
Ny P
4 N

A star is not where it is supposed to be. The index of re-
fraction of the atmosphere varies with height above the earth’s
surface, n = n(y), and light that passes through the atmosphere
follows some curved path, y = y(x). Think of the atmosphere
as a succession of thin parallel slabs. When a light ray strikes a
slab at height vy, it is traveling at some angle 6 to the vertical,
when it emerges at height y + Ay, it is traveling at a slightly
different angle, 6 + A6.
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Problem 2.

(@) Use the result in Problem 1 to show that

n

n
dy

= —cotf

(b) Verify that the slope of the light path must vary in such a
way that

1+ (dy/dx)? = (constant) [n(y)]%.

de d?y/dx?

- (c) How must n vary with height y for light to travel along a
dy 1+ (dy/dx)? circular arc?

M 7.8 THE HYPERBOLIC SINE AND COSINE

Certain combinations of the exponentials e* and e~ occur so frequently in mathematical
applications that they are given special names. The hyperbolic sine (sinh) and hyperbolic
cosine (cosh) are the functions defined as follows:

(7.8.1) sinhx = 3(e* —e™), coshx = 2(e¥ +e™).

The reason for these names will become apparent as we go on.

Since
d H d 1/ax —X 1/ax —X
d—x(smh X) = X [3(e* —e™)] =3(e* +e7)
and
d d 1/ax —X 1/ax —X
&(cosh X) = ™ [3(e* +e)] =3(e* —e™),
we have
(7.8.2) i(sinh X) = cosh x i(cosh X) = sinh x
- dx o ’ dx - ’

In short, each of these functions is the derivative of the other.

The Graphs
We begin with the hyperbolic sine. Since
sinh (—x) = (e — e¥) = —1(e* — e™*) = —sinhx,
the hyperbolic sine is an odd function. The graph is therefore symmetric about the
origin. Since

dd_x (sinhx) = coshx = 3(e* +e*) >0  forall real x,

the hyperbolic sine increases everywhere. Since

2

d d
e (sinhx) = X (coshx) = sinhx = 3(e* —e™),

you can see that
2 negative, for x <0

ds . .
—(sinhx) s 0, at x=0
dx positive, for x > 0.
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The graph is therefore concave down on (—oo, 0) and concave up on (0, co). The point
(0, sinh 0) = (0, 0) is a point of inflection, the only point of inflection. The slope at the
origin is cosh 0 = 1. A sketch of the graph appears in Figure 7.8.1.

We turn now to the hyperbolic cosine. Since

cosh(—x) = 2(e™* +€*) = 1(e* + ™) = coshx,

the hyperbolic cosine is an even function. The graph is therefore symmetric about the
y-axis. Since

d .
d—x(cosh X) = sinh x,

you can see that

d negative, for x <0
—(cosh x) is 0, at x=0
dx positive, for x > 0.

The function therefore decreases on (—oo, 0] and increases on [0, co). The number
cosh0=2(’+e %) =31+1)=1
is a local and absolute minimum. There are no other extreme values. Since
2
dx2
the graph is everywhere concave up. (See Figure 7.8.2.)
Figure 7.8.3 shows the graphs of three functions:

d
(cosh x) = Ix (sinh x) =coshx > 0 for all real x.

H 1 — 1 1 X
y =sinhx = 5(e* —e™), y = €%, y =coshx = 5(*+° ).
Since e * > 0, it follows that, for all real x,
H 1ax
sinhx < 5€* < coshx. for all real x.

Although markedly different for negative x, these functions are almost indistinguishable
for large positive x. This follows from the fact that, as x — oo, e™* — 0.

The Catenary
A preliminary point: in what follows we use the fact that for all real numbers t
cosh?t = 1 + sinh?t.

The verification of this identity is left to you as an exercise.

Figure 7.8.4 depicts a flexible cable of uniform density supported from two points
of equal height. The cable sags under its own weight and so forms a curve. Such a curve
is called a catenary. (After the Latin word for chain.)

To obtain a mathematical characterization of the catenary, we introduce an x,y-
coordinate system so that the lowest point of the chain falls on the positive y-axis
(Figure 7.8.5). An engineering analysis of the forces that act on the cable shows that
the shape of the catenary, call ity = f(x), is such that

d’y 1 dy\?
() " a 1+<d_x>

where a is a positive constant that depends on the length of the cable and on its mass
density. As we show below, curves of the form

X
(%) y = acosh 3 +C (C constant)

y

y = sinh x

Figure 7.8.1

\

0,1

y =cosh x
Figure 7.8.2
y

Figure 7.8.3

F

Figure 7.8.4
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y

| 7

Figure 7.8.5

y

[ |
’

—

~N
-300

1500

=

L 0

Figure 7.8.6

X2+y2: 1

(cost,sint)

(1,0) X

area of circular sector :%t

Figure 7.8.7

meet this condition exactly:

d_y = a(sinh i) 2 = sinhg

dx a

d?y x\1 001 X
—= = (cosh — ) — = — cosh —
dx2 ( a)a a a

2 2
d—y=1coshizlll+sinh2§=1 1+ dy .
dx2 a a a a a d

follows from cosh?t = 1 + sinh?t

The cable of Figure 7.8.5 is of the form
y = acoshg + (h —a).

[This assertion is based on the fact that only curves of the form (xx) satisfy (x) and the
conditions imposed by Figure 7.8.5. This can be proven.]

The Gateway Arch in St. Louis, Missouri, is in the shape of an inverted catenary
(see Figure 7.8.6). This arch is 630 feet high at its center, and it measures 630 feet
across the base. The value of the constant a for this arch is approximately 127.7, and
its equation takes the form

y = —127.7 cosh (x/127.7) + 757.7.

Identities

The hyperbolic sine and cosine functions satisfy identities similar to those satisfied by
the “circular” sine and cosine.

cosh?t —sinh?t = 1,

sinh (t +s) = sinht coshs + cosht sinhs,
(7.8.3) cosh (t +s) = cosht coshs + sinht sinhs,
sinh 2t = 2sinht cosht,

cosh 2t = cosh?t + sinh?t.

The verification of these identities is left to you as a collection of exercises.

Relation to the Hyperbola x> — y? =1

The hyperbolic sine and cosine are related to the hyperbola x?> — y?> = 1 much as the
“circular” sine and cosine are related to the circle x? + y? = 1:

1. For each real t,
cos’t +sin’t =1,
and thus the point (cost, sint) lies on the circle x> + y? = 1. For each real t,
cosh’t — sinh?t = 1,

and thus the point (cosh t, sinh t) lies on the hyperbola x> — y? = 1.

2. Foreachtin [0, 2] (see Figure 7.8.7), the number %t gives the area of the circular
sector generated by the circular arc that begins at (1, 0) and ends at (cost, sint). As
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we prove below, for each t > 0 (see Figure 7.8.8), the number %t gives the area of
the hyperbolic sector generated by the hyperbolic arc that begins at (1, 0) and ends

at (cosht, sinht).
PROOF Let A(t) be the area of the hyperbolic sector. Then,
cosht
A(t)=%coshtsinht—/ Vx2 —1dx.
1

The first term, % coshtsinht, gives the area of the triangle OPQ, and the integral
cosht

VX2 —1dx
1

gives the area of the unshaded portion of the triangle. We wish to show that
Alt)y=3t  forallt > 0.
We will do so by showing that
At)y=3 forallt>0 and  A(0)=0.
Differentiating A(t), we have
d d d cosht
A'(t) = % cosht—(sinht) + sinht—(cosht) | — — Vvx2—1dx |,
dt dt dt \J,
and therefore

cosht
(1) A'(t) = 1(cosh®t + sinh’t) — ;j_t (f VX2 — 1dx> ,
1

Now we differentiate the integral:

cosht
d ( Vx2 — 1dx) = v/cosh?t — 1%(cosht) = sinht - sinht = sinh?t.
1

dt
(5.8.7)

Substituting this last expression into (1), we have
A'(t) = 1(cosh? t + sinh®t) — sinh®t = 1(cosh?t — sinh®t) = 1.
It is not hard to see that A(0) = O:

cosh0

1
A(0) = 3 cosh0 sinh0 — VX2 —1dx = 3(1)(0) —/ Vx2—1dx=0.
1

1

y

x2—y2=1

P(cosh t, sinh t)

|
|
|
Il
1,0/Q X

area of hyperbolic sector = %t

Figure 7.8.8

EXERCISES 7.8
Exercises 1-18. Differentiate. 13. y = e~* cosh 2x. 14. y = arctan (sinh x).
1.y = sinhx2. 2.y = cosh (x + a). 15. y = In(cosh x). 16. y = In(sinh x).
3.y = +/coshax. 4.y = (sinhax)(cosh ax). 17.y = (sinhx)*. 18. y = x°,
sinh x sinh x Exercises 19-25. Verify the identity.
SY= =1 6.y=—— 19. cosh?t — sinh?t = 1.
7.y = asinhbx — b coshax. 20. sinh (t +s) = sinht coshs + cosht sinhs.

.y = e*(cosh x + sinh x).
.y =In|sinhax|.
11.

y = sinh (2¥).

10. y = In|1 — coshax]|.
12. y = cosh (Inx3).

21. cosh (t +s) = cosht coshs + sinht sinhs.
22.sinh 2t = 2sinht cosht.

23. cosh 2t = cosh®t + sinh?t =2 cosh®t — 1 =2sinh?t + 1.



392 m CHAPTER 7 THE TRANSCENDENTAL FUNCTIONS

24. cosh (—t) = cosht; the hyperbolic cosine function is even.
25. sinh (—t) = — sinht; the hyperbolic sine function is odd.
Exercises 26-28. Find the absolute extreme values.

26. y = 5coshx + 4sinhx.

27.y = —=5coshx 4+ 4sinh x.

28.y = 4coshx + 5sinhx.

29. Show that for each positive integer n

(cosh x + sinh x)" = cosh nx + sinh nx.

30. Verify that y = A cosh cx + B sinh cx satisfies the equation
y// _ C2y =0.

Determine A, B, and ¢ so that y = Acoshcx + B sinhcx
satisfies the conditions y” —9y =0, y(0) = 2, y'(0) = 1.
Take c > 0.

Determine A, B, and ¢ so that y = Acoshcx + B sinhcx
satisfies the conditions 4y” —y =0, y(0) = 1, y'(0) = 2.
Take ¢ > 0.

Exercises 33—-44. Calculate.
33. /cosh ax dx.

31

32.

34. fsinhaxdx.
35. /sinhzax coshax dx.
36. /sinhax cosh? ax dx.
E TR

inh
39./ S zax dx. 40./sinh2xdx.
cosh” ax

41. /coshzxdx. 42. /sinh2x gCosh2x gy
inh inh
sin ﬁdx. sinh x

4. | —

X / 1+ cosh x

Exercises 45 and 46. Find the average value of the function on
the interval indicated.

43,

45.

47.
48.

49.

50.

51.

52.

[>53.

[> 54.

f(x) =coshx, xe[-1,1].
. f(x) =sinh2x, x €[0,4].
Find the area below the curve y = sinhx from x =0 to

x = In10.

Find the area below the curve y = cosh2x fromx = —In5
tox =Inb5.
Find the volume of the solid generated by revolving about the

x-axis the region between y = coshx and y = sinh x from
x=0tox =1

The region below the curve y = sinhx fromx =0to x =
In5 is revolved about the x-axis. Find the volume of the
resulting solid.

The region below the curve y = cosh 2x from x = —In5to
x = In5 is revolved about the x-axis. Find the volume of the
resulting solid.

(a) Evaluate
sinh x

x—oo X

(b) Evaluate
. coshx
lim

X—o00 @aX

if0<a<landifa > 1.

Use a graphing utility to sketch in one figure the graphs of

f(x) =2 —sinhx and g(x) = cosh x.

(&) Use a CAS to find the point in the first quadrant where
the two graphs intersect.

(b) Use a CAS to find the area of the region in the first quad-
rant bounded by the graphs of f and g and the y-axis.

Use a graphing utility to sketch in one figure the graphs of

f(x) = coshx —1and g(x) = 1/coshx.

(a) Use a CAS to find the points where the two graphs in-
tersect.

(b) Use a CAS to find the area of the region bounded by the
graphs of f and g.

M “7.9 THE OTHER HYPERBOLIC FUNCTIONS
The hyperbolic tangent is defined by setting

tanh x =

sinh x eX —e X
coshx  eX+ex’

There is also a hyperbolic cotangent, a hyperbolic secant, and a hyperbolic cosecant:
cosh x
sinhx’

The derivatives are as follows:

cothx =

cschx =

sinhx’

1
sechx = ,
cosh x

(7.9.1)

d
——(tanh x) = sech?x,
dx(an X) = sech“x

d
— h x) = —sech x tanh
dX(sec X) sech x tanh x,

d
——(cothx) = —csch?x,
dX(co X) cschex

d
— hx) = —csch th x.
dX(csc X) csch x coth x
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These formulas are easy to verify. For instance,

d . . d
inh cosh x —(sinh x) — sinh x —(cosh x)
9 ftanhxy = & (X T dx dx
dx dx \ coshx cosh? x
cosh? x — sinh? x 1 )
= 5 = 5— = sech’x.
cosh” x cosh” x

We leave it to you to verify the other formulas.
Let’s examine the hyperbolic tangent a little further. Since

sinh(—x)  —sinhx

tanh (=x) = =
anh (=x) cosh (—