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Introduction

In the course of their undergraduate careers, most mathematics majors see
little beyond “standard mathematics:” basic real and complex analysis, ab-
stract algebra, some differential geometry, etc. There are few adventures in
other territories, and few opportunities to visit some of the more exotic cor-
ners of mathematics. The goal of this book is to offer such an opportunity, by
way of a visit to the p-adic universe. Such a visit offers a glimpse of a part of
mathematics which is both important and fun, and which also is something
of a meeting point between algebra and analysis.

Over the last century, p-adic numbers and p-adic analysis have come to
play a central role in modern number theory. This importance comes from
the fact that they afford a natural and powerful language for talking about
congruences between integers, and allow the use of methods borrowed from
calculus and analysis for studying such problems. More recently, p-adic num-
bers have shown up in other areas of mathematics, and even in physics.

Despite their strangeness, p-adic numbers are not an extremely difficult
concept; in fact, they are quite accessible to an undergraduate audience. The
goal of this book is to realize this possibility, taking its readers for a short
promenade along the p-adic path. Our aim is sightseeing, rather than a
scientific expedition, so we will not worry too much if we fail to emphasize
a subtle point here and there, nor if our theorems are less general than they
could be, nor, in fact, if we do not learn all there is to know. Rather, our goal
is to introduce the reader to the rather strange world of the p-adic numbers,
and to begin to make it feel familiar. What we will cover will not be sufficient
for those students which will need to use p-adic numbers as a research tool.
For them, a lot more reading will be necessary (and in an appendix we discuss
some of the texts that are available for further reading). Instead, we try to
touch a lot of bases, and set the stage for further study.

There are many ways to begin our task. Of the available options, I chose
to go with the theory of absolute values on fields, and to view the p-adic
numbers as directly analogous to the real numbers. In this approach, the
main ingredient is a change of attitude about absolute values. It starts with
the observation that from an algebraic point of view there is no reason to
view the usual absolute value on the field Q of rational numbers as a given.
Rather, any function satisfying the same basic properties should be just as
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2 Introduction

good. If we start with the usual absolute value and look for a completion1

of Q as a metric space, we get the real numbers; starting with a different
absolute value, we get something else. What that something else is, and why
it is interesting, is the subject of this book.

Besides its importance, the study of p-adic numbers is attractive because
it blends together so many parts of mathematics. While it is certainly a
part of number theory, its language is often the language of analysis, and
its theorems are often analogous to, but slightly different from, those found
in calculus textbooks. Both the analogy and the differences are fascinating,
so that at times one gets the feeling that things are slightly out of whack,
and p-adic analysis seems like classical analysis in a distorting mirror. I have
tried to include many examples of this sort of thing, and I hope they are
convincing.

I have done much less to convince the reader that p-adic numbers are
actually useful. For the most part, I have limited myself to stating that
certain things are true or that certain methods are fruitful. In every case,
developing the details of the application would make this book much harder
than it is supposed to be. Once again, a lot can be learned from other texts,
and the student who wants to know should go to the references mentioned in
the text and in the appendix.

Some business: the pre-requisites for reading this book are a basic knowl-
edge of algebra and number theory, and a few courses in calculus or analysis.
To be a bit more precise, the reader should be familiar with the language of
congruences, with the basic theory of fields and rings, and with basic con-
cepts about point-set topology, continuity, and infinite series. I have tried
to provide as many definitions (and also informal descriptions) as I could,
consistent with the requirement that the result not be too ungainly. I hope
that this approach may be useful both to refresh students’ memories of other
subjects and to display the unity and interconnectedness of mathematics in
a dramatic way.

The use of the topics mentioned above as pre-requisites is not uniform.
Most students will know enough to read the first few chapters without needing
to run back to their textbooks from other courses. The analysis requirements
become more serious beginning in Chapter 5, and the algebraic requirements
come in more strongly in Chapter 6. Even so, the whole book remains2 well
within the reach of undergraduate mathematics majors.

There are many kinds of books about mathematics, from encyclopedic
treatises to brief surveys, from dry as dust to boringly chatty. This book
is closer to being a survey than to being encyclopedic, and is intended to
be easy to read, but not as bed-time reading: the reader is expected to do
some work. (Maybe even a lot of work.) To this end, I have included a great

1If you’re wondering what a “completion” is, the definition will be met later, in full
gory detail. Don’t worry about it yet.

2I hope!



Introduction 3

many problems throughout. The problems are meant to be solved, or at least
attempted, at about the time when they are met in the text.3 Most of them
offer an opportunity to work with concepts that have just been introduced,
and it is the author’s fond hope that such problems will help create familiarity
with the material. The majority of these problems ask the reader to work
out the details of arguments which have been only sketched in the text, or
to supply the proofs for statements given in the text (for the most part, this
is only done when the proof is straightforward, and even then hints are often
given). Other problems stretch out to mention matters not touched upon in
the text, to indicate to the reader that there are many themes we have not
had time to discuss. Finally, many are intended to prepare the reader for the
discussion to follow. Such problems will often become trivial in the light of
what comes later (they may be special cases or simple corollaries of theorems
we will prove); leaving them for later will only render them boring.

Besides offering practice and a chance of active interaction with the ma-
terial, the many problems are intended to stimulate the reader to read in
a certain way. In many mathematics textbooks, one finds proofs that are
“left to the reader” or dismissed as “clear” and throwaway lines mentioning
interesting sidelines to the material being discussed. The experienced math-
ematical reader knows that these are signals to dig out pencil and paper and
verify what has been said or to find a reference and verify things that way.
In this book, I have tried to make sure that most such signals are followed by
explicit problems. My hope is that this will help my less experienced readers
gain experience of how to interact with mathematical texts.

I have provided hints and comments on all the problems and complete
solutions for most of the harder problems. These should be used only after
some meditation on the problem, or they may spoil the fun.

Every writer creates in his or her mind an imaginary audience for his or
her text. In the case of this book, what I imagined was an upper-level under-
graduate course for mathematics majors. It would include honest-to-goodness
undergraduates and not only graduate-level students who just happen not to
have finished their undergraduate degrees yet. (In other words, this is not
only for hot-shots, though hot-shots should be welcome too.) The course
would very likely use an approach where students are asked to read the text,
attempt the problems, and discuss the results with each other and with their
instructor. The many problems asking the reader to “make a conjecture,” or
to attempt something (“Can you. . . ”) presuppose such a situation.

A note to the specialists: this book is intended as a pedagogical tool. It
is not intended as a replacement for the standard references nor as a model
of an elegant or detailed treatment of this (or any other) subject. Rather,
I have tried to make it fun to work with, demanding, and ample. I have
often spent time discussing interesting mathematics (the point-set topology,

3I realize this is very different from what most of my readers are used to.



4 Introduction

for example, or the various definitions of the field norm) just because it was
interesting. I welcome any comments, and ask students in particular to tell
me their reactions.

Note on the first edition: This book grew from a set of notes for a
mini-course given at the “17o Colóquio Brasileiro de Matemática,” the 1989
edition of the bi-annual congress of Brazilian mathematicians. It has since
been used in a course (much like the one described above) at Colby College.
I would like to thank the organizers of the “Colóquio” for their invitation,
and also to thank the students who sat through preliminary versions of this
material for their interest and for their patience with its shortcomings. Many
shortcomings will undoubtedly remain, and I would like to hear about them
(who knows, there may even be a second edition someday). Please drop me
a note if you have any comments.

During the final stages of the writing of this book, the author’s research
was partially supported by NSF grant number DMS–9203469. The writing
was done in three phases, at the Universidade de São Paulo, at Queen’s
University at Kingston, Ontario, and at Colby College. I would like to thank
NSF and all three universities for their support; Colby College, where most
of the work was done, and whose computer equipment is responsible for the
physical existence of this book, deserves special thanks for providing pleasant
and fruitful working conditions.

This book was typeset in LATEX using several different kinds of computers
and a large number of standard macro packages. It depends, thus, on the
work of many people who have given of their talents to the community of
TEX users. I thank you all.

Finally, I would also like to thank César Polcino, of the Universidade de
São Paulo, who first put a book on p-adic numbers in my hands, and Noriko
Yui, of Queen’s University, who insisted that I develop the original notes into
this book; the project would not have been undertaken without them.

Note on the second edition: I am grateful to Springer-Verlag for giving
me the opportunity to revise the book for this new printing. The largest
changes happened in chapter four. I’d like to thank the various people who
made comments and suggestions, including Silvio Levy, Alain Robert, and
especially Keith Conrad.

Note on the second printing of the second edition: The need for a
new printing has given me the opportunity to correct several typos, update
references, and make a few small changes in the text.

Note on the third printing of the second edition: The main change
for this new printing was to correct the numbering of the solutions to the
problems, which was incorrect in the previous printing. I apologize to those
who were inconvenienced by that mistake. Other than that, I have only made
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a few minor changes.
I’d like to thank the many people who found typos, made suggestions and

comments, and generally gave me useful feedback. You are all encouraged to
keep at it!

τι ποιεῖτε, πάντα ἐις δόξαν θεοῦ ποιεῖτε



On the Third Edition

Almost twenty years have passed since the second edition of this book. One
of the privileges of mathematicians is, of course, that the passage of time does
not change the truth of theorems nor invalidate correct proofs. But things
do change. One major change in our mathematical environment has to do
with software: the availability of Sage and gp means that all mathematicians
can have access to powerful computational engines. The major change in the
third edition reflects this: I have added quite a bit of material on how to
compute, both by hand and using a computer. Readers who have never used
these computer tools before should read Appendix A for a brief introduction.

Beyond that, there are many small changes. Often I added more pointers
to where the theory ends up going or an extra theorem that seemed inter-
esting. I also added, at the suggestion readers, short sections on visualizing
Zp and Qp and on integration. The bibliography has been updated. I have
updated Appendix C accordingly.

There has also been a change that I noticed while revising the text: I find
that I am no longer comfortable with telling readers to “look this up in your
real analysis textbook.” (I’m not sure why, but there it is.) I have tried, in
each instance, to give a precise reference instead. While it is often true that
the results I need are in standard textbooks, I felt I owed my readers at least
one specific place to look.

There are some structural changes. I decided to split the old third chapter
into two parts, one giving the construction of Qp and the other exploring its
properties. I also broke off the final section of the old chapter six, creating a
new chapter with suggestions for further exploration. Several chapters have
new sections or have had long sections broken up into smaller ones.

Two students at Colby College, Shuofeng Xu and Qidong He, read through
the book and made many comments that have been very useful. As a result,
I have ended up clarifying a few arguments, adding and removing things,
and generally playing around with the text. I read through the entire book
and found many passages where it seemed possible to be clearer. In many
cases I have made the solutions to the problems more detailed. Many readers
had sent me questions or found typos, which I have attempted to correct.
Springer’s reviewers also made several useful suggestions, most of which I
have followed.

Revising a book sometimes involves replacing known errors by new and
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8 On the Third Edition

subtler errors. I hope that the errors I have corrected will be more numerous
than those I may have introduced. In particular, I have corrected a bad
mistake (on the range of the p-adic logarithm) that has been around since
the first edition and was caught by one of Springer’s referees. I am very
grateful to everyone who pointed out mistakes, unclear passages, and other
issues.

Finally, the (mostly) number theorist author of 1999 is now (mostly) a
historian of mathematics. In particular, I now know much more about the
history of the p-adic numbers than I did then. As a result, many of the
historical comments have been updated, usually in subtle ways that matter
to me but may not matter to anyone else.

The overall effect is that there have been few global changes but there are
changes locally everywhere.

Warnings: In my world, “x is positive” means x ≥ 0, with “strictly
positive” reserved for x > 0. A similar convention is in place for “increasing,”
but luckily that word doesn’t play much of a role in p-adic analysis. I know
this may annoy my Anglo-American readers, and I apologize in advance.

In this book, all rings have a multiplicative identity. Quotients of Z are
denoted Z/mZ.

Acknowledgments: I am immensely grateful for all the comments I have
received. The two referees made many helpful comments; I have followed
most of their suggestions. Shuofeng Xu and Qidong He did a fantastic job
of reading through the book and pointing out the places where I had missed
the target. Thank you!



1 Apéritif

The idea of considering new ways to measure the “distance” between two
rational numbers, and then of considering the corresponding completions,
did not arise merely from some desire to generalize, but rather from several
concrete situations involving problems from algebra and number theory. Each
of the new metrics on Q will be connected to a certain prime, and they will
codify a great deal of arithmetic information related to that prime. This
point of view, however, arrived after the fact, as a way to justify what Hensel
had done.

The goal of this first chapter is to offer an informal introduction to these
ideas. Thus, we proceed without worrying too much about mathematical
rigor,1 but rather emphasizing the ideas that are behind what we are trying
to accomplish. This was in fact Hensel’s original approach. Then, in the next
chapter, we will begin to develop the theory in a more formal way.

1.1 Hensel’s Analogy

The p-adic numbers were first introduced by the German mathematician Kurt
Hensel. Hensel’s starting point was the analogy between the ring of integers
Z, together with its field of fractions Q, and the ring C[X ] of polynomials with
complex coefficients, together with its field of fractions C(X). He learned the
analogy from his doctoral adviser, Leopold Kronecker, who even attempted
to develop a single theory that covered both cases.

To be specific, let’s use X as an indeterminate, saving x to stand for a
number. An element of f(X) ∈ C(X) is a “rational function,” i.e., a quotient
of two polynomials:

f(X) =
P (X)

Q(X)
,

with P (X), Q(X) ∈ C[X ], Q(X) �= 0; we can always require that Q(X) is
monic, i.e., its leading coefficient is 1. Similarly, any rational number x ∈ Q
is a quotient of two integers:

x =
a

b
,

with a, b ∈ Z, b �= 0; we can always require that b > 0. Furthermore, the
properties of the two rings are quite similar: both Z and C[X ] are rings where

1which always runs the risk of becoming mathematical rigor mortis. . .

© Springer Nature Switzerland AG 2020 9 
F. Q. Gouvêa, p-adic Numbers, Universitext, https://doi.org/10.1007/978-3-030-47295-5_1 
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10 1 Apéritif

there is unique factorization: any integer can be expressed uniquely as ±1
times a product of primes, and any polynomial can be expressed uniquely as

P (X) = a(X − α1)(X − α2) . . . (X − αn),

where a and α1, α2, . . . αn are complex numbers. This gives us the main point
of the analogy Hensel explored: The primes p ∈ Z are analogous to the linear
polynomials X − α ∈ C[X ].

The analogy extends to solutions of equations. Given a polynomial with
coefficients in Z, any root is an algebraic number ; if a function is a root of a
polynomial with coefficients in C[X ], it is an algebraic function. So

√
2, which

is a root of Y 2 − 2, is an algebraic number, while f(X) =
√
X3 − 3X + 1,

which is a root of Y 2 − (X3 − 3X + 1), is an algebraic function.
Hensel was studying a specific problem about algebraic numbers. Pur-

suing the analogy, he considered the identical problem in the context of al-
gebraic functions; that problem turned out to be easy to solve, because he
could expand the algebraic functions into power series.

Suppose we are given a polynomial P (X) ∈ C[X ] and a particular α ∈ C.
Then it is possible (for example, using a Taylor expansion) to write the
polynomial in the form

P (X) = a0 + a1(X − α) + a2(X − α)2 + · · ·+ an(X − α)n

=

n∑
i=0

ai(X − α)i

with ai ∈ C. This gives very precise information on how the polynomial
behaves near α.

Can we do something like this for integers? For positive integers, we can,
and indeed we do it every day when we write them down:

321 = 1 + 2× 10 + 3× 102

is in that form. The annoying thing is that 10 is not a prime, while (X − α)
is a prime in C[X ]. But we can fix that: choose a prime number p and write
our number in base p: given a positive integer m, we can write it in the form

m = a0 + a1p+ a2p
2 + · · ·+ anp

n =
n∑

i=0

aip
i

with ai ∈ Z and 0 ≤ ai ≤ p− 1. For example, if p = 7 we can write

320 = 5 + 3× 7 + 6× 72.

We can even record this as a string of digits “635” (as in base ten, we record
the digits backwards: lowest powers2 come last). To keep the distinction

2In the p-adic context it would perhaps be better to reverse this, and put lowest powers
first. The downside is that doing that would require us to “do arithmetic backwards,”
which can be confusing. So we have decided to stick to the usual convention.
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between standard (base ten) notation and base p, let’s use red for the latter,
so 320 = 635 as long as it’s understood that we are working with p = 7.

How do we find the expansions? Well, to find the last base seven digit
of 320 we use division with remainder: 320 = 45 × 7 + 5. Then we take the
quotient, 45, and divide it as well: 45 = 6× 7+ 3. And finally 6 = 0× 7+ 6.
The main rule is that the remainder must be one of the numbers 0, 1, . . . ,
p− 1.

Such expansions are already interesting in that they give “local” infor-
mation: the expansion in powers of (X − α) will show, for example, if P (X)
vanishes at α, and to what order. Similarly, the expansion “in base p” will
show if m is divisible by p, and to what order. For example, expanding 72 in
base 3 gives

72 = 0 + 0× 3 + 2× 32 + 2× 33 = 2200,

which shows at once that 72 is divisible by 32.
Now, for polynomials and their quotients, one can in fact push this much

further. Taking f(X) ∈ C(X) and α ∈ C, there is always an expansion

f(X) =
P (X)

Q(X)
= an0(X − α)n0 + an0+1(X − α)n0+1 + . . .

=
∑
i≥n0

ai(X − α)i.

This is just the Laurent expansion from complex analysis, but in our case it
can be very easily obtained either by doing long division with the expansions
of P (X) and of Q(X) or by using division with remainder as before. Notice
that it is a much more complicated object than the preceding expansion:

• We can have n0 < 0, that is, the expansion can begin with a negative
exponent; this would signal that α is a root of Q(X) and not of P (X)
(more precisely, that its multiplicity as a root of Q(X) is bigger). In the
language of analysis, we would say that f(X) has a pole at α of order −n0.
This is not much of a problem: we first remove the pole by multiplying by
(X −α)|n0|, expand the result into powers of (x−α), then divide again at
the end.

• The expansion will usually not be finite. In fact, it will only be finite if
when we write f(X) = P (X)/Q(X) in lowest terms with Q(X) monic,
then Q(X) happens to be a power of (X−α) (can you prove it?). In other
words, this is usually an infinite series, and it can be shown that the series
f(λ) that we get when we replace X by λ ∈ C will converge whenever λ
is close enough (but not equal) to α. However, since we want to focus on
the algebraic structure here, we will treat the series as a formal object: it
is just there, and we do not care about convergence.

Here’s an example. Take the rational function

f(X) =
X

X − 1
,
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and let’s look at the expansions for different α. If α = 0, we get

X

X − 1
= −X −X2 −X3 −X4 − . . .

which shows that f(0) = 0 with multiplicity one. For α = 1, we get

X

X − 1
=

1 +X − 1

X − 1
= (X − 1)−1 + 1

which highlights the pole of order one at α = 1 (and also gives an example
of an expansion that is finite). Finally, if we take, say, α = 2, where there is
neither pole nor zero, we get

X

X − 1
=

2 + (x − 2)

1 + (x − 2)
= 2− (X − 2) + (X − 2)2 − (X − 2)3 + . . .

Problem 1 Refresh your calculus memory and check these three equalities. Can you
find the regions of convergence? (Hint: all you need to remember is the geometric
series.)

Problem 2 Suppose f(X) = P (X)/Q(X) is in lowest terms, so that P (X) and
Q(X) have no common zeros. Show that the expansion of f(X) in powers of (X −α)
is finite if and only if Q(X) = (X − α)m for some m ≥ 0.

The punchline is that any rational function can be expanded into a series
of this kind in terms of each of the “primes” (X−α). (The quotes aren’t really
necessary, since the ideals generated by the elements of the form (X −α) are
exactly the prime ideals of the ring C[X ], so that (X −α) is a rightful bearer
of the title of “prime.” But all that comes later.) On the other hand, not
all such series come from rational functions. In fact, we have already met
examples in our calculus courses: the series for sin(X), say, or the series for
eX , which cannot be expansions of any rational function (calculus exercise:
why not?).

Here’s how to read the situation from an algebraic point of view. We have
two fields: the field C(X) of all rational functions, and another field which
consists of all Laurent series in (X−α). (The next exercise asks you to check
that it is indeed a field.) Let’s denote the second by C((X − α)). Then the
function

f(X) �→ expansion around (X − α)

defines an inclusion of fields

C(X) ↪→ C((X − α)).

There are, of course, infinitely many of these (one for each α), and each one
contains “local” information about how rational functions behave near α.
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Problem 3 Let C((X−α)) be the set of all finite-tailed Laurent series (with complex
coefficients) in (X − α)

f(X) =
∑
i≥n0

ai(X − α)i.

Define the sum and product of two elements of C((X − α)) in the “obvious” way, and
show that the resulting object is a field. Show that one may in fact take the coefficients
to be in any field, with the same result.

Since such power series expansions were so useful in studying rational
and algebraic functions, Hensel’s idea was to extend the analogy between Z
and C[X ] to include the construction of such expansions. Recall that the
analogue of choosing α is choosing a prime number p. As we have already
seen, we already know the expansion for a positive integer m: it is just the
“base p” representation of m:

m = a0 + a1p+ a2p
2 + · · ·+ anp

n,

with ai ∈ Z, 0 ≤ ai ≤ p − 1. As in the case of polynomials, this is a finite
expression.3

In the case of positive rational numbers whose denominator is a power of
p, it’s easy: take the expansion of the numerator and divide by a power of p.
So, since 320 = 5 + 3× 7 + 6× 72 = 635 in base 7, we see that

320

49
= 5× 7−2 + 3× 7−1 + 6 = 6.35,

where we are using the dot in analogy to the “decimal point” in base ten, to
mark the place where we move to negative powers of 7.

To pass to more general positive rationals, we need to allow infinitely
long expansions. What we do is expand both numerator and denominator
in powers of p, and then either divide formally or use repeated division with
remainder. The only thing one has to be careful with is that one may have
to “carry.” The sum of two of our ai, for example, may be larger than p− 1,
and one has to do the obvious thing. It’s probably easier to go straight to
examples.

Let’s start with an easy one, 1/2, and take p = 5. We divide 1/2 by 5,
like this:

1

2
= 5× −1

2
+ 3,

so the last digit is 3. (Because 5 is prime, it can be shown that quotient and
remainder are unique; for now, take that as given.) Now we divide again:

−1

2
= 5× −1

2
+ 2.

3The condition 0 ≤ ai ≤ p − 1 may seem to break the analogy with the complex case.
But not so! The point is that the quotient of C[X] by the ideal generated by (X − α) is
isomorphic to C, and the constants in C[X] give a “canonical” choice of coset representa-
tives. Similarly, the numbers between 0 and p− 1 are a choice of coset representatives for
the quotient of Z by the ideal generated by p.
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The new quotient is −1/2 again, so from now on all the divisions are the
same: −1

2
= 5× −1

2
+ 2, forever!

So we get
1

2
= 3 + 2× 5 + 2× 52 + · · · = . . . 22223.

Seems crazy, but notice that if we multiply by 2 it works: 2× 3 = 6 = 11 in
base 5, so we write 1 and carry a 1, then 2 × 2 + 1 = 5 = 10, so we write 0
and carry a 1, and then we repeat forever to get . . . 00001 = 1.

Let’s do a harder one: take p = 3, and consider the rational number
24/17. Then we have

a = 24 = 0 + 2× 3 + 2× 32 = 220 = 2p+ 2p2

and
b = 17 = 2 + 2× 3 + 1× 32 = 122 = 2 + 2p+ p2.

(Though of course p = 3, it’s probably less confusing to write p because one
is less tempted to “add it all up.” The point is to operate formally with our
expansions.)

Suppose we want to get an expansion for a/b = 24/17. One way to do it
is to set

a

b
=

24

17
=

2p+ 2p2

2 + 2p+ p2
= a0 + a1p+ a2p

2 + a3p
3 + . . .

then multiply through by 2 + 2p+ 2p2. This gives infinitely many equations
involving the coefficients an, but they are easy to solve. (See the next section
for more on how to compute.) We can also do “long division” or use repeated
divisions by 3 as before. However we do it, we get

24

17
=

2p+ 2p2

2 + 2p+ p2

= p+ p3 + 2p5 + p7 + p8 + 2p9 + . . .

= . . . 2110201010.

Let’s check that this is correct by multiplying it by (the expansion of) 17,
remembering that p = 3:

(2 + 2p+ p2)(p+ p3 + 2p5 + p7 + p8 + 2p9 + . . . )

= 2p+ 2p2 + p3 + 2p3︸ ︷︷ ︸+2p4 + p5 + 4p5 + 4p6+

+ 2p7 + 2p7 + 2p8 + 2p8 + p9 + 2p9 + 4p9 . . .
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since p = 3, we get p3 + 2p3 = 3p3 = p4, so

= 2p+ 2p2 + p4 + 2p4︸ ︷︷ ︸+p5 + 4p5 + 4p6 + 2p7 + 2p7+

+ 2p8 + 2p8 + p9 + 2p9 + 4p9 + . . .

= 2p+ 2p2 + p5 + p5 + 4p5︸ ︷︷ ︸+4p6 + 2p7 + 2p7

+ 2p8 + 2p8 + p9 + 2p9 + 4p9 + . . .

= 2p+ 2p2 + 2p6 + 4p6︸ ︷︷ ︸+2p7 + 2p7 + 2p8 + p9 + 2p8 + 2p9 + 4p9 + . . .

= 2p+ 2p2 + 2p7 + 2p7 + 2p7︸ ︷︷ ︸+2p8 + 2p8 + p9 + 2p9 + 4p9 + . . .

= 2p+ 2p2 + 2p8 + 2p8 + 2p8︸ ︷︷ ︸+p9 + 2p9 + 4p9 + . . .

= . . .

= 2p+ 2p2

so that the higher powers of p disappear “to the right,” leaving us with
2p + 2p2 = 24! We could also have done it with the usual multiplication
algorithm as above, working in base three, as long as we remember that
3 = 10, 4 = 11, etc., and we must carry as necessary. Indeed, there will be
an infinite amount of carrying. (The reader will probably feel something has
been shoved under the rug, and in fact there is something to prove here. But
the point is that, at least formally, it works.)

In our example, the denominator was not divisible by p. If it was, we
would factor out a negative power of p to get a fraction without p in the
denominator, expand, then multiply back by the power of p we factored out.
The effect is just to move the dot. For example, from the computation above
we get

8

17
= 1 + p2 + 2p4 + p6 + p7 + 2p8 + · · · = . . . 211020101

and

8

51
= p−1 + p+ 2p3 + p5 + p6 + 2p7 + · · · = . . . 21102010.1.

Notice that the expansion got shorter as we divided by 3; to get more digits
here would require starting with more digits before. Each time we divide by
p we lose some precision.



16 1 Apéritif

Provided that we treat the whole process formally, it is easy to check that
this always works, and that the resulting series reflects the properties of the
rational number x = a/b as regards the prime number p (we will get into the
habit of saying “locally at p” or even “near p,” to emphasize the analogy).
So the upshot is that for each prime p, we can write any (positive, for now)
rational number a/b in the form

x =
a

b
=
∑
n≥n0

anp
n,

and, for example, we have n0 ≥ 0 if and only if p � b, and n0 > 0 if and only if
p � b and p|a (assuming a/b is in lowest terms). In fact, the number n0 (which
is something like the order of a zero or pole) reflects the “multiplicity” of p
in a/b; it is characterized by the equation

x = pn0
a1
b1

with p � a1b1.

It remains to see how to get the negative rational numbers, but since our
power series in p can be multiplied, it is enough to get an expansion for −1.
Keeping in mind that we are working formally, and with a little imagination,
that is not too hard to do. We find, for any p, that

−1 = (p− 1) + (p− 1)p+ (p− 1)p2 + (p− 1)p3 + · · · ,

since, if we add 1, we get

1 + (p− 1)︸ ︷︷ ︸+(p− 1)p+ (p− 1)p2 + (p− 1)p3 + · · ·

= p+ (p− 1)p︸ ︷︷ ︸+(p− 1)p2 + (p− 1)p3 + · · ·

= p2 + (p− 1)p2︸ ︷︷ ︸+(p− 1)p3 + · · ·

= · · ·

= 0.

For example, if p = 7 and we use the notation “in base p” this looks like

−1 = . . . 66666.

Now just multiply the expression of a positive number by −1 to get the
expression of its negative. Or, if the idea of multiplying by an infinitely long
−1 seems like a pain (it is!), then we can find the negative directly:
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Problem 4 Consider a p-adic number

y = a0 + a1p+ a2p
2 + a3p

3 + · · · .
What is −y? (This means: what is its p-adic expansion?)

For each rational number, we’ll end up with a series that has finitely many
negative powers of p. We call this a “finite-tailed Laurent series in p.” The
term “finite-tailed” refers, of course, to the fact that the expansion is finite to
the left, i.e. there are finitely many negative powers of p. It is usually infinite
to the right. (Alas, if we choose to write digits in base p, then this reverses:
finite to the right, infinite to the left.)

The conclusion is that, at least in a formal sense, every rational number
x can be written as a “finite-tailed Laurent series in powers of p”

x = an0p
n0 + an0+1p

n0+1 + . . .

We will call this the p-adic expansion of x; remember that if x is a positive
integer, it is just its expansion “in base p.”

Let’s not bother to check, at this point, that this process is injective,
i.e., that two different rational numbers will have different p-adic expansions.
(This will come out more naturally later on.) The upshot is that we now
have a new way to represent rational numbers.

It turns out that the set of all finite-tailed Laurent series in powers of p
(i.e., of all p-adic expansions) is a field (see Problem 5), just as C((X−α)) is
a field. We will denote this field by Qp, and call it the field of p-adic numbers.
As before, we can describe much of what we have done by saying that the
function

x �→ p-adic expansion of x

gives an inclusion of fields
Q ↪→ Qp.

(We have not yet shown that Qp is strictly bigger than Q, but we will soon.)
The definition of a p-adic number as a formal object (a finite-tailed Lau-

rent expansion in powers of p) is of course rather unsatisfactory according to
the tastes of today. We will remedy this in Chapter 3, where we will show
how to construct the field Qp as an analogue of the field of real numbers. For
now, note only that whatever the “real” definition is, it must allow our series
to converge, so that powers pn must get smaller as n grows. This is pretty
strange, so let’s give ourselves time to get used to the idea. The problems
in this section are intended to help the reader feel a little more comfortable
with p-adic expansions.

Problem 5 Show that Qp is indeed a field. (At this point this is a bit annoying, so
you can also take it on trust and wait for the proof in Chapter 3.)

You will have to begin by making explicit what the operations are, and this is a
bit tricky because of “carrying.” For example, the coefficient of a given power of p in
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the sum of two expansions depends on the coefficients of all the lower powers in the
summands; however, this is still a finite rule. Then show that the map Q −→ Qp given
by sending each rational number to its expansion is a homomorphism.

By analogy with the real numbers, it’s natural to guess that every rational
number will have a periodic (or eventually periodic) p-adic expansion, and
that conversely any such expansion represents a rational number. That is
harder to prove than one might expect, so let’s break it up into several
problems.

Problem 6 Suppose y has a p-adic expansion that is eventually periodic. Show that
y is a rational number.

Problem 7 Suppose y ∈ Z. Show that the p-adic expansion of y must end either in
an infinite string of 0s or an infinite string of (p− 1)s.

Problem 8 Suppose y = a
b
∈ Q, p � b, and −1 < y < 0. Show that the p-adic

expansion of y is purely periodic.

Problem 9 Show that the p-adic expansion of any rational number is eventually
periodic. (This is tricky; there’s no shame in looking at the solution in Appendix B.)

Notice that it follows that Qp is bigger than Q, since not all p-adic ex-
pansions are periodic. For example,

∞∑
n=0

pn
2

= 1 + p+ p4 + p9 + p16 + . . .

is not periodic, so it is an element of Qp that is not in Q.

Problem 10 (Some abstract algebra required!) Another point at which our anal-
ogy seems to break down is the fact that rational functions f(X) ∈ C(X) are really
functions: one can really compute their value at a complex number α. This problem
explains a highfalutin’ way of interpreting rational numbers as functions too.

i) First of all, show that we can identify the set of complex numbers α with the set
of maximal ideals in C[X] via the correspondence α ↔ (X − α).

ii) Fix a complex number α. Show that the map f �→ f(α) defines a homomorphism
from the ring C[X] to C, whose kernel is exactly the ideal (X − α).

iii) Now let f(X) be a rational function. Show that the map f �→ f(α) still makes
sense provided the denominator of f is not divisible by X−α. If the denominator
is divisible by (X − α)n but not by (X − α)n+1, we say that f has a pole of
order n at α.

iv) Now take x = a/b ∈ Q, and choose a prime p ∈ Z. If p does not divide b, define
the value of x at p to be a/b (mod p), which means ab′ (mod p), where b′ is
an integer satisfying bb′ ≡ 1 (mod p). We think of this value as an element of
Fp, the field with p elements. If p does divide b, we say that x has a pole at
p. Explain how to define the order of the pole. This interprets the elements of
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Q as a sort of “function” on the primes p ∈ Z. It is a bit weird, because this
“function” doesn’t have a “range:” the value at each p belongs to a different
field Fp.

v) Discuss whether this way of thinking of rational numbers as functions is reason-
able. Does it make the analogy any tighter?

1.2 How to Compute

Computing with p-adic expansions by hand is mostly easy: just do the usual
thing, but in base p. This section gives some examples of this, then goes on
to explain how to do these computations with a computer.

Let’s take p = 11 for our examples. Then our digits must be the numbers
from zero to ten. We’ll use the same convention as in the previous section,
but we’ll add an extra digit x to stand for ten. So our 11-adic digits are

0,1,2, . . . ,9,x.

For example,

100 = 1 + 9 · 11 and 230 = 10 + 9 · 11 + 1 · 112

which we will write as

100 = 91 and 230 = 19x.

Notice that we are following the usual convention of writing the digits with
the higher powers of p first, which means that our p-adic expansions will go
on forever to the left, not to the right.

Now let’s add our two numbers:

91

19x

280

Because 1 + x = 10, so we write zero and carry a 1, then 1 + 9 + 9 = 18,
and so on. (Do it!)

If we are dealing with an infinite expansion, we can only do part of the
computation, of course, but sometimes we can see where it will go. For
example, when we add . . . xxxxxxxxxx + 1 we can see that we will get 0
even though there are infinitely many carries.

Sticking to p = 11, try these:

Problem 11 I claim that 1
2
= . . . 555556. Multiply that by 2 and check that the

answer is 1.
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Problem 12 Similarly, check that 1
7
= . . . 7947947947948 = 7948, where the bar

marks a repeating block.

Problem 13 When you solved Problem 4 you obtained a recipe for finding the ex-
pansion of −y from that of y: take the p-complement of the last digit and the (p− 1)-
complement of all the others. Since 123 = 102, this gives −123 = . . . xxxxx9x9.
Check it twice: first by adding

102+ . . . xxxxx9x9

to get zero, then by multiplying

. . . xxxxxxxxxxxxxxxxx × 102.

Problem 14 According to Problem 8, the following numbers should have purely pe-
riodic 11-adic expansions. Check that they do.

i) −2/3

ii) −3/5

iii) −4/9

iv) −11/12

It’s easy to come up with many more examples. Instead, let’s do a trickier
one, returning to the example from the previous section.

Problem 15 Set p = 3, and consider the rational number 24/17. We have 24 = 220
and 17 = 122.

i) We said 24
17

= . . . 2110201010. We can find that by repeated division by 3:

24

17
= 3× 8

17
+ 0

8

17
= 3× −3

17
+ 1

−3

17
= 3× −1

17
+ 0

. . .

Carry this out until you know that the digits will repeat.

ii) Multiply the result by 122 and check that the answer is 220.

So we can add and multiply, and since we can take negatives we can also
subtract. Division is harder, mostly because the school algorithm for long
division starts with the highest-order digits, and in our infinite expansions
there might not be a top digit at all. Still, there are algorithms to do this.
But the truth is that no one does arithmetic by hand any more. So let’s learn
to do this on a computer.

Sage and gp handle the p-adics in very similar ways (not surprising, since
Sage includes gp).

A p-adic expansion is an infinite object and computers are finite, so we
have to work with finite chunks of the expansion. Just as we do with real
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numbers, we need to choose a certain number of digits to keep, which we
think of as the “p-adic precision” in which we are working. In gp, this
can be done by adding +O(p^k) at the end of a number.4 So if we write
117+O(5^20), we will get 2 + 3*5 + 4*5^2 + O(5^20), which is the (finite)
base-5 representation of 117. If we write 117/2+O(5^20), we get

1 + 4*5 + 4*5^2 + 2*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + 2*5^7

+ 2*5^8 + 2*5^9 + 2*5^10 + 2*5^11 + 2*5^12 + 2*5^13 + 2*5^14

+ 2*5^15 + 2*5^16 + 2*5^17 + 2*5^18 + 2*5^19 + O(5^20)

(except that we have added line breaks). It’s easy to see that this is 2441;
of course, if the period is long and we haven’t chosen high enough precision,
it will be hard to know when the repetition starts.

If we want to see the number written “in base p,” we can make gp do it
like this:

gp > a=1/42+O(5^20)

%1 = 3 + 2*5^3 + 4*5^4 + 4*5^5 + 2*5^6 + 2*5^9 + 4*5^10

+ 4*5^11 + 2*5^12 + 2*5^15 + 4*5^16 + 4*5^17

+ 2*5^18 + O(5^20)

gp > digits(lift(a),a.p)

%2 = [2, 4, 4, 2, 0, 0, 2, 4, 4, 2, 0, 0, 2, 4, 4, 2, 0, 0, 3]

gp > concat("...",concat([Str(x)|x<-digits(lift(a),a.p)]))

%3 = "...2442002442002442003"

In other words, digits gives the sequence of digits as a vector, and the
magical invocation involving concat writes them as a string.

In Sage, the right way to do it is to first specify in what context you are
working: K=Qp(5) tells Sage that K is the p-adic numbers5 with p = 5. Then
you can find p-adic expansions by asking Sage to create a number in K, like
this: a=K(1/42). So the commands

K=Qp(5)

a=K(1/42)

print(a)

produce the output

3 + 2*5^3 + 4*5^4 + 4*5^5 + 2*5^6 + 2*5^9 + 4*5^10 + 4*5^11

+ 2*5^12 + 2*5^15 + 4*5^16 + 4*5^17 + 2*5^18 + O(5^20)

If you prefer to see the digits, you can vary the options when you create the
field K:

4Computers are literal-minded. If you write +O(125), gp will think you mean p = 125
and k = 1. It will happily proceed until something blows up because “p” is not actually
prime.

5The default precision is 520. There are lots of options one can add to the command
Qp, for example to specify the precision and the way p-adic numbers are displayed; check
the Sage manual if you want details.
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K=Qp(5,print_mode="digits")

a=K(1/42)

print(a)

produces

...02442002442002442003

You can even create both K and another entity, say Kd, with the “digits”
option. Then Kd(a) gives you the digits version of a.

Once we can enter numbers, it’s smooth sailing: you can add, subtract,
multiply, divide, and more. Whatever operation you ask it to do, gp will
either perform the operation or tell you that it can’t.

Here are some examples in gp. The same commands work in Sage, but
remember that in Sage you may need to use print to get output.

gp > a=6+O(5^20)

%1 = 1 + 5 + O(5^20)

gp > b=17+O(5^20)

%2 = 2 + 3*5 + O(5^20)

gp > c=a/b

%3 = 3 + 3*5 + 4*5^2 + 2*5^3 + 4*5^5 + 3*5^6 + 5^7 + 2*5^8

+ 5^9 + 2*5^11 + 4*5^12 + 5^14 + 3*5^15 + 2*5^16 + 3*5^17

+ 4*5^18 + 2*5^19 + O(5^20)

gp > d=b/a

%4 = 2 + 5 + 4*5^2 + 4*5^4 + 4*5^6 + 4*5^8 + 4*5^10 + 4*5^12

+ 4*5^14 + 4*5^16 + 4*5^18 + O(5^20)

gp > c*d

%5 = 1 + O(5^20)

How about putting 5 in the denominator?

gp > a/5

%6 = 5^-1 + 1 + O(5^19)

gp > a/5*b

%7 = 2*5^-1 + 4*5 + O(5^19)

Did you see what happened there? Here’s the right way:

gp > a/(5*b)

%8 = 3*5^-1 + 3 + 4*5 + 2*5^2 + 4*5^4 + 3*5^5 + 5^6 + 2*5^7

+ 5^8 + 2*5^10 + 4*5^11 + 5^13 + 3*5^14 + 2*5^15

+ 3*5^16 + 4*5^17 + 2*5^18 + O(5^19)
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Notice that dividing by 5 reduces the 5-adic precision. This shouldn’t be
surprising.

Now let’s try something exotic:

gp > sqrt(a)

%9 = 1 + 3*5 + 4*5^3 + 2*5^4 + 5^5 + 2*5^6 + 3*5^7 + 5^8

+ 3*5^9 + 3*5^10 + 3*5^12 + 3*5^13 + 2*5^14 + 3*5^15

+ 2*5^16 + 2*5^17 + 2*5^18 + 4*5^19 + O(5^20)

gp > sqrt(2*a)

*** at top-level: sqrt(2*a)

*** ^---------

*** sqrt: not an n-th power residue

in Qp_sqrt: 2 + 2*5 + O(5^20).

gp > log(a)

%10 = 5 + 2*5^2 + 4*5^3 + 2*5^4 + 5^6 + 4*5^7 + 2*5^8 + 3*5^9

+ 5^10 + 2*5^11 + 2*5^12 + 3*5^14 + 3*5^15 + 4*5^16

+ 4*5^17 + 5^18 + 2*5^19 + O(5^20)

So apparently even square roots and logs can (sometimes) work. We needn’t
worry right now about what the error message when we tried to compute√
2a means. We’ll find out soon.

1.3 Solving Congruences Modulo pn

The “p-adic numbers” we have just constructed are closely related to the
problem of solving congruences modulo powers of p. We will look at some
examples of this.

Let’s start with the easiest possible case, an equation which has solutions
in Q, such as

X2 = 25.

We want to consider it modulo pn for every n, i.e., to solve the congruences

X2 ≡ 25 (mod pn).

Now, of course, our equation has solutions already in the integers: X =
±5. This automatically gives solutions of the congruence for every n; just
put X ≡ ±5 (mod pn) for every n.

Problem 16 Check that these are the only solutions, up to congruence, of X2 ≡ 25
(mod pn), at least when p �= 2, 5. What happens in these special cases?

Let’s try to understand these solutions a little better from the p-adic point
of view. To make our life easier, we take p = 3 once again. We begin by re-
writing our solutions using residue class representatives between 0 and 3n−1
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for the solutions modulo 3n. The first solution, X = 5, gives:

X ≡ 2 (mod 3)

X ≡ 5 = 2 + 3 (mod 9)

X ≡ 5 = 2 + 3 (mod 27)

etc.

which doesn’t change any more, and therefore just gives the 3-adic expansion
of this solution:

X = 5 = 2 + 1× 3 = 12.

For X = −5, the results are a little more interesting; let’s give the represen-
tatives mod 3n as integers and also in base 3:

X ≡ −5 ≡ 1 = 1 (mod 3)

X ≡ −5 ≡ 4 = 1 + 3 = 11 (mod 9)

X ≡ −5 ≡ 22 = 1 + 3 + 2× 32 = 211 (mod 27)

X ≡ −5 ≡ 76 = 1 + 3 + 2× 32 + 2× 33 = 2211 (mod 81)

etc.

Again, continuing this gives the 3-adic expansion of the solution, which is a
bit more interesting because it is infinite:

X = −5 = 1 + 1× 3 + 2× 32 + 2× 33 + 2× 34 + · · · = . . . 22211 = 211.

But of course we already knew that this is the 3-adic expansion of −5.
Notice that the two systems of solutions are “coherent,” in the sense that

when we look at, say, X = 76 (which is a solution modulo 34) and reduce it
modulo 33, we get X = 22 (which is the corresponding solution modulo 33).
Let’s give this a formal definition:

Definition 1.3.1 Let p be a prime. We say a sequence of integers αn such
that 0 ≤ αn ≤ pn − 1 is coherent if, for every n ≥ 1, we have

αn+1 ≡ αn (mod pn).

If we need to emphasize the choice of prime p, we will say the sequence is
p-adically coherent.

We can picture our two coherent sequences of solutions as branches in
a tree (see Figure 1.1). Of course this is all rather painfully obvious in the
case we are considering, since the sequences of solutions are coherent simply
because they “are” solutions in Z (76 is congruent to 22 just because both
are congruent to −5). The only real bit of information we have obtained
is the connection between expressing the roots as a coherent sequence and
obtaining their p-adic expansions.



1.3 Solving Congruences Modulo pn 25

2

1

4

5

22

5

76

5

����
����

����

����
����

����

��

��

Figure 1.1: Solutions of X2 ≡ 25(mod 3n)

Problem 17 Interpret the definition of a coherent sequence in terms of expansions in
base p.

Problem 18 Before we go on to something more interesting, do a couple of similar
examples (in the sense that there are integer solutions) on your own, say with X2 = 49
and p = 5, and X3 = 27 and p = 2.

Problem 19 Things already get slightly more interesting if we take p = 2 and the
equation X2 = 81. In this case, the “tree” of solutions modulo 2n is much more
complex: there are two infinite branches that correspond to the solutions X = ±9, but
there are also lots of finite branches (solutions modulo 2n that do not “lift” to solutions
modulo 2n+1). We will later consider what is special about this situation.

Things become much more interesting if we follow the same process with
an equation that does not have rational roots. For example, take the system
of congruences

X2 ≡ 2 (mod 7n), n = 1, 2, 3, . . .

For n = 1, the solutions are X ≡ 3(mod 7) and X ≡ 4 ≡ −3(mod 7).
To find the solutions for n = 2, note that their reductions modulo 7 must be
solutions for n = 1. Hence we set X = 3+ 7k or X = 4+ 7k and solve for k:

(3 + 7k)2 ≡ 2 (mod 49)

9 + 42k ≡ 2 (mod 49)
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Figure 1.2: Solutions of X2 ≡ 2(mod 7n)

(notice that the term involving (7k)2 is congruent to zero)

7 + 42k ≡ 0 (mod 49)

1 + 6k ≡ 0 (mod 7)

k ≡ 1 (mod 7)

which, since X = 3 + 7k, gives the solution X ≡ 10(mod 49). Using X =
4 + 7k gives the other solution X ≡ 39 ≡ −10(mod 49).

Problem 20 Prove that for each n there can be at most two solutions. (All you need
is p �= 2.)

Problem 21 Show that the process above can be continued indefinitely, that is, that
given a solution αn of the congruence X2 ≡ 2(mod 7n), there always exists a unique
solution αn+1 of X2 ≡ 2(mod 7n+1) satisfying αn+1 ≡ αn (mod 7n). Find a few
more terms in each of the sequences of solutions above.

Again, the solutions can be represented as branches in a tree (see Fig-
ure 1.3). This time, however, we can’t predict a priori what the numbers
that appear will be; instead, all we can do is convince ourselves that the
process will continue as long as we want it to. The fact that one can con-
tinue finding roots indefinitely shows that there are two coherent sequences
of solutions:

x1 = (3, 10, 108, 2166, . . .)
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and

x2 = (4, 39, 235, 235 . . .) = (−3, −10, −108, −2166 . . .) = −x1.

Just as before, we can expand each number in each sequence 7-adically. The
fact that the sequence is coherent means that the expansion of each root is
the truncation of the expansion of the following root, so that, for example,

3 = 3 = 3

10 = 3 + 1× 7 = 13

108 = 3 + 1× 7 + 2× 72 = 213.

This gives us two 7-adic numbers:

x1 = 3 + 1× 7 + 2× 72 + 6× 73 + · · · = . . . 6213

and

x2 = 4 + 5× 7 + 4× 72 + 0× 73 + · · · = . . . 0454 = −x1.

It probably bears repeating: we are not claiming that we can predict the
pattern here; indeed we already know that it cannot be periodic. All we
know is that we can continue the pattern for as long as necessary, if we have
enough time and patience. It’s just like finding the decimal expansion of the
square root of two: we can get as close as we like, and we can prove that,
though we can’t predict what the expansion will actually be like.

In any case, we do get two 7-adic numbers, and they are indeed roots of
the equation X2 = 2 in Q7, in the usual sense:

Problem 22 Show that the 7-adic number x1 obtained as above satisfies x2
1 = 2 in

Q7. This shows once again that the field Q7 is strictly bigger than Q.

The tie between solving sequences of congruences modulo higher and
higher powers of p and solving the corresponding equation in Qp is quite
close, as the problems below try to emphasize. We will return to it when we
study Hensel’s Lemma. It is also one of the more important reasons for using
p-adic methods in number theory.

Problem 23 Check thatX2 = 2 has no solutions in the field Q5. (Begin by expressing
the putative solution as a 5-adic expansion. Show that it must be of the form a0 +
a15 + a25

2 + . . . , and conclude that a0 must satisfy a congruence modulo 5. Finally,
check that the congruence you obtained has no solutions modulo 5.) Notice that this
shows (in a very roundabout way) that 2 has no square root in Q, since any square
root in Q would be a square root in any of the Qp (remember that there is an inclusion
Q ↪→ Qp), hence in particular in Q5.

Problem 24 Check that X2 + 1 = 0 has a solution in Q5, but not in Q7.
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Problem 25 Show that a p-adic number

x = a0 + a1p+ a2p
2 + a3p

3 + · · ·

is a solution in Qp of the equation X2 = m if and only if the sequence

a0, a0 + a1p, a0 + a1p+ a2p
2, . . .

is a coherent sequence of solutions of the congruences X2 ≡ m (mod pn). (Hint:
compute x2 up to a certain power of p, and compare it with m to read off a congruence
modulo that power of p.)

We have already mentioned that there is some analogy between p-adic
numbers and real numbers. The next problem gives an example of this.
Over R, there is a simple condition that determines whether the equation
X2 = m has a solution (just check the sign of m). In Qp, the condition is
also simple:

Problem 26 Let m be any integer, and suppose that the congruence X2 ≡ m
(mod p) has a solution; show that if p �= 2 and p � m it is always possible to “ex-
tend” this solution to a full coherent sequence of solutions of X2 ≡ m (mod pn). Use
this to find a necessary and sufficient condition for the equation X2 = m to have a
root in Qp for p �= 2. What is special about p = 2?

Notice that this explains what happened when we tried to compute
√
2a

with gp above: our a is a square mod 5, but 2a is not.

Problem 27 Show that for every p, there is a polynomial equation that has solutions
in Qp but not in Q. (Hint: the basic work has all been done; when p �= 2 an equation
of the form X2 −m will work if you choose a good m. For p = 2 you need a different
kind of equation.)

Problem 28 In the same spirit as the previous problem, show that Qp is never al-
gebraically closed; more precisely, for each p one can find an algebraic equation with
rational coefficients that has no roots in Qp.

1.4 Other Examples

Working with p-adic numbers is useful in all sorts of contexts. We round off
this chapter by giving two rather whimsical examples.

Consider the equation X = 1 + 3X . This is of course easy to solve, but
let’s try something strange and look at it as a fixed-point problem, i.e., as
the problem of finding a solution of f(x) = x for some function f(x). Such
problems are often solved by iteration, plugging in an arbitrary initial value,
then computing f(x) over and over in the hope that we will get closer and
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closer to a fixed point. To try this in our case, we take x0 = 1 and iterate,
so that xn+1 = 1 + 3xn. Here’s what we get:

x0 = 1

x1 = 1 + 3x0 = 1 + 3

x2 = 1 + 3x1 = 1 + 3 + 32

. . .

xn = 1 + 3 + 32 + · · ·+ 3n

In R, this is a divergent sequence, and we were all taught in calculus classes
never to have any dealings with them. On the other hand, it is the sequence
of partial sums of a geometric series, and we all know that

1 + a+ a2 + a3 + · · · = 1

1− a
.

(Well, we know it for |a| < 1, but what the heck. . . ) Plugging in blindly
gives x = 1/(1− 3) = −1/2, which is (surprise!) the correct answer.

This dubious playing around with divergent sequences is clearly illegal
in calculus class, but it works. Here’s one way to understand why. While
the sequence is certainly divergent in R, there is nothing to keep us from
looking at the sequence in Q3 (the elements in the sequence are in Q, which
is contained in both R and Q3). Now, in Q3, the sequence is obviously
convergent, to the 3-adic number

1 + 3 + 32 + · · ·+ 3n + · · · = . . . 33331.

One then easily checks (by the same argument used over R!) that this is equal
to −1/2.

Of course it is silly to solve a linear equation in such a roundabout way,
but the remarkable fact here is that an argument that was either dubious or
outright illegal at first sight turns out to work perfectly well in the p-adic
context. The series we used is divergent only if we insist in thinking of it as
a series of real numbers. Once we put it in the “right” context, it becomes
quite nice. In fact, we will see in the next chapter that there is an absolute
value in Q3, and that with respect to the notion of size determined by that
absolute value our series is convergent.

The point, then, is that introducing the p-adic fields broadens our world
in such a way as to allow arguments that were previously impossible. This
toy example points the way to many analogous situations where considering
the p-adic numbers simplifies matters tremendously.

Problem 29 Show that, for any prime p, the formula

1 + p+ p2 + p3 + · · · = 1

1− p

is true in Qp.
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The next example is perhaps even more interesting. It shows that some-
times introducing p-adic ideas allows a more conceptual proof of a fact that
seems obscure (and hard to prove) otherwise. This example is a bit more
advanced, and we will take for granted things that we will prove only later,
but the reader should be able to follow it. We will work with p = 2, that is,
in the field Q2 of 2-adic numbers.

Consider the usual MacLaurin series for the logarithm of 1 +X :

log(1 +X) = X − X2

2
+

X3

3
− X4

4
+ . . .

Since powers of 2 are “small” in Q2, it turns out that we can plug in X = −2
to compute the logarithm of −1:

log(−1) = log(1− 2) = −
(
2 +

22

2
+

23

3
+

24

4
+ · · ·

)
.

(This is of course wildly divergent in R, but it turns out to be convergent in
Q2; this is not completely obvious because of the denominators, but it does
work—see ahead.) Now, if the series converges, it must converge to zero, by
the usual properties of the logarithm:

2 log(−1) = log((−1)2) = log(1) = 0.

So the series

2 +
22

2
+

23

3
+

24

4
+ · · ·+ 2n

n

must be equal to 0. Remember that what this means is that the terms in
the 2-adic expansion “disappear to the right,” that is, that the partial sums,
written in base 2, end with longer and longer stretches of zeros. Here’s the
upshot:

Fact 1.4.1 For each integer M > 0 there exists an n such that the partial
sum

2 +
22

2
+

23

3
+

24

4
+ · · ·+ 2n

n

is divisible by 2M .

Problem 30 Can you give a direct proof of this fact?

What this example points out is that using p-adic methods, and in par-
ticular the methods of the calculus in the p-adic context, we can often prove
facts about divisibility by powers of p which are otherwise quite hard to
understand. The proofs are often, as in this case, “cleaner” than any di-
rect proof would be, and therefore easier to understand. We will see more
examples of this before we are done.
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The goal of this chapter is to begin to lay a solid foundation for the theory
we described informally in Chapter 1. The main idea will be to introduce a
different absolute value function on the field of rational numbers. This will
give us a different way to measure distances, hence a different calculus, one
in which the formal series of the first chapter actually converge. Once we
have that, we will use it (in Chapter 3) to construct the p-adic numbers.

To get the p-adic numbers, we need to start with the field Q of rational
numbers. However, rather than deal exclusively with Q, we will devote this
chapter to studying absolute values on fields in general. Of course, the main
example we will have in mind will be Q, but the general theory is easy enough
that it would be a waste to specialize to rational numbers too soon. (Later,
when the generality would cost us some effort, we will speedily go back to
the special case of the rationals.)

So, for this chapter, k will be an arbitrary field, and we will be interested
in constructing an abstract theory of absolute values on k. We will do this
by starting from the basic properties of the absolute values we already know
and love, and then looking for other functions with similar properties.

One thing to notice from the start is that we will want to think of our new
absolute values as giving alternative ways to measure the “size” of things.
This can feel rather strange at first, so it’s wise to keep many concrete ex-
amples in mind as we go.

2.1 Absolute Values on a Field

Let k be a field and let R+ = {x ∈ R : x ≥ 0} be the set of all non-negative
real numbers. We begin by defining an absolute value on k and exploring
the possibilities implicit in the definition. The definition just tries to capture
what seem to be the most important properties of the everyday absolute
value.

Definition 2.1.1 An absolute value on k is a function

| | : k −−−→ R+

that satisfies the following conditions:

i) |x| = 0 if and only if x = 0;
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ii) |xy| = |x| |y| for all x, y ∈ k;

iii) |x+ y| ≤ |x|+ |y| for all x, y ∈ k.

We will say an absolute value on k is non-archimedean if it satisfies the
additional condition:

iv) |x+ y| ≤ max{|x|, |y|} for all x, y ∈ k;

otherwise, we will say that the absolute value is archimedean.

Note that condition (iv) implies condition (iii), since max{|x|, |y|} is cer-
tainly nor larger than the sum |x|+ |y|. We will later discuss in more detail
why non-archimedean absolute values are important, and where their name
comes from; for now, let’s just mention that they are quite common.

The most obvious example of an absolute value is, of course, our model:
take k = Q, and take the usual absolute value | | defined by

|x| =
{

x if x ≥ 0

−x if x < 0

A more sophisticated way of describing this absolute value is to say that it is
actually the absolute value on the field R of real numbers, applied to Q via
the inclusion Q ↪→ R. It is easy to see that this absolute value is archimedean.
(Take x = y = 1 to see that condition (iv) does not hold.) For reasons that
we will discuss later, this absolute value is usually called the infinite absolute
value on Q, or the absolute value at infinity, and is written as | |∞.

At the other extreme is the most boring example: the one we get by
setting |x| = 1 if x �= 0 and |0| = 0. This works for any field k, and defines
a non-archimedean absolute value. It is known, for obvious reasons, as the
trivial absolute value. It will often have to be excluded in the theorems to
follow.

There are many simple properties that one can deduce quickly from the
conditions above. We will try to develop them systematically in the next
section. For now, let’s try to be as concrete as we can. First of all, it’s
worth pointing out that for the special case of finite fields, the whole theory
is trivial:

Problem 31 Let k be a finite field. Show that the only absolute value on k is the
trivial absolute value.

We now go on to introduce the example that we will focus on for most
of this book. Take k = Q, and choose any prime p ∈ Z. Any integer n ∈ Z
can be written as n = pvn′, with p � n′, and this representation is unique.
Since v is determined by p and n, it makes sense to define a function vp by
setting vp(n) = v, so that vp(n) is just the multiplicity of p as a divisor of n.
Formally:
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Definition 2.1.2 Fix a prime number p ∈ Z. The p-adic valuation on Z is
the function

vp : Z− {0} −−−→ R

defined as follows: for each integer n ∈ Z, n �= 0, let vp(n) be the unique
positive integer satisfying

n = pvp(n) n′ with p � n′.

We extend vp to the field of rational numbers as follows: if x = a/b ∈ Q×,
then

vp(x) = vp(a)− vp(b).

It is often convenient to set vp(0) = +∞, with the usual conventions on
how to handle this symbol. The reasoning here is that we can certainly divide
0 by p, and the answer is 0, which we can divide by p, and the answer is 0,
which we can divide by p. . .

Problem 32 Check that for any x ∈ Q, the value of vp(x) does not depend on
its representation as a quotient of two integers. In other words, if a/b = c/d, then
vp(a)− vp(b) = vp(c)− vp(d).

It is in fact easy to see that the p-adic valuation of any x ∈ Q× is deter-
mined by the formula

x = pvp(x) · a
b

p � ab.

Problem 33 Compute a few examples, to get a feel for the thing. For example,
determine v5(400), v7(902), v2(621), v3(123/48), v5(180/3).

To check your work, go to Sage or gp and enter valuation(n,p).

The basic properties of the p-adic valuation vp are the following:

Lemma 2.1.3 For all x and y ∈ Q, we have

i) vp(xy) = vp(x) + vp(y) and

ii) vp(x+ y) ≥ min{vp(x), vp(y)},
with the obvious conventions with respect to vp(0) = +∞.

Problem 34 Prove Lemma 2.1.3. (Hint: the first property is easy to see by writing
out factorizations of x and y; the second comes from the fact that common powers of
p can be factored out from a sum.)

Now here comes the really tricky thing: if we compare the two properties
in this lemma with conditions (ii) and (iv) in the definition of absolute values,
we see that they are very similar, except that the product in the first has been
turned into a sum (as when taking a logarithm) and that the inequality in the
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second has been reversed. We can “unreverse” the inequality by changing the
sign, and then turn the sum into a product by putting it into an exponent.
This suggests the following, which is the crucial definition:

Definition 2.1.4 For any nonzero x ∈ Q, we define the p-adic absolute
value of x by

|x|p = p−vp(x).

We extend this to all of Q by defining |0|p = 0.

Notice that the definition of |0|p matches our convention that vp(0) = +∞
if we interpret p−∞ in the only reasonable way. To see that our definition
really does give an absolute value, we need to check that our requirements
have been satisfied.

Proposition 2.1.5 The function | |p is a non-archimedean absolute value
on Q.

Proof: Everything follows at once from Lemma 2.1.3.

To get a general impression about what the p-adic absolute value is doing,
notice that when a number n is very divisible by our prime p the valuation
vp(n) will be large, and then the absolute value |n|p will be small. (Look at
that minus sign in the exponent!) So the p-adic absolute value gives, in a
strange sort of way, a measure of how divisible by p a number is.

Problem 35 More practice: take k = Q, p = 7, and let | | = | |7 be the 7-adic
absolute value. Compute |35|, |56/12|, |177553|, |3/686|.

The connection between a non-archimedean absolute value and a func-
tion such as in Lemma 2.1.3 (called a valuation, or sometimes an additive
valuation) is quite general. In fact, one can develop the theory taking either
object (valuation or absolute value) as the primitive one. In this book, we
will stick to absolute values, because they are closer to our intuition, but it
is often convenient to go the other way.

Problem 36 (Some abstract algebra required) Let A be an integral domain, and let
K be its field of fractions. Let v : A−{0} −→ R be a function satisfying the conditions
of Lemma 2.1.3, i.e., a valuation on A. Extend v to K by setting v(a/b) = v(a)−v(b).
Show that the function | |v : K −→ R+ defined by

|x|v = e−v(x) for x �= 0

and |0| = 0 is a non-archimedean absolute value on K. Conversely, show that if | | is
a non-archimedean absolute value, then − log | | is a valuation.

Problem 37 Let v : k× −−−→ R be a valuation. Show that the image of v is an
additive subgroup of R. This is sometimes called the value group of the valuation v.
What is the value group of the p-adic valuation?
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Though the p-adic absolute value is certainly the most interesting one
from the point of view of this book, it’s worth pointing out that there are
other interesting absolute values on other fields. Before we go on to look at
them, however, here are two problems to force another look at the p-adic
absolute value.

Problem 38 Show that |pn|p → 0 when n → ∞, so that high powers of p are small
with respect to the p-adic absolute value.

Problem 39 Show that for any c ∈ R, c > 1, the equation |x| = c−vp(x) defines a
non-archimedean absolute value on Q. Make a conjecture about the relation between
this absolute value and the p-adic absolute value | |p. Make a conjecture about why
we chose c = p for the p-adic absolute value.

Our final example is intended to show that the theory we are developing
is indeed quite general, and in fact can be applied, almost without change,
in all sorts of contexts. The example we want to consider also serves to
confirm Hensel’s intuition on the similarity between Q and fields of rational
functions. So let F be any field (for example, a finite field, or C), let F[t]
be the ring of polynomials with coefficients in F, and let F(t) be the field of
rational functions over F, which is the field of fractions of the form f(t)/g(t)
where f(t) and g(t) belong to F[t] (and g(t) �= 0, of course). We will define
several valuations (and therefore several absolute values) on F(t). The first
is very specific to this situation, since it depends on the notion of degree
of a polynomial; by contrast, the others are closely analogous to the p-adic
absolute value.

First, for any polynomial f(t) ∈ F[t], we set v∞(f) = − deg(f(t)), and
extend this to rational functions as before, by setting v∞(0) = +∞ and

v∞

(
f(t)

g(t)

)
= v∞ (f(t))− v∞ (g(t)) = deg (g(t))− deg (f(t)) .

It is easy to check that this is a valuation:

Problem 40 Check that for any f(t), g(t) ∈ F(t) we have v∞(f(t)g(t)) = v∞(f(t))+
v∞(g(t)) and also v∞(f(t)+g(t)) ≥ min{v∞(f(t)), v∞(g(t))}. (Is it enough to check
for polynomials? Why?)

This gives us a non-archimedean absolute value just as before:

|f(t)|∞ = e−v∞(f) = edeg(f)

for any f(t) ∈ F(t). (As we hinted in Problem 39, any real number greater
than one will do for the base of the exponential; if F is a finite field, a nicer
choice might be the number of elements in F.)

Problem 41 When is a rational function “small” with respect to | |∞? Is a polynomial
ever small?
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One can get other valuations on F(t) by imitating the definition of the
p-adic valuation, since F[t] is a unique factorization domain. Just choose
an irreducible polynomial p(t) and proceed as before: define a valuation by
counting the multiplicity of p(t) as a factor.

Problem 42 Do it! For an irreducible polynomial p(t) ∈ F[t], define the p(t)-adic
valuation and absolute value on F(t).

Problem 43 Since F is a subfield of F(t), any absolute value on F(t) also gives an
absolute value on F. For the examples we have just constructed, describe the absolute
value on F obtained in this way.

Problem 44 Suppose F = C. What are the irreducible polynomials in this case? Are
we getting close to realizing Hensel’s analogy?

Problem 45 All of the absolute values we have constructed on F(t) are non-archi-
medean. Try to construct an archimedean absolute value on some F(t). (First of all,
this may or may not be possible, depending on F. If you’re very sneaky, it can be done
for F = Q. Can it be done in such a way that the induced absolute value on F is the
trivial one?)

Problem 46 The field F(t) contains the subring of polynomials F[t], but it also con-
tains the subring F[1/t] of “polynomials in 1/t.” In fact, every element of F(t) can be
written as a quotient of elements in F[1/t], so this subring serves just as well as F[t] as
a starting point. Very well, in F[1/t] the “polynomial” 1/t is clearly irreducible, so we
can construct, as in Problem 42, a 1/t-adic valuation v1. Check that v1 is the same as
the v∞ constructed above. This means that all of the valuations we have constructed
on F(t) are of the “p(t)-adic” type.

Problem 47 Let k = Q(i) be the field obtained by adjoining i =
√−1 to the rational

numbers, so that any element of k can be written as a + bi with a, b ∈ Q. The
“integers” in k are the elements of Z[i] = {a + bi : a, b ∈ Z}. It is not too hard to
check that this is a unique factorization domain, so that its properties are much like
those of the usual integers.1 The primes of Z[i] are of three kinds:

i) 1 + i is prime,

ii) if p ∈ Z is a prime number and p ≡ 3(mod 4), then p is a prime in Z[i],

iii) for each prime p ∈ Z which is congruent to 1 modulo 4, there are two primes
x+ yi and x− yi in Z[i] satisfying (x+ yi)(x− yi) = x2 + y2 = p.

In each case, we can use the prime π ∈ Z[i] to construct a π-adic valuation vπ and
(from it) a π-adic absolute value | |π on k as before:

|α|π = c−vπ(α)

(can you come up with a “good” choice for the constant c?). Check that this works,
and explore the resulting situation. For example, since Q is contained in k, this induces
an absolute value on Q; describe the induced absolute value. In particular, for a fixed
π, can you compute vπ(p) as p ranges through the primes in Z?

1See most introductory texts in algebra or number theory, or just take it for granted.
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There is an extensive theory of how valuations extend (or not) from sub-
fields to larger fields, and this theory turns out to be closely connected to
algebraic number theory. (In fact, many texts on algebraic numbers develop
the theory in terms of valuations and absolute values rather than in terms of
ring theory; the best example is probably [34].) Some aspects of this subject
are discussed in Chapter 6.

Keeping in mind this set of examples, and of course especially the p-adic
absolute value, let’s go on to look at absolute values in general in a more
careful way.

2.2 Basic Properties

In this section, k will be an arbitrary field, and | | will be a (usually non-
trivial) absolute value on k, which may or may not be archimedean. The first
few things to prove are some “obvious” facts, which we had better make sure
work in a general setting.

Lemma 2.2.1 For any absolute value | | on any field k, we have:

i) |1| = 1.

ii) If x ∈ k and xn = 1, then |x| = 1.

iii) | − 1| = 1.

iv) For any x ∈ k, | − x| = |x|.
v) If k is a finite field, then | | is trivial.

Proof: The crucial fact to remember is that |x| is a positive real number.
Then, to prove the first statement, all one needs to note is that

|1| = |12| = |1|2,

since the only non-zero positive real number α for which α2 = α is α = 1.
The remaining statements follow in a similar fashion.

Problem 48 Prove the remaining statements in the lemma.

Our first serious theorem will give a necessary and sufficient condition
for an absolute value to be non-archimedean. Let’s begin with some easier
conditions.

Lemma 2.2.2 Let k be a field and let | | be an absolute value on k. The
following are equivalent.

i) For all x, y ∈ k, |x+ y| ≤ max{|x|, |y|}.
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ii) For all z ∈ k, |z + 1| ≤ max{|z|, 1}.
Proof: If (i) is true, we get (ii) by putting x = z, y = 1, so it’s clear that
(i) implies (ii).

Now assume (ii). If y = 0 then (i) holds automatically, so we can assume
y �= 0. Let z = x/y. Then we have∣∣∣∣xy + 1

∣∣∣∣ ≤ max

{ |x|
|y| , 1

}
.

Multiplying both sides by |y| now gives (i).

Here is a useful minor variant of this result that we will need in Chapter 6:

Lemma 2.2.3 Let k be a field and let | | : k −→ R+ satisfy

i) |x| = 0 if and only if x = 0,

ii) |xy| = |x||y| for all x, y ∈ k, and

iii) |x| ≤ 1 =⇒ |x− 1| ≤ 1.

Then | | is a non-archimedean absolute value on K.

Proof: Given the first two conditions and Lemma 2.2.2, what we need to
show is that for any x ∈ k we have

|x+ 1| ≤ max{|x|, 1}.

Notice first that x+ 1 = −(−x− 1), so that we also have

|x| = | − x| ≤ 1 =⇒ |x+ 1| = | − x− 1| ≤ 1.

In other words, condition (iii) implies that

|x| ≤ 1 =⇒ |x+ 1| ≤ 1

as well. Now consider cases:

• If |x| ≤ 1, then max{|x|, 1} = 1 and we get |x+ 1| ≤ 1 = max{|x|, 1}.

• If |x| > 1, then |1/x| < 1, and (iii) implies |1 + 1/x| ≤ 1. So we have∣∣∣∣x+ 1

x

∣∣∣∣ =
∣∣∣∣1 + 1

x

∣∣∣∣ ≤ 1,

which says |x+ 1| ≤ |x| = max{|x|, 1}.
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For a more interesting criterion, begin by noticing (or remembering) that
for any field k we have a map Z −→ k defined by

n �→

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

if n > 0

0 if n = 0

− (1 + 1 + · · ·+ 1︸ ︷︷ ︸
−n

) if n < 0

If Q ⊂ k, this is just the usual inclusion of Z into Q; if k is a finite field, the
image is a subfield (it is clearly a subring with no zero-divisors, but finite
domains are fields) of k, which will have a prime number of elements.

Theorem 2.2.4 Let A ⊂ k be the image of Z in k. An absolute value | |
on k is non-archimedean if and only if |a| ≤ 1 for all a ∈ A. In particular,
an absolute value on Q is non-archimedean if and only if |n| ≤ 1 for every
n ∈ Z.

Proof: One part is easy: we have | ± 1| = 1 always; hence, if | | is non-
archimedean, we get that

|a± 1| ≤ max{|a|, 1}.

By induction, if follows that |a| ≤ 1 for every a ∈ A.
The converse requires some hocus-pocus: suppose that |a| ≤ 1 for all

a ∈ A. By Lemma 2.2.2, we need to prove that for any x ∈ k we have

|x+ 1| ≤ max{|x|, 1}.

Let m be any positive integer. Then we have

|x+ 1|m =

∣∣∣∣∣
m∑

k=0

(
m

k

)
xk

∣∣∣∣∣ ≤
m∑

k=0

∣∣∣∣
(
m

k

)∣∣∣∣ |xk|.

Now, since
(
m
k

)
is an integer, we have

∣∣(m
k

)∣∣ ≤ 1, so we can continue with

|x+ 1|m ≤
m∑

k=0

∣∣∣∣
(
m

k

)∣∣∣∣ |xk| ≤
m∑

k=0

|xk| =
m∑

k=0

|x|k.

Now notice that the largest value of |x|k for k = 0, 1, 2, . . .m is equal to |x|m
if |x| > 1 and is equal to 1 otherwise, because x0 = 1. So

|x+ 1|m ≤ (m+ 1)max{1, |x|m}.
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Taking the m-th root on both sides gives

|x+ 1| ≤ m
√
m+ 1 max{1, |x|}.

This strange inequality holds for every positive integer m, no matter how
large, and we know (from calculus) that

lim
m→∞

m
√
m+ 1 = 1.

Therefore, if we let m → ∞ we get

|x+ 1| ≤ max{|x|, 1},
which is what we wanted to prove.

Problem 49 Show that if sup{|n| : n ∈ Z} = C < +∞, then | | is non-archimedean,
and C = 1.

This helps explain the difference between archimedean and non-archime-
dean absolute values. It allows us to restate things in the following way. An
absolute value is archimedean if the image of Z in k is unbounded. It follows
that an absolute value is archimedean if it has the following property:

Archimedean Property: Given x, y ∈ k, x �= 0, there exists a
positive integer n such that |nx| > |y|.

It is easy to see that the Archimedean Property is equivalent to the as-
sertion that there are “arbitrarily big” integers (translation: that there are
integers whose absolute values are arbitrarily big). This property holds for
the usual absolute value on Q and in the real numbers. (In a slightly different
form, this observation does go back to Archimedes.)

2.3 Topology

The whole point of an absolute value is that it provides us with a notion of
“size.” In other words, once we have an absolute value, we can use it to mea-
sure distances between numbers, that is, to put a metric on our field. Having
the metric, we can define open and closed sets, and in general investigate
what is called the topology of our field.2

The first step is measuring distances, in the obvious way:

Definition 2.3.1 Let k be a field and | | an absolute value on k. We define
the distance d(x, y) between two elements x, y ∈ k by

d(x, y) = |x− y|.
The function d(x, y) is called the metric induced by the absolute value.

2The reader who has never met topology or metric spaces before should not feel spooked;
all we are doing is repeating the usual constructions of the calculus, but using our unusual
absolute values.
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The definition of d(x, y) parallels, of course, the usual way we define the
distance between two real numbers. The first point we need to make is that
a great many of the notions that we can define using the usual distance on
R work just as well for any old distance.

Problem 50 Show that d(x, y) has the following properties.

i) For any x, y ∈ k, d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.

ii) For any x, y ∈ k, d(x, y) = d(y, x).

iii) For any x, y, z ∈ k, d(x, z) ≤ d(x, y) + d(y, z).

These are the general defining properties for a metric; the last inequality is
called the triangle inequality, since it expresses the usual fact that the sum
of the lengths of two legs of a triangle is bigger than the length of the other
side. (“A line is the shortest path between two points.”) A set on which a
metric is defined is called a metric space, so we can read the statement of
this last problem as saying that any field with an absolute value can be made
into a metric space by defining d(x, y) = |x− y|. For more on metric spaces
in general, check a book on real analysis or an introductory text on general
topology.3

If we have a metric, we can talk about continuity. We won’t need it very
much right now, but let’s at least record the definition.

Definition 2.3.2 Let k and F both be fields with absolute values, and let
f : k −→ F be a function. We say f is continuous at x0 ∈ k if given any
ε > 0 we can find δ > 0 (possibly depending on both x0 and ε) so that

d(x, x0) < δ =⇒ d(f(x), f(x0)) < ε.

We say f is uniformly continuous on k if δ does not depend on x0, i.e.,
if given any ε > 0 we can find δ > 0 so that for any x, y ∈ k we have

d(x, y) < δ =⇒ d(f(x), f(y)) < ε.

If the function is defined only on a subset of k, both definitions still make
sense when restricted to that subset.

Problem 51 The point of this problem is to check that the metric d(x, y) (or, equiv-
alently, the absolute value it is derived from) relates well to the operations in the field
k, in the sense that the field operations are continuous functions.

i) Fix x0, y0 ∈ k. Show that for any ε > 0 there exists a δ > 0 such that, whenever
d(x, x0) < δ and d(y, y0) < δ, we have d(x + y, x0 + y0) < ε. In other words,
addition is a continuous function.

3I learned metric spaces from [55, Ch. 2], which is notoriously terse. An alternative is
[59]. A good introduction to topology is [47].
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ii) Fix x0, y0 ∈ k. Show that for any ε > 0 there exists a δ > 0 such that,
whenever d(x, x0) < δ and d(y, y0) < δ, we have d(xy, x0y0) < ε. In other
words, multiplication is a continuous function.

iii) Fix x0 ∈ k, x0 �= 0. Show that for any ε > 0 there exists a δ > 0 such that,
whenever d(x, x0) < δ, we have x �= 0 and d(1/x, 1/x0) < ε. In other words,
taking inverses is a continuous function.

iv) Show that if |x − y| < ε then
∣∣|x| − |y|∣∣ < ε as well. This means that if we

give R its usual topology, the function k −→ R that sends x to |x| is uniformly
continuous.

This shows that the metric d(x, y) makes k a topological field.

The upshot is that general fields with absolute values behave very much
like the real numbers. For us, the important differences happen when the
absolute value is non-archimedean.

The fact that an absolute value is non-archimedean can also be expressed
in terms of the metric:

Lemma 2.3.3 Let | | be an absolute value on a field k, and define a metric
by d(x, y) = |x − y|. Then | | is non-archimedean if and only if for any
x, y, z ∈ k, we have

d(x, y) ≤ max{d(x, z), d(z, y)}.

Proof: To go one way, apply the non-archimedean property to the equation

(x− y) = (x− z) + (z − y).

For the converse, take y = −y1 and z = 0 in the inequality satisfied by
d(·, ·).

Problem 52 Give the details of the proof of the lemma. Prove also that the inequality
d(x, y) ≤ max{d(x, z), d(z, y) implies the triangle inequality from Problem 50.

This inequality is known as the “ultrametric inequality,” and a metric
for which it is true is sometimes called an “ultrametric.” A space with an
ultrametric is called an “ultrametric space.” Such spaces have rather curious
properties, and we will spend the rest of this section exploring them.4 The
main point in what follows is that, once we have a way to measure distances,
we can do geometry. Since our way to measure distances is rather strange,
the geometry is also rather strange. As we explore it, we will focus on fields
with a non-archimedean valuation, but almost all our results are in fact true
in any ultrametric space.

4Ultrametric spaces sound like the sort of thing only a mathematician would dream
up. Surprisingly, they have recently turned up in physics (in the theory of “spin glasses”).
This may be one more example of the “unreasonable effectiveness of mathematics in the
physical sciences”—see [66].
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Proposition 2.3.4 Let k be a field and let | | be a non-archimedean absolute
value on k. If x, y ∈ k and |x| �= |y|, then

|x+ y| = max{|x|, |y|}.

Proof: Exchanging x and y if necessary, we may suppose that |x| > |y|.
Then we know that

|x+ y| ≤ |x| = max{|x|, |y|}.

On the other hand, x = (x+ y)− y, so that

|x| ≤ max{|x+ y|, |y|}.

Since we know that |x| > |y|, this inequality can hold only if

max{|x+ y|, |y|} = |x+ y|.

This gives the reverse inequality |x| ≤ |x + y|, and from it (using our first
inequality) we can conclude that |x| = |x+ y|.

Alain Robert refers to this as the strongest wins principle in [53] (see
page 429, for example). It has an interesting corollary that captures in a
memorable statement a property that ends up having a big role later on:

Corollary 2.3.5 In an ultrametric space, all “triangles” are isosceles.

Proof: Let x, y and z be three elements
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Figure 2.1: All isosceles!

of our space (the vertices of our “trian-
gle”). The lengths of the sides of the “tri-
angle” are the three distances d(x, y) =
|x − y|, d(y, z) = |y − z|, and d(x, z) =
|x− z|. Now, of course,

(x − y) + (y − z) = (x− z),

so that we can invoke the proposition to
show that if |x− y| �= |y− z|, then |x− z|
is equal to the bigger of the two. In either
case, two of the “sides” are equal.

This is a rather unintuitive result (and
it will have an enormous impact on the
topology on our field). Thus, rather than
simply barging on, it may be worth a brief
look at the case of the p-adic absolute
value to try to understand what is behind the truth of the proposition. As
before, we put |x| = p−vp(x). Since we’re looking for insight, not for proof, we
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will only look at the case where x, y ∈ Z. Say that vp(x) = n and vp(y) = m,
so that

x = pnx′ y = pmy′ p � x′y′.

Translating into the absolute values, we get

|x| = p−n and |y| = p−m.

We will have |x| > |y| when n < m; say m = n+ ε, with ε > 0. Then

x+ y = pnx′ + pn+εy′ = pn(x′ + pεy′).

Now, since p � x′, we have p � (x′ + pεy′), and therefore vp(x+ y) = n, which
means |x + y| = p−n = |x|, as the proposition states. In this situation |y| is
smaller and |x| = |x+ y|.

On the other hand, suppose that |x| = |y|, that is, n = m. Then we get

x+ y = pn(x′ + y′)

with p � x′ and p � y′, and it is perfectly possible that p|(x′ + y′). If so, the
most we can say is that vp(x+ y) ≥ n = min{vp(x), vp(y)}, which translates
to

|x+ y| ≤ max{|x|, |y|} = |x| = |y|.
So when |x| and |y| are equal it is possible for |x+ y| to be smaller (or not).
So in either case two of the three absolute values |x|, |y| and |x+y| are equal.

Problem 53 Give Q the 5-adic topology, and consider the triangle whose vertices are
x = 2/15, y = 1/5, z = 7/15; what are the lengths of the three sides?

In metric spaces, more important than triangles are the “balls” or “disks.”
These also turn out to be pretty strange in the case of an ultrametric.

Definition 2.3.6 Let k be a field with an absolute value | |. Let a ∈ k be an
element and r ∈ R+ be a real number. The open ball of radius r and center
a is the set

B(a, r) = {x ∈ k : d(x, a) < r} = {x ∈ k : |x− a| < r}.
The closed ball of radius r and center a is the set

B(a, r) = {x ∈ k : d(x, a) ≤ r} = {x ∈ k : |x− a| ≤ r}.
These are standard definitions in any metric space. The open balls are

the prototypes of the open sets, and the closed balls of the closed sets.5

5Here are the definitions: a set U is open if any element in U is the center of a (usually
small) an open ball that is contained in U ; a set S is closed if its complement is an open
set. A point x is a boundary point of a set S if any open ball with center x contains both
points that are in S and points that are not in S. S is closed exactly when it contains all
of its boundary points.
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Problem 54 Show that open balls are always open sets, and that closed balls are
always closed sets. (This is true for any absolute value, archimedean or not.)

For non-archimedean absolute values, we get some surprising properties:

Proposition 2.3.7 Let k be a field with a non-archimedean absolute value.

i) If b ∈ B(a, r), then B(a, r) = B(b, r); in other words, every point that
is contained in an open ball is a center of that ball.

ii) If b ∈ B(a, r), then B(a, r) = B(b, r); in other words, every point that
is contained in a closed ball is a center of that ball.

iii) The set B(a, r) is both open and closed. B(a, r) has empty boundary.

iv) If r �= 0, the set B(a, r) is both open and closed and has empty boundary.

v) If a, b ∈ k and r, s ∈ R×
+, we have B(a, r) ∩ B(b, s) �= ∅ if and only

if B(a, r) ⊂ B(b, s) or B(a, r) ⊃ B(b, s); in other words, any two open
balls are either disjoint or contained in one another.

vi) If a, b ∈ k and r, s ∈ R×
+, we have B(a, r) ∩ B(b, s) �= ∅ if and only if

B(a, r) ⊂ B(b, s) or B(a, r) ⊃ B(b, s); in other words, any two closed
balls are either disjoint or contained in one another.

Proof: Most of this is easy. The weird parts all depend on the fact that
“all triangles are isosceles;” drawing pictures may help understand what is
going on.

i) By the definition, b ∈ B(a, r) if and only if |b − a| < r. Now, taking
any x for which |x− a| < r, the non-archimedean property tells us that

|x− b| ≤ max{|x− a|, |b− a|} < r,

so that x ∈ B(b, r); this shows that B(a, r) ⊂ B(b, r). Switching a and b, we
get the opposite inclusion, so that the two balls are equal.

ii) Replace < with ≤ in the proof of (i).
iii) The open ball B(a, r) is always an open set in any metric space, as

we showed above. But in an ultrametric space it follows at once from (i),
since the open ball of radius r around any point in the open ball is the same
as B(a, r).

What we need to show is that in our non-archimedean case, it is also
closed. This is equivalent to saying its complement

C = {x ∈ k : d(x, a) ≥ r}
is open. Choose any y ∈ C, so that |y − a| ≥ r, and let s < r. We claim the
open ball B(y, s) is contained in C. We have |z − y| < s < r ≤ |y − a|, so by
“all triangles are isosceles” we get

|z − a| = max{|z − y|, |y − a|} = |y − a| ≥ r,
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These are allowed. . . but not this!

Figure 2.2: Balls for non-archimedean absolute values

so z ∈ C. So there is an open ball around every y ∈ C that is entirely
contained in C, which says C is an open set. Therefore its complement
B(a, r) is closed.

The final claim is a general fact: any set that is both closed and open has
empty boundary. This is easy to see: if a point is on the boundary of B(a, r),
then any ball around it contains points in both B(a, r) and C. That means it
is also on the boundary of the complement C. Since both B(a, r) and C are
closed, we conclude that any boundary point must belong to B(a, r)∩C = ∅.

iv) This is a lot like (iii).
v) We can assume that r ≤ s (otherwise switch them around). If the

intersection is not empty, there exists a c ∈ B(a, r)∩B(b, s). Then we know,
from (i), that B(a, r) = B(c, r) and B(b, s) = B(c, s). Hence

B(a, r) = B(c, r) ⊂ B(c, s) = B(b, s),

as claimed.
vi) Identical to the preceding, using (ii).

Problem 55 Supply the missing portions of the proof (parts (iv) and (vi)). Why is
the condition r �= 0 necessary for closed, but not for open, balls?

In an ultrametric space, open balls are closed sets and our closed balls are
open sets! This suggests that the names “open ball” and “closed ball” are not
quite appropriate, but it’s hard to think of alternatives (but see [53], which
goes for “stripped” and “dressed” balls). Any alternative would conflict with
standard language anyway, so it’s best to leave the terms alone. Nevertheless,
the reader should keep in mind that the bar in the notation B(a, r) does not
mean closure.

The geometry of the balls in an ultrametric space seems very strange at
first sight; getting a good feeling for it may be the most important initial
step toward understanding the p-adic absolute value. The next problems are
intended to help with that goal.

Problem 56 Describe the closed ball of radius 1 around the point x = 0 in Q with
respect to the p-adic absolute value. Describe the open ball of radius 1 around x = 3;
which integers belong to this ball?
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Problem 57 Let k = Q and | | = | |p. Show that the closed ball B(0, 1) can be
written as a disjoint union of open balls, as follows:

B(0, 1) = B(0, 1) ∪ B(1, 1) ∪B(2, 1) ∪ · · · ∪B(p− 1, 1)

(both the equality and the disjointness need to be checked). This gives another proof
that the closed unit ball is open, since unions of open sets are always open.

Problem 58 Take the 5-adic absolute value on Q. Show that B(1, 1) = B(1, 1/2) =
B(1, 1/5). What is going on here?

Problem 59 Under the hypotheses of the proposition, show that for a ∈ k and
r ∈ R+, r �= 0, the “sphere” {x ∈ k : |x − a| = r} is both an open and a closed set.
(Notice that the “sphere” is not the boundary of the open ball. In fact, the boundary
of the open ball is empty.)

Sets that are both open and closed are rather rare in the usual calculus,
but are very common when we are dealing with non-archimedean absolute
values. (As we’ve just seen!) So we give them a name.

Definition 2.3.8 Let k be a field with an absolute value | | (or, more gener-
ally, any metric space). We say a set S ⊂ k is clopen if it is both an open
and a closed set.

The fact that there are so many clopen sets around makes the topology
of fields with non-archimedean valuations rather strange. For example, recall
that a set S is called disconnected if one can find two open sets U1 and U2

such that

• S = (S ∩ U1) ∪ (S ∩ U2),

• (S ∩ U1) ∩ (S ∩ U2) = ∅, and

• neither S ∩ U1 nor S ∩ U2 is empty.

The idea, of course, is that such an S is made up of two “pieces” (namely,
the intersections with each of the open sets). Sets which cannot be divided
in this way are called connected.

Problem 60 Show that a set S is disconnected if and only if we can write it as a
union S = A ∪B of two nonempty sets satisfying the condition

A ∩B = A ∩B = ∅,

where, for a set X, X means the closure of X, that is, the union of X and all of its
boundary points.

Problem 61 What are the connected sets in R? (Hint: they appear all the time in
elementary calculus.)
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Problem 62 Show that in a field with a (non-trivial) non-archimedean absolute value
every closed ball with radius r > 0 is disconnected. Is the same true for open balls?

If we take a point x ∈ k, we define the connected component of x to be
the union of all the connected sets that contain x. Since the union of two
non-disjoint connected sets is connected, this is a connected set, so we can
describe it as the largest connected set containing x. For example, if k = R
is the real numbers, then the connected component of any point x ∈ R is
all of R (simply because R is connected). Things are quite different in the
non-archimedean case:

Proposition 2.3.9 In a field k with a non-archimedean absolute value, the
connected component of any point x ∈ k is the set {x} consisting of only that
point.

Problem 63 Prove the proposition by showing that if a set contains two distinct
points then it is disconnected. In the language of general topology, this says that k is
a totally disconnected topological space.

What this says is that there are really no interesting connected sets in
k: only the sets with only one element are connected. On the other hand,
provided the absolute value on k is non-trivial, the set {x} is not open (if
every set {x} were open, the topology on k would be discrete, i.e., every set
would be open, which only happens with the trivial absolute value). One
consequence is worth noticing:

Corollary 2.3.10 If k is a field with a non-archimedean absolute value and
R is given its usual absolute value then there are no non-constant continuous
functions R −→ k.

Proof: We know R is connected and the image of a connected set under a
continuous function is a connected set. Since k is totally disconnected, the
image can only be a single point, which means f is constant.

If we allow functions defined on subsets of R, then the conclusion is that
f is locally constant, i.e., constant on every interval.

Problem 64 Take the usual absolute value on Q, which of course is archimedean. Are
there any clopen sets in Q with respect to this absolute value? Is Q totally disconnected
with respect to this absolute value?

The same questions make sense in the real numbers, of course. Are there any
clopen sets in R?

Problem 65 Take the p-adic absolute value on Q. Show that with respect to this
absolute value every open ball is the disjoint union of open balls. (So that open balls
are disconnected in a rather dramatic way.) Do you think this is true for any field with
a non-archimedean absolute value? If not, can you come up with a counter-example?
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2.4 Algebra

So far, we have mostly concentrated on the geometry we obtain from an
absolute value on a field k. In this section, we take a more algebraic point-
of-view, and look for connections between (non-archimedean) absolute values
and the algebraic structure6 of the underlying field. These connections turn
out to be quite strong. In fact, they point to a tight relationship between
geometric and algebraic properties of such fields. (This section necessarily
requires a little more background in abstract algebra than the preceding ones,
but shouldn’t be very hard to manage.) The main message is that the close
connection between the p-adic absolute value and the prime number p is
actually typical of non-archimedean valued fields.

To begin with, every non-archimedean absolute value is attached to a
subring of the field k, and this subring has some rather nice properties:

Proposition 2.4.1 Let k be a field, and let | | be a non-archimedean valua-
tion on k. The set

O = B(0, 1) = {x ∈ k : |x| ≤ 1}
is a subring of k. Its subset

P = B(0, 1) = {x ∈ k : |x| < 1}
is an ideal of O. Furthermore, P is a maximal ideal in O, and every element
of the complement O−P is invertible in O.

Problem 66 Prove the proposition. It is all a matter of using the definitions di-
rectly, and remembering that the absolute value is non-archimedean. Notice that the
statement about the complement of P implies at once that P is a maximal ideal.

Rings that contain a unique maximal ideal whose complement consists of
invertible elements are called local rings . The proposition, then, shows us
how to attach to any non-archimedean absolute value on k a subring of k
which is a local ring. Let’s give it a name:

Definition 2.4.2 Let k be a field and | | be a non-archimedean absolute value
on k. The subring

O = B(0, 1) = {x ∈ k : |x| ≤ 1} ⊂ k

is called the valuation ring of | |. The ideal

P = B(0, 1) = {x ∈ k : |x| < 1} ⊂ O

is called the valuation ideal of | |. The quotient

κ = O/P

is called the residue field of | |.
6in the sense of abstract algebra
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(For the residue field, remember that the quotient of a commutative ring by
a maximal ideal is always a field.)

It is natural to expect that many of the properties of the absolute value
are connected to algebraic properties of its associated valuation ring. In fact,
one can develop the theory by concentrating on this side of things (so that
finding an absolute value on a field gets translated into finding a subring with
certain properties). Exactly what properties characterize the rings that arise
in this way is a question that will be touched upon in one of the problems
for this section.

Since we’ll be mostly interested in the p-adic absolute values, let’s record
what we get in that case:

Proposition 2.4.3 Let k = Q and let | | = | |p be the p-adic absolute value.
Then:

i) the associated valuation ring is O = Z(p) = {a/b ∈ Q : p � b};
ii) the valuation ideal is P = pZ(p) = {a/b ∈ Q : p � b and p|a};
iii) the residue field is κ = Fp (the field with p elements).

Proof: All we need is to remember the definitions. We have∣∣∣a
b

∣∣∣ = p−v when
a

b
= pv

a1
b1

with p � a1b1.

So we get that a/b ∈ O if and only if v ≥ 0. If a/b is in lowest terms, this
just means p � b, as claimed. Similarly, a/b ∈ P happens when v > 0, hence
when p � b and p|a. The last statement is an easy exercise in quotient rings.

The notation Z(p) comes from commutative algebra: it is the standard
notation for the localization of the commutative ring Z at the prime ideal
(p). See, for example, [33, §5.9].
Problem 67 Prove the last statement in the proposition. (The jazzy proof begins
with the inclusion Z ↪→ Z(p), and checks that it induces a map on quotient rings.)

Problem 68 Compute the valuation ring, valuation ideal, and the residue field for
the non-archimedean valuations on F(t) introduced above.

One could go further in exploring these connections between absolute
values and algebraic structure, but we will stop here, at least for now. As
we go along, we will develop a clearer feeling for how the connection works
by finding out more and more about the specific case of the p-adic absolute
value. The following problems use a little more background from abstract
algebra.

Problem 69 Consider Q with a p-adic absolute value, and let a ∈ Z. Describe the
open ball B(a, 1) with center a and radius 1 in terms of the algebraic structure. Use
your description to interpret algebraically the fact (Problem 57) that the closed ball
B(0, 1) is the disjoint union of finitely many open balls of radius 1.
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Problem 70 In the case of the p-adic absolute value, the valuation ideal is a principal
ideal, that is, it is the set of multiples of an element of O (to wit, the element p). Is
this always the case for the examples we have considered? Make a conjecture as to
whether it will always be the case for any non-archimedean absolute value. (Hint: if
so, it shouldn’t be too hard to prove in general. . .)

Problem 71 Let k be a field, and let | | be an absolute value on k. Define a valuation
v on k by

v(x) = − log |x|
for x �= 0 and v(0) = +∞. Check that if | | is non-archimedean then this is indeed a
valuation (i.e., it has the properties listed in Lemma 2.1.3).

i) If | | is the p-adic absolute value, how does v relate to the p-adic valuation vp?
What is the image of v in this case?

ii) Show that the valuation ideal of | | is a principal ideal if and only if the image
of v is a discrete additive subgroup of R. (We showed above that the image is
a subgroup; the point here is the discreteness, which means that each element
of the subgroup is contained in an open interval that does not contain any other
elements of the subgroup.)

iii) Show that if the image of v is a discrete subgroup of R then the valuation ring O

is a principal ideal domain whose only prime ideals are 0 and P. (For example,
check that this happens for the p-adic absolute values.)
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Having built our foundation, we can now apply the general theory to the
specific case of the field Q of rational numbers. Extending our scope to
include all fields of algebraic numbers (i.e., finite extensions of Q), or even
to include what the experts call “global fields” in general, would not be
very hard. Nevertheless, we have preferred to stick, at first, to the most
concrete example available. In a later chapter, we will consider some aspects
of the problem of extending valuations from Q to larger fields. More details
about the theory of valuations on global fields can be found in several of the
references.

3.1 Absolute Values on Q

We have already found a few examples of absolute values on the field Q of
rational numbers. The next step will be to show that these are essentially
all the possible absolute values; for that we will need to introduce a refined
notion of what it means for two absolute values to be “the same.” Up to
that notion of equivalence, we will be able to show that the absolute values
we have are the complete list of possible absolute values on Q. Finally, we
will prove the product formula as an initial example of how all the absolute
values work together in the arithmetic of Q.

We begin by recording what has been achieved so far, namely that we
have constructed the following absolute values on the field Q:

• the trivial absolute value;

• the “usual” absolute value | |∞, which we have called the “absolute value
at infinity,” and which is associated to the real numbers;

• for each prime p, the p-adic absolute value | |p.

Notice that, except for the trivial absolute value (which we will tend to
ignore), we have written all of these in the form | |p, where p is either a
prime or ∞. It turns out to be convenient to think of the symbol ∞ as some
sort of prime number in Z, and refer to it as “the infinite prime,” and to
the corresponding absolute value as the “∞-adic” absolute value. This will
allow us to say things like “| |p for all primes p ≤ ∞.” Though there are
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some reasons1 for doing this, at this point we will use it only as a notational
convenience.

To be able to state our main theorem in this section, we must first make
a good definition of when two absolute values are “the same.” The main idea
here is that we use absolute values on a field k to introduce a topology (open
and closed sets, connectedness, etc.) on k. So it is reasonable to define:

Definition 3.1.1 Two absolute values | |1 and | |2 on a field k are called
equivalent if they define the same topology on k, that is, if every set that is
open with respect to one is also open with respect to the other.

This is easier to say than to check, so we had better find a more accessible
criterion. Notice first that the fact that a sequence converges can be expressed
in terms of open sets, and so equivalent absolute values will have the same
convergent sequences.

Lemma 3.1.2 Let k be a field with an absolute value | |. The following are
equivalent:

i) lim
n→∞xn = a.

ii) Any open set containing a also contains all but finitely many of the xn.

(This lemma serves also as an excuse to remind the reader what it means for
a sequence to converge.)

Proof: Assume (ii). Since an open ball B(a, ε) centered at a is an open
set, all but finitely many xn will be in the open ball, and so there is an N
such that n ≥ N implies a ∈ B(a, ε). Therefore for any ε an N such that
n ≥ N implies |x− a| < ε, i.e., xn → a.

Conversely, suppose xn → a and let U be an open set containing a. Since
U is open there exists an r such that B(a, r) ⊂ U . Therefore there is an N
such that |x − a| < r for all n ≥ N . Hence for all but finitely many n we
have xn ∈ B(a, r) ⊂ U .

This gives a definition of convergent sequence (in a valued field) in terms
of open sets. Hence if two absolute values define the same open sets they
will also define the same convergent sequences. This is the first of several
equivalent ways to characterize equivalent of absolute values.

1The reasons hinge on the close connection between primes and absolute values that
we are about to establish. If all the other absolute values correspond to primes, then so
should the usual absolute value. As to why it should be called the infinite prime, that
is far less clear. In fact, John H. Conway has been heard to argue quite vigorously that
the “usual” absolute value should be attached to the “prime” −1, and this does seem to
make more sense. (Think of the ±1 that appears in prime factorizations.) Unfortunately,
number theorists are too used to talking of “primes at infinity” for this to change easily,
and we have preferred to go along with convention.
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Proposition 3.1.3 Let | |1 and | |2 be absolute values on a field k. The
following statements are equivalent.

i) | |1 and | |2 are equivalent absolute values.

ii) For any sequence (xn) in k we have xn → a with respect to | |1 if and
only if xn → a with respect to | |2.

iii) For any x ∈ k we have |x|1 < 1 if and only if |x|2 < 1.

iv) There exists a positive real number α such that for every x ∈ k we have

|x|1 = |x|α2 .

Proof: We follow the usual method of proving a circle of implications.

• First, suppose (i), i.e., that | |1 and | |2 are equivalent. By the lemma,
any sequence that converges with respect to one absolute value must also
converge in the other, which is (ii).

• Suppose (ii). Given any x ∈ k, it is easy to see that lim
n→∞xn = 0 with

respect to the topology induced by an absolute value | | if and only if
|x| < 1. This gives (iii).

• We leave it to the reader to prove that (iii) implies (iv), not because it is
easy, but because it is the hardest part of the theorem, and the convoluted
argument that one ends up resorting to can only be appreciated after one
has become convinced that easier methods don’t work. The next problem
includes some hints and a complete solution is in Appendix B.

• Finally, if we assume (iv), we get that

|x− a|1 < r ⇐⇒ |x− a|α2 < r ⇐⇒ |x− a|2 < r1/α,

so that any open ball with respect to | |1 is also an open ball (albeit of
different radius) with respect to | |2. This is enough to show that the
topologies defined by the two absolute values are identical.

Problem 72 Prove the missing step, i.e., that (iii)=⇒(iv). The first hurdle is finding
the number α. For that, just choose any appropriate x0 and choose α to be the unique
real number that will make |x0|1 = |x0|α2 . The proof will be done if you can show that
the same equation will hold for every x ∈ k; it is here that you have to find a way to
use condition (iii). (This is quite hard, but worth a try. The argument suggested in
Appendix B is quite sophisticated, and it will be hard to understand why it is needed
unless some effort has been expended to try to do it in an easier way.)
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Problem 73 Let | |1 and | |2 be two absolute values on a field k. If every open ball
with respect to one of these is also an open ball with respect to the other, show that
the induced topologies are identical, i.e., that every set that is open with respect to
one is open with respect to the other.

Problem 74 Show that we can add the following condition to the list in the propo-
sition:

v) for any x ∈ k, we have |x|1 ≤ 1 if and only if |x|2 ≤ 1.

Problem 75 Suppose that | | is an absolute value that is equivalent to the trivial
absolute value. Must it be the trivial absolute value? Do we need to change the
definition of “nontrivial”?

Problem 76 Show that if p and q are two different primes, the p-adic and the q-adic
absolute values are not equivalent. Do the same when p is a prime and q = ∞.

Problem 77 Show that in general a non-archimedean absolute value cannot be equiv-
alent to an archimedean absolute value.

As an example, recall that we considered, in Problem 39, an absolute
value defined by

|x| = c−vp(x),

where c > 1 was a real number. Now we can check that this is equivalent to
the p-adic absolute value—just choose α so that cα = p. We will see later
that the choice c = p is dictated by “global” considerations (namely, the
product formula).

The main theorem in this section says that we have already found all the
absolute values on Q.

Theorem 3.1.4 (Ostrowski) Every non-trivial absolute value on Q is equiv-
alent to one of the absolute values | |p, where either p is a prime number or
p = ∞.

Proof: Let | | be a non-trivial absolute value on Q. We will consider the
possible cases.
a) Suppose, first, that | | is archimedean. We want to show that it is equiva-
lent to the “usual” (∞-adic) absolute value.

Let n0 be the least positive integer for which |n0| > 1 (there has to be
one, because otherwise | | would be non-archimedean). Now of course we can
find a positive real number α so that

|n0| = nα
0 .

(Finding a formula for α is an easy exercise on logarithms.) We claim that
this α will do, that is, that it will realize the equivalence between | | and | |∞.
This means that we want to prove that for every x ∈ Q we have |x| = |x|α∞.
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Given the known properties of absolute values, this will follow if we know it
for positive integers, that is, if we show that |n| = nα for any positive integer
n. (Check this!)

We know that the equality holds for n = n0. To prove it in general, we
use a little trick. Take an arbitrary integer n, and write “in base n0,” i.e., in
the form

n = a0 + a1n0 + a2n
2
0 + · · ·+ akn

k
0 ,

with 0 ≤ ai ≤ n0 − 1 and ak �= 0. Notice that k is determined by the
inequality nk

0 ≤ n < nk+1
0 , which says that

k =

⌊
log n

log n0

⌋
,

where �x� denotes the “floor” of x, that is, the largest integer that is less
than or equal to x. Now take absolute values. We get

|n| = |a0 + a1n0 + a2n
2
0 + · · ·+ akn

k
0 |

≤ |a0|+ |a1|nα
0 + |a2|n2α

0 + · · ·+ |ak|nkα
0 .

Since we chose n0 to be the smallest integer whose absolute value was greater
than 1, we know that |ai| ≤ 1, so we get

|n| ≤ 1 + nα
0 + n2α

0 + · · ·+ nkα
0

= nkα
0

(
1 + n−α

0 + n−2α
0 + · · ·+ n−kα

0

)

= nkα
0

k∑
i=0

n−iα
0

≤ nkα
0

∞∑
i=0

n−iα
0

= nkα
0

nα
0

nα
0 − 1

.

If we set C = nα
0 /(n

α
0 −1) (which is, the reader will note, a positive number),

we can read this as saying that

|n| ≤ Cnkα
0 ≤ Cnα.

Now we use a dirty trick. This formula applies for every n (since the one we
chose was arbitrary); applying it to an integer of the form nN we get

|nN | ≤ CnNα
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(the crucial point is that the number C does not depend on n—check its
definition above!). Taking N -th roots, we get

|n| ≤ N
√
C nα.

Since any N will do, we can let N → ∞, which makes
N
√
C → 1, and so gives

an inequality: |n| ≤ nα. This is half of what we want.
Now we need to show the inequality in the opposite direction. For that,

we go back to the expression in base n0

n = a0 + a1n0 + a2n
2
0 + · · ·+ akn

k
0 .

Since nk+1
0 > n ≥ nk

0 , we get

n
(k+1)α
0 = |nk+1

0 | = |n+ nk+1
0 − n| ≤ |n|+ |nk+1

0 − n|,

so that
|n| ≥ n

(k+1)α
0 − |nk+1

0 − n| ≥ n
(k+1)α
0 − (nk+1

0 − n)α,

where we have made use of the inequality proved in the previous paragraph.
Now since n ≥ nk

0 , it follows that

|n| ≥ n
(k+1)α
0 − (nk+1

0 − nk
0)

α

= n
(k+1)α
0

(
1−
(
1− 1

n0

)α)

= C′n(k+1)α
0

> C′nα,

and once again C′ = 1−(1−1/n0)
α does not depend on n and is positive. Us-

ing precisely the same trick as before, we get the reverse inequality |n| ≥ nα,
and hence |n| = nα. This proves that | | is equivalent to the “usual” absolute
value | |∞, as claimed.

b) Now suppose | | is non-archimedean. Then, as we have shown, we have
|n| ≤ 1 for every integer n. Since | | is non-trivial, there must exist a smallest
integer n0 such that |n0| < 1.

The first thing to see is that n0 must be a prime number. To see why,
suppose that n0 = a · b with a and b both smaller than n0. Then, by our
choice for n0, we would have |a| = |b| = 1 and |ab| = |n0| < 1, which cannot
be. Thus, n0 is prime, so let’s call it by a prime-like name; set p = n0. Now,
of course, we want to show that | | is equivalent to the p-adic absolute value,
where p is this particular prime.
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The next step is to show that if n ∈ Z is not divisible by p, then |n| = 1.
This is not too hard. If we divide n by p we will have a remainder, so that
we can write

n = rp+ s

with 0 < s < p. By the minimality of p (see the preceding paragraph), we
have |s| = 1. We also have |rp| < 1, because |r| ≤ 1 (because | | is non-
archimedean) and |p| < 1 (by construction). Since | | is non-archimedean
(and therefore “all triangles are isosceles”), it follows that |n| = 1.

Finally, given any n ∈ Z, write it as n = pvn′ with p � n′. Then

|n| = |p|v|n′| = |p|v = c−v,

where c = |p|−1 > 1, so that | | is equivalent to the p-adic absolute value, as
claimed.

Problem 78 There’s one fishy thing about the first part of the proof: once we have
the conclusion we know n0 = 2, but while we’re proving we have to consider the
possibility that n0 is large. So we might have n < n0, which would make the k in the
expansion in base n0 equal to zero. In other words, if n < n0 its expansion in base n0

is just n. Do we need to modify the proof to account for this case?

This theorem is the main reason for thinking of the “usual” absolute value
| |∞ (or of the inclusion Q ↪→ R from which it comes) as some sort of “prime”
of Q. The point is that then it is true that every absolute value of Q “comes
from” a (finite or infinite) prime.

There are lots of contexts in arithmetic where it is useful to work with “all
of the primes,” that is, to use information obtained from all of the absolute
values of Q. In terms of general “feeling,” the real absolute value records
information related to sign, while the other absolute values record information
related to the various primes. Here is the most fundamental example of this:

Proposition 3.1.5 (Product Formula) For any x ∈ Q×, we have∏
p≤∞

|x|p = 1,

where p ≤ ∞ means that we take the product over all of the primes of Q,
including the “prime at infinity.”

Proof: It is easy to see that we only need to prove the formula when x is
a positive integer, and that the general case will then follow. So let x be a
positive integer, which we can factor as x = pa1

1 pa2
2 · · · pak

k . Then we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩
|x|q = 1 if q �= pi

|x|pi = p−ai

i for i = 1, 2, . . . , k

|x|∞ = pa1
1 pa2

2 · · · pak

k
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The result then follows.

This formula establishes a close relation between the absolute values of
Q; for example, it says that if we know all but one of the absolute values of
a number x ∈ Q, then we can determine the missing one. This turns out to
be surprisingly important in many applications (for example, the theory of
heights on algebraic varieties).

A similar result is true for finite extensions of Q, except that in that case
we must use several “infinite primes” (one for each different inclusion into R
or C). Of course, we also need an extension of Ostrowski’s theorem for this
to make sense, and a correct notion of a “prime” in such a field. It is because
of these technicalities that we have chosen to deal only with the theory over
Q. See, for example, [20] for the general case.

3.2 Completions

We are now ready to construct, for each prime number p, the p-adic field Qp.
The main point will be to pursue the idea that all of the absolute values on
Q are “equally important,” and hence should be treated equally. We first
need to recall three important concepts from basic topology (we only state
them in the context of fields with absolute values, but they are really general
concepts for metric spaces).

Definition 3.2.1 Let k be a field and let | | be an absolute value on k.

i) A sequence of elements xn ∈ k is called a Cauchy sequence if for every
ε > 0 one can find a bound M such that we have |xn−xm| < ε whenever
m, n ≥ M .

ii) The field k is called complete with respect to | | if every Cauchy sequence
of elements of k has a limit in k.

iii) A subset S ⊂ k is called dense in k if every open ball around every
element of k contains an element of S; in symbols, if for every x ∈ k
and every ε > 0 we have

B(x, ε) ∩ S �= ∅.

The reader has probably met these concepts in a course on real analysis,
since one of the big things about the field R of real numbers is that it is
a complete field, i.e., that every Cauchy sequence converges.2 In intuitive
terms, a Cauchy sequence is a sequence that “ought to” have a limit, because

2In most real analysis classes, the completeness of R is given by another condition,
known as the “sup axiom,” which is expressed in terms of the order relations in R. In R,
the sup axiom is equivalent to completeness in our sense, but in general ordered fields the
relationship between the two is complicated. In any case, our p-adic fields will not have
an order, so the notion of a “least upper bound” makes no sense for them.
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its terms get crowded into smaller and smaller balls (think of choosing a
sequence of smaller and smaller values for ε). In other words, a field is
complete if sequences that ought to converge do converge.

Problem 79 [Fancy] Show that completeness is equivalent to the following statement:
suppose we find a decreasing sequence rn ∈ R, rn → 0, and a sequence an ∈ k such
that

B(a1, r1) ⊃ B(a2, r2) ⊃ · · · ⊃ B(an, rn) ⊃ B(an+1, rn+1) ⊃ . . .

Then the balls B(an, rn) have nontrivial intersection.

Most valued fields are not complete, but it turns out that one can always
construct a completion, i.e., a bigger valued field that is complete and that
contains the original field as a dense subset.

Problem 80 Show that Q is not complete with respect to the usual absolute value
| |∞. (This was done in real analysis, too; one way is to construct a Cauchy sequence
whose limit, if it existed, would have to be the square root of 2. Since 2 has no square
root in Q, there can be no limit.)

The following problem is intended to deal with a very common misunder-
standing (which the reader also probably met in her course on real analysis).
It is especially important to get this straight now, because things will get
confusing for non-archimedean absolute values.

Problem 81 Show that the condition

lim
n→∞

|xn+1 − xn| = 0

is not the same as the Cauchy condition, by showing that there exists a sequence of
real numbers that satisfies this condition but is not a Cauchy sequence. In informal
terms, the Cauchy condition is stronger than the assertion that successive terms of the
sequence get closer and closer together. (Hint: one example of such a sequence was
met in Calculus, in the portion on series.)

Our reason for recalling these notions is that, as our theory now stands,
the archimedean absolute value | |∞ is different from all the rest, because
there exists an inclusion Q ↪→ R of Q into a field R (yes, we do mean the real
numbers) which is a completion:

• the absolute value | |∞ extends to R,

• R is complete with respect to the metric given by this absolute value, and

• Q is dense in R (with respect to the metric given by | |∞).

This is all probably well-known to the reader (see the standard references
for proofs). We summarize this list of properties by saying that R is the
completion of Q with respect to the absolute value | |∞. The point is that



62 3 The p-adic Numbers

R is the smallest field containing Q which is complete with respect to this
absolute value. We can see this because any such field would have to include
the limit of any Cauchy sequence of elements of Q, and, since Q is dense in
R, any element of R is a limit of such a sequence.

Problem 82 Can you prove the assertions of the preceding paragraph?

Our main goal in this section is to restore the parity between the absolute
values on Q, by constructing, for each of the other absolute values, a comple-
tion analogous to R. That is, we want to show that for each prime p there
exists some field to which we can extend the p-adic absolute value, which is
then complete with respect to the extended absolute value, and in which Q is
dense. The existence of such a field is a general theorem about metric spaces,
which the reader may have met in another context; if so,3 she may prefer to
skip directly to the next chapter (or at least to Theorem 3.2.14). This section
is for those who wish to see the full construction of such a completion.

One remark is important: as in the case of the construction of the real
numbers, the method of constructing our completion is less important than
the properties of the resulting field. In other words, the construction itself is
important only because it establishes the existence of a completion. It will
not be of any further use after that, so that skipping this section is a real
possibility.

Problem 83 Should we bother trying to construct a completion of Q with respect to
the trivial absolute value?

While our process for constructing a completion is valid in general, we
will focus only on constructing completions of Q. For the rest of this section,
we let | | = | |p be the p-adic absolute value on Q, for some prime p. The
first useful thing to note is that Cauchy sequences can be characterized much
more simply when the absolute value is non-archimedean.

Lemma 3.2.2 A sequence (xn) in a field k with a non-archimedean absolute
value | | is a Cauchy sequence if and only if we have

lim
n→∞ |xn+1 − xn| = 0.

Proof: If m = n+ r > n, we get

|xm − xn| = |xn+r − xn+r−1 + xn+r−1 − xn+r−2 + · · ·+ xn+1 − xn|

≤ max{|xn+r − xn+r−1|, |xn+r−1 − xn+r−2|, . . . , |xn+1 − xn|},

because the absolute value is non-archimedean. The result then follows at
once.

3or if she is willing to grant the existence of a completion
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This makes analysis much simpler when the field is non-archimedean, as
we will see later. We should insist, once again, that this lemma is false for
archimedean absolute values, as Problem 81 shows.

The next step is to show that Q is not complete with respect to the p-adic
absolute values, so that the completion process is really going to accomplish
something.

Lemma 3.2.3 The field Q of rational numbers is not complete with respect
to any of its nontrivial absolute values.

Proof: Given Ostrowski’s Theorem (3.1.4), we need to check this for | |p for
p ≤ ∞. That Q is not complete for | |∞ is well known (and left as a problem
above), so we look at the p-adic absolute values.

If we take | | = | |p for some prime p, we need to construct a Cauchy
sequence in Q which does not have a limit in Q. This was essentially the con-
tent of section 3 of Chapter 1. To construct the necessary Cauchy sequence,
we need only find a coherent sequence of solutions modulo pn of an equation
that has no solution in Q. We work this out in the case p �= 2, and leave the
case p = 2 to the reader.

Thus, suppose p �= 2 is a prime. Choose an integer a ∈ Z such that

• a is not a square in Q;

• p does not divide a;

• a is a quadratic residue modulo p, i.e., the congruence X2 ≡ a (mod p)
has a solution.

For example, we might take any square in Z and add a multiple of p to get
a suitable a.

Now we can construct a Cauchy sequence (with respect to | |p) in the
following way:

• choose x0 to be any solution of x2
0 ≡ a (mod p);

• choose x1 so that x1 ≡ x0 (mod p) and x2
1 ≡ a (mod p2) (the existence of

x1 was proved in one of the problems in Chapter 1, and is easy to see in
any case);

• in general, choose xn so that

xn ≡ xn−1 (mod pn) and x2
n ≡ a (mod pn+1).

It was in fact checked in Problem 26 that such sequences do exist whenever
a is a quadratic residue mod p (it is here that we need to know that p �= 2).

The next step is to check that we really have a Cauchy sequence. It is
clear from the construction that we have

|xn+1 − xn| = |λpn+1| ≤ p−(n+1) → 0,
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which shows, together with Lemma 3.2.2, that the sequence of the xn is
indeed a Cauchy sequence. On the other hand, we also know that

|x2
n − a| = |μpn+1| ≤ p−(n+1) → 0,

so that the limit, if it existed, would have to be a square root of a. Since a is
not a square in Q, there can be no limit in Q, which shows Q is not complete
with respect to | |p.

Problem 84 Finish the proof, by showing that Q is also not complete with respect to
the 2-adic absolute value. (Hint: the easiest way is probably to use cube roots instead
of square roots. . .)

Since Q is not complete, we need to construct a completion. There are
several ways to do so. We will follow the path of least resistance. What we
want to do is to “add to Q the limits of all the Cauchy sequences.” Since at
first no such limits exist, one cannot literally do that. What we do instead
is to use a standard bit of mathematical skullduggery, replacing the limit we
do not have with the sequence we do have (so that in the end the sequence
will be sort of like a limit of itself!). To do that, we begin with the set of
all Cauchy sequences as the basic object, then use the algebraic operations
on Q to handle the resulting object. (The construction uses some notions
from abstract algebra; these can be avoided, but doing so would make our
life much harder.)

Definition 3.2.4 Let | | = | |p be a non-archimedean absolute value on Q.
We denote by C, or Cp(Q) if we want to emphasize p and Q, the set of all
Cauchy sequences of elements of Q:

C = Cp(Q) = {(xn) : (xn) is a Cauchy sequence with respect to | |p}.

The first thing to check is that C has a natural ring structure, using the
“obvious” definitions for the sum and product of two sequences.

Proposition 3.2.5 Defining

(xn) + (yn) = (xn + yn)

(xn) · (yn) = (xnyn)

makes C a commutative ring with unity.

Proof: Easy; the only thing that really needs checking is that the sequences
on the right-hand side are Cauchy.

Problem 85 Check that the sum and product of two Cauchy sequences, as defined
above, are also Cauchy sequences.
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Problem 86 What is the zero element of the ring C? What is the unit element? Can
you decide which elements are invertible?

Problem 87 Suppose (xn) is a Cauchy sequence and (yn) is a sequence such that
lim

n→∞
|xn − yn| = 0. Show that yn is a Cauchy sequence. Show also that if xn → a

then yn → a as well.

The ring C is not a field (as is clear from the previous exercise, since not
all non-zero elements are invertible). In fact, it contains “zero divisors,” i.e.,
non-zero elements whose product is zero.

Problem 88 Find two non-zero Cauchy sequences (say, with respect to the p-adic
absolute value, but it doesn’t really matter) whose product is the zero sequence.

We should check at once that this huge ring does contain the field of ra-
tional numbers, since, after all, the point of the whole exercise is to construct
something which extends Q. For that, all we need to do is to notice that if
x ∈ Q is any number, the sequence

x, x, x, x, . . .

is certainly Cauchy; we will call it the constant sequence associated to x and
denote it by x̃. Then we have

Lemma 3.2.6 The map x �→ x̃ is an injective ring homomorphism from Q
into C.

Proof: This is clear from the definitions.

The main problem with C is that it does not yet capture the idea of
“adding the limits of all Cauchy sequences,” because different Cauchy se-
quences whose terms get close to each other “ought” to have the same limit,
but they are different objects in C. This sort of situation calls for identifying
two sequences which “ought” to have the same limit, which means we must
pass to a quotient4 of C.

It is here that the algebraic structure helps us, because it makes it easy
to describe when it is that two sequences “ought” to have the same limit:
this should happen when their terms get close to each other, i.e., when the
difference of the sequences tends to zero. So we begin by looking at the set
of sequences that tend to zero.

4The operation of passing to a quotient to identify objects is one of those absolutely
basic ideas that one meets over and over in mathematics. In every case, one has to
introduce an equivalence relation of some sort, then identify equivalent elements. In our
situation, we will take advantage of the machinery of abstract algebra to do this, since C

is a commutative ring.
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Definition 3.2.7 We define N ⊂ C to be the ideal

N = {(xn) : xn → 0} = {(xn) : lim
n→∞ |xn|p = 0}

of sequences that tend to zero with respect to the absolute value | |p.

Problem 89 Check that N is in fact an ideal of C. (This is really already known from
way back when in Calculus class.)

Lemma 3.2.8 N is a maximal ideal of C.

Proof: Let (xn) ∈ C be a Cauchy sequence that does not tend to zero (i.e.,
does not belong to N), and let I be the ideal generated by (xn) and N. What
we want to show is that I must be all of C. We will do that by showing that
the unit element 1̃ (i.e., the constant sequence corresponding to 1) is in I.
This is enough, because any ideal that contains the unit element must be the
whole ring.

Now, since (xn) does not tend to zero and is a Cauchy sequence, it must
“eventually” be away from zero, that is, there must exist a number c > 0 and
an integer N such that |xn| ≥ c > 0 whenever n ≥ N. (If this is not clear,
the reader should find a proof!) Now in particular this means that xn �= 0
for n ≥ N , so that we may define a new sequence (yn) by setting yn = 0 if
n < N and yn = 1/xn if n ≥ N.

The first thing to check is that (yn) is a Cauchy sequence. But that is
clear because if n ≥ N we have

|yn+1 − yn| =
∣∣∣∣ 1

xn+1
− 1

xn

∣∣∣∣ = |xn+1 − xn|
|xnxn+1| ≤ |xn+1 − xn|

c2
−→ 0,

which shows (yn) ∈ C because | | is non-archimedean. (One can modify the
argument slightly so that it works also if | | is archimedean, but this is easier.)

Now notice that

xnyn =

{
0 if n < N

1 if n ≥ N

This means that the product sequence (xn)(yn) consists of a finite number
of 0s followed by an infinite string of 1s. In particular, if we subtract it from
the constant sequence 1̃, we get a sequence that tends to zero (in fact, which
goes to zero and then stays there). In other words

1̃− (xn)(yn) ∈ N.

But this says that 1̃ can be written as a multiple of (xn) plus an element of
N, and hence belongs to I, as we had claimed. Hence I = C and we have
proved that N is maximal.
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Problem 90 To make sure that you understand the proof, check that it works just
as well for any field k with an absolute value | |. (The only catch is to supply a version
of the check that the “almost inverse” sequence is Cauchy that does not depend on
| | being non-archimedean. But this is easy: the use of Lemma 3.2.2 is really a red
herring.)

We want to identify sequences that differ by elements of N, on the grounds
that they ought to have the same limit. This is done in the standard way, by
taking the quotient of the ring C by the ideal N. To make things even nicer,
taking a quotient of a commutative ring by a maximal ideal gives a field.

Definition 3.2.9 We define the field of p-adic numbers to be the quotient of
the ring C by its maximal ideal N:

Qp = C/N.

Notice that two different constant sequences never differ by an element of
N (their difference is just another constant sequence, and the constant is not
zero). Hence, we still have an inclusion

Q ↪→ Qp

by sending x ∈ Q to the equivalence class of the constant sequence x̃.
Very well: we now have a field, and an inclusion of Q into the field. It

remains to check that it has the stated properties of the completion. The
first is that the absolute value | |p extends to Qp. This follows easily from
the following lemma.

Lemma 3.2.10 Let (xn) ∈ C, (xn) �∈ N. The sequence of real numbers |xn|p
is eventually stationary, that is, there exists an integer N such that |xn|p =
|xm|p whenever m, n ≥ N.

Proof: Since (xn) is a Cauchy sequence which does not tend to zero, we
can (as in the previous lemma) find c and N1 such that

n ≥ N1 =⇒ |xn| ≥ c > 0.

On the other hand, there also exists an integer N2 for which

n, m ≥ N2 =⇒ |xn − xm| < c.

We want both conditions to be true at once, so set N = max{N1,N2}. Then
we have

n, m ≥ N =⇒ |xn − xm| < min{|xn|, |xm|},
which gives |xn| = |xm| by the non-archimedean property (“all triangles are
isosceles”).

This means that the following definition makes sense:
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Definition 3.2.11 If λ ∈ Qp is an element of Qp, and (xn) is any Cauchy
sequence representing λ, we define

|λ|p = lim
n→∞ |xn|p.

(Recall that we have defined Qp as a quotient, so that elements of Qp are
equivalence classes of Cauchy sequences.) There are several things to check
here, but they are all quite easy to verify, so we leave them to the reader.

Problem 91 Let λ ∈ Qp. Explain why the limit defining | |p exists.

Problem 92 Let λ ∈ Qp. Show that |λ|p, as defined above, does not depend on the
choice of the sequence (xn) representing λ. In other words, show that if we replace
(xn) by an equivalent sequence (yn) (which means, recall, that the difference (xn−yn)
is a sequence that tends to zero), then

lim
n→∞

|xn|p = lim
n→∞

|yn|p.

(One can either do this directly, or note that the definition of | |p defines a function on
C which maps N to zero, and hence descends to the quotient.)

Problem 93 Let λ ∈ Qp. Show that |λ|p = 0 if and only if λ = 0. (You will need to
remember what it means for an element to equal zero in the quotient.)

Problem 94 Show that the function | |p : Qp −−−→ R+ is a non-archimedean abso-
lute value.

Problem 95 Let x ∈ Q, and let x̃ be the constant sequence which is the image of x
in Qp. Check that the two definitions of | |p are consistent, that is, that |x̃|p = |x|p.
(Yes, this is essentially obvious.)

These problems, taken together, show that we have indeed defined an
absolute value on Qp which extends the p-adic absolute value on Q. There is
one more important fact which should be recorded, which is that the image
of the absolute value function is the same for both fields.

Problem 96 Show that the image of Q under | |p is equal to the image of Qp under
| |p. In other words, for any λ ∈ Qp which is different from zero, there exists an n ∈ Z
such that |λ|p = p−n.

To check that we have indeed obtained the completion, we must now
check the remaining two requirements: that Q is dense in Qp, and that Qp

is complete. The first is easy:

Proposition 3.2.12 The image of Q under the inclusion Q ↪→ Qp is a dense
subset of Qp.
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Proof: We need to show that any open ball around an element λ ∈ Qp

contains an element of (the image of) Q, i.e., a constant sequence. So fix a
radius ε > 0. We will show that there is a constant sequence belonging to
the open ball B(λ, ε).

First of all, let (xn) be a Cauchy sequence representing λ, and let ε′ > 0
be a number slightly smaller than ε. By the Cauchy property, there exists a
number N such that |xn − xm|p < ε′ whenever n, m ≥ N . Let y = xN and
consider the constant sequence ỹ. We claim that

ỹ ∈ B(λ, ε),

i.e., that |λ − ỹ|p < ε. To see this, recall that λ − ỹ is represented by the
sequence (xn − y), and that we have defined

|(xn − y)|p = lim
n→∞ |xn − y|p.

But for any n ≥ N we have

|xn − y|p = |xn − xN |p < ε′

so that, in the limit, we get

lim
n→∞ |xn − y|p ≤ ε′ < ε,

so that (y) does indeed belong to B(λ, ε), and we are done.

Problem 97 Why does < become ≤ in the limit? Do we really need the business of
decreasing ε slightly to ε′?

It remains to show that Qp is complete, i.e., that every Cauchy sequence
in Qp converges to an element of Qp. This seems almost obvious, until one
realizes that a Cauchy sequence of elements of Qp amounts to a sequence of
Cauchy sequences and that the limit will have to be an equivalence class of
Cauchy sequences. This seems to make everything very confusing. It is not
so hard if one keeps one’s wits about one, but that is easier said than done!
The key is to use the fact that Q is dense in Qp.

Theorem 3.2.13 Qp is complete with respect to | |p.
Proof: Let λ1, λ2, . . . , λn, . . . be a Cauchy sequence of elements of Qp,

so that each λi is a Cauchy sequence (x
(i)
k ) of elements of Q, taken up to

equivalence.
Since (the image of) Q is dense in Qp, we can find, for each i, a number

yi ∈ Q such that the constant sequence ỹi ∈ Qp is as close to λi as we like.
Taking, say,

|λi − ỹi|p <
1

i
,
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we can make sure that
lim
n→∞ |λn − ỹn|p = 0.

Now, using Exercise 87, we can conclude that the sequence (ỹn) (a se-
quence of constant sequences in Qp) is Cauchy. Therefore, since the absolute
value of a constant sequence is the absolute value of the constant, the sequence
(yn) (a sequence of rational numbers) is Cauchy, so defines an element of Qp.
Let λ be the element of Qp corresponding to (yn).

The sequence λ is, of course, the limit we are looking for. Let’s prove it
in two steps.

Let ε > 0. Since λ = (yn) is Cauchy, there exists an N such that n,m ≥ N
implies |ym − ym| < 1

2ε. Consider the sequence of constant sequences (ỹn).
The difference λ − ỹn is represented by (ym − yn), where n is fixed and m
varies. So if m ≥ N we have

|λ− ỹn|p = lim
m→∞ |ym − yn|p ≤ 1

2
ε < ε.

Therefore the sequence λ − (ỹn) converges to 0 in Qp. In other words, the
sequence of constant sequences (ỹn) converges to the Cauchy sequence λ =
(yn) (as, indeed, we would have guessed!).

Now put it all together. We know that |λn − ỹn| converges to zero, and
we know that (ỹn) converges to λ. Therefore (using Exercise 87 again), (λn)
converges to λ. Since (λn) was an arbitrary Cauchy sequence in Qp, we have
proved that any Cauchy sequence in Qp has a limit.

That was an annoying proof, but we are now done. Putting it all together,
we have proved the following theorem:

Theorem 3.2.14 For each prime p ∈ Z there exists a field Qp with a non-
archimedean absolute value | |p, such that:

i) there exists an inclusion Q ↪→ Qp, and the absolute value induced by
| |p on Q via this inclusion is the p-adic absolute value;

ii) the image of Q under this inclusion is dense in Qp (with respect to the
absolute value | |p); and

iii) Qp is complete with respect to the absolute value | |p.
The field Qp satisfying (i), (ii) and (iii) is unique up to unique isomorphism
preserving the absolute values.

Proof: We’ve done it all except the uniqueness statement. To get that,
suppose we have another such field K. Then we have two fields Qp and K
and inclusions Q ↪→ Qp and Q ↪→ K, both of which preserve absolute values.
If we have a Cauchy sequence (xn) with xn ∈ Q, we can look at its image
in Qp and in K. Both will be Cauchy sequences (since the absolute value
doesn’t change) and so both will converge.
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Now take λ ∈ Qp. Since Q is dense in Qp, there is a Cauchy sequence (xn)
with xn ∈ Q whose limit is λ. Since the xn ∈ Q we can take their images in
K, and since the absolute value is preserved they will form Cauchy sequence
as well. Since K is complete this sequence converges. Call the limit f(λ).
This defines a function Qp −→ K. Of course, f is the identity on Q.

It is now easy to check that f is an isomorphism that preserves the ab-
solute values, and its uniqueness is clear because it must induce the identity
on the dense subset Q.

Problem 98 Fill in the gaps in the uniqueness proof:

i) Since the inclusion preserves the operations on Q, and these operations are
continuous, show that the extended map is a homomorphism of fields (and hence
is injective).

ii) Perform precisely the same construction in reverse to get a map in the opposite
direction, and show that the resulting map is the inverse of the first. (Hint: the
composition is a continuous map which restricts to the identity on Q!)

iii) Check that the isomorphism thus constructed preserves absolute values. (Hint:
is the absolute value function itself continuous?)

The strong uniqueness statement is important because it says we can now
forget the construction of Qp, and work only with the properties specified in
the theorem. This is precisely what we will do.

Problem 99 Why is it important that something be “unique up to unique isomor-
phism”? Can you give an example of some mathematical object that is unique up to
isomorphism, but not up to unique isomorphism?

Notice that this also shows that there is no nontrivial continuous automor-
phism Qp −→ Qp. In fact, we can even drop the assumption of continuity:
the only field isomorphism Qp −→ Qp is the identity. See [53, p. 53] for a
proof. The same is true for R.

A final remark: when we move from Q to R, there is a very natural picture
of what is happening: we visualize R as a line, and the rational numbers sit
on that line but do not fill out all its points. We can think of the completion
process as “filling in” the missing points. There is no such simple picture
for the move from Q to Qp, because the topology we get from the p-adic
absolute value is much stranger, as we already know. In particular, Qp is
totally disconnected, so it looks nothing like the real line.
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The goal of this chapter is to explore the field Qp which we have just con-
structed. The basic idea is to get away from the explicit construction we
gave above and to come up with other ways to represent and understand the
elements of Qp. In particular, we will show that every element of Qp can be
represented uniquely by a series in ascending powers of p, as in Chapter 1.

4.1 What We Already Know

At the end of the previous chapter, we showed the field Qp is entirely deter-
mined by its properties:

• There is an absolute value | |p on Qp, and Qp is complete with respect to
this absolute value.

• There is an inclusion Q ↪→ Qp whose image is dense in Qp, and the restric-
tion of the absolute value | |p to (the image of) Q coincides with the p-adic
absolute value.

• The image of both Q and Qp under | |p is the same; specifically, the two
sets

{x ∈ R+ | x = |λ|p for some λ ∈ Q}
and

{x ∈ R+ | x = |λ|p for some λ ∈ Qp}
are both equal to the set {pn | n ∈ Z} ∪ {0} of powers of p, together with
0.

As the wording suggests, we will from now on identify Q with its image
under the inclusion in Qp, that is, we will think of Q as a subfield of Qp. The
last property turns out to be very useful, so we will re-state it as a lemma.

Lemma 4.1.1 For each x ∈ Qp, x �= 0, there exists an integer n ∈ Z such
that |x|p = p−n. Conversely, for each n ∈ Z we can find x ∈ Qp such that
|x|p = pn.

Another way of saying this is in terms of the p-adic valuation vp. Re-
member that for x ∈ Q we had |x|p = p−vp(x); so what the lemma says
is:
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Lemma 4.1.2 For each x ∈ Qp, x �= 0, there exists an integer vp(x) such
that |x|p = p−vp(x). In other words, the p-adic valuation vp extends to Qp.

As before, we extend vp to all of Qp by setting vp(0) = +∞. Later in
this section (when we have a good way to describe elements of Qp) we will
be able to describe vp in another way.

4.2 p-adic Integers

Now we begin to explore the structure of Qp. Since Qp is a field with a non-
archimedean valuation, everything we did in Chapter 2 applies. In particular,
we can consider the corresponding valuation ring, which has a name of its
own:

Definition 4.2.1 The ring of p-adic integers is the valuation ring

Zp = {x ∈ Qp : |x|p ≤ 1}.

Of course, Zp is also the closed unit ball with center 0, so we already know
a few things about it. Since Zp is a closed set, every convergent sequence of
elements of Zp has a limit in Zp. Since Qp is complete, all Cauchy sequences
converge. So Zp is a complete metric space. Zp is also an open set, because
every ball is. Here is a much more precise description:

Proposition 4.2.2 The ring Zp of p-adic integers is a local ring whose max-
imal ideal is the principal ideal pZp = {x ∈ Qp : |x|p < 1}. Furthermore,

i) Q ∩ Zp = Z(p) =
{a
b
∈ Q : p � b

}
.

ii) The inclusion Z ↪→ Zp has dense image. Specifically, given x ∈ Zp and
n ≥ 1, there exists an α ∈ Z, 0 ≤ α ≤ pn− 1, such that |x−α|p ≤ p−n.
The integer α with these properties is unique.

iii) For any x ∈ Zp, there exists a Cauchy sequence (αn) converging to x,
of the following type:

• αn ∈ Z satisfies 0 ≤ αn ≤ pn − 1

• for every n ≥ 2 we have αn ≡ αn−1 (mod pn−1).

The sequence (αn) with these properties is unique.

Proof: Most of this follows directly from things we have already checked.
To begin with, Zp is a valuation ring, hence (Prop. 2.4.3) it is a local ring, i.e.,
there is a unique maximal ideal and every element of Zp not in the maximal
ideal is invertible in Zp. To see that the valuation ideal is indeed generated
by p, we use Lemma 4.1.1: if |x|p < 1, then in fact |x|p ≤ 1

p ; since |p|p = 1/p,



4.2 p-adic Integers 75

this implies
∣∣∣xp ∣∣∣

p
≤ 1, so x ∈ pZp. This shows that the valuation ideal is

contained in pZp, but that is enough, since the valuation ideal is a maximal
ideal, and pZp �= Zp. Now to the other statements:

(i) is clear, because we already know that Z(p) is the valuation ring in Q
corresponding to the p-adic valuation.

To check (ii), choose x ∈ Zp and n ≥ 1. Since Q is dense in Qp, one can
certainly find a/b ∈ Q which is as close as we like to x; choose it so that∣∣∣x− a

b

∣∣∣
p
≤ p−n < 1.

The point is to show that we can in fact choose an integer. But notice that
for a/b as above, we will have∣∣∣a

b

∣∣∣
p
≤ max

{∣∣x∣∣
p
,
∣∣∣x− a

b

∣∣∣
p

}
≤ 1,

which says that a/b ∈ Z(p), that is, p � b. Now recall that, from the elementary
theory of congruences, if p � b there exists an integer b′ ∈ Z such that bb′ ≡ 1
(mod pn), unique mod pn. This implies (the reader will check) that∣∣∣a

b
− ab′

∣∣∣
p
≤ p−n,

and of course ab′ ∈ Z. Finally, we need to check that we can find an integer
between zero and pn − 1, but this is clear from the connection between con-
gruences modulo powers of p and the p-adic absolute value: two integers are
p−n-close if and only if they are congruent mod pn. Choosing α to be the
unique integer such that

0 ≤ α ≤ pn − 1 and α ≡ ab′ (mod pn)

gives |x− α|p ≤ p−n (check it!), which is what we want.
Finally, (iii) follows directly from (ii); just use (ii) for a sequence of

integers n = 1, 2, . . . . For the uniqueness, notice that at each step of the
construction in (ii) our choices were unique mod pn.

This proposition says several important things (and implies a bunch of
others—see the next few corollaries). For example, it shows that every ele-
ment of Zp is the limit of a sequence of integers, so that

Corollary 4.2.3 Z is dense in Zp.

This would, in fact, be another way to begin the whole story, by creating
Zp as the completion of Z with respect to the p-adic absolute value. Notice,
too, that the sequence in (iii) is exactly one of our “coherent sequences” from
Chapter 1, so that things are coming together rather nicely.

Here are some more consequences.
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Corollary 4.2.4 Qp = Zp[1/p], that is, for every x ∈ Qp there exists an
n ≥ 0 such that pnx ∈ Zp. The map Qp −→ Qp given by x �→ px is a
homeomorphism. (This means that it is a continuous map with a continuous
inverse, so it preserves the topology of Qp.) The sets pnZp, n ∈ Z form a
fundamental system of neighborhoods of 0 ∈ Qp which covers all of Qp.

Proof: If x ∈ Qp, we can compute its valuation vp(x). If vp(x) ≥ 0, then x
is already an element of Zp, by the definition of a valuation ring. Otherwise,
vp(x) is negative, and we have

vp(p
−vp(x)x) = −vp(x) + vp(x) = 0,

which means that p−vp(x)x ∈ Zp, as claimed. That multiplication by p is
a homeomorphism is immediate from the fact that the field operations are
continuous functions. The remaining statements will be checked in the next
problem.

Problem 100 Prove the corollary. Recall that a neighborhood of a point x is a set
containing an open ball around x, and that a fundamental system of neighborhoods is
a bunch of neighborhoods with the property that any other neighborhood contains one
of them. Finally, a collection of sets covers a set X if the union of all the sets in the
collection contains (or is) the set X.

It may be useful to remember that a map is continuous exactly when the
inverse image of any open set is an open set (this is often easier to work with
than the ε-δ definition).

Problem 101 (Just to keep us awake.) Describe a fundamental system of neighbor-
hoods of 0 in R which also covers R.

Recall that we pointed out that the p-adic valuation vp can be extended
to Qp, because for any x ∈ Qp there exists an integer vp(x) such that |x|p =
p−vp(x). The last corollary allows us to understand this a little better:

Problem 102 Show that we can give the following more natural description of vp(x):
by the corollary, x belongs to some pnZp; let n0 be the largest n for which this is true;
then vp(x) = n0. (Be careful: n0 may very well be negative.)

Hence, for example, vp(x) = 0 if x ∈ Zp but x �∈ pZp, so that n0 = 0. This
agrees, of course, with the original definition, since vp(x) = 0 means |x| = 1.

One of the main points of these results is that the topology (neighbor-
hoods, open sets,. . . ) of Qp is closely connected to its algebraic structure
(multiplication by p, subrings). For example, it is very useful to burn into
one’s brain that for x, y ∈ Qp we have

|x− y|p ≤ p−n if and only if x− y ∈ pnZp.
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In particular,

B(0, p−n) = pnZp.

The next few results forge ahead in this direction.

Corollary 4.2.5 For any n ≥ 1, the sequence

0 −→ Zp
pn

−→ Zp −→ Z/pnZ −→ 0,

where the map Zp −→ Zp is given by x �→ pnx, is exact, and the maps are
continuous (where we give Z/pnZ the discrete topology). In particular,

Zp/pnZp
∼= Z/pnZ.

Recall that a sequence A
f−−−→ B

g−−−→ C is exact if image(f) =
ker(g). A five-term sequence as above is exact when it is exact at each stage,
so that the claims above are:

• the map Zp −→ Zp given by multiplication by pn is injective (its kernel is
the image of zero, which is zero)

• there is a map Zp −→ Z/pnZ which is surjective

• the kernel of this map is precisely the image of Zp under the first map,
which of course is pnZp.

Recall, too, that the discrete topology is the one where all sets are open.

Problem 103 Check that the corollary is true.

The sets a + pnZp, with a ∈ Q and n ∈ Z are closed balls in Qp (with
center a and radius p−n), hence are clopen sets. Since Q is dense in Qp, they
cover all of Qp. As we have already shown for general ultrametric spaces
(Prop. 2.3.9), Qp is totally disconnected (the connected component of any
point is the set consisting of only that point). Furthermore, given any two
points we can always find balls around them that do not intersect (which is
a useful thing to know about a topology: points can be separated). In big
words:

Corollary 4.2.6 Qp is a totally disconnected Hausdorff topological space.

A more interesting topological property is compactness, which plays a big
role in classical analysis. A subset X of a topological space is called compact
if it has the following property:

• any collection of open sets which covers X has a finite subcollection which
also covers X .
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This is a rather unintuitive definition, but it turns out to be quite important.
For example, the compact sets in R are precisely the closed and bounded
sets, which play a big role in real analysis.

Problem 104 Read up on compactness in any introductory book on general topology.
In particular, prove, or find out how to prove, or read the proof of, the following:

i) The image of a compact set by a continuous map is a compact set.

ii) In R, any closed and bounded set, and in particular a closed interval, is compact.
(In a general metric space, any compact set is closed and bounded, but the
converse is not always true.)

iii) In a metric space, a set X is compact if and only if every sequence (xn) with
xn ∈ X has a convergent subsequence.

iv) In a metric space, a set X will be compact if and only if it is complete (every
Cauchy sequence in X converges to a point in X) and totally bounded (for every
ε > 0, there exists a finite covering of X by balls of radius ε).

Problem 105 A space is called locally compact when every point has a neighborhood
which is a compact set. Show that R is locally compact. (This property is very
important in classical analysis.)

Problem 106 If k is a field with an absolute value, show that k is locally compact if
and only if there exists a neighborhood of zero that is compact. (Hint: if a set X is
compact, the set {a+ x : x ∈ X} is the image of X under a continuous map, hence is
also compact.)

Corollary 4.2.7 Zp is compact, and Qp is locally compact.

Proof: Since Zp is a neighborhood of zero, proving that it is compact is
enough to prove that Qp is locally compact, so that the second statement
follows from the first.

To prove the first statement, remember that we already know that Zp is
complete (because it is a closed set in a complete field), so that (using one of
the statements above) what we need to prove is that it is totally bounded,
that is, that for any ε > 0 one can cover Zp with finitely many balls of radius
ε. It is enough to check this for every ε = p−n, n ≥ 0. But remember that

Zp/pnZp
∼= Z/pnZ,

and that the cosets of pnZp in Zp are also balls in the p-adic topology. This
means that as a ranges through 0, 1, . . . , pn − 1 (or any other set of coset
representatives), the pn balls

a+ pnZp = {a+ pnx : x ∈ Zp} = {y ∈ Zp : |y − a| ≤ p−n} = B(a, p−n)

cover Zp, and we are done.



4.3 The Elements of Qp 79

Problem 107 Why is it enough to check for this special family of values for ε?

One should notice that the crucial element in our proof of the compactness
is the finiteness of the quotients. In fact, one can check that knowing that
one quotient is finite will do the trick.

Problem 108 Let k be a field, | | a non-archimedean absolute value on k, O ⊂ k
the valuation ring, and P the valuation ideal. Suppose that k is complete and that
P is principal. Show that k is locally compact if and only if the residue field O/P is
finite. Do we really need the completeness of k? Do we really need to know that P is
principal?

The p-adic units are the invertible elements of Zp. We will denote the
set of all such elements by Z×

p . Since x ∈ Zp means |x|p ≤ 1 and x−1 ∈ Zp

means |x−1|p = |x|−1
p ≤ 1, we see that

Z×
p = {x ∈ Qp : |x|p = 1}.

It is also easy to see that

Z×
p ∩Q =

{
a

b
∈ Q : p � ab

}
.

Like the invertible elements of every ring, the p-adic units form a group. In
our case, this group contains quite a few elements (notice that Z×

p ∩ Q is
already quite large). We will later study its structure a little more closely.
For now, notice that it is a closed subset of Zp, and therefore is compact.

Problem 109 What are the invertible elements of Z? Of F[t]? Of C[[t]]? (C[[t]] is
the ring of power series in one variable with coefficients in C)

Problem 110 Let a, b ∈ Z be integers with b not divisible by p. Define sets

A+(a, b) = {n ∈ Z | n ≡ a (mod b) and n > 0},
and

A−(a, b) = {n ∈ Z | n ≡ a (mod b) and n < 0}.
Show that both sets are dense in Zp.

4.3 The Elements of Qp

The elements of Qp are, at this point, hard to grab hold of, because we only
know Qp via its basic properties. To counteract this, we will now give two
different descriptions of the elements of Qp, both of which we have already
met in Chapter 1: as “coherent sequences,” and as “p-adic expansions.”

The description in terms of coherent sequences, which we will give first,
is interesting for theoretical reasons, while the description in terms of expan-
sions will give us the most “concrete” version of Qp. The first description
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will be stated in rather sophisticated terms, and the reader may want to skim
through it rather than check all the details.

We begin from item (iii) in Proposition 4.2.2: given x ∈ Zp, we can find
a rather special kind of Cauchy sequence converging to x. This sequence has
the property of being “coherent,” which we met in Chapter 1:

• αn ∈ Z, 0 ≤ αn ≤ pn − 1

• αn+1 ≡ αn (mod pn)

and in addition converges to x because |x− αn|p ≤ p−n. Finally, we checked
that this sequence is unique.

On the other hand, suppose we have such a sequence (αn). The coherence
property clearly makes it a Cauchy sequence, because |αn+1 − αn|p ≤ p−n.
Hence, it must converge to some element, which will be in Zp because the αn

are in Z.

Problem 111 Check that a limit of a Cauchy sequence of integers must be an element
of Zp (rather than merely of Qp).

This means that we can identify the elements of Zp with such sequences.
We will summarize this in the next proposition, but in a rather sophisticated
language. To set it up, let’s write ϕn for the projection on the quotient

ϕn : Zp −−−→ Z/pnZ.

As an element of Z/pnZ, we then have ϕn(x) ≡ αn (mod pn) (just because
the set of integers between 0 and pn − 1 gives representatives for the cosets,
and the αn are chosen as the representatives corresponding to x). We also
set

An = Z/pnZ

and think of it as a topological ring with a discrete topology.1 We have an
obvious map ψn : An −→ An−1, which sends (a mod pn) to (a mod pn−1).
We want to consider the product of all these rings, that is, the ring of se-
quences (αn) such that αn ∈ An. (The operations are defined in the obvious
way, term by term.) There is a standard way to put a topology on this ring
(it is called the product topology). This topology is rather tricky to describe,
and we do not really need to know much about it. We just point out that
the product ring will be compact with this topology.

With all that set up, we can state:

1This is mumbo-jumbo. All the other rings will have a topology because they have
absolute values. The ring An, on the other hand, doesn’t come with such a “built-in”
topology, so we just give it the simplest one of all: the one where all sets are open, which
corresponds to the trivial absolute value. The point is that this makes the important maps
(the projection from Zp to An and the homomorphisms An −→ An−1) be continuous.
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Proposition 4.3.1 The projection maps ϕn together give an inclusion

ϕ : Zp ↪→
∏
n≥1

An

which identifies Zp, as a topological ring, with the closed subring of
∏

An

consisting of the coherent sequences, i.e., those sequences (αn) for which we
have ψn(αn) = αn−1 for every n > 1.

Proof: If all the concepts are understood, this is just a re-statement of
known facts. See the next problem.

Problem 112 Prove the proposition. Notice that we could use this to give another
construction of Zp with a more algebraic flavor (and a bit more subtle to handle). For
example, the fact that closed subsets of a compact set are necessarily compact would
provide the proof that Zp is compact in this version of the theory.

It is often useful to describe how several functions are related by drawing
what is called a “commutative diagram.” One says a diagram of homomor-
phisms is commutative if the homomorphisms obtained by “following different
routes around the diagram” always coincide. For example, the diagram

An

ψn

��

Z

����������������

����
���

���
���

��

An−1

is commutative, because reducing modulo pn and then reducing modulo pn−1

is the same as reducing modulo pn−1 by itself, so that one can follow either
path from Z to An−1 and get the same map. Using the language of commu-
tative diagrams, one can describe a very important property of Zp:

Problem 113 Show that Zp has the following property, which is an instance of what
are usually called universal properties: given any ring R plus homomorphisms R −→ An

(one for each n ≥ 1) such that all the triangles

An

ψn

��

R

����������������

����
���

���
���

��

An−1
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are commutative, there exists a unique homomorphism R −→ Zp from which all the
maps to the An are obtained (i.e., all the obvious triangles commute). In highfalutin’
terms, this says that Zp is the inverse limit of the An.

One can begin the theory from this point, and deduce all the rest from
the universal property; this is the approach in [60]. For ordinary mortals,
however, this may all be a little too abstract, so we go on to obtain a canonical
way to represent the elements of Qp as “power series in p.” This will finally
return us to the picture we sketched in Chapter 1.

We begin with a p-adic integer x ∈ Zp. As we have just shown, there
exists a coherent sequence of integers αn converging to x such that:

• αn ≡ x (mod pn)

• αn+1 ≡ αn (mod pn)

• 0 ≤ αn ≤ pn − 1.

To understand the αn a little better, we write them in base p. As we saw in
Chapter 1, for integers written in base p the process of reducing modulo pn

is very simple: just strip off all but the last n digits.2 This means that the
coherence condition

αn+1 ≡ αn (mod pn)

simply says that the last n digits of both numbers are the same. Going up
the sequence, what we get is

α1 = b0 0 ≤ b0 ≤ p− 1

α2 = b0 + b1p 0 ≤ b1 ≤ p− 1

α3 = b0 + b1p+ b2p
2 0 ≤ b2 ≤ p− 1

α4 = b0 + b1p+ b2p
2 + b3p

3 0 ≤ b3 ≤ p− 1

and so on. But these are just a sequence of partial sums of a series. So we
get a series expansion

x = b0 + b1p+ b2p
2 + · · ·+ bnp

n + · · ·
Of course, to be able to really write that equals sign with a clear conscience,
we must check that the series on the right does converge to x. But that is
easy:

Lemma 4.3.2 Given any x ∈ Zp, the series

b0 + b1p+ b2p
2 + · · ·+ bnp

n + · · ·
obtained as above converges to x.

2Just as in base 10: to get your number modulo 10, keep the last digit only; to get it
modulo 100, keep the last two, and so on.
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Proof: Remember that a series converges to x if and only if the sequence of
its partial sums converges to x. But the partial sums of our series are exactly
the αn, which we already know converge to x (we picked them that way).

To sum up, this gives

Corollary 4.3.3 Every x ∈ Zp can be written in the form

x = b0 + b1p+ b2p
2 + · · ·+ bnp

n + · · ·

with 0 ≤ bi ≤ p− 1, and this representation is unique.

Proof: We have checked all but the uniqueness. To see that, notice that we
already know the αn are unique, and this implies that the bn are too (because
they are just the digits3 in base p).

Now, we need to get all of Qp. But remember that any element of Qp

can be written in the form pmy with y ∈ Zp and m ∈ Z (the interesting case
for us is when m is negative, of course). If we express y as a power series in
p, then multiply by pm, we just get a power series in p where some of the
powers may be negative. So:

Corollary 4.3.4 Every x ∈ Qp can be written in the form

x = b−mp−m + · · ·+ b−1p
−1 + b0 + b1p+ b2p

2 + · · ·+ bnp
n + · · ·

=
∑

n≥−m

bnp
n

with 0 ≤ bn ≤ p− 1 and −m = vp(x). This representation is unique.

Proof: All that remains to be checked is the statement about vp(x), which
is clear.

This lands us right back in Chapter 1, and shows that one can think of
an element of Qp, i.e., a p-adic number, as a power series in p. Or, if we
prefer, we can think of them as “infinitely4 long numbers in base p,” writing
. . . bn . . . b2b1b0.b−1 . . . b−m for the series above.

Problem 114 Let x ∈ Zp. What condition on its p-adic expansion will guarantee
that x is a p-adic unit?

Problem 115 One of the consequences of the fact that Zp is compact is the fact
that every infinite sequence of elements of Zp has a convergent subsequence. Use the
p-adic expansion to show this directly.

3Should they be called pigits? Or pits?
4Allowing for infinite strings of zeros, of course.
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As we noted in passing, the coefficients bn must be taken in a set of
representatives of the classes modulo p. The numbers between 0 and p − 1
are the most obvious choice for these representatives, but there are situations
where other choices are expedient. For example, we will soon prove that Zp

contains the (p − 1)-st roots of unity and that they are all different mod p.
That means those roots of unity, together with 0, form a set of representatives
of the congruence classes mod p, and so might be used as digits. For future
use, then, let’s record the fact that any set of representatives can serve as the
p-adic digits.

Corollary 4.3.5 Choose A ⊂ Zp to be a set of representatives of Z/pZ.
Every x ∈ Qp can be written in the form

x = b−mp−m + · · ·+ b−1p
−1 + b0 + b1p+ b2p

2 + · · ·+ bnp
n + · · ·

=
∑

n≥−m

bnp
n

with bn ∈ A for each n and −n0 = vp(x). This representation is unique.

Proof: Suppose first that x ∈ Zp and look at its image in Zp/pZp = Z/pZ.
By our choice of A there is a unique element b0 ∈ A such that x− b0 ∈ pZp.
Then x− b0 = px1 for some x1 ∈ Zp. As before, there exists a unique b1 ∈ A
such that x1 − b1 ∈ pZp, so that x = b0 + b1p + p2x2 for some x2 ∈ Zp.
Continuing in this way, we obtain for each n:

x = b0 + b1p+ b2p
2 + · · ·+ bnp

n + pn+1xn+1

with x ∈ Zp, and so∣∣x− (b0 + b1p+ b2p
2 + · · ·+ bnp

n
)∣∣ ≤ p−(n+1).

This shows that the series

b0 + b1p+ b2p
2 + · · ·+ bnp

n + · · ·

converges to x.
If x /∈ Zp, write x = p−mx0 with x0 ∈ Zp, expand x0 as before and

multiply by p−m to get our series.

Notice that the elements of A don’t even need to be in Z. Of course, the
resulting expansion depends very strongly on the choice of the set A of digits.
The next problem dramatizes this.

Problem 116 Let p = 3 and let A = {5, 6, 7} be our set of digits. Find the p-adic
expansion of x = 0 with these digits.
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Returning to the “standard” digits, we now have a fairly close analogy
between the real numbers R and the various Qp. Each is obtained from Q
by completing with respect to an absolute value, and together they cover all
possible (nontrivial) absolute values. Any real number x can be expressed
(alas, not uniquely) as a decimal expansion

x = b−n10
n + b−n−110

n−1 + · · ·+ b−110
1 + b0 + b110

−1 + b210
−2 + · · ·

with 0 ≤ bi ≤ 9. Any x ∈ Qp can be expressed (uniquely) as a p-adic
expansion

x = b−np
−n + b−n−1p

−(n−1) + · · ·+ b−1p
−1 + b0 + b1p

1 + b2p
2 + · · ·

with 0 ≤ bi ≤ p − 1. When we work with real numbers, we do so only up
to a certain degree of precision; we need to do the same for p-adic numbers.
In both cases, expansions that are eventually periodic correspond to rational
numbers. Both R and the Qp are locally compact topological fields, but the
topology is very different, because the Qp are totally disconnected.

4.4 What Does Qp Look Like?

It’s natural to wonder whether we can visualize Qp (or Zp, should that be
easier). After all, we have a very nice visual representation for the real
numbers as the points on a line. For a compact subset of R, say the unit
ball [−1, 1], the image is even clearer: a line segment. Our pictures of R
are actually finite unions of blown-up versions of that interval, which we
extrapolate in our minds to the complete line.

Things cannot be that easy for the p-adics, especially due to the fact that
nontrivial ultrametric spaces are totally disconnected but not discrete. It’s
easy to draw a (compact) connected set: an interval or a blob. It’s also easy
to draw a (finite) discrete set: a bunch of points. How do we draw a compact
set whose points are not discretely spaced out but also not connected to each
other?

Rather than giving a complete answer, this section gives a few hints of
what can be done. In particular, all the “proofs” in this section are either
sketches or references. For the details, see [39, §2.2, 2.3], [53, I.2], and espe-
cially [22]. See [37] for a different approach.

Before we start, we should consider what we mean by a visual represen-
tation. The real line reflects not only the topology of R, but also the order
and the metric: bigger numbers are to the right of smaller ones; the distance
between two points in the picture is proportional to the distance in R. One
can even see how adding works along the line by thinking of appending one
segment to the end of another. Achieving all that for Zp is unlikely. Instead,
we will try to find ways to represent Zp that preserve the topology but not
necessarily the metric. That means, in particular, that the distance between
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two points in our images will not be proportional to the p-adic distance. On
the other hand, convergent sequences in Zp will look like convergent sequences
in our pictures.

Remember that two metric spaces X and Y are homeomorphic if there
exists a continuous invertible function f : X −→ Y whose inverse is also
continuous. Homeomorphic sets are “topologically the same.” So what we
are looking for are homeomorphic images of Zp; to be visualizable they should
be contained in the line, in R2, or in R3.

There is one totally disconnected compact set that shows up in many
Real Analysis courses: the Cantor “middle thirds” set. It is created by an
iterative process. Start with the closed interval C0 = [0, 1], and delete its
middle third to get C1 = [1, 13 ] ∪ [ 23 , 1]. Repeat this procedure with both of
the closed intervals to get

C2 =

[
0,

1

9

]
∪
[
2

9
,
1

3

]
∪
[
2

3
,
7

9

]
∪
[
8

9
, 1

]
.

Keep doing this forever, i.e., let

C = C0 ∩ C1 ∩ C2 ∩ . . .

The resulting set C is compact and totally disconnected. See, for example,
[55, §2.44].

The Cantor set has an interesting feature in common with Z2: there is a
hierarchical structure in which the main interval is broken into two subsets,
then each of those into two subsets, and so on. Z2 is like that: every element
is congruent to either 0 or 1 (mod 2), and if you know what it is (mod 2)
there are two choices for what it can be (mod 4), and so on. So maybe you
will not be surprised by our next theorem.

Theorem 4.4.1 Z2 with the 2-adic norm is homeomorphic to the middle
thirds Cantor set C with the norm it inherits from R.

Proof: Just as we can write real numbers as decimal expansions, any real
number y ∈ [0, 1] can be represented as

y =
a1
3

+
a2
32

+ · · ·+ an
3n

+ · · ·

with ai ∈ {0, 1, 2}. (The representation is not unique, as in the case of
decimals, but this can be controlled.) It’s easy to see that y is in the Cantor
set if and only if we can represent y without using the digit 1, i.e., we have
ai ∈ {0, 2} for all i.

On the other hand, any element z ∈ Z2 has a 2-adic expansion

y = b0 + b12 + b22
2 + · · ·+ bn2

n + · · ·
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with bi ∈ {0, 1}. There is a bijection {0, 1} −→ {0, 2}: just multiply by 2.
So we can make a function f : Z2 −→ C like this

f(b0 + b12 + · · ·+ bn2
n + · · · ) = 2b0

3
+

2b1
32

+ · · ·+ 2bn
3n+1

+ · · ·

This is clearly a bijection, and it turns out to be easy to prove that it is
continuous with continuous inverse. See the references for the details.

It’s easy to generalize this observation. It turns out that there are many
“Cantor sets” obtained by tweaking the construction above. They are all
compact, totally disconnected, and “perfect,” which means5 that any point
in the set is the limit of some nonstationary sequence contained in the set.
For each p we can imitate the function above to create a Cantor set that is
homeomorphic to Zp. So we can visualize Zp as a Cantor set contained in R
if we want to. But there is a surprise.

Theorem 4.4.2 For any p, Z2 is homeomorphic to Zp.

This follows at once from a theorem about subsets of R: any compact,
perfect, and totally disconnected subset of R is homeomorphic to the Cantor
set C. See [39, Theorem 2.29].

Of course, Cantor sets are hard to draw too! One gets slightly better
results by going to R2 or R3. The idea is to use “vector digits”: choose a
point xi in Rn for each digit bi ∈ {0, 1, . . . , p− 1}. Choose a base b (so b ∈ Z,
b ≥ 2). Then we can create a function

∞∑
i=0

aip
i �→

∞∑
i=0

1

bi+1
xi.

It can be shown that if the xi are well chosen and b is large enough this is
a homeomorphism. The image of Zp will be a disjoint union of self-similar
sets, i.e., a fractal. For example, one can use this idea to show that Z3 is
homeomorphic to the Sierpinski gasket.

Sage contains an implementation of this. It uses the vertices of a regular
p-gon for the vector digits, so the results are only interesting when p > 2.
The command Zp(5).plot() produces something like Figure 4.1. A better
choice might be to use 0 and the (p− 1)-th roots of unity in C as the vector
digits.

The self-similar structure makes it possible to “see” all of Qp as well. Sup-
pose the image of Zp is a fractal where the full image contains p isomorphic
but smaller subsets, each of which contain p isomorphic but smaller subsets,
etc. We can arrange this so that there will be a scaling factor θ < 1 that
relates each bigger set to its smaller copies. Then to see 1

pZp we scale the

entire thing by θ−1. If we want 1
p2Zp we do that again, and so on. The union

of all of these scaled copies is an image of Qp.

5See, for example, [55, Def. 2.18(h)]. I don’t know what’s so perfect about such sets.



88 4 Exploring Qp

Figure 4.1: Sage’s depiction of Z5

Notice, however, that these are topologically equivalent to Zp and Qp, but
not metrically equivalent. And these images also do not encode the algebraic
structure in any good way. So while they are fun to create and think about,
they do not really help us much when we work in the p-adic world.

4.5 Hensel’s Lemma

The theorem6 known as “Hensel’s Lemma” is probably the most important
algebraic property of the p-adic numbers (and of other fields like Qp, which
are complete with respect to a non-archimedean valuation). It says that in
many circumstances one can decide quite easily whether a polynomial has
roots in Zp.

When we work with polynomials over R, it is often possible to decide on
the existence of roots by looking at signs. For example, x2 + 1 cannot have

6To be honest one should say “theorems”: as we will see, there are several different
ones that go by the same generic name.
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any real roots because x2 +1 > 0 for every x. When we look for roots in Zp,
what replaces sign considerations is reduction mod p.

In order to state our theorem we need to work with the formal derivative
of a polynomial F (X). This makes sense for polynomials with coefficients in
any ring.

Definition 4.5.1 Let F (X) = a0+a1X+a2X
2+ · · ·+anX

n be a polynomial
with coefficients ai ∈ R, where R is a ring. The formal derivative of F (X) is

F ′(X) = a1 + 2a2X + · · ·+ nanX
n−1.

Notice that this definition does not involve any limit processes—or at least
not yet. (We’re saving that for the next chapter.)

Theorem 4.5.2 (Hensel’s Lemma) Let F (X) = a0+ a1X+ a2X
2+ · · ·+

anX
n be a polynomial whose coefficients are in Zp. Suppose that there exists

a p-adic integer α1 ∈ Zp such that

F (α1) ≡ 0 (mod pZp)

and
F ′(α1) �≡ 0 (mod pZp),

where F ′(X) is the formal derivative of F (X). Then there exists a unique
p-adic integer α ∈ Zp such that α ≡ α1 (mod pZp) and F (α) = 0.

Proof: We will show that the root α exists by constructing a Cauchy
sequence of integers converging to it. The idea is essentially what is known
as “Newton’s method” in real analysis. The attentive reader will recognize
an idea that we have been using repeatedly since the first chapter.7

What we will construct is a sequence of integers α1, α2, . . . , αn, . . . such
that, for all n ≥ 1, we have

i) F (αn) ≡ 0 (mod pn),

ii) αn+1 ≡ αn (mod pn).

It is easy to see that such a sequence will be Cauchy (in fact, it is a “coherent
sequence” in our terms above), and that its limit α will satisfy F (α) = 0 (by
continuity) and α ≡ α1 (mod p) (by construction). Conversely, a root α will
determine such a sequence αn. Thus, once we have the αn the theorem will
be proved.

The main assumption in the theorem is that α1 exists. To find α2, we
note that condition (ii) requires that

α2 = α1 + b1p

7I hope. If not, please reread Section 3 of that chapter.
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for some b1 ∈ Zp. Plugging this expression into the polynomial F (X) and
expanding, we get

F (α2) = F (α1 + b1p)

= F (α1) + F ′(α1)b1p+ terms in pn, n ≥ 2

≡ F (α1) + F ′(α1)b1p (mod p2).

(This is easy to check directly, but it is probably best to think of it as a kind
of formal Taylor expansion—see Problem 117.) To show that one can find
α2, we have to show that one can find b1 so that

F (α1) + F ′(α1)b1p ≡ 0 (mod p2).

Now, we know that F (α1) ≡ 0 (mod p), so that F (α1) = px for some x. The
equation then becomes

px+ F ′(α1)b1p ≡ 0 (mod p2),

which gives (after we divide by p)

x+ F ′(α1)b1 ≡ 0 (mod p).

To solve this, notice that F ′(α1) is not divisible by p, and hence is invertible
in Zp, so that we can (and must) take

b1 ≡ −x(F ′(α1))
−1 (mod p).

In fact, we can choose such a b1 in Z, with 0 ≤ b1 ≤ p − 1, and then b1 is
uniquely determined. For this choice of b1, we set α2 = α1 + b1p, which will
have the stated properties.

This shows that one can take the first step: given α1, find α2. But a
careful inspection shows that exactly the same calculation works to get αn+1

from αn. Hence, we can construct the whole sequence, and it is uniquely
determined at each step. This proves the theorem.

Problem 117 Let F (X) be a polynomial with coefficients in a field k of characteristic
zero. Show that the Taylor formula is true for F (X), i.e., that

F (x+ h) = F (x) + F ′(x)h+
1

2!
F ′′(x)h2 +

1

3!
F ′′′(x)h3 + . . .

for any x, h ∈ k.

Problem 118 Check that the calculation given in the proof does indeed work to get
αn+1 from αn and that α is indeed unique.
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We said above that the calculation in Hensel’s Lemma is analogous to
Newton’s Method for numerically approximating roots. Let’s work that out
in detail. In the classical Newton’s method, we start with an initial guess x0

and then compute what we hope are better and better approximations using
the formula

xn+1 = xn − f(xn)

f ′(xn)
.

In our setup, we found αn+1 by setting it equal to αn + pbn, and computed
bn by setting F (αn) = px and bn = −x(F ′(αn))

−1. Plugging everything in
gives

αn+1 = αn − p
F (αn)

p
(F ′(αn))

−1 = αn − F (αn)

F ′(αn)
.

In other words, the sequence produced in Hensel’s Lemma is given by exactly
the same formula.

There are differences between the classical and the p-adic case, of course.
Mostly, Zp is nicer. First of all, we checked that this procedure never leaves
Zp (in other words, the division in the formula can always be performed in
Zp). Next, we checked that in the p-adic case the method always works,
provided only that F ′(α1) �≡ 0 (mod p). This is far from true in the classical
case. Finally, we get an extra bit of information, that the limit α is the
unique root such that α ≡ α1 (mod p), which can be read as saying that the
root we get is not too far from the initial estimate (this too is not true in the
classical case).

It’s worth giving the theorem again in this language:

Theorem 4.5.3 (Hensel’s Lemma) Let F (X) = a0+ a1X+ a2X
2+ · · ·+

anX
n be a polynomial whose coefficients are in Zp. Suppose that there exists

a p-adic integer α1 ∈ Zp such that |F (α1)| < 1 and |F ′(α1)| = 1. Setting, for
each n ≥ 1,

αn+1 = αn − F (αn)

F ′(αn)

defines a convergent sequence whose limit α ∈ Zp is the unique p-adic integer
such that |α− α1| < 1 and F (α) = 0.

The theory of discrete dynamical systems studies what happens when we
take a function G(x) and produce a sequence by computing x1 = G(x0),
x2 = G(x1), etc. That is what we are doing here, so Hensel’s Lemma can be
understood using that theory, which gives another way to prove the sequence
converges and even allows us to investigate how fast the convergence happens.
A (fairly advanced) textbook on that topic is [9].

Problem 119 What happens to the calculation if we do not assume that we have
F ′(α1) �≡ 0 (mod p)? Can you give an example where the theorem fails because this
condition does not hold? (Hint: look back at our games with the polynomial X2 −m
in Chapter 1.)
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It’s worth emphasizing that Hensel’s Lemma is both an existence and
a uniqueness result: there is a root, and it is the only root satisfying the
congruence condition. Both facts are used often.

There are many different versions of this theorem, all of which tend to
be referred to as “Hensel’s Lemma.” The next problem, for example, gives
a version that can be used when the hypothesis on F ′(α1) does not hold. It
turns out to be very useful as well.

Problem 120 Show that in Hensel’s Lemma we can weaken the conditions F (α) ≡ 0,
F ′(α1) �≡ 0 by replacing them with the condition |F (α1)| < |F ′(α1)|2. What should
replace the conclusion that α ≡ α1 (mod p)? Why is this version of Hensel’s Lemma
more general than the first? Can you give an example where this version can be used
but the original version cannot?

(Hint: Instead of using congruences, start from the formula in Theorem 4.5.3 and
prove that the sequence converges.)

Because our proof is completely explicit, it is not hard to implement it
on a computer. In gp, there is a function padicappr(f(x),a) that finds a
root of the polynomial f(x) close to the p-adic number a. So, for example,
we can find a 2-adic root of x2 + x+ 6 close to x = 0 like this:

gp > padicappr(x^2+x+6,0+O(2^20))

%1 = [2 + 2^2 + 2^4 + 2^9 + 2^10 + 2^12 + 2^13 + 2^15

+ 2^18 + 2^19 + O(2^20)]~

The result is a column vector (the tilde means “transpose”, so it’s printed as
a row) with the p-adic roots of the polynomial that are congruent to a mod
p. In this case there is only one root. The algorithm can handle cases where
we need Problem 120:

padicappr(x^2-17,1+O(2^20))

%1 = [1 + 2^3 + 2^5 + 2^6 + 2^7 + 2^9 + 2^10 + 2^13 +

2^16 + 2^17 + O(2^20), 1 + 2 + 2^2 + 2^4 + 2^8 +

2^11 + 2^12 + 2^14 + 2^15 + 2^18 + 2^19 + O(2^20)]~

In this case two roots are found, one congruent to 1 (mod 8) and the other
congruent to 7 (mod 8).

In Sage, we need to first create Q2 and the polynomial ring Q2[x] in which
g = x2 + x+ 6 is going to live

K=Qp(2)

R=PolynomialRing(K,’x’)

x=R.gen(0)

g=x^2+x+6

print g

The output is

(1 + O(2^20))*x^2 + (1 + O(2^20))*x + 2 + 2^2 + O(2^21)
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So we have the right polynomial over Q2. We know 2 is an approximate root.
To apply Hensel’s Lemma we proceed with

a=g.hensel_lift(2)

print a

print a^2+a+6

That gives (line breaks added for clarity as usual)

2 + 2^2 + 2^4 + 2^9 + 2^10 + 2^12 + 2^13

+ 2^15 + 2^18 + 2^19 + O(2^21)

O(2^21)

For the square root of 17, we see slightly different behavior in Sage.

K=Qp(2)

R=PolynomialRing(K,’x’)

x=R.gen(0)

g=x^2-17

a=g.hensel_lift(1)

print a

gives

1 + 2^3 + 2^5 + 2^6 + 2^7 + 2^9 + 2^10 + 2^13 + 2^16 + O(2^17)

In other words, Sage gives us only one root. Asking for a=g.hensel_lift(3)
gets us the other one.

4.6 Using Hensel’s Lemma

This section considers two nice applications of Hensel’s Lemma. The first is
to determine which roots of unity can be found in Qp. The second finds all
the squares in Qp.

Recall that an element ζ of a field is called an m-th root of unity if ζm = 1;
it is called a primitive m-th root of unity if in addition ζn �= 1 for 0 < n < m.
In R, there are only two roots of unity, 1 and −1. On the other hand, we have
already checked (in a problem long ago. . . ) that the equation X2+1 = 0 has
a root in Q5, and it is easy to see that its root will be a fourth root of unity.
So it is interesting to try to determine which roots of unity exist.

Hensel’s Lemma finds roots that are in Zp, so let’s notice that any root
of unity must be a p-adic integer. That’s easy: since |ζ|m = |ζm| = 1
and absolute values are positive real numbers, any root of unity must have
absolute value 1.

To use Hensel’s Lemma, we need a polynomial. Since we are looking for
roots of unity, we will use F (X) = Xm − 1. Notice that F ′(X) = mXm−1.
The value F ′(λ) = mλm−1 will be congruent to zero modulo p if either p
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divides λ (in which case λ will not satisfy λm − 1 ≡ 0 anyway, so this isn’t
a problem) or p divides m. Thus, the second condition in the theorem will
hold provided m is not divisible by p. For the first condition, we need to find
an approximate root, and it is actually quite easy to decide when that can
be done:

Problem 121 Fix a prime p and a number k not divisible by p. Show that there
exists an integer α1 such that αk

1 ≡ 1 (mod p) but α1 �≡ 1 (mod p) if and only if
gcd(k, p − 1) > 1. Show that for any such α1 the least positive integer m such that
αm
1 ≡ 1 must be a divisor of p− 1. (Hint: Z/pZ is a field, and the set of its invertible

elements is a cyclic group.)

Then Hensel’s Lemma yields:

Proposition 4.6.1 For any prime p and any positive integer m not divisible
by p, there exists a primitive m-th root of unity in Qp if and only if m divides
p− 1.

Problem 122 Prove the proposition. (You will need both parts of Hensel’s Lemma:
the part that finds a root and the part that says that the root satisfying a certain
condition is unique.)

If m divides p − 1, then any m-th root of unity is also a (p − 1)-st root
of unity, so that the upshot is that the roots of unity in Qp of order prime
to p are exactly the (p − 1)-st roots. This determines all the roots of unity
in Qp, except for the possibility of there existing pn-th roots of unity in Qp.
These are harder8 to analyze by this method. It turns out, as we will show
later, that they are not in Qp (except when p = 2, in which case ±1—but
no fourth roots of 1—do belong to Q2). Hence, we have determined all the
roots of unity belonging to Qp, though we will only be able to prove that this
is the case later on. (If you can’t wait, look at page 144.)

Problem 123 Show that the set of roots of unity in Qp is a subgroup of the group
Z×

p of p-adic units. Show that the set of (p−1)-st roots of unity in Qp is a cyclic group
of order (p − 1). (The main content of the last statement is that there are (p − 1)
p-adic roots of the polynomial Xp−1 − 1. Use Hensel’s Lemma.)

Another interesting application is to determine the squares in Qp. This
is something we essentially did in Chapter 1. First we do the p-adic units:

Proposition 4.6.2 Let p �= 2 be a prime, and let b ∈ Z×
p be a p-adic unit.

If there exists an α1 ∈ Zp such that α2
1 ≡ b (mod pZp), then b is the square

of an element of Z×
p .

8But not impossible—see [18, Theorem 3.1].
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Proof: Apply Hensel’s Lemma to X2−b, and notice that p �= 2 and b ∈ Z×
p

are enough to make sure that 2α1 �≡ 0 (mod p).

Then we extend to all of Qp, by noticing that any x ∈ Qp can be written
as x = pvp(x)x′ with x′ ∈ Z×

p (in fact, that is pretty much the definition of
vp(x)). What the next result says is that x will be a square if vp(x) is even
and x′ is a square.

Corollary 4.6.3 Let p �= 2 be a prime. An element x ∈ Qp is a square if
and only if it can be written as x = p2ny2 with n ∈ Z and y ∈ Z×

p a p-adic
unit. The quotient group Q×

p /(Q
×
p )

2 has order four. If c ∈ Z×
p is any element

whose reduction modulo p is not a quadratic residue, then the set {1, p, c, cp}
is a complete set of coset representatives.

Proof: The first statement is essentially obvious (because powers of p and
p-adic units “do not mix”). Applying the proposition and standard properties
of quadratic residues and non-residues gives the rest.

It is interesting to compare this result to its analogue in R, which says that
a real number is a square if it is positive, and that the quotient R×/(R×)2

is of order two, with coset representatives {1,−1}. From this point of view,
the corollary can be thought of as a p-adic version of the “rule of signs” for
multiplying real numbers.

We still need to consider p = 2. For that, we need to use the stronger
form of Hensel’s Lemma given in Problem 120, since F ′(α1) = 2α1 will of
course always be divisible by 2.

Problem 124 Show that if b ∈ Z2, and b ≡ 1 (mod 8Z2) (so that in particular b is
a 2-adic unit), then b is a square in Z2. Conversely, show that any 2-adic unit which
is a square is congruent to 1 modulo 8. Conclude that the group Q×

2 /(Q
×
2 )2 has order

8, and is generated by the classes of −1, 5, and 2, so that a complete set of coset
representatives is {1,−1, 5,−5, 2,−2, 10,−10}.

4.7 Hensel’s Lemma for Polynomials

In this section we prove another form of Hensel’s lemma, more general than
the first. The idea is to interpret the first form of Hensel’s Lemma as saying
that if a polynomial factors modulo p and one of the factors is of the form
(X − α), so that

f(X) ≡ (X − α)g(X) (mod p),

then (under some extra condition) there is a similar factorization in Zp[X ].
The obvious generalization is to consider arbitrary factorizations. The con-
dition f ′(α) �≡ 0 (mod p) says that α is not a double root mod p, that is,
that the second factor g(X) is not divisible by (X − α). For general factor-
izations, then, the assumption should be that the factors are relatively prime
(as polynomials) modulo p. Let’s make this precise:
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Definition 4.7.1 Let g(X) and h(X) be polynomials in Zp[X ]. Let ḡ(X) and
h̄(X) ∈ Fp[X ] be the polynomials obtained by reducing the coefficients modulo
p. We say g(X) and h(X) are relatively prime modulo p if gcd(ḡ, h̄) = 1 in
Fp[X ], or, equivalently, if there exist polynomials a(X), b(X) ∈ Zp[X ] such
that

a(X)g(X) + b(X)h(X) ≡ 1 (mod p),

where we understand congruence coefficient-by-coefficient, i.e., we say two
polynomials are congruent modulo p if each coefficient of one is congruent
modulo p to the corresponding coefficient of the other.

Problem 125 Is being relatively prime modulo p weaker or stronger than being rela-
tively prime in Zp[X]?

The next theorem says that this idea does work.

Theorem 4.7.2 (Hensel’s Lemma for Polynomials) Let f(X) ∈ Zp[X ]
be a polynomial with coefficients in Zp, and assume that there exist polyno-
mials g1(X) and h1(X) in Zp[X ] such that

i) g1(X) is monic,9

ii) g1(X) and h1(X) are relatively prime modulo p, and

iii) f(X) ≡ g1(X)h1(X) (mod p) (understood coefficient-by-coefficient).

Then there exist polynomials g(X), h(X) ∈ Zp[X ] such that

i) g(X) is monic,

ii) g(X) ≡ g1(X) (mod p) and h(X) ≡ h1(X) (mod p), and

iii) f(X) = g(X)h(X).

Proof: This is just like the original version: we start from the “approxi-
mate” factorization, and improve the approximation more and more until, in
the limit, we get a factorization over Zp. Notice that requiring g(X) to be
monic implies that deg g(X) = deg g1(X).

Let d be the degree of f(X), and m be the degree of g1(X) (remember
that g1 is monic). Then we can assume that deg(h1) ≤ d − m (it could be
less, because the top coefficient of f could be divisible by p). We want to
construct two sequences of polynomials gn(X) and hn(X) such that

i) each gn is monic and of degree m,

ii) gn+1 ≡ gn (mod pn) and hn+1 ≡ hn (mod pn), and

iii) f(X) ≡ gn(X)hn(X) (mod pn).

9This means that the coefficient of the term of highest degree is one.
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(As always, we take the congruences coefficient-by-coefficient.) If we can find
such sequences, we are clearly done, since going to the limit gives the desired
polynomials g(X) and h(X). In other words, the coefficients of, say, g(X)
will be the limits of the corresponding coefficients of the gn(X). (Can you
see why it’s important to know that the degrees of the gn are not changing?)

We already have g1(X) and h1(X); let’s describe how to get g2(X) and
h2(X). Since the g’s are to be congruent, we must have

g2(X) = g1(X) + p r1(X)

for some polynomial r1(X) ∈ Zp[X ]; similarly, we must have

h2(X) = h1(X) + p s1(X).

To show that g2 and h2 exist, we simply have to show that it is possible to
find r1 and s1 such that the desired conditions are satisfied. For that, we
need to solve the equation

f(X) ≡ g2(X)h2(X) (mod p2),

which we expand to

f(X) ≡ (g1(X) + p r1(X))(h1(X) + p s1(X)) (mod p2).

Multiplying out, we get

f(X) ≡ g1(X)h1(X) + p r1(X)h1(X) + p s1(X)g1(X) + p2 r1(X)s1(X)

≡ g1(X)h1(X) + p r1(X)h1(X) + p s1(X)g1(X) (mod p2).

Now remember that f(X) ≡ g1(X)h1(X) (mod p), so that we have

f(X)− g1(X)h1(X) = p k1(X)

for some k1(X) ∈ Zp[X ]. Rearranging, we get

p k1(X) ≡ p r1(X)h1(X) + p s1(X)g1(X) (mod p2).

Dividing through by p, we get

k1(X) ≡ r1(X)h1(X) + s1(X)g1(X) (mod p).

This is the equation we need to solve to determine r1 and s1.
The first step towards doing so is to recall that we have assumed that g1

and h1 are relatively prime modulo p. This means that we know that there
exist a(X), b(X) ∈ Zp[X ] such that a(X)g1(X) + b(X)h1(X) ≡ 1 (mod p).
Consider, then, the two polynomials

r̃1(X) = b(X)k1(X) and s̃1(X) = a(X)k1(X).
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These will almost do the trick: they clearly will make all the congruence
conditions true. The only problem is that we have no control over the degree
of r̃1(X); if that degree is bigger than m, then g1(X) + pr̃1(X) will not be
monic of degree m.

To remedy that, only a slight change is needed. We already know that

r̃1(X)h1(X) + s̃1(X)g1(X) ≡ k1(X) (mod p).

Now divide r̃1(X) by g1(X), and let r1(X) be the remainder:

r̃1(X) = g1(X)q(X) + r1(X).

And now we know that deg r1(X) < deg g1(X). If we set

s1(X) = s̃1(X) + h1(X)q(X),

it all works out:

r1(X)h1(X) + s1(X)g1(X)

≡ (r̃1(X)− g1(X)q(X))h1(X) + (s̃1(X) + h1(X)q(X))g1(X)

≡ r̃1(X)h1(X)− g1(X)h1(X)q(X) + s̃1(X)g1(X) + g1(X)h1(X)q(X)

≡ r̃1(X)h1(X) + s̃1(X)g1(X)

≡ k1(X) (mod p),

so that our congruence conditions are satisfied, and the fact that the degree
of r1(X) is smaller than the degree of g1(X) is enough to guarantee that
g1(X) + pr1(X) is monic, and we are done.

This shows that g2 and h2 exist. Since they are congruent to g1 and h1

modulo p, they are also relatively prime modulo p, so that there will be no
difficulty in going on to the next step.

Now we repeat the argument changing the indices and exponents to find
g3 and h3. It is an easy exercise to show that this can always be done, and
that produces the sequence whose convergence proves the theorem.

Problem 126 To make sure you understand that final twist in the proof, work out
the details for the following example. Let p = 2, and consider the polynomial f(X) =
2X2 +X + 2. Modulo 2, this is easy to factor: just take g1(X) = X and h1(X) = 1.
Follow the steps in the proof to find g2(X) and h2(X), and discuss what happens if
we try to use r̃1 and s̃1 instead of r1 and s1.

Problem 127 Work out the construction of g3 and h3 in full detail, to convince
yourself that you understand the process.

Problem 128 Fill in the last step of the proof by giving a full proof, by induction,
that the gn and hn exist for every n.
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The reader will have noticed that this argument is essentially identical
to the one we gave for the first version of Hensel’s Lemma. It might be
interesting to check whether one can formulate a stronger version that is
analogous to the one in Problem 120. That would likely involve the p-adic
valuation of the resultant of the two approximate factors.

Both Sage and gp implement this. In Sage, just create a polynomial
over Qp as above and use g.factor() or factor(g). In gp the command is
factorpadic(g,2,20), where the second argument tells gp that p = 2 and
the third says to work with precision +O(2^20).

4.8 Local and Global

One of the consequences of Hensel’s Lemma is that, given a polynomial with
integer coefficients, it is usually not too hard to decide whether it has roots
in Zp, since it is enough to find roots modulo p. The “same” is true for R,
where we can usually decide whether there are roots by sign considerations
(for example, if the polynomial has different signs at x = a1 and x = a2,
there must be a root between these two numbers).

Suppose, however, that we want to look for roots in Q. At least this much
is easy to see: if there are roots in Q, then there are also roots in Qp for every
p ≤ ∞ (i.e., in all the Qp and in R). Hence we can certainly conclude that
there are no rational roots if there is some p ≤ ∞ for which there are no
p-adic10 roots. For example:

• X2 + 1 = 0 has no roots in R, hence has none in Q.

• X2 − 2 = 0 has no roots in Q2, hence has none in Q.

• The only solution of X2 − 37Y 2 = 0 in Q5 is X = Y = 0, so that is also
the only solution in Q.

These are easy examples, of course, but they do point the way.

The way to think about this situation is following Hensel’s original anal-
ogy: the p-adic fields (including R) are analogous to fields of Laurent ex-
pansions, and correspond to “local” information “near” the prime p. The
fact that roots in Q automatically are roots in Qp for every p means that a
“global” root is also a “local” root at each p, i.e., “locally everywhere.”

Much more interesting would be a converse: that “local” roots could be
“patched together” to give a “global” root. This would be very useful, since
deciding on the existence of local roots is very easy. Here is an (easy) example
of such a converse.

10Here, of course, “∞-adic” means “real.” In general, this section will constantly refer
to all the absolute values taken together, and thus will constantly use the convention that
the usual absolute value corresponds to the “prime” ∞, so that we will write Q∞ = R for
the real numbers.
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Proposition 4.8.1 A number x ∈ Q is a square if and only if it is a square
in every Qp, p ≤ ∞.

Proof: This is really very easy: for any x ∈ Q, we have

x = ±
∏
p<∞

pvp(x).

If x is a square at infinity, it is positive. If it is a square at a prime p, then
vp(x) is even. It follows (just write out the prime factorization) that such an
x is a square in Q.

This very important idea goes back to Hensel, but it is known as the
“Hasse principle” because it was Hensel’s student Helmut Hasse who proved
the first really important theorem along those lines. We could state the
principle like this: putting together local information at all p ≤ ∞ should
give global information. Exactly in what sense this is true (if it is) depends
on each specific problem, but there are many situations in which this principle
plays a central role.

A very interesting example of this sort of method is the theory of dio-
phantine equations, in which we are given an equation for which we want
to find solutions in Q, or at least to decide if any exist. This is in general
an extremely difficult (and absolutely fascinating) subject, but in some cases
the question can be decided by the local-global game. Consider, for example,
the equation

X2 + Y 2 + Z2 = 0.

One sees at once that the only solution is the trivial one X = Y = Z = 0,
because this is the only solution in R (and any other solution in Q would
also be a solution in R). Similarly, it doesn’t take too much to see that the
equation

X2 + Y 2 − Z2 = 0

does have a solution in Q, and therefore in all of the Qp.
What one would hope for in this context is that one would have a perfect

correspondence between “global” properties and “local” properties that hold
“locally everywhere.” In this example, it is clear that if a global solution (i.e.,
one in Q) exists, then local solutions exist for all primes (of course, since the
solution in Q belongs to all the Qp). One would also like the converse to be
true, i.e., that the lack of a global solution could always be detected locally.
To put it in other words, one would like it if the existence of a local solution
for every p would guarantee the existence of a global solution. This is far
from clear, however, because the local solutions in each Qp live in different
fields, and there seems to be no compelling reason why they should “glue
together” somehow to provide a solution over Q.

For equations like the ones above (of degree 2, homogeneous), a few ex-
periments begin to convince us that the hope is indeed plausible, because for
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every equation that does not have solutions one can quickly find a prime so
that the equation has no solutions in Qp:

i) X2 + Y 2 + Z2 = 0 has no nontrivial solutions in R;

ii) 3X2 + 2Y 2 − Z2 = 0 has no nontrivial solutions in Q3 (check!);

iii) X2 − 3Y 2 = 0 has no nontrivial solutions in Q7 (check!).

This suggests the following bold statement:

Local-Global Principle: The existence or non-existence of solutions in Q
(global solutions) of a diophantine equation can be detected by studying, for
each p ≤ ∞, the solutions of the equation in Qp (local solutions).

Of course, as stated, this is too vague to be a “theorem,” but the local-
global principle has proved to be a valuable guide for the study of diophantine
problems. What it has suggested is a “plan of attack” on any given equation
(or type of equation): first think locally, then try to put together the local
information to obtain global information.

The most näıve version of the principle would be the one we suggested
above: the statement that an equation has solutions in Q if and only if it has
solutions in all the Qp. This sounds wonderful, since it says that “solvable
locally everywhere” is the same as “solvable globally.” Unfortunately, it is
false:

Problem 129 Show that the equation

(X2 − 2)(X2 − 17)(X2 − 34) = 0

has a root in Qp for all p ≤ ∞, but has no roots in Q.

Problem 130 (This is quite hard.) Show that X4 − 17 = 2Y 2 is solvable locally
everywhere, but is not solvable in Q. (The existence of local solutions is easily checked;
the non-existence of rational solutions is the hard part.)

One might try to salvage the principle in various ways, for example:

Problem 131 Decide whether it is true that a polynomial in one variable with co-
efficients in Z is irreducible in Q[X] if and only if it is irreducible in Qp[X] for every
p ≤ ∞. (Recall that a polynomial is irreducible if it does not factor into a product of
polynomials of lower degree.)
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Finally, here is an example where the principle is gloriously successful:

Theorem 4.8.2 (Hasse–Minkowski) Let

F (X1, X2, . . . Xn) =
∑
i,j

cijXiXj ∈ Q[X1, X2, . . . Xn]

be a quadratic form (that is, a homogeneous polynomial of degree 2 in n
variables). The equation

F (X1, X2, . . . Xn) = 0

has non-trivial solutions in Q if and only if it has non-trivial solutions in Qp

for each p ≤ ∞.

The proof is just a little out of our reach in this book, since it requires
a more thorough study of quadratic forms and their properties than we are
prepared to spend time on. A very good account of the proof can be found
in [60], where it is the culmination of the first half of the book.

One should notice that this theorem completely solves the problem of
deciding whether a quadratic form has non-trivial zeros, since the local ques-
tion can be decided rather easily in each case. In fact, for each prime p, an
appropriate version of Hensel’s Lemma shows that there is a finite proce-
dure for deciding whether the equation is solvable in Qp (so that a computer
could do it). It is a little worrying that there are infinitely many primes to
consider, but it turns out that the whole problem can be sufficiently broken
down so that one gets a finite procedure for checking for local solutions at
all primes, so that (given the Hasse–Minkowski theorem) the whole problem
gets reduced to a finite procedure.

In lieu of a proof of the Hasse–Minkowski theorem (or that one can check
all primes with a finite amount of work), it might be fun to work out in detail
an example of its application. So let a, b, and c be rational numbers, and
consider the equation

aX2 + bY 2 + cZ2 = 0.

We want to use the Hasse–Minkowski theorem to settle completely when it
is that such an equation has non-trivial rational solutions (“non-trivial” just
means “other than X = Y = Z = 0”). We will do this by checking what
conditions on a, b, and c are needed so that the equation has a nontrivial
solution in Qp for all p. It will take less than four pages, i.e., a finite amount
of work.

To start off, if any of a, b, and c is equal to zero, there certainly is a
nontrivial solution (with one variable non-zero, and the other two equal to
zero). Next, we can clear denominators to make a, b, and c integers. We
can also assume that they have no common factors (which we could cancel).
Finally, we can assume that a, b, and c are square-free (i.e., they have no
factors which are squares), by absorbing any square factor into one of the
unknowns.
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Problem 132 Suppose that a = a′n2. Check that any rational solution (x, y, z) of
aX2+bY 2+cZ2 = 0 corresponds to a rational solution (nx, y, z) of a′X2+bY 2+cZ2 =
0. Explain why this means that we can assume that a, b, and c are square-free.

Problem 133 We have already observed that we may assume that a, b, and c have
no common factors. Show that in fact we can go farther, and assume that no two of
these three numbers have any common factors. In other words, we may assume that
the product abc is square-free.

Very well, we are set up now as follows: we have an equation

aX2 + bY 2 + cZ2 = 0

where a, b, and c are pairwise relatively prime integers with no square factors.
What Hasse–Minkowski tells us is that we can decide whether this equation
has non-trivial rational solutions by looking at each Qp in turn. So let’s:

1. Suppose p = ∞, so that Qp = R. Then it’s all about signs: as long
as we can get something positive, we can take a square root to find a real
solution. So the equation will have a non-trivial solution exactly when a, b,
and c are not all positive or all negative. (If you have any doubts, work it
out!)

2. Suppose p is an odd prime that does not divide any of the
coefficients. We’ll need to use Hensel’s Lemma, so the first step towards a
solution in Qp is to study the solutions modulo p.

Proposition 4.8.3 Let p be an odd prime, and let a, b, c be pairwise rela-
tively prime integers not divisible by p. Then there exist integers x0, y0, and
z0, not all divisible by p, such that

ax2
0 + by20 + cz20 ≡ 0 (mod p).

Proof: This is a special case of a famous theorem due to Chevalley and
Warning. It could be proved more directly, but we give a proof that works in
the general case, which makes it somehow the “right” proof. It also involves
a neat trick worth knowing.

As x, y, and z run over the integers between 0 and p− 1 (which, since we
are working modulo p, is all we need to worry about), there are p3 different
triples (x, y, z). Let’s try to count how many of these are solutions of

aX2 + bY 2 + cZ2 ≡ 0 (mod p).

For that, we use a dastardly trick: notice that

(ax2 + by2 + cz2)p−1 ≡
⎧⎨
⎩
1 (mod p) if (x, y, z) is not a solution

0 (mod p) if (x, y, z) is a solution
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This is because, by Fermat’s Little Theorem, we have np−1 ≡ 1 (mod p)
whenever n �≡ 0 (mod p). This means that if we let N be the total number
of non-solutions, then

N ≡
∑

(x,y,z)

(ax2 + by2 + cz2)p−1 (mod p),

where each of x, y, and z ranges through the numbers from 0 to p− 1. Now,
when we expand these powers, we are going to get an equation representing
N as a sum of a bunch of sums, each of which is of the form∑

(x,y,z)

αx2iy2jz2k

with 2i+2j+2k = 2(p−1) and α ∈ Z. We claim that each one of these sums
is zero modulo p. To see this, note that we must certainly have that one of
2i, 2j, and 2k is less than p− 1 (if they were all ≥ p− 1, then the sum would
be ≥ 3(p− 1), which it isn’t). Say 2i < p − 1 (the argument is the same in
the other cases). Then we can rewrite our sum as

∑
(y,z)

(
αy2jz2k

∑
x

x2i

)
.

Now we invoke a little lemma:

Lemma 4.8.4 Let n be an integer, 0 ≤ n < p− 1. Then

p−1∑
x=0

xn ≡ 0 (mod p).

Assuming the lemma for now (the proof will come later), we see that
the inner sum in the last formula is always congruent to zero modulo p. It
follows that N ≡ 0 (mod p). In other words, the number of triples that are
not solutions is divisible by p. Since the total number of triples is p3, we also
get that the number of triples that are solutions is divisible by p.

But we already know one solution: x = y = z = 0! In other words, the
number of triples which are solutions is at the same time divisible by p and
at least 1. That means there must be more than one solution, which means
there must be a solution (x, y, z) where not all three components are divisible
by p, which is what we claimed.

To be completely happy, we just need to prove the lemma, which11 we’ll
let the reader have some fun with.

11You saw this coming, no?
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Problem 134 Prove the lemma. (Hint: remember that the integers modulo p form
a field, with all sorts of nice properties. Note: if n = 0, the sum seems to refer to 00;
read this as simply a synonym for 1.) What is the sum congruent to for other exponents
n?

What we know, then, after the proposition, is that when p � 2abc there
always are “good” solutions (i.e., solutions that are “non-trivial mod p”) of
the congruence

aX2 + bY 2 + cZ2 ≡ 0 (mod p).

Once we know that, it’s easy to settle the question in Qp for those primes
p: let (x0, y0, z0) be a “solution mod p” as in the proposition; we know x0,
y0, and z0 are not all divisible by p; suppose p � x0 (otherwise, permute the
names). Look at the equation

aX2 + by20 + cz20 = 0

(in other words, replace the variable Y by the integer y0, and similarly Z
by z0). This is now a polynomial in one variable, and we know that x0 is
a solution modulo p. Given our assumptions, Hensel’s Lemma now tells us
that there is an x ∈ Zp which is a root of this equation. But then we’ve done
it: (x, y0, z0) is a non-trivial solution in Qp of the original equation. The
upshot:

Corollary 4.8.5 If p is an odd prime that does not divide abc, then the
equation

aX2 + bY 2 + cZ2 = 0

has a non-trivial solution in Qp.

Problem 135 Work out the details of the application of Hensel’s lemma which we
breezed by above.

Problem 136 At which points in the above argument did we use the assumption that
p � abc?

That handles almost all the primes, but we still have to look at what
happens when p = 2 and when p divides one of the coefficients (we agreed
above that we can assume that no one prime divides two of the coefficients).

3. Suppose p = 2, and a, b, and c are all odd. In this case, we
will need some special condition to guarantee that there are solutions in Q2.
Suppose a nontrivial solution (x, y, z) with x, y, z ∈ Q2 exists. We can clearly
assume that max{|x|2, |y|2, |z|2} = 1, i.e., that x, y, and z are 2-adic integers
which are not all in 2Z2. (Given a solution, multiply by a positive or negative
power of 2 to get this to hold.)

Reducing mod 2Z2, and remembering that the coefficients are all odd, we
see that exactly two of x, y, and z will be 2-adic units, and the other will be
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divisible by 2. Suppose that y and z are units. The square of a 2-adic unit
always belongs to 1+ 4Z2, while the square of an element in 2Z2 will belong
to 4Z2. So, looking mod 4Z2, we get that

b+ c ≡ 0 (mod 4).

If instead of x being the non-unit, either y or z is, then we get a similar
condition involving two other coefficients of the equation.

In other words, if p = 2, 2 � abc, and there is a solution in Q2, then the
sum of two of the coefficients of the equation must be divisible by 4.

It turns out that this is also sufficient:

Problem 137 Suppose a, b, and c are all odd, and the sum of two of them is divisible
by 4. Show that the equation

aX2 + bY 2 + cZ2 = 0

has a non-trivial solution in Q2. (Hints: You need to use the result of Problem 120.
Look for solutions modulo 8. Notice that a + b ≡ 0 (mod 4) breaks into two cases
when you work mod 8.)

4. Suppose p = 2, and one of the coefficients is even. We’ll leave
this and the next one to the reader:

Problem 138 Suppose p = 2, and one of a, b, and c is even. Show that if there
exists a non-trivial solution of aX2 + bY 2 + cZ2 = 0 in Q2, then either the sum of two
coefficients or the sum of all three coefficients will be divisible by 8. Show that this
condition is also sufficient to guarantee that a non-trivial solution exists.

5. Suppose p �= 2 and a is divisible by p.

Problem 139 Suppose p �= 2 and a is divisible by p. Show that if there exists a
non-trivial solution of aX2 + bY 2 + cZ2 = 0 in Qp, then there must exist an integer
r ∈ Z such that

b+ r2c ≡ 0 (mod p).

(Another way of putting this is: −b/c is a quadratic residue modulo p.) Show that this
condition is also sufficient.

Putting all of this information together, we now have conditions that
guarantee, for each p, that there are nontrivial solutions in Qp. Using the
Hasse–Minkowski Theorem, we get:

Proposition 4.8.6 Let a, b, and c be pairwise relatively prime square-free
integers. The equation

aX2 + bY 2 + cZ2 = 0

has non-trivial solutions in Q if and only if the following conditions are sat-
isfied:
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i) a, b, and c are not all positive or all negative.

ii) For each odd prime dividing a, there exists an integer r ∈ Z such that
b+ r2c ≡ 0 (mod p), and similarly for the odd primes dividing b and c.

iii) If a, b, and c are all odd, then there are two of them whose sum is
divisible by 4.

iv) If a is even, then either b+ c or a+ b+ c is divisible by 8 (and similarly
if b or c is even).

A direct proof (without using Hasse–Minkowski) of this special case of the
theorem can be found in chapters 3–5 of [15]. The strategy of the proof is to
use conditions (ii), (iii), and (iv) and Minkowski’s “geometry of numbers,”
to show that one can find a solution (x, y, z) that satisfies the inequality

|a|x2 + |b|y2 + |c|z2 < 4|abc|.

(Here | | = | |∞ is the “usual” absolute value.) This equation defines an
ellipsoid in R3, and the number of triples (x, y, z) of integers satisfying this
condition is finite, so that we can easily run through all of them (on a com-
puter, probably) and find a solution. In other words, Cassels’ argument in
[15] goes further than merely giving an existence result: it actually gives us
the means to find the solution.

Problem 140 The reader who was very attentive to the wording of that last para-
graph may have noticed one other feature of Cassels’ proof that is worth remarking
on: condition (i) is never used in the proof. This is rather surprising. For example, it
means that if we know that the equation has a solution in Qp for every prime p < ∞,
then it has a solution in R. Or, in more elementary and more dramatic terms, it says
that three integers a, b, and c satisfying conditions (ii), (iii), and (iv) cannot all have
the same sign. Would you have guessed that something like that was true?

Can you speculate about what might be going on here? (Comment: these are deep
waters, but it’s always worth the effort to think a little about things like this.)

For equations of degree higher than two, it is unlikely that anything as
strong as the Hasse–Minkowski Theorem can be true. In fact, in many cases
one has counterexamples (see Problem 130 for one) that show that one may
have local solutions everywhere and still have no global solutions. Still, even
in situations where this strong form of the local-global principle is false,
the basic idea that getting local information everywhere should give global
information often remains useful. In the case of cubic equations, for instance,
it is not true that the existence of local solutions everywhere guarantees the
existence of global solutions; nevertheless, there are still strong connections
(or at least one suspects so). For example, there is a conjecture, due to Birch
and Swinnerton-Dyer, that says, when looked at from this angle, that the
quantity of global solutions can be determined in terms of local information.
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The Birch and Swinnerton-Dyer conjecture is widely believed to be true,
and offers one example of how the local-global principle remains one of the
fundamental ideas of modern number theory.



5 Elementary Analysis in Qp

The field of p-adic numbers is in many ways analogous to the field of real
numbers: it is a field with an absolute value, and it is complete with respect
to the metric given by that absolute value. In fact, the similarities go deeper:
R and the variousQp are completions of Q, hence containQ as a dense subset;
they are all locally compact; none of them are algebraically closed.

These similarities all suggest that much of what is usually done in R can
be extended to Qp. In particular, the basic structures of the calculus should
all extend. The goal of this chapter is to examine what form these basic ideas
take in the p-adic context. The central theme will be the theory of infinite
series, which we will use to construct a number of different functions on Qp

which imitate the classical transcendental functions.

The reader will probably remark on the fact that our “elementary anal-
ysis” focuses on power series, touching only lightly on the derivatives and
integrals that played such a large role in everyone’s calculus classes. As far as
derivatives are concerned, the main reason for this is simply that derivatives
are much less interesting in a p-adic context than they are in real analysis.
In particular, the fact that the mean value theorem does not hold means that
simply working with differentiable functions will usually not be good enough.
Functions defined by power series are nicer.

Integration is a different story entirely. It is certainly possible to construct
a p-adic theory of integration (indeed, more than one such theory). But things
get complicated. We give a brief sketch of the situation in Section 5.3.

Before we go on, we should also note that while there are many similar-
ities between R and the Qp, there are also rather large differences; noticing
them at this point will prepare us for the changes to come later. To begin
with, R is an ordered field: there is a well-defined notion of “bigger than”
that is nicely compatible with the operations. This is certainly not true for
the Qp. Secondly, R is archimedean (more precisely, the absolute value on
R is), while the Qp are all non-archimedean. This means, in particular, that
R is connected as a metric space, while Qp, as we saw above, is totally dis-
connected. It follows, for example, that there is nothing in Qp analogous to
an interval in R. Nor is there any analogue of the notion of a curve, because
any continuous function [0, 1] −→ Qp will be constant. It is these contrasts
that will cause most of the differences between real and p-adic analysis.
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5.1 Sequences and Series

We begin by studying the basic convergence properties of sequences and
series. The most important fact has already been noted: Qp is a complete
field, so that every Cauchy sequence converges. Furthermore, notice that all
of the axioms that hold for the absolute value in R still hold in Qp (being non-
archimedean is an extra property). Hence, most of the basic theorems still
hold in the p-adic context, with the same proofs! We will leave it to the reader
to look over the basic theory in her real analysis text,1 and emphasize rather
the points where the non-archimedean property introduces serious differences
from the real case. Perhaps the most important such difference is the fact,
also noted above, that in a non-archimedean context it is easier to test for
the Cauchy property.

Lemma 5.1.1 A sequence (an) in Qp is a Cauchy sequence, and therefore
convergent, if and only if it satisfies

lim
n→∞ |an+1 − an| = 0.

Proof: This is the case k = Qp of Lemma 3.2.2.

Except for this important difference, the theory of sequences and their
convergence properties is pretty much identical to the theory over R. The
basic definition of convergence is the same. Of course, some sequences will
converge in Qp that don’t converge in R, and vice versa.

Let’s look at an example. Let a1 = 1+p and define a sequence recursively
by an = (an−1)

p. Notice that

(1 + p)p = 1 + p2 +

(
p

2

)
p2 +

(
p

3

)
p3 + · · ·+ pp.

Since
(
p
k

)
is divisible by p when 0 < k < p, we see that (1+p)p−1 is divisible

by p2, i.e., a2 ≡ 1 (mod p2). Repeating the argument, we conclude that for
every n we have an ≡ 1 (mod pn), i.e.,

|an − 1| ≤ p−n,

and we see that an converges to 1 as n → ∞.

Problem 141 Decide if the following sequences converge in Qp, and find the limit of
those that do:

• an = n! (As n grows, n! gets more and more divisible by p, so the limit should be
zero. Check that it is.)

• an = n (This one should not converge to anything; can you see why?)

1For example, [55, Ch. 3] contains all the basics. See also [39], where the real versus
p-adic comparison is emphasized.
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• an = 1/n

• an = pn

• an = (1 + px)p
n

, where x ∈ Zp.

Problem 142 Let (an) be a convergent sequence in Qp. Show that either lim |an| =
0 or there exists an integer M such that |an| = |aM | for every n ≥ M . In words: the
sequence of absolute values of a convergent sequence either tends to zero or becomes
constant for large enough n.

As for sequences, so for series: the classical theory still holds. For exam-
ple, the following is still true:

Problem 143 Let an ∈ Qp. Show that absolute convergence implies convergence,
i.e., that if the series of absolute values

∑ |an| converges (in R), then the series
∑

an

converges in Qp.

This is an important and useful result in real analysis. In the p-adic
context, however, Lemma 5.1.1 gives us something much better:

Corollary 5.1.2 An infinite series

∞∑
n=0

an with an ∈ Qp is convergent if and

only if

lim
n→∞ an = 0,

in which case we also have ∣∣∣∣∣
∞∑

n=0

an

∣∣∣∣∣ ≤ max
n

|an|.

Proof: A series converges when the sequence of partial sums converges.
Now, the n-th term an is exactly the difference between the n-th and the
(n− 1)-st partial sums; if it tends to zero, it follows from Lemma 5.1.1 that
the sequence of partial sums is a Cauchy sequence, hence is convergent.

Finally, the estimate for the sum is a straight extension of the non-
archimedean inequality, and we leave its verification to the reader. Note
that since |an| → 0 the maximum will be attained, i.e., we do not have to
say “sup” instead.

Problem 144 Check the inequality for the absolute value of the sum of a convergent
series.

Problem 145 The corollary flies in the face of many admonitions in calculus class:
in R, the fact that the general term tends to zero is not a sufficient condition for
convergence. In other words, the corollary is false in R. Give an example of a series in
R whose general term tends to zero, but which does not converge. Give another.
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Problem 146 The inequality ∣∣∣∣∣
∞∑

n=0

an

∣∣∣∣∣ ≤ max
n

|an|

is also false for convergent series in R. Give a counterexample.

The upshot is that it is much easier to decide on the convergence of an
infinite series in the p-adic context than over R. This has the effect of making
the theory of series in Qp generally a lot simpler than the classical theory.
For example, when we work in R the sum of a conditionally convergent series
depends on the order of its terms. In Qp, that never happens. Proving this
is a good warm-up for the proofs to follow.

Problem 147 Show that the sum of a convergent series in Qp does not change when
we reorder the terms. (Hint: if the terms tend to zero, for any ε > 0 we know that
all but finitely many have absolute value < ε. Compare two partial sums that are long
enough to include all such terms.)

Another example of a situation where things are easier in the non-archim-
edean case is a theorem2 about double series and reversing the order of sum-
mation. We want to consider a “double sequence” bij of p-adic numbers and
ask about the two series we get by summing either first in i, then in j, or the
other way around. In other words, we want to consider

∞∑
i=0

⎛
⎝ ∞∑

j=0

bij

⎞
⎠

and ∞∑
j=0

( ∞∑
i=0

bij

)

and decide whether the two are equal.
For this to make sense, we need that the bij tend to zero when we fix

one index and let the other go to infinity (otherwise the inner series won’t
converge). We’ll say that

lim
i→∞

bij = 0 uniformly in j

if given any positive number ε we can find an integer N which does not depend
on j such that

i ≥ N =⇒ |bij | < ε.

In other words, for each j the sequence bij tends to zero when i → ∞, and
the convergence is “at the same rate” for all j. The first thing we need is a
lemma:

2This is a variant of a theorem given in [14]; I learned it from Keith Conrad. See also
[39, Theorem 3.8].
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Lemma 5.1.3 Let bij ∈ Qp. The following are equivalent:

i) For every i, lim
j→∞

bij = 0, and lim
i→∞

bij = 0 uniformly in j.

ii) Given any ε > 0 there exists an integer N depending only on ε such
that

max{i, j} ≥ N =⇒ |bij | < ε.

iii) lim
i→∞

bij = 0 uniformly in j and lim
j→∞

bij = 0 uniformly in i.

Proof: It’s clear that (ii) implies (iii) and even clearer that (iii) implies
(i). What we need to prove, then, is that the apparently weaker (i) implies
(ii).

Assume (i) and let ε > 0 be given. The uniformity in j says that we
can choose N0, depending on ε but not on j, such that |bij | < ε if i ≥ N0.
The convergence in i is weaker: it says that for each i we can find N1(i) (the
notation emphasizes that it does depend on i) such that if j ≥ N1(i) we have
|bij | < ε. Now take

N = N(ε) = max{N0, N1(0), N1(1), . . . , N1(N0 − 1)}.
This N does the trick: if max(i, j) ≥ N , then either i ≥ N0, and we know
|bij | < ε regardless of what j is, or i < N0 and j ≥ N , in which case i must
be equal to one of 0, 1, . . . , N0 − 1 and j will be bigger than the appropriate
N1, giving |bij | < ε again.

The crucial point is that the fact that bij → 0 uniformly in j allows us
to restrict to only a finite number of cases in which we have to use the other
condition. Now we can go on to prove our theorem on double series.

Proposition 5.1.4 Let bij ∈ Qp, and suppose that

i) for every i, lim
j→∞

bij = 0, and

ii) lim
i→∞

bij = 0 uniformly in j.

Then both series

∞∑
i=0

⎛
⎝ ∞∑

j=0

bij

⎞
⎠ and

∞∑
j=0

⎛
⎝ ∞∑

i=0

bij

⎞
⎠

converge, and their sums are equal.

Proof: From the lemma, we know that given ε we can choose N such that
if max{i, j} ≥ N then |bij | < ε. In particular, bij tends to zero for every i
when j → ∞ and vice versa, which means that the internal sums

∞∑
j=0

bij and

∞∑
i=0

bij
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converge (the first for all i, and the second for all j). In addition, for i ≥ N
we have, by Corollary 5.1.2,∣∣∣∣∣∣

∞∑
j=0

bij

∣∣∣∣∣∣ ≤ max
j

{|bij |} < ε;

similarly, for j ≥ N we have ∣∣∣∣∣∣
∞∑
i=0

bij

∣∣∣∣∣∣ < ε.

In particular, we see that

lim
i→∞

∞∑
j=0

bij = 0 and lim
j→∞

∞∑
i=0

bij = 0,

so that both double series converge.
It remains to check that the sums are equal. For that, we continue to use

N and ε chosen as above, so that |bij | < ε when either i or j is ≥ N , and we
use over and over the fact that in a non-archimedean field a bound on each
term in a sum gives a bound on the sum itself; this is just the ultrametric
inequality |x+ y| ≤ max{|x|, |y|}, as generalized to series in Corollary 5.1.2.

Begin by noticing that∣∣∣∣∣∣
∞∑
i=0

⎛
⎝ ∞∑

j=0

bij

⎞
⎠−

N∑
i=0

⎛
⎝ N∑

j=0

bij

⎞
⎠
∣∣∣∣∣∣ =
∣∣∣∣∣∣
N∑
i=0

⎛
⎝ ∞∑

j=N+1

bij

⎞
⎠+

∞∑
i=N+1

⎛
⎝ ∞∑

j=0

bij

⎞
⎠
∣∣∣∣∣∣ .

Now, if j ≥ N+1, we have |bij | < ε for every i; by the ultrametric inequality,

it follows that

∣∣∣∣∣∣
∞∑

j=N+1

bij

∣∣∣∣∣∣ < ε for every i, and then (use the ultrametric

inequality again!) ∣∣∣∣∣∣
N∑
i=0

⎛
⎝ ∞∑

j=N+1

bij

⎞
⎠
∣∣∣∣∣∣ < ε.

Similarly, we get an estimate for the other summand:∣∣∣∣∣∣
∞∑

i=N+1

⎛
⎝ ∞∑

j=0

bij

⎞
⎠
∣∣∣∣∣∣ < ε,

and one more application of the ultrametric inequality allows us to conclude
that ∣∣∣∣∣∣

∞∑
i=0

⎛
⎝ ∞∑

j=0

bij

⎞
⎠−

N∑
i=0

⎛
⎝ N∑

j=0

bij

⎞
⎠
∣∣∣∣∣∣ < ε.
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Of course, reversing i and j we get a similar inequality for the other double
sum. Finally, since clearly one can reverse the order of summation in the
finite sum, we can use the ultrametric inequality once again to conclude that∣∣∣∣∣∣

∞∑
i=0

⎛
⎝ ∞∑

j=0

bij

⎞
⎠−

∞∑
j=0

( ∞∑
i=0

bij

)∣∣∣∣∣∣ < ε.

Since this is true for any ε > 0 it follows that the two sums must be equal.

What this result says is that if the bij tend to zero in a sufficiently uniform
way, then their sum can be taken in any order. This result will prove quite
useful in our later applications.

Problem 148 How important is the ultrametric inequality in the proof? What is the
best result along these lines in real analysis?

The next two problems show that series can be added and multiplied in
the “natural” way.

Problem 149 Show that if a =
∑

an and b =
∑

bn are convergent, and we set

cn = an + bn,

then the series
∑

cn is convergent and has sum a+ b. (This is easy.)

Problem 150 Show that if a =
∑

an and b =
∑

bn are convergent, and we set

cn =
n∑

i=0

aibn−i,

then the series
∑

cn is convergent and has sum ab. (This is not easy. In the
archimedean case, it is only true under the assumption that one of the series converges
absolutely; otherwise,

∑
cn may not converge at all.)

5.2 Functions, Continuity, Derivatives

The basic ideas about functions and continuity remain unchanged when we
go to the p-adics, since after all they depend only on the metric structure.
There are no intervals to work with (in fact, no non-trivial connected sets at
all), so usually our functions will be defined in (open or closed) balls. Recall
that we write B(a, r) for the open ball with center a and radius r and B(a, r)
for the closed ball with center a and radius r. We defined continuity and
uniform continuity on page 41, but it doesn’t hurt to recall the definition:
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Definition 5.2.1 Let U ⊂ Qp. A function f : U → Qp is said to be contin-
uous at a ∈ U if for every ε > 0 there exists a δ > 0 (possibly depending on
a) such that, for every x ∈ U ,

|x− a| < δ =⇒ |f(x)− f(a)| < ε.

Let U ⊂ Qp. A function f : U → Qp is said to be uniformly continuous
on U if for every ε > 0 there exists a δ > 0 such that, for all x, y ∈ U ,

|x− y| < δ =⇒ |f(x)− f(y)| < ε.

The basic results about continuity are true in all metric spaces, and hence
are true here too. For example, if U is compact (and remember, in Qp it’s
perfectly possible for a set to be both open and compact) and f is continuous
at every point of U , then f is uniformly continuous on U .

Problem 151 Is there a p-adic analogue of the intermediate value theorem?

Derivatives are a bit more interesting, if only because it’ll turn out that
they don’t work as well as in the classical case. It certainly makes perfect
sense to define derivatives of functions f : Qp −→ Qp in the usual way:

Definition 5.2.2 Let U ⊂ Qp be an open set, and let f : U −→ Qp be a
function. We say f is differentiable at x ∈ U if the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

exists. If f ′(x) exists for every x in U we say f is differentiable in U , and
we write f ′ : U −→ Qp for the function x �→ f ′(x).

To some extent, the derivative works as expected. For example, we can
show that differentiable functions are continuous, in exactly the same way as
we do it over R or C. Along the same vein:

Problem 152 Let n ∈ Z. What is the derivative of the function Qp −→ Qp given by
x �→ xn?

Inevitably, there are some surprising things. Recall, for example, that the
closed unit ball in Qp is the union of disjoint open unit balls:

B(0, 1) = B(0, 1) ∪B(1, 1) ∪B(2, 1) ∪ · · · ∪B(p− 1, 1).

If we define a function to be constant in each of the open balls, say, f(x) =
i when x ∈ B(i, 1), we get a function which is locally constant, i.e., each
x ∈ B(0, 1) has an open neighborhood on which f is constant. Clearly this
function must have derivative zero. Since Qp is totally disconnected, we are
often going to run into such functions. In fact, one can show that any bounded
continuous function is the uniform limit of locally constant functions; see [56,
26.2] or [53, IV.3.3].

But things are actually much worse.
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Problem 153 Consider the function (stolen from [56]) f : Zp −→ Zp which maps

x = a0 + a1p+ a2p
2 + a3p

3 + · · ·+ anp
n + · · ·

to
f(x) = a0 + a1p

2 + a2p
4 + a3p

6 + · · ·+ anp
2n + · · ·

Show that f is injective and that f ′(x) = 0 for all x.

Since the function in the problem is injective, it cannot be locally constant
in any neighborhood of any x ∈ Zp. But its derivative is still zero!

This is one of the reasons why the derivative seems to play such a minor
role in p-adic analysis: having zero derivative does not imply that a function
is locally constant.

What breaks in the proof we saw in calculus? The usual proof relies on
the mean value theorem, which is the linchpin of the elementary theory of
differentiable functions. It says that given a and b in an interval where f(x)
is differentiable, there exists a number ξ between a and b such that

f(b)− f(a) = f ′(ξ)(b − a).

If we know f ′(ξ) = 0 for all ξ, we conclude at once that f(a) = f(b) and that
f is constant on that interval.

In thinking about what a p-adic version of that theorem might say, we
might initially think that the problem is that “between”: since Qp is not
ordered it makes no sense in our case. That, however, turns out not to be
the core problem. After all, if we had an inequality we could still reach our
conclusion, since if an absolute value is ≤ 0 then it is 0. So we could hope
for a theorem that said that if the derivative of f(x) is bounded by a number
M , then |f(b)− f(a)| ≤ M |b− a|. (This version of the mean value theorem
holds in the multivariable case over R, for example.) So here is an attempt
at a minimal p-adic version of the mean value theorem:

What a p-adic mean value theorem might say: If a function f(X) is
differentiable with (continuous?) derivative on U ⊂ Qp and if |f ′(x)| ≤ M
for all x ∈ U , then, for any two numbers a and b in U we have

|f(b)− f(a)| ≤ M |b− a|.
Unfortunately, things aren’t that simple. We know this must be false, but
we might guess that it only fails for complicated functions. So let’s give a
counterexample where f(x) is a very nice function.

Proposition 5.2.3 The “p-adic mean value theorem” we just stated is false.

Proof: Take U = Zp, f(x) = xp, a = 1, b = 0. Then f ′(x) = pxp−1, so we
have |f ′(x)| ≤ p−1 for all x ∈ U . But f(1)− f(0) = 1, so

|f(1)− f(0)| = 1 >
1

p
=

1

p
|1− 0|.
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So the lack of an MVT is what allows functions to have zero derivative
without being locally constant. Some authors call such functions “pseudo-
constant” or “almost constant.” And there are many of them!

Problem 154 Show that the chain rule is still true in Qp. Use this fact to show that
if f has zero derivative everywhere and g is any continuously differentiable function,
then both f ◦g and g ◦f have zero derivative everywhere. Explain why this means that
there are a great many “pseudo-constant” functions.

In particular, it follows that two functions which have the same derivative
do not need to differ by a constant. So the theory of anti-derivatives becomes
much more messy than it was over R.

The effect of all this is that knowing that a function is differentiable isn’t
as useful in the p-adic context as it is classically. In fact, since the zero
function is continuous, even having a continuous derivative doesn’t help.

There is still another property of derivatives that fails in the p-adic setting.
Over R, if a function is continuously differentiable and has nonzero derivative
at a point then it will be injective on an interval containing that point. Alas,
there exists a function f : Zp −→ Qp such that f ′(x) = 1 for all x but
f(pn) = f(pn − p2n) for every n ≥ 0, so that f is not injective in any
neighborhood of zero. See [56, 26.6] for the construction.

The solution, as usual, is to come up with a stricter notion of differentia-
bility. We won’t go into the details; the basic idea is to consider difference
quotients

f(u)− f(v)

u− v

as functions of two variables and take the limit as (u, v) → (a, a). Over R, the
existence of this limit boils down to f being continually differentiable. Over
Qp, the limit can fail to exist even if f ′ is continuous, and so this becomes a
stronger condition. Readers interested in going deeper into this might look
at [45], [56, §26–29], and especially [53, Ch. V].

In this book we will concentrate on functions defined by power series
instead. Of course, the function we used in the example above is a polynomial,
so nothing will rescue the “p-adic mean value theorem” we tried to formulate.
Nevertheless, it is possible to prove an analogue of the mean value theorem
for functions defined by power series, provided one restricts to the case when
|b− a| is small enough. See Alain Robert’s account of this in [53, V.3].

5.3 Integrals

This short section is an introduction to the problems surrounding p-adic in-
tegration. Rather than giving definitions and theorems, the goal is to explain
how and why things get complicated, and then provide pointers to the liter-
ature. We mostly follow [56, §30].
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When we set out to generalize integration to a p-adic setting, the first
thing to decide is what exactly we want to generalize. Over R, integrals and
anti-derivatives are closely related: if F ′(x) = f(x) and f(x) is continuous,
then ∫ b

a

f(x) dx = F (b)− F (a).

For this formula to make sense, it is crucial that F (b)−F (a) doesn’t depend
on the choice of anti-derivative, which follows from the fact that a function
with derivative identically zero is constant. Since that fact is false in p-adic
calculus, the “fundamental theorem of calculus” cannot be true. So in our
world integrals and anti-derivatives are unrelated.

There are a few more things that can be said about anti-derivatives in
the p-adic setting, but the upshot is that there is no good general theory (see
[56, 30.2 and 30.3], for example). Things are better for functions defined by
power series, so we will return to this issue in the next section.

How about a theory of integration? That is usually done for bounded
functions on a compact set, but let’s consider a concrete example to see how
it might go. Suppose we have a continuous (and therefore bounded) function
f : Zp −→ Qp. To compute an integral, we would need to write Zp as a union
of smaller subsets Ui and then consider limits of sums like∑

i

f(xi) size(Ui).

Since f takes values in Qp, we would need the size of Ui to be a p-adic number
of some kind. A function that assigns to each (nice) subset a certain number
is called a measure.

What properties should a measure have? Here’s a possible set of require-
ments. First, for each compact subset U ⊂ Zp we would like to have a number
m(U) ∈ Qp. Ideally, this should have the following properties:

i) (additivity) if U ∩ V = ∅, m(U ∪ V ) = m(U) +m(V );

ii) (translation invariance) if a ∈ Zp, m(a+ U) = m(U).

Suppose such a function exists and let m(Zp) = a. Consider the closed balls
Ui = i + pZp, i = 0, 1, . . . , p − 1. These are compact and disjoint, their
union is Zp. By translation invariance, they must all have the same measure:
m(Ui) = m(pZp). By additivity, the sum of the m(Ui) must be a. So we get
pm(pZp) = a, so m(pZp) =

a
p . So the measure of the subset pZp ⊂ Zp has

bigger p-adic absolute value than the measure of Zp.
The same argument shows that m(pnZp) = a

pn . So as n grows we get
smaller neighborhoods of zero pnZp whose measures get p-adically bigger !
Indeed

lim
n→∞ |m(pnZp)| = +∞.
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The technical slogan for what we have just shown is there is no translation-
invariant bounded Qp-valued measure on Zp. What that means is that there
is no perfect theory of integration either.

There are two options from here, leading to two different theories of in-
tegration. One can accept unbounded measures, or one can drop transla-
tion invariance. Each leads to a theory of integration that is of some value.
The first option leads to the Volkenborn integral, which is closely related to
Mahler’s theory of continuous p-adic functions; see [56, §50–57] and [53, V.5].
The second is related to p-adic interpolation problems; see [42, Chapter II].

There is still another possible variant. We could try to integrate real-
valued functions on Qp. For that, we would need a measure as above, but
with m(U) ∈ R. That turns out to yield a much nicer theory: Qp is a
locally compact abelian (additive) group, so it carries a Haar measure, which
is exactly a translation-invariant real-valued measure. That makes it easy
to do integration for functions f : Qp −→ R. Something similar works for
f : Qp −→ Qq for q �= p. See [46, Ch. VI] for a discussion of such integrals.

5.4 Power Series

In real analysis, power series

∞∑
n=0

an(X − α)n

offer a convenient way of representing functions, and in particular can be used
to define several important functions, such as the exponential and trigono-
metric functions. As one might expect, the p-adic theory turns out to be
quite similar to the classical version, except that some of the tricky points
become a lot simpler to handle. On the other hand, the non-archimedean
property does introduce a few surprises. The biggest of these surprises is the
fact that the relation between the formal composition of power series and the
composition of the functions they define becomes more complicated in the
p-adic context than it is in the classical situation. Because this is such an
unexpected development, we spend quite a bit of time on it.

The next few sections explore the main ideas about power series and
functions defined by power series, focusing, in the end, on the p-adic versions
of the logarithm and the exponential. The main influences on our treatment
are [14], [34], and [19]. We have stated most of our results for power series in
X , but of course they remain true for power series in (X − α) if we replace
all conditions |x| < k by |x− α| < k.

Consider, then, a power series

f(X) =
∞∑

n=0

anX
n.
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Given x ∈ Qp, we want to consider f(x), which is3 the series
∑

anx
n; we

already know that this converges if and only if |anxn| → 0. As in the classical
case, the set of all such x (which we call the region of convergence) is a disk
whose radius can be computed directly.

Proposition 5.4.1 Let f(X) =

∞∑
n=0

anX
n, and define

ρ =
1

lim sup
n→∞

n
√
|an|

,

where we use the usual conventions when the limit is zero or infinity, so that
0 ≤ ρ ≤ ∞.

i) If ρ = 0, then f(x) converges only when x = 0.

ii) If ρ = ∞, then f(x) converges for every x ∈ Qp.

iii) If 0 < ρ < ∞ and lim
n→∞ |an|ρn = 0, then f(x) converges if and only if

|x| ≤ ρ.

iv) If 0 < ρ < ∞ and |an|ρn does not tend to zero as n goes to infinity,
then f(x) converges if and only if |x| < ρ.

Proof: (This requires you to understand what lim sup means; see [55,
pp. 55–57] for a short explanation. If lim sup bn = B then for any ε > 0 two
things hold: first, bn < B + ε for all but finitely many n; second, bn > B − ε
for infinitely many n.)

We already know that the region of convergence is{
x ∈ Qp : lim

n→∞ |anxn| = 0
}
,

so that the point of the theorem is to translate this into more precise infor-
mation. First of all, it is clear that f(0) converges.

Next, if |x| > ρ, it is easy to see that |an||x|n cannot tend to zero when
n tends to infinity: the definition of ρ implies that for infinitely many values
of n, |an| is close to 1/ρn, and, since |x| > ρ, (|x|/ρ)n gets arbitrarily large
as n grows.

Similarly, if |x| < ρ, choose a ρ1 such that |x| < ρ1 < ρ. Then |x|/ρ1 < 1
and for all but finitely many n we have |an| < 1/ρn1 , so |anxn| ≤ |x|n/ρn1 and

3In this section and the following ones, we adopt the convention that X represents an
indeterminate, while x usually represents a p-adic number. Hence, f(X) in this statement
is to be thought of as the formal power series itself, while f(x) is the numerical series we
obtain by substituting x for X. It makes no sense to discuss the convergence of f(X):
the series is just there. It does make sense to discuss the convergence of f(x); whether it
converges or not will depend on x. When it does converge, we will write f(x) for both the
numerical series and its value; this should normally not cause any confusion.
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so |anxn| → 0. Finally, the statements about what happens when |x| = ρ are
immediate from Corollary 5.1.2.

As in the archimedean case, the number ρ is called the radius of conver-
gence of the series.

It’s worth noting that our theorem is simpler than the classical version.
Over R, the region of convergence may include none, both, or only one of
the endpoints of the interval −ρ < x < ρ. Over C, it is worse: |x| < ρ is a
disk, and the set of points on the boundary for which the series converges can
be pretty complicated. By contrast, in the p-adic case what happens at the
points on the “boundary” of the region of convergence (i.e., the points with
|x| = ρ) is rather simple: either the series is convergent at all such points or
at none of them. (On the other hand, recall that the points such that |x| = ρ
are not really the boundary of the open disk!)

Problem 155 Find the region of convergence of the following p-adic power series:

i)
∑

pnXn

ii)
∑

p−nXn

iii)
∑

n!Xn

One of the nice things about starting from formal power series is the fact
that several of the operations we want to do with power series make sense
at the formal level. Let’s look at these formal operations, and then ask the
important question: how do the formal properties translate to properties of
the functions defined by the power series?

We start with the easiest operations: given two formal power series f(X)
and g(X), we can consider their sum and their product. If

f(X) =

∞∑
n=0

anX
n and g(X) =

∞∑
n=0

bnX
n,

then we define

(f + g)(X) =

∞∑
n=0

(an + bn)X
n

and

(fg)(X) =

∞∑
n=0

(
n∑

k=0

akbn−k

)
Xn.

Notice that if we want to think of these definitions as the result of actually
adding or multiplying the series, they imply a lot of reordering and recom-
bining of terms!

As we have defined it, this is a formal operation only. Of course, we’d like
to know that it actually works when we plug in numbers for X . It’s not too
hard to see everything works as expected:
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Proposition 5.4.2 Let f(X) and g(X) be formal power series, and suppose
x ∈ Qp. If f(x) and g(x) both converge, then:

i) (f + g)(x) converges and is equal to f(x) + g(x), and

ii) (fg)(x) converges and is equal to f(x)g(x).

It follows that the radii of convergence of f + g and of fg are each greater
than or equal to the smaller of the radii of convergence of f and g.

Proof: Basically, all that’s needed is an appeal to the results you proved
for numerical series in Problems 149 and 150.

Problem 156 Fill in the details of the proof.

Having had such success with adding and multiplying series, we can be
more ambitious, and consider the composition of formal series. Suppose we
have two formal series

f(X) =

∞∑
n=0

anX
n and g(X) =

∞∑
n=0

bnX
n,

and that b0 = 0 (another way of saying that would be to say g(0) = 0). We
want to check that it makes sense to define the composition h(X) = f(g(X))
of the two series. This should be

h(X) = a0 + a1g(X) + a2g(X)2 + · · ·+ ang(X)n + . . .

That looks like an awful mess, but in fact we can (working formally, of course)
reorganize it into a well-behaved power series. The idea is this: since g(X)
has no independent term, g(X)2 starts with a term of degree 2, g(X)3 starts
with a term of degree 3, and so on. So, when we try to work out what the
coefficients of h(X) = f(g(X)) =

∑
cnX

n should be, each coefficient only
requires a finite amount of work.

• The zeroth coefficient is just c0 = a0.

• The first coefficient only requires that we look at the first two terms a0 +
a1g(X), and therefore c1 = a1b1.

• The second coefficient requires that we look at the first three terms

a0 + a1g(X) + a2g(X)2 = a0 + a1(b1X + b2X
2 + . . . )

+ a2(b
2
1X

2 + . . . ),

and so c2 = a1b2 + a2b
2
1.
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• For the third coefficient, look at

a0 + a1g(X) + a2g(X)2 + a3g(X)3 = a0 + a1(b1X + b2X
2 + b3X

3 . . . )

+ a2(b
2
1X

2 + 2b1b2X
3 + . . . )

+ a3(b
3
1X

3 + . . . )

so that c3 = a1b3 + 2a2b1b2 + a3b
3
1.

• And so on! One can clearly find cn for every n.

Problem 157 Can you find a general formula for the cn?

So we know that given two formal power series f(X) and g(X) with
g(0) = 0, we have a formal power series h(X) = f(g(X)) which is their
formal composition. Now we need to ask questions about convergence, and
those are not as easy to answer. The point is that plugging a number x
into the power series h(X) might give a different answer from what one gets
by first plugging x into g(X) and then plugging the result into f(X). One
might suspect that there are problems simply by contemplating the amount
of rearranging that’s going on in our definition of the composite series h(X).
In fact, it turns out we need to be very careful, as the following computation
shows.

Problem 158 Consider the following example in Q2. Let

f(X) = 1 +X +
X2

2!
+ · · ·+ Xn

n!
+ · · ·

be the usual formal series for the exponential, let

g(X) = 2X2 − 2X,

and let
h(X) = f(g(X)).

In gp, the function defined by f(X) is called exp. This gp code creates both the
function exp(2x2 − 2x) and a truncation of the formal power series h(X).

funct(x)=exp(2*x^2-2*x)

hseries=truncate(exp(2*x^2-2*x))

Check that funct(1+O(2^20)) and subst(hseries,x,1+O(2^20)) give completely
different answers. In other words, plugging 1 into the series h(X) does not give the
same answer as computing f(g(1))!

Clearly we need an extra condition to guarantee that the formal composed
series converges to the composite function. Here’s the theorem:

Theorem 5.4.3 Let f(X) =
∑

anX
n and g(X) =

∑
bnX

n be formal power
series with g(0) = 0, and let h(X) = f(g(X)) be their formal composition.
Suppose that
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i) g(x) converges,

ii) f(g(x)) converges (this means: plugging the number to which g(x) con-
verges into f(X) gives a convergent series),

iii) for every n, we have |bnxn| ≤ |g(x)| (in other words, no term of the
series converging to g(x) is bigger than the sum).

Then h(x) also converges, and f(g(x)) = h(x).

Proof: (Following [34, Ch. 17].) We have

f(X) =

∞∑
n=0

anX
n and g(X) =

∞∑
n=1

bnX
n.

Let

g(X)m =
∞∑

n=m

dm,nX
n.

It’s not hard to work out the dm,n by using the formula for the product of
formal power series: dm,n = 0 if n < m, and, for any n ≥ m,

dm,n =
∑

i1+i2+···+im=n

bi1bi2 . . . bim

(that formula looks uglier than it really is: basically, take all the products of
m-tuples of bi’s whose indices add up to n). This (and solving Problem 157)
allows us to write h(X) = f(g(X)) explicitly:

h(X) = a0 +
∞∑

n=1

(
n∑

m=1

amdm,n

)
Xn.

Now let’s start thinking about convergence. First of all, since g(x) con-
verges, we can use Proposition 5.4.2 to conclude that the formal series g(X)m

converges when we plug in X = x, and in fact converges to g(x)m; in other
words,

g(x)m =
∞∑

n=m

dm,nx
n.

More interesting is the fact that the special assumption we made about g(X)
is still true for the series g(X)m: for every n, we have

|dm,nx
n| ≤ |g(x)m|.

To see this, note first that |g(x)m| = |g(x)|m. Now look at the general term
|dm,nx

n|. If n < m, then |dm,nx
n| = 0 and there is nothing to prove. On the
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other hand, if n ≥ m, then the ultrametric inequality gives

|dm,nx
n| =

∣∣∣∣∣ ∑
i1+i2+···+im=n

bi1x
i1bi2x

i2 . . . bimxim

∣∣∣∣∣
≤ max

{|bi1xi1 | · |bi2xi2 | · · · |bimxim |} ,
where the maximum is once again taken over all m-tuples (i1, i2, . . . , im)
such that i1 + i2 + · · · + im = n. But we know, from the hypothesis on
g(X), that |bijxij | ≤ |g(x)| for every ij ; multiplying all these inequalities
gives |dm,nx

n| ≤ |g(x)|m, which is the inequality we want.
So now we know that g(x) converges, that powers of g(x) converge, and

that both the series for g(x) and for g(x)m satisfy the extra condition that
no term is larger than the final sum. We also know, from our assumptions,
that f(g(x)) converges, that is, that am(g(x))m tends to zero as m grows.
We have

f(g(x)) = a0 +

∞∑
m=1

amg(x)m = a0 +

∞∑
m=1

am

( ∞∑
n=m

dm,nx
n

)

= a0 +

∞∑
m=1

∞∑
n=m

amdm,nx
n

(where the order of the summations is crucial, of course), and, on the other
hand,

h(x) = a0 +

∞∑
n=1

(
n∑

m=1

amdm,n

)
xn = a0 +

∞∑
n=1

n∑
m=1

amdm,nx
n.

These series are obtained from each other by reversing the order of the sum-
mation, so what we need to do is check that this is legal and that both series
will have the same sum. That’s what Proposition 5.1.4 is for!

To apply the proposition, we need to show that the general term amdm,nx
n

tends to zero sufficiently uniformly. So let’s study that general term. The
crucial thing is to notice that we can use the fact that g(x)m is larger than
any term of the series to get a uniform bound:

|amdm,nx
n| ≤ |amg(x)m|,

where the important thing is that the right-hand side is independent of n.
Given ε, we can, since amg(x)m → 0, choose N such that |amg(x)m| < ε if
m ≥ N . This shows part of what we want:

lim
m→∞ amdm,nx

n = 0, uniformly in n.

On the other hand, for each m we know that the series

g(x)m =

∞∑
n=0

dm,nx
n
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converges, and it follows (after multiplying by am) that, for every m,

lim
n→∞ amdm,nx

n = 0.

That’s what we need to be able to apply Proposition 5.1.4 and conclude both
that the series for h(x) converges and that its sum is equal to f(g(x)), which
is what we needed to prove.

Notice that we know in general that

|g(x)| ≤ max
n≥1

{|bnxn|}

by the ultrametric inequality. The extra condition in the theorem implies that
in fact this is an equality. It’s worth noticing a case when the extra condition
is guaranteed to fail: if g(x) = 0 then we would want max{|bnxn|} = 0, which
for x �= 0 is true only if all the bn are zero.

In the literature one finds other conditions that are sufficient to guarantee
that the formal composition of power series agrees with the composition of the
functions they define. In [56, 41.2], for example, Schikhof gives the following.
With notations as in the theorem, we can set r = max{|bnxn|} and replace
condition iii with the assumption that lim |an|rn = 0, i.e., that f(x) converges
when |x| = r. Then h(x) = f(g(x)). One advantage of this version is that
when g(x) = 0 we have no chance to satisfy the conditions in Theorem 5.4.3,
but we might be able to satisfy Schikhof’s condition.

Problem 159 Let f(X) =
∑

anX
n and g(X) =

∑
bnX

n be formal power series
with g(0) = 0, and let h(X) = f(g(X)) be their formal composition. Suppose that

i) g(x) converges,

ii) if r = maxn≥1{|bnxn|}, we have lim |an|rn = 0.

Then f(g(x)) and h(x) converge and f(g(x)) = h(x).

Problem 160 Suppose f(X) and g(X) satisfy the assumptions of Theorem 5.4.3.
Suppose g(x) converges and let r = max{|bnxn|}. Show that lim |an|rn = 0.

In [53, VI.1.5] we find the same condition expressed in terms of the radii
of convergence of f(X) and g(X). Let ρf and ρg be the radii of convergence.
Then Robert shows that if |x| < ρg and max{|bnxn|} < ρf , then we can
conclude that plugging x into the composed series f(g(X)) gives f(g(x)).

As the computation we did above shows, the extra assumption on g(X)
is essential! In other words, an equality of formal power series that involves
composition does not need to imply equality of the functions unless we can
check this extra condition.

Problem 161 Let’s return to our example in Q2. Let

f(X) = 1 +X +
X2

2!
+ · · ·+ Xn

n!
+ · · ·
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be the usual formal series for the exponential, let

g(X) = 2X2 − 2X,

and let

h(X) = f(g(X)).

We will show later that f(x) converges for every x ∈ 4Z2 and diverges otherwise. Since
g(X) is a polynomial, g(x) converges for every x. In particular, suppose we take x = 1.
Then g(1) = 0 and so f(g(1)) = 1.

It’s harder to figure out when h(X) converges. Let h(X) =
∑

anX
n. It’s possible

(but not easy) to prove that for all n ≥ 2 we have v2(an) ≥ 1 + n/4. Therefore, h(x)
converges for all x ∈ Z2. In particular, it converges when x = 1.

i) Check that the first two conditions in the Theorem 5.4.3 are satisfied, but the
third is not. Check that the condition in Problem 159 is also not satisfied.

ii) By computing out the first few terms of h(X) and using the estimate for the
valuation of the an, show that h(1) ≡ 3 (mod 4).

iii) Conclude that h(1) �= f(g(1)).

The counterexample is a composition f(g(X)) where g is a polynomial.
If, on the other hand, f is a polynomial, there is never a problem. This is
because when f is a polynomial all that we need to do to compute f(g(x))
is to multiply g(x) by itself, scale those products, and add. Hence Propo-
sition 5.4.2 suffices to show that h(X) = f(g(X)) converges whenever g(X)
does and that h(x) = f(g(x)) for all x in the region of convergence of g(X).

The behavior of a composition of formal power series is one of the most
striking differences between p-adic and classical analysis. It is interesting to
remark that in this case classical analysis is actually easier: if the radius of
convergence of f(X) is ρ and |g(x)| < ρ, then h(x) converges and we have
f(g(x)) = h(x). See, for example, Proposition 5.1 in Section 2 of Chapter 1
of [13]. (For the ambitious reader: look through the proof in the classical case
to see if you can spot where it fails for non-archimedean absolute values.)

Problem 162 One other operation with power series which we didn’t mention is

differentiation. Given a power series f(X) =

∞∑
n=0

anX
n, we define its formal derivative

to be f ′(X) =

∞∑
n=1

nanX
n−1. Show that this has the usual properties of a derivative:

i) (f + g)′(X) = f ′(X) + g′(X).

ii) (fg)′(X) = f ′(X)g(X) + f(X)g′(X).

iii) If h(X) = f(g(X)), then h′(X) = f ′(g(X))g′(X).

Notice that these are equalities of formal series! We’ll check that formal differentiation
does give the derivative in the next section.
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5.5 Functions Defined by Power Series

We will use power series to define functions. In other words, given a power
series f(X) we will think of it as defining a function whose domain is the
set of x for which f(x) converges. Just as in the classical case, the functions
that are defined by power series have nice properties. The simplest one is
continuity.

Lemma 5.5.1 Let f(X) =
∑

anX
n be a power series with coefficients in

Qp. If f(x) converges when |x| ≤ r, then the function f : B(0, r) −→ Qp

defined by x �→ f(x) is bounded and uniformly continuous.

Proof: Notice that we are not assuming that the closed ball is the region
of convergence, just that the series converges on the closed ball. The proof
we give follows [19].

Since f converges on B(0, r), we know that |an|rn tends to 0 as n → ∞.
It follows that Mr = max

n≥0
|an|rn is finite.

Let’s first show f(x) is bounded on B(0, r). That’s very easy: if |x| ≤ r
we have

|f(x)| =
∣∣∣∣∣
∞∑
n=0

anx
n

∣∣∣∣∣ ≤ max{|anxn|} ≤ max{|an|rn} = Mr,

which shows that f(x) is bounded by Mr when x ∈ B(0, r).
For uniform continuity, suppose x, y ∈ B(0, r). If we subtract f(y) from

f(x), the constant terms cancel and we can factor out (x − y) from the
remaining sum:

f(x)− f(y) =

∞∑
n=1

an(x
n − yn)

=
∞∑

n=1

an(x − y)(xn−1 + xn−2y + · · ·+ yn−1)

= (x − y)

∞∑
n=1

an(x
n−1 + xn−2y + · · ·+ yn−1).

But ∣∣xn−1 + xn−2y + · · ·+ yn−1
∣∣ ≤ max

0≤i≤n−1
{|x|n−1−i|y|i} ≤ rn−1,

and this allows us to estimate the sum with the ultrametric inequality:∣∣∣∣∣
∞∑
n=1

an(x
n−1 + xn−2y + · · ·+ yn−1)

∣∣∣∣∣ ≤ max{|an|rn−1} =
1

r
Mr.
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So we get

|f(x)− f(y)| ≤ 1

r
Mr|x− y|,

which shows that f is uniformly continuous on B(0, r).

When thinking about this lemma, one should keep in mind that while we
are working over Qp we are trying to give arguments that apply as generally
as possible. Closed balls in Qp are compact, and recall that continuous
functions on a compact set are always bounded and uniformly continuous.
So as long as we stay in Qp the lemma is not really telling us more than that
the function is continuous. The thing to notice, however, is that all we used
in the proof was the non-archimedean property, and so the result will be true
in a complete non-archimedean field even if we are in a context where closed
balls are not compact (and such calamities do happen).

Another thing worth noting is that in Qp every open ball is also a closed
ball, since B(0, pk) = B(0, pk−1). This is because the p-adic valuation is
discrete. But if we pass to an extension of Qp whose valuation is not discrete,
there will be power series whose region of convergence is an open ball and
that are not bounded or uniformly continuous on their region of convergence.

Corollary 5.5.2 Let f(X) =
∑

anX
n be a power series with coefficients in

Qp, and let D ⊂ Qp be its region of convergence, i.e., the set of x ∈ Qp for
which f(x) converges. The function

f : D → Qp

defined by x �→ f(x) is continuous on D.

Problem 163 Prove the corollary. In R, continuity at the endpoints of the interval
of convergence is a problem. Make sure that your p-adic proof handles those points as
well.

As in the classical case, we can change the center of the series expansion,
i.e., re-write our function as a power series in (X−α) for any α in the region
of convergence. In the classical case, the resulting series can (and usually
does) have a different region of convergence than the original series, and this
fact is one of the ways to obtain “analytic continuations.” Surprisingly, in
the p-adic case changing the center never helps with analytic continuation.

Proposition 5.5.3 Let f(X) =
∑

anX
n be a power series with coefficients

in Qp, and let α ∈ Qp, α �= 0, be a point for which f(α) converges. For each
m ≥ 0, define

bm =
∑
n≥m

(
n

m

)
anα

n−m,
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and consider the power series

g(X) =
∞∑

m=0

bm(X − α)m.

i) The series defining bm converges for every m, so that the bm are well-
defined.

ii) The power series f(X) and g(X) have the same region of convergence,
that is, f(λ) converges if and only if g(λ) converges.

iii) For any λ in the region of convergence, we have g(λ) = f(λ).

Proof: Claim (i) is easy to see: since binomial coefficients are integers and
α belongs to the region of convergence for f(X), we get (for fixed m)∣∣∣∣

(
n

m

)
anα

n−m

∣∣∣∣ ≤ |anαn−m| = |α|−m · |anαn| → 0,

which gives the desired convergence by Lemma 5.1.2.
To show (ii) and (iii), take any λ in the region of convergence of f(X),

and compute

f(λ) =
∑
n

an(λ− α+ α)n =
∑
n

∑
m≤n

(
n

m

)
anα

n−m(λ− α)m.

The last sum looks a lot like a partial sum for g(λ), except that it needs to be
re-ordered. For that, we use Proposition 5.1.4. To check that the condition
is satisfied, set

βnm =

⎧⎪⎪⎨
⎪⎪⎩
(
n

m

)
anα

n−m(λ− α)m if m ≤ n

0 if m > n

We need to check that the sequence βnm satisfies the conditions in Proposi-
tion 5.1.4. Note first that

|βnm| =
∣∣∣∣
(
n

m

)
anα

n−m(λ− α)m
∣∣∣∣ ≤ ∣∣anαn−m(λ − α)m

∣∣ ,
so that the problem is bounding this last expression. To do that, recall that
the region of convergence is a (closed or open) disk of some radius ρ; since
both λ and α are in the region of convergence, there exists a radius ρ1 such
that

• the closed disk of radius ρ1 is contained in the region of convergence, and
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• we have both |λ| ≤ ρ1 and |α| ≤ ρ1.

(This dodge takes care of the question of whether the region of convergence
is the open or the closed disk: if it is the closed disk, we can take ρ1 = ρ; if
the open, take ρ1 to be the larger of the absolute values of α and λ, so that
ρ1 < ρ. The second choice actually works in both cases.) Then we have

• |α|n−m ≤ ρn−m
1 by construction, and

• |λ− α|m ≤ max{|λ|, |α|}m ≤ ρm1 by the non-archimedean property.

Going back to the terms we want to estimate, we get

|βnm| ≤ |anαn−m(λ− α)m| ≤ |an|ρn1 ,

which is independent of m and tends to zero as n → ∞. This means that
given any ε > 0 there exists an N for which |βnm| < ε if n ≥ N and for any
m. This shows that βnm tends to zero uniformly in m. The other condition
is easy: if m > n, we have βnm = 0, hence it’s certainly true that for every n
we have βnm → 0 when m → ∞. Thus, the conditions in Proposition 5.1.4
are satisfied, and we can reverse the order of summation.

Changing the order of summation in the expression for f(λ) gives the
expression for g(λ), so that applying Proposition 5.1.4 allows us to conclude
that g(λ) converges and is equal to f(λ). This shows that g converges when-
ever f does, and in that case their values are equal. To conclude, notice that
we can switch the roles of g and f in the argument, which shows that in fact
the regions of convergence are identical.

Problem 164 Before you relax from that long proof, are you sure that the smoke-
and-mirrors phrase “switch the roles of g and f” is really justified? Does anything
further need to be checked?

Problem 165 Prove the following relative of the proposition: Let f(X) be a power
series such that f(x) converges for |x| < ρ, and suppose |a| = 1 and |b| < ρ. Then the
function g(x) = f(ax+ b) is given by a power series g(X) which converges for |x| < ρ.

As in the classical theory, functions which can be expressed as power series
in a disk B(a, r) or B(a, r) around each a in their domain are called analytic.
Functions of this kind in general have very nice properties, and this is also
true inQp. Unfortunately, the theory is not so nice as, for example, the theory
over the complex numbers. One of the crucial reasons is the proposition we
have just proved: we cannot get an “analytic continuation” for a function
by choosing another center and expanding in a power series. Doing so in Qp

produces a power series with exactly the same region of convergence, which
therefore does not allow us to “continue” the function to a larger domain.
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Also unpleasant is the fact that many functions are “locally analytic” for
trivial reasons having to do with the fact that Qp, since it is non-archimedean,
is totally disconnected. In fact, consider the function given by

f(x) =

{
1 if x ∈ Zp

0 if x �∈ Zp

Since both Zp and its complement are open sets, around any point one can
find a ball in which f(x) is constant, and hence can be written as a (constant)
power series! One would not want to think of such a function as “analytic.”
Hence, while the set of analytic functions on a closed ball behaves well, it isn’t
clear how to move from that “local” theory to a “global” notion of analytic
function.

It turns out that one can get around such difficulties, and come up with a
good concept of “analytic” functions and of “analytic continuation.” Unfor-
tunately, this requires quite a sophisticated approach. The resulting theory is
developed in what is called Rigid Analytic Geometry ; its foundations are due
to John Tate, and it has become a very important branch of modern number
theory. For an introduction to this rather difficult subject, the reader might
look at [7] or [11].

We will stick to simpler things, mostly by focusing on how a function
defined by a power series behaves in a closed ball contained in the region of
convergence. First of all, if a function is given by a power series it completely
determines that power series. As in the classical case, this can be shown by
using derivatives (see below), but we prove something stronger. Let’s say a
sequence (xm) converging to a limit L is stationary if there exists an n such
that xm = L for all m ≥ n.

Proposition 5.5.4 Let f(X) and g(X) be formal power series, and suppose
there is a non-stationary sequence xm ∈ Qp converging to zero in Qp and
such that f(xm) = g(xm) for every m. Then f(X) = g(X), i.e., f(X) and
g(X) have the same coefficients.

Proof: (This is identical to the classical proof.) Replacing the sequence
(xm) by a subsequence if necessary, we can assume xm �= 0 for all m. If
we consider the difference h(X) = f(X) − g(X) =

∑
anX

n, then we have
h(xm) = 0 for every m, and we want to show that an = 0 for every n.
Suppose not; then let r be the least index for which ar �= 0, so that

h(X) = arX
r + ar+1X

r+1 + ar+2X
r+2 · · ·

= Xr(ar + ar+1X + ar+2X
2 + · · · )

= Xrh1(X),

where h1(0) = ar �= 0. Since h1 is a function defined by a power series, it is
continuous, so h1(xm) → ar as m → ∞ (remember that our assumption is
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that xm → 0); in particular, h1(xm) is non-zero for large enough m. Since
we know xm �= 0, it follows that h(xm) = xr

mh1(xm) is non-zero for large
enough m, which is a contradiction.

Problem 166 Suppose f(X) and g(X) are formal power series, and suppose that
xm is a non-stationary sequence in Qp converging to a point x such that both f(x)
and g(x) converge. Show that if f(xm) = g(xm) for every m, then f(X) = g(X).

In Problem 162, we considered a “formal derivative” operation on formal
power series. If a function is defined by a power series, we would like its
derivative to correspond to the formal derivative of the power series, and it
does. Before we give a proof, note that there is a classical theorem about
when a series of functions can be differentiated term-by-term; see [55, The-
orem 7.17], for example. Unfortunately, the proof uses the mean value the-
orem, which we already know is false in the p-adic setting. (Is the theorem
even true in the p-adic setting?) So we need a different approach.

Proposition 5.5.5 Let f(X) =
∑

anX
n be a power series with non-zero

radius of convergence and let f ′(X) be its formal derivative. Let x ∈ Qp. If
f(x) converges, then so does f ′(x), and we have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Proof: (Following [34]. See [19] for a proof based on Theorem 5.1.4.)

Note first that there are indeed elements h → 0 for which f(x + h) con-
verges, since the region of convergence is a (closed or open) ball centered at
the origin. In fact, let ρ be the radius of convergence. If x = 0, any h with
|h| < ρ works; if x �= 0, then any h with |h| < |x| works. (Remember that
if |h| < |x|, then |x + h| = |x|.) In particular, the limit that appears in the
proposition does make sense.

Suppose, then, that f(x) converges, which is equivalent to saying that
anx

n → 0. If x = 0 then it is clear that f ′(x) converges. If x �= 0, notice that
since the absolute value of an integer is at most 1, as n → ∞ we have

|nanxn−1| ≤ |anxn−1| = 1

|x| |anx
n| → 0,

and again we see4 that f ′(x) converges.
Recall that either f(x) converges in the closed ball B(0, ρ) or in the open

ball B(0, ρ). In the first case, set ρ1 = ρ. In the second case, choose ρ1 such
that |x| ≤ ρ1 < ρ. The point is that in either case the series will converge
when |x| ≤ ρ1.

4This is one of those places where Corollary 5.1.2 really simplifies our life!
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Since we only care about h close to zero, we may assume, if x �= 0, that
|h| < |x| ≤ ρ1. Otherwise, x = 0 and we can simply assume |h| ≤ ρ1. Now,

f(x+ h) =
∞∑

n=0

an(x+ h)n =
∞∑
n=0

an

n∑
m=0

(
n

m

)
xn−mhm.

Subtracting f(x) and dividing by h, we get

f(x+ h)− f(x)

h
=

∞∑
n=1

n∑
m=1

an

(
n

m

)
xn−mhm−1.

It remains to take the limit as h → 0 on both sides. On the left we will get
f ′(x). On the right, the question is whether we can take the limit of a sum
by computing the sum of the limits.

Since we have |x| ≤ ρ1 and |h| ≤ ρ1, we have∣∣∣∣an
(
n

m

)
xn−mhm−1

∣∣∣∣ ≤ |an|ρn−1
1 ,

and the series converges when |x| = ρ1 we have |an|ρn1 → 0. Given ε > 0, we
can find an M so that m ≥ M implies |an|ρn−1

1 < ε, and this implies that
for our fixed |x| ≤ ρ1 and all |h| ≤ ρ1 we have∣∣∣∣an

(
n

m

)
xn−mhm−1

∣∣∣∣ ≤ |an|ρn−1
1 < ε

for all n. In other words, the inner terms tend to zero uniformly in h.
This implies5 that we can take the limit term-by-term. In the case of the

inner terms, that amounts to setting h = 0 in the polynomial

n∑
m=1

an

(
n

m

)
xn−mhm−1 = nanx

n−1 +

(
n

2

)
anx

n−2h+ · · · ,

which gives nanx
n−1. So we get

f ′(x) =
∞∑

n=1

nanx
n−1,

which is what we want.

Problem 167 Prove the result we needed for that crucial last step. Suppose that for
all |h| ≤ r we have

f(h) =
∞∑

n=0

fn(h)

5Can you see a problem coming?
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and that lim
n→∞

fn(h) = 0 uniformly in h. Show that if all the limits exist we have

lim
h→0

f(h) =
∞∑

n=0

(
lim
h→0

fn(h)
)
.

The theorem says that whenever f(x) converges so does f ′(x). In par-
ticular, the radius of convergence of f ′(X) is at least as big as the radius of
convergence of f(X). In fact they are the same.

Problem 168 Suppose that the formal power series f(X) has radius of convergence
ρ. Show that the radius of convergence of f ′(X) is also ρ.

Problem 169 Let f(X) =
∑

anX
n be a formal power series with radius of conver-

gence ρ > 0, and suppose f(x) converges. Show that for every k the k-th derivative
f (k)(x) exists, and is given by

f (k)(x) =
∑
n≥k

n!

(n− k)!
an(x− a)n−k = k!

∑
n≥k

(
n

k

)
an(x− a)n−k.

This series has radius of convergence ρ, and we have

ak =
f (k)(0)

k!
.

Problem 170 Can you think of any reason why one would want to write the derivative
as above, with k! factored out?

To demonstrate that we’ve actually proved quite a bit, here’s an easy
consequence of our results. As we pointed out above, it is possible for two
p-adic functions to have the same derivative without it being the case that
their difference is constant. That doesn’t happen for functions defined by
power series.

Corollary 5.5.6 Suppose f(X) and g(X) are power series, and suppose that
both series converge for |x| < ρ. If f ′(x) = g′(x) for all |x| < ρ, then there
exists a constant c ∈ Qp such that f(X) = g(X) + c as power series. In
particular, f(X) and g(X) have the same disk of convergence, and we have
f(x) = g(x) + c for all x in the disk of convergence.

Proof: Let f(X) =
∑

anX
n, g(X) =

∑
bnX

n, and let f ′(X) and g′(X) be
the formal derivatives. By Proposition 5.5.5 we know that whenever |x| < ρ
we have ∞∑

n=1

nanx
n−1 =

∞∑
n=1

nbnx
n−1.

By Proposition 5.5.4, we can conclude that an = bn for all n ≥ 1, and the
conclusion follows.
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The upshot is that functions defined by power series behave well. In
particular, pseudo-constant functions cannot be given by power series on any
ball where they are not actually constant.

The fact that functions given by power series cannot be pseudo-constant
means that we can hope for a fairly good theory of anti-derivatives for such
functions. Of course, the formal theory is easy: if

f(X) = a0 + a1X + a2X
2 + · · ·+ anX

n + · · · ,

then any anti-derivative of f(X) must look like

F (X) = C + a0X +
a1
2
X2 +

a2
3
X3 + · · ·+ an

n+ 1
Xn+1 + · · ·

Clearly the function defined by F (X) will have derivative given by f(X)
whenever it converges, but the fact that F (X) has denominators means that
it might not converge for the same range of x. Problem 168 says that the
radius of convergence of the two series is the same, but the behavior at points
where |x| = ρ can be completely different. Since the sphere given by |x| = ρ
is an open set, there are many such points!

For example, consider

f(x) =

∞∑
k=1

pkXpk−1.

This clearly converges for all x ∈ Zp. But the formal anti-derivative is

F (x) =

∞∑
k=1

Xpk

,

which diverges at any x with |x| = 1. So while f(x) is an analytic function
on Zp, its anti-derivative is not; we only get a good analytic anti-derivative
on pZp.

One can show, however, that the anti-derivative of a function defined by
a power series converging in Zp is always locally analytic, i.e., one can cover
Zp with smaller balls and find a power series for the anti-derivative on each
of those balls. Unfortunately, this means we can’t quite rescue the idea that
the “integral” of f(x) should be F (b)− F (a), because b and a might not be
in the same smaller ball. Fixing this problem leads to the Coleman integral.

5.6 Strassman’s Theorem

The next theorem we want to look at is a fundamental result about the zeros
of functions defined by power series.
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Theorem 5.6.1 (Strassman) Let

f(X) =

∞∑
n=0

anX
n = a0 + a1X + a2X

2 + · · ·

be a non-zero power series with coefficients in Qp, and suppose that we have
lim
n→∞ an = 0, so that f(x) converges for all x ∈ Zp. Let N be the integer

defined by the two conditions

|aN | = max
n

|an| and |an| < |aN| for n > N .

Then the function f : Zp −→ Qp defined by x �→ f(x) has at most N zeros.

(The existence of N follows from the fact that the series is nonzero but the
coefficients an tend to zero: there is a largest absolute value, and N is the
index of the last coefficient for which the maximum is attained.)

Strassman’s theorem is usually proved using a high-powered result known
as the p-adic Weierstrass preparation theorem, which shows that any func-
tion on Zp defined by a power series as above is equal to the product of a
polynomial of degree N and a power series with no roots in Zp. We will
eventually prove that (Theorem 7.2.6), but for now we forgo that approach
and give the elementary proof found in [14, Ch. 4, Thm. 4.1].

Proof: We use induction on N .

a) If N = 0, we must have |a0| > |an| for all n ≥ 1, and what we want to
prove is that in that case there are no zeros: f(x) �= 0 for all x ∈ Zp. Indeed,
if we had f(x) = 0, then

0 = f(x) = a0 + a1x+ a2x
2 + · · · ,

from which it would follow that

|a0| = |a1x+ a2x
2 + · · · |

≤ max
n≥1

|anxn|

≤ max
n≥1

|an|.

But this contradicts the assumption that |a0| > |an| for all n ≥ 1.

b) To handle the induction step, we use an idea from the algebra of polyno-
mials: a zero implies a factorization. Suppose that

|aN | = max
n

|an| and |an| < |aN| for n > N ,
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and suppose that f(α) = 0 for some α ∈ Zp. Choose any x ∈ Zp. Then we
have

f(x) = f(x)− f(α) =
∑
n≥1

an(x
n − αn)

= (x− α)
∑
n≥1

n−1∑
j=0

anx
jαn−1−j .

By Proposition 5.1.4, we can re-order the series as a power series in x, which
gives

f(x) = (x− α)
∞∑
j=0

bjx
j = (x− α)g(x),

where the coefficients bj are given by

bj =

∞∑
k=0

aj+1+kα
k.

It is easy to see that bj → 0 as j → ∞. It’s also clear that if they were
all zero then f(X) would be the zero power series, contradicting one of our
assumptions. So g(X) satisfies the assumptions of the theorem.

To use the induction hypothesis we need to find the last |bj | with maxi-
mum absolute value. First, note that

|bj| ≤ max
k≥0

|aj+1+k| ≤ |aN |

for every j, so all the |bj | are bounded by |aN |. On the other hand, since
|α| ≤ 1, for any i ≥ 1 we have |aN+iα

i| ≤ |aN+i| < |aN |, so the ultrametric
inequality gives

|bN−1| = |aN + aN+1α+ aN+2α
2 + · · · | = |aN |.

Finally, if j ≥ N ,

|bj| ≤ max
k≥0

|aj+k+1| ≤ max
j≥N+1

|aj | < |aN |.

This shows that the magic number in Strassman’s theorem when applied to
g(X) is N − 1. By induction, we can assume that g(X) has at most N − 1
zeros in Zp, which implies that f(X) has at most N zeros (those of g(X),
plus α). This proves the theorem.

Problem 171 Check that the application of Proposition 5.1.4 in the proof of Strass-
man’s theorem is valid.
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Strassman’s theorem is only the first of several important theorems6 about
zeros of functions on Qp defined by power series. Even so, it is a very powerful
theorem. Here are some consequences.

Corollary 5.6.2 Let f(X) =
∑

anX
n be a non-zero power series which

converges on Zp, and let α1, . . . , αm be the roots of f(X) in Zp. Then we
can find a power series g(X) which converges on Zp but has no zeros in Zp,
for which

f(X) = (X − α1) · · · (X − αm)g(X).

Proof: Clear from the proof of the theorem and Proposition 5.5.4.

Since Zp is just the closed unit ball in Qp, we can extend the result to
other disks by simple scaling.

Corollary 5.6.3 Let f(X) =
∑

anX
n be a non-zero power series which

converges on pmZp, for some m ∈ Z. Then f(X) has a finite number of
zeros in pmZp.

Proof: Define g(X) = f(pmX) =
∑

anp
mnXn. Since f(X) converges in

pmZp, g(x) converges for x ∈ Zp, and applying the theorem to g(X) gives
the finiteness.

Problem 172 Strassman’s Theorem actually gives a bound for the number of roots
in Zp. What is a bound for the number of roots in pmZp?

Problem 173 Say all you can about the zeros of the functions defined by the power
series in Problem 155.

This result allows us to prove a variant of Proposition 5.5.4:

Corollary 5.6.4 Let f(X) =
∑

anX
n and g(X) =

∑
bnX

n be two p-adic
power series which converge in a disk pmZp. If there exist infinitely many
numbers α ∈ pmZp such that f(α) = g(α), then an = bn for all n ≥ 0.

Proof: Apply the previous corollary to f(X)− g(X).

Notice that since pmZp is compact, the existence of infinitely many α as
above implies the existence of a convergent sequence of such α, so that (in
Qp) this result could also be proved directly from Proposition 5.5.4. But if we
move to a context where closed balls are not compact, this proof still works.

One consequence of this is something of a surprise:

Corollary 5.6.5 Let f(X) =
∑

anX
n be a p-adic power series which con-

verges in some disk pmZp. If the function pmZp −→ Qp defined by x �→ f(x)
is periodic, that is, if there exists π ∈ pmZp such that f(x+π) = f(x) for all
x ∈ pmZp, then f(X) is constant.

6For example, the p-adic Weierstrass Preparation Theorem and the theory of Newton
polygons, which allow very detailed control of the zeros. See Chapter 7 for more details.
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Proof: The series f(X)−f(0) has zeros at nπ for all n ∈ Z. Since π ∈ pmZp

implies nπ ∈ pmZp, this gives infinitely many zeros, and hence the series
f(X)− f(0) must be identically zero, i.e., f(X) must be constant.

This offers an intriguing contrast to the classical case, where the sine
and cosine functions are both periodic and “entire,” i.e., they can each be
expressed as a power series that converges everywhere. The crucial difference
is that in the classical case it never happens that all the multiples of the period
are in the same bounded interval, while in our case the non-archimedean
property guarantees just that.

While periodicity is very different in the classical and the p-adic situations,
the zeros of an entire function are distributed similarly in both cases:

Corollary 5.6.6 Let f(X) =
∑

anX
n be a p-adic power series, and suppose

that f(X) is entire, i.e., that f(x) converges for every x ∈ Qp. Then f(X)
has at most countably many zeros. Furthermore, if the set of zeros is not
finite then the zeros form a sequence αn with |αn| → ∞.

Proof: This is clear, because the number of zeros in each bounded disk
pmZp is finite.

It is natural (and tempting) to conjecture from these results that there
should be a representation of any entire function as an infinite product over
the zeros; something like

f(X) = h(X)
∏

(1− α−1X),

where α ranges over the zeros of f(X) and h(X) is an entire function with no
zeros. (Why it’s best to write the expansion in terms of the inverses of the
roots may be a little mysterious now; we will go back to this in Chapter 7.)
It is easy to see that such a representation does exist, but it will not be very
interesting unless we are ready to go to the algebraic closure of Qp, since
even polynomials may fail to have roots in Qp. When we have the necessary
machinery set up for working over the algebraic closure, we will be able to
obtain a very precise description of entire functions in this spirit.

This brings out a rather embarrassing point: in the case of R, the algebraic
closure is an old friend, the field of complex numbers. By contrast, at this
point we really know very little about the algebraic closure of Qp. In fact, we
do not even know whether the p-adic absolute value on Qp can be extended
to its algebraic closure. It turns out that this extension is indeed possible (we
will discuss this a little later), but that the algebraic closure is not complete
with respect to this absolute value. (This is very different from the classical
case, where C is just as complete as R.) The obvious thing to do is to go
through the completion process again. The resulting field, usually called Cp,
is both complete and algebraically closed, and is the p-adic analog of the
complex numbers. Arguably the field Cp is the “correct” context in which to
do p-adic analysis, and we will go through the process of constructing it and
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studying the results in Chapters 6 and 7 of this book. For now, we want to
stay at a more intuitive level, and hence will continue working in Qp. What
we will do, however, is to be careful to construct our arguments in such a
way that they will be easy to generalize to other fields. This will save us a
lot of work later on.

5.7 Logarithm and Exponential Functions

In this section, our goal is to use power series to define p-adic functions
which are analogous to the classical exponential and logarithm functions. In
contrast to the archimedean case, it is the logarithm that has the better
convergence properties.

We begin with the usual power series for the logarithm:

f(X) = log(1 +X) =
∞∑
n=1

(−1)n+1X
n

n
= X − X2

2
+

X3

3
+ · · ·

(We use log—rather than log—to emphasize that we are considering the
formal power series, and not the function, which after all we have not yet
defined in the p-adic context.) Since the coefficients of this power series are
rational numbers, it makes sense to think of the series as a power series in Qp

(for any prime p). The first step towards understanding it is, of course, to
compute its radius of convergence. Before we jump into the limit calculation,
however, we should note another classical vs. p-adic contrast. In the classical
case, all the integers in the denominators help the convergence, because they
tend to make the terms of the series smaller. In the p-adic case, this is exactly
reversed: integers in the denominator either do not change the absolute value
(when they are not divisible by p) or make it bigger (when they are). What
saves convergence in the case of this series is that “in general” n is not too
divisible by p.

To compute the radius of convergence ρ, let f(X) =
∞∑

n=1

(−1)n+1X
n

n
, so

that an =
(−1)n

n
. Then

|an| =
∣∣∣∣ 1n
∣∣∣∣ = pvp(n).

From this, we get
n
√
|an| = pvp(n)/n → 1

as n → ∞. (Check!) Hence, ρ = 1. This doesn’t decide for us whether the
convergence happens on the open or closed ball of radius 1. To decide, we
need to look at what happens when |x| = 1. But it is clear that in that case
the absolute value |anxn| = |an| = |1/n| does not tend to zero (it’s equal to
1 whenever p doesn’t divide n). So we get
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Lemma 5.7.1 The series

f(X) =

∞∑
n=1

(−1)n+1X
n

n
= X − X2

2
+

X3

3
− X4

4
+ · · ·

converges for |x| < 1 (and diverges otherwise).

Problem 174 Check that
lim

n→∞
pvp(n)/n = 1.

(The main idea is to estimate vp(n) as a function of n.)

The conclusion is that f(X) defines a function on the open ball B(0, 1) of
radius 1 and center 0. This suggests that we should define the logarithm in
the obvious way, so that f(x) = log(1 + x).

Definition 5.7.2 Let U1 = B(1, 1) = {x ∈ Zp : |x− 1| < 1} = 1 + pZp. We
define the p-adic logarithm of x ∈ U1 as

logp(x) = log(1 + (x− 1)) =

∞∑
n=1

(−1)n+1 (x− 1)n

n
.

Of course, if we want this function to deserve to be called a logarithm, we
had better check that it satisfies the functional equation that characterizes
logarithms.

Proposition 5.7.3 Suppose a, b ∈ 1 + pZp. Then

logp(ab) = logp(a) + logp(b).

Proof: In the literature, this is often proved by noting that there is an
underlying identity of power series. The problem with this is that verifying
condition (iii) of Theorem 5.4.3 is somewhat problematic. So instead we give
a direct proof that mimics the classical proof. To simplify the notation, let
a = 1 + x and b = 1 + y.

For any x ∈ pZp, let

f(x) = logp(1 + x) =
∞∑

n=1

(−1)n+1x
n

n
.

Then, by our results on derivatives of functions defined by power series, we
have

f ′(x) =
∞∑
n=0

(−1)nxn =
1

1 + x
.

Now fix y ∈ pZp and define

g(x) = logp((1 + x)(1 + y)) = f(y + (1 + y)x).
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By the result in Problem 165, this is a power series that converges for |x| < 1.
Now use the chain rule to compute the derivative of g:

g′(x) = (1 + y)f ′(y + (1 + y)x) =
(1 + y)

1 + y + (1 + y)x
=

1

1 + x
= f ′(x).

Since both f(x) and g(x) are defined by power series that converge for |x| < 1,
it follows by Corollary 5.5.6 that g(x) = f(x)+ c whenever |x| < 1. Plugging
in x = 0 shows that c = g(0) = f(y). Hence we’ve shown that g(x) =
f(x) + f(y); translating back to logarithms, this says

logp((1 + x)(1 + y)) = logp(1 + x) + logp(1 + y),

and we are done.

Problem 175 Show that if p = 2 then −1 ∈ B, so that it makes sense to compute
logp(−1). Show that logp(−1) = 0. Compare with the example in Chapter 1. Can you
estimate the highest power of 2 that divides the n-th partial sum?

In the previous chapter, we used Hensel’s Lemma to determine for which
m there exist m-th roots of unity in Qp. Our method restricted us to the case
where p � m, so we left open the possibility of the existence of pn-th roots of
unity in Qp. It turns out, as we said then, that these do not exist, except
for the trivial case when p = 2 and n = 1. The next three problems use the
p-adic logarithm to prove this claim. The idea is that if x is a root of unity
and x ∈ 1 + pZp, then we must have logp(x) = 0, so that studying the zeros
of the logarithm will give us a handle on the roots of unity.

Problem 176 Use Strassman’s Theorem to show that for p �= 2 we have logp(x) = 0
if and only if x = 1. If p = 2, show that logp(x) = 0 if and only if x = ±1. (Hint: one
can’t use Strassman’s Theorem directly, because the series does not converge in Zp,
but rather in pZp. But that is easily handled with a change of variables.)

Problem 177 Let p �= 2. Show that if x ∈ Qp and xp = 1, then x = 1. Conclude
that there are no p-th roots of unity (and hence no pn-th roots of unity) in Qp.

Problem 178 Let p = 2. Show that if x ∈ Q2 and x4 = 1, then x = ±1. Conclude
that there are no fourth roots of unity in Q2. (There are, of course, the square roots
of unity ±1.)

Since knowing the roots of unity in Qp turns out to be very useful, we
summarize all that we know about them:

• for p = 2, the only roots of unity in Qp are ±1

• for p �= 2, Qp contains all of the (p− 1)-st roots of unity, and no others.
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(Recall that the existence of the (p − 1)-st roots of unity was proved as an
application of Hensel’s Lemma in the last chapter.)

Having obtained a logarithm, exponentials cannot be far behind. In the
classical case, the series

exp(X) =
∞∑
n=0

Xn

n!
= 1 +X +

X2

2
+

X3

6
+ · · ·

converges for all x ∈ R, because the coefficients 1/n! tend very quickly to zero
with respect to the real absolute value. In the p-adic context, of course, this
changes drastically, because n! tends to zero, so that 1/n! becomes arbitrarily
large as n grows. This means that we cannot expect to have a large radius
of convergence. To determine what that radius will be, we have to work out
exactly how fast the coefficients 1/n! grow, i.e., we have to work out how
divisible n! is by p.

Lemma 5.7.4 Let p be a prime. Then

vp(n!) =

∞∑
i=1

⌊
n

pi

⌋
<

n

p− 1
,

where �·� is the greatest integer (or “floor”) function. In particular

|n!|p > p−n/(p−1).

Proof: The formula

vp(n!) =

∞∑
i=1

⌊
n

pi

⌋
is well known and easy to prove. We leave it as the next problem. The
inequality then follows, because �x� ≤ x, so that

vp(n!) =

∞∑
i=1

⌊
n

pi

⌋
<

∞∑
i=1

n

pi
=

n

p− 1

by the usual formula for geometric series.

Problem 179 Prove that

vp(n!) =
∞∑
i=1

⌊
n

pi

⌋
.

Here is another version of the same formula, which is sometimes useful:

Problem 180 Let n be a positive integer, and let n = a0 + a1p+ a2p
2 + · · ·+ akp

k

be its expansion in base p. Let s = a0 + a1 + · · ·+ ak be the sum of the digits in the
expansion. Show that

vp(n!) =
n− s

p− 1
.
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(Hint: work out the difference between n/pi and its integral part in terms of the base
p expansion.)

Now we use these estimates to work out the radius of convergence of the
exponential.

Lemma 5.7.5 Let

g(X) =

∞∑
n=0

Xn

n!
= 1 +X +

X2

2!
+

X3

3!
+ · · ·

Then g(x) converges if and only if |x| < p−1/(p−1).

Proof: Since
|an| = |1/n!| = pvp(n!) < pn/(p−1)

by our first estimate, we get

ρ ≥ p−1/(p−1).

Thus, the series certainly converges for |x| < p−1/(p−1).
On the other hand, let |x| = p−1/(p−1) and let n = pm be a power of p.

In this case, we have

vp(n!) = vp(p
m!) = 1 + p+ · · ·+ pm−1 =

pm − 1

p− 1

(notice that this is a special case of the result in Problem 180). Then, since
vp(x) = 1/(p− 1),

vp

(
xn

n!

)
= vp

(
xpm

pm!

)
=

pm

p− 1
− pm − 1

p− 1
=

1

p− 1
.

This does not depend on m, hence xn/n! cannot tend to zero, and the series
doesn’t converge. Since we know that the region of convergence is a disk,
this proves the lemma.

Remark: There is something a little strange about the inequality in the
lemma. If p �= 2 and x ∈ Zp, then the absolute value of x can either be
equal to 1 (which is bigger than p−1/(p−1)) or less than or equal to 1/p = p−1

(which is smaller): there are no values “in the middle.” Thus, if p �= 2,

|x| < p−1/(p−1) ⇐⇒ |x| ≤ p−1 ⇐⇒ x ∈ pZp ⇐⇒ |x| < 1,

so that the disk in the lemma is just the open disk of radius one!
This seems to suggest that all our care in working out the precise radius

of convergence is wasted. That is not really the case. The point is that our
estimates only depend on the absolute value of x, and so they will work in
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any field containing Qp (with an absolute value extending the one on Qp).
In such fields there may indeed be elements with

p−1/(p−1) ≤ |x| < 1.

This will be particularly important in our next two chapters when we will
indeed be working in larger fields.

Meanwhile, the reader should keep an eye out for arguments that depend
on knowing that |x| < 1 implies x ∈ pZp; these are the arguments that do
not generalize.

In any case, as long as we stay in Qp, things are pretty simple. If p �= 2,
g(x) = exp(x) converges for x ∈ pZp. If p = 2, −1/(2 − 1) = −1, so the
lemma tells us that g(x) = exp(x) converges when |x| < 1/2, which happens
when x ∈ 4Z2.

Now we can define the p-adic exponential function using the formal series
exp(X).

Definition 5.7.6 Let D = B(0, p−1/(p−1)) = {x ∈ Zp : |x| < p−1/(p−1)}.
The p-adic exponential is the function expp : D −→ Qp defined by

expp(x) =

∞∑
n=0

xn

n!
.

Notice that expp(1) is not defined, so there is no natural p-adic analogue
of e in Qp. Within its domain, however, the p-adic exponential does satisfy
most of the formal properties of the classical exponential. Let’s begin with
the most famous one:

Proposition 5.7.7 If x, y ∈ D we have x+ y ∈ D and

expp(x+ y) = expp(x) expp(y).

Proof: This is essentially a formal manipulation of power series:

expp(x+ y) =

∞∑
n=0

(x + y)n

n!
=

∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
xn−kyk

=

∞∑
n=0

n∑
k=0

1

n!

n!

(n− k)!k!
xn−kyk

=

∞∑
n=0

n∑
k=0

xn−k

(n− k)!

yk

k!

=

( ∞∑
m=0

xm

m!

)( ∞∑
k=0

yk

k!

)

= expp(x) expp(y),

as claimed.
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Problem 181 Are there convergence issues to check in the proof?

This shows that, apart from the smallish radius of convergence, we have
obtained something that is a lot like the classical exponential.

There is of course one more formal property we would like to be true also
in the p-adic context: the fact that the logarithm and the exponential are
inverses, i.e., the relation

exp(log(1 +X)) = 1 +X

and its inverse. This is a formal equality of power series, so that we only
need to check that the conditions in Theorem 5.4.3 hold.

Proposition 5.7.8 Let x ∈ Zp, |x| < p−1/(p−1). Then we have

| expp(x)− 1| < 1

so that expp(x) is in the domain of logp, and

logp(expp(x)) = x.

Conversely, if |x| < p−1/(p−1) we have

| logp(1 + x)| < p−1/(p−1)

so that logp(1 + x) is in the domain of expp, and

expp(logp(1 + x)) = 1 + x.

Proof: We need to check the estimates to know that all the series converge,
and we also need to check condition (iii) from Theorem 5.4.3. Note first that
both identities are clearly true when x = 0, so that we can assume x �= 0.

To compute logp(expp(x)), we are actually plugging expp(x)− 1 into the
series log(1+X), so that is the quantity we need to estimate. We start from∣∣∣∣xn

n!

∣∣∣∣ = |x|n · pvp(n!) < |x|npn/(p−1),

which we get from Lemma 5.7.4. Since |x| < p−1/(p−1), this is less than 1,
and it follows that ∣∣expp(x)− 1

∣∣ =
∣∣∣∣∣
∞∑
n=1

xn

n!

∣∣∣∣∣ < 1,

as claimed.
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But in fact we can do better by using the result in Problem 180. Suppose
n ≥ 2; to make the computation easier, let’s use the additive valuation vp
instead of absolute values. Since vp(x) > 1/(p− 1), we get

vp

(
xn−1

n!

)
= (n− 1)vp(x)− vp(n!) >

n− 1

p− 1
− n− s

p− 1
=

s− 1

p− 1
≥ 0,

where, as in Problem 180, s is the sum of the digits in the expansion of n in
base p (so that s ≥ 1). It follows that∣∣∣∣xn−1

n!

∣∣∣∣ < 1,

and so ∣∣∣∣xn

n!

∣∣∣∣ < |x|.

So we have shown that in the series expp(x) all terms with n ≥ 2 are smaller
than the leading term x. This implies that | expp(x)− 1| = |x| and also that
| expp(x)| > |xn/n!| for all n ≥ 2, so that condition (iii) in Theorem 5.4.3 is
satisfied. Applying Theorem 5.4.3, we can conclude from the formal equality
of power series that if |x| < p−1/(p−1) we have

logp(expp(x)) = x.

Now let’s consider the composition in the opposite order. This time we’re
plugging logp(1 + x) into exp(X), so we need to estimate the valuation of
logp(1+x). We can actually take advantage of the estimates we already have
by noticing that |n!| ≤ |n|, so that∣∣∣∣xn

n

∣∣∣∣ ≤
∣∣∣∣xn

n!

∣∣∣∣ .
So if |x| < p−1/(p−1), the estimates above say∣∣∣∣xn

n

∣∣∣∣ ≤
∣∣∣∣xn

n!

∣∣∣∣ < |x|.

As above, we get
| logp(1 + x)| = |x| < p−1/(p−1),

which shows both that logp(1 + x) is in the domain of the exponential and
that condition (iii) in Theorem 5.4.3 is satisfied. Hence the formal equality
of power series implies what we want:

expp(logp(1 + x)) = 1 + x.

This finishes the proof.
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Problem 182 When we work hard at a proof it is worthwhile to see if along the way
we haven’t proved something that might be interesting in itself. Notice that we proved
that if |x| < p−1/(p−1) then | expp(x)− 1| = |x|. Since expp(0) = 1, this actually says
that

| expp(x)− expp(0)| = |x− 0|.
Generalize it to show that if |x| < p−1/(p−1) and |y| < p−1/(p−1), then

| expp(x)− expp(y)| = |x− y|.
In other words, expp is an isometry.

The hypotheses of the theorem are indeed necessary, for two reasons. The
first, and less crucial one, is that if |x| < 1 but |x| ≥ p−1/(p−1), it can very
well be that logp(1 + x) does not belong to the domain of the exponential.
But much more serious is the fact that it can happen that we have |x| < 1,
|x| ≥ p−1/(p−1), and also

| logp(1 + x)| < p−1/(p−1),

so that all the series involved converge, but

expp(logp(1 + x)) �= 1 + x.

This is due to the fact that the extra condition in Theorem 5.4.3 really does
matter. To see this concretely, consider what happens7 when we take p = 2
and x = −2: in that case, 1 + x = 1− 2 = −1, so that

logp(1 + x) = logp(−1) = 0.

Then, when we plug into the series for the exponential, we get

expp(logp(−1)) = exp(0) = 1 �= −1.

In other words, the p-adic exponential and logarithm are inverses only within
the restricted domains specified in the proposition.

Problem 183 Why doesn’t Theorem 5.4.3 apply in this situation?

Notice that the theorem also tells us something about the images of expp
and logp. Recall that we defined D = {x ∈ Zp : |x| < p−1/(p−1)}. Using this
notation, the theorem tells us that expp is an isometric isomorphism from D
to 1 +D and that logp is its inverse.

Problem 184 Use power series to define p-adic analogues of the sine and cosine
functions, and determine their regions of convergence. Show that if p ≡ 1 (mod 4)
then there exists i ∈ Qp such that i2 = −1, and the classical relation

expp(ix) = cosp(x) + i sinp(x)

holds for any x in the common region of convergence. The classical trigonometric
functions are periodic; are the p-adic versions periodic?

7This is the example we referred to when we discussed Theorem 5.4.3.
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5.8 The Structure of Z×
p

As an application of the p-adic logarithm and exponential, we can study the
group of p-adic units Z×

p a little more carefully. We’ve already shown, using
Hensel’s Lemma, that Z×

p contains the (p − 1)-st roots of unity. We also
showed, using Strassman’s Theorem, that when p �= 2 there are no other
roots of unity. Now we want to know what “the rest of Z×

p ” looks like. The
idea is to look carefully at the domains and images of the logarithm and
exponential functions.

As we noted above, when we are working in Zp the region D on which
the exponential converges is the same as pZp unless p = 2. To simplify the
notation, let’s introduce a parameter q as follows:

• if p is an odd prime, then q = p;

• if p = 2, then q = 4.

The point is that then the p-adic exponential expp(x) will be defined for
x ∈ qZp, and logp(x) will be defined for x ∈ 1 + pZp. Notice also that Qp

contains the (p− 1)-st roots of unity when p is odd, and contains the square
roots of unity when p = 2. If we use Euler’s ϕ function, defined by ϕ(n) =
the number of integers between 1 and n which are relatively prime to n, then
the number of roots of unity in Qp is always ϕ(q), since ϕ(p) = p− 1 for any
prime, and ϕ(4) = 2.

Problem 185 Another way to define the ϕ function is to say that ϕ(n) is the number
of elements in (Z/nZ)×, i.e., the number of invertible elements in the ring Z/nZ. Check
that the two definitions are equivalent.

Let’s define two subsets of Z×
p :

U1 = {x ∈ Z×
p : |x− 1| < 1} = 1 + pZp

Up = {x ∈ Z×
p : |x− 1| < p−1/(p−1)} = 1 + qZp.

Notice that

• Up ⊂ U1 ⊂ Z×
p ,

• Up = U1 except if p = 2,

• if p = 2, then U1 = Z×
p , and

• U1 and Up are subgroups of Z×
p .

The elements of U1 are often called the “1-units” (which comes from “the
units which are congruent to 1 (mod pZp)”).

Problem 186 Check that U1 and Up are indeed subgroups of Z×
p .
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We can now determine the structure of Z×
p quite precisely:

Proposition 5.8.1 Let U1 and Up be as above, and let Z+
p denote the addi-

tive group of Zp. Let

W = {x ∈ Zp : |x| < p−1/(p−1)} = qZp,

considered as a subgroup of Z+
p .

i) The p-adic logarithm logp defines a homomorphism of groups

logp : U1 −−−→ Z+
p ,

whose image is contained in the valuation ideal ℘ = pZp.

ii) The p-adic logarithm logp defines an isometric isomorphism of groups

logp : Up
∼−−−→ W,

with inverse expp. In particular, Up
∼= W ∼= Z+

p is torsion-free.

Proof: Most of this is a straight translation of the discussion above into
the language of groups. Proposition 5.7.3 says that logp is a homomorphism,
and Proposition 5.7.7 does the same for expp. Proposition 5.7.8 says that the
function in (ii) is an isomorphism.

When p �= 2, U1 = Up and W = pZp, so part (i) is equivalent to part (ii).
For p = 2, however, U1 �= Up, so we know that the image of Up is W , but
we have not yet determined the image of U1. As the next problem shows,
it turns out that log2(U1) = W = 4Z2 as well. In particular, the image is
contained in 2Z2, as (i) claims.

Recall that a group is torsion-free if there exist no elements x �= 1 such
that xm = 1 for some m, i.e., no roots of unity. In fact, (ii) gives another
proof that there are no roots of unity in Up, since the additive group Z+

p is
torsion-free.

Problem 187 Let p = 2 and let x ∈ 1 + 2Z2. Show that log2(x) ∈ 4Z2. (You can
do a brute-force estimate, but there’s a trick that will avoid all that work.)

Corollary 5.8.2 For any prime p, we have an isomorphism Z×
p
∼= V × Up,

where Up
∼= Z+

p is a torsion-free pro-p-group and V is the torsion part of Z×
p .

Furthermore:

i) V is the set of roots of unity in Qp, which is a subgroup of Z×
p , and

ii) V ∼= (Z/qZ)×, so that V is a cyclic group of order ϕ(q).
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Proof: It is easy to see that there is an exact sequence

1 −→ Up −→ Z×
p

π−→ (Z/qZ)× −→ 0.

(Remember that this means that the kernel of each homomorphism in the
sequence is equal to the image of the previous one, so that this is basically
just the definition of Up.) In fancy language, what we want to prove is that
the exact sequence “splits,” but we will just give a direct proof.

We already know (from a combination of Hensel’s Lemma and Strassman’s
Theorem) that Z×

p contains a group V of roots of unity. It is a cyclic group
of order p − 1 when p is odd, and of order 2 when p = 2, so in any case it
has ϕ(q) elements, i.e., just as many elements as (Z/qZ)× does. We know
that any two of these elements are distinct modulo q. (If in doubt, review
the discussion starting on page 93. Or prove it again by solving the next
problem.) Suppose ζ1 and ζ2 are roots of unity in Z×

p that have the same

image under the map π. That implies ζ1ζ
−1
2 ∈ Up, but there are no roots

of unity in Up, so that ζ1ζ
−1
2 = 1, i.e., ζ1 = ζ2. In other words, π induces

an isomorphism between V and (Z/qZ)×, and the other assertions in the
theorem follow easily.

Problem 188 Prove that two different roots of unity (of order prime to p) cannot
be congruent modulo qZp. (This means: their difference cannot belong to qZp. There
are a whole lot of ways to do this.)

Problem 189 Fill in whatever is missing in the proof of the Corollary.

One thing that follows from this result is that π gives an isomorphism
between V and (Z/qZ)×. If p is odd, the inverse of this isomorphism gives
an inclusion

ω : F×
p
∼= V ↪→ Z×

p ,

where Fp is the field with p elements. We can extend ω to Fp by setting
ω(0) = 0. The function ω is called the Teichmüller character, and it appears
quite frequently in many different guises. The word “character” indicates
that ω is multiplicative, i.e., ω(ab) = ω(a)ω(b) for all a, b ∈ Fp. When p = 2
we can just define ω(0) = 0 and ω(1) = 1 to get the same effect.

If we compose ω with the “reduction modulo p” map from Z to Fp,

Z
(mod p)

�� Fp
ω �� Zp ,

we get a Dirichlet character8 with values in Zp, which is also usually called
the Teichmüller character and denoted by ω. With this version of ω we
see that ω(n) ≡ n (mod p), so that ω gives a new way of choosing coset
representatives for the elements of Z/pZ.

8Basically, a multiplicative function on Z.
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To complete the confusion, when p �= 2 one often also uses ω to denote the
projection from Z×

p onto its direct factor V , so that every x ∈ Z×
p is written

uniquely as
x = ω(x) · x1

with x1 ∈ 1+ qZp. This makes sense, because if we extend this projection to
all of Zp by mapping non-units to 0, and then restrict back to Z, we get the
Dirichlet character ω. The apparently confusing notation turns out, then,
not to be so bad, because all the different maps denoted by ω are closely
related.

Problem 190 When p = 2, some of the above needs to be modified. What changes
are needed?

Both Sage and gp can compute the Teichmüller character. In gp, it is
just teichmuller(a) where a is a p-adic number. In Sage, one first defines
the field, as usual:

K=Qp(7)

a=K(5)

K.teichmuller(a)

To introduce one more bit of notation, one often uses 〈x〉 to denote the
projection of x on Up = 1 + qZp, so that when p �= 2 the direct product
decomposition looks like

x = ω(x)〈x〉.
When p = 2, we can write x = ±〈x〉 with 〈x〉 ∈ U2 = 1 + 4Z2.

The next problem gives a different way of obtaining ω.

Problem 191 Show that if x ∈ Zp, then we have

ω(x) = lim
n→∞

xpn .

(Hint: one idea is to start with the expression of x as a product of ω(x) and 〈x〉.)
These results allow us to write any x ∈ Qp as a product: first, factor out a

power of p; the remaining factor is in Z×
p , and so we can write it as a product

of a root of unity and a 1-unit. So:

Corollary 5.8.3 If p �= 2, any nonzero x in Qp can be written uniquely in
the form

x = ω(y)〈y〉pn
where n ∈ Z, y ∈ Z×

p , ω is the Teichmüller character, and 〈y〉 ∈ 1 + pZp.
When p = 2, any nonzero x in Q2 can be written uniquely as

x = ±〈y〉2n

with 〈y〉 ∈ 1 + 4Z2.
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This allows us to extend the p-adic logarithm to all of Qp: if we assume
that the logarithm of a product is the sum of the logarithms of the factors,
then we should have

logp(x) = logp(ω(y)〈y〉pn) = logp(ω(y)) + logp(〈y〉) + n logp(p).

The logarithm is already defined on the 1-units, so we know logp(〈y〉). Since
ω(y) is a root of unity, we should define logp(ω(y)) = 0. So to extend the
logarithm to all of Qp we just need to decide what logp(p) is. The most
common choice is to set log(p) = 0. This extended logarithm is called the
Iwasawa logarithm.

The p-adic logarithm and exponential functions are implemented in both
Sage and gp. The functions are called log and exp. Here is gp:

gp > a=8+O(7^20)

%1 = 1 + 7 + O(7^20)

gp > log(a)

%2 = 7 + 3*7^2 + 7^3 + 6*7^4 + 5*7^5 + 2*7^6 + 7^7 + 5*7^8

+ 4*7^9 + 4*7^10 + 2*7^11 + 5*7^12 + 7^13 + 5*7^14

+ 6*7^15 + 2*7^16 + 2*7^17 + 2*7^18 + 7^19 + O(7^20)

gp > exp(log(a))

%3 = 1 + 7 + O(7^20)

Or in Sage:

sage: K=Qp(7)

sage: a=K(8)

sage: log(a)

7 + 3*7^2 + 7^3 + 6*7^4 + 5*7^5 + 2*7^6 + 7^7 + 5*7^8

+ 4*7^9 + 4*7^10 + 2*7^11 + 5*7^12 + 7^13 + 5*7^14

+ 6*7^15 + 2*7^16 + 2*7^17 + 2*7^18 + 7^19 + O(7^20)

You can also use a.log(). Good to know they agree!

The logarithm in gp is actually the Iwasawa logarithm, so you get an
answer for any input:

gp > log(7+O(7^20))

%4 = O(7^19)

gp > b=9+O(7^20)

%5 = 2 + 7 + O(7^20)

gp > log(b)

%6 = 2*7 + 7^2 + 5*7^3 + 5*7^4 + 2*7^5 + 3*7^6 + 5*7^7

+ 6*7^10 + 2*7^11 + 7^12 + 4*7^13 + 4*7^14

+ 3*7^15 + 7^16 + 6*7^17 + 2*7^18 + O(7^20)

gp > exp(log(b))
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%7 = 1 + 2*7 + 3*7^2 + 6*7^3 + 7^4 + 2*7^5 + 6*7^6 + 7^7

+ 2*7^8 + 2*7^9 + 7^10 + 5*7^12 + 2*7^13 + 7^14

+ 7^15 + 2*7^16 + 4*7^17 + 3*7^18 + 3*7^19 + O(7^20)

Of course, there is no chance that exp(log(x) = x when we use the extended
logarithm.

Sage is more generous: it lets you choose which extended logarithm you
want:

sage: K=Qp(7)

sage: a=K(7)

sage: a.log(p_branch=1)

1 + O(7^20)

sage: a.log(p_branch=0)

O(7^20)

sage: b=K(35)

sage: b.log(p_branch=0)

7 + 7^2 + 2*7^3 + 6*7^4 + 7^5 + 5*7^7 + 5*7^8 + 7^9

+ 6*7^10 + 2*7^11 + 7^12 + 6*7^13 + 5*7^15 + 3*7^16

+ 2*7^17 + 6*7^18 + 4*7^19 + O(7^20)

If you try computing the logarithm of a non-unit Sage without specifying
p_branch, you get an error. Notice that the extended p-adic logarithm func-
tion is not given by a power series. For more on the extended logarithm and
information on how to extend the exponential function as well see [53, V.4].

5.9 The Binomial Series

We want to conclude our exploration of the p-adic elementary functions by
considering binomial series and the functions they define. In R, we know that
the function x �→ (1+x)α can be expanded as a power series which converges
for |x| < 1:

(1 +X)α = B(α,X) =

∞∑
n=0

(
α

n

)
Xn,

where (
α

n

)
=

α(α − 1) . . . (α− n+ 1)

n!
.

We want to use this series to define the p-adic version of this function. (Of
course, as is the case over R, this is only new when α is not a positive integer,
but it will work in that case also.) In the p-adic context, the convergence
properties of the series will depend on the choice of the p-adic number α.
We only consider the case when α ∈ Zp is a p-adic integer. The case when
α ∈ Qp but is not in Zp is actually easier, and we leave it as an exercise for
the reader.
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So take a p-adic integer α, and consider the binomial series

B(α,X) = (1 +X)α =

∞∑
n=0

(
α

n

)
Xn.

The first thing is to check that the coefficients are p-adic integers.

Lemma 5.9.1 If α ∈ Zp and n ≥ 0, then
(
α
n

) ∈ Zp.

Proof: For each n, consider the polynomial

Pn(X) =
X(X − 1) . . . (X − n+ 1)

n!
∈ Q[X ].

Just as any polynomial does, Pn(X) defines a continuous function from Qp to
Qp. Now, we know that the binomial coefficient

(
m
n

)
of two positive integers

m, n ∈ Z+ is in Z. Hence, for α ∈ Z+, we have

Pn(α) =

(
α

n

)
∈ Z.

In other words, the continuous function Pn maps the set Z+ of positive
integers to Z. By continuity, it must map the closure of Z+ in Zp to the
closure of Z. But remember that any element in Zp is the limit of a sequence
of positive integers (the partial sums of its p-adic expansion). Hence the
closure of Z+ is all of Zp, and we conclude that Pn maps Zp to Zp, which is
what we want to prove.

Corollary 5.9.2 If α ∈ Zp and |x| < 1, the series

B(α, x) =

∞∑
n=0

(
α

n

)
xn

converges.

Proof: Clear.

Problem 192 The Corollary makes no claim that the radius of convergence is in fact
equal to 1, nor that the series diverges when |x| = 1. What are the facts?

Problem 193 Investigate to what extent Sage and gp implement the computation
of ab when a, b ∈ Qp. If so, do they use the binomial function?

As for the logarithm and exponential, it follows from an equality of formal
power series that for α = a/b ∈ Z(p) and |x| < 1 we have

(
B
(a
b
, x
))b

= (1 + x)a,



158 5 Elementary Analysis in Qp

so that it makes sense to write

B
(a
b
, x
)
= (1 + x)a/b.

This suggests that we should define, for any α ∈ Zp and any x ∈ pZp,

(1 + x)α := B(α, x).

One should be careful, however, to distinguish the p-adic function B(a/b, x)
from its real analogue, even when x is rational and 1 + x is a b-th power in
Q. The following neat example is taken from [42, IV.1].

Example: (Following Koblitz.) Let p = 7, α = 1/2, and x = 7/9, so that
x ∈ 7Z7 and 1 + x = 16/9 is a rational square. In R, we have

(1 + x)1/2 =
4

3
.

In Q7, on the other hand, we have |x| = 1/7, so that, for n ≥ 1,∣∣∣∣
(
1/2

n

)
xn

∣∣∣∣ ≤ |x|n =
1

7n
< 1.

This implies that

(1 + x)1/2 = 1 +
∑
n≥1

(
1/2

n

)
xn ∈ 1 + 7Z7,

or, in terms of absolute values, that∣∣∣(1 + x)1/2 − 1
∣∣∣ < 1.

But ∣∣∣∣43 − 1

∣∣∣∣ =
∣∣∣∣13
∣∣∣∣ = 1,

so that we cannot have B(1
2 ,

7
9 ) =

4
3 . In fact, what happens is that in Q7 we

have

(1 + 7/9)1/2 = B

(
1

2
,
7

9

)
= −4

3
= 1− 7

3
∈ 1 + 7Z7.

This shows that the same series
∑

an with an ∈ Q can converge in both R
and some Qp, but have different limits (even different rational limits), since
the topologies are completely different. Of course, the ratio between two
different n-th roots will be an n-th root of unity.

Despite the risks, we will write (1 + x)α instead of B(α, x), and let the
context decide in which field we are working. The point is to keep in mind
that the meaning of the symbol depends on the underlying field.
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Problem 194 Study the convergence properties of the binomial series when α is not
a p-adic integer.

Problem 195 Show that the value of B(α, x) does not depend on the field we are
working in when x ∈ Q and α ∈ Z is an integer.

The next exercise is [42, IV.1, Exercise 11]. It attempts to decide exactly
when (1 + x)1/2 is equal to the positive square root.

Problem 196 (Koblitz) Choose x ∈ Q such that 1 + x is a square in Q; say√
1 + x = a/b with a and b positive and relatively prime. Let S be the set of primes

(including the infinite prime, if applicable) for which the binomial series B(1/2, x)
converges in Qp. (The limit will have to be a square root of 1 + x, hence will equal
either a/b or −a/b.) Prove that:

i) If p is an odd prime, then p ∈ S if and only if p|(a+ b) or p|(a− b), and in Qp

we will have B(1/2, x) = −a/b in the first case, B(1/2, x) = a/b in the second.

ii) We will have 2 ∈ S if and only if a and b are both odd; the limit in Q2 will be
a/b if a ≡ b (mod 4), and −a/b if a ≡ −b (mod 4).

iii) We will have ∞ ∈ S if and only if 0 < a/b <
√
2, and the sum in R will always

be a/b.

iv) There is no x for which the set S is empty, and S will have only one element if
and only if x ∈ {8, 16

9
, 3, 5

4
}.

v) Except for the x mentioned in the previous item, there always exist primes p, q ∈
S such that the sum in Qp is different from the sum in Qq.

For other interesting results along these lines, tracking what happens
when we look at the same series in various different Qp, see the article [12].

5.10 Interpolation

The idea of interpolating a known function to obtain a related p-adic function
has become very important in number theory, where the standard targets for
this method have been the zeta and L-functions. The point of this section
is to give a first example of the interpolation problem. Our example is very
simple, and it illustrates only some of the many ideas that have arisen in the
literature. We refer the reader to the standard references.9

In the previous section, we considered the binomial series, and used it
to define a p-adic function x �→ xα for x ∈ 1 + pZp and α ∈ Zp. What we
would like to do in this section is to invert the situation, and think of xα as
a function of α. We can interpret this as an interpolation problem, in the
following way.

9The idea of working out this example is due to Koblitz, who goes through a similar
discussion in [42].
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Suppose n ∈ Zp is any p-adic integer, and α is an integer. Then it certainly
makes sense to compute nα. Thus, we can consider the function

f(α) = nα,

which is well-defined for α ∈ Z. What we would like to do is to extend this
function to the widest possible range of p-adic values of α. Since Z is dense
in Zp, such an extension, if continuous, is unique, because two continuous
functions that coincide on a dense subset are identical. Indeed, one can even
work with smaller subsets of Z: the set of positive integers, or the set of
negative integers, or any other set of integers which is dense in Zp. The
problem of finding such an extension is called the problem of finding a p-adic
interpolation of the function f(α) = nα.

The first thing to say about p-adic interpolation is that in a certain sense
the whole thing is trivial. This is because we know perfectly well when it is
that a function defined on a dense subset of Zp has a continuous extension
to all of Zp. The crucial notion here is uniform continuity. The reason it
is relevant to the interpolation problem is a well-known theorem which we
leave as an exercise:

Problem 197 Show that any continuous function defined on a compact set is auto-
matically uniformly continuous and bounded.

Problem 198 Can you give an example of a function Z −→ Zp which is continuous
but not uniformly continuous? (This may be a little hard.)

Now suppose our f(α) could indeed be extended to Zp. Then, since Zp is
compact, the extension would have to be bounded and uniformly continuous.
Hence (restricting back), so would f(α). It turns out that in fact these two
conditions are sufficient.

Proposition 5.10.1 Let S be a dense subset of Zp, and let f : S −→ Qp

be a function. Then there exists a continuous extension f̃ : Zp −→ Qp of f
to Zp if and only if f is bounded and uniformly continuous. If it exists, this
extension is unique.

Proof: We know that the condition is necessary, and that the extension
is unique if it exists, by the discussion above. The difficulty is to prove the
sufficiency, i.e., to show that uniform continuity and boundedness are enough
to guarantee the existence of the extension.

The key is the continuity. If x ∈ Zp, there exists a sequence

α1, α2, . . . , αk, . . .

of elements of S which tends to x (because S is dense). If f̃ exists, then we
will have

f̃(x) = lim
k→∞

f̃(αk) = lim
k→∞

f(αk).
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This shows the way to proceed.
First of all, since the sequence (αk) tends to x, it is a Cauchy sequence,

so that
lim
k→∞

|αk+1 − αk| = 0.

Since f is uniformly continuous and bounded, it follows that

lim
k→∞

|f(αk+1)− f(αk)|) = 0

(check!), so that the f(αk) form a Cauchy sequence, hence have a limit in
Qp. Now we can define f̃ by the condition we know it has to satisfy:

f̃(x) := lim
k→∞

f(αk)

for any sequence (αk) converging to x. This gives the extension.

There are a whole bunch of things to check, and the reader should:

Problem 199 Check that the image of a Cauchy sequence (αk) by a bounded and
uniformly continuous function f is again a Cauchy sequence.

Problem 200 Check that the function f̃ defined above does not depend on the choice
of the sequences (αk).

Problem 201 Check that the function f̃ defined above is indeed a continuous func-
tion on Zp.

One less obvious fact is that one can replace Zp in the proposition by any
compact subset of Qp:

Problem 202 Check that the proposition remains true if we replace Zp by any com-
pact subset of Qp, such as Z×

p , 1 + pZp, or p
mZp. (Hint: the point is that only the

compactness was used.)

This result may seem to completely settle the issue, but that is far from
being the case, for several important reasons. For one thing, one often wants
to know more about f̃ than its bare existence. For example, can it be written
as a power series? Does it extend to a set larger than Zp? Can we give a good
method to compute (better: to approximate) it? Another point is that we
can exploit the “if and only if” in the proposition: if what we want to prove
is the uniform continuity, then finding an interpolation will prove just that!
Finally, thinking in terms of interpolation often gives us useful new ideas, as
we shall see below when we get to the nitty-gritty of our example.

Before we go on to the example, however, it may be useful to unwind
what uniform continuity really means in our case. We will take f(α) to be a
function defined on a dense subset S of Zp, with values in Qp. Then being
“close” in S amounts to being congruent modulo a high power of p, and being
close in Qp is the same. Hence, f will be uniformly continuous if it satisfies
the following congruence condition:
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Given m ∈ Z, there exists an N ∈ Z such that

α ≡ β (mod pN ) =⇒ f(α) ≡ f(β) (mod pm).

Thus, uniform continuity has a simple translation in terms of congruence
properties. This turns out to be quite important.

Now we return to the exponential function α �→ nα. This is defined, at
first, for α ∈ Z and n ∈ Zp, and we would like to extend it to all α ∈ Zp.
The answer, as it happens, depends quite seriously on n.

First of all, suppose n is a 1-unit, that is, n ∈ 1 + pZp. Then we can use
the binomial series to get our interpolation:

Corollary 5.10.2 For any n ∈ 1 + pZp there exists a continuous function
fn : Zp −→ Qp such that for any α ∈ Z we have fn(α) = nα.

Proof: We can just define fn(α) = B(α, n − 1), which converges because
we are assuming n ∈ 1 + pZp. Checking continuity, however, is not all that
easy (remember that we want continuity in α, rather than in n, so it is not
just a matter of saying that power series are continuous functions). We leave
the verification to the reader as a challenging problem.

Problem 203 Show that B(α, x) is continuous as a function of α.

One might also prove Corollary 5.10.2 by a more direct route, showing
that if n ∈ 1 + pZp then α �→ nα is bounded and uniformly continuous.
Boundedness is easy: any integral power of n will be in Zp (and even in
1+ pZp), because n is a 1-unit (there are negative powers in this game too!).
As for uniform continuity, that is also not hard to show; notice, first that

(1 + pk)p
m ≡ 1 (mod pm+1),

so that if β = α+ ipm we get

nβ = nα · (npm

)i ≡ nα (mod pm+1),

which is what we want. This establishes the existence of fn. Proving that
fn(α) = B(α, n− 1) requires showing that the latter is continuous.

Problem 204 Another method to obtain the interpolation of α �→ nα would be to
define

nα = expp(α logp(n)).

Does this work? (Notice that it is much easier to check the continuity in this case.)

So we have extended nα to α ∈ Zp when n ∈ 1 + pZp. We would like,
however, to consider more general p-adic integers. Unfortunately, that turns
out to be quite tricky. To begin with, suppose p divides n. Then, as the
integer α becomes bigger, nα becomes p-adically closer and closer to zero.
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This messes everything up. For example, take n = p, and look at the sequence
αk = 1 + pk. Then

lim
k→∞

αk = 1, but lim
k→∞

pαk = 0 �= p1,

so that the map α �→ pα is not even continuous.
We might have a better chance if we tried to work only with p-adic units.

When p = 2, this gives nothing new, since Z×
2 = 1 + 2Z2. For odd primes p,

however, we know that 1 + pZp is a subgroup of index p − 1 in Z×
p , so that

going from n ∈ 1 + pZp to n ∈ Z×
p would be progress. Even this, however,

turns out to be a little tricky, basically because of the presence of the roots
of unity.

Let p �= 2; for n ∈ Z×
p , we will try to interpolate the function α �→ nα.

Since we have already done this for n ∈ 1+ pZp, the easiest way to do this is
to use the known relation between Z×

p and its subgroup 1+ pZp. Recall that
we showed that there is a direct product decomposition

Z×
p = V ×U1

∼= F×
p × (1 + pZp),

and that for x ∈ Z×
p this decomposition gives x = ω(x)〈x〉 with ω(x) ∈ V

and 〈x〉 ∈ 1 + pZp. Then, for any integer α, we have

nα = ω(n)α〈n〉α.
The first thing to note is that ω(n) is a (p−1)-st root of unity, and hence

if α ≡ α0 (mod p− 1) we can re-write the formula as

nα = ω(n)α0〈n〉α.
Now, since 〈n〉 ∈ 1+ pZp, we already know how to interpolate its part of the
function, i.e., we know how to interpolate the function α �→ 〈n〉α. But this is
almost enough to solve the problem, since we’ve reduced everything to this
known interpolation together with the choice of α0. In fact, the best way to
think of this is to do a complete turnaround, and change the function to be
interpolated!

Rather than considering the function α �→ nα for all integers α, consider
it only for those integers congruent to a fixed α0 modulo (p − 1). There
are of course p − 1 different functions of this kind, each corresponding to a
choice of α0. The kicker, of course, is that the set of integers α which are
congruent to a fixed α0 is itself dense in Zp, so that it makes sense to ask for
an interpolation from this set to all of Zp. And this, by the discussion above,
is easily done: consider the p-adic function fα0 : Zp −→ Zp given by

fα0(α) = ω(n)α0〈n〉α.
This, first of all, makes sense, by the discussion above, since we do know how
to compute the α-th power of the 1-unit 〈n〉. Next, it does coincide with the
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function α �→ nα whenever α is an integer satisfying α ≡ α0 (mod p − 1).
So it does give a (somewhat skewed) solution to our interpolation problem,
which we state as a theorem:

Proposition 5.10.3 Let n ∈ Z×
p and α0 ∈ {0, 1, . . . , p− 1}, and let

Aα0 = {α ∈ Z : p � α and α ≡ α0 (mod p− 1)} ⊂ Z.

Then
fα0(α) = ω(n)α0〈n〉α

defines a function fα0 : Zp −→ Zp such that

fα0(α) = nα whenever α ∈ Aα0 .

Notice that all the different fα0 coincide if n ∈ 1 + pZp, so that this is
a genuine extension of our first interpolation. What happens, though, if we
compute fα0 on the wrong sort of α ∈ Z? Well, we get something like

fα0(α) = ω(n)α0〈n〉α
= ω(n)α0−αω(n)α〈n〉α
= ω(n)α0−αnα.

In words, fα0 actually interpolates a function that is slightly different from
our original function: rather than giving nα, it gives a “twisted” version
which ends up being equal to a root of unity times nα. For the special α’s
that belong to Aα0 , the root of unity disappears, and we get our original
function. So we’re close, but we haven’t really done exactly what we set out
to do. This is in fact as good a result as one might hope for, as the example
in the next problem shows.

Problem 205 Show that the function Z −→ Z given by α �→ (−1)α can only be
interpolated to a function Zp −→ Zp when p = 2 (in which case −1 is a 1-unit). For
p = 3, the proposition above claims that there exist two functions f0 and f1 which
“together” give an interpolation. Describe the two functions f0 and f1. (Hint: they
are not very interesting.)

Some readers may find this situation a bit unsatisfactory: rather than one
interpolating function, we have ended up with a whole bunch, each of which
gives an interpolation for a restriction of the original function to a smaller
set. One way of jazzing this up a bit is the following. The collection of all
the fα0 together define a function

F : Zp × Z/(p− 1)Z −−−→ Zp

given by F(α, α0) = fα0(α). Now, one has the “diagonal inclusion”

Z ↪→ Zp × Z/(p− 1)Z,
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given by α �→ (α, α). (The first α to be thought of as an element of Zp,
the second as an integer modulo p − 1.) In other words, if α ∈ Z, its image
under the inclusion is the pair (α, α0), where α0 ≡ α (mod p − 1). Thus, if
we restrict F to the image of Z we get

α �→ F(α, α0) = fα0(α) = ω(n)α0〈n〉α = nα.

This means that we can think of F as giving an interpolation of the function
α �→ nα, provided we think of Z as included in this larger set.

Interpolation problems of this kind are very important in the applications
of p-adic analysis to number theory, and several of the features of our toy
example persist in the more interesting ones. First, one often has to “remove
the p-part,” which in our case was accomplished by restricting the base n
to be a p-adic unit. Second, the interpolation often requires us to consider
“twisted” versions of the original function. In our case, these were the several
fα0 functions: restricting one of the fα0 to Z does not give the function
α �→ nα, but rather

α �→ ω(n)α0−αnα.

This kind of modification, when something is multiplied by a root of unity,
is often referred to as “twisting.” The upshot: one cannot interpolate the
function α �→ nα, but one can interpolate appropriate twists of that function.
This phenomenon is quite common.

An obvious question should be mentioned here: what is the point? Why
should one want to interpolate “classical” functions in this fashion?

The question is hard to answer in elementary terms, without delving into
the specific interpolation problems that mathematicians have been interested
in. But we can give some idea of what is going on by saying that many
classical functions have interesting “special values,” that is, their values at
certain magical points have a special significance. For example, the values of
the Riemann zeta function ζ(s) at positive even integers involve the Bernoulli
numbers, which hide within themselves quite a lot of information about the
arithmetic of cyclotomic fields. (Its pole at s = 1 also carries this kind of
information.)

Now suppose one can interpolate these special values with a p-adic func-
tion. This gives us a p-adic function which shares with its classical analogue
the same (or similar, if a twist creeps in) special values. Well, this means that
one can get information on those values by looking at either function. . . and
the p-adic function is often easier to handle. This yields a basic strategy that
has been applied over and over in modern number theory, with very inter-
esting results. The reader may want to browse through the articles in [16] to
get some idea of what the goals of this particular enterprise are. To begin to
study the enterprise itself, one might start with the treatment in [42].
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Up to now, we have kept our attention focused on the field Q and its p-adic
completions. We have already felt, however, the need to consider other fields
(for example, when we dealt with the zeros of a function defined by a power
series). In fact, just as we have emphasized the natural analogy between the
p-adic fields Qp and the field R of real numbers, it is a very natural thing to
do to look for an extension of Qp that is analogous to the complex numbers.
In other words, we would like to look for ways to extend Qp in order to
obtain a field that is not only complete (so that we can do analysis), but also
algebraically closed (so that all non-constant polynomials have roots). This
turns out to be more subtle (and therefore more interesting) than one might
expect. It turns out, first of all, that to get an algebraically closed field one
must make a very large extension of Qp. This extension turns out not to
be complete any more, so there is no other recourse but to go through the
completion process again, and this finally yields the field we wanted. This is
very different from the classical case, where going from R to an algebraically
closed field is just a small step (just add i), and the resulting field (the
complex numbers) is already complete. The goal of this chapter is to tell the
p-adic version of this story in its entirety.

In order to get there, we begin by considering vector spaces over Qp and
the norms one might define on them. This is a step in the right direction,
since any field containing Qp will also be a Qp-vector space. We then go
on to considering the fields themselves. This will necessarily involve some
knowledge of abstract algebra; as usual, we have tried to make the facts we
use explicit, in order to make it easier to look up the material we need in the
standard texts. We start with finite field extensions, and only after we have
understood them well do we try to go on to an algebraic closure.

The reader should note that we have taken one of two possible points of
view in addressing our subject. We will be investigating extensions of the
p-adic fields Qp. It would be just as interesting to consider extensions of
Q itself, and to attempt to construct a theory of absolute values on such
fields. This leads to an interesting theory, which we have decided not to
address at all (because it requires more knowledge of Galois theory than
we wish to assume, and because it properly belongs in an introduction to
algebraic number theory). This means that we must of necessity fail to
mention certain topics, such as the extension to bigger fields of the product
formula, of Ostrowski’s theorem, or of the local-global principle. Instead, we
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take a “strictly local” perspective: we are living in the p-adic world from the
start. There is a good discussion of the global (or semi-local) aspect in [14]
and in many introductions to algebraic number theory.

Once we have absolute values on extensions of Qp, we will be in a position
to extend to such fields much of what was done in Chapters 4 and 5. Rather
than do so in full detail, we will often be content with “this clearly extends;”
the reader for whom the “clearly” is not clear should go back and check.1 We
will also need to prove a few results about these fields that will allow us to
understand what goes on when one puts them all together to get an algebraic
closure.

6.1 Normed Vector Spaces over Complete Valued Fields

The algebraic part of the theory of vector spaces over Qp is, of course, identi-
cal to the theory of vector spaces over any other field. This is simply because
that part of the theory does not depend on the specific field at all: it only re-
quires the knowledge of the basic field properties. Therefore, we won’t bother
to discuss the basics about vector spaces, subspaces, bases, dimension, and
so on.

What we would like to focus on, then, is the point where the vector spaces
acquire a metric. This is usually done by putting a norm on the vector space.
For example, in the classical case, we can metrize R2 using the norm

‖(x, y)‖ =
√

x2 + y2,

and similarly for all the Rn. Of course, there isn’t just one choice of norm.
For example, the following two choices of norms on R2 are also popular:

‖(x, y)‖1 = |x|+ |y|
and

‖(x, y)‖sup = max{|x|, |y|}
(the subscript 1 here has nothing to do with the subscripts on the p-adic
norms; there should be no serious confusion involved).

We want to build up an analogous theory for norms on vector spaces over
Qp. We begin, as we did in Chapter 2, by considering a general theory of
normed vector spaces over valued fields, because it is no more difficult than
doing things over Qp. As we did then, we will restrict to Qp whenever that
makes things easier.

We begin with a field k, which we assume has an absolute value | | on
it. (We do not make any assumption about whether the absolute value is
archimedean, but we do assume it is non-trivial, because otherwise things
are pretty silly.) In order to get an interesting theory, we assume that k is

1Instructors should note that this may mean that more time than usual may need to
be spent on this chapter!
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complete with respect to its absolute value. We will also assume for simplicity
that k is of characteristic zero,2 so that it contains Q. The reader should keep
both R and Qp in mind as examples.

Let V be a vector space over k. At first we make no further assumptions
on V , but later we will want to concentrate on the case where V is finite-di-
mensional.

Definition 6.1.1 Let k be a complete valued field of characteristic zero with
a nontrivial absolute value | |. A norm on a k-vector space V is a function

‖ ‖ : V −→ R+

satisfying the following conditions:

i) ‖v‖ = 0 if and only if v = 0,

ii) for any two vectors v, w ∈ V , we have ‖v+w‖ ≤ ‖v‖+ ‖w‖,
iii) for any v ∈ V and any λ ∈ k, we have ‖λv‖ = |λ| ‖v‖.
A k-vector space V which has a norm ‖ ‖ is called a normed vector space

over k.

In other words, a norm is just a way to measure the size of vectors, and the
conditions merely require that it behave as we would expect such a notion of
length to behave. One is tempted, of course, to introduce the notion of non-
archimedean norms, but it is less clear that it is a good idea. For example,
consider the norm on V = Qp ×Qp given by

‖(x, y)‖ =
√

|x|2p + |y|2p.
One easily checks that this is indeed a norm, but that it does not satisfy the
näıve analogue of the non-archimedean inequality (by which we mean that
something like

‖(x+ x′, y + y′)‖ ≤ max{‖(x, y)‖, ‖(x′, y′)‖},
does not hold). But this norm is still “non-archimedean” in the sense that
given two vectors it may not be possible to find an integer multiple of one
which is bigger than the other (check this!). In fact, this suggests that normed
vector spaces over non-archimedean complete fields are automatically “non-
archimedean” in any reasonable sense, so that there is nothing to define.

Given a norm, we can easily define a metric (i.e., a way of measuring
distance) on V by saying that the distance between two vectors is (what
else?) the size of their difference:

2The reader will recall, I hope, that the characteristic of a field is the smallest number
of ones that need to be added together to get zero, when this is possible, and is zero when
it is not possible. For example, the characteristic of Q is zero, and the characteristic of Fp
is p. It is an easy exercise to prove that if the characteristic is non-zero, then it must be a
prime number.
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Definition 6.1.2 Let V be a normed vector space with norm ‖ ‖. We define
a metric on V by putting, for any v, w ∈ V ,

d(v,w) = ‖v−w‖.

Problem 206 Show that the metric thus defined is indeed a metric, that is, it has
the properties listed in Problem 50.

Once we have a metric, we have, as in Chapter 2, a topology, so that we
can talk about open and closed balls, open sets, and convergence. (We urge
the reader who is hesitant about this to re-read the appropriate section of
Chapter 2.)

Problem 207 Let V be a normed vector space. The point of this problem is to check
that the metric d(v,w) (or, equivalently, the norm it is derived from) relates well to
the operations in V :

i) Fix v0, w0 ∈ V . Show that for any ε > 0 there exists a δ > 0 such that,
whenever d(v,v0) < δ and d(w,w0) < δ, we have d(v +w, v0 +w0) < ε. In
other words, addition is a continuous function.

ii) Fix v0 ∈ V and λ0 ∈ k. Show that for any ε > 0 there exists a δ > 0 such that,
whenever d(v,v0) < δ (distance in V ) and d(λ, λ0) < δ (distance in k), we have
d(λv, λ0v0) < ε. In other words, multiplication of a vector by an element of k
is a continuous function.

This shows that the metric d(v,w) makes V a topological vector space over the topo-
logical field k. (Compare Problem 51.)

Let’s consider some examples. For these, we assume V is finite-dimensio-
nal, and we fix a basis {v1, v2, . . . , vn}. Any vector in V can then be written
(uniquely) in the form v = a1v1 + a2v2 + · · · + anvn with ai ∈ k, and we
exploit this to obtain norms on V from the absolute value on k:

i) We can define a norm by putting

‖a1v1 + a2v2 + · · ·+ anvn‖sup = max
1≤i≤n

|ai|.

This is called the sup-norm on V with respect to our choice of basis.

ii) We can also define, for each real number r ≥ 1, the r-norm

‖a1v1 + a2v2 + · · ·+ anvn‖r = (|a1|r + |a2|r + · · ·+ |an|r)1/r .

These are analogous to norms on spaces of functions that are often used in
analysis. Notice that they do depend on the choice of basis.

If k = R, V = R2, v1 = (1, 0), v2 = (0, 1), and we take r = 1 or r = 2, we
get the examples mentioned in the introduction to this section. We leave it
to the reader to check that these are indeed norms.
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Problem 208 Check that the sup-norm and the r-norms are indeed norms.

Problem 209 Let k = R, V = R2, and use the canonical basis {(1, 0), (0, 1)}.
Sketch the closed ball of radius 1 with respect to (a) the sup-norm, (b) the r-norms
for r = 1, 2, 3.

Problem 210 Show, with an example, that the norms we have defined depend quite
seriously on the choice of basis. (Hint: this is very easy; just use the simplest vector
space you can think of.)

Problem 211 Let V = Qp × Qp, and define ‖(x, y)‖ = |x + y|. Does this define a
norm?

We need to define a notion of equivalence for norms, just as we defined
equivalence of absolute values.

Definition 6.1.3 We say two norms ‖ ‖1 and ‖ ‖2 on a k-vector space V are
equivalent if there exist positive real numbers C and D such that, for every
vector v ∈ V , we have

‖v‖1 ≤ C‖v‖2 and ‖v‖2 ≤ D‖v‖1.

To get a good feeling for this notion, the reader is invited to work through
a few elementary facts about it:

Problem 212 Show that two norms on V are equivalent if and only if they define
the same topology on V (i.e., a set is open with respect to one norm if and only if it
is open with respect to the other).

Problem 213 Sometimes it’s useful to state the condition for equivalence in another
way. Suppose ‖ ‖1 and ‖ ‖2 are equivalent. Show that any open ball around 0 with
respect to norm ‖ ‖1 contains an open ball around 0 with respect to ‖ ‖2 and is
contained in an open ball around 0 with respect to ‖ ‖2. Show that this condition is
equivalent to the two inequalities.

Problem 214 Show that if two norms are equivalent, then they have the same Cauchy
sequences; in other words, a sequence is Cauchy with respect to one of them if and
only if it is Cauchy with respect to the other.

One should note that the fact that equivalent norms give the same Cauchy
sequences is a priori stronger than the fact that they induce the same topol-
ogy. That the two things end up being the same in our case is directly linked
to the fact that our metric comes from a norm on a vector space, and that
extra structure yields extra information.

Problem 215 Show that the norms on R2 that we mentioned above are equivalent.
(Hint: your sketches from Problem 209 might prove helpful.)
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Problem 216 Let V = Qp ×Qp, and define the norms

‖(a, b)‖sup = max{|a|, |b|}
and

‖(a, b)‖1 = |a|+ |b|.
Prove that these norms are equivalent.

Once we have a metric, we can ask about completeness, just as in Chap-
ter 3. Recall that we say V is complete with respect to a norm ‖ ‖ if every
Cauchy sequence in V (with respect to ‖ ‖) converges. (Note that this de-
pends only on the equivalence class of the norm, which is as we want it.) It is
well known that R2, for example, is complete with respect to all of the norms
mentioned above. Here is another example where one can show completeness
for a whole bunch of spaces and norms in one blow:

Proposition 6.1.4 Let V be a finite-dimensional vector space over a com-
plete valued field k. Choose a basis {v1, v2, . . . , vm} for V , and let ‖ ‖ be
the sup-norm with respect to this basis. Then V is complete. Specifically, a
sequence (wn) with

wn = a1nv1 + a2nv2 + · · ·+ amnvm

is Cauchy in V if and only if the sequences of basis coefficients (a1n), (a2n),
. . . , (amn) are Cauchy sequences in k, and the limit is obtained by taking the
limits of the coefficients:

lim
n→∞wn = ( lim

n→∞ a1n)v1 + ( lim
n→∞ a2n)v2 + · · ·+ ( lim

n→∞ amn)vm.

Proof: Since the norm is simply given by the largest of the basis coefficients,
saying that ‖wn1 −wn2‖ tends to zero just amounts to saying that all the
differences ain1 − ain2 do. That is enough to prove everything we’ve claimed
is true.

Finally, here are some problems that suggest some avenues for further
exploration:

Problem 217 Let V and W be normed vector spaces, and write ‖ ‖v and ‖ ‖w for
their norms. Let f : V −→ W be a linear transformation. Show that the following are
equivalent:

i) f is continuous at 0 ∈ V ;

ii) sup
‖v‖v≤1

‖f(v)‖w is finite;

iii) there exists an M such that we have ‖f(v)‖w ≤ M‖v‖v for all v ∈ V ;

iv) f is continuous at all v ∈ V .

Problem 218 (Hard) Let V be the space of sequences (an) with an ∈ Qp and
lim an = 0. Define a norm on V by ‖(an)‖ = supn |an|.
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i) Is V complete with respect to this norm?

ii) Consider the subspace W ⊂ V defined by the condition that
∑ |an| converges

(in R, of course). Is W a closed subspace of V ? On W , we have two norms: the
norm induced by the norm on V , and the 1-norm given by ‖(an)‖1 =

∑ |an|.
Are these norms equivalent?

Problem 219 Let V be the space of all polynomials with coefficients in Qp. Choose
a positive real number c ∈ R and define, for f(X) = anX

n + · · ·+ a1X + a0,

‖f(X)‖c = max
0≤i≤n

|ai|ci.

i) Show that this is a norm on V .

ii) Is V complete with respect to this norm?

iii) We know how to multiply polynomials. Is it true that the norm we just defined
is multiplicative, i.e., that ‖f(X)g(X)‖c = ‖f(X)‖c‖g(X)‖c?

iv) Explain why this norm is interesting.

v) Now suppose we vary c; we get a whole family of norms. Are they equivalent?

6.2 Finite-dimensional Normed Vector Spaces

The problems at the end of the previous section already hint that there
is a fundamental difference between finite- and infinite-dimensional spaces
when it comes to the theory of norms. This is indeed the case, and in this
section we prove the fundamental theorem about finite-dimensional normed
vector spaces over complete fields. What this theorem says is that, after
Proposition 6.1.4, we already know all that there is to know about the finite-
dimensional case. This is because it turns out that any norm on such a
vector space is equivalent to the sup-norm (with respect to any given basis);
in particular, all the sup-norms are equivalent. The proof of this result,
which we give next, is often given only for locally compact complete fields.
Since we want to apply it to infinite extensions of Qp, we need to know if for
all complete valued fields. The proof we give follows Cassels in [14, Ch. 7,
Lemma 2.1].

Theorem 6.2.1 Let V be a finite-dimensional vector space over a complete
valued field k. Then any two norms on V are equivalent. Moreover, V is
complete with respect to the metric induced by any norm.

This is a tricky theorem to prove, so we do this in several parts. As we
go, we will use the assumptions that V is finite-dimensional and that k is
complete very strongly. As the examples in the previous section show, the
theorem is false for infinite-dimensional normed spaces.

Take V to be a finite-dimensional vector space over k (which is assumed
to be complete, of course). Fix a basis {v1, v2, . . . , vn} of V , and let ‖ ‖0 be
the sup-norm with respect to this basis. Finally, let ‖ ‖1 be any other norm
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on V . We want to prove that ‖ ‖1 is equivalent to ‖ ‖0, which means that
we want to show that there are positive real numbers C and D such that, for
every v ∈ V , we have

‖v‖1 ≤ C‖v‖0 and ‖v‖0 ≤ D‖v‖1.
The first inequality is not very hard to obtain:

Proposition 6.2.2 Let

C = n · max
1≤i≤n

‖vi‖1.

Then we have, for any v ∈ V ,

‖v‖1 ≤ C‖v‖0.
Proof: Take v ∈ V , and write it in terms of the basis as

v = a1v1 + a2v2 + · · ·+ anvn.

Then ‖v‖0 = max |ai|. Now just follow the path of least resistance:

‖v‖1 = ‖a1v1 + a2v2 + · · ·+ anvn‖1

≤ ‖a1v1‖1 + ‖a2v2‖1 + · · ·+ ‖anvn‖1

= |a1|‖v1‖1 + |a2|‖v2‖1 + · · ·+ |an|‖vn‖1

≤ nmax |ai|max ‖vi‖1 = Cmax |ai| = C‖v‖0,
which is exactly what we want.

The converse inequality takes a lot more proving. We will do it by induc-
tion on the dimension of V .

Proposition 6.2.3 There exists a positive real number D such that, for ev-
ery v ∈ V , we have ‖v‖0 ≤ D‖v‖1. In particular, V is complete with respect
to ‖ ‖1.
Proof: (Take a deep breath. Here goes.) Notice, first of all, that once the
inequality is proved, it follows that ‖ ‖1 is equivalent to the sup-norm, and
we already know that V is complete with respect to ‖ ‖0, so that V will also
be complete with respect to ‖ ‖1. In other words, once we have proved the
first statement of the proposition, we will have proved the second statement
too.

We will prove the inequality by induction on the dimension of V , noting
first that it is trivially true for spaces of dimension 1.3 Thus, we only need

3Prove it!
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to prove the induction step: assume that the proposition is true for spaces of
dimension n−1, and show that it is then also true for spaces of dimension n.

Let V , then, be a space of dimension n. As above, we fix a basis

{v1, v2, . . . , vn}.

We want to show that there exists a number D such that

‖w‖0 ≤ D‖w‖1 for all w ∈ V .

Well, suppose not. In that case, the quotient ‖w‖1/‖w‖0 must get arbi-
trarily close to zero as w ranges through the non-zero vectors in V (because
otherwise we can let E > 0 be a number such that the quotient is always
bigger than E, and then taking D = 1/E will do the trick). This means that,
given any integer m we can find a vector wm such that

‖wm‖1 <
1

m
‖wm‖0.

We want to argue that the wm can be chosen in a particular (rather
peculiar) way. Note, first, that the sup-norm ‖wm‖0 is equal to the largest
of the n basis coefficients. Since there are finitely many basis vectors and
infinitely many ms, there must be some index i such that there are infinitely
many ms for which ‖wm‖0 is equal to the i-th basis coefficient. (Got it?
Read it again.) After permuting the basis vectors, we can assume that i = n,
i.e., that there are infinitely many ms such that ‖wm‖0 = the absolute value
of the n-th basis coefficient. Let m1 < m2 < · · · < mk < . . . be the sequence
of those ms, arranged in increasing order; we will now restrict ourselves to
the corresponding sequence of vectors

wm1 , wm2 , . . . ,wmk
, . . .

Recall that these satisfy the inequality

‖wmk
‖1 <

1

mk
‖wmk

‖0,

and that we’ve also arranged things so that if we set βk equal to the n-th
basis coefficient of wmk

, then ‖wmk
‖0 = |βk|.

Now consider the vectors β−1
k wmk

. These have two nice properties.

i) For each of these vectors the n-th basis coefficient is 1, so that we can
write

β−1
k wmk

= uk + vn,

with uk belonging to the subspace W ⊂ V spanned by the vectors
v1, v2, . . . , vn−1. (We take this equation as the definition of the uk.)
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ii) We have

‖uk + vn‖1 = ‖β−1
k wmk

‖1 = |βk|−1‖wmk
‖1 =

‖wmk
‖1

‖wmk
‖0 <

1

mk

where mk is an infinite increasing sequence of integers.

It follows that we have constructed a sequence of vectors uk, all of which
lie in the (n−1)-dimensional subspaceW , and such that the norms ‖uk+vn‖1
(where, remember, vn is the n-th vector in our chosen basis for V ) tend to
zero as k → ∞.

Now clearly, the uk form a Cauchy sequence in W , since

‖uk+l − uk‖1 ≤ ‖uk+l + vn‖1 + ‖uk + vn‖1 <
1

mk+l
+

1

mk
.

By induction, we know that W is complete, so that there must be a vector
u ∈ W such that uk → u. But then we must have

‖u+ vn‖1 = lim ‖uk + vn‖1 = 0,

which means that u = −vn, which is a contradiction, since vn �∈ W by the
definition of the subspace W . This contradiction shows that D must exist,
and therefore proves the theorem.

That is quite a long haul, but worth it, since it says that, as long as our
vector spaces are finite-dimensional, the theory is essentially quite simple,
and we might as well work with the sup-norm all the time.

There is one extra property of finite-dimensional normed spaces that is
worth pointing out. This has to do with local compactness, which we discussed
above when we showed that the p-adic fields Qp were locally compact, as are
R and C (see Chapter 4). In the vector space context, we have the following:

Proposition 6.2.4 Let k be a locally compact complete valued field, and let
V be a finite-dimensional (and therefore complete) normed vector space over
k. Then V is locally compact.

Proof: To show that V is locally compact, we need to find a neighborhood
of the zero vector which is compact. The neighborhood we will choose will
be the closed unit ball B around zero, so that

B = {v ∈ V : ‖v‖ ≤ 1}.

Using the main theorem, we see that we can take any norm on V (being
locally compact is a topological property, and all the norms are equivalent).
We choose the sup-norm with respect to some fixed basis {v1, v2, . . . vn}.
Then a vector v = a1v1 + a2v2 + · · ·+ anvn belongs to B if and only if each
ai belongs to the closed unit ball in k. This is promising, since we know that
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the closed unit ball in k is compact (because we are assuming that k is locally
compact).

In Chapter 4, we saw that to prove that a set is compact it is enough to
show that it is complete and that it is totally bounded (which means: for
every positive number ε there is a finite covering of the set by balls of radius
ε). The first part is done already: B is a closed subset of a complete space,
and therefore is complete.

To show that B is totally bounded, we use the fact that the unit ball in k
is totally bounded. Given an ε, cover the unit ball in k with a finite number,
say N , of balls of radius ε. Let c1, c2, . . . cN be the centers of those balls.
Then consider the Nn vectors in V each of whose basis coefficients is one of
the ci. Around each of these vectors, take a ball of radius ε. We claim that
these balls cover B, that is, that any vector in B belongs to at least one of
them.

To see why, take a vector v = a1v1 + a2v2 + · · · + anvn ∈ B. Since this
means that the coefficients aj are in the unit ball in k, we know that each aj
is within less than ε of one of the centers ci; call this one cij . Then v belongs
to the ball of radius ε (remember, with respect to the sup-norm) around the
vector ci1v1 + ci2v2 + · · ·+ cinvn, which proves what we wanted.

Problem 220 Draw a picture to explain the proof we just gave. It should clarify
things immensely.

The converse of this proposition is also true: any locally compact normed
vector space over k is of necessity finite-dimensional. This is harder to prove,
however, so we leave it to the reader to puzzle it out or look it up.

In contrast to the finite-dimensional case, the theory of infinite-dimensio-
nal normed vector spaces is quite rich and complex. It is the starting point
of the field called “functional analysis,” which has a long and distinguished
history. Given our point of view, of course, we would mostly be interested in
non-archimedean functional analysis, which is a much younger, but still very
interesting, subject. We refer the interested reader to the references. One
can start with (the relevant sections of) [3], [56], and [53]. For more advanced
material, see [46] , [64], [57], [50], [23].

6.3 Extending the p-adic Absolute Value

We now go on to what we are really interested in, which is considering ex-
tensions of the field Qp. These are simply fields K containing Qp. For
example, if 2 is not a square in Qp, we might want to consider the extension
K = Qp(

√
2). More generally, we might want to obtain K by adjoining a

root of some irreducible polynomial, or even to consider a field like Qp(X)
(rational functions with coefficients in Qp). For much of this section, we will
restrict ourselves to finite extensions (the definition follows just below).
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Our main goal will be to construct a p-adic absolute value on any finite
extension K of Qp. Of course, we will require that it agree with the p-adic
absolute value for x ∈ Qp. Under that assumption, there turns out to be a
unique way to extend the p-adic absolute value to K. The uniqueness will
allow us to put together all of these p-adic absolute values to get an absolute
value on the algebraic closure of Qp. Finally, we will show that this algebraic
closure is not a finite extension of Qp, in contrast to the case of R, whose
algebraic C = R(i) is an extension of degree two.

So let K be a field containing Qp. This means, among other things, that
K is a vector space over Qp, and we say that K is a finite extension of Qp if its
dimension as a Qp-vector space is finite. We will write [K : Qp] = dimQp K,
and call this number the degree of K over Qp. We want to consider absolute
values on K, but to keep things interesting we will require that these absolute
values extend the p-adic absolute value on Qp. In other words, we are looking
for a function | | : K −→ R+ which is an absolute value, and hence satisfies
the usual properties:

i) |x| = 0 if and only if x = 0,

ii) |xy| = |x| |y| for any x, y ∈ K,

iii) |x+ y| ≤ |x|+ |y| for any x, y ∈ K,

and that also satisfies the extra condition that

iv) |λ| = |λ|p whenever λ ∈ Qp.

There are several things to note. First, any such function will be a norm on
K as a Qp-vector space (restrict x to Qp in the second property, and we have
the defining properties of a norm). Second, the absolute value | | will have
to be non-archimedean, since this depends only on the absolute values of the
elements of Z, which are in Qp (see Theorem 2.2.4).

We begin by showing that if such an absolute value exists, it must have
certain properties. Later, we will use these properties to obtain a construction
which shows that the extension we are looking for does exist.4

The first thing is easy:

Proposition 6.3.1 Let K be a finite extension of Qp. If there exists an
absolute value | | on K extending the p-adic absolute value on Qp, then

i) K is complete with respect to | |, and
ii) we can take the limit of a sequence in K by taking the limits of the

coefficients with respect to any given basis {x1, x2, . . . , xn} of K as a
Qp-vector space.

4This is another standard mathematician’s ruse: study the properties an object must
have if it exists, and this may lead to a proof that it does exist. St. Anselm would
understand.
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In particular, the topology on K induced by | | is simply the unique topology on
K as a normed Qp-vector space, and therefore is independent of the particular
choice of absolute value.

Proof: Obvious, of course, because all norms on a finite-dimensional vector
space are equivalent. The statement about convergence just says that they
are equivalent to the sup-norm with respect to any given basis.

Problem 221 Let p = 5. Check that 2 is not a square in Q5. Let K = Q5(
√
2).

Give an example of a norm on K which is not an absolute value. Can you arrange
things in your example so that the norm gives the same as the 5-adic absolute value
when computed on elements of Q5?

A very important fact follows from the proposition.

Corollary 6.3.2 There is at most one absolute value on K extending the
p-adic absolute value on Qp.

Proof: Suppose | | and ‖ ‖ are two absolute values on K which extend the
p-adic absolute value. We first show that they are equivalent5 (as absolute
values), and then we show that they are identical.

To show that | | and ‖ ‖ are equivalent, we need to show that for any
x ∈ K, we have

|x| < 1 ⇐⇒ ‖x‖ < 1.

To see this, remember that |x| < 1 if and only if xn → 0 with respect to
the topology defined by | |, and similarly that ‖x‖ < 1 if and only if xn → 0
with respect to the topology defined by ‖ ‖. But we already know that | |
and ‖ ‖ are equivalent as norms on the vector space K, and hence define the
same topology. Therefore, we have convergence with respect to one absolute
value exactly when we have convergence with respect to the other, and this
proves our claim. (Notice how seriously the field structure, rather than just
the vector space structure, comes into that argument.)

This shows that | | and ‖ ‖ are equivalent absolute values on K; according
to Proposition 3.1.3, this means that there is a positive real number α such
that we have |x| = ‖x‖α for every x ∈ K. But |x| and ‖x‖ must be equal
whenever x ∈ Qp, since both absolute values extend the p-adic absolute
value; computing both at x = p shows that we must have α = 1, i.e., the two
absolute values are the same.

We know, then, that there can be at most one extension of the p-adic
absolute value to K, and that K will be complete with respect to that exten-
sion. None of this establishes, however, that such an extension exists.6 To
show the existence of the absolute value, we will need to give a construction.

5The definition is at the beginning of Chapter 3; see especially Proposition 3.1.3.
6We do know that there are many vector space norms on K, and we can arrange for

these to have the right value on elements of Qp, but it is not at all clear that any of these
norms will be an absolute value, i.e., will work well with the multiplication in K.
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One consequence of the uniqueness, however, should be noted (and will
be used when we construct the absolute value). It is simply this: suppose
that we have two extensions K and L, one containing the other, so that, say,
Qp ⊂ L ⊂ K, and suppose that we have found absolute values | |L on L and
| |K on K, both extending the p-adic absolute value on Qp. The restriction
of | |K to elements of L is an absolute value on L which extends the p-adic
absolute value; by uniqueness, it must be the same as | |L. In other words, if
x ∈ L ⊂ K, then

|x|L = |x|K .

In words, the absolute value of x does not depend on the context. We will use
this, when defining |x|, in two different ways: at times we will want to work
in Qp(x), the smallest extension of Qp containing x; at other times, we will
want to work in a bigger field that may have nicer properties.

In order to be able to give the construction, we need to recall a few facts
from the theory of field extensions. We assume that the reader has met these
concepts before, and hence only sketch out the basic facts; for more details,
see any standard text on abstract algebra or the survey in [33, Ch. 6].

So let K and F be fields, and assume that F ⊂ K and that [K : F ]
is finite, so that K/F is a finite field extension. Recall that we are always
assuming that our fields have characteristic zero.

Let C be any algebraically closed field containing F (or, to be fancy, fix
an inclusion of F into such a field C, and identify F with its image under
the inclusion). Suppose K/F is a field extension. We want to consider field
homomorphisms σ : K ↪→ C which induce the identity (or, if we’re being
fancy, our fixed inclusion) on F . (Recall that any such homomorphism is
necessarily injective.)7 We will say the field extension K/F is normal if all
such σ : K ↪→ C have the same image. Another way to say this is to identify
K with one of its images, and then say that K/F is normal if every σ maps
K to itself. If K/F is normal, then we can think of σ as an automorphism
K −→ K which induces the identity on F . To make a picture, any such σ
fits into a diagram like this:

C �� C

K

��

σ �� K

��

F

��

F

��

where the vertical arrows are inclusions.

7Recall that a field homomorphism is a mapping that (i) sends 1 to 1, and (ii) works
well with the field operations, so that σ(x+ y) = σ(x) + σ(y) and σ(xy) = σ(x)σ(y). It is
a nice exercise, especially recommended to the reader who is unsure of his footing at this
point, to show that such a function must always be injective.
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WhenK/F is normal, it is clear that the choice ofC doesn’t much matter,
since any σ maps K to itself anyway. We call a map σ : K −→ K which
induces the identity on F an automorphism of the extension K/F . It is
known that when K/F is finite and normal (and of characteristic zero)8 the
automorphisms of K/F form a finite group9 whose order is equal to the
degree [K : F ] (this group is called the Galois group of the field extension).
For a summary of these results (and a lot more details), see [33, §6.6.7].

The following problems give a few examples.

Problem 222 Let F = Q and K = Q(i), where, as usual, i2 = −1. Show that this
extension is normal. In fact, show that any extension that is obtained by adding to F
the square root of some element will be normal. (Hint: there are only two possibilities
for σ.)

Problem 223 Let F = Q and K = Q( 3
√
2). Show that K/F is not a normal

extension by taking C = C, considering K as a subfield of R (and hence of C) in the
obvious way, and noting that any σ : K −→ C must map 3

√
2 to a cube root of 2.

What are the choices?

Problem 224 Let F = Q and K = Q( 3
√
2, ζ), where

ζ =
−1 + i

√
3

2

is a cube root of 1. Show that K/F is a normal extension. Show also that K is the
smallest normal extension of Q containing 3

√
2.

Normal extensions are very nice, and it is comforting (and useful) to know
that the process suggested above in the case of Q( 3

√
2) and Q( 3

√
2, ζ) works in

general: given any finite extensionK/F , there exists a finite normal extension
of F containing K. The smallest such is called the normal closure of K/F .
This will be useful in what follows, because it means that to construct the
absolute value of an element x ∈ K we might as well assume that K is a
normal extension (otherwise just replace K by its normal closure, since the
absolute value does not depend on the context).

The crucial fact that we will need is that there exists a function

NK/F : K −→ F,

which is called the norm from K to F . (It is a bit unfortunate that this
“norm” has the same name as the vector space “norm,” but both terms have
been standard for such a long time that there is no chance of ever changing
them. Watch out for the context to avoid confusion.) This will be useful
because it gives a natural way to “go down” from elements of the bigger field
K to elements of F .

The norm function can be defined in several ways, each useful in certain
contexts; here are three:

8In characteristic p, an extra condition, called “separability,” is needed.
9It is easy to prove that they form a group.
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i) Take α ∈ K, think of K as a finite-dimensional F -vector space, and
consider the F -linear map from K to K given by multiplication by α.
Since this is linear, it corresponds to a matrix. Then we defineNK/F (α)
to be the determinant of this matrix.

ii) Take α ∈ K, and consider the subextension F (α), i.e., the smallest
field containing both F and α (this is clearly a subfield of K). Set
r = [K : F (α)] to be the degree of K as an extension of F (α). Let

f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0 ∈ F [X ]

be the minimal polynomial of α over F , that is, the lowest degree monic
polynomial with coefficients in F such that f(α) = 0. Then we define
NK/F (α) = (−1)nrar0.

iii) Suppose the extension K/F is normal. Then we can define NK/F (α)
to be the product of all the σ(α), where σ runs through the (finite) set
of all the automorphisms of K/F .

Before we discuss why these definitions are equivalent, we note some useful
facts. First, if α ∈ F (rather than in the bigger fieldK), then NK/F (α) = αn,
where n = [K : F ] is the degree of the extension. (This is essentially obvious
from any of the definitions—check!) Next, norms are multiplicative. This
is probably easiest to see from the first definition, since determinants are
multiplicative, but it’s pretty obvious from the last one, too. (Less so for the
middle definition—can you give a direct proof using that version?) In any
case, we will need to know that

NK/F (αβ) = NK/F (α)NK/F (β)

for any α, β ∈ K. Notice, by contrast, that the norm of a sum has no clear
relation to the norms of the summands.

The equivalence of these definitions is not hard to prove; we suggest that
the reader who has not seen it proved work through the next few exercises.

Problem 225 Prove the equivalence of the first two definitions when K = F (α) by
considering the basis of K which consists of {1, α, α2, . . . , αn−1}.

Problem 226 Now suppose K �= F (α). Let n = [F (α) : F ] and let r = [F : K(α)].
Then we can find a basis for F over K of the form αibj , where i = 0, 1, . . . , n − 1
and b1, b2, . . . br are a basis of K over F (α). Using this basis, show that the first and
second definitions agree in this case as well.

Problem 227 Suppose K/F is normal and that K = F (α). Show that the images
σ(α) as σ runs through the automorphisms of K/F are exactly the roots of the poly-
nomial f(X). (It’s easy to see that any σ(α) is a root—just compute σ(f(α))—but
it’s less clear that for each root there is a unique σ for which σ(α) is equal to that
root.) Conclude that the second and third definitions are equivalent in this case.



6.3 Extending the p-adic Absolute Value 183

Problem 228 Finish off the proof that all three definitions give the same answer.
(One loose end to consider is the case where K/F is normal, but K is not equal to
F (α). What then?)

Problem 229 Suppose K/F is not normal. Can you give a version of the third
definition that makes sense?

Problem 230 Show that if we have three fields F ⊂ L ⊂ K, then, for any α ∈ K,
we have

NL/F

(
NK/L(α)

)
= NK/F (α).

After all that theory, we need some concrete examples to keep us afloat.
Let’s take a really easy one, and put F = Q5, K = Q5(

√
2). Take a generic

element a+ b
√
2 ∈ K; let’s compute its norm using all three definitions:

i) A basis for K over Q5 is {1,√2}. The linear map “multiplication by
a + b

√
2” maps 1 to a + b

√
2 and

√
2 to 2b + a

√
2, so its matrix with

respect to our basis is [
a 2b
b a

]
,

which has determinant a2−2b2. Therefore, NK/F (a+ b
√
2) = a2−2b2.

ii) We will have r = 1 unless b = 0, in which case r = 2. If b = 0, we
have α = a, whose minimal polynomial is X − a, and the norm is then
(−1)2(−a)2 = a2. If b �= 0, we must work out the minimal polynomial;
it must be of degree two. Since (a+ b

√
2)2 = a2 +2b2 +2ab

√
2, we will

get zero by combining as follows:

(a+ b
√
2)2 − 2a(a+ b

√
2) + (a2 − 2b2) = 0.

(Can you see how that was found?) Hence, the minimal polynomial is

X2 − 2aX + (a2 − 2b2),

and the norm is a2 − 2b2. Thus, whether b is zero or not, we have
NK/F (a+ b

√
2) = a2 − 2b2.

iii) Finally, we have two automorphisms: the identity, and

σ : a+ b
√
2 �→ a− b

√
2.

The product of the images of a+ b
√
2 is

(a+ b
√
2)(a− b

√
2) = a2 − 2b2,

so that once again we have NK/F (a+ b
√
2) = a2 − 2b2.

The general case is nowhere near as easy, of course. Here are a few more
relatively simple examples:
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Problem 231 Do the same for

i) a general quadratic extension Qp(
√
n),

ii) some specific elements of the extension Q( 3
√
2, ζ) with ζ = (−1+i

√
3)/2 (notice

that this is an extension of degree 6; working with the general element wouldn’t
be too pleasant).

To see why the norm is going to play a central role, notice the following.
Suppose K/Qp is a normal extension, and let σ be an automorphism. Let | |
be an absolute value on K. Then the function x �→ |σ(x)| is also an absolute
value on K (check!), and also gives the p-adic absolute value over Qp, since
σ induces the identity on Qp. But we have shown that there is only one such
absolute value! Thus, we must have |σ(x)| = |x| for any x ∈ K. Multiplying
over all the σ’s (and remembering that there are exactly n = [K : Qp] of
them) we get that ∣∣∣∣∣∏

σ

σ(x)

∣∣∣∣∣ = |x|n.

Now, since the product is equal to the norm, this translates to

|x|n = |NK/Qp
(x)|,

or, taking the root,

|x| = n

√
|NK/Qp

(x)|.
But this last gives a formula which we can compute just from the knowledge
of the p-adic absolute value, since the norm is an element of Qp!

So far, that only works for normal extensions, but note the following:

Lemma 6.3.3 Let L and K be finite extensions of Qp which form a tower:
Qp ⊂ L ⊂ K. Let x ∈ L. Set m = [L : Qp] and n = [K : Qp]. Then

m

√
|NL/Qp

(x)|p = n

√
|NK/Qp

(x)|p.

Proof: We have

NK/F (x) = NL/Qp

(
NK/L(x)

)
,

and NK/L(x) = x[K:L]. Remembering that [K : Qp] = [K : L][L : Qp] and
plugging everything into the formulas gives the equality.

This is very nice, since it says that the value of n

√
|NK/Qp

(x)|p is the

same for any field K containing x (as above, n = [K : Qp]). In particular,
this shows that it must be equal to the absolute value of x also when the
extension is not normal (pass to the normal closure!). In other words, we
have proved the following:
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Proposition 6.3.4 If there is an absolute value on K extending the p-adic
absolute value, then it must be given by the formula

|x| = n

√
|NK/Qp

(x)|p,

where n = [K : Qp] is the degree of the extension.

Notice that the fact that the value of our formula does not depend on the
choice of field containing x matches exactly the fact that the same is true of
the absolute value (if it exists). This is encouraging, since we want to prove
that the formula does define an absolute value. We are now, finally, in a
position to prove that it does. As we will see, the hard part is showing the
non-archimedean inequality, for which we will use Lemma 2.2.3.

Theorem 6.3.5 Let K/Qp be a finite extension of degree n. The function
| | : K −→ R+ defined by

|x| = n

√
|NK/Qp

(x)|p

is a non-archimedean absolute value on K which extends the p-adic absolute
value on Qp.

Proof: Several things are immediate. First, |x| = 0 will only happen if
NK/Qp

(x) = 0, which (using the first definition of the norm) will only happen
if multiplication by x is not invertible; since K is a field, that only happens if
x = 0. Next, since NK/Qp

(xy) = NK/Qp
(x)NK/Qp

(y), we will certainly have
|xy| = |x| |y|. Finally, if x ∈ Qp then NK/Qp

(x) = xn, so that (since absolute

values are positive real numbers) |x| = n

√
|x|np = |x|p.

We will finish the proof by showing that condition (iii) from Lemma 2.2.3
holds. Looking at the definition, we see that |x| ≤ 1 will happen exactly when
|NK/Qp

(x)|p ≤ 1. Hence, what we need to show is that

|NK/Qp
(x)|p ≤ 1 =⇒ |NK/Qp

(x− 1)|p ≤ 1,

or, in more algebraic terms, that

NK/Qp
(x) ∈ Zp =⇒ NK/Qp

(x− 1) ∈ Zp.

We will do this by using the definition of the norm in terms of the minimal
polynomial.

By Lemma 6.3.3, we may assume that K = Qp(x) is the smallest field
containing x (and note that we will always have Qp(x) = Qp(x − 1), since
any field containing x will also contain x− 1 and vice versa). Let

f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0
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be the minimal polynomial for x. Since the minimal polynomial for x − 1
must have the same degree and has x− 1 as a root, it must be

f(X + 1) = (X + 1)n + an−1(X + 1)n−1 + · · ·+ a1(X + 1) + a0

= Xn + (an−1 + n)Xn−1 · · ·+ (1 + an−1 + · · ·+ a1 + a0).

(We only need the last coefficient, of course: each (X+1)k has constant term
1, and it is multiplied by ak.) Thus, using the second definition for the norm,
we have

NK/Qp
(x) = (−1)na0

and
NK/Qp

(x− 1) = (−1)n(1 + an−1 + · · ·+ a1 + a0).

What we want to prove will follow, then, from the assertion that if

f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0

is an irreducible polynomial and a0 ∈ Zp, then we have

1 + an−1 + · · ·+ a1 + a0 ∈ Zp.

In fact, we will prove something that is even better.

Lemma 6.3.6 If f(X) = Xn + an−1X
n−1 + · · · + a1X + a0 is a monic

irreducible polynomial with coefficients in Qp and a0 ∈ Zp, then all of the
coefficients an−1, . . . , a1, a0 belong to Zp.

Proof of the Lemma: This is the crux of the matter, and we follow
the proof given by Neukirch in [25, Ch. 6, §4]. We will use Hensel’s Lemma
for polynomials, Theorem 4.7.2, to show that if some of the coefficients are
not in Zp then f(X) will be reducible.

So let f(X) = Xn+an−1X
n−1+ · · ·+a1X+a0, and assume that a0 ∈ Zp

but some aj �∈ Zp. Choosem to be the smallest exponent such that pmai ∈ Zp

for every i, and “clear denominators” by multiplying the whole polynomial
by pm. Set

g(X) = pmf(X) = bnX
n + bn−1X

n−1 + · · ·+ b1X + b0,

so that bi = pmai. Since f(X) is monic, bn = pm is divisible by p; since
a0 ∈ Zp (our main hypothesis), b0 = pma0 is also divisible by p; by our
choice of m, all the bi are in Zp, and at least one is not divisible by p. Let
k be the smallest i such that bi is not divisible by p. Then 0 < k < n,
b0, b1, . . . , bk−1 are all divisible by p and bk is not, so we have a factorization

g(X) ≡ (bnX
n−k + · · ·+ bk)X

k (mod p).

The two factors are clearly relatively prime modulo p. By the second form of
Hensel’s Lemma, it follows that g(X) = pmf(X) is reducible, and therefore
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so is f(X) itself. This contradiction proves the lemma, and therefore also the
theorem.

An alternative proof that the extended absolute value satisfies the ultra-
metric inequality is given in [53, II.3.4]. Our proof is very algebraic, using
polynomials and Hensel’s Lemma; Robert’s uses, instead, the fact that K is
locally compact.

So now we have the extension we needed. In other words, given any finite
extension K of Qp, we have shown that there exists a unique absolute value
on K which extends the p-adic absolute value on Qp; we call it, of course,
the p-adic absolute value on K. We know that K is complete with respect
to this absolute value.

To complete this section, we go on to consider an algebraic closure of
Qp. This is a field Qp which contains all the roots of all the polynomials
with coefficients in Qp. To construct it, we just take the union of all the
finite extensions of Qp (and then we prove that this is an algebraically closed
field).

We claim that we have already constructed an absolute value on the
algebraic closure. The point is this: given any x ∈ Qp, the extension Qp(x)
is finite (its degree is the degree of the minimal polynomial of x over Qp).
Since x then lives in the finite extension Qp(x), we can define |x| by using the
unique extension of the p-adic absolute value to Qp(x). But we already know
that this absolute value does not depend on the field we take it in; in other
words, it just depends on x itself (as the root of some polynomial over Qp).
Thus, it makes sense to say it is the absolute value of the element x ∈ Qp.
This shows that we have actually defined a function

| | : Qp −→ R+

which extends the p-adic absolute value, and it is easy to see that this function
is an absolute value. Our construction, then, shows that there is a unique
p-adic absolute value on Qp.

Problem 232 Prove that the function we have defined is an absolute value, i.e., that
it satisfies the three conditions listed in the beginning of this section.

It is not clear (in fact, it is not true) that Qp is complete with respect to

this absolute value, because Qp is an infinite extension of Qp. Proving this

will take knowing a lot more about the absolute value on Qp. For now, we

will content ourselves to showing that Qp is indeed an infinite extension of
Qp. To do this, it is enough to show that there are irreducible polynomials of
arbitrarily large degree over Qp. Since the root of an irreducible polynomial
of degree n generates an extension of degree n, this means that Qp contains
extensions of degree n for every n, and hence is not a finite extension. We
conclude this section by showing that this is in fact the case. We first need
to prove “Gauss’s Lemma” in our context.
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Lemma 6.3.7 (Gauss’s Lemma in Qp) Suppose that f(X) ∈ Zp[X ] fac-
tors (in a non-trivial way) in Qp[X ], so that

f(X) = g(X)h(X)

with g(X), h(X) ∈ Qp[X ] and non-constant. Then there exist non-constant
polynomials g0(X), h0(X) ∈ Zp[X ] such that f(X) = g0(X)h0(X).

Proof: If k(X) = anX
n+ · · ·+a1X+a0 ∈ Qp[X ] is any polynomial, define

w(k(X)) = min
0≤i≤n

vp(ai).

This is a kind of p-adic valuation on polynomials, since w(k(X)) is the largest
power of p that divides all the coefficients of k(X). It is easy to see that
for a ∈ Qp we have w(a k(X)) = vp(a) + w(k(x)). Also, it is clear that
k(X) ∈ Zp[X ] if and only if w(k(X)) ≥ 0. We will use the “valuation” w to
prove the lemma.

Step 1: If the lemma is true for the case when w(f(X)) = 0, then it is true
in general.

Proof of Step 1: Since f(X) ∈ Zp[X ], we know that w(f(X)) ≥ 0. If
w(f(X)) > 0 then let a be a coefficient with the smallest valuation (i.e.,
one that is least divisible by p). By the definition of w we have w(f(X)) =
vp(a); since we know f(X) ∈ Zp[X ], we know that a ∈ Zp. Then it is

clear that w(a−1f(X)) = 0; set f̃(X) = a−1f(X) (and in particular f̃(X) ∈
Zp[X ]). If we set, say, g̃(X) = a−1g(X), we now have f̃(X) = g̃(X)h(X) and

w(f̃ (X)) = 0.
Since we are assuming that the theorem is true when w(f̃(X)) = 0, we

can decompose f̃(X) as a product of two polynomials in Zp[X ], say, f̃(X) =
G0(X)H0(X). Then we have

f(X) = af̃(X) = aG0(X)H0(X),

and, since we know a ∈ Zp, this decomposition is in Zp[x]: just absorb the
a into one of the factors by putting g0(X) = aG0(X) and h0(X) = H0(X),
and we get f(X) = g0(X)h0(X) as desired.

This proves Step 1. In other words, we may assume, without loss, that
w(f(X)) = 0, i.e., that at least one coefficient of f(X) is a p-adic unit.

Step 2: The lemma is indeed true when w(f(X)) = 0.

Proof of Step 2: Assume, then, that w(f(X)) = 0. Using the same rea-
soning as above, we can find b ∈ Qp such that w(b g(X)) = 0 and c ∈ Qp

such that w(c h(X)) = 0. If we write g1(X) = b g(X) and h1(X) = c h(X),
then we can write

f1(X) = bc f(X) = g1(X)h1(X).
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Write k̄(X) ∈ Fp[X ] for the reduction modulo p of a polynomial k(X) ∈
Zp[X ]. We have set things up so that ḡ1(X) and h̄1(X) are both non-zero; it
follows that f̄1(X) is also non-zero, and hence that w(f1(X)) = w(bc f(X)) =
0. Since we had already arranged things so that w(f(X)) = 0, it follows that
vp(bc) = 0, so that bc is a p-adic unit. Then we have

f(X) = (bc)−1f1(X) = (bc)−1g1(X) · h1(X).

Taking g0(X) = (bc)−1g1(X) and h0(X) = h1(X) then gives the desired
factorization.

When everything is assumed monic, the lemma is even easier:

Problem 233 Suppose that f(X) ∈ Zp[X] is monic and factors as a product f(X) =
g(X)h(X), with g(X) and h(X) ∈ Qp[X] and monic. Show that then g(X) and h(X)
must be in Zp[X]. (Hint: the main difference between this and the lemma is that we
are assuming that the factors are monic.)

In particular, we get the following:

Corollary 6.3.8 Let f(X) ∈ Zp[X ] be a monic polynomial whose reduction
modulo p is irreducible in Fp[X ]. Then f(X) is irreducible over Qp.

Proof: If f(X) factors over Qp, then it factors over Zp by Gauss’s Lemma;
reducing the factorization modulo p gives a factorization over Fp, which can-
not exist.

Problem 234 That was pretty quick; fill in the details. For example, how do we know
that the factorization modulo p is non-trivial?

Problem 235 Is the assumption that f(X) is monic really necessary?

Notice that this corollary has a kind of converse in the “second form” of
Hensel’s Lemma (Theorem 4.7.2), which says that, under certain conditions,
factorizations over Fp lift to factorizations over Zp.

It is well known that there are many irreducible polynomials in Fp[X ]. In
fact, for every n one can show10 that there is an irreducible polynomial of
degree n in Fp[X ] whose roots generate the unique extension of degree n of
Fp. Choosing any lift of such a polynomial to a monic polynomial in Zp[X ]
gives an irreducible polynomial of degree n in Qp[X ]. Adjoining a root of this
polynomial then gives an extension of Qp of degree n, which in some sense
“comes from” the extension of Fp. So we have proved that

10This is one of the few facts about finite fields that we will need to make use of in this
chapter. Most of them are easily proved—see any introductory book on abstract algebra
for the details. What we are using here is the fact that, for each n ≥ 1, the finite field Fp
has a unique extension of degree n (up to isomorphism). This extension is a field with pn

elements. It is usually denoted by Fpn , and, since it is a separable extension, there exists
a polynomial f(X) such that Fpn is obtained by adjoining a root of f(X) to Fp.
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Corollary 6.3.9 For each integer n ≥ 1 there is an extension of Qp which
has degree exactly n and which “comes from” the unique extension of degree
n of the finite field Fp.

In particular,

Corollary 6.3.10 The algebraic closure Qp is an infinite extension of Qp.

We should note the contrast, at this point, between R and Qp. The alge-
braic closure of R is C, which is an extension of degree two, and is therefore
complete with respect to the ∞-adic absolute value. This is a point, then, at
which the p-adic and the classical theories diverge quite sharply.

Before we consider the algebraic closure in more detail, we need a better
grasp of the properties of finite extensions of Qp. That is the point of the
next section. Before we delve in, however, we prove one final result about
polynomials that gives us still more finite extensions of Qp.

Proposition 6.3.11 (Eisenstein Irreducibility Criterion) Let

f(X) = anX
n + · · ·+ a1X + a0 ∈ Zp[X ]

be a polynomial satisfying the conditions

i) |an| = 1,

ii) |ai| < 1 for 0 ≤ i < n, and

iii) |a0| = 1/p.

Then f(X) is irreducible over Qp.

Proof: Suppose f(X) is reducible in Qp[X ]. By the Lemma, it is then
reducible over Zp, i.e., there exist g(X), h(X) ∈ Zp[X ] such that

f(X) = g(X)h(X).

Write
g(X) = brX

r + · · ·+ b1X + b0

and
h(X) = csX

s + · · ·+ c1X + c0,

with r+s = n; since |an| = 1 and an = brcs, we must have |br| = |cs| = 1. As
above, using bars to denote reduction modulo p, we have f̄(X) = ḡ(X) h̄(X).
On the other hand, the hypotheses imply that f̄(X) = ānX

n. Then we
must have ḡ(X) = b̄rX

r and h̄(X) = c̄sX
s. In particular, both b0 and c0

must be divisible by p. But then a0 = b0c0 will be divisible by p2, so that
|a0| ≤ 1/p2, contradicting our third assumption. This shows that f(X) must
be irreducible.
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The reader will note that the irreducible polynomials furnished by the
Eisenstein criterion (we might call them Eisenstein polynomials) are certainly
reducible modulo p (very reducible: modulo p, they look essentially like a
power of X). In other words, the irreducible polynomials provided by this
criterion are very different from the ones we found before. So what we have
here is another infinite family of finite extensions of Qp.

Problem 236 Given that Eisenstein polynomials factor modulo p, why can’t we use
Hensel’s Lemma to factor them in Zp?

To conclude this section, here are a few more problems about polynomials:

Problem 237 Is the function w defined in the proof of Gauss’s Lemma above a
valuation? (Hint: the difficult bit is to show that w(f(X)g(X)) = w(f(X))+w(g(X)).
Notice that the proof of the Lemma would be greatly simplified if we could use this
identity.)

Problem 238 (This needs Galois theory.) In the situation of Corollary 6.3.9, show
that the extension of Qp is normal, and that its Galois group is isomorphic to the Galois
group of the corresponding extension of Fp.

Problem 239 Use Lemma 6.3.7 above to show “Gauss’s Lemma,” which says that if
a polynomial f(X) ∈ Z[X] factors over Q, then it factors over Z. (This may be taken
as another example of how to use “local”—i.e., p-adic—methods to prove “global”
results.)

Problem 240 Can the Eisenstein criterion also be turned into a “global” result? In
other words, does it give us a way to determine irreducibility over Q?

Problem 241 Does Gauss’s Lemma extend to polynomials in several variables? If so,
does Problem 239 also extend to that case?

6.4 Finite Extensions of Qp

The point of this section is to gather information about finite extensions of
Qp. On one level, what we want to say is that much of the structure we have
found in Qp extends without effort. Our main interest, however, is to see
what information this gives us about finite extensions of Qp.

To help us understand, we will keep a few standard examples in mind as
we go along; at each step, we will consider (usually in a problem) how the
result that has just been proved looks in the particular case of our examples.

Here are the three examples:

i) Let p = 5; we have checked that 2 is not a square in Q5, so we let
F1 = Q5(

√
2). This is an extension of degree 2, with basis {1,√2}.

ii) Again, let p = 5. It is clear that 5 itself is not a square in Q5. We let
F2 = Q5(

√
5). This is also an extension of degree 2, with basis {1,√5}.
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iii) Our third example is more complicated. We let p = 3. We adjoin to
Q3 a cube root of unity and a square root of 2: F3 = Q3(ζ,

√
2), where

ζ3 = 1 but ζ �= 1. F3 is an extension of Q3 of degree 4; both Q3(ζ) and
Q3(

√
2) are subextensions of degree 2.

Throughout this section, K will be a finite extension of degree n of Qp,
and we will write | | = | |p for the p-adic absolute value (extended to K as
above). We already know that the absolute value makes K a locally compact
topological field, that K is complete with respect to its absolute value, and
that the absolute value on K is given by the formula

|x| = n

√
|NK/Qp

(x)|p.

Our next step is to show that this absolute value is discrete. Recall that
in Qp, the absolute value of any non-zero element was always of the form pv,
with v an integer; in fact, this is what allowed us to define the p-adic valuation
vp. Looking at the formula for the absolute value on K, we immediately see
that the absolute value of any non-zero x ∈ K is of the form pv, where
v ∈ 1

nZ, since it is the n-th root of the absolute value of some element of Qp.
This spurs us on to define:

Definition 6.4.1 Let K be a finite extension of Qp, and let | | be the p-adic
absolute value on K. For any x ∈ K, x �= 0, we define the p-adic valuation
vp(x) to be the unique rational number satisfying

|x| = p−vp(x).

We extend the definition formally by setting vp(0) = +∞.

It is easy to see that vp is a valuation, in the sense we defined:

i) vp(x+ y) ≥ min{vp(x), vp(y)}, and
ii) vp(xy) = vp(x) + vp(y).

As before, we use the standard conventions about how to interpret these
equations when one of x, y, or x+ y is zero.

It is useful to notice that since we know exactly how to compute the p-adic
absolute value of an element of K, we also know how to compute vp. Here is
the formula: for any x ∈ K×,

vp(x) =
1

n
vp
(
NK/Qp

(x)
)
.

This reduces computing vp to computing norms.

Problem 242 Let x = 1 + 3
√
2 ∈ F1. Compute v5(x). Do the same for x =

√
2,

x = 1+ 5
√
2, and x = 5

√
2. (Hint: the easiest way is probably to consider the images

under automorphisms to compute the norm, and then use the basic formula.)
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Problem 243 Let x = 4 +
√
5 ∈ F2. Compute v5(x). Do the same for x =

√
5,

x = 5 +
√
5, x = 10− 3

√
5, and x = 1 +

√
5.

Problem 244 Let x =
√
2 ∈ F3. Compute v3(x). Do the same for x = ζ, x = 1− ζ

(be careful!), x = 10− 3
√
2, and x = 2+ 3ζ. (This problem is a little harder than the

previous two problems.)

We know that the image of vp is contained in 1
nZ (in fact, that is obvious

from the formula above). But we do not yet know exactly what it is. The
next result tells us what kind of subset of Q it is.

Proposition 6.4.2 The p-adic valuation vp is a homomorphism from the
multiplicative group K× to the additive group Q. Its image is of the form
1
eZ, where e is a divisor of n = [K : Qp].

Proof: That vp is a homomorphism is just property (ii) above; its image
is therefore an additive subgroup of Q. We already know that the image is
contained in 1

nZ. We also know that the image contains all of Z, since the

image of vp on Q×
p does. Choose x ∈ K with vp(x) =

d
e with d and e relatively

prime so that the denominator e is the largest possible. (This makes sense
because it is clear that e must be a divisor of n, so that the range of possible
denominators is bounded.) Now, since d and e are relatively prime, there
must be a multiple of d which is congruent to 1 modulo e, i.e., we can find
integers r and s such that rd = 1 + se. But then

r
d

e
=

1 + se

e
=

1

e
+ s

is in the image; since s ∈ Z is in the image, it follows that 1/e is in the image.
Since e was chosen to be the largest possible denominator in the image, it
follows that the image must be exactly 1

eZ, and we are done.

The image of the p-adic valuation on a field K is called the value group of
K. The number e is an invariant of the field extension K/Qp, and therefore
we give it a name:

Definition 6.4.3 Let K/Qp be a finite extension, and let e = e(K/Qp) be
the unique positive integer (dividing n = [K : Qp]) defined by

vp(K
×) =

1

e
Z.

We call e the ramification index of K over Qp. We say the extension K/Qp

is unramified if e = 1. We say the extension is ramified if e > 1, and totally
ramified if e = n. Finally, we write f = f(K/Qp) = n/e and call it the
residual degree of K over Qp.
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The notations e and f are traditional for these two numbers. Notice that
at this point f has simply been defined as the “other factor” of n, which
does not explain the name “residual degree.” We will soon give it a more
interesting interpretation that justifies the choice of nomenclature. Before
we do that, however, we need to explore the structure of K a little further.

Problem 245 Compute e for the fields F1, F2, and F3. (Hint: we made sure to
have one example each of unramified, totally ramified, and ramified-but-not-totally
extensions.)

In Qp, the number p played a special role, due to the fact that it was
an element of smallest positive valuation, vp(p) = 1. This meant that any
element x ∈ Zp with vp(x) > 0 was divisible by p, and in fact, we could
interpret vp(x) as a multiplicity: any x ∈ Qp can be written as x = pvp(x)u,
where u is a p-adic unit, i.e., satisfies vp(u) = 0. To do something similar in
K, we need an element whose valuation is exactly 1/e. But since 1/e is in
the value group, such elements exist.

Definition 6.4.4 Let K/Qp be a finite extension, and let e = e(K/Qp). We
say an element π ∈ K is a uniformizer if vp(π) = 1/e.

Notice that there are many uniformizers, just as there are many elements
of Zp whose valuation is exactly 1. In what follows, we will choose a uni-
formizer π, and fix it throughout the discussion. We should remark that in
the unramified case, we have e = 1, and we can (and usually will) simply
take π = p.

Problem 246 Find uniformizers for F1, F2, and F3. (Only F3 takes some thought.)

Having set this up, we can describe the algebraic structure of K. First of
all, recall that we defined the valuation ring

O = OK = {x ∈ K : |x| ≤ 1} = {x ∈ K : vp(x) ≥ 0}
and its maximal ideal

p = pK = {x ∈ K : |x| < 1} = {x ∈ K : vp(x) > 0}.
OK , as we saw in Chapter 2, is a local ring, and the residue field is the
quotient

k = OK/pK .

The basic facts about these rings are easy to describe.

Proposition 6.4.5 Let notations be as above, and fix a uniformizer π in K.
Then:

i) The ideal pK ⊂ OK is principal, and π is a generator.
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ii) Any element x ∈ K can be written in the form x = uπevp(x), where
u ∈ O×

K is a unit, and therefore satisfies vp(u) = 0. In particular,
K = OK [ 1π ].

iii) The residue field k is a finite extension of Fp whose degree is less than
or equal to the degree [K : Qp]. In particular, the number of elements
in k is a power of p. (The exact number of elements will be determined
below.)

iv) Any element of OK is the root of a monic polynomial with coefficients
in Zp.

v) Conversely, if x ∈ K is the root of a monic polynomial with coefficients
in Zp, then x ∈ OK .

vi) OK is a compact topological ring. The sets πmOK, m ∈ Z, form a
fundamental system of neighborhoods of zero in K, which is a totally
disconnected, Hausdorff, locally compact topological space.

vii) Let � be the number of elements of the residue field k and let A =
{c1, c2, . . . , c	} ⊂ OK be a fixed set of representatives for the elements
of k, i.e., for the cosets of pK in OK . Then any x ∈ K has a unique
representation as a p-adic expansion

x =

∞∑
i=−m

aiπ
i = a−mπ−m + · · ·+ a0 + a1π + a2π

2 + . . . ,

where each ai ∈ A. In other words, every element of K has a unique
expansion in powers of π with coefficients chosen from the “digits”
c1, c2, . . . , c	.

Problem 247 Prove the proposition. (Some hints: (i) is a matter of computing vp;
(ii) is pretty much the same. For (iii), the crucial observation is that if a set of elements
of O is linearly dependent over Qp, then the set of their reductions modulo π is linearly
dependent over Fp. Item (iv) was pretty much proved when we constructed the absolute
value, and (v) is immediate from that construction. The rest is identical to what we
did for Qp.)

Problem 248 Work out OK and k for each of our running examples.

Given that k is a finite extension of Fp, its degree is another natural
invariant of the extension K/Qp. It turns out, however, to be a number we
have already introduced, namely the residual degree.

Theorem 6.4.6 Still using the notations above, let f = f(K/Qp) be the
residual degree of K over Qp (see Definition 6.4.3). Then [k : Fp] = f , so
that f is the degree of the residue field extension k/Fp. In particular, k = Fpf

is a finite field with pf elements.
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Proof: This is a big one. Ready? Here we go.
Let m = [k : Fp], and let e = e(K/Qp) be the ramification index. What

the theorem says is that e ·m = n = [K : Qp]. First of all, choose elements
α1, α2, . . . , αm ∈ OK such that their images ᾱ1, ᾱ2, . . . ᾱm ∈ k are a basis of
k over Fp. (In particular, they must be non-zero, so that the α’s are actually
in O×

K .) As we noted above, the α’s are clearly linearly independent over Qp

(given a dependence relation, scale so that the coefficients are integral and
at least one is a unit, then reduce modulo π; this gives a dependence relation
over Fp). To prove the theorem, we show how to complete this set to a basis
of K over Qp.

The idea is to use the uniformizer π. Consider the elements

α1, α2, . . . , αm,

πα1, πα2, . . . , παm,

π2α1, π
2α2, . . . , π

2αm,

. . . ,

πe−1α1, π
e−1α2, . . . , π

e−1αm.

We claim these form a basis of K over Qp. Note that, if so, the theorem
follows, since we then have n = e ·m.

Proving our claim requires several steps. First of all, if every element of
OK is a Qp-linear combination of the πiαj , then so is every element of K,
since for any x ∈ K we can find a power of p such that prx ∈ OK , find the
expansion of this element, then divide by pr.

Now consider x ∈ OK . We will show that x is a Zp-linear combination
of the elements listed above. First, reducing modulo π, we can write x̄ as a
combination of the ᾱj ; in other words, we have

x = x0,1α1 + x0,2α2 + · · ·+ x0,mαm + a multiple of π,

with x0,j ∈ Zp. Now repeat the same reasoning to the multiple of π to get

x = x0,1α1 + x0,2α2 + · · ·+ x0,mαm

+ x1,1πα1 + x1,2πα2 + · · ·+ x1,mπαm

+ a multiple of π2.

Repeating this e times, and noticing that πe and p differ by a unit (because
they have the same valuation!), we see that our x can be written as

x = x0,1α1 + x0,2α2 + · · ·+ x0,mαm

+ x1,1πα1 + x1,2πα2 + · · ·+ x1,mπαm

+ . . .

+ xe−1,1π
e−1α1 + xe−1,2π

e−1α2 + · · ·+ xe−1,mπe−1αm

+ px′,
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where all the coefficients xi,j are in Zp and x′ ∈ OK . Now apply the same
reasoning to x′. This will give new coefficients xi,j + px′

i,j , for which the

equality holds modulo p2. Continuing in this fashion produces, for each
(i, j), a convergent series in Zp:

xi.j + px′
i,j + p2x′′

i,j + . . .

Let yi,j ∈ Zp be the sum. Then we get

x =

e−1∑
i=0

m∑
j=1

yi,jπ
iαj ,

which shows x is a Zp-linear combination of the πiαj .
To show that the πiαj are independent, assume for a contradiction11 that

we have a nontrivial linear dependence relation∑
i,j

xi,jπ
iαj = 0

with xi,j ∈ Qp. Since not all the coefficients are zero, we can scale the entire
relation to make sure that the xi,j are all in Zp and that at least one is not
divisible by p. We will find a contradiction by showing that in fact all of the
xi,j are divisible by p.

Reducing this equation modulo π gives a dependence relation for the ᾱj

over Fp; this must be trivial because the ᾱj are a basis. Hence all of the
coefficients x0,j must reduce to zero, i.e., must be divisible by p. If e = 1 this
contradicts our assumption that at least one coefficient is a unit.

If e > 1, all we know so far is that all the x0,j are divisible by p, and hence
by π. This makes the whole relation divisible by π; divide through. Notice
that x0,j/π will still be divisible by π, since its valuation is at least 1− 1

e > 0.
Now reduce modulo π again. We know that most of the equation is still
divisible by π, and using the same reasoning as before, we can conclude that
the x1,j must all be divisible by p. If e = 2 we have a contradiction again.

Continuing in this fashion, we get that all the xi,j are divisible by p, which
contradicts our initial assumption. It follows that no such linear dependence
relation exists, and we are finally done.

After that long proof, it is well to remind ourselves of what we have
obtained. We have shown that the degree n = [K : Qp] of a finite extension
of Qp breaks up as a product n = e · f , where e measures the change of the
image of the p-adic valuation vp and f = [k : Fp] measures the change in the
residue field.

Problem 249 This was a messy proof. It’s probably wise to work out the precise
details.

11This proof has a similar flavor to the standard proof that
√
2 is irrational: a2 = 2b2

forces both a and b to be even.
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6.5 Classifying Extensions of Qp

We now know some important invariants of finite extensionsK/Qp: the degree
n, the ramification index e, and the residual degree f . These are related by
n = ef . In this section, we consider the special cases e = n and e = 1.

We begin by giving a partial description of the totally ramified finite
extensions of Qp. It is a standard result in field theory that any extension of
a field of characteristic zero (such as Qp) is generated by adjoining the root
of an irreducible polynomial. In the case of totally ramified extensions, we
can say exactly what kind of polynomial.

Proposition 6.5.1 Let K/Qp be a totally ramified finite extension of Qp,
so that e(K/Qp) = n = [K : Qp]. Then K = Qp(π), where π, as above, is a
uniformizer. Furthermore, π is a root of a polynomial

f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0 ∈ Qp[X ]

that satisfies the conditions of the Eisenstein criterion, i.e., p|ai for 0 ≤ i < n
and p2 � a0.

Proof: Let π be a uniformizer, so that vp(π) = 1/n, or, equivalently,
|π| = p−1/n. Take f(X) to be the minimal polynomial for π over Qp. Recall
that we can compute the absolute value of π in terms of its norm. It goes
like this: if the degree of f(X) is s (which must be a divisor of n) and its last
coefficient is a0, we set r = n/s, and then the norm of π is (−1)nar0. Once we
know the norm, we can compute the absolute value; this gives the equation

p−1/n = |π| = n

√
|ar0| = s

√
|a0|.

Now, since a0 is in Qp, its absolute value is an integral power of p. Looking
at the equation, we see that we must have s = n (so that f(X) is of degree
n) and |a0| = p−1.

The fact that the degree is n shows that K = Qp(π), and |a0| = p−1 is
exactly what we claimed about this coefficient of f(X). It remains to show
our claim about the other coefficients. For this, let π1 = π, π2, . . . , πn be
the roots of f(X). Note, first, that all of the roots have the same minimal
polynomial, hence the same norm, hence the same absolute value. In partic-
ular, we have |πi| < 1 for every i. Now, the coefficients of f(X) are sums of
products of the roots (write f(X) as the product of the (X−πi) and expand);
it follows that we must have |ai| < 1 for 1 < i < n, and we are done.

Problem 250 In the case of F2, which is totally ramified, what is the Eisenstein
polynomial?

Problem 251 Let p = 3 and let K = Q3(ζ) be the field obtained by adjoining a cube
root of unity. Check that this is a totally ramified extension of degree 2, and find the
Eisenstein polynomial given by the proposition.
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This is quite a remarkable result, but it only gives a partial description of
the totally ramified extensions of Qp, because we don’t have a way of deciding
whether two different Eisenstein polynomials give the same extension (or at
least not yet; it can be done using Theorem 6.8.2). It turns out that for each
n there are only finitely many different totally ramified extensions of degree
n.

Sage can create totally ramified extensions of Qp if you give it an Eisen-
stein polynomial. First we create the base field and the polynomial ring.

sage: K=Qp(7)

sage: K

7-adic Field with capped relative precision 20

sage: S.<x>=ZZ[]

sage: S

Univariate Polynomial Ring in x over Integer Ring

Now we can create an Eisenstein polynomial and tell Sage to make the field
extension.

sage: f=x^3-49*x^2+35*x+7

sage: F.<w>=K.ext(f)

sage: F

7-adic Eisenstein Extension Field in w defined

by x^3 - 49*x^2 + 35*x + 7

The field F now allows the usual computations to happen, with the element
w being the uniformizer.

sage: F(12)

5 + 6*w^3 + 5*w^4 + 3*w^5 + 5*w^8 + 3*w^9 + 3*w^10 + 3*w^12

+ 6*w^13 + w^14 + 2*w^15 + 6*w^16 + 5*w^17 + 4*w^18 + 4*w^19

+ 6*w^20 + 5*w^21 + 4*w^22 + 4*w^23 + 4*w^24 + 2*w^26

+ 6*w^27 + 2*w^28 + 4*w^29 + 6*w^30 + 2*w^31 + 3*w^32

+ 5*w^33 + 3*w^34 + 6*w^35 + 3*w^36 + 6*w^37 + w^38 + 5*w^41

+ 4*w^42 + 4*w^43 + 3*w^44 + 2*w^45 + 5*w^46 + 6*w^47

+ w^48 + 3*w^51 + 6*w^52 + w^53 + 4*w^54 + 2*w^55 + 5*w^56

+ 3*w^57 + 3*w^58 + O(w^60)

Notice K = Q7 had precision O(720); the extension of degree 3 F = Q7(w)
has the same precision, but in terms of w that is O(w60).

We would say v7(w) = 1/3, but Sage does it differently:

sage: F(w).valuation()

1

sage: F(7).valuation()

3
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Sage prefers to make w have valuation 1, which means the valuation of 7
must be 3 when we think of it as an element of F . Our normalization has
the advantage of being field-independent.

It is natural to look for a similar result in the other extreme case, i.e., for
unramified extensions. It turns out that those are even simpler, but to be
able to prove that we will have to have one more tool in our kit. That tool
is Hensel’s Lemma.

Theorem 6.5.2 (Hensel’s Lemma) Let K be a finite extension of Qp, and
let π be a uniformizer. Let F (X) = a0 + a1X + a2X

2 + · · · + anX
n be a

polynomial whose coefficients are in OK . Suppose that there exists an α1 ∈
OK such that

F (α1) ≡ 0 (mod π)

and
F ′(α1) �≡ 0 (mod π),

where F ′(X) is the (formal) derivative of F (X). Then there exists an α ∈ OK

such that α ≡ α1 (mod π) and F (α) = 0.

Recall that π is a generator of the maximal ideal pK , so that we can
also write the conditions as congruences modulo pK , or in terms of absolute
values. The proof is identical to the one we gave in Chapter 4.

Problem 252 Prove Theorem 6.5.2.

Problem 253 Formulate and prove a version of Theorem 4.7.2 (Hensel’s Lemma for
polynomials) that works over K.

Problem 254 Formulate and prove a version of Problem 120 (the stronger form of
Hensel’s Lemma to which we occasionally needed to resort) that works over K.

The crucial observation, for all three problems, is that there is really
nothing to do: exactly the same proofs work.

As before, we can use Hensel’s Lemma to obtain roots of unity in K. The
point is that the non-zero elements of the residue field k (which, remember,
has pf elements) form a cyclic group12 with pf −1 elements. This means that
for each m dividing pf − 1, there are exactly m roots of Fm(X) = Xm − 1 in
k×. Choosing any lift of these to O×

K gives us m non-congruent “approximate
roots.” This sets us up for Hensel’s Lemma, since the derivative is F ′

m(X) =
mXm−1, which will be non-zero (m is a divisor of pf − 1, hence not divisible
by p, and our approximate roots are units). Hensel’s Lemma gives us m
non-congruent (and therefore m different) m-th roots of unity in O×

K . Since

12That the non-zero elements of any field form a group is sort of obvious. That the
non-zero elements of a finite field form a cyclic group follows from the fact that any finite
subgroup of a field is cyclic, which the reader may have met in her abstract algebra course,
and which otherwise is a very nice and challenging exercise.
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this is true for any m dividing pf −1, it means that K contains the full cyclic
group of (pf − 1)-st roots of unity. In other words:

Corollary 6.5.3 Let K/Qp be a finite extension, and let f = f(K/Qp).
Then O×

K contains the cyclic group of (pf − 1)-st roots of unity.

Problem 255 Describe what roots of unity are given by this corollary in each of the
fields F1, F2, and F3. In each case, can you decide whether there are any other roots
of unity?

Of course, if K contains the (pf −1)-st roots of unity, then it also contains
the m-th roots of unity for any m dividing pf − 1. We can also turn this
around: given an m which is not divisible by p, one can always find an f such
that pf ≡ 1 (mod m) (the group of invertible elements of Z/mZ is, after all,
finite), which means that m divides pf − 1. So by taking fields with larger
and larger f , we get all the prime-to-p-th roots of unity.

Except for p-power roots of unity, this description is complete. First, if
f = f(K/Qp) and K contains any other roots of unity, that is, m-th roots
of unity for some m which is relatively prime to pf − 1, then they must be
1-units, since their reduction modulo π must be equal to 1.

Problem 256 (This problem just asks you to verify carefully what we have just as-
serted.) Suppose x ∈ K satisfies xm = 1.

i) Show that x ∈ O×
K , i.e., that x is a unit in K.

ii) Show that if m is relatively prime to pf − 1, then x ≡ 1 (mod π), so that
x ∈ 1 + pK .

Next, a 1-unit can be an m-th root of unity only if m is a power of p. We
show this by a direct argument. First we make the following useful remark:

Lemma 6.5.4 If x ≡ 1 (mod π), then xp ≡ 1 (mod π2), and, more gener-
ally, xpr ≡ 1 (mod πr+1).

Proof: An easy exercise on the binomial theorem. Notice that unless e = 1
we can in fact do much better than is stated.

Now it’s easy: if ζ is a 1-unit, and ζm = 1 for some m prime to p, then
we begin with

ζ ≡ 1 (mod π).

Now choose any r such that pr ≡ 1 (mod m) (this certainly exists, as we
observed above). Then, taking pr-th powers, we get

ζ = ζp
r ≡ 1 (mod πr+1).

Iterating (or just replacing r by a multiple), we see that in fact ζ is congruent
to 1 modulo an arbitrarily large power of π. It follows that ζ = 1. (Otherwise,
what would be the valuation of ζ − 1?)
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Problem 257 Prove the lemma.

Problem 258 Push the argument above a little harder to show that if m is prime to
p then two different m-th roots of 1 will never be congruent modulo π.

Problem 259 We outline an alternative way to show that 1-units cannot be m-th
roots of unity if m is prime to p. Suppose ζ is a 1-unit, and ζm = 1 for some m prime
to p. Taking a power of ζ, we get an 
-th root of unity ζ1, where 
 is a prime not equal
to p. Let x1 = 1− ζ1 ∈ pK . Then we have

(1− x1)
� − 1 = 0.

Expand the left-hand side, and rearrange to get a contradiction.

One interesting way to read the last few paragraphs is to see that they
tell us something about the structure of the 1-units, i.e., the elements of
U1 = 1 + πOK . This is clearly a group, since

(1 + πx)(1 + πy) = 1 + πx+ πy + π2xy,

and

(1 + πx)−1 = 1− πx + (πx)2 − (πx)3 + . . . ,

which clearly converges and belongs to U1. Similarly, each of the sets Un =
1 + πnOK are subgroups.

Problem 260 Show that for any n the quotient Un/Un+1 is a p-group (i.e., its order
is a power of p). (Hint: you need to show that it is a finite abelian group, and that the
order of any element is a power of p.)

The upshot is that we have obtained an almost complete description of
the roots of unity in K: if we set f = f(K/Qp), then K contains pf − 1
non-congruent (pf − 1)-st roots of unity, and possibly some p-power roots of
unity. These last will be 1-units.

We are now ready to go back to what started us on this roots-of-unity
excursus, that is, to describe the unramified extensions of Qp.

Proposition 6.5.5 For each f there is exactly one unramified extension of
degree f . It can be obtained by adjoining to Qp a primitive (pf − 1)-st root
of unity.

Proof: It’s best to clarify from the start what we mean by “exactly one.”
We don’t just mean all such extensions are isomorphic, but also that any such
extension is a normal extension. One way to express this is to say that if we
fix an algebraic closure Qp then there is a unique subfield K ⊂ Qp which is
unramified and has degree f over Qp.
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Let ᾱ be a generator of the cyclic group of non-zero elements of Fpf .
Then Fpf = Fp(ᾱ) is an extension of degree f (check the usual references on
abstract algebra for the details). Let

ḡ(X) = Xf + āf−1X
f−1 + · · ·+ ā1X + ā0

be the minimal polynomial for ᾱ over Fp. Lifting ḡ(X) to g(X) ∈ Zp[X ] any
way we like, we get an irreducible polynomial over Qp. If α is a root of g(X),
then K = Qp(α) is an extension of degree f . The residue field k of K clearly
contains a root of ḡ(X) (the reduction of α modulo pK), hence we must have
[k : Fp] ≥ f ; since, on the other hand, the degree of the residue field is at
most equal to the degree of K/Qp, we have [k : Fp] ≤ [K : Qp] = f , it follows
that [k : Fp] = f = [K : Qp], so that K/Qp is unramified. We also see that
k = Fpf .

This shows that there always exists an unramified extension of degree f
(it is, in fact, the extension we considered at the end of the previous section).
We still need to show the uniqueness. To do that, we will show that any
extension K/Qp which is unramified and of degree f will have to be equal to
the extension obtained by adjoining a primitive (pf − 1)-st root of unity.

By the corollary above, we already know that K must contain all the
(pf − 1)-th roots of unity. Hence, to show the equality we want, all we
need to do is show that the smallest field extension of Qp which contains the
(pf − 1)-st roots of unity is already of degree f , and hence must be all of K.

So choose β to be a primitive (pf − 1)-th root of unity in K. Then we
have

Qp ⊂ Qp(β) ⊂ K.

Now, the powers of β are exactly all the (pf − 1)-th roots of unity, and we
know, from Problem 258, that they are all distinct modulo π. This means
that β̄ is a (pf − 1)-th root of unity, so that the residue field of the extension
Qp(β)/Qp contains Fpf = k. Since the degree of the residue field extension
is certainly less than or equal to the degree of the extension of Qp, it follows
that the degree of Qp(β) over Qp is at least f . Since K/Qp is of degree f , it
follows that K = Qp(β).

Finally, the roots of the minimal polynomial for β over Qp are exactly
the primitive (pf − 1)-th roots of unity, all of which are powers of β, which
shows K = Qp(β) is a normal extension.

Problem 261 For p = 5, consider the extensions F1 = Q5(
√
2) and K = Q5(

√
3).

Show that they are both unramified and of degree 2. Conclude that they are equal.
How can this be? The theorem also says that either extension is the same as the one
obtained by adjoining a primitive 24-th root of unity. Can you find a few terms of the
5-adic expansion of a primitive 24-th root of unity? (Remember that we can take π = 5
as uniformizer, because we know the extension is unramified, so that the first problem
is to choose a convenient set of “digits.”)

Problem 262 Find the largest subfield of F3 which is an unramified extension of Q3.
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Problem 263 Let K = Q3(
3
√
2) be the extension of Q3 obtained by adjoining a cube

root of 2. Show that this extension is totally ramified.

One way to understand what we have just proved is this: we have shown
that for each extension k/Fp there is a unique unramified extension K/Qp

whose residue field is k. This is very cool: given k, which is an object of
characteristic p, we can get a unique K, which is of characteristic zero. It is
easy to start in characteristic 0 and produce something of characteristic p by
modding out. But moving in the opposite direction seems harder.

Of course, our description of K depends on having at hand both Qp and
roots of unity. Might there be a way to construct K (or, equivalently, the
valuation ring OK) directly from the finite field k? This was one of the
motivations for the creation of Witt vectors, which provide an explicit way
to take a field k of characteristic p and create a ring W (k) of characteristic
zero. If k is a finite field, W (k) is exactly the valuation ring OK of the unique
unramified extension corresponding to k. But the construction works for any
field of characteristic p, and even more generally than that. The definition of
W (k) is complicated, however, so we will not give the details; a good source
is [61, Ch. II, §6].

The unique unramified extension Kf of degree f has several interesting
properties. If m = pf − 1, we know that Kf is generated by the m-th roots
of unity. So if ζ is any primitive m-th root of unity, we have Kf = Qp(ζ).
Let F (X) be the minimal polynomial for ζ; the roots of F (X) are exactly all
the primitive m-th roots of unity, which we know are also powers of ζ, so any
field that contains a primitive m-th root of unity contains Kf . But we can
do a bit better, because we also know that no two primitive m-th roots of
unity are congruent mod p, so F ′(ζ) �≡ 0 (mod p). That puts us in a Hensel’s
Lemma situation, which allows us to prove a neat result.

Corollary 6.5.6 Let K be a finite extension of Qp and let m = pf − 1. If
there exists c ∈ K and a primitive m-th root of unity in Qp such that c ≡ ζ
(mod p), then K contains the degree f unramified extension of Qp.

Proof: Let F (X) be the minimal polynomial for ζ. Then, since c ≡ ζ
(mod p), we have F (c) ≡ 0 (mod p) and F ′(c) �≡ 0 (mod p). By Hensel’s
Lemma, it follows that K contains a root of F (X), i.e., a primitive m-th root
of unity. Hence K contains the unramified extension of degree f .

Moving from “contains something congruent to ζ” to “contains ζ” feels
like magic, but it’s typical of what Hensel’s Lemma can do. It might be fun to
consider to what extent this corollary can be generalized. See Theorem 6.8.2
for a related result.

Sage has built-in functions to create unramified extensions. The com-
mand K.<u>=Qq(125) tells Sage that K is the unramified extension of Q5

corresponding to the finite field with 53 elements, whose generator over Q5

is to be named u. The command R.<u>=Zq(125) creates the ring W (F125).
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sage: K.<u>=Qq(125)

sage: K

5-adic Unramified Extension Field in u defined by

x^3 + 3*x + 3

sage: a=K(1+5*u^5)

sage: a

1 + (2*u^2 + 4*u + 4)*5 + (4*u^2 + u + 1)*5^2 + 4*u^2*5^3

+ 4*u^2*5^4 + 4*u^2*5^5 + 4*u^2*5^6 + 4*u^2*5^7

+ 4*u^2*5^8 + 4*u^2*5^9 + 4*u^2*5^10 + 4*u^2*5^11

+ 4*u^2*5^12 + 4*u^2*5^13 + 4*u^2*5^14 + 4*u^2*5^15

+ 4*u^2*5^16 + 4*u^2*5^17 + 4*u^2*5^18 + 4*u^2*5^19

+ O(5^20)

Notice that the digits are the standard lifts of elements of F125, namely
polynomials a+ bu+ c2 where a, b, c ∈ {0, 1, 2, 3, 4}.

The two main results of this section, describing the totally ramified and
the unramified extensions of Qp, together yield a rather good description of
arbitrary extensions. We won’t go into it here in detail; basically, one shows
that any extension is obtained by first taking an unramified extension, and
then taking a totally ramified extension of the resulting field. (Of course, this
requires knowing what it means for an extension L/K to be totally ramified;
we have only defined this when K = Qp.) This is proved in, for example,
[34, Ch. 14] or [42, §III.3]. Using that and Krasner’s Lemma (Theorem 6.8.2)
one can then show that there are finitely many extensions of degree n, and
indeed find them all.

In fact, gp contains a function padicfields(p,n) that returns a list
of generating polynomials for all K/Qp of degree n. There is a variant
padicfields(p,n,1) that gives even more information in the form

[polynomial, e, f, d, c]

We get a polynomial whose root generates K, the invariants e and f , an
integer d so that the discriminant13 of K is pd, and the number c of distinct
conjugates14 of K in a fixed algebraic closure. For example,

gp > padicfields(3,4,1)

%1 = [[x^4 + 13*x^3 + 64*x^2 + 61*x + 40, 1, 4, 0, 1],

[x^4 + 2*x^3 + 11*x^2 + 10*x + 4, 2, 2, 2, 1],

[x^4 + 2*x^3 + 2*x^2 + 7*x + 16, 2, 2, 2, 1],

[x^4 + 3, 4, 1, 3, 2],

[x^4 + 6, 4, 1, 3, 2]]

So the unique unramified extension of degree 4 is defined over Q3 by the
polynomial x4 + 13x3 + 64x2 + 61x + 40. There are two extensions15 with
e = f = 2 and there are two totally ramified extensions.

13No, we haven’t defined what this is.
14This is just the number of embeddings K ↪→ Qp. If K is normal then c = 1.
15One of these is our F3; which?
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The following problems move in the direction of getting a more precise
description of totally ramified extensions.

Problem 264 Let K/Qp be a totally ramified extension of degree e which satisfies
the extra condition that p does not divide e (such extensions are called tamely ramified).
Show that K can be obtained by adjoining to Qp a root of a polynomial of the form
Xe − pu, where u ∈ Z×

p is a p-adic unit.

Problem 265 LetK be a finite extension of Qp. Is there an analogue of the Eisenstein
Criterion for polynomials with coefficients in K? If so, state it and prove it.

Problem 266 What would it mean for an extension L/K to be totally ramified?
Would the analogue of Proposition 6.5.1 still be true?

Since there is a unique unramified extension of each degree, one nice thing
we can do is to consider the union of all these extensions. (Equivalently, we
could apply the Witt vector construction to the algebraic closure of Fp.) The
result will be an infinite extension of Qp, and will contain all the unrami-
fied extensions of Qp. It is called the maximal unramified extension of Qp,
sometimes denoted by Qunr

p .

Problem 267 Let m be an integer which is not divisible by p. Show that the maximal
unramified extension of Qp contains the m-th roots of unity. Conclude that we can
describe Qunr

p as being obtained by adjoining to Qp all the prime-to-p-th roots of unity.

The following two problems ask you to obtain important information on
Qunr

p and Qp. Make sure you either solve them or check the answers in the
back of the book.

Problem 268 The p-adic absolute value and the p-adic valuation vp makes sense, of
course, on Qunr

p . What is the image of vp? What is the residue field?

Problem 269 The last problem also makes perfect sense if we replace Qunr
p by an

algebraic closure Qp of Qp. Do the answers change in that case?

6.6 Analysis

Just as in the case of Qp, once we have a field with an absolute value we can
do elementary analysis. In fact, all we need to point out is that most of what
we did in Chapter 5 extends without any difficulty, because we were careful,
when we proved our results, never (well, hardly ever) to use anything that
specifically requires that the field was Qp rather than an extension. More
specifically, any argument that only uses estimates on absolute values will be
valid in general. The only issue we have to keep in mind is ramification: any
argument that depends on using the fact that p is a uniformizer for Zp will
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need to be changed to use a uniformizer π; if vp(π) = 1/e, we will have a
larger range of possible absolute values.

In other words, we already know a lot of things, which we list. Let K
be a finite extension of Qp and let | | be the unique extension of the p-adic
absolute value to K.

i) A sequence (an) in K is Cauchy if and only if

lim
n→∞ |an+1 − an| = 0.

ii) If a sequence (an) converges to a non-zero limit a, then we have |an| =
|a| for all sufficiently large n.

iii) A series
∑

an in K converges if and only if its general term tends to
zero.

iv) Proposition 5.1.4 holds for double series in K.

v) A power series f(X) =
∑

anX
n with coefficients an ∈ K defines a

continuous function on an open ball of radius ρ = 1/ lim sup n
√|an|; the

function extends to the closed ball of radius ρ if |an|ρn → 0 as n → ∞.

vi) Proposition 5.4.2, Theorem 5.4.3, and Problem 159 are true for power
series with coefficients in K.

vii) Functions defined by power series are differentiable, and their deriva-
tives are defined by the formal derivative of the original series.

viii) If f(X) =
∑

anX
n and g(X) =

∑
bnX

n are power series with coeffi-
cients in K, xm is a convergent sequence contained in the intersection
of the disks of convergence of f and g, and we have f(xm) = g(xm) for
all m, then an = bn for all n.

ix ) Strassman’s Theorem holds without any change beyond replacing Qp

by K and Zp by OK .

x ) The corollaries to Strassman’s Theorem therefore also extend.

xi) The usual power series defines a p-adic logarithm function

logp : U1 −→ K,

where

U1 = {x ∈ OK : |x− 1| < 1} = 1 + πOK .

This function satisfies the functional equation

logp(xy) = logp(x) + logp(y) for any x, y ∈ U1.
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xii) The usual power series defines an exponential function

expp : D −→ K,

where
D = {x ∈ OK : |x| < p−1/(p−1)}.

This function satisfies the functional equation

expp(x+ y) = expp(x) expp(y) for any x, y ∈ D.

(Notice that when e is big there will certainly be elements in OK whose
absolute values are less than 1 but not less than p−1/(p−1), so that the
restriction in the domain is more serious for finite extensions than it
was for Qp itself.)

xiii) If x ∈ D, then expp(x) ∈ 1 +D and we have

logp(expp(x)) = x.

xiv) If x ∈ 1 +D, then logp(x) ∈ D and we have

expp(logp(x)) = x.

xv) The p-adic logarithm gives a homomorphism from the multiplicative
group U1 = 1 + πOK to a bounded additive subgroup of K. (But, in
contrast to what happens in Qp, the image is usually not contained in
πOK .)

xvi) The p-adic logarithm gives an isometric isomorphism from the multi-
plicative group 1+D to the additive group D, which is itself isomorphic
to the additive group of OK .

xvii) For each α ∈ Zp, the binomial series (1+x)α = B(α, x) converges when-
ever |x| < 1 (i.e., for x ∈ πOK = pK). (We need to keep the condition
α ∈ Zp because we used the fact that Z is dense in Zp to conclude that
the binomial coefficients were p-adic integers. Z is certainly not dense
in OK .) In other words, uα is well-defined whenever u ∈ 1 + pK is a
1-unit in OK and α ∈ Zp is a p-adic integer.

Proof: Most of these are just a matter of re-reading the proofs, so we will
leave those as exercises. The only significant change is (xv). Recall that in
Qp we proved that logp(U1) ⊂ pZp when p �= 2 (because U1 = 1 +D in this
case) and that log2(U1) ⊂ 4Z2. What we claim now is that log(U1) ⊂ πnOK

for some n ∈ Z, but it is possible that n < 0.
Suppose x ∈ K. If |x| < 1, then x ∈ πOK , so |x| ≤ |π|. We know

logp(1 + x) =

∞∑
n=1

(−1)n+1xn

n
.
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Now ∣∣∣∣(−1)n+1xn

n

∣∣∣∣ ≤
∣∣∣∣πn

n

∣∣∣∣ .
You will show in the next exercise that

lim
n→∞

∣∣∣∣πn

n

∣∣∣∣ = 0.

Any sequence that converges to zero in R is bounded, so there exists a B ∈
R, B > 0, such that

∣∣πn

n

∣∣ < B for all n, which by Corollary 5.1.2 gives
| logp(1 + x)| < B as well. This shows that the image of the logarithm is
bounded. Since it is clearly an additive subgroup, we have proved (xv).

Problem 270 Show that if vp(π) = 1/e then

lim
n→∞

∣∣∣∣πn

n

∣∣∣∣ = 0.

Problem 271 Find an example that shows that the image of the p-adic logarithm is
not always contained in OK .

Problem 272 Satisfy yourself that the other assertions we enumerated are all correct.

This pretty much transports all of the elementary analysis which we de-
veloped in Chapter 5 to finite extensions of Qp. In fact, we will later want
to extend it to infinite extensions as well.

6.7 Example: Adjoining a p-th Root of Unity

The discussion in the previous sections was mostly theoretical. It may be
helpful to apply it now to a concrete case. We consider, in this section, the
field K = Qp(ζ), where ζ is a p-th root of unity and p �= 2. (The case p = 2
is a bit trivial.) In other words, ζ satisfies ζp = 1 but ζ �= 1, and is therefore
a root of the polynomial

Φp(X) =
Xp − 1

X − 1
= Xp−1 +Xp−2 + · · ·+X + 1,

which is known as the p-th cyclotomic polynomial. The first thing we need
to do, then, is to check that this polynomial is irreducible. For that, we use
the Eisenstein criterion:

Lemma 6.7.1 The polynomial

Φp(X) = Xp−1 +Xp−2 + · · ·+X + 1

is irreducible over Qp.
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Proof: The polynomial Φp(X) itself certainly does not satisfy the conditions
for the Eisenstein criterion. So we use a little trick.

Let F (X) = Φp(X + 1). It is easy to see that Φp(X) is irreducible if
and only if F (X) is. We claim that F (X) does satisfy the conditions in the
Eisenstein criterion. To see that, we need to check two things: that all the
coefficients except the first are divisible by p, and that the last coefficient is
not divisible by p2.

For the first, recall that, modulo p, taking p-th powers distributes over
sums:

(a+ b)p ≡ ap + bp (mod p).

This allows us to compute:

F (X) = Φp(X + 1)

=
(X + 1)p − 1

(X + 1)− 1
=

(X + 1)p − 1

X

≡ Xp + 1− 1

X
≡ Xp−1 (mod p),

so that, except for the first, all the coefficients of F (X) are divisible by p, as
we claimed.

As for the last coefficient, it is equal to F (0) = Φp(1) = p, which is
certainly not divisible by p2. The Eisenstein criterion then says that F (X)
is irreducible, which proves our assertion.

In particular, we can deduce the following things:

• K = Qp(ζ) is an extension of Qp of degree p− 1 (since that is the degree
of the minimal polynomial for ζ).

• Looking at the minimal polynomial, we see that NK/Qp
(ζ) = 1, and there-

fore that |ζ| = 1. (Another way to see this is to note that ζ belongs to OK ,
and that so does ζ−1 = ζp−1, which shows that ζ must be a unit in OK .)

• The polynomial F (X) = Φp(X + 1) is the minimal polynomial for ζ − 1.
Therefore, we have NK/Qp

(ζ − 1) = p, and so

|ζ − 1| = p−1/(p−1).

• K is totally ramified, and π = ζ − 1 is a uniformizer in K.

• We have ζ ≡ 1 (mod π); in other words, ζ is a 1-unit in OK .

• The fact that ζ is in OK shows that any polynomial a0+a1ζ+· · ·+ap−2ζ
p−2,

with ai ∈ Zp, is in OK (it’s clearly unnecessary to consider polynomials
in ζ of higher degree, because ζ is a root of Φp(X)). In other words,
Zp[ζ] ⊂ OK . This inclusion is actually an equality—see below.
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Since K is totally ramified, we have e = p−1, f = 1, and the residue field
OK/πOK ofK is just Fp. That means we can choose the integers 0, 1, . . . , p−
1 as coset representatives, and it follows that the elements of K can all be
written as π-adic expansions of the form

a−nπ
−n + a−n+1π

−n+1 + · · ·+ a0 + a1π + · · ·+ amπm + . . .

where the ai are integers between 0 and p− 1. This is very nice, except for a
slight problem: suppose we are given the p-adic expansion of an element of
Qp; it is not immediately clear how to obtain its π-adic expansion in a simple
way. For example,

Problem 273 What is the π-adic expansion of the integer p?

We said above that it is easy to see that Zp[ζ] ⊂ OK , and that in fact we
have an equality. To see why, remember that in the proof of Theorem 6.4.6 we
showed that any element of OK could be written as a Zp-linear combination
of the elements

α1, α2, . . . , αf ,

πα1, πα2, . . . , παf ,

π2α1, π
2α2, . . . , π

2αf ,

. . . ,

πe−1α1, π
e−1α2, . . . , π

e−1αf

where α1, . . . , αf were a set of elements of OK reducing to a basis of the
residue field k over Fp. In our case, however, f = 1, and k is equal to Fp, so
we need only one element in the basis: α1 = 1. The result then says that
any element of OK is a Zp-linear combination of 1, π, π2, . . . , πp−2 (since
n = e = p− 1). Remembering that we have taken π = ζ − 1 and substituting
in, this says that any element of OK can be written as a polynomial in ζ, and
hence that Zp[ζ] = OK .

To conclude this section, we will point out some interesting things about
the fieldK. First of all, since we have |(ζ−1)| < 1, the series for the logarithm
of ζ will converge. Since ζp = 1, we must have p logp(ζ) = logp(ζ

p) =
logp(1) = 0, so that logp(ζ) = 0. Writing out the series, this says that

∞∑
n=1

(−1)n+1 (ζ − 1)n

n
= 0,

which we can rearrange slightly into

∞∑
n=1

(1− ζ)n

n
= 0,
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which is a rather remarkable formula. (We’ve met it before in the case p = 2.)
Another interesting result is that there is a (p−1)-st root of −p in K. To

see why one might want to look for such a thing, remember that vp(π
e) = 1,

so that πe differs from p by a unit in OK . One might argue that the “nicest”
choice of π would be one where this unit were the simplest possible unit.
What we are about to show is that there is a π1 ∈ OK for which πe

1 = −p, so
that the unit in this case is simply −1. That’s pretty nice!

It’s also rather tricky: begin by recalling that the norm of (1 − ζ) is
precisely p (look at the minimal polynomial for ζ − 1, which we found above,
and notice that since the degree of K is even, NK/Qp

(x) = NK/Qp
(−x)).

The norm, remember, can be obtained as the product of the images of our
element 1 − ζ under the various automorphisms of K over Qp. There are
p− 1 such automorphisms, and they are given by

σi : ζ �→ ζi

for i = 1, 2, . . . , p− 1. This means that the images of 1− ζ under the various
σi are the 1− ζi, and the fact that the norm is p gives the equation

(1− ζ)(1 − ζ2) · · · (1 − ζp−1) = p.

(We could also get this equality by setting X = 1 in the p-th cyclotomic
polynomial.) Now, we want to make (p− 1)-st powers appear, so we do it by
brute force, rewriting the equation as

(1 − ζ)p−1 · 1− ζ2

1− ζ
· · · · · 1− ζp−1

1− ζ
= p.

Notice that (1 − ζ)p−1 has the same valuation as p, which suggests that the
other factors are units (to be precise: it shows that the product of all the other
factors is a unit, and this suggests that each of the other factors is a unit).
To see that this is indeed the case, suppose we can show that the factors are
all in OK . Then their valuations would all be greater than or equal to zero.
But the sum of their valuations is the valuation of the product, which is zero.
Hence, each of the factors must have valuation zero. In other words, if we
can show that all the factors are in OK , then it will follow that they are all
units. But the algebraic identity

1− ζi

1− ζ
= 1 + ζ + · · ·+ ζi−1

shows that the factors are indeed in OK (since they are polynomials in ζ).
Hence, each of the fractions (1− ζi)/(1− ζ) is a unit in OK .

There is one more thing we can get from the equation

1− ζi

1− ζ
= 1 + ζ + · · ·+ ζi−1.
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Since ζ ≡ 1 (mod π) (because, after all, π = ζ − 1. . . ), and since there are i
summands on the right-hand side, we get

1− ζi

1− ζ
≡ i (mod π).

Multiplying all of these gives something congruent modulo π to the product
of the integers from 2 to p− 1. In other words, we get

1− ζ2

1− ζ
· · · · · 1− ζp−1

1− ζ
≡ (p− 1)! (mod π).

Now remember that
(p− 1)! ≡ −1 (mod p)

(this is “Wilson’s Theorem” in elementary number theory). Changing sign,
and using the previous formula, we see that

−1− ζ2

1− ζ
· · · 1− ζp−1

1− ζ

is a 1-unit, i.e., is congruent to 1 modulo π. This gives an equation of the
form

(1− ζ)p−1 · (a 1-unit) = −p.

What we are after, remember, is to show that −p has a (p − 1)-st root in
K; from this equation, we will be done if we can show that we can always
take a (p− 1)-st root of a 1-unit in OK . But this follows easily from Hensel’s
Lemma:

Problem 274 Let u ∈ 1+ πOK , so that u is a 1-unit. Show, using Hensel’s Lemma,
that the polynomial Xp−1 − u has a root in OK .

The upshot: there exists an element π1 ∈ OK such that πp−1
1 = −p. This

is interesting in itself, but it also gives an example of the situation described
in Problem 264, since we have e = p−1 prime to p, and of courseK = Qp(π1),
where π1 is a root of Xp−1 + p.

Problem 275 This was a long-drawn-out argument. Can you give a simpler proof
that K contains a (p− 1)-st root of −p?

Problem 276 Even nicer than our π1 would be a uniformizer π2 such that πp−1
2 = p

(i.e., the unit is just 1). Show that K in general does not contain such a π2. Can it
happen, for a specific prime, that such a π2 does exist? If so, give an example of a
prime for which it does exist.

This example shows how powerful an array of tools we have already put
together to study Qp and its algebraic extensions. The combination of alge-
braic and analytic techniques is very effective!
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One last bit of fun. Consider the problem of finding the roots of the
equation logp(x) = 0 in K (of course, what this really means is that we want
to look for roots x ∈ 1 + πOK , since otherwise logp is not defined). This
amounts to looking for the zeros of the logarithm series

log(1 +X) =
∑ (−1)n+1Xn

n

in πOK , and we can do this with Strassman’s theorem by changing variables.
Write

f(X) = log(1 + πX) =
∑ (−1)n+1πnXn

n
.

Clearly f(x) converges when x ∈ OK , and then Strassman’s theorem says
that the number of roots of f(X) in OK (which is the number of roots of logp
in 1 + πOK) is bounded by the integer N defined by the two conditions∣∣∣∣πN

N

∣∣∣∣ = max
n≥1

∣∣∣∣πn

n

∣∣∣∣ and

∣∣∣∣πN

N

∣∣∣∣ >
∣∣∣∣πn

n

∣∣∣∣ if n > N.

So we need to estimate the absolute value∣∣∣∣πn

n

∣∣∣∣
as a function of n. Let’s do it with valuations this time: clearly, vp(π

n) =
n/(p− 1); that’s how we chose π to begin with. So

vp

(
πn

n

)
=

n

p− 1
− vp(n).

We need to find the n for which the absolute value is largest; in valuation
terms, we want to find the n which makes the valuation smallest. To help us
get our bearings, we can tabulate the first few values: see Table 6.1.

The table suggests that the smallest value is 1/(p− 1), which occurs only
when n = 1 and when n = p. This means N = p, so that logp has at most
p roots in 1 + πOK . Since we already know p roots, namely the roots of
unity 1, ζ, ζ2, . . . , ζp−1, we already know all the roots. In particular, this
tells us that the roots of unity contained in K are exactly the cyclic group
of p(p− 1)-st roots of unity (the p-th roots we just found, plus the (p− 1)-st
roots that are provided by Hensel’s Lemma when f = 1).

Problem 277 Prove that our surmise from the table is correct, i.e., that the smallest
value for vp(π

n/n) is 1/(p− 1), and that it occurs last when n = p.

Problem 278 Investigate what would change if instead of adjoining a p-th root of
unity we adjoin a pn-th root of unity for some n > 1.
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n vp(n) vp(
πn

n
)

n = 1, . . . , p− 1 0
n

p− 1

n = p 1
p

p− 1
− 1 =

1

p− 1

n = p+ 1, . . . , 2p− 1 0
n

p− 1

n = 2p 1
2p

p− 1
− 1 = 1 +

2

p− 1

. . . . . . . . .

n = p2 2
p2

p− 1
− 2 = p− 1 +

1

p− 1

Table 6.1: Computing vp(π
n/n)

6.8 On to Cp

We now want to go on to consider the algebraic closure Qp in earnest. We
have already constructed its absolute value, and the next order of business is
to show that it is not complete with respect to this absolute value. We will
then go to its completion, of course, and we will be able to prove that the
completion is algebraically closed.

To do all that, we need to know a little more about the algebraic closure,
and we begin by proving a few useful facts. The first of these is known as
“Krasner’s Lemma.” To be able to state it we need to remind ourselves of
what it means for two elements of Qp to be “conjugate.” This is a concept
that really comes from Galois theory, but we state it here in a minimalistic
fashion.

Definition 6.8.1 Let K be a subfield of Qp. Two elements a and a′ of Qp

are called conjugate over K when they are roots of the same monic irreducible
polynomial with coefficients in K.

As we have pointed out above, an equivalent way of saying this is to
say that two elements are conjugate when there exists an automorphism
σ : Qp −→ Qp which induces the identity map on K and sends a to a′. It
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is clear, from either characterization, that conjugate elements have the same
absolute value. (Yes? Good.)

It is worth pointing out that this definition has nothing “p-adic” about it:
it works just as well for an arbitrary field K of characteristic zero, provided
we replace Qp by an algebraic closure of K.

What Krasner’s Lemma says is that if an element b is “close enough” to
a (what this means is defined by the statement of the lemma, in terms of the
conjugates of a), then a belongs to the field generated by b. Perhaps we can
use the description “b is more complicated than a” to mean that adjoining b
gives a field which contains the field generated by a. In that language, the
lemma says that b can only be “very close” to a if it is more complicated than
a. (Thinking this way makes Krasner’s result resemble standard theorems in
diophantine approximation.)

This is a somewhat surprising conclusion, since to say that the field gen-
erated by a is contained in the field generated by b amounts to saying that
a can be written as a polynomial in b. Viewed at from this angle, Krasner’s
Lemma looks like the prototypical p-adic theorem: it deduces an algebraic
fact (a can be written as a polynomial in b) from an analytic fact (b is very
close to a).

Here is the precise statement, where we have taken care to be very general
in order to be able to use the theorem at a crucial juncture below. The reader
should feel free to replace “K” by “Qp” everywhere in this and the following
result if the added generality proves to be a hindrance.

Theorem 6.8.2 (Krasner’s Lemma) Let K be a non-archimedean com-
plete valued field of characteristic zero, and let a and b be elements of the
algebraic closure of K. Let a1 = a, a2, . . . , an be the conjugates of a over K.
Suppose that b is closer to a than any of the conjugates of a, i.e.,

|b− a| < |a− ai|
for i = 2, 3, . . . , n. Then K(a) ⊂ K(b).

Proof: This is short and sweet, but uses field theory a bit more seriously
than other results we have proved. Let L = K(b) and suppose the theorem
is false, that is, that a �∈ L. Well, then look at L(a) (which, remember, is
the smallest extension of L which contains a). Since we are assuming that
a �∈ L, the degree m = [L(a) : L] is bigger than one. Now, there must be
m homomorphisms σ : L(a) −→ K which are the identity on L (and send a
to one of its conjugates, of course). There is at least one such σ for which
σ(a) �= a (because if σ(a) = a then σ is the identity on L(a), and we’re
assuming that there’s at least one other σ besides the identity); call it σ0.
Since we know, by the uniqueness of the extension of an absolute value, that
|σ(x)| = |x| for any σ and any x ∈ K, we have

|σ0(b)− σ0(a)| = |b− a|.
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But σ0 fixes L, and b is in L, so σ0(b) = b, and the last equality now says

|b− σ0(a)| = |b− a|.

But then

|a− σ0(a)| ≤ max{|a− b|, |b− σ0(a)|} = max{|a− b|, |b− a|} = |b− a|,

and that’s not allowed, since our assumption was that b was closer to a than
any of its conjugates, one of which is σ0(a). The contradiction shows that
our assumption was wrong, that is, that a does belong to L, and that shows
that K(a) ⊂ K(b).

Problem 279 Use Krasner’s Lemma to give another proof that the field Qp(ζp) ob-
tained by adjoining a p-th root of unity contains a (p− 1)-st root of −p.

A really important corollary of Krasner’s Lemma tells us that if we have
a monic irreducible polynomial f(X), then any polynomial which is close
enough to our f(X) shares two main properties of f(X): it is irreducible,
and it has a root in the field extension determined by a root of f(X). How
close is “close enough” may depend on the specific f(X), of course. Here’s
the precise statement.

Corollary 6.8.3 Let K be a non-archimedean complete valued field of char-
acteristic zero. Let

f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0 ∈ K[X ]

be a monic irreducible polynomial of degree n with coefficients in K, let λ be
a root of f(X), and let L = K(λ) be the extension of K obtained by adjoining
that root. Then there exists a real number ε > 0 such that the following holds:

• If g(X) = Xn + bn−1X
n−1 + · · · + b1X + b0 is any monic polynomial

of degree n for which we have

|ai − bi| < ε for all i = 0, 1, . . . , n− 1,

then g(X) is irreducible over K and has a root in L.

Proof: The proof (which is based on the one given in [3]) has two parts.
First, we establish that under certain conditions the conclusion holds, and
then we show that we can choose ε so that the conditions must hold. We use
the notations in the theorem, so λ is a root of f(X) and L = K(λ). Since f
is irreducible we have [L : K] = n.

Let λ1 = λ, λ2, . . . , λn be the roots of f(X) in K, and let

r = min
i�=j

|λi − λj |.
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Let g(X) be as in the statement: a monic polynomial of degree n. Let
μ1, μ2, . . . , μn be the roots (listed with multiplicities, of course) of g(X) in
K, so that g(X) =

∏
(X − μj). Let

D =
∏
i

g(λi) =
∏
i,j

(λi − μj).

Claim 1: If |D| < rn
2

, then g(X) is irreducible over K and has a root in
L = K(λ).

Proof of Claim 1: If |D| < rn
2

, then at least one of the n2 factors of D
must have absolute value less than r. In other words, there must be a pair
(i, j) such that |λi − μj | < r. Since r is the minimum distance between λi

and its conjugates, we can apply Krasner’s Lemma to conclude that K(λi) ⊂
K(μj). Hence

[K(μj) : K] ≥ [K(λi) : K] = n.

But μj is a root of a polynomial of degree n, so the only way this can happen
is when the polynomial is irreducible and the degree is exactly n. Since both
fields are then of degree n, and one is contained in the other, they must in
fact be equal.

Thus, we have shown that g(X) is irreducible, and that K(λi) = K(μj).
If i = 1, this is what we wanted to prove. If not, there is a little step
more: there is certainly an automorphism of K that sends λi to λ, and this
automorphism must send μj to some other root μ = μj1 of g(X). Applying
the automorphism to the equality K(λi) = K(μj) gives L = K(λ) = K(μ),
so that g(X) has a root μ that belongs to L, which is what we wanted to
prove.

Claim 2: There exists a real number ε > 0 such that if |ai − bi| < ε, then

|D| < rn
2

.

Proof of Claim 2: We leave this one to the reader. It is a matter of
expressing how D depends on the coefficients of the polynomials involved.

Problem 280 Prove “Claim 2.” Suggestion: try to show that the function that maps

(a0, a1, . . . , an−1, b0, b1, . . . , bn−1) �→ D

is a continuous function. Why does this do the trick?

Problem 281 (For those confident of their abstract algebra) In the last two results
we imposed a litany of conditions on our field: “non-archimedean complete valued field
of characteristic zero.” Which of these conditions are seriously needed? Are there
weaker forms of these results which are valid in more generality?

One way of grasping what the corollary says is to think of it as saying that
at least some aspect of the “root structure” of a polynomial varies “continu-
ously” as a function of the coefficients of the polynomial. Specifically, it says
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(or, to be precise, its proof shows) that when two irreducible polynomials are
“close enough” (in the sense that the coefficients are close) there will be a
root of one “close” to any root of the other. The next problem gives a result
in the same spirit.

Problem 282 The point of this problem is to state (and have the reader prove) a
version of the statement that “the roots of a polynomial are continuous functions of the
coefficients.” For this, let f(X) =

∑
aiX

i be a polynomial of degree n whose roots
in Qp are all distinct. Show that given an ε > 0 there exists a δ > 0 such that for any
other polynomial g(X) =

∑
biX

i of degree n such that |ai−bi| < δ for i = 0, 1, . . . , n
and every root λ of f(X) there exists exactly one root μ of g(X) satisfying |μ−λ| < ε.
(Ooff! That’s quite a mouthful!)

Problem 283 Is the hypothesis (in both the corollary and the previous problem) that
the polynomials have the same degree really necessary?

Problem 284 Is the “continuity of the roots as functions of the coefficients” true for
polynomials with real and/or complex coefficients?

We now proceed to the big result in this section.

Theorem 6.8.4 The algebraic closure Qp is not complete with respect to the
(extended) p-adic absolute value.

Proof: Proving the theorem is going to require us to come up with a
Cauchy sequence in Qp which does not converge. Since finite extensions of
Qp are complete, this sequence must involve numbers from bigger and bigger
extensions as it proceeds (because otherwise we could find a finite extension
containing all the terms of the sequence, and it would have to converge). So
this is going to be a complicated sequence!

In fact, it is going to be an infinite series whose general term tends to zero,
but which does not converge. That is good enough, of course, since we’ve
already shown that the partial sums of such a series form a Cauchy sequence.
We’ll construct our example slowly and carefully, in the hope that no one
gets lost on the way. Each term in our series will belong to an unramified
extension of Qp, so that our example will actually show that the union Qunr

p

of all the unramified extensions of Qp is already not a complete field.
Enough preliminaries: here goes. Remember that one gets unramified

extensions of Qp by adjoining roots of unity of order prime to p. We begin by
putting together a large list of these. Choose integers f0, f1, f2, . . . such that
fi < fi+1 and fi|fi+1. Notice that the fi will get arbitrarily large as i grows,
since fi+1 ≥ 2fi. For each i, let mi = pfi − 1 and let ζi be a primitive mi-th
root of unity, so that Qp(ζi) is the unique unramified extension of degree fi.

Now construct the series ∞∑
i=0

ζi p
i.
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The partial sums of this series clearly form a Cauchy sequence in Qp (and
in fact even in Qunr

p ). We want to prove that this sequence does not have a

limit in Qp.

Well, suppose it did, and call the limit c ∈ Qp. Whatever it is, c must
be a root of some irreducible polynomial over Qp, since it is an element
of the algebraic closure. Say that this polynomial has degree d, so that
[Qp(c) : Qp] = d.

Now we want to use Corollary 6.5.6. We have

c = ζ0 + ζ1p+ ζ2p
2 + . . . ,

so c ≡ ζ0 (mod p). By the Corollary, this implies Qp(ζ0) ⊂ Qp(c), which
implies d = [Qp(c) : Qp] ≥ [Qp(ζ0) : Qp] = f0.

Now let c1 = (c−ζ0)/p. Since ζ0 ∈ Qp(c), we have c1 ∈ Qp(c) as well. But
clearly c1 ≡ ζ1 (mod p). Using the Corollary again we get Qp(ζ1) ⊂ Qp(c)
and hence d ≥ f1.

Continuing this way (or, if you prefer, by induction), we get d > fi for all
i, which is impossible because fi → ∞ as i grows.

In fact, since all the ζi were roots of unity of order prime to p, we have
also proved:

Theorem 6.8.5 The maximal unramified extension Qunr
p of Qp, obtained by

adjoining all the roots of unity of order prime to p, is not complete with
respect to the (extended) p-adic absolute value.

Notice that our proof has constructed an explicit element that is transcen-
dental over Qp. One can use the basic idea of the proof to obtain a general
method for showing that the sums of certain series are transcendental.

Problem 285 Explain the statement: “the expression of cn as a series is actually
its p-adic expansion.” Does this observation make the proof/construction easier to
understand?

Well, “c’est la vie.” Since Qp is not complete, we need to construct a
completion. This is done exactly as in the case of Qp, by playing with the
ring of all Cauchy sequences in Qp. (In fact, our construction in Chapter 3
clearly works in utter generality.) The upshot is the following:

Proposition 6.8.6 There exists a field Cp and an absolute value | | on Cp

such that:

• Cp contains Qp, and the restriction of | | to Qp coincides with the p-adic
absolute value;

• Cp is complete with respect to | |; and
• Qp is dense in Cp.
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Recall that whenever we have a convergent sequence xn → x �= 0 in a
non-archimedean field, there exists an N such that |xn| = |x| for n ≥ N
(this is Lemma 3.2.10, except that we are saying that it works for any non-
archimedean field. . . which it clearly does). This means that the set of possible
absolute values in Cp is exactly the same as in Qp. In other words,

Proposition 6.8.7 If x ∈ Cp, x �= 0, then there exists a rational number
v ∈ Q such that |x| = p−v. In other words, the p-adic valuation vp extends
to Cp, and the image of C×

p under vp is Q.

Problem 286 Convince yourself that the last two propositions are true. (In both
cases, it is just a matter of seeing that arguments we presented before in the case of
Qp extend without any difficulty.)

Problem 287 Since we have a valuation, we have a valuation ring, its valuation ideal,
etc. Give explicit definitions. Can you describe the residue field? Is the valuation ideal
principal? Does the concept of a uniformizer still make sense?

We write O for the valuation ring of Cp, i.e.,

O = {x ∈ Cp : |x| ≤ 1}.

This contains the valuation ideal

P = {x ∈ Cp : |x| < 1}.

As always, O is a local ring.

Problem 288 Show that any element of Cp can be written as a product of (i) a root
of unity, (ii) a 1-unit, and (iii) a fractional power of p.

Cp is an enormous field, gotten by a series of complicated operations:
start with Q and the p-adic absolute value, take a completion, take the alge-
braic closure of the result, and then complete once again! One might wonder
whether the process will ever stop, i.e., whether one might need to take an-
other algebraic closure, and so proceed without ever ending. On the contrary:

Proposition 6.8.8 Cp is algebraically closed.

Proof: We give a jazzy proof, and ask the reader to come up with a more
direct proof in a problem.

Take an irreducible polynomial f(X) with coefficients in Cp. Since Qp is
dense in Cp, we can find polynomials of the same degree and with coefficients
in Qp whose coefficients are as close as we like to the coefficients of f(X). By
Corollary 6.8.3, if we choose such an f0(X) with coefficients close enough to
those of f(X), it will be irreducible over Cp, and a fortiori also irreducible
over Qp. Since Qp is algebraically closed, this means that f0(X) will have
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degree one. Since f(X) and f0(X) have the same degree, it follows that f(X)
has degree one.

This shows that any irreducible polynomial in Cp must be of degree one,
which means that Cp is algebraically closed.

Problem 289 Here’s an idea for a more direct proof (which might be technically
more difficult). Take any polynomial f(X) ∈ Cp[X]; we can assume it has no repeated
roots (do you see why?). Build a sequence of polynomials fi(X) ∈ Qp[X], all of the
same degree, whose coefficients approach those of f(X). Show, using Problem 282,
that one can choose a root of each of the fi(X) so as to form a Cauchy sequence in
Qp which converges to a root of f(X) in Cp.

Problem 290 Show that Cp is not locally compact.

In fact, one can show that any locally compact (and therefore complete)
valued field of characteristic zero must be isomorphic to either R, C, or a
finite extension of Qp. One can even16 start the whole thing from here, i.e.,
start with a locally compact field of characteristic zero, and reconstruct the
absolute value from the Haar measure on that field.

Let’s conclude with two somewhat surprising remarks. The first is this:
if we ignore the absolute value, Cp is just an algebraically closed field of
characteristic 0. It’s easy to work out that it has the same cardinality as the
field of complex numbers. But there is only one such field up to isomorphism!

Theorem 6.8.9 (Steinitz) Any two uncountable algebraically closed fields
with the same characteristic and the same cardinality are isomorphic.

The idea of the proof is to show that any such field is isomorphic to the
result of starting from Q or Fp, adjoining a transcendence basis of the right
cardinality, and then passing to the algebraic closure. (But since the result
is false for countable algebraically closed fields, there are subtleties.) The
isomorphism comes from choosing a bijection between transcendence bases,
so in fact there are infinitely many distinct isomorphisms, but all of them
will fix the elements of Q and all will map algebraic elements to algebraic
elements. So we can always, if we want to, choose a field17 isomorphism
ϕ : Cp −→ C and use it to identify the algebraic closure of Q inside Cp

and the algebraic closure of Q inside C. This is a very common move in
applications to algebraic number theory.

The second surprising remark is that for some applications Cp is still
too small. It turns out that in applications to functional analysis we often
want more than just completeness. Instead, we need spherical completeness .

16Mumbo-jumbo alert: this sentence talks about high-powered stuff which we really
don’t think our readers know about.

17Not an isomorphism of valued fields, of course.



6.8 On to Cp 223

Suppose are working in a valued field K and we have sequences an ∈ K,
rn ∈ R for which we get a nested sequence of closed balls B(an, rn):

B(a1, r1) ⊃ B(a2, r2) ⊃ · · · ⊃ B(an, rn) ⊃ B(an+1, rn+1) ⊃ . . .

We say that a valued field K is spherically complete if any such sequence
of closed balls has non-empty intersection. If K is complete and the radii
rn are a decreasing sequence with lim

n→∞ rn = 0, then we can prove that the

intersection is non-empty. (This is Problem 79.) But if we don’t require
the radii to tend to zero, it is possible to get empty intersection even if K
is complete. Indeed, as the reader has probably guessed, C is spherically
complete, but Cp is not. As a result, for certain applications we need to use
an even bigger field. See [53, III.1] for details and for a construction.
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This chapter tries to give the reader a taste of what analysis in Cp is like.
Rather than attempt to be exhaustive, which would violate the goals of this
book, we try to touch on a few remarkable points: the p-adic Weierstrass
Preparation Theorem, the description of entire functions, and the theory
of Newton polygons. As usual, the first step is to re-appropriate all the
results we obtained earlier. We then go on to consider how to extend the
p-adic valuation to polynomials and power series. This will yield a norm
on the spaces of polynomials and of power series, which will prove to be an
important tool. We then go on to proving the main theorems themselves.

Before we start, recall the notation we introduced above: we write

O = {x ∈ Cp : |x| ≤ 1}
for the valuation ring in Cp (we might want to call it the ring of integers in
Cp) and

P = {x ∈ Cp : |x| < 1}
for the valuation ideal. The ideal P is not principal, and the residue field
F = O/P is an algebraic closure of Fp.

7.1 Almost Everything Extends

As we have already pointed out, most of the results in Chapter 5 did not
really depend on the fact that we were working over Qp; in fact, they hold
just as well for more general non-archimedean valued fields. In particular,
we can repeat (and enlarge) our list of “things that extend:”

i) A sequence (an) in Cp is Cauchy if and only if

lim
n→∞ |an+1 − an| = 0.

ii) If a sequence (an) converges to a non-zero limit a, then we have |an| =
|a| for all sufficiently large n.

iii) A series
∑

an in Cp converges if and only if its general term tends to
zero.

iv) Proposition 5.1.4 holds for double series in Cp.
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v) A power series f(X) =
∑

anX
n with coefficients an ∈ Cp defines a

continuous function on an open ball of radius ρ = 1/ lim sup n
√|an|;

the function extends to the closed ball of radius ρ if |an|ρn → 0 as
n → ∞. Note that in contrast to what happens in Qp or even in its
finite extensions, we can characterize ρ by saying that

∑
anx

n converges
for |x| < ρ and diverges for |x| > ρ.

vi) Therefore, given a power series f(X) =
∑

anX
n with radius of con-

vergence ρ, we can define a function on the open (and perhaps also the
closed) ball of radius ρ around α ∈ Cp by putting

f(x) =
∑

an(x− α)n

for any x ∈ B(α, ρ) (or B(α, ρ)).

vii) Proposition 5.4.2, Theorem 5.4.3, and Problem 159 are true for power
series with coefficients in Cp.

viii) Functions defined by power series are differentiable, and their deriva-
tives are defined by the formal derivative of the original series.

ix ) If f(X) =
∑

anX
n and g(X) =

∑
bnX

n are power series with coeffi-
cients in Cp, xm is a convergent sequence contained in the intersection
of the disks of convergence of f and g, and f(xm) = g(xm) for all m,
then an = bn for all n.

x ) Strassman’s Theorem holds without any change beyond replacing Qp

with Cp and Zp with O.

xi) The corollaries to Strassman’s Theorem therefore also extend.

xii) The usual power series defines a p-adic logarithm function

logp : U1 −→ Cp,

where
U1 = {x ∈ O : |x− 1| < 1} = B(1, 1) = 1 +P.

This function satisfies the functional equation

logp(xy) = logp(x) + logp(y)

for any x, y ∈ U1.

xiii) The usual power series defines an exponential function expp : D −→ Cp,
where

D = {x ∈ O : |x| < p−1/(p−1)} = B(0, p−1/(p−1)).

This function satisfies the functional equation

expp(x+ y) = expp(x) expp(y)

for any x, y ∈ D.
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xiv) If x ∈ D, then | expp(x)− 1| < p−1/(p−1), i.e., expp(x) ∈ 1+D, and we
have

logp(expp(x)) = x.

xv) If |x− 1| < p−1/(p−1) (i.e., x ∈ 1 +D), then logp(x) ∈ D, and we have

expp(logp(x)) = x.

xvi) The p-adic logarithm gives a homomorphism from the multiplicative
group U1 = 1+P onto the additive group of Cp. (Compare with what
happens for finite extensions!)

xvii) The p-adic logarithm gives an isometric isomorphism from the multi-
plicative group

1 +D = B(1, p−1/(p−1))

to the additive group

D = B(0, p−1/(p−1)).

xviii) For each α ∈ Zp, the binomial series (1 + x)α = B(α, x) converges
whenever |x| < 1 (i.e., for x ∈ P = B(0, 1)). In other words, uα is well
defined whenever u ∈ B(1, 1) = 1 +P is a 1-unit in O and α ∈ Zp is a
p-adic integer.

Proof: As before, the main change has to do with the image of logp on its
domain. In Qp, the image is contained in pZp. In a finite extension K, the
image is not necessarily contained in OK but it is still bounded. In Cp, (xvi)
says that the image is not only unbounded, but is in fact all of Cp.

The proof is actually fairly easy. Choose a ∈ Cp. Since pna → 0, we
can choose n ∈ Z large enough so that |pna| < p−1/(p−1), i.e., pna ∈ D. Let
y = exp(pna); we know y ∈ 1 + D. Since Cp is algebraically closed, there
exists an x ∈ Cp such that xpn

= y.
We want to show x ∈ U1. Clearly |x|pn

= |y| = 1, so |x| = 1. Let x
be the image of x in Fp = O/P. Then xpn

= y = 1. But the only root of
tp

n −1 = (t−1)p
n

in a field of characteristic p is t = 1, so we conclude x = 1,
which says that x ∈ 1 +P, i.e., x ∈ U1.

Now we can compute logp(x). But

pna = logp(y) = logp(x
pn

) = pn logp(x),

which gives logp(x) = a. Hence the homomorphism logp : U1 −→ Cp is onto.
We’ll leave the remaining items as an exercise.
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Problem 291 Make sure you understand how to prove the remaining claims above.
Pay particular attention to where the situation in Cp differs from the ones we considered
before. For example, why is the statement characterizing ρ in item (v) true?

Problem 292 In assertion (xvii), is it true that the additive group of D is isomorphic
to the additive group of O? (The analogous statement was true in Qp and finite
extensions.)

Another important class of results that can be extended to Cp are the
several variants of Hensel’s Lemma. The trick here is not to use versions which
refer to uniformizers, since there are no uniformizers in Cp. (A uniformizer
would be an element with the largest possible absolute value which was still
less than one, but in Cp we have elements with absolute value pr for any
r ∈ Q, so there is no such thing.) Still, one can either replace “mod p” with
“mod P” throughout, or simply state things in terms of absolute values. So
here are two versions of Hensel’s Lemma:

Theorem 7.1.1 (Hensel’s Lemma in Cp) Let

F (X) = a0 + a1X + a2X
2 + · · ·+ anX

n

be a polynomial whose coefficients are in O. Suppose that there exists an
α1 ∈ O such that

|F (α1)| < 1 and |F ′(α1)| = 1

where F ′(X) is the (formal) derivative of F (X). Then there exists an α ∈ O
such that |α− α1| < 1 and F (α) = 0.

Proof: We need to be just a little bit careful in order to avoid trouble. (The
problem is that there is no uniformizer in Cp, and all our proofs up to here
depended explicitly on there being one. What we do is to use a convenient
element of small valuation to replace the uniformizer.) Let δ = |F (α1)| < 1,
and choose π ∈ Cp such that |π| = δ. Then the argument in the original
proof of Hensel’s Lemma (Theorem 4.5.2), with p replaced everywhere by π,
will allow us to find α2 such that |α1−α2| ≤ δ and |F (α2)| ≤ δ2. Proceeding
inductively, we get a sequence αn which converges to the root α.

Problem 293 Check the details!

And now the other version, for polynomials: as before, one can state this
with absolute values or by talking of reduction modulo the ideal P. We
choose the second path here, simply so that we don’t have to talk about “the
maximum of the absolute values of the differences of the coefficients” of two
polynomials.
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Theorem 7.1.2 (Hensel’s Lemma for Polynomials over Cp) Let
f(X) ∈ O[X ] be a polynomial with coefficients in O, and assume that there
exist polynomials g1(X) and h1(X) in O[X ] such that

i) g1(X) is monic,

ii) g1(X) and h1(X) are relatively prime modulo P, and

iii) f(X) ≡ g1(X)h1(X) (mod P) (understood coefficient-by-coefficient).

Then there exist polynomials g(X), h(X) ∈ O[X ] such that

i) g(X) is monic,

ii) g(X) ≡ g1(X) (mod P) and h(X) ≡ h1(X) (mod P), and

iii) f(X) = g(X)h(X).

Problem 294 Give a proof of Hensel’s Lemma for Polynomials. The same caution
we used for the first version will be necessary, and the relevant δ will be the maximum
of the absolute values of the differences between coefficients of f(X) and coefficients
of g1(X)h1(X).

Problem 295 In the statement of Hensel’s Lemma for Polynomials, we make the
assumption that “g1(X) and h1(X) are relatively prime modulo P.” Show, using the
fact that the residue field F = O/P is algebraically closed, that this can be replaced
by “g1(X) and h1(X) have no common roots in F.”

Problem 296 In this version of Hensel’s Lemma, can we conclude that deg g(X) =
deg g1(X)?

7.2 Deeper Results on Polynomials and Power Series

The main goal of this section is to prove a theorem that has become known
as the “p-adic Weierstrass Preparation Theorem.” This is, of course, the p-
adic version of a classical theorem due to Weierstrass which deals with power
series in several variables and is an important tool in the theory of functions
of several complex variables. One can find the statement in many texts; for
example, see [65, p. 22]. There are also versions of the theorem which apply to
formal power series in several variables; these versions are useful in algebraic
geometry. For this version, see, for example, [67, Vol. 2, VII.1, Thm. 5]. The
p-adic version gives fundamental information on p-adic functions defined by
power series. Our account of this theorem follows the one in [14].

We will approach power series by way of polynomials. In other words, we
will want to think of a power series as a limit of polynomials, and our results
will be proved first for polynomials, then for power series.
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While we will constantly keep Cp in mind, the results we will obtain
are true, interesting, and useful when we work over other fields, too. In
fact, since some of them describe how polynomials factor, they are especially
interesting when the field is not algebraically closed. On the other hand,
we will often want to interpret what the theorems say in terms of the roots
of the polynomials, in which case it’s most convenient to place ourselves in
Cp. So we’ll switch back and forth between these two situations. Just to fix
notation, let’s let K be some extension of Qp which is complete; in practice,
we will always be working either with a finite extension of Qp or with Cp.
Let’s write O for the valuation ring O = {x ∈ K : |x| ≤ 1}, p for its maximal
ideal, and F for the residue field. It might be good to remind ourselves that
F is a finite field if K is a finite extension of Qp and that it is the algebraic
closure of Fp when K = Cp.

The first step is to define absolute values (or norms) in the spaces we are
interested in studying. Let’s look first at polynomials. The most obvious
way to define a norm on the space of polynomials is to simply look at the
coefficients. This works, but we actually want to do something a little more
subtle.

Suppose we are interested in understanding how the values of a polynomial

f(X) = a0 + a1X + a2X
2 + · · ·+ anX

n

vary when we plug in numbers belonging to the closed ball of radius c around
the origin. Then, if x ∈ B(0, c), we have |x| ≤ c, and

|f(x)| = |a0 + a1x+ a2x
2 + · · ·+ anx

n|
≤ max{|a0|, |a1x|, |a2x2|, . . . , |anxn|}
≤ max{|a0|, |a1|c, |a2|c2, . . . , |an|cn}
≤ max

i
|ai|ci.

If c = 1, this last number is just the “obvious” measure of the size of f(X):
the absolute value of the largest coefficient. For other values of c, it turns
out that we may still use this number as a good measure of the size of f(X).

Theorem 7.2.1 Let c > 0 be an arbitrary positive real number. Define a
function ‖ ‖c : K[X ] −→ R+ as follows: for each polynomial

f(X) = a0 + a1X + a2X
2 + · · ·+ anX

n,

set
‖f(X)‖c = max

i
|ai|ci.

Then we have

i) ‖f(X)‖c = 0 if and only if f(X) is identically zero.
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ii) ‖f(X) + g(X)‖c ≤ max{‖f(X)‖c, ‖g(X)‖c}.
iii) ‖f(X)g(X)‖c = ‖f(X)‖c‖g(X)‖c.
iv) If f(X) = a0 is a polynomial of degree zero, then ‖f(X)‖c = |a0|. In

other words, ‖ ‖c induces the p-adic absolute value on the constants.

v) If |x| ≤ c, then |f(x)| ≤ ‖f(X)‖c.
vi) The function ‖ ‖c extends to a non-archimedean absolute value on the

field of rational functions K(X).

Proof: A lot of this is easy, and can be safely left to the reader. In fact, the
first and second statements follow at once from the properties of the p-adic
absolute value, and the last two follow at once from the definition of ‖ ‖c.
The statement about multiplicativity is the hard one.

Let f(X) and g(X) be two polynomials. Write

f(X) = a0 + a1X + a2X
2 + · · ·+ anX

n

g(X) = b0 + b1X + b2X
2 + · · ·+ bnX

n

where of course we may very well have some zero coefficients (nobody said
f(X) and g(X) had the same degree). Then each coefficient of the product
f(X)g(X) looks like a sum ∑

i+j=k

aibj ,

and we can estimate the absolute value by∣∣∣∣∣ ∑
i+j=k

aibj

∣∣∣∣∣ ck ≤ max
i+j=k

|ai||bj |ck = max
i+j=k

(|ai|ci)(|bj|cj),
which is certainly less than or equal to

(
max

i
|ai|ci

)(
max

j
|bj |cj

)
= ‖f(X)‖c‖g(X)‖c.

This shows that
‖f(X)g(X)‖c ≤ ‖f(X)‖c‖g(X)‖c.

Proving the reverse inequality is much trickier. (Part of the reason is that
the estimate above could afford to be really “sloppy,” since we were looking
only for an upper bound. To get the converse, we must be careful about
exactly what gets multiplied by what.) Here is a proof.

Let’s begin by giving names to things. Choose I so that

|aI |cI = ‖f(X)‖c and |ai|ci < ‖f(X)‖c for i < I.
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In other words, I is chosen to be the smallest exponent for which |ai|ci
achieves its maximum. Similarly, choose J so that |bJ |cJ achieves the maxi-
mum:

|bJ |cJ = ‖g(X)‖c and |bj|cj < ‖g(X)‖c for j < J.

(These are clearly the coefficients to keep track of!)
Now look at the coefficient of XI+J in the product f(X)g(X). It is given

by the horrible formula ∑
i+j=I+J

aibj .

We want to estimate each term of this sum. There are three cases to consider:

Suppose i < I. In this case, we know that

|ai|ci < ‖f(X)‖c and |bj|cj ≤ ‖g(X)‖c.
Putting these two together gives

|aibj | < c−i−j‖f(X)‖c‖g(X)‖c = c−I−J‖f(X)‖c‖g(X)‖c.
(Remember that i+ j = I + J in our sum!)

Suppose j < J . This is similar to the previous case; just switch the roles
of i and j to get

|aibj | < c−i−j‖f(X)‖c‖g(X)‖c = c−I−J‖f(X)‖c‖g(X)‖c.

Finally, if i = I and j = J , we get |aI |cI = ‖f(X)‖c and |bJ |cJ =
‖g(X)‖c, so we get an equality:

|aIbJ | = c−I−J‖f(X)‖c‖g(X)‖c.

This means that in the sum ∑
i+j=I+J

aibj

there is one largest term: the one with i = I and j = J . Since we are in a
non-archimedean field, “the strongest wins”: the absolute value of the sum
will be equal to the absolute value of the largest term. In other words,∣∣∣∣∣∣

∑
i+j=I+J

aibj

∣∣∣∣∣∣ = c−I−J‖f(X)‖c‖g(X)‖c

which we can rewrite as∣∣∣∣∣∣
∑

i+j=I+J

aibj

∣∣∣∣∣∣ cI+J = ‖f(X)‖c‖g(X)‖c.
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Now, to compute ‖f(X)g(X)‖c, one has to take the maximum over all
coefficients of the product; this last inequality says that the I+J-th coefficient
already gives something equal to ‖f(X)‖c‖g(X)‖c. The maximum can only
be bigger. In other words, we have proved

‖f(X)g(X)‖c ≥ ‖f(X)‖c‖g(X)‖c.
Putting this together with the opposite inequality (proved just above), we
get what we claimed:

‖f(X)g(X)‖c = ‖f(X)‖c‖g(X)‖c.
As promised, the other statements are left to the reader.

Problem 297 Prove the remaining statements in the theorem.

Problem 298 Suppose we have two different complete fields K1 ⊂ K2. A polynomial
f(X) ∈ K1[X] also belongs to K2[X]. Show that the value of ‖f(X)‖c does not
depend on which ring we put it in. In other words, we have really defined a norm on
Cp[X], and its restriction to K[X] gives the norm for polynomials in K[X].

Problem 299 We can interpret polynomials as Cp-valued functions on K (and also
on any extension of K, and even on Cp), and in particular as functions on the closed
ball B(0, c) ⊂ K. This means we can define a norm on the space of polynomials using
the “sup norm” from classical analysis:

‖f(X)‖ = sup
|x|≤c
x∈K

|f(x)|.

Show that we have ‖f(X)‖ ≤ ‖f(X)‖c. Does equality hold? (Hint: the answer is
easier to get if K = Cp.)

Problem 300 Now that we have norms on the space of polynomials, it is not difficult
to restate the second form of Hensel’s Lemma (Theorem 7.1.2) in terms of the ‖ ‖1
norm. Do so. Does a version using the ‖ ‖c norm with c �= 1 work?

The existence of the absolute values ‖ ‖c on the ring of polynomials is
a useful tool; for example, it can be used to give simpler proofs of some of
the results in the previous chapter (such as Lemma 6.3.7 and the Eisenstein
Irreducibility Criterion, Theorem 6.3.11). Some examples will also appear
below.

Problem 301 Suppose c is a real number of the form pr with r ∈ Q, and let α
be an element of Cp such that |α| = c. (Why does one exist?) Show that the map
φ : Cp[X] −→ Cp[X] defined by X �→ αX satisfies the condition

‖f(X)‖c = ‖φ(f(X))‖1.
Notice that φ is clearly a ring isomorphism. What does this tell us about the relation
between ‖ ‖1 and the various ‖ ‖c?
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Problem 302 How would one have to restate the previous problem in order to get
something that is true over some finite extension of Qp?

Problem 303 Can one do anything like the previous problems in the case where c is
not of the form pr with r ∈ Q?

Lemma 7.2.2 Let ‖ ‖ = ‖ ‖c for some c > 0, and let f(X) ∈ K[X ] be any
polynomial. Let

g(X) = b0 + b1X + b2X
2 + · · ·+ bNXN

be a polynomial of degree N with coefficients in K satisfying the condition

‖g(X)‖ = |bN |cN .

(In other words, the maximum of the |bn|cn is realized at the very last co-
efficient.) Let q(X) and r(X) be the quotient and the remainder which we
obtain when we divide f(X) by g(X), so that

f(X) = g(X) q(X) + r(X) and deg r(X) < N.

Then we have both

‖f(X)‖ ≥ ‖q(X)‖ ‖g(X)‖ and ‖f(X)‖ ≥ ‖r(X)‖.
Proof: Rather than plod through a million inequalities (which is elementary
but difficult), here is an attempt at a conceptual proof. See [14] for a more
direct method. What we will do is handle the case c = 1 first, then move on
to the general case by means of the ideas in the last three problems.

1. If c = 1, then we have |bN | = max |bi|. Multiplying g(X) by some
element in K if necessary, we may assume that |bN | = 1. Again, we can
multiply the whole equation f(X) = q(X) g(X) + r(X) by some element in
K in order to get max{‖q(X)‖, ‖r(X)‖} = 1, which implies ‖f(X)‖ ≤ 1.
What the theorem says after both reductions is that in fact ‖f(X)‖ = 1.

Well, suppose not. Then every coefficient of f(X) has absolute value less
than 1, which means that they belong to the valuation ideal p. If we use bars
to denote reduction modulo p, we get an equation

0 = f̄(X) = ḡ(X) q̄(X) + r̄(X).

But now, since |bN | = 1 (and here is where we seriously use the assumption
about g(X)),

deg ḡ(X) = N > deg r(X) ≥ deg r̄(X);

this forces q̄(X) = 0, which then implies r̄(X) = 0, which contradicts the
assumption that max{‖q(X)‖, ‖r(X)‖} = 1. This proves the lemma when
c = 1.
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Before we go on, notice that the polynomials q(X) and r(X) necessarily
have coefficients in K. Their norms, however, do not depend on the field, as
we pointed out above (Problem 298). Since our theorem is about the norms,
we might as well assume K = Cp, and we will. This is essential, because we
will want to consider elements with absolute value pr with r ∈ Q, and in Cp

we know these exist.
2. If c �= 1, but c is of the form pr for r ∈ Q, choose an element

α ∈ Cp with |α| = c. Then consider the polynomials f1(X) = f(αX) and
g1(X) = g(αX). It’s easy to see that ‖f1(X)‖1 = ‖f(X)‖c, and similarly for
the g’s. Applying part 1 to f1(X) and g1(X) then gives the inequality we
want for the c-norms.

3. If c is not of the form pr for r ∈ Q, then we have to resort to black
magic. Since the numbers of the form pr are dense in R+ (can you see why?),
there is a sequence ci of real numbers such that ci = pri with ri ∈ Q and
ci → c as i → ∞. Then clearly we have ‖f(X)‖ci → ‖f(X)‖c as i → ∞, so
we can get the estimate we want by using part 2 for each of the ci and taking
the limit.

Now here’s an interesting example of the kind of result we are led to. It
is a version for polynomials of the Weierstrass Preparation Theorem.

Proposition 7.2.3 Let c > 0 be some real number, and ‖ ‖ = ‖ ‖c. Let

f(X) = a0 + a1X + a2X
2 + · · ·+ anX

n

be a polynomial in K[X ], and suppose that there exists an integer N such
that 0 < N < n for which we have

‖f(X)‖ = |aN |cN and ‖f(X)‖ > |aj |cj for any j > N.

Then there exist polynomials g(X), of degree N , and h(X), of degree n−N ,
with coefficients in K, such that f(X) = g(X)h(X). Furthermore, we have

‖g(X)‖ = ‖f(X)‖ and ‖h(X)− 1‖ < 1.

Proof: For the case c = 1, it would not be hard to give a direct proof
using Theorem 7.1.2. Instead, we give a general argument (in roughly the
same spirit) that works for all choices of c. The point is to start with an
approximate factorization and then improve it. If we prove, by induction,
that this can always be done, it will produce a convergent sequence of poly-
nomials which, in the limit, give the factorization we want. In order to make
the structure of the proof as clear as possible, we separate it into two pieces.
The first will describe the general induction step. The next will show how
the induction starts. Putting the two pieces together gives the proof.

Step: Let δ be a fixed real number, δ < 1. Suppose that at some stage we
have found polynomials hi(X) and gi(X) satisfying the following conditions:
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i) deg gi(X) = N and deg hi(X) ≤ n−N ,

ii) ‖f(X)− gi(X)‖c ≤ δ‖f(X)‖c and ‖hi(X)− 1‖c ≤ δ,

iii) ‖f(X)− gi(X)hi(X)‖c ≤ δi‖f(X)‖c, and
iv) gi(X) = aNXN + lower degree terms and ‖gi(X)‖c = |aN |cN .

(Never mind, for now, where such things might come from.) Let’s describe
how to get two polynomials that give a still better approximation.

First of all, because ‖ ‖c satisfies the non-archimedean property (“all
triangles are isosceles”), the condition ‖f(X)− gi(X)‖c ≤ δ‖f(X)‖c implies
(since δ is less than 1) that ‖f(X)‖c = ‖gi(X)‖c. Now we find a way to bring
in the estimates in the previous lemma.

If we divide f(X)− gi(X)hi(X) by gi(X), we get

f(X)− gi(X)hi(X) = q(X) gi(X) + r(X),

where deg r(X) < N , and hence deg q(X) ≤ n − N . Since we know gi(X)
satisfies condition (iv), the previous lemma gives inequalities for the absolute
values of q(X) and of r(X):

‖q(X)‖c ≤ ‖f(X)− gi(X)hi(X)‖c
‖gi(X)‖c =

‖f(X)− gi(X)hi(X)‖c
‖f(X)‖c ≤ δi ≤ δ

and

‖r(X)‖c ≤ ‖f(X)− gi(X)hi(X)‖c ≤ δi‖f(X)‖c ≤ δ‖f(X)‖c.

Now let

gi+1(X) = gi(X) + r(X) and hi+1(X) = hi(X) + q(X).

We claim that these will do the job.
To begin with, since deg r(X) < N , we will have deg gi+1(X) = N . Simi-

larly, since deg q(X) ≤ n−N , we get deg hi+1 ≤ n−N . This shows our new
polynomials still satisfy our first condition.

Next, we have

‖f(X)− gi+1(X)‖c = ‖f(X)− gi(X)− r(X)‖c
≤ max{‖f(X)− gi(X)‖c, ‖r(X)‖c}
≤ δ‖f(X)‖c,

since we have shown that ‖r(X)‖c ≤ δ‖f(X)‖c. Similarly,

‖hi+1(X)− 1‖c = ‖hi(X)− 1 + q(X)‖c
≤ max{‖hi(X)− 1‖c, ‖q(X)‖c}
≤ δ,
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since we have shown that ‖q(X)‖c ≤ δ. This shows that the second condition
above still holds.

Next, we check that this gives a better approximate factorization:

f(X)− gi+1(X)hi+1(X) = f(X)− (gi(X) + r(X))(hi(X) + q(X))

= f(X)− gi(X)hi(X)− q(X)gi(X)− r(X)hi(X)− r(X)q(X)

= r(X)− r(X)hi(X)− r(X)q(X)

= r(X) (1− hi(X)− q(X)) ,

which gives

‖f(X)− gi+1(X)hi+1(X)‖c = ‖r(X)‖c‖(1− hi(X))− q(X)‖c
≤ δi‖f(X)‖cmax{‖1− hi(X)‖c, ‖q(X)‖c}
≤ δi+1‖f(X)‖c.

For the final condition, first notice that since deg r(X) < N , adding it to
gi(X), which has degree N , will not change the leading term, i.e., gi+1(X) =
aNXN + terms of lower degree. Next, since ‖f(X)− gi+1(X)‖c ≤ δ‖f(X)‖c
and δ < 1, we must have ‖gi+1(X)‖c = ‖f(X)‖c = |aN |cN .

This means that gi+1(X) and hi+1(X) satisfy all our conditions, with δi

replaced by δi+1.
To check that these functions actually form the sort of sequence we want,

notice that the inequality ‖q(X)‖c ≤ δi translates into

‖hi(X)− hi+1(X)‖c ≤ δi.

Similarly, the inequality ‖r(X)‖c ≤ δi‖f(X)‖c translates to

‖gi(X)− gi+1(X)‖c ≤ δi‖f(X)‖.
Since δ < 1, these inequalities show that both the sequence of the gi(X) and
the sequence of the hi(X) are Cauchy sequences with respect to the ‖ ‖c
norm.

Start: To start the process, we need to find a δ < 1 and an initial pair
g1(X) and h1(X). But those are relatively easy to find. The assumption is
that ‖f(X)‖c = |aN |cN and that the terms of higher degree are smaller. This
means that if we subtract off the part of f(X) up to degree N the remaining
polynomial will have smaller norm. In other words, we will have

‖f(X)−
N∑
i=0

aiX
i‖c < ‖f(X)‖c.

Let δ be a measure of how much smaller:

‖f(X)−
N∑
i=0

aiX
i‖c = δ‖f(X)‖c.
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Then, of course, 0 < δ < 1.
Then let

g1(X) =

N∑
i=0

aiX
i = a0 + a1X + a2X

2 + · · ·+ aNXN

and let h1(X) = 1. It is very easy to check that all of our conditions are
satisfied.

Convergence: We’re almost there. We’ve got a Cauchy sequence of
polynomials of bounded degree. And that’s enough, by the next problem, to
guarantee convergence. Taking the limit, we get g(X) and h(X) as specified
by the proposition.

Problem 304 Show that a Cauchy sequence of polynomials of bounded degree is
convergent with respect to the ‖ ‖c. Show that the hypothesis that the degree is
bounded is essential.

Problem 305 The limit of a sequence of polynomials of degree N is a polynomial of
degree at most N . Why can we assert that g(X) is actually of degree N?

Problem 306 Show that the polynomial g(X) obtained in our proof has the prop-
erty that ‖f(X) − g(X)‖c < ‖f(X)‖c. This can sometimes be a useful extra bit of
information.

Problem 307 Can we re-apply the Proposition to factor g(X) itself?

Problem 308 What can be said about the speed of the convergence of the sequences
of polynomials gi(X) and hi(X)?

Problem 309 Suppose c = 1. Give a proof of the proposition for this case that is
just a direct application of Theorem 7.1.2.

From the ring K[X ] of polynomials we now move on to the ring K[[X ]]
of power series with coefficients in K. Of course, convergence questions now
become important. It will be useful to remember that the power series∑

anX
n

converges for |x| ≤ c if and only if lim |an|cn = 0. This suggests that the same
idea used for polynomials will make sense here. We first define appropriate
subrings of the ring of power series with coefficients in K.

Definition 7.2.4 Let c > 0 be an arbitrary positive real number. We define
Ac to be the ring of power series

∑
anX

n ∈ K[[X ]] which satisfy the condition
lim |an|cn = 0.
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Notice that, if f(X) ∈ Ac, then f(X) converges for x in the closed unit
ball of radius c. For that reason, the rings Ac are often called rings of
convergent power series. The next couple of problems check that this works
as advertised.

Problem 310 Show that Ac is indeed a ring, and that it is also a vector space over
K.

Problem 311 We have avoided indicating the base field in the notation for Ac so
that the notation does not become too heavy. For this problem, however, write Ac(K)
for the ring we get when the field of coefficients is K. It’s clear that if K1 ⊂ K2, then
Ac(K1) ⊂ Ac(K2). Show that in fact we have

Ac(K1) = Ac(K2) ∩K1[[X]].

(In other words: the fact that the series is in Ac is independent of the field to which
we think its coefficients belong.) We will use this fact, as before, to move up and down
between smaller and bigger fields.

Problem 312 Suppose c can be written as a rational power of p, i.e., that there exists
r ∈ Q such that c = pr. Show that a power series f(X) belongs to Ac if and only if it
converges in the closed ball in Cp with center 0 and radius c. Is the same true without
the assumption on c?

Problem 313 If c1 > c2, show that Ac1 ⊂ Ac2 .

Now we put norms on our spaces:

Theorem 7.2.5 Let c > 0 be an arbitrary positive real number. Define a
function ‖ ‖c : Ac −→ R+ as follows: for each power series

f(X) = a0 + a1X + a2X
2 + · · ·+ anX

n + . . .

belonging to Ac, set
‖f(X)‖c = max

n
|an|cn.

Then we have

i) ‖f(X)‖c = 0 if and only if f(X) is identically zero.

ii) ‖f(X) + g(X)‖c ≤ max{‖f(X)‖c, ‖g(X)‖c}.
iii) ‖f(X)g(X)‖c ≤ ‖f(X)‖c‖g(X)‖c.
iv) ‖ ‖c induces the p-adic absolute value on the constant power series.

v) If |x| ≤ c, then |f(x)| ≤ ‖f(X)‖c.
Proof: This is all easy. Notice that the definition makes sense because
we know that |an|cn tends to zero as n grows, and hence there must be a
maximum.
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Problem 314 Prove the theorem. (It is all very straightforward.)

Problem 315 The game we played above relating the sup-norm for functions on
B(0, c) with the c-norm on the polynomials also makes sense for power series in Ac.
Does anything change?

Problem 316 Once again, the norm does not depend on the base field: show that if
K1 ⊂ K2 then ‖ ‖c on Ac(K2) restricts to ‖ ‖c on Ac(K1). In particular, when we are
interested only in computing the norm of some power series, we might as well think of
it as having coefficients in Cp.

Problem 317 Suppose K = Cp. Use the idea we used above for polynomials to show
that if c is of the form pr for some rational number r then there is an isomorphism
φ : Ac −→ A1 which is an isometry, i.e., which satisfies ‖φ(f(X))‖1 = ‖f(X)‖c.
What happens when c is not of this form?

Problem 318 Suppose c1 > c2. Consider the map

ι : Ac1 −→ Ac2

that maps each f(X) to itself (this makes sense because, as we showed in a previous
problem, Ac1 ⊂ Ac2 in this case). Give Ac1 the topology defined by ‖ ‖c1 and give
Ac2 the topology defined by ‖ ‖c2 . Is the map ι continuous?

We are now ready to begin to work toward the proof of the main result in
this section, the Weierstrass Preparation Theorem. This can be viewed as a
direct extension of Strassman’s Theorem from Chapter 5. The goal is to get
a very close relation between functions defined by power series and functions
defined by polynomials.

We will work with the norms described above, but at first will stick to
c = 1. Hence, we will be working with power series which converge in the
closed unit ball around the origin, i.e., for any x such that |x| ≤ 1. A series∑

anX
n will have this property if and only if an → 0 as n → ∞, and this is

what we assume. (Notice that this was also what we needed for Strassman’s
Theorem.)

Theorem 7.2.6 (p-adic Weierstrass Preparation Theorem) Let

f(X) =
∑

anX
n

be a power series with coefficients in K such that an → 0 as n → ∞, so that
f(x) converges for x ∈ O. Let N be the number defined by the conditions

|aN | = max |an| and |an| < |aN | for all n > N.

Then there exists a polynomial

g(X) = b0 + b1X + · · ·+ bNxN
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of degree N and with coefficients in K, and a power series

h(X) = 1 + c1X + c2X
2 + . . .

with coefficients in K, satisfying:

i) f(X) = g(X)h(X),

ii) |bN | = max |bn|, i.e., ‖g(X)‖1 = |bN |,
iii) lim

n→∞ cn = 0, so that h(x) converges for x ∈ O (i.e., h(X) ∈ A1),

iv) |cn| < 1 for all n ≥ 1, i.e., ‖h(X)− 1‖1 < 1, and

v) ‖f(X)− g(X)‖1 < 1.

In particular, h(X) has no zeros in O.

This clearly is closely related to Strassman’s Theorem. Since h(X) has
no zeros in O, it is clear that the zeros of f(X) in O are exactly the same as
the zeros of g(X). Since g(X) is a polynomial of degree N , there are at most
N of these, and we get Strassman’s Theorem. If we move to Cp we can say
more: since Cp is algebraically closed, we get that, counting multiplicities,
g(X) has exactly N zeros in Cp, and the condition on its coefficients means
that all of them are in O (see the problem below). So we know that, counting
multiplicities, f(X) has exactly N zeros in O, which gives a stronger version
of Strassman’s Theorem.

Problem 319 Suppose the polynomial g(X) = b0 + b1X + · · ·+ bNXN satisfies the
condition in the theorem: |bN | = max |bn|. Show that if g(α) = 0, then |α| ≤ 1.

Proving the Weierstrass Preparation Theorem will take a while and will
require some effort. We will do it by means of a series of lemmas of various
kinds. To begin to set everything up, recall that A1 is the ring of power series
that converge in O; in other words, a power series

f(X) =
∑

anX
n = a0 + a1X + a2X

2 + . . .

belongs to A1 if and only if an → 0 as n → ∞. We already know that defining

‖f(X)‖ = ‖f(X)‖1 = max
n

|an|

gives a norm on A1 (we will drop the subscript 1, since this is the only norm
we’ll be working with in this proof). The first step of the proof is to prove
that A1, with this norm, has very nice properties.

Lemma 7.2.7 A1 is complete with respect to the norm ‖ ‖.
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Proof: We have to show that a Cauchy sequence in A1 (with respect to the
norm ‖ ‖) converges. So consider a sequence of power series

fi(X) = ai0 + ai1X + ai2X
2 + ai3X

3 + . . .

Saying this sequence is Cauchy amounts to saying that for each ε > 0 there
exists an M such that we have ‖fi(X) − fj(X)‖ < ε whenever i, j > M .
Translating that inequality, we get that

max
n

|ain − ajn| < ε whenever i, j > M ,

which certainly implies that

|ain − ajn| < ε for each n, whenever i, j > M.

In other words, each of the sequences (ain)i is Cauchy. Since K is complete,
that means they are all convergent.

So, for each n, let
an = lim

i→∞
ain,

and consider the series

g(X) = a0 + a1X + a2X
2 + a3X

3 + . . .

We obviously want to say that it is the limit of the sequence of series. To see
why, we need two things: first, we need to estimate

‖fi(X)− g(X)‖ = max
n

|ain − an|

and show that it goes to zero; next, we need to show that g(X) is actually in
A1.

The first part is easy: we know that if i, j > M we have |ain − ajn| < ε
for every n. Letting j → ∞, it follows that if i > M we have |ain − an| ≤ ε
for all n, which means that if i > M we have

‖fi(X)− g(X)‖ = max
n

|ain − an| ≤ ε,

so that fi(X) → g(X) with respect to ‖ ‖.
For the second part, we use what we have just proved. For i > M , we

know that |ain − an| < ε for every n. Now, since fi(X) ∈ A1, we know
that ain → 0 as n → ∞, i.e., that for each i there exists an Mi such that
|ain| < ε for all n > Mi. Choose any i > M . Then if n is greater than the
corresponding Mi we have

|an| ≤ |ain − an|+ |ain| < ε+ ε.

It follows that an → 0 as n → ∞.
Thus, fi(X) → g(X) and g(X) ∈ A1; since this works for any Cauchy

sequence of power series, it shows that A1 is complete.
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Problem 320 Go through that proof and make sure it works as advertised. Make
sure you understand the different roles of i and n.

Problem 321 Consider the sequence fn(X) = 1 +X +X2 + · · · +Xn. Clearly all
the fn(X) belong to A1. Does this sequence converge?

Problem 322 Is Ac complete with respect to the norm ‖ ‖c?
The complete space A1 contains the polynomials as a subspace. It is

natural to guess that they are in fact a dense subspace. This does turn out
to be the case:

Lemma 7.2.8 The space of polynomials K[X ] is dense in A1.

Proof: We need to show that any power series is the limit of a sequence of
polynomials. Let

f(X) = a0 + a1X + a2X
2 + a3X

3 + . . .

be a power series in A1, so that an → 0 as n → ∞. We need to get a
sequence of polynomials which approximate f(X) (with respect to the ‖ ‖1
norm). The obvious choice is to take the truncations of f(X). So let

f0(X) = a0

f1(X) = a0 + a1X

f2(X) = a0 + a1X + a2X2

. . .

fk(X) = a0 + a1X + a2X
2 + · · ·+ akX

k.

Then we have
‖f(X)− fk(X)‖ = max

n>k
|an|,

which tends to zero as k → ∞ because an → 0 as n → ∞. Then fk(X) →
f(X), so that f(X) is a limit of polynomials.

Problem 323 Check that if we have an → 0, then also

lim
k→∞

max
n>k

|an| = 0.

Problem 324 Will this proof work if we replace ‖ ‖1 by ‖ ‖c?

We will often use the fact that the polynomials are dense in the space
of convergent power series to prove things about power series by using facts
about polynomials. The main issue in such a proof will be to check that the
properties we are interested in are preserved when taking limits. The next
lemma is an example of this: it is a version for series of a lemma we proved
for polynomials:
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Lemma 7.2.9 Let f(X) ∈ A1 be a power series converging in the closed unit
disk, and let

g(X) = b0 + b1X + · · ·+ bNXN

be a polynomial with coefficients in K satisfying

|bN | = max
i

|bi|.

Then there exist a power series q(X) ∈ A1 and a polynomial r(X) ∈ K[X ],
of degree less than N , such that

f(X) = g(X) q(X) + r(X)

where q(X) and r(X) satisfy

‖f(X)‖ ≥ ‖g(X)‖ ‖q(X)‖ and ‖f(X)‖ ≥ ‖r(X)‖.
Proof: The idea of the proof is to use the statement for polynomials to
obtain the statement for series, using the fact that any power series in A1

is the ‖ ‖1-limit of polynomials. So let fk(X) be a sequence of polynomials
converging to f(X). By Lemma 7.2.2, one can find polynomials qk(X) and
rk(X) such that

fk(X) = g(X) qk(X) + rk(X) and deg r(X) < deg g(X)

and which satisfy the conditions

‖fk(X)‖ ≥ ‖qk(X)‖ ‖g(X)‖ and ‖fk(X)‖ ≥ ‖rk(X)‖.
We need to show that as k → ∞ the sequences qk(X) and rk(X) converge.
Since we have already shown that the space A1 is complete, what we need to
do is show that these sequences are Cauchy.

To see that, consider the equations

fk(X) = g(X) qk(X) + rk(X) and fk+1(X) = g(X) qk+1(X) + rk+1(X).

Subtracting one from the other gives

fk+1(X)− fk(X) = g(X) (qk+1(X)− qk(X)) + (rk+1(X)− rk(X)) .

Now, since both rk(X) and rk+1(X) have degree less than N , so does their
difference. What that means is that qk+1(X) − qk(X) is the quotient and
rk+1(X)− rk(X) is the remainder when we divide fk+1(X)−fk(X) by g(X).
Using Lemma 7.2.2 yields the estimates

‖qk+1(X)− qk(X)‖ ≤ ‖g(X)‖−1‖fk+1(X)− fk(X)‖
and

‖rk+1(X)− rk(X)‖ ≤ ‖fk+1(X)− fk(X)‖.
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Finally, remember that the sequence fk(X) is convergent, hence Cauchy, so
that

lim
k→∞

‖fk+1(X)− fk(X)‖ = 0.

It follows that

lim
k→∞

‖rk+1(X)− rk(X)‖ = lim
k→∞

‖qk+1(X)− qk(X)‖ = 0,

which, since the norm is non-archimedean, means that both sequences are
Cauchy, hence convergent. Letting r(X) = lim rk(X) and q(X) = lim qk(X)
gives the equation we want; furthermore, since each rk(X) is a polynomial
of degree less than N , so is r(X). Finally, the estimates on the norms are
clearly preserved by passing to the limit, so that we are done.

We now see how to prove the Weierstrass Preparation Theorem. The
point is to notice that it is just the power series version of Proposition 7.2.3.
The proof of that proposition was a direct application of the lemma preceding
it, whose power series version is the lemma we have just proved. Hence. . .

Proof of the Weierstrass Preparation Theorem: Mimic the proof of
Proposition 7.2.3 replacing calls to Lemma 7.2.2 with calls to Lemma 7.2.9.

Problem 325 Make sure you understand how to prove the theorem. How does one
prove the various statements about g(X) and h(X)?

Problem 326 Why is it, in the statement of the Weierstrass Preparation Theorem,
that the conditions on the power series h(X) imply that it has no zeros in O?

The power of the Weierstrass Preparation Theorem will only become clear
from its applications. To get some idea of how it is used, let

f(X) = a0 + a1X + a2X
2 + a3X

3 + . . .

be a power series converging in the closed unit disk, so that an → 0 (in other
words, f(X) ∈ A1). Let N be chosen as in the theorem:

|aN | = max
n

|an| and |aN | > |aj | if j > N.

Then, according to the theorem, f(X) can be factored as g(X)h(X), where
g(X) is of degree N and h(X) is a power series with no zeros of absolute
value ≤ 1. We want to consider the roots of g(X), so we move, for a while,
to Cp. Since Cp is algebraically closed, we can factor g(X) as a product

g(X) = b0 + b1X + b2X
2 + · · ·+ bNXN

= bN (X − α1)(X − α2) . . . (X − αN ),

where α1, α2, . . . , αN are the roots of g(X) (counted with multiplicities).
This shows that f(X) will have exactly N zeros in O, counted with multi-
plicities, and also gives a precise sense to the “multiplicity” of a zero of a
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p-adic power series converging on O: it is just the multiplicity of that zero
in the polynomial appearing in the Weierstrass factorization.

Problem 327 This problem (taken from [14]) gives an alternative definition for the
multiplicity of a zero. Let f(X) ∈ A1 be a power series converging on O. Consider
the successive derivatives f(X), f ′(X), f ′′(X), . . . , f (n)(X),. . . Show that for any
x ∈ O there must exist an n such that

f(x) = f ′(x) = · · · = f (n−1)(x) = 0 but f (n)(x) �= 0.

Show that n is equal to the multiplicity, as defined above, of x as a zero of f(X).
Conclude that the sum of the multiplicities of all the zeros is exactly N . Why is
Cassels’ definition nicer than the one given above?

Just as we did for Strassman’s Theorem, we can easily apply the Weier-
strass Preparation Theorem to functions defined on bigger or smaller balls
around zero by scaling the variable appropriately.

Problem 328 Let c = pr for some r ∈ Q. Let f(X) be a power series converging in
the closed ball of radius c around zero. Explain how to use the Weierstrass Preparation
Theorem to count the number of zeros of f(X). Does anything change if we take more
general values for c?

While the previous problem shows that the Weierstrass Preparation The-
orem, as given above, can be applied in a large number of situations, it is
tidier to find a version that applies not only to the ‖ ‖1 norm but also to the
other norms ‖ ‖c. The statement is not hard to find:

Theorem 7.2.10 (p-adic Weierstrass Preparation Theorem) Let c be
a positive real number, and let

f(X) =
∑

anX
n

be a power series with coefficients in K such that |an|cn → 0 as n → ∞,
so that f(x) converges for x ∈ B(0, c). Let N be the number defined by the
conditions

|aN |cN = max
n

|an|cn = ‖f(X)‖c and |an|cn < |aN |cN for all n > N.

Then there exists a polynomial

g(X) = b0 + b1X + · · ·+ bNxN

of degree N and with coefficients in K, and a power series

h(X) = 1 + d1X + d2X
2 + . . .

with coefficients in K, satisfying:
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i) f(X) = g(X)h(X),

ii) |bN |cN = max |bn|cn, so that ‖g(X)‖c = |bN |cN ,

iii) h(X) ∈ Ac,

iv) |dn|cn < 1 for all n ≥ 1, so that ‖h(X)− 1‖c < 1, and

v) ‖f(X)− g(X)‖c < 1.

In particular, h(X) has no zeros in B(0, c).

Problem 329 Prove the generalized p-adic Weierstrass Preparation Theorem. (Hint:
you will need to generalize Lemma 7.2.9 to arbitrary c; for that, you might imitate the
trick used in the proof of Lemma 7.2.2.)

Problem 330 Let

f(X) = log(1 +X) = X − X2

2
+

X3

3
+ . . .

Count the number of zeros in various balls. (We can clearly divide this by X in order
to get a series whose zeroth term is 1. The resulting series converges in the open ball
of radius 1, so we need to consider various closed balls of smaller radius.) How many
zeros does the series have (in Cp, of course) in the open unit ball around zero?

7.3 Entire Functions

One of the applications of the Weierstrass Preparation Theorem is the de-
scription of “entire” p-adic power series, i.e., power series which converge in
all of Cp. This is actually quite easy, but offers a nice enough example that
we decided it deserved its own section.

For this section, then, let f(X) be a power series which converges in all
of Cp. If we write it out,

f(X) = a0 + a1X + a2X
2 + a3X

3 + . . .

we must have |an|cn → 0 for any c ∈ R. We can also write this in terms of
vp: if vp(c) = k it says that vp(an) − kn → +∞ for any k ∈ Q. It’s nicer,
however, to find a condition that doesn’t depend on k.

Lemma 7.3.1 The series

f(X) = a0 + a1X + a2X
2 + a3X

3 + . . .

defines an entire function if and only if

lim
n→∞

vp(an)

n
= +∞.
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Proof: If vp(an)−kn → ∞, then in particular vp(an) > kn for all sufficiently
large n and so vp(an)/n > k for all sufficiently large n. Since k ∈ Q can be
arbitrarily large, this says that vp(an)/n → ∞.

Conversely, suppose lim
n→∞

vp(an)

n
= ∞. For any k ∈ Q, choose M > k.

Then we know vp(an)/n > M for all sufficiently large n, so

vp(an)− kn

n
=

vp(an)

n
− k > M − k

for all sufficiently large n. Multiplying through, we see that vp(an) − kn >
(M − k)n → ∞. Since k was arbitrary, f(X) is entire.

In other words, a power series will be entire if vp(an) tends to infinity
faster than linearly.

Very well, suppose we have such a power series. If a0 = 0, we can factor
out a power of X so that the remaining series has zeroth coefficient not equal
to zero. So, for our purposes, we might as well assume that a0 �= 0; in that
case, we can divide by a0 and assume that the zeroth coefficient is equal to
one. So let

f(X) = 1 + a1X + a2X
2 + a3X

3 + . . .

and assume that vp(an)/n → ∞, so that f(X) is entire. Our plan to under-
stand the zeros of f(X) is to apply the Weierstrass Preparation Theorem in
larger and larger balls around zero.

So begin with the closed unit ball: a straight application of the theorem
says that we can factor f(X) as g0(X)h0(X) where g0(X) is a polynomial
(whose degree N is given precisely in the theorem, but that won’t matter all
that much here) and where h0(X) is a power series of the form 1 + b1X +
b2X

2 + . . . with |bi| < 1. Since Cp is algebraically closed, g0(X) factors into
a bunch of linear terms, which we can write as follows:

g0(X) =

N∏
i=1

(1 − λiX),

since we are assuming that a0 = 1. Notice that the λi are not the roots of
g0(X), but rather the reciprocals of the roots of g0(X); the reason for this
particular bit of perverseness will become clear soon. In any case, the upshot
is that

f(X) = h0(X) ·
N∏
i=1

(1− λiX),

where ‖h0(X)− 1‖1 < 1.

Problem 331 Show that any polynomial g(X) ∈ Cp[X] satisfying g(0) = 1 can be
written in the form

g(X) =
∏

(1− λX),

where λ runs through the reciprocals of the roots of g(X).
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Now what happens when we look at a bigger ball? Consider, say, the
closed ball of radius p around the origin. To apply the (‖ ‖1-form1 of the)
Weierstrass Preparation Theorem, we need to change variables: let f1(Y ) =
f(Y/p). Then plugging x ∈ B(0, p) into f(X) amounts to plugging y = px
into f1(Y ), so the roots of f(X) in the ball we are looking at correspond to
roots of f1(Y ) in the closed unit ball. Finally, it’s clear that f1(Y ) is still
entire (if f(α) converges for every α then so does f(α/p)), and that the first
coefficient is still equal to 1. Applying the theorem gives

f1(Y ) = g1(Y )(1 + c1Y + c2Y
2 + · · · ),

with, as before, g1(Y ) a polynomial and |ci| < 1. To get back to f(X), we
just replace Y by pX to get

f(X) = f1(pX) = g1(pX)(1 + d1Y + d2Y
2 + · · · )

with |di| = |pici| < 1/pi. Now g1(pX), whatever it is, is just another poly-
nomial, whose roots give the roots of f(X) in the closed ball of radius p. (It
is therefore divisible by g0(X); do you see why?) So we can repeat the trick:

g1(pX) =

N1∏
i=1

(1 − λiX),

where now the λi are the reciprocals of the roots of f(X) in the closed ball
of radius p. In other words, we’ve got f(X) written as

f(X) = h1(X) ·
N1∏
i=1

(1− λiX).

The inequalities on the di show that we have ‖h1(X) − 1‖p < 1 and also
‖h1(X) − 1‖1 < 1/p. Notice that this inequality implies that if x ∈ B(0, p)
then we must have |h1(x) − 1| < 1, which implies that h1(x) �= 0; in other
words, the inequality shows that h1(X) has no zeros in the closed ball of
radius p.

Problem 332 Explain why g0(X) is a factor of g1(pX).

We can now understand why it’s nice to use the reciprocals of the roots:
they do two things for us. First, they give a clean way to write a product
expression for a polynomial whose independent coefficient is 1 (and whose
top coefficient might be anything). Second, and more interesting, notice that
as our ball grows, the λi get smaller: if the root has absolute value p, say,
then |λi| = 1/p, which is cheering if we’re looking for convergence.

And we are. The reader can probably see what’s coming by now: we work
in bigger and bigger balls. The polynomial part gives a longer and longer

1Using Theorem 7.2.10 would also work well.
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product expression (since the balls are nested in each other, the roots that
appear for a disk reappear in any bigger disk, so that the product is indeed
growing longer rather than just changing). The λi that appear in the product
expression are reciprocals of roots with larger and larger absolute value, so
they get smaller and smaller. The other factor gets closer and closer to 1. In
the limit, we get just the product! So we’ve proved:

Proposition 7.3.2 Let f(X) = 1 + a1X + a2X
2 + . . . be a power series

defining an entire function on Cp. Then f(X) has a finite number of zeros
in any closed ball around the origin, and a countable number of zeros in Cp.
The reciprocals of these zeros form a sequence λi tending to zero, and f(X)
can be written as an infinite product

f(X) =

∞∏
i=1

(1 − λiX)

(with convergence in the ‖ ‖c metric for any c).

Proof: We’ve done it all except for the remark on convergence. What we
showed was that the infinite product converged to f(X) in the ‖ ‖1 metric.
But f(X) is entire, and as usual we can change variables to handle the ‖ ‖c
metrics.

Problem 333 Have we really “done it all”? Make sure you see that the proof is
indeed to be found in the text above.

Problem 334 Explain the cryptic remark at the end of the proof. How would one
prove that the product converges to f(X) in the ‖ ‖c topology?

Problem 335 One might also want to understand in what sense the functions given
by the partial products converge to the function defined by f(X). Show that the
convergence is uniform in any closed ball around zero (this is easy if you know about
uniform convergence). One almost wants to say that the convergence is “uniform
on compact sets”... if it weren’t for the slight detail that closed balls in Cp are not
compact!

Passing from power series whose initial term is 1 to general power series
is easy:

Corollary 7.3.3 Let f(X) be a power series defining an entire function on
Cp. Then f(X) can be written as an infinite product

f(X) = aXr
∞∏
i=1

(1− λiX),

where a ∈ Cp, r is an integer, r ≥ 0, and λi ranges through the reciprocals of
the nonzero roots of f(X), which form a sequence tending to zero.



7.4 Newton Polygons 251

This is very similar to, but also simpler than, a classical result about
complex entire functions; see, for example, [2, Chapter 5, Section 2.3]. It is
the starting point for any serious study of p-adic entire functions.

Problem 336 We haven’t really met any (non-polynomial) entire functions. Can you
give an example?

Problem 337 Show that the product expansion can be used to construct entire func-
tions: take a sequence λi tending to zero; does it make sense to define a function by

f(x) =
∞∏
i=1

(1− λix)?

For which x does this converge? Can the resulting function be expressed as a power
series? (What we are aiming for, of course, is a converse of Corollary 7.3.3.)

7.4 Newton Polygons

One of the best ways to understand the theory of polynomials and power
series with coefficients in a complete p-adic field K is to introduce the concept
of the Newton polygon of a polynomial (and later of a power series). This
gives us a clear geometric picture that encodes much of the information we
have collected about the zeros of polynomials and power series.

We begin, once again, by considering polynomials. We will define the
Newton polygon and then explore its meaning in a leisurely way. As before,
we will work in a field K, which will either be a finite extension of Qp or equal
to Cp (in particular, K is complete with respect to the p-adic valuation).
So let f(X) ∈ K[X ] be a polynomial. Since we are mostly interested in
understanding the zeros of f(X) we may as well factor out any powers of X
which divide f(X). In other words, we may assume that f(0) �= 0. Then,
dividing through by f(0), we may also assume that f(0) = 1.

Thus, we take a polynomial

f(X) = 1 + a1X + a2X
2 + · · ·+ anX

n

with ai ∈ K. On a set of axes, we plot the points (0, 0) and, for each i
between 1 and n, (i, vp(ai)). (There is one caveat: if ai = 0 for some i, it is
not clear what vp(ai) is to be; we just take it to be +∞, and think of the
point as “infinitely high.” In practice this just means that we ignore that
value of i.) The polygon we want to consider is, in fancy terms, the lower
boundary of the convex hull of this set of points. In less fancy terms, we can
think of it this way:

i) Start with the vertical half-line which is the negative part of the y-axis
(i.e., the points (0, y) with y ≤ 0).
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ii) Rotate that line counter-clockwise until it hits one or more of the points
we have plotted.

iii) “Break” the line at the rightmost point that was hit, and continue
rotating the remaining part until another point(s) is(are) hit.

iv) Continue until all the points have either been hit or lie strictly above a
portion of the polygon.

(One may or may not want to think of the polygon as ending with an infinitely
long vertical line going upwards; we will prefer to simply cut off the polygon
at its last vertex.)

The resulting polygon is called the Newton polygon of the polynomial
f(X). Notice that, in the same spirit as before, the polygon depends only
on the vp(ai), which do not depend on which field we think the ai belong to.
In other words, the polygon belongs to the polynomial, rather than to the
polynomial as an element of K[X ].

It may be that an example helps more at this point than any number of
words. Let’s take p = 5 and consider the polynomial

f(X) = 1 + 5X +
1

5
X2 + 35X3 + 25X5 + 625X6.

The points we want to work with are

(0, 0) (1, 1) (2,−1) (3, 1) (5, 2) (6, 4)

(as agreed, we simply ignore the missing term of degree 4, or think of its point
as “very, very high up” and hence irrelevant for the construction). Plotting
these points gives Figure 7.1. The process with the rotating line gives the
polygon in Figure 7.2.

It’s a nice picture, but what does it mean? It will turn out that the New-
ton polygon encodes a lot of information about the roots of the polynomial.
The crucial features of the polygon will be:

i) the slopes of the line segments appearing in the polygon—we will call
these the “Newton slopes” of f(X);

ii) the “length” of each slope, by which we mean the length of the projec-
tion of the corresponding segment on the x-axis;

iii) the “breaks,” i.e., the values of i such that the point (i, vp(ai)) is a
vertex of the polygon.

In our example, the slopes are −1/2, 1, and 2, of lengths 2, 3, and 1,
respectively, and the breaks happen when i = 0, 2, 5, 6. Notice that the
sum of all the lengths will always be equal to the degree, and that (0, 0) and
(n, vp(an)) will always be vertices. It is also clear from the “rotating line”
construction that the slopes will form an increasing sequence.
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Figure 7.1: Points for f(X) = 1 + 5X + 1
5X

2 + 35X3 + 25X5 + 625X6
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Figure 7.2: Newton polygon for f(X) = 1+5X+ 1
5X

2+35X3+25X5+625X6
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Problem 338 Let p=5. Work out the Newton polygon of the following polynomials:

i) 1 +X +X2 +X3 +X4 + 2X5 + 100X6

ii) 1 +X +X2 +X3 +X4 + 2X5 + 1
100

X6

iii) 3 + 5X + 4X2 + 35X3 + 40X4 + 1250X5 + 100X6 (Remember that in our
discussion above we normalized things so that f(0) = 1. That means you must
divide through by 3 before making the polygon. . . but must you really?)

iv) 3+5X+4X2+35X3+40X4+1250X5+100X6+5X10 (How does this relate
to the previous one?)

Problem 339 Suppose a polynomial F (X) satisfies the condition in the Eisenstein
irreducibility criterion over Qp (i.e., it is an “Eisenstein polynomial”). Let f(X) be
the polynomial obtained by dividing F (X) by whatever number is necessary so that
f(0) = 1. Describe the Newton polygon of f(X).

Problem 340 It might be useful to generalize the definition in order to remove the
condition f(0) = 1, and just assume f(0) �= 0. How would the definition change? What
would be the relation between the polygons of f(X) and of af(X) (for a ∈ K×)?

In order to begin to see what information is hidden in the Newton polygon
of a polynomial, let’s begin by seeing the significance of the breaks. What we
want to do is to consider a polynomial f(X) = 1+a1X+a2X

2+· · ·+anX
n and

look at its norms ‖f(X)‖c for many different c. Since the norm corresponding
to c is essentially the sup-norm on the closed ball of radius c centered at 0
(in Cp), it is easy to see that they satisfy

If c1 > c2, then ‖f(X)‖c1 ≥ ‖f(X)‖c2.
(It’s also very easy to give a direct proof of this.) So, if we start with a very
small c and gradually increase it, the norms ‖f(X)‖c will also increase. This
observation will help interpret the breaks in the Newton polygon.

Let’s look at the first segment of the Newton polygon. If this segment
has slope m, it connects the point (0, 0) to some other point (i,mi). (So that
the first Newton slope is m, and it has length i.) Let’s think about what
that means. First, it means that there are no points below the line y = mx;
in other words, vp(aj) ≥ mj for every j. Second, the point (i,mi) itself tells
us that vp(ai) = mi. Third, the fact that there is a break tells us that the
subsequent points are really above the line; in other words, vp(aj) > mj if
j > i.

Translating from valuations to absolute values, we get

• |aj | ≤ p−mj = (p−m)j for all j, which we can rewrite as |aj |(pm)j ≤ 1 for
all j,

• |ai| = p−mi, which we can rewrite as |ai|(pm)i = 1, and

• |aj | < p−mj if j > i, which we can rewrite as |aj |(pm)j < 1 if j > i.
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i

mi

Figure 7.3: The first segment

If we now let c = pm, we can read these conditions in terms of the c-norm.
They say:

• ‖f(X)‖c = 1, and

• i is the largest integer such that ‖f(X)‖c = |ai|ci.
In other words, the fact that the first break is at (i,mi) means that if we take
c = pm then ‖f(X)‖c = 1 and i is the distinguished number that appears
in Proposition 7.2.3. In particular, we see that if i is less than the degree of
f(X), then f(X) is divisible by a polynomial of degree i.

Just this is already quite nice. Let’s follow Cassels in making the following
definition:

Definition 7.4.1 A polynomial f(X) ∈ K[X ] is called pure if its Newton
polygon has only one slope. If this slope is m, we will say f(X) is pure of
slope m.

Then we can state what we have just observed as:

Proposition 7.4.2 Irreducible polynomials are pure.

Proof: A break at (i,mi) yields, by the discussion above, a factor of degree
i; hence, if there is a break at i �= 0, n, the polynomial is reducible.

In fact, we can go further, by noticing that a polynomial h(X) = 1+b1X+
b2X

2+ · · ·+bnX
n will be pure of slope m, according to the discussion above,

exactly when it has the property that, for c = pm, ‖f(X)‖c = |bn|cn = 1,
i.e., the maximum occurs at the end and is equal to 1.
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Problem 341 Prove that a polynomial h(X) = 1+ b1X+ b2X
2+ · · ·+ bnX

n is pure
of slope m if and only if we have ‖f(X)‖pm = |bn|pmn = 1.

Using this, we can push the analysis further:

Proposition 7.4.3 Let

f(X) = 1 + a1X + · · ·+ anX
n ∈ K[X ],

and assume the Newton polygon of f(X) has its first break at (i,mi). Then
there exist polynomials g(X), h(X) ∈ K[X ] satisfying:

i) f(X) = g(X)h(X),

ii) g(X) has degree i and is pure of slope m,

iii) h(X) has no zeros in the closed ball of radius pm around 0.

Proof: This has all been proved already; it’s just a matter of putting all
the pieces together.

Problem 342 Put all the pieces together.

The connection between “pureness” and polynomial factorization is im-
portant. Here is another data-point:

Problem 343 Let f(X) and g(X) both be pure polynomials of slope m. Show that
their product is also pure of slope m.

We are still not done thinking of the meaning of the first break. . .What
we still need to do is understand the significance of the slope of the first
segment. That isn’t hard to do.

Lemma 7.4.4 Let f(X) = 1+a1X+a2X
2+· · ·+anX

n ∈ K[X ], and assume
that the first break of the Newton polygon of f(X) occurs at the point (i,mi).
Let c be any positive real number less than pm. Then we have ‖f(X)‖c = 1
and ‖f(X)− 1‖c < 1.

Proof: If ‖f(X)− 1‖c < 1, then we must have ‖f(X)‖c = 1 by the usual
“all triangles are isosceles” yoga, so we only need to prove the inequality.

A line through the origin with slope m1 < m (e.g., the dotted line in
Figure 7.3) passes below all the points on the polygon, touching it only at
(0, 0). This means that vp(aj) > m1j for every j > 0. Translating to absolute
values, this means that |aj | < p−m1j , or |aj |(pm1)j < 1 for any j > 0.
Since a0 = 1, the zeroth coefficient of f(X) − 1 is just 0, and therefore also
|a0 − 1| < 1. It follows that ‖f(X)− 1‖c < 1 for c < pm1 .

This already gives one way to characterize the first slope, as the next
problem shows:
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Problem 344 Show that if the first break happens at (i,mi), and c1 > pm, then
‖f(X)‖c1 > 1.

We can read this as saying that c = pm is the largest value of c such
that ‖f(X)‖c = 1, which gives an interpretation of the slope of the first seg-
ment. The more interesting interpretation, however, has to do with obtaining
information about zeros:

Lemma 7.4.5 Let f(X) = 1+a1X+a2X
2+· · ·+anX

n ∈ K[X ], and assume
that the first break of the Newton polygon of f(X) occurs at the point (i,mi).
Let c be any positive real number less than pm. Then f(X) has no zeros in
the closed ball in Cp of radius c around 0.

Proof: The previous lemma says that ‖f(X) − 1‖c < 1. From that, it
follows that for any x such that |x| ≤ c we have |f(x) − 1| < 1, which
certainly implies that f(x) �= 0. Thus, f(X) has no zeros in B(0, c).

So let’s put it together: if the first break is at (i,mi), then

• If c < pm, f(X) has no roots in the closed ball of radius c.

• f(X) factors as the product of a pure polynomial g(X) of slope m and a
polynomial which has no roots in the closed ball of radius pm.

What about the roots of g(X)? Well, any root of g(X) is a root of f(X),
so we know that g(X) has no roots of absolute value less than pm. On the
other hand, if α1, α2, . . . , αi are the roots of g(X) (in Cp, with multiple
roots listed repeatedly), then we must have

g(X) = (1− α−1
1 X)(1− α−1

2 X) . . . (1− α−1
i X),

and hence the top coefficient of g(X) is equal to (α1α2 . . . αi)
−1. Since g(X)

is pure, this must have valuation mi; since we already know vp(αj) ≤ −m,
it follows that all of the αj have valuation exactly equal to −m. Translating
back, all the roots of g(X) have absolute value pm.

Problem 345 Generalize the argument above to show that all the roots of any pure
polynomial of slope m have absolute value pm (or, equivalently, valuation −m).

Putting all the pieces together, we get:

Proposition 7.4.6 Let f(X) = 1+ a1X + a2X
2 + · · ·+ anX

n ∈ K[X ], and
assume that the first break of the Newton polygon of f(X) occurs at the point
(i,mi). Then f(X) has no roots with absolute value less than pm and has
exactly i roots (counting multiplicities, in Cp) with absolute value pm.

Very well, let’s move on to the second segment. In other words, let’s
assume that there are breaks at (i,mi) and at (k,mi+m′(k− i)), so that the
first slope is m and has length i and the second slope is m′ and has length
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i

mi

mi+m'(k-i)

k

Figure 7.4: The second segment

k−i. All that we have obtained about the first segment still works, of course,
so what we want to understand is the second segment.

For that, we first translate the fact that the second statement has slope
m′. The line through (i,mi) with slope m′ has equation

y = mi+m′(x− i),

and we know the following things.

• (i,mi) and (k,mi+m′(k− i)) are on the line; in other words, vp(ai) = mi
and vp(ak) = mi+m′(k − i).

• All the points between i and k are on or above the line. In other words,
vp(aj) ≥ m′(j − i) +mi if i < j < k.

• All the points beyond k are strictly above the line. In other words, vp(aj) >
m′(j − i) + mi if j > k. The same inequality holds for j < i, as is very
easy to see (draw a picture!).

Now we translate all this to absolute values. Our inequalities say that

• |ak| = p−m′(k−i)−mi = p−m′kp(m
′−m)i,

• for i ≤ j ≤ k, we have |aj | ≤ p−m′(j−i)−mi = p−m′jp(m
′−m)i,

• for j < i and for j > k, we have |aj | < p−m′(j−i)−mi = p−m′jp(m
′−m)i,

which we rewrite once again by taking c = pm
′
:
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• |aj |cj ≤ p(m
′−m)i for all j,

• the equality holds for j = k, and

• the inequality is strict for j > k.

In other words, we get, for c = pm
′
, that ‖f(X)‖c = p(m

′−m)i (and notice
that since m′ > m this is bigger than 1) and that k is the distinguished
number in Proposition 7.2.3 (i.e., the maximum is realized at the degree k
term). Using the proposition, we again find a factor g(X), which now need
not be pure (why?). In any case, we can go through a process completely
analogous to what we did before to conclude that f(X) has exactly k roots
in the closed ball of radius pm

′
, i of which have absolute value pm (we knew

that already), and k− i of which have absolute value pm
′
. Of course, we can

go through a similar argument at the other breaks, and get roots with bigger
absolute values. In the end, we’ll get all the roots, and we’ll know exactly
what their absolute values should be:

Theorem 7.4.7 Let f(X) = 1 + a1X + a2X
2 + · · · + anX

n ∈ K[X ] be a
polynomial, and let m1, m2, . . . , mr be the slopes of its Newton polygon (in
increasing order). Let i1, i2, . . . , ir be the corresponding lengths. Then, for
each k, 1 ≤ k ≤ r, f(X) has exactly ik roots (in Cp, counting multiplicities)
of absolute value pmk .

Proof: Just repeat the arguments we went through above at each break in
the polygon.

Notice that since the sum of all the lengths is equal to the degree, the
theorem accounts for all the roots of the polynomial.

Problem 346 Fill in the complete details of the analysis of the second break, and
convince yourself that the argument will indeed work at the other breaks.

Notice that one of the things that follows from the theorem is the fact
that the factor g(X) of f(X) whose existence follows from the existence of
a break (together with Proposition 7.2.3) has the same Newton polygon as
f(X) up to that break. This shows that the polygons and the factors they
tell us about are really tightly connected.

Problem 347 Suppose the Newton polygon of f(X) has breaks, as above, at i and
k, with slopes m and m′ of length i and k− i, respectively. Our discussion shows that
there exists a polynomial g1(X) of degree i which is pure of slope m and divides f(X),
and a polynomial g2(X) of degree k whose Newton polygon coincides with that of
f(X) up to k. Show that g1(X) is a divisor of g2(X). Let h(X) denote the quotient,
so that g2(X) = g1(X)h(X). Is h(X) pure?

Problem 348 Suppose the Newton polygon of f(X) starts with a segment of slope
m. Let λ be a root of f(X) with absolute value pm (one exists, by the discussion
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above). Let h(X) be the polynomial such that f(X) = (1 − λ−1X)h(X) (it exists,
since λ is a root). Can you relate the Newton polygons of f(X) and of h(X)?

Problem 349 Go back to the polygons you drew above, and explain what they tell
you about the roots of their polynomials.

Problem 350 Consider the polynomials f(X) = 1 + X + p300X100 and g(X) =
1+X+p100X100. These polynomials are “very close,” since we have ‖f(X)−g(X)‖1 =
p−100. Are their Newton polygons close? What is similar in the two polygons? What
is different?

Problem 351 The previous problem showed that two polynomials can be very close
with respect to the ‖ ‖1-norm, and still have different numbers of roots in balls of
radius larger than one. What condition would you need in order to be able to conclude
that f(X) and g(X) have the same number of roots in the closed ball of radius c?

The moral of the story so far is that Newton polygons codify quite a lot
of information about the zeros of polynomials. That should encourage us in
the next step, which is to consider the Newton polygon of a power series.

The definition is formally identical: given a power series of the form

f(X) = 1 + a1X + a2X
2 + · · ·+ anX

n + · · ·

we plot the points

(i, vp(ai)) for i = 0, 1, 2, . . . ,

ignoring, as before, any points where ai = 0. The Newton polygon of f(X) is
again obtained by the “rotating line” procedure. In this case, however, things
are more complicated than in the case of polynomials. An example will do
more to explain what can happen than any number of generic descriptions.

Consider the power series

f(X) = 1 + pX + pX2 + pX3 + · · ·+ pXn + · · ·

The points we get are

(0, 0), (1, 1), (2, 1), (3, 1), . . .

Now, clearly the line can sweep unbroken until it is horizontal, but then we
have the following curious situation:

• none of the points (i, 1) are on our line (so there is nowhere to “break” it),
but

• if we rotate the line ever so slightly, some points will be left behind. More
precisely, for any positive slope ε there exists an i such that εi > 1, so that
the point (i, 1) is below the line y = εx.
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This means that we must amend our rules for obtaining the Newton poly-
gon to account for this possibility. So here are revised rules:

Start with the vertical half-line which is the negative part of the y-axis
(i.e., the points (0, y) with y ≤ 0). Rotate that line counter-clockwise until
one of the following happens:

i) The line simultaneously “hits” infinitely many of the points we have
plotted. In this case, stop, and the polygon is complete.

ii) The line reaches a position where it contains only one of our points (the
one currently serving as the center of rotation) but can be rotated no
further without leaving behind some points. In this case, stop, and the
polygon is complete.

iii) The line hits a finite number of the points. In this case, “break” the
line at the last point that was hit, and begin the whole procedure again.
Notice that the segment beginning at the last point hit may find itself
immediately in the situation of case (ii), so that there may be no further
change.

This procedure pretty much assumes that the power series is really a
series, rather than a polynomial. To handle the case of a polynomial in a
unified way, we would have to add one further stopping procedure: if the line
reaches the vertical position (after rotating 180 degrees), we stop. The New-
ton polygon of a polynomial will then end with an infinite vertical segment.

Notice that there are only three ways for the procedure to end:

i) the last segment contains an infinite number of points,

ii) the last segment contains a finite number of points, but can be rotated
no further,

iii) there is an infinite sequence of segments of finite length.

Problem 352 Can it happen that “the line can be rotated no further” from the very
beginning, so that the Newton polygon gets reduced simply to the negative half of the
y-axis?

Let’s look at a simple example. Take the power series

f(x) =
1

1− pX
= 1+ pX + p2X2 + p3X3 + · · ·+ pnXn + · · ·

The points (i, vp(ai)) are just

(0, 0), (1, 1), (2, 2), (3, 3), . . . , (i, i), . . .

We are in the first case above, and the polygon comes out to be a line of
slope one which contains infinitely many points (Figure 7.5).
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Figure 7.5: Newton polygon for 1 + pX + p2X2 + p3X3 + · · ·+ pnXn + · · ·

To work out the radius of convergence of this series, we need to compute

lim sup
n→∞

n
√
|an| = lim sup

n→∞
n
√
p−n = 1/p.

It follows that the series converges for |x| < p and diverges for |x| > p.
To handle the remaining case, notice that if |x| = p, then clearly |pnxn| =
p−npn = 1, and the series does not converge. As we will soon prove, the fact
that the Newton polygon ends in (in fact, is) a line of slope 1 is connected
with the fact that the region of convergence is the open ball of radius p1.

We have already seen an example of a series whose Newton polygon falls
into case (ii) above:

f(X) = 1 + pX + pX2 + pX3 + · · ·+ pXn + · · ·
In this case, the Newton polygon is a horizontal line (see Figure 7.6). Notice
that in this case

lim sup
n→∞

n
√
|p| = lim

n→∞ p−1/n = 1,

so that the radius of convergence is 1 = p0. Checking the special case shows
that if |x| = 1, then the series does not converge, so that once again the
region of convergence is an open ball, this time of radius 1.

We clearly need an example where the region of convergence is a closed
ball. To get one, let’s define a function �(n) = �logn�, where �·� is the
“greatest integer” or “floor” function (in words, �(n) is the greatest integer
which is less than or equal to logn). Then consider the power series

1 +
∞∑
n=1

p	(n)Xn = 1 +X +X2 + pX3 + · · ·
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Figure 7.6: Newton polygon for 1 + pX + pX2 + pX3 + · · ·+ pXn + · · ·

The points we want to plot are

(0, 0), (1, 0), (2, 0), (3, 1), . . . , (n, �(n)), . . .

If we use the rotating line procedure, we can certainly rotate the line unbroken
until it becomes horizontal (at which point it hits the first three points in our
list).

We claim the line can rotate no further. To see this, consider a line
through the point (2, 0) of some small positive slope ε; this will have equation
y = ε(x − 2). We want to see that there is a point (n, �(n)) below this line;
this translates to the assertion that we have �(n) < ε(n− 2) for some n. To
see that this is indeed the case, notice that for n > 2 we have

0 ≤ �(n)

n− 2
≤ logn

n− 2
,

and remember that

lim
n→∞

log n

n− 2
= 0.

It follows that

lim
n→∞

�(n)

n− 2
= 0,

which means that given any ε we can find an n0 such that �(n0)/(n0−2) < ε.
Rearranging, this says that �(n0) < ε(n0 − 2), which is what we wanted to
prove: any line of positive slope has some (most, in fact) of our points below
it. The conclusion is that the Newton polygon of our series is once again a
horizontal line. It is easy to see that the radius of convergence of this series
is 1, and that it does converge when |x| = 1, so that in this case the region
of convergence is the closed unit ball.
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Figure 7.7: Newton polygon for 1 +
∑

p	(n)Xn

Problem 353 Modify this last series slightly by changing the first few coefficients:

g(X) = 1 +
1

p
X +

1

p
X2 +

∞∑
n=3

p�(n)Xn.

What does the Newton polygon now look like?

The next lemma gives the connection (which we have been hinting at)
between the slope of the final segment and the radius of convergence.

Lemma 7.4.8 Let m be the sup of the slopes appearing in the Newton poly-
gon of a series f(X) = 1 + a1X + a2X

2 + · · · (so that m is either a number
or is +∞). Then the radius of convergence of the series is pm (which we
understand as +∞ if m = +∞).

Proof: Let |x| = pb with b < m. Let’s show directly that

f(x) = 1 + a1x+ a2x
2 + · · ·+ anx

n + · · ·

converges. For that, we need to prove that |aixi| goes to zero as i → ∞.
Since |x| = pb, we have |aixi| = |ai|pbi; translating to valuations, this says
vp(aix

i) = vp(ai) − bi. To show |aixi| goes to zero is the same as to show
its valuation goes to infinity, so we want to show that vp(ai) gets arbitrarily
larger than bi as i grows.

Now superpose the line y = bx on the Newton polygon of the series (see
Figure 7.8). Since the slope of the polygon eventually becomes larger than
b, the polygon eventually passes and then gets farther and farther above the
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y=bx

Figure 7.8: A Newton polygon and a line of slope b

line y = bx. The points (i, vp(ai)) are on or above the polygon, so it follows
that

vp(ai)− bi → ∞ as i → ∞,

and the series converges.
If m = +∞, we are done. If not, to show that pm is actually the radius

of convergence, we need also to check that if |x| = pb with b > m the series
does not converge. We leave that to the reader (just use the same idea).

Problem 354 Complete the proof of the lemma.

Of course, we would like to know the exact region of convergence: is it
the open or the closed disk of radius pm? That turns out to be a bit harder
to decide, so we’ll content ourselves with a partial answer:

Lemma 7.4.9 Let m be the sup of the slopes appearing in the Newton poly-
gon of a series f(X) = 1 + a1X + a2X

2 + · · · . Then:

i) If the polygon ends in an infinite segment of slope m which contains
infinitely many of the points (i, vp(ai)), then the region of convergence
is the open ball of radius pm.

ii) If the polygon contains an infinite number of segments of finite length,
then the region of convergence is the open ball of radius pm.

Proof: Suppose, first, that the polygon ends in an infinite segment of slope
m which contains an infinite number of the points (i, vp(ai)). This means
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that there is a subsequence i1, i2, . . . , ij, . . . such that vp(aij ) = k + mij ,
where k is some fixed constant. In absolute value notation, this says

|aij | = p−kp−mij .

To see that the region of convergence is the open disk of radius pm, what
we need to show is that the series fails to converge if |x| = pm. So suppose
|x| = pm. Then, along our subsequence, we would have

|aijxij | = p−kp−mijpmij = p−k.

Since this does not converge to zero, the series f(x) does not converge, and
we are done.

Now suppose the polygon has infinitely many line segments. Since the
sup of all the slopes is m, all of the segments will have slopes less than m,
and the slopes will form an increasing sequence converging to m. To handle
this case, we can use an argument similar to the one in the previous lemma:
the series will converge at a point x with |x| = pm if we have

lim
i→∞

|ai|pmi = 0,

or, in valuation notation, if vp(ai)−mi goes to infinity as i goes to infinity.
This would mean that the points in our polygon get arbitrarily far above the
line y = mx. But that clearly cannot happen.

Problem 355 Convince yourself that it “clearly cannot happen.”

Problem 356 Do the proofs we gave apply to the case where the polygon is just
the negative y-axis (i.e., where the “rotating line” can’t even leave its starting point)?
What conclusion should we get in that case?

Problem 357 The reader will have noticed that we avoided saying what the exact
region of convergence would be if the final segment does not contain infinitely many of
the points (i, vp(ai)). This case is complicated, as the two examples above show. Try
to come up with a criterion to decide what happens in this case.

Problem 358 Work out the Newton polygon and the region of convergence for each
of the series

i) 1 + pX + p4X2 + p9X3 + · · ·+ pn
2

Xn + · · ·
ii) 1 +Xp + pXp2 + p2Xp3 + · · ·+ pn−1Xpn + · · ·
iii) 1 +X + 2X2 + 3X3 + · · ·+ nXn + · · ·
iv) 1 +X + 1

4
X2 + 1

9
X3 · · ·+ 1

n2X
n + · · ·

Problem 359 (More examples.) Find the Newton polygons for the power series
defining the p-adic logarithm (you’ll need to divide by X first in order to get the
zeroth coefficient to be 1), for the power series defining the exponential, and for the
series for (1 +X)1/2 (you’ll want to assume p �= 2 for this one).
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We now want to go on to obtain power series versions of the results
describing how the Newton polygon carries information about the zeros of a
power series. The crucial insight, here, will be to notice that the arguments
we obtained for polynomials all work without change for power series: all we
need to do is to replace references to Proposition 7.2.3 with references to the
Weierstrass Preparation Theorem (more precisely, to Theorem 7.2.10).

Rather than simply send the reader back to check that our arguments
do work, let’s re-examine the discussion of the first segment of the Newton
polygon. So let

f(X) = 1 + a1X + a2X
2 + a3X

3 + · · ·

be a power series, and suppose that its Newton polygon has a first segment of
length i and slope m. Since we are dealing with series, we need to be careful
about what we want to assume about what goes on after this initial segment,
so let’s make the necessary assumptions specific. We assume that:

i) The points (0, 0) and (i,mi) are on the polygon, and the segment con-
necting them is part of the polygon, and

ii) either the polygon has a “break” at (i,mi) (i.e., it continues with a
different slope) or it continues with an infinite segment of slopem which
does not contain any more of the points (j, vp(aj)). In the former case,
we know that the series will converge on the closed ball of radius pm;
in the latter case, we will assume that it does.

The reason for these assumptions is really clear: we want to relate the
segment of slope m to the zeros on the closed ball of radius pm. The assump-
tions simply describe the two situations in which the series converges on that
closed ball.

One way to think about our special assumptions for the case when there
is an infinite line of slope m is that they give a definition for the length of
that segment. In other words, if the Newton polygon of a series ends in an
infinite portion of slope m we will say the length of that portion is � if �
is the distance between the x-coordinates of the first and last of the points
(n, vp(an)) which are on the line, provided that the series converges on the
closed ball of radius pm. (Recall that the convergence assumption implies
that there is a last such point.) Otherwise, we may want to say that the
length corresponding to slope m is zero.

Once we have made these assumptions we have the following. First, f(X)
converges on the closed ball of radius pm. Next all the points (j, vp(aj)) are
on or above the line y = mx, and the ones where j > i are strictly above it.
This translates to

• |aj |(pj)m ≤ 1 for all j,

• |ai|(pi)m = 1, and
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• |aj |(pm)j < 1 if j > i.

This says that ‖f(X)‖pm = 1 and that the maximum is last realized at degree
i. In other words, it puts us exactly in the same position as in the case of poly-
nomials: we can use the Weierstrass Preparation Theorem to conclude that
there is a polynomial g(X) of degree i and a power series h(X), satisfying
the inequality ‖h(X) − 1‖pm < 1, such that f(X) = g(X)h(X). Further-
more, we know that ‖f(X)− g(X)‖pm < 1, which implies that ‖g(X)‖pm =
‖f(X)‖pm = 1, so that g(X) is pure of slope m. Then, using what we know
about Newton polygons of polynomials, it follows that the zeros of f(X) in
the closed ball of radius pm coincide with those of g(X), which we already
know are all of absolute value pm. So we’ve got the same result as for polyno-
mials: if the first segment is of length i and slope m, then f(X) has exactly
i zeros of absolute value pm, and no zeros of smaller absolute value.

Thinking about what we just did suggests the following:

Proposition 7.4.10 Let

f(X) = 1 + a1X + a2X
2 + a3X

3 + · · ·
be a power series. Let m1, m2, . . . , mk be the first k slopes of the Newton
polygon of f(X), and assume that f(X) converges on the closed ball of radius
c = pmk . Let N be the x-coordinate of the right endpoint of the k-th segment
of the Newton polygon. Then there exist a polynomial g(X) of degree N and
a power series h(X) such that

i) f(X) = g(X)h(X),

ii) ‖f(X)− g(X)‖c < 1,

iii) h(X) converges on the closed ball of radius c,

iv) ‖h(X)− 1‖c < 1, and

v) the Newton polygon of g(X) is the same as to the portion of the Newton
polygon of f(X) contained in the region 0 ≤ x ≤ N .

Proof: By induction on k:
If k = 1, then we have the situation above, and we have already proved

the existence of g(X) and h(X).
Now assume the proposition is true for k − 1. Then we know there is

a polynomial g1(X) which is a factor of f(X) and whose Newton polygon
coincides with the first k − 1 segments of the polygon for f(X). We have
f(X) = g1(X)h1(X), and we know h1(X) has no zeros on the closed ball of
radius pmk−1 . Let’s go on, then, to consider the k-th segment.

First of all, the fact that the k-th segment ends at x = N says that for
any i > N the point (i, vp(ai)) lies above the line of slope mk through the
point (N, vp(aN )). As in our analysis of “the second segment” of the Newton
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polygon of a polynomial, it is easy to see that this means that ‖f(X)‖c =
|aN |cN and that |aN |cN > |ai|ci for any i > N . Therefore, we can apply the
Weierstrass Preparation Theorem to get a polynomial g(X). It is then easy
to see that g(X) is divisible by g1(X), and that its Newton polygon coincides
with the relevant portion of the Newton polygon of f(X).

Problem 360 Flesh out the details of the proof. The crucial point is that any zero
of g(X) must be either a zero of g1(X), and we know about those, or a zero of h1(X)
(and hence outside the ball of radius pmk−1). One needs to show that there are no
zeros of absolute value less than pmk , and the rest falls into place.

Corollary 7.4.11 Let

f(X) = 1 + a1X + a2X
2 + a3X

3 + · · ·
be a power series which converges on the closed ball of radius c = pm. Let
m1, m2, . . . , mk be the slopes of the Newton polygon of f(X) which are less
than or equal to m, and let i1, i2, . . . , ik be their lengths. Then, for each j,
f(X) has ij zeros with absolute value pmj , and there are no other zeros in
the closed ball of radius pm.

Proof: Clear, because we know this for polynomials, and the proposition
says that the relevant part of the Newton polygon of f(X) is the Newton
polygon of the polynomial g(X). Since g(X) is a factor of f(X) and the quo-
tient h(X) clearly has no zeros in the closed ball of radius pm, the conclusion
follows.

Problem 361 Is the following version of the last proposition true?

Possible Proposition Let

f(X) = 1 + a1X + a2X
2 + a3X

3 + · · ·
be a power series which converges on the closed ball of radius c = pm. Let N be the
integer defined by the conditions

‖f(X)‖c = |aN |cN and |an|cn < |aN |cN if n > N.

Then there exist a polynomial g(X) of degree N and a power series h(X) such that

i) f(X) = g(X)h(X),

ii) ‖f(X)− g(X)‖c < 1,

iii) h(X) converges on the closed ball of radius c,

iv) ‖h(X)− 1‖c < 1, and

v) the Newton polygon of g(X) is the same as the portion of the Newton polygon
of f(X) contained in the region 0 ≤ x ≤ N .

Furthermore, all the slopes in this portion of the Newton polygon of f(X) will be less
than or equal to m.



8 Fun With Your New Head

We’ve gone about as far as we want to go, but the reader may enjoy exploring
further. In this final chapter we collect various problems that might be worth
exploring. Several of these require more background than we have assumed
throughout the book. Just ignore the ones you don’t understand.

No hints will be supplied for these (it would spoil the fun!) beyond re-
marking that some of them are very much harder than others. . .

1 We first described p-adic numbers as base p representations that are al-
lowed to be infinitely long “to the left.” What happens if we do that for base
ten expansions? What can you say about the ring of 10-adic integers?

2 Suppose K is a field with a nontrivial non-archimedean valuation. Let OK

be the valuation ring and p be the maximal ideal in OK . Show that either p
is principal or p2 = p and OK is not Noetherian.

3 When we discussed ways of visualizing Qp, we focused on topological
equivalence. Explore the following alternative point of view. In Chapter 1,
we drew pictures representing a p-adic integer as the limit of a coherent
sequence of integers: see Figures 1.1 and 1.3. To see all of Zp this way, we
draw a tree: from the root there are p branches (one for each possible choice
of α1 ∈ Fp), then each vertex has p branches (one for each lift of α1 to Z/p

2Z),
etc. Then a p-adic integer is an infinite path down that tree. Explore this
idea. Can we see the topology? The metric? Can we extend the picture to
all of Qp? (This is the approach discussed in [37].)

4 Let x ∈ Qp, x �= 0. Show that x ∈ Z×
p if and only if xp−1 is an n-th power

for infinitely many n ≥ 1. Use this to show that there are no nontrivial
field automorphisms Qp −→ Qp. (The point is that the first result gives a
characterization of the p-adic units in Qp in terms of field operations only.)
If you need help, see [53, I.6.8].

5 We have done very little linear algebra over a p-adic field. Of course, the
elementary theory doesn’t change. It might be interesting to study invert-
ible matrices over Qp or Zp. These are groups but they inherit topological
structures as well. Find out more about them. (One advanced source is [58].)
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6 (This problem was proposed in the American Mathematical Monthly by
Nicholas Strauss and Jeffrey Shallit. A solution by Don Zagier, using 3-adic
methods, appeared in the January, 1992 issue.)

If k is a positive integer, let v(k) = v3(k) be the 3-adic valuation. For
each positive integer n, let

r(n) =

n−1∑
i=0

(
2i

i

)
.

Prove that

• v(r(n)) ≥ 2v(n), and

• v(r(n)) = v

((
2n

n

))
+ 2v(n).

Zagier’s solution generalizes and extends this statement, and even formulates
a conjecture at the end, so make sure to check it out after you’ve solved the
problem.

7 On page 99 we raised the possibility of a version of Hensel’s Lemma for
Polynomials that still worked when the approximate factors were not rela-
tively prime modulo p. What would that theorem say? Can you prove it?
(There is a sketch in [52].)

8 Prove that for every positive integer k, we have

∞∑
n=0

nkpn ∈ Q.

(The assertion is that the series converges, and that the sum is a rational
number.)

9 Ostrowski’s Theorem 3.1.4 tells us all the absolute values over Q, and the
product formula 3.1.5 tells us that there are some relations between differ-
ent absolute values. The Strong Approximation Theorem is a result in the
opposite direction: it says that we can always find a rational number that
satisfies finitely many arbitrary local conditions and is a p-adic integer at all
other primes.

Let S be a finite set of primes, and for each p ∈ S let ap ∈ Qp. For any
ε > 0 there exists an a ∈ Q such that

i) For any prime p ∈ S we have |a− ap|p < ε.

ii) For any prime p /∈ S we have |a|p ≤ 1.

Find a proof. It might also be interesting to research the weak approximation
theorem to see what the differences are.



273

10 In Chapter 5 we saw examples of rational squares x = y2 such that the
binomial series B(1/2, x) converges to y in R and to −y in Qp. How far can
one push this?

i) Can you find an example of a series that converges in Qp for all p ≤ ∞,
but whose sum is different each time?

ii) Can you find an example of a series that converges in Qp for all p ≤ ∞,
but whose sum is the same rational number in every case? (Of course,
a polynomial works, but that’s not a fair example.)

11 Let f(X) be a formal power series

f(X) = 1 + a1X + a2X
2 + a3X

3 + . . .

with an ∈ Qp. Consider the power series

(f(X))p

f(Xp)
= 1 + b1X + b2X

2 + b3X
3 + . . . .

Show that the following are equivalent:

i) an ∈ Zp for all n ≥ 1;

ii) bn ∈ pZp for all n ≥ 1.

This was first proved by Dieudonné and later generalized by Dwork.

12 Let exp(X) be the formal power series for the exponential and let

h(X) =

∞∑
n=0

Xpn

pn
.

Define a new series AH(X) as the formal composition

AH(X) = exp(h(X)).

Show that AH(X) has coefficients in Zp, so that AH(x) converges when
|x| < 1.

One way to show this is to use the lemma in the previous problem. The
function AH(x) is known as the Artin–Hasse exponential, and it is discussed
in more detail in many of the more advanced texts. For example, there is an
extended discussion in [53, VII.2].

13 We might consider a slightly more complicated function related to the
Artin–Hasse exponential AH(x) considered in the previous problem. Define
a formal power series

ep(X) = exp(X +Xp/p).

8 Fun With Your New Head



274 8 Fun With Your New Head

If x is small enough, ep(x) = expp(x) expp(x
p/p), but the region of conver-

gence of ep(X) is larger than that of the exponential. Figure out what it
is.

The functions ep(x) were first studied by Dwork. The function in Prob-
lem 161 is e2(−2x).

14 Suppose X is a metric space. We say X has the Baire property if any
countable union K of closed subsets Kn without interior points cannot have
an interior point. (Remember that a point x ∈ K is interior if there exists
an open ball such that x ∈ B(x, r) ⊂ K.)

i) Show that any complete metric space has the Baire property.

ii) Show that any locally compact metric space has the Baire property.

iii) Show that Qp does not have the Baire property.

This alternative way of showing Qp is neither complete nor locally compact
is used in [53, III.1.4].

15 We mentioned that for a given degree n there are only finitely many field
extensions K/Qp of degree n. (Specifically, in a fixed algebraic closure Qp

there are finitely many subfields of degree n over Qp.) Use Theorem 6.8.3 to
prove this. (This is the proof given in [53, III.1.6]. See also [49].)

16 Consider the function g : Z+ −→ Z defined by g(n) = n!.

i) Show that there is no continuous function g̃ : Zp −→ Zp that extends
g, i.e., such that g̃(n) = n! when n is a positive integer.

ii) Modify the function g by “removing the p-part”, i.e., define a new
function that sends n to the product of the integers less than n that
are not divisible by p:

gp(n) =
∏

1≤k≤n
p�k

k.

Can gp(n) be extended to Zp? If not, would a “twist” help?

17 In C, it is trivial to see that any analytic function (even any continuous
function) is bounded on any closed ball, because closed balls in C are compact.
In Cp, closed balls are no longer compact. Nevertheless, the boundedness
result is still true: show that if f(X) is a power series converging on a closed
ball of radius r, then f(X) is bounded on B(0, r). In fact, show that f(X)
has a maximum (rather than just a sup) on B(0, r).
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18 Let f(X) be a power series converging on the closed ball of radius r. By
the previous problem, f(X) is bounded. Show that

max
x∈B(0,r)

|f(x)| = max
|x|=r

|f(x)|.

We might want to read this as “the maximum occurs at the boundary,” even
though we know that the sphere is not the boundary of the closed ball. (This
is the p-adic analogue of the “maximum modulus principle.”)

19 Corollary 5.6.5 showed that there are no non-constant periodic p-adic
analytic functions. How about a multiplicative version of periodicity: can a
p-adic analytic function satisfy f(qx) = f(x) for all x and some fixed “period”
q?

20 Suppose fn(X) is a family of power series satisfying:

i) All of the fn(X) converge in the closed ball of radius ρ > 1 around the
origin.

ii) There exists a bound B such that ‖fn(X)‖ρ ≤ B for all n.

iii) There exists a power series f(X) such that the series fn(X) converge to
f(X) with respect to the norm ‖ ‖1 (or, what is the same, coefficient-
by-coefficient).

Show that f(X) converges in the open ball of radius ρ, and that the fn(X)
converge to f(X) with respect to the norm ‖ ‖c for any c < ρ.

21 How close do two power series need to be in order to allow us to conclude
that they have the same number of zeros in the closed ball of radius r around
0? (This question is deliberately open-ended.)

22 We focused on functions defined by power series, but we could have also
considered functions defined by Laurent series

f(X) =
∑
n≥n0

anX
n.

Of course, if n0 < 0 we can no longer evaluate this at X = 0, but we can
consider convergence in an annulus {x | r < |x| < R}. What would such a
theory look like? What would correspond to an entire function would be a
series that converges on C×

p ; are there any?

23 Prove that 2p−1 ≡ 1 (mod p2) if and only if p divides the numerator of

p−1∑
j=1

(−1)j

j
.

8 Fun With Your New Head
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24 (From [48].)

i) Let f(X) = 1−Xp−1, and define

m(f, k) = sup{|f(x)| : x ∈ Qp, |x| = pk}.
Compute m(f, k) for each k ∈ Z. Does the answer change if we let
x ∈ Cp instead?

ii) Find a sequence of integers h1, h2, . . . , hk, . . . such that if we set

fk(X) = f(X) · (f(pX))h1 · (f(p2X))h2 · · · (f(pkX))hk ,

then we have

sup{|fk(X)| : x ∈ Qp, |x| ≤ pk} = 1.

iii) Use this to construct an example of an entire function which is bounded
on Qp. What happens if we go to Cp?

The point, of course, is that in classical complex analysis Liouville’s Theorem
says that there are no non-constant bounded entire functions.

25 Consider the function (stolen from [45]) f : Zp −→ Zp which maps

x = a0 + a1p+ a2p
2 + a3p

3 + · · ·+ anp
n + · · ·

to
f(x) = a0 + a1p+ a2p

4 + a3p
9 + · · ·+ anp

n2

+ · · ·
Is this function continuous? Is it differentiable? Can you extend it to Qp?
To Cp?

26 (Also from [45], but originally due to Dieudonné; see [24].) In the same
spirit as the previous problem, consider g : Zp −→ Zp which maps

x = a0 + a1p+ a2p
2 + a3p

3 + · · ·+ anp
n + · · ·

to
g(x) = a20 + a21p+ a22p

2 + a23p
3 + · · ·+ a2np

n + · · ·
(Notice that this will not be a “p-adic expansion,” because the coefficients
are not necessarily between 0 and p− 1, but it clearly does converge, so that
the definition makes sense.) Show that if p �= 2 the function g is continuous
but not differentiable on Zp. What happens if instead of squaring we use
some other function to change the digits?

27 Suppose f is a continuous function on Zp. Consider the values

an =

n∑
k=0

(−1)k
(
n

k

)
f(n− k).



277

• Explain the significance of the an. (Notice that they depend only on f(n)
for n a positive integer.)

• Define a formal series

f∗(X) =

∞∑
n=0

an

(
X

n

)
.

Show that if m is a positive integer, then f∗(m) = f(m).

• Suppose that an → 0 as n → ∞. Show that f∗(x) converges uniformly
for x ∈ Zp, and is a continuous function of x. Conclude that in this case
f∗ = f .

• Show that if f is continuous on Zp, then an → 0 as n → ∞. (This is quite
hard; see Mahler’s book for a detailed proof.)

• You know several functions that are continuous on Zp. Can you determine
the numbers an for those functions?

This problem gives an approach to the interpolation problem developed by
Mahler in [45]. If we know f(n) for n a positive integer and we can show
that the an tend to zero, then it gives a way of constructing an interpolating
function.

28 In the classical situation, Rolle’s Theorem tells us that there is some
relation between the number of zeros of a function and the number of zeros
of its derivative. Of course, Rolle’s Theorem is a special case of the Mean
Value Theorem, so it is not true in the p-adic context. But maybe we have
a chance with functions defined by power series. Suppose f(x) is a function
defined by a power series convergent on some closed ball centered at 0 and
let f ′(x) be its derivative. Compare the number of zeros of f(x) and f ′(x) on
that ball. (This is made-to-order for the Weierstrass Preparation Theorem
and/or Newton polygons.)

29 The classical Weierstrass Approximation Theorem says that any contin-
uous function on a closed interval can be uniformly approximated by poly-
nomials. Is there a (true) p-adic analogue?

30 We didn’t explore Galois theory at all. Suppose K is a finite extension
of Qp. Are there any restrictions on the Galois group Gal(K/Qp)? Or is any
finite group possible?

8 Fun With Your New Head



A Sage and GP: A (Very) Quick

Introduction

Mathematical software is part of the standard toolkit of mathematicians.
Throughout this book we use the programs Sage and gp to show how to do
computations with p-adic numbers. The goal of this appendix is to provide
some basic orientation on the two programs, including where to get them.
Both programs are free, both can be used online or installed on your own
machine, both are very powerful, and both take some time to learn.

The two programs are different in several ways. gp is mostly intended for
use by number theorists, while Sage wants to tackle all kinds of mathematics.
Indeed, Sage has incorporated the functionality of many other free mathe-
matics programs, including Maxima, Octave, R, GAP, and even gp itself.
Sage usually runs in a browser window, while gp is more old-fashioned and
usually runs in a terminal window. I learned gp first, and it’s still my go-to
program for quick computations, but lately I have been trying to teach my
students to use Sage.

Of course, there are other mathematical software tools. Both Maple and
Mathematica are well-known and quite powerful. The people who makeMath-
ematica are also behind Wolfram Alpha, which can do lots of mathematics
as well. These can all do some of the things we do in this book, but I have
decided to focus on gp and Sage because they are free and I know how to
use them.

A.1 Pari and GP

The interactive calculator gp was designed to serve the needs of people work-
ing in number theory. It is actually a front end for a software library called
Pari, which can be used to create mathematical programs in C and C++.
(Such programs are faster than using gp, but for most things gp is fast
enough.)

Pari and gp were created by Henri Cohen and his team in 1985 and it has
continued to grow since them. The current chief developer is Karim Belabas,
who has many collaborators. The Pari-gp system is still actively developed,
with new features being added and bugs being fixed all the time. The home
web site for Pari-gp is pari.math.u-bordeaux.fr. That’s where you go to
download it, but you can also find a lot of information there.
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The normal way to use gp is to download and install it on your computer.
The installer will usually create an icon on your desktop; clicking that icon
opens a terminal window where you will see something like this, with the
obvious variations as to version and operating system:

GP/PARI CALCULATOR Version 2.11.2 (released)

amd64 running mingw (x86-64/GMP-6.1.2 kernel) 64-bit version

compiled: Apr 28 2019, gcc version 6.3.0 20170516 (GCC)

threading engine: single

(readline v6.2 enabled, extended help enabled)

Copyright (C) 2000-2018 The PARI Group

PARI/GP is free software, covered by the GNU General Public

License, and comes WITHOUT ANY WARRANTY WHATSOEVER.

Type ? for help, \q to quit.

Type ?17 for how to get moral (and possibly technical)

support.

parisize = 8000000, primelimit = 500000

gp >

Some things to note:

• The last line is a prompt : gp expects you to type in some instruction and
then hit the enter/return key. Prompts are configurable; on my machine
it is gp >

• If you type \q and hit enter/return you will exit the program.

• If you type a question mark or a question mark followed by a number you
will get (some) help.

Let’s try something simple.

(15:15) gp > 25!

%1 = 15511210043330985984000000

Notice that gp understands the factorial notation and is not afraid of com-
puting large numbers. Also notice that it uses %1 to label the result. You
can later refer to this number by that name if you want to. Or you can give
it a name.

gp > a=44/5

%2 = 44/5
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The basic philosophy of gp is that it assumes the numbers you enter are
in the simplest setting that makes sense. In this case, gp assumes that you
mean the rational number 44/5. If you want the decimal version (i.e., the real
number), you can either make it a decimal from the beginning or multiply it
by 1.0.

gp > b=44.0/5

%3 = 8.8000000000000000000000000000000000000

gp > a*1.0

%4 = 8.8000000000000000000000000000000000000

Real numbers are presented with a default precision, in this case 38 significant
digits. You can enter polynomials in the usual way.

gp > p=x^2-2*x+1

%5 = x^2 - 2*x + 1

gp > q = x^2 - 3*x + 2

%6 = x^2 - 3*x + 2

gp > p*q

%7 = x^4 - 5*x^3 + 9*x^2 - 7*x + 2

gp > p/q

%8 = (x - 1)/(x - 2)

Notice that the quotient of two polynomials is a rational function, given in
lowest terms. What if we try something strange?

gp > log(p)

%9 = -2*x - x^2 - 2/3*x^3 - 1/2*x^4 - 2/5*x^5 - 1/3*x^6

- 2/7*x^7 - 1/4*x^8 - 2/9*x^9 - 1/5*x^10 - 2/11*x^11

- 1/6*x^12 - 2/13*x^13 - 1/7*x^14 - 2/15*x^15 + O(x^16)

As usual, gp makes the most reasonable interpretation of what you want,
and returns the Taylor series. (The output is actually one long line, which I
have broken up to make it easier to read.)

We can enter numbers modulo m and do operations with them.

gp > Mod(234,37)

%10 = Mod(12, 37)

gp > %10^16

%11 = Mod(9, 37)

gp > 1/%10

%12 = Mod(34, 37)

gp > Mod(5,12)/Mod(3,12)

*** at top-level: Mod(5,12)/Mod(3,12)

*** ^----------

*** _/_: impossible inverse in Fl_inv: Mod(3, 12).

Notice that gp understands “dividing” by amodm, but of course, the number
you are dividing by needs to be invertible in Z/mZ.
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gp > Mod(12,37)^36

%13 = Mod(1, 37)

Ah, it’s good to see that Fermat’s Little Theorem is still true.
All gp constructions are iterative, so you can construct polynomials with

coefficients in Z/37Z and so on. Things can break if you overdo it (for
example, power series in x whose coefficients are power series in y can be
problematic), but generally it all works well. Polynomials in two variables are
handled in this spirit: elements of R[x, y] are handled by default as elements
of R[y][x]:

gp > (1+x)*(1+y)^2

%14 = (y^2 + 2*y + 1)*x + (y^2 + 2*y + 1)

This means that x has “higher priority” than y by default. The priority order
can be adjusted; see the manual.

Factoring is straightforward, even for reasonably large numbers:

gp > factor(42)

%15 =

[2 1]

[3 1]

[7 1]

gp > factor(2^67-1)

%16 =

[ 193707721 1]

[761838257287 1]

If the input of factor is a polynomial, that’s fine too.

gp > factor(x^3+x)

%17 =

[ x 1]

[x^2 + 1 1]

Here’s an example of a polynomial with coefficients in Z/37Z. It’s usually
easier to write the polynomial with integer coefficients and then multiply by
1 mod 37 to make the coefficients be in Z/37Z

gp> factor(Mod(1,37)*(x^3+x))

%18 =

[ Mod(1, 37)*x 1]

[ Mod(1, 37)*x + Mod(6, 37) 1]

[Mod(1, 37)*x + Mod(31, 37) 1]

Notice that the output of factor is a matrix whose first column gives the
prime divisors and whose second column gives the multiplicities.
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What if we ask for help?

gp > ?

Help topics: for a list of relevant subtopics, type ?n for n in

0: user-defined functions (aliases, installed and user

functions)

1: PROGRAMMING under GP

2: Standard monadic or dyadic OPERATORS

3: CONVERSIONS and similar elementary functions

4: functions related to COMBINATORICS

5: NUMBER THEORETICAL functions

6: POLYNOMIALS and power series

7: Vectors, matrices, LINEAR ALGEBRA and sets

8: TRANSCENDENTAL functions

9: SUMS, products, integrals and similar functions

10: General NUMBER FIELDS

11: Associative and central simple ALGEBRAS

12: ELLIPTIC CURVES

13: L-FUNCTIONS

14: MODULAR FORMS

15: MODULAR SYMBOLS

16: GRAPHIC functions

17: The PARI community

Also:

? functionname (short on-line help)

?\ (keyboard shortcuts)

?. (member functions)

Extended help (if available):

?? (opens the full user’s manual in a dvi previewer)

?? tutorial / refcard / libpari

(tutorial/reference card/libpari manual)

?? refcard-ell

(or -lfun/-mf/-nf: specialized reference card)

?? keyword (long help text about "keyword" from the user’s

manual)

??? keyword (a propos: list of related functions).

The next step is to make a more specific request for help, say with ?5 or
?gcd. As that list shows, gp can do a lot.

While the default way to use gp is in a terminal window, a browser-based
version also exists. You can access it at pari.math.u-bordeaux.fr/gp.html
It is also possible to use the Sage Cell Server (see below) in gp-mode to do
quick computations.

There is a lot more to say, but that should get you started. At the Pari-gp
home page you can find a tutorial and a user’s manual. There are also email
lists where you can ask for help if necessary.

https://pari.math.u-bordeaux.fr/gp.html
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A.2 Sage

Sage is an ambitious attempt to create powerful mathematical software that
is free and open-source. The ultimate ambition, says the Sage home page
at www.sagemath.org, is to create “a viable free open source alternative to
Magma, Maple, Mathematica and Matlab.” (I’d say that they are very
close to that, and in some aspects well beyond.) The development approach
emphasizes openness: while William Stein is the leader of the team, contri-
butions have come from across the mathematical community.

Sage can be used through a web interface, without needing to download
and install the program. There are two ways to do that: either the Sage
Cell Server at sagecell.sage.org or the more elaborate interface based on
projects and notebooks offered by CoCalc, which is located at cocalc.com. It
is also possible to download and install the program on your own computer.
When you do, you can run Sage in a terminal window or you can run it
in your browser. The latter is much like using CoCalc, but the program is
running on your local machine.

Of the two web interfaces, the Sage Cell Server is particularly easy to use
for small computations. It presents the user with a big blank rectangle where
one can type in Sage commands. Below is a button labeled “Evaluate,” which
does exactly that. The output appears below. The downside is that Sage
will not remember what you did, so if you define a symbol and then press the
“Evaluate” button, you cannot use it again without repeating the definition.

There are two very nice features of the Cell Server that deserve note.
First, it works on a tablet or phone. Second, because Sage incorporates gp
and other open-source mathematical software, the Cell Server can be put into
gp mode to do computations in gp. I have also used it in R mode. The mode
switcher is at the bottom right of the input window.

CoCalc requires creating an account. Once you log in to your account,
you can create projects, and each project can contain many notebooks. Note-
books allow you to enter lines of Sage code, which are evaluated when you
hit Shift-Enter. Definitions and results are remembered within each session.

If you are going to use the program a lot, then of course the right thing
to do is to download and install it. It takes quite a bit of space, but having
it on your own machine avoids connectivity issues.

In mathematical terms, there is an important philosophical difference
between gp and Sage. In gp, as we noted, the program assumes (or guesses)
the mathematical context for the objects you create, i.e., whether they are
integers, rational numbers, polynomials, etc. Sage, on the other hand, prefers
to be told. You do that by creating a ring or field (or something else) in
which you then do computations. Several standard rings and fields have
preset names: the integers, rationals, reals, and complexes are, respectively
ZZ, QQ, RR, CC, for example. Finite fields are GF(p^n) and the p-adic numbers
are Qp(p), where in each case you put in actual numbers for p and n (and p
must be prime).

http://www.sagemath.org
http://sagecell.sage.org
http://cocalc.com
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Time to show some examples. You can find many more in A Tour of
Sage, which is available online.

The basic “calculator” commands work as expected. Entering

3 + 5

57.1^100

into the Sage Cell Server and hitting “Evaluate” will produce

8

4.6090436866139440331100747777535910369 E175

You can get some space between the two lines of output by adding print(" ")

between the two commands. Here we find the inverse of a matrix:

matrix([[1,2],[3,4]])^(-1)

results in

[ -2 1]

[ 3/2 -1/2]

Notice that you can enter a matrix by providing a list in brackets containing
the rows as lists in brackets. (There are other ways; most things in Sage
can be done in several different ways.) I didn’t specify the ring in which the
coefficients live; Sage assumed they were integers. To tell it otherwise, you
would do something like this

A=matrix(GF(11),[[1,2],[3,4]])

print(A.inverse())

[9 1]

[7 5]

Let’s try some calculus:

x = var(’x’)

f=integrate(sqrt(x)*sqrt(1+x), x)

That may surprise you: there would be no output at all. Sage has been told
x is a variable and to assign the symbol f to the answer. It does, but doesn’t
print anything out. To see the answer you need to say

x = var(’x’)

f=integrate(sqrt(x)*sqrt(1+x), x)

print(f)

The result now is

1/4*((x + 1)^(3/2)/x^(3/2)

+ sqrt(x + 1)/sqrt(x))/((x + 1)^2/x^2

- 2*(x + 1)/x + 1) - 1/8*log(sqrt(x + 1)/sqrt(x) + 1)

+ 1/8*log(sqrt(x + 1)/sqrt(x) - 1)
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That answer is very hard to read. It’s good to know that you can also do it
like this:

x = var(’x’)

f=integrate(sqrt(x)*sqrt(1+x), x)

show(f)

That gives something like this:

(x+1)
3
2

x
3
2

+
√
x+1√
x

4
(

(x+1)2

x2 − 2 (x+1)
x + 1

) − 1

8
log

(√
x+ 1√
x

+ 1

)
+

1

8
log

(√
x+ 1√
x

− 1

)

There is also latex(f), which is what I did to get the LATEX code to typeset
the result. While show produces output that is nicer to look at, the output
of print is easier to cut-and-paste. In general, it’s best to ask Sage to either
print or show the outputs you want to see.

I should remark that there are subtle differences between writing f= as
above and writing f(x)=. The Sage Tutorial is helpful on this issue.

As mentioned above, Sage likes to know in what ring it is working. Indeed,
it will assume one if you don’t give it one.

M=matrix([[1,2], [3,4]])

print(M.base_ring())

results in

Integer Ring

That is, Sage has assumed your matrix lives in M2(Z). This affects some of
the results you can get, though, as you saw above, Sage is happy to move to
M2(Q) when you ask for the inverse matrix.

You can tell Sage to work in a specific ring by adding its name to the
command that creates the matrix:

M=matrix(CC,[[1,2], [3,4]])

print(M.base_ring())

print(M)

results in

Complex Field with 53 bits of precision

[1.00000000000000 2.00000000000000]

[3.00000000000000 4.00000000000000]

Notice that a complex number is a + bi with a, b ∈ R, so that both a and b
will be printed as real numbers, i.e., as decimal expansions.

If you are going to work for a while in a given ring, or you don’t want to
have to write out something like IntegerModRing more than once, you can
give your ring a name and use it:
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R=IntegerModRing(24)

M=matrix(CC,[[1,2], [3,4]])

print(M.base_ring())

print(M)

gives

Ring of integers modulo 24

[1 2]

[3 4]

Many commands in Sage use the object-oriented A.something() format
as above; sometimes you need to put something into the parentheses, but
often they just need to be there. One advantage of CoCalc and the terminal
interface is that if you type A. and then hit the Tab key, you will get a list
of possible continuations. Here’s a selection of matrix commands with the
corresponding output after a line break:

M=matrix(QQ,[[1,2], [3,4]])

print(M)

[1 2]

[3 4]

M.characteristic_polynomial()

x^2 - 5*x - 2

M.column_space()

Vector space of degree 2 and dimension 2 over Rational Field

Basis matrix:

[1 0]

[0 1]

Without the QQ, the column_space function would return a free Z-module of
rank two rather than a vector space.

M.determinant()

-2

If you ask for eigenvalues of a matrix defined over Q, Sage may well give
them as real or complex numbers, however.

M.eigenvalues()

[-0.3722813232690144?, 5.372281323269015?]
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Or you can ask it to find eigenvectors too, but with a catch:

M.eigenspaces_right()

[

(-0.3722813232690144?, Vector space of degree 2 and dimension 1

over Algebraic Field

User basis matrix:

[ 1 -0.6861406616345072?]),

(5.372281323269015?, Vector space of degree 2 and dimension 1

over Algebraic Field

User basis matrix:

[ 1 2.186140661634508?])

]

The problem is that Sage can think of matrices acting on vectors on the right
or on the left, and the eigenspaces (but not the eigenvalues) are different. If
you just call M.eigenspaces(), you get an error. Similarly, there are both
M.left_kernel() and M.right_kernel().

That’s probably enough to start. To learn more, start with the Sage
Tutorial, which is at doc.sagemath.org/html/en/tutorial. See also [68],
which is available online as well as in print. There’s a lot more helpful
documentation online.

http://doc.sagemath.org/html/en/tutorial


B Hints, Solutions, and Comments

on the Problems

This appendix contains hints, solutions, and comments of several kinds for the
various problems set in the main text. There are only a few complete solutions
here; rather, the intention is to provide a jump-off point for a solution, and
perhaps to discuss the implications of some of the problems. Full solutions
are given only when they are particularly tricky. Some of the comments even
suggest further problems!

The hints and partial solutions become sketchier as we move toward the
latter part of the book, in the expectation (or hope) that the experience and
ability of the reader will increase. In many cases we have given references to
where more details can be found.

1 The formula for the sum of the geometric series says that

1 + a+ a2 + a3 + a4 + · · · = 1

1− a

provided that |a| < 1. This can be used directly for the first expansion. For
the third, write X − 1 = 1+ (X − 2) and use a = −(X − 2) in the geometric
series.

These are, of course, easy to do with Sage. To do the third one, for
example, the command would be taylor(x/(x-1),x,2,12). (Note, however,
that Sage can’t resist writing 2− (x− 2) as 4−x; the other powers of (x− 2)
are not expanded.) And yes, this works for the series centered at 1 as well.

2 If the expansion is finite, it will certainly become a polynomial after we
multiply by (X − α)m, where m is the biggest exponent appearing in a de-
nominator.

3 The sum is easy:∑
i≥n0

ai(X − α)i +
∑
i≥n0

bi(X − α)i =
∑
i≥n0

(ai + bi)(X − α)i

(why can we assume the two series start at n0?). The product takes only a
little more work:⎛

⎝∑
i≥n0

ai(X − α)i

⎞
⎠
⎛
⎝∑

i≥n0

bi(X − α)i

⎞
⎠ =

∑
i≥2n0

ci(X − α)i,
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where the new coefficients are given by

ci =
∑

i1+i2=i

ai1bi2 ,

which is a finite sum because the negative exponents only go back so far.
Most of the field properties are easy to check; for the existence of inverses,
one has to show that the equations for the coefficients of the product can be
solved to find the coefficients of the inverse.

4 Well, y and −y have to add up to zero, so we just make an expansion that
does that. Let’s do an example first.

Let p = 5 and y = 120 = 440 = 0+4× 5+4× 52. The zeroth digit of −y
will be 0 again, so that the sum has zero last digit. The first digit will have
to produce a zero when we add 4, so it will be a 1, since 4+ 1 = 10. So far
we have −y = 0+ 1× 5+ . . . . When we add y and −y, the first digit will be
0, and we will have to carry a 1 to the second (i.e., the 52) place. So now we
want to set the digit so the sum is 4, so that adding the carry makes 5 = 10.
So the second digit is 0, and −y = 0 + 1 × 5 + 0 × 52 + · · · = . . . 010. Now
we have run out of digits of y, but we have a 1 to carry to the third place.
So we need to put a 4 for that digit of −y, so that adding the carry we get 5
again. And we’ll have to do that over and over. So

−y = 0 + 1× 5 + 0× 52 + 4× 53 + 4× 54 + · · · = . . . 44444010.

The rule should now be clear. Leave any leading zeros alone. If ak is the
first (i.e., lowest power of p) nonzero digit, replace it by p− ak. Then for all
� > k replace a	 by p − 1 − a	. So the recipe is: take the p-complement of
the first nonzero digit and the (p− 1)-complement of all higher digits. If the
expansion is finite, we think of it having infinitely many zero digits, so the
negative will start with an infinite string of (p− 1)s.

5 Imitate the definitions for Laurent series, but watch out for carrying.
That’s doable, but proving that the result is a field gets tangled up in the
trickiness of the carries.

So here are two suggestions of ways to make it easier. One idea, which
is in fact the way Hensel did it originally, is to define an “irregular p-adic
number” to be any expansion of the form

a0 + a1p+ a2p
2 + · · ·+ anp

n + . . . ,

with no restriction on the ai except that they be non-negative integers. It’s
then very easy to define the sum and product of irregular p-adic numbers by
using the same formulas as with Laurent series. Then we need a theorem
that says that any irregular p-adic number can be reduced to a regular p-adic
number. The process would be something like this: beginning with a0, write
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out each coefficient in base p, and rearrange the series accordingly. What
needs to be proved is that this is all well-defined. (A harder question is
whether the process can actually be done in a finite amount of time!)

Another option is to work like this: start with a p-adic number x, and
factor out a power of p so that we have x = a0 + a1p+ . . . (a0 may be equal
to 0, of course). It’s clear that it is enough to define the sum and product of
such numbers (because we then factor the powers of p back in). Now, given
such an x, let xn be its truncation at pn, so that

xn = a0 + · · ·+ anp
n.

Now note that xn is an integer, and we know how to add and multiply
integers! Then define the sum and the product of two p-adic numbers by the
rule

(x+ y)n = (xn + yn)n and (x · y)n = (xn · yn)n
(i.e., multiply the truncations, and truncate the result). Once you’ve checked
that all these truncations of x+y and x·y “match,” you can put them together
to get a p-adic number. You need to check that this number is uniquely
defined, i.e., that two p-adic numbers which have the same n-truncations for
every n must be equal. This gives the operations. (You’ve still got to check
the field properties!)

Note: what is really going on here is that we want to deduce the oper-
ations in Qp from operations in Q (and even in Z); truncation is the lazy
way to do it, since it frees us from having to work out the carrying business
explicitly, but it forces a bit of mumbo-jumbo. The difficulty of proving the
field properties when we use a formal definition of Qp is one of the reasons
for the more conceptual theory we’ll develop in the next chapter.

Note2: Of course, the computer programs that know how to compute with
p-adic numbers “know” a way to do it. But those algorithms are allowed to
assume that Qp is a field, while here we are trying to use the algorithms to
prove it is. Possible, but a pain.

6 Suppose first that the expansion is purely periodic, so that there is a
repeating block a0 + a1p+ · · ·+ ak−1p

k−1 with k digits. Let A = a0 + a1p+
· · ·+ ak−1p

k−1. Then, taking the expansion of y in blocks of k digits, we get

y = A+Apk +Ap2k + . . .

From that, y−pky = A, which gives y = A/(1−pk), which is rational. Notice
that A is positive and 0 ≤ A < pk and −pk < 1 − pk < 0, so y is a negative
rational number between −1 and 0.

In the same spirit, suppose the expansion is eventually periodic. Then
y = B + p	y1, where B is the non-repeating block and y1 is purely periodic.
Since y1 = A/(1− pk) as above, we see that y ∈ Q as well.

B Hints, Solutions, and Comments on the Problems
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7 If y ≥ 0, the p-adic expansion is just the expression for y in base p and
therefore is “finite,” i.e., it ends in an infinite string of 0s. If y < 0, using
problem 4 we see that the expansion of y ends in an infinite string of (p−1)s.
So both are eventually periodic and the repeating block has length one.

8 We already know −1 and 0 have periodic expansions, so we can focus on
the case when b > 0 and −b < a < 0. First we work modulo b; since p � b and
p is prime, we have gcd(p, b) = 1. By Euler’s generalization of Fermat’s Little
Theorem, we know that there exists a positive integer k such that pk ≡ 1
(mod b). Then 1 − pk = mb for some (negative) integer m. Multiply both
numerator and denominator by m to get

y =
a

b
=

ma

mb
=

A

1− pk
= A

∞∑
n=0

pnk.

Multiplying out we get

y = A+Apk +Ap2k + . . .

Now notice that 0 < A < pk (because −1 < y < 0), so that A = a0 +
a1p+ · · ·+ ak−1p

k−1, plugging that into the formula we get a periodic p-adic
expansion with a repeating block of length k.

9 This is the hard one! Tellingly, most of the textbooks leave it as an
exercise. This solution is inspired by the method used by Keith Conrad in
one of the many expository notes he has posted online. See [21].

First of all, we can focus only on y = a/b where neither a nor b are divisible
by p, since multiplying by a power of p will only shift the digits left or right.
Second, we already know that the result is true for integers, by problem 7.
So we assume b �= 1. Since taking the negative is done by finding (p − 1)-
complements of the digits, the negative of an eventually periodic expansion
is eventually periodic. So we can fix the sign of y. We assume y < 0.

So now we know y = a/b is a negative non-integer with denominator not
divisible by p. Then there exists a positive integer B such that −1 < y+B <
0; the denominator won’t change when we add an integer, so it is still b and
still not divisible by p. By the previous problem, the expansion of y + B is
purely periodic, so

y +B =
∞∑
n=0

anp
n

with the sequence an periodic (and not all zeros, since y /∈ Z).
Thus far our argument is exactly the one Hensel gave in 1904, but he

thought it was obvious that adding two eventually periodic expansions would
give an eventually periodic expansion. I don’t think it’s that obvious, and
here is where Conrad’s idea helps.
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We need a way to show that subtracting B from the periodic expansion
on the right of our equation won’t mess up more than a finite number of
digits. For that, look at the truncations

Ck =

k∑
n=0

anp
n,

which are positive integers, 0 < Ck < pk+1. Since the an can’t all be zero
and are periodic, as k grows the positive integer Ck gets bigger (there must
always be one more nonzero an). Therefore there is a k such that Ck > B.
Now we can write

y +B = Ck +
∞∑

n=k+1

anp
n,

so

y = (Ck −B) +

∞∑
n=k+1

anp
n.

Now notice that Ck − B is a positive integer (because Ck > B) which is
smaller than pk+1 (because Ck − B < Ck < pk−1), so its base-p expansion
looks like

Ck −B = b0 + b1p+ b2p
2 + · · ·+ bkp

k.

Plugging that in gives

y = b0 + b1p+ b2p
2 + · · ·+ bkp

k +
∞∑

n=k+1

anp
n,

which is eventually periodic.
An alternative approach is to focus on the process of creating the expan-

sion and notice that at some stage we will be down to a finite number of
choices, which will force the expansion to eventually start repeating; see, for
example, [39, p. 31] and [53, pp. 39–40].

10 First of all, any ideal J in C[X ] is principal, and will be maximal when its
generator is irreducible. Since C is algebraically closed, the only irreducible
polynomials are those of degree one, and we can always divide by the degree
one coefficient (an invertible element of C[X ], so the ideal doesn’t change) to
get a polynomial of the form X −α. So, to a maximal ideal J we can attach
the number α, and conversely. Part (ii) is even easier: just remember that
f(α) = 0 if and only if f(X) is divisible by X−α. Part (iii) is also standard.

For the rational numbers, just follow the hints as given. The order of the
“pole at p” will be the largest power of p dividing the denominator of x. As to
whether this is a reasonable thing to do, it turns out to be a very useful point
of view in modern algebraic geometry, so I guess it must be “reasonable”. . . It
certainly does make the analogy a little bit tighter.

B Hints, Solutions, and Comments on the Problems
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11 This should be straightforward: 6 × 2 = 11. Write down 1, carry a 1.
5× 2+ 1 = x+ 1 = 10, so write down 0 and carry a one, rinse, repeat.

12 Same deal. Make sure you can do it.

13 The addition is as before. For the multiplication, remember that you
need to multiply . . . xxxxxx by each of the digits of 102. Luckily, 0 and 1
are easy. Multiplying by 2 gives . . . xxxxx9. Now add:

. . . xxxxxxx9

. . . 0000000

. . . xxxxxx

. . . xxxx9x9

14 These can be done either by repeated division by 11 or by following the
solution of problem 8.

i) Let’s try repeated division:

−2

3
= 11× −1

3
+ 3

−1

3
= 11× −2

3
+ 7

and now it will repeat

Therefore

−2

3
= 3 + 7× 11 + 3× 112 + 7× 113 + · · · = 73.

ii) This one is easy since 11 ≡ 1 (mod 5), so the k in problem 8 is k = 1.
We get

−3

5
= . . . 6666666 = 6.

iii) This one is much harder because the smallest exponent is k = 6, so the
repeating block will have six digits:

−4

9
= 498612.

iv) This one shows that the repeating block can have a leading 0, i.e., the
expansion is purely periodic also when the numerator is divisible by 11.

−11

12
= 0 + 10× 11 + 0× 112 + 10× 113 + · · · = x0.
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15 We need to divide by 3 over and over until things start to repeat. After
the first line, every quotient will be will be −n

17 with n between 1 and 16, so
eventually things will have to repeat.

24

17
= 3× 8

17
+ 0

8

17
= 3× −3

17
+ 1

−3

17
= 3× −1

17
+ 0

−1

17
= 3× −6

17
+ 1

−6

17
= 3× −2

17
+ 0

−2

17
= 3× −12

17
+ 2

−12

17
= 3× −4

17
+ 0

−4

17
= 3× −7

17
+ 1

−7

17
= 3× −8

17
+ 1

−8

17
= 3× −14

17
+ 2

−14

17
= 3× −16

17
+ 2

−16

17
= 3× −11

17
+ 1

−11

17
= 3× −15

17
+ 2

−15

17
= 3× −5

17
+ 0

−5

17
= 3× −13

17
+ 2

−13

17
= 3× −10

17
+ 1

−10

17
= 3× −9

17
+ 1

−9

17
= 3× −3

17
+ 0

. . .

And now we know that the digits will repeat, since we have seen−3/17 before.
So the last two digits are 10 and the repeating part is 0112021221102010
(sixteen digits, because the smallest k such that 3k ≡ 1 (mod 17) is k = 16,
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i.e., 3 is a primitive root mod 17). In other words, we have 24/17 =
011202122110201010. Part (b) is just a long exercise in elementary mul-
tiplication, which should convince you that computing by hand quickly loses
its appeal.

16 This is standard business; see any basic text on number theory. To do it
yourself, note that saying that x2 ≡ 25 (mod pn) is the same as saying that
pn divides x2−25 = (x−5)(x+5). Then it’s a matter of showing that it’s not
possible for both factors to be divisible by p. For p = 2, 5 there can be more
than two roots. For example, X2 ≡ 25 (mod 25) has roots 0, 5, 10, 15, 20
(mod 25). Describing the general behavior in the “bad” cases is harder than
in the case p �= 2, 5.

17 When we are working in base p, reducing a number modulo pk just means
erasing all but the first k digits. So a coherent sequence is a sequence (αn)
of positive integers so that

i) In base p, αn has at most n+ 1 digits.

ii) For every k, deleting all but the last k + 1 digits of αn gives αk.

So putting the αn together we get an infinite sequence of digits from which
all the αk are obtained by truncation.

18 X2 ≡ 49 (mod 5n) goes just like the example in the text. Similarly,
X3 ≡ 27 (mod 2n) goes smoothly (there is only one root).

19 Just work it out. For every large enough n you should find four roots,
only two of which “continue” on to the next n.

20 Standard number theory business. For n = 1, you are looking at an
equation of degree 2 in a field. Then show that solutions modulo pn always
lift uniquely to solutions modulo pn+1. Alternatively, imitate problem 16.

21 See the previous problem. This can be found in most books, too, but it’s
easy anyway. If we have a solution a (mod 7n) then a “lift” ã (mod 7n+1)
has to be of the form ã = a + x7n, with x = 0 or 1 or . . . or 6. Now plug ã
into the equation, and show that one can always solve (uniquely) for x.

22 One idea is to use truncations, as in Problem 5 above: show that (x2
1)n =

(2)n for every n, just by tracing through where we got x1. Of course, you
can also check with gp.

23 If x = a0 + a15 + . . . and x2 = 2, then a20 ≡ 2 (mod 5).
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24 For the negative statement, it’s enough to check that X2 +1 = 0 has no
solutions modulo 7. For the positive statement, start from the fact that it
does have solutions modulo 5, and then use the methods we’ve been playing
with.

25 This is just a generic version of Problem 22; the “truncation” method
will work.

26 Read carefully over the last several problems, and write up your methods
as a general result.

27 As long as p �= 2, what we have already done solves the problem: one
can always find an m which is not a square in Q but is a quadratic residue
modulo p, hence is a square in Qp. For p = 2, consider either cubes, or roots
of polynomials of the form X2 +X +m = 0.

28 Repeat the last problem in reverse. For any p �= 2, there is an m which
is not a quadratic residue modulo p, hence is not a square in Qp, which is
therefore not algebraically closed. The same workaround as before handles
p = 2.

29 The usual proof works: multiply the sum by p and subtract.

30 I certainly can’t, but see Problem 10.10 in [48] and its solution. For a
not-so-elementary solution, see problem 175.

31 Let | | be an absolute value on k. We have |0| = 0 by the definition.
The equation 1 = 1 · 1 forces |1| = |1| · |1|. Since |1| is a strictly positive real
number, it follows that |1| = 1. Now take any element x ∈ k, x �= 0. Since
k is a finite field, there exists an integer q such that xq = x (we can take q
to be equal to the number of elements in k). Taking absolute values, we get
|x|q = |x|; since |x| is real and positive, this forces |x| = 1. Thus, | | must be
trivial.

32 If a/b = c/d, then ad = bc. By unique prime factorization, the highest
power of p that divides ad is just the sum of the highest powers dividing a
and d; thus, vp(ad) = vp(a) + vp(d). Similarly, vp(bc) = vp(b) + vp(c). Then,
if ad = bc, we have

vp(a) + vp(d) = vp(ad) = vp(bc) = vp(b) + vp(c).

Now rearrange.

33 It’s just a matter of dividing by p: v5(400) = 2, v7(902) = 0, v3(123/48) =
0, v5(180/3) = 1. Try a large number: what is v11(452, 298)?

B Hints, Solutions, and Comments on the Problems
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34 First consider the case when x and y are both integers. Write x = pax′

and y = pby′ where both x′ and y′ are integers not divisible by p. Since
we may interchange x and y if necessary, we can assume that a ≤ b. Then
xy = pa+bx′y′, which shows (i), and

x+ y = pax′ + pby′ = pa(x′ + pb−ay′),

which shows that vp(x + y) ≥ a, and so proves (ii). This proves both state-
ments when x and y are integers. To get it for fractions, let x = t/q, y = r/s.
Then

vp(xy) = vp

(
tr

qs

)
= vp(tr) − vp(qs)

= vp(t) + vp(r) − vp(q)− vp(s)

= vp

(
t

q

)
+ vp

(
r

s

)
.

This proves part (i) for the general case. Part (ii) is similar (in other words,
do it!).

35 1/7, 1/7, 1, 343, respectively. In this case, there are no Sage or gp
commands.

Notice that with respect to this absolute value, 3/686 is big, while 35 is
small. So 2 is closer to 37 in Q7 than it is to 2 + 3

686 .

36 There’s nothing much to do here: just straight translation. Remember
that the elements of K look like a/b where a and b are in A (and b �= 0), and
that a/b = c/d if and only if ad = bc. Then follow your nose.

37 First, v(1) = 0, so 0 is in the image. If α and β are in the image, then
we must have α = v(x) and β = v(y) for some non-zero x, y ∈ k. But then
α+ β = v(xy) and −α = v(1/x), so that we have a subgroup. In the case of
the p-adic valuation, the value is always an integer by definition, so the value
group is Z.

38 This is easy to see, since we defined |pn| = p−n, so that |pn| → 0 as
n → ∞. The more a number is divisible by p, the smaller it is in the p-adic
world.

39 This is straightforward, since passing from the valuation properties of
vp to the properties of the absolute values is just a matter of taking powers.
The obvious conjecture is that it does not matter what value of c is used,
in the sense that the resulting absolute values for varying c are “similar”
enough that we might as well treat them as being the same. That’s exactly
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what happens. Why c = p is a good choice is more subtle—see ahead for the
Product Formula.

40 Yes, it is enough to check for polynomials (see Problem 36). For poly-
nomials, both equations are well-known, if we restate them in terms of the
degree. (Notice that the sum of two polynomials of the same degree can have
smaller degree, so that after changing signs the ≥ is indeed necessary.)

41 A rational function f/g will be small with respect to | |∞ when v∞(f/g)
is big, hence when the degree of g is much bigger than the degree of f .
Hence, polynomials are never small: if f is a polynomial, then deg(f) ≥ 0
gives v∞(f) ≤ 0 and so |f |∞ ≥ 1. The higher the degree, the bigger the
absolute value.

42 Boring but easy. Just run through the definition of the p-adic absolute
value and check that everything works. For concreteness, play with the case
where F = R and p(t) = 1 + t2, or the case F = C, p(t) = t− 4.

43 In every case, it turns out to be the trivial absolute value. For | |∞, just
notice that any non-zero constant has degree zero, and hence absolute value
1. For the p(t)-adic absolute values, notice that the constants in F[t] are not
divisible by any irreducible polynomial.

44 Every polynomial of degree n with coefficients in C has n roots, so
that we can always write it as a product of linear terms. Hence, the only
irreducible polynomials are the ones of degree one, p(t) = t−λ. The p(t)-adic
valuation of a polynomial f(t) just measures the multiplicity of λ as a root
of f(t). We are very close indeed to Hensel’s original idea.

45 This is very hard, and, as advertised, depends on the choice of the field
F. If an archimedean absolute value on F(t) can be found, its restriction to
the subfield of constants F will have to be an absolute value on F, and it will
have to be archimedean (if you can’t see why, wait till the next section). So
it can’t be done if (a) there are no archimedean absolute values on F, nor
if (b) we require that the restriction to F be the (non-archimedean) trivial
absolute value.

Here’s the sneaky bit: take F = Q, and choose a transcendental number,
say π. Since π is not a root of any polynomial over Q, the rings Q[π] and
Q[t] are isomorphic. (Map Q[t] → Q[π] by t �→ π; this is obviously onto,
and what can possibly be in the kernel?) It follows that the fields Q(π) and
Q(t) are isomorphic. Now, Q(π) is contained in R, so we can restrict the
archimedean absolute value on R to Q(π), and then pull it back to Q(t) via
the isomorphism to get an archimedean absolute value! (We know it’ll be
archimedean by computing |2|.)

I said it was sneaky.
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46 Consider a polynomial f(t) = ant
n+ · · ·+ a1t+ a0, with an �= 0, so that

its degree is really n. We have v∞(f) = −n, by the definition above. Now,
as a polynomial in 1/t, we have

f(t) = tn
(
an + · · ·+ a1

(1
t

)n−1
+ a0

(1
t

)n)

=
an + · · ·+ a1(

1
t )

n−1 + a0(
1
t )

n

(1t )
n

so that v1(f) = −n (the numerator above is clearly not divisible by 1/t).

47 The construction of the π-adic valuation vπ should be routine by now.
Some hints: the “good” value for c will depend on π; if π divides a rational
prime p, then we want to choose either p or p2 (can you come up with a
reason?). For the last question, reading the three cases above, we’ll get that
vπ(p) will equal zero for all primes except the (unique) one that is divisible
by π, in which case it will always be equal to one, except if p = 2. (Now that
is a convoluted sentence!) What is v1+i(2)? If π = x+ iy and π = x− iy are
two primes as in case (iii), what is the relation between vπ and vπ?

48 This is all rather easy: the point is that |x| is always a positive real
number. For (ii), just note that if λn = 1 and λ is a positive real number,
then λ = 1. Statement (iii) is just (ii) with n = 2; statement (iv) then
follows from | − x| = | − 1| · |x|. Finally, in a finite field with q elements, we
have xq−1 = 1 whenever x �= 0, and applying (ii) shows that any absolute
value must then be trivial.

49 Suppose sup{|n| : n ∈ Z} = C, and C > 1. Then there must exist an
integer m whose absolute value is bigger than 1. But then |mk| = |m|k gets
arbitrarily large as k grows, so that C cannot be finite. It follows that C ≤ 1,
and since |1| = 1, this means C = 1, so that | | is non-archimedean.

50 This is straight translation from the properties of absolute values.

51 All of these are proved for the standard absolute value in most texts on
real analysis.

For (i), notice that

d(x+ y, x0 + y0) = |(x+ y)− (x0 + y0)| = |(x − x0) + (y − y0)|

and use the triangle inequality. For (ii), the trick is to write

xy − x0y0 = x(y − y0) + y0(x− x0)
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and remember that |x| is bounded. For (iii), use
1

x
− 1

x0
=

x0 − x

xx0

and the fact that you can assume x is bounded away from 0. For (iv), the
key inequality is ∣∣|x| − |y|∣∣ ≤ |x− y|
(where the outside absolute value on the left is the one in R), which follows
from applying the triangle inequality to both (x−y)+y = x and x+(y−x) =
y. This gives uniform continuity because nothing depends on what x, y ∈ k
are.

You should work these out carefully or look them up in an analysis text-
book if you find them troublesome.

52 The hints in the text should be enough to suggest the proof. For the
second statement, notice that for any two positive real numbers α and β we
have α+ β ≥ max{α, β}.

53 We have

x− y = − 1

15
y − z = − 4

15
x− z = − 5

15
= −1

3
;

the first two sides have length 5, the third has length 1.

54 Open balls first. If x ∈ B(a, r), then let δ = |x − a| < r. We need to
show that a small enough ball around x is completely contained in B(a, r).
Consider the ball around x with radius ε = r− δ. If a point y belongs to this
ball, then |y − x| < ε. But if that is the case, then

|y − a| ≤ |y − x|+ |x− a| < ε+ δ = r − δ + δ = r,

so that y ∈ B(a, r). Make a picture if this is not clear!
Do something similar for closed balls (if you made a picture, this should

be easy).

55 The missing parts are easily done by imitating the parts given in the
text. We need the r �= 0 condition because a closed ball of radius 0 is a point,
which is not an open set unless the absolute value is trivial. (Why not?) By
contrast, open balls of radius zero are just empty sets, which are always both
closed and open anyway. (Why?)

56 B(0, 1) is the set of fractions a/b such that |a/b|p ≤ 1, which means that
vp(a/b) ≥ 0. This will happen when, after putting the fractions into lowest
terms, the denominator is not divisible by p. So the closed unit ball around
0 consists of the fractions a/b where p does not divide b.
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B(3, 1) is the set of fractions a/b such that a/b − 3 has absolute value
less than one. Reasoning as before, this means that the denominator is not
divisible by p, but the numerator is. If we assume that a/b is in lowest terms
and (so that a and b have no common factors), then

a

b
− 3 =

a− 3b

b

will also be in lowest terms (check!), so the conditions are that p does not
divide b but does divide a − 3b. To find out what integers satisfy this con-
dition we set b = 1; the first condition is automatically true, and the second
condition says that p divides a− 3, i.e., that a ≡ 3 (mod p).

57 Well, as we found out in Problem 56, the closed unit ball is the set of
all fractions a/b where p does not divide b. Look at the numbers

a, a− b, a− 2b, a− 3b, . . . a− (p− 1)b.

It is easy to see that exactly one of these numbers will be divisible by p (the
easiest way to see it is to note that these are p integers, and no two of them
can be congruent modulo p, because if p divides the difference of any two,
then it divides b, which it doesn’t). But if a− ib is divisible by p, then∣∣∣a

b
− i
∣∣∣ = ∣∣∣∣a− ib

b

∣∣∣∣ < 1,

so that a/b is in the open ball B(i, 1) of center i and radius 1. This proves
the equality. The disjointness amounts to the statement that only one of the
numbers listed can be divisible by p.

As noted, this gives another proof that the closed ball is open, but this
one is specific to the p-adic absolute value, while Proposition 2.3.7 is true for
any ultrametric space.

58 The point is that the 5-adic absolute value can only take values of the
form 5n, where n is an integer. So saying that a 5-adic absolute value is
less than one, less than 1/2, or less than or equal to 1/5 all amount to the
same thing. This is not something we should expect for all non-archimedean
absolute values.

59 To see that the sphere is closed, notice that it is the intersection of the
closed unit ball with the complement of the open unit ball. These sets are
both closed, and so their intersection is closed. (Notice that this part doesn’t
depend on the absolute value being non-archimedean.)

To see that the sphere is also open, take x in the sphere, so that |x−a| = r,
and choose ε < r. Then if |x − y| < ε we must have |y − a| = r because all
triangles are isosceles. Hence, the open ball around x of radius ε is completely
contained in the sphere. (Notice that this part does.)



303

For the sphere to be the boundary of the open ball B, any small open ball
centered on a point on the sphere should intersect B. But that can’t happen
if the sphere is an open set.

60 To go one way, we need to take A = S ∩ U1 and B = S ∩ U2. To
go the other, we need to find two open sets; we might try to let U1 be the
complement of the closed set B, and U2 be the complement of the closed set
A. Check that this works.

61 The intervals.

62 The ball is both a closed and open set. Take a smaller ball inside it. It is
also closed and open, so that the complement of the smaller ball in the bigger
ball is a closed and open set. This gives us the decomposition we want. It
doesn’t matter whether we use open or closed balls, since they’re all clopen.

63 Suppose a set S contains both x and another point y; we will show S
cannot be connected. To simplify the notation, let r = |x− y|. To show S is
disconnected, we need to find the sets U1 and U2 in the definition. Remember
that balls are clopen. For U1 we take the open ball of radius r/2 around x;
this contains x and not y. For U2 we take the complement of U1, which is
open because U1 is closed; this contains y but not x. The union of U1 and
U2 is the whole space, so this does what we want.

64 First of all, the trivial case: the empty set and all of Q are both clopen
sets. But there are other clopen sets in Q. For example, consider the set of
rational numbers a/b whose square is less than two:

S =

{
a

b
|
(a
b

)2
< 2

}
=

{
a

b
| −

√
2 <

a

b
<

√
2

}
.

This is clearly open, but it is also closed (can you check that?). It’s not hard
to see that this means that Q is totally disconnected also with respect to
the usual absolute value. The problem, of course, is that the only possible
boundary points are not in Q.

On the other hand, there are no nontrivial clopen sets in R, and R is
connected; prove it. Notice that this happens because we have “filled in” all
the missing points and the metric is archimedean. As we saw in the text,
ultrametric spaces are always totally disconnected.

65 We showed in a previous problem that the closed unit ball around 0 was
the disjoint union of p − 1 open balls of radius 1. Scaling and translating,
we see that the same will be true for any closed ball. For open balls, we can
use a dirty trick. Again, look at the open ball of radius 1 around 0; for the
reasons explained in Problem 58, this is equal to the closed ball of radius 1/p
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around 0; by the argument above, this is the disjoint union of open balls!
This proves our claim for the open ball of radius 1 around 0, but again we
can scale and translate to get the general result.

The fact that we had to use the special property that the values of the
p-adic absolute value are all of the form pn with n an integer should be a
hint that this will not work in general. Nevertheless, it’s pretty hard (at this
point) to come up with a counter-example (the algebraic closure of Q will
work, but defining an absolute value on that field is a non-trivial task).

66 (Very much a set of hints rather than a solution.) To show that O is
a subring, we need to show that it contains 0 and 1 and is closed under
addition, multiplication, and change of sign. This is all easy, and you only
need to use the non-archimedean property to show closure under addition.
(Do it.)

To show that P is an ideal, we need to check that it is closed under
addition (easy), contains 0 (clear), and that if x ∈ O and y ∈ P, then xy ∈ P.
The two assumptions say that |x| ≤ 1 and |y| < 1; since |xy| = |x||y|, it
follows that |xy| < 1, i.e., xy ∈ P.

If x ∈ O but x �∈ P, then we must have |x| = 1. It then follows that
|1/x| = 1, so that 1/x ∈ O, which means that x is invertible in O. Any ideal
in O strictly containing P would have to contain such an x. By what we
have just shown, such an ideal will contain an invertible element, and would
therefore be all of O; this shows P is maximal.

67 The jazzy proof: we have an injective homomorphism Z ↪→ Z(p), and it
maps pZ into pZ(p) (do you see that?). By the usual hocus-pocus (e.g., [33,
5.3]), this gives an injective map

Z/pZ −→ Z(p)/pZ(p)

(it’s injective because an integer a maps to zero only if a/1 ∈ pZ(p), which
happens only if p|a). To see that it is also onto, we use an argument involving
congruences: if p � b, then there exists an integer b1 such that bb1 ≡ 1
(mod p). Then for any a/b in Z(p), the integer ab1 maps to the class of a/b
in Z(p)/pZ(p).

Notice that we have in fact showed that

Z/pZ ∼= Z(p)/pZ(p),

i.e., moving from the integers Z to the p-integers Z(p) does not change the
quotient.

68 This is very similar to the calculations for Q, and we leave it for the
reader to puzzle over at leisure. Hints: the valuation rings all look like sets
of rational functions with restrictions on the numerators and denominators,
and the residue fields are often (but not always) equal to F itself. If F = C,
then all the residue fields are isomorphic to C.



69 The open ball of radius 1 around a is the coset a+P of the ideal P in O.
(Are other balls also cosets?) Problem 57 gets translated to the statement
that the residue field is finite.

70 Yes it is always the case in the examples we considered, but no, it is
not always true. The property of having a principal valuation ideal is really
closely related to the fact that in all our examples the valuation is discrete
(see the next problem).

71 Checking that v(x) is a valuation is an easy exercise in logs and inequal-
ities. For the other three statements:

(i) If vp(x) = n, then |x| = p−n, so that v(x) = n log p. Hence v and vp
differ by multiplication by a constant, log p. The image of v is log p · Z, i.e.,
the real numbers which are integral multiples of log p. (It’s easy to see that
this is a subgroup of R, and that it is isomorphic to Z.)

(ii) If the value group is discrete, look at the element x with smallest
nonzero v(x). It’s not too hard to prove that it must be a generator of P.
Conversely, if P is principal check that the valuation of a generator must be
the minimal nonzero element of the value group, which must then be discrete.

(iii) This is difficult. We showed in (ii) that in this case P is a principal
ideal, but we still need to show that every other ideal is too. See [61, Ch. I
§2] for a detailed discussion of what hypotheses are necessary and for the
proofs.

72 As the hint suggests, choose any x0 ∈ k, x0 �= 0, such that |x0|1 < 1.
Then (iii) says that |x0|2 is also less than 1, so that there exists a positive
real number α such that |x0|1 = |x0|α2 . (Just take logs on both sides to find
α; why is it important to choose |x0|1 < 1? What if no such x0 exists?) This
gives us our α.

Now choose any other x ∈ k, x �= 0. If |x|1 = |x0|1, then we must also
have |x|2 = |x0|2, because otherwise either x/x0 or x0/x would have | |2 less
than 1 and (iii) would be violated. So in this case the equation |x|1 = |x|α2
holds.

If |x|1 = 1, then we must have (by (iii) applied to either x or 1/x) that
|x|2 = 1 also, so that the equation |x|1 = |x|α2 holds trivially.

Notice that the equality for some x implies the equality for any power of
that x; in particular, we know that |xn

0 |1 = |xn
0 |α2 for any integer n.

It remains to consider the case when |x|i �= 1 and |x|i �= |x0|i for i = 1, 2.

As before, choose β such that |x|1 = |x|β2 ; again, this means that we also have

|xn|1 = |xn|β2 for all integers n. In particular, we can assume that |x|1 < 1
(otherwise replace it with 1/x), which of course also implies that |x|2 < 1.

What we want to do is show that α and β must be equal. Since we want
to use (iii), the natural way to proceed is to show that if they are not equal,
then we can manufacture an element that has | |1 < 1 but | |2 > 1, which
would contradict (iii). The reader should fiddle with this idea for a while to
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convince himself that it is not very easy to carry it through. Faced with that,
we have no choice but to take a more roundabout and more devious route.

Let n and m be any two positive integers. Then we have

|x|n1 < |x0|m1 ⇐⇒
∣∣∣∣ xn

xm
0

∣∣∣∣
1

< 1 ⇐⇒
∣∣∣∣ xn

xm
0

∣∣∣∣
2

< 1 ⇐⇒ |x|n2 < |x0|m2 .

Taking logs of the first and last equations, we get

n log |x|1 < m log |x0|1 ⇐⇒ n log |x|2 < m log |x0|2,

which we can write as

n

m
<

log |x0|1
log |x|1 ⇐⇒ n

m
<

log |x0|2
log |x|2 .

This says that the set of fractions which is smaller than the first quotient
of logs is exactly the same as the set of fractions which is smaller than the
other; since there are fractions as close as we like to any real number, this
means that the two numbers must be equal (otherwise, some fraction will be
bigger than one but smaller than the other). Thus, we get

log |x0|1
log |x|1 =

log |x0|2
log |x|2 ,

and therefore
log |x0|1
log |x0|2 =

log |x|1
log |x|2 .

But plugging in |x0|1 = |x0|α2 shows that the first quotient equals α, and
similarly the second quotient equals β. This shows α = β, and we are finally
done!

73 This only requires a straightforward reading of the definition.

74 The point is that saying |x| = 1 is equivalent to saying that neither |x|
nor |1/x| are < 1. Then do the obvious thing.

75 According to the Proposition, equivalent absolute values differ by raising
to a positive power. Since both 1α = 1 and 0α = 0 for any α, anything
equivalent to the trivial absolute value is itself trivial. We would only need to
change the definition of “nontrivial” if there were more absolute values that
were equivalent to the trivial one. Since there aren’t, we can let “trivial”
mean “trivial” and have done with it.

76 Easy: |p|p < 1 but |p|q = 1 whenever p and q are two different primes,
and |p|∞ > 1 for any prime p.



77 Let A be the image of Z in k, i.e., the elements of k. We showed that
| | was non-archimedean if and only if we had |a| ≤ 1 for all a ∈ A. Now use
Problem 74.

78 We don’t need to worry about n = 1, since |1| = 1 = 1α. If 1 < n <
n0, the estimate |n| ≤ Cnα would still be true, since in this case |n| = 1
(remember that we chose n0 to be the smallest integer with absolute value
more than 1). Furthermore, when we go on to consider nN we will certainly
get to integers bigger than n0, so the proof doesn’t need to consider this case
separately.

79 Since the balls are nested, if m > n then am ∈ B(an, rn), which tells
us that |am − an| < rn. Since rn → 0, we can find N such that |rn| < ε
if n ≥ N , and so if m > n ≥ N we have |am − an| < ε. So the centers an
form a Cauchy sequence. Since rn → 0, the intersection will contain at most
one point. If it is nonempty, that point will be the limit of the sequence of
centers.

Conversely, given a Cauchy sequence we can create such a sequence of
nested balls: for each k find N such that m > n ≥ N implies |am − an| < 1

k ,
and set ak = aN , rk = 1

k . The intersection of the nested balls will be the
limit of the subsequence ak and hence the limit of the original sequence an.

Next question: what if the nested balls had radii rn → r �= 0? Would the
intersection still be nonempty? A field with this property is called spherically
complete.

80 If we assume that the real numbers are known, this is easy: just take a
sequence of rational numbers like

1, 1.4, 1.41, 1.414, 1.4142, etc.

which get closer and closer to
√
2. This is clearly Cauchy and has no limit in

Q.
If we want to do this within Q, we just need to be a bit more careful. For

example, we might use Newton’s method for finding approximate roots of
polynomials to generate a sequence of rational numbers which approximate√
2.

81 Let k = R, and let | | be the usual absolute value. The famous example
is

xn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

For this sequence, we have xn+1−xn = 1/(n+1), which clearly tends to zero
as n → ∞. The sequence is increasing, so that if it has a limit its terms must
all be bounded (they are all less than any number which is bigger than the
limit). However, a standard argument that the reader will very likely have
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seen in her calculus class shows that x2k ≥ (k + 2)/2, so that the sequence
cannot be bounded, hence cannot have a limit.

The infinite sum

1 +
1

2
+

1

3
+ · · ·+ 1

n
+ . . .

is called the harmonic series, and it is a staple of calculus courses because
it shows that a series can get infinitely large even though its summands get
closer and closer to zero.

82 The first one is clear: if a field contains Q and is complete, it must
contain the limit of any Cauchy sequence made up of elements of Q. For
the second, you need to show that any real number can be arbitrarily well
approximated by rational numbers. Can you prove that?

83 No, because Q is already complete with respect to the trivial absolute
value: since the only possible absolute values are 0 and 1, a sequence will be
Cauchy only if |xm − xn| = 0 for all large enough m and n. But this means
that xm = xn for all large enough m and n, and of course any such sequence
converges (because it just stops).

84 Use the approach we described to construct a sequence tending to a
cube root of 3. The main point is to show that one can always get a solution
modulo 2n+1 from a solution modulo 2n, and this is done just as in the other
case.

85 The sum is easy, since

(xn + yn)− (xm + ym) = (xn − xm) + (yn − ym).

For the product, use the identity

xnyn − xmym = xn(yn − ym) + ym(xn − xm),

plus the fact that xn and ym cannot get arbitrarily big as n and m grow.

86 The zero element is the sequence

0, 0, 0, 0, 0, 0, . . .

The unit element is
1, 1, 1, 1, 1, 1, . . .

A sequence (xn) is invertible exactly when the xn are bounded away from
zero (i.e., there exists a bound b such that |xn| > b for all n; in particular
xn �= 0 for all n).

We need to know they are bounded away from 0 rather than simply non-
zero, because otherwise the “inverse sequence” might not be Cauchy! (Make



sure you understand this one: what’s an example of a Cauchy sequence of
non-zero rational numbers xn such that the sequence given by yn = 1/xn is
not Cauchy?) On the other hand, things are less bad than they seem: you
should be able to show that if a Cauchy sequence does not tend to zero, then
it is bounded away from zero.

87 Use the inequality

|yn − ym| ≤ |yn − xn|+ |xn − xm|+ |xm − ym|.

88 Here’s an example: sequence one is

0, p, 0, p2, 0, p3, 0, p4, . . .

and sequence two is
p, 0, p2, 0, p3, 0, p4, . . .

89 In any Cauchy sequence (xn), the terms xn are bounded (if this is not
immediately clear, you should write down a proof). Hence, if yn → 0, then
also xnyn → 0, which is what we want to prove.

90 As it says, just follow the proof through. The argument you used in
Problem 86 to show that the inverse of an invertible Cauchy sequence with
terms bounded away from zero is itself a Cauchy sequence will work for
“almost inverses” too.

91 If λ = 0, then (xn) ∈ N, so that xn → 0, so that |xn|p → 0, so |λ|p = 0,
which is only reasonable. On the other hand, if λ �= 0, then Lemma 3.2.10
says that the sequence |xn|p is constant for sufficiently large n, which means
it certainly has a limit.

92 If the difference tends to zero, the absolute value of the difference tends
to zero, so that the difference of the absolute values tends to zero.

93 Once you do remember, there is nothing left to prove.

94 Problem 93 handled one part. What remains to be shown are the mul-
tiplicativity and the non-archimedean property. Both are easy: just write
down the known properties of | |p for the terms of any sequence, and take
the limit. For example, if λ is represented by (xn) and μ is represented by
(yn), then the product λμ is represented by (xnyn). Now, for each n we have
|xnyn|p = |xn|p|yn|p. Taking the limit gives |λμ|p = |λ|p|μ|p. Something
similar works for the addition.

95 Yes, this is essentially obvious.
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96 Lemma 3.2.10 says it all.

97 < becomes ≤ because it’s perfectly possible for a sequence to tend to a
certain value while remaining consistently smaller than that value. We need
to decrease ε slightly to guarantee that y doesn’t end up in the closed ball
of radius ε. This is hardly ever a real problem, however, since we can always
use the same trick of using a slightly smaller radius.

98 This shouldn’t be too hard. The key idea for (i) is that the field opera-
tions are continuous functions. Part (ii) is clear. Part (iii) follows from the
fact that, as suggested, the absolute value function is (uniformly) continuous,
because ∣∣ |x| − |y| ∣∣ ≤ |x− y|.

99 For something to be determined “really uniquely,” it must not only be
unique up to isomorphism, but up to unique isomorphism. Here is an example
from linear algebra: all the vector spaces of dimension n are isomorphic, but
it is still unwise to simply identify them all, because there are many different
ways to chose a basis of a vector space, and each choice gives a different
isomorphism. Why should we favor any one of them over the others?

Another example of the same thing is the process of forming an algebraic
closure of a field. Given a field k, its algebraic closure is unique up to iso-
morphism, but has a great many automorphisms, so that given two algebraic
closures there are a great many different isomorphisms between them. What
this means is that the algebraic closure is not really canonically determined.
(One should always speak of an algebraic closure, but one can speak of the
completion.)

100 This is easy: since Zp is the closed unit ball with center 0, it is an
open set containing 0, hence a neighborhood of 0. Since multiplication by p
sends open sets to open sets, this means that for every n the set pnZp is a
neighborhood of zero. That ⋃

n∈Z

pnZp = Qp

is clear from the first statement in the Corollary; to see that they are a
fundamental system of neighborhoods we need to show that any open set
containing zero contains a pnZp, and this is clear (because any open ball
containing 0 contains a closed ball of smaller radius, which will be one of the
pnZp).

101 There are lots, of course; an example would be the family consisting
of the open intervals (−1/n, 1/n) plus the open intervals (−n, n), where n
ranges through the positive integers.
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102 The proof we sketched for Problem 100 pretty much shows this already.

103 This has all been done, albeit in different terms. Multiplication by pn

is injective because Zp is contained in Qp, which is a field in which we can
divide by pn. Now consider the homomorphism Z −→ Zp. Clearly pnZ maps
into pnZp. Since pnZ is the kernel of the projection Z −→ Z/pnZ, we get an
injective homomorphism

Z/pnZ −→ Zp/p
nZp.

But Proposition 4.2.2 tells us that any element of Zp is p
−n-close to an integer,

which translates to saying that any element of Zp is congruent mod pnZp to
an element of Z, which says the isomorphism is onto. Finally, in the discrete
topology a singleton set is open, but the inverse image of a point in Z/pnZ
is a closed ball with radius pn, which is an open set in Zp.

104 You’ll probably need to look some of these up. A good reference is [47,
§26–§29]. Statement (i) is easy: just use the fact that the inverse image of an
open set by a continuous function is again open. It is also easy to see that any
compact set is closed and bounded, but the main claim in (ii) is pretty hard;
it is known either as the Heine–Borel Theorem or the Bolzano–Weierstrass
Theorem, depending on which of the equivalent definitions of compactness
you use. Proving (iii) takes some thought to come up with a way to relate
covering sets and sequences; notice that we need to be in a metric space
because we haven’t really defined convergence in general topological spaces
(and indeed that is not easy to do). For (iv), to show that any compact set
will have these two properties is not too hard (use (iii) for the first one), but
the converse takes some work; see [47, §45].

105 A closed interval is compact, and is a neighborhood of any of its interior
points, so it’s enough to note that any point is in the interior of some closed
interval; e.g., x ∈ [x− 1, x+ 1].

106 The hint pretty much proves everything.

107 Because any ball in Qp is equal to a ball of radius pn for some n ∈ Z,
and any ball in Zp with radius greater than or equal to one will simply be all
of Zp.

108 To reproduce the argument we gave for Zp, we only need to check that
the other quotients O/Pn are also finite, since O is always the closed unit
ball in k. To see this, we look at the obvious map O/Pn −→ O/P; its
kernel is Pn/P. If we show the kernel is finite, we will be done (because the
assumption is that the image is too). Can you do that?

The “do we really need” questions are both pretty hard. (The answer is
likely to be “yes” in both cases.)
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109 Z× = {±1}, F[t]× = F×, and C[[t]]× is all power series with nonzero
initial term, i.e., of the form a0 + a1t+ · · · with a0 �= 0.

110 Let x ∈ Zp. Since we know Z is dense in Zp, we can find, for each n,
an integer xn such that |x − xn| ≤ p−n. It suffices then to show that for
each n we can find an ∈ A±(a, b) such that |xn − an| ≤ p−n. That amounts
to finding an integer k such that an = a + kb ≡ xn (mod pn) and has the
right sign. The congruence can always be solved because gcd(b, pn) = 1 and
adding or subtracting multiples of pn allows us to adjust the sign.

111 Since Zp is a closed set, we already know this. But here is a direct
proof: if xn ∈ Z for all n, then |xn| ≤ 1 for all n. Now if xn → x, then there
is some n such that |x− xn| < 1. But then

|x| = |xn + (x− xn)| ≤ max{|xn|, |x− xn|} ≤ 1

so that x ∈ Zp.

112 This is not too hard, but does rely on the reader being comfortable
with topology and with infinite products. That the map is an injective ho-
momorphism is not too hard to show, because any element in Zp is the limit
of its associated coherent sequence. For details on how to construct Zp from
this point of view, see chapter 2 of [60].

113 Given such a family of maps fn : R −→ An, and given r ∈ R, the
sequence (fn(r)) is a coherent sequence. By the previous problem, we can
find an element of Zp corresponding to this sequence. Taking this as the
image of r gives a map R −→ Zp which does what we want.

114 We need x = a0 + a1p+ · · · with a0 �= 0.

115 Let xn be a sequence of elements of Zp. We want to pick out a subse-
quence that converges. To do this, use the following iterative procedure:

(i) There are only p possible choices for the zeroth coefficient in the p-adic
expansion of the xn. Hence there must be infinitely many xn all of which
have the same initial term a0. Choose n0 such that xn0 is one of these.

(ii) For each of the infinitely many xn whose p-adic expansions start with
a0, there are p choices for the first coefficient. Hence there must be infinitely
many xn all of whose p-adic expansions start with a0 + a1p. Choose n1 so
that xn1 is one of these.

Now keep going to get a convergent subsequence. Why does this procedure
fail for sequences in Qp?

116 Since x = 0 ≡ 6 (mod 3), the zero-th digit is 6. Now

0 = 6+ (−6) = 6+ (−2)× 3.
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Since −2 ≡ 7 (mod 3), the next digit is 7. So

0 = 6+ 7× 3− 27 = 6+ 7× 3 + (−3)× 32.

Since −3 ≡ 6 (mod 3), the next digit is 6 again. So

0 = 6+ 7× 3 + 6× 32 − 81 = 6+ 7× 3 + 6× 32 + (−3)× 33.

Now we have −3 again, so the process will start repeating. Thus

0 = 6+ 7× 3 + 6× 32 + 6× 33 + · · ·+ 6× 3n + · · ·
It’s easy to check that this is correct by adding up the geometric series.

117 This can be done in many ways. Notice that, however we do it, the
Taylor expansion is finite, so we don’t need to worry about convergence ques-
tions.

Here’s the jazziest proof I can think of: the field generated by Q and the
coefficients of F (X) can be embedded in C, and the theorem is clearly true
for polynomials with complex coefficients. (Talk about overkill. . . )

A nicer way to prove it is to work in the field Q[x, h] of polynomials in two
variables. Then F (x+h) can be written as a polynomial in h with coefficients
in Q[x]:

F (x+ h) = F (x) + F1(x)h+ F2(x)h
2 + . . . ,

and we can check that i!Fi(x) = F (i)(x), which is an easy exercise in binomial
coefficients. Indeed, if F (x) has integer coefficients we can even work in Z[x, h]
to see that Fi(x) ∈ Z[x].

Notice, however, that what we need for the proof is even simpler, namely

F (x+ h) = F (x) + F ′(x)h+ h2R(x, h),

which is easily seen to be true in Z[x, h].

118 Just follow what was done to go from α1 to α2.

119 If F ′(α1) is divisible by p, it is not invertible in Zp, so that we can’t
pick the b1 in the computation, and the proof falls through. Indeed, the
polynomial X2 − 3 has roots modulo 2 but no roots in Q2.

120 See [14, Lemma 3.1] for a full proof. Here are the highlights. We want
to use the iteration

αn+1 = αn − F (αn)

F ′(αn)
.

Let n = 1 and set b1 = − F (α1)
F ′(α1)

. Since

|b1| =
∣∣∣∣ F (α1)

F ′(α1)

∣∣∣∣ < |F ′(α1)| ≤ 1,

B Hints, Solutions, and Comments on the Problems



314 B Hints, Solutions, and Comments on the Problems

we see that b1 ∈ Zp. Using the Taylor expansion, there is some K ∈ Zp such
that

F (α1 + b1) = F (α1) + F ′(α1)b1 +Kb21.

But our choice of b1 makes F (α1) + F ′(α1)b1 = 0, so

|F (α1 + b1)| ≤ |b1|2 < |F (α1)|.
On the other hand,

|F ′(α1 + b1)− F ′(α1)| ≤ |b1| < |F ′(α1)|
implies, by the ultrametric inequality, that

|F ′(α1 + b1)| = |F ′(α1)|.

If we now set α2 = α1 + b1 = α1 − F (α1)
F ′(α1)

, we see that |F (α2)| < |F (α1)| but
|F ′(α2)| = |F ′(α1)|.

This is what sets up the iteration: at each step F (αn) gets smaller and
F ′(αn) does not. This allows us to show that the sequence αn converges to
a root α.

Working through it all, we also get that

|α− α1| ≤
∣∣∣∣ F (α1)

F ′(α1)

∣∣∣∣
and that α is the only root of F (x) satisfying that condition.

An example where the stronger result is necessary is the equationX2−17,
whose derivative is 2X and so will never satisfy the condition F ′(α1) �≡ 0
(mod 2). But if we take α1 = 1 we see that |F (α1)| = 2−4 and |F ′(α1)| = 2−1,
and we can conclude that X2 − 17 does have roots in Q2.

If you know what the discriminant D of a polynomial F (X) is, you can
use this to show that if we can find α1 ∈ Zp such that |F (α1)| < |D|2 then
F (X) has a root in Zp. See [14, pp. 49–52].

121 If α1 exists, then its image in Z/pZ is an element of order dividing m in
the cyclic group (Z/pZ)× of order p−1. It follows that gcd(m, p−1) �= 1 unless
α1 ≡ 1 (mod p). Furthermore, the least exponent m with this property must
be a divisor of the gcd, and hence must be a divisor of p− 1. Conversely, in
a cyclic group of order p− 1, if e|(p− 1) and x is a generator, x(p−1)/e is of
order e. Indeed, the set of elements of order e is a cyclic group generated by
x(p−1)/e.

122 It’s basically straight Hensel’s Lemma together with Problem 121. For
eachm dividing p−1 we can find m incongruent roots ofXm−1 ≡ 0 (mod p),
and then Hensel’s Lemma shows that we have m different roots of Xm − 1,
which are the mth roots of unity.



315

The only hard part is to show that there are no other roots of unity.
Specifically, we show that if ζk = 1 and p � k then in fact ζm = 1 for some
m dividing p − 1. This is where the uniqueness part of Hensel’s Lemma is
important. Suppose ζk = 1. Then also ζk ≡ 1 (mod p) and Problem 121
says that there is an m dividing p−1 such that ζm ≡ 1 (mod p). By Hensel’s
Lemma, there is a unique ζ1 ≡ ζ (mod p) such that ζm1 = 1. But then, since
m divides k, ζ1 is a root of Xk − 1 as well, and it is congruent mod p to ζ.
The uniqueness part of Hensel’s Lemma then forces ζ1 = ζ.

123 The roots of unity are exactly the elements of Z×
p that satisfy xm = 1

for some powerm. It is easy to see that the set of such elements in any abelian
group always forms a subgroup. To see that there are p− 1 roots, note that
the numbers 1, 2, 3, . . . , p − 1 are all solutions of Xp−1 ≡ 1 (mod p), and
are all incongruent modulo p. Applying Hensel’s Lemma gives p − 1 roots
which are all incongruent modulo p, and in particular are all different. Since
a polynomial can only have as many roots as its degree, these must be all the
roots. Since we know that any root of unity must be a root of this polynomial,
these must be all the roots of unity in Qp. Finally, any finite subgroup of
any field is cyclic. (To see that the group of roots of unity is cyclic in a more
direct way, apply the reasoning above to all polynomials Xd − 1 as d ranges
through the divisors of p− 1, and count to show that some (p− 1)-st root of
unity must exist which is not a root of any of these. Such a root of unity will
be a generator.)

124 The first assertion is an easy application of the stronger form of Hensel’s
Lemma. For the second, write the 2-adic unit in the form 1+2x, and square.
The conclusion follows by considering Z/8Z.

125 Polynomials that are quite different in Zp[X ], such as X + 1 and X +
(p+1), are identical modulo p, so being relatively prime modulo p is a more
restrictive condition than being so over Zp.

126 We use the notation in the proof, and focus mostly on the question
about the final twist. Since g1(X) = X and h1(X) = 1, the obvious solution
for a(X)g1(X) + b(X)h1(X) ≡ 1 (mod p) is a(X) = 0, b(X) = 1, which
yields s̃1(X) = 0 and r̃1(X) = X2 + 1. But now if we simply set g2(X) =
g1(X) + pr̃1(X) and h2(X) = h1(X) + ps̃1(X), we end up with g2(X) =
2X2 + X + 2 and h2(X) = 1, which yields a factorization, all right, but a
rather unsurprising one!

If we do it right, we get r1(X) = 1 (the remainder of dividing X2 + 1 by
X) and s1(X) = X , which gives g2(X) = X + 2 and h2(X) = 1 + 2X , and
all is well. The reader should go through at least one more iteration herself.

127 Just follow what we did in our proof—carefully.
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128 If you did the previous problem, this should be easy.

129 For p �= 2, 17 one can do this by a straight application of Hensel’s
Lemma, as follows: if neither 2 nor 17 are squares modulo p, then their
product must be a square modulo p; then use Hensel’s Lemma. (To see
why the product of two quadratic non-residues must be a square modulo p,
remember that (Z/pZ)× is cyclic, so that being a square means being an even
power of the generator; the product of two odd powers of the generator must
be an even power of the generator!)

For p = 2, note that 17 is a square in Q2. For p = 17, note that 62 ≡ 2
(mod 17), so that (Hensel’s Lemma!) 2 is a square in Q17. For p = ∞, there
are clearly six different roots. And there are clearly no rational roots.

130 This isn’t too hard if one uses more advanced tools such as biquadratic
reciprocity. An elementary (but not easy) proof can be found in [14], page
57, and one using algebraic number theory is outlined in [15], page 88.

131 Hensel’s Lemma tells us that all sorts of polynomials are irreducible
over Q and reducible over some Qp (think of X2 + 1 for example), so the
“only if” part is bunk. The “if” part works, because if a polynomial were
reducible over Q it would certainly be reducible over all the Qp. Of course,
the “if” part is not very interesting. . .

How about this: is it true that a polynomial will be irreducible over Q if
and only if it is irreducible over some Qp? (In other words, given a polynomial
that is irreducible over Q, can I find a prime p such that the polynomial is
irreducible over Qp?) If so, this proves the statement in the exercise with
“irreducible” replaced by “reducible.”

132 We have

ax2 + by2 + cz2 = a′n2x2 + by2 + cz2 = a′(nx)2 + by2 + cz2,

which establishes the correspondence. We are interested in deciding when
there are roots in the rational numbers (or p-adic numbers, or integers mod-
ulo p for some p). Since these are all fields, we can divide by n, so the
correspondence shows that (in each case) the equation with a will have a
root if and only if the equation with a′ does. So we might as well work with
a′. Doing the same for b and c, we see that we can assume that all three
coefficients are square-free.

133 By the previous problem, we may assume a, b, and c are square-free
and have no common factors, and we do. We want to show that any two
coefficients are relatively prime. Suppose k = gcd(a, b) is greater than 1.
Notice that k must be square-free. Then we can set a = ka′, b = kb′, and we
know that k is relatively prime to c. Suppose that ax2 + by2+ cz2 = 0. If we
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look at the last equation, we see that k must divide cz2, since it divides the
other two terms. Since it is prime to c, it divides z2. Since it is square-free,
it must divide z. So write z = kz′, plug in, divide by k, and continue from
there to get a contradiction.

134 For n = 0, we get the sum of p ones, which is p, hence is ≡ 0 (mod p).
Instead of trying to give a general proof, here’s the proof for n = 1: choose
and fix a number a, 2 ≤ a ≤ p− 1 (this is possible, since p is odd). I want to
compare the two sums

p−1∑
x=0

x and

p−1∑
x=0

ax.

It is not hard to show that the numbers 0, a, 2a, . . . (p − 1)a are all non-
congruent modulo p. (Do it!) Since there are p of them, they must be
congruent, in some order, to 0, 1, . . . p − 1. (In other words, modulo p the
list of the ax is just a permutation of the list of x.) This means that the two
sums are congruent:

p−1∑
x=0

x ≡
p−1∑
x=0

ax (mod p).

We can rewrite this as

0 ≡
p−1∑
x=0

x−
p−1∑
x=0

ax (mod p)

≡ (1− a)

p−1∑
x=0

x

and, since 1− a �≡ 0 (mod p), the conclusion follows.

Reorganizing this to take care of more general exponents is not too hard:
what we need is to show that we can choose our a so that an �≡ 1 (mod p).
If so, the same proof will work!

135 What we need to check is that the polynomial f(X) = aX2+ by20 + cz20
satisfies the conditions in Hensel’s Lemma. But that’s easy: f(x0) ≡ 0 is our
assumption, and f ′(x0) = 2ax0 �≡ 0 (mod p) because p is odd and does not
divide a or x0.

136 Well, certainly in the application of Hensel’s Lemma (we need to know
that whichever of x0, y0, or z0 is not divisible by p has a coefficient next to it
which is not divisible by p). But presumably also in the Proposition: where?
(Hint: suppose one of a, b or c is divisible by p; is the Proposition still true?)
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137 Of course, the idea is to use the result in Problem 120, using Hensel’s
Lemma as we did in Problem 135. The difficulty is that, since p = 2, there is
no doubt that the derivative will be divisible (once) by p. If we look hard at
the conditions in Problem 120, we see that we need to find an initial solution
(x0, y0, z0) such that ax2

0 + by20 + cz20 ≡ 0 (mod 8).
Very well, we know that the sum of two of the coefficients, say a and b,

is divisible by 4: a+ b ≡ 0 (mod 4). Now there are two possibilities:

• if a+ b ≡ 0 (mod 8), then we can choose x0 = y0 = 1 and z0 = 0, and all
is well;

• if not, we will have a + b ≡ 4 (mod 8); choosing x0 = y0 = 1 and z0 = 2
will then do what we want (check!).

In either case, we are in business, and the stronger form of Hensel’s Lemma
gives a solution in Q2.

138 Suppose a is even, b and c are odd, and ax2+ by2+ cz2 = 0. As before,
we can assume that at least one of x, y and z is a 2-adic unit, and that all
three are in Z2. There are two cases to consider:

• x is in 2Z2. Then clearly ax2 is divisible by 8, and it is easy to see that y
and z must be 2-adic units. Since the square of a 2-adic unit is always in
1 + 8Z2, it follows that

0 = ax2 + by2 + cz2 ≡ b+ c (mod 8).

• x is a 2-adic unit. Then y and z again must be 2-adic units (if, say,
y ∈ 2Z2, then ax2 + by2 would be divisible by 2, and therefore cz2 would
be divisible by 2; but we know c is odd, so z would have to be in 2Z2; but
then by2 + cz2 would be in 4Z2, hence so would ax2. . . ). Once again, the
square of a 2-adic unit is always in 1 + 8Z2, and we get

a+ b+ c ≡ 0 (mod 8).

The converse is once again an application of the generalized form of Hensel’s
Lemma (but it’s actually easier this time, because we have information about
a, b, and c modulo 8).

139 Necessity is easy: since p|a, we have by2 + cz2 ≡ 0 (mod p), and it’s
not hard to see that both y and z will have to be p-adic units. Hence, we
can rewrite the equation as b+ (y/z)2c ≡ 0 (mod p), and it is now a matter
of showing that if a p-adic unit fits into this equation, then we can find an
integer that does (and that is easy).

The sufficiency is Hensel’s Lemma again, of course.
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140 What this suggests is that given information about all but one prime
p ≤ ∞ the behavior at the missing prime is determined. This is in fact true.
The magic word here is “reciprocity.” Have a chat with the local number
theorist, who is likely to wax poetic over this one.

141 Remember that powers of p are small, and these are all easy to work
out: n! converges to zero, n and 1/n diverge, pn converges to zero, (1+px)p

n

converges to 1.

142 We’ve pretty much already proved this. Look at Lemma 3.2.10.

143 Exactly the same proof that works over R works here also. Basically,
the fact that |x+ y| ≤ |x|+ |y| says that when the sequence of partial sums
of
∑ |an| is Cauchy, then so is the sequence of partial sums of

∑
an.

144 If
∑

an = 0, the inequality is vacuous. If not, for any partial sum, we
have ∣∣∣∣∣

N∑
n=0

an

∣∣∣∣∣ ≤ max
0≤n≤N

|an|

by the non-archimedean property. Now note that for large enough N we have

max
0≤n≤N

|an| = max
n

|an|

because the an tend to zero, and∣∣∣∣∣
∞∑
n=0

an

∣∣∣∣∣ =
∣∣∣∣∣

N∑
n=0

an

∣∣∣∣∣
by Lemma 3.2.10.

145 Examples in R:

∑ 1

n

∑ 1

n logn

∑
p prime

1

p

are all divergent.

146 Almost any example with positive terms works. Say,

1 +
1

2
+

1

22
+

1

23
+ · · ·+ 1

2n
+ · · · = 2,

and max
{∣∣ 1

2n

∣∣} = 1 < 2.
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147 This follows the proof given in [39, Theorem 3.6].
Suppose we have a sequence of terms

a1, a2, . . . , an, . . .

with an → 0. If we take a bijection

σ : {1, 2, 3, . . .} −→ {1, 2, 3, . . .},

we can produce another sequence bn = aσ(n) which is a reordering of the
original.

Notice that an → 0 if and only if bn → 0, because both are equivalent to
saying that for any ε > 0 all but finitely many have absolute value < ε. So
the series

∑
an and

∑
bn either both converge or both diverge. We want to

show that if they converge they have the same sum.
Since both sequences tend to zero, there is an N1 such that if n ≥ N1 we

have both |an| < ε and |bn| < ε. If A =
∑

an, we can also find N2 so that
for any k ≥ N2 we have ∣∣∣∣∣A−

k∑
n=0

an

∣∣∣∣∣ < ε.

Now take N = max{N1, N2} and take k ≥ N ; look at the two sums

S =

k∑
n=0

an and S′ =
k∑

n=0

bn.

We know that all terms after the k-th are ε-small, but both S and S′ involve
adding some terms with |an| ≥ ε and some terms with |bm| ≥ ε. But notice
that these are exactly the same terms, since they are all terms of the original
sequence with larger absolute values, just written in a different order. Let S1

be the sum of all of those terms, so that

S = S1 + terms an, 1 ≤ n ≤ k, with absolute value < ε

and
S′ = S1 + terms bn, 1 ≤ n ≤ k, with absolute value < ε.

Now the ultrametric inequality gives |S − S1| < ε and |S′ − S1| < ε, from
which we get |S − S′| < ε. Since we also know (by our choice of k) that
|S −A| < ε, we get |S′ −A| < ε.

So we have found an N so that if k ≥ N we have∣∣∣∣∣A−
k∑

n=0

bn

∣∣∣∣∣ < ε,

which shows
∑

bn = A.
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148 We used the ultrametric inequality a number of times, but basically in
two ways:

i) to conclude that a series converges when we know that its terms tend
to zero,

ii) to conclude that a sum is less than ε when each of the summands is
less than ε.

Both uses are crucial, so we don’t expect that this result remains true over R.
Can you construct a counterexample? There are theorems of this sort that
are true over R, but in that case the crucial property is absolute convergence.
See, for example, section 8.21 of [4].

149 This is true in the classical setting (i.e., over R), and the same proof
works here. But it’s not hard to do: work with partial sums. We have

N∑
n=0

an +

N∑
n=0

bn =

N∑
n=0

cn

because these are all finite sums; now take the limit.

150 In the classical setting, this is true if one of the two series converges
absolutely, but not otherwise; see [55, Example 3.49], where

∑
cn fails to

converge. Abel showed, however, that if
∑

cn does converge, the limit will
be the product; see [55, Theorem 3.51]. In some sense, then, the point is that
in the p-adic case

∑
cn always does converge.

As usual when we work in a non-archimedean setting, absolute conver-
gence is not needed. One can use Proposition 5.1.4 to prove this; see [19,
Cor. 2.10], for example. Or one could check that Abel’s theorem is true in
the p-adic situation and then just prove that

∑
cn converges. But here’s a

brute-force approach.
Let

A =

∞∑
n=0

an, B =

∞∑
n=0

bn.

The key difficulty is this: if we take

Am =

m∑
n=0

an, Bm =

m∑
n=0

bn,

then since Am converges to A and Bm converges to B it is clear that AmBm

converges to AB. The problem is that
∑m

n=0 cn �= AmBm. To show that∑
cn does converge to AB, we need to estimate the difference. This is a

finite sum, and with a little bit of care the ultrametric inequality will save
the day.
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We have

AmBm =
m∑

n=0

m∑
k=0

anbk,

while
m∑
	=0

c	 =

m∑
	=0

∑
n+k=	

anbk.

The first sum includes all the anbk where 0 ≤ n, k ≤ m, while the second
includes only the ones where n+ k ≤ m. So the difference is the sum of the
terms where 0 ≤ n, k ≤ m and n+ k > m. Notice that the inequalities imply
that neither n nor k is zero and that max{n, k} > m/2, so we can split the
sum into the part where m > n/2 and the part where k > m/2:

AmBm −
(

m∑
	=0

c	

)
=

∑
n>m/2

0<n,k≤m
n+k>m

anbk +
∑

k>m/2
0<n,k≤m
n+k>m

anbk.

Since both an and bk tend to zero, we can choose m such that n > m/2
implies |an| < ε and k > m/2 implies |bk| < ε. So for each term in the first
sum, we have |anbk| < εmax |bk| and for each term in the second sum we
have |anbk| < εmax |an|. By the ultrametric inequality, it follows that∣∣∣∣∣AmBm −

(
m∑
	=0

c	

)∣∣∣∣∣ < ε(max |an|+max |bk|).

Since ε is arbitrary, this shows that
∑m

	=0 c	 has the same limit as AmBm,
namely AB, and we are done.

151 Well, the basic content of the intermediate value theorem is that the
image of an interval under a continuous function is an interval. This is
a special case of a general fact, true in any metric space: the image of a
connected set by a continuous function is a connected set. This is true in the
p-adic context, but is kind of silly, since the only connected sets are those
which consist of exactly one point!

A more interesting question is this: suppose f(X) is a polynomial (might
as well choose an easy function to work with). What can you say about the
range of values of f(x) as x runs through Zp?

152 It’s what you think it should be!

153 The injectivity is clear, since we can recover the p-adic expansion of x
from that of f(x). So this function is nowhere near locally constant!

For the derivative, we follow the proof in [56]. Let’s estimate |f(x)−f(y)|
when |x− y| is known. Since every absolute value is a power of p and we are
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working on Zp, we can assume |x− y| = p−k for some k ≥ 0. If so, the p-adic
expansions of x and y must be identical up to the (k− 1)st digit. Therefore,
the expansions of f(x) and f(y) agree up to the (2k − 1)st digit (they agree
up to 2(k−1) by the definition of f , and all odd digits are zero). That means
|f(x)− f(y)| ≤ p−2k. So we conclude that for all x, y ∈ Zp we have

|f(x)− f(y)| ≤ |x− y|2.
But then ∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ |x− y|,

which goes to zero as y → x, so f ′(x) = 0.

154 The chain rule is true because the usual proof works quite well. Once
that is known, it’s easy to see that one can make more “pseudo-constant”
functions by taking one such and composing with any other non-constant
differentiable function. That’ll yield a great many examples!

155 In each case, one has to look at how the p-adic valuation of the general
term changes as n → ∞. For (i), note that vp(p

nxn) = n + nvp(x) =
n(1 + vp(x)); if vp(x) > −1, this will tend to infinity with n, so that

|pnxn|p = p−n(1+vp(x))

will tend to zero, and the series will converge. Otherwise, the series will
diverge. So the radius of convergence is given by vp(x) > −1, or |x|p < p.
(ii) is very similar. The hardest one is (iii): we want to compute vp(n!x

n) =
vp(n!) + nvp(x). The difficulty is to estimate vp(n!). This will be done later
in the chapter, but give it a go now. If you can show that vp(n!) grows faster
than linearly in n, then the series will converge for all x. Does it?

156 All that needs to be checked is that the definition of the sum and
product power series agrees with the sum and product series in problems 149
and 150.

157 Clearly the formula is

cn =

n∑
m=1

amdm,n,

where

g(X)m =
∞∑

n=m

dm,nX
n.

So what’s needed is a formula for the coefficient dm,n of degree n in g(X)m.
That can be gotten by induction from the definition of the product of two
power series. If you can’t find it by yourself, look further down in this section!
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158 Here’s what I get (as usual, line breaks added):

gp> funct(x)=exp(2*x^2-2*x)

%1 (x)->exp(2*x^2-2*x)

gp> hseries=truncate(exp(2*x^2-2*x))

%2 92413472/638512875*x^16 - 165592576/638512875*x^15

+ 3824768/8513505*x^14 - 4548032/6081075*x^13

+ 560608/467775*x^12 - 285568/155925*x^11 + 37984/14175*x^10

- 2096/567*x^9 + 1528/315*x^8 - 1856/315*x^7 + 304/45*x^6

- 104/15*x^5 + 20/3*x^4 - 16/3*x^3 + 4*x^2 - 2*x + 1

gp> funct(1+O(2^20))

%3 1 + O(2^21)

gp> subst(hseries,x,1+O(2^20))

%4 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^7 + 2^9 + 2^12 + 2^15

+ 2^17 + 2^18 + 2^19 + O(2^21)

The answers are actually very far from each other. Plugging into the function
gives the expected answer, 1 (up to the 2-adic precision). Plugging into the
series gives what looks like a random 2-adic number very close to −1 =
1+ 2+ 22 +23 + . . . . (Is it actually equal to −1? Our computation may not
have enough precision for us to decide.)

Might it be a problem of not enough precision? You can get a longer series
by first changing the series precision in gp: \ps 50 will get you a series of
degree 50. Does the answer change?

159 The proof is similar to the one we gave for Theorem 5.4.3. To prove
this version we just need to check that the condition on r suffices to allow us
to reverse the order of summation at the crucial point. See [56, 41.2].

160 For any convergent series we know that

|g(x)| ≤ max
n≥1

{|bnxn|}

by the ultrametric inequality. Since we have condition iii as well, it follows
that

|g(x)| = max
n≥1

{|bnxn|} = r.

In the theorem we assume f(g(x)) converges, so we know that

lim
n→∞ |an|rn = lim

n→∞ |an(g(x))n| = 0.

161 The series h(X) is the case p = 2 of a function due to Dwork.
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It’s easy to see that the extra condition in Theorem 5.4.3 doesn’t hold,
since g(1) = 0 is certain to be smaller than the terms of the series. Trying to
use the condition in Problem 159 leads to the same conclusion: in our case
r = max{|bnxn|} = 1/2, but the exponential converges only when |x| < 1/2.

The first few terms of h(X) look like this:

h(X) = 1− 2x+ 4x2 − 16

3
x3 +

20

3
x4 − 104

15
x5 +

304

45
x6 − 1856

315
x7 + . . .

Since g(X) is just a binomial, it isn’t hard to write out the general term of
h(X), but the resulting formula isn’t very helpful.

Assuming the estimate on the coefficients, v2(an) ≥ 2 as soon as n ≥ 4.
Since a3 = −16/3 is also divisible by 4, we see that h(1) = 1− 2 + multiples
of 4, so that h(1) ≡ 3 (mod 4). So h(1) �= 1.

How hard is it to prove the estimate on the coefficients of h(x)? All the
proofs I know depend on the theory of the Artin–Hasse exponential function.
I first learned it (for general p) from [43, 14.2]. There are alternative accounts
(with slightly different estimates) in [17, Section 2] and [53, p. 394]. When
reading those, keep in mind that π is used for an element with vp(π) =
1/(p− 1), so that when p = 2 we can take π = 2 as well.

The estimate v2(an) ≥ 1 + n/4 is sharp, because v2(a4) = 2. Indeed, a
computation shows that v2(a2k) = 1+2k−2 for 1 ≤ k ≤ 10. Is it always true?

162 This is straightforward manipulation of formal series. (Or can you
think of a smarter way to prove these?)

163 Let f(X) =
∑

anX
n and let D be its region of convergence, which we

know is a ball centered at 0 which might be open or closed. If f(x) converges
and |x| = r, then we know by Proposition 5.4.1 that the closed ball B(0, r) is
contained in D. By the Lemma, f is continuous on B(0, r), hence continuous
at x.

It’s also possible to imitate the classical proof, which is based on the theo-
rem that a uniformly convergent series whose terms are continuous functions
has a continuous sum. That is true in the p-adic setting as well, which re-
duces the problem to showing that power series always converge uniformly
on closed balls (and not just on compact sets).

164 The phrase assumes that the roles of f and g in the proposition are
symmetric, that is, that if we start with g and construct a new series as
specified, the result will be f . Can you check that?

165 This is a matter of writing out g(x) and using Proposition 5.1.4 to
reorganize it into a power series in x. Say f(X) =

∑
cnX

n. Since |a| = 1
and |b| < ρ, we have

|x| < ρ ⇐⇒ |ax+ b| < ρ
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and

g(x) = f(ax+ b) =
∞∑
n=0

cn(ax+ b)n =
∞∑
n=0

n∑
k=0

cn

(
n

k

)
akxkbn−k.

Now check that we can reorganize this to get

g(x) =

∞∑
k=0

( ∞∑
n=k

(
n

k

)
cna

kbn−k

)
xk.

166 First, the region of convergence of a power series is either an open or
a closed ball, hence is an open set. Hence, if xm → x and f(x) and g(x)
converge, we can conclude that f(xm) and g(xm) converge for large enough
m. Now use Proposition 5.5.3 to reduce the problem to the case where x = 0.

167 We give a proof making full use of the ultrametric inequality to simplify
things. We assume that the limits exist, and let

A = lim
h→0

f(h), an = lim
h→0

fn(h).

We want to show

∞∑
n=0

an = A.

Let ε > 0 be given. We want to find an M so that m ≥ M implies∣∣∣∣∣A−
m∑

n=0

an

∣∣∣∣∣ < ε. By uniformity, we know that we can find an M so that if

m ≥ M we have |fm(h)| < ε for all |h| ≤ r. It follows that for all |h| ≤ r we
have ∣∣∣∣∣f(h)−

M∑
n=0

fn(h)

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=M+1

fn(h)

∣∣∣∣∣ ≤ max
n>M

|fn(h)| < ε.

Since the limits exist, for each n we can find δn such that

|h| < δn =⇒ |fn(h)− an| < ε.

Notice that if m ≥ M and |h| ≤ r we know |fm(h)| < ε, so this implies when
m ≥ M we must have

|am| ≤ max{|fm(h)|, |am − fm(h)| < ε

as well. Finally, we can find δ so that

|h| < δ =⇒ |f(h)−A| < ε.

Now take |h| < min{r, δ, δ0, δ1, . . . , δM} and m ≥ M . We have:

i) |A− f(h)| < ε.
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ii)

∣∣∣∣∣f(h)−
M∑
n=0

fn(h)

∣∣∣∣∣ < ε.

iii)

∣∣∣∣∣
M∑
n=0

fn(h)−
M∑
n=0

an

∣∣∣∣∣ ≤ max
0≤n≤M

{|fn(h)− an|} < ε.

iv)

∣∣∣∣∣
M∑
n=0

an −
m∑

n=0

an

∣∣∣∣∣ ≤ max
M<n≤m

{|an|} ≤ ε.

Using the ultrametric inequality, we get that if m ≥ M then∣∣∣∣∣A−
m∑

n=0

an

∣∣∣∣∣ ≤ ε,

and so

m∑
n=0

an = A, as claimed.

168 This is almost identical to the classical proof.
If we just jump into the formula in Proposition 5.4.1, we need to compare

lim sup
n→∞

n
√
|an| and lim sup

n→∞
n−1
√
|nan|

(both are limits in R). But that n versus n− 1 thing is confusing, so let’s use
a trick to avoid that. Notice that f ′(x) =

∑
nanx

n−1 converges if and only
if xf ′(x) =

∑
nanx

n converges, so we can work with the latter series. So it
suffices to prove that

lim sup
n→∞

n
√
|an| = lim sup

n→∞
n
√
|nan|.

This will be true if
lim
n→∞ |n|1/n = 1.

If we were working with the real absolute value, we would have |n| = n and
the result is an easy computation. To do it over Qp, the key thing to notice
is that (since we are working with the p-adic absolute value) 1/n ≤ |n| ≤ 1,
so in R we have the inequalities

n−1/n ≤ |n|1/n ≤ 1.

Since the limit (in R) of n−1/n as n → ∞ is 1, this gives what we want. Thus,
the two radii of convergence are the same.

169 Just use the proposition repeatedly (equivalently, use an induction
proof where the step is provided by the proposition).
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170 Well, the formula for ak suggests that it’s f (k)(x)/k! that’s the inter-
esting quantity, and notice that the formula says that if the an are in Zp then
so are the coefficients of f (k)(x)/k!. That’s kind of neat.

Actually, in certain cases one wants to consider whether the “quasi-
derivative” defined by

f [k](x) =
∑
n≥k

(
n

k

)
an(x− α)n−k

has nice enough properties to replace the derivative. This is relevant, for
example, if we are working over a field of characteristic p and we have k > p.

171 We need to consider cnj = anx
jαn−1−j . Since both x and α are in Zp,

we get |cnj | ≤ |an| → 0, which gives one of the conditions we need to check.
For the other, note that cnj = 0 if j ≥ n.

172 If we put f(X) =
∑

anX
n, and assume it converges on pmZp, then, as

in the proof of the Corollary, we have to look at the series
∑

anp
mnXn. We

need to find N such that

|pmNaN | = max
n

|pnman| and |pmnan| < |pmNaN | for n > N .

Then f(X) has at most N zeros on pmZp.

173 The first series converges for |x| < p, hence for x ∈ Zp, and since
|pn| = p−n is strictly decreasing, we have N = 0, so that there are no roots
in Zp. (In fact, we have

∑
pnxn =

1

1− px
when |x| < p,

and this is clearly never equal to zero.) The second series converges on p2Zp,
and changing variables as above gives N = 0 again. (What is the sum?) The
third one is again the hardest; to count the roots in Zp, one needs to find the
last n such that n! is not divisible by p, which gives N = p − 1. Thus, the
series has at most p− 1 roots in the unit disk. If you managed to determine
the precise radius of convergence, can you say anything about other possible
roots?

174 Since vp(n) is the largest m such that pm divides n, it’s clear that
vp(n) ≤ logn/ log p. But then vp(n)/n ≤ log n/n log p, which tends to zero
as n → ∞, which gives what we want.
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175 If p = 2, then −1 = 1 − p ∈ B, so that log2(−1) makes sense. On
the other hand, we must have 2 log2(−1) = log2(−1)2 = log2(1) = 0, so that
log(−1) = 0. Writing out the series for log(1− 2) gives

−
(
2 +

22

2
+

23

3
+

24

4
+ · · ·+ 2n

n
+ · · ·

)
and saying that this converges to zero in Q2 amounts to saying that its partial
sums get more and more divisible by 2. This was the claim in chapter one.
For an estimate of the power of 2 dividing a partial sum, we might write(

2 +
22

2
+

23

3
+

24

4
+ · · ·+ 2N

N

)
+

(
2N+1

N + 1
+ · · ·

)
= 0,

which shows that∣∣∣∣2 + 22

2
+

23

3
+

24

4
+ · · ·+ 2N

N

∣∣∣∣
2

=

∣∣∣∣ 2N+1

N + 1
+ · · ·

∣∣∣∣
2

≤ max
n>N

{|2n/n|2}.

Thus we need to estimate |2n/n|2, or v2(2n/n), for large n. Now, v2(2n/n) =
n− v2(n) ≥ n− logn/ log 2, so a lower bound for the exponent will be given
by the least value of n− logn/ log 2 for n > N . Now use some calculus.

176 Define a power series by f(X) = log(1 + pX), which will converge for
x ∈ Zp. We need to find the last N for which the coefficient aN has the
maximum absolute value. Writing down the series explicitly (do it!), one
sees that N = 1 if p �= 2 and N = 2 if p = 2, which gives us the answer we
want.

177 Notice first that if xp = 1, then |x| = 1, so that any such root must be
in Zp. Reducing modulo p gives an element x of Z/pZ whose p-th power is
one. Since p �= 2, this implies that x = 1 in Z/pZ, i.e., that x ∈ 1 + pZp. In
a nutshell, a p-th root of unity in Qp must be in 1 + pZp.

Now we can just use the previous problem: if x ∈ 1+pZp satisfied xp = 1,
then clearly logp(x) = 0, and this can only happen if x = 1. So there are no
roots of unity in 1 + pZp.

Putting it all together, we conclude that there are no nontrivial p-th roots
of unity in Qp.

178 This is very similar to, but easier than, the previous problem.

179 Write out the expression of n! as a product, and work out how many
numbers are multiples of p, how many of p2, etc.

180 What the hint says.

181 Not serious ones!
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182 Start from

expp(x) − expp(y) = expp(y)
(
expp(x− y)− 1

)
and note that since | expp(y)− 1| < 1 we must have | expp(y)| = 1.

183 Since log2(−1) = 0 and the terms of the series are non-zero, there’s
no chance that the condition |g(x)| ≥ |amxm| is going to be satisfied. This
points out a general fact: whenever g(x) = 0, we’ll have trouble applying
Theorem 5.4.3.

184 This is very similar to what we did in the text for the exponential. The
regions of convergence will, of course, be the same as those for the exponential
function. (Why “of course”?) The “p-adic trig functions” won’t be periodic,
because of Corollary 5.6.5.

185 The elements of Z/nZ can be represented by the integers between 1
and n. It’s easy to see that if a is invertible in Z/nZ, then gcd(a, n) = 1 (can
you prove it?). For the converse, use the fact that if gcd(a, n) = 1 then we
can find integers r and s such that ra+ sn = 1, and reduce modulo n.

186 (1 + qx)(1 + qy) = 1 + q(x+ y + qxy), and

1

1 + qx
= 1− qx+ q2x2 − q3x3 + . . .

which converges because x ∈ Zp. Similarly with p instead of q.

187 Let x ∈ 1 + 2Z2. Then x ≡ ±1 (mod 4). In the first case, x ∈ 1 + 4Z2

and Theorem 5.7.8 shows that log2(x) ∈ 4Z2. On the other hand, if x ≡ −1
(mod 4) then −x ∈ 1 + 4Z2 and

log2(x) = log2(−1) + log2(−x) = log2(−x) ∈ 4Z2.

188 We already know that there are exactly (p−1) roots of unity in Zp, by
a combination of Hensel’s Lemma (Problem 123) and Strassman’s Theorem
(Problem 177). Further, Hensel’s Lemma already tells us that no two of the
(p − 1)-st roots of unity are congruent modulo p. (For p = 2, one needs to
change this slightly; see problems 124 and 178.) Can you come up with a
more direct argument?

189 Since π gives an injective homomorphism between V and (Z/qZ)×,
and these groups have the same number of elements, π must in fact be an
isomorphism. Now let u ∈ Z×

p , and suppose π(u) = n ∈ (Z/qZ)×. Choose
ζ ∈ V such that π(ζ) = n. Then u1 = uζ−1 ∈ U1. The map

u �→ (ζ, u1)

gives the isomorphism between Z×
p and V ×U1.
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190 The main thing is that when p = 2 the Teichmüller character is trivial:
ω(x) = 1 if x ∈ Z×

2 and ω(x) = 0 if x ∈ 2Z2. For x a unit, then, the
factorization x = ω(x)x1 just says x = x. Instead, what we should do is
factor x ∈ Z×

2 as x = ±x2, with x2 ∈ 1 + 4Z2.

191 If x ∈ pZp it is clear that xpn → 0, which is the desired answer. If
x ∈ Z×

p and p �= 2, we know x = ω(x)〈x〉.
Since ω(x)p−1 = 1, we have ω(x)p = ω(x); taking p-th powers over and

over, we see that ω(x)p
n

= ω(x) for any n.
On the other hand, 〈x〉 = 1 + qy for some y. Taking p-th powers,

〈x〉p = (1 + qy)p = 1 + pqy +multiples of q2,

so that 〈x〉p ∈ 1 + p2Zp. Repeating, we see that 〈x〉pn ∈ 1 + pn+1Zp, so that
〈x〉pn

tends to 1 as n → ∞. Putting these together gives what we want.
A similar computation handles the case p = 2.

192 If |x| = 1, we want to look at the sequence
(
α
n

)
as n tends to infinity.

If it tends to zero, then the series converges for |x| = 1; if not, not, and
the radius of convergence is 1. Can you decide? The answer may very well
depend on α!

193 Keep in mind that a^(1/3) and a^(1/3+O(7^20)) need not be the
same. In gp it seems possible to compute ab when a, b ∈ Zp without problems.
Try to figure out what the program is doing. Sage can also compute ab in
many cases. I have no idea what algorithm(s) are used. Go play.

194 This one is much easier: if |α| > 1, then |α − i| = |α| (because “all
triangles are isosceles”). Putting this together with our various estimates on
|n!| should allow you to get an answer.

195 When α is a positive integer, this is obvious, since

B(α, x) = (1 + x)α =

α∑
i=0

(
α

i

)
xi

is actually a polynomial. For negative integers, all we need to notice is that
we have B(α, x)−1 = (1 + x)−α.

196 This takes quite a bit of work, though some bits aren’t hard. For
example, we already know that B(1/2, x) converges if |x| < 1, that is, if
x ∈ pZ(p) (since x is rational). So we need to know for which a/b is it
true that (a/b)2 is a one-unit. Now (a/b)2 − 1 ∈ pZp means that p divides
a2 − b2 = (a+ b)(a− b) (which is the numerator), and hence that it divides
either a+ b or a− b. This shows the “if” in (i). For the converse, we need to
know that the series does not converge if x �∈ pZp. See how far you can get.
There are some hints in [42].
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197 See any book on real analysis or general topology. I like [39, Sec-
tion 4.2], [55, Theorem 4.19] and [47, Theorem 27.6].

198 The easiest way is to exploit the proposition that follows this problem
in the text: a function on Z that cannot be extended to Zp will work. Say,
choose an element α ∈ Zp which is not in Z (say, any a/b with p � b and
b > 1), and define f(x) = 1/(x− α) for any x ∈ Z. Then f is continuous on
Z but not uniformly continuous (check!).

199 The main point is that an − am small implies f(an)− f(am) small by
the uniform continuity. It’s pretty much a direct check in ε − δ style. For
more detail on this and the next two problems, see [39, Section 4.2].

200 If bk is another sequence tending to x, then ak − bk tends to zero; by
the boundedness and uniform continuity, it follows that f(ak)− f(bk) tends
to zero, which is what we want.

201 This is very similar to the other two problems: easy ε− δ stuff.

202 Basically, all that needs to be done is to run through the argument and
check that the only result we needed was that Zp was compact and that Z
was a dense subset. Hence the argument works for any compact subset of
Qp and any dense subset of that. (Even for Zp, that’s an advantage. For
example, if p �= 2 the even integers are dense in Zp, and we can interpolate
from them to all of Zp.)

203 This one’s really pretty hard. Here’s one way. First check that each
term in the series for B(α, x) is continuous as a function of α. This is easy,
since

(
α
n

)
is a polynomial in α. Then check that the series converges uniformly

as a series of functions of α. This implies (exactly as in the classical case)
that the sum is a continuous function of α.

204 It works if there are no convergence woes (and gives the same result,
by continuity). The difficulty is that we need |α logp(n)| < p−1/(p−1) to be
able to compute the exponential, and |n− 1| < 1 to be able to compute the
logarithm. The second condition is one we had to impose in our setup anyway
(n ∈ 1 + pZp), so it doesn’t bother us. We’ve shown above that it implies
| logp(n)| < 1, which is enough if α ∈ Zp and p �= 2 (because of the remark we
made above, that in Zp having absolute value less than one implies having
absolute value ≤ 1/p). In a more general situation, this would work less well.

205 This is simpler than it seems. To begin with, in Z2 there is a good
notion of “even,” since 2 is not invertible. Hence if we define (−1)α = 1 if 2
divides α and = −1 if not, everything works. On the other hand, if p �= 2,
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then 2 is invertible, and there’s clearly no good way to extend the whole
function.

If we want to do the interpolation “in pieces,” as in the text, then it
works. Take p = 3, so that p − 1 = 2, and the two choices for α0 are 0 and
1. In fact, f0 and f1 are pretty easy to work out: f0(α) = 1 for all α and
f1(α) = −1 for all α. Then f0 interpolates (−1)α for α ≡ 0 (mod 2), i.e.,
for even α, and f1 does the same for odd α. A dumb example, but maybe it
sheds some light on what is going on. . .

What happens if p = 5?

206 Easy: do the same as you did in Problem 50.

207 Again, this is a repeat of Problem 51.

208 The hardest property to check is (ii). For the sup-norm, even that
one comes easily: we want to check that ‖v + w‖ ≤ ‖v‖ + ‖w‖. Let v =
a1v1 + · · ·+ anvn and w = b1v1 + · · ·+ bnvn; the inequality translates into

max
i

|ai + bi| ≤ max
i

|ai|+max
i

|bi|.

But that follows easily from the fact that |ai + bi| ≤ |ai|+ |bi| for each i.
For the r-norms, it’s a little harder to get (ii); in fact, it may be worth

looking it up in books on functional analysis (where it’s done in much greater
generality). If you’d like to give it a try, here is an outline of the standard
proof.

First of all, it’s relatively easy to prove the triangle inequality if r = 1
or r = 2, so we’ll concentrate on providing hints for the rest. (Actually, the
proof we sketch works fine for r = 2.) Next, for each r > 1, let r′ > 1 be the
real number such that

1

r
+

1

r′
= 1.

We sometimes call r and r′ a dual pair.1 A lot of the proof depends on
the duality between the r-norm and the r′-norm. The first lemma is the
following:

• Let α and β be positive real numbers, and let r and r′ be as above. Then
we have

αβ ≤ αr

r
+

βr′

r′
.

To prove this, plot the function y = xr−1, the lines x = α and y = β,
and try to locate in your picture the various quantities that appear in the
inequality.

1Notice that if r = 2, then r′ = 2; this is what makes the case r = 2 special. On
the other hand, if r = 1, the only sensible choice for r′ is +∞. What norm would that
correspond to?
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Now the next step: prove the Hölder Inequality. Let v1, v2, . . . , vn be a
basis, and take two elements

v = a1v1 + a2v2 + · · ·+ anvn

and
w = b1v1 + b2v2 + · · ·+ bnvn.

Then show that
n∑

i=1

|ai| |bi| ≤ ‖v‖r ‖w‖r′

For the proof, apply the previous inequality with α = |ai|/‖v‖r and β =
|bi|/‖w‖r′ for each i = 1, 2, . . . , n, and add the results. (For r = 2, this
should be a familiar formula—is it?)

Finally, use the Hölder Inequality to prove that ‖v+w‖r ≤ ‖v‖r+‖w‖r.
Here’s the idea: start with the sum whose r-th root is the norm:

n∑
i=1

|ai + bi|r =

n∑
i=1

|ai + bi|r−1|ai + bi|

≤
n∑

i=1

|ai + bi|r−1|ai|+
n∑

i=1

|ai + bi|r−1|bi|

(where we’ve just used the triangle inequality for the absolute value), and
now apply Hölder’s inequality to both summands and the pair (r, r′).

This was a hard one!

209 See figure B.1.

210 Try a vector space of dimension one.

211 Well, ‖(1,−1)‖ = 0 kind of messes things up. (On the other hand, the
other two conditions are satisfied; is that significant?)

212 To prove that equivalent norms define the same topology, it’s enough to
show that an open ball with respect to one norm is an open set with respect
to the other. Since this is a vector space with a norm, it’s enough to prove
this for one ball, say, the open unit ball. So let B = {x ∈ V : ‖x‖1 < 1}.
If x ∈ B, then let r = ‖x‖1. Choose R < (1 − r)/C; it’s easy to see that
the set N = {y ∈ V : ‖y − x‖2 < R}, which is an open ball with respect to
‖ ‖2, is contained in B. This shows B is open with respect to ‖ ‖2, and, since
everything is symmetric, proves what we want.

For the converse, we can be direct or we can be fancy. For a direct
approach, show that if the two topologies are equivalent, the closed unit ball
with respect to one norm must contain a closed unit ball with respect to the
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(a) sup-norm (b) 1-norm

(c) 2-norm (d) 3-norm

Figure B.1: Unit balls for various norms

other. (For example, argue that the open unit ball for ‖ ‖1 is open with
respect to ‖ ‖2, and hence contains an open ‖ ‖2-ball around zero, which
contains a closed ‖ ‖2-ball—of slightly smaller radius—around zero.) Then
look closely at what this means to get one of the inequalities we want.

A fancier approach would be this: consider the identity map ι : V −→ V ,
so that ι(v) = v. We give the “first” V the norm ‖ ‖1 and we give the
“second” V the norm ‖ ‖2. Since this yields the same topology on “both”
V ’s, both ι and its inverse are continuous linear transformations. Unwinding
the continuity yields the inequalities we want.

213 The two inequalities in the definition of equivalence can be restated as

1

D
‖v‖2 ≤ ‖v‖1 ≤ C‖v‖2

for any v ∈ V . This clearly translates to what we said about closed balls.

214 Easy.

B Hints, Solutions, and Comments on the Problems
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215 The sketches make it clear that any ball with respect to one of the
norms, say ‖ ‖1, both contains and is contained in balls with respect to the
other norms, and this translates directly into the existence of C and D.

216 max{|a|, |b|} ≤ |a|+ |b| ≤ 2max{|a|, |b|}.

217 This is straightforward if we do it in the usual “circle of implications”
way. To see, for example, that (i) implies (ii), suppose that f is continuous
at 0. Then given any ε > 0 there exists a δ > 0 such that ‖v‖ ≤ δ implies
‖f(v)‖ ≤ ε. Making δ smaller if necessary, we can find an element x ∈ k such
that |x| = δ. But then we have

‖v‖ ≤ 1 =⇒ ‖xv‖ ≤ |x| = δ =⇒ ‖f(xv)‖ ≤ ε

=⇒ ‖xf(v)‖ ≤ ε =⇒ δ‖f(v)‖ ≤ ε

=⇒ ‖f(v)‖ ≤ ε

δ
,

so that the sup is finite. The other implications are similar.
For an added challenge, show that all of these conditions are also equiv-

alent to the assertion that there exists some v ∈ V and some positive r ∈ R
such that f is bounded on the closed ball of radius r around v.

218 This is a standard example in functional analysis (these spaces are
sometimes known as �∞(K) and �1(K)). If necessary, look it up.

219 See Chapter 7!

220 The picture in two dimensions is like this: the unit ball with respect to
the sup-norm is a “square” defined by |a1| ≤ 1 and |a2| ≤ 1, where a1 and a2
are the coordinates with respect to our basis. (In R2, this is the square given
by −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1.) What we are doing is partitioning the sides
of the square into pieces of radius less than ε and using this partition to cut
the “square” up into lots of “rectangles.” Then we show that the rectangles
do the job. Now draw the picture.

221 Checking that 2 is not a square in Q5 is just a matter of seeing that it
is not a square modulo 5, which is easy. For the norm, we can try the 2-norm
with respect to the basis {1,√2}:

‖a+ b
√
2‖ =

√
|a|2 + |b|2.

This gives the 5-adic norm when b = 0, i.e., on Q5, but is not an absolute
value on Q5(

√
2)—why not?

222 Either σ(
√
D) =

√
D or σ(

√
D) = −√

D, because those are the only
two roots of X2 −D. But any field that contains

√
D contains −√

D.
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223 The point is that one of the cube roots of two is real, and the other
two are complex. The field obtained by adjoining the real root is contained
in R, hence can’t be equal to its image under an automorphism mapping 3

√
2

to a complex cube root.

224 Any σ must map ζ to another root of X2 +X +1; the roots are ζ and
ζ2, so we’re OK. Similarly the image of 3

√
2 must be a cube root of two; there

are three: 3
√
2, ζ 3

√
2, and ζ2 3

√
2, and they are all in K.

225 The point is that {1, α, α2, . . . , αn−1} is a basis for K(α) over K. With
respect to this basis, the matrix of multiplication by α is in rational canonical
form and it’s easy to check that its determinant is (−1)nan.

226 Notice that α(αibj) = αi+1bj , so that with respect to the given basis
the matrix of multiplication by α is a diagonal arrangement of r identical n×n
blocks of the form we saw in the previous problem. Hence the determinant
is ((−1)nan)

r
= (−1)nrarn.

227 If we remember thatK = F (α) is isomorphic to the quotient of F [X ] by
the ideal generated by f(X), it’s not hard. Let C be an algebraically closed
field containing K. For any root α′ of f(X), consider the map K[X ] −→ C
mapping X to α′; pass to the quotient to get a map from K = F (α) to C,
whose image must be K, by normality. To get the final conclusion, write
f(X) as a product of linear factors.

228 If K/F is normal, but K is not equal to F (α), then K/F (α) is normal.
Now use the method in Problem 226.

229 Does taking the product in the normal closure work?

230 This is in the same spirit as the solution of Problem 226: choose the ba-
sis so that the matrix is in a form that allows one to compute the determinant
directly. See, for example, [54, 4.109].

231 A general quadratic extension works exactly like the example in the
text. For the second half, it can be easier or harder depending on the elements
you choose to work with; I’d try ζ, 3

√
2, and ζ+ 3

√
2. The first two are easy; the

determinant method is tempting for the last one, but we’ll have to compute
a six-by-six determinant. . .

232 No big deal. The only real point: given x and y in the algebraic closure,
the field Qp(x, y) is a finite extension of Qp; hence the norm we have defined
gives an absolute value on Qp(x, y). It follows that |x + y| ≤ max{|x|, |y|}
and that |xy| = |x| |y|, which is what we needed to prove.

B Hints, Solutions, and Comments on the Problems
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233 Use the same strategy as in the Lemma, i.e., reduce modulo p after
making sure that everything is in Zp.

234 Suppose f(X) factors in Qp[X ]; by the Lemma, it also factors in Zp[X ].
Since f(X) is monic, the top coefficients of each of the factors must be in-
vertible in Zp (yes?), and therefore are non-zero modulo p. If we now reduce
modulo p we get a non-trivial factorization in Fp[X ].

235 The argument will still work if we assume that the top coefficient of
f(X) is invertible. Otherwise, the reduction modulo p of f(X) will have
degree smaller than the degree of f(X), and things begin to get weird.

236 Well, modulo p an Eisenstein polynomial looks like Xn. If we factor
that as Xr · Xs, the factors are not relatively prime, so we can’t apply the
Lemma. If we factor as Xn · 1, we can, but the factorization will be as the
product of a polynomial of degree n and a polynomial of degree zero, which
means it will be the trivial factorization.

237 Yes, and this is proved in Chapter 6. In fact, proving this first would
allow us to simplify many of the proofs in this section.

238 Let f(X) ∈ Zp[X ] be a monic polynomial of degree n such that f̄(X)
is irreducible in Fp[X ] and whose roots generate the unique extension F/Fp
of degree n. Let K be the extension of Qp obtained by adjoining a root of
f(X). We know both K and F are extensions of degree n, and by uniqueness
it’s clear that F is a normal extension. Now: (1) use Hensel’s Lemma to show
that f(X) has n roots in K, then (2) conclude that K is a normal extension
of Qp. Use the fact that automorphisms preserve absolute values to show (3)
that every automorphism of K/Qp induces an automorphism of F/Fp. This
gives a map from Gal(K/Qp) to Gal(F/Fp). Then it’s a matter of showing
this map is injective (and is therefore an isomorphism).

239 Eliminate one prime at a time from the denominator.

240 Yes, of course: a polynomial in Z[X ] which satisfies the conditions
in the Eisenstein criterion for some prime p is irreducible in Qp[X ], and a
fortiori2 irreducible in Q[X ].

241 Yes. Can you prove it?

242 Let’s do the first one;

NF1/Q5
(1 + 3

√
2) = (1 + 3

√
2)(1 − 3

√
2) = 1− 18 = −17,

2Run for the dictionary! What does he mean, a fortiori?
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so

v5(1 + 3
√
2) =

1

2
v5(−17) = 0.

The others are similar, but keep in mind that what we know about valuations
still works. For example, it’s easy to see that v5(

√
2) = 0, by computing

the norm, and then it follows that v5(5
√
2) = 1; hence (“all triangles are

isosceles”) v5(1 + 5
√
2) = 0.

243 The nicest one of these is x =
√
5:

NF2/Q5
(
√
5) = (

√
5)(−

√
5) = −5,

so v5(
√
5) = 1/2. As well it should be!

244 Let’s try x = 1− ζ:

NF3/Q3
(1− ζ) = NQ3(ζ)/Q3

(
NF3/Q3(ζ)(1− ζ)

)
= NQ3(ζ)/Q3

(1− ζ)2.

(Remember that F3 is an extension of degree 2 of Q3(ζ).) To compute the
norm, take {1, ζ} as a basis for Q3(ζ) over Q3. The matrix of multiplication
by 1− ζ is (

1 1
−1 2

)
(remember that 1 + ζ + ζ2 = 0 for that one), so the norm (which is the
determinant) is 3. It follows that

NF3/Q3
(1 − ζ) = 9

and then that

v3(1− ζ) =
1

4
v3(9) =

1

2
.

Try some of the others.

245 It’s not too hard to see that the answers must be e = 1, 2, 2, respec-
tively. But how would a proof go?

246 For F1, π = 5 will do, and for F2, π =
√
5. For F3, the computation is

problem 244 helps: π = 1− ζ does the job.

247 Follow the hints; this is mostly straightforward. For example, to show
that pK is principal, just note that

x ∈ pK =⇒ vp(x) > 0 =⇒ vp(x) ≥ 1/e

=⇒ vp(π
−1x) ≥ 0 =⇒ π−1x ∈ OK

=⇒ x ∈ πOK .
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This is already enough to show π generates pK .
The only non-trivial bit in the remainder is showing that the elements

of OK are exactly the elements of K which are roots of monic polynomials
with coefficients in Zp. In one direction, it’s easy: if α is the root of such a
polynomial, then its norm is (up to sign) a power of the zeroth coefficient,
which is in Zp. Hence, vp(α) = 1

nvp(N(α)) ≥ 0. For the converse, look at
Lemma 6.3.6.

248 For F1, we get O = Z5[
√
2], and k = F5[

√
2] is a field of order 25. For

F2, O = Z5[
√
5] and k = F5. For F3, O = Z3[ζ,

√
2] and k is a field of order 9.

249 Routine, but important routine. Make sure you understand how both
portions of the proof work—for the most part, it’s a question of keeping track
of what is divisible by what. Can you come up with a more conceptual proof?

250 X2 − 5, of course.

251 We’ve done all the work already, when we computed the norm of 1− ζ,
which is 3. It follows that v3(1 − ζ) = 1/2, and the extension (which is of
degree 2) is totally ramified. The Eisenstein polynomial for 1 − ζ is X2 −
3X +3 (just square 1− ζ and see what coefficients work, or use the fact that
ζ2 + ζ + 1 = 0). Notice that in this case there is another uniformizer,

√−3,
since it’s easy to see that

ζ =
−1 +

√−3

2

(since it is a root of X2 +X + 1).

252 Easy: exactly the same proof works—just replace all the p’s by π’s.

253 The obvious reformulation works, and again the proof is the same.

254 Well, if you solved problem 120, then your solution solves this one too.

255 F1 contains the 24-th roots of unity; for F2, there’s no new information
(only that it contains the 4-th roots of unity, which Q5 already does). F3

contains the 8-th roots of unity (the degree is 4, and e = 2, so f = 2). As
for other roots of unity, F3 certainly contains the cube roots of unity, by
construction. (Notice that the cube roots of unity are 1-units, since ζ − 1
is a uniformizer. That means they are “invisible” from the Hensel’s Lemma
side, and therefore not predicted by the Corollary.) What about the other
two fields?

256 The first is really easy: xm = 1 implies |x| = 1. For the second part,
if xm = 1 and m is prime to pf − 1, then look at the image of x in k×, and
remember that this last is a cyclic group of order pf − 1.
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257 Write x = 1+ πu and raise to the p-th power, remembering that π is a
divisor of p. The version for general r requires, of course, an easy induction
argument.

258 Use the uniqueness statement in Hensel’s Lemma.

259 Expanding (1− x1)
	 − 1 = 0 shows that

�x1 +

	∑
i=2

(
�

i

)
xi
1 = 0.

Dividing by x1 and rearranging shows that

|�| =
∣∣∣∣∣

	∑
i=2

(
�

i

)
xi−1
1

∣∣∣∣∣ .
But the left-hand side is 1, since � �= p, and every term of the right-hand side
is in pK , which is a contradiction.

260 The quotients are clearly abelian, and problem 257 shows that x ∈ Un

implies xp ∈ Un+1, so that every element of the quotient is of order p. Now:
why is the quotient a finite group? (An idea: fix a uniformizer, and consider
the map Un → OK given by 1 + πnx �→ x; what properties does this have?)

261 To see that they are both unramified, it’s enough to check that both
X2 − 2 and X2 − 3 are irreducible over F5. That they are the same simply
means that one can express

√
2 as a+ b

√
3 with a and b in Q5. That’s rather

hard to imagine, isn’t it? But notice that 6 is a square in Q5 by Hensel’s
lemma! So if γ ∈ Q5 satisfies γ2 = 6, we have

√
2
√
3 = ±γ, and there we are:

√
2 = ± γ√

3
= ±γ

√
3

3
.

As to the p-adic expansion of a 24-th root of unity, we need to choose our
“digits” first. Since the residue field is F5[

√
2], we might take coefficients

from the nonzero elements of the set {a+ b
√
2 : 0 ≤ a, b ≤ 4}. Then, to find

the expansion, we need to determine, first, the reduction modulo p. That’ll
have to be an element of order 24 in F5[

√
2]. Once you find one, use the

procedure in Hensel’s Lemma to get closer and closer to the real thing.

262 F3 is an extension of degree four, and is ramified (in fact, e=2). Hence,
the subfield Q3(

√
2), which is unramified, must be the maximal unramified

subfield.
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263 Here’s a fancy proof that uses the uniqueness we have just proved.
Since n = 3 we must have either e = 1 or e = 3. Suppose e = 1, so that the
extension is unramified. Then it is equal to the unique unramified extension
of degree 3. Now consider the extensionK ′ = Q3(ζ

3
√
2) obtained by adjoining

a different cube root of 2 (here, as before, ζ3 = 1, ζ �= 1). If K is unramified,
then so is K ′, since they are clearly isomorphic. If they are both unramified,
then they are equal, by the uniqueness. If K = K ′, then, since both 3

√
2

and ζ 3
√
2 are in K, we must have ζ ∈ K and, in fact, Q3(ζ) ⊂ K, which

is impossible: extensions of degree 3 can’t contain subextensions of degree
2! Hence, K must be ramified, and since e must divide the degree, we must
have e = 3.

Of course, that’s a very fancy chain of reasoning! (It’s the one that the
author followed, though. . . ) Can you exhibit directly an element of K whose
minimal polynomial over Q3 is Eisenstein?

264 Let α ∈ K be a uniformizer; since K is totally ramified, the minimal
polynomial for α is an Eisenstein polynomial, so αe+ae−1α

e−1+ · · ·+a1α+
a0 = 0 with p|ai for all i and p2 � a0. Now rearrange the equation to get

αe + a0 = −(ae−1α
e−1 + · · ·+ a1α).

Every term on the right-hand side is divisible by pα, so that vp(α
e − a0) ≥

1 + 1/e. This suggests that the pu in the problem will be −a0, but to make
it work we have to show that we can pass from the “approximate root” α to
a real root. The obvious way to do this is Hensel’s Lemma, but that method
doesn’t work: if we put f(X) = Xe−pu, our estimates give vp(f(α)) ≥ 1+1/e
and vp(f

′(α)) = 1− 1/e, which isn’t enough to use problem 254.
Here’s a more direct method (taken from [42]) that avoids that dilemma

by using some analysis: we have |αe − pu| ≤ p−1p−1/e = |pu|p−1/e. Dividing
through by |pu| gives |(αe/pu) − 1| ≤ p−1/e. In other words, αe/pu is a 1-
unit. Using the binomial series, we can raise any 1-unit to any p-adic integer.
Since p � e, we have 1/e ∈ Zp; use the binomial series to get (αe/pu)1/e, and
then use that to get a root.

265 Yes, of course. Just replace p by a uniformizer π everywhere.

266 What we need to do is to define “relative” notions of the ramification
index and the residue degree; then everything works. See [34, Ch. 14].

267 The point is that for any such m one can find an r such that m divides
pr − 1, and the (pr − 1)-st roots of unity are in Qunr

p .

268 The image of vp is still Z, since there has been no ramification. The
residue field is the algebraic closure of Fp.
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269 The residue field is the same (it can’t very well become any bigger),
but the image of vp on Qp is Q.

270 We know that |π| = p−1/e, so |πn| = p−n/e. For the denominators,
remember that |n| ≥ 1/n (with equality if and only if n is a prime power).
Then |1/n| ≤ n. So ∣∣∣∣πn

n

∣∣∣∣ ≤ np−n/e,

which clearly goes to 0 as n → ∞.
Clearly the best possible bound B is

B = max
n≥1

∣∣∣∣πn

n

∣∣∣∣ .
This clearly depends only on the ramification index e. Is there a clean formula
for how B depends on e?

271 Our discussion shows that we need K to be a ramified extension. If π
is a uniformizer we expect logp(1 + π) to be as big as possible. Take p = 2
for simplicity and let’s adjoin the root of an Eisenstein polynomial in Sage:

sage: K=Qp(2)

sage: S.<x>=ZZ[]

sage: f=x^3-2

sage: F.<w>=K.ext(f)

Remember that w is the uniformizer, so we compute the relevant logarithm:

sage: log(1+w)

w^-2 + w^2 + w^4 + w^6 + w^7 + w^9 + w^11 + w^12

+ w^13 + w^15 + w^16 + w^17 + w^18 + w^19 + w^21

+ w^25 + w^26 + w^27 + w^28 + w^31 + w^32 + w^34

+ w^39 + w^40 + w^41 + w^45 + w^46 + w^47 + w^48

+ w^51 + w^53 + w^55 + w^57 + O(w^58)

So in this case, with e = 3, log2(1 + π) /∈ OK . A similar computation shows
that e = 2 is not large enough to provide an example. It’s clear that the
larger the ramification index the larger the image will be.

272 This is mostly a matter of time and patience. There should be no
difficulty in checking that everything still works as before.

273 This is hard! I don’t know how to do it in general. Since v(π) =
1/(p− 1), the expansion begins with the term in πp−1. Let’s see. . .

We know that π is a root of the polynomial

Φp(X + 1) = Xp−1 + · · ·+ p

B Hints, Solutions, and Comments on the Problems
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(we’ve shown that everything in the dots is divisible by p, but we haven’t
determined the coefficients exactly, though that is doable). Plugging in gives

πp−1 + ap−2π
p−2 + · · ·+ a1π + p = 0

rearranging,
p = −(πp−1 + ap−2π

p−2 + · · ·+ a1π).

Since all the ai are divisible by p, hence divisible by πp−1, we see that

p ≡ −πp−1 ≡ (p− 1)πp−1 (mod πp).

Because for integers congruence (mod π) is the same as congruence (mod p).
This is enough to show that the first coefficient is (p− 1), but how do we go
on from there?

For any particular prime p, Sage can do it. Here it is with p = 7. First of
all, we need to create the field extension as explained in the text. We need
the polynomial f(X) = Φ7(X + 1), which is easy to compute:

f(X) = X6 + 7X5 + 21X4 + 35X3 + 35X2 + 21X + 7.

sage: K=Qp(7)

sage: S.<x>=ZZ[]

sage: S

sage: f=x^6 + 7*x^5 + 21*x^4 + 35*x^3 + 35*x^2 + 21*x + 7

sage: F.<u>=K.ext(f)

sage: F

7-adic Eisenstein Extension Field in u defined by

x^6 + 7*x^5 + 21*x^4 + 35*x^3 + 35*x^2 + 21*x + 7

sage: F(7)

6*u^6 + 3*u^7 + 3*u^8 + 2*u^9 + 2*u^10 + 3*u^11 + ...

That is only the beginning of the expansion. SinceK is created with precision
20 by default and F is an extension of degree 6, the relative precision becomes
120 when we write expansions in u. I asked Sage to give it in base 7 notation:

7 = . . . 10503561110134266422322336000000.

274 Just use x1 = 1 as your initial root.

275 Well, if I could, I would very likely have put the simpler one in the
text. . . Can you?

276 If K = Qp(ζp) contained both a (p − 1)-st root of −p and a (p − 1)-st
root of p, then it would contain an element ξ such that ξp−1 = −1. Such a
thing would be a 2(p − 1)-st root of unity, and we already know that K (a
totally ramified extension of Qp) contains exactly as many prime-to-p roots
of unity as Qp does, and hence can’t contain ξ.
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277 Show first that the minimum will occur at a power of p.

278 This is really an open-ended project, which should be fun to play with.
Is the extension still totally ramified? Can we get higher-order roots of −p?
How about the logarithm function?

279 To use Krasner’s Lemma, what we want to do is find a generator x of
Qp(ζp) and a (p − 1)-st root a of −p such that |x − a| is less than |a − a′|
whenever a′ is some other (p − 1)-st root of −p. (The a′ are the conjugates
of a over Qp, since the polynomial Xp−1 + p is irreducible.) Understanding
the |a − a′| part isn’t hard: any a′ must be of the form ξa, where ξp−1 = 1,
and hence, |a − a′| = |a − ξa| = |a| |1 − ξ| = p−1/(p−1). (Remember that we
proved before that |1 − ξ| = 1 when ξ �= 1 is a root of unity of order prime
to p.) The other bit—finding the x—is a little harder. One idea is to repeat
the proof in the text to get

(1− ζ)p−1 · (a 1-unit) = −p.

Use this equation to choose a appropriately so that we get

(1− ζ) · (a 1-unit) = a.

(In other words, we want to “take the (p − 1)-st root of both sides of the
equation;” of course, −p has many (p − 1)-st roots, and what the equation
does is tell us how to choose the right one.) This gives

|(1 − ζ)− a| < p−1/(p−1),

which gives what we want.
(Notice that the real work of the proof ends up being the same. Krasner’s

Lemma just replaces Hensel’s Lemma as the trump card.)

280 Suppose we can show that the function

φ : (a0, a1, . . . , an−1, b0, b1, . . . , bn−1) �→ D

is continuous. Then notice that φ(a0, a1, . . . , an−1, a0, a1, . . . , an−1) = 0
(since in that case the λ’s and the μ’s are the same). By continuity, it
will follow that we can make D as small as we like by choosing the bs close
enough to the as, which proves Claim 2.

It remains to show that φ is indeed continuous. In fact, it’s not hard to
see that φ is a polynomial in a0, a1,. . . ,an−1, b0, b1, . . . , bn−1. This is a very
classical fact, and one that you may have met before. (It may help to know
that the number D is known as the resultant of the polynomials f and g.)
See [44, IV.8].
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281 Solving this one is, at least at a first stage, a matter of reading through
proofs carefully to see what fails if we drop any of the hypotheses. It’s rather
clear, for example, that characteristic zero plays a minor role (though we
might need to add a separability condition if we drop it). Will the theorems
work in complete archimedean fields? (That’s not much fun, because they
will be talking about roots of polynomials with real coefficients, not a very
mysterious topic.) Will they work if we drop completeness? That would be
quite interesting, since we would then have a choice of absolute values to
work with.

282 Well, we’ve come close to proving this one in the proof of the Corol-
lary 6.8.3, since there we obtained the conclusion by showing that some root
of g(X) was very close to some root of f(X). See if you can push it through
to get this result. If you can’t, check [42, Section III.3].

283 What happens if we add a term bmXm to g(X) where m is very large
and bm is very small? How do the roots of

b0 + b1X + · · ·+ b10X
10

relate to the roots of

b0 + b1X + · · ·+ b10X
10 + p100000X100000?

(See the section on Newton polygons, in Chapter 6, for further light on this
one.)

284 Yes. (Prove it.)

285 Elements of Qunr
p still have p-adic expansions, since p is still a uni-

formizer. The coefficients in such an expansion will be chosen from a set
of lifts of elements of the residue field, and the roots of unity we have used
are precisely such a set of lifts. It’s not clear that this clarifies anything.
Note, however, that there are constructions of transcendental elements in R
which proceed by constructing an appropriate decimal expansion. Is there
any analogy?

286 This should be clear. There is nothing in our constructions that de-
pends explicitly on the field being Q: any field with a non-archimedean val-
uation will clearly do.

287 The definitions follow this problem in the text. The residue field is
the algebraic closure of Fp; the valuation ideal is not principal (there is no
smallest positive rational number!), and therefore there is no uniformizer.
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288 Suppose x ∈ Cp and vp(x) = r = a/b. Choose a root π of Xb − pa in
Qp; it’s fair to say that π is a “fractional power of p,” and it’s also clear that

vp(π) = a/b. Then y = x/π is clearly a unit. Its image in Fp lifts to a root
of unity ζ ∈ Qp, and ζ−1y is a 1-unit.

289 Follow the outline. (This makes a nice longer project.)

290 One would need to show that the closed unit ball is not compact. To
do that, you need to exhibit a covering of the closed unit ball by open sets
which has no finite subcovering. Can you find one? (The closed unit ball is
just the valuation ring O. Consider the image of O under reduction modulo
P; how many elements are in the image? Now translate back to topological
language.)

291 Mostly routine. The point about ρ is simply that there are enough
different possible radii for balls in Cp (any pr with r ∈ Q is allowed, and this
is a dense subset of R).

292 It was true in Qp because the ideal in question was a principal ideal.
That isn’t true in Cp.

293 Imitate the proof in Chapter 3.

294 Given the caution about choosing δ appropriately, it’s just a matter of
repeating the original proof.

295 Since every polynomial with coefficients in F has a root, having a com-
mon factor is the same as having a common root.

296 Yes, because we know that g(X) is monic.

297 Parts (i) and (iv) are clear, (ii) follows by writing out the sum and
applying the ultrametric inequality coefficient by coefficient, and (vi) is an
instance of Problem 36. Finally, (v) is an easy application of the ultrametric
inequality (and was done in the text just before the statement of the theorem).

298 Clear, since the absolute value of each of the coefficients is independent
of the field we think it belongs to.

299 The inequality is very easy to get: just use the non-archimedean prop-
erty directly. Over Cp, the equality holds, but this takes some proving. Let’s
do it in the special case where c = 1. In this case, after multiplying by a
constant if necessary, we can assume ‖f(X)‖1 = 1, so that all the coefficients
are in O and at least one is a unit. Then reduce it modulo p to get a polyno-
mial with coefficients in F; the fact that f(X) has a coefficient that is a unit
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means that the reduced polynomial is non-zero. Since F is an infinite field,
there must be an element α ∈ O such that f̄(ᾱ) �= 0 in F. Then it’s clear
that |f(α)| = 1, which proves the equality.

Can you generalize to arbitrary c? Does it matter whether or not there
is an element in K with absolute value equal to c?

300 Basically, we just replace things like f(X) ≡ g1(X)h1(X) (mod P)
with their translation (in this case, ‖f(X) − g1(X)h1(X)‖1 < 1). As to a
version for the ‖ ‖c, can you decide? (Take a look, for example, at the proof
of Lemma 7.2.2 and the statement of Proposition 7.2.3.)

301 Finding α uses a trick we have used before: if c = pr and r = a/b, we
choose α to be a root of the polynomial Xb − p−a, which exists because Cp

is algebraically closed. Proving that ‖f(X)‖c = ‖φ(f(X))‖1 is a matter of
writing out the definitions. What this tells us is that all of these norms should
have similar properties, since the equality allows us to transfer theorems
about one to the other. In fancier terms, the theorem gives an isometric
isomorphism between two normed rings.

302 One would need to be a lot more careful, the problem being that it is no
longer clear that an α exists. What we would need to do is to further restrict
c. To be precise, the argument still works over a field whose ramification
index is e if we restrict c to be a real number of the form pr where r ∈ 1

eZ.

303 Not immediately, since no α is available. It is true that in this case
we can get Ac as a union of Apr for a sequence of rational powers of p that
approach c, but does that yield a proof?

304 If we have a sequence of polynomials of bounded degree, we might as
well think of them as being all of the same degree (padding the top terms
with zeros if necessary). So let fi(X) be a sequence of polynomials of degree
n. The first requirement is to dig out a candidate for the limit, and the
obvious thing works: consider each of the coefficients and note that they
form a Cauchy sequence themselves. Then it’s a matter of showing that the
polynomial just obtained is the limit we want.

As to why the boundedness is essential, the simplest example makes the
point: take c = 1 and look at the sequence

f0(X) = 1

f1(X) = 1 + pX

f2(X) = 1 + pX + p2X2

. . .

fi(X) = 1 + pX + p2X2 + · · ·+ piX i.

This is clearly Cauchy, and clearly its limit cannot possibly be a polynomial.
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305 Because we know something about its N -th coefficient. Fill in the
details.

306 Just notice that the inequality holds at every step of the inductive
construction of g(X).

307 No, because it is clear from the proof that ‖g(X)‖c = |aN |cN , so that
the factorization the theorem asserts is the trivial one.

308 Just from the proof we can see that gi(X) converges to g(X) at least
as fast as δi converges to zero. That already says that the convergence is
quite good. It may be, of course, that a more delicate analysis shows that
the convergence is in fact faster than that.

309 If c = 1, then we can multiply f(X) by a constant to assume that
‖f(X)‖1 = 1. In that case, the assumption reduces to saying that aN is
a p-adic unit and that aj ∈ p if j > N . The reduction of f(X) modulo
p is then of degree N , and, after multiplying by another (unit) constant if
necessary, we can assume the reduction is monic. This gives a congruence
f(X) ≡ g1(X) · 1 (mod p). Now apply Theorem 7.1.2.

310 What we need to prove is

• the sum of two series in Ac belongs to Ac,

• the product of two series in Ac belongs to Ac (this implies that the
product of a series by a scalar does too, of course).

But both statements follow directly from Proposition 5.4.2.

311 This follows from the fact that absolute values are independent of the
field in which we place ourselves.

312 As long as we are thinking of the closed ball in Cp, this is clear. First,
if |an|cn → 0, then clearly the series converges for any x such that |x| ≤ c.
For the converse, we just need to note that in Cp we can always find an x
whose absolute value is exactly equal to c. Convergence at that x implies
that |an|cn → 0.

Notice that it is important to work over Cp. It is easy to come up with a
series that converges in the closed ball of radius c = p−1/100 in Qp but which
is not in Ac, simply because the closed ball of radius c in Qp is exactly the
same as the closed ball of radius p−1.

If c is not a rational power of p, then there are no x such that |x| = c, so
the closed ball of radius c is the same as the open ball of radius c. Can you
go on from there?
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313 Since 0 ≤ |an|cn2 < |an|cn1 , |an|cn1 → 0 implies |an|cn2 → 0.

314 This is identical to problem 297, except for the fact that we’ve replaced
the equality in (iii) with an inequality. But that makes (iii) much easier.

315 Nothing changes, i.e., everything works just the same way. Can you
prove it? (Here’s a strategy: handle c = 1 first, by exactly the same method,
which is feasible because the reduction modulo p is still a polynomial. Then
use the usual tricks to handle other values of c.)

316 Same as before.

317 Again, the same argument as was used for polynomials works here,
and shows that the map is an isometric isomorphism between the two spaces.
(It’s even a ring isomorphism.)

318 The map will be continuous if we can find a constant M with the
property that

‖f(X)‖c1 ≤ 1 =⇒ ‖f(X)‖c2 ≤ M.

Try to decide whether such a constant exists. (Thinking about the norms as
sup-norms on appropriate balls may help.)

319 We have g(X) = b0+ b1X+ · · ·+ bNXN and |bN | = max |bn|. Dividing
through by bN gives a monic polynomial whose coefficients all have absolute
value less than or equal to 1. So what we want to prove is this: if g(X) =
b0 + b1X + · · ·+ bN−1X

N−1 +XN satisfies |bi| ≤ 1 for all i and α is a root
of g(X), then |α| ≤ 1. To prove it, plug α into g(X) to get

αN + bN−1α
N−1 + · · ·+ b1α+ b0 = 0,

and rewrite this as

αN = −(bN−1α
N−1 + · · ·+ b1α+ b0).

It follows that
|α|N ≤ max

0≤i≤N−1
{|bi||α|i},

and, since |bi| ≤ 1, it follows that

|α|N ≤ max
0≤i≤N−1

{|α|i}.

But this clearly implies |α| ≤ 1.

320 Games with two indices are always a little tricky, but a careful walk
through the proof should convince you that all is well.
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321 No. It’s also not Cauchy.

322 If c = pr for some r ∈ Q, then it’s easy to see that the answer is yes:
just use the trick we’ve been using over and over. How would you handle
general c?

323 Is this obvious? If an → 0, then given ε > 0 we can find N such that
|an| < ε if n > N . But then max

n>k
|an| < ε as soon as k > N .

324 It certainly should.

325 Do write out the details. The proof follows blow-by-blow the proof of
Proposition 7.2.3, so there should be no difficulty in putting it together. But
doing so will help you understand what’s going on.

326 If ‖h(X) − 1‖1 < 1, then whenever |x| ≤ 1 we have |h(x) − 1| < 1,
which implies h(x) �= 0.

327 By Proposition 169, we can rewrite f(X) as a power series in (X − x),
and in this case the fact that n exists becomes obvious. To show that the
two definitions of the multiplicity agree, write f(X) as a product as in the
Weierstrass Preparation Theorem, and then take derivatives. The advantage
of Cassels’ definition is, of course, that it doesn’t depend on the theorem.

328 It’s the usual thing: change variables so as to translate from ‖ ‖c to
‖ ‖1. For more general values of c, it’s a little harder—see below.

329 This particular game should be routine by now. Just follow the usual
outline.

330 If ζ is a pm-th root of unity, then f(ζ − 1) = logp(ζ) = 0. Hence, f(X)
has infinitely many zeros in the open unit ball. How can that be?

331 We assumed g(X) ∈ Cp[X ] but all we really need to know is that we
are working in an algebraically closed field. Write g(X) as a product of linear
factors and rearrange as necessary. Remember that in a monic polynomial
the coefficient of degree 0 is the product of the roots.

332 The roots of g0(X) (in Cp) are the roots of f(X) in the closed unit
ball, counted with multiplicities. The roots of g1(pX) are the roots of f(X)
in the closed ball of radius p, counted with multiplicities. Hence, every root of
g0(X) (in Cp) is also a root of g1(pX), with the right multiplicities. Therefore,
g0(X) must be a divisor of g1(pX).
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Figure B.2: The first two Newton polygons for problem 338
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333 If you are at all hesitant, it might be helpful to write out a detailed
proof.

334 We’ve clearly done enough to prove convergence with respect to ‖ ‖1.
For c = pr with r ∈ Q, we then use the usual dodge: change variables, and
note that this transforms entire functions into entire functions. What should
you do with other c? (Hint: how does convergence with respect to ‖ ‖c relate
to convergence with respect to ‖ ‖c′ when c > c′?)

335 The point is that “convergent in the closed ball of radius c” and “con-
vergent with respect to ‖ ‖c” are equivalent.

336 As the next problem suggests, one can make such a function by using
an infinite product. Something like

f(X) =
∞∏
i=1

(1− piX)

will work. It’s also easy to arrange it directly in a power series, something
like ∞∑

i=0

pn(i)X i,

by making n(i) grow fast enough.

337 This is basically routine. What we are asking for, in a way, is a p-adic
version of the general theory of infinite products. This would make a nice
project. For example: we’ve proved that p-adic infinite series converge when-
ever their general term tends to zero; is it true that p-adic infinite products
converge whenever their general term tends to 1?

338 See figures B.2 and B.3. Note that in (iii), we don’t really need to
divide by 3, because it is a 5-adic unit (dividing by a unit doesn’t change any
of the valuations).

339 If the polynomial has degree n, the polygon has only one line segment,
of slope−1/n. (In the language we’ll introduce below, Eisenstein polynomials
of degree n over Qp are “pure of slope −1/n.”)

340 We would have to start with a vertical line beginning at (0, vp(a0)) and
use that point as the initial center for the rotation, but otherwise all would
be the same. The polygons for f(X) and af(X) will be the same except for
a vertical translation.
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Figure B.3: Two more Newton polygons for problem 338
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341 This is just a matter of sorting through the definitions. h(X) will
be pure of slope m if and only if vp(ai) ≥ mi for all i and vp(an) = mn;
translating this to absolute values gives what we want.

342 Routine, but worth writing up carefully. It’s mostly a matter of trans-
lating Proposition 7.2.3 to the language of Newton polygons.

343 Use the fact that ‖f(X)g(X)‖c = ‖f(X)‖c‖g(X)‖c and the character-
ization of pure polynomials in problem 341.

344 It’s just a question of translating inequalities for vp to the language of
absolute values.

345 Write

f(X) = 1 + a1X + · · ·+ anX
n = (1− λ1X)(1− λ2X) · · · (1− λnX)

and work out valuations. We can start by noting that vp(an) = nm =∑
vp(λi), and go on from there. (This is much trickier than it looks!)
A more sophisticated method would be to compute ‖ ‖pm of each term in

the product, and then to try to use the characterization of pure polynomials
in terms of the norm. Does that work?

346 By induction, we can work at the j-th break, assuming that it happens
at a point (xj , yj) and that the next point is (xj + ij+1, yj +mj+1ij+1). It’s
then a matter of translating the assertion that this is the (j + 1)-th segment
of the polygon into valuations and absolute values.

347 Showing that g1(X) divides g2(X) is straightforward because we are
working in an algebraically closed field: just consider the roots. Yes, h(X) is
pure. Can you prove it?

348 The polygon of h(X) is obtained from the polygon of f(X) by removing
the segment corresponding to λ, i.e., a segment of slope m and x-length one,
and then translating the resulting polygon to the origin. This clearly follows
from our analysis of the roots, but it could be used as the starting point for
that analysis if we could prove it directly. See [42] for a direct proof.

349 They tell us exactly what sorts of roots each polynomial has:

i) five unit roots, one root of valuation −2;

ii) six roots of valuation 2;

iii) two unit roots, four roots of valuation −1/2;

iv) two unit roots, eight roots of valuation −1/8.
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Notice that the fact that the last two polynomials are congruent modulo 5
makes them have the same number of unit roots, but that this says very little
about the other roots.

350 One polygon has a segment of slope 0 and a segment of slope 3; the
other has a segment of slope 0 and a segment of slope 1. So even though
the polynomials are “close,” their polygons—and therefore their roots—look
quite different. In other words, even if ‖f(X) − g(X)‖1 is very small, the
root distribution of f(X) and g(X) outside the unit ball can be completely
different. (Inside the unit ball, they will of course have exactly the same
number of zeros of each valuation—check!)

351 The obvious thing to try is to require that f(X) and g(X) be close
with respect to the c-norm. Does that work?

352 Yes. Find an example.

353 A segment of slope −1 and length 1, followed by an infinite horizontal
line. The radius of convergence doesn’t change, of course, since we’ve only
made a finite number of changes.

354 Just use the same idea: compare the polygon to a line of slope b,
remembering that by assumption the segments in the polygon all have slope
less than b. (Does this work when b = m but the sup is not attained? The
segments will still “all have slope less than b” in that case. . .What if the sup
is attained?)

355 Draw a picture if necessary, and refer to the previous solution.

356 The conclusion is that the radius of convergence is 0. The proofs still
work.

357 One can’t do much better than the obvious: the series will converge on
the closed ball if the points (n, vp(an) get farther and farther above (vertical
distance) the last segment of the polygon.

358 The first Newton polygon looks like a parabola; the series defines an
entire function. The second polygon is a horizontal line, and so is the third
(most coefficients will have valuation zero). The second series converges on
the closed ball of radius 1, the third on the open ball. The fourth is tricky: the
polygon connects the points (0, 0), (p,−2), (p2,−4),. . . The series converges
on the open ball of radius 1.

359 We’ll leave these to the reader, who has certainly got the point by now.
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360 It’s just a matter of putting together all the information we already
have. To show there are no zeros of smaller absolute value, consider a line
through the (k − 1)-st break point of slope smaller than mk, and so on.

361 Yes it is. Can you prove it?
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As we end our promenade, it is important to point out to our reader where
to go for further adventures in the p-adic realm. We will limit ourselves to a
brief outline of the major sources of information (of which we are aware), and
invite the reader to explore at will. The comments are, of course, personal
opinion.

C.1 Textbooks

The first category of books are those which are intended as basic textbooks
covering the fundamentals of the theory. Most of these are aimed at graduate
students, but they should be accessible to anyone who has managed to read
this book. Many of these books were major sources of information during
the preparation of this book.

p-adic Analysis Compared with Real, by Svetlana Katok, [39], is probably
the closest competitor of this book, in the sense that it too is aimed at
undergraduates. As the title suggests, the burden of the book is to note
the differences and similarities between p-adic analysis and real analysis. It
appeared since the publication of the second edition; I found it very much
worth reading as I prepared the third edition.

p-adic Numbers, p-adic Analysis, and Zeta-functions, by Neal Koblitz,
[42], includes an introduction to p-adic numbers and p-adic analysis, and
then goes on to discuss p-adic interpolation, the construction of the p-adic
zeta-function, and several other related topics. The culmination of this book
is an exposition of Dwork’s proof of the rationality of the zeta-function of
a hypersurface over a finite field, which is one of the landmarks of modern
number theory. While the introductory portion of Koblitz’s book has much
in common with this book, Koblitz goes much further than we have, and in
much less space.

Introduction to p-adic Analytic Number Theory, by Ram Murty, [51], is
a bit more advanced than this book or [39], but still introductory. As in
Koblitz’s book, the main goal is to get to the theory of p-adic zeta and L-
functions.

Local Fields, by J. W. S. Cassels, [14], is a much broader book that con-
tains a great deal of interesting material. Its treatment of the fundamentals
had a lot of influence on our choices when we were writing this book. A par-
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ticularly interesting characteristic of Cassels’s book is the large number of
examples of honest-to-goodness applications of p-adic methods to the rest of
mathematics, especially diophantine equations. In contrast to our “strictly
local” approach, Cassels includes a lot of material on how different p-adic
completions relate to each other and to Q and also on the global theory:
valuations on finite extensions of Q and how they relate to their various
completions.

A Course in p-adic Analysis, by A. Robert, [53], overlaps with this book
at the beginning, but then goes much deeper into p-adic analysis. Robert
includes a construction of a spherically complete extension of Qp, extensive
coverage of differentiability, Mahler’s theory of continuous functions on Zp

and its generalization, and detailed coverage of p-adic analytic functions. The
exposition is terse but clear.

Since [53] appeared just before the second edition of this book, it had
little impact on that version. This time around I have tried to give it the
attention it deserves. As a result, I have often pointed my readers to Robert’s
book for more information.

Les Nombres p-adiques, by Y. Amice, [3], is another elementary intro-
duction to p-adic numbers and p-adic methods, a little brief but very useful.
Readers who read French might enjoy looking through her book, which is
slanted towards functional analysis and rationality theorems.

Ultrametric Calculus, by W. H. Schikof, [56], despite its unprepossess-
ing title, is quite an advanced book. Again, the focus is largely on p-adic
analysis, and the author assumes that his reader has a good knowledge of
classical analysis as a starting point. Schikhof’s book is particularly good on
integration,

Keith Conrad has written many expository notes on topics he teaches at
the University of Connecticut. I have found the ones on p-adic numbers and
p-adic analysis very useful. You can find them (and many more on other
topics) at kconrad.math.uconn.edu/blurbs/.

Introduction to p-Adic Numbers and Valuation Theory, by G. Bachman,
[6], starts with a basic introduction to p-adic numbers, and then veers off into
a discussion of valuation theory in general. It is an interesting book, with
very little intersection with this one. It is mentioned here largely because it
was my first introduction to the subject.

Introduction to p-adic Numbers and Their Functions, by Kurt Mahler,
[45], is rather hard to classify. While it presents itself as an introduction
(and does develop the theory from scratch), it is really focused on a rather
sophisticated account of continuous functions on Zp with a special focus on
their interpolation properties. This material is very different in flavor from
the topics we have discussed, and the book is well worth the effort.

https://kconrad.math.uconn.edu/blurbs
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Finally, there is Primeiros Passos p-ádicos, [32], the seed from which this
book grew. This one the reader, even if fluent in Portuguese, can safely
disregard, since the only things it contains that were not incorporated into
this version are the errors, which have been replaced by new and subtler
errors.

C.2 Other Books

There are many other books that either deal with specific aspects of the
theory or contain material that relates to one or another topic covered in this
book. Here are the ones I like best, in no particular order.

I guess I’ll mention first the books that started it all: Theorie der Al-
gebraischen Zahlen, by Kurt Hensel, [35], and Zahlentheorie, [36]. Hensel
had introduced p-adic numbers in various (often cryptic) journal articles,
but these two books were intended to introduce them to a broader audience.
The first book focuses on using the p-adics in algebraic number theory. The
second is more elementary and represents an evolution in Hensel’s thought.
For example, it starts by constructing the “g-adic numbers,” which are power
series in an arbitrary integer g. For people who read German, they are worth
a look, particularly to note the differences between Hensel’s point of view
and the one we have taken. There are no absolute values in Hensel.

Numbers, by a crowd of people headed by H.-D. Ebbinghaus, [25], is a
delightful book about number systems in general. Its first part is called
“From the Natural Numbers, to the Complex Numbers, to the p-adics.” It is
written in a very compressed style, and the various chapters can only survey
the basics of each of the number systems, but reading them still is quite an
enjoyable ride. There are two other parts: about real division algebras and
about Conway’s “surreal numbers.” Some sections are more readable than
others, but there is much here that is interesting.

Exercises in Number Theory, by the fictitious D. P. Parent, [48] (a transla-
tion of the 1978 French original) is a problem book which is really much more
ambitious than its title suggests. Each chapter gives a compact introduction
to one of the major areas of modern number theory and then presents the
reader with problems (full solutions are included). The final chapter is called
“p-adic Analysis.”

Helmut Hasse was Kurt Hensel’s student and became one of the great
number theorists of the 20th century. His Number Theory, [34], is an intro-
duction to number fields and function fields built on a systematic local-global
approach. The local part of the book includes a lot of material on the p-adic
numbers. Despite the old-fashioned notation, it is still a very useful book,
but it is not easy to read.

The best elementary treatment of the Hasse–Minkowski theorem is prob-
ably the one in J.-P. Serre’s A Course in Arithmetic, [60]. This book includes
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a chapter on the basic structure of the p-adic numbers, from the point of view
of “coherent sequences,” and then goes on to develop the theory of quadratic
forms and prove the Hasse–Minkowski theorem over Q. The second half of
the book focuses on Analytic Number Theory, and may serve as an introduc-
tion to the (classical, rather than p-adic) theories of L-functions and modular
forms.

The functional-analytic side of p-adic analysis is the focus of Analyse Non-
Archimedienne, by A. F. Monna, [46], Non-Archimedean Functional Analysis,
by A. C. M. van Rooij, [64], and Nonarchimedean Functional Analysis, by
Peter Schneider, [57]. The newer books [50], [27], [26], and [23] focus on
specific subtopics.

p-adic Geometry is a difficult subject, not least because there are many
different approaches to the foundations. Perhaps the best place to start is
p-adic Geometry, by Matthew Baker, Brian Conrad, Samit Dasgupta, Kiran
S. Kedlaya, and Jeremy Teitelbaum, [7]. This collects lectures from an Ari-
zona Winter School and so gives a good survey of the subject. Other books
on the subject include [11], [10], [28], [29], [1].

These, of course, only scratch the surface, since an enormous amount of
research has focused on p-adic methods and their application to number the-
ory and other areas. Rob Benedetto treats arithmetic dynamics in Dynamics
in One Non-Archimedean Variable, [9]. For Lie groups over the p-adics one
can look at p-adic Lie Groups, by Peter Schneider, [58] and one of the Lec-
tures on Profinite Topics in Group Theory, [41]. For differential equations,
look at Kedlaya’s p-adic Differential Equations, [40].

In the second edition, I mentioned my own1 Arithmetic of p-adic Modular
Forms, [31], but it is now outdated; perhaps [8] is now a better place to start.

A good overview of how p-adic numbers are used in number theory is
BarryMazur’s article “The theme of p-adic variation” in [5]. Our adventurous
reader will have no trouble finding more and more to learn, and may soon be
in the position to teach us something herself.

1Could I resist a chance like this?
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[32] Fernando Q. Gouvêa. Primeiros Passos P-ádicos. IMPA–CNPq, 1989.
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