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Preface

The Algorithmic Number Theory Symposia began in 1994 at Cornell University
in Ithaca, New York to recognize the growing importance of algorithmic work
in the theory of numbers. The subject of the conference is broadly construed
to encompass a diverse body of mathematics, and to cover both the theoretical
and practical advances in the field. They have been held every two years since:
in Bordeaux (Université Bordeaux I) in 1996, Portland (Reed College) in 1998,
Leiden (Universiteit Leiden) in 2000, and the present conference hosted by the
Magma Computational Algebra Group at the University of Sydney.

The conference program included invited talks by Manjul Bhargava (Prince-
ton), John Coates (Cambridge), Antoine Joux (DCSSI Crypto Lab), Bjorn Poo-
nen (Berkeley), and Takakazu Satoh (Saitama), as well as 34 contributed talks
in various areas of number theory. In addition to the mathematical program, the
conference included a special dinner to honour Alf van der Poorten of Macquarie
University, on the occasion of his 60th birthday.

Each paper was reviewed by at least two experts external to the program
committee and the selection of papers was made on the basis of these recom-
mendations. We express our appreciation to the 66 expert referees who provided
reports on a very tight schedule. Refereeing of the submission from a member of
the Magma group was organized by Joe Buhler.

The program committee thanks the generous advice from organizers of previ-
ous ANTS conferences, particularly Joe Buhler, Wieb Bosma, Hendrik Lenstra,
and Bart de Smit. The conference was generously supported by the College of
Science and Technology, the School of Mathematics and Statistics (both at the
University of Sydney), the Australian Defence Science Technology Organisation,
and eSign.

April 2002 John Cannon
Claus Fieker
David Kohel
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Gauss Composition and Generalizations

Manjul Bhargava*

Clay Mathematics Institute and Princeton University

Abstract. We discuss several higher analogues of Gauss composition
and consider their potential algorithmic applications.

1 Introduction

The class groups of quadratic fields have long held a special place in the annals
of algorithmic algebraic number theory. This special place has been due in large
part to the close relationship between ideal class groups of quadratic fields and
integral binary quadratic forms, which allows one to reduce the study and com-
putation of ideal classes in quadratic orders to the study of lattice points in a
certain fixed three-dimensional real vector space—namely the space of binary
quadratic forms over R.

This fundamental correspondence, known classically as “Gauss composition”,
was discovered by Gauss almost exactly 200 years ago in his celebrated work
Disquisitiones Arithmeticae of 1801. Even after two centuries, there is still no
faster way known for computing the ideal class groups of quadratic fields than
by Gauss composition.

The key feature of Gauss composition, which makes it so useful, is that one
has a bijective correspondence between the arithmetic objects of interest (ideal
classes of quadratic orders) with the integer points in a vector space—rather
than, say, with the integer points on a high codimension variety in an affine
space. The principle here is that one can readily locate all the integer points
in a codimension zero region in a vector space, whereas searching for integer
points on higher codimension subvarieties is extremely difficult in general, both
computationally and theoretically.

Thus situations where one has a direct bijection between arithmetic objects
of study and the integer points in a vector space (modulo, say, the action of a
reductive group over Z) are clearly of intrinsic interest, both from a theoretical
and an algorithmic standpoint; and the question naturally arises as to whether
there exist any spaces in addition to Gauss’s space of binary quadratic forms
that might share this remarkable property.

* T am very grateful to Professors Andrew Wiles and Peter Sarnak for all their enthusi-
asm and encouragement, and to Jonathan Hanke, Kiran Kedlaya, and Lenny Ng for
helpful comments on an earlier draft of this paper. This work was supported by
the Hertz Foundation and the Clay Mathematics Institute, and was conducted at
Princeton University.

C. Fieker and D.R. Kohel (Eds.): ANTS 2002, LNCS 2369, pp. 1-B] 2002.
© Springer-Verlag Berlin Heidelberg 2002



2 Manjul Bhargava

In [2] it was shown that, in fact, Gauss’s space of binary quadratic forms is
only one of at least 14 such vector spaces existing in nature whose lattice points
may be put in correspondence with number fields and their class groups. A de-
tailed treatment of these so-called “higher composition laws” will appear in [3].
The purpose of the current article is to give a short summary and announce-
ment of these higher correspondences, and to discuss some of their potential
algorithmic implications.

2 On Higher Composition Laws

The aforementioned higher correspondences generalizing Gauss composition are
summarized in Table 1. Each such correspondence consists of a lattice Vz and
an arithmetic group Gz, such that the orbit space Vz/Gy yields a bijective
parametrization of some class ¢ of number-theoretic objects.

For example, item #3 of Table 1 describes Gauss composition. Indeed, in
this case, V7 is the lattice (Sym?Z?)* of binary quadratic forms with integer
coefficients, Gz is SL2(Z), and Vz/Gz parametrizes (narrow) ideal classes in
quadratic rings. As Table 1 also shows, there exist pairs (V7, Gz) whose orbit
spaces V7 /Gyz parametrize cubic rings, ideal classes in cubic rings, order 2 ideal
classes in cubic rings, quartic rings, quintic rings, and more.

All 14 correspondences listed in Table 1, including Gauss’s case, have the
wonderful property that the maps Vz — ¥ are easily computed. In fact, all
structure constants of the rings and modules in the fourth column can be given
in terms of explicit polynomials in the coordinates of the lattice points = € V7.
The inverse mappings € — Vz /Gy can also be computed explicitly.

What this means as far as algorithms are concerned is that, rather than
computing directly with the arithmetic objects in €, one may instead compute
with the points in the lattices Vz, which for many purposes proves to be much
more efficient. We give some examples below.

Application 1 (Discriminants) The discriminants of the rings occurring in the
fourth column of Table 1 can be quickly evaluated in terms of the elements x €
V. Like the SLa(Z)-action on binary quadratic forms, each case 1-1/ listed in
Table 1 has the property that the action of Gy on Vg has a single polynomial
invariant, which we call the discriminant. A beautiful calculation reveals that, in
every case, this discriminant invariant coincides precisely with the discriminant
of the corresponding ring in the fourth column! The fifth column of Table 1 lists
the degrees k of these discriminant invariants as polynomials on Vyz. For example,
in Gauss’s case, the discriminant D of a binary quadratic form ax? + bxy + cy?
is simply the quadratic expression D = b? — dac; hence the value of k listed
in Gauss’s case is 2. In every case, the discriminant polynomial itself may be
efficiently evaluated at any given point of Vz, and thus the discriminants of the
rings occurring in € can also be computed efficiently.

Application 2 (Mazimality) Criteria to test the mazimality of the rings in the
fourth column may be given in terms of certain simple congruence conditions
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on the corresponding points x € Vz. Thus, sorting out which © € Vyz correspond
to mazimal orders in number fields is a relatively simple process. Moreover, in
the case when x € Vg corresponds to a mazximal order Ok, splitting behavior of
primes in Ok can also be given in terms of simple congruence conditions on x.

Application 3 (Invertibility) In all the cases of Table 1 that involve ideal cla-
sses, one can write down explicit congruence conditions on x € Vz that determine
whether a corresponding ideal class is invertible. This can be useful when one only
wishes to work in the ideal class group, rather than with general ideal classes.

Besides such basic data on discriminant, maximality, prime splitting, and
invertibility, the points in the spaces V7 also carry much additional information
that is more subtle. For example, the lattice Vz in #13 not only carries infor-
mation on quartic rings, but it also carries complete information on their “cubic
resolvent” rings. (Cubic resolvents are cubic rings that are related to quartic
rings in a certain special way; see [2].) Similarly, V7 in #14 not only carries
information on quintic rings, but also on their sextic resolvents. In addition, it
turns out that the lattice V7 in #8 may be used to parametrize all rank 2 modules
over quadratic orders, while V7 in #7 and #12 contain information on certain
special rank 3 and rank 2 modules over quadratic and cubic orders respectively
(see [3]). Various other properties of the rings and ideal classes corresponding to
elements x € V7 can also be read off quite simply from appropriate properties
of x.

For these reasons, we expect that these higher correspondences should be
very useful for computations, in the same way that Gauss composition has be-
come an indispensible tool in computing with ideal class groups of quadratic
fields. In particular, the correspondences should be useful in the enumeration
of small degree number fields and their class groups, and in the construction of
the relevant tables. For the latter application a theory of reduction is required,
which we discuss more fully in Section 3.

Notation on Table 1. The symbol Z in #2 denotes the set of elements in Z
congruent to 0 or 1 (mod 4). We use (Sym?Z?)* to denote the set of binary
quadratic forms with integral coefficients, while Sym?®Z? denotes the sublattice
of integral binary quadratic forms whose middle coefficients is even. Similarly,
(Sym>Z?)* denotes the space of binary cubic forms with integer coefficients, while
Sym?3Z2 denotes the subset of forms whose middle two coefficients are multiples
of 3. The symbol ® is used for the usual tensor product; thus, for example,
77 @ 72 ® 7 is the space of 2 x 2 x 2 cubical integer matrices, (Z? @ Sym>Z?)*
is the space of pairs of ternary quadratic forms with integer coefficients, and
72 ® Sym®Z? is the space of pairs of integral ternary quadratic forms whose
cross terms have even coefficients.

The fifth column of Table 1 gives the Z-rank of the lattice Vz. The sixth
column gives the degree k of the discriminant invariant as a polynomial on V.
Finally, it turns out that each of the correspondences listed in Table 1 is related in
a special way to some exceptional Lie group H (see [2] §6.1]). These exceptional
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Table 1. Summary of Higher Composition Laws

Summary of Higher Composition Laws

# ‘Lattice (Vz) ‘Group acting (Gz)‘Parametrizes (%) ‘ (k) ‘ (n) ‘ (H)

1. |{0} - Linear rings 0| 0 | Ao
2.2 SL1(Z) Quadratic rings 1 (1| A
3. | (Sym?Z?)* SL2(Z) Ideal classes in 2 | 3 | B
(GAUSS’S LAW) quadratic rings
4. Syrn3Z2 SL2(Z) Order 3 ideal classes| 4 4 | Go
in quadratic rings
5.|Z% ® Sym?Z*  |SL2(Z)? Ideal classes in 4 | 6 | Bs
quadratic rings
6.|Z°7Z*®7* |SLa(Z)? Pairs of ideal classes| 4 | 8 | Dy
in quadratic rings
7.122 @ N?Z* SL2(Z) x SL4(Z) |Ideal classes in 4 |12 | Ds
quadratic rings
8. [A3Z° SLe(Z) Quadratic rings 4 |20 | Fs
9. | (Sym®Z?)* GL2(Z) Cubic rings 4 | 4 | G
10. |Z? ® Sym?Z®  |GL2(Z) x SL3(Z) |Order 2 ideal classes| 12 | 12 | Fy
in cubic rings
1. |2 Z* ® Z* | GL2(Z) x SL3(Z)? |1deal classes 12 | 18 | Eg
in cubic rings
12. 2% @ A*Z° GL2(Z) x SLg(Z) |Cubic rings 12 | 30 | E;
13. | (Z*> ® Sym?Z?)*| GL2(Z) x SL3(Z) |Quartic rings 12 (12| Fy
14.|Z* @ A*ZP GL4(Z) x SL5(Z) |Quintic rings 40 | 40 | Es

groups have been listed in the last column of Table 1. The list shows that the
spaces underlying higher composition laws may be thought of as being roughly
in one-to-one correspondence with the exceptional Lie groups.

3 Reduction Theory
and Other Algorithmic Considerations

In order to develop fast algorithms to enumerate the objects listed in column 4 of
Table 1, we would like to have a good reduction theory which allows the selection
of convenient representatives in V7 for the elements of V;/G7.

In cases #1, #2, #4, #9, #10, #13, #14, and the definite (i.e., negative
discriminant) subcases of #3, #5, and #6, what we expect, more precisely,
is a “fundamental region” F in the real vector space Vg = V7 ® R, defined
by homogeneous polynomial inequalities, such that every element of Vz/Gy is
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represented exactly once in F. Such fundamental regions F can be proven to
exist in all these cases from a purely logical standpoint (e.g., using the work of
Tarski [15] and Seidenberg [13]). But from the standpoint of algorithmic number
theory, we are not merely interested in the existence of a region F—we would also
like to be able to explicitly write it down, and have the polynomial inequalities
bounding the region be as nice as possible. There is certainly an element of art
to the problem.

However, once such a reduction theory is established, and a corresponding
region F has been obtained, then the arithmetic objects in the fourth column
of Table 1 in these cases can be enumerated, up to (absolute) discriminant D,
simply by listing all the lattice points in the region

Fp=Fn{x € Vg : |Disc(x)| < D}, (1)

where Disc(z) denotes the discriminant of the point = € V.

If the region F is reasonably nice, then, by homogeneity considerations, the
time taken to list all lattice points in Fp should not be more than O(D™/*+¢),
where n and k are as given in Table 1. Moreover, by searching only for those ele-
ments of Fp satisfying certain congruence conditions, one can enumerate various
subclasses of these arithmetic objects, such as those involving maximal orders,
or projective ideal classes, etc. Again, the time needed here should also not be
more than O(D™/*+¢). Since every object of interest is represented in F exactly
once, these algorithms would be quite close to being optimal for generating the
relevant tables.

“Reduction theories” yielding such nice fundamental regions F are in fact
known in some cases.

Ezxample 1. The first nontrivial case, namely Gauss’s case of binary quadratic
forms, is due to Gauss himself. Gauss showed that any positive definite quadratic
form f(z,y) = ax® + bxy + cy? can be uniquely transformed, by a linear substi-
tution in SL3(Z), into one whose coefficients satisfy

—a<b<a<cor 0<b<a=c (2)

The region F defined by (@) has all the properties we require of it, and indeed
has been fundamental in numerous algorithms relating to the ideal class groups
of imaginary quadratic fields (see [, [5]).

Example 2. An analogous reduction theory for binary cubic forms of positive
discriminant was discovered by Hermite [10]. Hermite showed that the generic
binary cubic form ax® + bx?y + cxy? + dy® of positive discriminant can be trans-
formed by an element of GLy(Z) into a unique form satisfying a > 0 and

—(b? — 3ac) < be — 9ad < b* — 3ac < ¢ — 3bd

3
or 0<bc—9ad < b?—3ac=c*— 3bd. )
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Mathews and Berwick [11] subsequently studied the case of cubic forms of nega-
tive discriminant, and showed that the generic cubic form ax®+bx?y +czy? +dy?
of negative discriminant can be uniquely transformed into a form satisfying

did—>b)+a(c—a)>0, ad—(a+b)la+b+c) <O,

and ad+ (a—0b)(a—b+c)>0. @)
The correspondence between integral binary cubic forms and cubic rings,
summarized in #9 of Table 1, is the only other nontrivial lattice correspondence
(outside Gauss composition) that has been known previously. This remarkable
connection was discovered by Delone-Faddeev in [8]; shortly thereafter, con-
gruence conditions to determine whether a binary cubic form corresponds to a
maximal order were obtained by Davenport-Heilbronn in [7]. Using this theory
of Davenport-Heilbronn and the reduction theories of Hermite and Mathews-
Berwick, a very fast algorithm to enumerate cubic orders and cubic fields was
recently implemented by Belabas [I].
Since the lattice Sym®Z2 in case #4 of Table 1 is simply the dual of (Sym?’ZQ)*
in the same vector space, the methods of Belabas could also be used to quickly
enumerate order 3 ideal classes in quadratic orders.

Example 3. We discuss a method for constructing a fundamental region F in
an important subcase of #13. Let us say an element » € (Z? ® SmeZ?’)* is
totally real if it corresponds to an order in a totally real quartic field (under
the association of Table 1). One can show that the space V5 = (Z? ® Sym?Z3)*
has a degree 4 map x — @, to the space of ternary quadratic forms which is
SL3(Z)-covariant, and a degree 3 map x — f,. to the space of binary cubic forms
which is SLg(Z)-covariant. Moreover, if = is totally real, then @, is a definite
quadratic form. We say an element x € V7 is reduced if @, is SL3(Z)-reduced
in the sense of Minkowski and f, is GLa(Z)-reduced in the sense of Example 2.
This leads to various homogeneous inequalities defining the desired fundamental
region F € Vi. These inequalities are explicitly written down in [2].

Presumably, Example 3 could be used to obtain a quasi-linear time algorithm
for enumerating totally real quartic fields. In a similar manner, we would like
such reduction theories to be developed in all relevant cases.

Examples 2 and 3 above were both based on finding appropriate positive defi-
nite quadratic form covariants, and defining reduction in terms of those quadrat-
ics. Indeed, many of the items of Table 1 can be handled in this way. Whether
that is the best way to proceed in all cases is an open problem.

Problem 4. For each of the cases #1, #2, #4, #9, #10, #13, #14, and the
definite subcases of #3, #5, and #6, develop a reduction theory analogous to
those presented in Examples 1-3.

Outside the cases listed in Problem 1, there are also case #11 and the indef-
inite (positive discriminant) subcases of items #3, #5, and #6, which may also
have significant algorithmic consequences. Although fundamental domains F
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conjecturally will not exist in these cases, we can still expect to have a codimen-
sion zero region F such that each element of the orbit space V7 /G, is represented
in F at least once but only finitely many times. Moreover, we suspect that in all
these cases F could be chosen so that Fp is compact for every D.

Ezxample 5. For indefinite binary quadratic forms, Gauss used the following def-
inition of reduction. An indefinite form f(z,y) = ax?+bxy + cy? of discriminant
D is said to be reduced if it satisfies the inequalities

0<b<vVD and VD—-b<2a<VD+b. (5)

One can check that any indefinite binary quadratic is SLo(Z)-equivalent to some
form in the region F defined by (B). Moreover, (5) implies that |al, |b], |¢| < VD,
and hence Fp is compact for all D.

To enumerate all ideal classes in real quadratic orders of discriminant at most
D, it again suffices to list all lattice points in the region Fp, where F is given
by the inequalities (B). However, since F is not a true fundamental domain,
there is a slight additional complication in that one must then group that list of
lattice points into SLa(Z)-equivalence classes. It turns out this can be done quite
efficiently using the theory of “cycles” (see [4]). Hence this does not affect the
running time too much, and one can determine all SLy(Z)-equivalence classes of
indefinite quadratic forms of discriminant at most D in time O(D?/?), which is
very fast.

It is actually conceivable that there could be faster algorithms for this pur-
pose, although, in our current state of knowledge, there is no algorithm that
could provably run faster than O(D?3/2). The reason for this is that we know

2
T
Z hqlog g ~ D32, (6)
0casx 18¢(3)

where hg and log €4 denote the class number and regulator, respectively, of the
unique quadratic order of discriminant d. This asymptotic formula was first
stated by Gauss, and was subsequently proven by Siegel [14]. However, there is
no way known to separate the class number and regulator in sums such as (@]).
Hence the best estimate currently known for

> ha (7)

0<d<X

is also O(D3/ 2); it is a major and long-standing unsolved problem in number
theory to improve this estimate, and any algorithm that provably ran faster
than O(D?/?) would necessarily require a spectacular theoretical breakthrough
involving a separation of class number and regulator.

Barring such a breakthrough, Gauss’s algorithm for enumerating ideal classes
in real quadratic fields is essentially the best that one could hope for. We should
like to have similarly “optimal” algorithms in the other analogous cases— case
#11 is of particular interest, since it would allow for the quick computation of
ideal classes in cubic fields.
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Problem 6. For case #11 and the indefinite subcases of #3, #5, and #6, de-
velop (a) a notion of “reduced” analogous to Example 4, and (b) a method for
determining when two reduced elements are equivalent, analogous to the theory
of “cycles” in the case of indefinite binary quadratic forms.

Progress on Problems 1 and 2 will be key to making full algorithmic and
theoretical use of the higher correspondences discussed in Section 2. In particular,
once such reduction theories are established, the correspondences of [2] and [3]
listed in Table 1 should eventually yield quite efficient algorithms for enumerating
and generating tables of ideal classes in cubic fields, ideal classes of order 2 in
cubic fields, quartic fields (and their cubic resolvents), quintic fields (and their
sextic resolvents), and many other related objects.
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Elliptic Curves — The Crossroads
of Theory and Computation

John Coates

Department of Pure Mathematics and Mathematical Statistics
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1 Introduction

The interplay between theory and computation has been a vital force for progress
throughout the long history of the arithmetic of elliptic curves. I have been for-
tunate to see at fairly close hand two marvellous examples of this interplay.
Firstly, I remember my amazement as a student in Canberra and Paris in the
mid 1960’s to see the conjecture of Birch and Swinnerton-Dyer evolve from a
series of brilliant numerical experiments, which revolutionized arithmetical al-
gebraic geometry. Secondly, I remember my fascination as a young post-doc at
Harvard in the beginning of the 1970’s to see John Tate work on a daily basis
by always mixing sophisticated theory with hand calculations of numerical ex-
amples. Of course, since this time, numerical computations have been greatly
changed by the advent of ever faster computers, and the discovery of important
practical applications via cryptography. Computational mathematics has rightly
become a branch of mathematics in its own right. Nevertheless, the theme I want
to stress in my lecture is that the ancient union between theory and computation
is as potent a force as ever today. It is my strong personal view that the best
computations on elliptic curves are those that lead to new insights for attacking
the unsolved theoretical problems. Equally, I firmly believe that no abstract the-
orem about the arithmetic of elliptic curves is worth its salt unless illuminating
numerical examples of it can be given.

I want to illustrate this general theme by discussing some aspects of the
arithmetic of elliptic curves over the fields generated by the coordinates of their
points of finite order. When the elliptic curve has complex multiplication, these
division fields are essentially abelian, and a great deal is now known about the
arithmetic, largely by mimicking the ideas introduced by Iwasawa to study cy-
clotomic fields. Thus I will only discuss today elliptic curves without complex
multiplication. Thanks to a celebrated theorem of Serre [I], the division fields
of elliptic curves without complex multiplication provide what is probably the
simplest class of non-abelian extensions of number fields, and it seems certain
that they hold some of the keys to our eventual understanding of non-abelian
class field theory. Very little numerical work has been done so far on these di-
vision fields. Nevertheless, I hope to convince you today that the arithmetic of
both these fields themselves and the elliptic curve over them is fertile ground for
the interplay between numerical calculations and theory.

C. Fieker and D.R. Kohel (Eds.): ANTS 2002, LNCS 2369, pp. 9-[I9] 2002.
© Springer-Verlag Berlin Heidelberg 2002
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I am very grateful to John Cannon and the organizers of the Algorithmic
Number Theory Symposium for their kind invitation to address this meeting.

2 Iwasawa Algebras

I want to briefly describe some recent joint work with Schneider and Sujatha [2],
which provides the theoretical background to the questions we wish to study.
Let p be a prime number, and G a compact p-adic Lie group, of positive di-
mension, which we will denote by d. In our examples, G will always be a Galois
group arising from points of finite order on an elliptic curve without complex
multiplication, but the theory works quite generally. We recall that the Iwasawa
algebra A(G) of G is defined by

A(G) = m Z,[G/U),
U

where U runs over the open normal subgroups of G. This algebra is very im-
portant in arithmetic geometry, because any compact Z,-module on which G
acts continuously on the left has a unique structure as a left A(G)-module, ex-
tending the G-action. When G is non-abelian, A(G) is non-commutative, and its
study seems to have been curiously neglected by the experts in non-commutative
algebra.

Before describing our structure theorem for modules over A(G) for a very
wide class of non-commutative groups G, let me recall that, when G = Zg,
A(QG) is isomorphic to the local ring Z,[[T4,--- ,Ty]] of formal power series in
d variables with coefficients in Z,. In this special case, the structure theory of
finitely generated A(G)-modules, up to pseudo-isomorphism, is very well known
(see [3], Chap. VII, §4.4, Theorems 4 and 5), and is due originally to Iwasawa and
Serre. Returning to general G, we assume from now on that G is pro-p, and has no
element of order p. In his thesis, Venjakob [4], [5] used ideas of Bjork [6] to define
a good theory of dimension for finitely generated A(G)-modules. In particular,
Venjakob defines a finitely generated left A(G)-module M to be pseudo-null if
it is A(G)-torsion (i.e. each element of M has a non-zero annihilator in A(G)),
and, in addition, Exth(G)(M ,A(G)) = 0. To prove our structure theorem, we
need the stronger hypothesis that G is p-valued in the sense of Lazard [7] (this
automatically implies that G is pro-p and has no element of order p). The classic
example of a p-valued group is the group of matrices in GL,(Z,), which are
congruent to the identity modulo p (resp. mod 4) if p is odd (resp. if p = 2).
Moreover, if p > n + 1, any closed pro-p subgroup of GL,,(Z,) is p-valued. Also
every closed subgroup of a p-valued group is p-valued. If M is a left or right
A(G)-module, we define its dual to be the corresponding right or left A(G)-
module M* = Hom (M, A(G))). As usual, we say that M is reflexive if the
natural map from M to M** is an isomorphism. Here is the principal result
of [2].

Theorem 1. ([2]). Let G be a p-valued compact p-adic Lie group, and let M
be a finitely generated torsion A(G)-module. Let My be the mazimal pseudo-null
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submodule of M. Then there exist non-zero left ideals Ly,--- , L, and a A(G)-
imjection

P @A(G)/Li — M /M, (1)
i=1
with Coker (p) pseudo-null. Moreover, the ideals Ly, - -+ , L, are always reflexive.

We are grateful to Venjakob for pointing out to us that the left ideals appear-
ing in Theorem [ are always reflexive. We should also point out that the special
case of Theorem [Mlin which M /Mj is killed by some power of p was proven earlier
by Venjakob [4], [5], and Howson [§]. We give two proofs of Theorem [Min [2], one
based on the algebraic theory of microlocalization, and the other showing that
it can be derived from the work of Chamarie [9], [I0] on modules over maximal
orders.

We now discuss some further aspects of the structure theory of torsion A(G)-
modules, especially those which seem to be important in concrete examples aris-
ing from elliptic curves. We assume for the rest of this section that G is p-valued.
Firstly, there is the important open question of whether or not the left ideals
L; appearing in Theorem [1l can be chosen to be principal (when G = Zg, this
is well known to be true because A(G) is a unique factorization domain). As
A(G) is a local ring, it would suffice to show that the L; can be chosen to
be projective A(G)-modules. Secondly, completely new phenomena occur in the
non-commutative theory when one considers global annihilators of our modules.
If M is a torsion A(G)-module, we define as usual its annihilator, which we de-
note by ann (g (M), to be the set of all 7 in A(G) such that 7.M = 0. Note that
ann y(g) (M) is automatically a two sided ideal of A(G). For technical reasons
explained below, it is more natural to consider the annihilator of M /My, where
My is the maximal pseudo-null submodule of M, and so we define

a(M) = ann ) (M/Mo). (2)

When G is non-commutative, the most common thing seems to be for finitely
generated torsion A(G)-modules M to have a(M) = 0 (Greenberg (unpublished),
and more recently Venjakob [11] have given examples of such modules), and the
rare thing seems to be to find M with a(M) # 0 and a(M) not containing
a non-zero element of the centre of A(G). Moreover, as far as modules M with
a(M) = 0 are concerned, something even more surprising can occur. There exist,
at least for certain non-commutative G, finitely generated torsion A(G)-modules
M such that not only do we have a(M) = 0, but, in addition, for every A(G)-
subquotient N of M, we have either that N is pseudo-null or a(N) = 0. Even
though such modules M seem difficult to envisage intuitively, Hachimori and
Venjakob [12] have already found examples of them occurring in the arithmetic
of elliptic curves, and one cannot help speculating that they occur rather widely
in Iwasawa theory.

To express the above notions more precisely, it is convenient to pass to a
quotient category of the category of all finitely generated torsion A(G)-modules.
Denoting this latter category by C°(G), we write C'(G) for the full subcategory
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of all pseudo-null A(G)-modules. Since C'*(G) is closed under taking subobjects,
quotients, and extensions, we can therefore form the quotient category

M(G) = C°(G)/CH(G),

and we write @ : C°(G) — MM(G) for the canonical functor. We define the
annihilator of an element Q(M) of the quotient category by

ann(Q(M)) = a(M). (3)

This is well defined because a delicate lemma of Robson [13] proves that a(M;) =
a(Ms) whenever Q(M;) is isomorphic to Q(Ms) in IMM(G). We say that Q(M)
is bounded if ann(Q(M)) # 0. We say that Q(M) is completely faithful if
ann(Q(N)) = 0 for every N in C°(G) such that Q(N) is a non-zero subquotient
of Q(M). For an arbitrary M in C°(G), Chamarie [10] proves that there is a
canonical decomposition in 9MM(G)

QM) =QU) & Q(V),

where Q(U) is completely faithful and Q(V') is bounded. The only general result
known about completely faithful objects Q(U) at present is that they are cyclic
in M(G), i.e. isomorphic to Q(A(G)/L), where L is some non-zero left ideal of
A(G) (See [10)).

It is shown in [2] that one can define a characteristic ideal for each non-
zero bounded object Q(M) of M(G), in perfect analogy with the commutative
theory. However, we have to confess that this theory is largely academic at
present, because for many of the most important groups G we simply do not
know whether there exist non-zero bounded Q (M) which are not annihilated by
some non-zero element of the centre of A(G). A key example where this question
has not been settled yet is when G is the kernel of the reduction map from
SLy(Zy) to SLy(F),), for any odd prime p.

3 Elliptic Curves over Division Fields

Let F' be a finite extension of Q, and F an elliptic curve defined over F' with
End@(E) = Z. Let Epn(1 < n < oo) denote the group of p”-division points on
E. We define

Fo =F(Epe), G=G(Fyx/F). (4)

The action of G on Eje defines an injection of G into Aut(Ep~) =¥ GL2(Z,),
and, by a theorem of Serre [I], the image of G is open in GL3(Z,). We believe
that there are many mysteries remaining to be discovered about the arithmetic
of the finite non-abelian extensions of F' contained in F,,, as well as about
the behaviour of the Mordell-Weil group and the p-primary part of the Tate-
Shafarevich group of E over these extensions. It is striking that what little
we can actually prove about these questions at present does indeed involve a
judicious blend of theoretical arguments and numerical computations.
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First, let me illustrate how little we know about the arithmetic of these
division fields themselves. Let E be the elliptic curve over Q with equation

v +y=a’ -2 (5)

Classically, this is the elliptic curve X (11) of conductor 11 corresponding to the
modular group I7(11). The point (0,0) on E has order 5, and it is well known
that it generates the Mordell-Weil group E(Q). We define

L =Q(Es). (6)

By the Weil pairing, L contains the field Q(u5) obtained by adjoining the 5-th
roots of unity to Q, and, in fact, L is a cyclic extension of degree 5 of Q(us).
Explicitly (see Fisher [14]) L is the splitting field of the polynomial

25 + 22 + 62° — 227 + 42 — 1. (7)

The primes of Q which ramify in L are 5 and 11. Let P(L) denote the set of
rational primes ¢ which split completely in L. The first few primes in P(L) are
¢ = 101,151,941,991, - - -. Moreover, we must have £ = 1 mod 5 when /¢ is in
P(L), since ¢ must split completely in Q(us5). However, no simple description of
the set P(L) appears to be known at present.

Returning to our general situation of an elliptic curve F defined over F', we
study the arithmetic of F over any intermediate field K with FF C K C F, via
the Selmer group of E over K. We recall that the Selmer group of E over K is
defined by

S(E/K) = Ker(H'(G(Q/K), E %HH (Ko/Ky), B(K.))),

where v runs over all finite places of K, and K, denotes the union of the com-
pletions at v of all finite extensions of F' contained in K. As usual, we have the
exact sequence

0— E(K)®Q,/Z, — S(E/K) — II(E/K)(p) — 0,

where III(E/K)(p) denotes the p-primary subgroup of the Tate-Shafarevich
group of E over K. We write

X(E/K)=Hom(S(E/K),Q,/Z,)

for the compact Pontrjagin dual of the discrete p-primary modules S(E/K). If
K is Galois over F, then the Galois group G(K/F) of K over F has a natural
left action on both S(E/K) and X(E/K), and it is easily seen that X (F/K)
is always a finitely generated module over the Iwasawa algebra A(G(K/F)).
We shall mainly be interested in studying the A(G)-module X(F/F.), and
especially the information it encodes about both E(F,) and III(E/Fy)(p). Let
us define

PO = F(jue), ®)
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where pi, denotes the group of all p-power roots of unity. We put
H=G(Fx/F%°), I'=G(FY°/F). (9)

From now on, we shall always assume that G is pro-p (theoretically, this can
always be achieved by replacing F' by a finite extension such as F(E,), but
it should be stressed that numerically this is often disastrous, taking one far
beyond the limit of fields where calculations are feasible at present), so that I" is
always pro-p, and so isomorphic to Z,. We shall also assume that p > 5, so that
G is automatically p-valued. We remark that every left A(G)-module, which has
the property that it is finitely generated over A(H), must be A(G)-torsion. This
is because A(G) is not finitely generated over A(H), since G/H = I' is infinite.
The following is one of the main results of [I5].

Theorem 2. ([15)]). Assume that (i) p > 5, (ii) G is pro-p, (iii) E has good
ordinary reduction at all places v of F dividing p, and (iv) X (E/FY) is a finitely
generated Z,-module. Then X(E/Fy) is finitely generated as a A(H)-module,
where H = G(Foo /FY°). In particular, X (E/Fw) is a torsion A(G)-module.

The next result is due to Ochi and Venjakob [16].

Theorem 3. ([16]). Assume that hypotheses (i), (ii), (iii), and (iv) of Theo-
rem [@ are valid. Then X (E/Fy) has strictly positive A(H)-rank, and its A(H)-
torsion submodule is zero.

The proof of Theorem [] uses, in particular, a very pretty characterization of
pseudo-null modules amongst all A(G)-modules which are finitely generated over
A(H) (see [16], [11]). If M is a A(G)-module which is finitely generated over
A(H), then M is pseudo-null if and only if it is A(H)-torsion.

While Theorems [2 and [B] can, in principle, be applied to a wide range of
elliptic curves and primes p, I am going to limit my discussion in the rest of this
lecture to what is probably the first case in nature, namely when E = X;(11) is
given by (@), p =5, and F = Q(u5). This intriguing numerical example is prob-
ably an important test case for the theory in general. I am grateful to Fisher,
Greenberg, Hachimori, Howson, Matsuno, Sujatha and Venjakob for many illu-
minating conversations about this example over the last few years. The structure
of the Galois group G = G(Q(FE5~)/Q(us)) was first determined by Lang and
Trotter, but it can also be established by a more direct and elementary argument
(see [T4]). The answer can be expressed by giving a description of the image of
G in Aut(T5(F)), but it is a little more convenient to describe the image of G
in Aut(T5(E’)), where E' = X(11) is the elliptic curve

v +y=2%—2% 10z — 20 (10)

(here we have used the standard notation that, for any prime p, T,(E) =
lim Ep»). Now E and E’ are isogenous over Q, and so we have Fi,, = Q(Es) =
—

Q(Ef~). It is also shown in [14] that there exists a Zs-basis of T5(E’) such that
the image of G and H in Aut(75(E")) are given by

G = KGT(GLQ(Z5) — GLQ(F5)), H = KGI‘(SL2(Z5) — SLQ(IF5)) (11)
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Moreover, as was first remarked to me by Greenberg, we have S(E/Q(us~)) =0
(see [I7] for a detailed proof). Thus the hypotheses (i), (ii), (iii), and (iv) of
Theorem [ hold for E over F = Q(us). Thus Theorem [2 and [3 tell us that
X (E/F) is a finitely generated A(H)-module, of positive A(H)-rank, and with
its A(H)-torsion submodule zero.

A first step towards elucidating the structure of X (E/F,,) as a A(G)-module
is given in [15], where the ideas of Hachimori and Matsuno [18] are used to prove
the following. From now on, we always assume that

E=X(11), p=5, F=Q(us).
For each finite Galois extension L of F' contained in F,,, we define

(L) =4 [LY°: FY°) — w(LY°), (12)
where w(L%°) denotes the number of primes of L%¥¢ above 11.

Proposition 4. For each finite Galois extension L of F that is contained in
Foo, X(E/L) is a free Zs-module of rank r(LY¢). In particular, E(LY¢) is a
finitely generated abelian group of rank at most r(LY°).

Corollary 5. We have that X(F/Fy) is a finitely generated A(H)-module of
rank 4, its A(H)-torsion submodule is zero, but it is not a free A(H)-module.

In our present state of knowledge, I only know how to prove finer results
about the A(G)-module X (E/F4) and the arithmetic of E in parts of the tower
F over F by appealing to a brilliant piece of classical numerical descent theory
by Fisher [14].

Theorem 6. ([14]). For L = Q(FE5), both E(L) and I(E/L)(5) are finite.
More precisely,we have

B(L) = (Z/52)%, I(E/L)(5) = (Z/5L)". (13)

I want to stress that L = Q(Es) has degree 20 over Q, and this numerical work
is even more remarkable in that the final outcome can be checked by hand. Now
if we apply Proposition 4 to L, we find

S(E/LY) = (Qs/Zs5)". (14)

If T might be permitted to confess personal frailty, I knew (Id]) was true before
Theorem 6 was proven, and it led me to erroneously suspect that E had points of
infinite order over L. I could not have been more wrong, as the following result
shows. Write I', = G(L®¢/L), and fix a topological generator oy of I'y. As
usual, we identify A(I';) with the formal power series ring Zs[[T1]] by mapping
or to 14 Tr. We define a polynomial in Zs[[T7]] to be special if it is non-zero
and if all of its roots are of the form ¢ — 1, where ( is some 5-power root of unity.
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Theorem 7. Let L = Q(FE5). Then, for all n > 0, E(L(usn+1)) is finite and
HI(E/L(psn+1))(5) is finite of exact order 5" 2. Moreover, we have

I(E/L)(5) = (Qs/Zs)"°,
and X (E/L°Y¢) is not annihilated by any special polynomial in A(I'y) = Z[[TL]].

This proof of this result was worked out by Fisher, Greenberg and myself, and
uses rather classical arguments in the Iwasawa theory of elliptic curves over cy-
clotomic fields. We do not have time to give the detailed proof here, but note the
following key points. Let fg(7) be the characteristic power series of X (E/L¢).
By virtue of ({Id)), we can assume that fg(77) is a distinguished polynomial of
degree 16. In fact fg (77 ) must be the fourth power of a distinguished polynomial
hg(TL) of degree 4, because G(L/Q) has an irreducible representation of degree
4. Next, we use Theorem 6 together with a classical Euler characteristic result
(see [I7]) to conclude that hg(0) = 5%u, where u is a unit in Zs. It follows that
fe(Tr) can have no root in common with a special polynomial, and the proof
can now be completed by a standard argument.

Theorem [7] has an interesting consequence for the structure of the A(G)-
module X (E/Fy). Let C be the centre of G. Of course, C' is isomorphic to
1+5Zs, embedded as multiples of the identity matrix in the identifications (ITI),
and G = C x H. Pick some topological generator o¢ of C, and let us identify as
usual A(C) with the formal power series ring Zs|[[T¢]] by mapping o¢ to 1+ T¢.

Corollary 8. The A(G)-module X(E/Fy) is not annihilated by any special
polynomial in A(C) = Zs[[T¢]]. In particular, C' acts nontrivially on X (E/Fy).

To prove Corollary B let K, be the fixed field of C, and put G, = G(F /L),
Hp, = G(Foo/L%°). It is easily seen that L is contained in K, and that we have

Foo = Koo(pis~), Koo LY =L.

Hence C' is mapped isomorphically onto I';, = G /Hj, under the natural sur-
jection of G, onto I'y,. In particular, if Y is any G-module on which Hj, acts
trivially, we can identify the A(C)-action on Y with the A(I')-action, even as-
suming that we have chosen the topological generators o and o, to coincide. We
apply this remark to Y = X(E/Fx)u,. Now there is a A(I)-homomorphism
from this Y to X (E/L%°), with finite cokernel, which is obtained by dualizing
the restriction map from S(E/L¢) to S(E/F )"t (see [15] for the proof that
this restriction map has a finite kernel). It follows that the characteristic power
series of X (FE/L%) as a A(I'r)-module must divide the characteristic power
series of Y as a A(I'y)-module. Now, if X (E/F,,) were annihilated by a special
polynomial in A(C), the same polynomial would clearly annihilate Y. But this
in turn would then imply that every root of the characteristic power series of
X (E/L%°) would have to be of the form ¢ — 1, where { is some 5-power root of
unity, contradicting Theorem [71 Note that the whole of the theoretical argument
proving Theorem [[l and Corollary 8 would break down if we did not know the
numerical result in Theorem
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Corollary[§ as well as analogy with the results proven in [12], make it natural
to pose the following question:
Question: Is X (F/Fy) completely faithful as a A(G)-module?

Here is one interesting consequence of an affirmative answer to this question.
As above, K, denotes the fixed field of the centre C of G, and we put 2 = G/C.

Lemma 9. If X(E/F) is a completely faithful A(G)-module, then X (E/K)
is a torsion A(£2)-module.

Proof. Let o¢ be a topological generator of C, and put
W = X(E/Fx)/(00 — 1) X (E/Fx).

Clearly W is a quotient of X (E/F,,) with non-zero global annihilator. Moreover,
it is well known (see [§]) that we have

Extjy ) (W, A(G)) = Hom () (W, A(£2)),

so that W is torsion as a A(G)-module if and only if it is pseudo-null as a A(G)-
module. Now assume that X (F/Fy) is completely faithful, whence W must be
pseudo-null as a A(G)-module, and so torsion as a A(f2)-module. Moreover, the
restriction map from S(E/K,) to S(E/F)¢ has finite kernel because ES.
is finite. Dualizing, we get a A(£2)-homomorphism from W to X(E/K) with
finite cokernel, and so X (F/K ) must also be A(f2)-torsion, as required.

For each n > 0, let M,, = Q(E;, ), where ' = X(11) is given by equation
(0. By considering the action of G(M, /F) on EZ, ., we obtain an isomorphism
¢, from G(M,,/F) onto the kernel of the natural map from GLy(Z/5""1Z) to
GLy(Z/5Z) (see [14]). Now the kernel of the natural map from (Z/5"*1Z)* to
(Z/5Z)* can be viewed as embedded in G(M,,/F') via this isomorphism, and we
define K,, to be the fixed field of this kernel. Thus we see that K,, is a Galois
extension of F' contained in F,, with

G(K,/F) ~x Ker(PGLo(Z/5" ' Z) — PGLo(Z/5Z)).

It is clear that [K,, : F] = 5%, and that K., = gOKn. Moreover, [K° : F¥¢] =

53" as Koo N F9C = F. Finally, it is easily seen using the Tate curve for E’ over
Q11 that there are precisely 4 x 52" primes of K¢ above 11. Hence Proposition
Hl yields the following result.

Corollary 10. For all n > 0, the rank of E(K,,) is at most 4 - 53" — 4. 52",

By contrast, if X(E/Fy) is a completely faithful A(G)-module, one can easily
deduce the following stronger asymptotic bound from Lemma [9

Proposition 11. Assume that X (E/Fy) is a completely faithful A(G)-module.
Then there exists a constant ¢ > 0 such that the rank of E(K,) is at most c-52"
for allm > 0.
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We end by briefly commenting on what is known about the existence of points
of infinite order on £ = X;(11) in Foo = Q(Es5x). Let E” be the third elliptic
curve of conductor 11 defined over Q, namely

y? +y =a® — 2% — 7820z — 263580. (15)
It is well known that there exist degree 25 isogenies
’(/JlIE—)EH, ’(/)QIEN—>E.

We write J; for the field generated over F' by the coordinates of the points in
the kernel of ¢;(i = 1,2). In fact, J; is the compositum of F' with the maximal
real subfield Q(u11)™ of the field of 11-th roots of unity. I am grateful to Fisher
and Matsuno for informing me that Js is the compositum of F' with the splitting
field of the abelian polynomial

z® — 652* + 20523 4+ 14022 + 252 + 1.

By further brilliant descent calculations, Fisher has proven that £ has no points
of infinite order in either of the fields J; or Q(EY) = Q(us, v/11), and that the
5-primary component of the Tate-Shafarevich group of E over both these fields
is zero. However, I was shocked to learn from Matsuno some months back that
he had proven that the complex L-function of E over the abelian field J, has
a zero at s = 1 of exact order 4. Thus, unless the arithmetical universe is to
fall apart, there must presumably be a point of infinite order on E over J,. It
presents a very interesting challenge to computational number theory to exhibit
this point, thereby proving that it does exist. Finally, we remark that J, is not
contained in the fixed field K, of the centre of G. We believe that there would
be great interest in deciding whether or not the complex L-functions of E over
the fields K, can have a zero at s = 1. At present, it is even conceivable that F
has no points of infinite order in K.
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1 Introduction

Elliptic curves were first proposed as a tool for cryptography by V. Miller in
1985 [29]. Indeed, since elliptic curves have a group structure, they nicely fit as a
replacement for more traditional groups in discrete logarithm based systems such
as Diffie-Hellman or ElGamal. Moreover, since there is no non-generic algorithm
for computing discrete logarithms on elliptic curves, it is possible to reach a high
security level while using relatively short keys.

However, in [27] Menezes, Okamoto and Vanstone showed that some spe-
cial elliptic curves, called supersingular curves, are weaker than general elliptic
curves. On these special curves, some additional properties allow an attacker to
transport the discrete logarithm problem to a finite field where more efficient
algorithms are available for discrete logarithm computation. This was a concern,
since supersingular elliptic curves were initially considered as good practical
choices for elliptic curve systems. As a consequence the issue of choosing curves
has been quite debated. According to a talk by Koblitz [22], two different answers
can be given. The pragmatic answer is that any curve which has not been proved
insecure can be used. This point of view leads to more efficient implementations,
since it allows to choose special curves, where computations are faster (one no-
table example is the use of Koblitz’s curves in DSS). On the other hand, the
hardliner answer is that all special cases should carefully be avoided, since they
might become weak with the next discovery. As a consequence, all curves should
be generated randomly or using a strong pseudo-random generator. Following
the generation, some additional checks should be performed (such as testing the
primality of the number of points on the curve). Moreover, to convince the users
of the system that the chosen curve is indeed a regular curve, it is good practice
to publish the seed of the pseudo-random generator, in order to allow users to
check the generation process by themselves (a similar precaution is used in DSA
using SHA-1 as pseudo-random generator).

Several recent papers have shown that the additional properties of weak
curves can also be used positively. Indeed, it is possible to base cryptosystems
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on weak elliptic curves and to turn the additional properties of the curve into
additional properties of the systems. Discussing these systems and their security
is the main topic of this paper. We start with some preliminaries in section 2] in
section [3] we survey the known applications and finally in section H] we look at
the security issues.

2 Definition and Computation of Pairings

Informally speaking a (non degenerate) pairing is a (non constant) bilinear map
from a group G; to another group Go. When the context clearly show which
groups and pairing are used, we use the notation (P, Q) to denote the pairing
of two elements P and @ in G;. A important prerequisite for using a pairing in
cryptography is that the discrete logarithm problem in Gy should be hard. Oth-
erwise, the discrete logarithm problem in G; and the inversion of the pairing are
also easy; thus, there is no hard problem left on which to base cryptosystems. Of
course, this requirement rules out many simple bilinear maps. A nice possibility
is to choose G as (a large subgroup of) the group of points of an elliptic curve
over [F;. Moreover, the order of G; is usually chosen to be a large prime £. Note
that when ¢ = g, there exists an additive pairing that sends G; to the additive
group Gy = (Fy, +), which does not satisfy our prerequisite. In that case, as was
noted in [35] and [37], discrete logarithms in G; can be solved in polynomial
time.

We now assume that ¢ # ¢, then Gz can be chosen as a subgroup of Fy.
for some r. The key parameter here is the value of r, which is usually called
the security parameter or the security multiplier (see [5]). If r is too large, the
pairing can still be defined but it cannot be computed. However, when r is small
enough, the pairing can be efficiently computed. To get a lower bound on r, we
should remark that ¢ must divide ¢" — 1. It turns out that this lower bound is in
fact the right value for r. As soon as ¢ divides ¢" — 1, some non degenerate pair-
ing does exist. In fact, two different pairings can be defined with elliptic curve,
the Weil pairing and the Tate pairing. The Weil pairing has simpler mathematic
properties and has been used for cryptanalytic purposes since [27]. One of its
main drawback is the fact that in some cases it does not reach the optimal value
for r defined above. On the other hand, the Tate pairing always reaches this
optimal value. For this reason, Frey, Miiller and Riick proposed in [15] to use it
as a replacement for the Weil pairing. Moreover, it is somewhat less costly from
a computational point of view (see [317]). In cryptographic applications, the
terms of Weil and Tate pairings are also used, somewhat abusively, to denote
various modified pairings based upon the original ones. One of the most impor-
tant modification to the pairings was proposed by Verheul in [38]. Without this
modification, the Weil and Tate pairings cannot be used, but in a few excep-
tional cases (see [33]), to pair linearly dependent points and get a non-trivial
result (such that (P, P) # 1). With the modification, this becomes possible.
For many applications, being able to pair linearly dependent points has a large
added value, thus whenever possible we try to use such a modified pairing. The
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modification proposed by Verheul applies to supersingular curves and works by
making use of the additional endomorphisms that exist on such curves. Indeed,
using such an endomorphism, called a distorsion by Verheul, it is possible to
send points from one subgroup of the /-torsion to another. As a consequence,
we can map a pair of linearly dependent points (whose non modified pairing is
usually 1) to a pair of linearly independent points. Examples of supersingular
curves and distorsions are given in figure [I}

Field Curve Distorsion Conditions Group Sec.
order param.
]Fp y2 — $3 +azx ( 3) '_:(_lmyly) p= 3[4] p+1 2
F, | y*=2°+a ( ’y)<3 _(g’”’y) p = 2[3] p+1 2
xP 3
2 _ .3 (z,y) = (Wemen7ss o=T)
sz ya;F_‘_a 7"2—(17"61{“2 p = 2[3] p2_p+1 3
P W=rwe IF‘ 6
(z,y) — ($+Tuw .
Fan |y? =2 + 22 +1 u? = —1,u € Faon n = +1[12]|3" +1 6

r3+2r+2—0r6F3an
(z,y) = (—z + 7, uy) ,
Fan [y =2 4+22+1 u? = —1,u € Fyon n=45[12]|3" =372 +1| 6
> 4+2r4+2=0,7 € Fasn
(z,y) = (—z +r,uy)
Fan |2 =2 +22 -1 u2——1u6F32n n==+1[12]|3" =372 +1| 6
rP4+2r—2=0,r € Fysn
, (@,y) = (—z +ruy) i
Fan y2:x5+2:r71 u? = —1,u € Fson n==+5[12]|3"+372 +1| 6
3492 r—2=0,7r € Fs3n

Fig. 1. Some supersingular curves and their distorsions

Another approach is to use non-supersingular curves. In that case, the pair-
ings are still defined, however, in general, the security parameter r is so large
that computations in F,~ cannot be performed. Yet, using complex multiplica-
tion techniques, it is possible to construct curves with reasonably small values of
r. The main drawback of non-supersingular curves is that, according to Verheul

n [38], distorsions do not exist. As a consequence, it is usually more practical
to use supersingular curves.

Both the Weil and the Tate pairing can be defined by using the notions of
divisors and function fields. Very informally, the function field K(E) of E is the
set of rational maps in 2 and y modulo the equation of E (e.g. y*> — x> — ax —b).
A divisor D is an element of the free group generated by the points on F, i.e. it
can be written as a finite formal sum: D = )", a;(P;), where the P,’s are points
on FE and the a;’s are integers. In the sequel, we will only consider divisors of
degree 0, i.e. such that >, a; = 0.
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Given any function f in K(FE), we can build a degree 0 divisor div(f) from
the zeros and poles of f simply by forming the formal sum of the zeros (with
multiplicity) minus the formal sum of the poles (with multiplicity). All divisors
of the form D = div(f) will be called principal divisors. In the reverse direction,
testing whether a degree 0 divisor D = ), a;(P;) is principal or not, can be
done by evaluating > a;P; on E. The result will be the point at infinity if and
only if D is principal. When working with divisors and functions, the quotient of
the group of divisors of degree 0 by the subgroup of principal divisors is a very
important group. It contains classes of divisors and the difference of two divisors
from the same class is by definition principal.

Given a function f in K(F) and a point P of E, f can be evaluated at P by
substituting the coordinates of P for z and y in any rational map representing
f. The function f can also be evaluated at a divisor D = ). a;(P;), using the
following definition:

f(D) = Hf(Pi)“i-

The basic step for computing both pairing starts from a pair of ¢-torsion
points P and Q. It computes fp(Dg) where fp denotes a function such that:

div(fp) = £(P) = £(0),

where O denotes the point at infinity and Dg denotes a divisor from the class
(Q) — (0). We know that fp exists, since the evaluation of ¢(P) — ¢(O) on E
is the point at infinity. Some choices for D¢ should be avoided, as they cause
failure of the algorithm that computes fp(Dg). In particular, (Q) — (O) itself
cannot be chosen. Several ways of choosing D¢ are suggested in the literature,
the most popular is the method used in [27]. It works by selecting a random
point R and by choosing Dg = (Q + R) — (R), it succeeds except with negligible
probability. Another method is proposed in [I5] and works by selecting some
number k and choosing Dg = (kQ) — ((k — 1)Q).

In order to get an efficient implementation, it is most important to use a
technical idea first proposed by Miller [28]. The idea is that trying to write
down fp even in factored form is costly and should be avoided. Instead, all
intermediate fractions should be evaluated on Dg. Following this approach, we
get an efficient algorithm for evaluating fp(Dg). For details on how to implement
this algorithm, the reader can refer to [17] in this volume or alternatively to [3].

Assume that E is an elliptic curve defined over Fy, with ¢ = p”. Assume that
£ divides p"™™ — 1 for some reasonably small value of r. Then given two /—torsion
points P and @ we define their Weil pairing as:

w(P,Q) = fr(Dq)/fo(Dp),
and their Tate pairing (as in [15]) as:

pT —

t(P,Q) = fp(Do) 7

Throughout the rest of this paper, we arbitrarily fix our choice of pairing and
use the Tate pairing.
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Whenever a distorsion ¥, that maps ¢-torsion points defined over I, to ¢~
torsion points defined over the extension field -, is available, we also define a
modified pairing. Let P and @ be two ¢~torsion points defined over F,, then the
modified Tate pairing of P and Q is:

t(P,Q) = t(P,7(Q)).

Some of the applications described in section B] were defined using the Weil
pairing or a modified Weil pairing. However, we can easily replace them by the
Tate pairing or its modified version as defined above which are faster.

Remark: In fact, the pairings can be defined not only on elliptic curves, but also
on hyperelliptic curves(see [I3]) and even in the more general context of abelian
varieties. This direction was studied by Galbraith in [16], a recent paper by Rubin
and Silverberg [32] gives more precise results. Rubin and Silverberg showed that
in this case, it is possible to reach higher values for the security parameter. With
abelian varieties, they generalize the definition of the security parameter as being
the quotient of the degree r of the extension field by the dimension of the abelian
variety involved. With elliptic curves, since the dimension is 1, we get the same
value as with the definition of [5]. According to the table included in [32] it
is possible to raise the security parameter to 7.5 using varieties of dimension
4 (with elliptic curves the maximum is 6). As they remark, this can be used
to improve applications where the security parameter needs to be (moderately)
large, such as the short signature scheme of Boneh, Lynn and Shacham(see [5]
or section [3] for details).

3 Some Applications

Tripartite Diffie-Hellman. The most basic application of pairings in cryptog-
raphy is the tripartite Diffie-Hellman protocol proposed in [20)]. Originally, this
protocol used regular pairings and required, with supersingular curves, the use of
two independent points. Using modified pairings as proposed by Verheul in [3§],
one point suffices. The goal of the protocol is to set up a common key between
three users. Without pairings, this can be done by using a conference keying pro-
tocol which requires two rounds of interaction as in [7]. With pairings, a single
round of interaction is sufficient.

We now describe the protocol, using the modified pairing ¢ from section@ Of
course, we assume that the users already know the public parameters, including
the supersingular curve E defined over IF, and some base ¢-torsion point P. The
protocol goes as follow:

— Alice, Bob and Charlie select random integers a, b and ¢ in [0, ¢ — 1].

— They respectively broadcast aP, bP and cP.

— They each obtain (P, P)®° by computing one of £(bP,cP)%, t(aP,cP)® or
t(aP,bP)°. This is used as a common secret.



Weil and Tate Pairings as Building Blocks for Public Key Cryptosystems 25

Identity based encryption. Identity based encryption (IBE) is probably the nicest
known application of pairings to cryptography. The concept of identity based
cryptography was invented in 1984 by Shamir [36]. The basic idea is to use
identities (or their images by a public transformation) as public keys and to
compute the associated private key using a global secret. In his paper, he ex-
plains that concrete proposals are available for identity based signatures and
he encourages the reader to look for an IBE scheme. Later on, it became clear
that identity based authentication protocols and identity based signatures are
quite easy to built. However, identity based encryption was found to be a much
harder problem. Until recently, the only known solution was based on a paper
of Maurer and Yacobi [26], and used the discrete logarithm problem modulo a
RSA number. The global secret was the factorization of the RSA number, whose
knowledge made discrete logarithm computations possible. Still, computing the
private keys remained too costly for the system to be really practical. Quite re-
cently, two new solutions were proposed. One of them, proposed by Cocks [14],
is based on a classical cryptographic problem: deciding whether or not a number
is a square in the ring defined by some RSA modulus N. This solution has a
slight drawback in term of bandwidth. Indeed, for each bit of the plaintext, two
numbers of the size of N are sent. The other solution is based on supersingular
curves and pairing. It was proposed by Boneh and Franklin at Crypto’2001 [4].

The first requirement of this IBE scheme is a deterministic algorithm that
sends an arbitrary string ID (the identity of a user) to a point Q) on the elliptic
curve used by the system. This is done in two steps, by sending ID to an element
of Fy, using a cryptographic hash function G and then by finding a point. A first
approach would be to send ID to the x coordinates of a point and try to find a
corresponding y. However, about half of the = values do not have a corresponding
y and about half of the x lead to two possible choices of y. While this could be
solved by iterating the hash function until reaching a possible value for x and
by choosing a rule for selecting y, it would be a cumbersome solution. In [4],
a much nicer solution is proposed, using the supersingular curve y?> = 23 + 1
in F,, with p and ¢ primes such that p + 1 = 6£. In that case, p = 2 (mod 3),
3 has a multiplicative inverse modulo p — 1 and all elements of F,, have a unique
cube-root. As a consequence, it is possible to find a point on the curve by first
selecting its y coordinate as yo = G(ID) and by computing the = coordinate xg
as the cube root of y? — 1. After multiplying this point (x¢,yo) by 6, we get a
point @ of order ¢, unless (x¢,yo) has order 6, which happens with negligible
probability. The curve y? = 2% + 1 has an extra endomorphism ¥ (see figure [)
and we can use the modified Tate pairing .

In order to compute the private key associated with a public key Qyp, the key
generation authority publishes as part of the system parameters two {—torsion
points Ppub and qub' These points satisfy the relation Ppub = Squb’ where
s is the global secret of the system. Knowing s, the private key of a user identified
by the string ID is PID = SQID.

The encryption function is very similar to ElGamal. To encrypt a (short)
message M for the user identified by the string ID, perform the following steps:
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1. Compute Q
Select a random r in [0; ¢ — 1]
3. Form the ciphertext pair: (erub,M & H(f(QIDmPpub))). Here H is a

cryptographic hash function.

o

Decryption is easy thanks to the identity:
HPID, " Qpub) = HAID, "C@pub)” = HQD, "Ppyb)-

A very interesting open problem would be to generalize IBE to allow the
central authority to delegate key derivation to sub-authorities for limited sub-
domains. This idea of Hierarchical IBE is examined in [19] and a partial solution
is proposed that works when collusion between the sub-authorities to break the
scheme is limited.

Remark: In identity based encryption, the key generation authority implicitly
get the capability of an escrow agent. This shows that escrowed encryption pro-
tocols arise quite naturally when using pairings. This capability of pairing based
cryptography was first described in [38].

Pairings and signatures. While identity based signatures and identification pro-
tocols do not require the use of pairings, they can also be implemented by using
pairings (see [8/I831]). However, in the field of digital signatures, there are ap-
plications where the use of pairings has a much larger impact. An early proposal
was described by Brands in his thesis on electronic cash [6] in 1993, without
mentioning pairing. At that time, Brands did remark that in groups where DDH
is easy, Chaum’s undeniable signatures become regular signatures. Chaum’s un-
deniable signatures are introduced in [11J9] and work as follow. Each user has
a public/private key pair composed of the two numbers g* and x, where g gen-
erates a group of prime order (originally this was chosen as a multiplicative
subgroup of a finite field). Then any element m of the group can be signed, its
signature is s = m®. However, knowing the public key is not sufficient to test
the signature. Instead, two zero-knowledge protocols are provided that respec-
tively allow the signer to prove or disprove the validity of any signature. In some
applications, the fact that a signature cannot be tested without knowledge and
cooperation of the signer is useful to prevent uncontrolled dissemination of the
signed document. However, in the context of electronic cash, Brands remarked
that it would be useful if Chaum’s undeniable signatures were regular signatures.
Moreover, he stated that this could be done if the decision Diffie-Hellman prob-
lem were easy. Clearly, replacing the multiplicative group in the above protocol
by a supersingular elliptic curve, would lead to a working solution.

Of course, in order for the above signature to be secure, the computational
Diffie-Hellman problem should still be hard. Since the decision Diffie-Hellman
problem is easy, these two problems should separate. This idea that separating
related problems can lead to interesting applications in cryptography was for-
malized by Okamoto and Pointcheval [30]. They call such a separation a gap
problem.
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In fact, Chaum’s undeniable signatures can be merged with gap problems to
become regular signature schemes. Furthermore, as explained by Boneh, Lynn
and Shacham in [5], if the Weil (or Tate) pairing is used to create a gap between
decision Diffie-Hellman and computational Diffie-Hellman, we obtain short sig-
natures. Their scheme works using a fixed elliptic curve defined over F,, with a
pairing of security parameter r (i.e. such that the pairing takes values in Fgr).
Let P and @ be two points on the curve such that (P,Q) # 1 (when using a
modified pairing, one can take P = Q). Each user has a private key s and a
public key s- Q. To sign a message M, the user sends it to a point h(M) on the
subgroup of the curve generated by P using a cryptographic hash function h.
Then, he computes S = s - h(M). To verify a signature, it suffices to check that
(h(M),s - Q) = (S,Q). Since a point on an elliptic curve can be represented
by its « coordinate and a bit (e.g. the sign) of its y coordinate, the size of a
signature is comparable with log,(gq).

In the case of short signatures, the nice shortcut for hashing to a point on
the curve that was used in IBE is no longer available. Indeed, since we want a
quite large security parameter, we need to use a different kind of curves for this
application. It is explained in [5] that ¢ should be a 160 bits number to prevent
the computation of discrete logarithm on the elliptic curve through generic al-
gorithm. Moreover, the size of finite field Fy» should be of approximately 1024
bits to avoid index calculus computations of discrete logarithms in that field.
Thus a security parameter of 6 seems a good compromise. Originally, the au-
thors of [5] proposed to use some supersingular curves over F3», since a security
parameter of 6 can be reached with supersingular elliptic curves in characteristic
3 only. With these curves, the efficiency of hashing to a point can be somewhat
improved as was shown in [2]. However, due to the properties of index calcu-
lus algorithms discrete logarithm computations in small characteristic can be
performed much more efficiently than in large characteristic (see [13421]). As a
consequence, using fields of small characteristic might be less secure than fields of
large characteristic. This worry is expressed in the updated version of [5], where
a solution is proposed. Since supersingular curves in large characteristic cannot
have security parameter 6, Boneh, Lynn and Shacham propose to use complex
multiplication in order to construct curves of cardinality (? — [+ 1 over F,, with
g = 1241 prime. Assuming that ¢ is a large prime dividing {2 — [ + 1, the /-roots
of unity can be embedded in Fg (and not in smaller extensions). However, in
that case, we have seen in section 2 that according to [38] no distorsion exists.
Thus, we need to work with two subgroups generated by linearly independent
points. One of the points can be chosen in F,, while the other is defined over
the extension field. As a consequence, if the signatures are to remain short, the
public keys need to be chosen as (long) elements of Fys. Since short signatures
are especially useful when storage is limited, storing the public keys might be-
come the limiting factor in some applications. A nice open problem would be
to construct a short signature scheme using pairings in large characteristic that
would somehow overcome this limitation.
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Remark: Another variant of Chaum’s signature proposed by Chaum and Ped-
ersen in [10] can also be improved by using pairings. An application to self-
blindable credentials was described by Verheul in [39].

4 Security Issues in Pairing Based Systems

When using standard cryptographic groups in discrete logarithm based cryp-
tosystem, it is well known that the security relies on one of the three follow-
ing assumptions: the hardness of the discrete logarithm problem (DL), of the
computational Diffie-Hellman problem (CDH) or of the decision Diffie-Hellman
problem (DDH). When dealing with cryptographic groups that admit pairings,
one cannot use the same set of basic problems. Indeed, the existence of a pairing
implies that DDH becomes easy. In this section, we describe the many problems
which can be used when using the modified Tate pairing (i.e. when G; can be
generated by a single point P, such that (P, P) # 1). In [4], Boneh and Franklin
introduced a new assumption: the hardness of the Weil Diffie-Hellman (WDH)
problem. Similarly, one can define the (modified) Tate Diffie-Hellman (TDH)
problem as follows:

— Given (P, aP,bP,cP) for random a, b, ¢ compute (P, P)*,

As noted in [4], the TDH assumption implies that CDH is hard in the group
of points Gq, it also implies that CDH is hard in G; where pairings are taking
their values. The security of the IBE scheme from [4] is based on TDH in the
random oracle model, thanks to the use of the function H. When H is not used,
as in the tripartite Diffie-Hellman protocol described in section Bl we need to
assume the hardness of the decision problem associated with TDH, that we call
DTDH. DTDH is defined as follows:

— Given (P,aP,bP,cP) a quadruplet of elements from G; and (P, P)? an
element of G4 for random a, b, ¢ and d, decide whether d = abc.

The DTDH assumption implies DDH in Gy and CDH in G; (remember that
DDH in G is easy). The first implication can be shown by remarking that when
DDH is easy in Gy then DTDH is also easy. Indeed, d = abc if and only if
((P, P),(aP,bP), (P, cP), (P, P)?) is a valid decision Diffie-Hellman instance.
Further, other related problems can be introduced to get a deeper under-
standing of the security of pairing based systems. Before introducing these prob-
lems, let us digress and ask the following question which arises quite naturally
when looking at pairings: Can they be used as cryptanalytic tools to solve DDH
in more general groups ? Indeed, if we could find a group morphism from a
third group Gs to (one of the many possible) G, deciding DDH in Gz would
become easy. This would become extremely interesting if Gs could be chosen as
the multiplicative subgroup of order ¢ of Fy-. Indeed, this would give a partial
solution to solve DDH in finite field and would have a wide impact on many cryp-
tographic schemes. Such an “attack” was recently proposed in [12]. It requires
the construction of a special auxiliary curve, whose existence is conjectured by
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the authors of [12]. A recent preprint by Koblitz and Menezes [23] shows that
the approach of [12] is very probably flawed, since the existence of the required
auxiliary curve is unlikely. However, one might wonder about variants of this
attack. In fact, we can get strong evidence against the existence of these attacks
by generalizing a result of Verheul in [38] and showing that any attack of this
kind would also lead to an efficient algorithm against the computational (and
not only decision) Diffie-Hellman in the group Gs. The result of Verheul was
proved in the special case of the multiplicative subgroup of order p> — p+ 1 in
IFps, which is sometimes called the XTR subgroup due to its relation to the XTR
public key cryptosystem [24].

First of all, let us describe more precisely how the DDH attack could work.
As explained in [12] and [23], we need a group morphism ¢ from Gs (the mul-
tiplicative subgroup of order ¢ in Fyr) to G; (an additive subgroup of order
¢ of an elliptic curve defined over F,-). We also need to consider the modi-
fied Tate pairing #(-,-) that solves the DDH in G; by mapping pairs of points
to (-th roots of unity (i.e. back to G3). Given g, g%, ¢° and ¢¢ in Gs, test-
ing whether ¢ = ab can be done as in [I2] by computing (¢(g), ¢(g°)) and
t(4(g"), #(g?)) and testing equality. As long as ¢ is non constant and ¢ non de-
generate, we get an efficient way of testing DDH. However, given ¢ and t we
can in fact do much more. Indeed, if g is a generator of the /-th root of unity,
then £(6(g), #(g)) can be written as g*. Moreover, because of the non degeneracy
properties, t(¢(g), #(g)) # 1 and thus A # 0. Thanks to the bilinearity of #, we
can now check that #(¢(g%), #(g%)) = g*?. If we could get rid of the constant \
then we would be computing CDH. For the sake of simplicity, assume that ¢ is
prime. In that case,

A3 =72 (mod gq).

Moreover, thanks to the relation

- ’ Nititl

Hp(a"),6(6™) =g :

it is easy by using addition chains to compute A = g)‘q_3 = g>‘_2. Remarking
that £(¢(g**), #(A)) = g*® we can now solve the CDH problem in G3 = G; (and
also in Gy) with two applications of the pairing t.

As a consequence of this digression, we can now remark that the hardness of
the Tate Diffie-Hellman problem implies that the Tate pairing is hard to invert
when one side of the pairing is fixed. More precisely, it is hard to find a point R
in G, and a morphism ¢ from Gs to Gq such that for all g in Gs :

t(R,6(9)) = 9.

We call this problem the fixed Tate inversion (FTI). Clearly assuming the hard-
ness of the TDH problem is a stronger hypothesis than assuming the hardness
of the FTI problem. An open question is to find an interesting pairing-based
system whose hardness relies on FTI. However, it seems to be a difficult prob-
lem. A more promising approach would be to consider the problem of finding
any pair of points (S,T) such that (S,T) = g. Due to bilinearity of the pairing,
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this generalized Tate inversion (GTI) has rich self-randomization properties. As
a consequence, it might be easier and worthwhile to devise cryptographic proto-
cols above this problem.

Another relation is worth noting: the hardness of the discrete logarithm in
G- implies the hardness of either GTI or the discrete logarithm in G;. Indeed,
when both GTI and discrete logarithm in G, are easy, it is possible to compute
discrete logarithm in Go. Assume that g = (P, P) and h are two elements of Ga.
In order to find a such that h = g*, we first use GTI and find two points @) and
R such that (Q, R) = h. Using discrete logarithm computations in G1, we find
a and b such that Q = aP and R = bP. Then h = (aP,bP) = g*® and a = ab.

We summarize the relations between all the complexity assumption in fig-
ure 2l Each arrow in the figure goes from a complexity assumption to a weaker
one. The figure does not include the conditional and non-uniform equivalences
between DL and CDH in a group that come from [25]. These equivalences hold
when an auxiliary curve defined over F, and of sufficiently smooth order is known.
Note that in our case, G; and G5 have the same cardinality ¢ and that the same
auxiliary curve can serve this purpose for both groups.

CDH(G,l - ? DLGl

e p 4
DTDH — TDH GTI — FTI — DLg, ¢ DLg, or GTI
p p /

DDH((;,2 — CDHG2

Fig. 2. Relations between complexity assumptions in pairing cryptography

5 Conclusion

Since its introduction in [20)], pairing based cryptography has become a rich
area of cryptography. The key discovery that motivated most of the work in
the domain is probably the identity based encryption scheme of Boneh and
Franklin [4]. At this point in time, a lot of research is still underway on the topic
of using pairings in cryptography. As a consequence, we can hope and expect
that many more applications are forthcoming in the months and years to come.
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Abstract. Let F' C K be number fields, and let Or and Ok be their
rings of integers. If there exists an elliptic curve E over F' such that
rk, E(F) = rk, E(K) = 1, then there exists a diophantine definition of
OF over Og.

1 Introduction

D. Hilbert asked, as Problem 10 of his famous list of 23 problems posed to the
mathematical community in 1900, for an algorithm to decide, given a polynomial
equation f(z1,...,2,) = 0 with coefficients in the ring Z of integers, whether
there exists a solution with x1,...,x, € Z. In Hilbert’s time, there was no formal
definition of algorithm, but presumably what he had in mind was a mechanical
procedure that a human could in principle carry out, given sufficient paper,
pencils, erasers, and time, following a set of strict rules requiring no insight
or ingenuity on the part of the human. In the 1930s, several rigorous models of
computation were proposed as a substitute for the informal notion of “mechanical
procedure” as above (the A-definable functions of A. Church and S. Kleene, the
recursive functions of K. Godel and J. Herbrand, and the logical computing
machines of A. Turing). These models, as well as others developed later, were
shown to be equivalent; this gave credence to the Church-Turing thesis, which
is the belief that every mechanical procedure can be carried out by a Turing
machine. Therefore, the modern interpretation of Hilbert’s Tenth Problem is
that it asks whether a Turing machine can decide the existence of solutions.

J. Matijasevi¢ [Maf70], building on earlier work by M. Davis, H. Putnam, and
J. Robinson [DPR6T] showed that there is no such Turing machine. To describe
their work in more detail, we need a few definitions. A subset S of Z" is called
listable or recursively enumerable if there is an algorithm (Turing machine) such
that S is exactly the set of a € Z™ that are eventually printed by the algorithm.
A subset S of Z"™ is said to be diophantine, or to admit a diophantine definition,
if there is a polynomial p(ay,...,an, 21, ..., Tm) € Zlay,...,an,T1,. .., Ty] such
that

S={aecZ":(3x1,...,2m €Z) plar,...,an,T1,...,Tm) =0}
* This research was supported by NSF grant DMS-9801104, and a Packard Fellowship.

C. Fieker and D.R. Kohel (Eds.): ANTS 2002, LNCS 2369, pp. 33-E2] 2002.
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For example, the subset Z>¢ := {0, 1,2,...} of Z is diophantine, since for a € Z,
we have

a€Zsy <= (Fr1,22,23,24 € Z) x%+m§+x§+xiza.

One can show using “diagonal arguments” that there exists a listable subset
L of Z whose complement is not listable. It follows that for this L, there is no
algorithm that takes as input an integer a and decides in a finite amount of time
whether a belongs to L; in other words, membership in L is undecidable.

Diophantine subsets of Z™ are listable: given p, one can write a computer

program with an outer loop with B running through 1,2,..., and an inner loop
in which one tests the finitely many (a1,...,an,Z1,...,Ty) € Z"™ satisfying
la;|, |x;] < B for all i and j, and prints (a1, ..., ay) if p(ar, ..., an, T1,...,Tm) =

0. Davis [Davh3] conjectured conversely that all listable subsets of Z™ were dio-
phantine, and this is what Matijasevi¢ eventually proved. In particular, the set
L is diophantine. Hence a positive answer to Hilbert’s Tenth Problem would
imply that membership in L is decidable. But membership in L is undecid-
able, so Hilbert’s Tenth Problem is undecidable too; that is, there is no algo-
rithm that takes as input a polynomial p € Z[x1,...,z,], and decides whether
p(x1,...,x,) = 0 has a solution in integers.

More generally, if R is any commutative ring with 1, one can define what it
means for a subset of R™ to be diophantine over R, by replacing Z by R every-
where. Similarly one can speak of Hilbert’s Tenth Problem over R provided that
one has fixed some encoding of elements of R as finite strings of symbols from a
finite alphabet, so that polynomials over R can be the input to a Turing machine.
For some rings R (for example, uncountable rings) such an encoding may not be
possible. In this case one should modify the problem, by specifying a countable
subset P of the set of all polynomials over R and an encoding of elements of P as
finite strings of symbols, and then asking whether there exists a Turing machine
that takes as input a polynomial p € P and decides whether p(x1,...,2,) =0
has a solution over R. For example, K. Kim and F. Roush [KR92] proved that
Hilbert’s Tenth Problem over the purely transcendental function field C(tq, t2)
is undecidable when one takes P to be the set of polynomials with coefficients in
Z[t1,ts]. Usually it is not necessary to specify exactly how the elements of P are
encoded, since usually given any two reasonable encodings, a Turing machine
can convert between the two.

Perhaps the most important unsolved question in this area is Hilbert’s Tenth
Problem over the field Q of rational numbers. The majority view seems to be that
it should be undecidable. To prove this, it would suffice to show that the subset
Z of Q is diophantine over Q. On the other hand, B. Mazur has suggested that
perhaps for any variety X over Q, the topological closure of X(Q) in X (R) has
at most finitely many connected components; if this is true, no such diophantine
definition of Z over Q exists. See [Maz94] and the more recent articles [CZ00)
and [Phe00] for further discussion.

The function field analogue, namely Hilbert’s Tenth Problem over the func-
tion field k of a curve over a finite field, is known to be undecidable. The first
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result of this type is due to T. Pheidas [Phe91], who proved this for k = F,(¢)
with ¢ odd. His argument was adapted and generalized by C. Videla [Vid94] for
k = Fy(t) with ¢ even, by A. Shlapentokh [ShlI92] for other function fields of
odd characteristic, and finally by K. Eisentrager [Eis| for the remaining function
fields of characteristic 2. Analogues are known also for many function fields over
infinite fields of positive characteristic: see [Shl00a] and [Eis].

For more results concerning Hilbert’s Tenth Problem, see the book [DL+00],
and especially the survey articles [PZ00] and [ShIO0Ob] therein. Since the publi-
cation of that book, undecidability of Hilbert’s Tenth Problem has been proved
also for function fields of curves X over formally real fields ko with X (ko)
nonempty [MB] (in fact this is just one application of his results), and for function
fields of surfaces over real closed or algebraically closed fields of characteristic
zero [Eis].

2 Hilbert’s Tenth Problem over Rings of Integers

In this article, our goal is to prove a result towards Hilbert’s Tenth Problem over
rings of integers. If F' is a number field, let O denote the integral closure of
Z in F. There is a known diophantine definition of Z over O for the following
number fields:

1. F is totally real [Den80].
2. F is a quadratic extension of a totally real number field [DL78].
3. F has exactly one conjugate pair of nonreal embeddings [Phe8§], [ShI89].

In particular, Hilbert’s Tenth Problem over O is undecidable for such fields F'.

It is conjectured [DLT78] that for every number field F, there is a diophantine
definition of Z over Op. Our main theorem gives evidence for this conjecture,
by reducing it to a plausible conjecture about the existence of certain elliptic
curves.

Before stating our theorem, let us recall the Mordell-Weil Theorem, which
states that if E is an elliptic curve over a number field F', then the abelian group
E(F) is finitely generated. Let rk E(F') denote the rank of E(F).

Theorem 1. Let F C K be number fields, and let O and Ok be their rings of
integers. Suppose that there exists an elliptic curve E over F such that vk E(F) =
tk E(K) = 1. Then there exists a diophantine definition of O over Ok.

Most of the rest of this paper is devoted to the proof of Theorem [Il But for
now, we mention its application to Hilbert’s Tenth Problem.

Corollary 2. Under the hypotheses of Theorem[, if in addition F is of one of
the types of number fields listed above for which a diophantine definition of Z
over O is known, then Hilbert’s Tenth Problem over Ok is undecidable.

Proof. Theorem [ reduces the undecidability over Ok to the undecidability over
Or. O
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J. Denef, at the end of [Den80], sketches a simple proof of Theorem [ in
the case where K is totally real and F' = Q. In fact, he is also able to treat
some totally real algebraic extensions K of infinite degree over Q. But his proof
technique does not seem to generalize easily to fields that are not totally real.

Our proof of Theorem [ is similar to that of an older result, the theorem
of [DLT78|, which uses a 1-dimensional torus (a Pell equation) in place of the
elliptic curve. We have been inspired also by the exposition of the “weak version
of the vertical method” in [ShI00b| and by the ideas in [Phe00].

2.1 Preliminaries on Diophantine Sets over Ok

The subset Ox — {0} of Ok is diophantine over Og: see Proposition 1(c)
of [DL78]. We have a surjective map O x (Ox — {0}) — K taking (a,b)
to a/b. If S C K™ is diophantine over K, then the inverse image of S under
(Ok x (O —{0}))" — K" is diophantine over O. In this case, we will also
say that S is diophantine over Og. It follows that in constructing diophantine
definitions over O, there is no harm in using equations with some variables
taking values in Ok and other variables taking values in K.

Given t € K*, define the denominator ideal den(t) = {b € Ok : bt € Ok }
and the numerator ideal num(t) = den(t~!). Also define num(0) to be the zero
ideal. These ideals behave in the obvious way upon extension of the field.

Lemma 3.

1. For fized m,n € Z>g, the set of (X1,...,Tm,Y1,.--,Yn) in K™T™ such that
the fractional ideal (x1,...,%y) divides the fractional ideal (yi,...,yn) i
diophantine over Og.

2. The set of (t,u) € K* x K* such that den(t) | den(u) is diophantine over
Ok.

3. The set of (t,u) € K* x K such that den(t) | num(u) is diophantine over
Ok.

4. The set of (t,u) € Ok X K* such that t | den(u) is diophantine over Ok.

Proof. Statement 1 is clear, since the condition is that there exist ¢;; € O
such that y; = >, ¢;jx; for each j. Statement 2 follows from statement 1, since
den(t) | den(u) if and only if the fractional ideal (u, 1) divides (¢,1). Statements
3 and 4 follow from statement 2: namely,

den(t) | num(u) <= u =0 or (Fv)(uv =1 and den(t) | den(v)),
t|den(u) <= (Fv)(tv =1 and den(v) | den(u)).

2.2 Bounds from Divisibility in Og

Let n = [K : Q] and s = [K : F]. Fix a € Ok such that {1,«,...,a* !} is a
basis for K over F. Let D € O denote the discriminant of this basis. If I is an
ideal in Ok, let Ng/q(I) € Z>o denote its norm.
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Lemma 4. There is a positive integer ¢ > 0 depending only on F, K, and «
such that the following holds. Let I C Ok be a nonzero nonunit ideal, and let
we Ok. Write p = Zf;& a;o' with a; € F. Suppose that p(p+1) -+ (n+n) | I.

Proof. This is essentially Section 1.2 of [Shl00b]. The only differences are that
we have specialized by taking [; = —¢, and we have generalized by replacing the
element y by an ideal I: this does not affect the proof. O

The following is similar to Lemma 2.5 in [ShI00D].

Lemma 5. There exists a constant ¢ > 0 depending only on F and K such
that the following holds: Let I be a nonzero ideal of Op. Suppose u € O and
w € Op. Write up = Zf:_é a;ab with a; € F. Suppose Nk/q(Dai) < ¢! Ng (1)
for alli, and p =w (mod I0k). Then p € Op.

Proof. Choose ideals Ji,...,J;, C Op representing the elements of the class
group of F', and choose ¢’ > 0 such that ¢’ Ng/q(J;) < 1 for all j. Choose j such
that J;I~! is principal, generated by z € F'*, say. Since u = w (mod [Ok), we
have

2(p—w) = 2(ag — w) + (za1)a + - - -+ (zas_1)a* ' € Ok.

By Lemma 4.1 of [ShI00b| (an elementary lemma about discriminants), Dza; €
Op fori=1,2,...,5s— 1. On the other hand,

Ni/q(J;)

/Q /Q /Q /Q NK/Q(D
by definition of ¢/, so Dza; = 0. Thus a; = 0 for ¢ = 1,2,...,s — 1. Hence
uwe Op. O

2.3 Denominators of x-Coordinates of Points on an Elliptic Curve

We assume that an elliptic curve E as in Theorem [l exists. Thus FE is defined
over F, and rk E(F) = tk E(K) = 1. Hence E has a Weierstrass model of the
form y? = 23 + ax + b and we may assume a,b € Op. Let O denote the point at
infinity on E, which is the identity of E(F).

For each nonarchimedean place p of K, let K, denote the completion of K
at p. and let F, denote the residue field. Reducing coefficients modulo p yields
a possibly singular curve

F,[X,Y.Z]

Eo = Prol (o s —ax e — i)

over Fy. Let E;mOOth denote the smooth part of E,. Let Ey(K,) be the set of
points in E(K,) whose reduction mod p lies in E;m""th(Fp).
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Lemma 6.

1. Ey(Ky) is a subgroup of E(K,).

2. E;“‘OOth(Fp) 18 an abelian group under the usual chord-tangent law.

3. Reduction modulo p gives a surjective group homomorphismred, : Eo(Kp) —
E;mooth (Fp ) .

4. Both Ey(K,) and Eq(K,) = ker(red,) are of finite index in E(K,).

Proof. For the first three statements, see Proposition VII.2.1 in [Sil92]. We have
not assumed that our Weierstrass model is minimal at p, so our definition of Ej is
different from the standard one in [Sil92], but this does not matter in the proofs.
To prove statement 4, observe that Ey(K,) and F;(K,) are open subgroups of
the compact group E(K,) in the p-adic topology. O

From now on, r € Z> is assumed to be a multiple of #E(K )ors, of the index
(E(K) : E(F)), and of the index (E(K,) : Eo(kK,)) for each bad nonarchimedean
place p. Then rE(K) is a subgroup of E(F) that is free of rank 1, and rE(K) is
contained in Ey(K,) for every p.

We will need a diophantine approximation result. First we define the norm
|| lv : & — R for each place v of K; it will be characterized by its values on
a € Ok. If v is nonarchimedean and a € O — {0}, then ||al|, := ¢~*(*) where ¢
is the size of the residue field, and the discrete valuation v is normalized to take
values in Z. If v is real, then ||a|, is the standard absolute value of the image
of a under K — R. If v is complex, then ||al|, is the square of the standard
absolute value of the image of a under K — C. Define the naive logarithmic
height of a € K by

hia):= Y logmax{al.,1}.

places v of K
If one sums over only the nonarchimedean places v, one obtains log N ,q den(a).

Proposition 7. Let X be a smooth, projective, geometrically integral curve over
K of genus > 1. Fizx a place v of K. Let ¢ be a nonconstant rational function
on X. Let Py, Ps,... be a sequence of distinct points in X (K). For sufficiently
large m, Py, is not a pole of ¢, 0 2y, := ¢(Pp,) belongs to K. Then

lim 18 1Zmle _
m—o00 h(zm)
Proof. See Section 7.4 of [Ser97]. O

Lemma 8. The following holds if r is sufficiently large: If P € rE(K) — {O}
and m € Z —{—1,0,1}, then

9
log Ng,q den(xz(mP)) > 1—Om2 log Ni/q den(z(P)) > 0;

in particular den(x(mP)) # den(x(P)) and den(x(P)) # (1).
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Proof. Let P; be a generator of rE(K). The theory of the canonical height
in Chapter 8, Section 9 of [Si[92] implies that there is a real number i(Py) > 0
(namely, the canonical height of Py, suitably normalized) such that h(z(mP;)) =
m2ﬁ(P1) + O(1), where the implied constant is independent of m € Z. Proposi-
tion [ applied to each archimedean v, with X = E and ¢ = z, shows that if we
forget to include the (finitely many) archimedean places in the sum defining h,
we obtain

log Nk /q den(x(mPy)) = (1 — o(1))h(z(mPy)) = (1 — o(1))m>h(Py)
as |m| — oo. The results follow for large r. O

Of course, there is nothing special about 9/10; any real number in the interval
(1/4,1) would have done just as well.

2.4 Divisibility of Denominators

From now on, we suppose that r is large enough that Lemma [§] holds.

Lemma 9. Let P,P' € rE(K)—{O}. Then den(x(P)) | den(x(P’)) if and only

if P' is an integral multiple of P.

Proof. We first show that for any ideal I C Ok, the set
Gr={Q€rE(K):I|den(z(Q))}

is a subgroup of rE(K). (By convention, we consider O to be an element of G7.)
Since an intersection of subgroups is a subgroup, it suffices to prove this when
I = p" for some prime p and some n € Z>1. Let O, be the completion of Ok
at p. Let F € Okl[z1, 22]] denote the formal group of E with respect to the

parameter z := —x/y, as in Chapter 4 of [Sil92]. Then there is an isomorphism
F(pO,) ~ Ei(K,), given by z — (z(z),y(z)) where z(2) = 272 + ... and
y(z) = —z73+... are Laurent series with coefficients in O. It follows that G »

is the set of points in 7E(K) lying in the image of F(p/"/?] O,). In particular
Gyn is a subgroup of rE(K).

The “if” part of the lemma follows from the preceding paragraph. Now
we prove the “only if” part. Let G = Ggen(z(p))- Then G is a subgroup of
rE(K) ~1Z, so G is free of rank 1. Let () be a generator of G. By definition of
G, we have P € G, so P is a multiple of Q. By the “if” part already proved,
den(z(Q)) | den(x(P)). On the other hand, @ € G, so den(z(P)) | den(z(Q))
by definition of G. Thus den(z(Q)) = den(z(P)). By Lemma B Q = +P. If
den(z(P)) | den(x(P’)), then P’ € G = ZQ = ZP. O

Lemma 10. If I C Ok is a nonzero ideal, then there exists P € rE(K) — {O}
such that I | den(z(P)).

Proof. We use the notation of the previous proof. It suffices to show that Gy~ is
nontrivial. This holds since the image of F(p/"/210,) under F(pO,) ~ E1(K,)
is an open subgroup of E(K,), hence of finite index. a
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Lemma 11. Suppose P € rE(K) — {O} and m € Z — {0}. Let t = x(P) and
t' = x(mP). Then den(t) | num((t/t' —m?)?).

Proof. Suppose that p is a prime dividing den(t). Let v, : K, — Z U {oo}
denote the discrete valuation associated to p. Then n := v,(2(P)) is positive.
Since z = 272 + ... is a Laurent series with coefficients in O, we have z(P) €
2(P)7%(14p"Oy). Using the formal group, we see that z(mP) € mz(P)+p?"Oy;
in particular vy (2(mP)) > n, so z(mP) € z(mP)~2(1+ p"O,). Thus

t x(P) 2(mP)\>

L. 14 p"0,) .

v 2(mP) ( ) ) LT
But Zi?ﬁ;) € m+p"O,, so t/t' € m* + p"O,, so p" | num(t/t' — m?). On the
other hand, p?" is the exact power of p dividing den(t). Applying this argument
to every p proves den(t) | num((¢t/t' — m?)?). 0

2.5 Diophantine Definition of O over Ok

Lemma 12. With hypotheses as in Theorem [d, there exists a subset S C Ok
such that S is diophantine over O and {m? :m € Z>1} C S C Op.

Proof. Let ¢ and ¢’ be the constants of Lemmas [ and [l respectively. By
LemmalR, if ¢ € Z>, is sufficiently large, then

¢/ N jqden(z(Py))'/? > N qden(z(Py)°)

for all Py € rE(K) — {O}. Fix such an £.
Let S be the set of 4 € O such that there exist Py, P/, P’ € rE(K) — {O}
and tg,t,t' € F such that

1. P=V(F,

2. to = z(Py), t = z(P), t' = x(P’)
3. (p+D(p+2)...(p+mn)|den(ty)
. den(t) | den(¢)

. den(t) | num((¢/t' — p)?)

Ot~

It follows from Lemma[3] that S is diophantine over Of.

Suppose m € Zx>,. We wish to show that u := m? belongs to S. By Lemma[I0]
there exists Py € rE(K) — {0} such that (u+1)(u+2)...(p+n) | den(z(Fy)).
Let P = {Py and P’ = mP. Let ty = 2(P), t = (P), and t' = 2(P’). Then
conditions (1), (2), and (3) in the definition of S are satisfied, and (4) and (5)
follow from Lemmas 0] and [T, respectively. Hence m? € S.

Now suppose that p € S. We wish to show that 4 € Op. Fix Py, P, P’ tg, t,
t’ satisfying (1) through (5). By (4) and Lemmal[d, P’ = mP for some nonzero
m € Z. By Lemma [T}, den(t) | num((¢/t' —m?)?). On the other hand, (5) says
that den(t) | num((t/t' — u)?). Therefore den(t)'/? | num(u — m?) = (u — m?).
(Note that each prime of Op or of Ok that appears in den(¢) must occur to
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an even power, since t is the z-coordinate of a point on y? = z3 + ax + b.
Hence den(t)'/? is a well-defined ideal.) Write = S.0_; a;a’ with a; € F.
By (3) and Lemmaldl N/ q(Da;) < Nk, q(den(ty))¢. By definition of £, we have
Nk /q(den(tg))® < ¢/ N qden(t)!/2. Combining these shows that the hypotheses
of Lemma [§ hold for w = m? and I = den(t)’/? (as an ideal in O). Thus
ue Op. O

Proof of Theorem [1l Let S be the set given by Lemma[12. Then S; := {s— s :
s,8' € S} contains all odd integers at least 3, because of the identity (m +1)? —
m? = 2m + 1. Next, So := S; U{4—5s:s € S;} contains all odd integers, and
S3:=95U{s+1:s€ Sy} contains Z. Let 51, ..., 0 be a Z-basis for Op. Then
Sy:={a1fi+ - +afbp:a1,...,ap € Ss} contains Op.

But S C Op,s0.5; C Op for i =1,2,3,4. In particular, Sy = Op. Also, S is
diophantine over Ok, so each S; is diophantine over Og. In particular, Op = Sy
is diophantine over Ok O

2.6 Questions

1. Is it true that for every number field K, there exists an elliptic curve E over
Q such that rk £(Q) = rk E(K) = 17 The author would conjecture so. If
so, then Hilbert’s Tenth Problem over O is undecidable for every number
field K.

2. Can one weaken the hypotheses of Theorem [I] and give a diophantine defi-
nition of O over Ok using any elliptic curve E over K with rk B(K) = 1,
not necessarily defined over F'? Such elliptic curves may be easier to find.
But our proof of Theorem [I] seems to require the fact that E is defined over
F and has tk E(F') = 1, since Lemma Bl fails if the ideal I of O is instead
assumed to be an ideal of Og.

3. Can one prove an analogue of Theorem [l in which the elliptic curve is re-
placed by an abelian variety?
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Abstract. Let p be a prime and let ¢ := p~. Let E be an elliptic curve
over Fq. We are interested in efficient algorithms to compute the order
of the group E(Fq) of Fq-rational points of E. An l-adic algorithm,
known as the SEA algorithm, computes #F(Fq) with O((log q)**¢) bit
operations (with fast arithmetic) and O((log ¢)?) memory. In this article,
we survey recent advances in p-adic algorithms. For a fixed small p, the
computational complexity of the known fastest p-adic point counting
algorithm is O(N3%¢) in time and O(N?) in space. If we accept some
precomputation depending only on p and N or a certain restriction on
N, the time complexity is reduced to O(N?5%¢) still with O(N?) space
requirement.

1 Introduction

Let p be a prime and N € N, let ¢ := pV. Let F, be the finite field of ¢
elements. Our problem is to find a fast algorithm to compute the number of
F,-rational points of a given elliptic curve E/F,. In other words, we seek a fast
algorithm to compute the trace of the g-th power Frobenius endomorphism Fr,
since #E(F,) = 1+ ¢ — Tr(Fr,). We can consider a similar problem for wider
classes of objects such as hyperelliptic curves, Abelian varieties or arbitrary
algebraic varieties. However, we shall mainly study algorithms for elliptic curves.

The first polynomial time (with respect to loggq) algorithm was found by
Schoof[49]. Let 1 be a constant such that the multiplication of two n bit integers
can be carried out with O(n*) bit operations and thatl] a multiplication of two
polynomials of degree n is performed in O(n*) arithmetic operations over their
coefficient ring. Then the running time of Schoof’s algorithm is O((log ¢)3#*2).
Elkies and Atkin (cf. Elkies[17] and Schoof[50]) made significant practical im-
provements and the resulting method is now called the SEA algorithm. The
running time of the SEA algorithm is heuristically estimated as O((log q)?**2)
bit operations [ The key idea of the SEA algorithm is to compute Tr(Fr,) mod !

1 In an actual implementation, different algorithms may be used for polynomial mul-
tiplications and integer multiplications. However, we assume that they are the same
for simplicity.

2 Under the Generalized Riemann hypothesis(GRH) it can be proved that the largest
prime [ used in the Elkies’ algorithm is O((logq)**¢) for any ¢ > 0. See Ap-

C. Fieker and D.R. Kohel (Eds.): ANTS 2002, LNCS 2369, pp. 43-[66] 2002.
© Springer-Verlag Berlin Heidelberg 2002
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for various small primes [(# p). By Hasse’s inequality |Tr Fr,| < 2,/g, we can re-
cover Tr(Fr,) using the Chinese Remainder Theorem. Couveignes and Morain[13]
obtained an algorithm to compute Tr(Fr,) mod {™ for small values of I (but in
theory it works for all n € N). Thus indeed the SEA algorithm is an “l-adic”
method.

On the other hand, p-adic methods attempt to construct (in some suitable
sense) a p-adic lift of the Frobenius endomorphism to characteristic zero. Such
an idea goes back to Dwork’s proof[15] of the rationality of the zeta function of
a variety over a finite field. Wan[56, Cor. 5.3] proposed an algorithm which com-
putes the zeta function of an arbitrary hypersurface over a finite field, modulo
p™ for small p™. However its growth rate is exponential with respect to m[3
So, it is not feasible to count the number of points on elliptic curves using this
algorithm when N is large. The challenge for p-adic point counting algorithms
for elliptic curves is as follows: By 1996, Couveignes[11, 12] and Lercier[35] had
already extended the SEA algorithm to small characteristic cases. Their (heuris-
tic) complexities are O((log q)?#2). The goal is to construct a faster algorithm.

We fix a (small in practice) prime p and study computational complexities
as N — oo. The first p-adic algorithm for elliptic curve point counting which (at
least asymptotically) runs faster than the SEA algorithm was obtained in [45].
The main strategy is to lift E to an elliptic curve over a field of characteristic
zero so that Fr, € End(E) also lifts to an endomorphism of the lifted curve. Such
a lift is called the canonical lift of E. Although this algorithm was not refined
— it requires O(N?3) memory, and works only for p > 5 — its time complexity
is O(N2#+1), Shortly afterwards, Fouquet, Gaudry, Harley[19] generalized this
algorithm to the cases p = 2 and p = 3. Independently, Skjernaa[52] obtained
a different algorithm for p = 2. The most difficult part of the calculation is to
compute the kernel of the dual of Frobenius, for which we need a totally different
algorithm from that applicable to an odd p. Vercauteren, Preneel, Vandewalle[55]
reduced the space complexity to O(N?). Here, the Kronecker relation is impor-
tant. A fast norm computation algorithm in Satoh, Skjernaa, Taguchi[46] makes
the O-constant in the time complexity much smaller. On the other hand, Harley
et al.[24] developed an algorithm for p = 2 based on the arithmetic-geometric
mean(AGM). This is a very simple and fast algorithm Combining these re-
sults, the computational complexity of elliptic curve point counting is O(IN2#+1)
in time and O(N?) in space with quite reasonable O-constants. We can now
compute the number of F -rational points of a randomly given elliptic curve

pendix A. This implies that the time complexity of Elkies’ algorithm is bounded by
O((log q)**21¢), whereas that of Schoof’s algorithm is O((log ¢)**2). However, in
practice, Elkies’ algorithm runs much faster than Schoof’s algorithm and numeri-
cal experiments support the above heuristic. Therefore, we use O((log ¢)***2) as a
benchmark time complexity for Elkies’” algorithm.

3 Later, Lauder and Wan[34] constructed a polynomial time algorithm for an arbi-
trary variety. See Section 5.

4 To the best knowledge of the author as of March 2002, the AGM method is the
fastest algorithm which works for all N without precomputation.



On p-adic Point Counting Algorithms for Elliptic Curves over Finite Fields 45

~ 219000 o1 more. When ¢ ~ 2290, the algorithm terminates in

over F, for ¢
about a second.

The rest of the paper is organized as follows: After introducing some notation,
we review the computational complexity of arithmetic operations. In Section 2
we describe the algorithm based on the canonical lift. In Section 3, we review the
AGM point counting algorithm. Section 4 describes how the fast evaluation of
the inverse of the Frobenius substitution reduces the run-time of the algorithm
described in Section 2. Algorithms for more general classes of varieties are briefly

summarized in Section 5.

1.1 Notation

Throughout this paper, ¢ = pV, K is the (unique up to isomorphism) unramified
extension of degree IV over Q,, and R is its valuation ring. Since K is unramified,
the prime p is still a prime element of R. In general, m stands for a reduction
modulo p map (of numbers, polynomials, curves, etc.). Let o € Gal(K/Q,) be
the Frobenius substitution. Since o is an isometry over K, it induces a ring auto-
morphism of R/p™R for each m € N, which is also denoted by o. By definition,
o(z) = P for x € F, = R/pR. The p™-th Frobenius endomorphism is denoted
by Fr,m. Hence, for an elliptic curve E defined over a field of characteristic p,
o(E) = Fr,(E). However, the Frobenius substitution (Galois action) should not
be confused with the lift of Frobenius endomorphism (rational map) for elliptic
curves over K. The multiplicative p-adic valuation |-[, is normalized as [p[, = %.
The additive valuation ord, with respect to p is normalized as ord,p = 1.

The point at infinity of an elliptic curve given by the Weierstrass equation is
denoted by 0. We use —X/Y as a local parameter at O. For elliptic curves F;
and Fs over a field k, the Abelian group of isogenies (defined over the algebraic
closure of k) from E; to Eo with addition by value is denoted by Isog(FE7, E2).
Let f € Isog(FE1, Es) and 7; be the local parameter of E; at O for ¢ = 1,2. Then
we have the expansion

() =can +627'12 +

We call ¢; the leading coefficient of f and denote it by le(f).

1.2 Complexity for Ring Operations

Let A be a commutative ring (with the identity element). Let u be as described
in the Introduction. Hence p = 2 if we use a naive multiplication algorithm and
= log, 3 if we use the Karatsuba algorithm|[27] (see Aho, Ullman, Hopcroft[1,
§2.6] or Cohen[9, §3.1.2]). Asymptotically, we can take y = 1+¢ for any & > 0 if
we use the Schénhage-Strassen algorithm[48] for integer multiplications and the
Cantor-Kaltofen algorithm[6] for polynomial multiplications [ Let F (X) € A[X]

5 Actually, this algorithm works for an arbitrary (not necessarily commutative, as-
sociative) algebra. In the case that a small prime (in practice, either 2 or 3) is
invertible in A, we can make some simplification to the Cantor-Kaltofen algorithm,
which makes the algorithm about twice as fast.
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be a monic polynomial of degree n. The ideal generated by F(X) is denoted by
(F(X)). Then a multiplication in A[X]/(F (X)) is performed with O(n*) ring
operations of A. To see this, it is enough to show that the remainder rem(H, F')
of the division H/F for H € A[X] with deg H < 2n — 2 is obtained with O(n*)
ring operations[l This is implicit in Aho, Hoperoft, Ullman[1, §8.3]. Explicitly,
for H € A[X] satisfying deg H < 2n — 2,

rem(H,F)=H — ((H/X™)Z)/ X" ?)F (1.1)

where Z := X?"72/F.

As to inversion, we limit ourselves to the case A = B/I* where B is a local
ring and [ is the maximal ideal of B. We also assume that a ring operation of
B/IM amounts to O(M*) field operations of B/I. Then, computation of a~!
for a € (A[X]/(F(X)))* amounts to O(n*M*" + n*logn) field operations of
B/I. In the case of M = 1, this can be carried out using an asymptotically fast
GCD algorithm, say, [1, §8.9]. For M > 2, we can lift an inverse element modulo
F(X) - IIM+D/2] 46 an inverse element modulo F(X) - IM [17]

Now we can estimate the time complexity of arithmetic operations (namely,
ring operations and an inversion of an invertible element) over R/p™ R. For
simplicity, we assume that M* > log N holds[® There exists § € R* such
that Q,(f) = K. Let F € Z,[X] be the monic minimal polynomial of §. Then,
R = Z,[0] and R/pMR = By[X]/(F(X) mod pM) with By = Z,/p™Z, =
Z/pMZ. Hence, an arithmetic operation over R/p™ R amounts to O((NM)H)
bit operations.

2 Canonical Lift Method

The canonical lift method is based on the following observation. Assume we
can lift B/F, to E/K so that Fr, € End(E) lifts to some ¢ € End(E). Then
Tr(Fry) = Tr(y). On the other hand, lc(¢) which lies in a field of characteristic
zero gives enough information to compute Tr(y). Computing the lift of Fr, still
needs a long computational time, but Fr, is the N-fold iteration of the Fr,, whose
lifting should be much easier (since p is small).

However, not every lift E admits the lift of Fr,. Given an ordinary elliptic
curve E/F,, we call an elliptic curve ET/K the canonical lift of E if End(E) =
End(ET). This is a special case of a deep theory due to Lubin, Serre, Tate[36]
(see also Messing[38], especially its Appendix). The canonical lift of an ordinary

6 In many cases, F is a low weight polynomial, i.e., the number of non-zero coefficients
of F'is very small. Then, a naive division performs remainder computation with
O(n) ring operations of A.

7 For f, g € A[X] satisfying fg = 1 mod F-JID/2] e see f-rem(g(2— fg), F) =
1 mod F - I™. We note that in case of M = 2(n), the naive Euclid algorithm is
applicable to obtain g mod p without changing the groth rate of the complexity of
inversion.

8 In an application to elliptic curve point counting algorithms, M = N/2 + O(1).
Hence this condition holds except for tiny N.
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elliptic curve exists and it is unique up to an isomorphism. For two ordinary
elliptic curves E; and Fo,

Isog(Ey, Ey) = Isog(E], E). (2.1)

We denote by fT the isogeny from Ef to E2T corresponding to f € Isog(E1, FEs)
in (2.1).

Put E() := ¢?(E) and denote the dual isogeny of Fr,, € Isog(E¢~, E®) by
Vp(z)7 which is called the Verschiebung. Then, by (2.1), each Vp(z) lifts to Vp(Z)T.
Let V, € End(E) be the dual of Fr, € End(E). Since

_ya 2 N

V= VOt oy @To. oy NI,
N ,

it is clear that lc(V,") = [] IC(V,,(Z)T). On the other hand, V2 — Tr(V,)V, +¢ =0
i=1

lifts to V,I* — Tr(V,)V,] + ¢ = 0, which implies lc(V,[)? — Tr(V,)le(V,) + ¢ = 0.
Since E is ordinary, Vp(i) and V, are separable and thus lc(Vpi)T) and lc(V)
belong to R*. Therefore,

Tr(Fry) = Tr(V,) = lc(VZIT) + = IC(VZIT) mod ¢,

from which we see that lc(V,) mod p™/2+©() suffices to determine Tr(Fr).

Before proceeding further, we note that in fact we can avoid the use of the
above high-powered algebraic geometry. For the purpose of point counting, we
can assume j(E) ¢ sz Otherwise, k := F,(j(£)) is either F), or Fj2. Let
r := #k. We can construct Ey/k which is isomorphic to E over F;. Hence,
letting ¢, := TrFrym|g,, we obtain TrFr,|g, (which is also TrFr,|g) by the
recurrence formula

Cp = C1Cp—1 —TCp—-2

with initial values ¢g = 2 and ¢; = r+ 1 —#Ey(k). See Blake, Seroussi, Smart|3,
Cor. VI.2] or Silverman[51, §V.2].

From now on, we assume that j(E) ¢ F 2. Let @, be the p-th modular
polynomial. Recall that two elliptic curves £ and £’ over K are p-isogenous if
and only if ¢,(5(£),4(E")) = 0.

Theorem 1 ([45, Prop. 3.4]). Assume j(E) ¢ F,2. Then, the system of equa-
tions

{ ®,(Z0,21) =0, ...,
m(Zo) = j(E), m(Z1) = j(

has a unique solution, which lies in RV .

9 In particular, this implies that E is ordinary.
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Theorem 2 (Skjernaa[52, Theorem 2.1]). Let E/F, satisfy j(E) ¢ Fp.
Let E' and E" be arbitrary lifts of E and EW | respectively. Assume there exists
a p-isogeny between E' and E". Then Fr, € Tsog(E, EM) lifts to Isog(E', E").

Thus, the solution Z; of (2.2) must be j(E®T). Let & be an elliptic curve
over K with j(&;) = Z;. Even without a knowledge of canonical lifts, the above
theorems ensure that Fr,, € Isog(E¢~), E®) lifts to an element of Isog(&;_1, &),
which is Fr]. Then, V" is the dual of Frf.

Let E’ be a quadratic twist of E. Then, TrFry|p = — Tr Fry|g. Hence, with-
out loss of generality, we may assume that E is given as followsd 19

Y2+ XY = X3+ j(E)™! 2),
Y2 =X°+ X2 j(B)1 (p=3),
V=X X+2r (p257= 550 ) -

(p
(p

1728—;(E)
Then,
1 mod 4 (p=2),
TrFr, =< 1mod3 (p =3), (2.3)

N, /¥, (hg) mod p (p > 5),

where hp is the coefficient of XP~1 in (X3 +3yX +27)®~1/2 (cf. Silverman[51,
proof of Theorem V.4.1(a)] for p # 2, Blake, Seroussi, Smart[3, Lemma I11.4] for
p = 2). Now we can give an outline of the algorithm. (For simplicity, we assume
that N is large enough so that M < N in (0).)

(0) Let M be the minimal integer satisfying p* > 4,/g. (Note M = N/2+0(1).)

(1) Compute j(EC~1T) and j(E®T) mod p™+OM) for some i. (The O-constant
depends on p and an algorithm in (2).)

(2) Compute ¢ :=1c(Vi"T : EOT - =1(EO1))2,

(3) Compute t' := /Ng/q,(c); the sign of the square root is determined by
(2.3).

(4) return t € Z satisfying ¢t = ¢’ mod p™ and |t| < 2,/q.

In (1) and (2), any value of i will do as long as j(E¢~YT) and j(E®T) have
necessary precision. In what follows, we describe Steps (1)-(3) in some detail.

2.1 Construction of Canonical Lifts

In [45], the canonical lift is constructed by solving (2.2) using the multivariate
Newton iterative root finding algorithm, which requires O(N?#*1) bit operations
and O(N3) space. Vercauteren, Preneel and Vandewalle[55] reduced the growth
rate of the space complexity to O(N?). Although the time complexity is still
O(N?#+1) "according to [55], it runs faster than the method of [45] by a factor
of 1.5. The key point of their method is the following theorem.

10 See Blake, Seroussi, Smart(3, §I11.3] or Enge[18, §3.10].
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Theorem 3 (Vercauteren et al.[55, §2]). Let € R satisfy x = j(ET) mod
p* with i € N. Then there exists a unique y € R such that y = 2P mod p and
D, (x,y) = 0. Moreover, we have y = F(EMT) mod pitt,

Using the Kronecker relation, we see that if z ¢ Fp2 and y = 2P mod p then
OxPp(z,y) # 0 mod p and JyPp(z,y) = 0 mod p. Hence % = 0 mod p when
x and y change according to @,(z,y) = 0. Therefore, one might expect that
the error |y - j(E(l)T)|p is less than %|a: — j(ET)|p. This is proved by virtue of
the Taylor expansion of @,. What is important here is that two j invariants of
p-isogenous curves are related by an analytic function (in fact by the modular
polynomial @p) The resulting algorithm is described below. For later use, we
compute the j-invariants of two adjacent canonical lifts.

Algorithm 1. Computing the j-invariants of canonical lifts.
Input: M € N, an elliptic curve E/F satisfying j(E) € F2.
Output: j(EM=YT) mod p™ and j(EM)T) mod p™.
Procedure:

1: z = any lift of j(E) to R

cfor (i:=15i<M;i:=i4+1){

find y € R satisfying @,(z,y) = 0 mod p**! and y = 2P mod p.
ri=y;

2

3
4:
5: }
6: find y € R satisfying @,(z,y) = 0 mod p and y = 2P mod p.

7: return = and y ;
At Steps 3 and 6, we use Newton’s root finding algorithm. Then the running
time of the above algorithm is O(M#*t!N#). The space complexity is clearly
O(MN).

2.2 Computing the Leading Coefficient of the Verschiebung

For notational simplicity, assume that we have obtained Jy and Jy of j-invariants
of canonical lifts of E and E(), respectively. We omit the superscript (1) in Vp(l).
The purpose of this section is to compute lc(VpT)2.

First we consider the case p > 5. We use

3J; 2J;
Y2=X34+ A, X+ B; where 4, = ———  Bji=——" _
+Aid 4 by where 1728 — J, 1728 — J,

as the Weierstrass model of E™T for i = 0, 1. Assume that we have obtained

H(X) = I x-ep) (2.4)

Pe(KerV, —{0})/+1
11 Indeed, an injective map f € Map(R, R) may well have zero derivative. The follow-
ing example is due to Dieudonné[14, §8]. Fix the set S of complete representatives

of R/pR. Define f by f <Z anp™ ) = Y anp®™ where a,, € S. Clearly, f is injec-
n=0

n=0

tive. Since |f(z + h) — f(z)], < |R|?, it is also obvious that f’ vanishes identically.

P’
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where £(P) is the z-coordinate of P. Then by Vélu’s formulae[54], we can express
the Weierstrass model Y2 = X? + aX + § of E' := ET/KerV,! by A;, B; and
coefficients of H. Vélu’s formulae also give the explicit form of u € Isog(EMT, E')
but the fact lc(u) = 1 is enough for our purpose. By construction, Keru = KeerT.
Hence there exists A € Isog(E’, ET) satisfying VpT = Ao wu by Silverman[51,
I11.4.11].

vT
EMT i Bt
R A
E (2.5)

Note that all the curves appearing in (2.5) are defined over a field of characteristic
zero. Therefore, all the isogenies are separable. Comparing degrees, we see that
A is an isomorphism. Hence there exists v € K* so that )\(X Y) = (v2X,73Y).
Comparing the Weierstrass forms, we have 72 = A / B . On the other hand
le(V,') = le(u)le(A) = 4~ 1. Thus, we obtain the desired value lc(V,)2.

So, the problem is how to find H(X) in (2.4). Let K" be the maximal
unramified extension of K and R" its valuation ring. In general, we denote the
p-th division polynomial of an elliptic curve £ by ¥, (X, £). In the case of odd p,
the following lemma is crucial.

Lemma 1 ([45, Cor. 3.3]). Let p > 3. Then KerV,) = EWT[p]n EMWT(Ru).

Hence H is the unique monic polynomial of degree % such that H divides
¥, (X, EWT) and such that (H) is square free. Since E(!) is ordinary, KerV, =
EW[p] and ¥,(X, EW) is of inseparable degree p by Cassels[7, Theorem I].
Therefore, 7(H (X)) = ¥,(X, EM)1/?. Thus we cannot apply Hensel’s lemma to

lift (H) to a factor of ¥, (X, EMT) because m(H (X)) and % are not

co-prime. We need the following modified version of Hensel’s lemma.

Lemma 2 ([45, §2]). Let p be an odd prime. For a given U € R[X] whose
reduction modulo p is inseparable, put t := ord, gx Let h € R[X] be a monic
polynomial satisfying the following conditions:

(1) w(h) is square free.
(2) w(h) is relatively prime to w (p tj)U()
(8) There exists g € R[X] and v € N such that ord,(U — gh) > u +t.

Then we can lift w(h) to a monic factor H of U such that H = h mod p.

Since EMWT is the canonical lift of E("), we can prove that U := ¥, (X, EMT) and
any lift h of ¥,(X, EM)/P € F,[X] satlsﬁes the above conditions ([45, Lemma
3.8]). The complexity of the above process is O((M N)#) in time and O(M N) in
space.

In the case of p = 3, the algorithm is almost the same. However, we use the
Weierstrass equation Y? = X3 +ay X2 +ag. See Fouquet, Gaudry, Harley|[19, §7].
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Again, the complexity of the above process is O((MN)*) in time and O(MN)
in space.

However, in the case of p = 2, there is an essential difficulty with the above
method: Lemma [T no longer holds for p = 2. Indeed, there are two non-trivial
points in EMWT[2] N EMT(R™) whereas KerV2T has only one non-trivial point.
In order to choose the correct point, we utilize Diagram (2.5). Let @ be the
non-trivial point in KerV,'. Since A is an isomorphism, j(EMT/(Q)) = j(ET).
The problem is how to compute the X-coordinate £(Q) of @ in deterministic
polynomial time. There are two methods.

The method of Fouquet, Gaudry, Harley[19] is to find the root of the 2-
division polynomial using Newton’s root finding algorithm with the correct initial
value. They use Y2 + XY = X3 + A, for the Weierstrass model of EMT where
A; € R is determined so that its j-invariant is j(E(l)T). Newton’s root finding
algorithm is used here, too. Let S be the unique non-trivial point of E(l)T[2] N
Kerr. Then, EOT2INEMWT(R™) = {0, Q, Q+S}. Note P € EMWT[2] if and only
if(£(P)/2) = 0 where (X ) = 8X3+X?+ A;. From this, we see ord,£(S) = —2
and hence j(EMT/(Q)) # j(EMWT/(Q + S)) mod 8. With some computations,
they proved that £(Q) = 2z where z € R* is the root ¢¥/(X) = 0 obtained by
Newton’s root finding algorithm taking the initial value j(ET)~! mod 4. Note
that j(EMT) mod 2™ is sufficient to obtain z mod 2. Then Vélu’s formulae
yield
1 — 504z + 190084,

le(V,))? = . 2.6
Vo) = 152200 + 129)(1 + 8644, (26)
Note z, A1 € R.
On the other hand, Skjernaal52] gives an explicit formula for £(Q). Take
36 1
y* +ay =a° —

GJEOT) 17287 j(EOT) — 1728

as the Weierstrass model of EOT, Put J; := j(E®T) and let Y2 + XY = X3 +
aX + B be the Weierstrass model of E(MT/(Q) obtained by Vélu’s formulae.
Explicitly,

36 1
i 1 TRy T 5T

Jy — 1728
where ¢ := 3¢(Q)? — 720 + g(Q) . Then j(EMT/(Q)) = j(ET) explicitly yields
a polynomial u € ZfJo,Jl 1[2] satlsfymg u(£(Q)/2) = 0. On the other hand,
Q € EMWT2] implies v(£(Q)/2) = 0 where

—(1+75(Q))t (2.7)

v(z) = 8(Jy — 1728)2% + (J; — 1728)2% — 72z — 1. (2.8)
Evaluating ged(u, v) {19 one finds
Q) JZ +195120.Jp + 4095.J; + 660960000
2 8(J2 — Ji(512Jy — 372735) + 563760.Jy + 8981280000)

12 This explains why we work symbolically over Z[Jo, J1], not numerically over

R/pMR. Because (R/p™R)[X] is not a UFR for m > 2, the notion of the gcd
is lost here.
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However, in order to evaluate @ mod 2™ we need Jy mod 2M+12 and J; mod
2M+12 "Gee Skjernaal52, Lem. 5.1] for details. Eventually, (2.7) gives

1 - 48«
le(Vy)? = ———————. 2.9
“V2) = T 3615 - 72a (2.9)
Note @ € R* by (2.8). Hence «, 8 € R by (2.7).
The computational complexities of both methods are O((M N)#*) in time and
O(MN) in space.

2.3 Norm Computation

The norm computation, which looks quite simple, is in fact a troublesome task.
Let ¢ € R* and assume we know ¢ mod p™. Our problem is how to compute
Nk/q,(a) mod p™ efficiently. We keep in mind that M = N/2 4+ O(1) in the
context of point counting of elliptic curves. Let # € R* be a generator of K/Q,,
and F' the monic minimal polynomial of 6§ over Q,. There exists A(X) € R[X]
such that deg A < N and A(#) = a. Then Ng/q,(a) is the resultant of A and
F'. One might expect that the resultant algorithm using pseudo remainder se-
quences (e.g. Cohen[9, Algorithm 3.3.7]) work. There are at least two problems:
First, pseudo divisions give rise to coefficient explosion. We have to know the
precision of intermediate arithmetic operations to ensure that the result is accu-
rate mod p™. Another problem is that even if we could bound the precision of
the intermediate process by O(M), to compute the pseudo remainder sequence,
one needs O(N2M*) bit operations. This is still slow in practical applications.
Here we present an “analytic” algorithm from [46].
First assume ord,(a — 1) > p%l. Then

NK/QP(a) = eXp(TrK/Qp (loga)). (2.10)

Note exp and log in (2.10) converge under this assumption The dominant step
when evaluating the right hand side is the evaluation of log. The straightforward

evaluation of loga = Y7, %(a — 1)" would need O(M) multiplications

over R/p™ R. Put m := [v/M] for simplicity. Then ord,(a?” —1) > m+ ﬁ and
a?” mod pM*™ is well defined. Here O(m) multiplications over R/p™*™R are
necessary to compute a?” . We can obtain log(a?”) mod pM+" with O(m) mul-
tiplications over R/p™*™R. Then, (loga) mod p™ is given by p~"(log a?" mod
pM+m). Since m = O(v/M), we need O(M*+1/2N) bit operations and O(M N)
space to evaluate Ng /q,(a) when a is close to unity.

13 The p-adic exponential function and the p-adic logarithm function are defined by
the power series exp(z) := > o- Z: and log(y) = Y7 | (_i)n (y—1)", respectively.
For basic properties, see e.g. Koblitz[32, Chap. 4]. We also need the following fact
to prove (2.10): Let F'(X) € Qp[[X]] and a € K. Assume F(a) converges. Then for

any p € Gal(K/Qp) we have p(F(a)) = F(p(a)). This follows from continuity of p.
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Remark 1. Tt was pointed out by R. Harley that if we accept O(M*/3N) space
complexity, then the time complexity is reduced to O(M#*1/3N#). Indeed, in-
stead of [v/M], we put m := [M'/3]. We compute 2" with O(m) multiplications
and then evaluate the first O(M?/?) terms of the expansion of log with O(M1/3)
multiplications and O(M?'/3) storage over R/p™*™R by, say, the Paterson-
Stockmeyer algorithm[43].

Let us consider the case of general a € R*. Let T € Map(F,, R) be the
Teichmiiller lifting map. For an odd p, we utiliz

Nk/q,(a) = T(Ng, /v, () Nk/q,(T(a™)a).

where o := 7(a). Since ord,(T(a ™ ')a — 1) > 1 > ﬁ, we use (2.10) for
T(a~')a. The best method to compute T(a) depends on M[™ In the case

of small M (say, M < N), we use the following algorithm, whose complexity is
O(max(N2*, M#TIN#)) in time and O(M N) in space.

Algorithm 2. Teichmiiller lift by powering.

Input: a € F,

Output: T(a) mod pM

Procedure:

T = arem(N—M—&-l,N) :

sfor (ii=15i<M;i=i+1){
lift x to R/p"™ R
x := zP mod p*t! ;

}

return x ;

ST wye

In the case of large M, we find the root of X177 —1 = iR by applying New-
ton’s root finding algorithm with initial value . This amounts to O(M*N#T1)
bit operations with O(MN) space.

In the case of p = 2, it is not necessarily true that ord,(T(a"*)a — 1) > 1.
However, either (2.6) or (2.9) shows IC(V;)Q = 1 mod 8. So, as far as point
counting is concerned, we can simply evaluatdi1] (2.10) at a = lc(‘/;T)z.

In conclusion, the time complexity of norm computation for point counting
on elliptic curves is O(N2#+1/2) for p = 2 and O(N?#+1) for p > 3. The space
complexity is O(N?) in both cases.

14 Note Nkjq,(T(a)) = T(Ng,/r,(a)) for o € Fq.

15 Of course the break-even point is implementation dependent. However, for the
application to point counting of elliptic curves, the repeated p-th powering seems
to be faster.

-1
16 The iteration process to solve X9™' —1 = 01is x + % while that to solve

X171 1 =0isa ¢ x— ﬁ(m — z7) which does not contain a division by an
element of R.

17 14z oo g2n—1

We can do this even better by using log =% = » | %—=. Note division by the

odd number 2n — 1 does not lose 2-adic precision.
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3 Arithmetic Geometric Mean

In [24], Harley announced the point counting algorithm based on the arith-
metic geometric mean(AGM). Although its computational complexity is O(N?)
in space and O(N?**t1) in time, the O-constants are much smaller than those
for the algorithm described in the previous section. In practice, the one variable
version of the AGM method runs much faster than a naive implementation of the
two variable AGM iteration. However, for simplicity, we shall work with the two
variable AGM. See Harley et al.[25] for details. It should be noted that the tech-
niques of AGM based point counting are the subject of a U.S. patent(pending)
by ArgoTech.
For real numbers a > b > 0, put

M(a,b) = (“;b,ﬁ).

Given ag > by > 0, define two sequences {a,}>2, and {b,}>2, by
(anJrla anrl) = M(an, bn)

Then, lim a, = lim b, (both limits exist). This common value is called the
n—oo n—oo

AGM of ag and by. The AGM is closely related to elliptic curves. Some of them
go back to Gauss. See e.g. Borwein and Borwein[4].

In the rest of this section, we will only consider the case p = 2. So,
K is the unramified extension of Qg of degree N and ¢ = 2. For a € 1 + 8R,
we denote the unique element b € 1 + 4R satisfying b> = a by \/a. Then, given

a, b € R* with % € 1+ 8R, we see that a’ = %‘b and b = a\/g also belong

to R* and that Z—,, € 1+ 8R. (Moreover, if a € 1 + 4R and b € 1 4 4R, then
a €1+4R and b’ € 1+ 4R.) Hence, as is in the real case, we can repeat the

AGM process. Put
a+b \/E
M(a,b) = ( 9 ,a a) .

Let E,; be the curve y? = z(x — a?)(z — b?). Note that E, ; is not a minimal
Weierstrass model in general. The following lemma gives a Weierstrass model of
W(Ea’b).

Lemma 3. Let a, b € 1+ 4R satisfy 3 = 1 mod 8. Define v € R by 37 —
2(a®+b?)y+a?b?> =0 and v = 1 mod 8. Then, the change of variables (X,Y) —

(%v W) transforms Eqp to Y? + XY = X® + rX? 4+ s with r € 2R

and s € R*, which is a minimal Weierstrass model of E, . Moreover s =

(bg—aa)Z mod 2.

Using the AGM, we can obtain j(ET) quickly as follows. First, we observe a
relation between the AGM and a 2-isogeny.
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Proposition 1. Let a, b € R* and g € 1+ 8R. Then the map F defined by

F o (z,y) — (132—&— (a—l—b) ’_1y(cz21)2—a:2)> (3.1)

8 2
is a 2-isogeny from Eqp to Eaqap) whose kernel is ((0,0)). In particular,

¢2(j(EM(a,b))7j(Ea,b)) = 0. (32)

Proof. Let Q. be the elliptic curve defined by y? = x3 + 2(a? + b?)2? + (a® —
b*)%2x. As is described in Silverman[51, II1.4.5], the map defined by (x,y) —

(Lz y(a2b27a:2)
220 z2

) is a 2-isogeny from E, j to Qg whose kernel is ((0,0)). Then,
the curve @, is isomorphic to Ejp) Wwith respect to the map (z,y) —

(5+ ()" -4). "

Let ¢ € F;. Let E be the elliptic curve defined by y? + 2y = 23 + c. Take
any lift u € R of ¢'/? (= cgN*l) and put ag := 1+ 4u, by := 1 — 4u. Then,
T(Eqyby) = E by Lemma [Bl Define two sequences {a,,}22, and {b,}>2, as in
the real case: (an+1,bn+1) := M(an,by). A straightforward computation shows
J(EMap)) = §(Eap)? mod 2 for any a, b € R with 2 € 1+ 8R*. Therefore,
§(Ea, b,) = j(c™(E)T) mod 2"+ by (3.2) and Theorem [

Remark 2. Two sequences {a,}2; and {b,}52; converge provided that Z—‘S €
1 + 16R by Henniart, Mestre[26]. In our case, Z—‘; € 1+ 8R* and they do not
converge. Only j(Eq, »,) — j(0™(E)T) converges to zero as n — oc.

The AGM also provides us with a very efficient way to compute IC(VQT).
Assume j(E,;) = j(ET). Then o(F,;) is a Weierstrass model of EMWT. By
Proposition [T, there exists an isomorphism u : Exqqp) — 0(Eqp) satisfying
Fr] = uwo F where F is defined by (3.1). Hence l¢(Vy ) = lc(]?)lc(u)_l. We know
an explicit formula for F (see Silverman[51, I11.4.5] again). The tricky part is
the computation of le(u). This is accomplished with some diagram chasing and
we have lc(V;) = i%. Actually, we have only approximate values of a and
b. So, we need to determine how much precision is necessary to retrieve Tr(Fr,).
The result is as follows:

Theorem 4. Letm > 3. Assume a, b € R* satisfies g € 14+8R* and j(E,p) =
F(ET) mod 2™. Set (a1, 1) := M(a,b) and (az,32) :== M(au1,31). Then

ai min m
Tr(Fr)) = Nk/q, (042> mod 2min(Vm+2)

Summing up, we obtain the following algorithm. For simplicity, we assume N > 6
in order that M < N in the following algorithm.
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Algorithm 3. Computing Tr Fr, by AGM.

Input: An elliptic curve y* +zy = 2° + ¢ (c € FS ) [
Output: Tr(Fry)

Procedure:

1: w:= any lift of ¢!/? to R ;
2:a:=144u;b:=1—4u;

3: M :=[N/2]+2;

4:for (1:=0;i<M—-2;1:=i+1){
5 (a,b) := M(a,b) ;

6: }

7 s:=(a+b)/2;

8:

return ¢ € Z satisfying t = Ny ,q, (¢) mod 2 and [t| < 2,/7 ;

4 Inverse Frobenius Substitution

In this section, we observe that fast evaluation of the Frobenius substitution on
R/ pMR with M € N improves the algorithm described in Section 2. In order
to evaluate the Frobenius substitution, our algorithm utilizes a root of unity. It
computes o(z) for z € R/p™ R with O((M N)*) bit operations and precomputa-
tion (which depends only on K). The resulting point counting algorithm runs in
O(N?2#109:5) bit operations with O(N?) memory (not including precomputation).

Let 6 be a generator of F,/F,, and f € F,[X] its monic minimal polynomial.
We recall that in practice f is chosen to be a low weight polynomial. Take
a lift ' € R[X] of f such that the weight of F is equal to the weight of f.
Then, R = Z,[X]/(F'). As before, we denote the Teichmiiller lifting map by
T. Put ¢ := T(f) and let G be its monic minimal polynomial. Then, we have
another realization of R, namely, R = Z,[X]/(G). In general, G is a dense
polynomial. As was described in Section 1.2, this implies that a multiplication
over Z,[X]/(G) is about three times slower than that of Z,[X]/(F). However,
we can easily compute the action of o= on Z,[X]/(G) = Z,[¢]. Explicitly, for

a given v := Z?Z)l et € Zp[4p] it is true that

071(7):2 Z Cpir s | Hj(¥)

7=0 \0<pi+j<N

where e
H;(X) :=rem(X’? | G), (4.1)

18 For ¢ € F, one cannot apply Theorem 3. However, P. Gaudry pointed out that
this algorithm works also for ¢ € Fj. The correctness for such c¢ is proved by a
more careful analysis on derivatives of the modular polynomial.
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hence H;(¢) = o~ ! (7). In this section, we assume that we have precomputed
G and Hy,...,H, Thus, the complexity of computing o~*(-) mod p™ is
O((MN)") in time and O(MN) in space (not including precomputation).

Let us see how the Frobenius substitution reduces the time complexity of the
Teichmiiller lifting. Let a € F,. Assume we omit the first step of Algorithm 21
Then it terminates with the output o™ ~1(T'(a)). The purpose of Step 1 is to
compensate the action of o. This can also be done as follows:

Algorithm 4. Computing the Teichmiiller lift with the Frobenius substitution
(naive version).
Input: ac F;, M ¢ N
Output: T'(a) mod p™
Procedure:
I = a;
sfor (ti=15i<M;i=i4+1){
lift z; to R/p"™1 R
Tip1 =0 (x]);
}

return xs ;

S o

This algorithm is slower than Algorithm Rlunless M is very small. However,
observe that ; = T'(a) mod p’ holds for each i. During the computation of z; 1,
we obtain 27" and . Then the Taylor expansion of 27 around = = x; gives
% mod p**? with only one multiplication over R/p"*2R. More specifically, put
0i,j := x; — x; for i > j. We have ; ; = 0 mod p’. On the other hand,

_15i,j) + (o7 (b)) — z;) mod p?.

Siv1,5 =0 "((6ij +;)P) —x; =po (2] j

J

Letting d; j := p~7;; € R and z; := p~/ (07" (z}) — x;) € R, we obtain
dit1,; = pa_l(xé?_l)a_l(di’j) + z; mod p’. (4.2)

Let j <i < k < 2j. In order to obtain ;4 ; mod p* for k < 24, we have only to
perform arithmetic operations in the right hand side of (4.2) over R/p* /R,
where complexities of arithmetic operations are much smaller than those of
R/p*R. Now we state our algorithm. We introduce a new parameter .

Algorithm 5. Computing the Teichmiiller lift with the Frobenius substitution
Input:ac Fy, Mc N, W e N
Output: T(a) mod pM
Procedure:
1: z := lift of a to R/p" R.

9 For small N (say, N < 200), we can obtain G(Y) mod p™ by computing
N—1 .
[T =) in (Z/pMZ)[X]/(F))[Y] with O(M"N**2) bit operations and
i=0
O(N M ) memory. Since the precomputation is required once for each N (and
f), this naive method is not a problem. For large values of N, see Appendix B.
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sfor (1:=0;i<W—1;4i:=i+1) {
x =0 YaP) ;
}

A = pzP~! mod p" ;

A

T for (m:=1;mW <M ;m:=m+1) {
8 lift 2 to R/pmTUWR

9: d:=0;

10:  z:= o' (zP) — 2 mod p
11: z:=(p™"2) mod p" ;
12: for (i:=0;i<W;i:=i+1){
13: d:=Axo"1(d) + 2z mod p" ;
14: }

15: =z :=
16: }

17: return z ;

m+1)W .
b)

z+p™d;

Note that all the arithmetic operations in Step 13 are performed mod p".
The running time of the above algorithm is

O (max(W (NW)X, (M/W)(MN)*, M(NW))).

Taking W := O(MH*/ (#+1)) we see it runs in O(M#+1/(#+1) Ni) bit operations.
The same idea applies to the p-th modular polynomial @,. But we need to modify
the above algorithm so that it works with a two variable polynomial. See [46]
for details. The time complexity of the resulting algorithm for computing the
j-invariant of the canonical lift modulo p™ is O(M#+1/(#+1) N#) bit operations.
Consequently, if we accept precomputation of the minimal polynomial G of
and the polynomials defined in (4.1), we obtain a point counting algorithm whose
complexity is O(N?#95) in time and O(N?) in space.

Remark 3. Tt is pointed out by P. Gaudry that the above method is applicable to
a variant of the modular equation (at least for p < 5) in Borwein and Borwein[4,
Chap. 4] which is closely related to classical elliptic integrals. This further reduces
the time complexity by a constant factor.

Remark 4. The actual choice of W depends on the particular implementation.
For a cryptographic application (i.e. when p = 2 and N < 300), using the CPU
word size as W, regardless of N, would often give the best results. In this case,
we can perform each ring operation over Z/p" Z without multi-precision integer
arithmetic.

Remark 5. In theory, the growth rate of the time complexity of the above algo-
rithm is O(N?-5%¢) if we adopt FFT based multiplications. However, if we apply
the Schonhage-Strassen algorithm for integer multiplication and the Cantor-
Kaltofen algorithm for polynomial multiplication, p"¥ should be sufficiently large



On p-adic Point Counting Algorithms for Elliptic Curves over Finite Fields 59

so that the running time of the Schonhage-Strassen algorithm behaves almost
linearly with respect to W. This implies IV should be greater than something
like 10°, which seems to be a non-feasible size. Alternatively, we use a similar
technique to Schénhage[47, §2], where a polynomial is encoded to a large inte-
ger This increases memory requirements a bit, but it lowers the value of NV
where FFT based multiplications become efficient [2]

Remark 6. Note that the dominant step of the resulting point counting algo-
rithm is an evaluation of logarithm involved in the norm computation. Recently,
Kim et al.[29] proposed an algorithm using the Gaussian normal basis(GNB) to
represent elements of R. Such a basis does not necessarily exist. But if F,/F,,
has a GNB, then K/Q, also has a GNB and we can evaluate the inverse of
the Frobenius substitution with O(N) bit operations without precomputations.
Moreover, the norm computation can be done with O(log N) multiplications
over R/pM R[] Hence, in the case where a GNB exists, the time complexity of
elliptic curve point counting is O(N2#+1/(#+1)) hit operations.

5 Point Counting for non Elliptic Curves

We now consider the problem of counting F,-rational points on non elliptic
curves. For results on l-adic methods up to 1996, see Poonen[44, §5]. In theory,
Schoof’s algorithm generalizes to polynomial time algorithms, but their efficiency
is questionable. Nevertheless, there are some implementation details for hyper-
elliptic curves of genus two. Harley and Gaudry[23] computed the number of
F,-rational points of the Jacobians of hyperelliptic curves of genus twd™3 for
q = 3% (logyq ~ 47.5) and for ¢ = p = 10! + 51 (log, ¢ ~ 63.1). Matsuo,
Chao, Tsujii[37] made some improvements to the Harley-Gaudry method and
performed the point counting for ¢ = (22° — 5)* (logy ¢ ~ 80.0). The actual
running time is about 26 days with 12GB RAM.

Let us consider p-adic algorithms. Although the notion of a canonical lift is
well formulated in the category of ordinary Abelian varieties, it seems difficult
to construct canonical lifts of general Abelian varieties. However, there are at
least two p-adic algorithms to lift the Frobenius morphism to certain cohomology
groups. In addition to these methods, Harley et al.[25] constructed the genus two
AGM algorithm for point counting of hyperelliptic curves of genus two over finite
fields of characteristic two.

20 This technique goes back at least to Exercise 4 of Knuth[30, §4.6]

21 We notice that this technique is quite efficient even for not so large N (say, N >
3000). See Fouquet, Gaudry and Harley[19, §2.4] and Gaudry and Giirel[22, §4.3].
Under the GNB representation of R, however, a multiplication in R/pM R would
need O(N2M*) bit operations, which makes the resulting algorithm too slow. See
[29] on how to avoid this difficulty.

23 Note that the magnitude of the number of F,-rational points are about twice of

the size of the base field for genus two curves.

122



60 Takakazu Satoh

Kedlaya[28] constructed a p-adic algorithm to compute the zeta function of an
arbitrary hyperelliptic curve over a finite field of odd characteristic. This method
computes the action of the Frobenius morphism on the Monsky-Washnitzer co-
homology: Monsky and Washnitzer[41], Monsky[39, 40]. (See Koblitz[31, Chap.
ITI] for a quick introduction.) This method is generalized to so-called superel-
liptic curves by Gaudry and Giirel[22]. The computational complexity of these
algorithms is O(N3#7€) in time and O(N3*¢) in space for fixed genus.

Lauder and Wan[34] constructed another algorithm based on exponential
sums and Dwork’s trace formula. If we apply this algorithm in a straight-
forward manner to hyperelliptic curves (of a fixed genus), its complexity is
O(N3“*T21]og N) in time and O(N®) in space. Here w_is the exponent of the
number of ring operations in a matrix multiplication Although these com-
plexities look large, note that this algorithm works for arbitrary algebraic vari-
eties. In [33], they also constructed an algorithm for Artin-Schreier curves defined
by Y? —Y = f(X) with f(X) € F,[X, X !]. If we fix p and the largest abso-
lute value of powers of X appearing in f, then its time complexity is O(N3#1¢)
and its space complexity is O(N3¢€). In the case of p = 2, this can be used to
compute the zeta functions of hyperelliptic curves given by Y2 + X™Y = h(X)
where 0 < m < degh.

Recall that the AGM point counting algorithm uses neither modular poly-
nomials nor Vélu’s formulae. In the case of p = 2, Harley, Gaudry and Mestre
designed an AGM point counting algorithm for ordinary hyperelliptic curves of
genus two. This algorithm is based on Bost and Mestre[5] where a sequence
of (2,2)-isogenous hyperelliptic curves of genus two is constructed using the
AGM. The computational complexity is O(N?3) in time and O(N?) in space.
See Harley et al.[25] and Gaudry[21]. The result is impressive: the time to com-
pute the number of rational points for g = 2 and ¢ = 24090 is 144 hours with an
Alpha/750MHz.

The time complexity of an algorithm which requires £2(N?3) memory cannot
be o(N?) even if we accept some precomputation or some restrictions on N. One
can naturally ask whether it is possible to design a point counting algorithm
for, say, hyperelliptic curves of an arbitrary genus with o(N?3) time complexity.
Note, in the case of elliptic curves, we made the assumption that the j-invariants
of a given curve do not belong to F,2. Can we obtain a faster algorithm if we
limit ourselves to ordinary curves (or Abelian varieties)? The genus two AGM
point counting algorithm suggests that there still should be many improvements
in this area (possibly including algorithms for elliptic curves).

124 8o, w = 3 for naive multiplications, w = logg 7 for the Strassen algorithm[53] (see
also [1, Chap. 6]), w = 2.376 for the Coppersmith-Winograd algorithm[10].
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6 Appendix A: Theoretical Upper Bound
for the Running Time of Elkies’ Algorithm
(joint work with S. Galbraith)

In this appendix, we prove that the largest prime used in the Elkies algorithm is
O((log ¢)?*¢) for any € > 0 under GRH. This implies that the time complexity
of Elkies’ algorithm is O((log q)3#+2+¢)

In this section, ! always stands for prime numbers. Let E/F, be an elliptic
curve and let xyg be the Kronecker symbol associated to the quotient field of
End(FE). The estimate of the cardinality of {l : | < L, xg(l) # —1} seems to
be difficult. Ankeny[2] studied the least quadratic non-residue, but the results of
[2] do not seem to give estimates on the second least quadratic non-residue and
so on. However, in order to estimate the time complexity of Elkies’ algorithm,

what we really need is the growth rate of 11 las L — oo.
I<Lxe()#-1
Recall that there exist constants ci, ¢z, c3 such that ¢; L < ZKL logl < coL

for all L > c3 by Chebyshev’s estimate[8] [29

Theorem 5. Let € > 0. There exist constants c4 and cs5 depending only on €
with the following property. For any real primitive character x modulo d where
d > ¢4 and for all L > (logd)?*¢,

Z logl > csL.
ISLx()#-1

Proof. Without loss of generality, we may assume 0 < ¢ < 2. Put X = ¢4 L
where cg is a constant whose value is determined later. We have

> logl >3 S (1+x(D)logl > 5 > (1+ x(I))e™"/X logl

ISLx()#—1 I<L I<L
=2 e~ % logl+ S x()e * logl — 3 x(I)e~ = log!
I<L ] I>L

:%(51 + S — S3).

Then,

L
Sp > Z e WX logl > e_L/2X01§
I<L/2

125 Frey[20, Th. 3.8] states the same result, which is based on the observations by K.
Murty and R. Murty communicated in Feb. 2000. But to the best knowledge of
the author, their proof is not published. Independently, the author and S. Gal-
braith discussed the running time of Elkies’ algorithm and obtained the following
elementary proof in May 2000.

This can be deduced from the prime number theorem. But, in fact, the prime
number theorem is proved via Llew % ZlgL logl = 1. See e.g. Edwards[16, Chap.

4.
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for all L > 2c¢3. By Ankeny[2, Theorem 1], there exist constants ¢z, cs, cg, 10
such that

slog Xlogd  logd
loglogd log X

|S2| < 7 (Xl/ ) + g X1/3 logd for all X > ¢g,d > cy9.

For L > (logd)?*e (i.e. logd < (cg X))/ (3+)),

1

1Ss] < erel/ @) (XT}rEJr% log X +X1/(2+a)) +egel/FO) xh+ ke

provided loglogd > 1. Hence, there exist constants c;; and c¢12 such that |Sa| <
c11 L1¢/9 for all L > max(cia, (logd)?*) and d > max(cig, ).
Now, we estimate S3. This is already done in Ankeny’s work. Put 6(u) =

>~ logl. Then,
L<i<u

1 o0 o0
|S3] < Y/ O(u)e™ "X du < ;—2/ ue™ X du = cye /X (L 4+ X).
L L

Thus |S3] < coe™ % (%) L. Choose cg so that

1
5= —e06/2 (C—l —co(1+ 051)6766/2) > 0.
3 2
(Note that cg is independent of e.) Thus S; — S3 > 3¢5 L for L > 2c3.
Summing up, we see S1 + S — S3 > 2¢5 L for L > max(ci3, (log d)?*¢) with a
suitable constant ¢13. Put ¢4 := max(cg, €, exp(cié(%s))). Then d > ¢4 implies

(log d)2+6 > C13. (]

Corollary 1. Let e and c14 be arbitrary positive real numbers. Then, there exists
a constant c15 satisfying

Z logl > c14logq
xe()#—1,1<(log q)*+¢

for all ¢ > c15 and all elliptic curves E/F,.

Proof. Let d be the discriminant of the quotient field of End(E). For |d| < c4,
the assertion follows from the prime number theorem for arithmetic progressions.
Otherwise, the assertion comes from the above theorem. O

Remark 7. For a fundamental discriminant d < 0 of an imaginary quadratic field,
let 4 be the least prime which does not remain prime in Q(\/&) Under the GRH,
there exists a constant c16 > 0 such that there exists infinitely many d satisfying
lg > c16log dloglogd. This follows from a similar proof to Montgomery[42, Th.
13.5].
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7 Appendix B: A Minimal Polynomial of a Root of Unity

Let 6 € F, be a generator of F,/F,, and let ¢ € R be the Teichmiiller lift of 6.
Let G be the monic minimal polynomial of ¢). Here, we present an algorithm to
compute G mod p™ with O(M*N#*+1) bit operations and O(N M) memory. Let
F(X):= 25:0 a, X" € Z[X] be a monic lift of the monic minimal polynomial
of 6 such that 0 < a,, < pfor 0 < n < N. Let § € R be the unique root
of F(X) = 0 satisfying 7(0) = 0. Put P := {f € Z,[X] : degf < N}. If
f € P and ord, f(v)) > i, then f is divisible by p’. Note ord, f(#) = ord, f(v)
because 6 = ¢ mod p. Hence we can define C € P by § = C(¢)) and A € P
by ¥ = A(#). Again, using 0 = ¢ mod p, we see that F(X) = G(X) mod p
and that X = C(X) mod p. Our strategy is to successively construct better
approximations of G and C.

For f, g € Z,[X] and a monic h € Z,[X], we define fzg € Z,[X] by

(fog)(X) := rem(f(9(X)), h(X)). Hence, (foC)(y) = f(6) and (foA)(d) =
f(®). Assume we have obtained a monic polynomial Gy € Z,[X] of degree N
and C; € P satisfying G1(¢) = 0 mod p’ and § = C;(x)) mod p’ with some
i € N. Then the polynomial V := GlgA satisfies V(0) = G1(¢) = 0 mod p?,

hence V is divisible by p’. If we know C and G, we can represent V (6) in terms
of ¢ and adjust G;. Namely, set U := VgC. Then U(y) = V(0) and thus

G is obtained as G, — U [?] Actually we have only C; and G;. Nevertheless,
Vc? C: = VgC mod p* and this implies G = G; — VC? C mod p?'. Note that C

is characterized by F(C(¢)) = 0 and C(X) = X mod p. We can compute Cy € P
satisfying F/(Cy(1))) = 0 mod p* from C; by Newton’s iterative root finding al-
gorithm. Namely, define Cy € P so that Cy(¢) = Cy(¢) — F(Cy (1)) F'(Cy (1))
in Z,[¢]. Repeating this process, we obtain approximations to G and C' with

arbitrary precision. The explicit algorithm is as follows. During execution, we
keep track of S € P satisfying S(v) = F/(C(¢))) ™! mod p'.

Algorithm 6. Computing the minimal polynomial.
Input: F(X) € Z[X], described as above, M € N.
Output: G(X) mod p™.
Procedure:
: ¢ :=T(#) mod pM ; // use an algorithm in Section 2.3[1
: Define A € P such that A(0) = .
CX)=X;G:=F;i:=1;
: Take S € P so that 7(S)(6) = (n(F')(0))"! in F,.
while (i < M) {
V.= G?«“A ;

Z:=XN-2)G ;U = V(o;C;
8 G:=G-U;Z:=X*""2?2/G;

27 Note that degU < N and that G; — U is a monic polynomial of degree N.
28 At this moment, we cannot use Algorithm

IR A R ol e
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9:  Adjust S so that rem(S (F’gC’) —1,G) = 0 mod p?*i.
10 C:=C- rem((FgC) *S,G) ;
11: Adjust S again so that rem(S = (F’gC’) —1,G) = 0 mod p?.
12: i:=2x1;
13: }
14: return G ;

In Step 7 and Step 8, Z is necessary to compute a remainder mod G by (1.1).

Step

9 and Step 11 actually perform S := rem(S * rem(2 — S (F/80)7 G),G).
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Abstract. For each integer n, let S, be the set of all class number
quotients h(K)/h(K') for number fields K and K’ of degree n with the
same zeta-function. In this note we will give some explicit results on the
finite sets S,,, for small n. For example, for every x € S,, with n < 15, z
or 7! is an integer that is a prime power dividing 2'* - 35 . 53.

1 Introduction

In broad terms the main question on number fields we address in this article is:
to what extent does the zeta-function determine the class number?

Number fields with the same zeta-function are said to be arithmetically equiva-
lent. Arithmetically equivalent number fields have many invariants in common.
For instance, they have the same degree, discriminant, signature, Galois clo-
sure, maximal normal subfield, and number of roots of unity. By considering
the residue of the zeta-function we see that arithmetically equivalent K and
K’ also satisfy h(K)R(K) = h(K')R(K’), where h denotes the class number
and R denotes the regulator of a number field. Our first result summarizes the
possibilities for h(K)/h(K') for fields of degree at most 15.

" "2 0 1 2 3 4 5 6 7
7 23 - 22 - — — — —
8 2332 — 922 923 92 — — —
11 3° - - 33 _ _ _
12 273353 — 23 23 2552 9432 94325
13 36 - - = 34 — — —
14 210 - 25 — 24 26 25 23
15 o4 - - = 210 — 28 —

C. Fieker and D.R. Kohel (Eds.): ANTS 2002, LNCS 2369, pp. 67-[Z9 2002.
© Springer-Verlag Berlin Heidelberg 2002
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Theorem 1. Let K and K’ be non-isomorphic arithmetically equivalent number
fields of degree n < 15. Then n is equal to one of the integers in the first column
of the above table, and if the number of complex infinite primes of K is denoted
by 2, the class number quotient h(K)/h(K') is equal to p* or p=*, where p is a
prime number, k is a non-negative integer, and p* divides the number given in
the table for the pair (n,rs).

A dash in the table means that this pair (n,r2) does not occur.

The class number quotient bounds depend on the Galois configuration and
the signature in a strong sense: the conjugacy class in the Galois group of com-
plex conjugation. Therefore we first show in Section 2 that there are exactly 19
Galois configurations of degree at most 15 that contain a pair of arithmetically
equivalent fields. To produce the list of the 19 possible Galois configurations we
used the classification of transitive groups up to degree 15 by Butler, McKay and
Royle [2], [B], [17], and a database of subgroup-lattices in the MAGMA-system.
A relatively easy run on the MAGMA-system produces the list, and shows that
it is complete.

The 19 Galois configurations can also be obtained from theoretical considera-
tions; a better description of a particular configuration is useful for two purposes:
it might give clues about how to realize number fields with these Galois groups,
and it can also give a humanly readable proof that they contain non-isomorphic
fields with the same zeta-function, which may inspire other constructions. We
will give such descriptions in Section 2.

In Section 3 we employ methods of [6] to obtain bounds on class number quo-
tients for each configuration. The required symbolic computations are performed
in MAGMA using the ideas of [I].

LaMacchia [T5] found a family of number fields, parametrized by two rational
numbers, each of which is a member of a pair of arithmetically equivalent fields
of degree 7. In Section 4 we construct the other member of the pair in terms of
the two parameters.

By computing class numbers for pairs in this family and by using earlier
results [B] about families in degree 8 constructed with 3-torsion points on elliptic
curves, we give a computational proof of the following result in Section 5, showing
that some of the bounds on the class number quotients are tight.

Theorem 2. The set of values of the class number quotient h(K)/h(K') as
(K, K') ranges over all pairs of arithmetically equivalent number fields of degree
at most 10 that are not totally real, is

111
{4a 37 251727?”4}'

The first known instances of pairs of arithmetically equivalent number fields
with different class numbers were generated using a family of fields in degree 8;
see [8], and also [1]. For that family, with pairs of fields of the form Q(+/a) and
Q(+/16a), a factor 22 will never appear in the class number quotient; see [6].

G. Dyer [10] found the first example of arithmetically equivalent fields in
degree 12 with class number quotient 5, by using the method of [5].



On Arithmetically Equivalent Number Fields of Small Degree 69

2 Gassmann Triples

The goal of this section is to determine for all n < 15 all possible Galois groups
of arithmetically equivalent number fields of degree n.

Let L/Q be a Galois extension with Galois group G, and let H and H' be
subgroups of G corresponding to intermediate fields K = L¥ and K’ = L7 .
Recall that the fields K and K’ are isomorphic if and only if the G-sets X =
G/H and X' = G/H' are isomorphic, i.e., if there is a G-action preserving
bijection between them. We say that the G-sets X and X’ are linearly equivalent
if every g € G has the same number of fix points on X and on X’. It is well-
known that K and K’ are arithmetically equivalent if and only if X and X’ are
linearly equivalent, which is also equivalent to H and H’ giving rise to the same
permutation character 1§ = 1%, of G; see [4], Exercises 6.3, 6.4.

By a Gassmann triple (G, X, X’) we mean a group G acting faithfully and
transitively on two finite sets X and X', so that X and X’ are linearly equivalent
but not isomorphic as G-sets. The degree of (G, X, X’) is the cardinality of X.
The Galois configurations of non-isomorphic arithmetically equivalent fields of
degree n are given by the Gassmann triples of degree n up to isomorphism,
where we say (G, X, X') = (H,Y,Y’) if G 2 H and, viewing Y and Y’ as G-sets
through this group isomorphism, we have X =5 Y and X’ =5 Y.

The question whether for given positive integer n a Gassmann triple of degree
n exists has been addressed in [11], [13], [L4] with the help of the classification of
finite simple groups. The degrees of the Gassmann triples with a solvable group
have been determined in [7]. Combining these results, one finds that for n < 100
a Gassmann triple of degree n exists if and only if n > 7 and

n#9, 10, 17, 19, 23, 25, 29, 34, 37, 38, 41, 43, 46, 47, 53, 58,
59, 61, 67, 69, 71, 74, 79, 82, 83, 86, 87, 89, 94, 95, 97.

In particular we see from this list that the only Gassmann triples of degree at
most 15 have degree 7, 8, 11, 12, 13, 14, or 15.

As we will see, all Gassmann triples of degree at most 15 can be directly
constructed by, or at least derived from, one of the following three methods—see
sections 2 and 5 of [7] for details.

(A) For a finite field F, and d € Z>2 consider the vector space V = F,% and
its F-dual V* = Hom(V,F,). Let S be a subgroup of F;* of index s, let
G = GL4(F,)/S, and let X =(V —{0})/S and Y = (V* - {0})/S. If d > 3
or s > 2 then (G, X,Y) is a Gassmann triple of degree s(q? —1)/(q — 1).

(B) Let F, be a finite field of characteristic at least 7, and suppose that ¢ = £1
modulo 5. Then G = PSLy(F,) has two non-conjugate subgroups H and H’
that are both isomorphic to As, and that are conjugate in PGLy(F,). Then
(G,G/H,G/H’) is a Gassmann triple of degree q(q? — 1)/120.

(C) Let p be a prime number, let k£ > 1 be an integer, and let m > 1 be a product
of prime powers ¢ that are 0 or 1 modulo p. Then there exist a Gassmann
triple (G, X, X’) of degree pmk with a 3-step abelian group G = Gp 1 of
order (pm)*k.
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Theorem 3. There are exactly 19 Gassmann triples (G, X,X") of degree at
most 15, up to isomorphism. The groups G, viewed as transitive groups acting
on X, are given in the table below with Butler-McKay numbering.

deg. | mno. #G description of G construction
7 5 168 | PSLy(F;) = PGL3(IFs) (A)
””” 8| 15| 32| Gooo=CesxVy | (C)
23 48 | GLy(Fs) (A)
11| 5| 660 | PSLo(Fy) | B)
12 26| 48 | GLo(Z/4Z)N Ay | (A)
38 72 | Gagspo (©)
49 96 | GLo(Z/47) (A)
57 96 G2’2}3 NAiy (C)
104 192 | Gaz3 (©)
124 240 | GLy(F5)/ £1 (A)

We explain the description of the group and the actions on the two sets X and
X’ degree by degree.

Degree 7 and Degree 14. Taking a 3-dimensional vector space over F,, we
get a Gassmann triple in degree 7 from construction (A). Here the group is
G = GL3(Fy) = PGL;3(Fy), and the sets X and Y are the sets of points and lines
in the projective plane P?(Ify).

It was shown by Perlis [I6] that this is the only Gassmann triple in degree 7.
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In degree 14 the entries with number 19 and 52 have X equal to two copies of
P%(F,), where the groups are the direct product PGL3(Fz) x Co and the wreath
product PGL3(FF;) 2 C5 respectively.

We obtain the other triples of degree 14 by adding “orientation” to the triple
of degree 7. Let X be the set of points P of P?(Ify) together with a cyclic ordering
of the three lines through P. Dually, Y is the set of lines L in P?(Ify) with a cyclic
ordering of the three points on L. The group PGL3(F;) acts naturally on X and
Y, and we have a commuting action by Cy which toggles the orientation of all
points and lines. This gives the entries (14, 10) and (14,17) in the table.

Degree 8. Construction (A) gives a Gassmann triple of degree 8 with group
G = GLy(F;). The other triple can be described with the following graph.

A\

4 P

N4

The plane symmetries of this graph form a dihedral subgroup Dg of order 16 of
the group of graph automorphisms. Define another graph automorphism o by
rotating one component over 180 degrees, and leaving the other component fixed.
Then Dg and o generate a group G of graph automorphisms of order 32. The
transitive actions of G on the set of vertices and on the set of edges now give a
Gassmann triple of degree 8. We have G = CsxVy, where the map Vy; — Aut(Cs)
is an isomorphism. This triple can also be obtained from construction (C) by
taking p = m = k = 2. In fact, construction (C) was inspired by this graph
theoretical example.

Degree 11. Construction (B) gives a triple of degree 11 with group PSLa(Fy4).

Degree 12. Construction (A) gives a triple with group GLy(F5)/ £ 1. We can
also do construction (A) for a finite commutative local ring R rather than a
finite field k. Then X is the set of elements in a free module V of rank d that are
not annihilated by the maximal ideal of R, and Y is the same set in the R-linear
dual of V', and G = GLg(V). For R = Z/47Z and d = 2 this gives entry (12,49),
with G = GL2(Z/4Z) which is solvable of derived length 3, and entry (12, 26) is
a subgroup of index 2 acting on the same sets.

Construction (C) gives the other entries. The group G 3.2 has derived length
2, and the group G323 and its subgroup Gz 23 N A2 have derived length 3.

Degree 13. The points in the projective plane over 5 together with the points
in the dual projective plane form a Gassmann triple with group PGL3(F;) and
degree 13 by construction (A).
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Degree 15. Construction (A) gives a Gassmann triple of degree 15 with group
G = GL4(F;). By one of the exceptional isomorphisms of simple groups [9] we
have G =2 Ag. It turns out that we obtain other Gassmann triples by keeping
the same sets, but restricting the group to the subgroup A7, or As x As, or
(55 X Sg) N Ag of Ag.

This completes the description of the 19 Gassmann triples. The second part of
the proof of Theorem 3 is to show that the table is complete. The proof is based
on the database of transitive groups of degree d up to 15 due to Butler, McKay
and Royle [2], [3], [I7]. For each transitive group G from their classification we
need to determine all conjugacy classes of subgroups of index d which give rise
to the same permutation character of G as a point stabilizer.

A brute force way to do this, is to find all classes of subgroups of index d
and test their permutation characters. On a 1100 Mhz Athlon with 256K cache
and 512 MB main memory, one can check Theorem 3 in this way with a run of
MAGMA 2.8 of 208 seconds.

While we have no better method than brute force in general, one can often
decide that a transitive group is not part of a Gassmann triple by group the-
oretic means. For instance, it follows from the lemmas below that neither the
symmetric nor the alternating group on d letters is part of a Gassmann triple, for
any d. From 1997, when the list of 19 triples was first presented at the Journées
Arithmétiques in Limoges, up until the summer of 2001 when MAGMA 2.8 was
released, these additional methods were indispensable because the routines for
finding subgroups would fail on groups with a large radical index such as the
alternating group on 10 letters.

Lemma 1. Let A be the symmetric or alternating group on a finite set X. For
each finite set T with trivial A-action and each A-set'Y which is linearly equiv-
alent to X UT we have Y =, X UT.

Proof. If A is cyclic, then this is clear, so assume that the cardinality n of X is at
least 3. In order to prove the lemma we first prove a weaker statement. We claim
that on both X UT and Y the group A has only one non-trivial orbit and that
it has length n. To see this, note that A contains a cyclic subgroup C of order n
or n — 1, and that Y is isomorphic to X UT as a C-set. Thus Y has an A-orbit
of length n or n — 1. Since the number of A-orbits of X UT and Y is the same,
the only case where the claim might fail is the case where Y consists of a trivial
G-set, one orbit of length 2 and one orbit of length n — 1. But then A embeds
into Cy x S,,_1 because A acts faithfully on Y. By comparing cardinalities, and
using the fact that A4 22 C5 x S3 one sees that this is impossible. This proves
the claim. The lemma now follows by applying the claim to A and to a point
stabilizer in A of a point in X.

Lemma 2. Let G be a finite group and X a transitive G-set and let k be a
positive integer. Suppose that X = X3 U---U Xy is a decomposition of X into
blocks and let A be the subgroup of G of elements that fix XoU- - -UX} pointwise. If
A is the symmetric or alternating group on X1 and A is non-abelian, then every
G-set which is linearly equivalent to X, is G-isomorphic to X.
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Proof. We may assume that G acts faithfully on X. Let Y be a G-set which
is linearly equivalent to X. For i € {1,...,k} let A; be the subgroup of G of
elements which fix X \ X; pointwise. Then the A; are the distinct conjugates of
A = A;. By the previous lemma, each A; has exactly one non-trivial orbit Y; on
Y, and we have X; =4, Y;. It follows that the collection of all Y; is G-stable,
so that Y7 U--- U Y} is a sub-G-set of Y. But since G has the same number of
orbits on X and Y we have Y =Y, U---UY}, and by counting elements we see
that the Y; are disjoint. It follows that X and Y are isomorphic over the normal
subgroup N = A; x --- x A of G. This means that the G-set B of bijections
from X to Y contains an N-invariant element. Since A is non-abelian, the action
of A on Xj is two-transitive and Auta(X;) = {1}. It follows that #BY = 1.
Since N is normal in G, the set BY is a G-stable subset of B, and its unique
element is a G-isomorphism from X to Y. This proves the lemma.

These lemmas tell us that the 28 largest transitive groups of degree less than 16,
with orders ranging from 648000 to 1307674368000 = 15!, are not part of any
Gassmann triple. The biggest group on which we use the brute force method
is the 57th transitive group of degree 14, which has order 645120. The largest
radical index where we apply brute force is 95040, which is the order of the
simple group Mjs, the Mathieu group in degree 12.

In all 19 Gassmann triples of degree less than 16 we found exactly two con-
jugacy classes of subgroups inducing the same permutation character, and they
are conjugate by an outer automorphism. In other words, for these 19 triples we
have (G, X, X’) = (G, X’, X). This completes the proof of the Theorem.

The list of Gassmann triples of degree less than 24, based on the classification of
transitive groups of degree up to 23 of A. Hulpke, was presented by the second
author at a meeting in Durham in the summer of 2000. It was computed in a
similar way by improving the lemmas above. A brute force run on MAGMA 2.8
seems to get stuck in degree 16.

3 Bounds on the Class Number Quotient

In the previous section we computed the possible Galois groups associated to a
pair of non-isomorphic arithmetically equivalent fields. In this section we com-
pute a bound on the class number quotient in each of the cases we found. To do
this, we use the method explained in [6] and [1].

Let L/Q be a Galois extension with Galois group G, and suppose we have
subgroups H, H’' so that the fields K = L¥ and K’ = L¥' are arithmetically
equivalent. Then there is an injective Z[G]-linear map ¢ : Z|G/H] — Z|G/H'].
For each subgroup J of G one has an induced map ¢ : Z[J\G/H] — Z[J\G/H'].
Now let D C G be a decomposition group at infinity. In other words, choose an
embedding L C C and let D be the subgroup of order 1 or 2 of G generated by
complex conjugation. For z,y € Q we say that = divides y if y € Zz.

h(K) .. #Cok(ép)
K divides #CTWG)'

Proposition 1. The class number quotient
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One gets a bound on the left hand side by computing the smallest possible value
of the right hand side if one lets ¢ vary. There are some improvements on this
bound, which are explained in [1]. Using these improvements we get the following
table of bounds for the 19 Gassmann triples.

deg. class number bound for given 7 4G o,
0 1 2 3 4 5 6 7
O T T S S IR L0 -
8 23 - 22 22 22 — — — 32 15
] 3 - - 3 1 - = - 48] 23
R R AU S e 660 | 5.
12 27 - — — 24 - 23 - 48 26
P - - - — 32 32 - 72 38
21— - = 25 24 24 96 49
24— 23 22 — 2 — 96 57
24 - 23 23 22 22 2 — 192 | 104
B N SN B 240 | 124
B3 - - -3 == = | 5616 T
14 | 200 — - — — - 25 - 168 10
20— — — 260 25 23 336 17
26 - - - 24 - - 23 336 19
| 20 - 2% - 2t - - 2% | 56448 | 52
|20 - - - - - 26 180 | 15
20— — — - 26— 360 21
24— - - - - 28 2520 | 47
24— — 210 98 120160 | 72

We list the bounds by degree [K : Q] = #X, the number of the group in the
classification, and the number r5 of complex infinite primes of K, which is equal
to the number of orbits of length 2 of the D on X. Combining the lines for a
fixed degree we obtain a proof of Theorem 1.

In the table we combined results for the different subgroups D of G which
give rise to the same ro. So for specific D one can sometimes give a better bound
than the one given in the table. For some of the bounds we know they can only
be attained under certain strong conditions. We refer to [I], Proposition 5.2, for
details.

4 A Family of Arithmetically Equivalent Fields
of Degree 7

In order to test to what extent the bound in the previous section are sharp, we
computed class groups for particular instances. For a good supply of arithmeti-
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cally equivalent fields of degree 7 we use a family of LaMacchia [15]:

Fs4(X) = X7+ (6t +2) X6 + (8% + 4t — 3) X° + (—s — 1412 + 6t — 2) X*
+ (s 4 612 — 83 — 4t +2) X3 + (83 + 16t2) X2 + (8¢3 — 12t2) X — 8¢t3.

LaMacchia proved that over the function field Q(s,¢) this polynomial is irre-
ducible, and that its Galois group is isomorphic G = GL3(F). If we specify s
and ¢ to particular values in Q, then the resulting polynomial in Q[X] might
be reducible, and even if it is irreducible, then its Galois group is a subgroup
of G which might not be the whole of G. But Hilbert’s irreducibility theorem
guarantees that there are infinitely many pairs (a,b) € Q x Q for which the
resulting polynomial f, ; in Q[X] is irreducible with Galois group G.

Proposition 2. Let a,b € Q; if fop is irreducible in Q[X] then f_,; is also
irreducible, and the number fields of degree 7 defined by f,p» and f_,p are arith-
metically equivalent. If, moreover, fqp has full Galois group GL3(IF3) then these
fields are not isomorphic.

Let us consider the action of G on the 7 points of the projective plane over Fs.
The induced action on the 35 unordered triples of distinct points has two orbits:
the orbit of length 7 of collinear triples, and the orbit of length 28 of non-collinear
triples. The idea is that if G is the Galois group of a polynomial f over Q of
degree 7, we can compute the polynomial P of degree 35 whose roots are all sums
of three distinct roots of f. If P is a product of two irreducible polynomials P;
and Pag of degree 7 and degree 28, then the field defined by Pr is the field which
is arithmetically equivalent but not isomorphic to the field defined by f.

Let us first address the issue of computing P given f. If f is monic with
integer coefficients, then we could find approximations of the roots of f in C,
and then compute approximations of P. Since P € Z[X] we can round off the
coefficients to integers and if there is no unfortunate error blow-up then this
gives the correct P.

An alternative approach uses resultants. Let us write

7

FX) =[x - ).

i=1
For k € Q with k # 0 we put
Fi(X) = [T = ki) = K7 (X/R).

1
Denote by R the resultant with respect to the variable 7. Then we have

7
R(f(T = X), f(1)) = [](X = i = a5) = Qu(X)* - fo(X),
where

AX) =]](X - —a)).

i<j
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By computing the resultant, dividing by f2(X) and taking the square root we
can thus compute @1 (X) without working in any larger fields than Q. Similarly,
we can find an expression for our polynomial P:

R(f-(T - X),Qu) = [[[](X — e — 0 — ) = P(X)*Qa(X),

i<j k

with
Q2 = HH(X — QG — 20[]‘).
i jFi

We can find Q2 by computing one more resultant:

R(f—l(T - X)a f2(T)) = Q2(X)f3(X)-

The three resultant equations allow one to successively compute 1, @2 and P
by taking resultants, computing quotients and take a square and a cube root.

Note that the largest resultant has degree 147, but it turns out that one can
do this computation for any given f € Q[X] quite easily on a computer. We then
find the degree 7 factor P; of P by a rational polynomial factorization algorithm.

If we take f = fs+ it would be nice to obtain P; as a polynomial with
coefficients in Q(s,t), so that we do not have to go through the resultant com-
putation for each pair of rational numbers a, b. One could try to do this with the
resultant-method given above, with base-field Q(s,t) rather than Q. This sym-
bolic computation turns out not to be feasible. Instead, we compute P; for many
values of a and b in Z and then interpolate. To see how this works, let us consider
the polynomial P. The coefficients of P can be expressed in terms of the symmet-
ric functions o1,...,07 in a1, ..., a7, where f = X7 — 01 X+ 09 X% — ... + 07.
Giving each o; degree i we see that all coefficients of P have degree at most
35. It follows that the coefficients have at most degree 35 in s and t. In fact,
since s occurs only in o3 and oy4, the degree in s is at most 11. The factor P;
of P therefore also has coefficients ¢;(s,t) which are polynomials of degree at
most 11 and 35 in s and ¢. With these bounds on the degree we can now find
these polynomials by interpolating. For fixed ty we need at least 12 values of s
to determine the polynomial ¢;(to,s), and if we do this for at least 36 values of
to then we know ¢; (¢, s) by interpolation. We thus computed that P; is equal to
the polynomial

gsp = X7 4 (—18t + 6)X6 + (124t2 — 64t + 6)X° + (—408t> 4 208> — 4t — 16)X*
+(6(t —1)s + 640t* — 156t — 116t> 4 84t — 27)X*
+((— 36t + 36t — 12)s - 384t° — 152" 4 120t° + 88> — 34t — 6) X~
+(—s*+ (48t — 20t — 2t — 2)s — 64> — 841" + 52t° — 8t° — 12t) X
+ (—8t% — 4t®)s + 384t° 4 80t° — 88t* — 24¢°>.

To finish the proof of the proposition one notices that f_,.(X) divides the
polynomial X7gs¢((X — 1)(1 + 2¢t/X)), which means that the field defined by
gs,¢ is contained in the field defined by f_; ;. Thus, the polynomials fs: and f_;;
give the Galois configuration of the desired Gassmann triple (G, X, X’) over the
field Q(s, t).
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If we specify s and ¢ to rational numbers a,b, and f,;, € Q[X] is irreducible,
then the Galois group of f, is a subgroup Go of G which is transitive on X.
Then Gy contains an element of order 7, so it is also transitive on X', so f_, is
also irreducible. Since X is linearly equivalent to X’ over Gy, the two fields are
arithmetically equivalent. Since there is only one Gassmann triple for degree 7
the two fields are isomorphic if and only if Gy # G.

5 Class Number Computations

In this section we prove Theorem 2.

The first three lines in the table of Theorem 1 show that for arithmetically
equivalent fields K and K’ of degree at most 10 that are not totally real, the
class number quotient h(K)/h(K") or its reciprocal lies in {1, 2, 3,4}. It remains
to exhibit examples to prove that all possibilities occur. In [5] examples are given
of arithmetically equivalent fields K, K’ of degree 8 with h(K)/h(K') = 3.

We use the family of polynomials fs; and f_s: from the previous section
to generate examples for the remaining cases. Using MAGMA we selected the
subset of 1091 pairs of integers (a,b) with 0 < a, |b] < 100, for which the field
discriminant of the number field generated by f, , has less than 25 decimal digits.
In 276 of these cases the fields are totally real and in all other cases there are 2
pairs of complex embeddings.

We have used h and &' to denote the class numbers of the number fields
generated by the polynomials f,; and f_,;. The table below summarizes the
class number quotients found.

!
mh/h Ve s lan |y
607 | 104 | 98 | 2 | 4 |85
0 20| 38|25 | 2 | 1 | 276

The last row, representing the 276 totally real fields found, is given here for
comparison, and to show that no factor 8 was found in the class number quo-
tients.

The table below lists, of the 815 pairs that are not totally real, those with
class number quotients 4 and 1/4, and the smallest (in terms of discriminant)
with class number quotients 1, 2 and 1/2.

Class groups (and unit groups) in MAGMA are computed by a method that
generates relations between prime ideals of bounded norm. This is guaranteed to
give the correct class number if all primes up to the Minkowski bound are taken
into consideration. For fields of small discriminant, including the first example
with class number quotient 4 listed in the table, the method can be used to
certify the class number. It took around 7 minutes of CPU time to find the class
number pair for (62, —1) with MAGMA this way.
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(a,b) D factorization of D h/R

(8,1) 232745536 | 2°.1907° 1/1
(7,-1) 24497571289 | 2812 - 5572 1/2

(5,1) 31811219449 | 592 - 30232 2/1
(62, 1) 3770079362544784 | 2* . 153502432 4/1
(22, —6) 2429680593739514347584 | 26.3%.11*.71%.101%-263% | 1/4
(83,4) 3174516214584075350089 | 563428452832 6/24
(81,—6) 10630565571038999396281 | 19% - 5577 - 16972 - 57412 8/2
(53, —6) 10726579028522017397529 | 3* - 132 - 14532 . 6092272 8/2
(2,—6) | 155678051656088618455296 | 2% .3°.37%.24684721° 4/1

For large discriminants this computation is no longer feasible. In that case the
Minkowski bound can be replaced by the (usually much smaller) Bach bound, at
the cost of correctness only being guaranteed under assumption of the generalized
Riemann hypothesis. This was used to compute the other class number pairs,
each taking less than a minute.

Alternatively, some local computations with independent units together with

bounds on the regulator may provide fairly fast provably correct results; cf. [§].
For this MAGMA has a built in function pFundamentalUnits, which we also used
to verify the above class number quotients.
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Abstract. We give a survey of known results on the asymptotic and
exact enumeration of discriminants of number fields, both in the absolute
and relative case. We give no proofs, and refer instead to the bibliography.

1 General Conjectures and Results

Let Q be a fixed algebraic closure of Q, let X C Q be a fixed number field, which
we take as our base field, and let G be a transitive permutation group on n letters.
We consider the set F,,(G) of all extensions L/K of degree n with L C Q such
that the Galois group of the Galois closure L of L/K viewed as a permutation
group on the set of embeddings of L into L is permutation isomorphic to G
(warning: this is equal to n/m(G) times the number of extensions up to K-
isomorphism, where m(G) is the number of K-automorphisms of L). We write

Ngn(G, X) = {L € Fu(G), IMO(L/K))| < X},

where 0(L/K) denotes the relative ideal discriminant and A the absolute norm.
The aim of this paper is to give a survey of results and conjectures on asymptotic
and exact values of this quantity, without proof. It is usually easy to generalize
the results to the case where the behavior of a finite number of places of K in the
extension L/K is specified. In particular, if K = Q we will give the results and
conjectures when the signature (R, R2) of L is specified, with Ry + 2Ry = n.
In this case, we will write Ng, r,(G,X) for the number of L as above with
signature (Ry, Rs).

It is also sometimes possible to give additional main terms and rather good
error terms instead of asymptotic formulas, and we will do this in some cases,
but not systematically.

General conjectures on the subject have been made by several authors. In
view of the available data and theorems, it seems reasonable to formulate the
following precise statements (see for example [6] and [29]).

Conjecture 1. (1) For each number field K and transitive group G on n letters as
above, there exist three strictly positive constants ax (G), bx (G) and cx (G)
such that

Ni (G, X) ~ cx(G) XD (log X)Pr (=1,

C. Fieker and D.R. Kohel (Eds.): ANTS 2002, LNCS 2369, pp. 80-04] 2002.
© Springer-Verlag Berlin Heidelberg 2002
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(2) Furthermore, the constant ax(G) should not depend on K (hence will be
denoted by a(G)) and should be a rational number satisfying 0 < a(G) < 1,
and bi (G) should be an integer greater or equal to 1, equal to 1 if a(G) = 1.

(3) If G is a primitive transitive group, we should have a(G) < 1 except when
G ~ S,,, in which case we should have a(S,) = 1.

(4) On the contrary, if n is composite (so that there exist imprimitive groups G),
there exists at least one imprimitive transitive group G such that a(G) = 1.

(5) The total number of extensions L/K in Q of degree n and norm of relative
discriminant bounded by X should be asymptotic to cx X for some positive
constant cg.

An even more precise version of this conjecture concerning the value of a(G)
has been made by G. Malle [29] as follows.

Definition 1. For any element g € S, different from the identity, define the
index ind(g) of g by the formula

ind(g) = n — |orbits of ¢| .
We define the index i(G) of a transitive subgroup G of S, by the formula

(D min indle).
i(G) jein i (9)

Examples:

(1) The index of a transposition is equal to 1, and this is the lowest possible
index for a nonidentity element. It follows that i(S,) = 1.

(2) If G is an Abelian group, and if ¢ is the smallest prime divisor of |G|, then
it is easy to show that i(G) = |G|(1 — 1/¢).

Congecture 2. (Malle)

(1) Strong form: for any transitive subgroup G of S, we have a(G) = 1/i(G) in
Conjecture [

(2) Weak form: for any transitive subgroup G of S,,, we have for all € > 0 and
sufficiently large X

ek (G) - X9 < Nk (G, X) < XlG)te
for some strictly positive constant cx (G), with a(G) = 1/i(G).

It can be shown that the statements (2), (3), and (4) about a(G) in Conjec-
ture [l follow from (the strong form of) Malle’s conjecture.
The following results give support to the conjecture (see [5], [14], [26], [34],

[36]).

Theorem 1. (1) (Wright). The strong form of Malle’s conjecture is true for all
Abelian groups G.
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(2) (Cohen—Diaz—Olivier). The strong form of Malle’s conjecture is true for G =
Dy.

(3) (Yukie, Bhargava) The weak form of Malle’s conjecture is true for G = Sy,
and the strong form is true for K = Q.

(4) (Klimers—Malle). The weak form of Malle’s conjecture is true for all nilpotent
groups.

In addition, Malle gives partial results towards the statement that his con-
jecture is compatible with direct products and with wreath products.

In a preprint in preparation, Malle also gives a conjecture for the value of the
exponent of the logarithm b (G). For instance, in the Abelian case, the paper
of Wright mentioned above proves the following theorem:

Theorem 2. (Wright). Let G be an Abelian group, and let £ be the smallest
prime divisor of |G| (so that a(G) = (|G|(1 — 1/£))~1). Denote by By(G) the
number of elements of G of order £, which will be of the form ¢ — 1 for some
positive k. Then we have

B(G)
[K(Ce): K]’

where as usual {; denotes a primitive £-th root of unity.

br (G) =

The paper of Wright also claims an explicit formula for the constant cx (G),
but although it is a finite expression in terms of adelic integrals, as far as the
authors are aware, it has not been computed explicitly by this method apart
from the case where G is of order 2. We have computed it using Kummer theory
in many other cases (see [10], [16], [19], [20]).

In the case K = Q and Abelian groups G, after many papers mostly from
authors from the former Soviet union (see the references given in [27] and [2§]),
Maki has given the constant c¢g(G) explicitly for all Abelian groups G (see [27],
28)).

Finally, concerning statement (4) of the general conjecture, Malle proves the
following theorem:

Theorem 3. If n is a composite number divisible by either 2 or 3, there ex-
ists an imprimitive transitive subgroup G of Sy such that a(G) = 1, for which
N o(G,X) > cX for some strictly positive constant c.

He of course conjectures that this remains true for any composite n, not only
those divisible by 2 or 3. In particular, if Conjecture [l is true, this shows that,
for composite n, the proportion of S,,-extensions among all extensions of degree
n is strictly less than 1. Thanks to some of the abovementioned results, this is
now a theorem for n = 4 (at least over K = Q, but certainly also over general
K).

This is in complete opposition with the situation for polynomials, where
Hilbert’s irreducibility theorem shows that “almost all” polynomials of degree n
have Galois group S,,.
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A final remark concerning Conjecture [[l In view of the methods which are
in use to prove the known results, its validity seems very plausible for solvable
groups G (for instance because of the use of class field theory and Kummer
theory), and it seems not to be out of reach. Because of the methods used by
Bhargava (higher composition laws linked to certain root systems) and Yukie
(prehomogeneous vector spaces), it is also plausible for n = 5, i.e., for G = A5 or
G = S5. On the other hand, for general nonsolvable groups G, it is not impossible
that there do not exist such precise asymptotic formulas, but only the weak form
of Malle’s conjecture.

In addition to asymptotic formulas, we give ezact results on Ng, gr,(G,X)
for quite large values of X (see [I8] for much more complete tables). These have
been obtained by a variety of methods (see [2], [7], [8], [12], [I4]). The value of
X that we choose as upper limit of our computations corresponds to the use of
approximately 1 month of CPU time on a 1 Ghz Pentium III workstation with
1 GB of main memory. It should be emphasized that all of the exact counting
methods are algorithmic, and that if the number of fields is reasonable, we can
just as easily construct tables of extensions (see for example [11], [I5]).

Notations. We denote by m = [K : Q] the absolute degree of the base
field K, and by (r1,72) the signature of K, so that r; + 2ro = m. The letter p
will always denote a prime ideal of K, and the letter p a prime number. The
notation e(p) stands for the absolute ramification index of p above the prime
number below p. As usual, (x(s) denotes the Dedekind zeta function of the
number field K, and by a convenient abuse of notation, we will denote by (x (1)
the residue of (x(s) at s = 1, given by the well-known formula

hE)R(K)
w(K)y/d(K)]

with the usual notations of algebraic number theory.

k(1) =27 (2m)"

2 Results in Small Degrees

21 G=0C,
Ni2(C2, X) ~ cx(Cy) X with
1 k(1)
CK(CZ) = 272(7(2) .

This very simple result deserves to be better known, and its proof is easy,
although not completely trivial. It is due to Datskovsky and Wright [23], using
Shintani’s theory of zeta functions of prehomogeneous vector spaces (see [31],
[32], [35]), and a much simpler proof is given by the authors in [16] using Kummer
theory. Of course, in particular

1 6

cq(Cs) = @ =3 = 0.607927101854026628663276779 . . .
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We have in fact the more precise result
NK’2(OQ, X) = CK(OQ) X + O(Xa)

for some explicit & < 1 depending on m = [K : Q], and in particular a = 1/2
for K = Q, and even a < 1/2 under the GRH (see for example [33]).

co(C
Ny o(Cy, X) ~ No1(Ca, X) ~ Q X.
Ng,2(C2,10%°) = 6079271018540266286517795

Ny,o(Ca,10%°) = 3039635509270133143448215
No.1(Ca,10%°) = 3039635509270133143069580 .

22 G=0Cs

cx(C3) X 2log X  ifGeEK

Nic5(Cs, X) ~
x3(Cs, X) {CK(Cg)X1/2 if (3 ¢ K .

Here, if (5 € K we have

ex(Ch) = 7 ;m Cre(1)? 1;[ (1 + /\ip) (1 - A}p)Z .

On the other hand, if (5 ¢ K, we set K, = K((3) = K(v/—3), and we have

_ 1 k. (1) 3 2
CK(C3) - 2. 3r1+r2—1 CK(2) KH (1 NP(NP + 1))
(%)=
1 1 2 2
11 (1 S Np<e<n>+1>/2> 11 (1 TN NpE(P)/2> :

() (%)

p[3

In the above, (];Z) = —1,0 or 1 means that p is inert, ramified or split in

the quadratic extension K,/K. Note that only the first product is an infinite

product, and that in the second product the condition (I;Z) = 0 implies that

p | 3 (it is in fact equivalent to e(p) being odd).
In particular,

11v3 2
cq(Cs) = H <1 - )
36w p=1 (mod 6) p(p T 1)
= 0.15852825839614206028350782 . . .
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As with all the other constants that we will give for Abelian extensions of Q,
this numerical value has been computed using well-known methods which are
however difficult to find in the literature (see for example [9]).

Evidently Ng’()(c;g, X) = NQ’;;(Cg,X) and Nl’l(c‘g, X) =0.

The general result is due to the authors [16], and the result for K = Q is due
to H. Cohn [22].

No.3(C3,10%7) = N3 o(C3,10%7) = 501310370031289126 .

2.3 G =853
NK’g(Sg,X) ~ CK(S:),) X with
(2T LY ) 2 e (1)
)= (5) (5) aim = rram
In particular
1
cq(S3) = @ = 0.83190737258070746868312628 . . .
N3.o(S3, X) ~ CQELSS') X
3cq(S
Ni1(S3,X) ~ yx .

These results over Q are the beautiful and difficult results of Davenport and
Heilbronn [24], [25], but the result over a general number field is much deeper
and is due to Datskovsky and Wright [23].

For K = Q, Belabas in [3] proves that the error term in the asymptotic for-
mula is at most O(X exp(—c(log X loglog X)/2)) for any ¢ < 1/24. However,
considering the available numerical and heuristic evidence, it seems quite plau-
sible (Yukie (personal communication) and Roberts [30]) that for K = Q there
is an additional main term, and that we have the much stronger conjecture

Ng,3(S5,X) = cq(S5) X + cip(S5) X*/€ + o(X?/0) ,
with

4(V3+1)¢(1/3)

= —1.21045090999184039590092077 . ... ,
5I'(2/3)% ((5/3)

CIQ (S3) =
and that

colS cp(Ss)
N3,0(53,X) = QE; ) X+ \/Qg_'_ 1

3cq(S V3 (S
N1’1(537X) _ CQ( 3) X+ \/3@—’(_ 13)

X5/ 4 o(XP/0)

X5/6 4 o(X5/6) .



86 Henri Cohen, Francisco Diaz y Diaz, and Michel Olivier

Using algorithmic methods based on the Heilbronn—Davenport theory, Be-
labas in [2] can for example compute exactly
Ng.3(Ss,10M) = 81414013239
N3,0(S3, 10') = 20147321619
Ny.1(S3,10M) = 61266691620 .

It should be possible to push these computations up to 102 and perhaps
1014,

24 G = C4
To state the result, we need some definitions.
Definition 2. Let ¢ | 2Zk.

(1) We denote by Z9 (resp., Q2(K)) the group of fractional ideals a of K (resp.,
of elements of K*) which are norms from K(i) to K of an ideal (resp., of

an element).
(2) We set

{a €79 (a,c)=1}

=18 =1 FeQuK), B=1 (mod -]}

o —

and we denote by G4(c2) the group of characters of G9(c?).

Finally, for any ideal ¢ | 2Zk we denote by h(c) the number of prime ideals
dividing 2Z /¢ which are either unramified in K (i)/K, or which divide ¢ and
are ramified in K (7)/K. Recall that m = [K : Q]. We then have the following
results (see [19]):

]\/}(14(6'47 X) ~ CK(C4) X1/2 with

Cr(1) [ 1 1

cx(Cy) = @) |2 [2%: "IN P()S() = gy |
where
P(c) = 1— —— P 7
& [Ipjo/c (1 +1/Np) p|<£[/c> ( Np3> p};[@/c ( Np?(1+ 1/Np))
and
(p) 2x(p)
S(c) = II (1 + X ) II (1 + .
XEG;(?) pl2, pfc Np3/2 Np=1 (mod 4) Np3/2(1 + 1/Np)
. ol

In the above, wi(a) denotes the number of distinct prime ideal divisors of a,
and G denotes the group of characters of G.
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For K = Q, we have the more precise result

Ng,4(Cy, X) = cq(Cy) X2 + g (Cy) XM + o( X3

with

3 V2 2
co(Cy) = = (< +) 11 (1+3212> _1>
7T 24 p=1 (mod 4) p / +p /
= 0.1220526732513967609226080529 . . .
—3.21/3 44.22/3¢(2 2 1-1
o (Cy) = L8210 4220 ((2)3) H - /p
(4/) _ p+p/3)\1+1/p

207
(mod 4)

=-0.1 156751993942787883018548368 ..

The value of cg(Cl4) is due in principle to A. Baily [T], with computational errors

C
N470(C4,X) — @X1/2 ( 4) Xl/d +0(X1/3)
No1(Cy, X) =0
co(C (04)
No2(C4, X) = 7(}(2 ) X2 4 — X3 4 o(X1/3)

Ng.4(Cy,10%?) = 1220521363354404
Nio(Cy,10%%) = 610260681684841
No2(Cy, 10%%) = 610260681669563 .

25 G=V,=0C3 x Cs
Nga(Va, X) ~ exe(Va) X% log? X with

et = gL (1) (1 )

42 1 (1=1/Np*)e(p) + (1+1/Np)?
I 1+Mg +Np2 +Np3 Npe (1
3
p|2Z Kk 1+ J\Tp

Note that the local factor at 2 given in the preprint [13] is incorrect.
We have in fact the more precise result

Nia(Vi, X) = (cx (Vi) log® X + ¢ (Va) log X + (Vi) X172 + o(X1/2)

where ¢ (Vy) and ¢ (V) are explicit constants which are too complicated to be

given here.
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In particular,

= 5 T((+5)0-5))

= 0.00275243022275548139663831184 . . .

1 9log2 log p
do(Va) =12cq(Va) [v— 5 + +4) (

3 23 = (=D +3)
= 0.05137957621042353770883347445 . ..
vy = W 3
deg(Vy) w2
1 v 340 p(p+1)log®p
2UcoVa) | = —m — L = 2 jog20 4§ LT )08 D
+ 24cq(Va) 6 "M 9 529 1;5 (p—1)2(p + 3)2

= —0.2148583422482281175118362061 . . .

/"(V4) _ CQ(VZL) 3 =+ T H (1+3/p)(1—1/p)

2 2
8 p=1 (mod 4) (1 + 1/p)

= —0.4438647800546969108664219885 . . . ,

where v is Euler’s constant,

. " logk log’n
%J%(Z i

k=1

and c(j(Vy) will be used below. The value of cg(Cy) is due in principle to A. Baily
[, Wlth computational errors.

co(Vi co(Va) cg(Va)
N4’0(V47X):( ‘@i Diog? X “ L )

log X + X2 4 o(X1/?)

No1(Vy, X)=0

No (Ve X) = (Beo(Vi)los? X + S (Vo tog X + (e (va) — LYY x172
02(Vy, X) = ZCQ( 1) log +1‘3Q( 1) log X + ( co(Va) — 1

+o(X1?) .

No.a(Vi, 10%0) = 22956815681347605884
Nuo(Vy, 10%%) = 5681952310883424255
No.2(Vy, 103%) = 17274863370464181629 .
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26 G =D,
NK74(D47X) ~ CK(D4)X with
S e
o, NOR/E)) G(2)
kCQ

In particular,

6 2772(D) [,(1)

2 2
s ) D LD(2

co(Dy) = = 0.1046520224 . ..

~—

where the sum runs over all (positive or negative) discriminants of quadratic
fields, 72(D) = r5(Q(v/D)), and Lp(s) is the Dirichlet L-series attached to the
character (%) Note that we do not know how to compute this sum in any other
way than the naive method combined with extrapolation techniques, hence we
know only about 9 or 10 decimals. These results are due to the authors [14].

Denote by ¢*(D,) the sum analogous to cg(Dy4) but where the discriminants
D are taken only with the given sign + or —. For all £ > 0 we have

+(D
Nyo(Dy, X) = % X +O(Xx3/4Fe)

(D
Noi(Dy, X) = 22 (2 1) x 4 O(X3/4+9)

ct(Dy)
4

N0,2(D4,X) = ( +c‘(D4)) X+O(X3/4+s) :

and
c+(D4) =0.03942275154 ..., ¢ (D4) = 0.06522927087...

In the asymptotic formula for Ny 2(Dy, X), the term (¢t (Dy)/4) X (respectively,
¢~ (D4) X) counts the number N(fg (D4, X) (resp., Ny (D4, X)) of Dys-extensions
having a real (resp., imaginary) quadratic subfield.

Using genus theory and more general character manipulation in a suitable
way, one can compute (see [8], [14])

Ng.a(Dy, 10'7) = 10465196820067560
Ny (D4, 10'7) = 985567460375496
Ny.1(Dy, 10'7) = 1971137479589546
No,2(Dy, 10'7) = 7508491880102518
Nif5(D4,10'7) = 985567476224554
Njo(Dy, 10'7) = 6522924403877964 .

)
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2.7 G = A4

Set by =2 if (3 € K, and bx =1 if (3 ¢ K. A heuristic reasoning given in [21]
leads to the conjecture

Ni.a(Ag, X) ~ e (Ag) X2 logh™ X,

where ¢k (A4) is a complicated but explicit constant. For example we should
have in particular

. h(K3)R(K3)ca(K3)e, (K.
colda) = I S By iog2 ; - (f?ﬁgg 1l pcy
N<f(K3)<2N

=0.074...,

with

2 )
p split in K3 1+1/p+1/p

where K3 ranges over all cyclic cubic extensions of Q up to isomorphism (which
can easily be described explicitly), f(K3), h(K3), R(K3) denote the conductor,
class number and regulator of K,

(k) = [ !

1+ 1/p+1/p?
ol LT I/PE /P

and co(K3) = 11/4 if 2 is inert in K3, while c2(K3) = 23/10 if 2 is totally split
in Kg. Note that CKs(l) = 4h(K3)R(K3)/f(K3)

We would like to point out that contrary to what was stated in [12] and
[13], we have not yet succeeded in proving that the above conjectural formula is
valid. In addition, the constants c¢o(K3) given in those papers are off by a factor
2, although the given numerical value for cg(A4) is correct.

Conjecturally, we have similarly

N4,0(A4, X) ~ 04’0(A4) X1/2 10g X
N072(A4, X) ~ 8072(144) X1/2 IOg X
for other explicit constants c4,0(A4) = 0.020... and ¢p2(A4) =0.054....
This method is not only heuristic, since it leads to the exact (and rigorous)
computation of
Ng.a(Ag,10%) = 218369252
Nuio(Ayg,10"3) = 1417208
No,a(Ay, 10'%) = 3861216 .

We have computed the result with signatures only up to 10'® because it is
considerably harder.
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28 G=85,;

At the time of this writing, the conjecture

NK’4(S4, X) ~ CK(S4) X
with

5\ /1\"™ 1 1 1
CK4(S4)_2<12> <24> 1;[<1+Np2_Np3_Np4)’

is very close to being proved. More precisely, in [36], using Shintani’s theory of
prehomogeneous vector spaces, Yukie proves that Ny 4(Ss, X) = O(X log® X),
and that the above precise conjecture is true assuming some very reasonable
convergence arguments. Very possibly his proof will be completed soon. Using
quite elementary although very subtle arguments, in [4] and [5], Bhargava proves
the above conjecture for K = Q, and also with signatures.

Thus, if we set

1 1 1
z(S4) = H <1 + PO p) = 1.216690286906330933769439087 .

p

then cg(Sy) = (5/6)2z(S4) and

1
Nyo(S4, X) ~ EZ(S4)
1
N3 1(84,X) ~ 52(54)
1
NO’Q(SLL,X) ~ 12’(54) .

Using our Kummer-theoretic methods, we compute that

Ng.4(S4,107) = 6541232
Nio(Ss4,107) = 482488
N2.1(S4,107) = 3958348
No,2(S4,107) = 2100396

However Bhargava’s method gives us a much more efficient way to compute
these quantities exactly, so these results will certainly be superseded in the near
future.

3 More General Results

As already mentioned in Section [I], it is quite plausible that one can obtain
general results for all solvable groups, and perhaps also for the groups As and
Ss. In addition to the results and conjectures given in Section[ll, the only results
known to the authors are the following.
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3.1 G = C,; with £ Prime

The result is due to the authors (see [10], [16], [17]). Before stating it, we need
some notations. Let K, = K({;), d, = [K, : K|, and ¢, = ({ — 1)/d,. For every
divisor d of d,, we let K,[d] be the unique subextension of K,/K such that
[K, : K,[d]] = d or, equivalently, [K,[d] : K] = d./d. If p is a prime ideal of
K, we denote by e(pa/p), f(pa/p), and g(ps/p) the ramification index, residual
degree, and number, of prime ideals py of K,[d] above p, so that, in particular,
e(pa/p)f(pa/p)g(pa/p) = d./d. For any integer e, we denote by r(e) the unique
integer such that e = r(e) (mod ¢ — 1) with 1 < r(e) < ¢ — 1. Finally, denote by
R (resp. D) the set of prime ideals of K which are ramified (resp. totally split)
in K,/K (D being the set of all prime ideals of K when (, € K). Then

Nio(Co, X) ~ e (Cp) XD Togh 71 X

with cx (Cp) = c1cac3¢4 and

9z
(Maa. Sreoia (@)
(= 1) (go — 1)1

¢ —1 1 (L=1)p(d)/d
oy = 1+ ——— 1— —— ,
=1 ( Np ) dll;[ < di)

c1 =

peD
H H ( g(pa/p)p(d)
L)
YT Npdf(pa/p)
£—1 L—1—r(e(p)(1—1/Np)
=] (1 TN Fep) /(1] ’
ple, p€D A Apl!

where r, = 0 if {, € K, while r, = r; — 1 otherwise.
In particular, for £ > 2 we have Ng ¢(C¢, X) ~ cg.e(Co) XY= with

62 n é 1 1 u(d)
ca(Co) = = 11 Cecom@)*@ I (1-4
ee-1 b air v

/-1 1 (£=1)p(d)/d
(057 I (-5)
p dle—1 p

p=1 (mod ¢)

3.2 Nilpotent Groups

The best known result is due to Kliiners—Malle [26]. They prove that the weak
form of Malle’s Conjecture[? is true for a nilpotent group G in its regular repre-
sentation, in other words that for all € > 0 and sufficiently large X, we have

cx(G) - X9 < Ng (G, X) < xal@+e
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for some strictly positive constant cx(G), where a(G) is the exponent given by
Malle’s Conjecture 2l They also prove that the same is true for more general
groups, such as for example the wreath product of a nilpotent group with the
cyclic group of order 2.
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Abstract. The classical Mersenne problem has been a stimulating chal-
lenge to number theorists and computer scientists for many years. Af-
ter briefly reviewing some of the natural settings in which this problem
appears as a special case, we introduce an analogue of the Mersenne
problem in higher rank, in both a classical and an elliptic setting. Nu-
merical evidence is presented for both cases, and some of the difficulties
involved in developing even a heuristic understanding of the problem are
discussed.

1 Introduction

The Mersenne problem asks if M,, = 2" — 1 is prime for infinitely many values
of n. Three and a half centuries after Mersenne’s death this problem remains
inaccessible. In addition to their position in number theory, Mersenne primes
have arisen in diverse areas of mathematics, including group theory [L1], ergodic
theory [26] and string theory [12]. Their properties have also led some fine minds
astray [2]. Wagstaff [25] modified some considerations by Gillies [13] to produce
a heuristic argument of the following shape about the distribution of Mersenne
primes: If various congruences satisfied by the Mersenne numbers behave like
independent probabilistic events, then the number of Mersenne primes less than
X should be about

5
£ loglog X = (2.5695...)loglog X.
log 2

Moreover, if ny, ..., n, are the primes for which M, is prime, then the argument

predicts that
log log M, . log 2 .

J ev

(1)

There is little hope that this heuristic argument could ever be tightened up to
become a proof, but it is certainly suggestive. For example, plotting loglog M,,,
against j gives an extremely close agreement with the prediction — though it is
hard to attach statistical significance to a finite sample of an infinite problem.
The 39 known Mersenne primes behave very much in accordance with (I) —
see the Prime Pages [3] for the details. The reason so few Mersenne primes
are known is that the rapid growth rate in the sequence (2" — 1) means that

C. Fieker and D.R. Kohel (Eds.): ANTS 2002, LNCS 2369, pp. 95-[[07] 2002.
© Springer-Verlag Berlin Heidelberg 2002
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huge numbers must be tested for primality, and although the special shape of
Mersenne numbers permits very rapid prime testing, even finding the first 39
has taken thousands of computers many years, running a distributed program.

2 Other Settings of the Mersenne Problem

One approach to the Mersenne problem is to try to see it in different contexts;
several of these will be described below. A remarkable feature of the second and
third of these is that for some special cases it is possible to prove the appearance
of infinitely many primes. Our purpose here is to expand on the fourth and fifth
of these, and to describe heuristic and computational evidence for the expected
behaviour. There are sharp generalisations or modifications of the Mersenne
problem to other specific questions (for example, see [I], [19]); we are primarily
interested in naturally arising families of problems which may shed some light
on the Mersenne problem.

2.1 Lehmer—Pierce Sequences

Fix a monic polynomial f(z) = 2%+aq_129 " +.. .+ag € Z[z], with factorization
over C

fl@)=(x—a1)...(z — ag). (2)

Following Pierce and Lehmer, associate a sequence of integers to f by defining
d

An(f):H|a?71| for n > 1. (3)

i=1
For the polynomial f(z) = x — 2 these are the Mersenne numbers. In any case,
the resulting sequence is again a divisibility sequence, and an analogue of the
heuristic arguments of Wagstaff may be applied to it (once generic divisibility is
taken care of: A, (f) is always divisible by A;(f); if f is a reciprocal polynomial
then A, (f)/A1(f) is always a square when n is odd). The rate of growth of
the sequence is determined by the Mahler measure of the polynomial f, and by
choosing polynomials with small Mahler measure the growth rate of A, (f) can
be reduced dramatically. Lehmer [16] studied these sequences with the view of
using them to produce large primes in novel ways. Recently, his approach was
revisited using modern computing methods, together with the heuristic argument
of Wagstaff. The upshot of this work is described in [6], where sequences have
been found with many hundreds of primes, and a reasonable agreement with the
heuristic model is found.

2.2 Primes from Dynamical Systems

The Lehmer—Pierce sequences all arise from algebraic dynamical systems in the
following sense. Call a sequence (uy)n>1 algebraically realisable if there is a
compact group endomorphism 7' : X — X with the property that

up = |Perp,(T)] = {zx € X | T"(x) = x}|.
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Such a sequence must be a divisibility sequence in addition to being realisable
(a general combinatorial notion expressing the property of being the periodic
points for some map — see [20] for the details). The converse is not true, and
only a partial characterization of algebraically realisable sequences is known.

Any divisibility sequence must satisfy uq|u,, for all n, but it seems reasonable
to ask whether the quotient might be prime infinitely often. The Lehmer—Pierce
sequences are a natural family of algebraically realizable sequences that are con-
jectured to be prime infinitely often (once this kind of generic divisibility is
taken account of). It turns out that many other natural families of group au-
tomorphisms have a similar property: Example [[] shows that the even Bernoulli
denominators have this property. Studying primality from this point of view
gives a conjectural explanation for the infinitude of both Mersenne and Sophie-
German primes within the same context. Example Bl gives some hope that such
sequences might indeed be prime infinitely often.

Example 1. Let B, be defined by

oo

t
et —1 :ZBnt”/n!
n

=0

Then the sequence b,, = denominator(Bs,) is algebraically realisable.

To see this, define X,, = F, = Z/pZ. For p = 2 define T}, to be the identity.
For p > 2, let g, denote an element of (multiplicative) order (p — 1)/2. Define
T, : X, — X, to be the endomorphism T,,(z) = gpx mod p. Plainly |Per, (T})| =
p if and only if p — 1|2n; for all other n, |Per, (T,)| = 1. The Clausen—von Staudt
Theorem ([14], [15]) states that

BQn"’Z%EZa

where the sum ranges over the primes p for which p — 1|2n. Thus |Per, (7,)| =
max{1, |Bay|,}. Now define

X =][%pand T =]]7,
p p

This shows the algebraic realisability of the Bernoulli denominators.

Notice that a prime value of b, /by can only occur if n is a Sophie-Germain
prime. There are believed to be infinitely many Sophie-Germain primes but no
proof is available — see [21].

The next example is a group endomorphism with a very similar shape to
that of Example [T, but constructed so as to be certain that the periodic point
sequence will be prime infinitely often. This example was inspired by a remark
of Gerry McLaren.

Ezample 2. There is a group endomorphism 7' : X — X such that |Per, (T)]
takes on infinitely many distinct prime values. To see this, construct a set S
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of prime numbers recursively as follows. Firstly, 2 € S and a prime p € § if
and only if p — 1 is divisible by a prime ¢ = ¢, which does not divide p’ — 1
for all p’ € S with p’ < p. Clearly S is infinite — otherwise all sufficiently large
primes could be written as 1+p{* ... pS" for some fixed set of primes {p1,...,pr},
where ey, ..., e, lie in N. The number of such primes less than or equal to X is
O((log X)"), which contradicts the Prime Number Theorem.

For each prime p € 9, let h;, denote an element of multiplicative order ¢ = g,
in X, = F,, and define an endomorphism T, : X, = X, by T,(z) = hpx. Then
define an endomorphism 7" on X by

X=[[x,and T =[] 7T,

peES peS

Clearly |Pery, (T')| = p for all p, showing that the sequence (|Per,(T)|) takes on
infinitely many distinct prime values.

2.3 Mersenne Problem in A-Fields

Let k be an A-field (that is, an algebraic number field or a finite extension of
a rational function field [F,(¢) of positive characteristic) with set of places P(k)
(see [28] for a discussion of places). Fix £ € k\{0}, not a unit root. Then the
generalized Mersenne problem asks if there is a constant B(€) with the property
that the set
Py = {v e P(k) | [€" — 1], # 1}

has no more than B(&) elements for infinitely many n. For £k = Q and £ = 2,
this is a weak form of the classical Mersenne problem (in that it only asks for
infinitely many numbers 2" — 1 to have a uniformly bounded number of prime
factors). This problem has arisen in ergodic theory [26], [27] and has the following
remarkable feature: There are many cases for which it is certainly true, though
the proofs are not trivial. Specifically, a consequence of Heath—-Brown’s work on
the Artin conjecture is that |P,| = 2 infinitely often for many of the positive
characteristic cases (see [27] for the details).

3 A Higher-Rank Mersenne Problem

The dynamical systems alluded to above have very natural higher-rank ana-
logues, namely the Z?-actions generated by d commuting automorphisms of a
compact abelian group X (see [I8], [22] for a discussion of these dynamical sys-
tems). For these the periodic point behaviour is very complicated (some of these
problems are described in [I7] in a different context), and we simply extract one
simple question from the simplest example available. Does the set

{3m™2" — 1| m,n >0}

contain infinitely many primes? Can anything be said — even heuristically —
about the quantity

N7 (X)=|{(m,n) | 3™2" — 1 is prime and m,n < X }|? (4)



A Higher-Rank Mersenne Problem 99

This problem will be discussed in this section, along with the same question for
the quantity N*(X) associated to 3™2" + 1, which is quite different in that it
certainly does not come from a pair of commuting group automorphisms.

3.1 Heuristics

The heuristic argument below takes the form of a family of successive refinements
of the same basic idea. Let N~ (X) be defined by (). In the discussion below,
we will essentially ignore the cases n = 0 (for which 3™2" — 1 is always even)
and m = 0 (the Mersenne case) since they together contribute so few primes.
The discussion leads to a prediction that

N_T(X)%C_asX%oo, (5)

where C'~ is a constant. The section ends with a graph to illustrate the accuracy
of the prediction. We will also exhibit a graph for primes of the form 3™2™ + 1.

The Prime Number Theorem implies that the probability a large random
integer K is prime is approximately @' This suggests that N~ (X) is approx-
imately

M) = Y (6)

t<mmex ™ log2 + mlog 3

which is given asymptotically by the double integral

X X 1
— dxd
/1 /1 zlog2 + ylog3 ey

N (X)=DX + O(log X),

SO

where

D_ log 6loglog 6 — log 2loglog 2 — log 3loglog3

1.57....
log 2log 3

3.2 Obvious Congruences

For m,n > 1, 3™2" — 1 is coprime with 6. The usual Euler factor correction

suggests that we should therefore increase our estimate for N~ (X) by a factor

of 2721 . 3—31 = 3. This gives a refined heuristic: Having taken account of the Prime

Number Theorem and the primes 2 and 3, we expect N~ (X) to be approximated
by Na(X), where
N (X)

~4.71...
X 7
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3.3 Less Obvious Congruences

It is tempting to continue exactly as above. Consider the prime ¢ = 5 and the
congruence
3m2" —1=0mod 5.

The solutions are all the pairs (m,n) which reduce mod 4 to lie in the set
{(1,1),(2,2),(3,3),(4,4)}. Thus asymptotically 2 of the numbers of the form
3m2" — 1 are not divisible by 5; on the other hand % of all numbers are not
divisible by 5. This suggests that the heuristic estimate taking account of the
prime 5 as well should be % . % - No(X), leading to the estimate

N3(X)
——— ~4416....

X
It is at this point that the first substantial difficulty is encountered. The propor-
tion of numbers of the form 32" — 1 that are not divisible by 5 or 7 cannot be
found by emulating this calculation mod 4 and 6 separately — we have to search
in residue classes mod 12 = lem(4, 6).

3.4 Taking Account of Primes Less than L

The calculation to find the correcting factor for primes ¢, 3 < ¢ < L, goes as
follows. Let Pr, denote the least common multiple of ¢ — 1 as ¢ runs over the
primes between 3 and L. For each residue pair (j, k) in (Z/PpZ)°, and for each
such prime ¢, reduce (j, k) mod ¢ and decide whether

3728 — 1 =0mod q.

Delete those residue pairs that satisfy this congruence for some ¢; call the re-
maining set ;. Then the heuristic argument suggests that we should correct
by this factor and the usual Euler factor to give

QL q
Np(X) = . —— - No(X).
2= T2 [ )
3<q<L
This has two distinct pieces: the second factor is readily estimated using Merten’s
Theorem [14] Th. 429] which says that

1 q
|| — €7, as L — .
log L 2<u<l q—1

The other factor presents computational and theoretical problems: Computa-
tionally, P, grows very rapidly in L, and the exact calculation of |Qy| requires
manipulating set-memberships which is slow. However, approximations can be
made easily by simple counting arguments. It is possible that results on the
higher-rank Artin problem (conditional on GRH) would give more precise in-
formation, but we have not pursued this as @01, already arises inside a heuristic
argument.
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3.5 A Comparison of Heuristic and Experimental Evidence

As described above, calculating exact values for |@Qr| involves searching over a
set of size P? (for primes up to L = 29, a calculation over a set of size 554407 is
involved). Bearing in mind the sometimes delicate balance between computation
time and accuracy of results we fix L and estimate |Qr|/P? by counting the
number of pairs (m,n) with m,n < X and ged(2™3" — 1,[[,.,p) > 1, then
divide by X2. Experiments suggest that for given L this converges rapidly in
X, and a good approximation is found even when X is of the order of L. For
L = 1000 the calculation suggests the further refined heuristic

N (X)
———= ~4.043...
X
The experimental evidence strongly supports a conjecture of the form (B, which
suggests that
(73

log I, - =Lt

og P
converges as L — oo. Figure [[] shows a graph of the number N~ (X) of primes
of the form 372" — 1 with m,n < X against X for values of X < 1000. The
gradient of this graph is approximately C~ = 3.7, as compared with our most
refined heuristic suggestion of C~ = 4.043. ... However, the conjectured linearity
is strongly supported by this numerical data.

No. of primes

3500 ¢ o
0000 e

s000 e
2000 o

1500 ¢

1000 |
5000 e

‘ ‘ ‘ ‘ _ X
200 400 600 800 1000

Fig.1. Graph of N7 (X) against X for X < 1000

Much of what we have said for primes of the form 37*2"™ — 1 can be replicated

for primes of the form 3™2™ + 1. That is to say, the heuristic argument above
can be applied in this case also, taking into account the possible difference in the
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value of |Qp|/P?. Let NT(X) denote the number of primes of the form 3™2" +1
with m,n < X. We expect

N*(X)
X
Figure [2 shows a graph of N, (X) against X for X < 1000.

—CT, as X — o0.

No. of primes

4000

000

2000

1000, "

: : : : — X
200 400 600 800 1000
Fig. 2. Graph of NT(X) against X for X < 1000

The graph predicts the value of CT to be about 4.3. Comparing this with a
refined heuristic calculated in an identical fashion to that above, we obtain

NS (X)
—=—~ ~4.258...

X
with Ct = 4.258. This heuristic constant is extremely close to the experimental
value, though no meaning can attach to this coincidence in light of the N~ case.

4 Elliptic Analogues

There is a dialogue between on the one hand dynamical systems and arithmeti-
cal sequences built from the circle (of which the Lehmer—Pierce sequences are
the simplest example) and on the other, objects associated to elliptic curves,
summarised in Table [[I (the objects on the classical side are described in [I0],
and on the elliptic side in [8] and [9]).

Let E denote an elliptic curve defined over the rationals (the text [24] covers
all the properties of elliptic curves we use), given by a Weierstrass equation

y? + arzy + asy = 2° + asx? + aux + ag (7)
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Table 1. Classical objects and their elliptic counterparts

classical case elliptic case
polynomial f € Z[z] point P on curve E over Q
Mahler measure m(f) canonical height hg(P)
Lehmer problem Lang’s height conjecture
toral automorphism T sequence of maps
(|Pern(Ty)|) (Lehmer—Pierce)|elliptic divisibility sequence

with coefficients aq,...,a¢ € Z. The assumption that the curve is an elliptic
curve amounts to assuming it is non-singular, that is, the discriminant does not
vanish.

How might we expect to use the arithmetic of E to produce primes? Suppose
E has a non-torsion rational point @ € FE(Q). The multiples n@ for n € N
define a sequence of integers as follows: The z-coordinates of these points all
have the shape z(nQ) = t,/s2 for integers s,,t,. These fascinating sequences
were studied in [23]. We could ask whether they are likely to contain many primes
- actually, it is sufficient to study s,,. The Chudnovskys did some experimental
research in the 80’s (see [4] and [5]) and produced some quite large prime values
of s,,. Their results have been revisited recently (see [7]) in work that suggests
the sequence s, will only contain finitely many primes. Indeed, the sequences in
4] do not produce any additional primes when tested over a much larger range.

It seems very likely that working with translations P + n@ for fixed rational
points P and @ would produce similar results. Our heuristic argument depends
heavily upon the growth rate of the sequence, and this would not be substantially
different for n@ or P + nQ.

Suppose now that E(Q) has rank > 1, and choose independent non-torsion
points P and Q. Let s(m, n) € Z be defined by

z(mP +nQ) = t(m,n)/s(m,n)?. (8)

In his PhD thesis the second author gives a heuristic argument, accompanied
by much data, to suggest that s(m,n) should take on prime values infinitely
often. Indeed, the number of prime values with |m/,|n| < X should be asymp-
totically clog X, where ¢ is a constant depending upon the finer arithmetic of
E. The elliptic regulator (see below) appears in an apparently explicable fashion
although the constant is also affected by the finer divisibility properties in a way
that is hard to fathom. The sequences s(m,n) provide large primes which can
be described unambiguously in a very economical fashion, since s(m,n) grows
as the exponential of a positive-definite quadratic form in the variables m and
n.
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4.1 Heuristics in the Elliptic Case

Let Rx = {(m,n) | |m|,|n| < X}. Then the first attempt at a heuristic estimate
is that the sum

Z 1/log s(m,n) 9)

Rx

is the expected number of prime values of s(m,n) with (m,n) € Rx. Now
log s(m,n) is asymptotically equivalent to a positive definite quadratic form
S(m,n), and the asymptotics of the sum

> 1/S(m,n)

Rx

are well known: This sum is asymptotically (27/r)log X, where r denotes the
determinant of S (r is the elliptic regulator of P and Q). This asymptotic arises
from comparing the sum with a suitable integral.

As before, this estimate needs refinement. If ¢ denotes any prime then the se-
quence reduced mod ¢ is periodic in both variables, with period dividing |E(F,)|.
If follows that we can assign a (rational) probability to s(m,n) not being divis-
ible by g. Doing this for the primes ¢ < L gives approximately c; X? elements
(m,n) in Rx for which s(m,n) is not divisible by primes less than L. Letting
L — oo, we expect approximately elog X primes, where e depends on E but not
X. It is computationally extremely difficult to calculate the exact probabilities
for various L, but as before approximations via counting arguments are not too
difficult to obtain.

4.2 Numerical Data

Figures B and B show graphs for Np(X), the number of primes s(m,n) with
|m|, |n| < X against log X for two rank-2 elliptic curve E with small regulator.
The curve in Figure B is

y? +y =z — 199z + 1092,

with independent rational points P = (—13,38) and Q = (—6,45) on the curve,
whose regulator is .0360. ..
The curve in Figure @] is

v’ 4y =2 — 28z + 52,

with independent rational points P = (—4,10) and @ = (—2,10) on the curve,
whose regulator is .0813. ..

The numerical data is not incompatible with the heuristic suggestion of a
linear relationship between Ng(X) and log X, but strongly suggests there are
more phenomena here to understand.
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Fig. 3. Graph of Ng(X) against log X for X < 100; curve 4> +y = x* — 199z + 1092
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Fig. 4. Graph of Ng(X) against log X for X < 150; curve 3> + y = 2 — 28z + 52

4.3 Conclusion

The classical Mersenne problem appears as a special case in many different
settings. In some of these there are other cases in which prime appearance is
understood. Two higher-rank analogues of the Mersenne problem are explored.

The first is a direct extension to two variables, and compelling numerical
data is available concerning prime appearance.
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The second occurs in an elliptic curve setting. The work of [7] suggests there
are only finitely many primes in an elliptic divisibility sequence (and possibly
a uniform bound on the number of primes for any elliptic divisibility sequence
on curves defined over the rationals). A better elliptic analogue of the Mersenne
problem therefore seems to be the study of the higher-rank sequences associated
to elliptic curves of higher rank.
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Abstract. We try to write the values of L-functions associated to some
abelian extensions of Q(exp(27i/13)+exp(67i/13)+exp(187i/13)) using
units given by Siegel modular functions hoping that our trial brings some
new features in algebraic number theory.

1 Introduction

In our previous papers [2] and [3], we constructed some unit groups in abelian
extensions of Q(exp(27i/5)) by the special values of Siegel modular functions.
In order to obtain the above results, it was essential that Q(exp(27i/5)) is the
CM-field corresponding to the Jacobian variety of the curve y? =1 — 2°.

Let ¢ = exp(2mi/13) and a = ¢ + ¢3 + ¢°. Recently, Murabayashi, Umegaki
[9] and van Wamelen [12] have showed that Q(«) is the CM-field corresponding
to the Jacobian variety of the curve C' : y? = z° —1562* + 108162 — 4218242 +
89989122 —8042776. In this paper, we construct unit groups in abelian extensions
of Q(«) by special values of Siegel modular functions at a CM-point correspond-
ing to the Jacobian variety of C.

On the other hand, it is important to find a good representation of the value
of L-function at one with units having well known properties, which is called
Kronecker’s limit formula (cf. [6], [§]). In this context, we try to write the values
of L-functions associated to the above abelian fields using units given by Siegel
modular functions in expectation of providing new approach to limit formulae.

2 Theorems

We begin by explaining the notations. We denote by Z, Q, R and C the ring
of rational integers, the field of rational numbers, real numbers and complex
numbers, respectively. For a positive integer n, Z", Q", etc. denote the module
or vector space on n-dimensional column vectors with components in Z, Q,
etc. If Y is an associative ring with identity element, Y* denotes the group of

C. Fieker and D.R. Kohel (Eds.): ANTS 2002, LNCS 2369, pp. 108-[I19] 2002.
© Springer-Verlag Berlin Heidelberg 2002
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all invertible elements of Y and M, (Y) the ring of all matrices of size n with
components in Y. The identity element of M, (Y) is denoted by I,,. We write
GL,(Y) = M,(Y)*. The transpose of a matrix « is denoted by ‘a. For elements
g1, 92,-- -, gr of a group G, we denote by (g1, g2,..., gr) the subgroup of G
generated by g1, go2,..., gr. For a finite algebraic extension K of k, (K : k)
means the degree of K over k, Ng/, means the norm mapping of K over k and
G(K/k) means the Galois group of K over k when K is a Galois extension of k.
If k is an algebraic number field, we denote the integer ring of k by Oy.

Let G5 be the set of all complex symmetric matrices of degree 2 with positive
definite imaginary parts. For u € C2, z € G, and r, s € R?, put as usual

1
O(u, z;1,8) = Z e(it(x +r)z(z+r)+ o+ r)(u+ s)),
T€Z2
where e(§) = exp(2wi€) for £ € C. Let N be a positive integer. If we define
20(0, z; 1, 8)
Bz . —
(Z,’I",S,’I"l,Sl) 9(0,2;7"1,51)

for r,;s,r1,81 € ﬁZQ, then @(z;r,s;r1,s1) is a Siegel modular function of level
2N2. Let (v = e(1/N) be a primitive N-th root of unity, ¢ = (13 and k the
unique subfield of Q(¢) with (k : Q) = 4. We note that k is a CM-field. Let o be
an element of the Galois group G(Q(¢)/Q) with (7 = (2. Then o is a generator
of G(Q(¢)/Q). Put @ = ¢ +¢3+¢?. Since { ¢?” }1L is a normal integral basis of
Q(¢) over /Q, {a”” }3_, is an integral basis of k over Q. Let O}, be the integer
ring of k. For the 2-dimensional vector space C2, we put

L:{(é)e@ﬂgegk}

Then L is a lattice in C2. we put

2 13 -3v13 .

p=a—a’ = — i

and define a Riemann form R on the complex torus C?/L as follows:

R( (Z;) , (2) ) = %(p(um —yv1) + p° (ugvz — 1[2’1)2))

for u;, v; € C2, where 1;, 0; mean the complex conjugates of u;, v;, respectively.
Moreover, for elements

4 _ 02 oA _ 02 o3
Ql(ag>7n2(a02>’93( ) ’ ) >794< } ' 2a >’
« « -’ —« —a? —2a
we can easily see that { 21, {29, 25, {24} is a free basis of L over Z and

(R($2;, £2;)) = J, where
(0 L
1= %)
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Hence we see that

-1
( 70402 70[0'3 7040'2 72@03 ) ( a a’ )
1 = 3 3 o o2
-’ —« —a’ =2« a’ «
is a CM-point of &5 corresponding to the polarized abelian variety (C?/L, R).
Let k(6) be the ray class field of £ modulo 6, Zs the group of fractional ideals

of k generated by prime ideals which are prime to 6 and we put Ss = {(£) | £ €
k*, =1 (mod 6)}. Then we can compute

k(6) = k(Bo, B1, ) and G(k(6)/k) = Z/27 & Z/27 & 7.)5Z ,

Bo = \,7*14;\/@, B = V;lgm

and « is a root of the equation
X —40X* — 1220X3 — 50800X2 — 138460X — 1897012 = 0.

We extend the action of o € G(Q(¢)/Q) to Q(¢)k(6) by 85 = 51, B = B and
77 =7
After these preparation, we can now describe our main results.

where

Theorem 1. Notations being as above, we put

1 1\ /2 AN
e ) e) )
Then ¢ is a Minkowski unit of the ray class field k(6) of k modulo 6.

Theorem 2. Notations being as in Theorem[, let Ko = k(v/=3), z; = log¥;,
where 0; = Ny6)/ K, (e7"). Let x be the non-trivial character of Tg /S correspond-
ing to Ko and Li(s; x) the L-function of x. Then we have

26 . 572

33.13V13

Theorem 3. Notations being as in Theorem[d, we put K1 = k(8s), Ko = Q(5o),
X the non-trivial character of K1 over Ko and Li,(s; x) the L-function of x.
Then we have

102L;€(1 ;X)) = (x% + 2;3% + x% + 2zoxy + 2x1x2).

2473

1324/3

6OLK2(1; X) = ! 6)U|

log |(5351 €3

9

where €; = Ny, K, (5‘#).

Theorem 4. Notations being as in Theorem[3, let x be the non-trivial character
of K1 over k and Li(s; x) the L-function of x. Then we have
2 O 2.3 12 1+

607 L (1; :7<1o goeq “e3| log |(eg“e1e 7

(130 = 5 (o feos; <)) log [ (eferes) 7

—log 3125 log | (07 223) 7] ).
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3 Integrality of Special Values

We recall some properties of Siegel modular forms. For a positive integer N, we
put I'v ={A€GL4(Z)|*AJA=J, A=1; (mod NM(Z))}. We let every
element A = (ﬁn ﬁu ) act on Gy by A(2) = (A112+A12)(Az12+ Aga) L. For
21 A2z
a positive integer r and a subring R of C, let M,.(I'y, R) denote the vector space
of all modular forms f on &3 such that f(A(z)) = det(Ag1z+ Ag2)" f(2) for all
A= (A Az ¢opeand that f(2) = Yo al§)e(Tr(€2)/N) with a(é) € R,
A1 Ago

where ¢ runs over all semi-integral semi-definite symmetric matrices of degree 2

(ie &= b72 b{f with a,b,d € Z). If all a(€) are contained in Q({y), we

let 7 act on f(z) by f7(2) = >, a(§)"e(Tr(€z)/N). Then it is well known that

[7(z) € My (I'n, Q(Cw)) for all f(2) € M, (I'n, Q(¢N))-
The following lemma is a refinement of Proposition 2 in [7].

Lemma 1. Letv, : Q — Z be the additive p-adic valuation. Let C be a curve of
genus 2 defined by y* = Z?:o w8~ with w; € 7, z, € &y a point corresponding
to the Jacobian variety of C by the standard normalization of its period matriz
and J, the Iqusa J-invariants of C (cf. p.177 in [{]). Let N be an positive
integer and r,s € (£Z)%. If vp(Jio) < 2Lu,(J,) for all prime number p and

v=2,4,6,810, then ®(z.; r,s; 0,0) is an algebraic integer.

Proof. (cf. p.322 in [7]). We put

X10(z) = H@(O,z; 7, s)?

for 2 € &5, where 7, s runs over (37Z)?/Z? satisfying that 4('rs) is even. Let T
be the set of representations for I /Ion2 and T = { X10(2)P7(Az; 1, s) | A €
T, 7€ G(Q(Cn2)/Q) }. Let f(2) be the fundamental symmetric polynomial of T
of degree n. Then we have f € Mo, (I1,Z) (cf. p.322 in [7]). By Lemma 14 in

L N i3 Ti4 Ti6 Tis Ti10
f(ze) = § WisigigisiroJ2” Js* J6° Jg" 1)
2i0+414+6i6+8ig+10t10=10n

and X19(z«) = u%J10. Hence we have

f(z)

——— cZ
Xio(ze)™

by

5

. ’\ 2w
ZZQVUP(J2V) > Z EZZV’U;)(JIO) = nvp(J10)~
v=1

v=1

This shows @(z,; r,s; 0,0) is an algebraic integer. O
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Murabayashi, Umegaki and Wamelen have found equations of hyperelliptic
curves whose Jacobian varieties have complex multiplications.

Especially, they showed that k = Q(«) is the CM-field corresponding to the
Jacobian variety of the curve

C y2 = 2% — 156 X% + 10816 X3 — 421824 X2 + 8998912X — 8042776
whose J-invariants are as follows:
Jo = 29132, Jy = 2111357, Jg = 2193911, Jg = 2201333, Jy0 = 2291315,

Hence &(z1; 1, s; 0,0) is an algebraic integer for r,s € (%Z)2 by Lemma [l Fur-
thermore, by an argument similar to that in [2], one can show @(z1; r,s; 0,0)3
is contained in k(6) for r,s € (3Z)2.

Now we recall Shimura’s reciprocity law which plays essential roles in the next
section. Let v be a non-zero integer and A a matrix in My (Z) with tAJA =vJ.
we suppose that the determinant of A is v? and that v is prime to 2NN.

Then it is well known that there exists a matrix B in I with

_ (12 0 2
A:(O UIQ)B (mod 2N?)

We recall @(z; 7, s; 71, 51) is a Siegel modular function of level 2N2 if r, 5,71, 51
are contained in (%Z)Q. We let A act on &(z; r,s; r1,51) by

@A(z; r,s;1r1,81) = P(B(2); r,vs; r1,v81).

We note that ¢4 is also a Siegel modular function of level 2N2. Let R be a regular

. N . 2 3 2 3
representation of k with respect to the basis «, a?, —(a? +a% ), —(a’ +2a7")
and w an integer of k which is prime to 2N2. Then we have the following:

Lemma 2. (Proposition 2.2 in [11]). Let k(2N?) be the ray class field of k
modulo 2N?2. Then we have ®(z1; r,s; r1,51) € k(2N?) and

k(2N2)/k o3
@(21;7’,8;7"1,81)( ) ) :q')R(UJUJ )(21;7',8;7"1,81)-

4 Norm Computation
To avoid the complicated expressions, we write

e o0 (19, (219, (29, (59)

and put

ay = V(213 2,4,2,2;0,0,0,0), ag =W(2;2,2,4,0; 0,0,0,0)>.
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Then «; and as are algebraic integers of k(6) and € = as/ay, where ¢ is the
element defined in Theorem [ Since Ny ),0(;) is rational integer, one can
determine exact value of Ny, ),q(c;) by approximation with some luck as follows.

It is easy to see that (o — 04"2) and (a — o + a”g) are prime ideals of k
lying above 13 and 29, respectively. We define

k(6
T = (()/kz) and 79 = <W>
a— a—a’ +a°
be Artin symbols. Then G(k(6)/k) = (71, 72 ) and 7% = 730 = 1.
First we note that
2 2
Nigo)/a(02) = [Nugs)/a(02)| [Nigoy/u(af)]

The actions of G(k(6)/k) for as are explicitly given by Shimura’s reciprocity law
and easy to compute. On the other hand, there are no theories which are able
to handle the action of o. But it is known that

of =W(z1;71,72,73,T4; S1,52,83,54)°C
for some r; € Z/6Z, s; € Z/2Z and m € Z/67Z. So we put
B =W(z1; 11,79, 73,T4; S1, 52,83, 54)°

and compute the approximate value of

(1)

for all r; and s;. Our calculation shows that the only possible integral value for
(@ is 2. Hence we can conclude that Nie)/0(ae) = 296 At the same time, (3;
is a candidate of . Strictly speaking, we have

2 2
‘Nk(G)/k(QZ)‘ ’Nk(ﬁ)/k(ﬁl)‘

i11 %12
af = 171 T2 ¢t forsome 0 <iyn <1,0<i12<9,0<my <5.

. . . 2 3
In a similar manner, we get candidates (2, 83 of a§ , a3 . Namely,

ag2 _ /6;—11217_;22 gn27 ags _ /8;—1’317_;32 g’LS.
If my, mo, m3, 411,912,121, 922, 131, 32 are determined, then the action of o for asg
is explicitly known.

Now, noting that G(k(6)/Q) = { o773 [0 <ip < 3,0 <i; <1,0 <iy <
9}, we choose my,mg, ms so that all the coefficients of the monic polynomial
with roots af (p € G(k(6)/Q) are close to rational integers. Next, using an
integral basis {v; | 0 < i < 79} of k(6) over Z which is explained in §6] we choose
illa i12, igl, iQQ, 1'317 i32 so that the simultaneous equations

doxafl =af  (peG(k(6)/Q) (2)
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have solutions which are close to rational integers. Our calculation again shows
that there is Only one pOSSlblhty of (ml, mo, ms, illa ilg, igl, i22, ’L'317 igz). Hence
we were luckily able to determine the action of o. Namely we have

O(g - gp(zl ) 07 4a la 0) 07 07 3’ 0)3C62 ’
Oégz = gp(zl ) 27 3a 4’ 4’ 07 37 O’ 0)3 ’
o’ =W(z;4,5,5,2,0,3,3,0)3¢ .

and, at the same time, get the coeflicients of aa with respect to {v; | 0 < i < 79}.
Under these preparations, we can prove Theorem [I1

Proof of Theorem 1. The proof is computational. In the same way as for as, we
have
Nisy/a(e1) = Ni)jglaz) = 2.
On the other hand, we know the integral expressions of oy and as with respect
to an integral basis of k(6). It is then straightforward to see that as/ay is an
integer of k(6). Hence € = az/ay is a unit of k(6).
It is also a routine work to see that the rank of the 80 x 80 matrix

(log [e772]) py, preG(k(6)/Q)

is 39 and hence ¢ is a Minkowski unit. O

5 The Quotient of Regulators

For an algebraic number field F'; we denote by (r(s) the Dedekind zeta function
of F, by Dp the discriminant of F' and Rp the regulator of F. Let x be a
non-trivial character of Ky over K5. Then we have

D 2m)* R 27)3 R
L1 x) — ti S00) _ 1Dl )" Boes ) R,
51 (K, (S) |DK1| 2 (27T) Rk, 22132\/§RK2

where Dy, =32 -13% and Dk, = —3 - 132

The computation in 8§ shows that 3]' = —po, 87" = =01, 552 = Bo and

12 = —01. Moreover we recall 8§ = (1 and Y = [y. Hence the embed-

dings of K5 into R are 71|k, and id|k,. The embedding of K5 into C is o|k,.
Moreover the embeddings of K; into R are empty and those of K; into C are
Z'd|K1a Tl|K27 TQ‘sz U|K2'

Let Ex, be the unit group of K;. Then the free ranks of Fx, and Eg, are
three and two, respectively. Since no prime of Ky lying above 2 ramifies in K3
over Ky, there exist units no, n1, &1 of Ex, with

Er, =(=1,n0,m) and FEg, = (=1, &, 1o, ). (3)

Hence we have

log |no| log |ng'|

+ Ry, = 0
log [m:1] log |n7"|

2
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and

2log |no| 2log|ng'| 2logng|
+ Ry, = | 2log|m| 2lognT*| 2log|ng|

2log |&:] 2log ¢t 2log |7

—22<1og|51| log [ng"| 2log |n§]| g €7 log|no| 2log 7§
- (s o 1 o
log [n7'| 2log|n7| log 1| 2log |nf|
o1 | 1og[no| log|ng"|
+2log |7 | 21
log [m:1] log [n7"|

'l

log |no| log|mg

= 22 (log 6] + log[€]*] + 2log¢f | .
log 1] log [n7

'l
by 2log [n7| = —log|n;| — log|n;*|. This shows the following:

Lemma 3. For the above unit & of K1, we have

Rk, 2 1 2
=L = £2%og|¢ T T
Rr, g &1 |

Now we can present the proof of Theorem [Bl The proofs of Theorems 2] and
Hl are similar and omitted.
Proof of Theorem 3. We construct no, 71 and §; explicitly. Recall that € = as /o
and g; = Ny (6)/x, (€7 ). Put S = edele3, =1 = edei 'e§ and =5 = ef%e1e5. Then
it is shown computationally that one of the 60-th roots of each = is contained
in K. It is easy to see by PARI that (3] holds if we put 19 = &, 71 = 56152 and
& = °YZ;. It is shown again computationally that [;7™| = 1 and log |£7] > 0.
Hence we have Theorem [3 O

6 Computational Techniques

In this section, we explain some techniques which were needed for computations
in previous sections.

6.1 Construction of k(6)
First we see that k(6) is the splitting field of
fo(X)=X*—a—a”,
AX)=X2+1+a+a” and
f2(X) = X5 —20X3 — 80(1 + 20 + 207 ) X2 — 810X — 382(1 + 20 + 227 )

by KASH (cf. [1]). It is easy to see that fo(Bo) = f1(B1) = 0. Next we note
that fo(X)1T7 = g(X)?, where g(X) = X® — 40X* — 1220X3 — 50800X?2 —
138460X — 1897012. Since g(X) is irreducible over @, we can conclude that
k(6) = k(Bo, B1,7) for any root v of g(X).
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6.2 Actions of 7 and 75 for &(z1; r,s; r1,51)

. 2 3 2 3 3
The regular representations of w; = (a—a” )17 and wy = (a—a® +a° )tte
are decomposed as follows:

-5 -2 0 2
| 4 5 20| _ (L o0
R(wy) = 0 2 —54 |= ( 0 131, )Bl (mod 72),
-2 0 -2 5
-5 =2 0 2
4 5 -2 0
Bi=1 _516 410 377 532 | €522,
—410 288 —266 377
0 0 11 -6
| o 0 -3-1|_ (L o
R(wq) = 1 3 6 -6 |= ( 0 201, >B2 (mod 72),
6 11 3 -9
—72 216 11 —6
0 0 -3 -1
Be=| yim1 —12513 —2s8  ama | €5(27)
9102 —27305 —561 1035
Hence Shimura’s reciprocity law implies
D(z1; 7,85 71,5)°™ =B(By(21); 1,135 11, 1351)%, (4)
D(z1; 7,85 11,51)° = D(Ba(21); 7,295 71,2951)3 (5)
for r, 5,71, 51 € (2)*.
However the convergence of ®(B;(z1); ...) is very slow. We must transform
&(B;(z1); ...) to the form @(z ; ...) which converges faster in order to calculate

the approximate values of () and (&) with high precision. This is done easily.
Namely we know that if 71, 51,72, 52 € (§Z)?, then

P(Bi(21) ;11,815 12, 82) = P21 11,815 19, 85) (75 (6)
for some r{, s}, 1}, sh € (§2)* and m € Z/727Z. The transformation formula for
theta series determines r, s}, r5, s, explicitly. So we determine m by calculating
both side of (@) with low precision and next calculate right hand side of (@) with
high precision.

6.3 Integral Basis of k(6)

It seems non-realistic to compute an integral basis of k(6) straightforward using
algorithms implemented on several number theoretic packages because k(6) is a
field of degree 80 with huge discriminant 264301350 (use Theorem (2.6) in [10]
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noting that G(k(2)/k) 2 Z/5Z, G(k(3)/k) = Z/27 x Z/2Z and k(6)/k is tamely
ramified). So we constructed an integral basis of k(6) by combining those of two
subfields k; and kg of k(6).

Let k1 = Q(«, fo, B1) = Q(a+ Bo + B1). Then k; is a subfield of k(6) and a
Galois extension of Q with degree 16. Put

t; = ag"’U + (71)1'150 + (71)i2ﬁ1 (Z =4dig+ 241 + 12, 0 <39 < 3,0 < 27,10 < 1)

Then

15
H(X —t;) = X0 14X 422X 4 40X + 167X 12 + 280X + 768X 10

= £3640X° + 2141X° + 4832X7 + 3780X° + 11204X°
+128999X* + 126752X 3 + 155662X2 + 8312X + 6397

is the minimal polynomial of tg = « + [y + (1 over Q. An integral basis of k;
is easily found as polynomials of g using PARI. If we determine the actions of
T1, T2, 0 for ¢y, then we can explicitly determine the action of G(k(6)/Q) for k;.
Now we obtain h;(X) € Q[X] such that ¢; = h;(t9) again by PARI and define
v; € G(k1/Q) by tg* = hy(to). By expressing a = (to +t3)/2 = (to + hs(to))/2
and o as polynomials of tg, we see that G(k1/k) = {vo, v1, V2, v3}. Next, noting
that
o2 _ to+ ha(to) — hs(to) — hi11(to)

a—a’ = ,

2

o — a02 I ags _ tO + hg(to) — hg(to) — h;l(to) -+ hlg(to) + h15(t0)7

we check the properties of Frobenius automorphisms
717I13 IT27I29

_0'2 o3
a—a’% +«

T

€ Oy,

Ol_a02 )

for several x € Oy, and conclude that 71 = v3 and 7o = v;. Similarly, using the
expression

oo - lalto) + ha(to)

2

we see that possible extensions of o € G(Q(¢)/Q) to ki are vy, vy, vg and v7.
We define o = vy noting that v = vy, vy, vs, v12 satisfy (8o + 51)” = Bo + P1-
Then actions of 7, 7 and o for 3; are as follows:

o for B, B Do,
71t Bo = —Po, b1 =P,
T2t Bo > Po, B1— —Pr.
Next we note the roots of g(X) are
7o = —13.486416826327889668... — v/—1 - 22.304896245305038177... ,
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1 = —13.486416826327889668... + v/—1 - 22.304896245305038177... ,
Yo = —0.9684041344417469795... — v/—1 - 6.2914405142719518538... ,
73 = —0.9684041344417469795... + v/—1 - 6.2914405142719518538... ,
Y4 = 68.909641921539273296... .

Then k2 = Q(7) is a subfield of k(6) with [k : Q] = 5. By a similar but slightly
complicated way, because ks is not a Galois extension of QQ, we have v[' = v
and v;? = 1. We note that 73 is not the complex conjugation because {2 = 3.
Furthermore we let act ¢ on ko trivially. An integral basis of ko is also easily
found by PARI.

Then we can construct a submodule M = ZZO Zw; of Dy ey by combining
integral bases of k; and ks. Since the discriminants of k; and ko are 3813'2
and 24133 respectively, M may not be equal to Oi6)- In fact, computing the
discriminant of M, we see that (D) : M) = 132%. Since a is contained in
Or(6) 13* a5 has an integral expression with respect to {w;}. Computing the
coefficients by solving the simultaneous equations

79
Dzl =13%af  (p € G(k(6)/Q)),
1=0

we see that 13as € M and as ¢ M. Hence, if we put M’ = M + Zao, then
(O : M') = 1323, Fortunately, we reached Oi(6) repeating this procedure by
using 80 conjugates of as. In this way, we constructed an integral basis of k(6).
It is then easy and may be worthy to notice that Oy /M = (Z/13Z)**. The
simple structure of Oy,4)/M assisted our computations.

The multi-precision calculations in this work were carried on TCP (Tiny C
interpreter linked with PARI library), which is available from
ftp://tnt.math.metro-u.ac.jp/pub/math-packs/tc/ .
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1 Introduction

In 1989, Shanks introduced the NUCOMP algorithm [I0] for computing the
reduced composite of two positive definite binary quadratic forms of discrimi-
nant A. Essentially by applying reduction before composing the two forms, the
intermediate operands are reduced from size O(A) to O(A'Y2) in most cases
and at worst to O(A3/*). Shanks made use of this to extend the capabilities
of his hand-held calculator to computations involving forms with discriminants
with as many as 20 decimal digits, even though his calculator had only some 10
digits precision. Improvements by Atkin (described in [3], [4]) have also made
NUCOMP very effective for computations with forms of larger discriminant.

Although there is nothing in Shanks’ original description which suggests that
NUCOMP is only applicable to positive definite forms, for years there were no
documented applications in any other setting. Recently, van der Poorten [13]
has shown that, with very little extra effort, NUCOMP can also be applied to
computations in the infrastructure involving indefinite binary quadratic forms.
This opens the door to practical improvements in real quadratic field-based
applications such as regulator computation and key exchange protocols in the
infrastructure.

Until now NUCOMP has been applied exclusively to computations in num-
ber fields. However, Cantor’s algorithm [2[12] for adding reduced divisors on
hyperelliptic curves (equivalently ideal multiplication in function fields) is virtu-
ally identical to the composition and reduction algorithms for binary quadratic
forms; the main difference being that coefficients of the binary quadratic forms
are polynomials over a finite field rather than integers. Thus, there is no reason
to believe that NUCOMP cannot also be applied in function fields. Intuitively,
one would expect that applying NUCOMP will reduce the degrees of the inter-
mediate operands from O(2g) to at most O(3g/2), where ¢ is the genus of the hy-
perelliptic curve or function field. Furthermore, by combining van der Poorten’s

* The first author acknowledges the assistance of an Australian Research Council
International Research Exchange Grant, held by the second author, in allowing him
to visit Macquarie University, Sydney, thus initiating the present work.

C. Fieker and D.R. Kohel (Eds.): ANTS 2002, LNCS 2369, pp. 120-[I33] 2002.
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ideas [13] we can also apply NUCOMP to computations in the infrastructure of
a real quadratic function field.

In this paper, we show that NUCOMP does in fact yield significant improve-
ments in speed over ordinary composition with reduction in all of the above
settings for certain sizes of discriminants. We begin with a description of NU-
COMP as presented in [13] which incorporates the improvements described in
[B], followed by versions which are suitable for implementation in function fields
over any finite field, even or odd characteristic. We then present extensive com-
putations in imaginary quadratic number fields, imaginary quadratic function
fields, real quadratic fields, and real quadratic function fields, all of which clearly
demonstrate the efficiency of NUCOMP.

2 Description of the Algorithm

2.1 Number Fields

Let o1 = w1 X2+ 01 XY +w1Y? = (u1,v1,w1) and g = ug X2+ 02 XY 4w Y2 =
(ug,v9,wy) be two binary quadratic forms of discriminant A = v? — dujw; =
v3 — dugws. Algorithm [I] is based on Algorithm 3 from [I3]. The modifications
in computing the near reduced composite (Step Bl and Step [) are from [3]. The
relative generator v can be used for distance computations in real quadratic
fields, or not computed at all when working in imaginary quadratic fields.

Algorithm 1 (NUCOMP). Given two quadratic forms ¢1 = (u1, vy, w;) and
2 = (ug,v2, wa) with the same discriminant A, compute ¢35 = (us3, v3, ws3) and
7 such that 3 = (1/7)@1¢s. Precompute L = |A['/%.

1. If wy < wg swap 1 and py. Set s +— %(vl + vg); then m + vy — s.

2. Use Euclid’s extended algorithm to compute (b, ¢, F') such that bus + cu; =
F = ged(ur,ug). If F|s, set G < F, A, + G, By < mb, By + u1/G,
Cy < u2/G, Dy + s/G, and go to Step

3. If F[s, use Euclid’s extended algorithm again to compute (y, &) so that
eF +ys = G = ged(F, s), and set H < F/G. Also set By + u1/G, Cy +
u2/G, Dy + s/G.

4. Compute | + y(b(w; mod H) 4+ ¢(we mod H)) mod H, B, + b(m/H) +
l(By/H).

5. Set b, < B, mod By and b, < B,. Then execute a partial Euclidean algo-
rithm on b, by :

(a) Set x < 1,y + 0, z « 0.

(b) If |by| > L and b, # 0 go to substep 5(c). Otherwise, if z is odd set
by < —by, y <= —y. Then set a, + Gz, a, = Gy. Go to Step[6l.

(c) Let g < |by/b;] and simultaneously t < b, mod b,. Now set b, < b,
and b, < t. Then set t < y — qz, followed by y < x and = + t. Finally
let z <— z 4+ 1 and go to substep 5(b).

6. [z =0] If z # 0 go to Step[ll Otherwise, compute the near reduced composite
w3 = (us, vs,ws) as follows:
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(a) Q1+ Oybxa Cyp < (Ql - m)/By
(b) dy < (byD, — w2)/B,

(c) uz + b,C,

(d) w3 « byc, — Gdx

Go to Step
7. [z # 0] Compute the near reduced composite 3 = (us, vs,ws) as follows:
(a) ¢z + (Cyby —ma)/By
(b) Ql < bycwa Q2 — Ql +m
(¢) dy < (Dyby —wox)/By
(d) Q3 < yds, Qa4+ Q3+ Dy, dy < Qa/x
(e) If by # 0 set ¢, <= Q2/by; otherwise set ¢, < (cpdy — w1)/dy.
(f) ug  bycy — ayd,
(g) w3 4 bycy — agdy
(h) v+ G(Q3+Q4) — Q1 — Q2
8. Set v + x + y(vs — VA)/(2Gu3)

Remark. As in the regular composition algorithm, it is important to compute
only the required coefficients in Euclid’s extended algorithm. If only one of the
two multipliers is required, some gain in speed will be obtained by not computing
the second.

There are two subtle differences between our presentation of NUCOMP here
as opposed to that in [13]. First, we ensure that we < w; by initially swapping
1 and o if necessary. The quantity ws is used to compute @3 in Steps [6] and
[7l so this simple operation makes sure that it is the smaller of the two third
coefficients. Second, we iterate the partial Euclidean algorithm until both values
b, and b, are less than L = |A|Y/4. According to computational experiments,
taking these extra Fuclidean steps resulted in a small improvement in the overall
execution time.

Steps[B and [[lincorporate the modifications from [3]. In the following we prove
that these modifications are equivalent to the corresponding steps of Algorithm 3
of [13].

Proposition 1. If z = 0 after Step @ of Algorithm[@ (NUCOMP), then Step
correctly computes @s3.

Proof. Since z = 0, we have ¢, = Cy and d,, = D,,. From Algorithm 3 of [13] we
get

v3 = (azdy + aydy) — (bzcy + bycy)
= Gdy — bycy — bycy (r=1,y=0)
= Gdy — bycy — cyby, +m (cz = (cyby —m)/By and b, = By)
=5+ m — 2bsc, (
=y — 201 (
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Proposition 2. If z # 0 after Step [A of Algorithm[Q (NUCOMP), then Step [7]

correctly computes @s3.
Proof. Clearly c,,d,,us, ws are as in Algorithm 3 of [I3]. Now
Cy = Q2/by = (Q1 +m) /b, = (bycw +m)/by

dy = Qua/x = (Q3 + Dy)/x = (ydz + Dy)/x,

so ¢, and d,, are also correct. From Algorithm 3 of [13] we get

v3 = (azdy + aydy) — (bzcy + bycs)

= G(xdy + yd;) — becy — byce (ay = Gz,a, = Gy)
= G(Qs + Q1) — Q1 — bacy (Q4 = ydy + Dy = xdy)
=G(Q3+Q4) —Q1— Q2 (Q2 = bycy +m = bgey) .

The following algorithm, NUDUPL, corresponds to the special case of NU-
COMP where p1 = 9, i.e., squaring a form. As with NUCOMP, a relative
generator 7y with respect to (? is also produced. Algorithm Blis based on Algo-
rithm 4 from [13], with a few efficiency modification added. The modifications
in computing the near reduced composite (Step @ and Step [7) are from [3].

Algorithm 2 (NUDUPL). Given a quadratic form ¢ = (u,v,w), compute
3 = (u3, v3,w3) and 7 such that o3 = (1/7)p3.

1. Use Euclid’s extended algorithm to compute (y, G) such that zu+yv = G =
ged(u, v) and set A, + G, By + u/G, D, + v/G.
2. Compute B, + yw mod B,,.
3. Set b, < B, and b, < B,. Then execute a partial Euclidean algorithm on
by, by :
(a) Set x < 1,y + 0, z « 0.
(b) If |by| > L and b, # 0 go to substep 3(c). Otherwise, if z is odd set
by < —by, y < —y. Then set a, + Gz, a;, = Gy. Go to Step[dl
(c) Let g < |by/b;] and simultaneously t < b, mod b,. Now set b, < b,
and b, < t. Then set t < y — gz, followed by y <— = and z < t. Finally
let z <— z 4+ 1 and go to substep 3(b).
4. [z =0]If z # 0 go to Step[Bl Otherwise, compute the near reduced composite
w3 = (us, vs,ws) as follows:
() ds < (b,D, — w)/B,
(b) us < b?ﬁ w3 < bi
(c) v3 v — (by +by)? +uz + w3
(d) w3 <— w3 — Gd,
Go to Step
5. [z # 0] Compute the near reduced composite w3 = (usz,vs, ws) as follows:
(a) dy < (bgDy —wz)/By
(b) Q1 dzy, dy < Q1+ D,
(c) vz + G(dy + Q1)
(d) dy +dy/x



124 Michael J. Jacobson, Jr. and Alfred J. van der Poorten

(e) us <— b12/’ ws < bi

(f) V3 < V3 — (bx + by)2 + uz + ws

(8) us « ug — aydy, ws < ws — azd,
6. Set v+ x + y(vz — VA)/(2Gu3)

Proposition 3. If z = 0 after Step [ of Algorithm[@ (NUDUPL), then Step
correctly computes 3.

Proof. From Algorithm 4 of [13] we have
v = (azdy + ayd,) — 2bsb,
= (az + ay)(dy + dy) — (bs + by)2 +uz +ws (us = bz — aydy,

w3 = bi — ady)

= G(dy + dy) = (bs +by)* +us + ws (z=1,y=0)
= Gd, + Gdy — (by +by)* + ug + (b7 — Gdy)
=v— (by +by)* + b, + b (Dy =b1/G) .

Proposition 4. If z # 0 after Step @ of Algorithm[@ (NUDUPL), then Step
correctly computes 3.

Proof. Clearly d,d,, us, w3 are as in Algorithm 4 from [I3]. From Algorithm 4
from [13] we have

v = (azdy + aydy) — 2b,b,
= aydy + aydy — (by +by)? + b5 + b7
= Grdy + ayd; — (by + by)2 + bz + bi (a, = Gx)
= GDy + 2a,d, — (by +by)? + b + 05 (zd, = d,y + D,)
= G(Dy +2Q1) — (b +by)* + b, + 02
=G((Q1+ Dy) + Q1) — (by +by)* + b2 + b2 .

2.2 Function Fields — Odd Characteristic

Let K = GF(q), ¢ = p™ for some odd prime p, be a finite field of odd charac-
teristic. Given a square-free, monic polynomial A with coefficients over K, the
quadratic congruence function field of discriminant A is formed by adjoining
VA to the field of rational functions K (X). The resulting field is very similar
algebraically to a quadratic number field. In particular, one can study equiva-
lence classes of ideals, infrastructure, and other properties of quadratic number
fields.

Ideals in function fields are represented here almost exactly as in number
fields; the two polynomials u(X) = u and v(X) = v represent the K[X]-module
uK [z]+ (v+vA)K|[z] of norm u, where u | v? — A. If we set w = (v2— A)/u, then
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we have a three coefficient representation ¢ = (u, v, w) of the ideal. When viewed
in this light, one realizes that the composition algorithms for binary quadratic
forms, including NUCOMP and NUDUPL, generalize almost immediately to
function fields. The main difference is that the formulas presented above will
compute @3 = (us, 2v3, w3) rather than (us, vs, ws), which is easily corrected as
long as the ground field has odd characteristic. The modifications to Algorithm []
(NUCOMP) for function fields over constant fields of odd characteristic are as
follows:

Step 1. s < vy + v2, M < vy — V1

Step 6(e). v  va — Q1

Step 7(h). vs < [G(Qs3 + Qu) — Q1 — Q2]/2
Step 8. v < = + y(vs — VA)/(Gus)

The modifications for Algorithm 2l (NUDUPL) are the following:

Step 1. ...Dy, < 2v/G

Step 4(c). vs < [2v — (by + by)? + uz + w3 /2
Step 5(f). v  [v3 — (by + by)? + ug + ws]/2
Step 6. v « = + y(vs — VA)/(Gus)

In practice, the relative generator v is not explicitly computed in function fields.
Computing the degree of «y is sufficient, since it is more convenient to work with
distances, i.e., the degrees of principal ideal generators and relative generators
[@].

As in number fields, the main advantage of NUCOMP over composition in
function fields is that the sizes of the intermediate operands remain small. In
function fields, the size of the operands is measured by polynomial degree. Since
reduced ideals in function fields satisfy deg(u) < g, we want to use the partial
Euclidean algorithm (Step 5 of NUCOMP and Step 3 of NUDUPL) to force
deg(by),deg(by) < L ~ g¢/2, so that deg(uz) ~ 2deg(by) ~ g and @3 will be
almost reduced. We found that taking L = (g + 2)/2 for imaginary quadratic
function fields (deg(A) is odd) and L = (g + 1)/2 for real quadratic function
fields seemed to work the best.

2.3 Function Fields — Even Characteristic

Let K = GF(q), ¢ = 2", and let p be a root of the equation y? + h(X)y = f(X)
defined over K[X]. Adjoining p to the field of rational functions yields a quadratic
congruence function field. As in the odd characteristic case, we can represent
ideals in the function field by triples (u, v, w) where w = (v? + h(X) + f(X))/u.
The composition and reduction algorithms are very similar, the main difference
being that the conjugate ideal of (u, v, w) is given by (u,v + h(X),w).

The modifications to Algorithm [l (NUCOMP) for function fields over con-
stant fields of even characteristic follow easily from Remark 5.4 of [I3], and are
described below. As above, p is a root of y? + h(X)y = f(X) and we write h for
h(X).
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Step 1. m <+ vy +wvg, s m+h

Step 6(e). v3 + va + Q1

Step 7(d). Qs + ydy, dy = (Q3 + s)/x
Step 7(h). v3 <= Q3 + Q1+ v1

Step 8. v <~z +y(vs + h+ p)/(Gus)

The modifications for Algorithm 2] (NUDUPL) are the following:

e Step 1. Use Euclid’s extended algorithm to compute (y, G) such that xu +
yh = G = ged(u, h) and set A, < G, By, < u/G, and D, < h/G.

Step 4(c). vg < v + byby

Step 5(b,c,d) vg = dgy, dy + (vs + Dy)/z

Step 5(f). vz = v3 + byby + v

Step 6. v <z +y(vs + h+ p)/(Gus)

3 Performance in Practice

In the following, the algorithms for composition in all cases are the optimized
ideal multiplication and squaring algorithms from [5 Chapter 2]. In our expe-
rience, composition can be performed more efficiently using ideals rather than
binary quadratic forms. The NUCOMP and NUDUPL algorithms are imple-
mented as described above, but the reduction algorithm is the optimized version
from [5, Chapter 2]. Thus, we are using the most efficient ideal arithmetic and
reduction using standard ideal multiplication known to us, as well as the most
efficient NUCOMP and reduction with forms, allowing for as unbiased a compar-
ison as possible. All runtimes are given in CPU seconds, and the computations
are performed on an 800 MHz Pentium IIT processor running Linux. The al-
gorithms were implemented using the NTL computer algebra library [I1] with
the GNU gmp multiprecision integer package installed as the integer arithmetic
kernel, and compiled with the GNU g++ compiler version 2.91.66.

3.1 Imaginary Quadratic Fields

In order to compare the performance of NUCOMP and NUDUPL versus com-
position, we have implemented the Diffie-Hellmann key exchange protocol in the
class group of an imaginary quadratic order [I]. For each discriminant size given
in Table [, we performed 5000 key exchanges with both NUCOMP and com-
position, using random discriminants of the given size and random exponents
of the same bit-length as and bounded by \/E . Each communication partner
performs two exponentiations per key exchange, so we expect each partner to
perform about log, |A| NUDUPL or ideal squaring operations and half as many
NUCOMP or ideal multiplication operations per key exchange. The total time
for all 5000 key exchanges per communication partner and the average time for
a single key exchange per partner, using composition and NUCOMP, are given
in the table, as well as the ratio of the total time for all key exchanges using NU-
COMP over the total time using ideal multiplication. Our computations show
that NUCOMP is already more efficient for discriminants of 64 bits, and becomes
even more efficient as the discriminants grow in size.
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Table 1: Imaginary quadratic field key exchange comparison.

Comp. Time |[NUCOMP Time

[logy|A[]]] Total [Avg.|[ Total | Avg. [NUCOMP /comp
32 7.82| 0.00 8.98| 0.00 1.1491

64 26.92| 0.01 24.26| 0.00 0.9012

128| 102.95| 0.02 77.83]  0.02 0.7560

256( 394.35| 0.08| 284.75| 0.06 0.7221

512]| 1630.78| 0.33|| 1057.69| 0.21 0.6486

768|| 3848.80| 0.77]| 2412.04] 0.48 0.6267
1024 7291.36| 1.46|| 4406.37| 0.88 0.6043
2048]|138390.05| 7.68[20054.58|  4.01 0.5224

3.2 Imaginary Quadratic Function Fields

We have also implemented the Diffie-Hellmann key exchange protocol in the
class group of an imaginary quadratic congruence function field [7], where the
ground field is any finite field of odd characteristic. The results in Table Bl were
obtained using prime fields F, as ground fields, where the prime was selected
to be the smallest odd prime with the given number of bits. The results in
Table [3 were obtained using various extensions of Fs. In each of the tables, for
each finite field and genus pair we performed a number of key exchanges using
random function fields of the given genus and random exponents having the
same bit-length as and bounded by ¢, where ¢ is the cardinality of the finite
field. For g < 5 we performed 4000 key exchanges using both NUCOMP and
composition, for 5 < g < 10 we performed 2000, for 10 < g < 15 we performed
1000, and for g > 15 we performed 500. Here, we expect each communication
partner to perform 2log, ¢ NUDUPL or ideal squaring operations and half as
many NUCOMP or ideal multiplication operations per key exchange. The ratio
of the total time for all key exchanges using NUCOMP over the total time using
ideal multiplication is given for each genus/field pair. In both tables we have not
included computations for g = 1 (elliptic curves), since in this case simple direct
formulas exist for group arithmetic.

Table 2: Imaginary function field over F, key exchange —
NUCOMP /composition.

[log, p]

2 | 4 ] 8 ] 16 ] 32 [ 64 | 128
1.0778]1.2763[1.1848[1.1911[1.0979[1.0724/1.0371
1.2627|1.2492(1.3092(1.2922(1.1722|1.1562|1.1398
1.2450(1.2528|1.2698|1.2671|1.1225(1.1135| -
1.2365(1.1389|1.1426/1.1303|0.9997|0.9987| -
1.1331(1.1015|1.0792(1.0831(0.9717|0.9756| -
1.0987|1.0272|1.0089]1.0120/0.9111{0.9179| -

~N O U W N
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Table 2: (continued)

[log, p]

g 2 ] 4 ] 8 [ 16 | 32 [ 64 | 128
8 [1.0000]0.9931[0.98690.9950[0.8971 - -
9 1(0.9903(0.9503|0.9292/0.9329/0.8411| ~ - -
10{/0.95680.9218|0.9199|0.9187|0.8360| - -
11{/0.8991/0.8821|0.8732(0.8721|0.8061| - -
12(/0.8722/0.8634|0.8667|0.8641|0.8018| - -
13(/0.8552/0.8265|0.8205|0.8216|0.7681| - -
14/0.8339/0.8206|0.8209|0.8212(0.7668| - -
15(/0.7995/0.7741|0.7751|0.7740|0.7480| - -
20((0.7252(0.7204/0.7187|0.7217 - - -
25/(0.6815(0.6808|0.6834/0.6848| - - -
30[0.6556|0.6561|0.6601|0.6631| - - -

Table 3: Imaginary function field over GF(2") key exchange —
NUCOMP /composition.

n
1 [ 2 ] 4 ] 8 [16 ] 32 [ 64 ] 128

1.7143[1.2393[1.0495[1.0237[1.0145[0.9984[0.9893[0.9629
1.5154(1.2348(1.1231|1.1558|1.1291|1.1222/1.1115|1.0665
1.2981|1.1151{1.1528)1.1425|1.1182(1.0892(1.0749| -
1.3746|1.1348|1.0836|1.0668|1.0507|1.0230{1.0041| -
1.1875|1.0657|1.0770|1.0740|1.0503|1.0098|0.9818| -
1.2437/1.0145|1.0052(1.0025/0.9981/0.9519]0.9483| -
1.0511]1.0164/0.9977|0.9978|0.9956/0.9587| - -
1.0796]0.9764/0.9430|0.9415]0.9447/0.9085| - -
10/0.9820]0.9506|0.9333]0.9293|0.9346/0.9051| - -
11(/0.9813]0.9204/0.8967|0.8942(0.9018/0.8795| - -
12/0.9443/0.8960|0.8885/0.8937]0.9011/0.8861| - -
13(10.9063|0.8705|0.8590|0.8589|0.8674/0.8639| - -
14{10.9114/0.8577|0.8526|0.8589|0.8691/0.8693| - -
15(10.8805|0.8306|0.8249|0.8254/0.8416/0.8476| - -
20|(0.8086(0.7820(0.7874(0.7918|0.8051| -
25((0.7594(0.7397(0.7442(0.7545(0.7699| - - -
30[|0.7222|0.7176|0.7270|0.7365|0.7528| - - -

00 J O U W N
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According to our data, NUCOMP is more efficient than composition for function
fields of fairly small genus, with the trade-off point lying between genus 5 and
10, depending on the ground field. In addition, NUCOMP becomes increasingly
more efficient as both the genus and the size of the ground field increase (hence
the discrepancies between the trade-off points for different ground fields). Both
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observations are explained by the fact that NUCOMP attempts to minimize
the sizes of intermediate operands. In the case of function fields, we expect the
degrees of the polynomial operands to be bounded by O(3g/2) as opposed to
0O(2g) for composition. As the genus increases, the difference between the degrees
of the operands becomes greater, and the overall speed of NUCOMP as compared
to composition also increases.

The fact that NUCOMP keeps the degrees of the intermediate operands small
is also significant as the size of the ground field increases. If the cost of multi-
plying coefficients of the polynomials is expensive, then even small reductions
in the polynomial degrees become beneficial. Thus, as the ground fields become
larger, the trade-off points for which NUCOMP out-performs composition occur
for smaller genus.

3.3 Real Quadratic Fields

In real quadratic fields, the corresponding Diffie-Hellmann key exchange proto-
col takes place in the principal ideal class [8]6]. The protocol essentially consists
of each partner performing two binary exponentiations of principal ideals while
keeping track of the principal ideal generator or its natural logarithm (distance).
In practice, maintaining these distances to sufficient accuracy is somewhat prob-
lematic. We have used the approach of (f,p)-representations from [6] to keep
track of the distances, using the same precision for the distance approximations
for both composition and NUCOMP. Incorporating NUCOMP into the algo-
rithms from [0] is fairly straightforward. Our implementation using NUCOMP
always produced unique key ideals, even though the accuracy of the distance
approximations is only guaranteed theoretically for regular composition [6].

For each discriminant size given in Table [ we have performed 5000 key
exchanges using random discriminants of the given size and random exponents
of the same bit-length as and bounded by v/A. Each communication partner
performs two exponentiations per key exchange, so we expect each partner to
perform about log, A NUDUPL or ideal squaring operations and half as many
NUCOMP or ideal multiplication operations per key exchange. The total time
for all 5000 key exchanges per communication partner and the average time for
a single key exchange per partner, using regular composition and NUCOMP, are
given in the table, as well as the ratio of the total time for all key exchanges using
NUCOMP over the total time using ideal multiplication. Our computations show
that NUCOMP is more efficient for discriminants of 32 bits or more, and as in
the imaginary case, it becomes even more efficient as the discriminants grow in
size.

Table 4: Real quadratic field key exchange comparison.

Comp. Time |[NUCOMP Time
[log, A][| Total [Avg.|| Total | Avg. [NUCOMP/comp

32 25.74| 0.01 21.70,  0.00 0.8430
64 99.47| 0.02 70.19] 0.01 0.7056
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Table 4: (continued)

Comp. Time [[NUCOMP Time
[log, Al Total [Avg.| Total | Avg. [NUCOMP /comp
128 408.71| 0.08|| 262.38| 0.05 0.6420
256| 1825.36| 0.37] 1150.90| 0.23 0.6305
512|]  7536.19| 1.51}| 4535.24] 0.91 0.6018
768| 18371.47| 3.67||10786.01 2.16 0.5871
1024 34749.08| 6.95(|20182.38| 4.04 0.5808
2048]|173514.36|34.70/|96699.88| 19.34 0.5573

Upon comparing the data for key exchange in real quadratic fields with that
of imaginary quadratic fields, one finds that the benefits of using NUCOMP
are somewhat more pronounced in the real case. The ideal multiplication part
of the algorithms are the same in both cases, but reduction is more expensive
using (f, p)-representations because fairly high precision distance approximations
must be maintained. Since one benefit of NUCOMP is that a large portion of the
reduction is done beforehand, it is to be expected that NUCOMP will yield a
more substantial savings in the real case, since many of the expensive reduction
steps involving the distance approximations are avoided.

One area in which NUCOMP and NUDUPL are especially effective is com-
putations where one can take advantage of the relatively small operand sizes and
use single precision arithmetic rather than multiprecision. Since NUCOMP re-
quires intermediate operands of size O(A3/*) [13], one can implement NUCOMP
for fields with discriminant less than 10'® using almost exclusively single preci-
sion arithmetic (assuming 32-bit word size). For discriminants larger than 101°,
standard ideal arithmetic requires multiprecision arithmetic since the interme-
diate operands can be as large as O(A).

To illustrate the effect of NUCOMP and NUDUPL in such settings, we have
implemented a simple O(Al/ 4+¢) baby-step giant-step regulator computation
routine. For each discriminant size given in Table B where we denote log, | 4|
by size(A), we have computed 10000 regulators using random discriminants of
the given size. The total time for all 10000 regulator computations using both
regular composition and NUCOMP are given in the table, as well as the ratio
of the total time using NUCOMP over the total time using ideal multiplication.

Table 5. Quadratic field regulator comparison (single precision).

lsize(A)“Regular composition[NUCOMP[NUCOMP/regular‘
7 144.46 79.48 0.55019

8 248.48 127.77 0.51421

9 431.27 209.19 0.48506

10 735.21 345.60 0.47007

11 1392.63 606.11 0.43523

12 2584.00 1053.50 0.40770
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As expected, the effect of NUCOMP is rather dramatic in this case, cutting the
total runtime in half.

3.4 Real Quadratic Function Fields

Unlike the case of real quadratic fields, maintaining distances in real quadratic
function fields is easy, since they are integers (degrees of polynomials). The cor-
responding key exchange protocol in the principal class [9] is very similar to that
in real quadratic number fields; each communication partner has to perform
two binary exponentiations of principal ideals and maintain the correspond-
ing distances. We have also implemented this protocol, and for each finite field
and genus pair in Table ] and Table [, we have performed a number of key
exchanges using random field discriminants of the given genus and random ex-
ponents bounded by ¢9. As in the imaginary function field case, we expect each
communication partner to perform 2log, ¢ NUDUPL or ideal squaring oper-
ations and half as many NUCOMP or ideal multiplication operations per key
exchange. We performed 4000 key exchanges using both NUCOMP and compo-
sition for g < 5, 2000 for 5 < g < 10, 1000 for 10 < g < 15, and 500 for g > 15.
The ratio of the total time for all key exchanges using NUCOMP over the total
time using ideal multiplication is given for each genus/field pair. Again, we omit
the data for g = 1 (elliptic curves), since the explicit formulas for the group law
are more efficient than composition or NUCOMP.

Table 6: Real function field over F,, key exchange —
NUCOMP /composition.

[log, p]

2 | 4 ] 8 ] 16 ] 32 [ 64 | 128
1.1632(1.2673|1.2823[1.2719|1.2482[1.2647(1.2886
1.0928|1.2228|1.2651|1.2874(1.2223|1.2296|1.2338
1.2165(1.1511|1.1439|1.1447|1.0531{1.0693| -
1.1232(1.1393|1.1344{1.1363|1.0571{1.0656| ~ -
1.0704/1.0563|1.0386|1.0449(0.9595(0.9769| -
1.0598|1.0491{1.0486|1.0485(0.9693(0.9782| -
1.0506]0.9835(0.9580|0.9603(0.8898| - -
1.0026]0.9810{0.9722(0.9719(0.9013| - -
0.9669|0.9261/0.9171|0.9216|0.8518 - -
0.9643|0.9272/0.9240|0.9257|0.8641| - -
0.9089|0.8842|0.8725|0.8724/0.8175| - -
0.9038/0.8809|0.8749|0.8767|0.8291| - -
0.8796|0.8509|0.8423|0.8457|0.7964| - -
0.8709|0.8423|0.8351|0.8386/0.8090| - -
0.7804|0.7692(0.7663(0.7703| - - -
0.7485|0.7475(0.7479(0.7513| - - -
0.7185]0.7146/0.7174/0.7195] - - -
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Table 7: Real function field over GF'(2") key exchange —
NUCOMP /composition.

n
1 [ 2 [ 4] 8 [ 16 ] 32 ] 64 | 128

0.8066[0.9766[1.0972[1.1664[1.1583[1.1793[1.1890[1.2176
0.8045(1.0597|1.1841|1.1910|1.1726|1.1839(1.1696|1.1595
0.8501|1.0464(1.0822(1.0741|1.0657|1.0662(1.0532| -
0.8989|1.0925/1.1082|1.1045|1.0940|1.0740|1.0484/ -
0.9867|1.0351(1.0219(1.0108|1.0090(0.9911(0.9867| -
0.9488|1.0520/1.0258|1.0292|1.0291|0.9942|0.9945| -
1.0292(0.9834/0.9545|0.9579]0.9662(0.9462| -
1.0031]0.9837|0.9654/0.9710[0.9793(0.9549| - -
10{/1.0222(0.9360|0.9101]0.9141]0.9283(0.9148| - -
11(/0.9866|0.9358|0.9249]0.9289]0.9390|0.9266| - -
12(10.9771/0.8956|0.8809]0.8851/0.8991/0.8966| - -
13(10.9427(0.9012(0.8928|0.8988|0.9093(0.9097| - -
14{10.9492(0.8676|0.8555|0.8605|0.8775/0.8871| - -
15(10.9329/0.8697|0.8673|0.8744/0.8897/0.8909| - -
20((0.8596(0.8103(0.8095(0.8123|0.8240| - - -
25((0.8176(0.7908|0.7954(0.8060(0.8242 - - -
30[|0.7840/0.7630/0.7681|0.7769|0.7933| - - -

00 J O Ui W N
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The same observations hold here as in the imaginary function field case. The per-
formance of NUCOMP relative to composition improves as the genus increases
and as the size of the ground field increases. However, unlike the number field
case, NUCOMP does not seem to have as dramatic an effect in the real case
as in the imaginary case when working in function fields. In function fields, the
computational differences between the imaginary and real cases is not nearly as
drastic as in number fields, since floating point approximations are not used to
maintain distances. In particular, the reduction algorithms are almost identical,
the only difference being that extra reduction steps are taken in the real case
to ensure that the resulting composite has distance close to a given quantity.
Thus, we expect that the absolute difference between the total runtimes using
NUCOMP and composition to be roughly the same for the imaginary and real
function field cases. This is exactly what we observed. The difference between
the ratios of total NUCOMP time to total composition time between the two
cases is accounted for by the fact that the amount of extra work required for the
real case is the same for both NUCOMP and composition.

4 Further Work

One immediate extension of our work is a detailed complexity analysis of NU-
COMP in function fields using the model of [12]. By comparing our results from
this analysis with that of the usual composition and reduction algorithms from
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[12], we will be able to precisely predict the trade-off points where NUCOMP
out-performs composition. As a part of this analysis, we will determine bounds
on the degrees of the intermediate operands. Preliminary experiments indicate
that NUCOMP performs exceptionally well in function fields; the vast major-
ity of near-reduced composites are in fact already reduced and the degrees of
the intermediate operands do appear to be close to 3g/2. We will conduct more
refined experiments as a complement to our analysis.

Our computations with NUCOMP in real quadratic fields rely upon the
(f,p)-representations of distances as described in [6]. As mentioned earlier, the
floating-point precision required to guarantee unique keys in the key exchange
protocol is only valid for composition. The analysis of the precision requirements
needs to be extended if NUCOMP and NUDUPL are to be used with confidence
in this key exchange protocol. This, also, is work in progress.
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Abstract. Let {K,,} be a parametrized family of real abelian number
fields of known regulators, e.g. the simplest cubic fields associated with
the Q-irreducible cubic polynomials P, (z) = 2% — ma? — (m + 3)2 — 1.
We develop two methods for computing the class numbers of these K,,’s.
As a byproduct of our computation, we found 32 cyclotomic fields Q({p)
of prime conductors p < 10'° for which some prime g > p divides the
class numbers ki of their maximal real subfields Q(¢p)™ (but we did not
find any conterexample to Vandiver’s conjecture!).

1 Introduction

This paper is an abridged version of [Lou5] in which the reader will find the
proofs we omit here, and in which he will also find various supplementary ex-
amples (families of real cyclic quartic, sextic and octic fields). Our aim is to
explain how one can generalize the technique developed in [Loul| not only to
compute efficiently class numbers of real abelian number fields of known reg-
ulators, but also to compute efficiently exact values of Gauss sums and roots
numbers associated with primitive Dirichlet characters of large conductors.

In [Bye], [Loud], [LP], [Sha] and [Wa], various authors dealt with the so called
simplest cubic fields, the real cyclic cubic number fields K, associated with
the cubic polynomials

Pn(z) =2 —maz? — (m+3)z — 1
of discriminants d,,, = A% | where A, := m? + 3m + 9, and roots 6,,, o (0,,) =
~1/(0p, + 1) and 02(0,,) = — (0, + 1) /0. Since —23P,,,(1/x) = P_,,_3(x), we
may assume that m > —1. In this paper, we assume that 4A,, is square-free. In
that case, the conductor of K, is equal to A,,, its discriminant is equal to A2
the set {—1,60,,,0(0,,)} generates the full group of algebraic units of K, and
the regulator of K, is

Regy = log? 0., — (log 0,,) (log(1 4 6,,)) + log®(1 4 6,),

with
1 1 D)
07,, = 5 (2 Am COS(* arctan( \/7 )) + m) .
3 3 2m + 3

C. Fieker and D.R. Kohel (Eds.): ANTS 2002, LNCS 2369, pp. 134-[[47] 2002.
© Springer-Verlag Berlin Heidelberg 2002
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In [Jean| and [SW], S. Jeanin, R. Schoof and L. C. Washington dealt with
the so called simplest quintic fields, the real cyclic quintic number fields K,
associated with the quintic polynomials

Po(x) = 2° + m22* — (2m® 4 6m? + 10m + 10)3
+(m* + 5m® + 11m? + 15m + 5)2? + (m® + 4m? 4+ 10m + 10)z + 1

of discriminants d,,, = (m3 + 5m? + 10m + 7)2A% | A,, = m* + 5m? + 15m? +
25m +25 and 100ts O, 0(0,) = (M +2) +mb,, —62,)/(1+ (m+2)0,.), 02(0m),
0%(0,,) and 0(6,,). In this paper, we assume that A,, is square-free. In that
case, the conductor of K, is equal to A,,, its discriminant is equal to A% | the
set {—1,0,,0(0m),0%(0m),03(0m)} generates the full group of algebraic units
of K, and the regulator of K, is

Regy :é H ( Z Céjlog\gj(amﬂ)

1<i<4 0<j<4

Since P, (m+1)Py(m+2) = —(m3+5m? +10m+7)? < 0 we can use Newton’s
method for computing efficiently as good as desired numerical approximations
of aroot 6, € (m+1,m+2) of P,,,(x). Then, the four other roots are computed
inductively by the transformation 6 — o(6) := ((m+2)+md—02)/(1+(m+2)0).

One of the motivation for computing class numbers of simplest cubic and
quintic fields stems from Vandiver’s conjecture according to which p never divides
the class number b} of the maximal real subfield Q((,)* = Q(cos(27/p)) of a
cyclotomic field Q(¢,) of prime conductor p. However, as the computation of h;
is impossible to perform (except for very small values of p, say p < 67 (see [Wal
Tables, pages 420-423])), the idea is to compute class numbers hx of subfields
K of Q(¢p)" of small degrees:

Theorem 1. (i). Let p=1 (mod 12) be a prime and let ho, hy and hg denote
the class numbers of the real quadratic, cubic and sextic subfields of the cyclo-
tomic field Q(Cp). Then, hohs divides he and he divides the class number h} of
the mazimal real subfield Q((p)* = Q(cos(27/p)) of Q((p) (see [CW], Lemmas 1
and 2]). However, all the prime factors q of he are less than p (see [Mog]). (ii).
Let p=1 (mod 10) be a prime and let hs denote the class number of the real
quintic subfield of the cyclotomic field Q(¢p). Then, hs divides bt

Since the simplest cubic and quintic fields have small regulators we might
expect to find some of them of prime conductors and large class numbers. There-
fore, by using simplest cubic fields we might expect to find examples of cyclotomic
fields of prime conductors p for which hl‘f > p but for which, unfortunately, all
the prime factors ¢ of h;,L could be less than p. Up to now, only one such example
had been found (see [CW] and [SWW]), and we will find three more examples
(see Table 3). In the same way, by using simplest quintic fields we might expect
to find examples of cyclotomic fields of prime conductors p for which some prime
factor ¢ of h; satisfies ¢ > p. Up to now, only one such example had been found
(see [SW] and [Jean|), and we will find 31 more examples (see Table 2).
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2 First Method for Computing Class Numbers

Let K be a real abelian number field of degree ¢ > 1, discriminant dg and
conductor fx associated with a Q-irreducible unitary polynomial Pk (X) = X 74
ag—1 X9+ -+ ag € Z[X]. Let Xx denote the group (of order g) of primitive
even Dirichlet characters associated with K and let Regy denote the regulator
of K. According to the analytic class number formula (see [Lan) Chapter XIII,
section 3, Th. 2 page 259]), s +— Fi(s) = (dx /7?)*/?I'%(s/2)Ck (s) has a simple
pole at s = 0 of residue

Ress—o(Fi(s)) = =29 hxRegy = 27 liH(l) sk (s).
S—

Since (k(s) = [ ex, L(s,x) and L(0,x) = —1/2 if x = 1 but L(0,x) = 0 for
1 # x € Xk, we obtain

hxRege = [[ L'(0,%). (1)
1#x€XK

Lemma 1. (See [Sta]). If x is a (non-necessarily primitive) non-trivial even

Dirichlet character modulo f > 1, then L'(0,x) = — Z x(k)logsin(kx/f).
1<k<f/2

From now on, to simplify, we assume that ¢ > 3 is an odd prime. Then,
K/Q is cyclic of degree ¢, the conductor fx of K is odd, Xk is cylic of order
g, the conductors f, of all the 1 # x € Xk are equal to fx, and the characters
1 # x € Xk come in conjugate pairs {x, x}. Hence, using (1)) and letting xx
denote any one of the ¢ — 1 generators of Xy, we obtain the simple formula

hxRegy = H ‘ Z x4 (k) log sin(kr/ fr) 2. (2)

1<1<(¢—1)/2 1<k<fx /2

To further simplify, we finally assume that fx is square-free. Then, fx =
[1,<;<;pi is a product of ¢ > 1 pairwise distinct odd primes p; =1 (mod q)
and X = [];<;«; Xp; Where each x,, is a character of order ¢ modulo p;. Now, for
a given prime p =1 (mod g¢), we set g, = min{g > 1; g®P=D/1#£1  (mod p)},
G, = g;gpfl)/q mod p and we let ¢, be the character of order ¢ mod p defined by
Op(x) = g?(”) where k(z) = min{k € {0,1,---,¢—1}; G’; =2®=D/7  (mod p)}
(for ged(x, p) = 1). To each n € {0,1,---,(g—1)""1 — 1} we associate its (g — 1)-
adic development n = > ,_,,(a; — 1)(¢ — 1)*"2, a; € {1,2,-,q — 1}, and the
primitive mod f character of order q

wn = ¢p1 H g:

2<i<t

There exists a unique nx € {0,1,---,(¢ — 1)!~! — 1} such that the primitive
character xx := 9n, of order ¢ generates the cyclic group X of primitive
Dirichlet characters associated with K. The following algorithm provides us with
an efficient technique for determining this unique ng:
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1. 0,n :=(¢g— 1)1 -1

2. If n = n/ then go to step 9.

3.p:=3.

4. While p divides dp do p :=next prime.

5. If Pg(X) has no root modulo p then do p :=next prime and go to step 4.
Now, since P (X) has at least one root modulo p and since p does not divide
the discriminant dp of Pk (X), it holds that p splits in K and we must have
¥, (p) = x(p) = +1. Hence, we now do:

6. If 1, (p) # 1 then {n :=n+ 1; go to step 2}.

7. If ¢, (p) # 1 then {n’ :=n’ — 1; go to step 2}.

8. p :=next prime and go to step 4

9. Return(n).

Practically, this algorithm is fast for we only have to use Step 5 for small
primes p. In fact, assume the Generalized Riemann Hypothesis. Then, for any
distinct Dirichlet characters x and x’ mod f there exists some prime p < 3log? f
which does not divide f such that x(p) # x’(p) (apply [Bal Theorem 3] with
G = ker(xx’71)). Hence, the primes p which arise in our algorithm satisfy p <
310g;2 A,,. For example, we used this method in the case of simplest quintic
fields to compute the data given in Table 1 in 2h35mn. The computations were
all carried out on a PC microcomputer with Pentium IV, 1Ghz, by using Pr.
Y. Kida’s UBASIC language which allows fast arbitrary precision calculation on
PC’s. (See also [Loud] for another example of the use of this method in the case
of simplest cubic fields).

n:=

s

3 A Faster Method for Computing Class Numbers

In this section we develop a more complicated but much more efficient technique
for computing class numbers of real abelian number fields of a given degree
g > 1 and known regulators (it will practically require only O( ff('5+€) elemen-
tary operations to compute hg, whereas our previous techniques based on ([I)
and (2) requires O(f; ") elementary operations to compute hx). The idea is
to generalize [WBI Section 3] to compute efficiently good enough numerical ap-
proximations to L'(0, x) for 1 # x € Xk, and to use (). Let x be a primitive
even Dirichlet character modulo f > 1. Set

T(x) = Z x(n) exp(2nmi/f) (Gauss sum), (3)
1<n<f
W) =7(x)/Vf (root number) (4)
and
6. x) =D x(me ™ (x> 0). (5)

Then, |W(x)| =1 and using

0(1/z, x) = W(x)va0(z,x) (z>0), (6)
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we obtain
(f/m)*2I(s/2)L(s, x)
A A e O A
0 T 1 1

T

L(0,x) = 0 and the following result which enables us to compute numerical
approximations to L’(0,x) to any prescribed accuracy:

Theorem 2. Let x be a primitive even Dirichlet character modulo f > 1. Then,
Zx‘/ e ooy L 32 X g
n>1 wn?/f T o= 77"2/

Hence, setting

o dt —1)*
Eq(z) ::/ e tTZ—loga: — _Z(kwlz' zk

k>1
_m(1112233)

z+ 1+ 2+ 1+ 2+ 1+ 2+
(where v = 0.577 215 664 901 532- - - denotes Euler’s constant),

. _ x (=1 :
BEy(z) == f/ Cat=1-2 ;mek

;;%Liiiii)
VT z+ z+ z+ 2+ 2+ 2+ ’
and
1 W “(n

1<n<N 1SnenN

(N > 1 a positive integer), it holds that
1 fzt

L'(0,%) — L'x(0,%)] <

00 = Ev O] 2ME/7t3 log/ 2 (M f)
for

Corollary 1. (See [Lou3 Proof of Theorem 7]). Let ¢ > 2 be a given prime.
Fiz t > (¢ —1)/2 and M > 0, and let K range over a family of real abelian
numbers fields K of degree q for which all the root numbers W(x), 1 # x €
Xk, are known. Then, as fx — oo and for N > B(t, fx, M), the limit

1 .
|@ ITiyex, L'(0,x) — Rogr i yexs Ln(0,X)| is equal to zero.
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4 Efficient Computation of Root Numbers

According to Corollary[I] (I) and Theorem Rlcould be used to compute efficiently
numerical approximations L’y (0, x) to L’(0, x) for primitive even Dirichlet char-
acters of order n,, > 1 and class numbers of real abelian number fields. However,
as there is no known general formula for Gauss sums (see [BE]), we will now
explain how to compute efficiently these root numbers W (y) (notice that since
the use of (@) to compute the exact value of W(x) requires > f, elementary
operations, it would be much simpler to use Theorem [I] than to use @) and
Theorem ). We point out that we are going to end up with a method for com-
puting class numbers of real abelian number fields which is more satisfactory
than the one previously used (see [SW] and [SWW]): we compute exact values
of root numbers, whereas in [SWW] they had three choices for W () for simplest
cubic fields of a given prime conductor and in [SW]| Top of page 553] they had
twenty choices for W (x) for simplest quintic fields of a given prime conductor.
In their computations they were lucky enough for in all cases considered only
one of their possible choices gave rise to an approximation of the class number
sufficiently close to an integer. To begin with, let us fix some notation. Through-
out this fourth section, we let x denote a primitive even Dirichlet character or
order n, > 1 and conductor f, > 1. We set w(x) = (7(x))"™, ¢, = exp(2mi/n,)
and Q(x) = Q(¢y). We let ¢, = ¢(ny) and Z[x] = Z[(,] denote the degree and
the ring of algebraic integers of the cyclotomic field Q(x), respectively. Finally,
for any [ relatively prime to n,, we let o; denote the Q-automorphism of Q(x)
which is defined by 0;((y) = Ci- Notice that if ged(l,n,) = 1, then x! is also a
primitive Dirichlet character of order n, and conductor f, and that X! is even
(respectively odd) if x is even (respectively odd).

Theorem 3. Let x be a primitive Dirichlet character of conductor fy, > 1 and
order n,, > 1. Then

w(x) = (r0))™ = fP2W00)™ € Z[x] 9)

and o1(w(x)) = w(x!) for ged(l,ny) = 1. Moreover, if n, is prime and f, is
square-free, then w(x) € fyZ[x].

4.1 Exact Computation of w(x)
Fix a Z-basis B = {€1,---, €4, } and write

wi) = 3 blkx)ex € Z- (10)

1<k<¢x

with b(k,x) € Z, 1 < k < ¢. Let B+ = {n,---,n4,} be the dual basis of B,
relative to the trace form. Hence, Trqy/q(exnx) = 1 but Trqe)/q(exm) = 0
for k # 1, and

b(k, x) = Trquo/@(mw(x) = [ > aulm)(WHH))™ (1)

1<i<ny
ged(l,ny)=1
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(for oy(w(x)) = w(x!)), and these coordinates b(k,Y) are rational integers of
reasonable size: |b(k, x)| < M (BL)p, ;Xﬂ where

M(B*) =max{|oy(n;)]; 1 <1< ny, ged(l,ny) =1, 1<j< ¢ ). (12)

For example, if n, = g > 3 is prime, then B+ = {n, := (Cq_l—l)/q; 1<1<q-1}
is the dual basis of the Z-basis B = {C(’;; 1 <k < q— 1} of the ring of algebraic
integers Z[(,] of Q({,), and M (B+) <2/q < 1.

Now assuming that

Hypothesis: 6(x!) := le(n)e*’”ﬂ/fx #0 (13)

n>1

for 1 <1 < n, and ged(l,n,) = 1, we explain how one can compute efficiently as
good as desired numerical approximations by (k, x) to these coordinates b(k, x) €
Z of w(x), hence how one can compute their exact values. The key point is that
6(x') # 0 implies
Wx') = 0(x")/00x),

by (B). According to Section [4.4] below, this Hypothesis should always be sat-
isfied. The following Lemma [2 will enable us to compute as good as desired
numerical approximations 6y (x!) to 6(x!). These approximations will then en-
able us to check the Hypothesis (I3)) prior to using Lemma [3] for computing
as good as desired numerical approximations by (k, x) to the rational integers
b(k, x) defined in ([I0), whose exact values can therefore be deduced.

Lemma 2. Let x be a Dirichlet character modulo f > 1. Set

Onix) = Y x(n)e ™/

1<n<N
(N > 1 a positive integer). If N > B(t, f, M) (as in [)), then
1 fat

S T gL

Lemma 3. Let x be a primitive even Dirichlet character of order n, > 1 and
conductor f, > 1. Assume that On(x') # 0 for ged(l,ny) =1, set

Wx(x') = 0n(x")/0n (XY

10(x) — On(x)

(14)

and

b (k. x) = £ Y oulne) (W (xh)™ 1<k <oy, (15)

1<i<ny
ged(l,ny)=1
and fiz € such that 0 < e < 1. Assume that |0(x') — On(X")| < €lOn(X")|/ny for
1<i<n, and ged(l,n,) = 1. Then,

27(e — 1)

b (K, x) = bk, X)| < ——

M(BY)gy fux/2e.
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Proof. Let us simplify the notation: we set n = ny, 6 = 0(x'), O = On(x"),
W = W(x") = 0/6 (notice that Oy # 0 and [0 — O] < €|x|/n imply 0 # 0),
Wx = Wx(x!) = 0n/0n and write 0 = Oy + exOy with |ex| < ¢/n. Then,

(L en) — (L en)"] _ 1500 () (e + &)

wn"—-Wg| =
yields
n n k 0 n
W — W S2Zk=1 (%)lenl :2(1+|6N|) 1 S2<1+6/n) 1
(L= fenl)" (T Jen D) A= 1/n)"

Since (1 —1/n)" > (1 —1/3)3 = 8/27 for n > 3 and since (1 +¢/n)" —1 <
e —1< (e—1)efor 0 < e < 1, we obtain [W(x))" — Wy (x))"| < 27(e —1)e/4 for
1 <1< mn, and ged(l,n,) =1, and the desired results, by (), (I2) and (@5).

4.2 Exact Computation of W (x) and 7(x)

Now that we know how to compute the exact value of w(y) := (7(x))™x, let us
explain how one can determine which of its n,th root is equal to 7(x):

Lemma 4. Fize € (0,1]. Let x be a primitive even Dirichlet character of order
ny > 2 and conductor f, > 1. Assume that w(x) is known and that N is
such that On(x) # 0 and |0(x) — On(X)| < €lOn(X)|/ny. Fiz W a nyth root of
(W(x))™ = w(x)/f™/%. Then, W(x) = CKoW where ko in the unique integer
k€ {0,1,---,n — 1} such that [Wx(x) — CEW| < 2¢/ny (and it holds that
W (x) — C’;W| > (4 —2€)/ny > 2€/n, fork # ko).

Proof. Since |6 — On| < €|0n]|/ny, we have 8 # 0, Oy # 0 and

0 _On, _1000n—0)+00n —0)| _,10—On| _ 2¢

W(x)—W =|= 00 '
W) - Wr(0l =15 - 7 160 | I Y O

There exists a unique ko € {0,1,---,n — 1} such that W(x) = ¢(¥°W. Since
for a # b we have [(FW — C§W| = [¢y — ¢l = 2sin(7/ny) > 4/ny, we have
(W (xX) = W = [Wx (x) = W(X)| < 2¢/ny and [Wy (x) = CiW| = [(Wi(x) —
W 0D W W) > 2inn ) Wi ) =W ) > 2/ > 2
or 0-

4.3 Computation of Class Numbers of Simplest Quintic Fields

First, we checked our present method by recomputing Table 1. Second, we used it
to compute the class numbers of all the simplest quintic fields K,,’s of conductors
Ay = m* +5m3 + 15m2 + 25m + 25 < 10'° a prime. We obtain the following
consequence: there are 32 simplest quintic fields K,, of prime conductors p <
1019 whose class numbers are divisible by some prime ¢ > p (see Table 2). Third,
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we used it to compute the class numbers of all the simplest cubic fields K,,,’s with
—1 <m < 554869 and A,, = m?+3m+9=1 (mod 12) a prime. We obtain
the following consequence: in the range —1 < m < 554869, there are only 4
simplest cubic fields K, of prime conductors A, =m?+3m+9=1 (mod 12)
for which the product hohsz of the class number ho of the real quadratic field
Q(VA,,) and of the class number h3 of the simplest cubic field K, of conductor
A, is greater than or equal to A,, (see Table 3).

4.4 A Conjecture

According (i) to our numerical evidence (the computation of approximations to
0(x) for the 10582203 primitive even Dirichlet characters x of prime conductors
p < 20000 and for numerous examples of cubic, quartic and quintic primitive
even Dirichlet characters of (non necessarily prime) large conductors associated
with simplest cubic, quartic and quintic fields), and (ii) to the fact that as
p > 5 ranges over the odd primes it holds that ZXeX; |6(x)|? is asymptotic to

p%/2/(44/2) and that 6(x) # 0 for at least >> p/logp of the (p — 3)/2 characters
1#x¢€ X; (adapt the proof of [Lou2, Theorem 1]), we put forward the following
conjecture:

Conjecture 1. (i) (See Hypothesis ([3))). For any primitive even Dirichlet char-
acter of conductor f, > 1 it holds that 6(x) # 0. (ii) Let p > 5 denote an odd
prime and let X,I" denote the set of order (p—3)/2 of the primitive even Dirichlet
characters modulo p. For a > 0 real, the limit

: 2 1/4
g+(a) = plggo ﬁ#{X € X5 00| < ap 1}

exits, a — g+ (a) is continuous, strictly increasing, g4 (0) = 0 and g4 (c0) = 1.

Now, fix tg < 1/4. Then, at least for real cyclic fields K of a given prime
degree ¢ and of large prime conductors fx, we might expect to have |6(x)| > ff(“
for all the 1 # x € Xk. In that case, for t > 1/2 — ¢y we can use (I4) with
N > B(t, fx, M) to check numerically that 6(x) # 0 for all the 1 # x € Xk.
Then, for t > (¢ + 1)/2 — to we can use Lemma B with N > B(t, fx, M) to
compute the exact value of w(x) for all the 1 # x € Xg. Finally, for t > 1/2—t,
we can use Lemma Hlto compute the exact value of W(x) for all the 1 # y € Xk.
Hence, according to Corollary [l we might expect that our second method for
computing class numbers of real abelian number fields K of a given degree and
known regulators requires only O( f%5+6) elementary operations. In practice, it
is indeed amazingly efficient and of the conjectured complexity.

5 Explicit Formulae for w(x)

Finally, we explain how we can dispense with Subsection [£1] when dealing with
simplest cubic and quintic fields: we know beforehand w(x Km) and we can use
Lemma @ for computing the root number W (xy, ), making in these two cases
our method for computing class numbers simpler and faster.
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5.1 Simplest Cubic Fields

Set w = (—1+i+/3)/2. The units in Z[w] are {#1, +w, +w?}. An algebraic integer
a=a+bw € Zw] is primary if « = =1 (mod 3Z[w]), i.e. if a = -1 (mod 3)
and b = 0 (mod 3). The order of the multiplicative group (Z[w]/3Z[w])* is
equal to 6 and the six units in Z[w] form a set of representatives of this group.
Therefore, if o € Z[w] and 3 does not divide its norm N(«) = ad@, then exactly
one of its six associates is primary. If follows that if 0 # o € Z[w] is a nonunit
element such that a = (—1)! (mod 3Z[w]), where ¢ denotes the number of
irreducible factors of a (counted with multiplicity), then a can be written in a
unique way as a product of primary irreducibles. Now, let 7 € Z[w] be a primary
irreducible element of norm a rational prime p = 1 (mod 3). For o € Z[w]
coprime with 7, let x.(a) € {1,w,w?} be the cubic residue symbol defined by
aP=1/3 =y (a) (mod 7). Then, 7(x»)> = pr (see [IR|, Corollary page 115]).
It follows:

Theorem 4. Assume that A,, = m? + 3m + 9 is square-free, write A, =
HZ:1 pr. where the py’s are distinct odd primes and set

m) 233V e (mod 320)).

o= (1) (5 .
Then, 6, can be written in a unique way as a product 6y, = [[;p<; Tk of t
primary irreducibles elements ), € Zlw] with py, = |mg|*. Set x; = Tlicpes X -
Then, x5, 1s a primitive cubic character modulo A, and

W(Xém) = T(X(Sm)3 = A0 0m- (16)

Hence, setting e, = (1 — (=1)* (2))/2 € {0,1}, there exists kn, € {0,1,2} such
that

1 3\/g 2k —+ €,
arg(W(X5m))Egarctan(2m+3)+ m3 -

and, if O(x5, ) # 0, then ky, can be efficiently computed by using Lemma @l
Moreover, x5 —1is associated with the simplest cubic field Ky, i.e. the character
Xk, associated with Ky, obtained by using the technique developed in Section
is equal either to x; —or to its conjugate character X .

Since Pp,(x) = 2 — ma? — (m + 3)x — 1 has no root in the finite field with
two elements, we have 1 # x (2) € {w,w?} where xj is the cubic character
associated with K,, obtained by using the technique developed in Section 2]
According to the law of cubic reciprocity (see [IR] Theorem 1, page 114]), we
have

(mod 27), (17)

_ _ o _ Jw? (mod2Z[w]) ifm=0 (mod2)
X, (2) = X2(0m) = 0m = {w (mod 2Z[w]) ifm=1 (mod 2),
hence ) ( )
_Jw® ifm=0 (mod 2
Xs,(2) = {w ifm=1 (mod 2).
Hence, by computing X (2) and by changing x &, into its conjugate if neces-
sary, we may assume that x (2) = x; (2), which implies x = x5 -

m
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5.2 Simplest Quintic Fields
In the same way, we have:

Theorem 5. Assume that A, = m* +5m3 + 15m? 4 25m + 25 is square-free.
Since Py, (x) = 2° + m2xt — (2m3 + 6m? + 10m + 10)2 + (m* + 5m3 + 11m? +
15m + 5)z% + (m3 4+ 4m? + 10m + 10)x + 1 has no root in the finite field with
two elements, we may assume that the quintic character x .~ associated with the
simplest quintic field K, (obtained by using the technique developed in Section
2) satisfies
¢ ifm=0 (mod?2
Xi, (2) = {421 ifm=1 Emod 23

In that case, it holds that w(x g ) :=T(xg, )° = (—1)""' () Apdm where

6m = (m® + 5m® + 5m* + 25m? + 125m + 125)(s
+(m® + 5m® — 5m* — 75m? — 175m? — 125m)¢2
+(mS + 10m° + 25m* — 100m? — 125m)¢3
+(m8 + 10m® + 40m* + 75m® + 50m?) (5 € Z[(s).

6 Simplest Cubic Fields and Class Numbers of the
Maximal Real Subfields of Some Cyclotomic Fields

Assume that A,, = m?> +3m +9 = 1 (mod 12) is square-free. Let L,, =
K (V/A,,) denote the compositum of the real quadratic field k,, = Q(v/A,)
and of the simplest cubic field K,,,, both of conductor A,,,. Then, L,, is a so-called
simplest sextic field of conductor A,, associated with the sextic polynomial

Pp(z) = 2% — 2ma® — 5(m + 3)x* — 202 4 5ma® + 2(m + 3)z + 1,

and a subgroup of finite index @, (dividing 12) of the group of algebraic units
of L,, is known (see [Gral]). Using this subgroup, and following the proof of
[Loud, Theorem 4], we obtain:

Theorem 6. (See [Loud|). Assume that A,, =m?+3m+9=1 (mod 12) is

square-free. Then,
A2
hy, >-——fg—. (18)
™ 7 15elog”(44,,)
In particular, for m > 10° it holds that hy >Anm

Notice that, in the special case that A, = m? +3m +9 =1 (mod 12)
is prime, we have hy, = ha, hyy = hs and h; = he, with the notation of
Theorem [[1 With thls notation, we have seen that the simplest cubic fields K,
for which A,, = m?>+3m+9=1 (mod 12) is prime and such that hohs > A,,
are few and far between (see Table 3). However, according to the previous lower
bound for hy , as soon as m is large enough we have hg > A,,. Moreover, using
this lower bound for &, ~and following the proof of [CW, Theorem 2] (see [CW],
Page 269]), we obtain:
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Corollary 2. (See [CW| Theorem 2| for a worse and non-effective result). Let
e > 0 be given. Set ¢ = %szl (mod 3)(1 — 2p~2) = 0.311---. For at least

(c 4 o(1))x'/? positive odd square-free integers f < x is holds that the class
numbers b of the mazimal real subfields Q(C¢)t of the cyclotomic fields Q(C
f f f

satisfy hT >, f27¢, and the constants involved in these o(1) and >>. are explicit.
Yy

Proof. Let f range over the positive square-free integers of the form f = A,, :=
(mod 12).

m2+3m+6=1

7 Tables

Table 1. class numbers hy,  of the simplest quintic fields
K, of square-free conductors A,, < 107

m Am  hg || m Am hi, || m Am h,,
—1,-2 11 1/[—21 154291 108691||—39 2038711 4521505
-3 31 1| 19 170531 44605|| 37 2148911 27105755
1 71 1/[—22 187751 76901|| 38 2382131 6728105
—4 101 1|| 21 247951 308605||—41 2505371 6340275
2 191 11}|—24 270721 153005|| 39 2633851 7503505

3 451 5| 22 295331 478775||—42 2766691 20599841
—6 631 11}| 23 349211 186091||—43 3047951 24153305
4 941 16]|—26 378611 189305|| 41 3196631 8088176
-7 1271 55| 24 410161 591775||—44 3350141 6495280
-8 2321 305(|—27 443311 289025|| 42 3509671 61395955
6 3091 80||—28 515981 2372005|| 43 3845171 17264525
-9 3931 256|| 26 555671 T721151||—46 4021391 21321025
7 5051 1451(|—29 597251 540905||—47 4392551 12722855

8 7841 421]| 27 641491 1566401||—48 4788841 49860400
—11 9951 541(| 28 736901 1764400|| 46 4997051 42769375
9 11671 655(|—31 788231 1217821||—49 5211371 56285605
—12 13981 1375|| 29 842591 760055| 47 5433131 88151275
—13 19811 4705||—32 899321 798256| 48 5897161 17478875
11 23411 2000{|—33 1021771 4680055||—51 6139711 21966025
—14 27311 7255|| 31 1087691 1386275| 49 6390311 74338555
12 31861 9680(|—34 1156331 1402000||—53 7186931 155197205
13 42431 9455|| 32 1228601 4822625|| 51 7468771 28850896
—17 62891 9455|| 33 1382791 2148080||—54 7758151 37142851
—18 80251 37631||—36 1464901 4628591|| 52 8056541 118690480
16 90281 19301|| 34 1551071 2160455|| 53 8678351 44646025
—19 100991 203305||—37 1640531 1636721||—56 9002081 106111555
17 112871 83275(|—38 1831511 11812625|| 54 9335491 54898055
18 139471 32605|| 36 1933261 3869525||—57 9677371 73297775
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Table 2. the simplest quintic fields K, of prime conductors A,, = p < 10*° for
which some prime g > p (in bold face letters) divides their class numbers hy

m A, hg,,
27 641491 1566401 = 1566401
—61 12765251 66431941 = 66431941
66 20479231 182277211 = 61 - 2988151
73 30425111 335434451 =11 - 30494041

77T 37526591 3233114891 = 3233114891

—84 46927381 2068985771 = 2068985771

—88 56676161 5912208301 = 5912208301

—99 91352671 3144379001 = 3144379001
—102 103090711 3626779141 = 3626779141
—121 205717691 11420513591 = 11420513591

122 230839031 60390377311 = 11 - 5490034301

128 279170201 24178878281 = 24178878281

129 287909191 32215474121 = 32215474121

139 387022451 42590939281 = 11 - 3871903571
—147 451386751 155312785456 = 2* - 9707049091
—163 684652511 785372557471 = 41 - 19155428231
162 710402911 421336924016 = 2* - 26333557751
178 1032554351 320881058831 = 320881058831
187 1190654831 259187494511 = 11 - 23562499501
—237 3089232931 1634411025661 = 1634411025661
238 3276804731 3314877124271 = 71 - 46688410201
242 3501489071 4793050096976 = 2* - 299565631061
249 3767856571 2253716261071 = 11 - 204883296461
—263 4694424311 9653048507861 = 11 - 887549864351
—264 4766572561 3419567237581 = 112 - 2860886261

268 5256015221 4240933367591 = 151 - 28085651441

271 5494201451 6532834598131 = 6532834598131

282 6437395351 18156246542621 = 11 - 1650567867511

291 7295360131 5988407760191 = 5988407760191

293 7497114671 10748665628261 = 117 - 88831947341
—303 8291171431 25938285252521 = 2311 - 11223836111
—312 9325450081 15721799752591 = 41 - 383458530551

Table 3. least values of m > —1 for which A,, is prime and hahs > A,

m Am \H(Xam)largW(X5m) ha halhahs/Am

102496| 10505737513| 20.268 - --|1 )+ Z] 891]13152913| 1.115- --

106253| 11290018777| 34.364 - --| L arctan(5 35y lo6s| 6200212| 1.476- -

319760|102247416889(202.162 - - -| 1 arctan(:2¥%)  |1887|57772549| 1.066 - -
(Gma3)

3
554869(307881271777| 88.861-- |+ arctan 7983(93739324| 2.430- - -

3

L arctan(52

+
wl3

+
ol
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An Accelerated Buchmann Algorithm for
Regulator Computation in Real Quadratic Fields

Ulrich Vollmer*

Technische Universitdt Darmstadt, Fachbereich Informatik
Fachgebiet Kryptographie und Computeralgebra
Alexanderstr. 10, 64283 Darmstadt

Abstract. We present a probabilistic algorithm for computing the reg-
ulator R of a real quadratic order of discriminant A running in time

L(3,3/V8+ o(1)).

1 Introduction

In his paper [Buc90], Buchmann proposed a generalization of Hafner and Mc-
Curley’s subexponential algorithm for class group computation in imaginary
quadratic fields [HM89] to the computation of class group and regulator of arbi-
trary number fields. While his algorithm depends on an as yet unproven “smooth-
ness assumption for reduced ideals” for fields of degree exceeding two, it does
extend unconditionally Hafner and McCurley’s algorithm to real quadratic fields.

In this paper we present two modifications of Buchmann’s algorithm for the
real quadratic case. Their goal is to improve the asymptotics of the expected
run time. Correctness, and running time bounds for both algorithms depend on
a Generalized Riemann Hypothesis (GRH).

The expected run time needed by Buchmann’s original algorithm in order to
compute class group and regulator of a number field with discriminant A and
fixed degree was bounded by La(3,1.7) where

La(a,b) = exp(b(log|A|)* (loglog| A|)' ).

Our first algorithm, RQCLR, computes class group and regulator of a real
quadratic order with discriminant A in time L(3,v/2). It confirms the cor-
rectness of its result by computing an approximation to the special value of the
L-function of the field at 1.

The second proposed algorithm, RQR, computes only the regulator in time
La(3.3/ V/8). Tt produces with probability given a priori the correct result. How-
ever, it does not verify the correctness of the result.

The results of this paper are collected in the following theorem.

Theorem 1. (GRH) For any positive real number p < 1, and € > 0, there is
some Ay = Ag(€), and a probabilistic algorithm that has the following property:
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Given the positive discriminant A > Ag of the quadratic order O, the algo-
rithm computes an integer R that differs from some positive multiple m - Ra of
the requlator Ra of O by less than one. Independent of A, the probability that
m =1 taken over all random input of the algorithm is at least p.

The expected run time of the algorithm is bound by L4<%7C) where

a. c=3/V8+¢eifp<l;
b. c:\@—keifp:l.

In case[B, the algorithm also computes the class number, and the elementary
divisors of the class group of O.

2 Previous Work

The details of Buchmann’s algorithm for the quadratic case were spelled out in
Abel’s thesis [Abe94]. Her algorithm is applicable to arbitrary quadratic orders,
not only maximal ones. Abel was able to prove on the basis of some Generalized
Riemann Hypothesis (GRH) that her variant of the algorithm runs in time bound
by La(3,5/6v3+ o(1)).

In [VoI00], the author indicated briefly that three sub-algorithms used by
Abel can be substituted by faster ones. Mentioned were:

— Replacement of the factorization algorithm used in the process of generating
relations. This suggestion was already made in [HMK9].

— Computation of an approximation of the regulator from logarithms of units
that form a generating set of the unit group with the help of an algorithm
proposed by Maurer in his thesis [Mau00];

— Use of the fast algorithm for computation of the determinant of the relation
lattice proposed in [Vol00] itself.

This paper takes up the suggestions of [Vol00], incorporating them into a com-
plete algorithm.

Practical implementation. The focus of this paper is in presenting an
algorithm whose complexity can be rigorously proved (assuming GRH), although
some of the ideas might also lead to practical improvements.

For advice on the practical implementation of Buchmann’s algorithm for
quadratic fields, we refer the reader to [Coh93], and [Tac99]. [Coh93] gives a
detailed description of the algorithm as implemented in the well-known PARI
package. (Please refer to the fourth printing, and the author’s web site for the
corrected text of the relevant passage.)

|Jac99] shows how the Multiple Quadratic Polynomial Sieve can be employed
for rapid generation of relations in the quadratic case. The resulting algorithm
is implemented in the LiDIA package of Buchmann et al.

To the best of the author’s knowledge there are no published rigorous, or
heuristic analyses of the expected run times of the algorithms proposed in the
cited works. It is, however, to be expected that they share the asymptotic behav-
ior of RQR, or RQCLR, depending on the linear algebra algorithms employed.
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3 Overview

Let O be a real quadratic order, and K its fractional field which we assume to
be embedded into R. For simplicity we will assume in this overview that O is
maximal.

We denote the discriminant of O by A, the group of invertible O-ideals by
Za, its subgroup of principle ideals by Pa, the class group Za/Pa of O by Cla,
the class number by h 4, the regulator by R, and the non-trivial automorphism
of K by o.

We assume in the following that R > log A, since otherwise there are deter-
ministic algorithms that are more efficient than the probabilistic ones proposed
here.

Buchmann’s algorithm uses the fact that we can compute “small” repre-
sentatives of each ideal class, called reduced ideals, in polynomial time. For
background on reduced ideals, the properties of the reduction operator, and cy-
cles of reduced ideals we refer the reader to [Len82]. Here, we will just give the
definition.

Definition 1. An integral ideal a € Za is called primitive if a C qZ implies
g = 1. It is called reduced if it is primitive, and ¢ = min(a NN) is a minimum
of a, i.e. |a|,|a%| < q imply o =0 for any a € a.

This definition coincides with the classical one introduced by Gauss in the
language of binary forms.

In [Bucd(], Buchmann introduced, generalizing ideas by Seysen [Sey87], and
Hafner/McCurley [HMR9], lattices L™ ¢ Z™ @R with determinant ha R4, and
showed how to produce a generating set for L(™) for suitably chosen m > 0.

We recall the definition of L("). Roughly spoken, it is the lattice of “relations”
over a large set of prime ideals.

We define the relevant set of prime ideals of O. For b € R, let F, = {p € Za |
Np = p prime, ged(A,p) =1, p < b}. Set ¢ = LA(%,Z), where z is later chosen
such that F, is large enough for random reduced ideals to factor over F. with
sufficiently high probability. The cardinality of F. will be denoted by m.

Let Za,. denote the free subgroup of Zx generated by F.. Enumerate the
elements of F, such that . = {p; | 1 <i < m} and Np, < Np; whenever i < j,
and use this enumeration to identify Zn . with Z™ in the natural way. The
algorithms presuppose that the restriction of the projection v : Zp — Cla to
T, is surjective. Due to a well known result of Bach, cf. [Bac90] this is certainly
the case if ¢ > g = 12log® A which we will henceforth assume throughout. Denote
Fy by G, and card G by [.

Let

¢p: K* —Pa:ar— (o),

«

b

1
Log : K*HR:ar—>§1og

aO'

and O, = ¢_1(IA,C NPa).
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We define the lattice L™ to be the image of O, under (¢, Log). We will call
its elements relations. The pre-image of a relation under (¢, Log) is called its
generator. From the diagram

1 +1 0, LB gm R
1 O o, —2 zm ol —— 1

we see that 7|L(™) has kernel (0, RaZ) and the sequence
0 —— R/RAZ —— (Z"®R)/L™ ——— Clp —— 1

is exact.

For any v = (v,Loga) € L™ we call v = 7(v) its integral part. For any
sub-lattice M C L") we will denote 7(M) also simply by M’.

Both RQR, and RQCLR compute Ra by producing couples of elements of
L(™) with the same image under 7. To achieve this they proceed roughly in the
following manner:

1. Construct the elements of the factor base F..

2. Choose some n € N. For each j with 1 < j < n generate a random relation

v; € L™ and enter its coefficients into a matrix A. (Instead of the value of

Log, we record its argument in compact representation.)

RQCLR only: Compute the determinant i of the column space of A.

4. Choose randomly two relations ws with generators v, s = 1, 2. Express each
m(ws) as an integral linear combination of m(v;). Each found expression
yields an element Ey of the kernel of .

5. Compute the real GCD R of E; and E» using e.g. algorithm rgcd_cfrac in
[Mau00].

6. RQCLR only: Calculate bounds for the product of class number and regula-
tor using the L function of field K. If AR does not lie within these bounds,
start over.

7. Output R’ = R, and, if we are in RQCLR, also h = h.

8. RQCLR only: Compute the Smith Normal Form of A, and extract the class
group structure.

@

The algorithms differ in the relation generation in step Pl In RQR we choose n
large and compute many relations with few non-zero entries, which we will call
“sparse”. In RQCLR we compute fewer relations, but the relations may have
non-zero entries at each place. The reason for the different asymptotic behavior
of RQR, and RQCLR lies in this difference. NB: in practical implementations
one chooses n only slightly larger than m, and generates only sparse relations.
It is still unclear why this succeeds.

We outline the rest of the paper. In the sections@throughBlwe will treat those
aspects of the proposed algorithms that are specific to our approach. For the
general framework, and results not listed here see [Sey87IHM89/Abe94|Mau00].
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The generation of random reduced ideals in an ideal class is treated in section [l
Section [ol establishes how many random relations need to be generated in order
to find two integral linear dependencies among them. Section [ deals with the
extraction of a generating set of units from these dependencies.

In section [f] we will give listings for RQR and RQCLR, and conclude the
proof of Theorem [Il

Throughout the following sections we will drop subscripting the symbols R,
ha, and La(1/2,z), the dependency upon A being understood. A is no longer
assumed to be fundamental. We will let Z, and P denote the subgroups of Zx,
and P containing only ideals prime to the conductor f of A. Recall that we
have unique factorization in Z, and Z/P ~ Za/Pa. Obviously, Za,. C Z, and
P(Oc) C P.

Functions o; with ¢ = 1,2,... will denote effectively computable auxiliary
functions that depend on A only, and tend to 0 with growing A.

4 Random Relations

In [Bucg9], Buchmann has given, and analyzed a method for the construction of
a generating system for the lattice L("™) in the case of an arbitrary number field.
This method relies in the real-quadratic case on the following proposition which
can be proved in analogy to Proposition 4.4 of [Sey87] giving the same result for
the imaginary quadratic case.

Proposition 1. (GRH) The number N, of reduced O-ideals that factor com-
pletely over the the set F. of ideals with prime norm smaller than ¢ = L(%7 2)
and co-prime with f is at least hR - L(%,—1/(4z)).

Buchmann proceeds by taking power products over F. with exponents up
to A, and choosing—by a method called PV—a random reduced ideal in the
resulting class. For ease of reference, we will describe a simple variant of PV for
the real-quadratic case which we will call RANDOMREDUCED that enjoys—with
minor modifications—the same properties as the more general algorithm.

Another, slightly more elaborate variant of PV for the quadratic case was
given by Abel in her thesis [Abe94].

Let a € Z be some invertible O-ideal. For any d € N we define the set

Sa = Sq(a) = {(b,) | b is reduced, b = aa,d < Loga/logA < (d+1)}.
Let D > R be given. RANDOMREDUCED proceeds as follows.

1. Choose some random d € [1, D).
2. Enumerate all elements in Sy.
3. Choose randomly among them.

The following lemmata are needed to show that RANDOMREDUCED has the
desired properties. For any a € Z and D > 0 we denote by Tp the range of values
of RANDOMREDUCED

D
TD = TD(CI) = U Sd(a).
d=1
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Lemma 1. FiracZ. Letd > 1.
Then 2 < card Sg(a) < 2logy A, and 2D < card Tp(a) < 2Dlog, A.

This is a trivial consequence of the properties of the reduction operator p proved
in [Len82].

Lemma 2. Given a,b € Z, where a ~ b, and b is reduced. Then card{d | 1 <
d < D,3a such that(b,a) € Sg(a)} = Dlog A/R+ § with —2 < § < 1.

Proof. Let b = aa, where « is chosen such that 0 < Loga < R. Then (b,o/) €
Sa(a) for some o if and only if dlog A < Loga +tR < (d + 1)log A for some
t € Z. Since we assumed that R > log A the claim follows.

Let D < Aja € Z and d € [1, D). We show that it is possible to enumerate all
elements in Sy in polynomial time. For this to be possible, the field elements need
to be given in compact representation. The following lemma, follows immediately

from results in [BTW95].

Lemma 3. Given a € K in compact representation, a € T, and f € N, it is
possible to compute the compact representation of af , and aa in time polynomial
in the size of a, o, and logn.

Thus we may proceed as follows.

. compute some «g with Logag € [% log A,log A);

. compute [y = Log oy with precision log, 4;

. set f= Ld- (log A/ZO)J, and compute a; = of;

. compute [y such that b = fpa1a = po(aza) is reduced;

. compute Log(Bpa1), and—through successive reduction—all 3; such that
B;b is reduced, and Log f3; + Log(Bpa1) € [dlog A, (d + 1) log A).

Uk W N =

Note that we can assure that all reduced ideals in Sy get enumerated, but
due to the imprecise computation of logarithms in this enumeration process, the
enumeration may inadvertently contain ideals with relative generators from a
slightly larger interval. Since at most 2 ideals are thus erroneously listed, this
will not affect the probability estimates that follow, and is, hence, ignored.

Note further that the ideal a might already be given as the product of a
principle ideal (with generator « in compact representation) with a reduced
ideal c. In this case we start from ¢, and adjust f in step [ accordingly.

We summarize the properties of RANDOMREDUCED in the following propo-
sition.

Proposition 2. Let a be a given invertible O-ideal. RANDOMREDUCED com-
putes randomly in polynomial time some O-ideal b, and o € K in compact
representation such that b = a - a is reduced.

For any reduced b equivalent to a the probability that RANDOMREDUCED
outputs b on input a is contained in the interval (log(2)/R —1/D,log A/(2R) +



154 Ulrich Vollmer

1/D). Moreover, the probability that the second component o of the output of
RANDOMREDUCED fulfills Loga € [tR, (t + 1)R) conditional on the event that
the first component is some fized b is bounded from below by 1/N with N =
[Dlog A/R]| if t < (Dlog A— R)/R.

Proof. All but the last claim follow in a straightforward manner from the pre-
ceding lemmata. We turn to the latter.

Fix some reduced b in the ideal class of a. Let o be a generator of b relative
to a with 0 < Loga < R. Let further B = {d | 1 < d < D,3tsuch thatd <
(Log ap+tR)/log A < d+1}. Then the sought conditional probability is certainly
bounded from below by 1/N where N = card B.

Now, 1 < d < D, and d < (Loga + tR)/log A < d+ 1 imply 0 < ¢ <
Dlog A/R. The claim follows.

We are now in the position to show how to generate random relations. The
procedure will be called RANDOMRELATION.

Fix some H with G C ‘H C F. that parameterizes RANDOMRELATION in
the sense that it determines whether we generate “sparse” (H = G), or “dense”
(H = F.) relations. Sparse relations have O(log? A) non-zero entries in their
integral parts. For dense relations there is no such restriction. An n x m relation
matrix is sparse in the usual sense if all contained relations are sparse since
log? A = me®),

Let q € Z be some ideal which will later be chosen to be some power of an
element of F,. that “offsets” the relation at one place.

For each p € H choose e, with 0 < e, < A. Set e, =0 for p € F\ H.
Compute a = q - Hpe?—t per.

Compute (b, ®) = RANDOMREDUCED(a) with D = A.

if b € 75 . then return FAILURE.

Compute by such that b =[], .~ ple

return ((ep — fp)per., ).

W=

o o

In step [, each computation of an ideal product is followed by reduction.
Hence, the ideal a computed in step Blis computed and stored as the product of
some o € K* (in compact representation) and a reduced ideal.

For steps ] and Bl we factor the norm of b with the elliptic curve method, cf.
Algorithm 7.2 of [LP92].

Lemma 4. For any class C € Cla, the probability that a computed in step
belongs to C' is contained in an interval ((1—o1)/h, (1401)/h) with 01(A) = o(1).

Proof. This lemma follows from lemma 4.5 of [Sey87].

Lemma 5. For the probability p that a given reduced ideal is computed in step
we have hR-p € (log(2) — 02,log A+ 02) for some 02 = o(1) provided R = o(D).

Proof. This follows from Proposition Pl and Lemma £l
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Corollary 1. The probability that the ideal b computed in step[3 lies in Ta . is
bounded from below by (log(2) — 03)L(%, —1/(42)).

Proof. Consequence of Proposition [ and [, and Lemma 3.

The repeated call to the procedure above with identical parameters until
it returns successfully yielding some relation (v,a) will be called RANDOM-
RELATION.

5 Relation Lattices

In this section we study sub-lattices of L™ subsequently simply denoted by L,
and of L' = 7(L(™)). Our goal is to estimate the number of relations which need
to be generated to achieve one of the following two goals:

1. the lattice generated by the integer parts of the obtained relations equals L’;

2. the likelihood that the integer part of a randomly chosen relation is contained
in the lattice generated by the integer parts of the other relations exceeds
some a priori given bound.

Both algorithms, RQR and RQCLR, start out by generating m relations
whose integral parts form a square diagonally dominant matrix, as originally
proposed by Seysen.

1. fori=1tom
2. (vi, ;) < RANDOMRELATION(G, p?™4)

?

Let Ay denote the matrix containing the integral parts v; of the relations
v; generated this way, and Lo the lattice generated by {v;}. Then log, det Ay =
log,[L' : w(Lo)] < (14 o4)mlogy A where 04 = o(1) can be explicitly given.

Lemma 6. Let (w;),i =1,...,k be a sequence of relations w; € L. Let further
forany j =1,...,k the sub-lattice L; C L be generated by Lo, and all w; with
i < j. Then we have m(w;y1) € w(L;) for at least n — (14 o04)mlogy A values of
J.

Proof. This follows from the fact that any chain of sub-lattices M; C L with
Lo C My C--- C M, C L has length e smaller than (1 + o4)mlog, A.

Thus we only need to produce k = (1+04)mlog, A/(1—p) additional relations
w; with RANDOMRELATION in order to ensure that with probability p a relation
randomly chosen from among them is contained in the lattice generated by the
rest.

Lemma 7. Given some v = (a;) € L' with 0 < a; < A —log A, the probability
that a call to RANDOMRELATION(F,, (1)) wyields a v with w(v) = v is at least
(1 —o05)h/(2A™ log, A).
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Proof. Let ¢ correspond to v, and let b run through the set of all ¢-smooth
reduced ideals. RANDOMRELATION arrives at some v with m(v) = v if it chooses
in step Bl the ideal ¢ - b, which has exponents smaller than A at each place by
assumption, and b in step [3 For the second choice there are N, possibilities
differing in probability by a factor of 2log, A. Each such choice can follow the
selection of (1 + 01)A™/h different power products in steps 1 and 2, every one
of which occurs with the same probability. The claim follows.

Next we prove an estimate for the number of lattice points of L that are not
in some sub-lattice. Define B(d) = {(a;) € Z™ | 0 < a; < d}.

Lemma 8. Let M’ be some proper sub-lattice of L'. If D > h, then L'\ M’
contains at least (D — 2h)™ /(2h) elements in B(D).

Proof. We know that there is a basis of L’ with positive coefficients smaller than
or equal to h. Let w be an element of that basis that is not in M’. Then we
can assign to each v.€ M’ N B(D — h) the lattice point v + w € B(D) which is
obviously in L'\ M.

Now L' N B(D — h) contains at least (D — 2h)™/h elements. Thus we have
either card((L'\M')NB(D—h)) > (D—2h)™/(2h), in which case we are done, or
card(M'NB(D—h)) > (D—2h)™/(2h). Using the assignment from the previous
paragraph we find again the desired number of elements in (L' \ M’) N B(D).

Setting D = A — h in the preceding lemma, and applying lemma [7] we obtain
an estimate for the probability that a call to RANDOMRELATION enlarges the
relation lattice.

Proposition 3. Let M’ be some proper full rank sub-latticce of L'. Then the
probability that a call to RANDOMRELATION(F,, (1)) results in a vector w =
(w,a) with w € L'\ M' is bounded from below by (1 — 0g)/(4logy A).

If L, = L’ then we call the corresponding m x n matrix A a full relation ma-
trix. The last proposition yields finally the desired conclusion about the number
of relations we need to compute in order to arrive at a full relation matrix.

Corollary 2. There is an effectively computable function o7 = o(1) such that
for k= L(%,2z + or) the probability that L), = L’ is bounded from below by 1/2.

6 Extracting a Generating Set of Units

In this section we assume that we are given the following data:

— Some m x n relation matrix A = (a, ;) with vector of generators ;. We
have [ ], ¢z p*7 = ().

— Two sparse relations (ws,7s), s = 1,2, obtained through a call to RANDOM-
RELATION(G, (1)).

— Two vectors x5 = (z;5) with Ax, = w,.
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We have seen in Lemma [6] how to find a w which lies in the column space
of a sparse relation matrix. If, on the other hand, we choose to compute dense
relations, then Corollary [2 assures us that we can quickly compute a full rela-
tion matrix. Two more calls to RANDOMRELATION yield the desired dependent
relations.

The vectors x, are computed with the algorithm DIOPHANTINESOLVER pro-
posed in [MS99]. This algorithm finds a solution to the Diophantine system
Ax = w with size restricted by

(1) log||x|| = O(mlog(m]|Al|) + log]|wl[)

On the basis of the above data, we can assign a unique unit to each relation
vector: €5 = vs/ | a;'f's is a unit of O, since ~v;, and [] a;ﬂ“ generate the same
ideal. We denote €5 by UNIT(vs, A, Xs).

We will show that for two independently, and randomly chosen sparse rela-
tions with generators vs, s = 1,2 the units ZUNIT(vs, 4,xs) generate the full
unit group with probability (1 — o(1))/2.

Let Log UNIT(vs, A, x5) = tsR. Then (£UNIT(7s, 4, %)) = O* is equivalent
to ged(ty,t2) = 1. We will first give size limits for the ¢;, and then estimate the
probability that the two ¢, are co-prime.

Lemma 9. If Log UNIT(vs, A, xs) = tsR, then logts < (14 o(1))mlog A.

Proof. This is a consequence of () and Loga; < Alog A which holds by con-
struction.

Lemma 10. Let U,V,D € Z with 0 < log|U — V| < D/100. Consider the set
S={(r,y) €2 |U<z2<U+D,V<y<V+D} IfO< D then there are
more than D?/2 pairs (x,y) € S with ged(z,y) = 1.

Proof. We define the following subsets of .S:

T ={(z,y) € S| ged(z,y) # 1},
Ty ={(z,y) € S| plged(z,y)}

where p denotes some prime number. We need to show that card T < D?/2. We
will show instead that

Z card T}, + card U T, < D?*/2
p<D p>D

which is certainly sufficient. Note that for any two p,q > D the sets T}, and T
are disjoint.

Let p < D. Then a simple counting argument shows that card7, < (1 +
| D/p|)?. Thus

Z card T}, < Z(l + D/p)?

p<D p<D
< D(loglog D + O(1)) + D*P(2),
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where P is the prime zeta function, and P(2) = 0.452....
Let p > D. Then cardT, < 1. For any d € Z we define yet another set
Ug=A{(z,y) € S|z—y =d}. lf T,NUy # O then p|d. Thus since |d| < |[U—-V|+D

card(Us N | Tp) < log(|U = V| + D).

p>D
From this we deduce
U-V+D
card U T, = Z card(Ug N U T,)
p>D d=U-V-D p>D

< 2D(log(|U — V| + D)) < D?/50 + Dlog D.

Adding the two estimates we obtain the desired result for sufficiently large
D.

Corollary 3. Let A = (ap ;) be an m x n relation matriz with vector of gen-
erators o, so that we have [[,cr p™9 = (o). Let (ws,7s) for s = 1,2 be
the output of two independent calls to RANDOMRELATION(G, (1)) for which
there exist x5 such that w, = Axs. Let x = x(A,w) be some random vari-
able taking values in the solution space of the Diophantine equation Ax = w.
Let Log UNIT(7s, A, x(A,ws)) = tsR. Then the probability that ged(t1,t2) = 1,
taken over all random input of RANDOMRELATION and x, exceeds (1 — og)/2.

Proof. Keep the notation from the corollary. For s = 1,2, we fix two exponent
vectors e; = (ep 5), and two c-smooth reduced ideals by = [[p/#= in the ideal
classes represented by the power products a; = [[p®=. Let f; = (f,5), and
w, = ey — .

Fix further x; = (z;5) with wy, = Ax, which we assume to exist. Then
UNIT(7s, 4, Xs) = vs/0s where s = Ha?j‘s and s is a generator of a,/bs.

It suffices to show that the probability that ged(t1,t2) = 1 conditional on
the event that 1) during the calls to RANDOMRELATION those exponent vectors
and ideals were chosen, and 2) x took value x, exceeds 1/2.

If (w,~) is one of the possible values of RANDOMRELATION under the set
condition then any other can be written as (w,~’) with v = €% where € is the
fundamental unit of O, and u varies in an interval of width Alog A/R. Thus
ts = Us + ug with fixed Uy, and 0 < ugs < A.

Lemma [ implies Us; < mlog A(1 4 o(1)). Since logm < A we can apply
Lemma [T0. We conclude that half the pairs (¢1,t2) yield ged(t1,t2) = ged(Uy +
uy, U2 + UQ) =1.

Now, Proposition 2l gives a lower bound for the conditional probability that
a particular ug is chosen. This bound implies the claim.

7 Conclusion

In this section we give listings of RQR and RQCLR, and conclude the proof of
Theorem[Il We will refer to the steps of RQR, and RQCLR using the numbering
in the listings. Algorithm DETESS used in RQCLR was introduced in [Vol00].
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Algorithm 1. Probabilistic invariant computation
Input: Discriminant A

Output: Class number ha,
elementary divisors d; of Cla, regulator approximation R’

RQCLR(4)

1. Validation interval Find a,b such that a < haRa < b < 2a through
approximation of vAL(1, xA).

2. Parameters Let z « 1/v/8, ¢+~ La(%,2), and k + La(%, 2 + 02(A)).

3. Factor base Compute and store all prime ideals in F.. Let m < card F..

4. Generating set Let g < 6log?> A, G = F,, and [ < card G.

5.  Full rank relation lattice for i = 1 to m

6

7

8

(vi, ;) < RANDOMRELATION(G, p?™4)
Full relation lattice for j =1 to k
. (Vim44, @m+j) < RANDOMRELATION(F, (1))
9. A« (v])f:{n
10. Class number Compute h < DETEsS(A).
11. HNF Compute with Hafner and McCurley’s algorithm H < HNF(A, h).
12. Units Call RANDOMRELATION(G, (1)) twice. Let (ws,s) be the resulting
relations.
13. X <~ DIOPHANTINESOLVER (A, wy).
14. Compute €; = UNIT(7s, A, Xs).
15. Compute the real GCD R of (Loger, Log e2)
using algorithm rged_cfrac in [Mau00).
16. Verification if hR & (a,b) then return FAILURE
17. h+ h,R' « R.
18. Class group Compute the Smith Normal Form of H which yields the
elementary divisors d; of Cla.
19. return (h, R, (d;)!=,).

We analyze the probability with which RQCLR produces correct output.
Corollary [2 assures that steps [B] through [ produce a matrix A whose column
space equals L' with probability exceeding 1/2. We obtain an approximation to
R, in steps [[2] through [[Hl with probability exceeding 1/4 according to Corol-
lary Bl

Next, we assure ourselves that RQCLR never returns incorrect results. h
computed in step is always a multiple of the class number even when the
previous steps yielded an A which is not a full relation matrix.

Likewise, €1, €2 computed in step [[4] are always units since they are quotients
of two generators of the same ideal. So R = ged(Loger, Log e2) computed ap-
proximately in step I3 is close to a multiple of Ra. Thus, step [I6 assures that
h=ha, and R~ R, and the precision is ensured by Maurer’s algorithm.

The same argument implies that R obtained by RQR in each round is an
approximation to a multiple of the regulator.
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Algorithm 2. Probabilistic regulator computation
Description: Monte-Carlo algorithm for the computation of the regulator
of a real-quadratic field

Input: Discriminant A, error probability p
Output: regulator approximation R’ with |R' — Ra| < 1

RQR(4)

1. Parameters Let z < 1/4/8, ¢ + LA(%,Z), and k 2LA(%,z) log, A(1 +
01(4)).

2. Factor base Compute and store all prime ideals in F.. Let m <« card F..

3. Generating set Let g + 6log> A, G = F,, and | < card G.

4. Full rank relation lattice for i =1 tom

5. (vi, ;) < RANDOMRELATION(G, p?™4)

6. Relation sequence for j =1 to k

7. (Vin+j, @m+j) < RANDOMRELATION(G, (1))

8. Set r «+ 0 and repeat

9. Set r <— r + 1. Choose randomly m < ji,j2 < k+ m.

10. Let ws <~ v;, for s =1,2

1. Let A= (v;|j # jr, Jj2)-

12. Xs + DIOPHANTINESOLVER(A, w,) for s = 1,2

13. Compute €; = UNIT(7s, A, %xs) for s = 1,2.

14. Compute the real GCD R of (Logei, Log e2)
using algorithm rged_cfrac in [Mau00].

15. R « min(R, R).

16. until (3/4)" "' <p

17. return R'.

By Lemma[6] and Corollary B]this multiple is the regulator itself with proba-
bility exceeding 1/4. Hence, after the execution of O(log(1/(1 —p))) rounds, the
minimum of all R computed will be an approximation to R with probability p.

Finally, we verify the time, and space complexity bound of Theorem [1l Due
to Lemmalf] we need to call RANDOMRELATION in RQR m+2mlog, A(1+04) =
La(%, 2+ 09) times. Each call takes estimated time bounded by La(%,1/(42) +
010). In RQCLR we need LA(%, z + o05) relations, but this time each call to
RANDOMRELATION costs time L (3, 2+ 1/(4z)) due to the longer time needed
to compute the random power product. Note that the estimated time needed for
the factorizations in RANDOMRELATION can be subsumed into the o(1) term,
of. [LP92).

The solution of the two Diophantine systems to obtain the two integral linear
dependencies takes time L A(%, 3z +0(1)). The remaining steps needed to arrive
at the regulator multiple take only time L (3,22 + o(1)) due to Lemma 8, and
Theorem 12.1.5 of [Mau00].
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The optimum run time of both algorithms will be achieved with z = 1/v/8
which yields the run time bounds of Theorem [, and concludes the proof of the
theorem.

8 Corrigendum

The run-time analysis of the algorithms given in [Vol00] ignored the cost in-
volved in the generation of what we call in this article “dense” relations. The
algorithms presented in the cited paper run in time bounded by L (1/2,v/2) in-
stead of LA(1/2,3/v/8) as was claimed. We will present in a forthcoming paper
a modification that reinstates the run-time bound given in [Vol00]. Moreover, it
will also allow for the computation of the class number of a real-quadratic order
within the smaller time bound thus improving upon RQCLR given here.

The modification rests on the following strengthening of proposition 3. (We
keep the notation used throughout this paper.)

Proposition 4. Let M C w(L"™) = L' be a sub-lattice that does not contain
some vector v € L' with the following properties

1. 0<v; < hp foral0<i<lI;
2. v; =0 for all i > 1.

Then RANDOMRELATION(G, (1)) produces an element w = (w,vy) € L such
that w € L'\ M with probability bounded from below by a positive inverse linear
function in log A.

Thus we get again an effectively computable function 017 = o(1) such that
for n = La(1/2,z + o011) the probability that the lattice M = L/ contains all
elements in 7(L(™)) with the properties specified in the proposition is bounded
from below by 1/2. Now, the methods of [Vol(0] allow us to extract the class
number ha, and the primary invariants of Cl from M even though it is not a
full relation lattice.

Likewise we can produce relation lattices that contain with probability given
a priori a sought DL relation.
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Abstract. We explain a naive approach towards the problem of finding
genus 3 curves C over any given finite field F, of odd characteristic,
with a number of rational points close to the Hasse-Weil-Serre upper
bound g+ 1 + 3[2,/q]. The method turns out to be successful at least in
characteristic 3.

1 Introduction

1.1 Curves of Genus < 3 over Finite Fields

The maximal number of rational points that a (smooth, geometrically irre-
ducible) curve of genus g over a finite field F, can have, is denoted by Ny(g).
One has the estimate (see [Sell)

Ny(9) < q+ 1+ g[2/4]

in which the notation [r] for » € IR means the largest integer < r. The upper
bound here is called the Hasse-Weil-Serre bound.

For g = 1, it is a classical result of Deuring [De], [Wal] that N,(1) = ¢ +
1 + [2,/q], except when ¢ = p" with p prime and n > 3 odd and p divides
[24/q], in which case N,(1) = ¢ + [2,/q]. For g = 2 an explicit formula is due
to J-P. Serre. He stated and proved the result during a course [Se3| he gave
at Harvard university in 1985; a nice survey including some modifications of
the original proof can be found in Chapter 5 of the thesis [Sh]. The final result
is that if ¢ is a square and ¢ # 4,9 then N, (2) = ¢ + 1 + 2[2,/q]. Moreover
Ng(2) =20 = 9+ 1+ 2[2v/9] — 2 and Nyg(2) = 10 = 4 + 1 + 2[2/4] — 3. In
case ¢ is not a square, then also Ny(2) = ¢ + 1 + 2[2,/q] except when either
ged(q, [24/q]) > 1 or ¢ can be written in one of the forms n?+1,n2+n+1or

n? + n + 2. In these remaining cases, one has that if 2,/ — [2,/q] > @ then
N,(2) = q + 2[2,/g) and if 2,/g — [2,/g) < ¥5=L then Ny (2) = ¢ + 2[2,/g] — 1.

* It is a pleasure to thank Hendrik Lenstra for his interest in this work, and for his
remarks which led to Section Pl of this paper.

C. Fieker and D.R. Kohel (Eds.): ANTS 2002, LNCS 2369, pp. 163-[[71] 2002.
© Springer-Verlag Berlin Heidelberg 2002
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For g > 3 no such result is known. The best known lower bounds in case
g < 50 and ¢ a power of 2 or 3 which is < 128 can be found in [G-V]. In [Se2l
§ 4] J-P. Serre gives values of Ny(3) for ¢ < 19 and for ¢ = 25. Moreover he
shows in [Se3| p. 64-69] that Na3 = 48. Hence we have the following table.

g |2|3(4|5|7|8|9|11|13|16(17|19|23|25|27|29| 31 [32| 37 | 41
N,(3)|7(10{14|16|20|24|28|28|32(38|40|44|48|56|56|60| > 56|64|> 68|> 72

The entries for ¢ = 29, 31, 37 are obtained using the technique from the current
paper; its main goal is to give lower bounds for N,(3) by restricting ourselves to
one specific family of curves of genus 3.

1.2 Plane Quartics with 24 Automorphisms

Let k be a field of characteristic different from 2. The plane quartic C) given by
ot yt4z2t = A+ 1) (22y? + 9222+ 2222) is for A € k with A\ # —3,1,0 a geomet-
rically irreducible, smooth curve of genus 3. The degree 4 polynomials given here
are fixed by the subgroup G < PGL(3, k) generated by o : (z,y,2) — (y, 2, )
and 7 : (z,y,2) — (y,—x,2). The group G is isomorphic to Sy, the symmetric
group on 4 elements. Hence G is contained in the group of automorphisms of
C. For general A the automorphism group of C in fact equals G.

These curves occur in the classification of non-hyperelliptic genus 3 curves
with nontrivial automorphism group, as given in [He, p. 2.88] and in [Ve, Ta-
ble 5.6, pp. 63-64].

Suppose A # 0,1. By E) we denote the elliptic curve given by the equation
y? = z(z — 1)(z — \). If moreover \ # —3 then we write E/(\)"H)’) for the elliptic
curve with equation (A + 3)y? = z(z — 1)(z — A). The relation with the curves
C, is as follows.

Lemma 1.1. Suppose k is a field of characteristic different from 2 and X €
k\ {0,1,-3}. Then the jacobian of the curve Cy given by x* + y* + 24 = (A +
1) (2%y? +y%2%+2222) is over k isogenous to the product E;A'Hi) XE/(\M'B) XE/(\A+3),
where E/(\A+3) denotes the elliptic curve with equation (A\+3)y? = z(z—1)(z—\).

Proof. Most of this is shown in [Tol pp. 40-41]; one takes the quotient of C)
by the involution (z,y,z) — (—=z,y, z). The resulting curve has genus 1 and it
admits an involution without any fixed points. Taking the quotient again results
in an elliptic curve, given by y? = 23 +2(A +1)(A +3)z? + (A — 1)(A + 3)z. The
2-isogeny with kernel generated by (0,0) maps this curve onto E§A+3) (compare
the formulas for 2-isogenies as given in [Si=T) IIT § 4]). Write 77 : C, — E;AH)
for the composition of all maps described here. Then

p = (m,mo,m0?): C\ — E/(\)‘+3) X Eg\)‘Jrg) X E§\A+3)

where o : (2,y,2) — (y,2,z) is one of the automorphisms of C). The fact that
p induces an isomorphism between the spaces of regular 1-forms implies that p
induces an isogeny between Jac(C)) and the triple product of EE\/\+3). O
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Corollary 1.2. With notations as above, one finds for A € F, with ¢ odd and
N#0,1,-3 that
H#CO\(F,) = 3#EMI(F,) — 2¢ - 2.

Proof. It is a well known fact that #C(F,) equals ¢+ 1 — ¢, where t is the trace
of Frobenius acting on a Tate module of Jac(C)). Lemma [I1] implies that this
Tate module is isomorphic to a direct sum of three copies of the Tate module of
E§A+3). Hence t = 3¢’ where t’ is the trace of Frobenius on the Tate module of

E§A+3). Since this trace equals g + 1 — #E;AJFB)(IF(]), the result follows. O
1.3 Results

Our strategy for finding a curve of genus 3 over a finite field I, with odd charac-

teristic should now be clear: find A such that #Eg\)‘H) (F,) is as large as possible
and use Corollary [[.2 This works quite well for small ¢, using a direct search.
In fact, as will be explained in Section [ below, it is not even necessary here to
calculate #EY‘H) (F,) for many values A € F,,.

We obtain a general result when the characteristic of IF; equals 3, because in

that case we deal with a curve Ei)‘) which is isomorphic to the curve E, with
p = 1/A. Since it is precisely known which values #E,,(F,) attains (see [A-T] and
also Section[2 below), one obtains a nice explicit lower bound for N3« (3). In fact,
the result implies that the difference between N3»(3) and the Hasse-Weil-Serre
bound is bounded independently of n:

Proposition 1.3. For every n > 1 the inequality

0 4if n=2mod4;
3" +1+43[2v3"] — N3~ (3) << 12 if n=0mod 4;
21 if n=1mod 2

holds.

For the proof we refer to Section [3l Note that this proves a special case of a
conjecture of J-P. Serre [Se3, p. 71], which says that for all ¢ the difference
q+ 1+ 3[2,/q] — N,4(3) should be bounded independently of g.

In characteristic at least 5 we have not been able to obtain a general result
such as given in Proposition [[3 However, the fact that a curve Ef\/\+3) is either
isomorphic to E) or it is a quadratic twist of E), implies (again using [A-T])
that for every finite field Fy of odd characteristic, a curve C) as above exists for
which #C(F,) is at most 21 off from either the Hasse-Weil-Serre upper bound
q+1+43[2,/q], or from the analogous lower bound ¢+ 1 —3[2,/q]. This is proven
in Section @l We note that a sharper result of the same kind (with 21 replaced
by 3) was obtained by Kristin Lauter [Lau|, [Lau-Se] using an entirely different
method.

As Everett Howe pointed out to us, it is in fact possible to improve our result

E§A+3) % E§A+3) % E,(\H?’)

slightly by replacing the product we use, by a product
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E x Ex E)y in which E/F is an elliptic curve with a rational point of order 2 and
#E(F,) maximal under that condition, and E)/F, is a Legendre elliptic curve
over [F, with as many rational points as possible. The result of Everett Howe,
Franck Leprévost and Bjorn Poonen [H-L-P|, Prop. 15] in this case implies that
either this product or its standard quadratic twist is isogenous over F, to the
jacobian of a smooth genus 3 curve over ;. It may be noted that the estimate
obtained in this way is in general still weaker than Lauter’s result (it replaces
our 21 by 9 instead of by 3).

2 A Characterization of Legendre Elliptic Curves

Suppose K is a field of characteristic # 2, and E/K is an elliptic curve. We
will say that F/K is a Legendre elliptic curve over K if there is a A # 0,1 in
K such that E is over K isomorphic to Ey given by y? = z(z — 1)(x — \). A
necessary but in general not sufficient condition for an elliptic curve E/K to be
a Legendpre elliptic curve over K is that all points of order 2 on E are K-rational.
An intrinsic description of Legendre elliptic curves is given as follows. Take a
separable closure K3 of K and write Gx = Gal(K®*P/K) for its Galois group.

Lemma 2.1. The statements

1. E is a Legendre elliptic curve over K;

2. E can be given by an equation y*> = (x — a)(x — b)(x — ¢) in which at least
one of £(a —b), £(b—c),x(c— a) is a square in K*;

3. E has all its points of order 2 rational over K, and there exists a point
P € E(K*P)[4] such that —P is not in the G-orbit of P.

are equivalent.

Proof. The equivalence of (1) and (2) is easy. To verify that (2) and (3) are
equivalent, suppose (after possibly permuting a,b, ¢) that a — b is a square and
that FE is given by y? = (x — a)(x — b)(x — ¢). The point T, = (b,0) in E(K)
has order 2, and the quotient E’' := E/(T},) admits an isogeny of degree 2:
¢ : E' — F defined over K (the dual isogeny of the quotient map). A very well
known property (compare [Si-T}, IIT § 5]) of ¢ is that the image p(E'(K)) C
E(K) equals the kernel of the homomorphism E(K) — K*/K*? defined by
Ty — (b—a)(b—c) and (z,y) — x — b for all (z,y) € E(K) with (x,y) # Tp.
Hence the condition that a — b be a square is equivalent with the property that
the point T}, := (a,0) € E(K) is in the image of E’(K). This means precisely that
a pair of points {P, P+ T,} C F exists which is Gx-stable, and 2P = T,,. Hence
P is a point of order 4 on E, and for all ¢ € Gk we have o(P) — P € {O,T}}.
In particular o(P) — P # 2P, which means o(P) # —P for all 0 € Gk.

Vice versa, suppose given a point P of order 4 with the property o(P) # —P
for all 0 € Gk. Since all 2-torsion of E is K-rational, we have that o(P) — P €
E(K)[2] and moreover the condition o(P) # —P implies that o(P) — P is in a
cyclic subgroup of F(K)[2] which is independent of o. Hence we have points T'
and 2P of order 2, where {P, P+ T} is G-stable. As we have seen, this implies
the statements (1) and (2). O
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Corollary 2.2. Suppose q is a power of an odd prime and E/F, is an elliptic
curve. Let m € End(E) be the Frobenius endomorphism (raising coordinates to
the power q). Then E is a Legendre elliptic curve over Fy if and only if m+1 €
2End(FE) but m+1 ¢ 4End(E).

Proof. The Galois group Gy, is topologically generated by the g-th power map,
and this generator acts on E via the endomorphism «. The condition 7 + 1 €
2End(FE) is equivalent with the statement that E has all its points of order 2
rational over Fy. In the same manner, the condition 7 + 1 ¢ 4 End(FE) precisely
means that a point P of order 4 exists, with the property w(P) # —P. Since

the Galois group G, acts on E(IF,)[4] via a (cyclic) subgroup of the kernel of
mod 2

GLy(Z/4Z) —" GL2(Z/2Z), it follows that o(P) # —P for all o € G,. Hence
Lemma [2.3] implies that E is a Legendre elliptic curve over F,.

Vice versa, if E is a Legendre elliptic curve over F,, then by Lemma 2] we
know that P € E(F,)[4] exists with m(P) # — P, which implies that 7 + 1 is not
divisible by 4 in End(E). We have that 7 + 1 € 2End(E) since 7 acts trivially
on all points of order 2.

This proves the corollary. O

Proposition 2.3. An elliptic curve E/F, (with q odd) for which #E(F,) € 4Z
is isogenous to a Legendre elliptic curve over F,, except in the following case:
q=r1% withr € 1 +4Z, and #E(F,) = q+ 1+ 2r.

Proof. (This result was first presented in [A-T)], however, with a somewhat dif-
ferent proof. The present proof is more conceptual, but it gives less information
concerning the possible values of Legendre parameters A in the supersingular
case.)

Let 7 € End(E) be the (¢-th power) Frobenius. The proof considers two
cases.

First, suppose m = r € Z. Then q = deg(n) = r? and #E(F,) = (r—1)%. Any
curve E’ isogenous to F then also satisfies #E'(F,) = (r — 1)? and Frobenius
in End(E’) is equal to r. By Corollary 2:2] one (and equivalently, all of them)
such curve E’ is a Legendre elliptic curve over F, precisely when r + 1 is even,
but not divisible by 4. The latter condition is equivalent with » = 1 mod 4. This
proves the statement in the case 7 € Z.

If 7 ¢ Z then Z[n] C End(FE) is an order in the ring of integers of an
imaginary quadratic field K. We have that #E(F,) = (1 — 7)(1 — ) where
the bar denotes complex conjugation in K. The condition #E(F,) = 0 mod 4
implies that (1 — 7)/2 is integral. Now consider the order A := Z[(1 + 7)/2].
By construction, m € A satisfies 7 +1 € 24 and 7 + 1 &€ 4A. Tt is a result of
Waterhouse [Wal, Thm. 4.5] (compare [Sch) p. 194] where a mistake in the original
result is corrected), that a curve E'/IF, exists with an isomorphism End(E") = A
such that under this isomorphism Frobenius on E’ corresponds to m € A. This
implies in particular that #E'(F,) = #E(F,) and hence E’ and E are isogenous.
Moreover, using Corollary we know that E’ is a Legendre elliptic curve over
IF,. This proves the proposition. O
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3 Characteristic 3

We will now prove Proposition [L3] Take n > 1 and write ¢ := 3", m := [2,/q]
and g+ 14+ m = N+ with N € 4Z and 0 < r < 3. As explained in (3], we
will examine how close to the upper bound ¢ 4+ 1 + m the number of F,-points

on a Legendre elliptic curve E; /\ = Eg\)‘) can be, for A € F,.

If n is odd and moreover N = 1 mod 3 (the smallest n where this is the
case, is n = 11 which gives m = 841 and N = 3! + 1 + 840), then we replace
N by N — 4. The resulting number N satisfies g +1—m < N < ¢+ 1+ m,
and moreover we know from [D¢] that E/F, exists with #E(F,) = N. If n is
odd, then Proposition implies the existence of A € F, with #Ey‘) (F,) = N.
Hence Corollary L2 yields a genus 3 curve Cy with #Cy(F;) =3N —2¢—2.In
particular, this shows that

g+143m—N,3)<q+14+3m—3N+2¢+2=3r+12<21

for odd n (in fact, even < 3r < 9 unless m is divisible by 3).

If n is even, then m = 2 - 3"/2 and (again using Deuring’s results [De]) an
elliptic curve E/F, exists with #E(F,;) = ¢ + 1 + m. By Proposition 3] this
number of points occurs for a Legendre elliptic curve only in case m/2 = 3 mod 4,
i.e., when n = 2 mod 4. Hence under this condition we obtain a curve C'y whose
number of points attains the Hasse-Weil-Serre bound.

In the remaining case we have n = 0 mod 4. Here the number ¢ +1 + m
does not occur as #E/(\/\)(]Fq), for any A € F,;. Hence we take the largest smaller
possibility, which is g+ 1+m — 4. Proposition 23limplies that a Legendre elliptic
curve with this number of points over I, indeed occurs. It follows that a genus 3
curve Cy/F, exists with #Cy(F,) =3(¢+1+m—4)—2¢—2=q¢+1+3m—12.
This implies the inequality given in Proposition [[.3] O

4 Examples in Characteristic > 3

The problem which arises when one attempts to adapt the argument presented
in Section [] to finite fields of characteristic > 3, can already be seen in the
following result.

Proposition 4.1. Suppose q is a power of a prime p > 3, and m := [2,/q]. Over
F,, a curve Cy of genus 3 exists such that either #Cx\(Fy) > ¢+1+3m —21 or
#O\(Fy) < q+1—3m+21.

As we mentioned in the introduction, a somewhat stronger result has been ob-
tained by Kristin Lauter [Lau|, [Lau-Se| using quite different techniques. More-
over a variant of our proof may be obtained by using a result of Everett Howe,
Franck Leprévost and Bjorn Poonen [H-L-P| Prop. 15].

Proof. Write ¢ +1+m = N 4+ r with N € 4Z and 0 < r < 3. Then one
of N,2q + 2 — N occurs as the number of points on a Legendre elliptic curve
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E\/F,, except possibly when r > 0 and p divides m —r. In that case, we replace
N by N’ := N — 4 and we obtain a number of points which does occur.

This gives us an elliptic curve E). The corresponding curve E§\>\+3) has either
N or N’ points, or in case A+ 3 is not a square in F, this number is 2¢+2 — N
or 2q+2 — N’. Since this number is at distance at most 7 from one of ¢ + 1 +m,

Corollary implies the result. O

Proposition 4.2. Suppose p = 3 mod 4 is a prime number, n > 1 is an odd
integer and ¢ = p*™. Then N,(3) = q+ 1+ 6p™ equals the Hasse-Weil-Serre
bound.

Proof. Take A = —1 € F,. Since p = 3 mod 4, the elliptic curve E\/F, is
supersingular. This implies #E(F,) = p+ 1 (in case p = 3, this follows from
the fact that the number of points is a multiple of 4, and also of course from a
direct calculation). One concludes that #FE\(F,) = ¢+ 1+ 2p™. Since A+3 #0

as an element of I, is a square in Iy, the two curves E and E;‘) are isomorphic
over F,. Corollary [[.2] therefore yields that the genus 3 curve C) attains the
Hasse-Weil-Serre bound over F,. O

Note that the genus 3 curve used in the above proposition is in fact the
famous Fermat quartic. Hence the result is probably well known.

4.1 Legendre Curves with Prescribed Order

In practice, a fairly efficient method to find A € IF, for which #EY‘JFB) (Fy) equals
a given number N = 0 mod 4 can be given in case ¢ = p a prime or ¢ = p? the
square of a prime. This works as follows. Write N = ¢+ 1 —t.

We first treat the case ¢ = p? and t = +2p. Exactly one of the two numbers
p? 4+ 1 4 2p occurs as a number of points of a Legendre elliptic curve over Fp2,
and this number is attained in our family precisely for the supersingular A\ # —3
such that A + 3 is a square in [Fj2; the number with the opposite choice of sign
occurs for the ones such that A + 3 is a nonsquare.

In the remaining cases, the Hasse inequality tells us |t| < 2,/q. Hence we
find t exactly if we know ¢ mod 4p. Now t mod 4 is already known, hence it
suffices to find a A\ such that #E/(\’\H)(IB‘Q) = q+ 1—tmod p. If we write x :
F; — +£1 for the nontrivial character with kernel IE"f, this means we look for
X # —3 such that #E5(Fy) = 1 — x(X + 3)t. It is well known [Si, V § 4] that
#E\(F) =1— ()P D2H,(\) ", withe =1ifg=pand e =1 +pif g = p*.

Here H,(\) = ZE};—(}DN ((pﬁ)/z))Q/\i is the so-called Hasse polynomial, whose
coefficients can be computed using an easy recursion. Hence in case ¢ = p we have
to solve Hy(A\) = £t for A € F,, and then check whether x(A+3) has the correct
value. Similarly, when ¢ = p? we look for solutions in F, of H,(\)H,(\P) = +£t.
This works reasonably efficient for -say- ¢ < 107.
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4.2 Numerical Results

Using the package KANT, we tested which values #E(F,) = 0 mod 4 occur for

the curves Eg\)‘%)/]Fq7 for all odd ¢ < 100000. It turns out that for most ¢, all
values are attained. In the table below, we list all ¢ < 100000 where this is not
the case, and for each of them the missing value(s) #E(F,). As can be seen
from the data, usually there is only one such missing value, which moreover is
always one of the minimal or the maximal possible number = 0 mod 4 in the
interval [q + 1 — [2,/g],q¢ + 1+ [2,/g]]. We list a sign + indicating which of these
possibilities occurs for a missing value. There are exactly two exceptional cases
for ¢ < 100000. The first one is ¢ = 7*: here two values don’t occur, namely the
maximum 2500 = 74 + 1+ 2 - 72 and also 2396 = 7* + 1 — 6. The other one is
g = 5%. The two values missing here are the minimal one 5% +1 —2- 5% and also
15380 = ¢ + 1 — 2,/q + 4. The following table gives all other ¢ < 100000 with a
missing value.

g £ ¢ |F=| g £ g =] ¢ [F] ¢ |F|| ¢ |F]| g9 |
5 [+ 7 [ 3% |- 13 || 19 |[-] 5% ||| 72 |-| 67 |1
34 |+ 5% |—|| 132 |—|| 173 |+|| 293 |+| 73 |—| 487 |—| 232 |-
5% ||| 3% |—| 733 |—| 787 [+]|| 907 |+| 2503 |+|| 3253 |+|| 4493 |-
4903 |—|| 5333 |+|| 5479 |—|| 5779 |—|| 3% |+| 7573 ||| 9413 |+|/10639|—
11239|—([11243|+|/12547|—|| 11* |+|{14887|—||17959|+||18773|+|[23719|+
24967|—||25603|—||27893| —|| 13* |+||31687|—||33287|+|[33493|—||37253|+
42853|—146663|—||51991|+{|52903|—||58567|+| 30 |—||64013|+||65539|+
67607|4||71293|—||76733|+|| 17* |+|85853|+||92419|+(|94253| —||99859|—

The table shows that for all but 30 values ¢ < 100000, the maximal value of
#C\(F,) equals ¢+ 1+ 3¢, where ¢+ 1+t = 0 mod 4 is the maximal number of
points of an elliptic curve over I, with all its points of order 2 rational.

Whenever the Hasse-Weil-Serre bound is divisible by 4, we may be in the
lucky circumstance that it is reached using our family of curves. This hap-
pens quite frequently, for instance when ¢ equals any of the primes 19, 29, 53,
67, 71, 89, 103, 107, 151,.... In the case ¢ = 173 the bound ¢+ 1+ 3m is a
multiple of 4, but as the table above shows, our curves do not attain it.

The data seems to indicate that for much more than 50% of the prime powers
g, all possible values N; = 0 mod 4 are attained by the family E/(\A%). Moreover,
the only occurrences of a ¢ for which more than one value is missing, happened
at ‘high’ even powers of a prime number. We have no theoretical explanation
for this. A numerical test over all ¢ = p?” < 107 revealed exactly one more case
where two values are missing, namely at ¢ = 7%. We have also not been able to
explain why in all cases where we found that exactly one value is missing, this
missing value is one of the maximal or minimal number of points.
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Abstract. We obtain the curves of genus 2 parametrizing trinomials
az” + bz + ¢ whose Galois group is contained in the simple group Gies
of order 168, and trinomials az® + bz 4+ ¢ whose Galois group is con-
tained in G344 = (Z/2)3 X G1es. In the degree-7 case, we find rational
points of small height on this curve over Q and recover four inequivalent
trinomials: the known z° — 7z 4+ 3 (Trinks-Matzat) and z7 — 154z + 99
(Erbach-Fischer-McKay), and two new examples,

3727 — 282z +9  and  499%z" — 239562 + 3113.

We prove that there are no further rational points, and thus that every
trinomial az” + bz + ¢ with Galois group C Gigs over Q is equivalent
to one of those four examples. In the degree-8 case, we again find some
rational points of small height and compute the associated trinomials.
This time all our examples are new:

2% 4+ 16z + 28, z° + 576z + 1008, and 19°53z° + 19z + 2,
each with Galois group G1is44; and
z° + 324z + 567,

with Galois group Gies acting transitively on the eight roots. We con-
jecture, but do not prove, that there are no further rational points, and
thus that every trinomial az® + bz + ¢ with Galois group C G344 over Q
is equivalent to one of those four examples.

1 Introduction

1.1 Old and New Trinomials

Let G1¢s be the non-abelian simple group of second smallest order 168, isomor-
phic with both PSLy(Z/7Z) and GL3(Z/2Z) (also PGL3, SL3, PSL3). The latter
isomorphism yields actions of G1gg on the 7 points and 7 lines of the projective

* Supported in part by the Packard Foundation.

C. Fieker and D.R. Kohel (Eds.): ANTS 2002, LNCS 2369, pp. 172-[I88] 2002.
© Springer-Verlag Berlin Heidelberg 2002



Galois Groups of Trinomials 173

plane of order 2 (Fano plane), either of which realizes Gigg as a subgroup of
index 15 in the alternating group Az. In 1968 W.Trinks [T] showed that the
trinomial 27 — 72 + 3, of degree 7 and discriminant 3878, has Galois group G 168
Trinks’ unpublished manuscript [T] was cited a decade later by Erbach, Fischer,
and McKay in a paper [EFM] that exhibits a new trinomial 7 — 154z + 99, not
equivalent with Trinks’, which they show also has Galois group Gigs. We find
two further examples,

37227 — 28249  and  499%z7 — 239562 + 31113, (1)

not equivalent with each other or with the Trinks-Matzat and Erbach-Fischer-
McKay trinomials, and prove that every trinomial ax” + bx + ¢ over Q with
Galois group contained in Ggg is equivalent to one of the four such trinomials
exhibited above.

Likewise let G344 be the semidirect product (Z/2)% x Gigg. This is the
automorphism group of the (3,4, 8) Steiner system, and the group AGL3(Z/2Z)
of invertible affine linear transformations of a three-dimensional space over Z/2Z.
(The Steiner system consists of the affine planes in this space.) Then Gi344 is
a subgroup of index 15 in Ag. We find four equivalence classes of trinomials
ax® + bx + ¢ of degree 8 whose Galois group over Q is contained in G344, all
new to our knowledge. Three of these, represented by

2%+ 162 + 28, 2%+ 5762 + 1008, and 19?5328 + 192 + 2, (2)
have Galois group G1344. The fourth, represented by
28 + 324z + 567, (3)

has Galois group Gies = PSLy(Z/7Z), transitively permuting the eight roots as
it does the points of the projective line over Z/7Z. We conjecture, but do not
prove, that every trinomial az® + bz 4 ¢ over Q with Galois group contained in
(1344 is equivalent to one of our four trinomials exhibited above.

In each case we find a curve of genus 2 parametrizing trinomials satisfying
the Galois condition. A direct search yields points of small height from which
we recover our trinomials. To prove that these are the only ones, we must show
that each curve has no further rational points. For the trinomials of degree 7,
we are able to extend the methods of [BI/B2IB3] to obtain a proof. The curve
parametrizing trinomials of degree 8 with Galois group contained in G344 is too
hard for us to treat in the same way with our present computational power.

1.2 Trinomials and Curves

Consider more generally trinomials ax™+bx+c of any degree n > 2 over a field K
of characteristic zero. The equivalence class of such a trinomial consists of the

! A referee familiar with [T] reports that it contains “a hint that this polynomial

has been found by Matzat via a computer search”; presumably Matzat surmised the
Galois group from the degrees of the irreducible factors of 27 — 7z +3 modulo primes
other than 3, 7.
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trinomials of the form a(a(mz)™ + b(mzx) + ¢) for some o, m € K*. Equivalent
trinomials have the same Galois group because their roots are proportional.
Define the invariant of a trinomial (other than the degenerate az™ or c) by

T :=b"/ac"' € PY(K). (4)

We readily see that two trinomials are equivalent if and only if they have the
same invariant. Trinomials with ac = 0 have T' = oo; those with b = 0 have
T =0; and each T' € K* is attained by the trinomial

Pr:=a"+Tx+T (Te€K). (5)
The polynomial Pr is separable unless T' vanishes or equals
Yo o= (=n)"/(n—1)" " (6)

We may regard (B as a degree-n map from the z-line to the T-line, branched
only at T =0, T = 00, and T = +,, with ramification indices (n), (n — 1, 1), and
(2,1"72). The corresponding extension K (x)/K (T of function fields has Galois
group S, [Ml IIT, Satz 1]. Let B,, be the curve whose function field K (B,,) is the
Galois closure. This is the curve that parametrizes trinomials with a factorization

(x =) (7)

T

O

i
—-

into linear factors; it is a normal cover of the T-line with Galois group S,
ramified only above T'= 0, T' = oo, and T = +y,,. We can also realize B,, as the
smooth complete intersection of hypersurfaces o; = 0 of degree j = 2,3,...,n—2
in P"~2. Namely, o; is the elementary symmetric function of degree j in n
variables 71, . .., r, whose sum (the elementary symmetric function o) vanishes.
The genus of B,, is (n? —5n +2)(n — 2)!/4 +1; it can be calculated by applying
either the adjunction formula to that complete intersection or the Riemann-
Hurwitz formula to the degree-(n!) map from B,, to the T-line.

For example, By and Bjs are rational curves with actions of Sy and S3 by
fractional linear transformations; By is isomorphic with the conic s3+s3+s3 = 0,
with s; = ri£retrs+ry (two minus signs) and Sy acting by signed permutations
of the s;; and Bj is the Bring curve of genus 4, whose automorphism group Ss
is the largest of any curve of its genus. For each prime p other than the primes
dividing n or n— 1 (that is, at which ~,, coincides with either 0 or o), the curve
B,, and the function T on B,, have good reduction at p.

Now let G be any subgroup of S,, and let B,(G) be the quotient of B,
by G, corresponding to the subfield of K(B,) fixed by G. This is the curve
parametrizing trinomials az™ + bx + ¢ whose Galois group is contained in G. The
rational function T' of degree [S,, : G] on B, (G) realizes this parametrization:
its value at each point of B, (G) is the invariant of the trinomials this point
parametrizes. For instance, B,,(Sy,) is the T-line itself; B, ({1}) is just By; if G
is the point stabilizer S,,_1 then B,(G) is the z-line, with T = —a"/(x + 1)
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by (B). Considering T geometrically as a map from B,(G) to the T-line, we
see that it is unramified away from T = 0,00,7,. This map can be used to
calculate the genus of B,(G) via the Riemann-Hurwitz formulafl When the
genus exceeds 1, the curve has finitely many K-rational points for any number
field K by Faltings [Fall[Fa2]. Hence there are finitely many equivalence classes
of trinomials az™ 4 bx + ¢ with Galois group contained in G. We can then ask for
a provably complete list of such equivalence classes for some given K, notably Q.
In particular, this happens for the curves B7(G16s) and Bg(G1344), which turn
out to have genus 2.
We can now state our results in the following equivalent form:

Theorem 1. The curve B;(G1gs) has the hyperelliptic model

Y? = X(81X° +396X* + 738X3 + 660X2 + 269X + 48). (8)

Theorem 2. The Q-rational points of the hyperelliptic curve [8) are the Weier-
strass point (X,Y) = (0,0), the two points at infinity, and the two point pairs
(—3,484) and (1/9,+28/9).

Theorem 3. The curve Bg(Gis44) has the hyperelliptic model

Y2 =2X°%428X°% + 196X + 784X° + 1715X? + 2058X +2401.  (9)

Congjecture 1. The only Q-rational points of the hyperelliptic curve (@) are the
four pairs (X,Y) = (0,£49), (—1,+38), (—3,£32), and (-7, £196).

In the next section we prove Theorem [[]and recover the degree-7 trinomials
with Galois group G1gg from four of the rational points listed in Theorem[2. (The
other points do not yield trinomials because they are zeros or poles of T.) We
then outline the proof of Theorem [3] and recover our degree-8 trinomials with
Galois group C G344 from the rational points listed in Conjecture [[] including
the curious reappearance of Gygg for the trinomial (3]). In the final section we
prove Theorem ] and indicate our difficulty in proving Conjecture [Il

1.3 Using Distinct Residue Characteristics in Chabauty Arguments

In order to prove Theorem[2] we make use of covering techniques and the method
of Chabauty. In Chabauty’s method, one takes an embedding of a curve C' in an
abelian variety A defined over a number field K. By considering C' as a subvariety
of A, we have C'(K) C A(K). Let p be a finite prime of K. Then A(K) is a finitely
generated subgroup of the p-adic Lie group A(K),). The topological completion
A(K) Cc A(K,) is a sub Lie group. Similarly, C(K,) is a p-adic submanifold
of A(K,). Naturally, C(K) C C(K,) N A(K,). The latter is an intersection of
a p-adic curve and, provided certain nontrivial technical conditions are met, a

2 This computation, while elementary, can be tricky to perform accurately, as witness
the claim M, p.95] that B7(G1es) has genus 3.
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submanifold of positive codimension in A(K),). One would expect this to be
0-dimensional and finite. Its size can be determined by p-adic analytic means
and provides an upper bound for #C(K).

Naturally, C(K,) N A(K,) may contain points that do not correspond to
points in C(K). In fact, for larger p one would expect such points. Here we
describe how one can exhibit such points using information obtained from other
residue characteristics.

Suppose A(K) = (Py,..., P.). Suppose that p is a prime of good reduction
of C. Let k be the residue field of K at p. We fix a reduction map A(K,) — A(k)
Let P=n1Pi+---+n,.P. € A(K).If P € C(K), then certainly Pmodp € C(k).
This gives certain congruences on nq,...,n, € Z by considering

C(k)n{(Py,...,P.ymodp C A(k).

These congruences are modulo the kernel of reduction modulo p. These need not
be independent from the congruences obtained from another prime ¢ and may
be used to sharpen the bound on #C(K).

The above observation removes the need for choosing a particularly small
prime for the Chabauty argument (which might not be available). In Section Bl
we give an example how this idea can be used in conjunction with Chabauty
techniques as described in [B2].

2 Hyperelliptic Models for B7(G16s) and Bg(G1344)

2.1 Computing a Hyperelliptic Model for B7(G16s)

We obtain our hyperelliptic model for the curve B7(G16s) by finding low-degree
rational functions X,Y on the curve, proving that they generate the curve’s
function field, and computing the polynomial relation (8) satisfied by X,Y". Our
strategy for finding X, Y is as follows.

Let (r; : -+ : r7) be homogeneous coordinates on PC. In this projective
space we have the hyperplane on which o; = 23:1 r; vanishes, and further
hypersurfaces 0; = 0 (j = 2, 3,4, 5) whose complete intersection with the hyper-
plane o1 = 0 is the curve By = B7({1}). The rational coordinate T' on the line
B7(S7) = By/S7 is the quotient of /0% of two homogeneous polynomials of the
same degree, both invariant under S;. Likewise the quotient of any two homoge-
neous polynomials of the same degree in the r;, both invariant under Gigs, is a
rational function on B7(G1es) = B7/G16s. We exhibit homogeneous polynomials
p; of degree j = 3,4,5,6 in the r; that are invariant under G163 but not under
S7, and obtain polynomial relations between them and the o;. Setting o; = 0
for j < 5, we obtain simpler relations involving only p;, o¢, 07 that hold on By
and its quotient B7(G1eg). We eliminate rg, 06,07 to obtain a relation between
73,74, 75, which we write as a polynomial in

X :=pji/psps and Z :=Tp,ps/p. (10)
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This polynomial has degree 2 in Z, and thus defines a hyperelliptic curve. We
show that the curve has genus 2 and recover its hyperelliptic model (§) by
computing the discriminant with respect to Z and factoring it as a square times
a polynomial of degree 6 in X.

This curve is then the image of B7(G16s) under a nonconstant rational map;
we must also show that the map is an isomorphism, and obtain T as a rational
function on the curve. We do both by writing o¢, 07 as rational functions of
r3,74,75. This yields T = of /0% as a rational function of X and Z. The function
field K (X, Z) is then known to contain K (7') and to be contained in its Galois
extension K (B7); we can then use Galois theory to identify K (X, Z) with the
function field of B7(G1es), completing the proof of Theorem[l Alternatively the
last step can be done by showing independently that B7(G1gs) has genus 2 and
quoting the fact that a nonconstant rational map between curves of the same
genus g > 1 must be an isomorphism.

Let r = {ry,72,...,77}, and let @ be a collection of seven 3-element subsets
of r that are the lines of a Fano plane. For instance, we may take

b= {{’I‘i,’l“i+1,’l“i+3} | 1€ Z/?Z} (11)

Let @ be the collection of 4-element subsets of r complementary to those in @.
Thus if we choose ¢ by () then

D = {{riy2, Tiga:Tiss, Tive} | 1 € Z)TZY. (12)

Now Gigg is the group of permutations of r that fix &. Our Gigg-invariant
polynomials p; are defined by

p3 — § rr/,r//’ p4 — E TT’ " ///

led lcd

ZTT/ " T +TI2 +T//2) ZTT/ " /// 7" + +T//2 +T///2)
led led
where [ = {r,7/,7""} and [ = {r,r’,7”,r"""}. Each p; is a new element of the
space of Gigg-invariant polynomials of degree j in r: it is not contained in the
polynomials of degree j in the p; (j° < j) and ¢;. But the p; must satisfy
algebraic dependences with the o;. We find the first few such relations in degrees
10, 11 (one each), and 12 (two relations):

21py07 = Bpy0g + Paps + P3 + 23P4, (13)
49p,07 = —Tps06 + Tpspe + 2P3Ds + 3pspi, (14)
49507 = 42pgog + 9p306 — 35p5 — 36p3pg + 10pspaps +4p; — 9p3,  (15)
49p507 = 840§ — 3p3og + Tpg + 12036 + 4pspaps — 205 + 3ps. (16)
We next reduce these to a single polynomial relation in ps, p4, ps by eliminating

D6, 06, 07. Choose any two, say pg and o, We may regard (I3II4) as simultaneous
linear equations in pg and og. We solve them, substitute into (IBIIG), and clear
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denominators to obtain two polynomials in ps, p4, p5, 07 which are quadratic in
o7. Their resultant with respect to o7 is then a polynomial relation satisfied by
D3, P4, P5. Switching the roles of og, o7 we find another such polynomial. The ged
of these polynomials has two irreducible factors, of degrees 20 and 36. The first
of these is spurious. Expressed in terms of X, Z (see (I0)), it is the curve

Z? —(X® —5X24+12X)Z +18X%2 - 27X =0 (17)

of genus 1. This factor can be ruled out in various ways, such as using degree-13
relations in p;, 0, 07, or even calculating that it has bad reduction at the primes
11,17 while B7(168) must have good reduction away from the primes 2,3,7
dividing 7(7 — 1). We are left with the curve

(11X?% 4+ 13X +4)7% — (81X° +315X* +467X> +335X% +90X)Z  (18)
=37X* +171X3% + 216 X% + 108X.

(Like (7)), this equation has smaller coefficients because of the factor of 7 in-
troduced into Z in ([)).) The curve ([I8) is a quadratic cover of the X-line. Its
discriminant as a polynomial in Z is

(9X? + 13X +6)°X(81X° 4+ 396 X* + 738X + 660X > + 269X +48).  (19)
Therefore (I8) yields our hyperelliptic model (8) for B7(G1es), with

C2(11X2% 4+ 13X 4+ 4)Z — X (81X* + 315X3 + 467X2 + 335X + 90)

Y
9X2+ 13X +6

(20)

It is a welcome sanity check that this curve has bad reduction only at the primes
2,3, 7 dividing 7(7 — 1): the sextic in ([9) has discriminant 22431178,

2.2 Theorem [, and Septic Trinomials over Q

We next show that pg, 0g, and o7 are rational functions of ps, p4, ps. The elimina-
tion of pg, og left two equations, both quadratic in o7. In the process of eliminat-
ing o7 we obtained a linear combination of these two equations that is linear in
o7, with coefficients in Q(ps, p4, ps). Solving it yields o7 € Q(ps, psa, ps). We can
either repeat this argument for pg and og to show that pg, o6 € Q(ps, pa,ps);
alternatively, since we already know that pg,o06 € Q(ps, pa,ps,07) by solving
([I3I14)) for (pe,o6), we can deduce pg, o6 € Q(ps, pa, ps) from o7 € Q(ps, pa,ps)-

In particular, T = o /oS € Q(ps,pa, ps); since T' is homogeneous of degree 0,
it is thus contained in the function field Q(X, Z) of our hyperelliptic curve (8.

We can now conclude the proof of Theorem[Il. We just showed that Q(X, Z)
contains Q(7'). On the other hand, X and Z are homogeneous functions of the r;,
so Q(X, Z) is contained in the function field of B7. But this function field Q(B7)
is a normal extension of Q(T") with Galois group S;. Hence the intermediate field
Q(X, Z) is Q(B7)/G for some group G C S7, namely the stabilizer of X and Z
in S7. Clearly then G O G165. But G can be no larger than G145. We can show
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this directly, by checking that no element of S7 — G1gg fixes X. Alternatively we
may recall that the only subgroups of S7 properly containing Gi4g are Sy itself
and Az, and noting that Q(B7)/S7 = Q(T) and Q(B7)/A7 = Q(v/v7 —T) are
both rational function fields and thus not isomorphic with Q(X, Z). Either way,
it follows that G = G16s and that Q(X, Z) is the function field of B7(G1¢s), and
we are done.

[We could also have completed the proof by showing independently that
Br7(G16s) has genus 2 and thus that the map from B7(Gies) to Q(X, Z) must
be an isomorphism. We can compute the genus of B7(Gies) by applying the
Riemann-Hurwitz formula to the map of degree 30 (or 15) from B7(G1es) to
Q(T) = B7(S7) (or B7(Ar7)). Alternatively, we can count holomorphic differen-
tials on B7(G1gs). By the adjunction formula, the holomorphic differentials on
B7 are the sections of O(8), that is, homogeneous polynomials of degree 8 in
r1,...,77 modulo (o1, 09,05,04,05). Such a section descends to a holomorphic
differential on Br(G1gs) if and only if it is invariant under G1gs. We find that
the space of invariant sections is two-dimensional, generated by p3 and psps.
This confirms that B;(G1es) has genus 2, and also that X = p2/psps gives the
degree-2 map from Br(Gies) to PL.]

We can also compute septic trinomials over Q with Galois group contained
in G1gs. A search for rational points reveals the seven points listed in the state-
ment of Theorem [2l Of these, three yield degenerate septics: the two points with
X = -3, and the point (X,Y, Z) = (1/9,—28/9,—7/9), are zeros of o7 but not
of 0, and thus poles of T. The Weierstrass point (0,0, 0) yields T = —77/36,
the invariant of the Trinks-Matzat trinomial 27 — 7z + 3. The Erbach-Fischer-
McKay trinomial 27 — 154z + 99, with invariant —14711/3'2, arises from the
point at infinity (X,Y,Z) = (00,003, 00?). The remaining two rational points
yield our new septics exhibited in (I)): the other point at infinity, (X,Y,Z) =
(00,00%,0), yields T = —287/3'2372 and the trinomial 37227 — 28z + 99; and
(X,Y,Z) = (1/9,—28/9,3493/1017), the hyperelliptic conjugate of the pole
(1/9,-28/9,—7/9), has T = 2'4537113/3%44992, the invariant of the trinomial
499227 — 239562 + 3*113. We verified with GP, and again with Magma [BCP],
that each of these trinomials has Galois group exactly Gigs.

2.3 The Hyperelliptic Model for Bg(G1344), and Octic Trinomials

We sketch the proof of Theorem [3] that is, the computation of the hyperelliptic
model (@) for the curve Bg(G1344). We proceed much as we did with B7(G1344)-
Here we need G1344-invariant polynomials in eight variables r1, ..., rg satisfying
o;j =0for 1 <j<6.Let ¥ be a (3,4,8) Steiner system of fourteen 4-element
subsets b of {ry,...,rg}. For instance, we may take for ¥ the disjoint union of @
and the set obtained from @ by extending each line by rg. This time we need five
new invariants, in degrees 4,6,7,8,9. and find relations in degrees 13,14 (one
each) and 15,16 (two each). Specifically, we take

Pisa = Z T?"IT//T//,(Tj + T/j + T'Hj + T//,j) (j=0,2,3,4,5)
bew
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where b = {r,r',r”,r""}, and find

2papo + pepr + 11psor = 0,
4pips + 10psps — 144pgos + 3p3 — 21pro7 + 29407 = 0,
3pipr + 5pioy + 3pspe — 3prps — 24pros + 14orps =0,
—pipr — 3pior + 2p7ps + 12p705 + 8o =0,
28808 — 20psos — 8pios — 3prpy — 205 + pips = 0,

1512pg0s + 432pios + 441pgoy + 63ppy + 35ps — 50pips — 27papg — 4ps = 0.

We then solve simultaneous linear equations to write og, pg, py as rational func-
tions of p,, ps, 7, 07, and use resultants to eliminate ps. This leaves a polynomial
in x,,z;,0, that is quadratic in in x7. Its discriminant with respect to z] is a
homogeneous polynomial of degree 22 in p,, 0, which contains a square factor
of degree 2 - 8. Eliminating this factor we obtain the sextic in the right-hand
side of (@), where X = p,/o,. (Thus X is the quotient pgp;/pgo, of degree-13
polynomials that generate the space of holomorphic differentials on Bg(G1344)
by the adjunction formula and the degree-13 relation.) The discriminant of the
sextic is —2247'8 again confirming good reduction away from the prime factors
of n(n — 1). Curiously the sextics for B7(G1gs) and Bg(G1344) both have Galois
group isomorphic with S5, but with different permutation representations.

A search for rational points reveals the eight points listed in the statement of
Conjecture[ll Three of these, one of the X = —1 points and both X = —3 points,
are zeros of T'; the remaining five yield genuine trinomials. The three trinomials
listed in () come from points with X = —7,0, —1 respectively. The remaining
two points, with X = —7,0, both yield 7' = 18*/77, the invariant of the octic
trinomial ® + 324z + 567 of (B). Again using GP (in a version with polgalois
extended to maximal degree 11) and checking with Magma, we confirmed that
each of the three trinomials in (@) has Galois group exactly G344. On the other
hand, 2% 4 3242 4 567 has Galois group Gigs, acting transitively on the eight
roots. It appears twice because there are two embeddings of Gigs into Gisaq
not equivalent by conjugation in Gi3s4. We may identify {ry,...,rg} with the
projective line over Z/7Z by taking rs to oo and r; (j < 7) to j mod 7. Then
PSLy(Z/TZ) = G1es preserves ¥, and is thus contained in G344 = Aut(¥). But
PGL2(Z/7Z) = Aut(G16s) does not preserve ¥, so conjugation by an element of
PGL2(Z/7Z)—PSLy(Z/7Z) yields an inequivalent embedding of G16s into G1344.
This is why 2® 4 3242 + 567, and indeed any irreducible trinomial az® + bx + ¢
with Galois group G1gs over some field K of characteristic zero, must come from
two K-rational points of Bg(G1344) with the same value of T.

3 Determining Rational Points on Curves

3.1 Proof of Theorem

First we introduce a model for B7(G1gs) that is slightly better suited for com-
putation. We define

C :y? = 482° + 29z + 642> — 10822 + 642 — 16,
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which is isomorphic to the model in Theorem [ via

We use the techniques from [B3| to determine C(Q). See [B4] for a more
elaborate exposition on how these techniques apply in practice. Here, we leave
extensive computational details to an electronic reference [BE]. We will con-
centrate on a technical difficulty that typically arises in examples other than
extremely small ones.

First, we establish that the techniques from [FI] do not apply. We write J for
the Jacobian variety of C.

Lemma 1. r1kJ(Q) =2

Proof. Using a 2-descent one obtains an upper bound of 2 on the rank of J(Q).
For our purposes a lower bound is more relevant. We get one by checking that the
divisor classes represented by [(1,9) —oo] and [(2/3,28/9) — 00| are independent.
One can do so either by checking that their images generate the 2-Selmer group or
by checking that their height-pairing matrix is nonsingular. These computations
can be performed by Stoll’s implementation [Sf] in Magma [BCP]. See [BE] for
details.

We see that the rank of J(Q) is equal to the geometric dimension of J. This
rules out an application of the method of Chabauty-Coleman directly to C' as a
subvariety of J.

We take the approach of [B3]. We determine the rational points on a set
of twists of an unramified cover of C'. We take the cover that is obtained by
pulling back an embedding of C' in J along the multiplication-by-2 map J 2.
See [BF] for a description of this cover. Rather than working with this cover
directly, which would be a curve of genus 17, we use the many subcovers that
this curve has. The following lemmas show that, in order to determine C(Q),
it suffices to find the points of certain curves of genus 1 over a number field K
that satisfy certain additional arithmetic properties.

Consider the number field K = Q(«) defined by the relation o® —2a* +3a3 —
402 4+ 5a — 6 = 0. Over K, we have the following factorization of F.

F(x) = Q(x)R(x), where
Q(z) = (=203 + 502 — Ta +6)z — a* +2a% — 3a? +4a — 1
R(z) = (95a* — 5202 + 21302 — 62 + 391)x4+

(108a* — 5603 + 23302 — T9a + 422)z3+

(1720 — 8203 + 39202 — 98 + 696)2%+

(=124 + 600 — 28002 + T2a0 — 496)z+

640t — 3202 + 14402 — 40a + 256

The following lemma links C'(Q) to the rational points on certain curves of
genus 1 over K.
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Lemma 2. Let

01 = —5a? + 1403 — 1802 + 9 + 5,
Sy = 1230 — 26203 + 18802 + 151a — 383,
53 = 6a* — 3a3 + 1102 + 19.

If (z,y) € C(Q), then there is an i € {1,2,3} and y1 € K such that
8y = R(x).

Proof. First note that F(z) has no rational roots. Therefore, if z € Q, then
Q(z), R(x) € K*. Let p be a prime of K so that resultant(Q(x), R(z)) is a unit
at p. It is straightforward to verify that if Q(x)R(x) has even valuation at p,
then so do Q(x) and R(x) individually. Thus, if Q(x)R(z) = y?, then there exists
§ € K, representing an element from the subgroup of K*/K*? of elements that
have an even valuation at all primes outside the primes above {2,3,7} so that
there are y;,ys € K* satisfying

oyt = R(x),
by = Q(x),
y1yY2 =Y.

Following [Si, Theorem X.1.1], we write K ({2,3,7},2) for this group. The group
K({2,3,7},2) is finite. In fact, since K has class number 1, the group is repre-
sented by the square-free elements of the {2, 3, 7}-unit group.

We employ local arguments to show that we only need classes represented
by the three elements given in the lemma. Let p be a prime of K and let p
be the rational prime below K. For each class in K({2,3,7},2), we choose a
representing element § € K*. We test if the equations dy? = R(x),6y2 = Q(x)
can be simultaneously satisfied for x € Q,, y1,y2 € K. For the finite primes,
this procedure is completely automatic in [B5] built on top of [K]|. See [B4] for
an example and for a transcript.

Besides the values mentioned in the lemma, we also find 64, = —1 — 2a +
402 — 303 + a*. To rule out this value, note that K has only one real place. If
we embed K in R by a — 1.4918. .., we find that d4R(x) is definite negative for
z € R and thus is never a square.

This leaves us the three values mentioned in the lemma. Note that the choice
of representatives is arbitrary and thus that the same procedure executed twice
may return different but equivalent values.

Next we show that there is a good reason why the three values for § in the
lemma above occur. Each of the curves 6;y°> = R(z) actually has a rational
point with y € K and = € Q. Consequently, these curves are isomorphic to their
Jacobians, i.e., are elliptic curves. We compute Weierstrass-models of these.

Lemma 3. For i = 1,2,3, the curve 6;y> = R(x) has a K-rational point with
a Q-rational x-coordinate x;. The curve is isomorphic to the Weierstrass-model
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FE;, where the relevant data is given in the following table.

1 1] Y?2=X3+(-21a? — 2822 — 13822 + 324a + 864) X —
13300 + 433803 — 36002 + 5080a — 14592

2(2/3| Y% = X3 + (—924a* — 3182 — 90a? + 2274a + 1629) X +
11312a* 4 213940 — 723002 — 25520c — 71778

3l 0o [Y2 = X3 4 (7950 — 1584a° + 7382 — 2562a + 3501) X +
14068a* — 658603 + 389402 — 39856 + 2982

Proof. The proof is completely standard. See [Ca] for a nice recipe for finding
a Weierstrass-model for a curve of the form Y? = quartic in x with a rational
point. In [BBE], this procedure is implemented. See [BE] for more information.

Determining the Mordell-Weil group of E;, or rather a subgroup of finite
index in E(K), is the most difficult step. First we bound the rank by a 2-descent
and then we hope that we can find sufficient independent points. In the process
of the 2-descent we need a field extension A of K over which FE; acquires a 2-
torsion point. This is the same, cubic extension of K for all the E;. This should
come as no surprise, since the models §;y?> = R(z) already indicate that the E;
are quadratic twists and thus have isomorphic 2-torsion.

We need full classgroup and unit information of A, which is a degree 15
extension of Q. As it turns out, this is in fact doable. Using an implementation
of the relation methods (see [H], [Col) in MAGMA [BCPJ, we find that A has
trivial class number. The same method gives information about the group of
{2,3, 7T}-units in A.

As is often the case, finding the class group information is much easier than
proving that the information is correct. To find the information, one only needs
consider prime ideals above rational primes up to 300. The computation takes
a few seconds on PentiumlIIl 600Mhz laptop running Linux. To verify that the
obtained results are correct assuming GRH involves checking the primes up to
34225 and takes about 3 minutes. To verify the results unconditionally, one needs
to check all primes up to 5028282, which takes about 12 hours on a Sun Ultra5.
See [BE] for a transcript.

Lemma 4. Fori=1,2,3, the group E;(K) is torsion-free and of indicated rank.
A subgroup of finite, odd index is generated by the point P; ;, where X (P; ;) is
given in the table below.

rkE; (K) X(P;,;)

3 (4a* — 2503 + 3602 — 69a + 86)/8
8at — 2602 + Ta? — 14a + 52
—20* + 40® — 202 — 100 + 16

.

—_

2l 2 —22a* 4 340 — 182 + 64a — 77
(=450 — T4a® — 90 + 68 + 192) /12
3 3 (—47a% 4 300 + 2a% + 1560 — 104) /4

(261a* — 137403 + 60102 — 1026a + 3462) /25
(—13a* + 2403 + 34a — 66)/9
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Proof. These facts can be verified using [B5]. See [BE] or [B4] for more informa-
tion.

The curves §;y?> = R(z) and E; are isomorphic over K. We will interpret z as
a degree 2 morphism E; — P!, not to be confused with X, the X-coordinate of
the Weierstrass-model. Lemma[2 assures that by determining z(E;(K))NP1(Q)
for ¢ = 1,2,3, we obtain a set that contains the z-coordinates of C(Q). If this
set is finite, then it is only a finite amount of work to obtain C'(Q) from it.

To lighten notation, fix ¢ and write £ = E;, r = rkE(K) and P,..., P, =
Pi1,...,P . From Lemma [ we know that E;(K) ~ Z" and that the index
I=H#(E(K)/{Py,...,P.)) is finite. In our situation, we expect that I = 1, but
do not need to prove it. For any P € E(K) we have ny,...,n, € Z so that
IP:anl—f—---—i—anr.

Let p be a rational prime so that F has good reduction at all the primes
p1,...,ps of K above p. We define A, C (Py,...,P,) to be the intersection of
the kernels of reduction modulo pq, ..., ps.

A, ={Pe(Py,...,P) forallie{l,...,s} we have Pmodp; = O}

If P € E(K) has z(P) € P1(Q), then for any i, j we have z(P)mod p; € P1(F,)
and z(P)mod p; = z(P)mod p;. We define

Vp={Pe(P,...,P) foralli,je{l,...,s} we have
z(P)modp,; € PY(F,) and z(P) mod p; = z(P) mod p,}.

Assume that for each 7, we have that I is coprime with the index of
<1:)17 e 71:)T> mod p; C (Emodpl)(FNm)

Then (Pi,...,P)modp; = E(K)modp;. It follows that if P € E(K) with
z(P) € P1(Q), then there is a Q € V, so that Pmodp; = Qmodp; for i =
1,...,s. In other words, (P — Q) modp; = O.

In order to bound the number of P € E(K) with z(P) € P'(Q) that reduce
to a fixed @ € V,, we use that the group structure on the kernel of reduction
E! (K,p,) is given by a formal group. Again, we do not need that I = 1. We
only need that A, ® Z, is equal to the intersection of the kernels of reduction
E(K)NE'(K,,). Since any prime ¢ # p is a unit in Z,, this follows if / mod p # 0.
For details, we refer the reader to [B2].

Here we will concentrate on ways to reduce the number of Q) € V), that need
further consideration. Let ¢ be another rational prime satisfying the necessary
assumptions and assume that A, + A, does not equal the entire (Py,...,P,).

We consider

Vpg ={P €V, (P+A4,) NV, # 0}
Obviously, if P € E(K) with z(P) € P}(Q), then there is a @ € V4 so that
Pmodyp; = Qmodyp; fori =1,...,s. However, V, , may be a strict subset of V,.
In this way, we can get extra information by combining data at distinct residue
characteristics.
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Note that this argument can be used cumulatively. Furthermore, {P € V,, :
(P+A,)NV, ¢} may be a proper subset of V,, ,NV, 4. Of course, if we combine
information modulo A, and A4, the resulting information is most naturally ex-
pressed modulo A, N A,. This information tends to be much more bulky, though.
In practice it seems to be preferable to just keep the information modulo 4,.

Lemma 5. For i = 1,2,3, we have that the only solutions of §;y*> = R(x) with
y € K and x € Q, have x as indicated in the table below.

i|x-coordinates

Proof. Again, the computations involved are automated in [B5|. For Ey, the de-
sired result can be obtained by a Chabauty argument using the primes above
1439 augmented with congruence information at 947. For Fs, a straightforward
argument at 5 suffices. For F3, we had trouble finding one rational prime that
yields enough information. Here we combined a Chabauty argument with con-
gruence information at 1439 and 947. This also involves first combining the
information at 1439 and 947 before combining it with the information at 71.
Since this procedure is not fully automated in [BH|, we give some detail here
on how to proceed. Since the output format of the routines is rather bulky, the
following output is edited for brevity. If the reader is interested in the full details,
he or she is referred to [BE].

First we define the cover. Note that we apply « — 1/z, so that z = oo
corresponds to x = 0 in this session.

kash> 0:=0rderMaximal(x"5 - 2*x"4 + 3*x"3 - 4*x"2 + 5*x - 6);;
kash> ec:=E11(1,0,0,0,E1t(0, [3501, -2562, 738, -1584, 795]),

> E1t(0,[2982, -39856, 3894, -6586, 140681));;

kash> P1:=El1XtoPnt(ec,E1t(0, [-104, 156, 2, 30, -47] / 4));;
kash> P2:=El1XtoPnt(ec,E1t (0, [3462,-1026,601,-1374,261]1)/25);;
kash> P3:=El1XtoPnt(ec,E1t(0, [-66, 34, 0, 24, -13] / 9));;
kash> El1GenInit([P1,P2,P3],3);;

kash> cov:=QuarCov(HypEllRev(deltas[3]*Rpol),0,ec);;

kash> Unbind(cov.IsE11DblCov) ;

Next we compute V71, Voar and Vig3g.

kash> L1:=E11CovFibStrict(cov,PlaceSupport(71*0));;
Warning. Results only valid if 2 is prime to index in MW-group.
Result of FibStrict:
[71, [ 6, 9, 18, 19, 22, 24, 28, 29, 34, 35, 37, 38, 40, 42, 44,
46, 47, 57, 60, 70, 01 1
kash> L2:=E11CovFibStrict(cov,PlaceSupport(947%0));;
Warning. Results only valid if 2 is prime to index in MW-group.
Result of FibStrict:
[947, [ 14, 37, 50, 149, 151, 162, 218, 225, 250, 274, 288, 333,
357, 369, 373, 395, 397, 450, 466, 480, 612, 625, 636, 652,
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656, 692, 767, 776, 812, 825, 826, 838, 844, 857, 944, 0 ] ]
kash> L3:=E11CovFibStrict(cov,PlaceSupport(1439%0));;

Warning. Results only valid if 4 is prime to index in MW-group.

Result of FibStrict:

[1439, [ 24, 55, 79, 98, 112, 181, 183, 265, 289, 368, 369, 413,
471, 527, 540, 570, 589, 611, 635, 695, 726, 731, 787, 848,
865, 910, 944, 973, 978, 987, 1049, 1077, 1097, 1134, 1226,
1261, 1271, 1337, 1359, 1377, 0 ] ]

The printed information gives (P)modp for P € V,. Internally, more infor-
mation is stored in L1,L2,L3, but that information is too bulky to print. The
program notes that [E(K) : (Py,..., P.)] should not be divisible by 2. Lemma
ensures this.

Next, we determine V47,1439 and combine that information with V7.

kash> L23:=E11CovFibSect(L2,L3);;

Fiber intersection yields:[ 947, [ 450, 0 ] ]
kash> L123:=E11CovFibSect (L1,L23);;

Fiber intersection yields:[ 71, [ 0] ]

Note that Vgs71439 indicates only 2 possible residue classes for x(P)mod 947,
while Vy47 indicates 36 possible residue classes. This information combined with
Vr1 leaves only one residue class for z(P)mod 71. Here we check using a power
series argument that there are no points 71-adically close to O € E(K) that
have a rational image under z.

kash> EllCovThetaTest (cov,PlaceSupport(71x0) ,El1Zero(ec));

Computing Theta"G for G=( 0: 1: 0 )...

G is only point in fiber if the following matrix has maximal rank mod 71
[41 31 10]

[42 70 29]

[24 59 33]

[67 1 52]

true

We see that any P € C'(Q) has z(P) € {1,10,2/3,00}. Theorem [2 follows.

3.2 A Line of Attack for Conjecture [II

An isomorphic model for Bg(G1344) is
C:y? = 2% — 325 + 2527 /4 — 62° 4 2022 + 4.

To decide Conjecture [[l we need to determine C'(Q). Similar to B7(G1es), the
Mordell-Weil group of the Jacobian of C' has rank 2. Therefore, a direct Chabauty
argument will not work. In principle, we can apply the method from the previous
section. To factor 2% — 325 + 2524 /4 — 623 + 2022 + 4 into a quadratic factor
Q(z) and a quartic factor R(z), we need a degree 15 extension K.

To get the analogue of Lemma [2] one could use the information on the 2-
Selmer group of the Jacobian of C, together with local arguments.
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For the analogue of Lemma [, one would in general need a further degree
3 extension in order to perform a 2-descent. This would lead to a degree 45
extension. Classgroup information is probably not feasibly computable for such
a field. For C, things are not that grim, though. The Galois-group of 2% —
32° + 2521 /4 — 623 + 2022 + 4 is S5 acting transitively on the 6 roots. As a
consequence, the Jacobians of the curves dy? = R(x) have a 2-torsion point
over K. This enables us to do a 2-isogeny descent. We only need classgroup-
information of K. Surprisingly, the Minkowski-bound for K is only 196195. The
classgroup information of K is unconditionally computable (K has class number
1).

Thus we can get upper bounds for the ranks of the elliptic curves involved. Ac-
tually finding the Mordell-Weil groups, however, involves finding rational points
on elliptic curves over a degree 15 extension of Q. Also, the rank bounds obtained
by a 2-(isogeny-)descent are not necessarily sharp. With present techniques, solv-
ing this equation by the above method would involve an inordinate amount of
luck. We did not have the courage to test ours.
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Abstract. We give a method for finding rational equations of genus 2
curves whose jacobians are abelian varieties Ay attached by Shimura to
normalized newforms f € S3(Io(IN)). We present all the curves corre-
sponding to principally polarized surfaces Ay for N < 500.

1 Introduction

Given a normalized newform f =} _;a,q" € S2(I5(N)), Shimura [5]-[6] at-
taches to it an abelian variety Ay defined over Q of dimension equal to the degree
of the number field Ey = Q({ay}). The Eichler-Shimura congruence makes it
possible to compute at every prime p f N the characteristic polynomial of the
Frobenius endomorphism acting on the Tate module of A;/F, from the coeffi-
cient a, and its Galois conjugates. In consequence, when Ay is Q-isogenous to
the jacobian of a curve C' defined over QQ, the number of points of the reduction
of this curve mod a prime p of good reduction can be obtained from the char-
acteristic polynomial of the Hecke operator T}, acting on H°(Ay, 2'). Among
these jacobian-modular curves, those which are hyperelliptic of low genus are
especially interesting for public key cryptography.

As an optimal quotient of the jacobian of Xo(N), Jo(N), the abelian variety
Ay has a natural polarization induced from Jo(N). We will focus our attention
on polarized surfaces Ay which are Q-isomorphic to jacobians of genus 2 curves.
Wang [7] gave a first step in the determinations of such curves. More precisely,
using modular symbols he computed the periods of f and its Galois conjugate
and presented Ay as a complex torus with an explicit polarization. For those
principally polarized A, Wang computed numerically Igusa invariants by means
of even Thetanullwerte and built an hyperelliptic curv e C'/Q such that Jac C' ~
Ay over Q. The curves C obtained with this procedure have two drawbacks:
they have huge coefficients, and, moreover, we only know that their jacobians
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are Q-isomorphic to the corresponding abelian varieties Ay, but we don’t know
whether they are Q-isomorphic, or even Q-isogenous. Frey and Muller [2] looked
for a curve C'/Q among the twisted curves of C' such that the local factors of the
L-series of JacC” and Ay agree for all primes less than a large enough bound.

In this paper we want to go one step further in the determination of these ja-
cobian modular surfaces. We describe a more arithmetical and efficient method,
based on odd Thetanullwerte, which solves the problem up to numerical ap-
proximations. Our method provides equations Cr : y? = F(z) with F(z) € Q[z]
such that Jac Cr or Jac C_p is Ay. The sign is chosen using the Eichler-Shimura
congruence.

We have implemented a program in MAGMA to determine modular jaco-
bian surfaces and equations for the corresponding curves. We have found all the
modular jacobian surfaces of level N < 500. The equations obtained for the cor-
responding curves are presented at the end of the paper. It is remarkable that
almost all of them are minimal equations over Z[1/2].

2 Theoretical Foundations

A polarized abelian variety (A4, @) of dimension g defined over C can be realized
as a complex torus T4 = C9/A, where A is the period lattice of A with respect
to a basis of H°(A, 1), with a nondegenerate Riemann form defined on A. We
choose a symplectic basis for A, and write it as a 2g x g matrix 2 = (£21]£25). The
normalized period matrix Z = (27 12, satisfies the Riemann conditions Z = tZ,
Y =1ImZ is positive definite and the Riemann theta function:

0(z) :=0(z,2) = Z exp(mi'n.Z.n + 2mi'n.z)
nez9

is holomorphic in CY9. The values of the Riemann theta function at 2-torsion
points are called Thetanullwerte. Historically, only the even Thetanullwerte, i.e.,
the values of the theta function at even 2-torsion points have been studied, since
the values at odd 2-torsion points are always zero. Anyway, the values of the
derivatives of the theta function at the odd 2-torsion points have nice properties,
and also do provide useful geometrical information ([4]).

We now give the theoretical results which allow one to recognize when a
principally polarized abelian surface is the jacobian of a genus 2 curve.

Proposition 1. Let (A, ©) be an irreducible principally polarized abelian surface
defined over a number field K. There exists a hyperelliptic curve C of genus 2
defined over K such that A = JacC.

Proof: It is well known that the irreducibility of A implies that A = JacC
for a certain hyperelliptic curve C' defined over C. But for genus 2 curves, the
Abel-Jacobi map in degree 1 is an isomorphism between the curve C and the @
divisor in JacC' = A. Hence, we can assume that C = ©, which is defined over
K. O
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Proposition 2. A principally polarized abelian surface (A, ©) is not irreducible
if and only if there is an even 2-torsion point P such that the corresponding even
Thetanullwerte vanishes.

Proof: If (A4, O) is irreducible principally polarized, then it is isomorphic to the
jacobian of a hyperelliptic genus 2 curve, and hence every even Thetanullwerte
is non-zero.

Conversely, assume that (A, ©) is the product of two elliptic curves Fy, Es.
This means that the theta function 64 associated to the pair (4, ©) is equal to
0102, where we denote by 6; the theta function associated to the elliptic curve
E;. Let O; be the zero point in E;, which is the unique odd 2-torsion point in E;.
The pair O = (01,02) € E; x E5 gives an even two torsion point in A, which
satisfies 04(0) = 0. O

Once we know that a principally polarized abelian surface A is a jacobian,
we want a method to find a curve C' such that A ~ JacC. We would like to
be careful enough to assure that, when A is defined over a number field K, the
curve C and the isomorphism A ~ Jac C are also defined over K. The following
result, which can be found in [4], will be basic for our purpose.

Theorem 1. Let F(X) = agX%+asX°+...+a1X +ag € C[X] be a separable
polynomial of degree 5 or 6. Let £2 = (£21](22) be the period matrixz of the hyper-

d d
elliptic curve Cr : y*> = F(x) with respect to the basis wy = —x, we = rer of

HO(Cp 02Y) and any symplectic basis of H1(Cp,Z), and take Zp = QIIQQ.

T
a) The roots oy, of the polynomial F' are the ratios ﬂ, given by the solutions
Tk,1

)

(g1, xk,2) of the siz homogeneous linear equations

(e o) () -

where wy, ..., wg are the siz odd 2-torsion points of J(Cr), given by
0 0 0 1
_lz 1 _lz 1
w1 =3 F(l) 2<1>’ w2 =3 F(1) 2(1)7
1 1 1 1
_ly 1 _ly 1
Ws =34F \ +3 o) Wa=24F | g +3 1)
1 0 1 1
_lz 1 _1lz 1
Ws =328 | 2\1) o724 210

When deg F' = 5, one of these ratios is infinity and we discard it.
b) Let W; = (aj,0) be the Weierstrass point corresponding to w;. Denote by
H([W;] the hyperplane of P! given by the equation

HIVI00. %) = () o) ) o ()
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The discriminant Aqq(Cr) of the polynomial F satisfies the relation

Aaig(Cp)" = 212068070 det Q73 1., HW;](1, ax)? if deg(F) = 6;

j<k

Aug(Cp)® = 28060780 det 272 T]._, H[W;](1,ax)? if deg(F) = 5.

i<k
3 Determination of Hyperelliptic Equations

We explain here how one can, given an irreducible abelian surface (4, @) defined
over K, look for a hyperelliptic curve Cr : Y2 = F(X) such that A is K-
isomorphic to Jac Cr. We have divided our method into four steps.

Step 1: Period matrix. The first step consists in choosing a suitable period
matrix {2 for A. We have to fix a symplectic basis of Hq(A,Z), a convenient basis
of HY(4, (2114 ) and compute the corresponding period matrix. The following
result assures us that the basis of regular differentials can be chosen arbitrarily.

Proposition 3. ([3]). Let C/K be a genus 2 curve. For every linearly indepen-
dent pair of reqular differentials wy,ws € H°(C, Qé/K), there exists a polynomial
F(X) € K[X] of degree 5 or 6 without double roots such that the functions on
C given by

w1 dxr

Xr = 5

Y
w2 w2
satisfy the equation y* = F(z).

Step 2: Weierstrass points. In this step, we compute the roots «j of the
polynomial F' given by the first part of the theorem [I], and we take the monic
polynomial Fy(X) =[], (X — o) € K[X].

Step 3: Leading coefficient. With the formulas given for the discriminant
in part b) of theorem [Il we obtain af’ € K (or ai’ € K if degFy = 5). We
choose one of the tenth roots ag € K of this value and take the polynomial
Fi(X) =asFy(X) € K[X].

Step 4: Hyperelliptic equation. At this point, it only remains to find the
tenth root of unity ¢ such that F = (Fj. Since the curves Cr and C\2p with
A € K* are K-isomorphic, it suffices to consider only the cases ( =1 and ( = —1,
when —1 ¢ K2. First we check whether Cr and C_f are K-isomorphic. If they
are not, then we look if Jac Cr and Jac C_p are not K-isogenous. In this case,
by Faltings Theorem, only one of their L-series will agree with the L-series of
A and this will give the right sign for F = +F}. In fact, it will suffice to find
a prime P in K of good reduction for the curves C'r and C_p such that their
reductions mod P have a different number of points.

In the case that C'r and Cg are not K-isomorphic and JacCp and JacC_p
are K-isogenous, we cannot determine the right sign. Anyway, we know that
both jacobians Jac Cr and Jac C_ are K(y/—1)-isomorphic to Ay, and one of
them is K-isomorphic.
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4 Modular Computations

We apply the method described in the previous section to present the irreducible
principally polarized two-dimensional factors of Jo (N )W as jacobians of curves,
for N < 500.

In order to do this, we begin looking for the normalized newforms f =
Y ang™ € Sa(Ip(N)) such that the number field Ef = Q({a,}) is quadratic.
For each of these newforms, we take an integral basis of the C-vector space gen-
erated by f and its Galois conjugate ? f. We also determine a symplectic basis
of Hi(Ay,Z). If Ay is principally polarized, we compute the period matrix with
respect to these bases, using the package on modular symbols written by W.
Stein in Magma.

Next, we check the irreducibility of Ay by means of proposition 2l We remark
that all the Ay studied are irreducible.

We now apply the method of section 3. We follow the steps described there,
to find the corresponding curves Cr : Y2 = F(X). Since we are working over
Q, we can change the polynomial F(X) in order to obtain an integral equation.
We multiply F(X) by d = t/b, where ¢t € Z is the square of the l.c.m. of the
denominators of the coefficients of F', and b € Z is the g.c.d. of their numera-
tors divided by its maximum square-free factor. It is worth remarking that the
equations obtained have very small coefficients, even before finding the integral
model.

The only case in which we have found a curve Cr such that JacCp and
Jac C_p are Q-isogenous occurs for N = 256, but in fact both curves are already
Q-isomorphic, because the corresponding polynomial F(X) is odd.

We have used three tests to check the correctness of our equations. First, we
have computed the absolute Igusa invariants of the curves Cr in two different
ways: algebraically from the coefficients of our equations, and numerically from
the even Thetanullwerte of the period matrix. They have agreed to high accuracy
in all cases. Second, we have compared the local factors of the L-series of Jac Cp
and Ay for all primes p < 100 not dividing Ag;4(Cr). Finally, we have computed
the odd part of the conductor of C'r using the program genus2reduction by
Q. Liu. In all cases, this odd part agreed with the odd part of the square of the
level of the newform f, as it should by [1]. It is worth noting that in almost all
cases our equations are minimal over Z[1/2].

We illustrate our computations with an example. The first level for which
Jo(N)PW has a proper two-dimensional factor is N = 63. Using Magma we
identify the corresponding normalized newform f:

f=a+ V3@ +q"—2V3¢" +¢" — V3¢ — 6¢"° + 2v3¢" +2¢" + ...
An integral basis of the space (f,7 f) is

fi=a+d +q" —64" +2¢" + ..., fo=q"—2¢° —¢* +2¢" + ...
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A basis for Hi(Ay,Z) in terms of modular symbols is given by
m={-55.0} = {=25,0} + {55, 0} = {57, 0} = {—3, -3},
1= {=25,0 — (.0} + {=35,0) — (=0} — {~4, -1},
v =1{-21,0} +{-35.0} = {—45.0} = {—55.0} = {—3. -3} - {3, 5},
1= (35,00 — {=F5,0h + {0} — {=,0} + {~ .0}

_{ 60’0} { 7 %}

Computing the intersection matrix of these paths we see that A is principally
polarized. We find a symplectic basis for Hy(Af,Z), and compute the periods
of f1, f2 with respect to these bases. We obtain as period matrix 2 = (21 | {22)
for Ay:

0 — 0.3590439 ... 4+ 7% 0.6218823 ... —2.2150442... + 7% 1.2788564 . ..
P\ —2.2150442 ... + i % 3.8365691 ... 1.0771318...+ i 0.6218823...

0, — —1.4969563 ...+ 7 % 1.2788564 ... —1.8560003 ... — ¢ * 0.6569740 . ..
27\ —3.3529566 ... +i % 0.6218823... —1.1379124 ... 4 i * 3.2146868 . . .

We apply the method described in section 3, to obtain the monic polynomial
Fo(z) = 2% — 5423 — 27.

The coefficient ag is 1/12, so that F;(z) = 1/12Fy(«). The first prime for which
the local factors of Cp, and C_p, are different is p = 67. Comparing with the
polynomial

2*(z +p/r — ap)(z +p/r —7 ap),
we see that the right sign is —1. We multiply —F}; (z) by 62 to obtain an integral
equation. We can finally assert that Ay is the jacobian of the curve

y? = =325 4+ 1622 + 81.
The Igusa invariants of this curve are
23.37° ) 3-373.103 ) 5-37%.881
—_— 9= ———F1r— —_——
3.3 7 2.73 2373
We have also computed these Igusa invariants from the even Thetanullwerte

associated to the period matrix Z, obtaining, of course, the same result.
Using Q. Liu’s program, we find a minimal equation for the curve C:

11 = 13 =

Y? = X% 4+ 54X3 — 27,

which is obtained from our equation through the change z = 3/X, y = 9Y/ X3,
which corresponds essentially to a different ordering of the modular forms f1, fo
as basis of (f,7f).



Computations on Modular Jacobian Surfaces 195

5 Tables

We present the equations that we have obtained in the following table. We
have labelled the irreducible principally polarized two-dimensional factors Ay of
Jo(N)PW as Syx. We have ordered the two-dimensional factors of Jo(N)MW
following the output of the Magma function SortDecomposition. The letter X
denotes the position of Ay with respect to this ordering. The third column
indicates when we know that the given equation is minimal over Z[1/2].

Ay Cr:y?> = F(z), JacCp=~ Ay minimal?
Soza  y? =28 —8x® +22% + 223 — 1122 4+ 102 — 7 yes
Soga  y? =8 —4x® —122% +22% + 822 + 82 — 7 yes
Ssia y* =25 —82° + 62" + 1823 — 112% — 14z — 3 yes
Seap  y? = —3x% + 16223 4 81

Sesp  y? = —a% —42° + 321 + 2827 — T2% — 62z + 42 yes
Sesc y? = —1525 + 362* — 3023 + 7222 — 39 yes
Serp y? =ab +22° + 2t — 223 222 — 4 + 1 yes
S7sp Y2 =28 —4x® + 22t + 623 + 22+ 22+ 1 yes
Ss7a  y? =28 —22* — 623 — 1122 — 62 — 3 yes
Soza Y2 =a% 4+ 22* — 623 + 522 + 62+ 1 yes
Si03a y? = a8+ 221 + 223 + 522 + 620 + 1 yes
S1074 yQ =26 + 225 + 5t +22% — 222 —4x— 3 yes
SllSB y2 - xG + 2%4 + 101’3 + 51’2 + 6x =+ 1 yes
51173 y2 = IG — 101’3 — 27 yes
Si17¢ y2 = —32% — 122% — 1823 — 4822 — 362 — 27 yes
Sizsa y? = a8+ 22° + 52* + 102° + 1022 + 8z + 1 yes
Siasp  y? = 528 — 102° + 252* — 5023 + 5022 — 402z + 5 yes
Sizza y? =% — 22° +52% — 623 + 1022 — S8z + 1 yes
Sizsp y? = —325 — 2225 — 352* + 502 + 742? — 100z + 29 yes
Si3sp  y? = a® + 62 — 1023 4 922 — 30z — 11 yes
Siarp y? =25 —da* +22% + 82% — 120+ 9 yes
Sieip y? =28 4+ 6x° + 172% + 2223 + 2622 + 120 + 1 yes
Siera y? =28 — 42 + 20 — 223 — 322 + 22 — 3 yes
S175E y2 =26 4+ 2% — 32% 4+ 623 — 1422 + 82z — 3 yes
Sirra y? =28+ 221 — 623 + 522 — 62 + 1 yes
Simrp y? = —152% — 1202 — 5302* — 71023 — 51522 — 30z + 45

Sigsp Y2 =25 —at+ad+ 22 20+ 1 yes
SlggE y2 = 33‘6 — 2.733 — 27 yes
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Ay Cr:y?> = F(x), JacCp=~ Ay minimal?
Si014 y? = a8+ 221 + 223 + 522 — 62 + 1 yes
Soosp y? = 25 + 2% + 1023 + 522 — 62 + 1 yes
Sonop  y? =28 — 4a® + 82 — 823 + 822 + 4z + 4 yes
So13 y? =% +22* + 223 — 72?2 + 62 — 3 yes
Sooic y? = a8 — 225 + 2t + 623 + 222 + 4z + 1 yes
Soouc y? = —2x8 — 825 — 34x* — 4823 — 11822 4 56 + 154 yes
Sooap y? = 228 — 8x® + 34z* — 4823 4 11822 + 56 — 154 yes
Soazc y* = a5 + 623 — 27 yes
Sosop  y? = 2028 — 14025 + 325 2% + 1050 23 + 42522 + 160 x + 80

Soser y* = 22° — 128 ves
Soe1a y? =5 — 621 + 1023 + 2122 — 302 + 9 yes
Sosip Y2 = —3x8 + 182* 4+ 3023 — 6322 — 90z — 27 yes
Sog1ip y? = —32% 4+ 621 — 182% + 3322 — 182 + 9 yes
Soec Y2 = —8x° + 562 — 8223 — 31222 — 2642 — 64 yes
Sossn Y2 = 820 +162° +132* +62% — 1922 — 8z — 16 yes
Saesc y? = a8 —22° + 2 — 42 + 222 + 42 + 1 yes
Sorsq y? = =3x8 — 225 + 2 — 1423 + 222 —8x + 1 yes
Soroa y* = =325 —62* — 1823 — 1522 + 182 — 3 yes
Sorop y? = —3a% +62° -3 —62% +182%2 — 122+ 9 yes
Sogra Y2 =284 22° — 32t — 623 — 1022 — 42 — 3 yes
Sogoa y? = —a% — 225 — 4ot — 423 — 32? — 20+ 1 yes
Soore y? = 28— 122 — 823 + 1222 — 122 + 4 yes
Saorp y* = =320+ 3621 — 2423 — 3622 — 362 — 12 yes
Sagoa  y? = —32% — 102° — Tt + 62% 4 62 — 4z + 1 yes
Sass Y2 = —T52% + 180 2% + 150 2% + 360 2% — 195 yes
Sgasp Y2 = a0 — 4a® — 4822 — 20z — 4 ves
Ssase y? = a® — 12254+ 3221+ 2423 +82% — 122+ 4 yes
S3514 y2 =% — 624 + 1823 + 922 — 18z + 5 yes
Sssic y? = =320 +182% + 5423 — 2722 — 542 — 15 yes
Sassip y? = 2128 — 21025 + 525 2% — 60223 + 71422 + 336 = + 665

Sasre y? = xb + 82* — 823 4 2022 — 122 + 12 yes
Ssrsc y? = 1052°% + 24025 + 550 2* + 450 2% + 32522 + 90« — 155 yes
Ssr6a Y2 = —a® —at + 323+ 322 —4x +1 yes
Saszep y? =a® —a® +22° — 22 +1 yes
Sssop y? =5 — T2 —4da? + 5245 yes
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Ay Cr:y?> = F(z), JacCp ~ Ay minimal?

Sserp Y2 = —1225 4+ 16223 4 324

Sssop Y2 = 2% 4 102° + 232% — 2023 — 4522 + 462 — 11 es

389 Y y

Sa914 y? =28 4+102* — 623 — 1122 4+ 182z — 7 yes

Suzaa Y2 =28 —22° +62* — 823 + 1022 -8z + 5 yes

Saor Y2 =2 +22% — 1122 -8z — 24 yes

Suoe Y2 =2 — 223 — 722 -8z +8 yes

Spr Yy = —325+122% + 623 — 2422 - 362 — 27 yes

Saar Y2 = —x8 —22°5 — 72t — 623 — 1322 — 42— 8 yes

Sarer Y2 =2 4+ 22 + 322 + 622 +4x +1 yes

Sirep y? =5 —22* +32% — 622 - 7 yes

Sugsc Y2 = 28 +122° +262* — 3423 — 6722 4+ 902 — 27 yes

Sugga Y2 = —3x8 + 182° — 27x* — 1223 — 2722 — 362 — 24 yes
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Abstract. We study the density of integral points on punctured abelian
surfaces. Linear growth rates are observed experimentally.

1 Introduction

Let V' be a smooth projective algebraic variety over a number field K. We now
ask whether there exists a finite extension K’ of K such that K’-rational points
are Zariski dense. This property is called potential density of rational points,
and is known to hold, e.g., for abelian varieties, certain classes of Fano varieties,
and certain K3 surfaces (see [6], [1] and the references therein). Potential density
is conjecturally related to global geometric invariants of V', such as the Kodaira
dimension [10].

An analogous question can be asked about integral points. Let (V, Z) be a
projective variety and a proper subvariety, both defined over K. Choose models
(V, Z) over the ring of integers ox. Let S be a finite set of non-archimedean
places of K. A rational point ) on V determines a section sg of the structure
map from V to Spec(ox ). We say that the point ) is S-integral (with respect to
Z) if the section s does not meet Z outside S. We say that integral points are
potentially dense for the pair (V, Z) if there exists a finite extension K’ of K, a
finite set S” of non-archimedean places of K’, and models (', Z’) over Spec(ok-)
of the base-changed (V’, Z’) such that S’-integral points on (V', Z’) are Zariski
dense in V’. Concretely, this means that after a finite extension of the base field,
and allowing for a finite set of bad places, a given system of integral equations
for V' has a Zariski dense set of integral solutions such that their reductions,
outside the fixed bad places, are away from the reduction of Z (given also by
integral equations).

Congecture 1 ([7]). Let V be a smooth algebraic variety whose rational points
are potentially dense. Then integral points are potentially dense with respect to
any codimension > 2 subvariety Z C V.

C. Fieker and D.R. Kohel (Eds.): ANTS 2002, LNCS 2369, pp. 198-R04] 2002.
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This conjecture holds, e.g., for toric varieties and Del Pezzo surfaces [7].
Conversely, knowing potential density of integral points for certain varieties, we
may deduce potential density of rational points in many new cases. For instance,
Conjecture [T implies potential density for rational points on general K3 surfaces
(see [7]). An important test of the above conjecture is the case of punctured
abelian varieties (that is, pairs (J, Z), where J is an abelian variety and Z C J
a codimension > 2 subvariety).

For punctured abelian surfaces potential density is only known when the
abelian surface is special (e.g., isogenous to products of elliptic curves, or ad-
mitting extra endomorphisms, see [7]). Here we study the case of simple abelian
surfaces J over Q, punctured at one rational point (which we may as well take
to be the identity) and having a point @ € J(Q) of infinite order. We carry out
a simple numerical experiment which strongly suggests that integral points on
punctured abelian surfaces are not only Zariski dense, but moreover constitute
a positive proportion of the multiples of Q. It would be interesting to have a
conceptual interpretation of the proportionality constant.
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2 Divison Polynomials in Genus 2

Let f € Z[X] be a polynomial of degree 2¢g + 1 with no multiple factors and C
the hyperelliptic curve (over Z), defined by the equation

Y? = f(X).

Let (x,y) be a Q-rational point on C, with y # 0, and let @ := [(x,y) — o] be
the corresponding point on the Jacobian J = J(C'). Denote by © = ©(J) the ©-
divisor. Cantor [2] has described a convenient algorithm for generating division
polynomials v, () which vanish if and only if r - Q € ©. Moreover, - Q = 0 in
J if and only if ¢,/ (z) = 0 for all ' with |r' —r| < g — 1. These polynomials
give an efficient means of testing at which primes a given multiple of @) reduces
to the identity in (the reduction modulo some prime of) the Jacobian.

Before stating basic facts about division polynomials, let us recall how to
represent a point on a Jacobian. From now on we specialize to the case g = 2.
Every point on J is expressible in the form D — 2 - oo for an effective degree 2
cycle D on C, and D is unique except in the case of the zero element of J. The
point 7+ @ can be put into this form by solving for polynomials A(X) and B(X)
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such that A(X) — B(X)y vanishes to order r at @, subject to degree bounds
deg A < |(r+2)/2] and deg B < |(r—3)/2]. Then r-Q € O is equivalent to the
vanishing of the leading coefficient of A in the case r is even, or of B in the case
r is odd. Cantor shows that one can produce universal polynomials A and B,
whose coefficients are integer polynomials in the coefficients of f and in « (and
Y)-

Concretely, let us continue to assume that f has coefficients in Z. Cantor’s
algorithm generates polynomials P,.(z) and ), (z) such that:

(i) P.(z) = 0 if and only if r - Q € O (for all x in the algebraic closure Q of
Q), deg P, = r%2 — 4 when 7 is even, and deg P, = r? — 9 when r is odd (this
specifies P, uniquely, up to a scalar multiple).

(ii) Define v,.(x) to be proportional to P,.(z) when 7 is even and to f(x)P.(x)
when r is odd, and to have leading coefficient (T"gl); then 1, (x) is an integer-
coefficient polynomial of degree r2 — 4.

(iii) The v, satisfy the following recurrence relation:

¢5721/)T wsflw'ﬂrl wswr+2
'L/}r"/}sz/Jerrwsfr = det %—1%—1 ¢s"/’r ws+1wr+1 (1)
1;[}37/}7"—2 ws+1wr—1 77[}s+21/)7"

for any s > r.

The recurrence () determines 1, for all r > 8, given ¢y = 0, o =1, ..., 7.
One can effectively determine the universal polynomials 3, ..., 17 by solving
for the coefficients of the polynomials A(X) and B(X) mentioned previously,
for each r < 7. This is achieved economically by introducing a new variable v
given by vf(x) = 2 — X. Then /f(X)/f(z) is a power series in v which is easily

computed (for reason of convention, the branch —1 4 --- of the square root is
chosen for g = 2). Then one is reduced to solving
v" | a(v) = b(v)V/ f(X)/f(2) (2)

for polynomials a(v) and b(v) satisfying the same degree bounds as above (a
differs from A by the change of variable, and b differs from B by the change of
variable and multiplication by y). In particular, a(0)+b(0) = 0. We have a(0) =0
for given z € Q if and only if P,_1(x) = 0, and we can take —a(0) = b(0) = P,_;.
This means that for r < 6, () reduces to solving at most one equation for one
unknown coefficient, and this is easily solved. For instance, 14 is displayed in
Table [l For r = 7, the two unknown coefficients of the quadratic polynomial
b(v) must be solved for.

3 Results

We performed the following numerical experiment. Start with a curve C of genus
2 defined by Y2 = f(X), where f(X) is a monic degree-5 polynomial with
integral coefficients. Assume that the Jacobian J is simple, has Mordell-Weil rank
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Table 1. The universal ¢4(z)

F(X) =X+ aX' +8X° +9X° 4+ 06X +¢,

Ya(z) = 102" 4 240z’ + (268 + 16a°)z"" + 20208 + v)z”
+10(4ay + 38% — 8)z® +80(8y — &)z”
+ (—112ae + 6838 + 647> + 8afy — 23° — 160°8)x°
+ (—48%y — 88 — 640’ — 88 + 16ay” + 152768)z”
+10(—8aBe + 4ayd + 116> + 12ve — 3%6)z*
+40(ad® — BPe + 66e)x” + 10(86° + 16> — 46~e + 8ade)z”
+ (808de — 167%¢ + 64ae” + 4762)m + 168> — 85~ + 26°.

1 (over Q), and that there is an integral point (x,y) such that Q = [(z,y) — o<
has infinite order in J.

Let S be the set of prime divisors of 2y disc(f). Now the curve reduces well
modulo all primes not in .S, and we have an integral model for J over Spec(Z)~\.S,
with an S-integral point @ disjoint from the zero section. We count positive
integers r such that r - @Q is as well disjoint from the zero section (again, over
the complement of S); such r will be called good. For r - @ to be disjoint from
zero outside S is equivalent to ¢,_1(x), ¥.(z), and Y41 (z) having no common
prime factors outside S. A table is made of the density of the good integers r.
Amazingly, we observe linear growth.

Remark 1. The significance of any sort of growth is that the set of good integers
being infinite implies Zariski density of S-integral points on the punctured J
(here we use the fact that J is simple).

We describe the procedure in detail for one curve, and then present tables
giving the data from several curves.
The curve C given by

y? = 2 — 14z* 4 6523 — 11222 + 60z

has rational point (3,6), and its Jacobian J; satisfies J;(Q) = Z @ (Z/2Z)* (see
M]). Here S = {2,3,5}. Then we have (at z = 3)

U3 =144, g = —41472, by = 585252864,
Y = —35588725014528, 17 = 5004999490025816064.

Notice that 7 is a common factor of ¥, ¥g, and 7, so that 6 - Q is not S-
integral on the punctured J;. Hence 6 and all its multiples are not good. The
next integer, besides multiples of 6, which fails to be good is 22. The third is 38:

ged(Ysr, Pss, thag) = 2%°% - 3344 17
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Table 2. Densities of S-integral points on J;

range of 7 | density(J1) | density(J2) | density(J3) | density(J1)
1- 100 0.77 0.62 0.74 0.67
101- 200 0.69 0.63 0.70 0.67
201- 300 0.71 0.61 0.74 0.66
301- 400 0.74 0.62 0.69 0.70
401- 500 0.72 0.62 0.69 0.68
501- 600 0.72 0.63 0.74 0.67
601 700 0.73 0.60 0.70 0.64
701- 800 0.70 0.64 0.72 0.70
801- 900 0.72 0.59 0.73 0.68
901-1000 0.72 0.63 0.69 0.67

The first two columns of Table 2 show integer ranges (1-100, ..., 901-1000) and
the density of good r in each range.
We performed a similar experiment with the following curves:

Co: f(X)=X%+9X*414X3 —18X2 — 15X + 9, (x,y) = (0,3),
Cs: f(X)=X%+2X*-3X3% - 2X? +2X, (z,y) = (2,6),
Cy: f(X)=X54+11X* +7X% - 89X2 +2X + 88, (v,y) = (—7,54).

By a computation in [3], these are curves having Jacobians of Mordell-Weil rank
1 over Q. It is easy to see that the Jacobians we are considering are simple over
Q (e.g., by factoring the number of F,-points for suitable p). The correspond-
ing columns of Table 2] indicate the experimentally observed densities for these
Jacobians.

4 Heuristics

Let J be an abelian variety over Q, and let I" be the Mordell-Weil group J(Q).
Fix an integral model of J, and let S be the set of primes of bad reduction.
Then, for p a prime not in S, let us denote by g, the order of the subgroup of
J(F,) generated by I'. The quantity

p(1) =110~ 1/gp). 3)

pES

is a lower bound for the density of S-integral points on the punctured Jacobian.
We do not know whether this product converges.

Conjecture 2. If J is simple of dimension > 2 and has positive Mordell-Weil
rank, then the product (B) converges.

Remark 2. Replacing I' by a finite-index subgroup does not change the con-
vergence of ([B]). Also, note that the conclusion of Conjecture 2l may fail if J is
isogenous to a product of elliptic curves.
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We computed the Euler products using the first 400 primes of good reduction,
for the Jacobians J considered above. In our computation we used the subgroup
generated by our point @ in place of the full Mordell-Weil group to obtain a
quantity p(J) for each Jacobian J. Numerically we observe convergence. The
results are presented in Table

Table 3. Values of Euler products for J;

Ji Jo J3 Ja
p(J) | 0.576 | 0.404 | 0.538 | 0.516

Remark 8. For J of dimension 2, a positive answer to Conjecture[2 would imply
the density of integral points.

One can ask, for some abelian variety, how often the reduction of the cyclic
group generated by a given point is the full group J(F,); for elliptic curves,
this question was raised by Lang and Trotter in [§]. Assuming the Generalized
Riemann Hypothesis (GRH), Serre showed that for elliptic curves E, the number
of primes p < B such that E(Z/pZ) is cyclic is ~ ¢B/log(B) (as B — oo and
for some c). Again, under GRH, the density is

S un) /K2 Q)

n>1

where p(n) is the Mdbius function and K, is the field generated by n-torsion
points on E (see [9]). An unconditional lower bound > B/log(B)? (for elliptic
curves with no rational 2-torsion points) has been proved by Gupta and Murty

5.
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Abstract. Let C be a genus 2 curve defined over k, char(k) = 0. If C
has a (3, 3)-split Jacobian then we show that the automorphism group
Aut(C) is isomorphic to one of the following: Zz, Vi, Dg, or Di2. There
are exactly six C-isomorphism classes of genus two curves C with Aut(C)
isomorphic to Ds (resp., D12) and with (3, 3)-split Jacobian. We show
that exactly four (resp., three) of these classes with group Ds (resp., Di2)
have representatives defined over Q. We discuss some of these curves in
detail and find their rational points.

1 Introduction

Let C be a genus 2 curve defined over an algebraically closed field k, of character-
istic zero. We denote by K := k(C) its function field and by Aut(C) := Aut(K/k)
the automorphism group of C. Let ¢ : C — £ be a degree n maximal covering
(i.e. does not factor through an isogeny) to an elliptic curve £ defined over k.
We say that C has a degree n elliptic subcover. Degree n elliptic subcovers occur
in pairs. Let (£,&’) be such a pair. It is well known that there is an isogeny of
degree n? between the Jacobian Je of C and the product £ x £'. We say that C
has (n,n)-split Jacobian. The locus of such C (denoted by £L,,) is an algebraic
subvariety of the moduli space My of genus two curves. For the equation of Lo
in terms of Igusa invariants, see [1§]. Computation of the equation of L3 was the
main focus of [17]. For n > 3, equations of £,, have not yet been computed.

Equivalence classes of degree 2 coverings ¢ : C — £ are in 1-1 correspondence
with conjugacy classes of non-hyperelliptic involutions in Aut(C). In any char-
acteristic different from 2, the automorphism group Awut(C) is isomorphic to one
of the following: Zs, Z19, Vi, Ds, D12, ZgxDg, GL3(3), or 27 Ss; see [18]. Here
V4 is the Klein 4-group, Dg (resp., D12) denotes the dihedral group of order 8
(resp., 12), and Zs, Z1p are cyclic groups of order 2 and 10. For a description of
other groups, see [I8]. If Aut(C)=2Zjo then C is isomorphic to Y2 = X6 — X.
Thus, if C has extra automorphisms and it is not isomorphic to Y2 = X6 — X
then C € L£5. We say that a genus 2 curve C has large automorphism group
if the order of Aut(C) is bigger then 4.

In section 2, we describe the loci for genus 2 curves with Aut(C) isomorphic
to Dg or D15 in terms of Igusa invariants. From these invariants we are able to
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determine the field of definition of a curve C with Aut(C) = Dg or Dis. Further,
we find the equation for this C and j-invariants of degree 2 elliptic subcovers
in terms of 141,42,73 (cf. section 2). This determines the fields of definition for
these elliptic subcovers.

Let C be a genus 2 curve with (3, 3)-split Jacobian. In section 3 we give a short
description of the space £3. Results described in section 3 follow from [17], even
though sometimes nontrivially. We find equations of degree 3 elliptic subcovers
in terms of the coefficients of C. In section 4, we show that Aut(C) is one of
the following: Zs, V4, Dg, or Dy5. Moreover, we show that there are exactly six
C-isomorphism classes of genus two curves C € L3 with automorphism group Dsg
(resp., D12). We explicitly find the absolute invariants i1, 2,73 which determine
these classes. For each such class we give the equation of a representative genus
2 curve C. We notice that there are four cases (resp., three) such that the triple
of invariants (iy,i2,i3) € Q® when Aut(C)= Dg (resp., Aut(C)= D15 ). Using
results from section 2, we determine that there are exactly four (resp., three)
genus 2 curves C € L3 (up to Q-isomorphism) with group Dg (resp., D12) defined
over Q and list their equations in Table 1. We discuss these curves and their
degree 2 and 3 elliptic subcovers in more detail in section 5. Our focus is on the
cases which have elliptic subcovers defined over Q. In some of these cases we
are able to use these elliptic subcovers to find the rational points of the genus 2
curve. This technique has been used before by Flynn and Wetherell [5] for the
degree 2 elliptic subcovers.

Curves of genus 2 with degree 2 elliptic subcovers (or with elliptic involu-
tions) were first studied by Legendre and Jacobi. The genus 2 curve with the
largest known number of rational points has automorphism group isomorphic to
D15; thus it has degree 2 elliptic subcovers. It was found by Keller and Kulesz
and it is known to have at least 588 rational points; see [10]. Using degree 2 el-
liptic subcovers Howe, Leprevost, and Poonen [8] were able to construct a family
of genus 2 curves whose Jacobians each have large rational torsion subgroups.
Similar techniques probably could be applied using degree 3 elliptic subcovers.
Curves of genus 2 with degree 3 elliptic subcovers have already occurred in the
work of Clebsch, Hermite, Goursat, Burkhardt, Brioschi, and Bolza in the con-
text of elliptic integrals. For a history of this topic see Krazer [I1] (p. 479). For
more recent work see Kuhn [12] and [I7]. More generally, degree n elliptic sub-
fields of genus 2 fields have been studied by Frey [6], Frey and Kani [7], Kuhn
[12], and this author [T6].

Acknowledgements: The author wants to thank Professor Fried for his
continuous support.

2 Genus Two Curves with Extra Automorphisms
and the Moduli Space M,

Let k be an algebraically closed field of characteristic zero and C a genus 2 curve
defined over k. Then C can be described as a double cover of P!(k) ramified
in 6 places wy,...,ws. This sets up a bijection between isomorphism classes
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of genus 2 curves and unordered distinct 6-tuples wy, ..., ws € P!(k) modulo
automorphisms of P!(k). An unordered 6-tuple {w;}%_; can be described by a
binary sextic (i.e. a homogenous equation f(X, Z) of degree 6). Let My denote
the moduli space of genus 2 curves; see [I5]. To describe Ms we need to find
polynomial functions of the coefficients of a binary sextic f(X, Z) invariant under
linear substitutions in X, Z of determinant one. These invariants were worked
out by Clebsch and Bolza in the case of zero characteristic and generalized by
Igusa for any characteristic different from 2; see [1], [9].

Consider a binary sextic, i.e. a homogeneous polynomial f(X,Z) in k[X, Z]
of degree 6:

[(X,2)=a6X® +asX°Z + -+ aoZ°.

Igusa J-invariants {Ja;} of f(X,Z) are homogeneous polynomials of degree 2i
in klag,...,aq], for i = 1,2,3,5; see [9], [18] for their definitions. Here Jig is
simply the discriminant of f(X,Z). It vanishes if and only if the binary sextic
has a multiple linear factor. These Jo; are invariant under the natural action of
S Lo (k) on sextics. Dividing such an invariant by another one of the same degree
gives an invariant under G Lo (k) action.

Remark 1. There many sets of SLy(k) invariants of binary sextics. The J; in-
variants that we use were first defined by Igusa [0] and work in all characteristics.
One can download a MAPLE package that computes Js; from author’s web site.
For more information on other sets of invariants the reader can see the Igusa
Invariants package in MAGMA written by E. Howe.

Two genus 2 fields K (resp., curves) in the standard form Y? = f(X,1)
are isomorphic if and only if the corresponding sextics are GLy(k) conjugate.
Thus if I is a GLy(k) invariant (resp., homogeneous SLs(k) invariant), then the
expression I(K) (resp., the condition I(K) = 0) is well defined. Thus the G Lo (k)
invariants are functions on the moduli space M of genus 2 curves. This M is

an affine variety with coordinate ring k[Ms] = klao, . . . , ag, J1o'|“%2®) which is
the subring of degree 0 elements in k[Jo, . .., Jio, J;g']; see Igusa [9]. The absolute
mvariants

. Ji JodJy —3Js . J10

11 ‘= 14473, 19 1= —1728T, 13 1= 486725 (1)

are even GLa(k)-invariants. Two genus 2 curves with Jy # 0 are isomorphic if
and only if they have the same absolute invariants. If J; = 0 then we can define
new invariants as in [I7]. For the rest of this paper if we say “there is a genus 2
curve C defined over k” we will mean the k-isomorphism class of C.

One can define GLy(k) invariants with Jio in the denominator which will be
defined everywhere. However, this is not efficient in doing computations since
the degrees of these rational functions in terms of the coefficients of C will be
multiples of 10 and therefore higher then degrees of i1, 2,43. For the purposes
of this paper defining i1, 42,73 as above is not a restriction as it will be seen in
the proof of Theorem 1. For the proofs of the following two lemmas, see [18].



208 Tony Shaska

Lemma 1. The automorphism group G of a genus 2 curve C in characteristic
# 2 is isomorphic to Zs, Z1o, Va, Ds, D12, ZzxDg, GL3(3), or 27 Ss. The case
when G=22%Ss occurs only in characteristic 5. If G=Z3xDg (resp., GL3(3))
then C has equation Y2 = X6 — 1 (resp., Y? = X(X* —1)). If G=Z1q then C
has equation Y? = X6 — X.

Remark 2. For the analogue of the above lemma for g > 2 in characteristic zero
see [13] where sophisticated methods of computational group theory are used.

For the rest of this paper we assume that char(k) = 0.

Lemma 2. i) The locus Lo of genus 2 curves C which have a degree 2 elliptic
subcover is a closed subvariety of M. The equation of Lo is given by equation
(17) in [1§].

it) The locus of genus 2 curves C with Aut(C) = Dy is given by the equation
of Lo and

1706J3.J3 + 25605 + 27J4Jy — 81.J5 Js — 14880J2.J4Js + 28800J2 = 0 (2)
i11) The locus of genus 2 curves C with Aut(C) = D15 is

—JuJs +12J3Js — 52J5 J5 + 80J; + 960J2J4.Js — 36005 = 0
864.J10J5 + 3456000J10J35 Jo — 43200J10J4.J5 — 2332800000J3, — J; J3 (3)
—T68J1 3 + 48.J5 J5 4+ 4096.JF = 0

We will refer to the locus of genus 2 curves C with Aut(C) = Dis (resp.,
Aut(C) = Dg ) as the Dg-locus (resp., Dia-locus).

Each genus 2 curve C € L5 has a non-hyperelliptic involution vy € Aut(C).
There is another non-hyperelliptic involution v, := vg w, where w is the hyper-
elliptic involution. Thus, degree 2 elliptic subcovers come in pairs. We denote
the pair of degree 2 elliptic subcovers by (Ey, E{). If Aut(C) = Dg then Ey = E|
or Ey and E| are 2-isogenous. If Aut(C)2 Dis, then Ey and E| are isogenous
of degree 3. See [18] for details. The parameterizations of the following lemma
were pointed out by G. Cardona.

Lemma 3. Let C be a genus 2 curve defined over k. Then,
i) Aut(C) = Dy if and only if C is isomorphic to

Y? =X+ X% +tX (4)

forsometek\{o,%, % .
i1) Aut(C) = D12 if and only if C is isomorphic to

YZ=X0+ X341 (5)

Jor some t € k\ {0, %, —=5}.
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Proof. 1) Aut(C)= Dg: Then C is isomorphic to
Y= (X2 -1)(X*-2X2+1)
for A # +2; see [I8]. Denote 7 := ,/72%. The transformation

T —1 47 (A +6)2
Te+1" (te+1)3 A-2

¢ (X,Y) = ( )
gives
Y2 =X+ X3 +tX
where ¢t = i(i—jréf and t # 0, 1. If t = 735 then Aut(C) has order 24.
Conversely, the absolute invariants 41, 72,43 of a genus 2 curve C isomorphic
to
Y2 =X+ X3 +tX
satisfy the locus as described in Lemma 2, part ii). Thus, Aut(C) 2 Ds.
il) Aut(C) = Dqo: In [18] it is shown that C is isomorphic to

V2= (X3-1)(X®-))
for X # 0,1 and A2 — 38\ + 1 # 0. Then,

ol

o (X)Y) = (A+1)3 X, (A+1)Y)

transforms C to the curve with equation
V2 =X+ X% +¢
where t = 27 and t #0, 3. If t = — =5 then Aut(C) has order 48.

(A+1)2
The absolute invariants i1, 42,43 of a genus 2 curve C isomorphic to

Y2=X0+ X%+t
satisfy the locus as described in Lemma 2, part iii). Thus, Aut(C) = D15. This
completes the proof.
O

The following lemma determines a genus 2 curve for each point in the Dg or
D15 locus.

Lemma 4. Let p = (Jo, Ju, Js, J10) be a point in Lo such that Jo # 0 and
(i1,12,13) the corresponding absolute invariants.

i) If p is in the Dg-locus, then the genus two curve C corresponding to p is
given by:

3 345i2 + 50i1i5 — 90io — 1296i,

YZ=X54+Xx3-". X.
+ 4 29252 4 250i1iy — 94505 — 540004, + 139968

ii) If p is in the Dig-locus, then the genus two curve C corresponding to p is
given by:
1 54002 4+ 100i179 — 172811 + 45io

Y2=X0+Xx34+=-. .
AT 270042 + 1000i1i5 + 204525, + 409500 — 708588
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Proof. i) By the previous lemma every genus 2 curve C with automorphism group
Dy is isomorphic to Y2 = X° + X3 4+ tX. Since .Jo # 0 then t # —% and the
absolute invariants are:

— (20t —9) . o (140t —27) . 5 (4t —1)?
11 = 144t7(20t+3)2, 12 = 3456t 7(20154»3)3 y 13 = 243t 7(20t+3)5 (6)
From the above system we have
3 3452% + 502149 — 9015 — 129674

T 429252 + 250i149 — 94500y — 540007, + 139968

ii) By the previous lemma every genus 2 curve C with automorphism group
D15 is isomorphic to Y2 = X6 4+ X3 4+ t. The absolute invariants are:

t(5t + 1)

t(206 +26t —1) 729 (4t —1)°
(40t — 1)2°

i = 1296 @0 0 *T 16 aoe—np 7

ip = —11664

From the above system we have

54002 4+ 100i179 — 172811 + 45z

1
t=— .
4 2700i% + 1000i172 + 20452541 + 40950i5 — 708588

This completes the proof.

O
Note: If J, = 0 then there is exactly one isomorphism class of genus 2 curves
with automorphism group Dg (resp., Di2) given by Y2 = X5+ X3 — %X (resp.,

— 1
Y2 = X6 4 X3 - L.

Remark 3. If the invariants i1,42,i3 € Q then from the lemma above there is
a C corresponding to these invariants defined over Q. If a genus 2 curve does
not have extra automorphisms (i.e. Aut(C)=Zsy), then an algorithm of Mestre
determines if the curve is defined over Q.

If the order of the automorphism group Aut(C) is divisible by 4, then C has
degree 2 elliptic subcovers. These elliptic subcovers are determined explicitly
n [I8]. Do these elliptic subcovers of C have the same field of definition as C?
In general the answer is negative. The following lemma determines the field of
definition of these elliptic subcovers when Aut(C) is isomorphic to Dg or Dis.

Lemma 5. Let C be a genus 2 curve defined over k, char(k) = 0.
i) If C has equation
Y?=X%4+ X3 +tX,

where t € k\ {i, %}, then its degree 2 elliptic subfields have j-invariants given
by
2000¢2 + 1440t + 27 (100t — 9)3

-2
— 198 4096
J -1z ’F 4t —1)3

=0.

it) If C has equation
Y? =X+ X3 41,
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where t € k\ {3, —%}, then its degree 2 elliptic subfields have j-invariants given
by

. 500t + 965t + 27 (25t — 4)3
2
— 13824+ 4 44t ~——— = 0.
J 38 @ —1)p J 4477757 @ =1 0
Proof. The proof is elementary and follows from [I8]. O

3 Curves of Genus 2 with Degree 3 Elliptic Subcovers

In this section we will give a brief description of the spaces L2 and L3. In the
case Jo # 0 we take these spaces as equations in terms of iy,149,143, otherwise
as homogeneous equations in terms of Js, Jy, Jg, J1g- By a point p € L3 we will
mean a tuple (Jz, Jy, Jg, J10) which satisfies the equation of £3. When it is clear
that Jy # 0 then p € L3 would mean a triple (i1, 42,i3) € L3. As before k is an
algebraically closed field of characteristic zero.

Definition 1. A non-degenerate pair (resp., degenerate pair) is a pair
(C, &) such that C is a genus 2 curve with a degree 3 elliptic subcover £ where
¥ : C — & is ramified in two (resp., one) places. Two such pairs (C,E) and (C',E")
are called isomorphic if there is a k-isomorphism C — C' mapping £ — &'.

If (C,€) is a non-degenerate pair, then C can be parameterized as follows
Y2 = (02X% +unX? +0X +1) (40 X3 + 02 X2 + 20X + 1), (8)
where u,v € k and the discriminant
A= 160" (v — 27) (270 + 40 — v?0 + 4u® — 18upn)?

of the sextic is nonzero. We let R := (270 + 402 — u?v + 4u® — 18uv) # 0. For
4u — v — 9 # 0 the degree 3 coverings are given by ¢1(X,Y) — (Uy,V;) and
$2(X,Y) — (Ua, V2) where
X2 Us — (0X +3)? (0(4u — 0 — 9)X + 3u —v)

02X% +uoX2 +0X +1° ° b(4u—0b—9)(402X3 + 02 X% + 20X + 1)’
_y . OXT-eX -2

02X3 +uoX2 40X +1°
b—4u+8)X% + oo —4u)X? — X +1

(402X3 4+ 02X2 4+ 20X +1)2

U, =

1

2
Vs = (27— 0)3 v

)
and the elliptic curves have equations:
E: VP =RU? - (12u% — 2uv — 180)Ut + (12u — 0)U; — 4 (10)
' Vi =csUS + coUZ + c1Us + co
where
co = —(9u — 20 — 27)°
c1 = (4u — v — 9) (7294 + 541”0 — 972ub — 18up” + 1890° + 7290 + v°) a

co = —0 (4u — v — 9)* (54u + uv — 270)

ez =0 (du—v—9)°
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The above facts can be deduced from Lemma 1 of [17]. The case du—v—9=10
is treated separately in [17]. There is an automorphism 3 € Galy(u,o)/k(iy,is,is5)
given by
(0 — 3u)(324u® + 15ub — 378ub — 4uv? 4 2430 + 720%)

(v —27)(4u3 + 270 — 18ub — uZv + 40?)
_ 4(0 — 3u)?
4ud + 270 — 18ub — u2p + 402

Blu) =

(12)
B(o) =

which permutes the j-invariants of £ and £’. The map
0 : (H,U) — (i17i2,i3)
defined when Jy # 0 and A # 0 has degree 2. Denote by Jy the Jacobian matrix
of 0. Then det(Jg) = 0 consist of the (non-singular) curve X given by
X:  80% 42707 — 54uv? — u?v? + 108u?0 + 4udo — 108 =0 (13)
and 6 isolated (u, v) solutions. These solutions correspond to the following values
for (il, ig, ig):

(8019 1240029 531441 729 1240029 531441 ), (81 5103 729
20 ’ 200 1000007 ‘2116° 97336 ' 13181630464’ 25 7 12500

) (14

We denote the image of X in the L3 locus by ). The map 6 restricted to X is
unirational. The curve 2) can be computed as an affine curve in terms of iy, is.
For each point p € Q) the degree 3 elliptic subcovers are isomorphic. If p is an
ordinary point in 9 and p # pe (cf. Table 1) then the corresponding curve C,
has automorphism group V.

If (C,€) is a degenerate pair then C can be parameterized as follows

VZ2=(3X*+4)(X3+X +¢)
for some c such that ¢? # —4; see [I[7]. We define 1 := ¢?. The map
o — (’il, 12, Zg)
is injective as was shown in [17].

Definition 2. Let p be a point in L3. We say p is a generic point in L3 if the
corresponding (Cp, £) is a non-degenerate pair. We define

{ 0= (p)|, if pis a generic point
e3(p) == .
1 otherwise

In [I7] it is shown that the pairs (u,v) with A(u, v) # 0 bijectively parameterize
the isomorphism classes of non-degenerate pairs (C, ). Those to with w # f%
bijectively parameterize the isomorphism classes of degenerate pairs (C, £). Thus,
the number e3(p) is the number of isomorphism classes of such pairs (C,€). In
[I7] it is shown that ez(p) = 0,1,2, or 4. The following lemma describes the
locus L3. For details see [17].
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Lemma 6. The locus L3 of genus 2 curves with degree 3 elliptic subcovers is
the closed subvariety of Mo defined by the equation

CgJ180+"'+01J10+00:0 (15)

where coefficients Cy, . ..,Cs € k[J2, Jg, J1o] are displayed in [17].

As noted above, with the assumption J; # 0 equation ([[3) can be written in
terms of i1, i, i3.

4 Automorphism Groups of Genus 2 Curves
with Degree 3 Elliptic Subcovers

Let C € L3 be a genus 2 curve defined over an algebraically closed field k,
char(k) = 0. The following theorem determines the automorphism group of C.

Theorem 1. Let C be a genus two curve which has a degree 3 elliptic subcover.
Then the automorphism group of C is one of the following: Zo,Vy, Dg, or Dis.
Moreover, there are exactly siz curves C € L3 with automorphism group Dg and
sixz curves C € L3 with automorphism group Dio.

Proof. We denote by G := Aut(C). None of the curves Y2 = X6 — X, Y2 =
X6 —1,Y? = X% — X have degree 3 elliptic subcovers since their Jo, Jy, Js, J1o
invariants don’t satisfy equation ([5). From Lemma 1 we have the following
cases:

i) If G = Ds, then C is isomorphic to

V2=X"+X°+tX

as in Lemma 3. Igusa invariants are:

Jo =40t + 6, Jy = 4t(9 — 20t), Js = 8t(22¢ + 9 — 40t%), Jio = 16t° (4t — 1)
Substituting into the equation (5] we have the following equation:

(196t — 81)* (49t — 12)(5t — 1)*(700¢ + 81)* (490000 > — 136200 ¢ + 2401)°> =0  (16)

For
81 121 81

T 19674957 700
the triple (41, 42, i3) has the following values respectively:

729 1240029 531441 4288 243712 64

(2116’ 97336 13181630464)’ (1849’ 79507 ’ 1323075987)7
(% 3456 243 ) (_8019 1240029 _531441)
49 ’ 8575’ 52521875 20’ 200 ’ 10000

If
490000 % — 136200t + 2401 = 0
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then we have two distinct triples (i1, i2,43) which are in Q(v/2). Thus, there are
exactly 6 genus 2 curves C € L3 with automorphism group Dg and only four of
them have rational invariants.

ii) If G2 D;5 then C is isomorphic to a genus 2 curve in the form

Y2=X0+X%+1¢
as in Lemma 3. Then, Jo = —6(40¢t — 1) and
Ju = 324t(5t + 1), Js = —162¢(740t> + 62t — 1), Jio = —729¢> (4t — 1)
Then the equation of L3 becomes:
(25t —4) (11t+4)* (20t —1)° (111320000¢> — 60075600t 413037748t +15625)° = 0 (17)

For
441
257 11720
the corresponding values for (i1, i2,43) are respectively:

(% 1088 1 ) (@ 60480 243 ) ( 5103 729 )
57 25 78437577 ‘361" 6859 * 2476099’ 25 7 12500

If
111320000¢® — 60075600t + 13037748t + 15625 = 0

then there are three distinct triples (i1, 42,43) none of which is rational. Hence,
there are exactly 6 classes of genus 2 curves C € L3 with Aut(C) 2 D15 of which
three have rational invariants.

iii) G=V,. There is a 1-dimensional family of genus 2 curves with a degree
3 elliptic subcover and automorphism group V, given by ).

iv) Generically genus 2 curves C have Aut(C) = Z,. For example, every point
p € L3\ Ly correspond to a class of genus 2 curves with degree 3 elliptic subcovers
and automorphism group isomorphic to Zs. This completes the proof.

O

The theorem determines that there are exactly 12 genus 2 curves C € L3 with
automorphism group Dg or Djy. Only seven of them have rational invariants.
From Lemma 4, we have the following:

Corollary 1. There are exactly four (resp., three) genus 2 curves C defined over
Q (up to Q-isomorphism) with a degree 3 elliptic subcover which have automor-
phism group Dg (resp., D12). They are listed in Table 1.

Remark 4. All points p in Table 1 are in the locus det(Jy) = 0. We have already
seen cases p1, P4, and py as the exceptional points of det(Jy) = 0; see equation
(Id). The class p3 is a singular point of order 2 of ), p» is the only point which
belong to the degenerate case, and pg is the only ordinary point in ) such that
the order of Aut(p) is greater then 4.
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Table 1. Rational points p € L3 with |Aut(p)| > 4

C p = (i1, i2,13) es(p)| Aut(C)
P1{196X° + 196X + 81X iy = %’h = 134%%971.3 = 13158311643401464 2 Ds
p2| 49X° +49X° +12X | i1 = %7i2 = 274935701727i3 = 13233?5987 1 Ds
ps| BX°+5X°+X i1 =20y = 3808 g = 218 2 | Ds
pa|700X° + 700X° — 81X |iy = — 8909 iy = — 1200029 j3 — 534l 2 | Dy
ps| 25X°+25X° +4 ir =% iy = — 1528 is = — g 1 | Di2
pe| 11X°+11X°—4 i1 = 5200y = S0 iy = 28 1 | Dis
pr| 20X°+4+20X° +1 i1 =81l,ip = =558 iy = — 2% 2 | Dis

5 Computing Elliptic Subcovers

Next we will consider all points p in Table 1 and compute j-invariants of their
degree 2 and 3 elliptic subcovers. To compute j-invariants of degree 2 elliptic
subcovers we use lemma 5 and the values of ¢ from the proof of theorem 1. We
recall that for py,...,ps there are four degree 2 elliptic subcovers which are two
and two isomorphic. We list the j-invariant of each isomorphic class. They are
2-isogenous as mentioned before. For ps, pg, p7 there are two degree 2 elliptic
subcovers which are 3-isogenous to each other. To compute degree 3 elliptic
subcovers for each p we find the pairs (u,b) in the fiber 67!(p) and then use
equations (9). We focus on cases which have elliptic subcovers defined over Q.
There are techniques for computing rational points of genus two curves which
have degree 2 subcovers defined over Q as in Flynn and Wetherell [5]. Sometimes
the degree 3 elliptic subcovers are defined over Q even though the degree 2
elliptic subcovers are not; see Examples 2 and 6. These degree 3 subcovers help
determine rational points of genus 2 curves as illustrated in examples 2, 4, 5,
and 6.

Ezample 1. p = p1: The j-invariants of degree 3 elliptic subcovers are j = j/ =
663. A genus 2 curve C corresponding to p is

C: Y?=X%4+3X*—-6X2%2-38.

Claim: The equation above has no rational affine solutions.

Indeed, two of the degree 2 elliptic subcovers (isomorphic to each other) have
equations
&t Y2 =12 +32%— 628
Ey: Y2 =82 — 62" + 32 +1
where z = X? (i.e. ¢ : C — & of degree 2 such that ¢(X,Y) = (X2,Y) ). The
elliptic curve & has rank 0. Thus, the rational points of C are the preimages of
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the torsion points of £ . The torsion group of &£ has order 4 and is given by
TO’I"(gl) = {OO, (_L 0)7 (27 O)v (_47 0)}
None of the preimages is rational. Thus, C has no rational points except the

point at infinity.

Ezxample 2. p = po: The j-invariants of the degree 2 elliptic subcovers are
76771008 + 44330496/3.

The point ps belongs to the degenerate locus with v = 0. Thus, the equation of
the genus 2 curve C corresponding to p is

C: Y?=(3X*+4)(X*+X).

Indeed, this curve has both pairs (C,€) and (C, ') as degenerate pairs. It is the
only such genus 2 curve defined over Q. This fact was noted in [12] and [16].
Both authors failed to identify the automorphism group. The degree 3 coverings
are

(UL Vh) = (X + X, Y(3BX2+1)), (U, Va) = (e yx2 [ T4 o)
1, V1) — ) ) 2,V2) — 3X2+47 (3X2+4)2
and the elliptic curves have equations:
E: VE=21U} +4U,, and &' : Vi=U3 +Us.

& and &’ are isomorphic with j-invariant 1728. They have rank 0 and rational
torsion group of order 2, Tor(€) = {oo, (0,0)}. Thus, the only rational points
of C are in the fibers ¢7'(0) and ¢ '(00). Hence, C(Q) = {(0,0), c0}.

Ezample 3. p = p3: All degree 2 and 3 elliptic subcovers are defined over Q(+/5).

Ezxample 4. p = py: The degree 2 elliptic subcovers have j-invariants

1728000 |, 17496000
2809 2809 vI

where I2 = —1. Thus, we can’t recover any information from the degree 2 sub-

. . 5 5 .
covers. One corresponding value for (u,v) is (22, 23%). Then C is

C: 3%.Y? = (100X +9)(2500X2 + 400X +9) (25X +9)(2500X 2 4 225X +9).

The degree 3 elliptic subcovers have equations

1
£: VP =—r(100; — 3)(8575U7 — 20400, + 108)
18)
686 (
g VE=———" (17000, — 441)(1445000U2 — 6961500, + 83853)

59049
where Uy, V1, Us, Vo are given by formulas in ({3]).
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Ezxample 5. p = p5: The degree 2 j-invariants are j; = 0 and jo = —1228800
and the degree 3 j-invariants as shown below are j = j/ = 0. Let C be the genus
2 curve with equation

C: Y?2=(X3+1)(4x>+1)

corresponding to p. The case is treated separately in [I7]. The degree 3 elliptic
subcovers have equations

E: VE= 21U} +4, & : Vi=-16(27U5 —1)
where

X2 X3 -2 X 8X3 -1
Y Uy, Vi) = Y .
X341 (X+1)2>’ (U2 V2) = (g (4X3+1)2)

(U1, V1) = (

The rank of both £ and £’ is zero. Thus, the rational points of C are the preimages
of the rational torsion points of £ and £’. The torsion points of £ are Tor(€) =

{00, (0,2), (0, —2)}. Then ¢7(0) = {0, 00} and ¢7(c0) = {1, 1 + ¥=3}. Thus,
C(Q) = {(07 1)? (07 —1), (_17 0)}

Example 6. p = pg: This point is in ) and it is not a singular point of ). It has
isomorphic degree 3 elliptic subcovers; see [I7]. The corresponding (u,v) pair is
(u,0) = (20,16) and e3(p) = 1. Then the genus 2 curve has equation:

C: Y?=(256X3+320X%4 16X + 1) (1024X3 + 256 X2 + 32X +1)

The degree 3 elliptic subcovers have j-invariants j = 7/ = —32768 and equations

E: VP2 =4(-5324U; + 968U7 — 56U7 + 1)
£ VP =113(—=32000 U3 + 35200 U2 — 12320 Uy 4 11°)

where Uy, V1, Us, Vo are given by formulas in ({@).

Both elliptic curves have trivial torsion but rank » = 1. One can try to adapt
more sophisticated techniques in this case as Flynn and Wetherell have done for
the degree 2 subcovers. This is the only genus 2 curve (up to C-isomorphism)
with automorphism group D12 and isomorphic degree 2 elliptic subcovers. Indeed
all the degree 2 and 3 elliptic subcovers are C-isomorphic with j-invariants j =
—32768. The degree 2 elliptic subcovers also have rank 1 which does not provide
any quick information about rational points of C.

(19)

Ezxample 7. p = pr: All the degree 2 and 3 elliptic subcovers are defined over

Q).

Throughout this paper we have made use of several computer algebra pack-
ages as APECS, MAPLE, and GAP. The interested reader can check [18] and [17]
for more details on loci Lo and L£3. The equations for these spaces, j-invariants
of elliptic subcovers of the degree 2 and 3, and other computational aspects of
genus 2 curves can be downloaded from author’s web site.
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Abstract. Transportable modular symbols were originally introduced
in order to compute periods of modular forms [18]. Here we use them
to give an algorithm to compute the intersection pairing for modular
symbols of weight k > 2. This generalizes the algorithm given by Merel
[13] for computing the intersection pairing for modular symbols of weight
2. We also define a certain subspace of the space of transportable modular
symbols, and give numerical evidence to support a conjecture that this
space should replace the usual space of cuspidal modular symbols.

1 Introduction

In this paper Sk (IH(N), C) denotes the space of cuspidal modular forms of weight
k and level N, and Sy (IH(N), C) denotes the space of antiholomorphic cuspidal
modular forms of weight k£ and level N. We will look at the following lattices,
which are all equal when k = 2.

Sk(Ih(N),Z) f{k—l(W, Z)

Here Sy (Iv(N),Z) is the space of integral weight & cuspidal modular sym-
bols for I'h(N), Tr(Io(N),Z) is the space of integral transportable modular
symbols, and Uy (Io(N),Z) is a certain sublattice of T (Io(N),Z). The latter
two spaces are Hecke submodules of finite index in Sy(Io(NV),Z). The vari-
ety W is the Kuga-Sato variety, which is a smooth projective variety obtained
from the k& — 2 fold fibre product of the universal family of elliptic curves over
Xo(N), as described by Deligne, 4] Lemme 5.4. The space of transportable
symbols T (Io(N),Z) will be defined below. Note that usually one replaces

C. Fieker and D.R. Kohel (Eds.): ANTS 2002, LNCS 2369, pp. 219-R33] 2002.
© Springer-Verlag Berlin Heidelberg 2002
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Hy_1(W,Z) in this diagram by its subspace given by the symmetric product
Sk=2H,(E,Z), where & is the universal family of elliptic curves over Xo(IV).
Elements of T (Iv(N),Z) can be interpreted as elements of Hy_1(W,Z), as
described in § [ However, there is not a unique embedding of T (I (), Z)
in Hi,_1(W,Z). When we restrict to the part of Hi_1(W,Z) corresponding to
Sk=2H,(€,Z), we can obtain a unique embedding, over Q. To have an inclusion
of Z-modules, we must pass to Uy (Io(N),Z), described in §[5. The interpreta-
tion of transportable modular symbols as elements of Hy_1(W,Z) it is used to
give a description of the intersection pairing on the space of cuspidal modular
symbols.

Modular symbols first appear in papers of Birch[1], Mazur[T1] and Swinner-
ton-Dyer[12]. Higher weight generalizations were carried out by Manin and Sho-
kurov (e.g., in [10], [15]). Modular symbols give a concrete way to compute
with modular forms. Many algorithms were developed by Cremona and Merel
(see e.g., [3], [T4]), and more recently Stein[T6], who made these algorithms
and computations more generally available in the modular symbols package for
MAGMAJ2]. They are important because of the perfect pairing

@ (Sk(Ib(N). C) & Sy(Ty(N), ) ) x Sk(IH(N),C) = C,

which induces an isomorphisms of Hecke modules. This means that modular
symbols can be used to find the coefficients of Hecke eigen forms, and can also
be used in computing period of modular forms, and special values of L-series.
So computationally, modular symbols are useful for verifying many important
conjectures in the theory of modular forms, such as the modularity of elliptic
curves, [3], and cases of the Birch-Swinnterton-Dyer conjecture [6] to give a
few examples. The new space Uy (IH(N), Z) introduced here should be useful in
the future for verifying cases of the Bloch-Kato conjecture, such as extending
computations used by Dummigan [5] to higher level cases.
Transportable symbols are of interest because they

— generalize the natural weight 2 phenomena,

{07 gO} = {a7 ga}

for all « in the upper half complex plane and for all g € I
— allow us to compute the intersection pairing of cuspidal modular symbols,
— are naturally contained in Hy_1 (W, Z).

Transportable modular symbols were introduced in [I8] for the first of the
above reasons, and in order to generalize weight 2 algorithms of Cremona for
computing periods of modular forms [3], to higher weight. In this paper we look
at the second point, and we also introduce the space Uy (IH(N),Z).

For any cuspidal Hecke eigenform f € Si(Io(IN)), we let Iy be the annihilator
of f in the Hecke algebra T. In [16] §2.7 the abelian varieties Ay and Ay were
defined to be given by

Ay = Homg (S (Io(N))[Is], C) /@5 Sk (I0(N), Z)
Af = Homc (Sk(Lo(N)), C)[I5]/Sk(Io(N), Z)[Iy],
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where &y is given by &;(x) = (f, x). In the weight 2 case, it is known that A;
is a quotient of the Jacobian of Xo(N). In the weight k > 2 case the Jacobian
of Xo(N) should be replaced by the intermediate Jacobian of the variety W,
and the situation is a little more complicated. It is not clear that Ay and A)Vc as
defined above correctly correspond to the geometry of the situation. Part of the
aim of this paper is to find better definitions for Ay and A\f/. We propose that it
is better to replace S by U in the definition of A; and A}/. This is justified by
experimental evidence which leads us to make the following conjecture:

Conjecture. The cup product on Hy_1 (W, Z) gives rise to an intersection pairing
on 8i(I,Z). Let Inty, s be a matrix describing this intersection pairing on an
integral basis of Uy (1", Z)[If]. Then the number
[U—modular kernel of f|
det(Inty, f)

is equal to 1.

Both U and the U-modular-kernel of f will be defined in §

In this paper, for simplicity we restrict to the case k even, and trivial char-
acter, though the algorithms described easily generalize to odd weight, and ar-
bitrary character.

In writing this paper, the algorithms described were implemented in MAGMA
[2], and the Magma packages written by William Stein [17] form the backbone
for the computations.
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2 Definitions

We use the following notation:
Vi = Z[X, Y] is the space of homogeneous polynomials in X and Y
with coefficients in Z.
I  is a congruence subgroup in SLy(Z).
The action of I on P1(Q) is given by fractional linear transformation, and
on Vi by a linear action, so for g € I', a € P}(Q), and P(X,Y) € V,, we have

gP(X,Y) = P(g *(X,Y)) = P(dX —bY, —cX +aY),

_aa+b h _(ab
ga—ca+d,w ereg=| .
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Boundary symbols By (I, Z) are defined by:

B = abelian group on {a} for o € P1(Q)

By =Vi2a®B

By (I',Z) = Bj, modulo the relation:

x ~~x Vv €T, and modulo torsion (action of I" given below)

Modular symbols M (I',Z) are defined by:

M = subgroup of B spanned by
{a, B8} := {8} —{o}
My, =Vi2®M

M (I',Z) = M}, modulo the relation:
x ~~x Vv €T, and modulo torsion (action of I" given below)

Cuspidal modular symbols are defined to be the kernel in following sequence:
0—> 8p(I,Z) — My(I,Z) —2> Bi(T, Z)
where ¢ is defined by

6(P{e, B}) = P{B} — P{a}.

We denote elements of M (I, Z) as sums of elements of the form P(X,Y){«, 8},
with P(X,Y) € Vi_o, and a, 3 € P(Q), omitting the tensor sign. Note that
the action of I on B, and on M, C By, is such that

YPX,Y){a}) = P(y"1(X,Y)){ra}.

We call My(I',Z), Bi(I,Z) and Sy(I',Z) the modular, boundary, and cus-
pidal modular symbols of weight k for I', respectively. We define My (I, Q) =
M(I,2) @ Q, Bi(I,Q) = Bi(I''Z) ® Q and §x(I,Q) = S(I,Z) ® Q. If no
coefficient ring is given we mean that the coefficients should be the integers.

If P1(Q) is replaced by the upper half plane union the cusps, (* in the
definition of modular symbols, we obtain spaces which we denote ]\Vflk(f' . Z),
Bi(I,Z) and Sy(I',Z), and which we refer to as “extended” modular symbols.
Though ./A\/jtk(l“, Z) and By (I, Z) are uncountable, it turns out that 8, (I, Z) is
countable and isomorphic to Sy (I, Z), which follow from [I8] Lemma 2.3. The
advantage of 3k(F ,Z) is that modular symbols in this space can be written
with end points not in Q, which is useful for the purposes of evaluating period
integrals.

2.1 Transportable Modular Symbols

The space of transportable modular symbols is given by

Tu(12) = {3 P{0,9:0}gi € I, Py € Zy o[ X, Y], Y P = > g7 'R}
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It turns out that if we define

B.(I') = (P{a}) / (P{a} — vP{va})
M;C(F) = <P{a7b}> / <P{a7b} - 7P{7a77b}>7

where in each case P runs over all elements of V;_5, a and b run over all of
P1(Q), and v runs over all of I', then we have,

Ti(I,Z) = ker (M%(F) — B;C(F))/torsion

(see [19] for a proof), from which is clear that the space of transportable symbols
is a Hecke invariant submodule of S (I, Z). Comparing this with the definition
of cuspidal symbols given by

Si(I,Z) = ker (./\/ﬁC (I')/torsion — B;C(F)/torsion),

we see that the only difference is where we quotient out the torsion.

3 The Index [Si(I") : Tr(I)]

Results in [18] imply that the index [Sy(I") : T (I")] is finite. The algorithm for
finding Sy (1) is described in several places e.g., [16], and has been implemented
by Stein in MAGMA[2).

To determine a basis for T (I") we use the following result.

Lemma 1. Given a fized finite set of generators G of I', any element of T (I")

can be written as
> Py{0,90}
el

Py € Vi satisfy 35 cq(1—g71)Py = 0.
Proof. Let {g;}i=1..m be a fixed choice of generators for I'. Given a transportable
symbol 37 Q;{0,h;0}, with 3(1 — h; 1)Q; = 0, we can rewrite each term
Q:{0, h;0} in terms of symbols of the form P;{0, g;0} as follows.

Since {g;} is a set of generators, we can find a sequence u; = g1, with hy =

M us?, where ¢; = £1, and where the product is taken in the order such that
=1 "1
hy = uf'u3? ... w3} . Then we have

M
Q1{0,h0} = @{0, [T u5*0}

i=1
= Q1 ({0,u3}0} + {ui" 0, uf*u? 0} + {uf u3’0, ui uz?ug® 0} + - - )
M-1 J j+1
=Y @& { uin,Huf"’O}
j=0 i=1 i=1

-1

M-1 J
- (H> Qi | {0.u570}

=0 i=1
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Now we claim that

-1

M-1 j n
> (HU> Q1) {0,u330} + > Qi{0, h,0}

=0 i=1 i=2

is still written as a transportable symbol. This is because

M—1 j -1 M—1 j -1
€5 —€j541 £:
>\ (Mwi) @) —w X0 | (1w ) @
j=0 \ \i=1 j=0 \ \i=1
M-1 j -1 M-1 j -1
— €4 —E&541 £
=2 () @)= 2w [ {II«) @
§=0 i=1 3=0 i=1
M-1 j -1 M1 [ /j+1 -1
=2 () @)= | {I[«) @
=0 \ \i=1 =0 i=1

<

M -1
=Q1— (Hﬁ) Q1) =Q1—hi'Q.
i=1

In this way we can write a transportable symbol to only involve terms of the
from P{O0, giﬂO}. Next, note that if we have a transportable symbol with a term
P{0,9710}, for g € I', we can replace this term with —gP{0, g0} since these
symbols are equal, and the transportability property is preserved since

P— (g '"P=P—gP=—(gP—g '(gP)).

It is clear that we can replace any terms like P{0,40} + Q{0,¢0} by (P +
@){0, g0}. Thus we can write a transportable symbol in the required form.

Given the above result, all we need to do to determine an integral basis for
T () is to find a set of generators {g;}i=1...m, and then find the kernel of

m

Pu-g"): PViz— Vi

i=1 =1

Finding a set of generators can be achieved using the algorithms of Kulkarni[9],
and has been implemented in Magma, as described in [20].

Table Mtabulates values of the index [D : T (Io(N),Z) N D] of Hecke stable
submodules D of 8y (IH(N),Z) corresponding to irreducible Hecke submodules
of Si(IH(N),Z). To save space we restrict to the case N prime. Given the data
computed, we make the following conjecture.

Congecture 1. The index [Si(Io(N),Z) : Tr(Io(N),Z)] is divisible only by
primes dividing (k — 2)!N.
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Table 1. Rank of D and index [D : T (Lo(N), Z) N D] of Hecke stable submodules D
of 8k(Io(N),Z) corresponding to irreducible pieces of Si(Io(N),Z)

N rank index|N rank index |N rank index N rank index
k=4 k=6 3714 37 k=10
172 1 134 13 » 16 23337 [138 2.7.13°
76 217*)7 6 23.3.13%4112 41 7 10 26.32.5.135
192 1 171 17 720 23413 1710 2.7.173
6 192 |7 1 1 4316 43 714 28.325.17°
232 1 o8 23173 |7 20 23.3.43% |1912 23.7.193
78 232 192 1 k=38 » 16 2%.325.19°
204 1 o9 23 114  5.11° 5 2  225°
710 22977 4 19 132 13 mo4 28355572
314 1 mo7 3190 |7 40 223213 P 4 2258
7?10 312 |236  2.23 » 8  22513* |7 4 26355372
378 1 7120 22233 (172 217 "4 22.35.7%
710 2.37%[298 29 "6 217 "6 2378
416 1 714 23293 |7 12 22325174114  28.35.53.72
438 1 3110 2.31 198 325.192 |” 6 5.11°
712 432 |7 16 22.3.31%]7 12 2%.19% » 10 23.11°

4 Intersection Pairing

On Hy_1(W,Z) we have a natural intersection pairing,
Hk_l(W, Z) X Hk_l(W,Z) — Hg(k,l)(W,Z) =7

(n,¢) = nnc.

This gives rise to an intersection pairing on the space of modular symbols, which
is compatible with the action of the Hecke algebra, in the sense that for any
symbols a,b € S (") and for any T € T we have (Ta,b) = {(a, Th).

The algorithm for computing the intersection pairing in weights £ > 2 is a
generalization of the method described by Merel [13] in the case k = 2. The
introduction of transportable symbols is essential for us to be able to give give
this generalization. Exactly as for Merel’s method, the computation of the in-
tersection pairing is based on the following two lemmas.

Lemma 2. All modular symbols in My (I',Z) can be written as

> 9(Py{0,00})

gER
where Py € Vi,_a, and R is a set of coset representatives for I' in SLo(Z).

Proof. See [14] §1.2, Proposition 1 and [10], Proposition 1.6. Symbols written in
this way are known as Manin symbols.
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Lemma 3. All modular symbols in 8y (I',Z) can be written as

> Podp.gin} (1)
for some g; € I', and P; € Qp_2[X,Y], where p = (1 +1iv/3)/2.
Proof. This follow from [18] Lemma 2.3.

Note in particular that this shows that S», (I',Z) is countable, even though it

is the kernel of the boundary map between two uncountable spaces, My (I, Z)
and By (I, Z).

Corollary 1. All modular symbols in 8y (I',Z) can be written as

i 9i (Pi{p, p2}) (2)

for some g; € SLa(Z) and P; € Qp—2[X,Y].

Proof. For any term P{p,gp} in the sum (I}, we can write g = r{*r5'...rém

with r; € {S:== (93", 77" := (§ 7')} and e; € {1,—1}. Let g; = Hz;}gfl
Then

Plo.gp} = > Ploin,gisin} = ) _9i ((gfleiP){p, n-p})

Since 7; € {S, T~} we have 7;p = p?, so this sum is in the form of sum ().

Given the above results, we only need to compute the intersection of symbols
of the form g(P{0,00}) with those of the form g(Q{p, p*}), and extend linearly
to obtain the pairing on Sy (I, Z).

Remark 1. The intersection of individual symbols g(P{0,00}) and h(Q{p, p*})
is not well defined. However, when the sum is taken to obtain cuspidal modular
symbols, the result is well defined.

Geometrically, weight 2 symbols of the form g{p, p?} and of the form g{0, 0o}
correspond to paths as shown in Figures[Il and [ respectively. It is clear that the
intersection of g{0, 0o} with h{p, p?} is non zero if and only if the regions gF and
hF are equal under I equivalence, where F' is the area in the upper half plane
with vertices at 0, p, 0o, p?, as shown in the figures. We have gF = hF <=
gh™ € {I,8},s0 gF = hF <= g~ hor g~ Shunder I' equivalence. Also, S
reverses the direction of the lines, so we have

1 < g~h
(910,00}, h{p, p*}) = { =1 <= g~ Sh
0 <= gF#hF
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[N ~

0 1
Fig. 1. Images of a path corresponding to {0, co}

\ Y A .

0 1
Fig. 2. Images of a path corresponding to {p, p?}

Correponding to symbols

P{a,b} and Q{c,d}

Correponding to symbols

{a,b} and {c, d}
d
p:rojjxi/on

cycles in a variety over
Xo(N), projecting to

- paths in X (N)

paths in X (N)

Fig. 3. Geometry corresponding to modular symbols
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Geometrically, symbols of weight k& > 2 correspond to k — 1 cycles in a va-
riety W. The cycle corresponding to a modular symbol lies over a path on the
modular curve, as pictured in Figure [8l This figure shows {a,b}, {c,d} as ele-
ments of m (Xo(N),PH(Q)), with {a,b} N {c,d} = {x}, for some x € Xo(N). So
({a,b},{c,d}) = £1. To determine (P{a,b}, Q{c,d}) we must find the intersec-
tion of cycles corresponding to P and @ in in the fibre over z.

The fibre of W over any point 7 in the upper half plane is given by the product
of k—2 copies of an elliptic curve E... If we choose a basis «, 8 of Hy (E.,Z), with
(o, B) = 1, then we have that the 2¥=2 cycles §; x da X - - - X 0},_» for §; € {a, B}
give a basis for a certain monodromy invariant subspace of

k—2 copies

Hy o(E; x E; x ...E.,7),

and in terms of this basis, the intersection pairing on E, X ... E; is given by
k—2
(01,10 X -+ X 01,p—2, 021 X -+ X O p_2) = H (01,4, 02,) -
i=1
So this is represented by a matrix with £1s on the antidiagonal, and 0 elsewhere.
The space Vj,_o can be identified with the subspace of Hy_o(E; X+ X B, Z)
given by the symmetric product of the H;(E,,Z). A monomial X™Y*—2-m
corresponds to cycles 61 X « - X 0x_o where m of the §; are equal to «, and the

rest are equal to 3. There are (k;l 2) such cycles, which are identified in the

-1
. k—2 . .
symmetric product, so X™Y*=2=" corresponds to ( m ) times their sum.

Then the pairing on monomials becomes

<mek727m’Xk72fmym> _ (71)777, ) (3)

k—2
m
If PQ # X*=2Y*2, then (P, Q) = 0.
Now we have that for P,Q € Vi_2 and g, h € SLa(Z)
, (P.Q) <= g~h
(9 (P{0,00}) 1 (Q{p,p?})) = § —~(P.Q) <= g~ Sh
0 < gF # hF,
where (P, Q) is computed by extending the pairing in B]linearly to give a sym-
metric pairing on Vi_s.
Proposition 1. For P,Q € Viy_o and g € I' and u € SLo(Z), define
(Pip, gt uQu0,uscl) = — 3 (P mIVERQ)

ksuch that
R Wik ~u

+ ) (P WERSQ),
ksuch that

Wik ~usS



Transportable Modular Symbols and the Intersection Pairing 229

where g = [[i_, WS, for W; € {S,T}, &; € {1,-1} and hy, = Hf;ll W,
for k € {1..n}, and the pairing on Vi_o is given by (3). Then extending lin-
early, this formula gives a Hecke invariant, anti-symmetric intersection pairing
on Si(I,Z).

Proof. Let h = 1—[?:—11 W?i so that g = hWEn Then

P{p,gp} = P{p,hW;p}
P{gp, gW, 'p} ife =1

= P{p,hp} —
P{hW, p, hp} ife = —1

—9llg7 ' P){p,p*}] ife =1

R(h='P){p, p?}] itz = —1
= P{p.hp} — kW [(hWV*) ' P){p, p*}]

= P{p,hp} +

where a = 0 if ¢ = —1 and a = 1 otherwise.
Repeating this process, we find that

P{p,gp} = — ZEkthI? (W) P) {p, *}] -
k=1

If g ~u, then gu=! € I', so

(Pg{p, pz},uQ{uO,uooD = (Pg{p, pz},gu_l(uQ{uO,uoo}»
= (Pg{p, p*}, 9Q{90, go0})) = (P, gQ).

So,
(Pip.gohuQfuo,ucc}) = — Y en(P Q).

ksuchthat
R W E o

On the other hand, if g ~ uS, then gSu~! € I', so

(Pg{p, p*},uQ{u0,ucc}) = (Pg{p, p*}, gSu™" (uQ{u0, uco}))
= (Pg{p,p*},95Q{g0, g0})) = —(P, gSQ).

So,
(P{p,gp}, uQ{u0,ucc}) = Y ep(P W SQ).

ksuchthat

he Wik ~uS

This gives the result.

Computations show that the above description does give a pairing that is
Hecke invariant (with respect to Hecke operators T}, for (p, N) = 1) and anti-
symmetric, though sometimes this fails when 5,13 or 17 divide the level, which
may be due to some as yet undiscovered programming bug.
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5 The Space Uy (Io(N),Z)

Now the intersection pairing can be computed, we investigate its relationship
with the order of various modular kernels. If ¥ = 2 then 8,7 and U are equal,
and the relationship between the modular kernel and the intersection pairing is
known, and described for example, by Frey and Miiller in [7] §4.2.

5.1 Modular Kernels

Denote by S the space of cusp forms of weight k and level N, and suppose f € S
is a newform. We can assume f has been normalized the coefficients of its g¢-
expansion are algebraic integers. The space Sy is defined to be the subspace of
S spanned over C by the Galois conjugates of f.

We will define several modular kernels corresponding to f. Let R be either
Si(Io(N),Z), Tr(Io(N),Z) or Up(Io(N),Z), where Uy (I'o(N),Z) will be de-
fined below. These are all lattices of full rank in Sy (IH(N), Q). The pairing @,
mentioned in the introduction, defines a map R — Home (S, C), and we denote
the image of the period map in Homg(Sy, C) by @(R). We have a commutative
diagram with exact columns:

0 0 0
{ | |
R[I] R P¢(R)
| | |
Homg (S, C)[Iy] —— Homc(S, C)[If] — Home (S, C)[I]
/ | }
Ag Ji(N) Ay
| | /
0 0 0

The diagram is used to define the quotients AY, Ay and Ji(N). For k > 2 is is
not clear that these complex torii should have any algebraic structure. They can
be interpreted as intermediate Jacobians of WW. The map AJY — Ay depends on
R, and we refer to its kernel as the S, T or U-modular kernel depending on the
choice of R.

In the case of R = Si(IH(N), Z), this is exactly the same as the definition of
the modular kernel of f suggested by Stein, [16] § 3.9 Definition 3.34, and § 2.7.

A method for computing the order of the S-modular kernel of f is described
in [8], and we have used Stein’s MAGMA[L7] implementations of this method
for finding the degree of the S-modular kernel. A simple modifications of the
algorithms described could be used to compute the T-modular-kernel and the
U-modular-kernel of f, though actually we have used a simpler method, of sim-
ply computing the determinant the matrix formed by the dot products of an
integral basis of the kernel of T}, — a with that of the transpose of this matrix,
where T}, is the Hecke operator acting on either the 7 or U spaces, and a is an
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integer such that the kernel of T, — a acting on Si (V) is spanned by f. How-
ever, this only works in certain cases, (when such a,p exist). So in fact, most
of our computations were just done for the S-modular kernel. These numbers
can be compared with the determinant of the matrix Int ;, which describes
the intersection pairing given above with respect to an integral basis for T .
Computations, with data shown in Table 2] lead us to conjecture:

Congjecture 2. The fraction given by

|S —modular kernel of f|
det(Intrf)

is an integer and is divisible only by primes dividing (k — 2)!.

Table 2. Ry := |S-modular kernel of f|/det(Int7 ;) for new cuspidal Hecke eigen
forms f € Sk(Lo(IV))

k N Ry N R;
4 182,4,1 191,4
201,84
6 16 256,48, 27648,16 18 4,16, 4608, 48,384, 4
19 16,8,16,1728 20 48, 1,432,256, 576, 16
8 6 13500, 18,27000 7 36,2250
8 100, 1458000, 36 9 1350, 45, 10800
11 1620, 1620000 12 12150000, 75, 162, 182250000, 12
106 25,295173 21073 oT5l7d|7 oll72 9851yt
8 21074’2672’2672145373 9 26717285274’26’245172’21172
11 217727 9165377

126 233.7%,2133%5874 223252 223551 22352
7 28355%7.,283.5%, 23305472
8 2113125874 223252 253254 26345272
9 2.3%5% 2133527, 212375673 3352 21355272
11 28305472 283455 273105674
14 6 2°3%,27355.11%,253%5.11%, 2%3%537.117%, 27239537117

The fact that the primes dividing this ratio divide (k — 2)! lead one to expect
that in the definition of modular symbols we should replace Vj, by some subspace
of Vi ® Q. We try using the space Uy which is a sublattice of Vj, defined by

o= (&) 5o i) i

This is exactly the right choice of monomials such that the pairing @) becomes
integrally valued on U_o. We define

UTo(N),Z) = { D P{0,0:0 gs € TP € Uy, > Pi= Y 7' Pi}.
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Note that U (Io(N),Z) can be defined in other ways, as was T (Io(N),Z)
above, and note that the space of 2 by 2 integral matrices acts on Uy, so
U(IH(N),Z) is also a Hecke submodule of T (Io(N),Z). Now we have the
following conjecture:

Congecture 3. The fraction given by

[UU—modular kernel of f|
det(Inty, f)

is equal to 1.

Supporting numerical evidence is given in Table Bl Data is not given where the
pairing computed by the above algorithm does not appear to be symmetric or
Hecke invariant.

Table 3. Pairs [|S-modular kernel of f|, det(Inty, ;)] for f new cuspidal Hecke eigen
forms of level NV, and weight k

N ratios

k=4
6,7,8,9,11[1,1]
10 [10, 20], [10, 10]

12 [12,12], [12, 12]
19 [1444, 1444], [1444, 1444
20 [72, 72], [800, 800], [3600, 3600
k=6
19 [25542916, 25542916], 4133089, 4133089)], [485315404, 485315404],
[163743000636976, 491229001910928)
20 [14406000000, 14406000000], [332928, 332928], [7372800, 7372800],
(61465600, 61465600], (998784, 998784], 4608000000, 4608000000
k=8
8 [16384,16384], [2048, 2048], [16384, 16384
9 [17496, 17496], [5832, 5832], [236196, 236196]
11 [857435524, 857435524], [857435524, 857435524
12 [207360000, 207360000], [20736, 20736], [331776, 331776],
[15360000, 15360000], [41472, 41472
k=14
6 [77845329,77845329], [11151360, 11151360, [255977415, 255977415),
[10726553600, 10726553600], [135039158100, 135039158100

5.2 Computing U, (Io(N),Z)
To compute U we can apply the same method as described in section § [, but
now computing the integral kernel of

m

@(1 - Dilgle) : @Vk,Q = Vi_o,

=1 i=1
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where D is the diagonal matrix with diagonal given by the sequence of binomial
coefficients (k N 2) fori=0,...k—2.
i
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Abstract. We study the action of modular correspondences in the p-
adic neighborhood of CM points. We deduce and prove two stable and
efficient p-adic analytic methods for computing singular values of mod-
ular functions. On the way we prove a non trivial lower bound for the
density of smooth numbers in imaginary quadratic rings and show that
the canonical lift of an elliptic curve over F, can be computed in proba-
bilistic time < exp((log q) %*'E) under GRH. We also extend the notion of
canonical lift to supersingular elliptic curves and show how to compute
it in that case.

1 Introduction

Let X — X (1) be any modular curve seen as a covering of X(1). Let P be a
Heegner point on X and let f € Q(X) be a Q-rational function.

For reasonable choices of f, class field theory ensures that f(P) is an algebraic
integer. It is a classical algorithmic problem to compute the minimum polynomial
of f(P).

The known methods for this rely on complex analytic uniformization of X
and provide complex approximations for f(P) and its conjugates f;. See [3] for
a recent general study of this approach.

One then forms and expands the degree A minimal polynomial u(X) =
[1,(X — f;) the coefficient of which are rational integers.

The difficulty with this method (that appears in quite a range of different
contexts) is that it is very hard to control the loss of accuracy while expanding p.

The only rigorous available evaluations of how many digits are needed are a
bit alarming (see [1 Section 7] and [2| Section 9]).

It is thus temptating to look for a p-adic analytic method for computing
singular values of modular functions. The reason for that is that the p-adic
absolute accuracy is conserved when adding or multiplying two p-adic integers

* The GRIMM is supported by the French Ministry of Research through Action Con-
certée Incitative CRYPTOLOGIE, by the Direction Centrale de la Sécurité des
Systémes d’Information and by the Centre Electronique de L’ARmement.

C. Fieker and D.R. Kohel (Eds.): ANTS 2002, LNCS 2369, pp. 234-R43] 2002.
© Springer-Verlag Berlin Heidelberg 2002
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i.e if one knows a and b up to O(p*) then one knows a + b and ab up to O(p*)
also.

One may logically look for some p-adic uniformization of X but such an
uniformization does not exist in general. In particular it does not exist in the
most important case of X = X(1).

Instead of that we define and study a representation of the ideal group of an
imaginary quadratic order as automorphism group of a p-adic neighborhood of
the associated CM points. This representation is quite computational and the
CM points are characterized and computed as fixed points of this representation.
In this way we also manage to define canonical lifts for supersingular curves.

All this leads to two different proven stable and efficient methods for com-
puting singular values of modular functions.

The reader who is not completely unwilling to read mathematics may also
find some intrinsic interest to the p-adic representation itself and to our lemmata.

2 Modular Correspondences
in the Neighborhood of CM Points

We refer to [8] for the elementary theory of complex multiplication.
We start with

Definition 1. Let k be an algebraically closed field and O the imaginary quadra-
tic order with discriminant —A. We denote by NELL (k) the set of isomor-
phism classes of couples (E, ) where E is an elliptic curve over k and v : O —
End(E) is a maximal embedding (when E is ordinary ¢ is an isomorphism). Such
a couple is called a normalized elliptic curve. We say that two normalized elliptic
curves (E, 1) and (E',.") are isomorphic if there is an isomorphism I : E — FE'
such that I=1/(X)I = «(X) for any X in O.

We denote by ELLA(K) the quotient of NELLA(K) by the action of complex
conjugation. When the characteristic p of k has two primes in the fraction field
of O above it then ELL (k) is the set of isomorphism classes of curves with CM
by O.

We now fix an embedding of Q in C. Let O be a quadratic order with group
of units {1,—1}, class group C£(O), conductor m and discriminant —A. Then
ELLA(Q) is the finite set of isomorphism classes of elliptic curves over Q with
complex multiplication by O. We may see it as a reduced zero dimensional
subvariety in X (1) = P! — {co}, the moduli space of elliptic curves. There is a
free faithful action of C4(O) on it.

We fix a prime p and an embedding of Q in C, and denote by F, the
residue field of C,,. We assume that p has two primes of Q(v/—A) above it. Then
ELLA(Q) splits over F, with ¢ = p? and d = cf(O’) where O’ is the order with
conductor m’ the larger prime to p factor of m. We call —A’ the discriminant of
O'. We know that reduction modulo p induces a surjection from EL£L£(Q) onto
ELLA(F,). This is the set of isomorphism classes of elliptic curves over F, with
CM by O'. Tt has cardinality ¢£(Q’) and is acted on by C¢(O). We also assume
that O’ has unit group {1, —1}.
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Let ELLY be the set of isomorphism classes of elliptic curves over C, that
reduce modulo p to an elliptic curve in ELL A/ (F,). Using the modular invariant
J this set can be given an analytic structure and is the disjoint union of ¢£(Q’)
open p-adic disks of radius 1. Every such disk contains c¢f(O)/cl(O’) elements in
ELLAQ). ) )

To every point in ELL A(Q) we associate an ideal a C O C Q C C and a model
E, = C/a for the corresponding isomorphism class. This way, all the curves F,
share the same endomorphism ring O. The reductions E,; mod p provide models
for the elements in ELL A (F,). Whenever there is no risk of confusion, we shall
denote by a a point in ELLA(Q) or ELL A/ (F,).

If i is a prime to m ideal in O we denote by FE,[i] the intersection of kernels of
all endomorphisms in i. Quotienting by this subgroup defines an isogeny F, —
Eg 1. If b represents the class of ai~! we set i @ a = b. If further i is prime to p
we similarly define an isogeny from the reduction E, modulo p of E,.

Thus the group I(pm) of prime to pm ideals of O acts on both ELLA(Q)
and ELL a/ (Fq) and the reduction map is equivariant for these actions.

We now show how this action extends to a continuous action on ELLY. Let
x be a point in ELLS. Let a be a point in ELLA(Q) which is close to z and
let E, = C/a be the corresponding elliptic curve. We denote by D, the disk
in ELLY, that contains a and x. Let E, be a model for x which is close to E,
i.e. an elliptic curve over C, such that j(E,) = j(z) and E, and E, have equal
reductions modulo p (so E, is the fiber at x in the universal curve over D, and
this universal curve exists because D, does not contain j = 0 nor j = 1728.)
Let i be an ideal in I(pm) and set b = i e a. Let E,li] be the finite subgroup of
E, defined by i. Because i is prime to p this group ’lifts’ to a group scheme over
D, whose fiber at « defines a subgroup F,[i] of E,. The quotient of E, by this
group defines a point y =1iex in ELLS which is close to b.

For every i € I(pm) the map [i] : * — i ez is a continuous map on ELLY.
Indeed, let j be an ideal in O and « a rational integer such that i = («)j and O/j
is cyclic of order N. Then [i] being the restriction of the level N correspondence
is an algebraic map. We recall that the level N correspondence is the divisor on
X (1) x X(1) image of Xo(N) by the map (E — E') — (§(E),j(E")). The curve
Xo(N) has good reduction modulo p and a € Xo(N) is not p-adically close to
any ramification point of j or j'. So j/ — j/(a) is an integral invertible series in
j — j(a) and the radius of convergence of [i] is 1. The integer a being inessential
we shall assume o = 1 and i = j. In that case we say that i is reduced. The
inverse of [i] is [i] given by complex conjugation.

We thus have constructed a morphism p from the group I(pm) of prime to
pm ideals of O to the group Aut(ELLS,) of automorphisms of the analytic variety
ELLS,. The restriction of p to the group P(pm) of prime to pm principal ideals
of O defines a morphism (still denoted by p)

p: P(pm) — Aut™(ELLY)

to the group of automorphisms that fix ELLA(Q) (the CM points) and therefore
stabilize every disk D.
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In order to study this morphism we denote by d, : Aut™(ELL)) — C; the
differentiation at the CM point a.

From lemma [ below we deduce that d, 0 p : P(pm) — C; is independent of
a, takes values in Q* and 64(p((£))) = LL* where £* = L1, In particular, the
kernel of p consists of ideals (£) with £ € Q* prime to pm.

Lemma 1. Let O be a quadratic order with group of units {1, —1} and conductor
m. Let L € O such that O/L is cyclic of order N. Let j and j' be the two
functions on Xo(N) defined by j(E — E') = j(E) and j/(E — E') = j(E').
The value of the slope of the tangent o = % at all Heegner points with CM by
O and representing multiplication by L isogenies is LL*.

The order O has discriminant —A = —m?D and basis (1, m¥=5=2) and
£ = a+bm¥=2=L has norm N = a? — abDm + b’ Km? with K = D(D +1)/4.
Set o = miv_g_D and let ¢ be an integer congruent to a/b modulo N. We have

a?+ Dma+ Km? = 0. Define the two integers u = “_Tb‘ and v = bW'
Note that b is invertible modulo N because L is reduced. We look for the Smith
normal form of (£) C O. Let ¢ : O — Z be the linear form defined by ¢(z+ya) =

x—cy that induces an isomorphism O/L R Z/NZ. Together with the linear form
¥ defined by ¥ (z + ya) = y this makes a basis (¢, 1) for the dual of O. A dual
basis for O is (1, 8) with 8 = ¢+ «. A basis for (£) is then (N, 8) and this is the
Smith normal form. The lattice £*O = +(£) admits the two basis (1, %) and
(L*, £L*3) with transition matrix M € PSLy(Z)

(5)-#(5)-(++2™ (1)

The class of 7 = & modulo the action of Ih(/N) on the upper half plane

represents the N-isogeny C/(1,7) <X C/(1,NT) = C/(1,7) which is an endo-
morphism. So 7 is a Heegner point associated to multiplication by £ endomor-
phism. Since % is a constant times j%, the slope % is N%%%ﬁ and since
N7 = M the slope at 7 is N(br + u)? which is easily seen to be independent
of ¢ and equal to LL*. There are ¢f(O) Heegner points of level N with complex
multiplication by O and representing the multiplication by £ isogeny, all defined
over the Hilbert class field of O and conjugated over Q(v/—A).

Since LL* belongs to the later field, the slope is the same at all such Heegner

points. O

We observe that the action of a reduced ideal i of norm N on a point
x € ELLS, can be computed in time polynomial in N, logg, and almost lin-
ear in the p-adic accuracy of = i.e. the number of significant terms in its p-adic
expansion. One first reduces to the case N is prime (not essential but simpler).
One then computes the kernel E,[i] of the isogeny modulo p thanks to Atkin-
Elkies techniques (see [I5]). This kernel is then lifted on FE, thanks to Hensel’s
lemma. The isogeny E, — E, follows using Vélu’s formulae [I8].

We summarize in
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Theorem 1. Let O be a quadratic order, p a prime and O’ the smallest p-
maximal overorder of O. Assume O’ has group of units {1,—1}. Let m be the
conductor of O. The group P(pm) of prime to pm principal ideals of O has a
modular representation p as automorphism group of the p-adic disk with radius
1 in X(1) around any point a with CM by O. The differentiation of this rep-
resentation is just L € P(pm) — LL*. The action of p(L) on a given point
can be computed in time polynomial in N, n, logq and almost linear in k i.e.
k(log k)o(l) where N is the norm of the bigger prime ideal factor of L, and n is
the number of such factors with multiplicities, Fy is the residue field of a and k
is the desired accuracy of the result.

Remark 1. If O is Z[i] (resp. Z[p]) then the theorem holds with £L£* replaced
by (LL£*)? (resp. (LL*)3.)

Remark 2. The e action of principal ideals in O" (not necessarily principal in

O) on the set ELLA(Q) is a Galois action and can be expressed in terms of the
Artin map.

3 Computing the Canonical Lift in All Characteristics

In this section we are interested in computing p-adic approximations of the
canonical lift of an ordinary elliptic curve over a finite field.

We shall restrict to the case p is prime to the conductor m. So p splits in O.
If this is the case the reduction map

R:ELLA(Q) — ELLA(F,)

is an equivariant bijection.
We shall prove the

Theorem 2. Assuming GRH, for any positive € there is an algorithm that com-
putes the inverse of the reduction map R at a given point x in ELLA(F,) in
probabilistic time

1 o)
[exp((log q)21) x log k} x k
with accuracy k i.e. the error is O(p*).

In order to prove Plwe give and discuss an algorithm. For fixed € the algorithm
goes as follows. We first call E' the curve over I, associated to the point . We
look for the canonical lift of E.

If the characteristic p of F, is less than 2 exp((log 4q)%+5) we lift E together
with all its conjugates over F,, using the equations in Lubin and Tate and Serre’s
work [I6IIT] and/or the cousin algorithm used in Satoh’s algorithm [I3]. The
running time is polynomial in p and the degree d of F, over F,. The result
follows.

If p > 2exp((log 4q)%+5) we make use of smooth isogenies in the spirit of
Oesterlé and Mestre’s method [12] and Kohel’s thesis [6]. We compute the trace ¢
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of the Frobenius @ of E using Schoof’s algorithm [14]. Let —A be the discriminant
of Z[®] and let A be the set of prime to pA integers of the form a+bP with 1 < b <
2exp((log A)27¢) and |a + Lbt| < A2 exp((log A)2+¢). Let B = [exp(y/log 4)].
We say that an integer in Z[®] is B-smooth iff all its prime factors have norm
bounded by B. We assume A is big enough to apply lemma [2. Otherwise we
may just read the result in a table. We pick random elements in A with uniform
probability until we find one £ which is B-smooth. By lemma 2] we succeed after
< exp(2(log A)? loglog A) attempts with bounded probability. This is the only
probabilistic step in the algorithm. We now choose any lift F; of E and call j; its
j invariant and compute £ e E;. This is done step by step, applying successively
all prime factors of £. So the running time is polynomial in B. We denote by
L o j; the j-invariant of £ e F; and set

. Leji—Ji
Je1=Jk — — 75—
o—1
for k > 1 where 0 = LL*.

If joo is the j-invariant of the canonical lift we check that |jrr1 — Joo| <
lix — joo|?. This is just the Newton’s tangent method. It is decisive however for
this convergence property to hold that o —1 be a p-adic unit. It is a unit indeed
otherwise we would have £ = £ (mod p) so p|b since E is ordinary. But this

would contradict our assumption that p > 2 exp((log A)zt¢). O

Lemma 2. Fiz an € in |0, %[ Let @ be an imaginary quadratic integer and

t and q two integers such that ®* —t® +q = 0. Let —A = t? — 4q be the
discriminant of the order generated by @. Let B = |exp(v/log A)|. Let A be the
set of prime to qA integers of the form a + b® with 1 < b < 2exp((log Aﬁ“)
and |a + 3bt| < A3z exp((log A)21€). If GRH holds the proportion of B-smooth
elements in A is > exp(—2(log A)% loglog A) if A is big enough (depending on

€).

We now prove lemma 2] Call D the set of prime to pA primes in Z[®] with
degree one and norm less than B. Let B C D be a system of coset representatives
for the action of complex conjugation on D i.e. D = BUB and BN B = (. Let
O = Z[®] and h = cl(O) < Azlog A by a result of Lenstra and Pomerance
[10]. From Lagarias and Odlyzko [7] the size 7 of B is at least % if A is big

enough. Set u = LivlofA + (log A)¢] and let S“B be the u-th symmetric product
of B. Let k : S“B — CL(O) be defined by s({p1,...,pu}) is the class of the
product ngkgu pr. Let F C S¥B x 8B be the subset of couples (V1, V2) such

that V; # V5 and k(V1) = k(V3). The average size of fibers of x is > L’%Jh‘l >

1ic
;%J — 2 which is bigger than exp(%) when A is big enough. The size of

F is minimum when all fibers have equal cardinality so the size of F is at least
2u

( %j - 2)(L%J —3)h > sh@nz for A big enough. To every couple (V1,Va) in
F one associates the product of primes in V; together with conjugates of primes
in V5. Let u(V4,V3) be the unique generator of this ideal of the form a + b®

with b positive. We observe that this integer exists because the concerned ideal
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is principal in O. It has norm (a + %) + 2% bounded by A exp(2(log A)3+°)
and it is not in Z because V7 # Va. So p is a map from F to A. The size of a
fiber of p is bounded by (2u).

So the image of p which is made of B-smooth elements in 4 has size at least
2u

m. The proportion of B-smooth elements in A is thus

> exp(—g(log A)7 loglog A+ O((log A)?))

which is bigger than exp(—2(log A)% loglog A) when A is big enough. O

Remark 3. The method of Lubin-Serre-Tate used by Satoh and its variants (es-
pecially Mestre’s ones using Algebraic Geometrical Means that stresses the un-
derlying dynamical system [3]) use degree p isogenies to compute the canonical
lift. We avoid them on the contrary. Firstly because p might be too big and
secondly because the slope of a level p correspondence at a CM point is not a
p-adic unit. This is not necessarily an inconvenient but it requires a different
treatment. Indeed the level p correspondence induces a contracting map on the
p-adic neigborhood of CM points that Serre uses to prove the existence and
unicity of the canonical lift using the fixed point theorem.

4 Singular Values of Modular Functions

Being able to lift an ordinary elliptic curve we may also lift torsion points on it
and this gives a p-adic method for computing p-adic approximations of singular
values of any modular function f € Q(X) at a point P with CM by an order O,
provide we are given an ordinary elliptic curve with complex multiplication by
0.

This gives a stable and efficient method for computing (ray) class fields.

Indeed, given a negative discriminant —A we first look for the smallest prime
to A square t? such that t2+A is four times a prime p = ¢q. We expect the smallest
such ¢ to be quite small (e.g. (log A)°(M) so that 4q is very close to A. Even
GRH cannot ensure this however.

We then look for an elliptic curve over F, with trace ¢. This is done by
choosing random elliptic curves modulo ¢ and requires g/cf(—A) trials which is
less than qA*%“’(l) by Siegel’s theorem. Any trial takes time (log¢)?") using
Schoof’s algorithm. This is hopefully O(A%JFO(U). We then lift this curve using
the methods presented above. We thus compute p-adic approximations for all
conjugates of an element f in the Hilbert class field of the order with discriminant
—A and all this in time k™M A°(D) where h = cf(—A) is the class number of
the order with discriminant —A.

If we now want to reconstruct the minimal polynomial of f, we need a bound
for the logarithm of coefficients of this polynomial. For reasonable functions (e.g.
the modular invariant j see [9, 5.10]) this bound is O(h'*€) so we need accuracy
k = O(h'*¢) so that the algorithm runs in probabilistic expected time O(h?*¢)
which is essentially linear in the size of the result and certainly better than
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the tremendous (but somewhat pessimistic) estimate in [1]]. Indeed our method
avoids the accuracy problems of the classical one (evaluating modular functions
at CM points in the upper half plane). It is compatible with the improvement
given by Gee and Stevenhagen in [5] where functions n(Nz)/n(z) are used (that
generalize Weber’s functions) together with a rationality criterion deduced from
Shimura’s reciprocity law.

We now can state the

Theorem 3. If G.R.H. holds, for any positive € there is an algorithm that
computes the Hilbert class polynomial of discriminant —A in probabilistic time

O(AH_S).

The algorithm presented above does not quite prove the theorem since there
is no proof that a small enough t exists such that A + ¢2 is four times a prime.

However, G.R.H. ensures that there exists a principal prime ideal in the
Hilbert class field with norm less than a constant times

h%(log h)*(log A)?(loglog A)*

which is O(A(log A)®(loglog A)?*) by Lenstra an Pomerance [10].

Therefore there exist t = v/A(log A)**°1) and u = (log A)**t°() such that
t? + u? A is four times a prime p. Such a pair (¢,u) may be found by exhaustive
search. The rest of the algorithm goes as above except that in the end we obtain
an elliptic curve with CM by an order of discriminant —uA. Applying isogenies
of degree dividing u we obtain en elliptic curve with CM by the order with
discriminant —A. O

Remark 4. There is a tentative algorithm for computing CM fields in [2]. This
method (Algorithm 3 on page 100) collects information modulo many small
primes ¢ by exhaustive search among elliptic curves modulo ¢ for every £. It is
overexponential in the class number h however, contrary to the author’s claim.
The definition field of ordinary elliptic curves used in this method has degree
O(h) over Fy and the exhaustive search takes time O(¢") rather than the claimed
O(h?). So this algorithm is worse than any possible one.

It may be possible to turn it into something slightly more sensible by remov-
ing step 1 an dealing only with primes with supersingular reductions. Even with
this restriction, working with several moduli is not a good idea. See section [H.

5 Canonical Lift of Supersingular Curves

In this section we adapt our ideas to the case of curves with supersingular re-
duction. We keep the notation of section 2 We assume p has a single prime of
Q(v—A) above it. We assume the order O with discriminant A is maximal. In

this case the inertia degree d of p in the Hilbert class field is 1 or 2 and g = p or

p2

Reduction modulo p of curves with CM by O needs not be injective. However,
let 2 be the quaternion algebra ramified at p and oo and for every supersingular
curve E modulo p let ig : A — &nd(F) ® Q be a fixed isomorphism as in
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Waterhouse [19]. This way, all endomorphism rings of all supersingular curves
are seen as maximal orders inside the same algebra 2. We denote by End(E) the
endomorphism ring of E over IF'q‘

Reduction of a normalized curve (E,:) in NELLA(Q) thus gives a supersin-
gular curve £ = E mod p together with an injection of O in the maximal order
ip(End(E)) of 2.

This is an element of NELLA(F,) the set of isomorphism classes of super-
singular curves modulo p normalized with the order O with discriminant —A.

We prove the

Theorem 4. Let —A be a primitive discriminant and O the quadratic imagi-
nary mazimal order with discriminant —A and p an odd inert prime number in
O. The reduction map

R:NELLA(Q) = NELLA(F,)

18 a bijection.

Its inverse will be called the canonical lift on normalized supersingular curves.

We first observe that the two sets have equal cardinality by one of the many
Eichler formulae [4, Proposition 5] and [17, Theorem 2.4.].

We also note that O has a prime to p element £ such that £L£* Z 1 mod p.
This together with theorem [ and remark [l implies that R is injective. O

Remark 5. If p ramifies in O the reduction map is no longer a bijection. It is a
two to one surjection. One may define a pair of canonical lifts at p-adic distance
1

5 of each other.

Remark 6. The theorem above suggests possible generators for the ring of inte-
gers of the Hilbert class field.

As for explicit computation of the canonical lift we observe that results and
algorithms in section [2] generalize to the case with supersingular reduction.

Let E be a supersingular elliptic curve. Using the graph method of Oesterlé
and Mestre we find in probabilistic time O(p' ™) a basis for a sub-order R’ of R
with index M bounded by p®) and the associated quadratic form.

We now assume O is a maximal imaginary quadratic order where p stays
inert and we look for an embedding of O into R. Since we do not know R we
rather look for an embedding in R’ of a sub-order O’ of O with conductor m
dividing M.

This boils down to representing m2A by a positive definite quadratic form
of rank three and discriminant p©(*) and is done in time (plog A)°(M A by mere
exhaustive search and (plog A)?™) heuristically by a random search.

This is a competitive approach for computing singular values of modular
functions since we can find a very small (e.g. (log A)°") under GRH) inert
prime p in O.

The prime p is indeed very small since 3 is fine for half quadratic orders
and 5 is fine for half the remaining ones etc. So the endomorphism rings of all
supersingular curves modulo small primes can be precomputed together with
their norm forms.
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Curves Dy? = 23 — x of Odd Analytic Rank
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Abstract. For nonzero rational D, which may be taken to be a square-
free integer, let Ep be the elliptic curve Dy? = x> — x over Q arising
in the “congruent number” problem. It is known that the L-function of
Ep has sign —1, and thus odd analytic rank ran(Ep), if and only if |D]|
is congruent to 5, 6, or 7 mod 8. For such D, we expect by the conjec-
ture of Birch and Swinnerton-Dyer that the arithmetic rank of each of
these curves Ep is odd, and therefore positive. We prove that Ep has
positive rank for each D such that |D| is in one of the above congruence
classes mod 8 and also satisfies |D| < 10°. Our proof is computational:
we use the modular parametrization of Fq or F2 to construct a rational
point Pp on each Ep from CM points on modular curves, and compute
Pp to enough accuracy to usually distinguish it from any of the rational
torsion points on Ep. In the 1375 cases in which we cannot numerically
distinguish Pp from (Ep)tors, we surmise that Pp is in fact a torsion
point but that Ep has rank 3, and prove that the rank is positive by
searching for and finding a non-torsion rational point. We also report on
the conjectural extension to |D| < 107 of the list of curves Ep with odd
ran(Ep) > 1, which raises several new questions.

1 Introduction

1.1 Review: The Curves Ep and Their Arithmetic
For nonzero rational D let Ep be the elliptic curve
Ep:Dy* =2 -2 (1)

over Q. Since Ep and FE,2p are isomorphic for any nonzero rational ¢, D, we may
assume without loss of generality that D is a squarefree integer. The change of
variable x <+ —x shows that Ep is also isomorphic with F_p; this may also be
seen from the Weierstrass equation y? = 2® — D%x for Ep.

! The problem is: for which D does Ep have nontrivial rational points, or equivalently
positive rank? Such D are called “congruent”, because they are precisely the num-
bers that arise as the common difference (“congruum”) of a three-term arithmetic
progression of rational squares, namely the squares of (z? — 2z —1)/2y, (2*+1)/2y,
and (2% 4 2z — 1)/2y. See the Preface and Chapter XVT of [Di] for the early history
of this problem, and [Kob| for a more modern treatment of the curves Ep.

C. Fieker and D.R. Kohel (Eds.): ANTS 2002, LNCS 2369, pp. 244-R51] 2002.
© Springer-Verlag Berlin Heidelberg 2002
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The arithmetic of the curves Ep has long attracted interest, both for its
connection with the classical “congruent number” problem (see [Di, Ch.XVI];
|D| is a “congruent number” if and only if Fp has positive rank) and, more
recently, as a paradigmatic example and test case for results and constructions
concerning elliptic curves in general (see for instance [Kob]). The curves Ep have
some special properties that make them more accessible than general elliptic
curves over Q. They have complex multiplication and are quadratic twists of
the curve E;. This led to the computation of the sign of the functional equation
of the L-function L(Ep/Q,s): it depends on |D| mod 8, and equals +1 or —1
according as |D| is in {1, 2,3} or {5, 6, 7} mod 8. We shall be concerned with the
case of sign —1.

The conjecture of Birch and Swinnerton-Dyer (BSD) predicts that the (arith-
metic) rank of any elliptic curve E over a number field K, defined as the Z-rank
of its Mordell-Weil group E(K), should equal the order of vanishing at s =1 of
L(E/K,s), known as the “analytic rank” r,,(E/K). The BSD conjecture im-
plies the “BSD parity conjecture”: the arithmetic rank is even or odd according
as the functional equation of L(E /K, s) has sign +1 or —1. It would follow that
if the sign is —1 then F always has positive rank. In our context, where K = Q
and E = Ep, this leads to the conjecture that Fp has positive rank (and thus
that |D| is a “congruent number”) if | D] is amyBl integer of the form 8k +5, 8k+6,
or 8k + 7.

1.2 New Results and Computations
We prove:

Theorem 1. Let D be an integer such that |D| is congruent to 5, 6, or 7 mod 8
and also satisfies |D| < 105. Then Ep has positive rank over Q.

In our ANTS-1 paper [EI] we announced such a result for |D| < 2-10°. Our main
tool for proving Theorem[T]is the same: we use the modular parametrization of £
or E5 to construct a rational point Pp on each Ep from CM points on modular
curves, and usually compute Pp to enough accuracy to distinguish it from any of
the rational torsion points on Ep. Faster computer hardware and new software
were both needed to extend the computation to 10°. The faster machine made it
feasible to compute Pp for more and larger D. Cremona’s program MWRANK, not
available when [ETI] was written, found rational points on the curves Fp on which
we could neither distinguish Pp from a torsion point nor find a rational nontor-
sion point by direct search. This happened for 1375 values of | D| — less than 0.5%
of the total, but too many to list here a rational point on Ep for each such D.
These tables, and further computational data on the curves Ep, can be found
on the Web starting from <www.math.harvard.edu/~elkies/compnt.html>.
Our computations also yield conjectural information on the rank of Ep: the
rank should equal 1 if and only if Pp is nontorsion. In half the cases, those
2 We have dropped the hypothesis that D be squarefree because ¢2D = D mod 8 for

any odd integer c. Our integers D are not divisible by 4, and therefore cannot be of
the form ¢2D for any even c.
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for which |D| or |D|/2 is of the form 8k + 7, we obtain this connection from
Kolyvagin’s theorem [Kol|, which gives the “if” direction unconditionally, and
the Gross-Zagier formula [GZ], which gives the “only if” direction under the
BSD conjecture. Neither Kolyvagin nor Gross-Zagier has been proved to extend
to the remaining cases, when |D| or |D|/2 is of the form 8k + 5. But we expect
that similar results do hold in these cases, and hence that Ep has rank 1 if
and only if Pp is nontorsion also when |D| or |D|/2 is congruent to 5 mod 8.
One piece of evidence in this direction is that whenever we found Pp to be
numerically indistinguishable from a torsion point, the Selmer groups for the
2-isogenies between Ep and the curve Dy? = 2% + 42 were large enough for
Ep to have arithmetic rank at least 3. We extended the list of curves Ep of
conjectural rank > 3 to |D| < 107 by imposing the 2-descent condition from
the start and computing Pp only for those D that pass this test. We find a
total of 8740 values of |D|. The list not only provides new numerical data on
the distribution of quadratic twists of rank > 1 with large |D|, but also suggests
unexpected biases in the distribution that favor some congruence classes of | D|’s.

2 Proof of Theorem [1]

Let D be a squarefree integer such that |D| is congruent to 5, 6, or 7 mod 8. Set
Kp=Q(y/—|D|)if D is odd, and Kp = Q(v/—|D|/2) if D is even. Then Kp
is an imaginary quadratic field in which the rational prime 2 splits if D = 8k +7
or D = 16k + 14, ramifies if D = 8k + 5, and is inert if D = 16k + 6. A point
P € Ep(Q) is equivalent to a Kp-rational point @ of E; or Ey (according as
D is odd or even) whose complex conjugate @Q equals —Q. If Q' is any point of
E, or Ey over Kp then Q = Q' — Q' satisfies Q = —@Q, and thus amounts to
a point of Ep over Q. To prove Theorem [ for Ep, it will be enough to find
Qp € E1(Kp) or E5(Kp) and show that the point Pp € Ep(Q) corresponding
to @p — Qp is not in (Ep(Q))tors = Ep[2].

We use the modular parametrizations of F; and Es by the modular curves
X0(32) and X((64). These curves have “CM points” parametrizing cyclic isoge-
nies of degree 32 or 64 between elliptic curves of complex multiplication by the
same order in Kp. If the prime 2 splits in Kp, these points are defined over
the class field of Kp; otherwise they are defined over a ray class field. (In the
former case, the CM points are often called “Heegner points”; in the latter, [Mo]
applies the term “mock Heegner points”, though Birch points out that Heegner’s
seminal paper [He| already used both kinds of points to construct rational points
on Ep, and the distinction between the two cases was a later development.) In
either case, we obtain a point @ p defined over K by taking a suitable subset of
these CM points, mapping them to E; or Fy by the modular parametrization,
and adding their images using the group law of the curve. See [BillBi2/Mo)| for
more details on these subsets.

Now the key computational point is that the size of each subset is propor-
tional to the class number of Kp, and thus to |D|'/? when averaged over D.
This is much smaller than the number of terms of the series needed to numeri-
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cally estimate L'(Fp/Q, 1), which is on the order of D: as explained for instance
in [BGZ], for a general elliptic curve E/Q of conductor N(E) it takes N1/2+e
terms to adequately estimate L'(E/Q, 1), and N(Ep) = 32D? or 64D? (accord-
ing as D is odd or even) so N'/? is of order D. As explained in [E1], the numerical
computation of each CM point as a point on the complex torus E1(C) or E5(C)
to within say 1072° takes essentially constant time: find a representative 7 in a
fundamental domain for the upper half-plane mod I(32) or I'h(64), and sum
enough terms of a power series for fOTO pdq/q where ¢ is the modular form for

Ei or F,. Thus it takes time A3/2te (and negligible space) to approximate @ p
for each |D| < AR

We implemented this computation in GP and ran it for A = 106. For all but
1375 of the 303979 squarefree values of |D| < 10° congruent to 5, 6, or 7 mod 8,
we found that Pp is at distance at least 10~® from the nearest 2-torsion point
of Ep, and is thus a rational point of infinite order.

For each of the remaining D, the point Pp is numerically indistinguishable
(at distancdd at most 10729, usually much less) from a 2-torsion point. We believe
that Pp then actually is a torsion point, and thus that we must find a nontorsion
rational point on Ep in some other way. We did this as follows. We first searched
for rational numbers x = r/s with |r|, |s| < 5-107 such that sz = rs(r? — s?) is
D times a square for | D| < 10°. This is a reasonable search since we may assume
that ged(r, s) = 1, require that one of the factors r, s,7+s,r—s of rs(r? —s?) have
squarefree part f < (4 - 106)1/ 4 and that another have squarefree part at most
(4-10%/f)1/3, and loop over those factors This took several hours and found
points on all but 70 of our 1375 Ep’s. The remaining curves were handled by
Cremona’s MWRANK program, which used a 2-descent on each curve (exploiting
its full rational 2-torsion) to locate a rational point. This completed the proof
of Theorem [Tl

3 Curves Ep of Conjectural Rank > 3

It might seem surprising that we were able to find a rational point on each of
the 1375 Ep’s for which we could not use Pp. Many curves Ep, even with D
well below our upper limit of 10%, have rank 1 but generator much too large to
locate with repeated 2-descents (see for instance [E1]). The reason we could find
nontorsion points on the curves Ep with Pp € FEp[2] is that these are precisely

3 This computation is particularly efficient in our setting, in which ¢ is a CM form (so
most of its coefficients vanish) and the normalizers of I(32), I'5(64) in SL2(R) can
be used to obtain an equivalent 7 with imaginary part at least 1/8 and \/§/16 re-
spectively. These efficiencies represent a considerable practical improvement, though
they contribute negligible factors O(A€) to the asymptotic running time of the com-
putation.

4 Here, as in the preceding paragraph, the distance is measured on the complex torus
representing E1(C) or E2(C).

5 In fact we removed the factors of 4 by using the squarefree parts of (r=s)/2 instead
of r + s when r = s mod 2.
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the curves Ep of odd sign that should have rank at least 3, which makes the
minimal height of a non-torsion point much smaller than it can get in the rank-1
case. We explain these connections below, and then report on our computations
that extend to 107 the list of |D| such that 7,,(FEp) is odd and conjecturally at
least 3.

3.1 Pp and the Rank of Ep

Consider first the cases D = 8k+7 and D = 16k + 14. In these cases the prime 2,
which is the only prime factor of the conductors of Ey and FEs, is split in Kp.
Therefore the results of Gross-Zagier [GZ] and Kolyvagin [Kol| apply to Pp. The
former result gives the canonical height of Pp as a positive multiple of L' (Ep, 1).
Therefore r,, (Ep) > 1 if and only if Pp is torsion. The latter result shows that if
Pp is nontorsion then in fact the arithmetic rank of Ep also equals 1. Hence any
Ep of rank 3 or more must be among those for which we could not distinguish
Pp from a torsion point.

The hypotheses of the theorems of Gross-Zagier and Kolyvagin are not sat-
isfied in the remaining cases D = 8k + 5 and D = 16k + 6. However, numerical
evidence suggests that both theorems generalize to these cases as well. For in-
stance, when Pp is numerically indistinguishable from a torsion point, Fp seems
to have rank 3. For small |D| we readily find three independent points; for all
|D| in the range of our search, Ep and each of the curves Dy? = x3 + 4z and
Dy? = 3 — 11z + 14 isogenous with Ep has a 2-Selmer group large enough to
accommodate three independent points. When Pp is nontorsion but has small
enough height to be recovered from its real approximation by continued frac-
tions, we find that it is divisible by 2 if and only if the 2-Selmer group has rank
at least 5, indicating that Fp has either rank > 3 or nontrivial I11[2]. (The for-
mer possibility should not occur, and can often be excluded by 2-descent on one
of the curves isogenous to Ep.) Both of these observations are consistent with a
generalized Gross-Zagier formula and the conjecture of Birch and Swinnerton-
Dyer, and would be most unlikely to hold if the vanishing of Pp had no relation
with the arithmetic of Ep. We thus expect that also in these cases Ep should
have rank > 1 if and only if Pp is a torsion point.

3.2 Rank and Minimal Nonzero Height

The conjecture of Birch and Swinnerton-Dyer also explains why curves Ep of
rank > 3 have nontorsion points of height much smaller than is typical of curves
Ep of rank 1. This conjecture relates the regulator of the Mordell-Weil group
of Ep with various invariants of the curve, including its real period and the
leading coefficient L") (Ep,1)/r! (where r = 7,,(Ep)). Now the real period is
proportional to |D|~/2. The leading coefficient is < |D|°") under the gener-
alized Riemann hypothesis for L(Ey, s), or even the weaker assumption of the
Lindel6f conjecture for this family of L-series (see for instance [IS| p.713]). One
expects, and in practice finds, that it is also > |D| () (otherwise L(Ey, s) has
zeros 1 + it for very small positive ¢). Thus we expect the regulator to grow as
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|D|Y/2+0() " at least if IIT is small, which should be true for most |D|. Hence the
minimal nonzero height would be at most |D|*/?". When r = 1 this grows so
fast that already for |D| < 10* there are many curves Ep with generators much
too large to be found by 2-descents[d But for » > 3 the minimal nonzero height
is at most |D|*/6+°(1) 5o | D| must grow much larger before a 2-descent search
becomes infeasible.

Remark on curves curves Ep of even sign: For such curves we readily determine
whether ran(Ep) > 0 by using the Waldspurger-Tunnell formula [Tu] to compute
L(Ep,1). If L(Ep,1) # 0 then ran(EFp) = 0 and Ep also has arithmetic rank 0 by
Kolyvagin (or even Coates-Wiles [CW]| because Ep has CM). If L(Ep,1) = 0 then
ran(Ep) > 2, and we can prove that Ep has positive arithmetic rank if we find a
nontorsion point. We expect that the minimal height of such a point is |D|*/4+°(®) This
grows slower than the |D|1/ 2+o(1) estimate for rank 1, but fast enough that 2-descent
searches fail for |D| much smaller than our bound of 10°. Even in the odd-rank case
that concerns us in this paper, it is the curves of rank 3 that make it hard to extend
Theorem [0 much beyond A = 10°: searching for points on those curves take time
roughly exp A6, which eventually swamps the polynomial time A%/2%¢ required to
find those curves.

3.3 Computing Ep of Conjectural Rank > 3 with |D| < 107

We extended to A = 107 our search for Pp numerically indistinguishable from
torsion points. These are the curves that we expect to have rank at least 3. Since
we do not expect to extend Theorem [ to 107, we saved time by requiring that
the Selmer groups for the isogenies between Ep and Dy? = 2 + 42 be large
enough to together accommodate an arithmetic rank of 3. For very large A this
is a negligible saving because most D pass this test. But it saved a substantial
factor in practice for A = 107: the test eliminated all but 35% of choices of
|D| = 16k + 14, all but 32.1% of |D| = 16k + 6, all but 21.6% of |D| = 8k + 5,
and all but 16.2% of |D| = 8k+ 7. We found a total of 8740 values of D for which
Pp appears to be a torsion point. We expect that each Pp is in fact torsion and
that the corresponding Ep all have rank at least 3. Some Pp might conceivably
be a nontorsion point very close to Ep[2], but this seems quite unlikely; at any
rate no Pp came closer than 10~8 but far enough to distinguish from Ep[2]. All
the curves probably have rank exactly 3: the smallest |D| known for a curve Ep
of rank 5 exceeds 4 - 10° [Ro]. At any rate none of our curves with |D| < 2 - 106
can have rank 5: we applied MWRANK’s descents-only mode to each of these Ep
and the isogenous curves, and in each case obtained an upper bound of 3 or 4
on the rank. Our curves Ep and the isogenous curves include many examples of
conjectural rank 3 and nontrivial IIT[2].

5 The generators can be obtained using the CM-point construction in time \D|O<1)7
but not |D]}/2T°(M) because Pp must be computed to high accuracy to recognize
its coordinates as rational numbers from their real approximations. Note that in
our computations we showed only that Pp is nontorsion and did not attempt to
determine it explicitly in Ep(Q).
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There are striking disparities in the distribution of our 8740 values of |D|
among the allowed congruence classes. The odd classes 8k +5 and 8k + 7 account
for 2338 and 2392 curves Ep of presumed rank 3. But even |D|’s are much more
plentiful: there are 4010 of them, almost as many as in the two odd classes
combined. This might be explained by the behavior of the 2-descent, which
depends on the factorization of |D|, or the fact that we are twisting a different
curve: Fq for odd D and Es for even D. But the 4010 even D’s are themselves
unequally distributed between the 16k + 6 and 16k + 14 cases, the former being
significantly more numerous: 2225 as against 1785. (See Figure 1.) This disparity
is much larger than would be predicted by the 2-descent test, which in the range
|D| < 107 favors 16k + 16 but only by a factor of 1.09 whereas 2225 exceeds
1785 by almost 25%. Note too that the 2-descent survival rates would predict a
preponderance of |D| = 8k + 7 over 8k + 5, whereas the two counts are almost
identical. Do these disparities persist as A increases, and if so why? Naturally
we would also like to understand the overall distribution of quadratic twists of
rank > 3, not only for the “congruent number” family but for an arbitrary initial
curve in place of Ep. We hope that the computational data reported here, and

f(N) := number of D<N of the form 16k+6 (upper curve) or 16k+14 (lower curve)
such that the elliptic curve D y?>=x3 - x has presumed rank at least 3

 f(N) = 2000

Fig. 1. Twists with |D| = 6 mod 16 seem to have rank 3 much more often than those
with |D| = 14 mod 16
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more fully at <www.math.harvard.edu/~elkies/compnt.html>, might suggest
reasonable ideas and conjectures in this direction.
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Abstract. Class fields of imaginary quadratic number fields can be con-
structed from singular values of modular functions, called class invari-
ants. From a computational point of view, it is desirable that the asso-
ciated minimal polynomials be small. We examine different approaches
to measure the size of the polynomials. Based on experimental evidence,
we compare two families of class invariants suggested in the literature
with respect to these criteria. Our results lead to more efficient construc-
tions of elliptic curves for cryptography or in the context of elliptic curve
primality proving (ECPP).

1 Introduction

Let K be an imaginary quadratic field of discriminant —D < 0 and class number
h. The Hilbert class field of K, denoted by Ky, is the maximal unramified abelian
extension of K. It is known that a minimal polynomial for Ky /K has degree h
and can be computed using the values of the j-invariant at integers of K. This
polynomial, denoted by Hp[j](X), has huge coefficients, and there is a wide
variety of functions that can be used in place of j and that lead to polynomials
with smaller coefficients. Small polynomials are preferable for several reasons:
first of all, the usual way to build them is to use floating point numbers, and
the required precision clearly depends on the size of the result. Second, one
may want to store the polynomials and although disks are not that expensive
today, the smaller the better. The last reason is more recent and is related to
the Galois approach described in [15]. For it to succeed, it is necessary to start
with coefficients as small as possible.

In this article, we describe the use of two families of n-products: the to, fam-
ily of [23I8] and the w,, ,, family of [26/9]. We show how to choose a function
adapted to one’s needs. If one is interested in computing only the minimal poly-
nomial Hplu] of the invariant u, a minimal logarithmic height seems to be the
good notion. If one is interested in precomputing a system of polynomial equa-
tions solving the equation Hp[u](X) = 0 as described in [I5]14], then the size of
the largest root of Hp[u](X) should be taken into account.

Our ultimate goal is to build curves with prescribed complex multiplication
for ECPP [2]. Although most of our results hold in full generality, we assume for
the sake of simplicity that —D is fundamental.

C. Fieker and D.R. Kohel (Eds.): ANTS 2002, LNCS 2369, pp. 252-R66] 2002.
© Springer-Verlag Berlin Heidelberg 2002
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For our purpose, we do not have to give many details on the theory of elliptic
curves. We refer the reader to Silverman’s two books [2829].

2 Complex Multiplication

Let K be an imaginary quadratic field of discriminant —D and class number
h = h(—D). The ring of integers of K is O = Z[w] with

uJ_{M—D/zl if D =0mod 4,

(14 +v—D)/2if D =3 mod 4.

We denote by Ky the Hilbert class field of K. It can be built using the singular
values of the modular invariant j, i.e. the values at certain integers of K. The
minimal polynomial of such a singular value is computed from the ideal class
group Cl(Ok), or equivalently from the set Cl(—D) of primitive binary reduced
quadratic forms of discriminant —D. If Q = [A, B,C] = AX? + BX + C is such

a form, we put 79 = _B'giA /=D

, and the minimal polynomial of j(7g) is simply
Hpljl(X)= ] (X —i(r).

QeCi(-D)

The coefficients of Hp|j] are quite large in general, so that it is of interest to
consider alternative generators of the class field. These are provided by singular
values of other functions, so-called class invariants. Most of the known class in-
variants can be obtained from Dedekind’s n function, defined in [7] for a complex
variable z by

oo
n(z) = g/ H(l ") = g\ (1 T Z(_l)n (qn(anl)/2 +qn(3n+1)/2)>
n=1

n>1

with ¢ = exp(2miz) and ¢'/?* = exp(27iz/24).
The functions f(z) = exp(—mi/24) WEED/2) ¢ (o) — %ﬁ?, fo(z) = V2 222

n(z) n(z)
< 24 8 8
Yo = fogw and 3 = %M are known as Weber’s functions, although

some of them are already discussed in [I7l[7]. Weber observed that for many
discriminants, powers of these functions are class invariants. For proofs, see
BIB20024125). More results concerning the values of Weber’s functions can be
found in [232IT2]T3].

To use functions other than j and Weber’s functions for building class fields,
we have to solve two problems. First, we need criteria when a given function is
a class invariant for a given discriminant. Second, we need a way of computing
associated class polynomials, that is of determining a complete set of conjugates
under the Galois action. Both questions can be addressed using Shimura’s reci-
procity law [27]. Singular values of modular functions of level N are contained in
the ray class field modulo N. Membership in the Hilbert class field then follows
from invariance under the Galois group, formed of Frobenius maps whose actions
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on the singular values can be derived from Shimura reciprocity. One explicit ap-
proach to the reciprocity law is described by Gee and Stevenhagen in [13/[12].
In [25], Schertz obtains a very general criterion for singular values to belong to
the Hilbert class field. His theorem applies to functions on the modular curve
Xo(N) whose g-expansions satisfy certain rationality conditions.

Moreover, Schertz provides an elegant way of obtaining the class polynomial
by evaluating the fixed class invariant at a suitably chosen system of quadratic
forms, namely an N-system. Such a system is defined as a system of representa-
tives Q; = [A;, By, C;] for the class group such that the A; are coprime to N and
all the B; are congruent modulo 2N . Proposition 2 of [25] shows that N-systems
exist for any natural number N and for any discriminant.

3 Simple n Quotients

Let ¢ denote a positive integer and define a 24-th root of Klein’s function
<p(1 ) (cf. 18, Abschnitt II, §16]) by
0 ¢

Note that this function generalises Weber’s function f; = . Although we may
use composite numbers £ as described in [§], we henceforth focus on prime values.
Put s = 12/ ged(12,£—1). Using the g-expansion and the transformation formula
of 7 it is not difficult to obtain the following result, see []].

Proposition 1. The function w3*(z) is invariant under I'°(¢) and has a g-ex-

pansion starting with ¢—s¢—1/(120)

We denote the modular equation associated with a modular function u for
I'°(¢) by ®[u](U, J). The following result is obtained in [8].

Theorem 1. The degree of @¢[w2*)(U,J) in J is S(Zlgl) and the leading coef-
ficient with respect to J is —U. The constant term with respect to U is given

by 05,

In Table[d], we provide the modular equations of prime level at most 13. They
are computed using the methods described for instance in [21)/10].

Fricke observed in [11] that when ¢ is split or ramified in K, the singular
values of w?* at suitably normalised integers lie in the Hilbert class field Ky.
When ¢ is a square and coprime to 6, then this already holds for to,. In [13],
Gee and Stevenhagen consider 3 and work out an example for a particular
discriminant; in [T2], Gee obtains a general result for resolvents formed with the
conjugates of ts. By applying the theory of [25] to w2* and lower powers of tog,
the authors prove the following theorem, see [§].

Theorem 2. Let £ be an odd prime and —D a quadratic discriminant such that
(%) # —1. Choose the power w§ and the natural number N, a multiple of £,
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Table 1. Some modular equations of prime degree.

0], [w7"](U, J)

2[(U +16)° — JU

3(U +27) (U +3)° —JU

5/(U2 +10U +5)° — JU

7|(U? +13U +49) (U +5U +1)° —JU

13|(U2 +5U +13) (U +7U°% +20U%2 419U +1)° — JU
11{UJ® 4 J*(132U® + 468754 UZ 4 3732U)

+J3 (=5346 U® + 161201040 U* — 49836805205 U® + 51801406800 U? — 4586706 U)

+J2(67496 U7 4 2291468355 US 4 4231762569540 U® + 755793774757450 U*
+6941543075967060 U + 214437541826475 U2 + 2059075976 U)

+J(—139755 U + 723797800 US — 1327909897380 U7 + 1036871615940600 U°
—310557763459301490 U® + 17309546645642506200 U*
—64815179429761398660 U + 77380735840203400 U2 — 253478654715 U)

+(U2 — 5940 U 4 14701434 U0 — 19264518900 U® + 13849401061815 U®
—4875351166521000 U7 + 400050977713074380 U + 122471154456433615800 U°
+6513391734069824031615 U* + 104264884483130180036700 U
+804140494949359194 U2 + 2067305393340 U + 1771561)

depending on D mod 6 as specified in the table below. Assume that Q = [A, B, C)|
is a primitive quadratic form of discriminant —D with gcd(A,N) =1, B> = —D
(mod 4¢) and B satisfying the additional congruences modulo 8 or 4 as given in
the table. If 7o = % is the root of @ in the upper complex half plane,
then w§(1g) € Ku and its minimal polynomial has coefficients in Ox and can
be computed from an N -system.

¢ mod 12 D invariant| N B

(=3 — i? |3 -
2¢D w$ |6/B=1 (mod 4)

1 — w? |/ —

5 — wd |4 —

31D w? |30 3|B

7 — wj |4 —
2¢D w? |2 B=1 (mod 4)

11 — ;2 |l —
2¢D wf |2 B=1 (mod 4)

31D wi |30 3|B
ged(D,6)