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Preface

Physical and natural phenomena depend on a complex array of factors. The sociol-
ogist or psychologist who studies group behavior, the economist who endeavors
to understand the vagaries of a nation’s employment cycles, the physicist who
observes the trajectory of a particle or planet, or indeed anyone who seeks to
understand geometry in two, three, or more dimensions recognizes the need to
analyze changing quantities that depend on more than a single variable. Vec-
tor calculus is the essential mathematical tool for such analysis. Moreover, it
is an exciting and beautiful subject in its own right, a true adventure in many
dimensions.

The only technical prerequisite for this text, which is intended for a
sophomore-level course in multivariable calculus, is a standard course in the cal-
culus of functions of one variable. In particular, the necessary matrix arithmetic
and algebra (not linear algebra) are developed as needed. Although the mathe-
matical background assumed is not exceptional, the reader will still be challenged
in places.

My own objectives in writing the book are simple ones: to develop in students
a sound conceptual grasp of vector calculus and to help them begin the transition
from first-year calculus to more advanced technical mathematics. I maintain that
the first goal can be met, at least in part, through the use of vector and matrix
notation, so that many results, especially those of differential calculus, can be
stated with reasonable levels of clarity and generality. Properly described, results
in the calculus of several variables can look quite similar to those of the calculus
of one variable. Reasoning by analogy will thus be an important pedagogical tool.
I also believe that a conceptual understanding of mathematics can be obtained
through the development of a good geometric intuition. Although I state many
results in the case of n variables (where 7 is arbitrary), I recognize that the most
important and motivational examples usually arise for functions of two and three
variables, so these concrete and visual situations are emphasized to explicate the
general theory. Vector calculus is in many ways an ideal subject for students
to begin exploration of the interrelations among analysis, geometry, and matrix
algebra.

Multivariable calculus, for many students, represents the beginning of signif-
icant mathematical maturation. Consequently, I have written a rather expansive
text so that they can see that there is a story behind the results, techniques, and
examples—that the subject coheres and that this coherence is important for prob-
lem solving. To indicate some of the power of the methods introduced, a number
of topics, not always discussed very fully in a first multivariable calculus course,
are treated here in some detail:

« an early introduction of cylindrical and spherical coordinates (§1.7);
¢ the use of vector techniques to derive Kepler’s laws of planetary motion
(83.1);

+ the elementary differential geometry of curves in R?, including discussion
of curvature, torsion, and the Frenet—Serret formulas for the moving frame

(83.2);

* Taylor’s formula for functions of several variables (§4.1);
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+ the use of the Hessian matrix to determine the nature (as local extrema) of
critical points of functions of n variables (§4.2 and §4.3);

+ an extended discussion of the change of variables formula in double and triple
integrals (§5.5);

* applications of vector analysis to physics (§7.4);

¢ an introduction to differential forms and the generalized Stokes’s theorem
(Chapter 8).

Included are a number of proofs of important results. The more techni-
cal proofs are collected as addenda at the ends of the appropriate sections so
as not to disrupt the main conceptual flow and to allow for greater flexibility
of use by the instructor and student. Nonetheless, some proofs (or sketches of
proofs) embody such central ideas that they are included in the main body of the
text.

New in the Fourth Edition

I have retained the overall structure and tone of prior editions. New features in
this edition include the following:

» 210 additional exercises, at all levels;

> a new, optional section (§5.7) on numerical methods for approximating
multiple integrals;

* reorganization of the material on Newton’s method for approximating
solutions to systems of n equations in n unknowns to its own (optional)
section (§2.7);

* new proofs in Chapter 2 of limit properties (in §2.2) and of the general
multivariable chain rule (Theorem 5.3 in §2.5);

* proofs of both single-variable and multivariable versions of Taylor’s theorem
in §4.1;

* various additional refinements and clarifications throughout the text,
including many new and revised examples and explanations;

+ new Microsoft® PowerPoint® files and Wolfram Mathematica® notebooks
that coordinate with the text and that instructors may use in their teaching
(see “Ancillary Materials” below).

How to Use This Book

There is more material in this book than can be covered comfortably during a single
semester. Hence, the instructor will wish to eliminate some topics or subtopics—or
to abbreviate the rather leisurely presentations of limits and differentiability. Since
I frequently find myself without the time to treat surface integrals in detail, I have
separated all material concerning parametrized surfaces, surface integrals, and
Stokes’s and Gauss’s theorems (Chapter 7), from that concerning line integrals
and Green’s theorem (Chapter 6). In particular, in a one-semester course for
students having little or no experience with vectors or matrices, instructors can
probably expect to cover most of the material in Chapters 1-6, although no doubt
it will be necessary to omit some of the optional subsections and to downplay
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many of the proofs of results. A rough outline for such a course, allowing for
some instructor discretion, could be the following:

Chapter 1 8-9 lectures
Chapter 2 9 lectures
Chapter 3 4-5 lectures
Chapter 4 5-6 lectures
Chapter 5 8 lectures
Chapter 6 4 lectures

3841 lectures

If students have a richer background (so that much of the material in Chapter 1
can be left largely to them to read on their own), then it should be possible to treat
a good portion of Chapter 7 as well. For a two-quarter or two-semester course,
it should be possible to work through the entire book with reasonable care and
rigor, although coverage of Chapter 8 should depend on students’ exposure to
introductory linear algebra, as somewhat more sophistication is assumed there.

The exercises vary from relatively routine computations to more challenging
and provocative problems, generally (but not invariably) increasing in difficulty
within each section. In a number of instances, groups of problems serve to intro-
duce supplementary topics or new applications. Each chapter concludes with a
set of miscellaneous exercises that both review and extend the ideas introduced
in the chapter.

A word about the use of technology. The text was written without reference
to any particular computer software or graphing calculator. Most of the exercises
can be solved by hand, although there is no reason not to turn over some of the
more tedious calculations to a computer. Those exercises that require a computer
for computational or graphical purposes are marked with the symbol 0 and
should be amenable to software such as Mathematica®, Maple®, or MATLAB.

Ancillary Materials

In addition to this text a Student Solutions Manual is available. An Instructor’s
Solutions Manual, containing complete solutions to all of the exercises, is
available to course instructors from the Pearson Instructor Resource Center
(www.pearsonhighered.com/irc), as are many Microsoft® PowerPoint® files and
Wolfram Mathematica® notebooks that can be adapted for classroom use. The
reader can find errata for the text and accompanying solutions manuals at the
following address:

www.oberlin.edu/math/faculty/colley/VCErrata.html
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Figure 1 The coordinate line R.

Yo|====== - (X0, o)

Figure 2 The coordinate plane R?.

To the Student:
Some Preliminary

Notation

Here are the ideas that you need to keep in mind as you read this book and learn
vector calculus.

Given two sets A and B, | assume that you are familiar with the notation
A U B for the union of A and B—those elements that are in either A or B (or
both):

AUB ={x|x € Aorx € B}.

Similarly, A N B is used to denote the intersection of A and B—those elements
that are in both A and B:

ANB={x|x € Aand x € B}.

The notation A C B, or A C B, indicates that A is a subset of B (possibly empty
or equal to B).

One-dimensional space (also called the real line or R) is just a straight line.
We put real number coordinates on this line by placing negative numbers on the
left and positive numbers on the right. (See Figure 1.)

Two-dimensional space, denoted R?, is the familiar Cartesian plane. If we
construct two perpendicular lines (the x- and y-coordinate axes), set the origin
as the point of intersection of the axes, and establish numerical scales on these
lines, then we may locate a point in R? by giving an ordered pair of numbers (x, y),
the coordinates of the point. Note that the coordinate axes divide the plane into
four quadrants. (See Figure 2.)

Three-dimensional space, denoted R?, requires three mutually perpendicular
coordinate axes (called the x-, y- and z-axes) that meet in a single point (called
the origin) in order to locate an arbitrary point. Analogous to the case of R?, if we
establish scales on the axes, then we can locate a point in R? by giving an ordered
triple of numbers (x, y, z). The coordinate axes divide three-dimensional space
into eight octants. It takes some practice to get your sense of perspective correct
when sketching points in R®. (See Figure 3.) Sometimes we draw the coordinate
axes in R? in different orientations in order to get a better view of things. However,
we always maintain the axes in a right-handed configuration. This means that
if you curl the fingers of your right hand from the positive x-axis to the positive
y-axis, then your thumb will point along the positive z-axis. (See Figure 4.)

Although you need to recall particular techniques and methods from the
calculus you have already learned, here are some of the more important concepts
to keep inmind: Given a function f(x), the derivative f’(x)is the limit (if it exists)
of the difference quotient of the function:

Jx+h)— fx)
- :

o= fim
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e

x
Figure 3 Three-dimensional Figure 4 The x-, y-, and z-axes in R® are always
space R3. Selected points are drawn in a right-handed configuration.
y graphed.
(o, F(0)) The significance of the derivative f’(xo) is that it measures the slope of the line
0 0.

N

Figure 5 The derivative f'(x¢) is
the slope of the tangent line to

y = f(x)at(xo, f(x0))-

tangent to the graph of f at the point (xg, f(x¢)). (See Figure 5.) The derivative
may also be considered to give the instantaneous rate of change of f at x = x.
We also denote the derivative f'(x) by df/dx.

The definite integral fab f(x)dx of f ontheclosed interval [a, b] is the limit
(provided it exists) of the so-called Riemann sums of f:

b n
| rewar= tim > A,

Herea = xp < x; < x5 < --+ < x, = b denotes a partition of [a, b] into subin-
tervals [x;_1, x;], the symbol Ax; = x; — x;_; (the length of the subinterval), and
x; denotes any pointin [x;_1, x;]. If f(x) > O on[a, b], then each term f(x])Ax;
in the Riemann sum is the area of a rectangle related to the graph of f. The
Riemann sum ) _;_, f(x/)Ax; thus approximates the total area under the graph
of f between x = a and x = b. (See Figure 6.)

y
—
\\
-
|
|
|
|
L X
|
a Xy Xy Xzeel e Xioq X "'xn—lb
|
x;

Figure 6 If f(x) > 0 on [a, b], then the Riemann sum
approximates the area under y = f(x) by giving the sum
of areas of rectangles.
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y

y=f(x)

Figure 7 The area under the graph of y = f(x) is
[ fx)dx.

The definite integral |’ f’ f(x)dx, if it exists, is taken to represent the area
under y = f(x) between x = a and x = b. (See Figure 7.)

The derivative and the definite integral are connected by an elegant result
known as the fundamental theorem of calculus. Let f(x) be a continuous func-
tion of one variable, and let F(x) be such that F'(x) = f(x). (The function F is
called an antiderivative of f.) Then

b

1. / f(x)dx = F(b) — F(a),
d X

2. e / f()dt = f(x).

Finally, the end of an example is denoted by the symbol ¢ and the end of a
proof by the symbol m.
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- Vectors

1.1 Vectors in Two and Three Dimensions

For your study of the calculus of several variables, the notion of a vector is
fundamental. As is the case for many of the concepts we shall explore, there are
both algebraic and geometric points of view. You should become comfortable
with both perspectives in order to solve problems effectively and to build on your
basic understanding of the subject.

Vectors in R* and R’: The Algebraic Notion

DEFINITION 1.1 A vector in R? is simply an ordered pair of real numbers.
That is, a vector in R?> may be written as

(al’az) (e.g., (1’2) or (ﬂa 17))
Similarly, a vector in R? is simply an ordered triple of real numbers. That is,
a vector in R® may be written as

(Cll, az, 613) (C.g., (7[’ e, \/5))

To emphasize that we want to consider the pair or triple of numbers as a
single unit, we will use boldface letters; hence a = (a;, ay) or a = (ay, az, az)
will be our standard notation for vectors in R? or R?. Whether we mean that ais a
vector in R? or in R® will be clear from context (or else won’t be important to the
discussion). When doing handwritten work, it is difficult to “boldface” anything,
so you’ll want to put an arrow over the letter. Thus, @ will mean the same thing
as a. Whatever notation you decide to use, it’s important that you distinguish the
vector a (or a) from the single real number a. To contrast them with vectors, we
will also refer to single real numbers as scalars.

In order to do anything interesting with vectors, it’s necessary to develop
some arithmetic operations for working with them. Before doing this, however,
we need to know when two vectors are equal.

DEFINITION 1.2 Two vectors a = (aj, a;) and b = (b, b) in R? are
equal if their corresponding components are equal, that is, if @; = b; and
a, = b,. The same definition holds for vectors in R*: a = (a1, a2, a3) and
b = (b1, by, b3) are equal if their corresponding components are equal, that
iS, ifa1 = bl, ay = bz, and azy = b3.
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EXAMPLE 1 The vectors a = (1,2) and b = (3, £) are equal in R?, but ¢ =
(1,2,3)and d = (2, 3, 1) are not equal in R>. *

Next, we discuss the operations of vector addition and scalar multiplication.
We’ll do this by considering vectors in R only; exactly the same remarks will
hold for vectors in R? if we simply ignore the last component.

DEFINITION 1.3 (VECTOR ADDITION) Let a = (ay, ay, a3) and b = (by,
by, b3) be two vectors in R3. Then the vector sum a + b is the vector in R3
obtained via componentwise addition: a + b = (a; + by, ax + by, as + b3).

EXAMPLE 2 We have (0, 1,3) + (7, —2, 10) = (7, —1, 13) and (in R?):
1, D)+ T, vV2) =1+, 1+2). .

Properties of vector addition. We have

1. a+b=>b+aforalla,binR> (commutativity);
2. a+(b+c)=(a+b)+cforalla, b,cinR? (associativity);

3. aspecial vector, denoted 0 (and called the zero vector), with the property
that a + 0 = a for all a in R3.

These three properties require proofs, which, like most facts involving the al-
gebra of vectors, can be obtained by explicitly writing out the vector components.
For example, for property 1, we have that if

a—= ((11, ay, a3) and b= (bl, b2, b3),
then
a+b=(a+b,a+by,a3+b3)
= b1+ a1, by + az, by + a3)

=b + a,

since real number addition is commutative. For property 3, the “special vector”
is just the vector whose components are all zero: 0 = (0, 0, 0). It’s then easy to
check that property 3 holds by writing out components. Similarly for property 2,
so we leave the details as exercises.

DEFINITION 1.4 (SCALAR MULTIPLICATION) Leta=(ay, a;, as) be a vec-
tor in R and let k € R be a scalar (real number). Then the scalar prod-
uct ka is the vector in R? given by multiplying each component of a by
k:ka = (kal, k(lz, ka3).

EXAMPLE 3 Ifa=(2,0,+/2)and k = 7, then ka = (14, 0, 7+/2). =

The results that follow are not difficult to check—just write out the vector
components.



o (a, ay)

Figure 1.1 A vector a € R?
corresponds to a point in R,

o (a1, ay, a3)

\
y

X

Figure 1.2 A vector a € R®
corresponds to a point in R3,
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Properties of scalar multiplication. For all vectors a and b in R? (or R?)
and scalars k and / in R, we have

1. (k+1l)a=ka-+la (distributivity);

2. k(a+b)=ka+ kb (distributivity);

3. k(la) = (kl)a = [(ka).

It is worth remarking that none of these definitions or properties really de-
pends on dimension, that is, on the number of components. Therefore we could
have introduced the algebraic concept of a vector in R” as an ordered n-tuple
(ay,az, ..., a,) of real numbers and defined addition and scalar multiplication
in a way analogous to what we did for R? and R?. Think about what such a
generalization means. We will discuss some of the technicalities involved in §1.6.

Vectors in R’ and R’: The Geometric Notion

Although the algebra of vectors is certainly important and you should become
adept at working algebraically, the formal definitions and properties tend to present
arather sterile picture of vectors. A better motivation for the definitions just given
comes from geometry. We explore this geometry now. First of all, the fact that
a vector a in R? is a pair of real numbers (a;, a,) should make you think of the
coordinates of a point in R?. (See Figure 1.1.) Similarly, if a € R?, then a may
be written as (aj, az, a3), and this triple of numbers may be thought of as the
coordinates of a point in R3. (See Figure 1.2.)

All of this is fine, but the results of performing vector addition or scalar mul-
tiplication don’t have very interesting or meaningful geometric interpretations in
terms of points. As we shall see, it is better to visualize a vector in R? or R? as an
arrow that begins at the origin and ends at the point. (See Figure 1.3.) Such a depic-
tion is often referred to as the position vector of the point (a;, a;) or (a;, az, az).

If you’ve studied vectors in physics, you have heard them described as objects
having “magnitude and direction.” Figure 1.3 demonstrates this concept, provided
that we take “magnitude” to mean “length of the arrow” and “direction” to be the
orientation or sense of the arrow. (Note: There is an exception to this approach,
namely, the zero vector. The zero vector just sits at the origin, like a point, and has
no magnitude and, therefore, an indeterminate direction. This exception will not
pose much difficulty.) However, in physics, one doesn’t demand that all vectors

y z

(ay, ar, as)

o (a1, a)
a

X

Figure 1.3 A vector a in R? or R? is represented by an arrow from the
origin to a.
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Figure 1.6 The vector

a + b may be represented
by an arrow whose tail is at
the tail of a and whose head
is at the head of b.

be represented by arrows having their tails bound to the origin. One is free to
“parallel translate” vectors throughout R? and R®. That is, one may represent
the vector a = (ay, ay, a3) by an arrow with its tail at the origin (and its head at
(a1, ay, az)) or with its tail at any other point, so long as the length and sense of
the arrow are not disturbed. (See Figure 1.4.) For example, if we wish to represent
a by an arrow with its tail at the point (x, x5, x3), then the head of the arrow
would be at the point (x; + ay, x» + az, x3 + a3). (See Figure 1.5.)

z
a
a ( ) Z
ay, ay, a
Loz s (X1 + ay, Xy + ay, X5+ )
L ]
a a a a
(31, %2, X3)
y
X a
X
Figure 1.4 Each arrow is a Figure 1.5 The vector
parallel translate of the position a = (ay, a, a3) represented by an
vector of the point (a;, a, a3) and arrow with tail at the point
represents the same vector. (x1, X2, x3).

With this geometric description of vectors, vector addition can be visualized
in two ways. The first is often referred to as the “head-to-tail” method for adding
vectors. Draw the two vectors a and b to be added so that the tail of one of the
vectors, say b, is at the head of the other. Then the vector sum a + b may be
represented by an arrow whose tail is at the tail of a and whose head is at the head
of'b. (See Figure 1.6.) Note that it is not immediately obvious thata+b =b + a
from this construction!

The second way to visualize vector addition is according to the so-called
parallelogram law: If a and b are nonparallel vectors drawn with their tails ema-
nating from the same point, then a 4+ b may be represented by the arrow (with its
tail at the common initial point of a and b) that runs along a diagonal of the paral-
lelogram determined by a and b (Figure 1.7). The parallelogram law is completely
consistent with the head-to-tail method. To see why, just parallel translate b to the
opposite side of the parallelogram. Then the diagonal just described is the result of
adding a and (the translate of) b, using the head-to-tail method. (See Figure 1.8.)

We still should check that these geometric constructions agree with our alge-
braic definition. For simplicity, we’ll work in R?. Leta = (a1, a;) and b = (b1, b)
as usual. Then the arrow obtained from the parallelogram law addition of a and
b is the one whose tail is at the origin O and whose head is at the point P in
Figure 1.9. If we parallel translate b so that its tail is at the head of a, then it is
immediate that the coordinates of P must be (a; + b1, a; + b;), as desired.

Scalar multiplication is easier to visualize: The vector ka may be represented
by an arrow whose length is |k| times the length of a and whose direction is the
same as that of a when k£ > 0 and the opposite when k£ < 0. (See Figure 1.10.)

It is now a simple matter to obtain a geometric depiction of the difference
between two vectors. (See Figure 1.11.) The difference a — b is nothing more



Figure 1.11 The
geometry of vector
subtraction. The vector ¢
is such that b + ¢ = a.
Hence, ¢ =a — b.

Figure 1.12 The displacement
—

vector Py P,, represented by the
arrow from P to P», is the
difference between the position
vectors of these two points.
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Figure 1.7 The vector Figure 1.8 The equivalence of the
a + b may be represented parallelogram law and the
by the arrow that runs along head-to-tail methods of vector
the diagonal of the addition.
parallelogram determined
by a and b.
y
________________ P
B I
l
b, b b !
|
l
flz{ a A ! X
a b,
Figure 1.9 The point P has coordinates Figure 1.10 Visualization of
(a; + by, a; + by). scalar multiplication.

than a + (—b) (where —b means the scalar —1 times the vector b). The vector

a — b may be represented by an arrow pointing from the head of b toward the

head of a; such an arrow is also a diagonal of the parallelogram determined by a

and b. (As we have seen, the other diagonal can be used to represent a + b.)
Here is a construction that will be useful to us from time to time.

DEFINITION 1.5 Given two points Py(x1, y1, z1) and Py(x2, y2, 22) in R3,
the displacement vector from P, to P is

PP, = (x — X1, Y2 — Y1, 22 — 21)-

This construction is not hard to understand if we consider Figure 1.12. Given
the points P, and P, draw the corresponding position vectors O P} and O P».

Then we see that P) P, is precisely WZ—OPL An analogous definition may
be made for R?.

In your study of the calculus of one variable, you no doubt used the notions of
derivatives and integrals to look at such physical concepts as velocity, acceleration,
force, etc. The main drawback of the work you did was that the techniques involved
allowed you to study only rectilinear, or straight-line, activity. Intuitively, we all
understand that motion in the plane or in space is more complicated than straight-
line motion. Because vectors possess direction as well as magnitude, they are
ideally suited for two- and three-dimensional dynamical problems.
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a
W)

y

X

Figure 1.13 After ¢ seconds, the
point starting at a, with velocity v,
moves to a + rv.

Yy
X
v, current
v, ship
(with respect
to still water) Net velocity

Figure 1.14 The length of v; is
15, and the length of v, is 54/2.

>2001b

100 Ib
200 1b

Figure 1.16 Vector addition in
judo.

For example, suppose a particle in space is at the point (ay, az, a3) (with
respect to some appropriate coordinate system). Then it has position vector a =
(ay, ay, az). If the particle travels with constant velocity v = (v, v2, v3) for ¢
seconds, then the particle’s displacement from its original position is v, and its
new coordinate position is a + ¢v. (See Figure 1.13.)

EXAMPLE 4 1If a spaceship is at position (100, 3, 700) and is traveling with
velocity (7, —10, 25) (meaning that the ship travels 7 mi/sec in the positive
x-direction, 10 mi/sec in the negative y-direction, and 25 mi/sec in the positive
z-direction), then after 20 seconds, the ship will be at position

(100, 3, 700) + 20(7, —10, 25) = (240, —197, 1200),
and the displacement from the initial position is (140, —200, 500). *

EXAMPLE 5 The S.S. Calculus is cruising due south at a rate of 15 knots
(nautical miles per hour) with respect to still water. However, there is also a
current of 5+/2 knots southeast. What is the total velocity of the ship? If the ship
is initially at the origin and a lobster pot is at position (20, —79), will the ship
collide with the lobster pot?

Since velocities are vectors, the total velocity of the shipis v| 4+ v,, where v, is
the velocity of the ship with respect to still water and v; is the southeast-pointing
velocity of the current. Figure 1.14 makes it fairly straightforward to compute
these velocities. We have that vi = (0, —15). Since v, points southeastward, its
direction must be along the line y = —x. Therefore, v, can be written as v, =
(v, —v), where v is a positive real number. By the Pythagorean theorem, if the
length of v, is 5+/2, then we must have v + (—v)? = (54/2)% or 2v? = 50, so
that v = 5. Thus, v, = (5, —5), and, hence, the net velocity is

After 4 hours, therefore, the ship will be at position
(0,0) 4 4(5, —20) = (20, —80)

and thus will miss the lobster pot. *

EXAMPLE 6 The theory behind the venerable martial art of judo is an excel-
lent example of vector addition. If two people, one relatively strong and the other
relatively weak, have a shoving match, it is clear who will prevail. For example,
someone pushing one way with 200 1b of force will certainly succeed in overpow-
ering another pushing the opposite way with 100 Ib of force. Indeed, as Figure 1.15
shows, the net force will be 100 b in the direction in which the stronger person
is pushing.

100 Ib 200 1b 100 Ib

Figure 1.15 A relatively strong person pushing with a
force of 200 Ib can quickly subdue a relatively weak one
pushing with only 100 Ib of force.

Dr. Jigoro Kano, the founder of judo, realized (though he never expressed
his idea in these terms) that this sort of vector addition favors the strong over the
weak. However, if the weaker participant applies his or her 100 1b of force in a
direction only slightly different from that of the stronger, he or she will effect a
vector sum of length large enough to surprise the opponent. (See Figure 1.16.)
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This is the basis for essentially all of the throws of judo and why judo is described
as the art of “using a person’s strength against himself or herself.” In fact, the
word “judo” means “the giving way.” One “gives in” to the strength of another by
attempting only to redirect his or her force rather than to oppose it. *

1.1 Exercises

10.

11.

. Sketch the following vectors in R?:

(@ 2,1 (b) (3.3) (©) (=1.2)
. Sketch the following vectors in R3:
(@) (1,2,3) (b) (=2,0,2) (o) 2,-3,1)

. Perform the indicated algebraic operations. Express

your answers in the form of a single vectora = (a;, ay)
in R.

(@ G, D+ (=1L7)

(b) —2(8,12)

(c) (8,94 3(—1,2)

(d) (1, 1)+ 5(2,6) —3(10,2)

(e) (8,10)+3((8,—2)—2(4,5))

. Perform the indicated algebraic operations. Express

your answers in the form of a single vector a =
((11, ay, a3) in R3.

(@ 2,1,2)+(-3,9,7)

(®) 3(8.4.1)+2(5, -7, 3)

(© —2((2,0,1)—6(, —4, 1))

. Graph the vectors a = (1,2), b=(-2,5), and a +

b = (1, 2) 4+ (-2, 5), using both the parallelogram law
and the head-to-tail method.

. Graph the vectors a = (3,2) and b = (—1, 1). Also

calculate and graph a — b, %a, and a + 2b.

. Let A be the point with coordinates (1, 0, 2), let B be

the point with coordinates (—3, 3, 1), and let C be the
point with coordinates (2, 1, 5).

— —
(a) Describe the vectors AB and BA.

— — — =

(b) Describe the vectors AC, BC, and AC + CB.

R —

(c) Explain, with pictures, why AC + CB = AB.

. Graph (1, 2, 1) and (0, —2, 3), and calculate and graph

(1,2, 1)+ (0, —2,3), —1(1, 2, 1), and 4(1, 2, 1).

I (—12,9,2) + (x, 7, —-3) = (2, y,5), what are x, y,

and z?
What is the length (magnitude) of the vector (3, 1)?
(Hint: A diagram will help.)

Sketch the vectors a = (1, 2) and b = (5, 10). Explain
why a and b point in the same direction.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Sketch the vectors a=(2,—7,8) and b=(—1,
%, —4). Explain why a and b point in opposite
directions.

How would you add the vectors (1,2,3,4) and
(5, —1,2,0) in R*? What should 2(7, 6, —3, 1) be? In
general, suppose that

a=(a,ar,...,a,) and b= (b,by,...,by)
are two vectors in R” and k € R is a scalar. Then how
would you define a 4+ b and ka?

Find the displacement vectors from P to P,, where P,
and P, are the points given. Sketch Py, P,, and Pl—PZ
(a) Pi(1,0,2), P,(2,1,7)

(b) Pi(1,6,—1), P,(0,4,2)

(¢) P1(0,4,2), P,(1,6,—1)

(d) A3, 1), P(2,-1)

Let Pi(2,5,—1,6) and P>(3, 1, —2,7) be two points
in R*. How would you define and calculate the dis-
placement vector from P to P,? (See Exercise 13.)

If A is the point in R? with coordinates (2, 5, —6) and
the displacement vector from A to a second point B is
(12, =3, 7), what are the coordinates of B?

Suppose that you and your friend are in New York talk-
ing on cellular phones. You inform each other of your
own displacement vectors from the Empire State Build-
ing to your current position. Explain how you can use
this information to determine the displacement vector
from you to your friend.

Give the details of the proofs of properties 2 and 3 of
vector addition given in this section.

Prove the properties of scalar multiplication given in
this section.

(a) Ifais avector in R? or R?, what is 0a? Prove your
answer.

(b) Ifaisa vector in R? or R?, what is 1a? Prove your
answer.

(a) Leta=(2,0)and b=(1,1). For0 <s <1 and
0 <t <1, consider the vector x = sa + tb. Ex-
plain why the vector x lies in the parallelogram
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determined by a and b. (Hint: It may help to draw 24. A plane takes off from an airport with velocity vector
a picture.) (50, 100, 4). Assume that the units are miles per hour,
(b) Now suppose that a = (2,2, 1) and b = (0, 3, 2). that the pqsitive x-axis points east, and that the positive
Describe the setof vectors {x =sa+tb |0 <s < y-axis points north.
I, 0<tr=<1}. (a) How fast is the plane climbing vertically at take-
22. Leta=(ar, as, as) and b= (b1, by, bs) be two nonzero off? o »
vectors such that b # ka. Use vectors to describe (b) Suppose th‘? airport 1s locqted at the origin aqd a
the set of points inside the parallelogram with vertex skyscraper is located 5 miles east and 10 miles
Po(Xo, Yo, zo) and whose adjacent sides are parallel to north othe airport. The skyscrapems 1,250 ff:et.tall.
a and b and have the same lengths as a and b. (See When will the plane be directly over the building?
Figure 1.17.) (Hint: If P(x, y, z) is a point in the par- (c) When the plane is over the building, how much
allelogram, describe ﬁ, the position vector of P.) vertical clearance is there?
25. Asmentioned in the text, physical forces (e.g., gravity)
are quantities possessing both magnitude and direction
< and therefore can be represented by vectors. If an object
has more than one force acting on it, then the resul-
tant (or net) force can be represented by the sum of
the individual force vectors. Suppose that two forces,
F, =(2,7,—1)and F, = (3, —2, 5), act on an object.
(a) What is the resultant force of F; and F,?
(b) What force F3 is needed to counteract these forces
(i.e., so that no net force results and the object
remains at rest)?
26. A 50 Ib sandbag is suspended by two ropes. Suppose
Y that a three-dimensional coordinate system is intro-
duced so that the sandbag is at the origin and the ropes
Figure 1.17 Figure for Exercise 22. are anchored at the points (0, —2, 1) and (0, 2, 1).
(a) Assuming that the force due to gravity points par-
allel to the vector (0, 0,—1), give a vector F that
23. A flea falls onto marked graph paper at the point (3, 2). describes this gravitational force.
She begins moving from that point with velocity v.ector (b) Now, use vectors to describe the forces along each
v=(=1,-2) (i.e., she moves 1 graph paper unit per f'the two ropes. Use symmetry considerations and
minute in the negative x-direction and 2 graph paper 3 pes. Y IMEry
. . ; . . raw a figure of the situation.
units per minute in the negative y-direction).
(a) What is the speed of the flea? 27. A 10 Ib weight is suspended in equilibrium by two
(b) Where is the flea after 3 minutes? ropes. Assume the}t the welgh.t is at the point (1, 2, 3)
i ) in a three-dimensional coordinate system, where the
(¢) How long does it take the flea to get to the point positive z-axis points straight up, perpendicular to the
(=4, —12)? ground, and that the ropes are anchored at the points
(d) Does the flea reach the point (—13, —27)? Why or (3,0,4) and (0, 3,5). Give vectors F; and F, that
why not? describe the forces along the ropes.
1.2 More About Vectors

The Standard Basis Vectors

In R?, the vectors i = (1, 0) and j = (0, 1) play a special notational role. Any
vector a = (a;, ap) may be written in terms of i and j via vector addition and

scalar multiplication:

(al,az) = (d],O)—l-(O, (12) = Cl](l, 0)—|—(12(O, 1) =da i+a2j.

(It may be easier to follow this argument by reading it in reverse.) Insofar as nota-
tion goes, the preceding work simply establishes that one can write either (a;, a;)
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Figure 1.20 In R2, the equation
y = 3 describes a line.
z
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- s
y

Figure 1.21 In R3, the equation
y = 3 describes a plane.
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——————— a=aji+aj

|

|

. |
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|

|

|

|

i ai

< z

X

Figure 1.19 Any vector in R3 can be written in terms of i, j, and k.

or a;i + a,j to denote the vector a. It’s your choice which notation to use (as long
as you’re consistent), but the ij-notation is generally useful for emphasizing the
“vector” nature of a, while the coordinate notation is more useful for emphasizing
the “point” nature of a (in the sense of a’s role as a possible position vector of
a point). Geometrically, the significance of the standard basis vectors i and j is
that an arbitrary vector a € R? can be decomposed pictorially into appropriate
vector components along the x- and y-axes, as shown in Figure 1.18.

Exactly the same situation occurs in R3, except that we need three vec-
tors,i=(1,0,0),j = (0, 1,0),and k = (0, 0, 1), to form the standard basis. (See
Figure 1.19.) The same argument as the one just given can be used to show that
any vector a = (aj, a2, a3) may also be written as a; i + a, j + a3 k. We shall
use both coordinate and standard basis notation throughout this text.

EXAMPLE 1 We may write the vector (1, —2) as i —2j and the vector
(7,7, —3)as 7i+ wj — 3k. *

Parametric Equations of Lines

In R?, we know that equations of the form y = mx + b or Ax + By = C describe
straight lines. (See Figure 1.20.) Consequently, one might expect the same sort of
equation to define a line in R? as well. Consideration of a simple example or two
(such as in Figure 1.21) should convince you that a single such linear equation
describes a plane, not a line. A pair of simultaneous equations in x, y, and z is
required to define a line.

We postpone discussing the derivation of equations for planes until §1.5 and
concentrate here on using vectors to give sets of parametric equations for lines in
R? or R® (or even R").



10 Chapter 1 | Vectors

y

t=m/2

t=3n/2

Figure 1.22 The graph of the
parametric equations x = 2 cosf?,
y =2sint,0 <t < 2m.

PO
/

X

Figure 1.23 The line [/ is the
unique line passing through Py and
parallel to the vector a.

P72

Figure 1.24 The graph of a line
in R,

First, we remark that a curve in the plane may be described analytically
by points (x, y), where x and y are given as functions of a third variable (the
parameter) 7. These functions give rise to parametric equations for the curve:

x= /()
y =g
EXAMPLE 2 The set of equations
{x=2c9st 0<1 <21
y = 2sint

describes a circle of radius 2, since we may check that
x? +y? = (2cost)’ + (2sinr)? = 4.
(See Figure 1.22.) *
Parametric equations may be used as readily to describe curves in R3; a curve

in R3 is the set of points (x, v, z) whose coordinates x, y, and z are each given by
a function of ¢:

x = f(t)
y=2g() .
z = h(r)

The advantages of using parametric equations are twofold. First, they offer a
uniform way of describing curves in any number of dimensions. (How would
you define parametric equations for a curve in R*? In R'?8?) Second, they allow
you to get a dynamic sense of a curve if you consider the parameter variable ¢ to
represent time and imagine that a particle is traveling along the curve with time
according to the given parametric equations. You can represent this geometrically
by assigning a “direction” to the curve to signify increasing 7. Notice the arrow
in Figure 1.22.

Now, we see how to provide equations for lines. First, convince yourself that
aline in R? or R? is uniquely determined by two pieces of geometric information:
(1) a vector whose direction is parallel to that of the line and (2) any particular
point lying on the line—see Figure 1.23. In Figure 1.24, we seek the vector

—
r=0P

between the origin O and an arbitrary point P on the line / (i.e., the position
vector of P(x, y, z)). O P is the vector sum of the position vector b of the given

point Py (i.e., O Py) and a vector parallel to a. Any vector parallel to a must be a
scalar multiple of a. Letting this scalar be the parameter variable ¢, we have

r=ﬁ=ﬁ)+ta,

and we have established the following proposition:

PROPOSITION 2.1 The vector parametric equation for the line through the point
—

Py(b1, by, b3), whose position vectoris O Py = b = bji + byj + b3k, and parallel

toa =aji+ aj +askis

r(t) =b +ra. (1)
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Figure 1.25 Finding equations
for a line through two points in
Example 4.
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Expanding formula (1),
H . . . .
r(t) = OP = bii+ byj + bsk 4 t(aii + azj + a3k)
= (ait + by)i + (a2t + by)j + (ast + b3)k.

Next, write O P as xi+ yj + zk so that P has coordinates (x, y, z). Then, ex-
tracting components, we see that the coordinates of P are (at + by, axt + by,
ast + bs) and our parametric equations are

x =ait + b
y=ax+b;, 2)
z = ast + bs

where ¢ is any real number.

These parametric equations work just as well in R? (if we ignore the z-
component) or in R” where 7 is arbitrary. In R”, formula (1) remains valid, where
we take a = (a1, az, ..., a,) and b = (by, by, ..., b,). The resulting parametric
equations are

x1=at+b
X2 =axt + by

X, = a,t + b,

EXAMPLE 3 To find the parametric equations of the line through (1, —2, 3) and
parallel to the vector 7i — 3j + k, we have a = wi — 3j + kand b =i — 2j 4 3k
so that formula (1) yields

r(r) =i—2j+3k+7(wi—3j+ k)
=(0+n)i+(-2-3)j+ B+ 1k

The parametric equations may be read as

x=mt+1
y=-3t-2.
z=1+3 ¢

EXAMPLE 4 From Euclidean geometry, two distinct points determine a unique
line in R? or R3. Let’s find the parametric equations of the line through the points
Po(1, =2, 3) and Py(0, 5, —1). The situation is suggested by Figure 1.25. To use
formula (1), we need to find a vector a parallel to the desired line. The vector with
tail at Py and head at P; is such a vector. That is, we may use for a the vector

PoPi=(0—1,5—(=2), —1 — 3) = —i+ 7j — 4k.

For b, the position vector of a particular point on the line, we have the choice
of taking either b =i — 2j + 3k or b = 5j — k. Hence, the equations in (2) yield
parametric equations

x=1—1¢ X =—t
y=-247t or y=5+4+7t
7 =3—4t z=—1—4t *
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In general, given two arbitrary points
Po(ar, az,a3) and  Pi(b1, by, b3),
the line joining them has vector parametric equation
1(t)= 0P, + 1Py Py, 3)
Equation (3) gives parametric equations

x=a;+ (by —a)t
y=ay+(by—a)t . 4)
z=a3+ (b —a3)t

Alternatively, in place of equation (3), we could use the vector equation

r(t)= OP, + 1 PP, 5)
or perhaps
K(t)= OP\ + P Py, (6)

each of which gives rise to somewhat different sets of parametric equations. Again,
we refer you to Figure 1.25 for an understanding of the vector geometry involved.

Example 4 brings up an important point, namely, that parametric equations
for a line (or, more generally, for any curve) are never unique. In fact, the two
sets of equations calculated in Example 4 are by no means the only ones; we
could have taken a = Pl—PT) =1— 7j+ 4Kk or any nonzero scalar multiple of
PO_P)I for a.

If parametric equations are not determined uniquely, then how can you check
your work? In general, this is not so easy to do, but in the case of lines, there are
two approaches to take. One is to produce two points that lie on the line specified
by the first set of parametric equations and see that these points lie on the line
given by the second set of parametric equations. The other approach is to use the
parametric equations to find what is called the symmetric form of a line in R>.
From the equations in (2), assuming that each a; is nonzero, one can eliminate
the parameter variable ¢ in each equation to obtain:

x—b1

y—b
a '

Z—b3

as

The symmetric form is

X—bl y—szZ—b3 (7)

ap a as
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In Example 4, the two sets of parametric equations give rise to corresponding
symmetric forms
y=5 z+1

x—1 y+2 z-3 X
= = and — ="—— = .
-1 7 —4 —1 7 —4
It’s not difficult to see that adding 1 to each “side” of the second symmetric form
yields the first one. In general, symmetric forms for lines can differ only by a
constant term or constant scalar multiples (or both).

The symmetric form is really a set of two simultaneous equations in R3. For
example, the information in (7) can also be written as

x—=by y—>b

aq ay
X — b] Z— b3 )
ay as

This illustrates that we require two “scalar” equations in x, y, and z to describe a
line in R3, although a single vector parametric equation, formula (1), is sufficient.

The next two examples illustrate how to use parametric equations for lines to
identify the intersection of a line and a plane or of two lines.

EXAMPLE 5 We find where the line with parametric equations

x=t+5
y=-2t—4
z=3t+7

intersects the plane 3x + 2y — 7z = 2.

To locate the point of intersection, we must find what value of the parameter ¢
gives a point on the line that also lies in the plane. This is readily accomplished by
substituting the parametric values for x, y, and z from the line into the equation
for the plane

3(t+5)+2(—2t —4) — T3t +7) = 2. ®)

Solving equation (8) for 7, we find that + = —2. Setting ¢ equal to —2 in the
parametric equations for the line yields the point (3, 0, 1), which, indeed, lies in
the plane as well. *

EXAMPLE 6 We determine whether and where the two lines

x=t+1 x=3t—-3
y=5t4+6 and y=t
7z =—2t z=t+1

Intersect.

The lines intersect provided that there is a specific value ¢, for the parameter
of'the first line and a value 7, for the parameter of the second line that generate the
same point. In other words, we must be able to find #; and #, so that, by equating
the respective parametric expressions for x, y, and z, we have

th+1 =36-3
ShH+6=n . )
=2t =t +1
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o

Figure 1.27 The result of the
wheel in Figure 1.26 rolling
through a central angle of 7.

P
/ |32 -t
\

[\ A

H . . .
Figure 1.28 AP with its tail at
the origin.

The last two equations of (9) yield
h=55+6=-2H-1 = f=-1

Using #; = —1 in the second equation of (9), we find that #, = 1. Note that the
values t; = —1 and t, = 1 also satisfy the first equation of (9); therefore, we have
solved the system. Setting r = —1 in the set of parametric equations for the first
line gives the desired intersection point, namely, (0, 1, 2). *

Parametric Equations in General

Vector geometry makes it relatively easy to find parametric equations for a variety
of curves. We provide two examples.

EXAMPLE 7 If a wheel rolls along a flat surface without slipping, a point on
the rim of the wheel traces a curve called a cycloid, as shown in Figure 1.26.

y

\!

Figure 1.26 The graph of a cycloid.

Suppose that the wheel has radius a and that coordinates in R? are chosen so that
the point of interest on the wheel is initially at the origin. After the wheel has
rolled through a central angle of 7 radians, the situation is as shown in Figure 1.27.

We seek the vector O P, the position vector of P, in terms of the parameter ¢.
— — -
Evidently, OP = OA + AP, where the point A is the center of the wheel. The

vector O A is not difficult to determine. Its j-component must be a, since the center
of the wheel does not vary vertically. Its i-component must equal the distance the
wheel has rolled; if ¢ is measured in radians, then this distance is at, the length

of the arc of the circle having central angle . Hence, 5)4 = ati + aj.
. —
The value of vector methods becomes apparent when we determine AP.

Parallel translate the picture so that A P has its tail at the origin, as in Figure 1.28.
From the parametric equations of a circle of radius a,

— 37 . . (37 . L. .
AP = acos T_I i+ asin 7—1 j= —asinti—acostj,

from the addition formulas for sine and cosine. We conclude that

OP = OA + AP = (ati + aj) + (—asinti — a cos tj)

=a(t —sint)i + a(l — cost)j,



Generating
circle

N

Figure 1.31 The involute.
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so the parametric equations are
x = a(t —sint)

y =a(l —cost) ' *

EXAMPLE 8 If you unwind adhesive tape from a nonrotating circular tape
dispenser so that the unwound tape is held taut and tangent to the dispenser roll,
then the end of the tape traces a curve called the involute of the circle. Let’s
find the parametric equations for this curve, assuming that the dispensing roll
has constant radius a and is centered at the origin. (As more and more tape is
unwound, the radius of the roll will, of course, decrease. We’ll assume that little
enough tape is unwound so that the radius of the roll remains constant.)

Considering Figure 1.29, we see that the position vector O P of the desired
point P is the vector sum O B + B P. To determine O B and B P, we use the angle
0 between the positive x-axis and O B as our parameter. Since B is a point on the
circle,

ﬁ:acos@i—kasin@j.

y y
Unwound
tape
B
a
B Involute / 0 .P
X
/ : ) \ » 0-nl2
V&
. . _)

Figure 1.29 Unwinding tape, as Figure 1.30 The vector B P must
in Example 8. The point P make an angle of @ — /2 with the
describes a curve known as the positive x-axis.

involute of the circle.

To find the vector ﬁ, parallel translate it so that its tail is at the origin. Figure 1.30

shows that B P’s length must be a6, the amount of unwound tape, and its direction
must be such that it makes an angle of & — /2 with the positive x-axis. From our
experience with circular geometry and, perhaps, polar coordinates, we see that

ﬁ is described by
BP :a@cos(@ — %)H—a@sin(@ — %)] =afsinfi— ab cosbj.

Hence,

0P =08 + BP = a(cosf 4+ 6sinf)i+ a(sind — 0 cosh)j.

So

x = a(cosf + O sinb)
y =a(sinf — 6 cosH)

are the parametric equations of the involute, whose graph is pictured in
Figure 1.31. *
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1.2 Exercises

In Exercises 1-5, write the given vector by using the standard
basis vectors for R* and R®.

1.2, 4) 2. (9, —6)
5. (2,4,0)

3. 3, m,—-7)

4. (—1,2,5)
In Exercises 6—10, write the given vector without using the
standard basis notation.

6. i+j—3k

7. 9i —2j+ 2k

8. —3(2i — 7k)

9. mi — j (Consider this to be a vector in R?.)

10. 7i — j (Consider this to be a vector in R3.)

11. Leta; = (1, 1) and a, = (1, —1).
(a) Write the vector b = (3, 1) as c;a; + ca;, where
¢ and ¢, are appropriate scalars.
(b) Repeat part (a) for the vector b = (3, —5).
(c) Show that any vector b = (b, by) in R? may be
written in the form cja; + c,a, for appropriate
choices of the scalars c;, ¢;. (This shows that a;
and a, form a basis for R? that can be used instead
ofiandj.)
12. Leta; =(1,0, —1),a,=(0,1,0),and a3 =(1, 1, —1).
(a) Find scalars ¢y, ¢3, c3, so as to write the vector
b= (5, 6, —5) as cia; + cra; + cza;.
(b) Try to repeat part (a) for the vector b = (2, 3, 4).
What happens?
(c) Can the vectors aj, a,, a3 be used as a basis for
R3, instead of i, j, k? Why or why not?
In Exercises 13—18, give a set of parametric equations for the
lines so described.
13. The line in R? through the point (2, —1, 5) that is par-
allel to the vector i + 3j — 6k.

14. The line in R® through the point (12, —2, 0) that is
parallel to the vector 5i — 12j + k.

15. The line in R? through the point (2, —1) that is parallel
to the vector i — 7j.

16. The line in R® through the points (2, 1,2) and
3, —1,5).

17. The line in R3 through the points (1,4,5) and
(2,4, —1).

18. The line in R? through the points (8, 5) and (1, 7).

19. Write a set of parametric equations for the line in R*

through the point (1, 2, 0, 4) and parallel to the vector
(_27 57 35 7)

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Write a set of parametric equations for the line in
R’ through the points (9,7, —1,5,2) and (-1, 1,
V2,7, 1).

(a) Write a set of parametric equations for the line in
R through the point (—1, 7, 3) and parallel to the
vector 2i — j + S5k.

(b) Write a set of parametric equations for the line
through the points (5, —3,4) and (0, 1, 9).

(c) Write different (but equally correct) sets of equa-
tions for parts (a) and (b).

(d) Find the symmetric forms of your answers in
(a)~(c).
Give a symmetric form for the line having parametric
equationsx =5 —2t,y=3t+ 1,z =6t — 4.
Give a symmetric form for the line having parametric
equationsx =147,y =3t —9,7 =6 — 8¢.
A certain line in R has symmetric form
x=2 y=3 z+1
5 0 =2 47

Write a set of parametric equations for this line.

Give a set of parametric equations for the line with
symmetric form
x+5 y-1 z+10
37 =2

Are the two lines with symmetric forms

x—1 y+2 z+1

5 -3 4
and
x—4 y—-1 z45
10 -5 8

the same? Why or why not?
Show that the two sets of equations
x—2 oy - 1 _z

x+1 y+6 z+4+5
— and = =
3 7 5 —6 —14 —10

actually represent the same line in R>.

Determine whether the two lines /; and [, defined by
the sets of parametric equations /;: x =2t — 5, y =
3t+2,z=1—6t,and h: x =1—-2t, y =11 — 3¢,
z = 6t — 17 are the same. (Hint: First find two points
on /; and then see if those points lie on /5.)

Do the parametric equations /;: x =3r+2, y=
t—7,z=54+1, and I,: x=6r—1, y=2t—28,
z = 10t — 3 describe the same line? Why or why not?



30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Do the parametric equations x = 33 + 7,y =2 — 13,
7z = 53 + 1 determine a line? Why or why not?

Do the parametric equations x = 5t — 1, y = 212 +
3,z = 1 — t* determine a line? Explain.
A bird is flying along the straight-line path x = 2¢ + 7,
y =t —2,z=1—3¢t,wheret is measured in minutes.
(a) Where is the bird initially (at # = 0)? Where is the
bird 3 minutes later?

(b) Give a vector that is parallel to the bird’s path.

: s34 1 1
(¢) When does the bird reach the point (3, , —4)?
(d) Does the bird reach (17, 4, —14)?
Find where the linex =37 — 5,y =2 — ¢, 7z = 6¢ in-
tersects the plane x + 3y — z = 19.

Where does the line x =1—4t, y=1t—-3/2, z =
2t + 1 intersect the plane 5x — 2y +z = 1?

Find the points of intersection of the line x = 2¢ — 3,
y=23t+4+2, z=5—1t with each of the coordinate
planesx =0,y =0,and z = 0.

Show thatthelinex =5 —¢t,y=2t—7,z=1t—31is
contained in the plane having equation 2x — y + 4z = 5.

Doesthelinex =5 —1t,y =2t — 3,z = 7t + 1 inter-
sect the plane x — 3y + z = 1? Why?

Find where the line having symmetric form

6 3 5

x—=3 y+2 z

intersects the plane with equation 2x — 5y 4+ 3z 48 = 0.

Show that the line with symmetric form

x—=3 5_Z+2
—2 Y7773

lies entirely in the plane 3x + 3y + z = 22.
Does the line with symmetric form

x+4 y-2 z-1
3 -1 -9

intersect the plane 2x — 3y +z =7?

Leta, b, c be nonzero constants. Show that the line with
parametric equations x =at +a, y=b, z=ct +c¢
lies on the surface with equation x2/a*> + y*/b* —
22/t = 1.

Find the point of intersection of the two lines /;: x =
2t4+3, y=3t+3,z=2t+1 and lh:x =15 - 71,
y=t—2,z=3t-1.

Do the lines lj:x =2t+1, y=-3t, z=1t—1
and L:x=3t+1, y=t+5, z=7—1 intersect?
Explain your answer.

44.

45.

46.
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(a) Find the distance from the point (-2, 1, 5) to any
pointonthelinex =3¢t — 5, y=1—1,z=4r 4+ 7.
(Your answer should be in terms of the param-
eter 7.)

(b) Now find the distance between the point (-2, 1, 5)
and the line x =3t -5, y=1—t¢,z=4r+7.
(The distance between a point and a line is the dis-
tance between the given point and the closest point
on the line.)

(a) Describe the curve given parametrically by

x = 2cos 3t 2
. 0<
y =2sin3t

What happens if we allow ¢ to vary between 0
and 27?

(b) Describe the curve given parametrically by

x = 5cos3t 2
. 0< .
y = 5sin3t 3

(c) Describe the curve given parametrically by

x = 5sin 3¢ 2
0< .
y = 5cos 3t - 3

(d) Describe the curve given parametrically by

x = 5cos3t 2
. 0=
y =3sin3t

Suppose that a bicycle wheel of radius a rolls along a
flat surface without slipping. If a reflector is attached
to a spoke of the wheel at a distance b from the center,
the resulting curve traced by the reflector is called a
curtate cycloid. One such cycloid appears in Fig-
ure 1.32, wherea = 3 and b = 2.

y

=

21 47

Figure 1.32 A curtate cycloid.

Using vector methods or otherwise, find a set of para-
metric equations for the curtate cycloid. Figure 1.33
should help. (Take a low point of the cycloid to lie
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\JJ

Figure 1.34 A prolate cycloid.

<

Figure 1.33 The point P traces a
curtate cycloid.

on the y-axis.) There is no theoretical reason that the
cycloid just described cannot have a < b, although in
such case the bicycle-wheel-reflector application is no
longer relevant. (When a < b, the parametrized curve
that results is called a prolate cycloid.) Your paramet-
ric equations should be such that the constants a and b
can be chosen independently of one another. An exam-
ple of a prolate cycloid, witha = 2 and b = 4, is shown
in Figure 1.34. Try to think of a physical situation in
which such a curve would arise.

47. Egbert is unwinding tape from a circular dispenser of

radius a by holding the tape taut and perpendicular to
the dispenser. Find a set of parametric equations for
the path traced by the end of the tape (the point P in
Figure 1.35) as Egbert unwinds the tape. Use the angle
0 between m)’ and the positive x-axis for parameter.
Assume that little enough tape is unwound so that the
radius of the dispenser remains constant.

Figure 1.35 Figure for Exercise 47.

1.3 The Dot Product

When we introduced the arithmetic notions of vector addition and scalar mul-
tiplication, you may well have wondered why the product of two vectors was
not defined. You might think that “vector multiplication” should be defined in a
manner analogous to the way we defined vector addition (i.e., by componentwise
multiplication). However, such a definition is not very useful. Instead, we shall
define and use two different concepts of a product of two vectors: (1) the Eu-
clidean inner product, or “dot” product, which may be defined for two vectors in
R”" (where n is arbitrary) and (2) the “cross” or vector product, which is defined

only for vectors in R>.
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The Dot Product of Two Vectors

DEFINITION 3.1 Leta = (aj, az, a3) and b = (b1, b,, b3) be two vectors
in R3. The dot (or inner or scalar) product of a and b, denoted a - b, is

a-b=a b +ab, + azbs.
In R?, the analogous definition is
a-b=a b +ab,,
where a = (a;, a;) and b = (by, by).

EXAMPLE 1 In R?, we have

(1,-2,5-:-2,1,3) =(D)2)+ (—-2)(1) + (5)(3) = 15.
(Bi+2j — K- (i - 2K) = B)(1) + 2)(0) + (~1)(~2) = 5. .

In accordance with its name, the dot—or scalar—product takes two vectors
and produces a single real number (not a vector).
The following facts are consequences of Definition 3.1:

Properties of dot products. Ifa, b, and ¢ are any vectors in R? (or R?) and
k € R is any scalar, then

1. a-a>0,anda-a = 0ifandonlyifa = 0;

a-b=D>b-a;

a-(b+c)=a-b+a-c;

. (ka)-b=k(a-b) = a-(kb).

W

Proof of Property 1 If a = (a;, az, a3), then we have
a-a=aa; +axay +azaz = a12 +a§ +a§.

This last expression is evidently nonnegative, since it is a sum of squares of real
numbers. Moreover, such an expression is zero exactly when each of the terms is
zero, that is, if and only if a; = a; = a3 = 0. [ |

We leave the proofs of properties 2, 3, and 4 as exercises.
Thus far, we have introduced the dot product of two vectors as a purely

algebraic construction. It is the geometric interpretation of the definition that is
really interesting. To establish this interpretation, we begin with the following:

DEFINITION 3.2 If a = (a1, a2, a3), then the length of a (also called the
norm or magnitude), denoted ||a|, is /a? + aZ + a3.
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a

Figure 1.36 The dot
product of a and b is
l[all [b| cos 6.

Figure 1.37 The vector
triangle used in the proof
of Theorem 3.3.

The motivation for this definition is evident if we draw a as the position vector of
the point (ay, a;, az). Then the length of the arrow from the origin to (a1, a», as) is

Viar =02 + (ay — 0% + (a3 — 02,

as given by the distance formula, which is nothing more than an extension of the
Pythagorean theorem in the plane. As we just saw, a - a = ai + a3 + a3, and we
have

lall =+va-a

or, equivalently,

a-a=|al’ (1)

Now we’re ready to state the main result concerning the geometry of the dot
product. If a and b are two nonzero vectors in R* (or R?) drawn with their tails at
the same point, let 6, where 0 < 6 < &, be the angle between a and b. If either a
or b is the zero vector, then 6 is indeterminate (i.e., can be any angle).

THEOREM 3.3 Ifaand b are any two vectors in either R? or R?, then
a-b =|a| ||b]l cosf.
(See Figure 1.36.)

PROOF If either a or b is the zero vector, say a, then a = (0, 0, 0) and so
a-b = (0)(b1) + (0)(b2) + (0)(b3) = 0.
Also, ||a]| = 0 in this case, so the formula in Theorem 3.3 holds. In this case, the
angle 6 is indeterminate.
Now suppose that neither a nor b is the zero vector. Let ¢ = b — a. Then
we may apply the law of cosines to the triangle whose sides are a, b, and ¢
(Figure 1.37) to obtain

lel* = llall* + Ib]I> — 2 a] [|b]| cos6.
Thus,
2|lall bl cos6 = [la]|* + [b]*> — [lc|* =a-a+b-b—c-c, )
from equation (1). Now, use the properties of the dot product. Since ¢ = b — a,
c.c=(b—a)-(b—a)
=(b—-a)-b—(b—a)-a
=b:-b—a-b—b.-a+a-a, 3)

by properties 3 and 4 of the dot product. If we use equation (3) to substitute for
¢ - ¢ in equation (2), then

2|\a] ||b]|cos@ =a-a+b-b—(b:-b—a-b—b-a+a-a)
=a-b+b-a
=2a-b,

by property 2 of the dot product. By canceling the factor of 2 on both sides, the
desired result is obtained. |



2 kg

30°

Figure 1.38 An object
sliding down a ramp.
The force due to gravity
is downward, but the
direction of travel of the
object is inclined 30° to
the horizontal.

1.3 | The Dot Product 21

Angles Between Vectors

Theorem 3.3 may be used to find the angle between two nonzero vectors a and
b—just solve for 6 in the formula in Theorem 3.3 to obtain

_; a-b
lall bl

0 = 4)

The use of the inverse cosine is unambiguous, since we take 0 < 6 < w when
defining angles between vectors.

EXAMPLE 2 Ifa =i+ jandb = j— k, then formula (4) gives

i+j-(G—k 1 1
chos_lw— -1 —l_zz. .

— =cos | ——— = cos
i+l i — Kl (V2 -2) 2 3

If a and b are nonzero, then Theorem 3.3 implies
cosfd =0 ifandonlyif a-b=0.

We have cos & = 0justin case 8 = /2. (Remember our restriction on 6.) Hence,
it makes sense for us to call a and b perpendicular (or orthogonal) whena b =
0. If either a or b is the zero vector, then we cannot use formula (4), and the angle
6 is undefined. Nonetheless, since a-b = 0 if a or b is 0, we adopt the standard
convention and say that the zero vector is perpendicular to every vector.

EXAMPLE 3 The vector i + j is orthogonal to the vector i — j + K, since
i+j)-G—j+k =)+ DD+ O)1)=0. *

Vector Projections

Suppose that a 2 kg object is sliding down a ramp having a 30° incline with the
horizontal as in Figure 1.38. If we neglect friction, the only force acting on the
object is gravity. What is the component of the gravitational force in the direction
of motion of the object?

To answer questions of this nature, we need to find the projection of one vector
on another. The general idea is as follows: Given two nonzero vectors a and b,
imagine dropping a perpendicular line from the head of b to the line through a.
Then the projection of b onto a, denoted proj,b, is the vector represented by the
arrow in Figure 1.39.

Figure 1.39 Projection of the vector b onto the vector a.
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Given this intuitive understanding of the projection, we find a precise formula
for it. Recall that a vector is determined by magnitude (length) and direction. It
follows by definition that the direction of proj,b is either the same as that of a,
or opposite to a if the angle 6 between a and b is more than 7 /2. Trigonometry
then tells us

roj,b
[cos @] = —”p Ja ”
IIbll
(The absolute value sign around cos 6 is needed in case 7/2 < 6 < m.) Hence,
with a bit of algebra, we have

_ Jlall bl lcos6] _ a-b]

[ proj,b|| = IIbll jcos 6 Il Jal

by Theorem 3.3. Thus, we know the magnitude and direction of proj,b. To obtain
a compact formula for proj,b, note the following:

PROPOSITION 3.4 Let k be any scalar and a any vector. Then

L [lka]l = |k [al|.
2. A unit vector (i.e., a vector of length 1) in the direction of a nonzero vector
a is given by a/||a||.

PROOF Part 1 is left as an exercise. (Write out ka and | ka|| in terms of compo-
nents.) For part 2, we must check that the length of a/||a|| is 1:

- : H "l =1
_— e —all = — ||a|| = y
lall llall llall
by part 1 (since 1/]|a|| is a positive scalar). |

Now proj,b is a vector of length |a - b|/||a|| in the “+a-direction.” That is,

projb = 4+ (Ia-bl> . A __llall ] |cos6| a
ab = — - T —.
l[all llall l[all l[all
length of . unit vector
projab in direction of a

Note that the angle 6 keeps track of the appropriate sign of proj,b; that is, when
0 <6 < m/2,cos@ is positive and proj,b points in the direction of a, and when
/2 < 6 < m,cosf is negative and proj, b points in the direction opposite to that
of a. Thus, we can eliminate both the £ sign and the absolute value, and we find
that

. lla]| ||b] cos® a a-b
proj,b = — = > a
llall lall [all
by Theorem 3.3, so that
-b
proj,b = (a—) a (5)
a-a

by equation (1). Formula (5) is concise and not difficult to remember.



2 kg

30°

Figure 1.40 The 2 kg
object sliding down a
ramp in Example 4.
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EXAMPLE 4 To answer the question posed at the beginning of this subsection,
we need to calculate proj, F, where F is the gravitational force vector and a points
along the ramp as shown in Figure 1.40. We have a coordinate situation as shown
in Figure 1.41. From trigonometric considerations, we must have a = a;i + a,j
such that a; = —Jja]| cos 30° and a; = —||a|| sin30°. Since we are really only
interested in the direction of a, there is no loss in assuming that a is a unit vector.
Thus,

a= —cos30°i—sin30°j :_*/Tgi_%j_

X
- 300

aw \30° ) F = —mgj =—19.6]

Figure 1.41 The vectors a and F in Example 4,
realized in a coordinate system.

Taking g = 9.8 m/sec’, we have F = —2gj = —19.6j. Therefore, formula (5)

implies

2 2

proj, F = (_F): (—%—%lj).(_l%,-)( %y 1.)
Sos (<% 4i)

~ —8.49i—4.9j,
and the component of F in this direction is
lproj, Fl| = [|-8.49i —4.9j|| = 9.8 N. *

Unit vectors—that is, vectors of length 1—are important in that they capture
the idea of direction (since they all have the same length). Part 2 of Proposition
3.4 shows that every nonzero vector a can have its length adjusted to give a unit
vector u = a/||a|| that points in the same direction as a. This operation is referred
to as normalization of the vector a.

EXAMPLE 5 A fluid is flowing across a plane surface with uniform velocity
vector v. If n is a unit vector perpendicular to the plane surface, let’s find (in terms
of v and n) the volume of the fluid that passes through a unit area of the plane in
unit time. (See Figure 1.42.)
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/ / Base has area 1
Figure 1.42 Fluid flowing across Figure 1.43 After one unit of time, the fluid passing
a plane surface. across a square will have filled the box.

First, imagine one unit of time has elapsed. Then over a unit area of the plane
(say over a unit square), the fluid will have filled a “box” as in Figure 1.43. The
box may be represented by a parallelepiped (a three-dimensional analogue of a
parallelogram). The volume we seek is the volume of this parallelepiped and is

Volume = (area of base)(height).

The area of the base is 1 unit by construction. The height is given by ||proj,v]|.
From formula (5),

) n-v
proj,v = (—) n=(n-vn,
n-n
since n-n = ||n||> = 1. Hence,
|projuv| = llm-v)nl = jn-v|n| = [n-v],

by part 1 of Proposition 3.4. *

Vector Proofs

We conclude this section with two illustrations of how wonderfully well vectors
are suited to providing elegant proofs of geometric results.

EXAMPLE 6 In an arbitrary triangle, show that the line segment joining the
midpoints of two sides is parallel to and has half the length of the third side. (See
Figure 1.44.) In other words, if M, is the midpoint of side AB and M, is the
midpoint of side AC, we wish to show that M M, is parallel to BC and has half

its length.
A A
M, M, }A<
. oC B C
Figure 1.44 In triangle ABC, Figure 1.45 The vector version
M M, is parallel to BC and has of triangle ABC in Example 6.
half its length.

For a vector proof, we use the diagram in Figure 1.45, a slightly modified ver-
sion of Figure 1.44. The midpoint conditions translate to the following statements
about vectors:

AM, = %Ké, AM, =
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Now,

AC -

MM, = AM, — AM, = AB = Y(AC — AB)= 1BC.

D=
=
[S1E

1
2
But M\ M, = %BC is precisely what we wish to prove: To say M| M, is a scalar

. —_—
times BC means that the two vectors are parallel. Moreover, from part 1 of
Proposition 3.4,

so that the length condition also holds. *

EXAMPLE 7 Show that every angle inscribed in a semicircle is a right angle,
as suggested by Figure 1.46.

a—-b
b

[ 1 1
\ I \ —a a I

\ / \ /

\ / \ /

\ / \ /

\ / \ /
\\ // \\ //
N 7z N e
> ~ — - - > ~ — - -

Figure 1.46 Every angle Figure 1.47 aand b are “radius
inscribed in a semicircle is a vectors.”
right angle.

To prove this remark, we’ll make use of Figure 1.47, where a and b are “radius
vectors” with tails at the center of the circle. We need only show that a — b (a
vector along one ray of the angle in question) is perpendicular to —a — b (a vector
along the other ray). In other words, we wish to show that

(a—b).(—a—Db)=0.
We have
(@a—b)-(-a—b)=(-1)a—-b)-(a+bh),

by property 4 of dot products,
=(-1)((a—b)-a+(a—Db)-b)
=(—1)(a-a—b-a+a-b—b-b)
= (=D(llal* = Ib]*),

by properties 2 and 4,
=0,

since both a and b are radius vectors (and therefore have the same length, namely,
the radius of the circle). .

Vector proofs as in Examples 6 and 7 are elegant and sometimes allow you to
write shorter and more direct proofs than those from your high school geometry
days.
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Exercises

Comp

1.

O U T

In Exercises 7—11, find the angle between each of the pairs of

utea -+ b, ||a||, |bll for the vectors listed in Exercises 1-6.
a=(1,5,b=(-2,3)

a=(4-1),b=(1,2)
a=(—1,0,7),b=(2,4,-06)
a=(2,1,0,b=(1,-2,3)
a=4i—3j+kb=i+j+k
a=i+2j—kb=-3j+2k

vectors.
7.a=3i+j,b=—V3i+]j
8. a=(-1,2,b=3,1)
9.a=i+jb=i+j+k
10. a=i+j—k,b=—-i+2j+2k
1. a=(,-2,3),b=(3,—-6,-5)

In Exercises 12—16, calculate proj,b.

12.
13.
14.

15

16.
17.

18.

19.

20.

21.

22,
23.
24,

a=i+j, b=2i+3j—k
a=(i+j)/v2, b=2i+3j—k
a=5k,b=i—j+2k
.a=-3kb=i—j+2k
a=i+j+2k b=2i—4j+k

Give a unit vector that points in the same direction as
the vector 2i — j + k.

Give a unit vector that points in the direction opposite
to the vector —i + 2k.

Give a vector of length 3 that points in the same direc-
tion as the vector i + j — k.

Find three nonparallel vectors that are perpendicular
toi—j+k

Is it ever the case that proj,b = proj,a? If so, under
what conditions?

Prove properties 2, 3, and 4 of dot products.

Prove part 1 of Proposition 3.4.

Suppose that a force F = i — 2j is acting on an object
moving parallel to the vector a = 4i + j. Decompose F
into a sum of vectors F; and F,, where F, points along
the direction of motion and F; is perpendicular to the
direction of motion. (Hint: A diagram may help.)

25.

26.

27.

In physics, when a constant force acts on an object
as the object is displaced, the work done by the force
is the product of the length of the displacement and
the component of the force in the direction of the dis-
placement. Figure 1.48 depicts an object acted upon by
a constant force F, which displaces it from the point P
to the point Q. Let 0 denote the angle between F and
the direction of displacement.

(a) Show that the work done by F is determined by the

formula F - P—Q>

(b) Find the work done by the (constant) force F =
i+ 5j + 2k in moving a particle from the point
(1, —1, 1) to the point (2, 0, —1).

£~
— .

Component of F in direction
of displacement

Figure 1.48 A constant force F
displaces the object from P to Q. (See
Exercise 25.)

A refrigerator is dragged 12 ft across a smooth floor
using a rope and 60 1b of force directed along the rope.
How much work is done if the rope makes a 20° angle
with the horizontal?

How much work is done in pushing a handtruck loaded
with 500 Ib of bananas 40 ft up a ramp inclined 30°
from horizontal?

Let a be a nonzero vector in R3. The direction cosines of a are
the three numbers cos a, cos 8, cos y determined by the angles
a, B, y between a and, respectively, the positive x-, y-, and
z-axes. In Exercises 28 and 29, find the direction cosines of the
given vectors.

28.
29.
30.

31.

a=i+2j—k
a = 3i+ 4k

Ifa = a;i + ayj + a3k, give expressions for the direc-
tion cosines of a in terms of the components of a.

Let A, B, and C denote the vertices of a triangle. Let
0 < r < 1.If Py is the point on A B located r times the
distance from A to B and P, is the point on AC located
r times the distance from A to C, use vectors to show
that P, P; is parallel to ‘BC and has r times the length
of BC. (This result generalizes that of Example 6 of
this section.)




32.

33.

34.

35.

Let A, B, C, and D be four points in R? such that no
three of them lie on a line. Then ABC D is a quadri-
lateral, though not necessarily one that lies in a plane.
Denote the midpoints of the four sides of ABC D by
M, M,, M5, and M,. Use vectors to show that, amaz-
ingly, My M, MM, is always a parallelogram.

Use vectors to show that the diagonals of a parallel-
ogram have the same length if and only if the paral-
lelogram is a rectangle. (Hint: Let a and b be vectors
along two sides of the parallelogram. Express vectors
running along the diagonals in terms of a and b. See
Figure 1.49.)

a

Figure 1.49 Diagram for Exercise 33.

Using vectors, prove that the diagonals of a parallelo-
gram are perpendicular if and only if the parallelogram
is a thombus. (Note: A rhombus is a parallelogram
whose four sides all have the same length.)

This problem concerns three circles of equal radius r
that intersect in a single point O. (See Figure 1.50.)
(a) Let Wi, W,, and W5 denote the centers of the
—
three circles and let w; = OW; for i =1, 2, 3.
Similarly, let A, B, and C denote the remaining
—
intersection points of the circles and seta = O A,
— — .
b = OB, and ¢ = OC. By numbering the centers
of the circles appropriately, write a, b, and ¢ in
terms of wy, wo, and wj.
(b) Show that A, B, and C lie on a circle of the
same radius r as the three given circles. (Hint:
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The center of the circle is at the point P, where
—
OP =w; +w, +ws.)

(o}

Figure 1.50 Two examples
of three circles of equal radius
intersecting in a single

point O. (See Exercise 35.)

(c) Show that O is the orthocenter of triangle ABC.
(The orthocenter of a triangle is the common in-
tersection point of the altitudes perpendicular to
the edges.)

36. (a) Show that the vectors ||blla + |ja]|b and ||b|la —

[la||b are orthogonal.

(b) Show that ||b|ja + ||a||b bisects the angle between
aand b.

1.4 The Cross Product

The cross product of two vectors in R? is an “honest” product in the sense that it
takes two vectors and produces a third one. However, the cross product possesses
some curious properties (not the least of which is that it cannot be defined for
vectors in R? without first embedding them in R? in some way) making it less
“natural” than may at first seem to be the case.

When we defined the concepts of vector addition, scalar multiplication, and
the dot product, we did so algebraically (i.e., by a formula in the vector compo-
nents) and then saw what these definitions meant geometrically. In contrast, we
will define the cross product first geometrically, and then deduce an algebraic for-
mula for it. This technique is more convenient, since the coordinate formulation
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Figure 1.51 The area of this
parallelogram is ||a|| ||b|| sin 6.

b

Figure 1.52 The right-hand
rule for finding a x b.

Te——__ 4

———_

Figure 1.53 ix j =k

k

Figure 1.54 A mnemonic for
finding the cross product of the
unit basis vectors.

is fairly complicated (although we will find a way to organize it so as to make it
easier to remember).

The Cross Product of Two Vectors in R®

DEFINITION 4.1 Let a and b be two vectors in R? (not R?). The cross
product (or vector product) of a and b, denoted a x b, is the vector whose
length and direction are given as follows:

» The length of a x b is the area of the parallelogram spanned by a and b
or is zero if either a is parallel to b or if a or b is 0. Alternatively, the
following formula holds:

lla x bl = [lal| [|b]| sin 6,

where 6 is the angle between a and b. (See Figure 1.51.)

* The direction of a x b is such that a x b is perpendicular to both a and
b (when both a and b are nonzero) and is taken so that the ordered triple
(a,b,a x b) is a right-handed set of vectors, as shown in Figure 1.52.
(If either a or b is 0, or if a is parallel to b, then a x b = 0 from the
aforementioned length condition.)

By saying that (a, b, a x b) is right-handed, we mean that if you let the fingers
of your right hand curl from a toward b, then your thumb will point in the
direction of a x b.

EXAMPLE 1 Lets compute the cross product of the standard basis vectors
for R3. First consider i x j as shown in Figure 1.53. The vectors i and j deter-
mine a square of unit area. Thus, i x j|| = 1. Any vector perpendicular to both
i and j must be perpendicular to the plane in which i and j lie. Hence, i X j
must point in the direction of k. The “right-hand rule” implies that i x j must
point in the positive k direction. Since ||k|| = 1, we conclude thati x j = k. The
same argument establishes that j x k =i and k x i = j. To remember these ba-
sic equations, you can draw i, j, and k in a circle, as in Figure 1.54. Then the
relations

ixj=k  jxk=i  kxi=j (1)

may be read from the circle by beginning at any vector and then proceeding
clockwise. *

Properties of the Cross Product; Coordinate Formula

Example 1 demonstrates that the calculation of cross products from the geometric
definition is not entirely routine. What we really need is a coordinate formula,
analogous to that for the dot product or for vector projections, which is not difficult
to obtain.
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From our Definition 4.1, it is possible to establish the following:

Properties of the Cross Product. Let a, b, and ¢ be any three vectors in R
and let k£ € R be any scalar. Then

1. a xb = —b x a (anticommutativity);

2. ax(b+c)=axb+ ax c(distributivity);

3. (a+b)xc=axc+b x c (distributivity);

4. k(axb)= (ka) xb = a x (kb).

We provide proofs of these properties at the end of the section, although you
might give some thought now as to why they hold. It’s worth remarking that these
properties are entirely reasonable, ones that we would certainly want a product to
have. However, you should be clear about the fact that the cross product fails to
satisfy other properties that you might also consider to be eminently reasonable.
In particular, since property 1 holds, we see that a x b # b x a in general (i.e.,
the cross product is not commutative). Consequently, be very careful about the
order in which you write cross products. Another property that the cross product
does not possess is associativity. That is,

ax(bxec)#(axb)xe,
in general. For example, leta = b =iand ¢ = j. Then
ix(ixj=ixk=-kxi=—j,

from properties 1 and 4, but (i xi)xj=0xj=0% —j. (The equation
i x i = 0 holds because i is, of course, parallel to i.) Make sure that you do
not try to use an associative law when working problems.

We now have the tools for producing a coordinate formula for the cross
product. Let a = aji + a,j + ask and b = byi + boj + bsk. Then

a x b = (a1i+ a2j + azk) x (b1i + byj + b3k)
= (a1i + a2] + a3K) x bii + (a1i + a2] + azk) x byj
+ (a1i + azj + ask) x bsk,
by property 2,
=a\bii x i+ axbij x i+ azbik x i+ a1byi X j+ axbrj x j
+asbyk X j+ aibsi x k+ abs3j x k+ asbs;k x K,

by properties 3 and 4. These nine terms may look rather formidable at first, but
we can simplify by means of the formulas in (1), anticommutativity, and the fact
that ¢ x ¢ = 0 for any vector ¢ € R3. (Why?) Thus,

axb=—-abk+ abj+ a bk — asbyi — a1bsj + axbsi
= (dzb3 — a3b2)i + (Cl3b| — a1b3)j + ((l]bz — azbl)k. (2)

EXAMPLE 2 Formula (2) gives
i4+3j— 2k xQRi+2k)=3-2—(-2)-0)i+(-2-2—-1-2)j
+(1-0-3-2)k
= 6i — 6] — 6k. *
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Formula (2) is more complicated than the corresponding formulas for all the
other arithmetic operations of vectors that we’ve seen. Moreover, it is a rather dif-
ficult formula to remember. Fortunately, there is a more elegant way to understand
formula (2). We explore this reformulation next.

Matrices and Determinants: A First Introduction

A matrix is a rectangular array of numbers. Examples of matrices are

1 3
2 7|, and
0 0

SO = O
S = O O
—_ o O O

1
0
0
0

If a matrix has m rows and n columns, we call it “m x n” (read “m by n”).
Thus, the three matrices just mentioned are, respectively, 2 x 3,3 x 2,and 4 x 4.
To some extent, matrices behave algebraically like vectors. We discuss some
elementary matrix algebra in §1.6. For now, we are mainly interested in the notion
of a determinant, which is a real number associated to an n x n (square) matrix.
(There is no such thing as the determinant of a nonsquare matrix.) In fact, for the

purposes of understanding the cross product, we need only study 2 x 2 and 3 x 3
determinants.

DEFINITION 4.2 Let Abea2 x 2 or3 x 3 matrix. Then the determinant
of A, denoted det A or | A|, is the real number computed from the individual
entries of A as follows:

* 2 x 2 case

[a b a b
IfA:_C d],then|A|=‘c d‘:ad—bc.
* 3 x 3 case
(a b ¢
IfA=|d e f|,then
& h i
a b c
|Al=|d e f |=aei+bfg+cdh—ceg—afh— bdi
g h i
. e f d f d e
=4 h _b‘g i +Cgh‘

in terms of 2 x 2 determinants.

Perhaps the easiest way to remember and compute 2 x 2 and 3 x 3 determi-
nants (but not higher-order determinants) is by means of a “diagonal approach.”
We write (or imagine) diagonal lines running through the matrix entries. The
determinant is the sum of the products of the entries that lie on the same diagonal,
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where negative signs are inserted in front of the products arising from diagonals
going from lower left to upper right:

* 2 x 2 case

and
|A| = ad — bc.

* 3 x 3 case (we need to repeat the first two columns for the method to work)

Write

Then
|A| =aei +bfg+ cdh — gec — hfa —idb.

IMPORTANT WARNING This mnemonic device does not generalize beyond
3 x 3 determinants.

We now state the connection between determinants and cross products.

Key Fact. Ifa = a;i + a»j + ask and b = byi + byj + b3k, then

i j k
_ | a3 |. |a a3 a; a _
axb= by bs B B by b k=|a a asz|. 3)
by by, by

The determinants arise from nothing more than rewriting formula (2). Note
thatthe 3 x 3 determinant in formula (3) needs to be interpreted by using the 2 x 2
determinants that appear in formula (3). (The 3 x 3 determinant is sometimes
referred to as a “symbolic determinant.”)

EXAMPLE 3
i
Gi+2i-Kx(—j+K=|3 2 -1
Lo
2 1] 3 -1 |3
=l ‘_’1 ’J+‘1 —1)1‘
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We may also calculate the 3 x 3 determinant as

=2i—j—3k—2k—i—3j=1i-4j— 5k

2

Areas and Volumes
Cross products are used readily to calculate areas and volumes of certain objects.
We illustrate the ideas involved with the next two examples.

EXAMPLE 4 Let’s use vectors to calculate the area of the triangle whose ver-
tices are A(3, 1), B(2, —1), and C(0, 2) as shown in Figure 1.55.

> y
(&
A
\V/ ' !
B
Figure 1.55 Triangle ABC in Figure 1.56 Any triangle may be
Example 4. considered to be half of a

parallelogram.

The trick is to recognize that any triangle can be thought of as half of a
parallelogram (see Figure 1.56) and that the area of a parallelogram is obtained

from a cross product. In other words, AB x AC isavector whose length measures
— —
the area of the parallelogram determined by AB and AC, and so

Area of AABC = ;||AB x AC]|.

To use the cross product, we must consider AB and AC to be vectors in R. This
is straightforward: We simply take the k-components to be zero. Thus,

AB = —i—2j = —i—2j— Ok,

and
AC = —3i+j=-3i+j+0k
Therefore,
—  — i j Kk
ABx AC=| -1 =2 0|=-7k.
-3 1 0
Hence,

Area of AABC = 1| —7k|| = 1. .



Figure 1.57 The area of AABC
is 7/2.

1.4 | The Cross Product 33

There is nothing sacred about using A as the common vertex. We could just
as easily have used B or C, as shown in Figure 1.57. Then

Arca of AABC = L|BA x BC|| = LIt + 2j) x (=2i + 3j)| = 1|1 7k|| = 1.

1
5l

EXAMPLE 5 Find a formula for the volume of the parallelepiped determined
by the vectors a, b, and ¢. (See Figure 1.58.)

axb

Figure 1.58 The parallelepiped determined by a, b,
and c.

As explained in §1.3, the volume of a parallelepiped is equal to the product
ofthe area of the base and the height. In Figure 1.58, the base is the parallelogram
determined by a and b. Hence, its area is ||a x b||. The vector a x b is perpendi-
cular to this parallelogram; the height of the parallelepiped is ||c|| |cos 8], where 8
is the angle between a x b and c. (The absolute value is needed in case 6 > 7 /2.)
Therefore,

Volume of parallelepiped = (area of base)(height)
= [la x bl lle|| |cos |
=|(a xb)-c|.

(The appearance of the cos 6 term should alert you to the fact that dot products
are lurking somewhere.)
For example, the parallelepiped determined by the vectors

a=i+5j, b=—-4i+2j, and c=i+j+ o0k
has volume equal to
[((+ 5)) x (—4i+2j)) - (i +j + 6k)| = [22k - (i + j + 6K)|
= |22(6)|
= 132. *
The real number (a x b) - ¢ appearing in Example 5 is known as the triple

scalar product of the vectors a, b, and c. Since |(a x b) - ¢| represents the volume
of the parallelepiped determined by a, b, and c, it follows immediately that

[(@xb).c]=|(bxc)-a] =|(cxa)-b|
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|F]| sin 0

Figure 1.59 Turning a bolt with a
wrench. The torque on the bolt is
the vector r X F.

Figure 1.60 A
potato spinning
about an axis.

=

Figure 1.61 The
angular velocity
vector w.

In fact, if you are careful with the right-hand rule, you can convince yourself that
the absolute value signs are not needed; that is,

(axb).c=(bxc)-a=(cxa)-b. 4)

This is a nice example of how the geometric significance of a quantity can provide
an extremely brief proof of an algebraic property the quantity must satisfy. (Try
proving it by writing out the expressions in terms of components to appreciate
the value of geometric insight.)

We leave it to you to check the following beautiful (and convenient) formula
for calculating triple scalar products:

ay d; as
(axb)-c: bl b2 b3 s

T C C3

where a = a;i + a»j + ask, b = bji + byj + b3k, and ¢ = ci + 2 + 3k

Torque

Suppose you use a wrench to turn a bolt. What happens is the following: You
apply some force to the end of the wrench handle farthest from the bolt and that
causes the bolt to move in a direction perpendicular to the plane determined by
the handle and the direction of your force (assuming such a plane exists). To
measure exactly how much the bolt moves, we need the notion of torque (or
twisting force).

In particular, letting F denote the force you apply to the wrench, we have

Amount of torque = (length of wrench)(component of F _L wrench).

Let r be the vector from the center of the bolt head to the end of the wrench
handle. Then

Amount of torque = ||r|| ||F|| sin®,

where 6 is the angle between r and F. (See Figure 1.59.) That is, the amount of
torque is ||r x F||, and it is easy to check that the direction of r x F is the same
as the direction in which the bolt moves (assuming a right-handed thread on the
bolt). Hence, it is quite natural to define the torque vector T to be r x F. The
torque vector T is a concise way to capture the physics of this situation.

Note that if F is parallel to r, then T = 0. This corresponds correctly to the
fact that if you try to push or pull the wrench, the bolt does not turn.

Rotation of a Rigid Body

Spin an object (a rigid body) about an axis as shown in Figure 1.60. What is the
relation between the (linear) velocity of a point of the object and the rotational
velocity? Vectors provide a good answer.

First we need to define a vector w, the angular velocity vector of the rotation.
This vector points along the axis of rotation, and its direction is determined by
the right-hand rule. The magnitude of w is the angular speed (measured in radians
per unit time) at which the object spins. Assume that the angular speed is constant
in this discussion. Next, fix a point O (the origin) on the axis of rotation, and let

r(t) = OP be the position vector of a point P of the body, measured as a function
of time, as in Figure 1.61. The velocity v of P is defined by



Figure 1.62 A spinning rigid
body.

Figure 1.63 A carousel wheel.
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where Ar = r(t + At) — r(t) (i.e., the vector change in position between times ¢
and 7 + At). Our goal is to relate v and w.

As the body rotates, the point P (at the tip of the vector r) moves in a circle
whose plane is perpendicular to w. (See Figure 1.62, which depicts the motion
of such a point of the body.) The radius of this circle is ||r(z)|| sin8, where 6 is
the angle between w and r. Both ||r(z)|| and & must be constant for this rotation.
(The direction of r(t) may change with ¢, however.) If At ~ 0, then ||Ar|| is
approximately the length of the circular arc swept by P between ¢ and ¢ + At.
That is,

|Ar|| & (radius of circle)(angle swept through by P)
= (llr|| sin0)(A¢)

from the preceding remarks. Thus,
Ar
At

Now, let Az — 0. Then Ar/At — v and Ap/At — ||@| by definition of the
angular velocity vector w, and we have

A
~ ||r|| sine =2.
A

IVl = ll@ll [Ir|sin6 = [l& x ri|. 6))

It’s not difficult to see intuitively that v must be perpendicular to both @ and r.
A moment’s thought about the right-hand rule should enable you to establish the
vector equation

V=wXTr. (6)

If we apply formula (5) to a bicycle wheel, it tells us that the speed of a point
on the edge of the wheel is equal to the product of the radius of the wheel and
the angular speed (0 is /2 in this case). Hence, if the rate of rotation is kept
constant, a point on the rim of a large wheel goes faster than a point on the rim
of a small one. In the case of a carousel wheel, this result tells you to sit on an
outside horse if you want a more exciting ride. (See Figure 1.63.)

Summary of Products Involving Vectors

Following is a collection of some basic information concerning scalar multipli-
cation of vectors, the dot product, and the cross product:

Scalar Multiplication: ka

Result is a vector in the direction of a.

Magnitude is ||ka] = |k| ||a]|.

Zero ifk =0ora=0.

Commutative: ka = ak.

Associative: k(la) = (kl)a.

Distributive: k(a + b) = ka + kb; (k + [)a = ka + [a.
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Dot Product: a-b

Result is a scalar.

Magnitude is a-b = ||a]| ||b|| cos 8; 6 is the angle between a and b.
Magnitude is maximized if a || b.

Zeroifa L b,a=0,0orb=0.

Commutative: a-b = b -a.

Associativity is irrelevant, since (a - b) - ¢ doesn’t make sense.
Distributive: a-(b+c¢)=a-b+a-c.

Ifa=b,thena-a=|a|?’

Cross Product: a x b

Result is a vector perpendicular to both a and b.

Magnitude is ||a x b|| = ||a]| ||b]| sin8; 6 is the angle between a and b.
Magnitude is maximized ifa L b.

Zeroifa| b,a=0,orb=0.

Anticommutative: a x b = —b x a.

Not associative: In general, a x (b x ¢) # (a x b) x c.

Distributive: a x (b +¢) =a x b + a x ¢ and
(a+b)yxc=axc+bxe.

Ifa L b, then |la x b|| = |la]| ||b]].

Addendum: Proofs of Cross Product Properties

Proof of Property 1 To prove the anticommutativity property, we use the right-
hand rule. Since

lla x bl = [lal| [[b]| sin 6,

we obviously have that [|a x b|| = ||b x a||. Therefore, we need only understand
the relation between the direction of a x b and that of b x a. To determine the
direction of a x b, imagine curling the fingers of your right hand from a toward b.
Then your thumb points in the direction of a x b. If instead you curl your fingers
from b toward a, then your thumb will point in the opposite direction. This is the
direction of b x a, so we conclude that a x b = —b x a. (See Figure 1.64.) ™

aXb

()

Figure 1.64 The right-hand rule shows why a x b = —b X a.
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Proof of Property 2 First, note the following general fact:

PROPOSITION 4.3 Let a and b be vectors in R3. Ifa-x = b - x for all vectors x
inR?, thena = b.

To establish Proposition 4.3, write a as a;i + a>j + ask and b as bji + byj +
bk and set x in turn equal to i, j, and k. Proposition 4.3 is valid for vectors in R?
as well as R°.

To prove the distributive law for cross products (property 2), we show that,
for any x € R?,

(ax(+c)-x=(axb+axc)-x.

By Proposition 4.3, property 2 follows.
From the equations in (4),
(ax(b+ec)-x=(xxa):-(b+c)
=(xxa)-b+(xxa)-c,

from the distributive law for dot products,

=(axb)-x+(axc)-x

=(axb+axc)-x,

again using (4) and the distributive law for dot products. ]

Proof of Property 3 Property 3 follows from properties 1 and 2. We leave the
details as an exercise. |

Proof of Property 4 The second equality in property 4 follows from the first
equality and property 1:

k(axb) = —k(b x a) by property 1
= —(kb) x a by the first equality of property 4
= a x (kb) by property 1.

Hence, we need only prove the first equality.

If either a or b is the zero vector or if a is parallel to b, then the first equality
clearly holds. Otherwise, we divide into three cases: (1) k =0, (2) k > 0, and
(3) k < 0. If k£ = 0, then both ka and k(a x b) are equal to the zero vector and
the desired result holds. If k£ > 0, the direction of (ka) x b is the same as a x b,
which is also the same as k(a x b). Moreover, the angle between ka and b is the
same as between a and b. Calling this angle 6, we check that

[(ka) x bl = [ka]| |[b]| sin6
= k||a]| ||b|| sin& by part 1 of Proposition 3.4
=k|la x b|| by Definition 4.1
= ||k(a x b)|| by part 1 of Proposition 3.4.

We conclude (ka) x b = k(a x b) in this case.
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b
n—0 0
— < and b. (See Figure 1.65.) Thus,
ka, k<0 ka, k>0

Figure 1.65 If the angle between
a and b is 6, then the angle
between ka and b is either 6 (if
k> 0)orm —0 (ifk <0).

1.4 Exercises

Ifk < 0, then the direction of (ka) x b is the same as that of (—a) x b, which
is seen to be the same as that of —(a x b) and thus the same as that of k(a x b).
The angle between ka and b is therefore = — 6, where 6 is the angle between a

[(ka) x b|| = [Ika]| [[b]| sin(w — &) = |k|[[a]| [b]l sin 6 = ||k(a x b)]|.
So, again, it follows that (ka) x b = k(a x b). [ |

Evaluate the determinants in Exercises 1—4. 18.
2 4 5
1. ' 1 3 ‘ 2. 16 19.
1 3 5 -2 0 %
3. o 2 7
4. —
-1 0 3 36 -1 20.
4 -8 2
In Exercises 57, calculate the indicated cross products, using 21.
both formulas (2) and (3). 22
5. (1,3, -2) x (—1,5,7)
6. Bi—2j+k) x(i+j+k) 23.
7. (i+]j) x(=3i+2j)
8. Prove property 3 of cross products, using properties 1
and 2.
9. Ifa x b =3i—7j— 2k whatis (a+b) X (a—b)?
10. Calculate the area of the parallelogram having vertices
(17 1)5 (37 2)a (17 3)’ and (_1» 2)
11. Calculate the area of the parallelogram having vertices
(1,2,3), (4, -2, 1), (-3, 1,0), and (0, —3, —=2). 24,

12.

13.

Find a unit vector that is perpendicular to both 2i +
j—3kandi+ k.

If (a X b) - ¢ = 0, what can you say about the geomet-
ric relation between a, b, and ¢?

Compute the area of the triangles described in Exercises

14-17.

14. The triangle determined by the vectors a =i+ j and

15.

16.

17.

b=2i—j

The triangle determined by the vectors a =i — 2j +
6kandb =4i+3j—k

The triangle having vertices (1,1), (—1,2), and
(=2,-1)

The triangle having vertices (1,0, 1), (0, 2, 3), and
(-1,5,-2)

Find the volume of the parallelepiped determined by
a=3i—j,b=-2i+k andc=1i-2j+4k.

What is the volume of the parallelepiped with vertices
(37 Os _l)a (47 2’ _1)5 (_15 17 0)5 (35 17 5)5 (05 37 0)9
(4,3,5),(—1,2,6),and (0, 4, 6)?

a a as
Verify that (a X b)cc=| by by bs
Cc1 C €3

Show that (a X b) - ¢ = a - (b X ¢) using Exercise 20.

Use geometry to show that |[(aXDb)-c|=

[b-(a X c).
(a) Show that the area of the triangle with vertices

P](xl, yl), Pz()Cz, yz), and P3()C3, y3) is giVCl’l by
the absolute value of the expression

1 1 1 1
— | X1 X2 X3
yioy2 »3

(b) Use part (a) to find the area of the triangle with
vertices (1, 2), (2, 3), and (—4, —4).

Suppose that a, b, and ¢ are noncoplanar vectors in R3,
so that they determine a tetrahedron as in Figure 1.66.

Figure 1.66 The tetrahedron of
Exercise 24.

Give a formula for the surface area of the tetrahedron
in terms of a, b, and ¢. (Note: More than one formula
is possible.)
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26.

. Suppose that you are given nonzero vectors a, b, and ¢
in R3. Use dot and cross products to give expressions for
vectors satisfying the following geometric descriptions:

(a) A vector orthogonal to a and b

(b) A vector of length 2 orthogonal to a and b

(¢) The vector projection of b onto a

(d) A vector with the length of b and the direction of a
(e) A vector orthogonaltoaandb X ¢

(f) A vector in the plane determined by a and b and
perpendicular to c.

Suppose a, b, ¢, and d are vectors in R. Indicate which
of the following expressions are vectors, which are
scalars, and which are nonsense (i.e., neither a vector
nor a scalar).

(a) (axb)xe

(c) (a-b) X (c-d)
(e) (a+b) X (¢ xd)
(g) (@axb): (cxd)

(b) (a+b)-c

(d) (axb)-c

(® ax([(b-c)d]
(h) (a-b)e—(a xb)

Exercises 27-32 concern several identities for vectors a, b, ¢,

and d

in R3. Each of them can be verified by hand by writing

the vectors in terms of their components and by using formula
(2) for the cross product and Definition 3.1 for the dot product.
However, this is quite tedious to do. Instead, use a computer
algebra system to define the vectors a, b, ¢, and d in general
and to verify the identities.

© 27

© 2s.

W 29.

< 30.

© 31
© 32.

33.

34.

35.

.(axb)yxec=(a-c)b—(b-c)a
a-(bxc)=b-:(cxa)=c-(axbh)
—a+(cXb)=—c-(bxa)

=—-b-(axc)
(axb):(exd)y=(a-c)(b-d)—(a-d)b-c)
| a-c a-d
“|bec b-d

(axb)Xxc+(bxc)xa+(cxa)xb=0 (this is
known as the Jacobi identity).

(axb)x(exd)=[a:(ecxd)]b—[b:(cxd)]a

(axb)-(bxc)x(cxa)=][a-(bxc)]

Establish the identity
(axb):(exd)y=(a-c)b-d)—(a-d)b-c)

of Exercise 29 without resorting to a computer algebra
system by using the results of Exercises 27 and 28.

Egbert applies a 20 1b force at the edge of a 4 ft
wide door that is half-open in order to close it. (See
Figure 1.67.) Assume that the direction of force is per-
pendicular to the plane of the doorway. What is the
torque about the hinge on the door?

Gertrude is changing a flat tire with a tire iron. The tire
iron is positioned on one of the bolts of the wheel so

36.

37.

1.4 | Exercises 39

® F

[F|=201b

Figure 1.67 Figure for Exercise 34.

140 Ib

Figure 1.68 The configuration for
Exercise 35.

that it makes an angle of 30° with the horizontal. (See
Figure 1.68.) Gertrude exerts 40 Ib of force straight
down to turn the bolt.

(a) If the length of the arm of the wrench is 1 ft, how
much torque does Gertrude impart to the bolt?

(b) What if she has a second tire iron whose length is
18 in?

Egbert is trying to open a jar of grape jelly. The ra-
dius of the lid of the jar is 2 in. If Egbert imparts 15 1b
of force tangent to the edge of the lid to open the jar,
how many ft-1b, and in what direction, is the resulting
torque?

A 50 1b child is sitting on one end of a seesaw, 3 ft
from the center fulcrum. (See Figure 1.69.) When she is

Figure 1.69 The seesaw of Exercise 37.
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38.

39.

40.
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1.5 ft above the horizontal position, what is the amount
of torque she exerts on the seesaw?

For this problem, note that the radius of the earth is

approximately 3960 miles.

(a) Suppose that you are standing at 45° north latitude.
Given that the earth spins about its axis, how fast
are you moving?

(b) How fast would you be traveling if, instead, you
were standing at a point on the equator?

Archie, the cockroach, and Annie, the ant, are on an
LP record. Archie is at the edge of the record (ap-
proximately 6 in from the center) and Annie is 2 in
closer to the center of the record. How much faster is
Archie traveling than Annie? (Note: A record playing
on a turntable spins at a rate of 33% revolutions per
minute.)

A top is spinning with a constant angular speed of 12
radians/sec. Suppose that the top spins about its axis

41.

of symmetry and we orient things so that this axis is
the z-axis and the top spins counterclockwise about it.

(a) If, at a certain instant, a point P in the top has
coordinates (2, —1, 3), what is the velocity of the
point at that instant?

(b) What are the (approximate) coordinates of P one
second later?

There is a difficulty involved with our definition of
the angular velocity vector @, namely, that we cannot
properly consider this vector to be “free” in the sense
of being able to parallel translate it at will. Consider
the rotations of a rigid body about each of two parallel
axes. Then the corresponding angular velocity vectors
®; and , are parallel. Explain, perhaps with a fig-
ure, thatevenif @, and w, are equal as “free vectors,”
the corresponding rotational motions that result must
be different. (Therefore, when considering more than
one angular velocity, we should always assume that the
axes of rotation pass through a common point.)

Figure 1.70 The plane in R?
through the point Py and

X

1.5 Equations for Planes; Distance Problems

In this section, we use vectors to derive analytic descriptions of planes in R?. We
also show how to solve a variety of distance problems involving “flat objects”

(i.e., points, lines, and planes).

z Coordinate Equations of Planes

A plane IT in R? is determined uniquely by the following geometric information:
a particular point Py(xo, o, Zo) in the plane and a particular vector n = Ai +
Bj 4 Ck that is normal (perpendicular) to the plane. In other words, IT is the

\ set of all points P(x, y, z) in space such that Py P is perpendicular to n. (See
Figure 1.70.) This means that IT is defined by the vector equation

n-ﬁ:O.

(1)

as

perpendicular to the vector n.

Since ITOF = (x —x0)i + (y — yo)j + (z — z0)k, equation (1) may be rewritten

(Ai+ Bj+ CK) -+ ((x — x0)i + (y — yo)j + (z — 20)k) = 0

or

A(x —x9)+ B(y — y0)+ C(z — 20) = 0.

2)

This is equivalent to

where D = Axg + By + Czo.

Ax+By+Cz =D,
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EXAMPLE 1 Theplanethroughthe point(3,2, 1) withnormal vector 2i — j 4+ 4k
has equation

Ri—j+4k) - (x =3)i+(y—-2)j+(z—-Dk)=0
—2x-3)-(y—-2)+4z-1)=0
< 2x —y+4z=8. .

Not only does a plane in R? have an equation of the form given by equation
(2), but, conversely, any equation of this form must describe a plane. Moreover,
it is easy to read off the components of a vector normal to the plane from such an
equation: They are just the coefficients of x, y, and z.

EXAMPLE 2 Given the plane with equation 7x 4+ 2y — 3z = 1, find a normal
vector to the plane and identify three points that lie on that plane.

A possible normal vector is n = 7i + 2j — 3k. However, any nonzero scalar
multiple of n will do just as well. Algebraically, the effect of using a scalar multiple
of n as normal is to multiply equation (2) by such a scalar.

Finding three points in the plane is not difficult. First, let y = z = 0 in the
defining equation and solve for x:

Tx+2:0-3.0=1 < Tx=1 < x=3.

Thus (%,0, 0) is a point on the plane. Next, let x = z = 0 and solve for y:
7-0+2y-3-0=1 < y=1

So (0, % 0) is another point on the plane. Finally, let x = y = 0 and solve for z.

You should find that (O, 0, —%) lies on the plane. *

EXAMPLE 3 Put coordinate axes on R’ so that the z-axis points vertically.
Then a plane in R? is vertical if its normal vector n is horizontal (i.e., if n is
parallel to the xy-plane). This means that n has no k-component, so n can be
written in the form Ai + Bj. It follows from equation (2) that a vertical plane has
an equation of the form

A(x — x0) + B(y — y0) = 0.
Hence, a nonvertical plane has an equation of the form
A(x —x0) + B(y — yo) + C(z — 20) = 0,
where C # 0. .

EXAMPLE 4 From high school geometry, you may recall that a plane is
determined by three (noncollinear) points. Let’s find an equation of the plane
that contains the points Py(1, 2, 0), P;(3, 1, 2), and P>(0, 1, 1).

There are two ways to solve this problem. The first approach is algebraic
and rather uninspired. From the aforementioned remarks, any plane must have
an equation of the form Ax 4+ By + Cz = D for suitable constants A, B, C, and
D. Thus, we need only to substitute the coordinates of Py, P;, and P; into this
equation and solve for A, B, C, and D. We have that

* substitution of Py gives A + 2B = D,
* substitution of P; gives 3A + B +2C = D; and
* substitution of P, gives B + C = D.
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Figure 1.71 The plane
determined by the points Py, P,
and P, in Example 4.

Hence, we must solve a system of three equations in four unknowns:

A+ 2B =D
3A+ B+2C=0D. 3)
B+ C=D

In general, such a system has either no solution or else infinitely many solutions.
We must be in the latter case, since we know that the three points Py, P;, and P,
lie on some plane (i.e., that some set of constants A, B, C, and D must exist).
Furthermore, the existence of infinitely many solutions corresponds to the fact
that any particular equation for a plane may be multiplied by a nonzero constant
without altering the plane defined. In other words, we can choose a value for one
of A, B, C, or D, and then the other values will be determined. So let’s multiply
the first equation given in (3) by 3, and subtract it from the second equation. We
obtain

A+ 2B = D
—5B 4+2C =-2D . 4)
B+ C= D
Now, multiply the third equation in (4) by 5 and add it to the second:
A+2B =D
7C =3D . (5)
B+ C= D
Multiply the third equation appearing in (5) by 2 and subtract it from the first:
A —-2C=-D
< 7C = 3D . (6)
B+ C= D

By adding appropriate multiples of the second equation to both the first and third
equations of (6), we find that

A =—1D
7C = 3D . (7)
B = %D
Thus, if in (7) we take D = —7 (for example), then A =1, B = -4, C = -3,
and the equation of the desired plane is
x—4y—3z=-7.

The second method of solution is cleaner and more geometric. The idea is
to make use of equation (1). Therefore, we need to know the coordinates of a
particular point on the plane (no problem—we are given three such points) and

— .

a vector n normal to the plane. The vectors Py P, and Py P, both lie in the plane.
(See Figure 1.71.) In particular, the normal vector n must be perpendicular to
them both. Consequently, the cross product provides just what we need. That is,
we may take

n= PP xPhP,=Q2i—j+2k)x(—i—j+Kk)

i j ok
= 2 -1 2|=i-4j-3k
-1 -1 1



x-2y+z=4

y+3z=-7

Figure 1.72 The line of
intersection of the planes
x—2y+z=4and

2x + y + 3z = —7 in Example 5.
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If we take Py(1, 2, 0) to be the particular point in equation (1), we find that the
equation we desire is

i—-4j-3K)-(x—Di+(y—2)j+zk)=0
or
(x—=1)—4y—-2)—3z=0.
This is the same equation as the one given by the first method. .

EXAMPLE 5 Consider the two planes having equations x — 2y + z = 4 and
2x + y + 3z = —7. We determine a set of parametric equations for their line of
intersection. (See Figure 1.72.) We use Proposition 2.1. Thus, we need to find a
point on the line and a vector parallel to the line. To find the point on the line,
we note that the coordinates (x, y, z) of any such point must satisfy the system of
simultaneous equations given by the two planes

®)

x—=2y+z= 4
2x+y+3z=-7"

From the equations given in (8), it is not too difficult to produce a single
solution (x, y, z). For example, if we let z = 0 in (8), we obtain the simpler
system

x—2y= 4
=4 ©)
2x +y =-17
The solution to the system of equations (9) is readily calculated to be x = —2,

y = —3. Thus, (-2, —3, 0) are the coordinates of a point on the line.

To find a vector parallel to the line of intersection, note that such a vector
must be perpendicular to the two normal vectors to the planes. The normal vectors
to the planes are i — 2j + k and 2i + j + 3k. Therefore, a vector parallel to the
line of intersection is given by

(i-2j+k)xQi+j+3k)=—-7i—j+ 5k.
Hence, Proposition 2.1 implies that a vector parametric equation for the line is
r(t) = (—2i —3j) + t(—=7i — j + 5k),

and a standard set of parametric equations is

x=-Tt-2
y=—t-—3
z =5t *

Parametric Equations of Planes

Another way to describe a plane in R? is by a set of parametric equations. First,
suppose that a = (ay, az, a3) and b = (b1, by, b3) are two nonzero, nonparallel
vectors in R3. Then a and b determine a plane in R? that passes through the
origin. (See Figure 1.73.) To find the coordinates of a point P(x, y, z) in this
plane, draw a parallelogram whose sides are parallel to a and b and that has two
opposite vertices at the origin and at P, as shown in Figure 1.74. Then there must

exist scalars s and ¢ so that the position vector of P is O P = sa + tb. The plane
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Figure 1.75 The plane passing
through Py(cy, c3, ¢3) and parallel
toaandb.

AN,

b
y
a X
X
Figure 1.73 The plane through Figure 1.74 Forﬁe)point P in
the origin determined by the the plane shown, O P = sa + tb
vectors a and b. for appropriate scalars s and 7.

may be described as
{xeR3 |x:sa+tb;s,teR}.

Now, suppose that we seek to describe a general plane I (i.e., one that does
not necessarily pass through the origin). Let

—
c=(c1,c2,¢3)=0P

denote the position vector of a particular point Py in IT and let a and b be two
(nonzero, nonparallel) vectors that determine the plane through the origin parallel
to I1. By parallel translating a and b so that their tails are at the head of ¢ (as in
Figure 1.75), we adapt the preceding discussion to see that the position vector of
any point P(x, y, z) in IT may be described as

0P =sa+1b+ec.
To summarize, we have shown the following:

PROPOSITION 5.1 A vector parametric equation for the plane IT containing

the point Py(cy, ¢z, c3) (Whose position vector is O Py = ¢) and parallel to the
nonzero, nonparallel vectors a and b is

X(s,t) =sa+tb+c. (10)

By taking components in formula (10), we readily obtain a set of parametric
equations for IT:

X =sa; +tby + ¢
y=say+thy+c . (11)
z =saz +thy +c3

Compare formula (10) with that of equation (1) in Proposition 2.1. We need
to use two parameters s and ¢ to describe a plane (instead of a single parameter
t that appears in the vector parametric equation for a line) because a plane is a
two-dimensional object.



Figure 1.76 A general
configuration for finding the
distance between a point and a
line, using vector projections.

Figure 1.77 Another general
configuration for finding the
distance between a point and a
line.
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EXAMPLE 6 We find a set of parametric equations for the plane that passes
through the point (1, 0, —1) and is parallel to the vectors 3i — k and 2i + 5j + 2k.
From formula (10), any point on the plane is specified by

X(s, 1) = s(3i — k) + £(2i + 5j + 2K) + (i — k)
=(3s+2t+ )i+ 5tj+ 2t —s — Dk.

The individual parametric equation may be read off as

x=3s+2t+1
y =5t
z=2t—s5s—1 *

Distance Problems

Cross products and vector projections provide convenient ways to understand a
range of distance problems involving lines and planes: Several examples follow.
What is important about these examples are the vector techniques for solving
geometric problems that they exhibit, not the general formulas that may be derived
from them.

EXAMPLE 7 (Distance between a point and a line) We find the distance
between the point Py(2, 1, 3) and the line I(z) = #(—1, 1, —=2) + (2, 3, —2) in two
ways.

METHOD 1. From the vector parametric equations for the given line, we read

off a point B on the line—namely, (2, 3, —2)—and a vector a parallel to the
line—namely, a = (—1, 1, —2). Using Figure 1.76, the length of the vector
B Py — proj, B Py provides the desired distance between P, and the line. Thus,
we calculate that

BPy=(2,1,3)— (2,3, -2)

= (O’ _27 5);
— a-BP
proj,BPy = ( 0) a
a-a

[ (=1,1,-2)-(0,-2,5)
N ((—1,1,—2)-(—1,1,—2)

=(2,-2,4).
The desired distance is
— L=
IBPy — proj, BPyll = [1(0, =2, 5) — (2, =2, 4)| = (=2, 0, 1)l = /5.

)(—1, 1,-2)

METHOD 2. In this case, we use a little trigonometry. If 6 denotes the angle
— ..
between the vectors a and B P as in Figure 1.77, then

D
e
| BFoll

where D denotes the distance between P, and the line. Hence,

sinf =

= —
lall |BPylsin  [lax BF|

lla]] [l

D = |BPy||sin6 =
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Py

Figure 1.78 The general
configuration for finding the
distance D between two parallel
planes.

lz\%
Bz a

Figure 1.79 Configuration for
determining the distance between
two skew lines in Example 9.

Therefore, we calculate

N i j k
axBPy=|—1 1 =2 | =i+5j+ 2k,
0 -2 5

so that the distance sought is

i+ 5j+2k 30
po li+sitokl V30 o
I—i+j—2kl V6
which agrees with the answer obtained by Method 1. *

EXAMPLE 8 (Distance between parallel planes) The planes
IMy: 2x —2y+z=5 and Il 2x —2y+ 7 =20
are parallel. (Why?) We see how to compute the distance between them.

Using Figure 1.78 as a guide, we see that the desired distance D is given by

||pr0jnPl—P;||, where P; is a point on I1;, P; is a point on I1,, and n is a vector
normal to both planes.

First, the vector n that is normal to both planes may be read directly from
the equation for either I, or I1, as n = 2i — 2j + k. It is not hard to find a point
Py on I1;: the point P;(0, 0, 5) will do. Similarly, take P»(0, 0, 20) for a point on
I1,. Then

PP, =(0,0,15),

and calculate

—
N « PP 2,—-2,1)-(0,0,15
m%ﬂﬂz(n ‘ﬁnz(( ) ))@—zn

n-n 2,-2,1)-(2,-2,1)
=-32.-2.1)
=-3(2,-2,1).
Hence, the distance D that we seek is
D = [Iproj, P P2l = 339 = 5. °

EXAMPLE 9 (Distance between two skew lines) Find the distance between
the two skew lines

Li(t)=1(2,1,3)+(0,5,—1) and L()=1#1,—-1,0)+(-1,2,0).

(Two lines in R® are said to be skew if they are neither intersecting nor parallel.
It follows that the lines must lie in parallel planes and that the distance between
the lines is equal to the distance between the planes.)

To solve this problem, we need to find ||projnm I, the length of the projec-
tion of the vector between a point on each line onto a vector n that is perpendicular
to both lines, hence, also perpendicular to the parallel planes that contain the lines.
(See Figure 1.79.)

From the vector parametric equations for the lines, we read that the point
B1(0,5, —1) is on the first line and B,(—1, 2, 0) is on the second. Hence,

BBy =(—1,2,0)— (0,5, —1) = (=1, =3, 1).
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For a vector n that is perpendicular to both lines, we may use n = a; x a,, where
a; = (2, 1, 3) is a vector parallel to the first line and a, = (1, —1, 0) is parallel to
the second. (We may read these vectors from the parametric equations.) Thus,

n=a Xxa =

and so,

R
proj, B1 By =

The desired distance is ||proj, B1 Bzl = %ﬁ

1.5 Exercises

—>
H-B132

n-n

i j k
2 1 3 |=3i+3j-23k,
1 -1 0
—1,-3,1)-(3,3,-3
I ( )« ( ) (3.3.-3)
(3,3,-3)-(3,3,-3)
=-23.3,-3)
=—3(1,1,-1).

10.

11.

. Calculate an equation for the plane containing the point

(3, —1,2) and perpendicular to i — j + 2k.

. Find an equation for the plane containing the point

(9,5, —1) and perpendicular to i — 2k.

. Find an equation for the plane containing the points

(3,-1,2),(2,0,5),and (1, =2, 4).

. Find an equation for the plane containing the points

(A,0,0), (0, B, 0), and (0, 0, C). Assume that at least
two of A, B, and C are nonzero.

. Give an equation for the plane that is parallel to the

plane 5x —4y 4+ z = 1 and that passes through the
point (2, —1, =2).

. Give an equation for the plane parallel to the plane 2x —

3y 4 z = 5 that passes through the point (—1, 1, 2).

. Find an equation for the plane parallel to the plane x —

¥ + 7z = 10 that passes through the point (-2, 0, 1).

. Give an equation for the plane parallel to the plane

2x + 2y + z = 5 and that contains the line with para-
metric equations x =2 —t,y =2t + 1,z =3 — 2¢.

. Explain why there is no plane parallel to the plane

5x — 3y + 2z = 10 that contains the line with para-
metric equations x =1+ 4,y =3t -2,z =5 —2t.

Find an equation for the plane that contains the line x =
2t — 1,y = 3t + 4, z =7 — t and the point (2, 5, 0).

Find an equation for the plane that is perpendicular
tothelinex = 3r — 5,y =7 — 2t,z = 8 — t and that
passes through the point (1, —1, 2).

12.

13.

14.

15.

16.

Find an equation for the plane that contains the two
linesl;:x =t+2,y=3t—5,z=5t+landh:x =
5—t,y=3t—-10,z=9—2t.

Give a set of parametric equations for the line of inter-
section of the planes x + 2y — 3z = 5 and 5x 4+ 5y —
z=1.

Give a set of parametric equations for the line through
(5, 0, 6) that is perpendicular to the plane 2x — 3y +
5z=-1.

Find a value for A so that the planes 8x — 6y + 9Az =
6 and Ax + y + 2z = 3 are parallel.

Find values for A so that the planes Ax —y +z =1
and 3Ax + Ay — 2z = 5 are perpendicular.

Give a set of parametric equations for each of the planes de-
scribed in Exercises 17-22.

17. The plane that passes through the point (—1, 2, 7) and

18.

19.

20.

21.

is parallel to the vectors 2i — 3j + k and i — 5k

The plane that passes through the point (2,9, —4)
and is parallel to the vectors —8i+ 2j+ Sk and
3i—4j—2k

The plane that contains the lines /;: x =2+ 5,y =
—3t—6,z=4t+10and ,: x =5t —1,y =10t +
3,2=Tt—-2

The plane that passes through the three points (0, 2, 1),
(7,-1,5),and (-1, 3, 0)

The plane that contains the line I:x =3r —5,y =
10 — 3¢, z = 2t + 9 and the point (-2, 4, 7)
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22

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.
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. The plane determined by the equation 2x — 3y +
5z=30

Find asingle equation ofthe form Ax + By + Cz = D
that describes the plane given parametrically as x =
3s —t+2,y=4s+1t,z=s+ 5t + 3. (Hint: Begin
by writing the parametric equations in vector form and
then find a vector normal to the plane.)

Find the distance between the point (1, —2, 3) and the
linel:x =2t—5y=3—t,z=4.

Find the distance between the point (2, —1) and the
linel:x =3t+7,y =5t —3.

Find the distance between the point (—11, 10, 20) and
thelinel:x =5—t,y=3,z=7t +8.

Determine the distance between the two lines 1,(¢) =
18, —1,0)+(—1,3,5) and L(r)=1(0,3,1)+
(0,3,4).

Compute the distance between the two lines
L)=@—-7i+ G+ Dj+ @B -2tk and Li(t) =
4i+2—-1)j+ (8t + Dk.

(a) Find the distance between the two lines 1;(z) =
1(3,1,2)+(4,0,2) and L(r)=1(1,2,3)+
(2, 1, 3).

(b) What does your answer in part (a) tell you about
the relative positions of the lines?

(a) The lines 1;(r) =r(1,—1,5)+(2,0,—4) and
L) =1t(1,—-1,5) 4 (1,3, =5) are parallel. Ex-
plain why the method of Example 9 cannot be used
to calculate the distance between the lines.

(b) Find another way to calculate the distance. (Hint:
Try using some calculus.)

Find the distance between the two planes given by the
equations x —3y +2z =landx — 3y 4+ 2z = 8.

Calculate the distance between the two planes
5x —=2y+2z=12 and —10x+4y—4z=28.

Show that the distance d between the two parallel
planes determined by the equations Ax + By + Cz =

34.

35.

36.

37.

38.

39.

Dyand Ax + By + Cz = D, is
|Dy — Ds|
VAT+ B2+ C?
Two planes are given parametrically by the vector
equations

x1(s,1) = (=3,4,—9) + 5(9, —5,9) + 1(3, =2, 3)
Xa(s, 1) = (5,0,3) +5(=9,2, =9) + t(—4,7, —4).

(a) Give a convincing explanation for why these
planes are parallel.

(b) Find the distance between the planes.

Write equations for the planes that are parallel to
x + 3y — 5z = 2 and lie three units from it.

Suppose that 1;(r) = ta+ b; and 1,(¢) = ta + b, are
parallel lines in either R? or R?. Show that the distance
D between them is given by

_ llax(by —by]
l[all

(Hint: Consider Example 7.)

Let IT be the plane in R® with normal vector n that
passes through the point A with position vector a. Ifb
is the position vector of a point B in R?, show that the
distance D between B and IT is given by

D= [n- (b —a)
[n]

Show that the distance D between parallel planes with
normal vector n is given by

- (x2 —xp)]
Il

’

where x; is the position vector of a point on one of the
planes, and x; is the position vector of a point on the
other plane.

Suppose thatl;(t) = ra; + by and,(r) = ta, + b; are
skew lines in R?. Use the geometric reasoning of Ex-
ample 9 to show that the distance D between these lines
is given by

I(a; X a3) « (by — by)|
la; x ay|

D =

1.6 Some n-dimensional Geometry

Vectors in R”

The algebraic idea of a vector in R? or R? is defined in §1.1, in which we asked
you to consider what would be involved in generalizing the operations of vector
addition, scalar multiplication, etc., to n-dimensional vectors, where n can be
arbitrary. We explore some of the details of such a generalization next.
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DEFINITION 6.1 A vector in R” is an ordered n-tuple of real numbers. We
use a = (aj, ap, - . ., a,) as our standard notation for a vector in R”.

EXAMPLE 1 The 5-tuple (2, 4, 6, 8, 10) is a vector in R>. The (n + 1)-tuple
(2n,2n —2,2n —4,...,2,0)is a vector in R"*!, where # is arbitrary. *

Exactly as is the case in R? or R?, we call two vectorsa = (ay, a3, . . ., a,) and
b = (b1, by, ..., by)equaljustincasea; = b; fori =1, 2, ..., n. Vector addition
and scalar multiplication are defined in complete analogy with Definitions 1.3 and
14: Ifa=(a,a,...,a,) and b = (by, by, ..., b,) are two vectors in R" and
k € R is any scalar, then

a+b=(a+bi,a+bs,...,a, +by)
and
ka:(kal,kaz,...,kan).

The properties of vector addition and scalar multiplication given in §1.1 hold
(with proofs that are no different from those in the two- and three-dimensional
cases). Similarly, the dot product of two vectors in R” is readily defined:

a'b=a1b1+azb2+'--—|—(l"bn.

The dot product properties given in §1.3 continue to hold in n dimensions; we
leave it to you to check that this is so.

What we cannot do in dimensions larger than three is to develop a pictorial
representation for vectors as arrows. Nonetheless, the power of our algebra and
analogy does allow us to define a number of geometric ideas. We define the length
of'a vector in a € R” by using the dot product:

lall = va-a.
The distance between two vectors a and b in R” is
Distance between a and b = ||]a — b|.

We can even define the angle between two nonzero vectors by using a generalized
version of equation (4) of §1.3:

60 =cos —

, a-b
llall bl

Here a, b € R” and 6 is taken so that 0 <6 < 7. (Note: At this point in our
discussion, it is not clear that we have

a-b
<—— =<
llall (bl

’

which is a necessary condition if our definition of the angle 6 is to make sense.
Fortunately, the Cauchy—Schwarz inequality—formula (1) that follows—takes
care of this issue.) Thus, even though we are not able to draw pictures of vectors
in R", we can nonetheless talk about what it means to say that two vectors are
perpendicular or parallel, or how far apart two vectors may be. (Be careful about
this business. We are defining notions of length, distance, and angle entirely in
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terms of the dot product. Results like Theorem 3.3 have no meaning in R”, since
the ideas of angles between vectors and dot products are not independent.)
There is no simple generalization of the cross product. However, see Exer-
cises 3942 at the end of this section for the best we can do by way of analogy.
We can create a standard basis of vectors in R” that generalize the i, j,
k-basis in R3. Let

e =(1,0,0,...,0),
e, =(0,1,0,...,0),

e, =(0,0,...,0,1).
Then it is not difficult to see (check for yourself) that
a=(a,a,...,a,) =aie; +axe, +---+ae,.

Here are two famous (and often handy) inequalities:

Cauchy—Schwarz inequality. For all vectors a and b in R”, we have

|a-b| < [la[l [Ib]. @)

PROOF Ifn = 2 or 3, this result is virtually immediate in view of Theorem 3.3.
However, in dimensions larger than three, we do not have independent notions of
inner products and angles, so a different proof is required.

First note that the inequality holds if either a or b is 0. So assume that a and
b are nonzero. Then we may define the projection of b onto a just as in §1.3:

-b
proj,b = (a_> a = ka.
a-a

Here k is, of course, the scalar a-b/a-a. Let ¢ = b — ka (so that b = ka + ¢).
Then we have a - ¢ = 0, since

a.-c=a-(b—ka)

=a-b—ka-a
()
=a-b—(—)a-a
a-a
—a-b—a-b
=0.

We leave it to you to check that the “Pythagorean theorem” holds, namely, that
the following equation is true:

IblI*> = K*|la]l* + [le]|.
Multiply this equation by ||a]|> = a-a. We obtain
lall® IblI* = llall*k*[lall* + lla]|® [lc]|?

a-b\
= ||a||® (—) lall® -+ llal* [lell®

a-a
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Figure 1.80 The geometry

behind the proof of the
Cauchy—Schwarz inequality.

Figure 1.81 The triangle
inequality visualized.
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a-b 2
= (a-a) (—) (a-a)+ [la]? [|c]I?
a-a
= (a-b)” + lla|* [lc]*.
Now, the quantity ||a||?||¢||? is nonnegative. Hence,
lall® blI* = (a-b)*.

Taking square roots in this last inequality yields the result desired. ]

The geometric motivation for this proof of the Cauchy—Schwarz inequality
comes from Figure 1.80.!

The triangle inequality. For all vectors a, b € R” we have

lla+bll < lla] + [[b]|. 2

PROOF Strategic use of the Cauchy—Schwarz inequality yields
la+bl*>=(a+b)-(a+h)

=a-a+2a-b+b-b
<a-a+2a|bll+b-b by (1)
= [lall* + 2]l Ib]l + [b]|?
= (lall + IbI).
Thus, the result desired holds by taking square roots, since the quantities on both
sides of the inequality are nonnegative. ]

In two or three dimensions the triangle inequality has the following obvious
proof from which the inequality gets its name: Since | a]|, ||b]|, and ||a + b|| can
be viewed as the lengths of the sides of a triangle, inequality (2) says nothing
more than that the sum of the lengths of two sides of a triangle must be at least
as large as the length of the third side, as demonstrated by Figure 1.81.

Matrices

We had a brief glance at matrices and determinants in §1.4 in connection with the
computation of cross products. Now it’s time for another look.

A matrix is defined in §1.4 as a rectangular array of numbers. To extend our
discussion, we need a good notation for matrices and their individual entries. We
used the uppercase Latin alphabet to denote entire matrices and will continue to
do so. We shall also adopt the standard convention and use the lowercase Latin
alphabet and two sets of indices (one set for rows, the other for columns) to
identify matrix entries. Thus, the general m x n matrix can be written as

ayp dpp - Ay
ary dxy -+ Ay

A= . L . = (shorthand) (a;;).
Aml Am2 - Amp

I See J. W. Cannon, Amer. Math. Monthly 96 (1989), no. 7, 630-631.
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The first index always will represent the row position and the second index, the
column position.

Vectors in R” can also be thought of as matrices. We shall have occasion to
write the vector a = (a, az, . . ., a,) either as a row vector (a 1 x n matrix),

a=[a1 a -+ day ],
or, more typically, as a column vector (an n x 1 matrix),

a
ap

dp

We did not use double indices since there is only a single row or column present.
It will be clear from context (or else indicated explicitly) in which form a vector
a will be viewed. An m x n matrix A can be thought of as a “vector of vectors”
in two ways: (1) as m row vectors in R”,

[[an an ai, |
a a a

A= [ 21 a2 2n ] ’

[ am1  Am2 Amn ]

or (2) as n column vectors in R"”,
an ap Aln
az a oy
A=

am1 Am2 Amn

We now define the basic matrix operations. Matrix addition and scalar mul-
tiplication are really no different from the corresponding operations on vectors
(and, moreover, they satisfy essentially the same properties).

DEFINITION 6.2 (MATRIX ADDITION) Let A and B betwom X n matrices.
Then their matrix sum A + B is the m x n matrix obtained by adding cor-
responding entries. That is, the entry in the ith row and jth column of A + B
is a;; + b;j, where a;; and b;; are the ijth entries of A and B, respectively.

EXAMPLE 2 If

1 2 3 7 0 -1

8 2 2
=8 202]

then

However, if B = |: 7 ! ], then A + B is not defined, since B does not have

5 3
the same dimensions as A. *
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Properties of matrix addition. Forallm x n matrices A, B, and C we have

1. A+ B = B + A (commutativity);
2. A+ (B+C)=(A+ B)+ C (associativity);

3. Anm x n matrix O (the zero matrix) with the property that A + O = A
for all m x n matrices A.

DEFINITION 6.3 (SCALAR MULTIPLICATION) If A is an m x n matrix and
k € R is any scalar, then the product kA of the scalar k£ and the matrix A is
obtained by multiplying every entry in A by k. That is, the i jth entry of kA
is ka;;j (where a;; is the ijth entry of A).

12 3 3.6 9
EXAMPLE 3 IfA=[4 5 6},then3A=[12 15 1g]~ .

Properties of scalar multiplication. If A and B are any m X n matrices
and k and [ are any scalars, then

1. (k+1)A = kA + [ A (distributivity);

2. k(A + B) = kA + kB (distributivity);

3. k(IA) = (kD)A = l(kA).

We leave it to you to supply proofs of these addition and scalar multiplication
properties if you wish.

Just as defining products of vectors needed to be “unexpected” in order to be
useful, so it is with defining products of matrices. To a degree, matrix multipli-
cation is a generalization of the dot product of two vectors.

DEFINITION 6.4 (MATRIX MULTIPLICATION) Let A be an m x n matrix
and B an n x p matrix. Then the matrix product AB is the m x p matrix
whose ijth entry is the dot product of the ith row of A and the jth column
of B (considered as vectors in R"). That is, the ijth entry of

ary aiz o dip

by ... by ... by
: by by; by
lain a -+ ail . . .
By o bj by
am1  Am2 - Amn

is

ajbyj + aipbyj + - - - + ajyb,; = (more compactly) Zaikbkj.
k=1
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EXAMPLE 4 If

0 1
A:[i g 2} and B=|7 0 [,
2 4

then the (2, 1) entry of AB is the dot product of the second row of A and the first
column of B:

0
(2, 1) entry = [ 4 5 6 ] | T =@O0)+ 6T+ (6)(2) =47.
2

The full product AB is the 2 x 2 matrix
20 13
47 28 |°

On the other hand, BA is the 3 x 3 matrix

4 5 6
7 14 21 |.
18 24 30 *

Order matters in matrix multiplication. To multiply two matrices we must
have

Number of columns of left matrix = number of rows of right matrix.

In Example 4, the products AB and BA are matrices of different dimensions;
hence, they could not possibly be the same. A worse situation occurs when the
matrix product is defined in one order and not the other. For example, if Ais2 x 3
and Bis3 x 3,then AB isdefined (andisa2 x 3 matrix), but B A is not. However,
even if both products AB and BA are defined and of the same dimensions (as is
the case if A and B are both n x n, for example), it is in general still true that

AB # BA.

Despite this negative news, matrix multiplication does behave well in a number
of respects, as the following results indicate:

Properties of matrix multiplication. Suppose A, B, and C are matrices
of appropriate dimensions (meaning that the expressions that follow are all
defined) and that & is a scalar. Then

1. A(BC)=(AB)C;

2. k(AB) = (kA)B = A(kB);

3. AB+C)=AB+ AC;

4. (A+ B)C = AC + BC.

The proofs of these properties involve little more than Definition 6.4, although
the notation can become somewhat involved, as in the proof of property 1.

One simple operation on matrices that has no analogue in the real number
system is the transpose. The transpose of an m x n matrix A is the n x m matrix



1.6 | Some n-dimensional Geometry 55

AT obtained by writing the rows of A as columns. For example, if

1 4
A:[}l g 2} then AT=|2 5
3 6

More abstractly, the ijth entry of AT is aj;, the jith entry of A.
The transpose operation turns row vectors into column vectors and vice versa.
We also have the following results:

(AT = A, for any matrix A. 3)

(AB)" = BT AT, where Aism x nand Bisn x p. 4)

The transpose will largely function as a notational convenience for us. For
example, consider a, b € R” to be column vectors. Then the dot product a - b can
be written in matrix form as

b

by

a-b=aby+aby+---+ab,=[ar a - a, || . |=a"b.

by,
EXAMPLE 5 Matrix multiplication is defined the way it is so that, roughly
speaking, working with vectors or quantities involving several variables can be
made to look as much as possible like working with a single variable. This idea
will become clearer throughout the text, but we can provide an important example
now. A linear function in a single variable is a function of the form f(x) = ax
where a is a constant. The natural generalization of this to higher dimensions
is a linear mapping F: R" — R”, F(x) = Ax, where A is a (constant) m X n
matrix and x € R". More explicitly, F is a function that takes a vector in R”
(written as a column vector) and returns a vector in R” (also written as a column).
That is,

a dap -+ dap X1

ay dxp - Ay X2
F(x) = Ax =

Aml Am2 - Amn Xn

The function F has the properties that F(x + y) = F(x) + F(y) for all x, y € R”
and F(kx) = kF(x) for all x € R", k € R. These properties are also satisfied by
f(x) = ax, of course. Perhaps more important, however, is the fact that linear
mappings behave nicely with respect to composition. Suppose F is as just defined
and G: R" — R? is another linear mapping defined by G(x) = Bx, where B is a
p x m matrix. Then there is a composite function G o F: R” — R? defined by

G o F(x) = G(F(x)) = G(Ax) = B(Ax) = (BA)x

by the associativity property of matrix multiplication. Note that BA is defined
andisa p x n matrix. Hence, we see that the composition of two linear mappings
is again a linear mapping. Part of the reason we defined matrix multiplication the
way we did is so that this is the case. *

EXAMPLE 6 We saw that by interpreting equation (1) in §1.2 in n dimensions,
we obtain parametric equations of a line in R”. Equation (2) of §1.5, the equation
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for a plane in R? through a given point (x, v, zo) With given normal vector
n = Ai + Bj + CK, can also be generalized to n dimensions:

Ai(xy —b1) + Ax(xa — bo) + - -+ + Ap(x, — by) = 0.

If we let A= (A, As, ..., Ay), b= (b1, ba,...,b,) (“constant” vectors), and
x = (x1, X2, .. ., X,,) (2 “variable” vector), then the aforementioned equation can
be rewritten as

A-(x—b)=0
or, considering A, b, and x as n x 1 matrices, as
AT(x—=b)=0.

This is the equation for a hyperplane in R" through the point b with normal
vector A. The points x that satisfy this equation fill out an (n — 1)-dimensional
subset of R". *

At this point, it is easy to think that matrix arithmetic and the vector geometry
of R”, although elegant, are so abstract and formal as to be of little practical use.
However, the next example, from the field of economics,? shows that this is not
the case.

EXAMPLE 7 Suppose that we have n commodities. If the price per unit of the
ith commodity is p;, then the cost of purchasing x; (> 0) units of commodity
iis pix;. If p=(p1,..., pn) is the price vector of all the commodities and
x = (x1, ..., X,) is the commodity bundle vector, then

P-X= pix1+ p2x2+ -+ puXp

represents the total cost of the commodity bundle.

Now suppose that we have an exchange economy, so that we may buy and
sell items. If you have an endowment vector w = (wy, ..., w,), where w; is the
amount of commodity i that you can sell (trade), then, with prices given by the
price vector p, you can afford any commodity bundle x where

p-x<p-w.
We may rewrite this last equation as
p-x—w)<0.

In other words, you can afford any commodity bundle x in the budget set
{x|p-(x—w) < 0}. The equation p - (x — w) = 0 defines a budget hyperplane
passing through w with normal vector p. *

Determinants

We have already defined determinants of 2 x 2 and 3 x 3 matrices. (See §1.4.)
Now we define the determinant of any n X n (square) matrix in terms of determi-
nantsof (n — 1) x (n — 1) matrices. By “iterating the definition,” we can calculate
any determinant.

2 See D. Saari, “Mathematical complexity of simple economics,” Notices of the American Mathematical
Society 42 (1995), no. 2, 222-230.



1.6 | Some n-dimensional Geometry 57

DEFINITION 6.5 Let A = (a;;) be an n x n matrix. The determinant of
A is the real number given by

|A] = (=DM ay|An] + (=) Pap|Ap| + -+ (=) ay, ALl

where A;; is the (n — 1) x (n — 1) submatrix of A obtained by deleting the
ith row and jth column of A.

1 2 1 3
EXAMPLES IfA=| 2 ) > | i
=1 4 2 -1 o [
3 2 1 1
—4—1+—3 5 5
-2 0 5
Ap = =| 4 -1 0
4 -1 0 s 11
3 -2 1 1
According to Definition 6.5,
> 10 s Lo
- — (_1\I+1 _
det| 4, 5 | o |=CDT)det _2 1 (1)
32 1 1
2 0 5]
+(=D2Q2)det| 4 —1
2 1 5]
+(=D"3()det| 4 2
3 -2 1|
S -
+(=D"*B)det| 4 2 -1

= (DD +(=DHR)37) + (H(A)(=78)
+(=D3)(=T)
= —132. *

The determinant of the submatrix A;; of A is called the i jth minor of A, and
the quantity (—1)"*/|A;;| is called the ijth cofactor. Definition 6.5 is known as
cofactor expansion of the determinant along the first row, since det A is written
as the sum of the products of each entry of the first row and the corresponding
cofactor (i.e., the sum of the terms a;; times (—1)"*/|A;;]).

It is natural to ask if one can compute determinants by cofactor expansion
along other rows or columns of A. Happily, the answer is yes (although we shall
not prove this).
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Convenient Fact. The determinant of A can be computed by cofactor ex-
pansion along any row or column. That is,

|A] = (=) ai|An] + (=D PanlAnl + - + (= 1) a1, Asy|
(expansion along the ith row),
Al = (=D)'"ay| Ayl + (=1 azjl Azl + - - - + (1) an| Ayl

(expansion along the jth column).

EXAMPLE 9 To compute the determinant of

1 2 0 4 5
2 0 0 9 0
7 5 1 -1 0],
0o 2 0 0 2
31 0 0 O

expansion along the first row involves more calculation than necessary. In partic-
ular, one would need to calculate four 4 x 4 determinants on the way to finding
the desired 5 x 5 determinant. (To make matters worse, these 4 x 4 determinants
would, in turn, need to be expanded also.) However, if we expand along the third
column, we find that

det A = (—1)'3(0)det A3 + (—1)*"3(0) det Axs + (—1)*F3(1) det A3z
+(=1)*3(0) det Ags + (—1)°7(0) det As;

= det As3
1 2 4 5
12 0 9 o0
10 2 0 2
3 I 0 0

There are several good ways to evaluate this 4 x 4 determinant. We’ll expand
about the bottom row:

; é ‘9‘ 8 2 4 5 1 4 5
o 2 0 o ==D*'3) [0 9 0[+C=D*"* (]2 9 o0
3 1 0 0 2 0 2 0 0 2

= (=DB)(=54) + ()(1)(2)

Of course, not all matrices contain well-distributed zeros as in Example 9,
so there is by no means always an obvious choice for an expansion that avoids
much calculation. Indeed, one does not compute determinants of large matrices
by means of cofactor expansion. Instead, certain properties of determinants are
used to make hand computations feasible. Since we shall rarely need to consider
determinants larger than 3 x 3, we leave such properties and their significance to
the exercises. (See, in particular, Exercises 26 and 27.)
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1. Rewrite in terms of the standard basis for R":
(@ (1,2,3,...,n)

(b) (1,0,—-1,1,0,—1,...,1,0, —1) (Assume that n
is a multiple of 3.)

In Exercises 2—4 write the given vectors without recourse to
standard basis notation.

2. e, t+e+---+e,

3. e, —2e; +3e; —4des+ -+ (=1)""ne,

4. e +e,

5. Calculate the following, where a=(1,3,5,...,
2n —1)andb = (2, —4,6,...,(=1)"'2n):
(a) a+b (b) a—>b (c) —3a
(d) Il (¢) a-b

6. Let n be an even number. Verify the triangle in-
equality in R” for a=(1,0,1,0,...,0) and b=
0,1,0,1,...,1).

7. Verify that the Cauchy—Schwarz inequality holds for
the vectorsa = (1,2,...,n)andb=(1,1,...,1).

8. Ifa=(1,-1,7,3,2)and b = (2,5,0,9, —1), calcu-
late the projection proj,b.

9. Show, for all vectors a, b, ¢ € R”, that

la—bll =< [a—c|l+[c—bl.
Prove the Pythagorean theorem. That is, if a, b, and

¢ are vectors in R” suchthata+b =canda+-b =0,
then

10.

lall? + IblI* = lle]®.
Why is this called the Pythagorean theorem?

11. Let a and b be vectors in R”. Show that if ||a + b|| =
lla — b||, then a and b are orthogonal.

12. Let a and b be vectors in R”. Show that if ||a — b]|| >
lla + b||, then the angle between a and b is obtuse (i.c.,

more than 7 /2).

13. Describe “geometrically” the set of points in R> satis-

fying the equation

2()61 — 1)+3(X2+2)—7X3 +X4—4—5()C5+ 1):
14. To make some extra money, you decide to print four
types of silk-screened T-shirts that you sell at various
prices. You have an inventory of 20 shirts that you can
sell for $8 each, 30 shirts that you sell for $10 each, 24
shirts that you sell for $12 each, and 20 shirts that you
sell for $15 each. A friend of yours runs a side business
selling embroidered baseball caps and has an inventory

e

15.

of 30 caps that can be sold for $10 each, 16 caps that
can be sold for $10 each, 20 caps that can be sold for
$12 each, and 28 caps that can be sold for $15 each.
You suggest swapping half your inventory of each type
of T-shirt for half his inventory of each type of baseball
cap. Is your friend likely to accept your offer? Why or
why not?

Suppose that you run a grain farm that produces six
types of grain at prices of $200, $250, $300, $375,
$450, $500 per ton.

(a) If x = (x1, ..., x¢) is the commodity bundle vec-
tor (meaning that x; is the number of tons of grain
i to be purchased), express the total cost of the
commodity bundle as a dot product of two vectors
in RS.

A customer has a budget of $100,000 to be used
to purchase your grain. Express the set of possible
commodity bundle vectors that the customer can
afford. Also describe the relevant budget hyper-
plane in RS,

(b)

In Exercises 16—19, calculate the indicated matrix quantities

where

16.
18.
20.

12 3 —4 9 s
A=[—2 0 1]’ B=[ 0 3 o]
-1 0
S
0 3 -2
34— 2B 17. AC
DB 19. B7D

The n x n identity matrix, denoted 7 or I, is the ma-
trix whose iith entry is 1 and whose other entries are
all zero. That is,

1 0 0

0 1 0
I, = .

0 0 1

(a) Explicitly write out I, I3, and /.

(b) The reason [ is called the identity matrix is that
it behaves as follows: Let A be any m x n matrix.
Then

i. Al, = A.
ii. ,A=A.

Prove these results. (Hint: What are the ijth entries
of the products in (i) and (ii)?)
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Evaluate the determinants given in Exercises 21-23.

21.

22.

23.

24.

25.

26.

7 0 -1 0
2 0 1 3
1 -3 0 2
0o 5 1 =2

&8 0 0 O
15 1 0 O
-7 6 -1 0

& 1 9 7
5 -1 0 8 11
o 2 1 9
0 0 4 -3
o o0 o0 2 1
0o 0 0 0 —

Prove that a matrix that has a row or a column con-
sisting entirely of zeros has determinant equal to
Zero.

An upper triangular matrix is an n x n matrix whose
entries below the main diagonal are all zero. (Note:
The main diagonal is the diagonal going from upper
left to lower right.) For example, the matrix

1 2 -1 2
0o 3 4 3
0 0 5 6
o 0 0 7

is upper triangular.

(a) Give an analogous definition for a lower triangu-
lar matrix and also an example of one.

(b) Use cofactor expansion to show that the determi-
nant of any n x n upper or lower triangular matrix
A is the product of the entries on the main diagonal.
That is, det A = ayja - - - anp.

Some properties of the determinant. Exercises 24
and 25 show that it is not difficult to compute de-
terminants of even large matrices, provided that the
matrices have a nice form. The following operations
(called elementary row operations) can be used to
transform an n x n matrix into one in upper triangular
form:
I. Exchange rows i and j.
II. Multiply row i by a nonzero scalar.

III. Add a multiple of row i to row j. (Row i remains
unchanged.)

For example, one can transform the matrix

0o 2 3
1 7 =2
5.9

into one in upper triangular form in three steps:

Step 1. Exchange rows 1 and 2 (this puts a nonzero
entry in the upper left corner):

0o 2 3 17 =2
1 7 =2 — 0 2 3
1 5 9 1 5 9

Step 2. Add —1 times row 1 to row 3 (this eliminates
the nonzero entries below the entry in the upper left

corner):
17 2] 1 7 =27
0 2 3 — 0o 2 3.
|15 9] | 0 =2 11 |
Step 3. Add row 2 to row 3:
17 2] 17 2]
0 2 3 — 0o 2 3.
| 0 =2 11 | | 0 0 14 |

The question is, how do these operations affect the de-
terminant?

(a) By means of examples, make a conjecture as to the
effect of a row operation of type I on the determi-
nant. (That is, if matrix B results from matrix A by
performing a single row operation of type I, how are
det A and det B related?) You need not prove your
results are correct.

(b) Repeat part (a) in the case of a row operation of
type III.

(c) Prove that if B results from A by multiplying the
entries in the ith row of A by the scalar ¢ (a type II
operation), then det B = ¢ - det A.

27. Calculate the determinant of the matrix

2 1 =2 7 8

1 0 1 -2 4

A= -1 1 2 3 =5
o 2 3 1 7

-3 2 -1 0 1

by using row operations to transform A into a matrix
in upper triangular form and by using the results of
Exercise 26 to keep track of how the determinant of A
and the determinant of your final matrix are related.

28. (a) Isdet(A 4+ B) = det A + det B? Why or why not?
(b) Calculate

1 2 7
342 1-1 5+1
0 -2 0
and
1 2 7 1 2 7
301 5(+|2 -1 1],

0 -2 0 0 -2 0

and compare your results.



(c) Calculate

1 3 243
4 —1+5
-1 0 0-2
and
1 3 1 3 3
0 4 -1 |+ 0 4 51,
-1 0 -1 0 -2

and compare your results.

(d) Conjecture and prove a result about sums of deter-
minants. (You may wish to construct further exam-
ples such as those in parts (b) and (c).)

29. Itisafactthat, if A and B are any n x n matrices, then

det(AB) = (det A)(det B).

Use this fact to show that det(A B) = det(B A). (Recall
that AB # BA, in general.)

An n x n matrix A is said to be invertible (or nonsingular) if
there is another n x n matrix B with the property that

AB =BA=1,,

where I, denotes the n x n identity matrix. (See Exercise 20.)
The matrix B is called an inverse to the matrix A. Exercises
30-38 concern various aspects of matrices and their inverses.

30. (a) Verify that [ ! (1) ] is an inverse of[ _1 0 ]

31.

32.

33.

34.

1 11
1 23
(b) Verify that 2 53 is an inverse of
1 0 8
—40 16 9
13 =5 -3
5 =2 —1

Using the definition of an inverse matrix, find an

2 2 1
inverseto | 0 1 0
0 0 -1
0o 2 1
Try to find an inverse matrix to | 0 1 0
0 0 -1
What happens?

Show thatif ann x n matrix A is invertible, then A can
have only one inverse matrix. Thus, we may write A~
to denote the unique inverse of a nonsingular matrix
A. (Hint: Suppose A were to have two inverses B and
C. Consider B(AC).)

Suppose that A and B are n x n invertible matrices.
Show that the product matrix A B is invertible by ver-
ifying that its inverse (AB)™' = B~1A~L,
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35. (a) Show that if A is invertible, then det A # 0. (In
fact, the converse is also true.)

(b) Show that if A is invertible, then

_ 1
det(A 1) = M

36. (a) Show that, if ad — bc # 0, then a general 2 x 2

matrix |: a b ] has the matrix
c d
d b
1 d —b — ad—bc " ad—bc
ad —bc| —¢ a “ad—bc  ad-bc
as inverse.
(b) Use this formula to find an inverse of |: _% ; ]

37. If A is a 3 x 3 matrix and det A # 0, then there is
a (somewhat complicated) formula for A~!'. In
particular,

1 [Ail —[Aal Azl
AT = —[Apl  JAxn|l —]A3]
detA | jAnl —lAnl  |Ax|

)

where A;; denotes the submatrix of A obtained by
deleting the ith row and jth column (see Defini-
tion 6.5). Use this formula to find the inverse of

S

Il
—_— O N
[l S
W A=

More generally, if A isanyn x nmatrixanddet A # 0,
then

_ 1 .
A7 = detAadJA’

where adj A is the adjoint matrix of A, that is, the
matrix whose ijth entry is (—1)'*/|A;|. (Note: The
formula for the inverse matrix using the adjoint is typi-
cally more of theoretical than practical interest, as there
are more efficient computational methods to determine
the inverse, when it exists.)

38. Repeat Exercise 37 with the matrix

2 -1 3
A=|1 2 =2
30 1

Cross products in R". Although it is not possible to define a
cross product of two vectors in R" as we did for two vectors
in R, we can construct a “cross product” of n — 1 vectors
in R" that behaves analogously to the three-dimensional cross
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product. To be specific, if

a; = (a11,a12, ..., a1y), A =(a21,a2,...,0%), ...,
1 = (@Gn-11, Gn-12+ - - » An_1n)
aren — 1 vectors in R", we definea; X a; X --- X a,_ to be

the vector in R" given by the symbolic determinant

e] e2 ... en
ary ap T Ain
a Xay X --- Xa,_| = a2 2 - A2n
an—11 an—12 An—1n
(Here ey, ..., e, are the standard basis vectors for R".) Exer-

cises 39—42 concern this generalized notion of cross product.
39. Calculate the following cross product in R*:
(1,2,-1,3) x (0,2, -3, 1) x (-5, 1,6, 0).

40. Use the results of Exercises 26 and 28 to show that
(@) ap X --- X a; X - Xa; X0 XA
:_(alX"'XajX"'XaiX"'Xanfl),
l<i<n—-1,1<j<n-1
(b) a; x --- x ka; X -+ X a,_;
=k(ap X ---xa; X+ X a,_1),

() a; x---x(a+b)x---xa,
=a; X---Xa X---Xa,_|+
apx---xXxbx---xa,,

l1<i<n-—1,allbeR".

(d) Show thatifb = (by, ..., b,) is any vector in R",

then
b.(a; Xa; X -+ Xa,_)
is given by the determinant
b . b,
arn T Ain
An—11 T An—1n

41. Show that the vector b=a; X a; X ---
orthogonal to ay, ...

X a,_1 1S
, Ap—1-

42. Use the generalized notion of cross products to
find an equation of the (four-dimensional) hyper-
plane in R’ through the five points Py(1, 0, 3, 0, 4),
Pi(2,-1,0,0,5), Px7,0,0,2,0), P5(2,0,3,0,4),

1<i<n-1.

and P4(1, —1,3, 0, 4).

oP

Figure 1.82 The Cartesian
coordinate system.

y

Location y
P (x.y)

\ X

Location x

Figure 1.83 Locating a point P,
using Cartesian coordinates.

1.7 New Coordinate Systems

We hope that you are comfortable with Cartesian (rectangular) coordinates for R?
or R3. The Cartesian coordinate system will continue to be of prime importance to
us, but from time to time, we will find it advantageous to use different coordinate
systems. In R?, polar coordinates are useful for describing figures with circular
symmetry. In R3, there are two particularly valuable coordinate systems besides
Cartesian coordinates: cylindrical and spherical coordinates. As we shall see,
cylindrical and spherical coordinates are each a way of adapting polar coordinates
in the plane for use in three dimensions.

Cartesian and Polar Coordinates on R?

You can understand the Cartesian (or rectangular) coordinates (x, y) of a point
P in R? in the following way: Imagine the entire plane filled with horizontal and
vertical lines, as in Figure 1.82. Then the point P lies on exactly one vertical line
and one horizontal line. The x-coordinate of P is where this vertical line intersects
the x-axis, and the y-coordinate is where the horizontal line intersects the y-axis.
(See Figure 1.83.) (Of course, we’ve already assigned coordinates along the axes
so that the zero point of each axis is at the point of intersection of the axes. We
also normally mark off the same unit distance on each axis.) Note that, because
of this geometry, every point in R? has a uniquely determined set of Cartesian
coordinates.

Polar coordinates are defined by considering different geometric informa-
tion. Now imagine the plane filled with concentric circles centered at the origin
and rays emanating from the origin. Then every point except the origin lies on



(1, 6)

=
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-
—
—~
—

(1}, 0)

Figure 1.86 Locating the point
with polar coordinates (r, 0),
where r < 0.

6 r =6¢cos0

0 6
/6 33
/4 32
/3 3
7/2 0
27/3 -3
3 /4 -3v2
57/6 -33

T —6
/6 | =343
57 /4 —3J2
47/3 -3
3n/2 0
57/3 3
T /4 32
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P,
K
4 0
Figure 1.84 The polar coordinate Figure 1.85 Locating a point P,
system. using polar coordinates.

exactly one such circle and one such ray. The origin itself is special: No circle
passes through it, and all the rays begin at it. (See Figure 1.84.) For points P other
than the origin, we assign to P the polar coordinates (r, ), where r is the radius
of the circle on which P lies and 6 is the angle between the positive x-axis and
the ray on which P lies. (6 is measured as opening counterclockwise.) The origin
is an exception: It is assigned the polar coordinates (0, ), where 6 can be any
angle. (See Figure 1.85.) As we have described polar coordinates, » > 0 since r
is the radius of a circle. It also makes good sense to require 0 < 6 < 27, for then
every point in the plane, except the origin, has a uniquely determined pair of polar
coordinates. Occasionally, however, it is useful not to restrict r to be nonnegative
and 6 to be between 0 and 27r. In such a case, no point of R? will be described by
a unique pair of polar coordinates: If P has polar coordinates (r, 6), then it also
has (r, 6 4+ 2nmw) and (—r, 8 4+ (2n + 1)7) as coordinates, where n can be any
integer. (To locate the point having coordinates (7, 0), where r < 0, construct the
ray making angle 6 with respect to the positive x-axis, and instead of marching
|r| units away from the origin along this ray, go |7| units in the opposite direction,
as shown in Figure 1.86.)

EXAMPLE 1 Polar coordinates may already be familiar to you. Nonetheless,
make sure you understand that the points pictured in Figure 1.87 have the coor-

dinates indicated. *
(3\2, m/4)
(3V3, 7/6)
(2, 57/6) (2, 7/6)
(5.0) 6.0
(-1, 57/6) or
(1, 1176) or
3,3n2)4 (L 70)
Figure 1.87 Figure for Figure 1.88 The graph of
Example 1. r = 6cosf in Example 2.

EXAMPLE 2 Let’s graph the curve given by the polar equation r = 6 cos 6
(Figure 1.88). We can begin to get a feeling for the graph by compiling values, as
in the adjacent tabulation.
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Thus, r decreases from 6 to 0 as 0 increases from 0 to 77 /2; r decreases from
0 to —6 (or is not defined, if you take r to be nonnegative) as 6 varies from 7 /2
to 7r; r increases from —6 to 0 as 6 varies from 7 to 37 /2; and r increases from
0 to 6 as 6 varies from 37 /2 to 2. To graph the resulting curve, imagine a radar
screen: As § moves counterclockwise from 0 to 27, the point (7, 8) of the graph is
traced as the appropriate “blip” on the radar screen. Note that the curve is actually
traced twice: once as 6 varies from 0 to 7 and then again as 6 varies from 7 to
27 . Alternatively, the curve is traced just once if we allow only 6 values that yield
nonnegative r values. The resulting graph appears to be a circle of radius 3 (not
centered at the origin), and, in fact, one can see (as in Example 3) that the graph
is indeed such a circle. *

The basic conversions between polar and Cartesian coordinates are provided
by the following relations:

Polar to Cartesian: { T =reos 0 ; (1)
y =rsinf
. ) r?=x*+y?
Cartesian to polar: { tan = y/x 2)

Note that the equations in (2) do not uniquely determine r and 6 in terms of x
and y. This is quite acceptable, really, since we do not always want to insist that
r be nonnegative and 6 be between 0 and 2. If we do restrict » and 8, however,
then they are given in terms of x and y by the following formulas:

P T

tan~! y/x ifx>0,y>0
tan~'y/x +27 ifx >0,y <0
tan'y/x +7  ifx <0,y>0
/2 ifx=0,y>0
3m/2 ifx=0,y<0
indeterminate ifx=y=0

The complicated formula for 6 arises because we require 0 < 6 < 2, while the
inverse tangent function returns values between —/2 and 7 /2 only. Now you
see why the equations given in (2) are a better bet!

EXAMPLE 3 We can use the formulas in (1) and (2) to prove that the curve in
Example 2 really is a circle. The polar equation » = 6 cos 6 that defines the curve
requires a little ingenuity to convert to the corresponding Cartesian equation. The
trick is to multiply both sides of the equation by ». Doing so, we obtain

r? = 6r cosd.

Now (1) and (2) immediately give

2

x4+ y? = 6x.



Figure 1.89 The cylindrical
coordinate system.

Figure 1.90 Locating a point P,
using cylindrical coordinates.

Figure 1.91 The graph of the
cylindrical equation r = ry.
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We complete the square in x to find that this equation can be rewritten as
()C _3)2+y2 =9’

which is indeed a circle of radius 3 with center at (3, 0). *

Cylindrical Coordinates

Cylindrical coordinates on R are a “naive” way of generalizing polar coordinates
to three dimensions, in the sense that they are nothing more than polar coordinates
used in place of the x- and y-coordinates. (The z-coordinate is left unchanged.)
The geometry is as follows: Except for the z-axis, fill all of space with infinitely
extended circular cylinders with axes along the z-axis as in Figure 1.89. Then
any point P in R® not lying on the z-axis lies on exactly one such cylinder.
Hence, to locate such a point, it’s enough to give the radius of the cylinder, the
circumferential angle 6 around the cylinder, and the vertical position z along the
cylinder. The cylindrical coordinates of P are (r, 6, z), as shown in Figure 1.90.
Algebraically, the equations in (1) and (2) can be extended to produce the basic
conversions between Cartesian and cylindrical coordinates.

The basic conversions between cylindrical and Cartesian coordinates are
provided by the following relations:

x =rcosf
Cylindrical to Cartesian:  { y =rsinf ; 3)
7=z

rt=x?+y?
Cartesian to cylindrical: ~ { tanf = y/x . 4)
2=z

As with polar coordinates, if we make the restrictions » > 0, 0 < 0 < 27, then
all points of R except the z-axis have a unique set of cylindrical coordinates. A
point on the z-axis with Cartesian coordinates (0, 0, z¢) has cylindrical coordinates
(0, 0, z0), where 6 can be any angle.

Cylindrical coordinates are useful for studying objects possessing an axis of
symmetry. Before exploring a few examples, let’s understand the three “constant
coordinate” surfaces.

* The r = ry surface is, of course, just a cylinder of radius ry with axis the
z-axis. (See Figure 1.91.)

* The 6 = 6, surface is a vertical plane containing the z-axis (or a half-plane
with edge the z-axis if we take » > 0 only). (See Figure 1.92.)

* The z = z surface is a horizontal plane. (See Figure 1.93.)
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Figure 1.94 The graph of
r = 6.¢os6 in cylindrical
coordinates.

Figure 1.95 The graph of z = 2r
in cylindrical coordinates.

N Half-plane only
} AN ifr=0
|
|
|
|
|
|
|
|
|

Figure 1.93 The graph of

Figure 1.92 The graph of 6 = 6. Z=2o.

EXAMPLE 4 Graph the surface having cylindrical equation r = 6 cos 6. (This
equation is identical to the one in Example 2.) In particular, z does not appear
in this equation. What this means is that if the surface is sliced by the horizontal
plane z = ¢ where c is a constant, we will see the circle shown in Example 2, no
matter what c is. If we stack these circular sections, then the entire surface is a
circular cylinder of radius 3 with axis parallel to the z-axis (and through the point
(3, 0, 0) in cylindrical coordinates). This surface is shown in Figure 1.94. *

EXAMPLE 5 Graph the surface having equation z = 2r in cylindrical co-
ordinates.

Here the variable 6 does not appear in the equation, which means that the
surface in question will be circularly symmetric about the z-axis. In other words,
if we slice the surface by any plane of the form 6 = constant (or half-plane, if we
take » > (), we see the same curve, namely, a line (respectively, a half-line) of
slope 2. As we let the constant-6 plane vary, this line generates a cone, as shown
in Figure 1.95. The cone consists only of the top half (nappe) when we restrict r
to be nonnegative.

The Cartesian equation of this cone is readily determined. Using the formulas
in (4), we have

1= = =47 = =407+,

Since z can be positive as well as negative, this last Cartesian equation describes
the cone with both nappes. If we want the top nappe only, then the equation

z = 24/x? + y? describes it. Similarly, z = —2,/x? + y? describes the bottom
nappe. .

Spherical Coordinates

Fill all of space with spheres centered at the origin as in Figure 1.96. Then every
point P € R3, except the origin, lies on a single such sphere. Roughly speaking,
the spherical coordinates of P are given by specifying the radius p of the sphere
containing P and the “latitude and longitude” readings of P along this sphere.
More precisely, the spherical coordinates (p, ¢, 6) of P are defined as follows: p
is the distance from P to the origin; ¢ is the angle between the positive z-axis and
the ray through the origin and P; and 6 is the angle between the positive x-axis
and the ray made by dropping a perpendicular from P to the xy-plane. (See Figure
1.97.) The 6-coordinate is exactly the same as the §-coordinate used in cylindrical
coordinates. (Warning: Physicists usually prefer to reverse the roles of ¢ and 9,
as do some graphical software packages.)



/4

(1, 74, 0)

(2, m, m/4) or
(2, m, m/3) or
(-2,0,0)

Figure 1.98 Figure for Example 6.

(2, m/4, m/2)

(2, 12, /2) ‘
\’
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Figure 1.96 The spherical Figure 1.97 Locating the point
coordinate system. P, using spherical coordinates.

It is standard practice to impose the following restrictions on the range of
values for the individual coordinates:

p >0, 0<¢<m, 0<6 <2m. ®)]

With such restrictions, all points of R, except those on the z-axis, have a uniquely
determined set of spherical coordinates. Points along the z-axis, except for the
origin, have coordinates of the form (py, 0, 8) or (po, 7, 8), where py is a positive
constant and 0 is arbitrary. The origin has spherical coordinates (0, ¢, 6), where
both ¢ and 6 are arbitrary.

EXAMPLE 6 Several points and their corresponding spherical coordinates are
shown in Figure 1.98. *

Figure 1.99 The graph of Figure 1.100 The spherical
p = po (> 0). surface ¢ = ¢y, shown for
different values of ¢.

Spherical coordinates are especially useful for describing objects that have
a center of symmetry. With the restrictions given by the inequalities in (5), the
constant coordinate surface p = pg (pg > 0) is, of course, a sphere of radius py,
as shown in Figure 1.99. The surface given by 0 = 6, is a half-plane just as in the
cylindrical case. The ¢ = ¢, surface is a single-nappe cone if ¢y # 7 /2 and is
the xy-plane if ¢y = /2 (and is the positive or negative z-axis if g9 = 0 or 7).
(See Figure 1.100.) If we do not insist that p be nonnegative, then the cones would
include both nappes.



68 Chapter 1 | Vectors

The basic equations relating spherical coordinates to both cylindrical and
Cartesian coordinates are as follows.
Spherical/cylindrical:
r=psing 2 =r’+7?
0=6 tang =r/z . (6)
Z=pCcosg 0=20
Spherical/Cartesian:
X = psing cos6 ,02=xz+y2-|-z2
y = psing sinf tan(pzm/z- (7)
7= pCos¢@ tanf = y/x

Figure 1.101 Converting Figure 1.102 Converting
spherical to cylindrical coordinates spherical to cylindrical
when 0 < ¢ < 7. coordinates when 7/2 < ¢ < 7.

Using basic trigonometry, it is not difficult to establish the conversions in (6).
From the right triangle shown in Figure 1.101, we have

(5-9)-;
cos(——¢)=—.
2 ¢ P

Hence,

s .

r = pcos (5 —go) = psing.
Similarly,
. <7r ) z
sin | — — = —,

2 ¢ P

so that

LT

7= psm(z —(p) = pCos .
Thus, the formulas in (6) follow when 0 < ¢ < 7 /2. If 7/2 < ¢ < 7, then we
may employ Figure 1.102. So

T .
r = pcos (go - 5) = psing,
and

. b4 LT
z=—psm<<p—5>=psm<5—<p>=pcosg0.



1) p =2acosg

0 2a
/6 V3a
/4 V2a
/3 a
/2 0
21/3 —a
3 /4 —2a

b4 —2a
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Hence, the relations in (6) hold in general. The equations in (7) follow by substi-
tution of those in (6) into those of (3) and (4).

EXAMPLE 7 The cylindrical equation z = 2r in Example 5 converts via (6)
to the spherical equation

pcosp = 2psing.

Therefore,
t ! — t -1 ] 26°
ang = — =tan  — & 26°.
=3 ¢ 2

Thus, the equation defines a cone (as we just saw). The spherical equation is
especially simple in that it involves just a single coordinate. *

EXAMPLE 8 Notall spherical equations are improvements over their cylindri-
cal or Cartesian counterparts. For example, the Cartesian equation 6x = x? + y?
(whose polar—cylindrical equivalent is r = 6 cos ) becomes

6psing cosf = p*sin’ ¢ cos® 6 + p*sin® ¢ sin’ O
from (7). Simplifying,

6psing cosd = p?sin® ¢ (cos? 6 + sin® H)
— 6psing cosf = p?sin’ ¢
— 6cost = psing.

This spherical equation is more complicated than the original Cartesian equation
in that all three spherical coordinates are involved. Therefore, it is not at all
obvious that the spherical equation describes a cylinder. *

EXAMPLE 9 Let’s graph the surface with spherical equation p = 2a cos ¢,
where a > 0. As with the graph of the cone with cylindrical equation z = 2r,
note that the equation is independent of 8. Thus, all sections of this surface made
by slicing with the half-plane & = ¢ must be the same. If we compile values as
in the adjacent table, then the section of the surface in the half-plane 6 = 0 is as
shown in Figure 1.103. Since this section must be identical in all other constant-0
half-planes, we see that this surface appears to be a sphere of radius a tangent to
the xy-plane, which is shown in Figure 1.104.

b (2a, 0, 0)
Section of
p =2acos ¢
/ N> 0=m/2
6=0 0=rn/3
0 = rm/4

Figure 1.103 The cross section Figure 1.104 The graph of p =
of p =2a cos ¢ in the half-plane 2a cos ¢.

0=0.
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The Cartesian equation of the surface is determined by multiplying both sides
of the spherical equation by p and using the conversion equations in (7):

p=2acosg = p> =2apcosy
= x* +y*+ 77 =2az
= +y +@@—a)=d

by completing the square in z. This last equation can be recognized as that of a
sphere of radius a with center at (0, 0, a) in Cartesian coordinates. *

EXAMPLE 10 NASA launches a 10-ft-diameter space probe. Unfortunately,
a meteor storm pushes the probe off course, and it is partially embedded in
the surface of Venus, to a depth of one quarter of its diameter. To attempt to
reprogram the probe’s on-board computer to remove it from Venus, it is necessary
to describe the embedded portion of the probe in spherical coordinates. Let us
find the description desired, assuming that the surface of Venus is essentially flat
in relation to the probe and that the origin of our coordinate system is at the center

of the probe.
b4
Probe
y
L Ry
10/4" Surface of Venus Y
- \‘ 512
-
Figure 1.105 The space probe of Example 10. Figure 1.106 A slice of the probe

of Example 10.

The situation is illustrated in Figure 1.105. The buried part of the probe clearly
has symmetry about the z-axis. That is, any slice by the half-plane # = constant
looks the same as any other. Thus, € can vary between 0 and 2. A typical slice
of the probe is shown in Figure 1.106. Elementary trigonometry indicates that for
the angle « in Figure 1.106,

5
z cosa = 2 = l
5 2

Hence, o = cos™! % = 1 /3. Thus, the spherical angle ¢ (which opens from the

positive z-axis) varies from m — /3 = 27/3 to 7 as it generates the buried part
of the probe. Finally, note that for a given value of ¢ between 27 /3 and 7, p
is bounded by the surface of Venus (the plane z = —% in Cartesian coordinates)
and the spherical surface of the probe (whose equation in spherical coordinates is
p =5). See Figure 1.107. From the formulas in (7) the equation z = —% corre-
sponds to the spherical equation p cos ¢ = —% or, equivalently, to p = —% sec ¢.
Therefore, the embedded part of the probe may be defined by the set

Figure 1.107 Coordinate view of

2
the cross section of the probe of {(p, @, 0) ' —é secyp < p <5, il <p<m,0<0< 27r} .
Example 10. 2 3



Figure 1.108 The standard basis
vectors for the cylindrical
coordinate system.

Figure 1.109 The standard basis
vectors for the spherical
coordinate system.
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Standard Bases for Cylindrical
and Spherical Coordinates

In Cartesian coordinates, there are three special unit vectors i, j, and k that point
in the directions of increasing x-, y-, and z-coordinate, respectively. We find
corresponding sets of vectors for cylindrical and spherical coordinates. That is,
in each set of coordinates, we seek mutually orthogonal unit vectors that point in
the directions of increasing coordinate values.

In cylindrical coordinates, the situation is as shown in Figure 1.108. The
vectors e, eg, and e,, which form the standard basis for cylindrical coordinates,
are unit vectors that each point in the direction in which only the coordinate
indicated by the subscript increases. There is an important difference between
the standard basis vectors in Cartesian and cylindrical coordinates. In the former
case, i, j, and k do not vary from point to point. However, the vectors e, and ey
do change as we move from point to point.

Now we give expressions for e, €, and e,. Since the cylindrical z-coordinate
is the same as the Cartesian z-coordinate, we must have e, = k. The vector
e, must point radially outward from the z-axis with no k-component. At a
point (x, v, z) € R? (Cartesian coordinates), the vector xi+ yj has this prop-
erty. Normalizing it to obtain a unit vector (see Proposition 3.4 of §1.3), we
obtain

xi+ yj
\/x2+y2'

With e, and e, in hand, it’s now a simple matter to define ey, since it must be
perpendicular to both e, and e,. We take

e =

—yi+ xj
VX2 +y? '
(The reason for this choice of cross product, as opposed to e, x e, is so that ey

points in the direction of increasing 6.) To summarize, and using the cylindrical
to Cartesian conversions given in (3),

€ —e, Xe =

e = A =cosfi+sind j;
Va2 4+ y?

egzﬂz—sin9i+cosej; ®)
Va2 4+ y?

e, =k

In spherical coordinates, the situation is shown in Figure 1.109. In particular,
there are three unit vectors e, €., and eg that form the standard basis for spherical
coordinates. These vectors all change direction as we move from point to point.

We give expressions for e,, e,, and eg. Since the 6-coordinates in both spher-
ical and cylindrical coordinates mean the same thing, ey in spherical coordinates
is given by the value of ey in (8). At a point (x, y, z), the vector e, should point
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from the origin directly to (x, y, z). Thus, e, may be obtained by normalizing
xi+ yj + zk. Finally, e, is nothing more than e; x e,. If we explicitly perform
the calculations just described and make use of the conversion formulas in (7),
the following are obtained:

i j k
epzuzsin(p cos@i+sing sinf j+ cospk;
VX2 4+ y2 472
. xzi+ yzj — (x* + y?)k
Ly 42

=cos¢ cosf i+ cose sinfj—singk;

)

—yi+ xj

N

ey = = —sinfi+ cosbj.

Although the results of (8) and (9) will not be used frequently, they will prove
helpful on occasion.

Hyperspherical Coordinates (optional)

There is a way to provide a set of coordinates for R” that generalizes spherical
coordinates on R®. For n > 3, the hyperspherical coordinates of a point P € R”
are (o, 91, ¢2, ..., ¢s—1) and are defined by their relations with the Cartesian
coordinates (xy, Xz, ..., x,) of P as

X| = psingsing, - --sing, 2 cos @,
Xy = psing; sing, - --sing,_; sing,_|
X3 = psing; sing, - --sing,_3 cos Y, »

(10)

X4 = psing;sing; ---sing, 4c08¢, 3

Xp = pCOS
To be more explicit, in equation (10) above we take

Xp = psing; sing, ---sSing,_; cOS@Y, +1 fork=3,..., n.
Note that when n = 3, the relations in (10) become
X1 = psin g cos ¢,
Xy = psing;sing, .
X3 = p COS ¢y

These relations are the same as those given in (7), so hyperspherical coordinates
are indeed the same as spherical coordinates when n = 3.

In analogy with (5), it is standard practice to impose the following restrictions
on the range of values for the coordinates:

p >0, O<gpr<mfork=1,...,n—2, 0<¢,1 <2m.  (11)
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Then, with these restrictions, we can convert from hyperspherical coordinates to
Cartesian coordinates by means of the following formulas:

PP=xitx oty

tangy = /xZ + - +x2,/x,

tan gy =[x} + -+ x5 /X0 (12)

2 2
X{ +x5/x3
tang, = X2/X1

tang,_, =

Hyperspherical coordinates get their name from the fact that the (n — 1)-
dimensional hypersurface in R” defined by the equation p = pg, where py is a
positive constant, consists of points on the hypersphere of radius py defined in
Cartesian coordinates by the equation

1.7 Exercises

X7+ X3+ X = pp.

In Exercises 1-3, find the Cartesian coordinates of the points
whose polar coordinates are given.

1. (V2,7/4)
2. (V/3,51/6)
3. (3,0

In Exercises 4—6, give a set of polar coordinates for the point
whose Cartesian coordinates are given.

4. (24/3,2)
5. (-2,2)
6. (—1,-2)

In Exercises 7-9, find the Cartesian coordinates of the points
whose cylindrical coordinates are given.

7. (2,2,2)
8. (7,7/2, 1)
9. (1,27/3, -2)

In Exercises 10—13, find the rectangular coordinates of the
points whose spherical coordinates are given.

10. (4,7/2,7/3)
M. 3,7/3,7/2)
12. (1,37/4,27/3)
13. (2,7, 7/4)

In Exercises 14—16, find a set of cylindrical coordinates of the
point whose Cartesian coordinates are given.

14. (—1,0,2)
15. (—1,+/3,13)
16. (5,6,3)

In Exercises 17 and 18, find a set of spherical coordinates of
the point whose Cartesian coordinates are given.

17. (1, -1, 6)

18. (0,+/3,1)

19. This problem concerns the surface described by the
equation (r — 2)> 4 z2 = 1 in cylindrical coordinates.
(Assume r > 0.)

(a) Sketchthe intersection of this surface with the half-
plane 6 = /2.
(b) Sketch the entire surface.
20. (a) Graph the curve in R? having polar equation r =
2a sin 6§, where a is a positive constant.
(b) Graph the surface in R® having spherical equation
p =2asing.

21. Graph the surface whose spherical equation is p =
1 —cosg.

22. Graph the surface whose spherical equation is p =
1 — sine.

In Exercises 23-25, translate the following equations from
the given coordinate system (i.e., Cartesian, cylindrical, or
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spherical) into equations in each of the other two systems. In
addition, identify the surfaces so described by providing ap-
propriate sketches.

23. psing sinf =2
24. 72 =2x> +2y?
25. r=0

In Exercises 26-29, sketch the solid whose cylindrical coordi-
nates (r, 0, 7) satisfy the given inequalities.

26. 0<r<3 0<6<m/2, —-1<z=<2
27. r <z <5,
28. 2r <z <5-3r

29. rP—1<z<5—r2

0<0<m

In Exercises 30-35, sketch the solid whose spherical coordi-
nates (p, ¢, 0) satisfy the given inequalities.

30. 1<p=<2

31. 0<p <1, 0<¢p=<mn/2
32. 0<p<1, 0<6=<m/2
3. 0<¢p<m/4, 0<p<2

3. 0<p<2/cosp, 0<o¢p<m/4

35. 2cosp <p <3
36. (a) Which points P in R? have the same rectangular
and polar coordinates?

(b) Which points P in R? have the same rectangular
and cylindrical coordinates?

(c) Which points P in R? have the same rectangular
and spherical coordinates?
37. (a) Howare the graphs ofthe polar equationsr = f(0)
and r = — f(0) related?

(b) How are the graphs of the spherical equations
p = f(p,0)and p = — f (¢, 0) related?
(c) Repeat part (a) for the graphs of r = f(6) and

r=3£().
(d) Repeat part (b) for the graphs of p = f(¢, 0) and
p=3f(p.0).

38. Suppose that a surface has an equation in cylindrical
coordinates of the form z = f(r). Explain why it must
be a surface of revolution.

39. (a) Verify that the basis vectors e,, ey, and e, for
cylindrical coordinates are mutually perpendicu-
lar unit vectors.

(b) Verify that the basis vectors e, , e,, and ey for spher-
ical coordinates are mutually perpendicular unit
vectors.

40. Use the formulas in (8) to express i, j, k in terms of e,,
ey, and e,.

41. Use the formulas in (9) to express i, j, k in terms of e,
e,, and ey.

42. Consider the solid in R? shown in Figure 1.110.
(a) Describe the solid, using spherical coordinates.

(b) Describe the solid, using cylindrical coordinates.

A portion of the
sphere of radius 3
(centered at origin)

o\l

X

Figure 1.110 The ice-cream-
cone-like solid in R? in Exercise 42.

In Exercises 43—47, you will use the equations in (10) to es-
tablish those in (12).

43. Show that tang, | = x/x1.
44. (a) Calculate x? + x3 in terms of the hyperspherical
coordinates p, @1, ..., @y_2.
(b) Assuming the inequalities in (11), use part (a) to

show that tan ¢,_, = \/m/xs-

45. (a) Calculate x} + x7 + x7 in terms of the hyperspher-
ical coordinates p, @1, ..., @,_3.

(b) Assuming the inequalities in (11), use part (a) to

show that tan ¢, 3 = xl2 + x22 + x32/x4.

46. (a) Fork =2,...,n — 1, show that x? + x +--- +
x2 = p?sin® gy - - -sin® g, 4. (Note: This is best
accomplished by means of mathematical induc-
tion.)

(b) Assuming the inequalities in (11), use part (a)
to show that, for k =2,...,n—1, tang,_; =

2 2
Xy 4 X X

47. Show that x? +x3 +--- +x2 = p°.
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N O a b

. Ifa=(1,7,—-9)and b = (1, =9, 7), then a = b.

. If a and b are two vectors in R? and k and [ are real

numbers, then (k — [)(a+b) = ka — [a+ kb — [b.

. The displacement vector from Pi(1,0,—1) to

Py(5,3,2)is (—4, =3, =3).

. Force and acceleration are vector quantities.
. Velocity and speed are vector quantities.
. Displacement and distance are scalar quantities.

. If a particle is at the point (2, —1) in the plane and

moves from that point with velocity vector v = (1, 3),
then after 2 units of time have passed, the particle will
be at the point (5, 1).

8. The vector (2, 3, —2) is the same as 2i + 3j — 2k.

10.

11.

12.

13.

14.
15.

16.
17.

Miscellaneous Exercises for Chapter 1

. A set of parametric equations for the line through

(1, =2, 0) that is parallel to (—2,4,7)is x =1 —2t,
y=4tr—-2,z=17.

A set of parametric equations for the line through
(1,2,3) and (4,3,2) isx =4 -3¢, y=3—1t, z =
t+2.

The line with parametric equations x =2 —
3t, y=t+1, z=2t—3 has symmetric form
x+2 - z—-3

3 T T
The two sets of parametric equations x = 3¢ — 1,
y=2—t,z=2t+5and x=2—-6t, y=2r+1,
z = 7 — 4t both represent the same line.

The parametric equations x = 2sinf, y = 2cost,
where 0 < ¢t < 7, describe a circle of radius 2.

The dot product of two unit vectors is 1.

For any vector a in R" and scalar k, we have ||ka| =
klall.

Ifa,u € R" and ||u|| = 1, then proj,a = (a - w)u.

For any vectors a, b, ¢ in R?, we have a X (b X ¢) =
(axDb)xe.

18.

19.
20.
21.

22.

23.

24,

25.
26.

27.

28.

29.

30.

The volume of a parallelepiped determined by the vec-
tors a, b, ¢ € R*is |[(a X ¢) + b|.

llal]lb — ||b|la is a vector.
(axb)-c—(axc)-bisascalar.

The plane containing the points (1, 2, 1), (3, —1, 0),
and (1, 0, 2) has equation 5x + 2y + 4z = 13.

The plane containing the points (1, 2, 1), (3, —1, 0),
and (1,0,2) is given by the parametric equations
x=2s,y=—-3s—2t,z=1—5.

IfAisa5 x 7matrix and B isa 7 x 7 matrix, then BA
isa 7 x 5 matrix.

120 3
-1 0 2 1
IfA = 5992 o0 , then
0 8 0 —6
-1 2 1 1 0
detA =2 52 0|49 -1 2 1
0 0 —6 00 -6
1 0 3
-8 -1 2 1
520
If A is an n x n matrix, then det (2A) = 2 det A.

The surface having equation » = 4 sin 6 in cylindrical
coordinates is a cylinder of radius 2.

The surface having equation p = 4 cos 6 in spherical
coordinates is a sphere of radius 2.

The surface having equation p cos 6 sin ¢ = 3 in spher-
ical coordinates is a plane.

The surface having equation p = 3 in spherical coor-
dinates is the same as the surface whose equation in
cylindrical coordinates is 7% + z2 = 9.

The surface whose equation in cylindrical coordinates
is z = 2r is the same as the surface whose equation in
spherical coordinates is ¢ = /6.

1.

If Py, P, ..., P, are the vertices of a regular polygon
having n sides and if O is the center of the polygon,

n —_— . .
show that ) 7| O P; = 0. The case n = 5 is shown in

Figure 1.111. (Hint: Don’t try using coordinates. Use
instead sketches, geometry, and perhaps translations or
rotations.)
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Py

Ps 27/5 P,

P, P,

Figure 1.111 The case n = 5.

2. Find parametric equations for the line through the point

(1, 0, —2) that is parallel to the line x =374+ 1,y =
S5—=Tt,z=1t+12.

. Find parametric equations for the line through the

point (1,0, —2) that intersects the line x = 3¢ + 1,
y =5—7t,z =1+ 12 orthogonally. (Hint: Let xo =
3t + 1, yo = 5 — Tto, 20 = ty + 12 be the point where
the desired line intersects the given line.)

. Given two points Py(a, az, a3) and P (b, by, b3), we

have seen in equations (3) and (4) of §1.2 how to
parametrize the line through Py and P; as r(z) =

— —
O Py + t Py P;, where ¢ can be any real number. (Recall

that r = O P, the position vector of an arbitrary point
P on the line.)

—>
(a) For what value of ¢ does r(t) = O Py? For what
—
value of ¢ does r(t) = O P,?

(b) Explain how to parametrize the line segment join-
ing Py and P;. (See Figure 1.112.)

-
-

X

Figure 1.112 The segment joining Py
and P is a portion of the line containing
Py and P;. (See Exercise 4.)

(c) Give a set of parametric equations for the line seg-
ment joining the points (0, 1, 3) and (2, 5, —7).

5. Recall that the perpendicular bisector of a line seg-

ment in R? is the line through the midpoint of the seg-
ment that is orthogonal to the segment.

10.

11.

12.

(a) Give a set of parametric equations for the perpen-
dicular bisector of the segment joining the points
Pi(—1,3) and Py(5, —7).

(b) Given general points Pi(a;, ay) and Py(by, by),
provide a set of parametric equations for the per-
pendicular bisector of the segment joining them.

. If we want to consider a perpendicular bisector of a

line segment in R3, we will find that the bisector must

be a plane.

(a) Givean (implicit) equation for the plane that serves
as the perpendicular bisector of the segment join-
ing the points P;(6, 3, —2) and P,(—4, 1, 0).

(b) Given general points Pi(a;,a,a3;) and
Py(b1, by, b3), provide an equation for the plane
that serves as the perpendicular bisector of the
segment joining them.

. Generalizing Exercises 5 and 6, we may define the per-

pendicular bisector of a line segment in R” to be the

hyperplane through the midpoint of the segment that

is orthogonal to the segment.

(a) Give an equation for the hyperplane in R’ that
serves as the perpendicular bisector of the seg-
ment joining the points P;(1,6,0,3, —2) and
Py (—3,-2,4,1,0).

(b) Given arbitrary points Pi(ay,...,a,) and
Py(by,...,b,) in R", provide an equation for
the hyperplane that serves as the perpendicular
bisector of the segment joining them.

. If a and b are unit vectors in R3, show that

laxb|*>+(a-b)? = 1.

. (a) Ifa-b =a-c, does it follow that b = ¢? Explain

your anSwer.

(b) If axb=axc, does it follow that b =c¢?
Explain.

Show that the two lines

z=2t+5
2=6—4

L x=t-3,
L: x=4-2t,

y=1-2t,
y =4t +3,

are parallel, and find an equation for the plane that
contains them.

Consider the two planes x +y =1 and y +z = 1.

These planes intersect in a straight line.

(a) Findthe (acute) angle ofintersection between these
planes.

(b) Give a set of parametric equations for the line of
intersection.

Which of the following lines whose parametric equa-
tions are given below are parallel? Are any the same?

(@) x=4t+6,y=2—-2t,z=8t+1



13.

14.

15.

16.

b)) x=3—-6t,y=3t,z=4—-9¢
)x=2-2t,y=t+4,z=—-4—-7
dx=2t+4,y=1—-1t,z2=3t-2

Determine which of the planes whose equations are

given below are parallel and which are perpendicular.
Are any of the planes the same?

(A 2x+3y—z=3

(b) —6x+4y—2z4+2=0

) x+y—z=2

(d) 10x + 15y —5z=1

() 3x —2y+z=1

(a) What is the angle between the diagonal of a cube

and one of the edges it meets? (Hint: Locate the
cube in space in a convenient way.)

(b) Find the angle between the diagonal of a cube and
the diagonal of one of its faces.

Mark each of the following statements with a 1 if you

agree, —1 if you disagree:

(1) Red is my favorite color.

(2) I consider myself to be a good athlete.

(3) Ilike cats more than dogs.

(4) I enjoy spicy foods.

(5) Mathematics is my favorite subject.

Your responses to the preceding “questionnaire” may
be considered to form a vector in R®. Suppose that you
and a friend calculate your respective “response vec-
tors” for the questionnaire. Explain the significance of
the dot product of your two vectors.

The median of a triangle is the line segment that joins
a vertex of a triangle to the midpoint of the opposite
side. The purpose of this problem is to use vectors to
show that the medians of a triangle all meet at a point.

— —
(a) UsingFigure 1.113, write the vectors BM| and C M,
— —
in terms of AB and AC.

A

M,

B

Figure 1.113 Two of the three medians
of a triangle in Exercise 16.

17.

18.

19.

20.

21.
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(b) Let P be the point of intersection of BM; and C M.
. — — — —
Write BP and C P in terms of AB and AC.
—_— = = = —>
(c) Usethe factthat CB =CP + PB=CA+ ABto

show that P must lie two-thirds of the way from B
to M, and two-thirds of the way from C to M.

(d) Now use part (c) to show why all three medians must
meet at P.

Suppose that the four vectors a, b, ¢, and d in R? are
coplanar (i.e., that they all lie in the same plane). Show
that then (a X b) X (¢ x d) = 0.

Show that the area of the triangle, two of whose
sides are determined by the vectors a and b (see
Figure 1.114), is given by the formula

1
Atea = 5/l bl — (a - b2

a

Figure 1.114 The triangle in Exercise 18.

Let A(1,3,-1), B#,-1,3), C(2,5,2),
D(5, 1, 6) be the vertices of a parallelogram.
(a) Find the area of the parallelogram.

and

(b) Find the area of the projection of the parallelogram
in the xy-plane.

(a) For the line / in R? given by the equation ax +
by = d, find a vector v that is parallel to /.

(b) Find a vector n that is normal to / and has first
component equal to a.

(c) If Py(xg, yo) is any point in R?, use vectors to de-
rive the following formula for the distance from

Pytol:
. laxo + byo — d|
Distance from Pyto] = —————.
0 Ja? + b?

To do this, you’ll find it helpful to use Figure 1.115,
where Pj(xy, y;) is any point on /.

(d) Find the distance between the point (3, 5) and the
line 8x — 5y = 2.

(a) If Py(xo, yo, z0) is any point in R>, use vectors
to derive the following formula for the distance
from Py to the plane IT having equation Ax +
By+Cz=D:

|Axo + Byo + Czo — D|
VAZ+ BT+ C?

Distance from Py to IT =
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sl

Figure 1.115 Geometric construction for
Exercise 20.

Figure 1.116 should help. (Pi(x1, y1, z1) is any
point in IT.)

Distance

IM: Ax+By+Cz=D

X

Figure 1.116 Geometric construction for
Exercise 21.

(b) Find the distance between the point (1, 5, —3) and
the plane x — 2y + 2z + 12 = 0.

22. (a) Let P beapointinspace thatis not contained in the

plane IT that passes through the three noncollinear
points A, B, and C. Show that the distance between
P and I is given by the expression
Ip-(bxo)
b x cf

wherep:ﬁ,b:ﬁ,andc:zﬁ.

(b) Use the result of part (a) to find the distance
between (1, 0, —1) and the plane containing the
points (1, 2, 3), (2, =3, 1), and (2, —1, 0).

23. Let A, B, C, and D denote four distinct points in R’

(a) Show that A, B, and C are collinear if and only if
ﬁ X A—C) =0.
(b) Show that A, B, C, and D are coplanar if and only

if (AB x AC)-CD = 0.

H .. . .
24. Let x = O P, the position vector of a point P in R3.

Consider the equation
x-k 1

Il V2

25.

26.

27.

Describe the configuration of points P that satisfy the
equation.

Let a and b be two fixed, nonzero vectors in R?, and let
¢ be afixed constant. Explain how the pair of equations,

a-x= c
axXxx=D>b,
completely determines the vector x € R>.

(a) Give examples of vectors a, b, ¢ in R? that show
that, in general, it is not true that a x (b x ¢) =
(a x b) x ¢. (That is, the cross product is not as-
sociative.)

(b) Use the Jacobi identity (see Exercise 30 of §1.4)
to show that, for any vectors a, b, ¢ in R3,

ax(bxc)=(axb)xe
if and only if
(exa)xb=0.

(a) Given an arbitrary (i.e., not necessarily regular)
tetrahedron, associate to each of its four triangular
faces a vector outwardly normal to that face with
length equal to the area of that face. (See Fig-
ure 1.117.) Show that the sum of these four vec-
tors is zero. (Hint: Describe vy, ..., v4 in terms of
some of the vectors that run along the edges of the
tetrahedron.)

Vi
V4

V3
Y

Figure 1.117 The tetrahedron of part
(a) of Exercise 27.

(b) Recall that a polyhedron is a closed surface in
R3 consisting of a finite number of planar faces.
Suppose you are given the two tetrahedra shown
in Figure 1.118 and that face ABC of one is con-
gruent to face A’ B'C’ of the other. If you glue the
tetrahedra together along these congruent faces,
then the outer faces give you a six-faced polyhe-
dron. Associate to each face of this polyhedron an
outward-pointing normal vector with length equal
to the area of that face. Show that the sum of these
six vectors is zero.
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Figure 1.118 In Exercise 27(b), glue the two tetrahedra shown along congruent faces.

28.

29.

30.

31.

(c) Outline a proof of the following: Given an n-faced
polyhedron, associate to each face an outward-
pointing normal vector with length equal to the
area of that face. Show that the sum of these n
vectors is zero.

Consider a right tetrahedron, that is, a tetrahedron
that has a vertex R whose three adjacent faces are pair-
wise perpendicular. (See Figure 1.119.) Use the result
of Exercise 27 to show the following three-dimensional
analogue of the Pythagorean theorem: If a, b, and
¢ denote the areas of the three faces adjacent to R
and d denotes the area of the face opposite R, then
a? 4+ b* + ? =d>.

Figure 1.119 The right tetrahedron
of Exercise 28. The three faces
containing the vertex R are pairwise
perpendicular.

(a) Use vectors to prove that the sum of the squares
of the lengths of the diagonals of a parallelogram
equals the sum of the squares of the lengths of the
four sides.

(b) Give an algebraic generalization of part (a) for R”.

Show that for any real numbers ay, ..., a,, by, ..., b,
we have
n 2 n n
San| = | e[|
i=1 i=1 i=1
To raise a square (n X n) matrix A to a positive integer

power n, one calculates A" as A - A--- A (n times).
(a) Calculate successive powers A, A2, A3, A* of the

. 11
matr1xA:|:0 1].

(b) Conjecture the general form of A” for the matrix
A of part (a), where n is any positive integer.

(c) Prove your conjecture in part (b) using mathemat-
ical induction.

32. A square matrix A is called nilpotent if A" =0 for
some positive power 7.

011
(a) Showthat A=1| 0 0 O | isnilpotent.

000
0 (b) Use a calculator or computer to show that A =
000O0O0
1 0000
0 1 0 0 O | isnilpotent.
00100
00010

0 33. Then x nmatrix H, whoseijthentryis1/(i + j — 1)
is called the Hilbert matrix of order .
(a) Write out H,, Hs, Hy, Hs, and Hg. Use a com-
puter to calculate their determinants exactly. What
seems to happen to det H, as n gets larger?

(b) Now calculate Hyo and det H. If you use exact
arithmetic, you should find that det H;y # 0 and
hence that H, is invertible. (See Exercises 30-38
of §1.6 for more about invertible matrices.)

(c) Now give a numerical approximation A for Hjy.
Calculate the inverse matrix B of this approxima-
tion, if your computer allows. Then calculate AB
and BA. Do you obtain the 10 x 10 identity matrix
I, in both cases?

(d) Explain what parts (b) and (c) suggest about the
difficulties in using numerical approximations in
matrix arithmetic.

As a child, you may have played with a popular toy called a
Spirograph®. With it one could draw some appealing geomet-
ric figures. The Spirograph consists of a small toothed disk with
several holes in it and a larger ring with teeth on both inside
and outside as shown in Figure 1.120. You can draw pictures by
meshing the small disk with either the inside or outside circles
of the ring and then poking a pen through one of the holes of
the disk while turning the disk. (The large ring is held fixed.)
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Figure 1.120 The Spirograph.

An idealized version of the Spirograph can be obtained

by taking a large circle (of radius a) and letting a small circle
(of radius b) roll either inside or outside it without slipping.
A “Spirograph” pattern is produced by tracking a particu-
lar point lying anywhere on (or inside) the small circle. Exer-
cises 34-37 concern this set-up.

34. Suppose that the small circle rolls inside the larger

circle and that the point P we follow lies on the circum-
ference of the small circle. If the initial configuration
is such that P is at (a, 0), find parametric equations
for the curve traced by P, using angle ¢ from the posi-
tive x-axis to the center B of the moving circle. (This
configuration is shown in Figure 1.121.) The result-
ing curve is called a hypocycloid. Two examples are
shown in Figure 1.122.

y

Figure 1.121 The coordinate
configuration for finding parametric
equations for a hypocycloid.

35. Now suppose that the small circle rolls on the outside

of the larger circle. Derive a set of parametric equa-
tions for the resulting curve in this case. Such a curve
is called an epicycloid, shown in Figure 1.123.

36. (a) A cusp (or corner) occurs on either the hypocy-

cloid or epicycloid every time the point P on the
small circle touches the large circle. Equivalently,

37.

W
\S]
(@)}

Figure 1.122 Hypocycloids witha =3, b=2anda =6,b = 5.

y

B
»

Figure 1.123 An epicycloid with
a=4,b=1.

this happens whenever the smaller circle rolls
through 27. Assuming that a/b is rational, how
many cusps does a hypocycloid or epicycloid
have? (Your answer should involve a and b in some
way.)

(b) Describe in words and pictures what happens when
a/b is not rational.

Consider the original Spirograph set-up again. If we
now mark a point P at a distance ¢ from the center
of the smaller circle, then the curve traced by P is
called a hypotrochoid (if the smaller circle rolls on
the inside of the larger circle) or an epitrochoid (if
the smaller circle rolls on the outside). Note that we
must have b < a, but we can have ¢ either larger or
smaller than b. (If ¢ < b, we get a “true” Spirograph
pattern in the sense that the point P will be on the
inside of the smaller circle. The situation when ¢ > b
is like having P mounted on the end of an elongated
spoke on the smaller circle.) Give a set of parametric
equations for the curves that result in this way. (See
Figure 1.124.)

Exercises 38—43 are made feasible through the use of appropri-
ate software for graphing in polar, cylindrical, and spherical



coordinates. (Note: When using software for graphing in spher-
ical coordinates, be sure to check the definitions that are used
for the angles ¢ and 6.)

< 40.

© M.

c/

Figure 1.124 The configuration for finding
parametric equations for epitrochoids.

. (a) Graph the curve in R?> whose polar equation is

r = cos26.

(b) Graph the surface in R whose cylindrical equation
isr = cos26.

(c) Graph the surface in R* whose spherical equation
is p = cos2¢.

(d) Graph the surface in R® whose spherical equation
is p = cos 26.

. (a) Graph the curve in R?> whose polar equation is

r = sin26.

(b) Graph the surface in R* whose cylindrical equation
isr = sin26.

(c) Graph the surface in R? whose spherical equation
is p = sin2¢.

(d) Graph the surface in R® whose spherical equation

is p = sin 26. Compare the results of this exercise
with those of Exercise 38.

(a) Graph the curve in R> whose polar equation is
r = cos 360.

(b) Graphthe surface in R* whose cylindrical equation
is r = cos 36.

(c) Graph the surface in R® whose spherical equation
is p = cos 3¢.

(d) Graph the surface in R® whose spherical equation
is p = cos 36.

(a) Graph the curve in R? whose polar equation is
r = sin30.

(b) Graph the surface in R® whose cylindrical equation
is r = sin 36.

(c) Graph the surface in R® whose spherical equation
is p = sin 3¢.

© 43

44.

45.

81

Miscellaneous Exercises for Chapter 1

(d) Graph the surface in R® whose spherical equation
is p = sin 3. Compare the results of this exercise
with those of Exercise 40.

. (a) Graph the curve in R?> whose polar equation is

r = 1+ sin £.(This curve isknown as a nephroid,
meaning “kidney shaped.”)
(b) Graphthe surface in R* whose cylindrical equation

isr=l+sin%.

(c) Graph the surface in R* whose spherical equation
isp=1+sin¥.

(d) Graph the surface in R® whose spherical equation
isp=1+sin %.

(a) Graph the curve in R? whose polar equation is
r=20.

(b) Graph the surface in R® whose cylindrical equation
isr=260.

(c) Graph the surface in R? whose spherical equation
isp=¢.

(d) Graph the surface in R® whose spherical equation
isp=0,wheren/2 <¢ <mand0 <0 <4mx.

Consider the solid hemisphere of radius 5 pictured in
Figure 1.125.

(a) Describe this solid, using spherical coordinates.

(b) Describe this solid, using cylindrical coordinates.

Z

Figure 1.125 The solid hemisphere of
Exercise 44.
Consider the solid cylinder pictured in Figure 1.126.

(a) Describe this solid, using cylindrical coordinates
(position the cylinder conveniently).

(b) Describe this solid, using spherical coordinates.

S
|

e —]

Figure 1.126 The solid
cylinder of Exercise 45.
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2.1 Functions of Several Variables;
Graphing Surfaces

The volume and surface area of a sphere depend on its radius, the formulas
describing their relationships being V = $7r® and § = 47 r?. (Here V and S
are, respectively, the volume and surface area of the sphere and r its radius.)
These equations define the volume and surface area as functions of the radius.
The essential characteristic of a function is that the so-called independent variable
(in this case the radius) determines a unique value of the dependent variable (V
or §). No doubt you can think of many quantities that are determined uniquely
not by one variable (as the volume of a sphere is determined by its radius) but
by several: the area of a rectangle, the volume of a cylinder or cone, the average
annual rainfall in Cleveland, or the national debt. Realistic modeling of the world
requires that we understand the concept of a function of more than one variable
and how to find meaningful ways to visualize such functions.

Definitions, Notation, and Examples

A function, any function, has three features: (1) a domain set X, (2) a codomain
set Y, and (3) a rule of assignment that associates to each element x in the
domain X a unique element, usually denoted f(x), in the codomain Y. We will
frequently use the notation f: X — Y for a function. Such notation indicates all
the ingredients of a particular function, although it does not make the nature of
the rule of assignment explicit. This notation also suggests the “mapping” nature
of a function, indicated by Figure 2.1.

EXAMPLE 1 Abstract definitions are necessary, but it is just as important that
you understand functions as they actually occur. Consider the act of assigning to
each U.S. citizen his or her social security number. This pairing defines a function:
Each citizen is assigned one social security number. The domain is the set of U.S.
citizens and the codomain is the set of all nine-digit strings of numbers.

On the other hand, when a university assigns students to dormitory rooms, it
is unlikely that it is creating a function from the set of available rooms to the set of
students. This is because some rooms may have more than one student assigned
to them, so that a particular room does not necessarily determine a unique student
occupant. *



Figure 2.2 Every y € Y is “hit
by at least one x € X.

f
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X Y

Figure 2.3 The elementb € Y
is not the image of any x € X.
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DEFINITION 1.1 The range of a function f: X — Y is the set of those
elements of Y that are actual values of f. That is, the range of f consists of
those y in Y such that y = f(x) for some x in X.

Using set notation, we find that

Range f ={y e Y |y = f(x) for some x € X}.

In the social security function of Example 1, the range consists of those nine-
digit numbers actually used as social security numbers. For example, the number
000-00-0000 is not in the range, since no one is actually assigned this number.

DEFINITION 1.2 A function f: X — Y is said to be onto (or surjective)
if every element of Y is the image of some element of X, that is, if range

f=Y.

The social security function is not onto, since 000-00-0000 is in the codomain
but not in the range. Pictorially, an onto function is suggested by Figure 2.2. A
function that is not onto looks instead like Figure 2.3. You may find it helpful to
think of the codomain of a function f as the set of possible (or allowable) values
of f,and the range of f as the set of actual values attained. Then an onto function
is one whose possible and actual values are the same.

DEFINITION 1.3 A function f: X — Y is called one-one (or injective) if
no two distinct elements of the domain have the same image under f. That
is, f is one-one if whenever x;, x, € X and x; # x,, then f(x;) # f(x2).
(See Figure 2.4.)

/1 [\

one-one not one-one

< 7 ~ ]
[/

Figure 2.4 The figure on the left depicts a one-one mapping; the one
on the right shows a function that is not one-one.

One would expect the social security function to be one-one, but we have heard
of cases of two people being assigned the same number so that, alas, apparently
it is not.

When you studied single-variable calculus, the functions of interest were
those whose domains and codomains were subsets of R (the real numbers). It
was probably the case that only the rule of assignment was made explicit; it is
generally assumed that the domain is the largest possible subset of R for which
the function makes sense. The codomain is generally taken to be all of R.
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EXAMPLE 2 Suppose f:R — Ris given by f(x) = x2. Then the domain and
codomain are, explicitly, all of R, but the range of f is the interval [0, co). Thus
f is not onto, since the codomain is strictly larger than the range. Note that f is
not one-one, since f(2) = f(—2) =4,but2 # —2. .

EXAMPLE 3 Suppose g is a function such that g(x) = +/x — 1. Then if we
take the codomain to be all of R, the domain cannot be any larger than [1, c0).
If the domain included any values less than one, the radicand would be negative
and, hence, g would not be real-valued. *

Now we’re ready to think about functions of more than one real variable. In
the most general terms, these are the functions whose domains are subsets X of
R" and whose codomains are subsets of R”, for some positive integers n and m.
(For simplicity of notation, we’ll take the codomains to be all of R™, except when
specified otherwise.) That is, such a function is a mapping f: X € R" — R that
associates to a vector (or point) X in X a unique vector (point) f(x) in R™.

EXAMPLE 4 Let T:R?> — R be defined by T'(x, y,z) = xy + xz + yz. We
can think of 7 as a sort of “temperature function.” Given a point x = (x, y, z) in
R3, T(x) calculates the temperature at that point. *

EXAMPLE 5 Let L:R" — R be given by L(x) = ||x||. This is a “length func-
tion” in that it computes the length of any vector x in R". Note that L is not
one-one, since L(e;) = L(e;) = 1, where e; and e; are any two of the standard
basis vectors for R”. L also fails to be onto, since the length of a vector is always
nonnegative. *

EXAMPLE 6 Consider the function given by N(x) = x/||x|| where x is a vector
in R?. Note that N is not defined if x = 0, so the largest possible domain for N is
R3? — {0}. The range of N consists of all unit vectors in R?. The function N is the
“normalization function,” that is, the function that takes a nonzero vector in R?
and returns the unit vector that points in the same direction. *

EXAMPLE 7 Sometimes a function may be given numerically by a table.
One such example is the notion of windchill—the apparent temperature one
feels when taking into account both the actual air temperature and the speed of
the wind. A standard table of windchill values is shown in Figure 2.5.! From it
we see that if the air temperature is 20 °F and the windspeed is 25 mph, the wind-
chill temperature (“how cold it feels”) is 3 °F. Similarly, if the air temperature is
35°F and the windspeed is 10 mph, then the windchill is 27°F. In other words,
if s denotes windspeed and ¢ air temperature, then the windchill is a function
W(s, t). *

The functions described in Examples 4, 5, and 7 are scalar-valued functions,
that is, functions whose codomains are R or subsets of R. Scalar-valued functions
are our main concern for this chapter. Nonetheless, let’s look at a few examples
of functions whose codomains are R” where m > 1.

I NOAA, National Weather Service, Office of Climate, Water, and Weather Services, “NWS Wind Chill
Temperature Index.” February 26, 2004. <http://www.nws.noaa.gov/om/windchill> (July 31, 2010).
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Windspeed (mph)
Air Temp

(deg F) 5 10 15 20 25 30 35 40 45 50 55 60
40 36 34 32 30 29 28 28 27 26 26 25 25
35 31 27 25 24 23 22 21 20 19 19 18 17
30 25 21 19 17 16 15 14 13 12 12 11 10
25 19 15 13 11 9 8 7 6 5 4 4 3
20 13 9 6 4 3 1 0 —1 -2 -3 -3 —4
15 7 3 0 -2 —4 =5 -7 -8 -9 —-10 -—-11 —11
10 1 —4 -7 -9 —11 —-12 —-14  -15 —16 -17 —18 -19
5 =3 =i =3 =13 =17 )| =2 =23 —24 =25 —26
0 —11 -6 -19 =22 =24 =26 -27 =29 -30 —31 -32 -33
=5 —-16 22 -26 =29 3l =33 -34 =36 37 —38 -39 —40
—10 -22 =28 -32 =35 —37 -39 —41 —43 —44  —45 —46  —48
—15 —28 =35 -39 —42 44 46 48 —-50 =51 —-52 54 =55
-20 —-34 -4l —45 —48 —51 -53 —55 —57 —58 —60 -6l —62
=23 —40 47 =3l =355 —58 —-60 —62 —64 —65 —67  —68 —69
-30 —46 53 —58 —61 —64  —67 —69 71 —72 74 =75 —76
=35 =52 =59 —64  —068 =71 =73 -76  —78 =79 —81 —82 -84
—40 =57 —66 71 -74 =78 —80 -82 -84 86 —88 -89 91
—45 —63 =72 =77 =81 -84 87 -89 91 =93 =95 =97 —98

z

5
]

X

Figure 2.6 The helix of
Example 8. The arrow shows the
direction of increasing ¢.

Figure 2.7 A water

pitcher. The velocity v of
the water is a function
from a subset of R* to R>.

Figure 2.5 Table of windchill values in English units.

EXAMPLE 8 Define f: R — R3 by f() = (cost, sint, t). The range of f is the
curve in R? with parametric equations x = cos?, y = sint, z = . If we think of
t as a time parameter, then this function traces out the corkscrew curve (called a
helix) shown in Figure 2.6. *

EXAMPLE 9 We can think of the velocity of a fluid as a vector in R3. This
vector depends on (at least) the point at which one measures the velocity and also
the time at which one makes the measurement. In other words, velocity may be
considered to be a function v: X € R* — R?. The domain X is a subset of R*
because three variables x, y, z are required to describe a point in the fluid and a
fourth variable 7 is needed to keep track of time. (See Figure 2.7.) For instance,
such a function v might be given by the expression

v(x,y,z,t) = xyzti + (x2 — yz)j + B3z + 1k *

You may have noted that the expression for v in Example 9 is considerably
more complicated than those for the functions given in Examples 4-8. This is
because all the variables and vector components have been written out explicitly.
In general, if we have a function f: X € R" — R”, then x € X can be written as
X = (x1, x2, ..., Xx,) and f can be written in terms of its component functions
fi, f2, -+, fm. The component functions are scalar-valued functions of x € X
that define the components of the vector f(x) € R”. What results is a morass of
symbols:

f(x) = f(x1, x2, ..., xn) (emphasizing the variables)
= (fi(x), /2(X), ..., fu(X)) (emphasizing the component functions)
= (fl(xlax27 ""x}’l)a fz(xlax27 ""xl’l)a AR ) fm(x15x27 ""xl’l))

(writing out all components).



86

Chapter 2 | Differentiation in Several Variables

For example, the function L of Example 5, when expanded, becomes

L(x) = L(x1, X2, ..., Xn) = \/xlz+x22+--~+x3.
The function N of Example 6 becomes

(.X],Xz, X3)

X
=g =
IIxI ,/xlz+x22+x32

X1 X2 X3

N(x)

) k)

Jord 4l SR +d 4 Jd 3+
and, hence, the three component functions of N are

X1 X2

—7 Nz(xl’x2’x3)= —’
[ 20 24 .2 [2 0 24 2
xi + x5 + x5 Xt x4

N3(x1, x2, x3) =

Ni(x1, x2,x3) =

X3

[v2 1 2 1 2
X7+ x5 4+ x3

Although writing a function in terms of all its variables and components has
the advantage of being explicit, quite a lot of paper and ink are used in the process.
The use of vector notation not only saves space and trees but also helps to make
the meaning of a function clear by emphasizing that a function maps points in
R” to points in R”. Vector notation makes a function of 300 variables look “just
like” a function of one variable. Try to avoid writing out components as much as
you can (except when you want to impress your friends).

Visualizing Functions

No doubt you have been graphing scalar-valued functions of one variable for so
long that you give the matter little thought. Let’s scrutinize what you’ve been do-
ing, however. A function f: X € R — R takes a real number and returns another
real number as suggested by Figure 2.8. The graph of f is something that “lives”
in R?. (See Figure 2.9.) It consists of points (x, y) such that y = f(x). That is,

Graph f = {(x. f(x)) | x € X} ={(x,y) | x € X, y = f(x)}.

The important fact is that, in general, the graph of a scalar-valued function
of a single variable is a curve—a one-dimensional object—sitting inside two-
dimensional space.

y

% _____ (x, f(x))

O I

x — J(x) x
———R ——R
X

Figure 2.8 A function f: X C R — R. Figure 2.9 The graph of f.
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Now suppose we have a function f: X € R?> — R, that is, a function of two
variables. We make essentially the same definition for the graph:

Graph f = {(x, f(x)) [ x € X}. (1

Of course, X = (x, y) is a point of R?. Thus, {(x, f(x))} may also be written as
{(e.y, fx, )}, oras {(x,y.2) [ (x,y) € X,z = f(x,y)}.

Hence, the graph of a scalar-valued function of two variables is something that
sits in R®. Generally speaking, the graph will be a surface.

EXAMPLE 10 The graph of the function

1 1 7

:R? - R, ==y —y— 52+

[R— fay) =35y —y=- 3 +5
is shown in Figure 2.10. For each point x = (x, y) in R?, the point in R? with
coordinates (x, y, %y3 -y - ixz + %) is graphed. *

Z
[, y)

(x.y)

he xy-plane)

Figure 2.10 The graph of f(x, y) = l—lzy3 —y— %xz + %

X

Graphing functions of two variables is a much more difficult task than graph-
ing functions of one variable. Of course, one method is to let a computer do
the work. Nonetheless, if you want to get a feeling for functions of more than
one variable, being able to sketch a rough graph by hand is still a valuable skill.
The trick to putting together a reasonable graph is to find a way to cut down on
the dimensions involved. One way this can be achieved is by drawing certain
special curves that lie on the surface z = f(x, y). These special curves, called
contour curves, are the ones obtained by intersecting the surface with horizontal
planes z = ¢ for various values of the constant ¢. Some contour curves drawn
on the surface of Example 10 are shown in Figure 2.11. If we compress all the
contour curves onto the xy-plane (in essence, if we look down along the posi-
tive z-axis), then we create a “topographic map” of the surface that is shown in
Figure 2.12. These curves in the x y-plane are called the level curves of the original
function f.

The point of the preceding discussion is that we can reverse the process in
order to sketch systematically the graph of a function f of two variables: We
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X
X

Figure 2.11 Some contour curves of the Figure 2.12 Some level curves of

function in Example 10. the function in Example 10.

first construct a topographic map in R? by finding the level curves of f, then
situate these curves in R? as contour curves at the appropriate heights, and finally
complete the graph of the function. Before we give an example, let’s restate our
terminology with greater precision.

DEFINITION 1.4 Let f: X € R*> — R be a scalar-valued function of two
variables. The level curve at height ¢ of f is the curve in R? defined by the
equation f(x, y) = ¢, where c is a constant. In mathematical notation,

Level curve at height ¢ = {(x, y)eR?| f(x,y) = c} .

The contour curve at height ¢ of f is the curve in R® defined by the two
equations z = f(x, y) and z = c. Symbolized,

Contour curve at height ¢ = {(x, y,2) R | z= f(x,y)= c} .

In addition to level and contour curves, consideration of the sections of a
surface by the planes where x or y is held constant is also helpful. A section of a
surface by a plane is just the intersection of the surface with that plane. Formally,
we have the following definition:

DEFINITION 1.5 Let f: X € R?> — R be a scalar-valued function of two
variables. The section of the graph of f by the plane x = ¢ (where ¢
is a constant) is the set of points (x, y, z), where z = f(x, y) and x = c.
Symbolized,

Section by x = cis {(x,y,2) € R® | z = f(x,y),x =c}.
Similarly, the section of the graph of f by the plane y = c is the set of
points described as follows:

Sectionby y = cis {(x,y,2) e R® | z = f(x,y),y =c}.




Figure 2.13 The topographic
map of 7 =4 — x> — y? (i.e.,
several of its level curves).
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EXAMPLE 11 We’ll use level and contour curves to construct the graph of the
function

iR >R, f(x,y)=4—x>—y%
By Definition 1.4, the level curve at height c is
{(x,y)GR2|4—x2—y2=c} = {(x,y)|x2—i—y2=4—c}.

Thus, we see that the level curves for ¢ < 4 are circles centered at the origin of
radius +/4 — c¢. The level “curve” at height ¢ = 4 is not a curve at all but just a
single point (the origin). Finally, there are no level curves at heights larger than 4
since the equation x> + y?> = 4 — ¢ has no real solutions in x and y. (Why not?)
These remarks are summarized in the following table:

c Level curve x> +y>2 =4 — ¢
-5 x2+y2=9
—1 2 4+y*=5

0 2 4+y2=4

1 xP+yr=3

3 2 4yr=1

4 24+y2=0 <= x=y=0

¢, where ¢ > 4 empty

Thus, the family of level curves, the “topographic map” of the surface z =
4 — x> — y?, is shown in Figure 2.13. Some contour curves, which sit in R3,
are shown in Figure 2.14, where we can get a feeling for the complete graph of
7z =4 — x> — y2. It is a surface that looks like an inverted dish and is called a
paraboloid. (See Figure 2.15.) To make the picture clearer, we have also sketched
in the sections of the surface by the planes x = 0 and y = 0. The sectionby x = 0
is given analytically by the set

[y, 2)eR | z=4—-x -y x =0} ={(0,y.2) | z=4—y*}.

Similarly, the section by y = 0 is
{()c,y,z)eR3 |z=4—x2—y2,y=0} = {(x,O,z)|z=4—x2}.

Figure 2.14 Some contour Figure 2.15 The graph of
curves of 7 = 4 — x% — y2. flx,y)=4—x>—y2
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Figure 2.16 Some level curves
of g(x,y) = y* — x2.

-

Figure 2.17 The contour curves
and graph of g(x, y) = y> — x2.

Since these sections are parabolas, it is easy to see how this surface obtained its
name. ¢

EXAMPLE 12 We’ll graph the function g:R?> — R, g(x, y) = y*> — x2. The
level curves are all hyperbolas, with the exception of the level curve at height 0,
which is a pair of intersecting lines.

c Level curve y?> —x?> =¢
—4 ¥ —y2 =4
—1 xr—yr=1
0 y¥=—x2=0 < (-0 +x)=0 < y=dx
yox2=1
4 y:—x?=4

The collection of level curves is graphed in Figure 2.16. The sections by x = ¢
are

{(,y,9)lz=y"—xtx=c)={(c,y,2) | z = y* — ).
These are clearly parabolas in the planes x = ¢. The sections by y = ¢ are
(. lz=y - y=c=(cy2lz=c—x,

which are again parabolas. The level curves and sections generate the contour
curves and surface depicted in Figure 2.17. Perhaps understandably, this surface
is called a hyperbolic paraboloid. *

EXAMPLE 13 We compare the graphs of the function f(x, y) =4 — x? — y?
of Example 11 with that of
hR>—{(0,0)} > R,  hA(x,y)=In(x*>+y?).
The level curve of & at height c is
{x.y) e R | In(x* +y*) =c} = {(x.y) | > +y* =€}

Since e > 0 for all ¢ € R, we see that the level curve exists for any ¢ and is a
circle of radius v/e¢ = €“/2.

¢ | Level curve x* + y? = e¢
_5 2yt =eS
1 X2yt =e!

0 2 4yr=1

1 2+yl=e

3 2yt =ed

4 2yt

The collection of level curves is shown in Figure 2.18 and the graph in Figure 2.19.
Note that the section of the graph by x = 0 is

{(r.y, 0 eR [z=In(x*+y),x =0} ={(0,y,2) |z =In(y*) = 2In|y]}.



Figure 2.19 The graph of
z = In(x*> + y?), shown with
sections by x = 0 and y = 0.

2.1 | Functions of Several Variables; Graphing Surfaces 91

y

Figure 2.18 The collection of level curves of z = In (x? 4 y?).

The section by y = 0 is entirely similar:

{(x,y,z) eR |z=In(x*+y?),y= 0} = {(x,O,z) |z =In(x*) = 21n|x|}.
2

In fact, if we switch from Cartesian to cylindrical coordinates, it is quite
easy to understand the surfaces in both Examples 11 and 13. In view of the
Cartesian/cylindrical relation x? + y> = r2, we see that for the function f of
Example 11,

=4 —x* -y =4-*+yH =411
For the function /# of Example 13, we have
z=In@x?+yH)=In@?) =2hr,

where we assume the usual convention that the cylindrical coordinate » is non-
negative. Thus both of the graphs in Figures 2.15 and 2.19 are of surfaces of
revolution obtained by revolving different curves about the z-axis. As a result,
the level curves are, in general, circular.

The preceding discussion has been devoted entirely to graphing scalar-valued
functions of just two variables. However, all the ideas can be extended to more
variables and higher dimensions. If f: X € R" — Ris a (scalar-valued) function
of n variables, then the graph of f is the subset of R"*! given by

Graph f = {(x, f(x)) | x € X}
={(x1, .+ X, X)) | (X150, X) € X, ()

Xng1 = f(xr, .. X))
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Figure 2.20 The level sets of the
function F(x,y,z)=x+y+z
are planes in R3.

y
(1,0)
x
Figure 2.21 The unit circle
X4y =1.
z
X—Xg

-
\

Figure 2.22 The sphere of radius
a, centered at (xo, Yo, 20)-

X

y

(The compactness of vector notation makes the definition of the graph of a function
ofn variables exactly the same asin (1).) The level set at height c of such a function
is defined by

Level set at heightc = {x € R" | f(x) = ¢}
={(x1,x2, ..., x0) | f(x1,x2,...,%,) =c}.

While the graph of f is a subset of R"*!, a level set of f is a subset of R”. This
makes it possible to get some geometric insight into graphs of functions of three
variables, even though we cannot actually visualize them.

EXAMPLE 14 Let F:R?> — Rbe given by F(x, y,z) = x + y + z. Then the
graph of F is the set {(x,y,z, w)| w =x+ y+ z} and is a subset (called a
hypersurface) of R*, which we cannot depict adequately. Nonetheless, we can
look at the level sets of F, which are surfaces in R3. (See Figure 2.20.) We have

Level set at height ¢ = {(x, y,z) | x + y +z = c}.

Thus, the level sets form a family of parallel planes with normal vectori + j + k.
*

Surfaces in General

Not all curves in R? can be described as the graph of a single function of one
variable. Perhaps the most familiar example is the unit circle shown in Figure 2.21.
Its graph cannot be determined by a single equation of the form y = f(x) (or, for
that matter, by one of the form x = g(y)). As we know, the graph of the circle may
be described analytically by the equation x> + y?> = 1. In general, a curve in R?
is determined by an arbitrary equation in x and y, not necessarily one that isolates
y alone on one side. In other words, this means that a general curve is given by an
equation of the form F(x, y) = c (i.e., a level set of a function of two variables).
The analogous situation occurs with surfaces in R3. Frequently a surface is
determined by an equation of the form F(x, y, z) = ¢ (i.e., as a level set of a
function of three variables), not necessarily one of the form z = f(x, y).

EXAMPLE 15 A sphereisasurface in R? whose points are all equidistant from
a fixed point. If this fixed point is the origin, then the equation for the sphere is
[x = 0| = [Ix]| = a, 3)
where a is a positive constant and x = (x, y, z) is a point on the sphere. If we
square both sides of equation (3) and expand the (implicit) dot product, then we
obtain perhaps the familiar equation of a sphere of radius a centered at the origin:
R4y =d @)
If the center of the sphere is at the point Xo = (x¢, Yo, 20), rather than the origin,
then equation (3) should be modified to
Ix — x| = a. (5)

(See Figure 2.22.)
When equation (5) is expanded, the following general equation for a sphere
is obtained:

(x—x0)’ + =y +@z—-2)=d (6)
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In the equation for a sphere, there is no way to solve for z uniquely in terms
of x and y. Indeed, if we try to isolate z in equation (4), then

2 2 2 2
ZF=a —x"—y,

so we are forced to make a choice of positive or negative square roots in order to
solve for z:
z=+a?—x2—y? or z=—ya?—-x>—y%

The positive square root corresponds to the upper hemisphere and the negative
square root to the lower one. In any case, the entire sphere cannot be the graph
of a single function of two variables. *

Of course, the graph of a function of two variables does describe a surface in
the “level set” sense. If a surface happens to be given by an equation of the form

z= f(x,y)

for some appropriate function f: X € R?> — R, then we can move 7 to the oppo-
site side, obtaining

fx,y)=z=0.
If we define a new function F of three variables by

F(x,y,z):f(x,y)—z,

then the graph of f is precisely the level set at height 0 of F'. We reiterate this
point since it is all too often forgotten: The graph of a function of two variables is
a surface in R and is a level set of a function of three variables. However, not all
level sets of functions of three variables are graphs of functions of two variables.
We urge you to understand this distinction.

Quadric Surfaces

Conic sections, those curves obtained from the intersection of a cone with various
planes, are among the simplest, yet also the most interesting, of plane curves:
They are the circle, the ellipse, the parabola, and the hyperbola. Besides being
produced in a similar geometric manner, conic sections have an elegant algebraic
connection: Every conic section is described analytically by a polynomial equation
of degree two in two variables. That is, every conic can be described by an equation
that looks like

Ax* 4+ Bxy+Cy*+ Dx+Ey+F =0

for suitable constants A, ..., F.

In R?, the analytic analogue of the conic section is called a quadric surface.
Quadric surfaces are those defined by equations that are polynomials of degree
two in three variables:

Ax> + Bxy+Cxz+ Dy* + Eyz+ FZ>+Gx+ Hy+1z+J =0.

To pass from this equation to the appropriate graph is, in general, a cumbersome
process without the aid of either a computer or more linear algebra than we
currently have at our disposal. So, instead, we offer examples of those quadric
surfaces whose axes of symmetry lie along the coordinate axes in R? and whose
corresponding analytic equations are relatively simple. In the discussion that
follows, a, b, and ¢ are constants, which, for convenience, we take to be positive.



94 Chapter 2 | Differentiation in Several Variables

Plane section
is an ellipse

Figure 2.26 The elliptic
2 2

X y2
cone — = — 4+ —.
¢z ar b

Figure 2.27 The graph of the
2 2 2

y
b2
hyperboloid of one sheet.

equation — + 5 — — =lisa
a c

Z =constant

y
y = constant

X
Figure 2.24 The elliptic paraboloid Figure 2.25 The hyperbolic

2 2 2 2
Z X y ., < y X
-= =4+ . araboloid — = — — —
c a? + b? P c b a2

Ellipsoid (Figure 2.23.) x2/a® + y*/b* + z2/c* = 1.

This is the three-dimensional analogue of an ellipse in the plane. The sections
of the ellipsoid by planes perpendicular to the coordinate axes are all ellipses.
For example, if the ellipsoid is intersected with the plane z = 0, one obtains the
standard ellipse x?/a* + y?/b* =1,z = 0. If a = b = ¢, then the ellipsoid is a
sphere of radius a.

Elliptic paraboloid (Figure 2.24.) z/c = x%/a® + y?/b.

(The roles of x, y, and z may be interchanged.) This surface is the graph of
a function of x and y. The paraboloid has elliptical (or single-point or empty)
sections by the planes “z = constant” and parabolic sections by “x = constant” or
“y = constant” planes. The constants a and b affect the aspect ratio of the elliptical
cross sections, and the constant ¢ affects the steepness of the dish. (Larger values
of ¢ produce steeper paraboloids.)

Hyperbolic paraboloid (Figure 2.25.) z/c = y?/b* — x?/d>.

(Again the roles of x, y, and z may be interchanged.) We saw the graph of this
surface earlier in Example 12 of this section. It is shaped like a saddle whose “x =
constant” or “y = constant” sections are parabolas and “z = constant” sections
are hyperbolas.

Elliptic cone (Figure 2.26.) z2/c* = x%/a® + y*/b>.
The sections by “z = constant” planes are ellipses. The sections by x = 0 or
y = 0 are each a pair of intersecting lines.

Hyperboloid of one sheet (Figure 2.27.) x2?/a? + y*/b* — z2%/c*> = 1.
The term “one sheet” signifies that the surface is connected (i.e., that you can
travel between any two points on the surface without having to leave the surface).
The sections by “z = constant” planes are ellipses and those by “x = constant”
or “y = constant” planes are hyperbolas, hence, this surface’s name.

Hyperboloid of two sheets (Figure 2.28.) z2/c?> — x2/a® — y?/b? = 1.

The fact that the left-hand side of the defining equation is the opposite of the left
side of the equation for the previous hyperboloid is what causes this surface to
consist of two pieces instead of one. More precisely, consider the sections of the



Figure 2.28 The graph of
the equation

Figure 2.29 The

hyperboloids
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surface by planes of the form z = k for different constants k. These sections are
thus given by

or, equivalently, by
2 2 g2
; + ﬁ = C—z - 1, 7= k.
If —c <k <c,then 0 < k?/c? < 1. Thus, k*/c?> — 1 < 0, and so the preceding
equation has no solution in x and y. Hence, the section by z = k, where |k| < c,
is empty. If |k| > c, then the section is an ellipse. The sections by “x = constant”
or “y = constant” planes are hyperbolas.

In the same way that the hyperbolas
22
i +1
are asymptotic to the lines y = £(b/a)x, the hyperboloids
2 2 2
z X y
2Tt p*E!

are asymptotic to the cone

This is perhaps intuitively clear from Figure 2.29, but let’s see how to prove it
rigorously. In our present context, to say that the hyperboloids are asymptotic
to the cones means that they look more and more like the cones as |z| becomes
(arbitrarily) large. Analytically, this should mean that the equations for the hy-
perboloids should approximate the equation for the cone for sufficiently large |z|.
The equations of the hyperboloids can be written as follows:

P 2 2
As |z| — o0, ¢?/z* — 0, so the right side of the equation for the hyperboloids

approaches z2/c?. Hence, the equations for the hyperboloids approximate that of
the cone, as desired.

1. Let f:R — Rbe given by f(x) = 2x% + 1.
(a) Find the domain and range of f.

(b) Is f one-one?
(c) Is f onto?

(c) Find a way to restrict the codomain to make a new
function with the same rule of assignment as g that
is onto.

Find the domain and range of each of the functions given in
Exercises 3—7.

2. Let g:R? — Rbe given by g(x, y) = 2x> + 3y> — 7.
(a) Find the domain and range of g.

(b) Find a way to restrict the domain to make a new
function with the same rule of assignment as g that
is one-one.

3. fx,y) =

4. f(x,y)=In(x +y)
5. g(x,v,2) =/x2+(y = 2>+ (z + 1)

<=
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1

. glx,y,2)=
/4 —x2 —y2_ 72

1,x2+y2>

8. Let f:R> - R?® be defined by f(x,y)=(x +y,
ye*, x2y + 7). Determine the component functions
of f.

1
7. f(x,y):(x—i—y,y_

9. Determine the component functions of the function v
in Example 9.

10. Letf: R? — R? be defined by f(x) = x + 3j. Write out
the component functions of f in terms of the compo-
nents of the vector x.

11. Consider the mapping that assigns to a nonzero vector
x in R3 the vector of length 2 that points in the direction
opposite to X.

(a) Give an analytic (symbolic) description of this
mapping.

(b) If x = (x, y, z), determine the component func-
tions of this mapping.

12. Consider the function f: R — R? given by f(x) = Ax,

2 -1
where A = 5 0 | and the vector x in R? is
—6 3

written as the 2 x 1 column matrix x = |: il ]
2

(a) Explicitly determine the component functions of
f in terms of the components x;, x, of the vector
(i.e., column matrix) x.

(b) Describe the range of f.
13. Consider the function f: R* — R? given by f(x) = Ax,

2 0 -1 1
where A=| 0 3 0 O [ andthe vector x in R*
2 0 -1 1
X1
is written as the 4 x 1 column matrix x = jccz
3
X4

(a) Determine the component functions of f in terms
of the components xy, x,, x3, x4 of the vector (i.e.,
column matrix) x.

(b) Describe the range of f.

In each of Exercises 14-23, (a) determine several level curves
of the given function f (make sure to indicate the height c of
each curve); (b) use the information obtained in part (a) to
sketch the graph of f.

14. f(x,y)=3
15. f(x,y)=x"+)*
16. f(x,y)=x>4+y>—-9

17. f(x,y) = yx? +y?

18. f(x,y) = 4x? + 9y?
19. f(x,y)=xy

20. f(x,y) =2
X
21, f(r,y) =~
y
22. f(x,y)=3—-2x—y
23. f(x,y)=|x|

In Exercises 24-27, use a computer to provide a portrait of
the given function g(x, y). To do this, (a) use the computer to
help you understand some of the level curves of the function,
and (b) use the computer to graph (a portion of) the surface
z = g(x, y). In addition, mark on your surface some of the
contour curves corresponding to the level curves you obtained
in part (a). (See Figures 2.10 and 2.11.)

0 24. g(x,y) = ye'
0 25. g(x,y) =x? —xy
0 26. g(x,y)= (x2 + 3y2)e]*3’2*y2

sin(2 — x? — y?)
0 27. g(x,y) = s
28. The ideal gas law is the equation PV = kT, where P
denotes the pressure of the gas, V the volume, T the
temperature, and k is a positive constant.
(a) Describe the temperature 7 of the gas as a function
of volume and pressure. Sketch some level curves
for this function.

(b) Describe the volume V of the gas as a function
of pressure and temperature. Sketch some level
curves.

29. (a) Graph the surfaces z = x2 and z = y°.

(b) Explain how one can understand the graph of the
surfaces z = f(x) and z = f(y) by considering
the curve in the uv-plane given by v = f(u).

(c) Graph the surface in R? with equation y = x2.

< 30.

Use a computer to graph the family of level curves for
the functions in Exercises 20 and 21 and compare your
results with those obtained by hand sketching. How do
you account for any differences?

31. Givenafunction f(x, y), cantwo different level curves
of f intersect? Why or why not?

In Exercises 32-36, describe the graph of g(x, y, z) by com-
puting some level surfaces. (If you prefer, use a computer to
assist you.)

32. g(x,y,2)=x—2y+3z
33 g(x,v,0)=x>4+y>—¢



34. g(x,y,2)=x>+y*+7?
35. g(x,v,2) = x2 4+ 9y? 4 472
36. g(x,y,2)=xy —yz

37. (a) Describe the graph of g(x,y,z) = x>+ y? by
computing some level surfaces.
(b) Suppose g is a function such that the expres-
sion for g(x,y,z) involves only x and y (i.e.,
g(x, v, z) = h(x, y)). What can you say about the
level surfaces of g?

(c) Suppose g is a function such that the expression
for g(x, v, z) involves only x and z. What can you
say about the level surfaces of g?

(d) Suppose g is a function such that the expression
for g(x, y, z) involves only x. What can you say
about the level surfaces of g?

38. This problem concerns the surface determined by the
graph of the equation x? + xy — xz = 2.
(a) Find a function F(x,y,z) of three variables so
that this surface may be considered to be a level
set of F.

(b) Find a function f(x, y) of two variables so that
this surface may be considered to be the graph of

7= f(x, ).
39. Graph the ellipsoid
X2y
—+ = =1.
n + 9 +z

Is it possible to find a function f(x, y) so that this ellip-
soid may be considered to be the graph of z = f(x, y)?
Explain.

Sketch or describe the surfaces in R® determined by the equa-
tions in Exercises 40—46.
2 2

X X
40. ;=" —y? 2 2
z 4 y 41. 7 2 y

22 | Limits 97

y2 ZZ 2 2

42, x =2 — = 24
x== 43. X’ + 5 — 1o =0
x2 y2 Z2

a4, = _ 2 1
2 16
X2 yZ

45, — +— =721
TR

46. 7 = y> +2

We can look at examples of quadric surfaces with centers
or vertices at points other than the origin by employing a
change of coordinates of the form X =x —xo, y =y — Yo,
and 7 = z — zo. This coordinate change simply puts the point
(x0, Yo, 20) of the xyz-coordinate system at the origin of the
Xyz-coordinate system by a translation of axes. Then, for ex-
ample, the surface having equation

-1 (+2)°
L +(z—

52 =1

can be identified by setting X =x —1, y=y+2, and 7 =
z — 5, so that we obtain

:l7

which is readily seen to be an ellipsoid centered at (1, =2, 5)
of the xyz-coordinate system. By completing the square in x,
v, or z as necessary, identify and sketch the quadric surfaces
in Exercises 47-52.

47. x — 1+ (y+ 1) =(z+3)

48. 7 = 4x* +(y +2)°

49. 4x> +y2 + 72 4+8x =0

50. 4x? +y? — 4722 +8x —4y+4=0
51. x> 4+2y2 —6x —z+10=0

52. 9x? +4y? — 3672 — 8y — 144z = 104

2.2 Limits

As you may recall, limit processes are central to the development of calculus. The
mathematical and philosophical debate in the 18th and 19th centuries surrounding
the meaning and soundness of techniques of taking limits was intense, questioning
the very foundations of calculus. By the middle of the 19th century, the infamous
“e — §” definition of limits had been devised, chiefly by Karl Weierstrass and
Augustin Cauchy, much to the chagrin of many 20th (and 21st) century students of
calculus. In the ensuing discussion, we study both the intuitive and rigorous mean-
ings of the limit of a function f: X € R” — R” and how limits lead to the notion
of a continuous function, our main object of study for the remainder of this text.
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Figure 2.30 The graph of f of
Example 1.

The Notion of a Limit

For a scalar-valued function of a single variable, f: X € R — R, you have seen
the statement

lim f(x) =L

and perhaps have an intuitive understanding of its meaning. In imprecise terms,
the preceding equation (read “The limit of f(x) as x approaches a is L.”) means
that you can make the numerical value of f(x) arbitrarily close to L by keeping
x sufficiently close (but not equal) to a. This idea generalizes immediately to
functions f: X € R" — R™. In particular, by writing the equation

lim f(x) = L,

X—a
where f: X € R" — R™, we mean that we can make the vector f(x) arbitrarily
close to the limit vector L by keeping the vector x € X sufficiently close (but not
equal) to a.

The word “close” means that the distance (in the sense of §1.6) between f(x)

and L is small. Thus, we offer a first definition of limit using the notation for
distance.

DEFINITION 2.1 (INTUITIVE DEFINITION OF LIMIT) The equation
lim f(x) = L,

X—a

where f: X € R” — R”, means that we can make |f(x) — L| arbitrarily
small (i.e., near zero) by keeping ||x — a|| sufficiently small (but nonzero).

In the case of a scalar-valued function f: X € R" — R, the vector length
|lf(x) — L|| can be replaced by the absolute value | f(x) — L|. Similarly, if f is a
function of just one variable, then ||x — a|| can be replaced by |x — a|.

EXAMPLE 1 Suppose that f: R — R is given by

0 ifx <1

f(x):{z ifx>1"

The graph of f is shown in Figure 2.30. What should lim,_,; f(x) be? The limit
can’t be 0, because no matter how near we make x to 1 (i.e., no matter how small
we take |x — 1]), the values of x can be both slightly larger and slightly smaller
than 1. The values of f corresponding to those values of x larger than 1 will
be 2. Thus, for such values of x, we cannot make | f(x) — 0| arbitrarily small,
since, for x > 1, | f(x) — 0] = |2 — 0] = 2. Similarly, the limit can’t be 2, since
no matter how small we take |[x — 1|, x can be slightly smaller than 1. Forx < 1,
f(x) = 0 and, therefore, we cannot make |f(x) — 2| = |0 — 2| = 2 arbitrarily
small. Indeed, it should now be clear that the limit can’t be L for any L € R.
Hence, lim,_,; f(x) does not exist for this function. *

EXAMPLE 2 Let f:R? — R? be defined by f(x) = 5x. (That is, f is five times
the identity function.) Then it should be obvious intuitively that

lim f(x) = lim 5x = 5i + 5j.

X—i+j X—i+j
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Indeed, if we write x = xi + yj, then
If(x) — (51 + 5))Il = I(5xi+ 5yj) — (5i+ 5))
= [I5(x — Di+5(y — Djll = v25(x = 1 +25(y — 1)?
=5/~ 12+ (- DA
This last quantity can be made as small as we wish by keeping
Ix =G+ DIl = V& = D2+ (y = 1)?
sufficiently small. *

EXAMPLE 3 Now suppose that g:R" — R" is defined by g(x)=3x. We
claim that, for any a € R”,

lim 3x = 3a.
X—a

In other words, we claim that ||3x — 3a|| can be made as small as we like by
keeping ||x — a|| sufficiently small. Note that

3x — 3a|| = [3(x — a)[| = 3|Ix — al|.

This means that if we wish to make [|3x — 3a|| no more than, say, 0.003, then
we may do so by making sure that ||x — a|| is no more than 0.001. If, instead,
we want ||3x — 3a|| to be no more than 0.0003, we can achieve this by keeping
|Ix — a|| no more than 0.0001. Indeed, if we want ||3x — 3a|| to be no more than
any specified amount (no matter how small), then we can achieve this by making
sure that ||x — a|| is no more than one-third of that amount.
More generally, if h: R” — R” is any constant k times the identity function
(i.e., h(x) = kx) and a € R" is any vector, then
lim h(x) = lim kx = ka. *
X—a X—a
The main difficulty with Definition 2.1 lies in the terms “arbitrarily small”
and “sufficiently small.” They are simply too vague. We can add some precision
to our intuition as follows: Think of applying the function f: X € R” — R™ as
performing some sort of scientific experiment. Letting the variable x take on
a particular value in X amounts to making certain measurements of the input
variables to the experiment, and the resulting value f(x) can be considered to be the
outcome of the experiment. Experiments are designed to test theories, so suppose
that this hypothetical experiment is designed to test the theory that as the input is
closer and closer to a, then the outcome gets closer and closer to L. To verify this
theory, you should establish some acceptable (absolute) experimental error for the
outcome, say, 0.05. That is, you want ||f(x) — L|| < 0.05,if |x — a|| is sufficiently
small. Then just how small does ||x — a|| need to be? Perhaps it turns out that you
must have ||x — a|| < 0.02, and that if you do take ||x — a|| < 0.02, then indeed
[If(x) — L|| < 0.05. Does this mean that your theory is correct? Not yet. Now,
suppose that you decide to be more exacting and will only accept an experimental
error of 0.005 instead of 0.05. In other words, you desire ||f(x) — L| < 0.005.
Perhaps you find that if you take ||x — a|| < 0.001, then this new goal can be
achieved. Is your theory correct? Well, there’s nothing sacred about the number
0.005, so perhaps you should insist that || f(x) — L|| < 0.001, or that ||f(x) — L|| <
0.00001. The point is that if your theory really is correct, then no matter what
(absolute) experimental error € you choose for your outcome, you should be
able to find a “tolerance level” § for your input x so that if ||x — a| < §, then
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[If(x) — L|| < e.Itisthis heuristic approach that motivates the technical definition
of the limit.

DEFINITION 2.2 (RIGOROUS DEFINITION OF LIMIT) Letf: X € R” — R”
be a function. Then to say
lim f(x) = L

X—a
means that given any € > 0, you can find a § > 0 (which will, in general,
depend on €) such thatif x € X and 0 < ||x — a|| < §, then [|f(x) — L|| < e.

The condition 0 < ||x — a|| simply means that we care only about values
f(x) when x is near a, but not equal to a. Definition 2.2 is not easy to use in
practice (and we will not use it frequently). Moreover, it is of little value insofar
as actually evaluating limits of functions is concerned. (The evaluation of the
limit of a function of more than one variable is, in general, a difficult task.)

EXAMPLE 4 So that you have some feeling for working with Definition 2.2,
let’s see rigorously that

lim (G —Sy+29) =12

(x.y,2—=>(1,-1,
(as should be “obvious”). This means that given any number € > 0, we can find
a corresponding § > 0 such that

ifO0 < ||(x,y,2)—(1,—1,2)]| <8, then|3x —5y+2z—12| <e.

(Note the uses of vector lengths and absolute values.) We’ll present a formal
proof in the next paragraph, but for now we’ll do the necessary background
calculations in order to provide such a proof. First, we need to rewrite the two
inequalities in such a way as to make it more plausible that the e-inequality could
arise algebraically from the §-inequality. From the definition of vector length, the
d-inequality becomes
0<vVx—12+(+1)2+(z—22<s.
If this is true, then we certainly have the three inequalities

V=12 =|x-1] <8,
Vi +1D)r=1ly+1] <4,
V=22 =1z-2| <6é.

Now, rewrite the left side of the e-inequality and use the triangle inequality (2)
of §1.6:
Bx =5y +2z— 12| =3x — 1) —5(y + 1)+ 2(z — 2)|
=BG = DI+ 50+ DI+ [2(z = 2)|
=3x—1|+5y+1+2|z-2]

Thus, if
0<li(x,y,2)— (1, =12)I <3,
then
lx =1 <48, |y+1<§, and |z—2|<3,
so that

13x — 5y +27—12] <3jx — 1| + 5]y + 1] + 2]z — 2|
<38 +58428=106.
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Figure 2.31 A closed ball
centered at a.
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If we think of § as a positive quantity that we can make as small as desired, then
108 can also be made small. In fact, it is 10§ that plays the role of €.
Now for a formal, “textbook” proof: Given any € > 0, choose § > 0 so that
8 < €/10. Then, if
O < ||('x7 Vs Z) - (17 _13 2)” < 87
it follows that

x—11 <8, |y+1] <8, and |z—2| <38,
so that
3x — 5y +2z— 12| < 3|x — 1|+ 5|y + 1| + 2]z — 2|
<354+56+26
— 108 < 10— —e.
10
Thus, lim, y -)—(1,-1,2)(3x — 5y + 2z) = 12, as desired. *

Using the same methods as in Example 4, you can show that
1irr‘1)(a1x1 + ayx; + -+ ayx,) = arby + axby + - - - + ayby,
X—

forany a¢;,i =1,2,...,n.

Some Topological Terminology

Before discussing the geometric meaning of the limit of a function, we need to in-
troduce some standard terminology regarding sets of points in R”. The underlying
geometry of point sets of a space is known as the topology of that space.

Recall from §2.1 that the vector equation ||x — a|| = r, where x and a are
in R® and r > 0, defines a sphere of radius r centered at a. If we modify this
equation so that it becomes the inequality

Ix—al <r )

then the points x € R that satisfy it fill out what is called a closed ball shown in
Figure 2.31. Similarly, the strict inequality

[x —al <r @)

describes points x € R? that are a distance of less than r from a. Such points
determine an open ball of radius r centered at a, that is, a solid ball without the
boundary sphere.

There is nothing about the inequalities (1) and (2) that tie them to R>. In fact,
if we take x and a to be points of R”, then (1) and (2) define, respectively, closed
and open n-dimensional balls of radius r centered at a. While we cannot draw
sketches when n > 3, we can see what (1) and (2) mean when n is 1 or 2. (See
Figures 2.32 and 2.33.)

y y

r
a
\ X N 7 X
\\~__/,

Figure 2.32 The closed and open balls (disks) in R? defined by | x — a|| < r and
Ix —al <r.
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a a

Figure 2.33 The closed and open balls (intervals) in R
defined by |x —a| <rand |x —al| <r.

DEFINITION 2.3 A set X € R” is said to be open in R” if, for each point
x € X, there is some open ball centered at x that lies entirely within X. A
point x € R” is said to be in the boundary of a set X € R” if every open ball
centered at x, no matter how small, contains some points that are in X and
also some points that are not in X. A set X € R” is said to be closed in R”
if it contains all of its boundary points. Finally, a neighborhood of a point
x € X is an open set containing X and contained in X.

Itis an easy consequence of Definition 2.3 thata set X is closed in R” precisely
if its complement R" — X is open.

EXAMPLE 5 The rectangular region
X={x,y)eR*|-l<x<1,-1<y<2}

is open in R2. (See Figure 2.34.) Each point in X has an open disk around it
contained entirely in the rectangle. The boundary of X consists of the four sides

Figure 2.34 The graph of X.

Figure 2.37 The set X of

Example 7.

of the rectangle. (See Figure 2.35.) .
y
X
z

g Y

[ J

N L~

X X
y
x

Figure 2.35 Every open disk Figure 2.36 The set X
about a point on a side of rectangle of Example 6 consists of
X of Example 5 contains points in the nonnegative
both X and R? — X. coordinate axes.

EXAMPLE 6 The set X consisting of the nonnegative coordinate axes in R3 in
Figure 2.36 is closed since the boundary of X is just X itself. *

EXAMPLE 7 Don’t be fooled into thinking that sets are always either open or
closed. (That is, a set is not a door.) The set

X={xy)eR|0<x<10<y<1)

shown in Figure 2.37 is neither open nor closed. It’s not open since, for example,
the point (%, O) that lies along the bottom edge of X has no open disk around it
that lies completely in X. Furthermore, X is not closed, since the boundary of X
includes points of the form (x, 1) for 0 < x < 1 (why?), which are not part of X.

L 2
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The Geometric Interpretation of a Limit
Suppose that f: X € R" — R”. Then the geometric meaning of the statement

limf(x) = L

X—a
is as follows: Given any € > 0, you can find a corresponding § > 0 such that if
points x € X are inside an open ball of radius § centered at a, then the correspond-
ing points f(x) will remain inside an open ball of radius € centered at L. (See
Figure 2.38.)

y Z

¢ :

Figure 2.38 Definition of a limit: Given an open ball B, centered at L (right), you
can always find a corresponding ball B;s centered at a (left), so that points in Bs N X
are mapped by f to points in B..

We remark that for this definition to make sense, the point a must be such
that every neighborhood of it in R” contains points x € X distinct from a. Such
a point a is called an accumulation point of X. (Technically, this assumption
should also be made in Definition 2.2.) A point a € X is called an isolated point
of X if it is not an accumulation point, that is, if there is some neighborhood of a
in R” containing no points of X other than a.

From these considerations, we see that the statement limy_, , f(x) = L really
does mean that as x moves toward a, f(x) moves toward L. The significance of
the “open ball” geometry is that entirely arbitrary motion is allowed.

EXAMPLE 8 Let f:R?> — {(0,0)} — R be defined by

x2—y?

.X2 + y2 :

Let’s see what happens to f as x = (x, y) approaches 0 = (0, 0). (Note that f is
undefined at the origin, although this is of no consequence insofar as evaluating

limits is concerned.) Along the x-axis (i.e., the line y = 0), we calculate the value
of f to be

flx.y) =

x> -0
’0 = — =1
f&0) x2+0

Thus, as x approaches 0 along the line y = 0, the values of f remain constant,
and so
lim fx)=1.

x—0 along y=0

Along the y-axis, however, the value of f is

y2

0_
f(O»)’)Zmz—
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Hence,

lim  f(x)=—l.

x—0 along x=0

Indeed, the value of f is constant along each line through the origin. Along the
line y = mx, m constant, we have

x2—m?x? x*(1-m?* 1-m?

Flor,mx) = x2 4+ m2x2 - x2(14+m?)  1+m?
Therefore,
1 — m?
li = —
x—0 alggl y=mx f(X) 1+ m?

As aresult, the limit of f as x approaches 0 does not exist, since f has different
“limiting values” depending on which direction we approach the origin. (See
Figure 2.39.) That is, no matter how close we come to the origin, we can find
points x such that f(x) is not near any number L € R. (In other words, every
open disk centered at (0, 0), no matter how small, is mapped onto the interval

[—1, 1].) If we graph the surface having equation
B X2 y?
fE T y2

(Figure 2.40), we can see quite clearly that there is no limiting value as x ap-
proaches the origin. *

y
R2
f
—
/ * -1 0 1 K
fhas constant fhas constant
value 1 on value -1 on
this line / this line
Figure 2.39 The function /(x, ) = (x — y2)/(x* + y?) of e e~
Example 8 has value 1 along the x-axis and value —1 along the (x* = y9)/(x* + y7) of Example 8.

y-axis (except at the origin).

WARNING  Example 8 might lead you to think you can establish that
limy_, , f(x) = L by showing that the values of f as x approaches a along straight-
line paths all tend toward the same value L. Although this is certainly good
evidence that the limit should be L, it is by no means conclusive. See Exercise 23
for an example that shows what can happen.

EXAMPLE 9 Another way we might work with the function f(x, y) = (x*> —
v%)/(x* + y?) of Example 8 is to rewrite it in terms of polar coordinates. Thus,
let x = rcos#, y = rsin6. Using the Pythagorean identity and the double angle
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formula for cosine, we obtain, for r # 0, that

x2—y2  r2cos’H —r?sin’0  r?(cos’@ —sin’0)  cos26

2142 2, = 5. = cos20.
x*+y r2cos?f +r2sin“0@  r2(cos? 6 + sin” 0) 1

That is, for r # 0,
f(x,y)= f(rcos@,rsinf) = cos20.

Moreover, to evaluate the limit of f as (x, y) approaches (0, 0), we only must
have r approach 0; there need be no restriction on 6. Therefore, we have

lim x,y) = limcos20 = cos20.
(x,y)—(0,0) f( y) r—0

This result clearly depends on 6. For example, if @ = 0 (which defines the x-axis),
then

lim cos20 =1,
r—0along 6 =0

while if & = 7 /4 (which defines the line y = x), then

lim cos20 = 0.
r—0along 0 = /4

Thus, as in Example 8, we see that lim(, ,)_,(0,0) f(x, ¥) fails to exist. 14

EXAMPLE 10 We use polar coordinates to investigate lim, y\—(0,0) f(x, ¥),
where f(x,y) = (x> +x°)/(x* + y?).
We first rewrite the expression (x> + x°)/(x? + y?) using polar coordinates:

xP+x% rPcos’ 6+ r cos® 0 3 , s
3 > = —— = r(cos” 0 +r”cos’ 0).
x2+y r2cos?@ +r2sin” 0

Now —1 < cosf < 1, which implies that
—1—r><cos’0 +r’cos’0 < 1+r2.
Hence,
—r(14+r)) < f(x,y) <r(l +r%).

As r — 0, both the expressions —r(1 4 r2) and r(1 + r2) approach zero. Hence,
we conclude that lim(, y)—(0,0) f(x,y) =0, since f is squeezed between two
expressions with the same limit. .

Properties of Limits

One of the biggest drawbacks to Definition 2.2 is that it is not at all useful for
determining the value of a limit. You must already have a “candidate limit” in
mind and must also be prepared to confront some delicate work with inequalities
to use Definition 2.2. The results that follow (which are proved in the addendum
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to this section), plus a little faith, can be quite helpful for establishing limits, as
the subsequent examples demonstrate.

THEOREM 2.4 (UNIQUENESS OF LIMITS) If a limit exists, it is unique. That is,
letf: X € R" — R™. Iflimy_,, f(x) = L and limy_, , f(x) = M, then L = M.

THEOREM 2.5 (ALGEBRAIC PROPERTIES) Let F, G: X € R" — R” be vector-
valued functions, f, g: X € R® — R be scalar-valued functions, and let £ € R
be a scalar.
1. If limy_,, F(x) = L and limy_, , G(x) = M,
then limy_,,(F + G)(x) = L + M.
2. Iflimy_,, F(x) = L, then limy_, , kF(x) = kL.
3. Iflimy_, f(x) = L and limy_,, g(x) = M, then limy_, ,(fg)(x) = LM.
4. If limy_,, f(x) =L, g(x) # 0 for x € X, and limy_,, g(x) = M # 0, then
limx—m(f/g)(x) =L/M.

There is nothing surprising about these theorems—they are exactly the same
as the corresponding results for scalar-valued functions of a single variable. More-
over, Theorem 2.5 renders the evaluation of many limits relatively straightforward.

EXAMPLE 11 Either from rigorous considerations or blind faith, you should
find it plausible that

x=a and =b.

lim lim vy
(x,y)=>(a.b) (x,y)=>(a.b)

From these facts, it follows from Theorem 2.5 parts 1, 2, and 3 that

lim  (x* 4 2xy — y*) = a® + 2ab — b°,
(x,y)—=>(a.b)

because, by part 1 of Theorem 2.5,

( l)in} b)(x2 + 2xy — ) = limx? + lim 2xy + lim(—y?)
xX,y)—a,

and, by parts 2 and 3,

( %irr% b)(x2 +2xy — y*) = (limx)? + 2(lim x)(lim y) — (lim y)*
x,y)—(a,
so that, from the facts just cited,

lim  (x* 4 2xy — y*) = a® 4+ 2ab — b°. =
(x,y)—>(a,b)

EXAMPLE 12 More generally, a polynomial in two variables x and y is any
expression of the form

d_d
Pl y) =YY cuxty,
k=0 1=0

where d is some nonnegative integer and ¢ € R for k,1 =0, ...,d. That is,
p(x, y) is an expression consisting of a (finite) sum of terms that are real number
coefficients times powers of x and y. For instance, the expression x> + 2xy — y*
in Example 11 is a polynomial. For any (a, b) € R?, we have, by part 1 of
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Theorem 2.5,

d
lim X,y) = lim  (cyx*
(x,y)—(a.b) P y) Z Z(X y)—(a, b)( kY )

so that, from part 2,
d

k!
Ckl Xy
;) (x, y)—>(a b)

M=

(X}Hab)p( V)=

,,
i

0

~

and, from part 3,

d d
lim p(x,y) = Z Z cir(lim x¥)(lim y")
(x.y)~>(a.b) P
d d
S Y et
k=0 =0
Similarly, a polynomial in n variables x, x,, ..., X, is an expression of the form
d
ki _k kn
p(x1,x2,...,x,) = Z Chyodey X1 X0 = X",
k1o Jon=0
where d is some nonnegative integer and ¢,..x,, € R for ky, ..., k, =0,...,d.

For example, a polynomial in four variables might look like this:

p(xy, ..., xq) = 3x12x2 + X1 X2X3X4 — 7x38xf.
Theorem 2.5 implies readily that

llg;chlkxfxz--- ”—chlkalaz--af. *
3
EXAMPLE 13 We evaluate  lim Kyt
@y)—=(-1.0 x2y = 5xy + y2 + 1
Using Example 12, we see that
lim  x?+xy+3=4,

(x,y)=>(=1,0)
and
lim  x?y —Sxy+y*+1=1(z0).
o ¥y Xy Y (#0)
Thus, from part 4 of Theorem 2.5, we conclude that

x4+ xy+3 4_124. .

lim
(xv)—>(10)xy—5xy—|-y +1 1

EXAMPLE 14 Of course, not all limits of quotient expressions are as simple
to evaluate as that of Example 13. For instance, we cannot use Theorem 2.5 to
evaluate
2 4
. XT =
lim = (3)
@)—0.0) X2+ y

since lim(y,y)— (0.0 (x> + y*) = 0. Indeed, since lim y)—(0,0)(x* —y*) =0 as
well, the expression (x> — y*)/(x> 4+ y*) becomes indeterminate as (x, y) —
(0, 0). To see what happens to the expression, we note that

X2 -y $2

lim —— =lim — =1,
x—0 along y=0 x2 + y4 x—0 x2
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while
2 _ 4 !
lim  —— Y = lim — = —1.
y—0 along x=0 x2 =+ y4 y—0 y4
Thus, the limit in (3) does not exist. (Compare this with Example 8.) *

The following result shows that evaluating the limit of a function
f: X € R" — R" is equivalent to evaluating the limits of its (scalar-valued) com-
ponent functions. First recall from §2.1 that f(x) may be rewritten as ( f(x),

LX), s fn(X)).

THEOREM 2.6 Suppose f: X € R" — R” is a vector-valued function. Then
limy_,, f(x) = L, where L = (L4, ..., L), if and only if limy_,, f;(x) = L; for
i=1,...,m.

EXAMPLE 15 Considerthe linear mapping f: R” — R” defined by f(x) = Ax,
where A = (g;;) is an m x n matrix of real numbers. (See Example 5 of §1.6.)
Theorem 2.6 shows us that

lirrll) f(x) = Ab

forany b = (by, ..., b,) in R". If we write out the matrix multiplication, we have
[ ain - ai X1
ax - day X2
f(x) = Ax =
m1 - Amn Xn

[ anxp +apxy+ -+ anx,
a Xy + axnx; + -+ apxy,

| Qm1X1 + apmaXo2 + -0+ QunXa
Therefore, the ith component function of f is
Ji(x) = ainxi +apnxa + - + ainXn.
From Example 4, we have that
}i_{l}) Ji(x) = ai1by + ainby + - - - + ainby

for each i. Hence, Theorem 2.6 tells us that the limits of the component functions
fit together to form a limit vector. We can, therefore, conclude that

linll) f(x) = (lin%) fix), ..., lin}) fm(x)
= (allbl + - +alnbn, ceey amlbl + - +amnbn)
ayby + -+ ab,
ax b, + -+ ax,b,
= ) = Ab,
amlbl +---+ amnbn

once we take advantage of matrix notation. *
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Continuous Functions

For scalar-valued functions of a single variable, one often adopts the following
attitude toward the notion of continuity: A function f: X € R — Ris continuous
if its graph can be drawn without taking the pen off the paper. By this criterion,
Figure 2.41 describes a continuous function y = f(x), while Figure 2.42 does not.

Figure 2.41 The graph of a
continuous function.

X

Figure 2.44 The graph of a
continuous function f(x, y).

y
X X
Figure 2.42 The graph of a Figure 2.43 The graph of f
function that is not continuous. where f(x, y) =0ifbothx >0
and y > 0, and where f(x,y) =1
otherwise.

We can try to extend this idea to scalar-valued functions of two variables: A
function f: X € R?> — R is continuous if its graph (in R?) has no breaks in it.
Then the function shown in Figure 2.43 fails to be continuous, but Figure 2.44
depicts a continuous function. Although this graphical approach to continuity is
pleasantly geometric and intuitive, it does have real and fatal flaws. For one thing,
we can’t visualize graphs of functions of more than two variables, so how will we
be able to tell in general if a function f: X € R" — R” is continuous? Moreover,
it is not always so easy to produce a graph of a function of two variables that is
sufficient to make a visual determination of continuity. This said, we now give a
rigorous definition of continuity of functions of several variables.

DEFINITION 2.7 Letf: X C R" — R™ and let a € X. Then f is said to be
continuous at a if either a is an isolated point of X or if

lim f(x) = f(a).

If f is continuous at all points of its domain X, then we simply say that f is
continuous.

EXAMPLE 16 Consider the function f: R?> — R defined by

x4+ xy—2y> |
—— 5 if(x,y)#(0,0)
flx,y)= XSty .

0 if (x, y) = (0, 0)

Therefore, £(0, 0) = 0,butlim y)—(0,0) f(x, y) does not exist. (To see this, check
what happens as (x, y) approaches (0,0) first along y = 0 and then along x = 0.)
Hence, f is not continuous at (0,0). *

It is worth noting that Definition 2.7 is nothing more than the “vectorized”
version of the usual definition of continuity of a (scalar-valued) function of one
variable. This definition thus provides another example of the power of our vector
notation: Continuity looks the same no matter what the context.
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One way of thinking about continuous functions is that they are the ones whose
limits are easy to evaluate: When f is continuous, the /imit of f as x approaches
a is just the value of f at a. It’s all too tempting to get into the habit of behaving
as if all functions are continuous, especially since the functions that will be of
primary interest to us will be continuous. Try to avoid such an impulse.

EXAMPLE 17 Polynomial functions in n variables are continuous. Example 12
gives a sketch of the fact that

; E ky kn _ § : ky Ky
){1—{2 Ckl"'knxl o ‘xn - Ckl"'knal o 'an ’

where x = (xy,...,x,)and a = (ay, ..., a,) are in R". If f: R" — R is defined
by

k ks
FO) =D ehn i ooy
then the preceding limit statement says precisely that f is continuous ata. @

EXAMPLE 18 Linear mappings are continuous. If f: R* — R” is defined by
f(x) = Ax, where A is an m x n matrix, then Example 15 establishes that

lim f(x) = Ab = f(b)

for all b € R”. Thus, fis continuous. *

The geometric interpretation of the € — § definition of a limit gives rise to a
similar interpretation of continuity at a point: f: X € R" — R” is continuous at
a point a € X if, for every open ball B, in R” of radius € centered at f(a), there
is a corresponding open ball Bs in R” of radius § centered at a such that points
x € X inside B; are mapped by f to points inside B.. (See Figure 2.45.) Roughly
speaking, continuity of f means that “close” points in X € R” are mapped to
“close” points in R™.

X

Figure 2.45 Given an open ball B, about f(a) (right), you can always find a
corresponding open ball B; so that points in Bs N X are mapped to points in B..

In practice, we usually establish continuity of a function through the use
of Theorems 2.5 and 2.6. These theorems, when interpreted in the context of
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continuity, tell us the following:

e The sum F + G of two functions F, G: X € R” — R that are continuous
at a € X is continuous at a.

* For all k € R, the scalar multiple kF of a function F: X € R" — R that
1S continuous at a € X is continuous at a.

* Theproduct fg andthe quotient f/g (g # 0) of two scalar-valued functions
f,g: X € R" — R that are continuous at a € X are continuous at a.

* F: X C R" — R” is continuous at a € X if and only if its component
functions F;: X C R" — R, i =1, ..., m are all continuous at a.

EXAMPLE 19 The function f: R? — R® defined by

f(x,y) = (x + y, xy, ysin(xy))

is continuous. In view of the remarks above, we can see this by checking that the
three component functions

fie,y)=x+y, folx,y)=xy, and fi(x,y) = ysin(xy)

are each continuous (as scalar-valued functions). Now f; and f, are continuous,
since they are polynomials in the two variables x and y. (See Example 17.) The
function f3 is the product of two further functions; that is,

f(x,y) = g(x, y)h(x, y),

where g(x, y) =y and h(x, y) = sin(xy). The function g is clearly continuous.
(It’s a polynomial in two variables—one variable doesn’t appear explicitly!) The
function £ is a composite of the sine function (which is continuous as a function
of one variable) and the continuous function p(x, y) = xy. From these remarks,
it’s not difficult to see that

lim h(x,y)= lim sin(p(x,
(X,y)—>(a,b)( Y) 3y 5) (p(x,y))

= sin lim X, ,
<(x,y)ﬁ(a,b> P y))

since the sine function is continuous. Thus,

lim h(x,y) =sin p(a, b) = h(a, b),
i h(e,y) = sin p(a. b) = h(a. )

because p is continuous. Thus, %, hence f3, and, consequently, f are all continuous
on all of R?. .

The discussion in Example 19 leads us to the following general result, whose
proof we omit:

THEOREM 2.8 Iff: X C R" — R™andg: Y € R” — R? are continuous func-
tions such that range f C Y, then the composite functiongo f: X C R” — R” is
defined and is also continuous.
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Addendum: Proofs of Theorems 2.4, 2.5, 2.6, and 2.8

For the interested reader, we establish the various results regarding limits of
functions that we used earlier in this section.

Proof of Theorem 2.4 The statement limy_, , f(x) = L meansthat, givenany € >
0, we can find some §; > O suchthatifx € X and0 < ||x — a| < §;, then ||f(x) —
L| < €/2. (The reason for writing €/2 rather than ¢ will become clear in a
moment.) Similarly, limy_, ; f(x) = M means that, given any € > 0, we can find
some 6, > O such thatifx € X and 0 < ||x — a|| < &,, then |[f(x) — M| < €/2.

Now let § = min(3y, §,); that is, we set § to be the smaller of §; and §,. If
x € X and 0 < ||x — a|| < 4, then both ||f(x) — L|| and || f(x) — M|| are less than
€/2 so that, using the triangle inequality, we have

IL =M = |[(L — f(x)) + (f(x) — M)

€ €

< |[IL = )| + If(x) — M| < 3 + S =€
This shows that the quantity |L — M| can be made arbitrarily small; thus, it
follows that L — M = 0. Hence, L = M. [

Proof of Theorem 2.5 To establish part 1, note that if limy_,, F(x) = L, then
given any € > 0, we can find a §; > 0 such that if x € X and 0 < ||x — a|| <
31, then ||F(x) — L|| < €/2. Similarly, if limy_,, G(x) = M, then we can find a
d> > Osuchthatifx € X and 0 < ||x — a|| < &3, then |G(x) — M| < €/2. Now
let 5 = min(4y, §,). Then if x € X and 0 < ||x — a|| < &, the triangle inequality
implies that

I(F) + G(x)) — (L + M)|| < [F(x) — L]l + | G(x) — M| < g + g =

Hence, limy_,, (F(x) + G(x)) = L + M.

To prove part 2, suppose that € > 0 is given. If limy_,, F(x) = L, then we can
finda § > O such thatifx € X and 0 < ||x — a|| < g, then |F(x) — L|| < €/|k|.
Therefore,

€
[kF(x) — kL|| = |k| [F(x) — L]l < |k| T

which means that limy_, , KF(x) = kL. (Note: If k = 0, then part 2 holds trivially.)
To establish the rule for the limit of a product of scalar-valued functions (part
3), we will use the following algebraic identity:

F(x)g(x) — LM = (f(x) — L)(g(x) — M) + L(g(x) — M) + M(f(x) — L).
“)
Iflimy_,, f(x) = L, then, given any € > 0, we can find §; > 0 such thatifx € X
and 0 < ||x — a|| < §;, then

| f(x) = L| < Ve.

Similarly, if limy_., g(x) = M, we can find §; > 0 such that if x € X and 0 <
Ix — a|| < &, then

lg(x) — M| < Ve
Let § = min(dy, ;). If x € X and 0 < ||x — a|| < §, then
I(f(X) = L)(g(x) = M)| < Ve Je=e.
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This means that limy_, ,( f(x) — L)(g(x) — M) = 0. Therefore, using (4) and parts
1 and 2, we see that

lim(£(0g(x) = LM) = lim(f(x) = L)(g(x) — M)+ L lim(g(x) — M)
+ M lim(f(x) = L)
=0+0+0=0.

Since limy_,, f(x)g(x) = limy_,((f(x)g(x) — LM) + LM), the desired result
follows from part 1.
The crux of the proof of part 4 is to show that

1 1

lim — = —.
x—a g(x) M

Once we show this, the desired result follows directly from part 3:

1im®=lim<f(x)-L)=L : = L

xoa g(x)  xa 2(x) M M
Note that
‘L _ LM sl
gx) M |Mg(x)]
and, by the triangle inequality, that
M| =M — g(x) + g(X)| = M — g(x)| + [g(x)]. (6))

If limy_, 4 g(x) = M, then, given any € > 0, we can find §; such thatifx € X and
0 < |Ix — a|| < &y, then

M2
|g(X)—M| < 76.

We can also find §; such thatifx € X and 0 < ||x — a|| < &, then |g(x) — M| <
|M|/2 and, hence, using (5), that

M M 1 2
M| < u +1g(¥)| <= |gx)| > u — < —.
2 2 lgx)|  [M]

Now let § = min(§y, §;). If x € X and 0 < ||x — a|| < &, then

1 1| IM—gx® 1 [M—g®X)

gx) M| Mg M| |g()
1 2 M?
< — —— — € = €.
(M| M| 2 |

Proof of Theorem 2.6 Note first that, fori =1, ..., m,

/i) = Lil =v/(fi(x) = L)? + -+ (fu(®) = Ln)?* = [fx) = LI (6)

If limy_, , f(x) = L, then given any € > 0, we can find a § > 0 such that if x €
X and 0 < ||x — a|| < §, then ||[f(x) — L|| < €. Hence, (6) implies that | f;(x) —
L;| <efori =1,..., m, which means that limy_,, f;(x) = L;.

Conversely, suppose that limy_,, f;(x) = L; for i =1, ..., m. This means
that, given any € > 0, we can find, for each i, a §; > 0 such that if x € X and
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0 < ||x —a| < §,then |fi(x) — L;| < €//m.Set§ =min(8y, ..., 8,). Then if
x € Xand 0 < ||x — a]| < §, we see that (6) implies
2 €2 €2
[If(x) — L] <\/——|—---—=\/m—=e.
m m m
Thus, limy_, , f(x) = L. [

Proof of Theorem 2.8 We must show that the composite function g o f is con-
tinuous at every point a € X. If a is an isolated point of X, there is nothing to
show. Otherwise, we must show that limy_, ,(g o f)(x) = (g o f)(a).

Given any € > 0, continuity of g at f(a) implies that we can find some y > 0
such that if y € range fand 0 < ||y — f(a)|| < y then

Ig(y) — g(f(a))ll < e.

Since f is continuous at a, we can find some § > 0 such that if x € X and 0 <
Ix — al|| < §, then

If(x) — fa)ll < y.
Therefore, if x € X and 0 < ||x — a|| < §, then

lg(f(x)) — g(f(@))|| < e. u
2.2 Exercises
In Exercises 1-6, determine whether the given set is open or x2 4 2xy + y?
closed (or neither) 13. 1
: @»=-00 x4y
2 2.2
1. {(x,y) e R |1 <x*+y" <4} 14.  lim 2xy2
2. (1) R 1 <x>+)” <4) ey
4 _ 4
3. R 1<x?+y <4 15, lim
{(x, ) eR* |1 =x” 4y <4} o0 X 52
4. {(x,y,2)eR |1 <x2+y2+72 <4 |2
16. i —_—
5 {(x,) eR | =l <x < 1JU{(x,y) e R* | x =2} () (0.0) X2 +y2
6. {(x,v,20) e R |1 <x?+y? <4 17 x2 —xy

Evaluate the limits in Exercises 7-21, or explain why the limit

fails to exist.

7.

10.

11.

12.

lim x>4+2xy+yz+22+2

(*x,,2)=>(0,0,0)

y [yl
m —_—
=00 /32 f y2

(x + y)?
m
(,9)—(0,0) x2 + y?

ere?
lim ——
(6,9)—0,0) x +y 42
2)(2 +y2
im ——
@N=00 x2+y

2)62 + y2

m —_—
@»=>(-12) x2 4 y?

lim R —

@)= 002y /X — /Y
. x2 — y2 —4x +4
lim —_—
(,)—>2.0) x2 + y2 —4x + 4

19. lim
(%,5,2)=>(0,/7,1)

2x2 +3y? + 22

111’1’1 _—
(x.3.0-(0.0.0) x4 y2 4 22
. Xy —xz+yz
1m —_—
(6,5,9~(0,00) x2 + y2 4 22

18.
e“cosy? —x
20.

21.

ino
22. (2) What is lim S2"9
-0 6

(b) Whatis lim P&V,
=00 x+y
(c) Whatis lim M?

(x,y)—(0,0) Xy



23. Examine the behavior of f(x, y) = x*y*/(x? + y*)}
as (x, y) approaches (0, 0) along various straight lines.
From your observations, what might you conjecture
lim, y)—(0,0) f(x, y) to be? Next, consider what hap-
pens when (x, y) approaches (0, 0) along the curve
x = y%. Does limg y)—0.0) f(x, y) exist? Why or why
not?

In Exercises 24-27, (a) use a computer to graph z = f(x, y);
(b) use your graph in part (a) to give a geometric discussion
as to whether lim, y)—(0,0) f(x, y) exists; (c) give an analytic
(i.e., nongraphical) argument for your answer in part (b).

4x2 4 2xy + 5y
D24 S =

3x2—+—5y2
-y
25.
© 25 fx.y)= xzﬂ
xy?
026° f(X,y)=x2+y]0
N
xsin— ify#0
027. flx,y)=
0 ify=0

Some limits become easier to identify if we switch to a different
coordinate system. In Exercises 28—33 switch from Cartesian to
polar coordinates to evaluate the given limits. In Exercises 34—
37 switch to spherical coordinates.

. x%y
lim > 3
(x,y)=(0,0) x= +y
2

28.

29. lim @ ——
(x.9)—(0,0) x2 4 y?2
2 2
30. lim XXy Ay
=00  x2 4 y2
. x4y =353y 4+ 2x2 4 2y?
31. lim
(x.)~>(0,0) x% 4 y?
2.2
32, lim Y
(x.y)—(0,0) . /x2 + y2
3. lim Y
(x,0)=>0,0) /x2 4+ y2
x? y

34. lim R E]
@.7.0~(0.0.0) x2 + y? + 22

. xXyz
35. lim %
(x.5.2)=(0,0.0) x2 + y% 4 z2
2 2
. X° +
36,  lim Y
(x,7,2)=(0,0,0) . /x2 + yZ 172
XZ

37. lim _
(@.5.9~(0.0,0) x2 4 y2 4 22
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In Exercises 38—435, determine whether the functions are con-
tinuous throughout their domains:
38. f(x,y)=x>4+2xy —y’
39. f(x,y,2) = x> +3xyz +yz’ +2

_y2
241

40. g(x,y) =

a41. h(x,y) = cos(

7

42. f(x,y)=cos?x —2sin’xy

X2 —y?
T it y) # (0,0
43. f(x,y)={x>+)? 2 )
0 if (x. y) = (0, 0)
B4 xr+xyr 4y
2 2 lf(x,y)gé(o,o)
44. g(x,y) = x“+y
2 if (x. y) = (0, 0)

ere? . X

46. Determine the value of the constant ¢ so that
3+ xy2 +2x2 4+ 2y2
.X2 + y2

c if (x, y) = (0, 0)

if (x, y) # (0, 0)
g(x,y) =

is continuous.

47. Show that the function f:R> — R given by f(x) =
(2i — 3j + k) - x is continuous.

48. Show that the function f: R® — R? given by f(x) =
(6i — 5k) X x is continuous.

Exercises 49-53 involve Definition 2.2 of the limit.
49. Consider the function f(x) = 2x — 3.
(a) Show thatif |[x — 5| < 4, then | f(x) — 7| < 26.
(b) Use part (a) to prove that lim,_,5 f(x) = 7.
50. Consider the function f(x,y) =2x — 10y 4 3.

(a) Show thatif||(x,y)— (5, 1) < §,then |x — 5| <
dand |y — 1| < é.

(b) Use part (a) to show that if ||(x, y) — (5, )] < 6,
then | f(x, y) — 3] < 128.
(C) Show that ]im(xy_v)ﬁ(i]) f(_x, y) = 3.
51. If A, B,and C are constantsand f(x, y) = Ax + By +
C, show that
lim  f(x,y) = f(xo0, o) = Axo + Byo + C.

(x,y)=(x0,0)
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52. In this problem, you will establish rigorously that
B34yl
im =
@.)~(0.0) x> + y?
(a) Show that |x| < [|(x, y)Il and |y| < [I(x, )I.
(b) Show that |x* + y*| < 2(x2 4+ y?)*/?. (Hint: Begin
with the triangle inequality, and then use part (a).)

(c) Show that if 0<|/(x, y)|l <3, then |(x>+y?)/
x4+ y?)| < 28.

(d) Now prove that limg .0 +y*)/(x? +
2
y)=0.

53. (a) Ifa and b are any real numbers, show that 2|ab| <
a’ + b2,
(b) Let

2 2
fley)=xy (%)

Use part (a) to show that if 0 < ||(x, y)|| <&, then
|f(x, )| < 8%/2.

(c) Prove that lim(y, ,)—(0,0) f(x, y) exists, and find its
value.

2.3 The Derivative

Our goal for this section is to define the derivative of a function f: X € R" — R™,
where n and m are arbitrary positive integers. Predictably, the derivative of a
vector-valued function of several variables is a more complicated object than the
derivative of a scalar-valued function of a single variable. In addition, the notion of
differentiability is quite subtle in the case of a function of more than one variable.

We first define the basic computational tool of partial derivatives. After do-
ing so, we can begin to understand differentiability via the geometry of tangent
planes to surfaces. Finally, we generalize these relatively concrete ideas to higher
dimensions.

Partial Derivatives

Recall that if F: X € R — R s a scalar-valued function of one variable, then the
derivative of F' at anumbera € X is

F(a+h2—F(a). )

Moreover, F is said to be differentiable at a precisely when the limit in equation
(1) exists.

F@ = Jin

DEFINITION 3.1 Suppose f: X € R* — Risascalar-valued function of n
variables. Let x = (xy, x2, ..., x,) denote a point of R". A partial function
F with respect to the variable x; is a one-variable function obtained from
f by holding all variables constant except x;. That is, we set x; equal to a
constant a; for j # i. Then the partial function in x; is defined by

F(x;)= f(ay,az, ..., Xi,...,ay).

EXAMPLE 1 If f(x, y) = (x> — y?)/(x* + y?), then the partial functions with
respect to x are given by
x%—a?
Fx)= f(x,ap) = —2,
() = flxa) = 55
where a; may be any constant. If, for example, a; = 0, then the partial function is
2
F(x)= f(x,0)= e =1.



Domain of f

Domain of
(restriction

of )

Figure 2.46 The function f
Example 1 is defined on R? —

{(0,0)}, while its partial function F

along y = 0 is defined on the
x-axis minus the origin.

Z

X

Figure 2.47 Visualizing the
partial derivative 2 (a, b).

X

Figure 2.48 Visualizing the
partial derivative i (a, b).

of
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Geometrically, this partial function is nothing more than the restriction of f to
the horizontal line y = 0. Note that since the origin is not in the domain of f, 0
should not be taken to be in the domain of F. (See Figure 2.46.) *

REMARK In practice, we usually do not go to the notational trouble of explic-
itly replacing the x;’s (j # i) by constants when working with partial functions.
Instead, we make a mental note that the partial function is obtained by allowing
only one variable to vary, while all the other variables are held fixed.

DEFINITION 3.2 The partial derivative of f with respect to x; is the

(ordinary) derivative of the partial function with respect to x;. That is, the

partial derivative with respect to x; is F’(x;), in the notation of Definition

3.1. Standard notations for the partial derivative of f with respect to x; are
af

—, Dy f(x1,...,x,), and fi(x1,...,x,).
8x,~

Symbolically, we have

af i SO, xi+h o X)) — fOen, e, Xn)
— = lim .
ax,- h—0 h

)

By definition, the partial derivative is the (instantaneous) rate of change of f
when all variables, except the specified one, are held fixed. In the case where f
is a (scalar-valued) function of two variables, we can understand

af
a(ch b)

geometrically as the slope at the point (a, b, f(a, b)) of the curve obtained by
intersecting the surface z = f(x, y) withthe plane y = b, as shown in Figure 2.47.
Similarly,

O (4, )

dy

istheslopeat(a, b, f(a, b)) ofthe curve formed by the intersectionofz = f(x, y)
and x = a, shown in Figure 2.48.

EXAMPLE 2 For the most part, partial derivatives are quite easy to compute,
once you become adept at treating variables like constants. If

fx,y) =x"y 4 cos(x + y),
then we have

0
—f = 2xy — sin(x + y).
ax

(Imagine y to be a constant throughout the differentiation process.) Also

af

L = x% —sin(x + y).
dy
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(a, F(a))
ya V

Figure 2.49 The tangent line to
y = F(x) at x = a has equation
y = F(a)+ F'(a)(x — a).

(Imagine x to be a constant.) Similarly, if g(x, y) = xy/(x*> + y?), then, from the
quotient rule of ordinary calculus, we have
2u(x 5) = O+ 3Dy —xy@x) _ y(? —x?)

A (xz +y2)2 (xz _|_y2)2’

and
(4 y)x —xyQ2y) _ x(x? —y?)
(x2 +y2)? (x2 4 y?)?’

Note that, of course, neither g nor its partial derivatives are defined at (0,0).

gy(x,y) =

EXAMPLE 3 Occasionally, it is necessary to appeal explicitly to limits to eval-
uate partial derivatives. Suppose f: R*? — R is defined by

fx,y)= 3j;y—+_y2yS if(x’Y)#(0,0).
0 if (x, ) = (0,0)
Then, for (x, y) # (0, 0), we have
af 8xy? 0f  3xt— 6x2y? —
no iy ™M T T wy

a a
But what should a—f(O, 0) and a—f(O, 0) be? To find out, we return to Definition
X y

3.2 of the partial derivatives:

a 04+ h,0)— £(0,0 . 0-0
—f(O, 0) = lim SO+ )= /0.0 = lim =0,
0x h—0 h h—0 h
and
B 0,0+h)— (0,0 . —h—0 .
—f(0,0)=1im 24 +h =700 =lim —— = lim -1 =—1.
ay h—0 h h—0 h h—0 L 4

Tangency and Differentiability

If F: X € R — R is a scalar-valued function of one variable, then to have F
differentiable at a number a € X means precisely that the graph of the curve
y = F(x) has a tangent line at the point (a, F'(a)). (See Figure 2.49.) Moreover,
this tangent line is given by the equation

y=F()+ Fl(a)x —a). 3)

If we define the function H(x) to be F(a) + F'(a)(x — a) (i.e., H(x) is the right
side of equation (3) that gives the equation for the tangent line), then H has two
properties:

1. H(a) = F(a)
2. H'(a) = F'(a).

In other words, the line defined by y = H(x) passes through the point (a, F(a))
and has the same slope at (a, F'(a)) as the curve defined by y = F(x). (Hence,
the term “tangent line.”)

Now suppose f: X € R*> — R is a scalar-valued function of two variables,
where X is open in R?. Then the graph of f is a surface. What should the tangent
plane to the graph of z = f(x, y) at the point (a, b, f(a, b)) be? Geometrically,



(a,b,f(a, b))

X

Figure 2.50 The plane tangent
toz = f(x,y)at
(a, b, f(a,b)).

Figure 2.51 The tangent plane at
(a, b, f(a, b)) contains the lines
tangent to the curves formed by
intersecting the surface

z = f(x,y) by the planes x = a
and y = b.
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the situation is as depicted in Figure 2.50. From our earlier observations, we
know that the partial derivative f,(a, b) is the slope of the line tangent at the
point (a, b, f(a, b)) to the curve obtained by intersecting the surface z = f(x, y)
with the plane y = b. (See Figure 2.51.) This means that if we travel along this
tangent line, then for every unit change in the positive x-direction, there’s a change
of f,(a, b) units in the z-direction. Hence, by using formula (1) of §1.2, the tangent
line is given in vector parametric form as

L(7) = (a,b, f(a,b))+1(1,0, fi(a, b)).
Thus, a vector parallel to this tangent line is
u=i+ fi(a,b)k.
Similarly, the partial derivative f,(a, b) is the slope of the line tangent at the point
(a, b, f(a, b)) to the curve obtained by intersecting the surface z = f(x, y) with
the plane x = a. (Again see Figure 2.51.) Consequently, the tangent line is given
by
L(7) = (a. D, f(a,b)) +1(0, 1, fy(a, b)),
so a vector parallel to this tangent line is
v=j+ fa bk

Both of the aforementioned tangent lines must be contained in the plane tangent
to z = f(x,y) at (a, b, f(a, b)), if one exists. Hence, a vector n normal to the
tangent plane must be perpendicular to both u and v. Therefore, we may take n
to be

n=uxv=-—fda, b)i— fy(a,b)j+k

Now, use equation (1) of §1.5 to find that the equation for the tangent plane—that
is, the plane through (a, b, f(a, b)) with normal n—is

(=fila, D), = fy(a, b), 1)+ (x —a,y = b,z — f(a, b)) =0

or, equivalently,

—fxla, b)(x —a) = fy(a,b)(y —b) +z = f(a, b) = 0.

By rewriting this last equation, we have shown the following result:

THEOREM 3.3 If the graph of z= f(x,y) has a tangent plane at
(a, b, f(a, b)), then that tangent plane has equation

z = f(a,b) + fi(a, b)(x — a) + fy(a, b)(y — b). “

Note that if we define the function i(x, y) to be equal to f(a, b) + fi(a, b)(x —
a)+ fy(a,b)(y — b) (i.e., h(x, y) is the right side of equation (4)), then / has the
following properties:

1. h(a,b) = f(a,b)

oh a oh 0
2. —(a,b) = —f(a, b) and —(a,b)= —f(a, b).
ax ax dy dy
In other words, & and its partial derivatives agree with those of f at (a, b).
It is tempting to think that the surface z = f(x, y) has a tangent plane at

(a, b, f(a, b)) as long as you can make sense of equation (4), that is, as long as the
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&

Figure 2.52 If two points
approach (0, 0, 0) while remaining
on one face of the surface
described in Example 4, the
limiting plane they and (0, 0, 0)
determine is different from the one
determined by letting the two
points approach (0, 0, 0) while
remaining on another face.

partial derivatives fy(a, b) and f,(a, b) exist. Indeed, this would be analogous to
the one-variable situation where the existence of the derivative and the existence
of the tangent line mean exactly the same thing. However, it is possible for a
function of two variables to have well-defined partial derivatives (so that equation
(4) makes sense) yet not have a tangent plane.

EXAMPLE 4 Let f(x,y)=||x| —|yll — |x] — |y| and consider the surface
defined by the graph of z = f(x, y) shown in Figure 2.52. The partial derivatives
of f at the origin may be calculated from Definition 3.2 as

o fO+h0)— £0.0) [l —|A]
£:0.0) = fim == = S imo=o
and
0,0+h)— (0,0 =1kl = |k .
f7(0,0) = lim 24 +h - J( )=11mM=11m0=0.
h—0 h h—0 h h—0

(Indeed, the partial functions F(x) = f(x, 0)and G(y) = f(0, y) are both identi-
cally zero and, thus, have zero derivatives.) Consequently, ifthe surface in question
has a tangent plane at the origin, then equation (4) tells us that it has equation
z = 0. But there is no geometric sense in which the surface z = f(x, y) has a
tangent plane at the origin. If we think of a tangent plane as the geometric limit of
planes that pass through the point of tangency and two other “moving” points on
the surface as those two points approach the point of tangency, then Figure 2.52
shows that there is no uniquely determined limiting plane. *

Example 4 shows that the existence of a tangent plane to the graph of
z = f(x,y) is a stronger condition than the existence of partial derivatives. It
turns out that such a stronger condition is more useful in that theorems from the
calculus of functions of a single variable carry over to the context of functions
of several variables. What we must do now is find a suitable analytic definition of
differentiability that captures this idea. We begin by looking at the definition of
the one-variable derivative with fresh eyes.
By replacing the quantity a + £ by the variable x, the limit equation in formula
(1) may be rewritten as
Fl(a) = lim L) =@
X—a X —da
This is equivalent to the equation
. (F (x) — F(a)
lim | ——=
X—a X —da

) — F'(a) = 0.

The quantity F’(a) does not depend on x and therefore may be brought inside the
limit. We thus obtain the equation

. {F(X)— F(a)
lim{ ———

x—a X —a

— F/(a)} =0.

Finally, some easy algebra enables us to conclude that the function F is differen-
tiable at a if there is a number F’(a) such that

i F@) —[Fl@) + Fla)x —a)] _
m =

X—a X —da

0. (5)

What have we learned from writing equation (5)? Note that the expression in
brackets in the numerator of the limit expression in equation (5) is the function
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Figure 2.53 If F is differentiable
at a, the vertical distance between
F(x) and H (x) must approach
zero faster than the horizontal
distance between x and a does.
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H (x) that was used to define the tangent line to y = F(x) at (a, F(a)). Thus, we

may rewrite equation (5) as

. F(x) — H(x)
Iim ———
x—a X —a

=0.

For the limit above to be zero, we certainly must have that the limit of the numerator
is zero. But since the limit of the denominator is also zero, we can say even more,
namely, that the difference between the y-values of the graph of F and of its tangent
line must approach zero faster than x approaches a. This is what is meant when
we say that “H is a good linear approximation to F near a.” (See Figure 2.53.)
Geometrically, it means that, near the point of tangency, the graph of y = F(x)
is approximately straight like the graph of y = H(x).

If we now pass to the case of a scalar-valued function f(x, y) of two variables,
then to say that z = f(x, y) has a tangent plane at (a, b, f(a, b)) (i.e., that f is
differentiable at (a, b)) should mean that the vertical distance between the graph
of f and the “candidate” tangent plane given by

z=h(x,y) = f(a.b) + fi(a,b)(x —a)+ fy(a,b)(y — b)

must approach zero faster than the point (x, y) approaches (a, b). (See Fig-
ure 2.54.) In other words, near the point of tangency, the graph of z = f(x, y) is
approximately flat just like the graph of z = h(x, y). We can capture this geometric
idea with the following formal definition of differentiability:

DEFINITION 3.4 Let X be open in R? and f: X € R?> — R be a scalar-
valued function of two variables. We say that f is differentiable at (a, b) € X
if the partial derivatives fy(a, b) and f,(a, b) exist and if the function

h(x,y) = f(a,b) + fi(a,D)(x —a) + fy(a, b)(y — b)
is a good linear approximation to f near (a, b)—that is, if
fx,y)—hx,y)
im =
x.y)—~@b) ||(x,y) — (a, b)||
Moreover, if f is differentiable at (a, b), then the equation z = A(x, y) de-
fines the tangent plane to the graph of f at the point (a, b, f(a, b)). If f

is differentiable at all points of its domain, then we simply say that f is
differentiable.

Z -
(x, 3, f(x,y))

, (x yoh(x.y)

(a,b, f(a, b))

X

Figure 2.54 If f is differentiable at (a, b), the distance
between f(x, y) and A(x, y) must approach zero faster than
the distance between (x, y) and (a, b) does.
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EXAMPLE 5 Letus return to the function f(x, y) = [|x| — |¥|| — |x| — |y]| of
Example 4. We already know that the partial derivatives f,(0, 0) and f,(0, 0)
exist and equal zero. Thus, the function A of Definition 3.4 is the zero function.
Consequently, f will be differentiable at (0,0) just in case

fx,y)—h(x,y) —  lim fx,y)
=00 [[(x,y) = (0,0)  @»=00 [[(x, ¥

[l = Y1l = 1x] = [yl

= lim
(x,3)=(0,0) NEE

is zero. However, it is not hard to see that the limit in question fails to exist. Along
the line y = 0, we have

fey) NIl =0 = Ix[ =0 _ O

= =0,
G, I Vx? |x]
but along the line y = x, we have
Fery) _ =l = x| = x| _ =2 _
[l e, W VX2 +x2 V2|x|

Hence, f fails to be differentiable at (0, 0) and has no tangent plane at (0, 0, 0).¢

The limit condition in Definition 3.4 can be difficult to apply in practice.
Fortunately, the following result, which we will not prove, simplifies matters in
many instances. Recall from Definition 2.3 that the phrase “a neighborhood of
a point P in a set X” just means an open set containing P and contained in X.

THEOREM 3.5 Suppose X is open in R?. If f: X — R has continuous partial
derivatives in a neighborhood of (@, b) in X, then f is differentiable at (a, b).

A proof of a more general result (Theorem 3.10) is provided in the addendum
to this section.

EXAMPLE 6 Let f(x,y)=x?+2y% Then df/dx =2x and 3f/dy = 4y,
both of which are continuous functions on all of R?. Thus, Theorem 3.5 implies
that f is differentiable everywhere. The surface z = x? + 2y? must therefore
have a tangent plane at every point. At the point (2, —1), for example, this tangent
plane is given by the equation

7=64+4(x —-2)—4(y+1)
(or, equivalently, by 4x — 4y — z = 6). *

While we’re on the subject of continuity and differentiability, the next result is
the multivariable analogue of a familiar theorem about functions of one variable.

THEOREM 3.6 If f: X € R> — Ris differentiable at (a, b), then it is continu-
ous at (a, b).
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EXAMPLE 7 Let the function f:R?> — R be defined by

2,,2
o, y) = x4+t if (x, y) # (0, 0)

0 if (x, y) =(0,0)

The function f is not continuous at the origin, since lim, y)- 0.0y f(x, y) does
not exist. (However, f is continuous everywhere else in R?.) By Theorem 3.6, f
therefore cannot be differentiable at the origin. Nonetheless, the partial derivatives
of f do exist at the origin, and we have

0 af
0)=——=0 — —(0,0)=0,
fx.0) x4+0 8x( )
and
af
0,y)= =0 — —(0,00=0

since the partial functions are constant. Thus, we see that if we want something
like Theorem 3.6 to be true, the existence of partial derivatives alone is not
enough. .

Differentiability in General

It is not difficult now to see how to generalize Definition 3.4 to three (or more)
variables: For a scalar-valued function of three variables to be differentiable at a
point (a, b, c), we must have that (i) the three partial derivatives exist at (a, b, ¢)
and (ii) the function #: R®> — R defined by

h(x,y,z) = f(a,b,c) + fi(a,b,c)(x — a)
+ fy(av b? C)(y - b) + fZ(a’ b7 C)(Z - C)
is a good linear approximation to f near (a, b, ¢). In other words, (ii) means that

f(x,y,z)—h(x,y,z) —
(x,y,2)=>(a,b.c) ”(X, Y, Z) - (Cl, b1 C)”

The passage from three variables to arbitrarily many is now straightforward.

DEFINITION 3.7 Let X be open in R” and f: X — R be a scalar-valued
function; let a = (a;, a2, ..., a,) € X. We say that f is differentiable at
a if all the partial derivatives f,.(a),i =1, ..., n, exist and if the function
h:R" — R defined by

h(x) = f(a) + fu,(Q)(x1 — a1) + fr,(a)(x2 — a2)
+ 4+ fxn(a)(xn —ay) (6)
is a good linear approximation to f near a, meaning that

1imM:0

x~a  |x —al
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We can use vector and matrix notation to rewrite things a bit. Define the
gradient of a scalar-valued function f: X € R" — R to be the vector
af of of
Vikx) = <— — .

ax; dxy” 7 Ax,

Consequently,

V@)= (fu(a), fi(), ..., fr,(2)).

Alternatively, we can use matrix notation and define the derivative of f at a,
denoted Df(a), to be the row matrix whose entries are the components of V f(a);
that is,

Df(a)=[fu(a) fo(@ - f,@].

Then, by identifying the vector x — a with the n x 1 column matrix whose entries
are the components of x — a, we have

Xy —a
‘2 — ax
Vf(a)-(x—a)=Df(a)x—a)=[fy(@) fu@) - f,(a)]
X, — ay,

= fo@)(x1 —a1) + fr,(a)(x2 — a2)
+---+ fx,,(a)(-xn - an)-

Hence, vector notation allows us to rewrite equation (6) quite compactly as

h(x) = f(a)+ V f(a)-(x —a).

Thus, to say that 4 is a good linear approximation to f near a in equation (6)
means that
o F) @)+ V@ (x—a)] _

x4 x —al

0. (7)

Compare equation (7) with equation (5). Differentiability of functions of one and
several variables should really look very much the same to you. It is worth noting
that the analogues of Theorems 3.5 and 3.6 hold in the case of n variables.

The gradient of a function is an extremely important construction, and we
consider it in greater detail in §2.6.

You may be wondering what, if any, geometry is embedded in this general
notion of differentiability. Recall that the graph of the function f: X € R" — R
is the hypersurface in R"*! given by the equation x,.; = f(x1, X2, ..., X,).
(See equation (2) of §2.1.) If f is differentiable at a, then the hypersurface deter-
mined by the graph has a tangent hyperplane at (a, f(a)) given by the equation

Xnt1 = h(x1, x2, ..., x,) = f(@)+ V f(a)-(x —a)
= f(a)+ Df(a)(x — a). (®)

Compare equation (8) with equation (3) for the tangent line to the curve y = F(x)
at (a, F(a)). Although we cannot visualize the graph of a function of more than
two variables, nonetheless, we can use vector notation to lend real meaning to
tangency in n dimensions.

EXAMPLE 8 Before we drown in a sea of abstraction and generalization, let’s
do some concrete computation. An example of an “n-dimensional paraboloid” in
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R"*! is given by the equation
Xn+1 =X12+X22+"' +x,%’

that is, by the graph of the function f(xy, ..., x,) = x7 + x5 + - - - + x2. We have

— =2x;, i=1,2,...,n,
8x,~

so that
Vi, ..., x,) = 2xy,2x2, ..., 2x,).

Note that the partial derivatives of f are continuous everywhere. Hence, the
n-dimensional version of Theorem 3.5 tells us that f is differentiable everywhere.
In particular, f is differentiable at the point (1, 2, ..., n),

VIil,2,...,n)=(2,4,...,2n),
and
Df(1,2,....n)=[2 4 --- 2n].
Thus, the paraboloid has a tangent hyperplane at the point
(1,2,...,n, 12422+ 4+ n?)

whose equation is given by equation (8):

X1—1

x2—2
Xpp1 = (P + 22+ +n)+[2 4 -+ 2n]

X, —n

=P 422+ ) 200 — D+ 40 —2) + -+ 2n(x, — n)
=(124+22 4+ 40P +2x +4x; + -+ 2nx,
~@2-14+4-2+4---+2n-n)

=2x; +4x; 4 +2nx, — (1> + 2>+ .- +1n?)

= . n(n+1)2n+1)
= Z 2ix; — 6 .
i=1
(The formula 12 4+ 2% + - - 4+ n% = n(n + 1)(2n + 1)/6 is a well-known identity,
encountered when you first learned about the definite integral. It’s straightforward
to prove using mathematical induction.) *

At last we’re ready to take a look at differentiability in the most general setting
of all. Let X be open in R” and let f: X — R™ be a vector-valued function of n
variables. We define the matrix of partial derivatives of f, denoted Df, to be
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the m x n matrix whose ijth entry is 9f;/dx;, where fi: X € R" — Riis the ith
component function of f. That is,

R
axl 8x2 axn
TR O
Df(x1, x2, ..., xp) = axi  0x 9%,
of o
L axl 8x2 axn ]

The ith row of Df is nothing more than D f;—and the entries of D f; are precisely
the components of the gradient vector V f;. (Indeed, in the case where m = 1,
V f and Df mean exactly the same thing.)

EXAMPLE 9 Suppose f: R® — R? is given by f(x, y, z) = (x cos y + z, xy).
Then we have

Df(x, y, 2) = [ cosy —xsiny 1 :|

y by 0 *

We generalize equation (7) and Definition 3.7 in an obvious way to make the
following definition:

DEFINITION 3.8 (GRAND DEFINITION OF DIFFERENTIABILITY) Let X C
R" be open, let f: X — R, and let a € X. We say that f is differentiable at
a if Df(a) exists and if the function h: R” — R™ defined by

h(x) = f(a) + Df(a)(x — a)
is a good linear approximation to f near a. That is, we must have

i Ifx) —h()ll .. [If(x) — [f(a) + Df(a)(x —a)]||
im = lim =

x—a |x —al e lIx —al

0.

Some remarks are in order. First, the reason for having the vector length
appearing in the numerator in the limit equation in Definition 3.8 is so that there
is a quotient of real numbers of which we can take a limit. (Definition 3.7 concerns
scalar-valued functions only, so there is automatically a quotient of real numbers.)
Second, the term Df(a)(x — a) in the definition of h should be interpreted as the
product of the m x n matrix Df(a) and the n x 1 column matrix

X1 — a;
X2 — a2
Xn — dp

Because of the consistency of our definitions, the following results should
not surprise you:
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THEOREM 3.9 Iff: X C R" — R is differentiable at a, then it is continuous
at a.

THEOREM 3.10 If f: X CR" — R"™ 1is such that, for i =1,...,m and
j=1,...,n,all 3f;/dx; exist and are continuous in a neighborhood of a in
X, then f is differentiable at a.

THEOREM 3.11 A function f: X € R"” — R” is differentiable at a € X (in the
sense of Definition 3.8) if and only if each of its component functions f;: X C
R" — R,i =1,...,m, is differentiable at a (in the sense of Definition 3.7).

The proofs of Theorems 3.9, 3.10, and 3.11 are provided in the addendum
to this section. Note that Theorems 3.10 and 3.11 frequently make it a straight-
forward matter to check that a function is differentiable: Just look at the partial
derivatives of the component functions and verify that they are continuous. Thus,
in many—but not all—circumstances, we can avoid working directly with the
limit in Definition 3.8.

EXAMPLE 10 The function g: R* — {(0, 0, 0)} — R? given by
3
g(.X,y,Z)=< & xy,xz)

x4 y2 422
has
—6x —06y —6z
(.X2 +y2 +Z2)2 (XZ +y2 +ZZ)2 ()C2 +y2 +ZZ)2
Dg(x,y,z) =
y X 0
z 0 X

Each of the entries of this matrix is continuous over R* — {(0, 0, 0)}. Hence, by
Theorem 3.10, g is differentiable over its entire domain. *

What Is a Derivative?

Although we have defined quite carefully what it means for a function to be
differentiable, the derivative itself has really taken a “backseat” in the preceding
discussion. It is time to get some perspective on the concept of the derivative.

In the case of a (differentiable) scalar-valued function of a single variable,
f:X C R — R, the derivative f’(a) is simply a real number, the slope of the
tangent line to the graph of f at the point (a, f(a)). From a more sophisticated
(and slightly less geometric) point of view, the derivative f’(a) is the number such
that the function

h(x) = f(a)+ f'(a)x — a)

is a good linear approximation to f(x) for x near a. (And, of course, y = h(x) is
the equation of the tangent line.)

If a function f: X € R" — R of n variables is differentiable, there must
exist n partial derivatives df/dxy, ..., df/dx,. These partial derivatives form the
components of the gradient vector V f (or the entries of the 1 x n matrix Df). It
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is the gradient that should properly be considered to be the derivative of f, but in
the following sense: V f(a) is the vector such that the function #: R" — R given
by

h(x) = f(a) + Vf(a)-(x —a)

is a good linear approximation to f(x) for x near a. Finally, the derivative of a
differentiable vector-valued function f: X € R" — R™ may be taken to be the
matrix Df of partial derivatives, but in the sense that the function h: R* — R”
given by

h(x) = f(a) + Df(a)(x — a)

is a good linear approximation to f(x) near a. You should view the derivative
Df(a) not as a “static” matrix of numbers, but rather as a matrix that defines a
linear mapping from R” to R”. (See Example 5 of §1.6.) This is embodied in
the limit equation of Definition 3.8 and, though a subtle idea, is truly the heart of
differential calculus of several variables.

In fact, we could have approached our discussion of differentiability much
more abstractly right from the beginning. We could have defined a function f: X C
R" — R” to be differentiable at a point a € X to mean that there exists some
linear mapping L: R" — R™ such that

[If(x) — [f(a) + L(x —a)]l|
m

li =0.

e x —al

Recall that any linear mapping L: R” — R” is really nothing more than multipli-
cation by a suitable m x n matrix A (i.e., that L(y) = Ay). It is possible to show
that if there is a linear mapping that satisfies the aforementioned limit equation,
then the matrix A that defines it is both uniquely determined and is precisely the
matrix of partial derivatives Df(a). (See Exercises 60—62 where these facts are
proved.) However, to begin with such a definition, though equivalent to Definition
3.8, strikes us as less well motivated than the approach we have taken. Hence, we
have presented the notions of differentiability and the derivative from what we
hope is a somewhat more concrete and geometric perspective.

Addendum: Proofs of Theorems 3.9, 3.10, and 3.11

Proof of Theorem 3.9 We begin by claiming the following: Let x € R" and
B = (b;j) be an m x n matrix. If y = Bx, (soy € R"), then

Iyl = Klix]I, )

1/2
where K = (Zi’j bfj> . We postpone the proof of (9) until we establish the

main theorem.
To show that f is continuous at a, we will show that ||f(x) — f(a)|| — 0 as
x — a. We do so by using the fact that f is differentiable at a (Definition 3.8).
We have

[f(x) — f(@)| = [If(x) — f(a) — Df(a)(x — a) 4 Df(a)(x — a)|
< [If(x) — f(a) — Df(a)(x — a)|| + [ Df(a)(x —a)l|,  (10)

using the triangle inequality. Note that the first term in the right side of inequality
(10) is the numerator of the limit expression in Definition 3.8. Thus, since f is
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differentiable at a, we can make ||f(x) — f(a) — Df(a)(x — a)|| as small as we wish
by keeping ||x — a|| appropriately small. In particular,

[If(x) — f(a) — Df(a)(x — a)|| < [x —a

if || x — a|| is sufficiently small. To the second term in the right side of inequality
(10), we may apply (9), since Df(a) is an m x n matrix. Therefore, we see that if
|Ix — a]| is made sufficiently small,

If(x) — f(a)ll < IIx —all + K[lx —all = (1 + K)[x —a]. (11)
The constant K does not depend on x. Thus, as x — a, we have
[f(x) — f(a)]| — 0,

as desired.
To complete the proof, we establish inequality (9). Writing out the matrix
multiplication,

bixy +bixy + -+ biyxy by -x

by xy + bypxy + -+ - 4+ bapxy b, - x
y=Bx= . = ) .

bmlxl + bm2x2 + -+ bmnxn bm X

where b; denotes the ith row of B, considered as a vector in R”. Therefore, using
the Cauchy—Schwarz inequality,

1/2
Iyl = ((by +x)? + (b -x)> + - - + (b, - %))/
1/2
< (Iby 121112 + 022 IXIP + - - + by, 17 1x112)

1/2
= (IIb1 11> + b2l + - -~ + b %) 1x1.

Now,
by |2 = b2 + B + -+« + b2, = Zb
Consequently,
b1 112 + a1 + -+« + by 1> = fj Ib; |1* = Z Zb
i=1 i=1 j=
Thus, |ly|| < K||x]||, and we have completed the proof of Theorem 3.9. [ |

Proof of Theorem 3.10 First, we prove Theorem 3.10 for the case where f is a
scalar-valued function of two variables. We begin by writing

f(x1,x20) = flar, a) = f(x1,x2) — f(ar, x2) + f(a1, x2) — f(ai, a2).

By the mean value theorem,? there exists a number c; between a; and x; such
that

f(x1,x2) = flar, x2) = f(c1, x2)(x1 — ay)

2 Recall that the mean value theorem says that if F is continuous on the closed interval [a, b] and differen-
tiable on the open interval (a, b), then there is anumber ¢ in (a, b) such that F(b) — F(a) = F'(c)(b — a).
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and a number ¢, between a, and x, such that

flar, x2) — flar, a2) = fr(a1, c2)(x2 — a2).

(This works because in each case we hold all the variables in f constant except
one, so that the mean value theorem applies.) Hence,

| f(x1,x2) = flar, a2) — fo (a1, a)(x1 — a1) — fo, (a1, a2)(x2 — a2)]
= [ fu(er, 221 — @) + fio(ar, e2)(x2 = a2) = fo (a1, a)(x1 — ar)
—folar, a)(x2 — a))|
< | fu(er, ) —ar) = foar, a)x —a)|

+ |fxz(ala )2 — az) — fy,(ar, a2)(x2 — az)
by the triangle inequality. Hence,

|f(x1,xz) — flar, a2) — fx (a1, ax)(x1 — a1) — fr,(ar, az)(x2 — az)|

< | fuler. x2) = fo(ar, a)| 1x1 —ai

’

+ | fular, ©2) = fu(ar, a2)| [x2 — a2
<A{|fu(c1.x2) = fu (a1, @)| + | (@1, c2) = fo(ar, a)|} Ix — all,
since, fori =1, 2,

lxi —ail < IIx — all = ((x1 — a1)* + (x2 — ax)®) /2.

Thus,
| f(x1,x2) = flar, a2) — fo (a1, a2)(x1 — a1) — fo,(a1, az)(x2 — a2)|
Ix —all
< |fu(c1.x2) = fo (a1, @) + | fular, 2) — fular, a)|. (12)

As x — a, we must have that ¢; — q;, fori = 1, 2, since ¢; is between a; and x;.
Consequently, by the continuity of the partial derivatives, both terms of the right
side of (12) approach zero. Therefore,

fim | f(x1,x2) = flar, @) — fo (a1, a)(x1 —ar) = fo (a1, a2)(x2 — @) _

x—a Ix —all

0

as desired.

Exactly the same kind of argument may be used in the case that f is a scalar-

valued function of n variables—the details are only slightly more involved, so

we omit them. Granting this, we consider the case of a vector-valued function
f:R” — R”. According to Definition 3.8, we must show that

iy M) — f(a) — Dfta)x — a)ll _

im =

x—~a Ix —all

0. (13)

The component functions of the expression appearing in the numerator may be
written as

Gi = fi(x) — fi(a) = Dfi(a)(x — a), (14)

where f;,i = 1,...,m, denotes the ith component function of f. (Note that, by
the cases of Theorem 3.10 already established, each scalar-valued function f; is



2.3 Exercises

2.3 | Exercises 131

differentiable.) Now, we consider
() — f(a) — Dfa)x —a)[ _ [(G1, G2, ..., Gu)ll
Ix —all Ix —al|

(GI+Gi+---+G2)"”

x —all

G+ 1G]+ - + |Gl

lx —all

_1Gil_ | _1Ga G
Ix—all " Ix—al Ix—al

Asx — a,eachterm |G;|/||x — a|]| — 0, by definition of G; in equation (14) and
the differentiability of the component functions f; of f. Hence, equation (13) holds
and fis differentiable at a. (To see that (G% +- -+ G2 <G+ -+ |Gl
note that

(Gl + -+ 1Gu)? = |G P + -+ |Gul?
+2|G|1G2| + 2IG | |G3| + -+ - +2|G =1 | |Gy
> |G+ +1Gul

Then, taking square roots provides the inequality.) ]

Proof of Theorem 3.11 In the final paragraph of the proof of Theorem 3.10, we
showed that

Ifx) — f@) = Df@x —a)l _ Gl Gl |Gl
Ix —all T lx—all  (x—all Ix—al’
where G; = fi(x) — fi(a) — Df;(a)(x — a) as in equation (14). From this, it fol-
lows immediately that differentiability of the component functions fi, ..., f, at
a implies differentiability of f at a. Conversely, fori =1, ..., m,
1fx) — f(a) — Df@(x — )l _ I(G1,Ga,....Gu)ll _ |Gl
[x —all Ix —all ~lix —a

Hence, differentiability of f at a forces differentiability of each component
function. ]

In Exercises 1-9, calculate 0f/dx and 9f/dy. 6. f(x,y)=In(x*+y?
 fly) =xyt+xty
Cfay) = et

1
2
3

(3]

. f(x,y)=sinxy + cosxy

- fly) =

Sy =

X y?

1+ x243y4

X2 —y2

x2+y2

7. f(x,y)=cosx’y

8. f(x,y)=In (f)
y

9. f(x,y)=xe’ + ysin(x>+y)

In Exercises 10—17, evaluate the partial derivatives d0F /dx,
0F /03y, and dF |0z for the given functions F.

10. F(x,y,z2)=x+3y —2z2
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X—y
1. F(x,y,2) = ——
(x,y,2) e

12. F(x,y,z) = xyz

13. F(x,y,2) = /x2+ y* + 22

14. F(x,y,z) = e** cosby + e** sinbx

X+y+z
15. F(x,y,z) =
(x y Z) (1+x2+y2+22)3/2
16. F(x,y,z) = sinx?y3z*
x3+yz
17. F(x,y,2) = —————
(x7.2) x24+z224+1

Find the gradient V f(a), where f and a are given in Exer-
cises 18-25.

18. f(x,y)=x>y+e’*, a=(1,0)
X—=y
19. V)=, =(2,-1
fen= g 2=
20. f(x,y,z)=sinxyz, a=(mw, 0,7/2)
21. f(x,y,z)=xy+ycosz — xsinyz,
a=(2,—1,7)
22. f(x,y)=eY+In(x—y), a=(2,1)
23. fx.y.) =2 a=(.-1,0)
o2
24. f(x,y,z)=coszln(x +y?), a=(e,0,7/4)
2.2
xXy* —x°z
25. f(x,y,2)= ————, a=(-1,2,1
fx,y,2) e ( )

In Exercises 26-33, find the matrix Df(a) of partial derivatives,
where f and a are as indicated.

26. f(x,y):%, a=(3,2)

27. f(x,y,2)=x>+xIn(yz), a=(=3,e,e)
28. f(x,y,z) = (2x —3y+5,x>+y,1n (yz)),

a=(3,—-1,-2)
29. f(x,y,z) = (xyz, Va2 4y + zz),
a=(1,0,-2)

30. f(z) = (¢, cos2t,sin5t), a=0

31. f(x,y,z,w)=0Bx — 7y +z,5x +2z — 8w,
y—17z4+3w), a=(1,2,3,4)

32. f(x, y) = (x%y, x + ¥, cosxy),

33. f(s, 1) = (s%,5t,1%), a=(—1,1)

a=(2, -1

Explain why each of the functions given in Exercises 34-36 is
differentiable at every point in its domain.

34. f(x,y)=xy—Tx%y? + cosx

x+y+z
35. Y, )= —

2
Xy £ )
36. f(x,y): <m, ; + ;)

37. (a) Explain why the graph of z = x> — 7xy + ¢ has
a tangent plane at (—1, 0, 0).
(b) Give an equation for this tangent plane.
38. Find an equation for the plane tangent to the graph of
z = 4cosxy at the point (7/3, 1, 2).
39. Find an equation for the plane tangent to the graph of
7z = " cos xy at the point (0, 1, e).

40. Find equations for the planes tangent to z =
x? —6x+y* that are parallel to the plane
4x —12y+z="1.

41. Use formula (8) to find an equation for the hy-
perplane tangent to the 4-dimensional paraboloid
xs =10 — (x} +3x3 +2x3 +x7) at the point
2,-1,1,3,-8).

42. Suppose that you have the following information con-
cerning a differentiable function f:

f(2,3)=12, £(1.98,3)=12.1, f(2,3.01)=122.

(a) Give anapproximate equation for the plane tangent
to the graph of f at (2, 3, 12).

(b) Use the result of part (a) to estimate f(1.98, 2.98).

In Exercises 43—45, (a) use the linear function h(x) in Def-
inition 3.8 to approximate the indicated value of the given
function f. (b) How accurate is the approximation determined
in part (a)?

43. f(x,y) =", (0.1, -0.1)
44. f(x,y)=3+cosmxy, £(0.98,0.51)
45. f(x,y,z)=x*+xyz+y’z, £(1.01,1.95,2.2)
46. Calculate the partial derivatives of
Xp+ X+ -+ X,

f(xlv-x2a-"sxn): .
Rt
47. Let
2 2 3 3
Xy-—x"y+3x° =y’ |

B if (x. ) # (0. 0)
fx,y)= Xty :
0 if (x, y) = (0, 0)

(a) Calculate daf/dx and af/dy for (x,y) # (0, 0).
(You may wish to use a computer algebra system
for this part.)

(b) Find £,(0, 0) and £,(0, 0).

As mentioned in the text, if a function F(x) of a single variable
is differentiable at a, then, as we zoom in on the point (a, F(a)),
the graph of 'y = F(x) will “straighten out” and look like its
tangent line at (a, F(a)). For the differentiable functions given



in Exercises 4851, (a) calculate the tangent line at the indi-
cated point, and (b) use a computer to graph the function and
the tangent line on the same set of axes. Zoom in on the point
of tangency to illustrate how the graph of 'y = F(x) looks like
its tangent line near (a, F(a)).

@8 F)=x-2r+3, a=1
. T
049. F(x) = x +sinx, a:z
X —=3x%4x
50. F(x)= ——————, a=0
0 ) x2 41 ¢
@51 Foy=h@2+1), a=-1

(a) Use a computer to graph the function F(x) =
(x —2)¥3.

(b) By zooming in near x = 2, offer a geometric dis-
cussion concerning the differentiability of F at
x =2.

€ 52

As discussed in the text, a function f(x,y) may have partial
derivatives f.(a, b) and fy(a, b) yet fail to be differentiable at
(a, b). Geometrically, if a function f(x, ) is differentiable at
(a, b), then, as we zoomin on the point (a, b, f(a, b)), the graph
of z = f(x,y) will “flatten out” and look like the plane given
by equation (4) in this section. For the functions f(x, y) given
in Exercises 53-57, (a) calculate f.(a,b) and fy(a,b) at the
indicated point (a, b) and write the equation for the plane given
by formula (4) of this section, (b) use a computer to graph the
equationz = f(x, y)together with the plane calculated in part
(a). Zoom in near the point (a, b, f(a, b)) and discuss whether
or not f(x,y) is differentiable at (a, b). (c) Give an analytic
(i.e., nongraphical) argument for your answer in part (b).

@53 fay)=x—xy+)% (@b =@2.1)

@ 54 [, y)=(x =Dy’ (a,b)=(1,0)
Xy

@ 55 fx.y)= e (a,b)=(0,0)

@ 56. f(x,y)=sinxcosy, (a,b)= (% 37”)

. T
0 57. f(x,y)=x?siny +y?cosx, (a,b)= (; Z)
58. Let g(x, y) = Jxy.
(a) Is g continuous at (0, 0)?
(b) Calculate dg/dx and dg/dy when xy # 0.
(c) Show that g, (0, 0) and g,(0, 0) exist by supplying
values for them.
(d) Are dg/dx and dg/dy continuous at (0, 0)?
(e) Doesthe graphofz = g(x, y) have atangent plane

at (0, 0)? You might consider creating a graph of
this surface.

(f) Is g differentiable at (0, 0)?
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59. Suppose f: R” — R” is a linear mapping; that is,

f(x) = Ax, wherex = (x,x2,...,x,) €R"

and A is an m x n matrix. Calculate Df(x) and relate
your result to the derivative of the one-variable linear
function f(x) = ax.

In Exercises 60—62 you will establish that the matrix Df(a) of
partial derivatives of the component functions of f is uniquely
determined by the limit equation in Definition 3.8.

60. Let X be anopen setin R”,leta € X, and let F: X C
R" — R™. Show that

lim [F(x)| =0 <= lim F(x) = 0.
X—a X—a

61. Let X be an open set in R”, leta € X, and let f: X C
R" — R™. Suppose that A and B are m X n matrices
such that

i 1) — [f@) + A — )] _
m =

x—a Ix —all
i [f(x) — [f(a) + B(x —a)]||
im =0.
x—a Ix —all

(a) Use Exercise 60 to show that

. (B—A)x—a)
lim ——M————= =
x—a  x —all

(b) Write x — a as th, where h is a nonzero vector in
R”. First argue that

. (B=A)(x—a) o
lim ———— =0 implies
=a o |x —al

(B — A)(th)
im-———= =0,
~0 [rh]

and then use this result to conclude that A = B.
(Hint: Break into cases where ¢ > 0 and where
t<0)

62. Let X be an open set in R”, leta € X, and let f: X C
R" — R™. Suppose that A is an m x n matrix such
that

i ) — [f@) + A —a)] Il _
1m =

= Ix —al

0.

In this problem you will establish that A = Df(a).
(a) Define F: X € R" — R” by
_ f(x) —f(a) — A(x — a)

Ix — all '

F(x)

Identify the ith component function Fj(X) us-
ing component functions of f and parts of the
matrix A.

(b) Note that under the assumptions of this problem
and Exercise 60, we have that limy_,, F(x) = 0.
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First argue that, for i =1,...,m, we have o ofi
limy_..a F3(x) = 0. Next, argue that (c) Use parts (a) and (b) to show that a;; = ox, (a),
SN P N where g;; denotes the i jth entry of A. (Hint: Break
,!EI}, Fix) =0 implies /11—13) Fi(a+hej) =0, into cases where 2 > 0 and where & < 0.)
where e; denotes the standard basis vector

©,...,1,...,0) for R".

2.4 Properties; Higher-order Partial
Derivatives

Properties of the Derivative

From our work in the previous section, we know that the derivative of a function
f: X € R" — R can be identified with its matrix of partial derivatives. We next
note several properties that the derivative must satisfy. The proofs of these results
involve Definition 3.8 of the derivative, properties of ordinary differentiation, and
matrix algebra.

PROPOSITION 4.1 (LINEARITY OF DIFFERENTIATION) Let f, g: X € R" — R”
be two functions that are both differentiable at a point a € X, and let ¢ € R be
any scalar. Then

1. The function h = f + g is also differentiable at a, and we have
Dh(a) = D(f + g)(a) = Df(a) + Dg(a).
2. The function k = cf is differentiable at a and

Dk(a) = D(cf)(a) = cDf(a).

EXAMPLE 1 Let f and g be defined by f(x, y) = (x + y, xysiny, y/x) and
g(x, y) = (x* + 2, ye*, 2x> — 7y°). We have

1 1
Df(x,y)=| ysiny xsiny4xycosy
—y/x? 1/x
and
2x 2y
Dg(x,y)=| y?e" % 4 xye®
6x2 —35y*

Thus, by Theorem 3.10, fis differentiable on R? — {y-axis} and g is differentiable
on all of R%. If we leth = f + g, then part 1 of Proposition 4.1 tells us that h must
be differentiable on all of its domain, and

Dh(x, y) = Df(x, y) + Dg(x, y)
2x + 1 2y +1
= | ysiny+ y?e*  xsiny+xycosy + e*’ + xye®’
6x% — y/x? 1/x —35y*
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Note also that the function k = 3g must be differentiable everywhere by part 2
of Proposition 4.1. We can readily check that Dk(x, y) = 3Dg(x, y): We have

K(x, ) = (3x% + 3y2 3ye™, 6x7 — 21y9).

Hence,
6x 6y
DK(x,y) = | 3y%" 3¢ 4+ 3xye™
18x? —105y*
2x 2y
=3 y2e¥ eV 4 xye”
6x2 — 35y*
=3Dg(x, y). *

Due to the nature of matrix multiplication, general versions of the product
and quotient rules do not exist in any particularly simple form. However, for
scalar-valued functions, it is possible to prove the following:

PROPOSITION 4.2 Let f, g: X € R" — R be differentiable at a € X. Then
1. The product function fg is also differentiable at a, and
D(fg)(a) = g(a)Df(a) + f(a)Dg(a).
2. If g(a) # 0, then the quotient function f/g is differentiable at a, and
8(@)Df(a) — f(a)Dg(a)

D(f/)(a) = ar

EXAMPLE 2 If f(x, y,z) = z¢* and g(x, y,z) = xy + 2yz — xz, then
(fe)x,y,2)=(xyz+ 2y22 — xz2)exy,
so that
(yz — 29)e™ + (xyz + 2yz* — x2%)ye™
D(fg)(x,y,2) = | (xz+2z%)e™ + (xyz + 2yz*> — xz%)xe™’
(xy +4yz — 2xz)e™”

Also, we have
Df(x,y,2) = [yzexy xze™ exy]
and
Dg(x,y,z2)=[y—z x+2z 2y—x],
so that
8(x,y,2)Df(x,y,2)+ f(x,y,2)Dg(x, y, z)
(22 + 2222 — xyzD)e | (yz —2%)e™

= | (Pyz+2xy22 —x22H)e™ | +| (xz+27%)e™
(xy +2yz — xz)e*” (2yz — xz)e™
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T

xyzz + 2yzz2 — )cyz2 +yz — 22

=" | x?yz +2xyz? — x?7% +xz+27% ,
xy +4yz —2xz

which checks with part 1 of Proposition 4.2. (Note: The matrix transpose is used
simply to conserve space on the page.) .

The product rule in part 1 of Proposition 4.2 is not the most general
result possible. Indeed, if f: X € R" — R is a scalar-valued function and
g: X € R" — R” is a vector-valued function, then if f and g are both differ-
entiable ata € X, sois fg, and the following formula holds (where we view g(a)
as anm x 1 matrix):

D(fg)(a) = g(a)Df(a) + f(a)Dg(a).

Partial Derivatives of Higher Order

Thus far in our study of differentiation, we have been concerned only with partial
derivatives of first order. Nonetheless, it is easy to imagine computing second-
and third-order partials by iterating the process of differentiating with respect to
one variable, while all others are held constant.

EXAMPLE 3 Let f(x,y,z) = x?y + y*>z. Then the first-order partial deriva-
tives are
af
o=

d d
2xy, —f =x2 +2yz, and —f = y2.

ay 9z
The second-order partial derivative with respect to x, denoted by 3° f/dx? or

fxx(xa y: Z); iS

ax2  ox

2 f o [of ad

— (=) = —Qxy) =2y.

( 8x) oy (XY =2y

Similarly, the second-order partials with respect to y and z are, respectively,
af 9 (of

ay2 3y \ dy

82f_8 afy 9 o
a—zz—a—z(—)—&@):‘)-

0
) = E(XZ +2yz) =2z,

and

a9z

There are more second-order partials, however. The mixed partial derivative
with respect to first x and then y, denoted 9% f/dydx or foy(x,y,2),1s

92 a (d ]
f = — —f = —(2xy) = 2x.
dydx  Jdy \0x ay
There are five more mixed partials for this particular function: 9% f/9xdy,

0% f/0z0x, 0% f/dxdz, d* f/dz3dy, and 3% f/dydz. Compute each of them to get
a feeling for the process. .

In general, if f: X € R" — Risa(scalar-valued) function of n variables, the
kth-order partial derivative with respect to the variables x;,, x;,, . .., x; (in that
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order), where iy, iy, . .., i; are integers in the set {1, 2, . . ., n} (possibly repeated),
is the iterated derivative
ok f 0 o 0

...... (f(xl, X2, o vny xn))

0xj, -+ 0x;,0x;,  0X;, 0x;, 0x;,

Equivalent (and frequently more manageable) notation for this kth-order partial
is

fX,‘ Xin o Xj (x17x25 L] xﬂ)’
172 k

Note that the order in which we write the variables with respect to which we
differentiate is different in the two notations: In the subscript notation, we write
the differentiation variables from left to right in the order we differentiate, while
in the d-notation, we write those variables in the opposite order (i.e., from right
to left).

EXAMPLE 4 Let f(x, y, z, w) = xyz + xy?w — cos(x + zw). We then have

*f 3 0 5
Srwx, y, 2, w) = = — —(xyz + xy*w — cos(x + zw))
dwdy  Jdw dy

0
= —(xz 4+ 2xyw) = 2xy,
ow

and

3 f a9 »
Juy(x, y, 2, w) = = ——(xyz + xy“w — cos(x + zw))
dyow  dy dw

0 .
= —(xy? + zsin(x + zw)) = 2xy.
ay *

Although it is generally ill-advised to formulate conjectures based on a single
piece of evidence, Example 4 suggests that there might be an outrageously simple
relationship among the mixed second partials. Indeed, such is the case, as the next
result, due to the 18th-century French mathematician Alexis Clairaut, indicates.

THEOREM 4.3  Suppose that X is open in R” and f: X € R" — R has con-
tinuous first- and second-order partial derivatives. Then the order in which we
evaluate the mixed second-order partials is immaterial; that is, if i; and i, are any
two integers between 1 and n, then

2f

Bxil axiz Bxiz Bx,-l '

A proof of Theorem 4.3 is provided in the addendum to this section. We
also suggest a second proof (using integrals!) in Exercise 4 of the Miscellaneous
Exercises for Chapter 5.

It is natural to speculate about the possibility of an analogue to Theorem 4.3
for kth-order mixed partials. Before we state what should be an easily anticipated
result, we need some terminology.
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DEFINITION 4.4 Assume X is open in R". A scalar-valued function
f:X € R" — R whose partial derivatives up to (and including) order at
least k exist and are continuous on X is said to be of class C*. If f has
continuous partial derivatives of all orders on X, then f is said to be of class
C°°, or smooth. A vector-valued function f: X € R* — R is of class C¥
(respectively, of class C*°) if and only if each of its component functions is
of class C* (respectively, C*).

THEOREM 4.5 Let f: X € R" — R be a scalar-valued function of class C*.
Then the order in which we calculate any kth-order partial derivative does not

matter: If (i1, ..., i;) are any k integers (not necessarily distinct) between 1 and
n,and if (ji, ..., ji) is any permutation (rearrangement) of these integers, then
ok f ok f
8x,-l- --8x,-k N ij,-- '8)(7]"('

EXAMPLE 5 If f(x,y,z, w) = x>we’® — ze*™ + xyzw, then you can check

that
3 3°
B A O S
dx0wdzdydx 0z0ydwd2x
verifying Theorem 4.5 in this case. *

Addendum: Two Technical Proofs
Proof of Part 1 of Proposition 4.1

Step 1. We show that the matrix of partial derivatives of h is the sum of
those of f and g. If we write h(x) as (h;(x), h2(X), ..., h,y(X)) (i.e., in terms of
its component functions), then the ijth entry of Dh(a) is d/; /0x; evaluated at a.
But h;(x) = f;(x) + g;(x) by definition of h. Hence,

— = —UiX iX)=—T—,

= 5y 0+ = S+ T
by properties of ordinary differentiation (since all variables except x; are held
constant). Thus,

afi g

d0h;
E(a) = E(a) + Ej(a)’

and, therefore,
Dh(a) = Df(a) + Dg(a).

Step 2. Now that we know the desired matrix of partials exists, we must
show that h really is differentiable; that is, we must establish that

i Ih(x) — [h(a) + Dh(a)(x — a)]|| _
m =
x—a Ix —a

0.




(a,b+Ay) (a+Ax,b+Ay)
: i
+ —
o o
(a,b) (a+Ax,b)

Figure 2.55 To construct the
difference function D used in the
proof of Theorem 4.3, evaluate f
at the four points shown with the
signs as indicated.
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As preliminary background, we note that

[h(x) — [h(a) + Dh(a)(x — a)]]|

Ix — al|
_ ) + g(x) — [f(a) + g(a) + Df(a)(x — a) + Dg(a)(x — a)]|
lx —all
_ (G0 — [f(a) + Df(a)(x — a)]) + (g(x) — [g(a) + Dg(a)(x — a)])ll
Ix —a]
_ ) — [f(a) + Dfa)(x — )]l | llg(x) — [g(a) + Dga)(x — a)]l
- lIx — al| lx — al| ’

by the triangle inequality, formula (2) of §1.6. To show that the desired limit

equation for h follows from the definition of the limit, we must show that given

any € > 0, we can find a number § > 0 such that

Ih®) — [h(a) + Dha)x —a)]ll _
[x —all

if 0 < ||x — a]| < 4, then (1)
Since f is given to be differentiable at a, this means that given any €; > 0, we can
find §; > 0 such that

|f(x) — [f(a) + Df(a)(x — a)]||

if 0 < ||x — a|| < &y, then < €. 2)
Ix —al

Similarly, differentiability of g means that given any €, > 0, we can finda §, > 0
such that

o) — [g(a) + Dg@(x—a)ll _
Ix — all ?

if 0 < ||x — a|| < &, then 3)

Now we’re ready to establish statement (1). Suppose € > 0 is given. Let §;
and §; be such that (2) and (3) hold with €| = €, = €/2. Take 6 to be the smaller
of §; and 8,. Hence, if 0 < ||x — a|| < §, then both statements (2) and (3) hold
(with ) = €, = €/2) and, moreover,

[h(x) — [h(a) + Dh(a)(x — a)] [f(x) — [f(a) + Df(a)(x — a)]|l

I _

Ix — al - Ix —al|
n lg(x) — [g(a) + Dg(a)(x — a)]|
Ix —all
<€ +e
€ €
= 5 + 5 = €.
That is, statement (1) holds, as desired. [ ]

Proof of Theorem 4.3 For simplicity of notation only, we’ll assume that f is a
function of just two variables (x and y). Let the point (a, b) € R? be in the interior
of some rectangle on which f., fy, fcx, fyy, fry, and fy, are all continuous.
Consider the following “difference function.” (See Figure 2.55.)

D(Ax, Ay) = f(a+ Ax, b+ Ay) — f(a+ Ax, b)
—f(a, b+ Ay)+ f(a, b).
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(a,b+Ay) (a+Ax,b+Ay)

R

(a,b) (a+Ax,b)

Figure 2.56 Applying the mean
value theorem twice.

(crd) X

Our proof depends upon viewing this function in two ways. We first regard D as
a difference of vertical differences in f:

D(Ax, Ay)=[f(a+ Ax,b+ Ay) — f(a + Ax, b)]
—[f(a.b+ Ay) — f(a, b)]
= F(a + Ax) — F(a).

Here we define the one-variable function F(x)tobe f(x,b + Ay) — f(x, b). As
we will see, the mixed second partial of f can be found from two applications of
the mean value theorem of one-variable calculus. Since f has continuous partials,
itis differentiable. (See Theorem 3.10.) Hence, F is continuous and differentiable,
and, thus, the mean value theorem implies that there is some number ¢ between
a and a + Ax such that

D(Ax, Ay) = F(a + Ax) — F(a) = F'(c)Ax. 4

Now F'(c) = fi(c, b+ Ay) — fi(c, b). We again apply the mean value theorem,
this time to the function f,(c, y). (Here, we think of ¢ as constant and y as the
variable.) By hypothesis f; is differentiable since its partial derivatives, f,, and
fxy, are assumed to be continuous. Consequently, the mean value theorem applies
to give us a number d between b and b + Ay such that

F/(C) = fx(ca b+ Ay) - fx(c’ b) = fxy(cv d)Ay- (5)
Using equation (5) in equation (4), we have
D(Ax, Ay) = F'(c)Ax = fyy(c, d)AyAx.

The point (c, d) lies somewhere in the interior of the rectangle R with vertices
(a,b), (a + Ax,b), (a,b+ Ay), (a + Ax, b+ Ay), as shown in Figure 2.56.
Thus, as (Ax, Ay) — (0, 0), we have (¢, d) — (a, b). Hence, it follows that

faoy(e,d) = foy(a,b) as (Ax, Ay) — (0,0),

since fy, is assumed to be continuous. Therefore,

D(Ax, Ay)
b De0.0) AyAx
Fol@ D)= 00 0D = (e A 00 AyAx

On the other hand, we could just as well have written D as a difference of
horizontal differences in f:

D(Ax, Ay)=[f(a+ Ax,b+ Ay) — f(a, b+ Ay)]
—[f(a+ Ax,b) — f(a,b)]
=G+ Ay) — G(b).

Here G(y) = f(a + Ax, y) — f(a, y). As before, we can apply the mean value
theorem twice to find that there must be another point (¢, d) in R such that

D(Ax, Ay) = G'(d)Ay = fyx(¢,d)AxAy.

Therefore,

D(Ax, Ay)
b = CAxpy
fsla. b) = (Ax Av) (0,0) fiul@ d) = (Ax, Av)%(o 0 AxAy

Because this is the same limit as that for fy,(a, b) just given, we have established
the desired result. u
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In Exercises 1-4, verify the sum rule for derivative matrices
(i.e., part 1 of Proposition 4.1) for each of the given pairs of

functions:
1. f(x,y)=xy+cosx, g(x,y)=sin(xy)+ >
2. f(x,y) = (", xe”), glx,y) = (In(xy), ye*)
3. f(x,y,2) = (xsiny + z, ye* —3x?), g(x,y,2)=
(x3 cosx, xyz)
4. f(x,y,7) = (xyz?, xe™, ysinxz), gx,y,2)=

(x =y, x>+ y> 4+ 2%, In(xz +2))

Verify the product and quotient rules (Proposition 4.2) for the
pairs of functions given in Exercises 5-8.

5

6.
7.

X
f.y)=xty+y, glx,y)= 5

fx,y)=¢, g(x,y)=xsin2y
F,y)=3xy+y°, g, y)=x"—2xy>

f(x,y,2) =xcos(yz),
gx,y,2) =x2+x%y* +y?3 +2

For the functions given in Exercises 9—17 determine all second-
order partial derivatives (including mixed partials).

9.
10.
11.
12.

13.

14.
15.

16.

17.

18.

19.
20.
21.
22.

fx,y)=x3y7 4+ 3xy? — Txy
f(x, ) = cos(xy)

fx,y) =& —ye
f(x,y) =sin /x4 y?
fx.y)= sin’ x + 2ev
fley)y=e
f(x,y)=ysinx —xcosy

fy)=In (f)
y

fley) =% 4 e
xX—)

f(xvy!z):m

f(x7 Vs Z) = xzyZ +xy22 +xy12
f(x9 Vs Z) =e
f(x,v,2) =e™siny + e’ cosz

Consider the function F(x,y,z)=2x’y+xz>+

y3z5 —Txyz.

(a) Find Fiy, Fy,, and F..

(b) Calculate the mixed second-order partials F,,
Fyy, Fy, Foy, Fy;, and F,,, and verify Theorem
4.3.

23.

24.

25.

26.

27.

28.

(c) Is Fyyx = Fyy,? Could you have known this with-
out resorting to calculation?

(d) Is Fyy; = Fy.?

Let f(x,y)=ye**. Give general formulas for
9" f/dx" and 9" f/dy", where n > 2.

Let f(x,y,2) = xe? + ye¥* + ze™. Give general
formulas for 9" f/9x", 9" f/dy", and 0" f/dz", where
n>1.

Let f(x,y,2)=1In (x—y> Give general formulas for

z
a" f/ox",d" f/ay", and 0" f/97", where n > 1. What
can you say about the mixed partial derivatives?

Let f(x,y,2) = x7y?7% — 2x%yz.
(a) What is 8* f/9x?9ydz?

(b) What is 3° f/3x3dydz?

(c) Whatis 3'° f/dx'39ydz?

Recall from §2.2 that a polynomial in two variables x
and y is an expression of the form

d
Pl y) =Y cux'y,
k,1=0

where ¢y, can be any real number for 0 < k,/ < d.The

degree of the term cy;x*y! when ¢; # 0 is k 4 and

the degree of the polynomial p is the largest degree
of any nonzero term of the polynomial (i.e., the largest
degree of any term for which ¢;; # 0). For example,
the polynomial

plx, y) = 7x%y% +2x%y% —3x* —5xy3 + 1

has five terms of degrees 15, 5, 4, 4, and 0. The de-

gree of p is therefore 15. (Note: The degree of the zero

polynomial p(x, y) = 0 is undefined.)

(@) If p(x, y) = 8x7y'® — 9x2y + 2x, what is the de-
gree of dp/dx? dp/dy? 3%*p/ax>? 3%p/oy*?
82p/oxdy?

(b) If p(x,y) = 8x%y + 2x3y, what is the degree of
Ap/9x? dap/dy? 3%p/9x>? 3% p/ay*? 8% p/axdy?

(c) Try to formulate and prove a conjecture relating
the degree of a polynomial p to the degree of its
partial derivatives.

The partial differential equation

92 92
f+—f=0

3yr ' 9z2

f
0x2

is known as Laplace’s equation, after Pierre Simon
de Laplace (1749-1827). Any function f of class C?
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that satisfies Laplace’s equation is called a harmonic

function.’

(@) Is f(x,y,z) = x>+ y?—2z% harmonic? What
about f(x,y,z)=x>—y> 4+ z2?

(b) We may generalize Laplace’s equation to functions
of n variables as

Give an example of a harmonic function of n vari-
ables, and verify that your example is correct.

The three-dimensional heat equation is the partial dif-

ferential equation
L 0°T N *T N °T\ _oT
ax2  9y2  9z2 ) A’

where k is a positive constant. It models the tempera-
ture T'(x, y, z, t) at the point (x, y, z) and time ¢ of a
body in space.
(a) We examine a simplified version of the heat equa-

tion. Consider a straight wire “coordinatized” by

x. Then the temperature T (x, t) at time ¢ and po-

sition x along the wire is modeled by the one-
dimensional heat equation

°T T
ax2 9t

Show that the function 7'(x, f) = e ¥ cos x satis-
fies this equation. Note that if 7 is held constant at
value fy, then T'(x, fo) shows how the temperature
varies along the wire at time #y. Graph the curves
z=T(x, 1) forty =0, 1, 10, and use them to un-
derstand the graph of the surface z = T'(x, 1) for
t > 0. Explain what happens to the temperature of
the wire after a long period of time.

Show that T'(x, y, t) = e *'(cosx + cos y) satis-
fies the two-dimensional heat equation

*T  9*T T
l—+—)=—.
0x2  0y? ot

(b)

30.

Graph the surfaces givenby z = T'(x, y, fy), where
to = 0, 1, 10. If we view the function 7'(x, y, 1) as
modeling the temperature at points (x, y) of a flat
plate at time 7, then describe what happens to the
temperature of the plate after a long period of time.

(c) Now show that T(x,y,z,t)=e (cosx +
cos y + cos z) satisfies the three-dimensional heat
equation.

Let
22

xy(%) if (x. ) # (0.0)
0 if (x, y) = (0, 0)

(a) Find f(x, y)and fy(x, y) for (x, y) # (0, 0). (You
will find a computer algebra system helpful.)

S, y) =

(b) Either by hand (using limits) or by means of
part (a), find the partial derivatives f,(0, y) and
fy(x.0).

(c) Find the values of f,,(0, 0) and f,,(0, 0). Recon-
cile your answer with Theorem 4.3.

A surface that has the least surface area among all surfaces
with a given boundary is called a minimal surface. Soap bub-
bles are naturally occurring examples of minimal surfaces. It
is a fact that minimal surfaces having equations of the form
2= f(x,y) (where f is of class C?) satisfy the partial differ-
ential equation

(1+23) zex + (1 +22) 29y = 2242920y (6)

Exercises 31-33 concern minimal surfaces and equation (6).

31.

© 32.

@ 3.

Show that a plane is a minimal surface.

Scherk’s surface is given by the equation e* cos y =
Cos X.

(a) Use a computer to graph a portion of this surface.
(b) Verify that Scherk’s surface is a minimal surface.
One way to describe the surface known as the helicoid
is by the equation x = y tan z.

(a) Use a computer to graph a portion of this surface.
(b) Verify that the helicoid is a minimal surface.

2.5

The Chain Rule

Among the various properties that the derivative satisfies, one that stands alone
in both its usefulness and its subtlety is the derivative’s behavior with respect
to composition of functions. This behavior is described by a formula known as

3 Laplace did fundamental and far-reaching work in both mathematical physics and probability theory.
Laplace’s equation and harmonic functions are part of the field of potential theory, a subject that Laplace
can be credited as having developed. Potential theory has applications to such areas as gravitation, elec-
tricity and magnetism, and fluid mechanics, to name a few.
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the chain rule. In this section, we review the chain rule of one-variable calculus
and see how it generalizes to the cases of scalar- and vector-valued functions of
several variables.

The Chain Rule for Functions of One Variable: A Review —

We begin with a typical example of the use of the chain rule from single-variable
calculus.

EXAMPLE 1 Let f(x) = sinx and x(¢) = #> + t. We may then construct the
composite function f(x(t)) = sin(¢> + ¢). The chain rule tells us how to find the
derivative of f o x with respect to ¢:

(fox)(t) = %(sin(ﬁ + 1)) = (cos(r> +1))(312 + 1).
Since x = 13 + ¢, we have

d d
(f 0x)(1) = ——(sinx) - (" +1) = f'(x) - 2(0). .

In general, suppose X and T are open subsets of R and f: X TR — R
and x:7 € R — R are functions defined so that the composite function
f ox: T — R makes sense. (See Figure 2.57.) In particular, this means that the
range of the function x must be contained in X, the domain of f. The key result
is the following:

x f
/_\ /\
——

T X
R R R

.

A

Figure 2.57 The range of the function x must be contained in the domain X of f in
order for the composite f o x to be defined.

THEOREM 5.1 (THE CHAIN RULE IN ONE VARIABLE) Under the preceding as-
sumptions, if x is differentiable at7y € T and f is differentiable at xo = x(#p) € X,
then the composite f o x is differentiable at 7, and, moreover,

(f ox)(to) = f'(x0)x'(to). (1)

A more common way to write the chain rule formula in Theorem 5.1 is

d d dx
= L Dy, @)
Although equation (2) is most useful in practice, it does represent an unfor-
tunate abuse of notation in that the symbol f is used to denote both a function
of x and one of ¢. It would be more appropriate to define a new function y by
y(t) = (f ox)(t)sothatdy/dt = (df/dx)(dx/dt). But our original abuse of no-
tation is actually a convenient one, since it avoids the awkwardness of having too
many variable names appearing in a single discussion. In the name of simplicity,
we will therefore continue to commit such abuses and urge you to do likewise.
The formulas in equations (1) and (2) are so simple that little more needs
to be said. We elaborate, nonetheless, because this will prove helpful when we
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generalize to the case of several variables. The chain rule tells us the following:
To understand how f depends on ¢, we must know how f depends on the “in-
termediate variable” x and how this intermediate variable depends on the “final”
independent variable ¢. The diagram in Figure 2.58 traces the hierarchy of the
variable dependences. The “paths” indicate the derivatives involved in the chain
rule formula.

Dependent Intermediate Final
variable variable variable

df dx
d_/ x \d_t
f t
\— 4
df
dt

Figure 2.58 The chain rule for functions of a single variable.

y

X Range x f

=

RZ

Figure 2.59 The composite function f o x.

The Chain Rule in Several Variables

Now let’s go a step further and assume f: X € R*> — R is a C! function of
two variables and x: 7 € R — R? is a differentiable vector-valued function
of a single variable. If the range of x is contained in X, then the composite
fox:T € R — R is defined. (See Figure 2.59.) It’s good to think of x as
describing a parametrized curve in R? and f as a sort of “temperature func-
tion” on X. The composite f o x is then nothing more than the restriction of f to
the curve (i.e., the function that measures the temperature along just the curve).
The question is, how does f depend on #? We claim the following:

PROPOSITION 5.2 Suppose x: T € R — R? is differentiable at #, € T, and
f:X € R?> — R is differentiable at xo = x(f9) = (x0, yo) € X, where T and X
are open in R and R?, respectively, and range x is contained in X. If, in addition,
fisofclass C!, then f o x: T — R is differentiable at #, and

d
i—{(fo) = %(Xo)d_);(lo) + %(xo)%(zo).

Before we prove Proposition 5.2, some remarks are in order. First, notice
the mixture of ordinary and partial derivatives appearing in the formula for the



Figure 2.61 The graph of the
function x of Example 2.
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Dependent Intermediate Final
variable variables variable
of dx
a/ * x
f t
a_\ y %
ay dt
df
dt

Figure 2.60 The chain rule of Proposition 5.2.

derivative. These terms make sense if we contruct an appropriate “variable hier-
archy” diagram, as shown in Figure 2.60. At the intermediate level, f depends
on two variables, x and y (or, equivalently, on the vector variable x = (x, y)),
so partial derivatives are in order. On the final or composite level, f depends on
just a single independent variable ¢ and, hence, the use of the ordinary derivative
df/dt is warranted. Second, the formula in Proposition 5.2 is a generalization of
equation (2): A product term appears for each of the two intermediate variables.

EXAMPLE 2 Suppose f(x,y) = (x + y?)/(2x* + 1) is a temperature func-
tion on R? and x(t) = (2¢, t + 1). The function x gives parametric equations
for a line. (See Figure 2.61.) Then
204+t +17  P44r+1
812 +1 8241
is the temperature function along the line, and we have
df 4—14 —32¢2
dt (82412 °
by the quotient rule. Thus, all the hypotheses of Proposition 5.2 are satisfied and
so the derivative formula must hold. Indeed, we have

af 1 —2x? — 4xy?

(f ox)(1) = f(x(1)) =

ax  (2xr4 12 7
aof 2y
dy  2x2+41°
and
dx dy
'‘tOy=(—, =) =2, .
X (1) (dt dt) @1
Therefore,
af dx E)fdy_l—Z)cz—4)cy2 2 2y
ax dt  dydr  (2x24 1) 2x2 + 1

201 —82 =8t +1)%) | 20+ 1)
N (812 4+ 1)2 8124+ 1"
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after substitution of 27 for x and ¢ + 1 for y. Hence,
of dx dofdy 22— Tt — 16t?)
dxdr | dydt B2+ 12
which checks with our previous result for df/dt. *

Proof of Proposition 5.2 Denote the composite function f o x by z. We want to
establish a formula for dz/dt at fy. Since 7 is just a scalar-valued function of one
variable, differentiability and the existence of the derivative mean the same thing.
Thus, we consider

dz . oz(t) —z(t

E(IO) — lim M,

—1y l‘ — to
and see if this limit exists. We have

dz(r _ i SO, ¥(0) = f(x(t), y(10))
—(tp) = lim .

dt =1 t—1y

The first step is to rewrite the numerator of the limit expression by subtracting
and adding f(x¢, y) and to apply a modicum of algebra. Thus,

ﬂ(t _ e S y) = f(xo, ) + f(x0, ¥) = f(x0, o)
0) = lim

dt =1y t—ty

— i LY~ f@o0.y) L F(oY) — f(Xo. Yo)
= lim + lim .

t—1y t—1 t—ty t—1

(Remember that x(#y) = X¢ = (x¢, ¥o).) Now, for the main innovation of the proof.
We apply the mean value theorem to the partial functions of f. This tells us that
there must be a number ¢ between x( and x and another number d between yg
and y such that

JF(x,y) = fxo, y) = file, y)(x — Xo)

and
f(xo, y) = f(x0, y0) = fy(x0, d)(y — o).
Thus,
dz o X — Xo . Y=Y
E(IO) = }g% fx(e, y)m + }LH}O Sy(x0,d) PR
1) — x(1 1) — y(t
i ey SO 20 = ()
t—to t—1t t—1 r—1

d d
= o, 30) - (10) + (50 30) (10,

by the definition of the derivatives
dx dy
—(t d —(¢
T (to) an o (t0)

and the fact that f(c, y) and f)(xo, d) must approach f\(xo, yo) and f,(xo, yo),
respectively, as ¢ approaches 7y, by continuity of the partials. (Recall that f was
assumed to be of class C'. ) This completes the proof. [ |

Proposition 5.2 and its proof are easy to generalize to the case where f
is a function of n variables (i.e., f: X CR" - R)and x: T € R — R”. The
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appropriate chain rule formula in this case is

df af dx, af af dxp
E(fo) = a_xl(XO)W(tO) + P ox, (X0) R (t). (3

Note that the right side of equation (3) can also be written by using matrix notation
so that

(0 D2 ) 4+

d
%(IO)
2 10)
af .~ | df af af ar 0
Z(fo) = [a—xl(xo) a_xz(XO) T A (Xo)] t.
dx,
| @ (t0) ]
Thus, we have shown
df ,
E(IO) = Df(x0)Dx(t) = V f(x0) - X (%), 4)

where we use x'(y) as a notational alternative to Dx(#y). The version of the chain
rule given in formula (4) is particularly important and will be used a number of
times in our subsequent work.

Let us consider further instances of composition of functions of many
variables. For example, suppose X is open in R, T is open in R?, and
f:X CR®— Rand x: T € R?> — R? are such that the range of x is contained
in X. Then the composite f ox:7 € R> - R can be formed, as shown in
Figure 2.62. Note that the range of x, that is, x(T), is just a surface in R3, so
f o x can be thought of as an appropriate “temperature function” restricted to this
surface. If we use X = (x, y, z) to denote the vector variable in R? and t = (s, 1)
for the vector variable in R?, then we can write a plausible chain rule formula
from an appropriate variable hierarchy diagram. (See Figure 2.63.) Thus, it is

Figure 2.62 The composite f o x where f: X CR?> — Randx:7 € R?> — R’.
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Dependent Intermediate
variable variables

aof X
ax
of
J

f Y y
of
0z 4

Figure 2.63 The chain rule for f o x, where f: X € R® — Rand

x:T CR?> > R,

reasonable to expect that the following formulas hold:

af _afdx  df dy  9f 9z
ds  dxds dyds 0z 0s

and

8f_8f8x+8f3y+8f82
ar  dx dr  dy dr  dz ot

Final
variables

©)

(Again, we abuse notation by writing both df/ds, df/dt and df/dx, df/dy,
9f/9z.) Indeed, when f is a function of x, y, and z of class C!, formula (3)
with n = 3 applies once we realize that dx/ds, dx/dt, etc., represent ordinary
differentiation of the partial functions in s or ¢.

EXAMPLE 3 Suppose

fe,y,0)=x>+y"+2°

Then h(s,t) = f o X(s, 1) = s2 cos® t + e>*" + (s> — 1?)?, so that

oh  3(f ox)
s - as
oh  3(f ox)
a o
We also have
af
P
and
dx
as
dy
ds
0z

— =¢co0st, — = —ssint,

El

and x(s,1) = (scost, e, s> — 1?).

<

s

dy

0x

at

' B_y s
at

0z

— = =2t

at

= 2s5cos’ 1 + 2te®! + 4s(s® — 1%)

’

—2s%costsint + 25" — di(s* — 17).



2.5 | The Chain Rule 149

Hence, we compute
8f_8(fox)_8f8x+8f8y+8f8z
ds  ds  dxds dyds 9z ds
= 2x(cost) + 2y(te’") + 2z(2s)
= 2s cost(cost) + 2 (te'") + 2(s> — 1*)(2s)
=25 cos’ 1 + 2te®! + 4s(s* — 17),
just as we saw earlier. We leave it to you to use the chain rule to calculate df/0d¢

in a similar manner. *

Of course, there is no need for us to stop here. Suppose we have an open set
X in R™, an open set T in R”, and functions f: X — R and x: 7" — R™ such
thath = f ox: T — R can be defined. If f is of class C! and x is differentiable,
then, from the previous remarks, 2 must also be differentiable and, moreover,

oh  9f dx1 | Of 0xa f xy,
8tj B dxy 3lj 09Xy 8tj 0X,, 3tj
" 9f 0
N W
—l Xy 81‘/

Since the component functions of a vector-valued function are just scalar-valued
functions, we can say even more. Suppose f: X C R” — R” andx: 7 C R" —
R™ are suchthath = fox: T € R” — RY? can be defined. (As always, we assume
that X is open in R” and T is open in R".) See Figure 2.64 for a representation of
the situation. If fis of class C! and x is differentiable, then the composite h = fo x
is differentiable and the following general formula holds:

dhi I of 9
G e N N T I (6)
Btj kzlaxkatj

The plausibility of formula (6) is immediate, given the variable hierarchy diagram
shown in Figure 2.65.

T X
X x(T) f
/—\ /\
R" R™ R’

Figure 2.64 The composite fo x where f: X € R” — R” andx: T € R" — R™.

Now comes the real “magic.” Recall that if A is a p x m matrix and B is an
m X n matrix, then the product matrix C = AB is defined and is a p x n matrix.
Moreover, the ijth entry of C is given by

m
cij = E aikby;.
k=1
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Dependent Intermediate Final
variables variables variables
afy 0x,
ax; ot
X
fi ofy ! ax, 4
9x, at
P 1)
X2
af 1 6xm
X, ' a
o - ly

Figure 2.65 The chain rule diagram for f o x, where f: X € R” — R” and
x: T C R" — R™.

If we recall that the ijth entry of the matrix Dh(t) is dh;/0dt;, and similarly for
Df(x) and Dx(t), then we see that formula (6) expresses nothing more than the
following equation of matrices:

Dh(t) = D(f o x)(t) = Df(x)Dx(t). (7)

The similarity between formulas (7) and (1) is striking. One of the reasons
(perhaps the principal reason) for defining matrix multiplication as we have is
precisely so that the chain rule in several variables can have the elegant appearance
that it has in formula (7).

EXAMPLE 4 Suppose f:R®— R?> is given by f(x;, x2,x3) =
(x; — x2, x1x2x3) and x: R*> — R® is given by x(t1, 1) = (tit2, 17, t3). Then
fox:R> - R?is given by (fo x)(11, ) = (1112 — 17, 1;13), so that

h — 24 3]
D(fox)(t) = .
(Fox)(® [ 323 3622 }
On the other hand,
t t
1 -l 0 S,
DA(x) = and Dx(1)=| 24 0 1,
X2X3 X1X3 X1X2
0 2t
so that the product matrix is
i th — 24 n

Df(x)Dx(t) =

XX3t) + 2x1x31

h — 24
2.3 2.3
15 +2tll‘2

Xax3t) + 2x1x21p

N
3,2 3.2 |0
Lty + 265t;

|

after substituting for x;, x,, and x3. Thus, D(fo x)(t) = Df(x) Dx(t), as expected.
Alternatively, we may use the variable hierarchy diagram shown in Figure 2.66
and compute any individual partial derivative we may desire. For example,

ot dxp 0h dxy 04 dx3 0t
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Dependent Intermediate Final
variables variables variables

8x1

Figure 2.66 The variable hierarchy diagram for Example 4.

by formula (6). Then by abuse of notation,

o
O~ (o) + )@n) + (1))
1
= ()(1) + (n1)(15)21)
=318,
which is indeed the (2, 1) entry of the matrix product. *

At last we state the most general version of the chain rule from a technical
standpoint; a proof may be found in the addendum to this section.

THEOREM 5.3 (THE CHAIN RULE) Suppose X € R” and T € R” are open and
f: X — R?” and x: T — R" are defined so that range x € X. If x is differen-
tiable at ty) € T and f is differentiable at x) = x(t;), then the composite fo x is
differentiable at ty, and we have

D(f o x)(to) = Df(x0)Dx(to).

The advantage of Theorem 5.3 over the earlier versions of the chain rule we
have been discussing is that it requires f only to be differentiable at the point in
question, not to be of class C'. Note that, of course, Theorem 5.3 includes all
the special cases of the chain rule we have previously discussed. In particular,
Theorem 5.3 includes the important case of formula (4).

EXAMPLE 5 Let f:R> — R? be defined by f(x,y) = (x — 2y + 7, 3xy?).
Suppose that g:R*> — R? is differentiable at (0,0,0) and we know that
2(0,0,0) = (=2, 1) and

2 45
Dg(O,O,O):|:_1 0 1]
We use this information to determine D(f o g)(0, 0, 0).

First, note that Theorem 5.3 tells us that f o g must be differentiable at (0, 0, 0)
and, second, that

D(fo £)(0,0,0) = Df(g(0, 0, 0)) Dg(0, 0, 0) = Df(—2, 1)Dg(0, 0, 0).
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Since we know f completely, it is easy to compute that

1 =2
3 —12

I -2

3y2 6xy ] sothat Df(—2,1)= [

Df(x, y) = [

Thus,

1 -2 2 45 4 4 37
D(fog)(0,0,0)2[3 —12“—1 0 1}:[18 12 3|

We remark that we needed the full strength of Theorem 5.3, as we do not know
anything about the differentiability of g other than at the point (0, 0, 0). .

EXAMPLE 6 (Polar/rectangular conversions) Recall that in §1.7 we pro-
vided the basic equations relating polar and rectangular coordinates:

x =rcosf

y =rsinf

Now suppose you have an equation defining a quantity w as a function of x and
y; that is,

w = f(x,y).

Then, of course, w may just as well be regarded as a function of » and 6 by
susbtituting 7 cos 0 for x and r sin 6 for y. That is,

w =g, 0) = f(x(r,0), y(r,0)).

Our question is as follows: Assuming all functions involved are differentiable,
how are the partial derivatives dw/dr, dw/d6 related to dw/dx, dw/dy?

In the situation just described, we have w = g(r, 8) = (f o x)(r, 8), so that
the chain rule implies

Dg(r,0) = Df (x, y)DX(r, 0).
Therefore,

0x ax

g ag _% %- ar 90
[5 £i|__3x dy || ay dy
ar 90

[ % % [ cos® —rsind
| ox Ay sin 6 rcosf |-

By extracting entries, we see that the various partial derivatives of w are related
by the following formulas:

Jw ow . ow
— =cosf — +sinf —
ar ax ay
®)
Jw . ow ow
— = —rsinf — +rcosfd —
a6 ax dy

The significance of (8) is that it provides us with a relation of differential
operators:
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0 0 0
— =c0osf — +sinf —
ar ax ay

)

0 0
— = —rsinf — +rcosf —
a0 ax ay

The appropriate interpretation for (9) is the following: Differentiation with
respect to the polar coordinate r is the same as a certain combination of differen-
tiation with respect to both Cartesian coordinates x and y (namely, the combina-
tion cos @ 9/dx + sinf 9/dy). A similar comment applies to differentiation with
respect to the polar coordinate 6. Note that, when r # 0, we can solve algebraically
for 9/0x and 9/9dy in (9), obtaining

0 sind 9
PRl My
X r r
(10)
0 . 0 cosf 0o
— =sinf — —
dy ar r 96

We will have occasion to use the relations in (9) and (10), and the method of
their derivation, later in this text. *

Addendum: Proof of Theorem 5.3

We begin by noting that the derivative matrices Df(xo) and Dx(ty) both exist
because f is assumed to be differentiable at x, and x is assumed to be differentiable
at ty. Thus, the product matrix Df(xo) Dx(ty) exists. We need to show that the limit
in Definition 3.8 is satisfied by this product matrix, that is, that

i 10900 = (£ )(t0) + DFxo) Dx(to)(t — to)] || _

0. 11
=t It — toll (o

In view of the uniqueness of the derivative matrix, it then automatically follows
that fo x is differentiable at t; and that Df(xy) Dx(ty) = D(f o x)(ty). Thus, we
entirely concern ourselves with establishing the limit (11) above.
Consider the numerator of (11). First, we rewrite
(fox)(t) — [(fox)(to) + Df(x0) Dx(to)(t — to)]
= (Fox)(t) — (fo x)(to) — Df(xo)(x(t) — x(10))
+ DA(x0)(x(t) — x(#9)) — Df(x0) DX(to)(t — to).

Then we use the triangle inequality:

I(fo x)(t) — [(fox)(to) + DFf(xo) Dx(to)(t — to)] ||
< [I(Fox)(t) — (f o x)(tg) — DF(xo)(x(t) — x(t0)) |l
+ || DE(x0)(x(t) — x(#9)) — Df(x0) DX(to)(t — to)|
= [[(fo x)(t) — (fo x)(tg) — DI(x0)(x(t) — x(2))l
+ 1 Df(x0) [(x(t) — x(#9)) — Dx(to)(t — to)] I|.
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By inequality (9) in the proof of Theorem 3.9, there is a constant K such that, for
any vector h € R”, || Df(xg)h|| < K|/h]||. Thus,
l[(fox)(t) — (Fox)(tg) — DI(x0) Dx(to)(t — to)||
< [(fox)(t) — (Fox)(to) — Dfxo)(x(t) —x())Il  (12)
+ K[x(t) — x(#9) — Dx(to)(t — to)]|.

To establish the limit (11) formally, we must show that given any € > 0, we
may find a § > 0 such thatif 0 < ||t — ty|| < &, then

[[(f o x)(t) — [(f o x)(to) + DI(x) DX(to)(t — to)]
It —toll

Consider the first term of the right side of (12). Using the differentiability of x at
to and inequality (11) in the proof of Theorem 3.9, we can find some §;, > 0 and
a constant K such that if 0 < ||t — ty|| < &y, then

[Ix(t) — x(to)|| < Kol[t — tol|-

I
<€

By the differentiability of f at x, given any €; > 0, we may find some §; > 0
such that if 0 < ||x — x¢|| < &, then

[|f(x) — [f(x0) + Df(x0)(x — xo)] || e
X — x|

Sete; = €/(2Kj). With x = x(t), Xxg = x(ty), we have that if both 0 < ||t — to]| <
dpand 0 < ||t — to]| < &,/Kj, then

Ix(t) — x(to)[| < Kollt —toll < 4.

Hence,

l[(F o x)(t) — (Fox)(t)) — DE(xo)(x(t) — x(to))[| < €1]|x(t) — x(to)]

elt—to]
. 13
. (13)

Now look at the second term of the right side of (12). Since x is differentiable
at to, given any €; > 0, we may find some 8, > 0 such that if 0 < ||t — to|| < 52,
then

< e Kplt =t =

IX(0) — [x(to) + Dx(to)(t — )] | __
It — to] ?

Set e, = €/(2K). Then, for 0 < ||t — ty]| < &, we have
€
[Ix(t) — [x(to) + Dx(to)(t — to)] || < 7K [t —toll. (14)

Finally, let § be the smallest of 6y, §; /Ky, and §,. Then, for 0 < ||t — to]| < &, we
have that both the inequalities (13) and (14) hold and thus (12) becomes

(£ X0(0) = (FoX)(to) = DFxo)Dx(to)(t = )]
€ €
<Slt=toll + K (51t tol)
= ellt—tl.

Hence,

I(Fo x)(8) — (Fo x)(t) — Ditxo) DX(to)(t — t)ll _
It — o]

as desired. [

)
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LIf fx,y ) =x>—y 4 xyz,and x =61 4+7, y =
sin2t, z = t2, verify the chain rule by finding df/dt
in two different ways.

LIF f(x,y)=sin(xy)and x = s + ¢,y = s> + 2, find
df/ds and df/dt in two ways:

(a) by substitution.
(b) by means of the chain rule.

. Suppose that a bird flies along the helical curve
x =2cost,y = 2sint, z = 3¢. The bird suddenly en-
counters a weather front so that the barometric pres-
sure is varying rather wildly from point to point as
P(x,y,z) = 6x%z/y atm.

(a) Use the chain rule to determine how the pressure

is changing at r = 7 /4 min.
(b) Check your result in part (a) by direct substitution.

(c) What is the approximate pressure at ¢t = 7 /4 +
0.01 min?

. Suppose that z = x> + y3, where x = st and y is a
function of s and 7. Suppose further that when (s, ) =

9
(2, 1), 3y/d1 = 0. Determine 5(2, ).

. You are the proud new owner of an Acme Deluxe Bread
Kneading Machine, which you are using for the first
time today. Suppose that at noon the dimensions of your
(nearly rectangular) loaf of bread dough are L = 7 in
(length), W = 5 in (width), and H = 4 in (height). At
that time, you place the loaf in the machine for knead-
ing and the machine begins by stretching the loaf’s
length at an initial rate of 0.75 in/min, punching down
the loaf’s height at a rate of 1 in/min, and increasing
the loaf’s width at a rate of 0.5 in/min. What is the rate
of change of the volume of the loaf when the machine
starts? Is the dough increasing or decreasing in size at
that moment?

. Arectangular stick of butter is placed in the microwave
oven to melt. When the butter’s length is 6 in and its
square cross section measures 1.5 in on a side, its length
is decreasing at a rate of 0.25 in/min and its cross-
sectional edge is decreasing at a rate of 0.125 in/min.
How fast is the butter melting (i.e., at what rate is the
solid volume of butter turning to liquid) at that instant?

. Suppose that the following function is used to model
the monthly demand for bicycles:

P(x,y) =200+ 20+0.1x 4+ 10 — 12./y.

In this formula, x represents the price (in dollars
per gallon) of automobile gasoline and y repre-
sents the selling price (in dollars) of each bicycle.
Furthermore, suppose that the price of gasoline ¢

10.

months from now will be
t
X = 1+0.1t—cosﬂ—
6
and the price of each bicycle will be
.ot
y = 200 + 2¢ sin v

At what rate will the monthly demand for bicycles be
changing six months from now?

. The Centers for Disease Control and Prevention pro-

vides information on the body mass index (BMI)
to give a more meaningful assessment of a person’s
weight. The BMI is given by the formula

10,000w

BMI = i

where w is an individual’s mass in kilograms and h

the person’s height in centimeters. While monitoring a

child’s growth, you estimate that at the time he turned

10 years old, his height showed a growth rate of 0.6 cm

per month. At the same time, his mass showed a growth

rate of 0.4 kg per month. Suppose that he was 140 cm
tall and weighed 33 kg on his tenth birthday.

(a) At what rate is his BMI changing on his tenth
birthday?

(b) The BMI of a typical 10-year-old male increases
at an average rate of 0.04 BMI points per month.
Should you be concerned about the child’s weight
gain?

. A cement mixer is pouring concrete in a conical pile.

At the time when the height and base radius of the
concrete cone are, respectively, 30 cm and 12 cm, the
rate at which the height is increasing is 1 cm/min and
the rate at which the volume of cement in the pile is
increasing is 320 cm?/min. At that moment, how fast
is the radius of the cone changing?

A clarinetist is playing the glissando at the beginning of
Rhapsody in Blue, while Hermione (who arrived late)
is walking toward her seat. If the (changing) frequency
of the note is f and Hermione is moving toward the
clarinetist at speed v, then she actually hears the fre-
quency ¢ given by

c+v
c

p=—""F
where c is the (constant) speed of sound in air, about
330 m/sec. At this particular moment, the frequency is
f =440 Hz and is increasing at a rate of 100 Hz per
second. At that same moment, Hermione is moving
toward the clarinetist at 4 m/sec and decelerating at
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11.

12.

13.

14.

15.

16.

17.
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2 m/sec’. What is the perceived frequency ¢ she
hears at that moment? How fast is it changing? Does
Hermione hear the clarinet’s note becoming higher or
lower?

Suppose z = f(x, y) has continuous partial deriva-
tives. Let x =e¢"cosf, y =-¢€"sinf. Show that
then

92\ 2 s 92\ 2 L [z 2 . 92\ 2

— — ) =e — — .

ox dy ar a0
Suppose that z = f(x,y) has continuous partial

derivatives. Let x = 2uv and y = u? + v>. Show that
then

dz 0z 37\’ 9z\*
duov [(m) + (8y> ]+ Y
If w=g(u?—v? v?—u?) has continuous partial

derivatives with respect to x = u?> —v? and y = v —
u?, show that

dz 0z
dx oy’

Suppose that z = f(x 4+ y, x — y) has continuous par-
tial derivatives with respect to u =x +y and v =
x — y. Show that

azaz_ 37\ > az\?
ax dy  \du )

fw=f (%) is a differentiable function of
X y

u= 7)), show that
.X2 +y2
ow n ow —0
ax Y ay
X2 y?
If w= f| ———) is a differentiable function of
xZ _|_y2
2,2
u= u, show that then
x2 +y2
ow n ow 0
X — _— =
dx Y dy
Suppose w = f <y iz x) is a differentiable
Xy z
function of u = S andv = ﬂ. Show then that
Xz
ow ow ow
2 2 2
— — =0.
by 3 +y 3y +z 9z

18.

Suppose that w = g (f, E) is a differentiable func-

yy
tion of u = x/y and v = z/y. Show then that

In Exercises 19-27, calculate D(f o @) in two ways: (a) by first
evaluating f o g and (b) by using the chain rule and the deriva-
tive matrices Df and Dg.

19.
20.
21.
22.

23.

24,

25.

26.

27.

28.

29.

30.

f(x) = 3x°%, €%), g(s, 1) = s — Tt

f(x) = (x?, cos3x, Inx), g(s. t,u) = s + 1> + u?
f(x,y)=ye', gs.1)=(s —t,5+1)
flx,y)=x> =3y g(s,t) = (st,s + 1)

y X s
fx,y) = <Xy ¥y +y3>,g(s,t) = (;,szt)

f(x,y,2) = (x*y + ¥z, xyz, €%),
gt) =@ —2,3t+7,1)
f(x, y) = (xy% x%y, %3 + %), g(t) = (sint, ¢')

f(x’ y) = (x2 - y/x9ey)>
3u, stu)

g(s, t,u)=(s+2t+

fx,y,2) =(x +y+2z, x°—e¥?),
g(s, t,u) = (st, tu, su)

Let g:R>— R?> be a differentiable function
such that g(1,—1,3)=(2,5) and Dg(1, —1,3) =

1 -1 0 o
|:4 0 7:|. Suppose that f:R* — R” is de-

fined by f(x,y)=2xy,3x —y+5).
D(fog)1, —1,3)?

What is

Let g:R>— R? and f:R?>— R? be differentiable
functions such that g(0,0)=(1,2), g(1,2)=
(3.5), 1(0,0)=(3,5), f(4,1)=(1,2), Dg(0,0)=

0] pea=[3 5] prs-
[; é ],Df(4,1): [ _} g]

(a) Calculate D(fo g)(1, 2).

(b) Calculate D(g o f)(4, 1).

Let z = f(x,y), where f has continuous partial
derivatives. If we make the standard polar/rectangular
substitution x = r cos @, y = r sin6, show that

0z\* (92\' _(0z)* 1 (9zY’
dx ay) — \or r2\30 /)



31.

32.

33.

34.

(a) Use the methods of Example 6 and formula (10)
in this section to determine 3°/dx> and 8%/dy>
in terms of the polar partial differential operators
82/9r2,8%/360%,0%/9r 36, d/dr, and 3/36. (Hint:
You will need to use the product rule.)

(b) Use part (a) to show that the Laplacian operator
82/9x> + 82/dy? is given in polar coordinates by
the formula

2 9 ? 1o 129

a2 T T rar et

Show that the Laplacian operator 3%/9x> + 82/3y? +
92/3z? in three dimensions is given in cylindrical co-
ordinates by the formula

% 9 9r 9 1o 19 9

Tt T i Taee T

In this problem, you will determine the formula for the
Laplacian operator in spherical coordinates.

(a) First, note that the cylindrical/spherical conver-
sions given by formula (6) of §1.7 express the
cylindrical coordinates z and r in terms of the
spherical coordinates p and ¢ by equations of pre-
cisely the same form as those that express x and
y in terms of the polar coordinates r and 6. Use
this fact to write 9/dr in terms of 9/dp and /9 ¢.
(Also see formula (10) of this section.)

(b) Use the ideas and result of part (a) to establish the
following formula:
02 92 a2
o oy Tz
? 1 9 19
To g ity 00
20 coty d
pdp P 0y

Suppose that y is defined implicitly as a function y(x)
by an equation of the form

F(x,y)=0.
(For example, the equation x> — y? = 0 defines y as
two functions of x, namely, y = x*/> and y = —x3/%.

The equation sin(xy) — x*>y” 4+ ¥ = 0, on the other

hand, cannot readily be solved for y in terms of x. See

the end of §2.6 for more about implicit functions.)

(a) Show that if F' and y(x) are both assumed to be
differentiable functions, then

dy _  FEMy)
dx Fy(x,y)

provided Fy(x, y) # 0.
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(b) Use the result of part (a) to find dy/dx when y
is defined implicitly in terms of x by the equa-
tion x> — y? = 0. Check your result by explicitly
solving for y and differentiating.

35. Find dy/dx when y is defined implicitly by the equa-
tion sin(xy) — x%y” 4 ¢¥ = 0. (See Exercise 34.)

36. Suppose that you are given an equation of the form
F(x,y,z) =0,

for example, something like x3z+ ycosz+

(siny)/z = 0. Then we may consider z to be defined

implicitly as a function z(x, y).

(a) Use the chain rule to show that if F and z(x, y) are
both assumed to be differentiable, then

0z Fx,y.2) 9z _ Fxy.2)
ox  Fx.y.2)  dy  F(ny.2)

(b) Use part (a) to find 9z/dx and 9z/dy where z is
given by the equation xyz = 2. Check your result
by explicitly solving for z and then calculating the
partial derivatives.

37. Find 9z/0x and dz/dy, where z is given implicitly by
the equation

sin y

x3z+ycosz+ =0.

(See Exercise 36.)

38. Let

x2y

flry) =432 +y?
0 if (x, y) = (0, 0)

if (x, y) # (0, 0)

(a) Use the definition of the partial derivative to find
£+(0,0) and £,(0, 0).

(b) Let @ be a nonzero constant and let x(7) =
(t, at). Show that f o x is differentiable, and find
D(f ox)(0) directly.

(c) Calculate Df(0, 0)Dx(0). How can you reconcile
your answer with your answer in part (b) and the
chain rule?

Let w = f(x,y, 2) be a differentiable function of x, y, and
z. For example, suppose that w = x + 2y + z. Regarding the
variables x, y, and z as independent, we have 0w /dx = 1 and
ow/dy = 2. But now suppose that z = xy. Then x, y, and z
are not all independent and, by substitution, we have that w =
X 42y +xysothat ow/dx =1+ yand dw/dy =2+ x. To
overcome the apparent ambiguity in the notation for partial
derivatives, it is customary to indicate the complete set of in-
dependent variables by writing additional subscripts beside
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the partial derivative. Thus,

()
0x vz

would signify the partial derivative of w with respect to x,
while holding both y and 7 constant. Hence, x, y, and z are the
complete set of independent variables in this case. On the other
hand, we would use (0w /dx), to indicate that x and 'y alone are
the independent variables. In the case that w = x + 2y + z,
this notation gives

<aﬂ> —1, (aﬂ> =2, and (@) =1
Jx vz dy vz dz Yy

If 7 = xy, then we also have

9 d
(l’) =1+y, and (—w> =2+x.
ax y 8y X

In this way, the ambiguity of notation can be avoided. Use this
notation in Exercises 39—435.

39. Letw =x 47y — 10z and 7 = x2 + y2.

Find 8£ 8711) ow Jw

@ Fin <ax>m’<8y> (az) <ax>
and (aw) .
8y x

(b) Relate (dw/0x), . and (dw/dx), by using the
chain rule.

40. Repeat Exercise 39 where w = x° +y> + 73 and z =
2x — 3y.

41.

42.

43.

44.

45.

Suppose s = x%y +xzw — z> and xyw — y3z + xz
= 0. Find

d d
<—S> and (—S) .
aZ X,y,w BZ xX,w

Let U = F(P,V, T) denote the internal energy of a
gas. Suppose the gas obeys the ideal gaslaw PV = kT,
where k is a constant.

. U
(a) Find <ﬁ)P.
U
(b) Find <8T)

oU
(c) Find <8P)

Show thatifx, y, z are related implicitly by an equation
of the form F(x, y, z) = 0, then

(&), (), =

This relation is used in thermodynamics. (Hint: Use
Exercise 36.)

The ideal gas law PV = kT, where k is a constant,
relates the pressure P, temperature 7', and volume V
of a gas. Verify the result of Exercise 43 for the ideal
gas law equation.

Verity the result of Exercise 43 for the ellipsoid
ax* +by* +c? =d

where a, b, ¢, and d are constants.

2.6 Directional Derivatives and the Gradient

In this section, we will consider some of the key geometric properties of the

gradient vector

vi= (af o ...,3f)

x4 axz 0x,

of a scalar-valued function of n variables. In what follows, n will usually be 2

or 3.

The Directional Derivative

Let f(x, y)bea scalar—valued function of two variables. In §2.3, we understood the
partial derivative 2 (a b) as the slope, at the point (a, b, f(a, b)), of the curve
obtained as the 1ntersect10n of the surface z = f(x, y) with the plane y = b.

The other partial derivative g—’;(a, b) has a similar geometric interpretation. How-
ever, the surface z = f(x, y) contains infinitely many curves passing through
(a, b, f(a, b)) whose slope we might choose to measure. The directional deriva-
tive enables us to do this.



2.6 | Directional Derivatives and the Gradient 159

An alternative way to view %(a, b) is as the rate of change of f as we move
“infinitesimally” from a = (a, b) in the i-direction, as suggested by Figure 2.67.
This is easy to see since, by the definition of the partial derivative,

af fla+h,b)— f(a,b)

o — i
x(a’b) ) h

a
— i @0+ (1. 0)) — f(a. D)
h—0 h

_ i £ (@0 + A, 0)) — f(a.b)
h—0 h

_ i f@HRD — @)
= |1m .
h—0 h

Note that we are identifying the point (a, ») with the vector a = (a, b) = ai + bj.
Similarly, we have
af fa+hj)— f(a

@0 = m S

Writing partial derivatives as we just have enables us to see that they are
special cases of a more general type of derivative. Suppose v is any unit vector in
R2. (The reason for taking a unit vector will be made clear later.) The quantity

@)~ f@ 0

li

h—0 h
is nothing more than the rate of change of f as we move (infinitesimally) from a =
(a, b) in the direction specified by v = (A, B) = Ai + Bj. It’s also the slope of the
curve obtained as the intersection of the surface z = f(x, y) with the vertical plane
B(x —a) — A(y — b) = 0. (See Figure 2.68.) We can use the limit expression in
(1) to define the derivative of any scalar-valued function in a particular direction.

Z

< :f(x,y)

sz(x7y)

B(x—a)-A(y-b)=0

Figure 2.67 Another way to view the Figure 2.68 The directional derivative.
partial derivative df/dx at a point.



160

Chapter 2 | Differentiation in Several Variables

DEFINITION 6.1 Let X be open in R”, f: X € R” — R a scalar-valued
function, anda € X.Ifv € R" is any unit vector, then the directional deriva-
tive of f at a in the direction of v, denoted Dy, f(a), is

fa+hv)— f(a)
h

Dy f(@) = lim

(provided that this limit exists).

EXAMPLE 1 Suppose f(x,y) = x> — 3xy + 2x — 5y. Then, if v= (v, w) €
R? is any unit vector, it follows that

f((0,0) + h(v, w)) — f(0,0)

Dy £(0,0) = lim

h
_ k20 = 3h%vw + 2hv — Shw
= lim
h—0 l’l

= hlin(l)(hvz —3hvw + 2v — Sw)

=2v — Sw.
Thus, the rate of change of f is 2v — Sw if we move from the origin in the

direction given by v. The rate of change is zero if v = (5/+29,2/+/29) or
(—5/29, =2//29). *

Consequently, we see that the partial derivatives of a function are just the “tip
of the iceberg.” However, it turns out that when f is differentiable, the partial
derivatives actually determine the directional derivatives for all directions v. To
see this rather remarkable result, we begin by defining a new function F of a
single variable by

F(t)= f(a+1tv).
Then, by Definition 6.1, we have

f@+m - f@ . FO-FO _
Do) = iy = =M O
That is,
d
Dy f(@) = - f@+ )], @

The significance of equation (2) is that, when f is differentiable at a, we can apply
the chain rule to the right-hand side. Indeed, let x(#) = a + ¢v. Then, by the chain
rule,

% f(a+1¥) = DF(X)Dx(1) = Df(¥)v.

Evaluation at r = 0 gives

Dyf(a) = Df(a)v =V f(a)-v. 3)

The purpose of equation (3) is to emphasize the geometry of the situation. The
result above says that the directional derivative is just the dot product of the
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gradient and the direction vector v. Since the gradient is made up of the partial
derivatives, we see that the more general notion of the directional derivative
depends entirely on just the direction vector and the partial derivatives. To be
more formal, we summarize this discussion with a theorem.

THEOREM 6.2 Let X € R” be open and suppose f: X — R is differentiable
at a € X. Then the directional derivative Dy f(a) exists for all directions (unit
vectors) v € R” and, moreover, we have

Dyf(a)=Vf(a)-v.

EXAMPLE 2 The function f(x,y) = x> —3xy + 2x — 5y we considered in
Example 1 has continuous partials and hence, by Theorem 3.5, is differentiable.
Thus, Theorem 6.2 applies to tell us that, for any unit vector v = vi + wj € R?,

Dy f(0,0) =V £(0,0)-v = (fx(0,0)i + £,(0, 0)j) - (vi + wj)
= (2i — 5j) - (vi + wyj)

=2v — 5w,

as seen earlier. *

EXAMPLE 3 The converse of Theorem 6.2 does not hold. That is, a function
may have directional derivatives in all directions at a point yet fail to be differ-
entiable. To see how this can happen, consider the function f:R?> — R defined
by

2
flxy) = szyry4 if (x, y) # (0, 0)

0 if(x,y)=(0,0)

This function is not continuous at the origin. (Why?) So, by Theorem 3.6, it
fails to be differentiable there; however, we claim that all directional derivatives
exist at the origin. To see this, let the direction vector v be vi + wj. Hence, by
Definition 6.1, we observe that

J((0,0) + h(vi + wj)) — f(0, 0)
h

i 1 hv(hw)? 0
‘heoﬁ[(hv)u(hw)‘* - }

Dy f(0,0) = lim

h2vw?

=lim-———
h—0 h2(v? + h2w?)
i vw? vw?  w?
= 11im = = —.
h—0 v2 + h2w? v? v
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Thus, the directional derivative exists whenever v #% 0. When v = 0 (in which
case v = j), we, again, must calculate

f((0,0) + hj) — f(0,0)

Dy £(0,0) = lim

h
iy JO1) = £(0.0)
= lim

h—0 h
. 0-—0
= lim —— =0.
h—0 h

Consequently, this directional derivative (which is, in fact, df/dy) exists as well.
*

The reason we have restricted the direction vector v to be of unit length in our
discussion of directional derivatives has to do with the meaning of Dy f(a), not
with any technicalities pertaining to Definition 6.1 or Theorem 6.2. Indeed, we
can certainly define the limit in Definition 6.1 for any vector v, not just one of unit
length. So, suppose w is an arbitrary nonzero vector in R” and f is differentiable.
Then the proof of Theorem 6.2 goes through without change to give
- fla+hw) — f(a)
m

li
h—0 h

= Vf(a)-w.

The problem is as follows: If w = kv for some (nonzero) scalar k, then

_ fa+hw) — f(a)
m

hh_)0 h =Vf(a)-w
=V f(a)-(kv)
=k(Vf(a)-v)
_ (1. f(a+hv) — f(a))
= im .
h—0 h

That is, the “generalized directional derivative” in the direction of kv is k times
the derivative in the direction of v. But v and kv are parallel vectors, and it is
undesirable to have this sort of ambiguity of terminology. So we avoid the trouble
by insisting upon using unit vectors only (i.e., by allowing & to be +1 only) when
working with directional derivatives.

Gradients and Steepest Ascent

Suppose you are traveling in space near the planet Nilrebo and that one of your
spaceship’s instruments measures the external atmospheric pressure on your ship
as a function f(x, y, z) of position. Assume, quite reasonably, that this function
is differentiable. Then Theorem 6.2 applies and tells us that if you travel from
point a = (a, b, ¢) in the direction of the (unit) vector u = ui + vj + wk, the rate
of change of pressure is given by

Duf(a) = Vf(a)-u.

Now, we ask the following: In what direction is the pressure increasing the most?
If 6 is the angle between u and the gradient vector V f(a), then we have, by
Theorem 3.3 of §1.3, that

Dy f(a) = IV f(@)ll [lu]lcos& = ||V f(a)|l cos O,
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since u is a unit vector. Because —1 < cosf < 1, we have

—IVf@I < Duf(a) < IVf(a)l.

Moreover, cos = 1 when = 0 and cos® = —1 when 6 = 7. Thus, we have
established the following:

THEOREM 6.3 The directional derivative Dy, f(a) is maximized, with respect to
direction, when u points in the same direction as V f(a) and is minimized when u
points in the opposite direction. Furthermore, the maximum and minimum values
of Dy f(a)are |V f(a)|| and —||V f(a)]|, respectively.

EXAMPLE 4 If the pressure function on Nilrebo is
f(x,y,2) =5x* +7y* + x%2? atm,

where the origin is located at the center of Nilrebo and distance units are measured
in thousands of kilometers, then the rate of change of pressure at (1, —1,2)
in the direction of i + j + k may be calculated as V f(1, —1, 2) - u, where u =
(i+ j + k)/+/3. (Note that we normalized the vector i + j + k to obtain a unit
vector.) Using Theorem 6.2, we compute

Duf(1,—1,2)=V£(1,—1,2)-u

. . i+j+k
= (18i — 28j + 4k) - ———
(181 =28 NE
18 —28+4
= " — 23 atm/Mm.
V3

Additionally, in view of Theorem 6.3, the pressure will increase most rapidly
in the direction of V f(1, —1, 2), that is, in the

18i —28j + 4k 9i— 14j+2k
[18i —28j + 4k| V281

direction. Moreover, the rate of this increase is

IV £(1, —1,2)|| = 2+/281 atm/Mm. 14

Theorem 6.3 is stated in a manner that is independent of dimension—that is, so
that it applies to functions f: X C R” — Rforanyn > 2.Inthe casen = 2, there
is another geometric interpretation of Theorem 6.3: Suppose you are mountain
climbing on the surface z = f(x, y). Think of the value of f as the height of the
mountain above (or below) sea level. If you are equipped with a map and compass
(which supply information in the xy-plane only), then if you are at the point on
the mountain with xy-coordinates (map coordinates) (a, b), Theorem 6.3 says
that you should move in the direction parallel to the gradient V f(a, b) in order to
climb the mountain most rapidly. (See Figure 2.69.) Similarly, you should move
in the direction parallel to —V f(a, b) in order to descend most rapidly. Moreover,
the slope of your ascent or descent in these cases is |V f(a, b)||. Be sure that you
understand that V f(a, b) is a vector in R? that gives the optimal north—south,
east—west direction of travel.
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@» Vf(a, b)

= 2l
(a,b

Figure 2.69 Select V f(a, b)/||V f(a, b)| for direction of steepest ascent.

N

Figure 2.70 A sphere and one of
its tangent planes.

Tangent Planes Revisited

In §2.1, we indicated that not all surfaces can be described by equations of the
form z = f(x, y). Indeed, a surface as simple and familiar as the sphere is not the
graph of any single function of two variables. Yet the sphere is certainly smooth
enough for us to see intuitively that it must have a tangent plane at every point.
(See Figure 2.70.)

How can we find the equation of the tangent plane? In the case of the unit
sphere x? 4 y% + z2 = 1, we could proceed as follows: First decide whether the
point of tangency is in the top or bottom hemisphere. Then apply equation (4) of

§2.3 to the graph of z = /1 — x2 — y2 or z = —/1 — x? — y2, as appropriate.
The calculus is tedious but not conceptually difficult. However, the tangent planes
to points on the equator are all vertical and so equation (4) of §2.3 does not apply.
(It is possible to modify this approach to accommodate such points, but we will
not do so.) In general, given a surface described by an equation of the form
F(x,y,z) = c (where c is a constant), it may be entirely impractical to solve
for z even as several functions of x and y. Try solving for z in the equation
xyz + ye*? — x? 4 yz? = 0 and you’ll see what we mean. We need some other
way to get our hands on tangent planes to surfaces described as level sets of
functions of three variables.

To get started on our quest, we present the following result, interesting in its
own right:

THEOREM 6.4 Let X € R” be open and f: X — R be a function of class C'.
If x¢ is a point on the level set S = {x € X | f(x) = c}, then the vector V f(xq)
is perpendicular to S.
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PROOF We need to establish the following: If v is any vector tangent to S at X,
then V f(x¢) is perpendicular to v (i.e., V f(Xo) - v = 0). By a tangent vector to S
at X, we mean that v is the velocity vector of a curve C that lies in S and passes
through x,. The situation in R3 is pictured in Figure 2.71.

V£(xo)

Figure 2.71 The level set surface
S={x]f(x)=c}

Thus, let C be given parametrically by x(z) = (x1(¢), x2(¢), . . ., x,(¢)), where
a <t < bandx(f) = xo for some number #; in (a, b). (Then, if v is the velocity
vector at X, we must have x'(#o) = v. See §3.1 for more about velocity vectors.)
Since C is contained in S, we have

F&x(0) = f(x1(2), x2(2), ..., xu(1)) = c.

Hence,

d d
T )] = e = 0. @

On the other hand, the chain rule applied to the composite function f o x:
(a,b) — Rtells us

d :
77 LSEO] = V@) -x(@).
Evaluation at ¢y and equation (4) let us conclude that

V f(x(10)) - X'(t9) = V f(X9) - V=0,

as desired. [ |

Here’s how we can use the result of Theorem 6.4 to find the plane tan-

gent to the sphere x? + y? + z2 = 1 at the point (—\Lf2 0, \%) From §1.5, we

know that a plane is determined uniquely from two pieces of information: (i) a
point in the plane and (ii) a vector perpendicular to the plane. We are given a

1 1
—5.0, ). As for
a vector normal to the plane, Theorem 6.4 tells us that the gradient of the func-
tion f(x,y,z) = x> + y? + z° that defines the sphere as a level set will do. We

have

point in the plane in the form of the point of tangency (

Vf(x,y,z)=2xi+2yj+ 2zKk,
so that

Vf <—%,o, %) = —V2i+V2k
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Hence, the equation of the tangent plane is

—ﬁ(x—F%)Jrﬁ(z—%):O,

z—x =2

or

In general, if S is a surface in R? defined by an equation of the form

fx.y.2)=c,

then if xg € X, the gradient vector V f(xo) is perpendicular to S and, conse-
quently, if nonzero, is a vector normal to the plane tangent to S at x¢. Thus,
the equation

Vf(x0): (x=%9) =0 )
or, equivalently,

Sx(x0, y0, 20)(x — x0) + fy(x0, Yo, 20)(¥y — Yo) "
+ fo(x0, Yo, z20)(z — 20) =0

is an equation for the tangent plane to S at x,.

Note that formula (5) can be used in R” as well as in R?, in which case it
defines the tangent hyperplane to the hypersurface S C R” defined by f(x;,
X2, ..., Xy) = c at the point xg € S.

EXAMPLE 5 Considerthe surface S defined by the equation x3y — yz? + z° =
9. We calculate the plane tangent to S at the point (3, —1, 2).
To do this, we define f(x, y,z) = x’y — yz> + z°. Then

VG, —1,2)= (3xyi+ (&° = )i+ (52" = 2y0K)| 5, ,)
= —27i+ 23] + 84k

is normal to § at (3, —1, 2) by Theorem 6.4. Using formula (6), we see that the
tangent plane has equation

—27(x =3)+23(y+1)+84(z—2)=0
or, equivalently,
—27x 4+ 23y + 84z = 64. *

EXAMPLE 6 Consider the surface defined by z* = x? + y?. This surface is
the level set (at height 0) of the function

fx,y,2) =x>+y* =%
The gradient of f is
Vikx,y,2)=2xi+2yj—4k



Figure 2.72 The
surface of Example 6.
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Note that the point (0, 0, 0) lies on the surface. However, V f(0, 0, 0) = 0, which
makes the gradient vector unusable as a normal vector to a tangent plane. Thus,
formula (6) doesn’t apply. What we conclude from this example is that the surface
fails to have a tangent plane at the origin, a fact that is easy to believe from the
graph. (See Figure 2.72.) .

EXAMPLE 7 The equation x? + y?> + 72 + w? = 4 defines a hypersphere of
radius 2 in R*. We use formula (5) to determine the hyperplane tangent to the
hypersphere at (—1, 1, 1, —1).

The hypersphere may be considered to be the level set at height 4 of the
function f(x, y, z, w) = x> 4+ y* + z> + w?, so that the gradient vector is

Vfix,y, z,w)=(2x,2y,2z,2w),
so that
Vil-1,1,1,—-1)=(-2,2,2,-2).
Using formula (5), we obtain an equation for the tangent hyperplane as
(-2,2,2,-2)-(x+1,y—1Lz—1Lw+1)=0
or
2x+D+2(y-1D)+2z—-1)—2(w+1)=0.
Equivalently, we have the equation
x—y—z+w+4=0. .

EXAMPLE 8 We determine the plane tangent to the paraboloid z = x? 4 3y?
at the point (=2, 1, 7) in two ways: (i) by using formula (4) in §2.3, and (ii) by
using our new formula (6).

First, the equation z = x? + 3y? explicitly describes the paraboloid as the
graph of the function f(x,y) = x?+ 3y, that is, by an equation of the form
z = f(x,y). Therefore, formula (4) of §2.3 applies to tell us that the tangent
plane at (—2, 1, 7) has equation

2=f(=2, D+ fe(=2,D(x +2) + f,(=2, D(y = 1)
or, equivalently,
z=T—4x+2)+6(y —1). @)

Second, if we write the equation of the paraboloid as x> +3y? — 7z =0,
then we see that it describes the paraboloid as the level set of height 0 of the
three-variable function F(x, y,z) = x> + 3y? — z. Hence, formula (6) applies
and indicates that an equation for the tangent plane at (—2, 1, 7) is

Fo(=2,1,N(x+2)+ Fy(=2,1, )y =D+ F(=2,1,7)(z—=7)=0
or
—4x+2)+6(y—1)—1(z—7)=0. (8)
As can be seen, equation (7) agrees with equation (8). .
Example 8 may be viewed in a more general context. If S is the surface in R?

given by the equation z = f(x, y) (where f is differentiable), then formula (4) of
§2.3 tells us that an equation for the plane tangent to S at the point (a, b, f(a, b))is

z = f(a,b) + fi(a,b)(x —a) + fy(a, b)(y — D).
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Figure 2.73 The two-sheeted
hyperboloid z2/4 — x> — y?> = 1.
The point (-2, 2, 6) lies on the
sheet given by z = 2,/x2 + y2 + 1,
and the point (1, 1, —2+/3) lies on
the sheet given by

7=-2/x2+y?+1.

At the same time, the equation for S may be written as

fx,y)—z=0.

Then, if we let F(x, y,z) = f(x,y) — z, we see that S is the level set of F at
height 0. Hence, formula (6) tells us that the tangent plane at (a, b, f(a, b)) is

Fi(a,b, f(a,b))(x —a) + Fy(a,b, f(a, b))y — D)
+ F.(a,b, f(a,b))z— f(a,b)) =0.
By construction of F,
OF _af 9F _af  0F
ox ox dy 9y’ 9z ’

Thus, the tangent plane formula becomes

fila, b)(x —a) + fy(a,b)(y = b) — (z = f(a, b)) = 0.

The last equation for the tangent plane is the same as the one given above by
equation (4) of §2.3.

The result shows that equations (5) and (6) extend the formula (4) of §2.3 to
the more general setting of level sets.

The Implicit Function and Inverse Function
Theorems (optional)

We have previously noted that not all surfaces that are described by equations of
the form F(x, y, z) = ¢ can be described by an equation of the form z = f(x, y).
We close this section with a brief—but theoretically important—digression about
when and how the level set {(x, y, z) | F(x, ¥, z) = ¢} can also be described as
the graph of a function of two variables, that is, as the graph of z = f(x, y).
We also consider the more general question of when we can solve a system of
equations for some of the variables in terms of the others.
We begin with an example.

EXAMPLE 9 Consider the hyperboloid z?/4 — x> — y? = 1, which may be
described as the level set (at height 1) of the function

2

F()c,y,z):%—)c2

— y2 .

(See Figure 2.73.) This surface cannot be described as the graph of an equation
ofthe form z = f(x, y), since particular values for x and y give rise to two values
for z. Indeed, when we solve for z in terms of x and y, we find that there are two
functional solutions:

7=2Vx2+y2+1 and z=-2yx2+y2+1. 9)

On the other hand, these two solutions show that, given any particular point
(x0, Yo, zo) of the hyperboloid, we may solve locally for z in terms of x and y.
That is, we may identify on which sheet of the hyperboloid the point (xo, yo, zo)
lies and then use the appropriate expression in (9) to describe that sheet. *

Example 9 prompts us to pose the following question: Given a surface S,
described as the level set {(x, y, z) | F(x, y, z) = ¢}, can we always determine at
least a portion of S as the graph of a function z = f(x, y)? The result that follows,
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a special case of what is known as the implicit function theorem, provides
relatively mild hypotheses under which we can.

THEOREM 6.5 (THE IMPLICIT FUNCTION THEOREM) Let F: X C R" — R be
of class C! and let a be a point of the level set § = {x € R" | F(x) = c}. If
F, (a) # 0, then there is a neighborhood U of (a;,as, ..., a,—1) in R ! a
neighborhood V of a, in R, and a function f:U € R*"! — V of class C!
such thatif (x;, x5, ..., x,_1) € U andx, € V satisfy F(x1, x2, ..., x,) = c(i.e.,
(x1, X2, ...,x,) € S),then x, = f(x1,x2, ..., Xp_1)-

The significance of Theorem 6.5 is that it tells us that near a point a € S
such that 0 F'/dx, # 0, the level set S given by the equation F(xy,...,x,) =c¢
is locally also the graph of a function x,, = f(xy, ..., x,_1). In other words, we
may solve locally for x,, in terms of xy, ..., x,_1, so that S is, at least locally, a
differentiable hypersurface in R”.

EXAMPLE 10 Returning to Example 9, we recall that the hyperboloid is the
level set (at height 1) of the function F(x, y, z) = z°/4 — x> — y%. We have

oF  z

9z 2
Note that for any point (xg, Yo, Zo) in the hyperboloid, we have |zo| > 2. Hence,
d F,(x0, ¥0, z0) # 0. Thus, Theorem 6.5 implies that we may describe a portion
of the hyperboloid near any point as the graph of a function of two variables. This
is consistent with what we observed in Example 9. *

Of course, there is nothing special about solving for the particular vari-
able x,, in terms of xi, ..., x,_;. Suppose a is a point on the level set S de-
termined by the equation F(x) = c and suppose V F'(a) # 0. Then F;,(a) # 0 for
some i. Hence, we can solve locally near a for x; as a differentiable function of
X1y -y Xi—1, Xix+1, .., Xn. Therefore, S is locally a differentiable hypersurface
in R".

EXAMPLE 11 Let S denote the ellipsoid x%/4 + y*>/36 +z2/9 = 1. Then S
is the level set (at height 1) of the function

2y g2
F s Vo = A, N
(x,y,2) 7 + 36 + 9
At the point («/5, N ﬁ), we have
oF 2 24/3
zlwvaivevs 2 lvavevs 9

Thus, S may be realized near (+/2, v/6, +/3) as the graph of an equation of the
form z = f(x, y), namely, z = 3,/1 — x2/4 — y2/36. At the point (0, —6, 0),
however, we see that d F'/dz vanishes. On the other hand,
oF
Ay

_ 2y

1
©0.-60) 30

(0,—6,0) 3

Consequently, near (0, —6, 0), the ellipsoid may be described by solving for y as
a function of x and z, namely, y = —6./1 — x2/4 — z2/9. *
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EXAMPLE 12 Consider the set of points S defined by the equation x?z> — y =
0. Then S is the level set at height 0 of the function F(x, y, z) = x?z> — y. Note
that

VF(x,y,z) = (xz%, —1,2x%2).

Since d F'/dy never vanishes, we see that we can always solve for y as a function
of x and z. (This is, of course, obvious from the equation.) On the other hand, near
points where x and z are nonzero, both d F/dx and d F/dz are nonzero. Hence,
we can solve for either x or z in this case. For example, near (1, 1, —1), we have

X = 2 and z=— A ¢
z2 V x2°

As just mentioned, Theorem 6.5 is actually a special case of a more general
result. In Theorem 6.5 we are attempting to solve the equation

F(xi,x3,...,x5)=c¢

for x,, in terms of xy, ..., x,—;. In the general case, we have a system of m
equations

Fi(Xt, ooy Xny Y1s ooy Ym) = C1

szl,...,x, 1y ooy =C)

'( ns Y Ym) ’ (10)

Fu(Xt, ooy Xn, Y1 ooy Yim) = Cm
and we desire to solve the system for yy, ..., y,, interms of xy, . .., x,. Using vec-
tor notation, we can also write this system as F(x, y) = ¢, where x = (x, ..., Xx,),
Yy=01,---sYm) €=(c1,...,Cn), and Fi, ..., F, make up the component

functions of F. With this notation, the general result is the following:

THEOREM 6.6 (THE IMPLICIT FUNCTION THEOREM, GENERAL CASE) Suppose

F: A — R" is of class C!, where A is open in R**". Let (a, b) = (ay, ..., a,,
by, ..., by) € A satisfy F(a, b) = c¢. If the determinant
OF OF
“Lab) - L(a,b)
ayl 3)’m
A(a, b) = det : : #0,
Fy, Fy,
(a,b) --- —(a,b)
ayl aym

then there is a neighborhood U of a in R" and a unique function f: U — R of
class C'! such that f(a) = b and F(x, f(x)) = ¢ for all x € U. In other words, we
can solve locally for y as a function f(x).

EXAMPLE 13 We show that, near the point (xi, x3, x3, y1, y2) = (—1, 1, 1,
2, 1), we can solve the system
xiy2 +x0y1 =1
(11)

xix3y1 + xy; =3

for y; and y; in terms of xi, x5, x3.
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We apply the general implicit function theorem (Theorem 6.6) to the system
Fi(x1, x2, X3, Y1, 2) = x1y2 + X231 = 1
Fa(x1, X2, X3, Y1, ¥2) = XPx391 + x2y3 =3

The relevant determinant is

IF, 9F
ay, 9
A(=1,1,1,2,1) = det | 21 92
IF, 3F
Iy, 9
L 92 G s =112
X2
= det
xix3 3x2y3

- (x1,X2,x3,y1,¥2)=(=1,1,1,2,1)

1 -1
:det[l 3}:4;&0.

Hence, we may solve locally, at least in principle.
We can also use the equations in (11) to determine, for example,

0
a—yz(—l, 1, 1), where we treat x, x,, x3 as independent variables and y; and

X1
v, as functions of them.
Differentiating the equations in (11) implicitly with respect to x; and using
the chain rule, we obtain
a a
w ‘F)C]ﬂ +X2ﬂ =0
8x1 8x1
i _
2 8x1

Now, let (x1, x2, x3, y1, ¥2) = (—1, 1, 1, 2, 1), so that the system becomes

; )
2x1x3y1 + xfxga—i:i +3x2y 0

9 9
D,y - 22110,y = -1
8)61 8)61

d 0 ’
ML,y +322 1,1, ) =4
8)(1 8x1
. : GAp) 5
We may easily solve this last system to find that 8_(_ 1,1,1) = 7 .
X1

Now, suppose we have a system of n equations that defines the variables
Vi, ..., Y, in terms of the variables x, ..., x,, that is,

vy = f](xl, ...,xn)
yszz(xl,...,xn)_ (12)

)’n = fn(xl’ e 7-xn)

Note that the system given in (12) can be written in vector form as y = f(x). The
question we ask is, when can we invert this system? In other words, when can we
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solve for xi, ..., x, in terms of y|, ..., y,, or, equivalently, when can we find a
function g so that x = g(y)?
The solution is to apply Theorem 6.6 to the system

Fl(xla---,xn,J’l,---ayn):O
F(xy, ooy Xn, Y1y -5 V) =0

Fm(-xla"-7-xn7y17--'ayn)=O
where Fi(x1, ..., Xy, Y1, -+, Yn) = fi(x1, ..., X,) — yi. (In vector form, we are
setting F(x, y) = f(x) — y.) Then solvability for x interms of ynearx = a,y = b
is governed by the nonvanishing of the determinant

af1 af1
a_xl(a) s ax, (a)
det Df(a) = det : - :
afn afy
ox, @ - ox, (a)
This determinant is also denoted by
a(flv ey fn)
(X1, .oy Xp) [xea
and is called the Jacobian of f = (f1,..., f,). A more precise and complete

statement of what we are observing is the following:

THEOREM 6.7 (THE INVERSE FUNCTION THEOREM)  Suppose f = (f1, ..., fu)
is of class C! on an open set A € R". If
afi,.--,
det Df(a) = s Ju) #0,

(X1, .oy Xn) |xea

then there is an open set U C R” containing a such that f is one-one on U, the
set V = f(U) is also open, and there is a uniquely determined inverse function
g: V — U to f, which is also of class C!. In other words, the system of equations
y = f(x) may be solved uniquely as x = g(y) for x near a and y near b.

EXAMPLE 14 Consider the equations that relate polar and Cartesian coordi-
nates:

X =rcosf
y=rsinf ’

These equations define x and y as functions of » and 6. We use Theorem 6.7 to
see near which points of the plane we can invert these equations, that is, solve for
r and 0 in terms of x and y.

To use Theorem 6.7, we compute the Jacobian

ax, y)
ar,0)

cos —rsinf
sinf  rcos6

Thus, we see that, away from the origin (» = 0), we can solve (locally) for » and 6
uniquely in terms of x and y. At the origin, however, the inverse function theorem



2.6 | Exercises 173

does not apply. Geometrically, this makes perfect sense, since at the origin the
polar angle 6 can have any value. *

2.6 Exercises

1. Suppose f(x, y, z) is a differentiable function of three
variables.
(a) Explain what the quantity V f(x, y, z) - (—k) rep-
resents.
(b) How does V f(x, y, z)  (—K) relate to df/9z?
In Exercises 2-8, calculate the directional derivative of the

given function f at the point a in the direction parallel to the
vector u.

: T 3i—j
2. f(x,y):eysmx,a:(—, ),u

3 ~ V10
3. f(x,y):xz—2)c3y+2y3,a:(2,—1),u:H\_[S2j
4. f(x,)’)=¥,a:(3,—2),u:i—j
(% +y?)
5. f(x,y)=e¢  —x?’y,a=(1,2),u=2i+j
2k — i

6. f(x,y,2)=xyz,a=(—-1,0,2),u= ——
fx,y,2)=xy ( ) 7

7. f(x,y,2)=e @D a=(1,2,3),u=i+j+k

8 flx,y,2)=
3k

xe’
2 a=(2.-1,0), u=i—2j
a1 2 ) w=i-2y

9. For the function

x|yl

fy)y=vx¥+y?

0 if (x, y) = (0, 0)

if (x, y) # (0, 0)

(a) calculate f(0,0) and f,(0, 0). (You will need to
use the definition of the partial derivative.)

(b) use Definition 6.1 to determine for which unit
vectors v = vi+ wj the directional derivative
D, f(0, 0) exists.

0 (c) use a computer to graph the surface z = f(x, y).

10. For the function

fGe.y) 7%%? if (x, ) # (0,0)
X, y) = |
0 if (x, y) = (0,0)

(a) calculate £,(0,0) and £,(0, 0).

(b) use Definition 6.1 to determine for which unit
vectors v = vi+ wj the directional derivative
Dy (0, 0) exists.

0 (c) use a computer to graph the surface z = f(x, y).

11. The surface of Lake Erehwon can be represented by a
region D in the xy-plane such that the lake’s depth (in
meters) at the point (x, y) is given by the expression
400 — 3x%y?. If your calculus instructor is in the wa-
ter at the point (1, —2), in which direction should she
swim
(a) so that the depth increases most rapidly (i.e., so

that she is most likely to drown)?

(b) so that the depth remains constant?

12. A ladybug (who is very sensitive to temperature) is
crawling on graph paper. She is at the point (3, 7) and
notices that if she moves in the i-direction, the tem-
perature increases at a rate of 3 deg/cm. If she moves
in the j-direction, she finds that her temperature de-
creases at a rate of 2 deg/cm. In what direction should
the ladybug move if
(a) she wants to warm up most rapidly?

(b) she wants to cool off most rapidly?

(c) she desires her temperature not to change?

13. You are atop Mt. Gradient, 5000 ft above sea level,
equipped with the topographic map shown in Fig-
ure 2.74. A storm suddenly begins to blow, necessitat-
ing your immediate return home. If you begin heading
due east from the top of the mountain, sketch the path
that will take you down to sea level most rapidly.

14. It is raining and rainwater is running off an ellipsoidal
dome with equation 4x? + y?> +4z> =16, where
z > 0. Given that gravity will cause the raindrops to
slide down the dome as rapidly as possible, describe
the curves whose paths the raindrops must follow.
(Hint: You will need to solve a simple differential
equation.)

15. Igor, the inchworm, is crawling along graph paper in
a magnetic field. The intensity of the field at the point
(x, y)is given by M(x, y) = 3x2 4+ y? 4 5000. If Igor
is at the point (8, 6), describe the curve along which he
should travel if he wishes to reduce the field intensity
as rapidly as possible.

In Exercises 16—19, find an equation for the tangent plane to
the surface given by the equation at the indicated point (xg, yo,

Zo).
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16.
17.
18.
19.
20.

21.

22,

23.

24.

25.
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You are here

Figure 2.74 The topographic map of Mt. Gradient in Exercise 13.

Xy 2 =1, (%0, ¥, 20) = (0, =1, 2)

ze? cosx = 1, (xg, yo, 20) = (7, 0, —1)

2xz+ yz —x*y +10 =0, (x0, Y0, 20) = (1, =5, 5)

2xy* =227 — xyz, (X0, Yo, 20) = (2, =3, 3)

Calculate the plane tangent to the surface whose equa-

tionis x? — 2y? + Sxz = 7 at the point (—1, 0, —g) in

two ways:

(a) by solving for z in terms of x and y and using
formula (4) in §2.3

(b) by using formula (6) in this section.

Calculate the plane tangent to the surface x siny +

xz? = 2¢’% at the point (2, Z, 0) in two ways:

(a) by solving for x in terms of y and z and using a
variant of formula (4) in §2.3

(b) by using formula (6) in this section.
Find the point on the surface x° —2y? + 7> =27
where the tangent plane is perpendicular to the line

given parametrically as x =3¢ =5, y=2t4+7,z =
1— /2t

Find the points on the hyperboloid 9x? — 45y% +
57> = 45 where the tangent plane is parallel to the
plane x 4+ 5y — 2z = 7.

Show that the surfaces z = 7x? — 12x — 5y? and
xyz? = 2 intersect orthogonally at the point (2, 1, —1).

Suppose that two surfaces are given by the equations

F(x,y,z)=c and G(x,y,7)=k.

Moreover, suppose that these surfaces intersect at the
point (xo, Yo, zo). Show that the surfaces are tangent at
(x0, Yo, zo) if and only if

VF(x0, Yo, z0) X VG(x0, Yo, 20) = 0.

26. Let S denote the cone x% + 4y? = 72

(a) Find an equation for the plane tangent to S at the
point (3, =2, —5).

(b) What happens if you try to find an equation for a
tangent plane to S at the origin? Discuss how your
findings relate to the appearance of S.

27. Consider the surface S defined by the equation x* —
x2yr+ 72 =0.
(a) Find an equation for the plane tangent to S at the
point (2, —=3/2, 1).
(b) Does S have a tangent plane at the origin? Why or
why not?

If a curve is given by an equation of the form f(x,y) = 0, then
the tangent line to the curve at a given point (xg, yo) on it may
be found in two ways: (a) by using the technique of implicit
differentiation from single-variable calculus and (b) by using
a formula analogous to formula (6). In Exercises 28—30, use
both of these methods to find the lines tangent to the given
curves at the indicated points.

28. x2 4+ y2 =4, (x0, yo) = (—v2,2)
29. y* = x? +x3, (x0. o) = (1.¥/2)

30. XS + 2.xy + y3 = 169 (XO, yO) - (2’ _2)



Let C be a curve in R* given by an equation of the form
f(x,y)=0. The normal line to C at a point (xg, yo) on it
is the line that passes through (xo, yo) and is perpendicular
to C (meaning that it is perpendicular to the tangent line to
C at (xo, y0)). In Exercises 31-33, find the normal lines to
the given curves at the indicated points. Give both a set of
parametric equations for the lines and an equation in the form
Ax + By = C. (Hint: Use gradients.)

31.
32.
33.
34.

35.

36.

37.

38.

39.

x* = y* =9, (x0, yo) = (5, —4)
x2_x3 :yZ’ (X(),y()):(—l,«/i)
x3 _2Xy +y5 = 11’ (XO, yO) = (27 _1)

This problem concerns the surface defined by the equa-
tion

3z 4+ x%y? +sin(yz) = 3.

(a) Find an equation for the plane tangent to this sur-
face at the point (—1, 0, 3).

(b) The normal line to a surface S in R? at a point
(x0, Yo, zo) on it is the line that passes through
(x0, Yo, z0) and is perpendicular to S. Find a set
of parametric equations for the line normal to the
surface given above at the point (—1, 0, 3).

Give a set of parametric equations for the normal line to
the surface defined by the equation e™ + ¢** — 2¢¥* =
0 at the point (—1, —1, —1). (See Exercise 34.)

Give a general formula for parametric equations for
the normal line to a surface given by the equation
F(x,y, z) = 0 at the point (x¢, Yo, o) on the surface.
(See Exercise 34.)

Generalizing upon the techniques of this section,
find an equation for the hyperplane tangent to
the hypersurface sinx; + cosx; + sinxs + cosxy +
sinxs = —1 at the point (7, 7, 37/2, 27, 2m) € R°.

Find an equation for the hyperplane tangent to the
(n — 1)-dimensional ellipsoid

1
xP42x3 3% 4 nx? = n(nTﬁ-)
at the point (—1, —1,..., —1) e R".

Find an equation for the tangent hyperplane to the (n —
1)-dimensional sphere x? + x3 +--- 4+ x2 =1 in R"

at the point (1/5/n, 1/3/n, ..., 1//n, —=1//n).

Exercises 40—49 concern the implicit function theorems and
the inverse function theorem (Theorems 6.5, 6.6, and 6.7).

40.

Let S be described by z2y* + x?y = 2.

(a) Use the implicit function theorem to determine
near which points S can be described locally as
the graph of a C! function z = f(x, y).

41.
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(b) Near which points can S be described (locally) as
the graph of a function x = g(y, z)?

(c) Near which points can S be described (locally) as
the graph of a function y = h(x, z)?

Let S be the set of points described by the equation

sinxy +e* +x3y = 1.

(a) Near which points can we describe S as the graph
of a C! function z = f(x, y)? What is f(x, y) in
this case?

(b) Describe the set of “bad” points of S, that is, the
points (xg, Yo, 20) € S where we cannot describe
S as the graph of a function z = f(x, y).

0 (c) Use a computer to help give a complete picture of
S.

42.

43.

44.

45.

46.

Let F(x,y)=c define a curve C in R?. Suppose
(x0, yo) is apoint of C such that V F(xg, yo) # 0. Show
that the curve can be represented near (xg, yo) as either
the graph of a function y = f(x) or the graph of a
function x = g(y).

Let F(x, y) = x> — y*, and consider the curve C de-
fined by the equation F(x, y) = 0.

(a) Show that (0, 0) lies on C and that F,(0, 0) = 0.

(b) Can we describe C as the graph of a function
y = f(x)? Graph C.

(¢) Comment on the results of parts (a) and (b) in light
of the implicit function theorem (Theorem 6.5).

(a) Consider the family of level sets of the function
F(x,y) = xy 4+ 1. Use the implicit function theo-
rem to identify which level sets of this family are
actually unions of smooth curves in R? (i.e., locally
graphs of C! functions of a single variable).

(b) Now consider the family of level sets of
F(x,y,z) =xyz+ 1. Which level sets of this
family are unions of smooth surfaces in R3?

Suppose that F(u, v) is of class C! and is such that
F(=2,1)=0and F,(-2,1) =7, F,(—2,1) = 5. Let
G(x,y,2) = F(x* = 2y> + 2°, xy — x’z + 3).

(a) Check that G(—1,1,1)=0.

(b) Show that we can solve the equation G(x, y, z7) =

0 for z interms of x and y (i.e., as z = g(x, y), for
(x, y) near (—1, 1) so that g(—1, 1) = 1).

Can you solve

X2y —X1cosy; =35

Xpsiny; + x1y; =2

for y;, y, as functions of x;, x, near the point
(x1,x2, y1, y2) = (2,3, 7, 1)? What about near the
point (x1, x2, yi, 2) = (0,2, 77/2,5/2)?
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47. Consider the system

xlyg —2xy3 =1
X137 + X2y —4yy3 = —9.
Xy 4 3x1yf = 12

(a) Near which points of R? can we solve for r, 6, and
z in terms of the Cartesian coordinates?

(b) Explain the geometry behind your answer in
part (a).
49. Recall that the equations relating spherical and Carte-

(a) Show that, near the point (xi,x2, yi, y2, y3) = sian coordinates in R? are

(1,0, —1, 1, 2), it is possible to solve for yi, ys,

y3 in terms of x1, x5.

(b) From the result of part (a), we may consider y;, y,,

Xx = psingcosf

y = psingsin6.

y3 to be functions of x; and x,. Use implicit differ- Z=pCcose

. ) ad
entiation and the chain rule to evaluate a—)ycl(l, 0), (a) Near which points of R? can we solve for p, ¢, and
1

dy2

9
D21,0), and 221, 0),
8x1 8x1

6 in terms of x, y, and z?

(b) Describe the geometry behind your answer in
part (a).

48. Consider the equations that relate cylindrical and

Cartesian coordinates in R3:

X =rcosf
y =rsinf.
=2z

¢——— =

&

A

Figure 2.75 The tangent line to

y = f(x)at (xg, f(x0)) crosses the
x-axis at x = xj.

2.7 Newton’s Method (optional)

When you studied single-variable calculus, you may have learned a method, known
as Newton’s method (or the Newton—Raphson method), for approximating the
solution to an equation of the form f(x) = 0, where f: X € R — R is a differ-
entiable function. Here’s a reminder of how the method works.

We wish to find a number r such that f(r) = 0. To approximate r, we make
an initial guess x, for r and, in general, we expect to find that f(xo) # 0. So next
we look at the tangent line to the graph of f at (x¢, f(xo)). (See Figure 2.75.)
Since the tangent line approximates the graph of f near (xo, f(x9)), we can
find where the tangent line crosses the x-axis. The crossing point (x1, 0) will
generally be closer to (7, 0) than (x, 0) is, so we take x| as arevised and improved
approximation to the root r of f(x) = 0.

To find x|, we begin with the equation of the tangent line

y = f(x0) + f'(x0)(x — xp),

then set y = 0 to find where this line crosses the x-axis. Thus, we solve the equation
f(xo0) + f'(xo)(x1 — x0) = 0

for x; to find that

~ J(xo)

J'(x0)
Once we have x;, we can start the process again using x; in place of x¢ and
produce what we hope will be an even better approximation x, via the formula

X1 = Xg

_ f(x1)
Xy = X1 — ; .
J'(x)
Indeed, we may iterate this process and define x; recursively by
o=y = Ay (1)
J'(xk=1)

and thereby produce a sequence of numbers xg, X1, ..., Xg, .. ..
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It is not always the case that the sequence {x;} converges. However, when
it does, it must converge to a root of the equation f(x) = 0. To see this, let
L = limy_, o x;. Then we also have lim;_, o, x4, = L. Taking limits in formula
(1), we find

Jio)

Ly

which immediately implies that f(L) = 0. Hence, L is a root of the equation.
Now that we have some understanding of derivatives in the multivariable

case, we turn to the generalization of Newton’s method for solving systems of n
equations in n unknowns. We may write such a system as

fl(xl’---a-xn):()
fz(xl,...,x,,)=0

@)

fu(x1, ..., x,) =0

We consider the map f: X € R" — R” defined as f(x) = (f1(x), ..., f,(X)) (i.e.,
f is the map whose component functions come from the equations in (2). The
domain X of f may be taken to be the set where all the component functions are
defined.) Then to solve system (2) means to find a vector r = (ry, ..., r,;) such
that f(r) = 0. To approximate such a vector r, we may, as in the single-variable
case, make an initial guess xo for what r might be. If f is differentiable, then we
know that y = f(x) is approximated by the equation

y = f(x0) + Df(Xo)(x — Xo).

(Here we think of f(x() and the vectors x and xy as n x 1 matrices.) Then we set
y equal to 0 to find where this approximating function is zero. Thus, we solve the
matrix equation

f(x0) + Df(x0)(x1 —x0) =0 3)
for x; to give a revised approximation to the root r. Evidently (3) is equivalent to
Df(xo)(x1 — Xo) = —f(xo). “)

To continue our argument, suppose that Df(Xy) is an invertible n x n matrix,
meaning that there is a second n x n matrix [Df(x()]~! with the property that
[ Df(x0)]~! Df(xo) = Df(x0)[ Df(x0)]~! = I,,, the n x n identity matrix. (See Ex-
ercises 20 and 30-38 in §1.6.) Then we may multiply equation (4) on the left by
[Df(x0)]! to obtain

Iy(x1 = Xo) = —[Df(x)] ™ f(xo).
Since I, A = A for any n X k matrix A, this last equation implies that
X = X0 — [Df(x0)] ' f(xo). 6]

As we did in the one-variable case of Newton’s method, we may iterate formula
(5) to define recursively a sequence {x;} of vectors by

X = X1 — [DE(x—1)] (%) (6)
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-3

Figure 2.76 Finding
the intersection
points of the circle
x>+ y*=4and

the hyperbola

4x* —y? =4in
Example 1.

Note the similarity between formulas (1) and (6). Moreover, just as in the case
of formula (1), although the sequence {xy, Xy, ..., Xz, ...} may not converge, if
it does, it must converge to a root of f(x) = 0. (See Exercise 4.)

EXAMPLE 1 Consider the problem of finding the intersection points of the cir-
cle x> + y? = 4 and the hyperbola 4x? — y? = 4. (See Figure 2.76.) Analytically,
we seek simultaneous solutions to the two equations

x2+y2=4 and 4x2—y2=4,
or, equivalently, solutions to the system

()

x24+y2—4=0
4x? —y? —4=0"

To use Newton’s method, we define a function f: R> — R? by f(x, y) = (x> +
y? —4,4x? — y> — 4) and try to approximate solutions to the vector equation
f(x, y) = (0, 0). We may begin with any initial guess, say,

X0 1
X)) = = ,
’ [yo} H
and then produce successive approximations Xi, X, ... to a solution using for-
mula (6). In particular, we have

2x 2y
Df(x, y) = |: 8x —2y ]
Note that det Df(x, y) = —20xy. You may verify (see Exercise 36 in §1.6) that

1 1

3 1 —2y =2y 10x 10x
1 _ _

DI P = 2504 [ —8x  2x ] - 2 1
Sy 10y

Thus,

[in|= Mt — [DfCxe—1, ye— )] 01, Y1)

Vi | Vi—1 ]
B 1 1
ET= 10x; -1 10x%—1 Xty —4
Lt 21 42—y —4
L Sye-1 10y
[ 5x1§_1 -8 5x,§_1 -8
_ [ v || YT o,
B |:yk—li| | Syi, 12 | S5y; —12
L 10y S T
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Beginning with xo = yo = 1, we have

5.12-38 5.-12-12
n=1-2""°"_13 y=1-2"""_17
10-1 10-1

5(1.3)> — 8 5(1.7)2 — 12
— 13- 2 0 1065385 y, =17 ) %
2 10(1.3) V2 10(1.7)

= 1.555882, etc.

It is also easy to hand off the details of the computation to a calculator or a
computer. One finds the following results:

Xk Yk

1 1
1.3 1.7
1.26538462 | 1.55588235
1.26491115 | 1.54920772
1.26491106 | 1.54919334
1.26491106 | 1.54919334

wn kWD —=O bl

Thus, it appears that, to eight decimal places, an intersection point of the curves
is (1.26491106, 1.54919334).
In this particular example, it is not difficult to find the solutions to (7) exactly.
We add the two equations in (7) to obtain
5x*—8=0 = =%

Thus, x = £.,/8/5. If we substitute these values for x into the first equation of
(7), we obtain

Sy —4=0 = =

Hence, y = +4/12/5. Therefore, the four intersection points are

(5] (s8) (ene) (55)

Since /8/5 ~ 1.264911064 and /12/5 ~ 1.54919334, we see that Newton’s
method provided us with an accurate approximate solution very quickly. *

EXAMPLE 2 We use Newton’s method to find solutions to the system

X3 —=5x242x—y+13=0
{ Y ®)

XHxP—14x—y—-19=0"

Asin the previous example, we define f: R> — R? by f(x, y) = (x> — 5x? 4+ 2x —
y+13,x3 4+ x* — 14x — y — 19). Then

3x2 — 10x + 2 —1
Df(x’y)_[3x2+2x—l4 —1 ]
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so that det Df(x, y) = 12x — 16 and
1

[Df(x, )] =

C12x — 16
3x2—2x + 14

12x — 16
—3x2 - 10x +2

12x — 16

Thus, formula (6) becomes

sl ) |

=3x} | —2x + 14

12x — 16

1

12xk,1 — 16
=3x7 | — 10xp_1 +2

12xk_1 — 16

12Xk_1 — 16

B 12xk,1 — 16
Xy = 5% 4+ 201 — w1 + 13
Xy Fx — 14—y — 19
6x7 | — 16x;_1 — 32
12xk_1 — 16

3X;:_1 — 16)(2_1 — 14)6/%_1 4+ 82x—1 — 8yp—1 + O6x_1 Vk—1 + 72
6xk_1 -8

Xk—1 —

Yi—1 —

This is the formula we iterate to obtain approximate solutions to (8).
If we begin with xg = (xg, yo) = (8, 10), then the successive approximations
X, quickly converge to (4, 5), as demonstrated in the table below.

k Xk Vi

0 8 10

1 52 —98.2

2 4.1862069 —2.7412414
3 | 4.00607686 | 4.82161865
4 | 4.00000691 | 4.99981073
5 | 4.00000000 | 5.00000000
6 | 4.00000000 | 5.00000000

If we begin instead with xy = (50, 60), then convergence is, as you might predict,

somewhat slower (although still quite rapid):

k Xk Vi

0 50 60

1 25.739726 —57257.438
2 13.682211 —7080.8238
3 | 7.79569757 | —846.58548
4 | 5.11470969 | —86.660453
5 4.1643023 —1.6486813
6 | 4.00476785 | 4.86119425
7 | 4.00000425 | 4.99988349
8 | 4.00000000 | 5.00000000
9 | 4.00000000 | 5.00000000
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On the other hand, if we begin with xo = (—2, 12), then the sequence of points
generated converges to a different solution, namely, (—4/3, —25/27):

k Xk Yk
0 -2 12
1 —14 1.4
2 | —1.3341463 —0.903122
3 | —1.3333335 | —0.9259225
4 | —1.3333333 | —0.9259259
5 | —1.3333333 | —0.9259259

In fact, when a system of equations has multiple solutions, it is not always
easy to predict to which solution a given starting vector x will converge under
Newton’s method (if, indeed, there is convergence at all). *

Finally, we make two remarks. First, if at any stage of the iteration process the
matrix Df(x;) fails to be invertible (i.e., [ Df(x;)]~! does not exist), then formula
(6) cannot be used. One way to salvage the situation is to make a different choice
of initial vector x¢ in the hope that the sequence {x;} that it generates will not
involve any noninvertible matrices. Second, we note that if, at any stage, x; is
exactly a root of f(x) = 0, then formula (6) will not change it. (See Exercise 7).

2.7 Exercises

€ 1. Use Newton’s method with initial vector xo = (1, —1)
to approximate the real solution to the system

yZex =3
2ye* +10y* =0~

2. In this problem, you will use Newton’s method to
estimate the locations of the points of intersection
of the ellipses having equations 3x% + y? =7 and
x2 4+ 4y? =38.

(a) Graph theellipsesand use your graph to give a very
rough estimate (x, yo) of the point of intersection
that lies in the first quadrant.

(b) Denote the exact point of intersection in the first
quadrant by (X, Y). Without solving, argue that
the other points of intersection must be (—X, Y),
(X, —Y),and (—X, —Y).
0 (c) Now use Newton’s method with your estimate
(x0, yo) in part (a) to approximate the first quadrant
intersection point (X, Y).

(d) Solve for the intersection points exactly, and com-
pare your answer with your approximations.

3. This problem concerns the determination of the points

of intersection of the two curves with equations x3 —

4y’ =1land x* +4y> = 2.

0 (a) Graph the curves and use your graph to give rough
estimates for the points of intersection.

0 (b) Now use Newton’s method with different initial
estimates to approximate the intersection points.

4. Consider the sequence of vectors Xg, X, ..., where,
for k > 1, the vector x; is defined by the Newton’s
method recursion formula (6) given an initial “guess”
X at a root of the equation f(x) = 0. (Here we as-
sume that f: X € R" — R” is a differentiable func-
tion.) By imitating the argument in the single-variable
case, show that if the sequence {x} converges to a vec-
tor L and Df(L) is an invertible matrix, then L must
satisfy f(L) = 0.

5. This problem concerns the Newton’s method iteration
in Example 1.

0 (a) Use initial vector xg = (—1, 1) and calculate the
successive approximations Xp, Xp, X3, etc. To what
solution of the system of equations (7) do the ap-
proximations converge?

0 (b) Repeat part (a) with xg = (1, —1). Repeat again
with xg = (—1, —1).
(¢) Comment on the results of parts (a) and (b) and

whether you might have predicted them. Describe
the results in terms of Figure 2.76.
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8. Suppose that f: X € R*? — R? is differentiable and
that we write f(x, y) = (f(x, y), g(x, y)). Show that
formula (6) implies that, for k > 1,

SOty Yem1)8y (-1 Yi—1) — 8(xk—1, Yk—1) fy (X1, Yi—1)
SeGor—t, Ye—1)gy k1, Yi—1) — Syt Ye—1)&x (X1, Yk—1)

X = Xf—1 —

(k15 Y1) fa (k=15 Yi—1) — f (15 Ye—1)&x(Xk—1, Yk—-1)

Yk = Yk—1

6. Consider the Newton’s method iteration in Example 2.

0 (a) Use initial vector xo = (1.4, 10) and calculate the
successive approximations Xi, Xy, X3, etc. To what
solution of the system of equations (8) do the ap-
proximations converge?

0 (b) Repeat part (a) with xo = (1.3, 10).

(c) In Example 2 we saw that (4, 5) was a solution of
the given system of equations. Is (1.3, 10) closer to
(4, 5) or to the limiting point of the sequence you
calculated in part (b)?

(d) Comment on your observations in part (c). What
do these observations suggest about how easily you
can use the initial vector x, to predict the value of
limg_, 5 X; (assuming that the limit exists)?

7. Suppose that at some stage in the Newton’s method it-
eration using formula (6), we obtain a vector x; that is
an exact solution to the system of equations (2). Show
that all the subsequent vectors X1, Xx+2, - - . are equal
to x;. Hence, if we happen to obtain an exact root via
Newton’s method, we will retain it.

© foluo, Ve=1)8y (Xk—15 Yk=1) — fy(Xr—1, Ye—1)&x(Xk—1, Ye—1)

0 9. As we will see in Chapter 4, when looking for maxima

and minima of a differentiable function F: X C R" —
R, we need to find the points where D F(xy, ..., x,) =
[0 --- 0], called critical points of F. Let F(x,y) =
4sin (xy) + x> 4 y*. Use Newton’s method to approx-
imate the critical point thatliesnear (x, y) = (—1, —1).

10. Consider the problem of finding the intersection points

of the sphere x? + y? + z2 = 4, the circular cylinder

x? + y? = 1, and the elliptical cylinder 4y? + 7> = 4.

0 (a) Use Newton’s method to find one of the intersec-

tion points. By choosing a different initial vector

X9 = (X0, Yo, 20), approximate a second intersec-

tion point. (Note: You may wish to use a computer

algebra system to determine appropriate inverse
matrices.)

(b) Find all the intersection points exactly by means of

algebra and compare with your results in part (a).

True/False Exercises for Chapter 2

1. The component functions of a vector-valued function 8. The graph of any function of two variables is a level set of
are vectors. a function of three variables.
9. The level set of any function of three variables is the graph

3
2. The domain of f(x, y) = (x2 +y2 41, —, f) is
x+yy
{(x,y) e R* | y #0,x # y}.

of a function of two variables.

x2 —2y? B

10. lim ——— =1.
3 (x.9)—(0.0) x% + y?
3. The range of f(x, y) = <x2 + y2 +1, —, 7) is 4 4
vy L% wh 0,0
(v, w) € R | u > 1). M Iy =gy N0 hey ris
4. The function f: R? — {(0, 0, 0)} — R, f(x) = 2x/||x| _ 2 when (x, y) = (0,0)
is one-one. continuous.
5. Th hofx—9v2+ -2/4] loid. 12. If f(x,y) approaches a number L as (x,y) — (a,b)
¢ graph of x = 9y” 4 2°/4 is a paraboloid along all lines through (a, b), then lim, ;) (qp) f(x. )
6. The graph of z + x? = y? is a hyperboloid. =1L.
7. The level set of a function f(x, y, z) is either empty  13. If limy_,, f(x) exists and is finite, then f is continuous

or a surface.

at a.
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. fx,b)— fla,b) 24. The tangent plane to z = x3/(y + 1) at the point
14. fila, b) = lim x—a : (2,0, —8) has equation z = 12x + 8y -+ 16.
15. If f(x,y,z) =siny, then V f(x, y, z) = cos y. 25. The plane tangent to xy/z> = 1 at (2, 8, —4) has equa-
16. If f: R® — R* is differentiable, then Df(x) is a 3 x 4 tion4dx +y+2z=38.
matrix. 26. The plane tangent to the surface x> 4+ xye? 4+ y? =
17. If f is differentiable at a, then f is continuous at a. ; j_tst,he :fl?mt (2,—1,0) is parallel to the vector
i+35j—3k.
18. If fis continuous at a, then f is differentiable at a. 3
27. Dif(x,y,z) = l
19. Ifall partial derivatives df/0x1, ..., df/dx, of a func- - v ay’
tion f(xy,...,x,)existata = (ai,...,ay), then f is oF
differentiable at a. 28. D_xf(x,y,2) = 3
z

20. Iff:R* — R’ and g: R* — R’ are both differentiable

s . . N
ata € RY, then D(f — g)(a) = Df(a) — Dg(a). 29. If f(x,y) =sinxcosy and v is a unit vector in R*,

T T V2
21. Theres a function f of class C? such that then 0 < Dy f (Z’ §> =5
af af
Pl y’ —2x and 5 =y- 3xy2. 30. If v is a unit vector in R® and f(x,y,z) =sinx —
cos y + sin z, then
22. If the second-order partial derivatives of f exist at
(a, D), then fi\(a,b) = fy(a.b). —V3 < Dyf(x,y,2) < V3.
23. If w = F(x, y, z)and z = g(x, y) where F and g are
differentiable, then
dw _0F OF b
dx  9x 9z ax’
Miscellaneous Exercises for Chapter 2
1. Letf(x) = (i+ k) x x. order. Complete the following table by matching each
(a) Write the component functions of gllrrl\c]z:n in the table with its graph and plot of its level
(b) Describe the domain and range of f.
. Graph Level curves
2. Let f(x) = projs;_sjxX, Where x = xi + yj + zk. Function (uppercase | (lowercase
(a) Describe the domain and range of f. Jx, y) letter) letter)
(b) Write the component functions of f.
fx,y)= NN
xt+y +1
f(x,y) =siny/x? + y?
3. Let f(x,y) = J/xy. flx,y) = (3y? — 2x2)e "2
(a) Find the domain and range of f. SO, y) =y =3x%
29,2
(b) Is the domain of f open or closed? Why? fx.y)= xzyzf Xz 2
fx,y)=ye ™7
X
4. Letg(x,y) = \/; 6. Consider the function f(x, y) =2 + In(x? + y?).
) Detrmine he domainad g of. () Skt soms el e of . G ot o
(b) Is the domain of g open or closed? Why? give a fevx; Ir’lor’e.) .
5. Figure 2.77 shows the graphs of six functions f(x, y) (b) Using part (a) or otherwise, give a rough sketch of

and plots of the collections of their level curves in some the graph of z = f(x, y).
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c y
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Figure 2.77 Figures for Exercise 5.
7. Use polar coordinates to evaluate 9. Let
2_ 3 2
yxT —y xy(xy +x°) .
im — T ifxy)#(0,0)
@0)—0,0) x2 4 y2 F(x,y) = x4+ y4 .
8. This problem concerns the function 0 if (x, y) = (0,0)
2xy . Show that the function g(x) = F(x, 0) is continuous at
Fley) = 12+ if (x, y) # (0,0) x = 0. Show that the function i(y) = F(0, y) is con-
V)= ) ' tinuous at y = 0. However, show that F fails to be
0 if (x, y) = (0, 0) continuous at (0, 0). (Thus, continuity in each variable
(a) Use polar coordinates to describe this function. ;?12:?32137 does not necessarily imply continuity of the
(b) Using the polar coordinate description obtained in .
10. Suppose f:U € R" — R is not defined at a point

part (a), give some level curves for this function.
(c) Prepare a rough sketch of the graph of f.
(d) Determine lim(,, y)—(0,0) f(x, y), if it exists.
(e) Is f continuous? Why or why not?

a € R” but is defined for all x near a. In other words,
the domain U of f includes, for some r > 0, the set
B, ={x e R" |0 < ||x—al <r}. (The set B, is just
an open ball of radius r centered at a with the point



a deleted.) Then we say limy_., f(x) = 400 if f(x)
grows without bound as x — a. More precisely, this
means that given any N > 0 (no matter how large),
there is some § > 0 such thatif 0 < ||x — a|| < d (i.e.,
if x € B,), then f(a) > N.

(a) Using intuitive arguments or the preceding tech-
nical definition, explain why lim,_,¢ 1/x% = oo.

(b) Explain why
. 2
lim =
E=(13) (x = 12 + (y — 3)?

(c) Formulate a definition of what it means to say that

lim f(x) = —o0.

(d) Explain why

1—x

lim = —00.
@.0)=0.0) xy* — y* + x3 — x2

Exercises 11-17 involve the notion of windchill temperature—
see Example 7 in §2.1, and refer to the table of windchill values
on page 85.

11.

12.

13.

14.

15.

(a) Find the windchill temperature when the air tem-
perature is 25 °F and the windspeed is 10 mph.

(b) If the windspeed is 20 mph, what air temperature
causes a windchill temperature of —15°F?

(a) Iftheairtemperature is 10 °F, estimate (to the near-
est unit) what windspeed would give a windchill
temperature of —5°F.

(b) Do you think your estimate in part (a) is high or
low? Why?

Atawindspeed of 30 mph and air temperature of 35 °F,
estimate the rate of change of the windchill tempera-
ture with respect to air temperature if the windspeed is
held constant.

Atawindspeed of 15 mph and air temperature of 25 °F,
estimate the rate of change of the windchill tempera-
ture with respect to windspeed.

Windchill tables are constructed from empirically de-
rived formulas for heat loss from an exposed sur-
face. Early experimental work of P. A. Siple and C. F.
Passel,* resulted in the following formula:

W =91.4 + (t — 91.4)(0.474 + 0.3044/5 — 0.0203s).

16.

17.

185
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Here W denotes windchill temperature (in degrees

Fahrenheit), ¢ the air temperature (for t < 91.4°F), and

s the windspeed in miles per hour (for s > 4 mph).’

(a) Compare your answers in Exercises 11 and 12 with
those computed directly from the Siple formula
just mentioned.

(b) Discuss any differences you observe between your
answers to Exercises 11 and 12 and your answers
to part (a).

(c) Why is it necessary to take ¢t < 91.4°F and
s > 4 mph in the Siple formula? (Don’t look for
a purely mathematical reason; think about the
model.)

Recentresearch led the United States National Weather
Service to employ a new formula for calculating wind-
chill values beginning November 1, 2001. In partic-
ular, the table on page 85 was constructed from the
formula

W = 35.74 + 0.6217 — 35.755%1° + 0.4275¢5-1°.

Here, as in the Siple formula of Exercise 15, W de-
notes windchill temperature (in degrees Fahrenheit),
t the air temperature (for r < 50°F), and s the wind-
speed in miles per hour (for s > 3 mph).® Compare
your answers in Exercises 13 and 14 with those com-
puted directly from the National Weather Service
formula above.

In this problem you will compare graphically the two

windchill formulas given in Exercises 15 and 16.

(a) If Wi(s, t) denotes the windchill function given by
the Siple formula in Exercise 15 and W;(s, t) the
windchill function given by the National Weather
Service formula in Exercise 16, graph the curves
y = Wi(s, 40) and y = W(s, 40) on the same set
of axes. (Let s vary between 3 and 120 mph.) In
addition, graph other pairs of curves y = W, (s, ty),
y = Wa(s, ty) for other values of 7y. Discuss what
your results tell you about the two windchill
formulas.

(b) Now graph pairs of curves y = Wi(so, 1), y =
W, (so, t) for various constant values sy for wind-
speed. Discuss your results.

(c) Finally, graph the surfaces z = W,(s,t) and
z = Wa(s, t) and comment.

4 “Measurements of dry atmospheric cooling in subfreezing temperatures,” Proc. Amer. Phil. Soc., 89

(1945), 177-199.

5 From Bob Rilling, Atmospheric Technology Division, National Center for Atmospheric Research
(NCAR), “Calculating Windchill Values,” February 12, 1996. Found online at http://www.atd.ucar.edu/
homes/rilling/wc_formula.html (July 31, 2010).

% NOAA, National Weather Service, Office of Climate, Water, and Weather Services, “NWS Wind Chill
Temperature Index.” February 26, 2004. <http://www.nws.noaa.gov/om/ windchill> (July 31, 2010).


http://www.atd.ucar.edu/homes/rilling/wc_formula.html
http://www.atd.ucar.edu/homes/rilling/wc_formula.html
http://www.nws.noaa.gov/om/windchill
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19.

20.

21.

22,

23.

24.

25.
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. Consider the sphere of radius 3 centered at the origin.
The plane tangent to the sphere at (1, 2, 2) intersects
the x-axis at a point P. Find the coordinates of P.

Show that the plane tangent to a sphere at a point P on
the sphere is always perpendicular to the vector op
from the center O of the sphere to P. (Hint: Locate the
sphere so its center is at the origin in R3.)

The surface z = 3x%+ éxz' — éx“ —4y? is inter-
sected by the plane 2x — y = 1. The resulting intersec-
tion is a curve on the surface. Find a set of parametric
equationzs3 for the line tangent to this curve at the point
(1,1, =5p).

Consider the cone z2 = x? + y.

(a) Find an equation of the plane tangent to the cone
at the point (3, —4, 5).

(b) Find an equation of the plane tangent to the cone
at the point (a, b, ¢).

(c) Show that every tangent plane to the cone must
pass through the origin.

Show that the two surfaces

Si:z=xy and stz:%)cz—y2

intersect perpendicularly at the point (2, 1, 2).

Consider the surface z = x? + 4y2.

(a) Find an equation for the plane that is tangent to the
surface at the point (1, —1, 5).

(b) Now suppose that the surface is intersected with the
plane x = 1. The resulting intersection is a curve
on the surface (and is a curve in the plane x = 1
as well). Give a set of parametric equations for the
line in R that is tangent to this curve at the point
(1, =1, 5). A rough sketch may help your thinking.

A turtleneck sweater has been washed and is now tum-
bling in the dryer, along with the rest of the laundry. At
a particular moment 7y, the neck of the sweater mea-
sures 18 inches in circumference and 3 inches in length.
However, the sweater is 100% cotton, so that at 7y the
heat of the dryer is causing the neck circumference to
shrink at a rate of 0.2 in/min, while the twisting and
tumbling action is causing the length of the neck to
stretch at the rate of 0.1 in/min. How is the volume V
of the space inside the neck changing at t = #,? Is V
increasing or decreasing at that moment?

A factory generates air pollution each day according
to the formula

P(S,T) = 330823145,

where S denotes the number of machine stations in
operation and 7 denotes the average daily tempera-
ture. At the moment, 75 stations are in regular use and
the average daily temperature is 15°C. If the average

26.

27.

28.

29.

30.

temperature is rising at the rate of 0.2°C/day and the
number of stations being used is falling at a rate of
2 per month, at what rate is the amount of pollution
changing? (Note: Assume that there are 24 workdays
per month.)

Economists attempt to quantify how useful or satisfy-
ing people find goods or services by means of utility
functions. Suppose that the utility a particular individ-
ual derives from consuming x ounces of soda per week
and watching y minutes of television per week is
u(x,y)=1— ¢ —0:001x2~0.00005

Further suppose that she currently drinks 80 oz of soda
per week and watches 240 min of TV each week. If she
were to increase her soda consumption by 5 oz/week
and cut back on her TV viewing by 15 min/week, is
the utility she derives from these changes increasing
or decreasing? At what rate?

Suppose that w = x% + y> 4+ z2 and x = p cos 8 sin @,
y = psinfsing,z = p cos ¢. (Note that the equations
for x, y, and z in terms of p, ¢, and 0 are just the con-
version relations from spherical to rectangular coordi-
nates.)

(a) Use the chain rule to compute dw/dp, dw/dg,
and dw/d0. Simplify your answers as much as
possible.

(b) Substitute p, ¢, and 6 for x, y, and z in the original
expression for w. Can you explain your answer in
part (a)?

Ifw=/f <x+y>,showthat

Xy

23£ — y287w —0.
dax ay
(You should assume that f is a differentiable function
of one variable.)
Let z = g(x, y) be a function of class C?, and let
x =¢€" cosf,y =e¢" sinf.
(a) Usethechainruleto finddz/dr and dz/06 interms

of dz/dx and dz/dy. Use your results to solve for
dz/0x and dz/dy in terms of dz/dr and 9z/96.

(b) Use part (a) and the product rule to show that

or2 90?2 )°
(a) Use the function f(x,y)=x" (= ¢”'"¥) and the

multivariable chain rule to calculate Tu (u").
u

9%z 9%z .
ax2  9yr

(b) Use the multivariable chain rule to calculate
d
: t cost .
T ((siney



31.

32.

33.

34.

35.

Use the function f(x, y, z) = x** and the multivariable

chain rule to calculate m (™).
u

Suppose that f: R" — Ris a function of class C2. The
Laplacian of f, denoted V? f, is defined to be

When n = 2 or 3, this construction is important when
studying certain differential equations that model phys-
ical phenomena, such as the heat or wave equations.
(See Exercises 28 and 29 of §2.4.) Now suppose that
f depends only on the distance x = (x1, ..., x,) is
from the origin in R”; that is, suppose that f(x) = g(r)
for some function g, where r = ||x||. Show that for all
x # 0, the Laplacian is given by

—1
Vif =g () + 8.

(a) Consider a function f(x,y) of class C*. Show
that if we apply the Laplacian operator V? =
02/9x% + 02/9y? twice to f, we obtain

tf tf tf
VIV2f)= —; 42 —.
V27 x4 + 0x2dy? = ay4

(b) Now suppose that f is a function of n variables of
class C*. Show that

v =y L
8xi28x12-

ij=1

Functions that satisfy the partial differential equa-
tion V2(V%f) =0 are called biharmonic func-
tions and arise in the theoretical study of elasticity.

Livinia, the housefly, finds herself caught in the oven
at the point (0, 0, 1). The temperature at points in the
oven is given by the function

T(x,y,z) = 10(xe™ +ze™),

where the units are in degrees Celsius.

(a) IfLivinia begins to move toward the point (2, 3, 1),
at what rate (in deg/cm) does she find the temper-
ature changing?

(b) In what direction should she move in order to cool
off as rapidly as possible?

(c) Suppose that Livinia can fly at a speed of 3 cm/sec.
If she moves in the direction of part (b), at what
(instantaneous) rate (in deg/sec) will she find the
temperature to be changing?

Consider the surface given in cylindrical coordinates

by the equation z = r cos 36.

(a) Describe this surface in Cartesian coordinates, that
is,as z = f(x, y).

36.
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(b) Is f continuous at the origin? (Hint: Think cylin-
drical.)

(c) Find expressions for df/dx and df/dy at points
other than (0, 0). Give values for df/dx and af/dy
at (0, 0) by looking at the partial functions of f
through (x, 0) and (0, y) and taking one-variable
limits.

(d) Show that the directional derivative Dy, f(0, 0) ex-
ists for every direction (unit vector) u. (Hint: Think
in cylindrical coordinates again and note that you
can specify a direction through the origin in the
xy-plane by choosing a particular constant value
for6.)

(e) Show directly (by examining the expression for
af/dy when (x, y) # (0, 0) and also using part (c))
that df/dy is not continuous at (0, 0).

(f) Sketch the graph of the surface, perhaps using a
computer to do so.

The partial differential equation

u  *u  d%u ) 9%u

o Tayp Tz T
is known as the wave equation. It models the motion
ofawave u(x, y, z,t) in R3 and was originally derived
by Johann Bernoulli in 1727. In this equation, ¢ is a
positive constant, the variables x, y, and z represent
spatial coordinates, and the variable ¢ represents time.
(a) Let u =cos(x — )+ sin(x +1) —2e*H — (y —
t)’. Show that u satisfies the wave equation with
c=1.
(b) More generally, show that if f1, f>, g1, g2, h1, and
h, are any twice differentiable functions of a single
variable, then

u(x, ¥, Z, t) = fl(x _t)+f2(x +t)
+a0 -+ &b+
+hi(z—1t)+ hy(z+1)

satisfies the wave equation with ¢ = 1.

Let X be an open set in R". A function F: X — R s said to be

homogeneous of degree d if, for all x = (x1, x2,...,x,) € X
and all t € R such that tx € X, we have
F(txy, txy, ..., tx,) = tdF(xl, X2y ooy Xp)-

Exercises 37—44 concern homogeneous functions.

In Exercises 37-41, which of the given functions are homoge-
neous? For those that are, indicate the degree d of homogeneity.

37.
38.
39.

F(x,y)=x>4+xy? —6y°
F(x,y,z)=xy —x?z22 + 7%
F(x,y,z) =2y —x’ +x7z
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40.

41.

42.

43.
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F(x,y)= e
B4ty -y

F(xvy!Z)= xyz+7X22

If F(x,y,z) is a polynomial, characterize what it
means to say that F is homogeneous of degree d (i.e.,
explain what must be true about the polynomial if it is
to be homogeneous of degree d).

Suppose F(xy, x2, ..., X,) is differentiable and homo-
geneous of degree d. Prove Euler’s formula:
oF oF oF

Mo T T T,

=dF.

44,

(Hint: Take the equation F(txy,tx2,...,1x,) =
tYF(x1, xa, ..., x,,) that defines homogeneity and dif-
ferentiate with respect to ¢.)

Generalize Euler’s formula as follows: If F is of class
C? and homogeneous of degree d, then

< *F
Y xixj—— =d(d — 1)F.
’ E)x,-ax_,-

ij=1

Can you conjecture what an analogous formula
involving the kth-order partial derivatives should look
like?



3.1 Parametrized Curves and
Kepler's Laws

3.2 Arclength and Differential
Geometry

3.3 Vector Fields: An
Introduction

3.4  Gradient, Divergence, Curl,
and the Del Operator

True/False Exercises for
Chapter 3

Miscellaneous Exercises
for Chapter 3

X

Figure 3.1 The path x of
Example 1.

Vector-Valued
Functions

Introduction

The primary focus of Chapter 2 was on scalar-valued functions, although general
mappings from R” to R” were considered occasionally. This chapter concerns
vector-valued functions of two special types:

1. Continuous mappings of one variable (i.e., functions x: / € R — R”, where
[ is an interval, called paths in R").
2. Mappings from (subsets of ) R” to itself (called vector fields).

An understanding of both concepts is required later, when we discuss line and
surface integrals.

3.1 Parametrized Curves and Kepler’s Laws

Paths in R”
We begin with a simple definition. Let / denote any interval in R. (So I can be
of the form [a, b], (a, b), [a, b), (a, b], [a, 00), (a, 00), (—0o0, b], (—00, b), or
(—o00,00) =R))

DEFINITION 1.1 A path in R" is a continuous function x: / — R". If I =
[a, b] for some numbers a < b, then the points x(a) and x(b) are called the
endpoints of the path x. (Similar definitions apply if I = [a, b), [a, 00), etc.)

EXAMPLE 1 Let a and b be vectors in R® with a # 0. Then the function
x: (—00, 00) — R? given by
x(t)=b +ra
defines the path along the straight line parallel to a and passing through the end-
point of the position vector of b as in Figure 3.1. (See formula (1) of §1.2.) &
EXAMPLE 2 The pathy:[0, 27) — R? given by
y(t) = (3cost,3sint)

can be thought of as the path of a particle that travels once, counterclockwise,
around a circle of radius 3 (Figure 3.2). *



190 Chapter 3 | Vector-Valued Functions

Z

x(t + Af) = x(t)

X

Figure 3.4 The path x and its
velocity vector v.

Figure 3.2 The pathy of Figure 3.3 The path z of
Example 2. Example 3.

EXAMPLE 3 The map z: R — R? defined by
z(t) = (acost,asint, bt), a,b constants (a > 0)

is called a circular helix, so named because its projection in the xy-plane is a
circle of radius a. The helix itself lies in the right circular cylinder x> + y? = a?
(Figure 3.3). The value of b determines how tightly the helix twists. *

We distinguish between a path x and its range or image set x(/), the latter
being a curve in R”. By definition, a path is a function, a dynamic object (at least
when we imagine the independent variable ¢ to represent time), whereas a curve
is a static figure in space. With such a point of view, it is natural for us to consider
the derivative Dx(t), which we also write as x'(¢) or v(¢), to be the velocity vector
of the path. We can readily justify such terminology. Since

X(l) = (-xl(t)v )C2(l), HER) xn(t))

is a function of just one variable,
x(t + At) — x(t)

0 =x0) = Jim, T2

Thus, v(#) is the instantaneous rate of change of position x(7) with respect to ¢
(time), so it can appropriately be called velocity. Figure 3.4 provides an indication
as to why we draw v(¢) as a vector tangent to the path at x(z). Continuing in this
vein, we introduce the following terminology:

DEFINITION 1.2 Letx: I — R” be a differentiable path. Then the velocity
v(t) = X/(t) exists, and we define the speed of x to be the magnitude of
velocity; that is,

Speed = ||v(z)]|.

If v is itself differentiable, then we call v'(z) = x”(¢) the acceleration of x
and denote it by a(z).

EXAMPLE 4 The helix x(¢) = (a cost, asint, bt) has

v(t) = —asinti+acostj+bk and a(f)= —acosti—asintj.
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X

Figure 3.5 The path of the line
tangent to x(¢) at the point x,.
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Thus, the acceleration vector is parallel to the xy-plane (i.e., is horizontal). The
speed of this helical path is

V)l = V(—asint)? + (acost)? + b% = Va? + b2,

which is constant. *

The velocity vector v is important for another reason, namely, for finding equations
of tangent lines to paths. The tangent line to a differentiable path x, at the point
Xo = X(%), is the line through x, that is parallel to any (nonzero) tangent vector
to x at Xg. Since v(z), when nonzero, is always tangent to x(¢), we may use equa-
tion (1) of §1.2 to obtain the following vector parametric equation for the tangent
line:

l(s) = Xy + 5Vp. (1)

Here vy = v(tp) and s may be any real number.

In equation (1), we have 1(0) = x¢. To relate the new parameter s to the
original parameter ¢ for the path, we set s = ¢t — #y and establish the following
result:

PROPOSITION 1.3 Let x be a differentiable path and assume that vy =
v(tp) # 0. Then a vector parametric equation for the line tangent to x at xo = x(#y)
is either

I(s) = xo + sV (2)
or
1(7) = xo + (t — fo)Vo. (3)

(See Figure 3.5.)

EXAMPLE 5 If x(t) = (3t +2,t> — 7,t — t?), we find parametric equations
for the line tangent to x at (5, —6, 0) = x(1).
For this path, v(z) = x/(¢) = 3i + 2¢j + (1 — 2t)k, so that

vo =v(1)=3i+2j— k.
Thus, by formula (3),
I(r) = (51— 6j)+ (r — 1)(3i+ 2j — k).

Taking components, we read off the parametric equations for the coordinates
of the tangent line as

x=3t+2
y =2t —8.
z=1—1¢ V'S

The physical significance of the tangent line is this: Suppose a particle of
mass m travels along a path x. If, suddenly, at r = f,, all forces cease to act on the
particle (so that, by Newton’s second law of motion F = ma, we have a(t) = 0
for t > 1), then the particle will follow the tangent line path of equation (3).
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EXAMPLE 6 If Roger Ramjet is fired from a cannon, then we can use vectors
to describe his trajectory. (See Figure 3.6.)

y

Roger’s path

A2 ‘
L~ )
< X

Figure 3.6 Roger Ramjet’s path.

We’ll assume that Roger is given an initial velocity vector v by virtue of the
firing of the cannon and that thereafter the only force acting on Roger is due to
gravity (so, in particular, we neglect any air resistance). Let us choose coordinates
so that Roger is initially at the origin, and throughout our calculations we’ll neglect
the height of the cannon. Let x(#) = (x(¢), y(¢)) denote Roger’s path. Then the
information we have is

a(t) =x"(1) = —gj
(i.e., the acceleration due to gravity is constant and points downward); hence,
v(0) = x'(0) = vy
and

x(0) = 0.

Since a(t) = v'(r), we simply integrate the expression for acceleration compo-
nentwise to find the velocity:

v(t):/a(t)dt =/—gjdt =—gtj+ec.

Here c is an arbitrary constant vector (the “constant of integration”). Since v(0) =
Vo, we must have ¢ = vy, so that

v(t) = —gtj+ vo.
Integrating again to find the path,

1
x(t)=/v(t)dt=/(—gtj+vo)dt = —Egtzj—l—tvo—i—d,

where d is another arbitrary constant vector. From the remaining fact that x(0) = 0,
we conclude that

1
X(1) = —587%) + Vo )

describes Roger’s path.
To understand equation (4) better, we write vy in terms of its components:
Vo = v cos i+ vysinb j.

Here vy = ||vo|| is the initial speed. (We’re really doing nothing more than
expressing the rectangular components of vy in terms of polar coordinates.



Figure 3.7 Roger’s initial

velocity.

Planet

Q)

Figure 3.8 An epicycle.

Epicycle
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See Figure 3.7.) Thus,
x(t) = —%gtzj ~+ t(vp cos @i+ vy siné j)

1
= (vgcosO)ri+ ((vo sinf)t — 5gﬂ) j.

From this, we may read off the parametric equations:

x = (vocosO)t
1 )
y = (vo sinf)t — Egt2
from which it is not difficult to check that Roger’s path traces a parabola. *

Here are two practical questions concerning the set-up of Example 6: First, for
a given initial velocity, how far does Roger travel horizontally? Second, for a given
initial speed, how should the cannon be aimed so that Roger travels (horizontally)
as far as possible? To find the range of the cannon shot and thereby answer the
first question, we need to know when y = 0 (i.e., when Roger hits the ground).
Thus, we solve

(vosinO)t — $gt*> = t(vysin® — 1gt) =0

for t. Hence, y = 0 when ¢ = 0 (which is when Roger blasts off) and when
t = (2vgsin6)/g. At this later time,

2v sin6 2 sin260
x =(v00059)-< o 58 ): i (5)
g g

Formula (5) is Roger’s horizontal range for a given initial velocity. To maximize
the range for a given initial speed vy, we must choose 6 so that (v3 sin26)/g is
as large as possible. Clearly, this happens when sin 26 = 1 (i.e., when 6 = 7/4).

Kepler’s Laws of Planetary Motion (optional)

Since classical antiquity, individuals have sought to understand the motions of
the planets and stars. The majority of the ancient astronomers, using a combina-
tion of crude observation and faith, believed all heavenly bodies revolved around
the earth. Fortunately, the heliocentric (or “sun-centered”) theory of Nicholas
Copernicus (1473-1543) did eventually gain favor as observational techniques
improved. However, it was still believed that the planets traveled in circular or-
bits around the sun. This circular orbit theory did not correctly predict planetary
positions, so astronomers postulated the existence of epicycles, smaller circular
orbits traveling along the major circular arc, an example of which is shown in
Figure 3.8. Although positional calculations with epicycles yielded results closer
to the observed data, they still were not correct. Attempts at further improvements
were made using second- and third-order epicycles, but any gains in predictive
power were made at a cost of considerable calculational complexity. A new idea
was needed. Such inspiration came from Johannes Kepler (1571-1630), son of a
saloonkeeper and assistant to the Danish astronomer Tycho Brahe. The classical
astronomers were “stuck on circles” for they believed the circle to be a perfect
form and that God would use only such perfect figures for planetary motion.
Kepler, however, considered the other conic sections to be as elegant as the cir-
cle and so hypothesized the simple theory that planetary orbits are elliptical.
Empirical evidence bore out this theory.



194 Chapter 3 | Vector-Valued Functions

Figure 3.9 Kepler’ second law
of planetary motion: If

th—1 =1t4 —t3,then A; = Ay,
where A; and A, are the areas of
the shaded regions.

Kepler’s three laws of planetary motion are

1. The orbit of a planet is elliptical, with the sun at a focus of the ellipse.

2. During equal periods of time, a planet sweeps through equal areas with respect
to the sun. (See Figure 3.9.)

3. The square of the period of one elliptical orbit is proportional to the cube of
the length of the semimajor axis of the ellipse.

Kepler’s laws changed the face of astronomy. We emphasize, however, that
they were discovered empirically, not analytically derived from general physical
laws. The first analytic derivation is frequently credited to Newton, who claimed
to have established Kepler’s laws (at least the first and third laws) in Book I of
his Philosophiae Naturalis Principia Mathematica (1687). However, a number of
scientists and historians of science now consider Newton’s proof of Kepler’s first
law to be flawed and that Johann Bernoulli (1667—1748) offered the first rigorous
derivation in 1710." In the discussion that follows, Newton’s law of universal
gravitation is used to prove all three of Kepler’s laws.

In our work below, we assume that the only physical effects are those be-
tween the sun and a single planet—the so-called two-body problem. (The n-body
problem, where n > 3 is, by contrast, an important area of current mathematical
research.) To set the stage for our calculations, we take the sun to be fixed at the
origin O in R? and the planet to be at the moving position P. We also need the
following two “vector product rules,” whose proofs we leave to you:

PROPOSITION 1.4
1. If x and y are differentiable paths in R", then

d dx dy
a SV EY g ey
2. If x and y are differentiable paths in R?, then
d dx dy
E(xxy)_ P XY+ XX e

First, we establish the following preliminary result:

PROPOSITION 1.5 The motion of the planet is planar, and the sun lies in the
planet’s plane of motion.

PROOF Letr = OP. Then r is a vector whose representative arrow has its tail
fixed at 0. (Note that r = r(¢); that is, r is a function of time.) If v = r/(¢), we
will show that r x v is a constant vector ¢. This result, in turn, implies that r must
always be perpendicular to ¢ and, hence, that r always lies in a plane with ¢ as
normal vector.

To show that r x v is constant, we show that its derivative is zero. By part 2
of Proposition 1.4,

( ) dr n dv n
—(rxv)= — XV4+rx —=vVXV-+rxa,
dt dt dt

! For an indication of the more recent controversy surrounding Newton’s mathematical accomplishments,
see R. Weinstock, “Isaac Newton: Credit where credit won’t do,” The College Mathematics Journal, 25
(1994), no. 3, 179-192, and C. Wilson, “Newton’s orbit problem: A historian’s response,” 7bid., 193-200,
and related papers.
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by the definitions of velocity and acceleration. We know that v x v = 0 (why?), so

%(rxv):rxa. (6)

Now we use Newton’s laws. Newton’s law of gravitation tells us that the planet
is attracted to the sun with a force
GMm
)
where G is Newton’s gravitational constant (= 6.6720 x 10~'! Nm?/kg®), M
is the mass of the sun, m is the mass of the planet (in kilograms), » = ||r||, and

u = r/||r|| (distances in meters). On the other hand, Newton’s second law of
motion states that, for the planet,

F=- u, 7

F =ma
Thus,
GMm
ma = — u,
72
or
GM
a—= ——3 r. (8)
r

Therefore, a is just a scalar multiple of r and hence is always parallel to r. In
view of equations (6) and (8), we conclude that

d
—_ = =0
dt(rxv) rxa

(i.e., that r x v is constant). ]

THEOREM 1.6 (KEPLER’S FIRST LAW) In a two-body system consisting of one
sun and one planet, the planet’s orbit is an ellipse and the sun lies at one focus of
that ellipse.

PROOF We will eventually find a polar equation for the planet’s orbit and see
that this equation defines an ellipse as described. We retain the notation from
the proof of Proposition 1.5 and take coordinates for R? so that the sun is at the
origin, and the path of the planet lies in the xy-plane. Then the constant vector
¢ = r x v used in the proof of Proposition 1.5 may be written as ck, where c is
some nonzero real number. This set-up is shown in Figure 3.10.

Z

C=IXYV

x
u (unit length)

Figure 3.10 Establishing Kepler’s laws.
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Step 1. We find another expression for ¢. By definition of u in formula (7),
r = ru, so that, by the product rule,

d du dr
V:E(ru):rz—l—au.
Hence,
du dr 3 du dr
c=rxv=(ru)x (VZ—FEH) =r (uxz)—kra(uxu).

Since u x u must be zero, we conclude that

_ 2 du
e (uxdt>. ©)

Step 2. We derive the polar equation for the orbit. Before doing so, however,
note the following result, whose proof is left to you as an exercise:

PROPOSITION 1.7 If x(t) has constant length (i.e., ||x(¢)|| is constant for
all 7), then x is perpendicular to its derivative dx/dt.

Continuing now with the main argument, note that the vector r(z) is defined
so that its magnitude is precisely the polar coordinate r of the planet’s position.
Using equations (8) and (9), we find that

GM ) du
axc=|——u) xr fux —
r2 dt

[ d d
=GM |(u- u)—u —(u- o u (see Exercise 27 of §1.4)
| dt dt
[ du ..
=GM 15 — Ou (by Proposition 1.7)
d
= — (GMu),
ar (OMw
since G and M are constant. On the other hand, we can “reverse” the product rule
to find that
axec il c
XC=—X
dt
dv L de (si ) tant)
=—X X — ince ¢ is constan
T c+v T since c¢ is consta
d
= —(vxec).

dt



X

Figure 3.11 The angle 0 is
the angle between r and d.
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Thus,
d d
axe= E(GMH) = E(V X €),

and, hence,
vxe=GMu-+d, (10)

where d is an arbitrary constant vector. Because both v x ¢ and u lie in the xy-
plane, so must d.

Let us adjust coordinates, if necessary, so that d points in the i-direction (i.e.,
so that d = di for some d € R). This can be accomplished by rotating the whole
set-up about the z-axis, which does not lift anything lying in the xy-plane out of
that plane. Then the angle between r (and hence u) and d is the polar angle 6 as
shown in Figure 3.11.

By Theorem 3.3 of Chapter 1,

u-d=|ul ||d] cos® = dcosb. (11)
Since ¢ = ||¢||,
t=c-c
=(rxv)-c
=r-(vxec) (Why? See formula (4) of §1.4.)

=ru-(GMu+d) by equation (10).
Hence,
¢ = GMr + rd cosf
by equation (11). We can readily solve this equation for » to obtain

62

"TGM tdcost’
the polar equation for the planet’s orbit.

(12)

Step 3. We now check that equation (12) really does define an ellipse by
converting to Cartesian coordinates. First, we’ll rewrite the equation as
B c? B (c?/GM)
" GM +dcos® 1+ (d/GM)cos6’

andthenlet p = ¢*/GM, e = d/ G M for convenience. (Note that p > 0.) Hence,
equation (12) becomes

r

p

=—\ 13
" 1 4 ecosf (13)

A little algebra provides the equivalent equation,
r=p—ercoso. (14)

Now r cos & = x (x being the usual Cartesian coordinate), so that equation (14)
is equivalent to

r=p—ex.

To complete the conversion, we square both sides and find, by virtue of the fact
that 72 = x% + y?,

x? 4+ y? = p* — 2pex + &*x%.
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A little more algebra reveals that
(1 —e*)x? + 2pex +y> = p*. (15)

Therefore, the curve described by the preceding equation is an ellipse if 0 <
le| < 1,aparabolaife = %1, and a hyperbola if |e| > 1. Analytically, there is no
way to eliminate the last two possibilities. Indeed, “uncaptured” objects such as
comets or expendable deep space probes can have hyperbolic or parabolic orbits.
However, to have a closed orbit (so that the planet repeats its transit across the
sky), we are forced to conclude that the orbit must be elliptical.

More can be said about the elliptical orbit. Dividing equation (15) by 1 — e?
and completing the square in x, we have

pe \° &
(x+1—ez) +1—e2_(1—62)2'

This is equivalent to the rather awkward-looking equation

(x + pe/(1 — )’ y?
+ =1
p*/(1 —e?)? p?/(1 —e?)
From equation (16), we see that the ellipse is centered at the point (— pe/(1 — ez),

0), that its semimajor axis has lengtha = p/(1 — ¢?), and that its semiminor axis
has length b = p/+/1 — €2. The foci of the ellipse are at a distance

7 — P’ p plel
(1— ey

(16)

2

T2 1-&

from the center. (See Figure 3.12.) Hence, we see that one focus must be at the
origin, the location of the sun. Our proof is, therefore, complete. [ |

Fortunately, all the toil involved in proving the first law will pay off in proofs
of the second and third laws, which are considerably shorter. Again, we retain all
the notation we already introduced.

THEOREM 1.8 (KEPLER’S SECOND LAW) During equal intervals of time, a planet
sweeps through equal areas with respect to the sun.

Semiminor
axis

Semimajor axis
A

Q () X
Focus (-pel(1-¢2), 0) FocusﬁW@

s N

Figure 3.12 The ellipse of equation (16).
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Po(ro, 0p)

P(r,0) A(6)

Figure 3.13 The shaded area A(0) is
given by f;} 1rtdg.

PROOF Fix one point Py on the planet’s orbit. Then the area A swept between
Py and a second (moving) point P on the orbit is given by the polar area integral

‘1
A(0) = f —r?de.
o 2
(See Figure 3.13.) Thus, we may reformulate Kepler’s law to say that d A/dt is
constant. We establish this reformulation by relating d A /dt to a known constant,
namely, the vector¢ =r x v.
By the chain rule (in one variable),

dA  dA do
dt — do dt’
By the fundamental theorem of calculus,
dA d (%1 1
——=— [ Sride=-1[r@O)
do  do Jy, 2 2
Hence,
dA 1 ,d6
— =—rt—. 17
ar ~ 2 {17

Now, we relate ¢ to d6/dt by means of equation (9). Therefore, we compute
u X du/dt in terms of 0. Recall thatu = —randr = r cos01i+ rsiné j. Thus,
r
u=cosfi+sinbj

du . do do .
— = —sinf —i+cosf —j.
dt dt dt

Hence, it follows by direct calculation of the cross product that

so ¢ = |¢|| = r2d6/dt, and equation (17) implies that
dA 1
— = —c, 18
ar ~ 2° (1%)
a constant. ]

THEOREM 1.9 (KEPLER’S THIRD LAW) If T is the length of time for one plane-
tary orbit, and a is the length of the semimajor axis of this orbit, then 72 = Ka*
for some constant K.
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PROOF We focus on the total area enclosed by the elliptical orbit. The area of an
ellipse whose semimajor and semiminor axes have lengths a and b, respectively,
is wab. This area must also be that swept by the planet in the time interval [0, T'].

Thus, we have
TdA
mTab = —dt
0

dt
1
=/ —cdt by equation (18)
0o 2
1
= —cT.
2
Hence,
2mwab 4r2a’b?
r="20 s 12="27 (19)
¢ ¢

Now, b and c are related to a, so these quantities must be replaced before we are
done. In particular, from equation (16), b*> = p?/(1 — €?), so

b* = pa.
Also B o2
P=G6m

(See equations (12) and (13).) With these substitutions, the result in (19) becomes

72 _ 4n2a2(pa) _ 472 &
pGM GM

This last equation shows that 72 is proportional to a°, but it says even more:

The constant of proportionality 47%/GM depends entirely on the mass of the

sun—the constant is the same for any planet that might revolve around the sun.
|

3.1 Exercises

In Exercises 1-6, sketch the images of the following paths, us- 8. x(r) =5costi+ 3sintj
ing arrows to indicate the direction in which the parameter . 5
. . 9. x(t) = (¢sint, t cost, t7)
increases:
g f=2e-10 10. x(1) = (¢', ¥, 2¢")
Cly=3-17 T In Exercises 11-14, (a) use a computer to give a plot of the
2. x(t)=eitej given path x over the indicated interval for t; identify the di-
rection in which t increases. (b) Show that the path lies on the
3. 1= tc.ost’ 6m <1 <6n given surface S.
y =tsint . L
0 11. x(t) = (3cosmt,4sinmt, 2t), —4 <t < 4; S is ellip-
x = 3cost 2 2
. . <r=< . .
4 y =2sin2t’ 0=<t=2rm tlcalcyhnder%—i-%:l.
5. x(1) = (t,3* + 1,0) 0 12. x(¢) = (tcost, tsint, 1), —20 <t <20; S is cone
6. x(1) = (1, 1%, %) 22 =x*+y%
Calculate the velocity, speed, and acceleration of the paths 0 13. x(1) = (tsin2t, tcos2t,1%), —6 <t < 6; S is para-
given in Exercises 7—10. boloid z = x% + y2.

7. x(1) = (3t — 5)i+ (2t + 7)j
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x(t) = (2cost, 2sint,3sin8¢), 0 <t < 2m; S is cy-
linder x2 4+ y> = 4.

In Exercises 1518, find an equation for the line tangent to the
given path at the indicated value for the parameter.

15.
16.
17.
18.
19.

X(1) =te i+ e¥jt=0

x(t) =4costi—3sintj+ 5tk t =m/3

X()= (%12, 0),1=2

x(t) = (cos(e’),3 — %, 1), t =1

(a) Sketch the path x(r) = (¢, 3 — 2t + 1).

(b) Calculate the line tangent to x when t = 2.

(c) Describe the image of x by an equation of the form
y = f(x) by eliminating 7.

(d) Verify your answer in part (b) by recalculating the
tangent line, using your result in part (c).

Exercises 20—23 concern Roger Ramjet and his trajectory when
he is shot from a cannon as in Example 6 of this section.

20.

21.

22.

23.

24.

Verify that Roger Ramjet’s path in Example 6 is indeed
a parabola.

Suppose that Roger is fired from the cannon with an
angle of inclination 6 of 60° and an initial speed vy of
100 ft/sec. What is the maximum height Roger attains?

Suppose that Roger is fired from the cannon with an an-
gle of inclination 6 of 60° and that he hits the ground
1/2 mile from the cannon. What, then, was Roger’s
initial speed?

IfRoger is fired from the cannon with an initial speed of
250 ft/sec, what angle of inclination 6 should be used
so that Roger hits the ground 1500 ft from the cannon?

Gertrude is aiming a Super Drencher water pistol at

Egbert, who is 1.6 m tall and is standing 5 m away.

Gertrude holds the water gun 1 m above ground at an

angle « of elevation. (See Figure 3.14.)

(a) If the water pistol fires with an initial speed of
7 m/sec and an elevation angle of 45°, does Egbert
get wet?
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0 (b) If the water pistol fires with an initial speed of

25.

26.

27.

28.

29.
30.

8 m/sec, what possible angles of elevation will
cause Egbert to get wet? (Note: You will want to
use a computer algebra system or a graphics cal-
culator for this part.)

A malfunctioning rocket is traveling according to the
pathx(t) = (e*, 31> — 2,1 — 1) in the hope of reach-
ing a repair station at the point (7¢*, 35, 5). (Here
t represents time in minutes and spatial coordinates
are measured in miles.) At ¢ = 2, the rocket’s engines
suddenly cease. Will the rocket coast into the repair
station?

Two billiard balls are moving on a (coordina-

tized) pool table according to the respective paths

x(t) = (r2 —2,2— 1) and y(1) = (¢, 5 — 1%), where

t represents time measured in seconds.

(a) When and where do the balls collide?

(b) What is the angle formed by the paths of the balls
at the collision point?

Establish part 1 of Proposition 1.4 in this section: If x
and y are differentiable paths in R”, show that

d (x-y) dx dy
—(X-y)=y- . .
ar Y=Y dt
Establish part 2 of Proposition 1.4 in this section: If x
and y are differentiable paths in R?, show that

+x

d (x xy) dx Xy x X dy
—I(X = — X —_—
a Y=y dr

Prove Proposition 1.7.
(a) Show that the path x(¢) = (cos?, cos? sint, sin? 1)
lies on a unit sphere.

(b) Verify that x(¢) is always perpendicular to the ve-
locity vector v(z).

(c) Use Proposition 1.7 to show that if a differentiable
path lies on a sphere centered at the origin, then
its position vector is always perpendicular to its
velocity vector.

1.6 m

Figure 3.14 Figure for Exercise 24.
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Consider the path
x = (a+ bcoswt)cost
vy =(a+bcoswt)sint,

z = bsinwt

where a, b, and w are positive constants and a > b.

0 (a) Use a computer to plot this path when

32.

33.

34.

i.a=3,b=1,and w = 15.
. a=5b=1,and w = 15.
. a=5,b=1,and w = 25.

Comment on how the values of a, b, and w affect
the shapes of the image curves.

(b) Show that the image curve lies on the torus

(Vx2+y2 —a)P + 2 =b.
(A torus is the surface of a doughnut.)

For the path x(¢) = (¢’ cost, e’ sinr), show that the an-
gle between x(¢) and x'(¢) remains constant. What is
the angle?

Consider the path x: R — R?, x(¢) = (>, 1> —1).
(a) Show that this path intersects itself, that is, that
there are numbers ¢, and , such that x(¢,) = x(2,).

(b) At the point where the path intersects itself, it
makes sense to say that the image curve has two
tangent lines. What is the angle between these tan-
gent lines?

Although the path x:[0,27] — R?, x(¢) =
(cost, sint) may be the most familiar way to give a
parametric description of a unit circle, in this problem
you will develop a different set of parametric equations
that gives the x- and y-coordinates of a point on the
circle in terms of rational functions of the parameter.
(This particular parametrization turns out to be useful
in the branch of mathematics known as number theory.)

To set things up, begin with the unit circle x> +
y? = 1 and consider all lines through the point (—1, 0).
(See Figure 3.15.) Note that every line other than the

35.

vertical line x = —1 intersects the circle at a point
(x, y) other than (—1, 0). Let the parameter ¢ be the
slope of the line joining (—1, 0) and a point (x, y) on
the circle.

) Slopet

(_1$0)

Figure 3.15 Figure for Exercise 34.

(a) Give an equation for the line of slope ¢ joining
(—1,0) and (x, y). (Your answer should involve
x,y,andt.)

(b) Use your answer in part (a) to write y in terms of
x and 7. Then substitute this expression for y into
the equation for the unit circle. Solve the resulting
equations for x in terms of #. Your answer(s) for x
will give the points of intersection of the line and
the circle.

(c) Use your result in part (b) to give a set of paramet-
ric equations for points (x, y) on the unit circle.

(d) Does your parametrization in part (c) cover the
entire circle? Which, if any, points are missed?

Let x() be a path of class C! that does not pass through
the origin in R3. If x(#) is the point on the image of x
closest to the origin and x/(#y) # 0, show that the po-
sition vector x(7y) is orthogonal to the velocity vector
X'(10).

3.2 Arclength and Differential Geometry

In this section, we continue our general study of parametrized curves in R3,
considering how to measure such geometric properties as length and curvature.
This can be done by defining three mutually perpendicular unit vectors that form
the so-called moving frame specially adapted to a path x. Our study takes us
briefly into the branch of mathematics called differential geometry, an area where
calculus and analysis are used to understand the geometry of curves, surfaces,
and certain higher-dimensional objects (called manifolds).



x(D)

x(a)
Figure 3.16 Approximating the
length of a C! path.
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Length of a Path

For now, let x: [a, /] — R3 be a C! path in R®> Then we can approximate the
length L of x as follows: First, partition the interval [a, b] into n subintervals.
That is, choose numbers 7y, t1,...,t, suchthata =t <t < --- <t, =b. If,
fori =1,...,n, we let As; denote the distance between the points x(#;,_;) and
x(;) on the path, then

L~y s (M
i=1

(See Figure 3.16.) We have x(7) = (x(t), y(¢), z()), so that the distance formula
(i.e., the Pythagorean theorem) implies

As; = \/Ax,? + Ay} + Az,

where Ax; = x(t;) — x(t;i—1), Ay = y(t;) — y(ti—1), and Az; = z(&;) — z(fi-1)- It
is entirely reasonable to hope that the approximation in (1) improves as the At;’s
become closer to zero. Hence, we define the length L of x to be

n
L= lim Y VAx?+Ay?+ Az, )
i=1

max At;—0

Now, we find a way to rewrite equation (2) as an integral. On each subinterval
[t;-1, t:], apply the mean value theorem (three times) to conclude the following:

1. There must be some number # in [t;_1, #;] such that
x(t) = x(ti1) = X' ()t — ti1);

that is, Ax; = x’(ti*)Ati.
2. There must be another number #* in [f;_y, #;] such that

Ay = y' () At
3. There must be a third number #** in [#;_1, t;] such that
Az = Z/([i***)Ali.

Therefore, with a little algebra, equation (2) becomes

max At;—0

L= lim 3 o2 +y@ 7 + 20 A, 3)
i=1

When the limit appearing in equation (3) is finite, it gives the value of the definite
integral

b
f VX (2 4 y'(0)? + /(1) dt.

Note that the integrand is precisely ||x'(¢)]|, the speed of the path. (This makes
perfect sense, of course. Speed measures the rate of distance traveled per unit
time, so integrating the speed over the elapsed time interval should give the total
distance traveled.) Moreover, it’s not hard to see how we should go about defining
the length of a path in R” for arbitrary n.
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Figure 3.17 A C! path.

x(11) x(t,)

a4

" x(b)

Figure 3.18 A piecewise C! path
x:[a, b] - R.

DEFINITION 2.1  The length L(x) of a C! path x: [a, b] — R is found by
integrating its speed:

b
L(x) = / X1l dr.

EXAMPLE 1 To check our definition in a well-known situation, we compute
the length of the path

x:[0,27] — R%, x(t) = (acost,asint), a > 0.
We have
X'(t) = —asinti+acostj,

SO

IX'(0)|| = Va2sin®t +a?cos?t = a.

Thus, Definition 2.1 gives
2
L(x) = / adt =2ma.
0

Since the path traces a circle of radius a once, the length integral works out to be
the circumference of the circle, as it should. *

EXAMPLE 2 For the helix x(t) = (acost, asint, bt),0 <t < 27, we have
X'(t) = —asinti+acostj+ bk,

so that ||X'(7)|| = va? + b%, and
2
L(x) = / va?+b*dt =2+ a? + b2
0

When b = 0, the helix reverts to a circle and the length integral agrees with the
previous example. *

Although we have defined the length integral only for C' (or “smooth-
looking”) paths, there is no problem with extending our definition to the piecewise
C! case. By definition, a C' path is one with a continuously varying velocity vec-
tor, and so it typically looks like the path in Figure 3.17. A piecewise C' path is one
that may not be C' but instead consists of finitely many C! chunks. A continuous,
piecewise C! path that is not C! typically looks like the path in Figure 3.18. Each
of the three portions of the path defined for (i) a <t <1, (ii)) t; <t < t,, and
(iii) &, < t < bisofclass C!, but the velocity, if nonzero, would be discontinuous
att = t; and t = t,. To define the length of a piecewise C' path, all we need do is
break up the path into its C! pieces, calculate the length of each piece, and add to
get the total length. For the piecewise C' path shown in Figure 3.18, this means we
would take

n 153 b
/ X dt + / x| dt + / x| dt

to be the length.
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Figure 3.19 The arclength
reparametrization.
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WARNING  Even if a path is continuous, the definite integral in Definition 2.1
may fail to exist. An example of such an unfortunate situation is furnished by the
path x: [0, 1] — R?,

1
tsin— ift#£0
x(t) = (¢, y(t)), where y(t)= t ‘
0 ift=0

Such a path is called nonrectifiable. It is a fact that any C' path with endpoints
is rectifiable, which is why we made such a condition part of Definition 2.1.

The Arclength Parameter

The calculation of the length of a path is not only useful (and moderately inter-
esting) in itself, but it also provides a way for us to reparametrize the path with
a parameter that depends solely on the geometry of the curve traced by the path,
not on the way in which the curve is traced.

Let x be any C! path and assume that the velocity x’ is never zero. Fix a point
Py on the path and let a be such that x(a) = Py. We define a one-variable function
s of the given parameter ¢ that measures the length of the path from Py to any
other (moving) point P by

s(0) = / IX ()] . 4

(See Figure 3.19. The Greek letter tau, 7, is used purely as a dummy variable—
the standard convention is never to have the same variable appearing in both the
integrand and either of the limits of integration.) If # happens to be less than a,
then the value of s in formula (4) will be negative. This is nothing more than a
consequence of how the “base point” P, is chosen.

Here’s how to get the new parameter: From formula (4) and from the funda-
mental theorem of calculus,

ds

d [ ,
==z / IX (D)l dr = X (@)]| = speed. 5)

Since we have assumed that x'(¢) # 0, it follows that ds/dt is nonzero. Hence,
ds/dt is always positive, so s is a strictly increasing function of 7. Thus, s is,
in fact, an invertible function; that is, it is at least theoretically possible to solve
the equation s = s(¢) for ¢ in terms of s. If we imagine doing this, then we can
reparametrize the path x, using the arclength parameter s as independent variable.

EXAMPLE 3 For the helix x(¢) = (a cost, a sint, bt), if we choose the “base
point” Py to be x(0) = (a, 0, 0), then we have

t t
S = / IX (@)l dr = / Ja T dr = V@ 1 b,
0 0
so that

s =+va*+b*t,
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or
N

Jar + b2
(What the preceding tells us is that this reparametrization just rescales the time
variable.) Hence, we can rewrite the helical path as

s . s bs
x(s):(acos(\/az:_f_bz>’asm<\/az+b2)’\/aZ—}—bz)' ¢

EXAMPLE 4 The explicit determination of the arclength parameter for a given
parametrized path is a delicate matter. Consider the path

_ ﬁ213
X([)—(I,TI ,5[)

Then x'(r) = (1, v/2¢, %) and, if we take the base point to be x(0) = (0, 0, 0), then

t
s(t)=/ V142124 14de
0

=

t t t3
=/ ,/(1+z2)2dr=/(1+rz)df=r+—.
0 0 3

On the other hand, the path y(¢) = (¢, t2, t?) is quite similar to x, yet it has
no readily calculable arclength parameter. In this case, y'(¢) = (1, 2¢, 3¢%) and the
resulting integral for s(¢) is

t
s(t) = / V14412 4+974dt.
0

It can be shown that this integral has no “closed form” formula (i.e., a formula
that involves only finitely many algebraic and transcendental functions). *

The significance of the arclength parameter s is that it is an intrinsic param-
eter; it depends only on how the curve itself bends, not on how fast (or slowly)
the curve is traced. To see more precisely what this means, we resort to the chain
rule. Consider s as an intermediate variable and ¢ as a final variable. Then we
have

d
X' (1) = x’(s)d—;v by the chain rule,
=xIXOI by (5).
Since x'(t) # 0, we can solve for x'(s) to find

_ X
Xl

Therefore, x'(s) is precisely the normalization of the original velocity vector, and
soitis a unit vector. Hence, the reparametrized path x(s) has unit speed, regardless
of the speed of the original path x(#). (This result makes good geometric sense,
too. If arclength, rather than time, is the parameter, then speed is measured in
units of “length per length,” which necessarily must be one.)

The only unfortunate note to our story is that the integral in formula (4) is
usually impossible to compute exactly, thus making it impossible to compute s
as a simple function of 7. (The case of the helix is a convenient and rather special

X'(s) (6)



Figure 3.20 A unit tangent
vector.
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exception.) One generally prefers to work indirectly, letting the chain rule come
to the rescue. We shall see this indirect approach next.

The Unit Tangent Vector and Curvature
Letx: 1 € R — R3 be a C? path and assume that X’ is never zero.

DEFINITION 2.2 The unit tangent vector T of the path x is the normal-
ization of the velocity vector; that is,
v X(n)

v Xl

We see from Definition 2.2 that the unit tangent vector is undefined when the
speed of the path is zero. Also note that, from equation (6), T is dx/ds, where s
is the arclength parameter. Geometrically, T is the tangent vector of unit length
that points in the direction of increasing arclength, as suggested by Figure 3.20.

EXAMPLE 5 For the helix x(t) = (a cost, asint, bt), we have

T() = X(t)  —asintitacostj+bk
X' (@)l va? +b? '

On the other hand, if we parametrize the helix using arclength so that

s . s bs
x(s) = (acos <W)’asm<\/az +b2)’ Va2 +b2>’

then

() — —a . s . a K .
T =x(0 = i (s )i e ()

b
+——Kk
Va +p?
This agrees (as it should) with the first expression for T, since s = va? + b*1,
as shown in Example 3. *

Using the unit tangent vector, we can define a quantity that measures how
much a path bends as we travel along it. To do so, note the following key facts:

PROPOSITION 2.3 Assume that the path x always has nonzero speed. Then

1. dT/dt is perpendicular to T for all # in / (the domain of the path x).

2. ||dT/dt] |;=, equals the angular rate of change (as ¢ increases) of the direc-
tion of T when ¢ = ;.

PROOF (You can omit reading this proof for the moment if you are interested in
the main flow of ideas.) To prove part 1, we have

T()-T() =1,
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T(t, + Af)

AT

T(t)

Figure 3.21 The vector triangle
used in the proof of
Proposition 2.3.

since T is a unit vector. Hence,

d
E(T -T) =0,
because the derivative of a constant is zero. Also we have
i(T.T)ZT.d_T+d_T. ,
dt d dt
by the product rule (Proposition 1.4). Thus,
2T . d—T =0.
drt

Therefore, T is always perpendicular to dT/dt. (See Proposition 1.7.)
Now we prove part 2. Because T is a unit vector for all ¢, only its direction
can change as ¢ increases. This angular rate of change of T is precisely
A
lim —,
Ar—0+ At
where A6 comes from the vector triangle shown in Figure 3.21. To make the
argument technically simpler, we shall assume that AT # 0. We claim that

AO
im —— =1. (7
=N
Then, from equation (7),
: . A |[AT]| . AG . ||AT]
lim — = lim —— = lim —— lim
Ar—0+ At At—0F ||AT|| At At—0F ||AT|| Ar—0+ At
1 AT
=1- lim .
At—0t At
Since At is assumed to be positive in the limit, we may conclude that
A ) AT dT
im — = lim |—|=|—
Ar—0+ At Ar—0+ || At dt

as desired.
To establish equation (7), the law of cosines applied to the vector triangle in
Figure 3.21 implies

IATI?> = [T + ADI* + IT@)]* — 2[IT(t + At)|| [ T()]| cos AB

=2 —2cos Af,
because T is always a unit vector. Thus,
. A0 . A6
lim —— = lim ——
Ar—0t [|AT] Ar—0t /2 — 2 cos Af
. AO
= lim
At—0F

\/ 2. 2(sin*(A0/2))
from the half-angle formula, and so
. ABO/2
lim —— = lim ——— =1,
Ar—0t ||AT|  Ar—0* sin(A6/2)

from the well-known trigonometric limit (or from [’Hopital’s rule). |
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Part 2 of Proposition 2.3 provides a precise way of measuring the bending of
a path.

DEFINITION 2.4 The curvature « of a path x in R® is the angular rate of
change of the direction of T per unit change in distance along the path.

The reason for taking the rate of change of T per unit change in distance in the
definition of « is so that the curvature is an intrinsic quantity (which we certainly
want it to be). Figure 3.22 should help you develop some intuition about k.

T

T

Figure 3.22 In the left figure, « is not large, since the
path’s unit tangent vector turns only a small amount per
unit change in distance along the path. In the right
figure, « is much larger, because T turns a great deal
relative to distance traveled.

Because ||dT/dt| measures the angular rate of change of the direction of T
per unit change in parameter (by part 2 of Proposition 2.3) and ds/dt is the rate
of change of distance per unit change in parameter, we see that

dT/d dT
_ T/ _ ”d_ ®

() = ds/dt

where the last equality holds by the chain rule. It is formula (8) that we will use
when making calculations.

EXAMPLE 6 For the circle x(1) = (acost,asint), 0 <t < 2,
ds

X'(t) = —asinti+ acostj, IX'(0)) = =
so that /
X'(1) )
T(t) = = —sinti+costj.
X' (@)l
Hence,
ldT/de]| 1 o ]
= ———— = —| —costi—sintj|| = —.
ds/dt a a

Thus, we see that the curvature of a circle is always constant with value equal
to the reciprocal of the radius. Therefore, the smaller the circle, the greater the
curvature. (Draw a sketch to convince yourself.) *
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EXAMPLE 7 Ifaand b are constant vectors in R® and a # 0, the path

x(t)y=ar+b
traces a line. We have
X'(1) = a,
)
9 Jal
— = ||la
dt
Hence,
a
T@) = -—-,
llall

which is a constant vector. Thus, T'(¢) = 0 and formula (8) implies immedi-
ately that « is zero, which agrees with the intuitive fact that a line doesn’t
curve. *

EXAMPLE 8 Returning to our friend the helix
x(t) = (acost, asint, bt),

we have already seen that

d_s :m and T(t): _aSinti'f‘aCOStj-l—bk.

T W7o
Thus, formula (8) gives
1 —acosti—asintj a
T Vx| Jatr | @+

We see that the curvature of the helix is constant, just like the circle. In fact, as b
approaches zero, the helix degenerates to a circle, and the resulting curvature is
consistent with that of Example 6.

We can also compute the curvature from the parametrization given by arc-
length. The same helix is also described by

(s) ( cos( a ) sin( i ) bs )
x(s)={a ——— ). a , ,
a?+b? Va2 +b?) Va?+b?

and we have

dx a s a s
T@s)=——=— sin i+ cos i
=3 Va2 +b? («/a2 + bz) Va2 + b2 («/aZ + b2>J
+ b k
Va* +b?

We can, therefore, compute

dT a s . a . N .
— = cos i— sin Js
ds a? + b? Vaz £ b? a’ + b? Jaz + b2
and hence, from formula (8), that
dT a
K = —_— = —= ",
ds a? +b?
which checks. *
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The Moving Frame and Torsion

We now introduce a triple of mutually orthogonal unit vectors that “travel” with a
given path x: I — R?, known as the moving frame of the path. (Note: In general,
the term “frame” means an ordered collection of mutually orthogonal unit vectors
in R".) These vectors should be thought of as a set of special vector “coordinate
axes” that move from point to point along the path.

To begin, assume that (i) x'(z) # 0 and (ii) x'(¢) x x"(¢) # 0 for all 7 in I.
(The first condition assures us that x never has zero speed and the second that x
is not a straight-line path.) Then the first vector of the moving frame is just the
unit tangent vector:

dx X'(1)
ds  IIX®I

(Now you see why condition (i) is needed.) For a second vector orthogonal to T,
recall that part 1 of Proposition 2.3 says that dT/dt must be perpendicular to T.
Hence, we define

dT/dt

= —. 9
ldT/dr]| ©

(That d'T/dt is not zero follows from assumptions (i) and (ii).) The vector N is
called the principal normal vector of x. By the chain rule, N is also given by

dT/d
= # (10)
dT/ds]|
Since k = ||dT/ds| by formula (8), we also see that
dT
— —«N. 11
Pl an

At a given point P along the path, the vectors T and N (and also the vectors
x’ and x”) determine what is called the osculating plane of the path at P. (See
Figure 3.23.) This is the plane that “instantaneously” contains the path at P. (More

X

Osculating plane

Figure 3.23 The osculating plane of the path x at the
point P.
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precisely, it is the plane obtained by taking points P; and P, on the path near P
and finding the limiting position of the plane through P, P, and P, as P, and
P, approach P along x. The word “osculating” derives from the Latin osculare,
meaning “to kiss.”)

Now that we have defined two orthogonal unit vectors T and N, we can
produce a third unit vector perpendicular to both:

B=TxN. (12)

The vector B, called the binormal vector, is defined so that the ordered triple
(T, N, B) is a right-handed system. Thus, B is a unit vector since

IBI = ITI INJlsin > =1-1-1=1.
2

EXAMPLE 9 For the helix x(¢#) = (a cost, a sint, bt), the moving frame vec-
tors are

—asinti+acostj+bk

Ja? + b?

T(t) =

(as we have already seen),

T'(t)  (—acosti—asintj)/~/a*>+b?

N(t) = Tl = a/m = —costi—sintj,
and
i j k
B(1)=TxN=| —gsint/s/a>+b> acost/a>+b> b/Ja®+b?
—cost —sint 0

b b a
= ——=sinr )i— | ——=cost | j+ | —— | k.
(Va2+b2 ) («/a2+b2 )J (Va2+b2) ¢

Equation (11) says that the derivative of T (with respect to arclength) is a
scalar function (namely, the curvature) multiple of the principal normal N. This
is not surprising, since N is defined to be parallel to the derivative of T. A more
remarkable result (see the addendum at the end of'this section) is that the derivative
of the binormal vector is also always parallel to the principal normal; that is,

dB
—— = (scalar function) N.
ds

The standard convention is to write this scalar function with a negative sign, so
we have

22— N (13)

The scalar function t thus defined is called the torsion of the path x. Roughly
speaking, the torsion measures how much the path twists out of the plane, how
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“three-dimensional” x is. Note that, according to our conventions, the curvature
Kk is always nonnegative (why?), while t can be positive, negative, or zero.

EXAMPLE 10 Consider again the case of circular motion. Thus, let x(¢) =
(acost,asint). Then, as shown in Example 6,

X'(1) . dT 1
T 1) = = - t. t .s d = —_— = —
(1) Ol sinfi+costj, and « H P P
Now we calculate
T'(t) .
= — = —costi—sintj,
1T ()|

B=TxN =Xk, aconstant vector.

Hence, dB/ds = 0, so there is no torsion. This makes sense, since a circle does
not twist out of the plane. .

EXAMPLE 11 Let x(¢) = (¢’ cost, ¢’ sint, e'). We calculate T, N, and B and
identify the curvature and torsion of x.
To begin, we have
T() = xX'(t)  e'(cost —sint)i+e'(cost +sint)j+e'k
xol V3e
1
= — ((cost —sint)i+ (cost +sint)j+ k).

/3

From this, we may compute

dT  dT/dt \%(—(sint +cost)i+ (cost —sint)j)
ds — dsjdt Sl

—t
= %(—(sint + cost)i+ (cost — sint)j),

so that the curvature is

. ‘ dT|  V2e!
ds 3
Now we determine the remainder of the moving frame:
T'(r) 1

= m = ﬁ(—(sint + cost)i—+ (cost —sint)j),

1
B=TxN= —6((sint —cost)i— (sint + cost)j+ 2Kk).

7

Finally, to find the torsion, we calculate

dB  dB/dt \/Lg((cos t +sint)i+ (sinz — cost)j)

ds — ds/dr NP
e*l
= ((cost +sint)i—+ (sint — cost)j
3«/5( )i+ ( )
e—t
=——N,
3
o) e’
T = —. ’
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Figure 3.24 Any vector in the
plane perpendicular to T can be
used for N.

EXAMPLE 12 Ifaand b are vectors in R3, then the straight-line path x(¢) =
at + b has, aswe saw in Example 7, T = a/| a||. Thus, bothdT/dt andd'T/ds are
identically zero. Hence, k = 0 (as shown in Example 7) and N cannot be defined
using formula (9). From geometric considerations, any unit vector perpendicular
to T can, in principle, be used for N. (See Figure 3.24.) If we choose one such
vector, then B can be calculated from formula (12). Since T, N, and B are all
constant, 7 must be zero. This is an example of a moving frame that is not
uniquely determined by the path x and serves to illustrate why the assumption
X' x x” # 0 was made. *

It is important to realize that the moving frame, curvature, and torsion are
quantities that are intrinsic to the curve traced by the path. That is, any parame-
trized path that traces the same curve (in the same direction) must necessarily
have the same T, N, B vector functions and the same curvature and torsion. This
is because all of these quantities can be defined entirely in terms of the intrinsic
arclength parameter s. (See Definition 2.2 and formulas (6), (8), (10), (11), (12),
and (13).)

Another important fact is that the curvature function « and the torsion function
7 together determine all the geometric information regarding the shape of the
curve, except for the curve’s particular position in space. To be more precise, we
have the following theorem, whose proof we omit:

THEOREM 2.5 Let s be the arclength parameter and suppose C, and C, are
two curves of class C? in R®. Assume that the corresponding curvature functions
k1 and k, are strictly positive. Then if k1(s) = «2(s) and t;(s) = 1a(s), the two
curves must be congruent (in the sense of high school geometry). In fact, given
any two continuous functions « and 7, where «(s) > 0 for all s in the closed
interval [0, L], there is a unique curve parametrized by arclength on [0, L] (up to
position in space) whose curvature and torsion are x and t, respectively.

Tangential and Normal Components of Velocity and Accel-
eration; Other Curvature Formulas

As we have seen, the moving frame provides us with an intrinsic set of vectors,
like coordinate axes, that are special to the particular curve traced by a path. In
contrast, the velocity and acceleration vectors of a path are definitely not intrinsic
quantities but depend on the particular parametrization chosen as well as on the
shape of the path. (The speed of a path is entirely independent of the geometry
of the curve traced.) We can get some feeling for the relationship between the
intrinsic notion of the moving frame and the extrinsic quantities of velocity and
acceleration by expressing the latter two vector functions in terms of the moving
frame vectors.

Thus, we begin with a C? path x: I — R> having x’ # 0 and x’ x x”" #0.
For notational convenience, let § denote ds/dt and § denote d’s/dt>. From
Definition 2.2, we know that T = v/||v|| and so, since the speed s = ds/dt = ||v||,
we have

V(1) = §T. (14)




Figure 3.25 Decomposition of
acceleration a into tangential and
normal components.
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This formula says that the velocity is always parallel to the unit tangent vector,
something we know well. To obtain a similar result for acceleration, we can
differentiate (14) and apply the product rule:

a(t) = v(t) = %(&T):&TH‘;—T. (15)

Next, we express dT/dt in terms of the T, N, B frame. Formula (11) gives
the derivative of dT/ds in terms of N. The chain rule says that dT/ds =
(dT/dt)/(ds/dt). Thus, from formula (11), we have

— =§— = skN.
dt ds

Hence, we may rewrite equation (15) as

a(t) = 5T + ks*N. (16)

WARNING  § = d?s/dt? is the derivative of the speed, which is a scalar function.
The acceleration a is the derivative of velocity and so is a vector function.

Note that formula (16) shows that the acceleration has no component in the
direction of the binormal vector B. Therefore, both velocity and acceleration are
vectors that lie in the osculating plane of the path. (See Figure 3.25.)

At first glance, it may not appear to be especially easy to use formula (16)
to resolve acceleration into its tangential and normal components because of the
curvature term. However,

lal* = a-a = GT+.N) - GT + wiN) = § + (657,

since T and N are perpendicular vectors. Consequently, we may calculate the
components as follows:

Tangential component of acceleration = dane = §.

Normal component of acceleration = ayom = ks? = ./lal* — afang.

EXAMPLE 13 Letx(r) = (1, 21, t2). Then v(r) = i + 2j + 2rk and a(r) = 2k.
We have s = ||v(1)|| = +/5 + 4¢2. Therefore,

4¢
NAEw T

Atang = §

Since ||a]| = 2, we see that

/ 1612 24/5
Aporm = ”3”2 - atzang =./4—- 5 = f . *
S+4r0 5+ 412

Formulas (14) and (16) enable us to find an alternative equation for the
curvature of the path. We simply calculate that

vxa=(GT)x (T 4+ ks*N) = §5(T x T) + k5 (T x N) = «5°B.
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Recalling that § = ||v||, we have, by taking magnitudes,
Ivxall = «|IvI* Bl = v,

since B is a unit vector. Thus,

_llvxall
s

(17)

This relatively simple formula expresses the curvature (an intrinsic quantity)
in terms of the nonintrinsic quantities of velocity and acceleration.

EXAMPLE 14 For the path x(r) = (213 + 1, t*, 1), we have
v(t) = 6t%i + 4°j + 5tk
and
a(t) = 12ri 4 12£%j 4 20£°k.

You can check that

IVl = £2v/25¢4 + 1612 + 36

and

Iv > al| = [|[464(51% — 15tj + 6K)|| = 4r*v/25¢% + 22512 + 36.
Therefore, formula (17) yields

_llvxall 425t* 4 2251 4 36)/2
TR T 22514 4 1612 4 36)32

which is certainly a more convenient way to determine curvature in this case. ¢

Summary

You have seen many formulas in this section, and, at first, it may seem difficult
to sort out the primary statements from the secondary results. We list the more
fundamental facts here:

For a path x: / — R*:

Nonintrinsic quantities:

Velocity v() = x'(1).

ds
= 1)|l.
T Iv(o)l

Acceleration a(t) = x” (7).

Speed




Figure 3.26 The arclength
function.

Figure 3.27 w(s) =aT +
bN + ¢B.
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Arclength function: (See Figure 3.26.)

s(t) = /t IX'(z)||dTr (basepoint is Py = x(a))

Intrinsic quantities:
The moving frame:

i dx xX'(1)
Unit tangent vector T = — = — .
ds Xl
o dT/ds dT/dt
Principal normal vector N = = 2
ldT/ds||  ldT/dt||
Binormal vector B = T x N.

dT
ds

_ lldTy/d|
ds/dt

Curvature k = ”

dB
Torsion 7 is defined so that Is = —1N.
9§

Additional formulas:
v(t) =sT (s isspeed).
a(t) =5 T + ks’ N (§ is derivative of speed).

v xal|
Ivii?

Addendum: More About Torsion and the
Frenet-Serret Formulas

We now derive formula (13), the basis for the definition of the torsion of a curve.
That is, we show that the derivative of the binormal vector B (with respect to
arclength) is always parallel to the principal normal N (i.e., that dB/ds is a
scalar function times N). The two main ingredients in our derivation are part 1 of
Proposition 2.3 and the product rule.

We begin by noting that, since the ordered triple of vectors (T, N, B) forms a
frame for R, any moving vector, including dB/ds, can be expressed as a linear
combination of these vectors; that is, we must have

C;—]: =a(s)T + b(s)N + c(s)B, (18)
where a, b, and ¢ are appropriate scalar-valued functions. (Because T, N, and
B are mutually perpendicular unit vectors, any (moving) vector w in R® can be
decomposed into its components with respect to T, N, and B in much the same
way that it can be decomposed into i, j, and k components—see Figure 3.27.) To
find the particular values of the component functions a, b, and c, it turns out that
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we can solve for each function by applying appropriate dot products to equation
(18). Specifically,

dB
Is ‘T=a()T-T+b(s)N-T+c(s)B-T
s
=a(s)-1+b(s)-04c(s)-0
=af(s),
and, similarly,
dB

N=bo), B

—_— — S s —_— = .

ds ds s

From Proposition 1.7, dB/ds is perpendicular to B and, hence, ¢ must be zero.
To find a, we use an ingenious trick with the product rule: Because T-B = 0, it
follows that d /ds(T - B) = 0. Now, by the product rule,

i(T-B) = T-d—B + d—T-B.
ds ds ds
Consequently, (dB/ds)+- T = —(dT/ds) - B. Thus,
a(s) = @-T: —d—T-B
ds ds
=—«kN-B by formula (11),
=0,
and equation (18) reduces to
d—B = b(s)N.
ds

No further reductions are possible, and we have proved that the derivative of B is
parallel to N. The torsion t can, therefore, be defined by (s) = —b(s).

Formulas (11) and (13) gave us intrinsic expressions for dT/ds and dB/ds,
respectively. We can complete the set by finding an expression for dN/ds. The
method is the same as the one just used. Begin by writing

‘;_1: = a(s)T + b(s)N + ¢(s)B, (19)

where a, b, and c are suitable scalar functions. Taking the dot product of equation
(19) with, in turn, T, N, and B, yields the following:
dN dN dN
=—.T, b(s) = — - N, - .B.
a(s) ds ) ds c(s) ds

The “product rule trick” used here then reveals that

dN dT
a(s): —T=—-—N.—
ds

ds
= —N-«N by formula (11)
= —K,
and
C(S):d_N.Bz_N.d_B
ds ds

= —N-(—tN) by formula (13)
=T.
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Moreover, we may differentiate the equation N+ N = 1 to find

dN dN
b(s)=—+N=—-N.—,
ds ds
which implies that b(s) is zero. Hence, equation (19) becomes
d—N = —«T + 7B.
ds
The formulas for dT/ds, dN/ds, and dB/ds are usually taken together as
T'(s) = «N
N'(s)= —«T+ B
B'(s) = —tN

219

and are known as the Frenet—Serret formulas for a curve in space. They are so
named for Frédéric-Jean Frenet and Joseph Alfred Serret, who published them
separately in 1852 and 1851, respectively. The Frenet—Serret formulas give a
system of differential equations for a curve and are key to proving a result like
Theorem 2.5. They are often written in matrix form, in which case, they have an

especially appealing appearance, namely,

T 0 « O T
N |=]| —« 0 N
B’ 0 -t 0 B

3.2 Exercises

Calculate the length of each of the paths given in Exercises

for the length of the curve y = f(x) between (a, f(a))

1-6. and (b, f(D)).
1. xt)=Qt+1,7-31),-1<r<2 11. Use Exercise 10 or Definition 2.1 (or both) to calculate
. . the length of the line segment y = mx + b between
_2:i,2 3/2
2. X(O)=r"i+ 32+ 1)), 0= <4 (x0, yo) and (xy, y;). Explain your result with an ap-
3. x(r) = (cos 3t,sin37,213/%),0 <t <2 propriate sketch.
4. x()=Ti+tj+r’k 1 <r<3 12. (a) Calculate the length of the line segment deter-
mined by the path
5. x(t) = (3,312,61), -1 <t <2
t) = (a1t + by, art +b
6. x(t) = (In(cos?), cost,sint), T <t < % X(0) = (@t +bi,axt + ba)
as t varies from 7, to ;.
7. x(t) = (Int, 12/2,V21), 1 <t < 4 . .
B = /2 1<t < (b) Compare your result with that of Exercise 11.
- : 2

8. x(1) = (2t cost, 2rsint, 24/2r%),0 <1 <3 (c) Now calculate the length of the line segment deter-
9. The path x(r) = (a cos’ ¢, a sin® t), where a is a posi- mined by the path x(r) = ar + b as ¢ varies from

tive constant, traces a curve known as an astroid or a Iy to 1.

hypocycloid of four cusps. Sketch this curve and find 13. This problem concerns the path x = |r — 1]i+ || ],

its total length. (Be careful when you do this.) 2<t<2.

10. If f is a continuously differentiable function, show (a) Sketch this path.
how Definition 2.1 may be used to establish the (b) The path fails to be of class C! but is piecewise
formula C'. Explain.
b (c) Calculate the length of the path.
- / 2
L= /a L+ (f/(x)) dx 14. Consider the path x(¢) = (¢’ cost, e sint).
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(a) Argue that the path spirals toward the origin as
t — +00.

(b) Show that, for any a, the improper integral

/ X0l dr

(c) Interpret what the result in part (b) says about the
path x.

converges.

15. Suppose that a curve is given in polar coordinates by
an equation of the form r = f(0), where f is of class
C'. Use Definition 2.1 to derive the formula

B
L= / JT@F + f@rdo

for the length of the curve between the points ( f(«), o)
and (f(B), B) (given in polar coordinates).

16. (a) Find the arclength parameter s = s(t) for the path

x(1) = e” cosbri+ ¢ sinbr j + ¢ k.

(b) Express the original parameter ¢ in terms of s and,
thereby, reparametrize x in terms of s.

Determine the moving frame {T, N, B}, and compute the cur-
vature and torsion for the paths given in Exercises 17-20.

17. x(t) = Scos3ti+ 61 j+ 5sin3tk

18. x(t) = (sint — tcost)i—+ (cost + tsint)j + 2Kk,
t>0

19. x(t) = (t, 3t + 12, 21— 1)), -1 <t < 1
20. x(t) = (e* sint, e* cost, 1)

21. (a) Use formula (17) in this section to establish the
following well-known formula for the curvature
of'a plane curve y = f(x):

BN FALC)!
[+ (S CPTe

(Assume that f is of class C2.)

(b) Use your result in (a) to find the curvature of

y = In(sin x).

22. (a) Let x(s) = (x(s), y(s)) be a plane curve para-

metrized by arclength. Show that the curvature is

given by the formula

4 |

K = |x/y// —x y

path x and, separately, plot the curvature k as a function of 't
over the indicated interval for t and value(s) of the constants.

€ 23. x(t)=(acost,bsinr), 0<1<27; a=2b=1

€ 24. x(t) = (2a(1 + cos ) cost, 2a(l + cost)sint), 0 <
t<2m; a=1

0 25. x(t) = (2acost(1 + cost) — a, 2a sint(1 + cost)),
0<t<2m; a=1

€ 26. x(t) = (asinnt, bsinmr), 0<1<2w; a=3,

b=2n=4m=3

Find the tangential and normal components of acceleration for
the paths given in Exercises 27—32.

27. x(1) = t?i+t]

28. x(1) = (2t, €¥)

29. x(t) = (e' cos2t, ' sin2t)

30. x(r) = (4cos5t, Ssin4t, 3r)

31. x(1) = (¢, 1, %)

32. x(t) = 2(1 —cost)i+sintj+ 2 cost k

33. (a) Show that the tangential and normal compo-
nents of acceleration @iy and danorm satisfy the
equations

! "

X -x [x < x"]

x|
(b) Use these formulas to find the tangential and

normal components of acceleration for the path
x(1) =t +2)i+12j+3tk.

Qtang = s Anorm =

¥

34. Use Exercise 33 to show that, for the plane curve
y=fx),
0 f"(x)
dtang = —F———>>
VI ()

el
V1I+(f' ()

35. Establish the following formula for the torsion:

norm —

_(vxa)-a
o llvxal?’
36. Show thatkt = —T’ - B/, where differentiation is with
respect to the arclength parameter s.

37. Show that if x is a path parametrized by arclength and
x' X x” # 0, then

(b) Show thatx(s) = (3(1 = 52), J(cos s = s3/T=57)) r= (X x) o x",

is parametrized by arclength, and compute its

curvature.

In Exercises 23-26, (a) use a computer algebra system to cal-

culate the curvature k of the indicated path x and (b) plot the

38. Supposex: / — R?isapath withx'(¢) x x”(¢) # 0 for
all r € I. The osculating plane to the path at 1 = ¢, is
the plane containing x(7y) and determined by (i.e., par-
allel to) the tangent and normal vectors T(#) and N().



39.

40.

41.

42.

The rectifying plane at 1 = t; is the plane contain-

ing x(#y) and determined by the tangent and binormal

vectors T(zp) and B(z)). Finally, the normal plane at

t =ty is the plane containing x(#y) and determined by

the normal and binormal vectors N(#;) and B(#y). Note

that both the osculating and rectifying planes may be
considered to be tangent planes to the path at 7, since

they are both parallel to T(#).

(a) Show that B(#) is perpendicular to the osculating
plane at 7y, that N(7y) is perpendicular to the rec-
tifying plane at 7y, and that T(#) is perpendicular
to the normal plane at 7.

(b) Calculate the equations for the osculating, rec-
tifying, and normal planes to the helix x(r) =
(acost,asint, bt) at any ;. (Hint: To speed your
calculations, use the results of Example 9.)

Recall that the equation for a sphere of radius a > 0
and center Xy may be written as ||x — Xq|| = a. (See
Example 15 of §2.1.) Explain why the image of a path
x with the property that

(X(1) = Xo) * (x(1) = X0) = a’
for all # must lie on a sphere of radius a.
Let x be a path with x’ X x” # 0 and suppose that there
is a point X, that lies on every normal plane to x. Show

that the image of x lies on a sphere. (See Exercise 38
concerning normal planes to paths.)

Use the result of Exercise 40 to show that x(¢) =
(cos2t, —sin2t,2 cost) lies on a sphere by showing
that (1, 0, 0) lies on every normal plane to x.

Use the result of Exercise 27 of §1.4 to show that
NxB=T and BxT=N.
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As a result, we can arrange T, N, and B in a circle so
that they correspond, respectively, to the vectors i, j,
k appearing in Figure 1.54 and so that we may use a
mnemonic for identifying cross products that is similar
to the one described in Example 1 of §1.4.

Let x be a path of class C3, parametrized by arclength s,
withx' X X" # 0. We define the Darboux rotation vector (also
called the angular velocity vector) by

w=1T+ «B.

Note that w(sy) is parallel to the rectifying plane to x(so). The
direction of the Darboux vector w gives the axis of the “screw-
like” motion of the path x and its length gives the angular
velocity of the motion. Exercises 43—45 concern the Darboux
vector.

43. Show that ||w| = +/«2 + 2. (Hint: The vectors T, N,
and B are pairwise orthogonal.)

44. (a) Use the Frenet—Serret formulas to establish the
Darboux formulas:

T =wxT
N =wxN
B’ = w x B.

(b) Use the Darboux formulas to establish the Frenet—
Serret formulas. Hence the two sets of equations
are equivalent. (Hint: Use Exercise 42.)

45. Show that x is a helix if and only if w is a constant
vector. (Hint: Consider w’ and use Theorem 2.5.)

3.3 Vector Fields: An Introduction

We begin with a simple definition.

DEFINITION 3.1 A vector field on R" is a mapping
y F: X C R" - R".
/F(x) . . . 2 3
X4 We are concerned primarily with vector fields on R~ or R”. In such cases, we

adopt the point of view that a vector field assigns to each point x in X a vector

p

Figure 3.28 The constant vector
field F(x) =i+j.

F(x) in R", represented by an arrow whose tail is at the point x. This perspective
/ / allows us to visualize vector fields in a reasonable way.
L4 X

EXAMPLE 1 Suppose F: R*> — R? is defined by F(x) = a, where a is a con-
stant vector. Then F assigns a to each point of R?, and so we can picture F by
drawing the same vector (parallel translated, of course) emanating from each point
in the plane, as suggested by Figure 3.28. .
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(x,y) | Glx,y)
(0,0) 0
(1,0) =
0, 1) i
(1, 1) i—j
y
A /”'\—\\>
/
y B \
i ’ N
T/ \ | X
\ \
\ 4\\__// /‘
\ /
7/
\\\ s v

Figure 3.29 The vector field
G(x, y) = yi — xj of Example 2.

s

Figure 3.30 An inverse square
vector field.
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EXAMPLE 2 Let’sdepict G: R> — R? G(x, y) = yi — xj. We can begin to do
this by calculating some specific values of G, as in the adjacent table. However,
it is difficult to get much of a feeling for G as a whole in this way. To understand
G somewhat better, we need to “play around” a bit. Note that

IGCx, I = llyi = xjll = v y* + x> = [Irl,

where r = xi + yj, the position vector of the point (x, y). From this observation,
it follows that G has constant length a on the circle x> 4+ y? = a?. In addition,
we have

r-G(x,y) = (xi+ yj)-(yi—xj)=0.

Hence, G(x, y) is always perpendicular to the position vector of the point (x, y).
These facts, together with a table like the preceding one, make it possible to see
that G looks like Figure 3.29. .

REMARK Sometimes a scalar-valued function f: X € R" — Riscalled a scalar
field. One thinks of a vector field on R” as attaching vector information (such
as wind velocity) to each point and a scalar field as attaching real number infor-
mation (such as temperature or pressure). We’ll use the term “scalar field” only
occasionally, but we don’t want to shock you when we do.

EXAMPLE 3 Letr = xi+ yj + zk. The so-called inverse square vector field
in R? is a function F: R? — {0} — R? given by

C
F(xs y,Z)= Wrs

where c is any (nonzero) constant. If the term “inverse square” seems inappropriate
to you, we’ll try to convince you otherwise. Set u = r/||r| so thatr = |r|ju. Then

F is given by
e == () (7) =
ny,2)=—r=—||—)=—u
lIr|? el il |2

Therefore, F is a vector field whose direction at the point P(x, y, z) # (0, 0, 0)
is parallel to the vector from the origin to P and whose magnitude is inversely
proportional to the square of the distance from the origin to P. Note that F points
away from the origin if ¢ is positive and toward the origin if ¢ is negative.

We have seen an example of an inverse square field in §3.1—namely, the
Newtonian gravitational field between two bodies. If one of the bodies is at the
origin and the other at (x, y, z), then we have

(1)

GMm
——u
[

In this case, the proportionality constant ¢ is —G Mm, which is negative. This
means that the gravitational force is attractive (i.e., it points in the direction
that reduces the distance between the two bodies). Such a vector field is shown in
Figure 3.30. An example of a repelling inverse square field is the electrostatic force
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between two particles with like static charges (both positive or both negative).
This force is expressed by Coulomb’s law,

k
F = 41q22
[lrll

’

where r is the vector from particle 1 (at the origin) to particle 2, u = r/|r|,
q1 and g, are the respective charges (positive or negative) on the particles, and
k is a constant appropriate for the units being used. In mks units, distance is
measured in meters, charge in coulombs, force in newtons, so that k is equal to
8.9875 x 10° Nm?/C?. .

Gradient Fields and Potentials

Inverse square fields are interesting not only for their origin in basic physical
situations, but also because they are examples of gradient fields. A gradient field
on R” is a vector field F: X € R" — R” such that F is the gradient of some
(differentiable) scalar-valued function f: X — R. That is,

F(x) = Vf(Xx)

atall xin X. The function f is called a (scalar) potential function for the vector
field F. To see what this means in the case of the inverse square field (1), we write
out the components of F explicitly:

c c xi+ yj+zk
F=—bu=\5"5.5 ’
[l XY )\ Va2 2
since r = xi + yj 4+ zkand u = r/||r|. That is,

cx - cy - cz K
1 .
s CE R PO PR PN NP TR

F(x,y,z) =

We leave it to you to check that F(x, y, z) = V f(x, y, z), where f: R® — {0} > R
is given by

C C
fO )= e = =
N T

REMARK In physics and engineering, a negative sign is often introduced in the
definition of a potential function (i.e., so that a potential function g for a vector
field F is one such that F = —Vg). The motivation behind such a convention is
that in physical applications, it is desirable to have the potential function rep-
resent potential energy in some sense. For example, in the case of the gravita-
tional field F = —(GMm/||r||*)u, a physicist would take the potential function to
be —GMm/|r|, not +GMm/|r| as we do. The advantage to the physicist in
doing so is that the physicist’s potential function increases with increasing ||r||.
This corresponds to the notion that the greater the distance between two bodies,
the greater should be the stored gravitational potential energy.

From Theorem 6.4 of Chapter 2 we know that the gradient of any C! scalar-
valued function f: X € R" — R is perpendicular to the level sets of f. Thus, if
F is a gradient vector field on R”, F(x) must be perpendicular to the level set of a
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Figure 3.31 A gradient vector field F = V f. Equipotential
lines are shown where f is constant.

potential function of F containing the point x. If f is such a potential function, the
level set {x | f(x) = c}is called an equipotential set (or equipotential surface if
n = 3, or equipotential line if n = 2) of the vector field F. (See Figure 3.31.)

You’ve seen examples of equipotential lines every time you’ve looked at a
weather map. Usually curves of constant barometric pressure (called isobars) or
of constant temperature (isotherms) are drawn. (See Figure 3.32.) Perpendicular
to such equipotential lines are associated gradient vector fields that point in the
direction of most rapid increase of pressure or temperature.

Flow Lines of Vector Fields

When you draw a sketch of a vector field on R? or R?, it is easy to imagine
that the arrows represent the velocity of some fluid moving through space as in
Figure 3.33. It’s natural to let the arrows blend into complete curves. What you're
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Figure 3.32 A weather map. (Weather graphics courtesy of Accuweather, Inc. 385
Science Park Road, State College, PA 16803. (814) 237-0309. (©) 2011. Used with
permission.)

Figure 3.33 A fluid moving
through space.
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Figure 3.34 A flow line.

Figure 3.35 The vector field
F(x,y,z) =2i—3j+ kof
Example 4.
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Figure 3.36 Flow lines of
F(x, y) = —yi+ xj of Example 5.
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doing analytically is drawing paths whose velocity vectors coincide with those of
the vector field.

DEFINITION 3.2 A flow line of a vector field F: X € R"” — R” is a differ-
entiable path x: / — R” such that

X(t) = F(x(1)).

That is, the velocity vector of x at time ¢ is given by the value of the vector
field F at the point on x at time ¢. (See Figure 3.34.)

EXAMPLE 4 We calculate the flow lines of the constant vector field
F(x,y,2)=2i—3j+ k.

A picture of this vector field (see Figure 3.35) makes it easy to believe that
the flow lines are straight-line paths. Indeed, if x(#) = (x(¢), y(¢), z(¢)) is a flow
line, then, by Definition 3.2, we must have

X(1) = (x'(1), y'(1), 2/ (1) = (2, =3, 1) = Fx(1)).

Equating components, we see

xX'(t)=2
y(0) = =3
7)) =1
These differential equations are readily solved by direct integration; we obtain
x(t) =2t + xo
y(t) = =31+ yo,
z2(t)y=1t+z0

where xg, yo, and z are arbitrary constants. Hence, as expected, we obtain para-
metric equations for a straight-line path through an arbitrary point (xq, o, zo)
with velocity vector (2, —3, 1). *

EXAMPLE 5 Your intuition should lead you to suspect that a flow line of the

vector field F(x, y) = —yi+ xj should be circular as shown in Figure 3.36. Indeed,

if x: [0, 2r) — R? is given by x(7) = (a cos ¢, a sint), where a is constant, then
X'(f) = —asinti+ acostj = F(acost,asint),

so such paths are indeed flow lines.

Finding all possible flow lines of F(x, y) = —yi+ xj is a more involved task.
If x(¢) = (x(¢), y(t)) is a flow line, then, by Definition 3.2, we must have

X(1) = x'Oi+y' (0 = —y®)i+x(1)j = F(x(1)).
Equating components,
{x/(r) = —3(1)
Y(t)=x@)

This is an example of a first-order system of differential equations. It turns out
that a// solutions to this system are of the form

X(t) = (acost — bsint,asint + bcost),
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where a and b are arbitrary constants. It’s not difficult to see that such paths trace
circles when at least one of a or b is nonzero. *

In general, if F is a vector field on R”, finding the flow lines of F is equivalent
to solving the first-order system of differential equations

x1(t) = Fi(xi(0), x2(2), - . ., X4(2))
Xé(l) = FZ(xl(t)’ X2(t), s xn(t))

X, (1) = Fp(x1(1), x2(1), - . ., (1))

for the functions x;(t), . .., x,(¢) that are the components of the flow line x. (The
function F; is just the ith component function of the vector field F.) Such a
problem takes us squarely into the realm of the theory of differential equations, a
fascinating subject, but not of primary concern at the moment.

3.3 Exercises

In Exercises 1-6, sketch the given vector fields on R?.

1. F = yi —xj
2. F=xi—yj
3. F=(—x,y)
4, F =(x,x?)
5. F = (x%,x)
6. F=(y")

In Exercises 7—12, sketch the given vector field on R>.
7. F=3i+2j+k
8. F=(y,—x,0)
9. F=(0,z,—y)
10. F = (y, —x,2)
1. F=(y,—x,2)

12. F = Y i— a i
Var+yr 42 a2 yr 422
Z

+ =Kk
Va4 yr 422
In Exercises 13—16, use a computer to plot the given vector
fields over the indicated ranges.

@1B.F=(x-yx+y; —l<x=l -1<y=l

0 14. F = (y’x, x%y);

0 15. F = (xsiny, y cosx);
27 <y <2m

€ 16. F = (cos (x — y). sin (x + y));
27 <y <2mw

—2<x<2, -2

=2 <x <2m,

In Exercises 17—19, verify that the path given is a flow line of
the indicated vector field. Justify the result geometrically with
an appropriate sketch.

17. x(t) = (sint, cost,0), F = (y, —x, 0)
18. x(t) = (sint, cost,2t), F = (y, —x,2)
19. x(¢) = (sint, cost, e?), F = (y, —x, 22)

In Exercises 20-22, calculate the flow line x(t) of the given
vector field F that passes through the indicated point at the
specified value of't.

20. F(x,y)=—xi+yj; x(0)=(2,1)
21. Fx,y) = (% y); x(D)=(1,e)
22. F(x,y,z)=2i-3yj+7’k; x(0)=(3,5,7)

23. Consider the vector field F =3i —2j + k.
(a) Show that F is a gradient field.

(b) Describe the equipotential surfaces of F in words
and with sketches.

24. Consider the vector field F = 2xi+2yj — 3k.
(a) Show that F is a gradient field.

(b) Describe the equipotential surfaces of F in words
and with sketches.

25. If x is a flow line of a gradient vector field F = V f,
show that the function G(¢) = f(x(¢)) is an increasing
function of ¢. (Hint: Show that G'(¢) is always non-
negative.) Thus, we see that a particle traveling along
a flow line of the gradient field F = V f will move
from lower to higher values of the potential function
f. That’s why physicists define a potential function of
a gradient vector field F to be a function g such that
F = —Vyg (i.e., so that particles traveling along flow
lines move from higher to lower values of g).
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LetF: X € R" — R" bea continuous vector field. Let (a, b) be
anintervalin R that contains 0. (Think of (a, b) as a “time inter-
val.”) A flow of F is a differentiable function ¢: X x (a, b) —
R” of n + 1 variables such that

d
ad’(x’ t) = F(¢(X7 [)), ¢(X7 0) = X.

Intuitively, we think of ¢(X, t) as the point at time t on the flow
line of F that passes through x at time 0. (See Figure 3.37.)
Thus, the flow of F is, in a sense, the collection of all flow lines
of F. Exercises 26—31 concern flows of vector fields.

Figure 3.37 The flow of the vector field F.

26. Verify that
¢:R*> xR - R?,

x+y , x—-y _,
YY) = —5— — €
$(x.y.1) (2e+2e

X — X
;ya+y2 fj

is a flow of the vector field F(x, y) = (y, x).

27. Verify that
¢:R®> xR — R?,
¢(x,y,t) = (ysint + x cost, ycost — x sint)
is a flow of the vector field F(x, y) = (y, —x).
28. Verify that

29.

30.

31.

¢:R* xR — R,
¢(x,y,z,t) = (xcos2t — ysin2t, y cos 2t
+xsin2t,ze™ ")

is a flow of the vector field F(x, y,z) = —2yi+
2xj—zk

Show that if ¢: X x (a, b) — R" is a flow of F, then,
for a fixed point x¢ in X, the map x: (a, b) — R” given
by x(7) = ¢(xo, 1) is a flow line of F.

If ¢ is a flow of the vector field F, explain why
d(d(x, 1), s) = p(x, s +t). (Hint: Relate the value of
the flow ¢ at (x, ) to the flow line of F through x. You
may assume the fact that the flow line of a continuous
vector field at a given point and time is determined
uniquely.)

Derive the equation of first variation for a flow of a
vector field. That is, if F is a vector field of class C!
with flow ¢ of class C2, show that

a
EDx(ﬁ(x’ t) = DF(¢(X5 t))Dx¢(X, t)'

Here the expression “Dy¢(X, ¢)” means to differentiate
¢ with respect to the variables xj, xs, ..., Xx,, that is,
by holding ¢ fixed.

3.4 Gradient, Divergence, Curl, and the Del

Operator

In this section, we consider certain types of differentiation operations on vector
and scalar fields. These operations are as follows:
1. The gradient, which turns a scalar field into a vector field.
2. The divergence, which turns a vector field into a scalar field.
3. The curl, which turns a vector field into another vector field. (Note: The curl
will be defined only for vector fields on R3.)

We begin by defining these operations from a purely computational point of view.
Gradually, we shall come to understand their geometric significance.

The Del Operator

The del operator, denoted V, is an odd creature. It leads a double life as both
differential operator and vector. In Cartesian coordinates on R?, del is defined by
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the curious expression

\Y 2 +'a +ka (1)
= 1— _— e
ox ‘Iay 0z

The “empty” partial derivatives are the components of a vector that awaits suitable
scalar and vector fields on which to act. Del operates on (i.e., transforms) fields
via “multiplication” of vectors, interpreted by using partial differentiation.

For example, if f: X € R® — R is a differentiable function (scalar field),
the gradient of f may be considered to be the result of multiplying the vector V
by the scalar f, except that when we “multiply” each component of V by f, we
actually compute the appropriate partial derivative:

L0 .0 0 af ., odf.  of
V [ = a. a.. k_ ’ ’ = - _k
Fx.3:2) (lax +J8y+ az) fley.2) 8xl+8y‘l+ 0z
The del operator can also be defined in R”, for arbitrary n. If we take
X1, X2, . .., X, to be coordinates for R”, then del is simply
0 0 0 0 0 0
V = Ty L sy ey == ~ - e n ’ 2
<8x1 x> 8xn) é 0x1 te 0x7 + te 0x;, @)
wheree; = (0,...,1,...,0),i = 1,...,n, is the standard basis vector for R".

The Divergence of a Vector Field

Whereas taking the gradient of a scalar field yields a vector field, the process of
taking the divergence does just the opposite: It turns a vector field into a scalar
field.

DEFINITION 4.1 Let F: X C R" — R" be a differentiable vector field.
Then the divergence of F, denoted div F or V - F (the latter read “del dot
F”), is the scalar field

oF oF oF,
divF=V.F= L4+ 2 4...4 1
dx;  9x X,
where xi, ..., x, are Cartesian coordinates for R” and Fi, ..., F, are the

component functions of F.

It is essential that Cartesian coordinates be used in the formula of Definition 4.1.
(Later in this section we shall see what div F looks like in cylindrical and spherical
coordinates for R3.)

EXAMPLE 1 IfF = x?yi + xzj + xyzK, then

. ol a 0
divF = —(x?y) + —(x2) + —(xyz) = 2xy 4+ 0 + xy = 3xy. .
ax ay 0z
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Figure 3.38 The vector field
F = xi + yj of Example 2.
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Figure 3.39 The vector field
G = —xi — yj of Example 2.

3.4 | Gradient, Divergence, Curl, and the Del Operator 229

The notation for the divergence involving the dot product and the del operator
is especially apt: If we write

F=Fiei+ F,eo +---+ Fuey,

then,
0 0 0
V-F=|eg—+e;— +---+¢, < (Fiej 4+ Frep + - - -+ Fuey)
0xq 0x7 0x,
_OF n 0F, P oF,
T ox; 0x x,

where, once again, we interpret “multiplying” a function by a partial differential
operator as performing that partial differentiation on the given function.

Intuitively, the value of the divergence of a vector field at a particular point
gives a measure of the “net mass flow” or “flux density” of the vector field in
or out of that point. To understand what such a statement means, imagine that
the vector field F represents velocity of a fluid. If V - F is zero at a point, then
the rate at which fluid is flowing into that point is equal to the rate at which
fluid is flowing out. Positive divergence at a point signifies more fluid flowing out
than in, while negative divergence signifies just the opposite. We will make these
assertions more precise, even prove them, when we have some integral vector
calculus at our disposal. For now, however, we remark that a vector field F such
that V - F = 0 everywhere is called incompressible or solenoidal.

EXAMPLE 2 The vector field F = xi + yj has
a d
VeF=—0)+—()=2
ax ay

This vector field is shown in Figure 3.38. At any point in R?, the arrow whose
tail is at that point is longer than the arrow whose head is there. Hence, there is
greater flow away from each point than into it; that is, F is “diverging” at every
point. (Thus, we see the origin of the term “divergence.”)

The vector field G = —xi — yj points in the direction opposite to the vector
field F of Figure 3.38 (see Figure 3.39), and it should be clear how G’s divergence
of —2 is reflected in the diagram. *

EXAMPLE 3 The constant vector field F(x, y, z) = a shown in Figure 3.40
is incompressible. Intuitively, we can see that each point of R* has an arrow
representing a with its tail at that point and another arrow, also representing a,
with its head there.

The vector field G = yi — xj has

a ad
V.- G=—)+ —(—x)=0.
ax ay

A sketch of G reveals that it looks like the velocity field of a rotating fluid, without
either a source or a sink. (See Figure 3.41.) *

The Curl of a Vector Field

If the gradient is the result of performing “scalar multiplication” with the del
operator and a scalar field, and the divergence is the result of performing the
“dot product” of del with a vector field, then there seems to be only one simple
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Figure 3.40 The constant vector Figure 3.41 The vector field
field F = a. G = yi — xj resembles the

velocity field of a rotating fluid.

differential operation left to be built from del. We call it the curl of a vector field
and define it as follows:

DEFINITION 4.2 Let F: X € R® — R be a differentiable vector field on
R’ only. The curl of F, denoted curl F or V x F (the latter read “del cross
F”), is the vector field

L0 .9 d . .
curlF=VxF=[i—+j—+k— ) x (Fii+ Fj + F53k)

0x ay 9z

i i k
=|d/dx 9/dy 09/0z

F F, F3

oF; OF oF, OF oF, OF
= (= 2 ) (2L I8 j+ el N B Y
ay 0z 0z ax ax ay

There is no good reason to remember the formula for the components of the
curl—instead, simply compute the cross product explicitly.

EXAMPLE 4 IfF = x?yi — 2xzj + (x + y — 2)k, then

i j k
VxF=|9/dx a/dy 0/0z
xzy — 2xz X+y—z

9 3 9 3
= (5(36 +y—2)— 8—Z(—2xz)> i+ <8—Z(x2y) - a—x(x +y- Z))j

9 )
+ (a(—sz) — 5(xzy)> Kk

=(1+2x)i—j— x>+ 22k .
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Figure 3.42 A twig in a pond where water moves with velocity given by a vector field F. In the left figure, the twig does
not rotate as it travels, so curl F = 0. In the right figure, curl F # 0, since the twig rotates.

One would think that, with a name like “curl,” V x F should measure how
much a vector field curls. Indeed, the curl does measure, in a sense, the twisting
or circulation of a vector field, but in a subtle way: Imagine that F represents the
velocity of a stream or lake. Drop a small twig in the lake and watch it travel.
The twig may perhaps be pushed by the current so that it travels in a large circle,
but the curl will not detect this. What curl F measures is how quickly and in what
orientation the twig itself rotates as it moves. (See Figure 3.42.) We prove this
assertion much later, when we know something about line and surface integrals.
For now, we simply point out some terminology: A vector field F is said to be
irrotational if V x F = 0 everywhere.

EXAMPLE 5 LetF = (3x%z + y?)i+2xyj + (x> — 2z) k. Then
i j k

VxF= d/0x a/dy d/0z

3x%z 4+ y? 2xy  x’ =2z

9 9 ) 9
= (5@3 —2z) — a—z<2xy)> i+ (8—Z(3x2z +y7) - a(’” — 2z))j
+ (i(zxy) — i(3x2 7+ y2)> k
ax dy
=(0—0)i+(3x*> —3xH)j+ 2y —2y)k=0.

Thus, F is irrotational. *

Two Vector-analytic Results

It turns out that the vector field F in Example 5 is also a gradient field. Indeed,
F = Vf, where f(x,y,z)=xz4+xy> —z>. (We’ll leave it to you to verify
this.) In fact, this is not mere coincidence but an illustration of a basic result
about scalar-valued functions and the del operator:

THEOREM 4.3 Let f: X € R?® — R be of class C?. Then curl (grad f) = 0.
That is, gradient fields are irrotational.
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PROOF Using the del operator, we rewrite the conclusion as
Vx(Vf)=0,

which might lead you to think that the proof involves nothing more than noting
that V f is a “scalar” times V, hence, “parallel” to V, so that the cross product must
be the zero vector. However, V is not an ordinary vector, and the multiplications
involved are not the usual ones. A real proof is needed.

Such a proofis not hard to produce: We need only start calculating V x (V f).
We have

of . of . of
Vf= 8xl+ 8yJ+ 3z k.

Therefore,

i i k
Vx(Vf)y=| 9/ox a/ady d/0z
of/ox  af/dy  df/0z

(AT PfPf, ’fof
= - i+ - i+ — k
dydz  dzdy dzox  0x0z dxdy  dyodx
Since f is of class C2, we know that the mixed second partials don’t depend

on the order of differentiation. Hence, each component of V x (V f) is zero, as
desired. |

There is another result concerning vector fields and the del operator that is
similar to Theorem 4.3:

THEOREM 4.4 Let F: X C R® - R? be a vector field of class C2. Then
div (curl F) = 0. That is, curl F is an incompressible vector field.

The proof is left to you.

EXAMPLE 6 IfF = (xz —e* cosz)i— yzj+ e*(siny + 2sinz)k, then
d

V.F=— (xz —¢*

e

=z —2e*cosz—z+2e* cosz =0

0 a . .
*cosz) + 5(—yz) + o (e*(sin y + 2sin <))

for all (x, y, z) € R3. Hence, F is incompressible. We’ll leave it to you to check
that F = V x G, where G(x, y, 7) = ¢** cos yi + > sin zj + xyzk, so that, in
view of Theorem 4.4 the incompressibility of F is not really a surprise. *

Other Coordinate Formulations (optional)

We have introduced the gradient, divergence, and curl by formulas in Cartesian
coordinates and have, at least briefly, discussed their geometric significance. Since
certain situations may necessitate the use of cylindrical or spherical coordinates,
we next list the formulas for the gradient, divergence, and curl in these coordinate
systems. Before we do, however, a remark about notation is in order. Recall that
in cylindrical coordinates, there are three unit vectors e, eg, and e, that point in
the directions of increasing r, 6, and z coordinates, respectively. Thus, a vector



3.4 | Gradient, Divergence, Curl, and the Del Operator 233

field F on R® may be written as
F = Fye, 4+ Fyeg + F.e..

In general, the component functions F,, Fy, and F, are each functions of the
three coordinates r, 8, and z; the subscripts serve only to indicate to which of
the vectors e,, ey, and e, that particular component function should be attached.
Similar comments apply to spherical coordinates, of course: There are three unit
vectors e,, €,, and eg, and any vector field F can be written as

F = Fpep + Fwew + Fyey.

THEOREM 4.5 Let f: X CR®> - R and F:Y € R®> — R? be differentiable
scalar and vector fields, respectively. Then

af 1af af
V= —"e 3
f=are g%t 3 3)
1T oF,
divF = - (rF)+—9+ (F)} “4)
r
1 e, reg e,
curl F = - a/or  9/06  9/0z |. 5)
F, rFy F,

PROOF We’ll prove formula (4) only, since the argument should be sufficiently
clear so that it can be modified to give proofs of formulas (3) and (5). The idea is
simply to rewrite all rectangular symbols in terms of cylindrical ones.
From the equations in (8) of §1.7, we have
e, =cosfi+sinfj
e) = —sinfi+coshj. (6)
e, =Kk
From the chain rule, we have the following relations between rectangular and
cylindrical differential operators:

d d d

— =cosf— +sinf—

ar ax ay

d .0 0

{ — = —rsinf— +rcosf—.

a0 ax ay

a9

dz 9z

These relations can be solved algebraically for d/dx, d/dy, and 9/09z to yield
0 o sinf 9
— =cosf— — —
ax ar r 06
d a 0 9
=sinf— + €879 (7)

8y ar r 060
a

0z 9z
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Hence, we can use (6) and (7) to rewrite the expression for the divergence of a
vector field on R:

ad d d
V. F=|—i+—j+ —k|-(F.e + Fyey + Fe;)
ox dy 0z

i Coea sinf 0 n 98+cos08 +k8
= s0— — ——— sinf — — —
o~ a9) ) ar 5 90 3z

- [(Fycos8 — FysinB)i—+ (F,sinf + Fycos6)j+ F,K].

(We used the equations in (7) to rewrite the partial operators d/dx, d/dy, and
d/9z appearing in del and the equations in (6) to replace the cylindrical basis
vectors e,, eg, and e, by expressions involving i, j, and k.) Performing the dot
product and using the product rule yields

0 sinf 0
V-F=|cos— — (F, cos6 — Fysin6)
or r 00

. 4 cosO o ) a
+ s1n98—r+ ) (F,51n9+Fgcos9)—|—8—FZ
cos 6 ( s0) — o 52 (cost)
= cos - — r—
r e T e
oF, sinf [ . 0F J .
—cosf sm@——l—Fg—(smG) +— 1n0¥+F9£(sm0)

dF, J . O (. OF, J .
+sinf < oy + Frg(smG)) + CO: (sm@ 29 + Frﬁ(sm@)

JdF, d 0
+5siné (cosf—2 + Fy—(cos0)|+ o8 9— + Fg—(cose)
ar ar r a0

OF.
0z

After some additional algebra, we find that

F, (sin2 0 + cos? 0)
+ | — |
p

sin@ 4+ cos?0\ 9F, OF,
T A

r 20 0z

8Fr+1 +18F9+8F
ar r 20 0z

8F dF IFy
8 90
—_———

W(VFr)

d
8_Z(VFZ) s

as desired. [ |

In spherical coordinates, the story for the gradient, divergence, and curl is
more complicated algebraically, although the ideas behind the proof are essentially
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the same. We state the relevant results and leave to you the rather tedious task of
verifying them.

THEOREM 4.6 Let f: X CR?> — R and F:Y C R® — R? be differentiable
scalar and vector fields, respectively. Then the following formulas hold:

_af 19f N 1 of

Vfi=_—"—e+—"ce — ——€g; 8
f ap " pap ¥ psm<p896 ®)
1 d ad 1 dFy
V-F=——(p*F,) + —— —(sing F,) + ——— —=; 9
02 8,0('0 ’) o sing 8(,0( 2 o sing 96 ©)
€ pe,  psingey
1
VxF=———109/0 a/a a/00 . 10
P sing /op  3/d¢ / (10)
F, pF,  psingFy
3.4 Exercises
Calculate the divergence of the vector fields given in Exer- y
cises 1-6.
NANAN VTt
LSS 2 Py SIS
NN N N A L ‘s s s
. F=x+y)i+(O+2j+x+2k NN NN R
4. F = zcos(e”)i+xvz22 + 1j+ e¥ sin3xk s - S
5. F = x7e; + 2x3e; + - - - + nx’e, R B
6. F=xe; +2xie + -+ nxje, A N,
Find the curl of the vector fields given in Exercises 7—11. ;; ; : ; : i i 1 ; : : t:
2. . A2 N R B R T B SR N NN
7. F=x"i—xe’j+2xyzk

8.
9.
10.
11.
12.

13.

F=xi+yj+zk
F=x+y)i+ O +x2j+E+xyk

F = yzzi—{— e +x2yk

(a) Consider again the vector field in Exercise 8 and

(b) Use geometry to determine V X F, where F =
(xi+yj + zk)
Vai 2

(c) For F asin part (b), verify your intuition by explic- =
itly computing V x F.

Can you tell in what portions of R?, the vector fields o7

shown in Figures 3.43-3.46 have positive divergence?
Negative divergence?

Figure 3.43 Vector field for Exercise 13(a).

F = (cosyz —x)i+ (cosxz — y)j + (cosxy — 2)k

y
. . N N N T A v are
its curl. Sketch the vector field and use your pic- ~~~ AP
ture to explain geometrically why the curl is as you D I
x
VA NN
7 7 1 VOV N N N NN

Figure 3.44 Vector field for Exercise 13(b).
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y
AN R
SN N N~ - e
-~ ~ P
X
—-—— - - - - - -~
P e - ~ -~~~
Py SN
P A A g RN

Figure 3.45 Vector field for Exercise 13(c).

y
s A AN VYV VNN
AT AT A N [ T N N NN
A A AN AN VLV VN NN
P AR A A LT T Y W N NN
P ’ [N
X
NN b s s s .
NN N N N VY A A A e
NONON N VY ) [ A A
NONON VN L) A A avd
NONNN AL Vi

Figure 3.46 Vector field for Exercise 13(d).

14. Check that if f(x, y, z) = x?siny + y? cos z, then
VX (Vf)=0.

15. Check that if F(x, y, z) = xyzi — ¢ cos xj + xy?>2°K,
then

V(VXF)=0.
16. Prove Theorem 4.4.

In Exercises 17-20, letr = xi+ y j + z kandlet r denote ||r||.
Verify the following:

17. V" = nr"2r
18. V(inr) = =
.

19. V- (r'r) = (n + 3)r"
20. V x (r'r) = 0

In Exercises 21-25, establish the given identities. (You may
assume that any functions and vector fields are appropriately

differentiable.)
2. V.-F+G)=V-:-F+ V-G

22. VX(F+G)=VxF+VXxG

23. V-(fF)= fV:-F+F-Vf

24. VX (fF)= fVXF+VfxF

25. V.- (FXG)=G-VXF-F-VxG
26. Prove formulas (3) and (5) of Theorem 4.5.

27. Establish the formula for the gradient of a function in
spherical coordinates given in Theorem 4.6.

28. The Laplacian operator, denoted V2, is the second-
order partial differential operator defined by

5 82 82 82
Vie — 4 — 4 —.
0x2 * dy? + 972
(a) Explainwhy it makes sense to think of VZ2asV - V.
(b) Show thatif f and g are functions of class C?, then

VA(fg) = fV?g+gVf +2Vf-Vg).
(c) Show that
Ve (fVg—gVf)=fVig—gV'f.
29. Show that V - (fV ) = [[Vf|? + fV2f.

30. Show that V X (V X F) =V(V-F)— V?F. (Here
V2F means to take the Laplacian of each component
function of F.)

Let X be an open set in R", F: X € R" — R" a vector field
on X, and a € X. If v is any unit vector in R", we define the

directional derivative of F at a in the direction of v, denoted
D\K(a), by

DyF(a) = /11—% %(F(a + hv) — F(a)),

provided that the limit exists. Exercises 31-34 involve direc-
tional derivatives of vector fields.

31. (a) In analogy with the directional derivative of a
scalar-valued function defined in §2.6, show that

d
D,F(a) = EF(a +tv)
t=0

(b) Use the result of part (a) and the chain rule to show
that, if F is differentiable at a, then

DyF(a) = DF(a)v,

where v is interpreted to be an n x 1 matrix. (Note
that this result makes it straightforward to calculate
directional derivatives of vector fields.)

32. Show that the directional derivative of a vector field
F is the vector whose components are the directional
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derivatives of the component functions Fi, ..., F, of 34. LetF = xi+ yj+ zk. Show that DyF(a) = v for any
F, that is, that point a € R? and any unit vector v € R>. More gener-
. ally, if F = (x1, x2, ..., x,), a= (aj, ay, ..., a,), and
DyF(@) = (DyFi(a), DyF>(a), ..., Dy F(a)). v = (v, v2, ..., Uy), show that DyF(a) = v.
33. LetF =yzi+xzj+ xyk. Find D(ifHk)/ﬁFG’ 2,1).
(Hint: See Exercise 31.)
True/False Exercises for Chapter 3
1. Ifapath x remains a constant distance from the origin, 17. grad(div F) is a vector field.
then the velocity of x is perpendicular to x. 18. div(curl(grad f)) is a vector field.
2. Ifapath is parametrized by arclength, then its velocity o
vector is constant. 19. gradf x div F is a vector field.
3. Ifapath is parametrized by arclength, then its velocity 20. The path x(r) = (2cos 7, 4 s}i}n £,1) is a flow line of the
and acceleration are orthogonal. vector field F(x, y,z) = — 5 i+2xj+zk
d
4. —|Ix()|| = IX(@)]. 21. The path x(¢) = (¢’ cost, e'(cost + sint), ¢’ sint) is a
dt flow line of the vector field F(x, y,z) = (x —2)i+
d B dy dx 2xj+yk
S. E(xxy)_xxg—i—yxa.
22. The vector field F = 2xycoszi — y?coszj + e kis
b i = Hﬂ ' 7. |t = de” incompressible.
dt ds 23. The vector field F = 2xycoszi — y?coszj + e kis
8. The curvature « is always nonnegative. irrotational.
9. The torsion 7 is always nonnegative. 24. V x (V f) = 0 for all functions f:R* — R.
10 N—d—T 25. If V.-F=0andV xF =0, then F = 0.
ds 26. V-(FXxG)=F-(VxG)+G-(V xF).
11. If a path x has zero curvature, then its acceleration is ) )
always parallel to its velocity. 27. If F = curl G, then F is solenoidal.
12. Ifapathx hasa constant binormal vector B, thent = 0. 28. The 2ve.ctor field F=2xsinycoszi+x : cos ycosz
5 . j+x°sinysinzk is the gradient of a function f of
d’s , (ds 5 class C2.
13. e + K 7)) = lla(o)|~.
29. There is a vector field F of class C? on R? such that
14. grad f is a scalar field. VxF=xcos?yi+3yj—xyz’k.
15. div F is a vector field. 30. If F and G are gradient fields, then F X G is incom-

16.
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curl F is a vector field.

pressible.

1.

Figure 3.47 shows the plots of six paths x in the plane.
Match each parametric description with the correct
graph.

(a) x(t) = (sin2t, sin 37)

(b) x(t) = (t + sin5t, 1* + cos 61)

(©) x(t)=(*+ 1, —1)

(d) x(t) = (2t + sin4t, t — sin 5¢t)

() x(t)=(t — 12,15 —1)

(f) x(¢) = (sin(z + sin 3t), cost)

2.

Figure 3.48 shows the plots of six paths x in R*. Match
each parametric description with the correct graph.

(a) x(¢t) = (¢t + cos 3¢, 12 + sin 5¢, sin 41)
(b) x(r) = (2cos® 1, 3sin’ 1, cos 21)

(¢) x(t) = (15cost,23sint, 4t)

(d) x(t) = (cos 3¢, cos 5t, sin4r)

(e) x(t) = (2t cost, 2t sint, 4t)

) x()=@E+ 1,8 —1,1* —1?)
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Figure 3.48 Figures for Exercise 2.



3. Suppose thatx is a C2 path with nonzero velocity. Show
that x has constant speed if and only if its velocity and
acceleration vectors are always perpendicular to one
another.

4. You are at Vertigo Amusement Park riding the new
Vector roller coaster. The path of your car is given by

Tt Tt
x(t) = (/% cos —, '/%% sin —,
30 30

80 + 106
where ¢t = 0 corresponds to the beginning of your
three-minute ride, measured in seconds, and spatial
dimensions are measured in feet. It is a calm day, but
after 90 sec of your ride your glasses suddenly fly off
your face.

2t(10 — £)(t — 90)2>

(a) Neglecting the effect of gravity, where will your
glasses be 2 sec later?

(b) What if gravity is taken into account?

5. Show that the curve traced parametrically by
5 1
x(t)=|cos(t — 1), —1, n -2

is tangent to the surface x> + y* + z> — xyz = O when
t=1.

6. Gregor, the cockroach, is on the edge of a Ferris wheel
that is rotating at a rate of 2 rev/min (counterclock-
wise as you observe him). Gregor is crawling along
a spoke toward the center of the wheel at a rate of
3 in/min.

(a) Using polar coordinates with the center of the
wheel as origin, assume that Gregor starts (at time
t = 0) at the pointr = 20 ft, 6 = 0. Give paramet-
ric equations for Gregor’s polar coordinates » and
0 at time ¢ (in minutes).

(b) Give parametric equations for Gregor’s Cartesian
coordinates at time 7.

(c) Determine the distance Gregor has traveled once
he reaches the center of the wheel. Express your
answer as an integral and evaluate it numerically.

If you have used a drawing program on a computer, you have
probably worked with a curve known as a Bézier curve.? Such
a curve is defined parametrically by using several control
points in the plane to shape the curve. In Exercises 7—12,
we discuss various aspects of quadratic Bézier curves. These
curves are defined by using three fixed control points (xy, yy),
(x2, ), and (x3, y3) and a nonnegative constant w. The Bézier
curve defined by this information is given by x:[0, 1] — R?,
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x(t) = (x(t), y(t)), where

(1 — x4+ 2wt(l — 1)xy + 2x3

= T o=+ 2
, 0<r<l.
=" 01+ 2wir(l = 1)ys 4 1y3
T A 12wl — 1) + 12
(1

Q7

@ s

10.

11.

12.

Let the control points be (1,0), (0, 1), and (1, 1).
Use a computer to graph the Bézier curve for w =
0,1/2,1,2,5. What happens as w increases?

Repeat Exercise 7 for the control points (—1, —1),
(1,3),and (4, 1).

. (a) Show that the Bézier curve given by the paramet-

ric equations in (1) has (x;, y) as initial point and
(x3, y3) as terminal point.

(b) Show that x(%) lies on the line segment joining
(x2, y2) to the midpoint of the line segment joining
(x1, y1) to (x3, y3).

In general the control points (xi, y1), (x2, y2), and
(x3, y3) will form a triangle, known as the control poly-
gon for the curve. Assume in this problem that w > 0.
By calculating x'(0) and x(1), show that the tangent
lines to the curve at x(0) and x(1) intersect at (x3, y2).
Hence, the control triangle has two of its sides tangent
to the curve.

In this problem, you will establish the geometric sig-
nificance of the constant w appearing in the equations
in (1).

(a) Calculate the distance a between x(%) and (x2, y2).

(b) Calculate the distance b between x(%) and the
midpoint of the line segment joining (x;, y;) and
(x3, ¥3).

(c) Show that w = b/a. By part (b) of Exercise 9,
x(%) divides the line segment joining (x,, y») to
the midpoint of the line segment joining (x;, y;)
to (x3, y3) into two pieces, and w represents the
ratio of the lengths of the two pieces.

Determine the Bézier parametrization for the portion

of the parabola y = x? between the points (—2, 4) and

(2, 4) as follows:

(a) Two of'the three control points must be (—2, 4) and
(2, 4). Find the third control point using the result
of Exercise 10.

(b) Using part (a) and Exercise 9, we must have that
x(%) lies on the y-axis and, hence, at the point

2 P. Bézier was an automobile design engineer for Renault. See D. Cox, I. Little, and D. O’Shea, Ide-
als, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative
Algebra, 3rd ed. (Springer-Verlag, New York, 2007), pp. 28-29. Exercises 7—11 adapted with permission.
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13.

14. Another way to parametrize the tractrix path given in

Chapter 3 | Vector-Valued Functions

(0, 0). Use the result of Exercise 11 to determine
the constant w.

(c) Now write the Bézier parametrization. You should
be able to check that your answer is correct.

Let x: (0, 7) — R? be the path given by
x(t) = (sinz, cost + Intan %) ,

where 7 is the angle that the y-axis makes with the

vector x(7). The image of x is called the tractrix. (See

Figure 3.49.)

(a) Show that x has nonzero speed except when ¢ =
/2.

(b) Show that the length of the segment of the tangent
to the tractrix between the point of tangency and
the y-axis is always equal to 1. This means that
the image curve has the following description: Let
a horse pull a heavy load by a rope of length 1.

Figure 3.49 The tractrix
of Exercise 13.

Suppose that the horse initially is at (0, 0), the load
at (1, 0), and let the horse walk along the y-axis.
The load follows the image of the tractrix.

Exercise 13 is

16.

18.

19.

of class C?. Use equation (17) in §3.2 to derive the
curvature formula

2 —rr” + 2r7|

k()= (2 + 122

(Hint: First give parametric equations for the curve in
Cartesian coordinates using 6 as the parameter.)

Use the result of Exercise 15 to calculate the curvature
of the lemniscate 2 = cos 26.

Let x: I — R? be a path of class C? that is not a straight line
and such that X'(t) # 0. Choose some ty € I and let

y(#) = x(t) = s()T(),

where s(t) = ft; IX'(t)|| dt is the arclength function and T is

the unit tangent vector. The path y: I — R? is called the invo-
lute of x. Exercises 17—19 concern involutes of paths.

17.

(a) Calculate the involute of the circular path of radius
a, that is, x(t) = (a cos t, a sint). (Take #y to be 0.)

0 (b) Leta = 1 and use a computer to graph the path x

and the involute path y on the same set of axes.

Show that the unit tangent vector to the involute at ¢
is the opposite of the unit normal vector N(7) to the
original path x. (Hint: Use the Frenet—Serret formulas
and the fact that a plane curve has torsion equal to zero
everywhere.)

Show that the involute y of the path x is formed by
unwinding a taut string that has been wrapped around
x as follows:

(a) Show that the distance in R? between a point Xx(¢)
on the original path and the corresponding point
y(¢) on the involute is equal to the distance traveled
from x(#) to x(¢) along the underlying curve of x.

(b) Show that the distance between a point x(7) on the

path and the corresponding point y(¢) on the in-

volute is equal to the distance from x() to y(z)

measured along the tangent emanating from x(z).

Then finish the argument.

Let x: I — R? be a path of class C? that is not a straight line

and such that X'(t) # 0. Let

y: (=00, 0) — R?,

where y(r) = (e’,/ V1—e?r dp) .
0

(a) Show that y satisfies the property described in part
(b) of Exercise 13.

(b) Infact, y is actually a reparametrization of part of
the path x of Exercise 13. Without proving this fact
in detail, indicate what portion of the image of x
the image of y covers.

15. Suppose that a plane curve is given in polar coordi-

nates by the equation r = f(6), where f is a function

e(t) =x(t)+ %N(t).

This is the path traced by the center of the osculating circle of
the path x. The quantity p = 1/« is the radius of the osculat-

ing circle and is called the radius of curvature of the path x.

The path e is called the evolute of the path x. Exercises 20-25
involve evolutes of paths.

20. Letx(t) = (t, t*) be aparabolic path. (See Figure 3.50.)

(a) Find the unit tangent vector T, the unit normal
vector N, and the curvature « as functions of 7.

(b) Calculate the evolute of x.



0 (c) Use a computer to plot x() and e(¢) on the same

21.

© 22.

© 23
© 24

25.
26.

27.

set of axes.

Osculating

. Parabola
circle

%N(t)'\

Figure 3.50 The parabola and its
osculating circle at a point. The centers
of the osculating circles at all points of
the parabola trace the evolute of the
parabola as described in Exercise 20.

Show that the evolute of a circular path is a point.

(a) Useacomputer algebra system to calculate the for-
mula for the evolute of the elliptical path x(r) =
(acost, bsint).

(b) Use a computer to plot x(7) and the evolute e(¢) on
the same set of axes for various values of the con-
stants a and b. What happens to the evolute when
a becomes close in value to b?

Use a computer algebra system to calculate the formula
for the evolute of the cycloid x(¢) = (at — asint,a —
a cost). What do you find?

Use a computer algebra system to calculate the formula
for the evolute of the cardioid x(7) = (2a cost(1 +
acost),2asint(l + acost)).

Assuming «'(t) # 0, show that the unit tangent vector
to the evolute e(7) is parallel to the unit normal vector
N(¢) to the original path x(z).

Suppose that a C! path x(¢) is such that both its veloc-
ity and acceleration are unit vectors for all 7. Show that
k =1 forallz.

Consider the plane curve parametrized by

X(s) = /O Ccosg(t)dr, y(s) = /0 " sing(n)dr,

where g is a differentiable function.

(a) Show that the parameter s is the arclength param-
eter.

(b) Calculate the curvature «(s).
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(c) Use part (b) to explain how you can create a
parametrized plane curve with any specified con-
tinuous, nonnegative curvature function «(s).

(d) Give a set of parametric equations for a curve

whose curvature «(s) = |s|. (Your answer should
involve integrals.)

0 (e) Use a computer to graph the curve you found in

28.

29.

30.

31.

part (d), known as a clothoid or a spiral of Cornu.
(Note: The integrals involved are known as Fres-
nel integrals and arise in the study of optics. You
must evaluate these integrals numerically in order
to graph the curve.)

Suppose that x is a C? path in R? with torsion 7 always

equal to 0.

(a) Explain why x must have a constant binormal vec-
tor (i.e., one whose direction must remain fixed for
all 1).

(b) Suppose we have chosen coordinates so that x(0) =
0 and that v(0) and a(0) lie in the xy-plane (i.e.,
have no k-component). Then what must the binor-
mal vector B be?

(c) Using the coordinate assumptions in part (b), show
that x(¢) must lie in the xy-plane for all #. (Hint:
Begin by explaining why v(z) < k = a(r) - k = 0 for
all 7. Then show that if

x(1) = x(0)i + y(@)j + z(D)k,

we must have z(z) = 0 for all 7.)

(d) Now explain how we may conclude that curves
with zero torsion must lie in a plane.

Suppose that x is a C> path in R, parametrized by arc-
length, with « # 0. Suppose that the image of x lies in
the xy-plane.

(a) Explain why x must have a constant binormal
vector.

(b) Show that the torsion T must always be zero.

Note that there is really nothing special about the im-
age of x lying in the xy-plane, so that this exercise,
combined with the results of Exercise 28, shows that
the image of x is a plane curve if and only if 7 is always
zero and if and only if B is a constant vector.

In Example 7 of §3.2 we saw that if x is a straight-line
path, then x has zero curvature. Demonstrate the con-
verse; that is, if x is a C? path parametrized by arc-
length s and has zero curvature for all s, then x traces
a straight line.

A large piece of cylindrical metal pipe is to be manu-
factured to include a strake, which is a spiraling strip
of' metal that offers structural support for the pipe. (See
Figure 3.51.) The pieces of the strake are to be made
from flat pieces of flexible metal whose curved sides
are arcs of circles as shown in Figure 3.52. Assume that



242 Chapter 3 | Vector-Valued Functions

the pipe has a radius of a ft and that the strake makes
one complete revolution around the pipe every A ft.3

"y

Figure 3.51 A cylindrical
pipe with strake attached.

Figure 3.52 A section of
the strake. (See Exercise 31.)

(a) Interms of @ and i, what should the inner radius r
be so that the strake will fit snugly against the pipe?

(b) Suppose a = 3 ftand h = 25 ft. What is r?

Suppose that x: I — R3 is a path of class C3 parametrized by
arclength. Then the unit tangent vector T(s) defines a vector-

valued function T: I — R> that may also be considered to be a

path (although not necessarily one parametrized by arclength,

nor necessarily one with nonvanishing velocity). Since T is a

unit vector, the image of the path T must lie on a sphere of
radius 1 centered at the origin. This image curve is called the
tangent spherical image of X. Likewise, we may consider the
functions defined by the normal and binormal vectors N and B
to give paths called, respectively, the normal spherical image
and binormal spherical image of X. Exercises 32—-35 concern

these notions.

32. Find the tangent spherical image, normal spherical
image, and binormal spherical image of the circular
helix x(t) = (a cost, asint, bt). (Note: The path x is
not parametrized by arclength.)

33. Suppose that x is parametrized by arclength. Show
that x is a straight-line path if and only if its tangent
spherical image is a constant path. (See Example 7 of
63.2 and Exercise 30.)

34. Suppose that x is parametrized by arclength. Show that
the image of x lies in a plane if and only if its binormal
spherical image is constant. (See Exercises 28 and 29.)

35. Suppose that x is parametrized by arclength. Show
that the normal spherical image of x can never be
constant.

36. In this problem, we will find expressions for velocity
and acceleration in cylindrical coordinates. We begin

37.

38.

39.

with the expression
x(1) = x(Oi + y(1)j + z(H)k

for the path in Cartesian coordinates.

(a) Recall that the standard basis vectors for cylindri-
cal coordinates are

e, = cosfi+sindj,
ey = —sinfi+cosbj,

e, = k.

Use the facts that x = r cosf and y = rsin6 to
show that we may write x(7) as

X(t) = r(t) e, + z(f)e,.

(b) Use the definitions of'e,, ey, and e; just given and
the chain rule to find de, /dt, dey/dt, and de. /dt
in terms of e,, €5, and e,.

(c) Now use the product rule to give expressions for v
and a in terms of the standard basis for cylindrical
coordinates.

Suppose that the path
X(1) = (sin2¢, /2 cos 21, sin 21 — 2)

describes the position of the Starship Inertia at time 7.

(a) Lt. Commander Agnes notices that the ship is trac-
ing a closed loop. What is the length of this loop?

(b) Ensign Egbert reports that the Inertia’s path is
actually a flow line of the Martian vector field
F(x, y, z) = yi — 2xj + yk, but he omitted a con-
stant factor when he entered this information in
his log. Help him set things right by finding the
correct vector field.

Suppose that the temperature at points inside a room is

given by a differentiable function 7'(x, y, z). Livinia,

the housefly (who is recovering from a head cold), is in

the room and desires to warm up as rapidly as possible.

(a) Show that Livinia’s path x(z) must be a flow line
of kVT, where k is a positive constant.

(b) If T(x, v, z) = x> — 2y? 4 3z% and Livinia is ini-
tially at the point (2, 3, —1), describe her path
explicitly.

Let F =u(x, y)i—v(x,y)j be an incompressible,

irrotational vector field of class C2.

(a) Show that the functions u and v (which deter-
mine the component functions of F) satisfy the
Cauchy-Riemann equations

ou  Jdv ou Jav

—=—, and — =-——.
dx dy dy ax

3 See F. Morgan, Riemannian Geometry: A Beginner’s Guide, 2nd ed. (A K Peters, Wellesley, 1998),
pp. 7-10. Figures 3.51 and 3.52 adapted with permission.
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41.

(b) Show that u and v are harmonic, that is, that

?u  u v 9%
— 4+ —=0 d —+—=0.
0x2 + 9y? ame e + 9y?

Suppose that a particle of mass m travels along a path
x according to Newton’s second law F = ma, where
F is a gradient vector field. If the particle is also con-
strained to lie on an equipotential surface of F, show
that then it must have constant speed.

Let a particle of mass m travel along a differentiable
path x in a Newtonian vector field F (i.e., one that
satisfies Newton’s second law F = ma, where a is the
acceleration of x). We define the angular momen-
tum I(7) of the particle to be the cross product of the
position vector and the linear momentum myv, that is,

1(¢) = x(t) X mv(¢).
(Here v denotes the velocity of x.) The torque about
the origin of the coordinate system due to the force F

is the cross product of position and force:

M(zr) = x(t) X F(t) = x(t) X ma(t).

42,

43.

44.
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(Also see §1.4 concerning the notion of torque.) Show
that

dl
— =M
dt
Thus, we see that the rate of change of angular mo-

mentum is equal to the torque imparted to the particle
by the vector field F.

Consider the situation in Exercise 41 and suppose that
F is a central force (i.e., a force that always points
directly toward or away from the origin). Show that in
this case the angular momentum is conserved, that is,
that it must remain constant.

Can the vector field
F=(e"cosy+e *sinz)i—e*sinyj+e *coszk

be the gradient of a function f(x, y,z) of class C??
Why or why not?

Can the vector field
F=x(y>+ 1)i+ (ye* —e)j+x2e"k

be the curl of another vector field G(x, y, z) of class
C?? Why or why not?
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4.1 Differentials and Taylor’s Theorem

Among all classes of functions of one or several variables, polynomials are without
a doubt the nicest in that they are continuous and differentiable everywhere and
display intricate and interesting behavior. Our goal in this section is to provide
a means of approximating any scalar-valued function by a polynomial of given
degree, known as the Taylor polynomial. Because of the relative ease with which
one can calculate with them, Taylor polynomials are useful for work in computer
graphics and computer-aided design, to name just two areas.

Taylor’s Theorem in One Variable: A Review
Suppose you have a function f: X € R — R that is differentiable at a point a in
X. Then the equation for the tangent line gives the best linear approximation for
f near a. That is, when we define p; by

pi(x) = f(@)+ f'(@)(x —a), wehave pi(x)~ f(x)ifx~a.
(See Figure 4.1.) As explained in §2.3, the phrase “best linear approximation”
means that if we take R;(x, a) to be f(x) — pi(x), then

R
lim B D _

xX—>a X —d

Note that, in particular, we have p,(a) = f(a) and p/(a) = f'(a).

Generally, tangent lines approximate graphs of functions only over very small
neighborhoods containing the point of tangency. For a better approximation, we
might try to fit a parabola that hugs the function’s graph more closely as in
Figure 4.2. In this case, we want p, to be the quadratic function such that

pa(a) = f(a), pi(a)= f'(a), and pj3(a)= f"(a).
The only quadratic polynomial that satisfies these three conditions is

f"(@)

> (x —a)’.

p2(x) = f(a) + fl(a)x —a) +

It can be proved that, if f is of class C?, then
f(x) = pa(x) + Ra(x, a),



/| y=-3+2x-3

Figure 4.3 Approximations to

f(x)=Inx.
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y
% y=% y =pa(x)
o

o

y=p

y=f(x) y =f(x)
f X f X
a a
Figure 4.1 The graph of y = f(x) Figure 4.2 The tangent graphs of
and its tangent line y = p;(x) at f, p1,and p;.
X =d.
where
. Ro(x,a
lim 2(—) =0.

x—a (x — a)2

EXAMPLE 1 If f(x) = Inx, then, for a = 1, we have

f()=Inl1=0,
Fm=1=1
(1) = —% =—1.
Hence,
pix)=04+1x—-1)=x—1,
pp(x)=0+1(x —1)—x -1y =—1x* 4 2x - 3.
The approximating polynomials p; and p, are shown in Figure 4.3. *

There is no reason to stop with quadratic polynomials. Suppose we want to
approximate f by a polynomial p; of degree k, where k is a positive integer.
Analogous to the work above, we require that p; and its first k derivatives agree
with f and its first & derivatives at the point a. Thus, we demand that

pr(a) = f(a),
pi(a) = f(a),
pi(a) = f"(a),

pa) = fOa).

Given these requirements, we have only one choice for py, stated in the following
theorem:

THEOREM 1.1 (TAYLOR’S THEOREM IN ONE VARIABLE) Let X be open in
R and suppose f:X € R — R is differentiable up to (at least) order k.
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Figure 4.4 The graphs of

)y=x-—a,
(2)y = (x —a)?, and
B)y =@ —a)

Note how much more closely the
graph of (3) hugs the x-axis than
that of (1) or (2).

Givena € X, let

%)
k!

pr(x) = f(a)+ f'(a)(x —a)+ #(x —aY 4+

Then

x—a). (1)

J(x) = p(x) + Ri(x, a),

where the remainder term Ry, is such that Ri(x, a)/(x — a)* — 0 as x — a.

The polynomial defined by formula (1) is called the kth-order Taylor poly-
nomial of f ata. The essence of Taylor’s theorem is this: For x near a, the Taylor
polynomial p; approximates f in the sense that the error R involved in making
this approximation tends to zero even faster than (x — a) does. When « is large,
this is very fast indeed, as we see graphically in Figure 4.4.

EXAMPLE 2 Consider Inx with a = 1 again. We calculate

f)y=In1=0,
Fy=1=1,
F1) =g =1,
O = w = (=DM = 1.
Therefore,
pr(x) =(x —=1) - %(x -1+ %(x — 1P =+ (_1]3k_1(x 1k ®

Taylor’s theorem as stated in Theorem 1.1 says nothing explicit about the
remainder term R;. However, it is possible to establish the following derivative
form for the remainder:

PROPOSITION 1.2 If f is of class C*¥*!, then there exists some number z be-
tween a and x such that

U+ ()

Gry & a)". @

Ri(x,a) =

In practice, formula (2) is quite useful for estimating the error involved with a
Taylor polynomial approximation. Both Theorem 1.1 (under the slightly stronger
hypothesis that f is of class C**!) and Proposition 1.2 are proved in the addendum
to this section.

EXAMPLE 3 The fifth-order Taylor polynomial of f(x) = cosx aboutx = /2

L e DD D)
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(You should verify this calculation.) According to formula (2), the difference
between ps and cos x is

R

where z is some number between 77/2 and x. Since | cos x| is never larger than 1,

we have
R5(X7%>‘ = %(x—%f < w‘

- 720
Thus, for x in the interval [0, 7], we have

~ 0.0209.

‘R5< n)‘ _ (r —m/2)° B 0

Y 2)I= 7720 T 26.080

In other words, the use of the polynomial ps above in place of cosx will be
accurate to at least 0.0209 throughout the interval [0, 7 ]. *

Taylor’s Theorem in Several Variables:
The First-order Formula

For the moment, suppose that f: X € R?> — R is a function of two variables,
where X is open in R? and of class C'. Then near the point (a, b) € X, the best
linear approximation to f is provided by the equation giving the tangent plane at
(a, b, f(a,b)). That s,

fx,y) = pi(x, ),
where

pi(x,y) = f(a,b)+ fi(a, b)(x —a)+ fy(a, b)(y — b).
Note that the linear polynomial p; has the property that

pl(a9 b) = f((l, b)a

ap _of
E(a’ b) = a(a, b),
p _of
E(d, b) = @(CZ, b)

Such an approximation is shown in Figure 4.5.
To generalize this situation to the case of a function f: X € R” — R of
class C', we naturally use the equation for the tangent hyperplane. That is, if

Z

< =f(x’y)

z=pi(xy)

Figure 4.5 The graph of z = f(x, y) and
2= pix,y).
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a=(ay,a,...,a,) € X, then
f(xl’xz’ . --7xn) ~ pl(xl’ x2’ . "7xn),
where

pixr, .. x) = f(a) + fr (@) —ar) + fr,(a)(x2 — az)
+ -+ fx,,(a)(-xn - an)-

Of course, the formula for p; can be written more compactly using either
Y -notation or, better still, matrices:

pixr %) = f@+ Y fo@(xi —a) = f(a)+ Df(@)x—a). (3)
i=1

EXAMPLE 4 Let f(xy, x2, x3, Xx4) = x1 + 2x3 + 3x3 + 4x4 + x1x2x3x4. Then
af af

=1+ x2x3x4, =2+ x1x3x4,
ax 0x2
0 0
—f =3+X1X2X4, —f =4—|—X1X2X3.
8)63 aX4
Ata=0=(0,0,0,0), we have
d 0 0 0
—f(O) =1, —f(O) =2, —f(O) =3, —f(O) =4.
3x1 8X2 8X3 8)64

Thus,
pi(x1, x2, x3, X4) = 0+ 1(x; — 0) +2(x2 — 0) + 3(x3 — 0) + 4(x4 — 0)
= X] + ZXQ + 3)63 + 4X4.

Note that p; contains precisely the linear terms of the original function f. On the
other hand, if a = (1, 2, 3, 4), then

9 9
f(1’2’3’4):255 f(19273q4):149

x| hE®)

9 d
f(1’2v374):113 _f(1,2,3,4):10’

8)C3 0Xx4

so that, in this case,

pi(x1, x2, x3, x4) = 54 4+ 25(x1 — 1) + 14(xy — 2) + 11(x3 — 3) 4+ 10(x4 — 4).
*

The relevant theorem regarding the first-order Taylor polynomial is just a re-
statement of the definition of differentiability. However, since we plan to consider
higher-order Taylor polynomials, we state the theorem explicitly.

THEOREM 1.3 (FIRST-ORDER TAYLOR’S FORMULA IN SEVERAL VARIABLES) Let
X be open in R” and suppose that f: X € R" — R is differentiable at the point
ain X. Let

pi(x) = f(a)+ Df(a)(x — a). “4)
Then
SX) = pi1(x) + Ri(x, a),
where Ri(x,a)/||x —a|| > 0asx — a.
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Note that we may also express the first-order Taylor polynomial using the gradient.
In place of (4), we would have

pi(x) = f(a)+Vf(a)-(x—a).

Differentials

Before we explore higher-order versions of Taylor’s theorem in several variables,
we consider the linear (or first-order) approximation in further detail.
Let h = x — a. Then formula (3) becomes

"\ 9
P = @)+ DG = f@)+ Y . )
i=1 !

We focus on the sum appearing in formula (5) and summarize its salient
features as follows:

DEFINITION 1.4 Let f: X CR” — R and let a € X. The incremental
change of f, denoted Af, is

Af = f(a+h)— f(a).
The total differential of /', denoted df (a, h), is

0 d a
af @) = 2@y + L@y + -+ (@,
dx1 0x) 9xy,
The significance of the differential is that for h ~ 0,
Af =~ df.

(We have abbreviated df(a, h) by df.)

Sometimes £; is replaced by the expression Ax; or dx; to emphasize that it
represents a change in the ith independent variable, in which case we write

0 B 0
df = g+ Y g Y
9x1 90X, 0xy,

dx,,.
(We’ve suppressed the evaluation of the partial derivatives at a, as is customary.)

EXAMPLE 5 Suppose f(x, vy, z) = sin(xyz) 4+ cos(xyz). Then

0 0 0
df:—fdx+—fdy+—fdz
ox ay 0z

= yz[cos(xyz) — sin(xyz)]dx + xz[cos(xyz) — sin(xyz)]dy
+ xy[cos(xyz) — sin(xyz)]dz

= (cos(xyz) — sin(xyz))(yzdx + xzdy + xy dz). .

The geometry of the differential arises, naturally enough, from tangent lines
and planes. (See Figures 4.6 and 4.7.) In particular, the incremental change A f
measures the change in the height of the graph of f when moving fromato a + h;
the differential change df measures the corresponding change in the height of
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y

| Af
Figure 4.6 The incremental Figure 4.7 The incremental
change Af equals the change in change Af equals the change in
y-coordinate of the graph of z-coordinate of the graph of
y = f(x) as the x-coordinate of a 7z = f(x, y) as a point in R?
point changes from a to a + dx. changes from a = (a, b) to
The differential df equals the at+h=(a+h,b+k). The
change in y-coordinate of the differential df equals the change in
graph of the tangent line at a (i.e., z-coordinate of the graph of the
the graph of y = p;(x)). tangent plane at (a, b).

the graph of the (hyper)plane tangent to the graph at a. When | h|| is small (i.e.,
when a + h is close to a), the differential df approximates the increment A f and
it is often easier from a technical standpoint to work with the differential.

EXAMPLE 6 Let f(x,y) =x —y +2x% 4+ xy?. Then for (a,b) = (2, —1),
we have that the increment is
Af = f2+ Ax, =14 Ay) — f(2, —1)
=24 Ax — (=1 4+ Ay) +2Q2 + Ax)* + 2 + Ax)(—1 + Ay)* — 13
= 10Ax — 5Ay + 2(Ax)? — 2AxAy + 2(Ay)? + Ax(Ay)>.

On the other hand,

df (2, —1),(Ax, Ay)) = fx(2, =DAx + f,(2, —1)Ay
= (14 4x + y)l@-nAx + (=1 + 2xy)|a.-1)Ay
= 10Ax — 5Ay.
We see that df consists of exactly the terms of Af that are linear in Ax and Ay
(i.e., appear to first power only). This will always be the case, of course, since
that is the nature of the first-order Taylor approximation. Use of the differential
approximation is often sufficient in practice, for when Ax and Ay are small, higher

powers of them will be small enough to make virtually negligible contributions
to Af. For example, if Ax and Ay are both 0.01, then

df =(0.1 —0.05)=0.05
and

Af = (0.1 —0.05)4 0.0002 — 0.0002 + 0.0002 4 0.000001
= 0.05 4 0.000201 = 0.050201.

Thus, the values of df and Af are the same to three decimal places. *



Figure 4.8 Which would
you buy?
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EXAMPLE 7 A wooden rectangular block is to be manufactured with dimen-
sions 3 in x 4 in x 6 in. Suppose that the possible errors in measuring each di-
mension of the block are the same. We use differentials to estimate how accurately
we must measure the dimensions so that the resulting calculated error in volume
is no more than 0.1 in’.

Let the dimensions of the block be denoted by x (& 3 in), y (* 4 in), and z
(~ 6 in). Then the volume of the block is

V=xyz and V=~3-4.6=72in’.

The error in calculated volume is AV, which is approximated by the total differ-
ential dV. Thus,

AV ~dV = V,(3,4,6)Ax + V,(3.4, 6)Ay + V.(3.4, 6)Az
= 24Ax + 18Ay + 12Az.

If the error in measuring each dimension is €, then we have Ax = Ay = Az = €.
Therefore,

dV =24Ax + 18Ay + 12Az = 24€ 4 18€ 4 12e = 54e.
To ensure (approximately) that |[AV| < 0.1, we demand
|[dV| =]54¢| <0.1.

Hence,
0.1 .
le] < — =0.0019 in.
54
So the measurements in each dimension must be accurate to within 0.0019 in. &

EXAMPLE 8 The formula for the volume of a cylinder of radius » and height
h is V(r, h) = nr*h. If the dimensions are changed by small amounts Ar and
Ah, then the resulting change AV in volume is approximated by the differential
change dV. That is,

A% A%

AV ~dV = —Ar + —Ah = 2nrhAr + nr* Ah.

ar oh
Suppose the cylinder is actually a beer can, so that it has approximate dimensions
of r = linand h = 5 in. Then

dV = w(10Ar + Ah).

This statement shows that, for these particular values of r and /4, the volume
is approximately 10 times more sensitive to changes in radius than changes in
height. That is, if the radius is changed by an amount €, then the height must be
changed by roughly 10¢ to keep the volume constant (i.e., to make AV zero).
We use the word “approximate” because our analysis arises from considering the
differential change dV rather than the actual incremental change AV.

This beer can example has real application to product marketing strategies.
Because the volume is so much more sensitive to changes in radius than height,
it is possible to make a can appear to be larger than standard by decreasing its
radius slightly (little enough so as to be hardly noticeable) and increasing the
height so no change in volume results. (See Figure 4.8.) This sensitivity analysis
shows that even a tiny decrease in radius can force an appreciable compensating
increase in height. The result can be quite striking, and these ideas apparently
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have been adopted by at least one brewery. Indeed, this is how the author came to
fully appreciate differentials and sensitivity analysis. *

Taylor’s Theorem in Several Variables:

The Second-order Formula

Suppose f: X € R?> — Ris a C? function of two variables. Then we know that
the tangent plane gives rise to a linear approximation p; of f near a given point
(a, b) of X. We can improve on this result by looking for the quadric surface that
best approximates the graph of z = f(x, y) near (a, b, f(a, b)). See Figure 4.9
for an illustration. That is, we search for a degree 2 polynomial p,(x, y) = Ax? +
Bxy + Cy? + Dx + Ey + F such that, for (x, y) ~ (a, b),

f(x,y)~ pa(x, y).

Z

Quadric
surface

S

Tangent
plane

y
(a, b, f(a, b))

=

X

Figure 4.9 The tangent plane and quadric
surface.

Analogous to the linear approximation pj, it is reasonable to require that p, and
all of its first- and second-order partial derivatives agree with those of f at the
point (a, b). That is, we demand

p2(a7 b) = f(a’ b)7

0 a 0 a
02 by = Y a, b, 24 by = L a, by,
ax ax ay ay
3% p2 3 f 9 ps 92 f (6)
) b = ) b ) ) b = ) b )
dx2 (@ b) dx2 (@.b) dxdy (@) dxdy (@)
9’ pa 9 f
5y2 (a,b) = a_yZ(a’ b).

After some algebra, we see that the only second-degree polynomial meeting these
requirements is

pa(x,y) = fla,b)+ fula, b)x —a)+ fy(a, b)(y —b)
+ 1 fula, b)(x — aY + fo(a, b)(x — a)(y — b)
+ 1 fis(a, b)(y — b)*. (7)

! See S. I. Colley, The College Mathematics Journal, 25 (1994), no. 3, 226-227. Art reproduced with
permission from the Mathematical Association of America.
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How does formula (7) generalize to functions of n variables? We need to begin
by demanding conditions analogous to those in (6) for a function f: X € R" — R.

Fora = (al, a, .

.., a,) € X, these conditions are

p2(a) = f(a),
0 b}
W= @y, iz12.n ®)
axi 8x,~
92 92
2 = T @, ij=12...n
Bx,-axj Bx,-axj

If you do some algebra (which we omit), you will find that the only polynomial
of degree 2 that satisfies the conditions in (8) is

n l n
P(X) = f@+ ) fo@i —a) + 5 Y for, @0 —a)x; —a)). )
i=1 i,j=1

(Note that the second sum appearing in (9) is a double sum consisting of n? terms.)
To check that everything is consistent when n = 2, we have

pa(x1, x2) = far, a2) + fy (a1, ax)(x1 — ar) + fy,(ar, ax)(x2 — az)
+ 3 [frrn (@1, a2)(x) — a1)’ + fon(@r, a)x —a)(x: — a)
+ fax(@, @) —a)x —a) + fou(ar, a)x —a)’].

When f is a C? function, the two mixed partials are the same, so this formula
agrees with formula (7).

EXAMPLE 9 Let f(x,y,z) = ¢ ™ and leta = (a, b, ¢) = (0, 0, 0). Then
£(0,0,0)=¢" =1,
£:(0,0,0) = £,(0,0,0) = £:(0,0,0) =" =1,
f2x(0,0,0) = f1,(0,0,0) = f:2(0,0,0) = f,,(0,0,0)
= £,:(0,0,0) = £..(0,0,0) =" = 1.
Thus,
pax,y,2) =1+ 1(x—-0)+1(y —0)+ 1(z — 0)
+ 1[1(x = 0> +2- 1(x — 0)(y — 0) + 2 - 1(x — 0)(z — 0)
+ 1y = 0)* +2- 1(y — 0)(z — 0) + 1(z — 0)?]
=l4+x+y+z+ix’+xy+xz+ 1y +yz 412
=l+@x+y+)+ix+y+27>

We have made use of the fact that, since f is of class C2, a term like

fey(0,0,0)(x — 0)(y —0) isequalto f,(0,0,0)(y — 0)(x — 0).

L 4

Now we state the second-order version of Taylor’s theorem precisely.
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THEOREM 1.5 (SECOND-ORDER TAYLOR’S FORMULA) Let X be openin R”, and
suppose that f: X € R" — Riis of class C2. Let

n 1 n
P(X) = f@+ Y fo@i —a) + 5 Y for, @0 — a)x; — a).
i=1 i,j=1

Then
S(X) = pa(x) + Ra(x, a),

where |R;|/|x — a]> = Oasx — a.

A version of Theorem 1.5, under the stronger assumption that f is of class C3, is
established in the addendum to this section.

EXAMPLE 10 Let f(x, y) = COSX COSy and ((1, b) — (0’ 0) Then
f(0,0)=1;
fX(Oa 0) = —sinx COSy|(0,0) = 0, fy(o, O) — — COS X Sil’ly|(0’0) — O’

fex(0,0) = — cosx cos y| 9 = —1,
J1y(0,0) = sinx siny|q g =0,
fyy(0,0) = — cosx cos | ) = —1.

Hence,

fEY) R pax,y) =1+ 3(=1-x — 1.y =1 - 1x? = 1y2

We can also solve this problem another way since f is a product of two functions.
We can multiply the two Taylor polynomials:

p2(x, y) = (Taylor polynomial for cos x) - (Taylor polynomial for cos y)
= (11— (1-3y7)

_1_ 1.2 1.2 ,1.22
=1-3x YT A X7y

X7 =3y up to terms of degree 2.
This method is justified by noting that if ¢, is the Taylor polynomial for cosine
and R; is the corresponding remainder term, then
cosx cosy = [g2(x) + Ra(x, 0)][g2(y) + Ra(y, 0)]
= ¢2(¥)q2(y) + @2(Y)R2(x, 0) + g2(x)Ra(y, 0) + Ra(x, 0)Ra(y, 0)
= q2(x)g2(y) + other stuff,

where (other stuff)/||(x, y)||> = 0 as (x, y) — (0, 0), since both R,(x, 0) and
R>(y, 0) do. *

The Hessian

Recall that the formula for the first-order Taylor polynomial p; was written quite
concisely in formula (5) by using vector and matrix notation. It turns out that it
is possible to do something similar for the second-order polynomial p;.
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DEFINITION 1.6 The Hessian of a function f: X € R" — Rs the matrix
whose ijth entry is 9? f/dx;dx;. That is,

fx1x1 fx1x2 fxlxn

Hf: fx'le fx'zxz thzxn

fxnxl fxnxz fx,,xn

The term “Hessian” comes from Ludwig Otto Hesse, the mathematician who
first introduced it, not from the German mercenaries who fought in the American
revolution.

Now let’s look again at the formula for p, in Theorem 1.5:

n 1 n
P() = f@+ Y fo@hi+ 5 Y fox,@hily
i=1 i,j=1

(We have let h = (hy, ..., h,) = x — a.) This can be written as

hy

h
) = f@+ | fu@) fo@) o f@)]

hy
fxlxl(a) fx1x2(a) T fx1xn(a) hy
n 1 [h h A fxzx1(a) fxzxz(a) T foXn(a) hy
27t 2 ”] : : - : :

anxl(a) fxnxz(a) fxnxn(a) hn

Thus, we see that

p2(x) = f(a)+ Df(a)h + 3h" Hf (a)h. (10)

(Remember that h” is the transpose of the n x 1 matrix h.)

EXAMPLE 11 (Example 10 revisited) For f(x, y) = cosx cosy,a = (0, 0),
we have

Df(x,y)=[—sinx cosy —cosx siny]|
and

Hf(x,y)=[

— COSX COSYy sinx siny
sinx siny —cosxcosy |’
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Hence,
p2(x,y) = f(0,0)+ Df(0, 0)h + %hTHf(O, 0)h

SR S EET TS e |

ST

Once we recall thath = (hy, hy) = (x — 0, y — 0) = (x, y), we see that this result
checks with our work in Example 10, just as it should. *

Higher-order Taylor Polynomials

So far we have said nothing about Taylor polynomials of degree greater than 2
in the case of functions of several variables. The main reasons for this are (i) the
general formula is quite complicated and has no compact matrix reformulation
analogous to (10) and (ii) we will have little need for such formulas in this text.
Nonetheless, if your curiosity cannot be denied, here is the third-order Taylor
polynomial for a function f: X € R” — R of class C> near a € X:

n 1 n
P = f@)+ Y f @i —a) 5 Y fuy @00 - @) - a))
i=1 i,j=1

1
, Z Frx @0 — a)(xj — a;)(x — ap).

31/1(1

(The relevant theorem regarding p; is that f(x) = p3(x) + Ri(x, a), where
|R3(x, a)|/|Ix — a||> — 0as x — a.) If you must know even more, the kth-order
Taylor polynomial is

n 1 n
PO = f@+ Y Fu@ —a)+ 5 D fur, @ — a)x; — a))
i=1 i,j=1

+- +_ Z fx,1 x,k(a)(xu ai,)- - (xi, — a;).

Formulas for Remainder Terms (optional)

Under slightly stricter hypotheses than those appearing in Theorems 1.3 and
1.5, integral formulas for the remainder terms may be derived as follows. Set
h =x — a. If f is of class C?, then

Ri(x,a) = / (1 = 1) fux, (@ + th)h;h; di

i,j=1

1
= / [W"Hf(a+ thh] (1 —1)dt.
0
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If f is of class C?, then
(1
RZ(X a) fxxxk(a+th)h hhk dt
i,], k 1
and if f is of class CK*!, then

(1 - t)"
Rk(X, a) = flexzz Ky (a + th)hnhlz o hlk+l dt.

lA+1 1

Although expli01t, these formulas are not very useful in practice. By artful appli-
cation of Taylor’s formula for a single variable, we can arrive at derivative versions
of these remainder terms (known as Lagrange’s form of the remainder) that are
similar to those in the one-variable case.

Lagrange’s form of the remainder. If f is of class C2, then in Theorem 1.3
the remainder R; is

1 n
Ri(x,2)= 5 > fux,@hiy
i,j=1

for a suitable point z in the domain of f on the line segment joining a and
x = a + h. Similarly, if f is of class C>, then the remainder R, in Theorem
1.51s

n

1
Ry(x, a) = 3! Z fxixjxk(z)hihjhk

i,j,k=1

for a suitable point z on the line segment joining a and x = a + h. More
generally, if f is of class C¥*!, then the remainder Ry is

1
Ry(x,a) = (le)' Z fx,lx,2 o (2)hi hi, - - lk+1

for a suitable point z on the line segment joining a and x = a + h.

The remainder formulas above are established in the addendum to this section.

EXAMPLE 12 For f(x, y) = cosx cosy, we have

|Ry(x, y,0,0)| = Z Fevep @ hilhy
! i,j,k=1
2
< = L-|hihihgl,
3! i,j,k=1

since all partial derivatives of f will be a product of sines and cosines and, hence,
no larger than 1 in magnitude. Expanding the sum, we get

IRy(x,y,0,0) < & (1A + 3h%|ho| + 3|1 |h3 + o).
If both |A| and |A;]| are no more than, say, 0.1, then
|Ry(x,y,0,0)] < & (8:(0.1)’) =0.0013.
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y

0.1

-0.1 0.1

-0.1

Figure 4.10 The polynomial p,
approximates f to within 0.0013
on the square shown. (See
Example 12.)

COS x COs y

Figure 4.11 The graph of f(x,y) =
cosx cos y and its Taylor polynomial
px,y)=1-— % 2 %yz over the square
{r.y)-T=x=1L-1=<y=<1}

So throughout the square of side 0.2 centered at the origin and shown in Fig-
ure 4.10, the second-order Taylor polynomial is accurate to at least 0.0013 (i.e., to
two decimal places) as an approximation of f(x, y) = cosx cos y.InFigure4.11,
we show the graph of f(x, y) = cos x cos y over the square domain {(x, y) | —1 <
x <1, —1 <y < 1} together with the graph of its second-order Taylor polyno-
mial pa(x, y) = 1 — 1x? — 1y? (calculated in Example 10). Note how closely the

surfaces coincide near the point (0, 0, 1), just as the analysis above indicates.

Addendum: Proofs of Theorem 1.1, Proposition 1.2,
and Theorem 1.5

Below we establish some of the fundamental results used in this section. We begin
by proving Theorem 1.1, Taylor’s theorem for function of a single variable, and
Proposition 1.2 regarding the remainder term in Theorem 1.1. We then use these
results to “bootstrap” a proof of the multivariable result of Theorem 1.5 and to
derive Lagrange’s formula for the remainder term appearing in it.

Proof of Theorem 1.1 We prove the result under the stronger assumption that f
is of class C¥*! rather than assuming that f is only differentiable up to order .
(This distinction matters little in practice.)

By the fundamental theorem of calculus,

f@)—f@)=/1fhﬁh (11)

We evaluate the integral on the right side of (11) by means of integration by parts.
Recall that the relevant formula is

/udv:uv—/vdu.

We use this formula with u = f'(¢) and v = x — ¢ so that dv = —dr. (Note that
in the right side of (11), x plays the role of a constant.) We obtain

l[fmm=—ﬂmﬁw{+ﬁheoﬂmm

= f@)(x —a) +/ (x =) f"(t)dt. (12)
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Combining (11) and (12), we have

f@) = f@)+ fa)x —a) +/ (x =) f"(t)dt. (13)

Thus, we have shown, when f is differentiable up to (at least) second order, that

Ri(x,a) = / (x —1)f"(t)dt.

This provides an integral formula for the remainder in formula (1) of Theorem 1.1
when k = 1, although we have not yet established that R;(x, a)/(x —a) — 0 as
X — a.

To obtain the second-order formula, the case k =2 of (1), we focus on
Ri(x,a) = fux(x — 1) f"(t)dt and integrate by parts again, this time with u =
f"(t)and v = (x — 1)?/2, so that dv = —(x — t)dt. We obtain

/x(x _ t)f”(t)dt — _f//(t)(; - t)z +/ (X B t)z fw(t)dt

f”(a)(x / (x B )2 fw(l)d[

Hence (13) becomes

" X 2
1@ = f@+ f@e -a+ 50— ap+ [E2E

Therefore, we have shown, when f is differentiable up to (at least) third order,
that

Rao(x, a) = / > — f”’(t)dt

We can continue to argue in this manner or use mathematical induction to show
that formula (1) holds in general with

Ri(x,a) = f - f“*”(t)dr (14)

assuming that f is differentiable up to order (at least) k + 1.

It remains to see that Ri(x, a)/(x — a)* — 0 as x — a. In formula (14) we
are only considering ¢ between a and x, so that |x — ¢| < |x — a|. Moreover, since
we are assuming that f is of class C¥*!, we have that f**+1(z) is continuous and,
therefore, bounded for 7 between a and x (i.e., that | f**1(r)] < M for some

constant M). Thus,
X _ K
/ (.X f(k+l)(l‘)dt <:|:/ ()C k't)

where the plus sign apphes if x > a and the negative sign if x < a,

|Rk(x, a)| < FED@| dr,

* M M
§i/ —|x —alfdt = —|x — a|*".
. k! k!

Thus,

as x — a, as desired. [ ]



260 Chapter 4 | Maxima and Minima in Several Variables

Proof of Proposition 1.2 We establish Proposition 1.2 by means of a general
version of the mean value theorem for integrals. This theorem states that for
continuous functions g and % such that z does not change sign on [a, b] (i.e.,
either 4(t) > 0 on [a, b] or h(t) < 0 on [a, b)), there is some number z between
a and b such that

b b
/ (Ot d1 = g(2) / h(oydr.

(We omit the proof but remark that this theorem is a consequence of the interme-
diate value theorem.) Applying this result to formula (14) with g(r) = f**+D(r)
and h(t) = (x — t)*/k!, we find that there must exist some z between a and x

such that
(x — 1) (x =)ty
Rk(x, Cl) = f(k_H)(Z)/a‘ k' dt = f(k_H)(Z) (_W) t=a
B FE () Kt
— m(x —a) !, [ |

Proof of Theorem 1.5 Asinthe proofof Theorem 1.1, we establish Theorem 1.5
under the stronger assumption that f is of class C3. Begin by setting h = x — a,
so that x = a + h, and consider a and h to be fixed. We define the one-variable
function F by F(t) = f(a+ th). Since f is assumed to be of class C3 on an
open set X, if we take x sufficiently close to a, then F is of class C3 on an open
interval containing [0, 1]. Thus, Theorem 1.1 with k = 2, a = 0, and x = 1 may

be applied to give
) F"(0) )
F1)=F0)+ F(0)(1-0)+ o (1 -0+ R2(1,0)
= FO)+ FO) + 2 4 &y(1,0) (1s)

where Ry(1, 0) = fol # F"'(t) dt. Now we use the chain rule to calculate deriva-
tives of F in terms of partial derivatives of f:

F'(t)= Df(a+ thh = Zn: Ju(a+1hh;;
i=1

n

F'ity="Y_ [ frx,(a+ th)hj:| hi =" fox,(@+ thhih;
i=1 [ j=1 ij=1

F'(t)y="Y" [Z Foxm(@a+ th)hih_,} hie= " fuoxm(@+ thhihihy.

k=1 Lij=1 ijk=1

Thus, (15) becomes

n 1 n
fa+h) = f@+3 fu@hi+5 D fon@hily
i=1 i,j=1

n 1 (1 _ t)2
+ ) Fron (@ + th) By dt,
0

ijk=1 2
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or, equivalently,

n 1 n
FO = f@+ Y @i —a)+ 5 3 fuy @i — a)x; - aj)
i=1 i,j=1

+ Ry(x, a),

where the multivariable remainder is

n 1 l_tZ
Ry = Y [ B  tidn (16)
ijk=170

We must still show that | Ry(x, a)|/||x — a||> — 0 as x — a, or, equivalently,
that |R»(x, a)|/|h||> = 0 as h — 0. To demonstrate this, note that, for a and h
fixed, the expression (1 — ¢)? frix;x (@ +th) is continuous for # in [0, 1] (since f
is assumed to be of class C?), hence bounded. In addition, fori =1, ..., n, we
have that |A;| < | h||. Hence,

n 1 (1 _ t)2
|Ry(x.a) = | Y Foxu (@ + th)hi by di
=] 2
i,j,k=1
n 1 2
I-9
< Z / foinxk(a + th)hihihi| dt
i,jk=170
n 1
<> / M|h|Pdt = * M0 = n’M|x - a|’.
i,jk=170
Thus,
Ry(x,a
—| 2 )2| < n3M||x—a|| — 0
[x —all
asx — a.
Finally, we remark that entirely similar arguments may be given to establish
results for Taylor polynomials of orders higher than two. ]

Lagrange'’s formula for the remainder (see page 257) Using the function
F(t) = f(a+ th) defined in the proof of Theorem 1.5, Proposition 1.2 implies
that there must be some number ¢ between 0 and 1 such that the one-variable
remainder is

F///(C)

3!

Now, the remainder term R,(1, 0) from Proposition 1.2 is precisely R,(x, a) in
Theorem 1.5 and

Ry(1,0) = (1-0)>.

n n

F'(©)= Y foxu@+chiihe= )" foun@hihihy,

ijk=1 ijk=1
where z = a + ch. Since c is between 0 and 1, the point z lies on the line segment
joining a and x = a + h, and so

1 n
Ry(x,a) = ; Z fx;x;xk(z)hihjhk’

i,j.k=1

which is the result we desire. The derivation of the formula for Ry (x, a) fork > 2
is analogous. u
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4.1 Exercises

In Exercises 1-7, find the Taylor polynomials py. of given order
k at the indicated point a.

1.

N o o pwDd

f)=e* a=0k=4
f)=In(1+x),a=0,k=3
f)=1/x*a=1,k=4
f)=+/x,a=1,k=3
fx)=Jx,a=9k=3
f(x)=sinx,a=0,k=5
f(x)y=sinx,a=n/2,k=5

In Exercises 8135, find the first- and second-order Taylor poly-
nomials for the given function f at the given point a.

8.

9.
10.
11.
12.
13.
14.
15.

f,y)=1/(x*+y*+1),a=(0,0)

fe.y) =1/ +y*+1),a=(,-1)
flx,y) =€, a=(0,0)
f(x,y)=e*cos3y,a=(0,m)
f(x,y,2)=ye** +ze*¥,a=(0,0,2)
fG.y,2)=xy =3y +2xz,a=(2,-1,1)
fe,y,2)=1/x2+y* + 22 +1),a=(0,0,0)
f(x,y,z) =sinxyz,a=(0,0,0)

In Exercises 16-20, calculate the Hessian matrix H f(a) for
the indicated function f at the indicated point a.

16
17

18.

19.
20.
21.

22,

23.

f,y)=1/(x* +y*+1),a=(0,0)
f(x,y)=cosxsiny,a=(w/4,1/3)

z
f(X,y,z)= ﬁs

fx,y,2)=x3+x2y —yz* +22%,a=(1,0,1)
f(x,y,2) =€ sin5z,a=(0,0,0)

a=(1,2—4)

For f and a as given in Exercise 8, express the second-
order Taylor polynomial p,(x, y), using the derivative
matrix and the Hessian matrix as in formula (10) of
this section.

For f and a as given in Exercise 11, express the second-
order Taylor polynomial p,(x, y), using the derivative
matrix and the Hessian matrix as in formula (10) of
this section.

For f and a as given in Exercise 12, express the second-
order Taylor polynomial py(x, y, z), using the deriva-
tive matrix and the Hessian matrix as in formula (10)
of this section.

24,

25.

26.

27.

For f and a as given in Exercise 19, express the second-
order Taylor polynomial p,(x, y, z), using the deriva-
tive matrix and the Hessian matrix as in formula (10)
of this section.

Consider the function

f(x]!-XZs ..

(a) Calculate Df(0,0,...,0)and Hf(0,0,...,0).

(b) Determine the first- and second-order Taylor poly-
nomials of f at 0.

., xn) — ex1+2xz+~~+nxn .

(c) Use formulas (3) and (10) to write the Taylor poly-
nomials in terms of the derivative and Hessian
matrices.

Find the third-order Taylor polynomial ps(x, y, z) of
fx, y, 7) = eX vt

at (0,0, 0).

Find the third-order Taylor polynomial of

feyv, ) =x*+3y+2y3 —x2 + x%y +3xy —z42

(a) at(0,0,0).
(b) at (1, —1,0).

Determine the total differential of the functions given in
Exercises 28-32.

28.
29.
30.
31.
32.
33.

34.

35.

flx,y)=x%y?
flx,y,2)=x*+3y* =22
f(x,y,2)=cos(xyz)

f(x,y,2) =e “cosy+e’sinzg

S, y,2)=1//xyz

Use the fact that the total differential df approximates
the incremental change A f to provide estimates of the
following quantities:

(@) (7.07)%(1.98)°

(b) 1/,/(4.1)(1.96)(2.05)

(c) (1.1)cos((r — 0.03)(0.12))

Near the point (1, —2, 1), is the function g(x, y, z) =
x> — 2xy + x%z + 7z most sensitive to changes in x,
y,orz?

To which entry in the matrix is the value of the
determinant
3
-1 5

most sensitive?



36.

If you measure the radius of a cylinder to be 2 in, with
a possible error of £0.1 in, and the height to be 3 in,
with a possible error of £0.05 in, use differentials to
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not exceed 0.2 m*? Assume that the possible errors in
measuring the radius and height are the same.

determine the approximate error in 40. Suppose that you measure the dimensions of a block
(a) the calculated volume of the cylinder. of tofu to be (approximately) 3 in by 4 in by 2 in.
y ) Assuming that the possible errors in each of your mea-
(b) the calculated surface area. surements are the same, about how accurate must your
37. A can of mushrooms is currently manufactured to have measurements be S0 that the error in .th3e calculated
a diameter of 5 cm and a height of 12 cm. The man- volume of the tofu is not more than 0.2 in”? What per-
ufacturer plans to reduce the diameter by 0.5 cm. Use centage error in volume does this represent?
differentials to estimate how much the height of the 41. (a) Calculate the second-order Taylor polynomial for
can would need to be increased in order to keep the f(x,y) = cosx siny at the point (0, 77/2).
volume of the can the same. (b) If h = (hy, hy) = (x, y) — (0, 7/2) is such that
38. Consider a triangle with sides of lengths a and b that |11 and |h2| are no more than 0.3, estimate how
make an interior angle 6. accurate your Taylor approximation is.
(a) Ifa =3,b =4,and 0 =7 /3, to changes in WhiCh 42. (a) Determine the second-order Taylor polynomial of
of these measurements is the area of the triangle f(x,y) = et at the origin.
Lo
MOSt sensitve: ) ) (b) Estimate the accuracy of the approximation if |x|
(b) If the length measurements in part (a) are in error and |y| are no more than 0.1.
by as much as 5% and the angle measurement is ) )
in error by as much as 2%, estimate the resulting 43. (a) Determine the second-order Taylor polynomial of

39.

maximum percentage error in calculated area.

To estimate the volume of a cone of radius approx-
imately 2 m and height approximately 6 m, how ac-
curately should the radius and height be measured so
that the error in the calculated volume estimate does

f(x,y) = e* cos y at the point (0, 77/2).

(b) If h = (hy,hy) =(x,y)—(0,7/2) is such that
|h1] < 0.2 and |hy| < 0.1, estimate the accuracy
of the approximation to f given by your Taylor
polynomial in part (a).

4.2 Extrema of Functions

The power of calculus resides at least in part in its role in helping to solve a wide
variety of optimization problems. With any quantity that changes, it is natural to
ask when, if ever, does that quantity reach its largest, its smallest, its fastest or
slowest? You have already learned how to find maxima and minima of a function
of a single variable, and no doubt you have applied your techniques to a number of
situations. However, many phenomena are not appropriately modeled by functions
of'only one variable. Thus, there is a genuine need to adapt and extend optimization
methods to the case of functions of more than one variable. We develop the
necessary theory in this section and the next and explore a few applications in §4.4.

Critical Points of Functions
Let X be openin R” and f: X € R" — R a scalar-valued function.

DEFINITION 2.1

We say that f has a local minimum at the point a in
X if there is some neighborhood U of a such that f(x) > f(a) for all x
in U. Similarly, we say that f has a local maximum at a if there is some
neighborhood U of a such that f(x) < f(a) for all x in U.

Max.
Z
&% 3
X

Figure 4.12 The graph of
z=f(x, ).

When n = 2, local extrema of f(x, y) are precisely the pits and peaks of the
surface given by the graph of z = f(x, y), as suggested by Figure 4.12.
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We emphasize our use of the adjective “local.”” When a local maximum of
a function f occurs at a point a, this means that the values of f at points near
a can be no larger, not that all values of f are no larger. Indeed, f may have
local maxima and no global (or absolute) maximum. Consider the graphs in
Figure 4.13. (Of course, analogous comments apply to local and global minima.)

Global

Local maximum

maximum

No global
maximum

Figure 4.13 Examples of local and global maxima.

Recall that, if a differentiable function of one variable has a local extremum
at a point, then the derivative vanishes there (i.e., the tangent line to the graph
of the function is horizontal). Figures 4.12 and 4.13 suggest strongly that, if a
function of two variables has a local maximum or minimum at a point in the
domain, then the tangent plane at the corresponding point of the graph must be
horizontal. Such is indeed the case, as the following general result (plus formula
(4) of §2.3) implies.

THEOREM 2.2 Let X be openin R” and let f: X € R" — R be differentiable.
If f has a local extremum at a € X, then Df(a) = 0.

PROOF Suppose, for argument’s sake, that f has a local maximum at a. Then the
one-variable function F defined by F'(r) = f(a + th) must have a local maximum
att = 0 for any h. (Geometrically, the function F is just the restriction of f to the
line through a parallel to h as shown in Figure 4.14.) From one-variable calculus,
we must therefore have F’(0) = 0. By the chain rule

d
F'(r) = E[

f(a+th)] = Df(a+ th)h = Vf(a+rh)-h.

Graph of f
restricted to line

-~ 2=f(xy)

Figure 4.14 The graph of f restricted to a line.



Figure 4.15 The function f is
strictly positive on the shaded
region, strictly negative on the
unshaded region, and zero along
the lines y = +x.
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Hence,
0= F'(0) = Df(@h = fy,(@)h; + fy,(@)hy + -+ fr,(a)h,.

Since this last result must hold for all h € R”, we find that by setting h in turn
equal to (1,0,...,0),(0,1,0,...,0),...,(0,...,0, 1), we have

fa@) = fu(@=---= f(a)=0.
Therefore, Df(a) = 0, as desired. m

A point a in the domain of f where D f(a) is either zero or undefined is called
a critical point of f. Theorem 2.2 says that any extremum of f must occur at a
critical point. However, it is by no means the case that every critical point must
be the site of an extremum.

EXAMPLE 1 If f(x,y) =x?>—y?, then Df(x,y)= [ 2x =2y ] so that,
clearly, (0, 0) is the only critical point. However, neither a maximum nor a mini-
mum occurs at (0, 0). Indeed, inside every open disk centered at (0, 0), no matter
how small, there are points for which f(x, y) > f(0, 0) = 0and also points where
f(x,y) < f(0,0). (See Figure 4.15.) .

This type of critical point is called a saddle point. Its name derives from the
fact that the graph of z = f(x, y¥) looks somewhat like a saddle. (See Figure 4.16.)

Figure 4.16 A saddle point.

EXAMPLE 2 Let f(x,y) = y/x2 + y2. The domain of f is all of R>. We com-

2x 2y ' .

G212 3Gty | note that Df is unde-
fined at (0, 0) and nonzero at all other (x, y) € R%. Hence, (0, 0) is the only
critical point. Since f(x, y) > 0 for all (x, y) and has value 0 only at (0, 0), we
see that f has a unique (global) minimum at (0, 0). *

pute that Df(x,y) = [

The Nature of a Critical Point: The Hessian Criterion ——

We illustrate our current understanding regarding extrema with the following
example:

EXAMPLE 3 We find the extrema of
f(x,y)=x2+xy+y2+2x —2y+5.
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fla)+

Figure 4.17 An

upward-opening parabola.

fla)+

Figure 4.18 A

downward-opening parabola.

Since f is a polynomial, it is differentiable everywhere, and Theorem 2.2 implies
that any extremum must occur where df/dx and df/dy vanish simultaneously.
Thus, we solve

0
—f:2x—|—y+2:O
ox
8 )
—f=x—|—2y—2=0
dy

and find that the only solution is x = —2, y = 2. Consequently, (—2, 2) is the
only critical point of this function.

To determine whether (—2, 2) is a maximum or minimum (or neither), we
could try graphing the function and drawing what we hope would be an obvious
conclusion. Of course, such a technique does not extend to functions of more than
two variables, so a graphical method is of limited value at best. Instead, we’ll see
how f changes as we move away from the critical point:

Af = f(=2+h,2+k) — f(=2,2)
=[(=24h) + (=24 h)Q2 + k) + 2 + k)
+2(=2+h)—2Q+k) +5]—1
= h* + hk + k.

If the quantity Af = h? 4+ hk + k? is nonnegative for all small values of  and k,
then (—2, 2) yields a local minimum. Similarly, if Af is always nonpositive, then
(=2, 2) must yield a local maximum. Finally, if Af is positive for some values
of h and k and negative for others, then (—2, 2) is a saddle point. To determine
which possibility holds, we complete the square:

Af =W+ hk + K = B+ hk 4+ 52 4 303 = (b + )7+ 262,

Thus, Af > 0 for all values of 4 and k, so (—2, 2) necessarily yields a local
minimum. *

Example 3 with its attendant algebra clearly demonstrates the need for a better
way of determining when a critical point yields a local maximum or minimum (or
neither). In the case of a twice differentiable function f: X € R — R, youalready
know a quick method, namely, consideration of the sign of the second derivative.
This method derives from looking at the second-order Taylor polynomial of f
near the critical point a, namely,

["(a)

10~ pa) = F@ + flae )+ 5~ ap?
= r@+ 50— ap,

since f' is zero at the critical point a of f.If f”(a) > 0, the graph of y = py(x)
is an upward-opening parabola, as in Figure 4.17, whereas if f”(a) < 0, then
the graph of y = p»(x) looks like the one shown in Figure 4.18. If f”(a) = 0,
then the graph of y = p»(x) is just a horizontal line, and we would need to use
a higher-order Taylor polynomial to determine if f has an extremum at a. (You
may recall that when f”(a) = 0, the second derivative test from single-variable
calculus gives no information about the nature of the critical point a.)

The concept is similar in the context of n variables. Suppose that

fx)= f(x1,x2,...,Xp)
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is of class C? and that a = (ai,az, ..., a,) is a critical point of f. Then the
second-order Taylor approximation to f gives

Af = f(x) = f(a)~ pa(x) = f(a)
= Df(a)(x —a) + 5(x —a)' Hf (a)(x — a)

when x & a. (See Theorem 1.5 and formula (10) in §4.1.) Since f is of class C?
and a is a critical point, all the partial derivatives vanish at a, so that we have
Df(a) = 0 and, hence,

Af ~ z(x —a) Hf (a)(x — a). )

The approximation in (1) suggests that we may be able to see whether the in-
crement Af remains positive (respectively, remains negative) for x near a and,
hence, whether f has a local minimum (respectively, a local maximum) at a by
seeing what happens to the right side.

Note that the right side of (1), when expanded, is quadratic in the terms
(x; — a;). More generally, a quadratic form in 4, hy, ..., h, is a function Q
that can be written as

Q(hy. hy, ... h) =Y bijhily,
i,j=1

where the b;;’s are constants. The quadratic form Q can also be written in terms
of matrices as

byt by -+ by hy

by by - Dby hy
Omy=[h hy -~ m]| . . . . | =h"Bh (2
bnl an to bnn hn
where B = (b;;). Note that the function Q is unchanged if we replace all b;; with
1(bij + bj;). Hence, we may always assume that the matrix B associated to Q is
symmetric, that is, that b;; = b;; (or, equivalently, that B = B). Ignoring the
factor of 1/2, we see that the right side of (1) is the quadratic forminh = x — a,
corresponding to the matrix B = H f(a).
A quadratic form Q (respectively, its associated symmetric matrix B) is said
to be positive definite if Q(h) > 0 forall h ## 0 and negative definite if Q(h) < 0
for all h # 0. Note that if Q is positive definite, then Q has a global minimum (of
0) at h = 0. Similarly, if Q is negative definite, then Q has a global maximum at
h=0.
The importance of quadratic forms to us is that we can judge whether f has
a local extremum at a critical point a by seeing if the quadratic form in the right

side of (1) has a maximum or minimum at x = a. The precise result, whose proof
is given in the addendum to this section, is the following:

THEOREM 2.3 Let U € R" be open and f:U — R a function of class C2.
Suppose that a € U is a critical point of f.

1. If the Hessian H f(a) is positive definite, then f has a local minimum at a.
2. If the Hessian H f(a) is negative definite, then f has a local maximum at a.

3. If det Hf(a) # 0 but H f(a) is neither positive nor negative definite, then f
has a saddle point at a.
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Inview of Theorem 2.3, the issue thus becomes to determine when the Hessian
Hf(a) is positive or negative definite. Fortunately, linear algebra provides an
effective means for making such a determination, which we state without proof.
Given a symmetric matrix B (which, as we have seen, corresponds to a quadratic

form Q), let By, for k = 1, ..., n, denote the upper leftmost k£ x k submatrix of
B. Calculate the following sequence of determinants:
bii b
1 11 2 ‘ by by
by by bis
det B3 = | byy by by |,...,det B, = detB.
bs1 by bss

If this sequence consists entirely of positive numbers, then B and Q are positive
definite. If this sequence is such that det B; < 0 for k odd and det B; > 0 for k
even, then B and Q are negative definite. Finally, if det B # 0, but the sequence
of determinants det By, det B, . .., det B, is neither of the first two types, then B
and Q are neither positive nor negative definite. Combining these remarks with
Theorem 2.3, we can establish the following test for local extrema:

Second derivative test for local extrema. Given a critical point a of a func-
tion f of class C?, look at the Hessian matrix evaluated at a:

fxlxl(a) fx1xz(a) e fxlxn (a)
Hf(a) _ fxzx:l (a) fxzx:z (a) . fxzx:n (a)
anxl(a) fx,,xz(a) e fx,,xn (a)

From the Hessian, calculate the sequence of principal minors of Hf(a).
This is the sequence of the determinants of the upper leftmost square sub-
matrices of Hf(a). More explicitly, this is the sequence di,d, ..., d,,
where d; = det Hy, and H is the upper leftmost k& x k submatrix of H f(a).
That is,

dy = fx1x1(a)»

faxn (@) fox(a)

Jox (@) fox(a) ’

fan@)  fun@)  fox(a)

d; = fxzm(a) fxzxz(a) fxzx;(a) NS |Hf(a)|
Srin () Srix(a) Srixs(a)

The numerical test is as follows:
Assume that d, = det Hf (a) # 0.

dy =

1. Ifdy > 0fork=1,2,...,n,then f has a local minimum at a.

2. Ifd; < 0 for k odd and d; > 0 for k even, then f has a local maximum
at a.

3. If neither case 1 nor case 2 holds, then f has a saddle point at a.
In the event that det Hf (a) = 0, we say that the critical point a is degenerate

and must use another method to determine whether or not it is the site of an
extremum of f.
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EXAMPLE 4 Consider the function
f. ) =x"+xy+y +2x—2y+5

in Example 3. We have already seen that (—2, 2) is the only critical point. The

Hessian is
fxx fxy 2 1
Hf(x,y)= = .
Fy [fyx f} [1 2}

The sequence of principal minors is dy = fi(—2,2)=2 (> 0), d, =
|Hf(—2,2)] =3 (> 0). Hence, f has a minimum at (—2, 2), as we saw before,
but this method uses less algebra. *

EXAMPLE 5 (Second derivative test for functions of two variables) Let us
generalize Example 4. Suppose that f(x, y) is a function of two variables of class
C? and further suppose that f has a critical point at a = (a, b). The Hessian
matrix of f evaluated at (a, b) is

Hf(a,b)= |: Sfex(a, b) fxy(a, b) :| '

Jayla.b)  fyy(a.b)

Note that we have used the fact that f,, = f,, (since f is of class C?) in con-
structing the Hessian. The sequence of principal minors thus consists of two
numbers:

dy = fula,b) and dy = fii(a,b)fyy(a,b) = fu(a, by
Hence, in this case, the second derivative test tells us that

1. f has a local minimum at (a, b) if
frla,b) >0 and  fii(a, b) fiy(a, b) = fu(a,b)* > 0.

2. f has a local maximum at (a, b) if
fa.b) <0 and  fux(@. b) fyy(a. b) = fry(a, by > 0.

3. f has a saddle point at (a, b) if
fecla, b) fiy(a, b) = fiy(a, b)* < 0.

Note that if fi.(a, b) fy,(a, b) — fi,(a, b)* = 0, then f has a degenerate critical
point at (a, b) and we cannot immediately determine if (a, b) is the site of a local
extremum of f. *

EXAMPLE 6 Let f(x,y,z) = x>+ xy*> + x*> + y> + 3z%. To find any local
extrema of f, we must first identify the critical points. Thus, we solve
Df(x,y,z) =[3x* 4+ y*+2x 2xy+2y 6z]=[0 0 0].
From this, it is not hard to see that there are two critical points: (0, 0, 0) and
(—%, 0, 0). The Hessian of f is
6x 42 2y 0

Hf(x,y,z)= 2y 2x+2 0
0 0 6
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Figure 4.19 Away from the
origin, the function /# of Example 7
is negative along the x-axis and
positive along the y-axis.

At the critical point (0, 0, 0), we have

2 0 0
Hf(0,0,0)=|0 2 0|,
0 0 6

and its sequence of principal minors is d; = 2, d, = 4, d3 = 24. Since these
determinants are all positive, we conclude that f has a local minimum at (0,0,0).
At (—%, 0, 0), we calculate that

- 0 0
2 2
0 0 o6

The sequence of minors is —2, — %, —8&8. Hence, f has a saddle point at (— %, 0, O).
*

EXAMPLE 7 To get a feeling for what happens in the case of a degenerate
critical point (i.e., a critical point a such that det H f(a) = 0), consider the three
functions

oy =xt+ 02+ )4
glr,y) = —x* —x? =y,
and
h(x,y)=x* — x>+ y*.

We leave it to you to check that the origin (0, 0) is a degenerate critical point
of each of these functions. (In fact, the Hessians themselves look very similar.)
Since f is 0 at (0, 0) and strictly positive at all (x, y) # (0, 0), we see that f
has a strict minimum at the origin. Similar reasoning shows that g has a strict
maximum at the origin. For A, the situation is slightly more complicated. Along
the y-axis, we have h(0, y) = y*, which is zero at y = 0 (the origin) and strictly
positive everywhere else. Along the x-axis,

h(x,0) = x* — x* = x2(x — 1)(x + 1).

For —1 < x < 1 and x # 0, h(x, 0) < 0. We have the situation depicted in Fig-
ure 4.19. Thus, every neighborhood of (0, 0) contains some points (x, y) where &
is positive and also some points where £ is negative. Therefore, 4 has a saddle point
at the origin. The “moral of the story” is that a degenerate critical point can exhibit
any type of behavior, and more detailed consideration of the function itself, rather
than its Hessian, is necessary to understand its nature as a site of an extremum.

Global Extrema on Compact Regions

Thus far our discussion has been limited to consideration of only local extrema.
We have said nothing about how to identify global extrema, because there really is
no general, effective method for looking at an arbitrary function and determining
whether and where it reaches an absolute maximum or minimum value. For the
purpose of applications, where finding an absolute maximum or minimum is
essential, such a state of affairs is indeed unfortunate. Nonetheless, we can say
something about global extrema for functions defined on a certain type of domain.
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Figure 4.20 Compact regions.

DEFINITION 2.4 A subset X C R” is said to be compact if it is both closed
and bounded.

Recall that X is closed if it contains all the points that make up its boundary.
(See Definition 2.3 of §2.2.) To say that X is bounded means that there is some
(open or closed) ball B that contains it. (That is, X is bounded if there is
some positive number M such that ||x|| < M for all x € X.) Thus, compact sets
contain their boundaries (a consequence of being closed) and have only finite
extent (a consequence of being bounded). Some typical compact sets in R? and
R® are shown in Figure 4.20.

For our purposes the notion of compactness is of value because of the next
result, which we state without proof.

THEOREM 2.5 (EXTREME VALUE THEOREM) If X C R" is compact and f:
X — R is continuous, then f must have both a global maximum and a global
minimum somewhere on X. That is, there must exist points ap,y and ay;, in X
such that, for all x € X,

f(amin) = f(X) = f(amax)-

We need the compactness hypothesis since a function defined over a noncom-
pact domain may increase or decrease without bound and, hence, fail to have any
global extremum, as suggested by Figure 4.21. This is analogous to the situation
in one variable where a continuous function defined on an open interval may fail
to have any extrema, but one defined on a closed interval (which is a compact
subset of R) must attain both maximum and minimum values. (See Figure 4.22.)
In the one-variable case, extrema can occur either in the interior of the interval
or else at the endpoints. Therefore, you must compare the values of f at any
interior critical points with those at the endpoints to determine which is largest
and smallest. In the case of functions of n variables, we do something similar,
namely, compare the values of f at any critical points with values at any restricted
critical points that may occur along the boundary of the domain.
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No global
minimum

Figure 4.21 A graph that lacks a
global minimum.

y=-1

Figure 4.23 The domain of the
function T of Example 8.
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No maximum or minimum attained

y
Global

maximum

I~
\’: .

Figure 4.22 The function depicted by the graph on the left has no global extrema—the
function is defined on the open interval (a, b). By contrast, the function defined on the
closed interval [a, b], and with the graph on the right, has both a global maximum and
minimum.

Global
minimum

N -

=

EXAMPLE 8 LetT:X C R?> — R be given by
T(x,y)=x>—xy+y* +1,

where X is the closed square in Figure 4.23. (Note that X is compact.) Think of
the square as representing a flat metal plate and the function 7 as the temperature
of the plate at each point. Finding the global extrema amounts to finding the
warmest and coldest points on the plate. According to Theorem 2.5, such points
must exist.

We need to find all possible critical points of 7. Momentarily considering T
as a function on all of R?, we find the usual critical points by setting DT (x, y)
equal to 0. The result is the system of two equations

2x —y =0
—x+2y=0’
which has (0, 0) as its only solution. Whether it is a local maximum or minimum
is not important for now, because we seek global extrema. Because there is only
one critical point, at least one global extremum must occur along the boundary of

X (which consists of the four edges of the square). We now find all critical points
of the restriction of T to this boundary:

1. The bottom edge of X is the set
Ey={x.y)ly=-1-1=x=<2}
The restriction of T to E| defines a new function fi:[—1, 2] — R given by
fix)=T(x, —=1) = x>+ x +2.

As f{(x) = 2x + 1, the function f; has a critical point at x = —%. Thus,

we must examine the following points of X for possible extrema: (—% —1),
(—1, —1),and (2, —1). (The first point is the critical point of f, and the second
two are the vertices of X that lie on E.)

2. The top edge of X is given by
Ey={(x,y)|y=2-1=x=<2}.
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Consequently, we define f>:[—1,2] — Rby
fox) =T(x,2) = x> —2x + 5.

(f2 is the restriction of T to E5.) We calculate f;(x) = 2x — 2, which implies
that x = 1 is a critical point of f,. Hence, we must consider (1, 2), (—1, 2),
and (2, 2) as possible sites for global extrema of 7. (The points (—1, 2) and
(2, 2) are the remaining two vertices of X.)

3. The left edge of X is
Ey={xy)|lx=-1,-1=<y=<2}
Therefore, we define f3 : [—1, 2] = R by

L) =T(1y) =y +y+2.
We have f;(y) =2y + 1,andsoy = —% is the only critical point of f3. Thus
(— 1, —%) is a potential site of a global extremum. (We need not worry again
about the vertices (—1, —1) and (—1, 2).)
4. The right edge of X is

Ey={(x,y)|x=2,—1<y<2}.
We define f4:[—1, 2] - Rby

fi() =T@2.y)=y> =2y +5.

We have f;(y) =2y — 2, and so y = 1 is the only critical point of f4. Hence,
we must include (2, 1) in our consideration.

Consequently, we have nine possible locations for global extrema, shown in
Figure 4.24. Now we need only to compare the actual values of T at these points
to see that (0, 0) is the coldest point on the plate and both (2, —1) and (—1, 2) are
the hottest points. .

If a function is defined over a noncompact region, there is no general result
like the extreme value theorem (Theorem 2.5) to guarantee existence of any global
extrema. However, ad hoc arguments frequently can be used to identify global
extrema.

(-1,2) (1,2) (2,2) (x,y) T(x.y)
(0,0)
2.1) (=3.-1)
(0,0) (-1,-1)
) X (2,-1)
(-1.-3 (1,2)
-1,-1)/ 2,-1) (-1,2)
(=3.-1) 2,2)
(-1.-3
2,1

—_

A B N0 B~ 0 N ORI

Figure 4.24 Possible global extrema for 7.
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EXAMPLE 9 Consider the function f(x,y) = '3~ defined on all of R2
(so the domain is certainly not compact). Verifying that f has a unique critical
point at (0, 0) is straightforward. We leave it to you to check that the Hessian
criterion implies that f has a local maximum there. In any case, forall (x, y) € R?,
we have

1-3x2—y? < 1.
Therefore, because the exponential function is always increasing (i.e., if u; < u,,
then ¢! < e"2),

2422
T <ol =

As f(0,0) = e, we see that f has a global maximum at (0, 0). .

WARNING It is tempting to assume that if a function has a unique critical point
that is a local extremum, then it must be a global extremum as well. Although
true for the case of a function of a single variable, it is not true for functions of
two or more variables. (See Exercise 52 for an example.)

Addendum: Proof of Theorem 2.3

Step 1. We show the following key property of a quadratic form Q, namely, that
if A € R, then

Q(Ah) = A*Q(h). 3)

This is straightforward to establish if we write Q in terms of its associated sym-
metric matrix B and use some of the properties of matrix arithmetic given in §1.6:

Q(rh) = (Ah)” B(xh) = Ah” B(Axh) = A*h” Bh = 22 Q(h).

Step 2. We show that if B is the symmetric matrix associated to a positive
definite quadratic form Q, then there is a positive constant M such that

Q(h) > M|h|?

for allh € R".

First, note that when h = 0, then Q(h) = Q(0) = 0 so the conclusion holds
trivially in this case.

Next, suppose that h is a unit vector (i.e., ||h|| = 1). The (endpoints of the) set
of all unit vectors in R” is an (n — 1)-dimensional sphere S, which is a compact
set. Hence, by the extreme value theorem (Theorem 2.5), the restriction of Q to
S must achieve a global minimum value M somewhere on S. Thus, Q(h) > M
forallh € S.

Finally, let h be any nonzero vector in R”. Then its normalization h/|/h| is a
unit vector and so lies in S. Therefore, by the result of Step 1, we have

O(h)=Q (uhu—h ) = |[h[I*Q (—h ) > |h|*M
]| Ih) )~ ’
since h/|/h| isin S.

Step 3. Now we prove the theorem. By the second-order Taylor formula
Theorem 1.5 and formula (10) of §4.1, we have that, for the critical point a of f,

Af = f(x)~ f(a) = 3(x — a) Hf (a)(x — a) + Ra(x, a), “4)

where |R»(x, a)|/[Ix — a||> = 0as x — a.
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Suppose first that H f(a) is positive definite. Then by Step 2 with h = x — a,
there must exist a constant M > 0 such that

Ix—a)Hf(a)(x —a) > M|x —a|*. ®)

Because |R»(x, a)|/||)x — a||> — 0 as x — a, there must be some § > 0 so that if
0 < ||x — a|| < 8, then |R,(x, a)|/||x — a||> < M, or, equivalently,

|Ry(x, )] < M|x —al*. (6)
Therefore, (4), (5), and (6) imply that, for 0 < ||x — a| < §,
Af >0

so that f has a (strict) local minimum at a.

If H f(a) is negative definite, then consider g = — f. We see that a is also a
critical point of g and that Hg(a) = —H f(a), so H g(a) is positive definite. Hence,
the argument in the preceding paragraph shows that g has a local minimum at a,
so f has a local maximum at a.

Now suppose det H f(a) # 0, but that H f(a) is neither positive nor negative
definite. Let x; be such that

Lo —a) Hfa)(xi —a) > 0
and x, such that

1(x2 —a) Hf(a)(x —a) < 0.
(Since det H f(a) # 0, such points must exist.) Fori = 1, 2 let

yi(t) = 1(x; —a) +a,
the vector parametric equation for the line through a and x;. Applying formula
(4) with x = y;(¢), we see
Af = fyi(0) = f(a) = 5(vi(t) — )" Hf (@)(yi(t) — a) + Ra(yi(t), a)

2 Ra(yi(7), a)

llyi () — all?
Note that y;(#) — a = #(x; — a). Therefore, using the property of quadratic forms
given in Step 1 and the fact that ||y;(r) — a||*> = ||t(x; — a)|* = *|x; — a]|?, we
have

3 (1) — )T Hf (a)(yi(1) — a) + lly; () — al|

fi() = f(a)
(N

=4~ H s~ 4 1 - P 20O

llyi(r) — all?
Now note that, for i = 1, the first term in the brackets in the right side of (7) is a
positive number P and, for i = 2, it is a negative number N. Set

. P N
M = min 7>~ 5 )
x; — al| X2 — all

Because we know that |Ry(yi(¢), a)l/|lyi(t) — a||> — 0 as t — 0, we can find
some § > 0 sothatif 0 < ¢ < §, then

[R(yi (). )l _
lyi(r) — all?
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But this implies that, for 0 < ¢t < §,

while

Af = fn@) - f(a) >0,

Af = f(y2(1)) = f(a) < 0.

Thus, f has a saddle point at x = a. |

4.2 Exercises

1.

Concerning the function f(x,y)=4x + 6y — 12 —

x2 -y

(a) There is a unique critical point. Find it.

(b) By considering the increment Af, determine
whether this critical point is a maximum, a mini-
mum, or a saddle point.

(c) Now use the Hessian criterion to determine the
nature of the critical point.

. This problem concerns the function g(x, y) = x* —

2y? 4+ 2x +3.
(a) Find any critical points of g.

(b) Use the increment Ag to determine the nature of
the critical points of g.

(c) Use the Hessian criterion to determine the nature
of the critical points.

In Exercises 320, identify and determine the nature of the
critical points of the given functions.

3.

11.
12.
13.
14.
15.
16.
17.

f(x,y):ny—Zx2 —5y2—|—4y—3

4. fx,y) =@ +y*+1)
5.
6

f(x,y)=x2+y3—6xy+3x—|—6y

Sy =yt =2yt + X3 —x

g 1
S, y)=xy+—-+-
x oy

. flx,y)=¢€"siny
C fy)=e (=)
10.

flx,y)=(x+y)1—xy)
f,y)y=x*=y —x*y+y
fle,y)=e(x* +3y%)
fx,y)=2x -3y +Inxy
f(x,y)=cosxsiny
fx,y,2)=x>—xy+72—2xz7+ 62
fx,y,2)=x24+2y2 4+ 1)cosz

18. f(x.y,2) = x> +x22 = 3x% 4 y? 4272

1
19. f(x,y,Z)=xy+xz+2yz+;

20.
21.

fx.y,2) =" (? —y* = 22%)
(a) Find all critical
2y3 —3y2 — 36y +2
1+ 3x2
(b) Identify any and all extrema of f.

points  of

Jflx,y) =

22. (a) Under what conditions on the constant £ will the

function

Fx,y) = kx? = 2xy + ky?
have a nondegenerate local minimum at (0, 0)?
What about a local maximum?

Under what conditions on the constant k will the
function

(b)

k
g(x. y,2) = ka® ot kaz = 2yz = 3P + 52

have a nondegenerate local maximum at (0, 0, 0)?
What about a nondegenerate local minimum?

23. Consider the function f(x,y) = ax? + by?,
where a and b are nonzero constants. Show that
the origin is the only critical point of f, and deter-
mine the nature of that critical point in terms of a

and b.

Now consider the function f(x,y,z) = ax?+
by* + cz?, where a, b, and ¢ are all nonzero. Show
that the origin in R is the only critical point of f,
and determine the nature of that critical point in
terms of a, b, and c.

Finally, let f(xi,%2,...,X,) = aix? + axx?
+ -+ a,lxi, where a; is a nonzero constant for
i =1,2,...,n. Show that the origin in R”" is the
only critical point of f, and determine its nature.

(b)

©

Sometimes it can be difficult to determine the critical point of
a function f because the system of equations that arises from
setting V f equal to zero may be very complicated to solve by
hand. For the functions given in Exercises 24—27, (a) use a

computer to assist you in identifying all the critical points of

f,y,2)=x2+y*+222 +xz

the given function f, and (b) use a computer to construct the



Hessian matrix and determine the nature of the critical points
found in part (a).

© 24

© 25

© 26.
@ 2.

28

29.

30.

31

32.

33.

34.

35.

36.

37.

fl,y) =yt +x° —2xy* —x
flx,y)=2x3y —y?> —3xy
F(x,y,2) = yz — xyz — x% — y2 — 272
fx,y,z,w) = yw — xyz — x> = 22° + w?

Show that the largest rectangular box having a fixed
surface area must be a cube.

What point on the plane 3x — 4y — z = 24 is closest
to the origin?

Find the points on the surface xy + z> = 4 that are
closest to the origin. Be sure to give a convincing ar-
gument that your answer is correct.

Suppose that you are in charge of manufacturing two
types of television sets. The revenue function, in dol-
lars, is given by

R(x,y) = 8x + 6y — x* — 2y + 2xy,

where x denotes the quantity of model X sets sold, and
y the quantity of model Y sets sold, both in units of
100. Determine the quantity of each type of set that
you should produce in order to maximize the resulting
revenue.

Find the absolute extrema of f(x,y) = x>+ xy +
y2 — 6y on the rectangle {(x,y)| —3<x <3, 0<
y =5}

Find the absolute maximum and minimum of
fo,y,2)=x*+xz—y* +22" +xy + 5x

on the block {(x,y,2)] =5<x<0,0<y<3,
0<z<2}L

A metal plate has the shape of the region x? + y* < 1.
The plate is heated so that the temperature at any point
(x, y) on it is indicated by

T(x,y) =2x>4y* — y+3.

Find the hottest and coldest points on the plate and the
temperature at each of these points. (Hint: Parametrize
the boundary of the plate in order to find any critical
points there.)

Find the (absolute) maximum and minimum values of
f(x,y) =sinxcosy on the square R = {(x,y) | 0 <
x <2m, 0<y<2m}.

Find the absolute extrema of f(x,y)=2cosx +
3siny on the rectangle {(x,y)|0<x <4, 0<
y <3}

Determine the absolute minimum and maximum
values of the function f(x,y)=2x?—2xy+ y?

38.

39.
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— y + 3 on the closed triangular region with vertices
(0,0),(2,0), and (0, 2).

Determine the absolute minimum and maximum val-
ues of the function f(x, y) = x?y on the elliptical re-
gion D = {(x, y) | 3x% +4y? < 12}.

Find the absolute extrema of f(x,y,2)=
el =242 o the ball {(x, y, z) | x2 4+ y2 — 2y
+ 22 +4z < 0}.

Each of the functions in Exercises 40—45 has a critical point
at the origin. For each function, (a) check that the Hessian
fails to provide any information about the nature of the critical
point at the origin, and (b) find another way to determine if the
function has a maximum, minimum, or neither at the origin.

40.
41.
42.
43.
44,
45.

flx,y)=x?y?
flx,y)=4—3x%72
flx,y)=x%y?

flx,y,2)=x*yz*
flx,y,2)=x?y*z*
f(X,y,Z)=2_X4y4_Z4

In Exercises 46—48, (a) find all critical points of the given
function f and identify their nature as local extrema and (b)
determine, with explanation, any global extrema of f.

46.
47.
48.
49.

50.

51.

52.

flx,y) = e+

Flx, v, 7) = 2 ¥ -2

f.y)=x+y =3xy+7

Determine the global extrema, if any, of
f(x,y)=xy+2y—Inx —2Iny,

where x, y > 0.

Find all local and global extrema of the function
FOoy, ) =x% 4382+ 4 22— 3xz.

Let f(x,y) =3 = [(x = Dy = )P,
(a) Determine all critical points of f.
(b) Identify all extrema of f.

(a) Suppose f:R — R is a differentiable function of
a single variable. Show that if f has a unique crit-
ical point at x that is the site of a strict local ex-
tremum of £, then f mustattain a global extremum
at xg.

Let f(x,y) = 3ye® — e3* — y3. Verify that f has
a unique critical point and that f attains a local
maximum there. However, show that f does not
have a global maximum by considering how f be-
haves along the y-axis. Hence, the result of part
(a) does not carry over to functions of more than
one variable.

(b)
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53. (a) Let f be a continuous function of one variable. as we now see. Consider the function
Show that if f has two local maxima, then f must fe,y)=2—(xy2—y— 12— (2 =17

also have a local minimum. . .\ .
Show that f has just two critical points—and that

(b) The analogue of part (a) does not necessarily hold both of them are local maxima.
for continuous functions of more than one variable, 0 (¢) Use a computer to graph the function f in part (b).

4.3 Lagrange Multipliers

Constrained Extrema

Frequently, when working with applications of calculus, you will find that you

do not need simply to maximize or minimize a function but that you must do so

T subject to one or more additional constraints that depend on the specifics of the
situation. The following example is a typical situation:

y
EXAMPLE 1 An open rectangular box is to be manufactured having a (fixed)
A volume of 4 ft*. What dimensions should the box have so as to minimize the
f X 4 . amount of material used to make it?

We’ll let the three dimensions of the box be independent variables x, y, and
z, shown in Figure 4.25. To determine how to use as little material as possible,
we need to minimize the surface area function A given by

Figure 4.25 The open box of
Example 1.

Alx,y,2)=  2xy +2yz+ xz
front and back sides bottom only

For x, y, z > 0, this function has neither minimum nor maximum. However, we
have not yet made use of the fact that the volume is to be maintained at a constant
4 ft>. This fact provides a constraint equation,

Vx,y,z) =xyz =4.

The constraint is absolutely essential if we are to solve the problem. In particular,
the constraint enables us to solve for z in terms of x and y:

4
=

We can thus create a new area function of only two variables:

4
a(x,y)=A (x, v, E)

4 4
=2xy +2y E + x E

8 4
=2xy+—+—.
X oy

Now we can find the critical points of a by setting Da equal to 0:

da 8

— =2y——=0

ox Y x2

da 4 '
=2x— — =0

ay y?
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The first equation implies
y = ;v

so that the second equation becomes

4
w—4(Z) =0
16
1
x(l——x3):0.
8

The solutions to this equation are x = 0 (which we reject) and x = 2. Thus, the
critical point of a of interest is (2, 1), and the constrained critical point of the
original function A is (2, 1, 2).

We can use the Hessian criterion to check that x =2, y = 1 yields a local
minimum of a:

or, equivalently,

16/x3 2 2 2
Ha(x,y):[ 5 8/y3] SO Ha(2,l)=[2 8:|'

The sequence of minors is 2, 12 so we conclude that (2, 1) does yield a local
minimum of a. Because a(x, y) — oo as either x — 07, y — 0T, x — o0, or
y — 00, we conclude that the critical point must yield a global minimum as well.
Thus, the solution to the original question is to make the box with a square base
of side 2 ft and a height of 1 ft. *

The abstract setting for the situation discussed in Example 1 is to find max-
ima or minima of a function f(xi,xs,...,Xx,) subject to the constraint that
g(xy, x2, ..., x,) = c for some function g and constant ¢. (In Example 1, the
function f is A(x, y, z), and the constraint is xyz = 4.) One method for finding
constrained critical points is used implicitly in Example 1: Use the constraint
equation g(x) = c¢ to solve for one of the variables in terms of the others. Then
substitute for this variable in the expression for f(x), thereby creating a new
function of one fewer variables. This new function can then be maximized or
minimized using the techniques of §4.2. In theory, this is an entirely appropriate
way to approach such problems, but in practice there is one major drawback: It
may be impossible to solve explicitly for any one of the variables in terms of the
others. For example, you might wish to maximize

f@x,y,2) = x>+ 3y* + y*2*

subject to

gx,y,z)=e" — xsyzz + cos (i> =2.
yz

There is no means of isolating any of x, y, or z on one side of the constraint
equation, and so it is impossible for us to proceed any further along the lines of
Example 1.
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The Lagrange Multiplier

The previous discussion points to the desirability of having another method for
solving constrained optimization problems. The key to such an alternative method
is the following theorem:

THEOREM 3.1 Let X be openin R" and f, g: X — R be functions of class C'.
Let S = {x € X | g(x) = ¢} denote the level set of g at height c. Then if f | (the
restriction of f to S) has an extremum at a point X, € S such that Vg(xo) # 0,
there must be some scalar X such that

V f(x0) = AV g(xo).

The conclusion of Theorem 3.1 implies that to find possible sites for extrema
of f subject to the constraint that g(x) = ¢, we can proceed in the following
manner:

1. Form the vector equation V f(x) = AVg(x).
2. Solve the system

{Vf(X) =AVg(x)

gx)=c
for x and . When expanded, this is actually a system of n 4+ 1 equations in
n + 1 unknowns x|, x2, ..., X,;, A, namely,
S (en, X2, oo X)) = A&y (X1, X2, oy )
o (X1, X2, 0 Xn) = Aguy (X1, X2, s Xn)

fo, (X1, X2, o0, X)) = A&y, (X1, X2, ..., Xp)

g(x1,x3, ..., xy) =cC

The solutions for x = (x1, x2, ..., X,,) in the system above, along with any
other points x satisfying the constraint g(x) = ¢ and such that V f is unde-
fined, or Vg vanishes or is undefined, are the candidates for extrema for the
problem.

3. Determine the nature of f (as maximum, minimum, or neither) at the critical
points found in Step 2.

The scalar A appearing in Theorem 3.1 is called a Lagrange multiplier, after
the Italian-born French mathematician Joseph-Louis Lagrange (1736—-1813) who
first developed this method for solving constrained optimization problems. In
practice, Step 2 can involve some algebra, so it is important to keep your work
organized. (Alternatively, you can use a computer to solve the system.) In fact,
since the Lagrange multiplier X is usually not of primary interest, you can avoid
solving for it explicitly, thereby reducing the algebra and arithmetic somewhat.
Determining the nature of a constrained critical point (Step 3) can be a tricky
business. We’ll have more to say about that issue in the examples and discussions
that follow.

EXAMPLE 2 Let us use the method of Lagrange multipliers to identify the
critical point found in Example 1. Thus, we wish to find the minimum of

A(x,y,2) =2xy +2yz +xz



4.3 | Lagrange Multipliers 281

subject to the constraint
Vix,y,z) =xyz =4.
Theorem 3.1 suggests that we form the equation
VA(x,y,z) =AVV(x,y,2).

This relation of gradients coupled with the constraint equation gives rise to the
system

2y + z=MAyz

2x + 2z =Axz

2y + x =Axy

xyz =4
Since X is not essential for our final solution, we can eliminate it by means of any
of the first three equations. Hence,
_2y+z 2x+2z 2y+x
vz Xz xy

A

Simplifying, this implies that

2 1 2 2 1
z Yy Cxo oy
The first equality yields
1 2
—=— or x =2y,
y X
while the second equality implies that
2 1
—=— or z=2y.
< y

Substituting these relations into the constraint equation xyz = 4 yields

2y»(»)Q2y) = 4,

so that we find that the only solutionis y = 1, x = z = 2, which agrees with our
work in Example 1. (Note that VV = 0 only along the coordinate axes, and such
points do not satisfy the constraint V(x, y, z) = 4.) *

An interesting consequence of Theorem 3.1 is this: By Theorem 6.4 of Chap-
ter 2, we know that the gradient Vg, when nonzero, is perpendicular to the level
sets of g. Thus, the equation V f = AV g gives the condition for the normal vector
to a level set of f to be parallel to that of a level set of g. Hence, for a point x
to be the site of an extremum of f on the level set S = {x | g(x) = ¢}, where
Vg(xp) # 0, we must have that the level set R of f that contains X is tangent to
S at xg.

EXAMPLE 3 Consider the problem of finding the extrema of f(x, y) = x*/4
+ y? subject to the condition that x* + y*> = 1. We let g(x, y) = x> + 2, and
so the Lagrange multiplier equation V f(x, y) = AVg(x,y), along with the



282 Chapter 4 | Maxima and Minima in Several Variables

y

Figure 4.26 The level sets of the
function f(x, y) = x%/4 + y?
define a family of ellipses. The
extrema of f subject to the
constraint that x> 4+ y> = 1 (i.e.,
that lie on the unit circle) occur at

points where an ellipse of the
family is tangent to the unit circle.

constraint equation, yields the system
X

— = 2Ax
2
X2+y2=1

(There are no points simultaneously satisfying g(x,y) =1 and Vg(x,y) =
(0, 0).) The first equation of this system implies that either x =0 or A = }1.
If x = 0, then the second two equations, taken together, imply that y = +1 and
A=1.1fr = i, then the second two equations imply y = 0 and x = +1. There-
fore, there are four constrained critical points: (0, £1), corresponding to A = 1,
and (£1, 0), corresponding to A = i.

We can understand the nature of these critical points by using geometry and
the preceding remarks. The collection of level sets of the function f is the family
of ellipses x?/4 + y? = k whose major and minor axes lie along the x- and y-
axes, respectively. In fact, the value f(x, y) = x*/4+ y? = k is the square of
the length of the semiminor axis of the ellipse x?/4 + y?> = k. The optimization
problem then is to find those points on the unit circle x> + y*> = 1 that, when
considered as points in the family of ellipses, minimize and maximize the length
of the minor axis. When we view the problem in this way, we see that such points
must occur where the circle is tangent to one of the ellipses in the family. A sketch
shows that constrained minima of f occur at (41, 0) and constrained maxima at
(0, £1). In this case, the Lagrange multiplier A represents the square of the length
of the semiminor axis. (See Figure 4.26.) .

EXAMPLE 4 Consider the problem of determining the extrema of f(x, y) =
2x + y subject to the constraint that \/x + ,/y = 3. We let g(x, y) = /x + />,
so that the Lagrange multiplier equation V f(x, y) = AVg(x, y), along with the
constraint equation, yields the system

by
p e p—
2/x
A
l=— -
2y
Vx4 /y=3

The first two equations of this system imply that A = 4,/x = 2,/y so that \/y =
2./x. Using this in the last equation, we find that 3,/x = 3 and, hence, x = 1.
Thus, the system of equations above yields the unique solution (1, 4).

Since the constraint defines a closed, bounded curve segment, the extreme
value theorem (Theorem 2.5) applies to guarantee that f must attain both a
global maximum and a global minimum on this segment. However, the Lagrange
multiplier method has provided us with just a single critical point. But note that the
points (9, 0) and (0, 9) satisfy the constraint /x + ,/y = 3; they are both points
where Vg is undefined. Moreover, we have f(1,4) = 2, while f(9,0) = 18 and
£(0,9) = 9. Evidently then, the minimum of f occurs at (1, 4) and the maximum
at (9, 0).

We can understand the geometry of the situation in the following manner. The
collection of level sets of the function f is the family of parallel lines 2x + y = &.
Note that the height k of each level set is just the y-intercept of the corresponding
line in the family. Thus, the problem we are considering is to find the largest and
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Figure 4.28 The gradient

Vg(xp) is perpendicular to

S = {x| g(x) = ¢}, hence, to the
tangent vector at x( to any curve
x(t) lying in S and passing through
xo. If f has an extremum at x,
then the restriction of f to the
curve also has an extremum at x.
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Figure 4.27 The level sets of the function f(x, y) = 2x + y define a family
of lines. The minimum of f subject to the constraint that \/x + ./y =3
occurs at a point where one of the lines is tangent to the constraint curve and
the maximum at one of the endpoints of the curve.

smallest y-intercepts of any line in the family that meets the curve \/x + ./y = 3.
These extreme values of k occur either when one of the lines is tangent to the
constraint curve or at an endpoint of the curve. (See Figure 4.27.)

This example illustrates the importance of locating all the points where ex-
trema may occur by considering places where V f or Vg is undefined (or where
Vg = 0) as well as the solutions to the system of equations determined using
Lagrange multipliers. *

Sketch of a proof of Theorem 3.1 We present the key ideas of the proof, which
are geometric in nature. Try to visualize the situation for the case n = 3, where
the constraint equation g(x, y, z) = c defines a surface S in R3. (See Figure 4.28.)
In general, if S is defined as {x | g(x) = ¢} with Vg(x¢) # 0, then (at least locally
near Xg) S is a hypersurface in R". The proof that this is the case involves the
implicit function theorem (Theorem 6.5 in §2.6), and this is why our proof here
is just a sketch.

Thus, suppose that xj is an extremum of f restricted to S. We consider a
further restriction of f—to a curve lying in S and passing through x¢. This will
enable us to use results from one-variable calculus. The notation and analytic
particulars are as follows: Let x: ] € R — § C R be a C! path lying in S with
X(tp) = X for some #y € I. Then the restriction of f to x is given by the function
F, where

F(1) = f(x(@)).

Because Xy is an extremum of f on S, it must also be an extremum on x. Conse-
quently, we must have F’(fy) = 0, and the chain rule implies that

d
0= F'(ty) = i x(®)],_, = Vf(x(19)) - X(t0) = V f(x0) - X (t0)-

Thus, V f(x¢) is perpendicular to any curve in S passing through x¢; that is,
V f(x¢) is normal to S at xg. We’ve seen previously in §2.6 that the gradient
Vg(Xp) is also normal to S at x. Since the normal direction to the level set S is



284

Chapter 4 | Maxima and Minima in Several Variables

uniquely determined and Vg(xg) # 0, we must conclude that V f(x¢) and V g(xo)
are parallel vectors. Therefore,
V f(x0) = AVg(xo)

for some scalar A € R, as desired. [ |

The Case of More than One Constraint

It is natural to generalize the situation of finding extrema of a function f subject
to a single constraint equation to that of finding extrema subject to several con-
straints. In other words, we may wish to maximize or minimize f subject to k
simultaneous conditions of the form

gi1(x) = ¢
&2(x) =2
gr(x) = cx

The result that generalizes Theorem 3.1 is as follows:

THEOREM 3.2 Let X beopeninR" and let f, g1, ..., gx: X € R" — Rbe C!
functions, wherek < n.LetS ={xe X | gi(X) =c1, ..., g(X) = c}.If f|s has
an extremum at a point xo, where Vg;(Xo), . .., Vgr(Xo) are linearly independent
vectors, then there must exist scalars A, ..., A; such that

V f(x0) = 21Vgi(X0) + A2V ga(xp) + - - - + A Vgr(Xo).

(Note: k vectors vy, ..., v, in R” are said to be linearly independent if the only
way to satisfy a; vy + - - - + ar vy = 0 for scalars ay, ..., ar isifay =a, = --- =
ay = 0)

Idea of proof First, note that S is the intersection of the £ hypersurfaces S, . . .,
Sk, where S; = {x € R" | g;(x) = ¢;}. Therefore, any vector tangent to S must
also be tangent to each of these hypersurfaces, and so, by Theorem 6.4 of
Chapter 2, perpendicular to each of the Vg;’. Given these remarks, the main
ideas of the proof of Theorem 3.1 can be readily adapted to provide a proof of
Theorem 3.2.

Therefore, we let Xy € S be an extremum of f restricted to S and consider
the one-variable function obtained by further restricting f to a curve in S through
Xo. Thus, let x: 7 — S C R" be a C! curve in S with x(fy) = X, for some #, € 1.
Then, as in the proof of Theorem 3.1, we define F by

F@t) = f(x(1)).
It follows, since X, is assumed to be a constrained extremum, that
F'(t) = 0.
The chain rule then tells us that
0= F'(ty) = V f(x(t0)) - X'(to) = V f (x0) - X (to).

Thatis, V f(X¢) is perpendicular to all vectors tangent to S at xo. Therefore, it can
be shown that V f(x¢) is in the k-dimensional plane spanned by the normal vectors



Plane spanned by
Vgi(x,) and

Figure 4.29 Illustration of the
proof of Theorem 3.2. The
constraints g1(x) = ¢ and

g2(x) = ¢ are the surfaces S| and
S,. Any extremum of f must occur
at points where V f is in the plane
spanned by Vg; and Vg,.
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to the individual hypersurfaces S, . .., Sy whose intersection is S. It follows (via
a little more linear algebra) that there must be scalars A1, ..., A; such that

Vf(x0) = 21Vgi1(X0) + A2V ga(Xg) + - - - + A Vgi(Xo)-

A suggestion of the geometry of this proof is provided by Figure 4.29 (where
k=2andn = 3). ]

EXAMPLE 5 Suppose the cone z> = x2 + y? is sliced by the plane z = x +
v + 2 so that a conic section C is created. We use Lagrange multipliers to find
the points on C that are nearest to and farthest from the origin in R.

The problem is to find the minimum and maximum distances from (0, 0, 0)
of points (x, y, z) on C. For algebraic simplicity, we look at the square of the
distance rather than the actual distance. Thus, we desire to find the extrema of

fx,y,z) =x*+y* 4+ 7
(the square of the distance from the origin to (x, y, z)) subject to the constraints

gi(x, v, ) =x>+y2—72=0
Q(x,y,2)=x+y—z=-2

Note that
Vgl(x,y,z):(Zx,2y,—2z) and ng(X,y,Z):(lal,—l)-

These vectors are linearly dependent only when x = y = z. However, no point of
the form (x, x, x) simultaneously satisfies g; = 0 and g, = —2. Hence, Vg, and
V g, are linearly independent at all points that satisfy the two constraints. There-
fore, by Theorem 3.2, we know that any constrained critical points (xo, Yo, Zo)
must satisfy

V [ (x0. Y0, 20) = A1V g1(x0, Y0, 20) + 22V &2(x0, Y0, 20)s

as well as the two constraint equations. Thus, we must solve the system

2x =2 x + Ay
2y =201y + A
2z = =2Mz2— Ay -
X +yP—22=0
X+y—z=-2

Eliminating A, from the first two equations yields
Ay =2x —2Mx =2y — 241y,
which implies that
2 —y)I =11 =0.
Therefore, either
x=y or X =1.

The condition A; = 1 implies immediately A, = 0, and the third equation of the
system becomes 2z = —2z, so z must equal 0. If z = 0, then x and y must be
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Figure 4.30 The
point a; is the point
on the hyperbola

closest to the origin.

The point a, is the
point on the lower
branch of the
hyperbola closest
to the origin.

zero by the fourth equation. However, (0, 0, 0) is not a point on the plane z =
X + y + 2. Thus, the condition 1| = 1 leads to no critical point. On the other hand,
if x = y, then the constraint equations (the last two in the original system of five)
become

2 =22 =0
2x —z=-2
Substituting z = 2x + 2 yields
2x% — (2x +2)* =0,
equivalent to
2x° +8x +4 =0,

whose solutions are x = —2 + /2. Therefore, there are two constrained critical
points

ar= (242,242, -2+242)
and
m=(-2-v2,-2-v2,-2-242).
We can check that

f(a)) =24 — 16V/2, f(az) = 24 + 16V/2,

so it seems that a; must be the point on C lying nearest the origin, and a, must be
the point that lies farthest. However, we don’t know a priori if there is a farthest
point. If the conic section C is a hyperbola or a parabola, then there is no point
that is farthest from the origin. To understand what kind of curve C is, note
that a; has positive z-coordinate and a; has negative z-coordinate. Therefore, the
plane z = x + y + 2 intersects both nappes of the cone z> = x> 4 y2. The only
conic section that intersects both nappes of a cone is a hyperbola. Hence, C is a
hyperbola, and we see that the point a, is indeed the point nearest the origin, but
the point a; is not the farthest point. Instead, a; is the point nearest the origin on
the branch of the hyperbola not containing a;. That is, local constrained minima
occur at both a; and a,, but only a; is the site of the global minimum. (See
Figure 4.30.) *

A Hessian Criterion for Constrained Extrema (optional) —

As Example 5 indicates, it is often possible to determine the nature of a critical
point (constrained or unconstrained) from considerations particular to the prob-
lem at hand. Sometimes this is not difficult to do in practice and can provide
useful insight into the problem. Nonetheless, occasionally it is advantageous to
have a more automatic means of discerning the nature of a constrained critical
point. We therefore present a Hessian criterion for constrained critical points.
Like the one in the unconstrained case, this criterion only determines the /ocal
nature of a critical point. It does not provide information about global constrained
extrema.’

2 We invite the reader to consult D. Spring, Amer. Math. Monthly, 92 (1985), no. 9, 631643 for a more
complete discussion.
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In general, the context for the Hessian criterion is this: We seek extrema of a
function f: X € R" — R subject to the k constraints

gl(XI, xz’ ey xn) = Cl

&(x1, X2, ..., X)) =2

gk('x19 x27 sy xn) = Ck
We assume that f, g1, ..., g are all of class C2, and assume, for simplicity, that
f and the g;’s all have the same domain X . Finally, we assume that Vg, ..., Vg

are linearly independent at the constrained critical point a. Then, by Theorem 3.2,
any constrained extremum a must satisfy

Vf(a)=x1Vgi(a)+ 1 Vg(a)+ -+ A Vgi(a)

for some scalars Ay, ..., L. We can consider a constrained critical point to be a
pair of vectors

()u;a)z()»1,...,)»](;(11,...,&,,)

satisfying the aforementioned equation. In fact, we can check that (X; a) is an
unconstrained critical point of the so-called Lagrangian function L defined
by

k
Ly, lixn s %) = f e x) = Y L(gi(xn, o x) = ).

i=1

The Hessian criterion comes from considering the Hessian of L at the critical
point (A; a). Before we give the criterion, we note the following fact from linear

algebra: Since Vgi(a), ..., Vgi(a) are assumed to be linearly independent, the
derivative matrix of g = (gy, ..., g¢) at a,

981 981

—(a .. a

axl( ) 8xn( )

Dg(a) = Do ;

98k 08k

— a ... a

8x1( ) 8xn( )

hasak x k submatrix (obtained by deletingn — k columns of Dg(a)) with nonzero
determinant. By relabeling the variables if necessary, we will assume that

981 0g1
o1 (a) B2, (a)
det : : #0
08k 08k
o1 (a) oxe (a)

(i.e., that we may delete the last n — k columns).
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Second derivative test for constrained local extrema. Given a constrained
critical point a of f subject to the conditions g;(x) = ¢, g2(X) =c¢2, .. .,
gi(X) = ¢, consider the matrix

i 981 agr, |
0 0 — 2 e —
ox, (a) ox (a)
o) 0
0 0 _ﬁ(a) e — g"(a)
HLsa)=| ) 0x1 O |,
_ﬁ(a) _ﬁ(a) hi o hy,
8x1 3X1
981 08k
_ e h, o
L 0x, @) 0x, @) ! _
where
2 2 2 2
f 9781 0782 0° gk
= — A — A L sa ) .
/ 8)Cj 8x,~ (a) : ijaxi (a) zaxjaxi (a) kaxjaxi (a)

(Note that HL()\;a) is an (n + k) X (n + k) matrix.) By relabeling the vari-
ables as necessary, assume that

g1 ag1
ox, (@ --- ox, (a)
det : : # 0.
08k 08k
o, (@ --- oxs (a)

As in the unconstrained case, let H; be the upper leftmost j x j subma-
trix of HL(A,a). For j =1,2,...,k+n,letd; = det H;, and calculate the
following sequence of n — k numbers:

(—Dfduyr, (=Dfdmsa, ..., (=Dfdisn. @)

Note that, if k > 1, the sequence in (1) is nof the complete sequence of prin-
cipal minors of H L(A, a). Assume dy.,, = det HL(A, a) # 0. The numerical
test is as follows:

1. If the sequence in (1) consists entirely of positive numbers, then f has a
local minimum at a subject to the constraints
gixX)=c1, LX) =c..., gEX) =c.
2. Ifthe sequence in (1) begins with a negative number and thereafter alter-
nates in sign, then f has a local maximum at a subject to the constraints
gix)=ci, LX) =c.... g =c.

3. If neither case 1 nor case 2 holds, then f has a constrained saddle point
at a.

In the event that det H L(X, a) = 0, the constrained critical point a is degen-
erate, and we must use another method to determine whether or not it is the
site of an extremum.
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Finally, in the case of no constraint equations g;(x) = ¢; (i.e., k = 0), the
preceding criterion becomes the usual Hessian test for a function f of n variables.

EXAMPLE 6 In Example 1, we found the minimum of the area function
A(x,y,7) =2xy 4+ 2yz + xz
of an open rectangular box subject to the condition
V(x,y,z) =xyz =4.

Using Lagrange multipliers, we found that the only constrained critical point was
(2, 1, 2). The value of the multiplier A corresponding to this point is 2. To use the
Hessian criterion to check that (2, 1, 2) really does yield a local minimum, we
construct the Lagrangian function

Ll;x,y,2) = Ax, y,2) = I(V(x,y,2) =4
=2xy+2yz+xz —Il(xyz —4).
Then
0 —yz —Xz —Xy
—yz 0 2—1z 1-1y
—xz 2—Ix 0 2 —1Ix
—xy 1-=Iy 2-lIx 0

HL(;x,y,z)=

At the constrained critical point (2;2, 1, 2), we have

0 -2 —4 =2
-2 0 -2 -1
HL(2;2,1,2)= 4 2 0 -2
-2 -1 =2 0
The sequence of determinants to consider is
[ 0 —2 —4
(=1)'det Hyqypp = —det| =2 0 =2 | =32,
| 4 -2 0
T 0 -2 —4 =2
1 _ -2 0 -2 -1 _
(—1)" det Hy = — det 4 2 0 2 | = 48.
| 2 -1 =2 0
Since these numbers are both positive, we see that (2, 1, 2) indeed minimizes the
area of the box subject to the constant volume constraint. *

EXAMPLE 7 In Example 5, we found points on the conic section C defined
by equations

gi(x,y,0)=x*+y* =22 =0
g, y,2)=x+y—z=-2
that are (constrained) critical points of the “distance” function
[y, =x"+y + 2,
To apply the Hessian criterion in this case, we construct the Lagrangian function

L, m;x,y,2) = x>+ Y+ 22— 1P+ y =) —mx +y — 2 +2).
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The critical points of L, found by setting DL(I, m;x, y, z) equal to 0, are
(A381) = (=3 +2v2, =24+ 168/2; =2+ V2, =2 + /2, =2+ 24/2)

and

(A2 ap) = (=3 —2V2,

The Hessian of L is

HL(,m;x,y,z)=

—24 —16V/2; -2 -2, -2 -2, —2-22).

0 0 —2x —2y 2z
0 0 —1 -1 1
—2x -1 2-2] 0 0
-2y —1 0 2 -2l 0

| 2z 1 0 0 2421

After we evaluate this matrix at each of the critical points, we need to compute

(—1)2 det Hy2)+1 = det Hs.

We leave it to you to check that for (A;;a;) this determinant is 128 — 64+/2 &
37.49, and for (A, ay) itis 128 + 64+/2 ~ 218.51. Since both numbers are pos-
itive, the points (—2 + «/5, -2+ ﬁ, -2+ 2\/5) are both sites of local min-
ima. By comparing the values of f at these two points, we see that (—2 + V2,

-2+ «/_ ,—2 4+ Zﬁ) must be the global minimum.

4.3 Exercises

2

1.

In this problem, find the point on the plane 2x — 3y —

z = 4 that is closest to the origin in two ways:

(a) by using the methods in §4.2 (i.e., by finding the
minimum value of an appropriate function of two
variables);

(b) by using a Lagrange multiplier.

In Exercises 2—12, use Lagrange multipliers to identify the crit-
ical points of f subject to the given constraints.

2.

-

-
-

© ¥ ® N o g pw

f, )=y, 2x*2+y>=4
flx,y)=5x+2y, 5x?+2y*=14
flx,y)=xy, 2x—=3y=6

fx,v,2)=xyz, 2x+3y4+2=6
fe.y,)=x>+y+2% x+y—z=1
fx,y,20)=3-x2=2y2 -2 2x4+y+z=2
Oy, 2)=x0 490420 X24+3y2+72=6
f,y,0)=2x+y"—2%, x—2y=0,x+z=0

flx,y,2) =2x 4+ y* + 2z,
z=2

=y =1 x4y +

cfxy,)=xy+yz, 2+yi=1, yz=1

12, f(x,y,20)=x+y+z, yY¥—x*=1, x+2z=1

13. (a) Find the critical points of f(x,y) = x> + y sub-
jectto x2 +2y? = 1.
(b) Use the Hessian criterion to determine the nature
of the critical point.

14. (a) Find any critical points of f(x,y,z, w) = x>+
2+ 72 +w?subjectto2x + y+z=1,x — 2z —
w=-2,3x+y+2w=-1.

(b) Use the Hessian criterion to determine the nature
of the critical point. (Note: You may wish to use a
computer algebra system for the calculations.)

Just as sometimes is the case when finding ordinary (i.e., un-
constrained) critical points of functions, it can be difficult to
solve a Lagrange multiplier problem because the system of
equations that results may be prohibitively difficult to solve by
hand. In Exercises 15—19, use a computer algebra system to
find the critical points of the given function f subject to the
constraints indicated. (Note: You may find it helpful to provide
numerical approximations in some cases.)

@15 f(x.y.0)=3xy—4z.3x+y—2xz=1
@ 16. f(x.y.2)=3xy—4dyz+5xz, 3x+y+2z=12,

2x =3y +5z=0



© 17
© 18
@ 19

20.

fe,y, )=y +2xyz —x2, x> +y>+72 =1
fy,n)=x>+y* —xxy+22 =1

fe,y, zw)y=x2+y*+ 22+ w?,
Xty tztw=Lx—y+tz—w=0

Consider the problem of determining the extreme val-

ues of the function f(x, y) = x> 4 3y? subject to the

constraint that xy = —4.

(a) UseaLagrange multiplier to find the critical points
of f that satisfy the constraint.

(b) Give an analytic argument to determine if the criti-

cal points you found in part (a) yield (constrained)
maxima or minima of f.

0 (c) Use acomputer to plot, on a single set of axes, sev-

21.

22.

23.

24.

25.

eral level curves of f together with the constraint
curve xy = —4. Use your plot to give a geometric
justification for your answers in parts (a) and (b).

Find three positive numbers whose sum is 18 and
whose product is as large as possible.

Find the maximum and minimum values of
f(x,y,7) =x 4+ y — z on the sphere x> + y*> + 7> =
81. Explain how you know that there must be both a
maximum and a minimum attained.

Find the maximum and minimum values of f(x, y) =
x2 4 xy + y? onthe closed disk D = {(x, y) | x*> + »?
< 4}.

You are sending a birthday present to your calculus in-
structor. Fly-By-Night Delivery Service insists that any
package it ships be such that the sum of the length plus
the girth be at most 108 in. (The girth is the perimeter of
the cross section perpendicular to the length axis—see
Figure 4.31.) What are the dimensions of the largest
present you can send?

Figure 4.31 Diagram for
Exercise 24.

A cylindrical metal can is to be manufactured from
a fixed amount of sheet metal. Use the method of
Lagrange multipliers to determine the ratio between
the dimensions of the can with the largest capacity.

26.

27.

28.

29.

30.
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An industrious farmer is designing a silo to hold her
9007 ft* supply of grain. The silo is to be cylindrical
in shape with a hemispherical roof. (See Figure 4.32.)
Suppose that it costs five times as much (per square
foot of sheet metal used) to fashion the roof of the silo
as it does to make the circular floor and twice as much
to make the cylindrical walls as the floor. If you were
to act as consultant for this project, what dimensions
would you recommend so that the total cost would be
a minimum? On what do you base your recommen-
dation? (Assume that the entire silo can be filled with
grain.)

Figure 4.32 The grain silo
of Exercise 26.

You are in charge of erecting a space probe on the
newly discovered planet Nilrebo. To minimize interfer-
ence to the probe’s sensors, you must place the probe
where the magnetic field of the planet is weakest. Nil-
rebo is perfectly spherical with a radius of 3 (where
the units are thousands of miles). Based on a coordi-
nate system whose origin is at the center of Nilrebo,
the strength of the magnetic field in space is given by
the function M(x, y,z) = xz — y> + 3x + 3. Where
should you locate the probe?

Heron’s formula for the area of a triangle whose sides
have lengths x, y, and z is

Area = \/s(s —x)(s — y)(s — 2),

where s = %(x +y+2z) is the so-called semi-
perimeter of the triangle. Use Heron’s formula to show
that, for a fixed perimeter P, the triangle with the
largest area is equilateral.

Use a Lagrange multiplier to find the largest sphere
centered at the origin that can be inscribed in the ellip-
soid 3x% 4 2y? + z2 = 6. (Be careful with this prob-
lem; drawing a picture may help.)

Find the point closest to the origin and on the line
of intersection of the planes 2x +y + 3z =9 and
3x+2y+z=6.
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31

32.

33.

34.

35.

36.

37.

38.

39.

40.
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. Find the point closest to the point (2, 5, —1) and on the
line of intersection of the planes x — 2y + 3z = 8 and
2z —y=3.

The plane x 4+ y + z =4 intersects the paraboloid
z =x2 4+ y? in an ellipse. Find the points on the el-
lipse nearest to and farthest from the origin.

Find the highest and lowest points on the ellipse ob-
tained by intersecting the paraboloid z = x? 4 y? with
the plane x + y 4+ 2z = 2.

Find the minimum distance between a point on the
ellipse x> 4 2y = l andapoint onthe line x + y = 4.
(Hint: Consider a point (x, y) on the ellipse and a point
(u, v) on the line. Minimize the square of the distance
between them as a function of four variables. This prob-
lem is difficult to solve without a computer.)

(a) Usethe method of Lagrange multipliers to find crit-
ical points of the function f(x, y) = x + y subject
to the constraint xy = 6.

(b) Explain geometrically why f has no extrema on
the set {(x, y) | xy = 6}.

Leta, B, and y denote the (interior) angles of a triangle.
Determine the maximum value of sin« sin 8 sin y .

Let S be a surface in R given by the equation
g(x, y,7) = c, where g is a function of class C' with
nonvanishing gradient and c is a constant. Suppose that
there is a point P on S whose distance from the origin
is a maximum. Show that the displacement vector from
the origin to P must be perpendicular to S.

The cylinder x> 4+ y> =4 and the plane 2x + 2y +
z =2 intersect in an ellipse. Find the points on
the ellipse that are nearest to and farthest from the
origin.

Find the points on the ellipse 3x> — 4xy + 3y> = 50
that are nearest to and farthest from the origin.

This problem concerns the determination of the ex-

trema of f(x,y) =/x +8,/y subject to the con-

straint x> + y?> = 17, where x > 0 and y > 0.

(a) Explain why f must attain both a global minimum
and a global maximum on the given constraint
curve.

(b) Use a Lagrange multiplier to solve the system of
equations

)

{Vf(x, y)=AVg(x,y)
gx,y)=0

where g(x, y) = x> 4+ y2. You should identify a
single critical point of f.

(c¢) Identify the global minimum and the global max-
imum of f subject to the constraint.

41.

Consider the problem of finding extrema of f(x, y) =

x subject to the constraint y? — 4x3 + 4x* = 0.

(a) Use a Lagrange multiplier and solve the system of
equations

3

{Vf(x, y)=aVeg(x.y)
g(x,y)=0
where g(x,y) = y*> — 4x3 4 4x*. By doing so,

you will identify critical points of f subject to the
given constraint.

0 (b) Graph the curve y> — 4x3 4+ 4x* = 0 and use the

42.

43.

graph to determine where the extrema of f(x, y) =
X occur.

(c) Compare your result in part (a) with what you
found in part (b). What accounts for any differ-
ences that you observed?

Consider the problem of finding extrema of

f(x,y,2) = x>+ y? subject to the constraint z = c,

where ¢ is any constant.

(a) Use the method of Lagrange multipliers to iden-
tify the critical points of f subject to the constraint
given above.

(b) Using the usual alphabetical ordering of variables
(i.e., x; = x, x, =y, x3 = 2), construct the Hessian
matrix HL(A;ay, ax,a3) (where L(l;x,y,z) =
f(x,y,z)—I(z — ¢)) for each critical point you
found in part (a). Try to use the second deriva-
tive test for constrained extrema to determine the
nature of the critical points you found in part (a).
What happens?

(c) Repeat part (b), this time using the variable order-
ing x; = z, x, = y, x3 = x. What does the second
derivative test tell you now?

(d) Without making any detailed calculations, discuss
why f must attain its minimum value at the point
(0, 0, ¢). Then try to reconcile your results in parts
(b) and (c). This exercise demonstrates that the as-
sumption that

081 g1
ox, (2) ox, (a)
det : : #0
08 gk
ox, (a) o0 (a)

is important.

Consider the problem of finding critical points of the
function f(xi,...,x,) subject to the set of k con-

straints
g1(x1, .. xp) =c1, &1, ... X)) =cCa, .,
gi(X1, ..., X)) = ¢

Assume that f, g1, g2, .. ., g are all of class C2.



(a) Show that we can relate the method of Lagrange
multipliers for determining constrained critical
points to the techniques in §4.2 for finding un-
constrained critical points as follows: If

A,a)= (A1, .., s ar, e, ay)

is a pair consisting of k values for Lagrange mul-
tipliers Ay, ..., Ax and n values ay, ..., a, for the
variables xi, ..., x, such that a is a constrained
critical point, then (X, a) is an ordinary (i.e., un-
constrained) critical point of the function

L(ll,...,lk;xl,...,xn)

K
=f(x, ... %) — Zli(gi(xlan-,xn)—cil
izl

(b) Calculate the Hessian H L(A, a), and verify that it
is the matrix used in §4.3 to provide the criterion
for determining the nature of constrained critical
points.

44.

45.
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The unit hypersphere in R" (centered at the origin
0=(0,...,0)) is defined by the equation x7 + x7 +
.-+ +x2 = 1. Find the pair of points x = (x1, ..., x,)
and y = (y1, ..., yn), each of which lies on the unit
hypersphere, that maximizes and minimizes the func-
tion

n
FX1, ooy X, Vis ooy V) = inyi.
i=1

What are the maximum and minimum values of f?

Letx = (xq,...,x,)andy = (y, ..., y,) be any vec-
torsin R" and, fori =1, ...,n, set
X )
U = ———— and v,‘:*.
i} V S
(a) Show that u = (uy,...,u,)and v=(vy, ..., v,)

lie on the unit hypersphere in R”.

(b) Use the result of Exercise 44 to establish the
Cauchy—Schwarz inequality

Xyl < x|yl

Height

4.4 Some Applications of Extrema

In this section, we present several applications of the methods for finding both
constrained and unconstrained extrema discussed previously.

Least Squares Approximation

. The simplest relation between two quantities x and y is, without doubt, a linear

one: y = mx + b (where m and b are constants). When a biologist, chemist,

° psychologist, or economist postulates the most direct connection between two

types of observed data, that connection is assumed to be linear. Suppose that Bob

. Biologist and Carol Chemist have measured certain blood protein levels in an
adult population and have graphed these levels versus the heights of the subjects

Figure 4.33 Height versus protein

level.

Height

Protein level

as in Figure 4.33. If Prof. Biologist and Dr. Chemist assume a linear relationship
between the protein and height, then they desire to pass a line through the data as
closely as possible, as suggested by Figure 4.34.

To make this standard empirical method of linear regression precise (in-

stead of merely graphical and intuitive), we first need some notation. Suppose we

Figure 4.34 Fitting a line to

Protein level

the data.

have collected n pairs of data (xy, y1), (x2, ¥2), - - - » (X, ¥u). (In the example just
described, x; is the protein level of the ith subject and y; his or her height.) We
assume that there is some underlying relationship of the form y = mx + b, and
we want to find the constants m and b so that the line fits the data as accurately
as possible. Normally, we use the method of least squares. The idea is to find
the values of m and b that minimize the sum of the squares of the differences
between the observed y-values and those predicted by the linear formula. That is,
we minimize the quantity

D(m, b) = [y1 = (mx1 +b)I* + [y> — (mxz + b)I’

+ [yn — (mx, + b)I%, (1)
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Line y=mx+b

mx;+b -~ Distance is

o i— (mx;+ D)
(xi7 yi)

Figure 4.35 The method of least squares.

where, for i = 1,...,n, y; represents the observed y-value of the data, and
mx; + b represents the y-value predicted by the linear relationship. Hence, each
expression in D of the form y; — (mx; + b) represents the error between the
observed and predicted y-values. (See Figure 4.35.) They are squared in the
expression for D in order to avoid the possibility of having large negative
and positive terms cancel one another, thereby leaving little or no “net error,”
which would be misleading. Moreover, D(m, b) is the square of the distance
in R” between the point (y, y2, ..., ¥,) and the point (mx; + b, mx, + b, .. .,
mx, + b).

Thus, we have an ordinary minimization problem at hand. To solve it, we
need to find the critical points of D. First, we can rewrite D as

D(m, by =Y [y — (mx; + b)’
i=1

= Zn:yzz —2m ixm — 2bi)’i + Xn:(mxi + b)%.
i=1 i=1 i=1 izl

Then
oD u !
— =2 iny,- + ZZ(mxi + b)x;
am i=1 i=1
n n n
= —Zinyi +2m lez +2b in
i=1 i=1 i=1
and

aa—f =—2;yi+;2(mxi+b)

= —2iyl +2m ix,- +2I’lb
i=1 i=1

When we set both partial derivatives equal to zero, we obtain the following pair
of equations, which have been simplified slightly:

(X xF)m + (X xi)b = > xivi
(X xi)m+nb=3y '

(All sums are taken from i = 1 to n.) Although (2) may look complicated, it is
nothing more than a linear system of two equations in the two unknowns m and b.

2
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It is not difficult to see that system (2) has a single solution. Therefore, we have
shown the following:

PROPOSITION 4.1 Given n data points (xy, y1), (x2, ¥2), - - ., (X, ¥») With not
all of x1, x5, ..., x, equal, the function

n

D(m,b) = [yi — (mx; + b))’

i=1
has a single critical point (m, by) given by
_ nXiVi— (X x) (X w)
nYy x?— (Z )c,~)2

’

and
(2 x?) (2 3i) = (X xi) (X xivi)
ny x?— (z:x,-)2

bo =

Since D(m, b) is a quadratic polynomial in m and b, the graph of z = D(m, b)
is a quadric surface. (See §2.1.) The only such surfaces that are graphs of functions
are paraboloids and hyperbolic paraboloids. We show that, in the present case,
the graph is that of a paraboloid by demonstrating that D has a local minimum at
the critical point (mg, bo) given in Proposition 4.1.

We can use the Hessian criterion to check that D has a local minimum at
(myg, by). We have

22)6!2 2ZX,'

HD(m,b) =
23 xi  2n

The principal minors are 2 )" x7 and 4n > x? — 4(}_ x,-)z. The first minor is
obviously positive, but determining the sign of the second requires a bit more
algebra. (If you wish, you can omit reading the details of this next calculation
and rest assured that the story has a happy ending.) Ignoring the factor of 4, we

examine the expressionn Y x? — (Z x,-)z. Expanding the second term yields

2
ni:xlz — <ixi> =n ixlz — (i:xlz + szixj>
i=1 i=1 i=1 i=1

i<j
=(n—1)2n:xi2—22x,-xj. 3)
i=1 i<j
On the other hand, we have
Z(x,- —xj)2 = Z (xlz —2x;x;j —I—sz-) =(n-— 1)2}1:)@-2 — Zinxj. “4)
i<j i<j i=1 i<j
(To see that equation (4) holds, you need to convince yourself that

Yl =m— 1)ix,.2
i=1

i<j
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1 2 3 4 5

Figure 4.36 Data for the linear
regression of Example 1.

by counting the number of times a particular term of the form x? appears in the
left-hand sum.) Thus, we have

n n 2
det HD(m.b)=4nY x? - ( xi)
i=1 i=1

= 4<(n -1 lez — Z 2x,-xj> by equation (3),
i=1

i<j
=4 Z(xi - ch)2 by equation (4).
i<j

Because this last expression is a sum of squares, it is nonnegative. Therefore, the
Hessian criterion shows that D does indeed have a local minimum at the critical
point. Hence, the graph of z = D(m, b) is that of a paraboloid. Since the (unique)
local minimum of a paraboloid is in fact a global minimum (consider a typical
graph), we see that D is indeed minimized at (m, by).

EXAMPLE 1 To see how the preceding discussion applies to a specific set of
data, consider the situation depicted in Figure 4.36.
We have n = 5, and the function D to be minimized is
D(m,b) =[2 — (m +b)P +[1 — 2m + b)) +[5— 3m + b)]?
+[3 = (4m +b)]* + [4 — (5Sm + b)].

We compute

Y xi=15, D xP =55, Y owi=1s, > xiyi =51

Thus, using Proposition 4.1,

5-51-15-15 3 55-15—-15-51 6
m:—:—’ = = —,
5-55—-15-15 5§ 5-55-15-15 5

The best fit line in terms of least squares approximation is

3.6 .
=—-x+-.
YT

Of course, linear regression is not always an appropriate technique. It may
not be reasonable to assume that the data points fall nearly on a straight line.
Some formula other than y = mx + b may have to be assumed to describe the
data with any accuracy. Such a postulated relation might be quadratic,

y =ax>+bx +c,

or x and y might be inversely related,
a
y=—+b.
X

You can still apply the method of least squares to construct a function analogous

to D in equation (1) to find the relation of a given form that best fits the data.
Another way that least squares arise is if y depends not on one variable but

on several: x1, x,, ..., x,. For example, perhaps adult height is measured against
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Figure 4.37 A particle traveling
in a force field F.
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blood levels of 10 different proteins instead of just one. Multiple regression is
the statistical method of finding the linear function

y=aix;+ax,+---+ayx, +0b
that best fits a data set of (n + 1)-tuples

» M

M _a ) @ ) ® _® !
{(xl xS x Dy, P P x @y, xS ,...,x,ﬂ),yk)}-

We can find such a “best fit hyperplane” by minimizing the sum of the squares of
the differences between the y-values furnished by the data set and those predicted
by the linear formula. We leave the details to you.?

Physical Equilibria
Let F: X € R> — R’ be a continuous force field acting on a particle that moves

along a path x: / € R — R? as in Figure 4.37. Newton’s second law of motion
states that

F(x(1)) = mx"(1), ®)

where m is the mass of the particle. For the remainder of this discussion, we will
assume that F is a gradient field, that is, that F = —VV for some C! potential
function V: X € R? — R.(See §3.3 for a brief comment about the negative sign.)
We first establish the law of conservation of energy.

THEOREM 4.2 (CONSERVATION OF ENERGY) Given the set-up above, the
quantity

smlIX @O + V(x(1)

is constant.

The term %m IX'(¢))? is usually referred to as the kinetic energy of the particle
and the term V(x(¢)) as the potential energy. The significance of Theorem 4.2
is that it states that the sum of the kinetic and potential energies of a particle
is always fixed (conserved) when the particle travels along a path in a gradient
vector field. For this reason, gradient vector fields are also called conservative
vector fields.

Proof of Theorem 4.2 As usual, we show that the total energy is constant by
showing that its derivative is zero. Thus, using the product rule and the chain rule,
we calculate

d
LAY @)X @)+ V)] = mx ()X () + YV () X ()

= mx"(1) - X'(t) = F(x(1)) - X'()
=mx"(t)-X'(t) — mx"(¢t) - x'(t)
=0,
from the definitions of F and V and by formula (5). ]
3 Or you might consult S. Weisberg, dpplied Linear Regression, 2nd ed., Wiley-Interscience, 1985,

Chapter 2. Be forewarned, however, that to treat multiple regression with any elegance requires somewhat
more linear algebra than we have presented.
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Figure 4.38 For a stable
equilibrium point, the path of a
nearby particle with a sufficiently
small kinetic energy will remain
nearby with a bounded kinetic

energy.

In physical applications it is important to identify those points in space that
are “rest positions” for particles moving under the influence of a force field. These
positions, known as equilibrium points, are such that the force field does not act
on the particle so as to move it from that position. Equilibrium points are of two
kinds: stable equilibria, namely, equilibrium points such that a particle perturbed
slightly from these positions tends to remain nearby (for example, a pendulum
hanging down at rest) and unstable equilibria, such as the act of balancing a ball
on your nose. The precise definition is somewhat technical.

DEFINITION 4.3 Let F: X € R" — R” be any force field. Then x¢ € X is
called an equilibrium point of F if F(x¢) = 0. An equilibrium point X, is
said to be stable if, for every r, ¢ > 0, we can find other numbers ry, €9 > 0
such that if we place a particle at position x with ||x — Xg|| < ro and provide it
with a kinetic energy less than €, then the particle will always remain within
distance r of x¢ with kinetic energy less than €.

In other words, a stable equilibrium point x¢ has the following property: You
can keep a particle inside a specific ball centered at x, with a small kinetic energy
by starting the particle inside some other (possibly smaller) ball about x, and
imparting to it some (possibly smaller) initial kinetic energy. (See Figure 4.38.)

THEOREM 4.4 For a C' potential function V of a vector field F = —VV,
1. The critical points of the potential function are precisely the equilibrium
points of F.

2. If'x( gives a strict local minimum of V, then Xy is a stable equilibrium point
of F.

EXAMPLE 2 The vector field F = (—6x — 2y —2)i+ (—2x —4y +2)j is
conservative and has

V(x,y)=3x>+2xy+2x +2y> —2y +4

as a potential function (meaning that F = —VV according to our current sign
convention). There is only one equilibrium point, namely, (—% ‘3‘) To see if it is
stable, we look at the Hessian of V:
) 6 2
L2 4]
3 4

The sequence of principal minors is 6, 20. By the Hessian criterion, (—g, 5) isa
strict local minimum of V and, by Theorem 4.4, it must be a stable equilibrium
point of F. *

HV (-,

SR

Proof of Theorem 4.4 The proof of part 1 is straightforward. Since F = —VV,
we see that F(x) = 0 if and only if VV (x) = 0. Thus, equilibrium points of F are
the critical points of V.

To prove part 2, let X, be a strict local minimum of V and x: / — R" a C'!
path such that x(#p) = xo for some 7y € /. By conservation of energy, we must
have, for all t € I, that

ImIX' I + V(x(1)) = ImlX(t) > 4+ V (x(t0)).



Vg(x) prOj Vg(x)F(X)

Figure 4.39 On the surface

S = {x | g(x) = c}, the component
of F that is tangent to S at x is
denoted by ®(x).
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To show that x is a stable equilibrium point, we desire to show that we can bound
the distance between x(#) and xy = x(#) by any amount r and the kinetic energy
by any amount €. That is, we want to show we can achieve

() = xoll <r
(i.e., x(7) € B,(x¢) in the notation of §2.2) and
ImlIX'(0)I* < e.

As the particle moves along x away from X, the potential energy must increase
(since xp is assumed to be a strict local minimum of potential energy), so the
kinetic energy must decrease by the same amount. For the particle to escape from
B, (xy), the potential energy must increase by a certain amount. If €; is chosen to
be smaller than that amount, then the kinetic energy cannot decrease sufficiently
(so that the conservation equation holds) without becoming negative. This being
clearly impossible, the particle cannot escape from B, (Xp). ]

Often a particle is not only acted on by a force field but also constrained to lie
in a surface in space. The set-up is as follows: F is a continuous vector field on R?
acting on a particle that lies in the surface S = {x € R® | g(x) = ¢}, where g is a
C' function such that Vg(x) # 0 for all x in S. Most of the comments made in the
unconstrained case still hold true, provided F is replaced by the vector component
of F tangent to S. Since, atx € §, Vg(x) is normal to S, this tangential component
of Fatxis

®(x) = F(x) — projv,x F(x). (6)
(See Figure 4.39.) Then in place of formula (5), we have, forapathx: I C R — §,
(x(1)) = mx"(1). (7

We can now state a “constrained version” of Theorem 4.4.

THEOREM 4.5 For a C! potential function V of a vector field F = —VV,

1. If V| has an extremum at Xy € S, then X is an equilibrium point in S.

2. If V|g has a strict local minimum at xy € S, then xg is a stable equilibrium
point.

Sketch of proof For part 1, if V|¢ has an extremum at x, then, by Theorem 3.1,
we have, for some scalar A, that

VV(X()) = )\Vg(X()).
Hence, because F = —VV,
F(x9) = =1 Vg(xo),

implying that F is normal to S at x¢. Thus, there can be no component of F tangent
to S at x¢ (i.e., ®(x0) = 0). Since the particle is constrained to lie in S, we see
that the particle is in equilibrium in S.

The proof of part 2 is essentially the same as the proof of part 2 of Theorem
4.4. The main modification is that the conservation of energy formula in Theorem
4.2 must be established anew, as its derivation rests on formula (5), which has
been replaced by formula (7). Consequently, using the product and chain rules,
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X2 +y 4+ (z-2r)2=r?

Figure 4.40 On the sphere
XX+ y2 +(z — 2r)2 =2, the
points (0, 0, r) and (0, 0, 3r)
are equilibrium points for the
gravitational force field

F = —mgk.

we check, forx: 7 — S,

o + viay] = S[imx0-x 0+ viso)]

=mx"(t)-X'(t) + VV(x(2)) - X'(¢).

Then, using formula (6), we have

d
T AmIXOI + V)| = X0 - mx"(6) = Fx0) - x'()

X'(1) - ®(x(1)) — F(x(1)) - X'(1)
X'(1)+ [F(x(1)) — projvgxy F(x(1))]
—F(x(1))-x'(1)

= —X/(t) - projvcx(r) F(x(1))

after cancellation. Thus, we conclude that

d
Z[imIx O + Vx| =o.

since x'(¢) is tangent to the path in S and, hence, tangent to S itself at x(¢), while
Projy,x(r) F(X(2)) is parallel to Vg(x(¢)) and, hence, perpendicular to S at x(7). ™

EXAMPLE 3 Near the surface of the earth, the gravitational field is ap-
proximately

F = —mgk.
(We’re assuming that, locally, the surface of the earth is represented by the plane
z = 0.) Note that F = —VV, where
Vix,y,z) =mgz.
Now suppose a particle of mass m lies on a small sphere with equation
h(x,y,2) =x*+y* +(z —2r)* =r°.

We can find constrained equilibria for this situation, using a Lagrange multiplier.
The gradient equation VV = AVh, along with the constraint, yields the system

0=2Ax

0= 2)»)1

mg = 2Mz — 2r)

2+ Y2+ (z=2r? =r?
Because m and g are nonzero, A cannot be zero. The first two equations imply
x = y = 0. Therefore, the last equation becomes

(z—2ry =r%
which implies
z=r,3r

are the solutions. Consequently, the positions of equilibrium are (0, 0, r) and
(0,0, 3r) (corresponding to . = —mg/2r and +mg/2r, respectively). From ge-
ometric considerations, we see V is strictly minimized at S at (0, 0, ) and maxi-
mized at (0, 0, 3r) as shown in Figure 4.40. From physical considerations, (0, 0, r)
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is a stable equilibrium and (0, 0, 3r) is an unstable one. (Try balancing a marble
on top of a ball.) *

Applications to Economics

We present two illustrations of how Lagrange multipliers occur in problems in-
volving economic models.

EXAMPLE 4 The usefulness of amounts xi, x,, ..., x, of (respectively) dif-
ferent capital goods G, G, ..., G, can sometimes be measured by a function
U(xy, x2, ..., x,), called the utility of these goods. Perhaps the goods are indi-
vidual electronic components needed in the manufacture of a stereo or computer,
or perhaps U measures an individual consumer’s utility for different commodi-
ties available at different prices. If item G; costs a; per unit and if M is the total
amount of money allocated for the purchase of these n goods, then the consumer
or the company needs to maximize U (xy, xp, ..., X,) subject to

a1x1 + arxy + -+ ayx, =M.

Thisis a standard constrained optimization problem that can readily be approached
by using the method of Lagrange multipliers.

For instance, suppose you have a job ordering stationery supplies for an office.
The office needs three different types of products a, b, and ¢, which you will order
inamounts x, y, and z, respectively. The usefulness of these products to the smooth
operation of the office turns out to be modeled fairly well by the utility function
U(x,y,z) = xy + xyz. If product a costs $3 per unit, product b $2 a unit, and
product ¢ $1 a unit and the budget allows a total expenditure of not more than
$899, what should you do? The answer should be clear: You need to maximize

U(x,y,z) =xy+xyz subjectto B(x,y,z)=3x4+2y+z=_899.

The Lagrange multiplier equation, VU (x, y, z) = AVB(x, y, z), and the budget
constraint yield the system

y+yz=3x
X +xz=2A
Xy =A

3x+2y+2z2=2899

Solving for A in the first three equations yields

- 741 _ 741 .
“\73 )7 2 )=

The last equality implies that either x = 0 or y = (z + 1)/2. We can reject the
first possibility, since U(0, y,z) = 0 and the utility U(x, y, z) > 0 whenever
x, y, and z are all positive. Thus, we are left with y = (z + 1)/2. This in turn
implies that A = (z + 1)?/6. Substituting for y in the constraint equation shows
that x = (898 — 2z)/3, so that equation xy = A becomes

898 —2z\ (z+ 1)  (z+ 1)
(557 (5) -5

which is satisfied by either z = —1 (which we reject) or by z = 299. The only
realistic critical point for this problem is (100, 150, 299). We leave it to you to
check that this point is indeed the site of a maximum value for the utility. *
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EXAMPLE 5 1In1928,C. W.CobbandP. M. Douglas developed a simple model
for the gross output Q of a company or a nation, indicated by the function

O(K,L)= AK“L'™,

where K represents the capital investment (in the form of machinery or other
equipment), L the amount of labor used, and A and a positive constants with
0 < a < 1. (The function Q is known now as the Cobb—Douglas production
function.) If you are president of a company or nation, you naturally wish to
maximize output, but equipment and labor cost money and you have a total
amount of M dollars to invest. If the price of capital is p dollars per unit and
the cost of labor (in the form of wages) is w dollars per unit, so that you are
constrained by

B(K,L)= pK +wL < M,

what do you do?

Again, we have a situation ripe for the use of Lagrange multipliers. Before
we consider the technical formalities, however, we consider a graphical solution.
Draw the level curves of Q, called isoquants, as in Figure 4.41. Note that Q
increases as we move away from the origin in the first quadrant. The budget
constraint means that you can only consider values of K and L that lie inside or
on the shaded triangle. It is clear that the optimum solution occurs at the point
(K, L) where the level curve is tangent to the constraint line pK + wL = M.

Here is the analytical solution: From the equation VQ(K, L) = AVB(K, L)
plus the constraint, we obtain the system

AaK*'L'=¢ = )p
A(l —a)KL™ = Aw.
pK +~wL =M

Solving for p and w in the first two equations yields

A A(l —
p= TaK“*ILI*“ and w = —( @)

KeL™“.

L

Increasing Q
pK+wL=M

Optimum value

O(K, L)=c

Figure 4.41 A family of isoquants. The optimum value of Q(K, L) subject to the
constraint pK 4+ wL = M occurs where a curve of the form Q = c is tangent to the
constraint line.
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Substitution of these values into the third equation gives

&KLILI—(I + A(l — a)KaLl—a — M
A A ’
Thus,
)\' — iKaLlfa
M 9

and the only critical point is

(K.L) = (@ M(1 —a)>‘

p w
From this geometric discussion, we know that the critical point must yield the
maximum output Q.
From the Lagrange multiplier equation, at the optimum values for L and K,
we have
. 100 100
- pdK  wadL’

This relation says that, at the optimum values, the marginal change in output per
dollar’s worth of extra capital equals the marginal change per dollar’s worth of
extra labor. In other words, at the optimum values, exchanging labor for capital
(or vice versa) won’t change the output. This is by no means the case away from
the optimum values.

There is not much that is special about the function Q chosen. Most of our
observations remain true for any C? function Q that satisfies the conditions

00 00 20 0
0K’ oL — 7 0K2" 9L2
If you consider what these relations mean qualitatively about the behavior of the
output function with respect to increases in capital and labor, you will see that

< 0.

they are entirely reasonable assumptions.* *
4.4 Exercises
1. Find the line that best fits the following data: (0, 2), (b) Show that the “best fit” curve of the form y =
(1,3),(2,5),3,3),(4,2),(5,7), (6, 7). a/x + b should have
2. Show that if you have only two data points (x;, y;) and
(x2, y2), then the best fit line given by the method of u= n 3y vi/xi = (Z 1/xi) (Z yi)
least squares is, in fact, the line through (x;, y;) and - 2
(2, y2)- nZl/xiz— (Z Uxi)
3. Suppose that you are given n pairs of data (xi, y;), and
(x2, ¥2)s - - ., (xn, y») and you seek to fit a function of
the form y = a/x + b to these data. (z 1 /x}) (z y,~> - (z 1 /xi) (z i/ )
(a) Use the method of least squares as outlined in this b= 2 .
section to construct a function D(a, b) that gives ny 1/xt — (Z 1/ xi)
the sum of the squares of the distances between
observed and predicted y-values of the data. (All sums are fromi = 1 to n.)

4 For more about the history and derivation of the Cobb—Douglas function, consult R. Geitz, “The Cobb—

Douglas production function,” UMAP Module No. 509, Birkhduser, 1981.
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4. Find the curve of the form y = a/x + b that best fits

the following data: (1, 0), (2, —1), (%, 1), and (3, —%)
(See Exercise 3.)

. Suppose that you have n pairs of data (xi,y)),

(x2, ¥2), -« ., (xu, ¥») and you desire to fit a quadratic
function of the form y = ax? + bx + ¢ to the data.
Show that the “best fit” parabola must have coefficients
a, b, and c satisfying

(Z xlf‘)a + (Z x?)b + (Z xiz)c =Y x*y
(Z xf)a + (Z x?)b + (Z xi)c =>"xy
(inz)a + (Z xl-)b +nc=>y

(All sums are fromi = 1ton.)

. (Note: This exercise will be facilitated by the use of

a spreadsheet or computer algebra system.) Egbert
recorded the number of hours he slept the night before
a major exam versus the score he earned, as shown in
the table below.

(a) Find the line that best fits these data.

(b) Find the parabola y = ax? + bx + c that best fits
these data. (See Exercise 5.)

(c) Last night Egbert slept 6.8 hr. What do your an-
swers in parts (a) and (b) predict for his score on
the calculus final he takes today?

Hours of sleep | Test score
8 85
8.5 72
9 95
7 68
4 52
8.5 75
7.5 90
6 65

. Let F = (—2x — 2y — )i+ (=2x — 6y — 2)j.

(a) Show that F is conservative and has potential
function

V(x,y)=x>+2xy+3y* +x +2y

(ie,F=—VV).

(b) What are the equilibrium points of F? The stable
equilibria?

. Suppose a particle moves in a vector field F in R? with

physical potential
V(x,y) =2x% — 8xy — y? + 12x — 8y + 12.

Find all equilibrium points of F and indicate which, if
any, are stable equilibria.

9. Let a particle move in the vector field F in R® whose
physical potential is given by
Vix,y, z) =3x>+2xy + 22 —2yz+3x + 5y — 10.
Determine the equilibria of F and identify those that
are stable.

10. Suppose that a particle of mass m is constrained to
move on the ellipsoid 2x? + 3y? + z2 = 1 subject to
both a gravitational force F = —mgKk, as well as to an
additional potential V (x, y, z) = 2x.

(a) Find any equilibrium points for this situation.

(b) Are there any stable equilibria?

11. The Sukolux Vacuum Cleaner Company manufactures
and sells three types of vacuum cleaners: the standard,
executive, and deluxe models. The annual revenue in
dollars as a function of the numbers x, y, and z (re-
spectively) of standard, executive, and deluxe models
sold is

R(x,y,2)= xy12 —25,000x — 25,000y — 25,000z.

The manufacturing plant can produce 200,000 total
units annually. Assuming that everything that is manu-
factured is sold, how should production be distributed
among the models so as to maximize the annual
revenue?

12. Some simple electronic devices are to be designed to
include three digital component modules, types 1, 2,
and 3, which are to be kept in inventory in respective
amounts xj, X, and x3. Suppose that the relative im-
portance of these components to the various devices is
modeled by the utility function

U(x1, x2, x3) = x1x2 + 2x1X3 + X1 X2X3.

You are authorized to purchase $90 worth of these parts
to make prototype devices. If type 1 costs $1 per com-
ponent, type 2 $4 per component, and type 3 $2 per
component, how should you place your order?

13. A farmer has determined that her cornfield will yield
corn (in bushels) according to the formula

B(x, y) = 4x* 4+ y> + 600,

where x denotes the amount of water (measured in
hundreds of gallons) used to irrigate the field and y
the number of pounds of fertilizer applied to the field.
The fertilizer costs $10 per pound and water costs $15
per hundred gallons. If she can allot $500 to prepare
her field through irrigation and fertilization, use a
Lagrange multiplier to determine how much water and
fertilizer she should purchase in order to maximize her
yield.

14. A textile manufacturer plans to produce a cashmere/
cotton fabric blend for use in making sweaters. The
amount of fabric that can be produced is given by

flx,y)=4xy —2x — 8y +3,



where x denotes the number of pounds of raw cash-

mere used is and y is the number of pounds of raw

cotton. Cotton costs $2 per pound and cashmere costs
$8 per pound.

(a) Ifthe manufacturer can spend $1000 on raw mate-
rials, use a Lagrange multiplier to advise him how
he should adjust the ratio of materials in order to
produce the most cloth.
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True/False Exercises for Chapter 4

sands of dollars) spent on capital equipment and L

represents the amount (also in thousands of dollars)

spent on labor.

(a) How should the CEO allocate the $360,000
between labor and equipment?

(b) Check that 0Q/0K = 0Q/dL at the optimal
values for K and L.

(b) Now suppose that the manufacturer has a budget 16. Let Q(K, L) be a production function .for a com-
. pany where K and L represent the respective amounts
of B dollars. What should the ratio of cotton to . .
. . S spent on capital equipment and labor. Let p denote the
cashmere be (in terms of B)? What is the limiting . . . .
. . . price of capital equipment per unit and w the cost of
value of this ratio as B increases? . .
labor per unit. Show that, subject to a fixed produc-
15. The CEO of the Wild Widget Company has decided tion Q(K, L) = c, the total cost M of production is
to invest $360,000 in his Michigan factory. His eco- minimized when K and L are such that
nomic analysts have noted that the output of this
factory is modeled by the function Q(K, L) = l @ _ l%
60K '/3L2/3, where K represents the amount (in thou- pdK  waL’
True/False Exercises for Chapter 4
1. If f is a function of class C? and p, denotes the second- 13. Any continuous function f(x, y) must attain a global
order Taylor polynomial of f at a, then f(x) &~ p,(x) maximum on the disk {(x, y) | x> + y* < 1}.
when x ~ a. 14. Any continuous function f(x,y,z) must attain a
2. The increment Af of a function f(x, y) measures the global maximum on the ball {(x,y,z)|(x — 1) +
change in the z-coordinate of the tangent plane to the (y+1)*+22 <4}
graph of f. 15. If f(x, y) is of class C?, has a critical point at (a, b),
3. The differential df of a function f(x, y) measures the and fix(a, b) fyy(a, b) — fry(a, b)* <0, then f hasa
change in the z-coordinate of the tangent plane to the saddle point at (a, b).
graph of f. 16. Ifdet Hf(a) = 0, then f has a saddle point at a.
4. The second-order Taylor polynomial of /(x.,2)= " 47, The function f(x.y.2) = x*yz — x2(y +2) has a
i "; 3xz+yTat(l, —1,2)is pa(x, y,2) = x7 +3xz saddle point at (1, —1, 2).
v
. 18. The function f(x, y, z) = x> + y?> + z> — yz hasalo-
5. The second-order Taylor polynomial of f(x,y)= cal maximum at (0, 0, 0).
x3 4+ 2xy + y at (0, 0) is pa(x, y) = 2xy + y. )
) 19. The function f(x, y, z) = xy> — x?z + z has a degen-
6. T?e second-order Taylor polynomial of f(x,y)= erate critical point at (—1, 0, 0).
x° 4+ 2xy +yat(l, —1)is pa(x, y) = 2xy + y.
' . 20. The function F(x1, ..., x,) = 2(x; — 1)> = 3(xs — 2)?
7. Near the point (1,3,5), the function f(x,y,z)= + -+ (=1 (n + 1)(x, — n)* hasacritical point at
3x* + 2y3 4 z? is most sensitive to changes in z. (1,2,...,n).
8. The Hessian matrix Hf(xy, ..., x,) of f has the prop- 21. The function F(x1, ..., x,) = 2(x; — 1)> = 3(xp — 2)?
erty that Hf (x1, ..., x,)" = Hf(x1, ..., x,). +- (=D (n + 1)(x, —n)*> has a minimum at
9. If Vf(ay,...,a,) =0, then f has a local extremum (1.2,....m).
ata = (aj, ..., a). 22. All local extrema of a function of more than one vari-
10. If f is differentiable and has a local extremum at ablel (;1ccur where all partial derivatives simultaneously
a=(a,...,a), then V f(a) = 0. vansi.
. 23. All points a=(ay,...,a;) where the function
2 2 2 p 1s » a2
1. Theset{(x,y,2) |4 = x"+y" +2z° < 9}is compact. f(x1,...,x,) has an extremum subject to the con-
12. The set {(x, y) | 2x — 3y = 1} is compact. straint that g(xj,...,x,) = c, are solutions to the
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system of equations

af _)\Bg

8)(1 - 8)(1

af .0

fo_, 08

Xy, X,

g(x1,...,xy)=c

24. Any solution (Aq, ..., Ag, X1, ..., X,) to the system of
equations

of 9g1 gk
A WA TR Wi
8)61 laxl + + k8x1
of 981 98k

= A
ox, - ax, T T M,
gi1(xr, ..., xy) =ci
g1(X1, - Xn) = C

25.

Miscellaneous Exercises for Chapter 4

yields a point (xy, ..., x,) that is an extreme value
of f subject to the simultaneous constraints g, =

Cly .-y 8k = Ck.

To find the critical points of the function f(x, y, z, w)
subject to the simultaneous constraints g(x, y, z, w) =

26.

27.

28.

29.

30.

¢, h(x,y,z,w)=d, k(x, y, z, w) = e using the tech-
nique of Lagrange multipliers, one will have to solve
a system of four equations in four unknowns.

Suppose that f(x, v, z) and g(x, y, z) are of class C'
and that (x¢, Yo, zo) is a point where f achieves a maxi-
mum value subject to the constraint that g(x, y, z) = ¢
and that Vg(xo, yo, zo) is nonzero. Then the level set
of f that contains (xo, yo, zo) must be tangent to the
level set S = {(x,y,2) | g(x,y,2) =c}.

The critical points of f(x,y,z) =xy+2xz+2yz
subject to the constraint that xyz = 4 are the same
as the critical points of the function F(x,y)=

8 8
xy+—+ —.
XYy

Given data points (3, 1), (4, 10), (5, 8), (6, 12), to find
the best fit line by regression, we find the minimum
value of the function D(m,b) = (3m +b—1)> +
(@m +b— 10> + (5m + b — 8)> + (6m + b — 12)%.

All equilibrium points of a gradient vector field
are minimum points of the vector field’s potential
function.

Given an output function for a company, the marginal
change in output per dollar investment in capital is the
same as the marginal change in the output per dollar
investment in labor.

1.

Let V = 7r2h, where r ~ ry and h ~ hy. What re-
lationship must hold between ry and kg for V to be
equally sensitive to small changes in » and h?

. (a) Find the unique critical point of the function

2 2 2
XX X
L Xp)=e TR ",

f(x17x29 .-

(b) Use the Hessian criterion to determine the nature
of this critical point.

. The Java Joint Gourmet Coffee House sells top-of-

the-line Arabian Mocha and Hawaiian Kona beans.
If Mocha beans are priced at x dollars per pound
and Kona beans at y dollars per pound, then mar-
ket research has shown that each week approximately
80 — 100x + 40y pounds of Mocha beans will be sold
and 20 + 60x — 35y pounds of Kona beans will be
sold. The wholesale cost to the Java Joint owners is
$2 per pound for Mocha beans and $4 per pound for
Kona beans. How should the owners price the coffee
beans in order to maximize their profits?

. The Crispy Crunchy Cereal Company produces three

brands, X, Y, and Z, of breakfast cereal. Each month,
X, v, and z (respectively) 1000-box cases of brands X,

Y, and Z are sold at a selling price (per box) of each
cereal given as follows:

Brand | No. cases sold | Selling price per box
X X 4.00 — 0.02x
Y y 4.50 — 0.05y
Z b4 5.00 — 0.10z

(a) What is the total revenue R if x cases of brand X, y
cases of brand Y, and z cases of brand Z are sold?

(b) Suppose that during the month of November, brand
X sells for $3.88 per box, brand Y for $4.25, and
brand Z for $4.60. If the price of each brand is in-
creased by $0.10, what effect will this have on the
total revenue?

(c) What selling prices maximize the total revenue?

. Find the maximum and minimum values of the

function
f(x,y,z)zx—«/gy

on the sphere x% + y? + z2 = 4 in two ways:
(a) by using a Lagrange multiplier;



(b) by substituting spherical coordinates (thereby de-
scribing the point (x, y, z) on the sphere as x =
2singcosf, y=2singsinh, z =2cos¢) and
then finding the ordinary (i.e., unconstrained) ex-
trema of f(x(¢, 0), y(¢. 0). z(¢, 0)).

. Suppose that the temperature in a space is given by the
function

T(x,y,z)=200xyz>.

Find the hottest point(s) on the unit sphere in two ways:

(a) by using Lagrange multipliers;

(b) by letting x =singcosf, y =singsinf, z =
cos ¢ and maximizing T as a function of the two
independent variables ¢ and 6. (Note: It will help if
you use appropriate trigonometric identities where
possible.)

. Consider the function f(x, y) = (y — 2x*)(y — x?).
(a) Show that f has a single critical point at the origin.

(b) Show that this critical point is degenerate. Hence,
it will require means other than the Hessian crite-
rion to determine the nature of the critical point as
a local extremum.

(c) Show that, when restricted to any line that passes
through the origin, f has a minimum at (0, 0).
(That is, consider the function F(x) = f(x, mx),
where m is a constant and the function G(y) =
10, ).

(d) However, show that, when restricted to the
parabola y = %xz, the function f has a global
maximum at (0, 0). Thus, the origin must be a sad-
dle point.

0 (e) Use a computer to graph the surface z = f(x, y).
8. (a) Find all critical points of f(x, y) = xy that satisfy

x4y =1.
(b) Draw a collection of level curves of f and, on the

same set of axes, the constraint curve x> 4+ y? = 1,
and the critical points you found in part (a).

(c) Use the plot you obtained in part (b) and a geomet-
ric argument to determine the nature of the critical
points found in part (a).

9. (a) Find all critical points of f(x,y,z)=xy that

satisfy x? + y? 4+ 72 = 1.

(b) Givearough sketch of'a collection of level surfaces
of f and, on the same set of axes, the constraint
surface x> + y? + z> = 1, and the critical points
you found in part (a).

(c) Usepart(b)andageometric argument to determine
the nature of the critical points found in part (a).

10. Find the area A of the largest rectangle so that two

squares of total area 1 can be placed snugly inside

11.

12.

13.

14.

15.

16.

17.
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the rectangle without overlapping, except along their
edges. (See Figure 4.42.)

Figure 4.42 Figure for Exercise 10.

Find the minimum value of

f(xls-XZa ..

subject to the constraint that ayx; +ayx; +--- +
ayx, = 1, assuming that a? + a3 + - -- + a2 > 0.

2, .2 2
G Xp) =X +X 44X,

Find the maximum value of

f(x19x29 .

subject to x7 4+ x3 + - - + x2 = 1. Assume thatnotall
of the a;’s are zero.

<o xn) = (alxl +ax; +--+ anxn)27

Find the dimensions of the largest rectangular box that
can be inscribed in the ellipsoid x> 4+ 2y? 4+ 472 = 12.
Assume that the faces of the box are parallel to the
coordinate planes.

Your company must design a storage tank for Super
Suds liquid laundry detergent. The customer’s specifi-
cations call for a cylindrical tank with hemispherical
ends (see Figure 4.43), and the tank is to hold 8000 gal
of detergent. Suppose that it costs twice as much (per
square foot of sheet metal used) to machine the hemi-
spherical ends of the tank as it does to make the cylin-
drical part. What radius and height do you recommend
for the cylindrical portion so as to minimize the total
cost of manufacturing the tank?

\

\
|
|
|
!

/

Figure 4.43 The storage tank
of Exercise 14.

Find the minimum distance from the origin to the
surface x2 — (y — z)> = 1.

Determine the dimensions of the largest cone that can
be inscribed in a sphere of radius a.

Find the dimensions of the largest rectangular box
(whose faces are parallel to the coordinate planes) that
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18.

19.

20.
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can be inscribed in the tetrahedron having three faces in
the coordinate planes and fourth face in the plane with
equation bex + acy + abz = abc, where a, b, and ¢
are positive constants. (See Figure 4.44.)

Figure 4.44 Figure for Exercise 17.

You seek to mail a poster to your friend as a gift. You

roll up the poster and put it in a cylindrical tube of di-

ameter x and length y. The postal regulations demand

that the sum of the length of the tube plus its girth (i.e.,

the circumference of the tube) be at most 108 in.

(a) Use the method of Lagrange multipliers to find the
dimensions of the largest-volume tube that you can
mail.

(b) Use techniques from single-variable calculus to
solve this problem in another way.

Find the distance between the line y = 2x + 2 and the
parabola x = y?> by minimizing the distance between
a point (x1, y;) on the line and a point (x;, y;) on the
parabola. Draw a sketch indicating that you have found
the minimum value.

A ray of light travels at a constant speed in a uniform
medium, but in different media (such as air and water)
light travels at different speeds. For example, if a ray of
light passes from air to water, it is bent (or refracted)
as shown in Figure 4.45. Suppose the speed of light

Figure 4.45 Snell’s law of refraction.

in medium 1 is v; and in medium 2 is v,. Then, by

Fermat’s principle of least time, the light will strike the

boundary between medium 1 and medium 2 at a point

P so that the total time the light travels is minimized.

(a) Determine the total time the light travels in going
from point A to point B via point P as shown in
Figure 4.45.

(b) Use the method of Lagrange multipliers to estab-
lish Snell’s law of refraction: that the total travel
time is minimized when

sin 91 V1

sin 92 1%}

(Hint: The horizontal and vertical separations of
A and B are constant.)

21. Use Lagrange multipliers to establish the formula

D— laxo + byy — d|
va* + b?
for the distance D from the point (xg, yo) to the line

ax +by =d.
22. Use Lagrange multipliers to establish the formula
D= laxg + byo + czo — d|

for the distance D from the point (xg, yo, zo) to the
plane ax + by + cz = d.

23. (a) Show that the maximum value of f(x,y,z) =
x2y2z% subject to the constraint that x> + y* +

2 =d%is
al a2\’
-(5)

(b) Use part (a) to show that, for all x, y, and z,
X2 4y 422
22173 < y Tz ]
3
(c) Show that, for any positive numbers xy, x, .. ., Xy,

Xt+x2+--+ X,
. .

(x%y

(x1xz -+ - x) /" <

The quantity on the right of the inequality is the
arithmetic mean of the numbers x;, x5, ..., x,,
and the quantity on the left is called the geomet-
ric mean. The inequality itself is, appropriately,
called the arithmetic—geometric inequality.

(d) Under what conditions will equality hold in the
arithmetic—geometric inequality?

In Exercises 24-27 you will explore how some ideas from ma-
trix algebra and the technique of Lagrange multipliers come
together to treat the problem of finding the points on the unit
hypersphere

gty X)) =Xt 3+ =1



that give extreme values of the quadratic form

n
S, oo x,) = Z ajjXiXj,
=l

where the a;; 5 are constants.

24. (a) Use a Lagrange multiplier A to set up a system of

n + 1 equations in n + 1 unknowns xj, ..., x,, A
whose solutions provide the appropriate con-
strained critical points.

(b) Recall that formula (2) in §4.2 shows that the
quadratic form f may be written in terms of ma-
trices as

Fxr, ..., x,) = xTAx, 1)

where the vector x is written as the n x 1 matrix
X1
and A isthe n x n matrix whose i jth entry
Xn
is a;;. Moreover, as noted in the discussion in §4.2,
the matrix A may be taken to be symmetric (i.e., so
that AT = A), and we will therefore assume that
A is symmetric. Show that the gradient equation
V f = AVg is equivalent to the matrix equation

AX = AX. 2)

Since the point (xy, . .., x,,) satisfies the constraint
x? + -+ +x2 = 1, the vector x is nonzero. If you
have studied some linear algebra, you will recog-
nize that you have shown that a constrained criti-
cal point (xy, . . ., x,,) for this problem corresponds
precisely to an eigenvector of the matrix A asso-

ciated with the eigenvalue A.
X1
(c) Now suppose thatx = is one of the eigen-
Xn

vectors of the symmetric matrix A, with associated
eigenvalue 1. Use equations (1) and (2) to show, if
X is a unit vector, that

S, .

Hence, the (absolute) minimum value that f
attains on the unit hypersphere must be the small-
est eigenvalue of A and the (absolute) maximum
value must be the largest eigenvalue.

L Xp) = Al

25. Letn = 2 in the situation of Exercise 24, so that we are

considering the problem of finding points on the circle
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26.

27.
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x2 + 2 = 1 that give extreme values of the function

f(x,y) = ax® + 2bxy + ¢y

ol

a
b

ing the constrained critical points of the optimiza-
tion problem described above.

(a) Find the eigenvalues of A = |: ZZ ] by identify-

(b) Now use some algebra to show that the eigenval-
ues you found in part (a) must be real. It is a fact
(that youneed not demonstrate here) thatany n x n
symmetric matrix always has real eigenvalues.

In Exercise 25 you noted that the eigenvalues A, A,
that you obtained are both real.

(a) Under what conditions does A; = A,?

(b) Suppose that A; and A, are both positive. Explain
why f must be positive on all points of the unit
circle.

(c) Suppose that A; and A, are both negative. Explain
why f must be negative on all points of the unit
circle.

Let f be a general quadratic form in n variables de-
termined by an n x n symmetric matrix A, that is,
S, x) = Z?,Fl aijXiXj = xT Ax.

(a) Show, for any real number k, that f(kxy,...,
kx,) =k*f(x1,...,x,). (This means that a
quadratic form is a homogeneous polynomial of
degree 2—see Exercises 3744 of the Miscella-
neous Exercises for Chapter 2 for more about ho-
mogeneous functions.)

(b) Use part (a) to show that if f has a positive
minimum on the unit hypersphere, then f must
be positive for all nonzero x € R" and that if f
has a negative maximum on the unit hypersphere,
then f must be negative for all nonzero x € R".
(Hint: For x # 0, let u = x/||x||, so that x = ku,
where k = ||x]|.)

(c) Recall from §4.2 that a quadratic form f is said
to be positive definite if f(x) > 0 for all nonzero
x € R” and negative definite if f(x) < 0 for all
nonzero x € R”. Use part (b) and Exercise 24 to
show that the quadratic form f is positive definite
if and only if all eigenvalues of A are positive, and
negative definite if and only if all eigenvalues of
A are negative. (Note: As remarked in part (b) of
Exercise 25, all the eigenvalues of A will be real.)
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Figure 5.1 The graph of
y = fx).
y
v/_\
f —x
a b

Figure 5.2 The shaded region has

area fab f(x)dx.

- Multiple Integration

5.1 Introduction: Areas and Volumes

Our purpose in this chapter is to find ways to generalize the notion of the definite
integral of a function of a single variable to the cases of functions of two or
three variables. We also explore how these multiple integrals may be used to
meaningfully represent various physical quantities.

Let f be a continuous function of one variable defined on the closed interval
[a, b] and suppose that f has only nonnegative values. Then the graph of f looks
like Figure 5.1. That f is continuous is reflected in the fact that the graph consists
of an unbroken curve. That f is nonnegative-valued means that this curve does not
dip below the x-axis. We know from one-variable calculus that the definite integral
fab f(x)dx exists and gives the area under the curve, as shown in Figure 5.2.

Now suppose that f is a continuous, nonnegative-valued function of two
variables defined on the closed rectangle

R={x,y)eR*|la<x<b,c<y<d)

in R?. Then the graph of f over R looks like an unbroken surface that never dips
below the xy-plane, as shown in Figure 5.3. In analogy with the single-variable
case, there should be some sort of integral that represents the volume under the
part of the graph that lies over R. (See Figure 5.4.) We can find such an integral
by using Cavalieri’s principle, which is nothing more than a fancy term for the
method of slicing. Suppose we slice by the vertical plane x = x, where x; is a
constant between a and b. Let A(x() denote the cross-sectional area of such a
slice. Then, roughly, one can think of the quantity A(xo)dx as giving the volume
of an “infinitely thin” slab of thickness dx and cross-sectional area A(x). (See
Figure 5.5.) Hence, the definite integral

V = bedx
/a (x)

gives a “sum” of the volumes of such slabs and can be considered to provide a
reasonable definition of the total volume of the solid.

But what about the value of A(x()? Note that A(x() is nothing more than the
area under the curve z = f(xo, y), obtained by slicing the surface z = f(x, y)
with the plane x = x(. Therefore,

d
Axo) = / F o, y)dy



- o

R
Figure 5.3 The graph of
2= f(x, ).
b4
Plane z =c¢

Figure 5.6 Calculating the
volume of the box of Example 1.

Figure 5.7 The graph of
z=4—x?>—y?of
Example 2.
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X =x,plane

<
y y
X - X

Figure 5.4 The region under the Figure 5.5 A slab of “volume”
portion of the graph of f lying dV = A(xp)dx.

over R has volume that is given
by an integral.

(remember x is a constant), and so we find that

V=/abA(x)dx=/ab Udf(x,y)dy]dx. (1)

The right-hand side of formula (1) is called an iterated integral. To calculate
it, first find an “antiderivative” of f(x, y) with respect to y (by treating x as a
constant), evaluate at the integration limits y = ¢ and y = d, and then repeat the
process with respect to x.

EXAMPLE 1 Let’s make sure that the iterated integral defined in formula (1)
gives the correct answer in a case we know well, namely, the case of a box. We’ll
picture the box as in Figure 5.6. That is, the box is bounded on top and bottom by
the planes z = ¢ (where ¢ > 0) and z = 0, on left and right by the planes y = 0
and y = b (where b > 0), and on back and front by the planes x = 0 and x = a
(a > 0). Hence, the volume of the box may be found by computing the volume
under the graph of z = ¢ over the rectangle

R={(x,y)|0<x<a,0<y<b}

Using formula (1), we obtain

a prb a a
V= / / cdydx = / (cylizg) dx = / cbdx = cbx |2 = cba.
0o Jo 0 0

This result checks with what we already know the volume to be, as it should. &

EXAMPLE 2 We calculate the volume under the graph of z = 4 — x? — y?
(Figure 5.7) over the square

R={x,y|-1<x<1, -1l<y<l1}

Using formula (1) once again, we calculate the volume by first integrating with
respect to y (i.e., by treating x as a constant in the inside integral) and then by
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y =Y, plane

Figure 5.8 Slicing by y = yj
first.

integrating with respect to x. The details are as follows:

1l 1 1
Vz/ /(4—x2—y2)dydx=/ (4y—x2y——y3>
—1J-1 —1 3
_ /1 4 2 1 4 + 2 + 1 d
=/ X =3 3 X
1 5 2
= 8§ —2x"— - )dx
- 3
2 23\ 2 2 22 2\ _40
=(—=—x—=x =\l——=z)-|-—=+=)=—.
373 ), T\3 73 3 73)7 3 ¢
In our development of formula (1), we could just as well have begun by slicing

the solid with the plane y = y, (instead of with the plane x = xy), as shown in
Figure 5.8. Then, in place of formula (1), the formula that results is

— ’ bf(x,y)dxdy. (2)
[

Since the iterated integrals in formulas (1) and (2) both represent the volume of the
same geometric object, we can summarize the preceding discussion as follows.

y=1
dx
y=-1

PROPOSITION 1.1 Let R be the rectangle {(x, y) |a <x <b, ¢ <y <d}and
let f be continuous and nonnegative on R. Then the volume V under the graph

of f over R is
/ab/Cdf(x,Y)dydx=/cd/abf(x,y)dxdy.

EXAMPLE 3 We find the volume under the graph of z = cos x sin y over the
rectangle

={(x,y)I0§x§£,0§ysz}.
2 4

(See Figure 5.9.) From formula (1), we calculate that the volume is

/2 /2
/ / cosxsmydydx_/ (—cosx cos y)I; =g =T/ dx

n/2
:/ (—Qcosx—( cosx)) dx = 2= f/ cosxdx
0 2

/2
/2f 2-42
TR

S

2— .
= sin x
2

1-0=
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Figure 5.9 The surface z = cosx siny of
Example 3.

If we use formula (2) instead of formula (1), we obtain
/4 pr/2 /4 _
V= / / cosxsinydxdy = / (sinx sin y)|"=7"* dy
0 0 0
/4

:/ (siny — 0)dy = —cosylg/4
0

= ﬁ—(—1)=2_‘/§.

2 2
That this result agrees with our first calculation is no surprise given
Proposition 1.1. *
5.1 Exercises
Evaluate the iterated integrals given in Exercises 1-6. 7. Find the volume of the region that lies under the graph
y 3 of the paraboloid z = x2 + y? + 2 and over the rect-
1. / / (x* +y)dydx angle R={(x,y)| -1 <x<2,0<y <2} in two
0 Ji ways:

T2 (a) by using Cavalieri’s principle to write the volume
2. / f ysinxdydx as an iterated integral that results from slicing the
0 region by parallel planes of the form x = constant;

[2V]

/ ! f : xe¥ dy dx (b) by using Cavalieri’s principle to write the volume
) as an iterated integral that results from slicing the
region by parallel planes of the form y = constant.

/2 1
. / / e*cosydxdy 8. Find the volume of the region bounded on top by the
0 0 plane z = x 4+ 3y + 1, on the bottom by the xy-plane,

£y

2 prl ) and on the sides by the planes x =0, x =3, y =1,
5. f / @™ +x*+1ny)dxdy y=2.
1 Jo
9 e 9. Find the volume of the region bounded by the graph
6. / / nyx dxdy of f(x,y)=2x%+ y*sinmx, the xy-plane, and the
1 J1 Xy planesx =0, x =1,y =—1,y =2.
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In Exercises 10—15, calculate the given iterated integrals and 52 )
indicate of what regions in R® they may be considered to 13. 0 _2(4 —x7)dxdy
represent the volumes.

2 03
10. / / 2dxdy
0 J1

3 2
11. / / (16 — x> — yHdydx
1 -2

/2
12, /
—/2

b
/ sinx cosydxdy
0

3,1

14./ / |x|sinmwydydx
—2Jo
5 02

15./ /(5—|y|)dxdy
—5J-1

16. Suppose that f is a nonnegative-valued, continu-
ous functiondefinedon R = {(x, y) |a <x <b, ¢ <
y <d}. If f(x,y) < M for some positive number M,
explain why the volume V under the graph of f over
R is at most M (b — a)(d — c).

5.2 Double Integrals

In the previous section we saw how to calculate volumes of certain solids us-
ing iterated integrals. The ideas were mostly straightforward, but the situation
we addressed was rather special: We only solved the problem of computing the
volume of a solid defined as the region lying under the graph of a continuous,
nonnegative-valued function f(x, y) and above a rectangle in the xy-plane. It is
not immediately apparent how we might compute the volume of a more general
solid based on this work.

Thus, in this section we define a more general notion of an integral of a
function of two variables that will allow us to describe

1. integrals of arbitrary functions (i.e., functions that are not necessarily non-
negative or continuous) and

2. integrals over arbitrary regions in the plane (i.e., rather than integrals over
rectangles only).

We focus first on case 1. To do this, we start fresh with some careful definitions
and notation. The ideas involved in Definitions 2.1-2.3 below are different from
those in the previous section. However, we will see that there is a key connection
(called Fubini’s theorem) between the notion of an iterated integral discussed
in §5.1 and that of a double integral, which will be described in Definition 2.3.

The Integral over a Rectangle
We also denote a (closed) rectangle
R={(x,y)eR*|a<x<bc<y<d)

by [a, b] x [c, d]. This notation is intended to be analogous to the notation for a
closed interval.

DEFINITION 2.1 Given a closed rectangle R = [a, b] X [c, d], a partition
of R of order n consists of two collections of partition points that break up
R into a union of n? subrectangles. More specifically, fori, j =0, ..., n, we
introduce the collections {x;} and {y;}, so that

a=X)<X| <- <X | <Xi<-<X,=>b,
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and
C=Y <Y < <Y1 <Yj<- <Yy =d.

Let Ax; =x; —x;—y (for i=1,...,n) and Ay; =y; —y;—1 (for j =
1,...,n). Note that Ax; and Ay; are just the width and height (respec-
tively) of the i jth subrectangle (reading left to right and bottom to top) of the
partition.

An example of a partitioned rectangle is shown in Figure 5.10. We do not
assume that the partition is regular (i.e., that all the subrectangles have the same
dimensions).

1 1
T T
aA=Xy X| Xy - X;_q X; - X,=b

Figure 5.10 A partition of the rectangle [a, b] X [c, d].

DEFINITION 2.2 Suppose that f is any function defined on R = [a, b] X
[c, d] and partition R in some way. Let ¢;; be any point in the subrectangle

Rijz[xi—laxi]x[yj—l’yj] (iajzls---’n)‘
Then the quantity
S= ) fle)AA;,
ij=1

where AA;; = Ax;Ay; is the area of R;;, is called a Riemann sum of f on
R corresponding to the partition.

The Riemann sum

S = Z f(eij) AA;;
ij

depends on the function f, the choice of partition, and the choice of the “test
point” ¢;; in each subrectangle R;; of the partition. The Riemann sum itself is
just a weighted sum of areas A A;; of subrectangles of the original rectangle R,
the weighting being given by the value f(¢;;).

If f happens to be nonnegative on R, then, fori, j = 1, ..., n, the individual
terms f(c;;) AA;;j in S may be considered to be volumes of boxes having base area
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Figure 5.11 The volume under the graph
of f is approximated by the Riemann sum.

N
N

Figure 5.13 If Ay, Ay, A3
represent the values of the shaded
areas, then

[P f@)ydx = Ay — Ay + As.

\
\

R \J

(in xy-plane)

Figure 5.14 If V|, V; represent
the volumes of the shaded regions,
then ffR f(x, y)dA = V1 — V2.
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z=f(x,y)

xy-plane \ ril_/’:

f<0here.

Volume of thisw
box enters S

with a — sign.

il

f> 0 here.
Volume of this
box enters S
with a + sign.

Figure 5.12 The Riemann sum as a signed sum of
volumes of boxes.

Ax;Ay; and height f(¢;;). Therefore, S can be considered to be an approximation
to the volume under the graph of f over R, as suggested by Figure 5.11. If f is
not necessarily nonnegative, then the Riemann sum S is a signed sum of such
volumes (because, with f(¢;;) < 0, the term f(¢;;)AA;; is the negative of the
volume of the appropriate box—see Figure 5.12).

DEFINITION 2.3  The double integral of f on R, denoted by ([, f dA
(orby [f f(x,y)dA orby [[, f(x,y)dxdy), is the limit of the Riemann
sum S as the dimensions Ax; and Ay; of the subrectangles R;; all approach
zero, that is,

n
\/\‘/; fd all Axil,lglyj_)o IJZ=1 f(clj) Xi y_]y

provided, of course, that this limit exists. When [/, r J dA exists, we say that
f is integrable on R.

The crucial idea to remember—indeed, the defining idea—is that the integral
[[. fdA is a limit of Riemann sums S, for this concept is what is needed to
properly apply double integrals to physical situations.

From a geometric point of view, just as the single-variable definite integral
fab f(x)dx can be used to compute the “net area” under the graph of the curve
y = f(x)(asinFigure 5.13), the double integral [, f d A canbe used to compute
the “net volume” under the graph of z = f(x, y) (as in Figure 5.14).

Another way to view the double integral [[,, f d A is somewhat less geometric
but is more in keeping with the notion of the integral as the limit of Riemann
sums and provides a perspective that generalizes to triple integrals of functions of
three variables. Instead of visualizing the graph of z = f(x, y) as a surface and
S = Zl” iz f (cij)Ax;Ay; as a (signed) sum of volumes of boxes related to the
graph, consider S to be a weighted sum of areas and the integral [, f dA the
limiting value of such weighted sums as the dimensions of all the subrectangles
approach zero. With this point of view, we do not depict the integrand f when we
try to visualize the integral. In this way, the distinction between the roles of the
integrand and the rectangle R over which we integrate can be made clearer. (See
Figure 5.15.)
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This subrectangle of
area A As; contributes
fles3) AAssto S.

Figure 515 § =3, . f(ci;j))AA;;.

EXAMPLE 1 Suppose that a 3 cm square metal plate is made, but some nonuni-
formities exist due to the manufacturing process so that the mass density varies
somewhat throughout the plate. If we knew the density function §(x, y) at every
point in the plate, then we could calculate the total mass of the plate as

Total mass = // 3(x,y)dA,
D

where D denotes the square region of the plate placed in an appropriate coordinate
system.

In the absence of an analytic expression for §, we nonetheless can approximate
the double integral by means of a Riemann sum: We partition the square region
of the plate, take density readings at a test point in each subregion, and combine
to approximate the integral for the total mass. (Essentially what we are doing is
assuming that the density is nearly constant on each subregion so that multiplying
density and area will give the approximate mass of the subregion; adding these
approximate masses then gives an approximation for the total mass.) For example,
we might model the problem as in Figure 5.16, where the region of the plate is

y
' 1
! I 0.5)
©06) | e
® | |
_______ ]
| |
| |
©03) %03
® | |
_______ 02
| |
| | °
02 ! : 023)
o 1 ony
| ! .

Figure 5.16 The region of Example 1. The 3 x 3
square is partitioned into nine subregions. The density
values at test points in each subregion are shown.
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4

Figure 5.17 The graph
of z = x of Example 2.

Ciyj Ci,j

Figure 5.18 The two
subrectangles R; ; and R;,; are
symmetrically placed with respect
to the y-axis. The corresponding
test points ¢;, ; and ¢;,; are chosen
so that they have the same
y-coordinates and opposite
x-coordinates.

/\foﬁ\/ .

a b

X

Figure 5.19 The graph of a
piecewise continuous function.

partitioned into nine square subregions. Then we have

Total mass = / / S(x,y)dA ~ ) 8(cij)AA;
D ij

= (0.2)1 + (0.3)1 + (0.6)1 + (0.1)1 + (0.2)1 + (1)1 + (0.3)1
+(0.3)1 +(0.5)1 = 3.5. .

EXAMPLE 2 We determine the value of [[, xdA, where R =[-2,2] x
[—1, 3]. Here the integrand f(x, y) = x and, if we graph z = f(x, y) over R,
we see that we have a portion of a plane, as shown in Figure 5.17. Note that the
portion of the plane is positioned so that exactly half of it lies above the xy-plane
and half below. Thus, if we regard [}, x d A as the net volume under the graph of
z = x, then we conclude that [ [, x dA (if it exists) must be zero.

On the other hand, we need not resort to visualization in three dimensions.
Consider a Riemann sum corresponding to [[, x dA obtained by partitioning
R =[-2,2] x [—1, 3] symmetrically with respect to the y-axis and by choosing
the “test points” ¢;; symmetrically also. (See Figure 5.18.) It follows that the value
of

S = Z feij)AA;; = injAAij

(where x;; denotes the x-coordinate of ¢;;) must be zero since the terms of the
sum cancel in pairs. Furthermore, we can arrange things so that, as we shrink
the dimensions of the subrectangles to zero (as we must do to get at the integral
itself), we preserve all the symmetry just described. Hence, the limit under these
restrictions will be zero, and thus, the overall limit (where we do not impose such
symmetry restrictions on the Riemann sum), if it exists at all, must be zero as
well. *

Example 2 points out fundamental difficulties with Definition 2.3, namely,
that we never did determine whether [[,, f d A really exists. To do this, we would
have to be able to calculate the limit of Riemann sums of f over all possible
partitions of R by using all possible choices for the test points ¢;;, a practically
impossible task. Fortunately, the following result (which we will not prove) pro-
vides an easy criterion for integrability:

THEOREM 2.4 If f is continuous on the closed rectangle R, then [, fdA
exists.

In Example 2, f(x, y) = x is a continuous function and hence integrable
by Theorem 2.4. The symmetry arguments used in the example then show that
I/ rXdA=0.

Continuous functions are not the only examples of integrable functions. In
the case of a function of a single variable, piecewise continuous functions are also
integrable. (Recall that a function f(x) is piecewise continuous on the closed
interval [a, b] if f is bounded on [a, b] and has at most finitely many points of
discontinuity on the interior of [a, b]. Its graph, therefore, consists of finitely many
continuous “chunks” as shown in Figure 5.19.) For a function of two variables,
there is the following result, which generalizes Theorem 2.4.
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THEOREM 2.5 If f is bounded on R and if the set of discontinuities of f on R
has zero area, then [ [, f dA exists.

To say that a set X has zero area as we do in Theorem 2.5, we mean that we
can cover X with rectangles Ry, R,, ..., Ry, ... (i.e., sothat X C Uflozl R,), the
sum of whose areas can be made arbitrarily small.

A function f satisfying the hypotheses of Theorem 2.5 has a graph that
looks roughly like the one in Figure 5.20. Theorem 2.5 is the most general suffi-
cient condition for integrability that we will consider. It is of particular use to us
when we define the double integral of a function over an arbitrary region in the

plane.
z=f(x,y) Q Q

ey N

* R Discontinuities of f
110
x

| Discontinuities of f

R

Figure 5.20 The graph of an integrable
function.

Although Theorems 2.4 and 2.5 make it relatively straightforward to check
that a given integral exists, they do little to help provide the numerical value of
the integral. To mechanize the evaluation of double integrals, we will use the
following result:

THEOREM 2.6 (FUuBINI’S THEOREM) Let f be bounded on R = [a, b] X [c, d]
and assume that the set S of discontinuities of f on R has zero area. If every line
parallel to the coordinate axes meets S in at most finitely many points, then

//RfdA=/ab/0df(X,y)dydx=/Cd/abf(x,y)dxdy.

Fubini’s theorem demonstrates that under certain assumptions the double in-
tegral over arectangle (i.e., the limit of Riemann sums) can be calculated by using
iterated integrals and, moreover, that the order of integration for the iterated inte-
gral does not matter. We remark that the independence of the order of integration
depends strongly on the fact that the region of integration is rectangular; it will not
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generalize to more arbitrary regions in such a simple way. (A proof of Theorem
2.6 is given in the addendum to this section.)

EXAMPLE 3 Werevisit [, x dAinExample2, where R = [-2, 2] x [—1, 3].
By Theorem 2.6, we know that [/, x dA exists and by Fubini’s theorem, we

calculate
y=3
dx
y=-—1

[fran= [ o] (o

2 2
=/ x(3—(—1))dx=/ dxdx =2, =8-8=0,
-2

which checks. Furthermore, we also have

xX=

3 2 3
//di:/ / xdxdy:/ %xz
R —1J-2 —1 X

PROPOSITION 2.7 (PROPERTIES OF THE INTEGRAL) Suppose that f and g are
both integrable on the closed rectangle R. Then the following properties hold:

2
v = [ .e-2dy=o0.

2

1. f + g is also integrable on R and

//R(f-kg)dA://RfdA_i_//RgdA.

2. c¢f is also integrable on R, where ¢ € R is any constant, and

f/RcfdA:c//RfdA.

3.If f(x,y) < g(x,y) forall (x, y) € R, then

//Rf(x,y)dAs//Rg(x,y)dA.

4. | f] is also integrable on R and

Lo [f e

Properties 1 and 2 are called the linearity properties of the double integral.
They can be proved by considering the appropriate Riemann sums and taking
limits. For example, to prove property 1, note that the Riemann sum whose limit
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Figure 5.21 A bounded region D

in the plane.

D y=0(x)
x=b
xX=a

\_/

Figure 5.22 A type | elementary

region.

x=a(y)

x=B(y)

L /p

Figure 5.23 A type 2 elementary

region.
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is ffR(f +g)dAis
D+ )AA; = Y (fle) + glei)) AAy
ij=1 ij=1

= Z f(eij))AA;; + Z g(cij))AA;;

,j=1 i,j=1
—>//fdA+//gdA.
R R

Property 3 (known as monotonicity) and property 4 can also be proved using
Riemann sums. For property 4, one needs to use the fact that

n n
Z ax| < Z |a].
=1 =

Double Integrals over General Regions in the Plane

Our next step is to understand how to define the integral of a function over an
arbitrary bounded region D in the plane. Ideally, we would like to give a precise
definition of [, f d A, where D is the amoeba-shaped blob shown in Figure 5.21
and where f is bounded on D. In keeping with the definition of the integral over
arectangle, [/, f dA should be a limit of some type of Riemann sum and should
represent the net volume under the graph of f over D. Unfortunately, the techni-
calities involved in making such a direct approach work are prohibitive. Instead, we
shall consider only certain special regions (rather than entirely arbitrary ones), and
we shall assume that the integrand f is continuous over the region of integration
(which will allow us to use what we already know about integrals over rectangles).
Although this approach will not provide us with a completely general definition,
it is sufficient for essentially all the practical situations we will encounter.
To begin, we define the types of elementary regions we wish to consider.

DEFINITION 2.8 We say that D is an elementary region in the plane if it
can be described as a subset of R? of one of the following three types:

Type 1 (see Figure 5.22):
D ={x,y)|y(x) =y =8(x),a=<x=<b}
where y and 8 are continuous on [a, b].
Type 2 (see Figure 5.23):
D={(xy)la(y)<x=<B(y),c=<y=d}
where « and § are continuous on [c, d].

Type 3 D is of both type 1 and type 2.

Thus, a type 1 elementary region D has a boundary (denoted d D) consisting
of straight segments (possibly single points) on the left and on the right and graphs
of continuous functions of x on the top and on the bottom. A type 2 elementary



322 Chapter 5 | Multiple Integration

Figure 5.24 The unit disk
D={(x,y)|x*+y* < 1}isa
type 3 region.

region has a boundary that is straight on the top and bottom and consists of graphs
of continuous functions of y on the left and right.

EXAMPLE 4 The unit disk, shown in Figure 5.24, is an example of a type 3
elementary region. It is a type 1 region since
1},

Dz{(x,y)|_mfyfx/l—x2,—1§x
D={(x,y)|—vl—y2§x§m,—15y51}.

(See Figure 5.25.) It is also a type 2 region since
(See Figure 5.26.) *

IA

| I
X
x=-1 : :x =1
I I
I I
: :
N I
Figure 5.25 The unit disk D as a Figure 5.26 The unit disk D as a type 2
type 1 region. region.

Now we are ready to define [, f dA, where D is an elementary region and
f is continuous on D. We construct a new function f*', the extension of f, by

f.y) if(x,y)eD

ext _
/ (x’y)_{ 0 if(x,y)¢gD

Note that, in general, £ will not be continuous, but the discontinuities of
will all be contained in 9D, which has no area. Hence, by Theorem 2.5, £ is
integrable on any closed rectangle R that contains D. (See Figure 5.27.)

z y
R
/D\/_\
/‘\/—\
y X
x / z2=1"(xy)

Figure 5.27 The graph of z = f'(x, y).



(2,0)

Figure 5.28 The domain of f of
Example 5.
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DEFINITION 2.9 Under the previous assumptions and notation, if R is any
rectangle that contains D, we define

//DfdA to be /fRfe’“dA.

Note that Definition 2.9 implicitly assumes that the choice of the rectangle R
that contains D does not affect the value of [ r [ dA. This is almost obvious
but still should be proved. We shall not do so directly but instead establish the
following key result:

THEOREM 2.10 Let D be an elementary region in R?> and f a continuous
function on D.

1. If D is of type 1 (as described in Definition 2.8), then

b p8(x)
// fdA:/ fx,y)dydx.
D a Jy(x)

2. If D is of type 2, then

//DfdA:/Cd/:y()y)f(x,y)dxdy.

Theorem 2.10 provides an explicit and straightforward way to evaluate double
integrals over elementary regions using iterated integrals. Before we prove the
theorem, let us illustrate its use.

EXAMPLE 5 Let D be the region bounded by the parabolas y = 3x?,y =
4 — x? and the y-axis as shown in Figure 5.28. (Note that the parabolas intersect at
the point (1, 3).) Since D is a type 1 elementary region, we may use Theorem 2.10
with f(x, y) = x%y to find that

1 4—x2
/f xzydA:/ f x?ydydx.
D 0 J3x2

The limits for the first (inside) integration come from the y-values of the top and
bottom boundary curves of D. The limits for second (outside) integration are the
constant x-values that correspond to the straight left and right sides of D. The
evaluation itself is fairly mechanical:

1 p4—x? 1 2,2
x
// xzydydx:/ (—y)
0 Jax2 0 2 )l

= /01 %2 ((4 - x2)2 - (3x2)2) dx

y=47x2
dx

1 1
5/ x? (16 — 8x% + x* — 9x*) dx
0

=/1(8x2—4x4—4x6)dx=5—‘-‘—5:13_6.
0
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Note that after the y-integration and evaluation, what remains is a single definite
integral in x. The result of calculating this x-integral is, of course, a number. Such
a situation where the number of variables appearing in the integral decreases with
each integration should always be the case. *

Proof of Theorem 2.10 For part 1, we may take D to be described as
D ={(x,y)|y(x) =y =48x), a <x <b}.
We have, by Definition 2.9, that

Jfron=ff o

where R is any rectangle containing D. Let R = [a’, b'] x [¢/, d'], where a’ < a,
b'>b,and ¢’ < y(x),d > &(x) for all x in [a, b]. That is, we have the situation
depicted in Figure 5.29. Since f*' is zero outside of the subrectangle R, =
[a,b] x [, d],

b pd
// fextdA — / fextdA — / fem(x, y)dy dx
R Ry a c

by Fubini’s theorem. For a fixed value of x between a and b, consider the y-
integral de f4(x, y)dy. Since f*'(x, y) = Ounless y(x) < y < §(x) (in which
case f™(x, y) = f(x,y)),

d 8(x)
£, y)dy = / Sy
c y(x

and so
b pd
[[ swyan=[[ praa= [ [" renayax
D R a c
b po(x)
- [ [ rwydyar
a Jy(x)
as desired.
The proof of part 2 is very similar. |

Figure 5.29 The region R is the union of R}, R,
andR;.



(0,1) ¢

x+y=1

(0,0) '(l, 0) .

Figure 5.30 The region D of
Example 6.
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y=0
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Figure 5.31 The region D of
Example 6 as a type 1 region.

Figure 5.32 The region D of
Example 6 as a type 2 region.
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We continue analyzing examples of double integral calculations.
EXAMPLE 6 Let D be the region shown in Figure 5.30 having a triangular
border. Consider [/, p(1 —x — y)dA. Note that D is a type 3 elementary region,
so there should be two ways to evaluate the double integral.

Considering D as a type 1 elementary region (see Figure 5.31), we may apply
part 1 of Theorem 2.10 so that

//D(l—x—y)dA=/01/01_x(1—x—y)dydx
A
2/01<(1—x)—x(1—x)—@>dx

1 2
(1—x) ! 1
Z/O de: —E(I—X)3|0=6

dx

We can also consider D as atype 2 elementary region, as shown in Figure 5.32.
Then, using part 2 of Theorem 2.10, we obtain

1 1—
//(1—x—y)dA=/ f y(l—x—y)dxa’y.
D 0 0

We leave it to you to check explicitly that this iterated integral also has a value of

é. Instead, we note that
1 1—x
/ / (1—x—y)dydx
0o Jo

1 1—-y
f / (1—x—y)dxdy
0o Jo

by exchanging the roles of x and y. Hence, the two integrals must have the same
value. In any case, the double integral

//D(l—x—y)dA

represents the volume under the graph of z = 1 — x — y over the triangular region
D.If we picture the situation in R?, as in Figure 5.33, we see that the double integral
represents the volume of a tetrahedron. *

can be transformed into

Of course, not all regions in the plane are elementary, including even some
relatively simple ones. To integrate continuous functions over such regions, the
best advice is to attempt to subdivide the region into finitely many of elementary

type.
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Figure 5.33 The double integral

of Example 6 represents the
volume of the tetrahedron.

Figure 5.34 The region D of

Example 7.

y
(=3, 1)ﬁ_ (3,1)
&
X
D,
(V3. -1) p, /(3. -1

Figure 5.35 The region D of Example 7
subdivided into four elementary regions.

EXAMPLE 7 Let D be the annular region between the two concentric circles
ofradii 1 and 2 shown in Figure 5.34. Then D is not an elementary region, but we
can break D up into four subregions that are of elementary type. (See Figure 5.35.)
If f(x, y) is any function of two variables that is continuous (hence integrable)
on D, then we may compute the double integral as the sum of the integrals over
the subregions. That is,

//DfdA:/ledA+/szdA+/D3fdA+/D4fdA.

For the type 1 subregions, we have the set-up shown in Figure 5.36:

V3 /AT
/ fdA:/ / f(x,y)dydx
Dy -3 J1

and

/DgfdAZ/i/;Tf(x,Y)dydx.

For the type 2 subregions, we use the set-up shown in Figure 5.37:

y': —V4 — x?

Figure 5.36 The subregions D; and
D5 of Example 7 are of type 1.

/szdAzf_ll/\;l/_ff(x,y)dxdy

y
x=—V1=y2 _o-be_ x=il—y2
g RN
, N
[ ] e
X
DN ==
\\\ /,’

Figure 5.37 The subregions D, and D4 of
Example 7 are of type 2.



Figure 5.38 The region D
of Example 8.
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fmfdA:/_ll /_gf(x,y)dxdy.

The difficulty of evaluating each of the preceding four iterated integrals then
depends on the complexity of the integrand. *

and

EXAMPLE 8 We calculate [/, ydA, where D is the region bounded by the
line x — y = 0 and the parabola x = y*> — 2. (See Figure 5.38.)

In this case D is a type 2 elementary region, where the left and right boundary
curves may be expressed as x = y?> — 2 and x = y, respectively. These curves
intersect where

V2—2=y e P —y—2=0 < y=—1,2.

Therefore, part 2 of Theorem 2.10 applies to give

2 ry
// ydA :/ / vdxdy
D —1Jy2=2
2 x=y ? 2 2
=[ / xy[i 2, dy =/ (v = (*—2)y) dy
—1Jy22 . -1
2

3 4 2
¥y
=/ =y +2y)dy=7F—-=+)
O 34

=44 -(3-3+)=3

—1

Now, although D is not a type 1 elementary region, it may be divided into
two type 1 subregions along the vertical line x = —1. (See Figure 5.39.) The
subregion D lying left of the line x = —1 is bounded on both top and bottom by
the parabola x = y? — 2; by solving for y we may express the bottom boundary
of Dy as y = —+/x + 2 and the top boundary as y = +/x + 2. The subregion
D, lying right of x = —1 is bounded on the bottom by y = x and on the top by

g\_‘ ] 2"
yo T2 E

Figure 5.39 The region D of Example 8 is divided
into subregions D; and D, by the line x = —1.
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y = +/x + 2. Putting all this information together, we have

Jfon= [f e[ o

—1 pxr2 2 pxt2
=/ / ydydx+/ / vdydx
-2 Jap2 —1Jx

-1 y2 y=va+2 2 2=Vt
=/ —_ dx+/ — dx
2 2 yz_m -1 2 y=x

—1 2 2 2
=f 0dx+/ (x+ —x—>dx
. 272

X2 X3 2
=0+ (Z—f’x—z) B

—(+2-9-(-1+h =2 .

Addendum: Proof of Theorem 2.6

Step 1. First we establish Theorem 2.6 in the case where f is continuous on
R = [a, b] x [c, d]. By Theorem 2.4, we know that [, f dA exists. Let F be
the single-variable function defined by

d
Fx) = / fCr.y)dy.

(Note: Since f is continuous on R, the partial function in y obtained by holding

x constant is continuous on [c, d]. Hence, [ ¢ f(x,y)dy exists for every x in
[a, b].) We show that

/abF(x)de/ab [/Cdf(x’y)dy} dx://RfdA_

Leta = xg < x; < --- < x, = b be any partition of [a, b]. Then a general
Riemann sum that approximates fab F(x)dx is

3 R AL, (1)
i=1

where Ax; = x; — x;_jandx] € [x;_1, x;]. Nowletc =yp < y; <--- <y, =d
be a partition of [¢, d]. (The partitions of [a, b] and [c, d] together give a partition
of R = [a, b] X [c, d].) Therefore, we may write

d
Fx) = / Foroy)dy

Y1 2 d
= flx,y)dy + fx,y)dy+---+ S(x, y)dy

c R Yn—1

n Yj
= fx,y)dy.
;/yﬂ x,y)dy
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By the mean value theorem for integrals,' on each subinterval [y i1, yj] there
exists a number y}‘ such that

Vi
fe.y)dy = (vj — yj-0f(x. y)) = fx, y)Ay;.

Yj-1
The choice of y? in general depends on x, so henceforth, we will write y?(x) for
y}. Consequently,

F(x)= ) f(x, yi(x)Ay;,
j=1

and the Riemann sum (1) may be written as

n

Y FahAx = Z{ Pt YO AY; tAx; = ) f(ei)AxiAy;.
i=1 i=1 | j=1 ij=1
where ¢;; = (x], yj(x;k)). Note that ¢;; € [xj—1,x;] < [yj—1, y;]. (See Fig-
ure 5.40.)

Yy
d 4+
YiT
yi(x)) ¢

Yi-1 T
c 4

F—t— —o— — X

a Xi_1 X X; b

Figure 5.40 The point ¢;; = (x], yj(xi*)) used in
the proof of Theorem 2.6.

We have thus shown that given any partition of [a, b], we can associate a
suitable partition of R = [a, b] X [c, d] such that the Riemann sum (1) that ap-
proximates fab F(x)dx is equal to a Riemann sum (namely, Zi, j f(eij)Ax;Ay;)
that approximates [f,, f dA. Since f is continuous, we know that

Zf(c,-j)Ax,-ij approaches /ffdA
ij R

as Ax; and Ay; tend to zero. Hence,

/abF(x)dx=//RfdA.

By exchanging the roles of x and y in the foregoing argument, we can show

that
d pb
//fdA:/ / f(x,y)dxdy.
R c a

! The mean value theorem for integrals says that, if g is continuous on [a, b], then there is some number
¢ witha < ¢ < b such that fah g(x)dx = (b — a)g(c).
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Step 2. Now we prove the general case of Theorem 2.6 (i.e., the case that
f has discontinuities in R = [a, b] x [c, d]). By hypothesis, the set S of discon-
tinuities of f in R are such that every vertical line meets S in at most finitely
many points. Thus, for each x in [a, b], the partial function in y of f(x, y) is
continuous throughout [c, d], except possibly at finitely many points. (In other
words, the partial function is piecewise continuous.) Then, because f is bounded,

d
Flx) = f Froy)dy

exists.
Now we proceed as in Step 1. That is, we begin with a partition of [a, b] into
n subintervals and a corresponding Riemann sum

Z F(x])Ax;.
i=1

Next, we partition [c, d] into n subintervals. Hence,

n

d Yj
o= [ raindy =Y [ sy, @)

j=1YYj-1

As in Step 1, the partitions of [a, ] and [c, d] combine to give a partition of R.
Write R as Ry U R;, where R; is the union of all subrectangles

Rij = [xi—1, xi]1 x [yj=1, ;]
that intersect S and R; is the union of the remaining subrectangles. Then we may
apply the mean value theorem for integrals to those intervals [y;_1, y;] on which
f(x}, y) is continuous in y, thus replacing the integral

Vi
[ sy
Yj-1
by
JOE Y Ay = f(eij)Ay;.
Since f is bounded, we know that

[, I =M

for some M and all (x, y) € R. Therefore, on the intervals [y;_i, y;] where
f(x}, y) fails to be continuous, we have

Vi
/ £t vy dy
Yi-1

Yij
= [ lrewlay

Vi1

Yj
< Mdy = M(y; —yj-1) = MAy;. 3)

Yj-1

From equation (2), we know that

Xn:F(xi*)Axi = 2":{
i=1

ij=1

/ f(x;ﬁy)dy}Ax,-

Yj-1

- Z L el

RijCR1UR, Y
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-y {/ f(x;‘,y)dy}m,-

R;‘/CRl )

Yj
+ Y[ rear]ax.

RijCR, Yj-1

Therefore,

Zn: F(x)Ax; — Z {
i=1 RijCR,
x|

R,'jCR[

Vi
/ @, y)dy}Axi

Yj-1

“4)

/ f(x,-*,y)dy}Axi .

Yj-1

Applying the mean value theorem for integrals to the left side of equation (4) and
inequality (3) to the right side, we obtain

< Z M Ax; Ay,
R,’jCR]

Z F(x")Ax; — Z feij)AxiAy;
i=1

R,’jCRz
= M - area of R;.

Now S has zero area (by hypothesis) and is contained in R;. By letting the
partition of R become sufficiently fine (i.e., by making Ax;, Ay; small), the term
M - area of R can be made arbitrarily small. (See Figure 5.41.)

y
d 4
—
_ N
— _~ \
{
\ P
/ AN
— N
c 4+
} } X
a b

Figure 5.41 The set R; (shaded area) consists of
the subrectangles of the partition of R that meet S,
the set of discontinuities of f on R. As the partition
becomes finer, the area of R; tends toward zero.

Therefore, as all Ax; and Ay; tend to zero, we have that the sums

Z F(x;")Axi and Z f(C,‘j)AX,’ ij,

R,','CRZ

and the term M - area of R; converge (respectively) to

/abF(x)dx, /-/RfdA, and O.
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We conclude that

that is,

/abF(x)dx—/fRfdAzo,

/‘/RfdAzfab/Cdf(x,y)dydx.

Again, by exchanging the roles of x and y, we can show that

[ raa =/Cdfabf(x,y)dxdy

as well.

5.2 Exercises

1. Use Definition 2.3 and Theorem 2.4 to determine
the value of [[(y* + sin2y)d A, where R = [0, 3] x
[—1,1].

2. Let R =[-3,3] x [—2,2]. Without explicitly eval-
uating any iterated integrals, determine the value of
ffR(xS +2y)dA.

3. This problem concerns the double integral [, x> dA,
where D is the region pictured in Figure 5.42.

(a) Determine [}, x* d A directly by setting up and ex-

plicitly evaluating an appropriate iterated integral.

(b) Now argue what the value of [, x> dA must be
by inspection, that is, without resorting to explicit
calculation.

y=4-x2

X

Figure 5.42 The region D of
Exercise 3.

In Exercises 4—13, evaluate the given iterated integrals. In ad-
dition, sketch the regions D that are determined by the limits

of integration.
2 y2
5. / / ydxdy
0o Jo

1 x3
4./ / 3dydx
0o Jo
2 px? 3 p2x+l
6./ / ydydx 7-/ f xydydx
0o Jo —1Jx

8.

9.

10.

11.

12.

13.

14.

25

2 a2
/ f (2 + ) dy dx
0 Jxra

4 2y
/ f x sin(y?)dx dy
0 Jo
b4 sinx
/ / ycosxdydx
0o Jo
1 pd/1—x2
/ / 3dydx
0 J—v1-x2
1 1=y
f / 3dxdy
-1Jo

1 e
f / yidydx
0 —e*

Figure 5.43 shows the level curves indicating the vary-
ing depth (in feet) of a 25 ft by 50 ft swimming pool.
Use a Riemann sum to estimate, to the nearest 100 ft°,
the volume of water that the pool contains.

20 -

15+

e

15.

Figure 5.43

Integrate the function f(x, y) = 1 — xy over the trian-
gular region whose vertices are (0, 0), (2, 0), (0, 2).



16.

17.

18.

19.

20.

21.

22.

23.
24,
25.
26.

27.

28.

29.

30.

Integrate the function f(x, y) = 3xy over the region
bounded by y = 32x3 and y = /x.

Integrate the function f(x, y) = x + y over the region
bounded by x + y =2 and y> — 2y —x = 0.

Evaluate [[, xydA, where D is the region bounded
by x = y* and y = x2.

Evaluate [, ¢’ d A, where D is the triangular region
with vertices (0, 0), (1, 0), and (1, 1).

Evaluate [/, 3ydA, where D is the region bounded
byxy’=1,y=x,x=0,and y = 3.

Evaluate [/, (x —2y)dA, where D is the region
bounded by y = x> +2and y = 2x%> — 2.

Evaluate [, (x* + y?) d A, where D is the region in the
first quadrant bounded by y = x, y = 3x,and xy = 3.

Prove property 2 of Proposition 2.7.
Prove property 3 of Proposition 2.7.
Prove property 4 of Proposition 2.7.

(a) Let D be an elementary region in R%. Use the
definition of the double integral to explain why
[, 1dA gives the area of D.

(b) Use part (a) to show that the area inside a circle of
radius a is wa?.

Use double integrals to find the area of the region
bounded by y = x? and y = x3.

Use double integrals to calculate the area of the region
bounded by y =2x,x =0,and y = 1 — 2x — x?.

Use double integrals to calculate the area inside
the ellipse whose semiaxes have lengths a and b.
(See Figure 5.44.)

y
(0,0)

LN
N |

Figure 5.44 The ellipse of
Exercise 29.

(a,0)
X

(a) Set up an appropriate iterated integral to find
the area of the region bounded by the graphs of
y =x3 —xand y = ax? for x > 0. (Take a to be
a constant.)

0 (b) Useacomputeralgebra system to estimate for what

value of a this area equals 1.

31.

32.

33.

34.

35.

36.

37.

38.
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Use double integrals to find the total area of the region
bounded by y = x* and x = y°.

Use double integrals to find the area of the region
bounded by the parabola y =2 — x?, and the lines
x—y=0,2x4+y=0.

Let D be the region in R? bounded by the lines x = 0,
x +y =3, and x — y = 3. Without resorting to any
explicit calculation of an iterated integral, determine,
with explanation, the value of [f,(y* — e siny +
2)dA. (Hint: Use symmetry and geometry.)

Let D be the region in R?> with y >0 that is
bounded by x> + y?> = 9 and the line y = 0. Without
resorting to any explicit calculation of an iterated
integral, determine, with explanation, the value of
[[,@2x* — y*sinx — 2) dA.

Determine the volume of the solid lying under the plane
7z = 24 — 2x — 6y and over the region in the xy-plane
bounded by y = 4 — x?, y = 4x — x2, and the y-axis.
Find the volume under the portion of the paraboloid
7z = x? + 6y? lying over the region in the xy-plane
bounded by y = x and y = x? — x.

Find the volume under the plane z = 4x + 2y + 25

and over the region in the xy-plane bounded by y =
x> —10and y =31 — (x — )%

(a) Set up an iterated integral to compute the volume
under the hyperbolic paraboloid z = x> — y> + 5
and over the disk

D={(x,y)|x*+y* <4}

in the xy-plane.

0 (b) Use a computer algebra system to evaluate the

39.

40.

integral.
Find the volume of the region under the graph of
f,y)=2—Ix| =1yl
and above the xy-plane.

(a) Show that if R = [a, b] X [c,d], f is continuous
on [a, b], and g is continuous on [c, d], then

/ /R (g0 dA
- ( / bf(X)dX> ( / dg(y)dy) .

(b) What can you say about

[ rereaa

if D is not a rectangle? More specifically, what if
D is an elementary region of type 1?
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41. Let
1 if x is rational
f(x,y)=140 ifxisirrationalandy <1.

2 ifx isirrational and y > 1

(a) Show that foz f(x,y)dy does not depend on
whether x is rational or irrational.

(b) Show that fol foz f(x,y)dydx exists and find its
value.

(c) Partition R =1[0,1] x [0,2] and construct a
Riemann sum by choosing “test points” ¢;; in each
subrectangle of the partition to have rational x-

(d)

(e)

coordinates. Then to what value must this Riemann
sum converge as both Ax; and Ay; tend to zero?

Partition R and constructa Riemann sum by choos-
ingtestpoints ¢;; = (x/, y;) suchthatx isrational
if y? < land x[ is irrational if y7 > 1. What hap-
pens to this Riemann sum as both Ax; and Ay;
tend to zero?

Show that f fails to be integrable on R by us-
ing Definition 2.3. Thus, we see that double inte-
grals and iterated integrals are actually different
notions.

5.3 Changing the Order of Integration

Frequently, it is useful to think about the evaluation of double integrals over
elementary regions essentially as the determination of an appropriate order of
integration. When the region of integration is a rectangle, Fubini’s theorem
(Theorem 2.6) says the order in which we integrate has no significance; that is,

//RfdA=/ab/cdf(x,y)dydx=/Cd/abf(x,y)dxdy.

(See Figure 5.45.) When the region is elementary of type 1 only, we must integrate
first with respect to y (and then with respect to x) if we wish to evaluate the double
integral by means of a single iterated integral. (See Figure 5.46.) Then

//DfdAzfab yj:)f(x,y)dydx.

In the same way, when the region is elementary of type 2 only, we would typically
integrate first with respect to x, so that

[], a4 :fcd/::)f@vy)dxdy.

y
y
y=6(x)
@ ® x=a @ D |*= b
X
x L\\, N
_ ™~
y=yx) | T
R=1a,b] x[c, d]
Figure 5.45 Changing the order of integration over a Figure 5.46 A type 1 region

rectangle.

leads us to integrate with respect
to y first.



y
y=d
v=atn)| o @\ = py)
Wik
y=c

Figure 5.47 A type 2 region
leads to integration with respect
to x first.

/i e

Figure 5.48 The region D of
Example 1.

14 YZIHXH)%H (e 1)
©)

/

Figure 5.49 Integrating over
the region D of Example 1 by
integrating first with respect to x.

14 y=Inx
ﬂ
X

/® xex
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(See Figure 5.47.) When the region is elementary of type 3, however, we can
choose either order of integration, at least in principle. Often, this flexibility can
be used to advantage, as the following examples illustrate:

EXAMPLE 1 We calculate the area of the region shown in Figure 5.48. Con-
sidering D as a type 1 region, we obtain

e Inx
AreaofD:/f ldA(Why?):/ / ldydx
D 1 Jo
=/ y :)nxdx=/ Inxdx.
1 1

The single definite integral that results gives the area under the graph of y = Inx
over the x-interval [1, e], just as it should. To evaluate this integral, we need to
use integration by parts: Letu = Inx (sodu = 1/x dx)and dv = dx (sov = x).
Then

e ¢ e 1
AreaofD:/ 1nxdx=lnx-x|1—/ x-—dx
1 1 X

(remember [udv =u-v— [vdu),so

AreaofD:e—O—/ dx=e—(e—1)=1.
1

Integration by parts can be avoided if we integrate first with respect to x, as
schematically suggested by Figure 5.49. Hence,

1 e 1
AreaofD://ldA:// 1dxdy=/x
D 0 24 0

=(ey—e")y=(e—e)—(0—e) =1,
which checks (just as it should). *

1
¢ dy = f (e — ) dy
0

Note that the two iterated integrals we used to calculate the area in Example 1,

namely,
e prlnx 1 e
// dydx and //dxdy,
1 0 0 Jev

are not obtained from each other by a simple exchange of the limits of integration.
The only time such an exchange is justified is when the region of integration
is a rectangle of the form [a, b] X [c, d] so that all limits of integration are
constants.

EXAMPLE 2 Sometimes changing the order of integration can make an im-
possible calculation possible. Consider the evaluation of the following iterated

integral:
2 4
/ / y cos(x?)dx dy.
0 Jy?

After some effort (and maybe some scratchwork), you should find it impossible
even to begin this calculation. In fact it can be shown that cos(x?) does not
have an antiderivative that can be expressed in terms of elementary functions.
Consequently, we appear to be stuck.
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Figure 5.50 Note that x = y?
corresponds to y = /x over the
region shown.

5.3 Exercises

On the other hand, it is easy to integrate y cos(x?) with respect to y. This
suggests finding a way to change the order of integration. We do so in two steps:

1. Use the limits of integration in the original iterated integral to identify the
region D in R? over which the integration takes place. (While doing this, you
should make a wish that D turns out to be a type 3 region.)

2. Assuming that the region D in Step 1 is of type 3, change the order of
integration.

The limits of integration in the preceding example imply that D can be described as
D={x.y)]y =x=<40=y=2)

as suggested by Figure 5.50. Now Figure 5.50 can be used to change the order
of integration. We have

2 4 4 pJx
/ / ycos(x?)dx dy = / / y cos(x?)dy dx.
0 Jy? 0o Jo

It is now possible to complete the calculation; that is,

4 px 4 2
2 _ Yy 2
/0 /0 ycos(x“)dydx _fo (2 cos(x )>

4
=/ fcos(xz)a’)c
0o 2

1 16
= Zf cosudu,
0

where u = x? and du = 2x dx, so that, finally,

y=vx
dx

y=0

2 4
/ / ycos(x?)dx dy = Lllsinu|(1)6 = % sin 16. .
0 Jy?

The technique of changing the order of integration is a very powerful one, but
it is by no means a panacea for all cuambersome (or impossible) integrals. It relies
on an appropriate interaction between the integrals and the region of integration
that often fails to occur in practice.

1. Consider the integral

2 2x
/ 2x+ 1)dydx.
0 Jx?

(a) Evaluate this integral.

(b) Sketch the region of integration.

N

1 x
/ /(Z—x—y)dydx
0 Jo
2 pd-2x
/ / vdydx
0 Jo
2 pd4—y?
/ / xdxdy
0o Jo

w

F

(c) Write an equivalent iterated integral with the order

of integration reversed. Evaluate this new integral

(3]

9 3
) . / / (x+y)dxdy
and check that your answer agrees with part (a). 0 Jyy

In Exercises 2-9, sketch the region of integration, reverse the
order of integration, and evaluate both iterated integrals.

o

3 e*
. / / 2dydx
0o Ji



1 2y
7. / / e*dxdy
0 y
/2  pcosx
8. / / sinx dy dx
0 0
2 pafd—)?
9. / / ydxdy
0 —/4—y?
When you reverse the order of integration in Exercises 10 and

11, you should obtain a sum of iterated integrals. Make the
reversals and evaluate.

1 —X
10. / / (x —y)dydx
-2 Jx2-2

4 pdy—)?
11. / / (y+ Ddxdy
—1Jy—4

In Exercises 12 and 13, rewrite the given sum of iterated in-
tegrals as a single iterated integral by reversing the order of
integration, and evaluate.

1 x 2 2—x
12. / / sinxdydx—i—/ / sinx dy dx
0o Jo 1 Jo

8 VI3 12 V373
13. / / ydxdy+/ / ydxdy
o Jo 8 JH—=8

In Exercises 14—18, evaluate the given iterated integral.

1 3
14. / / cos (x*)dx dy
0 3y
1 1
15./ / x?sinxydxdy
0 y
b T H
16./ / Y ix dy
0 y X
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3 p9—x2 xedV
17. / / dydx
0o Jo 99—y

2 pl ,
18. f / e dxdy
0 y/2

It is interesting to see what a computer algebra system does with
iterated integrals that are difficult or impossible to integrate in
the order given. In Exercises 19-21, experiment with a com-
puter to evaluate the given integrals.

0 19. (a) Determine the value of foz fxl/z y2 cos (xy)dy dx
via computer. Note how long the computer takes
to deliver the answer. Does the computer give you
a useful answer?

(b) Ifyou were to calculate the iterated integral in part
(a) by hand, in the order it is written, what method
of integration would you use? (Don’t actually carry
out the evaluation, just think about how you would
accomplish it.)

(c) Now reverse the order of integration and let your
computer evaluate this iterated integral. Does your
computer supply the answer more quickly than in
part (a)?

€ 20. (a) See if

f03 ffz x sin (y?)dy dx as it is written.

your computer can calculate

(b) Now reverse the order of integration and have
your computer evaluate your new iterated integral.
Which of the computations in parts (a) or (b) is
easier for your computer?
0 21. (a) Canyourcomputer evaluate /01 / 2

sin~! y

e dx dy?

(b) Reverse the order of integration and have it try
again. What happens?

5.4 Triple Integrals

2N

Let f(x, y, z) be a function of three variables. Analogous to the double integral,
we define the triple integral of f over a solid region in space to be the limit of
appropriate Riemann sums. We begin by defining this integral over box-shaped
regions and then proceed to define the integral over more general solid regions.

The Integral over a Box

L7 Let B be a closed box in R® whose faces are parallel to the coordinate planes.
C /// That iS,

|

|

|
£

:

|
<

B={(x,y,2)eR}|a<x<b,c<y<d, p<z<gq).

(See Figure 5.51.) We also use the following shorthand notation for B:
Figure 5.51 The box

B =[a,b] x [c,d] x [p, q]. B =la,b] x [c,d] x [p,q].
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a=x, q=2n
X1
b=x,,.
2]
z
P=2
c=yYo Y1 M2 d=y,
y

X

Figure 5.52 A partitioned box.

DEFINITION 4.1 A partition of B of order n consists of three collections
of partition points that break up B into a union of n3 subboxes. That is, for
i,j,k=0,...,n,weintroduce the collections {x;}, {y;}, and {zx}, such that

aAa=X)<X| < - <Xj_1<X;<--<X,=Db,

C=Yo<y1 <+ <yj-1<yj<--<y=d,

P=20<2 < " <ZL-1<2Z<- <Z,=¢.
(See Figure 5.52.) In addition, fori, j,k =1, ..., n, let

Axi =x; — Xxi—1, Ayj=y;j—yj—1, and Az =2z — Zi—1.

DEFINITION 4.2 Let f be any function defined on B = [a, b] X [c, d] X
[p, ¢q]. Partition B in some way. Let ¢;j;x be any point in the subbox

Bijk = [xi—1, xi]1 X [yj—1, il X [zki-1, 2] (G, jok=1,...,n).
Then the quantity

n

S= Y flejp)AVij,

ij.k=1

where AV = Ax;Ay;Azy is the volume of B;j, is called the Riemann
sum of f on B corresponding to the partition.

You can think of the Riemann sum ) f(c¢;jx)AV;j; as a weighted sum of

volumes of subboxes of B, the weighting given by the value of the function f at
particular “test points” ¢;j; in each subbox.

DEFINITION 4.3 The triple integral of f on B, denoted by

I1]

by /fo(x,y,z)dV, or by f/ Bf(x,y,z)dxdydz,




Figure 5.53 The subbox
contributes f(¢;jx)AVjji
to the Riemann sum S. If
we think of f as
representing a density
function, then the total
mass of the entire box B

is [[[, fdV.

Figure 5.54 In

Theorem 4.4 the
discontinuities of f on B
(shown shaded) must have
zero volume.
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is the limit of the Riemann sum § as the dimensions Ax;, Ay;, and Az; of
the subboxes B, all approach zero, that is,

[[[rav=  tim 3 remanay.

Ayj, Az — 0 § =l

provided that this limit exists. When [[/, fdV exists, we say that f is
integrable on B.

The key point to remember is that the triple integral is the limit of Riemann
sums. It is this notion that enables useful and important applications of integrals.
For example, if we view the integrand f as a type of generalized density function
(“generalized” because we allow negative density!), then the Riemann sum § is
a sum of approximate masses (densities times volumes) of subboxes of B. These
approximations should improve as the subboxes become smaller and smaller.
Hence, we can use the triple integral ([, f dV, when it exists, to compute the
total mass of a solid box B whose density varies according to f, as suggested by
Figure 5.53.

Analogous to Theorem 2.5, we have the following result regarding integra-
bility of functions:

THEOREM 4.4 If f is bounded on B and the set of discontinuities of f on B
has zero volume, then [[[, f dV exists. (See Figure 5.54.)

To say that a set X has zero volume as we do in Theorem 4.4, we mean that
we can cover X with boxes B;, B, ..., By, ... (i.e., so that X C U;’;l B,), the
sum of whose volumes can be made arbitrarily small.

To evaluate a triple integral over a box, we can use a three-dimensional version
of Fubini’s theorem.

THEOREM 4.5 (FuUBINI’S THEOREM) Let f be bounded on B = [a, b] x
[c,d] x [p, q] and assume that the set S of discontinuities of f has zero vol-
ume. If every line parallel to the coordinate axes meets S in at most finitely many
points, then

J[forev
Z/ab/j/qu(x,y’z)dzdydx:/abqu/ff(x,y,z)dydzdx

:/cd/ab/qu(x,y,Z)dzdxdy=.[d/:/abf(x,y,z)dxdzdy
:fq/b/df(x,y,z)dydxdz=/q/d/bf(x,y,z)dxdydz,
pooa e p Je Ja
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EXAMPLE 1 Let
B =[-2,31x[0,1] x[0,5], andlet f(x,y,z)=x%¢ +xyz.

Thus, f is continuous and hence certainly satisfies the hypotheses of Fubini’s
theorem. Therefore,

3 a1 s
/// (x%e” + xyz)dV =/ / / (x%e” + xyz)dzdydx
B —2Jo Jo

3,1
= /2/0 (xzeyz-l-%xyzz)ﬁzgdydx

w 3ol
:/ / (5x*e* + Zxy) dydx
—2Jo
z
X S
= /_2 (5x%e” + 2xy?) ;;0 dx
y
X

3
= /2 (S(e —x?+ %x)dx
Figure 5.55 The function f is

continuous on W. _ (é(e _ 1)x3 + §x2)|3
- \3 8 -2

z2=y(x,y) =@5e-D+2)-(-2Ee-D+3%)
=DBe-1n+12.

You can check that integrating in any of the other five possible orders produces
the same result. .

Elementary Regions in Space

Now suppose W denotes a fairly arbitrary solid region in space, like a rock or a
* slab of tofu. Suppose f is a continuous function defined on W, such as a mass
Figure 5.56 An elementary density function. (See Figure 5.55.) Then the triple integral of f over W should
region of type 1. give the total mass of W. As was the case with general double integrals, we need to
find a way to properly define ([ [, f dV and to calculate it in practical situations.
The course of action is much like before: We see how to calculate integrals over
certain types of elementary regions and treat integrals over more general regions
by subdividing them into regions of elementary type.

x=o(y) x=B()
DEFINITION 4.6 We say that W is an elementary region in space if it can
be described as a subset of R? of one of the following four types:

Type 1 (see Figures 5.56 and 5.57)

a) W={(x,y,z X,y)<z<vY(x,y), y(x) <y <8(x), a <x <b},
Figure 5.57 The “shadow” (a) Or{( y:2) | o(x,y) Y(x,y), y(x) <y <d8(x) }

(projection) of W into the xy-plane _
o e WP (0) W= {(x.7.2) | ¢(x.3) S2 S ¥(x.3), @) S <BO). e =y =d).

the plane.
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Type 2 (see Figure 5.58)

@ W={(x,y,2)ay,2) <x <B(,2), y(@) =y =<8@z) p<z=gq},
or

b)) W={(xy.2) la(y,z) =x < B(y,2), p(y) =z =¥(y), c =y =d}.
Type 3 (see Figure 5.59)

@ W={(x,y,2)|lyx,2) =y <d(x,2), a(z) <x < B(z2), p<z=gq},
or
(b) W:{(X, y,z) | '}/(X,Z) =Yy 58()6,2), QO(X) <z= W(-x)’ a=<x Sb}

Type 4
W is of all three previously described types.

Figure 5.58 For an elementary Figure 5.59 For an elementary
region of type 2, the shadow in the region of type 3, the shadow in the
yz-plane should be an elementary xz-plane should be an elementary
region in the plane. region in the plane.

Some explanation regarding Definition 4.6 is in order. An elementary region
W of type 1 is a solid shape whose top and bottom boundary surfaces each can
be described with equations that give z as functions of x and y and such that
the projection of W into the xy-plane (the “shadow”) is in turn an elementary
region in R? (in the sense of Definition 2.8). Similarly, an elementary region of
type 2 is one whose front and back boundary surfaces each can be described with
equations giving x as functions of y and z and whose projection into the yz-plane
is an elementary region in R?. Finally, an elementary region of type 3 is one whose
left and right boundary surfaces each can be described with equations giving y
as functions of x and z and whose projection into the xz-plane is an elementary
region in R?. In each case, an elementary region in space is one for which we
can find boundary surfaces described by equations where one of the variables is
expressed in terms of the other two, and whose “shadow” in the plane of these
two variables is an elementary region in R? in the sense of Definition 2.8.

EXAMPLE 2 Let W be the solid region bounded by the hemisphere x? + y? +
72 = 4, where z < 0, and the paraboloid z = 4 — x> — y2. (See Figure 5.60.) It
is an elementary region of type 1 since we may describe it as

W:{(x,y,z)|—mfzf4_x2_y2’
Vi—@sysVa-e 2<x<a)
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D
NI

X2+y24z72=4,
z<0 Shadow of W

Figure 5.60 The solid region W of Example 2.

This description was obtained by noting that W is bounded on top and bottom by a
pair of surfaces, each of which is the graph of a function of the form z = g(x, y)
and the shadow of W in the xy-plane is a disk D of radius 2, which we have
chosen to describe as

D:{(x,y)|—\/4—x2§y5\/4—x2,—2§x§2},

and which we already know is an elementary region (of type 3) in the xy-
plane. *

EXAMPLE 3 The solid bounded by the ellipsoid

2y 2
E: =+ 5+ 5 =1 a,b,cpositive constants
a’>  b*  ?

can be seen to be an elementary region of type 4. To see that it is of type 1, split
the boundary surface in half via the z = 0 plane as shown in Figure 5.61. (This
is accomplished analytically by solving for z in the equation for the ellipsoid.)
Then the shadow D of E is the region inside the ellipse in the xy-plane shown in
Figure 5.62.

y
X
Figure 5.61 The ellipsoid of Figure 5.62 The shadow of
Example 3 as an elementary the type 1 ellipsoid in
region of type 1. Figure 5.61 is the region inside

the ellipse x2/a®> 4+ y?/b*> = 1
in the xy-plane.
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Z

z
2

y
y
X x2 2
yeob 135
Figure 5.63 The ellipsoid of Figure 5.64 The shadow Figure 5.65 The ellipsoid of
Example 3 as a type 2 elementary of the ellipsoid in Example 3 as a type 3 region.
region. Figure 5.63 is the region
inside the ellipse
y2/b* 4 z%/c? = 1 in the
yz-plane.
We have
x2 x2
D = (x,y)’—b l-—5 <y=b\l-—5,—a<x=a
a a
=1(x,y) | —a l—y—2<x<a l—y—z—b< <b
- ’y b2 — — bza — y — ’
so D is in fact a type 3 elementary region in R®.
b4 To see that E is of type 2, split the boundary at the x = 0 plane as in

Figure 5.66 The
shadow of the
ellipsoid in
Figure 5.65 in the
xz-plane.

Figure 5.63. The shadow in the yz-plane is again the region inside an ellipse.
(See Figure 5.64.) Finally, to see that E is of type 3, split along y = 0. (See
Figures 5.65 and 5.66.) *

Triple Integrals in General

Suppose W is an elementary region in R and f is a continuous function on W.
Then, just as in the case of double integrals, we define the extension of f by

fx,y,2) if(x,y,2)eW

[, y,2) = { 0 if(x,y,2) ¢ W’

By Theorem 4.4, f'is integrable on any box B that contains W. Thus, we can
make the following definition:

DEFINITION 4.7 Under the assumptions that W is an elementary region
and f is continuous on W, we define the triple integral

//Wde to be //foe’“dV,

where B is any box containing W.
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Using a proof analogous to that of Theorem 2.10, we can establish the
following:

THEOREM 4.8 Let W be an elementary region in R® and f a continuous
function on W.

1. If W is of type 1 (as described in Definition 4.6), then

3(x)  pY(x.y)
// fdV = / / / f(x,y,2)dzdydx, (type la)
y(x) Jolx.y)
B py(x.y)
// fdv = / / / f(x,y,2)dzdx dy. (type 1b)
a(y) Jo(x.y)

2. If W is of type 2, then

q r&z) pB(K.2)
// de=/ / / f(x,y,2)dxdydz, (type 2a)
w p Jy@ Ja(yz)

d ry(y) pBK.2)
// fdv =/ / / f(x,y,z)dxdzdy. (type 2b)
w c Jo(y) Jal(y.z)

3. If W is of type 3, then

q rBR) pé(x.2)
[[[rav=["[ [ " teydvacdz aypesa
w p Jaz) Jy(xz)
b ¥(x) 8(x,2)
/// fdv =/ / f(x,y,2)dydzdx. (type 3b)
w a Jox) Jy(xz)

EXAMPLE 4 Let W denote the (solid) tetrahedron with vertices at (0, 0, 0),
(1,0,0), (0,1, 0), and (0, 0, 1) as shown in Figure 5.67. Suppose that the mass
density at a point (x, y, z) inside the tetrahedron varies as f(x,y,z) =1 + xy.
We will use a triple integral to find the total mass of the tetrahedron.

The total mass M is

// Wde:// W(l—l—xy)dV.

(See the remark before Theorem 4.4.) To evaluate this triple integral using iterated

(1,0,0) integrals, note that we can view the tetrahedron as a type 1 elementary region.
x (Actually, it is a type 4 region, but that will not matter.) The slanted face is given
Figure 5.67 The tetrahedron of by the equation x + y + z = 1, which describes the plane that contains the three
Example 4. points (1, 0, 0), (0, 1, 0), and (0, 0, 1). Hence, by first integrating with respect to




(0,1,0) 4

Linex+y=1
- (in z =0 plane)

>——X
(1,0,0)

Figure 5.68 The shadow in the
xy-plane of the tetrahedron of
Example 4 is a triangular region.

Figure 5.69 The region W of
Example 5.
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z and holding x and y constant,

= [ [ ([ emic)an
B .//shaolow(1 == yda

:// (1—x—y+xy—x2y—xy2)dA.
shadow

The shadow of W in the xy-plane is just the triangular region shown in Figure 5.68.
Thus,

M = / (1—x—y+xy—x*y —xy*)dA
shadow
1 1—x
=/ f (1—x—y+xy—x*y—xy?)dydx
o Jo

1
:/0 (1 =x)—x(1 —x) = 31 —x)? + x(1 —x)

1.2 2 1 3
— 3x* (1 —x) —§x(1—x))dx
! 1
_ 1 5 1.3 1.4 _ (1 5.2 1.4 1.5 _ 17
—/0 (3= gx+ 307 = gxt)dx = (30 — % + g1t = 552°) | = 5.

Note that M can also be written as a single iterated integral, namely,

1 l—x l—x—y
M :/ / / (1+xy)dzdydx. .
0 0 0

EXAMPLE 5 We calculate the volume of the solid W sitting in the first octant
and bounded by the coordinate planes, the paraboloid z = x> 4+ y? 4+ 9, and the
parabolic cylinder y = 4 — x?. (See Figure 5.69.)

By definition, the triple integral is a limit of a weighted sum of volumes of
tiny subboxes that fill out the region of integration. If the weights in the sum are
all taken to be 1, then we obtain an approximation to the volume:

VAL AV
i,j.k

Therefore, taking the limit as the dimensions of the subboxes all approach zero,

it makes sense to define
V= / / / 1dV.
w
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y
(0,4)¢

(2,0)

Figure 5.70 The shadow
in the xy-plane of the
region in Figure 5.69.

x2—y?

i3

lz 3x2+3y2-16

Figure 5.71 The capsule-shaped
region of Example 6.

N
N

Figure 5.72 The shadow
of the region W of
Example 6, obtained by
projecting the intersection
curves of the defining
paraboloids onto the
xy-plane.

Chapter 5 | Multiple Integration

In our situation, W is a type 1 region whose shadow in the xy-plane looks
like the region shown in Figure 5.70. Thus, by Theorem 4.4,

2 pd—x? px?4y249
=///dV=// / dzdydx
w 0 0 0
2 pd—x?
=/ / (x> 4+ y*+9)dydx
0 0

2 2
=/ (xy+3y3+9y| )dx
0

2
= /0 (x*(4 — x%) + 1(4 — x?)* + 94 — x?)) dx

? 172
- [ ez

— (172 73 +

—21x% 4+ 3x* — %x6) dx

x)|0=%. *

EXAMPLE 6 We find the volume inside the capsule bounded by the paraboloids
z=9—x*—y?and z = 3x% + 3y* — 16. (See Figure 5.71.)

Once again, we have
v=[[[ rav.
w

and again the region W of interest is elementary of type 1. The shadow, or pro-
jection, of W in the xy-plane is determined by

{(x, y) € R? | there is some z such that (x, y, z) € W}.

Physically, one can also imagine the shadow as the hole produced by allowing W
to “fall through” the x y-plane. In other words, the shadow is the widest part of W
perpendicular to the z-axis. From Figure 5.71, one can see that it is determined
by the intersection of the two boundary paraboloids. The shadow itself is shown
in Figure 5.72. The intersection may be obtained by equating the z-coordinates
of the boundary paraboloids. Therefore,

—16 <« 4x*+4y?=25

2yt= = (3)

9 — x? — y? =3x? + 3y?
—
Thus, by Theorem 4.4,

512 /257422 p9—x?—y
=/// dV:/ / / dzdy dx
w —5/2 25/4 —x2 J3x243y2—16
/2 p/25/4—x2 9—xP—
= 4/ / / dzdydx.
3x243y2—-16

This last iterated integral represents the volume of one quarter of the capsule.
Hence, we multiply its value by 4 to obtain the total volume. The reason for this
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manipulation is to make the subsequent calculations somewhat simpler (although

the computation that follows is clearly best left to a computer).
We compute

5/2 25/4 x2 —x2—y?
=4 f f / dzdydx
3x243y2-16

5/2 paf25/4—x2
= 4/ / (25 — 4x* — 4y*)dy dx

=4/5/2 <25\/E— NERFS T 3/2) dx

4/05/2 ((25 2)\/— % 25 3/2) dx

o0 25 2 25 2 4 (25 2\3/2
=4/0 <4(7—x) T =3(F %) )dx

=2 (-
Now let x = %sin@, sodx = %cos@ df. Then

32 [ (5 35 1250 ™2
V=— —cosf Ecos@d9=T cos” 0do
0

3 2 A
1250 (/2 (1 g
= ; (5(1 +c0s29)> do
625 [T/
=< (1 4+ 2¢0s20 + cos®20)do
0
625 625
= — (6 +sin20)]” + - f —(1 + cos 46) d6
0
625 625 /m 625w
=22 22 (L o) 2T S
TR (2 8
5.4 Exercises
Evaluate the triple integrals given in Exercises 1-3. 3 / / / B 4V
1 /‘// av [1.e]x[1,e]x[1,e] XYZ
. xyz
[—1,11x[0,2]x[1,3] 4. Find the value of [[f,, zdV, where W =[—1,2] x
[2,5] x [—=3,3], without resorting to explicit

2. /// (*+y*+25)dVv calculation.
[0,1]%[0,2]x[0,3]
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Evaluate the iterated integrals given in Exercises 5—7.

5

o

N

10.

2, vtz

/ / [ 3yz2dx dydz
-1J1 Jo
3 z Xz

/ /f (x+2y+2)dydxdz
1 Jo Ji
1 2y y+z

/ / / zdxdzdy
0 1+y Jz

(a) Let W be an elementary region in R>. Use the
definition of the triple integral to explain why
[[fy 1dV gives the volume of W.

(b) Use part (a) to find the volume of the region
W bounded by the surfaces z = x> + y? and z =
9 —x?—y%

Use triple integrals to verify that the volume of a ball

of radius a is 4ma’ /3.

Use triple integrals to calculate the volume of a cone of
radius r and height /. (You may wish to use a computer
algebra system for the evaluation.)

In Exercises 11-20, integrate the given function over the indi-

cated

1

12.

13.

14.

15.

16.

17.

18.

19.

20.

region W.

. f(x,y,2)=2x —y+z; W is the region bounded
by the cylinder z = y?, the xy-plane, and the planes
x=0x=1y=-2,y=2.
f(x,y,2)=y; W is the region bounded by the
plane x + y 4+ z = 2, the cylinder x> 4+ z> = 1, and
y=0.
f(x,y,2)=8xyz; W is the region bounded by
the cylinder y = x2, the plane y +z =9, and the
xy-plane.
f(x,y,z) =2z; W is the region in the first octant
bounded by the cylinder y> + z> = 9 and the planes
y=x,x=0,and z = 0.
f(x,y,2) =1—z%; W is the tetrahedron with vertices
(07 0’ 0)7 (13 07 0)’ (07 27 0)’ and (07 0’ 3)'
f(x,y,z) =3x; W is the region in the first octant
bounded by z = x> +y%, x =0,y =0, and 7 = 4.
fx,y,2)=x+y; W is the region bounded by
the cylinder x> +3z> =9 and the planes y =0,
x+y=23.
f(x,y,z) =1z; W is the region bounded by z =0,
X +4?=4andz=x+2.
f(x,y,z) =4x + y; W is the region bounded by x =
y2,y=2z,x=y,andz = 0.
f(x,y,z) =x; W is the region in the first octant

bounded by z =x?+2y%, z=6—x>—y2, x =0,
and y = 0.

21.

22.

23.

24,

25.

26.

27.

28.

29.

Find the volume of the solid bounded by z = 4 — x?,
x 4+ y = 2, and the coordinate planes.

Find the volume of the solid bounded by the planes y =
0,z =0,2y + z = 6, and the cylinder x> + y> = 9.
Find the volume of the solid bounded by the paraboloid
7 = 4x? + y? and the cylinder y? 4 z = 2.

Find the volume of the region inside both of the cylin-

ders x2 4+ y? = a? and x% 4 22 = d°.

Consider the iterated integral

1 1 1—x
f / FCroy2)dz dx dy.
—-1Jy2 Jo

Sketch the region of integration and rewrite the inte-
gral as an equivalent iterated integral in each of the five
other orders of integration.

Change the order of integration of

1 1l px?
/ / / f(x,y,z)dzdxdy
o Jo Jo

to give five other equivalent iterated integrals.

Change the order of integration of

/02 /Ox /Oy f(x.y, 2)dzdy dx

to give five other equivalent iterated integrals.

Consider the iterated integral

2 1N36-9x7  p36-4x2—4y?
/ / / 2dzdydx.
0 Jo 5x2

(a) Thisintegral is equal to a triple integral over a solid
region W in R®. Describe W.

(b) Setupanequivalentiterated integral by integrating
first with respect to z, then with respect to x, then
with respect to y. Do not evaluate your answer.

(c) Setup anequivalent iterated integral by integrating
first with respect to y, then with respect to z, then
with respect to x. Do not evaluate your answer.

(d) Now consider integrating first with respect to y,
then x, then z. Set up a sum of iterated integrals
that, when evaluated, give the same result. Do not
evaluate your answer.

(e) Repeat part (d) for integration first with respect to
x, then z, then y.

Consider the iterated integral

2 piVAXY pa—y?
/ / / (> +ydzdydx.
-2J0 x243y?

(a) Thisintegral is equal to a triple integral over a solid
region W in R, Describe W.
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(b) Setup anequivalent iterated integral by integrating (d) Now consider integrating first with respect to x,
first with respect to z, then with respect to x, then then y, then z. Set up a sum of iterated integrals
with respect to y. Do not evaluate your answer. that, when evaluated, give the same result. Do not

(c) Setup anequivalentiterated integral by integrating evaluate your answer.
first with respect to x, then with respect to z, then (e) Repeat part (d) for integration first with respect to
with respect to y. Do not evaluate your answer. y, then z, then x.

5.5 Change of Variables

As some of the examples in the previous sections suggest, the evaluation of a mul-
tiple integral by means of'iterated integrals can be a complicated process. Both the
integrand and the region of integration can contribute computational difficulties.
Our goal for this section is to see ways in which changes in coordinates can be
used to transform iterated integrals into ones that are relatively straightforward to
calculate. We begin by studying the coordinate transformations themselves and
how such transformations affect the relevant integrals.

Coordinate Transformations

Let T: R?> — R? be a map of class C! that transforms the uv-plane into the xy-
plane. We are interested particularly in how certain subsets D* of the uv-plane
are distorted under T into subsets D of the xy-plane. (See Figure 5.73.)

v y
D* D =T(D")

Figure 5.73 The transformation T(u, v) = (x(u, v), y(u, v))
takes the subset D* in the uv-plane to the subset D = {(x, y) |
(x,y) = T(u, v) for some (u, v) € D*} of the xy-plane.

EXAMPLE 1 LetT(u,v)=(u+1,v+2);thatis,letx =u+1,y=v+ 2.
This transformation translates the origin in the uv-plane to the point (1, 2) in the
xy-plane and shifts all other points accordingly. The unit square D* = [0, 1] x
[0, 1], for example, is shifted one unit to the right and two units up but is otherwise
unchanged, as shown in Figure 5.74. Thus, the image of D*is D = [1, 2] x [2, 3].

2

EXAMPLE 2 LetS(u, v) = (2u, 3v). The origin is left fixed, but S stretches all
other points by a factor of two in the horizontal direction and by a factor of three
in the vertical direction. (See Figure 5.75.) *

EXAMPLE 3 Composing the transformations in Examples 1 and 2, we obtain
(T oS)(u, v) =TQu,3v) = Qu+1,3v+2).

Such a transformation must both stretch and translate as shown in Figure 5.76. ¢
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D*

' D=T(D")
1 .

u

1

Figure 5.74 The image of D* = [0, 1] x [0, 1] is
D =1, 2] x [2, 3] under the translation

f f —Xx
1 2 3

D*=[0,1]x [0, 1]

X

D =S(D*) =[0,2] x[0,3]

Figure 5.75 The transformation S of Example 2 is a scaling
by a factor of 2 in the horizontal direction and 3 in the vertical

| D=[1,3]x[2,5]

T(u,v) = (u+ 1, v+ 2) of Example 1. direction.
y
54
v 4 1
31
ToS
—_ 2 .
1 b 14
u f
1 1

f —x

2 3

Figure 5.76 Composition of the transformations of
Examples 1 and 2.

EXAMPLE 4 Let T(u,v) = (u + v, u — v). Because each of the component
functions of T involves both variables u and v, it is less obvious how the unit
square D* = [0, 1] x [0, 1] transforms. We can begin to get some idea of the
geometry by seeing how T maps the edges of D*:

Bottom edge: (u,0), 0<u <1;
Top edge: (u,1), 0<u<1;
Leftedge: (0,v), 0<v<1I;

Right edge: (1

,v), 0<v<l;

T(u, 0) = (u, u);
Tu,)=w+1,u—1);
T, v) = (v, —v);
T(1,v)=@w+1,1—v).

By sketching the images of the edges, it is now plausible that the image of D*
under T is as shown in Figure 5.77.

®)

(4)

D~ 11
@) — |

(1 1

*

2

(4)

2
3

Figure 5.77 The transformation T of Example 4.
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More generally, we consider linear transformations T: R? — R? defined
by

T(u,v):(au—l—bv,cu—l—dv):[i Zi||:u:|

v

where a, b, ¢, and d are constants. (Note: The vector (u, v) is identified with the

2 x 1 matrix |: Z ].) One general result is stated in the following proposition:

PROPOSITION 5.1 Let A = |: Z Z i| , where det A # 0. If T: R?> — R? is de-
fined by

Hmsz[Z]

then T is one-one, onto, takes parallelograms to parallelograms and the vertices
of parallelograms to vertices. (See §2.1 to review the notions of one-one and onto
functions.) Moreover, if D* is a parallelogram in the uv-plane that is mapped
onto the parallelogram D = T(D*) in the xy-plane, then

Area of D = |det A| - (Area of D¥).

EXAMPLE 5 We may write the transformation T(u, v) = (u + v, u — v) in

Example 4 as
1 1 u

1 1
det[1 _1}=—27£O.

Note that

Hence, Proposition 5.1 tells us that the square D* = [0, 1] x [0, 1] must be
mapped to a parallelogram D = T(D*) whose vertices are

T(0,0) = (0,0), T(0,1)=(1,—1), T(1,0)=(1,1), T(I,1)=(2,0).

Therefore, Figure 5.77 is indeed correct and, in view of Proposition 5.1, could have
been arrived at quite quickly. Also note that the areaof Dis| —2|-1=2. &

Proof of Proposition 5.1 First we show that T is one-one. So suppose
T(u, v) = T(u', v'). We show that then u = u’, v = v’. We have

T(u, v) =TwW ,v)
if and only if
(au + bu, cu + dv) = (au’ + bv', cu’ + du').
By equating components and manipulating, we see this is equivalent to the system

alw —u)+blv—v)=0

cw—u)y+dv—v)=0" M
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Figure 5.78 The vertices of
D*={p+sa+tb|0<s,1<
l}areatp,p+a,p+b,

p +a+ b (ie., where s and ¢ take
on the values 0 or 1).

Figure 5.79 The image D of the
parallelogram D* under the linear
transformation T(u) = Au.

If a # 0, then we may use the first equation to solve for u — u':
b
u—u'=——(@-1) )
a
Hence, the second equation in (1) becomes
b
——C(v —v)+dv—-v)=0
a

or, equivalently,

—b d
C—M(v —v)=0.

By hypothesis, det A = ad — bc # 0. Thus, we must have v — v' = 0 and, there-
fore, u — u’ = 0 by equation (2). If a = 0, then we must have both b £ 0 and
¢ # 0, since det A # 0. Consequently, the system (1) becomes

b(v — ) =0
cu—u)+dv—-v)=0"

The first equation implies v — v = 0 and, hence, the second becomes c(u — u’) =
0, which in turn implies u — u’ = 0, as desired.

To see that T is onto, we must show that, given any point (x, y) € R?, we can
find (u, v) € R? such that T(u, v) = (x, y). This is equivalent to solving the pair
of equations

au+bv =x
cu+dv=y
for u and v. We leave it to you to check that
dx — by ay —cx
u—= — V=
ad — bc ad — bc

will work.
Now, let D* be a parallelogram in the uv-plane. (See Figure 5.78.) Then D*
may be described as

D'={ulu=p+sa+th, 0<s<1, 0<r<Il1}.
Hence,

D =T(D*) = {Au | u € D}
={A(p+sa+th)|0<s<1,0<t<1}
={Ap+sAa+tAb|0<s <1, 0<t <1}

If we let p’ = Ap, a’ = Aa, and b’ = Ab, then
D={p +sa’+tb|0<s5s<1,0<r<1}.

Thus, D is also a parallelogram and, moreover, the vertices of D correspond to
those of D*. (See Figure 5.79.)
Finally, note that the area of the parallelogram D* whose sides are parallel to

a:[al} and bz[bl]
a b2



may be computed as follows:

Areaof D* = |Jax b| =

i

aj
by

5.5 | Change of Variables

i
a
by

k
0 = |a1b2 —a2b1|.
0

Similarly, the area of D = T(D*) whose sides are parallel to

is

by
b

Areaof D = ||a' x b'| = |ajb, — asb}|.
Now, a’ = Aa and b’ = Ab. Therefore,

S
a

/
and

_b’l

| b

ai

a

by
by

Hence, by appropriate substitution and algebra,
Area of D = |(aa; + bay)(cb) + db,) — (cay + daz)(aby + bb,)|

= [(ad — be)(a1by — axby)|

= |det A| - area of D*.

ca) +day

i cby +db, ]

aay + ba,

Clbl + bbz
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Note that we have not precluded the possibility of D*’s being a “degenerate”
parallelogram, that is, such that the adjacent sides are represented by vectors a
and b, where b is a scalar multiple of a. When this happens, D will also be
a degenerate parallelogram. The assumption that det A # 0 guarantees that a
nondegenerate parallelogram D* will be transformed into another nondegenerate
parallelogram, although we have not proved this fact.

Essentially all of the preceding comments can be adapted to the three-
dimensional case. We omit the formalism and, instead, briefly discuss an example.

EXAMPLE 6 Let T:R? — R? be given by

T(u, v, w) = Qu,2u 4+ 3v + w, 3w).

Then we rewrite T by using matrix multiplication:

Note that if

thendet A = 18 # 0.

T(u, v, w) =

200

2 31
003

S NN

S W o

W = O
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A result analogous to Proposition 5.1 allows us to conclude that T is one-one
and onto, and T maps parallelepipeds to parallelepipeds. In particular, the unit
cube

D* =10,1] x [0, 1] x [0, 1]

is mapped onto some parallelepiped D = T(D*) and, moreover, the volume of D
must be

| det A| - volume of D* =18 -1 = 18.

To determine D, we need only determine the images of the vertices of the cube:
7(0,0,0)=(0,0,0); T(1,0,0)=(2,2,0); T(0,1,0)=(0,3,0);
7(0,0,1)=1(0,1,3); T(1,1,0)=(2,5,0); T(1,0,1)=(2,3,3);
7T(@,1,1)=1(0,4,3); T(1,1,1)=(2,6,3).

Both D* and its image D are shown in Figure 5.80. *

Z
w
T D
D — DN AN

\

A d

y
u X

Figure 5.80 The cube D* and its image D under the
linear transformation of Example 6.

EXAMPLE 7 Of course, not all transformations are linear ones. Consider
(x,y) =T(r,0) = (r cos 6, r sinf).

Note that T is not one-one since T(0, 0) = (0, 0) = T(0, 7). (Indeed T(0, ) =
(0, 0) for all real numbers 6.) Note that vertical lines in the r6-plane given by
r = a, where a is constant, are mapped to the points (x, y) = (a cos 9, a sin6)
on a circle of radius a. Horizontal rays {(r,0) | 6 = «, r > 0} are mapped to
rays emanating from the origin. (See Figure 5.81.) It follows that the rectangle
D* = [%, 1] x [0, ] in the rO-plane is mapped not to a parallelogram, but bent

0 y
r=a Image of
0=a T 0=o
/\
r X
\Jmageof
r=a

Figure 5.81 The images of lines in the r6-plane under the
transformation T(r, ) = (r cos 8, r sin ).
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0 y
T+ <
D~ T
- - T
D=T (DY Z -
y
0 *
: [IND T

11

2 r
Figure 5.82 The image of the rectangle D* = [%, 1] x [0, ] Figure 5.83 The image of B* = [%, 1] x [0, 7] x [0, 1]

under T(r, ) = (r cos 0, r sinh).

under T(r, 6, z) = (r cos 8, rsinb, 7).

into a region D that is part of the annular region between circles of radii % and 1,
as shown in Figure 5.82.
Analogously, the transformation T: R> — R3 given by

(x,y,2)=T(r,0,z) = (rcost,rsind, z)

bends the solid box B* = [%, 1] x [0, ] x [0, 1] into a horseshoe-shaped solid.
(See Figure 5.83.) *

Change of Variables in Definite Integrals

Now we see what effect a coordinate transformation can have on integrals and how
to take advantage of such an effect. To begin, consider a case with which you are
already familiar, namely, the method of substitution in single-variable integrals.

EXAMPLE 8 Consider the definite integral f02 2x cos(x?) dx. To evaluate, one
typically makes the substitution u = x? (so du = 2x dx). Doing so, we have

u=4 .
= sin4.
u=0

2 4
/ 2x cos(x?)dx = / cosudu = sinu
0 0

Let’s dissect this example more carefully. First of all, the substitution u = x>

may be rewritten (restricting x to nonnegative values only) as x = /u. Then
dx = du/(2+/u) and

2 4 d 4
/ 2x cos(x?)dx = / Zﬁcos(ﬁ)z—u = / cosudu = sin4.
0 0 2/u 0

In other words, the substitution is such that the 2x = 2.,/u factor in the integrand
is canceled by the functional part of the differential dx = du/(2./u). Hence, a
simple integral results. *

In general, the method of substitution works as follows: Given a (perhaps
complicated) definite integral ff f(x) dx, make the substitution x = x(u), where
x is of class C'. Thus, dx = x'(u)du. If A = x(a), B = x(b), and x'(u) # 0 for
u between a and b, then

B b
f F)dx = / FCe)x () du. 3)
A a
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x=x(u)

Ax x'(u) Au = Ax

Au

|
|
|
1
u+Au

Sb-——

Figure 5.84 As Au =du — 0,

Ax — dx = x'(u) Au. Thus, the factor
x'(u) measures how length in the u-direction
relates to length in the x-direction.

Note that it is possible to have a > b in (3) above. (This happens if x(u) is
decreasing.) Although the u-integral in equation (3) may at first appear to be more
complicated than the x-integral, Example 8 shows that in fact just the opposite
can be true.

Beyond the algebraic formalism of one-variable substitution in equation (3),
it is worth noting that the term x’(u) represents the “infinitesimal length distortion
factor” involved in the changing from measurement in u to measurement in x.
(See Figure 5.84.) We next attempt to understand how these ideas may be adapted
to the case of multiple integrals.

The Change of Variables Theorem for Double Integrals —

Suppose we have a differentiable coordinate transformation from the uv-plane to
the xy-plane. That is,

T:R> - R?, T(u,v) = (x(u, v), y(u, v)).

DEFINITION 5.2 The Jacobian of the transformation T, denoted

d(x, y)
(u, v)’
is the determinant of the derivative matrix DT(u, v). That is,
ax ax
a(x, ou v dx dy 9x d
x y)zdetDT(u,v)zdet ou ov e B
a(u, v) dy 9y du dv  dv du
ou  dv

The notation d(x, ¥)/d(u, v) for the Jacobian is a historical convenience. The
Jacobian is not a partial derivative, but rather the determinant of the matrix of
partial derivatives. It plays the role of an “infinitesimal area distortion factor”
when changing variables in double integrals, as in the following key result:



o X
! (8,0)

Figure 5.85 The triangular region
D of Example 9.
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THEOREM 5.3 (CHANGE OF VARIABLES IN DOUBLE INTEGRALS) Let D and D*
be elementary regions in (respectively) the xy-plane and the uv-plane. Suppose
T:R?> — R? is a coordinate transformation of class C! that maps D* onto D
in a one-one fashion. If f: D — R is any integrable function and we use the
transformation T to make the substitution x = x(u, v), y = y(u, v), then

//Df(x’y)d“iy://m f(x(%v),y(u,v))‘a(x’y) du dv.

a(u, v)

EXAMPLE 9 We use Theorem 5.3 to calculate the integral

/f cos(x 4+ 2y) sin(x — y)dx dy
D

over the triangular region D bounded by thelinesy = 0,y = x,andx + 2y = 8as
shown in Figure 5.85. It is possible to evaluate this integral by using the relatively
straightforward methods of §5.2. However, this would prove to be cumbersome,
so, instead, we find a suitable transformation of variables, motivated in this case by
the nature of the integrand. In particular, we let u = x + 2y, v = x — y. Solving
for x and y, we obtain

u—+2v u—v
and y = 3

X =

Therefore,

8(x’y)=det R
8(u,v) Yu Yo

W— WM
(ST

Wl— W—

Considering the coordinate transformation as a mapping T(u, v) = (x, y) of
the plane, we need to identify a region D* that T maps in a one-one fashion
onto D. To do this, essentially all we need do is to consider the boundaries of D:

y=x <— x—y=0 <<— v=0;
xX+2y=8 <— u==_g;
u—v

3

y:() = =0 &< UV =1U.

Hence, one can see that T transforms the region D* shown in Figure 5.86 onto
D. Therefore, applying Theorem 5.3,

D*

v=0

Figure 5.86 The effect of the transformation T of Example 9.
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s o 23

= cosusinv|—%|dudv
D*
8 u
=/ / %cosusinvdvdu
0o Jo
8

:/0 1 cosu (—cosv)|'= du

du dv

8
= %/ cosu(—cosu + 1)du
0
8
= %/ (cosu — cos® u)du
0

8
=§[sm|g_/0 %(1+cosZu)du]
= % [sinS — (%u + % sin2u)‘§]
=%[sin8—4—isinl6].

There is another, faster way to calculate the Jacobian, namely, to calculate
a(u, v)/d(x, y) directly from the variable transformation, and then to take reci-
procals. That is, from the equations u = x + 2y, v = x — y, we have

a(u’v):det R b2 = 3.
A(x, y) Uy Uy 1 —1

Consequently, d(x, y)/d(u, v) = —%, which checks with our previous result.

This method works because if T(u, v) = (x, y), then, under the assumptions of
Theorem 5.3, (1, v) = T~!(x, y). It follows from the chain rule that

DT '(x,y) = [DT(u, v)]"".

(Thatis, DT~ is the inverse matrix of DT. See Exercises 30-38 in §1.6 for more
about inverse matrices.) Hence,

1
det DT’ .

a(x, y)
a(u, v)

=det[DT'] = det[(DT) ']

EXAMPLE 10 Weuse Theorem 5.3 to evaluate [, (x? — y?) e dx dy, where
D is the region in the first quadrant bounded by the hyperbolas xy = 1, xy = 4
and the lines y = x, y = x + 2. (See Figure 5.87.)



D*

1 4

Figure 5.88 The region D*
corresponding to the region D of
Example 10.
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y y=x+2
3L
y=x
xy=4
D
2
xy=1
1k
L L L X
1 2 3

Figure 5.87 The region D of Example 10.

Both the integrand and the region present complications for evaluation. There
would seem to be two natural choices for ways to transform the variables. One
would be

u=x>—y* and v=uxy,
motivated by the nature of the integrand. However, the region D of integration
will not be easy to describe in terms of this particular choice of uv-coordinates.
Another possible transformation of variables, motivated instead by the shape of
D, is
u=xy and v=y—ux.

Now this change of variables would not seem to help much with the integrand,
but, as we shall see, it turns out to be just what we need.

First note that the boundary hyperbolas xy = 1 and xy = 4 correspond, re-
spectively, tothelinesu = 1andu = 4;thelinesy = x and y = x + 2 correspond

to v = 0 and v = 2. Thus, the region D* in the uv-plane that corresponds to D
(see Figure 5.88) is

D*={u,v)|1<u<4, 0<v<2}

Next, we calculate that the Jacobian of the variable transformation is

e o] 33]ren
Hence, the Jacobian we require in order to use Theorem 5.3 is
ax,y) 1
ou,v) x+vy

Moreover, since we will be working in the first quadrant (where x and y are both
positive), [d(x, y)/d(u, v)| = 1/(x + y).
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At last we are ready to compute:

/ (x? —y)exydxdy—/ (x? —y?)e™ ()%y) dudv
/ / =y +y) o du dv
X +y

//—ve du dv
2

= f —v(e* —e')dv = ——(e eH| =2(e —e*).

0 0
Note that the insertion of the Jacobian in the integrand caused precisely the can-
celation needed to make the evaluation straightforward. We cannot always expect
this to happen, but the lesson here is to be willing to carry through calculations
that may not at first appear to be so easy. .

EXAMPLE 11 (Double integrals in polar coordinates) In Example 9, a coor-
dinate transformation was chosen primarily to simplify the integrand of the double
integral. In this example we change variables by using a coordinate system better
suited to the geometry of the region of integration.

For example, suppose that the region D is a disk of radius a:

={(x,y) | x> +y* < a}
= {(x,y)l—\/az—xz§y§\/a2—x2,—a§x§a}.

Then, to integrate any (integrable) function f over D in Cartesian coordinates,
one would write

/] s y)dxdy—/_a/ F(e, y)dy dx.

Even if it is easy initially to find a partial antiderivative of the integrand, the limits
in the preceding double integral may complicate matters considerably. This is be-
cause the disk is described rather awkwardly by Cartesian coordinates. We know,
however, that it has a much more convenient description in polar coordinates as

{(r,0)|0<r<a,0<6 <2m}.
This suggests that we make the change of variables
(x,y)=T(r,0) = (rcosf, rsinb),

which is shown in Figure 5.89. (Note that T maps all points of the form (0, 6) to
the origin in the x y-plane and, thus, cannot map D* in a one-one fashion onto D.
Nonetheless, the points of D* on which T fails to be one-one fill out a portion
of a line—a one-dimensional locus—and it turns out that it will not affect the
double integral transformation.) The Jacobian for this change of variables is

a(x,y) =det[ cosf —rsinf

— 2 .2 _
a(r, 0) sinf  rcos® ] =rcos"0+rsin" 0 =r.
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Figure 5.90 The disk of
radius a centered at the
origin.

0,2) ¢
0.2) x*+y?=4

X

(2,0)

Figure 5.91 The region
D of Example 13.
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Figure 5.89 T maps the (nonclosed) rectangle D* to
the disk D of radius a.

(Note that » > 0 on D, so |r| = r.) Thus, using Theorem 5.3, the double integral
can be evaluated by using polar coordinates as follows:

[[ renaxas= [ / vy

2 a
=/ / f(rcosf,rsinf)rdrdo.
0 0

It is evident that the limits of integration of the r@-integrals are substantially
simpler than those in the xy-integral. Of course, the substitution in the integrand
may result in amore complicated expression, but in many situations this will not be
the case. Polar coordinate transformations will prove to be especially convenient
when dealing with regions whose boundaries are parts of circles. *

EXAMPLE 12 To see polar coordinates “in action,” we calculate the area of a
circle, using double integrals. Once more, let D be the disk of radius a, centered
at the origin as in Figure 5.90. Then we have

Jar—x? 27 pa
Area:// 1dA = / / dydx:/ / rdrdo,
S e 3 o Jo

following the discussion in Example 11. The last iterated integral is readily eval-
uated as

2r  pa 2w
/ / rdrdf = / (42[6)de = [, Ja*db = Ja>2x — 0) = 7a?,
0 0 0

which indeed agrees with what we already know. If you feel so inclined,
compare this calculation with the evaluation of the iterated integral in Cartesian
coordinates. No doubt you’ll agree that the use of polar coordinates offers clear
advantages. .

EXAMPLE 13 We evaluate the double integral [, /x> + y> + ldxdy,
where D is the quarter disk shown in Figure 5.91, using polar coordinates. The
region D of integration is given in Cartesian coordinates by

D={x,y)|0<y<v4—x% 0<x <2},

so that

2 Va—x2
/ \/xz—l-yz—l-ldxdy:/ Vx2+y*+ldydx.
D o Jo
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This iterated integral is extremely difficult to evaluate. However, D corresponds
to the polar region

D*={(r,0)|0<r<2 0<0<m/2}.

Therefore, using Theorem 5.3, we have

f/ \/x2—|—y2—|—1dxdy:// Vr2cos? 6 + r2sin26 + 1 - rdrdé
D D
/2 2
=/ / vri+1rdrdd
0 0

/2
=/0 P+ 122, do

/2 |
=/ 1(532 — 1)de
0
T

= 6(53/2 — 1.

2

Sketch of a proof of Theorem 5.3 Let (ug, v9) be any point in D* and let
Au = u — ug, Av = v — vy. The coordinate transformation T maps the rectangle
R* inside D* (shown in Figure 5.92) onto the region R inside D in the xy-plane.
(In general, R will not be a rectangle.) Since T is of class C', the differentiability
of T (see Definition 3.8 of Chapter 2) implies that the linear approximation

h(u, v) = T(ug, vo) + DT(uy, vo) |: L:) : l;g :|

Au
= T(ug, vo) + DT (ug, vo) |: Av :|

R =T(R")

T(up, vo)

N ” U x

Figure 5.92 T takes a rectangle R* inside D* to a region R inside D.

is a good approximation to T near the point (u¢, vo). In particular, h takes the rect-
angle R* onto some parallelogram P that approximates R as shown in Figure 5.93.
We compare the area of R* to that of P.

From Figure 5.93, we see that the rectangle R* is spanned by

az[Aou] and bz[AOv},
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v y
P=h(R"
- AU —
u T T
o
o R=T(R*
b :[ 0 ] R Av DT(uy, vy)b (&)
Av
(10, vo) _|Au T(ug, vy) =
2=lo h(u, vo) DT (uy, Uo)ax

Figure 5.93 The linear approximation h takes the rectangle R* onto a parallelogram P
that approximates R = T(R™).

and the parallelogram P is spanned by the vectors ¢ = DT(uyg, vo)a and d =
DT(ug, vo)b. Hence,

Area of R* = ||a x b|| = Au Av,

and thus, by Proposition 5.1,

a )
Area of P = [le x d|| = | det DT(uo, vo)|Au Av = ‘agx—y;(uo, )
u,v

Au Av.

This result gives us some idea how the Jacobian factor arises.

To complete the sketch of the proof, we need a partitioning argument. Partition
D* by subrectangles R};. Then we obtain a corresponding partition of D into (not
necessarily rectangular) subregions R;; = T(R;;). Let AA;; denote the area of R;.
Let ¢;; denote the lower left corner of Rl.*j and let d;; = T(c;;). (See Figure 5.94.)
Then, since f is integrable on D,

[ rendray = im X s,

From the remarks in the preceding paragraph, we know that

d(x, y)
AA;j ~ area of parallelogram h(R;;) = ‘ 3Gi.v) (cij)| Au; Av;.
v y
/"—‘\\l);/_ T
! A
\ T
] Rl | ] <
[ S u
N~ 1

Figure 5.94 A partition of D* gives rise to a partition of D.
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y

{ dx

Figure 5.95 The “area element” Figure 5.96 The polar-rectangular transformation takes rectangles in the
d A in rectangular coordinates is r@-plane to wedges of disks in the xy-plane.

dxdy.

Arclength = rA6

7

7
AN K
NV b

Taking limits as all the R;; tend to zero (i.e., as Au; and Av; approach zero), we
find that

[ remaray = im_, 2 (1)

Aui, Avj

(y)
)]

f/ F s v), Y v ))'a( 2 v,

as was to be shown. [ |

( ij) Au,' Avj

Consider again the polar-rectangular coordinate transformation. When we use
Cartesian (rectangular) coordinates to calculate a double integral over a region
D in the plane, then we are subdividing D into “infinitesimal” rectangles having
“area” equal to dx dy. (See Figure 5.95.) On the other hand, when we use polar
coordinates to describe this same region, we are subdividing D into infinitesimal
pieces of disks instead. (See Figure 5.96.) These disk wedges arise from trans-
formed rectangles in the r6-plane. One such infinitesimal wedge in the xy-plane
is suggested by Figure 5.97. When A6 and Ar are very small, the shape is nearly
rectangular with approximate area (r A6@) Ar. Thus, in the limit, we frequently say

dA =dxdy  (Cartesian area element)
=rdrdf (polar area element).

= *

Figure 5.97 An infinitesimal
polar wedge.

Change of Variables in Triple Integrals

It is not difficult to adapt the previous reasoning to the case of triple integrals. We
omit the details, stating only the main results instead.

DEFINITION 5.4 Let T: R?> — R? be a differentiable coordinate transfor-
mation

T(u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w))
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from uvw-space to xyz-space. The Jacobian of T, denoted

a(x, y, 2)
o(u, v, w)’
is det(DT(u, v, w)). That is,
Jdx 0dx O0x
du Jv oJw
DD ger| By By by
O(u, v, w) ou dv Jw
dz 0z 0z
| Ju ov OJw |

In general, given any differentiable coordinate transformation T: R” — R”,
the Jacobian is just the determinant of the derivative matrix:

8x1 8x1 3)C1

ou; Jduy ouy,

8x2 8x2 8x2
a(xy, ...y Xy Y
x5 Xn) =det DT(uy, ..., u,) = det dui  duy duty
8(”1, ) un)

0x, 0Xx, 0x,

| Oduy; OJup aun _

THEOREM 5.5 (CHANGE OF VARIABLES IN TRIPLE INTEGRALS) Let W and W* be
elementary regions in (respectively) xyz-space and uvw-space, and let T: R® —
R® be a coordinate transformation of class C' that maps W* onto W in a one-one
fashion. If f: W — Ris integrable and we use the transformation T to make the
substitution x = x(u, v, w), y = y(u, v, w), z = z(u, v, w), then

// fx,y,2)dxdydz
w
a(x,y,2)

= f// Sf&x(u, v, w), y(u, v, w), z(u, v, w)) ‘— dudvdw.
W o(u, v, w)

(See Figure 5.98.)

In the integral formula of the change of variables theorem (Theorem 5.5), the
Jacobian represents the “volume distortion factor” that occurs when the three-
dimensional region W is subdivided into pieces that are transformed boxes in
uvw-space. (See Figure 5.99.) In other words, the differential volume elements
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u x
Figure 5.98 A three-dimensional transformation T that takes the solid

region W* in uvw-space to the region W in xyz-space.

(i.e., “infinitesimal” pieces of volumes) in xyz- and uvw-coordinates are related
by the formula

8 9 9
dV = dxdydz = ‘M dudv dw.

a(u, v, w)

T \
—_— \‘l @
|
dw @du 'l'
dv

Figure 5.99 The volume of the “infinitesimal box” in
uvw-space is du dv dw. The image of this box under T
has volume [d(x, y, z)/0(u, v, w)| du dv dw.

EXAMPLE 14 (Triple integrals in cylindrical coordinates) When integrat-
ing over solid objects possessing an axis of rotational symmetry, cylindrical

coordinates can be especially helpful. The cylindrical-rectangular coordinate
transformation

X =rcosf
y =rsinf
2=z

has Jacobian

cos® —rsinf 0
a(x,y,2)

= det| sin6 rcosf 0 | =rcos’8 +rsin’6 =r.
a(r, 0, 2)

0 0 1

Hence, the formula in Theorem 5.5 becomes

// f(x,y,z)dxdydz:// f(rcos@,rsiné, z)rdrdbdz.
W W
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In particular, we see that the volume element in cylindrical coordinates is
dV =rdrdfdz.

(Recall that the cylindrical coordinate r is usually taken to be nonnegative. Given
this convention, we may omit the absolute value sign in the change of variables
formula.) The geometry behind this volume element is quite plausible: A “dif-
ferential box” in r@z-space is transformed to a portion of a solid cylinder that is

nearly a box itself. (See Figure 5.100.) *
z z
rd0 _ dr
~ A
dz dz !’
|
ao @ A

Figure 5.100 A “differential box” in r6z-space is mapped to a portion of a
solid cylinder in xyz-space by the cylindrical-rectangular transformation.

EXAMPLE 15 To calculate the volume of a cone of height /4 and radius a, we
may use Cartesian coordinates, in which case the cone is the solid W bounded by

the surface az = h+/x? + y? and the plane z = h, as shown in Figure 5.101. The
volume can be found by calculating the iterated triple integral

Jar=x2  ph
[

We will forgo the details of the evaluation, noting only that trigonometric substi-
tutions are necessary and that they make the resulting computation quite tedious.

A

Shadow in xy-plane

Figure 5.101 The solid cone W of Example 15.

In contrast, since the cone has an axis of rotational symmetry, the use of
cylindrical coordinates should afford us substantially less involved calculations.
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Figure 5.102 The cone of
Example 15 described in
cylindrical coordinates.

Hence, we consider the cone again. (See Figure 5.102.) Note that
h
WZ{(V,Q,Z)‘—rSZEh, 0<r<a, 0§0<2n}.
a

Thus, the volume is given by

2 a h
/// dV:/ / / rdzdrd6b.
w 0o Jo Jir

(Note the order of integration that we chose.) The evaluation of this iterated
integral is exceedingly straightforward; we have

2w a h 2w a h
/ / / rdzdrd@:/ / r<h——r>drd9
o Jo Jir 0o Jo a

2 h h r=a
= / —rr— — do
0 2 3a =0
2w h h
=/ —a* — ~a* ) do
0 2 3
h
=27 [ =d?) = zazh,
6 3
which agrees with what we already know. *

EXAMPLE 16 (Tripleintegralsinspherical coordinates) Ifasolid object has
a center of symmetry, then spherical coordinates can make integration over such
an object more convenient. The spherical-rectangular coordinate transformation

X = psing cosb
y = psingsinf
Z =pcose

has Jacobian

sing cos®  pcosgcosd —psing sind
d(x, y,2)

= det| sing sinfd  pcosy sinf  psing cosb
Ap,9,0)

cos @ —psing 0
Using cofactor expansion about the last row, this determinant is equal to
cos @ (,o2 cos® fsing cos ¢ + p? sin’ @ sin ¢ cos (p)
+ psing (p cos® @ sin® ¢ + p sin® 6 sin” )
= p? cos g(sin g cos @) + p? sin® ¢
= p’sing (cos® ¢ + sin® p)
= p’sing.

(Under the restriction that 0 < ¢ < 7, sin ¢ will always be nonnegative. Hence,
the Jacobian will also be nonnegative.) Therefore, the volume element in spherical
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X

Figure 5.104 The ball B of
radius a of Example 17.

Figure 5.105 The cone of
Example 18 described in
spherical coordinates.
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— dp
a9 6
7 dp pdp
¢ rd@ = psing do

¢ —_—
y

p x

Figure 5.103 A differential box in pgf-space is mapped to a portion of a solid ball
in xyz-space by the spherical-rectangular transformation.

coordinates is
dV = p*singdp de db,

and the change of variables formula in Theorem 5.5 becomes

// Wf(x,y,z)dxdydz

B ///W F(x(p, 9, 0), 3(p, 9, 0), 2(p, 9, 0)p” sin g dp dp .

The volume element in spherical coordinates makes sense geometrically, because
a differential box in pg0O-space is transformed to a portion of a solid ball that is
approximated by a box having volume p? sin ¢ dp dg df. (See Figure 5.103.) &

EXAMPLE 17 The volume of a ball is easy to calculate in spherical coordi-
nates. A solid ball of radius @ may be described as

B={(p,9.0)|0<p<a,0<¢=<m0=<0 <2m}.

(See Figure 5.104.) Hence, we may compute the volume by using the triple integral

2 2
/// dVv = / / / 0 smgod,odfpde_/ / —smgodgod@

2
:—/ (—cosolj)d =3 ( (=DH+1)deé
0
_ E 27 46— 47.[a3’
3 Jo 3
as expected. *

EXAMPLE 18 We return to the example of the cone of radius a and height /
and, this time, use spherical coordinates to calculate its volume. First, note two
things: (i) that the cone’s lateral surface has the equation ¢ = tan™!(a/h) in spher-
ical coordinates and (ii) that the planar top having Cartesian equation z = & has
spherical equation p cos ¢ = h or, equivalently, p = h sec ¢. (See Figure 5.105.)
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For fixed values of the spherical angles ¢ and 6, the values of p that give
points inside the cone vary from 0 to /& sec ¢. Any points inside the cone must
have spherical angle ¢ between 0 and tan~!(a/ k). Finally, by symmetry, 6 can
assume any value between 0 and 27r. Hence, the cone may be described as the set

{(p,fp,G)‘OSpshsecw, 0§¢>§tan*1%, 0§9<27r}.

Therefore, we calculate the volume as

2 ptan~'(a/h) phseco
/ / / p?singdpdedd
o Jo 0

2r  ptan~'(a/h) h 3
= / / —( secy) singpdo do
0 0 3

h3 2 tan~!(a/ h)
= —/ / sec® g sing dy db
3Jo Jo

h3 2 tan~!(a/ h)
= ?/ / tan g sec’ ¢ do df.
0 0

Now, let u = tan ¢ so du = sec? ¢ dg. Then the last integral becomes

K3 2w palh morT 2 h3ag?2 2
—/ / wdudo =— [ (< dez_“/ d6
3 ) ) 3 ), 2\a on2 J,

2

a‘h T,
= —Q2n)= —a"h,
6 3

as expected. *
The use of spherical coordinates in Example 18 is not the most appropri-
ate. We merely include the example so that you can develop some facility with

“thinking spherically.” Further practice can be obtained by considering some of
the applications in the next section as well as, of course, some of the exercises.

Summary: Change of Variables Formulas

Change of variables in double integrals:

. a(x, y)
//1.) f(x,y)dxdy = //;* f(x(u, v), y(u, v))'a(u’ 2) dudv

Area elements:

dA = dxdy (Cartesian)
=rdrdf (polar)

_ ‘3(x,y)

3Gr. v) dudv (general)
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// f(x,y,z2)dxdydz
w

Change of variables in triple integrals:

a 9 9
= /// f&x(u, v, w), y(u, v, w), z(u, v, w)) M dudvdw
W a(u, v, w)
Volume elements:
dV =dxdydz (Cartesian)
=rdrdbdz (cylindrical)
= p’sinpdpde do (spherical)
a 9 9
= M dudvdw (general)
a(u, v, w)
5.5 Exercises
1. Let T(u, v) = (3u, —v). 6. Suppose T(u, v) = (u, uv). Explain (perhaps by us-

(a) Write T(u, v) as A [ Z ] for a suitable matrix A.

(b) Describe the image D = T(D*), where D* is the 7.
unit square [0, 1] x [0, 1].

2. (a) Let
Uu—v u-+v
o= (")

How does T transform the unit square D* =
[0, 1] x [0, 1]?
(b) Now suppose

Describe how T transforms D*.

= L1

and D* is the parallelogram whose vertices are (0, 0),
(1, 3),(—1,2),and (0, 5), determine D = T(D*).

T(u,v) = (

4. If D* is the parallelogram whose vertices are (0, 0),
(—1,3),(1,2), and (0, 5) and D is the parallelogram 9
whose vertices are (0, 0), (3, 2), (1, —1), and (4, 1),
find a transformation T such that T(D*) = D.

5. If T(u,v,w)=QCu—v,u —v+2w,5u+3v—w),
describe how T transforms the unit cube W* =
[0, 1] x [0, 1] x [0, 1].

ing pictures) how T transforms the unit square D* =
[0, 1] x [0, 1]. Is T one-one on D*?

Let T:R? — R be the transformation given by
T(p, ¢,0) = (psingcosh, psingsinb, pcosy).

(a) Determine D = T(D*), where D* =][0, 1] x
[0, 7] x [0, 27].

(b) Determine D = T(D*), where D* =10, 1] x
[0, /2] x [0, /2].

(c) Determine D = T(D*), where D* =[1/2,1] x
[0, /2] x [0, r/2].

This problem concerns the iterated integral

1 p(y/2)+2
/ / (2x —y)dxdy.
0 y/2

(a) Evaluate this integral and sketch the region D of
integration in the xy-plane.

(b) Letu = 2x — y and v = y. Find the region D* in
the uv-plane that corresponds to D.

(c) Usethe change of variables theorem (Theorem 5.3)
to evaluate the integral by using the substitution
u=2x—y,v=y.

. Evaluate the integral

2 (/241 ,
/ / X2y — x)e® ™ dydx
0 Jxp2

by making the substitution u = x, v = 2y — x.
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Determine the value of

X+y
x —2y

where D is the region in R? enclosed by the lines
y=x/2,y=0,andx +y=1.

Evaluate [,,(2x + y)*¢*™> d A, where D is the region
enclosed by 2x +y=1, 2x+y=4, x —y = —1,
andx —y = 1.

2 —3)?
//(Hy )2d dy,
p 2y—x+6)
where D is the square with vertices (0, 0), (2, 1),

(3, —1), and (1, —2). (Hint: First sketch D and find
the equations of its sides.)

Evaluate

In Exercises 13—17, transform the given integral in Cartesian
coordinates to one in polar coordinates and evaluate the polar
integral.

13.

14.

15.

16.

17.

18.

19.

20.

21.

V1=x2
/ / 3dydx
2 pA—xZ
/ / dydx
0o Jo

// (x% + y?)*? d A, where D isthe diskx2 + y2 < 9
D

¢ Vaioy? 2,2
/ / e dx dy
—a JO
3 Y dvd
[ A=
0o Jo

ey

Evaluate

1
—dA
//;) V4 —x%—y?

where D is the disk of radius 1 with center at (0, 1).
(Be careful when you describe D.)

Let D be the region between the square with vertices
(1, D, (=1, 1),(=1, =1),(1, —1) and the unit disk cen-

tered at the origin. Evaluate / f yrdA.
D

Find the total area enclosed inside the rose r = sin26.
(Hint: Sketch the curve and find the area inside a single
leaf.)

Let n be a positive integer, and let @ be a posi-
tive constant. Calculate the total area inside the rose
r = a cos nf and show that the value depends only on
a and whether n is even or odd.

22.

24,

25.

26.

27.

28.

29.

30.

31.

Find the area of the region inside both of the circles
r =2acos6 and r = 2asinf, where a is a positive
constant.

. Find the area of the region inside the cardioid r =

1 — cos @ and outside the circle r = 1.

Find the area of the region bounded by the positive
x-axis and the spiral r = 36,0 < 0 < 2.

// cos(x? + y})dA,
D

where D is the shaded region in Figure 5.106.

Evaluate

Arc of a circle
of radius 1
(centered at

origin)
\

y=3x

Figure 5.106 The region D of
Exercise 25.

Evaluate / sin (x + y?)d A, where D is the region

D
in the first quadrant bounded by the coordinate axes
and the circles x*> + y* = 1 and x* + y* = 9.

Use polar coordinates to evaluate / / ——dA,
Vx4 y?
where D is the unit square [0, 1] x [0, 1].

Evaluate dzdy dx by

[ s

using cylindrical coordinates.

4—x2 —v
Evaluate f / / et dz dx dy by
1- vz

using cylindrical coordinates.

Evaluate

I e
Byx2+y2+22+3

where B is the ball of radius 2 centered at the origin.

[[[ 2

where W is the solid cylinder defined by the inequali-
tiesx? +y2 <4, —1<z<2.

Determine
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32. Determine the value of / / / \/% dV, where 38. Determine
WA/ X5ty /2 2
W is the solid region bounded by the plane z = 12 and ///W (2 TVxi Ay ) v,
the paraboloid z = 2x? + 2y? — 6.
_ 2 2

33. Find the volume of the region W bounded on top by where W' = {(x, Yyl m =z/2= 3}'
z=a? - {62 — %, on th? bott012n by zthe xzy—plane, 39. Find the volume of the region W that represents the
and on the sides by the cylinder x~ 4+ y* = b~, where intersection of the solid cylinder x> + y?> < 1 and the
0<b<a. solid ellipsoid 2(x% + y?) + z2 < 10.

In Exercises 34 and 35, determine the values of the given in- 40. Find the volume of the solid W that is bounded by

tegrals, where W is the region bounded by the two spheres

the paraboloid z = 9 — x?— y2, the xy-plane, and the
Xy 4+ =dtand x> +y> + 72 =0 for0 <a < b.

cylinder x? 4 y? = 4.

41. Find
// Q+x2+yHdv,
w

where W is the region inside the sphere x> 4 y? 4 72 =
25 and above the plane z = 3.

I

34. _—

w /X2 4 y? 4 2?

35. /// Va2 y2 4 28 gy
w

36. Let W denote the solid region in the first octant be-

2 2 2 _ 2 2 2
t\;veen ghe spheres x* + y° 4 2% = a and x” + y” + 42. Find the volume of the intersection of the three solid
z= = b*, where 0 < a < b. Determine the value of .
cylinders
[ffyx+y+2)dv.
Pryi<d, P42 <d and Y+ <d

37. Determine the value of /[, z>dV, where W is the

solid region lying above the cone z = /3x2 + 3y? and
inside the sphere x? + y? + 72 = 62.

(Hint: First draw a careful sketch, then note that, by
symmetry, it suffices to calculate the volume of a por-
tion of the intersection.)

5.6 Applications of Integration

In this section, we explore a variety of settings where double and triple integrals
arise naturally.

Day °F
Monday 65 Average Value of a Function
Tuesday 63

Suppose temperatures (shown in the adjacent table) are recorded in Oberlin, Ohio,

Wednesday | 52 ) )
during a particular week. From these data, we calculate the average (or mean)

Thursday 51

Friday 45 temperature:
Saturday 43
654+ 63 +52+51+4+45+43+47
Sunday 47 Average temperature = FOIHEHIIH DAY L 523k

7

Of course, this calculation only represents an approximation of the true average
value, since the temperature will vary during each day. To determine the true
average temperature, we need to know the temperature as a function of time for
all instants of time during that one-week period; that is, we consider

Temperature = T(x), x = elapsed time (in days), for 0 <x <7.

Then a more accurate determination of the average temperature is as an integral:
7

Average temperature = % /0 T(x)dx. (D)

Since an integral is nothing more than the limit of a sum, it’s not hard to see that

the preceding formula is a generalization of the original discrete sum calculation
to the continuous case. (See Figure 5.107.)
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70
60 +
50 +
40 +
30 +
20 +
10 +

Degrees F

0 1 2 3 4 5
Days

o+
~

Figure 5.107 A continuous temperature function 7 (x)
over the interval [0, 7]. The average temperature for the

week is 1 [ T(x)dx.

Note that

;
7= / dx = length of time interval.
0

Hence, we may rewrite formula (1) as

f07 T(x)dx .

f07 dx

Average temperature =

This observation leads us to make the following definitions concerning average
values of functions.

DEFINITION 6.1 (a) Let f:[a,b] — R be an integrable function of one
variable. The average (mean) value of f on [a, b] is

I I CfPrwdxe [P fodx
LF Jevs = b—a /a e [P dx ~ length of interval [a, b]

(b) Let f: D € R*> — R be an integrable function of two variables. The
average value of f on D is

_JIpfdA _ [fp fdA
we [[,dA " areaof D’

[f]

(c) Let f: W € R®> — R be an integrable function of three variables. The
average value of f on W is

_Jwrdv_ Jffw fdv

we [ffydV ~ volume of W'

[f]

EXAMPLE 1 Suppose that the “temperature function” for Oberlin during a
week in April is

_ 113 .7 107 .6 , 11275 _ 2393 4 , 66821 .3 _ 45781 2 , 12581
T(x) = 5555% 1s0% T 180X 7 Xt X 60 X+ 31 X +65,




0, 1)
x+2y=2

| o X
(2.0)

Figure 5.108 The triangular
metal plate of Example 2.
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where 0 < x < 7. Then the mean temperature for that week would be

7
1 113 .7 107 .6 , 1127.5 _ 2393 4
[T ]ave = 70/0 (5040x rs0% T g0 X 72X

66821 .3 45781 2 | 12581
+ =55 X S0 X T 50 x+65)dx

_ 1 (13 .8 107 .7, 1127 6 _ 2393 .5
=73 (40320 260% T Toso* 360 ©

66821 .4 45781 3 , 12581 2 7
+ 2850 tos0 X+ a0 X +65’C)|o
_ 888709 o
= 388709 51 43°F. .

EXAMPLE 2 Suppose that the thickness of the triangular metal plate, shown
in Figure 5.108, varies as f(x, y) = xy + 1, where (x, y) are the coordinates of
a point in the plate. The average thickness of the plate is, therefore,

fol fozfzy(xy + ldxdy
Jo Jo P dxdy

Average thickness =

Note that
1 p2-2y
/ / dx dy = area of triangular plate = %(2 =1
0o Jo
from elementary geometry. Hence, the average thickness is

fol 0272)?(xy+1)dxdy _ ! 1.2 x=2—2yd
-1~ 0 (5xy+x)|x=0 y

1
- /0 (12— 292y + @2 - 2y)) dy
! 3 2 2.3 7

EXAMPLE 3 (Seealso Example 6 of §5.4.) Suppose the temperature inside the
capsule bounded by the paraboloids z = 9 — x> — y? and z = 3x? + 3y? — 16
varies from point to point as

T(x,v,2) =z(x> + y?).

We calculate the mean temperature of the capsule.
From Definition 6.1,

_ My Tav

"= v

The particular iterated integrals we can use for the computation are then
52 paf25/4—x2  (9—x2—y?
[ e
52 paf25/4—22  [9—x2—y?
[ e

(7]

2(x* + v dzdydx

—5/2 x24+3y2-16

[T]avg =

dzdydx

-5/2 x24+3y2-16
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Unfortunately, the calculations involved in evaluating these integrals are rather
tedious.

On the other hand, since the capsule has an axis of rotational symmetry,
cylindrical coordinates can be used to simplify the computations. Note that the
boundary paraboloids have cylindrical equations of 7 = 9 — r? and z = 3r> — 16
and that the shadow of the capsule in the z = 0 plane can be described in polar
coordinates as

{rne)l0<r=<3.0<6<2r}.
(See Figures 5.109 and 5.110.)

O 10<r<20<0<2x
2

y
X
z=3x2+3y2-16
or
z=3r2-16
Figure 5.109 The capsule of Figure 5.110 The shadow of
Example 3. the capsule in Figure 5.109

in the z = 0 plane.

In addition, the temperature function may be described in cylindrical coordi-
nates as

T(x,y,z)=z(x* + y*) = zr’.

Hence, we may calculate
2
ozn 05/2 332716U2 -rdzdrdd

[ ]avg = —2
SR [T rdzdrdo

For the denominator integral,

27 p5/2 p9—r? 2 p5/2
/ / / rdzdrd@:/ / r (9 —r* —(3r* — 16)) dr do
0 0 3r2—16 0 0
2r p5)2
= / / (25r — 4r®) dr do
0 0

5/2
do

2 2
[7(25 )= e
0 16

8 16



Figure 5.111 This seesaw
balances if mx; + myx, = 0.
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This result agrees with the volume calculation in Example 6 of §5.4, as it should.
For the numerator integral, we compute
dr do

21 p5/2 p9—r? 27 p5/2 Zz
f f / zridzdrdd = / / (-ﬁ)
0 0 3r2—16 0 0 2 z=3r2—16

2t 05/2 .3
= / / = (O —=r**—(3r* —16)*) dr do
0 0 2

7=9—r?

2t 05/2 .3
= / / —(—8r* + 7872 — 175) dr db
0 0 2

1 2 52
= / (—8r7 +78r° — 175r%)dr do
0

2 0
1 [ 175 )\
= —/ (—r8 +13r° — —r4) do
2 Jo 4 0
1 /2" 15625 15625
= — _—— 9 = — T
2 Jo 256 256

Thus,
—156257/256 25

Tlave = ==,
[T Jove 6257 /8 32

Center of Mass: The Discrete Case

Consider a uniform seesaw with two masses m; and m; placed on either end. If
we introduce a coordinate system so that the fulcrum of the seesaw is placed at
the origin, then the situation looks something like that shown in Figure 5.111.
Note that x, < 0 < x;. The seesaw balances if

mix; + moxy; = 0.

In this case, the center of mass (or “balance point”) of the system is at the origin.

But now suppose mx; + mpx; # 0. Then where is the balance point? Let us
denote the coordinate of the balance point by x. Before we find it, we’ll introduce
a little terminology. The product m;x; (in this case, for i = 1, 2) of mass and
position is called the moment of the ith body with respect to the origin of the
coordinate system. The sum m ;x| + m,x; is called the total moment with respect
to the origin. To find the center of mass, we use the following physical principle,
which tells us that a system of several point masses is physically equivalent (in
terms of moments) to a system with a single point mass.

Guiding physical principle. The center of mass is the point such that, if all
the mass of the system were concentrated there, the total moment of the new
system would be the same as that for the original system.

Putting this principle into practice in our situation, we see that total mass M
of our system is m + m,. If X is the center of mass, then the guiding principle
tells that

MX = m x| + mpxs.
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mym, ny my, _m,
J
} *«—o

Xy Xy X3 0 Xn-1 Xn

Figure 5.112 A system of n
masses distributed on a line.

y
mn mie
.(_xn’yn) (xl’yl)
X
m;e
(2, 2)
mse
(3,¥3)

Figure 5.113 A system of n
masses in R?.
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That is, the total moment of the new (concentrated) system is the same as the total
moment of the original system. Hence,

mixy + max;

mp + m;

X =

If we have a system of n masses distributed along a (coordinatized) line, then
the same reasoning may be applied. (See Figure 5.112.) We have

total moment  myx; + moxy + - -+ Mmux, Y g
C omitmy++my,

X =
total mass

Now we move to two and three dimensions. Suppose, first, that we have n
particles (or bodies) arranged in the plane as in Figure 5.113. Then there are two
moments to consider:

n
Total moment with respect to the y-axis = Z m;x;,

i=1

and

n
Total moment with respect to the x-axis = Z m;yi.
i=1
(Admittedly, this terminology may seem confusing at first. The idea is that the
moment measures how the system balances with respect to the coordinate axes.
It is the x-coordinate—not the y-coordinate—that measures position relative to
the y-axis. Similarly, the y-coordinate measures position relative to the x-axis.)
The guiding principle tells us that the center of mass is the point (X, ¥) such that,
if all the mass of the system were concentrated there, then the new system would
have the same total moments as the original system. That is, if M = ) _ m;, then

n
Mx = E n;Xx;
i=1

(i.e., the moment with respect to the y-axis of the new system equals the moment
with respect to the y-axis of the original system) and

My = Zmiyi-
Py

Thus, we have shown the following:

Discrete center of mass in R?. Given a system of n point masses m,
ma, ..., m, at positions
(-xl’yl)v (x2, yz)y ey (xn’ )’n) in R29
the coordinates (x, y) of the center of mass are
n n
Yioimixio . D ioy MiYi

. 3
Dy Mi D ey Mi &




° m;

[ ]
(Y27

X

Figure 5.114 A discrete system
of masses in R3.
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For particles arranged in three dimensions, little more is needed than adding
an additional coordinate. (See Figure 5.114.)

Discrete center of mass in R?. Given a system of n point masses mj,
my, ..., m, at positions

(xla)’l’ Zl)a (x27 y27 ZZ)?H" (xn’ ynv Zn) in R3a

the coordinates (¥, y, z) of the center of mass are given by

(4)

The numerators of the fractions in (4) are the moments with respect to the
coordinate planes. Thus, for example, the sum Y ._, m;x; is the total moment
with respect to the yz-plane.

By definition, moments of physical systems are additive. That is, the total
moment of a system is the sum of the moments of its constituent pieces. However,
it is by no means the case that a coordinate of the center of mass of a system is
the sum of the coordinates of the centers of mass of its pieces. This additivity
property makes the study of moments important in its own right.

Center of Mass: The Continuous Case

Now, we turn our attention to physical systems where mass is distributed in
a continuous fashion throughout the system rather than at only finitely many
isolated points.

To begin with the one-dimensional case, suppose we have a straight wire
placed on a coordinate axis between points x =a and x = b as shown in
Figure 5.115. Moreover, suppose that the mass of this wire is distributed according
to some continuous density function 8(x). We seek the coordinate X that represents
the center of mass, or “balance point,” of the wire.

I T T
a=xy Xy Xp -+ X1

b

(ol
=
=

i "

Figure 5.115 A “coordinatized” wire.
The mass of the segment between x; _; and
x; is approximately &(x;)Ax;.

Imagine breaking the wire into n small pieces. Since the density is continuous,
it will be nearly constant on each small piece. Thus, fori = 1, ..., n, the mass m;
of each piece is approximately 6(x;)Ax;, where Ax; = x; — x;_; is the length of
each segment of wire, and x; is any number in the subinterval [x;_;, x;]. Hence,
the total mass is

M = imi ~ i(S(xi*)Axi,
i=1 i=1

and the total moment with respect to the origin is approximately

n

* *
x;[ 8(x)Ax; .
i—] approx. approx.

position mass
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y

e
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__

Figure 5.116 A lamina
depicted as a region D in
the xy-plane with density
function §.

Of course, these results can be used to provide an approximation of the coordi-
nate ¥ of the center of mass. For an exact result, however, we let all the pieces
of wire become “infinitesimally small”; that is, we take limits of the foregoing
approximating sums as all the Ax;’s tend to zero. Such limits give us integrals,
and we may reasonably define our terms as follows:

Continuous center of mass in R. For a wire located along the x-axis
between x = a and x = b with continuous density per unit length §(x):

b
Total mass = f d(x)dx.
b
Total moment = f xd(x)dx. )

total moment fab x8(x)dx
total mass fa” S(x)dx

Center of mass x =

Compare the formulas in (3) with those in (5). Instead of a sum of masses
and a sum of products of mass and position, we have an integral of “infinitesimal
mass” (the 6(x) dx term) and an integral of infinitesimal mass times position.

EXAMPLE 4 Suppose that a wire is located between x = —1 and x = 1 along
a coordinate line and has density §(x) = x2 + 1. Using the formulas in (5), we
compute that the center of mass has coordinate

S @ Gt )]

1
4
f_ll(xz-i- 1)dx (%x3+x)|il

wioo| O
I
(]

This makes sense, since this wire has a symmetric density pattern with respect to
the origin (i.e., §(x) = §(—x)). *

The analogous situation in two dimensions is that of a lamina or flat plate of
finite extent and continuously varying density é(x, y). (See Figure 5.116.) Using
reasoning similar to that used to obtain the formulas in (5), we make the following
definition for the coordinates (X, ¥) of the center of mass of the lamina:

Continuous center of mass in R?. For a lamina represented by the region
D in the xy-plane with continuous density per unit area §(x, y):

total moment with respect to y-axis [, x 8(x, y)dA
total mass — ff, 8, y)dA

Q)
total moment with respect to x-axis [}, ¥ 8(x, y)dA
= total mass ), 8(x, y)dA




y
(-3,9) (3,9)

Figure 5.117 The region
D representing the lamina
of Example 5.
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Roughly, the term 8(x, y) d A represents the mass of an “infinitesimal two-dimen-
sional” piece of the lamina and the various double integrals the limiting sums of
such masses or their corresponding moments.

EXAMPLE 5 We wish to find the center of mass of a lamina represented by the
region D in R? whose boundary consists of portions of the parabola y = x? and
the line y = 9 and whose density varies as 8(x, y) = x> + y. (See Figure 5.117.)

First, note that this lamina is symmetric with respect to the y-axis and that, in
addition, the density function has a similar symmetry because 6(x, y) = §(—x, y).
We may conclude from these two observations that the center of mass must occur
along the y-axis (i.e., that X = 0). Using the formulas in (6) and noting that the
lamina is represented by an elementary region of type 1,

[fpy 3, dA _ [7 [ (2 +y)dydx
Jpdtevda 2 A2+ yydydx

y =

For the denominator integral, we compute

3 9 3
2 2 1 2
(x*+y)dydx = xXy+zy
-3 Jx2 -3 2 y=x?
3 81 1
= /_3 [(9)62 + 7) — (x4 + §x4>:| dx
3 3 81
= / <9x2 — x4y —) dx
_3 2 2

y=9
dx

3 81 \|° 129
= (3x - —x "+ —x = —
10 2 3
For the numerator,
349 3 2.2 3y (V=9
/ / y(xz—l—y)dydx:/ x_y+y_ dx
3 Jy2 -3 2 3 y=x2

3 11664

Hence,

_11664/7 45
== A 643,
1296/5 7

This answer is quite plausible, since the density of the lamina increases with y,
and so we should expect the center of mass to be closer to y = 9 than to y = 0.
2
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X

Figure 5.118 The tetrahedron of
Example 6.

We may modify the two-dimensional formulas to produce three-dimensional
ones.

Continuous center of mass in R’. Given a solid W whose density per
unit volume varies continuously as 6(x, y, z), we compute the coordinates
(¥, ¥, 2) of the center of mass of W using the following quotients of triple
integrals:

total moment with respect to yz-plane _ [ff,, x 8(x, y,2)dV

total mass ff, 8(x, y.2)dV
_ _ total moment with respect to xz-plane [/, y8(x, y,2)dV_ ™
Y= total mass B [[fy8(x,y,2)dV "’
_ total moment with respect to xy-plane [ [}, 28(x, y,z)dV
Z= =

total mass [y 8y, 2)dV

In (7) we may think of the term 8(x, y, z)dV as representing the mass of an
“infinitesimal three-dimensional” piece of W. Then the triple integrals are the
limiting sums of masses or moments of such pieces.

EXAMPLE 6 Consider the solid tetrahedron W with vertices at (0, 0, 0),
(3,0,0), (0, 3,0), and (0, 0, 3). Suppose the mass density at the point (x, y, 7)
inside the tetrahedron is 6(x, y, z) = x + y + z + 1. We calculate the resulting
center of mass. (See Figure 5.118.)

First, note that the position of the tetrahedron in space and the density function
are both such that the roles of x, y, and z may be interchanged freely. Hence, the
coordinates (X, ¥, z7) of the center of mass must satisfy ¥ = y = 7. Therefore, we
may reduce the number of calculations required.

The tetrahedron is a type 4 elementary region in space. Thus, we may calculate
the total mass M of W, using the following iterated integral:

3 3—x 3—x—y
M=/ / f (x+y+z+1)dzdydx
0 0 0
z=3—x—y
dydx

:/03/0” ((x—|—y+1)z—|—Z2—2) .

3 3—x
=// (%—x—%xz—y—xy—%yz)dydx
0o Jo
3

A B e

The total moment with respect to the xy-plane is given by

3 3—x 3—x—y
/ / / 2(x+y+z+1)dzdydx
0 Jo 0



X

Figure 5.119 The cone of
Example 7.
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3 p3—x 2 3
Z Z
= x+y+DH—+ —)
v/O‘ \/0 < 2 3 z=0

3 3—x
_ 27 15, 102,13 15
—/0/0 (2 PR R 2y

+xy + %xzy + %yz + %xy2 + éy3) dydx

7=3—x—y

dydx

3
_ 1 w150 13 14y, 459
—/0 (8 X+ 4 6% 24x)dx_40.

Hence,

459

17~ 65

8

=1

If an object is uniform, in the sense that it has constant density, then one uses
the term centroid to refer to the center of mass of that object. Suppose the object
is a solid region W in R?. Then, if the density § is a constant k, the equations for
the coordinates (X, ¥, ) may be deduced from those in (7). For the x-coordinate,
we have

[ffyx8(x.y.00av _ [[[, kxdV
[y oGy, v [[f, kdV

fffo dv 1 /// qv
= = X .
[[f, dV  volume of W W
Similarly,

1 1
y= ——— dv d I=——— dv.
Y volume of W ///Wy and < volume of W ///WZ

In particular, the constant density § plays no role in the calculation of the
centroid, only the geometry of W. (Note: Completely analogous statements can
be made in the case of centroids of laminas in R?.)

X =

EXAMPLE 7 We compute the centroid of a cone of radius a and height /. (See
Figure 5.119.)

By symmetry, ¥ = y = 0. Moreover, we know that the volume of the cone is
(7r/3)a’h. Thus, the z-coordinate of the centroid is

3
= dV.
©T wath /f/wz

This triple integral is most readily evaluated by using cylindrical coordinates.
(See Example 15 of §5.5.) The lateral surface of the cone is given by z = %r, SO

we calculate

3 2 a h 3 na2h2 3
/ / / zrdzdrdf = | —— =-h
rath Jo Jo Ju, wa’h 4 4

after a straightforward evaluation. Hence, the centroid of the cone is located at
(0,0, 2n). .
9 9 4

7=
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X

Figure 5.120 The box of
Example 8.

Moments of Inertia

Let W be a rigid solid body in space. As we have seen, the moment integral
with respect to the xy-plane is My, = [[[,, z8(x, y, z)dV—that is, the inte-
gral of the product of the position relative to a reference plane (in this case the
xy-plane) and the density of the solid. This integral can be considered to mea-
sure the ease with which W can be displaced perpendicularly from the reference
plane.

Now, consider spinning W about a fixed axis (which may or may not pass
through W). The moment of inertia / (or second moment—the moment integral
mentioned in the preceding paragraph is sometimes called the first moment) is
a measure of the ease with which W can be made to spin about the given axis.
Specifically, / is the integral of the product of the density at a point in W and the
square of the distance from that point to a fixed axis; that is,

I = ///Wdzé(x,y,z)d\/, 8)

where d is the distance from (x, y, z) € W to the specified axis.
When the axes of rotation are the coordinate axes in R?, we have

I, = moment of inertia about the x-axis = /f (2 +25)8(x, y,2)dV;
W

I, = moment of inertia about the y-axis = /// (x? 4+ 2% 8(x, y,2)dV;
W

I, = moment of inertia about the z-axis = // x2+y2)8(x, y,2)dV.
w

EXAMPLE 8 Let W be a solid box of uniform density § and dimensions a, b,

and c. If W is situated symmetrically with respect to the coordinate axes as shown

in Figure 5.120, we compute the moments of inertia with respect to these axes.
Note, first, that W may be described as

a b b
_XS_,__S)’S_,_
2 2 2

o
IA
N
IA
o
[——

W={(x,y,z)’—

NSTIEN

Hence, the moment of inertia about the x-axis is

¢/2 pbj2  paj2 c/2 pbJ2
Ix:f / (y2+z2)8dxdydz:/ (? +zH)8adydz
—c/2J=bj2 J—a)2 —c/2J—b)2
y=b/2

e/2 3 /2 /3
[ () e[ ()
—C/2 3 y:—b/2 —C/2 12

bc b dabc
—sa(2S4 70 = »:+ ),
“(1zJr 12) &)




Top:z=4

Cone: z=2Vx2+y?

X

Figure 5.121 The solid W of
Example 9.

y
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By permuting the roles of x, y, and z (and the corresponding constants a, b, and
c¢), we see that

dabc
12

_ dabc
Y12

(@*+c?) and I = (a* + b?).

Therefore, if a > b > ¢ (as in Figure 5.120), it follows that I, < I, < I.. This
result may be confirmed by the observation that rotations about the axis parallel
to the longest side of the box are easiest to effect in that the same torque applied
about each axis will cause the most rapid rotation to occur about the axis through
the longest dimension. A related fact is regularly exploited by figure skaters who
pull their arms in close to their bodies, thereby reducing their moments of inertia
and speeding up their spins. *

EXAMPLE 9 Let W be the solid bounded by the cone z = 2,/x2 + y? and the
plane z = 4 shown in Figure 5.121. Assume that the density of material inside W
varies as §(x, y, z) = 5 — z. Let us calculate the moment of inertia /, about the
Z-axis.

Given the geometry of the situation, it is easiest to work in cylindrical coor-
dinates, in which case the cone is given by the cylindrical equation z = 2r. Thus,
we have

2 2 4
I. = // (x> + vy 8(x, y,2)dV = f / / r2(5 —z)rdzdrdo
w 0 0 2r

2 2 2 2
=/ / r (52 — %ﬂ\:‘z‘r dr d =/ / (12 — 10r* +2r°) dr d
0 0 0 0

2716 327

2
= 4— 5 l 6 r=2 = _— = —_—
_/0 (B3rt —2r> 4+ 3r%) | Z, a0 /0 $db=—- .

Recall that the center of mass of a solid object of total mass M is the point
such that if all the mass M were concentrated there, the (first) moment would
remain the same. An analogous idea may be defined in the context of moments of
inertia. The radius of gyration of a solid with respect to an axis is the distance
r from that axis that we should locate a point of mass M so that it has the same
moment of inertia / (with respect to the axis) as the original solid does. More
concisely, the radius of gyration r is defined by the equation

) I
r’M=1 or r=,—. )
M

EXAMPLE 10 We determine the radius of gyration with respect to the z-axis
of the cone described in Example 9. Hence, we compute
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From Example 9, I, = 327 /3. We determine the total mass M of the cone as

follows:

21 2 4 o 2
Mz/ / (S_Z)rd”rd@:/ /