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Preface

I have truly enjoyed writing this book on some amazing and aesthetic aspects of
analysis. Admittedly, some of the writing is too overdone (e.g., overuse of collo-
quial language and abundant alliteration at times). But what can I say? I was having
fun. The sections of the book with an H are meant to be optional or just for fun and
don’t interfere with other sections, besides perhaps other starred sections. Most
of the quotations that you’ll find in these pages are taken from the website
http://www-gap.dcs.st-and.ac.uk/history/Quotations/.

The contents of this book are based on lectures I have given to Binghamton
University students taking our fall semester undergraduate real analysis course from
2003 to about 2006. The audience consisted of math majors, including actuarial
students, as well as students from the fields of chemistry, computer science, eco-
nomics, and physics, among others. In order to interest such a diverse body of
students, I wanted to write a book that not only teaches the fundamentals of
analysis, but also shows its usefulness, beauty, and excitement. I also wanted a
book that is personal, in which the students come with me on a journey through
some amazing and aesthetic aspects of analysis. There are no derivatives or inte-
grals in this book. This is on purpose, because I wanted to focus on the “ele-
mentary” limiting processes only, those directly involving sequences and
continuity, without the “higher” technology of calculus. The student completing
Chapters 1 through 4 of this book will have mastered the fundamental arts of
analysis and can move on to the “higher” arts, like the Lebesgue theory of inte-
gration, which I usually teach in our spring semester real analysis course.

Besides giving an appreciation of the amazing and aesthetic aspects of analysis
(of course!), the overarching goals of this textbook are similar to those of any
advanced math textbook, regardless of the subject:

GOALS OF THIS TEXTBOOK. THE STUDENT WILL BE ABLE TO…

• Comprehend and write mathematical reasonings and proofs.
• Wield the language of mathematics in a precise and effective manner.
• State the fundamental ideas, axioms, definitions, and theorems on which real

analysis is built and flourishes.
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• Articulate the need for abstraction and the development of mathematical tools
and techniques in a general setting.

The objectives of this book make up the framework of how these goals will be
accomplished, and more or less follow the chapter headings:

OBJECTIVES OF THIS TEXTBOOK. THE STUDENT WILL BE ABLE TO…

• Identify the interconnections between set theory and mathematical statements
and proofs (Chapter 1).

• State the fundamental axioms of the natural, integer, and real number systems
and how the completeness axiom of the real number system distinguishes that
system from the rational system in a powerful way (Chapter 2).

• Apply the rigorous e-N definition of convergence for sequences and series and
recognize monotone and Cauchy sequences (Chapter 3).

• Apply the rigorous e-– definition of limits and continuity for functions and apply
the fundamental theorems of continuous functions (Chapter 4).

• Analyze the convergence properties of an infinite series, product, or continued
fraction (mainly Chapters 5–8).

• Identify series, product, and continued fraction formulas for the various ele-
mentary functions and constants (Throughout!).

In one semester, I usually review parts of Chapters 1 and 2, then cover most of
Chapters 3 and 4, and end with some applications from Chapters 5–8.

Although not a history book (though I do give tiny history bites throughout the
book) nor a “little” book like Herbert Westren Turnbull’s book The Great
Mathematicians, in the words of Turnbull, I do hope …

If this little book perhaps may bring to some, whose acquaintance with mathematics is full
of toil and drudgery, a knowledge of those great spirits who have found in it an inspiration
and delight, the story has not been told in vain. There is a largeness about mathematics that
transcends race and time: mathematics may humbly help in the market-place, but it also
reaches to the stars. To one, mathematics is a game (but what a game!) and to another it is
the handmaiden of theology. The greatest mathematics has the simplicity and inevitable-
ness of supreme poetry and music, standing on the borderland of all that is wonderful in
Science, and all that is beautiful in Art. Mathematics transfigures the fortuitous concourse
of atoms into the tracery of the finger of God.

Herbert Westren Turnbull (1885–1961). Quoted from (243, p. 141)

I’d like to thank Brett Bernstein and Ye Li for looking over the notes and giving
many valuable suggestions, with special thanks to Ye Li for writing up solutions to
many problems (which will eventually be available as a student and instructor’s
guide) and for pushing me to finally get this book into print. Thanks also to Dikran
Karagueuzian and Dennis Pixton for using the book when they taught real analysis.
The editors at Springer have been wonderful to work with; my thanks to them all.
Also, thanks to the many people throughout the world who have emailed me about
the book with encouragement and comments, including Jeremiah Goertz, Scott
Lindstrom, Zbigniew Szewczak and Fabio Ricci. There are many others to whom I
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owe thanks, but due to situations beyond my control, I’ve either lost their emails or
was not able to reply. Please accept my sincerest gratitude to you all. I thank my
wife, Deborah, as well as my children, Melodie, Blaise, Theo, and Harmonie, for
their continued support. Amid the difficulties, I thank and dedicate this book to
Jesus, my Lord, Savior, and friend, for allowing me to complete this work.

Soli Deo Gloria

Binghamton, NY, USA Paul Loya
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A Word to the Student

One can imagine mathematics as a movie with exciting scenes, action, plots, etc.
There are a couple things you can do. First, you can simply sit back and watch the
movie playing out. Second, you can take an active role in shaping the movie.
A mathematician does both at times, but is more an actor than an observer.
I recommend that you be an actor in the great mathematics movie. To do so, I
recommend that you read this book with a pencil and paper at hand, writing down
definitions, working through examples, filling in any missing details, and of course
doing exercises (even the ones that are not assigned).1 Of course, please feel free to
mark up the book as much as you wish with remarks and highlighting and even
corrections if you find a typo or error. (Just let me know if you find one!) The
sections with an H are optional and are meant to showcase some of the most
breathtaking scenes in this Amazing and Aesthetic Aspects of Analysis.

1There are many footnotes in this book. Most are quotations from famous mathematicians and
others are remarks that I might make to you if I were reading the book with you. All footnotes may
be ignored if you wish!
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Some of the Most Beautiful Formulas
in the World

In addition to the formulas involving …2=6 on the front page of this book, below are
more of the main characters we’ll meet on our journey, U (the golden ratio), log 2,
…, � (the Euler–Mascheroni constant), ‡ðzÞ (the zeta function), ffiffiffi

2
p

, and e. Indicated
are a section and page number where we prove the formula, most of which are
proved in different ways on other pages.

U ¼ 1þ ffiffiffi
5

p

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ � � �pqrsvuut
vuuut

(Section 3.3, p. 177)

U ¼ 1þ 1

1þ 1

1þ 1

1þ . .
.

(Section 3.4, p. 193)

ffiffiffi
2

p ¼ 1þ 1

2þ 1

2þ 1

2þ . .
.

(Section 3.4, p. 192)

log 2 ¼ 1� 1
2
þ 1

3
� 1
4
þ 1

5
� 1
6
þ � � � (Section 4.7, p. 311)
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ 1

2

ffiffiffi
1
2

rs
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ 1

2

ffiffiffi
1
2

rsvuut � � � (Section 5.1, p. 382)

…

2
¼ 1

1
� 2
1
� 2
3
� 4
3
� 4
5
� 6
5
� 6
7
� 8
7
� � � (Section 5.1, p. 389)
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… ¼
1þ 1

1 � 3
� �

1þ 1
3 � 5

� �
1þ 1

5 � 7
� �

1þ 1
7 � 9

� �
� � �

1
1 � 3 þ 1

3 � 5 þ 1
5 � 7 þ 1

7 � 9 þ � � �
(Section 5.1, p. 390)

…

4
¼ 1

1
� 1
3
þ 1

5
� 1
7
þ � � � (Section 5.2, p. 400)

� ¼ ‡ð2Þ
2

� ‡ð3Þ
3

þ ‡ð4Þ
4

� ‡ð5Þ
5

þ � � � (Section 6.8, p. 517)

log 2 ¼ 2

1þ ffiffiffi
2

p � 2

1þ
ffiffiffiffiffiffiffiffiffiffi
2

pp � 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ppq � 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ppqr � � � (Section 7.1, p. 538)

sin…z ¼ …z 1� z2

12

� �
1� z2

22

� �
1� z2

32

� �
1� z2

42

� �
1� z2

52

� �
� � � (Section 7.3, p. 547)

ffiffiffi
2

p ¼ 2
1
� 2
3
� 6
5
� 6
7
� 10
9
� 10
11

� � � (Section 7.3, p. 554)

…

sin…z
¼ 1

z
� 2z
z2 � 12

þ 2z
z2 � 22

� 2z
z2 � 32

þ 2z
z2 � 42

� � � � (Section 7.4, p. 560)

‡ðzÞ ¼ 2z

2z � 1
� 3z

3z � 1
� 5z

5z � 1
� 7z

7z � 1
� 11z

11z � 1
� 13z

13z � 1
� 17z

17z � 1
� � � (Section 7.6, p. 566)

log 2 ¼ 1

1þ 12

1þ 22

1þ 32

1þ 42

1þ . .
.

(Section 8.2, p. 600)

4
…
¼ 1þ 12

2þ 32

2þ 52

2þ 72

2þ . .
.

(Section 8.2, p. 602)

e ¼ 1þ 1þ 2

2þ 3

3þ 4

4þ 5

5þ . .
.

(Section 8.2, p. 607)
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Chapter 1
Very Naive Set Theory, Functions,
and Proofs

Mathematics is not a deductive science—that’s a cliché. When you try to prove a theorem,
you don’t just list the hypotheses, and then start to reason. What you do is trial and error,
experimentation, guesswork.
Paul R. Halmos (1916–2006), I Want to Be a Mathematician [99].

One of the goals of this text is to get you proving mathematical statements in real
analysis. Set theory provides a safe environment in which to learn about math state-
ments, “if … then,” “if and only if,” etc., and to learn the logic behind proofs. Since
this is an introductory book on analysis, our treatment of sets is “very naive,” in the
sense that we actually don’t define sets rigorously, only informally; we are mostly
interested in how “they work,” not really what they are.

The students at a university, the people in your family, your pets, the food in your
refrigerator, are all examples of sets of objects. Mathematically, a set is defined by
some property or attribute that an object must have or must not have; if an object has
the property, then it’s in the set. For example, the collection of all registered students
at a university who are signed up for real analysis forms a set. (A student is either
signed up for real analysis or is not.) For an example of a property that cannot be used
to define a set, try to answer the following question proposed by Bertrand Russell
(1872–1970) in 1918 [206, p. 101]:

A puzzle for the student:A barber in a local town puts up a
sign saying that he shaves only those people who do not shave
themselves.“Who, then, shaves the barber?”

Try to answer the question. (Does the barber shave himself or does someone else
shave him?) In any case, the idea of a set is perhaps the most fundamental idea in
all of mathematics. Sets can be combined to form other sets, and the study of such
operators is called the algebra of sets, which we cover in Section 1.1. In Section 1.2,
we look at the relationship between set theory and the language of mathematics.

© Paul Loya 2017
P. Loya, Amazing and Aesthetic Aspects of Analysis,
https://doi.org/10.1007/978-1-4939-6795-7_1
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4 1 Very Naive Set Theory, Functions, and Proofs

Second to sets in fundamental importance is the idea of a function, which we cover
in Section 1.3. In order to illustrate relevant examples of sets, we shall presume
elementary knowledge of the real numbers. A thorough discussion of real numbers
is left for the next chapter.

This chapter is short, since we do not want to spend too much time on set theory
so as to start real analysis ASAP. In the words of Paul Halmos [98, p. vi], “general
set theory is pretty trivial stuff really, but, if you want to be a mathematician, you
need some, and here it is; read it, absorb it, and forget it.”

CHAPTER 1 OBJECTIVES: THE STUDENT WILL BE ABLE TO . . .

• Manipulate and create new sets from old ones using the algebra of sets.
• Identify the interconnections between set theory and math statements/proofs.
• Define functions and the operations of functions on sets.

1.1 The Algebra of Sets and the Language of Mathematics

In this section, we study sets and various operations on sets, referred to as the algebra
of sets, from the “very naive” (informal, intuitive) viewpoint. We shall see that the
algebra of sets is indispensable in many branches of mathematics such as the study
of topology in later chapters. Set theory also provides a lot of language by which
mathematics and logic are built.

1.1.1 Sets and Intervals

A set is a collection of definite, well-distinguished objects, also called elements or
members, which are usually defined by a conditional statement or simply by listing
the set’s elements. Intuitively, a set can be thought of as a polyethylene bag containing
various objects. All sets and objects that we deal with have the property that there is
a definite “yes” or “no” answer to whether an object is in a set. If there is no definite
answer, paradoxes can arise, as seen in the barber paradox; see also Problem 3 for
another puzzle.

Example 1.1 Consider the set of letters in the word analysis,

A = {a, n, a, l, y, s, i, s} = {a, n, l, y, s, i} = {i, s, y, l, n, a}.

Here, the order of the elements in a set and presence of duplicates are immaterial.
Sets for which we can list some of the elements include

N = {1, 2, 3, 4, 5, 6, 7, . . . } and Z = {. . . ,−2,−1, 0, 1, 2, . . . },

the natural numbers and integers, respectively.



1.1 The Algebra of Sets and the Language of Mathematics 5

Example 1.2 The rational numbers can be written in terms of a conditional state-
ment:

Q :=
{

x ∈ R ; x = a

b
, where a, b ∈ Z and b �= 0

}
.

Here, the symbol “:=” means that the symbol on the left is by definition equal to the
expression on the right, and we usually read “:=” as “equals by definition”.1 Thus,

:= means “is by definition equal to.”

The symbol ∈ means “belongs to” or “is a member of.” The symbol R denotes the
set of real numbers, and the semicolon should be read “such that.” So, Q is the set
of all real numbers x such that x can be written as a ratio x = a/b, where a and b
are integers with b not zero.

Example 1.3 The empty set is a set with no elements—think of an empty clear
plastic bag. We denote this empty set by ∅. (In the next subsection, we prove that

there is only one empty set.)

Example 1.4 Intervals provide many examples of sets defined by conditional state-
ments. Let a and b be real numbers with a ≤ b. Then the set

{x ∈ R ; a < x < b}

is called an open interval and is often denoted by (a, b). If a = b, then there are no
real numbers between a and b, so (a, a) = ∅. The set

{x ∈ R ; a ≤ x ≤ b}

is called a closed interval and is denoted by [a, b]. There are also half-open and
half-closed intervals,

{x ∈ R ; a < x ≤ b}, {x ∈ R ; a ≤ x,< b},

called left-half-open and right-half-open intervals and denoted by (a, b] and [a, b),
respectively. The points a and b are called the endpoints of the intervals. There are
also infinite intervals. The sets

{x ∈ R ; x < a}, {x ∈ R ; a < x}

are open intervals, denoted by (−∞, a) and (a,∞), respectively, and

{x ∈ R ; x ≤ a}, {x ∈ R ; a ≤ x}

1“The errors of definitions multiply themselves according as the reckoning proceeds; and lead
men into absurdities, which at last they see but cannot avoid, without reckoning anew from the
beginning.” Thomas Hobbes (1588–1679) [172].
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are closed intervals, denoted by (−∞, a] and [a,∞), respectively. Note that the
sideways eight symbol ∞ for infinity, introduced in 1655 by John Wallis (1616–
1703) [45, p. 44], is just that, a symbol, and is not to be taken to be a real number.
The real line is itself an interval, namely R = (−∞,∞).

1.1.2 Subsets and “If … Then” Statements

If a belongs to a set A, then we usually say that a is in A, and we write a ∈ A, and
if a does not belong to A, then we write a /∈ A. If each element of a set A is also an
element of a set B, we write A ⊆ B and say that A is a subset of, or contained in,
B. If A is not a subset of B, we write A � B. To say that two sets A and B are the
same just means that they contain exactly the same elements; in other words, every
element in A is also in B (that is, A ⊆ B) and also every element in B is also in A
(that is, B ⊆ A). Thus, we define

A = B means that A ⊆ B and B ⊆ A.

Here’s a picture to consider:

Fig. 1.1 The left-hand side
displays a subset. The
right-hand side deals with
complements, which we’ll
look at in Section 1.1.3

B

A A

Ac

Example 1.5 N ⊆ Z, since every natural number is also an integer, and Z ⊆ R, since
every integer is also a real number, but R � Z, because not every real number is an
integer.

Stated another way, A ⊆ B means that if we take an element of A, that element must
also belong to B, that is, the following is a true statement:

If x ∈ A, then x ∈ B.

This statement is an example of a conditional statement, or implication, and in
general is any statement that looks like

If P, then Q,

where P and Q are statements. Here, P is called the hypothesis, and Q is called the
conclusion, and the implication can be written out more fully as

“If P is a true statement, then Q is also a true statement.”
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In the subset example above, P is “x ∈ A” and Q is “x ∈ B.” We will discuss
conditional statements quite a bit in Section 1.2. An important point concerning
conditional statements is made in the following example.

Example 1.6 Consider the following statement made by a student Joe:

If my professor cancels class on Friday, then on Friday I’m going fishing.

Obviously, Joe told the truth if indeed the class was canceled and he went fishing,
and he lied if the class was canceled, yet Joe stayed in his dorm all Friday. Now
what if class was not canceled but Joe still went fishing? Did Joe make a true or false
statement? Everyone would certainly agree that Joe’s statement is not false, regardless
of whether he went fishing. Indeed, Joe said that if the professor canceled class, then
he would go fishing; Joe said nothing about what he would do if the professor did
not cancel class. In mathematics, statements are either true or false,2 so, since Joe’s
statement is not false, it must therefore be true! This is the standing convention
mathematicians take for any “if … then” statement. Thus, given statements P and
Q, we consider the statement “If P , then Q” to be true if the statement P is true
and the statement Q is also true, and we also regard “If P , then Q” as true if the
statement P is false, whether or not the statement Q is true or false. We consider “If
P , then Q” to be false if and only if P is true and Q is false. Finally, we consider “If
P , then Q” to be false only in the case that P is true and Q is false.

Using the logic in this example, we claim that ∅, a set with nothing in it, is a
subset of every set. To see this, let A be a set. We must verify that the following
statement is true:

If x ∈ ∅, then x ∈ A.

However, the hypothesis “x ∈ ∅” is always false, since ∅ has nothing in it! Therefore,
by our convention, the statement “if x ∈ ∅, then x ∈ A” is true! Thus, ∅ ⊆ A. We
can also see that there is only one empty set, for suppose that ∅

′ is another empty
set. Then the same argument that we just made for ∅ shows that ∅

′ is also a subset
of every set. Now to say that ∅ = ∅

′, we must show that ∅ ⊆ ∅
′ and ∅

′ ⊆ ∅. But
∅ ⊆ ∅

′ holds because ∅ is a subset of every set, and ∅
′ ⊆ ∅ holds because ∅

′ is a
subset of every set. Therefore, ∅ = ∅

′.
The fact that we regard “If P , then Q” to be true when P is false has implications

when we do proofs:

Remark: Since for a false statement P , we always consider a statement “If P , then Q” to
be true, regardless of the validity of the statement Q, if we want to prove that a statement
“If P , then Q” is true, we usually start the proof by assuming P is true, then under that
assumption, deducing that Q is also true.

2Later in your math career you will find some “neither true nor false” statements (perhaps a better
wording is “neither provable nor refutable”) such as, e.g., the continuum hypothesis . . . but that is
another story! There is no such thing as a “neither statement” in this book.
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The following theorem states an important law of sets.

Transitive law

Theorem 1.1 If A ⊆ B and B ⊆ C, then A ⊆ C.

Proof Suppose that A ⊆ B and B ⊆ C (as detailed in our remark, we are assuming
“P ,” that A ⊆ B and B ⊆ C , is true). We need to prove that A ⊆ C , which by
definition means that if x ∈ A, then x ∈ C is a true statement. So, let x be in A (we
are again following our remark, with now “P” being that x ∈ A). We will show that
x is also in C . Since x is in A and A ⊆ B, we know that x is also in B. Now B ⊆ C ,
and therefore x is also in C . In conclusion, we have proved that if x ∈ A, then x ∈ C ,
which is exactly what we wanted to prove. �

The power set of a given set A is the collection consisting of all subsets of A,
which we usually denote by P(A).

Example 1.7 For the set {e,π}, we have

P({e,π}) = {
∅, {e}, {π}, {e,π}}.

Before moving on to set operations, we remark that we can see that ∅ is a subset of
every set by invoking the contrapositive. Consider again the statement that A ⊆ B,
meaning that

(1) If x ∈ A, then x ∈ B,

must be a true statement. This statement is equivalent (that is, either both statements
are true or both are false) to the contrapositive statement

(2) If x /∈ B, then x /∈ A.

Indeed, suppose that statement (1) holds, that is, A ⊆ B. We shall prove that statement
(2) holds. So, let us assume that some x has the property that x /∈ B is true; is it true
that x /∈ A? Well, the object x is either in A or it’s not. If x ∈ A, then since A ⊆ B,
we must have x ∈ B. However, we know that x /∈ B, and so x ∈ A is not a valid
option, and therefore x /∈ A. Assume now that statement (2) holds; we shall prove
that statement (1) holds. So, let x ∈ A. We must prove that x ∈ B. Well, either x ∈ B
or it’s not. If x /∈ B, then we know that x /∈ A. However, we are given that x ∈ A,
so x /∈ B is not a valid option. Therefore, the other option x ∈ B must be true.
Therefore, (1) and (2) really say the same thing. We now prove that ∅ ⊆ A for every
set A using the contrapositive. Assume that x /∈ A; we must prove that x /∈ ∅. But
this last statement is true because ∅ does not contain anything, so x /∈ ∅ is certainly
true. Thus, ∅ ⊆ A.
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1.1.3 Unions, “or” Statements, Intersections,
and Set Differences

Given two sets A and B, their union, denoted by A ∪ B, is the set of elements that
are in A or B:

A ∪ B = {x ; x ∈ A or x ∈ B}.

By “or” we always allow the option that x could be in both A and B; in logic, this is
called the inclusive or. In standard English, “or” can refer to the inclusive or, but it
often means “one or the other, but not both,” called the exclusive or. Only by context
or social standards do we know which “or” is meant.

Example 1.8 Your parents offer to buy you a new laptop or a new smartphone as a
reward for getting an A in calculus or making the dean’s list. For most people, the
first “or” was an exclusive or (since laptops and smartphones are rather expensive),
while the second “or” was definitely an inclusive or.

In math, please remember that “or” by convention refers to the inclusive or. Thus,
A ∪ B is the set of elements that are in A or B or in both A and B.

Example 1.9
{0, 1, e, i} ∪ {e, i,π,

√
2} = {0, 1, e, i,π,

√
2}.

The intersection of two sets A and B, denoted by A ∩ B, is the set of elements
that are in both A and B:

A ∩ B = {x ; x ∈ A and x ∈ B}.

(Here, “and” means just what you think it means.)

Example 1.10
{0, 1, e, i} ∩ {e, i,π,

√
2} = {e, i}.

If the sets A and B have no elements in common, then A ∩ B = ∅, and the sets
are said to be disjoint. Here are some properties of unions and intersections, the
proofs of which we leave mostly to the reader.

Theorem 1.2 Unions and intersections are commutative and associative in the
sense that if A, B, and C are sets, then

(1) A ∪ B = B ∪ A and A ∩ B = B ∩ A.
(2) (A ∪ B) ∪ C = A ∪ (B ∪ C) and (A ∩ B) ∩ C = A ∩ (B ∩ C).

Proof Consider the proof that A ∪ B = B ∪ A. By definition of equality of sets,
we must show that A ∪ B ⊆ B ∪ A and B ∪ A ⊆ A ∪ B. To prove that A ∪ B ⊆
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B ∪ A, let x be in A ∪ B. Then by definition of union, x ∈ A or x ∈ B. This of
course is the same thing as x ∈ B or x ∈ A. Therefore, x is in B ∪ A. The proof
that B ∪ A ⊆ A ∪ B is similar. Therefore, A ∪ B = B ∪ A. We leave the proof that
A ∩ B = B ∩ A to the reader. We also leave the proof of (2) to the reader. �

Our last operation on sets is the set difference A \ B (read “A take away B” or
the “complement of B in A”), which is the set of elements of A that do not belong
to B. Thus,

A \ B = {x ; x ∈ A and x /∈ B}.

Example 1.11
{0, 1, e, i} \ {e, i,π,

√
2} = {0, 1}.

A ∪ B A ∩ B

A B A B A B A B

A \ B

Fig. 1.2 Visualization of the various set operations. Here, A and B are overlapping triangles

Figure 1.2 shows some pictorial representations of union, intersection, and set
difference. Such pictures are called Venn diagrams after John Venn (1834–1923),
who introduced them.

In any given situation, we are usually working with subsets of some underlying set
X (our “universe”). Given any subset A of X , we denote X \ A, the set of elements
in X that are outside of A, by Ac, called the complement of A; see Fig. 1.1 on p. 6.
Therefore,

Ac = X \ A = {x ∈ X ; x /∈ A}.

Example 1.12 Let us take our “universe” to be R. Then,

(−∞, 1]c = {x ∈ R ; x /∈ (−∞, 1]} = (1,∞),

and
[0, 1]c = {x ∈ R ; x /∈ [0, 1]} = (−∞, 0) ∪ (1,∞).

In any given situation, the set X will always be clear from context, either because
it is stated what X is, or because we are working in, say a section dealing with only
real numbers, so R is by default the universal set. Otherwise, we assume that X is
“there” but simply not stated.
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1.1.4 Arbitrary Unions and Intersections

We can also consider arbitrary (finite or infinite) unions and intersections. Let I be a
nonempty set and assume that for each α ∈ I , there corresponds a set Aα. The sets
Aα where α ∈ I are said to be a family of sets indexed by I , which we often denote
by {Aα ; α ∈ I }. An index set that shows up quite often is I = N; in this case, we
usually call {An ; n ∈ N} a sequence of sets.

Example 1.13 The sets A1 = [0, 1], A2 = [0, 1/2], A3 = [0, 1/3], and in general,

An =
[

0,
1

n

]
=

{
x ∈ R ; 0 ≤ x ≤ 1

n

}
,

form a family of sets indexed by N (or a sequence of sets). Here’s a picture of these
sets:

[
0

]
1

]
1
2

]
1
3

]
1
4

]
1
5

]
1
6

. . . . . .

Fig. 1.3 The sequence of sets An = [0, 1/n] for n ∈ N

How do we define the union of all the sets Aα in a family {Aα ; α ∈ I }? Consider
the case of two sets A and B. We can write

A ∪ B = {x ; x ∈ A or x ∈ B}
= {x ; x is in at least one of the sets on the left-hand side}.

With this as motivation, we define the union of all the sets Aα as

⋃
α∈I

Aα = {x ; x ∈ Aα for at least one α ∈ I }.

To simplify notation, we sometimes just write
⋃

Aα or
⋃

α Aα for the left-hand side.

Example 1.14 For the sequence {An ; n ∈ N}, where An = [0, 1/n], by staring at
Fig. 1.3, we see that

⋃
n∈N

An = {x ; x ∈ [0, 1/n] for at least one n ∈ N} = [0, 1].

We how do we define the intersection of all the sets Aα in a family {Aα ; α ∈ I }?
Consider the case of two sets A and B. We can write
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A ∩ B = {x ; x ∈ A and x ∈ B}
= {x ; x is in every set on the left-hand side}.

With this as motivation, we define the intersection of all the sets Aα as

⋂
α∈I

Aα = {x ; x ∈ Aα for every α ∈ I }.

To simplify notation, we sometimes just write
⋂

Aα or
⋂

α Aα for the left-hand side.

Example 1.15 For the sequence An = [0, 1/n] in Fig. 1.3, we have

⋂
n∈N

An = {x ; x ∈ [0, 1/n] for every n ∈ N} = {0}.

If I = {1, 2, . . . , N } is a finite set of natural numbers, or if I = N, then it’s
common to use the notation

N⋃
n=1

An instead of
⋃

α∈{1,2,...,N }
Aα and

∞⋃
n=1

An instead of
⋃
α∈N

Aα,

with similar notation for intersections.

Theorem 1.3 Let A be a set and {Aα} a family of sets. Then unions and inter-
sections distribute in the sense that

A ∩
⋃
α

Aα =
⋃
α

(A ∩ Aα), A ∪
⋂
α

Aα =
⋂
α

(A ∪ Aα)

and satisfy the Augustus De Morgan (1806–1871) laws:

A \
⋃
α

Aα =
⋂
α

(A \ Aα), A \
⋂
α

Aα =
⋃
α

(A \ Aα).

Proof We shall prove the first distributive law and leave the second one to the reader.
We need to show that A ∩ ⋃

α Aα = ⋃
α(A ∩ Aα), which means that

A ∩
⋃
α

Aα ⊆
⋃
α

(A ∩ Aα) and
⋃
α

(A ∩ Aα) ⊆ A ∩
⋃
α

Aα. (1.1)

To prove the first inclusion, let x ∈ A ∩ ⋃
α Aα; we must show that x ∈ ⋃

α(A ∩ Aα).
The statement x ∈ A ∩ ⋃

α Aα means that x ∈ A and x ∈ ⋃
α Aα, which means, by



1.1 The Algebra of Sets and the Language of Mathematics 13

the definition of union, that x ∈ A and x ∈ Aα for some α. Hence, x ∈ A ∩ Aα for
some α, which is to say that x ∈ ⋃

α(A ∩ Aα). Consider now the second inclusion in
(1.1). To prove this, let x ∈ ⋃

α(A ∩ Aα). This means that x ∈ A ∩ Aα for some α.
Therefore, by definition of intersection, x ∈ A and x ∈ Aα for some α. This means
that x ∈ A and x ∈ ⋃

α Aα, which is to say that x ∈ A ∩ ⋃
α Aα. Having established

both inclusions in (1.1), we’ve proved the equality of the sets.
We shall prove the first De Morgan law and leave the second to the reader. We

need to show that A \ ⋃
α Aα = ⋂

α(A \ Aα), which means that

A \
⋃
α

Aα ⊆
⋂
α

(A \ Aα) and
⋂
α

(A \ Aα) ⊆ A \
⋃
α

Aα. (1.2)

To prove the first inclusion, let x ∈ A \ ⋃
α Aα. This means that x ∈ A and x /∈⋃

α Aα. For x not to be in the union, it must be that x /∈ Aα for any α whatsoever
(because if x happened to be in some Aα, then x would be in the union

⋃
α Aα, which

we know x is not). Hence, x ∈ A and x /∈ Aα for all α, or in other words, x ∈ A \ Aα

for all α, which means that x ∈ ⋂
α(A \ Aα). We now prove the second inclusion

in (1.2). So, let x ∈ ⋂
α(A \ Aα). This means that x ∈ A \ Aα for all α. Therefore,

x ∈ A and x /∈ Aα for all α. Since x is not in any Aα, it follows that x /∈ ⋃
α Aα.

Therefore, x ∈ A and x /∈ ⋃
α Aα, and hence x ∈ A \ ⋃

α Aα. In summary, we have
established both inclusions in (1.2), which proves the equality of the sets. �

If A = X , the universe in which we are working, then the De Morgan laws are

( ⋃
α

Aα

)c

=
⋂
α

Aα,

( ⋂
α

Aα

)c

=
⋃
α

Ac
α.

The best way to remember De Morgan’s laws is the versions expressed in plain
English:

The complement of a union is the intersection of the complements and
the complement of an intersection is the union of the complements.

For a family {Aα} consisting of just two sets B and C , the distributive and De Morgan
laws are

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

and

A \ (B ∪ C) = (A \ B) ∩ (A \ C), A \ (B ∩ C) = (A \ C) ∪ (A \ C).

Here are some exercises in which we ask you to prove statements concerning sets.
In Problem 2, it is very helpful to draw Venn diagrams to see why the statements are
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true. Here is some useful advice as you do problems: if you can’t see how to prove
something after some effort, take a break and come back to the problem later.3

� Exercises 1.1

1. Prove that ∅ = {x ; x �= x}. Is the following statement true, false, or neither: if
x ∈ ∅, then real analysis is everyone’s favorite class.

2. For sets A, B,C , prove some of the following statements:

(a) A ∪ ∅ = A and A ∩ ∅ = ∅.
(b) A \ B = A ∩ Bc.
(c) (Ac)c = A.
(d) A ∩ B = A \ (A \ B).
(e) B ∩ (A \ B) = ∅.
(f) If A ⊆ B, then B = A ∪ (B \ A).
(g) A ∪ B = A ∪ (B \ A).
(h) A ⊆ A ∪ B and A ∩ B ⊆ A.
(i) If A ∩ B = A ∩ C and A ∪ C = A ∪ B, then B = C .
(j) (A \ B) \ C = (A \ C) \ (B \ C)
(k) (A ∩ B) ∪ C = A ∩ (B ∪ C) if and only if C ⊆ A.

3. (Russell’s paradox)4 Define a “thing” to be any collection of items. The reason
that we use the word “thing” is that these things are not sets. Let

B = { “things” A ; A /∈ A},

that is, B is the collection of all “things” that do not contain themselves. Ques-
tions: Is B a “thing”? Is B ∈ B or is B /∈ B? Is B a set?

4. Find

(a)
∞⋃

n=1

(
0,

1

n

)
, (b)

∞⋂
n=1

(
0,

1

n

)
, (c)

∞⋃
n=1

[
1

2n
,

1

2n−1

)
,

(d)
∞⋂

n=1

[
1

2n
,

1

2n−1

)
, (e)

⋂
α∈R

(α,∞), ( f )
⋂

α∈(0,∞)

[
1, 1 + 1

α

]
.

3“Finally, two days ago, I succeeded—not on account of my hard efforts, but by the grace of the
Lord. Like a sudden flash of lightning, the riddle was solved. I am unable to say what was the
conducting thread that connected what I previously knew with what made my success possible.”
Carl Friedrich Gauss (1777–1855) [72].
4“The point of philosophy is to start with something so simple as not to seem worth stating, and to
end with something so paradoxical that no one will believe it.” Bertrand Russell (1872–1970).
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1.2 Set Theory and Mathematical Statements

As already mentioned, set theory provides a comfortable environment in which to
do proofs and to learn the ins and outs of mathematical statements.5 In this section
we give a brief account of the various ways mathematical statements can be worded
using the background of set theory.

1.2.1 More on “if … Then” Statements

We begin by exploring different ways of saying “if … then.” Consider again the
statement that A ⊆ B:

If x ∈ A, then x ∈ B.

Other common ways to write this are

x ∈ A implies x ∈ B and x ∈ A =⇒ x ∈ B;

that is, x belongs to A implies that x also belongs to B. Here,

=⇒ is the common symbol for “implies.”

Another way to say this is
x ∈ A only if x ∈ B;

that is, the object x belongs to A only if it follows that x also belongs to B. Here is
yet one more way to write the statement:

x ∈ B if x ∈ A;

that is, the object x belongs to B if, or given that, the object x belongs to A. Finally,
we also know that the contrapositive statement says the same thing:

If x /∈ B, then x /∈ A.

Thus, “If x ∈ A, then x ∈ B” can also be written as

5“Another advantage of a mathematical statement is that it is so definite that it might be definitely
wrong; and if it is found to be wrong, there is a plenteous choice of amendments ready in the
mathematicians’ stock of formulae. Some verbal statements have not this merit; they are so vague
that they could hardly be wrong, and are correspondingly useless.” Lewis Richardson (1881–1953).
Mathematics of War and Foreign Politics.
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x ∈ A =⇒ x ∈ B; x ∈ A implies x ∈ B; Given x ∈ A, x ∈ B;
x ∈ A only if x ∈ B; x ∈ B if x ∈ A; If x /∈ B, then x /∈ A.

(1.3)

We now consider each of these set statements in more generality. First of all, a
statement in the mathematical sense is a statement that is either true or false, but
never both, much in the same way that we work with only sets and objects such that
any given object is either in or not in a given set, but never both. A mathematical
statement always has hypotheses or assumptions, and a conclusion. Almost always
there are hidden assumptions, that is, assumptions that are not stated, but taken for
granted, because the context makes it clear what these assumptions are. Whenever you
read a mathematical statement, make sure that you fully understand the hypotheses
or assumptions (including hidden ones) and the conclusion. For the statement “If
x ∈ A, then x ∈ B,” the assumption is x ∈ A and the conclusion is x ∈ B. The
“if–then” wording means: if the assumptions (x ∈ A) are true, then the conclusion
(x ∈ B) is also true, or stated another way, given that the assumptions are true, the
conclusion follows. Let P denote the statement that x ∈ A, and Q the statement that
x ∈ B. Then rewriting the statements (1.3) in terms of P’s and Q’s, we see that the
following statements are equivalent6:

If P, then Q; P =⇒ Q; P implies Q; given P, Q holds;
P only if Q; Q if P; if not Q, then not P.

(1.4)

Each of these statements is for P being x ∈ A and Q being x ∈ B, but as you can
probably guess, they work for any mathematical statements P and Q. Let us consider
statements concerning real numbers.

Example 1.16 Each of the following statements is equivalent to “x > 5 =⇒ x2 >
100”:

If x > 5, then x2 > 100; x > 5 implies x2 > 100; Given x > 5, x2 > 100;
x > 5 only if x2 > 100; x2 > 100 if x > 5; If x2 ≤ 100, then x ≤ 5.

The hidden assumptions are that x represents a real number and that the real numbers
satisfy all the axioms you think they do. For the last statement, we used that “not
x2 > 100” (that is, it’s not true that x2 > 100” is the same as “x2 ≤ 100” and that
“not x > 5” is the same as x ≤ 5.” Of course, any one (and hence every one) of the
six statements is false. For instance, x = 6 > 5 is true, but x2 = 36, which is not
greater than 100.

Example 1.17 Each of the following statements is equivalent to “x2 = 2 =⇒ x is
irrational”:

6 P implies Q is sometimes translated as “P is sufficient for Q” in the sense that the truth of P is
sufficient or enough or ample to imply that Q is also true. Moreover, P implies Q is also translated
“Q is necessary for P” because Q is necessarily true given that P is true. However, we shall not
use this language in this book.
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If x2 = 2, then x is irrational; x2 = 2 implies x is irrational;
Given x2 = 2, x is irrational ; x2 = 2 only if x is irrational ;
x is irrational if x2 = 2; If x is rational, then x2 �= 2.

Again, the hidden assumptions are that x represents a real number and that the
real numbers satisfy all their usual properties. Any one (and hence every one) of
these six statements is of course true (since we have been told since high school that
±√

2 are irrational; we shall prove this fact in Section 2.6 on p. 81).

As these two examples show, it is very important to remember that none of the
statements in (1.4) assert that P or Q is true; they simply state that if P is true, then
Q is also true.

1.2.2 Converse Statements and “if and only if” Statements

Given a statement P implies Q, the reverse statement Q implies P is called the
converse statement. For example, back to set theory, the converse of the statement

If x ∈ A, then x ∈ B; that is, A ⊆ B,

is just the statement that

If x ∈ B, then x ∈ A; that is, B ⊆ A.

These set theory statements make it clear that the converse of a true statement may
not be true, for {e,π} ⊆ {e,π, i}, but {e,π, i} � {e,π}. Let us consider examples
with real numbers.

Example 1.18 The statement “If x2 = 2, then x is irrational” is true, but its converse
statement, “If x is irrational, then x2 = 2,” is false.

Statements for which the converse is equivalent to the original statement are called
“if and only if” statements.

Example 1.19 Consider the statement “If x = −5, then 2x + 10 = 0.” This state-
ment is true. Its converse statement is “If 2x + 10 = 0, then x = −5.” By solving
the equation 2x + 10 = 0, we see that the converse statement is also true.

The implication x = −5 =⇒ 2x + 10 = 0 can be written

2x + 10 = 0 if x = −5, (1.5)

while the implication 2x + 10 = 0 =⇒ x = −5 can be written

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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2x + 10 = 0 only if x = −5. (1.6)

Combining the two statements (1.5) and (1.6) into one statement, we get

2x + 10 = 0 if and only if x = −5.

This statement is often written using a double arrow,

2x + 10 = 0 ⇐⇒ x = −5,

and is often stated as 2x + 10 = 0 is equivalent to x = −5. We regard the statements
2x + 10 = 0 and x = −5 as equivalent because if one statement is true, then so is
the other one, whence the wording “is equivalent to.” In summary, if the statements

Q if P (that is, P =⇒ Q) and Q only if P (that is, Q =⇒ P)

are either both true or both false, then we write

Q if and only if P or Q ⇐⇒ P.

Also, if you are asked to prove a statement “Q if and only if P ,” then you have to
prove both the “if” statement “Q if P” (that is, P =⇒ Q) and the “only if” statement
“Q only if P” (that is, Q =⇒ P).

The if and only if notation ⇐⇒ comes in quite handy in proofs whenever we want
to move from one statement to an equivalent one.

Example 1.20 In the proof of Theorem 1.3 on p. 12, we wanted to show that A ∩⋃
α Aα = ⋃

α(A ∩ Aα), which means that A ∩ ⋃
α Aα ⊆ ⋃

α(A ∩ Aα) and
⋃

α(A ∩
Aα) ⊆ A ∩ ⋃

α Aα, or

x ∈ A ∩
⋃
α

Aα =⇒ x ∈
⋃
α

(A ∩ Aα) and x ∈
⋃
α

(A ∩ Aα) =⇒ x ∈ A ∩
⋃
α

Aα.

That is, we wanted to prove that

x ∈ A ∩
⋃
α

Aα ⇐⇒ x ∈
⋃
α

(A ∩ Aα).

We can prove this quickly and easily using ⇐⇒:

x ∈ A ∩
⋃
α

Aα ⇐⇒ x ∈ A and x ∈
⋃
α

Aα ⇐⇒ x ∈ A and x ∈ Aα for some α

⇐⇒ x ∈ A ∩ Aα for some α

⇐⇒ x ∈
⋃
α

(A ∩ Aα).
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Just make sure that if you use ⇐⇒, the expressions to the immediate left and right
of ⇐⇒ are indeed equivalent.

1.2.3 Negations and Logical Quantifiers

We already know that a statement and its contrapositive are always equivalent: “if
P , then Q” is equivalent to “if not Q, then not P .” Therefore, it is important to
know how to “not” something, that is, find the negation of a statement. Here, for any
statement S, “not S” is the statement that S is false. A common notation for “not S”
is ¬S, but we’ll use “not” instead of ¬. Sometimes the negation is obvious.

Example 1.21 Under the assumption that x represents a real number, the negation of
the statement that x > 5 is x ≤ 5, and the negation of the statement that x is irrational
is that x is rational.

Some statements are not so easy to negate, especially when there are logical
quantifiers, such as the universal quantifier

“for every” = “for each” = “for all” (denoted by ∀),

and the existential quantifier

“for some” = “there exists” = “there is” = “for at least one” (denoted by ∃).

The equal signs represent the fact that we mathematicians consider “for every” as
another way of saying “for all,” “for some” as another way of saying “there exists,”
and so forth. Working under the assumption that the numbers under consideration
are real, consider the statement

For every x, x2 ≥ 0. (1.7)

What is the negation of this statement? One way to find out is to think of this in
terms of set theory. Let A = {x ∈ R ; x2 ≥ 0}. Then the statement (1.7) is just that
A = R. It is obvious that the negation of the statement A = R is just A �= R. Now
this means that there must exist some real number x such that x /∈ A. In order for x
to not be in A, it must be that x2 < 0. Therefore, A �= R just means there is a real
number x such that x2 < 0. Hence, the negation of (1.7) is just

For at least one x, x2 < 0.

Thus, the “for every” statement (1.7) becomes a “there is” statement. In general, the
negation of a statement of the form

“For every x, P” is the statement “For at least one x, not P.”
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Similarly, the negation of a “there is” statement becomes a “for every” statement.
Explicitly, the negation of

“For at least one x, Q” is the statement “For every x, not Q.”

Example 1.22 With the understanding that x represents a real number, the negation
of “There is an x such that x2 = 2” is “For every x , x2 �= 2”.

Using sets, one can also find the negation of other statements. For instance, De
Morgan’s laws for complements of unions and intersections can be used to see that

the negation of “P or Q” is the statement “notP and not Q, ”

and the negation of “P and Q” is “not P or not Q.”

� Exercises 1.2

1. In this problem, all numbers are understood to be real. Write down the contra-
positive and converse of the following statement:

If x2 − 2x + 10 = 25, then x = 5,

and determine which (if any) of the three statements are true.
2. Here are some more set theory proofs to brush up on.

(a) Prove that A = A ∪ B if and only if B ⊆ A.
(b) Prove that A = A ∩ B if and only if A ⊆ B.

3. Write the negation of the following statements, where x represents an integer.

(a) For every x , 2x + 1 is odd.
(b) There is an x such that 2x + 1 is prime.7

(c) If x2 − 5x + 6 = 0, then x = 2 or x = 3.

1.3 What Are Functions?

In high school, we learned that a function is a “rule that assigns to each input exactly
one output,” like a machine:

f = function

x = input

y = f(x) = output

7An integer exceeding 1 that is not prime.
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In practice, what usually comes to mind is a formula, such as

p(x) = x2 − 3x + 10.

In fact, to Gottfried Leibniz (1646–1716), who in 1692 (or as early as 1673) intro-
duced the word “function” [236, p. 272], and to all the mathematicians of the seven-
teenth century, a function was always associated with some type of analytic expres-
sion, “a formula.” However, because of necessity related to problems in mathemati-
cal physics, the notion of function was generalized throughout the years, and in this
section we present the modern view of what a function is; see [127] or [150, 151]
for some history.

1.3.1 (Cartesian) Product

If A and B are sets, their (Cartesian) product, denoted by A × B, is the set of all
2-tuples (or ordered pairs) whose first element is in A and second element is in B
(see Problem 6). Explicitly,

A × B = {(a, b) ; a ∈ A, b ∈ B}.

We use the adjective “ordered” because we distinguish between ordered pairs, e.g.,
(e,π) �= (π, e), but as sets we regard them as equal, {e,π} = {π, e}. Of course, one
can also define the product of any finite number of sets

A1 × A2 × · · · × Am

as the set of all m-tuples (a1, . . . , am), where ak ∈ Ak for each k = 1, . . . ,m.

Example 1.23 Of particular interest is m-dimensional Euclidean space (see Section 2.9
starting on p. 118):

R
m := R × · · · × R︸ ︷︷ ︸

(m times)

.

1.3.2 Functions

Let X and Y be sets. Informally, we say that a function f from X to Y , denoted by
f : X −→ Y , is a rule that associates to each element x ∈ X , a single element y ∈ Y .
We usually think of a function as a “machine,” or if we think of X and Y abstractly
as “blobs” of points, then we usually draw an abstract function as associating points
in X to points in Y as follows:

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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X
f

Y X
f

Y

where on the right we draw an arrow from a point x ∈ X to the associated point
y ∈ Y . Mathematically, we define a function from X to Y as a subset f of the
product X × Y such that each element x ∈ X appears exactly once as the first entry
of an ordered pair in the subset f . Explicitly, for each x ∈ X there is a unique y ∈ Y
such that (x, y) ∈ f .

Example 1.24 For instance,

p = {(x, y) ; x ∈ [0, 1] and y = x2 − 3x + 10} ⊆ [0, 1] × R (1.8)

defines a function p : [0, 1] −→ R, since p is an example of a subset of [0, 1] × R

such that each real number x ∈ [0, 1] appears exactly once as the first entry of an
ordered pair in p; e.g., the real number 1 appears as the first entry of (1, 12 − 3 ·
1 + 10) = (1, 8), and there is no other ordered pair in the set (1.8) with 1 as the first
entry. Thus, p satisfies the mathematical definition of a function, as you thought it
should!

If f : X −→ Y is a function, then we say that f maps X to Y , and f is a map
from X to Y . If Y = X , so that f : X −→ X , we say that f is a function on X .
For a function f : X −→ Y , the domain of f is X , the codomain or target of f
is Y , and the range of f , sometimes denoted by R( f ), is the set of all elements in
Y that occur as the second entry of an ordered pair in f . If (x, y) ∈ f (recall that f
is a set of ordered pairs), then we call the second entry y the value or image of the
function at x and we write y = f (x), and sometimes we write

x �→ y = f (x).

Using this f (x) notation, which by the way was introduced in 1734 by Leonhard
Euler (1707–1783) [183], [35, p. 443], we have

f = {(x, y) ∈ X × Y ; y = f (x)} = {(x, f (x)) ; x ∈ X} ⊆ X × Y, (1.9)

and
R( f ) = {y ∈ Y ; y = f (x) for some x ∈ X} = { f (x) ; x ∈ X}.

Figure 1.4 shows the familiar graph illustration of domain, codomain, and range, for
the trig function τ : R −→ R given by τ (x) = sin x .

Also using this f (x) notation, we can return to our previous ways of thinking of
functions. For instance, we can say “let p : [0, 1] −→ R be the function p(x) = x2 −
3x + 10” or “let p : [0, 1] −→ R be the function x �→ x2 − 3x + 10,” by which we
mean of course the set (1.8). In many situations in this book, we are dealing with a
fixed codomain such as functions whose codomain is R, which we call real-valued
functions. Then we can omit the codomain and simply say, “let p be the function
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(x, y) = (x, τ(x)) = (x, sinx)

x-axis = domain

y-axis = codomain

y

x

R(τ) = range
[−1, 1]

Fig. 1.4 The function τ : R −→ R defined by τ (x) = sin x

x �→ x2 − 3x + 10 for x ∈ [0, 1].” In this case, we again mean the set (1.8). We
shall also deal quite a bit with complex-valued functions, that is, functions whose
codomain is C. Then if we say, “let f be a complex-valued function on [0, 1],” we
mean that f : [0, 1] −→ C is a function. Here are some more examples.

Example 1.25 Consider the function s : N −→ R defined by

s =
{(

n,
(−1)n

n

)
; n ∈ N

}
⊆ N × R.

We usually define s(n) = (−1)n

n by sn and write {sn} for the function s, and we call
{sn} a sequence. We shall study sequences in great depth in Chapter 3.

Example 1.26 Here is a function a : R −→ R defined “piecewise”:

a(x) =
{

x if x ≥ 0;
−x if x < 0.

Of course, a(x) is usually denoted by |x | and is called the absolute value function.

Example 1.27 Here’s an example of a “pathological function,” the Dirichlet func-
tion, named after Lejeune Dirichlet (1805–1859), which is the function D : R −→ R

defined by

D(x) =
{

1 if x is rational;
0 if x is irrational.

This function was introduced in 1829 in Dirichlet’s study of Fourier series and was
the first function (1) not given by an analytic expression and (2) not continuous
anywhere [127, p. 292]. See Section 4.3, p. 261, for more on continuous functions.
Here’s an attempted graph of Dirichlet’s function:

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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In elementary calculus, you often encountered composition of functions when
learning, for instance, the chain rule. Here is the precise definition of composition.
If f : X −→ Y and g : Z −→ X , then the composition f ◦ g is the function

f ◦ g : Z −→ Y

defined by ( f ◦ g)(z) := f (g(z)) for all z ∈ Z . As a set of ordered pairs, f ◦ g is
given by (do you see why?)

f ◦ g = {(z, y) ∈ Z × Y ; for some x ∈ X, (z, x) ∈ g and (x, y) ∈ f } ⊆ Z × Y.

Also, when learning about the exponential or logarithmic functions, you probably
encountered inverse functions. Here are some definitions related to this area. A func-
tion f : X −→ Y is called one-to-one or injective if for each y ∈ R( f ), there is
exactly one x ∈ X with y = f (x). Another way to state this is

f is one-to-one means: If f (x1) = f (x2), then x1 = x2. (1.10)

In terms of the contrapositive, we have

f is one-to-one means: If x1 �= x2, then f (x1) �= f (x2). (1.11)

In case f : X −→ Y is injective, the inverse map f −1 is the map with domain R( f )
and codomain X :

f −1 : R( f ) −→ X

defined by f −1(y) := x , where y = f (x). The function f is called onto or surjective
if R( f ) = Y ; that is,

f is onto means: For every y ∈ Y there is an x ∈ X such that y = f (x). (1.12)

A one-to-one and onto map is called a bijection. Here is a picture to consider:

Injective but not surjective Surjective but not injective

Bijective (injective and surjective) Not injective, not surjective

Here are some examples.
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Example 1.28 Let f : R −→ R be defined by f (x) = x2. Then f is not one-to-one,
because, e.g., (see the condition (1.11)) 2 �= −2 yet f (2) = f (−2). This function is
also not onto, because it fails (1.12): e.g., for y = −1 ∈ R, there is no x ∈ R such
that −1 = f (x). (However, note that if we change the codomain to [0,∞), then f
is onto.)

Example 1.29 In elementary calculus, we learn that the exponential function

exp : R −→ (0,∞), f (x) = ex ,

is both one-to-one and onto, that is, a bijection, with inverse

log : (0,∞) −→ R, f −1(x) = log x .

Here, log x denotes the “natural logarithm,” which in many calculus courses is
denoted by ln x , with log x denoting the base 10 logarithm; however, in this book
and in most advanced math texts, log x denotes the natural logarithm. In Section 3.7,
starting on p. 216, and in Section 4.7, starting on p. 300, we shall define and study
the exponential and logarithmic functions.

1.3.3 Images and Inverse Images

Functions act on sets as follows. Given a function f : X −→ Y and a set A ⊆ X ,
we define

f (A) = { f (x) ; x ∈ A} = {y ∈ Y ; y = f (x) for some x ∈ A},

and call this set the image of A under f . Thus,

y ∈ f (A) ⇐⇒ y = f (x) for some x ∈ A.

Given a set B ⊆ Y , we define

f −1(B) = {x ∈ X ; f (x) ∈ B},

and call this set the inverse image or preimage of B under f . Thus,

x ∈ f −1(B) ⇐⇒ f (x) ∈ B.

Warning: The notation f −1 in the preimage f −1(B) is merely notation and does not
represent the inverse function of f . (Indeed, the function may not have an inverse,
so the inverse function may not even be defined.)

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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Example 1.30 Let f (x) = x2 with domain R as in Example 1.28. The following
picture (Fig. 1.5) gives examples of images and inverse images:

[ ]
−3 −2

��

��

4

9

[ ]
−3 −2

��

��

4

9

][
3

Fig. 1.5 Left the function f (x) = x2 takes all the points in [−3,−2] to the set [4, 9], so
f ([−3,−2]) = [4, 9]. Right f −1([4, 9]) consists of every point in R that f brings inside of [4, 9],
so f −1([4, 9]) = [−3,−2] ∪ [2, 3]

Here are more examples: You are invited to check that

f ((1, 2]) = (1, 4], f −1([−4,−1)) = ∅, f −1((1, 4]) = [−2,−1) ∪ (1, 2].

The following theorem gives the main properties of images and inverse images.

Theorem 1.4 Let f : X −→ Y , let B,C ⊆ Y , and let {Bα} be a family of subsets
of Y , and let {Aα} a family of subsets of X. Then

f −1(C \ B) = f −1(C) \ f −1(B), f −1
( ⋃

α

Bα

)
=

⋃
α

f −1(Bα),

f −1
( ⋂

α

Bα

)
=

⋂
α

f −1(Bα), f
( ⋃

α

Aα

)
=

⋃
α

f (Aα).

Proof Using the definition of inverse image and set difference, we have

x ∈ f −1(C \ B) ⇐⇒ f (x) ∈ C \ B ⇐⇒ f (x) ∈ C and f (x) /∈ B

⇐⇒ x ∈ f −1(C) and x /∈ f −1(B)

⇐⇒ x ∈ f −1(C) \ f −1(B).

Thus, f −1(C \ B) = f −1(C) \ f −1(B).
Using the definition of inverse image and union, we have
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x ∈ f −1
( ⋃

α

Bα

)
⇐⇒ f (x) ∈

⋃
α

Bα ⇐⇒ f (x) ∈ Bα for some α

⇐⇒ x ∈ f −1(Bα) for some α

⇐⇒ x ∈
⋃
α

f −1(Bα).

Thus, f −1
( ⋃

α Bα

)
= ⋃

α f −1(Bα). The proof of the last two properties in this

theorem are similar enough to the proof just presented that we leave their verification
to the reader. �

We end this section with some definitions needed for the exercises. Let X be a
set and let A be any subset of X . The characteristic function of A is the function
χA : X −→ R defined by

χA(x) =
{

1 if x ∈ A;
0 if x /∈ A.

The sum and product of two characteristic functions χA and χB are the functions
χA + χB : X −→ R and χA · χB : X −→ R defined by

(χA + χB)(x) = χA(x) + χB(x) and (χA · χB)(x) = χA(x) · χB(x), for all x ∈ X.

Of course, the sum and product of any functions f : X −→ R and g : X −→ R are
defined in the same way. We can also replace R by, say, C, or by any set Y as long as
“+” and “·” are defined on Y . Given any constant c ∈ R, we denote by the same letter
the function c : X −→ R defined by c(x) = c for all x ∈ X . This is the constant
function c. For instance, 0 is the function defined by 0(x) = 0 for all x ∈ X . The
identity map on X is the map defined by I (x) = x for all x ∈ X . Finally, we say
that two functions f : X −→ Y and g : X −→ Y are equal if f = g as subsets of
X × Y , which holds if and only if f (x) = g(x) for all x ∈ X .

� Exercises 1.3

1. Which of the following subsets of R
2 define functions from R to R?

(a) A1 = {(x, y) ∈ R × R ; x2 = y}, (b) A2 = {(x, y) ∈ R × R ; x = sin y},

(c) A3 = {(x, y) ∈ R × R ; y = sin x}, (d) A4 = {(x, y) ∈ R × R ; x = 4y − 1}.

(Assume well-known properties of trig functions.) Of those sets that do define
functions, find the range of the function. Is the function one-to-one; is it onto?

2. Let f (x) = 1 − x2. Find

f ([1, 4]), f ([−1, 0] ∪ (2, 10)), f −1([−1, 1]), f −1([5, 10]), f (R), f −1(R).
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3. If f : X −→ Y and g : Z −→ X are bijective, prove that f ◦ g is a bijection and
( f ◦ g)−1 = g−1 ◦ f −1.

4. Let f : X −→ Y be a function.

(a) Given any subset B ⊆ Y , prove that f ( f −1(B)) ⊆ B.
(b) Prove that f ( f −1(B)) = B for all subsets B of Y if and only if f is surjective.
(c) Given any subset A ⊆ X , prove that A ⊆ f −1( f (A)).
(d) Prove that A = f −1( f (A)) for all subsets A of X if and only if f is injective.

5. Let f : X −→ Y be a function. Show that f is one-to-one if and only if there is
a function g : Y −→ X such that g ◦ f is the identity map on X . Show that f is
onto if and only if there is a function h : Y −→ X such that f ◦ h is the identity
map on Y .

6. (Definition of ordered pair) Given objects x, y, we define the ordered pair
(x, y) by

(x, y) := {{x}, {x, y}}.

The main property of ordered pair is the following result: We have (a, b) = (x, y)
if and only if a = x and b = y. Prove this.

7. (Cf. [164]) In this problem we give various applications of characteristic functions
to prove statements about sets. First, prove at least two the following assertions. (a)
χX = 1, χ∅ = 0; (b) χA · χB = χB · χA = χA∩B and χA · χA = χA; (c) χA∪B =
χA + χB − χA · χB ; (d) χAc = 1 − χA; (e) χA = χB if and only if A = B. Here
are some applications of these properties. Prove the distributive law

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

by showing that the characteristic functions of each side are equal as functions.
Then invoke (e) to demonstrate equality of sets. Prove the nonobvious equality

(A ∩ Bc) ∩ (Cc ∩ A) = A ∩ (B ∪ C)c.

Here’s a harder question: Consider the sets (A ∪ B) ∩ C and A ∪ (B ∩ C). When,
if ever, are they equal? When is one set a subset of the other?



Chapter 2
Numbers, Numbers, and More Numbers

I believe there are 15, 747, 724, 136, 275, 002, 577, 605, 653, 961, 181, 555, 468,
044, 717, 914, 527, 116, 709, 366, 231, 425, 076, 185, 631, 031, 296 protons in the universe
and the same number of electrons.
Arthur Eddington (1882–1944), “The Philosophy of Physical Science.” Cambridge, 1939.

This chapter is on the study of numbers. Of course, we all have a working under-
standing of the real numbers and we use many aspects of these numbers in everyday
life: tallying up tuition and fees, figuring out how much we have left on our food
cards, etc. We have accepted from our childhood all the properties of numbers that
we use every day. In this chapter, we prove many of these properties.

In everyday life, what usually comes to mind when we think of numbers are the
counting, or natural, numbers 1, 2, 3, 4, . . . We shall study the natural numbers and
their properties in Sections2.1 and 2.2. These numbers have been used from the
beginning. The Hindus became the first to systematically use “zero” and “negative”
integers [34], [35, p. 220]; for example,Brahmagupta (598–670) gave arithmetic rules
for multiplying and dividing with such numbers (although he mistakenly believed
that 0/0 = 0). We study the integers in Sections2.3–2.5. Everyday life forces us to
talk about fractions, for example, 2/3 of a pizza “two pieces of a pizza that is divided
into three equal parts.” Such fractions (and their negatives and zero) make up the
so-called rational numbers, which are called rational not because they are “sane” or
“comprehensible,” but simply because they are ratios of integers. It was a shock to the
ancient Greeks, who discovered that the rational numbers are not enough to describe
geometry. They noticed that according to the Pythagorean theorem, the length of the
hypotenuse of a triangle with sides of length 1 is

√
12 + 12 = √

1 + 1 = √
2. We

shall prove that
√
2 is “irrational,” which simply means “not rational,” that is, not a

ratio of integers. In fact, we’ll see that “most” numbers that you encountered in high
school are irrational:

© Paul Loya 2017
P. Loya, Amazing and Aesthetic Aspects of Analysis,
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Square roots, and more generally,nth roots, roots of polynomials, and
values of trigonometric and logarithmic functions, are “mostly” irrational!

You’ll have towait for thismouthwatering subject until Section2.6! In Section2.7,we
study the all-important property of the real numbers called the completeness property,
which in some sense says that real numbers can describe any lengthwhatsoever. In the
optional Section2.8, we construct the real numbers viaDedekind cuts. In Sections2.9
and 2.10, we leave the one-dimensional real line and discuss m-dimensional space
and the complex numbers (which is really just two-dimensional space). Finally, in
Section2.11, we define “most” using cardinality and show that “most” real numbers
are not only irrational, they are transcendental.

Chapter 2 objectives: The student will be able to . . .

• State the fundamental axioms of the natural, integer, and real number systems.
• Explain how the completeness axiom of the real number system distinguishes this
system from the rational number system in a powerful way.

• Prove statements about numbers from basic axioms including induction.
• Define R

m and C and the norms on these spaces.
• Explain cardinality and how “most” real numbers are irrational or even transcen-
dental.

2.1 The Natural Numbers

The numbers we encounter most often in “everyday life” are the counting numbers,
or the positive whole numbers

1 2 3 4 5 . . .

These numbers are the natural numbers and have been around since time immemo-
rial. We shall study the essential properties of these fundamental numbers.

2.1.1 Axioms for the Natural Numbers

The set, or collection, of natural numbers is denoted by N. We all know that if two
natural numbers are added, we obtain a natural number; for example, 3 + 4 = 7.
Similarly, if two natural numbers are multiplied, we get a natural number. We say
that the natural numbers are closed under addition and multiplication. Thus, if a, b
are in N, then using the familiar notation for addition and multiplication, a + b and
a · b are also in N.1 The following properties of + and · are also familiar.

1By the way, + and · are functions, as we studied on p. 22 in Section1.3, from N × N to N. These
are not arbitrary functions but must satisfy the properties (A), (M), and (D) listed.

http://dx.doi.org/10.1007/978-1-4939-6795-7_1
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Addition satisfies

(A1) a + b = b + a (commutative law);
(A2) (a + b) + c = a + (b + c) (associative law).

By the associative law,wemay“drop”parentheses in sumsofmore than twonumbers:

a + b + c is unambiguously defined as (a + b) + c = a + (b + c).

Multiplication satisfies

(M1) a · b = b · a (commutative law);
(M2) (a · b) · c = a · (b · c) (associative law);
(M3) there is a natural number, denoted by 1 “one,” such that

1 · a = a = a · 1 (existence of multiplicative identity).

By the associative law for multiplication, we may “drop” parentheses:

a · b · c is unambiguously defined as (a · b) · c = a · (b · c).

Addition and multiplication are related by

(D) a · (b + c) = (a · b) + (a · c) (distributive law).

We sometimes drop the dot · and just write ab for a · b. The natural numbers are
also ordered in the sense that you can compare the magnitude of any two of them;
for example, 2 < 5, because five is three greater than two, or two is three less than
five. This inequality relationship satisfies the following law of trichotomy. Given
any natural numbers a and b, exactly one of the following (in)equalities holds:

(O1) a = b;
(O2) a < b, which by definition means that b = a + c for some natural number c;
(O3) b < a, which by definition means that a = b + c for some natural number c.

Thus, 2 < 5, because 5 = 2 + c, where c = 3. Of course, we write a ≤ b if a < b
or a = b. There are similar meanings for the opposite inequalities “>” and “≥.” The
inequality signs < and > are called strict. There is one more property of the natural
numbers, called induction. Let M be a subset of N.

(I) Suppose that M contains 1 and that M has the following property: If n belongs
to M , then n + 1 also belongs to M . Then M contains all natural numbers.

The statement that M = N is “obvious” with a little thought. M contains 1.
Because 1 belongs to M , by (I), we know that 1 + 1 = 2 also belongs to M . Because
2 belongs to M , by (I) we know that 2 + 1 = 3 also belongs to M . Assuming that
we can continue this process indefinitely makes it clear that we should have M = N.

Everyday experience convinces us that the counting numbers satisfy properties
(A), (M), (D), (O), and (I). Consider commutativity of addition. In grade school, we
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learned that one way to understand a + b is to “start at a and move b units”; then the
commutative law for addition is “obvious” by taking an example such as

1 2 3 4 5 6 . . .

2 + 3 = start at 2 and move 3 units

1 2 3 4 5 6 . . .

3 + 2 = start at 3 and move 2 units

Of course, an example doesn’t prove that a law holds in general. Thus, mathemat-
ically, we will assume, or take on faith, the existence of a set N with operations +
and · that satisfy properties (A), (M), (D), (O), and (I).2 From these properties alone
we shall prove many well-known properties of these numbers that we have accepted
since grade school. It is quite satisfying to see that many of thewell-known properties
about numbers that are memorized (or even those that are not so well known) can in
fact be proved from a basic set of axioms!

Rules of the game: Henceforth, we are allowed to prove statements using only facts that we
know are true because those facts are (1) given to us in a set of axioms, or (2) proved by us
previously in this book, by your teacher in class, or by you in an exercise, or (3) told that we
are allowed to use them (for example, in order to provide some nontrivial examples).

2.1.2 Proofs of Well-Known High School Rules

You are going to learn the language of proofs in the same way that a child learns to
talk; by observing others prove things and imitating them, and eventually you will
get the hang of it.

We begin by proving the familiar transitive law.

Transitive law

Theorem 2.1 If a < b and b < c, then a < c.

Proof Of course, a picture shows that this theorem is “obvious”:

a b c
a < b and b < c =⇒ a < c

To give a rigorous proof, suppose a < b and b < c. Then by definition of less than
(recall the inequality law (O2) on p. 31), there are natural numbers d and e such that
b = a + d and c = b + e. Hence, by the associative law,

c = b + e = (a + d) + e = a + (d + e).

Thus, c = a + f , where f = d + e ∈ N, so a < c by definition of “less than.” �

2Taking the axioms of set theory on faith, which we are doing even though we haven’t listed many
of them(!), we can define the natural numbers as certain sets; see [98, Section11] or [149].
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Before moving on, we briefly analyze this theorem in view of what we learned in
Section1.2 on p. 15. The hypotheses or assumptions of this theorem are that a, b,
and c are natural numbers with a < b and b < c, and the conclusion is that a < c.
Note that the fact that a, b, and c are natural numbers and that natural numbers are
assumed to satisfy all their arithmetic and order properties were left unwritten in the
statement of the proposition, since these assumptions were understood within the
context of this section. The “if–then” wording means: If the assumptions are true,
then the conclusion is also true, or given that the assumptions are true, the conclusion
follows. We can also reword Theorem 2.1 as follows:

a < b and b < c implies (also written =⇒) a < c;

that is, the truth of the assumptions implies the truth of the conclusion. We can also
state this theorem as follows:

a < b and b < c only if a < c,

that is, the hypotheses a < b and b < c hold only if it follows that a < c; stated
another way,

a < c if a < b and b < c;

that is, the conclusion a < c is true if, or given that, the hypotheses a < b and b < c
are true. The kind of proof used in Theorem 2.1 is called a direct proof , where we
take the hypotheses a < b and b < c as true and prove that the conclusion a < c is
true. We shall see other types of proofs later. We next give another easy and direct
proof of the so-called “FOIL law” of multiplication. However, before proving this
result, we note that the distributive law (D) holds from the right:

(a + b) · c = ac + bc.

Indeed,

(a + b) · c = c · (a + b) commutative law

= (c · a) + (c · b) distributive law

= (a · c) + (b · c) commutative law.

FOIL law

Theorem 2.2 For any natural numbers a, b, c, d, we have

(a + b) · (c + d) = ac + ad + bc + bd, (First + Outside + Inside + Last).

http://dx.doi.org/10.1007/978-1-4939-6795-7_1
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Proof We simply compute:

(a + b) · (c + d) = (a + b) · c + (a + b) · d distributive law

= (ac + bc) + (ad + bd) distributive law (from right)

= ac + (bc + (ad + bd)) associative law

= ac + ((bc + ad) + bd) associative law

= ac + ((ad + bc) + bd) commutative law

= ac + ad + bc + bd,

where at the last step we dropped parentheses, as we know we can in sums of more
than two numbers (consequence of the associative law). �

We now prove the familiar cancellation properties of high school algebra.

Theorem 2.3 Given any natural numbers a, b, c, we have

a + c = b + c if and only if a = b.

In particular, given a + c = b + c, we can “cancel” c, obtaining a = b.

Proof Suppose that a = b. Then because a and b are just different letters for the
same natural number, we have a + c = b + c.

We now have to prove that if a + c = b + c, then a = b. To prove this, we use
a proof by contraposition. This is how it works. We need to prove that if the
assumption “P : a + c = b + c” is true, then the conclusion “Q : a = b” is also
true. Instead, we shall prove the logically equivalent contrapositive statement: If
the conclusion Q is false, then the assumption P must also false. The statement that
Q is false is just that a �= b, and the statement that P is false is just that a + c �= b + c.
Thus, we must prove

if a �= b, then a + c �= b + c.

To this end, assume that a �= b; then either a < b or b < a. Because the notation is
entirely symmetric between a and b, we may assume that a < b. Then by definition
of less than, we have b = a + d for some natural number d. Hence, by the associative
and commutative laws,

b + c = (a + d) + c = a + (d + c) = a + (c + d) = (a + c) + d.

Thus, by definition of less than, a + c < b + c, so a + c �= b + c. �
There is a multiplicative cancellation as well; see Problem 5b. Other examples

using the fundamental properties (A), (M), (D), and (O) of the natural numbers are
found in the exercises. We now concentrate on the induction property (I).
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2.1.3 Induction

We all know that every natural number is greater than or equal to 1. Here is a proof!

Theorem 2.4 Every natural number is greater than or equal to one.

Proof Rewording this as an “if–then” statement, we need to prove that if n is a
natural number, then n ≥ 1. To prove this, let M = {n ∈ N ; n ≥ 1}, the collection
all natural numbers greater than or equal to one. Then M contains 1. If a natural
number n belongs to M , then by definition of M , n ≥ 1. This means that n = 1 or
n > 1. In the first case, n + 1 = 1 + 1, so by definition of less than, 1 < n + 1. In the
second case, n > 1 means that n = 1 + m for some m ∈ N, so n + 1 = (1 + m) +
1 = 1 + (m + 1). Again by definition of less than, 1 < n + 1. In either case, n + 1
also belongs to M . Thus by induction, M = N. �

Now we prove the Archimedean ordering property of the natural numbers.

Archimedean ordering of N

Theorem 2.5 Given any natural numbers a and b, there is a natural number n
such that b < a · n.

Proof Leta, b ∈ N; we need to produce an n ∈ N such that b < a · n. By the previous
theorem, either a = 1 or a > 1. If a = 1, then we set n = b + 1, in which case
b < b + 1 = 1 · n. If 1 < a, then we can write a = 1 + c for some natural number
c. In this case, let n = b. Then,

a · n = (1 + c) · b = b + c · b > b. �

The following theorem contains an important property of the natural numbers. Its
proof is an example of a proof by contradiction or reductio ad absurdum, whereby
we start with the tentative assumption that the conclusion is false and then proceed
with our argument until we eventually get a logical absurdity. Thus, the conclusion
must have been true in the first place.

Well-ordering (principle) of N

Theorem 2.6 Every nonempty set of natural numbers has a smallest element,
that is, an element less than or equal to every other member of the set.

Proof Let A be a nonempty set of natural numbers; we need to show that A con-
tains a smallest element. Well, either A has this property or not. Suppose, for the
sake of (hopefully!) obtaining a contradiction, that A does not have a smallest ele-
ment. From this assumption we shall derive a nonsense statement. Let M = {n ∈ N ;
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n < a for all a ∈ A}. Note that since a natural number is never less than itself, M
does not contain any element of A. In particular, since A is nonempty, M �= N (since
M is missing elements of A). However, we shall prove by induction that M = N.
This, of course, will give us a contradiction.

To arrive at our contradiction, we first show that M contains 1. By Theorem 2.4,
we know that 1 is less than or equal to every natural number; in particular, 1 is less
than or equal to every element of A. Hence, if 1 is in A, then 1 would be the smallest
element of A. However, we are assuming that A does not have a smallest element,
so 1 cannot be in A. Hence, 1 is less than every element of A, so M contains 1.

Suppose that M contains a natural number n; we shall prove that M contains
n + 1, that is, n + 1 is less than every element of A. Let a be any element of A
and suppose that a �= n + 1. Since n < a (as n ∈ M), we can write a = n + c for
some natural number c. Note that c �= 1, since by assumption, a �= n + 1. Thus (by
Theorem 2.4) c > 1, and so we can write c = 1 + d for some natural number d.
Hence,

a = n + c = n + 1 + d,

which shows that n + 1 < a. It follows that if n + 1 belonged to A, then n + 1 would
be the smallest element of A, which we know cannot exist. Hence, n + 1 /∈ A. In
particular, n + 1 < a for every element a ∈ A. Thus, n + 1 ∈ M , so by induction,
M = N, and we arrive at our desired contradiction. �

Finally, we remark that the symbol 2 denotes, by definition, the natural number
1 + 1. Since 2 = 1 + 1, 1 < 2 by definition of less than. The symbol 3 denotes the
natural number 2 + 1 = 1 + 1 + 1. By definition of less than, 2 < 3. Similarly, 4 is
the number 3 + 1, and so forth. Continuing in this manner, we can assign the usual
symbols to the natural numbers that we are accustomed to in “everyday life”; see
Section2.5 starting on p. 69 for more details. In Problem 4 we see that there is no
natural number between n and n + 1, so the sequence of symbols defined will cover
all possible natural numbers.

All the letters in the following exercises represent natural numbers. In these exer-
cises, you should use only the axioms and properties of the natural numbers estab-
lished in this section. Remember that if you can’t see how to prove something after
some effort, take a break (e.g., take a bus ride somewhere) and come back to the
problem later.3

� Exercises 2.1

1. Prove that every natural number greater than 1 can be written in the form m + 1,
where m is a natural number.

2. Are there natural numbers a and b such that a = a + b? What logical inconsis-
tency happens if such an equation holds?

3“I entered an omnibus to go to some place or other. At that moment when I put my foot on the
step the idea came to me, without anything in my former thoughts seeming to have paved the
way for it, that the transformations I had used to define the Fuchsian functions were identical with
non-Euclidean geometry.” Henri Poincaré (1854–1912).
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3. Prove the following statements.

(a) If n2 = 1 (that is, n · n = 1), then n = 1. Suggestion: Contrapositive.
(b) There does not exist a natural number n such that 2n = 1.
(c) There does not exist a natural number n such that 2n = 3.

4. Prove the following statements.

(a) If n ∈ N, then there is no m ∈ N such that n < m < n + 1.
(b) If n ∈ N, then there is a unique m ∈ N satisfying n < m < n + 2; in fact,

prove that the only such natural number is m = n + 1. (That is, prove that
n + 1 satisfies the inequality, and if m also satisfies the inequality, then
m = n + 1.)

5. Prove the following statements for natural numbers a, b, c, d.

(a) (a + b)2 = a2 + 2ab + b2, where a2 means a · a and b2 means b · b.
(b) a = b if and only if a · c = b · c. As a corollary, if a · c = c, prove that

a = 1. In particular, 1 is the only multiplicative identity.
(c) a < b if and only if a + c < b + c.
(d) a < b if and only if a · c < b · c.
(e) If a < b and c < d, then a · c < b · d.

6. Let A be a finite collection of natural numbers. Prove that A has a largest element,
that is, A contains a number n such that n ≥ a for every element a in A.

7. Many books replace the induction axiom with the well-ordering principle. For
this problem, let us assume the well-ordering principle instead of the induction
axiom. In (ii), we prove the induction axiom.

(i) Prove Theorem 2.4 using well-ordering. Suggestion: By well-ordering, N

has a least element; call it n. We need to prove that n ≥ 1. Assume that
n < 1 and find another natural number less than n to derive a contradiction.

(ii) Prove the induction property.

2.2 The Principle of Mathematical Induction

In this section we master the principle of mathematical induction by studying many
applications of its use.

2.2.1 Principle of Mathematical Induction

The induction axiom of the natural numbers is the basis for the principle of math-
ematical induction, which goes as follows. Suppose for each n ∈ N we have a
corresponding statement,
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P1, P2, P3, P4, P5, . . . ,

and suppose that (1) P1 is true and (2) if n is a natural number and the statement
Pn happens to be valid, then the statement Pn+1 is also valid. Then it must be that
every statement P1, P2, P3, . . . is true. To see why every statement Pn is true, let
M be the collection of all natural numbers n such that Pn is true. Then by (1), M
contains 1, and by (2), if M contains a natural number n, then it contains n + 1. By
the induction axiom, M must be all of N; that is, Pn is true for every n. Induction is
like dominoes: Line up infinitely many dominos in a row and knock down the first
domino (that is, P1 is true), and if the nth domino knocks down the (n + 1)st domino
(that is, Pn =⇒ Pn+1), then every domino eventually gets knocked down (that is, all
the statements P1, P2, P3, . . . are true). Here’s a picture to help visualize this concept
(Fig. 2.1).

Fig. 2.1 Induction is like dominoes

We now illustrate this principle through some famous examples.

Remark: In order to present examples that have applicability in the sequel, we have to go
outside the realm of natural numbers and assume familiarity with integers, real numbers,
and complex numbers, and we shall use their properties freely. Integers are discussed in
Section2.3, real numbers in Sections2.6 and 2.7, and complex numbers in Section2.10.

2.2.2 Inductive Definitions: Powers and Sums

We of course know what 73 is, namely 7 · 7 · 7. In general, by an , where a is a
complex number called the base and n is a positive integer called the exponent, we
mean

an = a · a · · · a
︸ ︷︷ ︸

n times

.

It’s very common to use induction as follows to make powers more precise.4

Example 2.1 Let Pn denote the statement “the power an is defined.” First, a1 := a
defines a1. (Recall that “:=” means “equals by definition.”) Second, assuming that

4Although common, the inductive definitions for powers and for summation (see Example 2.3) are
not perfectly rigorous, since we should be invoking the recursion theorem; see [111] or [149] for
more details.
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an has been defined, an+1 := an · a defines an+1. Thus, the statement Pn+1 holds, so
by induction, an is defined for every natural number n.

Example 2.2 Using induction, we prove that for any natural numbers m and n, we
have

am+n = am · an. (2.1)

Indeed, let us fix the natural number m and let Pn be the statement “Equation (2.1)
holds for the natural number n.” By definition of am+1, we have

am+1 = am · a = am · a1.

Thus, (2.1) holds for n = 1. Assume that (2.1) holds for a natural number n. Then
by definition of powers and our induction hypothesis,

am+(n+1) = a(m+n)+1 = am+n · a = am · an · a = am · an+1,

which is exactly the statement Pn+1. If a �= 0 and we also define a0 := 1, then as the
reader can readily check, (2.1) continues to hold even if m or n is zero.

In elementary calculus, we were introduced to the summation notation. Let
a0, a1, a2, a3, . . . be any list of complex numbers. For every natural number n, we
define

∑n
k=0 ak as the sum of the numbers a0, . . . , an:

n
∑

k=0

ak = a0 + a1 + · · · + an.

By the way, in 1755 Euler introduced the sigma notation
∑

for summation [183].

Example 2.3 We also can define summation using induction. We define
∑0

k=0 ak = a0. For a natural number n, let Pn represent the statement “
∑n

k=0 ak

is defined.” We define
1

∑

k=0

ak = a0 + a1.

Suppose that Pn holds for n ∈ N; that is,
∑n

k=0 ak is defined. Then we define

n+1
∑

k=0

ak =
(

n
∑

k=0

ak

)

+ an+1.

Thus, Pn+1 holds. We conclude that the sum
∑n

k=0 ak is defined for n = 0 and for
every natural number n.
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2.2.3 Classic Examples: Arithmetic and Geometric
Progressions

Example 2.4 We shall prove that for every natural number n, the sum of the first n
natural numbers equals n(n + 1)/2; that is,

1 + 2 + · · · + n = n(n + 1)

2
. (2.2)

Here, Pn represents the statement “Equation (2.2) holds.” Certainly, 1 = 1(1 + 1)

2
.

Thus, our statement is true for n = 1. Suppose our statement holds for some n. Then
adding n + 1 to both sides of (2.2), we obtain

1 + 2 + · · · + n + (n + 1) = n(n + 1)

2
+ (n + 1)

= n(n + 1) + 2(n + 1)

2
= (n + 1)(n + 1 + 1)

2
,

which is exactly the statement Pn+1. Hence, by the principle of mathematical induc-
tion, every single statement Pn is true.

The most famous story involving the formula (2.2) is that of a ten-year-old Carl
Friedrich Gauss (1777–1855) [35, p. 497]:

One day, in order to keep the class occupied, the teacher had the students add up all the
numbers from one to a hundred, with instructions that each should place his slate on a table
as soon as he had completed the task. Almost immediately Carl placed his slate on the
table, saying, “There it is.” The teacher looked at him scornfully while the others worked
diligently.When the instructor finally looked at the results, the slate ofGausswas the only one
to have the correct answer, 5050, with no further calculation. The ten-year-old boy evidently
had computed mentally the sum of the arithmetic progression 1 + 2 + 3 + · · · + 99 + 100,
presumably through the formula m(m + 1)/2.

We remark that the high school way to prove Pn is to write the sum of the first n
integers forward and backwards:

Sn = 1 + 2 + · · · + (n − 1) + n

and
Sn = n + (n − 1) + · · · + 2 + 1.

Notice that the sum of each column is just n + 1. Since there are n columns, adding
these two expressions, we obtain 2Sn = n(n + 1), which implies our result.

What if we sum just the odd integers? We get (proof left to you!)

1 + 3 + 5 + · · · + (2n − 1) = n2.
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Do you see why the following picture makes this formula “obvious”?

� � � �
� � � �
� � � �
� � � �

Example 2.5 We now consider the sum of a geometric progression. Let a �= 1 be
any complex number. We prove that for every natural number n,

1 + a + a2 + · · · + an = 1 − an+1

1 − a
. (2.3)

The sequence 1, a, a2, a3, . . . , an makes up a geometric progression. Observe that

1 − a2

1 − a
= (1 + a)(1 − a)

1 − a
= 1 + a,

so our assertion holds for n = 1. Suppose that the sum (2.3) holds for some n. Then
adding an+1 to both sides of (2.3), we obtain

1 + a + a2 + · · · + an + an+1 = 1 − an+1

1 − a
+ an+1

= 1 − an+1 + an+1 − an+2

1 − a
= 1 − an+2

1 − a
,

which is exactly the Eq. (2.3) for n + 1. This completes the proof for the sum of a
geometric progression.

The high school way to establish the sum of a geometric progression is to multiply

Gn = 1 + a + a2 + · · · + an

by a,
a Gn = a + a2 + a3 + · · · + an+1,

and then to subtract this equation from the preceding one and cancel like terms:

(1 − a)Gn = Gn − a Gn = (1 + a + · · · + an) − (a + · · · + an+1) = 1 − an+1.

Dividing by 1 − a proves (2.3). Splitting the fraction at the end of (2.3) and solving
for 1/(1 − a), we obtain the following version of the geometric progression sum:

1

1 − a
= 1 + a + a2 + · · · + an + an+1

1 − a
. (2.4)
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2.2.4 More Sophisticated Examples

Here’s a famous inequality due to Jacob Bernoulli (1654–1705) that we’ll have to
use on many occasions.

Bernoulli’s inequality

Theorem 2.7 For every real number a > −1 and every natural number n,

(1 + a)n

{

= 1 + na if n = 1 or a = 0,

> 1 + na if n > 1 and a �= 0,
Bernoulli’ inequality.

Proof If a = 0, then Bernoulli’s inequality certainly holds (both sides equal 1),
so we’ll assume that a �= 0. If n = 1, then Bernoulli’s inequality is just 1 + a =
1 + a, which is true. Suppose that Bernoulli’s inequality holds for a number n. Then
(1 + a)n ≥ (1 + na), where if n = 1, this is an equality, and if n > 1, this is a strict
inequality. Multiplying Bernoulli’s inequality by 1 + a > 0, we obtain

(1 + a)n+1 ≥ (1 + a)(1 + na) = 1 + na + a + na2.

Since n a2 is positive, the expression on the right is greater than

1 + na + a = 1 + (n + 1)a.

Combining this equation with the previous inequality proves Bernoulli’s inequality
for n + 1. By induction, Bernoulli’s inequality holds for every n ∈ N. �

If n is a natural number, the symbol n! (read “n factorial”) represents the product
of the first n natural numbers. Thus,

n! := 1 · 2 · 3 · · · (n − 1) · n.

(Of course, we can also define n! using induction.) It is convenient to define 0! = 1 so
that certain formulas continue to hold forn = 0.Thus,n! is defined for all nonnegative
integers n, that is, for n = 0, 1, 2, . . . . Given nonnegative integers n and k with k ≤ n,
we define the binomial coefficient

(n
k

)

by

(

n

k

)

= n!
k!(n − k)! .
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For example, for every nonnegative integer n,

(

n

0

)

= n!
0!(n − 0)! = n!

n! = 1 and

(

n

n

)

= n!
n!(n − n)! = n!

n! = 1.

Lemma 2.8 For all nonnegative integers k, n with 1 ≤ k ≤ n, we have

(

n

k − 1

)

+
(

n

k

)

=
(

n + 1

k

)

. (2.5)

Proof The proof is but an algebra computation:

(

n

k − 1

)

+
(

n

k

)

= n!
(k − 1)! (n − k + 1)! + n!

k! (n − k)!
= n! k

k! (n − k + 1)! + n! (n − k + 1)

k! (n − k + 1)!
= n! (n + 1)

k! (n + 1 − k)! =
(

n + 1

k

)

. �

Using (2.5), we can build Blaise Pascal’s (1623–1662) triangle (Fig. 2.2).

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Fig. 2.2 First six rows of Pascal’s triangle: Adding two adjacent entries in the nth row gives the
entry below in the (n + 1)st row

Problem 11 contains a generalization of the following important theorem.

Binomial theorem

Theorem 2.9 For all complex numbers a and b, and n ∈ N, we have

(a + b)n =
n

∑

k=0

(

n

k

)

ak bn−k, binomial formula.
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Proof Here’s the binomial formula written out in detail:

(a + b)n =
(

n

0

)

bn +
(

n

1

)

a bn−1 +
(

n

2

)

a2 bn−2 + · · · +
(

n

n − 1

)

an−1 b +
(

n

n

)

an . (2.6)

If n = 1, the right-hand side is

(

1

0

)

b1 +
(

1

1

)

a1 = b + a = (a + b)1,

so the n = 1 case holds. Suppose that (2.6) holds for a natural number n; we will
prove that it holds for n replaced by n + 1. To do so, multiply (2.6) by a,

a(a + b)n =
(

n

0

)

a bn +
(

n

1

)

a2 bn−1 +
(

n

2

)

a3 bn−2 + · · · +
(

n

n − 1

)

an b +
(

n

n

)

an+1,

and then by b:

b(a + b)n =
(

n

0

)

bn+1 +
(

n

1

)

a bn +
(

n

2

)

a2 bn−1 + · · · +
(

n

n − 1

)

an−1 b2 +
(

n

n

)

an b.

Now add a(a + b)n and b(a + b)n , and combine like terms such as abn , a2bn−1, and
so forth; using our previous lemma, we obtain

(a + b)n+1 =
(

n

0

)

bn+1 +
(

n + 1

1

)

a bn +
(

n + 1

2

)

a2 bn−1 (2.7)

+ · · · +
(

n + 1

n − 1

)

an−1 b2 +
(

n + 1

n

)

an b +
(

n

n

)

an+1.

Since
(n
0

) = (n+1
0

)

and
(n

n

) = (n+1
n+1

)

(these just equal 1), we see that (2.7) is exactly
(2.6) with n replaced by n + 1. This proves the binomial formula. �

2.2.5 Strong Form of Induction

Sometimes it is necessary to use the following “strong” induction using a “stronger”
(albeit equivalent) hypothesis. For each natural number n, let Pn be a statement.
Suppose that (1) P1 is true and (2) if n is a natural number and if each statement
Pm is true for every m ≤ n, then the statement Pn+1 is also true. Then every single
statement P1, P2, P3, . . . is true. To see this, let M be all the natural numbers such
that Pn is not true. We shall prove that M must be empty, which shows that Pn is
true for every n. Indeed, suppose that M is not empty. Then by well-ordering, M
contains a least element, say n. Since P1 is true, M does not contain 1, so n > 1. Since
1, 2, . . . , n − 1 are not in M (because n is the least element of M), the statements
P1, P2, . . . , Pn−1 must be true. Hence, by Property (2) of the statements, Pn must
also be true. This shows that M does not contain n, which contradicts the assumption
that n is in M . Thus, M must be empty. Problems 6, 9, and 10 contain exercises in
which strong induction is useful.
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As already stated, to illustrate nontrivial induction examples, in the exercises you
may freely use common properties of integers, real, and complex numbers.

� Exercises 2.2

1. Consider the statement 1 + 2 + 3 + · · · + n = (2n + 1)2/8. Prove that Pn implies
Pn+1. However, is the statement true for all n?

2. Using induction, prove that for all complex numbers a and b and for all natural
numbers m and n, we have (ab)n = an · bn and also (am)n = amn . If a and b are
nonzero, prove that these equations hold even if m = 0 or n = 0.

3. Prove the following (quite pretty) formulas/statements via induction:

(a)
1

1 · 2 + 1

2 · 3 + · · · + 1

n(n + 1)
= n

n + 1
.

(b)

12 + 22 + · · · + n2 = n(n + 1)(2n + 1)

6
.

(c)

13 + 23 + · · · + n3 = (1 + 2 + · · · + n)2 =
(n(n + 1)

2

)2
.

(d)
1

2
+ 2

22
+ 3

23
+ · · · + n

2n
= 2 − n + 2

2n
.

(e) For a �= 1,

(1 + a)(1 + a2)(1 + a4) · · · (1 + a2n
) = 1 − a2n+1

1 − a
.

(f) n3 − n is always divisible by 3.
(g) Every natural number n is either even or odd. Here, n is even means that

n = 2m for some m ∈ N, and n odd means that n = 1 or n = 2m + 1 for
some m ∈ N.

(h) n < 2n for all n ∈ N. (Can you also prove this using Bernoulli’s inequality?)
(i) Using the identity (2.5), called Pascal’s rule, prove that

(n
k

)

is a natural
number for all n, k ∈ N with 1 ≤ k ≤ n. (Pn is the statement “

(n
k

) ∈ N for
all 1 ≤ k ≤ n.”)

4. In this problem we prove some nifty binomial formulas. Prove that

(a)

n
∑

k=0

(

n

k

)

= 2n, (b)

n
∑

k=0

(−1)k

(

n

k

)

= 0,

(c)
∑

k odd

(

n

k

)

= 2n−1, (d)
∑

k even

(

n

k

)

= 2n−1,
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where k = 1, 3, 5, . . . and k ≤ n in (c), and k = 0, 2, 4, . . . and k ≤ n in (d).
5. (Towers of Hanoi) Induction can be used to analyze games! (See Problem 6 on

p. 56 for the game of Nim.) For instance, the towers of Hanoi starts with three
pegs and n disks of different sizes placed on one peg, with the biggest disk on
the bottom and with the sizes decreasing to the top as shown here:

A move is made by taking the top disk off a stack and putting it on another peg
so that there is no smaller disk below it. The object of the game is to transfer all
the disks to another peg. Prove that the puzzle can be solved in 2n − 1 moves
and that it cannot be solved in fewer than 2n − 1 moves.

6. (The coin game) Two people have n coins each, and they put them on a table,
in separate piles. Then they take turns removing their own coins; they may take
as many as they wish, but they must take at least one. The person removing the
last coin(s) wins. Using strong induction, prove that the second person has a
“foolproof winning strategy.” More explicitly, prove that for each n ∈ N, there
is a strategy such that the second person will win the game with n coins each
following that strategy.

7. We now prove the arithmetic–geometric mean inequality (AGMI): For all
nonnegative (that is, ≥ 0) real numbers a1, . . . , an , we have

(a1 · · · an)1/n ≤ a1 + · · · + an

n
, or equivalently, a1 · · · an ≤

(a1 + · · · + an

n

)n
.

The product (a1 · · · an)
1/n is the geometric mean and the sum a1+···+an

n is the
arithmetic mean, of the numbers a1, . . . , an .

(i) Show that
√

a1a2 ≤ a1+a2
2 . Suggestion: Expand (

√
a1 − √

a2)
2 ≥ 0.

(ii) By induction, show that the AGMI holds for 2n terms for every natural
number n.

(iii) We now prove the AGMI for n terms where n is not necessarily a power
of 2. Let a = (a1 + · · · + an)/n. By Problem 3h, we know that 2n − n is
a natural number. Apply the AGMI to the 2n terms a1, . . . , an, a, a, . . . , a,
where there are 2n − n occurrences of a in this list, to derive the AGMI in
general.

8. (Cf. [169]) In this problemwe give another proof of the AGMI. The AGMI holds
for one term, so assume that it holds for n terms; we shall prove the AGMI for
n + 1 terms.

(i) Prove that if the AGMI holds when the n + 1 nonnegative real numbers
a1, . . . , an+1 satisfy a1 · a2 · a3 · · · an+1 = 1, then the AGMI holds for any
n + 1 nonnegative real numbers.
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(ii) By (i), we just have to verify that the AGMI holds when a1 · · · an+1 = 1.
Using the induction hypothesis, prove that a1 + · · · + an + an+1 ≥
n(an+1)

−1/n + an+1 .
(iii) Prove that a1 + · · · + an+1 ≥ n + 1, which is the AGMI for n + 1 terms,

by proving the following lemma: For every x > 0, we have nx−1/n + x ≥
n + 1. Suggestion: In Bernoulli’s inequality, replace the n there by n + 1
and let a = x1/n − 1.

9. (Fibonacci sequence) The Fibonacci sequence is the sequence F0, F1, F2,

F3, . . . defined recursively by

F0 = 0 , F1 = 1 , Fn = Fn−1 + Fn−2 for all n ≥ 2.

Using strong induction, prove that for every natural number n,

Fn= 1√
5

[

�n − (−�)−n
]

, where � = 1 + √
5

2
(� is called the golden ratio).

Suggestion: Note that �2 = � + 1 and hence −�−1 = 1 − � = (1 − √
5)/2.

10. (Pascal’s method) Using a method due to Pascal, we generalize our formula
(2.2) for the sum of the first n integers to sums of powers. See [17] for more on
Pascal’s method. For all natural numbers k, n, put σk(n) := 1k + 2k + · · · + nk

and set σ0(n) := n.

(i) For all n, k ∈ N, prove that

(n + 1)k+1 − 1 =
k

∑

�=0

(

k + 1

�

)

σ�(n).

Suggestion: The left-hand side can be written as
∑n

m=1

(

(m + 1)k+1 −
mk+1

)

. Use the binomial theorem on (m + 1)k+1.
(ii) Using the strong form of induction on k, prove that for all k ∈ N, there are

rational numbers ak1, . . . , akk ∈ Q such that

σk(n) = 1

k + 1
nk+1 + akknk + · · · + ak2n2 + ak1n for all n ∈ N. (Pascal’s formula)

(iii) (Cf. [133]) Using the fact that σ3(n) = 1
4n4 + a33n3 + a32n2 + a31n, find

the coefficients a31, a32, a33. Suggestion: Consider the difference σ3(n) −
σ3(n − 1). (Using a similar method, can you find the coefficients in the sum
for σ4(n)?)
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11. (The multinomial theorem)Amulti-index is ann-tuple of nonnegative integers
and is usually denoted by Greek letters, for instance α = (α1, . . . ,αn), where
each αk can be any of 0, 1, 2, . . . . We define |α| = α1 + · · · + αn and α! =
α1! · α2! · · ·αn!. Prove that for every natural number n, all complex numbers
a1, . . . , an , and every natural number k, we have

(a1 + · · · + an)
k =

∑

|α|=k

k!
α! aα1

1 · · · aαn
n .

Here, the summation is over all multi-indices α with |α| = k. Suggestion: For
the induction step, write a1 + · · · + an+1 = a + an+1, where a = a1 + · · · + an ,
and use the binomial formula on (a + an+1)

k .

2.3 The Integers

Have you ever wondered what it would be like in a world where the temperature was
never below zero degrees Celsius? How boring it would be to never see snow! The
natural numbers 1, 2, 3, . . . are closed under addition and multiplication, which are
essential for counting purposes used in everyday life. However, the natural numbers
do not have negatives, which is an inconvenience mathematically. In particular, N is
not closed under subtraction. For example, the equation

x + 7 = 4

does not have any solution x in the natural numbers. We can either accept that such
an equation does not have solutions5 or we can describe a number system in which
such an equation does have solutions. We shall go the latter route, and in this section,
we study the integers, which are closed under subtraction and have negatives.

2.3.1 Axioms for Integer Numbers

Incorporating zero and the negatives of the natural numbers,

0,−1,−2,−3,−4, . . . ,

5“The imaginary expression
√

(−a) and the negative expression −b have this resemblance, that
either of them occurring as the solution of a problem indicates some inconsistency or absurdity. As
far as real meaning is concerned, both are imaginary, since 0 − a is as inconceivable as

√
(−a).”

Augustus De Morgan (1806–1871). [Nowadays we don’t share De Morgan’s views!]
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into the natural numbers forms the integers:

−1−2−3−4. . . 0 1 2 3 4 . . .

The set of integers is denoted byZ. The natural numbers are also referred to as thepos-
itive integers, their negatives the negative integers, while the numbers 0, 1, 2, . . . ,
the natural numbers plus zero, are called the nonnegative integers or whole num-
bers, and finally, 0,−1,−2, . . . are the nonpositive integers. The following arith-
metic properties of addition and multiplication of integers, like those for natural
numbers, are familiar (in the following, a, b, c denote arbitrary integers):

Addition satisfies

(A1) a + b = b + a (commutative law);
(A2) (a + b) + c = a + (b + c) (associative law);
(A3) there is an integer denoted by 0 “zero” such that

a + 0 = a = 0 + a (existence of additive identity);

(A4) for each integer a there is an integer denoted by the symbol −a such that6

a + (−a) = 0 and (−a) + a = 0 (existence of additive inverse).

Multiplication satisfies

(M1) a · b = b · a (commutative law);
(M2) (a · b) · c = a · (b · c) (associative law);
(M3) there is an integer denoted by 1 “one,” different from 0, such that

1 · a = a = a · 1 (existence of multiplicative identity).

As with the natural numbers, the · is sometimes dropped and the associative laws
imply that expressions involving integers such as a + b + c and abc make sense
without the use of parentheses. Addition and multiplication are related by

(D) a · (b + c) = (a · b) + (a · c) (distributive law).

Of these arithmetic properties, the only additional properties listed that were not
listed for natural numbers are (A3) and (A4). Subtraction is the operation

a + (−b) = (−b) + a and is denoted by a − b,

so subtraction is, by definition, really just “adding negatives.” A set together with the
operations of addition and multiplication that satisfy properties (A1)–(A4), (M2),
(M3), and (D) is called a ring; essentially, a ring is just a set of objects closed

6At this moment, there could possibly be another integer, say b �= −a, such that a + b = 0, but in
Theorem 2.10 we prove that if such a b exists, then b = −a; so, additive inverses are unique.
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under addition, multiplication, and subtraction. If the multiplication operation satis-
fies (M1), then the set is called a commutative ring.

The natural numbers, or positive integers, which we denote either by N or by Z
+,

is closed under addition andmultiplication, and satisfies the trichotomy law, namely,
for every integer a, exactly one of the following “positivity” properties holds:

(P) a is a positive integer, a = 0, or −a is a positive integer.

Stated another way, property (P) means that Z is a union of disjoint sets,

Z = Z
+ ∪ {0} ∪ −Z

+,

where −Z
+ consists of all integers of the form −a, where a ∈ Z

+.
Everyday experience convinces us that there is a set of integers satisfying proper-

ties (A), (M), (D), and (P). In fact, it’s not difficult to construct the integers from the
natural numbers (see, for instance, [149]), but for expediency, we’ll just assume the
existence of a set Z satisfying properties (A), (M), (D), and (P). From the properties
listed above, we shall derive some well-known properties of the integers that you
have known since grade school.

2.3.2 Proofs of Well-Known High School Rules

Since the integers satisfy the same arithmetic properties as the natural numbers, the
same proofs as in Section2.1 prove that the distributive law (D) holds from the right
and the FOIL law holds. Also, the cancellation property in Theorem 2.3 holds: Given
integers a, b, c,

a = b if and only if a + c = b + c.

However, now this statement is easily proved using the fact that the integers have
additive inverses. We prove only the “if” part: If a + c = b + c, then adding −c to
both sides of this equation, we obtain

(a + c) + (−c) = (b + c) + (−c) =⇒ a + (c + (−c)) = b + (c + (−c))

=⇒ a + 0 = b + 0,

or a = b. Comparing this proof with that of Theorem 2.3 shows the usefulness of
having additive inverses.

We now show that we can always solve equations such as the one given at the
beginning of this section. Moreover, we prove that there is only one additive identity.
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Uniqueness of additive identities and inverses

Theorem 2.10 For a, b, x ∈ Z:

(1) The equation

x + a = b holds if and only if x = b − a.

In particular, the only x that satisfies the equation x + a = a is x = 0. Thus,
there is only one additive identity.

(2) The only x that satisfies the equation

x + a = 0

is x = −a. Thus, each integer has exactly one additive inverse.
(3) Finally, 0 · a = 0. (zero × anything is zero).

Proof We have

x + a = b ⇐⇒ (x + a) + (−a) = b + (−a) ⇐⇒ x + (a + (−a)) = b − a

⇐⇒ x + 0 = b − a ⇐⇒ x = b − a.

For the first ⇐⇒ we used cancellation. This proves (1), and taking b = 0 in (1)
implies (2).

Since 0 = 0 + 0, we have

0 · a = (0 + 0) · a = 0 · a + 0 · a.

Canceling 0 · a (that is, adding −(0 · a) to both sides) proves (3). �

By commutativity, a + x = b if and only if x = b − a. Similarly, a + x = a if and
only if x = −a, and a + x = 0 if and only if x = −a.

Some of the most confusing rules of elementary mathematics are the rules involv-
ing negatives. These rules can be explained using accounting (getting/owingmoney),
balloons attached to baskets containing weights, walking (or driving) forward and
backward, behavior (pleasant being positive and grumpy being negative), and many
others. I like to use the number line. One interpretation of subtraction a − b is the
“displacement from b to a”. Here are some examples:

−4 −3 −2 −1 0 1 . . .. . .

−4 − 1 = displacement from 1 to −4
= −5

−4 −3 −2 −1 0 1 . . .. . .

1 − (−4) = displacement from −4 to 1
= 5

Here are some more:
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−4 −3 −2 −1 0 1 . . .. . .

−4 − (−2) = displacement from −2 to −4
= −2

−4 −3 −2 −1 0 1 . . .. . .

−2 − (−4) = displacement from −4 to −2
= 2

In the three cases in which we had a − (−b), the answer is the same as a + b,
whence the rule “subtracting a negative is adding a positive.”What about multiplying
negatives? Here’s one way to understand multiplication conceptually. Let a, b be
integers with a ≥ 0. Then one common interpretation of a · b is the number obtained
by “scaling b by the factor a.” If a > 1, this scaling will stretch b; if 0 ≤ a < 1,
it will shrink b instead. Since negatives are synonymous with “opposites,” we can
interpret (−a) · b as the number obtained by “scaling b, in its opposite direction, by
the factor a.” Here are some examples using this interpretation of multiplication:

3

2 · 3

3

(−2) · 3

In the first case, we stretch 3 by 2, and in the second, we stretch 3 by 2 in the opposite
direction. We can stretch −3 using the same ideas:

−3

2 · (−3)

−3

(−2) · (−3)

From these pictures we can see in particular that (−a) · (−b) = a · b, at least for
the example presented. If you were like me and didn’t quite understand the rules
a − (−b) = a + b and (−a) · (−b) = a · b back in grade school, it would be satis-
fying to know that we can in fact prove them:

Rules of sign

Theorem 2.11 The following “rules of signs” hold:

(1) −(−a) = a.
(2) a · (−1) = −a = (−1) · a.
(3) (−1) · (−1) = 1.
(4) (−a) · (−b) = ab.
(5) (−a) · b = −(ab) = a · (−b).
(6) −(a + b) = (−a) + (−b). In particular, −(a − b) = b − a.
(7) a − (−b) = a + b.

Proof We prove (1)–(3), leaving (4)–(7) for you in Problem 1. To prove (1), note
that since a + (−a) = 0, by uniqueness of additive inverses proved in the previous
theorem, the additive inverse of −a is a, that is, −(−a) = a.

To prove (2), observe that

a + a · (−1) = a · 1 + a · (−1) = a · (1 + (−1)) = a · 0 = 0,
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so by uniqueness of additive inverses, we have −a = a · (−1). By commutativity,
−a = (−1) · a also holds.

By (1), (2), we get (3): (−1) · (−1) = −(−1) = 1. �
Everyone knows that −0 = 0. This fact follows from the formula 0 + 0 = 0 (so

the additive inverse of 0 is 0), or as an easy application of (2): −0 = 0 · (−1) = 0,
since zero times anything is zero. We can also distribute over subtraction:

a(b − c) = a(b + (−c)) = ab + a(−c)

= ab − ac (by (5) of Theorem 2.11).

Trichotomy: Using the positivity assumption (P), we can order the integers in
much the same way as the natural numbers are ordered. Given integers a and b,
exactly one of the following holds:

(O1) a = b, that is, b − a = 0;
(O2) a < b, which means that b − a is a positive integer;
(O3) b < a, which means that a − b is a positive integer.

By our previous theorem,−(b − a) = a − b, so (O3) is just that−(b − a) is a natural
number; thus, (O1), (O2), and (O3) refer to b − a being 0, positive, or negative.

Just as for natural numbers, we can define ≤, >, and ≥. For example, 0 < b, or
b > 0, means that b − 0 = b is a positive integer. Thus, an integer b is greater than 0
is synonymous with b is a positive integer. (Of course, this agrees with our English
usage of b > 0 to mean b is positive!) Similarly, b < 0 means that 0 − b = −b is a
positive integer. As with the natural numbers, we have the transitive law: If a < b
and b < c, then a < c, and we also have the Archimedean ordering of Z: Given a
natural number a and integer b, there is a natural number n such that b < a · n. To
see this last property, note that if b ≤ 0, then any natural number n works; if b > 0,
then b is a natural number, and the Archimedean ordering of N applies to show the
existence of n. We now prove some of the familiar inequality rules.

Inequality rules

Theorem 2.12 The following inequality rules hold:

(1) If a < b and c ≤ d, then a + c < b + d.
(2) If a < b and c > 0, then a · c < b · c (positive multipliers preserve inequal-

ities).
(3) If a < b and c < 0, then a · c > b · c (negative multipliers switch inequali-

ties).
(4) If a > 0 and b > 0, then ab > 0 (positive × positive is positive).
(5) If a > 0 and b < 0 (or vice versa), then ab < 0 (positive × negative is neg-

ative).
(6) If a < 0 and b < 0, then ab > 0. (negative × negative is positive)

Proof We prove (1)–(3) and leave (4)–(6) for you in Problem 1.
To prove (1), we use associativity and commutativity to write
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(b + d) − (a + c) = (b − a) + (d − c).

Since a < b, by definition of less than, b − a is a natural number, and since c ≤ d,
d − c is either zero (if c = d) or a natural number. Hence, (b − a) + (d − c) is either
adding two natural numbers or a natural number and zero; in either case, the result
is a natural number. Thus, a + c < b + d.

If a < b and c > 0, then (distributing over subtraction)

b · c − a · c = (b − a) · c.

The number c is a natural number, and since a < b, the integer b − a is a natural
number, so their product (b − a) · c is also a natural number. Thus, a · c < b · c.

If a < b and c < 0, then by our rules of sign,

a · c − b · c = (a − b) · c = −(a − b) · (−c) = (b − a) · (−c).

Since c < 0, the integer −c is a natural number, and since a < b, the integer b − a
is a natural number, so their product (b − a) · (−c) is also a natural number. Thus,
a · c > b · c. �

We now prove that zero and one have the familiar properties that you know.

Zero, cancellation, and one

Theorem 2.13 For integers a, b, c, we have the following:

(1) If a · b = 0, then a = 0 or b = 0.
(2) If a · b = a · c, where a �= 0, then b = c.
(3) If a · b = a, then b = 1, so 1 is the only multiplicative identity.

Proof We give two proofs of (1). Although Proof I is acceptable, Proof II is much
preferred, because Proof I in fact boils down to a contrapositive statement, which
Proof II goes to directly.

Proof I: Assume that ab = 0. We shall prove that a = 0 or b = 0. Now either
a = 0 or a �= 0. If a = 0, then we are done, so assume that a �= 0. We need to prove
that b = 0. Well, either b = 0 or b �= 0. However, it cannot be true that b �= 0, for
according to the properties (4)–(6) of our rules for inequalities,

if a �= 0 and b �= 0, then a · b �= 0. (2.8)

But ab = 0, so b �= 0 cannot be true. This contradiction shows that b = 0.
Proof II: Our second proof of (1) is a proof by contraposition, which is essen-

tially what we did in Proof I without stating it! Recall, as already explained in the
proof of Theorem 2.3 on p. 396, that the technique of a proof by contraposition is that
in order to prove the statement “if a · b = 0, then a = 0 or b = 0,” we can instead
try to prove the contrapositive statement:
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if a �= 0 and b �= 0, then a · b �= 0.

However, as explained above (2.8), the truth of this statement follows from our
inequality rules. This gives another (better) proof of (1).

To prove (2), assume that a · b = a · c, where a �= 0. Then,

0 = a · b − a · c = a · (b − c).

By (1), either a = 0 or b − c = 0. We are given that a �= 0, so we must have
b − c = 0, or adding c to both sides, b = c. (3) follows from (2) when c = 1. �

Property (1) of this theorem is the basis for solving quadratic equations in high
school. For example, let us solve x2 − x − 6 = 0.Wefirst “factor”; that is,weobserve
that

(x − 3)(x + 2) = x2 − x − 6 = 0.

By property (1), we know that x − 3 = 0 or x + 2 = 0. Thus, x = 3 or x = −2.

2.3.3 Absolute Value

Given an integer a, we know that either a = 0, a is a positive integer, or −a is a
positive integer. The absolute value of the integer a is denoted by |a| and is defined
to be the “nonnegative part of a”:

|a| =
{

a if a ≥ 0,

−a if a < 0.

Thus, for instance, |5| = 5, while | − 2| = −(−2) = 2. In the following theorem, we
prove some (what should be) familiar rules of absolute value. To prove statements
about absolute values, it’s convenient to prove by cases.

Absolute value rules

Theorem 2.14 For a, b, x ∈ Z:

(1) |a| = 0 if and only if a = 0.
(2) |ab| = |a| |b|.
(3) |a| = | − a|.
(4) For x ≥ 0, |a| ≤ x if and only if −x ≤ a ≤ x.
(5) −|a| ≤ a ≤ |a|.
(6) |a + b| ≤ |a| + |b| (triangle inequality).
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Proof If a = 0, then by definition, |0| = 0. Conversely, we need to prove that if
|a| = 0, then a = 0. We prove the contrapositive: If a �= 0, then |a| �= 0. But this is
clear, because |a| equals a or −a, both of which are not zero if a is not zero. This
proves (1).

To prove (2), we consider four cases: a ≥ 0 and b ≥ 0, a < 0 and b ≥ 0, a ≥ 0
and b < 0, and lastly, a < 0 and b < 0. We shall freely use the rules of sign and
inequality rules. If a ≥ 0 and b ≥ 0, then ab ≥ 0, so |ab| = ab = |a| · |b|. If a < 0
and b ≥ 0, then ab ≤ 0, so |ab| = −ab = (−a) · b = |a| · |b|. The case that a ≥ 0
and b < 0 is handled similarly. Lastly, if a < 0 and b < 0, then ab > 0, so |ab| =
ab = (−a) · (−b) = |a| · |b|.

By (2), we have | − a| = |(−1) · a| = | − 1| · |a| = 1 · |a| = |a|, which proves
(3).

To prove (4), let x ≥ 0, and suppose |a| ≤ x . Since x ≥ 0, we have−x ≤ 0, so we
can write |a| ≤ x as −x ≤ |a| ≤ x . Thus, we must prove −x ≤ |a| ≤ x if and only
if −x ≤ a ≤ x . Consider two cases: a ≥ 0, a < 0. In the first case, −x ≤ |a| ≤ x
is equivalent to −x ≤ a ≤ x , which proves (4) when a ≥ 0. In the second case,
a < 0,wehave−x ≤ |a| ≤ x is equivalent to−x ≤ −a ≤ x .Multiplying throughby
−1, we get the equivalent statement x ≥ a ≥ −x , or −x ≤ a ≤ x (equivalent, since
multiplying the last inequality by −1 gives the former inequality −x ≤ −a ≤ x).
This prove (4) in the case a < 0.

Property (5) follows from (4) with x = |a|.
Finally, we prove the triangle inequality. From (5) we have −|a| ≤ a ≤ |a| and

−|b| ≤ b ≤ |b|. Adding these inequalities gives

−(|a| + |b|) ≤ a + b ≤ |a| + |b|.

Applying (4) gives the triangle inequality. �

� Exercises 2.3

1. Finish the proofs in the rules of signs and inequality rules theorems.
2. For integers a, b, prove the inequalities

| |a| − |b| | ≤ |a ± b| ≤ |a| + |b|.

3. Let b be an integer. Prove that the only integer a satisfying

b − 1 < a < b + 1

is the integer a = b.
4. Let n ∈ N. Assume properties of powers from Example 2.2 on p. 16.

(a) Let a, b be nonnegative integers. Using a proof by contraposition, prove that
if an = bn , then a = b.
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(b) We now consider the situation that a, b could be negative. So, let a, b be
arbitrary integers. Suppose that n = 2m for some positive integer m. Prove
that if an = bn , then a = ±b.

(c) Again let a, b be arbitrary integers. Suppose that n = 2m − 1 for some
natural number m. Prove the statement if an = bn , then a = b, using a proof
by cases. Here the cases consist of a, b both nonnegative, both negative,
and when one is nonnegative and the other negative (in this last case, show
that an = bn actually can never hold, so for this last case, the statement is
superfluous).

5. In this problem we prove an integer version of induction. Let k be any integer
(positive, negative, or zero) and suppose that we are given a list of statements

Pk, Pk+1, Pk+2, . . . ,

and suppose that (1) Pk is true and (2) if n is an integer with n ≥ k and the
statement Pn happens to be valid, then the statement Pn+1 is also valid. Prove that
every single statement Pk, Pk+1, Pk+2, . . . is true.

6. (Game of Nim) Here’s a fascinating example using strong induction and proof by
cases; see the coin game in Problem 6 on p. 46 for a related game. Suppose that
n stones are thrown on the ground. Two players take turns removing one, two, or
three stones each. The last one to remove a stone loses. Let Pn be the statement
that the player starting first has a foolproof winning strategy if n is of the form
n = 4k, 4k + 2, or 4k + 3 for some k = 0, 1, 2, . . . , and the player starting second
has a foolproof winning strategy if n = 4k + 1 for some k = 0, 1, 2, . . . . In this
problem we prove that Pn is true for all n ∈ N.7

(i) Prove that P1 is true. Assume that P1, . . . , Pn hold. To prove that Pn+1 holds,
we prove by cases. The integer n + 1 can be of four types: n + 1 = 4k,
n + 1 = 4k + 1, n + 1 = 4k + 2, or n + 1 = 4k + 3.

(ii) Case 1: n + 1 = 4k. The first player can remove one, two, or three stones;
in particular, he can remove three stones (leaving 4k − 3 = 4(k − 1) + 1
stones). Prove that the first person wins.

(iii) Case 2: n + 1 = 4k + 1. Prove that the second player will win regardless
of whether the first person takes one, two, or three stones (leaving 4k,
4(k − 1) + 3, and 4(k − 1) + 2 stones, respectively).

(iv) Case 3,Case 4:n + 1 = 4k + 2 orn + 1 = 4k + 3. Prove that the first player
has awinning strategy in the cases that n + 1 = 4k + 2 and n + 1 = 4k + 3.
Suggestion: Make the first player remove one and two stones, respectively.

7Here, we are assuming that every natural number can be written in the form 4k, 4k + 1, 4k + 2,
or 4k + 3; you can either assume this fact (which is not difficult to prove) or wait until the division
algorithm, Theorem 2.16 on p. 59, from which this fact follows immediately.
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2.4 Primes and the Fundamental Theorem of Arithmetic

It is not always true that given two integers a and b, there is an integer q (for
“quotient”) such that

b = a q.

For instance, 2 = 4q can never hold for any integer q, nor can 17 = 2q. This, of
course, is exactly the reason rational numbers are needed! (Rational numbers will
come up in Section2.6.) The existence or nonexistence of such quotients opens up
an incredible wealth of topics concerning prime numbers in number theory.8

2.4.1 Divisibility

If a and b are integers, with a nonzero, we say that a divides b and write a|b, if there
is an integer q such that

b = a q.

We also say that b is divisible by a, or b is a multiple of a. We call a a divisor or
factor of b, and q the quotient (of b divided by a).

Example 2.6 Thus, for example 4|(−16)with quotient−4, because−16 = 4 · (−4),
and (−2)|(−6) with quotient 3, because −6 = (−2) · 3.

Note that we adopt the convention that divisors are by definition nonzero. To see
why, note that for an arbitrary integer q, we have

0 = 0 · q,

so if 0 were allowed to be a divisor, then 0 divided by itself would not have a unique
quotient! However, nonzero divisors give rise to unique quotients. Indeed, if a �= 0
and if we have b = aq and b = aq ′, then by cancellation (Theorem 2.13 on p. 375),

aq = aq ′ =⇒ q = q ′,

so quotients are unique. Because speaking of the quotient rather than a quotient is
desirable in discussing divisibility, we define divisors to be nonzero. Thus comes the
high school phrase “You can never divide by 0!” Here are some important properties
of division.

8“Mathematicians have tried in vain to this day to discover some order in the sequence of prime
numbers, and we have reason to believe that it is a mystery into which the human mind will never
penetrate.” Leonhard Euler (1707–1783) [225].
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Divisibility rules

Theorem 2.15 The following divisibility rules hold:

(1) If a|b and b is positive, then |a| ≤ b.
(2) If a|b, then a|bc for every integer c.
(3) If a|b and b|c, then a|c.
(4) If a|b and a|c, then a|(bx + cy) for all integers x and y.

Proof Assume that a|b and b > 0. Since a|b, we have b = aq for an integer q.
Assume momentarily that a > 0. By our inequality rules (Theorem 2.12 on p. 54),
we know that “positive × negative is negative,” so q cannot be negative. Also, q
can’t be zero, because b �= 0. Therefore q > 0. By our rules for inequalities,

a = a · 1 ≤ a · q = b =⇒ |a| ≤ b.

Assume now that a < 0. Then b = aq = (−a)(−q). Since (−a) > 0, by our proof
for positive divisors that we just did, we have (−a) ≤ b, that is, |a| ≤ b.

We now prove (2). If a|b, then b = aq for some integer q. Hence,

bc = (aq)c = a(qc),

so a|bc.
To prove (3), suppose that a|b and b|c. Then b = aq and c = bq ′ for some integers

q and q ′. Hence,
c = bq ′ = (aq)q ′ = a(qq ′),

so a|c.
Finally, assume that a|b and a|c. Then b = aq and c = aq ′ for integers q and q ′.

Hence, for all integers x and y,

bx + cy = (aq)x + (aq ′)y = a(qx + q ′y),

so a|(bx + cy). �

2.4.2 The Division Algorithm

Although we cannot always divide one integer into another, we can always do so
up to remainders.

Example 2.7 For example, although 2 does not divide 7, we can write

7 = 3 · 2 + 1.
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Another example is that although −3 does not divide −13, we do have

−13 = 5 · (−3) + 2.

In general, if a and b are integers and

b = qa + r, where 0 ≤ r < |a|,

then we call q the quotient (of b divided by a) and r the remainder. Such numbers
always exist, as we now prove.

The division algorithm

Theorem 2.16 Given any integers a and b with a �= 0, there are unique integers
q and r such that

b = qa + r with 0 ≤ r < |a|.

Moreover, if a and b are both positive, then q is nonnegative. Furthermore, a
divides b if and only if r = 0.

Proof Assume for the moment that a > 0. Consider the list of integers

. . . , 1 + b − 3a, 1 + b − 2a, 1 + b − a, 1 + b, 1 + b + a, 1 + b + 2a, 1 + b + 3a, . . .

(2.9)
extending indefinitely in both directions. Notice that since a > 0, for every integer n,

1 + b + na < 1 + b + (n + 1)a,

so the integers in the list (2.9) are increasing.Moreover, by theArchimedean ordering
of the integers, there is a natural numbern such that−1 − b < an, or 1 + b + an > 0.
In particular, 1 + b + ak > 0 for k ≥ n. Thus, far enough to the right in the list (2.9),
all the integers are positive. Let A be the set of all natural numbers appearing in the
list (2.9). By the well-ordering principle (Theorem 2.6 on p. 137), this set of natural
numbers has a least element, let us call it 1 + b + ma, where m is an integer. This
integer satisfies

1 + b + (m − 1)a < 1 ≤ 1 + b + ma, (2.10)

for if 1 + b + (m − 1)a ≥ 1, then 1 + b + (m − 1)a would be an element of A
smaller than 1 + b + ma. Put q = −m and r = b + ma = b − qa. Then b = qa + r
by construction, and substituting q and r into (2.10), we obtain

1 + r − a < 1 ≤ 1 + r.

Subtracting 1 from everything, we see that
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r − a < 0 ≤ r.

Thus, 0 ≤ r and r − a < 0 (that is, r < a). Thus, we have found integers q and r
such that b = qa + r with 0 ≤ r < a. Observe from (2.10) that if b is positive, then
m can’t be positive (otherwise, 1 + b + (m − 1)a ≥ 1, violating (2.10)). Thus, q is
nonnegative if both a and b are positive. Assume now that a < 0. Then −a > 0, so
by what we just did, there are integers s and r with b = s(−a) + r and 0 ≤ r < −a;
that is, b = qa + r , where q = −s and 0 ≤ r < |a|.

We now prove uniqueness. Assume that we also have b = q ′a + r ′ with 0 ≤ r ′ <

|a|. We first prove that r = r ′. Indeed, by symmetry in the primed and unprimed
letters, we may assume that r ≤ r ′. Then 0 < r ′ − r ≤ r ′ < |a|. Moreover,

q ′a + r ′ = qa + r =⇒ (q ′ − q)a = r ′ − r.

This shows that a|(r ′ − r). Now if r < r ′, then r ′ − r is positive, so by Property
(1) of Theorem 2.15 we would have |a| ≤ r ′ − r . However, we have already stated
that r ′ − r < |a|, so we must have r = r ′. Then the equation (q ′ − q)a = r ′ − r
reads (q ′ − q)a = 0. Since a �= 0, we must have q ′ − q = 0, or q = q ′. Our proof
of uniqueness is thus complete.

Finally, we prove that a|b if and only if r = 0. If a|b, then b = ac = ac + 0
for some integer c. By uniqueness already established, we have q = c and r = 0.
Conversely, if r = 0, then b = aq, so a|b by definition of divisibility. �

An integer n is even if we can write n = 2m for some integer m, and odd if we
can write n = 2m + 1 for some integer m.

Example 2.8 For instance, 0 = 2 · 0, so 0 is even; 1 = 2 · 0 + 1, so 1 is odd; and−1
is odd, since −1 = 2 · (−1) + 1.

Using the division algorithm, we can easily prove that every integer is either even
or odd. Indeed, dividing n by 2, the division algorithm implies that n = 2m + k,
where 0 ≤ k < 2, that is, where k is either 0 or 1. This shows that n is either even (if
k = 0) or odd (if k = 1).

An important application of the division algorithm is to the so-called Euclidean
algorithm for finding greatest common divisors; see Problem 4.

2.4.3 Prime Numbers

Consider the number 12. This number has six positive factors, or divisors, 1, 2, 3,
4, 6, and 12. The number 21 has four positive factors, 1, 3, 7, and 21. The number
1 has only one positive divisor, 1. However, as the reader can check, 17 has exactly
two positive factors, 1 and 17. Similarly, 5 has exactly two positive factors, 1 and
5. Numbers such as 5 and 17 are given a special name: A natural number that has
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exactly two positive factors is called a prime number.9 Another way to say this is
that a prime number is a natural number with exactly two factors, itself and 1. (Thus,
1 is not prime.) A list of the first ten primes is

2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

An integer greater than 1 that is not prime is called a composite number. Notice that

12 = 2 × 6 = 2 × 2 × 3, 21 = 3 × 7, 17 = 17, 5 = 5.

In each of these circumstances, we have factored, or expressed as a product, each
number into a product of its prime factors. Here, by convention, we consider a prime
number as factored.

Lemma 2.17 Every natural number other than 1 can be factored into primes.

Proof We shall prove that for every natural number m = 1, 2, 3, . . . , the number
m + 1 can be factored into primes; which is to say, every natural number n =
2, 3, 4, . . . can be factored into primes. We prove this lemma using strong induction.
By our convention, n = 2 is already in factored form. Assume that our theorem holds
for all natural numbers 2, 3, 4, . . . , n; we shall prove that our theorem holds for the
natural number n + 1. Now, n + 1 is either prime or composite. If it is prime, then
it is already in factored form. If it is composite, then n + 1 = pq, where p and q
are natural numbers greater than 1. By Theorem 2.15, both p and q are less than
n + 1. By the induction hypothesis, p and q can be factored into primes. It follows
that n + 1 = pq can also be factored into primes. �

One of the first questions that one may ask is how many primes there are. This
was answered by Euclid of Alexandria (c. 325 B.C.–c. 265 B.C.): There are infinity
many. The following proof is the original due to Euclid and is the classic “proof by
contradiction.”

Euclid’s theorem

Theorem 2.18 There are infinitely many primes.

Proof We start with the tentative assumption that the theorem is false. Thus, we
assume that there are finitely many primes. There being finitely many, we can list
them:

p1, p2, . . . , pn .

9“I hope you will agree that there is no apparent reason why one number is prime and another not.
To the contrary, upon looking at these numbers one has the feeling of being in the presence of one
of the inexplicable secrets of creation.” Don Zagier [271, p. 8].
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Consider the number
(p1 p2 p3 · · · pn) + 1.

This number is either prime or composite. It is greater than all the primes p1, . . . , pn ,
so this number can’t equal any p1, . . . , pn . We conclude that n must be composite,
so

p1 p2 p3 · · · pn + 1 = ab, (2.11)

for some natural numbers a and b. By our lemma, both a and b can be expressed
as a product involving some of p1, . . . , pn , which implies that ab also has such an
expression. In particular, being a product of some of the p1, . . . , pn , the right-hand
side of (2.11) is divisible by at least one of the prime numbers p1, . . . , pn . However,
the left-hand side is certainly not divisible by any such prime, because if we divide
the left-hand side by any one of the primes p1, . . . , pn , we always get the remainder
1! This contradiction shows that our original assumption that the theorem is false
must have been incorrect; hence there must be infinitely many primes. �

2.4.4 Fundamental Theorem of Arithmetic

Consider the integer 120, which can be factored as follows:

120 = 2 × 2 × 2 × 3 × 5.

A little verification shows that it is impossible to factor 120 into any primes other
than the ones displayed. Of course, the order can be different, e.g.,

120 = 3 × 2 × 2 × 5 × 2.

It is of fundamental importance in mathematics that every natural number can be
factored into a product of primes in only one way, apart from the order.

Fundamental theorem of arithmetic

Theorem 2.19 Every natural number other than 1 can be factored into primes
in only one way, except for the order of the factors.

Proof For sake of contradiction, let us suppose that there are numbers that can be
factored in more that one way. By the well-ordering principle, there is a smallest
such natural number a. Thus, we can write a as a product of primes in two ways:

a = p1 p2 · · · pm = q1q2 · · · qn .
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Note that both m and n are greater than 1, for a single prime number has one prime
factorization. We shall obtain a contradiction by showing there is a smaller natural
number that has two factorizations. First, we observe that none of the primes p j on
the left equals any of the primes qk on the right. Indeed, if, for example, p1 = q1,
then by cancellation, we could divide them out, obtaining the natural number

p2 p3 · · · pm = q2q3 · · · qn.

This number is smaller than a and the two sides must represent two distinct prime
factorizations, for if these prime factorizations were the same apart from the order-
ings, then (since p1 = q1) the factorizations for a would also be the same apart from
orderings. Since a is the smallest such number with more than one factorization, we
conclude that none of the primes p j equals a prime qk . In particular, p1 �= q1. By
symmetry we may assume that p1 < q1. Now consider the natural number

b = (q1 − p1)q2q3 · · · qn (2.12)

= q1q2 · · · qn − p1q2 · · · qn

= p1 p2 · · · pm − p1q2 · · · qn (since p1 · · · pm = a = q1 · · · qm)

= p1(p2 p3 · · · pm − q2q3 · · · qn). (2.13)

Since 0 < q1 − p1 < q1, the number b is less than a, so b can be factored in only
one way apart from orderings. Observe that the number q1 − p1 cannot have p1 as a
factor, for if p1 divides q1 − p1, then p1 also divides (q1 − p1) + p1 = q1, which is
impossible, because q1 is prime. Thus, factoring q1 − p1 into its prime factors, none
of which is p1, the expression (2.12) and the fact that p1 �= qk for every k shows
that b does not contain the factor p1 in its factorization. On the other hand, factoring
p2 p3 · · · pm − q2q3 · · · qn into its prime factors, the expression (2.13) clearly shows
that p1 is in the prime factorization of b. This contradiction ends the proof. �

Another popular way to prove the fundamental theorem of arithmetic uses the
concept of the greatest common divisor; see Problem 5 for this proof.

In our first exercise, recall that the notation n! (read “n factorial”) for n ∈ N

denotes the product of the first n positive integers: n! = 1 · 2 · 3 · · · n.

� Exercises 2.4

1. A natural question is: How sparse are the primes? Prove that there are arbitrarily
large gaps in the list of primes in the following sense: Given a positive integer
k, there are k consecutive composite integers. Suggestion: Consider the integers

(k + 1)! + 2, (k + 1)! + 3, . . . , (k + 1)! + k, (k + 1)! + k + 1.

2. Using the fundamental theorem of arithmetic, prove that if a prime p divides ab,
where a, b ∈ N, then p divides a or p divides b. Is this statement true if p > 1
is not prime?
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3. Prove Lemma 2.17, that every natural number other than 1 can be factored into
primes, using the well-ordering principle instead of induction.

4. (The Euclidean algorithm) Let a and b be two integers, both not zero. Consider
the set of all positive integers that divide both a and b. This set is nonempty (it
contains 1) and is finite (since integers larger than |a| and |b| cannot divide both
a and b). This set therefore has a largest element (Problem 6 on p. 36), which
we denote by (a, b) and call the greatest common divisor (GCD) of a and b.
In this problem we find the GCD using the Euclidean algorithm.

(i) Show that (±a, b) = (a,±b) = (a, b) and (0, b) = |b|. Because of these
equalities, we henceforth assume that a and b are positive.

(ii) By the division algorithm, we know that there are unique nonnegative
integers q0 and r0 such that b = q0a + r0 with 0 ≤ r0 < a. Show that
(a, b) = (a, r0).

(iii) By successive divisions by remainders, we can write

b = q0 · a + r0, a = q1 · r0 + r1, r0 = q2 · r1 + r2,

r1 = q3 · r2 + r3, . . . r j−1 = q j · r j + r j+1, . . . ,
(2.14)

where the process is continued only as long as we don’t get a zero remainder.
Show that a > r0 > r1 > r2 > · · · , and using this fact, explain whywemust
eventually get a zero remainder.

(iv) Let rn+1 = 0 be the first zero remainder. Show that rn = (a, b). Thus, the
last positive remainder in the sequence (2.14) equals (a, b). This process for
finding the GCD is called the Euclidean algorithm.

(v) Using the Euclidean algorithm, find (77, 187) and (193, 245).
5. Working backward through the Eq. (2.14), show that for every two integers a, b,

we have
(a, b) = rn = k a + � b,

for some integers k and �. Using this fact concerning the GCD, we shall give
another proof of the fundamental theorem of arithmetic.

(i) Prove that if a prime p divides a product ab, then p divides a or p divides
b. (Problem 2 does not apply here, because in that problem we used the
fundamental theorem of arithmetic, but now we are going to prove this
fundamental theorem.) Suggestion: Either p divides a or it doesn’t; if it
does, we’re done, and if not, then the GCD of p and a is 1. It follows that
1 = k p + � a, for some integers k, �. Multiply this equation by b.

(ii) Using induction, prove that if a prime p divides a product a1 · · · an , then p
divides some ai .

(iii) Using (ii), prove the fundamental theorem of arithmetic.
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6. (Modular arithmetic) Given n ∈ N, we say that x, y ∈ Z are congruent mod-
ulo n, written x ≡ y (mod n), if x − y is divisible by n. For a, b, x, y, u, v ∈ Z,
prove the following:

(a) x ≡ y (mod n) if and only if x and y have the same remainder when divided
by n.

(b) x ≡ y (mod n), y ≡ x (mod n), x − y ≡ 0 (mod n) are equivalent state-
ments.

(c) If x ≡ y (mod n) and y ≡ z (mod n), then x ≡ z (mod n).
(d) If x ≡ y (mod n) and u ≡ v (mod n), then ax + by ≡ au + bv (mod n).
(e) If x ≡ y (mod n) and u ≡ v (mod n), then xu ≡ yv (mod n).
(f) Finally, prove that if x ≡ y (mod n) and m|n, where m ∈ N, then x ≡ y

(mod m).

7. (Fermat’s little theorem) We assume the basics of modular arithmetic from
Problem 6. Let p be prime. In this problem we prove that for every x ∈ Z, we
have x p ≡ x (mod p). This result is due to Pierre de Fermat (1601–1665).

(i) For all k, n ∈ Nwith 1 ≤ k ≤ n, we assume that n! is divisible by k!(n − k)!;
the quotient is denoted by

(n
k

)

. (This divisibility fact was an exercise in
Problem 3i on p. 46.) Prove that for 1 ≤ k ≤ p,

(p
k

)

is divisible by p.
(ii) Using (i) and the binomial theorem, prove that for all x, y ∈ Z, (x + y)p ≡

x p + y p (mod p).
(iii) Using (ii) and induction, prove that x p ≡ x (mod p) for all x ∈ N. Conclude

that x p ≡ x (mod p) for all x ∈ Z.

8. (Pythagorean triples) A Pythagorean triple consists of three natural numbers
(x, y, z) such that x2 + y2 = z2. For example, (3, 4, 5) and (6, 8, 10) are such
triples. A Pythagorean triple is called primitive if x, y, z are relatively prime, or
coprime, which means that x, y, z have no common prime factors. For instance,
(3, 4, 5) is primitive, while (6, 8, 10) is not. In this problem we prove

(x, y, z) is primitive ⇐⇒
{

x = 2mn , y = m2 − n2 , z = m2 + n2, or,

x = m2 − n2 , y = 2mn , z = m2 + n2,

where m, n are coprime, m > n, and m, n are of opposite parity; that is, one of
m, n is even and the other is odd.

(i) Prove the “⇐=” implication. Henceforth, let (x, y, z) be a primitive
Pythagorean triple.

(ii) Prove that x and y cannot both be even.
(iii) Show that x and y cannot both be odd.
(iv) Therefore, one of x, y is even and the other is odd; let us choose x as even

and y as odd. (The other way around is handled similarly.) Show that z is
odd and conclude that z + y and z − y are both divisible by 2. We shall
denote the respective quotients by u = 1

2 (z + y) and v = 1
2 (z − y), which

are both natural numbers.
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(v) Show that y = u − v and z = u + v and then x2 = 4uv. Conclude that uv

is a perfect square (that is, uv = k2 for some k ∈ N).
(vi) Prove that u and v must be coprime, and from this fact and the fact that uv

is a perfect square, conclude that u and v each must be a perfect square; say
u = m2 and v = n2 for some m, n ∈ N. Finally, prove the desired result.

9. (Pythagorean triples, again) If you like primitive Pythagorean triples, here’s
another problem: Prove that if m, n are coprime, m > n, and m, n are of the
same parity (either both even or both odd), then both m2 − n2 and m2 + n2 are
divisible by 2, and

(x, y, z) is primitive, where x = mn , y = m2 − n2

2
, z = m2 + n2

2
.

Here, the notations y = m2−n2

2 and z = m2+n2

2 refer to the quotients of m2 − n2

and m2 + n2 when divided by 2. Combining this with the previous problem, we
see that given coprime natural numbers m > n, we have

(x, y, z) is primitive, where

{

x = 2mn , y = m2 − n2 , z = m2 + n2, or

x = mn , y = m2−n2

2 , z = m2+n2

2 ,

according as m and n have opposite or the same parity.
10. (Mersenne primes) A number of the form Mn = 2n − 1 is called a Mersenne

number, named after Marin Mersenne (1588–1648). If Mn is prime, it’s called
a Mersenne prime. For instance, M2 = 22 − 1 = 3 is prime, M3 = 23 − 1 = 7
is prime, but M4 = 24 − 1 = 15 is not prime. However, M5 = 25 − 1 = 31 is
prime again. It it not knownwhether there exist infinitelymanyMersenne primes.
Prove that if Mn is prime, then n is prime. (The converse if false; for instance,
M23 is composite.) Suggestion: Prove the contrapositive. Also, the polynomial
identity xk − 1 = (x − 1)(xk−1 + xk−2 + · · · + x + 1) might be helpful.

11. (Perfect numbers) A number n ∈ N is said to be perfect if it is the sum of
its proper (that is, smaller than itself) divisors. For example, 6 = 1 + 2 + 3 and
28 = 1 + 2 + 4 + 7 + 14 are perfect. It’s not knownwhether there exist any odd
perfect numbers! In this problem, we prove that perfect numbers are related to
Mersenne primes as follows:

n is even and perfect ⇐⇒ n = 2m(2m+1 − 1) where m ∈ N with 2m+1 − 1 prime.

For instance,whenm = 1, 21+1 − 1 = 3 is prime, so 21(21+1 − 1) = 6 is perfect.
Similarly, we get 28 when m = 2, and the next perfect number is 496 when
m = 4. (Note that when m = 3, 2m+1 − 1 = 15 is not prime.)

(i) Prove that if n = 2m(2m+1 − 1), wherem ∈ N and 2m+1 − 1 is prime, then n
is perfect. Suggestion: The proper divisors of n are 1, 2, . . . , 2m, q, 2q, . . . ,

2m−1q, where q = 2m+1 − 1.
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(ii) To prove the converse, we proceed systematically as follows. First prove that
ifm, n ∈ N, thend is a divisor ofm · n if and only ifd = d1 · d2,whered1 and
d2 are divisors of m and n, respectively. Suggestion: Write m = pm1

1 · · · pmk
k

and n = qn1
1 · · · qn�

� as products of prime factors. Observe that a divisor of
m · n is just a number of the form pi1

1 · · · pik
k q j1

1 · · · q j�
� , where 0 ≤ ir ≤ mr

and 0 ≤ jr ≤ nr .
(iii) For n ∈ N, define σ(n) as the sum of all the divisors of n including n itself.

Using (ii), prove that if m, n ∈ N, then σ(m · n) = σ(m) · σ(n).
(iv) Let n be even and perfect and write n = 2mq, where m ∈ N and q is odd.

By (iii), σ(n) = σ(2m)σ(q). Working out both sides of σ(n) = σ(2m)σ(q),
prove that

σ(q) = q + q

2m+1 − 1
. (2.15)

Suggestion: Since n is perfect, prove that σ(n) = 2n, and by the definition
of σ, prove that σ(2m) = 2m+1 − 1.

(v) From (2.15) and the fact that σ(q) ∈ N, show that q = k(2m+1 − 1), where
k ∈ N. From (2.15) (that σ(q) = q + k), prove that k = 1. Finally, conclude
that n = 2m(2m+1 − 1), where q = 2m+1 − 1 is prime.

12. In this exercise, we show how to factor factorials (cf. [85]). First, note that given
n > 1, the prime factors of n! are exactly those primes less than or equal to n.
Thus, to factor n!, for each prime p ≤ n, we need to know the greatest power of
p that divides n!. To find this greatest power, proceed as follows.

(i) For n, m ∈ N, we denote by �n/m the quotient when n is divided by m. If
1 < m ≤ n, prove that there is a k0 ∈ N such that for all k ≥ k0, �n/mk = 0.

(ii) Given n > 1 and a prime p ≤ n, we shall prove that the greatest power of
p that divides n! is

ep(n) :=
∑

k≥1

⌊

n

pk

⌋

,

where we sum only over those k’s such that
⌊

n/pk
⌋

> 0. (The sum is a
finite sum by (i).) To this end, first show that

⌊

n + 1

pk

⌋

−
⌊

n

pk

⌋

=
{

1 if pk | (n + 1)

0 if pk
� (n + 1).

(iii) For all n > 1 and prime p ≤ n, prove that the difference ep(n + 1) − ep(n)

is the greatest integer j such that p j divides n + 1.
(iv) Now prove that ep(n) is the greatest power of p that divides n! by induction

on n. Suggestion: For the induction step, write (n + 1)! = (n + 1) n!.
(v) Find e2, e3, e5, e7, e11 for n = 12 and then factor 12! into primes.
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2.5 Decimal Representations of Integers

Since grade school, we have represented numbers in base 10. In this section we
explore the use of arbitrary bases.

2.5.1 Decimal Representations of Integers

We need to make a careful distinction between integers and the symbols used to
represent them.

Example 2.9 In our everyday notation, we have

2 = 1 + 1, 3 = 2 + 1, 4 = 3 + 1, . . . ,

where 1 is our symbol for the multiplicative unit.

Example 2.10 The Romans used the symbol I in place of 1, and for the other num-
bers,

I I = I + I, I I I = I I + I, I V = I I I + I.

If you want to be proficient in using Roman numerals, see [223].

Example 2.11 We could be creative and make up our own symbols for integers: e.g.,

i = 1 + 1, like = i + 1, math = like + 1, . . . .

As youmay imagine, it would be very inconvenient to make up a different symbol
for every single number! For this reason, we write numbers with respect to “bases.”
For instance, undoubtedly because we have ten fingers, the base ten, or decimal,
system is the most widespread system for making symbols for the integers. In this
system, we use the symbols 0, 1, 2, . . . , 9, called digits, for zero and the first nine
positive integers, to write any integer using the number ten expressed by the symbol
10 := 9 + 1 as the “base” with which to express numbers.

Example 2.12 Consider the symbol 12. This symbol represents the number twelve,
which is the number

1 · 10 + 2,

where 1 is now used in its dual role as a multiplicative unit.

Example 2.13 The symbol 4321 represents the number a given in words by four
thousand three hundred twenty-one:

a = 4000 + 300 + 20 + 1 = 4 · 103 + 3 · 102 + 2 · 10 + 1.
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Note that the digits 1, 2, 3, 4 in the symbol 4321 are exactly the remainders produced
after successive divisions of a and its quotients by 10. For example,

a = 432 · 10 + 1 (remainder 1).

Now divide the quotient 432 by 10:

432 = 43 · 10 + 2 (remainder 2).

Continuing dividing the quotients by 10, we get

43 = 4 · 10 + 3, (remainder 3), and finally, 4 = 0 · 10 + 4, (remainder 4).

We shall use this technique of successive divisions in the proof of Theorem 2.20
below. In general, the symbol a = anan−1 . . . a1a0 represents the number

a = an · 10n + an−1 · 10n−1 + · · · + a1 · 10 + a0 (in base 10).

As with our previous example, the digits a0, a1, . . . , an are exactly the remainders
produced after successive divisions of a and the resulting quotients by 10.

2.5.2 Other Common Bases

We now consider other bases; for instance, the base 7, or septimal, system. Here,
we use the symbols 0, 1, 2, 3, 4, 5, 6, 7 to represent zero and the first seven natural
numbers and the symbols 0, 1, . . . , 6 are the digits in base 7. Then we write an
integer a as anan−1 . . . a1a0 in base 7 if

a = an · 7n + an−1 · 7n−1 + · · · + a1 · 7 + a0.

Example 2.14 For instance, the numberwith symbol 10 in base 7 is really the number
seven itself, since

10 (base 7) = 1 · 7 + 0.

Example 2.15 The number one hundred one has the symbol 203 in the septimal
system because

203 (base 7) = 2 · 72 + 0 · 7 + 3,

and in our familiar base 10 or decimal notation, the number on the right is just
2 · 49 + 3 = 98 + 3 = 101.
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A base usually associated with computing is base 2, or the binary or dyadic
system. In this case, we write numbers using only the digits 0 and 1. Thus, an integer
a is written as anan−1 . . . a1a0 in base 2 if

a = an · 2n + an−1 · 2n−1 + · · · + a1 · 2 + a0.

Example 2.16 For instance, the symbol 10101 in the binary system represents the
number

10101 (base 2) = 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1.

In familiar base 10 or decimal notation, the number on the right is 16 + 4 + 2 +
1 = 21.

Example 2.17 The symbol 10 in base 2 is really the number 2 itself, since

10 (base 2) = 1 · 2 + 0.

Not only are binary numbers useful for computing, they can help you win the
Game of Nim; see [216]. (See also Problem 6 on p. 56.) Other common bases include
eight (the octal system) and sixteen (the hexadecimal system).

We remark that one can develop addition and multiplication tables with respect to
any base (the binary tables are really easy); see, for instance, [57, p. 7]. Once a base
is fixed, we shall not make a distinction between a number and its representation in
the chosen base. In particular, throughout this book we always use base 10 and write
numbers with respect to this base unless stated otherwise.

2.5.3 Arbitrary Base Expansions of Integers

We now show that a number can be written with respect to any base. Fix a natural
number b > 1, called a base. Let a be a natural number and suppose that it can be
written as a sum of the form

a = an · bn + an−1 · bn−1 + · · · + a1 · b + a0,

where 0 ≤ ak < b and an �= 0. Then the symbol anan−1 . . . a1a0 is called the b-adic
representation of a. A couple of questions arise: First, does every natural number
have such a representation, and second, if a representation exists, is it unique? The
answer to both questions is yes.

In the following proof, we shall use the following useful “telescoping” sum several
times:
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n
∑

k=0

(b − 1) bk =
n

∑

k=0

(bk+1 − bk)

= (b1 − b0) + (b2 − b1) + (b3 − b2) + · · · + (bn+1 − bn)

= bn+1 − b0 = bn+1 − 1.

Theorem 2.20 Every natural number has a unique b-adic representation.

Proof We first prove existence, and then uniqueness.
Step 1: We first prove existence using the technique of successive divisions we

talked about before. Using the division algorithm, we form the remainders produced
after successive divisions of a and its quotients by b:

a = q0 · b + a0 (remainder a0), q0 = q1 · b + a1, (remainder a1),

q1 = q2 · b + a2, (remainder a2), . . . , q j−1 = q j · b + a j , (remainder a j ), . . .

(2.16)

and so forth. By the division algorithm, we have q j ≥ 0 and 0 ≤ a j < b. Moreover,
since b > 1 (that is, b ≥ 2), from the equation a = q0 · b + a0 it is evident that as
long as the quotient q0 is positive, we have

a = q0 · b + a0 > q0 · 1 + 0 = q0,

and in general, as long as the quotient q j is positive, we have

q j−1 = q j · b + a j > q j .

These inequalities imply that a > q0 > q1 > q2 > · · · ≥ 0, where the strict inequal-
ity > holds as long as the quotients remain positive. Since there are only a numbers
from 0 to a − 1, at some point the quotients must eventually reach zero. Let us say
that qn = 0 is the first time the quotients hit zero. If n = 0, then we have

a = 0 · b + a0,

so a has the b-adic representation a0. Suppose that n > 0. Then the sequence (2.16)
stops at j = n. Combining the first and second equations in (2.16), we get

a = q0 · b + a0 = (q1 · b + a1)b + a0 = q1 · b2 + a1b + a0.

Combining this equation with the third equation in (2.16), we get

a = (q2 · b + a2) · b2 + a1b + a0 = q2 · b3 + a2 · b2 + a1b + a0.
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Continuing this process (slang for “by use of induction”), we eventually arrive at

a = (0 · b + an) · bn + an−1 · bn−1 + · · · + a1 · b + a0

= an · bn + an−1 · bn−1 + · · · + a1 · b + a0.

This shows the existence of a b-adic representation of a.
Step 2:We now show that this representation is unique. Suppose that a has another

such representation:

a =
n

∑

k=0

ak bk =
m
∑

k=0

ck bk, (2.17)

where 0 ≤ ck < b and cm �= 0. We first prove that n = m. Indeed, hoping to get a
contradiction, let’s suppose that n �= m, say n < m. Then,

a =
n

∑

k=0

ak bk ≤
n

∑

k=0

(b − 1) bk = bn+1 − 1.

Since n < m =⇒ n + 1 ≤ m, it follows that bn+1 ≤ bm , so

a ≤ bm − 1 < bm ≤ cm · bm ≤
m
∑

k=0

ck bk = a =⇒ a < a.

This contradiction shows that n = m. Now let us assume that some digits in the
expressions for a differ; let p be the largest integer such that ap differs from the cor-
responding cp, say ap < cp. Since ap < cp, we have ap − cp ≤ −1.Now subtracting
the two expressions for a in (2.17), we obtain

0 = a − a =
p

∑

k=0

(ak − ck)b
k =

p−1
∑

k=0

(ak − ck)b
k + (ap − cp)b

p

≤
p−1
∑

k=0

(b − 1)bk + (−bp) = (bp − 1) − bp = −1,

a contradiction. Thus, the two representations of a must be equal. �

Lastly, we remark that if a is negative, then −a is positive, so −a has a b-adic
representation. The negative of this representation is by definition the b-adic repre-
sentation of a.

� Exercises 2.5

1. In this exercise we consider the base twelve or duodecimal system. For this
system we need two more digit symbols. Let α denote ten and β denote eleven.
Then the digits for the duodecimal system are 0, 1, 2, . . . , 9,α,β.
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(a) In the duodecimal system, what is the symbol for twelve, twenty-two,
twenty-three, one hundred thirty-one?

(b) What numbers do the following symbols represent? ααα, 12, and 2ββ1.

In the following “divisibility” exercises,we shall establish the validity of grade school
divisibility “tricks”; cf. [121].

2. Let a = anan−1 . . . a0 be the decimal (=base 10) representation of a natural num-
ber a. Let us first consider divisibility by 2, 5, 10.

(a) Prove that a is divisible by 10 if and only if a0 = 0.
(b) Prove that a is divisible by 2 if and only if a0 is even.
(c) Prove that a is divisible by 5 if and only if a0 = 0 or a0 = 5.

3. We now consider 4 and 8.

(a) Prove that a is divisible by 4 if and only if the number a1a0 (written in
decimal notation) is divisible by 4.

(b) Prove that a is divisible by 8 if and only if a2a1a0 is divisible by 8.

4. We consider divisibility by 3, 6, 9. Suggestion: Before considering these tests,
prove that 10k − 1 is divisible by 9 for every nonnegative integer k.

(a) Prove that a is divisible by 3 if and only if the sum of the digits (that is,
an + · · · + a1 + a0) is divisible by 3.

(b) Prove that a is divisible by 6 if and only if a is even and the sum of the digits
is divisible by 3.

(c) Prove that a is divisible by 9 if and only if the sum of the digits is divisible
by 9.

5. Prove that a is divisible by 7 if and only if the alternating sum

a2a1a0 − a5a4a3 + a8a7a6 − a11a10a9 + · · · =
∑

k=0,1,2,...

(−1)ka3k+2a3k+1a3k

is divisible by 7. Here, a3k+2a3k+1a3k is the number a3k+2102 + a3k+1101 + a3k .
Suggestion: First prove that 103k + 1, where k is odd, and 103k − 1, where k is
even, are each divisible by 7. Which of the two numbers 57,092 and 49,058 is
divisible by 7? An analogous trick works for divisibility by 13; can you state it
and then prove it?

6. Here’s another divisibility by 7 result. Prove that a is divisible by 7 if and only if

(anan−1 . . . a1) − 2a0

is divisible by 7. Here, anan−1 . . . a1 is the number an10n−1 + an−110n−2 + · · · +
a2101 + a1. Suggestion: First prove that if m, n ∈ Z, then 10m + n is divisible by
7 if and only if m − 2n is divisible by 7. To prove this claim, consider 10m + n +
4(m − 2n). Next, prove that a = 10m + n, where m = anan−1 . . . a1 and n = a0,
and then use the claim to prove the result.
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7. Prove that a is divisible by 11 if and only if the difference between the sums of
the even and odd digits,

(a0 + a2 + a4 + · · · ) − (a1 + a3 + a5 + · · · ) =
n

∑

k=0

(−1)kak,

is divisible by 11. Suggestion: First prove that 102k − 1 and 102k+1 + 1 are each
divisible by 11 for every nonnegative integer k.

8. Usingmodular arithmetic fromProblem 6 on p. 66, we can give alternative deriva-
tions of the above “tricks.” Take, for example, the “9 trick” and the “11 trick.”

(a) Show that 10k ≡ 1 (mod 9) for every k = 0, 1, 2, . . . . Using this fact, prove
that a is divisible by 9 if and only if the sum of the digits of a is divisible
by 9.

(b) Show that 10k ≡ (−1)k (mod 11) for every k = 0, 1, 2, . . . . Using this fact,
prove that a is divisible by 11 if and only if the difference between the sums
of the even and odd digits of a is divisible by 11.

2.6 Real Numbers: Rational and “Mostly” Irrational

Imagine a world in which you couldn’t give half a cookie to your friend or where you
couldn’t buy a quarter pound of cheese at the grocery store; this is a world without
rational numbers. In this section we discuss rational and real numbers, and we shall
discover, as theGreeks did 2500 years ago, that the rational numbers are not sufficient
for the purposes of geometry. Irrational numbers make up the missing lengths. We
shall discover in the next few sections that there are vastly, immensely, fantastically
(any other synonyms I missed?) “more” irrational numbers than rational numbers.

2.6.1 The Real and Rational Numbers

The set of real numbers is denoted by R. The reader is certainly familiar with the
following arithmetic properties of real numbers (in what follows, a, b, c denote real
numbers):

Addition satisfies

(A1) a + b = b + a (commutative law);
(A2) (a + b) + c = a + (b + c) (associative law);
(A3) there is a real number denoted by 0 “zero” such that
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a + 0 = a = 0 + a (existence of additive identity);

(A4) for each a, there is a real number denoted by the symbol −a such that

a + (−a) = 0 and (−a) + a = 0 (existence of additive inverse).

Multiplication satisfies

(M1) a · b = b · a (commutative law);
(M2) (a · b) · c = a · (b · c) (associative law);
(M3) there is a real number denoted by 1, “one,” different from 0, such that

1 · a = a = a · 1 (existence of multiplicative identity);

(M4) for a �= 0 there is a real number, denoted by the symbol a−1, such that

a · a−1 = 1 and a−1 · a = 1 (existence of multiplicative inverse).

As with the integers, the · is sometimes dropped, and the associative laws imply
that expressions such as a + b + c and abc make sense without using parentheses.
Addition and multiplication are related by

(D) a · (b + c) = (a · b) + (a · c) (distributive law).

Of these arithmetic properties, the only additional property listed that was not listed
for the integers is (M4), the existence of a multiplicative inverse for each nonzero
real number. We denote

a + (−b) = (−b) + a by b − a

and
a · b−1 = b−1 · a by a/b or

a

b
.

The positive real numbers, denoted by R
+, is closed under addition, multiplication,

and trichotomy law holds: Given a real number a, exactly one of the following
“positivity” properties holds:

(P) a is a positive real number, a = 0, or −a is a positive real number.

A set together with operations of addition and multiplication that satisfies prop-
erties (A1)–(A4), (M1)–(M4), and (D) is called a field. If in addition, the set has a
“positive set” closed under addition and multiplication satisfying (P), then the set is
called an ordered field.

A rational number is a real number that can be written in the form a/b, where
a and b are integers with b �= 0, and the set of all such numbers is denoted by Q.
Both the real numbers and the rational numbers are ordered fields. Now what is
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1
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Fig. 2.3 The Greeks’ discovery of irrational numbers

the difference between the real and rational numbers? The difference was discovered
more than 2500 years ago by theGreeks, who found out that the length of the diagonal
of a unit square is not a rational number (see Fig. 2.3 and Proof in Theorem 2.24).
Because this length is not a rational number, we call

√
2 irrational.10 Thus, there are

“gaps” in the rational numbers. Now it turns out that every length is a real number.
This fact is known as the completeness axiom of the real numbers. Thus, the real
numbers have no “gaps.” To finish up the list of axioms for the real numbers, we
state this completeness axiom now but we leave the terms in the axiom undefined
until Section2.7 (so don’t worry if some of these words seem foreign).

(C) (Completeness axiom of the real numbers) Everynonempty set of real numbers
that is bounded above has a supremum, that is, a least upper bound, in the set of
real numbers.

In the optional Section2.8, we construct the set of real numbers R from the
rationals.11 In particular, we have N ⊆ R

+, and R has all the arithmetic, positivity,
and completeness properties listed above. Until we get to Section2.8 we shall assume
this construction in order to prove some interesting results.

2.6.2 Proofs of Well-Known High School Rules

Since the real numbers satisfy the same (and even more) arithmetic properties as the
natural and integer numbers, the same proofs as in Sections2.1 and 2.3 prove the
uniqueness of additive identities and inverses, rules of sign, properties of zero and
one (in particular, the uniqueness of the multiplicative identity), etc.

Also, the real numbers are ordered in the same way as the integers. Given real
numbers a and b, exactly one of the following holds:

10“The idea of the continuum seems simple to us. We have somehow lost sight of the difficulties
it implies …We are told such a number as the square root of 2 worried Pythagoras and his school
almost to exhaustion. Being used to such queer numbers from early childhood, we must be careful
not to form a low idea of the mathematical intuition of these ancient sages; their worry was highly
credible.” Erwin Schrödinger (1887–1961).
11See [149] for a construction of the rationals from the integers.
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(O1) a = b;
(O2) a < b, which means that b − a is a positive real number;
(O3) b < a, which means that a − b is a positive real number.

Just as for integers, we can define ≤, >, and ≥, and (O3) can be stated as −(b − a)

is a positive real number. One can define the absolute value of a real number in the
exact same way as it is defined for integers. Since the real numbers satisfy the same
order properties as the integers, the same proofs as in Section2.3 prove the inequality
rules, absolute value rules, etc. for real numbers. Using the inequality rules, we can
prove the following well-known fact from high school:

if a > 0, then a−1 > 0.

Indeed, by definition of a−1, we have a · a−1 = 1. Since 1 > 0 (recall that 1 ∈ N ⊆
R

+) and a > 0, we have positive × a−1 = positive; the only way this is possible is if
a−1 > 0 by the inequality rules. Here are other high school facts that can be proved
using the inequality rules:

If 0 < a < 1, then a−1 > 1 and if a > 1, then a−1 < 1.

Indeed, if a < 1 with a positive, then multiplying by a−1 > 0, we obtain

a · (a−1) < 1 · (a−1) =⇒ 1 < a−1.

Similarly, if 1 < a, then multiplying through by a−1 > 0, we get a−1 < 1.
Here are some more high school facts.

Uniqueness of multiplicative inverse

Theorem 2.21 If a and b are real numbers with a �= 0, then x · a = b if and only
if x = ba−1 = b/a. In particular, setting b = 1, the only x that satisfies the equa-
tion x · a = 1 is x = a−1. Thus, each real number has exactly one multiplicative
inverse.

Proof If x = b · a−1, then

x · a = (ba−1) · a = b(a−1a) = b · 1 = b.

Conversely, if x satisfies x · a = b, then

ba−1 = (x · a)a−1 = x · (a a−1) = x · 1 = x . �

Note that x · 0 = 0 for every real number x . (This is the real number version of
Theorem 2.13 on p. 53.) In particular, 0 has no multiplicative inverse (there is no
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“0−1” such that 0 · 0−1 = 1), whence the high school saying, “You can’t divide by
zero.”

Before discussing the famous “fraction rules,” recall from Section2.3.2 beginning
on p. 32 that multiplication a · b can be thought of as “scaling b by a” (reversing the
direction if a is negative). Using this interpretation, let’s find (1/2) · (3/4):

0 13
4

� �
Stretch

3
4
by

1
2

0 13
4

1
2 · 3

4

On the other hand, from Fig. 2.4 we notice geometrically that (1/2) · (3/4) coincides
with 3/8. Thus, (1/2) · (3/4) = 3/8. Another way to interpret multiplication a · b is
“a groups of b.” (For instance, 3 · 4 is 3 groups of 4, or 12. I teach this interpretation
to my children!) In our example, (1/2) · (3/4) is a “half-group of 3/4,” which is
3/8 by the preceding figure. Thus, (1/2) · (3/4) = 3/8 using either the scaling or
grouping interpretation of multiplication. Of course, we could have arrived at the
same answer a lot faster by simply following the rule of multiplying the numerators
and denominators! We shall prove this rule, and many other “fraction rules” (even
for fractions of real numbers), in the following theorem.

0 13
4

1
2 · 3

4

0 13
8

6
8

Fig. 2.4 Top Stretching 3/4 by 1/2 is the same as halving 3/4, which is equivalent to making
a “half-group of 3/4.” Bottom We divide the interval [0, 1] into eight equal parts. We see that
(1/2) · (3/4) = 3/8

Fraction rules

Theorem 2.22 For a, b, c, d ∈ R, the following fraction rules hold (all denomi-
nators are assumed to be nonzero):

(1)
a

a
= 1,

a

1
= a, (2)

a

−b
= −a

b
;

(3)
a

b
· c

d
= ac

bd
, (4)

a

b
= ac

bc
;

(5)
1

a/b
= b

a
, (6)

a/b

c/d
= a

b
· d

c
= ad

bc
, (7)

a

b
± c

d
= ad ± bc

bd
.

Proof The proofs of these rules are really very elementary, so we prove only (1)–(3)
and leave (4)–(7) to you in Problem 1.
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We have a/a = a · a−1 = 1, and since 1 · 1 = 1, by uniqueness of the multiplica-
tive inverses we have 1−1 = 1 and therefore a/1 = a · 1−1 = a · 1 = a.

To prove (2), note that by our rules of sign,

(−b) · (−b−1) = b · b−1 = 1,

and therefore by uniqueness of multiplicative inverses, we must have (−b)−1 =
−b−1. Thus, a/(−b) := a · (−b)−1 = a · −b−1 = −a · b−1 = −a/b.

To prove (3), observe that b · d · b−1 · d−1 = (bb−1) · (dd−1) = 1 · 1 = 1, so by
uniqueness of multiplicative inverses, (bd)−1 = b−1d−1. Thus,

a

b
· c

d
= a · b−1 · c · d−1 = a · c · b−1 · d−1 = ac · (bd)−1 = ac

bd
. �

We already know what an means for n = 0, 1, 2, . . . For negative integers, we
define powers by

a−n := 1

an
, a �= 0, n = 1, 2, 3, . . .

Here are the familiar power rules.

Power rules

Theorem 2.23 For a, b ∈ R and for integers m, n,

am · an = am+n; am · bm = (ab)m; (

am
)n = amn,

provided that the individual powers are defined (e.g., a and b are nonzero if an
exponent is negative). If n is a natural number and a, b ≥ 0, then

a < b if and only if an < bn .

In particular, a �= b (both a, b nonnegative) if and only if an �= bn.

Proof We leave the proof of the first three rules to the reader, since we already dealt
with proving such rules in the problems of Section2.2 on p. 86. Consider the last
rule. Let n ∈ N and let a, b ≥ 0 be not both zero (if both are zero, then a = b and
an = bn , and there is nothing to prove). Observe that

(b − a) · c = bn − an, where c = bn−1 + bn−2 a + · · · + b an−2 + an−1, (2.18)
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which is verified by multiplying out:

(b − a) (bn−1 + bn−2 a + · · · + an−1) = (bn + bn−2 a2 + bn−1 a + · · · + ban−1)

− (bn−1a + bn−2 a2 + · · · + b an−1 + an) = bn − an .

The formula for c (and the fact that a, b ≥ 0 are not both zero) shows that c > 0.
Therefore, the equation (b − a) · c = bn − an shows that (b − a) > 0 if and only if
bn − an > 0. Therefore, a < b if and only if an < bn . �

If n is a natural number, then the nth root of a real number a is a real number
b such that bn = a, if such a b exists. For n = 2, we call b a square root, and if
n = 3, a cube root. If a ≥ 0, then according to the last power rule in Theorem 2.23,
a can have at most one nonnegative nth root. In Theorem 2.32 on p. 93, we prove
that every nonnegative real number has a unique nonnegative nth root.

Root notation : If b ≥ 0 satisfies bn = a, we write b as n
√

a or a1/n.

If n = 2, we always write
√

a or a1/2 instead of 2
√

a.

Example 2.18 We see that −3 is a square root of 9, since (−3)2 = 9. Also, 3 is a
square root of 9, since 32 = 9. Since 3 is nonnegative,

√
9 = 3. Here’s a puzzle:

Which two real numbers are their own nonnegative square roots?

We now show that “most” real numbers occurring in the study of polynomials,
trigonometry, and logarithms are not rational numbers, that is, ratios of integers.
These examples will convince the reader that there are many “gaps” in the rational
numbers and of the importance of irrational numbers to mathematics.

Remark: For the rest of this section, we shall assume that n
√

a exists for every a ≥ 0 (see
Theorem 2.32 on p. 93), andwe shall assume basic facts concerning the trig and log functions
(to be proved in Sections4.9 and 4.7, respectively). We make these assumptions in order to
present interesting examples thatwill convince youwithout a shadowof a doubt that irrational
numbers are indispensable in mathematics.

2.6.3 Irrational Roots and the Rational Zeros Theorem

We begin by showing that
√
2 is not rational. Again, we shall prove that

√
2 exists, in

Theorem 2.32 to come. Before proving irrationality, we establish some terminology.
We say that a rational number a/b is in lowest terms if a and b do not have any
common prime factor in their prime factorizations. By Property (4) of the fraction
rules, we can always “cancel” common factors to put a rational number in lowest
terms.

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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Irrationality of
√
2

Theorem 2.24 The number
√
2 is not rational.

Proof We provide three proofs. The first is a geometric proof, while the second is an
algebraic version of the same proof! The third proof is the “standard” proof in this
business. (See also Problems 6–10 and the articles [71, 103, 156], [233, p. 39] and
[237] for more proofs.)

Proof I: This proof is not meant to be rigorous, but rather to motivate Proof II
below geometrically. We assume common beliefs from high school geometry, in
particular, those concerning similar triangles.

Suppose, by way of contradiction, that
√
2 = a/b, where a, b ∈ N. Then a2 =

2b2 = b2 + b2, so by the Pythagorean theorem, the isosceles triangle with sides
a, b, b is a right triangle, as shown here.

b

b

a
b

d

b

c c

Fig. 2.5 In the right picture, we write a as b + c, and we draw a perpendicular, forming a new
isosceles triangle with equal sides c, c and base d (The smaller triangle is isosceles because it is
similar to the original. Indeed, the smaller triangle, just like the original one, has a 90◦ angle, and
it shares an angle with the original triangle)

Hence, there is an isosceles right triangle whose lengths are (of course, positive)
integers. By taking a smaller triangle if necessary, we may assume that a, b, b are the
lengths of the smallest such triangle. We shall derive a contradiction by producing
another isosceles right triangle with integer side lengths and a smaller hypotenuse.
In fact, consider the triangle d, c, c drawn in Fig. 2.5. Note that a = b + c, so
c = a − b ∈ Z. To see that d ∈ Z, observe that since the ratio of corresponding
sides of similar triangles are in proportion, we have

d

c
= a

b
=⇒ d = a

b
· c = a

b
(a − b) = a2

b
− a = 2b − a, (2.19)

where we used that a2 = b2 + b2 = 2b2. Therefore, d = 2b − a ∈ Z as well. Thus,
we have indeed produced a smaller isosceles right triangle with integer side lengths.

Proof II: We nowmake Proof I rigorous. Suppose that
√
2 = a/b (a, b ∈ N). By

well-ordering, we may assume that a is the smallest positive numerator that
√
2 can

have as a fraction; explicitly,
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a = least element of
{

n ∈ N ; √
2 = n

m
for some m ∈ N

}

.

Motivated by (2.19), we claim that

√
2 = d

c
where d = 2b − a, c = a − b are integers with 0 < d < a. (2.20)

Once we prove this claim, we contradict the minimality of a. Of course, the facts
in (2.20) were derived from Fig. 2.5 geometrically, but now we actually prove these
facts! First, to prove that

√
2 = d/c, that is, a/b = d/c, observe that

a2

b2
= 2 =⇒ a2

b
= 2b =⇒ a2

b
− a = 2b − a =⇒ a(a − b)

b
= 2b − a.

Dividing by a − b gives a/b = d/c, as required. To prove that 0 < d < a, note that
since 1 < 2 < 4, that is, 12 < (

√
2)2 < 22, by the (last statement of the) power rules

in Theorem 2.23, we have 1 <
√
2 < 2, or 1 < a/b < 2. Multiplying by b, we get

b < a < 2b, which implies 2b − a > 0 and b < a. Thus,

0 < 2b − a < 2a − a = a.

Hence, 0 < d < a, andweget our a contradiction.The followingproofs are variations
on the fundamental theorem of arithmetic.

Proof III: We first establish the fact that if the square of an integer has a factor
of 2, then the integer itself has a factor of 2. A quick way to prove this fact is using
the fundamental theorem of arithmetic: For every integer m, the factors of m2 are
exactly the squares of the factors of m. Therefore, m2 has a prime factor p if and
only if m itself has the prime factor p. In particular, m2 has the prime factor 2 if
and only if m has the factor 2, which establishes our fact. A proof without using the
fundamental theorem goes as follows. An integer m is either even or odd, that is,
m = 2n or m = 2n + 1, where n is the quotient of m when divided by 2. In the odd
case, m = 2n + 1, we have

m2 = (2n + 1)2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1,

so m2 is odd. Thus, if m2 is even, m itself must be even. Now suppose that
√
2 were

a rational number, say √
2 = a

b
,

where a/b is in lowest terms. Hence, a = √
2 b, and therefore a2 = 2b2. The number

2b2 = a2 has a factor of 2, so a must have a factor of 2. Therefore, a = 2c for some
integer c. Now a2 = 2b2 implies

(2c)2 = 2b2 =⇒ 4c2 = 2b2 =⇒ 2c2 = b2.
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The number 2c2 = b2 has a factor of 2, so b must also have a factor of 2. Thus, we
have shown that both a and b have a factor of 2. This contradicts the assumption that
a and b have no common factors.

Proof IV: Suppose
√
2 = a/b is rational. Then

a2 = 2b2. (2.21)

Since the number of prime factors doubles when a number is squared, the left side of
(2.21) has an even number of prime factors. Since b2 has an even number of prime
factors and 2b2 has one more (an extra 2) than b2, the right-hand side of (2.21) has
an odd number of prime factors, a contradiction. We can also get a contradiction by
noting that a2 has an even number of factors of 2 (including the possibility zero if
there are no such factors), while 2b2 has an odd number of factors of 2. �

The following theorem gives another method to prove the irrationality of
√
2 and

also many other numbers. For a natural number n, recall that a (real-valued) nth-
degree polynomial is a function p(x) = an xn + · · · + a1x + a0, where ak ∈ R for
each k, and the leading coefficient an is not zero.

Rational zeros theorem

Theorem 2.25 If a polynomial equation

cn xn + cn−1xn−1 + · · · + c1x + c0 = 0, cn �= 0,

where the ck are integers, has a nonzero rational solution a/b, where a/b is in
lowest terms, then a divides c0 and b divides cn.

Proof Suppose that a/b is a rational solution of our equation with a/b in lowest
terms. Since it is a solution, we have

cn

(a

b

)n + cn−1

(a

b

)n−1 + · · · + c1
(a

b

)

+ c0 = 0.

Multiplying both sides by bn , we obtain

cnan + cn−1a
n−1 b + · · · + c1a bn−1 + c0bn = 0. (2.22)

Bringing everything to the right except for c0bn and then factoring out an a, we obtain

c0bn = −cnan − cn−1a
n−1 b − · · · − c1a bn−1

= a(−cnan−1 − cn−1a
n−2 − · · · − c1bn−1).

This formula shows that every prime factor of a occurs in the product c0bn . By
assumption, a and b have no common prime factors, and hence every prime factor
of a must occur in c0. This shows that a divides c0.
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To prove that b divides cn , we rewrite (2.22) as

cnan = −cn−1a
n−1 b − · · · − c1a bn−1 − c0bn

= b(−cn−1a
n−1 − · · · − c1a bn−2 − c0bn−1).

It follows that every prime factor of b occurs in cnan . Since a and b have no common
prime factors, every prime factor of b must occur in cn . Thus, b divides cn . �

Example 2.19 (Irrationality of
√
2, Proof V) Observe that

√
2 is a solution of

the polynomial equation x2 − 2 = 0. The rational zeros theorem implies that if the
equation x2 − 2 = 0 has a rational solution, say a/b in lowest terms, then a must
divide c0 = −2 and b must divide c2 = 1. It follows that a can equal ±1 or ±2 and
b can equal only ±1. Therefore, if there are rational solutions of x2 − 2 = 0, they
must be x = ±1 or x = ±2. However,

(±1)2 − 2 = −1 �= 0 and (±2)2 − 2 = 2 �= 0,

so x2 − 2 = 0 has no rational solutions. Therefore
√
2 is not rational.

A similar argument using the equation xn − a = 0 proves the following.

Corollary 2.26 If a and n are natural numbers and a is not the nth power of a
natural number, then the nth root n

√
a is irrational.

2.6.4 Irrationality of Trigonometric Numbers

Let 0 < θ < 90◦ be an angle whose measurement in degrees is rational. Following
[155], we shall prove that cos θ is irrational except when θ = 60◦, in which case

cos 60◦ = 1

2
.

The proof of this result is based on the rational zeros theorem and Lemma 2.27 below.
See Problem 5 for corresponding statements for sine and tangent. Of course, at this
point, and only for purposes of illustration, we have to assume basic knowledge of
the trigonometric functions. In Section4.9 beginning on p. 323, we shall define these
function rigorously and establish their usual properties.

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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Lemma 2.27 For every natural number n, we can write 2 cos nθ as an nth-degree
polynomial in 2 cos θ with integer coefficients and with leading coefficient one.

Proof We need to prove that

2 cos nθ = (2 cos θ)n + an−1(2 cos θ)n−1 + · · · + a1(2 cos θ) + a0, (2.23)

where the coefficients an−1, an−2, . . . , a0 are integers. For n = 1, we can write
2 cos θ = (2 cos θ)1 + 0, so our proposition holds for n = 1. To prove our result
in general, we use the strong form of induction. Assume that our proposition holds
for 1, 2, . . . , n. Before proceeding to show that our lemma holds for n + 1, we shall
prove the identity

2 cos
(

(n + 1)θ
) =

(

2 cos nθ
)(

2 cos θ
)

− 2 cos
(

(n − 1)θ
)

. (2.24)

To verify this identity, consider the well-known identities (cf. Theorem 4.35 on p.
325)

cos(α + β) = cosα cosβ − sinα sin β

cos(α − β) = cosα cosβ + sinα sin β.

Adding these equations, we obtain cos(α + β) + cos(α − β) = 2 cosα cosβ, or

cos(α + β) = 2 cosα cosβ − cos(α − β).

Setting α = nθ and β = θ, and then multiplying the result by 2, we get (2.24).
Now, since our lemma holds for 1, . . . , n, we see that in particular, 2 cos nθ and

2 cos
(

(n − 1)θ
)

can bewritten as an nth-degree and an (n − 1)th-degree polynomial,
respectively, in 2 cos θ with integer coefficients and with leading coefficient one.
Substituting these polynomials into the right-hand side of the identity (2.24) shows
that 2 cos

(

(n + 1)θ
)

can be expressed as an (n + 1)th-degree polynomial in 2 cos θ
with integer coefficients and with leading coefficient one. This proves our lemma. �

We are now ready to prove our main result.

Theorem 2.28 Let 0 < θ < 90◦ be an angle whose measurement in degrees is
rational. Then cos θ is rational if and only if θ = 60◦.

Proof If θ = 60◦, then we know that cos θ = 1/2, which is rational. Assume now
that θ is rational, say θ = a/b, where a and b are natural numbers. Then choosing

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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n = b · 360◦, we have nθ = (b · 360◦) · (a/b) = a · 360◦. Thus, nθ is a multiple of
360◦, so cos nθ = 1. Substituting nθ into the Eq. (2.23), we obtain

(2 cos θ)n + an−1(2 cos θ)n−1 + · · · + a1(2 cos θ) + a0 − 2 = 0,

where the coefficients are integers. Hence, 2 cos θ is a solution of the equation

xn + an−1 xn−1 + · · · + a1 x + a0 − 2 = 0.

By the rational zeros theorem, it follows that every rational solution of this equation
must be an integer. So, if 2 cos θ is rational, then it must be an integer. Since 0 < θ <

90◦ and cosine is strictly between 0 and 1 for these θ’s, the only integer that 2 cos θ
can equal is 1. Thus, 2 cos θ = 1 or cos θ = 1/2, and so θ must be 60◦. �

2.6.5 Irrationality of Logarithmic Numbers

Recall that the (common) logarithm to the base 10 of a real number a is defined to
be the unique number x such that

10x = a.

In Section4.7, starting on p. 300, we define logarithms rigorously, but for now, in
order to demonstrate another interesting example of irrational numbers, we shall
assume familiarity with such logarithms from high school. We also assume basic
facts concerning powers that we’ll prove in the next section.

Theorem 2.29 Let r > 0 be a rational number. Then log10 r is rational if and
only if r = 10n, where n is an integer, in which case

log10 r = n.

Proof If r = 10n , where n ∈ Z, then log10 r = n, so log10 r is rational. Assume now
that log10 r is rational; we’ll show that r = 10n for some n ∈ Z. We may assume that
r > 1, because if r = 1, then r = 100, andwe’re done, and if r < 1, then r−1 > 1, and
log10 r−1 = − log10 r is rational, so we can get the r < 1 result from the r > 1 result.
We henceforth assume that r > 1. Let r = a/b, where a and b are natural numbers
with no common factors. Assume that log10 r = c/d, where c and d are natural
numbers with no common factors. Then r = 10c/d , which implies that rd = 10c, or
after setting r = a/b, we get (a/b)d = 10c, or after some algebra, we have

ad = 2c · 5c · bd . (2.25)

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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By assumption, a and b do not have any common prime factors. Hence, expressing
a and b in their prime factorizations in (2.25) and using the fundamental theorem of
arithmetic, we see that all the prime factors of b would also be prime factors of a.
We conclude that b can have no prime factors, that is, b = 1, and a can have only
the prime factors 2 and 5. Thus,

a = 2m · 5n and b = 1

for some nonnegative integers m and n. Now according to (2.25),

2md · 5nd = 2c · 5c.

Again by the fundamental theorem of arithmetic, we must have md = c and nd = c.
However, c and d have no common factors, so d = 1, and thereforem = c = n. This,
together with the fact that b = 1, proves that

r = a

b
= a

1
= 2m · 5n = 2n · 5n = 10n.

�

In the following exercises, assume that square roots and cube roots exist for
nonnegative real numbers; these facts will be proved in the next section.

� Exercises 2.6

1. Prove properties (4)–(7) in the “fraction rules” theorem.
2. Let a be a positive real number and let m, n be nonnegative integers with m < n.

If 0 < a < 1, prove that an < am , and if a > 1, prove that am < an .
3. Let α be an irrational number. Prove that −α and α−1 are irrational. If r is a

nonzero rational number, prove that the addition, subtraction, multiplication, and
division of α and r are again irrational. As an application of this result, deduce
that

−√
2,

1√
2
,

√
2 + 1, 4 − √

2, 3
√
2,

√
2

10
,

7√
2

are each irrational.
4. In this problem we prove that various numbers are irrational.

(a) Prove that
√
6 is irrational using Proof III in Theorem 2.24. From the fact

that
√
6 is irrational, and without using any irrationality facts concerning√

2 and
√
3, prove that

√
2 + √

3 is irrational. Suggestion: Consider (
√
2 +√

3)2.
(b) Use the rational zeros theorem to give another proof that

√
2 + √

3 is irra-
tional. Suggestion:Let x = √

2 + √
3, and then show that x4 − 10x2 + 1= 0.
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(c) Using the rational zeros theorem, prove that (2 3
√
6 + 7)/3 is irrational and

3
√
2 − √

3 is irrational. (If x = 3
√
2 − √

3, you should end up with a sixth-
degree polynomial equation for x , to which you can apply the rational zeros
theorem.)

5. In this problem we look at irrational values of sine and tangent. Let 0 < θ < 90◦
be an angle whose measurement in degrees is rational. You may assume any
standard facts about the trigonometric functions and their identities.

(a) Prove that sin θ is rational if andonly if θ = 30◦, inwhich case sin 30◦ = 1/2.
Suggestion: Do not try to imitate the proof of Theorem 2.28. Instead, use a
trig identity to write sine in terms of cosine.

(b) Prove that tan θ is rational if and only if θ = 45◦, in which case tan θ = 1.
Suggestion: Use the identity cos 2θ = 1−tan2 θ

1+tan2 θ
.

6. (Irrationality of
√
2, Proof VI) This problem is a variation on Proof II, the

algebraic Pythagorean proof of Theorem 2.24. Suppose, hoping to get a con-
tradiction, that

√
2 = a/b with a, b ∈ N and where, by well-ordering, we may

assume that b is the smallest positive denominator for
√
2.Derive a contradiction.

7. (Irrationality of
√
2, Proof VII) Prove that if x and y are integers with no com-

mon factors and x/y is an integer, then y = 1. Now prove that
√
2 is irrational.

8. (Cf. [42]) (Irrationality of
√
2, Proof VIII) Assume that

√
2 is rational.

(i) Show that there is a smallest natural number n such that n
√
2 is an integer.

(ii) Show that m := n
√
2 − n = n(

√
2 − 1) is a natural number smaller than n.

(iii) Finally, show that m
√
2 is an integer to get a contradiction.

9. (Cf. [103]) (Irrationality of
√
2, Proof IX) Here’s a base 10 proof.

(i) Show that if x ∈ N is expressed in base 10, then the ones digit of x2 is one
of 0, 1, 4, 5, 6, 9.

(ii) Suppose now that
√
2 = a/b, where a, b ∈ N, is written in lowest terms.

Using that a2 = 2b2, prove that a and b each have a common factor of 5, a
contradiction.

10. (Irrationality of
√
2, Proof X) Here’s a proof due to Marcin Mazur [161].

(i) Show that
√
2 = −4

√
2+6

3
√
2−4

.

(ii) Now suppose that
√
2 = a/b (a, b ∈ N), where a is the smallest positive

numerator that
√
2 can have as a fraction. Using the formula in (i), derive a

contradiction.

2.7 The Completeness Axiom of R and Its Consequences

The completeness axiom of the real numbers essentially states that the real numbers
have no “gaps.”As discovered in the previous section, this property is quite in contrast
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to the nature of the rational numbers, which have many “gaps.” In this section we
discuss the completeness axiom and its consequences. Another consequence of the
completeness axiom is that the real numbers are uncountable, while the rationals are
countable, but we leave that breathtaking subject for Section2.11.

2.7.1 The Completeness Axiom

Before discussing the completeness axiom, we need to talk about lower and upper
bounds of sets.

A set A ⊆ R is said to be bounded above if there is a real number b greater than
or equal to every number in A in the sense that for each a in A, we have a ≤ b. Every
such number b, if such exists, is called an upper bound for A. Here’s an example
of a set and two upper bounds, b1 and b2:

b1 b2

Suppose that b is an upper bound for A. Then b is called the least upper bound, or
supremum, for A if b is just that, the least of all upper bounds for A, in the sense that
it is less than every other upper bound for A. This supremum, if it exists, is denoted
by sup A. The supremum in the previous picture is the number b1. We shall use both
terminologies “least upper bound” and “supremum” interchangeably.

Example 2.20 Consider the interval I = [0, 1):
0 1

This interval is bounded above by, for instance, 1, 3/2, 22/7, 10, 1000. In fact, every
upper bound for I is just a real number greater than or equal to 1. The least upper
bound is 1, since 1 is the smallest upper bound. Note that 1 /∈ I .

Example 2.21 Now let J = (0, 1]:
0 1

This set is also bounded above, and every upper bound for J is, as before, just a real
number greater than or equal to 1. The least upper bound is 1. In this case, 1 ∈ J .

These examples show that the supremum of a set, if it exists, may or may not
belong to the set. Some sets do not have supremums.

Example 2.22 Z is not bounded above (Lemma 2.35 on p. 95), nor is (0,∞).

We now summarize. Let A ⊆ R be bounded above. Then that a number b is the
least upper bound, or supremum, for A means two things concerning b:

(L1) for all a in A, a ≤ b;
(L2) if c is an upper bound for A, then b ≤ c.
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(L1) just means that b is an upper bound for A, and (L2) means that b is the least,
or lowest, upper bound for A. Instead of (L2), it is convenient to substitute its con-
trapositive:

(L2′) if c < b, then for some a in Awe havec < a.

This just says that every number c smaller than b is not an upper bound for A, which
is to say that there is no upper bound for A that is smaller than b.

We can also talk about lower bounds. A set A ⊆ R is said to be bounded below
if there is a real number b less than or equal to every number in A in the sense that
for each a in A we have b ≤ a. Every such number b, if such exists, is called a lower
bound for A. If b is a lower bound for A, then b is called the greatest lower bound,
or infimum, for A if b is just that, the greatest lower bound for A, in the sense that it
is greater than every other lower bound for A. This infimum, if it exists, is denoted
by inf A. We shall use both terminologies “greatest lower bound” and “infimum”
interchangeably.

Example 2.23 The sets I = [0, 1) and J = (0, 1] are both bounded below (by, e.g.,
0, −1/2, −1, −1000), and in both cases the greatest lower bound is 0.

Thus, the infimum of a set, if it exists, may or may not belong to the set.

Example 2.24 The sets Z (see Lemma 2.35 on p. 96) and (−∞, 0) are not bounded
below.

We now summarize. Let A ⊆ R be bounded below. Then that a number b is the
greatest lower bound, or infimum, for A means two things concerning b:

(G1) for all a in A, b ≤ a;
(G2) if c is a lower bound for A, then c ≤ b.

(G1) says that b is a lower bound for A, and (G2) says that b is the greatest lower
bound for A. Instead of (G2), it is convenient to substitute its contrapositive:

(G2′) if b < c, then for some a in Awe have a < c.

This just says that every number c greater than b is not a lower bound for A, which
is to say that there is no lower bound for A that is greater than b.

In the examples given so far (e.g., the intervals I and J ), we have shown that if a
set has an upper bound, then it has a least upper bound. This is a general phenomenon,
called the completeness axiom of the real numbers:

(C) (Completeness axiom of the real numbers) Everynonempty set of real numbers
that is bounded above has a supremum, that is, a least upper bound.

In Section2.8, when we construct R, we’ll see that this completeness property
follows immediately from the method of construction (see Theorem 2.41 on p. 108).
Using the following lemma, we can prove the corresponding statement for infimums.
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Lemma 2.30 If A is nonempty and bounded below, then its reflected set −A :=
{−a ; a ∈ A} is nonempty and bounded above. Moreover, inf A = − sup(−A) in
the sense that inf A exists and this formula for inf A holds.

Proof If A is nonempty and bounded below, there is a real number c such that c ≤ a
for all a in A. Therefore, −a ≤ −c for all a in A, and hence the set −A is bounded
above. By the completeness axiom, −A has a least upper bound, which we denote
by b. Our lemma is finished once we show that −b is the greatest lower bound for A.
To see this, we know that −a ≤ b for all a in A, and so −b ≤ a for all a in A. Thus,
−b is a lower bound for A. Suppose that b′ ≤ a for all a in A. Then −a ≤ −b′ for
all a in A, and so b ≤ −b′, since b is the least upper bound for −A. Thus, b′ ≤ −b,
and hence −b is indeed the greatest lower bound for A. �

This lemma immediately gives the following theorem.

Theorem 2.31 Every nonempty set of real numbers that is bounded below has
an infimum, that is, greatest lower bound.

The completeness axiom is powerful because it “produces out of thin air,” so to
speak, real numbers with certain properties. This ability to “produce” numbers has
some profound consequences, as we now intend to demonstrate!

2.7.2 Existence of nth Roots

As a first consequence of the completeness axiom, we show that every nonnega-
tive real number has a unique nonnegative nth root, where n ∈ N. To see how the
completeness axiom can “produce” roots, consider the existence of

√
2. How do we

prove there is a real number b ≥ 0 such that b2 = 2? All we do is consider the set

A = {x ∈ R ; x2 < 2 or x ≤ 0}.

In high school you would rewrite A as the interval (−∞,
√
2), as seen here:

√
20

{x ∈ R ; x <
√
2} = (−∞,

√
2)

the set of x ∈ R such that x <
√
2

However, we purposely wrote A as those x with x2 < 2 or x ≤ 0 because at this
point, we don’t know whether

√
2 exists, so here’s A as written above:
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√
20

the set of x ∈ R such that x2 < 2 or x ≤ 0

This set looks as though it is “cutting” R into two halves at the point
√
2, which

is in fact one inspiration for the construction method of R detailed in Section2.8.
Although the pictures above are not fully accurate, since we haven’t proven that

√
2

exists yet, we observe that if
√
2 did exist, then it would be the supremum of the set

A. We now use this observation to prove that
√
2 exists! Indeed, since A is nonempty,

all we have to do is to show that A is bounded above. Axiom (C) then kicks in and
says that b := sup A exists. We now can try to prove that b2 = 2, which will prove
the existence of

√
2. In Theorem 2.32, we will use this type of argument to show

that nth roots exist. To prove the theorem, we need the fact that if ξ, η > 0, then for
every natural number k > 1,

1 < ξ =⇒ ξ < ξk and η < 1 =⇒ ηk < η.

These properties follow from the power rules in Theorem 2.23 on p. 80. For example,
1 < ξ implies 1 = 1k−1 < ξk−1; then multiplying by ξ, we get ξ < ξk .

Existence/uniqueness of nth roots

Theorem 2.32 Every nonnegative real number has a unique nonnegative nth
root.

Proof First of all, uniqueness follows from the last power rule in Theorem 2.23.
Note that the nth root of zero exists and equals zero, and certainly 1th roots always
exist. So let a > 0 and n ≥ 2; we shall prove that n

√
a exists.

Step 1: As in the
√
2 case outlined above, we define the tentative n

√
a as a supre-

mum. Let A be the set of real numbers x such that xn < a or x ≤ 0. Here are pictures
of A for n = 2, . . . , 5, noting that we have to prove that the radicals exist:

√
a

the set of x ∈ R such that x2 < a or x ≤ 0
0

3
√

a
the set of x ∈ R such that x3 < a or x ≤ 0

0

4
√

a
the set of x ∈ R such that x4 < a or x ≤ 0

0

5
√

a
the set of x ∈ R such that x5 < a or x ≤ 0

0

Since A contains 0, A is nonempty. We claim that A is bounded above by a + 1. To
see this, let x ∈ A. If x ≤ 0, then of course x ≤ a + 1. Suppose now that x > 0, and
observe that

xn < a < a + 1 < (a + 1)n, which implies xn < (a + 1)n.

The power rules theorem on p. 79 then implies that x < a + 1. Therefore, A is
bounded above by a + 1. Being nonempty and bounded above, by the axiom of
completeness A has a least upper bound, which we denote by b ≥ 0. We shall prove
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that bn = a, which proves our theorem. Since either bn = a, bn < a, or bn > a, we
shall prove that the latter two cases cannot occur.

Step 2: Suppose that bn < a. In particular, b belongs to A. To get a contradiction,
we increase b just a little to find a number b1 in A with b < b1 such that bn

1 < a still
holds, which contradicts that b was supposedly an upper bound for A. To find such
a b1, observe that—see the remark before this theorem—for every 0 < ε < 1, we
have εm < ε for every natural number m > 1, so by the binomial theorem on p. 43,

(b + ε)n = bn + nbn−1ε + n(n − 1)

2
bn−2ε2 + · · · + εn

< bn + nbn−1ε + n(n − 1)

2
bn−2ε + · · · + ε

= bn + εc,

where c is a positive number. Since bn < a, we have (a − bn)/c > 0. Now let ε equal
(a − bn)/c or 1/2, whichever is smaller (or equal to 1/2 if (a − bn)/c = 1/2). Then
0 < ε < 1 and ε ≤ (a − bn)/c, so

(b + ε)n < bn + εc ≤ bn + a − bn

c
· c = a.

Thus, b1 := b + ε also belongs to A, which gives the desired contradiction.
Step 3: Now suppose that bn > a. To get a contradiction, we now decrease b just

a little to find a number b2 < b that’s still an upper bound for A, which contradicts
that b was supposedly the least upper bound for A. To find such a b2, observe that
given any real number ε with 0 < ε < b, we have 0 < ε b−1 < 1, so by Bernoulli’s
inequality (Theorem 2.7 on p. 42),

(b − ε)n = bn
(

1 − εb−1
)n

> bn
(

1 − nεb−1
) = bn − ε c,

where c = nbn−1 > 0. Since a < bn , we have (bn − a)/c > 0. Let ε equal (bn −
a)/c or b/2, whichever is smaller (or equal to b/2 if (bn − a)/c = b/2). Then 0 <

ε < b and ε ≤ (bn − a)/c, which implies that −εc ≥ −(bn − a). Therefore,

(b − ε)n > bn − εc ≥ bn − (bn − a) = a.

It follows that b2 := b − ε is an upper bound for A (can you prove this?), which
gives the desired contradiction. �

In particular,
√
2 exists and, as we already know, is an irrational number. Here are

proofs of the familiar root rules memorized from high school.
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Root rules

Theorem 2.33 For every nonnegative real numbers a and b and natural number
n, we have

n
√

ab = n
√

a n
√

b ,
m

√

n
√

a = mn
√

a , and a < b ⇐⇒ n
√

a <
n
√

b.

Proof Let x = n
√

a and y = n
√

b. Then, xn = a and yn = b, so by the power rules
theorem on p. 79,

(xy)n = xn yn = ab.

By uniqueness of nth roots, we must have xy = n
√

ab. This proves the first identity.
The second identity is proved similarly. Finally, again by the power rules theorem, we

have n
√

a <
n
√

b ⇐⇒ (

n
√

a
)n

<
(

n
√

b
)n ⇐⇒ a < b, which proves the last statement

of our theorem. �

Using the notation a1/n instead of n
√

a, the root rules look like

(ab)
1
n = a

1
n b

1
n , (a

1
n )

1
m = a

1
mn , and a < b ⇐⇒ a

1
n < b

1
n .

Given a ∈ R with a ≥ 0 and r = m/n, where m ∈ Z and n ∈ N, we define

ar := (

a1/n
)m

, (2.26)

provided that a �= 0 when m ≤ 0. One can check that the right-hand side is defined
independently of the representation of r ; that is, if r = p/q = m/n for some other
p ∈ Z and q ∈ N, then (a1/q)p = (a1/n)m . Combining the power rules theorem for
integer powers and the root rules theorem above, we get the following theorem.

Power rules for rational powers

Theorem 2.34 For a, b ∈ R with a, b ≥ 0, and r, s ∈ Q, provided that the indi-
vidual powers are defined, we have

ar · as = ar+s, ar · br = (ab)r ,
(

ar
)s = ars,

and if r is nonnegative, then

a < b ⇐⇒ ar < br .

We shall define ax for every nonnegative real number a and real number x in
Section4.7 and prove a similar theorem (see Theorem 4.33 on p. 305); see also
Problem 9 for another way to define ax .

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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2.7.3 The Archimedean Property and Its Consequences

Another consequence of the completeness axiom is the following “obvious” fact.

Lemma 2.35 The set N is not bounded above, and the set Z is bounded neither
above nor below.

Proof We prove the claim for N, leaving the claim for Z to you. Assume, to get a
contradiction, thatN is bounded above. ThenNmust have a least upper bound, say b.
Since b − 1 is smaller than the least upper bound b, there must be a natural number
m such that b − 1 < m, which implies that b < m + 1. However, m + 1 is a natural
number, so b cannot be an upper bound for N, a contradiction. �

This lemma yields many useful results.

The 1/n-principle

Theorem 2.36 Given a real number x > 0, there is a natural number n such that
1
n < x.

Proof Indeed, since N is not bounded above, 1
x is not an upper bound, so there is

n ∈ N such that 1
x < n. This implies that 1

n < x , and we’re done. �

Here’s an example showing the 1/n-principle in action.

Example 2.25 Consider the set

A =
{
1 − 3

n
; n = 1, 2, 3, . . .

}
−2 −1

2
0 1

There are infinitely many points “accumulating” near 1, but we were able to draw
only a handful of points. (Note that 1 is not in the set A, which is whywe drew an open
circle at 1.) Based on this picture, we conjecture that sup A = 1 and inf A = −2. To
show that sup A = 1, we need to prove two things: that 1 is an upper bound for A
and that 1 is the least of all upper bounds for A. First, we show that 1 is an upper
bound. To see this, observe that for every n ∈ N,

3

n
≥ 0 =⇒ −3

n
≤ 0 =⇒ 1 − 3

n
≤ 1.

Thus, for all a ∈ A, a ≤ 1, so 1 is indeed an upper bound for A. Second, we must
show that 1 is the least of all upper bounds. So assume that c < 1; we’ll show that
c cannot be an upper bound by showing that there is a ∈ A such that c < a, that is,
there is n ∈ N such that c < 1 − 3/n. Observe that
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c < 1 − 3

n
⇐⇒ 3

n
< 1 − c ⇐⇒ 1

n
<

1 − c

3
. (2.27)

Since c < 1, we have (1 − c)/3 > 0, so by the 1/n-principle, there exists n ∈ N such
that 1/n < (1 − c)/3. Hence, by (2.27), there is n ∈ N such that c < 1 − 3/n. This
shows that c is not an upper bound for A.

To show that inf A = −2, we need to prove two things: That −2 is a lower bound
and that −2 is the greatest of all lower bounds. First, to prove that −2 is a lower
bound, observe that for every n ∈ N,

3

n
≤ 3 =⇒ −3 ≤ −3

n
=⇒ −2 ≤ 1 − 3

n
.

Thus, for all a ∈ A,−2 ≤ a, so−2 is indeed a lower bound for A. Second, to see that
−2 is the greatest of all lower bounds, assume that −2 < c; we’ll show that c cannot
be a lower bound by showing there is a ∈ A such that a < c; that is, there is n ∈ N

such that 1 − 3/n < c. In fact, simply take n = 1. Then 1 − 3/n = 1 − 3 = −2 < c.
This shows that c is not a lower bound for A.

Here’s another useful consequence of the fact that N is not bounded above.12

Archimedean property

Theorem 2.37 Given a real number y > 0 and a real number x, there is a unique
integer n such that

ny ≤ x < (n + 1)y.

In particular (set y = 1), for every real number x, there is a unique integer n such
that n ≤ x < n + 1, which is obvious if we view the real numbers as a line.

Proof The inequality ny ≤ x < (n + 1)y is, after division by y, equivalent to

n ≤ z < n + 1, where z = x

y
.

We shall work with this inequality instead of the original. If z is an integer, then
n = z is the unique integer satisfying n ≤ z < n + 1. We henceforth assume that z is
not an integer. Consider the set A = {m ∈ N ; |z| < m}. This set is not empty, since
N is not bounded above, so by the well-ordering ofN, A contains a least element, say
� ∈ N. Then |z| < � (because � ∈ A). We claim that � − 1 < |z|. Indeed, if we had
|z| < � − 1 (we cannot have |z| = � − 1, since z is not an integer), then we would
have � − 1 ∈ A, which contradicts (since � − 1 < �) that � is the least element of
A. Thus, � − 1 < |z| < �. Now if z > 0, we get n < z < n + 1, where n = � − 1. If
z < 0, then we obtain � − 1 < −z < �, or after multiplying through by −1, we see
that n < z < n + 1, where n = −�. This proves existence.

12The “Archimedean property” might equally well be called the “Eudoxan property” after Eudoxus
of Cnidus (408 B.C.–355 B.C.); see [181] and [129, p. 7].
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To prove uniqueness, assume that n ≤ z < n + 1 and m ≤ z < m + 1 for m, n ∈
Z. These inequalities imply that n ≤ z < m + 1, so n < m + 1. Similarly, we have
m < n + 1. Thus, n < m + 1 < (n + 1) + 1 = n + 2, or 0 < m − n + 1 < 2. This
implies that m − n + 1 = 1, or m = n. �

We remark that some authors replace the integer n by the integer n − 1 in the
Archimedean property so that it reads: Given a real number y > 0 and a real number
x , there is a unique integer n such that (n − 1)y ≤ x < ny.We’ll use this formulation
of the Archimedean property in the proof of Theorem 2.38 below.

Using the Archimedean property, we can define the greatest integer function as
follows. Given a ∈ R, we define �a as the greatest integer less than or equal to a,
that is, �a is the unique integer n satisfying the inequalities n ≤ a < n + 1. The
greatest integer function looks like a staircase, as seen in Fig. 2.6. This function will
come up at various times in the sequel. We now prove an important fact concerning
the rational and irrational numbers.

1 2 3−1−2−3

1

2

−1

−2

Fig. 2.6 The greatest integer function

Density of the (ir)rationals

Theorem 2.38 Between every two real numbers there is a rational number and
an irrational number.

Proof Let x < y. We first prove that there is a rational number between x and y.
Indeed, y − x > 0, so by the 1/n-principle, there is a natural number n such that
1/n < y − x . Then by the Archimedean principle, there is an integer m such that
m − 1 ≤ nx < m. The right half of the inequality, namely nx < m, implies that
x < m/n. The other half, m − 1 ≤ nx , implies (recalling that 1/n < y − x)

m

n
− 1

n
≤ x =⇒ m

n
≤ 1

n
+ x =⇒ m

n
< (y − x) + x = y.

Thus, x < m/n < y.
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To prove that between x and y there is an irrational number, note that x − √
2 <

y − √
2, so by what we just proved above, there is a rational number r such that

x − √
2 < r < y − √

2. Adding
√
2, we obtain

x < ξ < y, where ξ = r + √
2.

Note that ξ is irrational, for if itwere rational, then
√
2 = ξ − r would also be rational,

which we know is false. This completes our proof. �

2.7.4 The Nested Intervals Property

A sequence of sets {An} is said to be nested if

A1 ⊇ A2 ⊇ A3 ⊇ · · · ⊇ An ⊇ An+1 ⊇ · · · ,

that is, if Ak ⊇ Ak+1 for each k; here’s a picture to keep in mind:

A3· · · A2 A1

Example 2.26 If An = (

0, 1
n

)

, then {An} is a nested sequence:

(
0

)
1

)
1
2

)
1
3

)
1
n

. . . . . .

An

Note that ∞
⋂

n=1

An =
∞
⋂

n=1

(

0,
1

n

)

= ∅.

Indeed, if x ∈ ⋂

An , whichmeans that x ∈ (

0, 1
n

)

for every n ∈ N, then 0 < x < 1/n
for all n ∈ N. However, by Theorem 2.36, there is an n such that 0 < 1/n < x . This
shows that x /∈ (0, 1/n), contradicting that x ∈ (

0, 1
n

)

for every n ∈ N. Therefore,
⋂

An must be empty.

Example 2.27 Nowon the other hand, if An = [

0, 1
n

]

, then {An} is a nested sequence,
but in that case,

∞
⋂

n=1

An =
∞
⋂

n=1

[

0,
1

n

]

= {0} �= ∅.

The difference between the first example and the second is that the second example
is a nested sequence of closed and bounded intervals. Here, bounded means bounded
above and below. It is a general fact that the intersection of a nested sequence of
nonempty closed and bounded intervals is nonempty. This is the content of the nested
intervals theorem.



100 2 Numbers, Numbers, and More Numbers

Nested intervals theorem

Theorem 2.39 The intersection of a nested sequence of nonempty closed and
bounded intervals in R is nonempty.

Proof Let {In = [an, bn]} be a nested sequence of nonempty closed and bounded
intervals. Being nested, we in particular have I2 = [a2, b2] ⊆ [a1, b1] = I1, and so
a1 ≤ a2 ≤ b2 ≤ b1. Since I3 = [a3, b3] ⊆ [a2, b2], we have a2 ≤ a3 ≤ b3 ≤ b2, and
so a1 ≤ a2 ≤ a3 ≤ b3 ≤ b2 ≤ b1. In general, we see that for every n,

a1 ≤ a2 ≤ a3 ≤ · · · ≤ an ≤ bn ≤ · · · ≤ b3 ≤ b2 ≤ b1.

More visually, we have

[
a1

[
a2

[
a3

. . . [
an

]
bn

. . . ]
b3

]
b2

]
b1

Let a = sup{ak ; k = 1, 2, . . . }, which exists, since all the ak are bounded above (by
each of the bn). By definition of supremum, an ≤ a for each n. Also, since every bn

is an upper bound for the set {ak ; k = 1, 2, . . . }, by definition of supremum, a ≤ bn

for each n. Thus, a ∈ In for each n, and our proof is complete. �
Example 2.28 The “bounded” assumption cannot be dropped, for if An = [n,∞),
then {An} is a nested sequence of closed intervals, but

∞
⋂

n=1

An = ∅.

We end this section with a discussion of maximums and minimums. Given a set A
of real numbers, a number a is called the maximum of A if a ∈ A and a = sup A, in
which case we write a = max A. Similarly, a is called the minimum of A if a ∈ A
and a = inf A, in which case we write a = min A. For instance, 1 = max(0, 1], but
(0, 1) has no maximum, only a supremum, which is also 1. In Problem 4, we prove
that every finite set has a maximum.

� Exercises 2.7

1. What are the supremums and infimums of the following sets? Give careful proofs
of your answers. The “1/n-principle” might be helpful in some of your proofs.

(a) A = {1 + 5
n ; n = 1, 2, 3, . . . } (b) B = {3 − 8

n3
; n = 1, 2, 3, . . . }

(c) C = {

1 + (−1)n 1
n ; n = 1, 2, 3, . . .

}

(d) D = {

(−1)n + 1
n ; n = 1, 2, 3, . . .

}

(e) E =
{
∑n

k=1
1
2k ; n = 1, 2, . . .

}

( f ) F =
{

(−1)n + (−1)n+1

n ; n = 1, 2, 3, . . .
}

.

2. Are the following sets bounded above? Are they bounded below? If the supre-
mum or infimum exists, find it and prove your answer.

(a) A = {

1 + n(−1)n ; n = 1, 2, 3, . . .
}

, (b) B = {

2n(−1)n ; n = 1, 2, 3, . . .
}

.
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3. (Various properties of supremums/infimums)

(a) If A ⊆ R is bounded above and A contains one of its upper bounds, prove
that this upper bound is in fact the supremum of A.

(b) Let A ⊆ R be a nonempty bounded set. For x, y ∈ R, define a new set
x A + y by x A + y := {xa + y ; a ∈ A}. Consider the case y = 0. Prove
that

x > 0 =⇒ inf(x A) = x inf A, sup(x A) = x sup A;

x < 0 =⇒ inf(x A) = x sup A, inf(x A) = x sup A.

(c) With x = 1, prove that inf(A + y) = inf(A) + y and sup(A + y) =
sup(A) + y.

(d) What are the formulas for inf(x A + y) and sup(x A + y)?
(e) If A ⊆ B and B is bounded, prove that sup A ≤ sup B and inf B ≤ inf A.

4. In this problem we prove some facts concerning maximums and minimums.

(a) Let A ⊆ R be nonempty. An element a ∈ A is called the maximum, respec-
tively minimum, element of A if a ≥ x , respectively a ≤ x , for all x ∈ A.
Prove that A has a maximum (respectively minimum) if and only if sup A
exists and sup A ∈ A (respectively inf A exists and inf A ∈ A).

(b) Let A ⊆ R and suppose that A has a maximum, say a = max A. Given b ∈
R, prove that A ∪ {b} also has a maximum, and max(A ∪ {b}) = max{a, b}.

(c) Prove that a nonempty finite set of real numbers has a maximum and min-
imum, where by finite we mean a set of the form {a1, a2, . . . , an}, where
a1, . . . , an ∈ R.

5. If A ⊆ R
+ is nonempty and closed under addition, prove that A is not bounded

above. (As a corollary, we get another proof that N is not bounded above.) If
A ⊆ (1,∞) is nonempty and closed under multiplication, prove that A is not
bounded above.

6. Using the Archimedean property, prove that if a, b ∈ R and b − a > 1, then
there is n ∈ Z such that a < n < b. Using this result, can you give another proof
that between every two real numbers there is a rational number?

7. If a ∈ R, prove that |a| = √
a2.

8. Here are some more power rules for you to prove. Let p, q ∈ Q.

(a) If p < q and a > 1, then a p < aq .
(b) If p < q and 0 < a < 1, then aq < a p.
(c) Let a > 0 and let p < q. Prove that a > 1 if and only if a p < aq .

9. (Real numbers to real powers) We define 0x := 0 for all real x > 0; otherwise,
0x is undefined. We now define ax for a > 0 and x ∈ R. First, assume that a ≥ 1
and x ≥ 0.
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(a) Prove that A = {ar ; 0 ≤ r ≤ x , r ∈ Q} is bounded above, where ar is
defined in (2.26). Define ax := sup A. Prove that if x ∈ Q, then this defini-
tion of ax agrees with the definition (2.26).

(b) For a, b, x, y ∈ R with a, b ≥ 1 and x, y ≥ 0, prove that

ax · ay = ax+y; ax · bx = (ab)x ; (

ax
)y = axy . (2.28)

(In the equality (ax )y = axy , you should first show that ax ≥ 1, so (ax )y is
defined.)

(c) If 0 < a < 1 and x ≥ 0, defineax := 1/(1/a)x ; note that 1/a > 1, so (1/a)x

is defined. Finally, if a > 0 and x < 0, define ax := (1/a)−x ; note that−x >

0, so (1/a)−x is defined. Prove (2.28) for all a, b, x, y ∈ R with a, b > 0
and x, y ∈ R.

10. Let p(x) = ax2 + bx + c be a quadratic polynomial with real coefficients and
with a �= 0. Prove that p(x) has a real root (that is, an x ∈ R with p(x) = 0) if
and only if b2 − 4ac ≥ 0, in which case the root(s) are given by the quadratic
formula:

x = −b ± √
b2 − 4ac

2a
.

11. Let {In = [an, bn]} be a nested sequence of nonempty closed and bounded inter-
vals and put A = {an ; n ∈ N} and B = {bn ; n ∈ N}. Show that sup A and inf B
exist and

⋂

In = [sup A, inf B].
12. In this problem we give a characterization of the completeness axiom (C) of R

in terms of intervals as explained in [50]. A subset A of R is convex if given x
and y in A and t ∈ R with x < t < y, we have t ∈ A.

(a) Prove that all convex subsets of R are intervals.
(b) Let us pretend that instead of assuming axiom (C) forR, we take as an axiom

that all convex subsets of R are intervals. Prove the completeness property
(C) of R. Suggestion: Let I be the set of all upper bounds of a nonempty set
A that is bounded above. Show that I is convex.

This problem shows that the completeness axiom is equivalent to the statement
that all convex sets are intervals.

2.8 � Construction of the Real Numbers via Dedekind
Cuts

Wetake as our starting point the existence of the orderedfieldQof rational numbers.13

Then following Richard Dedekind’s (1831–1916) book Continuity and Irrational
Numbers [59],we construct the real numbers as certain sets of rational numbers called

13The rationals are not difficult to construct from the integers; see, for instance, [149].
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“cuts.” This construction, like all our set theory, is from the “very naive” viewpoint.
We shall focus on understanding conceptually how the reals and its operations arise
geometrically from the rationals, leaving many of the tedious details to the reader.
You can also check out [149], which has a complete account of all the details. In
Edmund Landau’s (1877–1938) famous book [137, p. xi] in which he constructs the
real numbers, he wrote (dated 1929)

I hope that I have written this book, after a preparation stretching over decades, in such a way
that a normal student can read it in two days. And then (since he already knows the formal
rules from school) he may forget its contents, with the exception of the axiom of induction
and of Dedekind’s fundamental theorem.

Although one could read Landau’s book in two days, few beginners could fully
comprehend his book in two days. Tomaster the ideas presented here, we recommend
this section to be read slowly, taking more than two days!

2.8.1 Construction of the Reals from the Rationals

We are given the rational numbers; the usual picture is that the rationals are laid out
in a line but that there are lots of tiny gaps at the irrationals (Fig. 2.7).

0 1 2 3 4 5−1−2−3−4−5

Fig. 2.7 Here, we draw the rationals as the small vertical sticks. For clarity of our pictures, we will
henceforth leave out the sticks

The goal of this section is to fill in the holes. In order to gain some insight, let us
assume for the moment that we are given the real numbers. We ask:

How can we uniquely describe a real number using rational numbers?

To answer this question, recall that we used a left-infinite open interval in our proof
on p. 93 that

√
2 exists; there we used an interval of real numbers, but we could have

used an interval of rational numbers (Fig. 2.8).

√
20

{x ∈ Q ; x <
√
2}

the set of x ∈ Q such that x <
√
2

Fig. 2.8 The number
√
2 is the supremum of the set shown

Actually, at that point we did not know that
√
2 existed, so we should write the

interval in a way that does not mention
√
2:
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√
20

{x ∈ Q ; x2 < 2 or x ≤ 0}
the set of x ∈ Q such that x2 < 2 or x ≤ 0

The idea here is that
√
2 “cuts” Q into two halves and is the supremum (respectively

infimum) of the left (respectively right) half. More generally, for every a ∈ R (still
temporarily assuming that R is given), the intuition is that a “cuts” the rational
numbers into left and right halves (Fig. 2.9).

a

{x ∈ Q ; x < a}

Fig. 2.9 The real number a “cuts” the rationals into left and right halves. We will focus on the left
side of the “cut”

Then a is uniquely determined as the supremum of the set {x ∈ Q ; x < a}. Thus,
we have a one-to-one correspondence:

real numbers ←→ left-infinite open intervals of rationals.

For simplicity, we shall call a “left-infinite open interval of rationals” a cut (or
Dedekind cut). Conclusion: Assuming that real numbers are given, we see that the
real numbers are in one-to-one correspondence with cuts! Now comes Dedekind’s
stroke of genius [59].

Idea : Since real numbers are in one-to-one correspondence with cuts . . .

why don’t we just define real numbers to be cuts!

This indeed is what we shall do! Before moving on, let’s define cuts in a precise way.
A cut is a nonempty set a ⊆ Q that is (1) bounded above; (2) left-infinite; and (3)
has no maximum element. Explicitly, a nonempty set a ⊆ Q is a cut if:

(1) There is y ∈ Q such that for all x ∈ a, x ≤ y.
(2) If x ∈ a, then for all r ∈ Q with r < x , we have r ∈ a.
(3) If x ∈ a, then there is r ∈ a such that x < r .

You should picture a cut as in Fig. 2.10. We no longer have to assume that R exists,
for now we can define it. We come to the main definition of this section:

a

Fig. 2.10 A cut is a left-infinite open interval of rationals. We will see later (Theorem 2.42) that
the hole you see is the cut a!
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The set of real numbers R is, by definition, the collection of cuts.
A real number is a cut. Thus,R := {a ; a is a cut}.

Thus, real number and cut are synonyms.

2.8.2 Examples of Cuts

Example 2.29 Here are some cuts representing rational numbers (Fig. 2.11).

0 1 2−1−2

a1 = {x ∈ Q ; x < 1/2}

0 1 2−1−2

a2 = {x ∈ Q ; x < 1}

0 1 2−1−2

a3 = {x ∈ Q ; x < −3/2}

Fig. 2.11 The rational numbers 1/2, 1, and −3/2 are the cuts a1, a2, a3

There are also cuts representing irrational numbers; here again is our motivating
example

√
2 (Fig. 2.12).

0 1 2

√
2 := {x ∈ Q ; x2 < 2 or x ≤ 0}

Fig. 2.12
√
2 is defined as a cut

Although it’s obvious that
√
2 is a cut, we do have to prove it. See Problem 2.

In general, given a rational number a, we define the real number a∗ as follows:

Rational numbers define real numbers : a∗ := {x ∈ Q ; x < a}.

In this way, we can think of Q as a subset of R. Let’s prove that a∗ is a cut. Note that
a∗ is bounded above by a + 1 and by definition it’s left-infinite. To see that a∗ has
no maximum element, let x ∈ a∗. Then x < a, so their average r := (x + a)/2 is a
rational number, and it’s easy to check that r ∈ a∗ and x < r . Thus, a∗ is a cut.



106 2 Numbers, Numbers, and More Numbers

Particularly important real numbers include

0∗ := {x ∈ Q ; x < 0} and 1∗ := {x ∈ Q ; x < 1}.

See Fig. 2.13 for pictures of 0∗ and 1∗. As explained in Problem 12, we can treat
a rational number a and its corresponding real number a∗ as identical. We use the
star ∗ during the construction of R for purposes of clarity; after the construction, we
shall never write a∗ for a rational a again!

0∗ = {x ∈ Q ; x < 0}
0 1

0 1

1∗ = {x ∈ Q ; x < 1}

Fig. 2.13 The real numbers 0∗ and 1∗

In order to present the next two examples, we shall assume knowledge of limits
from elementary calculus, leaving their rigorous development for Chapter 3.

Example 2.30 On p. 226 we will define the real number e as the limit

e = lim
n→∞

(

1 + 1

n

)n

.

In decimal notation to be covered in Section3.8 on p. 226, we have e = 2.71828 . . .

Here’s a cut that one might believe defines e.

32100 e

ε = {x ∈ Q ; x < e}

Fig. 2.14 Is ε = {x ∈ Q ; x < e} a valid cut for e?

Unfortunately, this cut is cheating, since e is known to be irrational, which we’ll
prove in Theorem 3.31 on p. 222; hence the cut ε in Fig. 2.14 is not entirely written
in terms of rational numbers. We can fix this issue as follows. For each n, let

en =
(

1 + 1

n

)n

.

We have e1 = (1 + 1)1 = 2, e2 = (1 + 1/2)2 = 21
4 and so forth. The sequence

e1, e2, e3, . . . increases upward toward e as shown here:

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
http://dx.doi.org/10.1007/978-1-4939-6795-7_3
http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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e1 e2 e3 e4

0 1 2 3

e1 < e2 < e3 < e4 < · · · are converging to e

Now for each n, each en is a rational number, so the following cut make sense:

e∗
n = {x ∈ Q ; x < en}.

We can now define e as the cut (see Problem 3)

e :=
∞
⋃

n=1

e∗
n .

Here’s a picture of e (Fig. 2.15).

0 e11 3

e∗
1 = {x ∈ Q ; x < e1}

0 e21 2 3

e∗
2 = {x ∈ Q ; x < e2}

...
...

...

0 1 2 3
e = e∗

1 ∪ e∗
2 ∪ e∗

3 ∪ e∗
4 ∪ e∗

5 ∪ e∗
6 ∪ · · ·

Fig. 2.15 The real number e is a union of cuts

Example 2.31 In Theorem 5.3 on p. 389 we will express the real number π =
3.14159 . . . as the limit

π = lim
n→∞ pn ,

where for each n, we have

pn = 2 · 1
1

· 2
1

· 2
3

· 4
3

· 4
5

· 6
5

· 6
7

· 8
7

· · · 2n

2n − 1
· 2n

2n + 1
.

We have p1 < p2 < p3 < p4 < · · · and these numbers increase to π. For each n,
define the cut

p∗
n = {x ∈ Q ; x < pn}.

Then we can define π as the cut

π :=
∞
⋃

n=1

p∗
n ,

http://dx.doi.org/10.1007/978-1-4939-6795-7_5
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as shown here:

0 1 2 3
π = p∗

1 ∪ p∗
2 ∪ p∗

3 ∪ p∗
4 ∪ p∗

5 ∪ p∗
6 ∪ · · ·

2.8.3 Order and Completeness Are Easy!

Consider rational numbers a and b and their corresponding cuts a∗ = {x ∈ Q ; x <

a} and b∗ = {x ∈ Q ; x < b}. Here’s a picture (Fig. 2.16).

0 a

a∗ = {x ∈ Q ; x < a}

0 b

b∗ = {x ∈ Q ; x < b}

a ≤ b if and only if a∗ ⊆ b∗

Fig. 2.16 Inequalities are equivalent to subset inclusion!

This picture suggests the following lemma (we leave its proof for Problem 4).

Lemma 2.40 For rational numbers a, b, we have a ≤ b if and only if their cuts
satisfy a∗ ⊆ b∗, and a = b if and only if a∗ = b∗.

Due to this lemma, for every two real numbers a, b (which, remember, are just
cuts), we declare the following definition of inequality.

Definition of inequality : We define a ≤ b if a ⊆ b.

Of course,
b ≥ a is an equivalent way to write a ≤ b,

and
we write a < b if a ≤ b and a �= b.

This definition of inequality behaves exactly as you think. For example, for all real
numbers a, b, c, we have transitivity,

a ≤ b and b ≤ c =⇒ a ≤ c ,
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and trichotomy: Exactly one of the following holds,

a = b , a < b , or a > b .

You will prove these results in Problem 5.

Example 2.32 For a and b rational numbers, observe that

a ≤ b ⇐⇒ a∗ ≤ b∗ ;

Here, the left-hand “≤” is an inequality inQ, while the right-hand “≤” is an inequality
inR. Indeed, Lemma 2.40 says that a ≤ b if and only if a∗ ⊆ b∗, which by definition
of “≤” in R, means that a∗ ≤ b∗. Thus, the ordering in Q is consistent with the
ordering of rational numbers in R.

Now that we have a relation “≤” we can define upper bounds, least upper bounds,
etc., exactly as we discussed throughout Section2.7.1 starting on p. 90. What I like
about Dedekind’s description of R is that the completeness axiom is immediate.

The completeness axiom holds!

Theorem 2.41 Every bounded nonempty subset of R has a supremum, that is, a
least upper bound.

Proof Before we get to the proof, consider as an example, to gain insight, the set
A ⊆ R, consisting of five points, shown in Fig. 2.17. By definition of real numbers,
the set A is a collection of cuts. So, each point in Fig. 2.17 is really a cut. Thus, let us
picture the five points in Fig. 2.17 as the cuts in Fig. 2.18. It’s clear that the “biggest”
cut—the supremum of A—is obtained by taking the union of each of the cuts. This
idea in fact always works: Given a subset of R bounded above, if we take the union
of its elements, we get the supremum of the set! Fig. 2.19 reiterates this idea. And
now back to the proof of our theorem. Let A ⊆ R be nonempty and bounded above;
we must prove that A has a supremum. As proved in Problem 3, the following is a
cut:

A

Fig. 2.17 If we think of R as a line, the subset A of R is a collection of points on the line. We want
to find sup A

b :=
⋃

a∈A

a.

We claim that b is the supremum of A. First, if a ∈ A, then since b is the union of all
such a’s, we certainly have a ⊆ b, which is to say, a ≤ b. Thus, b is an upper bound.
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Union the above rays to get the supremum ray:

Fig. 2.18 The points in A are really cuts of Q. To find the “biggest” cut, all we do is take their
union!

A

supA

Fig. 2.19 The supremum of a set bounded above is obtained by taking the union of its points (the
points are sets, so we can take their union)

We now prove that b is the least of all upper bounds, so suppose c is another upper
bound. This means that for all a ∈ A, we have a ≤ c, that is, a ⊆ c. It follows that
the union of all the a’s is also a subset of c:

b :=
⋃

a∈A

a ⊆ c.

Thus, b ≤ c, so b is the least of all upper bounds. �

We know that a rational number a gives the real number

a∗ = {x ∈ Q ; x < a}.

Since x < a is equivalent to the corresponding real numbers satisfying x∗ < a∗ (see
our discussion in Example 2.32), we can write

a∗ = {x ∈ Q ; x∗ < a∗} for a rational number a.

Now if a is a real number, we will prove an analogous formula (see Theorem 2.42
below):

a = {x ∈ Q ; x∗ < a}.

Note that on the right-hand side, x∗ refers to the real number x∗ = {r ∈ Q ; r < x},
and the inequality “x∗ < a” is meant in the sense of real numbers, that is,

(1) {r ∈ Q ; r < x} ⊆ a and (2) {r ∈ Q ; r < x} �= a. (2.29)
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Thus, we can picture arbitrary cuts as left-infinite open intervals of rational numbers
starting from a (Fig. 2.20).

a

a = {x ∈ Q ; x∗ < a}

Fig. 2.20 The cut (real number) a equals {x ∈ Q ; x∗ < a}

Theorem 2.42 For every real number a, we have

a = {x ∈ Q ; x∗ < a};

that is, for a rational number x, we have x ∈ a ⇐⇒ x∗ < a.

Proof Let α = {x ∈ Q ; x∗ < a}; we will show that a = α. Since both a and α are
subsets of Q, we need to show that a ⊆ α and α ⊆ a.

Proof that a ⊆ α: Let x ∈ a. To prove that x ∈ α, we need to show that x∗ < a,
which means that (1) and (2) in (2.29) hold. To prove (1), let r ∈ Qwith r < x . Since
x ∈ a and a is left-infinite (by definition of a cut), we have r ∈ a. This proves (1).
Also, since x ∈ a and a has no maximum element, there is a rational number s ∈ a
with x < s. Therefore, s ∈ a and s is not in {r ∈ Q ; r < x}. This proves (2).

Proof that α ⊆ a: Let x ∈ α; wewill show that x ∈ a. By definition ofα, x∗ < a,
which means that (1) and (2) in (2.29) hold. In particular, (2) implies that there is
a rational number y ∈ a such that y ≥ x . If y = x , then x ∈ a, and if y > x , then
since a is left-infinite (by definition of a cut), we also have x ∈ a. �

2.8.4 Operations on the Reals

We now show that the set R we’ve defined satisfies all the ordered field axioms
discussed on p. 75. We first define addition. How do we define the sum of cuts?
Consider first rational numbers a, b and their corresponding cuts a∗ and b∗ shown
in the first two pictures here.
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0 a

a∗ = {x ∈ Q ; x < a}

0 b

b∗ = {y ∈ Q ; y < b}

0 a + b

(a + b)∗ = {x + y ; x ∈ a∗ , y ∈ b∗}

Fig. 2.21 One can show that (a + b)∗ := {z ∈ Q ; z < a + b} equals the set {x + y ; x ∈ a∗ , y ∈
b∗}

It’s not difficult to prove that the following equality is true regarding the cut
corresponding to the rational number a + b (see the last picture in Fig. 2.21):

(a + b)∗ = {x + y ; x ∈ a∗ , y ∈ b∗}.

Inspired by this observation, we make the following definition for all real numbers
a, b ∈ R:

Definition of addition : a + b := {x + y ; x ∈ a , y ∈ b}.

Of course, we should check that the right-hand side is indeed a cut.

Sum of cuts is a cut

Lemma 2.43 For real numbers a, b, the sum a + b is also a real number.

Proof To show that a + b is a cut, we need to show that it’s a subset of Q, that is,
that it is

(1) bounded above; (2) left-infinite; (3) has no maximum element.

Proof of (1): By the definition of cut, there are rational numbers c1 and c2 such
that for all x ∈ a and y ∈ b, we have x ≤ c1 and y ≤ c2. Hence, for all x ∈ a and
y ∈ b, x + y ≤ c, where c = c1 + c2. Thus, a + b is bounded above by the rational
number c.

Proof of (2): Let p ∈ a + b, say p = x + y, where x ∈ a and y ∈ b, and let r < p;
we must show that r ∈ a + b. However, observe that since p = x + y and r < p,
we have r < x + y. Hence, r − y < x , and therefore, since a is a cut, we know that
r − y ∈ a. Since we already know that y ∈ b, it follows that

r = (r − y) + y ∈ a + b.

Thus, a + b is left-infinite.
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Proof of (3): Again let p ∈ a + b, say p = x + y, where x ∈ a and y ∈ b; we
must show that there is r ∈ a + b with p < r . However, since a is a cut, there is an
element s ∈ a with x < s. Therefore, if we let r := s + y, then r ∈ a + b and

p = x + y < s + y = r.

This shows that a + b has no maximum element. �

We now consider additive inverses. Given a rational number a, its additive inverse
−a defines the cut

(−a)∗ = {x ∈ Q ; x < −a} = {x ∈ Q ; −x > a} ,

where we used that x < −a is equivalent to−x > a. Since−x > a is also equivalent
to the real number inequality (−x)∗ > a∗, we can write

(−a)∗ = {x ∈ Q ; a∗ < (−x)∗}.

Here’s a picture (Fig. 2.22).

0 a

a∗ = {x ∈ Q ; x < a}

0−a

(−a)∗ = {x ∈ Q ; a∗ < (−x)∗}

Fig. 2.22 For x ∈ Q, we have x < −a if and only if a∗ < (−x)∗

Generalizing to real numbers now, we are led to make the following definition of
the additive inverse of a real number a.

Definition of additive inverse : − a := {x ∈ Q ; a < (−x)∗}.

In Problem 9 you will prove that −a is indeed a real number. As usual, subtraction
is defined, for all real numbers a, b ∈ R, by

a − b := a + (−b).

We define the set of positive real numbers (or positive cuts) as

R
+ := {a ∈ R ; a > 0∗} ⊆ R .
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To define multiplication, again consider two rational numbers a, b and assume
that a and b are positive. Then it’s not difficult to prove that the following equality
is true regarding the cut corresponding to the rational number ab (see Fig. 2.23):

(ab)∗ = {x ∈ Q ; x ≤ 0} ∪ {xy ; x ∈ a∗ , y ∈ b∗ , x, y > 0}.

0 a

a∗ = {x ∈ Q ; x < a}

0 b

b∗ = {x ∈ Q ; x < b}

0 ab

(ab)∗ = {x ∈ Q ; x ≤ 0} ∪ {xy ; x ∈ a∗ , y ∈ b∗ , x, y > 0}

Fig. 2.23 Onecan show that (ab)∗ := {z ∈ Q ; z < ab}, equals the set {x ∈ Q ; x ≤ 0} ∪ {xy ; x ∈
a∗ , y ∈ b∗ , x, y > 0}

Inspired by this observation, we make the following definition for all positive real
numbers a, b ∈ R

+.

Definition of multiplication :
a · b := {x ∈ Q ; x ≤ 0} ∪ {xy ; x ∈ a , y ∈ b , x, y > 0}.

In Problem 11 you will prove that a · b is a cut. You will also define multiplication
of real numbers that may not both be positive.

Finally, we consider multiplicative inverses. If a is a positive rational number,
observe that (see Fig. 2.24)

(a−1)∗ := {x ∈ Q ; x < a−1} = {x ∈ Q ; x ≤ 0} ∪ {x ∈ Q ; x < a−1 , x > 0}
= {x ∈ Q ; x ≤ 0} ∪ {x ∈ Q ; a < x−1 , x > 0}
= {x ∈ Q ; x ≤ 0} ∪ {x ∈ Q ; a∗ < (x−1)∗ , x > 0}.

Again, it’s always good to have a corresponding picture.
Generalizing to real numbers, we make the following declaration for a ∈ R

+.

Definition of multiplicative inverse :
a−1 := {x ∈ Q ; x ≤ 0} ∪ {x ∈ Q ; a < (x−1)∗ , x > 0}.

In Problem 13 you will prove that a−1 is indeed a real number. If a is a negative real
number, meaning a < 0∗, we define
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0 a

a∗ = {x ∈ Q ; x < a}

0 1/a

(a−1)∗ = {x ∈ Q ; x ≤ 0} ∪ {x ∈ Q ; a∗ < (x−1)∗ , x > 0}

Fig. 2.24 Multiplicative inverse of a positive rational number. In this picture we assume 0 < a < 1,
so 1/a is larger than a

a−1 := (−a)−1,

where −a is the additive inverse of a. Then division is defined, for all real numbers
a, b ∈ R with b �= 0∗, by

a

b
:= a · b−1.

We now come to the main result of this section.

The reals R

Theorem 2.44 The set of real numbers R is a complete ordered field; that is, R

satisfies axioms (A), (M), (D), (P), and (D) listed on pp. 75–79.

We leave some parts of this proof to the problems, and those we don’t ask you
to do, please feel free to try them! Please see [149] for a complete account. Finally,
we remark that as shown in Problem 12, for all intents and purposes we can treat a
rational number a and its corresponding real number a∗ as identical. For this reason,
we can regard Q as a subset of R, and after this section, we shall never again write
a∗ for a.

� Exercises 2.8

1. Judging from the front cover, you can see that my favorite formula is Euler’s
sum for π2/6. Given that π2/6 = 1

12 + 1
22 + 1

32 + 1
42 + · · · , express π2/6 as a

Dedekind cut.
2. (Roots of rational numbers) Let n ∈ N and let a be a positive rational number.

Define
n
√

a := {x ∈ Q ; x ≤ 0} ∪ {x ∈ Q ; xn < a , x > 0}.

Prove that n
√

a is a cut. Suggestion: To prove that n
√

a has no maximum, review
the argument in Step 2 of Theorem 2.32 on p. 93.

3. (Unions of cuts) Let A be a collection of cuts bounded above. Thus, there is a
cut c such that a ≤ c (that is, a ⊆ c) for all a ∈ A. Prove that

⋃

a∈A a is also a
cut.

4. Prove Lemma 2.40.
5. For all real numbers a, b, c, prove transitivity:
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a ≤ b and b ≤ c =⇒ a ≤ c ,

and trichotomy: Exactly one of the following holds,

a = b , a < b , or a > b .

Suggestion: For trichotomy, first prove that two conditions cannot be simultane-
ously satisfied, so we just have to prove that at least one condition is satisfied.
Pick two conditions and assume that they do not hold, and then try to prove that
the third does hold.

6. Let r ∈ Q
+ and let a ∈ R. Prove that a + (−r)∗ < a. Suggestion: If not, prove

that for all x ∈ a, we have x + r ∈ a. Conclude by induction that x + nr ∈ a
for all n ∈ N.

7. In this problem we study a couple of different viewpoints on real numbers. Let
a ∈ R.

(i) Let b =
⋃

x∈a

x∗; that is, b is the union of the points in a, viewed as real

numbers. Prove that a = b.
(ii) Let A = {x∗ ; x ∈ a}; that is, A is the collection of all the rational numbers

in a viewed as real numbers. Prove that sup A = a.
8. Let r ∈ Q

+ and let a ∈ R. Prove that there is a rational number y such that

y∗ < a < (y + r)∗.

Note that y∗ < a just means that y ∈ a. Suggestion: Use that a + (−r/2)∗ < a
from Problem 6, so a + (−r/2)∗ cannot be an upper bound for the set A in
Problem 7.

9. (Additive inverses of cuts) In this problem we study additive inverses.

(a) For every real number a, prove that

−a := {x ∈ Q ; a < (−x)∗}

is a real number. Suggestion: To prove that −a∗ is bounded above, pick
an arbitrary rational number y ∈ a and prove that −y is an upper bound for
−a.

(b) If a > 0∗, prove that −a < 0∗. If a < 0∗, prove that −a > 0∗.
(c) If a ∈ R, prove that exactly one of the following holds: a = 0∗, a ∈ R

+,
−a ∈ R

+.

10. (Addition of cuts)

(a) Prove that addition of real numbers is commutative and associative.
(b) If a ∈ R, prove that a + 0∗ = a.
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Suggestion: Recalling that a + 0∗ and a are sets, you need to show that
a + 0∗ ⊆ a and a ⊆ a + 0∗. To prove the latter, let x ∈ a and pick, using that
a has no maximum element, r ∈ a with x < r . Consider x = r + (x − r).

(c) If a ∈ R, prove that a + (−a) = 0∗.
Suggestion: You need to prove that a + (−a) ⊆ 0∗ and 0∗ ⊆ a + (−a). To
prove the latter, let x ∈ 0∗. Then −x ∈ Q

+. Apply Problem 8 with r = −x .
(d) For a, b ∈ R, prove that a < b ⇐⇒ b − a > 0∗.
(e) For a, b ∈ R, prove that a < b ⇐⇒ b = a + c, where c > 0∗.

11. (Multiplication of cuts)

(a) For positive real numbers a, b, prove that

a · b := {x ∈ Q ; x ≤ 0} ∪ {xy ; x ∈ a , y ∈ b , x, y > 0}

is a real number.
(b) For positive real numbers, prove that multiplication is commutative and

associative.
(c) For positive real numbers, prove the distributive property.
(d) For all positive real numbers a, prove that a · 1∗ = a.
(e) Let

√
2 = {x ∈ Q ; x ≤ 0} ∪ {x ∈ Q ; x2 < 2 , x > 0}. Using the defini-

tion of multiplication of cuts, prove that

√
2 · √

2 = 2∗ , where 2∗ = {x ∈ Q ; x < 2}.

Remark: For real numbers a, b, at least one of which is not positive, we
define

a · b :=

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

0 if either a = 0∗ or b = 0∗,
−(

(−a) · b
)

if a < 0∗ and b > 0∗,
−(

a · (−b)
)

if a > 0∗ and b < 0∗,
(−a) · (−b) if a < 0∗ and b < 0∗.

Based on this case-by-case definition, proving multiplication results by con-
sidering every case can get a bit tedious!

12. Define

f : Q → R by f (a) = a∗ for all a ∈ Q, where a∗ = {x ∈ Q ; x < a}.

(i) Prove that f is an injection. This shows that the image, or range, of f is a
replica of Q. We next prove that f replicates the ordered field properties of
Q.

(ii) Prove that for all a, b ∈ Q, f (a + b) = f (a) + f (b).
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(iii) Prove that for all a, b ∈ Q, f (a · b) = f (a) · f (b). See the remark in the
previous problem for how to define f (a) · f (b) in case f (a) or f (b) is
nonpositive.

(iv) Prove that a ∈ Q
+ ⇐⇒ f (a) ∈ R

+. We conclude that the replica of Q in
R behaves, both algebraically and with respect to order, exactly like Q. For
this reason, we identify Q and the subset of real numbers {a∗ ; a ∈ Q}.

13. (Multiplicative inverses of cuts)

(a) For every positive real number a, prove that

a−1 := {x ∈ Q ; x ≤ 0} ∪ {x ∈ Q ; a < (x−1)∗ , x > 0}

is a real number. (For a negative, we define a−1 := −(−a)−1.) Suggestion:
To prove that a−1 is bounded above, pick an arbitrary rational number y ∈ a
with y > 0 and prove that y−1 is an upper bound for a−1.

(b) Prove that a · a−1 = 1∗ as follows. First prove that a · a−1 ≤ 1∗. To prove
1∗ ≤ a · a−1 is more complicated. Let z ∈ Q with 0 < z < 1. We need to
show that z ∈ a · a−1; to do so, proceed as follows.
(i) Let z1 ∈ Q with z < z1 < 1. Using an inequality property proved in

Problem 10 and the distributive property, prove that a · z∗
1 < a.

(ii) Pick x ∈ Q with a · z∗
1 < x∗ < a (why does such an x exist?) and let

y = x−1z. Prove that y ∈ a−1 and conclude that z ∈ a · a−1.

2.9 m-Dimensional Euclidean Space

The plane R
2 is said to be two-dimensional, because to locate a point in the plane

requires two real numbers, its ordered pair of coordinates. Similarly, we are all
familiar with R

3, which is said to be three-dimensional because to represent any
point in space we need an ordered triple of real numbers. In this section we generalize
these considerations to m-dimensional space R

m and study its properties.

2.9.1 The Vector Space Structure of R
m

Recall that the set R
m is just the product R

m := R × · · · × R (m copies of R), or
explicitly, the set of all m-tuples of real numbers,

R
m := {

(x1, . . . , xm) ; x1, . . . , xm ∈ R
}

.

We call elements of R
m vectors (or points), and we use the notation 0 for the m-

tuple of zeros (0, . . . , 0) (m zeros); it will always be clear from context whether 0
refers to the real number zero or the m-tuple of zeros. In elementary calculus, we
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usually focus on the cases m = 1, m = 2, and m = 3, as shown in Fig. 2.25. Given
x = (x1, . . . , xm) and y = (y1, . . . , ym) in R

m and a real number a, we define

x + y = (x1 + y1, . . . , xm + ym) and a x = (ax1, . . . , axm).

0 x1 x1

x2 (x1, x2)
(x1, x2, x3)

x3

x1

x2

Fig. 2.25 R, R2, and R
3. The zero vector is the origin 0, (0, 0), and (0, 0, 0), respectively

We also define
−x = (−x1, . . . ,−xm).

With these definitions, observe that

x + y = (x1 + y1, . . . , xm + ym) = (y1 + x1, . . . , ym + xm) = y + x

and
x + 0 = (x1 + 0, . . . , xm + 0) = (x1, . . . , xm) = x,

and similarly, 0 + x = x . These computations prove properties (A1) and (A3) below,
and you can check that the following further properties of addition are satisfied:
Addition satisfies

(A1) x + y = y + x (commutative law);
(A2) (x + y) + z = x + (y + z) (associative law);
(A3) there is an element 0 such that x + 0 = x = 0 + x (additive identity);
(A4) for each x , there is −x such that

x + (−x) = 0 and (−x) + x = 0 (additive inverse).

Of course, we usually write x + (−y) as x − y.
Multiplication by real numbers satisfies

(M1) 1 · x = x (multiplicative identity);
(M2) (a b) x = a (bx) (associative law);

and finally, addition and multiplication are related by
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(D) a(x + y) = ax + ay and (a + b)x = ax + bx (distributive law).

Every set with an operation of “+” and an operation of multiplication by real
numbers that satisfies properties (A1)–(A4), (M1)–(M2), and (D), is called a real
vector space. The elements of the set are then called vectors. If the scalars a, b, 1
in (M1)–(M2) and (D) are elements of a field F, then we say that the vector space is
an F vector space or a vector space over F. In particular, R

m is a real vector space.

2.9.2 Inner Products

We now review inner products, also called dot products in elementary calculus. We
all probably know that given any two vectors x = (x1, x2, x3) and y = (y1, y2, y3)
in R

3, the dot product x · y is the number

x · y = x1y1 + x2y2 + x3y3.

We generalize this to R
m as follows: If x = (x1, . . . , xm) and y = (y1, . . . , ym), then

we define the inner product (also called the dot product or scalar product) 〈x, y〉
as the real number

〈x, y〉 = x1y1 + x2y2 + · · · + xm ym =
m
∑

j=1

x j y j .

It is also common to denote 〈x, y〉 by x · y or (x, y), but we prefer the angle bracket
notation 〈x, y〉, which is popular in physics, because the dot “·” can be confused with
multiplication, and the parentheses “( , )” can be confused with ordered pair.

In the following theorem we summarize some of the main properties of 〈·, ·〉.

Theorem 2.45 For all vectors x, y, z in R
m and every real number a,

(i) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.
(ii) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 and 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉.

(iii) 〈a x, y〉 = a〈x, y〉 and 〈x, a y〉 = a〈x, y〉.
(iv) 〈x, y〉 = 〈y, x〉.

Proof To prove (i), just note that

〈x, x〉 = x2
1 + x2

2 + · · · + x2
m

and x2
j ≥ 0 for each j . If 〈x, x〉 = 0, then since the only way a sum of nonnegative

numbers can be zero is that each number is zero, we must have x2
j = 0 for each j .
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Hence, every x j is equal to zero, and therefore, x = (x1, . . . , xm) = 0. Conversely,
if x = 0, that is, x1 = 0, . . . , xm = 0, then of course 〈x, x〉 = 0 too.

To prove (ii), we just compute:

〈x + y, z〉 =
m
∑

j=1

(x j + y j ) z j =
m
∑

j=1

(x j z j + y j z j ) = 〈x, z〉 + 〈y, z〉.

The other identity 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉 is proved similarly. The proofs of (iii)
and (iv) are also simple computations, so we leave their proofs to the reader. �

We remark that every real vector space V with an operation that assigns to every
twovectors x and y inV a real number 〈x, y〉 satisfying properties (i)–(iv) ofTheorem
2.45 is called a real inner product space, and the operation 〈·, ·〉 is called an inner
product on V . In particular, R

m is a real inner product space.

2.9.3 The Norm in R
m

Recall that the length of a vector x = (x1, x2) in R
2, which we denote by |x |, is just

the distance of the point x from the origin, as shown in the picture:

|x| =
√

x
2
1
+ x

2
2 x = (x1, x2)

We generalize this concept as follows. The length or norm of a vector x =
(x1, . . . , xm) in R

m is by definition the nonnegative real number

|x | =
√

x2
1 + · · · + x2

m = √〈x, x〉.

We interpret the norm |x | as the length of the vector x , or the distance of x from the
origin 0. In particular, the squared length |x |2 of the vector x is given by

|x |2 = 〈x, x〉.

Alert: For m > 1, |x | does not mean absolute value of a real number x ; it means
norm of a vector x . However, if m = 1, then “norm” and “absolute value” are the

same, because for x = x1 ∈ R
1 = R, the above definition of norm is

√

x2
1 , which is

exactly the absolute value of x1 according to Problem 7 on p. 102.
The following inequality relates the norm and the inner product. It is commonly

called the Schwarz inequality or Cauchy–Schwarz inequality after Hermann
Schwarz (1843–1921), who proved it for integrals in 1885, and Augustin Cauchy
(1789–1857), who proved it for sums in 1821. However (see [101] for the history), it
should be called the Cauchy–Bunyakovsky–Schwarz inequality, because Viktor
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Bunyakovsky (1804–1889), a student of Cauchy, stated the inequality some 25 years
before Schwarz. (Note: There is no “t” before the “z” in “Schwarz.” The German
mathematician Hermann Schwarz is not to be confused with the French mathemati-
cian Laurent-Moïse Schwartz (1915–2002).)

CBS inequality

Theorem 2.46 For all vectors x, y in R
m, we have

|〈x, y〉| ≤ |x | |y| CBS inequality.

Proof If y = 0, then both sides of the CBS inequality are zero, so we henceforth
assume that y �= 0. Taking the squared length of the vector x − 〈x,y〉

|y|2 y, we get

0 ≤
∣

∣

∣x − 〈x, y〉
|y|2 y

∣

∣

∣

2 =
〈

x − 〈x, y〉
|y|2 y, x − 〈x, y〉

|y|2 y
〉

= 〈x, x〉 − 〈x, y〉
|y|2 〈x, y〉 − 〈x, y〉

|y|2 〈y, x〉 + 〈x, y〉 〈x, y〉
|y|4 〈y, y〉

= |x |2 − 〈x, y〉2
|y|2 − 〈x, y〉2

|y|2 + 〈x, y〉2
|y|2 .

Canceling the last two terms, we see that

0 ≤ |x |2 − 〈x, y〉2
|y|2 , or 〈x, y〉2 ≤ |x |2|y|2.

Taking square roots proves theCBS inequality.As a side remark, the vector x − 〈x,y〉
|y|2 y

whose squared length we took didn’t come out of a hat! You might recall (or you
can look it up) from your “multivariable calculus” or “vector calculus” course that
the projection of x onto y and the projection of x onto the orthogonal complement
of y are given by 〈x,y〉

|y|2 y and x − 〈x,y〉
|y|2 y, respectively, as seen here:

x − 〈x, y〉
|y|2 y

y

x

〈x, y〉
|y|2 y

Thus, all we did above was take the squared length of the projection of x onto the
orthogonal complement of y. �

In the following theorem we list some of the main properties of the norm | · |.
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Theorem 2.47 For all vectors x, y in R
m and every real number a,

(i) |x | ≥ 0 and |x | = 0 if and only if x = 0.
(ii) |a x | = |a| |x |.

(iii) |x + y| ≤ |x | + |y| (triangle inequality).
(iv) | |x | − |y| | ≤ |x ± y| ≤ |x | + |y|.

Proof Property (i) of Theorem 2.45 implies (i). To prove (ii), observe that

|ax | = √〈ax, ax〉 =
√

a2 〈x, x〉 = |a|√〈x, x〉 = |a| |x |,

and therefore |ax | = |a| |x |. To prove the triangle inequality, we use theCBS inequal-
ity to get

|x + y|2 = 〈x + y, x + y〉 = |x |2 + 〈x, y〉 + 〈y, x〉 + |y|2
= |x |2 + 2〈x, y〉 + |y|2
≤ |x |2 + 2|x | |y| + |y|2,

where we used that 〈x, y〉 ≤ |〈x, y〉| ≤ |x | |y|, which follows from the CBS inequal-
ity. Thus,

|x + y|2 ≤ (|x | + |y|)2.

Taking the square root of both sides proves the triangle inequality.
The second half of (iv) follows from the triangle inequality:

|x ± y| = |x + (±1)y| ≤ |x | + |(±1)y| = |x | + |y|.

To prove the first half, | |x | − |y| | ≤ |x ± y|, we use the triangle inequality to get

|x | − |y| = |(x − y) + y| − |y| ≤ |x − y|+|y| − |y| = |x − y|
=⇒ |x | − |y| ≤ |x − y|. (2.30)

Switching the letters x and y in (2.30), we get |y| − |x | ≤ |y − x |, or equivalently,
−(|x | − |y|) ≤ |x − y|. Combining this with (2.30), we see that

|x | − |y| ≤ |x − y| and − (|x | − |y|) ≤ |x − y|.

By the definition of absolute value, it follows that | |x | − |y| | ≤ |x − y|. Replacing
y with −y and using that | − y| = |y|, we get | |x | − |y| | ≤ |x + y|. This finishes
the proof of (iv). �

We remark that every real vector space V with an operation that assigns to every
vector x in V a nonnegative real number |x | such that | · | satisfies properties (i)–(iii)
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of Theorem 2.47 is called a real normed space, and the operation | · | is called a
norm on V . In particular, R

m is a real normed space. Problem 7 in the exercises
explores a different norm on R

m .
In analogy with the distance between two real numbers, we define the distance

between two vectors x and y in R
m to be the number

|x − y|.

In particular, the triangle inequality implies that given any other vector z, we have

|x − y| = |(x − z) + (z − y)| ≤ |x − z| + |z − y|,

that is,
|x − y| ≤ |x − z| + |z − y|. (2.31)

If m = 2 and we plot x, y and z in the plane and then draw the triangle with vertices
at x, y, z, then (2.31) says that the distance between the two points x and y is shorter
than the distance traversed by going from x to z and then from z to y; see Fig. 2.26.

x

z

y

|x − y|

|x − z| |z − y|

Fig. 2.26 Why the triangle inequality (2.31) is obvious

Finally, we remark that the norm | · | on R
m is sometimes called the ball norm

on R
m for the following reason. Let r > 0, take for example m = 3, and let x =

(x1, x2, x3) ∈ R
3. Then |x | < r means that

√

x2
1 + x2

2 + x2
3 < r , or squaring both

sides, we get
x2
1 + x2

2 + x2
3 < r2,

which simply says that x is inside the ball of radius r . So if c ∈ R
3, then |x − c| < r

just means that
(x1 − c1)

2 + (x2 − c2)
2 + (x3 − c3)

2 < r2,

which is to say that x is inside the ball of radius r that is centered at the point
c = (c1, c2, c3):
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c

r
(x1 − c1)2 + (x2 − c2)2 + (x3 − c3)2 < r2

Generalizing this notion to m-dimensional space, given c in R
m , we call the set of

all x such that |x − c| < r , or after squaring both sides,

(x1 − c1)
2 + (x2 − c2)

2 + · · · + (xm − cm)2 < r2,

the open ball of radius r centered at c.We denote this set by Br , or Br (c) to emphasize
that the center of the ball is c. In set notation, we have

Br (c) := {x ∈ R
m ; |x − c| < r}. (2.32)

The set of x with < replaced by ≤ is called the closed ball of radius r centered at c
and is denoted by Br or Br (c),

Br (c) := {x ∈ R
m ; |x − c| ≤ r}.

If m = 1, then the ball concept reduces to intervals in R
1 = R:

x ∈ Br (c) ⇐⇒ |x − c| < r ⇐⇒ −r < x − c < r

⇐⇒ c − r < x < c + r ⇐⇒ x ∈ (c − r, c + r).

Thus,
for m = 1, we have Br (c) = (c − r, c + r).

Similarly, for m = 1, Br (c) is just the closed interval [c − r, c + r ].
We end this sectionwith the followingvery important inequality,which you should

memorize:

For all a, b ∈ R, ab ≤ 1

2

(

a2 + b2
)

. (2.33)

To prove this inequality, just multiply out (a − b)2 ≥ 0. This inequality is used to
give another proof of the CBS inequality in Problem 2, but it also has a ton of uses
that you’ll find as you do the problems in this book.

� Exercises 2.9

1. Let x, y ∈ R
m . Prove that

|x + y|2 + |x − y|2 = 2|x |2 + 2|y|2 (parallelogram law).
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Vectors x and y are said to be orthogonal if 〈x, y〉 = 0. Prove that x and y are
orthogonal if and only if

|x + y|2 = |x |2 + |y|2 (Pythagorean theorem).

2. (CBS inequality, Proof II) Here’s another way to prove the CBS inequality.

(i) Let x, y ∈ R
m with |x | = 1 and |y| = 1. Using (2.33), prove that

|〈x, y〉| ≤ 1.
(ii) Now let x and y be arbitrary nonzero vectors of R

m . Applying (b) to the
vectors x/|x | and y/|y|, derive the CBS inequality.

3. (CBS inequality, Proof III) Here’s an “algebraic” proof. Let x, y ∈ R
m with

y �= 0 and let p(t) = |x + t y|2 for t ∈ R. Note that p(t) ≥ 0 for all t .

(i) Show that p(t) can be written in the form p(t) = a t2 + 2b t + c, where
a, b, c are real numbers with a �= 0.

(ii) Using the fact that p(t) ≥ 0 for all t , prove the CBS inequality. Suggestion:
Write p(t) = a(t + b/a)2 + (c − b2/a).

4. Prove that for all vectors x and y in R
m , we have

2|x |2|y|2 − 2

(

m
∑

n=1

xn yn

)2

=
m
∑

k=1

m
∑

�=1

(xk y� − x�yk)
2 (Lagrange identity),

after Joseph-Louis Lagrange (1736–1813). Suggestion: Observe that

2|x |2|y|2 − 2

(

m
∑

n=1

xn yn

)2

= 2

(

m
∑

k=1

x2k

)(

m
∑

�=1

y2�

)

− 2

(

m
∑

k=1

xk yk

)(

m
∑

�=1

x� y�

)

= 2
m
∑

k=1

m
∑

�=1

x2k y2� − 2
m
∑

k=1

m
∑

�=1

xk yk x� y�.

Prove that
∑m

k=1

∑m
�=1(xk y� − x�yk)

2, when expanded out, has the same form.
5. (CBS inequality, Proof IV, and equality in CBS)

(a) Prove the CBS inequality from Lagrange’s identity.
(b) Using Lagrange’s identity, prove that equality holds in the CBS inequality

(that is, |〈x, y〉| = |x | |y|) if and only if x and y are collinear, which is to
say that x = 0 or y = c x for some c ∈ R.

(c) Instead of using Lagrange’s identity, go back through the proof of Theorem
2.46 and from that argument, prove that equality holds in the CBS inequality
if and only if x and y are collinear.

(d) Now show that equality holds in the triangle inequality (that is, |x + y| =
|x | + |y|) if and only if x = 0 or y = c x for some c ≥ 0.
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6. (Laws of trigonometry) In this problem we assume knowledge of the trigonomet-
ric functions; see Section4.9 for a rigorous development of these functions.By the
CBS inequality, given any two nonzero vectors x, y ∈ R

m , we have |〈x,y〉|
|x | |y| ≤ 1. In

particular, there is a unique angle θ ∈ [0,π] such that cos θ = 〈x,y〉
|x | |y| . The number

θ is by definition the angle between the vectors x, y.

(a) Consider the triangle seen here:

A

C

B
α

γ

β

c = |A − B|

b = |A − C| a = |C − B|

Prove the following three laws of cosines:

a2 = b2 + c2 − 2bc cosα , b2 = a2 + c2 − 2ac cosβ , c2 = a2 + b2 − 2ab cos γ.

Suggestion: To prove the last equality, observe that c2 = |A − B|2 = |x −
y|2, where x = A − C , y = B − C . Compute the dot product |x − y|2 =
〈x − y, x − y〉.

(b) Using that sin2 α = 1 − cos2 α and that a2 = b2 + c2 − 2bc cosα, prove
that

sin2 α

a2
= 4

s(s − a)(s − b)(s − c)

a2 b2 c2
, (2.34)

where s := (a + b + c)/2 is called the semiperimeter. From (2.34), con-
clude that

sinα

a
= sin β

b
= sin γ

c
(law of sines).

(c) Assume the following formula: Area of a triangle = 1
2 base × height. Use

this formula together with (2.34) to prove that the area of the triangle above
is given by

Area = √

s(s − a)(s − b)(s − c) (Heron’s formula),

a formula named after Heron of Alexandria (c. 10–c. 75).

7. For x = (x1, x2, . . . , xm) in R
m , define

‖x‖∞ = max
{|x1|, |x2|, . . . , |xm |},

called the sup (or supremum) norm. Of course, we we need to show that this is
a norm.

(a) Show that ‖ · ‖∞ defines a norm on R
m , that is, ‖ · ‖∞ satisfies properties

(i)–(iii) of Theorem 2.47.

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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(b) In R
2, what is the set of all points x = (x1, x2) such that ‖x‖∞ ≤ 1? Draw

a picture of this set. Do you see why ‖ · ‖∞ is often called the box norm?
(c) Show that for every x in R

m , ‖x‖∞ ≤ |x | ≤ √
m ‖x‖∞, where |x | denotes

the usual ball norm of x .
(d) Let r > 0 and let Br denote the closed ball in R

m of radius r centered at
the origin (the set of x in R

m such that |x | ≤ r ). Let Boxr denote the closed
ball in R

m of radius r in the sup norm centered at the origin (the set of x
in R

m such that ‖x‖∞ ≤ r ). Prove that B1 ⊆ Box1 ⊆ B√
m . When m = 2,

give a “proof by picture” of these set inequalities by drawing the three sets
B1, Box1, and B√

2.

2.10 The Complex Number System

Imagine a world in which we could not solve the equation x2 − 2 = 0. This is an
exclusively rational numbers world. Such a world is a world in which the length
of the diagonal of a unit square would not make sense; a very poor world indeed!
Imagine now a world in which every time we tried to solve a quadratic equation such
as x2 + 1 = 0, we got “stuck” and could not proceed further. The complex number
system (introducing so-called “imaginary numbers”) alleviates this inconvenience
to mathematics and in fact also to science, since it turns out that complex numbers
are necessary for describing nature.14

Remark: This book is considered a real analysis book, so you may wonder why
complex numbers are here. The answer is that real analysis is not just about real
numbers! Real analysis is more the study of limit processes, including sequences,
series, continuity, and so forth, which traditionally were developed for analyzing
real numbers and real-valued functions of a real variable; hence the name “real
analysis.” These “real variable techniques” apply not only to real numbers, but also
to complex numbers and even vectors, so these topics fit naturally in a real analysis
course. “Complex analysis,” on the other hand, is not just about complex numbers! It
more refers to the notions surrounding the calculus of complex-valued functions of a
complex variable, in particular to complex-differentiable (so-called “holomorphic”)
functions.

14“Furthermore, the use of complex numbers is in this case not a calculational trick of appliedmathe-
matics but comes close to being a necessity in the formulation of the laws of quantummechanics…It
is difficult to avoid the impression that a miracle confronts us here.” Nobel laureate Eugene Wigner
(1902–1995) responding to the “miraculous” appearance of complex numbers in the formulation
of quantum mechanics. [173, p. 208], [262, 263].
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2.10.1 Definition of Complex Numbers

In high school we learned that a complex, or “imaginary,” number is a “number
of the form a + b i ,” where a and b are real numbers and i is the “imaginary unit”
satisfying i2 = −1.We evenmanipulated complex numbers assuming the usual laws
of arithmetic, such as addition,

(a + b i) + (c + d i) = (a + c) + (b + d) i, (2.35)

and multiplication,

(a + b i) · (c + d i) = ac + ad i + bc i + bd i2

= ac + ad i + bc i − bd

= (ac − bd) + (ad + bc) i. (2.36)

We also found that if a + b i �= 0, then

1

a + b i
= a − b i

(a + b i)(a − b i)
= a − b i

a2 + b2
. (2.37)

If complex numbers are “imaginary,” we certainly manipulated them as if they really
existed! We even drew them in the “complex plane” as if they really existed:

Real axis

Imaginary axis

a + b i

a

b
The complex plane. The number a + b i

is plotted as the point (a, b) in the plane.

Of course, complex numbers are not imaginary at all, and we shall define them now.
The idea is that the so-called “complex plane” looks the same as R

2, the real two-
dimensional plane, which is already defined! So why not define complex numbers
as elements of R

2? With this in mind, we define the complex number system C as
the set R

2 together with the following arithmetic rules. Let z, w ∈ C, which means
z = (a, b) and w = (c, d) for real numbers a, b, c, d. Since z and w are vectors in
R

2, from Section2.9 we already know how to add z and w:

z + w = (a + c, b + d),

which is the ordered pair version of the identity (2.35). The new ingredient is multi-
plication: Led by (2.36), we define

z · w = (ac − bd , ad + bc) ; (2.38)
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we sometimes drop the dot and just write zw. We define −z = (−a,−b), and we
write 0 for (0, 0). Finally, if z = (a, b) �= 0 (that is, a �= 0 and b �= 0), then led by
(2.37), we define

z−1 =
(

a

a2 + b2
,

−b

a2 + b2

)

. (2.39)

We can then define division as
w

z
:= w · z−1.

In summary, C as a set is just the real vector space R
2 with the extra operation of

multiplication (and division by nonzero elements).

Theorem 2.48 The set of complex numbers is a field with (0, 0) (denoted hence-
forth by 0) and (1, 0) (denoted henceforth by 1) the additive and multiplicative
identities, respectively.

Proof If z, w, u ∈ C, then we need to show that addition satisfies

(A1) z + w = w + z (commutative law);
(A2) (z + w) + u = z + (w + u) (associative law);
(A3) z + 0 = z = 0 + z (additive identity);
(A4) z + (−z) = 0 and (−z) + z = 0 (additive inverse).

We also need to show that multiplication satisfies

(M1) z · w = w · z (commutative law);
(M2) (z · w) · u = z · (w · u) (associative law);
(M3) 1 · z = z = z · 1 (multiplicative identity);
(M4) for z �= 0, we have z · z−1 = 1 and z−1 · z = 1 (multiplicative inverse).

Finally, we need to prove that multiplication and addition are related by

(D) z · (w + u) = (z · w) + (z · u) (distributive law).

The proofs of all these properties are very easy andmerely involve using the definition
of addition and multiplication, so we leave all the proofs to the reader, except for
(M4). Here, by definition of multiplication,

z · z−1 = (a, b) ·
(

a

a2 + b2
,

−b

a2 + b2

)

=
(

a · a

a2 + b2
− b · −b

a2 + b2
, a · −b

a2 + b2
+ b · a

a2 + b2

)

=
(

a2

a2 + b2
+ b2

a2 + b2
, 0

)

= (1, 0) = 1.

Similarly, z−1 · z = 1, and (M4) is proven. �
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2.10.2 Reminiscences of High School

We now explain how to make certain identifications so that our definition of complex
numbers looks exactly like what we learned in high school. First, we consider R a
subset of C by the identification of a real number a with the ordered pair (a, 0); in
other words, for the sake of notational convenience, we do not make a distinction
between the complex number (a, 0) and the real number a. Observe that by definition
of addition of complex numbers,

(a, 0) + (b, 0) = (a + b, 0).

Under our identification, the left-hand side is “a + b,” and the right-hand side is also
“a + b.” By definition (2.38) of complex multiplication, we have

(a, 0) · (b, 0) = (a · b − 0 · 0 , a · 0 + 0 · b) = (ab, 0),

which is to say, “a · b = ab” under our identification. Thus, our identification of R

preserves the arithmetic operations of R. We shall henceforth consider R a subset of
C and write complex numbers of the form (a, 0) as just a.

We define the complex number i , notation introduced in 1777 by Euler [183], as
the complex number

i := (0, 1).

There is certainly nothing “imaginary” about the ordered pair (0, 1)! If seeing is
believing, here’s a picture of this “imaginary” i :

i = (0, 1)

Using the definition (2.38) of complex multiplication, we have

i2 = i · i = (0, 1) · (0, 1)

= (0 · 0 − 1 · 1 , 0 · 1 + 1 · 0) = (−1, 0),

which is to say that i2 = −1 under our identification of (−1, 0) with −1. Thus, the
complex number i = (0, 1) is the “imaginary unit” from years past; however, our
definition of i avoids the mysterious obscurity usually associated with it in high
school.15 Let z = (a, b) be a complex number. Then by the definition of complex

15“That this subject [imaginary numbers] has hitherto been surrounded by mysterious obscurity, is
to be attributed largely to an ill adapted notation. If, for example, +1, −1, and the square root of
−1 had been called direct, inverse and lateral units, instead of positive, negative and imaginary (or
even impossible), such an obscurity would have been out of the question.” Carl Friedrich Gauss
(1777–1855).
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addition and multiplication, the definition of i , and our identification of R as a subset
of C, we see that

a + b i = a + (b, 0) · (0, 1) = a + (b · 0 − 0 · 1, b · 1 + 0 · 0)
= (a, 0) + (0, b)

= (a, b) = z.

Thus, z = a + b i . By commutativity, we also have z = a + i b. In conclusion, we
can write complex numbers just as we did in high school! However, now we know
that i is not “imaginary” but is genuinely defined (as (0, 1)). We call a the real part
of z, and b the imaginary part of z, and we denote them by a = Re z and b = Im z,
so that

z = Re z + i Im z.

From this point on, we shall typically use the notation z = a + b i = a + i b instead
of z = (a, b) for complex numbers.

Before moving on, we remark that the definition (2.38) of multiplication, however
weird it may look, is very concrete viewed geometrically. Consider, for instance,
multiplication by i . If z = a + ib, then

i · z = i · (a + ib) = −b + ia.

Here’s a picture of i · z:

z

a
b

i · z

a

−b
i · z = −b + ia has horizontal component −b

and vertical component a

Notice that i · z is just z = a + ib rotated counterclockwise by 90◦. (Think about
rotating the triangle that z forms by 90◦.) Thus, multiplication by i acts as rotation
by 90◦ counterclockwise! In particular, the “mysterious” identity i · i = −1 just says
that if we rotate the north-pointing unit vector i = (0, 1) by 90◦ counterclockwise,
we get the west-pointing unit vector −1 (that is, (−1, 0)):

i

i · i = −1

Multiplication by general complex numbers acts by rotation together with a scaling;
see p. 336. See [147, Chapter2] for more on the geometry of complex numbers.
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2.10.3 Absolute Values and Complex Conjugates

We define the absolute value (or length, or modulus) of a complex number z =
(a, b) as the usual length (or norm) of (a, b):

|z| := |(a, b)| =
√

a2 + b2.

Thus, |z|2 = a2 + b2.We define the complex conjugate of z = (a, b) as the complex
number z = (a,−b), that is, z = a − bi . Note that if |z| �= 0, then according to the
definition (2.39) of z−1, we have

z−1 = z

|z|2 ,

so the inverse of a complex number can be expressed in terms of the complex conju-
gate and absolute value. In the next theorem we list other properties of the complex
conjugate.

Theorem 2.49 If z and w are complex numbers, then

(1) z = z;
(2) z + w = z + w and zw = z · w;
(3) z z = |z|2;
(4) z + z = 2Re z and z − z = 2i Im z.

Proof The proofs of all these properties are very easy and merely involve using
the definition of complex conjugation, so we’ll prove only (3), leaving the rest for
Problem 3. We have

z z = (a + bi) (a − bi) = a2 + a(−bi) + (bi)a + (bi)(−bi)

= a2 − abi + abi − b2 · i2 = a2 − b2 · (−1) = a2 + b2 = |z|2. �

In the final theorem of this section we list various properties of absolute value.
Note that Properties (1) and (5) follow from the properties of the norm on R

2. The
remaining properties are left for Problem 3.



134 2 Numbers, Numbers, and More Numbers

Theorem 2.50 For all complex numbers z, w, we have

(1) |z| ≥ 0 and |z| = 0 if and only if z = 0;
(2) |z| = |z|;
(3) |Re z| ≤ |z|;
(4) |z w| = |z| |w|;
(5) |z + w| ≤ |z| + |w| (triangle inequality).

An induction argument shows that for every collection of n complex numbers
z1, . . . , zn ,

|z1 z2 · · · zn| = |z1| |z2| · · · |zn|.

In particular, setting z1 = z2 = · · · = zn = z, we see that |zn| = |z|n .
� Exercises 2.10

1. Show that z ∈ C is a real number if and only if z = z.
2. If w is a complex root of a polynomial p(z) = zn + an−1 zn−1 + · · · + a1z + a0

with real coefficients (that is, p(w) = 0 and each ak is real), prove that w is also
a root.

3. Prove properties (1), (2), and (4) of Theorem 2.49 and properties (2), (3), and (4)
of Theorem 2.50.

4. If z ∈ C, prove that there exist a nonnegative real number r and a complex number
ω with |ω| = 1 such that z = r ω. If z is nonzero, show that r and ω are uniquely
determined by z, that is, if z = r ′ ω′, where r ′ ≥ 0 and |ω′| = 1, then r ′ = r
and ω′ = ω. The decomposition z = r ω is called the polar decomposition of z.
(On p. 335 in Section4.9 we relate the polar decomposition to the trigonometric
functions.)

2.11 Cardinality and “Most” Real Numbers Are Irrational

In Section2.6, we saw that in a sense (concerning roots, trig functions, logarithms—
objects of practical interest), there appear to be vastly more irrational numbers than
rationals. This suggests the following question16 How much more? In this section
we discuss Georg Cantor’s (1845–1918) discovery that the rational numbers have, in
some sense, the same number of elements as the natural numbers do! It turns out that
the irrational numbers (and the entire set of real numbers) have many more elements
and are impossible to count; thus they are said to be uncountable. We also discuss
algebraic and transcendental numbers and their countability properties.

16“In mathematics the art of proposing a question must be held of higher value than solving it.” (A
thesis defended at Cantor’s doctoral examination.) Georg Cantor (1845–1918).

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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2.11.1 Cardinality

Cardinality is a mathematical concept that extends the idea of “number of elements”
from finite sets to infinite ones. Formally, two sets A and B are said to have the same
cardinality if there is a bijection between the two sets. Of course, if f : A −→ B is
a bijection, then g = f −1 : B −→ A is a bijection, so the notion of cardinality does
not depend on “which way the bijection goes.” We think of A and B as having the
same number of elements, since the bijection sets up a one-to-one correspondence
between elements of the two sets. A set A is said to be finite if it is empty, in which
case we say that A has zero elements, or if it has the same cardinality as a set of the
form

Nn := {1, 2, . . . , n}

for some natural number n, in which case we say that A has n elements. If A is not
finite, it is said to be infinite.17 A set is called countable if it has the same cardinality
as a finite set or the set of natural numbers. To distinguish between finite and infinite
countable sets, we call a set countably infinite if it has the cardinality of the natural
numbers. Finally, a set is uncountable if it is not countable; such a set is not finite
and does not have the cardinality of N. See Fig. 2.27 for relationships between finite
and infinite sets. If A is countable and f is a bijection from either N or some Nn onto
A, then A can be expressed as a list:

A = {a1, a2, a3, . . . },

where a1 = f (1), a2 = f (2), . . . Thus, countable sets are sets whose elements can
be sequenced.

infinite sets countable sets

uncountable
sets

countably
infinite
sets

finite
sets

Fig. 2.27 Infinite sets are uncountable or countably infinite, and countable sets are countably
infinite or finite. Infinite sets and countable sets intersect in the countably infinite sets

Example 2.33 Z is countably infinite, since the function f : Z −→ N defined by

f (n) =
{

2n if n > 0

2|n| + 1 if n ≤ 0,

17“Even in the realm of things which do not claim actuality, and do not even claim possibility, there
exist beyond dispute sets which are infinite.” Bernard Bolzano (1781–1848).
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is a bijection of Z onto N. Notice that f labels the integers with the natural numbers
in a back-and-forth fashion, as seen here:

−2 −1 0 1 2

5 3 1 2 4

If two sets A and B have the same cardinality, we write card(A) = card(B).
One can check that if card(A) = card(B) and card(B) = card(C), then card(A) =
card(C). Thus, cardinality satisfies a “transitive law.”

Example 2.34 As a consequence of this “transitive law,” any two countably infinite
sets have the same cardinality.

It is “obvious” that a set cannot have both n elements and m elements where
n �= m, but this still needs proof! The proof is based on the pigeonhole principle
(Fig. 2.28).

More pigeons than holes!

Fig. 2.28 If m > n and m pigeons are put into n pigeonholes, then at least two pigeons must be
put into the same pigeonhole

Pigeonhole principle

Theorem 2.51 For m > n, there is no injection from Nm to Nn.

Proof We proceed by induction on n. Let m > 1 and f : Nm −→ {1} be a function.
Then f (m) = f (1) = 1, so f is not an injection.

Assume that our theorem is true for n; we shall prove that it’s true for n + 1. Let
m > n + 1 and let f : Nm −→ Nn+1. We shall prove that f is not an injection. First
of all, if the range of f is contained inNn ⊆ Nn+1, then we can consider f a function
into Nn , and hence by the induction hypothesis, f is not an injection. So assume
that f (a) = n + 1 for some a ∈ Nm . If there is another element of Nm whose image
is n + 1, then f is not injection, so we may furthermore assume that a is the only
element of Nm whose image is n + 1. Then f (k) ∈ Nn for k �= a, so we can define
a function g : Nm−1 −→ Nn by “skipping” f (a) = n + 1:

g(1) := f (1), g(2) := f (2), . . . , g(a − 1) := f (a − 1), g(a) := f (a + 1),

g(a + 1) := f (a + 2), . . . , g(m − 1) := f (m).

Since m > n + 1, we have m − 1 > n, so by the induction hypothesis, g is not an
injection. The definition of g shows that f : Nm −→ Nn+1 cannot be an injection
either, which completes the proof of our theorem. �
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We now prove that the number of elements of a finite set is unique. We also prove
the “obvious” fact that an countably infinite set is not finite.

Theorem 2.52 The number of elements of a finite set is unique, and countably
infinite sets are not finite.

Proof Suppose, to get a contradiction, that for some finite set A, there are bijections
f : A −→ Nn and g : A −→ Nm for some natural numbers m > n. (We may omit
the case that A is empty.) Then

f ◦ g−1 : Nm −→ Nn

is a bijection, in particular an injection, contradicting the pigeonhole principle.
Now suppose that for some set A, there are bijections f : A −→ Nn and g :

A −→ N. Then,
f ◦ g−1 : N −→ Nn

is a bijection, so an injection, and so in particular, its restriction to Nn+1 ⊆ N is an
injection. This again is impossible by the pigeonhole principle. �

2.11.2 Basic Results on Countability

The following is intuitively obvious.

Lemma 2.53 A subset of a countable set is countable.

Proof Let A be a nonempty subset of a countable set B, where for definiteness we
assume that B is countably infinite. (The finite case is easy.) Let f : N −→ B be a
bijection. Using the well-ordering principle (see p. 35), we can define

n1 = smallest element of {n ∈ N ; f (n) ∈ A}.

If A �= { f (n1)}, then via well-ordering, we can define

n2 = smallest element of {n ∈ N\{n1} ; f (n) ∈ A }.

Note that n1 < n2 (why?). If A �= { f (n1), f (n2)}, then we can define

n3 = smallest element of {n ∈ N\{n1, n2} ; f (n) ∈ A }.
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Then n1 < n2 < n3. We can continue this process by induction, defining nk+1 as
the smallest element in the set {n ∈ N\{n1, . . . , nk} ; f (n) ∈ A} as long as A �=
{ f (n1), . . . , f (nk)}.

There are two possibilities: the above process terminates, or it continues indefi-
nitely. If the process terminates, let nm be the last natural number that can be defined
in this process. Then A = { f (n1), . . . , f (nm)}, a finite set. Suppose now that the
above process continues indefinitely. Then the above recursive procedure produces
an infinite sequence of increasing natural numbers n1 < n2 < n3 < n4 < · · · . One
can check (for instance, by induction) that k < nk+1 for all k. We claim that the
map h : N −→ A defined by h(k) := f (nk) is a bijection, which shows that A is
countably infinite. It is certainly injective, because f is. To see that h is surjective,
let a ∈ A. Then, because f is surjective, there is � ∈ N such that f (�) = a. We claim
that � ∈ {n1, . . . , n�}. Indeed, if not, then � ∈ {n ∈ N\{n1, n2, . . . n�} ; f (n) ∈ A},
so by definition of n�+1,

n�+1 = smallest element of {n ∈ N\{n1, n2, . . . n�} ; f (n) ∈ A } ≤ �.

However, this contradicts the fact that k < nk+1 for all k. Hence, � = n j for some j ,
so h( j) = f (n j ) = f (�) = a. This proves that h is surjective. �

Theorem 2.54 A finite product of countable sets is countable, and a countable
union of countable sets is countable.

Proof We consider the product of only two countably infinite sets (the other cases
are left to the reader). The countability of the product of more than two countable sets
can be handled by induction. If A and B are countably infinite, then it follows that
card(A × B) = card(N × N), so it suffices to show that card(N × N) = card(N).
Let C ⊆ N consist of all natural numbers of the form 2n 3m , where n, m ∈ N. Being
an infinite subset ofN, it follows, by our lemma, thatC is countably infinite. Consider
the function f : N × N −→ C defined by

f (n, m) = 2n 3m .

By unique factorization, f is one-to-one (hence a bijection), so N × N, like C , is
countably infinite. See Problem 1 for other proofs that N × N is countably infinite.

Consider a set A = A1 ∪ A2 ∪ A3 ∪ . . ., that is, a countable union of countable
sets A1, A2, A3, . . . ; we shall prove that A is countable. Since each An is countable,
we can list the (distinct) elements of An:

An = {an1, an2, an3, . . . }.

We define a function g : A → N × N as follows. Given a ∈ A = A1 ∪ A2 ∪ A3 ∪
. . ., let n be the smallest natural number such that a ∈ An; then a = anm for a unique
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m, andwe define g(a) = (n, m). This defines g : A −→ N × N, which is one-to-one,
as the reader can check. So, A has the same cardinality as the subset g(A) of the
countable set N × N. Since subsets of countable sets are countable, it follows that A
has the same cardinality as a countable set, so A is countable. �

Example 2.35 (Cf. Example 2.33)As an easy application of this theorem,weobserve
that Z = N ∪ {0} ∪ (−N), and since each set on the right is countable, their union Z

is also countable.

We leave the proof of the following lemma as Problem 3.

Lemma 2.55 Every infinite set has a countably infinite subset.

The following theorem says that countable sets “don’t count” in the sense that
they do not add anything to cardinalities of infinite sets.

Countable sets don’t count

Theorem 2.56 For every infinite set A and countable set B, the sets A and A ∪ B
have the same cardinality.

Proof Let A be an infinite set and let B be countable. Here’s a picture to think of:

A
B

C D

The sets A and B are drawn as ellipses intersecting in a set that we’ll call D. We
can write A = C ∪ D, where C and D ⊆ B are disjoint (explicitly, C = A\B and
D = A ∩ B). Since a subset of a countable set is countable, D is countable. We find
a bijection between A and A ∪ B in two cases.

Case 1:C is finite. Since A = C ∪ D by assumption is infinite, and D is countable,
it follows that D must be countably infinite. Since a union of countable sets is
countable, A is countably infinite. Therefore, A ∪ B is countably infinite as well.
Thus, there is a bijection between A and A ∪ B.

Case 2: C is infinite. By our lemma, there is a subset E ⊆ C that is countably
infinite. Let F = C\E ; here’s a picture to think of:

A
B

E F D

We have
A = E ∪ F ∪ D and A ∪ B = E ∪ F ∪ B.

Since unions of countable sets are countable, the sets E ∪ D and E ∪ B are countable;
they are both countably infinite, since E is infinite. Thus, there is a bijection between
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E ∪ D and E ∪ B. The identity map is a bijection from F onto F , so there is a
bijection between A and A ∪ B. This completes the proof. �

2.11.3 Real, Rational, and Irrational Numbers

Sets that have the same cardinality as N, that is, countably infinite sets, are said to
have cardinality ℵ0 “ahh-lef null”; for example, we proved that Z has cardinality ℵ0.
It may be surprising to learn that the rationals also have cardinality ℵ0.

Theorem 2.57 Q has cardinality ℵ0.

Proof Let A = {(m, n) ∈ Z × N ; m and n have no common factors}. Since a prod-
uct of countable sets is countable, Z × N is countable, and since A is a subset of a
countable set, A is countable. Moreover, A is infinite, since, for example, all numbers
of the form (m, 1) belong to A, where m ∈ Z. Thus, A has cardinality ℵ0. Define
f : A −→ Q by

f (m, n) = m

n
, for (m, n) ∈ A.

One can show that f is a bijection, so card(Q) = card(A) = card(N). �

Sets that have the same cardinality as R are said to have cardinality c, where “c” is
for “continuum” (sinceR looks like a continuous line).We call an interval nontrivial
if it neither is empty nor consists of a single point.

Theorem 2.58 Every nontrivial interval has cardinality c, and the set of irra-
tional numbers in a nontrivial interval also has cardinality c.

Proof There are many types of intervals, so to make the proof short, we shall focus
on intervals of the form (a, b) and [a, b], where a and b are real, a < b, leaving the
other cases for your enjoyment.

Case 1: Consider (a, b). Define f : (−1, 1) −→ (a, b) by

f (x) = b − a

2
(x + 1) + a.

Then f is a bijection. The function g : R −→ (−1, 1) defined by

g(x) = x√
1 + x2
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is also a bijection. (The inverse is g−1 : (−1, 1) −→ R given by g−1(y) =
y/

√

1 − y2.) Thus, f ◦ g : R −→ (a, b) is a bijection. Hence, card(a, b) = c. Let
A and B be the collections of irrational and rational numbers in (a, b), respectively.
Since subsets of countable sets are countable, B is countable, so, since “countable
sets don’t count” (Theorem 2.56), A and A ∪ B = (a, b) have the same cardinality.

Case 2: Consider [a, b]. Since [a, b] = (a, b) ∪ {a, b} and {a, b} is countable,
and “countable sets don’t count,” it follows that card[a, b] = card(a, b) = c. If A′ is
the collection of irrational numbers in [a, b] and B ′ is the collection of rationals in
[a, b], then B ′ is countable, being a subset of a countable set. Since “countable sets
don’t count,” A′ and A′ ∪ B ′ = [a, b] have the same cardinality. �

An obvious question is whether c = ℵ0. In other words, is R countably infinite?
Cantor in fact proved that R is uncountable, so R has so many elements that we can’t
sequentially list them all. The following proof is close to, but not exactly, Cantor’s
original proof (see [94] for a nice exposition on his original proof.) He gave another
proof of this result, which we present in Section3.8 on p. 233.

Cantor’s first proof

Theorem 2.59 c �= ℵ0.

Proof Suppose, for the sake of contradiction, that we can list the reals: R =
{c1, c2, . . . }. Take any interval I1 = [a1, b1], where a1 < b1, that does not contain
c1. Now let I2 = [a2, b2] ⊆ I1, where a2 < b2, be an interval that does not contain
c2 (Fig. 2.29).

[
a1

]
b1

c1 c2

Fig. 2.29 Divide the interval I1 into thirds. At least one of the three subintervals does not contain
c2; call that subinterval [a2, b2]

By induction, we construct a sequence of nested closed and bounded intervals
In = [an, bn] that do not contain cn . By the nested intervals theorem on p. 100, there
is a point c in every In . By construction, In does not contain cn , so c cannot equal
any cn , which contradicts that {c1, c2, . . . } is a list of all the real numbers. �

In particular, by Theorem 2.58, every nontrivial interval and the set of irrational
numbers in every nontrivial interval are uncountable.

So far, all infinite subsets of R we’ve looked at (Z, Q, nontrivial intervals, irra-
tionals, etc.) have cardinality ℵ0 or c. Are there infinite subsets of R with other
cardinalities? Cantor conjectured that the answer is no, which became known as the
“continuum hypothesis”: Every infinite subset of R must have cardinality ℵ0 or c.
Cantor could not prove his conjecture, and in fact, many years later, Kurt Gödel
(1906–1978) and Paul Cohen (1934–2007) proved that the continuum hypothesis is
undecidable—cannot be proved or disproved—in the standard axioms of mathemat-
ics. See [58, 80] for more details on this fascinating story.

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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2.11.4 Roots of Polynomials

We already know that the real numbers can be classified into two disjoint sets, the
rationals and irrationals. There is another important classification, into algebraic and
transcendental numbers. These numbers have to do with roots of polynomials, so
we begin by discussing some elementary properties of polynomials. With an eye
toward later applications, we shall consider complex polynomials in this subsection,
noting that Lemma 2.60 and Theorem 2.61 below are also valid for real polynomials
(polynomials with real coefficients).

Let n ≥ 1 and let

p(z) = anzn + an−1zn−1 + · · · + a2z2 + a1z + a0, an �= 0, (2.40)

be an nth-degree polynomial with complex coefficients (meaning that each ak is
in C).

Lemma 2.60 For every z, a ∈ C, we can write

p(z) − p(a) = (z − a) q(z),

where q(z) is a polynomial of degree n − 1.

Proof First of all, observe that given a polynomial f (z) and a complex number b,
the “shifted” function f (z + b) is also a polynomial in z of the same degree as f ;
this can be easily proved using the formula (2.40) for a polynomial. In particular,
P(z) = p(z + a) − p(a) is a polynomial of degree n and hence can written in the
form

P(z) = bnzn + bn−1zn−1 + · · · + b2z2 + b1z + b0,

where bn �= 0 (in fact, bn = an , but this isn’t needed). Notice that P(0) = p(a) −
p(a) = 0. It follows that b0 = 0, so

P(z) = z Q(z) , where Q(z) = bnzn−1 + bn−1zn−2 + · · · + b2z + b1

is a polynomial of degree n − 1. Replacing z with z − a, we obtain

p(z) − p(a) = P(z − a) = (z − a) q(z),

where q(z) = Q(z − a) is a polynomial of degree n − 1. �

Suppose that a ∈ C is a root of p(z), whichmeans that p(a) = 0. Then according
to our lemma, we can write p(z) = (z − a)q(z), where q is a polynomial of degree
n − 1. If q(a) = 0, then again by our lemma,we canwrite q(z) = (z − a)r(z), where
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r(z) is a polynomial of degree n − 2. Thus, p(z) = (z − a)2r(z). Continuing this
process, which must stop by at least the nth step (because the degree of a polynomial
cannot be negative), we can write

p(z) = (z − a)ks(z),

where s(z) is a polynomial of degree n − k and s(a) �= 0. Because of the factor
(z − a)k , we say that a is a root of p(z) of multiplicity k.

Theorem 2.61 Every nth-degree complex polynomial (see the expression (2.40))
has at most n complex roots counting multiplicities.

Proof The proof is by induction. Certainly this theorem holds for polynomials of
degree 1 (if p(z) = a1z + a0 with a1 �= 0, then p(z) = 0 if and only if z = −a0/a1).
Suppose that this theorem holds for polynomials of degree n. Let p be a polynomial
of degree n + 1. If p has no roots, then this theorem holds for p, so suppose that p
has a root, call it a. Then by our lemma, we can write

p(z) = (z − a)q(z),

where q is a polynomial of degree n. Note that the roots of p are z = a and the roots
of q. Since by induction, q has at most n roots counting multiplicities, it follows that
the polynomial p has at most n + 1 such roots. �

Asaconsequenceof the fundamental theoremof algebra, see p. 344 inSection4.10,
every polynomial of degree n has exactly n complex roots counting multiplicities.

2.11.5 Uncountability of Transcendental Numbers

We now return to real numbers. We already know that a rational number is a real
number that can be written as a ratio of integers, and a number is irrational, by
definition, if it is not rational. An important class of numbers that generalizes rational
numbers is called the algebraic numbers. Tomotivate this generalization, let r = a/b,
where a, b ∈ Z with b �= 0, be a rational number. Then r is a root of the polynomial
equation

bx − a = 0.

Therefore, every rational number is the root of a (linear, or degree-1) polynomial with
integer coefficients. In general, an algebraic number is a real number that is a root of
some polynomial with integer coefficients. A real number is called transcendental
if it is not algebraic. (These numbers are transcendental because, as remarked by

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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Euler, they surpass, that is “transcend,” the powers of ordinary algebra to solve for
them [67].) As demonstrated above, we already know that every rational number is
algebraic. But there are many more algebraic numbers.

Example 2.36 The numbers
√
2 and 3

√
5 are both algebraic, being roots of the poly-

nomials
x2 − 2 and x3 − 5,

respectively. On the other hand, the numbers e and π are examples of transcendental
numbers; for proofs see [146, 174, 175].

The numbers
√
2 and 3

√
5 are irrational, so there are irrational numbers that are

algebraic. Thus, the algebraic numbers include all rational numbers and many irra-
tional numbers as well, namely those irrational numbers that are roots of polynomials
with integer coefficients. The following (seemingly counterintuitive) result was dis-
covered by Cantor [94] (we leave the proof to Problem 4 below).

Cardinality of algebraics and transcendentals

Theorem 2.62 The set of all algebraic numbers is countable, and the set of all
transcendental numbers is uncountable.

� Exercises 2.11

1. Here are some countability proofs.

(a) Prove that the set of prime numbers is countably infinite.
(b) Let N0 = {0, 1, 2, . . . }. Show that N0 is countably infinite. Define f : N0 ×

N0 −→ N0 by f (0, 0) = 0 and for (m, n) �= (0, 0), define

f (m, n)=(

1 + 2 + 3 + · · · + (m + n)
)+n=1

2
(m + n)(m + n + 1) + n.

Prove that f is a bijection. Suggestion: Define g : N0 −→ N0 × N0 as fol-
lows. If k ∈ N0, choose � ∈ N so that �(� − 1)/2 ≤ k < �(� + 1)/2 and put

g(k) =
(

�(� + 1)

2
− k − 1 , k − �(� − 1)

2

)

.

Prove that f and g are inverse functions. Remark: The function f counts
N0 × N0, as shown here:

(0, 2) (1, 2) (2, 2) . . .

(0, 1) (1, 1) (2, 1) . . .

(0, 0) (1, 0) (2, 0) . . .

...
...

...

�� �

�
�

��

�
�
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(c) WriteQ as a countable union of countable sets, giving thereby another proof
that the rational numbers are countable.

(d) Prove that f : N × N −→ N defined by f (m, n) = 2m−1(2n − 1) is a bijec-
tion; this gives another proof that N × N is countable.

2. Here are some formulas for polynomials in terms of roots.

(a) If c1, . . . , ck are roots of a polynomial p(z) of degree n (with each root
repeated according to multiplicity), prove that p(z) = (z − c1)(z − c2) · · ·
(z − ck) q(z), for some polynomial q(z) of degree n − k.

(b) If k = n, prove that p(z) = an(z − c1)(z − c2) · · · (z − cn), where an is the
coefficient of zn in the formula (2.40) for p(z).

3. If A is an infinite set, prove that it has a countably infinite subset. Suggestion:
Define f : N → A as follows. First pick a point a1 from A and define f (1) = a1.
Assume that f (1), . . . , f (n) have been defined, then pick a point an+1 from
A\{ f (1), . . . , f (n)}, thendefine f (n + 1) = an+1. Thedesired countably infinite
subset of A is the range f (N).

4. In this problem we prove Theorem 2.62.

(i) For a nonconstant polynomial with integer coefficients an xn + an−1xn−1 +
· · · + a1x + a0 (nonconstant meaning n ≥ 1 and an �= 0), we define its
index as the natural number

n + |an| + |an−1| + |an−2| + · · · + |a2| + |a1| + |a0|.

Given k ∈ N, k ≥ 2, prove there are at most finitely many nonconstant poly-
nomials with integer coefficients having index k.

(ii) For k ∈ N, k ≥ 2, let Ak be the set of all roots (algebraic numbers) of non-
constant polynomials with integer coefficients of index k. Prove that Ak is
a finite set and the set of all algebraic numbers is the union

⋃∞
k=2 Ak .

(iii) Complete the proof of the theorem.

5. Let X be a set and denote the set of all functions from X to {0, 1} by {0, 1}X .
Define a map from the power set of X to {0, 1}X by

f : P(X) −→ {0, 1}X , X ⊇ A �−→ f (A) = χA,

where χA is the characteristic function of A. Prove that f is a bijection. Conclude
that P(X) has the same cardinality as {0, 1}X .

6. Suppose that card(X) = n ∈ N. Prove that card(P(X)) = 2n . Suggestion: There
are many proofs you can come up with; here’s one using the previous prob-
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lem. Assuming that X = {0, 1, . . . , n − 1}, which we may (why?), we just
have to prove that card({0, 1}X ) = 2n . To prove this, define F : {0, 1}X −→
{0, 1, 2, . . . , 2n − 1} as follows: If f : X −→ {0, 1} is a function, then denot-
ing f (k) by ak , define

F( f ) = an−1 2
n−1 + an−2 2

n−2 + · · · + a1 2
1 + a0.

Prove that F is a bijection. Suggestion: Review some material about binary rep-
resentations from Section2.5.

7. (Cantor’s theorem) This theorem is simple to prove yet profound in nature.

(a) Prove that there can never be a surjection of a set A onto its power setP(A).
(This is called Cantor’s theorem.) In particular, card(A) �= card(P(A)).
Suggestion: Suppose not and let f be such a surjection. Consider the set

B = {a ∈ A ; a /∈ f (a)} ⊆ A.

Derive a contradiction from the assumption that f is surjective. Cantor’s
theorem shows that by taking power sets, one can always get bigger and
bigger sets.

(b) Prove that the set of all subsets of N is uncountable.
(c) From Cantor’s theorem and Problem 5, prove that the set of all sequences

of 0’s and 1’s is uncountable. Here, a sequence is just function from N to
{0, 1}, which can also be thought of as a list (a1, a2, a3, a4, . . . ) where each
ak is either 0 or 1.

8. (Vredenduin’s paradox [252]) Here is another paradox related to Russell’s para-
dox.Assume that A = {{a} ; a is a set} is a set. Let B ⊆ A be the subset consisting
of all sets of the form {a}, where a ∈ P(A). Define

g : P(A) −→ B by g(V ) = {V } for all V ∈ P(A).

Show that g is a bijection and then derive a contradiction to Cantor’s theorem.
This shows that A is not a set.

9. Wedefine a statement as a finite string of symbols, say found in aword processing
program (we regard a space as a symbol andwe assume that there are finitelymany
symbols). For example, The formula eiπ + 1 = 0 is beautiful! is a statement.

(a) Let A be the set of all statements. What’s the cardinality of A?
(b) Is the set of all possible mathematical proofs countable? Why?



Chapter 3
Infinite Sequences of Real and Complex
Numbers

Notable enough, however, are the controversies over the series 1 − 1 + 1 − 1 + 1 − · · · ,
whose sum was given by Leibniz as 1/2, although others disagree. . . . Understanding of this
question is to be sought in the word “sum”; this idea, if thus conceived—namely, the sum of
a series is said to be that quantity to which it is brought closer as more terms of the series
are taken—has relevance only for convergent series, and we should in general give up the
idea of sum for divergent series.
Leonhard Euler (1707–1783).

Analysis is often described as the study of infinite processes, of which the study of
sequences and series forms the backbone. It is dealing with the concept of infinite in
infinite processes that makes analysis technically challenging. In fact, the subject of
sequences is when real analysis becomes “really hard.”

Let us consider the following infinite series that Euler mentioned:

s = 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + · · · .

Let’s manipulate this infinite series without being too careful. First, we notice that

s = (1 − 1) + (1 − 1) + (1 − 1) + · · · = 0 + 0 + 0 + · · · = 0,

so s = 0. On the other hand,

s = 1 − (1 − 1) − (1 − 1) − (1 − 1) − · · · = 1 − 0 − 0 − 0 − · · · = 1,

so s = 1. Finally, we can get Leibniz’s value of 1/2 as follows:

2s = 2 − 2 + 2 − 2 + · · · = 1 + 1 − 1 − 1 + 1 + 1 − 1 − 1 + · · ·
= 1 + (1 − 1) − (1 − 1) + (1 − 1) − (1 − 1) + · · ·
= 1 + 0 − 0 + 0 − 0 + · · · = 1,

© Paul Loya 2017
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so s = 1/2. This example shows us that we need to be careful in dealing with the
infinite. In the pages that follow, we “tame the infinite” with rigorous definitions.

Another highlight of this chapter is our study of the number e (Euler’s number),
which you have seen countless times in calculus and which pops up everywhere
including economics (compound interest), population growth, radioactive decay, and
probability. We shall prove two of the most famous formulas for this number:

e = 1 + 1

1! + 1

2! + 1

3! + 1

4! + · · · and e = lim
n→∞

(
1 + 1

n

)n

.

See [55, 158] for more on this incredible and versatile number. Another number we’ll
look at is the golden ratio � = 1+√

5
2 , which has strikingly pretty formulas

� =
√
1 +

√
1 +

√
1 + √

1 + · · · = 1 + 1

1 + 1

1 + 1

1 + . . .

.

In Section3.1 we begin our study of infinite processes by learning about sequences
and their limits; then in Section3.2 we discuss the properties of sequences. Sec-
tions3.3 and 3.4 are devoted to answering the question of when a given sequence
converges; in these sections we’ll also derive the above formulas for�. Next, in Sec-
tion3.5, we study infinite series, which really constitute a special case of the study
of infinite sequences. The exponential function, called by many “the most important
function in mathematics” [205, p. 1], is our subject of study in Section3.7. This
function is defined by

exp(z) =
∞∑

n=0

zn

n! , z ∈ C.

We shall derive a few of the exponential function’s many properties, including its
relationship to Euler’s number e. As a bonus prize, in Section3.7 we’ll also prove that
e is irrational, and we look at a useful (but little publicized) theorem called Tannery’s
theorem, which is a very handy result that we’ll use a lot in subsequent sections.
Finally, in Section3.8 we see how real numbers can be represented as decimals (with
respect to arbitrary bases), and we look at Cantor’s famous “constructive” diagonal
argument.

Chapter 3 objectives: The student will be able to . . .

• Apply the rigorous ε-N definition of convergence for sequences and series.
• Decide when a sequence is monotone, Cauchy, or has a convergent subsequence
(Bolzano–Weierstrass), and when a series converges (absolutely).
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• Define the exponential function and the number e.
• Explain Cantor’s diagonal argument.

3.1 Convergence and ε-N Arguments for Limits
of Sequences

Undeniably, the most important concept in all of undergraduate analysis is the notion
of convergence. Intuitively, if a sequence {an} in R

m converges to an element a in
R

m , then an is “as close as we want” to a for every n “sufficiently large.” In this
section we make the terms in quotes rigorous, which introduces the first bona fide
technical definition in this book: the ε-N definition of limit.

3.1.1 Definition of Convergence

A sequence in Rm can be thought of as a list

a1, a2, a3, a4, . . .

of vectors, or points, an in R
m . In the language of functions, a sequence is simply a

function f : N −→ R
m , where we denote f (n) by an . Usually a sequence is denoted

by {an} or by {an}∞n=1. Of course, we are not restricted to n ≥ 1, and we could just as
well start at any integer, e.g., {an}∞n=−5. For convenience, in most of our proofs we
shall work with sequences starting at n = 1, although all the results we shall discuss
work for sequences starting with any index.

Example 3.1 Some examples of real sequences (that is, sequences in R
1 = R)

include1

3, 3.1, 3.14, 3.141, 3.1415, . . .

and

1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
, . . . , an = 1

n
, . . . .

We are interested mostly in real and complex sequences. Here, by a complex
sequence we simply mean a sequence in R2, where we are free to use the notation i
for (0, 1) and the field properties of complex numbers.

Example 3.2 The following sequence is a complex sequence:

i, i2 = −1, i3 = −i, i4 = 1, . . . , an = i n, . . . .

1We’ll talk about decimal expansions of real numbers in Section3.8 and π in Chapter4.

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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This sequence goes counterclockwise around the unit circle:
i = i5 = i9 = · · ·

i4 = i8 = i12 =··· ···= i10 = i6 = i2

i3 = i7 = i11 = · · ·

Although we shall focus on real and complex sequences in this book, later on you
might deal with topology and calculus in Rm (as in, for instance, [146]), so for your
later psychological health we might as well get used to working with R

m instead
of R1.

We now try to motivate a precise definition of convergence. To begin, what does
“converge” (“approach” or “getting closer and closer”) mean in everyday life? For
instance, what is a mathematical way to describe an airplane converging to an airport,
as seen here:

•
airport

One description of “convergence” is that given any radius of the airport, from some
point on the airplane will be within that radius of the airport. Here’s a picture:

•
airport

Given any radius of your airport . . .

•
airport

. . . from some point on, the plane
will be inside the radius.

For example, eventually the airplane will be within 1 km of the airport, within 0.5
km of the airport, within 0.1 km of the airport, and so forth. No matter what radius
of the airport you choose, eventually the airplane will be within that radius.

This idea works to describe convergence of sequences! Thus, without being too
precise, a sequence {an} in R

m converges to an element L in R
m if for any radius

of the target L , from some point on, the an are within that radius of L , as shown in
Fig. 3.1. Following tradition, we use the Greek symbol epsilon ε to denote a given
radius. We nowmake convergence precise. First, when we say that the an “are within
ε of L ,” we simply mean the distance between L and an is less than ε:

Fig. 3.1 Given any radius
ε > 0 of L , from some point
on, the an are within the
radius ε of L

L
ε

•a1

•a2

•a3
• ••

•an

|an − L| < ε.
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Second, when we say that some property holds “from some point on,” we mean
that the property holds for all n > N for some (usually large) real number N . To
summarize, for an to converge to L , we mean given any ε > 0 (a “radius of L”),
there is a real number N such that

n > N (“from some point on”) =⇒ |an − L| < ε (“an is within ε of L”).

Note: “from some point on” is often reworded as “for n sufficiently large.” We now
conclude our findings with a precise definition: A sequence {an} in R

m is said to
converge (or tend) to an element L inRm if for every ε > 0, there is an N ∈ R such
that for all n > N , |an − L| < ε. Because this definition is so important, we display
it:

A sequence{an} in Rm converges to L ∈ R
m if

for every ε > 0 there is an N such that
n > N =⇒ |an − L| < ε.

We call {an} a convergent sequence, L the limit2 of {an}, and we usually denote the
fact that {an} converges to L in one of four ways:

an → L , an → L as n → ∞, lim an = L , lim
n→∞ an = L .

If a sequence does not converge (to any element of Rm), we say that it diverges.
We can also state the definition of convergence in terms of open balls. Observe

that |an − L| < ε is just saying that an ∈ Bε(L), the open ball of radius ε centered
at L (see formula (2.32) on p. 125). Therefore, an → L in Rm if

for every ε > 0, there is an N ∈ R such that n > N =⇒ an ∈ Bε(L).

This open ball form of limit occurs in many subjects, such as metric spaces in
topology. In the case m = 1, the ε-ball around L is just the interval (L − ε, L + ε)
(see our discussion on p. 125 at the end of Section2.9). Therefore,

A real sequence {an} converges to L ∈ R if and only if,
for every ε > 0 there is an N such that

n > N =⇒ L − ε < an < L + ε.

Figure3.2 shows one way of thinking about limits of real sequences.

2“Onemagnitude is said to be the limit of anothermagnitudewhen the secondmay approach the first
within any given magnitude, however small, though the second may never exceed the magnitude it
approaches.” Jean d’Alembert (1717–1783). The article on “Limite” in the Encyclopédie 1754.

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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a3a1 a2 a4 anL
)

L + ε
(

L − ε

Fig. 3.2 Plot the points an on the real line. Then an → L if and only if for every ε > 0, if we draw
the interval (L − ε, L + ε) about L , then “from some point on,” the an are inside the interval

Another common way of thinking about limits of real sequences is the graph
method, in which we first plot the sequence in the xy-plane by plotting x = n versus
y = an:

1 2 3 4 5 6 7 n

an

. . .

a1

a2

a3

a4

a5 a6 a7

Then, an → L if and only if for every ε > 0, if we draw the interval (L − ε, L + ε)
about L on the y-axis, then “from some point on,” the an are inside the interval:

1 2 3 4 5 6 7 n

an

. . .

a1

a2

a3

a4

a5 a6 a7L
L − ε

L + ε

3.1.2 Standard Examples of ε-N Arguments

We now give some standard examples of using our ε-N definition of limit.

Example 3.3 We shall prove that the sequence {1/2, 1/3, 1/4, . . . } converges to
zero:

lim
1

n + 1
= 0.

This is made “obvious” by plotting the points in this sequence:

1
2

1
3

1
4

1
50

In general, every sequence {an} that converges to zero is called a null sequence.
Thus, we claim that {1/(n + 1)} is a null sequence. Let ε > 0 be a positive real
number. Our goal: To prove that there exists a real number N such that

n > N =⇒
∣∣∣∣ 1

n + 1
− 0

∣∣∣∣ = 1

n + 1
< ε. (3.1)

To find such a number N , we can proceed in many ways. Here are two.
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(I) Our first method is direct: We observe that3

1

n + 1
< ε ⇐⇒ 1

ε
< n + 1 ⇐⇒ 1

ε
− 1 < n. (3.2)

For this reason, let us choose N to be the real number N = 1/ε−1. Let n > N ,
that is, N < n, or using the definition of N , 1/ε−1 < n. Then by (3.2), we have
1/(n + 1) < ε. In summary, for n > N , we have proved that 1/(n + 1) < ε.
This proves (3.1) with N = 1/ε − 1. Thus, by the definition of convergence,
1/(n + 1) → 0.

(II) Another technique is to try to simplify 1/(n + 1) so that it’s easy to work with.
Since n < n + 1, we have 1/(n + 1) < 1/n, so

for every n ∈ N,
1

n + 1
<

1

n
. (3.3)

Thus, if we can make 1/n < ε, we get 1/(n + 1) < ε for free. Now, it’s easy to
make 1/n < ε, for

1

n
< ε ⇐⇒ 1

ε
< n.

With this preliminary work done, let us now choose N = 1/ε. Let n > N ,
which is to say, 1/ε < n. Then we certainly have 1/n < ε, and hence by (3.3),
we know that 1/(n + 1) < ε, too. In summary, for n > N , we have proved that
1/(n + 1) < ε. This proves (3.1) with N = 1/ε.

Note that in (I) and (II), we found different N ’s (namely N = 1/ε − 1 in (I)
and N = 1/ε in (II)), but this doesn’t matter, because to prove (3.1), we just need
to show that such an N exists; there is never a unique N that works, since if one N
works, every larger N will also work. We remark that a similar argument shows that
the sequence {1/n} is also a null sequence: lim 1

n = 0.

Here is a recipe for attacking most limit problems:

Four-step recipe on how to prove an → L:
(1) Always start your proof with “Let ε > 0.”
(2) “Massage” (make simpler by manipulating) |an − L| so that

|an − L| ≤ αn

where αn is a simple expression.
(3) Show that there is N such that n > N =⇒ αn < ε.
(4) Conclude that n > N =⇒ |an − L| < ε.

3Note that we are not claiming that 1/(n + 1) < ε is true for every n. We are just writing down
the statement 1/(n + 1) < ε and statements equivalent to it. The point is to discover an equivalent
statement of the form n > some real number. This real number is an N making (3.1) true.
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In Part (I) of Example 3.3 above, αn was 1/(n + 1) (which equaled |an − L| in
the example), while in Part (II), we chose αn = 1/n (which is a little simpler than
|an − L|). In general, there are many different αn that work. Here’s a harder example
to consider, in which we find several αn .

Example 3.4 Let’s prove that4

lim
2n2 − n

n2 − 9
= 2.

For the sequence an = (2n2 − n)/(n2 −9), we take the indices to be n = 4, 5, 6, . . .
(since for n = 3, the quotient is undefined). Here’s a picture of this sequence
(Fig. 3.3):

a4 = 4a5a6a7

a8

a92 310

Fig. 3.3 We have a4 = 4, a5 ≈ 2.81, a6 ≈ 2.44, a7 = 2.275, a8 ≈ 2.18 and a9 = 2.125. The
points an seem to be getting closer to 2

Let ε > 0 be given. We want to prove that there exists a real number N such that
the following statement holds:

n > N =⇒
∣∣∣∣2n2 − n

n2 − 9
− 2

∣∣∣∣ < ε. (3.4)

We now “massage” (simplify) the absolute value on the right as much as we can. For
instance, we first can combine fractions:

∣∣∣∣2n2 − n

n2 − 9
− 2

∣∣∣∣ =
∣∣∣∣2n2 − n

n2 − 9
− 2n2 − 18

n2 − 9

∣∣∣∣ =
∣∣∣∣18 − n

n2 − 9

∣∣∣∣ . (3.5)

Before we do any more massaging, we note the following simple

Fraction fact:A fraction a/b of positive numbers can be made larger
by increasing the numerator a or decreasing the denominator b (while
still keeping the denominator positive).

Now going back to (3.5), we make the numerator of (3.5) larger using the triangle
inequality: for n = 4, 5, . . . , we have

4How did we know that the limit is 2? The trick to finding the limit of the quotient of polynomials in
n of the same degree is to divide the leading coefficients. Here, the leading coefficients of 2n2 − n
and n2 − 9 are 2 and 1, respectively, so the limit is 2/1 = 2.
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∣∣∣∣18 − n

n2 − 9

∣∣∣∣ ≤ 18 + n

n2 − 9
.

Second, just for icing on the cake, let us make the top of the right-hand fraction a
little simpler by observing that 18 ≤ 18n, so we conclude that

18 + n

n2 − 9
≤ 18n + n

n2 − 9
= 19n

n2 − 9
.

In conclusion, we have “massaged” our expression to the following inequality:

∣∣∣∣2n2 − n

n2 − 9
− 2

∣∣∣∣ ≤ 19n

n2 − 9
.

We now work with the denominator n2 − 9 and make it smaller; this will make
19n/(n2 − 9) bigger and hopefully simpler, and then we can make the resulting
simple expression < ε as desired. Here are three slightly different ways to do so.

(I) For our first method to make n2 − 9 smaller, instead of subtracting 9 from n2,
we subtract the bigger number 9n from n2. It follows that

for n > 9,
19n

n2 − 9
≤ 19n

n2 − 9n
= 19n

n(n − 9)
= 19

n − 9
.

We put n > 9 to ensure that n2 − 9 is positive. Thus,

for n > 9,

∣∣∣∣2n2 − n

n2 − 9
− 2

∣∣∣∣ ≤ 19

n − 9
, (3.6)

and the right-hand side is simple! Now, for n > 9,

19

n − 9
< ε ⇐⇒ 19

ε
< n − 9 ⇐⇒ 9 + 19

ε
< n. (3.7)

Thus, let us pick N = 9 + 19/ε. We’ll prove that this N works for (3.4). Let
n > N , or the same thing, n > 9 + 19/ε (which implies, in particular, that
n > 9). Then,

∣∣∣∣2n2 − n

n2 − 9
− 2

∣∣∣∣ by (3.6)≤ 19

n − 9

by (3.7)
< ε,

and we’re done.
(II) For our second method to make n2 − 9 smaller, we factor:

n2 − 9 = (n + 3)(n − 3) ≥ n(n − 3).
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Hence,
19n

n2 − 9
≤ 19n

n(n − 3)
= 19

n − 3
,

and we get ∣∣∣∣2n2 − n

n2 − 9
− 2

∣∣∣∣ ≤ 19

n − 3
. (3.8)

Now,
19

n − 3
< ε ⇐⇒ 3 + 19

ε
< n. (3.9)

Thus, let us pick N = 3 + 19/ε. We’ll prove that this N works for (3.4). Let
n > N , or the same thing, n > 3 + 19/ε. Then,

∣∣∣∣2n2 − n

n2 − 9
− 2

∣∣∣∣ by (3.8)≤ 19

n − 3

by (3.9)
< ε,

and we’re done.
(III) For our third method to make n2 −9 smaller, observe that n2/2 > 9 for n > 4.

Thus, instead of subtracting 9 from n2, for n > 4we subtract the bigger number
n2/2 from n2. It follows that

for n > 4,
19n

n2 − 9
≤ 19n

n2 − n2/2
= 19n

n2/2
= 38

n
.

Thus,

for n > 4,

∣∣∣∣2n2 − n

n2 − 9
− 2

∣∣∣∣ ≤ 38

n
. (3.10)

Since
38

n
< ε ⇐⇒ 38

ε
< n, (3.11)

let us pick N = max{4, 38/ε}. If n > N , then both n > 4 and n > 38/ε hold,
so ∣∣∣∣2n2 − n

n2 − 9
− 2

∣∣∣∣ by (3.10)≤ 38

n

by (3.11)
< ε.

3.1.3 Sophisticated Examples of ε-N Arguments

We now give some very famous classical examples of ε-N arguments.

Example 3.5 Let a be a complex number with |a| < 1 and consider the sequence
a, a2, a3, . . . (so that an = an for each n).We shall prove that {an} is a null sequence,
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that is,
lim an = 0.

Let ε > 0 be a positive real number. We need to prove that there is a real number N
such that the following statement holds:

n > N =⇒ ∣∣an − 0
∣∣ = |a|n < ε. (3.12)

If a = 0, then any N would do, so we might as well assume that a �= 0. In this case,5

since the real number |a| is less than 1, we can write |a| = 1
1+b , where b > 0; in fact,

we can simply take b = −1 + 1/|a|. (Since |a| < 1, we have 1/|a| > 1, so b > 0.)
Therefore,

|a|n = 1

(1 + b)n
, where b > 0.

We now try to make (1 + b)n smaller. To do so, we use Bernoulli’s inequality
(Theorem2.7 on p. 42) to write

(1 + b)n ≥ 1 + nb ≥ nb =⇒ 1

(1 + b)n
≤ 1

nb
.

Hence,

|a|n ≤ 1

nb
. (3.13)

Thus, we can satisfy (3.12) by making 1/(nb) < ε instead. Now,

1

nb
< ε ⇐⇒ 1

bε
< n. (3.14)

For this reason, let us pick N = 1/(bε). Let n > N (that is, 1/(bε) < n). Then,

|a|n by (3.13)≤ 1

nb

by (3.14)
< ε.

This proves (3.12) and thus, by the definition of convergence, an → 0.

Example 3.6 For our next example, let a > 0 be a positive real number and consider
the sequence a, a1/2, a1/3, . . . (so that an = a1/n for each n). We shall prove that
an → 1, that is,

lim a1/n = 1.

5Youmight be tempted to use logarithmson (3.12) to say that |a|n < ε if andonly ifn log |a| < log ε,
or n > log ε/ log |a| (noting that log |a| < 0, since |a| < 1). However, we have not yet developed
the theory of logarithms! We will define logarithms on p. 300 in Section4.7.

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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If a = 1, then the sequence a1/n is just the constant sequence 1, 1, 1, 1, . . . , which
certainly converges to 1 (can you prove this?). We consider two cases.

(I) Suppose that a > 1; we shall consider the case 0 < a < 1 afterward. Let ε > 0
be a positive real number. We need to prove that there is a real number N such
that

n > N =⇒ ∣∣a1/n − 1
∣∣ < ε. (3.15)

By our familiar root rules (Theorem2.33 on p. 95), we know that a1/n > 11/n =
1 and therefore bn := a1/n − 1 > 0. By Bernoulli’s inequality (Theorem2.7
on p. 42), it follows that

a = (
a1/n

)n = (1 + bn)
n ≥ 1 + nbn ≥ nbn =⇒ bn ≤ a

n
.

Hence, ∣∣a1/n − 1
∣∣ = |bn| ≤ a

n
. (3.16)

Thus, we can satisfy (3.15) by making a/n < ε instead. Now,

a

n
< ε ⇐⇒ a

ε
< n. (3.17)

For this reason, let us pick N = a/ε. Let n > N (that is, a/ε < n). Then,

∣∣a1/n − 1
∣∣ by (3.16)≤ a

n

by (3.17)
< ε.

So, by definition of convergence, a1/n → 1.
(II) Now consider the case 0 < a < 1. Let ε > 0 be a positive real number. We

need to prove that there is a real number N such that

n > N =⇒ ∣∣a1/n − 1
∣∣ < ε.

Since 0 < a < 1, we have 1/a > 1, so by Case (I), we know that 1/a1/n =
(1/a)1/n → 1. Thus, there is a real number N such that

n > N =⇒
∣∣∣∣ 1

a1/n
− 1

∣∣∣∣ < ε.

Multiplying both sides of the right-hand inequality by the positive real number
a1/n , we get n > N =⇒ ∣∣1 − a1/n

∣∣ < a1/nε. Since 0 < a < 1, by our root
rules, a1/n < 11/n = 1, so a1/nε < 1 · ε = ε. Hence,

n > N =⇒ ∣∣a1/n − 1
∣∣ < ε,

which shows that a1/n → 1, as we wished to show.

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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Example 3.7 We come to our last example, which may seem surprising at first.
Consider the sequence an = n1/n . We already know that if a > 0 is a fixed real
number, then a1/n → 1. In our present case, an = n1/n , so the “a” is increasing with
n, and it is not at all obvious what n1/n converges to, if anything! However, we shall
prove that

lim n1/n = 1.

For n > 1, by our root rules we know that n1/n > 11/n = 1, so for n > 1, we
conclude that bn := n1/n − 1 > 0. By the binomial theorem (Theorem2.9 on p. 43),
we have

n = (n1/n)n = (1 + bn)
n = 1 +

(
n

1

)
bn +

(
n

2

)
b2

n + · · · +
(

n

n

)
bn

n .

Since bn > 0, all the terms on the right-hand side are positive, so dropping all the
terms except the third term on the right, we see that for n > 1,

n >

(
n

2

)
b2

n = n!
2! (n − 2)! b2

n = n(n − 1)

2
b2

n.

Canceling the n’s from both sides, we obtain for n > 1,

b2
n <

2

n − 1
=⇒ bn <

√
2√

n − 1
.

Hence, for n > 1, ∣∣n1/n − 1
∣∣ = |bn| <

√
2√

n − 1
. (3.18)

Let ε > 0 be given. Then

√
2√

n − 1
< ε ⇐⇒ 1 + 2

ε2
< n. (3.19)

For this reason, let us pick N = 1+ 2/ε2. Let n > N (that is, 1+ 2/ε2 < n). Then,

∣∣n1/n − 1
∣∣ by (3.18)≤

√
2√

n − 1

by (3.19)
< ε.

Thus, by definition of convergence, n1/n → 1.

� Exercises 3.1

1. Using the ε-N definition of limit, prove that

http://dx.doi.org/10.1007/978-1-4939-6795-7_2


160 3 Infinite Sequences of Real and Complex Numbers

(a) lim
(−1)n

n
= 0, (b) lim

(
2 + 3

n

)
= 2, (c) lim

n

n − 1
= 1, (d) lim

(−1)n
√

n − 1
= 0.

2. Using the ε-N definition of limit, prove that

(a) lim
5n2 + 2

n3 − 3n + 1
= 0, (b) lim

n2 − √
n

3n2 − 2
= 1

3
, (c) lim

[√
n2 + n − n

]
= 1

2
.

3. Here is another method to prove that a1/n → 1.

(i) Note that for every b, we have bn − 1 = (b − 1)(bn−1 + bn−2 + · · · + b + 1).
Using this formula, prove that if a ≥ 1, then a−1 ≥ n(a1/n −1). Suggestion:
Let b = a1/n .

(ii) Now prove that for every a > 0, a1/n → 1. (Do the case a ≥ 1 first, then
consider the case 0 < a < 1.)

(iii) More generally, if {rn} is a sequence of rational numbers with rn → 0, prove
that for every a > 0, arn → 1. Suggestion: Assume that a ≥ 1. Then try
to use (i) to prove that if 0 < r < 1 is rational, then ar − 1 ≤ C r , where
C = a(a − 1). Next prove that if 0 < r < 1 is rational, then |a−r − 1| ≤ C r
as well. Conclude that if 0 ≤ |r | < 1, then |ar − 1| ≤ C |r |. Now prove that
for every a ≥ 1, arn → 1. Lastly, do the case 0 < a < 1.

4. Let a be a complex number with |a| < 1. We already know that an → 0. In this
problem we prove the somewhat surprising fact that nan → 0. Although n grows
very large, this limit shows that an must go to zero faster than n grows.

(i) As in Example3.5, we can write |a| = 1/(1 + b), where b > 0. Using the

binomial theorem, show that for n > 1, |a|n <
1(n

2

)
b2

.

(ii) Show that n|a|n <
2

(n − 1) b2
.

(iii) Now prove that nan → 0.

5. Here’s an even more surprising fact. Let a be a complex number with |a| < 1.
Prove that given a natural number k > 0, we have nkan → 0. Suggestion: Let
α := |a|1/k < 1 and use the fact that nαn → 0 by the previous problem.

6. If {an} is a sequence of nonnegative real numbers and an → L , prove the follow-
ing:

(i) L ≥ 0.
(ii)

√
an → √

L . (You need to consider two cases, L = 0 and L > 0.)

7. Let {an} be a sequence in Rm and let L ∈ R
m . Form the negation of the definition

that an → L , thus giving a statement that an �→ L (the sequence {an} does not
tend to L). Using your negation, prove that the sequence {(−1)n} diverges, that
is, does not converge to any real number. In the next section we shall find an easy
way to verify that a sequence diverges using the notion of subsequences.
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8. (Infinite products—see Chapter7 for more on this amazing topic!) In this prob-
lem we investigate the infinite product

22

1 · 3 · 32

2 · 4 · 42

3 · 5 · 52

4 · 6 · 62

5 · 7 · 72

6 · 8 · · · . (3.20)

We interpret this infinite product as the limit of the partial products

a1 = 22

1 · 3 , a2 = 22

1 · 3 · 32

2 · 4 , a3 = 22

1 · 3 · 32

2 · 4 · 42

3 · 5 , . . . .

In other words, for each n ∈ N, we define an := 22

1·3 · 32

2·4 · · · (n+1)2

n·(n+2) . We prove that
the sequence {an} converges as follows.
(i) Prove that an = 2(n+1)

n+2 .
(ii) Now prove that an → 2. We often write the infinite product (3.20) using

∏
notation and we express the limit lim an = 2 as

22

1 · 3 · 32

2 · 4 · 42

3 · 5 · 52

4 · 6 · · · = 2 or
∞∏

n=1

(n + 1)2

n(n + 2)
= 2.

3.2 A Potpourri of Limit Properties for Sequences

Now that we have a working knowledge of the ε-N definition of limit, we move to
studying the properties of limits that will be used throughout the rest of the book.
In particular, we learn the algebra of limits, which allows us to combine convergent
sequences to form other convergent sequences. Finally, we discuss the notion of
properly divergent sequences.

3.2.1 Basic Limit Theorems

Recall that a null sequence is a sequence converging to zero. The following theorem
is our “four step recipe” on p. 153.

Limit recipe theorem

Theorem 3.1 If {an} is a sequence in R
m, L ∈ R

m, and |an − L| ≤ αn for some
null sequence {αn} of nonnegative real numbers, then an → L.

Proof If ε > 0 is given, there is an N such that n > N implies |αn − 0| = αn < ε.
It follows that for n > N , |an − L| < ε, and we’re done. �

http://dx.doi.org/10.1007/978-1-4939-6795-7_7
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That was easy! We now prove slightly harder results. We begin by showing that
limits are unique, that is, convergent sequences cannot have two different limits.

Uniqueness of limits

Theorem 3.2 Sequences can have at most one limit.

Proof Let {an} be a sequence inRm and suppose that an → L and an → L ′. We shall
prove that L = L ′. To do so, assume (in order to get a contradiction) that L �= L ′
and let ε = |L − L ′|/2; here’s a picture:

L
ε L′

ε

ε = |L − L′|/2

Since an → L , there is an N such that |an −L| < ε for all n > N , and since an → L ′,
there is N ′ such that |an − L ′| < ε for all n > N ′. By the triangle inequality,

|L − L ′| = |(L − an) + (an − L ′)| ≤ |L − an| + |an − L ′|.

In particular, for n greater than the larger of N and N ′, we see that

|L − L ′| ≤ |L − an| + |an − L ′| < ε + ε = 2ε;

that is, |L − L ′| < |L − L ′|, an impossibility. Thus, L = L ′. �

It is important that the convergence or divergence of a sequence depends only on
the “tail” of the sequence, that is, on the terms of the sequence for large n. This fact
is more or less obvious.

Example 3.8 Consider the sequence

−100, 100, 50, 1000,
1

2
,
1

4
,
1

8
,

1

16
,

1

32
,

1

64
,

1

128
, · · · ,

1

2k
, · · · .

This sequence converges to zero, and the first few terms don’t change this fact.

Given a sequence {an} in R
m and a nonnegative integer k = 0, 1, 2, . . . , we call

the sequence {ak+1, ak+2, ak+3, ak+4, . . . } a k-tail (of the sequence {an}). We’ll leave
the following proof to the reader.

Tails theorem for sequences

Theorem 3.3 A sequence converges if and only if every tail converges, if and
only if some tail converges.

We now show that convergence inRm can be reduced to convergence inR, which
is why real sequences are so important. Let {an} be a sequence inRm . Since an ∈ R

m ,
we can express an in terms of its m-tuple of components:
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an = (a1n, a2n, . . . , amn).

Notice that each coordinate, say the kth one akn , is a real number, and so {akn} =
{ak1, ak2, ak3, . . . } is a sequence in R. Given L = (L1, L2, . . . , Lm) ∈ R

m , in the
following theorem we prove that if an → L , then for each k = 1, . . . , m, akn → Lk

as n → ∞ as well. Conversely, we shall prove that if for each k = 1, . . . , m,
akn → Lk as n → ∞, then an → L as well.

Component theorem

Theorem 3.4 A sequence in R
m converges to L ∈ R

m if and only if each com-
ponent sequence converges in R to the corresponding component of L.

Proof Suppose first that an → L . Fixing k, we shall prove that akn → Lk . Let
ε > 0. Since an → L , there is an N such that for all n > N , |an − L| < ε. Hence,
by definition of the norm on R

m , for all n > N ,

(akn − Lk)
2 ≤ (a1n − L1)

2 + (a2n − L2)
2 + · · · + (amn − Lm)2 = |an − L|2 < ε2.

Taking square roots of both sides shows that for all n > N , |akn − Lk | < ε, which
shows that akn → Lk .

Suppose now that for each k = 1, . . . , m, akn → Lk . Let ε > 0. Since akn → Lk ,
there is an Nk such that for all n > Nk , |akn − Lk | < ε/

√
m. Let N be the largest of

the numbers N1, N2, . . . , Nm . Then for n > N , we have

|an − L|2 = (a1n − L1)
2 + (a2n − L2)

2 + · · · + (amn − Lm)2

<

(
ε√
m

)2
+

(
ε√
m

)2
+ · · · +

(
ε√
m

)2
= ε2

m
+ ε2

m
+ · · · + ε2

m
= ε2.

Taking square roots of both sides shows that for all n > N , |an − L| < ε, which
shows that an → L . �

Example 3.9 Let us apply this theorem to C (which, recall, is just R2 with a special
multiplication). Let cn = (an, bn) = an +ibn be a complex sequence (here we switch
notation from an to cn in the theorem and we let c1n = an and c2n = bn). Then it
follows that cn → c = a + ib if and only if an → a and bn → b. In other words,
cn → c if and only if the real and imaginary parts of cn converge to the real and
imaginary parts, respectively, of c. For instance, from Example3.6 on p. 157 and
Example3.3 on p. 152, it follows that for every real a > 0, we have

1

n + 1
+ ia1/n → 0 + i · 1 = i.

A sequence {an} in R
m (convergent or not) is said to be bounded if there is a

constant C such that |an| ≤ C for all n.
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Example 3.10 The sequence {n} = {1, 2, 3, 4, 5, . . . } is not bounded, by the
Archimedean property of R (see p. 96). Also if a > 1 is a real number, then the se-
quence {an} = {a1, a2, a3, . . . } is not bounded. One way to see this uses Bernoulli’s
inequality on p. 41:We canwrite a = 1+r , where r > 0, so byBernoulli’s inequality,

an = (1 + r)n ≥ 1 + n r > n r,

and n r can be made greater than any constant C by the Archimedean property of R.
Thus, {an} cannot be bounded. On the other hand, the sequence {(−1)n} is bounded,
since |(−1)n| ≤ 1 for all n.

We now prove the fundamental fact that if a sequence converges, then it must be
bounded. The converse is false, as the example {(−1)n} shows.
Convergent sequences are bounded

Theorem 3.5 Every convergent sequence is bounded.

Proof If an → L inRm , then with ε = 1 in the definition of convergence, there is an
N such that for all n > N , we have |an − L| < 1, which, by the triangle inequality,
implies that

n > N =⇒ |an| = |(an − L) + L| ≤ |an − L| + |L| < 1 + |L|. (3.21)

Let k be a natural number greater than N and let

C := max
{|a1|, |a2|, . . . , |ak−1|, |ak |, 1 + |L|}.

Then |an| ≤ C for n = 1, 2, . . . , k, and by (3.21), |an| < C for n > k. Thus,
|an| ≤ C for all n, and hence {an} is bounded. �

Forming the contrapositive, we know that if a sequence is not bounded, then the
sequence cannot converge. Therefore, this theorem can be used to prove that certain
sequences do not converge.

Example 3.11 Each of sequences {n}, {1 + i n2}, {2n + i/n} is not bounded and
therefore does not converge.

3.2.2 Real Sequences and Preservation of Inequalities

Real sequences have certain properties that general sequences in R
m and complex

sequences do not have, namely those corresponding to the order properties ofR. The
first theorem we discuss is the famous squeeze theorem, illustrated on the next page:
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1 2 3 4 5 . . . n

c1 c2 c3
c4 c5 c6 c7

b1
b2

b3 b4 b5 b6 b7

a1
a2 a3

a4
a5 a6

a7

The squeeze theorem says that if a sequence {bn} is squeezed between two sequences
{an} and {cn} that converge to a common value, then {bn} also converges to that same
value. To prove this result, we shall use the following formulation of convergence
discussed in Section3.1 on p. 149:

A real sequence {an} converges to L ∈ R if and only if
for every ε > 0 there is an N such that

n > N =⇒ L − ε < an < L + ε.

In the following theorem, the phrase “for n sufficiently large . . . ” means “there is an
n0 such that for n > n0 . . . .”

Squeeze theorem

Theorem 3.6 Let {an}, {bn}, and {cn} be sequences in R with {an} and {cn}
convergent such that lim an = lim cn and for n sufficiently large, an ≤ bn ≤ cn.
Then the sequence {bn} is also convergent, and

lim an = lim bn = lim cn .

Proof Let L = lim an = lim cn and let ε > 0. By the tails theorem, we may assume
that an ≤ bn ≤ cn for all n. Since an → L , there is an N1 such that for n > N1,
L − ε < an < L + ε, and since cn → L , there is an N2 such that for n > N2,
L − ε < cn < L + ε. Let N be the maximum of N1 and N2. Then for n > N ,

L − ε < an ≤ bn ≤ cn < L + ε,

which implies that for n > N , L − ε < bn < L + ε. Thus, bn → L . �

Example 3.12 Here’s a neat sequence involving the squeeze theorem. Consider {bn},
where

bn = 1

(n + 1)2
+ 1

(n + 2)2
+ 1

(n + 3)2
+ · · · + 1

(2n)2
=

n∑
k=1

1

(n + k)2
.

Observe that for k = 1, 2, . . . , n, we have

0 ≤ 1

(n + k)2
≤ 1

(n + 0)2
= 1

n2
.
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Thus,

0 ≤
n∑

k=1

1

(n + k)2
≤

n∑
k=1

1

n2
=

(
n∑

k=1

1

)
· 1

n2
= n · 1

n2
.

Therefore,

0 ≤ bn ≤ 1

n
.

Since an = 0 → 0 and cn = 1/n → 0, by the squeeze theorem, bn → 0 as well.

Example 3.13 (Real numbers as limits of (ir)rational numbers) We claim that given
a c ∈ R, there are sequences of rational numbers {rn} and irrational numbers {qn},
both converging to c. Indeed, for each n ∈ Nwe have c− 1

n < c, so by Theorem2.38
on p. 98, there is a rational number rn and irrational number qn such that

c − 1

n
< rn < c and c − 1

n
< qn < c.

Since c − 1
n → c and c → c, by the squeeze theorem, we have rn → c and qn → c.

The following theorem states that real sequences preserve inequalities.

Limits preserve inequalities

Theorem 3.7 Let {an} and {bn} converge in R.

(1) If an ≤ bn for n sufficiently large, then lim an ≤ lim bn.
(2) If c ≤ an ≤ d for n sufficiently large, then c ≤ lim an ≤ d.

Proof We shall prove the contrapositive of (1). To this end, assume that an → a :=
lim an and bn → b := lim bn , where a > b. Let ε = (a − b)/2, which is positive by
assumption. Since an → a, there is an N1 such that for n > N1, a − ε < an < a + ε,
and since bn → b, there is an N2 such that for n > N2, b − ε < bn < b + ε. Let N
be the larger of N1 and N2. Then for n > N , we have

a − ε < an < a + ε and b − ε < bn < b + ε.

Hence, for n > N ,

an − bn > (a − ε) − (b + ε) = a − b − 2ε = 0;

that is, for n > N , an > bn . This proves our first result.
(2) follows from (1) applied to the constant sequences {c, c, c, . . . }, which con-

verges to c, and {d, d, d, . . . }, which converges to d:

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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c = lim cn ≤ lim an ≤ lim dn = d. �

If c < an < d for n sufficiently large, must it be true that c < lim an < d (with
strict inequalities)? The answer is no. Can you give a counterexample?

3.2.3 Subsequences

For the rest of this section we focus on general sequences in R
m and not just R. A

subsequence is just a sequence formed by picking out certain (countablymany) terms
of a given sequence. More precisely, let {an} be a sequence in R

m . Let ν1 < ν2 <

ν3 < · · · be a sequence of natural numbers that is increasing. Then the sequence
{aνn } given by

aν1 , aν2 , aν3 , aν4 , . . .

is called a subsequence of {an}.
Example 3.14 Consider the sequence

1

1
,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
, . . . , an = 1

n
, . . . .

Choosing 2, 4, 6, . . . , νn = 2n, . . . , we get the subsequence

1

2
,
1

4
,
1

6
, . . . , aνn = 1

2n
, . . . .

Example 3.15 As another example, choosing 1!, 2!, 3!, 4!, . . . , νn = n!, . . . , we get
the subsequence

1

1! ,
1

2! ,
1

3! , . . . , aνn = 1

n! , . . . .

Notice that both subsequences, {1/(2n)} and {1/n!} also converge to zero, the
same limit as the original sequence {1/n}. This is a general fact: If a sequence
converges, then every subsequence of it must converge to the same limit.

Subsequence convergence theorem

Theorem 3.8 Every subsequence of a convergent sequence converges to the same
limit as the original sequence.

Proof Let {an}be a sequence inRm converging to L ∈ R
m . Let {aνn }be a subsequence

and let ε > 0. Since an → L , there is an N such that for all n > N , |an − L| < ε.
Since ν1 < ν2 < ν3 < · · · is an increasing sequence of natural numbers, one can
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check (for instance, by induction) that n ≤ νn for all n. Thus, for n > N , we have
νn > N , and hence for n > N , we have |aνn − L| < ε. This proves that aνn → L
and completes the proof. �

This theorem gives perhaps the easiest way to prove that a sequence does not
converge.

Example 3.16 Consider the sequence

i, i2 = −1, i3 = −i, i4 = 1, i5 = i, i6 = −1, . . . , an = i n, . . . ,

as seen here:
i = i5 = i9 = · · ·

i4 = i8 = i12 =··· ···= i10 = i6 = i2

i3 = i7 = i11 = · · ·

Choosing 1, 5, 9, 13, . . . , νn = 4n − 3, . . . , we get the subsequence

i, i, i, i, . . . ,

which converges to i . On the other hand, choosing 2, 6, 10, 14, . . . , νn = 4n−2, . . . ,
we get the subsequence

−1, −1, −1, −1, . . . ,

which converges to −1. Since these two subsequences do not converge to the same
limit, the original sequence {i n} cannot converge. Indeed, if {i n} did converge, then
every subsequence of {i n} would have to converge to the same limit as {i n}, but we
have found subsequences that converge to different limits.

3.2.4 Algebra of Limits

Let {an} and {bn} be sequences in R
m . Given real numbers c, d, we can form the

linear combination sequence {c an + d bn} (where the nth term of the sequence is
c an + d bn). As a special case, the sum of these sequences is the sequence {an + bn},
and the difference is the sequence {an − bn}, and choosing d = 0, the multiple of
{an} by c is the sequence {c an}. The sequence of norms of the sequence {an} is the
sequence of real numbers {|an|}. We can reinterpret the definition of limit in terms
of norm sequences:

Example 3.17 (Null and norm sequences) If {an} is a sequence in Rm and L ∈ R
m ,

we claim that

an → L if and only if the sequence of norms {|an − L|} is a null sequence.
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Indeed, this statement is just a rewording of the definition of limit! To see this, note
that if we put bn = |an − L|, then the definition of an → L is

Given ε > 0, there is an N ∈ R such that n > N implies bn < ε.

Since bn = |bn − 0|, we are just saying that bn → 0, that is, {|an − L|} is a null
sequence. In particular, the sequence {an} is a null sequence if and only if {|an|} is a
null sequence.

The following example uses the renowned ε/2-trick,, which says that

We can make α + β < ε by taking α <
ε

2
and β <

ε

2
.

Example 3.18 The easiest case of the algebra of limits concerns null sequences:

Linear combinations of null sequences are again null.

To see this, let {an} and {bn} be null sequences and let c, d be real numbers; we will
show that {c an + d bn} is null. Let ε > 0. By the triangle inequality,

|c an + d bn| ≤ |c| |an| + |d| |bn|.

We use the ε/2-trick as follows. First, since an → 0, there is an N1 such that for
all n > N1, |c| |an| < ε/2. (If |c| = 0, any N1 will work; if |c| > 0, then choose
N1 corresponding to the error ε/(2|c|) in the definition of convergence for an → 0.)
Second, since bn → 0, there is an N2 such that for all n > N2, |d| |bn| < ε/2. Now
setting N as the larger of N1 and N2, it follows that for n > N ,

|c an + d bn| ≤ |c| |an − a| + |d| |bn − b| <
ε

2
+ ε

2
= ε.

Therefore, the sequence {c an + d bn} is null, as claimed.

Using this example, we prove the following algebra of limits theorem.

Theorem 3.9 Linear combinations and norms of convergent sequences converge
to the corresponding linear combinations and norms of the limits.

Proof We consider first linear combinations. If an → a and bn → b, we shall prove
that c an + d bn → c a + d b. To see this, observe that by the triangle inequality,

|c an + d bn − (c a + d b)| = |c (an − a) + d (bn − b)|
≤ |c| |an − a| + |d| |bn − b|. (3.22)
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By Example3.17, we know that both {|an −a|} and {|bn −b|} are null sequences, and
since linear combinations of null sequences are null, it follows that the sequence in
(3.22) to the right of ≤ is a null sequence. By the limit recipe theorem (Theorem3.1
on p. 161), it follows that c an + d bn → c a + d b.

Assuming that an → a, we show that |an| → |a|. Indeed, as a consequence of
the triangle inequality (see Property (iv) in Theorem2.47 on p. 122), we have

| |an| − |a| | ≤ |an − a|.

Since {|an − a|} is null, by the limit recipe theorem, |an| → |a|. �

Let {an} and {bn} be complex sequences. Given complex numbers c, d, the same
proof detailed above shows that c an + d bn → c a + d b. However, since they are
complex sequences, we can also multiply these sequences, term by term, defining the
product sequence as the sequence {an bn} (where the nth term of the sequence is the
product an bn). Also, assuming that bn �= 0 for each n, we can divide the sequences,
term by term, defining the quotient sequence as the sequence {an/bn}.

Theorem 3.10 Products of convergent complex sequences converge to the cor-
responding products of the limits. Quotients of convergent complex sequences,
where the denominator sequence is a nonzero sequence converging to a nonzero
limit, converge to the corresponding quotient of the limits.

Proof Given an → a and bn → b, we shall prove that an bn → a b. To see this,
observe that by the triangle inequality,

|an bn − a b| = |an(bn − b) + b(an − a)| ≤ |an| |bn − b| + |b| |an − a|.

Since convergent sequences are bounded (Theorem3.5), there is a constant C such
that |an| ≤ C for all n. Hence,

|an bn − a b| ≤ C |bn − b| + |b| |an − a|.

The right-hand side is a null sequence, being a linear combination of null sequences.
Thus by the limit recipe theorem, an bn → a b.

Now assume that bn �= 0 for each n and b �= 0; we shall prove that an/bn → a/b.
Since we can write this limit statement as a product: an · b−1

n → a · b−1, all we have
to do is show that b−1

n → b−1. To see this, note that

|b−1
n − b−1| = |bn b|−1 |bn − b|.

Let N be chosen in accordance with the error |b|/2 in the definition of convergence
for bn → b. Then for n > N ,

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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|b| = |b − bn + bn| ≤ |b − bn| + |bn| <
|b|
2

+ |bn|.

Bringing |b|/2 to the left, for n > N we have |b|/2 < |bn|, or

|bn|−1 < 2|b|−1, n > N .

Hence, for n > N ,

|b−1
n − b−1| = |bn b|−1 |bn − b| ≤ C |bn − b|,

where C = 2|b|−2. Since {C |bn − b|} is a null sequence, by the limit recipe theorem
on p. 161, b−1

n → b−1, and our proof is complete. �

These two algebra of limits theorems can be used to evaluate limits in an easy
manner.

Example 3.19 Since lim 1
n = 0, by our product theorem (Theorem3.10), we have

lim
1

n2
=

(
lim

1

n

)
·
(
lim

1

n

)
= 0 · 0 = 0.

Example 3.20 Since the constant sequence 1 converges to 1, by our linear combina-
tion theorem (Theorem3.9), for every number a, we have

lim
(
1 + a

n2

)
= lim 1 + a · lim 1

n2
= 1 + a · 0 = 1.

Example 3.21 Now dividing the top and bottom of n2+3
n2+7 by 1/n2 and using our

theorem on quotients and the limit we just found in the previous example, we obtain

lim
n2 + 3

n2 + 7
=

lim
(
1 + 3

n2

)

lim
(
1 + 7

n2

) = 1

1
= 1.

3.2.5 Properly Divergent Sequences

In dealingwith sequences of real numbers, inevitably infinities occur. For instance,we
know that the sequence {n2} diverges, since it is unbounded. However, in elementary
calculus, we would usually write n2 → +∞ or lim n2 = +∞, which suggests that
this sequence converges to the number “infinity.” We now make this notion precise.

A sequence {an} of real numbersdiverges to+∞ if given any real number M > 0,
there is a real number N such that for all n > N , an > M ; here’s a picture:



172 3 Infinite Sequences of Real and Complex Numbers

M
an

︸ ︷︷ ︸

for all n > N , an > M

. . .

Thus, for every M , the an are eventually greater than M . If instead of plotting the an

on the real line, we graph n versus an , then divergence to +∞ looks like this:

1 2 3 4 5 N

M

a1
a2

a3
a4

a5

an

n

an

. . .

A sequence {an} of real numbers diverges to−∞ if for every real number M < 0,
there is a real number N such that for all n > N , an < M . In the first case, we write
lim an = +∞ or an → +∞ (sometimes we drop the “+” in front of ∞), and in the
second case, we write lim an = −∞ or an → −∞. In either case, we say that {an}
is properly divergent. It is important to understand that the symbols +∞ and −∞
are simply notation and that they do not represent real numbers.6 We now present
some examples.

Example 3.22 Given a natural number k, we shall prove that lim nk = +∞. To see
this, let M > 0. Then we want to prove that there is an N such that for all n > N ,
nk > M . To do so, observe that nk > M if and only if n > M1/k . For this reason, we
choose N = M1/k . With this choice of N , for all n > N , we certainly have nk > M ,
and hence nk → +∞, as stated. Using a very similar argument, one can show that
−nk → −∞.

Example 3.23 In Example3.10 on p. 164,we showed that given a real number a > 1,
the sequence {an} diverges to +∞.

Because ±∞ are not real numbers, some of the limit theorems we have proved
in this section are not valid when ±∞ are the limits, but many do hold under certain
conditions. For example, if an → +∞ and bn → +∞, then for all nonnegative real
numbers c, d, at least one of which is positive, the reader can check that

c an + d bn → +∞.

If c, d are nonpositive, with at least one of them negative, then c an + d bn → −∞.
If c and d have opposite signs, then there is no general result. For example, if an = n,
bn = n2, and cn = n + (−1)n , then an, bn, cn → +∞, but

lim(an − bn) = −∞, lim(bn − cn) = +∞, and lim(an − cn) does not exist!

6It turns out that ±∞ form part of a number system called the extended real numbers, which
consists of the real numbers together with the symbols +∞ = ∞ and −∞. One can define
addition, multiplication, and order in this system, with certain exceptions (such as subtraction of
infinities is not allowed). If you take measure theory, you will study this system.
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We encourage the reader to think about which limit theorems extend to the case of
infinite limits. For example, here is a squeeze law: If an ≤ bn for all n sufficiently
large and an → +∞, then bn → +∞ as well. Some more limit theorems for infinite
limits are presented in the exercises (see e.g., Problem 10).

� Exercises 3.2

1. Evaluate the following limits using limits already proved in the text or exercises
and invoking the “algebra of limits.”

(a) lim
(−1)n n

n2 + 5
, (b) lim

(−1)n

n + 10
, (c) lim

2n

3n + 10
, (d) lim

(
7 + 3

n

)2

.

2. If {an} is a sequence inRm and lim |an| = 0 (that is, {|an|} is null), we know that
an → 0. It is important that zero is the limit in the hypothesis. Indeed, give an
example of a sequence for which lim |an| exists and is nonzero, but {an} diverges.

3. Why do the following sequences diverge?

(a)
{
(−1)n

}
, (b)

{
an =

n∑
k=0

(−1)k

}
, (c)

{
an = 2n(−1)n}

, (d) {i n+1/n}.

4. Find the limits of each of the following sequences:

(a) an =
n∑

k=1

1√
n2 + k

, (b) bn =
n∑

k=1

1√
n + k

, (c) cn = 1

n

2n∑
k=n

1

k
.

5. (a) Let a1 ∈ R and for n ≥ 1, define an+1 = sgn(an)+10(−1)n√
n

. Here, sgn(x) = 1
if x > 0, sgn(x) = 0 if x = 0, and sgn(x) = −1 if x < 0. Find lim an .

(b) Let a1 ∈ [−1, 1], and for n ≥ 1, define an+1 = an
|an |+1 . Find lim an . Sugges-

tion: Can you prove that −1/n ≤ an ≤ 1/n for all n ∈ N?
6. If {an} and {bn} are complex sequences with {an} bounded and bn → 0, prove

that an bn → 0. Why can’t we use Theorem3.10 in this situation?
7. (The root test for sequences) Let {an} be a sequence of positive real numbers

such that R := lim a1/n
n exists. (That is,

{
a1/n

n
}
converges and we denote its limit

by R.)

(i) If R < 1, prove that lim an = 0. Suggestion: Show that there is a real number
r with 0 < r < 1 such that 0 < an < rn for all n sufficiently large, that is,
that there is an N such that 0 < an < rn for all n > N .

(ii) If, however, R > 1, prove that {an} is not bounded, and hence diverges.
(iii) When R = 1, the test is inconclusive: Give an example of a convergent

sequence and a divergent sequence, both of which satisfy R = 1.

8. (The ratio test for sequences) Let {an} be a sequence of positive real numbers
such that R := lim(an+1/an) exists.
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(i) If R < 1, prove that lim an = 0. Suggestion: Show that there are real numbers
C, r with C > 0 and 0 < r < 1 such that 0 < an < C rn for all n sufficiently
large.

(ii) If, however, R > 1, prove that {an} is not bounded, and hence diverges.
(iii) When R = 1 the test is inconclusive: Give an example of a convergent

sequence and a divergent sequence, both of which satisfy R = 1.
(iv) Given a > 0, find lim(an/n!).

9. Which of the following sequences are properly divergent? Prove your answers.

(a) {
√

n2 + 1}, (b) {n(−1)n}, (c)
{3n − 10

2n

}
, (d)

{ n√
n + 10

}
.

10. Let {an} and {bn} be sequences of real numbers with lim an = +∞ and bn �= 0
for n large and suppose that for some real number R, we have

lim
an

bn
= R.

(i) If R > 0, prove that lim bn = +∞.
(ii) If R < 0, prove that lim bn = −∞.
(iii) Can you draw any conclusions if R = 0?

3.3 The Monotone Criteria, the Bolzano–Weierstrass
Theorem, and e

Up to now, we have proved the convergence of a sequence by first exhibiting an
a priori limit of the sequence and then proving that the sequence converged to the
exhibited value. For instance, we showed that the sequence {1/(n +1)} converges by
showing that it converges to 0. Can we still determine whether a sequence converges
without producing an a priori limit value? The answer is yes, and there are two ways
to do this. One is called the monotone criterion, and the other is the Cauchy criterion.
We study the monotone criterion in this section and save Cauchy’s criterion for the
next. In this section we work strictly with sequences of real numbers.

3.3.1 Monotone Criterion

Amonotone sequence {an} of real numbers is a sequence that is either nondecreas-
ing, an ≤ an+1 for each n,

a1 ≤ a2 ≤ a3 ≤ · · · ,



3.3 The Monotone Criteria, the Bolzano–Weierstrass Theorem, and e 175

or nonincreasing, an ≥ an+1 for each n,

a1 ≥ a2 ≥ a3 ≥ · · · .

Here is a picture to keep in mind:

a1 a2 a3 an an+1
nondecreasing

an+1an a3a2 a1
nonincreasing

Example 3.24 Consider the sequence of real numbers {an} defined inductively as
follows:

a1 = 0, an+1 = √
1 + an, n ∈ N. (3.23)

Thus,

a1 = 0, a2 = 1, a3 =
√
1 + √

1, a4 =
√
1 +

√
1 + √

1, . . . .

Observe that

an+1 =

√√√√
1 +

√
1 +

√
1 +

√
· · · + √

1, (3.24)

where there are n square roots here. To get a feeling for a sequence, we always
recommend to plot a few points, which we do in Fig. 3.4. We claim that this sequence
is nondecreasing: 0 = a1 ≤ a2 ≤ a3 ≤ · · · . To see this, we use induction to prove
that 0 ≤ an ≤ an+1 for each n. If n = 1, then a1 = 0 ≤ 1 = a2. Assume that
0 ≤ an ≤ an+1. Then 1 + an ≤ 1 + an+1, so using that square roots preserve
inequalities (the root rules on p. 94), we see that

a1 a2 a3

1 20
√
2

a4a5

Fig. 3.4 We have a1 = 0, a2 = 1, a3 = √
2, a4 =

√
1 + √

2 ≈ 1.554, a5 ≈ 1.598, a6 = 1.612,
a7 ≈ 1.616, . . .

an+1 = √
1 + an ≤ √

1 + an+1 = an+2.

This establishes the induction step, so we conclude that our sequence {an} is nonde-
creasing.We also claim that {an} is bounded. Indeed, based on Fig. 3.4, we conjecture
that an ≤ 2 for each n. Again we proceed by induction. First, we have a1 = 0 ≤ 2.
If an ≤ 2, then by the definition of an+1, we have

an+1 = √
1 + an ≤ √

1 + 2 ≤ √
4 = 2,
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which proves that {an} is bounded by 2.

The monotone criterion in Theorem3.11 states in particular that if a monotone
sequence of real numbers is bounded, then it must converge. From a physical stand-
point, this is obvious; see the car in Fig. 3.5. The same is true of a sequence of
numbers, as in Fig. 3.6. In particular, this implies that our recursive sequence (3.23)
in Example3.24 converges.

� �
Fig. 3.5 A car rolling forward (is monotone, nondecreasing) with a wall in front (is bounded) will
come to rest either before or at the wall

a1 a2 a3 an C

Fig. 3.6 If {an} is nondecreasing and bounded (say by a constant C), like a car rolling toward a
wall, it must “cluster” before, or at, C

Monotone criterion

Theorem 3.11 A monotone sequence of real numbers converges if and only if
the sequence is bounded.

Proof We already know that if a sequence converges, then it must be bounded. So,
let {an} be a bounded monotone sequence; we must prove that it converges. If {an}
is nonincreasing, a1 ≥ a2 ≥ a3 ≥ · · · , then the sequence {−an} is nondecreas-
ing: −a1 ≤ −a2 ≤ · · · . Thus, if we prove that bounded nondecreasing sequences
converge, then lim(−an) would exist. This would imply that lim an = − lim(−an)

exists too. So it remains to prove our theorem under the assumption that {an} is non-
decreasing: a1 ≤ a2 ≤ · · · . Let L equal the supremum of the set {a1, a2, a3, . . . };
this supremum exists because the sequence is bounded. Let ε > 0. Then L − ε
is smaller than L . Since L is the least upper bound of the set {a1, a2, a3, . . . } and
L − ε < L , there must exist an N such that L − ε < aN ≤ L . Since the sequence is
nondecreasing, for all n > N we must also have L − ε < an ≤ L . Since L < L + ε,
we conclude that

n > N =⇒ L − ε < an < L + ε.

Hence, lim an = L . �
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Example 3.25 The monotone criterion implies that our sequence (3.23) converges,
to some real number L . Squaring both sides of an+1, we see that

a2
n+1 = 1 + an.

The subsequence {an+1} also converges to L by Theorem3.8 on p. 167. Therefore,
by the algebra of limits,

L2 = lim a2
n+1 = lim(1 + an) = 1 + L .

Solving for L , we get (using the quadratic formula),

L = 1 ± √
5

2
.

Since 0 = a1 ≤ a2 ≤ a3 ≤ · · · ≤ an → L , and limits preserve inequalities
(Theorem3.7 on p. 166), the limit L cannot be negative, so we conclude that

L = 1 + √
5

2
.

This number is called the golden ratio and is denoted by�. In viewof the expressions
found in (3.24), we can interpret � as the infinite “continued square root”:

� = 1 + √
5

2
=

√√√√√
1 +

√√√√
1 +

√
1 +

√
1 +

√
1 + √

1 + · · ·. (3.25)

There are many stories about �; unfortunately, many of them are false, see [159].

Our next important theorem is the monotone subsequence theorem. It says that
given any sequence of real numbers, whether or not it converges, you can always
choose from it a monotone subsequence. Here’s a picture (Fig. 3.7).

a3 a2 a1a4 a7 a5 a9 a12 a20

Fig. 3.7 The dots represents some points in a sequence {an}, and we label some of the points.
The finitely many points a1, a4, a5, a9, a12, a20 are nondecreasing, and if there are infinitely many
points in the sequence to the right of a20, then we can continue to choose points in the sequence to
get a nondecreasing subsequence

There are many nice proofs of the following theorem, such as those in [19, 170,
241]. In the proof we use, the notion of the maximum of a set A of real numbers,
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by which we mean a number a that satisfies a ∈ A and a = sup A, in which case we
write a = max A.

Monotone subsequence theorem

Theorem 3.12 Every sequence of real numbers has a monotone subsequence.

Proof Let {an} be a sequence of real numbers. Then the statement “for every n ∈
N, the maximum of the set {an, an+1, an+2, . . . } exists” is either a true statement,
or it’s false, which means “there is an m ∈ N such that the maximum of the set
{am, am+1, am+2, . . . } does not exist.”

Case 1: Suppose we are in the first case: for each n, {an, an+1, an+2, . . . } has a
greatest member. In particular, we can choose aν1 such that

aν1 = max{a1, a2, . . . }.

Now {aν1+1, aν1+2, . . . } has a greatest member, so we can choose aν2 such that

aν2 = max{aν1+1, aν1+2, . . . }.

Since aν2 is obtained by taking the maximum of a smaller set of elements, we have
aν2 ≤ aν1 . Let

aν3 = max{aν2+1, aν2+2, . . . }.

Since aν3 is obtained by taking the maximum of a smaller set of elements than the set
defining aν2 , we have aν3 ≤ aν2 . Continuing by induction, we construct a monotone
(nonincreasing) subsequence.

Case 2: Suppose that the maximum of the set A = {am, am+1, am+2, . . . } does not
exist, for some m ≥ 1. Let aν1 = am . Since A has no maximum, there is a ν2 > m
such that

am < aν2 ,

for if there were no such aν2 , then am would be a maximum element of A, which we
know is not possible. Since none of the elements am, am+1, . . . , aν2 is a maximum
element of A, there must exist a ν3 > ν2 such that

aν2 < aν3 ,

for otherwise one of am, . . . , aν2 would be a maximum element of A. Similarly, since
none of am, . . . , aν2 , . . . , aν3 is a maximum element of A, there must exist a ν4 > ν3
such that

aν3 < aν4 .

Continuing by induction, we construct a monotone (nondecreasing) sequence
{aνk }. �
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3.3.2 The Bolzano–Weierstrass Theorem

The following theorem, named after Bernard Bolzano (1781–1848) and Karl
Weierstrass (1815–1897), is one of the most important results in analysis and will
be frequently employed in the sequel.

Bolzano–Weierstrass theorem for R

Theorem 3.13 Every bounded sequence in R has a convergent subsequence. In
fact, if the sequence is contained in a closed interval I , then the limit of the
convergent subsequence is also in I .

Proof Let {an} be a bounded sequence inR. By the monotone subsequence theorem,
this sequence has a monotone subsequence {aνn }, which of course is also bounded.
By themonotone criterion (Theorem3.11), this subsequence converges. Suppose that
{an} is contained in a closed interval I = [a, b]. Then a ≤ aνn ≤ b for each n. Since
limits preserve inequalities, the limit of the subsequence {aνn } also lies in [a, b]. �

Using induction on m (we already did the m = 1 case), we leave the proof of the
following generalization to you, if you’re interested.

Bolzano–Weierstrass theorem for R
m

Theorem 3.14 Every bounded sequence in R
m has a convergent subsequence.

Example 3.26 For many sequences it’s easy to find convergent subsequences explic-
itly. For example, we’ve already looked at the complex, or R2, sequence

i, i2 = −1, i3 = −i, i4 = 1, i5 = i, i6 = −1, . . . , an = i n, . . . .

With n = 1, 5, 9, 13, . . . we get the convergent subsequence

i, i, i, i, . . . .

There are many other convergent subsequences, all of which will converge to either
i,−1,−i, or 1.

3.3.3 The Number e

We now define Euler’s constant e by a method that has been around for ages; cf.
[129, p. 82], [261]. Consider the two sequences whose terms are given by
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an =
(
1 + 1

n

)n

=
(

n + 1

n

)n

and bn =
(
1 + 1

n

)n+1

=
(

n + 1

n

)n+1

,

where n = 1, 2, . . . . We shall prove that the sequence {an} is bounded above and is
strictly increasing, which means that an < an+1 for all n. We’ll also prove that {bn}
is bounded below and strictly decreasing, which means that bn > bn+1 for all n. In
particular, the limits lim an and lim bn exist by the monotone criterion. Notice that

bn = an

(
1 + 1

n

)
,

and 1+ 1/n → 1, so if sequences {an} and {bn} converge, they must converge to the
same limit. This limit is denoted by the letter e, introduced in 1727 by Euler perhaps
because “e” is the first letter in “exponential” [35, p. 442], not because “e” is the first
letter of his last name!

The proof that the sequences above are monotone follows from Bernoulli’s in-
equality on p. 42. First, to see that bn−1 > bn for n ≥ 2, observe that

bn−1

bn
=

(
n

n − 1

)n ( n

n + 1

)n+1

=
(

n2

n2 − 1

)n (
n

n + 1

)

=
(
1 + 1

n2 − 1

)n ( n

n + 1

)
.

According to Bernoulli’s inequality, we have

(
1 + 1

n2 − 1

)n

> 1 + n

n2 − 1
> 1 + n

n2
= n + 1

n
,

which implies that

bn−1

bn
>

n + 1

n
· n

n + 1
= 1 =⇒ bn−1 > bn.

This proves that {bn} is strictly decreasing. Certainly bn > 0 for each n, so the
sequence bn is bounded below and hence converges.

To see that an−1 < an for n ≥ 2, we proceed in a similar manner:

an

an−1
=

(
n + 1

n

)n (n − 1

n

)n−1

=
(

n2 − 1

n2

)n (
n

n − 1

)

=
(
1 − 1

n2

)n ( n

n − 1

)
.

Bernoulli’s inequality for n ≥ 2 implies that
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(
1 − 1

n2

)n

> 1 − n

n2
= 1 − 1

n
= n − 1

n
,

so
an

an−1
>

n − 1

n
· n

n − 1
= 1 =⇒ an−1 < an.

This shows that {an} is strictly increasing. Finally, since an < bn ≤ b1 = 4, the
sequence {an} is bounded above.

In conclusion, we have proved that the limit

e := lim
n→∞

(
1 + 1

n

)n

exists, which equals by definition the number denoted by e. Moreover, since an < bn

for all n, it follows that

(
1 + 1

n

)n

< e <

(
1 + 1

n

)n+1

, for all n. (3.26)

We shall need this inequality later when we discuss the Euler–Mascheroni constant.
This inequality is also useful in studying a “weak form” of Stirling’s formula, which
we now describe. Recall that 0! = 1 and that given a positive integer n, we define n!
(which we read “n factorial”) as n! = 1 · 2 · 3 · · · n. For n positive, observe that n!
is less than nn , or equivalently, n

√
n!/n < 1. A natural question to ask is, How much

less than one is the ratio n
√

n!/n? Using (3.26), in Problem 6 you will prove that

lim
n
√

n!
n

= 1

e
, (“weak form” of Stirling’s formula). (3.27)

� Exercises 3.3

1. (a) Show that the sequence defined inductively by an+1 = 1
3 (2an + 4) with

a1 = 0 is nondecreasing and bounded above by 4. Find the limit.
(b) Let α ≥ 1 and let a1 = 1. Show that the sequence defined inductively by

an+1 = √
α an is nondecreasing and bounded above by α. Find the limit.

(c) Let a > 0. Show that the sequence defined inductively by an+1 = an/(1 +
2an) with a1 = a is a bounded monotone sequence. Find the limit.

(d) Let a ≥ 6. Prove that the sequence defined inductively by an+1 = 5 +√
an − 5 with a1 = a is a bounded monotone sequence. Find the limit.

(e) Let b > 0 and let a1 ≥ b/2. Show that the sequence defined inductively
by an+1 = b − b2/(4an) is a bounded monotone sequence. Find the limit.
Suggestion: Pick, e.g., b = 2 and a1 = 2 and calculate a few values of an to
conjecture whether {an} is, for general b > 0 and a1 ≥ b/2, nondecreasing
or nonincreasing. Also conjecture bounds. Now prove your conjectures.



182 3 Infinite Sequences of Real and Complex Numbers

(f) Let a ∈ R with 1 ≤ a ≤ 3. Show that the sequence defined inductively by
an+1 = 1/(4 − an) with a1 = a is a bounded monotone sequence. Find the
limit.

2. Show that the sequence with an = ∑n
k=1

1
n+k = 1

n+1 + 1
n+2 + · · · + 1

n+n is a
bounded monotone sequence and its limit L satisfies 1/2 ≤ L ≤ 1. The limit of
this sequence is not at all obvious (it equals log 2; see Problem 8 on p. 312).

3. (Computing square roots) In this problemwe give two different ways to express
square roots in terms of sequences.

(1) Let a > 0. Let a1 be a positive number and define

an+1 = 1

2

(
an + a

an

)
, n ≥ 1.

(i) Show that an > 0 for all n and a2
n+1 − a ≥ 0 for all n.

(ii) Show that {an} is nonincreasing for n ≥ 2.
(iii) Conclude that {an} converges and find its limit.

(2) Let a ≥ 0 and fix a real number k > 0 such that
√

a ≤ k. Show that the
sequence defined inductively by an+1 = an + 1

2k (a − a2
n) with a1 = 0 is

nondecreasing and bounded above by
√

a. Prove that an → √
a. Suggestion:

Assuming an ≤ √
a, to prove that an+1 ≤ √

a, write an = √
a − b, where

b ≥ 0.

4. (Cf. [268]) In this problem we analyze the constant e based on the arithmetic–
geometric mean inequality (AGMI) (see Problem 7 on p. 46). Assume the AGMI,
which states that given n + 1 nonnegative real numbers x1, . . . , xn+1,

x1 · x2 · · · xn+1 ≤
( x1 + x2 + · · · + xn+1

n + 1

)n+1
.

(i) Put xk = (1 + 1/n) for k = 1, . . . , n and xn+1 = 1 in the AGMI to prove
that the sequence an = (1 + 1

n )n is nondecreasing.
(ii) If bn = (1 + 1/n)n+1, then show that for n ≥ 2,

bn

bn−1
=

(
1 − 1

n2

)n (
1 + 1

n

)
=

(
1 − 1

n2

)
· · ·

(
1 − 1

n2

)
︸ ︷︷ ︸

n times

(
1 + 1

n

)
.

Applying the AGMI to the right-hand side, show that bn/bn−1 ≤ 1, which
shows that the sequence {bn} is nonincreasing.

(iii) Conclude that both sequences {an} and {bn} converge. Of course, just as in
the text, we denote their common limit by e.

5. (Continued roots) For more on this subject, see [4], [109], [162, p. 775], [230],
[115].
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(1) Fix k ∈ N with k ≥ 2 and fix a > 0. Show that the sequence defined
inductively by xn+1 = k

√
a + xn with x1 = k

√
a is a bounded monotone

sequence. Prove that the limit L is a root of the equation xk − x − a = 0.
The limit L can be thought of as the continued root (can you see why?)

L = k

√
a + k

√
a + k

√
a + k

√
a + · · · .

(2) Let {an} be a sequence of nonnegative real numbers. Define the sequence
{αn} by

α1 = √
a1 , α2 =

√
a1 + √

a2 , α3 =
√

a1 +
√

a2 + √
a3 ,

and so forth.7 Prove that {αn} converges if and only if there is a con-
stant M ≥ 0 such that 2n√an ≤ M for all n. Suggestion: To prove
“only if,” show that 2n√an ≤ αn , and to prove “if,” show that αn ≤√

M2 +
√

M22 +
√

· · · + √
M2n = Mbn where bn =

√
1 +

√
1 +

√
· · · + √

1

(where there are n square roots) is found in (3.23); in particular, in Example
3.24 we showed that bn ≤ 2.

(3) Show that √√√√
1 +

√
2 +

√
3 +

√
4 + √

5 + · · ·

can be defined. This number is calledKasner’s number, named after Edward
Kasner (1878–1955), and is approximately 1.75793 . . . .

6. In this problem we prove (3.27), the “weak form” of Stirling’s formula.

(i) Prove that for each natural number n, (n − 1)! ≤ nne−ne ≤ n!. Suggestion:
Can you use induction and (3.26)? (You can also prove these inequalities
using integrals as in [138, p. 219], but using (3.26) gives an “elementary”
proof that is free of integration theory.)

(ii) Using (i), prove that for every natural number n,

e1/n

e
≤

n
√

n!
n

≤ e1/n n1/n

e
.

(iii) Now prove (3.27). Using (3.27), prove that

7For each n ∈ N, define fn : [0,∞) → [0,∞) by fn(x) = √
an + x . Then α1 = f1(0),

α2 = f1( f2(0)), α3 = f1( f2( f3(0))), and in general, αn := ( f1 ◦ f2 ◦ · · · ◦ fn)(0).
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lim

(
(3n)!
n3n

)1/n

= 27

e3
and lim

(
(3n)!
n! n2n

)1/n

= 27

e2
.

3.4 Completeness, the Cauchy Criterion, and Contractive
Sequences

The monotone criterion gives a criterion for convergence (in R) of a monotone
sequence of real numbers. Now what if the sequence is not monotone? The Cauchy
criterion, originating with Bolzano, but then made into a formulated criterion by
Cauchy [129, p. 87], gives a convergence criterion for general sequences of real
numbers, and more generally, sequences of complex numbers and vectors.

3.4.1 Cauchy Sequences

Intuitively, a Cauchy sequence is a sequence whose points eventually cluster, clump
up, or accumulate closer and closer to each other, as seen here (Fig. 3.8):

•a1

•a2
•a3

•a4•a5
•••ak

•an• •

Fig. 3.8 A Cauchy sequence in C = R
2. The points get closer and closer to each other the farther

you go in the sequence. That is, given any distance, any two points far enough down the sequence
will be within that distance

Here’s a precise definition: A sequence {an} in Rm is said to be Cauchy if

for every ε > 0, there is N ∈ R such that k, n > N =⇒ |ak − an| < ε.

Here, the ε tells “how close” you want the points to be to each other, and the N tells
you how “far along” the sequence you have to go to have the points at least that close.

Example 3.27 The sequence of real numbers with an = 2n−1
n−3 and n ≥ 4 is Cauchy.

To see this, let ε > 0. We need to prove there is a real number N such that

k, n > N =⇒
∣∣∣∣2k − 1

k − 3
− 2n − 1

n − 3

∣∣∣∣ < ε.

To see this, we “massage” the right-hand expression:
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∣∣∣∣2k − 1

k − 3
− 2n − 1

n − 3

∣∣∣∣ =
∣∣∣∣ (2k − 1)(n − 3) − (2n − 1)(k − 3)

(k − 3)(n − 3)

∣∣∣∣
=

∣∣∣∣ 5(n − k)

(k − 3)(n − 3)

∣∣∣∣ ≤
∣∣∣∣ 5n

(k − 3)(n − 3)

∣∣∣∣ +
∣∣∣∣ 5k

(k − 3)(n − 3)

∣∣∣∣ .
Now observe that for n ≥ 4, we have n

4 ≥ 1, so

n − 3 ≥ n −
(
3 · n

4

)
= n − 3n

4
= n

4
=⇒ 1

n − 3
≤ 4

n
.

Thus, for n, k ≥ 4, we have

∣∣∣∣ 5n

(k − 3)(n − 3)

∣∣∣∣ +
∣∣∣∣ 5k

(k − 3)(n − 3)

∣∣∣∣ < 5n · 4
k

· 4
n

+ 5k · 4
k

· 4
n

= 80

k
+ 80

n
.

Hence,

for k, n ≥ 4,

∣∣∣∣2k − 1

k − 3
− 2n − 1

n − 3

∣∣∣∣ <
80

k
+ 80

n
.

Now to make the left-hand side less than ε, all we have to do is make the right-hand
side less than ε, and we can do this by noticing that we can make

80

k
+ 80

n
< ε by making

80

k
<

ε

2
and

80

n
<

ε

2
.

These latter inequalities hold if and only if k, n > 160/ε. For this reason, let us pick
N to be the larger of 3 and 160/ε. Let k, n > N (that is, k, n ≥ 4 and k, n > 160/ε).
Then, ∣∣∣∣2k − 1

k − 3
− 2n − 1

n − 3

∣∣∣∣ <
80

k
+ 80

n
<

ε

2
+ ε

2
= ε.

This shows that the sequence {an} is Cauchy. Notice that this sequence, { 2n−1
n−3 },

converges (to the number 2).

Example 3.28 Here’s a more sophisticated example of a Cauchy sequence. Let a0 =
0, a1 = 1, and for n ≥ 2, we let an be the arithmetic mean between the previous two
terms:

an = an−2 + an−1

2
, n ≥ 2.

This sequence is certainly not monotone, as seen here (Fig. 3.9):

10
a1a2

1
2

a3
3
4

a4
5
8

a5
11
16

a6
21
32

Fig. 3.9 The number an is always halfway between an−1 and an−2
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However, we shall prove that {an} is Cauchy. To do so, we first prove by induction
that

an+1 − an =
(

− 1

2

)n
. (3.28)

Since a0 = 0 and a1 = 1, this equation holds for n = 0. Assume that the equation
holds for n. Then

an+2 − an+1 = an + an+1

2
− an+1 = 1

2

(
an − an+1

) = −1

2

(
− 1

2

)n =
(

− 1

2

)n+1
,

which proves the induction step. With (3.28) in hand, we show that the sequence
{an} is Cauchy. Let k, n be any natural numbers, where by symmetry, we assume that
k ≤ n (otherwise, just switch k and n in what follows). We now form the telescoping
sum

an = (
an − an−1

) + (
an−1 − an−2

) + (
an−2 − an−3

) + · · · + (
ak+1 − ak

) + ak,

noticing that all the terms on the right after an cancel in pairs. Let n = k + j , where
j ≥ 0. Then in the telescoping sum, bringing ak to the left-hand side, using (3.28)
to rewrite the terms in parentheses, and using the sum of a geometric progression,
Eq. (2.3) on p. 41, we obtain

an − ak = rn−1 + rn−2 + rn−3 + · · · + rk

(
where we put r = −1

2

)

= rk

[
1 + r + r2 + · · · + r j−1

]

= rk · 1 − r j

1 − r

= rk · 2
3

· (1 − r j
)
, (3.29)

as 1 − r = 3/2. Since 2
3 · ∣∣1 − r j

∣∣ ≤ 2
3 · (1 + 1/2) = 1, we conclude that

|ak − an| ≤ 1

2k
, for all k, n with k ≤ n.

Now let ε > 0. Since 1/2 < 1, we know that 1/2k → 0 as k → ∞ (see Example3.5
on p. 156). Therefore, there is an N such that for all k > N , 1/2k < ε. In particular,
for such k, it follows that

|ak − an| < ε.

This proves that the sequence {an} is Cauchy. Moreover, we claim that {an} also
converges. Indeed, by (3.29) with k = 0, so that n = j , we see that

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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an = 2

3
· (1 − rn

)
, where r = −1

2
.

Since |r | < 1, we know that rn → 0. Hence,

lim an = 2

3
.

We have thus far given two examples of Cauchy sequences, both of which also
converge. In Theorem3.16 below, we shall prove that every Cauchy sequence must
converge. In real life this is “obvious”; for example, consider an airplane (Fig. 3.10):

Fig. 3.10 Left an airplane circling above making tighter and tighter circles (the Cauchy condition).
Right you conclude that there must an airport nearby to which the airplane is converging

Similarly, if you see a mouse in your yard walking in tighter and tighter circles,
you may infer that there is some food to which it is converging; or if you notice
students coming from various directions clustering, you know that there is some
event to which they are converging. The same is the case with Rm .

3.4.2 Cauchy Criterion

The following two proofs use the ε/2-trick.

Lemma 3.15 A Cauchy sequence in R
m that has a convergent subsequence is

itself convergent (with the same limit as the subsequence).

Proof Let {an} be a Cauchy sequence and assume that aνn → L for some subse-
quence of {an}. We shall prove that an → L . Let ε > 0. Since {an} is Cauchy, there
is an N such that

k, n > N =⇒ |ak − an| <
ε

2
.

Since aνn → L , there is a natural number k ∈ {ν1, ν2, ν3, ν4, . . . } with k > N such
that

|ak − L| <
ε

2
.
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Now let n > N be arbitrary. Then using the triangle inequality and the two inequal-
ities displayed, we see that

|an − L| = |an − ak + ak − L| ≤ |an − ak | + |ak − L| <
ε

2
+ ε

2
= ε.

This proves that an → L , and our proof is complete. �

Cauchy criterion

Theorem 3.16 A sequence in R
m converges if and only if it is Cauchy.

Proof Let {an} be a sequence in R
m converging to L ∈ R

m . We shall prove that the
sequence is Cauchy. Let ε > 0. Since an → L , there is an N such that for all n > N ,
we have |an − L| < ε

2 . Hence, by the triangle inequality,

k, n > N =⇒ |ak − an| ≤ |ak − L| + |L − an| <
ε

2
+ ε

2
= ε.

This proves that a convergent sequence is also Cauchy.
Now let {an} be Cauchy. We shall prove that this sequence also converges. We

first prove that the sequence is bounded. To see this, let us put ε = 1 in the definition
of being a Cauchy sequence; then there is an N such that for all k, n > N , we have
|ak − an| < 1. Fix k > N . Then by the triangle inequality, for every n > k,

|an| = |an − ak + ak | ≤ |an − ak | + |ak | < 1 + |ak |.

It follows that for every natural number n, we have

|an| ≤ max{|a1|, |a2|, |a3|, . . . , |ak−1|, 1 + |ak |}.

This shows that the sequence {an} is bounded. The Bolzano–Weierstrass theorem
(Theorem3.14 on p. 179) now implies that {an} has a convergent subsequence.
Lemma3.15 then guarantees that the whole sequence {an} converges. �

Because every Cauchy sequence in Rm converges in Rm , we say that Rm is com-
plete. This property of Rm is essential to many objects in analysis, e.g., series,
differentiation, integration, all of which use limit processes. The rationals, Q, is an
example of an incomplete space.

Example 3.29 The sequence

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, . . .

is a Cauchy sequence of rational numbers, but its limit (which is supposed to be
√
2)

does not exist as a rational number! (By the way, we’ll study decimal expansions of
real numbers in Section3.8, starting on p. 226.)
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From this example you can imagine the difficulties the incompleteness of Q can
cause when you are trying to do analysis with strictly rational numbers.

3.4.3 Contractive Sequences

Cauchy’s criterion is important because it allows us to determine whether a sequence
converges or diverges by proving instead that the sequence is or is not Cauchy.
Unfortunately, to determine convergence by appealing directly to the definition of a
Cauchy sequence is not always easy. The goal of this subsection is to present a simple
condition that we could check that guarantees that a given sequence is Cauchy and
hence converges.

A sequence {an} in Rm is a said to be contractive if there is a real number r with
0 < r < 1 such that for all n,

|an+1 − an| ≤ r |an − an−1|. (3.30)

This inequality says that the distance between adjacent members of the sequence
{an} shrinks (or contracts) by at least a factor of r at each step.

Contractive sequence theorem

Theorem 3.17 If a sequence is contractive, then it converges.

Proof Let {an} be a contractive sequence. Then with n = 2 in (3.30), we see that

|a3 − a2| ≤ r |a2 − a1| = Cr2, where C = r−1|a2 − a1|.

With n = 3, we get

|a4 − a3| ≤ r |a3 − a2| ≤ r · Cr2 = Cr3.

By induction, for n ≥ 2 we get

|an+1 − an| ≤ C rn. (3.31)

To prove that {an} converges, all we have to do is prove that the sequence is Cauchy.
Let k, n ≥ 2 with k ≤ n, say n = k + j , where j ≥ 0. Then according to (3.31), the
triangle inequality, and the geometric sum formula from Eq. (2.3) on p. 41, we can
write

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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|an − ak | = ∣∣(an − an−1
) + (

an−1 − an−2
) + · · · + (

ak+1 − ak
)∣∣

≤ ∣∣an − an−1

∣∣ + ∣∣an−1 − an−2

∣∣ + ∣∣an−2 − an−3

∣∣ + · · · + ∣∣ak+1 − ak

∣∣
= C rn−1 + C rn−2 + C rn−3 + · · · + C rk

= C rk

[
1 + r + r2 + · · · + r j−1

]
(since n = k + j)

= C rk 1 − r j

1 − r
≤ M rk , where M = C

1 − r
.

We are now ready to prove that the sequence {an} is Cauchy. Let ε > 0. Since r < 1,
we know that M rk → 0 as n → ∞. Therefore, there is an N > 1 such that for all
n > N , M rk < ε. Let k, n > N . Then k, n ≥ 2, and by symmetry, we may assume
that k ≤ n (otherwise, just switch k and n in what follows). Hence, by the above
calculation, we find that

|an − ak | ≤ M rk < ε.

This proves that the sequence {an} is Cauchy. �

We remark that by the tails theorem (Theorem3.3 on p. 162), a sequence {an}
will converge as long as (3.30) holds for sufficiently large n. We also remark that
the converse of the contractive sequence theorem is false (see Problem 7). We now
consider an example.

Example 3.30 Define

a1 = 1 and an+1 = √
9 − 2an, n ≥ 1. (3.32)

Here is a plot of the first few points in this sequence:

a1 a2a3 a4a5
√
7a62 310

Fig. 3.11 In addition to a1, using a calculator we obtain a2 = √
7 ≈ 2.65, a3 ≈ 1.93, a4 ≈ 2.27,

a5 = 2.11, and a6 ≈ 2.19

It is not a priori obvious that this sequence is well defined; how do we know that
9 − 2an ≥ 0 for all n, so that we can take the square root

√
9 − 2an to define an+1?

Thus, we need to show that an cannot get so big that 9− 2an becomes negative. This
is accomplished through the following claim:

For all n ∈ N, an is defined and 1 ≤ an ≤ 3. (3.33)

Of course, from Fig. 3.11 we could (rightly) guess that 1 ≤ an ≤ √
7 for all n, but it

turns out that the slightly larger number 3 is enough to prove what we want. Now to
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prove (3.33), observe that it holds for n = 1. If (3.33) holds for an , then by algebra,
we get 3 ≤ 9 − 2an ≤ 7. In particular, the square root an+1 = √

9 − 2an is well
defined, and √

3 ≤ an+1 = √
9 − 2an ≤ √

7.

Since 1 = √
1 ≤ √

3 and
√
7 ≤ √

9 = 3, (3.33) holds for an+1. Therefore, (3.33)
holds for every n. Now multiplying by conjugates, for n ≥ 2 we obtain

an+1 − an =
(√

9 − 2an − √
9 − 2an−1

) √
9 − 2an + √

9 − 2an−1√
9 − 2an + √

9 − 2an−1

= −2an + 2an−1√
9 − 2an + √

9 − 2an−1

= 2√
9 − 2an + √

9 − 2an−1
· (−an + an−1).

The smallest the denominator can possibly be occurs when an−1 and an are the largest
they can be, which according to (3.33), is no more than 3. It follows that for every
n ≥ 2,

2√
9 − 2an + √

9 − 2an−1
≤ 2√

9 − 2 · 3 + √
9 − 2 · 3 = 2√

3 + √
3

= r,

where r = 1√
3

< 1. Thus, for every n ≥ 2,

|an+1 − an| = 2√
9 − 2an + √

9 − 2an−1
|an − an−1| ≤ r |an − an−1|.

This proves that the sequence {an} is contractive, and therefore an → L for some
real number L . Because an ≥ 0 for all n and limits preserve inequalities we must
have L ≥ 0 too. Moreover, by (3.32), we have

L2 = lim a2
n+1 = lim(9 − 2an) = 9 − 2L ,

which implies that L2 + 2L − 9 = 0. Solving this quadratic equation and taking the
positive root, we obtain L = √

10 − 1.

� Exercises 3.4

1. Prove directly, via the definition, that the following sequences are Cauchy.

(a)

{
10 + (−1)n

√
n

}
, (b)

{(
7 + 3

n

)2
}

, (c)

{
n2

n2 − 5

}
.

2. Negate the statement that a sequence {an} is Cauchy. With your negation, prove
that the following sequences are not Cauchy (and hence cannot converge).
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(a) {(−1)n}, (b)

{
an =

n∑
k=0

(−1)n

}
, (c) {i n + 1/n}.

3. Prove that the following sequences are contractive; then find their limits.

(a) Let a1 = 0 and an+1 = (2an − 3)/4.
(b) Let a1 = 1 and an+1 = 1

5a2
n − 1.

(c) Let a1 = 0 and an+1 = 1
8a3

n + 1
4an + 1

2 .
(d) Let a1 = 1 and an+1 = 1

1+3an
. Suggestion: Prove that 1

4 ≤ an ≤ 1 for all n.

(e) (Cf. Example3.28.) Let a1 = 0, a2 = 1, and an = 2
3an−2 + 1

3an−1 for n > 2.
(f) (Cf. Example3.30.) Let a1 = 1 and an+1 = √

5 − 2an .
(g) Let a1 = 1 and an+1 = an

2 + 1
an
.

4. Let f : Rm → R
m be contractive, which means that there is 0 < r < 1 such

that
| f (x) − f (y)| ≤ r |x − y| for all x, y ∈ R

m .

Let a ∈ R
m and define the sequence {an} by a1 = a and an+1 = f (an) for

n = 1, 2, 3, . . . .

(i) Prove that {an} is contractive.
(ii) Prove that the limit L = lim an satisfies f (L) = L .

5. (Roots of polynomials) We can use Cauchy sequences to obtain roots of poly-
nomials. Using a graphing calculator, we see that x3 − 4x + 2 has exactly one
root, call it a, in the interval [0, 1]. This root is irrational by the rational zeros
theorem on p. 84. We can express this root as a sequence of rational numbers as
follows. Define the sequence {an} recursively by an+1 = 1

4 (a
3
n + 2) with a1 = 0.

Prove that {an} is contractive and converges to a.
6. Here are some Cauchy limit theorems. Let {an} be a sequence in Rm .

(a) Prove that {an} is Cauchy if and only if for every ε > 0, there is a number N
such that for all n > N and k ≥ 1, |an+k − an| < ε.

(b) Given a sequence {bn} of natural numbers, we call the sequence {dn}, where
dn = an+bn −an , a difference sequence. Prove that {an} is Cauchy if and only
if every difference sequence converges to zero (that is, is a null sequence).
Suggestion: To prove the “if” part, instead prove the contrapositive: If {an}
is not Cauchy, then there is a difference sequence that does not converge to
zero.

7. Give an example of a convergent sequence that is not contractive.
8. (Continued fractions—see Chapter8 for more on this amazing topic!) In this

problem we investigate the continued fraction

http://dx.doi.org/10.1007/978-1-4939-6795-7_8
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√
2 = 1 + 1

2 + 1

2 + · · ·
.

We interpret the infinite fraction on the right as the limit of the fractions

a1 = 1, a2 = 1 + 1

2
, a3 = 1 + 1

2 + 1
2

, a4 = 1 + 1

2 + 1
2+ 1

2

, . . . ,

where this sequence is defined recursively by a1 = 1 and an+1 = 1+ 1/(1+ an)

for n ≥ 1. Prove that {an} converges and its limit is
√
2. Here’s a related example:

Prove that

� = 1 + 1

1 + 1

1 + 1

1 + . . .

(3.34)

in the sense that the right-hand continued fraction converges with value �, where
� is the golden ratio defined in (3.25). In other words, prove that � = lim φn ,
where {φn} is the sequence defined by φ1 := 1 and φn+1 = 1 + 1/φn for n ∈ N.

9. The Fibonacci sequence was defined in Problem 9 on p. 193. Prove that the
sequence of ratios {Fn+1/Fn} converges with limit the golden ratio:

� = lim
n→∞

Fn+1

Fn
.

3.5 Baby Infinite Series

Imagine taking a stick of unit length and cutting it in half, getting two sticks of length
1/2. We then take one of the halves and cut that piece in half, getting two sticks of
length 1/4 = 1/22. We now take one of these fourths and cut it in half, getting two
sticks of length 1/8 = 1/23. We continue this process indefinitely as seen here:

|
0

|
1

| | | |
1
2

1
22

1
23

1
24

Then the sum of all the lengths of all the sticks formed is 1:

1 = 1

2
+ 1

22
+ 1

23
+ 1

24
+ 1

25
+ · · · .
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Another geometric proof of the sum of this series is to take a square of side length 1
and divide it into halves infinitely many times:

1
2

1
22

1
23 1

24

1
25

The aim of this section is to rigorously define and study infinite series.8

3.5.1 Basic Results on Infinite Series

Given a sequence {an}∞n=1 of complex numbers, we want to attach a meaning to∑∞
n=1 an , which we often write as

∑
an for simplicity. To this end, we define the nth

partial sum, sn , of the series to be

sn =
n∑

k=1

ak = a1 + a2 + · · · + an.

Of course, here there are only finitely many numbers being summed, so the right-
hand side has a clear definition. If the sequence {sn} of partial sums converges, then
we say that the infinite series

∑
an converges, and we define

∑
an =

∞∑
n=1

an = a1 + a2 + a3 + · · ·

as the limit

lim sn = lim
n→∞

n∑
k=1

ak .

If the sequence of partial sums does not converge, thenwe say that the seriesdiverges.
SinceR ⊆ C, restricting to real sequences {an}, we already have built in to the above
definition the convergence of a series of real numbers. We remark that a series of
nonnegative real numbers can be interpreted as the area of infinitely many rectangles,
as seen here (Fig. 3.12):

8“If you disregard the very simplest cases, there is in all of mathematics not a single infinite
series whose sum has been rigorously determined. In other words, the most important parts of
mathematics stand without a foundation.” Niels Abel (1802–1829) [225]. (Of course, nowadays
series are “rigorously determined”—this is the point of this section!)
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1 2 3 4 5 6 7 8

a1 a2 a3 a4 a5 a6 a7

Fig. 3.12 At each natural number n, draw a rectangle between n and n + 1 with height an . The
base of each rectangle has length 1, and the height is an , so the area of each rectangle is an . Thus,∑

an is just the sum of the areas of the rectangles

There is a similar interpretation when some terms in the series are negative; if an is
negative, we draw a rectangle, but now below the horizontal axis. The sum

∑
an is

then interpreted as the sum of the areas of the rectangles above the horizontal axis
minus the sum of the areas of the rectangles below the horizontal axis.

We remark that just as a sequence can be indexed so that its starting value is a0

or a−7 or a1234, we can do a similar thing with series, such as

∞∑
n=0

an,

∞∑
n=−7

an,

∞∑
n=1234

an.

For convenience, in our proofs wemost of the timeworkwith series starting at n = 1,
although all the results we discuss hold for series starting with any index.

Example 3.31 Consider the series

∞∑
n=0

(−1)n = 1 − 1 + 1 − 1 + − · · · .

Observe that s1 = 1, s2 = 1− 1 = 0, s3 = 1− 1+ 1 = 1, and in general, sn = 1 if n
is odd, and sn = 0 if n is even. Since {sn} diverges, the series ∑∞

n=0(−1)n diverges.

Example 3.32 Consider the following series:

∞∑
n=1

1

n(n + 1)
= 1

1 · 2 + 1

2 · 3 + · · · + 1

n(n + 1)
+ · · · .

To analyze this series, we use the method of partial fractions9 and note that

9If p(x) and q(x) = (x − r1)(x − r2) · · · (x − rn) are polynomials in which the ri are distinct
constants and the degree of p is less than n, the method of partial fractions supposes that

p(x)

q(x)
= c1

x − r1
+ c2

x − r2
+ · · · + cn

x − rn

and then solves for the constants c1, . . . , cn . If there is a repeated factor, say (x − r1)2 in q(x), then
the term c′

1/(x − r1)2 is added. It would be advantageous to review the method of partial fractions
from a calculus book. In the above example, p(x) = 1 and q(x) = x(x + 1).
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1

k(k + 1)
= 1

k
− 1

k + 1
.

Using this formula, we see that the adjacent terms in sn cancel (except for the first
and the last):

sn = 1

1 · 2 + 1

2 · 3 + · · · + 1

n(n + 1)
(3.35)

=
(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · · +

(
1

n
− 1

n + 1

)
= 1 − 1

n + 1
.

It follows that sn = 1 − 1/(n + 1) → 1, and therefore
∞∑

n=1

1

n(n + 1)
= 1.

There are two very simple tests that will help determine the convergence or di-
vergence of a series. The first test might also be called the fundamental test, because
it is the test that one should always try first when given a series.

nth term test

Theorem 3.18 If
∑

an converges, then an → 0. Stated another way, if an �→ 0,
then

∑
an diverges.

Proof Assume that
∑

an converges, let s = ∑
an , and let sn denote the nth partial

sum of the series. Observe that

sn − sn−1 = (a1 + a2 + · · · + an−1 + an) − (a1 + a2 + · · · + an−1) = an.

By definition of convergence of
∑

an , we have sn → s. Therefore, sn−1 → s as
well, whence an = sn − sn−1 → s − s = 0. �

This theorem is somewhat “obvious”; for example, supposing that an → 1, which
says that an ≈ 1 for all n large, then the sum a1 + a2 + a3 + · · · would be adding
infinitely many numbers close to 1, which would make the sum diverge.

Example 3.33 The series
∑∞

n=0(−1)n = 1 − 1 + 1 − 1 + − · · · and
∑∞

n=1 n =
1 + 2 + 3 + · · · cannot converge, since their nth terms do not tend to zero.

The converse of the nth term test is false; that is, even though lim an = 0, it may
not follow that

∑
an exists.10 Consider the following example.

10“The sum of an infinite series whose final term vanishes perhaps is infinite, perhaps finite.” Jacob
Bernoulli (1654–1705) Ars conjectandi.
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Example 3.34 (The harmonic series diverges, Proof I) Consider

∞∑
n=1

1

n
= 1 + 1

2
+ 1

3
+ 1

4
+ · · · .

This series is called the harmonic series; see [134] for “what’s harmonic about the
harmonic series.” To see that the harmonic series does not converge, observe that

s2n = 1 + 1

2
+

(
1

3
+ 1

4

)
+

(
1

5
+ 1

6

)
+ · · · +

(
1

2n − 1
+ 1

2n

)

≥ 1 + 1

2
+

(
1

4
+ 1

4

)
+

(
1

6
+ 1

6

)
+ · · · +

(
1

2n
+ 1

2n

)

= 1 + 1

2
+

(
1

2

)
+

(
1

3

)
+ · · · +

(
1

n

)

= 1

2
+ sn.

Thus, s2n ≥ 1/2 + sn . Now if the harmonic series did converge, say to some real
number s, that is, sn → s, then we would also have s2n → s. However, the inequality
s2n ≥ 1/2 + sn would imply that s ≥ 1/2 + s, which is an impossibility. Therefore,
the harmonic series does not converge. See Problem 5 for more proofs.

Using the inequality s2n ≥ 1/2 + sn , one can show (and we encourage you to do
it!) that the partial sums of the harmonic series are unbounded. Then one can deduce
that the harmonic series must diverge by the following very useful test.

Nonnegative series test

Theorem 3.19 A series
∑

an of nonnegative real numbers converges if and only
if the sequence {sn} of partial sums is bounded, in which case sn ≤ s for all n,
where s = ∑

an := lim sn.

Proof Since an ≥ 0 for all n, we have

sn = a1 + a2 + · · · + an ≤ a1 + a2 + · · · + an + an+1 = sn+1,

so the sequence of partial sums {sn} is nondecreasing: s1 ≤ s2 ≤ · · · ≤ sn ≤ · · · .
By the monotone criterion for sequences, the sequence of partial sums converges if
and only if it is bounded. To see that sn ≤ s := ∑∞

m=1 am for all n, fix n ∈ N and
note that sn ≤ sk for all k ≥ n, because the partial sums are nondecreasing. Taking
k → ∞ and using that limits preserve inequalities gives sn ≤ s. �
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Example 3.35 If the sum of the reciprocals of the natural numbers diverges, what
about the sum of the reciprocals of the squares (called the 2-series):

∞∑
n=1

1

n2
= 1 + 1

22
+ 1

32
+ 1

42
+ · · · .

To investigate the convergence of the 2-series, using (3.35) in Example3.32, we note
that

sn = 1 + 1

2 · 2 + 1

3 · 3 + 1

4 · 4 + · · · + 1

n · n

≤ 1 + 1

1 · 2 + 1

2 · 3 + 1

3 · 4 + · · · + 1

(n − 1) · n
≤ 1 + 1 = 2.

Since the partial sums of the 2-series are bounded, the 2-series converges. Now, what
is the value of the 2-series? This question was the famous Basel problem, answered
by Leonhard Euler (1707–1783) in 1734. Starting in Section5.2 on p. 393, we shall
rigorously prove, in 11 ways in this book, that the value of the 2-series is π2/6! (Now,
what does π have to do with reciprocals of squares of natural numbers???)

3.5.2 Some Properties of Series

It is important to understand that the convergence or divergence of a series depends
only on the tails of the series.

Tails theorem for series

Theorem 3.20 A series
∑

an converges if and only if there is an index m such
that

∑∞
n=m an converges.

Proof Let sn denote the nth partial sum of
∑

an , and tn that of an arbitrary “m-tail”∑∞
n=m an . Then with a = ∑m−1

k=1 ak , we see that sn = a + tn . It follows that {sn}
converges if and only if {tn} converges, and our theorem is proved. �

Here’s a theorem on linear combinations of series.

http://dx.doi.org/10.1007/978-1-4939-6795-7_5


3.5 Baby Infinite Series 199

Arithmetic properties of series

Theorem 3.21 If
∑

an and
∑

bn converge, then given complex numbers, c, d,
the series

∑
(c an + d bn) converges, and

∑
(c an + d bn) = c

∑
an + d

∑
bn.

Moreover, we can group the terms in the series

a1 + a2 + a3 + a4 + a5 + · · ·

inside parentheses in any way we wish as long as we do not change the ordering of
the terms and the resulting series still converges with sum

∑
an; in other words,

the associative law holds for convergent infinite series.

Proof The nth partial sum of
∑

(c an + d bn) is

n∑
k=1

(c ak + d bk) = c
n∑

k=1

ak + d
n∑

k=1

bk = c sn + d tn,

where sn and tn are the nth partial sums of
∑

an and
∑

bn , respectively. Since
sn → ∑

an and tn → ∑
bn , the first statement of our theorem follows.

Let 1 = ν1 < ν2 < ν3 < · · · be any strictly increasing sequence of integers. We
must show that the infinite series

(a1 + a2 + · · · + aν2−1) + (aν2 + aν2+1 + · · · + aν3−1)

+ (aν3 + aν3+1 + · · · + aν4−1) + (aν4 + aν4+1 + · · · + aν5−1) + · · ·

converges with sum
∑∞

n=1 an . In other words, if {Sn} denotes the partial sums of this
series with parentheses inserted, and if {sn} denotes the partial sums of

∑∞
n=1 an ,

then we need to show that lim Sn = lim sn . However, observe that

Sn = (a1 + a2 + · · · + aν2−1) + (aν2 + aν2+1 + · · · + aν3−1) + · · ·
· · · + (aνn + aνn+1 + · · · + aνn+1−1) = sνn+1−1,

since the associative law holds for finite sums (so we can drop the parentheses).
Therefore, {Sn} is just a subsequence of {sn} and hence has the same limit. �

In Section6.6, we’ll see that the commutative law may not hold; see Riemann’s
rearrangement theorem on p. 484! It is worth remembering that the associative law
does not work in reverse.

Example 3.36 For instance, the series

0 = 0 + 0 + 0 + 0 + · · · = (1 − 1) + (1 − 1) + (1 − 1) + · · ·

http://dx.doi.org/10.1007/978-1-4939-6795-7_6
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certainly converges, but we cannot omit the parentheses and conclude that 1 − 1 +
1 − 1 + 1 − 1 + · · · converges, which we have already shown does not.

3.5.3 Telescoping Series

As seen in Example3.32, the value of the series
∑

1/n(n + 1) was very easy to find
because in writing out its partial sums, we saw that the sum “telescoped” to give a
simple expression (Fig. 3.13)

Fig. 3.13 Ever see a pirate
telescope collapse? ��

Telescope collapsing

In general, it is very difficult to find the value of a convergent series, but for
telescoping series, the sums are quite straightforward to find.

Telescoping series theorem

Theorem 3.22 Let {xn} be a sequence of complex numbers and let
∑∞

n=0 an be
the series with nth term an = xn − xn+1. Then lim xn exists if and only if

∑
an

converges, in which case
∞∑

n=0

an = x0 − lim xn.

Proof Just like the pirate telescope collapsing, observe that adjacent terms of the
following partial sum cancel, collapsing to just two terms:

sn = (x0 − x1) + (x1 − x2) + · · · + (xn−1 − xn) + (xn − xn+1) = x0 − xn+1.

If x := lim xn exists, we have x = lim xn+1 as well, and therefore
∑

an := lim sn

exists with sum x0 − x . Conversely, if s = lim sn exists, then s = lim sn−1 as well,
and since xn = x0 − sn−1, it follows that lim xn exists. �
Example 3.37 Let a be a nonzero complex number that is not a negative integer. We
claim that ∞∑

n=0

1

(n + a)(n + a + 1)
= 1

a
.

Indeed, we can use the method of partial fractions to write

an = 1

(n + a)(n + a + 1)
= 1

(n + a)
− 1

n + a + 1
= xn −xn+1, where xn = 1

(n + a)
.
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Since lim xn = 0 and x0 = 1/(0+ a) = 1/a, we get our claim from the telescoping
series theorem.

Example 3.38 More generally, given a natural number k, we claim that

∞∑
n=0

1

(n + a)(n + a + 1) · · · (n + a + k)
= 1

k

1

a(a + 1) · · · (a + k − 1)
. (3.36)

Indeed, observe that we can write the fraction as

1

(n + a)(n + a + 1) · · · (n + a + k)

= 1

k(n + a) · · · (n + a + k − 1)︸ ︷︷ ︸
xn

− 1

k(n + a + 1) · · · (n + a + k)︸ ︷︷ ︸
xn+1

.

Since lim xn = 0 (why?) and x0 = 1

k

1

a(a + 1) · · · (a + k − 1)
, our claim follows

from the telescoping series theorem. For a specific example, if we put a = 1/2 and
k = 2 in (3.36), we obtain (after a little algebra)

1

1 · 3 · 5 + 1

3 · 5 · 7 + 1

5 · 7 · 9 + · · · = 1

12
.

With a = 1/3 and k = 2 in (3.36), we obtain another beautiful sum:

1

1 · 4 · 7 + 1

4 · 7 · 10 + 1

7 · 10 · 13 + · · · = 1

24
.

More examples of telescoping series can be found in the article [197]. Not only
can the telescoping series theorem quickly find sums of certain series, it can also
construct series with any specified sum, as the following corollary shows.

Corollary 3.23 Let s be a complex number and let {xn}∞n=0 be a null sequence
(that is, lim xn = 0) such that x0 = s. Then if we set an = xn − xn+1, the series∑∞

n=0 an converges to s.

Example 3.39 For example, let s = 1. Then xn = 1/2n defines a null sequence with
1/20 = 1. Thus, by Corollary3.23,

∑∞
n=0 an = 1 with

an = xn − xn+1 = 1

2n
− 1

2n+1
= 1

2n+1
.
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Hence,
∞∑

n=0

1

2n+1
= 1. Shifting the summation index, we obtain

∞∑
n=1

1

2n
= 1,

just as hypothesized in the introduction to this section!

Example 3.40 The sequence with xn = 1/(n + 1) defines a null sequence with
x0 = 1. In this case,

an = xn − xn+1 = 1

n + 1
− 1

n + 2
= 1

(n + 1) (n + 2)
,

so
∞∑

n=0

1

(n + 1) (n + 2)
= 1. Shifting the summation index, we obtain the result from

Example3.32:
∞∑

n=1

1

n (n + 1)
= 1.

What fancy formulas for 1 do you get when you apply Corollary3.23 to the
sequences xn = 1/(n + 1)2 and xn = 1/

√
n + 1?

We end this section with the all-important geometric series. A geometric series
is a series of the form

∑
an , where a is a complex number. The following theorem is

usually proved, say in a calculus course, using the formula for a geometric sum (see
Eq. (2.3) on p. 41). However, we shall prove it using the telescoping series theorem.

Geometric series test

Theorem 3.24 For every nonzero complex number a and k ∈ Z, the geometric
series

∑∞
n=k an converges if and only if |a| < 1, in which case

∞∑
n=k

an = ak + ak+1 + ak+2 + ak+3 + · · · = ak

1 − a
.

Proof If |a| ≥ 1 and n ≥ 0, then |a|n ≥ 1, so the terms of the geometric series do
not tend to zero, and therefore the geometric series cannot converge, by the nth term
test. Thus, we may henceforth assume that |a| < 1. Observe that

an = 1

1 − a
(an − an+1),

by factoring out an an from an − an+1 on the right. Thus,

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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an = xn − xn+1 , where xn = an

1 − a
.

Since |a| < 1, we have lim xn = 0, so by the telescoping series theorem starting
from the index k instead of the index 0, it follows that

∑∞
n=k an converges and equals

xk = ak/(1 − a). �

We remark that if a = 0, then the geometric series ak + ak+1 + ak+2 + · · · is not
defined if k = 0,−1,−2, . . . , and equals zero if k = 1, 2, 3, . . . .

Example 3.41 If we put a = 1/2 < 1 in the geometric series theorem, then we have

∞∑
n=1

1

2n
= 1

2
+ 1

22
+ 1

23
+ · · · = 1/2

1 − 1/2
= 1,

a fact that we already knew from Example3.39.

� Exercises 3.5

1. Determine the convergence of each of the following series. If the series con-
verges, find the sum.

(a)

∞∑
n=1

(
1 + 1

n

)n
, (b)

∞∑
n=1

( i

2

)n
(where i is the imaginary unit) , (c)

∞∑
n=1

1

n1/n
.

2. Let {an} be a sequence of complex numbers.

(a) Assume that
∑

an converges. Prove that the sum of the even terms
∑∞

n=1 a2n

converges if and only if the sum of the odd terms
∑∞

n=1 a2n−1 converges, in
which case

∑
an = ∑

a2n + ∑
a2n−1.

(b) Let
∑

cn be a series obtained from
∑

an by modifying at most finitely many
terms. Show that

∑
an converges if and only if

∑
cn converges.

(c) Assume that lim an = 0. Fix α,β ∈ C with α + β �= 0. Prove that
∑∞

n=1 an

converges if and only if
∑∞

n=1(αan + βan+1) converges.

3. Using Problem 3d on p. 44 to simplify the partial sums, prove that

∞∑
n=1

n

2n
= 1

2
+ 2

22
+ 3

23
+ · · · = 2.

4. Let a be a complex number. Using the telescoping series theorem, show that

a

1 − a2
+ a2

1 − a4
+ a4

1 − a8
+ a8

1 − a16
+ · · · =

{
a

1−a |a| < 1,
1

1−a |a| > 1.
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Suggestion: Using the identity x
1−x2 = 1

1−x − 1
1−x2 for x �= ±1 (you should prove

this identity!), write a2n

1−a2n+1 as the difference xn − xn+1, where xn = 1/(1−a2n
).

5. (
∑∞

n=1
1
n diverges, Proofs II–IV) For more proofs, see [124]. Let sn = ∑n

k=1
1
k .

(a) Using that 1 + 1
n < e1/n for all n ∈ N, which is from (3.26), show that

(
1 + 1

1

)(
1 + 1

2

)(
1 + 1

3

)
· · ·

(
1 + 1

n

)
≤ esn , for all n ∈ N.

Show that the left-hand side equals n + 1 and conclude that {sn} cannot
converge.

(b) Show that for every k ∈ N with k ≥ 3, we have

1

k − 1
+ 1

k
+ 1

k + 1
≥ 3

k
.

Using this inequality, prove that for every n ∈ N, s3n+1 ≥ 1+ sn by grouping
the terms of s3n+1 into threes (starting from 1

2 ). Now show that {sn} cannot
converge.

(c) Prove the inequality

1

(k − 1)! + 1
+ 1

(k − 1)! + 2
+ · · · + 1

k! ≥ 1 − 1

k

for every k ∈ N with k ≥ 2. Writing sn! in groups of the form given on the
left-hand side of this inequality, prove that sn! ≥ 1 + n − sn . Conclude that
{sn} cannot converge.

6. We shall prove that
∑∞

n=1 nzn−1 converges if and only if |z| < 1, in which case

1

(1 − z)2
=

∞∑
n=1

nzn−1. (3.37)

(i) If
∑∞

n=1 nzn−1 converges, prove that |z| < 1.

(ii) Prove that (1−z)
∑n

k=1 kzk−1 can bewritten as (1−z)
n∑

k=1

kzk−1 = 1 − zn

1 − z
−

nzn .
(iii) Using Problem 4 on p. 160, prove that 1/(1 − z)2 = ∑∞

n=1 nzn−1 for all
|z| < 1.

(iv) Solve Problem 3 using (3.37).
(v) Can you prove that 2

(1−z)3 = ∑∞
n=2 n(n − 1)zn−2 for |z| < 1 using a similar

technique? (Do this problem if you are feeling extra confident!)

7. The Fibonacci sequence was defined in Problem 9 on p. 47. Prove the interesting
series formulas
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(a)

∞∑
n=2

1

Fn−1Fn+1
= 1 , (b)

∞∑
n=2

Fn

Fn−1Fn+1
= 2, (c)

∞∑
n=1

Fn

3n
= 3

5
.

Suggestion: Think telescoping series for (a) and (b), and for (c) find a formula
for sn .

8. Here is a generalization of the telescoping series theorem.

(i) Let xn → x and let k ∈ N. Prove that
∑∞

n=0 an , with an = xn − xn+k ,
converges, and

∞∑
n=0

an = x0 + x1 + · · · + xk−1 − k x .

Using this formula, find
∞∑

n=0

1

(2n + 1)(2n + 7)
and

∞∑
n=0

1

(3n + 1)(3n + 7)
.

(ii) Let a be a nonzero complex number not equal to a negative integer, and let
k ∈ N. Using (i), prove that

∞∑
n=0

1

(n + a)(n + a + k)
= 1

k

[
1

a
+ 1

a + 1
+ · · · + 1

a + k − 1

]
.

With a = 1 and k = 2, derive a beautiful expression for 3/4.
(iii) Here’s a fascinating result: Given another natural number m, prove that

∞∑
n=0

1

(n + a)(n + a + m) · · · (n + a + km)

= 1

km

m−1∑
n=0

1

(n + a)(n + a + m) · · · (n + a + (k − 1)m)
.

Find a beautiful series when a = 1 and k = m = 2.

9. Let xn → x , and let c1, . . . , ck be k ≥ 2 numbers such that c1 + · · · + ck = 0.

(i) Prove that
∑∞

n=0 an with an = c1 xn+1 + c2 xn+2 + · · · + ck xn+k converges,
and

∞∑
n=0

an = c1 x1 + (c1 + c2) x2 + · · · +(c1 + c2 + · · · + ck−1) xk−1

+ (c2 + 2c3 + 3c4 + · · · + (k − 1) ck) x .

(ii) Using (i), find
5

5 · 7 · 9+ 11

7 · 9 · 11+ 17

9 · 11 · 13+· · ·+ 6n + 5

(2n + 5)(2n + 7)(2n + 9)
+

· · · .
10. Let a be a complex number not equal to 0,−1,−1/2,−1/3, . . . . Prove that
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∞∑
n=1

n

(a + 1)(2a + 1) · · · (na + 1)
= 1

a
.

3.6 Absolute Convergence and a Potpourri of Convergence
Tests

We now give some important tests that guarantee when certain series converge.

3.6.1 Various Tests for Convergence

The first test is the series version of Cauchy’s criterion for sequences.

Cauchy’s criterion for series

Theorem 3.25 The series
∑

ak converges if and only if for every ε > 0, there is
an N such that for all n > m > N, we have

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ = |am+1 + am+2 + · · · + an| < ε,

in which case, for every m > N,

∣∣∣∣∣
∞∑

k=m+1

ak

∣∣∣∣∣ ≤ ε. In particular, for a convergent

series
∑

ak, we have

lim
m→∞

∞∑
k=m+1

ak = 0.

Proof Let sn denote the nth partial sum of
∑

ak . Then to say that the series
∑

ak

converges means that the sequence {sn} converges. Cauchy’s criterion for sequences
states that {sn} converges if and only if for every ε > 0, there is an N such that for
all n, m > N , we have |sn − sm | < ε. Since |sn − sm | = |sm − sn|, in the Cauchy
criterion we can assume that n > m. Now observe that for n > m,

sn − sm =
n∑

k=1

ak −
m∑

k=1

ak =
n∑

k=m+1

ak .

Hence, the Cauchy criterion is equivalent to |∑n
k=m+1 ak | < ε for all n > m > N .

Taking n → ∞ shows that |∑∞
k=m+1 ak | ≤ ε. �

The following “comparison test” is obvious from looking at the picture
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1 2 3 4 5 6 7 8

a1 a2 a3 a4 a5 a6 a7

b1 b2 b3 b4 b5 b6 b7
. . .

Assuming 0 ≤ an ≤ bn for all n, the comparison test says that if the sum of the
areas of the rectangles with heights bn is finite, then the same holds for the smaller
rectangles with heights an; if the sum of the areas of the rectangles with heights an

is infinite, then the same holds for the larger rectangles with heights bn .

Comparison test

Theorem 3.26 Let {an} and {bn} be real sequences and suppose that for n suffi-
ciently large, say for all n ≥ m for some m ∈ N, we have

0 ≤ an ≤ bn.

If
∑

bn converges, then
∑

an converges. Equivalently, if
∑

an diverges, then∑
bn diverges. In the case of convergence,

∑∞
n=m an ≤ ∑∞

n=m bn.

Proof By the tails theorem for series (Theorem3.20 on p. 198),
∑

an and
∑

bn

converge if and only if
∑∞

n=m an and
∑∞

n=m bn converge. By working with these
series instead of the original ones, we may assume that 0 ≤ ak ≤ bk holds for every
k. Summing from k = 1 to k = n, we conclude that

sn ≤ tn for all n,

where sn , respectively tn , denotes the nth partial sum for
∑

an , respectively
∑

bn .
Assume that

∑
bn converges and let t = ∑

bn . By the nonnegative series test
(Theorem3.19 on p. 197), tn ≤ t for all n. Hence, sn ≤ t for all n. Again by the
nonnegative series test, it follows that

∑
an converges, and taking n → ∞ in sn ≤ t

shows that
∑

an ≤ t , which is to say, that
∑

an ≤ ∑
bn . �

Example 3.42 (The p-series) We claim that the p-series

∞∑
n=1

1

n p
= 1 + 1

2p
+ 1

3p
+ · · · ,

where p is a rational number, converges for p ≥ 2 and diverges for p ≤ 1. To see
this, assume first that p ≤ 1. Then

1

n
≤ 1

n p
,

because this inequality is equivalent to 1 ≤ n1−p, which holds by raising both sides
of the inequality 1 ≤ n to the nonnegative power 1− p (see the power rules theorem,
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Theorem2.34 on p. 95). Since the harmonic series diverges, so does the p-series for
p ≤ 1 by the comparison test. If p ≥ 2, then by a similar argument, we have

1

n p
≤ 1

n2
.

In the last section, we showed that the 2-series
∑

1/n2 converges, so by the com-
parison test, the p-series for p ≥ 2 converges. Now what about for 1 < p < 2? To
answer this question we shall appeal to Cauchy’s condensation test below.

3.6.2 Cauchy Condensation Test

The following test is usually not found in elementary calculus textbooks, but it’s very
useful.

Cauchy condensation test

Theorem 3.27 If {an} is a nonincreasing sequence of nonnegative real numbers,
then the infinite series

∑
an converges if and only if

∞∑
n=0

2na2n = a1 + 2a2 + 4a4 + 8a8 + · · ·

converges.

Proof Let the partial sums of
∑

an be denoted by sn and those of
∑∞

n=0 2
na2n by

tn . Then by the nonnegative series test (Theorem3.19 on p. 197),
∑

an converges if
and only if {sn} is bounded, and ∑

2na2n converges if and only if {tn} is bounded.
Therefore, we just have to prove that {sn} is bounded if and only if {tn} is bounded.

Consider the “if” part: Assume that {tn} is bounded; we shall prove that {sn} is
bounded. To prove this, we note that sn ≤ s2n−1, and we can write

sn ≤ s2n−1 = a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + · · · + (a2n−1 + · · · + a2n−1),

where in the kth parentheses, we group the terms of the series with index running
from 2k to 2k+1 − 1. Since the an are nonincreasing (that is, an ≥ an+1 for all n),
replacing each number in parentheses by the first term in the parentheses cannot
decrease the value of the sum, so

sn ≤ a1 + (a2 + a2) + (a4 + a4 + a4 + a4) + · · · + (a2n−1 + · · · + a2n−1)

= a1 + 2a2 + 4a4 + · · · + 2n−1a2n−1 = tn−1.

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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Since {tn} is bounded, it follows that {sn} is bounded as well. Here’s a picture of this
bound showing s2n−1 ≤ tn−1 in the case n = 3:

1 2 3 4 5 6 7 8

a1 a2 a3 a4 a5 a6 a7 ≤
1 2 3 4 5 6 7 8

a1 a2 a2 a4 a4 a4 a4

Now the “only if” part: Assume that {sn} is bounded; we shall prove that {tn} is
bounded. Here’s a picture to consider:

1 2 3 4 5 6 7 8 9

a2 a3 a4 a5 a6 a7 a8≤
1 2 3 4 5 6 7 8 9

a2 a4 a4 a8 a8 a8 a8

From this picture, we see (and it’s easy to prove algebraically) that

a2 + 2a4 + 4a8 + · · · + 2n−1a2n

≤ a2 + (a3 + a4) + (a5 + a6 + a7 + a8) + · · · + (a2n−1+1 + · · · + a2n ).

Another way to write this is

1

2
(tn − a1) ≤ s2n − a1,

or stated another way, 1
2a1 + 1

2 tn ≤ s2n . Since {sn} is bounded, it follows that {tn} is
bounded as well. This completes our proof. �

See Problems 4 and 11 for other condensation tests.

Example 3.43 (The p-series revisited) Consider the p-series (p ≥ 0 is rational)

∞∑
n=1

1

n p
= 1 + 1

2p
+ 1

3p
+ · · · .

With an = 1
n p , this series converges, by Cauchy’s condensation test, if and only if

∞∑
n=0

2na2n =
∞∑

n=1

2n

(2n)p
=

∞∑
n=1

(
1

2p−1

)n

converges. This series is a geometric series, so the series converges if and only if
1

2p−1 < 1, which holds if and only if p > 1. Summarizing, we get

p-test :
∞∑

n=1

1

n p

{
converges for p > 1,

diverges for p ≤ 1.

Once we develop the theory of real exponents, we shall see that the same p-test holds
for p real. By the way,

∑∞
n=1 1/n p is also denoted by ζ(p), the zeta function at p:
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ζ(p) :=
∞∑

n=1

1

n p
.

We’ll come across this function again in Section4.7 on p. 300.

Cauchy’s condensation test is especially useful in dealing with series involving
logarithms; see the problems. Although we technically haven’t introduced the loga-
rithm function, we’ll thoroughly develop this function in Section4.7, starting on p.
300, so for now, we’ll assume that you know properties of log x for x > 0. Actually,
for the particular example below, we just need to know that log xk = k log x for all
k ∈ Z, log x > 0 for x > 1, and that log x is increasing with x .

Example 3.44 Consider the series

∞∑
n=2

1

n log n
.

At first glance, it may seem difficult to determine the convergence of this series, but
Cauchy’s condensation test gives the answer quickly:

∞∑
n=1

2n · 1

2n log 2n
= 1

log 2

∞∑
n=1

1

n
,

which diverges. (You should check that 1/(n log n) is nonincreasing.) Therefore, by
Cauchy’s condensation test,

∑∞
n=2

1
n log n also diverges.11

3.6.3 Absolute Convergence

A series
∑

an is said to be absolutely convergent if the series of absolute values∑ |an| converges. Part (1) of the following theorem says that if the series of ab-
solute values converges, then we can omit taking the absolute values and still have a
convergent series.

11This series is usually handled in elementary calculus courses using the technologically advanced
(mathematically speaking) integral test, but Cauchy’s condensation test gives one way to handle
such series without knowing any calculus!

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
http://dx.doi.org/10.1007/978-1-4939-6795-7_4


3.6 Absolute Convergence and a Potpourri of Convergence Tests 211

Absolute convergence

Theorem 3.28 Let
∑

an be an infinite series.

(1) If
∑ |an| converges, then

∑
an also converges, and

∣∣∣∑ an

∣∣∣ ≤
∑

|an| (triangle inequality for series). (3.38)

(2) Every linear combination of absolutely convergent series is absolutely con-
vergent.

Proof Suppose that
∑ |an| converges.We shall prove that

∑
an converges and (3.38)

holds. To prove convergence, we use Cauchy’s criterion, so let ε > 0. Since
∑ |an|

converges, there is an N such that for all n > m > N , we have

n∑
k=m+1

|ak | < ε.

By the usual triangle inequality, for n > m > N , we have

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ ≤
n∑

k=m+1

|ak | < ε.

Thus by Cauchy’s criterion for series,
∑

an converges. To prove (3.38), let sn denote
the nth partial sum of

∑
an . Then,

|sn| =
∣∣∣∣∣

n∑
k=1

ak

∣∣∣∣∣ ≤
n∑

k=1

|ak | ≤
∞∑

k=1

|ak |.

Since |sn| → |∑ ak | and limits preserve inequalities, it follows that |∑ ak | ≤∑ |ak |.
If

∑ |an| and ∑ |bn| converge, then given complex numbers c, d, since |can +
dbn| ≤ |c||an| + |d||bn|, it follows by the comparison theorem that

∑ |can + dbn|
also converges. �

Example 3.45 Since the 2-series
∑

1/n2 converges, each of the following series is
absolutely convergent:

∞∑
n=1

(−1)n

n2
,

∞∑
n=1

i n

n2
,

∞∑
n=1

(−i)n

n2
.

It is possible to have a convergent series that is not absolutely convergent.
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Example 3.46 Although the harmonic series
∑

1/n diverges, the alternating har-
monic series

∞∑
n=1

(−1)n−1

n
= 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ − · · ·

converges. To see this, observe that if n is even, then

sn =
(
1 − 1

2

)
+

(1
3

− 1

4

)
+

(1
5

− 1

6

)
+ · · · +

( 1

n − 1
− 1

n

)

= 1

1 · 2 + 1

3 · 4 + 1

5 · 6 + · · · + 1

(n − 1)n
.

Similarly, if n is odd, then

sn = 1

1 · 2 + 1

3 · 4 + 1

5 · 6 + · · · + 1

(n − 2)(n − 1)
+ 1

n
.

These expressions for sn suggest that we consider the infinite series

1

1 · 2 + 1

3 · 4 + 1

5 · 6 + · · · , (3.39)

which converges by comparison with the 2-series 1/12 + 1/22 + 1/32 + · · · . Let
b2, b3, b4, . . . denote the partial sums of (3.39) repeated twice in a row:

b2 = 1

1 · 2 , b3 = 1

1 · 2 , b4 = 1

1 · 2 + 1

3 · 4 , b5 = 1

1 · 2 + 1

3 · 4 , · · · .

After some thought, we observe that for n ≥ 2,

sn = bn + cn,

where

cn = 0 if n is even and cn = 1

n
if n is odd.

Since cn → 0 and {bn} converges, it follows that {sn} also converges, with limit equal
to lim bn . In other words,

∞∑
n=1

(−1)n−1

n
= 1

1 · 2 + 1

3 · 4 + 1

5 · 6 + · · · .
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Another way to prove convergence is to use the alternating series test, a subject that
we will study thoroughly in Section6.1 on p. 428. Later on, in Section4.7 on p. 311,
we’ll prove that

∑∞
n=1

(−1)n−1

n equals log 2.

� Exercises 3.6

1. For this problem, assume all the “well-known” high school properties of log x
(e.g., log xk = k log x , log(xy) = log x +log y). Using the Cauchy condensation
test, determine the convergence of the following series:

(a)

∞∑
n=2

1

n(log n)2
, (b)

∞∑
n=2

1

n(log n)p
, (c)

∞∑
n=2

1

n(log n) (log(log n))
.

For (b), state which p give convergent/divergent series.
2. Prove that

(a)

∞∑
n=1

(−1)n−1

n
= 1 − 1

2 · 3 − 1

4 · 5 − 1

6 · 7 − · · · ,

(b)

∞∑
n=1

(−1)n−1

n2
= 1

12 · 22
(
1 + 2

) + 1

32 · 42
(
3 + 4

) + 1

52 · 62
(
5 + 6

) + · · · .

3. For what x ∈ R do the following series converge?

(a)

∞∑
n=1

x2n

1 + x2n
, (b)

∞∑
n=1

( n x2

1 + n

)n
, (c)

∞∑
n=1

1

(1 + x2n2
)1/n

.

4. We consider various (unrelated) properties of real series
∑

an with an ≥ 0 for
all n.

(a) General Cauchy condensation test: If the an are nonincreasing, then given
a natural number b > 1, prove that

∑
an converges or diverges with the series

∞∑
n=0

bn abn = a1 + b ab + b2 ab2 + b3 ab3 + · · · .

Thus, the Cauchy condensation test is just this test with b = 2.
(b) If

∑
an converges, prove that for every k ∈ N, the series

∑
ak

n also converges.
(c) If

∑
an converges, give an example showing that

∑√
an may not converge.

However, prove that the series
∑√

an/n does converge. Suggestion: Use the
inequality ab ≤ (a2 + b2)/2 for all a, b ∈ R from Eq. (2.33) on p. 125.

http://dx.doi.org/10.1007/978-1-4939-6795-7_6
http://dx.doi.org/10.1007/978-1-4939-6795-7_4
http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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(d) If an > 0 for all n, prove that
∑

an converges if and only if for every sequence
{bn} of nonnegative real numbers,

∑
(a−1

n + bn)
−1 converges.

(e) If
∑

bn is another series of nonnegative real numbers, prove that
∑

an and∑
bn converge if and only if

∑√
a2

n + b2
n converges.

(f) Prove that
∑

an converges if and only if
∑ an

1+an
converges.

(g) For each n ∈ N, define bn =
√∑∞

k=n ak = √
an + an+1 + an+2 + · · ·. Prove

that if an > 0 for all n and
∑

an converges, then
∑ an

bn
converges. Suggestion:

Show that an = b2
n − b2

n+1, and using this fact, show that an
bn

≤ 2(bn − bn+1)

for all n.

5. We already know that if
∑

an (of complex numbers) converges, then lim an = 0.
When the an form a nonincreasing sequence of nonnegative real numbers, then
prove the following astonishing fact (called Pringsheim’s theorem): If

∑
an

converges, then n an → 0. Suggestion: Let ε > 0 and choose N such that
n > m > N implies

am+1 + am+2 + · · · + an <
ε

2
.

Take n = 2m and then n = 2m+1.A slicker proof uses theCauchy condensation
test.

6. (Limit comparison test) Let {an} and {bn} be nonzero complex sequences and

suppose that the following limit exists: L := lim
∣∣∣ an

bn

∣∣∣. Prove that:
(i) If L �= 0, then

∑
an is absolutely convergent if and only if

∑
bn is absolutely

convergent.
(ii) If L = 0 and

∑
bn is absolutely convergent, then

∑
an is absolutely conver-

gent.

7. Here’s an alternative method to prove that the alternating harmonic series con-
verges.

(i) Let {bn} be a sequence inRm and suppose that the even and odd subsequences
{b2n} and {b2n−1} both converge and have the same limit L . Prove that the
original sequence {bn} converges and has limit L .

(ii) Show that the subsequences of even and odd partial sums of the alternating
harmonic series both converge and have the same limit.

8. (Telescoping comparison test) Let {an} be a sequence of positive numbers.
Prove that

∑
an converges if and only if there exist a constant c > 0 and a

sequence {xn} of positive numbers such that

an ≤ c (xn − xn+1) for all n sufficiently large.
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Suggestion: For the “only if” part, consider xn = s − (a1 + a2 + · · · + an−1),
where s = ∑

an , which is assumed to converge.
9. (Ratio comparison test) Let {an} and {bn} be sequences of positive numbers

and suppose that an+1

an
≤ bn+1

bn
for all n. If

∑
bn converges, prove that

∑
an also

converges. (Equivalently, if
∑

an diverges, then
∑

bn also diverges.)
10. (Cf. [113, 122, 253]) We already know that the harmonic series

∑
1/n diverges.

It turns out that omitting certain numbers from this summakes the sum converge.
Fix a natural number b ≥ 2. Recall (see Section2.5) that we can write every
natural number n uniquely as n = akak−1 . . . a0, where 0 ≤ a j ≤ b − 1,
j = 0, . . . , k, are called digits, and where the notation ak . . . a0 means that

a = ak bk + ak−1 bk−1 + · · · + a1 b + a0.

Prove that the following sum converges:

∑
n has no 0 digit

1

n
.

Suggestion: For each k = 0, 1, 2, . . . , let ck be the sum over all numbers of the
form 1

n where n = akak−1 . . . a0 with none of the a j equal to zero. Show that
there are at most (b − 1)k+1 such n and that n ≥ bk and use these facts to show
that ck ≤ (b−1)k+1

bk . Prove that
∑∞

k=0 ck converges and use this to prove that the
desired sum converges.

11. (Hui Lin’s condensation test)12 Let b > 1 be a natural number and define, for

n = 0, 1, 2, . . . , βn = 1 + bn − 1

b − 1
. Note that β0 = 1, β1 = 2, and for n > 1,

βn = 2 + b + b2 + b3 + · · · + bn−1,

where we used the sum of a geometric progression (2.3) on p. 41. If {an} is a
nonincreasing sequence of nonnegative real numbers, prove that

∑
an converges

or diverges with the series

∞∑
n=0

bn aβn = a1 + b a2 + b2 a2+b + b3 a2+b+b2 + b4 a2+b+b2+b3 + · · · .

12Hui Lin was a student in my fall 2014 real analysis course, and he discovered this very interesting
test. I thank him for allowing me to present his work.

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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3.7 Tannery’s Theorem and Defining the Exponential
Function exp(z)

Tannery’s theorem (named after Jules Tannery (1848–1910)) is a little known but
fantastic theorem that I learned from [29, 30, 40, 79]. Tannery’s theorem is really
a special case of the Weierstrass M-test [40, p. 124] or the Lebesgue dominated
convergence theorem [148], which is why it probably doesn’t get much attention.
We shall use Tannery’s theorem quite a bit in the sequel. In particular, we shall
use it to derive certain properties of the complex exponential function, which is
undoubtedly themost important function in analysis and arguably all ofmathematics.
In this section we derive some properties of the exponential function, including its
relationship to the number e defined on p. 310 in Section3.3.

3.7.1 Tannery’s Theorem for Series

Tannery has two theorems, one for series and the other for products; we’ll cover his
theorem for products on p. 547 in Section7.3. Here is the one for series.

Tannery’s theorem for series

Theorem 3.29 For each natural number n, let
∑mn

k=1 ak(n) be a finite sum such
that mn → ∞ as n → ∞. If for each k, limn→∞ ak(n) exists, and there is a
convergent series

∑∞
k=1 Mk of nonnegative real numbers such that |ak(n)| ≤ Mk

for all n ∈ N and 1 ≤ k ≤ mn, then

lim
n→∞

mn∑
k=1

ak(n) =
∞∑

k=1

lim
n→∞ ak(n);

that is, both sides are well defined (the limits and sums converge) and are equal.

Proof First of all, we remark that the series on the right converges. Indeed, if we
put ak := limn→∞ ak(n) (the limit exists by assumption), then taking n → ∞ in the
inequality |ak(n)| ≤ Mk , we have |ak | ≤ Mk as well. Therefore, by the comparison
test,

∑∞
k=1 |ak | converges, and hence

∑∞
k=1 ak converges as well.

Now to prove our theorem, let ε > 0 be given. It follows from Cauchy’s criterion
for series that there is an � such that

M�+1 + M�+2 + · · · <
ε

3
.

Since mn → ∞ as n → ∞, we can choose N1 such that for all n > N1, we have
mn > �. Then using that |ak(n)| ≤ Mk and |ak | ≤ Mk , observe that for every n > N1,

http://dx.doi.org/10.1007/978-1-4939-6795-7_7
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∣∣∣∣∣
mn∑

k=1

ak(n) −
∞∑

k=1

ak

∣∣∣∣∣ =
∣∣∣∣∣

�∑
k=1

(ak(n) − ak) +
mn∑

k=�+1

ak(n) −
∞∑

k=�+1

ak

∣∣∣∣∣
≤

�∑
k=1

|ak(n) − ak | +
mn∑

k=�+1

Mk +
∞∑

k=�+1

Mk

<

�∑
k=1

|ak(n) − ak | + ε

3
+ ε

3
=

�∑
k=1

|ak(n) − ak | + 2ε

3
.

Since for each k, limn→∞ ak(n) = ak , there is an N2 such that for each k = 1, 2, . . . , �
and for n > N2, we have |ak(n) − ak | < ε/(3�). Thus, if n > max{N1, N2}, then

∣∣∣∣∣
mn∑

k=1

ak(n) −
∞∑

k=1

ak

∣∣∣∣∣ <

�∑
k=1

ε

3�
+ 2ε

3
= ε

3
+ 2ε

3
= ε.

This completes the proof. �

Tannery’s theorem, limn→∞
∑mn

k=1 ak(n) = ∑∞
k=1 limn→∞ ak(n), states that under

certain conditions, we can switch the position of limits and of summations that
become infinite series. (Of course, by the algebra of limits, we can always switch
limits and summations with a fixed finite number of terms, but summations that
become infinite series is awhole othermatter.) In Problem8, using an almost identical
argument as that used in the proof above, youwill prove that Tannery’s theorem holds
even when all the mn are infinite:

lim
n→∞

∞∑
k=1

ak(n) =
∞∑

k=1

lim
n→∞ ak(n).

See Problem 9 for an application to double series.

Example 3.47 We shall derive the formula

1

2
= lim

n→∞

{
1 + 2n

2n3 + 4
+ 1 + 2n

2n32 + 42
+ 1 + 2n

2n33 + 43
+ · · · + 1 + 2n

2n3n + 4n

}
.

To prove this, we write the right-hand side as

lim
n→∞

{
1 + 2n

2n3 + 4
+ 1 + 2n

2n32 + 42
+ 1 + 2n

2n33 + 43
+ · · · + 1 + 2n

2n3n + 4n

}
= lim

n→∞

mn∑
k=1

ak(n),

where mn = n and

ak(n) = 1 + 2n

2n3k + 4k
.
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Observe that for each k ∈ N,

lim
n→∞ ak(n) = lim

n→∞
1 + 2n

2n3k + 4k
= lim

n→∞

1
2n + 1

3k + 4k

2n

= 1

3k
.

Also,

|ak(n)| = 1 + 2n

2n3k + 4k
≤ 2n + 2n

2n3k
= 2 · 2n

2n3k
= 2

3k
=: Mk .

By the geometric series test, we know that
∑∞

k=1 Mk converges. Hence by Tannery’s
theorem, we have

lim
n→∞

{
1 + 2n

2n3 + 4
+ 1 + 2n

2n32 + 42
+ 1 + 2n

2n33 + 43
+ · · · + 1 + 2n

2n3n + 4n

}

= lim
n→∞

mn∑
k=1

ak(n) =
∞∑

k=1

lim
n→∞ ak(n) =

∞∑
k=1

1

3k
= 1/3

1 − 1/3
= 1

2
.

If the hypotheses of Tannery’s theorem are not met, then the conclusion of Tan-
nery’s theorem may not hold, as the following example illustrates.

Example 3.48 Here’s a nonexample of Tannery’s theorem.13 For each k, n ∈ N, let
ak(n) := 1/n and let mn = n. Then

lim
n→∞ ak(n) = lim

n→∞
1

n
= 0 =⇒

∞∑
k=1

lim
n→∞ ak(n) =

∞∑
k=1

0 = 0.

On the other hand,

mn∑
k=1

ak(n) =
n∑

k=1

1

n
= 1

n
·

n∑
k=1

1 = 1 =⇒ lim
n→∞

mn∑
k=1

ak(n) = lim
n→∞ 1 = 1.

Thus, for this example,

lim
n→∞

mn∑
k=1

ak(n) �=
∞∑

k=1

lim
n→∞ ak(n).

It turns out there is no constant Mk such that |ak(n)| ≤ Mk where the series
∑∞

k=1 Mk

converges. Indeed, the inequality |ak(n)| = 1/n ≤ Mk for 1 ≤ k ≤ n implies (set
k = n) that 1/k ≤ Mk for all k. Since

∑∞
k=1 1/k diverges, the series

∑∞
k=1 Mk must

also diverge.

13There are many other nonexamples, such as ak(n) = 1/(n + k).
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3.7.2 The Exponential Function

The exponential function exp : C → C is the function defined by

exp(z) :=
∞∑

n=0

zn

n! , for z ∈ C.

Of course, we need to show that the right-hand side converges for each z ∈ C. In
fact, we claim that the series defining exp(z) is absolutely convergent. To prove this,
fix z ∈ C and then choose N ∈ N such that |z| ≤ 1

2 N . (Just as a reminder, recall that
such a k exists, since N is not bounded above.) Then for every n ≥ N , we have

|z|n
n! =

[( |z|
1

)
·
( |z|

2

)
· · ·

( |z|
N

)]
·
[( |z|

(N + 1)

)
· · ·

( |z|
n

)]

≤ |z|N

(
1

2
· N

N + 1

)
·
(
1

2
· N

N + 2

)
· · ·

(
1

2
· N

n

)

≤
(
1

2
N

)N(1

2

)
·
(
1

2

)
· · ·

(
1

2

)
= N N 1

2n
.

Thus, for n ≥ N , |z|n
n! ≤ C

2n , where C is the constant N N . Since the geometric series∑
1/2n converges, by the comparison test, the series defining exp(z) is absolutely

convergent for every z ∈ C. In the following theorem, we relate the exponential
function to Euler’s number e defined on p. 181 in Section3.3. The proof of Property
(1) in this theorem is a beautiful application of Tannery’s theorem.

Properties of the complex exponential

Theorem 3.30 The exponential function has the following properties:

(1) For every z ∈ C and sequence zn → z, we have

exp(z) = lim
n→∞

(
1 + zn

n

)n
.

In particular, setting zn = z for all n yields

exp(z) = lim
n→∞

(
1 + z

n

)n
,

and setting z = 1, we get

exp(1) = lim
n→∞

(
1 + 1

n

)n

= e.

(2) For all complex numbers z and w,
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exp(z) · exp(w) = exp(z + w).

(3) exp(z) is never zero for any complex number z, and

1

exp(z)
= exp(−z).

Proof To prove (1), let z ∈ C and let {zn} be a complex sequence and suppose that
zn → z; we need to show that limn→∞(1 + zn/n)n = exp(z). To begin, we expand
(1 + zn/n)n using the binomial theorem:

(
1 + zn

n

)n =
n∑

k=0

(
n

k

)
zk

n

nk
=⇒

(
1 + zn

n

)n =
n∑

k=0

ak(n),

where ak(n) = (n
k

) zk
n

nk . Hence, we are aiming to prove that

lim
n→∞

n∑
k=0

ak(n) = exp(z).

Of course, written in this way, we have the perfect setup for Tannery’s theorem!
However, before going to Tannery’s theorem, we note that by the definition of ak(n),
we have a0(n) = 1 and a1(n) = zn . Therefore, since zn → z,

lim
n→∞

n∑
k=0

ak(n) = lim
n→∞

(
1 + zn +

n∑
k=2

ak(n)

)
= 1 + z + lim

n→∞

n∑
k=2

ak(n).

Thus, we just have to apply Tannery’s theorem to the sum starting from k = 2; for
this reason, we henceforth assume that k, n ≥ 2. Now observe that for 2 ≤ k ≤ n,
we have

(
n

k

)
1

nk
= n!

k!(n − k)!
1

nk
= 1

k! n(n − 1)(n − 2) · · · (n − k + 1)
1

nk

= 1

k!
(
1 − 1

n

)(
1 − 2

n

)
· · ·

(
1 − k − 1

n

)
.

Thus, for 2 ≤ k ≤ n,

ak(n) = 1

k!
[(

1 − 1

n

)(
1 − 2

n

)
· · ·

(
1 − k − 1

n

)]
zk

n.

Using this expression for ak(n), we can easily verify the hypotheses of Tannery’s
theorem. First, since zn → z,
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lim
n→∞ ak(n) = lim

n→∞
1

k!
[(

1 − 1

n

)(
1 − 2

n

)
· · ·

(
1 − k − 1

n

)]
zk

n = zk

k! .

Second, since {zn} is a convergent sequence, it must be bounded, say by a constant
C , so that |zn| ≤ C for all n. Then for 2 ≤ k ≤ n,

|ak(n)| =
∣∣∣∣ 1k!

[(
1 − 1

n

)(
1 − 2

n

)
· · ·

(
1 − k − 1

n

)]
zk

n

∣∣∣∣
≤ 1

k!
[(

1 − 1

n

)(
1 − 2

n

)
· · ·

(
1 − k − 1

n

)]
Ck ≤ Ck

k! =: Mk,

where we used that the term in brackets is a product of positive numbers ≤1, so the
product is also ≤1. Note that

∑∞
k=2 Mk = ∑∞

k=2 Ck/k! converges (its sum equals
exp(C) − 1 − C , but this isn’t important). Hence by Tannery’s theorem,

lim
n→∞

(
1 + zn

n

)n = 1 + z + lim
n→∞

n∑
k=2

ak(n) = 1 + z +
∞∑

k=2

lim
n→∞ ak(n)

= 1 + z +
∞∑

k=2

zk

k! = exp(z).

To prove (2), observe that

exp(z) · exp(w) = lim
n→∞

(
1 + z

n

)n (
1 + w

n

)n = lim
n→∞

(
1 + zn

n

)n
,

where zn = z+w+(z w)/n. Since zn → z+w, we get exp(z)·exp(w) = exp(z+w).
In particular,

exp(z) · exp(−z) = exp(z − z) = exp(0) = 1,

which implies (3). �

An easy induction argument using Property (2) in Theorem3.30 shows that for
all complex numbers z1, . . . , zn , we have

exp(z1 + · · · + zn) = exp(z1) · · · exp(zn).

We remark that Tannery’s theorem can also be used to establish formulas for sine and
cosine; see Problem 2. Also, in Theorem4.33 on p. 305 we’ll see that exp(z) = ez ;
however, at this point, we don’t even know what ez (“e to the power z”) means, since
we haven’t defined what it means to raise a real number to a complex power.

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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3.7.3 Approximation and Irrationality of e

We now turn to the question of approximating e. Because n! grows very large as
n → ∞, we can use the series for the exponential function to calculate e quite easily.
If sn denotes the nth partial sum for e = exp(1), then

e = sn + 1

(n + 1)! + 1

(n + 2)! + 1

(n + 3)! + · · ·

= sn + 1

(n + 1)! + 1

(n + 1)!(n + 2)
+ 1

(n + 1)!(n + 2)(n + 3)
+ · · ·

< sn + 1

(n + 1)!
{
1 + 1

(n + 1)
+ 1

(n + 1)2
+ · · ·

}

= sn + 1

(n + 1)! · 1

1 − 1

n + 1

= sn + 1

n! n
.

Thus, we get the following useful estimate for e:

sn < e < sn + 1

n! n
. (3.40)

Example 3.49 In particular, with n = 1 we have s1 = 2 and 1/(1! 1) = 1, and
therefore 2 < e < 3. Of course, we can get a much more precise estimate with
higher values of n: with n = 10, we obtain (in common decimal notation; see
Section3.8)

2.718281801 < e < 2.718281829.

This is quite an accurate approximation!

The estimate (3.40) also gives an easy proof that the number e is irrational, a fact
first proved by Euler in 1737 [35, p. 463].

Irrationality of e

Theorem 3.31 The number e is irrational.

Proof Indeed, by way of contradiction, suppose that e = p/q, where p and q are
positive integers with q > 1. Then (3.40) with n = q implies that

sq <
p

q
< sq + 1

q! q
. (3.41)
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Since sq = 2 + 1
2! + · · · + 1

q! , the number q! sq is an integer (this is because q! =
1 ·2 · · · k · (k +1) · · · q contains a factor of k! for each 1 ≤ k ≤ q). Then multiplying
the inequalities in (3.41) by q! and putting m = q! sq (which, as we mentioned, is
an integer), we obtain

m < p (q − 1)! < m + 1

q
.

Since q > 1, we have m + 1/q < m + 1, so m < p (q − 1)! < m + 1. Hence, the
integer p (q − 1)! lies strictly between the two consecutive integers m and m + 1,
which of course is absurd. �

We end with the following neat infinite nested product formula for e:

e = 1 + 1

1
+ 1

2

(
1 + 1

3

(
1 + 1

4

(
1 + 1

5

(
· · ·

))))
; (3.42)

see Problem 6.

� Exercises 3.7

1. Find the following limits, where for (c) and (d), prove that the limits are
∑∞

k=1
1
k2 :

(a) lim
n→∞

{
1 + n

(1 + 2n)
+ 22 + n2

(1 + 2n)2
+ · · · + nn + nn

(1 + 2n)n

}
,

(b) lim
n→∞

{
n√

1 + (1 · 2 · n)2
+ n√

1 + (2 · 3 · n)2
+ · · · + n√

1 + (n · (n + 1) · n)2

}
,

(c) lim
n→∞

{
1 + n2

1 + (1 · n)2
+ 22 + n2

1 + (2 · n)2
+ · · · + n2 + n2

1 + (n · n)2

}
,

(d) lim
n→∞

{(
n

1 + 12n

) 1
n

+
(

n

1 + 22n

) 1
n

+ · · · +
(

n

1 + n2n

) 1
n

}
,

(e) lim
n→∞

{(
n

n + 1

)n

+
(

n

n + 1

)2n

+ · · · +
(

n

n + 1

)n·n}
,

( f ) lim
n→∞

{
n + 1n

n + 21 · 1n
+ n + 2n

n + 22 · 2n
+ · · · + n + nn

n + 2n · nn

}
.

2. For each z ∈ C, define the cosine of z by

cos z = lim
n→∞

1

2

{(
1 + i z

n

)n

+
(
1 − i z

n

)n}
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and the sine of z by

sin z = lim
n→∞

1

2i

{(
1 + i z

n

)n

−
(
1 − i z

n

)n}
.

(a) Use Tannery’s theorem in a similar way as we did in the proof of Property
(1) in Theorem3.30 to prove that the limits defining cos z and sin z exist and
moreover,

cos z =
∞∑

k=0

(−1)k z2k

(2k)! and sin z =
∞∑

k=0

(−1)k z2k+1

(2k + 1)! .

(b) Following the proof that e is irrational, prove that cos 1 (or sin 1 if you prefer)
is irrational.

3. Following [152], we prove that for every m ≥ 3,

m∑
n=0

1

n! − 3

2m
<

(
1 + 1

m

)m

<

m∑
n=0

1

n! .

Taking m → ∞ gives an alternative proof that exp(1) = e. Fix m ≥ 3.

(i) Prove that for all 2 ≤ k ≤ m, we have

1− k(k − 1)

2m
= 1− (1 + 2 + · · · + k − 1)

m
≤

(
1 − 1

m

)
· · ·

(
1 − k − 1

m

)
< 1.

(ii) Using (i), prove that

m∑
n=0

1

n! − 1

2m

m∑
n=2

1

(n − 2)! ≤
(
1 + 1

m

)m

<

m∑
n=0

1

n! .

Now prove the formula. Suggestion: Use the binomial theorem on (1+ 1
m )m .

4. Let {an} be a sequence of rational numbers tending to +∞, that is, a sequence
such that given M > 0, there is an N such that for all n > N , we have an > M .
In this problem we show that

e = lim

(
1 + 1

an

)an

. (3.43)

This formula also holds when the an are real numbers, but as of now, we’ve only
defined rational powers (we’ll consider real powers in Section4.7 on p. 300).

(i) If the rational numbers an are all integers tending to +∞, prove (3.43).

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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(ii) Back to the case of a rational sequence {an}, for each n, let mn be the unique
integer such that mn − 1 ≤ an < mn (thus, mn = �an�− 1, where �an� is the
greatest integer function). Prove that if mn ≥ 1, then

(
1 + 1

mn

)mn−1

≤
(
1 + 1

an

)an

≤
(
1 + 1

mn − 1

)mn

.

Now prove (3.43).

5. Let {bn} be any null sequence of positive rational numbers. Prove that

e = lim (1 + bn)
1

bn .

6. Prove that for every n ∈ N,

1+ 1

1!+
1

2!+· · ·+ 1

n! = 1+1

1
+1

2

(
1+1

3

(
1+1

4

(
· · ·

(
1+ 1

n − 1

(
1+1

n

))
· · ·

)))
.

The infinite nested sum in (3.42) denotes the limit as n → ∞ of this expression.
7. Trying to imitate the proof that e is irrational, prove that fore every m ∈ N,

exp(1/m) is irrational. After doing this, show that cos(1/m) (or sin(1/m) if you
prefer) is irrational, where cosine and sine are as defined in Problem 2. (If you’re
interested in more irrationality proofs, see the article [189].)

8. (Tannery’s theorem II) For each natural number n, let
∑∞

k=1 ak(n) be a conver-
gent series. Suppose that for each k, limn→∞ ak(n) exists and there is a convergent
series

∑∞
k=1 Mk of nonnegative real numbers such that |ak(n)| ≤ Mk for all k, n.

Imitating the proof of the Tannery’s theorem, prove that

lim
n→∞

∞∑
k=1

ak(n) =
∞∑

k=1

lim
n→∞ ak(n).

9. (Tannery’s theorem and Cauchy’s double series theorem; see Section6.5 for
more on double series!) In this problem we relate Tannery’s theorem to double
series. A double sequence is just a map a : N×N → C; for m, n ∈ Nwe denote
a(m, n) by amn . We say that the iterated series

∑∞
m=1

∑∞
n=1 amn converges if

for each m ∈ N, the series
∑∞

n=1 amn converges (call the sum αm) and the series∑∞
m=1 αm converges. Similarly, we say that the iterated series

∑∞
n=1

∑∞
m=1 amn

converges if for each n ∈ N, the series
∑∞

m=1 amn converges (call the sum βn)
and the series

∑∞
n=1 βn converges.

The object of this problem is to prove that given a double sequence {amn} of
complex numbers such that either

http://dx.doi.org/10.1007/978-1-4939-6795-7_6
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∞∑
m=1

∞∑
n=1

|amn| converges or
∞∑

n=1

∞∑
m=1

|amn| converges, (3.44)

then ∞∑
m=1

∞∑
n=1

amn =
∞∑

n=1

∞∑
m=1

amn (3.45)

in the sense that both iterated sums converge and are equal. The implication (3.44)
=⇒ (3.45) is called Cauchy’s double series theorem; see Theorem6.26 on p.
471 in Section6.5 for the full story. To prove this, you may proceed as follows.

(i) Assume that
∑∞

m=1

∑∞
n=1 |amn| converges; wemust prove the equality (3.45).

To do so, for each k ∈ N, define Mk = ∑∞
j=1 |ak j |, which converges by

assumption. Then
∑∞

k=1 Mk also converges by assumption. Define ak(n) =∑n
j=1 ak j . Prove that Tannery’s theorem II, from the previous problem, can

be applied to these ak(n), and in doing so, establish the equality (3.45).
(ii) Assuming that

∑∞
n=1

∑∞
m=1 |amn| converges, prove the equality (3.45).

(iii) Cauchy’s double series theorem can be used to prove neat and nonobvious
identities. For example, prove that for every k ∈ N and z ∈ C with |z| < 1,
we have ∞∑

n=1

zn(k+1)

1 − zn
=

∞∑
m=1

zm+k

1 − zm+k
;

that is,

zk+1

1 − z
+ z2(k+1)

1 − z2
+ z3(k+1)

1 − z3
+· · · = z1+k

1 − z1+k
+ z2+k

1 − z2+k
+ z3+k

1 − z3+k
+· · · .

Suggestion: Apply Cauchy’s double series to {amn}, where amn = zn(m+k).

3.8 Decimals and “Most” Real Numbers Are Irrational

Since grade school, we have represented real numbers in base 10.14 In this section
we continue the discussion initiated in Section2.5 on p. 69 on the use of arbitrary
bases. We also look at the celebrated Cantor’s diagonal argument.

14“To what heights would science now be raised if Archimedes had made that discovery! [ =
the decimal system of numeration or its equivalent (with some base other than 10)].” Carl Gauss
(1777–1855).

http://dx.doi.org/10.1007/978-1-4939-6795-7_6
http://dx.doi.org/10.1007/978-1-4939-6795-7_6
http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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3.8.1 Decimal and b-Adic Representations of Real Numbers

We are all familiar with the common decimal or base 10 notation, which we
used without mention in the last section concerning the estimate 2.718281801 <

e < 2.718281829. Here, we know that the decimal (also called base 10) notation
2.718281801 represents the number

2 + 7

10
+ 1

102
+ 8

103
+ 2

104
+ 8

105
+ 1

106
+ 8

107
+ 0

108
+ 1

109
,

that is, this real number gives meaning to the symbol 2.718281801. More gener-
ally, the symbol αkαk−1 . . . α0.a1a2a3a4a5 . . . , where the αn and an are integers in
0, 1, . . . , 9, represents the number

αk · 10k + · · · + α1 · 10 + α0 + a1

10
+ a2

102
+ a3

103
+ · · · =

k∑
n=0

αn · 10n +
∞∑

n=1

an

10n
.

Notice that the infinite series
∑∞

n=1
an
10n converges, because 0 ≤ an ≤ 9 for all n,

so we can compare this series with
∑∞

n=1
9
10n = 1 < ∞. In particular, the number∑∞

n=1
an
10n lies in [0, 1].

More generally, instead of restricting to base 10, we can use other bases. Let b > 1
be an integer (the base). Then the symbol αkαk−1 . . . α0.b a1a2a3a4a5 . . . , where the
αn and an are integers in 0, 1, . . . , b − 1, represents the real number

a = αk · bk + · · · + α1 · b + α0 + a1

b
+ a2

b2
+ a3

b3
+ · · · =

k∑
n=0

αn · bn +
∞∑

n=1

an

bn
.

The infinite series
∑∞

n=1
an
bn converges, because 0 ≤ an ≤ b − 1 for all n, so we can

compare this series with

∞∑
n=1

b − 1

bn
= (b − 1) ·

∞∑
n=1

(1
b

)n = (b − 1)
1
b

1 − 1
b

= 1 < ∞.

The symbol αkαk−1 . . . α0.b a1a2a3a4a5 . . . is called the b-adic representation or b-
adic expansion of a. The αn and an are called digits. A natural question is this: Does
every nonnegative real number have such a representation? The answer is yes. If a is
negative, its b-adic representation is, by definition, negative the b-adic representation
of the positive number −a.

Now given x ≥ 0, to prove that it has a b-adic expansion, write x = m +a, where
m = �x� is the integer part of x and 0 ≤ a < 1. We already know that m has a b-adic
expansion, so we can focus on writing a in a b-adic expansion.
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Theorem 3.32 Let b ∈ N with b > 1. Then for every a ∈ [0, 1], there exists a
sequence of integers {an}∞n=1 with 0 ≤ an ≤ b − 1 for all n such that

a =
∞∑

n=1

an

bn
,

where infinitely many of the an are nonzero if a �= 0.

Proof If a = 0,we take all the an to be zero, sowe henceforth assume that 0 < a ≤ 1;
we find the an as follows. First, we divide (0, 1] into b nonoverlapping intervals:

(
0,

1

b

]
,
(1

b
,
2

b

]
,
(2

b
,
3

b

]
, . . . ,

(b − 1

b
, 1

]
,

as seen here (Fig. 3.14):

· · · · · ·0
b

1
b

2
b

3
b

4
b

b−1
b

b
b

a

Fig. 3.14 We divide (0, 1] into b subintervals and find in which interval a lies. This uniquely
determines a1; in this example, a1 = 1

Since a ∈ (0, 1], a must lie in one of these intervals, so there is an integer a1 with
0 ≤ a1 ≤ b − 1 such that

a ∈
(a1

b
,

a1 + 1

b

]
⇐⇒ a1

b
< a ≤ a1 + 1

b
.

Second, we divide
( a1

b , a1+1
b

]
into b nonoverlapping subintervals. Since the length of( a1

b , a1+1
b

]
is a1+1

b − a1
b = 1

b , we are dividing the interval
( a1

b , a1+1
b

]
into b subintervals

of length (1/b)/b = 1/b2, namely into the intervals

(a1

b
,

a1

b
+ 1

b2

]
,

(a1

b
+ 1

b2
,

a1

b
+ 2

b2

]
, . . . ,

(a1

b
+ b − 1

b2
,

a1

b
+ 1

b

]
.

Here’s a picture (Fig. 3.15):

· · · · · ·a

Fig. 3.15 We divide (a1/b, (a1 + 1)/b] into b subintervals and find in which interval a lies. This
will then uniquely determine a2
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Now a ∈ ( a1
b , a1+1

b

]
, so a must lie in one of these intervals. Thus, there is an

integer a2 with 0 ≤ a2 ≤ b − 1 such that

a ∈
(a1

b
+ a2

b2
,

a1

b
+ a2 + 1

b2

]
⇐⇒ a1

b
+ a2

b2
< a ≤ a1

b
+ a2 + 1

b2
.

Continuing this process (slang for “by induction”), we can find a sequence of
integers {an} such that 0 ≤ an ≤ b − 1 for all n and

a1

b
+ a2

b2
+ · · · + an−1

bn−1
+ an

bn
< a ≤ a1

b
+ · · · + an−1

bn−1
+ an + 1

bn
. (3.46)

Let y := ∑∞
n=1

an
bn ; this series converges, because its partial sums are bounded by a

according to the left-hand inequality in (3.46). Since 1/bn → 0 as n → ∞, by taking
n → ∞ in (3.46) and using the squeeze theorem, we see that y ≤ a ≤ y. This shows
that a = y = ∑∞

n=1
an
bn . We claim that infinitely many of the an are nonzero. Indeed,

if there were at most finitely many nonzero an , say for some m we had an = 0 for all
n > m, then we would have a = ∑m

n=1
an
bn . Now setting n = m in (3.46) and looking

at the left-hand inequality shows that a < a. This is impossible, so there must be
infinitely many nonzero an . �

Here’s another question: If a b-adic representation exists, is it unique? The answer
to this question is no.

Example 3.50 Consider, for example, the number 1/2, which has two decimal (base
10) expansions:

1

2
= 0.50000000 . . . and

1

2
= 0.49999999 . . . .

Notice that the first decimal expansion terminates.

You might remember from high school that the only numbers with two different
decimal expansions are the ones that have a terminating expansion. In general, a
b-adic expansion 0.b a1a2a3a4a5 . . . is said to terminate if all the an equal zero for
n sufficiently large.

Theorem 3.33 Let b ∈ N with b > 1. Then every real number in (0, 1] has
a unique b-adic expansion except those numbers that can be represented by a
terminating expansion. The numbers with terminating expansions also have a
b-adic expansion where an = b − 1 for all n sufficiently large.

Proof For a ∈ (0, 1], let a = ∑∞
n=1

an
bn be its b-adic expansion found in The-

orem3.32, so there are infinitely many nonzero an . Suppose that {cn} is another
sequence of integers, not equal to the sequence {an}, such that 0 ≤ cn ≤ b −1 for all
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n and such that a = ∑∞
n=1

cn
bn . Since {an} and {cn} are not the same sequence, there

is at least one n such that an �= cn . Let m be the smallest natural number such that
am �= cm . Then an = cn for n = 1, 2, . . . , m − 1, so

∞∑
n=1

an

bn
=

∞∑
n=1

cn

bn
=⇒

∞∑
n=m

an

bn
=

∞∑
n=m

cn

bn
.

Since there are infinitely many nonzero an , we have

am

bm
<

∞∑
n=m

an

bn
=

∞∑
n=m

cn

bn
= cm

bm
+

∞∑
n=m+1

cn

bn

≤ cm

bm
+

∞∑
n=m+1

b − 1

bn
= cm

bm
+ 1

bm
.

Multiplying the extremities of these inequalities by bm , we obtain am < cm + 1, so
am ≤ cm . Since am �= cm , we must actually have am < cm . Now

cm

bm
≤

∞∑
n=m

cn

bn
=

∞∑
n=m

an

bn
= am

bm
+

∞∑
n=m+1

an

bn

≤ am

bm
+

∞∑
n=m+1

b − 1

bn
= am

bm
+ 1

bm
≤ cm

bm
.

Since the ends are equal, all the inequalities in between must be equalities. In
particular, making the first inequality into an equality shows that cn = 0 for all
n = m + 1, m + 2, m + 3, . . . , and making the middle inequality into an equality
shows that an = b − 1 for all n = m + 1, m + 2, m + 3, . . . . It follows that a has
exactly one b-adic expansion, except when we can write a as

a = 0.b c1c2 . . . cm = 0.b a1 . . . am(b − 1)(b − 1)(b − 1) . . . ,

a terminating expansion and an expansion that has repeating b − 1. �

3.8.2 Rational Numbers

We now consider periodic decimals, such as

1

3
= 0.3333333 . . . ,

3526

495
= 7.1232323 . . . ,

611

495
= 1.2343434 . . . .
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As you well know, we usually write these decimals with bars to indicate a repeating
pattern:

1

3
= 0.3 . . . ,

3526

495
= 7.123 . . . ,

611

495
= 1.234 . . . .

For general b-adic expansions, we say that αk . . . α0.b a1a2a3 . . . is periodic if there
exists an � ∈ N (called a period) such that an = an+� for all n sufficiently large.

Example 3.51 In the base 10 expansion of 3526
495 = 7.1232323 . . . = 7.a1a2a3 · · · ,

we have an = an+2 for all n ≥ 2.

Example 3.52 We can actually see how the periodic pattern appears by reviewing
high school long division! Indeed, let’s compute 41/333 by long dividing 333 into
41. We first multiply 41 by 10 to start the process:

333
.123)

410
333
770
666
1040
999
41

At this point, we get the remainder 41, and after multiplication by 10 we are back
at the beginning. Thus, by continuing this process of long division, we are going
to repeat the pattern 1, 2, 3, obtaining 41/333 = 0.123. Now let’s review how long
division is done. Let p = 41, q = 333, and b = 10. We first multiply p by the base b
to get 410 and then divide by q, getting the quotient 1 (which wewrite on the top line)
and remainder 77. Second, we multiply 77 by the base b to get 770 and then divide
by q, getting the quotient 2 (which we write on the top line) and remainder 104. We
then multiply 104 by the base b to get 1040, and so on. The pattern is to repeat the
process of multiplying by the base b, then dividing the result by q to get a quotient,
which becomes a decimal digit, and a remainder with which we continue the process.
This procedure is exactly what we do in Step 1 of the proof of Theorem3.34 below.

Example 3.53 Now suppose we are given a periodic decimal, such as x := 0.123;
how do we show that it represents a rational number? The trick, often learned in high
school, is to multiply x by 103 and note that

103x = 123.123.

It follows that 1000x = 123+ x . Solving for x , we get x = 123/999 = 41/333. We
use this technique in Step 2 of the proof of Theorem3.34 below.
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Theorem 3.34 Let b ∈ N with b > 1. A real number is rational if and only if its
b-adic expansion is periodic.

Proof We first prove the “only if” statement, then the “if” statement.
Step 1: We prove “only if”: Given integers p, q with q > 0, we show that p/q

has a periodic b-adic expansion. By the division algorithm (Theorem2.16 on p. 60),
we have p/q = q ′ + r/q, where q ′ ∈ Z and 0 ≤ r < q. Since integers have
b-adic expansions, we just have to prove that r/q has a periodic b-adic expansion.
By relabeling r with the letter p, we shall assume that 0 ≤ p < q, so that p/q <

1. Proceeding via high school long division reviewed in the examples above, we
construct the decimal expansion of p/q.

First, using the division algorithm, we divide bp by q, obtaining a unique integer
a1 such that bp = a1q + r1, where 0 ≤ r1 < q. Observe that

p

q
− a1

b
= bp − a1q

bq
= r1

bq
≥ 0.

Thus,
a1

b
≤ p

q
< 1,

which implies that 0 ≤ a1 < b.
Next, using the division algorithm, we divide b r1 by q, obtaining a unique integer

a2 such that br1 = a2q + r2, where 0 ≤ r2 < q. Observe that

p

q
− a1

b
− a2

b2
= r1

bq
− a2

b2
= br1 − a2q

b2q
= r2

b2q
≥ 0.

Thus,
a2

b2
≤ r1

bq
<

q

bq
= 1

b
,

which implies that 0 ≤ a2 < b.
Once more using the division algorithm, we divide b r2 by q, obtaining a unique

integer a3 such that br2 = a3q + r3, where 0 ≤ r3 < q. Observe that

p

q
− a1

b
− a2

b2
− a3

b3
= r2

b2q
− a3

b3
= br2 − a3q

b3q
= r3

b3q
≥ 0.

Thus,
a3

b3
≤ r2

b2q
<

q

b2q
= 1

b2
,

which implies that 0 ≤ a3 < b. Continuing by induction, for each n we construct
integers an, rn such that 0 ≤ an < b, 0 ≤ rn < q, brn = an+1q + rn+1, and

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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p

q
− a1

b
− a2

b2
− a3

b3
− · · · − an

bn
= rn

bnq
.

Since 0 ≤ rn < q for each n, it follows that rn
bnq → 0 as n → ∞, so we can write

p

q
=

∞∑
n=1

an

bn
, which is say,

p

q
= 0.b a1a2a3a4a5 . . . . (3.47)

Now one of two things holds: Either some remainder rn is equal to zero or none
of the rn are zero. Suppose that we are in the first case, that some rn equals zero.
By construction, we divide brn by q using the division algorithm to get brn =
an+1q + rn+1. Since rn = 0 and quotients and remainders are unique, we must have
an+1 = 0 and rn+1 = 0. By construction, we divide brn+1 by q using the division
algorithm to get brn+1 = an+2q +rn+2. Since rn+1 = 0 and quotients and remainders
are unique, we must have an+2 = 0 and rn+2 = 0. Continuing this procedure, we
see that all ak with k > n are zero. This, in view of (3.47), shows that the b-adic
expansion of p/q has repeating zeros, so in particular, it is periodic.

Suppose that we are in the second case, that no rn is zero. Consider the q + 1
remainders r1, r2, . . . , rq+1. Since 0 ≤ rn < q, each rn can take on at most q different
values (namely 0, 1, 2, . . . , q − 1, “q pigeonholes”), so by the pigeonhole principle
(see p. 136), two of these remainders must have the same value (“be in the same
pigeonhole”). Thus, rk = rk+� for some k and �. We now show that ak+1 = ak+�+1.
Indeed,ak+1 wasdefinedbydividingbrk byq, so thatbrk = ak+1q+rk+1.On theother
hand, ak+�+1 was defined by dividing brk+� by q, so that brk+� = ak+�+1q + rk+�+1.
Now the division algorithm states that the quotients and remainders are unique. Since
brk = brk+�, it follows that ak+1 = ak+�+1 and rk+1 = rk+�+1. Repeating this same
argument shows that ak+n = ak+�+n for all n ≥ 0; that is, an = an+� for all n ≥ k.
Thus, p/q has a periodic b-adic expansion.

Step 2:We now prove the “if” portion: A number with a periodic b-adic expansion
is rational. Let a be a real number and suppose that its b-adic decimal expansion is
periodic. Since a is rational if and only if its noninteger part is rational, we may
assume that the integer part of a is zero. Let

a = 0.b a1a2 . . . akb1 . . . b�

have a periodic b-adic expansion, where the barmeans that the block b1 · · · b� repeats.
Observe that in an expansion αmαm−1 · · · α0.bβ1β2β3 . . . , multiplication by bn for
n ∈ N moves the decimal point n places to the right. (Try to prove this; think about
the familiar base 10 case first.) In particular,

bk+�a = a1a2 . . . akb1 . . . b�.b b1 . . . b� = a1a2 . . . akb1 . . . b� + 0.b b1 . . . b�

and
bka = a1a2 . . . ak .b b1 . . . b� = a1a2 . . . ak + 0.b b1 . . . b�.
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Subtracting,we see that the numbers given by 0.b b1 . . . b� cancel, so bk+�a−bka = p,
where p is an integer. Hence, a = p/q, where q = bk+� − bk . Thus a is rational. �

3.8.3 Cantor’s Diagonal Argument

Now that we know about decimal expansions, we can present Cantor’s second proof
that the irrationals and nontrivial intervals are uncountable. His first proof appeared
in Section2.11 on p. 141.

Cantor’s second proof

Theorem 3.35 c �= ℵ0.

Proof Since (0, 1) has cardinality c, we just have to prove that (0, 1) is not countable.
Assume, to get a contradiction, that there is a bijection f : N −→ (0, 1). Let us
write the images of f as decimals (base 10):

1 ←→ f (1) = .a11 a12 a13 a14 · · ·
2 ←→ f (2) = .a21 a22 a23 a24 · · ·
3 ←→ f (3) = .a31 a32 a33 a34 · · ·
4 ←→ f (4) = .a41 a42 a43 a44 · · ·
...

...,

where we assume that in each of these expansions there is never an infinite run of
9’s. Recall from Theorem3.33 that every real number in (0, 1) has a unique such
representation. Now let us define a real number a = .a1 a2 a3 . . . , where

an :=
{
3 if ann �= 3

7 if ann = 3.

(The choice of 3 and 7 is arbitrary—you can choose another pair of unequal integers
in 0, . . . , 9 if you like!) Notice that an �= ann for all n. In particular, a �= f (1),
because a and f (1) differ in the first digit. On the other hand, a �= f (2), because
a and f (2) differ in the second digit. Similarly, a �= f (n) for every n, since a and
f (n) differ in the nth digit. This contradicts that f : N → (0, 1) is onto. �

Cantor’s diagonal argument is not only elegant, it is useful, for it can be used to
generate transcendental numbers; see [94].

� Exercises 3.8

1. Find the numbers with the b-adic expansions (here b = 10, 2, 3, respectively):

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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(a) 0.010101 . . . , (b) 0.2010101 . . . , (c) 0.3010101 . . . .

2. Prove that a real number a ∈ (0, 1) has a terminating decimal expansion if and
only if 2m5na ∈ Z for some nonnegative integers m, n.

3. (s-adic expansions) Let s = {bn} be a sequence of integers with bn > 1 for all
n and let 0 < a ≤ 1. Prove that there is a sequence of integers {an}∞n=1 with
0 ≤ an ≤ bn − 1 for all n and with infinitely many nonzero an such that

a =
∞∑

n=1

an

b1 · b2 · b3 · · · bn
.

Suggestion: Can you imitate the proof of Theorem3.32?
4. (Cantor’s original diagonal argument) Let g and c be two distinct objects and

let G be the set consisting of all functions f : N −→ {g, c}. Let f1, f2, f3, . . .
be an infinite sequence of elements of G. Prove that there is an element f in G
that is not in this list. From this prove that G is uncountable. Conclude that the
set of all sequences of 0’s and 1’s is uncountable; in the next problem we find its
cardinality.

5. (Real numbers and sequences of 0’s and 1’s) Let 2N denote15 the set of all
sequences of 0’s and 1’s, or what’s the same thing, the set of functions from N

into {0, 1}. We denote the cardinality of 2N by, what else, 2ℵ0 . We shall prove that
2ℵ0 = c. (In particular, 2N and R are in a one-to-one correspondence.)

(i) Prove that B := {(b1, b2, . . . ) ∈ 2N ; bi = 0 for all i sufficiently large} is
countable.

(ii) Let A = 2N\ B, so that 2N = A∪ B. Define f : A −→ (0, 1] by associating a
sequence (a1, a2, a3, . . . ) ∈ A with the real number having binary expansion
0.2a1a2a3 . . . ∈ (0, 1]. Prove that f is a bijection.

(iii) Conclude that 2ℵ0 = c.

6. (Cantor’s unbelievable theorem) Let X = 2N.

(i) Prove that X2 has the same cardinality as X .
(ii) Generalizing, prove that for every m ∈ N, the m-fold product Xm has the

same cardinality as X . Consequently, Rm has the same cardinality as R, to
which Cantor said “I see it, but I don’t believe it!”

(iii) We now generalize even further. Let XN denote the collection of all functions
from N into X . In other words, XN denotes the collection of all sequences
(x1, x2, x3, . . . ), where xk ∈ X for each k (thus, xk is itself a sequence, of
0’s and 1’s). We remark that it is common to denote XN by X∞, because XN

can be viewed as the infinite Cartesian product X × X × X × · · · . Prove:

15In the notation from Problem 5 on p. 145, 2N would be denoted by {0, 1}N, so “2” is shorthand
for the two-element set {0, 1}.
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Cantor’s unbelievable theorem: XNhas the same cardinality as X.

In particular,R∞, the collection of all infinite sequences of real numbers, has
the same cardinality as R. Suggestion: An element of X is a function from N

into {0, 1}, while an element of XN can be considered a function fromN×N

into {0, 1} (try to see why). Use a bijection between N and N × N to get a
bijection between X and XN.



Chapter 4
Limits, Continuity, and Elementary
Functions

One merit of mathematics few will deny: it says more in fewer words than any other science.
The formula, eiπ = −1 expressed a world of thought, of truth, of poetry, and of the religious
spirit “God eternally geometrizes.”
David Eugene Smith (1860–1944) [201].

In this chapter we study what are without doubt the most important functions in
all of analysis and topology, the continuous functions. In particular, we study the
continuity properties of “the most important function in mathematics” [205, p. 1]:
exp(z) =∑∞

n=0
zn

n! , z ∈ C. From this single function arise just about every important
function and number you can think of: the logarithm function, powers, roots, the
trigonometric functions, the hyperbolic functions, the number e, the number π, . . . ,
and the famous formula displayed in the above quotation!

What do the Holy Bible, squaring the circle, House bill No. 246 of the Indiana
state legislature in 1897, square-free natural numbers, coprime natural numbers, the
sentence

May I have a large container of coffee? Thank you, (4.1)

the mathematicians Archimedes, William Jones, Leonhard Euler, Johann Lambert,
Ferdinand von Lindemann, John Machin, and Yasumasa Kanada have to do with one
another? The answer (drum roll please): They all have been involved in the life of the
remarkable number π! This fascinating number is defined and some of its amazing
and death-defying properties and formulas are studied in this chapter! By the way,
the sentence (4.1) is a mnemonic device to remember the digits of π. The number of
letters in each word represents a digit of π; e.g., “May” represents 3, “I” 1, etc. The
sentence (4.1) gives ten digits of π: 3.141592653.1

1Using mnemonics to memorize digits of π isn’t a good idea if you want to beat Chao Lu’s result
of reciting 67,890 digits from memory! (see http://www.pi-world-ranking-list.com).
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In Section 4.1, we begin our study of continuity by learning about limits of func-
tions; in Section 4.2, we study some useful limit properties; and then in Section 4.3, we
discuss continuous functions in terms of limits of functions. In Section 4.4, we study
some fundamental properties of continuous functions, and in Section 4.5, we give
many neat applications of continuity. A special class of functions, called monotone
functions, have many special properties, which are investigated in Section 4.6. In
Section 4.7, we study “the most important function in mathematics,” and we also
study its inverse, the logarithm function, and then we use the logarithm function to
define powers. We also define the Riemann zeta function and the Euler–Mascheroni
constant γ,

γ := lim
n→∞

(

1 + 1

2
+ · · · + 1

n
− log n

)

,

a constant that will come up again and again (see the book [104], which is devoted
to this number); and we’ll prove that the alternating harmonic series has sum log 2:

log 2 = 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ − · · · ,

another fact that will come up often. Here’s an interesting question: Does the series

∑

p is prime

1

p
= 1

2
+ 1

3
+ 1

5
+ 1

7
+ 1

11
+ 1

13
+ 1

17
+ 1

19
+ 1

23
+ 1

29
+ · · ·

converge or diverge? For the answer, see Section 4.8. In Section 4.9, we use the
exponential function to define the trigonometric functions, and we define π, the
fundamental constant of geometry. In Section 4.10 we study roots of complex num-
bers, and we give fairly elementary proofs of the fundamental theorem of algebra.
In Section 4.11 we study the inverse trigonometric functions. The calculation of the
incredible number π and (we hope) the imparting of the sense of great fascination
that this number arouses are the highlights of Section 4.12.

CHAPTER 4 OBJECTIVES: THE STUDENT WILL BE ABLE TO . . .

• Apply the rigorous ε-δ definition of limits for functions and continuity.
• Apply, and know how to prove, the fundamental theorems of continuous functions.
• Define the elementary functions (exponential, trigonometric, and their inverses)

and the number π.
• Explain three related proofs of the fundamental theorem of algebra.
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4.1 Continuity and ε-δ Arguments for Limits of Functions

Simply put, “continuity” basically says that “this world works as it should.” More
precisely, in nature we observe the following

Law of continuity: The precision of a continuous function’s outputs can be controlled by
restricting its inputs to within some safety margin.

For example, if the temperature (output) is 90 ◦F at 1 PM (time = input), then
the “law of continuity” says that the temperature will be near 90 ◦F for some time
around 1 PM. Consider the following examples:

pulling an arrow
in a bow

landing spot

dial volume

60

pressure on gas pedal speed

angle from horizontal location of hit

In all these examples, the precision of the output (landing spot of an arrow, volume
of a radio, speed, and the location of a cannonball hit) can be controlled by small
adjustments, or safety margins, in your input (depth of draw, turn of dial, pressure
on pedal, and the angle of the cannon). The goal of this section is to make this
“precision–safety margin” idea precise using ε’s and δ’s.

4.1.1 Limit Points

Before reading on, it might benefit the reader to reread the material on open balls in
Section 2.9 on p. 126. If A ⊆ R

m, then a point c ∈ R
m is said to be a limit point

of A if every open ball centered at c contains a point of A different from c. In other
words, given r > 0, there is a point x ∈ A such that x ∈ Br(c) and x �= c. Let’s box
this definition:

c is a limit point of A ⇐⇒ for each r > 0, there’s an x ∈ A such that 0 < |x − c| < r.

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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The inequality 0 < |x − c| just means that x �= c, while the inequality |x − c| < r
just means that x ∈ Br(c). We remark that the point c may or may not belong to A.
Here’s a picture to keep in mind (Fig. 4.1):

c
r

x

A

Fig. 4.1 Consider the region A inside a closed curve (not including the curve itself, which is why
we draw a dotted curve). Every point on the curve or inside the curve is a limit point of A. This
figure shows a point c on the curve. No matter how small r > 0 is, there is always a point x of A
within distance r of c. Thus, c is a limit point of A

Note that if m = 1, then c is a limit point of A ⊆ R if

for every r > 0, there is an x ∈ A such that x ∈ (c − r, c + r) and x �= c.

Example 4.1 Consider the interval A = [0, 1):

0 1

Observe that 0 and 1 are limit points of A; here, 0 belongs to A, while 1 does not.
Moreover, as the reader can verify, every point in the closed interval [0, 1] is a limit
point of A. Here’s a picture showing why 1 is a limit point of A:

0 1
( )

r
x

For every r > 0, there is always a point x of A whose distance from 1 is less than r.

Example 4.2 Let A = {1/n ; n ∈ N}, a sequence of points converging to zero:

11
2

1
3

1
40

The diligent reader will verify that 0 is the only limit point of A; note that for every
r > 0, there is always an n such that 1/n ∈ (−r, r) by the 1/n-principle:

11
2

1
3

1
40

( )
r

The name “limit point” fits because the following lemma states that limit points
are exactly that, limits of sequences of points in A.
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Limit points and sequences

Lemma 4.1 A point c ∈ R
m is a limit point of a set A ⊆ R

m if and only if
c = lim an for some sequence {an} contained in A with an �= c for each n.

Proof Assume that c is a limit point of A. For each n, by definition of limit point
(put r = 1/n in the definition), there is a point an ∈ A such that 0 < |an − c| < 1/n.
By Theorem 3.1 on p. 253, on limit recipes, we have an → c.

Conversely, suppose that c = lim an for some sequence {an} contained in A with
an �= c for each n. We shall prove that c is a limit point for A. Let r > 0. Then
by definition of convergence for an → c, there is an n sufficiently large such that
|an −c| < r. Since an �= c by assumption, we have 0 < |x −c| < r with x = an ∈ A,
so c is a limit point of A. �

4.1.2 Continuity, ε’s, and δ’s

Consider our airplane saga that we’ve seen with sequences. Suppose you’re in an
airplane above Chicago at 5 PM; then obviously, the plane is still near Chicago for
some time interval around 5 PM. To make this “mathy,” let f (t) equal the position
of the plane at time t, and consider the following picture:

Our world follows the “law of continuity”: if f (5) is above Chicago (left), then f (t)
is still near Chicago for some time interval around 5 PM (right). We now make this
“near” and “time interval around” precise. Following our work on sequences, it’s not
difficult to do this! Take any radius of f (5), say a radius ε > 0, as shown here:

Then “nearness” is quantified by saying that f (t) is inside the ball of the given radius
for some time interval around 5; that is,

| f (t) − f (5)| < ε for some time interval centered on 5 .

That is, there is some distance, historically it has been denoted by δ > 0, such that
| f (t) − f (5)| < ε holds for |t − 5| < δ. To conclude this rather long motivational

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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speech, here’s our “mathy” way to describe our flight:

For every ε > 0, for some δ > 0, we have | f (t) − f (5)| < ε if |t − 5| < δ.

Here is an equivalent rewording:

For every ε > 0 there is a δ > 0 such that if |t − 5| < δ, then | f (t) − f (5)| < ε.

Every law of continuity example can be described via ε’s and δ’s; e.g., consider our
cannon:

δ
δ

angle from horizontal location of hit

ε

ε

That is, if you hit the wall at a certain location at a particular angle, then given any
precision ε, you can hit the wall within that precision of the original hit for angles
within some safety margin δ of the original angle.

We now generalize to arbitrary dimensions. Let m, p ∈ N and let f : D −→ R
m,

where D ⊆ R
p. The function f : D −→ R

m is continuous at a point c ∈ D if for
each ε > 0, there is a δ > 0 such that

x ∈ D and |x − c| < δ =⇒ | f (x) − f (c)| < ε. (4.2)

In the case p = m = 1 (the easiest to draw!), here’s a picture of continuity (Fig. 4.2):

cc − δ c + δ

f(c) − ε

f(c) + ε

f(c)

f(x)

Fig. 4.2 Given ε > 0, there is a δ > 0 such that if x ∈ D is within the distance δ of c, then f (x) is
within the radius ε of f (c)

Just like our airplane and cannon examples, a function is continuous at a point c if the
precision of its outputs ( f (x) is near f (c)) can be controlled by restricting its inputs
to within some safety margin around c (explicitly, | f (x) − f (c)| < ε if |x − c| < δ).
Continuity is intimately related to the notion of limits, our next topic, which is the
main focus of this and the next section; we shall return to continuity in Section 4.3.
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4.1.3 The ε-δ Definition of Limit

The definition of limit is very similar to that of continuity: It says that the precision
of a function’s outputs “near a value L” can be controlled by restricting its inputs to
within some safety margin “around c,” but not equal to c (explicitly, | f (x) − L| < ε
if |x − c| < δ and x �= c). It’s important in many applications2 to add the extra
condition “not equal to c.” Note that if x �= c, we have |x − c| > 0, so we are in
effect saying that 0 < |x − c| < δ. Finally, since x is not allowed to equal c, we do
not need c to be in the domain of f ; we’ll see in a moment that it’s enough to take c
to be a limit point of D.

With this discussion as a backdrop, here’s a precise definition. A function f :
D −→ R

m is said to have a limit L at a limit point c of D if for each ε > 0 there is
a δ > 0 such that

x ∈ D and 0 < |x − c| < δ =⇒ | f (x) − L| < ε. (4.3)

Note: Since c is a limit point of D, there always exist points x ∈ D with 0 < |x−c| <
δ, so this implication is not empty! If (4.3) holds, we write

L = lim
x→c

f or L = lim
x→c

f (x),

or we sometimes write f → L or f (x) → L as x → c. For p = m = 1, the condition
(4.3) simplifies as follows: f : D −→ R has limit L at a limit point c of D ⊆ R if
for each ε > 0, there is a δ > 0 such that

x ∈ D with c − δ < x < c + δ and x �= c =⇒ L − ε < f (x) < L + ε.

Here’s an illustration of the limit concept in the case p = m = 1, where there are
three similar functions, f1, f2, f3, a point c, and an L (Fig. 4.3):

c

f1
L

c

f2
L

f2(c)

c

f3
L

Fig. 4.3 In the first picture, L = f1(c), in the second, f2(c) �= L, and in the third, f3(c) is not
defined (leaving a hole in the graph)

In all three cases, we have limx→c f = L, where f = f1, f2, f3 (Fig. 4.4):

2For example, the definition of derivative in calculus; a more everyday example deals with paying
back loans, as we’ll see in Example 4.4.
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c

f1

c − δ c + δ

L − ε

L + ε
L

c

f2

c − δ c + δ

L − ε

L + ε
L

f2(c)

c

f3

c − δ c + δ

L − ε

L + ε
L

Fig. 4.4 Given ε > 0, there is a δ > 0 such that if we take any x �= c with c − δ < x < c + δ, we
have L − ε < f (x) < L + ε

For general p and m, here’s an abstract picture of a function f : D → R
m with

limit L at a point c (Fig. 4.5):

D ⊆ R
p

cδ
x

f R
m

L
ε

f(x)

Fig. 4.5 Given ε > 0, there is a δ > 0 such that if x ∈ D is within distance δ of c (and x �= c), then
f (x) is within distance ε of L

We end by remarking that an alternative definition of limit involves open balls. Indeed,
observe that a function f : D −→ R

m has limit L at a limit point c of D ⊆ R
p if for

each ε > 0, there is a δ > 0 such that

x ∈ D ∩ Bδ(c) and x �= c =⇒ f (x) ∈ Bε(L).

This open ball viewpoint is useful in the subject of topology.
In this section we focus on limits, and in Section 4.3 we focus on continuity.

4.1.4 Working with the ε-δ Definition

Techniques we learned back in Section 3.1.2 (starting on p. 152) to prove that
sequences converge, such as the “limit recipe” and the “fraction fact,” are useful
for ε-δ arguments. Here is a recipe on how to attack many limit problems:

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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Precision-safety margin recipe:
(1) Always start your proof with “Let ε > 0.′′
(2) “Massage” output precision | f (x) − L| in terms of input margin |x − c| :
to get an inequality that looks like

| f (x) − L| ≤ constant |x − c|.
This may require an initial choice of safety margin (see examples).

(3) Find the safety margin δ.

We take the convention that if not explicitly mentioned, the domain D of a function
is always taken to be the set of all points for which the function makes sense.

Example 4.3 Let us prove that

lim
x→2

(
3x2 − 10

) = 2.

(Here, the domain D of 3x2 − 10 is assumed to be all of R.) Let ε > 0 be given. We
need to prove that there is a real number δ > 0 such that

0 < |x − 2| < δ =⇒ ∣
∣3x2 − 10 − 2

∣
∣ = ∣∣3x2 − 12

∣
∣ < ε.

We now massage our output precision in terms of the input margin as follows:

∣
∣3x2 − 12

∣
∣ = 3

∣
∣x2 − 4

∣
∣ = 3 |x + 2| · |x − 2|.

We now bound 3 |x + 2|. To do so, let us restrict our inputs x so that |x − 2| < 1;
that is, −1 < x − 2 < 1, or 1 < x < 3. In this case,

|x + 2| ≤ 3 + 2 = 5.

Thus, if |x − 2| < 1, then 3|x + 2| ≤ 15. Hence,

|x − 2| < 1 =⇒ ∣
∣3x2 − 12

∣
∣ ≤ 15 |x − 2|. (4.4)

Now
15 |x − 2| < ε ⇐⇒ |x − 2| <

ε

15
. (4.5)

For this reason, let us pick δ to be the minimum of 1 and ε/15. Then |x − 2| < δ
implies |x − 2| < 1 and |x − 2| < ε/15, and therefore, according to (4.4) and (4.5),
we have

0 < |x − 2| < δ =⇒ ∣
∣3x2 − 12

∣
∣

by (4.4)≤ 15 |x − 2| by (4.5)
< ε.

Thus, by definition of limit, limx→2(3x2 − 10) = 2.
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Example 4.4 (Loan amortization) Suppose you borrow $B. If each month your
balance is multiplied by a factor3 x > 0, how much is your monthly payment p if
you want to pay the loan back in M months, where M ≥ 2? Assuming x �= 1, the
answer is (can you prove it?) p = xMB/ f (x), where

f (x) = xM − 1

x − 1
.

The function f is not defined at x = 1, however, we claim that its limit at 1 exists:

lim
x→1

f (x) = M.

Although f has a “hole” at x = 1, it can be “filled”:

1

f(x) =
xM − 1
x − 1M

Let ε > 0 be given. We need to prove that there is a real number δ > 0 such that

0 < |x − 1| < δ =⇒ | f (x) − M| < ε.

To do so, note that xM − 1 = (x − 1)(1 + x + x2 + · · · + xM−1), by the sum for a
geometric progression (or by just multiplying out). Using this fact, and some algebra
(which we leave to the interested reader), one can show that

f (x) − M = g(x)
(
x − 1

)
,

where g(x) is the polynomial

g(x) = M − 1 + (M − 2)x + (M − 3)x2 + · · · + 2xM−3 + xM−2.

Thus,
| f (x) − M| = ∣∣g(x)

∣
∣ · ∣∣x − 1

∣
∣.

Let us tentatively restrict x so that |x−1| < 1. This implies 0 < x < 2, so by looking
at the formula for g(x), we see that

|x − 1| < 1 =⇒ ∣
∣g(x)

∣
∣ ≤ C,

3If x > 1, the lender is charging you interest, while if 0 < x < 1, the lender is actually paying you
interest. Note that the limit limx→1 f (x) = M is “obvious,” for x = 1 corresponds to not charging
any interest, so if our loan is $B, to pay it back in M months, we just need to pay p = $B/M each
month.
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where C = M − 1 + (M − 2) · 2 + (M − 3) · 22 + · · · + 2 · 2M−3 + 2M−2. Hence,

|x − 1| < 1 =⇒ | f (x) − M| ≤ C |x − 1|. (4.6)

Now
C |x − 1| < ε ⇐⇒ |x − 1| <

ε

C
. (4.7)

For this reason, let us pick δ to be the minimum of 1 and ε/C. Then |x − 1| < δ
implies |x − 1| < 1 and |x − 1| < ε/C, and therefore, according to (4.6) and (4.7),
we have

0 < |x − 1| < δ =⇒ | f (x) − M| by (4.6)≤ c |x − 1| by (4.7)
< ε.

Thus, by definition of limit, limx→1 f (x) = M.

Example 4.5 Now let a > 0 be a positive real number and let us show that

lim
x→0

√
a + x − √

a

x
= 1

2
√

a
.

Here, the domain is D = [−a, 0)∪ (0,∞). You’ve seen this limit before in calculus:
It’s just the derivative of the square root function at a; see Fig. 4.6. Let ε > 0. We
need to prove that there is a real number δ > 0 such that

0 < |x| < δ =⇒
∣
∣
∣
∣

√
a + x − √

a

x
− 1

2
√

a

∣
∣
∣
∣ < ε.

To establish this result, we “massage” the absolute value with the “multiply by
conjugate trick”:

√
a + x − √

a =
√

a + x − √
a

1
·
√

a + x + √
a√

a + x + √
a

= x√
a + x + √

a
, (4.8)

a a + x

√
a

√
a + x

slope of secant line =
rise
run

=
√

a + x − √
a

x

Fig. 4.6 Graph of the square root function. The height of the triangle is
√

a + x − √
a and the

width is x
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where we noticed that the top of the middle expression is a difference of squares.
Therefore,

∣
∣
∣
∣

√
a + x − √

a

x
− 1

2
√

a

∣
∣
∣
∣ =

∣
∣
∣
∣

1√
a + x + √

a
− 1

2
√

a

∣
∣
∣
∣ =

∣
∣
∣
∣

√
a + x − √

a

2
√

a (
√

a + x + √
a)

∣
∣
∣
∣ .

Applying (4.8) to the far right numerator, we get

∣
∣
∣
∣

√
a + x − √

a

x
− 1

2
√

a

∣
∣
∣
∣ =

|x|
2
√

a (
√

a + x + √
a)2

.

We can make the fraction on the right bigger by making the denominator smaller. To
this end, observe that (

√
a + x + √

a)2 ≥ (
√

a)2 = a, so

1

2
√

a (
√

a + x + √
a)2

≤ 1

2
√

a · a
= 1

2a3/2 =⇒
∣
∣
∣
∣

√
a + x − √

a

x
− 1

2
√

a

∣
∣
∣
∣ ≤

|x|
2a3/2 ,

such a simple expression! Now

|x|
2a3/2

< ε ⇐⇒ |x| < 2a3/2 ε.

With this in mind, we choose δ = 2a3/2 ε, and with this choice of δ, we obtain our
desired inequality:

x ∈ D and 0 < |x| < δ =⇒
∣
∣
∣
∣

√
a + x − √

a

x
− 1

2
√

a

∣
∣
∣
∣ < ε.

Example 4.6 We now give an example involving complex numbers. Let c be a
nonzero complex number, and let us show that

lim
z→c

1

z
= 1

c
.

Here, f : D −→ C is the function f (z) = 1/z with D ⊆ C consisting of all nonzero
complex numbers. (Recall that C = R

2, so D is a subset of R
2, and in terms of our

original definition (4.3), D ⊆ R
p and f : D −→ R

m with p = m = 2.) Let ε > 0.
We need to prove that there is a real number δ > 0 such that

0 < |z − c| < δ =⇒
∣
∣
∣
∣
1

z
− 1

c

∣
∣
∣
∣ < ε.

Observe that ∣
∣
∣
∣
1

z
− 1

c

∣
∣
∣
∣ =

∣
∣
∣
∣
c − z

zc

∣
∣
∣
∣ =

1

|zc| |z − c|.
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We now make the denominator smaller, although not too small, for otherwise, if z is
too close to zero, then 1/|zc| can be very large. To this end, we tentatively restrict z
so that |z − c| < |c|

2 . In this case, as seen in Fig. 4.7, we also have |z| > |c|
2 . Here is a

proof if you like:

|c| = |c − z + z| ≤ |c − z| + |z| <
|c|
2

+ |z| =⇒ |c|
2

< |z|.

c|c|
2

|c|
2

z|z|

Fig. 4.7 If |z − c| < |c|
2 , then |z| > |c|

2

Therefore, if |z − c| < |c|
2 , then |zc| > |c|

2 · |c| = 1
2 |c|2 = b, where b = |c|2/2 is a

positive number. Thus,

|z − c| <
|c|
2

=⇒
∣
∣
∣
∣
1

z
− 1

c

∣
∣
∣
∣ ≤

1

b
|z − c|. (4.9)

Now |z − c|
b

< ε ⇐⇒ |z − c| < b ε. (4.10)

For this reason, let us pick δ to be the minimum of |c|/2 and b ε. Then |z − c| < δ
implies |z − c| < |c|/2 and |z − c| < b ε. Therefore, according to (4.9) and (4.10),
we have

0 < |z − c| < δ =⇒
∣
∣
∣
∣
1

z
− 1

c

∣
∣
∣
∣

by (4.9)≤ 1

b
|z − c| by (4.10)

< ε.

Thus, by definition of limit, limz→c 1/z = 1/c.

Example 4.7 Here is one last example. Define f : R
2\{0} −→ R by

f (x) = x2
1 x2

x2
1 + x2

2

, x = (x1, x2).

We shall prove that limx→0 f = 0. (In the subscript “x → 0,” 0 denotes the zero
vector (0, 0) in R

2, while on the right of limx→0 f = 0, 0 denotes the real number
zero; it should always be clear from context what “0” means.) Before our actual
proof, we first recall Eq. (2.33) on p. 125:

a b ≤ 1

2

(
a2 + b2

)
.

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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This inequality is worth committing to memory (just expand (a−b)2 ≥ 0). It follows
that

| f (x)| = |x1|
x2

1 + x2
2

· |x1 x2|

≤ |x1|
x2

1 + x2
2

· 1

2

(
x2

1 + x2
2

) = |x1|
2

≤ 1

2
|x|.

Given ε > 0, choose δ = 2ε. Then

0 < |x| < δ =⇒ | f (x)| ≤ 1

2
|x| <

1

2
(2ε) = ε.

This proves that limx→0 f = 0.

4.1.5 The Sequence Definition of Limit

It turns out that we can relate limits of functions to limits of sequences, which was
studied in Chapter 3, so we can use much of the theory developed in that chapter
to analyze limits of functions. In particular, take note of the following important
theorem!

Sequence criterion for limits

Theorem 4.2 Let f : D −→ R
m, let c be a limit point of D, and let L ∈ R

m.
Then the following two statements are equivalent:

(1) L = limx→c f .
(2) For every sequence {an} of points in D\{c} with c = lim an, the sequence

{ f (an)} converges to L.

Proof Assume (1) and let {an} be a sequence of points in D\{c} converging to c; we
will show that { f (an)} converges to L, as visualized in Fig. 4.8 by the dotted arrows:

D ⊆ R
p

a1
a2 a3 c

f R
m

f(a1)
f(a2)f(a3) L

Fig. 4.8 We need to show that f takes a sequence converging to c to a sequence converging to L

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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Let ε > 0. Since f has limit L at c, there is a δ > 0 such that

x ∈ D and 0 < |x − c| < δ =⇒ | f (x) − L| < ε.

Since an → c and an �= c for every n, it follows that there is an N such that

n > N =⇒ 0 < |an − c| < δ.

The definition of f having limit L at c now implies that

n > N =⇒ | f (an) − L| < ε.

Thus, L = lim f (an).
To prove (2)=⇒ (1), we shall instead prove the logically equivalent contrapositive;

that is, assuming L �= limx→c f , we prove that there is a sequence {an} of points in
D\{c} converging to c such that { f (an)} does not converge to L. Now L �= limx→c f
means (negating the definition L = limx→c f ) that there is an ε > 0 such that for all
δ > 0, there is an x ∈ D with 0 < |x−c| < δ and | f (x)−L| ≥ ε. Since this statement
is true for all δ > 0, it is in particular true for δ = 1/n for each n ∈ N. Thus, for
each n ∈ N, there is a point an ∈ D with 0 < |an − c| < 1/n and | f (an) − L| ≥ ε. It
follows that {an} is a sequence of points in D\{c} converging to c, and { f (an)} does
not converge to L. This completes the proof of the contrapositive. �

This theorem can be used to give easy proofs that limits do not exist (Fig. 4.8).

Example 4.8 Recall from Example 1.27 on p. 23 the Dirichlet function, named after
Lejeune Dirichlet (1805–1859):

D : R −→ R is defined by D(x) =
{

1 if x is rational,

0 if x is irrational,

an approximate graph of which is shown here:

Let c ∈ R. Then as we saw in Example 3.13 on p. 166, there is a sequence {an} of
rational numbers converging to c with an �= c for all n. Since an is rational, we have
D(an) = 1 for all n ∈ N, so

lim D(an) = lim 1 = 1.

Similarly, there is a sequence {bn} of irrational numbers converging to c with bn �= c
for all n, in which case

lim D(bn) = lim 0 = 0.

http://dx.doi.org/10.1007/978-1-4939-6795-7_1
http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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Therefore, according to our sequence criterion, limx→c D cannot exist.

Example 4.9 Consider the function f : R
2\{0} −→ R defined by

f (x) = x1x2

x2
1 + x2

2

, x = (x1, x2) �= 0.

We claim that limx→0 f does not exist. To see this, observe that f (x1, 0) = 0 for every
x1 �= 0, so f (an) → 0 for every sequence an along the x1-axis that is approaching,
but never equaling, 0. On the other hand, since

f (x1, x1) = x2
1

x2
1 + x2

1

= 1

2
,

it follows that f (an) → 1/2 for every sequence an along the diagonal x1 = x2 that
is approaching, but never equaling, 0. Therefore limx→0 f does not exist.

� Exercises 4.1

1. Using the ε-δ definition of limit, prove that (where z is a complex variable)

(a) lim
z→1

(
z2 + 2z) = 3, (b) lim

z→2
z3 = 8, (c) lim

z→2

1

z2 = 1

4
, (d) lim

z→2

3z

z + 1
= 2.

Suggestion: For (b), can you factor z3 − 8?
2. Using the ε-δ definition of limit, prove that (where x, a are real variables and

where in (b) and (c), a > 0)

(a) lim
x→a

x2 − x − a2

x + a
= −1

2
, (b) lim

x→a

1√
x

= 1√
a
, (c) lim

x→0

√
a2 + 6x2 − a

x2 = 3

a
.

3. Prove that the limits (a) and (b) do not exist, while (c) does exist:

(a) lim
x→0

x2
1 + x2

√
x2

1 + x2
2

, (b) lim
x→0

x2
1 + x2

x2
1 + x2

2

, (c) lim
x→0

x2
1 x2

2

x2
1 + x2

2

.

4. Here are problems involving functions similar to Dirichlet’s function. Define

f (x) =
{

x if x is rational,

0 if x is irrational,
g(x) =

{
x if x is rational,

1 − x if x is irrational.

(a) Prove that limx→0 f = 0, but limx→c f does not exist for c �= 0.
(b) Prove that limx→1/2 g = 1/2, but limx→c g does not exist for c �= 1/2.

5. Let f : D −→ R with D ⊆ R
p and let L = limx→c f . Assume that f (x) ≥ 0

for all x �= c sufficiently close to c. Prove that L ≥ 0 and
√

L = limx→c
√

f (x).
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4.2 A Potpourri of Limit Properties for Functions

Now that we have a working knowledge of the ε-δ definition of limit, we turn to
studying the properties of limits that will be used throughout the rest of the book.

4.2.1 Limit Theorems

As we already mentioned in Section 4.1.5 on p. 250, combining the sequence criterion
for limits (Theorem 4.2 on p. 250) with the limit theorems in Chapter 3, we can
easily prove results concerning limits. Here are some examples, beginning with
the following companion to the uniqueness theorem (Theorem 3.2 on p. 162) for
sequences.

Uniqueness of limits

Theorem 4.3 A function can have at most one limit at a given limit point of its
domain.

Proof If limx→c f equals both L and L′, then according to the sequence criterion, for
all sequences {an} of points in D\{c} converging to c, we have lim f (an) = L and
lim f (an) = L′. Since we know that limits of sequences are unique (Theorem 3.2 on
p. 162), we conclude that L = L′. �

If f : D −→ R
m, then we can write f in terms of its components as

f = ( f1, . . . , fm),

where for k = 1, 2, . . . , m, fk : D −→ R, are the component functions of f . In
particular, if f : D −→ C, then we can always break up f as

f = ( f1, f2) ⇐⇒ f = f1 + i f2,

where f1, f2 : D −→ R.

Example 4.10 For instance, if f : C −→ C is defined by f (z) = z2, then we can
write this function as f (x+iy) = (x+iy)2 = x2−y2+i2xy. Therefore, f = f1+i f2,
where if z = x + iy, then

f1(z) = x2 − y2, f2(z) = 2xy.

The following theorem is a companion to the component theorem (Theorem 3.4
on p. 163) for sequences.

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
http://dx.doi.org/10.1007/978-1-4939-6795-7_3
http://dx.doi.org/10.1007/978-1-4939-6795-7_3
http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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Component theorem

Theorem 4.4 A function converges to L ∈ R
m (at a given limit point of the

domain) if and only if each component function converges in R to the correspond-
ing component of L.

Proof Let f : D −→ R
m. Then limx→c f = L if and only if for every sequence

{an} of points in D\{c} converging to c, we have lim f (an) = L. According to
the component theorem for sequences, lim f (an) = L if and only if for each k =
1, 2, . . . , m, we have limn→∞ fk(an) = Lk . This shows that limx→c f = L if and
only if for each k = 1, 2, . . . , m, limx→c fk = Lk . This completes our proof. �

The following theorem is a function analogue of the “algebra of limits” studied
in Section 3.2, and it follows from the corresponding theorems for sequences in
Theorems 3.9 and 3.10 on pp. 169 and 170, so we won’t bother with the proof.

Algebra of limits

Theorem 4.5 If f and g both have limits as x → c, then

(1) limx→c | f | = | limx→c f |.
(2) limx→c

(
a f + bg

) = a limx→c f + b limx→c g, for every real a, b.
If f and g take values in C, then

(3) limx→c f g = ( limx→c f
) (

limx→c g
)
.

(4) limx→c f/g = limx→c f/ limx→c g, provided that limx→c g is nonzero.

Note that if limx→c g is nonzero, then one can show that g(x) �= 0 for x sufficiently
close to c; thus, the quotient f (x)/g(x) is defined for x sufficiently close to c. Also
note that by induction, we can use the algebra of limits on finite sums and finite
products of functions.

Example 4.11 It is easy to show that at every point c ∈ C, limz→c z = c. Therefore,
by our algebra of limits, for every complex number a and natural number n, we have

lim
z→c

azn = a lim
z→c

z · z · · · z︸ ︷︷ ︸
n z’s

= a

(

lim
z→c

z

)

·
(

lim
z→c

z

)

· · ·
(

lim
z→c

z

)

= a c · c · · · c = a cn.

Therefore, given a polynomial

p(z) = an zn + an−1 zn−1 + · · · + a1z + a0,

then for every c ∈ C, the algebra of limits implies that

lim
z→c

p(z) = lim
z→c

an zn + lim
z→c

an−1 zn−1 + · · · + lim
z→c

a1z + lim
z→c

a0

= an cn + an−1 cn−1 + · · · + a1 c + a0;

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
http://dx.doi.org/10.1007/978-1-4939-6795-7_3
http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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that is,
lim
z→c

p(z) = p(c).

Example 4.12 Now let q(z) be another polynomial and suppose that q(c) �= 0. Then
by our algebra of limits, we have

lim
z→c

p(z)

q(z)
= limz→c p(z)

limz→c q(z)
= p(c)

q(c)
.

The following theorem is useful in dealing with compositions of functions.

Composition of limits

Theorem 4.6 Let f : D −→ R
m and g : C −→ R

p, where D ⊆ R
p and C ⊆ R

q

and suppose that g(C) ⊆ D, so that f ◦ g : C −→ R
m is defined. Let d be a limit

point of D, and c a limit point of C, and assume that

(1) d = limx→c g(x).
(2) L = limy→d f (y).
(3) Either f (d) = L or d �= g(x) for all x �= c sufficiently near c.

Then
L = lim

x→c
f ◦ g.

Proof Although the statement of this theorem is complicated at first glance, the
proof is very simple. Let {an} be a sequence in C\{c} with an → c; we must
show that f (g(an)) → L. Figure 4.9 shows an abstract picture of what’s going on.

C

a1
a2 a3 c

g
D

g(a1)
g(a2) g(a3) d

f

f(g(a1))
f(g(a2)) f(g(a3)) L

Fig. 4.9 Since d = limx→c g(x), the function g takes the sequence {an} to a sequence {g(an)} with
g(an) → d. Using that L = limy→c f (y), we must show that f takes the sequence {g(an)} to a
sequence { f (g(an))} with f (g(an)) → L

The first statement in Fig. 4.9 is just the sequence criterion for limits (Theorem 4.2 on
p. 250) applied to g. It’s the last statement in Fig. 4.9 that requires some thought, and
it is there where assumption (3) comes in. First, if g(x) �= d for all x �= c sufficiently
near c, then a tail of the sequence {g(an)} is a sequence in D\{d} converging to d.
Thus, by the sequence criterion applied to f , we indeed have f (g(an)) → L. Second,
suppose that f (d) = L. Then we leave you to think about why for every sequence
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{dn} in D converging to d (whether or not dn �= d for all n), we have f (dn) → L.
Therefore, in this case we also have f (g(an)) → L. This completes our proof. �

We now finish our limit theorems by considering limits and inequalities. In the
following two theorems, all functions map a subset D ⊆ R

p to R.

Squeeze theorem

Theorem 4.7 Let f , g, and h be such that f (x) ≤ g(x) ≤ h(x) for all x sufficiently
close to a limit point c in D and such that both limits limx→c f and limx→c h exist
and are equal. Then the limit limx→c g also exists, and

lim
x→c

f = lim
x→c

g = lim
x→c

h.

The squeeze theorem for functions is a direct consequence of the sequence cri-
terion and the corresponding squeeze theorem for sequences (Theorem 3.6 on p.
165), and therefore we shall omit the proof. The next theorem follows from (as you
might have guessed) the sequence criterion and the corresponding preservation of
inequalities theorem for sequences (Theorem 3.7 on p. 166).

Preservation of inequalities

Theorem 4.8 Suppose that limx→c f and limx→c g exist.

(1) If f (x) ≤ g(x) for x �= c sufficiently close to c, then limx→c f ≤ limx→c g.
(2) If for some real numbers a and b, we have a ≤ f (x) ≤ b for x �= c sufficiently

close to c, then a ≤ limx→c f ≤ b.

4.2.2 Limits, Limits, Limits, and More Limits

When the domain is a subset of R, there are various extensions of the limit idea.
We begin with left- and right-hand limits. For the rest of this section we consider
functions f : D −→ R

m, where D ⊆ R (later we’ll further restrict to m = 1).
Suppose that c is a limit point of the set D ∩ (−∞, c). Then f : D −→ R

m is
said to have a left-hand limit L at c if for each ε > 0, there is a δ > 0 such that

x ∈ D and c − δ < x < c =⇒ | f (x) − L| < ε. (4.11)

In a similar way we define a right-hand limit: Suppose that c is a limit point of the
set D ∩ (c,∞). Then f is said to have a right-hand limit L at c if for each ε > 0,
there is δ > 0 such that

x ∈ D and c < x < c + δ =⇒ | f (x) − L| < ε. (4.12)

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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We express left-hand limits in one of several ways:

L = lim
x→c− f , L = lim

x→c− f (x) , L = f (c−) , or f (x) → L as x → c− ,

with similar expressions with c+ replacing c− for right-hand limits. For example,
here’s a picture with f (0−) = 4, f (0+) = −2, and f (0) = 2:

−2

2

4

The following result relates one-sided limits and regular limits. Its proof is straight-
forward, and we leave it to the reader as a good exercise.

Theorem 4.9 Let f : D −→ R
m with D ⊆ R and suppose that c is a limit point

of the sets D ∩ (−∞, c) and D ∩ (c,∞). Then

L = lim
x→c

f ⇐⇒ L = f (c−) and L = f (c+).

If only one of f (c−) and f (c+) makes sense, then L = limx→c f if and only if
L = f (c−) (when c is a limit point only of D ∩ (−∞, c)) or L = f (c+) (when c is
a limit point only of D ∩ (c,∞)), whichever makes sense.

We now describe limits at infinity. Suppose that for every real number N there is
a point x ∈ D such that x > N . A function f : D −→ R

m is said to have a limit L
as x → ∞ if for each ε > 0, there is an N ∈ R such that

x ∈ D and x > N =⇒ | f (x) − L| < ε. (4.13)

This definition says that given a precision ε > 0, we can make f (x) within ε of L by
taking x sufficiently large (x > N for some N); here’s a picture when m = 1:

L

L − ε

L + ε

N x

f(x)

Now suppose that for every real number N there is a point x ∈ D such that x < N .
A function f : D −→ R

m is said to have a limit L as x → −∞ if for each ε > 0,
there is an N ∈ R such that

x ∈ D and x < N =⇒ | f (x) − L| < ε. (4.14)
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To express limits as x → ±∞, we often write (sometimes with ∞ replaced by +∞)

L = lim
x→∞ f , L = lim

x→∞ f (x) , f → L as x → ∞ , or f (x) → L as x → ∞,

with similar expressions when x → −∞.
Finally, we discuss infinite limits, which are also called properly divergent limits

of functions.4 We now let m = 1 and consider functions f : D −→ R with D ⊆ R.
Suppose that for every real number N there is a point x ∈ D such that x > N . Then
f is said to diverge to ∞ as x → ∞ if for every real number M > 0, there is an
N ∈ R such that

x ∈ D and x > N =⇒ M < f (x). (4.15)

Here’s a picture to keep in mind:

N

M

x

f(x)

This picture says that given M > 0, however large, we can make f (x) > M by
taking x sufficiently large (x > N for some N).

Also, f is said to diverge to −∞ as x → ∞ if for every real number M < 0,
there is an N ∈ R such that

x ∈ D and x > N =⇒ f (x) < M. (4.16)

If f diverges to ∞ or −∞, we say that f is properly divergent as x → ∞. When
f is properly divergent to ∞, we write

∞ = lim
x→∞ f , ∞ = lim

x→∞ f (x) , f → ∞ as x → ∞ , or f (x) → ∞ as x → ∞;

with similar expressions when f properly diverges to −∞.

In a very similar manner we can define properly divergent limits of functions as x → −∞,
as x → c, as x → c−, and x → c+; we leave these other definitions for the reader to
formulate.

Let us now consider an example.

4“I protest against the use of infinite magnitude as something completed, which in mathematics is
never permissible. Infinity is merely a façon de parler, the real meaning being a limit which certain
ratios approach indefinitely near, while others are permitted to increase without restriction.” Carl
Friedrich Gauss (1777–1855).
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Example 4.13 Let a > 1 and let f : Q −→ R be defined by f (x) = ax (therefore
in this case, D = Q). Here, we recall that ax is defined for every rational number x
(see Section 2.7 on p. 89). We shall prove that

lim
x→∞ f = ∞ and lim

x→−∞ f = 0.

In Section 4.7 we shall define ax for every x ∈ R (in fact, for every complex power),
and we shall establish these same limits with D = R. Before proving these results,
we claim that

for every rational p < q, we have ap < aq. (4.17)

Indeed, 1 < a and q − p > 0, so by our power rules on p. 95,

1 = 1q−p < aq−p,

which, after multiplication by ap, gives our claim. We now prove that f → ∞ as
x → ∞. To prove this, we note that since a > 1, we can write a = 1 + b for some
b > 0, so by Bernoulli’s inequality on p. 42, for every n ∈ N,

an = (1 + b)n ≥ 1 + n b > n b. (4.18)

Now fix M > 0. By the Archimedean principle on p. 95 (or from the fact that N is
not bounded above by R on p. 95), we can choose N ∈ N such that N b > M, and
therefore by (4.17) and (4.18),

x ∈ Q and x > N =⇒ M < N b < aN < ax.

This proves that f → ∞ as x → ∞. We now show that f → 0 as x → −∞. Let
ε > 0. Also by the Archimedean principle, there is an N ∈ N such that 1/(b ε) < N .
Since

1

b ε
< N =⇒ 1

N b
< ε,

by (4.17) and (4.18) it follows that

x ∈ Q and x < −N =⇒ 0 < ax < a−N = 1

aN
<

1

N b
< ε.

This proves that f → 0 as x → −∞.

Many of the limit theorems in Section 4.2.1 that we have worked out for “regular
limits” also hold for left- and right-hand limits, limits at infinity, and infinite limits.
To avoid repeating these limit theorems in each of our new contexts (which will take
up a few pages at the least!), we shall make the following general comment:

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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The sequence criterion, uniqueness of limits, component theorem, algebra
and composition of limits, squeeze theorem, and preservation of inequalities
for standard limits, have analogous statements for left/right-hand limits,
limits at infinity, and infinite (properly divergent) limits.

We encourage the reader to think about these analogous statements, and we shall make
use of these extended versions without much comment in the sequel. Of course, some
statements don’t hold when we consider infinite limits; for example, we cannot sub-
tract infinities or divide them, nor can we multiply zero and infinity. In the following
examples we focus on the extended composition of limits theorem.

Example 4.14 For an example of this general comment, suppose that a function f
has a limit L = limy→∞ f (y). We leave the reader to verify that limx→0+ 1/x = ∞.
Therefore, according to the extended composition of limits theorem, we have

L = lim
x→0+

f

(
1

x

)

.

Similarly, since it’s easy to check that limx→−∞ −x = ∞, by the extended compo-
sition of limits theorem, we have

L = lim
x→−∞ f (−x).

More generally, if g is a function with limx→c g(x) = ∞, where c is either a real
number, ∞, or −∞, then by our composition of limits theorem,

L = lim
x→c

f ◦ g.

Example 4.15 Suppose as above that limx→c g(x) = ∞, where c is either a real
number, ∞, or −∞. Since limy→∞ 1/y = 0, by the extended composition of limits
theorem, we have

lim
x→c

1

g(x)
= 0.

� Exercises 4.2

1. Prove (use the ε-δ definition of left/right-hand limit for (a) and (b))

(a) lim
x→0−

x

|x| = −1, (b) lim
x→0+

x

|x| = 1, (c) lim
x→0

x

|x| does not exist.

2. Using the ε-N definition of limits at infinity, prove

(a) lim
x→∞

x2 + x + 1

2x2 − 1
= 1

2
, (b) lim

x→∞
√

x2 + 1 − x = 0, (c) lim
x→∞

√
x2 + x − x = 1

2
.
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3. Let p(x) = an xn + · · · + a1 x + a0 and q(x) = bm xm + · · · + b1 x + b0 be
polynomials with real coefficients and with an �= 0 and bm �= 0.

(a) Prove that for every natural number k, limx→∞ 1/xk = 0.
(b) If n < m, prove that limx→∞ p(x)/q(x) = 0.
(c) If n = m, prove that limx→∞ p(x)/q(x) = an/bn.
(d) If n > m, prove that if an/bm > 0, then limx→∞ p(x)/q(x) = ∞, and on the

other hand, if an/bm < 0, then limx→∞ p(x)/q(x) = −∞.

4. Let f, g : D −→ R with D ⊆ R, limx→∞ f = ∞, and g(x) �= 0 for all x ∈ D.
Suppose that for some real number L, we have

lim
x→∞

f

g
= L.

(a) If L > 0, prove that limx→∞ g = +∞.
(b) If L < 0, prove that limx→∞ g = −∞.
(c) If L = 0, can you draw any conclusions about limx→∞ g?

4.3 Continuity, Thomae’s Function, and Volterra’s
Theorem

In this section we continue our study of the most important functions in all of analysis
and topology, continuous functions. Perhaps one of the most fascinating functions
you’ll ever run across is the modified Dirichlet function, or Thomae’s function, which
has the perplexing and pathological property that it is continuous on the irrational
numbers and discontinuous on the rational numbers! We’ll see that there is no function
opposite to Thomae’s, that is, continuous on the rationals and discontinuous on the
irrationals; this was proved by Vito Volterra (1860–1940) in 1881. For an interesting
account of Thomae’s function and its relation to Volterra’s theorem, see [62].

4.3.1 Continuous Functions

Let D ⊆ R
p. Recall that f : D −→ R

m is continuous at a point c ∈ D if for each
ε > 0, there is a δ > 0 such that

x ∈ D and |x − c| < δ =⇒ | f (x) − f (c)| < ε. (4.19)

We can relate this definition to the definition of limit. Suppose that c ∈ D is a limit
point of D. Then comparing (4.19) with the definition of limit, we see that for a limit
point c of D such that c ∈ D, we have
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f is continuous at c ⇐⇒ f (c) = lim
x→c

f.

Technically speaking, when we compare (4.19) to the definition of limit, for a limit
we actually require that 0 < |x − c| < δ, but in the case that |x − c| = 0, that is,
x = c, we have | f (x) − f (c)| = | f (c) − f (c)| = 0, which is automatically less
than ε, so the condition that 0 < |x − c| can be dropped. What if c ∈ D is not a limit
point of D? In this case, c is called an isolated point in D and by definition of (not
being a) limit point, there is an open ball Bδ(c) such that Bδ(c) ∩ D = {c}; that is,
the only point of D inside Bδ(c) is c itself. Hence, with this δ, for every ε > 0, the
condition (4.19) is automatically satisfied:

x ∈ D and |x − c| < δ =⇒ x = c =⇒ | f (x) − f (c)| = 0 < ε.

Therefore, at isolated points of D, the function f is automatically continuous by
default. For this reason, if we want to prove theorems concerning the continuity of
f : D −→ R

m at a point c ∈ D, we can always assume that c is a limit point of D; in
this case, we have all the limit theorems from the last section at our disposal. This is
exactly why we spent so much time on learning limits during the last two sections!

If f is continuous at every point in a subset A ⊆ D, we say that f is continuous on
A. If f is continuous at every point of D, we usually just say that “ f is continuous”
instead of “ f is continuous on D.” Thus,

f is continuous ⇐⇒ for all c ∈ D, f is continuous at c.

Example 4.16 (Loan amortization) In view of our loan amortization Example 4.4 on
p. 246, let us define f : R −→ R by

f (x) =
⎧
⎨

⎩

xM − 1

x − 1
x �= 1,

M x = 1.

From Example 4.4 we know that limx→1 f = 1, so f is continuous at 1. In fact, from
Example 4.12 on p. 255 it follows that f is continuous on all of R.

Example 4.17 Dirichlet’s function is discontinuous at every point in R, since in
Example 4.8 on p. 251 we already proved that limx→c D(x) does not exist at any
c ∈ R.

Example 4.18 Define f : R
2 −→ R by

f (x1, x2) =
⎧
⎨

⎩

x2
1 x2

x2
1 + x2

2

(x1, x2) �= 0,

0 (x1, x2) = 0.

From Example 4.7 on p. 249, we know that limx→0 f = 0, so f is continuous at 0.
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Example 4.19 If we define f : R
2 −→ R by

f (x1, x2) =
⎧
⎨

⎩

x1x2

x2
1 + x2

2

(x1, x2) �= 0,

0 (x1, x2) = 0,

then we already proved that limx→0 f does not exist in Example 4.9 on p. 252. In
particular, f is not continuous at 0.

Example 4.20 From Example 4.11 on p. 254, every polynomial function p : C → C

is continuous (that is, continuous at every point c ∈ C). From Example 4.12 on p.
255, every rational function p(z)/q(z), a quotient of polynomials, is continuous at
every point c ∈ C such that q(c) �= 0.

4.3.2 Continuity Theorems

We now state some theorems on continuity. These theorems follow almost immedi-
ately from our limit theorems in Section 4.2, so we shall omit all the proofs. First
we note that the sequence criterion for limits of functions (Theorem 4.2 on p. 250)
implies the following important theorem.

Sequence criterion for continuity

Theorem 4.10 A function f : D −→ R
m is continuous at c ∈ D if and only if

for every sequence {an} in D with c = lim an, we have f (c) = lim f (an).

We can write the last equality as f (lim an) = lim f (an), since c = lim an. Thus,

f is continuous at c ⇐⇒ f
(

lim
n→∞ an

)
= lim

n→∞ f (an),

for all sequences {an} in D with c = lim an. Thus, for continuous functions, limits
can be “pulled out” so to speak. Here’s another way to state continuity:

f is continuous at c ⇐⇒ f (an) → f (c) for all sequences {an} in D with an → c.

Example 4.21 Question: Suppose that f, g : R → R
m are continuous and f (r) =

g(r) for all rational numbers r; must f (x) = g(x) for all irrational numbers x? The
answer is yes, for let c be an irrational number. Then (see Example 3.13 on p. 166)
there is a sequence of rational numbers {rn} converging to c. Since f and g are both
continuous and f (rn) = g(rn) for all n, we have

f (c) = lim f (rn) = lim g(rn) = g(c).

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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Note that the answer would be false if either f or g were not continuous. For example,
with D denoting Dirichlet’s function, D(r) = 1 for all rational numbers, but D(x) �= 1
for all irrational numbers x. See Problem 2 for a related problem.

By the component theorem (Theorem 4.4 on p. 254), it follows that a function
f = ( f1, . . . , fm) is continuous at a point c if and only if every component fk is
continuous at c. Thus, we have the following theorem.

Component criterion for continuity

Theorem 4.11 A function is continuous at c if and only if all of its component
functions are continuous at c.

Next, the composition of limits theorem (Theorem 4.6 on p. 255) implies the
following result.

Theorem 4.12 Let f : D −→ R
m and g : C −→ R

p, where D ⊆ R
p and

C ⊆ R
q, and suppose that g(C) ⊆ D, so that f ◦ g : C −→ R

m is defined. If g is
continuous at c and f is continuous at g(c), then the composite function f ◦ g is
continuous at c.

More simply: The composition of continuous functions is continuous. Finally, our
algebra of limits theorem (Theorem 4.5 on p. 254) implies the following.

Theorem 4.13 If f, g : D −→ R
m are both continuous at c, then

(1) | f | and a f + bg are continuous at c, for any constants a, b.
If f and g take values in C, then

(2) f g and (provided g(c) �= 0) f/g are continuous at c.

In simple language: Linear combinations of R
m-valued continuous functions are

continuous. Products, norms, and quotients of real- or complex-valued continuous
functions are continuous (provided that the denominator functions are not zero).
Finally, the left- and right-hand limit theorem (Theorem 4.9 on p. 257) implies the
following.

Theorem 4.14 Let f : D −→ R
m with D ⊆ R and let c ∈ D be a limit point of

the sets D ∩ (−∞, c) and D ∩ (c,∞). Then f is continuous at c if and only if
f (c) = f (c+) = f (c−).

If only one of f (c−) and f (c+) makes sense, then f is continuous at c if and
only if f (c) = f (c−) or f (c) = f (c+), whichever makes sense.
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4.3.3 Thomae’s Function and Volterra’s Theorem

We now define a fascinating function that I found on page 14 of Carl Thomae’s (1840–
1921) 1875 book [240]. This function, called Thomae’s function [16, p. 123] or the
(modified) Dirichlet function [256], has the perplexing property that it is continuous
at every irrational number and discontinuous at every rational number. (See Problem
7 on p. 299 for a generalization.)

We define Thomae’s function, aka (also known as) the modified Dirichlet func-
tion, T : R −→ R by

T(x) =
{

1/q if x ∈ Q and x = p/q in lowest terms and q > 0,

0 if x is irrational.

Here, we interpret 0 as 0/1 in lowest terms, so T(0) = 1/1 = 1. Here’s a graph of
this “pathological function” (Fig. 4.10):

1/2

1/3

1

−1
2

1
2

1 3
2

2−1
3

1
3

2
3

4
3

5
3

Fig. 4.10 The left-hand side shows plots of T(p/q) for q at most 3, and the right-hand side shows
plots of T(p/q) for q at most 7

To see that T is discontinuous on rational numbers, let c ∈ Q and let {an} be a
sequence of irrational numbers converging to c, e.g., an = c + √

2/n works (or see
Example 3.13 on p. 166). Then lim T(an) = lim 0 = 0, while T(c) > 0; hence T is
discontinuous at c.

To see that T is continuous at each irrational number, let c be irrational and let
ε > 0. Consider the case c > 0 (the case c < 0 is analogous) and choose m ∈ N

with c < m. Let 0 < x ≤ m and let’s consider the veracity of the inequality

|T(x) − T(c)| < ε , that is, T(x) < ε, (4.20)

where we used that T(c) = 0 and T(x) ≥ 0. If x is irrational, then T(x) = 0 < ε
holds. If x = p/q is rational in lowest terms and q ≥ 1, then T(x) = 1/q < ε
holds if and only if q > 1/ε. Stated another way, the inequality (4.20) holds for all
0 < x ≤ m except for rational numbers x = p/q with q ≤ 1/ε. Thus, if we let q1 equal
the greatest integer ≤ 1/ε, then the only rational numbers p/q with 0 < p/q ≤ m
for which (4.20) fails are those whose denominators q equal 1, 2, 3, . . . , or q1. Note
that the numerator p can be at most q1m (since p/q ≤ m implies p ≤ qm, which

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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implies p ≤ q1m). There are at most finitely many rationals with this property (there
are at most q1m numerators and q1 denominators, for no more than q2

1m rationals).
In particular, we can choose δ > 0 such that the interval (c − δ, c + δ) is contained
in (0, m) and contains none of the above rationals, as illustrated in Fig. 4.11. Since
all rationals p/q (in lowest terms) in (c − δ, c + δ) satisfy q ≥ 1/ε, we have

x ∈ (c − δ, c + δ) =⇒ |T(x) − T(c)| < ε,

0 mc
)(

c + δc − δ

Fig. 4.11 The dots represent the finitely many rational numbers 0 < p/q ≤ m with q =
1, 2, 3, . . . , q1

which proves that T is continuous at c. Thus, T(x) is discontinuous at every rational
number and continuous at every irrational number. The inquisitive student might
ask whether there is a function opposite to Thomae’s function.

Is there a function that is continuous at every rational point and discontinuous at every
irrational point?

The answer is no. There are many ways to prove this; one can answer this question
using the Baire category theorem (cf. [1, p. 128]), but we shall answer it using “com-
pactness” arguments originating with Vito Volterra’s (1860–1940) first publication
in 1881 (before he was twenty!) [3]. To state his theorem, we need some terminology.

Let D ⊆ R
p. A subset A ⊆ D is said to be dense in D if for each point c ∈ D and

each r > 0, there is a point x ∈ A such that |x − c| < r. For p = 1, A ⊆ D is dense
if for all c ∈ D and r > 0,

(c − r, c + r) ∩ A �= ∅.

An equivalent definition of dense is the statement that every point in D is either in A
or a limit point of A, which is equivalent to the condition that given any c ∈ D, there
is a sequence {an} in A such that an → c.

Example 4.22 The set of rational numbers Q is dense in R, because (by the density
of the (ir)rationals in R, Theorem 2.38 on p. 98) for every c ∈ R and r > 0, (c −
r, c + r) ∩ Q is never empty. Here’s an attempted picture of Q in R as a densely
packed bunch of points:

Similarly, the set Q
c, the irrational numbers, is also dense in R.

Given a function f : D −→ R
m, we denote by C f ⊆ D the set of points in D at

which f is continuous. Explicitly,

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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C f := {c ∈ D ; f is continuous at c} .

The function f is said to be pointwise discontinuous if C f is dense in D.

Volterra’s theorem

Theorem 4.15 Two pointwise discontinuous functions defined on a nonempty
open interval always have a point of continuity in common.

Proof Let f and g be pointwise discontinuous functions on an open interval I . We
prove our theorem in three steps.

Step 1: A closed interval [α,β] is said to be nontrivial if α < β. Let ε > 0 and
let (a, b) ⊆ I be a nonempty open interval. We shall prove that there is a nontrivial
closed interval J ⊆ (a, b) such that for all x, y ∈ J ,

| f (x) − f (y)| < ε and |g(x) − g(y)| < ε.

Indeed, since the continuity points of f are dense in I , there is a point c ∈ (a, b)
at which f is continuous. It follows that for some δ > 0, x ∈ I ∩ [c − δ, c + δ]
implies that | f (x) − f (c)| < ε/2. We can choose δ > 0 smaller if necessary so that
J ′ = [c − δ, c + δ] is contained in (a, b). Then for all x, y ∈ J ′, we have

| f (x) − f (y)| = |( f (x) − f (c)) + ( f (c) − f (y))| ≤ | f (x) − f (c)| + | f (c) − f (y)| < ε.

Using the same argument for g but with (c−δ, c+δ) in place of (a, b) shows that there
is a nontrivial closed interval J ⊆ J ′ such that x, y ∈ J implies that |g(x)−g(y)| < ε.
Since J ⊆ J ′, the function f automatically satisfies | f (x) − f (y)| < ε for x, y ∈ J .
This completes the proof of Step 1.

Step 2: With ε = 1 and (a, b) = I in Step 1, there is a nontrivial closed interval
[a1, b1] ⊆ I such that x, y ∈ [a1, b1] implies that

| f (x) − f (y)| < 1 and |g(x) − g(y)| < 1.

Now with ε = 1/2 and (a, b) = (a1, b1) in Step 1, there is a nontrivial closed interval
[a2, b2] ⊆ (a1, b1) such that x, y ∈ [a2, b2] implies that

| f (x) − f (y)| <
1

2
and |g(x) − g(y)| <

1

2
.

Continuing by induction, we construct a sequence of nontrivial closed intervals
{[an, bn]} such that [an+1, bn+1] ⊆ (an, bn) for each n and x, y ∈ [an, bn] implies
that

| f (x) − f (y)| <
1

n
and |g(x) − g(y)| <

1

n
. (4.21)
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By the nested intervals theorem on p. 100, there is a point c contained in every interval
[an, bn].

Step 3: We now complete the proof. We claim that both f and g are continuous at
c. To prove continuity, let ε > 0. Choose n ∈ N with 1/n < ε. Since [an+1, bn+1] ⊆
(an, bn), we have c ∈ (an, bn). Now choose δ > 0 such that (c−δ, c+δ) ⊆ (an, bn).
With this choice of δ > 0, in view of (4.21) and the fact that 1/n < ε, we obtain

|x − c| < δ =⇒ | f (x) − f (c)| < ε and |g(x) − g(c)| < ε.

Thus, f and g are continuous at c, and our proof is complete. �

Thus, there cannot be a function f : R −→ R that is continuous at every rational
point and discontinuous at every irrational point. Indeed, if it were so, then f would be
pointwise discontinuous (because Q is dense in R) and the function f and Thomae’s
function wouldn’t have any continuity points in common, contradicting Volterra’s
theorem.

� Exercises 4.3

1. Recall that �x� denotes the greatest integer less than or equal to x. Find the set of
continuity points for the following functions:

(a) f (x) = �x�, (b) g(x) = x�x�, (c) h(x) = �1/x�,

where the domains are R, R, and (0,∞), respectively. Are the functions contin-
uous on the domains (−1, 1), (−1, 1), and (1,∞), respectively?

2. In this problem we deal with zero sets of functions. Let f : D −→ R
m with

D ⊆ R
p. The zero set of f is the set Z( f ) := {x ∈ D ; f (x) = 0}.

(a) If f is continuous and c ∈ D is a limit point of Z( f ), prove that f (c) = 0.
(b) If f is continuous and Z( f ) is dense in D, prove that f is the zero function,

that is, f (x) = 0 for all x ∈ D.
(c) Using (b), prove that if f, g : D −→ R

m are continuous and f (x) = g(x) on
a dense subset of D, then f = g, that is, f (x) = g(x) for all x ∈ D.

3. In this problem we look at additive functions. Let f : R
p −→ R

m be additive in
the sense that f (x + y) = f (x) + f (y) for all x, y ∈ R

p.

(a) Prove that f (0) = 0 and f (x − y) = f (x) − f (y) for all x, y.
(b) Prove that if f is continuous at some point x0, then f is continuous at all

points.
(c) Assume now that p = 1, so that f : R −→ R

m is additive (no continuity
assumptions at this point). Prove that f (r) = f (1) r for all r ∈ Q.

(d) (Cf. [269]) Prove that if f : R −→ R
m is continuous, then f (x) = f (1) x

for all x ∈ R.

4. Let f : R
p −→ C be multiplicative in the sense that f (x + y) = f (x) f (y) for

all x, y ∈ R
p. Assume that f is not the zero function.
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(a) Prove that f (x) �= 0 for all x.
(b) Prove that f (0) = 1 and f (−x) = 1/ f (x).
(c) Prove that if f is continuous at some point x0, then f is continuous at all

points.

We show in Problem 12 on p. 313 that when p = 1 and f is real-valued and
continuous, then f is given by an “exponential function.”

5. Let f : I −→ R be a continuous function on a closed and bounded interval I .
Suppose there is 0 < r < 1 having the property that for each x ∈ I , there is a
point y ∈ I with | f (y)| ≤ r| f (x)|. Prove that f must have a root, that is, there is
a point c ∈ I such that f (c) = 0.

6. Consider the following function related to Thomae’s function:

t(x) :=
{

q if x = p/q in lowest terms and q > 0,

0 if x is irrational.

Prove that t : R −→ R is discontinuous at every point in R.
7. Here are some fascinating questions related to Volterra’s theorem.

(a) Are there functions f, g : R −→ R that don’t have any continuity points
in common such that f is pointwise discontinuous and g is not pointwise
continuous but has at least one continuity point? Give an example or prove
there are no such functions.

(b) Is there a continuous function f : R −→ R that maps rationals to irrationals?
Give an example or prove that there is no such function.

(c) Is there a continuous function f : R −→ R that maps rationals to irrationals
and irrationals to rationals? Suggestion: Suppose there is such a function
and consider the function T ◦ f , where T is Thomae’s function.

4.4 Compactness, Connectedness, and Continuous
Functions

Consider the continuous function f (x) = 1/x with domain D = R\{0}, the real line
with a “hole”:

x

f (x) = 1/x

Notice that f has the following properties: f is not bounded on D, in particular f
does not attain a maximum or minimum value on D, and that although the range of f
contains both positive and negative values, f never takes on the intermediate value of
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0. In this section we prove that the unboundedness property is absent when the domain
is a closed and bounded interval and the property of not having an intermediate value
is absent when the domain is an interval. We shall prove these results using two rather
distinct viewpoints:

(I) A somewhat concrete analytical approach that uses only concepts we’ve covered
in previous sections.

(II) A somewhat abstract topological approach based on the topological lemmas
presented in Section 4.4.1.

If you’re interested only in the easier analytical approach, skip Section 4.4.1 and
also skip the Proof II’s in Theorems 4.19, 4.20, and 4.23. For an interesting and
different approach using the concept of “tagged partitions,” see [91].

4.4.1 Some Fundamental Topological Lemmas

Let A ⊆ R. A collection U of subsets of R is called a cover of A if the union of
all the sets in U contains A, in which case we also say that U covers A. Explicitly,
U = {Uα} covers A if A ⊆ ⋃α Uα. We are mostly interested in coverings by open
intervals, that is, coverings in which each Uα is an open interval.

Example 4.23 The interval (0, 1) is covered by U = {Un = (1/n, 1)}, because
(0, 1) ⊆⋃∞

n=1(1/n, 1). Here’s a picture of the cover:
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As n gets larger and larger, the intervals (1/n, 1) “fill up” the interval (0, 1).

Example 4.24 [0, 1] is covered by V = {Vn = (−1/n, 1 + 1/n)} = {(−1, 2),
(−1/2, 3/2), (−1/3, 4/3), . . .}, because [0, 1] ⊆ ⋃∞

n=1(−1/n, 1 + 1/n). Here’s a
picture of the cover:
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It’s interesting to notice that the cover U in Example 4.23 does not have a finite
subcover, that is, there are not finitely many elements of U that will still cover
(0, 1). To see this, let {Un1 , . . . , Unk } be a finite subcollection of elements of U . By
relabeling, we may assume that n1 < n2 < · · · < nk . Since nk is the largest of these
k numbers, we have

⋃k
j=1 Unj = ( 1

nk
, 1), which does not cover (0, 1), because there

is a “gap” between 0 and 1/nk as seen here (Fig. 4.12):
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1
)(

1
nk

(
0

Fig. 4.12 The union of the finite subcover {Un1 , . . . , Unk } equals (1/nk, 1), and in particular, does
not cover all of (0, 1)

On the other hand, the cover V in Example 4.24 does have a finite subcover, that is,
there are finitely many elements of V that will cover [0, 1]. Indeed, [0, 1] is covered
by the single element V1 of V , because [0, 1] ⊆ (−1, 2). It turns out that every cover
of [0, 1] by open intervals will always have a finite subcover. In fact, this is a general
phenomenon for closed and bounded intervals.

Compactness lemma

Lemma 4.16 Every cover of a closed and bounded interval by open intervals
has a finite subcover.

Proof Let U be a cover of a closed and bounded interval [a, b] by open intervals.
We must show that there are finitely many elements of U that still cover [a, b]. Let
A be the set of all numbers x in [a, b] such that the interval [a, x] is contained in the
union of finitely many sets in U . Since [a, a] is the set containing the single point a
and U covers [a, b], the interval [a, a] is contained in at least one set in U , so A is
not empty. Being a nonempty subset of R bounded above by b, A has a supremum,
say ξ ≤ b. Since ξ belongs to the interval [a, b] and U covers [a, b], ξ belongs to
some open interval (c, d) in the collection U . Since c < ξ < d, we can choose a
real number η with c < η < ξ. Then η is less than ξ, the supremum of A, so by
definition of the supremum of A, it follows that the interval [a, η] must be covered
by finitely many sets in U , say [a, η] ⊆ U1 ∪ · · · ∪ Uk . Adding Uk+1 := (c, d) to
this collection, it follows that the interval [a, d) is covered by the finitely many sets
U1, . . . , Uk+1 in U . In particular, unless ξ = b, the set A would contain a number
greater than ξ, as shown here (Fig. 4.13):

b
]

c
(

ξ xd
)[

a

︷ ︸︸ ︷
covered by U1, . . . , Uk+1

Fig. 4.13 If ξ < b, then every x ∈ [a, b] with ξ < x < d, would belong to A, contradicting that ξ
is an upper bound for A

Hence, ξ = b, and [a, b] can be covered by finitely many sets in U . �

Because closed and bounded intervals have this finite subcover property, and
therefore behave somewhat like finite sets (which are “compact”—take up little
space), we call closed and bounded intervals compact. We now move to the subject
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of open sets. A set A ⊆ R
m is open in R

m if each point in A is contained in some
open ball that’s entirely contained in A. That is, A is open if for each point c ∈ A,
there is an r > 0 such that Br(c) ⊆ A. We also consider the empty set ∅ to be open.
Here’s a picture to understand this concept (Fig. 4.14):

Open

c1
r1

c2
r2

Not open

cr

Fig. 4.14 Left the region inside a closed curve, not including the curve itself, is open. Every point
inside the curve is contained in an open ball that’s contained in the region. Right if we include the
curve, the new set is not open, because every open ball centered at a point on the curve will contain
points outside the set

For subsets of the real line, it turns out that open sets are just unions of open intervals;
see Problem 9. Explicitly, A ⊆ R is open if and only if A = ⋃α Uα for some open
intervals Uα. We shall focus on subsets of R.

Example 4.25 R = (−∞,∞) is an open interval, so R is open.

Example 4.26 Every open interval (a, b) is open, because it’s a union consisting of
just itself.

Example 4.27 R\Z is also open, because R\Z =⋃n∈Z(n, n + 1):

−3 −2 −1 0 1 2 3

On the other hand, Z is not open, because every open ball (interval in this case)
centered at an integer will contain noninteger numbers.

A set A ⊆ R is disconnected if there are open sets U and V such that A ∩ U
and A ∩ V are nonempty, disjoint, and have union A. To have union A, we mean
A = (A ∩ U) ∪ (A ∩ V), which is actually equivalent to saying that

A ⊆ U ∪ V.

Here’s a picture of a disconnected set (Fig. 4.15):

( ) ( )
︸ ︷︷ ︸ ︸ ︷︷ ︸

VU

Fig. 4.15 The set A consists of the dark colored points and lines

A set A ⊆ R is connected if it’s not disconnected.
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Example 4.28 A = [−1, 0) ∪ (0, 1) is disconnected:

0 1−1

Indeed,U = (−2, 0) andV = (0, 1) are open, and A∩U = [−1, 0) and A∩V = (0, 1)
are nonempty and disjoint, and their union is A. The set of integers:

−3 −2 −1 0 1 2 3

is also disconnected, since if U = (−∞, 1/2) and V = (1/2,∞), then Z ∩ U and
Z ∩ V are nonempty and disjoint and have union Z.

Intuitively, intervals should always be connected. This is in fact the case.

Connectedness lemma

Lemma 4.17 Intervals (open, closed, bounded, unbounded, etc.) are connected.

Proof Let I be an interval and suppose, for the sake of contradiction, that it is
disconnected. Then there are open sets U and V such that I ∩U and I ∩V are disjoint,
nonempty, and have union I . Let a, b ∈ I with a ∈ U and b ∈ V . By relabeling if
necessary, we may assume that a < b. Since I is an interval, we have [a, b] ⊆ I .
Thus, the sets [a, b] ∩ U and [a, b] ∩ V are disjoint (since I ∩ U and I ∩ V are),
nonempty (since a ∈ U and b ∈ V), and have union [a, b] (since I ∩ U and I ∩ V
have union I). We shall henceforth work with [a, b] to get our contradiction. Define

c = sup
([a, b] ∩ U).

This number exists because [a, b] ∩ U contains a and is bounded above by b. In
particular, c ∈ [a, b]. Since [a, b] ⊆ U ∪ V , the point c must belong to either U or
V . Thus, we just have to derive a contradiction in both situations. We shall assume
that c ∈ U and leave for your enjoyment the case c ∈ V . Note that [a, b] ∩ U and
[a, b] ∩V are disjoint. Thus, recalling that c ∈ U and b ∈ V , it follows that c �= b, so
c < b. The set U is open, so it’s a union of open intervals, and therefore, since c ∈ U ,
we have c ∈ (α,β) for some open interval (α,β) ⊆ U . Here’s what the situation
could look like:

c
]
b

[
a

(
α

)
β

Note that the sets (c, b) and (c,β) are nonempty (because c < b and c < β), and
(c, b) ⊆ [a, b], and (c,β) ⊆ U . Therefore, if b′ = min{b,β}, then (c, b′) is nonempty
and (c, b′) ⊆ [a, b]∩U . Now, every number in the nonempty interval (c, b′) is larger
than c and belongs to [a, b]∩U . This, however, contradicts the fact that c is an upper
bound for [a, b] ∩ U . �
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4.4.2 The Boundedness Theorem

The geometric content of the boundedness theorem is that the graph of a continuous
function f on a closed and bounded interval lies between two horizontal lines, that
is, there is a constant M such that | f (x)| ≤ M for all x in the interval. Therefore, the
graph does not extend infinitely up or down. Figure 4.16 shows a graph illustrating
these ideas (the dots and the point c in the figure have to do with the max/min value
and intermediate value theorems we’ll discuss later).

M

−M

ξ

c ]
1

Fig. 4.16 Illustrations of the boundedness, max/min value, and intermediate value theorems for a
function f on [0, 1]

The function f (x) = 1/x on (0, 1] or f (x) = x on an unbounded interval shows that
the boundedness theorem does not hold when the interval is not closed and bounded.
Before proving the boundedness theorem, we need the following lemma.

Inequality lemma

Lemma 4.18 Let f : I −→ R be a continuous map on an interval I, let c ∈ I,
and suppose that | f (c)| < d for some d ∈ R. Then there is an open interval Ic

containing c such that for all x ∈ I with x ∈ Ic, we have | f (x)| < d.

Proof Let ε = d − | f (c)|, and using the definition of continuity, choose δ > 0 such
that

x ∈ I and |x − c| < δ =⇒ | f (x) − f (c)| < ε.

Let Ic = (c − δ, c + δ). Then given x ∈ I with x ∈ Ic, we have |x − c| < δ, so

| f (x)| = |( f (x) − f (c)) + f (c)| ≤ | f (x) − f (c)| + | f (c)|
< ε + | f (c)|
= (d − | f (c)|)+ | f (c)| = d.

This proves our lemma. �
An analogous proof shows that if α < f (c) < β, then there is an open interval Ic

containing c such that x ∈ I and x ∈ Ic implies α < f (x) < β. Another analogous
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proof shows that if f : D −→ R
m is continuous with D ⊆ R

p and | f (c)| < d, then
there is an open ball B containing c such that x ∈ D and x ∈ B implies | f (x)| < d.
We’ll leave these generalizations to the interested reader. The following theorem is
the first of our fundamental theorems on continuous functions.

Boundedness theorem

Theorem 4.19 A continuous real-valued function on a closed and bounded inter-
val is bounded.

Proof Let f be a continuous function on a closed and bounded interval I .
Proof I: Assume that f is unbounded; we shall prove that f is not continuous.

Since f is unbounded, for each natural number n there is a point xn in I such that
| f (xn)| ≥ n. By the Bolzano–Weierstrass theorem on p. 313, the sequence {xn} has
a convergent subsequence, say {x′

n}, that converges to some c in I . By the way the
numbers xn were chosen, it follows that | f (x′

n)| → ∞, which shows that f (x′
n) �→

f (c), for if f (x′
n) → f (c), then we would have | f (c)| = lim | f (x′

n)| = ∞, an
impossibility. Thus, by the sequence criterion on p. 263, f is not continuous at c.

Proof II: Given any arbitrary point c in I , we have | f (c)| < | f (c)| + 1, so by
our inequality lemma there is an open interval Ic containing c such that for each
x ∈ Ic, we have | f (x)| < | f (c)| + 1. The collection of all such open intervals
U = {Ic ; c ∈ I} covers I , so by the compactness lemma, there are finitely many
open intervals in U that cover I , say Ic1 , . . . , Icn . Let M be the largest of the values
| f (c1)| + 1, . . . , | f (cn)| + 1. We claim that f is bounded by M on all of I . Indeed,
given x ∈ I , since Ic1 , . . . , Icn cover I , there is an interval Ick containing x. Then by
definition of Ick , we have | f (x)| < | f (ck)|+1. By definition of M, | f (ck)|+1 ≤ M,
so f is bounded by M as claimed. �

4.4.3 The Max/Min Value Theorem

The geometric content of our second fundamental theorem on continuous func-
tions is that the graph of a continuous function on a closed and bounded interval must
have highest (maximum) and lowest (minimum) points. The dots in Fig. 4.16 on p.
274 show such extreme points; note that there are two lowest points in the figure, so
maxima/minima need not be unique. The simple example f (x) = x on (0, 1) shows
that the max/min theorem does not hold when the interval is not closed and bounded.
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Max/min value theorem

Theorem 4.20 A continuous real-valued function on a closed and bounded inter-
val achieves its maximum and minimum values. That is, if f : I −→ R is a
continuous function on a closed and bounded interval I, then for some values c
and d in the interval I, we have

f (c) ≤ f (x) ≤ f (d) for all x in I.

Proof Define
M = sup{ f (x) ; x ∈ I}.

This number is finite by the boundedness theorem. We shall prove that there is a
number d in [a, b] such that f (d) = M. This proves that f achieves its maximum;
a related proof shows that f achieves its minimum.

Proof I: By the definition of supremum, for each natural number n, there exists
an xn in I such that

M − 1

n
< f (xn) ≤ M, (4.22)

for otherwise, the value M − 1/n would be a smaller upper bound for { f (x) ; x ∈ I}.
By the Bolzano–Weierstrass theorem on p. 179, the sequence {xn} has a convergent
subsequence {x′

n}; let’s say that x′
n → d, where d is in [a, b]. By the sequence criterion

on p. 263, we have f (x′
n) → f (d). On the other hand, by (4.22) and the squeeze

theorem (see p. 164), we have f (xn) → M, so f (x′
n) → M as well. By uniqueness

of limits, f (d) = M.
Proof II: Assume, for the sake of contradiction, that f (x) < M for all x in I . Let

c be a point in I . Since f (c) < M by assumption, we can choose εc > 0 such that
f (c)+ εc < M, so by our inequality lemma, there is an open interval Ic containing c
such that for all x ∈ Ic, | f (x)| < M − εc. The collection U = {Ic ; c ∈ I} covers I ,
so by the compactness lemma, there are finitely many intervals, say Ic1 , . . . , Icn , that
cover I . Let m be the largest of the finitely many values M − εck , k = 1, . . . , n. Then
m < M, and given x ∈ I , since Ic1 , . . . , Icn cover I , there is an interval Ick containing
x, which shows that

| f (x)| < M − εck ≤ m < M.

This implies that M cannot be the supremum of f over I , since m is a smaller upper
bound for f . This gives a contradiction to the definition of M. �

An almost identical argument as in Proof I gives the following result:
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Corollary 4.21 A continuous real-valued function on a closed ball in R
m achieves

its maximum and minimum values. That is, if f : B −→ R is a continuous function
on a closed ball B ⊆ R

m, then for some c, d ∈ B, we have

f (c) ≤ f (x) ≤ f (d) for all x in B.

4.4.4 The Intermediate Value Theorem

A real-valued function f on an interval I is said to have the intermediate value
property if it attains all its intermediate values in the sense that if a ≤ b both
belong to I , then for each real number ξ between f (a) and f (b), there is a c in
[a, b] such that f (c) = ξ. By “between” we mean that either f (a) ≤ ξ ≤ f (b)
or f (b) ≤ ξ ≤ f (a). Geometrically, this means that the graph of f can be drawn
without “jumps,” that is, without ever lifting up the pencil. The intermediate value
theorem (Theorem 4.23) states that every continuous function on an interval has the
intermediate value property. See the previous Fig. 4.16 on p. 274 for an example in
which we take, for instance, a = 0 and b = 1; note for this example that the point c
need not be unique (there is another c′ such that f (c′) = ξ). The function f (x) = 1/x
with domain D = R\{0} shows that the intermediate value theorem fails when the
domain is not an interval.

Before proving the intermediate value theorem, we first think a little about inter-
vals. Note that every interval I (bounded or unbounded, open, closed, etc.) has the
following property: given points a, b ∈ I with a < b, every point c between a and
b is also in I . This property in fact characterizes intervals as shown in Lemma 4.22.
We shall leave its proof to the interested reader.

Lemma 4.22 A set A in R is an interval if and only if given points a < b in A,
we have [a, b] ⊆ A. That is, A is an interval if and only if given points a, b in A
with a < b, all points between a and b also lie in A.

(In fact, some mathematicians might even take this lemma as the definition of
interval.) We are now ready to prove our third important fundamental theorem on
continuous functions.
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Intermediate value theorem (IVT)

Theorem 4.23 Every real-valued continuous function on an interval (of any
type, bounded, unbounded, open, closed, . . .) has the intermediate value property.
Moreover, the range of such a function is also an interval.

Proof Let f be a real-valued continuous function on an interval I and let ξ be between
f (a) and f (b), where a < b and a, b ∈ I . We shall prove that there is a c in [a, b]
such that f (c) = ξ. Assume that f (a) ≤ ξ ≤ f (b); the reverse inequalities have a
related proof. Note that if ξ = f (a), then c = a works, and if ξ = f (b), then c = b
works. Therefore, we henceforth assume that f (a) < ξ < f (b). We now prove that
f has the intermediate value property, or IVP for short.

Proof I: To prove that f has the IVP, we don’t care about f outside of [a, b], so
let’s (re)define f outside of the interval [a, b] such that f is equal to the constant
value f (a) on (−∞, a) and f (b) on (b,∞). This gives us a continuous function,
which we again denote by f , that has domain R, as shown here:

a

ξ

c b
f(a)

f(b)

Define
A = {x ∈ R ; f (x) ≤ ξ}.

Since f (a) < ξ, we see that a ∈ A, so A is not empty, and since ξ < f (b), we
see that A is bounded above by b. In particular, c := sup A exists and a ≤ c ≤ b.
We shall prove that f (c) = ξ, which is “obvious” from the above figure. To prove
this rigorously, observe that by the definition of least upper bound, for every n ∈ N,
there is a point xn ∈ A such that c − 1

n < xn ≤ c. As n → ∞, we have xn → c,
so by the sequence criterion on p. 263, f (xn) → f (c). Since f (xn) ≤ ξ, because
xn ∈ A and limits preserve inequalities, we have f (c) ≤ ξ. On the other hand, by
the definition of upper bound, for every n ∈ N, we must have f (c + 1

n ) > ξ. Taking
n → ∞ and using the sequence criterion and that limits preserve inequalities, we
see that f (c) ≥ ξ. It follows that f (c) = ξ.

Proof II: To prove that f has the IVP using topology, suppose that f (x) �= ξ
for every x in I . Let c be a point in I . If f (c) < ξ, then by the discussion after
our inequality lemma, there is an open interval Ic containing c such that if x ∈ I
with x ∈ Ic, we have f (x) < ξ. Similarly, if ξ < f (c), there is an open interval
Ic containing c such that if x ∈ I with x ∈ Ic, we have ξ < f (x). In summary, we
have assigned to each point c ∈ I an open interval Ic that contains c such that either
f (x) < ξ or ξ < f (x) for all x ∈ I with x ∈ Ic. Let U be the union of all the Ic such
that f (c) < ξ, and let V be the union of all the Ic such that ξ < f (c). Then U and
V are unions of open intervals and so are open sets by definition, and a ∈ U since
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f (a) < ξ, and b ∈ V since ξ < f (b). Notice that U and V are disjoint, because U has
the property that if x ∈ U , then f (x) < ξ, and V has the property that if x ∈ V , then
ξ < f (x). Thus, U and V are disjoint, nonempty, and I ⊆ U ∪ V . This contradicts
the fact that intervals are connected.

We now prove that f (I) is an interval. By our lemma, f (I) is an interval if and
only if given points α,β in f (I) with α < β, all points between α and β also
lie in f (I). Since α,β ∈ f (I), we can write α = f (x) and β = f (y). Now let
f (x) < ξ < f (y). We need to show that ξ ∈ f (I). However, according to the
intermediate value property, there is a c in I such that f (c) = ξ. Thus, ξ is in f (I),
and our proof is complete. �

A root, or zero, of a function f on a domain D is point c ∈ D such that f (c) = 0.

Corollary 4.24 Let f be a real-valued continuous function on an interval and
let a < b be points in the interval such that f (a) and f (b) have opposite signs
(that is, f (a) > 0 and f (b) < 0, or f (a) < 0 and f (b) > 0). Then f has a root
in the open interval (a, b).

Proof Since 0 is between f (a) and f (b), by the intermediate value theorem there is
a point c in [a, b] such that f (c) = 0; since f (a) and f (b) are nonzero, c must lie
strictly between a and b. �

4.4.5 The Fundamental Theorems of Continuous Functions
in Action

Example 4.29 The intermediate value theorem can be used to prove that every non-
negative real number has a square root. To see this, let a ≥ 0 and consider the function
f (x) = x2. Then f is continuous on R, f (0) = 0, and

f (a + 1) = (a + 1)2 = a2 + 2a + 1 ≥ 2a ≥ a.

Therefore, f (0) ≤ a ≤ f (a + 1). Hence, by the intermediate value theorem, there
is a point c with 0 ≤ c ≤ a + 1 such that f (c) = a, which is to say that c2 = a. This
proves that a has a square root. (The uniqueness of c follows from the last power
rule in Theorem 2.23 on p. 80.) Of course, considering the function f (x) = xn, we
can prove that every nonnegative real number has a unique nth root.

Example 4.30 Question: Is there a continuous function f : [0, 1] −→ R that
assumes each value in its range exactly twice? In other words, for each y ∈ f ([0, 1]),
are there exactly two points x1, x2 ∈ [0, 1] such that y = f (x1) = f (x2)? Such a
function is said to be “two-to-one.” The answer is no. (See Problem 7 for generaliza-
tions of this example.) To see this, assume, by way of contradiction, that there is such a

http://dx.doi.org/10.1007/978-1-4939-6795-7_2


280 4 Limits, Continuity, and Elementary Functions

two-to-one function. Let y0 be the maximum value of f , which exists by the max/min
value theorem. Then there are exactly two points a, b ∈ [0, 1], say 0 ≤ a < b ≤ 1,
such that y0 = f (a) = f (b). Note that all other points x ∈ [0, 1] besides a, b must
satisfy f (x) < y0. This is because if x �= a, b yet f (x) = y0 = f (a) = f (b), then
there would be three points x, a, b ∈ [0, 1] assuming the same value, contradicting
the two-to-one property. We claim that a = 0. Indeed, suppose that 0 < a and choose
c ∈ (a, b); then 0 < a < c < b. Since f (0) < y0 and f (c) < y0, we can choose
ξ ∈ R such that f (0) < ξ < y0 and f (c) < ξ < y0. Therefore,

f (0) < ξ < f (a) , f (c) < ξ < f (a) , f (c) < ξ < f (b).

By the intermediate value theorem, there are points

0 < c1 < a , a < c2 < c , c < c3 < b

such that ξ = f (c1) = f (c2) = f (c3). Note that c1, c2, c3 are all distinct and ξ
is assumed at least three times by f . This contradicts the two-to-one property, so
a = 0. Thus, f achieves its maximum at 0. Since − f is also two-to-one, it follows
that − f also achieves its maximum at 0, which is the same as saying that f achieves
its minimum at 0. However, if y0 = f (0) is both the maximum and minimum of f ,
then f must be the constant function f (x) = y0 for all x ∈ [0, 1], contradicting the
two-to-one property of f .

� Exercises 4.4

1. Are the following subsets of R open, compact, or connected? If a set does not
have a certain property, explain why.

(a) Q; (b) [0, 5] ∪ [6, 7]; (c) (0, 5) ∪ (6, 7); (d)

{

1 − 1

n
; n ∈ N

}

;

(e) {1} ∪
{

1 − 1

n
; n ∈ N

}

.

2. Is there a nonconstant continuous function f : R −→ R that takes on only ratio-
nal values (that is, whose range is contained in Q)? What about only irrational
values?

3. In this problem we investigate real roots of real-valued odd-degree polynomials.

(a) Let p(x) = xn + an−1 xn−1 + · · · + a1x + a0 be a polynomial with each ak

real and n ≥ 1 (not necessarily odd). Prove that there is a real number a > 0
such that

1

2
≤ 1 + an−1

x
+ · · · + a0

xn
, for all |x| ≥ a. (4.23)

(b) Using (4.23), prove that if n is odd, there is c ∈ [−a, a] with p(c) = 0.
(c) Puzzle: Does there exist a real number that is one more than its cube?
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4. In this problem we investigate real roots of real-valued even-degree polynomials.
Let p(x) = xn + an−1 xn−1 + · · · + a1x + a0 with each ak real and n ≥ 2 even.

(a) Let b > 0 with bn ≥ max{2a0, an}, where a is given in (4.23). Prove that if
|x| ≥ b, then p(x) ≥ a0 = p(0).

(b) Prove that there is c ∈ R such that for all x ∈ R, p(c) ≤ p(x). That is,
p : R −→ R achieves a minimum value. Is this statement true for odd-
degree polynomials?

(c) Show that there exists d ∈ R such that the equation p(x) = ξ has a solution
x ∈ R if and only if ξ ≥ d. In particular, p has a real root if and only if
d ≤ 0.

5. Here is a variety of continuity problems. Let f, g : [0, 1] −→ R be continuous.

(a) If f is one-to-one, prove that f achieves its maximum and minimum values
at 0 or 1; that is, the maximum and minimum values of f cannot occur at
points in (0, 1).

(b) If f is one-to-one and f (0) < f (1), prove that f is strictly increasing; that
is, for all a, b ∈ [0, 1] with a < b, we have f (a) < f (b).

(c) (In (c) and (d) we do not assume that f is one-to-one.) If f (0) = f (1),
prove that there are points a, b ∈ (0, 1) with a �= b such that f (a) = f (b).

(d) If f (0) < g(0) and g(1) < f (1), prove that there is a point c ∈ (0, 1) such
that f (c) = g(c).

(e) If f and g have the same maximum value on [0, 1], prove that there is
c ∈ [0, 1] such that f (c) = g(c).

6. Let f : I −→ R and g : I −→ R be continuous functions on a closed and
bounded interval I and suppose that f (x) < g(x) for all x in I .

(a) Prove that there is a constant α > 0 such that f (x)+α < g(x) for all x ∈ I .
(b) Prove that there is a constant β > 1 such that β f (x) < g(x) for all x ∈ I .
(c) Do properties (a) and (b) hold if I is bounded but not closed (e.g., I = (0, 1)

or I = (0, 1]) or unbounded (e.g., I = R or I = [1,∞))? In each of these
two cases, either prove (a) and (b) or give counterexamples.

7. (n-to-one functions) This problem is a continuation of Example 4.30.

(a) Define a (necessarily discontinuous) function f : [0, 1] −→ R that takes
on each value in its range exactly two times.

(b) Prove that there does not exist a continuous function f : [0, 1] −→ R that
takes on each value in its range exactly n times, where n ∈ N with n ≥ 2.

(c) Now what about a function with domain R instead of [0, 1]? Prove that there
does not exist a continuous function f : R −→ R that takes on each value
in its range exactly two times.

(d) If n ∈ N is even, prove there does not exist a continuous function f : R −→
R that takes on each value in its range exactly n times. If n is odd, there
does exist such a function! Draw such a function when n = 3 (try to draw
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a “zigzag”-type function). If you’re interested in a formula for a continuous
n-to-one function for arbitrary odd n, try to come up with one or see [260].

8. Show that a function f : R −→ R can have at most a countable number of
strict maxima. Here, a strict maximum is a point c such that f (x) < f (c) for
all x sufficiently close to c. Suggestion: At each point c where f has a strict
maximum, consider a small interval (p, q) containing c where p, q ∈ Q.

9. Prove that a subset of R is open if and only if the set is a union of open intervals.

The remaining exercises give alternative proofs of the boundedness, max/min,
and intermediate value theorems.

10. (Boundedness, Proof III) Let f : R −→ R be continuous such that f is constant
outside some bounded interval (a, b); we shall prove that f is bounded. Since
every continuous function on a closed and bounded interval can be extended to
such a function with domain R (see the proof of the intermediate value theorem),
this proves the boundedness theorem. Define

A = {c ∈ (−∞, b] ; f is a bounded on (−∞, c]}.

(i) Show that d := sup A exists.
(ii) Show there is a δ > 0 such that f is bounded on (d − δ, d + δ).

(iii) Show that f is bounded on (−∞, d+δ), d = b, and prove that f is bounded.

11. (Max/min, Proof III) We give another proof of the max/min value theorem as
follows. Let M be the supremum of a real-valued continuous function f on a
closed and bounded interval I . Assume that f (x) < M for all x in I and define

g(x) = 1

M − f (x)
.

Show that g is a continuous unbounded function on I . Now use the boundedness
theorem to arrive at a contradiction.

12. (Max/min, Proof IV) We prove the max/min value theorem for a continuous
function f : R −→ R such that f is constant outside some bounded interval
(a, b). This proves the max/min theorem, since every continuous function on a
closed and bounded interval can be extended to such a function with domain R

(see the proof of the intermediate value theorem). For each c ∈ R, let

Mc = sup{ f (x) ; x ∈ (−∞, c]}.

This number is finite by Problem 10. Let M be supremum of f over all of R. We
shall prove that there is a d such that f (d) = M. This proves that f achieves its
maximum; a related proof shows that f achieves its minimum. Let

A = {c ∈ R, ; Mc < M}.
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(i) If A = ∅, prove that f achieves it maximum.
(ii) If A is not empty, prove that d := sup A exists.

(iii) We claim that f (d) = M. By way of contradiction, suppose that f (d) < M
and derive a contradiction.

13. (IVP, Proof III) Here’s another proof of the intermediate value theorem. Let
f be a real-valued continuous function on an interval [a, b] and suppose that
f (a) < ξ < f (b).

(i) Define
A = {x ∈ [a, b] ; f (x) < ξ}.

Show that c := sup A exists and c < b. We shall prove that f (c) = ξ by
showing that f (c) < ξ or f (c) > ξ gives rise to contradictions.

(ii) If f (c) < ξ, show that c is not an upper bound for A.
(iii) If f (c) > ξ, show that c is not the least upper bound for A.

14. (IVP, Proof IV) In this problem we prove the intermediate value theorem using
the compactness lemma. Let f be a real-valued continuous function on [a, b]
and let f (a) < ξ < f (b). Suppose that f (x) �= ξ for all x in [a, b].
(i) Show that there are finitely many intervals, say (a1, b1), . . . , (an, bn), that

cover I = [a, b], where each interval (ak, bk) has nonempty intersection
with I , and either f (x) < ξ or f (x) > ξ, for all x ∈ (ak, bk)∩ I . Suggestion:
Define an open cover of [a, b] consisting of all the open intervals Ic found
in “Proof II” of Theorem 4.23.

(ii) We may assume that a1 ≤ a2 ≤ a3 ≤ . . . ≤ an by reordering the ak if
necessary. Using induction, prove that f (x) < ξ for all x in (ak, bk) ∩ I ,
k = 1, . . . , n. Derive a contradiction, thereby proving the intermediate value
theorem.

15. (IVP, Proof V) We give one last proof of the intermediate value theorem called
the bisection method. Let f be a continuous function on an interval and suppose
that f (a) < ξ < f (b), where a < b.

(i) Let a1 = a and b1 = b and let c1 be the midpoint of [a1, b1] and define the
numbers a2 and b2 by a2 = a1 and b2 = c1 if ξ ≤ f (c1), and a2 = c1 and
b2 = b1 if f (c1) < ξ. Prove that in either case, we have [a2, b2] ⊆ [a1, b1]
and f (a2) < ξ ≤ f (b2).

(ii) Construct a nested sequence of closed and bounded intervals [an, bn] such
that f (an) < ξ ≤ f (bn) for each n.

(iii) Using the nested intervals theorem on p. 100, show that the intersection of
all [an, bn] is a single point, call it c, and show that f (c) = ξ.

16. We prove the connectedness lemma using the notion of “chains.” Let U and V be
open sets and suppose, by way of contradiction, that [a, b]∩U and [a, b]∩V are
disjoint, nonempty, and have union [a, b], where a ∈ U and b ∈ V . We say that
a point c ∈ [a, b] is joined to a by a chain in U if there are finitely many open
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intervals in U , say I1, . . . , In ⊆ U for some n, such that a ∈ I1, Ik ∩ Ik+1 �= ∅

for k = 1, . . . , n − 1, and c ∈ In. Let

A = {c ∈ [a, b] ; c is joined to a by a chain in U .
}

(i) Show that d = sup A exists, where a < d < b. Then d ∈ U or d ∈ V .
(ii) However, show that d /∈ U by assuming d ∈ U and deriving a contradiction.

(iii) However, show that d /∈ V by assuming d ∈ V and deriving a contradiction.

4.5 � Amazing Consequences of Continuity

This section is devoted to answering interesting questions using the intermediate
value theorem, or IVT. For example, is it always possible to stabilize a wobbly
square table? The answer is yes. Using the IVT, we can prove that a square table can
be stabilized by a rotation! Remark: Some of the constructions in this section are of
an intuitive/geometric flavor; for example, although we have not defined angles or
area rigorously, we use them and assume properties of them that agree with intuition.
Thus, the “proofs” in this section are really convincing arguments. This is the only
section of the book where convincing arguments are acceptable!

4.5.1 Mountain Pass Theorem

The intermediate value theorem helps us to solve the following puzzle [234, p. 239].
At 1 o’clock in the afternoon, a man starts walking up a mountain, arriving at 10
o’clock in the evening at his cabin. At 1 o’clock the next afternoon he walks back
down by the exact same route, and happens to arrive at the bottom of the mountain
at 10 o’clock; see Fig. 4.17.

Fig. 4.17 Left walking up on day 1. Right walking down on day 2

Is there a time when he is at the same place on the mountain on both days? To solve
this puzzle, let d1(x) and d2(x) be the distance the man is from his cabin, measured
along his route, at time x on days one and two, respectively. Then the functions
d1 : [1, 10] −→ R and d2 : [1, 10] −→ R are continuous. We need to show that
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d1(x) = d2(x) at some time x. To see this, we use the difference trick, by which we
mean to consider the continuous function of the difference,

f (x) = d1(x) − d2(x).

Observe that f (1) = d1(1) > 0 and f (10) = −d2(10) < 0. The IVT implies there
is some point t where f (t) = 0. This t is a time that solves our puzzle. A physical
way to solve this problem is to have another person walk down the mountain while
the man is walking up. At some moment, the two will meet.

4.5.2 Pancake Theorem

A region is an open, connected, nonempty subset of Euclidean space. Fix an angle θ
and consider a bounded region in the plane (think of the region as a “pancake”). Can
we slice the region with a line making the angle θ with the positive horizontal axis
such that the areas of the pieces on each side of the slice are equal? See Fig. 4.18.

θKn
ife
wi
th
an
gle

θ

Pancake

Cut into two pieces of equal area

Fig. 4.18 Holding a knife at an angle θ, can we slice a pancake into parts of equal area? The IVT,
and everyday experience, says yes!

To answer this question, we first discuss directed lines. For v, b ∈ R
2 with v �= 0,

the directed line through b with direction v is the line

{tv + b ; t ∈ R}.

See Fig. 4.19.

vb b

tv

tv + b

{tv + b ; t ∈ R}

Fig. 4.19 The directed line through b with direction v

The line is directed, because the vector v gives the line a direction. In particular,
referring to the vector v , a directed line divides the plane into a left half and a right



286 4 Limits, Continuity, and Elementary Functions

half. Returning to the pancake problem, let u be the unit vector that makes the angle
θ+90◦ with the horizontal, and for each t ∈ R, consider the directed line �(t) through
the point tu with a direction vector that makes the angle θ with the positive horizontal.
For each t ∈ R, let f (t) be the area of the region to the right of the directed line �(t);
see Fig. 4.20. The function f : R −→ R is a continuous function. Moreover, since
the region is bounded, there is an α sufficiently negative such that f (α) = 0 (we
can choose α such that no part of the region lies to the right of �(α)). Also, there is
a β sufficiently positive such that f (β) = A, which equals the area of the region (in
other words, the whole of the region lies to the right of �(β)). Since

θ
θ + 90

t

f(t)

�(t)

︸
︷
︷
︸

�(α)

�(β)

Fig. 4.20 Left the function f (t) gives the area of the region to the right of �(t). Right for α negative
enough, we have f (α) = 0, and for β positive enough, f (β) is equal to the area of the region

f (α) = 0 ≤ A

2
≤ A = f (β),

the IVT says that there is a t such that f (t) = A/2. This proves the pancake theorem.
In Problem 6 you will prove that the line is unique; that is, there is exactly one line
with angle θ that cuts the pancake into two parts of equal area.

4.5.3 Over Easy Egg Theorem

Consider two bounded regions in the plane, which could overlap. For example, we
could consider an over easy egg as seen in Fig. 4.21. With a single straight slice, it
turns out that we can simultaneously cut each region into parts of equal area! To
prove this, let’s call the regions region 1 and region 2. By the pancake theorem, we
know that for each angle θ, there is a unique directed line �(θ) whose direction vector
makes the angle θ with the positive horizontal and that divides region 1 into two parts
of equal area. See Fig. 4.22. Our goal is to find an angle such that the line �(θ) also
cuts region 2 into two parts of equal area. To do so, we again use the difference trick
and define the continuous function (see Fig. 4.22)

f (θ) = L(θ) − R(θ),
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Egg

Cut into two pieces of equal area

Fig. 4.21 Is there a line that simultaneously divides the egg yolk and the egg white into parts of
equal area? The IVT says yes!

�(145)

�(0)

�(45)�(90)

θ

L(θ)

R(θ)

�(θ)

Fig. 4.22 Left by the pancake theorem, for each angle θ there is a directed line �(θ) whose direction
vector has angle θ and that divides region 1 (the egg white) into two parts of equal area. Shown are
the lines with direction vectors having angles 0◦, 45◦, 90◦, and 145◦. Right let L(θ) equal the area
of region 2 (the egg yolk) to the left of �(θ), and let R(θ) equal the area of region 2 to the right
of �(θ)

where L(θ) (respectively R(θ)) is the area of region 2 to the left (respectively right) of
the line �(θ). We need to show that there is an angle θ such that f (θ) = 0. However,
as seen in Fig. 4.23, we have L(0) = R(180) and L(180) = R(0). Hence,

f (0) = L(0) − R(0) = R(180) − L(180) = − f (180).

Thus, f (0) and f (180) have opposite signs! By the IVT (see Corollary 4.24 on p.
279), there is an angle θ such that f (θ) = 0. This completes our proof.

�(0)
L(0)

R(0)
�(180)

R(180)

L(180)

Fig. 4.23 Observe that L(0) = R(180) and R(0) = L(180)
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4.5.4 Pizza Theorem

Consider again a bounded region in the plane (this time let’s think of the region as a
“pizza”). Using exactly two cuts at right angles, it turns out that we can divide the
region into four parts of equal area!

Odd shaped

Pizza

Fig. 4.24 Using right-angle cuts, can we cut a pizza, no matter what its shape is, into four parts of
equal area? The IVT says yes!

See Fig. 4.24. To prove this, for each angle θ, let �(θ) be the unique directed line
whose direction vector makes the angle θ with the positive horizontal and that divides
the region into two parts of equal area. Turning the knife 90◦, the line �(θ + 90) also
cuts the region into two parts of equal area. Consider the regions A1(θ), A2(θ), A3(θ),
and A4(θ) shown here (Fig. 4.25):

A1(0)A2(0)

A4(0)A3(0)

�(0) A4(90)A1(90)

A3(90)A2(90)

�(90)

θA1(θ)

A2(θ) A4(θ)

A3(θ)

�(θ)�(θ + 90)

Fig. 4.25 A1(θ) is the part of the region to the left of �(θ) and the right of �(θ + 90). A2(θ), A3(θ),
and A4(θ) have similar definitions

We need to find a θ such that

A1(θ) = A2(θ) = A3(θ) = A4(θ).

We prove this in two steps.
Step 1: We claim that the opposite diagonal regions are always equal; that is, we

claim that for all θ,

A1(θ) = A3(θ) and A2(θ) = A4(θ).

Indeed, for every angle θ, we have two equations,

(1) A1(θ) + A2(θ) = A3(θ) + A4(θ) by definition of �(θ),
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and
(2) A1(θ) + A4(θ) = A2(θ) + A3(θ) by definition of �(θ + 90).

Subtracting the second equation from the first, we obtain

A2(θ) − A4(θ) = A4(θ) − A2(θ).

This implies A2(θ) = A4(θ). Canceling A2(θ) and A4(θ) from either the first or
second equation then gives A1(θ) = A3(θ).

Step 2: To prove that there is some angle such that A1(θ) = A2(θ) = A3(θ) =
A4(θ), by Step 1 we just need to show that there is an angle such that A1(θ) = A2(θ).
We again use the difference trick and define the continuous function

f (θ) = A1(θ) − A2(θ).

Observe that

f (0) = A1(0) − A2(0)

= A4(90) − A1(90) (see Fig. 4.25)

= A2(90) − A1(90) (since A2(90) = A4(90) by Step1)

= − f (90).

Since f (0) and f (90) have opposite signs, there is, by the IVT, an angle θ such that
f (θ) = 0. This completes the proof of the pizza division theorem.

4.5.5 Wobbly Table Theorem

I’ve saved the best for last [77]. Consider a square table with legs of equal length
placed on an uneven smooth floor. The table may or may not be wobbling. If it’s
wobbling, we claim that by rotating the table about its center no more than 90◦, we
can make it perfectly stable (all four legs will rest on the ground)! To prove this,

A B

CD

0◦

A

B

C

D θ A B

CD

h1(θ)

h2(θ)

Fig. 4.26 Left the wobbly table not yet rotated. Middle we rotate the table about its center by the
angle θ. Right the functions h1(θ) and h2(θ) are the heights of the wobble along the diagonals
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label the corners of the square table A, B, C, D as shown in Fig. 4.26. We now start
rotating the table about its center.

Rotating the table by an angle θ, we let

h1(θ) = height of the wobble along the diagonal AC

and
h2(θ) = height of the wobble along the diagonal BD.

The important point to observe is that when a table wobbles, it wobbles along exactly
one diagonal; two legs along a diagonal are firmly on the ground while the other two
legs can wobble like a seesaw or teeter-totter. Thus, for every angle θ, exactly one of
three cases holds:

h1(θ) > 0 and h2(θ) = 0 (table wobbles along AC);
h1(θ) = 0 and h2(θ) > 0 (table wobbles along BD);
h1(θ) = 0 and h2(θ) = 0 (table is stable).

In particular, h1(θ) = h2(θ) if and only if the table is stable. For this reason, we yet
again use the difference trick and define the continuous function

f (θ) = h1(θ) − h2(θ).

As seen here,

A B

CD

h1(0)

h2(0)

Rotate 90◦
counterclockwise

D A

BC

h2(90)

h1(90)

we have
f (0) = h1(0) − h2(0) = h2(90) − h1(90) = − f (90).

Since f (0) and f (90) have opposite signs, there is, by the IVT, an angle θ such that
f (θ) = 0. This completes the proof of the wobbly table theorem!

� Exercises 4.5

1. (Brouwer’s fixed point theorem)

(i) If f : [a, b] −→ [a, b] is a continuous function on a closed and bounded
interval, prove that there is a point c ∈ [a, b] such that f (c) = c. This result
is a special case of a theorem by Luitzen Brouwer (1881–1966).

(ii) Puzzle: You have a straight wire lying perpendicular to a wall that it is
touching. You pick it up and bend it into any shape. Then you put it down
so it touches the wall. Is there a point on the bent wire whose distance to the
wall is exactly the same as it was originally (see Fig. 4.27)?
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Wall
�

Bend

Wall

Fig. 4.27 The point shown is the same distance from the wall before and after the wire was bent

2. (Bobble dog theorem) A bobble dog is attached to a dashboard in a car, and
when the car moves, the head amusingly moves back and forth. Assume that we
have a boggle dog whose head can move only along a one-dimensional angle
back and forth between two angles ±θ0, as seen in the left picture in Fig. 4.28.

0◦
θ◦
0

−θ◦
0

θ f(θ)

Fig. 4.28 Left the head of a bobble dog can move between the angles −θ0 and θ0. Middle the
position of the head at point A. Right the position of the head at point B. We want to prove that there
is a θ such that f (θ) = θ

Suppose you take a drive through a city from a point A to a point B. Prove that
there is an angle such that if the dog’s head starts at that angle at the instant the
car starts at point A, then the instant the car makes it to point B, the head is at
the same angle it started at.

3. (Cocktail theorem) Take a glass with a straw fixed at a certain position along
the rim, as shown in the left picture in Fig. 4.29.

straw

swirl clockwise and/
or counterclockwise
as desired

drop in

� �
swirl

ends up in
in same spot

θ0

Fig. 4.29 The cocktail theorem

Swirl the drink clockwise and/or counterclockwise as desired for a minute (not
moving the location of the straw). Prove that there is a location along the rim
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such that if you drop a cherry (assumed to be a perfect sphere) at that location,
after one minute of swirling, the cherry ends up exactly where it started. Assume
that the cherry can move only along the rim and if it hits the straw, it cannot pass
it. Thus, if θ0 is the angle shown in the far-right picture in Fig. 4.29, then the
cherry is confined to the rim in such a way that the angle from the center of the
glass to the center of the cherry is between θ0 and 360◦ − θ0.

4. (Antipodal point puzzle) In this problem we prove that there are, at any given
moment, antipodal (opposite) points on the earth’s equator that have the same
temperature. (Instead of temperature, we could use pressure, elevation, or any
other quantity that varies continuously with position.)

(i) Let a > 0 and let f : [0, a] −→ R be a continuous function with f (0) =
f (a). Show there exists a point c ∈ [0, a] such that f (c) = f (c + a/2).

(ii) Using (i), solve the antipodal point puzzle.
(iii) Prove that there exist two days, exactly six months apart, with exactly

the same number of hours of daylight. (Note that we don’t have to be an
astronomer to solve this problem!)

5. (Birthday cake theorem) Suppose you have a circular birthday cake with a lot
of sweet topping on it. The baker, however, was not careful and the topping was
put on very unevenly. Prove that you can cut the cake through its exact center so
that the two halves have exactly the same amount sweet topping.

6. For the pancake theorem, prove that the line is unique. Suggestion: Argue that
if t1 < t2 and 0 < f (t1) < A, then f (t1) < f (t2).

7. Consider a bounded region in the plane with a finite boundary perimeter. Prove
that there exists a line that divides the figure into two parts, each part having the
same area and having the same boundary perimeter.

8. (Photo cropping theorem) Fixing a bounded region in the plane, in this problem
we show that we can always crop it using a (possibly rotated) square (Fig. 4.30).
Here, crop means to enclose the region in a rectangle such that each edge of the
rectangle touches an edge of the region. Proceed as follows.

Fig. 4.30 Given a region, can we crop it with a (possibly rotated) square? The IVT says yes!
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θ
b(θ)

r(θ)

b(0)

r(0)

r(90)

b(90)

Fig. 4.31 Left for every θ, there exists a unique rectangle with angle θ cropping the region. Here,
b(θ) and r(θ) are the bottom and right, respectively, of the cropping rectangle. Middle/right Note
that b(0) = r(90) and r(0) = b(90)

(i) For every angle θ, prove that there exists a unique directed line L(θ) such
that the region lies to the left of the directed line and an edge of the region
touches the line. Observe that a cropping rectangle is formed by the lines
L(θ), L(θ + 90), L(θ + 180), and L(θ + 270) (Fig. 4.31).

(ii) Let b(θ) = L(θ) and r(θ) = L(θ+90) be the bottom and right, respectively,
of the cropping rectangle. Show that there is a θ such that b(θ) = r(θ). This
proves the photo cropping theorem.

4.6 Monotone Functions and Their Inverses

In this section we study monotone functions on intervals and their continuity proper-
ties. In particular, we prove the following fascinating fact: Every monotone function
on an interval (no other assumptions besides monotonicity) is continuous every-
where on the interval except perhaps at countably many points. With the monotonic-
ity assumption dropped, anything can happen, for instance, recall that Dirichlet’s
function is nowhere continuous.

4.6.1 Continuous and Discontinuous Monotone Functions

Let I ⊆ R be an interval. A function f : I −→ R is said to be nondecreasing if a ≤ b
(where a, b ∈ I) implies f (a) ≤ f (b), (strictly) increasing if a < b implies f (a) <
f (b), nonincreasing if a ≤ b implies f (a) ≥ f (b), and (strictly) decreasing if
a < b implies f (a) > f (b). The function is monotone if it is one of these four types.
(Actually only two types, because increasing and decreasing functions are special
cases of nondecreasing and nonincreasing functions, respectively.)

Example 4.31 A neat example of a monotone (nondecreasing) function is Zeno’s
function Z : [0, 1] −→ R, named after Zeno of Elea (490 B.C.–425 B.C.):
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Z(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x = 0,

1/2 0 < x ≤ 1/2,

1/2 + 1/22 = 3/4 1/2 < x ≤ 3/4,

1/2 + 1/22 + 1/23 = 7/8 3/4 < x ≤ 7/8,

· · · etc. · · · · · ·
1 x = 1.

Here’s an attempted picture of Zeno’s function:

This function is called Zeno’s function because as described by Aristotle (384–322
B.C.), Zeno argued that “there is no motion because that which is moved must arrive
at the middle of its course before it arrives at the end” (you can read about this
in [108]). Zeno’s function moves from 0 to 1 via half-way stops. Observe that the
left-hand limits of Zeno’s function exist at each point of [0, 1] except at x = 0,
where the left-hand limit is not defined, and the right-hand limits exist at each point
of [0, 1] except at x = 1, where the right-hand limit is not defined. Also observe
that Zeno’s function has discontinuity points exactly at the (countably many) points
x = (2k − 1)/2k for k = 0, 1, 2, 3, 4, . . ..

It’s an amazing fact that Zeno’s function is typical: Every monotone function on
an interval has left- and right-hand limits at every point of the interval except at
the endpoints, where a left- or right-hand limit may not be defined, and has at most
countably many discontinuities. Now for simplicity . . .

To avoid worrying about endpoints, in this section we consider only monotone functions with
domain R. However, every result we prove has an analogous statement for domains that are
intervals.

We repeat, every statement that we mention in this section holds for monotone
functions on intervals (open, closed, half-open, etc.) as long as we make suitable
modifications of these statements at endpoints.

Lemma 4.25 Let f : R −→ R be nondecreasing. Then for all c ∈ R, the left-
and right-hand limits f (c−) = limx→c− f (x) and f (c+) = limx→c+ f (x) exist.
Moreover,

f (c−) ≤ f (c) ≤ f (c+),

and if c < d, then
f (c+) ≤ f (d−). (4.24)
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Proof Fix c ∈ R. We first show that f (c−) exists. Since f is nondecreasing, for
all x ≤ c, f (x) ≤ f (c), so the set { f (x) ; x < c} is bounded above by f (c).
Hence, b := sup{ f (x) ; x < c} exists and b ≤ f (c). Given ε > 0, by definition
of the supremum there is a y < c such that b − ε < f (y). Let δ = c − y. Then
c − δ < x < c implies that y < x < c, which implies that

|b − f (x)| = b − f (x) (since f (x) ≤ b by definition of supremum)

≤ b − f (y) (since f (y) ≤ f (x))

< ε.

This shows that f (c−) := limx→c− f (x) exists and equals b, that is,

f (c−) = sup{ f (x) ; x < c}.

As already noted, b ≤ f (c), so f (c−) ≤ f (c). By considering the set of values
{ f (x) ; c < x}, one can similarly prove that

f (c+) = inf{ f (x) ; c < x},

and f (c) ≤ f (c+). Let c < d. Then { f (x) ; x < c} ⊆ { f (x) ; x < d}, so by the
definition of infimum and supremum, we have

inf{ f (x) ; x < c} ≤ sup{ f (x) ; x < d} .

In other words, f (c+) ≤ f (d−), and our proof is now complete. �

Recall from Theorem 4.14 on p. 264 that a function f is continuous at a point c if
and only if f (c−) = f (c) = f (c+). Lemma 4.25 shows that for a nondecreasing
function f , at discontinuity points one of the three possibilities in Fig. 4.32 occurs.

c c c

Fig. 4.32 Left f (c−) = f (c) < f (c+). Middle f (c−) < f (c) = f (c+). Right f (c−) < f (c) <
f (c+)

Of course, there is a corresponding picture for nonincreasing functions in which
the inequalities are reversed. In particular, notice that at a point of discontinuity,
the function “jumps” by the value f (c+) − f (c−). More generally, every function
f : D −→ R with D ⊆ R is said to have a jump discontinuity at a point c ∈ D,
where c is a limit point of D ∩ (c,∞) and D ∩ (−∞, c), if f is discontinuous at c
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but both the left- and right-hand limits f (c±) exist; the number f (c+) − f (c−) is
then called the jump of f at c. If c is a limit point of only one of the sets D ∩ (c,∞)
and D ∩ (−∞, c), then we require only the corresponding right- or left-hand limit
to exist. We now prove that every monotone function has at most countably many
discontinuities (each of which is a jump discontinuity); see Problem 2 for another
proof.

Theorem 4.26 A monotone function on R has uncountably many points of con-
tinuity and at most countably many discontinuities, each discontinuity being a
jump discontinuity.

Proof Assume that f is nondecreasing, since the case for a nonincreasing function
is proved in an analogous manner. We know that f is discontinuous at a point x
if and only if f (x+) − f (x−) > 0. Given such a discontinuity point, choose a
rational number rx in the interval ( f (x−), f (x+)). Since f is nondecreasing, given
any two such discontinuity points x < y, we have (see (4.24)) f (x+) ≤ f (y−),
so the intervals ( f (x−), f (x+)), and ( f (y−), f (y+)) are disjoint. Thus, rx �= ry,
so different discontinuity points are associated with different rational numbers. It
follows that the set of all discontinuity points of f is in one-to-one correspondence
with a subset of the rationals. Therefore, since a subset of a countable set is countable,
the set of all discontinuity points of f is countable. Since R, which is uncountable,
is the union of the continuity points of f and the discontinuity points of f , the
continuity points of f must be uncountable. �

The following is a very simple and useful characterization of continuous monotone
functions on intervals.

Theorem 4.27 A monotone function on R is continuous on R if and only if its
range is an interval.

Proof By the intermediate value theorem, we already know that the range of every
(in particular, a monotone) continuous function on R is an interval. Let f : R −→ R

be monotone and suppose, for concreteness, that f is nondecreasing, since the case
for a nonincreasing function is similar. It remains to prove that if the range of f is
an interval, then f is continuous. We shall prove the contrapositive, so assume that
f is not continuous at some point c. Then one of the equalities in

f (c−) = f (c) = f (c+)

must fail. Since f is nondecreasing, we have f (c−) ≤ f (c) ≤ f (c+), and therefore,
one of the intervals ( f (c−), f (c)), ( f (c), f (c+)) is nonempty. Whichever interval
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is nonempty is not contained in the range of f . By Lemma 4.22 on p. 277, the range
of f cannot be an interval. �

4.6.2 Monotone Inverse Theorem

Recall from Section 1.3 that a function has an inverse if and only if the function is
injective, that is, one-to-one. Notice that a strictly monotone function f : R −→ R

is one-to-one, since, for instance, if f is strictly increasing, then x �= y, say x < y,
implies that f (x) < f (y), which in particular says that f (x) �= f (y). Thus, a strictly
monotone function is one-to-one. The last result in this section states that a one-to-one
continuous function is automatically strictly monotone. This result makes intuitive
sense, for if the graph of the function had a dip in it, the function would not pass the
so-called horizontal line test learned in high school.

Monotone inverse theorem

Theorem 4.28 A one-to-one continuous function f : R −→ R is strictly
monotone, its range is an interval, and it has a continuous strictly monotone
inverse (with the same monotonicity as f ).

Proof Let f : R −→ R be a one-to-one continuous function. We shall prove that f is
strictly monotone. Fix points x0 < y0. Then f (x0) �= f (y0), so either f (x0) < f (y0)
or f (x0) > f (y0). For concreteness, assume that f (x0) < f (y0); the other case
f (x0) > f (y0) can be dealt with analogously. We claim that f is strictly increasing.
Indeed, if this were not the case, then there would exist points x1 < y1 such that
f (y1) < f (x1). Now consider the function g : [0, 1] → R defined by

g(t) = f (ty0 + (1 − t)y1) − f (tx0 + (1 − t)x1).

Since f is continuous, g is continuous, and

g(0) = f (y1) − f (x1) < 0 and g(1) = f (y0) − f (x0) > 0.

Hence by the IVT, there is a c ∈ [0, 1] such that g(c) = 0. This implies that
f (a) = f (b), where a = cx0 + (1 − c)x1 and b = cy0 + (1 − c)y1. Since f is
one-to-one, we must have a = b; however, this is impossible, since x0 < y0 and
x1 < y1 implies a < b. This contradiction shows that f must be strictly monotone.

Now let f : R −→ R be a continuous strictly monotone function and let I =
f (R). By Theorem 4.27, we know that I is an interval too. We shall prove that
f −1 : I −→ R is also a strictly monotone function; then Theorem 4.27 implies that
f −1 is continuous. Now suppose, for instance, that f is strictly increasing; we shall
prove that f −1 is also strictly increasing. If x < y both belong I , then x = f (ξ) and
y = f (η) for some ξ and η. Since f is strictly increasing it must be that ξ < η, and

http://dx.doi.org/10.1007/978-1-4939-6795-7_1
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hence, since ξ = f −1(x) and η = f −1(y), we have f −1(x) < f −1(y). Thus, f −1 is
strictly increasing, and our proof is complete. �

Here is a nice application of the monotone inverse theorem.

Example 4.32 Note that for every n ∈ N, the function f (x) = xn is strictly increasing
on [0,∞). Therefore, f −1(x) = x1/n is continuous. In particular, for every m ∈
N, g(x) = xm/n = (x1/n)m is continuous on [0,∞), being a composition of the
continuous functions f −1 and the mth power. Similarly, the function x �→ xm/n for
m ∈ Z with m < 0 is continuous on (0,∞). Therefore, for every r ∈ Q, x �→ xr is
continuous on [0,∞) if r > 0 and on (0,∞) if r < 0.

� Exercises 4.6

1. Prove the following algebraic properties of nondecreasing functions:

(a) If f and g are nondecreasing, then f + g is nondecreasing.
(b) If f and g are nondecreasing and nonnegative, then f g is nondecreasing.
(c) Does (b) hold for any (not necessarily nonnegative) nondecreasing func-

tions? Either prove this or give a counterexample.

2. Here is a different way to prove that a monotone function has at most countably
many discontinuities. Let f : [a, b] −→ R be nondecreasing.

(i) Given a finite number x1, . . . , xk of points in (a, b), prove that

j(x1) + · · · + j(xk) ≤ f (b) − f (a), where j(x) = f (x+) − f (x−).

(ii) Given n ∈ N, prove that there is at most a finite number of points c ∈ (a, b)
such that f (c+) − f (c−) > 1/n.

(iii) Now prove that f can have at most countably many discontinuities.

3. Let f : R −→ R be a monotone function. If f happens also to be additive (see
Problem 3 on p. 268), prove that f is continuous. Thus, every additive monotone
function is continuous.

4. In this problem we investigate jump functions. Let x1, x2, . . . be countably many
points on the real line and let c1, c2, . . . be nonzero complex numbers such that∑

cn is absolutely convergent. For x ∈ R, the functions

ϕ�(x) =
∑

xn<x

cn and ϕr(x) =
∑

xn≤x

cn (4.25)

are called a (left-continuous) jump function and (right-continuous) jump func-
tion, respectively. By the sums defining ϕ� and ϕr we define ϕ�(x) = lim sn(x)
and ϕr(x) = lim tn(x), where

sn(x) =
∑

k≤n, xk<x

ck and tn(x) =
∑

k≤n, xk≤x

ck ;
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here, we sum only over those k ≤ n such that xk < x for sn(x), and xk ≤ x for
tn(x).

(a) Prove that ϕ�,ϕr : R −→ C are well defined for all x ∈ R (that is, the two
infinite series (4.25) converge for all x ∈ R).

(b) If all the cn are nonnegative real numbers, prove that ϕ� and ϕr are nonde-
creasing functions on R.

(c) If all the cn are nonpositive real numbers, prove that ϕ� and ϕr are nonin-
creasing functions on R.

5. In this problem we prove that ϕr in (4.25) is right-continuous having jump dis-
continuities only at x1, x2, . . . with the jump at xn equal to cn. To this end, let
ε > 0. Since

∑ |cn| converges, by Cauchy’s criterion for series, we can choose
N such that ∑

n≥N+1

|cn| < ε. (4.26)

(i) Prove that for every δ > 0,

ϕr(x + δ) − ϕr(x) =
∑

x<xn≤x+δ

cn.

Using (4.26), prove that for δ > 0 sufficiently small, |ϕr(x + δ) −
ϕr(x)| < ε.

(ii) Prove that for every δ > 0,

ϕr(x) − ϕr(x − δ) =
∑

x−δ<xn≤x

cn.

If x is not one of the points x1, . . . , xN , then using (4.26), prove that for
δ > 0 sufficiently small, |ϕr(x) − ϕr(x − δ)| < ε.

(iii) If x = xk for some 1 ≤ k ≤ N , prove that |ϕr(x) − ϕr(x − δ) − ck| < ε.
(iv) Finally, prove that ϕr is right-continuous, having jump discontinuities only

at x1, x2, . . . with the jump at xn equal to cn.

6. Prove that ϕ� is left-continuous having jump discontinuities only at x1, x2, . . .,
where the jump at xn is equal to cn, with the notation given in (4.25).

7. (Generalized Thomae functions) In this problem we generalize Thomae’s func-
tion to arbitrary countable sets. Let A ⊆ R be a countable set.

(a) Define a nondecreasing function on R that is discontinuous exactly on A.
(b) Suppose that A is dense. (Dense is defined on p. 266.) Prove there does not

exist a continuous function on R that is discontinuous exactly on Ac.
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4.7 Exponentials, Logs, Euler and Mascheroni,
and the ζ-Function

We now come to a very fun part of real analysis: We apply our work done in the
preceding chapters and sections to study the so-called elementary transcendental
functions, the exponential, logarithmic, and in Section 4.9, trigonometric functions.
In particular, we develop the properties of undoubtedly the most important function
in all of analysis, the exponential function. We also study logarithms and (complex)
powers and derive some of their main properties. For another approach to defining
logarithms, see the interesting article [11], and for a brief history, [194].

4.7.1 The Exponential Function

Recall that (see p. 216 in Section 3.7) the exponential function is defined by

exp(z) =
∞∑

n=0

zn

n! , z ∈ C.

Some properties of the exponential function are found in Theorem 3.30 on p. 219.
Here’s another important property, which follows easily from Tannery’s theorem.

Theorem 4.29 The exponential function exp : C −→ C is continuous.

Proof Let c ∈ C and let zn → c; we must show that exp(zn) → exp(c). To see this,
write

exp(zn) =
∞∑

k=0

ak(n) , where ak(n) = zk
n

k! .

For each k ∈ N we have limn→∞ ak(n) = ck/k!. Also, since convergent sequences
are bounded, there is a constant C > 0 such that |zn| ≤ C for all n ∈ N. Thus,

|ak(n)| ≤ Ck

k! .

Since
∑∞

k=0 Ck/k! converges, the extended Tannery’s theorem (see the remark after
the proof of Tannery’s theorem (Theorem 3.29 on p. 216) and see Problem 8 on p.
225) implies that

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
http://dx.doi.org/10.1007/978-1-4939-6795-7_3
http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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lim
n→∞ exp(zn) = lim

n→∞

∞∑

k=0

ak(n) =
∞∑

k=0

ck

k! = exp(c).

This completes the proof of the theorem. �

We now restrict the exponential function to real variables z = x ∈ R:

exp(x) =
∞∑

n=0

xn

n! , x ∈ R.

In particular, the right-hand side, being a sum of real numbers, is a real number, so
exp : R −→ R. Of course, this real exponential function shares all of the properties of
the complex exponential explained in Theorem 3.30 on p. 219. In the following theo-
rem we show that this real-valued exponential function has the increasing/decreasing
properties you learned about in elementary calculus; see Fig. 4.33.

y = expx

(0, 1)

y = log x

(1, 0)

Fig. 4.33 The graph of exp : R −→ (0,∞) looks like the graph you learned about in high
school! Being strictly increasing, it has an inverse function exp−1, which we call the logarithm,
log : (0,∞) −→ R

Properties of the real exponential

Theorem 4.30 The real exponential function has the following properties:

(1) exp : R −→ (0,∞) and is a strictly increasing continuous bijection. More-
over,

lim
x→∞ exp(x) = ∞ and lim

x→−∞ exp(x) = 0.

(2) For every x ∈ R, we have
1 + x ≤ exp(x),

with strict inequality for x �= 0, that is, 1 + x < exp(x) for x �= 0.

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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Proof Observe that for x ≥ 0,

exp(x) = 1 + x + x2

2! + x3

3! + · · · ≥ 1 + x,

with strict inequalities for x > 0. In particular, exp(x) > 0 for x ≥ 0, and the
inequality exp(x) ≥ 1 + x shows that limx→∞ exp(x) = ∞. If x < 0, then −x > 0,
so exp(−x) > 0, and therefore by Property (3), of Theorem 3.30 on p. 219,

exp(x) = 1

exp(−x)
> 0.

Thus, exp(x) is positive for all x ∈ R, ad recalling Example 4.15 on p. 260, we see
that

lim
x→−∞ exp(x) = lim

x→−∞
1

exp(−x)
= lim

x→∞
1

exp(x)
= 0.

As a side remark, we can also get exp(x) ≥ 0 for all x ∈ R by noting that

exp(x) = exp(x/2) · exp(x/2) = (exp(x/2))2,

which is a square, and so exp(x) ≥ 0. Back to our proof, note that if x < y, then
y − x > 0, so exp(y − x) ≥ 1 + (y − x) > 1, and thus

exp(x) = 1 · exp(x) < exp(y − x) · exp(x)

= exp(y − x + x) = exp(y).

Thus, exp is strictly increasing on R. The continuity property of exp implies that
exp(R) is an interval, and then the limit properties of exp imply that the interval must
be (0,∞); that is, the range of exp is (0,∞). Since exp is strictly increasing, it’s
injective, and therefore exp : R −→ (0,∞) is a continuous bijection.

We now verify (2). We already know that exp(x) ≥ 1 + x for x ≥ 0. If x ≤ −1,
then 1 + x ≤ 0, so our inequality is automatically satisfied, since exp(x) > 0. If
−1 < x < 0, then by the series expansion for exp, we have

exp(x) − (1 + x) =
(

x2

2! + x3

3!
)

+
(

x4

4! + x5

5!
)

+ · · · ,

where we group the terms in pairs. A typical term in parentheses is of the form

(
x2k

(2k)! + x2k+1

(2k + 1)!
)

= x2k

(2k)!
(

1 + x

(2k + 1)

)

, k = 1, 2, 3, . . . .

For −1 < x < 0, 1 + x
(2k+1)

is positive, and so is x2k (being the square of xk). Hence,
being a sum of positive numbers, exp(x) − (1 + x) is positive for −1 < x < 0. �

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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The inequality 1+x ≤ exp(x) is quite useful, and we will find many opportunities
to use it in the sequel; see Problem 4 for a nice application to the arithmetic–geometric
mean inequality (AGMI).

4.7.2 Existence and Properties of Logarithms

Since exp : R −→ (0,∞) is a strictly increasing continuous bijection (so in partic-
ular is one-to-one), by the monotone inverse theorem (Theorem 4.28 on p. 297), this
function has a strictly increasing continuous bijective inverse, exp−1 : (0,∞) −→ R.
This function is called the logarithm function5 and is denoted by log,

log = exp−1 : (0,∞) −→ R.

By definition of the inverse function, log satisfies

exp(log x) = x, x ∈ (0,∞) and log(exp x) = x, x ∈ R. (4.27)

In high school, the logarithm is usually introduced as follows. If a > 0, then the
unique real number ξ having the property that

exp(ξ) = a

is called the logarithm of a, where ξ is unique, because exp : R −→ (0,∞) is
bijective. This high school definition is equivalent to ours, because we can see that
ξ = log a by putting ξ for x in the second equation in (4.27):

ξ = log(exp(ξ)) = log a.

The limit properties of log in the next theorem follow directly from the limit
properties of the exponential function in Part (1) of Theorem 4.30.

Theorem 4.31 The logarithm log : (0,∞) −→ R is a strictly increasing con-
tinuous bijection. Moreover,

lim
x→∞ log x = ∞ and lim

x→0+
log x = −∞.

5In elementary calculus classes, our logarithm function is denoted by ln and is called the natural
logarithm function, the notation log usually referring to the “base 10” logarithm. However, in more
advanced mathematics, log always refers to the natural logarithm function: “Mathematics is the
art of giving the same name to different things.” Henri Poincaré (1854–1912). [As opposed to the
quotation: “Poetry is the art of giving different names to the same thing.”]
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The following theorem lists some of the well-known properties of log.

Properties of the logarithm

Theorem 4.32 The logarithm has the following properties:

(1) exp(log x) = x and log(exp x) = x.
(2) log(xy) = log x + log y.
(3) log 1 = 0 and log e = 1.
(4) log(x/y) = log x − log y.
(5) log x < log y if and only if x < y.
(6) log x > 0 if x > 1 and log x < 0 if x < 1.

Proof We shall leave most of these proofs to the reader. The property (1) is just a
restatement of the equations in (4.27). Consider now the proof of (2). We have

exp(log(xy)) = xy.

On the other hand,

exp(log x + log y) = exp(log x) exp(log y) = xy,

so
exp(log(xy)) = exp(log x + log y).

Since exp is one-to-one, we must have log(xy) = log x + log y. To prove (3), observe
that

exp(0) = 1 = exp(log 1),

so because exp is one-to-one, 0 = log 1. Also, since

exp(1) = e = exp(log e),

we get 1 = log e. We leave the rest of the properties to the reader. �

4.7.3 Powers and Roots of Real Numbers

Recall that in Section 2.7 on p. 89, we defined the meaning of ar for a > 0 and r ∈ Q;
namely, if r = m/n with m ∈ Z and n ∈ N, then ar = ( n

√
a
)m

. We also proved that
these rational powers satisfy all the “power rules” that we learned in high school (see
Theorem 2.34 on p. 89). We now ask: Can we define ax for x an arbitrary irrational
number. In fact, we shall now define az for z an arbitrary complex number!

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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Given a positive real number a and complex number z, we define

az = exp(z log a).

The number a is called the base and z is called the exponent. The astute student
might ask: What if z = k is an integer? Does this definition of ak agree with our usual
definition of k products of a? What about if z = p/q ∈ Q? Then is the definition
of ap/q as exp((p/q) log a) in agreement with our previous definition as q

√
ap? We

answer these questions and more in the following theorem.

Generalized power rules

Theorem 4.33 The following laws of exponents hold:

(1) For a > 0, ak = a · a · · · a︸ ︷︷ ︸
k times

for every integer k.

(2) ez = exp z for all z ∈ C.
(3) log xy = y log x for all x, y > 0.
(4) For every a > 0, x ∈ R, and z, w ∈ C,

az · aw = az+w; az · bz = (ab)z; (ax)z = axz.

(5) If p/q ∈ Q, then
ap/q = q

√
ap.

(6) If a > 1, then x �→ ax is a strictly increasing continuous bijection of R onto
(0,∞), and limx→∞ ax = ∞ and limx→−∞ ax = 0. On the other hand, if
0 < a < 1, then x �→ ax is a strictly decreasing continuous bijection of R

onto (0,∞), and limx→∞ ax = 0 and limx→−∞ ax = ∞.
(7) If a, b > 0 and x > 0, then a < b if and only if ax < bx.

Proof By definition of ak and the additive property of the exponential,

ak = exp(k log a) = exp(log a + · · · + log a
︸ ︷︷ ︸

k times

) = exp(log a) · · · exp(log a)
︸ ︷︷ ︸

k times

= a · · · a︸ ︷︷ ︸
k times

,

which proves (1). Property (2) follows from the fact that log e = 1:

ez := exp(z log e) = exp(z).

To prove (3), observe that

exp(log(xy)) = xy = exp(y log x).

Since the exponential is one-to-one, we have log(xy) = y log x.
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If x ∈ R and z, w ∈ C, then the following computations prove (4):

az · aw = exp(z log a) exp(w log a) = exp(z log a + w log a)

= exp
(
(z + w) log a

)
= az+w,

az · bz = exp(z log a) exp(z log b) = exp(z log a + z log b)

= exp
(

z log(ab)
)

= (ab)z,

and
(ax)z = exp(z log ax) = exp(xz log a) = axz.

To prove (5), observe that by the last formula in (4),

(
ap/q
)p = a(p/q)q = ap.

Therefore, since ap/q > 0, by the uniqueness of roots (Theorem 2.32 on p. 93),
ap/q = q

√
ap.

We leave the reader to verify that since exp : R −→ (0,∞) is a strictly increasing
bijection with the limits limx→∞ exp(x) = ∞ and limx→−∞ exp(x) = 0, then for
every b > 0, exp(bx) is also a strictly increasing continuous bijection of R onto
(0,∞), and limx→∞ exp(bx) = ∞ and limx→−∞ exp(bx) = 0. On the other hand, if
b < 0, say b = −c, where c > 0, then these properties are reversed: exp(−cx) is a
strictly decreasing continuous bijection of R onto (0,∞), and limx→∞ exp(−cx) = 0
and limx→−∞ exp(−cx) = ∞. Keeping this discussion fresh in our memory, we can
prove (6). First, note that if a > 1, then log a > 0 (Property (6) of Theorem 4.32),
so ax = exp(x log a) = exp(bx), where b = log a, has the required properties in (6).
On the other hand, if 0 < a < 1, then log a < 0, so ax = exp(x log a) = exp(−cx),
where c = − log a > 0, has the required properties in (6).

Finally, to verify (7), observe that for a, b > 0 and x > 0, using the fact that log
and exp are strictly increasing, we obtain

a < b ⇐⇒ log a < log b ⇐⇒ x log a < x log b

⇐⇒ ax = exp(x log a) < exp(x log b) = bx.

�

Example 4.33 Using Tannery’s theorem, we shall prove the pretty formula

e

e − 1
= lim

n→∞

{(n

n

)n +
(

n − 1

n

)n

+
(

n − 2

n

)n

+ · · · +
(

1

n

)n}

.

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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To prove this, we write the right-hand side as lim
n→∞

n−1∑

k=0

ak(n), where for 0 ≤ k ≤ n−1,

ak(n) :=
(n − k

n

)n =
(

1 − k

n

)n
.

Observe that

lim
n→∞ ak(n) = lim

n→∞

(
1 − k

n

)n = e−k,

and for 0 ≤ k ≤ n − 1,

|ak(n)| =
(

1 − k

n

)n ≤
(

e−k/n
)n = e−k,

where we used that 1 + x ≤ ex for all x ∈ R from Theorem 4.30. Thus, |ak(n)| ≤
Mk , where Mk = e−k . Since e−1 < 1, by the geometric series test,

∑∞
k=0 Mk =∑∞

k=0(e
−1)k < ∞. Hence by Tannery’s theorem, we have

lim
n→∞

{(n

n

)n +
(

n − 1

n

)n

+ · · · +
(

1

n

)n}

= lim
n→∞

n−1∑

k=0

ak(n) =
∞∑

k=0

lim
n→∞ ak(n) =

∞∑

k=0

e−k = 1

1 − 1/e
= e

e − 1
.

Example 4.34 Here’s a Puzzle: Do there exist rational numbers α and β such that
αβ is irrational? You should be able to answer this in the affirmative! Here’s a harder
question [117]: Do there exist irrational numbers α and β such that αβ is rational?
Here’s a very cool argument to the affirmative. Consider α = √

2 and β = √
2, both

of which are irrational. Then there are two cases: either αβ rational or irrational. If
αβ is rational, then we have answered our question in the affirmative. However, in
the case that α′ := αβ is irrational, then by our rule (4) of exponents,

(α′)β =
(
αβ
)β = αβ2 = √

2
2 = 2

is rational, so our answer is affirmative in this case as well.6 Do there exist irrational
numbers α and β such that αβ is irrational? For the answer, see Problem 6.

6If you’re wondering,
√

2
√

2
is in fact irrational, by the Gelfond–Schneider theorem.
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4.7.4 The Riemann Zeta Function

The last two subsections are applications of what we’ve learned about exponentials,
logs, and powers. We begin with the Riemann zeta function, which is involved in
one of the most renowned unsolved problems in all of mathematics: The Riemann
hypothesis, which we’ll explain in a moment. Here, the Riemann zeta function is
simply a “generalized p-series,” where instead of using p, a rational number, we use
a complex number:

ζ(z) :=
∞∑

n=1

1

nz
= 1 + 1

2z
+ 1

3z
+ 1

4z
+ · · · .

The Riemann zeta function

Theorem 4.34 The Riemann zeta function converges absolutely for all z ∈ C

with Re z > 1.

Proof Let p be an arbitrary rational number with p > 1; then we just have to prove
that ζ(z) converges absolutely for all z ∈ C with Re z ≥ p. To see this, let z = x + iy
with x ≥ p and observe that nz = ez log n = ex log n · eiy log n. In Problem 4 you’ll prove
that |eiθ| = 1 for every real θ, so |eiy log n| = 1, and hence

|nz| = |ex log n · eiy log n| = ex log n ≥ ep log n = np.

Therefore,
∣
∣1/nz

∣
∣ ≤ 1/np, so by comparison with the p-series

∑
1/np, it follows that∑ |1/nz| converges. This completes our proof. �

We now state the Riemann hypothesis. It turns out using techniques from complex
analysis that it’s possible to define ζ(z) not just for Re z > 1 as we have shown, but
also for all complex numbers z ∈ C except for z = 1. Consider the so-called critical
strip, which is the set of z ∈ C such that 0 < Re z < 1, and consider the critical line,
the set of z ∈ C such that Re z = 1/2, as shown here (Fig. 4.34):

Critical line: Re(z) = 1
2

0 11
2

Critical strip = the shaded region
= all z ∈ C such that 0 < Re(z) < 1

Fig. 4.34 The shaded region continues vertically up and down
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Many mathematicians, starting with Riemann, have found zeros of the ζ-function
(that is, points z such that ζ(z) = 0) on the critical line. (In fact, the ζ-function has
infinitely many zeros on the critical line.) On the other hand, no one has found a
single zero of the ζ-function in the critical strip not on the critical line. The following
conjecture seems natural to make:

Riemann hypothesis: If z is in the critical strip and ζ(z) = 0, then z is on the critical line.

Although simple to state, this conjecture is so difficult to solve (either in favor
or against) that there is a $1 million reward for its solution! For more on the Rie-
mann hypothesis, see http://www.claymath.org/millennium/, and see [53] for ideas
on how to solve this conjecture. By the way, the Riemann hypothesis has profound
implications to prime numbers; to understand why, see Section 7.6, where we derive
a formula for the ζ-function in terms of primes.

4.7.5 The Euler–Mascheroni Constant

The constant

γ := lim
n→∞

(

1 + 1

2
+ · · · + 1

n
− log n

)

is called the Euler–Mascheroni constant. This constant was calculated to 16 digits
in 1781 by Euler, who used the notation C for γ. The symbol γ was first used
by Lorenzo Mascheroni (1750–1800) in 1790, when he computed γ to 32 decimal
places, although only the first 19 places were correct (cf. [104, pp. 90–91]). To prove
that the limit on the right of γ exists, consider the sequence

γn = 1 + 1

2
+ · · · + 1

n
− log n, n = 2, 3, 4, . . . .

We shall prove that γn is nonincreasing and bounded below, and hence the Euler–
Mascheroni constant is defined. In our proof, we shall see that γ is between 0 and 1;
its value up to ten digits in base 10 is γ = 0.5772156649 . . .. Here’s a mnemonic to
remember the digits of γ [254]:

These numbers proceed to a limit Euler’s subtle mind discerned. (4.28)

The number of letters in each word represents a digit of γ; e.g., “These” represents 5,
“numbers” represents 7, etc. The sentence (4.28) gives ten digits of γ: 0.5772156649.
By the way, it is not known7 whether γ is rational or irrational, let alone transcen-
dental!

7“Unfortunately, what is little recognized is that the most worthwhile scientific books are those in
which the author clearly indicates what he does not know; for an author most hurts his readers by
concealing difficulties.” Evariste Galois (1811–1832) [201].

http://www.claymath.org/millennium/
http://dx.doi.org/10.1007/978-1-4939-6795-7_7
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To prove that {γn} is a bounded monotone sequence, we shall need the following
inequality proved in Section 3.3 (see Eq. (3.26) on p. 181):

(
n + 1

n

)n

< e <

(
n + 1

n

)n+1

for all n ∈ N.

A little algebra reveals another way to write these inequalities as

e1/(n+1) <
n + 1

n
< e1/n.

Taking logarithms, we obtain

1

n + 1
< log(n + 1) − log n <

1

n
. (4.29)

Using the definition of γn and the first inequality in (4.29), we see that

γn = 1 + 1

2
+ · · · + 1

n
− log n = γn+1 − 1

n + 1
+ log(n + 1) − log n > γn+1,

so the sequence {γn} is strictly decreasing. In particular, γn < γ1 = 1 for all n. We
now show that γn is bounded below by zero. We already know that γ1 = 1 > 0.
Using the second inequality in (4.29) with n = 2, n = 3, . . . , n = n, we obtain

γn = 1 + 1

2
+ 1

3
+ · · · + 1

n
− log n > 1 +

(
log 3 − log 2

)
+
(

log 4 − log 3
)

+
(

log 5 − log 4
)

+ · · · +
(

log n − log(n − 1)
)

+
(

log(n + 1) − log n
)

− log n

= 1 − log 2 + log(n + 1) − log n > 1 − log 2 > 0.

Here, we used that log 2 < 1 because 2 < e. Thus, {γn} is strictly decreasing and
bounded below by 1 − log 2 > 0, so γ is well defined and 0 < γ < 1.

We can now show that the value of the alternating harmonic series

∞∑

n=1

(−1)n−1

n
= 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ − · · ·

is log 2. Indeed, by the definition of γ, we can write

γ = lim
n→∞

(

1 + 1

2
+ 1

3
+ 1

4
+ · · · + 1

2n
− log 2n

)

and also

γ = lim
n→∞ 2

(
1

2
+ 1

4
+ · · · + 1

2n

)

− log n.

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
http://dx.doi.org/10.1007/978-1-4939-6795-7_3


4.7 Exponentials, Logs, Euler and Mascheroni, and the ζ-Function 311

Subtracting, we obtain

0 = lim
n→∞

(

1 − 1

2
+ 1

3
− 1

4
+ − · · · − 1

2n

)

− log 2,

which proves that

log 2 =
∞∑

n=1

(−1)n−1 1

n
= 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ − · · · .

Using a similar technique, one can find series representations for log 3; see Problem 7.
Using the above formula for log 2, in Problem 7 you are asked to derive the following
striking expression:

2 = e1

e1/2
· e1/3

e1/4
· e1/5

e1/6
· e1/7

e1/8
· e1/9

e1/10
· · · . (4.30)

� Exercises 4.7

1. Establish the following properties of exponential functions.

(a) If zn → z and an → a (with zn, z complex and an, a > 0), then azn
n → az.

(b) If a, b > 0, then for every x < 0, we have a < b if and only if ax > bx.
(c) If a, b > 0, then for every complex number z, we have a−z = 1/az and

(a/b)z = az/bz.
(d) For every z ∈ C, we have exp(z) = exp(z); that is, the complex conjugate

of exp(z) is exp of the complex conjugate of z.
(e) Prove that for every θ ∈ R, |eiθ| = 1.

2. Let a ∈ R with a �= 0 and define f (x) = xa.

(a) If a > 0, prove that f : [0,∞) −→ R is continuous and strictly increasing,
limx→0+ f = 0, and limx→∞ f = ∞.

(b) If a < 0, prove that f : (0,∞) −→ R is continuous and strictly decreasing,
limx→0+ f = ∞, and limx→∞ f = 0.

3. Establish the following limit properties of the exponential function.

(a) Show that for every n ∈ N and x ∈ R with x > 0 we have ex >
xn+1

(n + 1)! . Use

this inequality to prove that for every natural number n, we have lim
x→∞

xn

ex
= 0.

(b) Using (a), prove that for every a ∈ R with a > 0, we have lim
x→∞

xa

ex
= 0.

It follows that ex grows faster than every power (no matter how large) of x.
This limit is usually derived in elementary calculus using L’Hospital’s rule.
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4. Consider the real numbers a1, . . . , an ≥ 0. Recall from Problem 7 on p. 46 that
the arithmetic–geometric mean inequality (AGMI) is the inequality

(a1 · a2 · · · an)
1/n ≤ a1 + · · · + an

n
.

Prove the AGMI by considering the inequality 1 + x ≤ ex for x = xk , k =
1, . . . , n, where xk = −1 + ak/a (so that ak/a = 1 + xk) with a = (a1 + · · · +
an)/n.

5. Derive the following remarkable formula for all x > 0:

log x = lim
n→∞ n

(
n
√

x − 1
)

(Halley’s formula),

named after the famous Edmond Halley (1656–1742) of Halley’s comet. Sug-
gestion: Write n

√
x = elog x/n and write elog x/n as a series in log x/n.

6. (Cf. [117]) Puzzle: Do there exist irrational numbers α and β such that αβ is
irrational? Suggestion: Consider αβ and αβ′

, where α = β = √
2 and β′ =√

2 + 1.
7. In this fun problem, we derive some interesting formulas.

(a) Prove that each of the following sums equals γ, the Euler–Mascheroni con-
stant:

∞∑

n=1

[
1

n
− log

(

1 + 1

n

)]

, 1 +
∞∑

n=2

[
1

n
+ log

(

1 − 1

n

)]

,

1 +
∞∑

n=1

[
1

n + 1
+ log

(

1 + 1

n

)]

.

Suggestion: Think telescoping series.
(b) Using a technique similar to how we derived our formula for log 2, prove

that

log 3 = 1 + 1

2
− 2

3
+ 1

4
+ 1

5
− 2

6
+ 1

7
+ 1

8
− 2

9
+ + − · · · .

Can you find a series representation for log 4?
(c) Define an = (e1/e1/2) · · · (e1/(2n−1)/e1/(2n)). Prove that 2 = lim an.

8. Show that the sequence {an}, with an = ∑n
k=1

1
n+k = 1

n+1 + 1
n+2 + · · · + 1

n+n ,
converges to log 2. Suggestion: Can you relate an to the 2nth partial sum of the
alternating harmonic series?

9. (Cf. [41, 93]) In this problem we establish a “well-known” limit from calculus,
but without using calculus!

(i) Show that log x < x for all x > 0.
(ii) Show that (log x)/x < 2/x1/2 for x > 0. Suggestion: log x = 2 log x1/2.
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(iii) Show that lim
x→∞

log x

x
= 0. This limit is usually derived in elementary cal-

culus using L’Hospital’s rule.

(iv) Now let a ∈ R with a > 0. Prove that lim
x→∞

log x

xa
= 0. Thus, log x grows

slower than every power (no matter how small) of x.

10. In this problem we get an inequality for log(1 + x) and use it to obtain a nice
formula.

(i) Prove that for all x ∈ [0, 1], we have e
1
2 x ≤ 1 + x. Conclude that for all

x ∈ [0, 1], we have log(1 + x) ≥ x/2.
(ii) Using Tannery’s theorem, prove that

ζ(2) = lim
n→∞

{
1

n2 log
(

1 + 12

n2

) + 1

n2 log
(

1 + 22

n2

) + · · · + 1

n2 log
(

1 + n2

n2

)

}

.

11. In high school you probably learned logarithms with other “bases” besides e.
Let a ∈ R with a > 0 and a �= 1. For x > 0, we define

loga x := log x

log a
,

called the logarithm of x to the base a. Note that if a = e, then loge = log, our
usual logarithm. Here are some of the well-known properties of loga.

(a) Prove that x �→ loga x is the inverse function of x �→ ax.
(b) Prove that for every x, y > 0, loga xy = loga x + loga y.
(c) Prove that if b > 0 with b �= 1 is another base, then for all x > 0,

loga x =
(

log b

log a

)

logb x (Change of base formula).

12. Part (a) of this problem states that a “function that looks like an exponential
function is an exponential function,” while (b) says the same for the logarithm
function.

(a) Let f : R −→ R satisfy f (x + y) = f (x) f (y) for all x, y ∈ R (cf. Problem
4 on p. 268). Assume that f is not the zero function. If f is continuous,
prove that

f (x) = ax for all x ∈ R, where a = f (1).

Suggestion: Show that f (x) > 0 for all x. Now there are several ways to
proceed. One way is to first prove that f (r) = ( f (1))r for all rational r (to
prove this, you do not require the continuity assumption). The second way
is to define h(x) = log f (x). Prove that h is linear, then apply Problem 3 on
p. 268.
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(b) Let g : (0,∞) −→ R satisfy g(x · y) = g(x) + g(y) for all x, y > 0. Prove
that if g is continuous, then there exists a unique real number c such that

g(x) = c log x for all x ∈ (0,∞).

13. (Exponentials the “old-fashioned way”) Fix a > 0 and x ∈ R. In this section
we defined ax := exp(x log a). However, in this problem we shall define ax

the “old-fashioned way” via rational sequences. In this problem we assume
knowledge of rational powers as defined in Section 2.7 on p. 89, and we
proceed to define them for real powers.

(i) From Example 3.6 on p. 157, we know that a1/m → 1 and a−1/m =
(a−1)1/m → 1 as m → ∞. Thus, given ε > 0 we can choose m ∈ N

such that 1 − ε < a±1/m < 1 + ε. If r is a rational number with |r| < 1/m,
prove that |ar − 1| < ε.

(ii) Let {rn} be a sequence of rational numbers converging to x. Prove that {arn}
is a Cauchy sequence; hence it converges to a real number, say ξ. We define

ax := ξ.

Prove that this definition makes sense, that is, if {r′
n} is any other sequence

of rational numbers converging to x, then {ar′
n} also converges to ξ.

(Of course, this alternative definition of powers agrees with the definition
of ax found in this section!)

14. (Logarithms the “old-fashioned way”) In this problem we show how to define
the logarithm using rational sequences and not as the inverse of exp. Fix a > 0.

(i) Prove that it is possible to define integers a0, a1, a2, . . . inductively with
0 ≤ ak ≤ 9 for k ≥ 1 such that if xn and yn are the rational numbers

xn = a0 + a1

10
+ · · · + an−1

10n−1
+ an

10n
and yn = a0 + a1

10
+ · · ·

+ an−1

10n−1
+ an + 1

10n
,

then exn ≤ a < eyn .
(ii) Prove that both sequences {xn} and {yn} converge to the same value, call it

L. Show that eL = a, where eL is defined by means of the previous problem.
Of course, L is just the logarithm of a as defined in this section.

15. (The Euler–Mascheroni constant II) In this problem we prove that the limit
γ := lim γn exists, where γn = 1 + 1

2 + · · · + 1
n − log n, following [43].

(i) For n ≥ 2, define an = γn − 1
n . Prove that

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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an = log

(
e1

2/1
· e1/2

3/2
· · · e1/(n−1)

n/(n − 1)

)

.

(ii) Using the inequalities in (3.26), prove

1 <
e1/n

(n + 1)/n
and

e1/n

(n + 1)/n
< e

1
n(n+1) . (4.31)

(iii) Using the inequalities in (4.31), prove that the sequence {an}, where n ≥ 2,
is strictly increasing such that 0 < an < 1 for all n ≥ 2.

(iv) Prove that lim γn exists; hence the Euler–Mascheroni constant exists.

16. (The Euler–Mascheroni constant III) Following [15], we prove that γ :=
lim γn exists, where γn = 1 + 1

2 + · · · + 1
n − log n. For each k ∈ N, define

ak := e
(
1 + 1

k

)−k
, so that e = ak

(
1 + 1

k

)k
.

(i) For each k ∈ N, prove that 1
k = log(a1/k

k ) + log(k + 1) − log k.
(ii) Prove that

1 + 1

2
+ · · · + 1

n
− log(n + 1) = log

(
a1 a1/2

2 a1/3
3 · · · a1/n

n

)
.

Remark: In (iii) and (iv), the inequalities in (3.26) will be of use.

(iii) Prove that the sequence
{

log
(

a1 a1/2
2 · · · a1/n

n

)}
is nondecreasing.

(iv) Prove that

log
(

a1 a1/2
2 · · · a1/n

n

)
< log

(

1 + 1

1

)

+ 1

2
log

(

1 + 1

2

)

+ · · · + 1

n
log

(

1 + 1

n

)

<
1

1
+ 1

2
· 1

2
+ · · · + 1

n
· 1

n
.

Suggestion: Begin by showing that ak < 1 + 1/k for each k.
(v) Since the series of the reciprocals of the squares of the natural numbers

converges, the sequence
{

log
(

a1 a1/2
2 · · · a1/n

n

)}
is bounded and hence con-

verges. Prove that {γn} converges, and hence the Euler–Mascheroni constant
exists.

4.8 � Proofs that
∑

1/p Diverges

We know that the harmonic series
∑

1/n diverges. In other words, partial sums of
reciprocals of the natural numbers increase beyond any positive number. However,
if we pick only the squares of natural numbers and sum their reciprocals, then we
get the convergent sum

∑
1/n2; here’s what we’ve discussed so far (Fig. 4.35):

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .

Fig. 4.35 Top Considering all natural numbers, the sum of their reciprocals diverges. Bottom
Considering only the perfect squares, the sum of their reciprocals converges

Of course, if we pick perfect cubes, or other higher powers, and sum their reciprocals,
we also get convergent series. One may ask: What if we pick the primes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .

and sum their reciprocals:

∑ 1

p
= 1

2
+ 1

3
+ 1

5
+ 1

7
+ 1

11
+ 1

13
+ 1

17
+ · · · ;

do we get a convergent sum? Since there are arbitrarily large gaps between primes
(see Problem 1 on p. 64), one may conjecture that

∑
1/p converges. However, we

shall prove that
∑

1/p diverges! The proofs we present are found in [22, 65, 140,
176] (cf. [177]). Other proofs can be found in the exercises. An expository article
giving other proofs related to this fascinating divergent sum can be found in [249].
See also [51, 165].

4.8.1 Proof I: Proof by Multiplication and Rearrangement
[22, 65]

Suppose, for the sake of contradiction, that
∑

1/p converges. Then we can fix a
prime number m such that

∑
p>m 1/p ≤ 1/2. Let 2 < 3 < · · · < m be the list of all

prime numbers up to m. For N > m, let PN be the set of natural numbers between 2
and N all of whose prime factors are less than or equal to m, and let QN be the set
of natural numbers between 2 and N all of whose prime factors are greater than m.
Explicitly,

k ∈ PN ⇐⇒ 2 ≤ k ≤ N and k = 2i3j · · · mk, some i, j, . . . , k ≥ 0,

� ∈ QN ⇐⇒ 2 ≤ � ≤ N and � = p q · · · r, p, q, . . . , r > m are prime.
(4.32)

In the product p q · · · r appearing in the second line, prime numbers may be repeated.
Observe that every integer n with 2 ≤ n ≤ N that is not in PN or QN must have prime
factors that are both less than or equal to m and greater than m, and hence can be
factored in the form n = k �, where k ∈ PN and � ∈ QN . Thus, the finite sum
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∑

k∈PN

1

k
+
∑

�∈QN

1

�
+
(∑

k∈PN

1

k

)( ∑

�∈QN

1

�

)
=
∑

k∈PN

1

k
+
∑

�∈QN

1

�
+

∑

k∈PN ,�∈QN

1

k �
,

contains every number of the form 1/n, where 2 ≤ n ≤ N . Of course, the resulting
sum contains many other numbers too. In particular,

∑

k∈PN

1

k
+
∑

�∈QN

1

�
+
(∑

k∈PN

1

k

)( ∑

�∈QN

1

�

)
≥

N∑

n=2

1

n
.

We shall prove that the finite sums on the left remain bounded as N → ∞, which
contradicts the fact that the harmonic series diverges. This contradiction shows that
our original assumption, that

∑
1/p converges, was nonsense.

To see that
∑

PN
1/k converges, note that each geometric series

∑∞
j=1 1/pj =

∑∞
j=1(1/p)j converges (since 1/p < 1 for all primes p). Moreover, for every prime

p, we have
∞∑

j=1

1

pj
= 1/p

1 − 1/p
= 1

p − 1
≤ 1.

It follows that for every N ∈ N, we have

( N∑

i=1

1

2i

)( N∑

j=1

1

3j

)

· · ·
( N∑

k=1

1

mk

)

≤ 1.

Pulling out the summations (that is, using the distributive law many times), we obtain

N∑

i=1

N∑

j=1

· · ·
N∑

k=1

1

2i · 3j · · · mk
≤ 1.

The left-hand side of this inequality contains all fractions 1/k, where k ∈ PN (see
the definition of PN in (4.32)). It follows that

∑
PN

1/k is bounded above by 1. Thus,
limN→∞

∑
PN

1/k is finite.
We now prove that limN→∞

∑
QN

1/� is finite. To do so, recall that we have fixed
a prime m such that

∑
p>m 1/p ≤ 1/2. For N > m, let

αN =
∑

m<p<N

1

p
.

Then αN ≤ 1/2. Also, observe that

(αN )2 =
( ∑

m<p<N

1

p

)( ∑

m<q<N

1

q

)

=
∑

m<p,q<N

1

p q
,
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where the sum is over all primes p, q with m < p, q < N , and

(αN )3 =
∑

m<p,q,r<N

1

p q r
,

where the sum is over all primes p, q, r with m < p, q, r < N . We can continue this
procedure, showing that (αN )j is the sum

∑
1/(p q · · · r), where the sum is over all

j-tuples of primes p, q, . . . , r such that m < p, q, . . . , r < N . By the definition of
QN , in (4.32), it follows that

∑

�∈QN

1

�
≤

∞∑

j=1

(αN )j,

which is bounded by
∑∞

j=1(1/2)j = 1. Hence, the limit limN→∞
∑

QN
1/� is finite,

and we have reached a contradiction.

4.8.2 An Elementary Number Theory Fact

Our next proof depends on the idea of square-free integers. A positive integer is
said to be square-free if no squared prime divides it; that is, if a prime occurs in its
prime factorization, then it occurs with multiplicity one. For instance, 1 is square-free,
because no squared prime divides it, 10 = 2·5 is square-free, but 24 = 23 ·3 = 22 ·2·3
is not square-free.

We claim that every positive integer can be written uniquely as the product of a
square and a square-free integer. Indeed, let n ∈ N and let k be the largest natural
number such that k2 divides n. Then n/k2 must be square-free, for if n/k2 is divided
by a squared prime p2, then pk > k divides n, which is not possible by definition of
k. Thus, every positive integer n can be uniquely written as n = k2 if n is a perfect
square, or

n = k2 · p q · · · r, (4.33)

where k ≥ 1 and where p, q, . . . , r are distinct primes less than or equal to n. Using
the fact that every positive integer can be uniquely written as the product of a square
and a square-free integer, we shall prove that

∑
1/p diverges.

4.8.3 Proof II: Proof by Comparison [176, 177]

The trick is to understand, for every natural number N ≥ 3, the product

∏

p<N

(
1 + 1

p

)
,
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where the product is over all primes less than N . In other words, if 2 < 3 < · · · < m
are all the primes less than N , then

∏

p<N

(
1 + 1

p

)
=
(

1 + 1

2

)(
1 + 1

3

)
· · ·
(

1 + 1

m

)
.

For example, if N = 5, then

∏

p<5

(
1 + 1

p

)
=
(

1 + 1

2

)(
1 + 1

3

)
= 1 + 1

2
+ 1

3
+ 1

2 · 3
.

If N = 6, then
∏

p<6

(
1 + 1

p

)
=
(

1 + 1

2

)(
1 + 1

3

)(
1 + 1

5

)

= 1 + 1

2
+ 1

3
+ 1

5
+ 1

2 · 3
+ 1

2 · 5
+ 1

3 · 5
+ 1

2 · 3 · 5
.

By induction we can write

∏

p<N

(
1 + 1

p

)
= 1 +

∑

p<N

1

p
+
∑

p,q<N

1

p · q
+ · · · +

∑

p,q,...,r<N

1

p · q · · · r
, (4.34)

where the kth sum on the right is the sum over over all reciprocals of the form 1
p1·p2···pk

with p1, . . . , pk distinct primes less than N . To use our fact (4.33), let N ≥ 3 and
multiply both sides of (4.34) by

∑
k<N 1/k2, obtaining

∏

p<N

(
1 + 1

p

)
·
∑

k<N

1

k2
=
∑

k<N

1

k2
+
∑

k<N

∑

p<N

1

k2p

+
∑

k<N

∑

p,q<N

1

k2 · p · q
+ · · · +

∑

k<N

∑

p,q,...,r<N

1

k2 · p · q · · · r
.

By our discussion on square-free numbers around (4.33), the right-hand side contains
every number of the form 1/n, where n < N (as well as many other numbers). In
particular,

∏

p<N

(
1 + 1

p

)
·
∑

k<N

1

k2
≥
∑

n<N

1

n
. (4.35)

From this inequality, we shall prove that
∑

1/p diverges. Indeed, we know that∑∞
k=1 1/k2 converges, while

∑∞
n=1 1/n diverges, so it follows that

lim
N→∞

∏

p<N

(
1 + 1

p

)
= ∞.
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To relate this product to the sum
∑

1/p, note that

ex = 1 + x + x2

2! + x3

3! + · · · ≥ 1 + x

for x ≥ 0. In fact, this inequality holds for all x ∈ R by Theorem 4.30 on p. 301.
Hence,

∏

p<N

(
1 + 1

p

)
≤
∏

p<N

exp(1/p) = exp
(∑

p<N

1

p

)
.

Since the left-hand side increases without bound as N → ∞, so must the sum∑
p<N 1/p. This ends Proof II; see Problem 2 for a related proof.

4.8.4 Proof III: Another Proof by Comparison [140]

The trick now is to understand, for every natural number N ≥ 3, the product

∏

p<N

(
1 − 1

p

)−1
,

where the product is over all primes less than N . By the sum formula for a geometric
series, we have

(
1 − 1

p

)−1 =
∞∑

n=0

1

pn
.

Now let N ≥ 3 and let 2 < 3 < · · · < m be all the primes less than N . It follows that

∏

p<N

(
1 − 1

p

)−1 =
(

1 − 1

2

)−1(
1 − 1

3

)−1 · · ·
(

1 − 1

m

)−1

=
( ∞∑

i=0

1

2i

)( ∞∑

j=0

1

3j

)

· · ·
( ∞∑

k=0

1

mk

)

≥
( N∑

i=0

1

2i

)( N∑

j=0

1

3j

)

· · ·
( N∑

k=0

1

mk

)

=
N∑

i=1

N∑

j=0

· · ·
N∑

k=0

1

2i · 3j · · · mk
. (4.36)

Since every natural number n < N can be written in the form

n = 2i 3j · · · mk
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for some nonnegative integers i, j, . . . , k, the sum (4.36) contains all the numbers
1
1 , 1

2 , 1
3 , 1

4 , . . . , 1
N−1 (and of course, many more numbers too). Thus,8

∏

p<N

(
1 − 1

p

)−1 ≥
N−1∑

n=1

1

n
.

Rewriting the left-hand side, we get

∏

p<N

p

p − 1
≥

N−1∑

n=1

1

n
. (4.37)

Now recall from (4.29) on p. 310 that for every natural number n, we have

log(n + 1) − log n <
1

n
. (4.38)

Therefore, taking logarithms of both sides of (4.37), we get

log
( N−1∑

n=1

1

n

)
≤ log

(∏

p<N

p

p − 1

)

=
∑

p<N

(
log p − log(p − 1)

)

≤
∑

p<N

1

p − 1
≤
∑

p<N

2

p
,

where we used that p ≤ 2(p−1) (this is because n ≤ 2(n−1) for all natural numbers
n > 1). Since

∑N−1
n=1 1/n → ∞ as N → ∞, log

(∑N−1
n=1 1/n

) → ∞ as N → ∞ as
well, so the sum

∑
1/p must diverge.

� Exercises 4.8

1. Let sn = 1/2 + 1/3 + · · · + 1/pn (where pn is the nth prime) be the nth partial
sum of

∑
1/p. We know that sn → ∞ as n → ∞. However, it turns out that

sn → ∞ avoiding all integers! (That is, for all n, we have sn /∈ Z.) Prove this.
Suggestion: Multiply sn by 2 · 3 · · · pn−1.

2. Proof that II can be slightly modified to avoid using the square-free fact. Derive the
inequality (4.35) (which, as shown in the main text, implies that

∑
1/p diverges)

by proving that for every prime p,

8Following an idea of Euler [68], the identity (4.37) was used by J.J. Sylvester (1814–1897) in
1888 to prove the number of primes is infinite [238]. In fact, since the harmonic series diverges, the
left-hand side of (4.37) must become unbounded as N → ∞; consequently, there must be infinitely
many primes!
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(

1 + 1

p

)

·
n∑

k=0

1

p2k
=

2n+1∑

k=0

1

pk
.

3. Here is another proof that is similar to Proof III in which we replace the inequality
(4.38) with the following argument.

(i) Prove that
1

1 − x/2
≤ ex for all 0 ≤ x ≤ 1. (4.39)

Suggestion: Prove that e−x ≤ 1 − x/2 using the series expansion for e−x.
(ii) Taking logarithms of (4.39), prove that for every prime number p, we have

− log
(

1 − 1

p

)
= − log

(
1 − 2/p

2

)
≤ 2

p
.

(iii) Prove that
1

2

∑

p<N

log
( p

p − 1

)
≤
∑

p<N

1

p
.

(iv) Finally, use (4.37) to prove that
∑

1/p diverges.

4. (Cf. [66]) Here’s one more proof that
∑

1/p diverges. Assume, to get a contra-
diction, that

∑
1/p converges. Then we can fix a natural number N such that∑

p>N 1/p ≤ 1/2; derive a contradiction as follows.

(i) For every x ∈ N, let Ax be the set of all integers 1 ≤ n ≤ x such that n = 1
or n can be factored into primes all of which are ≤ N . Given n ∈ Ax, we
can write n = k2m, where m is square-free. Prove that k ≤ √

x. From this,
deduce that

#Ax ≤ C
√

x,

where #Ax denotes the number of elements in the set Ax, and C is a constant
(you can take C to equal the number of square-free integers m ≤ N).

(ii) Given x ∈ N and a prime p, prove that the number of integers 1 ≤ n ≤ x
divisible by p is no more than x/p.

(iii) Given x ∈ N, prove that x − #Ax equals the number of integers 1 ≤ n ≤ x
that are divisible by some prime p > N . From this fact and Part (ii), together
with our assumption that

∑
p>N 1/p ≤ 1/2, prove that

x − #Ax ≤ x

2
.

(iv) Using (iii) and the inequality #Ax ≤ C
√

x that you proved in Part (i), derive
a contradiction.
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4.9 Defining the Trig Functions and π, and Which
is Larger, πe or eπ?

In high school we learned about sine and cosine using geometric intuition based on
either triangles or the unit circle; here’s the triangle version:

θ
cos θ =

adjacent
hypotonus

, sin θ =
opposite
hypotonus

, tan θ =
opposite
adjacent

(For this point of view, see the interesting paper [226].) In this section we introduce
these function from a purely analytic framework, and we prove that these functions
have all the properties you learned in high school. In high school we also learned
about the number9 π, again using geometric intuition. In this section we define π
rigorously using analysis without any geometry. However, we do prove that π has all
the geometric properties you think it does. At the end of this section we prove that
the above triangle formulas are indeed true.

4.9.1 The Trigonometric and Hyperbolic Functions

Cosine and sine are the functions cos : C −→ C and sin : C −→ C defined by the
equations

cos z = eiz + e−iz

2
, sin z = eiz − e−iz

2i
.

In particular, both cosine and sine are continuous functions, being linear combinations
of the continuous functions eiz = exp(iz) and e−iz = exp(−iz). From these formulas,
we see that cos 0 = 1 and sin 0 = 0; other “well-known” values of sine and cosine
are discussed in the problems. Multiplying the equation for sin z by i, we get

i sin z = eiz − e−iz

2
,

and then adding to cos z, the terms with e−iz cancel, and we get cos z + i sin z = eiz.
This equation is the famous Euler’s identity:

eiz = cos z + i sin z. (Euler’s identity)

This formula provides a very easy proof of de Moivre’s formula, named after its
discoverer Abraham de Moivre (1667–1754),

9“Cosine, secant, tangent, sine, 3.14159; integral, radical, u dv , slipstick, sliderule, MIT!” MIT
cheer.
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(cos z + i sin z)n = cos nz + i sin nz, z ∈ C, (de Moivre’s formula),

which is given much attention in elementary mathematics and is usually stated only
when z = θ, a real variable. Here is the one-line proof:

(cos z + i sin z)n = (eiz
)n = einz = cos nz + i sin nz.

In the following theorem, we adopt the standard notation of writing sin2 z for
(sin z)2, etc.10 Here are some well-known trigonometric identities that you memo-
rized in high school and power series you derived in calculus,11 but now we prove
these facts from the basic definitions and even for complex variables.

Basic properties of cosine and sine

Theorem 4.35 Cosine and sine are continuous functions on C. In particular,
restricting to real values, they define continuous functions on R. Moreover, for all
complex numbers z and w, they satisfy

(1) cos(−z) = cos z, sin(−z) = − sin z,
(2) cos2 z + sin2 z = 1 (Pythagorean identity),
(3) Addition formulas:

cos(z + w) = cos z cos w − sin z sin w, sin(z + w) = sin z cos w + cos z sin w,

(4) Double angle formulas:

cos(2z) = cos2 z − sin2 z = 2 cos2 z − 1 = 1 − 2 sin2 z,

sin(2z) = 2 cos z sin z.

(5) Trigonometric series: The following series converge absolutely:

cos z =
∞∑

n=0

(−1)n z2n

(2n)! , sin z =
∞∑

n=0

(−1)n z2n+1

(2n + 1)! . (4.40)

10“Sin2φ is odious to me, even though Laplace made use of it; should it be feared that sin2 φ might
become ambiguous, which would perhaps never occur, or at most very rarely when speaking of
sin(φ2), well then, let us write (sin φ)2, but not sin2 φ, which by analogy should signify sin(sin φ).”
Carl Friedrich Gauss (1777–1855).
11In elementary calculus, these series are usually derived via Taylor series and are usually attributed
to Isaac Newton (1643–1727), who derived them in his paper “De Methodis Serierum et Fluxionum”
(Method of series and fluxions), written in 1671. However, it is interesting to know that these series
were first discovered hundreds of years earlier by Madhava of Sangamagramma (1350–1425), a
mathematician from the Kerala state in southern India!
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Proof We shall leave some of this proof to the reader. Note that (1) follows directly
from the definition of cosine and sine. Consider the addition formula:

cos z cos w − sin z sin w =
(

eiz + e−iz

2

)(
eiw + e−iw

2

)

−
(

eiz − e−iz

2i

)(
eiw − e−iw

2i

)

= 1

4

{

ei(z+w) + ei(z−w) + e−i(z−w) + e−i(z+w)

+ ei(z+w) − ei(z−w) − e−i(z−w) + e−i(z+w)

}

= ei(z+w) + e−i(z+w)

2
= cos(z + w).

Taking w = −z and using (1), we get the Pythagorean identity:

1 = cos 0 = cos(z − z) = cos z cos(−z) − sin z sin(−z) = cos2 z + sin2 z.

We leave the double angle formulas to the reader. To prove (5), we use the infinite
series for the exponential to compute

eiz + e−iz =
∞∑

n=0

in zn

n! +
∞∑

n=0

(−1)n in zn

n! .

The terms when n is odd cancel, so

cos z = eiz + e−iz

2
=

∞∑

n=0

i2n z2n

(2n)! =
∞∑

n=0

(−1)n z2n

(2n)! ,

where we used the fact that i2n = (i2)n = (−1)n. This series converges absolutely,
since it is the sum of two absolutely convergent series. The series expansion for sin z
is proved in a similar manner. �

From the series expansion for sine, it is straightforward to prove the following
limit from elementary calculus (but now for complex numbers):

lim
z→0

sin z

z
= 1;

see Problem 3. Of course, from the identities in Theorem 4.35, one can derive other
identities such as the so-called half-angle formulas:

cos2 z = 1 + cos 2z

2
, sin2 z = 1 − cos 2z

2
.
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The other trigonometric functions are defined in terms of sine and cosine in the
usual manner:

tan z = sin z

cos z
, cot z = 1

tan z
= cos z

sin z

sec z = 1

cos z
, csc z = 1

sin z
,

and are called the tangent, cotangent, secant, and cosecant, respectively. Note that
these functions are defined only for those complex z for which the expressions make
sense, e.g., tan z is defined only for those z such that cos z �= 0. The extra trig
functions satisfy the same identities that you learned in high school, for example, for
all complex numbers z, w, we have

tan(z + w) = tan z + tan w

1 − tan z tan w
, (4.41)

for those z, w such that the denominator is not zero. Setting z = w, we see that

tan 2z = 2 tan z

1 − tan2 z
.

In Problem 4 we ask you to prove (4.41) and other identities.
Before baking our π, we quickly define the hyperbolic functions. For every com-

plex number z, we define

cosh z = ez + e−z

2
, sinh z = ez − e−z

2
;

these are called the hyperbolic cosine and hyperbolic sine, respectively. There are
hyperbolic tangents, secants, etc., defined in the obvious manner. Observe that by
definition, cosh z = cos iz and sinh z = −i sin iz, so after substituting iz for z in the
series for cos and sin, we obtain

cosh z =
∞∑

n=0

z2n

(2n)! , sinh z =
∞∑

n=0

(−1)n z2n+1

(2n + 1)! .

These functions are intimately related to the trig functions and share many of the
same properties, as shown in Problem 8.

4.9.2 The Number π

Substituting z = x ∈ R into the series (4.40), we obtain the following formulas
learned in elementary calculus:
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cos x =
∞∑

n=0

(−1)n x2n

(2n)! , sin x =
∞∑

n=0

(−1)n x2n+1

(2n + 1)! .

In particular, cos, sin : R −→ R. In the following lemma and theorem we shall
consider these real-valued functions instead of the more general complex versions.
The following lemma is the key result needed to define π.

Lemma 4.36 Sine and cosine have the following properties on [0, 2]:
(1) Sine is nonnegative on [0, 2] and positive on (0, 2].
(2) Cosine on [0, 2] is strictly decreasing with cos 0 = 1 and cos 2 < 0.

Proof It’s clear that sin 0 = 0. Since

sin x =
∞∑

n=0

(−1)n x2n+1

(2n + 1)! = x

(

1 − x2

2 · 3

)

+ x5

5!
(

1 − x2

6 · 7

)

+ · · ·

and one can check that each term in parentheses is positive for 0 < x < 2, we have
sin x > 0 for all 0 < x < 2. This proves (1).

Since

cos x = 1 − x2

2! + x4

4! − x6

6! + · · · ,

we have

cos 2 = 1 − 22

2! + 24

4! −
(

26

6! − 28

8!
)

−
(

210

10! − 212

12!
)

− · · · .

All the terms in parentheses are positive, because for k ≥ 2, we have

2k

k! − 2k+2

(k + 2)! = 2k

k!
(

1 − 4

(k + 1)(k + 2)

)

> 0.

Therefore,

cos 2 < 1 − 22

2! + 24

4! = −1

3
< 0.

We now show that cosine is strictly decreasing on [0, 2]. Since cosine is continu-
ous, by Theorem 4.28 on p. 297, if we show that cosine is one-to-one on [0, 2], then we
can conclude that cosine is strictly monotone on [0, 2]; then cos 0 = 1 and cos 2 < 0
tell us that cosine must be strictly decreasing. Suppose that 0 ≤ x ≤ y ≤ 2 and
cos x = cos y; we shall prove that x = y. We already know that sine is nonnegative
on [0, 2], so the identity
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sin2 x = 1 − cos2 x = 1 − cos2 y = sin2 y

implies that sin x = sin y. Therefore,

sin(y − x) = sin y cos x − cos y sin x = sin x cos x − cos x sin x = 0,

and using that 0 ≤ y − x ≤ 2 and (1), we get y − x = 0. Hence, x = y, so cosine is
one-to-one on [0, 2], and our proof is complete. �

y = cosx

π
2

Fig. 4.36 The function cos : [0, 2] −→ R crosses the x-axis at a unique point 0 < c < 2; we
define π := 2c, so that c = π/2

We now define the real number π, which is illustrated in Fig. 4.36.

Definition of π

Theorem 4.37 There exists a unique real number, denoted by the Greek letter π,
having the following two properties:

(1) 3 < π < 4,
(2) cos(π/2) = 0.

Moreover, cos x > 0 for 0 < x < π/2.

Proof By our lemma, we know that cos : [0, 2] −→ R is strictly decreasing with
cos 0 = 1 and cos 2 < 0, so by the intermediate value theorem and the fact that
cosine is strictly decreasing, there is a unique point 0 < c < 2 such that cos c = 0.
Define π := 2c, that is, c = π/2. Then 0 < c < 2 implies that 0 < π < 4, and
since cos is strictly decreasing on [0, 2], we have cos x > 0 for 0 < x < π/2 and
cos x < 0 for π/2 < x ≤ 2. To see that in fact, 3 < π < 4, we just need to show that
cos(3/2) > 0; this implies that 3/2 < π/2 < 2 and therefore 3 < π < 4. Plugging
x = 3/2 into the formula for cos x, we get

cos
3

2
=
(

1 − 32

22 2!
)

+
(

34

24 4! − 36

26 6!
)

+
(

38

28 8! − 310

210 10!
)

+ · · · .

As the reader can check, apart from the first term in parentheses, 1 − 32/(222!), all
the parentheses work out to be positive numbers. In particular, dropping all the terms
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after the second parentheses, we obtain

cos
3

2
>

(

1 − 32

22 2!
)

+
(

34

24 4! − 36

26 6!
)

.

After a few minutes of calculations, we find that the right-hand side equals 359/
(210 · 5), a positive number. Thus,

cos
3

2
> 0,

and we’re done. �

The number π/180 is called a degree. Thus, π/2 = 90 · π/180 is the same as 90
degrees, which we write as 90◦; π = 180 · π/180 is the same as 180◦; etc.

4.9.3 Properties of π

As we already stated, the approach we have taken to introducing π has been com-
pletely analytical without reference to triangles or circles, but surely the π we have
defined and the π you have grown up with must be the same. We now show that the
π we have defined is not an imposter, but indeed does have all the properties of the
π that you have grown to love.

We first state some of the well-known trig identities involving π that you learned
in high school, but now we prove them for complex variables.

Theorem 4.38 We have

cos(π/2) = 0, cos(π) = −1, cos(3π/2) = 0, cos(2π) = 1

sin(π/2) = 1, sin(π) = 0, sin(3π/2) = −1, sin(2π) = 0.

Moreover, for every complex number z, we have the following addition formulas:

cos
(

z + π

2

)
= − sin z, sin

(
z + π

2

)
= cos z,

cos(z + π) = − cos z, sin(z + π) = − sin z,

cos(z + 2π) = cos z, sin(z + 2π) = sin z.

Proof We know that cos(π/2) = 0 and, by (1) of Lemma 4.36, sin(π/2) > 0.
Therefore, since

sin2(π/2) = 1 − cos2(π/2) = 1,
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we must have sin(π/2) = 1. The double angle formulas now imply that

cos(π) = cos2(π/2) − sin2(π/2) = −1, sin(π) = 2 cos(π/2) sin(π/2) = 0,

and by another application of the double angle formulas, we get

cos(2π) = 1, sin(2π) = 0.

The facts just proved plus the addition formulas for cosine and sine in Property (3)
of Theorem 4.35 imply the last six formulas in the statement of this theorem; for
example,

cos
(

z + π

2

)
= cos z cos

π

2
− sin z sin

π

2
= − sin z,

and the other formulas are proved similarly. Finally, substituting z = π into

cos
(

z + π

2

)
= − sin z, sin

(
z + π

2

)
= cos z,

prove that cos(3π/2) = 0 and sin(3π/2) = −1. �

The last two formulas in Theorem 4.38 (plus an induction argument) imply that
cosine and sine are periodic (with period 2π) in the sense that for every n ∈ Z,

cos(z + 2πn) = cos z, sin(z + 2πn) = sin z. (4.42)

Now, substituting z = π into eiz = cos z + i sin z and using that cos π = −1 and
sin π = 0, we get eiπ = −1, or by bringing −1 to the left, we get perhaps the most
important equation in all of mathematics (at least to some mathematicians!)12:

eiπ + 1 = 0.

In one shot, this single equation contains the five “most important” constants in
mathematics: 0, the additive identity; 1, the multiplicative identity; i, the imaginary
unit; and the constants e, the base of the exponential function; and π, the fundamental
constant of geometry.

We now study the graphs of cos x and sin x for x ∈ R. By 2π-periodicity (see
(4.42)), all we need to know are their graphs on the interval [0, 2π] (Fig. 4.37). With
this in mind, we understand that the following theorem states that the graphs of
cosine and sine go “up and down” on [0, 2π], and hence on all of R, as you think
they should.

12[After proving a formula equivalent to Euler’s formula eiπ = −1 in a lecture] “Gentlemen, that is
surely true, it is absolutely paradoxical; we cannot understand it, and we don’t know what it means.
But we have proved it, and therefore we know it is the truth.” Benjamin Peirce (1809–1880). Quoted
in E. Kasner and J. Newman [119].
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y = cosx

−2π

− 3π
2 −π

−π
2

π
2

π

3π
2

2π

y = sinx

−2π

− 3π
2 −π

−π
2

π
2

π

3π
2

2π

Fig. 4.37 Theorem 4.39 says that on the interval [0, 2π], the graphs of cosine and sine oscillate
as you learned in high school. Using that cosine and sine are 2π-periodic, we obtain the graph of
cosine and sine on [−2π, 0]

Oscillation theorem

Theorem 4.39 On the interval [0, 2π], the following monotonicity properties of
cos and sin hold:

(1) Cosine decreases from 1 to −1 on [0,π] and increases from −1 to 1 on
[π, 2π].

(2) Sine increases from 0 to 1 on [0,π/2], decreases from 1 to −1 on [π/2, 3π/2],
and then increases from −1 to 0 on [3π/2, 2π].

Proof From Lemma 4.36 we know that cosine is strictly decreasing from 1 to 0
on [0,π/2], and from this same lemma, we know that sine is positive on (0,π/2).
Therefore, by the Pythagorean identity,

sin x =
√

1 − cos2 x

on [0,π/2]. Since cosine is positive and strictly decreasing on [0,π/2], this formula
implies that sine is strictly increasing on [0,π/2]. Replacing z by x − π/2 in the
identities

cos
(

z + π

2

)
= − sin z, sin

(
z + π

2

)
= cos z

found in Theorem 4.38 gives the formulas

cos x = − sin
(

x − π

2

)
, sin x = cos

(
x − π

2

)
.

The first formula here plus the fact that sine is increasing on [0,π/2] shows that
cosine is decreasing on [π/2,π], while the second formula plus the fact that cosine
is decreasing on [0,π/2] shows that sine is also decreasing on [π/2,π]. Finally, the
formulas

cos x = − cos(x − π), sin x = − sin(x − π),
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also obtained as a consequence of Theorem 4.38, and the monotone properties already
established for cosine and sine on [0,π] imply the rest of the monotone properties
in (1) and (2) of cosine and sine on [π, 2π]. �

In geometric terms, the following theorem states that points on the unit circle can
be identified with numbers (which we usually call “angles”) in the interval [0, 2π),
through the function f (θ) = (cos θ, sin θ). (However, because we like complex
notation, we shall write (cos θ, sin θ) as the complex number cos θ + i sin θ = eiθ in
the theorem.)

π and the unit circle

Theorem 4.40 For a real number θ, define

f (θ) := eiθ = cos θ + i sin θ.

Then f : R −→ C is a continuous function and has range equal to the unit circle

S
1 := {(a, b) ∈ R

2 ; a2 + b2 = 1} = {z ∈ C ; |z| = 1}.

Moreover, f (θ) = f (φ) if and only if θ − φ is an integer multiple of 2π. Finally,
for each z ∈ S

1, there exists a unique θ with 0 ≤ θ < 2π such that f (θ) = z.

Proof Since the exponential function is continuous, so is the function f , and by the
Pythagorean identity, cos2 θ + sin2 θ = 1, so we also know that f maps to the unit
circle. Given z in the unit circle, we can write z = a + ib, where a2 + b2 = 1. We
prove that there exists a unique 0 ≤ θ < 2π such that f (θ) = z, that is, such that
cos θ = a and sin θ = b. Now either b ≥ 0 or b < 0. Assume that b ≥ 0; the case
b < 0 is proved in a similar way. Since, according to Theorem 4.39, sin θ < 0 for all
π < θ < 2π, and we are assuming b ≥ 0, there is no θ with π < θ < 2π such that
f (θ) = z. Hence, we just have to show that there is a unique θ ∈ [0,π] such that
f (θ) = z. Since a2 + b2 = 1, we have −1 ≤ a ≤ 1 and 0 ≤ b ≤ 1. Since cosine
strictly decreases from 1 to −1 on [0,π], by the intermediate value theorem there is
a unique value θ ∈ [0,π] such that cos θ = a. The identity

sin2 θ = 1 − cos2 θ = 1 − a2 = b2,

and the fact that sin θ ≥ 0, because 0 ≤ θ ≤ π, imply that b = sin θ.
Let θ and φ be real numbers such that f (θ) = f (φ); we shall prove that θ and

φ differ by an integer multiple of 2π. Let n be the unique integer such that (see the
Archimedean property on p. 97)

n ≤ θ − φ

2π
< n + 1.
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Multiplying everything by 2π and subtracting 2πn, we obtain

0 ≤ θ − φ − 2πn < 2π.

By periodicity (see (4.42)),

f (θ − φ − 2πn) = f (θ − φ) = ei(θ−φ) = eiθe−iφ = f (θ)/ f (φ) = 1.

Since θ −φ− 2πn is in the interval [0, 2π) and f (0) = 1 also, by the uniqueness we
proved in the previous paragraph, we conclude that θ−φ−2πn = 0. This completes
the proof of the theorem. �

We now solve trigonometric equations. Notice that Property (2) of the following
theorem shows that cosine vanishes exactly at π/2 and all its π translates, and (3)
shows that sine vanishes exactly at integer multiples of π, well-known facts from
high school! However, we consider complex variables instead of just real variables.

Theorem 4.41 For complex numbers z and w,

(1) ez = ew if and only if z = w + 2πin for some integer n.
(2) cos z = 0 if and only if z = nπ + π/2 for some integer n.
(3) sin z = 0 if and only if z = nπ for some integer n.

Proof The “if” statements follow from Theorem 4.38, so we are left to prove the
“only if” statements. Suppose that ez = ew. Then ez−w = 1. Hence, it suffices to
prove that ez = 1 implies that z is an integer multiple of 2πi. Let z = x + iy for real
numbers x and y. Then,

1 = |ex+iy| = |ex eiy| = ex.

Since the exponential function on the real line is one-to-one, it follows that x = 0.
Now the equation 1 = ez = eiy implies, by Theorem 4.40, that y must be an integer
multiple of 2π. Hence, z = x + iy = iy is an integer multiple of 2πi.

Assume that sin z = 0. Then by definition of sin z, we have eiz = e−iz. By (1), we
have iz = −iz + 2πin for some integer n. Solving for z, we get z = πn. Finally, the
identity

sin
(

z + π

2

)
= cos z

and the result already proved for sine show that cos z = 0 implies that z = nπ +π/2
for some integer n. �

As a corollary of this theorem we see that the domain of both tan z = sin z/ cos z
and sec z = 1/ cos z consists of all complex numbers except odd integer multiples
of π/2.
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4.9.4 Which Is Larger, πe or eπ?

Of course, one can simply check using a calculator that eπ is greater. Here’s a math-
ematical proof following [210]. First recall that 1 + x < ex for every positive real x.
Hence, since powers preserve inequalities, for every x, y > 0, we obtain

(

1 + x

y

)y

< (ex/y)y = ex.

In Example 3.49 on p. 222, we noted that e < 3. Since 3 < π, we have π − e > 0.
Now substituting x = π − e > 0 and y = e in the above equation, we get

(

1 + π − e

e

)e

=
(π

e

)e
< eπ−e,

which, after multiplying by ee, gives the inequality πe < eπ .
By the way, speaking about eπ , Charles Hermite (1822–1901) made the fascinating

discovery that for many values of n, eπ
√

n is an “almost integer” [47, p. 80]. For
example, if you go to a calculator, you’ll find that when n = 1, eπ is not almost an
integer, but eπ − π is:

eπ − π ≈ 20.

In fact, eπ − π = 19.999099979 . . .. When n = 163, we get the incredible approxi-
mation

eπ
√

163 = 262537412640768743.9999999999992 . . . (4.43)

Check out eπ
√

58. Isn’t it amazing how e and π show up in the strangest places?

4.9.5 Plane Geometry and Polar Representation of Complex
Numbers

Given a nonzero complex number z, we can write z = r ω, where r = |z| and
ω = z/|z|. Notice that |ω| = 1, so from our knowledge of π and the unit circle
(Theorem 4.40), we know that there is a unique 0 ≤ θ < 2π such that

z

|z| = eiθ = cos θ + i sin θ.

Therefore,
z = reiθ = r

(
cos θ + i sin θ

)
,

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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which is called the polar representation of z. We can relate this representation to
the familiar polar coordinates on R

2 as follows. Recall that C is really just R
2. Let

z = x + iy, which recall is the same as z = (x, y), where i = (0, 1). Then

r = |z| =
√

x2 + y2

is just the familiar radial distance of (x, y) to the origin. Equating the real and imag-
inary parts of the equation cos θ + i sin θ = z/|z|, we get the two equations

cos θ = x

r
= x
√

x2 + y2
and sin θ = y

r
= y
√

x2 + y2
. (4.44)

Summarizing: The equation (x, y) = z = reiθ = r
(

cos θ + i sin θ
)

is equivalent to

x = r cos θ and y = r sin θ.

We call (r, θ) the polar coordinates of the point z = (x, y). When z is drawn as a
point in R

2, r represents the distance of z to the origin, and θ represents (or rather is
by definition) the angle that z makes with the positive real axis:

z = (x, y)
r
θ

θ
x

yr
cos θ =

x

r

sin θ =
y

r

Fig. 4.38 The familiar concept of angle

The number r is often called the modulus, and θ the argument, of z. In elementary
calculus, one usually studies polar coordinates without introducing complex num-
bers. However, we prefer the complex number approach and in particular, the single
notation z = reiθ instead of the pair notation x = r cos θ and y = r sin θ. We have
taken 0 ≤ θ < 2π, but it will be very convenient to allow θ to represent any real
number. In this case, z = reiθ is not attached to a unique choice of θ, but by our
knowledge of π and the unit circle, we know that any two such values of θ differ
by an integer multiple of 2π. Thus, the polar coordinates (r, θ) and (r, θ + 2πn)
represent the same point for every integer n.

Using polar representations, complex multiplication has a simple geometric inter-
pretation. Let z = reiθ and w = ρeiϕ. Then,

zw = reiθ · ρeiϕ = rρei(θ+ϕ).

Thus, to find zw, all we do is add the angles and multiply the moduli (Fig. 4.39):
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z
r
θ

× w
ρ

ϕ

=

zw

rρ

θ + ϕ

Fig. 4.39 “Arguments add” and “moduli multiply.” That is, zw is the vector obtained by rotating
w by the argument of z and scaling by the modulus of z

For example, if r < 1, it would be instructive to draw the sequence z, z2, z3, z4, . . .;
you should get a spiral converging toward the origin. If r > 1, the points spiral away
from the origin! In any case, after all our work, let us give a . . .
Summary of this section: We have seen that

All that you thought about trigonometry is true!

In particular, from (4.44) and adding the formula tan θ = sin θ/ cos θ = y/x, from
Fig. 4.38 we see that

cos θ = adjacent

hypotenuse
, sin θ = opposite

hypotenuse
, tan θ = opposite

adjacent
,

just as you learned in high school!

� Exercises 4.9

1. Here are some values of the trigonometric functions.

(a) Find sin i, cos i, and tan(1 + i) (in terms of e and i).
(b) Using trig identities (no triangles allowed!), prove sin(π/4) = cos(π/4) =

1/
√

2.
(c) Find sin(π/8) and cos(π/8).
(d) Prove that sin(π/6) = cos(π/3), and sin(π/3) = cos(π/6). Suggestion:

Note that π/3 = π/2 − π/6.
(e) Prove sin(π/6) = cos(π/3) = 1/2 and sin(π/3) = cos(π/6) = √

3/2.

2. In this problem we find a very close estimate of π. Prove that for 0 < x < 2, we
have

cos x < 1 − x2

2
+ x4

24
.

Use this fact to prove that 3/2 < π/2 <
√

6 − 2
√

3, which implies that 3 <

π < 2
√

6 − 2
√

3 ≈ 3.185. We’ll get a much better estimate in Section 4.12.
3. Using the series representations (4.40) for sin z and cos z, find the limits

lim
z→0

sin z

z
, lim

z→0

sin z − z

z3
, lim

z→0

cos z − 1 + z2/2

z3
, lim

z→0

cos z − 1 + z2/2

z4
.
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4. Prove some of the following identities.

(a) For z, w ∈ C,

2 sin z sin w = cos(z − w) − cos(z + w),

2 cos z cos w = cos(z − w) + cos(z + w),

2 sin z cos w = sin(z + w) + sin(z − w),

tan(z + w) = tan z + tan w

1 − tan z tan w
,

1 + tan2 z = sec2 z, cot2 z + 1 = csc2 z.

Use the definitions of cosine and sine in terms of exponential functions.
(b) If x ∈ R, then for every natural number n,

cos nx =
�n/2�∑

k=0

(−1)k

(
n

2k

)

cosn−2k x sin2k x,

sin nx =
�(n−1)/2�∑

k=0

(−1)k

(
n

2k + 1

)

cosn−2k−1 x sin2k+1 x,

where �t� is the greatest integer less than or equal to t ∈ R. Suggestion:
Expand the left-hand side of de Moivre’s formula using the binomial theo-
rem.

(c) Prove that

sin2 π

5
= 5 − √

5

8
, cos2 π

5
= 3 + √

5

8
, cos

π

5
= 1 + √

5

4
.

Suggestion: What if you consider x = π/5 and n = 5 in the equation for
sin nx in Part (b)?

5. Prove that for 0 ≤ r < 1 and θ ∈ R,

∞∑

n=0

rn cos(nθ) = 1 − r cos θ

1 − 2r cos θ + r2
,

∞∑

n=1

rn sin(nθ) = r sin θ

1 − 2r cos θ + r2
.

Suggestion: Let z = reiθ in the geometric series
∑∞

n=0 zn.
6. For every real number β such that e < β, prove that βe < eβ .
7. Here’s a very neat problem posed by D.J. Newman [168].
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(i) As n increases through the natural numbers, prove that13

lim
n→∞ n sin(2π e n!) = 2π.

Suggestion: Multiply e = 1 + 1
2! + 1

3! + · · · + 1
n! + 1

(n+1)! + · · · by 2πn!.
(ii) Prove, using (i), that e is irrational.

8. (Hyperbolic functions) In this problem we study the hyperbolic functions.

(a) Show that

sinh(z + w) = sinh z cosh w + cosh z sinh w,

cosh(z + w) = cosh z cosh w + sinh z sinh w,

sinh(2z) = 2 cosh z sinh z, cosh2 z − sinh2 z = 1.

(b) If z = x + iy, prove that

sinh z = sinh x cos y + i cosh x sin y, cosh z = cosh x cos y + i sinh x sin y

| sinh z|2 = sinh2 x + sin2 y, | cosh z|2 = sinh2 x + cos2 y.

Find all z ∈ C such that sinh z is real. Do the same for cosh z. Find all the
zeros of sinh z and cosh z.

(c) Prove that if z = x + iy, then

sin z = sin x cosh y + i cos x sinh y, cos z = cos x cosh y − i sin x sinh y.

Find all z ∈ C such that sin z is real. Do the same for cos z.

9. Here is an interesting geometric problem. Let z ∈ C and let G(n, r) denote a
regular n-gon (n ≥ 3) of radius r centered at the origin of C. Is there a simple
formula for the sum of the squares of the distances from z to the vertices of
G(n, r)? Using complex numbers, this problem is not too difficult to solve.
Proceed as follows.

(i) Show that 0 =∑n
k=1 e2πik/n = e2πi/n + (e2πi/n

)2 + · · · + (e2πi/n
)n

.
(ii) Show that

n∑

k=1

∣
∣z − re2πik/n

∣
∣2 = n(|z|2 + r2).

How does this formula solve our problem?

13Typing N[n sin(2 pi e (n!))] in WolframAlpha to numerically compute n sin(2π e n!),
for n ≤ 170, you will find that n sin(2π e n!) seems to approach 2π as n increases (press the button
More digits for n large). However, for all n ≥ 171, you will get n sin(2π e n!) = 0, which is wrong!
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10. In this problem we consider “Thomae-like” functions. Prove that the following
functions are continuous at the irrationals and discontinuous at the rationals.

(a) Define f : R −→ R by

f (x) =
{

sin(1/q) if x ∈ Q and x = p/q in lowest terms and q > 0,

0 if x is irrational.

(b) Define g : (0,∞) −→ R by

g(x) =
{

p sin(1/q) if x ∈ Q and x = p/q in lowest terms and q > 0,

x if x is irrational.

11. (Definition of π) In this problem we give an alternative proof that cos :
[0, 2] −→ R is one-to-one; as shown in the proof of Theorem 4.37, this is
all we need to define π as 2× the unique zero of cosine in [0, 2].
(i) From the series expansion for cos x, prove that cos x > 0 for x ∈ [0, 1].

(ii) Let x, y ∈ [0, 2] and assume cos x = cos y; we shall prove that x = y. Using
a trigonometric identity, prove that cos(x/2) = cos(y/2).

(iii) Prove for all n ∈ N, cos(x/2n) = cos(y/2n).
(iv) Prove that limz→0(1 − cos z)/z2 = 1/2.
(v) Using (iii) and (iv), prove x = y.

12. (Definition of π) In this problem we give another way to define π. (See [224,
p. 160] for another proof.) Assume only the following properties of cos, sin :
R −→ R:

(a) cos2 x + sin2 x = 1 for all x ∈ R.
(b) cos and sin are continuous, cos(0) = 1, and sin x > 0 for x > 0 sufficiently

small.
(c) sin(x ± y) = sin x cos y ± cos x sin y for all x, y ∈ R.

Using only properties of cosine and sine derivable from (a), (b), and (c), we shall
prove that the set A := {x ≥ 0 ; cos x = 0} is not empty. In particular, we can
define π by the formula

π := 2 · inf A.

Assume, by way of contradiction, that A = ∅. Proceed as follows.

(i) First establish the following identity: For every x, y ∈ R,

sin y − sin x = 2 cos
x + y

2
sin

y − x

2
.

(ii) Show that cos x > 0 for all x ≥ 0. (Remember, we are assuming A = ∅.)
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(iii) Show that sin : [0,∞) −→ R is strictly increasing, and use this to show that
cos : [0,∞) −→ R is strictly decreasing. Suggestion: Show that if 0 ≤ x <
y and x and y are sufficiently close, say within some δ > 0, then sin x < sin y.
For arbitrary 0 ≤ x < y, partition the interval [x, y] into points x = x0 <
x1 < x2 < · · · < xN = y, where for each k, xk and xk+1 are within δ.

(iv) Show that L := lim
x→∞ cos x exists and lim

x→∞ sin x =
√

1 − L2.

(v) Prove that sin 2x = 2 cos x sin x for all x ∈ R and then prove that L = 1
2 .

(vi) Using the identity in (i), prove that for every y ∈ R, we have sin y = 0.
Derive a contradiction.

(vii) Using the identity in (i), prove that for every y ∈ R we have sin y = 0.
Derive a contradiction. Thus, the assumption that A = ∅ must have been
false, and hence π is well defined.

4.10 � Three Proofs of the Fundamental Theorem
of Algebra (FTA)

In elementary calculus you were exposed to the method of partial fractions to inte-
grate rational functions, in which you had to factor polynomials. The necessity to
factor polynomials for the method of partial fractions played a large role in the race to
prove the fundamental theorem of algebra; see [63] for more on this history, especially
Euler’s part in this theorem. Carl Friedrich Gauss (1777–1855) is usually credited as
the first to prove the fundamental theorem of algebra, as part of his doctoral thesis
(1799) entitled “A new proof of the theorem that every integral rational algebraic
function14 can be decomposed into real factors of the first or second degree” (see,
e.g., [35, p. 499]). We present three independent and different guises of one of the
more elementary and popular topological proofs of the theorem, which is essentially
a proof due to Jean Argand (1768–1822) published in 1806 with new versions in
1814/1815.

4.10.1 Proof I of the FTA [199]

This proof could have actually been presented immediately after Section 4.4, but we
have chosen to save the proof till now because it fits so well with roots of complex
numbers, on which we’ll touch in Section 4.10.3.

Given n ∈ N and z ∈ C, a complex number ξ is called an nth root of z if ξn = z.
A natural question is: Does every z ∈ C have an nth root? This question is easily
answered in special cases. For example, if z = 0, then for every n, ξ = 0 is an nth

14In plain English, a polynomial with real coefficients. A translation of Gauss’s thesis can be found at
http://www.fsc.edu/library/archives/manuscripts/gauss.cfm. Gauss’s proof was actually incorrect,
but he published a correct version in 1816.

http://www.fsc.edu/library/archives/manuscripts/gauss.cfm
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root of z, and it is the only nth root (since nonzero complex numbers raised to the
nth power cannot equal zero). If n = 1, then for every z, ξ = z is a first root of z. If
n = 2 and if z is a real positive number, then we know that z has a (real) square root,
and if z is a negative real number, then ξ = i

√−z is a square root of z. If z = a + ib,
where b �= 0, then the numbers

ξ = ±
(√ |z| + a

2
+ i

b

|b|
√ |z| − a

2

)

are square roots of z, as the reader can easily verify; see Problem 9. What about
roots of higher order than two? In the following lemma we prove that every complex
number has an nth root for every n ∈ N. In Section 4.10.3 we’ll give another proof
of this lemma using facts about exponential and trigonometric functions developed
in the previous sections. However, the following proof is interesting because it is
completely elementary in that it avoids any reference to these functions.

Lemma 4.42 Every complex number has an nth root for all n ∈ N.

Proof Let z ∈ C, which we may assume is nonzero. We shall prove that z has an nth
root using strong induction. We already know that z has nth roots for n = 1, 2. Let
n > 2 and assume that z has roots of all orders less than n; we shall prove that z has
an nth root.

Suppose first that n is even, say n = 2m for some natural number m > 2. Then
we are looking for a complex number ξ such that ξ2m = z. By our discussion before
this lemma, we know that there is a number η such that η2 = z, and since m < n, by
the induction hypothesis we know that there is a number ξ such that ξm = η. Then

ξn = ξ2m = (ξm)2 = η2 = z,

and we’ve found an nth root of z.
Suppose now that n is odd. If z is a nonnegative real number, then we know that z

has a real nth root, so we henceforth assume that z is not a nonnegative real number.
Let η be a complex number such that η2 = z. Then for x ∈ R, consider the polynomial
p(x) given by taking the imaginary part of η(x − i)n:

p(x) := Im
[
η(x − i)n

] = 1

2i

[
η(x − i)n − η(x + i)n

]
,

where we used Property (4) of Theorem 2.49 on p. 133 that Im w = 1
2i (w − w)

for every complex number w. Expanding (x − i)n and (x + i)n using the binomial
theorem, one can show that

p(x) = Im(η) xn + lower order terms in x.

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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Since η is not real, the coefficient in front of xn is nonzero, so p(x) is an nth-degree
polynomial in x with real coefficients. In Problem 3 on p. 280 we noted that all
odd-degree real-valued polynomials have a real root, so there is some c ∈ R with
p(c) = 0. For this c, we have

η(c − i)n − η(c + i)n = 0.

After a little manipulation, and using that η2 = z, we get

(c + i)n

(c − i)n
= η

η
= η2

|η|2 = z

|z| =⇒ |z| (c + i)n

(c − i)n
= z.

It follows that ξ = n
√|z| c+i

c−i satisfies ξn = z, and our proof is now complete. �

We now present our first proof of the celebrated fundamental theorem of algebra.
The following proof is very elementary in the sense that looking through the proof,
we see that the nontrivial results we use are kept at a minimum:

(1) The Bolzano–Weierstrass theorem (see p. 179).
(2) Every nonzero complex number has a kth root.

As mentioned already, the following proof goes back to Jean Argand’s (1768–1822)
1814/1815 proof, versions of which can be found in [74, 204, 239], or (one of my
favorites) [198].

The fundamental theorem of algebra, Proof I

Theorem 4.43 Every complex polynomial of positive degree has at least one
complex root.

Proof Let p(z) = an zn + an−1 zn−1 + · · · + a1 z + a0 be a polynomial with complex
coefficients, n ≥ 1 with an �= 0. We prove this theorem in four steps.

Step 1: We begin by proving a simple, but important, inequality. Since

|p(z)| = |an zn + · · · + a0| = |z|n
∣
∣
∣
∣an + an−1

z
+ an−2

z2
+ · · · + a1

zn−1
+ a0

zn

∣
∣
∣
∣ ,

for |z| sufficiently large the absolute value of the sum of all the terms to the right of
an can be made less than, say |an|/2. It follows that

|p(z)| ≥ |an|
2

· |z|n , for |z| sufficiently large. (4.45)

Step 2: We now prove that there exists a point c ∈ C such that |p(c)| ≤ |p(z)| for
all z ∈ C; in other words, we are claiming that |p(z)| achieves its minimum value on
C. The proof of this involves the Bolzano–Weierstrass theorem. Define
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m := inf A, A := {|p(z)| ; z ∈ C} .

This infimum certainly exists, since A is nonempty and bounded below by zero. Since
m is the greatest lower bound of A, for each k ∈ N, m+1/k is no longer a lower bound,
so there is a point zk ∈ C such that m ≤ |p(zk)| < m + 1/k. By (4.45), the sequence
{zk} must be bounded, so by the Bolzano–Weierstrass theorem, this sequence has a
convergent subsequence {wk}. If c is the limit of this subsequence, then by continuity
of polynomials, |p(wk)| → |p(c)|, and since m ≤ |p(zk)| < m + 1/k for all k, by the
squeeze theorem we must have |p(c)| = m.

Step 3: The rest of the proof involves showing that the minimum m must be zero,
which shows that p(c) = 0, and so c is a root of p(z). To do so, we introduce an
auxiliary polynomial q(z) as follows. Let us suppose, for the sake of contradiction,
that p(c) �= 0. Define q(z) := p(z + c)/p(c). Then |q(z)| has a minimum at the point
z = 0, the minimum being |q(0)| = |1| = 1. Since q(0) = 1, we can write

q(z) = bn zn + · · · + 1 = bn zn + · · · + bkzk + 1, (4.46)

where k is the smallest natural number such that bk �= 0. In our next step we shall
prove that 1 is in fact not the minimum of |q(z)|, which gives a contradiction.

Step 4: By our lemma, −1/bk has a kth root a, so that ak = −1/bk . Then |q(az)|
also has a minimum at z = 0, and

q(az) = 1 + bk(az)k + · · · = 1 − zk + · · · ,

where · · · represents terms of higher degree than k. Thus, we can write

q(az) = 1 − zk + zk+1r(z),

where r(z) is a polynomial of degree at most n − (k + 1). Let z = x, a real number
with 0 < x < 1, be so small that x |r(x)| < 1. Then,

|q(ax)| = |1 − xk + xk+1r(x)| ≤ |1 − xk | + xk+1|r(x)|
<1 − xk + xk · 1 = 1 = |q(0)| =⇒ |q(ax)| < |q(0)|.

Therefore, |q(0)| is not the minimum of |q(z)|. Hence our assumption that p(c) �= 0
must have been false, and our proof is complete. �

We remark that the other two proofs of the FTA in this section (basically) differ
from this proof only at the first line in Step 4, in how we claim that there is a complex
number a with ak = −1/bk .

As a consequence of the fundamental theorem of algebra, we can prove the well-
known fact that every polynomial can be factored. Let p(z) be a polynomial of positive
degree n with complex coefficients and let c1 be a root of p, which we know exists
by the FTA. Then from Lemma 2.60 on p. 142, we can write

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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p(z) = (z − c1) q1(z),

where q1(z) is a polynomial of degree n − 1 in both z and c1. By the FTA, q1 has a
root, call it c2. Then from Lemma 2.60, we can write q1(z) = (z − c2) q2(z), where
q2 has degree n − 2, and substituting q1 into the formula for p, we obtain

p(z) = (z − c1)(z − c2) q2(z).

Proceeding a total of n − 2 more times in this fashion, we eventually arrive at

p(z) = (z − c1)(z − c2) · · · (z − cn) qn,

where qn is a polynomial of degree zero, that is, a necessarily nonzero constant. It
follows that c1, . . . , cn are roots of p(z). Moreover, these numbers are the only roots,
for if

0 = p(c) = (c − c1)(c − c2) · · · (c − cn) qn,

then c must equal one of the ck , since a product of complex numbers is zero if and
only if one of the factors is zero. Summarizing, we have proved the following.

Corollary 4.44 If p(z) is a polynomial of positive degree n, then p has exactly
n complex roots c1, . . . , cn counting multiplicities, and for some a ∈ C, we can
write

p(z) = a (z − c1)(z − c2) · · · (z − cn).

4.10.2 Proof II of the FTA [179]

Our second proof of the FTA is almost exactly the same as the first, but we substitute
the result in Lemma 4.46 for the argument at the beginning of Step 4 in the above
proof. We start with the following lemma, which is “obvious” by thoroughly studying
Fig. 4.40.

A β

1

−iα

α

iα

−α

Fig. 4.40 Left A is the set of z = eiθ with −π/4 ≤ θ ≤ π/4. Middle for every α with |α| = 1, at
least one of α, iα,−iα, and −α lies in A, in this case, −α does. Right if |β| = 1 and β ∈ A, then
the distance between β and 1 is less than 1

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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We leave the proof of the following lemma to Problem 6.

Lemma 4.45 Let α,β be complex numbers on the unit circle with β ∈ A, where
A is as shown in Fig.4.40.

(i) At least one of the numbers α, iα,−iα, and −α lies in A.
(ii) The distance between β and 1 is less than 1.

Lemma 4.46 Let � be an odd natural number, ζ = (1 + i)/
√

2, and let α be a
complex number of length 1. Then there is a natural number ν such that

|α ζ2ν� − 1| < 1.

Proof Observe that

ζ2 = (1 + i)(1 + i)

2
= 1 + 2i + i2

2
= i.

Therefore, α ζ2ν� − 1 simplifies to α iν� − 1, and we shall use this latter expression
for the rest of the proof. Since � is odd, say � = 2j + 1, we have

i� = i2j+1 = (−1)j i.

Suppose that j is even in what follows, so that i� = i; there is an almost identical
argument in the case that j is odd. It follows that iν� = iν . Since iν equals i (for
ν = 1), −1 (for ν = 2), −i (for ν = 3), or 1 (for ν = 4), by (1) of our lemma we
can choose ν such that α iν lies in the set A shown in Fig. 4.40. Then by (2) of our
lemma, for this ν we have |αiν� − 1| < 1. �

The fundamental theorem of algebra, Proof II

Theorem 4.47 Every complex polynomial of positive degree has at least one
complex root.

Proof We proceed by strong induction. Certainly the FTA holds for all polynomials
of first degree, and therefore assume that p(z) is a polynomial of degree n ≥ 2 and
suppose that the FTA holds for all polynomials of degree less than n.

Now we proceed, without changing a single word, exactly as in Proof I up to Step
4, where we substitute the following argument.
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Step 4 modified: Recall that the polynomial q(z) in (4.46),

q(z) = bn zn + · · · + bkzk + 1,

has the property that |q(z)| has the minimum value 1. We claim that the k in this
expression cannot equal n. To see this, for the sake of contradiction, let us suppose
that k = n. Then q(z) = bn zn + 1, and q(z) has the property that

|q(z)| = |1 + bn zn| =
∣
∣
∣
∣1 + bn

|bn| |bn| zn

∣
∣
∣
∣ = |α wn − 1|

has the minimum value 1, where α = −bn/|bn| has unit length and w = |bn|1/n z.
We derive a contradiction in three cases: n > 2 is even, n = 2, and n is odd. If n > 2
is even, then we can write n = 2m for a natural number m with 2 ≤ m < n. By our
induction hypothesis (the FTA holds for all polynomials of degree less than n), there
is a number η such that ηm − 1/α = 0, and there is a number ξ such that ξ2 − η = 0.
Then

ξn = ξ2m = (ξ2)m = ηm = 1/α.

Thus, for w = ξ, we obtain |α wn −1| = 0, which contradicts the fact that |α wn −1|
is never less than 1. Now suppose that n = 2. Then by our lemma with � = 1, there
is a ν such that

|α ζ2ν − 1| < 1,

where ζ = (1 + i)/
√

2. This shows that w = ζν satisfies |α wn − 1| < 1, again
contradicting the fact that |α wn − 1| is never less than 1. Finally, suppose that n = �
is odd. Then by our lemma, there is a ν such that

|α ζ2νn − 1| < 1,

where ζ = (1 + i)/
√

2, which shows that w = ζ2ν satisfies |α wn − 1| < 1, again
resulting in a contradiction. Therefore, k < n.

Now that we’ve proved k < n, we can use our induction hypothesis to conclude
that there is a complex number a such that ak + 1/bk = 0, that is, ak = −1/bk . We
can now proceed exactly as in Step 4 of Proof I to finish the proof. �

4.10.3 Roots of Complex Numbers

Back in Section 2.7 on p. 89, we learned how to find nth roots of nonnegative real
numbers; we now generalize this to complex numbers using the polar representation
of complex numbers studied in Section 4.9 on p. 323.

Let n ∈ N and let w be a complex number. We shall find all nth roots of z using
trigonometry. If z = 0, then the only ξ that works is ξ = 0, since the product of

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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nonzero complex numbers is nonzero. Therefore, we assume henceforth that z �= 0.
We can write z = reiθ, where r > 0 and θ ∈ R, and given a nonzero complex ξ, we
can write ξ = ρeiφ, where ρ > 0 and φ ∈ R. Then ξn = z if and only if

ρn einφ = r eiθ.

Taking the absolute value of both sides, and using that |einφ| = 1 = |eiθ|, we get
ρn = r, or ρ = n

√
r. Now canceling ρn = r, we see that

einφ = eiθ,

which holds if and only if nφ = θ + 2πm for some integer m, or

φ = θ

n
+ 2πm

n
, m ∈ Z.

As the reader can easily check, every number of this form differs by an integer
multiple of 2π from one of the following numbers:

θ

n
,

θ

n
+ 2π

n
,

θ

n
+ 4π

n
, . . . ,

θ

n
+ 2π

n
(n − 1).

None of these numbers differs by an integer multiple of 2π, and therefore, by our
knowledge of π and the unit circle, all the n numbers

ei 1
n

(
θ+2πk

)

, k = 0, 1, 2, . . . , n − 1

are distinct. Thus, there is a total of n solutions ξ to the equation ξn = z, all of them
given in the following theorem.

Existence of complex nth roots

Theorem 4.48 For every n ∈ N, there are exactly n nth roots of every nonzero
complex number z = reiθ; the complete set of roots is given by

n
√

r ei 1
n

(
θ+2πk

)

= n
√

r

[

cos
1

n

(
θ + 2πk

)+ i sin
1

n

(
θ + 2πk

)
]

, k = 0, 1, 2, . . . , n − 1.

There is a very convenient way to write these nth roots, as we now describe. First of
all, notice that

n
√

r ei 1
n

(
θ+2πk

)

= n
√

r ei θ
n · ei 2πk

n = n
√

r ei θ
n ·
(

ei 2π
n

)k
.
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Therefore, the nth roots of z are given by

n
√

r ei θ
n · ωk, k = 0, 1, . . . , n − 1, where ω = ei 2π

n = cos
2π

n
+ i sin

2π

n
.

Of all the n distinct roots, there is one called the principal nth root, denoted by
n
√

z. It is the nth root given by

n
√

z := n
√

r ei θ
n , where − π < θ ≤ π.

Note that if z = x is a positive real number, then x = rei0 with r = x. Since
−π < 0 ≤ π, the principal nth root of x is by definition n

√
xei0/n = n

√
x, the usual real

nth root of x. Thus, there is no ambiguity in notation between the complex principal
nth root of a positive real number and its real nth root.

We now give some examples.

Example 4.35 For our first example, we find the square roots of −1. Since −1 =
eiπ , because cos π + i sin π = −1 + i0, the square roots of −1 are ei(1/2)π and
ei(1/2)(π+2π) = ei3π/2. Since

eiπ/2 = cos
π

2
+ i sin

π

2
= i,

and similarly, ei3π/2 = −i, we get i and −i as the square roots of −1. Note that the
principal square root of −1 is i, and so

√−1 = i, just as we learned in high school!

Example 4.36 Next let us find all nth roots of 1 (called the roots of unity). Since
1 = 1 ei0, all the n nth roots of 1 are given by

1,ω,ω2, . . . ,ωn−1, where ω := ei 2π
n = cos

2π

n
+ i sin

2π

n
.

Consider n = 4. In this case, cos 2π
4 + i sin 2π

4 = i, i2 = −1, and i3 = −i. Therefore,
the fourth roots of unity are

1, i,−1,−i.

Since

cos
2π

3
+ i sin

2π

3
= −1

2
+ i

√
3

2
,

the cube roots of unity are

1, −1

2
+ i

√
3

2
, −1

2
− i

√
3

2
.
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4.10.4 Proof III of the FTA

We now give our third proof.

The fundamental theorem of algebra, Proof III

Theorem 4.49 Every complex polynomial of positive degree has at least one
complex root.

Proof We proceed, without changing a single word, exactly as in Proof I up to Step
4, where we use the following.

Step 4 modified: At the beginning of Step 4 in Proof I, we used Lemma 4.42 to
conclude that there is a complex a such that ak = −1/bk . Now we can simply invoke
Theorem 4.48 to verify that there is such a number a. Explicitly, we can just write
−1/bk = reiθ and simply define a = r1/keiθ/k . In any case, now that we have such
an a, we can proceed exactly as in Step 4 of Proof I to finish the proof. �

� Exercises 4.10

1. Let p(z) and q(z) be polynomials of degree at most n.

(a) If p vanishes at n + 1 distinct complex numbers, prove that p = 0, the zero
polynomial.

(b) If p and q agree at n + 1 distinct complex numbers, prove that p = q.
(c) If c1, . . . , cn (with each root repeated according to multiplicity) are roots of

p(z), a polynomial of degree n, prove that p(z) = an(z − c1)(z − c2) · · · (z −
cn), where an is the coefficient of zn in the expression for p(z).

2. Find the following roots and state which of the roots represents the principal
root.

(a) Find the cube roots of −1.
(b) Find the square roots of i.
(c) Find the cube roots of i.
(d) Find the square roots of

√
3 + 3i.

3. Geometrically (not rigorously) demonstrate that the nth roots, with n ≥ 3, of a
nonzero complex number z are the vertices of a regular polygon.

4. Let n ∈ N and let ω = ei 2π
n . If k is an integer that is not a multiple of n, prove

that
1 + ωk + ω2k + ω3k + · · · + ω(n−1)k = 0.

5. Prove that every quadratic polynomial az2+bz+c = 0 with complex coefficients
has two complex roots, counting multiplicities, given by

z = −b ± √
b2 − 4ac

2a
,
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where
√

b2 − 4ac is the principal square root of b2 − 4ac.
6. Prove Lemma 4.45.
7. We show how the ingenious mathematicians of the past solved the general cubic

equation z3 + bz2 + cz + d = 0 with complex coefficients; for the history, see
[95].

(i) First, replacing z with z −b/3, show that our cubic equation transforms into
an equation of the form z3 +αz +β = 0, where α and β are complex. Thus,
we may focus our attention on the equation z3 + α z + β = 0.

(ii) Second, show that the substitution z = w − α/(3w) gives an equation of
the form

27(w3)2 + 27β(w3) − α3 = 0,

a quadratic equation in w3. We can solve this equation for w3 by Problem 5,
and therefore we can solve for w, and therefore we can get z = w−α/(3w)!

8. A nice application of the previous problem is finding sin(π/9) and cos(π/9).

(i) Use de Moivre’s formula to prove that

cos 3x = cos3 x − 3 cos x sin2 x, sin 3x = 3 cos2 x sin x − sin3 x.

(ii) Choose one of these equations, and using cos2 x + sin2 x = 1, turn the
right-hand side into a cubic polynomial in cos x or sin x.

(iii) Using the equation you get, find sin(π/9) and cos(π/9).

9. This problem is for the classical mathematicians at heart: We find square roots
without using the technology of trigonometric functions.

(i) Let z = a + ib be a nonzero complex number with b �= 0. Show that
ξ = x + iy satisfies ξ2 = z if and only if x2 − y2 = a and 2xy = b.

(ii) Prove that x2 + y2 = √
a2 + b2 = |z|, and then x2 = 1

2

(|z| + a
)

and
y2 = 1

2

(|z| − a
)
.

(iii) Finally, deduce that z must equal

ξ = ±
(√ |z| + a

2
+ i

b

|b|
√ |z| − a

2

)

.

10. Prove that if r is a root of a polynomial p(z) = zn + an−1zn−1 + · · · + a0, then
|r| ≤ max

{
1,
∑n−1

k=0 |ak|
}
.

11. (Cf. [245]) (Continuous dependence of roots) In this problem we prove the
following useful theorem. Let z0 be a root of multiplicity m of a polynomial
p(z) = zn + an−1zn−1 + · · · + a0. Then given ε > 0, there is a δ > 0 such that if
q(z) = zn + bn−1zn−1 + · · · + b0 satisfies |bj − aj| < δ for all j = 0, . . . , n − 1,
then q(z) has at least m roots within ε of z0. You may proceed as follows.
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(i) Suppose the theorem is false. Prove that there exist ε > 0 and a sequence
{qk} of polynomials qk(z) = zn + bk,n−1zn−1 + · · · + bk,0 such that qk has
at most m − 1 roots within ε of z0 and for each j = 0, . . . , n − 1, we have
bk,j → aj as k → ∞.

(ii) Let rk,1, . . . , rk,n be the n roots of qk . Let Rk = (rk,1, . . . , rk,n) ∈ C
n = R

2n.
Prove that the sequence {Rk} has a convergent subsequence. Suggestion:
Problem 10 is helpful.

(iii) By relabeling the subsequence if necessary, we assume that {Rk} itself con-
verges; say Rk = (rk,1, . . . , rk,n) → (r1, . . . , rn). Prove that at most m − 1
of the rj can equal z0.

(iv) Prove that qk(z) = (z − rk,1)(z − rk,2) · · · (z − rk,n), and therefore, for each
z ∈ C, limk→∞ qk(z) = (z−r1)(z−r2) · · · (z−rn). On the other hand, using
that bk,j → aj as k → ∞, prove that for each z ∈ C, limk→∞ qk(z) = p(z).
Derive a contradiction.

4.11 The Inverse Trigonometric Functions
and the Complex Logarithm

In this section we study the inverse trigonometric functions. We then use these func-
tions to derive properties of the polar angle, also called the argument of a complex
number. In Section 4.7 we developed the properties of real logarithms, and using
the logarithm, we defined complex powers of positive bases. In our current section
we shall extend logarithms to include complex logarithms, which are then used to
define complex powers with complex bases. Finally, we use the complex logarithm
to define complex inverse trigonometric functions.

4.11.1 The Real-Valued Inverse Trigonometric Functions

By the oscillation theorem, Theorem 4.39 on p. 331, we know that

sin : [−π/2,π/2] −→ [−1, 1] and cos : [0,π] −→ [−1, 1]

are both strictly monotone bijective continuous functions, sine being strictly increas-
ing and cosine being strictly decreasing, as in the two left-hand pictures in Fig. 4.41.
In particular, by the monotone inverse theorem on p. 297, each of these functions
has a strictly monotone inverse, which we denote by

arcsin : [−1, 1] −→ [−π/2,π/2] and arccos : [−1, 1] −→ [0,π],



352 4 Limits, Continuity, and Elementary Functions

called the inverse, or arc, sine, which is strictly increasing, and inverse, or arc,
cosine, which is strictly decreasing. To explain the term “arc,” consider sine and
observe that for θ ∈ [−π/2,π], we have

sin θ = x ⇐⇒ θ = arcsin x.

Therefore, arcsin x gives the arc, or angle, whose sine is x. Now being inverse func-
tions, the arcsine and arccosine functions satisfy

sin(arcsin x) = x, −1 ≤ x ≤ 1 and arcsin(sin x) = x, −π/2 ≤ x ≤ π/2,

and

cos(arccos x) = x, −1 ≤ x ≤ 1 and arccos(cos x) = x, 0 ≤ x ≤ π.

If 0 ≤ θ ≤ π, then −π/2 ≤ π/2 − θ ≤ π/2, so letting x denote both sides of the
identity

cos θ = sin
(π

2
− θ
)

,

we get θ = arccos x and π/2 − θ = arcsin x, which further implies that

arccos x = π

2
− arcsin x, for all − 1 ≤ x ≤ 1. (4.47)

sine

−π

2
π

2

cosine

π

2 π
arcsinx

arccosx

−1 1

π

−π

2

π

2

Fig. 4.41 Graphs of sine and cosine and their inverses

We now introduce the inverse tangent function. We first claim that

tan : (−π/2,π/2) −→ R

is a strictly increasing bijection; here’s the common graph of tangent:
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arctan
π

2

−π

2

tangent

−π

2
π

2

Fig. 4.42 Graphs of tangent and arctangent

Indeed, since

tan x = sin x

cos x

and sine is strictly increasing on [0,π/2] from 0 to 1 and cosine is strictly decreasing
on [0,π/2] from 1 to 0, we see that tangent is strictly increasing on [0,π/2) from 0
to ∞. Using the properties of sine and cosine on [−π/2, 0], in a similar manner one
can show that tan is strictly decreasing on (−π/2, 0) from −∞ to 0. This proves that
tan : (−π/2,π/2) −→ R is a strictly increasing bijection. Therefore, this function
has a strictly increasing inverse, which we denote by

arctan : R −→ (−π/2,π/2);

it is called the inverse, or arc, tangent (Fig. 4.42).

4.11.2 The Argument of a Complex Number

Given a nonzero complex number z, we know that we can write z = |z|eiθ for some
θ ∈ R, and all such θ satisfying this equation differ by integer multiples of 2π.
Geometrically, θ is interpreted as the angle z makes with the positive real axis when
z is drawn as a vector in R

2. Every such angle θ is called an argument of z and is
denoted by arg z. Thus, we can write

z = |z| ei arg z.

We remark that arg z is not a function but is referred to as a multiple-valued function,
since arg z does not represent a single value of θ; however, any two choices for arg z
differ by an integer multiple of 2π. If w is another nonzero complex number, written
as w = |w| eiφ, so that arg w = φ, then

zw = (|z| eiθ
) (|w| eiφ

) = |z| |w| ei(θ+φ).
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This formula implies that

arg (zw) = arg z + arg w,

where we interpret this as saying that all choices for these three arguments satisfy
this equation up to an integer multiple of 2π. Thus, the argument of a product is the
sum of the arguments. What other function do you know of that takes products into
sums? The logarithm of course. We shall shortly show how arg is involved in the
definition of complex logarithms. Similarly, properly interpreted, we have

arg
( z

w

)
= arg z − arg w.

Since arg is somewhat ambiguous, being a set of values rather than just a single
value, mathematically it would be nice to turn arg into an actual function. To do so,
note that given a nonzero complex number z, there is exactly one argument satisfying
−π < arg z ≤ π; this particular angle is called the principal argument of z and
is denoted by Arg z. Thus, Arg : C\{0} −→ R is characterized by the following
properties:

z = |z|ei Arg z, −π < Arg z ≤ π.

Then all arguments of z differ from the principal one by multiples of 2π:

arg z = Arg z + 2π n, n ∈ Z.

We can find many different formulas for Arg z using the inverse trig functions as
follows. Writing z in terms of its real and imaginary parts, z = x + iy, and equating
this with |z|ei Arg z = |z| cos(Arg z) + i|z| sin(Arg z), we see that

cos Arg z = x
√

x2 + y2
and sin Arg z = y

√
x2 + y2

. (4.48)

By the properties of cosine, we see that

−π

2
< Arg z <

π

2
⇐⇒ x > 0.

Since arcsin is the inverse of sin with angles in (−π/2,π/2), it follows that

Arg z = arcsin

(
y

√
x2 + y2

)

, x > 0.

Perhaps the most common formula for Arg z when x > 0 is in terms of arctangent,
which is derived by dividing the formulas in (4.48) to get tan Arg z = y/x and then
taking the arctangent of both sides:
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Arg z = arctan
y

x
, x > 0.

We now derive a formula for Arg z when y > 0. By the properties of sine, we see
that

0 ≤ Arg z ≤ π ⇐⇒ y ≥ 0 and − π < Arg z < 0 ⇐⇒ y < 0.

Assuming that y ≥ 0, that is, 0 ≤ Arg z ≤ π, we can take the arccosine of both sides
of the first equation in (4.48) to get

Arg z = arccos

(
x

√
x2 + y2

)

, y ≥ 0.

Assume that y < 0, that is, −π < Arg z < 0. Then 0 < − Arg z < π, and
since cos Arg z = cos(− Arg z), we get cos(− Arg z) = x/

√
x2 + y2. Taking the

arccosine of both sides, we get

Arg z = − arccos

(
x

√
x2 + y2

)

, y ≤ 0.

Putting together our expressions for Arg z, we obtain the following formulas for the
principal argument:

Arg z = arctan
y

x
if x > 0, (4.49)

and

Arg z =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

arccos

(
x

√
x2 + y2

)

if y ≥ 0,

− arccos

(
x

√
x2 + y2

)

if y < 0.

(4.50)

Using these formulas, we can easily prove the following theorem.

Theorem 4.50 Arg : C\(−∞, 0] −→ (−π,π) is continuous.

Proof Since

C\(−∞, 0] = {x + iy ; x > 0} ∪ {x + iy ; y > 0} ∪ {x + iy ; y < 0},
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all we have to do is prove that Arg is continuous on each of these three sets. But
this is easy: The formula (4.49) shows that Arg is continuous when x > 0, the first
formula in (4.50) shows that Arg is continuous when y > 0, and the second formula
in (4.50) shows that Arg is continuous when y < 0. �

4.11.3 The Complex Logarithm and Powers

Recall from Section 4.7.2 on p. 303 that if a ∈ R and a > 0, then a real number ξ
having the property that

eξ = a

is called the logarithm of a; we know that ξ always exists and is unique, since
exp : R −→ (0,∞) is a bijection. Of course, ξ = log a by definition of log. We
now consider complex logarithms. We define such logarithms in an analogous way:
If z ∈ C and z �= 0, then a complex number ξ having the property that

eξ = z

is called a complex logarithm of z. The reason we assume z �= 0 is that there is no
complex ξ such that eξ = 0. We now show that nonzero complex numbers always
have logarithms; however, in contrast to the case of real numbers, complex numbers
have infinitely many distinct logarithms!

Theorem 4.51 The complex logarithms of a nonzero complex number z are all
of the form

ξ = log |z| + i
(
Arg z + 2π n

)
, n ∈ Z. (4.51)

Therefore, all complex logarithms of z have exactly the same real part log |z|, but
have imaginary parts that differ from Arg z by integer multiples of 2π.

Proof The idea behind this proof is very simple: We write

z = |z| · ei arg z = elog |z| · ei arg z = elog |z|+i arg z.

Since every argument of z is of the form Arg z + 2πn for n ∈ Z, this equation shows
that all the numbers in (4.51) are indeed logarithms. On the other hand, if ξ is a
logarithm of z, then eξ = z. Since also z = elog |z|+i Arg z, Theorem 4.41 on p. 515
implies that ξ = log |z| + i Arg z + 2πi n for some n ∈ Z. �



4.11 The Inverse Trigonometric Functions and the Complex Logarithm 357

To isolate one of these infinitely many logarithms, we define the so-called “prin-
cipal” one. For every nonzero complex number z, we define the principal (branch
of the) logarithm of z by

Log z := log |z| + i Arg z.

By Theorem 4.51, all logarithms of z are of the form

Log z + 2πi n, n ∈ Z.

Note that if x ∈ R, then Arg x = 0, and therefore,

Log x = log x,

our usual logarithm, so Log is an extension of the real log to complex numbers.

Example 4.37 Observe that since Arg (−1) = π and Arg i = π/2 and log | − 1| =
0 = log |i|, since both equal log 1, we have

Log(−1) = iπ and Log i = i
π

2
.

The principal logarithm satisfies some of the properties of the real logarithm, but
we need to be careful with the addition properties.

Example 4.38 For instance, observe that

Log(−1 · i) = Log(−i) = log | − i| + i Arg(−i) = −i
π

2
.

On the other hand,

Log(−1) + Log i = iπ + i
π

2
= i

3π

2
,

so Log(−1 · i) �= Log(−1) + Log i. Another example of this phenomenon is

Log(−i · −i) = Log(−1) = iπ,

while
Log(−i) + Log(−i) = −i

π

2
− i

π

2
= −iπ.

However, under certain conditions, Log does satisfy the usual properties.
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Theorem 4.52 Let z and w be complex numbers.

(1) If −π < Arg z + Arg w ≤ π, then

Log zw = Log z + Log w.

(2) If −π < Arg z − Arg w ≤ π, then

Log
z

w
= Log z − Log w.

(3) If Re z, Re w ≥ 0 with at least one strictly positive, then both (1) and (2)
hold.

Proof Suppose that −π < Arg z + Arg w ≤ π. By definition,

Log zw = log
(|z| |w|)+ i

(
Arg zw

) = log |z| + log |w| + i Arg zw.

Since arg (zw) = arg z + arg w, Arg z + Arg w is an argument of zw, and since
Arg (zw) is the unique argument of zw in (−π,π] and −π < Arg z + Arg w ≤ π,
it follows that Arg(zw) = Arg z + Arg w. Thus,

Log zw = log |z| + log |w| + i Arg z + i Arg w = Log z + Log w.

Property (2) is proved in a similar manner. Property (3) follows from (1) and (2),
since if Re z, Re w ≥ 0 with at least one strictly positive, then as the reader can
verify, the hypotheses of both (1) and (2) are satisfied. �

We now use Log to define complex powers of complex numbers. Recall from
Section 4.7.3 on p. 304 that given a positive real number a and a complex number
z, we have az := ez log a. Using Log instead of log, we can now define powers for
complex a. Let a be a nonzero complex number and let z be a complex number. Every
number of the form ezb, where b is a complex logarithm of a, is called a complex
power of a to the z; the choice of principal logarithm defines

az = ez Log a,

and we call this the principal value of a to the power z. As before, a is called the
base and z is called the exponent. Note that if a is a positive real number, then
Log a = log a, so

az = ez Log a = ez log a

is the usual complex power of a defined on p. 304. Theorem 4.51 implies the
following.
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Theorem 4.53 The complex powers of a nonzero complex number a to the power
z are all of the form

ez
(

Log a+2πi n
)

, n ∈ Z. (4.52)

In general, there are infinitely many complex powers, but in certain cases they actually
reduce to a finite number; see Problem 4. Here are some examples.

Example 4.39 Have you ever thought about what ii equals? In this case, Log i =
iπ/2, so

ii = ei Log i = ei(iπ/2) = e−π/2,

a real number! Here is another nice example:

(−1)1/2 = e(1/2) Log(−1) = e(1/2)i π = cos
π

2
+ i sin

π

2
= i.

Therefore, (−1)1/2 = i, just as we suspected!

4.11.4 The Complex-Valued Arctangent Function

We now investigate the complex arctangent function; the other complex inverse
functions are found in Problem 6. Given a complex number z, in the following
theorem we shall find all complex numbers ξ such that

tan ξ = z. (4.53)

Of course, if we can find such a ξ, then we would like to call ξ the “inverse tangent of
z.” However, when this equation does have solutions, it turns out that it has infinitely
many.

Lemma 4.54 If z = ±i, then the Eq. (4.53) has no solutions. If z �= ±i, then

tan ξ = z ⇐⇒ e2iξ = 1 + iz

1 − iz
,

that is, if and only if ξ = 1

2i
× a complex logarithm of

1 + iz

1 − iz
.

Proof The following statements are equivalent:

tan ξ = z ⇐⇒ sin ξ = z cos ξ ⇐⇒ eiξ − e−iξ = iz(eiξ + e−iξ)

⇐⇒ (e2iξ − 1) = iz(e2iξ + 1) ⇐⇒ (1 − iz)e2iξ = 1 + iz.
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If z = i, then this last equation is just 2e2iξ = 0, which is impossible, and if z = −i,
then the last equation is 0 = 2, again an impossibility. If z �= ±i, then the last
equation is equivalent to

e2iξ = 1 + iz

1 − iz
,

which by definition of the complex logarithm just means that 2iξ is a complex
logarithm of the number (1 + iz)/(1 − iz). �

We now choose one of the solutions of (4.53), the obvious choice being the one
corresponding to the principal logarithm: Given z ∈ C with z �= ±i, we define the
principal inverse, or arc, tangent of z to be the complex number

Arctan z = 1

2i
Log

1 + iz

1 − iz
.

This defines a function Arctan : C\{±i} −→ C, which does satisfy (4.53):

tan(Arctan z) = z, z ∈ C, z �= ±i.

You might ask whether Arctan really is an “inverse” of tan. For example, you might
ask whether Arctan is a bijection and whether Arctan x = arctan x for x real. The
answer to the first question is yes if we restrict the domain of Arctan, and the answer
to the second question is yes.

Properties of Arctan

Theorem 4.55 Let

D = {z ∈ C ; z �= iy, y ∈ R, |y| ≥ 1}, E = {ξ ∈ C ; | Re ξ| < π/2}.

Then
Arctan : D −→ E

is a continuous bijection from D onto E with inverse tan : E −→ D, and when
restricted to real values,

Arctan : R −→ (−π/2,π/2),

and this function equals the usual arctangent function arctan : R −→ (−π/2,
π/2).

Proof We begin by showing that Arctan(D) ⊆ E. First of all, by definition of Log,
for every z ∈ C with z �= ±i (not necessarily in D), we have
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Arctan z = 1

2i
Log

1 + iz

1 − iz
= 1

2i

(

log

∣
∣
∣
∣
1 + iz

1 − iz

∣
∣
∣
∣+ i Arg

1 + iz

1 − iz

)

= 1

2
Arg

1 + iz

1 − iz
− i

2
log

∣
∣
∣
∣
1 + iz

1 − iz

∣
∣
∣
∣ . (4.54)

Since the principal argument of every complex number lies in (−π,π], it follows
that

−π

2
< Re Arctan z ≤ π

2
, for all z ∈ C, z �= ±i.

Assume that Arctan z /∈ E, which, by the above inequality, is equivalent to

2 Re Arctan z = Arg
1 + iz

1 − iz
= π ⇐⇒ 1 + iz

1 − iz
∈ (−∞, 0).

If z = x + iy, then (by multiplying top and bottom of 1+iz
1−iz by 1 + iz and making a

short computation) we can write

1 + iz

1 − iz
= 1 − |z|2

|1 − iz|2 + 2 x

|1 − iz|2 i.

This formula shows that (1 + iz)/(1 − iz) ∈ (−∞, 0) if and only if x = 0 and
1 − |z|2 < 0, that is, either x = 0 and 1 − y2 < 0, or |y| > 1. Hence,

1 + iz

1 − iz
∈ (−∞, 0) ⇐⇒ z = iy , |y| > 1.

In summary, for every z ∈ C with z �= ±i, we have Arctan z /∈ E ⇐⇒ z /∈ D, or

Arctan z ∈ E ⇐⇒ z ∈ D. (4.55)

Therefore, Arctan(D) ⊆ E.
We now show that Arctan(D) = E, so let ξ ∈ E. Define z = tan ξ. Then according

to Lemma 4.54, we have z �= ±i and e2iξ = 1+iz
1−iz . By definition of E, the real part of ξ

satisfies −π/2 < Re ξ < π/2. Since Im(2iξ) = 2 Re(ξ), we have −π < Im(2iξ) <
π, and therefore by definition of the principal logarithm,

2iξ = Log
1 + iz

1 − iz
.

Hence, by definition of the arctangent, ξ = Arctan z. The complex number z must be
in D by (4.55) and the fact that ξ = Arctan z ∈ E. This shows that Arctan(tan ξ) = ξ
for all ξ ∈ E, and we already know that tan(Arctan z) = z for all z ∈ D (in fact,
for all z ∈ C with z �= ±i), so Arctan is a continuous bijection from D onto E with
inverse given by tan.
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Finally, it remains to show that Arctan equals arctan when restricted to the real
line. To prove this, we just need to prove that Arctan x is real when x ∈ R. This
will imply that Arctan : R −→ (−π/2,π/2) and therefore is just arctan. Now from
(4.54), we see that if x ∈ R, then the imaginary part of Arctan x is

log

∣
∣
∣
∣
1 + ix

1 − ix

∣
∣
∣
∣ = log

∣
∣
∣
∣
∣

√
1 + x2

√
1 + (−x)2

∣
∣
∣
∣
∣
= log 1 = 0.

Thus, Arctan x is real, and our proof is complete. �

Setting z = 1, we get Giulio Fagnano’s (1682–1766) famous formula (see [13]
for more on Giulio Carlo Fagnano dei Toschi):

π

4
= 1

2i
Log

1 + i

1 − i
.

� Exercises 4.11

1. Find the following logarithms:

Log(1 + i
√

3), Log(
√

3 − i), Log(1 − i)4,

and find the following powers: 2i, (1 + i)i, eLog(3+2i), i
√

3, (−1)2i.
2. Prove the following identities:

arctan x + arctan y = arctan

(
x + y

1 − xy

)

,

arctan(x + 1) + arctan(x − 1) = arctan

(
2

x2

)

,

arctan x + arctan
1

x
= π

2
,

arcsin x + arcsin y = arcsin
(

x
√

1 − y2 + y
√

1 − x2
)

,

and give restrictions under which these identities are valid. For example, the first
identity holds when xy �= 1 and the left-hand side lies strictly between −π/2 and
π/2.

3. Find the exact value of the infinite series
∑∞

n=1 arctan
(

2
n2

)
and prove that the

infinite series
∑∞

n=1

(
π
2 − arctan n

)
diverges.

4. In this problem we study real powers of complex numbers. Let a ∈ C be nonzero.

(a) Let n ∈ N and show that all powers of a to 1/n are given by

e
1
n

(
Log a+2πi k

)

, k = 0, 1, 2, . . . , n − 1.
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In addition, show that these values are all the nth roots of a and that the
principal nth root of a is the same as the principal value of a1/n.

(b) If m/n is a rational number in lowest terms with n > 0, show that all powers
of a to m/n are given by

e
m
n

(
Log a+2πi k

)

, k = 0, 1, 2, . . . , n − 1.

(c) If x is an irrational number, show that there are infinitely many distinct
complex powers of a to the x.

5. Let a, b, z, w ∈ C with a, b �= 0 and prove the following:

(a) 1/az = a−z, az · aw = az+w, and (az)n = azn for all n ∈ Z.
(b) If −π < Arg a + Arg b ≤ π, then (ab)z = az bz.
(c) If −π < Arg a − Arg b ≤ π, then (a/b)z = az/bz.
(d) If Re a, Re b > 0, then both (b) and (c) hold.
(c) Give examples showing that the conclusions of (b) and (c) are false if the

hypotheses are not satisfied.

6. (Arcsine and arccosine function) In this problem we define the principal arcsine
and arccosine functions. To define the complex arcsine, given z ∈ C we want to
solve the equation sin ξ = z for ξ and call ξ the “inverse, or arc, sine of z.”

(a) Prove that sin ξ = z if and only if (eiξ)2 − 2iz (eiξ) − 1 = 0.
(b) Solving this quadratic equation for eiξ (see Problem 5 on p. 349), prove that

sin ξ = z if and only if

ξ = 1

i
× a complex logarithm of iz ±

√
1 − z2.

Because of this formula, we define the principal inverse, or arc, sine of z
to be the complex number

Arcsin z := 1

i
Log

(
iz +

√
1 − z2

)
.

Based on the formula (4.47) on p. 352, we define the principal inverse, or
arc, cosine of z to be the complex number

Arccos z := π

2
− Arcsin z.

(c) Prove that when restricted to real values, Arcsin : [−1, 1] −→ [−π/2,π/2]
and equals the usual arcsine function.

(d) Similarly, prove that when restricted to real values, Arccos : [−1, 1] −→
[0,π] and equals the usual arccosine function.
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7. (Inverse hyperbolic functions) We look at the inverse hyperbolic functions.

(a) Prove that sinh : R −→ R is a strictly increasing bijection. We denote its
inverse by arcsinh, the hyperbolic arcsine. Show that cosh : [0,∞) −→
[1,∞) is a strictly increasing bijection; the inverse is denoted by arccosh,
the hyperbolic arccosine.

(b) Using a similar argument as you did for the arcsine function in Problem 6,
prove that sinh x = y (here, x, y ∈ R) if and only if e2x − 2yex − 1 = 0,
which holds if and only if ex = y ±√y2 + 1. From this, prove that

arcsinh x = log(x +
√

x2 + 1).

If x is replaced by z ∈ C and log by Log, the principal complex logarithm,
then this formula is called the principal hyperbolic arcsine of z.

(c) Prove that
arccosh x = log(x +

√
x2 − 1).

If x is replaced by z ∈ C and log by Log, the principal complex logarithm,
then this formula is called the principal inverse hyperbolic cosine of z.

4.12 � The Amazing π and Its Computation from Ancient
Times

In the Measurement of the Circle, Archimedes (287–212 B.C.), listed three famous
propositions involving π. In this section we look at each of these propositions, espe-
cially his third one, which uses the first known algorithm to compute π to any desired
number of decimal places!15 His basic idea is to approximate a circle by inscribed
and circumscribed regular polygons. We begin by looking at a brief history of π.

4.12.1 A Brief (and Very Incomplete) History of π

We begin by giving a short snippet of the history of π with, unfortunately, many details
left out. Some of what we choose to put here is based on what will come up later in
this book (for example, in the chapter on continued fractions; see Section 8.5 starting
on p. 636) or what might be interesting trivia. References include the comprehensive
chronicles [212–214], the beautiful books [9, 25, 73, 195], the wonderful websites
[180, 182, 221], the short synopsis [200], and (my favorite π papers) [47, 48]. Before

15[On π] “Ten decimal places of are sufficient to give the circumference of the earth to a fraction of
an inch, and thirty decimal places would give the circumference of the visible universe to a quantity
imperceptible to the most powerful microscope.” Simon Newcomb (1835–1909) [153].

http://dx.doi.org/10.1007/978-1-4939-6795-7_8
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discussing this history, assume that the area and circumference of a circle are related
to its radius r as follows:

Area of
⊙

of radius r = πr2, Circumference of
⊙

of radius r = 2πr.

In terms of the diameter d := 2r, we have

Area of
⊙

= π
d2

4
, Circumference of

⊙
= πd, π = circumference

diameter
.

(1) (circa 1650 B.C.) The Rhind (or Ahmes) papyrus is the oldest known mathe-
matical text in existence. It is named after the Egyptologist Alexander Henry
Rhind (1833–1863), who purchased it in Luxor in 1858, but it was written by a
scribe Ahmes (1680 B.C.–1620 B.C.). In this text is written the following rule
to find the area of a circle: Cut 1

9 off the circle’s diameter and construct a square
on the remainder. Thus,

π
d2

4
= area of circle ≈ square of

(
d − 1

9
d
)

=
(

d − 1

9
d
)2 =

(8

9

)2
d2.

Canceling d2 from both extremities, we obtain

π ≈ 4
(8

9

)2 =
(4

3

)4 = 3.160493827 . . . .

(2) (circa 1000 B.C.) The Holy Bible in I Kings, Chapter 7, verse 23, and II Chron-
icles, Chapter 4, verse 2, states:

And he made a molten sea, ten cubits from the one brim to the other: it was round all
about, and his height was five cubits: and a line of thirty cubits did compass it about. I
Kings 7:23.

This gives the approximate value (cf. the interesting article [5]):

π = circumference

diameter
≈ 30 cubits

10 cubits
= 3.

Not only the Israelites used 3. Other ancient civilizations used 3 for the value
of π for rough purposes (more than good enough for “everyday life”), including
the Babylonians, Hindus, and Chinese.

(3) (circa 250 B.C.) Archimedes (287–212) gave the estimate π ≈ 22/7 =
3.14285714 . . . (correct to two decimal places). We’ll thoroughly discuss
Archimedes’s method in a moment.

(4) (circa 500 A.D.) Tsu Chung-Chi (also Zu Chongzhi), of China (429–501) gave
the estimate π ≈ 355/113 = 3.14159292 . . . (correct to six decimal places); he
also gave the incredible estimate

http://dx.doi.org/10.1007/978-1-4939-6795-7_7
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3.1415926 < π < 3.1415927.

(5) (circa 1600 A.D.) The Dutch mathematician Adriaan Anthoniszoon (1527–
1607) used Archimedes’s method to get

333

106
< π <

377

120
.

By taking the average of the numerators and denominators, he found Tsu Chung-
Chi’s approximation 355/113.

(6) (1706) The symbol π was first introduced by William Jones (1675–1749) in
his beginners’ calculus book Synopsis palmariorum mathesios, where he pub-
lished John Machin’s (1680–1751) one hundred digit approximation to π; see
Section 4.12.5 on p. 373 for more on Machin. The symbol π was popularized and
became standard through Leonhard Euler’s (1707–1783) famous book Introduc-
tion in Analysing Infinitorum [69]. The letter π was (reportedly) chosen because
it’s the first letter of the Greek words “perimeter” and “periphery.”

(7) (1761) Johann Lambert (1728–1777) proved that π is irrational.
(8) (1882) Ferdinand von Lindemann (1852–1939) proved that π is transcendental.

(See p. 143 for the definition of transcendental.)
(9) (1897) A sad day in the life of π. House bill No. 246, Indiana state legislature,

1897, written by a physician Edwin Goodwin (1828–1902), tried to legally set
the value of π to a rational number; see [97, 228] for more about this sad tale.
This value would be copyrighted and used in Indiana state math textbooks, and
other states would have to pay to use this value! The bill is very convoluted
(try to read Goodwin’s article [90] and you’ll probably get a headache), and
(reportedly) the following values of π can be inferred from the bill: π = 9.24,
3.236, 3.232, and 3.2; it’s also implied that

√
2 = 10/7. Moreover, Mr. Goodwin

claimed that he could trisect an angle, double a cube, and square a circle, which
(quoting from the bill) “had been long since given up by scientific bodies as
insolvable mysteries and above mans ability to comprehend.” These problems
“had been long since given up” because they have been proven unsolvable! (See
[57, 86] for more on these unsolvable problems, first proved by Pierre Wantzel
(1814–1848), and see [61] for other stories of amateur mathematicians claiming
to have solved the unsolvable.) This bill passed the house (!), but fortunately,
with the help of mathematician C.A. Waldo, of the Indiana Academy of Science,
the bill didn’t pass in the senate.

Hold on to your seats, because we’ll take up our brief history of π again in
Section 4.12.5, after a brief intermission.
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4.12.2 Archimedes’s Three Propositions

The following three propositions are contained in Archimedes’s book Measurement
of the Circle [107]:

(1) The area of a circle is equal to that of a right-angled triangle where the sides
including the right angle are respectively equal to the radius and circumference
of the circle.

(2) The ratio of the area of a circle to that of a square with side equal to the circle’s
diameter is close to 11:14.

(3) The ratio of the circumference of any circle to its diameter is less than 3 1/7 but
greater than 3 10/71.

Figure 4.43 shows Archimedes’s first proposition. Archimedes’s second proposi-
tion gives the famous estimate π ≈ 22

7 :

r

2πr area � =
1
2
base × height =

1
2
r · (2πr) = πr2

Fig. 4.43 Archimedes’s first proposition

area of circle

area of square
= πr2

(2r)2
= π

4
≈ 11

14
=⇒ π ≈ 22

7
.

We now derive Archimedes’s third proposition using the same method Archimedes
pioneered over two thousand years ago, but we shall employ trigonometric functions!
Archimedes’s original method used plane geometry to derive his formulas (they
didn’t have the knowledge of trigonometric functions back then as we do now).
However, before doing so, we need a couple of trig facts.

4.12.3 Some Useful Trig Facts

We first consider some useful trig identities.

Lemma 4.56 We have

tan z = sin(2z) tan(2z)

sin(2z) + tan(2z)
and 2 sin2 z = sin(2z) tan z.
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Proof We’ll prove the first one and leave the second one to you. Multiplying tan z
by 2 cos z/2 cos z = 1 and using the double angle formulas 2 cos2 z = 1+cos 2z and
sin(2z) = 2 cos z sin z (see Theorem 4.35 on p. 324), we obtain

tan z = sin z

cos z
= 2 sin z cos z

2 cos2 z
= sin(2z)

1 + cos(2z)
.

Multiplying the top and bottom by tan 2z, we get

tan z = sin(2z) tan(2z)

tan(2z) + cos(2z) tan 2z
= sin(2z) tan(2z)

tan(2z) + sin(2z)
. �

Next, we consider some useful inequalities.

Lemma 4.57 For 0 < x < π/2, we have

sin x < x < tan x.

Proof We first prove that sin x < x for 0 < x < π/2. We note that the inequality
sin x < x for 0 < x < π/2 automatically implies that sin x < x holds for all x > 0,
since x is increasing and sin x is oscillating. Recalling the infinite series for sin x, the
inequality sin x < x, or −x < − sin x, is equivalent to

−x < −x + x3

3! − x5

5! + x7

7! − x9

9! + − · · · ,

or after canceling the −x’s, this inequality is equivalent to

x3

3!
(

1 − x2

4 · 5

)

+ x7

7!
(

1 − x2

8 · 9

)

+ · · · > 0.

For 0 < x < 2, each of the terms in parentheses is positive. This shows that in
particular, this expression is positive for 0 < x < π/2.

We now prove that x < tan x for 0 < x < π/2. This inequality is equivalent to
x cos x < sin x for 0 < x < π/2. Substituting the infinite series for cos and sin, the
inequality x cos x < sin x is equivalent to

x − x3

2! + x5

4! − x7

6! + − · · · < x − x3

3! + x5

5! − x7

7! + − · · · .

Bringing everything to the right, we get an inequality of the form

x3

(
1

2! − 1

3!
)

− x5

(
1

4! − 1

5!
)

+ x7

(
1

6! + 1

7!
)

− x9

(
1

8! + 1

9!
)

+ − · · · > 0.
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Combining adjacent terms, the left-hand side is a sum of terms of the form

x2k−1

(
1

(2k − 2)! − 1

(2k − 1)!
)

− x2k+1

(
1

(2k)! − 1

(2k + 1)!
)

, k = 2, 3, 4, · · · .

We claim that this term is positive for 0 < x < 3. This shows that x cos x < sin x
for 0 < x < 3, and so in particular, for 0 < x < π/2. Now the above expression is
positive if and only if

x2 <

1

(2k − 2)! − 1

(2k − 1)!
1

(2k)! − 1

(2k + 1)!
= (2k + 1)(2k − 2), k = 2, 3, 4, . . . ,

where we multiplied the top and bottom by (2k +1)!. The right-hand side is smallest
when k = 2, when it equals 5 · 2 = 10. It follows that these inequalities hold for
0 < x < 3, and our proof is now complete. �

4.12.4 Archimedes’s Third Proposition

For a circle of radius r, we have

circumference

diameter
= 2πr

2r
= π,

which we have to prove is “less than 3 1/7 but greater than 3 10/71.” To do so, let
us work with a circle of radius r = 1/2 and fix a natural number M ≥ 3. Given
n = 0, 1, 2, 3, . . ., we inscribe and circumscribe the circle with regular polygons
having 2nM sides, as seen in Fig. 4.44. We denote the perimeter of the inscribed
2nM-gon by lowercase pn and the perimeter of the circumscribed 2nM-gon by upper-
case Pn. Then geometrically, we can see that

sn
tn

2θn

polygons with
M · 2n sides

Fig. 4.44 Archimedes inscribed and circumscribed a circle with diameter 1 (radius 1/2) with
regular polygons. The sides of these polygons have lengths sn and tn, respectively. The central
angle of the inscribed and circumscribed 2nM-gons equals 2θn
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pn < π < Pn, n = 0, 1, 2, . . . ,

and pn → π and Pn → π as n → ∞; we shall prove these facts analytically in
Theorem 4.58. Using plane geometry, Archimedes found iterative formulas for the
sequences {pn} and {Pn}, and using these formulas he proved his third proposition.
Recall that everything we thought about trigonometry is true �, so we shall use these
trig facts to derive Archimedes’s famous iterative formulas for the sequences {pn}
and {Pn}. To this end, we let sn and tn denote the side lengths of the inscribed and
circumscribed polygons, so that

Pn = (# sides) × (length each side) = 2nM · tn

and
pn = (# sides) × (length each side) = 2nM · sn.

Let 2θn be the central angle of the inscribed and circumscribed 2nM-gons as shown
in Figs. 4.44 and 4.45 (that is, θn is half the central angle).

θn

sn
2

tn
2

sn
2

tn
2

1
2

1
2

θn

Fig. 4.45 We cut the central angle in half. The right picture shows a blowup of the overlapping
triangles on the left

The right picture in Fig. 4.45 gives a blown-up picture of the triangles in the left-hand
picture. The outer triangle in the right-hand picture shows that

tan θn = opposite

adjacent
= tn/2

1/2
=⇒ tn = tan θn =⇒ Pn = 2nM tan θn.

The inner triangle shows that

sin θn = opposite

hypotenuse
= sn/2

1/2
=⇒ sn = sin θn =⇒ pn = 2nM sin θn.

Now what’s θn? Well, since 2θn is the central angle of the 2nM-gon, we have

central angle = total angle of circle

# of sides of regular polygon
= 2π

2nM
.
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Setting this equal to 2θn, we get

θn = π

2nM
.

In particular,

θn+1 = π

2n+1M
= 1

2

π

2nM
= 1

2
θn.

Setting z equal to z/2 in Lemma 4.56, we see that

tan
(1

2
z
)

= sin(z) tan(z)

sin(z) + tan(z)
and 2 sin2

(1

2
z
)

= sin(z) tan
(1

2
z
)
.

Hence,

tan θn+1 = tan
(1

2
θn

)
= sin(θn) tan(θn)

sin(θn) + tan(θn)

and

2 sin2(θn+1) = 2 sin2
(1

2
θn

)
= sin(θn) tan

(1

2
θn

)
= sin(θn) tan(θn+1).

In particular, recalling that Pn = 2nM tan θn and pn = 2nM sin θn, we see that

Pn+1 = 2n+1M tan θn+1 = 2n+1M
sin(θn) tan(θn)

sin(θn) + tan(θn)

= 2
2nM sin(θn) · 2nM tan(θn)

2nM sin(θn) + 2nM tan(θn)
= 2

pnPn

pn + Pn
.

Also,

2p2
n+1 = 2

(
2n+1M sin θn+1

)2 = (2n+1M
)2

sin(θn) tan(θn+1)

= 2 · 2nM sin(θn) 2n+1M tan(θn+1) = 2pnPn+1,

or pn+1 = √
pn Pn+1. Finally, since θ0 = π/M (recall that θn = π

2nM ), we have
P0 = M tan( π

M ) and p0 = M sin( π
M ). Here’s a summary of what we’ve obtained:

Pn+1 = 2pnPn

pn + Pn
, pn+1 = √pn Pn+1; (Archimedes’ algorithm)

P0 = M tan
( π

M

)
, p0 = M sin

( π

M

)
.

(4.56)

These formulas make up the celebrated Archimedes’s algorithm. Starting from the
values of P0 and p0, we can use the iterative definitions for Pn+1 and pn+1 to generate
sequences {Pn} and {pn} that converge to π, as we now show.
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Archimedes’ algorithm

Theorem 4.58 We have

pn < π < Pn, n = 0, 1, 2, . . . ,

and pn → π and Pn → π as n → ∞.

Proof Note that for every n = 0, 1, 2, . . ., we have 0 < θn = π
2nM < π

2 , because
M ≥ 3. Thus, by Lemma 4.57,

pn = 2nM sin θn < 2nMθn < 2nM tan θn = Pn.

Since θn = π
2nM , the middle term is just π, so pn < π < Pn for every n = 0, 1, 2, . . ..

Using the limit limz→0 sin z/z = 1, we obtain

lim
n→∞ pn = lim

n→∞ 2nM sin θn = lim
n→∞ π

sin
(

π
2nM

)

(
π

2nM

) = π.

Since limz→0 cos z = 1, we have limz→0 tan z/z = limz→0 sin z/(z · cos z) = 1, so
the same argument we used for pn shows that limn→∞ Pn = π. �

In Problem 4 you will study how fast pn and Pn converge to π. Now let’s consider
a specific example: Let M = 6, which is what Archimedes chose! Then,

P0 = 6 tan
(π

6

)
= 2

√
3 = 3.464101615 . . . and p0 = 6 sin

(π

6

)
= 3.

From these values, we can find P1 and p1 from Archimedes’s algorithm (4.56):

P1 = 2p0P0

p0 + P0
= 2 · 3 · 2

√
3

3 + 2
√

3
= 3.159659942 . . .

and
p1 = √p0 P1 = √

3 · 3.159659942 . . . = 3.105828541 . . . .

Continuing this process (I used a spreadsheet), we can find P2, p2, then P3, p3, and
so forth, arriving at the table
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n pn Pn

0 3 3.464101615
1 3.105828541 3.215390309
2 3.132628613 3.159659942
3 3.139350203 3.146086215
4 3.141031951 3.1427146
5 3.141452472 3.14187305
6 3.141557608 3.141662747
7 3.141583892 3.141610177

Archimedes considered p4 = 3.14103195 . . . and P4 = 3.1427146 . . .. Notice
that

3
10

71
= 3.140845070 . . . < p4 and P4 < 3.142857142 . . . = 3

1

7
.

Hence,

3
10

71
< p4 < π < P4 < 3

1

7
,

which proves Archimedes’s third proposition. It’s interesting to note that Archimedes
didn’t have computers back then (to find square roots, for instance), or trig functions,
or coordinate geometry, or decimal notation, etc., so it’s incredible that Archimedes
was able to approximate π to such incredible accuracy!

4.12.5 Continuation of Our Brief History of π

Here are (only some!) famous formulas for π (along with the earliest known date of
publication I’m aware of) that we’ll prove in our journey through our book:

Archimedes ≈ 250 B.C.: π = lim Pn = lim pn, where

Pn+1 = 2pnPn

pn + Pn
, pn+1 = √pn Pn+1; P0 = M tan

( π

M

)
, p0 = M sin

( π

M

)
.

We remark that Archimedes’s algorithm is similar to Borchardt’s algorithm (see
Problem 1), which is similar to the modern-day AGM method of Eugene Salamin,
Richard Brent, and Jonathan and Peter Borwein [31, 32]. This AGM method can
generate billions of digits of π!

François Viète 1593 (Section 5.1, p. 381):

2

π
=
√

1

2
·
√

1

2
+ 1

2

√
1

2
·

√
√
√
√1

2
+ 1

2

√

1

2
+ 1

2

√
1

2
· · · .

http://dx.doi.org/10.1007/978-1-4939-6795-7_5
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William Brouncker 1655 (Section 8.2, p. 597):

4

π
= 1 + 12

2 + 32

2 + 52

2 + 72

2 + · · ·

.

John Wallis 1656 (Section 5.1, p. 381):

π

2
=

∞∏

n=1

2n

2n − 1
· 2n

2n + 1
= 2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · · .

where “
∏∞

n=1” means to take the product of the terms substituting n = 1, 2, 3, . . ..
James Gregory, Gottfried Leibniz 1670, Madhava of Sangamagramma ≈ 1400
(Section 5.2, p. 393):

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
+ − · · · .

John Machin 1706 (Section 6.9, p. 518):

π = 4 arctan
(1

5

)
− arctan

( 1

239

)
= 4

∞∑

n=0

(−1)n

(2n + 1)

(
4

52n+1
− 1

2392n+1

)

.

Machin calculated 100 digits of π with this formula. William Shanks (1812–1882) is
famed for his calculation ofπ to 707 places in 1873 using Machin’s formula. However,
only the first 527 places were correct, as discovered by D. Ferguson in 1944 [78] using
another Machin-type formula. Ferguson ended up publishing 620 correct places in
1946, which marks the last hand calculation for π ever to so many digits. From that
point on, computers have been used to compute π to increasing accuracy. See, for
example, Yasumasa Kanada’s website http://www.super-computing.org/; he and his
coworkers at the University of Tokyo have used Machin-like formulas to compute
trillions of digits of π. One might ask “why try to find so many digits of π?” Well,

Perhaps in some far distant century they may say, “Strange that those ingenious investigators
into the secrets of the number system had so little conception of the fundamental discoveries
that would later develop from them!” Derrick N. Lehmer (1867–1938) [270, p. 238].

We now go back to our list of formulas.
Leonhard Euler 1736 (Section 5.2, p. 393):

http://dx.doi.org/10.1007/978-1-4939-6795-7_8
http://dx.doi.org/10.1007/978-1-4939-6795-7_5
http://dx.doi.org/10.1007/978-1-4939-6795-7_5
http://dx.doi.org/10.1007/978-1-4939-6795-7_6
http://www.super-computing.org/
http://dx.doi.org/10.1007/978-1-4939-6795-7_5
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π2

6
=
∑∞

n=1

1

n2
= 1 + 1

22
+ 1

32
+ 1

42
+ · · ·

and (Section 7.6, p. 566):

π2

6
= 22

22 − 1
· 32

32 − 1
· 52

52 − 1
· 72

72 − 1
· 112

112 − 1
· · · .

We end our history with questions to ponder: What is the probability that a natural
number, chosen at random, is square-free (that is, is not divisible by the square of
a prime)? What is the probability that two natural numbers, chosen at random, are
relatively (or co) prime (that is, don’t have any common prime factors)? The answers,
drumroll please (Section 7.6, p. 566):

Probability of being square-free = Probability of being coprime = 6

π2
.

� Exercises 4.12

1. In a letter from Gauss to his teacher Johann Pfaff (1765–1825) around 1800,
Gauss asked Pfaff about the following sequences {αn}, {βn} defined recursively
as follows:

αn+1 = 1

2

(
αn + βn), βn+1 = √αn+1βn. (Borchardt’s algorithm)

Later, Carl Borchardt (1817–1880) rediscovered this algorithm and since then, this
algorithm is called Borchardt’s algorithm [46]. Prove that Borchardt’s algorithm
is basically the same as Archimedes’s algorithm in the following sense: if you
set αn := 1/Pn and βn := 1/pn in Archimedes’s algorithm, you get Borchardt’s
algorithm.

2. (Pfaff’s solution I) Now what if we don’t use the starting values P0 = M tan
(

π
M

)

and p0 = M sin
(

π
M

)
for Archimedes’s algorithm in (4.56), but instead use other

starting values? What do the sequences {Pn} and {pn} converge to? These questions
were answered by Johann Pfaff. Pick starting values P0 and p0, and let’s assume
that 0 ≤ p0 < P0; the case that P0 < p0 is handled in the next problem.

(i) Define

θ = arccos
( p0

P0

)
, r = p0P0

√
P2

0 − p2
0

.

Prove that P0 = r tan θ and p0 = r sin θ.
(ii) Prove by induction that Pn = 2nr tan

(
θ
2n

)
and pn = 2nr sin

(
θ
2n

)
.

(iii) Prove that as n → ∞, both {Pn} and {pn} converge to

http://dx.doi.org/10.1007/978-1-4939-6795-7_7
http://dx.doi.org/10.1007/978-1-4939-6795-7_7
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rθ = p0P0
√

P2
0 − p2

0

arccos
( p0

P0

)
.

3. (Pfaff’s solution II) Now assume that 0 < P0 < p0.

(i) Define (see Problem 7 on p. 364 for the definition of arccosh)

θ := arccosh
( p0

P0

)
, r := p0P0

√
p2

0 − P2
0

.

Prove that P0 = r tanh θ and p0 = r sinh θ.
(ii) Prove by induction that Pn = 2nr tanh

(
θ
2n

)
and pn = 2nr sinh

(
θ
2n

)
.

(iii) Prove that as n → ∞, both {Pn} and {pn} converge to

rθ = p0P0
√

p2
0 − P2

0

arccosh
( p0

P0

)
.

4. (Cf. [163, 193]) (Rate of convergence)

(a) Using the formulas pn = 2nM sin θn and Pn = 2nM tan θn, where θn = π
2nM ,

prove that there are constants C1, C2 > 0 such that for all n,

|pn − π| ≤ C1

4n
and |Pn − π| ≤ C2

4n
.

Suggestion: For the first estimate, use the expansion sin z = z − z3

3! + · · · .
For the second estimate, notice that |Pn − π| = 1

cos θn
|pn − π cos θn|.

(b) Part (a) shows that {pn} and {Pn} converge to π very fast, but we can get even
faster convergence by looking at the sequence {an}, where an = 1

3 (2pn+Pn).
Prove that there is a constant C > 0 such that for all n,

|an − π| ≤ C

16n
.



Chapter 5
Some of the Most Beautiful Formulas
in the World I–III

God used beautiful mathematics in creating the world.
Paul Dirac (1902–1984)

In this chapterwe present a small sample of some of themost beautiful formulas in the
world. We begin in Section5.1, where we present Viète’s formula, Wallis’s formula,
and Euler’s sine expansion. Viète’s formula, due to François Viète (1540–1603), is
the infinite product

2

π
=
√
1

2
·
√
1

2
+ 1

2

√
1

2
·

√√√√1

2
+ 1

2

√
1

2
+ 1

2

√
1

2
. . . ,

published in 1593. This is not only the first recorded infinite product [129, p. 218],
it is also the first recorded theoretically exact analytical expression for the number π
[35, p. 321]. Wallis’s formula, named after JohnWallis (1616–1703), was the second
recorded infinite product [129, p. 219]:

π

2
=

∞∏
n=1

2n

2n − 1
· 2n

2n + 1
= 2

1
· 2
3

· 4
3

· 4
5

· 6
5

· 6
7

. . . .

To explain Euler’s sine expansion, recall that if p(x) is a polynomial with roots
r1, . . . , rn (repeated according to multiplicity), then we can factor p(x) as p(x) =
a(x − r1)(x − r2) . . . (x − rn), where a is a constant. Assuming that the rk are
nonzero, by factoring out −r1, −r2, . . . , −rn , we can write p(x) as

p(x) = b

(
1 − x

r1

)(
1 − x

r2

)
· · ·
(
1 − x

rn

)
, (5.1)

© Paul Loya 2017
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for a constant b. If we put x = 0, we see that b = p(0). Returning now to the sine
function, recall that the roots of sin x are located at

0,π,−π, 2π,−2π, 3π,−3π, . . . ,

as seen here:
y = sinx

−2π

− 3π
2 −π

−π
2

π
2

π

3π
2

2π

So, if we think of p(x) := sin x
x = 1 − x2

3! + x4

5! − · · · as an (infinite-degree) poly-
nomial, then p(x) has roots at π,−π, 2π,−2π, . . . . Assuming that (5.1) holds
for such an infinite polynomial and noting that p(0) = 1, we have (recalling that
b = p(0))

p(x) = p(0)
(
1 − x

π

) (
1 + x

π

) (
1 − x

2π

) (
1 + x

2π

) (
1 − x

3π

) (
1 + x

3π

)
· · ·

=
(
1 − x2

π2

)(
1 − x2

22π2

)(
1 − x2

32π2

)
· · · .

Replacing p(x) by sin x/x , we obtain the formula

sin x = x
(
1 − x2

π2

)(
1 − x2

22π2

)(
1 − x2

32π2

)(
1 − x2

42π2

)(
1 − x2

52π2

)
· · · ,

(5.2)

which Euler first published in 1735 in his epoch-making paper De summis serierum
reciprocarum (On the sums of series of reciprocals), which was read in the St.
Petersburg Academy onDecember 5, 1735, and originally published inCommentarii
Academiae Scientiarum Petropolitanae 7, 1740, and reprinted on pp. 123–134 of
Opera Omnia: Series 1, Volume 14, pp. 73–86.

In Section5.2 we study the Basel problem, which asks for the exact value of
ζ(2) =∑∞

n=1
1
n2 . Euler, in the same 1735 paper De summis serierum reciprocarum,

proved that ζ(2) = π2

6 :

∞∑
n=1

1

n2
= 1 + 1

22
+ 1

32
+ 1

42
+ · · · = π2

6
.

Euler actually gave three proofs of this formula inDe summis serierum reciprocarum,
but the third one is the easiest to explain. Here it is. First, we divide both sides of
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(5.2) by x ; then we formally1 multiply out the right-hand side. For example, if we
multiply out just the first three factors, we get

(
1 − x2

12π2

)(
1 − x2

22π2

)(
1 − x2

32π2

)
= 1 − x2

π2

(
1

12
+ 1

22
+ 1

32

)
+ x4 and x6 terms.

Continuing multiplying, we get, at least formally speaking,

sin x

x
= 1 − x2

π2

(
1

12
+ 1

22
+ 1

32
+ · · ·

)
+ · · · ,

where the dots “· · · ” involve powers of x of degree at least four or higher. Notice
that the coefficient of x2 on the right involves ζ(2). Now dividing the infinite series
of sin x = x − x3

3! + · · · by x , we conclude that

1 − x2

3! + · · · = 1 − x2

π2
ζ(2) + · · · ,

where the “· · · ” on both sides involve powers of x of degree at least four or higher.
Finally, equating powers of x2, we conclude that

1

3! = ζ(2)

π2
=⇒ ζ(2) = π2

3! = π2

6
.

Here is an English translation of Euler’s argument from De summis serierum recip-
rocarum (which was originally written in Latin) taken from [20]:

Indeed, it having been put2 y = 0, from which the fundamental equation will turn into this3

0 = s − s3

1 · 2 · 3 + s5

1 · 2 · 3 · 4 · 5 − s7

1 · 2 · 3 · 4 · 5 · 6 · 7 + etc.

The roots of this equation give all the arcs of which the sine is equal to 0. Moreover, the
single smallest root is s = 0, whereby the equation divided by s will exhibit all the remaining
arcs of which the sine is equal to 0; these arcs will hence be the roots of this equation

0 = 1 − s2

1 · 2 · 3 + s4

1 · 2 · 3 · 4 · 5 − s6

1 · 2 · 3 · 4 · 5 · 6 · 7 + etc.

1“Formal” in mathematics usually refers to “having the form or appearance without the substance
or essence,” which is the fifth entry for “formal” in Webster’s 1828 dictionary. This is very different
from the common use of “formal”: “according to form; agreeable to established mode; regular;
methodical,” which is the first entry in Webster’s 1828 dictionary. Elaborating on the mathematical
use of “formal,” it means something like “a symbolic manipulation or expression presented without
paying attention to correctness”.
2Here, Euler set y = sin s.
3Instead of writing, e.g., 1 · 2 · 3, today we would write this as 3!. However, the factorial symbol
wasn’t invented until 1808 [44, p. 341], by Christian Kramp (1760–1826), more than 70 years after
De summis serierum reciprocarum was read in the St. Petersburg Academy.
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Truly then, those arcs of which the sine is equal to 0 are4

p , −p , +2p , −2p , 3p , −3p etc.,

of which the second of the two of each pair is negative, each of these because the equation
indicates for the dimensions of s to be even. Hence the divisors of this equation will be

1 − s

p
, 1 + s

p
, 1 − s

2p
, 1 + s

2p
etc.,

and by the joining of these divisors two by two it will be

1 − s2

1 · 2 · 3 + s4

1 · 2 · 3 · 4 · 5 − s6

1 · 2 · 3 · 4 · 5 · 6 · 7 + etc.

=
(
1 − s2

p2

)(
1 − s2

4p2

)(
1 − s2

9p2

)(
1 − s2

16p2

)
etc.

It is now clear from the nature of equations for the coefficient5 of ss that is 1
1·2·3 to be equal

to
1

p2
+ 1

4p2
+ 1

9p2
+ 1

16p2
+ etc.

In this last step, Euler says that

1

1 · 2 · 3 = 1

p2
+ 1

4p2
+ 1

9p2
+ 1

16p2
+ etc.,

which after multiplication by p2 is exactly the statement that ζ(2) = π2

6 . By the way,
in this book we give eleven proofs of Euler’s formula for ζ(2). Euler’s proof reminds
me of a quotation by Charles Hermite (1822–1901):

There exists, if I am not mistaken, an entire world which is the totality of mathematical truths,
to which we have access only with our mind, just as a world of physical reality exists, the one
like the other independent of ourselves, both of divine creation. Quoted in TheMathematical
Intelligencer, vol. 5, no. 4.

In Section5.2 we also prove the Gregory–Leibniz–Madhava series

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ − · · · .

This formula is usually called Leibniz’s series after Gottfried Leibniz (1646–1716),
because he is usually accredited as the first to mention this formula in print, in 1673,
although James Gregory (1638–1675) probably knew about it. However, the great
Indian mathematician and astronomer Madhava of Sangamagramma (1350–1425)
discovered this formula over 200 years before either Gregory or Leibniz!

4Here, Euler uses p for π. The notation π for the ratio of the length of a circle to its diameter was
introduced in 1706 by William Jones (1675–1749), and around 1736, a year after Euler published
De summis serierum reciprocarum, Euler seems to have adopted the notation π.
5Here, ss means s2.
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Finally, in Section5.3 we derive Euler’s formula for ζ(n) for all even n.

Chapter 5 objectives: The student will be able to . . .

• Explain the various formulas of Euler, Wallis, Viète, Gregory, Leibniz, Madhava.
• Formally derive Euler’s sine expansion and formula for π2/6.
• Describe Euler’s formulas for ζ(n) for n even.

5.1 � Beautiful Formulas I: Euler, Wallis, and Viète

Historically, Viète’s formula was the first infinite product written down, andWallis’s
formula was the second [129, pp. 218–219]. In this section we prove these formulas,
and we also prove Euler’s celebrated sine expansion.

5.1.1 Viète’s Formula: The First Analytic Expression For π

FrançoisViète’s (1540–1603) formula has a very elementary proof. For every nonzero
z ∈ C, dividing the identity sin z = 2 sin(z/2) cos(z/2) by z, we get

sin z

z
= cos(z/2) · sin(z/2)

z/2
.

Replacing z with z/2, we get sin(z/2)/(z/2) = cos(z/22) · sin(z/22)/(z/22). There-
fore,

sin z

z
= cos(z/2) · cos(z/22) · sin(z/2

2)

z/22
.

Continuing by induction, we obtain

sin z

z
= cos(z/2) · cos(z/22) · · · · cos(z/2n) · sin(z/2

n)

z/2n

= sin(z/2n)

z/2n
·

n∏
k=1

cos(z/2k), (5.3)

or
n∏

k=1

cos(z/2k) = z/2n

sin(z/2n)
· sin z

z
.

Since limn→∞ z/2n

sin(z/2n)
= 1 for every nonzero z ∈ C, we have
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lim
n→∞

n∏
k=1

cos(z/2k) = lim
n→∞

sin z

z
· z/2n

sin(z/2n)
= sin z

z
.

For notational purposes, we can write

sin z

z
=

∞∏
n=1

cos(z/2n) = cos(z/2) · cos(z/22) · cos(z/24) · · · (5.4)

and refer to the right-hand side as an infinite product, the subject of which we’ll
thoroughly study in Chapter7. For the purposes of this chapter, given a sequence
a1, a2, a3, . . . , we shall denote by

∏∞
n=1 an the limit

∞∏
n=1

an := lim
n→∞

n∏
k=1

ak = lim
n→∞

(
a1a2 · · · an

)
,

provided that the limit exists. Putting z = π/2 into (5.4), we get

2

π
= cos

( π

22

)
· cos

( π

23

)
· cos

( π

24

)
· cos

( π

25

)
· · · =

∞∏
n=1

cos
( π

2n+1

)
.

We now obtain formulas for cos
(

π
2n+1

)
. To do so, note that for every 0 ≤ θ ≤ π, we

have

cos

(
θ

2

)
=
√
1

2
+ 1

2
cos θ.

(This follows from the double angle formula: 2 cos2(2z) = 1 + cos z.) Thus,

cos

(
θ

22

)
=
√
1

2
+ 1

2
cos

(
θ

2

)
=
√
1

2
+ 1

2

√
1

2
+ 1

2
cos θ.

Continuing this process (slang for “it can be shown by induction”), we see that

cos

(
θ

2n

)
=

√√√√√1

2
+ 1

2

√√√√1

2
+ 1

2

√
1

2
+ · · · + 1

2

√
1

2
+ 1

2
cos θ, (5.5)

where there are n square roots here. Putting θ = π/2, we obtain

cos
( π

2n+1

)
=

√√√√√1

2
+ 1

2

√√√√1

2
+ 1

2

√
1

2
+ · · · + 1

2

√
1

2
,

http://dx.doi.org/10.1007/978-1-4939-6795-7_7
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and hence,

2

π
=

∞∏
n=1

√√√√√1

2
+ 1

2

√√√√1

2
+ 1

2

√
1

2
+ · · · + 1

2

√
1

2
,

where there are n square roots in the nth factor of the infinite product. Writing out
the infinite product, we have

2

π
=
√
1

2
·
√
1

2
+ 1

2

√
1

2
·

√√√√1

2
+ 1

2

√
1

2
+ 1

2

√
1

2
· · · . (5.6)

This formula was given by Viète in 1593.

5.1.2 Expansion of Sine I

Our first proof of Euler’s infinite product for sine is based on a neat identity involving
tangents that we’ll present in Lemma 5.1 below. See Problem 6 for another proof.
To begin, we first write, for z ∈ C,

sin z = 1

2i

(
eiz − e−i z

)
= lim

n→∞
1

2i

{(
1 + i z

n

)n

−
(
1 − i z

n

)n}
= lim

n→∞ Fn(z),

(5.7)
where Fn is the polynomial of degree n in z given by

Fn(z) = 1

2i

{(
1 + i z

n

)n

−
(
1 − i z

n

)n}
. (5.8)

In the following lemma, we factor the polynomial Fn(z) in terms of tangents.

Lemma 5.1 If n = 2m + 1 with m ∈ N, then we can write

Fn(z) = z
m∏

k=1

(
1 − z2

n2 tan2(kπ/n)

)
.

Proof We shall find n = 2m + 1 roots of Fn(z). To do so, observe that substituting
z = n tan θ yields
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1 + i z

n
= 1 + i tan θ = 1 + i

sin θ

cos θ
= 1

cos θ

(
cos θ + i sin θ

)
= sec θ eiθ,

and similarly, 1 − i z/n = sec θ e−iθ. Thus,

Fn(n tan θ) = 1

2i

{(
1 + i z

n

)n

−
(
1 − i z

n

)n} ∣∣∣∣
z=n tan θ

= 1

2i
secn θ

(
einθ − e−inθ

)
.

Since sin z = 1
2i (e

iz − e−i z), we have

Fn(n tan θ) = secn θ sin(nθ).

The sine function vanishes at integer multiples of π, so Fn(n tan θ) = 0 when nθ =
kπ, for every integer k, that is, when θ = kπ/n, for every k ∈ Z. Thus, Fn(zk) = 0
for

zk = n tan
(kπ

n

)
= n tan

( kπ

2m + 1

)
,

where k ∈ Z, and we recall that n = 2m + 1. Since tan θ is strictly increasing on the
interval (−π/2,π/2), it follows that

z−m < z−m+1 < · · · < z−1 < z0 < z1 < · · · < zm−1 < zm .

Moreover, since tangent is an odd function, we have z−k = −zk for each k. In par-
ticular, we have found 2m + 1 = n distinct roots of Fn(z), so as a consequence of
the fundamental theorem of algebra, we can write Fn(z) as a constant times

(z − z0) ·
m∏

k=1

{
(z − zk) · (z − z−k)

}

= z ·
m∏

k=1

{
(z − zk) · (z + zk)

}
(sincez−k = −zk)

= z
m∏

k=1

(z2 − z2k).

Factoring out all the −z2k terms and gathering them all into one constant, we can
conclude that for some constant a,

Fn(z) = a z
m∏

k=1

(
1 − z2

z2k

)
= a z

m∏
k=1

(
1 − z2

n2 tan2(kπ/n)

)
.
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Multiplying out the terms in the formula (5.8), we see that Fn(z) = z plus higher
powers of z. This implies that a = 1 and completes the proof of the lemma. �

Using this lemma we can give a formal proof of Euler’s sine expansion. We now
restrict our attention to real numbers. From (5.7) and Lemma 5.1, we know that for
every x ∈ R,

sin x

x
= lim

n→∞
Fn(x)

x
= lim

n→∞

n−1
2∏

k=1

(
1 − x2

n2 tan2(kπ/n)

)
, (5.9)

where in the limit we restrict n to odd natural numbers. Thus, if wewrite n = 2m + 1,
the limit in (5.9) really means

sin x

x
= lim

m→∞

m∏
k=1

(
1 − x2

(2m + 1)2 tan2(kπ/(2m + 1))

)
,

but we prefer the simpler form in (5.9) with the understanding that n is odd in (5.9).
To compute the limit as n → ∞ in (5.9), note that

lim
n→∞ n2 tan2(kπ/n) = lim

n→∞(k π)2
( tan(kπ/n)

kπ/n

)2 = k2π2,

where we used that limz→0
tan z

z = 1 (which follows from limz→0
sin z

z = 1 and that
limz→0 cos(z) = cos(0) = 1). Hence,

lim
n→∞

(
1 − x2

n2 tan2(kπ/n)

)
=
(
1 − x2

k2π2

)
. (5.10)

Thus, formally evaluating the limit in (5.9), we see that

sin x

x
= lim

n→∞

n−1
2∏

k=1

(
1 − x2

n2 tan2(kπ/n)

)

=
∞∏

k=1

lim
n→∞

(
1 − x2

n2 tan2(kπ/n)

)

=
∞∏

k=1

(
1 − x2

k2π2

)
,

which is Euler’s result. Unfortunately, there are two issues with this argument. The
first issue is that although by (5.10) the second and third lines are one and the same,
we have yet to prove that the infinite product in the last line actually converges! The
second issue occurs in switching the limit with the product from the first to second
lines:
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lim
n→∞

n−1
2∏

k=1

(
1 − x2

n2 tan2(kπ/n)

)
=

∞∏
k=1

lim
n→∞

(
1 − x2

n2 tan2(kπ/n)

)
. (5.11)

See Problem 2 for an example in which such an interchange leads to a wrong answer.
On page 547 in Section7.3 of Chapter7, we’ll encounter Tannery’s theorem for
infinite products, from which we can easily deduce that (5.11) does indeed hold.
However, we’ll leave Tannery’s theorem for products until Chapter7, because we
can easily justify (5.11) in a very elementary (although a little long-winded) way,
which we do in the following theorem.

Euler’s theorem

Theorem 5.2 For every x ∈ R we have

sin x = x
∞∏

k=1

(
1 − x2

π2k2

)

in the sense that the right-hand infinite product converges and equals sin x.

Proof Euler’s formula holds for x any integer multiple of π (both sides are zero), so
we can fix a real number x not an integer multiple of π. Given m ∈ N, if we put

Pm =
m∏

k=1

(
1 − x2

k2π2

)
,

we need to show that sin x/x = limm→∞ Pm .
Step 1: We begin by understanding limn→∞ pn , where

pn =
n−1
2∏

k=1

(
1 − x2

n2 tan2(kπ/n)

)
,

and where we restrict n to odd natural numbers.
Let m ∈ N. Then for every odd n with m < n−1

2 , we can break up the product pn

from k = 1 to m and then from m + 1 to n−1
2 :

pn =
m∏

k=1

(
1 − x2

n2 tan2(kπ/n)

)
·

n−1
2∏

k=m+1

(
1 − x2

n2 tan2(kπ/n)

)
. (5.12)

As n → ∞, the left-hand side, pn , of (5.12) converges to sin x/x . On the other
hand, by the observation (5.10) and the algebra of limits (noting that we have a finite
product), we have

http://dx.doi.org/10.1007/978-1-4939-6795-7_7
http://dx.doi.org/10.1007/978-1-4939-6795-7_7
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lim
n→∞

m∏
k=1

(
1 − x2

n2 tan2(kπ/n)

)
=

m∏
k=1

(
1 − x2

k2π2

)
= Pm,

which is not zero, since x is not an integer multiple of π. Thus, taking n → ∞ in
(5.12), it follows that the limit

Qm := lim
n→∞

n−1
2∏

k=m+1

(
1 − x2

n2 tan2(kπ/n)

)

exists, and
sin x

x
= Pm Qm .

Hence, for every m ∈ N,

∣∣∣∣ sin x

x
− Pm

∣∣∣∣ =
∣∣∣Pm Qm − Pm

∣∣∣ = |Pm | · |Qm − 1|.

Our goal now is to prove that the right-hand side approaches zero as m → ∞.
Step 2: We claim that |Pm | is bounded. Indeed, observe that for every m ∈ N,

|Pm | =
∣∣∣∣∣

m∏
k=1

(
1 − x2

k2 π2

)∣∣∣∣∣ ≤
m∏

k=1

(
1 + x2

k2 π2

)

≤
m∏

k=1

e
x2

k2 π2 (since 1 + t ≤ et for any t ∈ R)

= e
∑m

k=1
x2

k2 π2 (since ea · eb = ea+b)

≤ eL ,

where L =∑∞
k=1

x2

k2 π2 , a finite constant, the exact value of which is not important.
(Note that

∑∞
k=1

1
k2 converges by the p-test with p = 2.) Hence, for every m ∈ N,

∣∣∣∣ sin x

x
− Pm

∣∣∣∣ ≤ eL |Qm − 1|.

It remains to show that Qm → 1 as m → ∞. To do this, we need some estimates.
Step 3: We find some nice estimates on the quotient x2

n2 tan2(kπ/n)
. In Lemma 4.57

on page 368, we proved that

θ < tan θ, for 0 < θ < π/2.

In particular, if n ∈ N is odd and 1 ≤ k ≤ n−1
2 , then

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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kπ

n
<

n − 1

2
· π

n
<

π

2
,

so
x2

n2 tan2(kπ/n)
<

x2

n2(kπ)2/n2
= x2

k2π2
. (5.13)

Step 4: We now complete our proof. Let m ∈ N with x2

m2π2 < 1. Then for every
n ∈ N with m < n−1

2 , by (5.13) we have

x2

n2 tan2(kπ/n)
<

x2

k2π2
< 1 for k = m + 1, m + 2, . . . ,

n − 1

2
.

In particular,

0 <

(
1 − x2

n2 tan2(kπ/n)

)
< 1 for k = m + 1, m + 2, . . . ,

n − 1

2
.

Hence,
n−1
2∏

k=m+1

(
1 − x2

n2 tan2(kπ/n)

)
< 1.

Taking n → ∞, we conclude that

Qm < 1.

In Problem 3 youwill prove that for all nonnegative real numbers a1, a2, . . . , ap ≥ 0,
we have

1 − (a1 + a2 + · · · + ap) ≤ (1 − a1)(1 − a2) · · · (1 − ap). (5.14)

Using this inequality, it follows that

1 −
n−1
2∑

k=m+1

x2

n2 tan2(kπ/n)
≤

n−1
2∏

k=m+1

(
1 − x2

n2 tan2(kπ/n)

)
.

By (5.13) we have

n−1
2∑

k=m+1

x2

n2 tan2(kπ/n)
≤ x2

π2

n−1
2∑

k=m+1

1

k2
≤ sm,

where sm = x2

π2

∑∞
k=m+1

1
k2 . Thus,
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1 − sm ≤
n−1
2∏

k=m+1

(
1 − x2

n2 tan2(kπ/n)

)
.

Taking n → ∞, we conclude that

1 − sm ≤ Qm .

Combining this with the fact that Qm < 1, we see that

1 − sm ≤ Qm < 1.

Since
∑∞

k=1
1
k2 converges (the p-test with p = 2), by the Cauchy criterion for series

on page 205, we know that limm→∞ sm = 0. Thus, by the squeeze theorem it follows
that Qm → 1, as desired. �

We remark that Euler’s sine expansion also holds for all complex z ∈ C (and not
just real x ∈ R), but we’ll wait for Section7.3, page 547, of Chapter7 for the proof
of the complex version.

5.1.3 Wallis’s Formulas

As an application of Euler’s sine expansion, we derive John Wallis’s (1616–1703)
formulas for π.

Wallis’s formulas

Theorem 5.3 We have

π

2
=

∞∏
n=1

2n

2n − 1
· 2n

2n + 1
= 2

1
· 2
3

· 4
3

· 4
5

· 6
5

· 6
7

· · · ,

√
π = lim

n→∞
1√
n

n∏
k=1

2k

2k − 1
= lim

n→∞
1√
n

· 2
1

· 4
3

· 6
5

· · · 2n

2n − 1
.

Proof To obtain the first formula, we set x = π/2 in Euler’s infinite product expan-
sion for sine:

sin x = x
∞∏

n=1

(
1 − x2

π2n2

)
=⇒ 1 = π

2

∞∏
n=1

(
1 − 1

22n2

)
.

Since 1 − 1
22n2 = 22n2−1

22n2 = (2n−1)(2n+1)
(2n)(2n)

, we see that

http://dx.doi.org/10.1007/978-1-4939-6795-7_7
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2

π
=

∞∏
n=1

2n − 1

2n
· 2n + 1

2n
.

Now taking reciprocals of both sides (you are encouraged to verify that the reciprocal
of an infinite product is the product of the reciprocals) we get Wallis’s first formula.
To obtain the second formula, we write the first formula as

π

2
= lim

n→∞

{(2
1

)2 ·
(4
3

)2 · · ·
( 2n

2n − 1

)2 · 1

2n + 1

}
.

Then taking square roots we obtain

√
π = lim

n→∞

√
2

2n + 1

n∏
k=1

2k

2k − 1
= lim

n→∞
1√
n

1√
1 + 1/2n

n∏
k=1

2k

2k − 1
.

Using that 1/
√
1 + 1/2n → 1 as n → ∞ completes our proof. �

We now prove a beautiful expression for π due to Jonathan Sondow [232, 259].
To present this formula, we first manipulate Wallis’s first formula to

π

2
=

∞∏
n=1

2n

2n − 1
· 2n

2n + 1
=

∞∏
n=1

4n2

4n2 − 1
=

∞∏
n=1

(
1 + 1

4n2 − 1

)
.

Second, using partial fractions, we observe that

∞∑
n=1

1

4n2 − 1
= 1

2

∞∑
n=1

(
1

2n − 1
− 1

2n + 1

)
= 1

2
· 1 = 1

2
,

since the sum telescopes (see e.g., the telescoping series theorem, Theorem 3.22 on
page 200). Dividing these two formulas, we get

π =

∞∏
n=1

(
1 + 1

4n2 − 1

)

∞∑
n=1

1

4n2 − 1

,

quite astonishing! Written out in all its glory, we have

π =
(
1 + 1

1 · 3
)(

1 + 1

3 · 5
)(

1 + 1

5 · 7
)(

1 + 1

7 · 9
)

· · ·
1

1 · 3 + 1

3 · 5 + 1

5 · 7 + 1

7 · 9 + · · ·
.

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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� Exercises 5.1

1. Here are some Viète–Wallis products from [187, 190].

(i) From the formulas (5.3) and (5.5) on pages 381 and 382, and Euler’s sine
expansion, prove that for every x ∈ R and p ∈ N we have

sin x

x
=

p∏
k=1

√√√√1

2
+ 1

2

√
1

2
+ · · · + 1

2

√
1

2
+ 1

2
cos x ·

∞∏
n=1

(2pπn − x

2pπn
· 2

pπn + x

2pπn

)
,

where there are k square roots in the kth factor of the product
∏p

k=1.
(ii) Setting x = π/2 in (i), show that

2

π
=

p∏
k=1

√√√√1

2
+ 1

2

√
1

2
+ · · · + 1

2

√
1

2
+ 1

2
·

∞∏
n=1

(2p+1n − 1

2p+1n
· 2

p+1n + 1

2p+1n

)
,

where there are k square roots in the kth factor of the product
∏p

k=1.
(iii) Setting x = π/6 in (i), show that

3

π
=

p∏
k=1

√√√√√√1

2
+ 1

2

√√√√√1

2
+ · · · + 1

2

√√√√1

2
+ 1

2

(√
3

2

)

·
∞∏

n=1

(3 · 2p+1n − 1

3 · 2p+1n
· 3 · 2p+1n + 1

3 · 2p+1n

)
,

where there are k square roots in the kth factor of the product
∏p

k=1.
(iv) Experiment with two other values of x to derive other Viète–Wallis-type

formulas.

2. Suppose that for each n ∈ N we are given a finite product

an∏
k=1

fk(n),

where fk(n) is an expression involving k, n, and an ∈ N is such that limn→∞ an =
∞. For example, in (5.11)we have an = n−1

2 and fk(n) =
(
1 − x2

n2 tan2(kπ/n)

)
; then

(5.11) claims that for this example we have

lim
n→∞

an∏
k=1

fk(n) =
∞∏

k=1

lim
n→∞ fk(n). (5.15)
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However, this equality is not always true. Indeed, give an example of an an and
fk(n) for which (5.15) does not hold.

3. Prove (5.14) using induction on p.
4. Prove the following splendid formula:

√
π = lim

n→∞
(n!)2 22n

(2n)!√n
.

Suggestion: Wallis’s formula is hidden here.
5. (cf. [21]) In this problemwe give an elementary proof of the following interesting

identity: For every n that is a power of 2 and for every x ∈ R we have

sin x = n sin
( x

n

)
cos
( x

n

) n
2 −1∏
k=1

(
1 − sin2(x/n)

sin2(kπ/n)

)
. (5.16)

(i) Prove that for every x ∈ R,

sin x = 2 sin
( x

2

)
sin
(π + x

2

)
.

(ii) Show that for n equal to a power of 2, we have

sin x = 2n sin
( x

n

)
sin
(π + x

n

)
sin
( 2π + x

n

)
· · ·

· · · sin
( (n − 2)π + x

n

)
sin
( (n − 1)π + x

n

)
;

note that if n = 21, we get the formula in (i).
(iii) Show that the formula in (ii) can be written as

sin x = 2n sin
( x

n

)
sin
( n

2π + x

n

) ∏
1≤k< n

2

sin
(kπ + x

n

)
sin
(kπ − x

n

)
.

(iv) Prove the identity sin(θ + ϕ) sin(θ − ϕ) = sin2 θ − sin2 ϕ and use this to
conclude that the formula in (iii) equals

sin x = 2n sin
( x

n

)
cos
( x

n

) ∏
1≤k< n

2

(
sin2

(kπ

n

)
− sin2

( x

n

))
.

(v) By considering what happens as x → 0 in the formula in (iv), prove that for
n a power of 2, we have
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n = 2n
∏

1≤k< n
2

(
sin2

(kπ

n

))
.

Now prove (5.16).

6 (Expansion of sine II) We give a second proof of Euler’s sine expansion.

(i) Show that taking n → ∞ on both sides of the identity (5.16) from the pre-
vious problem gives a formal proof of Euler’s sine expansion.

(ii) Now using the identity (5.16) and following the ideas found in the proof of
Theorem 5.2, give another rigorous proof of Euler’s sine expansion.

5.2 � Beautiful Formuls II: Euler, Gregory, Leibniz,
and Madhava

In this section we present two beautiful formulas involving π: Euler’s formula for
π2/6 and the Gregory–Leibniz–Madhava formula for π/4. My favorite proofs of
these formulas are taken from the article by Josef Hofbauer [110] and are completely
“elementary” in the sense that they involve nothing involving derivatives or integrals.
They use just a little bit of trigonometric identities and then a dab of some inequalities
(or Tannery’s theorem if you prefer) to finish them off. However, before presenting
Hofbauer’s proofs,wepresent (basically) one ofEuler’s original proofs of his solution
to the Basel problem.

5.2.1 Proof I of Euler’s Formula for π2/6

The Italian mathematician Pietro Mengoli (1625–1686), in his 1650 book Novae
quadraturae arithmeticae, seu de additione fractionum, posed the following ques-
tion: What’s the value of the sum

∞∑
n=1

1

n2
= 1 + 1

22
+ 1

32
+ 1

42
+ · · · ?

Here’s what Mengoli said6:

Having concluded with satisfaction my consideration of those arrangements of fractions,
I shall move on to those other arrangements that have the unit as numerator, and square
numbers as denominators. The work devoted to this consideration has bore some fruit —

6It took ≈ 5 years to find this passage! The breakthrough came thanks to Emanuele Delucchi, who
contacted his sister Rachele Delucchi, who then foundMengoli’s book in the library of ETHZurich,
and thanks to Emanuele Delucchi for translating the original Latin.
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the question itself still awaiting solution — but it [the work] requires the support of a richer
mind, in order to lead to the evaluation of the precise sum of the arrangement [of fractions]
that I have set myself as a task.

The task of finding the sum was made popular through Jacob Bernoulli (1654–1705)
when he wrote about it in 1689, and was solved by Leonhard Euler (1707–1783) in
1735. Bernoulli was so baffled by the unknown value of the series that he wrote:

If somebody should succeed in finding what till now withstood our efforts and communicate
it to us, we shall be much obliged to him. [47, p. 73], [270, p. 345].

Before Euler’s solution to this request, known as the Basel problem (Bernoulli lived
in Basel, Switzerland), this problem had eluded many of the great mathematicians
of that day: In 1742, Euler wrote:

Jacob Bernoulli does mention those series, but confesses that, in spite of all his efforts, he
could not get through, so that Joh. Bernoulli, de Moivre, and Stirling, great authorities in
such matters, were highly surprised when I told them that I had found the sum of ζ(2), and
even of ζ(n) for n even. [255, pp. 262–263].

(We shall consider ζ(n) for n even in the next section.) Needless to say, it shocked the
mathematical community when Euler found the sum to be π2/6; in the introduction
to his famous 1735 paper De summis serierum reciprocarum (On the sums of series
of reciprocals), where he first proves that ζ(2) = π2/6, Euler writes:

So much work has been done on the series ζ(n) that it seems hardly likely that anything new
about them may still turn up . . . I, too, in spite of repeated efforts, could achieve nothing
more than approximate values for their sums . . . Now, however, quite unexpectedly, I have
found an elegant formula for ζ(2), depending on the quadrature of the circle [i.e., upon π]
[255, p. 261].

For more on various solutions to the Basel problem, see [49, 118, 209], and for
more on Euler, see [10, 128]. On the side is a picture of a Swiss ten-franc banknote
honoring Euler.

We already saw Euler’s original argument in the introduction to this chapter; we
shall now make his argument rigorous. First, we claim that for all nonnegative real
numbers a1, a2, . . . , an ≥ 0, we have

1 −
n∑

k=1

ak ≤
n∏

k=1

(1 − ak) ≤ 1 −
n∑

k=1

ak +
∑

1≤i< j≤n

ai a j , (5.17)

where the sum
∑

1≤i< j≤n means to sum the ai a j with 1 ≤ i < j ≤ n. You will prove

these inequalities in Problem 1. Applying these inequalities to
∏n

k=1

(
1 − x2

k2π2

)
, we

obtain
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1 −
n∑

k=1

x2

k2π2
≤

n∏
k=1

(
1 − x2

k2π2

)
≤ 1 −

n∑
k=1

x2

k2π2
+

∑
1≤i< j≤n

x2

i2π2

x2

j2π2
.

After some slight simplifications, we can write this as

1 − x2

π2

n∑
k=1

1

k2
≤

n∏
k=1

(
1 − x2

k2π2

)
≤ 1 − x2

π2

n∑
k=1

1

k2
+ x4

π4

∑
1≤i< j≤n

1

i2 j2
. (5.18)

Let us put

ζn(2) =
n∑

k=1

1

k2
and ζn(4) =

n∑
k=1

1

k4
,

and observe that

ζn(2)
2 =

( n∑
i=1

1

i2

)( n∑
j=1

1

j2

)
=

n∑
i, j=1

1

i2 j2

= ζn(4) + 2
∑

1≤i< j≤n

1

i2 j2
.

Thus, (5.18) can be written as

1 − x2

π2
ζn(2) ≤

n∏
k=1

(
1 − x2

k2π2

)
≤ 1 − x2

π2
ζn(2) + x4

π4

ζn(2)2 − ζn(4)

2
.

Taking n → ∞ and using that ζn(2) → ζ(2),
∏n

k=1

(
1 − x2

k2π2

)
→ sin x

x , and that

ζn(4) → ζ(4), we obtain

1 − x2

π2
ζ(2) ≤ sin x

x
≤ 1 − x2

π2
ζ(2) + x4

π4

ζ(2)2 − ζ(4)

2
.

Replacing sin x
x by its infinite series, we see that

1 − x2

π2
ζ(2) ≤ 1 − x2

3! + x4

5! − x6

7! + · · · ≤ 1 − x2

π2
ζ(2) + x4

π4

ζ(2)2 − ζ(4)

2
.

Now subtracting 1 from everything and dividing by x2, we get

− 1

π2
ζ(2) ≤ − 1

3! + x2

5! − x4

7! + · · · ≤ − 1

π2
ζ(2) + x2

π4

ζ(2)2 − ζ(4)

2
.

Finally, putting x = 0, we conclude that
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− 1

π2
ζ(2) ≤ − 1

3! ≤ − 1

π2
ζ(2).

This implies that ζ(2) = π2

6 , exactly as Euler stated. See Problem 7 for a derivation
of the value of ζ(4).

5.2.2 Proof II of Euler’s Formula for π2/6 [110]

We begin with the following identity, valid for z ∈ C that are noninteger multiples
of π,

1

sin2 z
= 1

4 sin2 z
2 cos

2 z
2

= 1

4

(
1

sin2 z
2

+ 1

cos2 z
2

)
= 1

4

(
1

sin2 z
2

+ 1

sin2
(

π−z
2

)
)

,

where at the last step we used that cos(z) = sin( π
2 − z). Replacing z with πz, we get

for noninteger z,

1

sin2 πz
= 1

22

⎛
⎝ 1

sin2 zπ
2

+ 1

sin2
(

(1−z)π
2

)
⎞
⎠ . (5.19)

In particular, setting z = 1/22 gives

2 = 1

22

(
1

sin2 π
23

+ 1

sin2 3π
23

)
,

or in summation notation,

2 = 1

22

2∑
k=1

1

sin2 (2k−1)π
23

.

Applying (5.19) to each term on the right-hand side of this equation (that is, set
z = 1/22, respectively z = 3/22, in (5.19) to expand 1

sin2 π

23
, respectively 1

sin2 3π
23
), we

obtain
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2 = 1

22

(
1

22

[
1

sin2 π
24

+ 1

sin2 7π
24

]
+ 1

22

[
1

sin2 3π
24

+ 1

sin2 5π
24

])

= 1

24

(
1

sin2 π
24

+ 1

sin2 3π
24

+ 1

sin2 5π
24

+ 1

sin2 7π
24

)

= 1

24

4∑
k=1

1

sin2 (2k−1)π
24

.

Repeatedly applying (5.19) (slang for “use induction”), we arrive at the following.

Lemma 5.4 For every n ∈ N, we have

2 = 1

22n

2n∑
k=1

1

sin2 (2k−1)π
2n+2

.

To establish Euler’s formula, we need one more lemma.

Lemma 5.5 For 0 < x < π/2, we have

−1 + 1

sin2 x
<

1

x2
<

1

sin2 x
.

Proof For 0 < x < π/2, taking reciprocals in the formula fromLemma 4.57 on page
368,

sin x < x < tan x,

we get cot2 x < x−2 < sin−2 x . Since cot2 x = cos2 x/ sin2 x = sin−2 x − 1, we
conclude that

1

sin2 x
>

1

x2
> −1 + 1

sin2 x
, 0 < x <

π

2
,

which proves the lemma. �

Now, observe that for 0 ≤ k ≤ 2n , we have

(2k − 1)π

2n+2
≤ (2(2n) − 1)π

2n+2
= (2n+1 − 1)π

2n+2
<

π

2
,

and therefore, using the identity

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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−1 + 1

sin2 x
<

1

x2
<

1

sin2 x
, 0 < x <

π

2
,

we see that

−2n +
2n∑

k=1

1

sin2 (2k−1)π
2n+2

<

2n∑
k=1

1(
(2k−1)π
2n+2

)2 <

2n∑
k=1

1

sin2 (2k−1)π
2n+2

.

Multiplying both sides by 1/22n and using Lemma 5.4, we get

− 1

2n
+ 2 <

24

π2

2n∑
k=1

1

(2k − 1)2
< 2.

Taking n → ∞ and using the squeeze theorem, we conclude that

2 ≤ 24

π2

∞∑
k=1

1

(2k − 1)2
≤ 2 =⇒

∞∑
k=1

1

(2k − 1)2
= π2

8
.

Finally, summing over the even and odd numbers (see Problem 2a on page 203), we
have

∞∑
n=1

1

n2
=

∞∑
n=1

1

(2n − 1)2
+

∞∑
n=1

1

(2n)2
= π2

8
+ 1

4

∞∑
n=1

1

n2
(5.20)

=⇒ 3

4

∞∑
n=1

1

n2
= π2

8
.

Solving for
∑∞

n=1 1/n2, we obtain Euler’s formula:

π2

6
=

∞∑
n=1

1

n2
= 1 + 1

22
+ 1

32
+ 1

42
+ · · · .

5.2.3 Proof III of Euler’s Formula for π2/6

In Proof II, we established Euler’s formula from Lemma 5.5. This time we apply
Tannery’s theorem from page 216. The idea is to write the identity in Lemma 5.4 in
a form found in Tannery’s theorem:

2 = 1

22n

2n∑
k=1

1

sin2 (2k−1)π
2n+2

=
2n∑

k=1

ak(n), (5.21)
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where

ak(n) = 1

22n

1

sin2 (2k−1)π
2n+2

.

Let us verify the hypotheses of Tannery’s theorem. First, since limz→0
sin z

z = 1, we
have

lim
n→∞ 2n sin

(2k − 1)π

2n+2
= lim

n→∞
(2k − 1)π

22
· sin

(2k−1)π
2n+2

(2k−1)π
2n+2

= (2k − 1)π

22
.

Therefore,

lim
n→∞ ak(n) = lim

n→∞
1

22n
· 1

sin2 (2k−1)π
2n+2

= lim
n→∞

1(
2n sin (2k−1)π

2n+2

)2 = 24

π2(2k − 1)2
.

To verify the other hypothesis of Tannery’s theorem, we need the following lemma.

Lemma 5.6 If R < π, there exists a constant c > 0 such that for z ∈ C with
|z| ≤ R, we have

c |z| ≤ | sin z|.

Proof Let R < π and let B denote the ball of radius R centered at the origin
in C. Define f : B −→ R by f (0) = 1 and f (z) = |(sin z)/z| for z 
= 1. Since
limz→0(sin z)/z = 1, f is continuous on all of B. Note that f is not zero for z ∈ B
(why?). Thus, by Corollary 4.21, there is a constant c > 0 such that c ≤ f (z) for all
z ∈ B. Hence, c |z| ≤ | sin z| for z ∈ B. �

Now observe that for 1 ≤ k ≤ 2n , we have

(2k − 1)π

2n+2
≤ (2(2n) − 1)π

2n+2
= (2n+1 − 1)π

2n+2
<

π

2
,

and therefore, by Lemma 5.6, for some c > 0,

c · (2k − 1)π

2n+2
≤ sin

(2k − 1)π

2n+2
=⇒ 1

sin2 (2k−1)π
2n+2

≤ 22n+4

c2π2(2k − 1)2
.

Multiplying both sides by 1/22n , we obtain

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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1

22n
· 1

sin2 (2k−1)π
2n+2

≤ 24

c2π2
· 1

(2k − 1)2
=: Mk .

It follows that |ak(n)| ≤ Mk for all n, k. Moreover, since the sum
∑∞

k=1 Mk =∑∞
k=1

24

c2π2 · 1
(2k−1)2 converges, we have verified the hypotheses of Tannery’s theo-

rem. Hence, taking n → ∞ in (5.21), we get

2 = lim
n→∞

2n∑
k=1

ak(n) =
∞∑

k=1

lim
n→∞ ak(n)

=
∞∑

k=1

24

π2(2k − 1)2
=⇒ π2

8
=

∞∑
k=1

1

(2k − 1)2
.

Doing the even–odd trick as we did in (5.20), we know that this formula implies
Euler’s formula for π2/6. See Problem 5 for Proof IV, a classic proof.

5.2.4 Proof I of Gregory–Leibniz–Madhava’s Formula
for π/4

Like the proof of Euler’s formula, which was based on a trigonometric identity for
sines (Lemma 5.4), the proof of Gregory–Leibniz–Madhava’s formula,

π

4
=

∞∑
n=0

(−1)n−1

2n − 1
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
+ · · · ,

also involves trigonometric identities, but for cotangents. Concerning Leibniz’s dis-
covery of this formula, Christiaan Huygens (1629–1695) wrote that “it would be a
discovery always to be remembered among mathematicians” [270, p. 316]. In 1676,
Isaac Newton (1642–1727) wrote:

Leibniz’s method for obtaining convergent series is certainly very elegant, and it would
have sufficiently revealed the genius of its author, even if he had written nothing else. [244,
p. 130].

To prove the Gregory–Leibniz–Madhava formula, we begin with the double angle
formula

2 cot 2z = 2
cos 2z

sin 2z
= cos2 z − sin2 z

cos z sin z
= cot z − tan z,

from which we see that

cot 2z = 1

2

(
cot z − tan z

)
.
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Since tan z = cot(π/2 − z), we find that

cot 2z = 1

2

(
cot z − cot

(π

2
− z
))

.

Replacing z with πz/2, we get

cot πz = 1

2

(
cot

zπ

2
− cot

(1 − z)π

2

)
, (5.22)

which is our fundamental equation. In particular, setting z = 1/4, we obtain

1 = 1

2

(
cot

π

4 · 2 − cot
3π

4 · 2
)

= 1

2

1∑
k=1

(
cot

(4k − 3)π

23
− cot

(4k − 1)π

23

)
.

Applying (5.22) to each term cot π
23 and cot 3π

23 gives

1 = 1

2

[
1

2

(
cot

π

24
− cot

7π

24

)
− 1

2

(
cot

3π

24
− cot

5π

24

)]

= 1

22

[(
cot

π

24
− cot

3π

24

)
+
(
cot

5π

24
− cot

7π

24

)]

= 1

22

2∑
k=1

(
cot

(4k − 3)π

24
− cot

(4k − 1)π

24

)
.

Repeatedly applying (5.22), one can prove that for every n ∈ N, we have

1 = 1

2n

2n−1∑
k=1

(
cot

(4k − 3)π

2n+2
− cot

(4k − 1)π

2n+2

)
.

(The diligent reader will supply the details!) Thus,

1 =
2n−1∑
k=1

ak(n) , where ak(n) = 1

2n

(
cot

(4k − 3)π

2n+2
− cot

(4k − 1)π

2n+2

)
. (5.23)

This identity implores us to try Tannery’s theorem (see page 216)! Let us verify the
hypotheses of that theorem. First, to find limn→∞ ak(n), note that

lim
z→0

z cot z = lim
z→0

(
z

sin z
· cos z

)
= 1 · cos(0) = 1.
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Observe that

ak(n) = 1

2n
cot

(4k − 3)π

2n+2 − 1

2n
cot

(4k − 1)π

2n+2

= 4

π(4k − 3)
· (4k − 3)π

2n+2 cot
(4k − 3)π

2n+2 − 4

π(4k − 1)
· (4k − 1)π

2n+2 cot
(4k − 1)π

2n+2 .

Taking n → ∞ and using limz→0 z cot z = 1, we obtain

lim
n→∞ ak(n) = 4

π

(
1

4k − 3
− 1

4k − 1

)
.

We now need to bound ak(n). Since we know a nice boundedness property of sine
from Lemma 5.6, we shall write ak(n) in terms of sine. To do so, observe that for
complex numbers z, w, not integer multiples of π, we have

cot z − cotw = cos z

sin z
− cosw

sinw
= sinw cos z − cosw sin z

sin z sinw

= sin(w − z)

sin z sinw
.

Using this identity in the formula for ak(n) in (5.23), we obtain

ak(n) = 1

2n

sin π
2n+1

sin (4k−3)π
2n+2 · sin (4k−1)π

2n+2

.

To find a bound for ak(n), we shall use the following lemma.

Lemma 5.7 If |z| ≤ 1, then

| sin z| ≤ 6

5
|z|.

Proof Observe that for |z| ≤ 1, we have |z|k ≤ |z| for every k ∈ N, and

(2n + 1)! = (2 · 3) · (4 · 5) · · · (2n · (2n + 1))

≥ (2 · 3) · (2 · 3) · · · (2 · 3) = (2 · 3)n = 6n .

Thus,

| sin z| =
∣∣∣∣∣

∞∑
n=0

(−1)n z2n+1

(2n + 1)!

∣∣∣∣∣ ≤
∞∑

n=0

|z|2n+1

(2n + 1)!

≤
∞∑

n=0

|z|
6n

= |z|
∞∑

n=0

1

6n
= 1

1 − (1/6)
|z| = 6

5
|z|.

�
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Since 0 ≤ π
2n+1 ≤ 1 for n ∈ N (because π < 4), by this lemma we have

sin
π

2n+1
≤ 6

5
· π

2n+1
. (5.24)

Observe that for 1 ≤ k ≤ 2n−1 and 0 ≤ � ≤ 4, we have

(4k − �)π

2n+2
≤ (4(2n−1) − �)π

2n+2
= (2n+1 − �)π

2n+2
≤ π

2
.

Therefore, by Lemma 5.6, for some constant c > 0,

c · (4k − �)π

2n+2
≤ sin

(4k − �)π

2n+2
=⇒ 1

sin (4k−�)π
2n+2

≤ 1

c

2n+2

(4k − �)π
.

Combining this inequality with (5.24), we see that for 1 ≤ k ≤ 2n−1, we have

1

2n

sin π
2n+1

sin (4k−3)π
2n+2 · sin (4k−1)π

2n+2

≤ 1

2n
·
(
6

5
· π

2n+1

)
·
(
1

c

2n+2

(4k − 3)π

)
·
(
1

c

2n+2

(4k − 1)π

)

= 48

5πc2
· 1

(4k − 3)(4k − 1)
.

It follows that

|ak(n)| ≤ 48

5πc2
· 1

(4k − 3)(4k − 1)
=: Mk .

Since the sum
∑∞

k=1 Mk converges, we have verified the hypotheses of Tannery’s
theorem. Hence, taking n → ∞ in (5.23), we get

1 = lim
n→∞

2n−1∑
k=1

ak(n) =
∞∑

k=1

lim
n→∞ ak(n)

=
∞∑

k=1

4

π

(
1

4k − 3
− 1

4k − 1

)
=⇒ π

4
=

∞∑
k=1

(
1

4k − 3
− 1

4k − 1

)
.

The last series is equivalent toGregory–Leibniz–Madhava’s formula, becausewriting
out the series term by term, we obtain

π

4
=

∞∑
k=1

(
1

4k − 3
− 1

4k − 1

)
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
+ · · · ,

which is exactly Gregory–Leibniz–Madhava’s formula.
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� Exercises 5.2

1. Prove the formula (5.17) by induction on n.
2. Find the following limit:

lim
n→∞

⎧⎨
⎩

1

n3 sin
(
1·2
n3

) + 1

n3 sin
(
2·3
n3

) + · · · + 1

n3 sin
(

n·(n+1)
n3

)
⎫⎬
⎭ .

3. (Partial fraction expansion of 1/ sin2 x , Proof I, [110]) Let x ∈ R with x not
an integer multiple of π.

(i) Prove that for all n ∈ N,

1

sin2 x
= 1

22n

2n−1∑
k=0

1

sin2 x+πk
2n

.

(ii) Show that

1

sin2 x
= 1

22n

2n−1−1∑
k=−2n−1

1

sin2 x+πk
2n

. (5.25)

(iii) Using Lemma 5.5, prove that 1
sin2 x

= limn→∞
∑n

k=−n
1

(x+πk)2
. We usually

write this as
1

sin2 x
=
∑
k∈Z

1

(x + πk)2
. (5.26)

4. (Partial fraction expansion of 1/ sin2 x , Proof II) Give another proof of (5.26)
using Tannery’s theorem and the formula (5.25).

5. (Euler’s sum for π2/6, Proof IV) In this problem we derive Euler’s sum via an
old argument found in Thomas Bromwich’s (1875–1929) book [40, pp. 218–219]
(cf. similar ideas found in [6, 132, 191], [267, Problem 145]).

(i) Recall from Problem 4 on page 336 that for every n ∈ N and x ∈ R,

sin nx =
�(n−1)/2�∑

k=0

(−1)k

(
n

2k + 1

)
cosn−2k−1 x sin2k+1 x .

Using this formula, prove that if sin x 
= 0, then

sin(2n + 1)x = sin2n+1 x
n∑

k=0

(−1)k

(
2n + 1

2k + 1

)
(cot2 x)n−k .
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(ii) Prove that if n ∈ N, then the roots of
∑n

k=0(−1)k
(2n+1
2k+1

)
tn−k = 0 are the n

numbers t = cot2 mπ
2n+1 where m = 1, 2, . . . , n.

(iii) Prove that if n ∈ N, then

n∑
k=1

cot2
kπ

2n + 1
= n(2n − 1)

3
. (5.27)

Suggestion: Recall that if p(t) is a polynomial of degree n with roots
r1, . . . , rn , then p(t) = a(t − r1)(t − r2) · · · (t − rn) for a constanta.What’s
the coefficient of t1 if you multiply out a(t − r1) · · · (t − rn)?

(iv) From the identity (5.27), derive Euler’s sum.

6. (Euler’s sum for π2/6, Proof V) Here’s another proof (cf. 110)!

(i) Use (5.26) in Problem 3 to prove that for all n ∈ N,

1

sin2 x
= 1

n2

n−1∑
m=0

1

sin2 x+πm
n

. (5.28)

Suggestion: Replace x with x+πm
n in (5.26) and sum from m = 0 to n − 1.

(ii) Take the m = 0 term in (5.28) to the left, replace n by 2n + 1, and then take
x → 0 to derive the identity

n∑
k=1

1

sin2 πk
2n+1

= 2n(n + 1)

3
. (5.29)

(iii) From the identity (5.29), derive Euler’s sum.

7. (Euler’s sum for ζ(4)) In this problem we prove that ζ(4) = π4

90 .

(i) Prove that for all nonnegative real numbers a1, . . . , an , we have

1 −
n∑

k=1

ak +
∑

1≤i< j≤n

ai a j −
∑

1≤i< j<k≤n

ai a j ak ≤
n∏

k=1

(1 − ak) ≤ 1 −
n∑

k=1

ak +
∑

1≤i< j≤n

ai a j .

(ii) Applying the inequalities in (i) to
∏n

k=1

(
1 − x2

k2π2

)
, prove that ζ(4) =

π4/90.

8. (Euler’s sum for ζ(4), again) Here’s another derivation of the value of ζ(4).

(i) Prove the identity

1

sin4 z
= 1

24

(
1

sin4(z/2)
+ 1

sin4((π − z)/2)

)
+ 1

2

1

sin2 z
.



406 5 Some of the Most Beautiful Formulas in the World I–III

(ii) Prove that for all n ∈ N,

22 = 1

24n

2n∑
k=1

1

sin4 (2k−1)π
2n+2

+ 22
n∑

k=1

1

22k
.

(Note that the summation on the right is a geometric sum.)
(iii) Taking n → ∞ in (ii) and using Tannery’s theorem, derive the formula for

ζ(4).

9. (Euler’s sum for ζ(6)) Here’s a derivation of the value for ζ(6).

(i) Prove the identity

1

sin6 z
= 1

26

(
1

sin6(z/2)
+ 1

sin6((π − z)/2)

)
+ 3

22
1

sin4 z
.

(ii) Prove that for every n ∈ N, we have

23 = 1

26n

2n∑
k=1

1

sin6 (2k−1)π
2n+2

+ 23
n∑

k=1

1

22k
+ 24

n∑
k=1

1

24k
.

(You may use the formula in (ii) of Problem 8.)
(iii) Taking n → ∞ in (ii) and using Tannery’s theorem, show that π6

945 =∑∞
n=1

1
n6 .

5.3 � Beautiful Formulas III: Euler’s Formula
for ζ(2k)

In Euler’s famous 1735 paper De summis serierum reciprocarum, he found not only
ζ(2) but also ζ(n) for even n up to n = 12, although it is clear from his method that
he could, with a lot of work, get the value of ζ(n) for any even n. Following G.T.
Williams [265], we derive Euler’s formula for ζ(n), for all n ∈ N even, as a rational
multiple of πn .

5.3.1 Williams’s Formula

To find Euler’s formula for ζ(2k), we’ll use the following theorem, whose proof is
admittedly long, but completely elementary in that it uses only high school arithmetic
and basic facts about series. The “hard” part is only understanding the manipulations
of some finite multiple summations.
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Williams’s formula

Theorem 5.8 For every k ∈ N with k ≥ 2, we have

(
k + 1

2

)
ζ(2k) =

k−1∑
�=1

ζ(2�) ζ(2k − 2�).

Proof Fix k ∈ N with k ≥ 2. Then for N ∈ N, define

aN :=
k−1∑
�=1

(
N∑

m=1

1

m2�

)(
N∑

n=1

1

n2k−2�

)
.

By definition of the zeta function, we have

lim
N→∞ aN =

k−1∑
�=1

ζ(2�) ζ(2k − 2�).

The plan is to work out a nice formula for aN , then show that limN→∞ aN =(
k + 1

2

)
ζ(2k), which proves the theorem.

Step 1: We begin by making some modifications to the formula for aN . We first
multiply out the terms to the right of aN and get

aN =
k−1∑
�=1

N∑
m,n=1

1

m2� n2k−2�
,

m

n

1 2 3 4 5

1

2

3

4

m

n

1 2 3 4 5

1

2

3

4

m

n

1 2 3 4 5

1

2

3

4

Fig. 5.1 Left
∑N

m,n=1 amn sums over all the grid points (m, n) with 1 ≤ m, n ≤ N . We break this

sum up into diagonal and off-diagonal sums. Middle
∑N

n=1 ann means to sum the amn with m = n.
Right

∑N
m 
=n amn means to sum the amn for (m, n) off the diagonal

where for simplicity of notation, we write the double summation
∑N

m=1

∑N
n=1 as a

single entity
∑N

m,n=1. By commutativity, we can always switch the order of finite
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sums, so after noting that
1

m2� n2k−2�
= 1

n2k

( n

m

)2�
, we can write

aN =
N∑

m,n=1

amn ,

where

amn =
k−1∑
�=1

1

n2k

( n

m

)2� = 1

n2k

k−1∑
�=1

( n

m

)2�
. (5.30)

We now break up the summation
∑N

m,n=1 amn into two sums:

N∑
m,n=1

amn =
N∑

n=1

ann +
N∑

m 
=n

amn,

where the sums on the right are explained in Fig. 5.1. We now work out each of these
sums.

Diagonal sum: Recalling the formula (5.30) and noting that (n/m)2� = 1 for
m = n, we see that

ann = 1

n2k

k−1∑
�=1

1 = (k − 1)
1

n2k
. (5.31)

Off-diagonal sum: Now assume m 
= n. Then applying the formula for a geo-
metric sum,

∑k−1
�=1 r � = (r − rk)/(1 − r), with r = (n/m)2 (note that r 
= 1, since

m 
= n), we obtain

amn = 1

n2k

k−1∑
�=1

( n

m

)2� = 1

n2k
· (n/m)2 − (n/m)2k

1 − (n/m)2
= 1

n2k
· n2 − n2km2−2k

m2 − n2

= 1

n2k
· n2

m2 − n2
+ 1

m2k
· m2

n2 − m2
.

Therefore,
N∑

m 
=n

amn =
N∑

m 
=n

1

n2k

n2

m2 − n2
+

N∑
m 
=n

1

m2k

m2

n2 − m2
. (5.32)

If on the right-hand side of (5.32) we switch the letters m and n in the second
summation (which we can do, since m and n are just summation indices and we
can use whatever letters we want), we get the first summation in (5.32). Hence, the
second sum on the right in (5.32) is really twice the first sum. Now combining (5.31)
with (5.32), we get
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aN = (k − 1)
N∑

n=1

1

n2k
+

N∑
m 
=n

1

n2k

2n2

m2 − n2
. (5.33)

Step 2: We now find a nice expression for the second sum in (5.33). We first use
partial fractions to write

2n

m2 − n2
= 1

m − n
− 1

n + m
= −

(
1

n − m
+ 1

n + m

)
.

Hence,
1

n2k

2n2

m2 − n2
= − 1

n2k−1

(
1

n − m
+ 1

n + m

)
.

Next, we write the summation
∑N

m 
=n as shown in Fig. 5.2:

mN

1 ≤ m ≤ n − 1 n+ 1 ≤ m ≤ N
n

Fig. 5.2 We break up
∑N

m 
=n as
∑N

n=1

(∑n−1
m=1 +∑N

m=n+1

)
; that is, for each n = 1, . . . , N , we

sum along the nth horizontal row, fromm = 1 tom = n − 1, skippingm = n, then fromm = n + 1
to m = N

N∑
m 
=n

1

n2k

2n2

m2 − n2
= −

N∑
n=1

1

n2k−1

(
n−1∑
m=1

+
N∑

m=n+1

)(
1

n − m
+ 1

n + m

)
. (5.34)

Observe that(
n−1∑
m=1

+
N∑

m=n+1

)
1

n − m

= 1

n − 1
+ 1

n − 2
+ · · · + 1

2
+ 1

1
− 1

1
− 1

2
− · · · − 1

N − n
.

(5.35)

On the other hand,
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(
n−1∑
m=1

+
N∑

m=n+1

)
1

n + m

= 1

n + 1
+ 1

n + 2
+ · · · + 1

2n − 1
+ 1

2n + 1
+ · · · + 1

n + N
.

(5.36)

Observe that if we combine the positive terms in (5.35) with all the terms in (5.36),
and we add in 1/n and 1/(2n), we get the sum 1/1 + 1/2 + · · · + 1/(n + N ). Thus,

1

n
+ 1

2n
+
(

n−1∑
m=1

+
N∑

m=n+1

)(
1

n − m
+ 1

n + m

)

= 1

1
+ 1

2
+ · · · + 1

n + N
− 1

1
− 1

2
− · · · − 1

N − n
.

Canceling like terms, we conclude that

(
n−1∑
m=1

+
N∑

m=n+1

)(
1

n − m
+ 1

n + m

)
= − 3

2n
+

N+n∑
m=N−n+1

1

m
.

Thus, by (5.34), we have

2
N∑

m 
=n

n2−2k

m2 − n2
=

N∑
n=1

1

n2k−1

(
3

2n
−

N−n∑
m=N−n+1

1

m

)

= 3

2

N∑
n=1

1

n2k
−

N∑
n=1

(
1

n2k−1

N+n∑
m=N−n+1

1

m

)
.

Plugging this into the formula (5.33) for aN , we obtain

aN =
(

k + 1

2

) N∑
n=1

1

n2k
−

N∑
n=1

(
1

n2k−1

N+n∑
m=N−n+1

1

m

)
.

Therefore, lim aN = (k + 1/2)ζ(2k), provided we can show that

0 = lim
N→∞

N∑
n=1

(
1

n2k−1

N+n∑
m=N−n+1

1

m

)
. (5.37)

Step 3: Our proof is done once we establish (5.37). To do so, observe that for
N − n + 1 ≤ m ≤ N + n, we have 1/m ≤ 1/(N − n + 1). Thus,
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N+n∑
m=N−n+1

1

m
≤

N+n∑
m=N−n+1

1

N − n + 1
= 2n

N − n + 1
.

Since k ≥ 2, we have 1/n2k−1 ≤ 1/n3, and thus

N∑
n=1

(
1

n2k−1

N+n∑
m=N−n+1

1

m

)
≤ 2

N∑
n=1

(
n

n3

1

N − n + 1

)
= 2

N∑
n=1

1

n2(N − n + 1)
.

The following limit proves (5.37):

lim
N→∞

N∑
n=1

1

n2(N − n + 1)
= 0. (5.38)

This limit is easily proved using Tannery’s theorem, which we leave for your enjoy-
ment in Problem 1, but we can prove it in an elementary way. First, using partial
fractions, a bit of algebra shows that

1

n2(N − n + 1)
= 1

(N + 1)

1

n2
+ 1

(N + 1)2

(
1

n
+ 1

N − n + 1

)
.

The sum in parentheses on the far right is ≤ 1/1 + 1/1 = 2. Thus,

1

n2(N − n + 1)
≤ 1

N + 1
· 1

n2
+ 2

(N + 1)2
.

Hence,

N∑
n=1

1

n2(N − n + 1)
≤ 1

N + 1

N∑
n=1

1

n2
+

N∑
n=1

2

(N + 1)2

≤ π2/6

N + 1
+ 2N

(N + 1)2
.

Taking N → ∞ proves (5.38) and completes our proof. �

In particular, setting k = 2, we see that 5
2ζ(4) = ζ(2)2. Thus, ζ(4) = 2

5
π4

36 = π4

90 .
Taking k = 3, we get

7

2
ζ(6) = ζ(2)ζ(4) + ζ(4)ζ(2) = 2ζ(2)ζ(4) = 2 · π2

6
· π4

90
,

which, after doing the algebra, becomes ζ(6) = π6/945. Thus,
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π4

90
=

∞∑
n=1

1

n4
,

π6

945
=

∞∑
n=1

1

n6
.

We can also derive explicit formulas for ζ(2k) for all k ∈ N.

5.3.2 Euler’s Formula for ζ(2k)

To derive Euler’s formula, we first define a sequence C1, C2, C3, . . . by C1 = 1
12 ,

and for k ≥ 2, we define

Ck = − 1

2k + 1

k−1∑
�=1

C�Ck−�. (5.39)

The first few values of Ck are

C1 = 1

12
, C2 = − 1

720
, C3 = 1

30240
, C4 = − 1

1209600
.

The numbers Ck are rational numbers (easily proved by induction) and are related
to the Bernoulli numbers, to be covered in Section6.7 on page 501. But it’s not
necessary to know this.7 We are now ready to prove . . .

Euler’s formulæ

Theorem 5.9 For every k ∈ N, we have

∞∑
n=1

1

n2k
= (−1)k−1 (2π)2k Ck

2
; or, ζ(2k) = (−1)k−1 (2π)2k Ck

2
. (5.40)

Proof When k = 1, we have

(−1)k−1 (2π)2k Ck

2
= (2π)2 (1/12)

2
= π2

6
= ζ(2),

so our theorem holds when k = 1. Let k ≥ 2 and assume that our theorem holds for
all natural numbers up to and including k − 1; we shall prove that it holds for k.
Using Williams’s formula and the induction hypothesis, we see that

7Explicitly, Ck = B2k/(2k)!, but this formula is not needed.

http://dx.doi.org/10.1007/978-1-4939-6795-7_6
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(
k + 1

2

)
ζ(2k) =

k−1∑
�=1

ζ(2�) ζ(2k − 2�)

=
k−1∑
�=1

(
(−1)�−1 (2π)2� C�

2

)(
(−1)k−�−1 (2π)2k−2� Ck−2

2

)

=
k−1∑
�=1

(
(−1)k−2 (2π)2k C�Ck−�

4

)

= (−1)k−2 (2π)2k

4

k−1∑
�=1

C�Ck−�

= (−1)k−1 (2π)2k

4
(2k + 1)Ck .

Dividing everything by (k + 1/2) = (1/2)(2k + 1) and using the formula (5.39) for
Ck proves our result for k. �

As a side note, we remark that (5.40) shows that ζ(2k) is a rational number times
π2k ; in particular, since π is transcendental (see, for example, [146, 174, 175]),
it follows that ζ(n) is transcendental for n even. One may ask whether there are
similar expressions like (5.40) for sums of the reciprocals of the odd powers (e.g.,
ζ(3) =∑∞

n=1
1
n3 ). Unfortunately, there are no known formulas! Moreover, it is not

even known whether ζ(k) is transcendental for k odd, and in fact, of all odd numbers,
only ζ(3) is known without a doubt to be irrational; this was proven by Roger Apéry
(1916–1994) in 1979 (see [28, 248])!

� Exercises 5.3

1. Prove (5.38) using Tannery’s theorem.
2. (Cf. [125]) Let Hn =∑n

m=1
1
m , the nth partial sum of the harmonic series. In this

problem we prove the equalities

ζ(3) =
∞∑

n=1

1

n3
=

∞∑
n=1

Hn

(n + 1)2
= 1

2

∞∑
n=1

Hn

n2
. (5.41)

(i) Prove that for N ∈ N,

N∑
m,n=1

1

mn(m + n)
=

N∑
m=1

Hm

m2
=

N∑
m=1

1

m3
+

N−1∑
n=1

Hk

(k + 1)2
,

where the notation
∑N

m,n=1 is as in the proof of Williams’s theorem. Sug-
gestion: For the first equality, use that 1

mn(m+n)
= 1

m2

(
1
n − 1

m+n

)
.

(ii) Now prove that for N ∈ N,
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N∑
m,n=1

1

mn(m + n)
= 2

N∑
m=1

N∑
n=1

1

m(m + n)2
.

Suggestion: Use that 1
mn(m+n)

= 1
m(m+n)2

+ 1
n(m+n)2

.
(iii) In Part (ii), instead of using n as the inner summation variable on the right-

hand side, change to k = m + n − 1, and in doing so, prove that

N∑
m,n=1

1

mn(m + n)
= 2

N∑
m=1

N∑
k=m

1

m(k + 1)2
+ bN , where bN = 2

N∑
m=1

m+N−1∑
k=N+1

1

m(k + 1)2
.

(iv) Show that
∑N

m=1

∑N
k=m

1
m(k+1)2 =∑N

k=1
Hk

(k+1)2 and that bN → 0 as N →
∞. Now prove (5.41).

3. (Euler’s sum for π2/6, Proof VI) In this problem we prove Euler’s formula
for π2/6 by carefully squaring Gregory–Leibniz–Madhava’s formula for π/4;
thus, taking Gregory–Leibniz–Madhava’s formula as given, we derive Euler’s
formula.8 The proof is very much in the same spirit as the proof of Williams’s
formula; see page 526 in Section6.10 for another, more systematic, proof.

(i) Given N ∈ N, prove that

(
N∑

m=0

(−1)m

(2m + 1)

)(
N∑

n=0

(−1)n

(2n + 1)

)
=

N∑
n=0

1

(2n + 1)2
+

N∑
m 
=n

(−1)m+n

(2m + 1)(2n + 1)
,

where the notation
∑N

m 
=n is as in the proof of Williams’s theorem.
(ii) For m 
= n, prove that9

1

(2m + 1)(2n + 1)
=

2m+1
2n+1 − 2n+1

2m+1

(2m + 1)2 − (2n + 1)2

= 2m + 1

2n + 1
· 1

(2m + 1)2 − (2n + 1)2
− 2n + 1

2m + 1
· 1

(2m + 1)2 − (2n + 1)2
.

(iii) Prove that

N∑
m 
=n

(−1)m+n

(2m + 1)(2n + 1)
= 2

N∑
m 
=n

(−1)m+n

2n + 1
· 2m + 1

(2m + 1)2 − (2n + 1)2

=2
N∑

n=0

(−1)n

2n + 1

(
n−1∑
m=0

+
N∑

m=n+1

)
(−1)m 2m + 1

(2m + 1)2 − (2n + 1)2
.

8Actually, this works in reverse: We can just as well take Euler’s formula as given, and then derive
Gregory–Leibniz–Madhava’s formula!
9Alternatively, one canprove that 1

(2m+1)(2n+1) = 1
2(m−n)(2n+1) + 1

2(n−m)(2m+1) anduse this decom-

position in what follows. However, the decomposition of 1
(2m+1)(2n+1) as presentedmight be helpful

if you do “Williams’s other formula” in Problem 4.

http://dx.doi.org/10.1007/978-1-4939-6795-7_6
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(iv) Prove that

4

(
n−1∑
m=0

+
N∑

m=n+1

)
(−1)m 2m + 1

(2m + 1)2 − (2n + 1)2
= − (−1)n

2n + 1
+ (−1)N

N+n+1∑
m=N−n+1

1

m
.

Suggestion: Note that 4 2m+1
(2m+1)2−(2n+1)2 = 2m+1

(m+n+1)(m−n)
= 1

m−n + 1
m+n+1 .

(v) Prove that

(
N∑

m=0

(−1)m

(2m + 1)

)(
N∑

n=0

(−1)n

(2n + 1)

)
=bN + 1

2

N∑
n=0

1

(2n + 1)2
,

where bN = 1

2

N∑
n=0

(−1)N+n

(2n + 1)

(
N+n+1∑

m=N−n+1

1

m

)
.

(vi) Prove that bN → 0 as N → ∞, and conclude that (π/4)2 = 1
2

∑∞
n=0

1
(2n+1)2 .

Finally, derive Euler’s formula for π2/6.

4. (Williams’s other formula) For each k ∈ N, define

ξ(k) =
∞∑

n=0

(−1)n 1

(2n + 1)k
.

For example, byGregory–Leibniz–Madhava’s formulawe know that ξ(1) = π/4.
Prove that for every k ∈ N with k ≥ 2, we have

(
k − 1

2

) ∞∑
n=0

1

(2n + 1)2k
=

k−1∑
�=0

ξ(2� + 1) ξ(2k − 2� − 1).

Suggestion: Imitate the proof of Williams’s formula. You will see that ideas from
Problem 3 will also be useful.

5. (Cf. [36, 126, 265]) Let Hn =∑n
m=1

1
m , the nth partial sum of the harmonic series.

In this problem we prove that for every k ∈ N with k ≥ 2, we have

(k + 2) ζ(k + 1) =
k−2∑
�=1

ζ(k − �) ζ(� + 1) + 2
∞∑

n=1

Hn

nk
, (5.42)

a formula due to Euler (no surprise!). The proof is very similar to the proof of
Williams’s formula, with some twists of course. You may proceed as follows.

(i) For N ∈ N, define
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aN =
k−2∑
�=1

(
N∑

m=1

1

mk−�

)(
N∑

n=1

1

n�+1

)
=

N∑
m,n=1

k−2∑
�=1

1

mk−� n�+1
.

Summing the geometric series
∑k−2

�=1
1

mk−� n�+1 = 1
mk n

∑k−2
�=1(m/n)�, prove

that

aN = (k − 2)
N∑

n=1

1

nk+1
+ 2

N∑
m 
=n

1

nk−1 m (m − n)
,

where the notation
∑N

m 
=n is as in the proof of Williams’s theorem.
(ii) Prove that

N∑
m 
=n

1

nk−1 m (m − n)
=

N∑
n=1

1

nk

(
n−1∑
m=1

+
N∑

m=n+1

)(
1

m − n
− 1

m

)
.

(iii) Prove that

(
n−1∑
m=1

+
N∑

m=n+1

)(
1

m − n
− 1

m

)
= 2

n
− Hn −

N∑
m=N−n+1

1

m
.

(iv) Prove that

aN = (k + 2)
N∑

n=1

1

nk+1 − 2
N∑

n=1

Hn

nk
− bN , where bN = 2

N∑
n=1

1

nk

(
N∑

m=N−n+1

1

m

)
.

(v) Prove that bN → 0 as N → ∞, and conclude that (5.42) holds.

6. (Cf. [125, 126]) Here are a couple of applications of (5.42). First, use (5.42) to
give a quick proof of (5.41). Second, prove that

π4

72
=

∞∑
n=1

1

n3

(
1 + 1

2
+ 1

3
+ · · · + 1

n

)
.
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Chapter 6
Advanced Theory of Infinite Series

Ut non-f Initam Seriem f Inita cöercet,
Summula, & in nullo limite limes adest:
Sic modico immensi vestigia Numinis haerent
Corpore, & angusto limite limes abest.
Cernere in immenso parvum, dic, quanta voluptas!
In parvo immensum cernere, quanta, Deum.

Even as the finite encloses an infinite series
And in the unlimited limits appear,
So the soul of immensity dwells in minutia
And in the narrowest limits no limit in here.
What joy to discern the minute in infinity!
The vast to perceive in the small, what divinity!
Jacob Bernoulli (1654–1705) Ars Conjectandi. [231, p. 271]

This chapter is about going in depth into the theory and application of infinite series.
One infinite series that will come up again and again in this chapter and the next
chapter as well is the Riemann zeta function

ζ(z) =
∞∑

n=1

1

nz
,

introduced in Section4.7 on p. 308. Among many other things, in this chapter we’ll
see how to write some well-known constants in terms of the Riemann zeta function;
e.g., we’ll derive the following neat formula for our friend log 2 (Section6.5),

log 2 =
∞∑

n=2

1

2n
ζ(n),

another formula for our friend the Euler–Mascheroni constant (Section6.8),

© Paul Loya 2017
P. Loya, Amazing and Aesthetic Aspects of Analysis,
https://doi.org/10.1007/978-1-4939-6795-7_6
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γ =
∞∑

n=2

(−1)n

n
ζ(n),

and two more formulas involving our most delicious friend π (see Sections6.9 and
6.10),

π =
∞∑

n=2

3n − 1

4n
ζ(n + 1) ,

π2

6
= ζ(2) =

∞∑

n=1

1

n2 = 1 + 1

22
+ 1

32
+ 1

42
+ · · · .

We’ll also rederive Gregory–Leibniz–Madhava’s formula (Section6.9),

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
+ − · · · ,

andwederiveMachin’s formula,which started the “decimal place race” of computing
π (Section6.9):

π = 4 arctan
(1
5

)
− arctan

( 1

239

)
= 4

∞∑

n=0

(−1)n

(2n + 1)

(
4

52n+1
− 1

2392n+1

)
.

Leibniz’s formula for π/4 is an example of an alternating series. We study these
types of series in Section6.1. In Sections6.2 and 6.3we look at the ratio and root tests,
which you are probably familiar with from elementary calculus. In Section6.4 we
look at power series and prove some pretty powerful properties of power series. The
formulas for log 2 and γ, and the formula π = ∑∞

n=2
3n−1
4n ζ(n + 1) displayed above,

are proved using a famous theorem called the Cauchy double series theorem. This
theorem, and double series in general, are the subject of Section6.5. In Section6.6
we investigate rearranging series (that is, mixing up the order of their terms). In ele-
mentary calculus, you probably never saw the power series representations of tangent
and secant. This is because those series are somewhat sophisticated, mathematically
speaking. In Section6.7 we shall derive the power series representations

tan z =
∞∑

n=1

(−1)n−1 2
2n(22n − 1) B2n

(2n)! z2n−1

and

sec z =
∞∑

n=0

(−1)n E2n

(2n)! z2n.

Here, the B2n are called Bernoulli numbers, and the E2n are called Euler num-
bers, which are certain numbers having extraordinary properties. Although you’ve
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probably never seen the tangent and secant power series, you might have seen the
logarithmic, binomial, and arctangent series:

log(1 + z) =
∞∑

n=1

(−1)n−1

n
zn , (1 + z)α =

∞∑

n=0

(
α

n

)
zn , arctan z =

∞∑

n=0

(−1)n z2n+1

2n + 1
.

You most likely used calculus (derivatives and integrals) to derive these formulas.
In Section6.8 we shall derive these formulas without any calculus. Finally, in Sec-
tions6.9 and 6.10 we derive many incredible and awe-inspiring formulas involving
π. In particular, we again look at the Basel problem.

Chapter 6 objectives: The student will be able to . . .

• Determine the convergence, and radius and interval of convergence, for an infinite
series and power series, respectively, using various tests, including the Dirichlet,
Abel, ratio, and root tests.

• Apply Cauchy’s double series theorem and know how it relates to rearrangement,
and multiplication and composition of power series.

• Identify series formulas for the various elementary functions (logarithm, binomial,
arctangent, etc.) and for π.

6.1 Summation by Parts, Bounded Variation,
and Alternating Series

In elementary calculus, you studied “integration by parts,” a formula I’m sure you
used quite often in trying to integrate tricky integrals. In this section we study a
discrete version of the integration by parts formula called “summation by parts,”
which is used to sum tricky summations! Summation by parts has broad applications,
including finding sums of powers of integers and deriving some famous convergence
tests for series, the Dirichlet and Abel tests.

6.1.1 Summation by Parts and Abel’s Lemma

From calculus we learned the integration by parts formula

∫ b

a
f ′(x) g(x) dx +

∫ b

a
f (x) g′(x) dx = f (b) g(b) − f (a) g(a).

If we replace the integral with a sum and f and g by sequences, we get the famous
summation by parts formula:
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Summation by parts

Theorem 6.1 For complex sequences {an} and {bn}, we have

n∑

k=m

(ak+1 − ak)bk+1 +
n∑

k=m

ak(bk+1 − bk) = an+1bn+1 − ambm .

Proof Combining the two terms on the left, we obtain

n∑

k=m

[
bk+1ak+1 − bk+1ak + akbk+1 − akbk

]
=

n∑

k=m

(
bk+1ak+1 − akbk

)
.

This is a telescoping sum, and it simplifies to an+1bn+1 − ambm after all the cancel-
lations. �

As a corollary, we get Abel’s lemma, named after Niels Abel1 (1802–1829).

Abel’s lemma

Corollary 6.2 Let {an} and {bn} be complex sequences and let sn denote the
nth partial sum of the series corresponding to the sequence {an}. Then for every
m < n we have

n∑

k=m+1

akbk = snbn − smbm −
n−1∑

k=m

sk(bk+1 − bk).

Proof Applying the summation by parts formula to the sequences {sn} and {bn}, we
obtain

n−1∑

k=m

(sk+1 − sk)bk+1 +
n−1∑

k=m

sk(bk+1 − bk) = snbn − smbm .

Since sk+1 − sk = ak+1, we conclude that

n−1∑

k=m

ak+1bk+1 +
n−1∑

k=m

sk(bk+1 − bk) = snbn − smbm .

Replacing k with k − 1 in the first sum and bringing the second sum to the right, we
get our result. �

1“Abel has left mathematicians enough to keep them busy for 500 years.” Charles Hermite (1822–
1901), in Calculus Gems [225].
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6.1.2 Sums of Powers of Integers

We shall apply the summation by parts formula

n∑

k=1

(ak+1 − ak)bk+1 +
n∑

k=1

ak(bk+1 − bk) = an+1bn+1 − a1b1

to find sums of powers of integers (cf. [84, 272]). See the exercises for more appli-
cations.

Example 6.1 Let ak = k and bk = k − 1. Then each of the differences ak+1 − ak

and bk+1 − bk equals 1, so by summation by parts, we have

n∑

k=1

(1)(k) +
n∑

k=1

(k)(1) = (n + 1)(n).

This equality can be simplified to 2
n∑

k=1

k = n(n + 1). Thus, we obtain the well-

known result

1 + 2 + · · · + n = n(n + 1)

2
.

Example 6.2 Now let ak = k2 and bk = k − 1. In this case, ak+1 − ak = (k + 1)2 −
k2 = 2k + 1 and bk+1 − bk = 1, so by the summation by parts formula, we have

n∑

k=1

(2k + 1)(k) +
n∑

k=1

(k2)(1) = (n + 1)2n.

Simplifying a bit, we get

3
n∑

k=1

k2 +
n∑

k=1

k = (n + 1)3n.

Since
∑n

k=1 k = n(n + 1)/2 from the previous example, after some algebra we end
up with the well-known result

n∑

k=1

k2 = 12 + 22 + · · · + n2 = n(n + 1)(2n + 1)

6
.

Example 6.3 For our final result, let ak = k2 and bk = (k − 1)2. Then ak+1 − ak =
(k + 1)2 − k2 = 2k + 1 and bk+1 − bk = 2k − 1, so by the summation by parts for-
mula,
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n∑

k=1

(2k + 1)(k2) +
n∑

k=1

(k2)(2k − 1) = (n + 1)2 · n2.

After some work simplifying the left-hand side and using the formula for the sum of
squares, we get

13 + 23 + · · · + n3 = n2(n + 1)2

4
.

6.1.3 Sequences of Bounded Variation and Dirichlet’s Test

A sequence {an} of complex numbers is said to be of bounded variation if

∞∑

n=1

|an+1 − an| < ∞.

If we plot the points a1, a2, a3, . . . in the complex plane, then |an+1 − an| is the
distance between an and an+1. Thus,

∑∞
n=1 |an+1 − an| is the total length of the

polygonal curve formed by the points a1, a2, a3, . . . , as seen here:

|an+1 − an| = length of the line segment

joining an and an+1.
a1

a2

a3 a4

a5

a6a7
a8

a9

Bounded variation just means that the polygonal curve has finite length. Here are
some facts concerning sequences of bounded variation.

Proposition 6.3 Sequences of bounded variation converge. Examples of
sequences of bounded variation include bounded monotone sequences of real
numbers and contractive sequences of complex numbers.

Proof Let {an} be of bounded variation. Given m < n, we can write an − am as a
telescoping sum:

an − am = (am+1 − am) + (am+2 − am+1) + · · ·

+ (an−1 − an−2) + (an − an−1) =
n∑

k=m

(ak+1 − ak).
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Hence, by the triangle inequality,

|an − am | ≤
n∑

k=m

|ak+1 − ak |.

By assumption, the sum
∑∞

k=1 |ak+1 − ak | converges, so the sum on the right-hand
side of this inequality can bemade arbitrarily small asm, n → ∞ (Cauchy’s criterion
for series on p. 206). Thus, {an} is Cauchy and hence converges.

Now let {an} be a bounded nondecreasing sequence. We shall prove that this
sequence is of bounded variation; the proof for a nonincreasing sequence is similar.
In this case, we have an ≤ an+1 for each n, so for each n,

n∑

k=1

|ak+1 − ak | =
n∑

k=1

(ak+1 − ak) = (a2 − a1) + (a3 − a2)

+ · · · + (an − an−1) + (an+1 − an) = an+1 − a1,

since the sum telescoped. The sequence {an} is by assumption bounded, so it fol-
lows that the partial sums of the infinite series

∑∞
n=1 |an+1 − an| are bounded, and

hence the series must converge by the nonnegative series test (Theorem 3.19). That
contractive sequences are of bounded variation is part of Problem 6. �

Example 6.4 The converse, that every convergent sequence is of bounded variation,
is false. Consider the sequence given by an = (−1)n−1/n, n = 1, 2, 3, . . . . This
sequence jumps back and forth, as seen here:

− 1
2 1

︸ ︷︷
1 + 1

2

− 1
4

1
2 + 1

3︷ ︸︸ ︷

1
5︸ ︷︷ ︸

1
3 + 1

4

0

1
4 + 1

5︷ ︸︸ ︷
1
3

In this case, the polygonal curve has length

∞∑

n=1

(
1

n
+ 1

n + 1

)
,

which is infinite.

Here’s a useful test named after Lejeune Dirichlet (1805–1859).

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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Dirichlet’s test

Theorem 6.4 Suppose that the partial sums of the series
∑

an are uniformly
bounded (although the series

∑
an may not converge). Then for every sequence

{bn} that is of bounded variation and converges to zero, the series
∑

anbn con-
verges. In particular, the series

∑
anbn converges if {bn} is a monotone sequence

of real numbers approaching zero.

Proof Setting m = 1 in Abel’s lemma, we have

n∑

k=1

akbk = snbn −
n−1∑

k=1

sk(bk+1 − bk). (6.1)

Now we are given two facts: The first is that the partial sums {sn} are bounded, say
by a constant C , and the second is that the sequence {bn} is of bounded variation
and converges to zero. Since {sn} is bounded and bn → 0, it follows that snbn → 0.
Since |sn| ≤ C for all n and {bn} is of bounded variation, we have

∞∑

k=1

|sk(bk+1 − bk)| ≤ C
∞∑

k=1

|bk+1 − bk | < ∞.

Therefore,
∑∞

k=1 sk(bk+1 − bk) converges absolutely. In particular, taking n → ∞
in (6.1), it follows that the sum

∑
akbk converges. Moreover, we actually have found

a formula for the sum:

∞∑

n=1

anbn =
∞∑

n=1

sn(bn+1 − bn). (6.2)

�

Example 6.5 For each x ∈ (0, 2π), we determine the convergence of the series

∞∑

n=1

einx

n
.

To do so, we let an = einx and bn = 1/n. Since {1/n} is a monotone sequence
converging to zero, by Dirichlet’s test, if we can prove that the partial sums of∑

einx are bounded, then
∑∞

n=1
einx

n converges. To establish this boundedness, we
observe that

m∑

n=1

einx = eix 1 − eimx

1 − einx
,



6.1 Summation by Parts, Bounded Variation, and Alternating Series 427

where we summed
∑m

n=1(e
ix )n via the geometric progression (2.3) on p. 40.

Hence, ∣∣∣∣∣

m∑

n=1

einx

∣∣∣∣∣ ≤
∣∣∣∣
1 − eimx

1 − einx

∣∣∣∣ ≤ 1 + |eimx |
|1 − einx | = 2

|1 − eix | .

Since 1 − eix = eix/2(e−i x/2 − eix/2) = −2ieix/2 sin(x/2), we see that

|1 − eix | = 2 | sin(x/2)| =⇒
∣∣∣∣∣

m∑

n=1

einx

∣∣∣∣∣ ≤ 1

sin(x/2)
.

Thus, for each x ∈ (0, 2π), byDirichlet’s test, given a sequence {bn} of bounded vari-
ation that converges to zero, the sum

∑∞
n=1 bneinx converges. In particular,

∑∞
n=1

einx

n
converges. Taking real and imaginary parts shows that for every x ∈ (0, 2π),

∞∑

n=1

cos nx

n
and

∞∑

n=1

sin nx

n
converge.

More generally, this argument shows that
∑∞

n=1
einx

n p converges for every p > 0.

Before going on to other tests, it might be interesting to note that we could have
determined the convergence of the series

∑∞
n=1

cos nx
n immediately after learning trig

functions, without having to know anything about Dirichlet’s test. The trick here is
to use some trig identities and write

cos nx = sin(n + 1/2)x − sin(n − 1/2)x

2 sin(x/2)
,

or

cos nx = cn+1 − cn where cn = sin(n − 1/2)x

2 sin(x/2)
.

Whenever you have a sequence that is “telescoping like,” i.e., is the difference of
adjacent terms of another sequence, good things should happen. Indeed,

m∑

n=1

cos nx

n
=

m∑

n=1

cn+1 − cn

n
=

(
c2 − c1

1
+ c3 − c2

2
+ c4 − c3

3

+ · · · + cm+1 − cm

m

)
.

Gathering like terms, we obtain

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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m∑

n=1

cos nx

n
= −c1 + cm+1

m
+

m−1∑

n=1

cn+1

(1
n

− 1

n + 1

)

= −c1 + cm+1

m
+

m−1∑

n=1

cn+1

( 1

n(n + 1)

)
.

Replacing all the cn by their formulas in terms of sine, and using that c1 = 1/2, we
obtain

1

2
+

m∑

n=1

cos nx

n
= sin(m + 1/2)x

2m sin(x/2)
+

m∑

n=2

(
sin(n + 1/2)x

2 sin(x/2)
· 1

n(n + 1)

)
. (6.3)

Since the sine is always bounded by 1 and
∑

1/n(n + 1) converges, it follows that
as m → ∞, the first term on the right of (6.3) tends to zero, while the summation on
the right of (6.3) converges; in particular, the series in question converges, and we
get the following formula:

1

2
+

∞∑

n=1

cos nx

n
= 1

2 sin(x/2)

∞∑

n=1

sin(n + 1/2)x

n(n + 1)
, x ∈ (0, 2π).

In fact, this formula is exactly what you get from formula (6.2) in the proof of
Dirichlet’s test, where an = cos nx and bn = 1/n. In Example 6.42 on p. 515, we’ll
show that

∑∞
n=1

cos nx
n = − log(2 sin(x/2)).

6.1.4 Alternating Series, Decimal Places, log 2,
and e Is Irrational

Since the partial sums of the (divergent) series
∑

(−1)n−1 are bounded, as a direct
consequence of Dirichlet’s test, we immediately get the alternating series test.

Alternating series test

Theorem 6.5 If {an} is a sequence of bounded variation that converges to zero,
then

∑
(−1)n−1an converges. In particular, if {an} is a monotone sequence of real

numbers approaching zero, then
∑

(−1)n−1an converges.

Example 6.6 The alternating harmonic series

∞∑

n=1

(−1)n−1 1

n
= 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ − · · ·
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converges. Of course, we already knew this, and we also know that the value of the
alternating harmonic series equals log 2 (see p. 310 in Section4.7).

We now come to a useful theorem for approximation purposes (cf. Problem 5).

Alternating series error estimate

Corollary 6.6 If {an} is a monotone sequence of real numbers approaching zero,
and if s denotes the sum

∑
(−1)n−1an and sn denotes the nth partial sum, then

|s − sn| ≤ |an+1|.

Proof To establish the error estimate, we assume that an ≥ 0 for each n, in which
case we have a1 ≥ a2 ≥ a3 ≥ a4 ≥ · · · ≥ 0. (The case an ≤ 0 is similar or can
be derived from the present case by multiplying by −1.) Let’s consider how
s = ∑∞

n=1(−1)n−1an is approximated by the sn . Observe that s1 = a1 increases from
s0 = 0 by the amount a1; s2 = a1 − a2 = s1 − a2 decreases from s1 by the amount
a2; s3 = a1 − a2 + a3 = s2 + a3 increases from s2 by the amount a3; and so on; see
Fig. 6.1 for a picture of what’s going on here. Studying this figure also shows why
|s − sn| ≤ an+1 holds. For this reason, we shall leave the exact proof details to the
diligent and interested reader! �

Given d ∈ N, what is a good definition for a real number a to “equal 0 to d decimal
places”? If we write a as a decimal, taking the finite decimal expansion in case a has
two expansions, we certainly want

|a| = 0. 00 . . . 0︸ ︷︷ ︸
d zeros

ad+1ad+2 . . . . (6.4)

Fig. 6.1 The partial sums
{sn} jump forward and
backward by the amounts
given by the an . This picture
also shows that
|s − s1| ≤ a2, |s − s2| ≤ a3,
|s − s3| ≤ a4, . . .

0 s1

a1

s2

a2

s3

a3

s4

a4

s

However, we actuallywantmore. Indeed, if ad+1 ≥ 5, it’s common practice to “round
up” the preceding 0, so if we truncate a to the first d digits after the decimal point,
then we would express a as 0.00 . . . 01, where there are d − 1 zeros after the decimal
point. On the other hand, if ad+1 < 5, then we would express a as 0.00 . . . 00, where
there are n zeros after the decimal point. This latter case is obviously what we desire.
For this reason, we say that a equals 0 to d decimal places if there are d zeros after
the decimal point and ad+1 < 5. It’s easy to check that this is equivalent to

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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|a| < 0. 00 . . . 0︸ ︷︷ ︸
d zeros

5 = 5 × 10−d−1.

We say that two real numbers x and y are equal to d decimal places if x − y equals
zero to d decimal places.

Example 6.7 Let’s find n such that the nth partial sum of log 2 = ∑∞
n=1

(−1)n−1

n
approximates log 2 to two decimal places. By our discussion above, we need n such
that

| log 2 − sn| < 0.005.

By Corollary 6.6, we can make this inequality hold by choosing n such that

|an+1| = 1

n + 1
< 0.005 =⇒ 500 < n + 1 =⇒ n = 500 works.

With about five hours of pencil and paper work (and ten coffee breaks�), we find that
s500 = ∑500

n=1
(−1)n

n = 0.69 to two decimal places. Thus, log 2 = 0.69 to two decimal
places. A lot of work just to get two decimal places! (In fact, we need at least n = 100
to be within two decimal places; see Problem 5.)

Example 6.8 (Irrationality of e,Proof II) Another nice application of the alternating
series error estimate (or rather its proof) is a simple proof that e is irrational; cf. [7,
192]. Indeed, suppose to the contrary that e = m/n, where m, n ∈ N. Then we can
write

n

m
= e−1 =

∞∑

k=0

(−1)k

k! =⇒ n

m
−

m∑

k=0

(−1)k

k! =
∞∑

k=m+1

(−1)k

k! .

Multiplying both sides by m!, we obtain

n (m − 1)! −
m∑

k=0

(−1)k m!
k! =

∞∑

k=m+1

(−1)km!
k! = (−1)m+1

∞∑

k=1

(−1)k−1m!
(m + k)! . (6.5)

For 0 ≤ k ≤ m, m!/k! is an integer (this is because m! = 1 · 2 · · · k · (k + 1) · · · m
contains a factor of k!), therefore the left-hand side of (6.5) is an integer. Hence, if
s = ∑∞

k=1(−1)k−1ak , where ak = m!
(m+k)! , then s is also an integer. Thus, as seen in

Fig. 6.1, we have

0 < s < a1 = 1

m + 1
.

Now recall that m ∈ N, so 1/(m + 1) ≤ 1/2. Thus, s is an integer strictly between
0 and 1/2, an obvious contradiction!
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6.1.5 Abel’s Test for Series

Now let’s modify the sum
∑∞

n=1
einx

n , say to the slightly more complicated version

∞∑

n=1

(
1 + 1

n

)n einx

n
.

If we try to determine the convergence of this series using Dirichlet’s test, we’ll have
to do some work, but if we’re feeling a little lazy, we can use the following theorem,
whose proof uses an ε/3-trick.

Abel’s test for series

Theorem 6.7 Suppose that
∑

an converges. Then for every sequence {bn} of
bounded variation, the series

∑
anbn converges.

Proof We shall apply Abel’s lemma to establish that the sequence of partial sums
for

∑
anbn forms a Cauchy sequence, which implies that

∑
anbn converges. For

m < n, by Abel’s lemma, we have

n∑

k=m+1

akbk = snbn − smbm −
n−1∑

k=m

sk(bk+1 − bk), (6.6)

where sn is the nth partial sum of the series
∑

an . Concentrating on the far right
summation in (6.6), if we add and subtract s := ∑

an to sk , we get

n−1∑

k=m

sk(bk+1 − bk) =
n−1∑

k=m

(sk − s)(bk+1 − bk) + s
n−1∑

k=m

(bk+1 − bk)

=
n−1∑

k=m

(sk − s)(bk+1 − bk) + sbn − sbm,

since the sum telescoped. Replacing this into (6.6), we obtain

n∑

k=m+1

akbk = (sn − s)bn − (sm − s)bm −
n−1∑

k=m

(sk − s)(bk+1 − bk).

Let ε > 0. Since {bn} is of bounded variation, this sequence converges by Proposition
6.3, so in particular, it is bounded, and therefore, since sn → s, we have (sn − s)bn →
0 and (sm − s)bm → 0. Thus, we can choose N such that for n, m > N , we have
|(sn − s)bn| < ε/3, |(sm − s)bm | < ε/3, and |sn − s| < ε/3. Thus, for N < m < n,
we have
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∣∣∣∣∣

n∑

k=m+1

akbk

∣∣∣∣∣ ≤ |(sn − s)bn| + |(sm − s)bm | +
n−1∑

k=m

|(sk − s)(bk+1 − bk)|

<
ε

3
+ ε

3
+ ε

3

n−1∑

k=m

|bk+1 − bk |.

Finally, since
∑ |bk+1 − bk | converges, by the Cauchy criterion for series, the sum∑n−1

k=m |bk+1 − bk | can be made less than 1 for N chosen larger if necessary. Thus,
for N < m < n, we have |∑n

k=m+1 akbk | < ε. This completes our proof. �

Example 6.9 Returning to our discussion above, we can write

∞∑

n=1

(
1 + 1

n

)n einx

n
=

∑
an bn,

where an = einx

n and bn = (1 + 1
n )n . Since we already know that

∑∞
n=1 an converges

and that {bn} is nondecreasing and bounded above (by e; see p. 180 in Section3.3) and
therefore is of bounded variation, Abel’s test shows that the series

∑
anbn converges.

� Exercises 6.1

1. Derive the following formula for the sum of fourth powers:

14 + 24 + · · · + n4 = n5

5
+ n4

2
+ n3

3
− n

30
.

2. (Cf. [84]) In this problem we use summation by parts to derive neat identities for
the Fibonacci numbers. The Fibonacci sequence was defined in Problem 9 on p.
47. Using summation by parts, derive the formulas

(a) F1 + F2 + F3 + · · · + Fn = Fn+2 − 1 , (b) F2
1 + F2

2 + F2
3 + · · · + F2

n = Fn Fn+1 ,

(c) F1 + F3 + F5 + · · · + F2n−1 = F2n , (d) 1 + F2 + F4 + F6 + · · · + F2n = F2n+1.

3. (Cf. [83]) In this problem we relate limits of arithmetic means to summation by
parts.

(a) Let {an}, {bn} be sequences of complex numbers. Assume that bn → 0 and
1
n

∑n
k=1 k |bk+1 − bk | → 0 as n → ∞, and that for some constant C , we

have
∣∣ 1

n

∑n
k=1 ak

∣∣ ≤ C for all n. Prove that 1
n

∑n
k=1 akbk → 0 as n → ∞.

(b) Prove that 1
n

(√
1 − √

2 + √
3 − √

4 + · · · + (−1)n−1√n
) → 0 as n → ∞.

4. Determine the convergence or divergence of the following series:

(a)
1

1
+ 1

2
+ 1

3
− 1

4
− 1

5
+ 1

6
+ 1

7
− − + + · · · , (b)

∞∑

n=1

(−1)n(
√

n + 1 − √
n) ,

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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(c)
∞∑

n=2

cos nx

log n
, (d)

1

2 · 1 − 1

2 · 2 + 1

3 · 3 − 1

3 · 4 + 1

4 · 5 − 1

4 · 6 + − · · · ,

(e)
∞∑

n=2

(−1)n−1

n
log

2n + 1

n
, ( f )

∞∑

n=2

cos nx sin
( x

n

)
(x ∈ R) , (g)

∞∑

n=2

(−1)n−1 log n

n
.

5. (More alternating series error estimates) Let {an} be a nonincreasing
sequence of real numbers with an → 0. Let s = ∑∞

n=1(−1)n−1an and let sn =∑∞
k=1(−1)k−1ak .

(i) Prove that for all n ∈ N, |s − sn| = ∑∞
k=n+1(ak − ak+1).

(ii) For each n, define bn = an − an+1 and assume that {bn} is nonincreasing.
Prove that |s − sn+1| ≤ |s − sn| for all n; that is, the error is nonincreasing.

(iii) With the assumptions in (ii), prove that an+1 ≤ 2|s − sn| for all n.
(iv) Let sn denote the nth partial sum of the alternating harmonic series. How

large must n be in order that we have | log 2 − sn| < 0.005?

6. Here are some problems on bounded variation sequences.

(a) Prove that every contractive sequence is of bounded variation.
(b) Give an example of a convergent sequence, different from the one inExample

6.4, that is not of bounded variation.
(c) (Jordan decomposition) If {an} is a sequence of real numbers of bounded

variation, prove that there are nonnegative, nondecreasing, convergent
sequences {bn} and {cn} such that an = bn − cn for all n. Suggestion: Let
bn = ∑n

k=1 |an+1 − an| and cn = bn − an .

7. Let a1, a2, a3, . . . be a sequence of distinct natural numbers such that for all
n, sn = a1 + a2 + · · · + an ≥ sum of the firstnnatural numbers = n(n + 1)/2.
(This holds, in particular, if a1, a2, a3, . . . are distinct natural numbers.) Prove
that

n∑

k=1

1

k
≤

n∑

k=1

ak

k2
.

In particular,
∑∞

k=1 ak/k2 diverges to infinity at least as fast as the harmonic
series.

6.2 Lim Infs/Sups, Ratio/Roots, and Power Series

It is a fact of life that most sequences simply do not converge. In this section we
introduce limit infimums and supremums, which always exist, either as real numbers
or as ±∞. We also study their basic properties. We need these limits to study the
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ratio and root tests. You’ve probably seen these tests before in elementary calculus,
but in this section we’ll look at them in a slightly more sophisticated way.

6.2.1 Limit Infimums and Supremums

For an arbitrary sequence {an} of real numbers we know that lim an may not exist,
such as the sequence seen here:

n

an a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a16

Fig. 6.2 For the oscillating sequence {an}, the upper dashed line represents lim sup an , and the
lower dashed line represents lim inf an

However, being mathematicians, we shouldn’t let this stop us, and in this sub-
section, we define “limits” for an arbitrary sequence. It turns out that there are two
notions of “limit” that show up often; one is the limit supremum (limsup) of {an},
which represents the “greatest” limiting value the an could possibly have, and the
second is the limit infimum (liminf) of {an}, which represents the “least” limiting
value that the an could possibly have. Here’s a number line picture of these ideas for
a sequence {an} that oscillates left and right:

a1a2 a3a4 a5a6 a7a8 a9limsupliminf

Figure6.2 shows another picture of this same sequence.
We now make “greatest” limiting value and “least” limiting value precise. Let

a1, a2, a3, . . . be a sequence of real numbers bounded from above. Let us put

sn = sup
k≥n

ak = sup{an, an+1, an+2, an+3, . . . }.

Note that

sn+1 = sup{an+1, an+2, . . . } ≤ sup{an, an+1, an+2, . . . } = sn.

Indeed, sn is an upper bound for {an, an+1, an+2, . . . } and hence an upper bound for
{an+1, an+2, . . . }. Therefore, sn+1, being the least such upper bound, must satisfy
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sn+1 ≤ sn . Thus, s1 ≥ s2 ≥ · · · ≥ sn ≥ sn+1 ≥ · · · is a nonincreasing sequence. In
particular, being a monotone sequence, the limit lim sn is defined as either a real
number or (properly divergent to) −∞. We define

lim sup an := lim sn = lim
n→∞

(
sup{an, an+1, an+2, . . . }

)
.

This limit, which again is either a real number or−∞, is called the limit supremum
or lim sup of the sequence {an}. This name fits, since lim sup an is exactly that, a
limit of supremums. If {an} is not bounded from above, then we define

lim sup an := ∞ if {an} is not bounded from above.

We define an extended real number as a real number or the symbols ∞ = +∞,
−∞. Then it is worth mentioning that lim sups always exist as an extended real
number, unlike regular limits which may not exist. For the picture in Fig. 6.2, notice
that

s1 = sup{a1, a2, a3, . . . } = a1,

s2 = sup{a2, a3, a4, . . . } = a3,

s3 = sup{a3, a4, a5, . . . } = a3,

and so on. Thus, the sequence s1, s2, s3, . . . picks out the odd-indexed terms of the
sequence a1, a2, . . . and lim sup an = lim sn is the value given by the upper dashed
line in Fig. 6.2; here’s a picture:

n

s1s2 = s3s4 = s5

limsupan

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a16

Here are some other examples.

Example 6.10 We shall compute lim sup an , where an = 1
n . According to the defin-

ition of lim sup, we first have to find sn:

sn := sup{an, an+1, an+2, . . . } = sup

{
1

n
,

1

n + 1
,

1

n + 2
,

1

n + 3
, . . .

}
= 1

n
.
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Second, we take the limit of the sequence {sn}:

lim sup an := lim
n→∞ sn = lim

n→∞
1

n
= 0.

Notice that lim an also exists and lim an = 0, the same as the lim sup. We’ll come
back to this observation in Example 6.12 below.

Example 6.11 Consider the sequence {(−1)n}. In this case, we know that lim(−1)n

does not exist. To find lim sup(−1)n , we first compute sn:

sn = sup{(−1)n, (−1)n+1, (−1)n+2, . . . } = sup{+1,−1} = 1,

where we used that the set {(−1)n, (−1)n+1, (−1)n+2, . . . } is just a set consisting of
the numbers +1 and −1. Hence,

lim sup(−1)n := lim sn = lim 1 = 1.

We can also define a corresponding lim inf an , which is a limit of infimums. To do
so, assume for the moment that our generic sequence {an} is bounded from below.
Consider the sequence {ιn} where

ιn = inf
k≥n

ak = inf{an, an+1, an+2, an+3, . . . }.

Note that
ιn = inf{an, an+2, . . . } ≤ inf{an+1, an+2, . . . } = ιn+1,

since the set {an, an+2, . . . } on the left of ≤ contains the set {an+1, an+2, . . . }. Thus,
ι1 ≤ ι2 ≤ · · · ≤ ιn ≤ ιn+1 ≤ · · · is an nondecreasing sequence. In particular, being
a monotone sequence, the limit lim ιn is defined as either a real number or (properly
divergent to) ∞. We define

lim inf an := lim ιn = lim
n→∞

(
inf{an, an+1, an+2, . . . }

)
,

which exists either as a real number or +∞, is called the limit infimum or lim inf
of {an}. If {an} is not bounded from below, then we define

lim inf an := −∞ if {an} is not bounded from below.
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Again, as with lim sups, lim infs always exist as extended real numbers. For the
picture in Fig. 6.2, here is the corresponding sequence ι1, ι2, ι3, . . . :

n

ι1 = ι2
ι3 = ι4
ι5 = ι6

liminfan

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a16

Thus, the sequence ι1, ι2, ι3, . . . picks out the even-indexed terms of the sequence
a1, a2, . . . , and lim inf an = lim ιn is the value given by the lower dashed line. Here
are some worked examples.

Example 6.12 We shall compute lim inf an , where an = 1
n . According to the defin-

ition of lim inf, we first have to find ιn:

ιn := inf{an, an+1, an+2, . . . } = inf

{
1

n
,

1

n + 1
,

1

n + 2
,

1

n + 3
, . . .

}
= 0.

Second, we take the limit of ιn:

lim inf an := lim
n→∞ ιn = lim

n→∞ 0 = 0.

Notice that lim an also exists and lim an = 0, the same as lim inf an , which is the
same as lim sup an , as we saw in Example 6.10.We are thus led tomake the following
conjecture: If lim an exists, then lim sup an = lim inf an = lim an; this conjecture is
indeed true, as we’ll see in Property (2) of Theorem 6.8.

Example 6.13 If an = (−1)n , then

inf{an, an+1, an+2, . . . }= sup{(−1)n, (−1)n+1, (−1)n+2, . . . }= inf{+1,−1}= − 1.

Hence,
lim inf(−1)n := lim−1 = −1.

The following theorem contains the main properties of limit infimums and supre-
mums that we shall need in the sequel.
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Properties of lim inf/sup

Theorem 6.8 If {an} and {bn} are sequences of real numbers, then

(1) lim sup an = − lim inf(−an) and lim inf an = − lim sup(−an).
(2) lim an is defined, as a real number or ±∞ if and only if lim sup an =

lim inf an, in which case

lim an = lim sup an = lim inf an.

(3) If an ≤ bn for all n sufficiently large, then

lim inf an ≤ lim inf bn and lim sup an ≤ lim sup bn.

(4) The following inequality properties hold:

(a) lim sup an < a =⇒ there is an N such that n > N =⇒ an < a.
(b) lim sup an > a =⇒ there exist infinitely many n such that an > a.
(c) lim inf an < a =⇒ there exist infinitely many n such that an < a.
(d) lim inf an > a =⇒ there is an N such that n > N =⇒ an > a.

Proof To prove (1), assume first that {an} is not bounded from above; then {−an} is
not bounded from below. Hence, lim sup an := ∞ and lim inf(−an) := −∞, which
implies (1) in this case. Assume now that {an} is bounded above. Recall from Lemma
2.30 on p. 92 that given a nonempty subset A ⊆ R bounded above, we have sup A =
− inf(−A). Hence,

sup{an, an+1, an+2, . . . } = − inf{−an,−an+1,−an+2,−an+3, . . . }.

Taking n → ∞ on both sides, we get lim sup an = − lim inf(−an).
We now prove (2). Suppose first that lim an converges to a real number L . Then

given ε > 0, there exists an N such that

L − ε ≤ ak ≤ L + ε, for all k > N ,

which implies that for n > N ,

L − ε ≤ inf
k≥n

ak ≤ sup
k≥n

ak ≤ L + ε.

Taking n → ∞ implies that

L − ε ≤ lim inf an ≤ lim sup an ≤ L + ε.

Since ε > 0 was arbitrary, it follows that lim sup an = L = lim inf an . Reversing
these steps, we leave you to show that if lim sup an = L = lim inf an , then {an}

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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converges to L . We now consider (2) in the case that lim an = +∞; the case that the
limit is −∞ is proved similarly. Then given a real number M > 0, there exists an N
such that

n > N =⇒ M ≤ an.

This implies that
M ≤ inf

k≥n
ak ≤ sup

k≥n
ak .

Taking n → ∞, we obtain

M ≤ lim inf an ≤ lim sup an.

Since M > 0 was arbitrary, it follows that lim sup an = +∞ = lim inf an . Reversing
these steps, we leave you to show that if lim sup an = +∞ = lim inf an , then an →
+∞.

To prove (3), note that if {an} is not bounded from below, then lim inf an := −∞,
so lim inf an ≤ lim inf bn automatically; thus, we may assume that {an} is bounded
from below. In this case, observe that an ≤ bn for all n sufficiently large implies that
for n sufficiently large,

inf{an, an+1, an+2, . . . } ≤ inf{bn, bn+1, bn+2, bn+3, . . . }.

Taking n → ∞ and using that limits preserve inequalities now proves (3). The proof
that lim sup an ≤ lim sup bn is similar.

Because this proof is dragging on �, we’ll prove only (a) and (b) of (4), leaving
(c), (d) to the reader. Assume that lim sup an < a, that is,

lim
n→∞

(
sup{an, an+1, an+2, . . . }

)
< a.

By definition of limit, it follows that for some N , we have

n > N =⇒ sup{an, an+1, an+2, . . . } < a,

that is, the least upper bound of {an, an+1, an+2, . . . } is strictly less than a, so we
must have we have an < a for all n > N . Instead of proving (b) directly, we prove its
contrapositive: If there are atmost finitelymany n such that an > a, then lim sup an ≤
a. Indeed, if there are only finitely many n such that an > a, then for some N we have
an ≤ a for all n > N (where N larger than the largest natural number k satisfying
ak > a). Hence, for n > N ,

sup{an, an+1, an+2, . . . } ≤ a.

Taking n → ∞, we get lim sup an ≤ a. �
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6.2.2 Ratio/Root Tests and The Exponential
and ζ-Functions, Again

You undoubtedly studied the ratio/root tests back in elementary calculus. To review
them, consider a geometric series

∑
an , where an = an for some a ∈ C. Observe

that ∣∣∣∣
an+1

an

∣∣∣∣ = |a| and |an|1/n = |a|,

and by the geometric series test,

∑
an converges ⇐⇒ |a| < 1.

Thus, the geometric series converges/diverges according as the ratio |an+1/an| or the
root |an|1/n is strictly less than/greater than or equal to 1. The ratio and root tests
generalize these results to arbitrary series where the exact ratios |an+1/an| and roots
|an|1/n are replaced by limit sups and infs. Before stating these generalizations, we
first consider the following important lemma.

Lemma 6.9 If {an} is a sequence of nonzero complex numbers, then

lim inf

∣∣∣∣
an+1

an

∣∣∣∣ ≤ lim inf |an|1/n ≤ lim sup |an|1/n ≤ lim sup

∣∣∣∣
an+1

an

∣∣∣∣ .

Proof Themiddle inequality is automatic (because inf’s are≤ sup’s), so we just need
to prove the left and right inequalities. Consider the left one; the right one is analogous
and is left to the reader. If lim inf |an+1/an| = −∞, then there is nothing to prove, so
we may assume that lim inf |an+1/an| �= −∞. Given b < lim inf |an+1/an|, we shall
prove that b < lim inf |an|1/n . This proves the left side in our desired inequalities,
for if on the contrary, we had lim inf |an|1/n < lim inf |an+1/an|, then choosing b =
lim inf |an|1/n , we would have

lim inf |an|1/n < lim inf |an|1/n,

a contradiction. So, let b < lim inf |an+1/an|. Choose a such that b < a < lim inf
|an+1/an|. Then by Property 4 (d) in Theorem 6.8, for some N , we have

n > N =⇒
∣∣∣∣
an+1

an

∣∣∣∣ > a.

Fix m > N and let n > m > N . Then we can write
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|an| =
∣∣∣∣

an

an−1

∣∣∣∣ ·
∣∣∣∣
an−1

an−2

∣∣∣∣ · · ·
∣∣∣∣
am+1

am

∣∣∣∣ · |am |.

There are n − m quotients in this equality, each greater than a, so

|an| > a · a · · · a · |am | = an−m · |am |,

which implies that
a1−m/n · |am |1/n < |an|1/n. (6.7)

As n → ∞, the left-hand side of (6.7) approaches a1 · |am |0 = a. Thus, since
lim inf = lim when the limit exists and lim inf’s preserve inequalities (Properties
(2) and (3) in Theorem 6.8), taking the limit infimums of both sides of (6.7), we
obtain

a = lim inf
(

a1−m/n · |am |1/n
)

≤ lim inf |an|1/n.

Since b < a, we have b < lim inf |an|1/n , and our proof is complete. �
We now state a “souped-up” version2 of the elementary calculus root test.

Cauchy’s root test

Theorem 6.10 A series
∑

an converges absolutely or diverges according as

lim sup
∣∣an

∣∣1/n
< 1 or lim sup

∣∣an

∣∣1/n
> 1.

Proof Suppose first that lim sup
∣∣an

∣∣1/n
< 1. Then we can choose 0 < a < 1 such

that lim sup
∣∣an

∣∣1/n
< a, which, by Property 4 (a) of Theorem 6.8, implies that for

some N ,
n > N =⇒ ∣∣an

∣∣1/n
< a,

that is,
n > N =⇒ ∣∣an

∣∣ < an.

The geometric series
∑

an converges, since 0 < a < 1, and thus by the comparison
test, the sum

∑ |an| also converges, and hence
∑

an converges as well.
Assume that lim sup

∣∣an

∣∣1/n
> 1. Then by Property 4 (b) of Theorem 6.8, there

are infinitely many n such that
∣∣an

∣∣1/n
> 1; that is,

there are infinitely many n such that |an| > 1.

By the nth term test on p. 196, the series
∑

an does not converge. �

2In elementary calculus, the ratio and root tests are usually stated with regular limits and not with
lim sup’s.
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It is important to remark that in the case lim sup
∣∣an

∣∣1/n = 1, this test does not give
information as to convergence.

Example 6.14 The series
∑

1/n diverges, and lim sup |1/n|1/n = lim 1/n1/n =
1 (see Example 3.7 on p. 159 for the proof that lim n1/n = 1). On the other
hand,

∑
1/n2 converges, and lim sup |1/n2|1/n = lim(1/n1/n)2 = 1 as well. Thus,

lim sup |an|1/n = 1 is not enough to determine the convergence of a series.

As with the root test, in elementary calculus you learned the ratio test most likely
without proof, and accepting by faith this test as correct, you probably used it to
great effect to solvemany problems.3 Here’s a “souped-up” version of the elementary
calculus ratio test.

d’Alembert’s ratio test

Theorem 6.11 A series
∑

an, with an nonzero for n sufficiently large, converges
absolutely or diverges according as

lim sup
∣∣∣
an+1

an

∣∣∣ < 1 or lim inf
∣∣∣
an+1

an

∣∣∣ > 1.

Proof If we set L := lim sup
∣∣an

∣∣1/n
, then by Lemma 6.9, we have

lim inf

∣∣∣∣
an+1

an

∣∣∣∣ ≤ L ≤ lim sup

∣∣∣∣
an+1

an

∣∣∣∣ . (6.8)

Therefore, if lim sup
∣∣∣ an+1

an

∣∣∣ < 1, then L < 1 too, so
∑

an converges absolutely by the

root test. On the other hand, if lim inf
∣∣∣ an+1

an

∣∣∣ > 1, then L > 1 too, so
∑

an diverges

by the root test. �

We remark that in the other case, that is, lim inf
∣∣ an+1

an

∣∣ ≤ 1 ≤ lim sup
∣∣ an+1

an

∣∣, this
test does not give information as to convergence. Indeed, the same divergent and
convergent examples used for the root test,

∑
1/n and

∑
1/n2, have the property

that lim inf
∣∣ an+1

an

∣∣ = 1 = lim sup
∣∣ an+1

an

∣∣.
Note that if lim sup

∣∣an

∣∣1/n = 1, that is, the root test fails (to give a decisive
answer), then setting L = 1 in (6.8), we see that the ratio test also fails. Thus,

root test fails =⇒ ratio test fails. (6.9)

Therefore, if the root test fails one cannot hope to appeal to the ratio test.
Let’s now consider some examples.

3“Allez en avant, et la foi vous viendra [push on and faith will catch up with you].” Advice to those
who questioned the calculus by Jean d’Alembert (1717–1783) [154].

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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Example 6.15 First, our old friend

exp(z) :=
∞∑

n=1

zn

n! ,

which we already knows converges, but for the fun of it, let’s apply the ratio test.
Observe that

∣∣∣
an+1

an

∣∣∣ =
∣∣∣∣∣

zn+1

(n+1)!
zn

n!

∣∣∣∣∣ = |z| · n!
(n + 1)! = |z|

n + 1
.

Hence,

lim
∣∣∣
an+1

an

∣∣∣ = 0 < 1.

Thus, the exponential function exp(z) converges absolutely for all z ∈ C. This proof
was a little easier than the one in Section3.7, but then again, back then we didn’t
have the up-to-date technology of the ratio test that we have now. Here’s an example
that fails.

Example 6.16 Consider the Riemann zeta function

ζ(z) =
∞∑

n=1

1

nz
, Re z > 1.

If z = x + iy is separated into its real and imaginary parts, then

∣∣an

∣∣1/n =
∣∣∣∣
1

nz

∣∣∣∣
1/n

=
( 1

nx

)1/n =
( 1

n1/n

)x
.

Since lim n1/n = 1, it follows that

lim
∣∣an

∣∣1/n = 1,

so the root test fails to give information, which also implies that the ratio test fails as
well. Of course, using the comparison test as we did in the proof of Theorem 4.34,
we already know that ζ(z) converges for all z ∈ C with Re z > 1.

It’s easy to find examples of series for which the ratio test fails but the root test
succeeds.

Example 6.17 A general class of examples that foil the ratio test is (see Problem 4)

a + b + a2 + b2 + a3 + b3 + a4 + b4 + · · · , 0 < b < a < 1; (6.10)

here, the odd terms are given bya2n−1 = an , and the even terms are given bya2n = bn .
For concreteness, let us consider the series

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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1

2
+ 1

3
+

(1
2

)2 +
(1
3

)2 +
(1
2

)3 +
(1
3

)3 +
(1
2

)4 +
(1
3

)4 + · · · .

Since ∣∣∣
a2n

a2n−1

∣∣∣ =
∣∣∣
(1/3)n

(1/2)n

∣∣∣ =
(2
3

)n

and ∣∣∣
a2n+1

a2n

∣∣∣ =
∣∣∣
(1/2)n+1

(1/3)n

∣∣∣ =
(3
2

)n · 1
2
,

it follows that lim inf |an+1/an| = 0 < 1 < ∞ = lim sup |an+1/an|, so the ratio test
does not give information. On the other hand, since

|a2n−1|1/(2n−1) = (
(1/2)n

)1/(2n−1) =
(1
2

) n
2n−1

and

|a2n|1/(2n) = (
(1/3)n−1

)1/(2n) =
(1
3

) n−1
2n

,

we leave it as an exercise for you to show that lim sup |an|1/n = (1/2)1/2. Since
(1/2)1/2 < 1, the series converges by the root test.

Thus, in contrast to (6.9),

ratio test fails /=⇒ root test fails.

However, in the following lemma we show that if the ratio test fails such that the true
limit lim | an+1

an
| = 1, then the root test fails as well.

Lemma 6.12 If | an+1

an
| → L with L ∈ R or L = ±∞, then |an|1/n → L.

Proof By Lemma 6.9, we know that

lim inf
∣∣∣
an+1

an

∣∣∣ ≤ lim inf
∣∣an

∣∣1/n ≤ lim sup
∣∣an

∣∣1/n ≤ lim sup
∣∣∣
an+1

an

∣∣∣.

By Theorem 6.8, a limit exists if and only if the lim inf and the lim sup have the
same limit, so the outside quantities in these inequalities equal L . It follows that
lim inf |an|1/n = lim sup |an|1/n = L as well, and hence lim |an|1/n = L . �

Let’s do one last example:
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Example 6.18 Consider the series

1 +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n) (2n + 1)
. (6.11)

Applying the ratio test, we have

an+1

an
= (2n + 1)(2n + 1)

(2n + 2)(2n + 3)
= 4n2 + 4n + 1

4n2 + 10n + 6
=

1 + 1

n
+ 1

4n2

1 + 5

2n
+ 3

2n2

. (6.12)

Therefore, lim | an+1

an
| = 1, so the ratio and root tests give no information! What can

we do? We’ll see that Raabe’s test in Section6.3 will show that (6.11) converges.

6.2.3 Power Series

Our old friend

exp(z) :=
∞∑

n=0

zn

n!

is an example of a power series, by which we mean a series of the form

∞∑

n=0

an zn, where z ∈ C, or
∞∑

n=0

an xn, where x ∈ R,

where an ∈ C for all n (in particular, the an may be real). However, we shall focus on
power series of the complex variable z, although essentially everything we mention
works for real variables x .

Example 6.19 Besides the exponential function, other familiar examples of power
series include the trigonometric series, sin z = ∑∞

n=0(−1)nz2n+1/(2n + 1)!, cos z =∑∞
n=0(−1)nz2n/(2n)!.
The convergence of power series is quite easy to analyze. First,

∑∞
n=0 anzn =

a0 + a1z + a2z2 + · · · certainly converges if z = 0. For |z| > 0 we can use the root
test: Observe that (see Problem 8 for a proof that we can take out |z|)

lim sup
∣∣anzn

∣∣1/n = lim sup
(|z| |an|1/n

) = |z| lim sup |an|1/n.

Therefore,
∑

anzn converges (absolutely) or diverges according as

|z| · lim sup |an|1/n < 1 or |z| · lim sup |an|1/n > 1.
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Therefore, if we define 0 ≤ R ≤ ∞ by

R := 1

lim sup |an|1/n
, (6.13)

where by convention, we put R := +∞ when lim sup |an|1/n = 0 and R := 0 when
lim sup |an|1/n = +∞, then it follows that

∑
anzn converges (absolutely) or diverges

according to |z| < R or |z| > R; when |z| = R, anything can happen. It is quite fitting
to call R the radius of convergence, as seen here (Fig. 6.3).

R

|z| < R

converges

|z| > R diverges

Fig. 6.3
∑

an zn converges (absolutely) or diverges according as |z| < R or |z| > R

Let us summarize our findings in the following theorem, named after Cauchy
(whom we’ve already met many times) and Jacques Hadamard (1865–1963).4

Cauchy–Hadamard theorem

Theorem 6.13 If R is the radius of convergence of the power series
∑

anzn, then
the series is absolutely convergent for |z| < R and is divergent for |z| > R.

One final remark. Suppose that the an are nonzero for n sufficiently large and
suppose that lim | an

an+1
| exists. Then by Lemma 6.12, we have

R = lim

∣∣∣∣
an

an+1

∣∣∣∣ . (6.14)

This formula for the radius of convergence might, in some cases, be easier to work
with than the formula involving |an|1/n .

� Exercises 6.2
1. Find the lim infs/sups of the sequence {an}, where an is given by

(a)
2 + (−1)n

4
, (b) (−1)n

(
1 − 1

n

)
, (c) 2(−1)n

, (d) 2n(−1)n
, (e)

(
1 + (−1)n

2

)n

.

4“The shortest path between two truths in the real domain passes through the complex domain.”
Jacques Hadamard (1865–1963). Quoted in The Mathematical Intelligencer 13 (1991).
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(f) If {rn} is a list of all rationals in (0, 1), prove that lim inf rn = 0 and
lim sup rn = 1.

2. Investigate the following series for convergence (in (c), z ∈ C):

(a)

∞∑

n=1

(n + 1)(n + 2) · · · (n + n)

nn
, (b)

∞∑

n=1

(n + 1)n

n! , (c)
∞∑

n=1

nz

n! , (d)

∞∑

n=1

1

2n+(−1)n .

3. Find the radius of convergence for the following series:

(a)

∞∑

n=1

(n + 1)n

nn+1 zn , (b)

∞∑

n=1

( n

n + 1

)n
zn , (c)

∞∑

n=1

(2n)!
(n!)2 zn , (d)

∞∑

n=1

zn

n p
,

where in the last sum, p ∈ R. If z = x ∈ R, for each series, state all x ∈ R such
that the series converges. For (c), your answer should depend on p.

4. (a) Investigate the series (6.10) for convergence using both the ratio and the root
tests.

(b) Here is another class of examples:

1 + a + b2 + a3 + b4 + a5 + b6 + · · · , 0 < a < b < 1.

Show that the ratio test fails but the root test works.
5. Lemma 6.12 is very useful in finding certain limits that aren’t obvious at first

glance. Using this lemma, derive the following limits:

(a) lim
n

(n!)1/n
= e , (b) lim

n + 1

(n!)1/n
= e , (c) lim

n

[(n + 1)(n + 2) · · · (n + n)]1/n
= e

4
,

and for a, b ∈ R with a > 0 and a + b > 0,

(d) lim
n

[(a + b)(2a + b) · · · (na + b)]1/n
= e

a
.

Suggestion: For (a), let an = nn/n!. Prove that lim an+1

an
= e and hence lim a1/n

n =
e aswell.As a side remark, recall that (a) is called (the “weak”) Stirling’s formula,
which we introduced in Eq. (3.27) on p. 181 and proved in Problem 6 on p. 183.

6. In this problem we investigate the interesting power series
∑∞

n=1
n!
nn zn , where

z ∈ C.

(a) Prove that this series has radius of convergence R = e.
(b) If |z| = e, then the ratio and root tests both fail. However, if |z| = e, then

prove that the infinite series diverges.
(c) Investigate the convergence/divergence of

∑∞
n=1

nn

n! zn , where z ∈ C.

7. In this problem we investigate the interesting power series

F(z) :=
∞∑

n=0

Fn+1 zn = F1 + F2z + F3z2 + · · · ,

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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where {Fn} is the Fibonacci sequence defined in Problem 9 on p. 47. In that
problem you proved that Fn = 1√

5
[�n − (−�)−n], where� = 1+√

5
2 , the golden

ratio.

(i) Prove that F(z) has radius of convergence equal to �−1.
(ii) Prove that for all z with |z| < �−1, we have F(z) = 1

1−z−z2 . Suggestion:
Show that (1 − z − z2)F(z) = 1. By the way, given a sequence {an}∞n=0, the
power series

∑∞
n=0 anzn is called the generating function of the sequence

{an}. Thus, the generating function for {Fn+1} has the closed form 1/(1 −
z − z2). For more on generating functions, see the free book [264]. Also,
if you’re interested in a magic trick you can do with the formula F(z) =
1/(1 − z − z2), see [188].

8. Here are some lim inf/sup problems. Let {an}, {bn} be sequences of real numbers.

(a) Prove that if c > 0, then lim inf(can) = c lim inf an and lim sup(can) =
c lim sup an . Here, we take the “obvious” conventions: c · ±∞ = ±∞.

(b) Prove that if c < 0, then lim inf(can) = c lim sup an and lim sup(can) =
c lim inf an .

(c) If {an}, {bn} are bounded, prove that lim inf an + lim inf bn ≤ lim inf(an +
bn).

(d) If {an}, {bn} are bounded, prove that lim sup(an + bn) ≤ lim sup an +
lim sup bn .

9. If an → L , where L is a positive real number, prove that lim sup(an · bn) =
L lim sup bn and lim inf(an · bn) = L lim inf bn . Here are some steps if you want
them:

(i) Show that you canget the lim inf statement from the lim sup statement; hence
we can focus on the lim sup statement. We shall prove that lim sup(anbn) ≤
L lim sup bn and L lim sup bn ≤ lim sup(anbn).

(ii) Show that the inequality lim sup(anbn) ≤ L lim sup bn follows if the follow-
ing statement holds: If lim sup bn < b, then lim sup(anbn) < L b.

(iii) Now prove that if lim sup bn < b, then lim sup(anbn) < L b. Suggestion: If
lim sup bn < b, then choose a such that lim sup bn < a < b. Using Property
4 (a) of Theorem 6.8 and the definition of L = lim an > 0, prove that there is
an N such that n > N implies bn < a and an > 0. Conclude that for n > N ,
anbn < aan . Finally, take lim sups of both sides of anbn < aan .

(iv) Show that the inequality L lim sup bn ≤ lim sup(anbn) follows if the fol-
lowing statement holds: If lim sup(anbn) < L b, then lim sup bn < b; then
prove this statement.

10. Let {an} be a sequence of real numbers. We prove that there are monotone sub-
sequences of {an} that converge to lim inf an and lim sup an . Proceed as follows:

(i) Using the monotone subsequence theorem on p. 178, show that it suffices to
prove that there are subsequences converging to lim inf an and lim sup an .
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(ii) Show that it suffices to prove that there is a subsequence converging to
lim inf an .

(iii) If lim inf an = ±∞, prove that there is a subsequence converging to
lim inf an .

(iv) Now assume that lim inf an = limn→∞
(
inf{an, an+1, . . . }

) ∈ R. By the
definitionof limit, show that there is ann such thata − 1 < inf{an, an+1, . . . }
< a + 1. Show that we can choose an n1 such that a − 1 < an1 < a + 1.
Then show there is an n2 > n1 such that a − 1

2 < an2 < a + 1
2 . Continue

this process.

6.3 A Potpourri of Ratio-Type Tests and “BigO” Notation

The ratio and root tests are indeed very powerful tests, but they sometimes fail to
determine convergence or divergence. For example, in the previous section we saw
that the ratio and root tests failed for the series

1 +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n) (2n + 1)
.

In this section we’ll develop new technologies that are able to detect the convergence
of this and other series for which the ratio and root tests fail to give information.

6.3.1 Kummer’s Test

Kummer’s test, named after Ernst Kummer (1810–1893), is really the comparison
test in disguised form (see [208]), but it is incredibly powerful, since it can used to
derive a potpourri of ratio-type tests that work when the ratio test fails. To motivate
Kummer’s test, let {an}be a sequenceof positive numbers. Then from the “telescoping
comparison test” (see Problem 8 on p. 214) we know that

∑
an converges if and only

if there exist a constant c > 0 and a sequence {xn} of positive numbers such that for
all n sufficiently large,

an ≤ c (xn − xn+1).

It was Kummer’s insight to realize that we can always write xn = an bn for some
bn > 0 (namely bn = xn/an). Thus,

∑
an converges if and only if there exist a

constant c > 0 and a sequence {bn} of positive numbers such that for all n sufficiently
large, an ≤ c (an bn − an+1 bn+1), or after division by an ,

1

c
≤ bn − an+1

an
bn+1. (6.15)
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This is equivalent to

lim inf

(
bn − an+1

an
bn+1

)
> 0.

Indeed, this is certainly implied by (6.15). On the other hand, assuming that the limit
infimum is positive, by Property 4 (d) of Theorem 6.8, given a > 0 less than this
limit infimum, we have (6.15) with c = 1/a. Thus, we have proved Part (i) of the
following theorem.5

Kummer’s test

Theorem 6.14 Let {an} be a sequence of positive numbers. Then

(i)
∑

an converges if there is a sequence {bn} of positive numbers such that

lim inf

(
bn − an+1

an
bn+1

)
> 0.

(ii)
∑

an diverges if there is a sequence {bn} of positive numbers such that
∑

1/bn

diverges, and

lim sup

(
bn − an+1

an
bn+1

)
< 0.

Proof Suppose there is a positive sequence {bn}with lim sup(bn − (an+1/an) bn+1) <

0. Then by Property 4 (a) of Theorem 6.8, there is an N such that

n > N =⇒ bn − an+1

an
bn+1 < 0, that is, an bn < an+1 bn+1.

Thus, for n > N , an bn is strictly increasing. In particular, fixing m > N , for all n >

m, we have C < an bn , where C = am bm is a constant independent of n. Thus, for
all n > m, we have C/bn < an , and since the sum

∑
1/bn diverges, the comparison

test implies that
∑

an diverges too. �

Note that d’Alembert’s ratio test is just Kummer’s test with bn = 1 for each n.

6.3.2 Raabe’s Test and “Big O” Notation

The following test, attributed to Joseph Ludwig Raabe (1801–1859), follows from
Kummer’s test with bn = n − 1, as the reader can check.

5Parts (i) and (ii) are usually stated with limit infimums and supremums of the sequence
bn an/an+1 − bn+1. However, I like using bn − (an+1/an) bn+1, because it fits perfectly with the
motivation and hence is easy to remember and derive.
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Raabe’s test

Theorem 6.15 A series
∑

an of positive terms converges or diverges according
as

lim inf n

(
1 − an+1

an

)
> 1 or lim sup n

(
1 − an+1

an

)
< 1.

In order to effectively apply Raabe’s test, it is useful to first introduce some very
handy notation. For a nonnegative function g, when we write f = O(g) (“big O” of
g), we simply mean that | f | ≤ Cg for some constant C . In words,

O means “… is, in absolute value, less than or equal to a constant times . . . .”

This big O notation was introduced by Paul Bachmann (1837–1920) but became
well known through Edmund Landau (1877–1938) [257].

Example 6.20 For x ≥ 0, we have

x2

1 + x
= O(x2),

because x2/(1 + x) ≤ x2 for x ≥ 0. Thus, for x ≥ 0,

1

1 + x
= 1 − x + x2

1 + x
=⇒ 1

1 + x
= 1 − x + O(x2). (6.16)

In this section, we are mostly interested in using the big O notation in dealing
with natural numbers.

Example 6.21 For n ∈ N,
5

2n
+ 3

2n2
= O

(
1

n

)
, (6.17)

because 5
2n + 3

2n2 ≤ 5
2n + 3

2n = C
n , where C = 4.

Three important properties of the big O notation are as follows:

(1) If f = O(ag) with a ≥ 0, then f = O(g).

If f1 = O(g1) and f2 = O(g2), then

(2) f1 f2 = O(g1 g2);
(3) f1 + f2 = O(g1 + g2).

To prove these properties, observe that if | f | ≤ C(ag), then | f | ≤ C ′g, where C ′ =
aC , and that | f1| ≤ C1g1 and | f2| ≤ C2g2 imply

| f1 f2| ≤ (
C1C2

)
g1g2 and | f1 + f2| ≤ (C1 + C2) (g1 + g2),
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whence our three properties.

Example 6.22 In view of (6.17), we have O
[ (

5
2n + 3

2n2

)2 ] = O (
1
n · 1

n

) = O (
1
n2

)
.

Therefore, using (the right-hand part of) (6.16), we obtain

1

1 +
(

5

2n
+ 3

2n2

) = 1 − 5

2n
− 3

2n2
+ O

[(
5

2n
+ 3

2n2

)2 ]

= 1 − 5

2n
+ O

(
1

n2

)
+ O

(
1

n2

)

= 1 − 5

2n
+ O

(
1

n2

)
,

since O(2/n2) = O(1/n2).

Here we can see the very “big” advantage of using the big O notation: it hides a
lot of complicated junk information. For example, the left-hand side of the equation
in Example 6.22 is exactly equal to (see the left-hand part of (6.16))

1

1 +
(

5

2n
+ 3

2n2

) = 1 − 5

2n
+

[
− 3

2n2
+

(
5
2n + 3

2n2

)2

1 + 5
2n + 3

2n2

]
.

So, the big O notation allows us to summarize the complicated material on the right
as the very simple O(

1
n2

)
.

Example 6.23 Consider our “mystery” series

1 +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n) (2n + 1)
,

already considered in (6.11). We saw that the ratio and root tests failed for this series;
however, it turns out that Raabe’s test works. To see this, let an denote the nth term
in the “mystery” series. Then from the ratio (6.12) found on p. 445, we see that

an+1

an
=

1 + 1

n
+ 1

4n2

1 + 5

2n
+ 3

2n2

=
(
1 + 1

n
+ 1

4n2

)(
1 − 5

2n
+ O

(
1

n2

))

=
(
1 + 1

n
+ O

(
1

n2

))(
1 − 5

2n
+ O

(
1

n2

))
.



6.3 A Potpourri of Ratio-Type Tests and “Big O” Notation 453

Multiplying out the right-hand side, using the properties of big O, we get

an+1

an
= 1 + 1

n
− 5

2n
+ O

(
1

n2

)
,

or
an+1

an
= 1 − 3

2n
+ O

(
1

n2

)
.

Hence,

n

(
1 − an+1

an

)
= 3

2
+ O

(
1

n

)
=⇒ lim n

(
1 − an+1

an

)
= 3

2
> 1,

so by Raabe’s test, the “mystery” sum converges.6

6.3.3 De Morgan and Bertrand’s Test

We next study a test named after Augustus De Morgan (1806–1871) and Joseph
Bertrand (1822–1900). For this test, we let bn = (n − 1) log(n − 1) in Kummer’s
test.

De Morgan and Bertrand’s test

Theorem 6.16 Let {an} be a sequence of positive numbers and define αn by the
equation

an+1

an
= 1 − 1

n
− αn

n log n
.

Then
∑

an converges or diverges according as lim inf αn > 1 or lim supαn < 1.

Proof If we let bn = (n − 1) log(n − 1) in Kummer’s test, then

κn = bn − an+1

an
bn+1 = (n − 1) log(n − 1) −

(
1 − 1

n
− αn

n log n

)
n log n

= αn + n
[
log(n − 1) − log n

]
+

[
log n − log(n − 1)

]
.

Since

(n + 1)
[
log n − log(n + 1)

]
= log

(
1 − 1

n + 1

)n+1

→ log
(
e−1

) = −1

6It turns out that the “mystery” sum equals π/2; see [146] for a proof.
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and
log n − log(n − 1) = log

n

n − 1
→ log 1 = 0,

we have

lim inf κn = lim inf αn − 1 and lim supκn = lim supαn − 1.

Invoking Kummer’s test now completes the proof. �

6.3.4 Gauss’s Test

We end our potpourri of tests with Gauss’s test.

Gauss’s test

Theorem 6.17 Let {an} be a sequence of positive numbers and suppose that we
can write

an+1

an
= 1 − ξ

n
+ O

(
1

n p

)
,

where ξ is a constant and p > 1. Then
∑

an converges or diverges according as
ξ ≤ 1 or ξ > 1.

Proof The hypotheses imply that

n

(
1 − an+1

an

)
= ξ + n O

(
1

n p

)
= ξ + O

(
1

n p−1

)
→ ξ

as n → ∞, where we used that p − 1 > 0. Thus, Raabe’s test shows that the series∑
an converges for ξ > 1 and diverges for ξ < 1. For the case ξ = 1, write

an+1

an
= 1 − 1

n
− fn ,

where { fn} is a sequence such that fn = O (
1

n p

)
. Then we can further rewrite

an+1

an
= 1 − 1

n
− αn

n log n
,

where αn = fn n log n. If we let p = 1 + δ, where δ > 0. Then

αn = fn n log n = O
(

1

n1+δ

)
n log n = O

(
log n

nδ

)
.



6.3 A Potpourri of Ratio-Type Tests and “Big O” Notation 455

By Problem 9 on p. 312, we know that (log n)/nδ → 0 as n → ∞, so lim αn = 0.
Thus, De Morgan and Bertrand’s test shows that the series

∑
an diverges. �

Example 6.24 Gauss’s test originated with Gauss’s study of the hypergeometric
series:

1 + α · β

1 · γ
+ α(α − 1) · β(β − 1)

2! · γ(γ + 1)
+ α(α − 1)(α − 2) · β(β − 1)(β − 2)

3! · γ(γ + 1)(γ + 2)
+ · · · ,

where α,β, γ are positive real numbers. We can write this as
∑

an , where

an = α(α − 1)(α − 2) · · · (α − n + 1) · β(β − 1)(β − 2) · (β − n + 1)

n! · γ(γ + 1)(γ + 2) · · · (γ + n − 1)
.

Hence, for n ≥ 1 we have

an+1

an
= (α + n)(β + n)

(n + 1)(γ + n)
= n2 + (α + β)n + αβ

n2 + (γ + 1)n + γ
=

1 + α + β

n
+ αβ

n2

1 + γ + 1

n
+ γ

n2

.

Using the handy formula (6.16) on p. 451,

1

1 + x
= 1 − x + x2

1 + x
,

we see that (after some algebra)

an+1

an
=

(
1 + α + β

n
+ αβ

n2

)[
1 − γ + 1

n
− γ

n2
+ O

(
1

n2

)]

= 1 − γ + 1 − α − β

n
+ O

(
1

n2

)
.

Thus, the hypergeometric series converges if γ > α + β and diverges if γ ≤ α + β.

� Exercises 6.3

1. Determine whether each of the following series converges.

(a)

∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2n(n + 1)! , (b)

∞∑

n=1

3 · 6 · 9 · · · (3n)

7 · 10 · 13 · · · (3n + 4)
,

(c)
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
, (d)

∞∑

n=1

2 · 4 · 6 · · · (2n + 2)

1 · 3 · 5 · · · (2n − 1)(2n)
.

For α,β �= 0,−1,−2, . . . ,
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(e)
∞∑

n=1

α(α + 1)(α + 2) · · · (α + n − 1)

n! ,

( f )

∞∑

n=1

α(α + 1)(α + 2) · · · (α + n − 1)

β(β + 1)(β + 2) · · · (β + n − 1)
.

If α,β, γ,κ,λ �= 0,−1,−2, . . . , then prove that the following monster series

(g)

∞∑

n=1

α(α + 1) · · · (α + n − 1)β(β + 1) · · · (β + n − 1)γ(γ + 1) · · · (γ + n − 1)

n! κ(κ + 1) · · · (κ + n − 1)λ(λ + 1) · · · (λ + n − 1)

converges for κ + λ − α − β − γ > 0.
2. Using Raabe’s test, prove that

∑
1/n p converges for p > 1 and diverges for

p < 1.
3. (Logarithmic test) We prove a useful test called the logarithmic test: If

∑
an

is a series of positive terms, then this series converges or diverges according as

lim inf
(

n log
an

an+1

)
> 1 or lim sup

(
n log

an

an+1

)
< 1.

To prove this, proceed as follows.

(i) Suppose first that lim inf
(
n log an

an+1

)
> 1. Show that there exist a > 1 and

N such that

n > N =⇒ a < n log
an

an+1
=⇒ an+1

an
< e−a/n .

(ii) Using
(
1 + 1

n

)n
< e from (3.26) on p. 180, the p-test, and the limit compar-

ison test (see Problem 9 on p. 215), prove that
∑

an converges.
(iii) Similarly, prove that if lim sup

(
n log an

an+1

)
< 1, then

∑
an diverges.

(iv) Using the logarithmic test, determine the convergence/divergence of

∞∑

n=1

n!
nn

and
∞∑

n=1

nn

n! .

6.4 Pretty Powerful Properties of Power Series

The title of this section speaks for itself! As stated already, we focus on power series
of a complex variable z, but all the results stated in this section have corresponding
statements for power series of a real variable x .

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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6.4.1 Continuity and the Exponential Function (Again)

We first prove that power series are always continuous (within their radius of con-
vergence).

Lemma 6.18 If a power series
∑∞

n=0 anzn has radius of convergence R, then the
series

∑∞
n=1 n anzn−1 also has radius of convergence R.

Proof (See Problem 3 for a proof of this lemma using the radius of conver-
gence formula (6.13) on p. 446; we shall give a more hands-on proof.) For z �= 0,∑∞

n=1 n anzn−1 converges if and only if z · ∑∞
n=1 n anzn−1 = ∑∞

n=1 n anzn converges,
so we just have to show that

∑∞
n=1 n anzn has radius of convergence R. Since

|an| ≤ n|an|, if ∑∞
n=1 n |an| |z|n converges, then

∑∞
n=1 |an| |z|n also converges by

comparison. Hence, the radius of convergence of the series
∑∞

n=1 n anzn can’t be
larger than R. To prove that the radius of convergence is at least R, fix z with
|z| < R; we need to prove that

∑∞
n=1 n |an| |z|n converges. To this end, fix ρ with

|z| < ρ < R and note that
∑∞

n=1 n (|z|/ρ)n converges, by, e.g., the root test:

lim
∣∣∣n

( |z|
ρ

)n∣∣∣
1/n = lim

(
n1/n · |z|

ρ

)
= |z|

ρ
< 1.

Hence, by the nth term test, n (|z|/ρ)n → 0 as n → ∞. In particular, n (|z|/ρ)n ≤ M
for some constant M . Next, observe that

n |an| |z|n = n |an| ρn ·
( |z|

ρ

)n ≤ M · |an| ρn.

Since
∑∞

n=1 |an| ρn converges (because ρ < R, the radius of convergence of the series∑∞
n=0 anzn), by the comparison test it follows that

∑
n |an| |z|n also converges. This

completes our proof. �

Continuity theorem for power series

Theorem 6.19 A power series is continuous within its radius of convergence.

Proof Let f (z) = ∑∞
n=0 anzn have radius of convergence R; we need to show that

f (z) is continuous at each point c ∈ C with |c| < R. So, let us fix such a c. Since

zn − cn = (z − c) qn(z), where qn(z) = zn−1 + zn−2 c + · · · + z cn−2 + cn−1,

which is proved by multiplying out (z − c) qn(z), we can write
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f (z) − f (c) =
∞∑

n=1

an(z
n − cn) = (z − c)

∞∑

n=0

anqn(z).

To bound the sum
∑∞

n=0 anqn(z)we proceed as follows. Fix r such that |c| < r < R.
Then for |z − c| < r − |c|, we have

|z| ≤ |z − c| + |c| < r − |c| + |c| = r.

Thus, since |c| < r , for |z − c| < r − |c|, we see that

|qn(z)| ≤ rn−1 + rn−2 r + · · · + r rn−2 + rn−1
︸ ︷︷ ︸

n terms

= nrn−1.

By our lemma,
∑∞

n=1 n |an| rn−1 converges, so if C := ∑∞
n=1 n |an| rn−1, then

| f (z) − f (c)| ≤ |z − c|
∞∑

n=1

|an| |qn(z)| ≤ |z − c|
∞∑

n=1

|an| nrn−1 = C |z − c|.

This implies that limz→c f (z) = f (c); that is, f is continuous at z = c. �

6.4.2 Abel’s Limit Theorem

Abel’s limit theorem has to do with the following question. Let f (x) = ∑∞
n=0 an xn

have radius of convergence R; this implies, in particular, that f (x) is defined for
all −R < x < R and, by Theorem 6.19, is continuous on the interval (−R, R). Let
us suppose that f (R) = ∑∞

n=0 an Rn converges. In particular, f (x) is defined for all
−R < x ≤ R. Question: Is f continuous on the interval (−R, R], that is, is it true
that

lim
x→R− f (x) = f (R)? (6.18)

The answer to this question is yes, and it follows from Niels Henrik Abel’s limit
theorem below (Theorem 6.21). The version that we state, which involves some
beautiful geometry, is due to Otto Stolz (1842–1905). For a nonzero complex number
z0, the following figure defines a “Stolz angle” (Fig. 6.4)
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z0
α

Fig. 6.4 A Stolz angle with vertex z0 is an angular sector with total angle < π and vertex at z0
that is symmetric about, and contains, the ray starting at z0 passing through the origin. The angle α
shown is half the total angle, so 0 ≤ α < π/2

Of course, in this figure we drew only part of the Stolz angle; the sector is of
infinite extent (it continues forever to the west, south, and southwest). Here’s an
important property of a Stolz angle.

Lemma 6.20 For every Stolz angle with vertex z0 �= 0, there are constants ρ, C >

0 such that for all z in the Stolz angle with |z − z0| < ρ, we have

|z0 − z|
|z0| − |z| ≤ C.

Proof ByProblem7, it’s enough to prove this lemma for z0 = 1. Thus, we henceforth
assume that z0 = 1; in this case, the Stolz angle looks like

α

Weneed to find constants ρ, C > 0 such that for all z in the Stolz anglewith |1 − z| <

ρ, we have
|1 − z|
1 − |z| ≤ C.

The proof is easy if we write a complex number z as z = 1 − r eiθ, where r = |1 − z|
is the distance between z and1, and θ is the angle z makeswith thenegativehorizontal.
When we write complex numbers in this way, the Stolz angle with vertex at 1 and
total angle 2α is given by

{1 − r eiθ ; r ≥ 0 and − α ≤ θ ≤ α}.

(Do you see why the Stolz angle has this form?) Here are some not-so-difficult-to-
prove facts, which we leave you to verify (see Fig. 6.5): For z = 1 − reiθ,



460 6 Advanced Theory of Infinite Series

(1) |z| < 1 if and only if r < 2 cos θ, and |z| = 1 if and only if r = 2 cos θ.
(2) We have

|1 − z|
1 − |z| = 1 + |z|

2 cos θ − r
.

θ

r = 2 cos θ

α

2 cos α

ρ

ρ < 2 cos α
z

Fig. 6.5 Left z = 1 − r eiθ is on the unit circle if and only if r = 2 cos θ. Right Here, 2 cosα is
the length of the segment from 1 to the point where the Stolz angle intersects the unit circle (this
follows from the description of the unit circle on the left)

The proofs of (1) and (2) just use the form z = 1 − r eiθ = (1 − r cos θ) − ir sin θ
and some algebra. Fix ρwith 0 < ρ < 2 cosα, as seen in the right picture in Fig. 6.5,
and let z be a complex number inside the Stolz angle such that |1 − z| < ρ; such a z is
shown on the right in Fig. 6.5. Then we can write z = 1 − r eiθ, where −α ≤ θ ≤ α
and r < ρ. It follows that 2 cos θ − r ≥ 2 cosα − ρ. Since ρ < 2 cosα, we have
2 cos θ − r > 0, so by (1), |z| < 1. Hence by (2), we have

|1 − z|
1 − |z| = 1 + |z|

2 cos θ − r
<

1 + 1

2 cosα − ρ
= C,

where C = 2/(2 cosα − ρ). This completes our proof. �
We can now prove the famous Abel’s limit theorem, which in particular implies

the result (6.18).

Abel’s limit theorem

Theorem 6.21 Let f (z) = ∑∞
n=0 anzn have radius of convergence R and let z0 ∈

C with |z0| = R, where the series f (z0) = ∑∞
n=0 anzn

0 converges. Then

lim
z→z0

f (z) = f (z0),

where z → z0 on the left inside any given Stolz angle with vertex z0.

Proof As in the previous proof, we may assume that7 z0 = 1. Moreover, by adding
the constant − f (1) to f (z) if necessary, we also assume that f (1) = 0. With

7Or just prove this theorem for the function g(z) = f (z0z) as z → 1 to get the result for f .
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these assumptions, if we put sn = a0 + a1 + · · · + an , then 0 = f (1) = ∑∞
n=0 an =

lim sn . Let z be inside the unit circle. By Abel’s lemma (see Corollary 6.2 on p. 421),

n∑

k=0

ak zk = snzn −
n−1∑

k=0

sk(z
k+1 − zk),

that is,
n∑

k=0

ak zk = (1 − z)
n∑

k=0

sk zk + snzn.

Since sn → 0 and |z| < 1, snzn → 0. Therefore, taking n → ∞, we obtain

f (z) =
∞∑

n=0

anzn = (1 − z)
∞∑

n=0

snzn,

which implies that

| f (z)| ≤ |1 − z|
∞∑

n=0

|sn| |z|n.

We now fix a Stolz angle with vertex 1. By the previous lemma, there are ρ, C > 0
such that for all z in the Stolz angle with |z − 1| < ρ, we have |1 − z|/(1 − |z|) ≤ C .
Let ε > 0. Since sn → 0, we can choose N ∈ N such that n > N =⇒ |sn| < ε/(2C).
Put K = ∑N

n=0 |sn|.Observe that for all z in theStolz anglewith |z| < 1 and |z − 1| <

ρ, we have

| f (z)| = |1 − z|
N∑

n=0

|sn| |z|n + |1 − z|
∞∑

n=N+1

|sn| |z|n

≤ |1 − z|
N∑

n=0

|sn| · 1n + |1 − z|
∞∑

n=N+1

ε

2C
|z|n

≤ K |1 − z| + ε

2C
|1 − z|

∞∑

n=0

|z|n

= K |1 − z| + ε

2C

|1 − z|
1 − |z| ≤ K |1 − z| + ε

2
.

Thus, with δ := ε/(2K ), we have

|z − 1| < δ with |z| < 1 in a Stolz angle with vertex 1 =⇒ | f (z)| < ε.

This completes our proof. �
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6.4.3 The Identity Theorem

The identity theorem is a very useful property of power series. It says that if two
power series are identical at “sufficiently many” points, then in fact, the power series
are identical everywhere! Here’s the idea:

c1c2
c3
c4

f(ck) = g(ck)
for all k =⇒

f = g everywhere
(they are defined)

Identity theorem

Theorem 6.22 Let f (z) = ∑
an zn and g(z) = ∑

bnzn have positive radii of
convergence (not a priori the same) and suppose that f (ck) = g(ck) for some
nonzero sequence ck → 0. Then the power series f (z) and g(z) are actually
identical; that is an = bn for every n = 0, 1, 2, 3, . . . .

Proof We begin by proving that for each m = 0, 1, 2, . . . , the series

fm(z) :=
∞∑

n=m

anzn−m = am + am+1z + am+2z2 + am+3z3 + · · ·

has the same radius of convergence as f . Indeed, since we can write fm(z) =
z−m

∑∞
n=m anzn for z �= 0, the power series fm(z) converges if and only if

∑∞
n=m anzn

converges, which in turn converges if and only if f (z) converges. It follows that fm(z)
and f (z) have the same radius of convergence; in particular, by the continuity theo-
rem for power series, fm(z) is continuous at 0. Similarly, for each m = 0, 1, 2, . . . ,
gm(z) := ∑∞

n=m bnzn−m has the same radius of convergence as g(z); in particular,
gm(z) is continuous at 0. These continuity facts concerning fm and gm are the impor-
tant facts that will be used below.

Now to our proof. We are given that

a0 + a1ck + a2c2k + · · · = b0 + b1ck + b2c2k + · · · , that is, f (ck) = g(ck)

(6.19)

for all k. In particular, taking k → ∞ in the equality f (ck) = g(ck), using that ck → 0
and that f and g are continuous at 0, we obtain f (0) = g(0), or a0 = b0. Canceling
a0 = b0 and dividing by ck �= 0 in (6.19), we obtain

a1 + a2ck + a3c2k + · · · = b1 + b2ck + b3c2k + · · · that is, f1(ck) = g1(ck)

(6.20)
for all k. Taking k → ∞ and using that ck → 0 and that f1 and g1 are continuous at
0, we obtain f1(0) = g1(0), or a1 = b1. Canceling a1 = b1 and dividing by ck �= 0
in (6.20), we obtain
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a2 + a3ck + a4c2k + · · · = b2 + b3ck + b4c2k + · · · that is, f2(ck) = g2(ck)

for all k. Taking k → ∞, using that ck → 0 and that f2 and g2 are continuous at 0,
we obtain f2(0) = g2(0), or a2 = b2. Continuing by induction, we get an = bn for
all n = 0, 1, 2, . . . , which is exactly what we wanted to prove. �

Corollary 6.23 If f (z) = ∑
an zn and g(z) = ∑

bnzn have positive radii of con-
vergence and f (x) = g(x) for all x ∈ Rwith |x | < ε for some ε > 0, then an = bn

for every n; that is, f and g are actually the same power series.

Proof To prove this, observe that since f (x) = g(x) for all x ∈ R such that |x | < ε,
then f (ck) = g(ck) for all k sufficiently large, where ck = 1/k; the identity theorem
now implies an = bn for every n. �

Using the identity theorem, we can deduce certain properties of series.

Example 6.25 Suppose that f (z) = ∑
anzn is an odd function in the sense that

f (−z) = − f (z) for all z within its radius of convergence. In terms of power series,
the identity f (−z) = − f (z) is

∑
an(−1)nzn =

∑
−anzn.

By the identity theorem, we must have (−1)nan = −an for each n. Thus, for n even
we must have an = −an or an = 0, and for n odd, we must have −an = −an , a
tautology. In conclusion, we see that f is odd if and only if all coefficients of even
powers vanish:

f (z) =
∞∑

n=0

a2n+1z2n+1;

that is, f is odd if and only if f has only odd powers in its series expansion.

� Exercises 6.4

1. Prove that a power series f (z) = ∑
anzn is an even function, in the sense that

f (−z) = f (z) for all z within its radius of convergence, if and only if f has only
even powers in its expansion, that is, f takes the form f (z) = ∑∞

n=0 a2nz2n .
2. Recall that the binomial coefficient is

(n
k

) = n!
k!(n−k)! for 0 ≤ k ≤ n. Prove the

not-obvious-at-first-sight result

(
m + n

k

)
=

k∑

j=0

(
m

j

)(
n

k − j

)
.
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Suggestion: Apply the binomial formula to (1 + z)m+n , which equals (1 + z)m ·
(1 + z)n . Prove that (

2n

n

)
=

n∑

k=0

(
n

k

)2
.

3. Prove Lemma 6.18 using the radius of convergence formula (6.13) on p. 446.
You will need Problem 9 on p. 448.

4. (Abel summability) We say that a series
∑

an is Abel summable to L if
the power series f (x) := ∑

an xn is defined for all x ∈ [0, 1) and limx→1−
f (x) = L .

(a) Prove that if
∑

an converges to L ∈ C, then
∑

an is also Abel summable
to L .

(b) Derive the following amazing formulas (properly interpreted!):

1 − 1 + 1 − 1 + 1 − 1 + − · · · =a
1

2
,

1 + 2 − 3 + 4 − 5 + 6 − 7 + − · · · =a
1

4
,

where =a means “is Abel summable to.” You will need Problem 6 on p.
204.

5. We continue the previous problem on Abel summability. Let a0, a1, a2, . . . be
a positive nonincreasing sequence tending to zero (in particular,

∑
(−1)n−1an

converges by the alternating series test). Define bn := a0 + a1 + · · · + an . We
shall prove the neat formula

b0 − b1 + b2 − b3 + b4 − b5 + − · · · =a
1

2

∞∑

n=0

(−1)nan,

where =a mean “is Abel summable to.”

(i) Let f (x) = ∑∞
n=0(−1)nbn xn . Prove that f has radius of convergence 1.

Suggestion: Use the ratio test.
(ii) Let

fn(x) =
n∑

k=0

(−1)kbk xk = a0 − (a0 + a1)x + (a0 + a1 + a2)x2 − · · ·

+ (−1)n(a0 + a1 + · · · + an)xn

be the nth partial sum of f (x). Prove that
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fn(x) = 1

1 + x

(
a0 − a1x + a2x2 − a3x3 + · · · + (−1)nan xn

)

+ (−1)n xn+1

1 + x

(
a0 + a2 + a3 + · · · + an).

(iii) Prove that8

f (x) = 1

1 + x

∞∑

n=0

(−1)nan xn .

Finally, from this formula prove the desired result.
(iv) Establish the remarkable formula

1 −
(
1 + 1

2

)
+

(
1 + 1

2
+ 1

3

)
−

(
1 + 1

2
+ 1

3
+ 1

4

)
+ − · · · =a

1

2
log 2.

6. Let
∑

an be a divergent series of positive real numbers and suppose that f (z) =∑
anzn has radius of convergence 1. Prove that limx→1− f (x) = +∞.

7. (More on Stolz angles) Let z0 ∈ C be nonzero and write z0 = r0 eiθ0 in polar
coordinates, where r0 > 0 and θ0 ∈ R. Denote the Stolz angle as seen in Fig. 6.4
by S(z0,α), where 0 ≤ α < π/2, and which we can write as

S(z0,α) = {z0 − r eiθ ; r ≥ 0 and θ0 − α ≤ θ ≤ θ0 + α}.

Find a one-to-one correspondence between S(z0,α) and S(1,α) such that if
z ∈ S(z0,α) corresponds to w ∈ S(1,α), then

|z0 − z|
|z0| − |z| = |1 − w|

1 − |w| .

This formula explains why we could assume z0 = 1 in Lemma 6.20.

6.5 Cauchy’s Double Series Theorem and A ζ-Function
Identity

After studying single integrals in elementary calculus, you probably took a course in
which you studied double integrals. In a similar way, now that we have a thorough
background in “single infinite series,” we now move to the topic of “double infinite
series.” The main result of this section is Cauchy’s double series theorem, Theorem
6.26, which we’ll use quite often in the sequel. If you did Problem 9 on p. 225,
you already saw a version of Cauchy’s theorem derived from Tannery’s theorem

8We could prove this identity more quickly using Cauchy’s double series theorem from Section6.5.
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(however, we won’t assume Tannery’s theorem for this section). The books [157,
Chapter3] and [40, Chapter5,] have lots of material on double series.

6.5.1 Double Series: Basic Definitions

Recall that a complex sequence is really just a function a : N → C, where we usually
denotea(n) byan . By analogy,we define a double sequence of complex numbers as a
function a : N × N −→ C. We usually denote a(m, n) by amn and the corresponding
double sequence by {amn}.

Recall that if {an} is a sequence of complex numbers, then we say that
∑

an

converges if the sequence {sn} converges, where sn := ∑n
k=1 ak . By analogy, we

define a double seriesof complexnumbers as follows.Let {amn}be adouble sequence
of complex numbers and let

smn :=
m∑

i=1

n∑

j=1

ai j ,

which we call the m, nth partial sum of
∑

amn . Figure6.6 shows a picture of smn ,
where we imagine putting the ai j in an infinite matrix and summing them within
an m × n rectangle. We say that the double series

∑
amn converges if the double

sequence {smn} of partial sums converges in the following sense: There is a complex
number L having the property that given ε > 0, there is a real number N such that

a11 a12 a13 a1n

a21 a22 a23 a2n

a31 a32 a33 a3n

am1 am2 am3 amn

smn =
m

i=1

n

j=1

aij sums over

all the aij ’s in the rectangle.

Fig. 6.6 The partial sum smn equals the sum of the ai j in the m × n rectangle. The sum
∑

amn is
the limit of these sums as the rectangles become arbitrarily large; that is, as m, n → ∞

m, n > N =⇒ |L − smn| < ε.

If this is the case, we define9 ∑
amn := L .

9It’s easy to check that L , if it exists, is unique.
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Geometrically, this means that as we take larger and larger rectangles as shown in
Fig. 6.6, the sums of the entries of the rectangles get closer and closer to L . If a
double series does not converge, we say that it diverges.

Example 6.26 Let p, q > 1 and consider the double series
∑

1/(m pnq). Observe
that

smn =
m∑

i=1

n∑

j=1

1

i p jq
=

m∑

i=1

n∑

j=1

1

i p
· 1

jq
=

(
m∑

i=1

1

i p

)⎛

⎝
n∑

j=1

1

jq

⎞

⎠ = Sm · Tn,

where

Sm =
m∑

i=1

1

i p
and Tn =

n∑

j=1

1

jq

are the mth and nth partial sums of the p and q series, respectively. Since p, q > 1,
we know that the p and q series converge,with values ζ(p) and ζ(q), the zeta function
evaluated at p and q, respectively. Thus, we have

lim
m→∞ Sm = ζ(p) and lim

n→∞ Tn = ζ(q).

Since smn = Sm Tn , it’s not difficult to prove, and we ask you to do so in Problem 1,
that {smn} converges to ζ(p) ζ(q). Thus,

ζ(p) ζ(q) =
∑

1/(m pnq).

Example 6.27 We can generalize the previous example as follows. Let
∑

an and∑
bn be convergent infinite series. Then in Problem 1 you will prove that the double

series
∑

ambn converges, and

(∑
am

)(∑
bn

)
=

∑
ambn.

Note that by the double series
∑

ambn on the right, wemean the double series
∑

amn ,
where amn = ambn for each m, n.

6.5.2 Iterated Double Series and Pringsheim’s Theorem

You might recall from calculus that immediately after discussing “double integrals,”
you studied “iterated integrals.” We can do the same for double series and study
“iterated series.” Thus, we can study the series



468 6 Advanced Theory of Infinite Series

∞∑

m=1

∞∑

n=1

amn and
∞∑

n=1

∞∑

m=1

amn . (6.21)

The iterated series, or summations, here are defined by performing the inside
infinite summation first, then the outside summation next. To explain this carefully,
consider the left-hand sum in (6.21). First, for every m, we require the infinite series

∞∑

n=1

amn = am1 + am2 + am3 + am4 + · · · to converge.

This sum depends on m, so let’s give it a name, say rm . Geometrically, for each m,
the number rm is the sum of the amn in the mth row, as seen in the left-hand picture
here:

a11 a12 a13 a14 r1

a21 a22 a23 a24 2

a31 a32 a33 a34 3

a41 a42 a43 a44

r

r

r4

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

c1 c2 c3 c4

Fig. 6.7 In the first array we are “summing by rows,” and in the second array we are “summing by
columns”

We then declare

∞∑

m=1

∞∑

n=1

amn :=
∞∑

m=1

rm , provided that the right infinite series converges.

Another way to express this is to use parentheses:

∞∑

m=1

∞∑

n=1

amn =
∞∑

m=1

( ∞∑

n=1

amn

)
,

where, provided that the summations converge, for every m we sum the inside series
over n, and then we sum the outside series over m. Similarly, the right-hand iterated
sum in (6.21) is defined by

∞∑

n=1

∞∑

m=1

amn :=
∞∑

n=1

( ∞∑

m=1

amn

)
,



6.5 Cauchy’s Double Series Theorem and A ζ-Function Identity 469

where, provided that the summations converge, for every n we sum the inside series
over m, and then we sum the outside series over n. Geometrically, we can view this
series as “summing by columns,” for the inside series is exactly the sum of the entries
in the nth column shown on the right in Fig. 6.7, and if we call this sum cn , then the
iterated series is the sum over the cn’s.

Another way to think of iterated series is as iterated limits of the partial sums.
That is, we claim that

∞∑

m=1

∞∑

n=1

amn = lim
m→∞

(
lim

n→∞ smn

)
and

∞∑

n=1

∞∑

m=1

amn = lim
n→∞

(
lim

m→∞ smn

)
,

provided that the limits involved actually converge. Indeed, recall that

smn =
m∑

i=1

n∑

j=1

ai j .

If we take n → ∞, we get

lim
n→∞ smn =

m∑

i=1

∞∑

j=1

ai j ,

provided that the infinite series in j converges for every i . The right-hand side is
the sum of the first m rows r1, r2, . . . , rm in Fig. 6.7. Now taking m → ∞, we get,
provided that the limits exist,

lim
m→∞

(
lim

n→∞ smn

)
=

∞∑

i=1

∞∑

j=1

ai j ,

as claimed (except for the change of the letters i and j to m and n, respectively).
Now that we have gone over double series and iterated series, we should ask

ourselves whether these various notions are equivalent; for example, is it true that

∑
amn =

∞∑

m=1

∞∑

n=1

amn =
∞∑

n=1

∞∑

m=1

amn ?

It turns out that there may be no relationships between these series.

Example 6.28 Consider the amn shown in Fig. 6.8. The left picture in Fig. 6.8 shows
an m × n rectangle with m < n (the horizontally longer rectangle) and also a rectan-
gle with m ≥ n (the vertically longer rectangle). In particular, we see that smn = 0
if m < n, while smn = −1 if m ≥ n. It follows that the double sum

∑
amn does not

converge. On the other hand, from Fig. 6.8, we see that
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1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1

Fig. 6.8 Left The double series
∑

amn does not exist. The double sum
∑

amn does not converge.
Middle The sum by rows converges to 0. Right The sum by columns converges to 1

∞∑

m=1

∞∑

n=1

amn = sum by rows = 0 + 0 + 0 + 0 + · · · = 0,

while ∞∑

n=1

∞∑

m=1

amn = sum by columns = 1 + 0 + 0 + 0 + · · · = 1.

Example 6.29 Consider the amn shown in Fig. 6.9. Since smn = 0 for all m, n ≥ 2,
it follows that

∑
amn converges and equals 0. However, the sums by rows and by

columns do not exist.

0 0 1 2 3 4
0 0 −1 −2 −3 −4
1 −1 0 0 0 0
2 −2 0 0 0 0
3 −3 0 0 0 0
4 −4 0 0 0 0

0 0 1 2 3 4
0 0 −1 −2 −3 −4
1 −1 0 0 0 0
2 −2 0 0 0 0
3 −3 0 0 0 0
4 −4 0 0 0 0

Fig. 6.9 Left We have smn = 0 for all m, n ≥ 2. Right The sums of the entries of the first column
and the second column do not converge. Therefore, the sum by columns does not exist. Similarly,
the sums of the entries of the first row and second row do not converge either. Thus, the sum by
rows does not exist

As these examples show, the convergence of the double series may not imply that
each iterated series converges, and conversely, if an iterated series converges, the
double series may not. However, by the following theorem of Alfred Pringsheim
(1850–1941) (cf. [40, p. 79]), if a double series converges and if it happens that all
the rows converge and all the columns converge, then in fact both iterated series
converge and equal the double series.



6.5 Cauchy’s Double Series Theorem and A ζ-Function Identity 471

Pringsheim’s theorem for series

Theorem 6.24 Let {amn} be a double sequence and assume:

(1) The double series
∑

amn is convergent.
(2) For every m, the sum of the mth row,

∑∞
n=1 amn, converges.

(3) For every n, the sum of the nth column,
∑∞

m=1 amn, converges.

Then both iterated series converge, and we have the equality

∑
amn =

∞∑

m=1

∞∑

n=1

amn =
∞∑

n=1

∞∑

m=1

amn . (6.22)

Proof Let ε > 0. Then by the definition of convergence for a double series, for
L = ∑

amn , there is an N such that for all m, n > N , we have

|L − smn| < ε/2.

Taking n → ∞, we get, for m > N , |L − limn→∞ smn

∣∣ ≤ ε/2. Thus,

m > N =⇒ ∣∣L − lim
n→∞ smn

∣∣ < ε.

By the definition of convergence, this means that

lim
m→∞

(
lim

n→∞ smn

)
= L ,

which is to say,
∞∑

m=1

∞∑

n=1

amn = L .

A similar argument establishes the equality for the other iterated series. �

Later we shall study the most useful theorem on iterated series, Cauchy’s dou-
ble series theorem on p. 477, which states that (6.22) always holds for absolutely
convergent series. Here, a double series

∑
amn is said to converge absolutely if

the double series of absolute values
∑ |amn| converges. However, before presenting

Cauchy’s theorem, we first generalize summing by rows and columns to “summing
by curves.”
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6.5.3 “Summing by Curves”

Before we present the sum by curves theorem (Theorem 6.25 below), it might be
helpful to give a couple of examples of this theorem to help in understanding what
it says. Let {amn} be a double sequence.
Example 6.30 Let

Sk = {(m, n) ; 1 ≤ m ≤ k , 1 ≤ n ≤ k},

which represents a k × k square of numbers; here’s a 4 × 4 block:

a11 a12 a13 a14 . . .

a21 a22 a23 a24 . . .

a31 a32 a33 a34 . . .

a41 a42 a43 a44 . . .
...

...
...

...
. . .

The left-hand picture in Fig. 6.10 shows 1 × 1, 2 × 2, 3 × 3, and 4 × 4 examples.We
denote by

∑
(m,n)∈Sk

amn the sum of those amn within the k × k square Sk . Explicitly,

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

Fig. 6.10 “Summing by squares” and “summing by triangles”

∑

(m,n)∈Sk

amn =
k∑

m=1

k∑

n=1

amn.

It is natural to refer to the limit (provided it exists)

lim
k→∞

∑

(m,n)∈Sk

amn = lim
k→∞

k∑

m=1

k∑

n=1

amn

as “summingby squares,” since aswe alreadynoted,
∑

(m,n)∈Sk
amn involves summing

the amn within a k × k square.
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Example 6.31 Now let

Sk = T1 ∪ · · · ∪ Tk , where T� = {(m, n) ; m + n = � + 1}.

Notice that T� = {(m, n) ; m + n = � + 1} = {(1, �), (2, � − 1), . . . , (�, 1)} repre-
sents the �th diagonal in the right-hand picture in Fig. 6.10; for instance, T3 =
{(1, 3), (2, 2), (3, 1)} is the third diagonal in Fig. 6.10. Then

∑

(m,n)∈Sk

amn =
k∑

�=1

∑

(m,n)∈T�

amn

is the sum of the amn that are within the triangle consisting of the first k diagonals.
It is natural to refer to the limit (provided it exists)

lim
k→∞

∑

(m,n)∈Sk

amn = lim
k→∞

k∑

�=1

∑

(m,n)∈T�

amn

as “summing by triangles.” Using that T� = {(1, �), (2, � − 1), . . . , (�, 1)}, we can
express the summation by triangles as

∞∑

k=1

(
a1,k + a2,k−1 + · · · + ak,1

)
.

More generally, we can “sum by curves” as long as the curves increasingly fill
up the array like the squares or triangles shown in Fig. 6.10. More precisely, let C
be a collection of nondecreasing finite sets S1 ⊆ S2 ⊆ S3 ⊆ · · · ⊆ N × N having the
property that for every pair m, n there is a k such that

{1, 2, . . . , m} × {1, 2, . . . , n} ⊆ Sk ⊆ Sk+1 ⊆ Sk+2 ⊆ · · · . (6.23)

This condition says that the sets Sk grow so as to encompass any given rectangle. For
geometric purposes, one can think of the sets Sk as “curves” (like the boundaries of
squares and triangles). Here’s an example “curve” Sk (Fig. 6.11):

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

Sk

Fig. 6.11 A “curve.” These curves grow larger and larger so as to enclose any given rectangle
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For each k ∈ N, let sk be the sum of the amn for (m, n) inside the “curve” Sk :

sk :=
∑

(m,n)∈Sk

amn.

We say that
∑

amn is summable by the curvesC if limk→∞ sk exists, and we denote
this limit by

∑
C amn .

Example 6.32 Consider the amn shown in Fig. 6.12. From the left picture in Fig. 6.12,
we see that smn = 0 for all m, n ≥ 2. Thus,

∑
amn converges and equals 0.

Consider the “triangles”

Sk = T1 ∪ · · · ∪ Tk , where T� = {(m, n) ; m + n = � + 1}.

Observe that for k ≥ 2, we have

sk =
∑

(m,n)∈Sk

amn = 0 + 2 + 4 + 6 + 8 + · · · + 2(k − 2).

Hence, the “sum by triangles” does not converge.

Example 6.33 Consider the amn shown in Fig. 6.13. From the left picture in Fig. 6.8,
one can verify that smn = m − n for all m, n; for example, the picture shows a 4 × 6

0 0 1 2 3 4
0 0 −1 −2 −3 −4
1 −1 0 0 0 0
2 −2 0 0 0 0
3 −3 0 0 0 0
4 −4 0 0 0 0

0 0 1 2 3 4
0 0 −1 −2 −3 −4
1 −1 0 0 0 0
2 −2 0 0 0 0
3 −3 0 0 0 0
4 4 0 0 0 0

Fig. 6.12 “Summing by triangles.” Left For every m, n ≥ 2, the partial sum smn equals zero Right
The sum by triangles equals 2 + 4 + 6 + 8 + · · · , which does not converge

0 −1 −1 −1 −1 −1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

0 −1 −1 −1 −1 −1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

Fig. 6.13 “Summing by triangles.” Left We have smn = m − n. Right The sum by triangles equals
0 + 0 + 0 + 0 + · · · = 0
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rectangle, where s4,6 = −2. It follows that
∑

amn does not converge. On the other
hand, consider the “triangles” as we had in our previous example. Observe that for
k ≥ 3, we have

sk =
∑

(m,n)∈Sk

amn = 0 + 0 + 0 + 0 + · · · + 0 = 0.

Hence, the “sum by triangles” converges to zero.

These examples show that in general, there is no relationship between conver-
gence of the double series and convergence of a sum by curves. The following
important theorem says that if the double series converges absolutely, then there is a
relationship: the double series and sum by curves both converge and are equal.

Sum by curves theorem

Theorem 6.25 If a double series
∑

amn of complex numbers is absolutely conver-
gent, then

∑
amn itself converges, and moreover, given any collection of “curves”

C satisfying (6.23), the sum by curves
∑

C amn converges, and

∑
amn =

∑

C

amn.

Proof Fix a collection C satisfying (6.23). For each k, let sk = ∑
(m,n)∈Sk

amn . We
will show that {sk} is Cauchy and therefore converges; then we prove that

∑
amn

converges and
∑

amn = lim sk .
Step 1: We first prove a useful inequality. Let A, A′, B, B ′ ⊆ N × N with B ′ ⊆

B ⊆ A ⊆ A′. Observe that
∣∣∣∣
∑

(i, j)∈A

ai j −
∑

(i, j)∈B

ai j

∣∣∣∣ =
∣∣∣∣

∑

(i, j)∈A\B

ai j

∣∣∣∣ ≤
∑

(i, j)∈A\B

|ai j |

=
∑

(i, j)∈A

|ai j | −
∑

(i, j)∈B

|ai j |

≤
∑

(i, j)∈A′
|ai j | −

∑

(i, j)∈B ′
|ai j |.

Step 2: To prove that {sk} is Cauchy, let ε > 0 be given. By assumption,
∑ |amn|

converges, so if L denotes its limit and tmn its m, nth partial sum, we can choose N
such that

m, n > N =⇒ |L − tmn| <
ε

2
. (6.24)

Fix n > N . Then by the property (6.23), there is an N ′ ∈ N such that

{1, 2, . . . , n} × {1, 2, . . . , n} ⊆ SN ′ ⊆ SN ′+1 ⊆ SN ′+2 ⊆ · · · .
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Now let k, � be integers with N ′ < � < k, and then choose m large enough that
m > n and Sk ⊆ {1, 2, . . . , m} × {1, 2, . . . , m}. Then,

{1, 2, . . . , n} × {1, 2, . . . , n} ⊆ S� ⊆ Sk ⊆ {1, 2, . . . , m} × {1, 2, . . . , m}.

It follows from Step 1 that

|sk − s�| ≤
m∑

i=1

m∑

j=1

|ai j | −
n∑

i=1

n∑

j=1

|ai j |

= tmm − tnn

= (tmm − L) + (L − tnn) <
ε

2
+ ε

2
= ε,

where we used (6.24). Hence, |sk − s�| < ε, which gives the Cauchy condition.
Step 3: We now show that

∑
amn converges with sum equal to s := lim sk . Let

ε > 0 be given and choose N such that (6.24) holds with ε/2 replaced with ε/3. Fix
natural numbers m, n > N . By the property (6.23) and the fact that sk → s, we can
choose k > N such that

{1, 2, . . . , m} × {1, 2, . . . , n} ⊆ Sk and |sk − s| < ε/3.

Now choose m ′ ∈ N such that Sk ⊆ {1, 2, . . . , m ′} × {1, 2, . . . , m ′}. By Step 1,

|sk − smn| ≤
m ′∑

i=1

m ′∑

j=1

|ai j | −
m∑

i=1

n∑

j=1

|ai j |

= tm ′m ′ − tmn

= (tm ′m ′ − L) + (L − tmn) <
ε

3
+ ε

3
= 2ε

3
,

where we used the property (6.24) (with ε/2 replaced with ε/3). Finally, recalling
that |sk − s| < ε/3, by the triangle inequality, we have

|smn − s| ≤ |smn − sk | + |sk − s| <
2ε

3
+ ε

3
= ε.

This proves that
∑

amn = s and completes our proof. �
We recommend that the reader look at Problem 12 for a related result.

6.5.4 Cauchy’s Double Series Theorem

We now come to the most important theorem of this section.
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Cauchy’s double series theorem

Theorem 6.26 For a double series
∑

amn of complex numbers, the following are
equivalent statements:

(a) The series
∑

amn is absolutely convergent.
(b)

∑∞
m=1

∑∞
n=1 |amn| converges.

(c)
∑∞

n=1

∑∞
m=1 |amn| converges.

In each of these cases, we have

∞∑

m=1

∞∑

n=1

amn =
∞∑

n=1

∞∑

m=1

amn =
∑

amn, (6.25)

in the sense that both iterated sums converge and equal the sum of the series.

Proof Note that the sum by curves part in (6.25) follows from the sum by curves
theorem, so can omit proving that part in what follows. We proceed in three steps.

Step 1: Assume first that the sum
∑

amn converges absolutely; we shall prove that
both iterated sums

∑∞
m=1

∑∞
n=1 |amn|, ∑∞

n=1

∑∞
m=1 |amn| converge. Since ∑ |amn|

converges, setting s := ∑ |amn| and denoting by smn the m, nth partial sum, by the
definition of convergence we can choose N such that

m, n > N =⇒ |s − smn| < 1 =⇒ smn < s + 1. (6.26)

Given p ∈ N, choosem ≥ p such thatm > N and let n > N . Then in view of (6.26),
we have

n∑

j=1

|apj | ≤
m∑

i=1

n∑

j=1

|ai j | = smn < s + 1. (6.27)

Therefore, the partial sums of
∑∞

j=1 |apj | are bounded above by a fixed constant and
hence (by the nonnegative series test, Theorem 3.19 on p. 197) for every p ∈ N, the
sum

∑∞
j=1 |apj | converges. Similarly, for each q ∈ N, the sum

∑∞
i=1 |aiq | converges.

Therefore, byPringsheim’s theorem for series, both iterated series
∑∞

m=1

∑∞
n=1 |amn|,∑∞

n=1

∑∞
m=1 |amn| converge (and equal

∑ |amn|).
Step 2: Assuming that

∑
amn converges absolutely, we now establish the equality

(6.25). Indeed, by the sum by curves theorem, we know that
∑

amn converges, and
we showed in Step 1 that for each p, q ∈ N, the sums

∑∞
n=1 |apn| and ∑∞

m=1 |amq |
exist. This implies that for each p, q ∈ N,

∑∞
n=1 apn and

∑∞
m=1 amq converge. Now

(6.25) follows from Pringsheim’s theorem.
Step 3: Now assume that

∞∑

m=1

∞∑

n=1

|amn| = t < ∞.

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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We will show that
∑

amn is absolutely convergent; a similar proof shows that if∑∞
n=1

∑∞
m=1 |amn| < ∞, then

∑
amn is absolutely convergent. Let ε > 0. Then the

fact that
∑∞

i=1

(∑∞
j=1 |ai j |

)
< ∞ implies, by the Cauchy criterion for series, that

there is an N such that

k > m > N =⇒
k∑

i=m+1

( ∞∑

j=1

|ai j |
)

<
ε

2
.

Let m, n > N . Then for every k > m, we have

∣∣∣∣∣∣

k∑

i=1

∞∑

j=1

|ai j | −
m∑

i=1

n∑

j=1

|ai j |
∣∣∣∣∣∣
=

k∑

i=m+1

∞∑

j=1

|ai j | <
ε

2
.

Taking k → ∞ shows that for all m, n > N ,

∣∣∣∣∣∣
t −

m∑

i=1

n∑

j=1

|ai j |
∣∣∣∣∣∣
≤ ε

2
< ε,

which proves that
∑ |amn| converges and completes the proof of our result. �

Now for some applications.

Example 6.34 For an application of Cauchy’s theorem and the sum by curves theo-
rem, we look at the double sum

∑
zm+n for |z| < 1. For such z, this sum converges

absolutely, because

∞∑

m=0

∞∑

n=0

|z|m+n =
∞∑

m=0

|z|m · 1

1 − |z| = 1

(1 − |z|)2 < ∞,

where we used the geometric series test (twice): If |r | < 1, then
∑∞

k=0 rk = 1
1−r . So∑

zm+n converges absolutely by Cauchy’s double series theorem, and

∑
zm+n =

∞∑

m=0

∞∑

n=0

zm+n =
∞∑

m=0

zm · 1

1 − z
= 1

(1 − z)2
.

On the other hand, by our sum by curves theorem, we can find
∑

zm+n by summing
over curves; we shall choose to sum over triangles. Thus, if we set

Sk = T0 ∪ T1 ∪ T2 ∪ · · · ∪ Tk , where T� = {(m, n) ; m + n = � , m, n ≥ 0},

then



6.5 Cauchy’s Double Series Theorem and A ζ-Function Identity 479

∑
zm+n = lim

k→∞
∑

(m,n)∈Sk

zm+n = lim
k→∞

k∑

�=0

∑

(m,n)∈T�

zm+n.

Since T� = {(m, n) ; m + n = �} = {(0, �), (1, � − 1), . . . , (�, 0)}, we have
∑

(m,n)∈T�

zm+n = z0+� + z1+(�−1) + z2+(�−2) + · · · + z�+0 = (� + 1)z�.

Thus,
∑

zm+n = ∑∞
k=0(k + 1)zk . However, we already proved that

∑
zm+n =

1/(1 − z)2, so
1

(1 − z)2
=

∞∑

n=1

nzn−1. (6.28)

See Problem 5 for an easier proof of (6.28) using Cauchy’s double series theorem.

Example 6.35 Another very neat application of Cauchy’s double series theorem is
to derive nonobvious identities. Fix z ∈ C with |z| < 1, and consider the series

∞∑

n=1

zn

1 + z2n
= z

1 + z2
+ z2

1 + z4
+ z3

1 + z6
+ · · · ;

we’ll see why this series converges in a moment. Observe that (since |z| < 1)

1

1 + z2n
=

∞∑

m=0

(−1)m z2mn,

by the familiar geometric series test with r = −z2n:
∑∞

k=0 rk = 1
1−r for |r | < 1.

Therefore,

∞∑

n=1

zn

1 + z2n
=

∞∑

n=1

zn ·
∞∑

m=0

(−1)m z2mn =
∞∑

n=1

∞∑

m=0

(−1)m z(2m+1)n .

We claim that the double sum
∑

(−1)m z(2m+1)n converges absolutely. To prove this,
observe that

∞∑

n=1

∞∑

m=0

|z|(2m+1)n =
∞∑

n=1

|z|n
∞∑

m=0

|z|2nm =
∞∑

n=1

|z|n
1 − |z|2n

.

Since 1
1−|z|2n ≤ 1

1−|z| (this is because |z|2n ≤ |z| for |z| < 1), we have

|z|n
1 − |z|2n

≤ 1

1 − |z| · |z|n.
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Since
∑ |z|n converges, by the comparison theorem,

∑∞
n=1

|z|n
1−|z|2n converges too.

Hence, Cauchy’s double series theorem applies, and

∞∑

n=1

∞∑

m=0

(−1)m z(2m+1)n =
∞∑

m=0

∞∑

n=1

(−1)m z(2m+1)n

=
∞∑

m=0

(−1)m
∞∑

n=1

z(2m+1)n

=
∞∑

m=0

(−1)m z2m+1

1 − z2m+1
.

Thus,
∞∑

n=1

zn

1 + z2n
=

∞∑

m=0

(−1)m z2m+1

1 − z2m+1
.

Therefore, we have derived the following striking identity between even and odd
powers of z:

z

1 + z2
+ z2

1 + z4
+ z3

1 + z6
+ · · · = z

1 − z
− z3

1 − z3
+ z5

1 − z5
− + · · · .

There are more beautiful series like this found in the exercises (see Problem 6, or
better yet, Problem 8). We just touch on one more because it’s so nice.

6.5.5 A Neat ζ-Function Identity

Recall that the ζ-function is defined by ζ(z) = ∑∞
n=1

1
nz , which converges absolutely

for z ∈ C with Re z > 1. Here’s a beautiful theorem from Flajolet and Vardi [82,
250].

Theorem 6.27 If f (z) = ∑∞
n=2 an zn and

∑∞
n=2 |an| converges, then

∞∑

n=1

f
(1

n

)
=

∞∑

n=2

an ζ(n).

Proof We first write
∞∑

n=1

f
(1

n

)
=

∞∑

n=1

∞∑

m=2

am
1

nm
.
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Now if we set C = ∑∞
m=2 |am | < ∞, then

∞∑

n=1

∞∑

m=2

∣∣∣am
1

nm

∣∣∣ ≤
∞∑

n=1

∞∑

m=2

|am | 1

n2
≤ C

∞∑

n=1

1

n2
< ∞.

Hence, by Cauchy’s double series theorem, we can switch the order of summation:

∞∑

n=1

f
(1

n

)
=

∞∑

n=1

∞∑

m=2

am
1

nm
=

∞∑

m=2

am

∞∑

n=1

1

nm
=

∞∑

m=2

am ζ(m),

which completes our proof. �

Using this theorem, we can derive the pretty formula (see Problem 10):

log 2 =
∞∑

n=2

1

2n
ζ(n). (6.29)

Not only is this formula pretty, it converges to log 2 much faster than the usual series∑∞
n=1

(−1)n−1

n (from which (6.29) is derived by the help of Theorem 6.27); see [82,
250] for a discussion of such convergence issues.

� Exercises 6.5

1. (Products of infinite series) If
∑∞

m=1 am and
∑∞

n=1 bn are convergent infinite
series, with sums A and B respectively, prove that the double series10

∑
ambn

and the iterated series
∑∞

m=1

∑∞
n=1 ambn and

∑∞
n=1

∑∞
m=1 ambn converge to AB;

that is, prove that

( ∞∑

m=1

am

)( ∞∑

n=1

bn

)
=

∑
ambn =

∞∑

m=1

∞∑

n=1

ambn =
∞∑

n=1

∞∑

m=1

ambn .

2. (Comparison test) Let {amn} and {bmn} be double sequences such that 0 ≤
amn ≤ bmn for all m, n and such that the double series

∑
bmn converges. Prove

that
∑

amn also converges. Use the comparison test to prove that the double
series

∑
1/(m4 + n4) converges.

3. Determine the convergence, iterated convergence, and absolute convergence for
the double series

(a)
∑

m,n≥1

(−1)mn

mn
, (b)

∑

m,n≥1

(−1)n

(m + n p)(m + n p − 1)
, p > 1 , (c)

∑

m≥2,n≥1

1

mn
.

Suggestion: For (b), show that
∑∞

m=1
1

(m+n p)(m+n p−1) telescopes.

10By the double series
∑

ambn , we mean
∑

amn , where amn = ambn for each m, n.
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4. (mn-term test for double series) Show that if
∑

amn converges, then amn →
0 as m, n → ∞. Suggestion: First verify that amn = smn − sm−1,n − sm,n−1 +
sm−1,n−1.

5. Let z ∈ Cwith |z| < 1. For (m, n) ∈ N × N, defineamn = zn ifm ≤ n and define
amn = 0 otherwise. Using Cauchy’s double series theorem on

∑
amn , prove

(6.28). Using (6.28), find
∑∞

n=1
n
2n (cf. Problem 3 on p. 203).

6. Let |z| < 1. Using Cauchy’s double series theorem, derive the identities

(a)
z

1 + z2
+ z3

1 + z6
+ z5

1 + z10
+ · · · = z

1 − z2
− z3

1 − z6
+ z5

1 − z10
− + · · · ,

(b)
z

1 + z2
− z2

1 + z4
+ z3

1 + z6
− + · · · = z

1 + z
− z3

1 + z3
+ z5

1 + z5
− + · · · ,

(c)
z

1 + z
− 2z2

1 + z2
+ 3z3

1 + z3
− + · · · = z

(1 + z)2
− z2

(1 + z2)2
+ z3

(1 + z3)2
− + · · · .

Suggestion: For (c), you need the formula 1/(1 − z)2 = ∑∞
n=1 nzn−1 found in

(6.28).
7. Here’s a neat formula for ζ(k) found in [39]: For every k ∈ N with k ≥ 3, we

have

ζ(k) =
k−2∑

�=1

∞∑

m=1

∞∑

n=1

1

m�(m + n)k−�
.

To prove this, you may proceed as follows.

(i) Show that

k−2∑

�=1

1

m�(m + n)k−�
= 1

(m + n)k

k−2∑

�=1

(
m + n

m

)�

= 1

mk−2n(m + n)
− 1

n(m + n)k−1 .

(ii) Use (i) to show that

k−2∑

�=1

∞∑

m=1

∞∑

n=1

1

m�(m + n)k−�
=

∞∑

m=1

∞∑

n=1

1

mk−2n(m + n)
−

∞∑

m=1

∞∑

n=1

1

n(m + n)k−1 .

Make sure you justify each step; in particular, why does each sum converge?
(iii) Use the partial fractions expansion 1

n(m+n)
= 1

n − 1
m+n to show that

∞∑

m=1

∞∑

n=1

1

mk−2n(m + n)
=

∞∑

m=1

1

mk−1

m∑

n=1

1

n
.

(iv) Replace the summation variable n with � = m + n in
∑∞

m=1

∑∞
n=1

1
n(m+n)k−1

to get a newsum in termsofm and �; thenuseCauchy’s double series theorem
to change the order of summation. Finally, prove the desired result.
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8. (Number theory series) Here are some pretty formulas involving number the-
ory!

(a) For n ∈ N, let τ (n) denote the number of positive divisors of n (that is,
the number of positive integers that divide n). For example, τ (1) = 1 and
τ (4) = 3 (because precisely 1, 2, 4 divide 4). Prove that

∞∑

n=1

zn

1 − zn
=

∞∑

n=1

τ (n)zn , |z| < 1. (6.30)

Suggestion: Write 1/(1 − zn) = ∑∞
m=0 zmn = ∑∞

m=1 zn(m−1); then prove
that the left-hand side of (6.30) equals

∑
zmn . Finally, use the sum by curves

theorem with the set Sk given by Sk = T1 ∪ · · · ∪ Tk , where Tk = {(m, n) ∈
N × N ; m · n = k}.

(b) Forn ∈ N, letσ(n)denote the sumof the positive divisors ofn. (For example,
σ(1) = 1 and σ(4) = 1 + 2 + 4 = 7). Prove that

∞∑

n=1

zn

(1 − zn)2
=

∞∑

n=1

σ(n)zn , |z| < 1.

9. Let f (z) = ∑∞
n=1 anzn and g(z) = ∑∞

n=1 bnzn be power serieswith positive radii
of convergence. Show that for z ∈ C sufficiently near the origin, we have

∞∑

n=1

bn f (zn) =
∞∑

n=1

ang(zn).

From this formula, derive the following formulas:

∞∑

n=1

f (zn) =
∞∑

n=1

anzn

1 − zn
,

∞∑

n=1

(−1)n−1 f (zn) =
∞∑

n=1

anzn

1 + zn
,

and my favorite:
∞∑

n=1

f (zn)

n! =
∞∑

n=1

anezn
.

10. In this problem we derive (6.29).

(i) Prove that log 2 = ∑∞
n=1

1
2n(2n−1) = ∑∞

n=1 f
(
1
n

)
, where f (z) = z2

2(2−z) .

(ii) Show that f (z) = ∑∞
n=2

zn

2n , and from this and Theorem 6.27, prove (6.29).

11. (Cf. [82, 250]) Prove the following extension of Theorem 6.27: If f (z) =∑∞
n=2 an zn and for some N ∈ N,

∑∞
n=2

|an |
N n converges, then
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∞∑

n=N

f
(1

n

)
=

∞∑

n=2

an

{
ζ(n) −

(
1 + 1

2n
+ · · · + 1

(N − 1)n

)}
,

where the sum
(
1 + 1

2n + · · · + 1
(N−1)n

)
is (by convention) zero if N = 1.

12. (Arbitrary rearrangements of double series) Let f : N → N × N be a bijec-
tive function and set νn = f (n) ∈ N × N; therefore ν1, ν2, ν3, . . . is a list of all
elements of N × N. For a double series

∑
amn of complex numbers, prove that∑∞

n=1 aνn is absolutely convergent if and only if
∑

amn is absolutely convergent,
in which case

∑∞
n=1 aνn = ∑

amn .

6.6 Rearrangements and Multiplication of Power Series

We already know that the associative law holds for infinite series. That is, we can
group the terms of an infinite series in any way we wish and the resulting series still
converges with the same sum (Theorem 3.21 on p. 199). A natural question that you
may ask is whether the commutative law holds for infinite series. That is, suppose
that s = a1 + a2 + a3 + · · · exists. Can we commute the an in any way we wish and
still get the same sum? For instance, is it true that

s = a1 + a2 + a4 + a3 + a6 + a8 + a5 + a10 + a12 + · · ·?

For general series, the answer is, perhaps shocking at first (but in agreement with the
order-dependent summation cases presented before in this book), no!

6.6.1 Rearrangements

A sequence ν1, ν2, ν3, . . . of natural numbers such that every natural number occurs
exactly once in this list is called a rearrangement of the natural numbers.

Example 6.36 1, 2, 4, 3, 6, 8, 5, 10, 12, . . . , where we follow every odd number by
two adjacent even numbers, is a rearrangement.

A rearrangement of a series
∑∞

n=1 an is a series
∑∞

n=1 aνn , where {νn} is a
rearrangement of N.

Example 6.37 Let us rearrange the alternating harmonic series

log 2 =
∞∑

n=1

(−1)n−1 1

n
= 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ 1

7
− 1

8
+ − · · ·

using the rearrangement 1, 2, 4, 3, 6, 8, 5, 10, 12, . . . we’ve already mentioned:

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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s = 1 − 1

2
− 1

4
+ 1

3
− 1

6
− 1

8
+ 1

5
− 1

10
− 1

12
+ −−

· · · + 1

2k − 1
− 1

4k − 2
− 1

4k
+ · · · ,

provided of course that this sum converges. Here, the bottom three terms represent
the general formula for the kth triplet of a positive term followed by two negative
ones. To see that this sum converges, let sn denote its nth partial sum. Then we can
write n = 3k + �, where � is 0, 1, or 2, and so

sn = 1 − 1

2
− 1

4
+ 1

3
− 1

6
− 1

8
+ − − · · · + 1

2k − 1
− 1

4k − 2
− 1

4k
+ rn,

where rn consists of the next � (=0, 1, 2) terms of the series for sn . Note that rn → 0
as n → ∞. Now observe that

sn =
(
1 − 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+ − − · · · +

(
1

2k − 1
− 1

4k − 2

)
− 1

4k
+rn

= 1

2
− 1

4
+ 1

6
− 1

8
+ − · · · + 1

4k − 2
− 1

4k
+ rn

= 1

2

(
1 − 1

2
+ 1

3
− 1

4
+ − · · · + 1

2k − 1
− 1

2k

)
+ rn.

Taking n → ∞, we see that

s = 1

2
log 2.

Thus, the rearrangement converges to half the sum of the original series!

6.6.2 Riemann’s Rearrangement Theorem

The previous example showed that rearrangements of series can have different sums
from that of the original series. In fact, it turns out that a convergent series can
be rearranged to get a different value if and only if the series is not absolutely
convergent. The “only if” portion is proved in Theorem 6.29 to come, and the “if”
portion is proved in the following theorem.

Riemann’s rearrangement theorem

Theorem 6.28 If a series
∑

an of real numbers converges, but not absolutely,
then there are rearrangements of the series that can be made to converge to ±∞
or any real number whatsoever.
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Proof We shall prove that there are rearrangements of the series that converge to any
real number whatsoever; following the argument for this case, you should be able to
handle the ±∞ cases yourself.

Step 1: We first show that each of the two series corresponding to the positive and
negative terms in

∑
an diverges. Let b1, b2, b3, . . . denote the terms in the sequence

{an} that are nonnegative, in the order in which they occur, and let c1, c2, c3, . . .
denote the absolute values of the terms in {an} that are negative, again in the order
in which they occur. We claim that both series

∑
bn and

∑
cn diverge. To see this,

observe that
n∑

k=1

ak =
∑

i

bi −
∑

j

c j , (6.31)

where the right-hand sums are over the natural numbers i, j such that bi and c j occur
in the left-hand sum. The left-hand side converges as n → ∞ by assumption, so if
either sum

∑∞
n=1 bn or

∑∞
n=1 cn of nonnegative numbers converges, then the equality

(6.31) would imply that the other sum converges. But this would then imply that

n∑

k=1

|ak | =
∑

i

bi +
∑

j

c j

converges as n → ∞, which is false by assumption. Hence, both sums
∑

bn and∑
cn diverge.
Step 2: We now rearrange. Let ξ ∈ R. We shall produce a rearrangement

b1 + · · · + bm1 − c1 − · · · − cn1 + bm1+1 + · · · + bm2 (6.32)

− cn1+1 − · · · − cn2 + bm2+1 + · · · + bm3 − cn2+1 − · · ·

such that its partial sums converge to ξ. The idea is simple to explain; consider, for
example, this area picture of summation:

1 2 3 4 5 6 7 8

b1 b2 b3 b4 b5 b6 b7
1 2 3 4 5 6 7 8

c1 c2 c3 c4 c5 c6 c7

We know that the areas on both sides are infinite. The first step is to add enough bi ’s
to get an area A1 slightly greater than ξ (which is possible, since the bi ’s “add to
infinity”). Then we subtract enough c j ’s from A1 to get a net area A2 slightly less
than ξ. Next, we add more bi ’s to get an area A3 slightly greater than ξ. Continuing,
we are able to add the areas in such a way to equal ξ in the limit!

To make this idea rigorous, let {βn} and {γn} denote the partial sums for
∑

bn and∑
cn , respectively. Since βn → ∞, for n sufficiently large, βn > ξ. We define m1 as

the smallest natural number such that

βm1 > ξ.
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Here’s a picture (Fig. 6.14):

Fig. 6.14 We have
βm1−1 ≤ ξ < βm1

ξ βm1βm1−1βm1−2 βn ∞→

bm1

Since for every n we have βn = βn−1 + bn (from the definition of partial sum),
it follows that βm1 differs from ξ by at most bm1 . Since γn → ∞, for n sufficiently
large, βm1 − γn < ξ. We define n1 to be the smallest natural number such that

βm1 − γn1 < ξ.

Note that the left-hand side differs from ξ by at most cn1 (do you see why?). Now
define m2 as the smallest natural number greater than m1 such that

βm2 − γn1 > ξ.

As before, such a number exists because βn → ∞, and the left-hand side differs from
ξ by at most bm2 . We define the number n2 as the smallest natural number greater
than n1 such that

βm2 − γn2 < ξ,

where the left-hand side differs from ξ by at most cn2 . Continuing this process,
we produce sequences m1 < m2 < m3 < · · · and n1 < n2 < n3 < · · · such that for
every k,

βmk − γnk−1 > ξ,

where the left-hand side differs from ξ by at most bmk , and

βmk − γnk < ξ,

where the left-hand side differs from ξ by at most cnk . This produces the rearrange-
ment (6.32). By assumption,

∑
an converges, so by the nth term test, it follows that

bmk , cnk → 0 as k → ∞. This implies, by the way the βmk and γnk were chosen, that
the rearrangement (6.32) converges to ξ, as the reader can check. This completes our
proof. �

We now prove that a convergent series can be rearranged to get a different value
only if the series is not absolutely convergent. Actually, we shall prove the contra-
positive: If a series is absolutely convergent, then every rearrangement has the same
value as the original sum. This is a consequence of the following theorem.
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Dirichlet’s theorem

Theorem 6.29 All rearrangements of an absolutely convergent series of complex
numbers converge with the same sum as the original series.

Proof Let
∑

an converge absolutely.We shall prove that every rearrangement of this
series converges to the same value as the sum itself. To see this, let ν1, ν2, ν3, . . . be
a rearrangement of the natural numbers and define

amn =
{

am if m = νn,

0 else.

Then by definition of amn , we have

am =
∞∑

n=1

amn and aνn =
∞∑

m=1

amn.

Moreover,
∞∑

m=1

∞∑

n=1

|amn| =
∞∑

m=1

|am | < ∞,

so by Cauchy’s double series theorem,

∞∑

m=1

am =
∞∑

m=1

∞∑

n=1

amn =
∞∑

n=1

∞∑

m=1

amn =
∞∑

n=1

aνn .

�

We now move to the important topic of multiplication of series.

6.6.3 Multiplication of Power Series and Infinite Series

If we have two convergent infinite series
∑∞

m=0 am and
∑∞

n=0 bn , then we know from
Problem 1 on p. 481 from Exercises 6.5 on double series that

( ∞∑

m=0

am

)
·
( ∞∑

n=0

bn

)
=

∑

m,n

ambn . (6.33)
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Here, the right-hand side is the double series of the double sequence ambn , seen here:

a0b0 a0b1 a0b2 a0b3 . . .

a1b0 a1b1 a1b2 a1b3 . . .

a2b0 a2b1 a2b2 a2b3 . . .

a3b0 a3b1 a3b2 a3b3 . . .

...
...

...
...

...
. . .

The equality (6.33) says that the double series
∑

m,n ambn converges and its sum
equals (

∑
am) · (

∑
bn). We learned in Section6.5 that we could try to sum a double

series “by curves.” The sum may not agree with the original double series, but we’ll
get to that later! In this particular instance, it turns out that “summing by triangles”
is the most natural. Let’s see why.

Example 6.38 Consider the two power series f (z) = ∑∞
n=0 anzn and g(z) =∑∞

n=0 bnzn , and let’s multiply them:

f (z) g(z) = (a0 + a1z + a2z2 + · · · ) (b0 + b1z + b2z2 + · · · ),

where the dots “· · · ” here and below represents z3 and higher-power terms. We now
use the distributive law in a formal11 way. We first multiply the first term a0 by each
term of g(z),

(
a0

�� ��
��

+ a1z + a2z2 + · · ·
)(

b0+ b1z+ b2z2 + · · ·
)

.

We do the same with the second term a1z,

(
a0 + a1z

�� ��
��

+a2z2 + · · ·
)(

b0+ b1z+ b2z2 + · · ·
)

,

and again with the third term,

(
a0 + a1z + a2z2

�� ��
��

+ · · ·
)(

b0+ b1z+ b2z2 + · · ·
)

.

If we add all the terms obtained through multiplication and omit writing any z3 terms
or higher powers, we obtain

f (z) g(z) = a0b0 + a0b1z + a0b2z2 + · · ·
+ a1b0z + a1b2z2 + · · ·

+ a2b0z2 + · · · .

11Recall that as in most of mathematics, “formal” refers to “a symbolic manipulation or expression
presented without paying attention to correctness.”.
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Collecting like powers of z, we get

f (z) g(z) = a0b0 + (a0b1 + a1b0) z + (a0b2 + a1b1 + a2b0) z2 + · · · .

In other words,
f (z) g(z) = c0 + c1 z + c2 z2 + · · · ,

where

c0 = a0b0 , c1 = a0b1 + a1b0 , c2 = a0b2 + a1b1 + a2b0 , . . . .

In general, for f (z) = ∑∞
n=0 an zn and g(z) = ∑∞

n=0 bn zn , we have the following
result, which is called the Cauchy product of the power series:

Cauchy product formula : f (z) g(z) =
∞∑

n=0

cnzn , where

cn =
n∑

k=0

akbn−k = a0bn + a1bn−1 + · · · + anb0.

To summarize: The Cauchy product is exactly what youwould expect if you formally
multiplied the series and collected like powers of z.

In Corollary 6.31 we’ll see that this formal computation is correct! In particular,
assuming for the moment that the Cauchy product formula is correct, at z = 1 we
get (again, only formally!)

(
a0 + a1 + a2 + a3 + · · · )(b0 + b1 + b2 + b3 + · · · ) =

a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0)

+ (a0b3 + a1b2 + a2b1 + a3b0) + · · · .

These thoughts suggest the following definition. Given two series
∑∞

n=0 an and∑∞
n=0 bn , we define their Cauchy product as the series

∑∞
n=0 cn , where

cn = a0bn + a1bn−1 + · · · + anb0 =
n∑

k=0

akbn−k .

Thus, if we put the products ambn in an infinite array as in Fig. 6.15, then cn is just the
sum of the nth diagonal, where we call the first diagonal a0b0 the zeroth diagonal.
In other words, the Cauchy product is just the double series

∑
ambn “summed by

triangles.”
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a0b0 a0b1 a0b2 a0b3

a1b0 a1b1 a1b2 a1b3

a2b0 a2b1 a2b2 a2b3

a3b0 a3b1 a3b2 a3b3

a0b0 a0b1 a0b2 a0b3

a1b0 a1b1 a1b2 a1b3

a2b0 a2b1 a2b2 a2b3

a3b0 a3b1 a3b2 a3b3

Fig. 6.15 The Cauchy product is just summing the series
∑

ambn “by triangles”!

A natural question to ask is this: If
∑∞

n=0 an and
∑∞

n=0 bn converge, then is it true
that the Cauchy product

∑
cn converges, and

( ∞∑

n=0

an

)( ∞∑

n=0

bn

)
=

∞∑

n=0

cn ?

Based on Examples 6.32 and 6.33 starting on p. 474, the answer is an obvious no,
since a double series and a sum by curves are not necessarily related. Here’s an
explicit example due to Cauchy.

Example 6.39 Consider the product (
∑∞

n=1
(−1)n−1√

n
)(
∑∞

n=1
(−1)n−1√

n
) (Fig. 6.16).

1√
1
√
1

−1√
1
√
2

1√
1
√
3

−1√
1
√
4

−1√
2
√
1

1√
2
√
2

−1√
2
√
3

1√
2
√
4

1√
3
√
1

−1√
3
√
2

1√
3
√
3

−1√
3
√
4

−1√
4
√
1

1√
4
√
2

−1√
4
√
3

1√
4
√
4

1√
1
√
1

−1√
1
√
2

1√
1
√
3

−1√
1
√
4

−1√
2
√
1

1√
2
√
2

−1√
2
√
3

1√
2
√
4

1√
3
√
1

−1√
3
√
2

1√
3
√
3

−1√
3
√
4

−1√
4
√
1

1√
4
√
2

−1√
4
√
3

1√
4
√
4

Fig. 6.16 Cauchy’s example. The “sum by triangles” (that is, the Cauchy product) does not con-
verge!

Observe that

cn = (−1)n−1
(

1√
n

√
1

+ 1√
n − 1

√
2

+ 1√
n − 2

√
2

+ · · · + 1√
2

√
n − 1

+ 1√
1

√
n

)

= (−1)n−1
n∑

k=1

1√
n + 1 − k

√
k
.

Since for 1 ≤ k ≤ n, we have
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1√
n + 1 − k

√
k

≥ 1√
n

√
n

= 1

n
,

we see that

(−1)ncn =
n∑

k=1

1√
n + 1 − k

√
k

≥
n∑

k=1

1

n
= 1

n

n∑

k=1

1 = 1.

Thus, the terms cn do not tend to zero as n → ∞, so by the nth term test, the series∑∞
n=0 cn does not converge.

The problem with this example is that the series
∑ (−1)n−1√

n
does not converge

absolutely. For absolutely convergent series, we have no worries.

Cauchy’s multiplication theorem

Theorem 6.30 If two series
∑

an = A and
∑

bn = B converge absolutely, then
the double series

∑
m,n ambn can be summed using any curves; in particular, the

Cauchy product (or sum by triangles) converges with sum equal to AB.

Proof Since

∞∑

m=0

∞∑

n=0

|ambn| =
∞∑

m=0

|am |
∞∑

n=0

|bn| =
( ∞∑

m=0

|am |
)( ∞∑

n=0

|bn|
)

< ∞,

by Cauchy’s double series theorem, the double series
∑

ambn converges absolutely.
Hence, by the sum by curves theorem on p. 475, the double series

∑
ambn equals its

sum by triangles, which is just the Cauchy product. �
Example 6.40 Back inTheorem3.30 onp. 219, using our faithful Tannery’s theorem,
we proved the formula exp(z) exp(w) = exp(z + w) for z, w ∈ C. Using Cauchy’s
multiplication theorem, we can give an alternative and quick proof: Forming the
Cauchy product, we have

exp(z) exp(w) =
( ∞∑

n=0

zn

n!
)

·
( ∞∑

n=0

wn

n!
)

=
∞∑

n=0

( n∑

k=0

zk

k! · wn−k

(n − k)!
)

=
∞∑

n=0

1

n!
( n∑

k=0

n!
k!(n − k)! zkwn−k

)

=
∞∑

n=0

1

n!
( n∑

k=0

(
n

k

)
zkwn−k

)
=

∞∑

n=0

1

n! (z + w)n = exp(z + w),

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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where we used the binomial theorem for (z + w)n going from the third to fourth
lines.

Returning to our motivating Example 6.38, for the case of power series, Theorem
6.30 takes the following form.

Cauchy product of power series

Corollary 6.31 If f (z) = ∑∞
n=0 anzn and g(z) = ∑∞

n=0 bnzn are power series
with positive radii of convergence, then their product f (z)g(z) is a power series,
and moreover, the product power series is obtained by formally multiplying the
power series and combining like powers of z.

6.6.4 Mertens and Abel Multiplication Theorems

Requiring absolute convergence is rather restrictive, so for the rest of this section
we go over two theorems that relax this condition. The first theorem is due to Franz
Mertens (1840–1927), and it requires only one of the two series to be absolutely
convergent.

Mertens’s multiplication theorem

Theorem 6.32 If at least one of two convergent series
∑

an = A and
∑

bn = B
is absolutely convergent, then their Cauchy product converges with sum equal to
AB.

Proof Because our notation is symmetric in A and B, we may assume that
∑

an is
absolutely convergent. Now consider the partial sums of the Cauchy product:

Cn = c0 + c1 + · · · + cn

= a0b0 + (a0b1 + a1b0) + · · · + (a0bn + a1bn−1 + · · · + anb0)

= a0(b0 + · · · + bn) + a1(b0 + · · · + bn−1) + · · · + anb0. (6.34)

We need to show that Cn tends to AB as n → ∞. If An denotes the nth partial sum
of

∑
an , and Bn that of

∑
bn , then from (6.34), we have

Cn = a0Bn + a1Bn−1 + · · · + an B0.

If we set Bk = B + βk , then βk → 0, and we can write

Cn = a0(B + βn) + a1(B + βn−1) + · · · + an(B + β0)

= An B + (a0βn + a1βn−1 + · · · + anβ0).
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Since An → A, the first part of this sum converges to AB. Thus, we just need to show
that the term in parentheses tends to zero as n → ∞. To see this, let ε > 0 be given.
Putting α = ∑ |an| and using that βn → 0, we can choose a natural number N such
that for all n > N , we have |βn| < ε/(2α). Also, since βn → 0, we can choose a
constant C such that |βn| ≤ C for every n. Then for n > N ,

|a0βn+a1βn−1 + · · · + anβ0| = |a0βn + a1βn−1 + · · · + an−N+1βN+1

+ an−N βN + · · · + anβ0|
≤ |a0βn + a1βn−1 + · · · + an−N+1βN+1| + |an−N βN + · · · + anβ0|
<

(
|a0| + |a1| + · · · + |an−N+1|

)
· ε

2α
+

(
|an−N | + · · · + |an|

)
· C

≤ α · ε

2α
+ C

(
|an−N | + · · · + |an|

)

= ε

2
+ C

(
|an−N | + · · · + |an|

)
.

Since
∑ |an| < ∞, by the Cauchy criterion for series, we can choose N ′ > N such

that
n > N ′ =⇒ |an−N | + · · · + |an| <

ε

2C
.

Then for n > N ′, we see that

|a0βn + a1βn−1 + · · · + anβ0| <
ε

2
+ ε

2
= ε.

Since ε > 0 was arbitrary, this completes the proof of the theorem. �

The last theoremof this section does not require any absolute convergence assump-
tions; it requires only that the Cauchy product actually converge. (In the Cauchy and
Mertens theorems, the convergence of the Cauchy product was a conclusion of the
theorems.)

Abel’s multiplication theorem

Theorem 6.33 If the Cauchy product of two convergent series
∑

an = A and∑
bn = B converges, then the Cauchy product has the value AB.

Proof In my opinion, the slickest proof of this theorem is Abel’s original, proved in
1826 [129, p. 321] using his limit theorem, Theorem 6.21 on p. 460. Let

f (z) =
∑

anzn, g(z) =
∑

bnzn, h(z) =
∑

cnzn,

where cn = a0bn + · · · + anb0. These power series converge at z = 1, so they must
have radii of convergence at least 1. In particular, each series converges absolutely
for |z| < 1, and for these values of z, we know that (by either the Cauchy or Mertens
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multiplication theorem)
h(z) = f (z) · g(z).

Since each of the sums
∑

an ,
∑

bn , and
∑

cn converges, byAbel’s limit theorem, the
functions f , g, and h converge to A, B, and C = ∑

cn , respectively, as z = x → 1
from the left. Thus,

C = lim
x→1− h(x) = lim

x→1−
(

f (x) · g(x)
) = A · B. �

Example 6.41 For example, let us square thenonabsolutely convergent series log 2 =∑∞
n=1

(−1)n−1

n . It turns out that it will be convenient to write log 2 in two ways:

log 2 = ∑∞
n=1 an , where a0 = 0 and an = (−1)n−1

n for n = 1, 2, . . . , and log 2 =∑∞
n=0 bn , where bn = (−1)n

n+1 . Their Cauchy product is given by c0 = a0b0 = 0, and
for n = 1, 2, . . . , we have

cn =
n∑

k=0

akbn−k =
n∑

k=1

(−1)k−1(−1)n−k

k(n + 1 − k)
= (−1)n−1αn,

where αn = ∑n
k=1

1
k(n+1−k)

. In order to use Abel’s multiplication theorem, we need

to check that
∑∞

n=0 cn = ∑∞
n=1(−1)n−1αn converges. By the alternating series test,

this sum converges if we can prove that {αn} is nonincreasing and converges to zero.
To prove these statements, observe that

1

k(n − k + 1)
= 1

n + 1

(1
k

+ 1

n − k + 1

)
.

Therefore,

αn = 1

1
· 1

n
+ 1

2
· 1

n − 1
+ 1

3
· 1

n − 2
+ · · · + 1

n
· 1
1

= 1

n + 1

[(
1 + 1

n

)
+

(1
2

+ 1

n − 1

)
+

(1
3

+ 1

n − 2

)
+ · · · +

(1
n

+ 1

1

)]
.

In the brackets are two copies of 1 + 1
2 + · · · + 1

n . Thus,

αn = 2

n + 1
Hn, where Hn := 1 + 1

2
+ 1

3
+ · · · + 1

n
.

It is common to use the notation Hn for the nth partial sum of the harmonic series.
Now, by our work on p. 309 on the Euler–Mascheroni constant, we found that γn :=
Hn − log n is bounded above by 1, so
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αn = 2

n + 1
(γn + log n) ≤ 2

n + 1
+ 2

log n

n + 1

= 2

n + 1
+ 2 · n

n + 1
· 1

n
log n

= 2

n + 1
+ 2 · n

n + 1
· log(n1/n) → 0 + 2 · 1 · log 1 = 0

as n → ∞. Thus, αn → 0. Moreover,

αn − αn+1 = 2

n + 1
Hn − 2

n + 2
Hn+1 = 2

n + 1
Hn − 2

n + 2

(
Hn + 1

n + 1

)

=
( 2

n + 1
− 2

n + 2

)
Hn − 2

(n + 1)(n + 2)

= 2

(n + 1)(n + 2)
Hn − 2

(n + 1)(n + 2)

= 2

(n + 1)(n + 2)
(Hn − 1) ≥ 0.

Thus, αn ≥ αn+1, so
∑

cn = ∑
(−1)n−1αn converges. Abel’s multiplication theo-

rem now implies (log 2)2 = ∑
(−1)n−1αn . Dividing by 2, we have proved the fol-

lowing pretty formula:

1

2

(
log 2

)2 =
∞∑

n=1

(−1)n−1

n + 1
Hn

=
∞∑

n=1

(−1)n−1

n + 1

(
1 + 1

2
+ · · · + 1

n

)
.

� Exercises 6.6

1. Here are some alternating series problems:

(a) Prove that

1

1
+ 1

3
− 1

2
+ 1

5
+ 1

7
− 1

4
+ · · · + 1

4k − 3
+ 1

4k − 1
− 1

2k
+ · · · = 3

2
log 2.

That is, we rearrange the alternating harmonic series so that two positive
terms are followed by one negative one, otherwise keeping the ordering the
same. Suggestion: Observe that

1

2
log 2 = 1

2
− 1

4
+ 1

6
− 1

8
+ 1

9
− 1

10
+ · · ·

= 0 + 1

2
+ 0 − 1

4
+ 0 + 1

6
+ 0 − 1

8
+ · · · .
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Add this term by term to the series for log 2.
(b) Prove that

1

1
+ 1

3
+ 1

5
+ 1

7
− 1

2
+ · · · + 1

8k − 7
+ 1

8k − 5
+ 1

8k − 3

+ 1

8k − 1
− 1

2k
+ · · · = 3

2
log 2;

that is, we rearrange the alternating harmonic series so that four positive
terms are followed by one negative one, otherwise keeping the ordering the
same.

(c) What’s wrong with the following argument?

1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ · · · =

(
1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ · · ·

)

− 2
(1
2

+ 0 + 1

4
+ 0 + 1

6
+ · · ·

)

=
(
1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ · · ·

)

−
(
1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ · · ·

)
= 0.

2. Let f (z) = ∑∞
n=0 an zn be absolutely convergent for |z| < 1. Prove that for |z| <

1, we have
f (z)

1 − z
=

∞∑

n=0

(a0 + a1 + a2 + · · · + an)z
n.

3. Using the previous problem, prove that for z ∈ C with |z| < 1,

1

(1 − z)2
=

∞∑

n=0

(n + 1)zn; that is,
( ∞∑

n=0

zn
)

·
( ∞∑

n=0

zn
)

=
∞∑

n=0

(n + 1)zn.

Using this formula, derive the following neat-looking formula: For z ∈ C with
|z| < 1,

( ∞∑

n=0

cos nθ zn
)

·
( ∞∑

n=0

sin nθ zn
)

= 1

2

∞∑

n=0

(n + 1) sin nθ zn. (6.35)

Suggestion: Put z = eiθx with x real into the formula (
∑∞

n=0 zn) · (
∑∞

n=0 zn) =∑∞
n=0(n + 1)zn , then equate imaginary parts of both sides; this proves (6.35) for

z = x real and |x | < 1. Why does (6.35) hold for z ∈ C with |z| < 1?
4. Derive the following beautiful formula: For |z| < 1,
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( ∞∑

n=1

cos nθ

n
zn
)

·
( ∞∑

n=1

sin nθ

n
zn
)

= 1

2

∞∑

n=2

Hn sin nθ

n
zn.

5. In this problem we prove the following fact: Let f (z) = ∑∞
n=0 anzn be a power

series with radius of convergence R > 0 and let α ∈ C with |α| < R. Then we
can write

f (z) =
∞∑

n=0

bn(z − α)n,

where this series converges absolutely for |z − α| < R − |α|.
(i) Show that

f (z) =
∞∑

n=0

n∑

m=0

an

(
n

m

)
αn−m(z − α)m . (6.36)

(ii) Prove that

∞∑

n=0

n∑

m=0

|an|
(

n

m

)
|α|n−m |z − α|m =

∞∑

n=0

|an|
(|z − α| + |α|)m

< ∞.

(iii) Prove the result by verifying that you can change the order of summation in
(6.36).

6. If f (z) = ∑∞
n=0 an zn is a power series with a positive radius of convergence,

prove that for all m ∈ N,

f (z)m =
∞∑

n=0

cn zn,

where the coefficients are given by

cn =
∑

k1+k2+···+km=m

ak1ak2 · · · akm .

Here, the summation is over all products ak1ak2 · · · akm , where (k1, k2, . . . , km)

belongs to the set {(k1, k2, . . . , km) ; k1, . . . , km ≥ 0 , k1 + · · · + km = m}.

6.7 Composition of Power Series and Bernoulli and Euler
Numbers

We’ve kept you in suspense long enough concerning the extraordinary Bernoulli and
Euler numbers, so in this section we finally get to these fascinating numbers.
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6.7.1 Composition and Division of Power Series

The Bernoulli and Euler numbers come up when one divides power series, so before
we do anything, we need to understand division of power series, and to understand
that, we first need to consider the composition of power series. The following theorem
basically says that the composition of power series is again a power series.

Power series composition theorem

Theorem 6.34 If f (z) and g(z) are power series, then the composition f (g(z))
can be written as a power series that converges at least for those values of z
satisfying

∞∑

n=0

|an zn| < the radius of convergence of f,

where g(z) = ∑∞
n=0 an zn. Moreover, the composition f (g(z)) is exactly the power

series obtained by formally plugging the series g(z) into the power series f (z)
and collecting like powers of z.

Proof Thus, f (g(z)) is claimed to be a power series for those z in the shaded domain
shown here:

Radius of convergence of g

Those z’s such that
∑∞

n=0 |an| |z|n < the radius of convergence of f

The composition f (g(z)) can converge for more values of z; see Problem 1. The idea
of the proof is exactly what the last statement of this theorem says. First, for each
m we can “formally multiply” g(z)m = g(z) · g(z) · · · g(z) (m factors of g(z)), and
write g(z)m as a power series

g(z)m =
( ∞∑

n=0

an zn

)m

=
∞∑

n=0

αmn zn,

for some coefficients αmn . Actually, by the Cauchy multiplication theorem applied
m − 1 times (see Corollary 6.31 on p. 493), this series is valid for each z inside the
radius of convergence of g. Now let f (z) = ∑∞

m=0 bm zm . Then provided that g(z)
is inside the radius of convergence of f , we have

f (g(z)) =
∞∑

m=0

bm g(z)m =
∞∑

m=0

∞∑

n=0

bmαmn zn.
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We now “collect like powers of z,” which means to interchange the order of summa-
tion in f (g(z)):

f (g(z)) =
∞∑

n=0

∞∑

m=0

bmαmn zn =
∞∑

n=0

βn zn, where βn =
∞∑

m=0

bmαmn,

provided that the interchange is valid. Once we verify that the interchange is valid,
our proof is complete. To prove that it was valid, fix z such that

ξ :=
∞∑

n=0

|anzn| =
∞∑

n=0

|an| |z|n < the radius of convergence of f.

In particular, since f (ξ) = ∑∞
m=0 bmξm is absolutely convergent,

∞∑

m=0

|bm | ξm < ∞. (6.37)

Now according to Cauchy’s double series theorem, interchanging the order of sum-
mation in f (g(z)) was indeed valid if we can show that

∞∑

m=0

∞∑

n=0

∣∣bmαmnzn
∣∣ =

∞∑

m=0

|bm |
( ∞∑

n=0

|αmn| |z|n
)

< ∞. (6.38)

To prove this, we claim that the inner summation satisfies the inequality

Claim:
∞∑

n=0

|αmn| |z|n ≤ ξm . (6.39)

Once we prove this claim, then putting this inequality into (6.38) and using (6.37)
completes the proof of this theorem. To prove the claim (6.39), consider the case
m = 2. Recall that the coefficients α2n are obtained by the Cauchy product:

g(z)2 =
( ∞∑

n=0

an zn

)2
=

∞∑

n=0

α2n zn where α2n =
n∑

k=0

akan−k .

Thus, |α2n| ≤ ∑n
k=0 |ak | |an−k |. On the other hand, we can express ξ2 via the Cauchy

product:

ξ2 =
( ∞∑

n=0

|an| |z|n
)2

=
∞∑

n=0

cn |z|n where cn =
n∑

k=0

|ak | |an−k |.
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By the triangle inequality, we have |α2n| ≤ cn , so

∞∑

n=0

|α2n| |z|n ≤
∞∑

n=0

cn |z|n = ξ2,

which proves (6.39) for m = 2. An induction argument shows that (6.39) holds for
all m. This completes the proof of the claim and hence our theorem. �

We already know that the product of two power series is again a power series. As
a consequence of the following theorem, we get the same statement for division.

Power series division theorem

Theorem 6.35 If f (z) and g(z) are power series with positive radii of conver-
gence and with g(0) �= 0, then f (z)/g(z) is also a power series with positive
radius of convergence.

Proof Since f (z)/g(z) = f (z) · (1/g(z)) andweknow that the product of twopower
series is a power series, all we have to do is show that 1/g(z) is a power series. To
this end, let g(z) = ∑∞

n=0 an zn and define

g̃(z) = 1

a0
g(z) − 1 =

∞∑

n=1

αn zn,

where αn = an
a0
and where we recall that a0 = g(0) �= 0. Then g̃ has a positive radius

of convergence and g̃(0) = 0. Now let h(z) := 1
a0(1+z) , which can be written as a geo-

metric serieswith radius of convergence 1. Note that for |z| small,
∑∞

n=1 |αn| |z|n < 1
(why?), and thus by the previous theorem, for such z,

1

g(z)
= 1

a0(1 + g̃(z))
= h(g̃(z))

has a power series expansion with a positive radius of convergence. �

6.7.2 Bernoulli Numbers

See [54, 129, 220], or [92] for more information on Bernoulli numbers. Since

ez − 1

z
= 1

z
·

∞∑

n=1

1

n! zn =
∞∑

n=1

1

n! zn−1 =
∞∑

n=0

1

(n + 1)! zn
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has a power series expansion and equals 1 at z = 0, by our division of power series
theorem, its reciprocal z/(ez − 1) also has a power series expansion near z = 0. It is
customary to denote its coefficients by Bn/n!, in which case we can write

z

ez − 1
=

∞∑

n=0

Bn

n! zn , (6.40)

where the series has a positive radius of convergence. The numbers Bn are called
the Bernoulli numbers after Jacob Bernoulli (1654–1705), who discovered them
while searching for formulas involving powers of integers; see Problems 4 and 5.
We can find a remarkable symbolic equation for these Bernoulli numbers as follows.
First, wemultiply both sides of (6.40) by (ez − 1)/z and use Cauchy’s multiplication
theorem to get

1 =
( ∞∑

n=0

Bn

n! zn

)
·
( ∞∑

n=0

1

(n + 1)! zn

)
=

∞∑

n=0

n∑

k=0

(
Bk

k! · 1

(n − k + 1)!
)

zn.

By the identity theorem on p. 462, the n = 0 term on the right must equal 1, while all
other terms must vanish. The n = 0 term on the right is just B0, so B0 = 1, and for
n > 1, we must have

∑n
k=0

Bk
k! · 1

(n+1−k)! = 0. Multiplying this by (n + 1)!, we get

0 =
n∑

k=0

Bk

k! · (n + 1)!
(n + 1 − k)! =

n∑

k=0

(n + 1)!
k!(n + 1 − k)! · Bk =

n∑

k=0

(
n + 1

k

)
Bk,

and adding Bn+1 = (n+1
n+1

)
Bn+1 to both sides of this equation, we get

Bn+1 =
n+1∑

k=0

(
n + 1

k

)
Bk .

The right-hand side might look familiar from the binomial formula. Recall from the
binomial formula that for every complex number a, we have

(a + 1)n+1 =
n+1∑

k=0

(
n + 1

k

)
ak · 1n−k =

n+1∑

k=0

(
n + 1

k

)
ak .

Notice that the right-hand side of this expression is exactly the right-hand side of
the previous equation if we put a = B and make the superscript k into a subscript k.
Thus, if we use the notation

� to mean “equals after making superscripts into subscripts,”
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then we can write

Bn+1 � (B + 1)n+1 , n = 1, 2, 3, . . . with B0 = 1. (6.41)

Using the identity (6.41), one can in principle find all the Bernoulli numbers. For
example, when n = 1, we see that

B2 � (B + 1)2 = B2 + 2B1 + 1 =⇒ 0 = 2B1 + 1 =⇒ B1 = −1

2
.

When n = 2, we see that

B3 � (B + 1)3 = B3 + 3B2 + 3B1 + 1 =⇒ 0 = 3B2 + 3B1 + 1 =⇒ B2 = 1

6
.

Here is a partial list through B14:

B0 = 1, B1 = −1

2
, B2 = 1

6
, B3 = 0,

B4 = − 1

30
, B5 = B7 = B9 = B11 = B13 = B15 = 0,

B6 = 1

42
, B8 = − 1

30
, B10 = 5

66
, B12 = − 691

2730
, B14 = 7

6
.

These numbers are rational, but besides this fact, there is no known regular pattern
to which these numbers conform. However, we can easily deduce that all Bernoulli
numbers with odd index except for B1 are zero. Indeed, we can rewrite (6.40) as

z

ez − 1
+ z

2
= 1 +

∞∑

n=2

Bn

n! zn. (6.42)

The fractions on the left-hand side can be combined into one fraction

z

ez − 1
+ z

2
= z(ez + 1)

2(ez − 1)
= z(ez/2 + e−z/2)

2(ez/2 − e−z/2)
, (6.43)

which is an even function of z. Thus, (see Problem 1 on p. 463)

B2n+1 = 0, n = 1, 2, 3, . . . . (6.44)

Other properties are given in the exercises (see, e.g., Problem 4).



504 6 Advanced Theory of Infinite Series

6.7.3 Trigonometric Functions

Wealready know the power series expansions for sin z and cos z. It turns out that other
trigonometric functions have power series expansions involving Bernoulli numbers!
For example, to find the expansion for cot z, we replace z with 2i z in (6.42) and
(6.43) to get

i z(eiz + e−i z)

(eiz − e−i z)
= 1 +

∞∑

n=2

Bn

n! (2i z)n = 1 +
∞∑

n=1

B2n

(2n)! (−1)n(2z)2n,

where we used that B3, B5, B7, . . . all vanish in order to sum only over all even
Bernoulli numbers. Since cot z = cos z/ sin z, using the definition of cos z and sin z
in terms of e±i z , we see that the left-hand side is exactly z cot z. Thus, we have derived
the formula

z cot z =
∞∑

n=0

(−1)n 2
2n B2n

(2n)! z2n .

From this formula, we can get the expansion for tan z using the identity

2 cot(2z) = 2
cos 2z

sin 2z
= 2

cos2 z − sin2 z

2 sin z cos z
= cot z − tan z.

Hence,

tan z = cot z − 2 cot(2z) =
∞∑

n=0

(−1)n 2
2n B2n

(2n)! z2n − 2
∞∑

n=0

(−1)n 2
2n B2n

(2n)! 22nz2n,

which, after combining the terms on the right, takes the form

tan z =
∞∑

n=1

(−1)n−1 2
2n(22n − 1) B2n

(2n)! z2n−1 .

In Problem 2, we derive the power series expansion of csc z. In conclusion, we have
power series expansions for sin z, cos z, tan z, cot z, csc z. What about sec z?

6.7.4 The Euler Numbers

It turns out that the expansion for sec z involves the Euler numbers, which are defined
similarly to the Bernoulli numbers. By the division of power series theorem, the
function 2ez/(e2z + 1) has a power series expansion near zero. It is customary to
denote its coefficients by En/n!, so
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2ez

e2z + 1
=

∞∑

n=0

En

n! zn (6.45)

where the series has a positive radius of convergence. The numbers En are called
the Euler numbers. We can get the missing expansion for sec z as follows. First,
observe that

∞∑

n=0

En

n! zn = 2ez

e2z + 1
= 2

ez + e−z
= 1

cosh z
= sech z,

where sech z := 1/ cosh z is the hyperbolic secant. As one can check, sech z is an
even function (that is, sech(−z) = sech z), so it follows that all En with n odd vanish.
Hence,

sech z =
∞∑

n=0

E2n

(2n)! z2n . (6.46)

In particular, putting i z for z in (6.46) and using that cosh(i z) = cos z, we get the
missing expansion for sec z:

sec z =
∞∑

n=0

(−1)n E2n

(2n)! z2n .

Just as with the Bernoulli numbers, we can derive a symbolic equation for the
Euler numbers. To do so, we multiply (6.46) by cosh z = ∑∞

n=0
1

(2n)! z
2n and use

Cauchy’s multiplication theorem to get

1 =
( ∞∑

n=0

E2n

(2n)! z2n

)
·
( ∞∑

n=0

1

(2n)! z2n

)
=

∞∑

n=0

n∑

k=0

(
E2k

(2k)! · 1

(2n − 2k)!
)

z2n.

By the identity theorem, the n = 0 term on the right must equal 1, while all other
terms must vanish. The n = 0 term on the right is just E0, so E0 = 1, and for n > 1,
we must have

∑n
k=0

E2k
(2k)! · 1

(2n−2k)! = 0. Multiplying this by (2n)!, we get

0 =
n∑

k=0

E2k

(2k)! · (2n)!
(2n − 2k)! =

n∑

k=0

(2n)!
(2k)!(2n − 2k)! · E2k . (6.47)

Now, from the binomial formula, for every complex number a, we have
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(a + 1)2n + (a − 1)2n =
2n∑

k=0

(2n)!
k!(2n − k)!a

k +
2n∑

k=0

(2n)!
k!(2n − k)!a

k(−1)2n−k

=
2n∑

k=0

(2n)!
k!(2n − k)!a

k +
2n∑

k=0

(2n)!
k!(2n − k)!a

k(−1)k

=
2n∑

k=0

(2n)!
(2k)!(2n − 2k)!a

2k,

since all the odd terms cancel. Notice that the right-hand side of this expression is
exactly the right-hand side of (6.47) if put a = E and we make the superscript 2k
into a subscript 2k. Thus,

(E + 1)2n + (E − 1)2n � 0 , n = 1, 2, . . . with E0 = 1 and Eodd = 0. (6.48)

Using the identity (6.48), one can in principle find all theEuler numbers. For example,
when n = 1, we see that

(E2 + 2E1 + 1) + (E2 − 2E1 + 1) � 0 =⇒ 2E2 + 2 = 0 =⇒ E2 = −1.

Here is a partial list through E12:

E0 = 1, E1 = E2 = E3 = · · · = 0 (Eodd = 0), E2 = −1, E4 = 5

E6 = −61, E8 = 1385, E10 = −50, 521, E12 = 2, 702, 765, . . . .

These numbers are all integers, but besides this fact, there is no known regular pattern
to which these numbers conform.

� Exercises 6.7

1. Let a, b ∈ C and let f (z) = 1/(a + z) and g(z) = 1/(b − z), which have radii
of convergence |a| and |b|, respectively. (i) Find the radius of convergence of
f (g(z)). (ii) Let a > 0 and prove that as a → 0, the radius of convergence of
f (g(z)) goes to infinity.

2. Recall that csc z = 1/ sin z. Prove that csc z = cot z + tan(z/2), and from this
identity deduce that

z csc z =
∞∑

n=0

(−1)n−1 (22n − 2) B2n

(2n)! z2n.

3. (a) Let f (z) = ∑
anzn and g(z) = ∑

bnzn with b0 �= 0 be power series with
positive radii of convergence. Show that f (z)/g(z) = ∑

cnzn , where {cn} is
the sequence defined recursively as follows:
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c0 = a0

b0
, b0cn = an −

n∑

k=1

bk cn−k .

(b) Use Part (a) to find the first few coefficients of the expansion for tan z =
sin z/ cos z.

4. (Cf. [129, p. 526], which is reproduced in [178]) In this and the next problem we
give an elegant application of the theory of Bernoulli numbers to find the sum of
the first kth powers of integers, Bernoulli’s original motivation for his numbers.

(i) For n ∈ N, derive the formula

1 + ez + e2z + · · · + enz = z

ez − 1
· e(n+1)z − 1

z
.

(ii) Writing each side of the identity in (i) as a power series (on the right, you
need to use the Cauchy product), derive the formula

1k + 2k + · · · + nk =
k∑

j=0

(
k

j

)
B j

(n + 1)k+1− j

k + 1 − j
, k = 1, 2, . . . . (6.49)

Plug in k = 1, 2, 3 to derive some pretty formulas!

5. Here’s another proof of (6.49) that is aesthetically appealing.

(i) Prove that for every complex number a and all natural numbers k, n,

(n + 1 + a)k+1 − (n + a)k+1 =
k+1∑

j=1

(
k + 1

j

)
nk+1− j

(
(a + 1) j − a j

)
.

(ii) Prove that

1k + 2k + · · · + nk � 1

k + 1

{
(n + 1 + B)k+1 − Bk+1

}
.

Suggestion: Look for a telescoping sum and recall that (B + 1) j � B j for
j ≥ 2.

6. The nth Bernoulli polynomial Bn(t), where t ∈ C, is by definition n! times the
coefficient of zn in the power series expansion in z of the function f (z, t) :=
zezt/(ez − 1); that is,

z ezt

ez − 1
=

∞∑

n=0

Bn(t)

n! zn. (6.50)
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Here we are using the fact that the function ezt has a power series in z and so does
z/(ez − 1), so their product f (z, t) is also a power series in z.

(a) Prove that Bn(t) = ∑n
k=0

(n
k

)
Bk tn−k , where the Bk are the Bernoulli num-

bers. Thus, the first few Bernoulli polynomials are

B0(t) = 1, B1(t) = t − 1

2
, B2(t) = t2 − t + 1

6
, B3(t) = t3 − 3

2
t2 + 1

2
t.

(b) Prove that Bn(0) = Bn for n = 0, 1, . . . and that Bn(0) = Bn(1) = Bn for
n �= 1. Suggestion: Show that f (z, 1) = z + f (z, 0).

(c) Prove that Bn(t + 1) − Bn(t) = ntn−1 forn = 0, 1, 2, . . . . Suggestion: Show
that f (z, t + 1) − f (z, t) = zezt .

(d) Prove that B2n+1(0) = 0 for n = 1, 2, . . . and B2n+1(1/2) = 0 for n =
0, 1, . . . .

6.8 The Logarithmic, Binomial, Arctangent Series, and γ

From elementary calculus, you might have seen the logarithmic, binomial, and arct-
angent series (discovered by Nikolaus Mercator (1620–1687), Isaac Newton (1643–
1727), and Madhava of Sangamagramma (1350–1425), respectively):

log(1 + x) =
∞∑

n=1

(−1)n−1

n
xn , (1 + x)α =

∞∑

n=0

(
α

n

)
xn , arctan x =

∞∑

n=0

(−1)n x2n+1

2n + 1
,

where α ∈ R. (Below, we’ll discuss the meaning of
(
α
n

)
.) I can bet that you used

calculus (derivatives and integrals) to derive these formulas. In this section we’ll
derive even more general complex versions of these formulas without derivatives!

6.8.1 The Binomial Coefficients

From our familiar binomial theorem, we know that for every z ∈ C and k ∈ N, we
have (1 + z)k = ∑k

n=0

(k
n

)
zn , where

(k
0

) := 1 and for n = 1, 2, . . . , k,

(
k

n

)
:= k!

n!(k − n)! = 1 · 2 · · · k

n! · 1 · 2 · · · (k − n)
= k(k − 1) · · · (k − n + 1)

n! . (6.51)

The formula (1 + z)k = ∑k
n=0

(k
n

)
zn trivially holds when k = 0 too. Another way to

express this formula is



6.8 The Logarithmic, Binomial, Arctangent Series, and γ 509

(1 + z)k = 1 +
k∑

n=1

k(k − 1) · · · (k − n + 1)

n! zn.

With this motivation, given a complex number α, we define the binomial coefficient(
α
n

)
for every nonnegative integer n as follows:

(
α
0

) = 1 and for n > 0,

(
α

n

)
= α(α − 1) · · · (α − n + 1)

n! . (6.52)

Note that if α = 0, 1, 2, . . . , then we see that all
(α

n

)
vanish for n ≥ α + 1, and

(α
n

)

is exactly the usual binomial coefficient (6.51). In the following lemma, we derive
an identity that will be useful later.

Lemma 6.36 For every α,β ∈ C, we have

(
α + β

n

)
=

n∑

k=0

(
α

k

)(
β

n − k

)
, n = 0, 1, 2, . . . .

Proof Throughout this proof, we put N0 := {0, 1, 2, 3, . . . }.
Step 1: First of all, our lemma holds when both α and β are in N0. Indeed, if

α = p,β = q are in N0, then expressing both sides of the identity (1 + z)p+q =
(1 + z)p(1 + z)q using the binomial formula, we obtain

p+q∑

n=0

(
p + q

n

)
zn =

(
p∑

k=0

(
p

k

)
zk

)
·
(

q∑

k=0

(
q

k

)
zk

)

=
p+q∑

n=0

(
n∑

k=0

(
p

k

)(
q

n − k

))
zn,

where at the last step we formed the Cauchy product of (1 + z)p(1 + z)q . By the
identity theorem we must have

(
p + q

n

)
=

n∑

k=0

(
p

k

)(
q

n − k

)
, for all p, q, n ∈ N0.

Step 2: Assume now that β = q ∈ N0, n ∈ N0, and define f : C −→ C by

f (z) :=
(

z + q

n

)
−

n∑

k=0

(
z

k

)(
q

n − k

)
.
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In view of the definition (6.52) of the binomial coefficient, it follows that f (z) is a
polynomial in z of degree at most n. Moreover, by Step 1 we know that f (p) = 0
for all p ∈ N0. In particular, the polynomial f (z) has more than n roots. Therefore,
f (z) must be the zero polynomial, so in particular, given α ∈ C, we have f (α) = 0;
that is, (

α + q

n

)
=

n∑

k=0

(
α

k

)(
q

n − k

)
, for all α ∈ C , q, n ∈ N0.

Step 3: Let α ∈ C, n ∈ N0, and define g : C −→ C by

g(z) :=
(

α + z

n

)
−

n∑

k=0

(
α

k

)(
z

n − k

)
.

As with the function f (z) in Step 2, g(z) is a polynomial in z of degree at most
n. Also, by Step 2 we know that g(q) = 0 for all q ∈ N0, and consequently, g(z)
must be the zero polynomial. In particular, given β ∈ C, we have g(β) = 0, which
completes our proof. �

6.8.2 The Complex Logarithm and Binomial Series

In Theorem 6.38 we shall derive (along with a power series for Log) the binomial
series:

(1 + z)α =
∞∑

n=0

(
α

n

)
zn = 1 + α z + α(α − 1)

1! z2 + · · · , |z| < 1. (6.53)

Let us define f (α, z) := ∑∞
n=0

(
α
n

)
zn . Our goal is to show that f (α, z) = (1 + z)α

for all α ∈ C and |z| < 1, where

(1 + z)α := exp(αLog(1 + z)),

withLog theprincipal logarithmof the complexnumber 1 + z. Ifα = k = 0, 1, 2, . . . ,
then we already know that all the

(k
n

)
vanish for n ≥ k + 1, and these binomial coef-

ficients are the usual ones, so f (k, z) converges with sum f (k, z) = (1 + z)k . To
see that f (α, z) converges for all other α, assume that α ∈ C is not a nonnegative
integer. Then setting an = (

α
n

)
, we have

∣∣∣∣
an

an+1

∣∣∣∣ =
∣∣∣∣
α(α − 1) · · · (α − n + 1)

n! · (n + 1)!
α(α − 1) · · · (α − n)

∣∣∣∣ = n + 1

|α − n| ,
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which approaches 1 as n → ∞. Thus, the radius of convergence of f (α, z) is 1 by the
radius of convergence formula (6.14) on p. 446. In conclusion, f (α, z) is convergent
for all α ∈ C and |z| < 1.

We now prove the real versions of the logarithm series and the binomial series
(6.53); see Theorem 6.38 below for the more general complex version. It is worth
emphasizing that we do not use the advanced technology of the differential and
integral calculus to derive these formulas!

Lemma 6.37 For all x ∈ R with |x | < 1, we have

log(1 + x) =
∞∑

n=1

(−1)n−1

n
xn,

and for all α ∈ C and x ∈ R with |x | < 1, we have

(1 + x)α =
∞∑

n=0

(
α

n

)
xn = 1 + α x + α(α − 1)

1! x2 + · · · .

Proof We prove this lemma in three steps.
Step 1: We first show that f (r, x) = (1 + x)r for all r = p/q ∈ Q, where p, q ∈

N with q odd and x ∈ R with |x | < 1. To see this, observe that for every z ∈ C with
|z| < 1, taking the Cauchy product of f (α, z) and f (β, z) and using our lemma, we
obtain

f (α, z) · f (β, z) =
∞∑

n=0

( n∑

j=0

(
α

j

)(
β

n − j

))
zn =

∞∑

n=0

(
α + β

n

)
zn = f (α + β, z).

By induction it easily follows that

f (α1, z) · f (α2, z) · · · f (αk, z) = f (α1 + α2 + · · · + αk, z).

Using this identity, we obtain

f (1/q, z)q= f (1/q, z) · · · f (1/q, z)︸ ︷︷ ︸
qtimes

= f (1/q + · · · + 1/q︸ ︷︷ ︸
qtimes

, z)= f (1, z) = 1 + z.

Now put z = x ∈ R with |x | < 1 and let q ∈ N be odd. Then f (1/q, x)q = 1 + x ,
so taking qth roots, we get f (1/q, x) = (1 + x)1/q . Here we used that every real
number has a unique qth root, which holds because q is odd; for q even we could
conclude only that f (1/q, x) = ±(1 + x)1/q (unless we checked that f (1/q, x) is
positive, and then we would get f (1/q, x) = (1 + x)1/q ). Thus, for r = p/q with
p ∈ N,
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f (r, x) = f (p/q, x) = f (1/q + · · · + 1/q︸ ︷︷ ︸
ptimes

, x) = f (1/q, x) · · · f (1/q, x)︸ ︷︷ ︸
ptimes

= f (1/q, x)p = (1 + x)p/q = (1 + x)r .

Step 2: Second, we prove that for every z ∈ Cwith |z| < 1, f (α, z) can be written
as a power series in α that converges for all α ∈ C:

f (α, z) = 1 +
∞∑

m=1

am(z)αm .

In particular, since we know that power series are continuous, f (α, z) is a continuous
function of α ∈ C. Here, the coefficients am(z) depend on z (which we’ll see are
power series in z), and we’ll show that

a1(z) =
∞∑

n=1

(−1)n−1

n
zn. (6.54)

To prove these statements, note that for n ≥ 1, α(α − 1) · · · (α − n + 1) is a poly-
nomial of degree n in α, so for n ≥ 1 we can write

(
α

n

)
= α(α − 1) · · · (α − n + 1)

n! =
n∑

m=1

amn αm, (6.55)

for some coefficients amn . Defining amn = 0 for m = n + 1, n + 2, n + 3, . . . , we
can write

(α
n

) = ∑∞
m=0 amn αm . Hence,

f (z,α) = 1 +
∞∑

n=1

(
α

n

)
zn = 1 +

∞∑

n=1

( ∞∑

m=1

amn αm

)
zn. (6.56)

To make this a power series in α, we need to switch the order of summation, which
we can do by Cauchy’s double series theorem if we can demonstrate absolute con-
vergence by showing that

∞∑

n=1

∞∑

m=1

∣∣amn αm zn
∣∣ =

∞∑

n=1

∞∑

m=1

|amn| |α|m |z|n < ∞.

To verify this, we first observe that for all α ∈ C, we have
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α(α + 1)(α + 2) · · · (α + n − 1)

n! =
n∑

m=1

bmn αm, (6.57)

where the bmn are nonnegative real numbers. This is certainly plausible, because
each of the numbers 1, 2, . . . , n − 1 on the left comes with a positive sign; in any
case, this statement can be verified by induction, for instance, so we leave it to the
reader. We secondly observe that replacing α with −α in (6.55), we get

n∑

m=1

amn (−1)mαm = −α(−α − 1) · · · (−α − n + 1)

n!

= (−1)n α(α + 1) · · · (α + n − 1)

n! =
n∑

m=1

(−1)nbmn αm .

By the identity theorem, we have amn(−1)m = (−1)nbmn . In particular, |amn| = bmn ,
since bmn > 0, and therefore, in view of (6.57), we see that

∞∑

m=0

|amn| |α|m =
n∑

m=0

|amn| |α|m =
n∑

m=0

bmn |α|m = |α|(|α| + 1) · · · (|α| + n − 1)

n! .

Therefore,

∞∑

n=1

∞∑

m=1

|amn| |α|m |z|n =
∞∑

n=1

|α|(|α| + 1) · · · (|α| + n − 1)

n! |z|n.

Using the now very familiar ratio test, it’s easily checked that since |z| < 1, the series
on the right converges. Thus, we can iterate sums in (6.56) and conclude that

f (α, z) = 1 +
∞∑

n=1

( ∞∑

m=1

amn αm

)
zn = 1 +

∞∑

m=1

( ∞∑

n=1

amn zn

)
αm .

Thus, f (α, z) is indeed a power series in α. To prove (6.54), we need to find the
coefficient of α1 in (6.55), which we see is given by

a1n = coefficient of α in
α(α − 1)(α − 2) · · · (α − n + 1)

n!
= (−1)(−2)(−3) · · · (−n + 1)

n! = (−1)n−1 (n − 1)!
n! = (−1)n−1

n
.

Therefore,

a1(z) =
∞∑

n=1

a1n zn =
∞∑

n=1

(−1)n−1

n
zn,



514 6 Advanced Theory of Infinite Series

just as we stated in (6.54). This completes Step 2.
Step 3: We are finally ready to prove our theorem. Let x ∈ R with |x | < 1. By

Step 2, we know that for every α ∈ C,

f (α, x) = 1 +
∞∑

m=1

am(x)αm

is a power series in α. However,

(1 + x)α = exp(α log(1 + x)) =
∞∑

n=0

1

n! log(1 + x)n · αn

is also a power series inα ∈ C. ByStep1, f (α, x) = (1 + x)α for allα ∈ Qwithα >

0 having odd denominators. The identity theorem applies to this situation (why?), so
we must have f (α, x) = (1 + x)α for all α ∈ C. Also by the identity theorem, the
coefficients of αn must be identical; in particular, the coefficients of α1 are identical:
a1(x) = log(1 + x). Now (6.54) implies the series for log(1 + x). �

Using this lemma and the identity theorem, we are ready to generalize these
formulas for real x to formulas for complex z.

The complex logarithm and binomial series

Theorem 6.38 We have

Log(1 + z) =
∞∑

n=1

(−1)n−1

n
zn, |z| ≤ 1, z �= −1,

and given α ∈ C, we have

(1 + z)α =
∞∑

n=0

(
α

n

)
zn = 1 + α z + α(α − 1)

1! z2 + · · · , |z| < 1.

Proof We prove this theorem first for Log(1 + z), then for (1 + z)α.
Step 1: We shall prove that Log(1 + z) = ∑∞

n=1
(−1)n−1

n zn holds for |z| < 1. To

this end, define f (z) = ∑∞
n=1

(−1)n−1

n zn; we will prove that Log(1 + z) = f (z) for
|z| < 1. First, one can check that the radius of convergence of f (z) is 1, so by our
power series composition theorem,we know that exp( f (z)) can bewritten as a power
series:

exp( f (z)) =
∞∑

n=0

an zn, |z| < 1.
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Restricting to real values of z, by our lemma we know that f (x) = log(1 + x), so

∞∑

n=0

an xn = exp( f (x)) = exp(log(1 + x)) = 1 + x .

By the identity theorem for power series, we must have a0 = 1, a1 = 1, and all other
an = 0. Thus, exp( f (z)) = 1 + z. Since exp(Log(1 + z)) = 1 + z as well, we have

exp( f (z)) = exp(Log(1 + z)) for all z ∈ C with |z| < 1.

By Part (1) of Theorem 4.41 on p. 333, it follows that there is an integer k such
that f (z) = Log(1 + z) + 2πik for |z| < 1 (try to think about why this statement
holds). If we set z = 0 and note that f (0) = 0 and Log(1) = 0, we get k = 0. This
completes Step 1.

Step 2: We now prove that Log(1 + z) = ∑∞
n=1

(−1)n−1

n zn holds for |z| = 1 with
z �= −1 (note that for z = −1, both sides of this equality are not defined). Let z ∈ C

with |z| = 1 and z �= −1. Then we can write z = −eix with x ∈ (0, 2π). Recall from
Example 6.5 on p. 426 that for every x ∈ (0, 2π), the series

∑∞
n=1

einx

n converges.
Since

−
∞∑

n=1

(−1)n−1

n
zn =

∞∑

n=1

(−1)n(−eix )n

n
=

∞∑

n=1

einx

n
, (6.58)

it follows that
∑∞

n=1
(−1)n−1

n zn converges for |z| = 1 with z �= −1. We can now use
Abel’s theorem (Theorem 6.21 on p. 460): taking w → z through the straight line
from 0 to z, it follows that

∞∑

n=1

(−1)n−1

n
zn = lim

w→z

∞∑

n=1

(−1)n−1

n
wn = lim

w→z
Log(1 + w) = Log(1 + z),

(6.59)

where at the second equality we used Step 1 and for the third equality we used that
Log(1 + w) is continuous for |w| ≤ 1 with w �= −1.

Step 3: Let α ∈ C. To prove the binomial series, we note that by the power
series composition theorem, (1 + z)α = exp(αLog(1 + z)), being the composition
of exp(z) andαLog(1 + z), both of which are power series in z, is also a power series
in z, convergent for |z| < 1. Let f (α, z) = ∑∞

n=0

(α
n

)
zn for z ∈ Cwith |z| < 1. Then

restricting to real z = x ∈ R with |x | < 1, by our lemma we know that (1 + x)α =
f (α, x). Hence, by the identity theorem, we must have (1 + z)α = f (α, z) for all
z ∈ C with |z| < 1. This proves the binomial series. �

For every z ∈ C with |z| < 1, we have Log
(
(1 + z)/(1 − z)

) = Log(1 + z) −
Log(1 − z). Using this fact together with Theorem 6.38, in Problem 1 you will prove
the interesting formula

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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1

2
Log

(
1 + z

1 − z

)
=

∞∑

n=0

z2n+1

2n + 1
. (6.60)

The next example contains two other interesting formulas.

Example 6.42 In the proof of Theorem 6.38 we used that for x ∈ (0, 2π), the series∑∞
n=1

einx

n = ∑∞
n=1

cos nx
n + i

∑∞
n=1

sin nx
n converges. We shall prove that

∞∑

n=1

cos nx

n
= − log

(
2 sin(x/2)

)
and

∞∑

n=1

sin nx

n
= π − x

2
for x ∈ (0, 2π).

To prove this, let x ∈ (0, 2π) and note that from Eqs. (6.58) and (6.59) above,

∞∑

n=1

cos nx

n
+ i

∞∑

n=1

sin nx

n
= −Log(1 − eix ).

Since

1 − eix = eix/2(e−i x/2 − eix/2) = −2ieix/2 sin(x/2) = 2 sin(x/2)eix/2−iπ/2,

by definition of Log, we have

Log(1 − eix ) = log
(
2 sin(x/2)

) + i
x − π

2
.

Our two interesting formulas now follow.

6.8.3 Gregory–Madhava Series and Formulas for γ

Recall from Section4.11 that

Arctan z = 1

2i
Log

1 + i z

1 − i z
.

Using (6.60), we get the famous formula first discovered by Madhava of Sangama-
gramma (1350–1425) around 1400 and rediscovered over 200 years later in Europe
by James Gregory (1638–1675), who found it in 1671! In fact, the mathematicians of
Kerala in southern India discovered not only the arctangent series, they also discov-
ered the infinite series for sine and cosine, but their results were written up in Sanskrit
and not brought to Europe until the 1800s. For more history on this fascinating topic,
see the articles [120, 203], and the website [184].

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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Theorem 6.39 For every complex number z with |z| < 1, we have

Arctan z =
∞∑

n=0

(−1)n z2n+1

2n + 1
, Gregory−Madhava’s series.

This series is commonly known as Gregory’s arctangent series, but we shall call
it the Gregory–Madhava arctangent series because of Madhava’s contribution to
this series. Setting z = x , a real variable, we obtain the usual formula learned in
elementary calculus:

arctan x =
∞∑

n=0

(−1)n x2n+1

2n + 1
.

In Problem 6 we prove the following stunning formulas for the Euler–Mascheroni
constant γ in terms of the Riemann ζ-function ζ(z):

γ =
∞∑

n=2

(−1)n

n
ζ(n)

= 1 −
∞∑

n=2

1

n

(
ζ(n) − 1

)

= 3

2
− log 2 −

∞∑

n=2

(−1)n

n

(
n − 1)

(
ζ(n) − 1

)
.

(6.61)

The first two formulas are due to Euler and the last one to Philippe Flajolet and Ilan
Vardi (see [217, pp. 4, 5], [82]).

� Exercises 6.8

1. Fill in the details in the proof of formula (6.60).
2. Derive the following remarkably pretty formulas:

2(Arctan z)2 =
∞∑

n=0

(−1)n

2n + 2

(
1 + 1

3
+ 1

5
+ · · · + 1

2n + 1

)
z2n+2,

and

1

2
(Log(1 + z))2 =

∞∑

n=0

(−1)n

n + 2

(
1 + 1

2
+ 1

3
+ · · · + 1

n + 1

)
zn+2,
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both valid for |z| < 1.
3. Before looking at the next section, prove that

arctan x =
∞∑

n=0

(−1)n x2n+1

2n + 1
and log(1 + x) =

∞∑

n=0

(−1)n−1

n
xn

are valid for −1 < x ≤ 1. Suggestion: I know you are Abel to do this! Note that
setting x = 1 in the formulas, we obtain

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ − · · · and log 2 = 1 − 1

2
+ 1

3
− 1

4
+ · · · .

4. Forα ∈ R, prove that
∑∞

n=0

(α
n

)
converges if and only ifα ≤ 0 orα ∈ N, in which

case

2α =
∞∑

n=0

(
α

n

)
.

Suggestion: To prove convergence, use Gauss’s test.
5. Prove the exquisite formulas

(a)

∞∑

n=1

1

n

zn

1 − zn
=

∞∑

n=1

Log
1

1 − zn
, |z| < 1,

(b)

∞∑

n=1

(−1)n−1

n

zn

1 − zn
=

∞∑

n=1

Log(1 + zn), |z| < 1.

Suggestion: Cauchy’s double series theorem.
6. In this problem, we prove the stunning formulas in (6.61).

(i) Using the first formula for γ in Problem 7a on p. 312, prove that γ =
∑∞

n=1 f
(
1
n

)
, where f (z) = ∑∞

n=2
(−1)n

n zn .

(ii) Prove that γ = 1 − log 2 + ∑∞
n=2

(−1)n

n (ζ(n) − 1) using (i) and Problem 6.5
on p. 484. Show that this formula is equivalent to the first formula in (6.61).

(iii) Using the second and third formulas in Problem 7a on p. 312, derive the
second and third formulas in (6.61).

6.9 � π, Euler, Fibonacci, Leibniz, Madhava, and Machin

In this section, we continue our fascinating study of formulas forπ that we initiated in
Section4.12 starting on p. 364. In particular, we derive (using a very different method
from the one presented in Section5.2 on p. 399) Gregory–Leibniz–Madhava’s for-

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
http://dx.doi.org/10.1007/978-1-4939-6795-7_5
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mula for π/4, formulas for π discovered by Euler involving the arctangent function
and even the Fibonacci numbers, and finally, we look at Machin’s formula for π,
versions of which have been used to compute trillions of digits of π by Yasumasa
Kanada and his coworkers at the University of Tokyo.12 For other formulas for π/4
in terms of arctangents, see the articles [105, 142]. For more on computing π, see
[12] and the famous New Yorker article “The Mountains of Pi” [196], on David and
Gregory Chudnovsky. For interesting historical facets on π in general, see [9, 47,
48]. The website [221] has tons of information.

6.9.1 Gregory–Leibniz–Madhava’s Formula for π/4, Proof II

Recall Gregory–Madhava’s formula for real values:

arctan x =
∞∑

n=0

(−1)n−1 x2n−1

2n − 1
.

By the alternating series theorem, we know that
∑∞

n=0(−1)n−1/(2n − 1) converges,
therefore by Abel’s limit theorem (Theorem 6.21), we know that

π

4
= lim

x→1− arctan x =
∞∑

n=0

(−1)n−1 1

2n − 1
= 1 − 1

3
+ 1

5
− 1

7
+ − · · · .

Therefore, we obtain another derivation of

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ − · · · , Gregory−Leibniz−Madhava’s series.

Madhava of Sangamagramma (1350–1425) was the first to discover this formula,
over 200 years before James Gregory (1638–1675) and Gottfried Leibniz (1646–
1716) were even born! Note that the Gregory–Leibniz–Madhava series is really just
a special case of Gregory–Madhava’s formula for arctan x (just set x = 1), which,
recall, was discovered in 1671 by Gregory and much earlier by Madhava. Leibniz
discovered the formula for π/4 (using geometric arguments) around 1673. Although
there is no published record of Gregory noting the formula for π/4 (he published
few of his mathematical results and he died at only 37 years old), it would be hard to
believe that he didn’t know about the formula for π/4. For more history, including
Nilakantha Somayaji’s (1444–1544) contribution, see [37, 120, 184, 203].

12“The value of π has engaged the attention of many mathematicians and calculators from the time
of Archimedes to the present day, and has been computed from so many different formulae, that
a complete account of its calculation would almost amount to a history of mathematics.” James
Glaisher (1848–1928) [89].
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Example 6.43 Suppose we approximate π/4 byGregory–Leibniz–Madhava’s series
to within, say, the reasonable amount of seven decimal places. Then denoting the nth
partial sum of Gregory–Leibniz–Madhava’s series by sn , according to Problem 5 on
p. 433, if we have seven decimal places, then

1

2(2n + 1)
≤

∣∣∣
π

4
− sn

∣∣∣ < 0.00000005 = 5 × 10−8,

which implies that 2n + 1 > 107, or n ≥ 5,000,000. Thus, to approximate π/4 to
within seven decimal places by the partial sums of the Gregory–Leibniz–Madhava
series, we are required to use at least five million terms! Thus, although Gregory–
Leibniz–Madhava’s series is beautiful, it is quite useless for computing π.

Example 6.44 FromGregory–Leibniz–Madhava’s formula, we can easily derive the
breathtaking formula (see Problem 4)

π =
∞∑

n=2

3n − 1

4n
ζ(n + 1), (6.62)

due to Philippe Flajolet and Ilan Vardi (see [218, p. 1], [82, 250]).

6.9.2 Euler’s Arctangent Formula and the Fibonacci
Numbers

In 1738, Euler derived a very pretty two-angle arctangent expression for π:

π

4
= arctan

1

2
+ arctan

1

3
. (6.63)

This formula is very easy to derive. We start off with the addition formula for tangent
(see (4.41), but now considering real variables)

tan θ + tan φ

1 − tan θ tan φ
= tan(θ + φ), (6.64)

where it is assumed that 1 − tan θ tan φ �= 0. Let x = tan θ and y = tan φ and assume
that−π/2 < θ + φ < π/2. Then taking arctangents of both sides of the above equa-
tion, we obtain

arctan

(
x + y

1 − xy

)
= θ + φ,

or after putting the right-hand side in terms of x, y, we get

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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arctan

(
x + y

1 − xy

)
= arctan x + arctan y. (6.65)

Setting x = 1/2 and y = 1/3, we find that

arctan 1 = arctan
1

2
+ arctan

1

3
.

This equality is just (6.63).
In Problem 9 on p. 47 we studied the Fibonacci sequence, named after Leonardo

Fibonacci (1170–1250): F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for all n ≥ 2, and
you proved that for every n,

Fn = 1√
5

[
�n − (−�)−n

]
, where � = 1 + √

5

2
. (6.66)

Observe that (6.63) can be written as

π

4
= arctan

(
1

F3

)
+ arctan

(
1

F4

)
.

We can use (6.65) and the definition of the Fibonacci numbers to rewrite this as

π

4
= arctan

(
1

F3

)
+ arctan

(
1

F5

)
+ arctan

(
1

F6

)
.

Continuing, we can prove the following fascinating formula for π/4 in terms of the
Fibonacci numbers due to Derrick H. Lehmer (1905–1991) [141] (see Problem 2
and [143]):

π

4
=

∞∑

n=1

arctan

(
1

F2n+1

)
. (6.67)

Also, in Problem 3 you will prove the following series due to Dario Castellanos [47]:

π√
5

=
∞∑

n=0

(−1)n F2n+122n+3

(2n + 1)(3 + √
5)2n+1

. (6.68)

6.9.3 Machin’s Arctangent Formula for π

In 1706, John Machin (1680–1752) derived a fairly rapidly convergent series for π.
To arrive at his expansion, consider the smallest positive angle α whose tangent is
1/5:
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tanα = 1

5
(that is, α := arctan(1/5)).

Now setting θ = φ = α in (6.64), we obtain

tan 2α = 2 tanα

1 − tan2 α
= 2/5

1 − 1/25
= 5

12
,

so

tan 4α = 2 tan 2α

1 − tan2 2α
= 5/6

1 − 25/144
= 120

119
,

which is just slightly above 1. Hence, 4α − π/4 is positive, and moreover,

tan
(
4α − π

4

)
= tan 4α + tan π/4

1 + tan 4α tan π/4
= 1/119

1 + 120/119
= 1

239
.

Taking the inverse tangent of both sides and solving for π
4 , we get

π

4
= 4 tan−1 1

5
− tan−1 1

239
.

Substituting 1/5 and 1/239 into the Gregory–Madhava series for the inverse tangent,
we arrive at Machin’s formula for π:

Machin’s formula

Theorem 6.40 We have

π = 16
∞∑

n=0

(−1)n

(2n + 1)52n+1
− 4

∞∑

n=0

(−1)n

(2n + 1) 2392n+1
.

Example 6.45 Machin’s formula gives many decimal places of π without much
effort. Let sn denote the nth partial sum of s := 16

∑∞
n=0

(−1)n

(2n+1)52n+1 and tn that of t :=
4
∑∞

n=0
(−1)n

(2n+1) 2392n+1 . Then π = s − t , and by the alternating series error estimate,

|s − s3| ≤ 16

9 · 59 ≈ 9.102 × 10−7

and

|t − t0| ≤ 4

3 · (239)3
≈ 10−7.

Therefore,
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|π − (s3 − t0)| = |(s − t) − (s3 − t0)| ≤ |s − s3| + |t − t0| < 5 × 10−6.

A manageable computation (even without a calculator!) shows that s3 − t0 =
3.14159 . . . . Therefore, π = 3.14159 to five decimal places!

� Exercises 6.9

1. From Gregory–Madhava’s series, derive the following pretty series:

π

2
√
3

= 1 − 1

3 · 3 + 1

5 · 32 − 1

7 · 33 + 1

9 · 34 − + · · · .

Suggestion: Consider arctan(1/
√
3) = π/6. How many terms of this series do

you need to approximate π/(2
√
3) to within seven decimal places? History Bite:

Abraham Sharp (1651–1742) used this formula in 1669 to compute π to 72 dec-
imal places, and Thomas de Lagny (1660–1734) used this formula in 1717 to
compute π to 126 decimal places (with a mistake in the 113th place) [47].

2. In this problem we prove (6.67).

(i) Prove that arctan 1
3 = arctan 1

5 + arctan 1
8 , and use this to prove that

π

4
= arctan

1

2
+ arctan

1

5
+ arctan

1

8
.

Prove that arctan 1
8 = arctan 1

13 + arctan 1
21 , and use this to prove that

π

4
= arctan

1

2
+ arctan

1

5
+ arctan

1

13
+ arctan

1

21
.

From here you can now see the appearance of Fibonacci numbers.
(ii) To continue this by induction, prove that for every natural number n,

F2n = F2n+1F2n+2 − 1

F2n+3
.

Suggestion: Can you use (6.66)?
(iii) Using the formula in (ii), prove that

arctan

(
1

F2n

)
= arctan

(
1

F2n+1

)
+ arctan

(
1

F2n+2

)
.

Now derive (6.67).

3. In this problem we prove (6.68).

(i) Using (6.65), prove that
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tan−1

√
5 x

1 − x2
= tan−1

(
1 + √

5

2

)
x − tan−1

(
1 − √

5

2

)
x .

(ii) Now prove that

tan−1

√
5 x

1 − x2
=

∞∑

n=0

(−1)n F2n+1 x2n+1

5n (2n + 1)
.

(iii) Finally, derive the formula (6.68).

4. In this problem, we prove the breathtaking formula (6.62).

(i) Prove that
π

4
=

∞∑

n=1

( 1

4n − 3
− 1

4n − 1

)
=

∞∑

n=1

f
(1

n

)
,

where f (z) = z
4−3z − z

4−z .
(ii) Use Theorem 6.27 on p. 480 to derive our breathtaking formula.

6.10 � Another Proof that π2/6 = ∑∞
n=1 1/n2 (The Basel

Problem)

Assuming only Gregory–Leibniz–Madhava’s series, π
4 = ∑∞

n=0
(−1)n

2n+1 , we give our
seventh proof of the fact that13

π2

6
=

∞∑

n=1

1

n2
= 1 + 1

22
+ 1

32
+ 1

42
+ · · · .

The main ideas of the proof we are about to give are attributed to Nicolaus Bernoulli
(1687–1759), and the proof “may be regarded as the most elementary of all known
proofs, since it borrows nothing from the theory of functions except the Leibniz
series” [129, p. 324].

6.10.1 Cauchy’s Arithmetic Mean Theorem

Before giving our seventh proof of Euler’s sum, we prove the following theorem
(attributed to Cauchy [129, p. 72]).

13This proof is a systematized version of the sixth proof, Problem 3 on p. 414.
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Cauchy’s arithmetic mean theorem

Theorem 6.41 If a sequence a1, a2, a3, . . . converges to L, then the sequence of
arithmetic means (or averages)

mn := 1

n

(
a1 + a2 + · · · + an

)
, n = 1, 2, 3, . . . ,

also converges to L. Moreover, if the sequence {an} is nonincreasing, then so is
the sequence of arithmetic means {mn}.

Proof To show that mn → L , we need to show that

mn − L = 1

n

(
(a1 − L) + (a2 − L) + · · · + (an − L)

)

tends to zero as n → ∞. Let ε > 0 and fix a natural number N ∈ N such that for all
n > N , we have |an − L| < ε/2. Then for n > N , we can write

|mn − L| ≤ 1

n

(
|(a1 − L) + · · · + (aN − L)|

)
+ 1

n

(
|(aN+1 − L) + · · · + (an − L)|

)

≤ 1

n

(
|(a1 − L) + · · · + (aN − L)|

)
+ 1

n

( ε

2
+ · · · + ε

2

)

= 1

n

(
|(a1 − L) + · · · + (aN − L)|

)
+ n − N

n
· ε

2

≤ 1

n

(
|(a1 − L) + · · · + (aN − L)|

)
+ ε

2
.

By choosing n larger, we can make 1
n

(
|(a1 − L) + · · · + (aN − L)|

)
also less

than ε/2, which shows that |mn − L| < ε for n sufficiently large. This shows that
mn → L .

Assume now that {an} is nonincreasing. We need to prove that {mn} is also non-
increasing; that is, for each n,

1

n + 1

(
a1 + · · · + an + an+1

)
≤ 1

n

(
a1 + · · · + an

)
,

or, after multiplying both sides by n(n + 1),

n
(

a1 + · · · + an

)
+ nan+1 ≤ n

(
a1 + · · · + an

)
+

(
a1 + · · · + an

)
.

Canceling, we conclude that the sequence {mn} is nonincreasing if and only if

nan+1 = an+1 + an+1 + · · · an+1︸ ︷︷ ︸
n times

≤ a1 + a2 + · · · + an.
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But this inequality certainly holds, since an+1 ≤ ak for k = 1, 2, . . . , n. This com-
pletes the proof. �

There is a related theorem for geometric means found in Problem 2, which can
be used to derive the following neat formula:

e = lim
n→∞

{(
2

1

)1(3

2

)2(4

3

)3
· · ·

(
n + 1

n

)n}1/n

. (6.69)

6.10.2 Proof VII of Euler’s Formula for π2/6

First we shall apply Abel’s multiplication theorem to Gregory–Leibniz–Madhava’s
series: (π

4

)2 =
( ∞∑

n=0

(−1)n 1

2n + 1

)
·
( ∞∑

n=0

(−1)n 1

2n + 1

)
.

To do so, we first form the nth term in the Cauchy product:

cn=
n∑

k=0

(−1)k 1

2k + 1
· (−1)n−k 1

2n − 2k + 1
=(−1)n

n∑

k=0

1

(2k + 1)(2n − 2k + 1)
.

Using partial fractions, one can check that

1

(2k + 1)(2n − 2k + 1)
= 1

2(n + 1)

(
1

2k + 1
+ 1

2n − 2k + 1

)
,

which implies that

cn = (−1)n

2(n + 1)

(
n∑

k=0

1

2k + 1
+

n∑

k=0

1

2n − 2k + 1

)
= (−1)n

n + 1

n∑

k=0

1

2k + 1
,

since
∑n

k=0
1

2n−2k+1 = ∑n
k=0

1
2k+1 . Thus, by Abel’s theorem, we can write

(π

4

)2 =
∞∑

n=0

(−1)n mn , where mn = 1

n + 1

(
1 + 1

3
+ · · · + 1

2n + 1

)
,

provided that the series converges! To see that this series converges, note that mn

is exactly the arithmetic mean, or average, of the numbers 1, 1/3, . . . , 1/(2n + 1).
Since 1/(2n + 1) → 0 monotonically, Cauchy’s arithmetic mean theorem shows
that these averages also tend to zero monotonically. In particular, by the alternating
series theorem,

∑∞
n=0(−1)n mn converges, so by Abel’s multiplication theorem, we
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get (not quite π2/6, but pretty nonetheless)

π2

16
=

∞∑

n=0

(−1)n 1

n + 1

(
1 + 1

3
+ · · · + 1

2n + 1

)
. (6.70)

We evaluate the right-hand side using the following theorem (whose proof is techni-
cal, so you can skip it if you like).

Theorem 6.42 Let {an} be a nonincreasing sequence of positive numbers such
that

∑
a2

n converges. Then both series

s :=
∞∑

n=0

(−1)nan and δk :=
∞∑

n=0

anan+k, k = 1, 2, 3, . . .

converge. Moreover, � := ∑∞
k=1(−1)k−1δk also converges, and we have the for-

mula ∞∑

n=0

a2
n = s2 + 2�.

Proof Figure6.17 shows why this theorem is “obvious.” The proof, however, is
another story, since the series we are dealing with are not all absolutely convergent.
In any case, here goes the rather long proof.

a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

a20 −a0a1 a0a2 −a0a3 a0a4

−a1a0 a21 −a1a2 a1a3 −a1a4

a2a0 −a2a1 a22 −a2a3 a2a4

−a3a0 a3a1 −a3a2 a23 −a3a4

a4a0 −a4a1 a4a2 −a4a3 a24

Fig. 6.17 Observe that s2 = ∑∞
m=0

∑∞
n=0 amn , where amn = (−1)m+naman . Putting the amn in

the infinite array on the left gives the right array. The identity s2 = ∑∞
n=0 a2

n − 2� is really just the
sum of the diagonal terms plus the sum of the off-diagonal terms!

Since
∑

a2
n converges, we must have an → 0, which implies that

∑
(−1)nan

converges by the alternating series test. By monotonicity, anan+k ≤ an · an = a2
n ,

and since
∑

a2
n converges, by comparison so does each series δk = ∑∞

n=0 anan+k .
Also by monotonicity,
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δk+1 =
∞∑

n=0

anan+k+1 ≤
∞∑

n=0

anan+k = δk,

so by the alternating series test, the sum � converges if δk → 0. To prove that this
holds, let ε > 0 and choose N (by invoking the Cauchy criterion for series) such that
a2

N+1 + a2
N+2 + · · · < ε/2. Then, since the sequence {an} is nondecreasing, we can

write

δk =
∞∑

n=0

anan+k

=
(

a0ak + · · · + aN aN+k

)
+

(
aN+1aN+1+k + aN+2aN+2+k + · · ·

)

≤
(

a0ak + · · · + aN ak

)
+

(
a2

N+1 + a2
N+2 + a2

N+3 + · · ·
)

< ak ·
(

a0 + · · · + aN

)
+ ε

2
.

Asak → 0wecanmake thefirst term less thanε/2 for all k large enough.Thus, δk < ε
for all k sufficiently large. This proves that δk → 0 and hence � = ∑∞

k=1(−1)k−1δk

converges. Finally, we need to prove the equality

∞∑

n=0

a2
n = s2 + 2� = s2 + 2

∞∑

k=1

(−1)k−1δk .

To prove this, let sn denote the nth partial sum of the series s = ∑∞
n=0(−1)nan . We

have

s2n =
(

n∑

k=0

(−1)kak

)2

=
n∑

k=0

n∑

�=0

(−1)k+�ak a�.

We can break up the double sum on the right as a sum over (k, �) such that k = �,
k < �, and � < k:

n∑

k=0

n∑

�=0

(−1)k+�ak a� =
∑

k=�

(−1)k+�ak a� +
∑

k<�

(−1)k+�ak a� +
∑

�<k

(−1)k+�ak a�,

where the smallest k and � can be is 0 and the largest is n. The first sum is just∑n
k=0 a2

k , and by symmetry in k and �, the last two sums are the same, so

s2n =
n∑

k=0

a2
k + 2

∑

0≤k<�≤n

(−1)k+�ak a�.
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In the second sum, 0 ≤ k < � ≤ n, so we can write � = k + j , where 1 ≤ j ≤ n and
0 ≤ k ≤ n − j . Hence,

∑

1≤k<�≤n

(−1)k+�ak a� =
n∑

j=1

n− j∑

k=0

(−1)k+(k+ j)ak ak+ j =
n∑

j=1

n− j∑

k=0

(−1) j ak ak+ j .

In summary, we have

s2n =
n∑

k=0

a2
k + 2

n∑

j=1

(−1) j

(
n− j∑

k=0

ak ak+ j

)
.

Let �n denote the nth partial sum of � = ∑∞
j=1(−1) j−1δ j ; we need to show that

s2n + 2�n → ∑∞
k=0 a2

k as n → ∞. To this end, observe that

s2n + 2�n =
n∑

k=0

a2
k + 2

n∑

j=1

(−1) j

(
n− j∑

k=0

ak ak+ j

)
+ 2

n∑

j=1

(−1) j−1δ j

=
n∑

k=0

a2
k + 2

n∑

j=1

(−1) j

(
n− j∑

k=0

ak ak+ j − δ j

)
.

Recalling that δ j = ∑∞
k=0 akak+ j , we can write s2n + 2�n as

s2n + 2�n =
n∑

k=0

a2
k + 2

n∑

j=1

(−1) jα j ,

where

α j :=
∞∑

k=n− j+1

akak+ j = an− j+1an+1 + an− j+2an+2 + an− j+3an+3 + · · · .

Since the sequence {an} is nonincreasing, it follows that the sequence {α j } is non-
decreasing:

α j = an− j+1an+1 + an− j+2an+2 + · · · ≤ an− j an+1 + an− j+1an+2 + · · · = α j+1.

Now assuming that n is even, we have
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1

2

∣∣∣∣∣s
2
n + 2�n −

n∑

k=0

a2
k

∣∣∣∣∣ = ∣∣(−α1 + α2) + (−α3 + α4) + · · · + (−αn−1 + αn)
∣∣

= (−α1 + α2) + (−α3 + α4) + · · · + (−αn−1 + αn)

= −α1 − (α3 − α2) − (α5 − α4) − · · · − (αn−1 − αn−2) + αn

≤ αn = a1an+1 + a2an+2 + · · · = δn − a0an,

where we used the fact that the terms in parentheses are all nonnegative, because the
α j are nondecreasing. Using a very similar argument, we get

1

2

∣∣∣∣s
2
n + 2�n −

n∑

k=0

a2
k

∣∣∣∣ ≤ δn − a0an (6.71)

for n odd. Therefore, (6.71) holds for all n.We already know that δn → 0 and an → 0,
so (6.71) shows that the left-hand side tends to zero as n → ∞. This completes the
proof of the theorem. �

Finally, we are ready to prove Euler’s formula for π2/6. To do so, we apply the
preceding theorem to the sequence an = 1/(2n + 1). In this case,

δk =
∞∑

n=0

anan+k =
∞∑

n=0

1

(2n + 1)(2n + 2k + 1)
.

Writing in partial fractions,

1

(2n + 1)(2n + 2k + 1)
= 1

2k

{
1

2n + 1
− 1

2n + 2k + 1

}
,

we get (after some cancellations)

δk = 1

2k

∞∑

n=0

{
1

2n + 1
− 1

2n + 2k + 1

}
= 1

2k

(
1 + 1

3
+ · · · + 1

2k − 1

)
.

Hence, the equality
∑∞

n=0 a2
n = s2 + 2� takes the form

∞∑

n=0

1

(2n + 1)2
=

(π

4

)2 +
∞∑

k=1

(−1)k−1 1

k

(
1 + 1

3
+ · · · 1

2k − 1

)
.

However, see (6.70),we already proved that theCauchyproduct ofGregory–Leibniz–
Madhava’s series with itself is given by the sum on the right. Thus,

∞∑

n=0

1

(2n + 1)2
=

(π

4

)2 +
(π

4

)2 = π2

8
. (6.72)
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Finally, summing over the even and odd denominators, we have

∞∑

n=1

1

n2
=

∞∑

n=0

1

(2n + 1)2
+

∞∑

n=1

1

(2n)2
= π2

8
+ 1

4

∞∑

n=1

1

n2
,

and solving for
∑∞

n=1 1/n2, we obtain Euler’s formula: π2

6 = ∑∞
n=1

1
n2 .

� Exercises 6.10

1. Find the following limits:

(a) lim
1 + 21/2 + 31/3 + · · · + n1/n

n
,

(b) lim

(
1 + 1

1

)1 + (
1 + 1

2

)2 + (
1 + 1

3

)3 + · · · + (
1 + 1

n

)n

n
.

2. If a sequence a1, a2, a3, . . . of positive numbers converges to L > 0, prove that
the sequence of geometricmeans (a1a2 · · · an)

1/n also converges to L . Suggestion:
Take logs of the geometric means. Using this result, prove (6.69). Using (6.69),
prove that

e = lim
n

(n!)1/n
.

3. Prove the following generalization of Cauchy’s arithmetic mean theorem: If a
sequence {an} converges toa and a sequence {bn} converges tob, then the sequence

1

n

(
a1bn + a2bn−1 + · · · + an−1b2 + anb1

)

converges to ab.



Chapter 7
More on the Infinite: Products
and Partial Fractions

Reason’s last step is the recognition that there are an infinite number of things which are
beyond it.
Blaise Pascal (1623–1662), Pensées. 1670.

This chapter is devoted entirely to the theory and application of infinite products,
and as a bonus prize we also talk about partial fractions. In Sections7.1 and 7.2 we
present the basics of infinite products. In fact, we already saw infinite products when
we studied François Viète’s infinite product expression for π in Sections4.12 and
5.1 (see p. 380). Now hold on to your seats, because the rest of the chapter is full of
surprises!

We begin with the following Viète-like formula for log 2, which is due to Philipp
von Seidel (1821–1896) and published in 1871 [222]:

log 2 = 2

1 + √
2

· 2

1 +
√√

2
· 2

1 +
√√√

2
· 2

1 +
√√√√

2

· · · .

In Section7.3, we prove Euler’s sine formula, but now for complex arguments:

sin πz = πz
(
1 − z2

12

)(
1 − z2

22

)(
1 − z2

32

)(
1 − z2

42

)(
1 − z2

52

)
· · · .

In Section7.4, we look at partial fraction expansions of the trig functions. Recall
from elementary calculus that if p(z) is a polynomial with distinct roots r1, . . . , rn ,
then factoring p(z) as p(z) = a(z − r1)(z − r2) · · · (z − rn), we can write

1

p(z)
= 1

a(z − r1)(z − r2) · · · (z − rn)
= a1

z − r1
+ a2

z − r2
+ · · · + an

z − rn

© Paul Loya 2017
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for some constants a1, . . . , an . You probably studied this in the “partial fraction
method of integration” section in your elementary calculus course. We may formally
write Euler’s sine expansion as

sin πz = az(z − 1)(z + 1)(z − 2)(z + 2)(z − 3)(z + 3) · · · .

Euler thought that we should be able to apply the partial fraction decomposition to
1/ sin πz:

1

sin πz
= a1

z
+ a2

z − 1
+ a3

z + 1
+ a4

z − 2
+ a5

z + 2
+ · · · .

In Section7.4, we’ll prove that this can be done, where the an follow in the pattern

π

sin πz
= 1

z
− 1

z − 1
− 1

z + 1
+ 1

z − 2
+ 1

z + 2
− 1

z − 3
− 1

z + 3
+ · · · .

Combining the adjacent factors 1
z−n + 1

z+n = 2z
z2−n2 , we get Euler’s celebrated partial

fraction expansion for sine:

π

sin πz
= 1

z
+

∞∑

n=1

(−1)n 2z

n2 − z2
.

We’ll alsoderivepartial fraction expansions for the other trig functions. InSection7.5,
we give more proofs of Euler’s sum for π2/6 using the infinite products and partial
fractions we found in Sections7.3 and 7.4. In Section7.6, we prove one of the most
famous formulas for the Riemann zeta function, namely writing it as an infinite
product involving only the prime numbers:

ζ(z) = 2z

2z − 1
· 3z

3z − 1
· 5z

5z − 1
· 7z

7z − 1
· 11z

11z − 1
· · · .

In particular, setting z = 2, we get the following expression for π2/6:

π2

6
=
∏ p2

p2 − 1
= 22

22 − 1
· 32

32 − 1
· 52

52 − 1
· · · .

As a bonus prize, we see how π is related to questions from probability. Finally, in
Section5.3, we derive some awe-inspiring beautiful formulas (too many to list at this
moment!). Here are a couple of my favorite formulas of all time:

π

4
= 3

4
· 5
4

· 7
8

· 11
12

· 13
12

· 17
16

· 19
20

· 23
24

· · · .

http://dx.doi.org/10.1007/978-1-4939-6795-7_5
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The numerators of the fractions on the right are the odd prime numbers, and the
denominators are even numbers divisible by four and differing from the numerators
by one. The next one is also a beaut:

π

2
= 3

2
· 5
6

· 7
6

· 11
10

· 13
14

· 17
18

· 19
18

· 23
22

· · · .

The numerators of the fractions are the odd prime numbers, and the denominators
are even numbers not divisible by four and differing from the numerators by one.

Chapter 7 objectives: The student will be able to . . .

• Determine (absolute) convergence for an infinite product.
• Explain the infinite products and partial fractions of the trig functions.
• Describe Euler’s formulas for powers of π and their relationship to Riemann’s zeta
function.

7.1 Introduction to Infinite Products

We start our journey through infinite products taking careful steps to define what
these phenomenal products are.

7.1.1 Basic Definitions and Examples

Let {bn} be a sequence of complex numbers. Our goal is to define the infinite product

∞∏

n=1

bn = b1 · b2 · b3 · · · .

Here, the capital
∏

means to take the products of the numbers after it. We say
that the infinite product

∏∞
n=1 bn converges if there exists an m ∈ N such that the

bn are nonzero for all n ≥ m, and the limit of the partial products
∏n

k=m bk =
bm · bm+1 · · · bn ,

lim
n→∞

n∏

k=m

bk = lim
n→∞

(
bm · bm+1 · · · bn

)
, (7.1)

converges to a nonzero complex value, say p. In this case, we define

∞∏

n=1

bn := b1 · b2 · · · bm−1 · p.
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This definition is of course independent of the m chosen such that the bn are nonzero
for all n ≥ m. The infinite product

∏∞
n=1 bn diverges if it doesn’t converge; that is,

either there are infinitely many zero bn , or the limit (7.1) either diverges or converges
to zero. In this latter case, we say that the infinite product diverges to zero. Just as
sequences and series can start at any integer, products can also start at any integer:∏∞

n=k bn , with straightforward modifications of the definition.

Example 7.1 Consider the “harmonic product”
∏∞

n=2(1 − 1/n). Observe that

n∏

k=2

(
1 − 1

k

)
=
(
1 − 1

2

)(
1 − 1

3

)
· · ·
(
1 − 1

n

)
= 1

2
· 2
3

· 3
4

· · · n − 1

n
.

Canceling each denominator with the next numerator, we obtain

n∏

k=2

(
1 − 1

k

)
= 1

n
→ 0.

Thus, the harmonic product diverges to zero.

Example 7.2 On the other hand, the product
∏∞

n=2(1 − 1/n2) converges, because

n∏

k=2

(
1 − 1

k2

)
=

n∏

k=2

k2 − 1

k2
=

n∏

k=2

(k − 1)(k + 1)

k · k

= 1 · 3
2 · 2 · 2 · 4

3 · 3 · 3 · 5
4 · 4 · 4 · 6

5 · 5 · · · (n − 1)(n + 1)

n · n
= n + 1

2n
→ 1

2
�= 0.

Therefore,
∞∏

n=2

(
1 − 1

n2

)
= 1

2
.

Note that the infinite product
∏∞

n=1(1 − 1/n2) also converges, but in this case,

∞∏

n=1

(
1 − 1

n2

)
:=
(
1 − 1

12

)
· lim

n→∞

n∏

k=2

(
1 − 1

k2

)
= 0 · 1

2
= 0.

Proposition 7.1 If an infinite product converges, then its factors tend to one. Also,
a convergent infinite product has the value 0 if and only if it has a zero factor.

Proof The second statement is automatic from the definition of convergence. If none
of the bn vanish for n ≥ m and pn = bm · bm+1 · · · bn , then assuming pn → p, where
p is a nonzero number, we have
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bn = bm · bm+1 · · · bn−1 · bn

bm · bm+1 · · · bn−1
= pn

pn−1
→ p

p
= 1.

�

Because the factors of a convergent infinite product always tend to one, we hence-
forth write bn as 1 + an , so the infinite product takes the form

∏
(1 + an);

then convergence of this infinite product implies that an → 0.

7.1.2 Infinite Products and Series: The Nonnegative Case

The following theorem states that the convergence of a product
∏

(1 + an) with all
the an nonnegative real numbers is aligned with that of the series

∑
an .

Theorem 7.2 An infinite product
∏

(1 + an)with nonnegative terms an converges
if and only if the series

∑
an converges.

Proof Let the partial products and partial sums be denoted by

pn =
n∏

k=1

(1 + ak) and sn =
n∑

k=1

ak .

Since all the ak are nonnegative, both sequences {pn} and {sn} are nondecreasing, so
they converge if and only if they are bounded. Since 1 ≤ 1 + x ≤ ex for every real
number x (see Theorem 4.30 on p. 301), it follows that

1 ≤ pn =
n∏

k=1

(1 + ak) ≤
n∏

k=1

eak = e
∑n

k=1 ak = esn .

This equation shows that if the sequence {sn} is bounded, then the sequence {pn} is
also bounded, and hence converges. Its limit must be ≥1, so in particular, it is not
zero. On the other hand,

pn = (1 + a1)(1 + a2) · · · (1 + an) ≥ 1 + a1 + a2 + · · · + an = 1 + sn,

since the left-hand side, when multiplied out, contains the sum 1 + a1 + a2 + · · · +
an (and a lot of other nonnegative terms too). This shows that if the sequence {pn} is
bounded, then the sequence {sn} is also bounded. �

See Problem 4 for the case in which the an are negative.

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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Example 7.3 Thus, as a consequence of this theorem, the product

∏(
1 + 1

n p

)

converges for p > 1 and diverges for p ≤ 1.

7.1.3 Infinite Products for log 2 and e

I found the following gem in [219]. Define a sequence {en} by e1 = 1 and en+1 =
(n + 1)(en + 1) for n = 1, 2, 3, . . .; e.g.,

e1 = 1 , e2 = 4 , e3 = 15 , e4 = 64 , e5 = 325 , e6 = 1956 , . . . .

Then

e =
∞∏

n=1

en + 1

en
= 2

1
· 5
4

· 16
15

· 65
64

· 326
325

· 1957
1956

· · · . (7.2)

You will be asked to prove this in Problem 7.
We now prove Philipp von Seidel’s (1821–1896) formula for log 2:

log 2 = 2

1 + √
2

· 2

1 +
√√

2
· 2

1 +
√√√

2
· 2

1 +
√√√√

2

· · · .

To prove this, we follow the proof of Viète’s formula in Section5.1.1 on p. 381 using
hyperbolic functions instead of trigonometric functions. Let x ∈ R be nonzero. Then
dividing the identity sinh x = 2 cosh(x/2) sinh(x/2) (see Problem 8 on p. 338) by
x , we get

sinh x

x
= cosh(x/2) · sinh(x/2)

x/2
.

Replacing x with x/2, we get sinh(x/2)/(x/2) = cosh(x/22) · sinh(x/22)/(x/22).
Therefore,

sinh x

x
= cosh(x/2) · cosh(x/22) · sinh(x/22)

x/22
.

Continuing by induction, we obtain for every n ∈ N,

sinh x

x
=
(

n∏

k=1

cosh(x/2k)

)

· sinh(x/2n)

x/2n
.

http://dx.doi.org/10.1007/978-1-4939-6795-7_5


7.1 Introduction to Infinite Products 539

Since limz→0
sinh z

z = 1 (why?), we have limn→∞ sinh(x/2n)

x/2n = 1, so taking n → ∞, it
follows that

x

sinh x
= lim

n→∞

n∏

k=1

1

cosh(x/2k)
.

Expressing the hyperbolic sine and cosine in terms of the exponential function, we
can rewrite this limit as

2x

ex − e−x
= lim

n→∞

n∏

k=1

2

ex/2k + e−x/2k = lim
n→∞

(
n∏

k=1

ex/2k 2

1 + ex/2k−1

)

= lim
n→∞

(

ex
∑n

k=1 1/2
k

n∏

k=1

2

1 + ex/2k−1

)

.

Since limn→∞
∑n

k=1
1
2k = 1 (this is just the geometric series

∑∞
k=1

1
2k ), and

n∏

k=1

2

1 + ex/2k−1 = 2

1 + ex

n−1∏

k=1

2

1 + ex/2k ,

we see that
2x

ex − e−x
= 2ex

1 + ex
lim

n→∞

n∏

k=1

2

1 + ex/2k .

Finally, putting x = log θ, or θ = ex , into this equation and doing a small amount of
algebra, we get, by the definition of infinite products, the following beautiful infinite
product expansion for log θ

θ−1 :

log θ

θ − 1
=

∞∏

k=1

2

1 + θ1/2
k = 2

1 + √
θ

· 2

1 +
√√

θ
· 2

1 +
√√√

θ

· · ·Seidel’s formula.

In particular, taking θ = 2, we get Seidel’s infinite product formula for log 2.

� Exercises 7.1

1. Prove that

(a)

∞∏

n=2

(
1 + 1

n2 − 1

)
= 2 , (b)

∞∏

n=3

(
1 − 2

n(n − 1)

)
= 1

3
,

(c)
∞∏

n=2

(
1 + 2

n2 + n − 2

)
= 3 , (d)

∞∏

n=2

(
1 + (−1)n

n

)
= 1.

2. Prove that for every z ∈ C with |z| < 1,
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∞∏

n=0

(
1 + z2

n
)

= 1

1 − z
.

For example,
∏∞

n=0

(
1 +

(
1
2

)2n)
= 2. Suggestion: Derive, e.g., by induction, a

formula for pn =∏n
k=0(1 + z2

k
) as a geometric sum as in Problem 3e on p. 45.

3. For which x ∈ R, do the following products converge and diverge?

(a)

∞∏

n=1

(
1 + sin2

( x

n

))
, (b)

∞∏

n=1

(1 + x2 + x2n

1 + x2n

)

(c)
∞∏

n=1

(
1 + x4n

log(1 + x2n)

)
, x �= 0.

4. In this problem, we prove that an infinite product
∏

(1 − an) with 0 ≤ an < 1
converges if and only if the series

∑
an converges.

(i) Let pn =∏n
k=1(1 − ak) and sn =∑n

k=1 ak . Show that pn ≤ e−sn . Conclude
that if

∑
an diverges, then

∏
(1 − an) also diverges (in this case, diverges to

zero).
(ii) Suppose now that

∑
an converges. Then we can choose m such that am +

am+1 + · · · < 1/2. Prove by induction that

(1 − am)(1 − am+1) · · · (1 − an) ≥ 1 − (am + am+1 + · · · + an)

for n = m, m + 1, m + 2, . . .. Conclude that pn/pm ≥ 1/2 for all n ≥ m,
and from this, prove that

∏
(1 − an) converges.

(iii) For what p is
∏∞

n=2

(
1 − 1

n p

)
convergent, and for what p is it divergent?

5. In this problem we prove that the limit lim
n→∞ n ·

n∏

k=2

(2 − e1/n) exists. Proceed as

follows.

(i) Prove that the infinite product
∏∞

n=1(2 − e1/n) diverges. (Use Problem 4.)
(ii) Prove that

∏∞
n=2[(2 − e1/n)/(1 − 1/n)] converges.

(iii) Finally, prove that the desired limit exists.

6. In this problem we derive relationships between series and products. Let {an} be
a sequence of complex numbers.

(a) Prove that for n ≥ 2,

n∏

k=1

(1 + ak) = 1 + a1 +
n∑

k=2

(1 + a1) · · · (1 + ak−1)ak .
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So if an �= −1 for all n, then the product
∏∞

n=1(1 + an) converges if and only
if 1 + a1 +∑∞

k=2(1 + a1) · · · (1 + ak−1)ak converges to a nonzero value, in
which case the infinite product and infinite series have the same value.

(b) Assume that a1 + · · · + ak �= 0 for every k. Prove that for n ≥ 2,

n∑

k=1

ak = a1

n∏

k=2

(
1 + ak

a1 + a2 + · · · + ak−1

)
.

Thus,
∑∞

n=1 an converges if and only if a1
∏∞

n=2

(
1 + an

a1+a2+···+an−1

)
either

converges or diverges to zero, in which case they have the same value.
(c) Using (b) and the sum

∑∞
n=1

1
(n+a−1)(n+a)

= 1
a from Eq. (3.36) on

p. 200, prove that

∞∏

n=2

(
1 + a

(n + a)(n − 1)

)
= a + 1.

7. In this problem we prove (7.2).

(i) Let sn =∑n
k=0

1
k! . Prove that en = n! sn−1 for n = 1, 2, . . ..

(ii) Show that sn/sn−1 = (en + 1)/en .
(iii) Show that sn =∏n

k=1
ek+1

ek
and then complete the proof. Suggestion: Note

that we can write sn = (s1/s0) · (s2/s1) · · · (sn/sn−1).

7.2 Absolute Convergence for Infinite Products

Way back in Section3.6, we introduced absolute convergence for infinite series, and
since then we have experienced how incredibly useful this notion is. In this section
we continue our study of the basic properties of infinite products by introducing
the notion of absolute convergence for infinite products. We also present a general
convergence test that is able to test the convergence of an infinite product in terms
of a corresponding series of logarithms.

7.2.1 Absolute Convergence for Infinite Products

An infinite product
∏

(1 + an) of complex numbers is said to converge absolutely if∏
(1 + |an|) converges. ByTheorem7.2,

∏
(1 + |an|) converges if and only if∑ |an|

converges. Therefore,
∏

(1 + an) converges absolutely if and only if the infinite series∑
an converges absolutely.Weknow that if an infinite series is absolutely convergent,

then the series itself converges; is this the same for infinite products? The answer is
yes, but before proving this, we first need the following lemma.

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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Lemma 7.3 Let {pk}∞k=m, where m ∈ N, be a sequence of complex numbers.

(a) {pk} converges if and only if the infinite series
∑∞

k=m+1(pk − pk−1) converges,
in which case

lim
k→∞ pk = pm +

∞∑

k=m+1

(pk − pk−1).

(b) If {a j }∞j=m is a sequence of complex numbers and pk =∏k
j=m(1 + a j ), then

|pk − pk−1| ≤ |ak | e
∑k−1

j=m |a j |.

Proof The identity in (a) is really the telescoping series theorem, Theorem 3.22 on
p. 200, but let us prove (a) directly. To do so, we note that for k ≥ m, we have

pk = pm +
k∑

j=m+1

(p j − p j−1), (7.3)

since the sum on the right telescopes. It follows that lim pk exists if and only if
limk→∞

∑k
j=m+1(p j − p j−1) exists; in other words, if and only if the infinite series∑∞

j=m+1(p j − p j−1) converges. In case of convergence, the limit equality in (a)
follows from taking k → ∞ in (7.3).

To prove (b), observe that

pk − pk−1 =
k∏

j=m

(1 + a j ) −
k−1∏

j=m

(1 + a j )

= (1 + ak)

k−1∏

j=m

(1 + a j ) −
k−1∏

j=m

(1 + a j ) = ak

k−1∏

j=m

(1 + a j ).

Therefore, |pk − pk−1| ≤ |ak | ∏k−1
j=m(1 + |a j |). Since 1 + x ≤ ex for all real num-

bers x and e|a1| · · · e|ak−1| = e|a1|+···+|ak−1| (law of exponents), we have

|pk − pk−1| ≤ |ak |
k−1∏

j=m

e|a j | = |ak | e
∑k−1

j=m |a j |.

This completes our proof. �

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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Theorem 7.4 Every absolutely convergent infinite product converges.

Proof Let
∏

(1 + an) be absolutely convergent, which is equivalent to the series∑ |an| converging; we need to prove that
∏

(1 + an) converges in the usual sense.
Since

∑ |an| converges, by the Cauchy criterion for series we can choosem such that∑∞
n=m |an| < 1

2 . In particular, |ak | < 1 for k ≥ m, so 1 + ak is nonzero for k ≥ m.
For n ≥ m, let pn =∏n

k=m(1 + ak). From (a) in Lemma 7.3, we know that lim pn

exists if and only if the infinite series
∑∞

k=m+1(pk − pk−1) converges. To prove that
this series converges, note that by (b) in Lemma 7.3, for k > m we have

|pk − pk−1| ≤ |ak | e
∑k−1

j=m |a j | =⇒ |pk − pk−1| ≤ C |ak |,

with C = e1/2, where we recall that
∑∞

j=m |a j | < 1
2 . In particular, since

∑ |ak | con-
verges, by the comparison test, the series

∑∞
k=m+1 |pk − pk−1| converges, and hence∑∞

k=m+1(pk − pk−1) also converges.
To prove that

∏
(1 + an) converges, it remains to prove that lim pn �= 0. To this

end, we claim that for each n ≥ m, we have

|pn| =
n∏

k=m

|1 + ak | ≥ 1 −
n∑

k=m

|ak | . (7.4)

Since
∑∞

n=m |an| < 1
2 , it then follows that lim pn �= 0. We prove (7.4) by induction

on n = m, m + 1, m + 2, . . .. To check the base case, |1 + am | ≥ 1 − |am |, observe
that for every complex number z,

1 = |1 + z − z| ≤ |1 + z| + |z| =⇒ |1 + z| ≥ 1 − |z|, (7.5)

which in particular proves the base case. Assume that our result holds for n ≥ m; we
prove it for n + 1. Observe that

n+1∏

k=m

|1 + ak | =
n∏

k=m

|1 + ak | · |1 + an+1|

≥
(

1 −
n∑

k=m

|ak |
)

(1 − |an+1|) (induction hypothesis and (7.5))

= 1 −
n∑

k=m

|ak | − |an+1| +
n∑

k=m

|ak ||an+1|

≥ 1 −
n+1∑

k=m

|ak |,

which is exactly the n + 1 case. �
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Just as for infinite series, the converse of this theorem is not true. For example,

the infinite product
∏∞

n=2

(
1 + (−1)n

n

)
converges (and equals 1; see Problem 1 on p.

539), but this product is not absolutely convergent.

7.2.2 Infinite Products and Series: The General Case

Suppose that a1, a2, a3, . . . are nonnegative real numbers and observe that since
logarithms take products to sums, we have

log

(
n∏

k=1

(1 + ak)

)

=
n∑

k=1

log(1 + ak).

Exponentiating both sides, we get

n∏

k=1

(1 + ak) = exp

(
n∑

k=1

log(1 + ak)

)

.

Using these formulas, it’s not difficult to show that

∞∏

n=1

(1 + an) converges ⇐⇒
∞∑

n=1

log(1 + an) converges.

Moreover, in the case of convergence and L =∑∞
n=1 log(1 + an), then

∏∞
n=1(1 +

an) = eL . The following theorem is an extension of these remarks to general complex
infinite products.

Theorem 7.5 An infinite product
∏

(1 + an) of complex numbers converges if
and only if an → 0 and the series

∞∑

n=m+1

Log(1 + an),

starting from a suitable index m + 1, converges. Moreover, if L is the sum of the
series, then ∏

(1 + an) = (1 + a1) · · · (1 + am) eL .
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Proof First of all, we remark that the statement “starting froma suitable indexm + 1”
concerning the sum of logarithms is put there to make sure that none of the terms
1 + an is zero (otherwise, Log(1 + an) is undefined). By Proposition 7.1, if the
product

∏
(1 + an) converges, then we must have an → 0. For this reason, we may

assume that an → 0; in particular, we can fix m such that n > m implies |an| < 1.
Let bn = 1 + an . We need to prove that the infinite product

∏
bn converges if and

only if the series
∑∞

n=m+1 Log bn converges; moreover, if L denotes the sum of the
series, we need to prove that

∏
bn = b1 · · · bm eL . (7.6)

For n > m, let the partial products and partial sums be denoted by

pn =
n∏

k=m+1

bk and sn =
n∑

k=m+1

Log bk .

By definition of infinite product, we have

∏
bn = b1 · · · bm · ( lim pn

)
,

provided that lim pn exists and is nonzero. Also, since exp(Log z) = z for every
nonzero complex number z, by the law of exponents we have

exp(sn) = pn. (7.7)

It follows that if {sn} converges, then {pn} also converges. Moreover, if lim sn = L ,
then (7.7) shows that lim pn = eL , which is nonzero, and also implies the formula
(7.6).

Conversely, suppose that {pn} converges to a nonzero complex number; we shall
prove that {sn} also converges. Observe that the formula (7.7) implies that for n > m,
we have

sn − Log p − Log(pn/p) = 2πikn

for some integer kn (since the left-hand side exponentiates to 1).We already know that
pn → p, so it follows that Log(pn/p) converges. Thus, to prove that {sn} converges,
all we need to do is prove that {kn} converges. To this end, observe that

sn − sn−1 =
(

n∑

k=m+1

Log bk

)

−
(

n−1∑

k=m+1

Log bk

)

= Log bn.
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Thus,

Log bn = sn − sn−1 = Log(pn/p) − Log(pn−1/p) + 2πi(kn − kn−1).

By assumption, an → 0, so bn = 1 + an → 1, and we also know that pn/p → 1.
Therefore, taking n → ∞ in the previous displayed line shows that

kn − kn−1 → 0.

Now, kn − kn−1 is an integer, so it can approach 0 only if kn and kn−1 are the same
integer, say k, for all n sufficiently large. It follows that {kn} converges to k, and our
proof is complete. �

� Exercises 7.2

1. For what z ∈ C are the following products absolutely convergent?

(a)

∞∏

n=1

(
1 + zn

)
, (b)

∞∏

n=1

(
1 +

( nz

1 + n

)n)
,

(c)
∞∏

n=1

(
1 + sin2

( z

n

))
, (d)

∞∏

n=2

(
1 + zn

n log n

)
, (e)

∞∏

n=1

sin(z/n)

z/n
.

2. Here is a nice convergence test: Suppose that
∑

a2
n converges. Then

∏
(1 + an)

converges if and only if the series
∑

an converges. You may proceed as follows.

(i) Since
∑

a2
n converges, we know that an → 0, so wemay henceforth assume

that |an|2 < 1
2 for all n. Prove that

∣
∣Log(1 + an) − an

∣
∣ ≤ |an|2.

Suggestion: Use the power series expansion for Log(1 + z).
(ii) Prove that

∑
(Log(1 + an) − an) is absolutely convergent.

(iii) Prove that
∑

an converges if and only if
∑

Log(1 + an) converges, and
from this, prove the desired result.

(iv) Does the product
∏∞

n=2

(
1 + (−1)n

n

)
converge? What about the product

(
1 + 1

2

)(
1 + 1

3

)(
1 − 1

4

)(
1 + 1

5

)(
1 + 1

6

)(
1 − 1

7

)(
1 + 1

8

)(
1 + 1

9

)
· · ·?

3. Let {an} be a sequence of real numbers and assume that
∑

an converges but
∑

a2
n

diverges. In this problem we shall prove that
∏

(1 + an) diverges.

(i) Prove there is a constant C > 0 such that for all x ∈ R with |x | ≤ 1/2, we
have

x − log(1 + x) ≥ Cx2.
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(ii) Since
∑

an converges, we know that an → 0, so we may assume that |an| ≤
1/2 for all n. Using (i), prove that

∑
log(1 + an) diverges, and hence

∏
(1 +

an) diverges.
(iii) Does

∏
(1 + (−1)n−1√

n
) converge or diverge?

4. Using the formulas from Problem 5 on p. 518, prove that for |z| < 1,

∞∏

n=1

(1 − zn) = exp

(

−
∞∑

n=1

1

n

zn

1 − zn

)

,

∞∏

n=1

(1 + zn) = exp

( ∞∑

n=1

(−1)n−1

n

zn

1 − zn

)

.

5. In this problemwe prove that
∏

(1 + an) is absolutely convergent if and only if the
series

∑∞
n=m+1 Log(1 + an), starting from a suitable index m + 1, is absolutely

convergent. Proceed as follows.

(i) Prove that for every complex number z with |z| ≤ 1/2, we have

1

2
|z| ≤ |Log(1 + z)| ≤ 3

2
|z|. (7.8)

Suggestion: Look at the power series expansion for Log(1+z)
z − 1, and using

this power series, prove that for |z| ≤ 1/2, we have
∣
∣
∣Log(1+z)

z − 1
∣
∣
∣ ≤ 1

2 .

(ii) Now use (7.8) to prove the desired result.

7.3 Euler and Tannery: Product Expansions Galore

The goal of this section is to learn Tannery’s theorem for products and use it to give
two proofs of a complex version of Euler’s celebrated sine product expansion.

Euler’s product for sine

Theorem 7.6 For every complex number z, we have

sin πz = πz
∞∏

n=1

(
1 − z2

n2

)
.

Two proofs of this result, when z is real, are on pp. 386 and 393.
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7.3.1 Tannery’s Theorem for Products

See Problem 6 for another (much shorter) proof of the following theorem, one that
uses complex logarithms.

Tannery’s theorem for infinite products

Theorem 7.7 For each natural number n, let
∏mn

k=1(1 + ak(n)) be a finite product
such that mn → ∞ as n → ∞. If for each k, limn→∞ ak(n) exists and there is a
convergent series

∑∞
k=1 Mk of nonnegative real numbers such that |ak(n)| ≤ Mk

for all n ∈ N and 1 ≤ k ≤ mn, then

lim
n→∞

mn∏

k=1

(1 + ak(n)) =
∞∏

k=1

lim
n→∞(1 + ak(n));

that is, the limits and products on both sides converge and are equal.

Proof First of all, we remark that the infinite product on the right converges. Indeed,
if we put ak := limn→∞ ak(n), which exists by assumption, then taking n → ∞ in
the inequality |ak(n)| ≤ Mk , we have |ak | ≤ Mk as well. Since

∑∞
k=1 Mk is assumed

convergent, by the comparison test,
∑∞

k=1 ak converges absolutely, and hence by
Theorem 7.4, the infinite product

∏∞
k=1(1 + ak) converges.

Now to our proof. Since
∑

Mk converges, Mk → 0, so we can choose m > 1
such that for all k ≥ m, we have Mk < 1. This implies that |ak | < 1 for k ≥ m, so
1 + ak is nonzero for k ≥ m. For n large enough that mn > m, write

mn∏

k=1

(1 + ak(n)) = q(n) ·
mn∏

k=m

(1 + ak(n)) , where q(n) =
m−1∏

k=1

(1 + ak(n)).

Since q(n) is a finite product, q(n) →∏m−1
k=1 (1 + ak) as n → ∞; therefore we just

have to prove that

lim
n→∞

mn∏

k=m

(1 + ak(n)) =
∞∏

k=m

(1 + ak).

Consider the partial products

pk(n) =
k∏

j=m

(1 + a j (n)) and pk =
k∏

j=m

(1 + a j ).

Since these are finite products and a j = limn→∞ a j (n), by the algebra of limits we
have limn→∞ pk(n) = pk . Now observe that
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mn∏

j=m

(1 + a j (n)) = pmn (n) = pm(n) +
mn∑

k=m+1

(pk(n) − pk−1(n)),

since the right-hand side telescopes to pmn (n), and by the limit identity in (a) of
Lemma 7.3 on p. 542, we know that

∞∏

j=m

(1 + a j ) = pm +
∞∑

k=m+1

(pk − pk−1),

since
∏∞

j=m(1 + a j ) := limk→∞ pk . Also, by Part (b) of Lemma 7.3, we have

|pk(n) − pk−1(n)| ≤ |ak(n)| e
∑k−1

j=m |a j (n)| ≤ Mk e
∑k−1

j=m M j ≤ C Mk,

whereC = e
∑∞

j=m M j . Since
∑∞

k=m+1 C Mk converges, byTannery’s theorem for series
on p. 215 we have

lim
n→∞

mn∑

k=m+1

(pk(n) − pk−1(n)) =
∞∑

k=m+1

lim
n→∞(pk(n) − pk−1(n))

=
∞∑

k=m+1

(pk − pk−1).

Therefore,

lim
n→∞

mn∏

j=m

(1 + a j (n)) = lim
n→∞

(

pm(n) +
mn∑

k=m+1

(pk(n) − pk−1(n))

)

= pm + lim
n→∞

mn∑

k=m+1

(pk(n) − pk−1(n))

= pm +
∞∑

k=m+1

(pk − pk−1) =
∞∏

j=m

(1 + a j ),

which is what we wanted to prove. �

7.3.2 Expansion of Sine III

(Cf. [40, p. 294]). Our third proof of Euler’s infinite product for sine is a Tannery’s
theorem version of the proof found in Section5.1. First, recall from Lemma 5.1 on
p. 383 that for every z ∈ C, we have

http://dx.doi.org/10.1007/978-1-4939-6795-7_5
http://dx.doi.org/10.1007/978-1-4939-6795-7_5
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sin z = lim
n→∞ Fn(z),

where n = 2m + 1 is odd and

Fn(z) = z
m∏

k=1

(
1 − z2

n2 tan2(kπ/n)

)
.

Thus,

sin z = lim
m→∞

{

z
m∏

k=1

(
1 − z2

n2 tan2(kπ/n)

)}

= lim
m→∞ z

m∏

k=1

(1 + ak(m)) ,

where ak(m) := − z2

n2 tan2(kπ/n)
with n = 2m + 1. Second, since limz→0

tan z
z =

limz→0
sin z

z · 1
cos z = 1, we see that

lim
m→∞ ak(m) = lim

m→∞ − z2

(2m + 1)2 tan2(kπ/(2m + 1))

= lim
m→∞ − z2

k2π2
(
tan(kπ/(2m+1))

kπ/(2m+1)

)2 = − z2

k2π2
.

Third, in Lemma 4.57 on p. 368, we proved that

x < tan x, for 0 < x < π/2. (7.9)

In particular, for every z ∈ C, if n = 2m + 1 and 1 ≤ k ≤ m, then

∣
∣
∣
∣

z2

n2 tan2(kπ/n)

∣
∣
∣
∣ ≤

|z|2
n2(kπ)2/n2

= |z|2
k2π2

.

Thus, |ak(m)| ≤ Mk , where Mk = |z|2
k2π2 . Finally, since the sum

∑∞
k=1 Mk converges,

by Tannery’s theorem for infinite products, we have

sin z = lim
m→∞ z

m∏

k=1

(1 + ak(m)) = z
∞∏

k=1

lim
m→∞ (1 + ak(m)) = z

∞∏

k=1

(
1 − z2

k2π2

)
.

After replacing z by πz, we get Euler’s infinite product expansion for sin πz. This
completes the proof of Theorem 7.6. In particular, we see that

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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πi
∞∏

k=1

(
1 + 1

k2

)
= πi

∞∏

k=1

(
1 − i2

k2

)
= sin πi = e−π − eπ

2i
.

Thus, we have derived the very pretty formula

eπ − e−π

2π
=

∞∏

n=1

(
1 + 1

n2

)
.

Recall fromSection7.1 how easy it was to find that
∏∞

n=1

(
1 − 1

n2

) = 1/2, but replac-
ing −1/n2 with +1/n2 is a whole different story!

7.3.3 Expansion of Sine IV

Our fourth proof of Euler’s infinite product for sine is based on the following neat
identity involving sines instead of tangents!

Lemma 7.8 If n = 2m + 1 with m ∈ N, then for every z ∈ C,

sin nz = n sin z
m∏

k=1

(
1 − sin2 z

sin2(kπ/n)

)
.

Proof Lemma 2.27 on p. 86 shows that for each k ∈ N, 2 cos kz is a polynomial in
2 cos z of degree k (with integer coefficients, although this fact is not important for
this lemma). Technically speaking, Lemma 2.27 was proved under the assumption
that z is real, but the proof used only the angle addition formula for cosine, which
holds for complex variables aswell. In any case, dividing by 2, it follows that cos kz =
Qk(cos z), where Qk is a polynomial of degree k. In particular, replacing z by 2z and
using that cos 2z = 1 − 2 sin2 z, we see that

cos 2kz = Rk(sin
2 z),

where Rk(sin2 z) = Qk(1 − 2 sin2 z) is a polynomial of degree k in sin2 z. Now using
the addition formulas for sine, we get, for each k ∈ N,

sin(2k + 1)z − sin(2k − 1)z = 2 sin z · cos(2kz) = 2 sin z · Rk(sin
2 z). (7.10)

We claim that for every m = 0, 1, 2, . . ., we have

sin(2m + 1)z = sin z · Pm(sin2 z), (7.11)

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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where Pm is a polynomial of degree m. Indeed, we can write sin(2m + 1)z as the
telescoping sum

sin(2m + 1)z = sin z +
m∑

k=1

[
sin(2k + 1)z − sin(2k − 1)z

]
.

By (7.10), each difference sin(2k + 1)z − sin(2k − 1)z can be written as sin z times
a polynomial of degree k in sin2 z. Factoring out the common factor sin z, we get
(7.11). Now observe that sin(2m + 1)z is zero when z = zk with zk = kπ/(2m + 1),
where k = 1, 2, . . . , m. Also observe that since 0 < z1 < z2 < · · · < zm < π/2, the
m values sin zk are distinct positive values. Hence, according to (7.11), Pm(w) = 0
at the m distinct values w = sin2 zk , k = 1, 2, . . . , m. Thus, as a consequence of
the fundamental theorem of algebra, the polynomial Pm(w) can be factored into a
constant times

(w − z1)(w − z2) · · · (w − zm) =
m∏

k=1

(
w − sin2

(
kπ

2m + 1

))
.

Factoring out the sin2 terms and putting n = 2m + 1, we get

Pm(w) = a
m∏

k=1

(
1 − w

sin2(kπ/n)

)
,

for some constant a. Setting w = sin2 z, we obtain

sin(2m + 1)z = sin z · Pm(sin2 z) = a sin z ·
m∏

k=1

(
1 − sin2 z

sin2(kπ/n)

)
.

Since sin(2m + 1)z/ sin z has limit equal to 2m + 1 as z → 0, it follows that a =
2m + 1. This completes the proof of the lemma. �

We are now ready to give our fourth proof of Euler’s infinite product for sine. To
this end, we let n ≥ 3 be odd, and we replace z by z/n in Lemma 7.8 to get

sin z = n sin(z/n)

m∏

k=1

(
1 − sin2(z/n)

sin2(kπ/n)

)
,

where n = 2m + 1. Since

lim
m→∞(2m + 1) sin(z/(2m + 1)) = lim

m→∞ z
sin(z/(2m + 1))

z/(2m + 1)
= z,

we have
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sin z = z lim
m→∞

m∏

k=1

(
1 − sin2(z/n)

sin2(kπ/n)

)
= z lim

m→∞

m∏

k=1

(1 + ak(m)) ,

where ak(m) := − sin2(z/n)

sin2(kπ/n)
with n = 2m + 1. Since we are taking m → ∞, we can

always make sure that n = 2m + 1 > |z|, which we henceforth assume. Now recall
from Lemmas 5.6 and 5.7 that there is a constant c > 0 such that for every z ∈ C

with (say) |z| ≤ π
2 , we have c |z| ≤ | sin z|, and for every w ∈ C with |w| ≤ 1, we

have | sinw| ≤ 6
5 |w|. It follows that for all k = 1, 2, . . . , m,

∣
∣
∣
∣
sin2(z/n)

sin2(kπ/n)

∣
∣
∣
∣ ≤

(6/5|z/n|)2
c2(kπ/n)2

= 36|z|2
25c2π2

· 1

k2
=: Mk .

Since the sum
∑∞

k=1 Mk converges, and

lim
m→∞ ak(m) = − lim

m→∞
sin2(z/(2m + 1))

sin2(kπ/(2m + 1))

= − lim
m→∞

z2

k2π2
·
(
sin(z/(2m+1))

z/(2m+1)

)2

(
sin(kπ/(2m+1))

kπ/(2m+1)

)2 = − z2

k2π2
,

Tannery’s theorem for infinite products implies that

sin z = z lim
m→∞

m∏

k=1

(1 + ak(m)) = z
∞∏

k=1

lim
m→∞ (1 + ak(m)) = z

∞∏

k=1

(
1 − z2

k2π2

)
.

Finally, replacing z by πz completes Proof IV of Euler’s product formula.

7.3.4 Euler’s Cosine Expansion

We can derive an infinite product expansion for the cosine function easily from the
sine expansion. In fact, using the double angle formula for sine, we get

cosπz = sin 2πz

2 sin πz
=

2πz ·
∞∏

n=1

(
1 − 4z2

n2

)

2πz ·
∞∏

n=1

(
1 − z2

n2

) =

∞∏

n=1

(
1 − 4z2

n2

)

∞∏

n=1

(
1 − z2

n2

) .

The top product can be split into a product of terms with even denominators and a
product of terms with odd denominators:

http://dx.doi.org/10.1007/978-1-4939-6795-7_5
http://dx.doi.org/10.1007/978-1-4939-6795-7_5
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∞∏

n=1

(
1 − 4z2

(2n − 1)2

) ∞∏

n=1

(
1 − 4z2

(2n)2

)
=

∞∏

n=1

(
1 − 4z2

(2n − 1)2

) ∞∏

n=1

(
1 − z2

n2

)
,

from which we get (see Problem 3 for three more proofs)

cosπz =
∞∏

n=1

(
1 − 4z2

(2n − 1)2

)
.

� Exercises 7.3

1. Put z = 1/4 into the cosine expansion to derive the following elegant product for√
2:

√
2 = 2

1
· 2
3

· 6
5

· 6
7

· 10
9

· 10
11

· · · .

Compare this with Wallis’s formula:

π

2
= 2

1
· 2
3

· 4
3

· 4
5

· 6
5

· 6
7

· 8
7

· 8
9

· 10
9

· 10
11

· · · .

Thus, the product for
√
2 is obtained fromWallis’s formula for π/2 by removing

the factors with numerators that are multiples of 4.
2. (Infinite products for hyperbolic functions) Prove that

sinh πz = πz
∞∏

k=1

(
1 + z2

k2

)
and cosh πz =

∞∏

n=1

(
1 + z2

(2n − 1)2

)
.

3. (Euler’s infinite product for cosπz) Here are three more proofs!

(a) Replace z by −z + 1/2 in the sine product to derive the cosine product.
Suggestion: Begin by showing that

(

1 − (−z + 1
2 )

2

n2

)

=
(
1 − 1

4n2

)
·
(
1 + 2z

2n − 1

)(
1 − 2z

2n + 1

)
.

(b) For our second proof, show that for n even, we can write

cos z =
n−1∏

k=1

(
1 − sin2(z/n)

sin2(kπ/2n)

)
, k = 1, 3, 5, . . . , n − 1.

Using Tannery’s theorem, deduce the cosine expansion.
(c) Write cos z = limn→∞ Gn(z), where
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Gn(z) = 1

2

{(
1 + i z

n

)n

+
(
1 − i z

n

)n}
.

Prove that if n = 2m with m ∈ N, then

Gn(z) =
m∏

k=1

(
1 − z2

n2 tan2((2k − 1)π/(2n))

)
.

Using Tannery’s theorem, deduce the cosine expansion.

4. Prove that

1 − sin z =
(
1 − 2z

1

)2 (
1 + 2z

3

)2 (
1 − 2z

5

)2 (
1 + 2z

7

)2

· · · .

Suggestion: First show that 1 − sin z = 2 sin2( π
4 − z

2 ).
5. Find the following limits.

(a) lim
n→∞

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝1 − 1

4n2 log
(
1 +

(
2
2n

)2)

⎞

⎟
⎠ ·
⎛

⎜
⎝1 − 1

4n2 log
(
1 +

(
3
2n

)2)

⎞

⎟
⎠ ·

⎛

⎜
⎝1 − 1

4n2 log
(
1 +

(
4
2n

)2)

⎞

⎟
⎠ · · ·

⎛

⎜
⎝1 − 1

4n2 log
(
1 +

(
n
2n

)2)

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
,

(b) lim
n→∞

⎧
⎨

⎩

⎛

⎝1 + 1

4n2 sin
(
4·12−1
4n2−1

)

⎞

⎠ ·
⎛

⎝1 + 1

4n2 sin
(
4·22−1
4n2−1

)

⎞

⎠ · · ·
⎛

⎝1 + 1

4n2 sin
(
4·n2−1
4n2−1

)

⎞

⎠

⎫
⎬

⎭
.

6. (Another proof of Tannery’s theorem) Here we prove Tannery’s theorem for
products using complex logarithms. Assume the hypotheses and notation of
Theorem 7.7. Since

∑
Mk converges, Mk → 0, so we can choose m such that for

all k ≥ m, we have Mk < 1/2. Then as in the proof of Theorem 7.7, we just have
to show that

lim
n→∞

mn∏

k=m

(1 + ak(n)) =
∞∏

k=m

(1 + ak). (7.12)

(i) Show that Tannery’s theorem for series implies that

lim
n→∞

mn∑

k=m

Log(1 + ak(n)) =
∞∑

k=m

Log(1 + ak).

Suggestion: Use the inequality (7.8) in Problem 5 on p. 547.
(ii) From (i), deduce (7.12).
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7. (Tannery’s theorem II) For each natural number n, let
∏∞

k=1(1 + ak(n)) be a
convergent infinite product. If for each k, limn→∞ ak(n) exists, and there is a
series

∑∞
k=1 Mk of nonnegative real numbers such that |ak(n)| ≤ Mk for all k, n,

prove that

lim
n→∞

∞∏

k=1

(1 + ak(n)) =
∞∏

k=1

lim
n→∞(1 + ak(n));

that is, both sides are well defined (the limits and products converge) and are
equal.

7.4 Partial Fraction Expansions of the Trigonometric
Functions

The goal of this section is to prove partial fraction expansions for the trig functions.
For example, we’ll prove . . .

Euler’s partial fraction( π
sin πz )

Theorem 7.9 We have

π

sin πz
= 1

z
+

∞∑

n=1

(−1)n 2z

z2 − n2
for all z ∈ C \ Z.

We also get our third proof of the Gregory–Leibniz–Madhava formula for π/4.

7.4.1 Partial Fraction Expansion of the Cotangent

We shall prove the following theorem, from which we’ll derive the sine expansion
stated above.

Euler’s partial fraction(πz cot πz)

Theorem 7.10 We have

πz cot πz = 1 +
∞∑

n=1

2z2

z2 − n2
for all z ∈ C \ Z.

Our proof of Euler’s expansion of the cotangent is based on the following lemma.
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Lemma 7.11 For every noninteger complex number z and n ∈ N, we have

πz cot πz = πz

2n
cot

πz

2n
+

2n−1−1∑

k=1

πz

2n

(
cot

π(z + k)

2n
+ cot

π(z − k)

2n

)
− πz

2n
tan

πz

2n
.

Proof Using the double angle formula

2 cot 2z = 2
cos 2z

sin 2z
= cos2 z − sin2 z

cos z sin z
= cot z − tan z,

we see that

cot 2z = 1

2

(
cot z − tan z

)
.

Replacing z with πz/2, we get

cot πz = 1

2

(
cot

πz

2
− tan

πz

2

)
. (7.13)

Multiplying this equality by πz proves our lemma for n = 1. In order to proceed by
induction, we note that since tan z = − cot(z ± π/2), we have

cot πz = 1

2

(
cot

πz

2
+ cot

π(z ± 1)

2

)
. (7.14)

This is the main formula on which induction may be applied to prove our lemma.
For instance, let’s take the case n = 2. Considering the positive sign in the second
cotangent, we obtain

cot πz = 1

2

(
cot

πz

2
+ cot

π(z + 1)

2

)
.

Applying (7.14) to each cotangent on the right of this equation, using the plus sign
for the first and the minus sign for the second, we get

cot πz = 1

22

{(
cot

πz

22
+ cot

π( z
2 + 1)

2

)
+
(
cot

π(z + 1)

22
+ cot

π( z+1
2 − 1)

2

)}

= 1

22

{
cot

πz

22
+ cot

π(z + 2)

22
+ cot

π(z + 1)

22
+ cot

π(z − 1)

22

}
.

Bringing the second cotangent on the right to the end, we see that



558 7 More on the Infinite: Products and Partial Fractions

cot πz = 1

22
cot

πz

22
+ 1

22

{
cot

π(z + 1)

22
+ cot

π(z − 1)

22

}
+ 1

22
cot
(πz

22
+ π

2

)
.

The last term is exactly −1/(22) tan πz/22, so our lemma is proved for n = 2. Con-
tinuing by induction proves our lemma for general n. �

Fix a noninteger z; we shall prove Euler’s expansion for the cotangent. Note that
limn→∞ πz

2n tan( πz
2n ) = 0 · tan 0 = 0, and since

lim
w→0

w cotw = lim
w→0

w

sinw
· cosw = 1 · 1 = 1, (7.15)

we have limn→∞ πz
2n cot πz

2n = 1. Therefore, taking n → ∞ in the formula from the
preceding lemma, Lemma 7.11, we conclude that

πz cot πz = 1 + lim
n→∞

{ 2n−1−1∑

k=1

πz

2n

(
cot

π(z + k)

2n
+ cot

π(z − k)

2n

)}

= 1 + lim
n→∞

2n−1−1∑

k=1

ak(n),

where

ak(n) = πz

2n

(
cot

π(z + k)

2n
+ cot

π(z − k)

2n

)
.

We shall apply Tannery’s theorem to this sum. To this end, observe that from (7.15),

lim
n→∞

πz

2n
cot

π(z + k)

2n
= z

z + k
lim

n→∞
π(z + k)

2n
cot

π(z + k)

2n
= z

z + k
,

and in a similar way,

lim
n→∞

πz

2n
cot

π(z − k)

2n
= z

z − k
.

Thus,

lim
n→∞ ak(n) = z

z + k
+ z

z − k
= 2z2

z2 − k2
.

Hence, Tannery’s theorem gives Euler’s cotangent expansion

πz cot πz = 1 +
∞∑

k=1

2z2

z2 − k2
,

provided that we can show that |ak(n)| ≤ Mk , where the constants Mk satisfy∑
Mk < ∞. To bound each ak(n), we use the formula
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cot z + cotw = sin(z + w)

sin z sinw
,

which you should be able to prove. It follows that

ak(n) = πz

2n
· sin πz

2n−1

sin π(z+k)

2n · sin π(z−k)

2n

.

Choose N ∈ N such that for all n > N , we have |πz/2n| ≤ 1/4. Then for n > N ,
|πz/2n−1| ≤ 1/2, so according to Lemma 5.7 on p. 402,

∣
∣
∣sin

πz

2n−1

∣
∣
∣ ≤ 6

5
· π |z|
2n−1

.

Also, for n > N and 1 ≤ k ≤ 2n−1, we have

∣
∣
∣
∣
π(z ± k)

2n

∣
∣
∣
∣ ≤

π |z|
2n

+ π 2n−1

2n
≤ π

4
+ π

2
= 3π

4
.

Thus, by Lemma 5.6 on p. 399, for some c > 0,

c

∣
∣
∣
∣
π(z ± k)

2n

∣
∣
∣
∣ ≤

∣
∣
∣
∣sin

π(z ± k)

2n

∣
∣
∣
∣ .

Hence, for n > N and 1 ≤ k ≤ 2n−1, we have

|ak(n)| ≤ π |z|
2n

·
(
6

5
· π |z|
2n−1

)
·
(
1

c

2n

|π(z + k)|
)

·
(
1

c

2n

|π(z − k)|
)

= 12 |z|2
5 c2

· 1

|z2 − k2| =: Mk .

We leave you to prove that
∑∞

k=1 Mk converges, which justifies the assumptions of
Tannery’s theorem II in this case, and hence completes the proof of Euler’s cotangent
expansion.

7.4.2 Partial Fraction Expansions of the Other
Trig Functions

We shall leave most of the details to the exercises. Using the formula (see (7.13))

π tan
πz

2
= π cot

πz

2
− 2π cot πz.

http://dx.doi.org/10.1007/978-1-4939-6795-7_5
http://dx.doi.org/10.1007/978-1-4939-6795-7_5
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and substituting in the partial fraction expansion of the cotangent gives, as the diligent
reader will show in Problem 1, for z ∈ C not an odd integer,

π tan
πz

2
=

∞∑

n=0

4z

(2n + 1)2 − z2
. (7.16)

To derive the partial fraction expansion for π
sin πz mentioned at the very beginning of

this section, we first derive the identity

1

sin z
= cot z + tan

z

2
.

To see this, observe that

cot z + tan
z

2
= cos z

sin z
+ sin(z/2)

cos(z/2)
= cos z cos(z/2) + sin z sin(z/2)

sin z cos(z/2)

= cos(z − (z/2))

sin z cos(z/2)
= cos(z/2)

sin z cos(z/2)
= 1

sin z
.

This identity, together with the partial fraction expansions of the tangent and cotan-
gent and a little algebra, which the extremely diligent reader will supply in Problem
1, implies that for noninteger z ∈ C,

π

sin πz
= 1

z
+

∞∑

n=1

(−1)n 2z

z2 − n2
. (7.17)

Finally, the incredibly awesome diligent reader � will supply the details for the
following secant expansion: For z ∈ C not an odd integer,

π

cosπz
= 4

∞∑

n=0

(−1)n 2n + 1

(2n + 1)2 − 4z2
. (7.18)

Finally, see Problem 2 for Proof III of Gregory–Leibniz–Madhava.

� Exercises 7.4

1. Fill in the details for the proofs of (7.16) and (7.17). For (7.18), first show that

π

sin πz
= 1

z
−
(

1

z − 1
+ 1

z + 1

)
+
(

1

z − 2
+ 1

z + 2

)
− · · · .

Replacing z with 1
2 − z and doing some algebra, derive the expansion (7.18).
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2. (Gregory–Leibniz–Madhava’s formula for π/4, Proof III) Derive the
Gregory–Leibniz–Madhava series π

4 =∑∞
n=1

(−1)n−1

2n−1 = 1 − 1
3 + 1

4 − 1
5 + · · · by

evaluating the partial fractions for πz cot πz, π/ sin πz, and π/ cosπz, at certain
values of z.

3. Derive the following formulas for π:

π = z tan
(π

z

)
·
[
1 − 1

z − 1
+ 1

z + 1
− 1

2z − 1
+ 1

2z + 1
− + · · ·

]

and

π = z sin
(π

z

)
·
[
1 + 1

z − 1
− 1

z + 1
− 1

2z − 1
+ 1

2z + 1
+ − − + + · · ·

]
.

Put z = 3, 4, 6 to derive some pretty formulas.

7.5 � More Proofs that π2/6 = ∑∞
n=1 1/n

2

In this section, we continue our discussions from Sections5.2 and 6.10, concerning
the Basel problem of determining the sum of the reciprocals of the squares. A good
reference for this material is [118], and for more on Euler, see [10].

7.5.1 Proof VIII of Euler’s Formula For π2/6

(Cf. [47, p. 74].) One can consider this proof a “logarithmic” version of Euler’s
original (third) proof of the formula for π2/6, which we explained in the introduction
to Chapter5 on p. 378. As with Euler, we begin with Euler’s sine expansion restricted
to 0 ≤ x < 1:

sin πx

πx
=

∞∏

n=1

(
1 − x2

n2

)
.

However, in contrast to Euler, we take logarithms of both sides:

log

(
sin πx

πx

)
= log

(

lim
m→∞

m∏

n=1

(
1 − x2

n2

))

= lim
m→∞ log

(
m∏

n=1

(
1 − x2

n2

))

= lim
m→∞

m∑

n=1

log

(
1 − x2

n2

)
,

where in the second equality we can pull out the limit because log is continuous, and
at the last step we used that logarithms take products to sums. Thus, we have shown

http://dx.doi.org/10.1007/978-1-4939-6795-7_5
http://dx.doi.org/10.1007/978-1-4939-6795-7_6
http://dx.doi.org/10.1007/978-1-4939-6795-7_5
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that

log

(
sin πx

πx

)
=

∞∑

n=1

log

(
1 − x2

n2

)
, 0 ≤ x < 1.

Recalling that log(1 + t) =∑∞
m=1

(−1)m−1

m tm , we see that

log(1 − t) = −
∞∑

m=1

1

m
tm,

so replacing t by x2/n2, we obtain

log

(
sin πx

πx

)
= −

∞∑

n=1

∞∑

m=1

1

m

x2m

n2m
, 0 ≤ x < 1.

Since 0 ≤ x < 1, the geometric series
∑∞

m=1 |x |2m converges, so in view of the
inequality 1

mn2m ≤ 1
n2 , we have

∞∑

n=1

∞∑

m=1

∣
∣
∣
∣
1

m

x2m

n2m

∣
∣
∣
∣ ≤

∞∑

n=1

∞∑

m=1

|x |2m

n2
= ζ(2)

∞∑

m=1

|x |2m < ∞.

Hence, by Cauchy’s double series theorem on p. 477, we can iterate sums and write

− log

(
sin πx

πx

)
=

∞∑

m=1

( ∞∑

n=1

1

n2m

)
x2m

m
(7.19)

= x2
∞∑

n=1

1

n2
+ x4

2

∞∑

n=1

1

n4
+ x6

3

∞∑

n=1

1

n6
+ · · · .

On the other hand, since

sin πx

πx
= 1 − g(x) , where g(x) = π2x2

3! − π4x4

5! + π6x6

7! − · · · ,

we have

− log

(
sin πx

πx

)
= − log (1 − g(x))

= g(x) + 1

2
g(x)2 + 1

3
g(x)3 + · · ·

= π2

3! x2 +
(

−π4

5! + π4

2 · (3!)2
)

x4 +
(

π6

7! − π6

3! · 5! + π6

3 · (3!)3
)

x6 + · · · ,

(7.20)
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where we formally multiplied g(x)2, g(x)3, and so forth, collecting like powers of
x , which is valid by the power series composition theorem on p. 499. Equating this
with (7.19), we obtain

π2

3! x2 +
(

−π4

5! + π4

2 · (3!)2
)

x4+
(

π6

7! − π6

3! · 5! + π6

3 · (3!)3
)

x6 + · · ·

= x2
∞∑

n=1

1

n2
+ x4

2

∞∑

n=1

1

n4
+ x6

3

∞∑

n=1

1

n6
+ · · · ,

or after simplification,

π2

6
x2 + π4

180
x4 + π6

2835
x6 + · · · = x2

∞∑

n=1

1

n2
+ x4

2

∞∑

n=1

1

n4
+ x6

3

∞∑

n=1

1

n6
+ · · · .

(7.21)

By the identity theorem, the coefficients of xk must be identical. Thus, comparing
the x2 terms, we get Euler’s formula

π2

6
=

∞∑

n=1

1

n2
,

comparing the x4 terms, we get

π4

90
=

∞∑

n=1

1

n4
, (7.22)

and finally, comparing the x6 terms, we get

π6

945
=

∞∑

n=1

1

n6
. (7.23)

Now what if we took more terms in (7.19) and (7.20), say to x2k? Could we then
find a formula for

∑
1/n2k? The answer is certainly in the affirmative, but the work

required to get a formula is rather intimidating; see Problem 1 for a formula when
k = 4. Of course, in Section5.3 (Theorem 5.9 on p. 412) we found formulas for
ζ(2k) for all k. In Section7.7 we will again find formulas for ζ(2k) for all k.

http://dx.doi.org/10.1007/978-1-4939-6795-7_5
http://dx.doi.org/10.1007/978-1-4939-6795-7_5
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7.5.2 Proof IX

(Cf. [49, 132].) For this proof, we start with Lemma 7.8 on p. 551, which states that
if n = 2m + 1 with m ∈ N, then

sin nz = n sin z
m∏

k=1

(
1 − sin2 z

sin2(kπ/n)

)
. (7.24)

We fix an m; later we shall take m → ∞. We now substitute the expansion

sin nz = nz − n3z3

3! + n5z5

5! − + · · ·

into the left-hand side of (7.24), and the expansions

sin z = z − z3

3! + z5

5! − + · · ·

and

sin2 z = 1

2
(1 − cos 2z) = z2 − 2

3
z4 + − · · ·

into the right-hand side of (7.24). Then multiplying everything out and simplifying,
we obtain (after a lot of algebra)

nz − n3 z3

3! + − · · · = nz +
(

−n

6
− n

m∑

k=1

1

sin2(kπ/n)

)

z3 + · · · .

Comparing the z3 terms, by the identity theorem we conclude that

−n3

6
= −n

6
− n

m∑

k=1

1

sin2(kπ/n)
,

which can be written in the form

1

6
−

m∑

k=1

1

n2 sin2(kπ/n)
= 1

6n2
. (7.25)

To establish Euler’s formula, we apply Tannery’s theorem to this sum. First, it follows
from Lemma 5.6 on p. 399 that for some positive constant c,

c |z| ≤ | sin z| for |z| ≤ π/2.

For 0 ≤ k ≤ m = (n − 1)/2, we have kπ/n < π/2, so for such k,

http://dx.doi.org/10.1007/978-1-4939-6795-7_5
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c · kπ

n
≤ sin

kπ

n
,

which gives
1

n2
· 1

sin2(kπ/n)
≤ 1

n2
· n2

(cπ)2k2
= 1

c2π2
· 1

k2
.

By the p-test, we know that the sum
∑∞

k=1
1

c2π2 · 1
k2 converges. Second, since

n sin(x/n) → x as n → ∞, we have

lim
n→∞

1

n2 sin2(kπ/n)
= 1

k2π2
.

Thus, taking m → ∞ in (7.25), Tannery’s theorem gives

1

6
−

∞∑

k=1

1

k2π2
= 0,

which is equivalent to Euler’s formula. See Problem 7.5 for a proof that uses (7.25)
but doesn’t use Tannery’s theorem.

� Exercises 7.5

1. Find the sum
∑∞

n=1
1
n8 using Euler’s method, that is, in the same manner as we

derived (7.22) and (7.23).
2. (Cf. [49, 132]) (Euler’s sum, Proof X) Instead of using Tannery’s theorem to

derive Euler’s formula from (7.25), we can proceed as follows.

(i) Fix M ∈ N and let m > M . Using (7.25), prove that for n = 2m + 1,

1

6
−

M∑

k=1

1

n2 sin2(kπ/n)
= 1

n2
+

m∑

k=M+1

1

n2 sin2(kπ/n)
.

(ii) Using that c x ≤ sin x for 0 ≤ x ≤ π/2 with c > 0, prove that

0 ≤ 1

6
−

M∑

k=1

1

n2 sin2(kπ/n)
≤ 1

n2
+ 1

c2π2

∞∑

k=M+1

1

k2
.

(iii) Finally, letting m → ∞ (so that n = 2m + 1 → ∞ as well) and then letting
M → ∞, establish Euler’s formula.

3. (Cf. [56])Let S ⊆ Ndenote the set of square-free natural numbers; seeSection4.8.2
on p. 318 for a review of square-free numbers.

(i) Let N ∈ N and prove that

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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∑

n<N

1

n2
≤
(
∑

k<N

1

k4

)(
∑

n∈S , n<N

1

n2

)

≤
∞∑

n=1

1

n2
.

(ii) If
∑

n∈S
1
n2 := limN→∞

∑
n∈S , n<N

1
n2 , using (i), prove that

∑

n∈S

1

n2
= 15

π2
.

4. (Cf. [56]) Let A ⊆ N denote the set of natural numbers that are not perfect squares.
With

∑
n∈A

1
n2 := limN→∞

∑
n∈A , n<N

1
n2 , prove that

∑

n∈A

1

n2
= π2

90
(15 − π2).

7.6 � Riemann’s Remarkable ζ-Function,
Probability, and π2/6

We have already seen the Riemann zeta function at work in many examples. In this
section we’re going to look at some of its relationships with number theory; this will
give just a hint as to the great importance of the zeta function in mathematics. As a
consolation prize to our discussion on Riemann’s ζ-function we’ll find an incredible
connection between probability theory and π2/6.

7.6.1 The Riemann Zeta Function and Number Theory

We begin with the following theorem proved by Euler that connects ζ(z) =∑∞
n=1

1
nz

to prime numbers. See Problem 1 for a proof using the ubiquitous Tannery’s theorem!

Euler and Riemann

Theorem 7.12 For all z ∈ C with Re z > 1, we have

ζ(z) =
∏(

1 − 1

pz

)−1 =
∏ pz

pz − 1
,

where the infinite product is over all prime numbers p ∈ N.

Proof We give two proofs.
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Proof I: Let r > 1be arbitrary and letRe z ≥ r . Let 2< N ∈ N and let 2< 3< · · ·
< m < N be all the primes less than N . Observe that

∏

p<N

(
1 − 1

pz

)−1

=
(
1 − 1

2z

)−1(
1 − 1

3z

)−1

· · ·
(
1 − 1

mz

)−1

=
( ∞∑

i=0

1

2i z

)⎛

⎝
∞∑

j=0

1

3 j z

⎞

⎠ · · ·
( ∞∑

k=0

1

mkz

)

= lim
N→∞

(
N∑

i=0

1

2i z

)⎛

⎝
N∑

j=0

1

3 j z

⎞

⎠ · · ·
(

N∑

k=0

1

mkz

)

= lim
N→∞

⎛

⎝
N∑

i=0

N∑

j=0

· · ·
N∑

k=0

1

2i z3 j z · · · mkz

⎞

⎠ . (7.26)

By unique factorization, every natural number n < N can be written as n =
2i 3 j · · · mk for some nonnegative integers i, j, . . . , k; for such a natural number,
we have

nz = (2i 3 j · · · mk
)z = 2i z 3 j z · · · mkz .

It follows that
N∑

i=0

N∑

j=0

· · ·
N∑

k=0

1

2i z3 j z · · · mkz

contains the numbers 1, 1
2z ,

1
3z ,

1
4z ,

1
5z . . . , 1

(N−1)z , along with some other numbers 1
nz

with n ≥ N having prime factors 2, 3, . . . , m. Thus,

N∑

i=0

N∑

j=0

· · ·
N∑

k=0

1

2i z3 j z · · · mkz
=

N−1∑

n=1

1

nz
+
∑ 1

nz
k

, (7.27)

where N ≤ n1 < n2 < n3 < · · · is a finite subsequence of natural numbers with
prime factors in {2, 3, . . . , m}. Observe that

∣
∣
∣
∣
∑ 1

nz
k

∣
∣
∣
∣ ≤

∞∑

n=N

∣
∣
∣
1

nz

∣
∣
∣ ≤

∞∑

n=N

1

nr
,

since Re z ≥ r . By the p-test (with p = r > 1),
∑ 1

nr converges, so by Cauchy’s
criterion for series, limN→∞

∑∞
n=N

1
nr = 0. From (7.27) we conclude that
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lim
N→∞

⎛

⎝
N∑

i=0

N∑

j=0

· · ·
N∑

k=0

1

2i z3 j z · · · mkz

⎞

⎠ =
∞∑

n=1

1

nz
= ζ(z),

and then from (7.26) we get

lim
N→∞

∏

p<N

(
1 − 1

pz

)−1

= ζ(z).

Proof II: Here’s Euler’s beautiful proof using a sieving method made famous by
Eratosthenes of Cyrene (276 B.C.–194 B.C.). First we get rid of all the numbers in
ζ(z) that have factors of 2: Observe that

1

2z
ζ(z) = 1

2z

∞∑

n=1

1

nz
=

∞∑

n=1

1

(2n)z
,

and therefore,

(
1 − 1

2z

)
ζ(z) =

∞∑

n=1

1

nz
−

∞∑

n=1

1

(2n)z
=
∑

n ; 2/|n

1

nz
.

Next, we get rid of all the numbers in
(
1 − 1

2z

)
ζ(z) that have factors of 3: Observe

that
1

3z

(
1 − 1

2z

)
ζ(z) = 1

3z

∑

n ; 2/|n

1

nz
=
∑

n ; 2/|n

1

(3n)z
,

and therefore,

(
1 − 1

3z

)(
1 − 1

2z

)
ζ(z) =

(
1 − 1

2z

)
ζ(z) − 1

3z

(
1 − 1

2z

)
ζ(z)

=
∑

n ; 2/|n

1

nz
−
∑

n ; 2/|n

1

(3n)z

=
∑

n ; 2,3/|n

1

nz
.

Repeating this argument, we get, for every prime q:

⎧
⎨

⎩

∏

p prime≤q

(
1 − 1

pz

)
⎫
⎬

⎭
ζ(z) =

∑

n ; 2,3,...,q/|n

1

nz
,
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where the sum is over all n ∈ N that are not divisible by the primes from 2 to q.
Therefore, choosing r > 1 such that |z| > r , we have

∣
∣
∣
∣
∣
∣

⎧
⎨

⎩

∏

p prime≤q

(
1 − 1

pz

)
⎫
⎬

⎭
ζ(z) − 1

∣
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
∣

∑

n ; n �=1 & 2,3,...,q/|n

1

nz

∣
∣
∣
∣
∣
∣

≤
∑

n ; n �=1 & 2,3,...,q/|n

1

nr
≤

∞∑

n=q

1

nr
.

By Cauchy’s criterion for series, limq→∞
∑∞

n=q
1
nr = 0, so we conclude that

⎧
⎨

⎩

∏

p prime

(
1 − 1

pz

)
⎫
⎬

⎭
ζ(z) = 1,

which is equivalent to Euler’s product formula. �

In particular, since we know that ζ(2) = π2/6, we have

π2

6
=
∏ p2

p2 − 1
= 22

22 − 1
· 32

32 − 1
· 52

52 − 1
· · · .

Our next connection of the zeta function with number theory involves the follow-
ing strange but interesting, function, defined for n ∈ N:

μ(n) =

⎧
⎪⎨

⎪⎩

1 if n = 1

(−1)k if n = p1 p2 · · · pk is a product k distinct prime numbers,

0 otherwise.

This function is called theMöbius function after August Möbius (1790–1868), who
introduced the function in 1831. Some of its values are

μ(1) = 1 , μ(2) = −1 , μ(3) = −1 , μ(4) = 0 , μ(5) = −1 , μ(6) = 1 , . . . .

Theorem 7.13 For all z ∈ C with Re z > 1, we have

1

ζ(z)
=
∏(

1 − 1

pz

)
=

∞∑

n=1

μ(n)

nz
.
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Proof Let r > 1 be arbitrary and let Re z ≥ r . Let 2 < N ∈ N and let 2 < 3 < · · · <

m < N be all the primes less than N . Then observe that the product

∏

n<N

(
1 − 1

pz

)
=
(
1 + −1

2z

)(
1 + −1

3z

)(
1 + −1

5z

)
· · ·
(
1 + −1

mz

)
,

when multiplied out, contains 1 and all numbers of the form

(−1

pz
1

)
·
(−1

pz
2

)
·
(−1

pz
3

)
· · ·
(−1

pz
k

)
= (−1)k

pz
1 pz

2 · · · pz
k

= (−1)k

nz
, n = p1 p2 . . . pk,

where p1 < p2 < · · · < pk < N are distinct primes. In particular,
∏

n<N

(
1 − 1

pz

)

contains the numbers μ(n)

nz for n = 1, 2, . . . , N − 1 (along with all other numbers
μ(n)

nz with n ≥ N having prime factors 2, 3, . . . , m), so

∣
∣
∣

∞∑

n=1

μ(n)

nz
−
∏

p<N

(
1 − 1

pz

)∣∣
∣ ≤

∞∑

n=N

∣
∣
∣
μ(n)

nz

∣
∣
∣ ≤

∞∑

n=N

1

nr
,

since Re z ≥ r . By the p-test (with p = r > 1),
∑ 1

nr converges, so the right-hand
side tends to zero as N → ∞. This completes our proof. �

See the exercises for other neat connections of ζ(z) with number theory.

7.6.2 The Eta Function

A function related to the zeta function is the “alternating zeta function” or Dirichlet
eta function:

η(z) :=
∞∑

n=1

(−1)n−1

nz
.

In the next section we find the values of the eta function at positive even integers. To
do so, we write the eta function in terms of the zeta function as follows.

Theorem 7.14 We have

η(z) = (1 − 21−z)ζ(z) , Re z > 1.

Proof Splitting into sums over even and odd values of n, we get
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∞∑

n=1

(−1)n−1

nz
= −

∞∑

n=1

1

(2n)z
+

∞∑

n=1

1

(2n − 1)z

= −
∞∑

n=1

1

2z

1

nz
+

∞∑

n=1

1

(2n − 1)z

= −2−zζ(z) +
∞∑

n=1

1

(2n − 1)z
.

On the other hand, breaking the zeta function into sums of even and odd numbers,
we get

ζ(z) =
∞∑

n=1

1

nz
=

∞∑

n=1

1

(2n)z
+

∞∑

n=1

1

(2n − 1)z
= 2−zζ(z) +

∞∑

n=1

1

(2n − 1)z
.

Substituting this expression into the previous one, we see that

∞∑

n=1

(−1)n−1

nz
= −2−zζ(z) + ζ(z) − 2−zζ(z),

which is equivalent to the expression that we desired to prove. �

We now consider a shocking connection between probability theory, prime num-
bers, divisibility, and π2/6 (cf. [2, 116]).1 Question: What is the probability that a
natural number, chosen at random, is square-free? Answer (drum roll please): 6/π2,
a result that follows from work of Dirichlet in 1849 [131, p. 324], [102, p. 272].
Here’s another Question: What is the probability that any two natural numbers, cho-
sen at random, are relatively prime? Answer (drum roll please): 6/π2, first proved by
Leopold Gegenbauer (1849–1903) [102, p. 272], who proved it in 1885 (Fig. 7.1).

1 2

3

4

5 6

7

8

3 5

8

7

6 1

2

4

Fig. 7.1 We have two bags, each containing all the natural numbers. We reach into the first bag
and grab a number; what is the probability that the number is square-free? We throw that number
back into the first bag, and then we draw a number from each bag; what is the probability the two
numbers drawn are relatively prime?

1Such shocking connections in science perhaps made Albert Einstein (1879–1955) state that “the
scientist’s religious feeling takes the form of a rapturous amazement at the harmony of natural law,
which reveals an intelligence of such superiority that, compared with it, all the systematic thinking
and acting of human beings is an utterly insignificant reflection” [112].
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7.6.3 Elementary Probability Theory

You will prove these results with complete rigor in Problems 11 and 10. However,
we are going to derive them intuitively—not rigorously (!)—based on some basic
probability ideas that should be “obvious” (or at least believable) to you; see [75,
76, 247] for standard books on probability in case you want the hardcore theory. We
just need the basics. We denote the probability, or chance, that an event A happens
by P(A). If we are conducting a random experiment with equally likely elementary
outcomes, then the classic definition is

P(A) = number of outcomes in A

total number of possibilities
. (7.28)

For example, consider a classroom with ten students, m men and w women (so that
m + w = 10). You put the names of the ten students in a bag and pull out a name.
The probability of randomly “choosing a man” (=M) is

P(M) = number of men

total number of possibilities
= m

10
.

Similarly, the probability of randomly choosing a woman is w/10. We next need to
discuss complementary events. If Ac is the event that A does not happen, then

P(Ac) = 1 − P(A). (7.29)

For instance, according to (7.29), the probability of “not choosing a man,” Mc,
should be P(Mc) = 1 − P(M) = 1 − m/10. But this is certainly true, because “not
choosing a man” is the same as “choosing a woman” W , so recalling that m + w =
10, we have

P(Mc) = P(W ) = w

10
= 10 − m

10
= 1 − m

10
.

Finally, we need to discuss independence. Whenever an event A is unrelated to an
event B (such events are called independent), we have the fundamental relation

P(A and B) = P(A) · P(B).

For example, let’s say that we have two classrooms of ten students each, the first one
with m1 men and w1 women, and the second one with m2 men and w2 women. Let
us randomly choose a pair of names, one from the first classroom and the other from
the second. What is the probability of “choosing a man from the first classroom”=A
and “choosing a woman from the second classroom” =B? Certainly A and B don’t
depend on each other, so by our formula above, we should have
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P(A and B) = P(A) · P(B) = m1

10
· w2

10
= m1w2

100
.

To see that this is indeed true, note that the number of ways to pair a man in classroom
1 with a woman in classroom 2 is m1 · w2, and the total number of possible pairs of
people is 102 = 100. Thus,

P(A and B) = number of men-women pairs

total number of possible pairs of people
= m1 · w2

100
,

in agreement with our previous calculation. We remark that for any number of events
A1, A2, . . . that are unrelated to each other, we have the generalized result

P(A1 and A2 and · · · ) = P(A1) · P(A2) · · · . (7.30)

7.6.4 Probability and π2/6

To begin discussing our two incredible and shocking problems, we first look at the
following question: Given a natural number k, what is the probability, or chance,
that a randomly chosen natural number is divisible by k? Since the definition (7.28)
involves finite quantities, we can’t use this definition as it stands. We can instead use
the following modified version:

P(A) = lim
n→∞

number of occurrences of A among n possibilities

n
. (7.31)

Using this formula, in Problem 8, you will prove that the probability that a randomly
chosen natural number is divisible by k is 1/k; of course, this is “obvious”.

However, instead of using (7.31), we shall employ the following heuristic trick
(which works to give the correct answer). Choose an “extremely large” natural num-
ber N , and consider the very large sample of numbers

1, 2, 3, 4, 5, 6, . . . , Nk.

There are exactly N numbers in this list that are divisible by k, namely the N numbers
k, 2k, 3k, . . . , Nk, and no others, and there is a total of Nk numbers in this list
(Fig. 7.2). Thus, the probability that a natural number n, randomly chosen among
the large sample, is divisible by k is exactly the probability that n is one of the N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...

Fig. 7.2 Take for example k = 3. Then every third number is divisible by 3. Thus, there should be
a one out of three, or 1/3, probability that a randomly chosen number is divisible by 3
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numbers k, 2k, 3k, . . . , Nk, so

P(k divides n) = number of occurrences of divisibility

total number of possibilities listed
= N

Nk
= 1

k
. (7.32)

For instance, the probability that a randomly chosen natural number is divisible by 1
is 1, which makes sense. The probability that a randomly chosen natural number is
divisible by 2 is 1/2; in other words, the probability that a randomly chosen natural
number is even is 1/2, which also makes sense.

We are now ready to solve our two problems. Question: What is the probability
that a natural number, chosen at random, is square-free? Consider a randomly chosen
n ∈ N. Then n is square-free just means that p2

� n (p2 does not divide n) for all
primes p. Thus,

P(n is square free) = P((22 � n) and (32 � n) and (52 � n) and (72 � n) and · · · ).

Since n was randomly chosen, the events 22 � n, 32 � n, 52 � n, etc. are unrelated, so
by (7.30),

P(n is square free) = P(22 � n) · P(32 � n) · P(52 � n) · P(72 � n) · · · .

To see what the right-hand side is, we use (7.29) and (7.32) to write

P(p2
� n) = 1 − P(p2 divides n) = 1 − 1

p2
.

Thus,

P(n is square free) =
∏

p prime

P(p2
� n) =

∏

p prime

(
1 − 1

p2

)
= 1

ζ(2)
= 6

π2
,

and our first question is answered!
Question: What is the probability that two given numbers, chosen at random, are

relatively prime (or coprime)? Consider randomly chosen m, n ∈ N. Then m and n
are relatively prime, or coprime, just means that m and n have no common factors
(except 1), which means2 that p � both m, n for all prime numbers p. Thus,

P(m, n are relatively prime)

= P((2 � both m, n) and (3 � both m, n) and (5 � both m, n) and · · · ).

Sincem and n were randomly chosen, that p � bothm, n is unrelated toq � bothm, n,
so by (7.30),

2Explicitly, “p � both m, n” means “it’s not the case that p|m and p|n”.
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P(m, n are relatively prime) =
∏

p prime

P(p � both m, n).

To see what the right-hand side is, we use (7.29), (7.30), and (7.32) to write

P(p � both m, n) = 1 − P(p divides both m, n)

= 1 − P(p divides m and p divides n)

= 1 − P(p divides m) · P(p divides n) = 1 − 1

p
· 1

p
= 1 − 1

p2
.

Thus,

P(m, n are relatively prime) =
∏

p prime

P(p � bothm, n) =
∏

p prime

(
1 − 1

p2

)
= 6

π2
,

and our second question is answered!

� Exercises 7.6

1. (ζ(z) product formula, Proof III) We prove Theorem 7.12 using the good old
Tannery’s theorem for products.

(i) Let r > 1 be arbitrary and let Re z ≥ r . Prove that

∣
∣
∣
∣
∣
∣

∏

p<N

pz − (1/pz)N

pz − 1
−

∞∑

n=1

1

nz

∣
∣
∣
∣
∣
∣
≤

∞∑

n=N

1

nr
.

Suggestion: pz−(1/pz)N

pz−1 = 1−(1/pz)N+1

1−1/pz = 1 + 1/pz + 1/p2z + · · · + 1/pN z .

(ii) Write pz−(1/pz)N

pz−1 = 1 + 1−(1/pz)N

pz−1 . Show that

∣
∣
∣
∣
1 − (1/pz)N

pz − 1

∣
∣
∣
∣ ≤

2

pr − 1
≤ 4

pr

and
∑

4/pr converges. Now prove Theorem 7.12 using Tannery’s theorem
for products.

2. Prove that for z ∈ C with Re z > 1,

ζ(z)

ζ(2z)
=

∞∑

n=1

|μ(n)|
nz

.

Suggestion: Show that ζ(z)
ζ(2z) =∏

(
1 + 1

pz

)
and copy the proof of Theorem 7.13.
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3. (Möbius inversion formula) In this problem we prove the Möbius inversion
formula.

(i) Given n ∈ N with n > 1, let p1, . . . , pk be the distinct prime factors of n.
For 1 ≤ i ≤ k, let

Ai = {m ∈ N ; m = a product of exactly i distinct prime factors of n
}
.

Show that
∑

d|n
μ(d) = 1 +

k∑

i=1

∑

m∈Ai

μ(m),

where
∑

d|n μ(d) means to sum over all d ∈ N such that d|n. Next, show
that

∑

m∈Ai

μ(m) = (−1)i

(
k

i

)
.

(ii) For every n ∈ N, prove that

∑

d|n
μ(d) =

{
1 if n = 1,

0 if n > 1.

(iii) Let f : (0,∞) → R be a function such that f (x) = 0 for x < 1. Define

g(x) =
∞∑

n=1

f

(
x

n

)
.

Note that g(x) = 0 for x < 1 and that this infinite series is really a finite
sum, since f (x) = 0 for x < 1; specifically, choosing N ∈ Nwith N ≥ �x
(the greatest integer ≤ x), we have g(x) =∑N

n=1 f (x/n). Prove that

f (x) =
∞∑

n=1

μ(n) g

(
x

n

)
(Möbius inversion formula).

As before, this sum is really a finite summation. Suggestion: If you’ve not
gotten anywhere after some time, let S = {(k, n) ∈ N × N ; n|k} and con-
sider the sum

∑

(k,n)∈S

μ(n) f

(
x

k

)
.

Write this sum as
∑∞

k=1

∑
n ; n|k μ(n) f (x/k), then as

∑∞
n=1

∑
k ; n|k μ(n)

f (x/k), and simplify each iterated sum.
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4. (Liouville’s function) Define, for n ∈ N,

λ(n) =

⎧
⎪⎨

⎪⎩

1 if n = 1,

1 if the number of prime factors of n, counted with repetitions, is even,

−1 if the number of prime factors of n, counted with repetitions, is odd.

This function is called Liouville’s function after Joseph Liouville (1809–1882).
Prove that for z ∈ C with Re z > 1,

ζ(2z)

ζ(z)
=

∞∑

n=1

λ(n)

nz
.

Suggestion: Show that ζ(2z)
ζ(z) =∏

(
1 + 1

pz

)−1
.

5. For n ∈ N, let τ (n) denote the number of positive divisors of n (that is, the
number of positive integers that divide n). Prove that for z ∈ C with Re z > 1,

ζ(z)2 =
∞∑

n=1

τ (n)

nz
.

Suggestion: By absolute convergence, we can write ζ(z)2 =∑m,n 1/(m · n)z ,
where this double series can be summed in any way we wish. Use Theorem 6.25
on p. 475, the sumby curves theorem,with the set Sk given by Sk = T1 ∪ · · · ∪ Tk

where Tk = {(m, n) ∈ N × N ; m · n = k}.
6. Let ζ(z, a) :=∑∞

n=0(n + a)−z for z ∈ Cwith Re z > 1 and a > 0; this function
is called the Hurwitz zeta function after Adolf Hurwitz (1859–1919). Prove
that

k∑

m=1

ζ
(

z,
m

k

)
= kzζ(z).

7. In this problem, we find useful bounds and limits for ζ(x) with x > 1 real.

(a) For η(x) the Dirichlet eta function, prove that 1 − 1
2x < η(x) < 1.

(b) Prove that
1 − 2−x

1 − 21−x
< ζ(x) <

1

1 − 21−x
.

(c) Prove the following limits: ζ(x) → 1 as x → ∞, ζ(x) → ∞ as x → 1+,
and (x − 1)ζ(x) → 1 as x → 1+.

8. Using the definition (7.31), prove that given a natural number k, the probability
that a randomly chosen natural number is divisible by k is 1/k. Suggestion:

http://dx.doi.org/10.1007/978-1-4939-6795-7_6
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Among the n natural numbers 1, 2, 3, . . . , n, show that qn numbers are divisible
by k, where qn is the quotient of n divided by k. Then find limn→∞ qn/n.

9. (Cf. [24, 116]) Let k ∈ N with k ≥ 2. We say that a natural number n is kth-
power-free if pk

� n for all primes p. What is the probability that a natural
number, chosen at random, is kth-power-free? What is the probability that k
natural numbers, chosen at random, are relatively prime (have not common
factors except 1)?

10. (Square-free numbers) Define S : (0,∞) → R by

S(x) = #{k ∈ N ; 1 ≤ k ≤ x and k is square-free};

note that S(x) = 0 for x < 1. We shall prove that

lim
n→∞

S(n)

n
= 6

π2
.

Do you see why this formula makes precise the statement “The probability that
a randomly chosen natural number is square-free equals 6/π2”?

(i) For every real number x > 0 and n ∈ N, define

A(x, n) = {k ∈ N ; 1 ≤ k ≤ x and n2 is the largest square that divides k
}
.

Note that A(x, n) = ∅ for n2 > x . Prove that A(x, 1) consists of all square-
free numbers ≤ x , and also prove that

{k ∈ N ; 1 ≤ k ≤ x} =
∞⋃

n=1

A(x, n).

(ii) Show that there is a bijection between A(x, n) and A(x/n2, 1).
(iii) Show that for every x > 0, we have

�x =
∞∑

n=1

S

(
x

n2

)
.

Using the Möbius inversion formula from Problem 3, conclude that

S(x) =
∞∑

n=1

μ(n)

⌊
x

n2

⌋
.

(iv) Finally, prove that lim
x→∞ S(x)/x = 6/π2, which proves our result.

11. (Relatively prime numbers; for different proofs, see [131, p. 337] and [102, p.
268]) Define R : (0,∞) → R by
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R(x) = #{(k, �) ∈ N ; 1 ≤ k, � ≤ x and k and � are relatively prime};

note that R(x) = 0 for x < 1. We shall prove that

lim
n→∞

R(n)

n2
= 6

π2
.

Do you see why this formula makes precise the statement “The probability that
two randomly chosen natural numbers are relatively prime equals 6/π2”?

(i) For every real number x > 0 and n ∈ N, define

A(x, n) = {(k, �) ∈ N × N ; 1 ≤ k, � ≤ x and n is the largest divisor of both k and �
}
.

Note that A(x, n) = ∅ for n > x . Prove that A(x, 1) consists of all pairs
(k, �) of relatively prime natural numbers that are ≤ x , and also prove that

{(k, �) ∈ N × N ; 1 ≤ k, � ≤ x} =
∞⋃

n=1

A(x, n).

(ii) Show that there is a bijection between A(x, n) and A(x/n, 1).
(iii) Show that for every x > 0, we have

�x2 =
∞∑

n=1

R

(
x

n

)
.

Using the Möbius inversion formula from Problem 3, conclude that

R(x) =
∞∑

n=1

μ(n)

⌊
x

n

⌋2
.

(iv) Finally, prove that lim
x→∞ R(x)/x2 = 6/π2, which proves our result.

7.7 � Some of the Most Beautiful Formulas
in the World IV

Hold on to your seats, for you’re about to be taken on another journey through a
beautiful world of mathematical formulas! In this section we derive many formulas
found in Euler’s wonderful book Introduction to analysis of the infinite [69]; his
second book [70] is also great. We also give our tenth proof of Euler’s formula for
π2/6 and our fourth proof of Gregory–Leibniz–Madhava’s formula for π/4.
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7.7.1 Bernoulli Numbers and Evaluating Sums/Products

We start our onslaught of beautiful formulas with a formula for ζ(2k) =∑∞
n=1

1
n2k

in terms of Bernoulli numbers; this complements the formulas in Section5.3, when
we didn’t know about Bernoulli numbers. To find such a formula, we begin with the
partial fraction expansion of the cotangent from Section7.4:

πz cot πz = 1 +
∞∑

n=1

2z2

z2 − n2
= 1 − 2

∞∑

n=1

z2

n2 − z2
.

Next, we apply Cauchy’s double series theorem to this sum. Let z ∈ C with |z| < 1
and observe that

z2

n2 − z2
= z2/n2

1 − z2/n2
=

∞∑

k=1

( z2

n2

)k
,

where we used the geometric series formula
∑∞

k=1 rk = r
1−r for |r | < 1. Therefore,

πz cot πz = 1 − 2
∞∑

n=1

∞∑

k=1

z2k

n2k
.

Since |z| < 1, the geometric series
∑∞

k=1 |z|2k converges, so using that 1/n2k ≤ 1/n2,
we have ∞∑

n=1

∞∑

k=1

∣
∣
∣

z2k

n2k

∣
∣
∣ ≤

∞∑

n=1

∞∑

k=1

|z|2k

n2
= ζ(2)

∞∑

k=1

|z|2k < ∞.

Therefore, by Cauchy’s double series theorem, for |z| < 1 we have

πz cot πz = 1 − 2
∞∑

k=1

∞∑

n=1

( z2

n2

)k = 1 − 2
∞∑

k=1

( ∞∑

n=1

1

n2k

)
z2k . (7.33)

On the other hand, we recall from p. 498 in Section6.7 that

z cot z =
∞∑

k=0

(−1)k 2
2k B2k

(2k)! z2k (for |z| small),

where the B2k are the Bernoulli numbers. Replacing z with πz, we get

πz cot πz = 1 +
∞∑

k=1

(−1)k 2
2k B2k

(2k)! π2k z2k .

http://dx.doi.org/10.1007/978-1-4939-6795-7_5
http://dx.doi.org/10.1007/978-1-4939-6795-7_6
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Comparing this equation with (7.33) and using the identity theorem, Theorem 6.22
on p. 462, we see that

−2
∞∑

n=1

1

n2k
= (−1)k 2

2k B2k

(2k)! π2k, k = 1, 2, 3, . . . .

Rewriting this slightly, we obtain Euler’s famous result: For k = 1, 2, 3, . . .,

∞∑

n=1

1

n2k
= (−1)k−1 (2π)2k B2k

2(2k)! ; that is, ζ(2k) = (−1)k−1 (2π)2k B2k

2(2k)! .

(7.34)

Using the known values of the Bernoulli numbers found in Section6.7, setting
k = 1, 2, 3, we get, in particular, our eleventh proof of Euler’s formula for π2/6:

π2

6
=

∞∑

n=1

1

n2
(Euler’s sum, Proof XI) ,

π4

90
=

∞∑

n=1

1

n4
,

π6

945
=

∞∑

n=1

1

n6
.

Using (7.34), we can derive many other pretty formulas. First, recall that the eta
function is defined by η(z) =∑∞

n=1
(−1)n−1

nz . In Theorem 7.14 on p. 570 we proved
that

η(z) = (1 − 21−z)ζ(z), Re z > 1.

In particular, setting z = 2k, we find that for k = 1, 2, 3, . . .,

η(2k) =
∞∑

n=1

(−1)n−1

n2k
= (−1)k−1

(
1 − 21−2k

) (2π)2k B2k

2(2k)! ; (7.35)

what formulas do you get when you set k = 1, 2? Second, recall from Theorem 7.12
on p. 566 that

∞∑

n=1

1

nz
=
∏ pz

pz − 1
= 2z

2z − 1
· 3z

3z − 1
· 5z

5z − 1
· 7z

7z − 1
· · · , (7.36)

where the product is over all primes. In particular, setting z = 2, we get

π2

6
= 22

22 − 1
· 32

32 − 1
· 52

52 − 1
· 72

72 − 1
· 112

112 − 1
· · · , (7.37)

and setting z = 4, we get

http://dx.doi.org/10.1007/978-1-4939-6795-7_6
http://dx.doi.org/10.1007/978-1-4939-6795-7_6
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π4

90
= 24

24 − 1
· 34

34 − 1
· 54

54 − 1
· 74

74 − 1
· 114

114 − 1
· · · .

Dividing these two formulas and using that

n4

n4 − 1
n2

n2 − 1

= n2 · n2 − 1

n4 − 1
= n2 · n2 − 1

(n2 − 1)(n2 + 1)
= n2

n2 + 1
,

we obtain

π2

15
= 22

22 + 1
· 32

32 + 1
· 52

52 + 1
· 72

72 + 1
· 112

112 + 1
· · · . (7.38)

Third, recall from Theorem 7.13 that

1

ζ(z)
=

∞∑

n=1

μ(n)

nz
,

where μ(n) is the Möbius function. In particular, setting z = 2, we find that

6

π2
= 1 − 1

22
− 1

32
− 1

52
+ 1

62
− 1

72
+ 1

102
− 1

112
+ · · · ;

what formula do you get when you set z = 4?

7.7.2 Euler Numbers and Evaluating Sums

We now derive a formula for the alternating sum of the odd natural numbers to odd
powers:

1 − 1

32k+1
+ 1

52k+1
− 1

72k+1
+ 1

92k+1
− + · · · , k = 0, 1, 2, 3, . . . .

To this end, let |z| < 1 and note from p. 560 that we can write

π

4 cos πz
2

= 1

12 − z2
− 3

32 − z2
+ 5

52 − z2
+ · · · =

∞∑

n=0

(−1)n (2n + 1)

(2n + 1)2 − z2
.

(7.39)
Expanding as a geometric series, observe that
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(2n + 1)

(2n + 1)2 − z2
= 1

(2n + 1)
· 1

1 − z2
(2n+1)2

=
∞∑

k=0

z2k

(2n + 1)2k+1
. (7.40)

Thus,
π

4 cos πz
2

=
∞∑

n=0

∞∑

k=0

(−1)n z2k

(2n + 1)2k+1
. (7.41)

We would like to interchange the order of summation using Cauchy’s double series
theorem. However, the problem is that when k = 0 the corresponding part of the
right-hand side of (7.41) is not absolutely convergent:

∞∑

n=0

∣
∣
∣
∣(−1)n z2·0

(2n + 1)2·0+1

∣
∣
∣
∣ =

∞∑

n=0

1

2n + 1
is not convergent.

Therefore, we cannot apply Cauchy’s double series theorem immediately. However,
we can easily get around this impasse by peeling off the k = 0 summation first. In
(7.41) we separate the k = 0 term from the rest of the sum:

π

4 cos πz
2

=
∞∑

n=0

(−1)n 1

2n + 1
+

∞∑

n=0

∞∑

k=1

(−1)n z2k

(2n + 1)2k+1
.

Now it’s easily checked that the double sum on the right is absolutely convergent for
|z| < 1; indeed, using that 1/(2n + 1)2k+1 ≤ 1/(2n + 1)3 for k ≥ 1, we see that

∞∑

n=0

∞∑

k=1

∣
∣
∣
∣(−1)n z2k

(2n + 1)2k+1

∣
∣
∣
∣ ≤

∞∑

n=0

∞∑

k=1

|z|2k

(2n + 1)3

=
( ∞∑

n=0

1

(2n + 1)3

)( ∞∑

k=1

|z|2k

)

< ∞.

Thus, for |z| < 1, Cauchy’s double series theorem implies

π

4 cos πz
2

=
∞∑

n=0

(−1)n 1

2n + 1
+

∞∑

k=1

∞∑

n=0

(−1)n z2k

(2n + 1)2k+1
.

Putting the first sum on the right into the double sum, we arrive at the iterated sum
we originally wanted:

π

4 cos πz
2

=
∞∑

k=0

∞∑

n=0

(
(−1)n

(2n + 1)2k+1

)
z2k . (7.42)

Now recall from p. 505 in Section6.7 that

http://dx.doi.org/10.1007/978-1-4939-6795-7_6
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1

cos z
= sec z =

∞∑

k=0

(−1)k E2k

(2k)! z2k,

where the E2k are the Euler numbers. Replacing z with πz/2 and multiplying by
π/4, we get

π

4 cos πz
2

= π

4

∞∑

k=0

(−1)k E2k

(2k)!
(π

2

)2k
z2k .

Comparing this equation with (7.42) and using the identity theorem on p. 461, we
conclude that for k = 0, 1, 2, 3, . . .,

∞∑

n=0

(−1)n

(2n + 1)2k+1
= (−1)k E2k

2(2k)!
(π

2

)2k+1
. (7.43)

In particular, setting k = 0 (and recalling that E0 = 1) we get our fourth proof of
Gregory–Leibniz–Madhava’s formula:

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · , (Gregory–Leibniz–Madhava, Proof IV).

What pretty formulas do you get when you set k = 1, 2? (Here, you need the Euler
numbers calculated in Section6.7.) We can derive many other pretty formulas from
(7.43). To start this onslaught, we first state an “odd version” of Theorem 7.12.

Theorem 7.15 For every z ∈ C with Re z > 1, we have

∞∑

n=0

(−1)n

(2n + 1)z
= 3z

3z + 1
· 5z

5z − 1
· 7z

7z + 1
· 11z

11z + 1
· 13z

13z − 1
· · · ,

where the product is over odd primes (all primes except 2) and where the ± signs
in the denominators depend on whether the prime is of the form 4k + 3 (+ sign)
or 4k + 1 (− sign), where k = 0, 1, 2, . . ..

Since the proof of this theorem is similar to that of Theorem 7.12, we shall leave the
proof of this theorem to the interested reader; see Problem 5. In particular, setting
z = 1, we get

π

4
= 3

4
· 5
4

· 7
8

· 11
12

· 13
12

· 17
16

· 19
20

· 23
24

· · · . (7.44)

The numerators of the fractions on the right are the odd prime numbers, and the
denominators are even numbers divisible by four and differing from the numerators

http://dx.doi.org/10.1007/978-1-4939-6795-7_6
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by one. In (7.37), we found that

π2

6
= 22

22 − 1
· 32

32 − 1
· 52

52 − 1
· · · = 4

3
· 3 · 3
2 · 4 · 5 · 5

4 · 6 · 7 · 7
6 · 8 · 11 · 11

10 · 12 · 13 · 13
12 · 14 · · · .

Dividing this expression by (7.44) and canceling like terms, we obtain

4π

6
= π2/6

π/4
= 4

3
· 3
2

· 5
6

· 7
6

· 11
10

· 13
14

· 17
18

· · · .

Multiplying both sides by 3/4, we get another one of Euler’s famous formulas:

π

2
= 3

2
· 5
6

· 7
6

· 11
10

· 13
14

· 17
18

· 19
18

· 23
22

· · · . (7.45)

The numerators of the fractions are the odd prime numbers, and the denominators
are even numbers not divisible by four and differing from the numerators by one. The
remarkable Eqs. (7.44) and (7.45) are two of my favorite infinite product expansions
for π.

7.7.3 Benoit Cloitre’s e and π in a Mirror

In this section we prove an unbelievable fact connecting e and π that is due to Benoit
Cloitre [52, 81, 219]. Define sequences {an} and {bn} by a1 = b1 = 0, a2 = b2 = 1,
and the rest as the following “mirror images”:

an+2 = an+1 + 1

n
an,

bn+2 = 1

n
bn+1 + bn .

We shall prove that

e = lim
n→∞

n

an
,

π

2
= lim

n→∞
n

b2
n

. (7.46)

The sequences {an} and {bn} and { n
an

} and { n
b2

n
} are at a glance not so different, yet

they generate very different numbers.
To prove the formula for e, let us define a sequence {sn} by sn = an/n. Then

s1 = a1/1 = 0 and s2 = a2/2 = 1/2. Observe that for n ≥ 2, we have
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sn+1 − sn = an+1

n + 1
− an

n
= 1

n + 1

(
an+1 − n + 1

n
an

)

= 1

n + 1

(
an + 1

n − 1
an−1 −

(
1 + 1

n

)
an

)

= 1

n + 1

(
1

n − 1
an−1 − an

n

)

= −1

n + 1
(sn − sn−1).

Using induction, we see that

sn+1 − sn = −1

n + 1
(sn − sn−1) = −1

n + 1
· −1

n
(sn−1 − sn−2)

= −1

n + 1
· −1

n
· −1

n − 1
(sn−2 − sn−3) = · · · etc.

= −1

n + 1
· −1

n
· −1

n − 1
· · · −1

3
(s2 − s1)

= −1

n + 1
· −1

n
· −1

n − 1
· · · −1

3
· 1
2

= (−1)n−3

(n + 1)! = (−1)n+1

(n + 1)! .

Thus, writing this as a telescoping sum, we obtain

sn = s1 +
n∑

k=2

(sk − sk−1) = 0 +
n∑

k=2

(−1)k

k! =
n∑

k=0

(−1)k

k! ,

which is exactly the nth partial sum for the series expansion of e−1. It follows that
sn → e−1, and so

lim
n→∞

n

an
= lim

n→∞
1

sn
= 1

e−1
= e,

as we claimed. The limit for π in (7.46) will be left to you (see Problem 2).

� Exercises 7.7

1. In this problem we derive other neat formulas:

(a) Dividing (7.38) by π2/6, prove that

5

2
= 22 + 1

22 − 1
· 3

2 + 1

32 − 1
· 5

2 + 1

52 − 1
· 7

2 + 1

72 − 1
· 11

2 + 1

112 − 1
· · · ,

quite a neat expression for 2.5.
(b) Dividing (7.45) by (7.44), prove that
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2 = 2

1
· 2
3

· 4
3

· 6
5

· 6
7

· 8
9

· 10
9

· 12
11

· · · ,

quite a neat expression for 2. The fractions on the right are formed as follows:
Given an odd prime 3, 5, 7, . . ., we take the pair of even numbers immedi-
ately above and below the prime, divide them by two, then put the resulting
even number as the numerator and the odd number as the denominator.

2. In this problem, we prove the limit for π in (7.46).

(i) Define tn = bn+1/bn for n = 2, 3, 4, . . .. Prove that (for n = 2, 3, 4, . . .),
tn+1 = 1/n + 1/tn and then

tn =
{
1 n even,

n
n−1 n odd.

(ii) Prove that b2
n = t22 · t23 · t24 · · · t2n−1, then using Wallis’s formula, derive the

limit for π in (7.46).

3. From Problem 7 on p. 576, prove that

2(2n)! (1 − 2−2n)

(2π)2n (1 − 21−2n)
<
∣
∣B2n

∣
∣ <

2(2n)!
(2π)2n (1 − 21−2n)

.

This estimate shows that the Bernoulli numbers grow very fast as n → ∞.
4. (Radius of convergence) In this problemwe (finally) find the radii of convergence

of

z cot z =
∞∑

n=0

(−1)n 2
2n B2n

(2n)! z2n, tan z =
∞∑

n=1

(−1)n−1 2
2n(22n − 1) B2n

(2n)! z2n−1 .

(a) Let a2n = (−1)n 22n B2n
(2n)! . Prove that

lim
n→∞ |a2n|1/2n = lim

n→∞
1

π
· 21/2n · ζ(2n)1/2n = 1

π
.

Conclude that the radius of convergence of z cot z is π.
(b) Using a similar argument, show that the radius of convergence of tan z is

π/2.

5. In this problem, we prove Theorem 7.15.

(i) Let us call an odd number of “type I” if it is of the form 4k + 1 for some
k = 0, 1, . . . and of “type II” if it is of the form4k + 3 for some k = 0, 1, . . ..
Prove that every odd number is either of type I or type II.
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(ii) Prove that type I × type I = type I, type I × type II = type II, and type II ×
type II = type I.

(iii) Let a, b, . . . , c ∈ N be odd. Prove that if there is an odd number of type II
integers among a, b, . . . , c, then a · b · · · c is of type II; otherwise, a · b · · · c
is type I.

(iv) Show that

∞∑

n=0

(−1)n

(2n + 1)z
=

∞∑

n=0

1

(4n + 1)z
−

∞∑

n=0

1

(4n + 3)z
,

a sum of type I and type II natural numbers!
(v) Let r > 1 and let z ∈ C with Re z ≥ r > 1, let 1 < N ∈ N, and let 3 < 5 <

· · · < m < 2N + 1 be the odd prime numbers less than 2N + 1. In a similar
manner as in the proof of Theorem 7.12, show that

∣
∣
∣

∞∑

n=1

(−1)n

(2n + 1)z
− 3z

3z + 1
· 5z

5z − 1
· 7z

7z + 1
· 11z

11z − 1
· · · mz

mz ± 1

∣
∣
∣

≤
∞∑

n=N

∣
∣
∣

1

(2n + 1)z

∣
∣
∣ ≤

∞∑

n=N

1

(2n + 1)r
,

where the + signs in the product are for type II odd primes and the − signs
for type I odd primes. Now finish the proof of Theorem 7.15.



Chapter 8
Infinite Continued Fractions

From time immemorial, the infinite has stirred men’s emotions more than any other question.
Hardly any other idea has stimulated the mind so fruitfully . . . In a certain sense, mathe-
matical analysis is a symphony of the infinite.
David Hilbert (1862–1943) “On the infinite” [23].

We dabbled a little into the theory of continued fractions (that is, fractions that
continue on and on and on . . .) way back on p. 192 in the exercises of Section3.4.
In this chapter we concentrate on this fascinating subject. We begin in Section8.1
by showing that such fractions occur very naturally in long division, and we give
their basic definitions. In Section8.2, we prove some pretty dramatic formulas (this
is one reason continued fractions are so fascinating, at least to me). For example,
we’ll show that 4/π and π can be written as the continued fractions:

4

π
= 1 + 12

2 + 32

2 + 52

2 + 72

2 + . . .

, π = 3 + 12

6 + 32

6 + 52

6 + 72

6 + . . .

.

The continued fraction on the left is due to William Brouncker (and is the first
continued fraction ever recorded), and the one on the right is due to Euler. If you
think that these π formulas are cool, we’ll derive the following formulas for e as
well:

© Paul Loya 2017
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e = 2 + 2

2 + 3

3 + 4

4 + 5

5 + . . .

= 1 + 1

0 + 1

1 + 1

1 + 1

2 + 1

1 + 1

1 + 1

4 + . . .

.

We’ll prove the formula on the left in Section8.2, but you’ll have to wait for the
formula on the right until Section8.7. InSection8.3,wediscuss elementary properties
of continued fractions. In this section we also discuss how a Greek mathematician,
Diophantus of Alexandrea (c. 200–284 A.D.), can help you if you’re stranded on an
island with guys you can’t trust and a monkey with a healthy appetite! In Section8.4
we study the convergence properties of continued fractions.

Recall from our discussion on the amazing number π and its computations from
ancient times (see p. 364 in Section4.12) that throughout the years, the following
approximation to π came up: 3, 22/7, 333/106, and 355/113. Did you ever wonder
why these particular numbers occur? Also, did you ever wonder why our calendar is
constructed the way it is (e.g., why leap years occur)? Finally, did you ever wonder
why a piano has twelve keys (within an octave)? In Sections8.5 and 8.6 you’ll
find out that these mysteries have to do with continued fractions! In Section8.8 we
study special types of continued fractions having to do with square roots, and in
Section8.9 we learn why Archimedes needed around 8 × 10206544 cattle in order to
“have abundant of knowledge in this science [mathematics]”!

In the very last section, Section8.10, we look at continued fractions and transcen-
dental numbers.

Chapter 8 objectives: The student will be able to . . .

• Define continued fractions, and state theWallis–Euler and fundamental recurrence
relations.

• Apply the continued fraction convergence theorem (Theorem 8.14 on p. 628).
• Compute the canonical continued fraction of a given real number.
• Understand the relationship between convergents of a simple continued fraction
and best approximations, and the relationship between periodic simple continued
fractions and quadratic irrationals.

• Solve simple Diophantine equations (of linear and Pell type).

http://dx.doi.org/10.1007/978-1-4939-6795-7_4
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8.1 Introduction to Continued Fractions

In this section we introduce the basics of continued fractions and see how they arise
out of high school division and also from solving equations.

8.1.1 Continued Fractions Arise During “Repeated
Divisions”

In the following example we “repeatedly divide” (repeatedly use the division algo-
rithm).

Example 8.1 Take, for instance, high school division of 68 into 157. Here, 157 =
2 · 68 + 21, so 157

68 = 2 + 21
68 . Inverting the fraction 21

68 , we have

157

68
= 2 + 1

68

21

.

Since we can further divide 68
21 = 3 + 5

21 = 3 + 1
21/5 , we can write 157

68 in the some-
what fancy way

157

68
= 2 + 1

3 + 1

21

5

.

Since 21
5 = 4 + 1

5 , we can write

157

68
= 2 + 1

3 + 1

4 + 1

5

. (8.1)

At this point our repeated division process stops.

The expression on the right in (8.1) is called a finite simple continued fraction.
There are many ways to denote the right-hand side, but we shall stick with the
following two:

〈2; 3, 4, 5〉 or 2 + 1

3+
1

4+
1

5
represent 2 + 1

3 + 1

4 + 1

5

.
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Thus, continued fractions (that is, fractions that “continue on”) arise naturally out of
writing rational numbers in a somewhat fancy way by repeated divisions. Of course,
157 and 68 were not special, by repeated divisions one can take any two integers a
and b with b �= 0 and write a/b as a finite simple continued fraction; see Theorem
8.1 below. Here’s an example involving a negative number.

Example 8.2 Consider 157 into −68. Since −68 = (−1) · 157 + 89, we have
− 68

157 = −1 + 89
157 . Inverting the fraction 89

157 , we obtain

− 68

157
= −1 + 1

157

89

.

Since 157
89 = 1 + 68

89 = 1 + 1
89/68 , we have

− 68

157
= −1 + 1

1 + 1

89

68

.

Repeatedly using the division algorithm, we eventually arrive at

− 68

157
= −1 + 1

1 + 1

1 + 1

3 + 1

4 + 1

5

.

In Section8.4, we shall prove that every real number, not necessarily rational, can
be expressed as a simple (possibly infinite) continued fraction.

8.1.2 Continued Fractions Arise in Solving Equations

Continued fractions also arise naturally in trying to solve equations.

Example 8.3 Let a, b > 0 and suppose we want to find the positive solution x to the
equation x2 + ax − b = 0. Writing the equation x2 + ax − b = 0 as x(x + a) = b
and dividing by x + a, we get

x = b

a + x
.

We can replace x in the denominator with x = b/(a + x) to get
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x = b

a + b

a + x

.

Repeating this many times, we can write

x = b

a + b

a + b

a +
. . .

a + b

x

.

Repeating this “to infinity,” we get

“ x = b

a + b

a + b

a + b

a + . . .

. ”

For example, given α > 1, x = √
α − 1 is the positive solution to x2 + 2x − (α −

1) = 0, so we can get a pretty continued fraction for any square root using a = 2
and b = α − 1. For instance, if α = 2, we find that

“
√
2 = 1 + 1

2 + 1

2 + 1

2 + 1

2 + . . .

. ”

Quite a remarkable formula for
√
2! The reason for the quotation marks is that the

computation was “formal,” although we did prove it rigorously in Problem 8 on p.
191. We shall study such continued fractions for general square roots in Section8.8.

Here’s another neat example:

Example 8.4 Consider the slightly modified formula x2 − x − 1 = 0. Then � =
1+√

5
2 , called the golden ratio, is the only positive solution. We can rewrite �2 −

� − 1 = 0 as� = 1 + 1
�
. Replacing� in the denominator with� = 1 + 1

�
, we get
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� = 1 + 1

1 + 1

�

.

Repeating this substitution process “to infinity,” we can write

“ � = 1 + 1

1 + 1

1 + 1

1 + 1

1 + . . .

, ” (8.2)

quite a beautiful expression, which we proved rigorously in Problem 8 on p. 191. As
a side remark, there are many false rumors concerning the golden ratio; see [159] for
the rundown.

8.1.3 Basic Definitions for Continued Fractions

A general finite continued fraction can be written as

a0 + b1

a1 + b2

a2 + b3

a3 +
. . .

an−1 + bn
an

, (8.3)

where the ak and bk are real numbers. Of course, we are implicitly assuming that
these fractions are all well defined, e.g., no divisions by zero are allowed. Also, when
you simplify this big fraction by combining fractions, you need to go from the bottom
up. Notice that if bm = 0 for some m, then

a0 + b1

a1 + b2

a2 + b3

a3 +
. . .

an−1 + bn
an

= a0 + b1

a1 + b2

a2 +
. . .

am−2 + bm−1

am−1

, (8.4)
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since the bm = 0 will zero out everything below it. The continued fraction is called
simple if all the bk are 1 and the ak are integers with ak positive for k ≥ 1. Instead
of writing the continued fraction as we did above, which takes up a lot of space, we
shall shorten it to

a0 + b1
a1+

b2
a2 +

b3
a3+ . . . +

bn
an

.

In the case all bn are equal to 1, the following “bracket notation” is often used:

a0 + 1

a1+
1

a2 +
1

a3+ . . . +
1

an
= 〈a0; a1, a2, a3, . . . , an〉.

If a0 = 0, some authors write 〈a1, a2, . . . , an〉 instead of 〈0; a1, . . . an〉.
Note that every finite simple continued fraction is a rational number, because it

is made up of additions and divisions of rational numbers (recall that simple means
that the an are integers) and the rational numbers are closed under such operations.
The converse is also true; see Theorem 8.1. There is an interesting “even–odd fact”
about finite continued fractions. To explain this fact, recall that

157

68
= 2 + 1

3 + 1

4 + 1

5

= 〈2; 3, 4, 5〉,

which has an odd number of terms (three to be exact) after the integer part 2. We can
trivially modify this continued fraction by breaking up 5 as 4 + 1:

157

68
= 2 + 1

3 + 1

4 + 1

4 + 1

1

= 〈2; 3, 4, 4, 1〉,

which has an even number of terms after the integer part. This example is typical:
Every finite simple continued fraction can be written with an even or odd number
of terms (by modifying the last term by 1). We summarize these remarks in the
following theorem, whose proof we leave for Problem 2.

Finite simple continued fractions

Theorem 8.1 A real number can be expressed as a finite simple continued frac-
tion if and only if it is rational, in which case the rational number can be expressed
as a continued fraction with either an even or an odd number of terms.
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We now discuss infinite continued fractions. Let {an}, n = 0, 1, 2, . . ., and {bn},
n = 1, 2, . . ., be sequences of real numbers and suppose that

cn := a0 + b1
a1+

b2
a2 +

b3
a3+ . . . +

bn
an

is defined for all n. We call cn the nth convergent. If the limit, lim cn , exists, then
we say that the infinite continued fraction

a0 + b1

a1 + b2

a2 + b3

a3 + . . .

or a0 + b1
a1+

b2
a2 +

b3
a3+ . . . (8.5)

converges, and we use either of these notations to denote the limiting value lim cn .
In the case that all bn are equal to 1, in place of (8.5), it’s common to use brackets,

〈a0; a1, a2, a3, . . .〉 instead of a0 + 1

a1+
1

a2 +
1

a3+ . . . .

In Section8.4 we shall prove that every simple continued fraction converges; in
particular, we’ll give another proof of the formula

� = 1 + 1

1+
1

1+
1

1+ . . . .

In the case that there is some bm term that vanishes, then convergence of (8.5) is
easy, because (see (8.4)) for all n ≥ m, we have cn = cm−1. Hence in this case,

a0 + b1
a1+

b2
a2 +

b3
a3+ . . . = a0 + b1

a1+
b2
a2 +

b3
a3+ . . . +

bm−1

am−1

converges automatically; such a continued fraction is said to terminate or be finite.
However, general convergence issues are not so straightforward. We shall deal with
the subtleties of convergence in Section8.4.

� Exercises 8.1

1. Expand the following fractions into finite simple continued fractions:

(a)
7

11
, (b) − 11

7
, (c)

3

13
, (d)

13

3
, (e) − 42

31
, ( f )

31

42
.

2. Prove Theorem 8.1. Suggestion: Reviewing the division algorithm (see Theorem
2.16 on p. 60) might help: For a, b ∈ Z with b > 0, we have a = qb + r , where
q, r ∈ Z with 0 ≤ r < b; if a, b are both nonnegative, then so is q.

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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3. Let ξ = a0 + b1
a1 +

b2
a2 +

b3
a3 + . . . +

bn
an

�= 0. Prove that

1

ξ
= 1

a0 +
b1
a1+

b2
a2 +

b3
a3+ . . . +

bn
an

.

In particular, if ξ = 〈a0; a1, . . . , an〉 �= 0, show that 1
ξ

= 〈0; a0, a1, a2, . . . , an〉.
4. A useful technique in studying continued fraction is the following artifice of

writing a continued fraction within a continued fraction. For a continued fraction

ξ = a0 + b1
a1+

b2
a2 +

b3
a3+ . . . +

bn
an

,

if m < n, prove that

ξ = a0 + b1
a1+

b2
a2 +

b3
a3+ . . . +

bm
η

, where η = bm+1

am+1 + . . . +
bn
an

.

8.2 � Some of the Most Beautiful Formulas in the World V

Hold on to your seats, for you’re about to be taken on another journey through the
beautiful world of mathematical formulas!

8.2.1 Transformation of Continued Fractions

It will often be convenient to transform one continued fraction into another one. For
example, let ρ1, ρ2, ρ3 be nonzero real numbers and suppose that the finite fraction

ξ = a0 + b1

a1 + b2

a2 + b3
a3

,

where the ak and bk are real numbers, is defined. Thenmultiplying the top and bottom
of the fraction by ρ1, we get

ξ = a0 + ρ1b1

ρ1a1 + ρ1b2

a2 + b3
a3

.
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Multiplying the top and bottom of the fraction with ρ1b2 as numerator by ρ2, and
then the last fraction’s top and bottom by ρ3, gives

ξ = a0 + ρ1b1

ρ1a1 + ρ1ρ2b2

ρ2a2 + ρ2b3
a3

and ξ = a0 + ρ1b1

ρ1a1 + ρ1ρ2b2

ρ2a2 + ρ2ρ3b3
ρ3a3

.

In summary,

a0 + b1
a1+

b2
a2 +

b3
a3

= a0 + ρ1b1
ρ1a1+

ρ1ρ2b2
ρ2a2 +

ρ2ρ3b3
ρ3a3

.

A simple induction argument proves the following.

Transformation rules

Theorem 8.2 For real numbers a1, a2, a3, . . ., b1, b2, b3, . . ., and nonzero con-
stants ρ1, ρ2, ρ3, . . ., we have

a0 + b1
a1 +

b2
a2 +

b3
a3 + . . .+

bn
an

= a0 + ρ1b1
ρ1a1 +

ρ1ρ2b2
ρ2a2 +

ρ2ρ3b3
ρ3a3 + . . .+

ρn−1ρnbn
ρnan

,

in the sense that when the left-hand side is defined, so is the right-hand side, and
equality holds. In particular, if the limit as n → ∞ of the left-hand side exists,
then the limit of the right-hand side also exists, and

a0 + b1
a1+

b2
a2 + . . . +

bn
an + . . . = a0 + ρ1b1

ρ1a1+
ρ1ρ2b2
ρ2a2 + . . . +

ρn−1ρnbn
ρnan + . . . .

8.2.2 Two Stupendous Series and Continued Fraction
Identities

Let α1,α2,α3, . . . be real numbers with αk �= 0 and αk �= αk−1 for all k. Observe
that

1

α1
− 1

α2
= α2 − α1

α1α2
= 1

α1α2
α2−α1

.

Since
α1α2

α2 − α1
= α1(α2 − α1) + α2

1

α2 − α1
= α1 + α2

1

α2 − α1
, we get
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1

α1
− 1

α2
= 1

α1 + α2
1

α2−α1

.

Generalizing this formula, we obtain the following theorem.

Theorem 8.3 If α1,α2,α3, . . . are nonzero real numbers with αk �= αk−1 for all
k, then for every n ∈ N,

n∑

k=1

(−1)k−1

αk
= 1

α1 + α2
1

α2 − α1 + α2
2

α3 − α2 +
. . .

α2
n−1

αn − αn−1

.

In particular, taking n → ∞, we conclude that

∞∑

k=1

(−1)k−1

αk
= 1

α1+
α2
1

α2 − α1+
α2
2

α3 − α2 +
α2
3

α4 − α3+ . . . (8.6)

as long as either side (and hence both sides) makes sense.

Proof This theorem is certainly true for alternating sums with n = 1 terms. Assume
that it is true for sums with n terms; we shall prove it holds for sums with n + 1
terms. Observe that we can write

n+1∑

k=1

(−1)k−1

αk
= 1

α1
− 1

α2
+ · · · + (−1)n−1

αn
+ (−1)n

αn+1

= 1

α1
− 1

α2
+ · · · + (−1)n−1

(
1

αn
− 1

αn+1

)

= 1

α1
− 1

α2
+ · · · + (−1)n−1

(
αn+1 − αn

αnαn+1

)

= 1

α1
− 1

α2
+ · · · + (−1)n−1 1

αnαn+1

αn+1−αn

.

This is now a sumof n terms. Thus,we can apply the induction hypothesis to conclude
that

n+1∑

k=1

(−1)k−1

αk
= 1

α1+
α2
1

α2 − α1+ · · ·+
α2
n−1

αnαn+1

αn+1−αn
− αn−1

. (8.7)
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Since

αnαn+1

αn+1 − αn
− αn−1 = αn(αn+1 − αn) + α2

n

αn+1 − αn
− αn−1

= αn − αn−1 + α2
n

αn+1 − αn
,

putting this into (8.7) gives

n+1∑

k=1

(−1)k−1

αk
= 1

α1+
α2
1

α2 − α1+ · · · +
α2
n−1

αn − αn−1 + α2
n

αn+1−αn

.

This proves our induction step and completes our proof. �

Example 8.5 Since we know that

log 2 =
∞∑

k=1

(−1)k−1

k
= 1

1
− 1

2
+ 1

3
− 1

4
+ · · · ,

setting αk = k in the identity (8.6) in Theorem 8.3, we can write

log 2 = 1

1+
12

1 +
22

1 +
32

1 + . . . ,

which we can also write as the equally beautiful expression

log 2 = 1

1 + 12

1 + 22

1 + 32

1 + 42

1 + . . .

.

See Problem 1 for a continued fraction formula for log(1 + x).

Here is another interesting identity. Letα1,α2,α3, . . .be real numbers, all nonzero
and none equal to 1. Then observe that

1

α1
− 1

α1α2
= α2 − 1

α1α2
= 1

α1α2
α2−1

.

Since
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α1α2

α2 − 1
= α1(α2 − 1) + α1

α2 − 1
= α1 + α1

α2 − 1
,

we get
1

α1
− 1

α1α2
= 1

α1 + α1
α2−1

.

We can continue by induction in much the same manner as we did in the proof of
Theorem 8.3 to obtain the following result.

Theorem 8.4 For every real sequence α1,α2,α3, . . . with αk �= 0, 1 for each k,
we have

n∑

k=1

(−1)k−1

α1 · · · αk
= 1

α1 + α1

α2 − 1 + α2

α3 − 1 +
. . .

αn−1 + αn−1

αn − 1

.

In particular, taking n → ∞, we conclude that

∞∑

k=1

(−1)k−1

α1 · · ·αk
= 1

α1+
α1

α2 − 1+
α2

α3 − 1+ . . . +
αn−1

αn − 1+ . . . , (8.8)

as long as either side (and hence both sides) makes sense.

Theorems 8.3 and 8.4 turn series to continued fractions; in Problem 9 we do the
same for infinite products.

8.2.3 Continued Fractions for arctan and π

Wenow use the identities just learned to derive some remarkable continued fractions.

Example 8.6 First, since

π

4
= 1

1
− 1

3
+ 1

5
− 1

7
+ · · · ,

using the limit expression (8.6) in Theorem 8.3:
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1

α1
− 1

α2
+ 1

α3
− 1

α4
+ · · · = 1

α1+
α2
1

α2 − α1+
α2
2

α3 − α2 +
α2
3

α4 − α3+ · · · ,

we can write
π

4
= 1

1 + 12

2 + 32

2 + 52

2 + 72

2 + . . .

.

Inverting both sides (see Problem 3 on p. 597), we obtain the incredible expansion

4

π
= 1 + 12

2 + 32

2 + 52

2 + 72

2 + . . .

. (8.9)

This continued fraction was the very first continued fraction ever recorded, and was
written down without proof by William Brouncker (1620–1686), the first president
of the Royal Society of London.

Actually, we can derive (8.9) from a related expansion of the arctangent function,
which is so neat that we shall derive in two ways, using Theorem 8.3 then using
Theorem 8.4.

Example 8.7 Recall that

arctan x = x − x3

3
+ x5

5
− x7

7
+ · · · + (−1)n−1 x2n−1

2n − 1
+ · · · .

Setting α1 = 1
x , α2 = 3

x3 , α3 = 5
x5 , and in general, αn = 2n−1

x2n−1 into the formula (8.6)
from Theorem 8.3, we get the somewhat complicated formula

arctan x = 1
1
x
+

1
x2

3
x2 − 1

x
+

(
3
x3

)2

5
x5 − 3

x3
+ . . . +

(
2n−3
x2n−3

)2
2n−1
x2n−1 − 2n−3

x2n−3 + . . . .

However, we can simplify this using the transformation rule from Theorem 8.2:

b1
a1+

b2
a2 + . . . +

bn
an + . . . = ρ1b1

ρ1a1+
ρ1ρ2b2
ρ2a2 + . . . +

ρn−1ρnbn
ρnan + . . . .
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(Here we drop the a0 term from that theorem.) Let ρ1 = x , ρ2 = x3, . . ., and in
general, ρn = x2n−1. Then,

1
1
x

+
1
x2

3
x3

− 1
x

+

(
3
x3

)2

5
x5

− 3
x3

+

(
5
x5

)2

7
x7

− 5
x5

+ . . . = x

1+
x2

3 − x2 +
32x2

5 − 3x2 +
52x2

7 − 5x2 + . . . .

Thus,

arctan x = x

1+
x2

3 − x2 +
32x2

5 − 3x2 +
52x2

7 − 5x2 + . . . ,

or in a fancier way:

arctan x = x

1 + x2

(3 − x2) + 32x2

(5 − 3x2) + 52x2

(7 − 5x2) + . . .

. (8.10)

In particular, setting x = 1 and inverting, we get Brouncker’s formula:

4

π
= 1 + 12

2 + 32

2 + 52

2 + 72

2 + . . .

.

Example 8.8 We can also derive (8.10) using Theorem 8.4. Once again we use the
formula

arctan x = x − x3

3
+ x5

5
− x7

7
+ · · · + (−1)n−1 x2n−1

2n − 1
+ · · · .

Setting α1 = 1
x , α2 = 3

x2 , α3 = 5
3x2 , α4 = 7

5x2 , · · · , αn = 2n−1
(2n−3)x2 for n ≥ 2, into the

limiting formula (8.8) from Theorem 8.4, we obtain

1

α1
− 1

α1α2
+ 1

α1α2α3
− · · · = 1

α1+
α1

α2 − 1+
α2

α3 − 1+ . . . +
αn

αn+1 − 1+ . . .

we obtain

arctan x = 1
1
x
+

1
x

3
x2 − 1+

3
x2

5
3x2 − 1+ . . . +

2n−1
(2n−3)x2

2n+1
(2n−1)x2 − 1+ . . . .
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From Theorem 8.2, we know that

b1
a1+

b2
a2 + . . . +

bn
an + . . . = ρ1b1

ρ1a1+
ρ1ρ2b2
ρ2a2 + . . . +

ρn−1ρnbn
ρnan + . . . .

In particular, setting ρ1 = x , ρ2 = x2, ρ3 = 3x2, ρ4 = 5x2, and in general, ρn =
(2n − 3)x2 for n ≥ 2 into the formula for arctan x , we obtain (as you are invited to
verify) the exact same expression (8.10)!

Example 8.9 We leave the next two beauts to you! Applying Theorem 8.3 and/or
Theorem 8.4 to Euler’s sum π2

6 = 1
12 + 1

22 + 1
32 + · · · , in Problem 2 we ask you to

derive the formula

6

π2
= 02 + 12 − 14

12 + 22 − 24

22 + 32 − 34

32 + 42 − 44

42 + 52 − . . .

, (8.11)

which is, after inversion, the last formula on the front cover of this book.

Example 8.10 In Problem 9 we derive Euler’s splendid formula [47, p. 89]:

π

2
= 1 + 1

1 + 1 · 2
1 + 2 · 3

1 + 3 · 4
1 + . . .

. (8.12)

8.2.4 Another Continued Fraction for π

We now derive another remarkable formula for π, which is due to Euler (according
to [47, p. 89]; the proof we give is found in [139]). Consider first the telescoping sum

∞∑

n=1

(−1)n−1

(
1

n
+ 1

n + 1

)
=

(
1

1
+ 1

2

)
−

(
1

2
+ 1

3

)
+

(
1

3
+ 1

4

)
− + · · · = 1.

Since
π

4
= 1

1
− 1

3
+ 1

5
− 1

7
+ · · · = 1 −

∞∑

n=1

(−1)n−1

2n + 1
,



8.2 � Some of the Most Beautiful Formulas in the World V 605

multiplying this expression by 4 and using the previous expression, we can write

π = 4 − 4
∞∑

n=1

(−1)n−1

2n + 1
= 3 + 1 − 4

∞∑

n=1

(−1)n−1

2n + 1

= 3 +
∞∑

n=1

(−1)n−1

(
1

n
+ 1

n + 1

)
− 4

∞∑

n=1

(−1)n−1

2n + 1

= 3 +
∞∑

n=1

(−1)n−1

(
1

n
+ 1

n + 1
− 4

2n + 1

)

= 3 + 4
∞∑

n=1

(−1)n−1

2n(2n + 1)(2n + 2)
,

wherewe combined fractions in going from the third to fourth lines.Wenowapply the
limiting formula (8.6) from Theorem 8.3 with αn = 2n(2n + 1)(2n + 2). Observe
that

αn − αn−1 = 2n(2n + 1)(2n + 2) − 2(n − 1)(2n − 1)(2n)

= 4n
[
(2n + 1)(n + 1) − (n − 1)(2n − 1)

]

= 4n
[
2n2 + 2n + n + 1 − (2n2 − n − 2n + 1)

] = 4n(6n) = 24n2.

Now putting the αn into the formula

1

α1
− 1

α2
+ 1

α3
− 1

α4
+ · · · = 1

α1+
α2
1

α2 − α1+
α2
2

α3 − α2 +
α2
3

α4 − α3+ . . . ,

we get

4
∞∑

n=1

(−1)n−1

2n(2n + 1)(2n + 2)
= 4 ·

(
1

2 · 3 · 4+
(2 · 3 · 4)2
24 · 22 +

(4 · 5 · 6)2
24 · 32 + . . .

)

= 1

2 · 3+
(2 · 3)2 · 4
24 · 22 +

(4 · 5 · 6)2
24 · 32 + . . . .

Hence,

π = 3 + 1

6+
(2 · 3)2 · 4
24 · 22 +

(4 · 5 · 6)2
24 · 32 + . . . +

(2(n − 1)(2n − 1)(2n))2

24 · n2 + . . . ,

(8.13)
which is beautiful, but we canmake this evenmore beautiful using the transformation
rule from Theorem 8.2:

b1
a1+

b2
a2 + . . . +

bn
an + . . . = ρ1b1

ρ1a1+
ρ1ρ2b2
ρ2a2 + . . . +

ρn−1ρnbn
ρnan + . . . .
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Setting ρ1 = 1 and ρn = 1
4n2 for n ≥ 2, and using the appropriate an, bn in (8.13),

we find that
ρn−1ρnbn = (2n − 1)2 and ρnan = 6.

Thus, the formula (8.13) simplifies considerably to

π = 3 + 12

6 +
32

6 +
52

6 +
72

6 + . . . +
(2n − 1)2

6 + . . . ,

or in more elegant notation,

π = 3 + 12

6 + 32

6 + 52

6 + 72

6 + . . .

. (8.14)

8.2.5 Continued Fractions and e

For our final beautiful example, we shall compute a continued fraction expansion for
e. Since e−1 = ∑∞

n=0
(−1)n

n! , we have

e − 1

e
= 1 − e−1 = 1

1
− 1

1 · 2 + 1

1 · 2 · 3 − 1

1 · 2 · 3 · 4 + · · · .

Thus, setting αk = k in the formula (8.8),

1

α1
− 1

α1α2
+ 1

α1α2α3
− · · · = 1

α1+
α1

α2 − 1+
α2

α3 − 1+ . . . +
αn−1

αn − 1+ . . . ,

we obtain
e − 1

e
= 1

1 + 1

1 + 2

2 + 3

3 + . . .

.

We can make this into an expression for e as follows. First, invert the expression and
then subtract 1 from both sides to get
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e

e − 1
= 1 + 1

1 + 2

2 + 3

3 + . . .

, then
1

e − 1
= 1

1 + 2

2 + 3

3 + . . .

.

Second, invert again to obtain

e − 1 = 1 + 2

2 + 3

3 + 4

4 + 5

5 + . . .

.

Finally, adding 1 to both sides, we get the incredibly beautiful expression

e = 2 + 2

2 + 3

3 + 4

4 + 5

5 + . . .

, (8.15)

or in shorthand,

e = 2 + 2

2+
3

3+
4

4+
5

5+ . . . .

In the exercises you will derive other amazing formulas.

� Exercises 8.2

1. Recall that log(1 + x) = ∑∞
n=0(−1)n xn+1

n+1 . Using this formula, the formula (8.6)
in Theorem 8.3, and also the transformation rule, prove that fabulous formula

log(1 + x) = x

1 + 12x

(2 − 1x) + 22x

(3 − 2x) + 32x

(4 − 3x) + . . .

.

Plug in x = 1 to derive our beautiful formula for log 2.
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2. Using Euler’s sum π2

6 = 1
12 + 1

22 + 1
32 + · · · , give two proofs of the formula

(8.11), one using Theorem 8.3 and the other using Theorem 8.4. The transforma-
tion rules will come in handy.

3. From the expansion π
sin πx = 1

x + ∑∞
n=1(−1)n 2x

x2−n2 , derive the beautiful expres-
sion

sin πx

πx
= 1 + −2x2

x2 + 1+
(x2 − 12)2

3 +
(x2 − 22)2

5 +
(x2 − 32)2

7 +
(x2 − 52)2

9 + . . . .

4. (i) For all real numbers {αk}, prove that for every n,

n∑

k=0

αk x
k = α0 + α1x

1 +
−α2

α1
x

1 + α2
α1
x +

−α3
α2
x

1 + α3
α2
x + . . . +

− αn
αn−1

x

1 + αn
αn−1

x
,

provided, of course, that the right-hand side is defined, which we assume
holds for every n.

(ii) Deduce that if the infinite series
∑∞

n=0 αnxn converges, then

∞∑

n=0

αnx
n = α0 + α1x

1 +
−α2

α1
x

1 + α2
α1
x +

−α3
α2
x

1 + α3
α2
x + . . . +

− αn
αn−1

x

1 + αn
αn−1

x + . . . .

Transforming the continued fraction on the right, prove that

∞∑

n=0

αnx
n = α0 + α1x

1 +
−α2x

α1 + α2x +
−α1α3x

α2 + α3x + . . . +
−αn−2αnx

αn−1 + αnx + . . . .

5. Writing arctan x = x(1 − y
3 + y2

5 − y3

7 + · · · ), where y = x2, and using the pre-

vious problem on (1 − y
3 + y2

5 − y3

7 + · · · ), derive the formula (8.10).
6. Let x, y > 0. Prove that

∞∑

n=0

(−1)n

x + ny
= 1

x+
x2

y +
(x + y)2

y +
(x + 2y)2

y +
(x + 3y)2

y + . . . .

Suggestion: The formula (8.6) in Theorem 8.3 might help.
7. Recall the partial fraction expansion πx cot πx = 1 + 2x2

∑∞
n=1

1
x2−n2 .

(a) Splitting 2x
x2−n2 into two parts, prove that

π cot πx = 1

x
− 1

1 − x
+ 1

1 + x
− 1

2 − x
+ 1

2 + x
− + · · · .
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(b) Derive the remarkable formula

π cot πx = 1

x +
x2

1 − 2x +
(1 − x)2

2x +
(1 + x)2

1 − 2x +
(2 − x)2

2x +
(2 + x)2

1 − 2x + . . . .

Putting x = 1/4, give a new proof of Brouncker’s formula.
(c) Derive

tan πx

πx
= 1 + x

1 − 2x +
(1 − x)2

2x +
(1 + x)2

1 − 2x +
(2 − x)2

2x +
(2 + x)2

1 − 2x + . . . .

8. From the expansion π
4 cos πx

2
= ∑∞

n=0(−1)n (2n+1)
(2n+1)2−x2 , derive the beautiful

expression

cos πx
2

π
2

= x + 1 + (x + 1)2

−2 · 1 +
(x − 1)2

−2 +
(x − 3)2

2 · 3 +
(x + 3)2

2 +
(x + 5)2

−2 · 5 +
(x − 5)2

−2 + . . . .

9. (Cf. [123]) In this problem we turn infinite products into continued fractions.

(a) Let α1,α2,α3, . . . be a sequence of real numbers with αk �= 0,−1 for all
k. Define sequences b1, b2, b3, . . . and a0, a1, a2, . . . by b1 = (1 + α0)α1,
a0 = 1 + α0, a1 = 1, and

bn = −(1 + αn−1)
αn

αn−1
, αn = 1 − an for n = 2, 3, 4, . . . .

Prove (say by induction) that for every n ∈ N,

n∏

k=0

(1 + αk) = a0 + b1
a1+

b2
a2 + . . . +

bn
an

.

Taking n → ∞, get a formula between infinite products and fractions.

(b) Using that sin πx
πx = ∏∞

n=1

(
1 − x

n2

)
= (1 − x)(1 + x)

(
1 − x

2

)(
1 + x

2

)

(
1 − x

3

)(
1 + x

3

)
· · · and (a), derive the continued fraction expansion

sin πx

πx
= 1 − x

1+
1 · (1 − x)

x +
1 · (1 + x)

1 − x +
2 · (2 − x)

x +
2 · (2 + x)

1 − x + . . . .

(c) Putting x = 1/2, prove (8.12). Putting x = −1/2, derive another continued
fraction for π/2.
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8.3 Recurrence Relations, Diophantus’s Tomb, and
Shipwrecked Sailors

In this section we define the Wallis–Euler recurrence relations, which generate
sequences of numerators and denominators for convergents of continued fractions.
Diophantine equations is the subject of finding integer solutions to polynomial equa-
tions. Continued fractions (through the special properties of the Wallis–Euler recur-
rence relations) turn out to play a very important role in this subject.

8.3.1 Convergents and Recurrence Relations

We call a continued fraction

a0 + b1
a1+

b2
a2 +

b3
a3+ . . . +

bn
an + . . . (8.16)

nonnegative if the an, bn are real numbers with an > 0, bn ≥ 0 for all n ≥ 1 (a0
can be any real number). We shall not spend a lot of time on continued fractions
when the an and bn in (8.16), for n ≥ 1, are arbitrary real numbers; it is only for
nonnegative infinite continued fractions that we develop their convergence properties
in Section8.4. However, we shall come across continued fractions in which some of
the an, bn are negative; see, for instance, the beautiful expression (8.45) on p. 666
for cot x (and the following one for tan x) in Section8.7! We focus on nonnegative
continued fractions because their convergents

cn := a0 + b1
a1+

b2
a2 +

b3
a3+ . . . +

bn
an

are always well defined. For arbitrary an , bn , weird things can happen. For instance,
consider the elementary example 1

1+ −1
1 + 1

1 . Let us form its convergents. Note that
c1 = 1, which is OK, but

c2 = 1

1+
−1

1
= 1

1 + − 1

1

= 1

1 − 1
= 1

0
= ???,

which is not OK.1 However,

1Actually, in the continued fraction community, we always define a/0 = ∞ for a �= 0 so we can
get around this division by zero predicament by simply defining it away.
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c3 = 1

1+
−1

1 +
1

1
= 1

1 + − 1

1 + 1

1

= 1

1 + − 1

2

= 1

1

2

= 2,

which is OK again! To avoid such craziness, we shall focus on nonnegative continued
fractions, but we emphasize that much of our analysis works in greater generality.

Let {an}∞n=0, {bn}∞n=1 be sequences of real numbers with an > 0, bn ≥ 0 for all
n ≥ 1 (there is no restriction on a0). The following sequences {pn}, {qn} are central
in the theory of continued fractions:

Wallis–Euler recurrence relations
pn = an pn−1 + bn pn−2 , qn = anqn−1 + bnqn−2

p−1 = 1 , p0 = a0 , q−1 = 0 , q0 = 1.
(8.17)

We call these recurrence relations the Wallis–Euler recurrence relations. You’ll
see why they’re so central in a moment. In particular,

p1 = a1 p0 + b1 p−1 = a1a0 + b1
q1 = a1q0 + b1q−1 = a1.

(8.18)

We remark that qn > 0 for n = 0, 1, 2, 3, . . .. This is easily proved by induction:
Certainly, q0 = 1, q1 = a1 > 0 (recall that an > 0 for n ≥ 1); thus assuming that
qn > 0 for n = 0, . . . , n − 1, we have (recall that bn ≥ 0),

qn = anqn−1 + bnqn−2 > 0 · 0 + 0 = 0,

and our induction is complete. Observe that the zeroth convergent of the continued
fraction

a0 + b1
a1+

b2
a2 +

b3
a3+ . . . +

bn
an + . . .

is c0 = a0, which also equals p0/q0, since p0 = a0 and q0 = 1. Also, the first con-
vergent is

c1 = a0 + b1
a1

= a1a0 + b1
a1

= p1
q1

.

The central property of the pn, qn is the fact that cn = pn/qn for all n.
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Theorem 8.5 For every positive real number x, we have

a0 + b1
a1+

b2
a2 +

b3
a3+ . . . +

bn
x

= xpn−1 + bn pn−2

xqn−1 + bnqn−2
, n = 1, 2, 3, . . . . (8.19)

(Note that the denominator is positive, because qn > 0 for n ≥ 0.) In particular,
setting x = an and using the definition of pn, qn, we have

cn = a0 + b1
a1+

b2
a2 +

b3
a3 + . . . +

bn
an

= pn
qn

, n = 0, 1, 2, 3, . . . .

Proof We prove (8.19) by induction. If n = 1, observe that

a0 + b1
x

= a0x + b1
x

= xp0 + b1 p−1

xq0 + q−1
,

since p0 = a0, p−1 = 1, q0 = 1, and q−1 = 0. Assume that (8.19) holds when there
are n terms after a0; we shall prove that it holds for fractions with n + 1 terms after
a0. To do so, we write (see Problem 4 on p. 579 for the general technique)

a0 + b1
a1+

b2
a2 + . . . +

bn
an +

bn+1

x
= a0 + b1

a1+
b2
a2 + . . . +

bn
y

,

where y = an + bn+1

x
= xan + bn+1

x
. By our induction hypothesis, we have

a0 + b1
a1+

b2
a2 + . . . +

bn+1

x
= ypn−1 + bn pn−2

yqn−1 + bnqn−2

=

(
xan + bn+1

x

)
pn−1 + bn pn−2

(
xan + bn+1

x

)
qn−1 + bnqn−2

= xan pn−1 + bn+1 pn−1 + xbn pn−2

xanqn−1 + bn+1qn−1 + xbnqn−2

= x(an pn−1 + bn pn−2) + bn+1 pn−1

x(anqn−1 + bnqn−2) + bn+1qn−1

= xpn + bn+1 pn−1

xqn + bn+1qn−1
,

which completes our induction step and finishes our proof. �
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In the next theorem, we give various useful identities that the pn, qn satisfy.

Fundamental recurrence relations

Theorem 8.6 For all n ≥ 1, the following identities hold:

pnqn−1 − pn−1qn = (−1)n−1b1b2 · · · bn
pnqn−2 − pn−2qn = (−1)nanb1b2 · · · bn−1

and (where the formula for cn − cn−2 is valid only for n ≥ 2)

cn − cn−1 = (−1)n−1b1b2 · · · bn
qn qn−1

, cn − cn−2 = (−1)nanb1b2 · · · bn−1

qn qn−2
.

Proof To prove that pnqn−1 − pn−1qn = (−1)n−1b1b2 · · · bn for n = 1, 2, . . ., we
proceed by induction. For n = 1, the left-hand side is (see (8.18))

p1q0 − p0q1 = (a1a0 + b1) · 1 − a0 · a1 = b1,

which is the right-hand side when n = 1. Assume that our equality holds for n; we
prove that it holds for n + 1. By the Wallis–Euler recurrence relations, we have

pn+1qn − pnqn+1 = (
an+1 pn + bn+1 pn−1

)
qn − pn

(
an+1qn + bn+1qn−1

)

= bn+1 pn−1qn − pnbn+1qn−1

= −bn+1
(
pnqn−1 − pn−1qn

)

= −bn+1 · (−1)n−1b1b2 · · · bn = (−1)nb1b2 · · · bnbn+1,

which completes our induction step. Next, we use the Wallis–Euler recurrence rela-
tions and the equality just proved to obtain

pnqn−2 − pn−2qn = (
an pn−1 + bn pn−2

)
qn−2 − pn−2

(
anqn−1 + bnqn−2

)

= an pn−1qn−2 − pn−2anqn−1

= an
(
pn−1qn−2 − pn−2qn−1

)

= an · (−1)n−2b1b2 · · · bn−1 = (−1)nanb1b2 · · · bn−1.

Finally, the equations for cn − cn−1 and cn − cn−2 follow from dividing

pnqn−1 − pn−1qn = (−1)n−1b1 · · · bn and pnqn−2 − pn−2qn = (−1)n−1anb1 · · · bn−1

by qn qn−1 and qn qn−2, respectively. �
For simple continued fractions, the Wallis–Euler relations (8.17) and (8.18) and

the fundamental recurrence relations take the following particularly simple forms.
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Simple fundamental recurrence relations

Corollary 8.7 For simple continued fractions, for all n ≥ 1, if

pn = an pn−1 + pn−2 , qn = anqn−1 + qn−2

p0 = a0 , p1 = a0a1 + 1 , q0 = 1 , q1 = a1,

then

cn = 〈a0; a1, a2, a3, . . . , an〉 = pn
qn

for all n ≥ 0.

Also, for every x > 0,

〈a0; a1, a2, a3, . . . , an, x〉 = xpn−1 + pn−2

xqn−1 + qn−2
, n = 1, 2, 3, . . . . (8.20)

Moreover, for all n ≥ 1, the following identities hold:

pnqn−1 − pn−1qn = (−1)n−1

pnqn−2 − pn−2qn = (−1)nan

and

cn − cn−1 = (−1)n−1

qn qn−1
, cn − cn−2 = (−1)nan

qn qn−2
,

where cn − cn−2 is valid only for n ≥ 2.

We also have the following interesting result.

Corollary 8.8 All the pn, qn for a simple continued fraction are relatively prime;
that is, cn = pn/qn is automatically in lowest terms.

Proof The fact that pn , qn are in lowest terms follows from the fact that

pnqn−1 − pn−1qn = (−1)n−1,

so if an integer happens to divide divide both pn and qn , then it divides pnqn−1 −
pn−1qn also, so it must divide (−1)n−1 = ±1, which is impossible unless the number
was ±1. �
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8.3.2 Diophantine Equations, Sailors, Coconuts, and
Monkeys

The following puzzle is very fun; for more cool coconut puzzles, see [87, 88, 246,
227], and Problems 5 and 6. See also [229] for the long history of such problems.

Example 8.11 (Going nuts I) Five sailors get shipwrecked on an island where there
is one coconut tree and a very slim monkey. The sailors gathered all the coconuts
into a gigantic pile and went to sleep. At midnight, one sailor woke up, and because
he didn’t trust his mates, he divided the coconuts into five equal piles, but with one
coconut left over, (Fig. 8.1).

Fig. 8.1 The sailor divides the pile of coconuts into five equal piles with one coconut left over. He
hides one pile, combines the remaining four piles, and throws the extra coconut to the monkey

He threw the extra one to the monkey, hid his pile, put the remaining coconuts
back into a pile, and went to sleep. At one o’clock, the second sailor woke up, and
because he was untrusting of his mates, he divided the coconuts into five equal piles,
but again with one coconut left over. He threw the extra one to the monkey, hid his
pile, put the remaining coconuts back into a pile, and went to sleep. This exact same
scenario continued throughout the night with the other three sailors. In the morning,
all the sailorswoke up, and pretending that nothing had happened in the night, divided
the now minuscule pile of coconuts into five equal piles, and they found yet again
one coconut left over, which they threw to the now very overweight monkey.

Question: What is the smallest possible number of coconuts in the original pile?

Let x equal the original number of coconuts.Recall that sailor #1divided x intofive
parts, but with one left over. This means that if y1 is the number of coconuts he took,
then x = 5y1 + 1 and he left 4 · y1 coconuts. If y2 is the number of coconuts that sailor
#2 took, then 4y1 = 5y2 + 1, and he left 4 · y2 coconuts. Repeating this argument, if
y3, y4 and y5 are the numbers of coconuts sailors #3, #4, and #5, respectively took,
then

4y2 = 5y3 + 1 , 4y3 = 5y4 + 1 , 4y4 = 5y5 + 1.

At the end, the sailors divided the last amount of coconuts 4 · y5 into five piles, with
one coconut left over. Thus, if y is the number of coconuts in each final pile, then
4y5 = 5y + 1. To summarize, we have obtained the equations

x = 5y1 + 1 , 4y1 = 5y2 + 1 , 4y2 = 5y3 + 1 , 4y3 = 5y4 + 1 ,

4y4 = 5y5 + 1 , 4y5 = 5y + 1.
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We can eliminate the variables y1, y2, y3, y4, y5, and after some algebra we get

1024x − 15625y = 11529.

We are searching for nonnegative integers x, y solving this equation. We will find
such integers after a brief intermission.

The sailor–coconut–monkey puzzles lead us to the subject of Diophantine equa-
tions, which are polynomial equations that we wish to solve in integers. We are
particularly interested in solving linear equations. Before doing so, it might of inter-
est to know that the subject of Diophantine equations is named after the Greek
mathematician Diophantus of Alexandrea (200–284 A.D.). Diophantus is famous
for at least two things: his book Arithmetica, which studies equations that we now
call Diophantine equations in his honor, and for the following riddle, which was
supposedly written on his tombstone:

This tomb hold Diophantus. Ah, what a marvel! And the tomb tells scientifically the measure
of his life. God vouchsafed that he should be a boy for the sixth part of his life; when a twelfth
was added, his cheeks acquired a beard; He kindled for him the light of marriage after a
seventh, and in the fifth year after his marriage He granted him a son. Alas! late-begotten
and miserable child, when he had reached the measure of half his father’s life, the chill grave
took him. After consoling his grief by this science of numbers for four years, he reached the
end of his life. [171].

Try to find how old Diophantus was when he died using elementary algebra.
(Let x equal his age when he died; then you should end up with trying to solve
the equation x = 1

6 x + 1
12 x + 1

7 x + 5 + 1
2 x + 4, obtaining x = 84.) Here is an easy

way to find his age: Unraveling the above fancy language, and picking out two
facts, we know that 1/12th of his life was in youth and 1/7th was as a bachelor.
In particular, his age must divide 7 and 12. The only integer that does this, and
which is within the human lifespan, is 7 · 12 = 84. In particular, he spent 84/6 = 14
years as a child, 84/12 = 7 as a youth, 84/7 = 12 years as a bachelor. He married
at 14 + 7 + 12 = 33, at 33 + 5 = 38, his son was born, who later died at the age
of 84/2 = 42 years old, when Diophantus was 80. Finally, after 4 years doing the
“science of numbers,” Diophantus died at the ripe old age of 84.

After taking amoment to wipe away our tears, let us go back to linear Diophantine
equations. Let a, c ∈ Z, b ∈ N, and suppose wewould like to find integer pairs (x, y)
such that

ax − by = c.

Of course, the pairs of real numbers (x, y) satisfying this equation defines a line:

x

y

ax − by = c, or y =
a

b
x − c

b
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Thus, we are asking whether pairs of integers lie on this line. This is not always
true; for example, the equation 2x − 4y = 1 has no integer solutions (because for
x, y integers, the left-hand side is divisible by 2, while the right side is not). However,
if we assume that a and b are relatively prime, then there are always (infinitely many)
integer pairs on the line.

Theorem 8.9 If a ∈ Z and b ∈ N are relatively prime, then for every c ∈ Z, the
equation

ax − by = c

has an infinite number of integer solutions (x, y). Moreover, if (x0, y0) is any one
integral solution of the equation with c = 1, then for general c ∈ Z, all solutions
are of the form

x = cx0 + bt , y = cy0 + at , for all t ∈ Z.

Proof In Problem8we ask you to prove this theoremusingProblem5onp. 66; butwe
shall use continued fractions just for fun.We first solve the equation ax − by = 1. To
do so, we write a/b as a finite simple continued fraction: a/b = 〈a0; a1, a2, . . . , an〉,
andbyTheorem8.1wecan choosen to beodd. Thena/b is equal to thenth convergent
pn/qn , which implies that pn = a and qn = b since pn and qn are relatively prime
(Corollary 8.8). Also, by our relations in Corollary 8.7, we know that

pnqn−1 − qn pn−1 = (−1)n−1 = 1,

where we used that n is odd. Thus, aqn−1 − bpn−1 = 1, so

(x0, y0) = (qn−1, pn−1) (8.21)

solves ax0 − by0 = 1. Multiplying ax0 − by0 = 1 by c, we get

a(cx0) − b(cy0) = c.

Then ax − by = c holds if and only if

ax − by = a(cx0) − b(cy0) ⇐⇒ a(x − cx0) = b(y − cy0).

This shows that a divides b(y − cy0), which can be possible if and only if a divides
y − cy0, since a and b are relatively prime. Thus, y − cy0 = at for some t ∈ Z.
Plugging y − cy0 = at into the equation a(x − cx0) = b(y − cy0), we get

a(x − cx0) = b · (at) = abt.
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Canceling a, we get x − cx0 = bt , and our proof is now complete. �
We also remark that the proof of Theorem 8.9, in particular the formula (8.21),

also tells us how to find (x0, y0): Just write a/b as a simple continued fraction with
an odd number n of terms after the integer part of a/b, and compute the (n − 1)st
convergent to get (x0, y0) = (qn−1, pn−1).

Example 8.12 Consider the Diophantine equation

157x − 68y = 12.

We already know, see Example 8.1 on p. 591, that the continued fraction expansion
of a/b = 157

68 with an odd n = 3 is 157
68 = 〈2; 3, 4, 5〉 = 〈a0; a1, a2, a3〉. Thus,

c2 = 2 + 1

3 + 1

4

= 2 + 4

13
= 30

13
.

Therefore, (13, 30) is one solution of 157x − 68y = 1, which we should check just
to be sure:

157 · 13 − 68 · 30 = 2041 − 2040 = 1.

Since cx0 = 12 · 13 = 156 and cy0 = 12 · 30 = 360, the general solution of 157x −
68y = 12 is

x = 156 + 68t , y = 360 + 157t, t ∈ Z.

Example 8.13 (Going nuts II) To solve the sailor–coconut–monkey puzzle we need
integer solutions to

1024x − 15625y = 11529.

Since 1024 = 210 and 15625 = 56 are relatively prime, we can solve the equation
by Theorem 8.9. First, we solve 1024x − 15625y = 1 by writing 1024/15625 as a
continued fraction (this takes some algebra) and forcing n to be odd (in this case
n = 9)2:

1024

15625
= 〈0; 15, 3, 1, 6, 2, 1, 3, 2, 1〉.

Second, we take the (n − 1)st convergent:

c8 = 〈0; 15, 3, 1, 6, 2, 1, 3, 2〉 = 711

10849
.

Thus, (x0, y0) = (10849, 711). Since cx0 = 11529 · 10849 = 125078121 and cy0 =
11529 · 711 = 8197119, the integer solutions to 1024x − 15625y = 11529 are

2See http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/cfCALC.html for a continued frac-
tion calculator.

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/cfCALC.html
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x = 125078121 + 15625t , y = 8197119 + 1024t , t ∈ Z. (8.22)

This of course gives us infinitely many solutions. However, we want the smallest
nonnegative solutions since x and y represent numbers of coconuts; thus, we need

x = 125078121 + 15625t ≥ 0 =⇒ t ≥ −125078121

15625
= −8004.999744 . . . ,

and

y = 8197119 + 1024t ≥ 0 =⇒ t ≥ −8197119

1024
= −8004.9990234 . . . .

Thus, taking t = −8004 in (8.22), we finally arrive at x = 15621 and y = 1023. In
conclusion, the smallest number of coconuts in the original piles is 15621 coconuts.

� Exercises 8.3

1. Find the general integral solutions of

(a) 7x − 11y = 1 , (b) 13x − 3y = 5 , (c) 13x − 15y = 100 , (d) 13x + 15y = 100.

2. If all a0, a1, . . . , an are positive (in particular, p0 = a0 > 0), prove that for n =
1, 2, . . .,

pn
pn−1

= 〈an; an−1, an−2, . . . , a2, a1, a0〉 and
qn
qn−1

= 〈an; an−1, an−2, . . . , a2, a1〉.

Suggestion: Observe that pk
pk−1

= ak pk−1+pk−2

pk−1
= ak + 1

pk−1
pk−2

.

3. In this problem, we relate a special continued fraction to the Fibonacci sequence
{Fn} (see p. 520 for the definition of the Fibonacci sequence). For n ∈ N, let
pn/qn denote the nth convergent of the continued fraction 〈1; 1, 1, 1, . . .〉.
(a) Prove that pn = Fn+2 and qn = Fn+1 for all n = −1, 0, 1, 2, . . ..
(b) Prove that Fn and Fn+1 are relatively prime and derive the following

famous identity, named after Giovanni Cassini (1625–1712) (also called
Jean-Dominique Cassini)

Fn−1Fn+1 − F2
n = (−1)n (Cassini’s identity).

4. Imitating the proof of Theorem 8.9, show that a solution of ax − by = −1 can
be found by writing a/b as a simple continued fraction with an even number n of
terms after the integer part of a/b and finding the (n − 1)th convergent. Apply
this method to find a solution of 157x − 68y = −1 and 7x − 12y = −1.

5. (Three sailor coconut problems) The algebra for these problems is easier.

(a) Solve the coconut problem in Example 8.11 for the case of three sailors.
Thus, during the night each sailor divides the pile into three equal piles with
one left over and in the morning, the same occurs.
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(b) Solve the three sailor coconut problem when there are no coconuts left over
after the final division in the morning. (As before, during the night there was
always one coconut left over.) Thus, what is the smallest possible number of
coconuts in the original pile given that after the sailors divided the coconuts
in the morning, there are no coconuts left over?

6. (Five and seven sailor coconut problems) Here are more coconut problems.

(a) Solve the coconut problem assuming the same antics as in the text, except
for one thing: there are no coconuts left over for the monkey at the end.

(b) Solve the coconut problem assuming the same antics as in the text except
that during the night each sailor divided the pile into five equal piles with
none left over; however, after he puts the remaining coconuts back into a
pile, the monkey (being a thief himself) steals one coconut from the pile
(before the next sailor wakes up). In the morning, there is still one coconut
left over for the monkey.

(c) Solve the coconut problem when there are seven sailors, otherwise every-
thing is the same as in the text. (Warning: Set aside an evening for long
computations!)

7. Let α = 〈a0; a1, a2, . . . , am〉, β = 〈b0; b1, . . . , bn〉 with m, n ≥ 0 and the ak, bk
integers with am, bn > 1 (such finite continued fractions are called regular).
Prove that if α = β, then ak = bk for all k = 0, 1, 2, . . .. In other words, distinct
regular finite simple continued fractions define different rational numbers.

8. Prove Theorem 8.9 using Problem 5 on p. 65.

8.4 Convergence Theorems for Infinite Continued
Fractions

In this section we shall investigate the delicate issues surrounding convergence of
infinite continued fractions (see Theorem 8.14, the continued fraction convergence
theorem); in particular, we prove that every simple continued fraction converges. We
also show how to write every real number as a simple continued fraction via the
canonical continued fraction algorithm. Finally, we prove that a real number is
irrational if and only if its simple continued fraction expansion is infinite.

8.4.1 Monotonicity Properties of Convergents

Let {cn} denote the convergents of a nonnegative infinite continued fraction

a0 + b1
a1+

b2
a2 +

b3
a3+ . . . +

bn
an + . . . ,
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where recall that nonnegative means that the an, bn are real numbers with an >

0, bn ≥ 0 for all n ≥ 1, and there is no restriction on the sign of a0. TheWallis–Euler
recurrence relations (8.17) are

pn = an pn−1 + bn pn−2 , qn = anqn−1 + bnqn−2,

where p−1 = 1, p0 = a0, q−1 = 0, q0 = 1. Then (cf. (8.18))

p1 = a1 p0 + b1 p−1 = a1a0 + b1 , q1 = a1q0 + b1q−1 = a1,

and all the qn are positive (see the discussion below (8.18) on p. 611). By Theorem
8.5 we have cn = pn/qn for all n, and by Theorem 8.6, for all n ≥ 1 we have the
fundamental recurrence relations

pnqn−1 − pn−1qn = (−1)n−1b1b2 · · · bn,
pnqn−2 − pn−2qn = (−1)nanb1b2 · · · bn−1,

and

cn − cn−1 = (−1)n−1b1b2 · · · bn
qn qn−1

, cn − cn−2 = (−1)nanb1b2 · · · bn−1

qn qn−2
,

where the formula for cn − cn−2 is valid only for n ≥ 2. Using these fundamental
recurrence relations, we shall prove the following monotonicity properties of the cn ,
which is important in the study of the convergence properties of the cn .

Proposition 8.10 Let j be even, k be odd, and suppose that b1, b2, . . ., b� > 0,
where � is the larger of j, k. Then,

c0 < c2 < c4 < · · · < c j < ck < · · · < c5 < c3 < c1.

Proof If n is even and n ≤ � + 1, then the fundamental relation for cn − cn−2 implies

cn − cn−2 = anb1b2 · · · bn−1

qn qn−2
> 0 =⇒ cn−2 < cn.

In particular, the convergents with even indices≤ � + 1 are strictly increasing. Anal-
ogously, the convergents with odd indices ≤ � + 1 are strictly decreasing.

Suppose j (which is even) is larger than k. By the fundamental recurrence relation
for c j − c j−1, we have

c j − c j−1 = −b1b2 · · · b j

q j q j−1
< 0 =⇒ c j < c j−1.
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We already proved that the convergents with odd indices are strictly decreasing,
so since j − 1 is odd (and k ≤ j − 1), it follows that c j−1 ≤ ck . This proves that
c j < ck . Analogously, if k is larger than j , we obtain the same result, c j < ck . This
completes our proof. �

By the monotone criterion for sequences, we have the following.

Corollary 8.11 The limits of the even and odd convergents exist, and

c0 < c2 < c4 < · · · < lim c2n ≤ lim c2n−1 < · · · < c5 < c3 < c1.

Here’s a rational illustration of the monotonicity of convergents.

Example 8.14 Consider the first continued fraction we studied:

157

68
= 2 + 1

3+
1

4+
1

5
= 〈2; 3, 4, 5〉.

Here’s a picture of the convergents:

2.5
c0

2
c1c2c3

c0 = 2, c1 = 7
3 = 2.333 . . .

c2 = 30
13 = 2.30769 . . . , c3 = 157

68 = 2.30882 . . .

Note how the convergent c2 = 30/13 is a fairly simple fraction, and it approx-
imates the rather complicated fraction 157/68 almost perfectly (they differ by
0.0011 . . .). This is a general phenomenon with convergents; see Section8.5.

Here’s an irrational illustration of the monotonicity of convergents.

Example 8.15 The continued fraction for � is (see Example 8.16 on p. 625)

� = 1 + 1

1+
1

1+
1

1+ · · · .

Here’s a picture of the convergents c0, . . . , c5:

2
c0

1
c1c2 c3c4c5

c0 = 1, c1 = 2, c2 = 3
2 = 1.5

c3 = 5
3 = 1.6666 . . . , c4 = 8

5 = 1.6, c5 = 13
8 = 1.625 . . .
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8.4.2 Convergence Results for Continued Fractions

As a consequence of the previous corollary, it follows that lim cn exists if and only
if lim c2n = lim c2n−1, which holds if and only if

c2n − c2n−1 = −b1b2 · · · b2n
q2n q2n−1

→ 0 as n → ∞. (8.23)

In the following theorem, we give one condition under which this is satisfied.

Theorem 8.12 Let {an}∞n=0, {bn}∞n=1 be sequences such that an, bn > 0 for n ≥ 1
and ∞∑

n=1

anan+1

bn+1
= ∞.

Then (8.23) holds, so the continued fraction ξ := a0 + b1
a1 + b2

a2 + b3
a3 + b4

a4 + . . . con-
verges. Moreover, for even j and odd k, we have

c0 < c2 < c4 < · · · < c j < · · · < ξ < · · · < ck < · · · < c5 < c3 < c1.

Proof Observe that for n ≥ 2, we have qn−1 = an−1qn−2 + bn−1qn−3 ≥ an−1qn−2,
since bn−1, qn−3 ≥ 0. Thus, for n ≥ 2 we have

qn = anqn−1 + bnqn−2 ≥ an · (an−1qn−2) + bnqn−2 = qn−2(anan−1 + bn),

so
qn ≥ qn−2(anan−1 + bn).

Applying this formula over and over again, we find that for n ≥ 1,

q2n ≥ q2n−2(a2na2n−1 + b2n)

≥ q2n−4(a2n−2a2n−3 + b2n−2) · (a2na2n−1 + b2n)

≥ ...

≥ q0(a2a1 + b2)(a4a3 + b4) · · · (a2na2n−1 + b2n).

A similar argument shows that for n ≥ 2,

q2n−1 ≥ q1(a3a2 + b3)(a5a4 + b5) · · · (a2n−1a2n−2 + b2n−1).

Thus, for n ≥ 2, we have
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q2nq2n−1 ≥ q0q1(a2a1 + b2)(a3a2 + b3) · · · (a2n−1a2n−2 + b2n−1)(a2na2n−1 + b2n).

Factoring out all the bk , we conclude that

q2nq2n−1 ≥ q0q1b2 · · · b2n · · ·
(
1 + a2a1

b2

) (
1 + a3a2

b3

)
· · ·

(
1 + a2na2n−1

b2n

)
.

This shows that
b1b2 · · · b2n
q2n q2n−1

≤ b1
q0q1

· 1
∏2n−1

k=1

(
1 + akak+1

bk+1

) . (8.24)

Now recall that (see Theorem7.2 on p. 537) a series
∑∞

k=1 αk of positive real numbers
converges if and only if the infinite product

∏∞
k=1(1 + αk) converges. Thus, since

we are given that
∑∞

k=1
akak+1

bk+1
= ∞, we have

∏∞
k=1

(
1 + akak+1

bk+1

)
= ∞ as well, so the

right-hand side of (8.24) vanishes as n → ∞. The fact that for even j and odd k, we
have

c0 < c2 < c4 < · · · < c j < · · · < ξ < · · · < ck < · · · < c5 < c3 < c1

follows from Corollary 8.11. This completes our proof. �

For other convergence theorems, see Problems 6 and 9. An important example for
which this theorem applies is to simple continued fractions: For a simple continued
fraction 〈a0; a1, a2, a3, . . .〉, all the bn equal 1, so

∞∑

n=1

anan+1

bn+1
=

∞∑

n=1

anan+1 = ∞,

since all the an are positive integers.

Corollary 8.13 Infinite simple continued fractions always converge, and if ξ is
the limit of such a fraction, then for even j and odd k, the convergents satisfy

c0 < c2 < c4 < · · · < c j < · · · < ξ < · · · < ck < · · · < c5 < c3 < c1.

Example 8.16 In particular, the very special fraction � := 〈1; 1, 1, 1, . . .〉 con-
verges. We already know that it converges to the golden ratio, but let’s prove it
again. To this end, observe that the nth convergent of � is

http://dx.doi.org/10.1007/978-1-4939-6795-7_7
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cn = 1 + 1

1 + 1

1 +
. . .

1 + 1

1

= 1 + 1

cn−1
.

Thus, if we set � = lim cn , which we know exists and is larger than c0 = 1, then
taking n → ∞ on both sides of cn = 1 + 1

cn−1
, we get � = 1 + 1/�. Thus, �2 −

� − 1 = 0. Solving for �, taking the root that’s greater than 1, we get

� = 1 + √
5

2
,

the golden ratio. We can also get � more quickly by noticing that

� = 1 + 1

1 + 1

1 + 1

. . .

= 1 + 1

�
=⇒ � = 1 + 1

�
.

From this equality we get �2 − � − 1 = 0 and then � = 1+√
5

2 as before.

As a side note, unrelated to the present example, we remark that � can be used
to get a fairly accurate and well-known approximation to π:

π ≈ 6

5
�2 = 3.1416 . . . .

Example 8.17 The continued fraction ξ := 3 + 4
6+ 4

6+ 4
6+ 4

6 . . . was studied by
Rafael Bombelli (1526–1572) and was one of the first continued fractions ever to be
studied. Since

∑∞
n=1

anan+1

bn+1
= ∑∞

n=1
62

4 = ∞, this continued fraction converges. To

find the value of ξ, first define the continued fraction η := 6 + 4
6+ 4

6+ 4
6 . . ., which

also converges and is greater than its 0th convergent, which is 6. Note that ξ = η − 3
and

η = 6 + 4

6 + 4

6 + 4

. . .

= 6 + 1

η
=⇒ η = 6 + 1

η
=⇒ η2 − 6η − 1 = 0.

Solving this quadratic equation for η and taking the root larger than 6, we find that
η = 3 + √

13. Since ξ = η − 3, it follows that ξ = √
13. Isn’t this fun!
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8.4.3 The Canonical Continued Fraction Algorithm

What if wewant to construct a simple continued fraction expansion of a real number?
We know how to construct such an expansion for rational numbers, so let us review
that and see whether the method can be generalized to all real numbers. Recall
that to construct the continued fraction expansion of a rational number ξ = a/b,
where a ∈ Z and b ∈ N, we used the division algorithm (Theorem 2.16 on p. 60):
a = bq + r for some integersq, r with 0 ≤ r < b. Dividing both sides of a = bq + r
by b, we obtain ξ = q + r/b, which we can also write as

ξ = q + 1

η
,

where η = b/r , provided that r �= 0, and otherwise, ξ = q. We then iterate this
process over and over again to construct a simple continued fraction representing ξ.
The keys to generalize this formula to irrational numbers are the following observa-
tions. First, since 0 ≤ r < b, we have 0 ≤ r/b < 1. Thus, the formula ξ = q + r/b
implies that q = �ξ�, the greatest integer≤ ξ. Second, solving the above formula for
η, we obtain η = 1/(ξ − q). To summarize, we have

ξ = q + 1

η
, where q = �ξ� and η = 1

ξ − q
if ξ �= q. (8.25)

Note that all the quantities involved in this formula, namely �ξ� and 1/(ξ − �ξ�), are
defined for irrational numbers as well! The formula (8.25) will be used to construct
the simple fraction expansions of real numbers!

Thus, let ξ be an irrational number. First, put ξ0 = ξ and define a0 = �ξ0� ∈ Z.
By definition of the greatest integer function, we have 0 < ξ0 − a0 < 1 (note that
ξ0 �= a0 since ξ0 is irrational). Thus, we can write

ξ0 = a0 + 1

ξ1
, where ξ1 = 1

ξ0 − a0
> 1.

Here’s a picture (Fig. 8.2).

−1 0 1 2
...

k k + 1

ξ0
ξ0 = k + b where k ∈ and 0 < b < 1.

Put a0 = k and ξ1 =1 /b. Then ξ0 = a0 +1 /ξ1 where a0 ∈ and ξ1 > 1.

Fig. 8.2 We have ξ0 = a0 + 1

ξ1
, where a0 is an integer and ξ1 > 1. We will iterate this process to

construct integers a0, a1, a2, . . ., with an ≥ 1 for n ≥ 1, and real numbers ξ1, ξ2, ξ3, ξ4, . . . > 1

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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Note that ξ1 is irrational, because if not, then ξ0 would be rational, contrary to
assumption. Second, we define a1 = �ξ1� ∈ N. Then 0 < ξ1 − a1 < 1, so we can
write

ξ1 = a1 + 1

ξ2
, where ξ2 = 1

ξ1 − a1
> 1.

Note that ξ2 is irrational, and

ξ0 = a0 + 1

a1 + 1

ξ2

.

Third, we define a2 = �ξ2� ∈ N. Then, 0 < ξ2 − a2 < 1, so we can write

ξ2 = a2 + 1

ξ3
, where ξ3 = 1

ξ2 − a2
> 1.

Note that ξ3 is irrational, and

ξ0 = a0 + 1

a1 + 1

a2 + 1

ξ3

.

We can continue this procedure to “infinity,” creating a sequence {ξn}∞n=0 of real
numbers with ξn > 0 for n ≥ 1, called the complete quotients of ξ, and a sequence
{an}∞n=0 of integers with an > 0 for n ≥ 1, called the partial quotients of ξ, such
that

ξn = an + 1

ξn+1
, n = 0, 1, 2, 3, . . . .

Putting ξ0, ξ1, ξ2, . . . together into one formula, we get

ξ = ξ0 = a0 + 1

ξ1
= a0 + 1

a1 + 1

ξ2

= · · · “ = ” a0 + 1

a1 + 1

a2 + 1

a3 + 1

a4 + . . .

.

(8.26)
We put the quotation marks to emphasize that we have actually not proved that ξ
is equal to the infinite continued fraction on the far right, although it’s certainly
plausible that they are equal! But as a consequence of Theorem 8.14 below, this
equality in fact holds. We remark that by construction, the complete quotients and
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partial quotients satisfy, for each n ≥ 1,

ξ = 〈a0; a1, a2, . . . , an−1, ξn〉.

We also remark that the continued fraction in (8.26) is called the canonical (simple)
continued fraction expansion of ξ. In Problem 8 you will prove that the canonical
simple fraction expansion of a real number is unique.

8.4.4 The Continued Fraction Convergence Theorem

The following theorem is the main result of this section.

Continued fraction convergence theorem

Theorem 8.14 Let ξ0, ξ1, ξ2, . . . be a sequence of real numbers with ξn > 0 for
n ≥ 1 and suppose that these numbers are related by

ξn = an + bn+1

ξn+1
, n = 0, 1, 2, . . . ,

for sequences of real numbers {an}∞n=0, {bn}∞n=1 with an, bn > 0 for n ≥ 1 that
satisfy

∑∞
n=1

anan+1

bn+1
= ∞. Then ξ0 is equal to the continued fraction

ξ0 = a0 + b1
a1+

b2
a2 +

b3
a3+

b4
a4 +

b5
a5+ . . . .

In particular, for every real number ξ, the canonical continued fraction expansion
(8.26) converges to ξ.

Proof Let {ck = pk/qk} denote the convergents of the infinite continued fraction
a0 + b1

a1 + b2
a2 + b3

a3 + . . .. By Theorem 8.12, {ck} converges; we need to prove that
ck → ξ0.

Now consider the finite continued fraction obtained in a similar manner as we did
in (8.26) above, by writing out ξ0 to the nth term:

ξ0 = a0 + b1
a1+

b2
a2 +

b3
a3+ . . . +

bn−1

an−1 +
bn
ξn

.

Let {c′
k = p′

k/q
′
k} denote the convergents of this finite continued fraction. Then

observe that pk = p′
k and qk = q ′

k for k ≤ n − 1 and c′
n = ξ0. Therefore, by our

fundamental recurrence relations, we have
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|ξ0 − cn−1| = |c′
n − c′

n−1| = b1b2 · · · bn
q ′
n q

′
n−1

= b1b2 · · · bn
q ′
n qn−1

.

By the Wallis–Euler relations, we have

q ′
n = ξnq

′
n−1 + bnq

′
n−2 =

(
an + bn+1

ξn+1

)
qn−1 + bnqn−2 > anqn−1 + bnqn−2 = qn.

Hence, q ′
n > qn , so

|ξ0 − cn−1| = b1b2 · · · bn
q ′
n qn−1

<
b1b2 · · · bn
qn qn−1

= |cn − cn−1|.

Since {ck} converges, we have |cn − cn−1| → 0. This proves that cn−1 → ξ0. There-
fore, cn → ξ0 as well, and our proof is complete. �

Example 8.18 Consider ξ0 = √
3 = 1.73205 . . .. In this case, a0 = �ξ0� = 1. Thus,

ξ1 = 1

ξ0 − a0
= 1√

3 − 1
= 1 + √

3

2
= 1.36602 . . . =⇒ a1 = �ξ1� = 1.

Therefore,

ξ2 = 1

ξ1 − a1
= 1

1 + √
3

2
− 1

= 1 + √
3 = 2.73205 . . . =⇒ a2 = �ξ2� = 2.

Hence,

ξ3 = 1

ξ2 − a2
= 1√

3 − 1
= 1 + √

3

2
= 1.36602 . . . =⇒ a3 = �ξ3� = 1.

Here we notice that ξ3 = ξ1 and a3 = a1. Therefore,

ξ4 = 1

ξ3 − a3
= 1

ξ1 − a1
= ξ2 = 1 + √

3 =⇒ a4 = �ξ4� = �ξ2� = 2.

At this point, we see that we will get the repeating pattern 1, 2, 1, 2, . . ., so we
conclude that √

3 = 〈1; 1, 2, 1, 2, 1, 2, . . .〉 = 〈1; 1, 2〉,

where we indicate that the 1, 2 pattern repeats by putting a bar over 1, 2.

Example 8.19 Here is a neat example concerning the Fibonacci and Lucas numbers;
for other fascinating topics on these numbers, see the website [130]. Let us find the
continued fraction expansion of the irrational number ξ0 = �/

√
5, where � is the
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golden ratio � = 1+√
5

2 :

ξ0 = �√
5

= 1 + √
5

2
√
5

= 0.72360679 . . . =⇒ a0 = �ξ0� = 0.

Thus,

ξ1 = 1

ξ0 − a0
= 1

ξ0
= 2

√
5

1 + √
5

= 1.3819660 . . . =⇒ a1 = �ξ1� = 1.

Therefore,

ξ2 = 1

ξ1 − a1
= 1

2
√
5

1 + √
5

− 1

= 1 + √
5√

5 − 1
= 2.6180339 . . . =⇒ a2 = �ξ2� = 2.

Hence,

ξ3 = 1

ξ2 − a2
= 1

1 + √
5√

5 − 1
− 2

=
√
5 − 1

3 − √
5

= 1.2360679 . . . =⇒ a3 = �ξ3� = 1.

Thus,

ξ4 = 1

ξ3 − a3
= 1√

5 − 1

3 − √
5

− 1

= 3 − √
5

2
√
5 − 4

= 1 + √
5

2
= 1.6180339 . . . ;

that is, ξ4 = �, and so a4 = �ξ4� = 1. Let us do this one more time:

ξ5 = 1

ξ4 − a4
= 1

1 + √
5

2
− 1

= 2√
5 − 1

= 1 + √
5

2
= �,

and so a5 = a4 = 1. Continuing this process, we will get ξn = � and an = 1 for the
rest of the n’s. In conclusion, we have

�√
5

= 〈0; 1, 2, 1, 1, 1, 1, . . .〉 = 〈0; 1, 2, 1〉.

The convergents of this continued fraction are fascinating. Recall that the Fibonacci
sequence {Fn}, named after Leonardo Fibonacci (1170–1250), is defined by F0 = 0,
F1 = 1, and Fn = Fn−1 + Fn−2 for all n ≥ 2, which gives the sequence



8.4 Convergence Theorems for Infinite Continued Fractions 631

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

The Lucas numbers {Ln}, named after François Lucas (1842–1891), are defined by

L0 = 2 , L1 = 1 , Ln = Ln−1 + Ln−2 , n = 2, 3, 4, . . . .

They give the sequence

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . . .

If you work out the convergents of �√
5

= 〈0; 1, 2, 1, 1, 1, 1, . . .〉, what you get is the
fascinating result

�√
5

= 〈0; 1, 2, 1〉 has convergents

0

2
,
1

1
,
2

3
,
3

4
,
5

7
,
8

11
,
13

18
,
21

29
,
34

47
,
55

76
,
89

123
, . . . = Fibonacci numbers

Lucas numbers
;

(8.27)

of course, we do miss the other 1 in the Fibonacci sequence. For more fascinating
facts on Fibonacci numbers see Problem 7.

8.4.5 The Numbers π and e

We now discuss the continued fraction expansions for the famous numbers π and e.
Consider π first:

ξ0 = π = 3.141592653 . . . =⇒ a0 = �ξ0� = 3.

Thus,

ξ1 = 1

π − 3
= 1

0.141592653 . . .
= 7.062513305 . . . =⇒ a1 = �ξ1� = 7.

Therefore,

ξ2 = 1

ξ1 − a1
= 1

0.062513305 . . .
= 15.99659440 . . . =⇒ a2 = �ξ2� = 15.

Hence,

ξ3 = 1

ξ2 − a2
= 1

0.996594407 . . .
= 1.00341723 . . . =⇒ a3 = �ξ3� = 1.
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Let us do this one more time:

ξ4 = 1

ξ3 − a3
= 1

0.003417231 . . .
= 292.6345908 . . . =⇒ a4 = �ξ4� = 292.

Continuing this process (at a cafe and after 314 refills of coffee), we get

π = 〈3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, . . .〉.
(8.28)

Unfortunately (or fortunately, to keep life full of surprises), there is no known pattern
that the partial quotients follow! The first few convergents for π = 3.141592653 . . .

are

c0 = 3 , c1 = 22

7
= 3.142857142 . . . , c2 = 333

106
= 3.141509433 . . . ,

c4 = 355

113
= 3.141592920 . . . , c5 = 103993

33102
= 3.141592653 . . . .

In stark contrast to π, Euler’s number e has a shockingly simple pattern, which
we ask you to work out in Problem 2:

e = 〈2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .〉

Wewill prove that this pattern continues in Section8.7!We nowdiscuss the important
topic of when a continued fraction represents an irrational number.

8.4.6 Irrational Continued Fractions

Consider the following (cf. [166]).

Theorem 8.15 Let {an}∞n=0, {bn}∞n=1 be sequences of rational numbers such that
an, bn > 0 for n ≥ 1, 0 < bn ≤ an for all n sufficiently large, and

∑∞
n=1

anan+1

bn+1
=

∞. Then the real number

ξ = a0 + b1
a1+

b2
a2 +

b3
a3+

b4
a4 +

b5
a5+ . . . is irrational.

Proof First of all, the continued fraction defining ξ converges by Theorem 8.12.
Choose a natural number m such that 0 < bn ≤ an for all n ≥ m + 1. Observe that
if we define
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η = am + bm+1

am+1 +
bm+2

am+2 +
bm+3

am+3 + . . . ,

which also converges by Theorem 8.12, then η > am > 0, and we can write

ξ = a0 + b1
a1+

b2
a2 +

b3
a3+ . . . +

bm
η

.

By Theorem 8.5 on p. 612, we know that

ξ = a0 + b1
a1+

b2
a2 +

b3
a3+ . . . +

bm
η

= η pm + bm pm−1

ηqm + bmqm−1
.

Solving the last equation for η, a bit of algebra gives

ξ = η pm + bm pm−1

ηqm + bmqm−1
⇐⇒ η = ξbmqm−1 − bm pm−1

pm − ξqm
.

Note that since η > am , we have ξ �= pm/qm . Since all the an, bn’s are rational,
it follows that ξ is irrational if and only if η is irrational. Thus, all we have to
do is prove that η is irrational. Since am is rational, all we have to do is prove
that bm+1

am+1 +
bm+2

am+2 +
bm+3

am+3 + . . . is irrational, where 0 < bn ≤ an for all n ≥ m + 1. In
conclusion, we might as well assume from the start that

ξ = b1
a1+

b2
a2 +

b3
a3+

b4
a4 +

b5
a5+ . . . ,

where 0 < bn ≤ an for all n. We shall do this for the rest of the proof. Assume, by
way of contradiction, that ξ is rational. Define ξn := bn

an +
bn+1

an+1 +
bn+2

an+2 + . . .. Then for
each n = 1, 2, . . ., we have

ξn = bn
an + ξn+1

. (8.29)

By definition, we have ξn > 0 for all n, and since 0 < bn ≤ an for all n, it follows
that 0 < ξn < 1 for all n. Since ξ0 = ξ is rational, from (8.29) with n = 0 we get that
ξ1 is rational. By induction it follows that ξn is rational for all n. Since 0 < ξn < 1
for all n, we can therefore write ξn = sn/tn , where 0 < sn < tn for all n with sn and
tn relatively prime integers. Now from the second equality in (8.29) we see that

sn
tn

= bn
an + sn+1/tn+1

.

Cross multiplying, we arrive at the equality

sn sn+1 = (bntn − ansn)tn+1.
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Thus, tn+1|sn sn+1. By assumption, sn+1 and tn+1 are relatively prime, so tn+1 must
divide sn . In particular, tn+1 < sn . However, sn < tn by assumption, so tn+1 < tn . In
summary, {tn} is a sequence of positive integers satisfying

t1 > t2 > t3 > · · · > tn > tn+1 > · · · > 0,

which of course is an absurdity, because we would eventually reach zero! �

Example 8.20 (Irrationality of e, Proof III) Since we already know that (see (8.15))

e = 2 + 2

2+
3

3+
4

4+
5

5+ . . . ,

we certainly have bn ≤ an for all n, whence e is irrational!

As another application of this theorem, we get the following corollary.

Corollary 8.16 Every infinite simple continued fraction represents an irrational
number. In particular, a real number is irrational if and only if it can be represented
by an infinite simple continued fraction.

Indeed, for a simple continued fraction we have bn = 1 for all n, so 0 < bn ≤ an
for all n ≥ 1.

� Exercises 8.4

1. (a) Use the simple continued fraction algorithm to the find the expansions of

(a)
√
2 , (b)

1 − √
8

2
, (c)

√
19 , (d) 3.14159 , (e)

√
7.

(b) Find the value of the continued fraction expansions

(a) 4 + 2

8+
2

8+
2

8+ . . . , (b) 〈3〉 = 〈3; 3, 3, 3, 3, 3, . . .〉.

The continued fraction in (a) was studied by Pietro Antonio Cataldi (1548–
1626) and is one of the earliest infinite continued fractions on record.

2. In Section8.7, we will prove the conjectures you make in (a) and (b) below.

(a) Using a calculator,wefind that e ≈ 2.718281828.Verify that 2.718281828=
〈2; 1, 2, 1, 1, 4, 1, 1, 6, . . .〉. From this, conjecture a formula for an , n =
0, 1, 2, 3, . . ., in the canonical continued fraction expansion for e.

(b) Using a calculator, we find that e+1
e−1 ≈ 2.1639534137. Find a0, a1, a2, a3 in

the canonical continued fraction expansion for 2.1639534137 and conjec-
ture a formula for an , n = 0, 1, 2, 3, . . ., in the canonical continued fraction
expansion for e+1

e−1 .
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3. Let n ∈ N. Prove that
√
n2 + 1 = 〈n; 2n〉 using the simple continued fraction

algorithm on
√
n2 + 1. Using the same technique, find the canonical expansion

of
√
n2 + 2. (See Problem 5 below for other proofs.)

4. In this problem we show that every positive real number can be written as two
different infinite continued fractions. Let a be a positive real number. Prove that

a = 1 + k

1+
k

1+
k

1+
k

1+ . . . = �

1+
�

1+
�

1+
�

1+ . . . ,

where k = a2 − a and � = a2 + a. Suggestion: Link the limits of continued frac-
tions on the right to the quadratic equations x2 − x − k = 0 and x2 + x − � = 0,
respectively. Find neat infinite continued fractions for 1, 2, and 3.

5. Let x be a positive real number and suppose that x2 − ax − b = 0, where a, b
are positive. Prove that

x = a + b

a+
b

a+
b

a+
b

a+
b

a+ . . . .

Using this, prove that for all α,β > 0,

√
α2 + β = α + β

2α+
β

2α+
β

2α+
β

2α+ . . . .

6. (a) Prove that a continued fraction a0 + b1
a1 + b2

a2 + b3
a3 + . . . converges if and only

if

c0 +
∞∑

n=1

(−1)n−1b1b2 · · · bn
qn qn−1

converges, in which case this sum is exactly a0 + b1
a1 + b2

a2 + b3
a3 + . . .. In par-

ticular, for a simple continued fraction ξ = 〈a0; a1, a2, a3, . . .〉, we have

ξ = 1 +
∞∑

n=1

(−1)n−1

qn qn−1
.

(b) Assume that ξ = a0 + b1
a1 + b2

a2 + b3
a3 + . . . converges. Prove that

ξ = c0 +
∞∑

n=2

(−1)nanb1b2 · · · bn−1

qn qn−2
.

In particular, for a simple continued fraction ξ = 〈a0; a1, a2, a3, . . .〉, we have

ξ = 1 +
∞∑

n=2

(−1)nan
qn qn−2

.
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7. Let {cn} be the convergents of � = 〈1; 1, 1, 1, 1, 1, 1, . . .〉.
(1) Prove that for n ≥ 1, we have Fn+1

Fn
= cn−1. (That is, pn = Fn+2 and qn =

Fn+1.) Conclude that

� = lim
n→∞

Fn+1

Fn
,

a beautiful (but nontrivial) fact (also proved in Problem 9 on p. 193).
(2) Using the previous problem, prove the incredibly beautiful formulas

� =
∞∑

n=1

(−1)n−1

FnFn+1
and �−1 =

∞∑

n=2

(−1)n

FnFn+2
.

8. Let α = 〈a0; a1, a2, . . .〉, β = 〈b0; b1, b2, . . .〉 be infinite simple continued frac-
tions. Prove that if α = β, then ak = bk for all k = 0, 1, 2, . . ., which shows that
the canonical simple fraction expansion of an irrational real number is unique.
See Problem 7 on p. 619 for the rational case.

9. A continued fraction a0 + 1
a1 + 1

a2 + 1
a3 + 1

a4 + . . . where the an are real numbers
with an > 0 for n ≥ 1 is said to be unary. In this problem we prove that a unary
continued fraction converges if and only if

∑
an = ∞. Let a0 + 1

a1 + 1
a2 + 1

a3 + . . .

be unary.

(i) Prove that qn ≤ ∏n
k=1(1 + ak).

(ii) Using the inequality derived in (i), prove that if the unary continued fraction
converges, then

∑
an = ∞.

(iii) Prove that

q2n ≥ 1 + a1(a2 + a4 + · · · + a2n) , q2n−1 ≥ a1 + a3 + · · · + a2n−1,

where the first inequality holds for n ≥ 1 and the second for n ≥ 2.
(iv) Prove that if

∑
an = ∞, then the unary continued fraction converges.

8.5 Diophantine Approximations and the Mystery of π
Solved!

For practical purposes, it is necessary to approximate irrational numbers by rational
numbers. Also, if a rational number has a very large denominator, e.g., 1234567

121110987654321 ,
then it is hard to work with, so for practical purposes it would be nice to have
a “good” approximation to such a rational number by a rational number with a
more manageable denominator. Diophantine approximations is the subject of finding
“good” or even “best” rational approximations to real numbers. Continued fractions
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play a very important role in this subject. We start our journey by reviewing the
mysterious fraction representations of π.

8.5.1 The Mystery of π and Good and Best Approximations

Here we review some approximations to π = 3.14159265 . . . that have been discov-
ered throughout the centuries (see p. 634 in Section4.12 for a thorough study).

(1) 3 in the Holy Bible circa 1000 B.C. by the Hebrews; See Book of I Kings,
Chapter7, verse 23, and Book of II Chronicles, Chapter4, verse 2:

And he made a molten sea, ten cubits from the one brim to the other: it was round all
about, and his height was five cubits: and a line of thirty cubits did compass it about. I
Kings 7:23.

(2) 22/7 = 3.14285714 . . . (correct to two decimal places) by Archimedes (287
B.C.–212 B.C.) circa 250 B.C.

(3) 333/106 = 3.14150943 . . . (correct to four decimal places), a lower bound found
by Adriaan Anthoniszoon (1527–1607) circa 1600 A.D.

(4) 355/113 = 3.14159292 . . . (correct to six decimal places) by Tsu Chung-Chi
(429–501) circa 500 A.D.

Hmmm. . . these numbers certainly seem familiar! These numbers are exactly the
first four convergents of the continued fraction expansion of π that we worked out on
p. 631 in Section8.4.5! From this example, it seems like approximating real numbers
by rational numbers is intimately related to continued fractions; this is indeed the
case, as we shall see. To start our adventure in approximations, we start with the
concepts of “good” and “best” approximations.

A rational number p/q is called a good approximation to a real number ξ if

for all rational
a

b
�= p

q
with 1 ≤ b ≤ q, we have

∣∣∣ξ − p

q

∣∣∣ <

∣∣∣ξ − a

b

∣∣∣;

in other words, we cannot get closer to the real number ξ with a different rational
number having a denominator ≤ q.

For example, let’s consider good approximations to π. Here’s a picture of rationals
between 2 and 4 with denominators ≤ 2 (Fig. 8.3).

π2/1 3/1 4/15/2 7/2

Fig. 8.3 We would like to approximate π by rationals with denominators ≤ 2

http://dx.doi.org/10.1007/978-1-4939-6795-7_4


638 8 Infinite Continued Fractions

Example 8.21 4/1 is not a good approximation to π, because 3/1, which has an
equal denominator, is closer to π:

∣∣∣π − 3

1

∣∣∣ = 0.141592 . . . <

∣∣∣π − 4

1

∣∣∣ = 0.858407 . . . .

Example 8.22 As another example, 7/2 is not a good approximation to π because
3/1, which has a smaller denominator than 7/2, is closer to π:

∣∣∣π − 3

1

∣∣∣ = 0.141592 . . . <

∣∣∣π − 7

2

∣∣∣ = 0.358407 . . . .

This example shows that you wouldn’t want to approximate π with 7/2, because
you can approximate it with the “simpler” number 3/1, which has a smaller denom-
inator. Consider now fractions with denominators ≤ 4 (Fig. 8.4).

π2
1

3
1

4
1

5
2

7
2

7
3

8
3

10
3

11
3

9
4

11
4

13
4

15
4

Fig. 8.4 We would like to approximate π by rationals with denominators ≤ 4

Example 8.23 13/4 is a good approximation to π. This is because

∣∣∣π − 13

4

∣∣∣ = 0.108407 . . . ,

and there are no fractions closer to π with denominator 4, and the closest fractions
with the smaller denominators 1, 2, and 3 are 3/1, 7/2, and 10/3, which satisfy

∣∣∣π − 3

1

∣∣∣ = 0.141592 . . . ,

∣∣∣π − 7

2

∣∣∣ = 0.358407 . . . ,

∣∣∣π − 10

3

∣∣∣ = 0.191740 . . . .

Thus,

for all rational
a

b
�= 13

4
with 1 ≤ b ≤ 4, we have

∣∣∣π − 13

4

∣∣∣ <

∣∣∣π − a

b

∣∣∣.

Now one can argue: Is 13/4 really that great of an approximation to π? For
although 3/1 is not as close to π, it is certainly much easier to work with than 13/4
because of the larger denominator 4; moreover, we have 13/4 = 3.25, so we didn’t
even gain a single decimal place of accuracy in going from 3.00 to 3.25. These
are definitely valid arguments. One can also see the validity of this argument by
combining fractions in the inequality in the definition of good approximation: p/q
is a good approximation to ξ if

for all rational
a

b
�= p

q
with 1 ≤ b ≤ q, we have

|qξ − p|
q

<
|bξ − a|

b
,
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where we used that q, b > 0. Here, we can see that |qξ−p|
q <

|bξ−a|
b may hold, not

because p/q is dramatically much closer to ξ than is a/b, but simply because q is
a lot larger than b (as in the case 13/4 and 3/1, where 4 is larger than 1). To try to
correct this somewhat misleading notion of “good,” we introduce the concept of a
“best” approximation by clearing the denominators.

A rational number p/q is called a best approximation to a real number ξ if3

for all rational
a

b
�= p

q
with 1 ≤ b ≤ q, we have

∣∣qξ − p
∣∣ <

∣∣bξ − a
∣∣.

This notion has the geometric interpretation shown in Fig. 8.5.

x

y y = ξx

ξq

q

p
|qξ − p|

ξb

b

a |bξ − a|

Fig. 8.5 Left The line y = ξx and the integer lattice. Right Let p/q be a best approximation to
ξ and let a/b ∈ Q with 1 ≤ b ≤ q. Then the vertical distance between the line at x = q and the
pth vertical lattice point (i.e., |qξ − p|) is strictly less than the vertical distance between the line at
x = b and the ath vertical lattice point (i.e., |bξ − a|)

Example 8.24 We can see that p/q = 13/4 is not a best approximation toπ, because
with a/b = 3/1, we have 1 ≤ 1 ≤ 4, yet

∣∣4 · π − 13
∣∣ = 0.433629 . . . �< ∣∣1 · π − 3

∣∣ = 0.141592 . . . .

Thus, 13/4 is a good approximation to π but is far from a best approximation.

Thus, good �=⇒ best. However, every best approximation is also good.

Proposition 8.17 A best approximation is also a good one.

3Warning: As a heads up, some authors define good approximation as follows: p
q is a good approx-

imation to ξ if for all rational a
b with 1 ≤ b < q, we have

∣∣ξ − p
q

∣∣ <
∣∣ξ − a

b

∣∣. This definition,
although just slightly different from ours, makes some proofs considerably easier. Moreover, with
this definition, 1 000 000/1 is a good approximation to π (why?)! (In fact, every integer, no matter
how big, is a good approximation to π.) On the other hand, with the definition we used, the only inte-
ger that is a good approximation to π is 3. Also, some authors define best approximation as follows:
p
q is a best approximation to ξ if for all rational a

b with 1 ≤ b < q, we have |qξ − p| < |bξ − a|;
with this definition of “best,” one can shorten the proof of Theorem 8.20, but then one must live
with the fact that 1 000 000/1 is a best approximation to π.
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Proof Let p/q be a best approximation to ξ; we shall prove that p/q is a good one
too. Let a/b �= p/q be rational with 1 ≤ b ≤ q. Then |qξ − p| < |b − ξa|, since
p/q is a best approximation, and also, 1

q ≤ 1
b , since b ≤ q; hence

∣∣∣ξ − p

q

∣∣∣ = |qξ − p|
q

<
|bξ − a|

q
≤ |bξ − a|

b
=

∣∣∣ξ − a

b

∣∣∣ =⇒
∣∣∣ξ − p

q

∣∣∣ <

∣∣∣ξ − a

b

∣∣∣.

This shows that p/q is a good approximation. �

In the following subsection, we shall prove the best approximation theorem, The-
orem 8.20 on p. 646, which we state here:

(Best approximation theorem) Every best approximation of a real number (rational or
irrational) is a convergent of its canonical continued fraction expansion, and conversely,
each of the convergents c1, c2, c3, . . . is a best approximation.

8.5.2 Approximations, Convergents, and the “Most
Irrational” of All Irrational Numbers

The objective of this subsection is to understand how convergents approximate real
numbers. In the following theorem, we show that the convergents of the simple
continued fraction of a real number ξ get increasingly closer to ξ. (See Problem 5
for the general case of nonsimple continued fractions.)

Fundamental approximation theorem

Theorem 8.18 If ξ is irrational and {cn = pn/qn} are the convergents of its
canonical continued fraction, then the following inequalities hold:

∣∣ξ − cn
∣∣ <

1

qnqn+1
,

∣∣ξ − cn+1

∣∣ <
∣∣ξ − cn

∣∣,
∣∣qn+1ξ − pn+1

∣∣ <
∣∣qnξ − pn

∣∣.

If ξ is a rational number and the convergent cn+1 is defined (that is, if ξ �= cn),
then these inequalities still hold, with the exception that if ξ = cn+1, then the first
inequality is replaced with the equality |ξ − cn| = 1

qnqn+1
.

Proof We prove this theorem for ξ irrational; the rational case is proved using a
similar argument, which we leave to you if you’re interested. The proof of this
theorem is very simple. We just need the inequalities (see Corollary 8.13 on 625)

cn < cn+2 < ξ < cn+1 or cn+1 < ξ < cn+2 < cn, (8.30)

depending on whether n is even or odd, respectively, and the fundamental recurrence
relations (see Corollary 8.7 on p. 614)
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cn+1 − cn = (−1)n

qn qn+1
, cn+2 − cn = (−1)nan+2

qn qn+2
. (8.31)

Now the first inequality of our theorem follows easily:

∣∣ξ − cn
∣∣ by (8.30)

<
∣∣cn+1 − cn

∣∣ by (8.31)=
∣∣∣

(−1)n

qn qn+1

∣∣∣ = 1

qn qn+1
.

We now prove that
∣∣qn+1ξ − pn+1

∣∣ <
∣∣qnξ − pn

∣∣. To prove this, we work on the
left- and right-hand sides separately. For the left-hand side, we have

∣∣qn+1ξ − pn+1

∣∣=qn+1

∣∣∣ξ − pn+1

qn+1

∣∣∣=qn+1

∣∣ξ − cn+1

∣∣< qn+1

∣∣cn+2 − cn+1

∣∣ by (8.30)

= qn+1
1

qn+1 qn+2
by (8.31)

= 1

qn+2
.

Hence, 1
qn+2

>
∣∣qn+1ξ − pn+1

∣∣. Now,

∣∣qnξ − pn
∣∣ = qn

∣∣∣ξ − pn
qn

∣∣∣ = qn
∣∣ξ − cn

∣∣ > qn
∣∣cn+2 − cn

∣∣ by (8.30)

= qn
an+2

qn qn+2
by (8.31)

= an+2

qn+2
≥ 1

qn+2
>

∣∣qn+1ξ − pn+1

∣∣.

This proves our third inequality. Finally, using what we just proved, and that

qn+1 = an+1qn + qn−1 ≥ qn + qn−1 > qn =⇒ 1

qn+1
<

1

qn
,

we see that

∣∣ξ − cn+1

∣∣ =
∣∣∣ξ − pn+1

qn+1

∣∣∣ = 1

qn+1

∣∣qn+1ξ − pn+1

∣∣

<
1

qn+1

∣∣qnξ − pn
∣∣

<
1

qn

∣∣qnξ − pn
∣∣ =

∣∣∣ξ − pn
qn

∣∣∣ = ∣∣ξ − cn
∣∣.

�
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It is important to use only the canonical expansion when ξ is rational. This is
because the statement that

∣∣qn+1ξ − pn+1

∣∣ <
∣∣qnξ − pn

∣∣ may not not be true if we
don’t use the canonical expansion.

Example 8.25 Consider 5/3, which has the canonical expansion

5

3
= 〈1; 1, 2〉 = 1 + 1

1 + 1

2

.

We can write this as a noncanonical expansion by breaking up the 2:

ξ = 〈1; 1, 1, 1〉 = 1 + 1

1 + 1

1 + 1

1

= 5

3
.

The convergents for this noncanonical expansion of ξ are c0 = 1/1, c2 = 2/1, c3 =
3/2, and ξ = c4 = 5/3. In this case,

∣∣q3ξ − p3
∣∣ =

∣∣∣2 · 5
3

− 3
∣∣∣ = 1

3
=

∣∣∣1 · 5
3

− 2
∣∣∣ = ∣∣q2ξ − p2

∣∣,

so for this example,
∣∣q2ξ − p2

∣∣ �< ∣∣q1ξ − p1
∣∣.

We now discuss the “most irrational” of all irrational numbers. From the best
approximation theorem (Theorem 8.20, which we’ll prove in a moment), we know
that the best approximations of a real number ξ are convergents, and from the fun-
damental approximation theorem 8.18, we have the error estimate

∣∣ξ − cn
∣∣ <

1

qnqn+1
=⇒ ∣∣qnξ − pn

∣∣ <
1

qn+1
. (8.32)

This shows you that the larger the qn are, the better the best approximations are.
Since the qn are determined by the recurrence relation qn = anqn−1 + qn−2, we see
that the larger the an are, the larger the qn are. In summary, ξ can be approximated
in a way that is very “good” by rational numbers when it has large an and a way that
is very “bad” by rational numbers when it has small an .

Example 8.26 Here is a “good” example. Recall from Eq. (8.28) on p. 632 the con-
tinued fraction for π:

π = 〈3; 7, 15, 1, 292, 1, 1, 1, 2, 1, . . .〉,

which has convergents
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c0 = 3 , c1 = 22

7
, c2 = 333

106
, c3 = 355

113
, c4 = 103993

33102
, . . . .

Because of the large number a4 = 292, we see from (8.32) that we can approximate
π very nicely with c3; indeed, the left-hand equation in (8.32) implies

∣∣π − c3
∣∣ <

1

q3q4
= 1

113 · 33102 = 0.000000267 . . . .

Thus, c3 = 355
113 approximates π to within six decimal places! (Just to check, note that

π = 3.14159265 . . . and 355
113 = 3.14159292 . . ..) It’s amazing how many decimal

places of accuracy we can get with just taking the c3 convergent!

Example 8.27 (The “most irrational” number) Here is a “bad” example. From our
discussion after (8.32), we saw that the smaller the an are, the worse it can be
approximated by rationals. Of course, since 1 is the smallest natural number, we can
consider the golden ratio

� = 1 + √
5

2
= 〈1; 1, 1, 1, 1, 1, 1, 1, . . .〉 = 1.6180339887 . . .

as being the “worst” of all irrational numbers that can be approximated by rational
numbers. Indeed, we saw that we could get six decimal places of π by just taking c3;
for � we need c18! (Just to check, we find that c17 = 4181

2584 = 1.6180340557 . . ., not
quite six decimal places, and c18 = 6765

4181 = 1.618033963 . . . got the sixth one. Also
notice the large denominator 4181 just to get six decimal places.) Therefore, � wins
the prize for the “most irrational” number in that it’s the “farthest” from the rationals!
We continue our discussion on “most irrational” on p. 697 in Section8.10.3.

We now show that best approximations are exactly convergents; this is one of the
most important properties of continued fractions. We first need the following lemma,
whose ingenious proof we learned from Beskin’s beautiful book [27].

Lemma 8.19 If pn/qn, n ≥ 0, is a convergent of the canonical continued fraction
expansion of a real number ξ and p/q �= pn/qn is a rational number with q > 0
and 1 ≤ q < qn+1, then

|qnξ − pn| ≤ |qξ − p|.

Moreover, if n ≥ 1 and q ≤ qn, then this inequality is strict.

Proof Let pn/qn , n ≥ 0, be a convergent of the canonical continued fraction expan-
sion of a real number ξ and let p/q �= pn/qn be a rational number with q > 0 and
1 ≤ q < qn+1. Note that if ξ happens to be rational, we are implicitly assuming that
ξ �= pn/qn , so that qn+1 is defined.



644 8 Infinite Continued Fractions

Step 1: The trick. To prove that |qnξ − pn| ≤ |qξ − p|, the trick is to write p and
q as linear combinations of pn, pn+1, qn, qn+1:

p = pnx + pn+1y,

q = qnx + qn+1y.
(8.33)

How do we know such x, y exist? The reason is that we can solve these equations
for x and y; after some linear algebra we obtain

x = (−1)n
(
pn+1q − pqn+1

)
, y = (−1)n

(
pqn − pnq

)
.

(The fact that pn+1qn − pnqn+1 = (−1)n was used to simplify the equations for x
and y.) These formulas are not needed below except for the important fact that these
formulas show that x and y are integers. Now, using the formulas in (8.33), we see
that

qξ − p = (
qnx + qn+1y

)
ξ − pnx − pn+1y

= (
qnξ − pn

)
x + (

qn+1ξ − pn+1
)
y.

Therefore,
|qξ − p| = ∣∣(qnξ − pn

)
x + (

qn+1ξ − pn+1
)
y
∣∣. (8.34)

Step 2: Our goal is to simplify the right-hand side of (8.34) by understanding the
signs of the terms in the absolute values. First of all, we claim that x and y are both
nonzero and have opposite signs. In fact, if x = 0, then the second formula (8.33)
shows that q = qn+1y. Since q and qn+1 are positive, we must have y > 0, and we
have q ≥ qn+1, contradicting that q < qn+1. (Note that y > 0 is the same thing as
saying y ≥ 1, because y is an integer.) If y = 0, then the formulas (8.33) show that
p = pnx and q = qnx , so p/q = pn/qn , and this contradicts the assumption that
p/q �= pn/qn . If x < 0 and y < 0, then the second formula in (8.33) implies that
q < 0, contradicting that q > 0. Finally, if x > 0 and y > 0, then the second formula
in (8.33) implies that

q = qnx + qn+1y > qn+1,

contradicting that q < qn+1. Thus, x and y are indeed both nonzero and have opposite
signs. Now by Corollary 8.11 on p. 622 concerning even- and odd-indexed conver-
gents, we know that

ξ − pn
qn

and ξ − pn+1

qn+1

have opposite signs. Therefore, qnξ − pn and qn+1ξ − pn+1 have opposite signs, and
hence, since x and y also have opposite signs,

(
qnξ − pn

)
x and

(
qn+1ξ − pn+1

)
y
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have the same sign. Therefore, in (8.34), we have

∣∣qξ − p
∣∣ = |qnξ − pn| |x | + |qn+1ξ − pn+1| |y|. (8.35)

Step 3: We now prove our result. Since x �= 0, we have |x | ≥ 1 (because x is an
integer), so by (8.35) we see that

|qnξ − pn| ≤ ∣∣qξ − p
∣∣,

as stated in our lemma.
Now assume that n ≥ 1 and we have |qnξ − pn| = |qξ − p|; we shall prove that

q > qn . Note that |qnξ − pn| = |qξ − p| �= 0, for otherwise, we would have ξ =
pn/qn and ξ = p/q, contradicting that p/q �= pn/qn . In particular, recalling that x
is nonzero, we see that (8.35) implies that |x | = 1. If x = +1, then y < 0 (because
x and y have opposite signs), so y ≤ −1, since y is an integer, and hence by the
second equation in (8.33), we have

q = qnx + qn+1y = qn + qn+1y ≤ qn − qn+1 ≤ 0,

because qn ≤ qn+1. This is impossible, since q > 0 by assumption. Hence, x = −1.
In this case, y > 0, and hence y ≥ 1. Again by the second equation in (8.33) and
also by the Wallis–Euler recurrence relations, we have

q = qnx + qn+1y ≥ −qn + qn+1 = (an+1 − 1)qn + qn−1.

For n ≥ 1, we have an+1 ≥ 2 and qn−1 ≥ 1. Therefore, q > qn . �

As an easy consequence of this lemma, it follows that every convergent pn/qn
with n ≥ 1 of the canonical continued fraction expansion of a real number ξ must
be a best approximation. To see this, observe that if ξ = pn/qn , then of course
pn/qn is a best approximation of ξ. So assume that ξ �= pn/qn , where n ≥ 1, and let
p/q �= pn/qn with 1 ≤ q ≤ qn . Since n ≥ 1, we have qn < qn+1, so 1 ≤ q < qn+1

as well. Therefore by Lemma 8.19,

|qnξ − pn| < |qξ − p|.

Note that we left out the n = 0 case on purpose; the reason is that p0/q0 may not
be a best approximation!

Example 8.28 Consider
√
3 = 1.73205080 . . .. The best integer approximation to√

3 is 2. In Example 8.18 on p. 629 we found that
√
3 = 〈1; 1, 2〉. Thus, p0/q0 = 1,

which is not a best approximation. However, p1/q1 = 1 + 1
1 = 2 is a best approxi-

mation.
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Best approximation theorem

Theorem 8.20 Every best approximationof a real number (rational or irrational)
is a convergent of its canonical continued fraction expansion, and conversely, each
of the convergents c1, c2, c3, . . . is a best approximation.

Proof Let p/q with q > 0 be a best approximation to a real number ξ; we must
prove that p/q is a convergent. Let 1 = q0 ≤ q1 < q2 < · · · be the sequence of
denominators for the convergents.

Case 1: Suppose there is a k such that qk ≤ q < qk+1. By Lemma 8.19, if it were
the case that p/q �= pk/qk , then we would have |bξ − a| ≤ |qξ − p|, where a = pk
and b = qk . Since b ≤ q, this contradicts that p/q is a best approximation to ξ.
Therefore, p/q = pk/qk , so p/q is a convergent of ξ.

Case 2: There is no k such that qk ≤ q < qk+1. Then ξ must be a rational number
(if ξ is irrational, then qk → ∞ as k → ∞, so Case 1 always occurs). Hence, ξ =
pn+1/qn+1 for some n = −1, 0, 1, . . ., and to be outside of Case 1 we must have
qn+1 ≤ q. If p/q �= pn+1/qn+1, then by definition of best approximation, we would
have ∣∣qξ − p

∣∣ <
∣∣qn+1ξ − pn+1

∣∣ , or
∣∣qξ − p

∣∣ < 0.

This is absurd, so p/q = pn+1/qn+1 and we’re done. �

8.5.3 Legendre’s Approximation Theorem

This theorem is named after Adrien-Marie Legendre (1752–1833).

Legendre’s approximation theorem

Theorem 8.21 Among two consecutive convergents pn/qn, pn+1/qn+1 with n ≥
0 of the canonical continued fraction expansion to a real number (rational or
irrational) ξ, one of them satisfies

∣∣∣ξ − p

q

∣∣∣ <
1

2q2
. (8.36)

Conversely, if a rational number p/q satisfies (8.36), then it is a convergent.

Proof We begin by proving that a rational number satisfying (8.36) must be a con-
vergent; then we show that convergents satisfy (8.36).

Step 1: Assume that p/q satisfies (8.36). To prove that it must be a convergent, we
just need to show that it is a best approximation. To this end, assume that a/b �= p/q
with b > 0 and that ∣∣bξ − a

∣∣ ≤ ∣∣qξ − p
∣∣; (8.37)
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we must show that q < b. To prove this, all we do is look at the difference |p/q −
a/b|. First of all, ∣∣∣

p

q
− a

b

∣∣∣ =
∣∣∣
pb − qa

bq

∣∣∣ ≥ 1

bq
,

since |pb − qa| is a positive integer (since a/b �= p/q). Secondly,
∣∣∣
p

q
− a

b

∣∣∣ =
∣∣∣
p

q
− ξ + ξ − a

b

∣∣∣ ≤
∣∣∣
p

q
− ξ

∣∣∣ +
∣∣∣ξ − a

b

∣∣∣ <
1

2q2
+ |bξ − a|

b
(by (8.36))

≤ 1

2q2
+ |qξ − p|

b
(by (8.37))

= 1

2q2
+ q

b

∣∣∣ξ − p

q

∣∣∣

<
1

2q2
+ q

2bq2
(by (8.36))

= b + q

2bq2
.

Thus,
1

bq
<

b + q

2bq2
=⇒ 2q < b + q =⇒ q < b,

just as we wanted to show.
We now show that one of two consecutive convergents satisfies (8.36). Let pn/qn

and pn+1/qn+1, n ≥ 0, be two consecutive convergents.
Step 2: Assume first that qn = qn+1. Since qn+1 = an+1qn + qn−1, we see that

qn = qn+1 if and only if n = 0 (because qn−1 = 0 if and only if n = 0) and a1 =
1, in which case q1 = q0 = 1, p0 = a0, and p1 = a0a1 + 1 = a0 + 1. Therefore,
p0/q0 = a0/1 and p1/q1 = (a0 + 1)/1, so we just have to show that

∣∣ξ − a0
∣∣ <

1

2
or

∣∣ξ − (a0 + 1)
∣∣ <

1

2
.

But one of these must hold, because a0 = �ξ�, so

a0 ≤ ξ < a0 + 1.

Note that the special situation in which ξ is exactly halfway between a0 and a0 +
1, that is, ξ = a0 + 1/2 = 〈a0; 2〉, is not possible under our current assumptions,
because in this special situation, q1 = 2 �= 1 = q0.

Step 3: Assume now that qn �= qn+1. Consider two consecutive convergents cn
and cn+1. We know that either

cn < ξ ≤ cn+1 or cn+1 ≤ ξ < cn,

depending on whether n is even or odd. For concreteness, assume that n is even; the
odd case is entirely similar. Then from cn < ξ ≤ cn+1 and the fundamental recurrence
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relation cn+1 − cn = 1/qnqn+1, we see that

∣∣ξ − cn
∣∣ + ∣∣cn+1 − ξ

∣∣ = (ξ − cn) + (cn+1 − ξ) = cn+1 − cn = 1

qnqn+1
.

Recall that for real numbers x, y with x �= y, we have xy ≤ (x2 + y2)/2 (just work
out (x − y)2 > 0). Hence,

1

qnqn+1
<

1

2q2
n

+ 1

2q2
n+1

,

so ∣∣ξ − cn
∣∣ + ∣∣ξ − cn+1

∣∣ <
1

2q2
n

+ 1

2q2
n+1

. (8.38)

It follows that |ξ − cn| < 1/2q2
n or

∣∣ξ − cn+1

∣∣ < 1/2q2
n+1, for otherwise, (8.38)

would fail to hold. This completes our proof. �

� Exercises 8.5

1. (a) In this problemwe find all the good approximations to 2/7. First, to see things
better, let’s write down all the fractions with denominators less than 7 in an
area around 2/7, for example:

0

1
<

1

6
<

1

5
<

1

4
<

2

7
<

1

3
<

2

5
<

1

2
.

By examining the absolute values
∣∣ξ − a

b

∣∣ for the fractions listed, show that
the good approximations to 2/7 are 0/1, 1/2, 1/3, 1/4, and of course, 2/7.

(b) Now let’s find which of the good approximations are best without using the
best approximation theorem. To do so, compute the absolute values

∣∣∣1 · 2
7

− 0
∣∣∣ ,

∣∣∣2 · 2
7

− 1
∣∣∣ ,

∣∣∣3 · 2
7

− 1
∣∣∣ ,

∣∣∣4 · 2
7

− 1
∣∣∣

and from these numbers, determine which of the good approximations are
best.

(c) Using a similar method, find the good and best approximations to 3/7, 3/5,
8/5, and 2/9.

2. (Continuation of Lemma 8.19) Let pn/qn , n ≥ 0, be a convergent of the canon-
ical continued fraction expansion of a real number ξ and let p/q �= pn/qn be a
rational number with q > 0 and 1 ≤ q < qn+1. Prove that

|qnξ − pn| = |qξ − p|

if and only if
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ξ = pn+1

qn+1
, p = pn+1 − pn , and q = qn+1 − qn.

3. Prove that a real number ξ is irrational if and only if there are infinitely many
rational numbers p/q satisfying

∣∣∣ξ − p

q

∣∣∣ <
1

q2
.

4. In this problem we find very beautiful approximations to π.

(a) Using the canonical continued fraction algorithm, prove that

π4 = 97.40909103400242 . . . = 〈97, 2, 2, 3, 1, 16539, 1, . . .〉.

(Warning: If your calculator doesn’t have enoughdecimal places of accuracy,
you’ll probably get a different value for 16539.)

(b) Compute c4 = 2143
22 and therefore, π ≈

(
2143
22

)1/4
. Note that π =

3.141592653 . . ., while (2143/22)1/4 = 3.141592652, quite accurate! This
approximation is due to Srinivasa Ramanujan (1887–1920) [26, p. 160].4

As explained in [258], we can write this approximation in pandigital form,
that is, using all digits 0, 1, . . . , 9 exactly once:

π ≈
(2143

22

)1/4 =
√√√√

√

0 + 34 + 192

78 − 56
.

(c) By determining certain convergents of the continued fraction expansions of
π2, π3, and π5, derive the equally fascinating results:

π ≈ √
10 ,

(227
23

)1/2
, 311/3 ,

(4930
159

)1/3
, 3061/5 ,

(77729
254

)1/5
.

The approximation π ≈ √
10 = 3.162 . . .was known inMesopotamia thou-

sands of years before Christ [182]!

5. Let ξ = a0 + b1
a1 + b2

a2 + . . ., where an ≥ 1 for n ≥ 1 and bn > 0 for all n, and
∑∞

n=1
anan+1

bn+1
= ∞. If cn = a0 + b1

a1 + . . . + bn
an

is the nth convergent of ξ, prove

that for all n = 0, 1, 2, . . ., we have
∣∣ξ − cn+1

∣∣ <
∣∣ξ − cn

∣∣ and
∣∣qn+1ξ − pn+1

∣∣ <∣∣qnξ − pn
∣∣ (cf. Theorem 8.18).

6. (Cf. [215]) (Pythagorean triples) Please review Problems 8 and 9 on pages 64
and 65 concerning primitive Pythagorean triples. We ask the following question:

4“An equation means nothing to me unless it expresses a thought of God.” Srinivasa Ramanujan
(1887–1920).
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Given a right triangle, is there a primitive right triangle similar to it? The answer
is “not always,” since e.g., the triangle with sides (1, 1,

√
2) is not similar to any

triangle with integer sides (why?). So we ask: Given a right triangle, is there a
primitive right triangle “nearly” similar to it? The answer is yes, and here’s one
way to do it.

(i) Given a right triangle�, let θ be one of its acute angles. Prove that if tan(θ/2)
is rational, then there is a primitive right triangle similar to �. Suggestion:
If tan(θ/2) = p/q, where p, q ∈ Z have no common factors with q > 0,
prove that tan θ = 2pq/(q2 − p2). Then recall from Problem 9 on p. 67
that

(x, y, z) is primitive, where

{
x = 2pq , y = q2 − p2 , z = p2 + q2, or

x = pq , y = q2−p2

2 , z = p2+q2

2 ,

according as p and q have opposite or the same parity.
(ii) Of course in general, tan(θ/2) is not rational. To get around this, the idea

is that we can always approximate tan(θ/2) by rationals so that tan(θ/2) is
“nearly” rational; then by (i) there is a primitive right triangle “nearly” sim-
ilar to �. Of course, continued fractions are perfect instruments to approx-
imate real numbers! Let’s apply this idea to the triangle (1, 1,

√
2). In this

case, θ = 45◦. Prove that tan(θ/2) = √
2 − 1. Prove that the convergents of

the continued fraction expansion of
√
2 − 1 are of the form cn = un/un+1,

where un = 2un−1 + un−2 (n ≥ 2) with u0 = 0, u1 = 1. Finally, prove that
(xn, yn, zn), where xn = 2unun+1, yn = u2n+1 − u2n , and zn = u2n+1 + u2n ,
forms a sequence of primitive Pythagorean triples such that xn/yn → tan θ.

8.6 � Continued Fractions, Calendars, and Musical Scales

Wenowdo some fun stuff with continued fractions and their applications to calendars
and pianos! In the exercises, you’ll see how Christiaan Huygens (1629–1695), a
Dutch physicist, made his model of the solar system (cf. [160]).

8.6.1 Calendars

Calendar making is an amazing subject; see the free book [242] for a fascinating
look at calendars. A year, technically a tropical year, is the time it takes from one
vernal equinox to the next.5 Here, an equinox is basically (there is a more technical

5A tropical year is close to the amount of time it takes the Earth to make one full revolution around
the Sun; they are about 20 minutes off.
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definition) the time when night and day have the same length, and there are two
of them: The vernal equinox occurs around March 21, the first day of spring, and
the autumnal equinox occurs around September 23, the first day of fall. A year is
approximately 365.24219 days. As you might guess, not being a whole number of
days makes it quite difficult to make accurate calendars, and for this reason, the art of
calendarmaking has been around since the beginning. Here are some approximations
to a year that you might know about:

(1) 365 days, the ancient Egyptians and others.
(2) 3651

4 days, Julius Caesar (100–44 B.C.), 46 B.C., giving rise to the Julian
calendar.

(3) 365 97
400 days, PopeGregoryXIII (1502–1585), 1585, giving rise to theGregorian

calendar, the calendar that is now the most widely used calendar.

See Problem 1 for Persian calendars and their link to continued fractions. Let us
analyze these calendars more thoroughly. First, the ancient calendar consisting of
365 days. Since a true year is approximately 365.24219 days, an ancient year has

0.24219 fewer days than a true year.

Thus, after four years, with an ancient calendar you’ll lose approximately

4 × 0.24219 = 0.9687 days ≈ 1 day.

After 125 years, with an ancient calendar you’ll lose approximately

125 × 0.24219 = 30.27375 days ≈ 1 month.

So, instead of having spring around March 21, you’ll have it in February! After 500
years, with an ancient calendar you’ll lose approximately

500 × 0.24219 = 121.095 days ≈ 4 months.

So, instead of having spring around March 21, you’ll have it in November! As you
can see, this is getting quite ridiculous.

In the Julian calendar, there is an average of 3651
4 days in a Julian year. The

fraction 1
4 is played out as we all know: We add one day in February to the ancient

calendar every four years, giving us a “leap year,” that is, a year with 366 days. Thus,
just as we said, a Julian calendar year gives the estimate

4 × 365 + 1 days

4 years
= 365

1

4

days

year
.

The Julian year has

365.25 − 365.24219 = 0.00781 more days than a true year.
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So, for instance, after 125 years, with a Julian calendar you’ll gain

125 × 0.00781 = 0.97625 days ≈ 1 day.

Not bad. After 500 years, with a Julian calendar you’ll gain

500 × 0.00781 = 3.905 days ≈ 4 days.

Again, not bad! But, still, four days gained is still four days gained.
In the Gregorian calendar, there is an average of 365 97

400 days, that is, we add
ninety-seven days to the ancient calendar every four hundred years. These extra days
are added as follows: Every four years we add one extra day, a “leap year” just as in
the Julian calendar. However, this gives us 100 extra days in 400 years; so to offset
this, we do not have a leap year for the century marks except 400, 800, 1200, 1600,
2000, 2400, . . ., multiples of 400. For example, consider the years

1604, 1608, . . . , 1696, 1700, 1704, . . . , 1796, 1800, 1804, . . . , 1896,

1900, 1904, . . . , 1996, 2000.

Each of these years is a leap year except the three years 1700, 1800, and 1900 (but
note that the year 2000 was a leap year, as you can verify on your old calendar, since
it is a multiple of 400). Hence, in the four hundred years from the end of 1600 to the
end of 2000, we added only 97 total days, since we didn’t add extra days in 1700,
1800, and 1900. So, just as we said, a Gregorian calendar gives the estimate

400 × 365 + 97

400
= 365

97

400

days

year
.

Since 365 97
400 = 365.2425, the Gregorian year has

365.2425 − 365.24219 = 0.00031 more days than a true year.

For instance, after 500 years, with a Gregorian calendar you’ll gain

500 × 0.00031 = 0.155 days ≈ 0 days!

Now let’s link calendars with continued fractions. Here is the continued fraction
expansion of the tropical year:

365.24219 = 〈365; 4, 7, 1, 3, 24, 6, 2, 2〉.

This has convergents

c0 = 365 , c1 = 365
1

4
, c2 = 365

7

29
, c3 = 365

8

33
, c4 = 365

31

128
, . . . .
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Here, we see that c0 is the ancient calendar and c1 is the Julian calendar, but where
is the Gregorian calendar? It’s not on this list, but it’s almost c3, since

8

33
= 8

33
· 12
12

= 96

396
≈ 97

400
.

However, it turns out that c3 = 365 8
33 is exactly the average number of days in

the Persian calendar introduced by the mathematician, astronomer, and poet Omar
Khayyam (1048–1131)! See Problem 1 for the modern Persian calendar!

8.6.2 Musical Scales

We nowmove from calendars to pianos. For more on the interaction between contin-
ued fractions and pianos, see [8, 14, 64, 96, 100, 144, 211]. Let’s start by giving a short
lesson on music based on Euler’s letter to a German princess [38] (see also [114]).
When a piano wire or guitar string vibrates, it causes the air molecules around it to
vibrate, and those air molecules cause neighboring molecules to vibrate, and finally,
those molecules bounce against our ears, and we have the sensation of “sound.” The
rapidness of the vibrations, in number of vibrations per second, is called frequency.
Let’s say that we hear two notes with two different frequencies. In general, these fre-
quencies mix together and don’t produce a pleasing sound, but according to Euler,
when the ratio of their frequencies happens to equal certain ratios of integers, then
we hear a pleasant sound!6 Fascinating isn’t it? We’ll call the ratio of the frequencies
an interval between the notes or the frequencies. For example, consider two notes,
one with frequency f1 and the other with frequency f2 such that

f2
f1

= 2

1
⇐⇒ f2 = 2 f1 (octave);

in other words, the interval between the first and second note is 2, which is to say,
f2 is just twice f1. This special interval is called an octave. It turns out that when
two notes an octave apart are played at the same time, they sound beautiful together!
Another interval that corresponds to a beautiful sound is called the fifth, which occurs
when the ratio is 3/2:

f2
f1

= 3

2
⇐⇒ f2 = 3

2
f1 (fifth).

Other intervals (which, remember, just refer to ratios) that have names are

6“The pleasure we obtain from music comes from counting, but counting unconsciously. Music is
nothing but unconscious arithmetic.” Gottfried Leibniz, in a letter to Christian Goldbach, 27 April
1712 [207].
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4/3 (fourth) 9/8 (major tone) 25/24 (chromatic semitone),
5/4 (major third) 10/9 (lesser tone) 81/80 (comma of Didymus),
6/5 (minor thirds) 16/15 (diatonic semitone).

However, it is probably of universal agreement that the octave and the fifth make the
prettiest sounds. Ratios such as 7/6, 8/7, 11/10, 12/11, . . . don’t seem to agree with
our ears.

Now let’s take a quick look at two facts concerning the piano. We all know what
a piano keyboard looks like:

Fig. 8.6 The kth key,
starting from k = 0, is
labeled by its frequency fk

. . . etc.
f0

f1

f2

f3

f4 f5

f6

f7

f8

f9

f10

f11 f12

f13

f14

f15

f16

Let us label the (fundamental) frequencies of the piano keys, counting both white
and black, by f0, f1, f2, f3, . . . starting from the far left key on the keyboard.7 The
first fact is that keys that are twelve keys apart are exactly an octave apart! For
instance, f0 and, jumping twelve keys to the right, f12 are an octave apart, f7 and
f19 are an octave apart, etc. For this reason, a piano scale really has only twelve
basic frequencies, say f0, . . . , f11, since by doubling these frequencies we get the
twelve frequencies above, f12, . . . , f23, and by doubling these we get f24, . . . , f35,
etc. The second fact is that a piano is evenly tempered, which means that the interval
between adjacent keys is constant. Let this constant be c. Then,

fn+1

fn
= c =⇒ fn+1 = c fn

for all n. In particular,

fn+k = c fn+k−1 = c(c fn+k−2) = c2 fn+k−2 = · · · = ck fn. (8.39)

Since fn+12 = 2 fn (because fn and fn+12 are an octave apart), it follows that with
k = 12, we get

2 fn = c12 fn =⇒ 2 = c12 =⇒ c = 21/12.

Thus, the interval between adjacent keys is 21/12.
A question that might come to mind is this: What is so special about the number

twelve for a piano scale? Why not eleven or fifteen? Answer: It has to do with
continued fractions! To see why, let us imagine that we have an evenly tempered
pianowith q basic frequencies, that is, keys that are q apart have frequencies differing

7A piano wire also gives off overtones, but we focus here just on the fundamental frequency. Also,
some of what we say here is not quite true for the strings near the ends of the keyboard, because
they don’t vibrate well due to their stiffness, leading to the phenomenon called inharmonicity.
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by an octave. Question: Which q’s make the best pianos? (Note: We had better come
up with q = 12 as one of the “best” ones!) By a very similar argument to that given
above, we can see that the interval between adjacent keys is 21/q . Now we have to
ask, What makes a good piano? Well, our piano by design has octaves, but we would
also like our piano to have fifths, the other beautiful interval. Let us label the keys
of our piano as in Fig. 8.6. Then we would like to have a p such that the interval
between every frequency fn and fn+p is a fifth, that is,

fn+p

fn
= 3

2
.

By the formula (8.39), which we can use in the present setup as long as we put
c = 21/q , we have fn+p = (21/q)p fn = 2p/q fn . Thus, we want

2p/q = 3

2
=⇒ p

q
= log(3/2)

log 2
.

This is, unfortunately, impossible, because p/q is rational, yet log(3/2)
log 2 is irrational

(see Theorem 2.29 on p. 87 for a related result)! Thus, it is impossible for our piano
(even if q = 12 like our everyday piano) to have a fifth. However, hope is not lost,
because although our piano can never have a perfect fifth, it can certainly have
an approximate fifth: We just need to find rational approximations to the irrational
number log(3/2)

log 2 . This we know how to do using continued fractions! After somework,
I found that

log(3/2)

log 2
= 〈1, 1, 2, 2, 3, 1, . . .〉,

which has convergents

0,
1

1
,
1

2
,
3

5
,
7

12
,
24

41
,
31

53
,
179

306
, . . . .

Thus, 1, 2, 5, 12, 41, 53, 306, . . . are the q’s that make the “best” pianos. Lo and
behold, we see a twelve! In particular, by the best approximation theorem (Theorem
8.20), we know that 7/12 approximates log(3/2)

log 2 better than any rational number with
a smaller denominator than twelve, which is to say, we cannot find a piano scale with
fewer than twelve basic keys that will give a better approximation to a fifth. This is
why our everyday piano has twelve keys! What about the other numbers in the list?
Supposedly [144], in 40 B.C. King-Fang, a scholar of the Han dynasty, found the
fraction 24/41, although to my knowledge, there has never been an instrument built
with a scale of q = 41. However, King-Fang also found the fraction 31/53, and in
this case, the q = 53 scale was advocated by Nicholas Mercator (1620–1687) circa
1650 and was actually implemented by Robert H.M. Bosanquet (1841–1912) in his
instrument Enharmonic Harmonium [33]!

We have focused on the interval of a fifth. See Problem 2 for other intervals.

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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� Exercises 8.6

1. (Persian calendars) The official calendar (the solar Hijri calendar) in Iran
and Afghanistan today has an average of 365 683

2820 days per year. The Per-
sian calendar introduced by Omar Khayyam (1048–1131) (the Jalali calendar)
has an average of 365 8

33 days per year. Khayyam amazingly calculated the
year to be 365.24219858156 days. Find the continued fraction expansion of
365.24219858156, and if {cn} are its convergents, show that c0 is the ancient
calendar, c1 is the Julian calendar, c3 is the calendar introduced by Khayyam, and
c7 is the modern Persian calendar!

2. Find the q’s thatwillmake a pianowith the “best” approximations to aminor third.
(Just as we found the q’s that will make a piano with the “best” approximations
to fifth.) Do you see why many musicians, e.g., Aristoxenus, Kornerup, Ariel,
Yasser, who enjoyed minor thirds, liked q = 19 musical scales?

3. (A solar system model) Christiaan Huygens (1629–1695) made a scale model
of the solar system using gears. Huygens chose 206 teeth for the Saturn gear and
7 teeth for the Earth gear. Why? The answer is that in his day, it was thought that
it took Saturn 29.43 years (that is, Earth years) to make it once around the sun.
Find the continued fraction expansion of 29.43 and explain why Huygens chose
206 and 7. For more on the use of continued fractions to solve gear problems, see
[160].

8.7 The Elementary Functions and the Irrationality of e p/q

In this section we derive some beautiful and classical continued fraction expansions
for coth x , tanh x , and ex . The book [135, Section 11.7] has a very nice presentation
of this material.

8.7.1 A Hypergeometric Function

For a complex number a �= 0,−1,−2, . . ., the function

F(a, z) := 1 + 1

a
z + 1

a(a + 1)

z2

2! + 1

a(a + 1)(a + 2)

z3

3! + · · · , z ∈ C,

is an example of a hypergeometric function, and more precisely, it’s called the
confluent hypergeometric limit function. Using the ratio test, it is straightforward
to check that F(a, z) converges for all z ∈ C. For a ∈ C, the pochhammer symbol,
introduced by Leo August Pochhammer (1841–1920), is defined by
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(a)n :=
{
1 n = 0

a(a + 1)(a + 2) · · · (a + n − 1) n = 1, 2, 3, . . . .

Thus, we can write the hypergeometric function in shorthand notation

F(a, z) =
∞∑

n=0

1

(a)n

zn

n! .

Actually, the true hypergeometric function is defined by (which we analyzed in
Example 6.24 on p. 455 in the case z = 1)

F(a, b, c, z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n! ,

but we won’t need this function. Many familiar functions can be written in terms of
these hypergeometric functions. For instance, consider the following.

Proposition 8.22 We have

F

(
1

2
,
z2

4

)
= cosh z , z F

(
3

2
,
z2

4

)
= sinh z.

Proof The proofs of these identities are the same: We simply check that both sides
have the same series expansions. For example, let us check the second identity; the
identity for cosh is proved similarly. Observe that

z F

(
3

2
,
z2

4

)
= z ·

∞∑

n=0

1

(3/2)n

(z2/22)n

n!

=
∞∑

n=0

1

(3/2)n

z2n+1

22n n! ,

and recall that

sinh z =
∞∑

n=0

z2n+1

(2n + 1)! .

Thus, we just have to show that (3/2)n 22n n! = (2n + 1)! for each n. Certainly this
holds for n = 0. For n ≥ 1, we have

http://dx.doi.org/10.1007/978-1-4939-6795-7_6


658 8 Infinite Continued Fractions

(3/2)n 2
2n n! = 3

2

(
3

2
+ 1

) (
3

2
+ 2

)
· · ·

(
3

2
+ n − 1

)
· 22nn!

= 3

2
· 5
2

· 7
2

· · · 2n + 1

2
· 2n · 2n · 1 · 2 · 3 · · · n

= 3 · 5 · 7 · · · (2n + 1) · 2 · 4 · 6 · · · 2n!.

The last quantity is, after rearrangement, (2n + 1)!. This completes our proof. �

The hypergeometric function also satisfies an interesting, and useful as we’ll see
in a moment, recurrence relation.

Proposition 8.23 The following recurrence relation holds:

F(a, z) = F(a + 1, z) + z

a(a + 1)
F(a + 2, z).

Proof To prove this identity, we simply check that both sides have the same series
expansions. We can write

F(a + 1, z) + z

a(a + 1)
F(a + 2, z) =

∞∑

n=0

1

(a + 1)n

zn

n! +
∞∑

n=0

1

a(a + 1)(a + 2)n

zn+1

n! .

The constant term on the right is 1, which is also the constant term for F(a, z), and
for n ≥ 1, the coefficient of zn on the right is

1

(a + 1)n n! + 1

a(a + 1)(a + 2)n−1 (n − 1)!
= 1

(a + 1) · · · (a + n) n! + 1

a(a + 1)(a + 2) · · · (a + n) (n − 1)!
= 1

(a + 1) · · · (a + n) (n − 1)! ·
(
1

n
+ 1

a

)

= 1

(a + 1) · · · (a + n) (n − 1)! ·
(
a + n

a · n
)

= 1

a(a + 1) · · · (a + n − 1) n(n − 1)! = 1

(a)n n! .

This is exactly the coefficient of zn for F(a, z). �

This recurrence relation easily proves the following result.
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Corollary 8.24 For real numbers x > 0 and a > −1, we have the continued
fraction expansion

aF(a, x)

F(a + 1, x)
= a + x

a + 1+
x

a + 2+
x

a + 3+
x

a + 4+
x

a + 5+ . . . .

Proof For x > 0 and a > −1, we have F(a + 1, x) > 0 (by the defining formula
for the hypergeometric function), so we can divide by F(a + 1, x) in Proposition
8.23, obtaining the recurrence relation

F(a, x)

F(a + 1, x)
= 1 + x

a(a + 1)

F(a + 2, x)

F(a + 1, x)
,

which we can write as

aF(a, x)

F(a + 1, x)
= a + x

(a + 1)F(a + 1, x)

F(a + 2, x)

.

Replacing a with a + n with n = 0, 1, 2, 3, . . ., we get

(a + n)F(a + n, x)

F(a + n + 1, x)
= a + n + x

(a + n + 1)F(a + n + 1, x)

F(a + n + 2, x)

.

Thus, if we put

ξn = (a + n)F(a + n, x)

F(a + n + 1, x)
, an = a + n , bn = x,

then

ξn = an + bn+1

ξn+1
, n = 0, 1, 2, 3, . . . . (8.40)

Since ∞∑

n=1

anan+1

bn
=

∞∑

n=1

(a + n)(a + n + 1)

x
= ∞,

by the continued fraction convergence theorem on p. 627, we know that

aF(a, x)

F(a + 1, x)
= ξ0 = a + x

a + 1+
x

a + 2+
x

a + 3+
x

a + 4+
x

a + 5+ . . . .

�
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8.7.2 Continued Fraction Expansion of the Hyperbolic
Cotangent

The preceding corollary easily yields the following result.

Theorem 8.25 For every real number x �= 0, we have

coth x = 1

x
+ x

3 + x2

5 + x2

7 + x2

9 + . . .

.

Proof Both coth x and its proposed continued fraction expansion are odd functions
of x , so we may assume x > 0. By the previous corollary, we know that for a > −1,
we have

aF(a, x)

F(a + 1, x)
= a + x

a + 1+
x

a + 2+
x

a + 3+
x

a + 4+
x

a + 5+ . . . .

Since F
(
1/2, x2/4

) = cosh x and x F
(
3/2, x2/4

) = sinh x by Proposition 8.22,
when we set a = 1/2 and replace x with x2/4 in the previous continued fraction, we
obtain

x cosh x

2 sinh x
= x

2
coth x = 1

2
+ x2/4

3/2 +
x2/4

5/2 +
x2/4

7/2 +
x2/4

9/2 + . . . ,

or after multiplication by 2 and dividing by x , we get

coth x = 1

x
+ x/2

3/2+
x2/4

5/2 +
x2/4

7/2 +
x2/4

9/2 + . . . ,

Finally, using the transformation rule (Theorem 8.2 on p. 598)

a0 + b1
a1+

b2
a2 + . . . +

bn
an + . . . = a0 + ρ1b1

ρ1a1+
ρ1ρ2b2
ρ2a2 + . . . +

ρn−1ρnbn
ρnan + . . .

with ρn = 2 for all n, we get

coth x = 1

x
+ x

3+
x2

5 +
x2

7 +
x2

9 + . . . ,
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exactly what we set out to prove. �

Given x , we certainly have 0 < bn = x2 < 2n + 1 = an for all n sufficiently
large, so by Theorem 8.15 on p. 632, it follows that when x is rational, coth x is
irrational, or writing it out, for x rational,

coth x = ex + e−x

ex − e−x
= e2x + 1

e2x − 1

is irrational. It follows that for x rational, e2x must be irrational too, for otherwise
coth x would be rational, contrary to assumption. Replacing x with x/2 and calling
this r , we get the following neat theorem.

Theorem 8.26 er is irrational for every rational r .

By the way, as Johann Lambert (1728–1777) originally did back in 1761 [35, p.
463], you can use continued fractions to prove that π is irrational; see [136, 166].
Using the cotangent expansion, we can get the continued fraction expansion for
tanh x . To do so, multiply the continued fraction for coth x by x :

x coth x = b , where b = 1 + x2

3 +
x2

5 +
x2

7 +
x2

9 + . . . .

Thus, tanh x = x/b, or replacing b with its continued fraction, we get

tanh x = x

1 + x2

3 + x2

5 + x2

7 + . . .

.

We derive one more beautiful expression that we’ll need later. As before, we have

coth x = ex + e−x

ex − e−x
= e2x + 1

e2x − 1
= 1

x
+ x

3+
x2

5 +
x2

7 +
x2

9 + . . . .

Replacing x with 1/x , we obtain

e2/x + 1

e2/x − 1
= x + 1/x

3 +
1/x2

5 +
1/x2

7 +
1/x2

9 + . . . .

Finally, using the now familiar transformation rule, after a little algebra we get
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e2/x + 1

e2/x − 1
= x + 1

3x + 1

5x + 1

7x + . . .

. (8.41)

8.7.3 Continued Fraction Expansion of the Exponential

We can now get the famous continued fraction expansion for ex , which was first
discovered by (as you might have guessed) Euler. To start, we observe that

coth(x/2) = ex/2 + e−x/2

ex/2 − e−x/2
= 1 + e−x

1 − e−x
=⇒ e−x = coth(x/2) − 1

1 + coth(x/2)
,

where we solved the equation on the left for e−x . Thus,

e−x = 1 − 2

1 + coth(x/2)
,

so taking reciprocals, we get

ex = 1

1 − 2

1 + coth(x/2)

.

By Theorem 8.25, we have

1 + coth(x/2)=1+2

x
+ x/2

3 +
x2/4

5 + . . . = x + 2

x
+ x/2

3 +
x2/4

5 +
x2/4

7 + . . . ,

so

ex = 1

1+
−2
x+2
x

+
x/2

3 +
x2/4

5 +
x2/4

7 + . . . ,

or using the transformation rule on p. 598,

b1
a1+

b2
a2 + . . . +

bn
an + . . . = ρ1b1

ρ1a1+
ρ1ρ2b2
ρ2a2 + . . . +

ρn−1ρnbn
ρnan + . . . ,

with ρ1 = 1, ρ2 = x , and ρn = 2 for all n ≥ 3, we get

ex = 1

1+
−2x

x + 2+
x2

6 +
x2

10+
x2

14+ . . . .
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This is Euler’s celebrated continued fraction expansion for ex :

Theorem 8.27 For every real number x, we have

ex = 1

1 − 2x

x + 2 + x2

6 + x2

10 + x2

14 + . . .

.

In particular, if we let x = 1, we obtain

e = 1

1 − 2

3 + 1

6 + 1

10 + 1

14 + . . .

.

Although beautiful, we can get an even more beautiful continued fraction expansion
for e, which is a simple continued fraction.

8.7.4 The Simple Continued Fraction Expansion of e

If we expand the decimal number 2.718281828 into a simple continued fraction, we
get (see Problem 2 on p. 634)

2.718281828 = 〈2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1〉.

For this reason, we should be able to conjecture that e is the continued fraction

e = 〈2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, . . .〉. (8.42)

This is true, and it was proved by (as you might have guessed again) Euler. Here,

a0 = 2 , a1 = 1 , a2 = 2 , a3 = 1 , a4 = 1 , a5 = 4 , a6 = 1 , a7 = 1,
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and in general, for all n ∈ N, a3n−1 = 2n and a3n = a3n+1 = 1. Since

2 = 1 + 1

0 + 1

1

,

we can write (8.42) in a prettier way that shows the full pattern:

e = 〈1; 0, 1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, . . .〉,

or in the expanded form

e = 1 + 1

0 + 1

1 + 1

1 + 1

2 + 1

1 + 1

1 + 1

4 + . . .

.

To prove this incredible formula, denote the convergents of the right-hand con-
tinued fraction in (8.42) by rk/sk . Since we have such simple relations a3n−1 = 2n
and a3n = a3n+1 = 1 for all n ∈ N, one might think that it is quite easy to compute
formulas for the convergents; this is indeed the case.

Lemma 8.28 For all n ≥ 2, we have

r3n+1 = 2(2n + 1)r3(n−1)+1 + r3(n−2)+1

s3n+1 = 2(2n + 1)s3(n−1)+1 + s3(n−2)+1.

Proof Both formulas are proved in similar ways, so we shall focus on the formula
for r3n+1. First, we apply our Wallis–Euler recursive formulas:

r3n+1 = r3n + r3n−1 = (
r3n−1 + r3n−2

) + r3n−1 = 2r3n−1 + r3n−2.

We again apply the Wallis–Euler recursive formula to r3n−1:
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r3n+1 = 2
(
2nr3n−2 + r3n−3

)
+ r3n−2

=
(
2(2n) + 1

)
r3n−2 + 2r3n−3

=
(
2(2n) + 1

)
r3n−2 + r3n−3 + r3n−3. (8.43)

Again applying the Wallis–Euler recursive formula to the last term, we get

r3n+1 =
(
2(2n) + 1

)
r3n−2 + r3n−3 +

(
r3n−4 + r3n−5

)

=
(
2(2n) + 1

)
r3n−2 +

(
r3n−3 + r3n−4

)
+ r3n−5.

Since r3n−2 = r3n−3 + r3n−4 by our Wallis–Euler recursive formulas, we finally get

r3n+1 =
(
2(2n) + 1

)
r3n−2 + r3n−2 + r3n−5

=
(
2(2n) + 2

)
r3n−2 + r3n−5

= 2
(
(2n) + 1

)
r3(n−1)+1 + r3(n−2)+1.

�

Now putting x = 1 in (8.41), let us look at

e + 1

e − 1
= 〈2; 6, 10, 14, 18, . . .〉

that is, if the right-hand side is 〈α0;α1, . . .〉, then αn = 2(2n + 1) for all n =
0, 1, 2, . . .. If pn/qn are the convergents of this continued fraction, then we see
that

pn = 2(2n + 1)pn−1 + pn−2 and qn = 2(2n + 1)qn−1 + qn−2, (8.44)

which are similar to the relations in our lemma! Thus, it is not one bit surprising that
the r3n+1 and s3n+1 are related to the pn and qn . The exact relation is given in the
following lemma.

Lemma 8.29 For all n = 0, 1, 2, . . ., we have

r3n+1 = pn + qn and s3n+1 = pn − qn.

Proof As with the previous lemma, we shall prove only the formula for r3n+1. The
proof is really easy: For n = 0, 1, 2, . . ., define
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un = r3n+1 − pn − qn.

Using the an and αn , it easy to check that u0 = 0 and also u1 = 0. (To find u1 you
need r4, and to compute this, it’s best to use the formula (8.43) with n = 1; if you
do so, you’ll get r4 = 19.) By Lemma 8.28 and Eq. (8.44), it follows that for n ≥ 2,
we have

un = 2(2n + 1)un−1 + un−2.

Putting n = 2 and using that u0 = u1 = 0, we get u2 = 0. Then putting n = 3, we
get u3 = 0. In fact, by induction, all the un are zero! This proves our result. �

Finally, we can now prove the continued fraction expansion for e:

〈2; 1, 1, 4, 1, 1, . . .〉 = lim
rn
sn

= lim
r3n+1

s3n+1
= lim

pn + qn
pn − qn

= lim
pn/qn + 1

pn/qn − 1
=

e+1
e−1 + 1
e+1
e−1 − 1

=
e

e−1
1

e−1

= e.

See [185] for another proof of this formula based on a proof by Charles Hermite
(1822–1901). In the problems, we derive, along with other things, the following
beautiful continued fraction for cot x :

x cot x = 1 + x2

3 − x2

5 − x2

7 − x2

9 − . . .

. (8.45)

From this continued fraction, we can derive the beautiful companion result for tan x :

tan x = x

1 − x2

3 − x2

5 − x2

7 − . . .

.

� Exercises 8.7

1. For all n = 1, 2, . . ., let an > 0, bn ≥ 0, with an ≥ bn + 1. We shall prove that
the following continued fraction converges:
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b1
a1+

−b2
a2 +

−b3
a3 +

−b4
a4 + . . . . (8.46)

Note that for the continued fraction we are studying, a0 = 0. The Wallis–
Euler recurrence relations (8.17) and (8.18) in this situation are (just replace
bn with −bn)

pn = an pn−1 − bn pn−2 , qn = anqn−1 − bnqn−2, n = 2, 3, 4, . . .

p0 = 0 , p1 = b1 , q0 = 1 , q1 = a1.

(i) Prove (via induction, for instance) that qn ≥ qn−1 for all n = 1, 2, . . .. In
particular, since q0 = 1, we have qn ≥ 1 for all n, so the convergents cn =
pn/qn of (8.46) are defined.

(ii) Verify that q1 − p1 ≥ 1 = q0 − p0. Now prove by induction that qn − pn ≥
qn−1 − pn−1 for all n = 1, 2, . . .. In particular, since q0 − p0 = 1, we have
qn − pn ≥ 1 for all n. Dividing by qn , we see that 0 ≤ cn ≤ 1 for all n =
1, 2, . . ..

(iii) Using the fundamental recurrence relations for cn − cn−1, prove that cn −
cn−1 ≥ 0 for all n = 1, 2, . . .. Combining this with (ii) shows that 0 ≤ c1 ≤
c2 ≤ c3 ≤ · · · ≤ 1; that is, {cn} is a bounded monotone sequence and hence
converges. Thus, the continued fraction (8.46) converges.

2. For all n = 1, 2, . . ., let an > 0, bn ≥ 0, with an ≥ bn + 1. From the previous
problem, it follows that given a0 ∈ R, the continued fraction a0 − b1

a1 +
−b2
a2 +

−b3
a3

+
−b4
a4 + . . . converges. Prove the following variant of the continued fraction con-

vergence theorem (Theorem 8.14 on p. 628): Let ξ0, ξ1, ξ2, . . . be a sequence of
real numbers with ξn > 0 for n ≥ 1 and suppose that these numbers are related
by

ξn = an + −bn+1

ξn+1
, n = 0, 1, 2, . . . .

Then ξ0 is equal to the continued fraction

ξ0 = a0 − b1
a1+

−b2
a2 +

−b3
a3 +

−b4
a4 +

−b5
a5 + . . . .

Suggestion: Follow closely the proof of Theorem 8.14.
3. We are now ready to derive the beautiful cotangent continued fraction (8.45).

(i) Let a > 0. Then as we derived the identity (8.40) found in Theorem 8.25,
prove that if we define

ηn = (a + n)F(a + n,−x)

F(a + n + 1,−x)
, an = a + n , bn = x, n = 0, 1, 2, . . . ,
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then

ηn = an + −bn+1

ηn+1
, n = 0, 1, 2, 3, . . . .

(ii) Using Problem 2, prove that for x ≥ 0 sufficiently small, we have

aF(a,−x)

F(a + 1,−x)
= a − x

a + 1+
−x

a + 2+
−x

a + 3+
−x

a + 4+
−x

a + 5+ . . . .

(8.47)
(iii) Prove that (cf. the proof of Proposition 8.22)

F

(
1

2
,− x2

4

)
= cos x , x F

(
3

2
,− x2

4

)
= sin x .

(iv) Now put a = 1/2 and replace x with x2/4 in (8.47) to derive, for x �= 0
sufficiently small, the beautiful cotangent expansion (8.45). Finally, relax
and contemplate this fine formula!

4. (Irrationality of log r ) Using Theorem 8.26, prove that if r > 0 is rational with
r �= 1, then log r is irrational. In particular, one of our favorite constants, log 2,
is irrational.

8.8 Quadratic Irrationals and Periodic Continued
Fractions

We already know (p. 226 in Section3.8) that a real number has a periodic decimal
expansion if and only if the number is rational. One can ask the same thing about
continued fractions: What types of real numbers have periodic simple continued
fractions? The answer, as you will see in this section, is the real numbers called
quadratic irrationals.

8.8.1 Periodic Continued Fractions

The object of this section is to characterize continued fractions that “repeat.”

Example 8.29 We have already encountered the beautiful continued fraction

1 + √
5

2
= 〈1; 1, 1, 1, 1, 1, 1, 1, 1, . . .〉.

We usually write the right-hand side as 〈1〉 to emphasize that the 1 repeats.

http://dx.doi.org/10.1007/978-1-4939-6795-7_3
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Example 8.30 Another continued fraction that repeats is

√
8 = 〈2; 1, 4, 1, 4, 1, 4, 1, 4, . . .〉,

where we have an infinite repeating block of 1, 4. We usually write the right-hand
side as

√
8 = 〈2; 1, 4〉.

Example 8.31 Yet one more continued fraction that repeats is

√
19 = 〈4; 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, . . .〉,

where we have an infinite repeating block of 2, 1, 3, 1, 2, 8. We usually write the
right-hand side as

√
19 = 〈4; 2, 1, 3, 1, 2, 8〉.

Notice that the above repeating continued fractions are continued fractions for
expressions with square roots.

Example 8.32 Consider now the expression

ξ = 〈3; 2, 1, 2, 1, 2, 1, 2, 1, . . .〉 = 〈3; 2, 1〉.

Let η = 〈2; 1, 2, 1, 2, 1, 2, . . .〉. Then ξ = 3 + 1
η
, and

η = 2 + 1

1 + 1

2 + 1

1 + · · ·

=⇒ η = 2 + 1

1 + 1

η

.

Solving for η, we get a quadratic formula, and solving it, we find that η = 1 + √
3.

Hence,

ξ = 3 + 1

η
= 3 + 1

1 + √
3

= 3 +
√
3 − 1

2
= 5 + √

3

6
,

yet another square root expression.

Consider the infinite repeating simple continued fraction

ξ = 〈a0; a1, . . . , a�−1, b0, b1, . . . , bm−1, b0, b1, . . . , bm−1, b0, b1, . . . , bm−1, . . .〉
(8.48)

= 〈a0; a1, . . . , a�−1, b0, b1, . . . , bm−1〉,

where the bar denotes that the block of numbers b0, b1, . . . , bm−1 repeats forever.
Such a continued fraction is said to be periodic. When writing a continued fraction
in this way, we assume that there is no shorter repeating block and that the repeating
block cannot start at an earlier position. For example, we would never write
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〈2; 1, 2, 4, 3, 4, 3, 4, 3, 4, . . .〉 as 〈2; 1, 2, 4, 3, 4, 3, 4〉;

we simply write it as 〈2; 1, 2, 4, 3〉. The integer m is called the period of the simple
continued fraction. An equivalent way to define a periodic continued fraction is as
an infinite simple continued fraction ξ = 〈a0; a1, a2, . . .〉 such that for some m and
�, we have

an = am+n for all n = �, � + 1, � + 2, . . . . (8.49)

The examples above suggest that infinite periodic simple continued fractions are
intimately related to expressions with square roots; in fact, these expressions are
called quadratic irrationals, as we shall see in a moment.

8.8.2 Quadratic Irrationals

A quadratic irrational is, exactly as its name suggests, an irrational real number
that is a solution of a quadratic equation with integer coefficients. Using the quadratic
equation, we leave you to show that a quadratic irrational ξ can be written in the form

ξ = r + s
√
b, (8.50)

where r, s are rational numbers and b > 0 is an integer that is not a perfect square
(for if b were a perfect square, then

√
b would be an integer, so the right-hand side

of ξ would be rational, contradicting that ξ is irrational). Conversely, given any real
number of the form (8.50), one can check that ξ is a root of the equation

x2 − 2r x + (r2 − s2b) = 0.

Multiplying both sides of this equation by a common denominator of the rational
numbers 2r and r2 − s2b, we can make the polynomial on the left have integer
coefficients. Thus, a real number is a quadratic irrational if and only if it is of the
form (8.50). As we shall see in Theorem 8.30 below, it would be helpful to write
quadratic irrationals in a way we now explain. Let ξ take the form in (8.50) with
r = m/n and s = p/q, where n, q > 0. Assuming that p ≥ 0, with the help of some
mathematical gymnastics, we see that

ξ = m

n
+ p

√
b

q
= mq + np

√
b

nq
= mq + √

bn2 p2

nq
= mnq2 + √

bn4 p2q2

n2q2
.

Notice that if we set α = mnq2, β = n2q2, and d = bn4 p2q2, then d − α2 =
bn4 p2q2 − m2n2q4 = (bn2 p2 − m2q2)(n2q2) is divisible by β = n2q2. Therefore,
we can write every quadratic irrational in the form
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ξ = α + √
d

β
, α,β, d ∈ Z, d > 0 is not a perfect square, and β

∣∣(d − α2).

A similar argument shows that ξ has this same form in case p < 0. Using this
expression as the starting point, we prove the following nice theorem, which gives
formulas for the convergents of the continued fraction expansion of ξ.

Theorem 8.30 Let ξ = α+√
d

β
be a quadratic irrational with complete quotients

{ξn} (with ξ0 = ξ) and partial quotients {an}, where an = �ξn�. Then we can write

ξn = αn + √
d

βn
,

where αn and βn are integers with βn �= 0, defined by the recursive sequences

α0 = α , β0 = β , αn+1 = anβn − αn , βn+1 = d − α2
n+1

βn
;

moreover, βn|(d − α2
n) for all n.

Proof We first show that all the αn and βn defined above are integers with βn never
zero and βn|(d − α2

n). This is automatic with n = 0. Assume that this is true for n.
Then αn+1 = anβn − αn is an integer. To see that βn+1 is also an integer, observe
that

βn+1 = d − α2
n+1

βn
= d − (anβn − αn)

2

βn
= d − a2nβ

2
n + 2anβnαn − α2

n

βn

= d − α2
n

βn
+ 2anαn − a2nβn.

By the induction hypothesis, (d − α2
n)/βn is an integer, and so is 2anαn − a2nβn .

Thus, βn+1 is an integer too. Moreover, βn+1 �= 0, because if βn+1 = 0, then we
must have d − α2

n+1 = 0, which shows that d is a perfect square, contrary to our
condition on d. Finally,

βn+1 = d − α2
n+1

βn
=⇒ βn = d − α2

n+1

βn+1
=⇒ βn+1

∣∣(d − α2
n+1),

since βn is an integer.
Lastly, it remains to prove that the (αn + √

d)/βn are the complete quotients of
ξ. For each n let’s put ηn = (αn + √

d)/βn; we must show that ηn = ξn for each n.
Note that η0 = ξ = ξ0. For n ≥ 1, observe that
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ηn − an = αn + √
d

βn
− αn+1 + αn

βn
=

√
d − αn+1

βn
,

where in the middle equality we solved αn+1 = anβn − αn for an . Rationalizing and
using the definition of βn+1 and ξn+1, we obtain

ηn − an = d − α2
n+1

βn(
√
d + αn+1)

= βn+1√
d + αn+1

= 1

ηn+1
=⇒ ηn = an + 1

ηn+1
.

Using this formula plus induction on n = 0, 1, 2, . . . (recalling that η0 = ξ0) shows
that ηn = ξn for all n. �

8.8.3 Quadratic Irrationals and Periodic Continued Fractions

After one preliminary result, we shall prove that an infinite simple continued fraction
is a quadratic irrational if and only if it is periodic. Define

Z[√d] = {a + b
√
d ; a, b ∈ Z}

and
Q[√d] = {a + b

√
d ; a, b ∈ Q}.

Given ξ = a + b
√
d in either Z[√d] or Q[√d], we define its conjugate by

ξ = a − b
√
d.

Lemma 8.31 Z[√d] is a commutative ring andQ[√d] is a field, and conjugation
preserves the algebraic properties; for example, if α,β ∈ Q[√d], then

α ± β = α ± β, α · β = α · β, and α/β = α/β.

Proof To prove that Z[√d] is a commutative ring we just need to prove that it has
the same algebraic properties as the integers in that Z[√d] is closed under addition,
subtraction, and multiplication; for more on this definition see our discussion on p.
48 in Section2.3.1. For example, to see that Z[√d] is closed under multiplication,
let α = a + b

√
d and β = a′ + b′√d be elements of Z[√d]; then

αβ = (a + b
√
d)(a′ + b′√d) = aa′ + bb′d + (ab′ + a′b)

√
d, (8.51)

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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which is also in Z[√d]. Similarly, one can show that Z[√d] satisfies all the other
properties of a commutative ring.

To prove that Q[√d] is a field, we need to prove that it has the same algebraic
properties as the rational numbers in that Q[√d] is closed under addition, multipli-
cation, subtraction, and division (by nonzero elements); for more on this definition,
see our discussion on p. 75 in Section2.6.1. For example, to see thatQ[√d] is closed
under taking reciprocals, observe that if α = a + b

√
d ∈ Q[√d] is not zero, then

1

α
= 1

a + b
√
d

· a − b
√
d

a − b
√
d

= a − b
√
d

a2 − b2d
= a

a2 − b2d
− b

a2 − b2d

√
d.

Note that a2 − b2d �= 0, since being zero would imply that
√
d = a/b, a rational

number, which by assumption is false. Similarly, one can show that Q[√d] satisfies
all the other properties of a field.

Finally, we need to prove that conjugation preserves the algebraic properties. For
example, let’s prove the equality α · β = α · β, leaving the other properties to you.
If α = a + b

√
d and β = a′ + b′√d , then according to (8.51), we have

αβ = aa′ + bb′d − (ab′ + a′b)
√
d.

On the other hand,

α · β = (a − b
√
d)(a′ − b′√d) = aa′ + bb′d − (ab′ + a′b)

√
d,

which equals αβ. �

The following theorem is named in honor or Joseph-Louis Lagrange (1736–1813).

Lagrange’s theorem

Theorem 8.32 An infinite simple continued fraction is a quadratic irrational if
and only if it is periodic.

Proof We first prove the “if” part, then the “only if” part.
Step 1: Let ξ = 〈a0; a1, . . . , a�−1, b0, . . . , bm〉 be periodic and let η be the repeat-

ing block in ξ:

η = 〈b0; b1, . . . , bm, b0, b1, . . . , bm, b0, b1, . . . , bm, . . .〉 = 〈b0; b1, . . . , bm, η〉.

Thus, ξ = 〈a0, a1, . . . , a�−1, η〉. The idea is to prove that η is a quadratic irrational,
then deduce that ξ must be one as well. To prove that η is a quadratic irrational, we
use Theorem 8.5 on p. 612 to write

η = ηsm−1 + sm−2

ηtm−1 + tm−2
,

http://dx.doi.org/10.1007/978-1-4939-6795-7_2
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where sn/tn are the convergents for η. Multiplying both sides by ηtm−1 + tm−2, we
see that

η2tm−1 + ηtm−2 = ηsm−1 + sm−2 =⇒ a η2 + b η + c = 0,

where a = tm−1, b = tm−2 − sm−1, and c = −sm−2. Hence, η is a quadratic irrational.
Now using that ξ = 〈a0, a1, . . . , a�−1, η〉 and again using Theorem 8.5 on p. 612, we
obtain

ξ = η pm−1 + pm−2

ηqm−1 + qm−2
,

where pn/qn are the convergents for ξ. Since η is a quadratic irrational, it follows
that ξ is a quadratic irrational, since Q[√d] is a field from Theorem 8.31. Thus, we
have proved that periodic simple continued fractions are quadratic irrationals.

Step 2: Now let ξ = 〈a0; a1, a2, . . .〉 be a quadratic irrational; we shall prove that
its continued fraction expansion is periodic. Themain idea is to show that the integers
αn and βn of the complete quotients of ξ found in Theorem 8.30 are bounded, then
invoke the pigeonhole principle. To this end, let ξn be the nth complete quotient of
ξ. Then we can write ξ = 〈a0; a1, a2, . . . , an−1, ξn〉, so by Theorem 8.5 we have

ξ = ξn pn−1 + pn−2

ξnqn−1 + qn−2
.

Solving for ξn , after a little algebra, we find that

ξn = −qn−2

qn−1

(
ξ − cn−2

ξ − cn−1

)
.

By our lemma, conjugation preserves the algebraic operations, so

ξn = −qn−2

qn−1

(
ξ − cn−2

ξ − cn−1

)
. (8.52)

If ξ = (α + √
d)/β, then ξ − ξ = 2

√
d/β �= 0. Therefore, since ck → ξ as k → ∞,

it follows that as n → ∞,

ξ − cn−2

ξ − cn−1

→ ξ − ξ

ξ − ξ
= 1.

In particular, there is an N ∈ N such that for n > N , (ξ − cn−2)/(ξ − cn−1) > 0.
Thus, since qk > 0 for k ≥ 0, according to (8.52), for n > N wehave ξn < 0.Writing
ξn = (αn + √

d)/βn as shown in Theorem 8.30, we have

ξn − ξn = 2

√
d

βn
.
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Since ξn > 0 for n ≥ 1 and since −ξn > 0 for n > N , it follows that for n > N , we

have βn > 0. Now solving the identity βn+1 = d−α2
n+1

βn
in Theorem 8.30 for d, we see

that
βnβn+1 + α2

n+1 = d.

For n > N , both βn and βn+1 are positive; hence for such n wemust have 0 < βn ≤ d
and 0 ≤ |αn| ≤ d. (For if either βn or |αn| were greater than d, then βnβn+1 + α2

n+1
would be strictly larger than d, an impossibility, since the sum is supposed to equal
d.) In particular, if A is the finite set

A = {(�,m) ∈ Z × Z ; −d ≤ � ≤ d , 1 ≤ m ≤ d},

then for the infinitely many n > N , the pair (αn,βn) is in the finite set A. By the
pigeonhole principle, there must be distinct j, k > N such that (α j ,β j ) = (αk,βk).
Assume that j > k and let m = j − k. Then j = m + k, so

αk = αm+k and βk = βk+m .

Since ak = �ξk� and am+k = �ξm+k�, by Theorem 8.30 we have

ξk = αk + √
d

βk
= αm+k + √

d

βm+k
= ξm+k =⇒ ak = �ξk� = �ξm+k� = am+k .

By our formulas for αk+1 and βk+1 from Theorem 8.30, we see that

αk+1 = akβk − αk = am+kβm+k − αm+k = αm+k+1,

and

βk+1 = d − α2
k+1

βk
= d − α2

m+k+1

βm+k
= βm+k+1.

Thus,

ξk+1 = αk+1 + √
d

βk+1
= αm+k+1 + √

d

βm+k+1
= ξm+k+1

=⇒ ak+1 = �ξk+1� = �ξm+k+1� = am+k+1.

Continuing this process by induction shows that an = am+n for all n = k, k + 1, k +
2, k + 3, . . .. Thus, by the definition of periodicity in (8.49), we see that ξ has a
periodic simple continued fraction. �

A periodic simple continued fraction is called purely periodic if it is of the form
ξ = 〈a0; a1, . . . , am−1〉.
Example 8.33 The simplest example of such a fraction is the golden ratio:
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� = 1 + √
5

2
= 〈1〉 = 〈1; 1, 1, 1, 1, 1, . . .〉.

Observe that � has the following properties:

� > 1 and � = 1 − √
5

2
= −0.618 . . . =⇒ � > 1 and − 1 < � < 0.

In the following theorem, Évariste Galois’s.8 (1811–1832) first publication (at
the age of 17), we characterize purely periodic expansions as those quadratic irra-
tionals having the same properties as �. (Don’t believe everything you read about
the legendary Galois; see [202]. See [235] for an introduction to Galois’s famous
theory.)

Galois’ theorem

Theorem 8.33 A quadratic irrational ξ is purely periodic if and only if

ξ > 1 and − 1 < ξ < 0.

Proof Assume that ξ = 〈a0; . . . , am−1, a0, a1, . . . , am−1, . . .〉 is purely periodic; we
shall prove that ξ > 1 and−1 < ξ < 0. Recall that in general, for a simple continued
fraction 〈b0; b1, b2, . . .〉, all the bn are positive after b0. Thus, since a0 appears again
(and again, and again, . . .) after the first a0 in ξ, it follows that a0 ≥ 1. Hence,
ξ = a0 + 1

ξ1
> 1. Now applying Theorem 8.5 to 〈a0; . . . , am−1, ξ〉, we get

ξ = ξ pm−1 + pm−2

ξqm−1 + qm−2
,

where pn/qn are the convergents for ξ. Multiplying both sides by ξqm−1 + qm−2, we
obtain

ξ2qm−1 + ξqm−2 = ξ pm−1 + pm−2 =⇒ f (ξ) = 0, (8.53)

where f (x) = qm−1x2 + (qm−2 − pm−1)x − pm−2 is a quadratic polynomial. In par-
ticular, ξ is a root of f . Taking conjugates of the equation in (8.53), we see that
f (ξ) = 0 as well. Thus, ξ and ξ are the two roots of f . Now ξ > 1, so by theWallis–
Euler recurrence relations, pn > 0, pn < pn+1, and qn < qn+1 for all n. Hence,

8[From the preface to his final manuscript (Évariste died from a pistol duel at the age of 20)].
“Since the beginning of the century, computational procedures have become so complicated that
any progress by those means has become impossible, without the elegance which modern mathe-
maticians have brought to bear on their research, and by means of which the spirit comprehends
quickly and in one step a great many computations. It is clear that elegance, so vaunted and so aptly
named, can have no other purpose. …Go to the roots of these calculations! Group the operations.
Classify them according to their complexities rather than their appearances! This, I believe, is the
mission of future mathematicians. This is the road on which I am embarking in this work.” Évariste
Galois (1811–1832).
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f (−1) = (qm−1 − qm−2) + (pm−1 − pm−2) > 0 and f (0) = −pm−2 < 0.

By the intermediate value theorem, f (x) = 0 for some −1 < x < 0. Since ξ is the
other root of f , we have −1 < ξ < 0.

Assume now that ξ is a quadratic irrational with ξ > 1 and −1 < ξ < 0; we shall
prove that ξ is purely periodic. To do so, we first prove that if {ξn} are the complete
quotients of ξ, then −1 < ξn < 0 for all n. Since ξ0 = ξ, this is already true for
n = 0. Assume that this holds for n; then

ξn = an + 1

ξn+1
=⇒ 1

ξn+1

= ξn − an < −an ≤ −1 =⇒ 1

ξn+1

< −1.

The inequality 1
ξn+1

< −1 shows that −1 < ξn+1 < 0 and completes the induction.

Nowwe already know that ξ is periodic, so let us assume for the sake of contradiction
that ξ is not purely periodic, that is, ξ = 〈a0; a1, . . . , a�−1, a�, . . . , a�+m−1〉, where
� ≥ 1. Then a�−1 �= a�+m−1, for otherwise, we could start the repeating block at a�−1.
Since

ξ�−1 = a�−1 + 〈a�, . . . , a�+m−1〉 and ξ�+m−1 = a�+m−1 + 〈a�, . . . , a�+m−1〉,
(8.54)

it follows that
ξ�−1 �= ξ�+m−1. (8.55)

From (8.54), it also follows that ξ�−1 − ξ�+m−1 is an integer (which is equal to
a�−1 − a�+m−1, although this is not important). Since rational numbers are self-
conjugate, we have

ξ�−1 − ξ�+m−1 = ξ�−1 − ξ�+m−1.

Now we already proved that −1 < ξ�−1 < 0 and −1 < ξ�+m−1 < 0, from which we
obtain

−1 < ξ�−1 − ξ�+m−1 < 1.

Thus,−1 < ξ�−1 − ξ�+m−1 < 1. However, ξ�−1 − ξ�+m−1 is an integer, and since the
only integer strictly between −1 and 1 is 0, it must be that ξ�−1 = ξ�+m−1. However,
this contradicts (8.55), and our proof is complete. �

8.8.4 Square Roots and Periodic Continued Fractions

Recall that √
19 = 〈4; 2, 1, 3, 1, 2, 8〉;
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if you didn’t notice the beautiful symmetry before, observe that we can write this as√
19 = 〈a0; a1, a2, a3, a2, a1, 2a0〉, where the repeating block has a symmetric part

and an ending part twice a0. It turns out that every square root has this nice symmetry
property. To prove this fact, we first prove the following.

Lemma 8.34 Let ξ = 〈a0; a1, . . . , am−1〉 be purely periodic.
(1) −1/ξ is the reversal of ξ: −1/ξ = 〈am−1; am−2, . . . , a0〉.
(2) If {ξn} is the sequence of complete quotients, then ξn = ξ0 if and only if n is

a multiple of m.

Proof Writing out the complete quotients ξ, ξ1, ξ2, . . . , ξm−1 of

ξ = 〈a0; a1, . . . , am−1〉 = 〈a0; a1, . . . , am−1, ξ〉,

we obtain

ξ = a0 + 1

ξ1
, ξ1 = a1 + 1

ξ2
, . . . , ξm−2 = am−2 + 1

ξm−1
, ξm−1 = am−1 + 1

ξ
.

Taking conjugates of all of these and listing them in reverse order, we find that

−1

ξ
= am−1 − ξm−1 ,

−1

ξm−1

= am−2 − ξm−2 , . . . ,
−1

ξ2
= a1 − ξ1 ,

−1

ξ1
= a0 − ξ.

Let us define η0 := −1/ξ, η1 = −1/ξm−1, η2 = −1/ξm−2, . . . , ηm−1 = −1/ξ1.
Then we can write the previous displayed equalities as

η0 = am−1 + 1

η1
, η1 = am−2 + 1

η2
, . . . , ηm−2 = a1 + 1

ηm−1
, ηm−1 = a0 + 1

η0
;

in other words, η0 is just the continued fraction

η0 = 〈am−1; am−2, . . . , a1, a0, η0〉 = 〈am−1; am−2, . . . , a1, a0〉.

Since η0 = −1/ξ, our proof is complete. We leave the proof of (2) as an
exercise. �

Let d be natural number, not a perfect square. Then byTheorem8.30, the complete
quotients ξn and the partial quotients an for

√
d are determined by

ξn = αn + √
d

βn
, an = �ξn�,

where the αn,βn are integers satisfying the relations given in Theorem 8.30.
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Theorem 8.35 The simple continued fraction of
√
d has the form

√
d = 〈a0; a1, a2, a3, . . . , a3, a2, a1, 2a0〉.

Moreover, βn �= −1 for all n, and βn = +1 if and only if n is a multiple of the
period of

√
d.

Proof Starting the continued fraction algorithm for
√
d , we obtain

√
d = a0 + 1

ξ1
,

where ξ1 > 1. Since 1
ξ1

= −a0 + √
d , we have

− 1

ξ1
= −( − a0 − √

d
) = a0 + √

d > 1, (8.56)

so we must have −1 < ξ1 < 0. Since both ξ1 > 1 and −1 < ξ1 < 0, by Galois’s
theorem, Theorem 8.33, we know that ξ1 is purely periodic: ξ1 = 〈a1; a2, . . . , am〉.
Thus, √

d = a0 + 1

ξ1
= 〈a0; ξ1〉 = 〈a0; a1, a2, . . . , am〉.

On the other hand, from (8.56) and from Lemma 8.34, we see that

〈2a0; a1, a2, . . . , am, a1, a2, . . . , am, . . .〉 = a0 + √
d = − 1

ξ1
= 〈am; . . . , a1〉

= 〈am; am−1, am−2, . . . , a1, am, am−1, am−2, . . . , a1, . . .〉.

By the uniqueness of simple continued fraction expansions (Problem 8 on p. 636),
we have am = 2a0, am−1 = a1, am−2 = a2, am−3 = a3, and so forth. Therefore,

√
d = 〈a0; a1, a2, . . . , am〉 = 〈a0; a1, a2, a3, . . . , a3, a2, a1, 2a0〉.

Wenowprove thatβn never equals−1, andβn = +1 if and only if n is amultiple of
the periodm. Sinceβ0 = +1 by definition (see Theorem8.30), we henceforth assume
that n > 0. By the form of the continued fraction expansion of

√
d we just derived,

observe that for n > 0, the nth complete quotient ξn for
√
d is purely periodic. In

particular, by Galois’s theorem, Theorem 8.33, we know that

ξn > 1 and − 1 < ξn < 0. (8.57)

Now for the sake of contradiction, assume that βn = −1. Then the formula ξn =
(αn + √

d)/βn with βn = −1 and (8.57) imply that

1 < ξn = −αn − √
d =⇒ αn < −1 − √

d =⇒ αn < 0.
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On the other hand, (8.57) also implies that

−1 < ξn = −αn + √
d < 0 =⇒ √

d < αn =⇒ 0 < αn.

The contradictions αn < 0 and αn > 0 imply that βn = −1 is impossible.
We now prove that βn = 1 if and only if n is a multiple of the period m. Note

that βn = 1 if and only if ξn = αn + √
d. Since

√
d = a0 + 1/ξ1, we see that ξn =

an + 1/ξ1, where an = αn + a0 ∈ Z. In particular, ξn+1 = ξ1. In conclusion, βn = 1
if and only if ξn+1 = ξ1. Now if we put ηk = ξk+1 for all k = 0, 1, 2, . . ., then observe
that ηk is purely periodic and βn = 1 if and only if ηn = η0. By the previous lemma,
ηn = η0 if and only if n is a multiple of m. �

� Exercises 8.8

1. Find the canonical continued fraction expansions for

(a)
√
29 , (b)

1 + √
13

2
, (c)

2 + √
5

3
.

2. Find the values of the following continued fractions:

(a) 〈3; 2, 6〉 , (b) 〈1; 2, 3〉 , (c) 〈1; 2, 3〉 , (d) 〈2; 5, 1, 3, 5〉.

3. Let m, n ∈ N. Find the quadratic irrational numbers represented by

(a) 〈n〉 = 〈n; n, n, n, . . .〉 , (b) 〈n; 1〉 , (c) 〈n; n + 1〉 , (d) 〈m; n〉.

4. Prove Part (2) of Lemma 8.34.

8.9 Archimedes’s Crazy Cattle Conundrum and
Diophantine Equations

Archimedes (287–212) was known to think in preposterous proportions. In The Sand
Reckoner [171, p. 420], a fun story written by Archimedes, he concluded that if
he could fill the universe with grains of sand, there would be approximately 8 ×
1063 grains! According to Pappus of Alexandria (290–350), at one time Archimedes
said (see [60, p. 15]), “Give me a place to stand, and I will move the Earth!” In
the following, we shall look at a cattle problem proposed by Archimedes, whose
solution involves approximately 8 × 10206544 cattle! If you feel moved to read more
on Achimedes’s cattle, see [18, 145, 167, 251, 266].
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8.9.1 Archimedes’s Crazy Cattle Conundrum

Here is a poem written by Archimedes to students at Alexandria in a letter to Eratos-
thenes of Cyrene (276–194 B.C.). (The following is adapted from [106], as written
in [18].)

Compute, O stranger! the number of cattle of Helios, which once grazed on the plains of
Sicily, divided according to their color, to wit:

(1) White bulls = 1
2 black bulls + 1

3 black bulls + yellow bulls

(2) Black bulls = 1
4 spotted bulls + 1

5 spotted bulls + yellow bulls

(3) Spotted bulls = 1
6 white bulls + 1

7 white bulls + yellow bulls

(4) White cows = 1
3 black herd + 1

4 black herd (here, “herd” = bulls + cows)

(5) Black cows = 1
4 spotted herd + 1

5 spotted herd

(6) Dappled cows = 1
5 yellow herd + 1

6 yellow herd

(7) Yellow cows = 1
6 white herd + 1

7 white herd

He who can answer the above is no novice in numbers. Nevertheless, he is not yet skilled in
wise calculations! But come consider also all the following numerical relations between the
Oxen of the Sun:

(8) If the white bulls were combined with the black bulls they would be in a figure equal
in depth and breadth and the far stretching plains of Sicily would be covered by the
square formed by them.

(9) If the yellow and spotted bulls were collected in one place, they would stand, if they
ranged themselves one after another, completing the form of an equilateral triangle.

If thou discover the solution of this at the same time; if thou grasp it with thy brain; and give
correctly all the numbers; O Stranger! go and exult as conqueror; be assured that thou art by
all means proved to have abundant knowledge in this science.

1 2 3 4
cattle form a square cattle form a triangle

Fig. 8.7 With the dots as bulls, on the left, the number of bulls is a square number (42 in this case)
and the number of bulls on the right is a triangular number (1 + 2 + 3 + 4 in this case)

To solve this puzzle, we need to turn it into mathematics! Let W, B,Y, S denote
the numbers of white, black, yellow, and spotted bulls, respectively, and w, b, y, s
for the number of white, black, yellow, and spotted cows, respectively.

The conditions (1)–(7) can be written as

(1) W =
(1
2

+ 1

3

)
B + Y (2) B =

(1
4

+ 1

5

)
S + Y,
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(3) S =
(1
6

+ 1

7

)
W + Y (4) w =

(1
3

+ 1

4

)
(B + b),

(5) b =
(1
4

+ 1

5

)
(S + s) (6) s =

(1
5

+ 1

6

)
(Y + y),

(7) y =
(1
6

+ 1

7

)
(W + w).

Now how do we interpret (8) and (9)? We will interpret (8) as meaning that the
number of white and black bulls should be a square number (a perfect square); see
the left picture in Fig. 8.7. A triangular number is a number of the form

1 + 2 + 3 + 4 + · · · + n = n(n + 1)

2
,

for some n. Then we will interpret (9) as meaning that the number of yellow and
spotted bulls should be a triangular number; see the right picture in Fig. 8.7.
Thus, (8) and (9) become

(8) W + B = a square number , (9) Y + S = a triangular number.

In summary: We want to find integers W, B,Y, S, w, b, y, s (here we assume that
there is no such thing as “fractional cattle”) solving equations (1)–(9). Now to the
solution of Archimedes’s cattle problem. First of all, equations (1)–(7) are just linear
equations, so these equations can be solved using simple linear algebra. Instead of
solving these equations by hand, which will probably take a few hours, it would be
best to use a computer. Doing so, you will find that in order forW, B,Y, S, w, b, y, s
to solve (1)–(7), they must be of the form

W = 10366482 k , B = 7460514 k , Y = 4149387 k , S = 7358060 k

w = 7206360 k , b = 4893246 k , y = 5439213 k , s = 3515820 k,
(8.58)

where k can equal 1, 2, 3, . . .. Thus, in order for us to fulfill conditions (1)–(7), we
would have at the very least, setting k = 1,

10366482 + 7460514 + 4149387 + 7358060 + 7206360 + 4893246

+ 5439213 + 3515820 = 50389082 ≈ 50 million cattle!

Now we are “no novice in numbers!” Nevertheless, we are not yet skilled in wise
calculations! To be skilled, we still have to satisfy conditions (8) and (9). For (8),
this means

W + B = 10366482 k + 7460514 k = 17826996 k = a square number.
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Factoring 17826996 = 22 · 3 · 11 · 29 · 4657 into its prime factors, we see that we
must have

22 · 3 · 11 · 29 · 4657 k = a perfect square.

Thus, we need 3 · 11 · 29 · 4657 k to be a square, which holds if and only if

k = 3 · 11 · 29 · 4657m2 = 4456749m2

for some integer m. Plugging this value into (8.58), we get

W = 46200808287018m2 , B = 33249638308986m2

Y = 18492776362863m2 , S = 32793026546940m2

w = 32116937723640m2 , b = 21807969217254m2

y = 24241207098537m2 , s = 15669127269180m2,

(8.59)

where m can equal 1, 2, 3, . . .. Thus, in order for us to fulfill conditions (1)–(8), we
would have at the very least, setting m = 1,

46200808287018 + 33249638308986 + 18492776362863 + 32793026546940

+ 32116937723640 + 21807969217254 + 24241207098537

+ 15669127269180 = 2.2457 . . . × 1014 ≈ 2.2 trillion cattle!

It now remains to satisfy condition (9):

Y + S = 18492776362863m2 + 32793026546940m2

= 51285802909803m2 = �(� + 1)

2
,

for some integer �. Multiplying both sides by 8 and adding 1, we obtain

8 · 51285802909803m2 + 1 = 4�2 + 4� + 1 = (2� + 1)2 = n2,

where n = 2� + 1. Since 8 · 51285802909803 = 410286423278424, we finally con-
clude that conditions (1)–(9) are all fulfilled if we can find integers m, n satisfying
the equation

n2 − 410286423278424m2 = 1. (8.60)

This equation is commonly called a Pell equation and is an example of a Diophan-
tine equation. As we’ll see in the next subsection, we can solve this equation by
simply (!) finding the simple continued fraction expansion of

√
410286423278424.

The calculations involved are just sheer madness, but they can be done and have
been done [18, 266]. In the end, we find that the smallest total number of cattle that
satisfies (1)–(9) is a number with 206545 digits (!) and is equal to
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Solution to Archimedes’s crazy cattle conundrum:
7760271406 . . . (206525 other digits go here) . . . 9455081800 ≈ 8 × 10206544.

We are now skilled in wise calculations! A copy of this number is printed on 42
computer sheets, took 7 hours and 49 minutes computing time (in 1965, on massive
IBM supercomputers), and was deposited in the unpublished mathematical tables of
the journal Mathematics of Computation.

8.9.2 Pell’s Equation

Generalizing the cattle Eq. (8.60), given a non-perfect-square natural number d, we
call a Diophantine equation of the form

x2 − d y2 = 1 (8.61)

a Pell equation andwe seek integer solutions. The real number pairs (x, y) satisfying
this equation define a hyperbola:

x

y x2 − d y2 = 1

(1,( )0−1, 0)
(x, y)

Thus, we are asking whether pairs of integers lie on this curve. Of course, (x, y) =
(±1, 0) solve this equation. These solutions are called the trivial solutions; the other
solutions are not so easily attained. We remark that Pell’s equation was named by
Euler after John Pell (1611–1685), although Brahmagupta (598–670) studied this
equation a thousand years earlier [35, p. 221]. In any case, we shall see that the
continued fraction expansion of

√
d plays an important role in solving this equation.

We note that if (x, y) solves (8.61), then trivially so do (±x,±y), because of the
squares in (8.61); thus, we restrict ourselves to the positive solutions.

Recall that the continued fraction expansion for
√
d has the complete quotients

ξn and partial quotients an determined by

ξn = αn + √
d

βn
, an = �ξn�,

where αn and βn are integers defined in Theorem 8.30. The exact forms of these
integers are not important; what is important is that βn never equals−1 and βn = +1
if and only if n is a multiple of the period of

√
d, as we saw in Theorem 8.35. The

following lemma shows how the convergents of
√
d enter Pell’s equation.
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Lemma 8.36 If d ∈ N is not a perfect square and pn/qn denotes the nth conver-
gent of

√
d, then for all n = 0, 1, 2, . . ., we have

p2n − d q2
n = (−1)n+1βn+1.

Proof Since we can write
√
d = 〈a0; a1, a2, a3, . . . , an, ξn+1〉 and ξn+1 = (αn+1 +√

d)/βn+1, by (8.20) of Corollary 8.7, we have

√
d = ξn+1 pn + pn−1

ξn+1qn + qn−1
= (αn+1 + √

d) pn + βn+1 pn−1

(αn+1 + √
d) qn + βn+1qn−1

.

Multiplying both sides by the denominator of the right-hand side, we get

√
d(αn+1 + √

d) qn + √
dβn+1qn−1 = (αn+1 + √

d) pn + βn+1 pn−1.

Equating the integers on each side and the coefficients of
√
d, we obtain the two

equalities

dqn = αn+1 pn + βn+1 pn−1 and αn+1qn + βn+1qn−1 = pn.

Multiplying the first equation by qn and the second equation by pn and equating the
αn+1 pnqn terms in each resulting equation, we obtain

dq2
n − βn+1 pn−1qn = p2n − βn+1 pnqn−1

=⇒ p2n − d q2
n = (pnqn−1 − pn−1qn) · βn+1 = (−1)n+1 · βn+1,

where we used that pnqn−1 − pn−1qn = (−1)n−1 = (−1)n+1 from
Corollary 8.7. �

Next,we show thatall solutions of Pell’s equation can be foundvia the convergents
of

√
d .

Theorem 8.37 Let d ∈ N be not a perfect square, let pn/qn denote the nth con-
vergent of

√
d, and let m be the period of

√
d. Then the positive integer solutions

to
x2 − d y2 = 1

are precisely the numerators and denominators of the odd convergents of
√
d of

the form x = pnm−1 and y = qnm−1, where n > 0 is any positive integer for m
even and n > 0 is even for m odd.
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Proof We prove our theorem in two steps.
Step 1: We first look for convergents (pk, qk) that make p2k − d q2

k = 1. To this
end, recall from Lemma 8.36 that

p2k−1 − d q2
k−1 = (−1)kβk,

where βk never equals −1 and βk = 1 if and only if k is a multiple of m, the period
of

√
d. Now p2k−1 − d q2

k−1 = 1 if and only if βk = (−1)k . This holds if and only if
βk = 1 and k is even, which holds if and only if k is a multiple of m and k is even.
Thus, p2k−1 − d q2

k−1 = 1 if and only if k = mn, where n > 0 is any positive integer
for m even and n > 0 is even for m odd.

Step 2: Our proofwill be complete oncewe show that if x2 − d y2 = 1with y > 0,
then x/y is a convergent of

√
d . To see this, observe that since 1 = x2 − d y2 =

(x − √
d y)(x + √

d y), we have x − √
d y = 1/(x + √

d y), so

∣∣∣∣
x

y
− √

d

∣∣∣∣ =
∣∣∣∣∣
x − √

d y

y

∣∣∣∣∣ = 1

y |x + √
d y| .

Also, x2 = d y2 + 1 > d y2 implies x >
√
d y, which implies

x + √
d y >

√
d y + √

d y > y + y = 2y.

Hence,

∣∣∣∣
x

y
− √

d

∣∣∣∣ = 1

y |x + √
d y| <

1

y · 2 y =⇒
∣∣∣∣
x

y
− √

d

∣∣∣∣ <
1

2y2
.

By Legendre’s theorem 8.21, x/y must be a convergent of
√
d. �

The fundamental solution of Pell’s equation is the “smallest” positive solution
of Pell’s equation; here, a solution (x, y) is positive means x, y > 0. Explicitly, the
fundamental solution is (pm−1, qm−1) for an even periodm of

√
d or (p2m−1, p2m−1)

for an odd period m.

Example 8.34 Consider the equation x2 − 3y2 = 1. Since
√
3 = 〈1; 1, 2〉 has period

m = 2, our theorem says that the positive solutions of x2 − 3y2 = 1 are precisely
x = p2n−1 and y = q2n−1 for all n > 0; that is, (p1, q1), (p3, q3), (p5, q5), . . .. Now
the convergents of

√
3 are

n 0 1 2 3 4 5 6 7
pn
qn

1

1

2

1

5

3

7

4

19

11

26

15

71

41

97

56
.

In particular, the fundamental solution is (2, 1) and the rest of the positive solutions
are (7, 4), (26, 15), (97, 56), . . .. Just to verify a couple of entries:
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22 − 3 · 12 = 4 − 3 = 1

and
72 − 3 · 42 = 49 − 3 · 16 = 49 − 48 = 1,

and one can continue verifying that the odd convergents give solutions.

Example 8.35 For another example, consider the equation x2 − 13 y2 = 1. In this
case, we find that

√
13 = 〈3; 1, 1, 1, 1, 6〉 has periodm = 5. Thus, our theorem says

that the positive solutions of x2 − 13y2 = 1 are precisely x = p5n−1 and y = q5n−1

for all n > 0 even; that is, (p9, q9), (p19, q19), (p29, q29), . . .. The convergents of√
13 are

n 0 1 2 3 4 5 6 7 8 9
pn
qn

3

1

4

1

7

2

11

3

18

5

119

33

137

38

256

71

393

109

649

180
.

In particular, the fundamental solution is (649, 180).

8.9.3 Brahmagupta’s Algorithm

Thus, to find solutions of Pell’s equation we just have to find certain convergents
of

√
d . Finding all convergents is quite a daunting task—try finding the solution

(p19, q19) for
√
13—but it turns out that all the positive solutions can be found from

the fundamental solution.

Example 8.36 We know that the fundamental solution of x2 − 3y2 = 1 is (2, 1) and
the rest of the positive solutions are (7, 4), (26, 15), (97, 56), . . .. Observe that

(2 + 1 · √
3)2 = 4 + 4

√
3 + 3 = 7 + 4

√
3.

Note that the second positive solution (7, 4) to x2 − 3y2 = 1 appears on the right.
Now observe that

(2 + 1 · √
3)3 = (2 + √

3)2 (2 + √
3) = (7 + 4

√
3) (2 + √

3) = 26 + 15
√
3.

Note that the third positive solution (26, 15) to x2 − 3y2 = 1 appears on the right.
One may conjecture that the nth positive solution (xn, yn) to x2 − 3 y2 = 1 is found
by multiplying out

xn + yn
√
d = (2 + 1 · √3)n.

This is in fact correct, as the following theorem shows.
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Brahmagupta’s algorithm

Theorem 8.38 If (x1, y1) is the fundamental solution of Pell’s equation

x2 − d y2 = 1,

then all the other positive solutions (xn, yn) can be obtained from the equation

xn + yn
√
d = (x1 + y1

√
d)n , n = 0, 1, 2, 3, . . . .

Proof To simplify this proof a little, we shall say that ζ = x + y
√
d ∈ Z[√d] solves

Pell’s equation to mean that (x, y) solves Pell’s equation; similarly, we say ζ is a
positive solution to mean that x, y > 0. Throughout this proof we shall use the
following fact:

ζ solves Pell’s equation ⇐⇒ ζ ζ = 1 (that is, 1/ζ = ζ). (8.62)

This is holds for the simple reason that

ζ ζ = (x + y
√
d) (x − y

√
d) = x2 − d y2.

In particular, if we set α := x1 + y1
√
d, then α α = 1, because (x1, y1) solves Pell’s

equation.Wenowprove our theorem.Wecanwriteαn = xn + yn
√
d for somenatural

numbers xn, yn; then,

(xn + yn
√
d) (xn + yn

√
d) = αn · αn = αn · (α)n = (α · α)n = 1n = 1,

from which, in view of (8.62), we conclude that (xn, yn) solves Pell’s equation. Now
suppose that ξ ∈ Z[√d] is a positive solution to Pell’s equation; we must show that
ξ is some power of α. To this end, note that α ≤ ξ, because α = x1 + y1

√
d and

(x1, y1) is the smallest positive solution of Pell’s equation. Since 1 < α, it follows
that αk → ∞ as k → ∞, so we can choose n ∈ N to be the largest natural number
such that αn ≤ ξ. Define

η = ξ

αn
= ξ · (α)n,

wherewe used that 1/α = α from (8.62).We shall prove that η = 1,which shows that
ξ = αn and completes our proof. To do so, we begin by observing that since Z[√d]
is a ring (Lemma 8.31 on p. 672), we know that η = ξ · (α)n ∈ Z[√d]. Moreover, η
solves Pell’s equation, because

η η = ξ · (α)n · ξ · αn = (ξ ξ) · (α α)n = 1 · 1 = 1.

In particular, η = 1/η. Note that αn ≤ ξ < αn+1, so 1 ≤ η < α. Now let η = p +
q
√
d , where p, q ∈ Z. Then since η ≥ 1, we have 1/η > 0, so
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2p = (p + q
√
d) + (p − q

√
d) = η + η = η + 1

η
> 0,

and

2q
√
d = (p + q

√
d) − (p − q

√
d) = η − η = η − 1

η
= η2 − 1

η
≥ 0.

Thus, p > 0, q ≥ 0, and p2 − dq2 = 1 (since η solves Pell’s equation). Therefore,
(p, q) = (1, 0) or (p, q) is a positive (numerator, denominator) of a convergent
of

√
d . However, we know that (x1, y1) is the smallest such positive (numerator,

denominator), and that p + q
√
d = η < α = x1 + y1

√
d . Therefore, we must have

(p, q) = (1, 0). This implies that η = 1 and hence ξ = αn . �

Example 8.37 Since (649, 180) is the fundamental solution to x2 − 13 y2 = 1, all
the positive solutions are given by

xn + yn
√
13 = (649 + 180

√
13)n.

For instance, for n = 2, we find that

(649 + 180
√
13)2 = 842401 + 233640

√
13 =⇒ (x2, y2) = (842401, 233640),

which is much easier than finding (p19, q19).

There are many cool applications of Pell’s equation explored in the exercises.
Here’s one of my favorites (see Problem 12): Every prime of the form p = 4k + 1
is a sum of two squares. This was conjectured by Pierre de Fermat9 (1601–1665)
in 1640 and proved by Euler in 1754. For example, 5, 13, 17 are such primes, and
5 = 12 + 22, 13 = 22 + 32, and 17 = 12 + 42.

� Exercises 8.9

1. Brahmagupta (598–670) is reported to have said, “A person who can, within a
year, solve x2 − 92y2 = 1 is a mathematician.” Given that

√
92 = 〈9; 1, 1, 2, 4, 2, 1, 1, 18〉,

find the fundamental solution to the equation x2 − 92 y2 = 1. (Your calculation
should end with the convergent 1151/120.) You are now a mathematician!

9 [In the margin of his copy of Diophantus’s Arithmetica, Fermat wrote] “To divide a cube into
two other cubes, a fourth power or in general any power whatever into two powers of the same
denomination above the second is impossible, and I have assuredly found an admirable proof of
this, but the margin is too narrow to contain it.” Pierre de Fermat (1601–1665). Fermat’s claim in
this marginal note, later to be called “Fermat’s last theorem,” remained an unsolved problem in
mathematics until 1995 when Andrew Wiles (b. 1953) finally proved it.
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2. Find the fundamental solutions to the equations

(a) x2 − 8 y2 = 1 , (b) x2 − 5 y2 = 1 , (c)x2 − 7 y2 = 1.

Using the fundamental solution, find the next two solutions.
3. (Pythagorean triples) (Cf. [186]) Here is a nice problem solvable using contin-

ued fractions. A Pythagorean triple consists of three natural numbers (x, y, z)
such that x2 + y2 = z2. For example, (3, 4, 5), (5, 12, 13), and (8, 15, 17) are
Pythagorean triples. (Can you find more?) The first example, (3, 4, 5), has the
property that the first two numbers are consecutive integers; here are some steps
to find more Pythagorean triples of this sort.

(i) Show that (x, y, z) is a Pythagorean triple with y = x + 1 if and only if

(2x + 1)2 − 2z2 = 1.

(ii) By solving the Pell equation u2 − 2 v2 = 1, find the next three Pythagorean
triples (x, y, z) (after (3, 4, 5)) where x and y are consecutive integers.

4. Are there infinitely many triples of consecutive natural numbers, each of which
is a sum of two squares? Suggestion: Consider n − 1, n, n + 1 and try to write
n − 1 = k2 + k2 and n = �2 + 02.

5. (Triangular numbers) Here is another very nice problem that can be solved
using continued fractions. Find all triangular numbers that are squares, where
recall that a triangular number is of the form 1 + 2 + · · · + n = n(n + 1)/2.
Here are some steps.

(i) Show that n(n + 1)/2 = m2 if and only if

(2n + 1)2 − 8m2 = 1.

(ii) By solving the Pell equation x2 − 8 y2 = 1, find the first three triangular
numbers that are squares.

6. In this problem we answer the following question: For which n ∈ N is the
standard deviation of the 2n + 1 numbers 0,±1, . . . ,±n an integer? Here, the
standard deviation of real numbers x1, . . . , xN is by definition the number√

1
N

∑N
i=1(xi − x)2, where x is the average of x1, . . . , xN .

(i) Show that the standard deviation of 0,±1, . . . ,±n equals
√

1
3n(n + 1).

Suggestion: The formula 12 + 22 + · · · + n2 = n(n+1)(2n+1)
6 from Problem

3b on p. 31 might be helpful.
(ii) Therefore, we want 1

3n(n + 1) = y2, where y ∈ N. If we put x = 2n + 1,
prove that 1

3n(n + 1) = y2 if and only if x2 − 12y2 = 1, where x = 2n + 1.
(iii) Now solve the equation x2 − 12y2 = 1 to answer our question.
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7. The Diophantine equation x2 − d y2 = −1 (where d > 0 is not a perfect square)
is also of interest. In this problemwe determinewhen this equation has solutions.
Following the proof of Theorem 8.37, prove the following statements.

(i) If (x, y) solves x2 − d y2 = −1, y > 0, then x/y is a convergent of
√
d.

(ii) The equation x2 − d y2 = −1 has a solution if and only if the period of
√
d

is odd, in which case the nonnegative solutions are exactly x = pnm−1 and
y = qnm−1 for all n > 0 odd.

8. Which of the following equations have solutions? If an equation has solutions,
find the fundamental solution.

(a) x2 − 2 y2 = −1 , (b) x2 − 3 y2 = −1 , (c) x2 − 17 y2 = −1.

9. Are there infinitelymany pairs of consecutive natural numbers, the sum ofwhose
squares is a perfect square? Suggestion: Find solutions to n2 + (n + 1)2 = k2.

10. (A not-so-crazy cattle conundrum) Compute, O stranger! the number of cattle
of Helios, which once grazed on the plains of Sicily, divided into two groups,
spotted and yellow. We have spotted bulls = 1

2 yellow bulls, there are more than
200 and less than 7000 yellow bulls, and if the two groups separated and ranged
themselves one after another, each group would form an equilateral triangle. If
thou discover the solution of this at the same time; if thou grasp it with thy brain;
and give correctly all the numbers; O Stranger! go and exult as conqueror; be
assured that thou art by all means proved to have abundance of knowledge in
this science. Suggestion: Put the number of spotted (respectively yellow) bulls
equal to m(m + 1)/2 (respectively n(n + 1)/2).

11. In this problem we prove that the Diophantine equation x2 − p y2 = −1 always
has a solution if p is a prime number of the form p = 4k + 1 for an integer k. For
instance, since 13 = 4 · 3 + 1 and 17 = 4 · 4 + 1, it follows that x2 − 13y2 =
−1 and x2 − 17y2 = −1 have solutions. Let p = 4k + 1 be prime.

(i) Let (x1, y1) be the fundamental solution of x2 − p y2 = 1. Prove that x1 and
y1 cannot both be even and cannot both be odd.

(ii) Show that the case x1 is even and y1 is odd cannot happen. Suggestion:Write
x1 = 2a and y1 = 2b + 1 and plug this into x21 − p y21 = 1.

(iii) Thus, we may write x1 = 2a + 1 and y1 = 2b. Show that p b2 = a (a + 1).
Conclude that p must divide a or a + 1.

(iv) Suppose that p divides a; that is, a = mp for an integer m. Show that b2 =
m (mp + 1) and thatm andmp + 1 are relatively prime. Using this equality,
prove that m = s2 and mp + 1 = t2 for integers s, t . Conclude that t2 −
p s2 = 1 and derive a contradiction.

(v) Thus, itmust be the case that p dividesa + 1.Using this fact and an argument
similar to the one in the previous step, find a solution to x2 − d y2 = −1.

12. (Fermat’s two squares theorem) We shall prove that every prime of the form
p = 4k + 1 can be expressed as the sum of two squares.
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(i) Let p = 4k + 1 be prime. Using the previous problem and Problem 7, prove
that the period of

√
p is odd and deduce that

√
p has an expansion of the

form √
p = 〈a0; a1, a2, . . . , a�−1, a�, a�, a�−1, . . . , a1, 2a0〉.

(ii) Let η be the complete quotient ξ�+1. Prove that −1 = η · η. Suggestion:
Recall Lemma 8.34.

(iii) Finally, writing η = (a + √
p)/b (why does η have this form?), show that

p = a2 + b2.

8.10 Epilogue: Transcendental Numbers, π, e, and Where’s
Calculus?

It’s time to get a box of tissues, because, unfortunately, our adventures through this
book have come to an end. In this section we wrap up this book with a discussion on
transcendental numbers and continued fractions.

8.10.1 Approximable Numbers

A real number ξ is said to be approximable (by rationals) to order n ≥ 1 if there
exist a constant C and infinitely many rational numbers p/q in lowest terms with
q > 0 such that ∣∣∣ξ − p

q

∣∣∣ <
C

qn
. (8.63)

Observe that if ξ is approximable to order n > 1, then it is automatically approx-
imable to n − 1; this is because

∣∣∣ξ − p

q

∣∣∣ <
C

qn
≤ C

qn−1
.

Similarly, ξ approximable to every order k with 1 ≤ k ≤ n. Intuitively, the approx-
imability order n measures how closely we can surround ξ with “good” rational
numbers, that is, rational numbers having small denominators. To see what this
means, suppose that ξ is approximable only to order 1. Thus, there exist a constant
C and infinitely many rational numbers p/q in lowest terms with q > 0 such that

∣∣∣ξ − p

q

∣∣∣ <
C

q
.
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This inequality suggests that in order to find rational numbers very close to ξ, these
rational numbers need to have large denominators to make C/q small. However, if ξ
were approximable to order 1000, then there would exist a constant C and infinitely
many rational numbers p/q in lowest terms with q > 0 such that

∣∣∣ξ − p

q

∣∣∣ <
C

q1000
.

This inequality suggests that to find rational numbers very close to ξ, those rational
numbers don’t need to have large denominators, because even for small q, the large
power of 1000 will make C/q1000 small. The following lemma shows that there is a
limit to how close we can surround algebraic numbers by “good” rational numbers.

Lemma 8.39 If ξ is a real algebraic number of degree n ≥ 1 (so ξ is rational
if n = 1), then there exists a constant c > 0 such that for all rational numbers
p/q �= ξ with q > 0, we have

∣∣∣ξ − p

q

∣∣∣ ≥ c

qn
.

Proof Assume that f (ξ) = 0, where

f (x) = anx
n + an−1x

n−1 + · · · + a1x + a0 = 0, ak ∈ Z,

and that no such polynomial function of lower degree has this property. First,we claim
that f (r) �= 0 for every rational number r �= ξ. Indeed, if f (r) = 0 for some rational
number r �= ξ, then we can write f (x) = (x − r)g(x), where g is a polynomial
of degree n − 1; we leave you to check that g(x) has rational coefficients. Then
0 = f (ξ) = (ξ − r)g(ξ) implies, since ξ �= r , that g(ξ) = 0. This implies that the
degree of ξ is n − 1, contradicting the fact that the degree of ξ is n. Now for every
rational p/q �= ξ with q > 0, we see that

0 �= | f (p/q)| =
∣∣∣an

( p

q

)n + an−1

( p

q

)n−1 + · · · + a1
( p

q

)
+ a0

∣∣∣

= |an pn + an−1 pn−1q + · · · + a1 pqn−1 + a0qn|
qn

.

The numerator is a nonnegative integer, which cannot be zero, so the numerator must
be ≥ 1. Therefore,

| f (p/q)| ≥ 1/qn for all rational numbers p/q �= ξ with q > 0. (8.64)

Second, we claim that there is an M > 0 such that
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|x − ξ| ≤ 1 =⇒ | f (x)| ≤ M |x − ξ|. (8.65)

Indeed, note that since f (ξ) = 0, we have

f (x) = f (x) − f (ξ) = an(x
n − ξn) + an−1(x

n−1 − ξn−1) + · · · + a1(x − ξ).

Since

xk − ξk = (x − ξ) qk(x), qk(x) = xk−1 + xk−2 ξ + · · · + x ξk−2 + ξk−1,

plugging each of these, for k = 1, 2, 3, . . . , n, into the previous equation for f (x), we
see that f (x) = (x − ξ)h(x), where h is a continuous function. In particular, since
[ξ − 1, ξ + 1] is a closed and bounded interval, there is an M such that |h(x)| ≤ M
for all x ∈ [ξ − 1, ξ + 1]. This proves our claim.

Finally, let p/q �= ξ be a rational number with q > 0. If |ξ − p/q| > 1, then

∣∣∣ξ − p

q

∣∣∣ > 1 ≥ 1

qn
.

If |ξ − p/q| ≤ 1, then by (8.64) and (8.65), we have

∣∣∣ξ − p

q

∣∣∣ ≥ 1

M
| f (p/q)| ≥ 1

M

1

qn
.

Hence, |ξ − p/q| ≥ c/qn for all rational p/q �= ξ with q > 0, where c is the smaller
of 1 and 1/M . �

Let us form the contrapositive of the statement of this lemma: If n ∈ N and for
all constants c > 0, there exists a rational number p/q �= ξ with q > 0 such that

∣∣∣ξ − p

q

∣∣∣ <
c

qn
, (8.66)

then ξ is not algebraic of degree n. Since a transcendental number is a number that is
not algebraic of any degree n, we can think of a transcendental number as a number
that can be surrounded arbitrarily closely by “good” rational numbers. This leads us
to Liouville numbers, to be discussed shortly, but before talking about these special
transcendental numbers, we use our lemma to prove the following important result.

Theorem 8.40 A real algebraic number of degree n is not approximable to order
n + 1 (and hence not to any higher order).Moreover, a rational number is approx-
imable to order 1, and a real number is irrational if and only if it is approximable
to order 2.
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Proof Let ξ be algebraic of degree n ≥ 1 (so ξ is rational if n = 1). Then by Lemma
8.39, there exists a constant c such that for all rational numbers p/q �= ξ with q > 0,
we have ∣∣∣ξ − p

q

∣∣∣ ≥ c

qn
.

It follows that ξ is not approximable by rationals to order n + 1, because

∣∣∣ξ − p

q

∣∣∣ <
C

qn+1
=⇒ c

qn
<

C

qn+1
=⇒ q < C/c.

Since there are only finitely many integers q such that q < C/c; it follows that there
are only finitely many fractions p/q such that |ξ − p/q| < C/qn+1.

Let a/b be a rational number in lowest terms with b ≥ 1; we shall prove that a/b
is approximable to order 1. (Note that we already know from our first statement that
a/b is not approximable to order 2.) From Theorem 8.9 on p. 617, we know that
the equation ax − by = 1 has an infinite number of integer solutions (x, y). The
solutions (x, y) are automatically relatively prime. Moreover, if (x0, y0) is any one
integral solution, then all solutions are of the form

x = x0 + bt , y = y0 + at , t ∈ Z.

Since b ≥ 1, we can choose t large so as to get infinitely many solutions with x > 0.
With x > 0, we see that

∣∣∣
a

b
− y

x

∣∣∣ =
∣∣∣∣
ax − by

bx

∣∣∣∣ = 1

bx
<

2

x
,

which shows that a/b is approximable to order 1.
Finally, if a number is irrational, then it is approximable to order 2 fromLegendre’s

approximation theorem 8.21 on p. 621; conversely, if a number is approximable to
order 2, then it must be irrational, because rationals are approximable to order 1 and
hence are not approximable to order 2 by the first statement of this theorem. �

Using this theorem, we can prove that certain numbers must be irrational. For
instance, let {an} be any sequence of 0’s and 1’s in which there are infinitely many
1’s. Consider

ξ =
∞∑

n=0

an
22n

.

We remark that ξ is the real number with binary expansion a0.0a10a20 . . ., with an
in the 2nth decimal place and with zeros everywhere else. Now fix a natural number
n with an �= 0 and let sn = ∑n

k=0
ak
22k

, the nth partial sum of this series. Then we can

write sn as p/q, where q = 22
n
. Observe that
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∣∣ξ − sn
∣∣ ≤ 1

22n+1 + 1

22n+2 + 1

22n+3 + 1

22n+4 + · · ·

<
1

22n+1 + 1

22n+1+1
+ 1

22n+1+2
+ 1

22n+1+3
+ · · ·

= 1

22n+1

(
1 + 1

21
+ 1

22
+ 1

23
+ · · ·

)
= 2

22n+1 = 2

(22n )2
.

In conclusion,
∣∣ξ − sn

∣∣ <
2

(22n )2
= C

q2
,

where C = 2. Thus, ξ is approximable to order 2, and hence must be irrational.

8.10.2 Liouville Numbers

Numbers that satisfy (8.66) with c = 1 are special: A real number ξ is called a
Liouville number, after Joseph Liouville (1809–1882), if for every natural number
n there is a rational number p/q �= ξ with q > 1 such that

∣∣∣∣ξ − p

q

∣∣∣∣ <
1

qn
.

In Problem 2, you’ll prove that Liouville numbers are transcendental (see our dis-
cussion around (8.66)). Because this fact is so important, we state it as a theorem.

Liouville’s theorem

Theorem 8.41 Every Liouville number is transcendental.

Using Liouville’s theorem, we can give many (in fact uncountably many; see
Problem 4) examples of transcendental numbers. Let {an} be a sequence of integers
in 0, 1, . . . , 9 in which there are infinitely many nonzero integers. Let

ξ =
∞∑

n=0

an
10n! .

Note that ξ is the real number with decimal expansion

a0.a1a2000a300000000000000000a4 . . . ,
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with an in the n!th decimal place and with zeros everywhere else. Using Liouville’s
theorem, we’ll show that ξ is transcendental. Fix a natural number n with an �= 0
and let sn be the nth partial sum of this series. Then sn can be written as p/q, where
q = 10n! > 1. Observe that

∣∣ξ − sn
∣∣ ≤ 9

10(n+1)! + 9

10(n+2)! + 9

10(n+3)! + 9

10(n+4)! + · · ·

<
9

10(n+1)! + 9

10(n+1)!+1
+ 9

10(n+1)!+2
+ 9

10(n+1)!+3
+ · · ·

= 9

10(n+1)!
(
1 + 1

101
+ 1

102
+ 1

103
+ · · ·

)

= 10

10(n+1)! = 10

10n·n! · 10n! ≤ 1

10n·n! .

In conclusion,
∣∣ξ − sn

∣∣ <
1

(10n!)n
= 1

qn
,

so ξ is a Liouville number and therefore is transcendental.

8.10.3 Continued Fractions and the “Most Extreme”
Irrational of All

We now show how continued fractions can be used to construct transcendental num-
bers! This is achieved by the following simple observation. Let ξ = 〈a0; a1, . . .〉 be
an irrational real number written as a simple continued fraction and let {pn/qn} be
its convergents. Then by our fundamental approximation Theorem 8.18 on p. 640,
we know that ∣∣∣ξ − pn

qn

∣∣∣ <
1

qnqn+1
.

Since
qnqn+1 = qn(an+1qn + qn−1) ≥ an+1q

2
n ,

we see that ∣∣∣ξ − pn
qn

∣∣∣ <
1

an+1 q2
n

. (8.67)

Thus, the larger the partial quotient an+1, the more closely the rational number pn/qn
approximates ξ. We use this observation in the following theorem.
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Theorem 8.42 For every functionϕ : N → (0,∞), there exist an irrational num-
ber ξ and infinitely many rational numbers p/q such that

∣∣∣ξ − p

q

∣∣∣ <
1

ϕ(q)
.

Proof We define ξ = 〈a0; a1, a2, . . .〉 by choosing the an inductively as follows.
Let a0 ∈ N be arbitrary. Assume that a0, . . . , an have been chosen. With qn the
denominator of 〈a0; a1, . . . , an〉, choose (using the Archimedean ordering property
of the natural numbers) an+1 ∈ N such that

an+1q
2
n > ϕ(qn).

This defines {an}. Now defining ξ := 〈a0; a1, a2, . . .〉, by (8.67), for every natural
number n we have ∣∣∣ξ − pn

qn

∣∣∣ <
1

an+1 q2
n

<
1

ϕ(qn)
.

This completes our proof. �

Using this theorem, we can easily find transcendental numbers. For example, with
ϕ(q) = eq , we can find an irrational ξ such that for infinitely many rational numbers
p/q, we have ∣∣∣ξ − p

q

∣∣∣ <
1

eq
.

Since for n ∈ N, we have eq = ∑∞
k=0 q

k/k! > qn/n!, it follows that for infinitely
many rational numbers p/q, we have

∣∣∣ξ − p

q

∣∣∣ <
constant

qn
.

In particular, ξ is transcendental.
To review two of our discussions in this section: (1) We can form transcendental

numbers by choosing the partial quotients in an infinite simple continued fraction
to be very large, and (2) transcendental numbers are irrational numbers that are
“closest” to (good) rational numbers. With this in mind, we can think of infinite
continued fractions with small partial quotients as being “far” from transcendental
and hence are “far” from rational numbers. Since 1 is the smallest natural number,
we can consider the golden ratio

� = 1 + √
5

2
= 〈1; 1, 1, 1, 1, 1, 1, 1, . . .〉
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as being the “most extreme” or “most irrational” of all irrational numbers in the sense
that it is the “farthest” irrational number from being transcendental or the “farthest”
irrational number from rationals.

8.10.4 What About π and e and What About Calculus?

Above, we have already seen examples (in fact, uncountablymany; see Problem 4) of
transcendental numbers, and we even know how to construct them using continued
fractions. However, those numbers seem in some sense to be “artificially” made.
What about numbers that are more “natural,” such as π and e? Are these numbers
transcendental? In fact, these numbers do turn out to be transcendental, but the
“easiest” proofs of these facts need the technology of calculus (derivatives) [174,
175]! This might give one reason (among many others) to take more courses in
analysis in which the calculus is taught. Advertisement�: The book [146] is a
sequel to the book you’re holding, and in it is the next adventure through topology
and calculus, and during our journey we’ll prove that π and e are transcendental.
(You might also want to look at the book [148] concerning Lebesgue’s theory of
integration.) However, if you choose to go on this adventure, we ask you to look
back at all the amazing things that we’ve encountered during these past chapters, and
all without using one single derivative or integral!

� Exercises 8.10

1. Given an integer b ≥ 2, prove that ξ = ∑∞
n=0 b

−2n is irrational.
2. Prove that Liouville numbers are transcendental.
3. Let b ≥ 2 be an integer and let {an} be a sequence of integers 0, 1, . . . , b − 1

in which there are infinitely many nonzero an . Prove that ξ = ∑∞
n=1 anb

−n! is
transcendental.

4. Using a Cantor diagonal argument as in the proof of Theorem 3.35, prove that the
set of all numbers of the form ξ = ∑∞

n=0
an
10n! , where an ∈ {0, 1, 2, . . . , 9} (and

are not all zero), is uncountable. That is, assume that the set of all such numbers is
countable and construct a number of the same sort not in the set. Since we already
showed that all these numbers are Liouville numbers, they are transcendental, so
this argument provides another proof that the set of all transcendental numbers is
uncountable.

5. Going through the construction of Theorem 8.42, define a real number ξ such
that if {pn/qn} are the convergents of its canonical continued fraction expansion,
then ∣∣∣ξ − pn

qn

∣∣∣ <
1

qn
n

, for all n.

Show that ξ is a Liouville number, and hence is transcendental.

http://dx.doi.org/10.1007/978-1-4939-6795-7_3


Bibliography

1. S. Abbott, Understanding Analysis, Undergraduate Texts in Mathematics (Springer, New
York, 2001)

2. A.D. Abrams, M.J. Paris, The probability that (a, b) = 1. College Math. J. 23(1), 47 (1992)
3. E.S. Allen, The scientific work of Vito Volterra. Amer. Math. Mon. 48, 516–519 (1941)
4. N. Altshiller, J.J. Ginsburg, Solution to problem 460. Am. Math. Mon. 24(1), 32–33 (1917)
5. R.N. Andersen, J. Stumpf, J. Tiller, Let π be 3. Math. Mag. 76(3), 225–231 (2003)
6. T. Apostol, Another elementary proof of Euler’s formula for ζ (2k). Am. Math. Mon. 80(4),

425–431 (1973)
7. T.M. Apostol, Mathematical Analysis: A Modern Approach to Advanced Calculus (Addison-

Wesley Publishing Company, Inc., Reading, 1957)
8. R.C. Archibald, Mathematicians and music. Am. Math. Mon. 31(1), 1–25 (1924)
9. J. Arndt, C. Haenel, Pi—Unleashed, 2nd edn. (Springer, Berlin, 2001). Translated from the

1998 German original by Catriona Lischka and David Lischka
10. R. Ayoub, Euler and the zeta function. Am. Math. Mon. 81(10), 1067–1086 (1974)
11. B.S. Babcock, J.W. Dawson Jr., A neglected approach to the logarithm. Two Year College

Math. J. 9(3), 136–140 (1978)
12. D.H. Bailey, J.M. Borwein, P.B. Borwein, S. Plouffe, The quest for pi. Math. Intell. 19(1),

50–57 (1997)
13. W.W. Ball, Short Account of the History of Mathematics, 4th edn. (Dover Publications Inc.,

New York, 1960)
14. J.M. Barbour, Music and ternary continued fractions. Am.Math. Mon. 55(9), 545–555 (1948)
15. C.W. Barnes, Euler’s constant and e. Am. Math. Mon. 91(7), 428–430 (1984)
16. R.G. Bartle, D.R. Sherbert, Introduction to Real Analysis, 2nd edn. (Wiley, New York, 1992)
17. A.F. Beardon, Sums of powers of integers. Am. Math. Mon. 103(3), 201–213 (1996)
18. A.H. Bell, The "cattle problem." By Archimedes 251 B.C. Am. Math. Mon. 2(5), 140–141

(1885)
19. H.E. Bell, Proof of a fundamental theorem on sequences. Am. Math. Mon. 71(6), 665–666

(1964)
20. J. Bell,On the sumsof series of reciprocals.Originally published asDe summis serierum recip-

rocarum, Commentarii academiae scientiarum Petropolitanae 7, 123134 (1740) and reprinted
in Leonhard Euler, Opera Omnia, Series 1: Opera mathematica, vol. 14, Birkhäuser, 1992.
Bell’s paper available at http://arxiv.org/abs/math/0506415 and Euler’s text, numbered E41,
is available at the Euler Archive, http://www.eulerarchive.org

21. W.W. Bell, Special Functions for Scientists and Engineers (Dover Publications Inc., Mineola,
2004). Reprint of the 1968 original

22. R. Bellman, A note on the divergence of a series. Am. Math. Mon. 50(5), 318–319 (1943)

© Paul Loya 2017
P. Loya, Amazing and Aesthetic Aspects of Analysis,
https://doi.org/10.1007/978-1-4939-6795-7

701

http://arxiv.org/abs/math/0506415
http://www.eulerarchive.org


702 Bibliography

23. P. Benacerraf, H. Putnam (eds.), Philosophy of Mathematics: Selected Readings (Cambridge
University Press, Cambridge, 1964)

24. S.J. Benkoski, The probability that k positive integers are relatively r-prime. J. Number Theory
8(2), 218–223 (1976)

25. L. Berggren, J. Borwein, P. Borwein, Pi: A Source Book, 3rd edn. (Springer, New York, 2004)
26. B.C. Berndt, Ramanujan’s notebooks. Math. Mag. 51(3), 147–164 (1978)
27. N.M. Beskin,Fascinating Fractions (Mir Publishers,Moscow, 1980). Translated byV.I Kisln,

1986
28. F. Beukers, A note on the irrationality of ζ (2) and ζ (3). Bull. Lond.Math. Soc. 11(3), 268–272

(1979)
29. R.P. Boas, Tannery’s theorem. Math. Mag. 38(2), 64–66 (1965)
30. R.P. Boas Jr., A Primer of Real Functions, vol. 13, 4th edn., Carus Mathematical Monographs

(Mathematical Association of America, Washington, DC, 1996)
31. J.M. Borwein, P.B. Borwein, Ramanujan, modular equations, and approximations to pi or

how to compute one billion digits of pi. Am. Math. Mon. 96(3), 201–219 (1989)
32. J.M. Borwein, Pi and the AGM, 4th edn., Canadian Mathematical Society Series of Mono-

graphs and Advanced Texts (Wiley, New York, 1998). Reprint of the 1987 original
33. R.H.M. Bosanquet, An elementary treatise on musical intervals and temperament (London,

1876) (Diapason press, Utrecht, 1987)
34. C.B. Boyer, Fermat’s integration of Xn . National Math. Mag. 20, 29–32 (1945)
35. C.B. Boyer, A. History, of Mathematics, 2nd edn. (Wiley, New York, (With a foreword by

Isaac Asimov (Revised and with a preface by Uta C, Merzbach), 1991)
36. P. Bracken, B.S. Burdick, Euler’s formula for zeta function convolutions: 10754. Am. Math.

Mon. 108(8), 771–773 (2001)
37. D. Bressoud, Was calculus invented in India? College Math. J. 33(1), 2–13 (2002)
38. D. Brewster, Letters of Euler to a German Princess on Different Subjects in Physics and

Philosophy (Harper and Brothers, New York, 1834). In two volumes
39. W.E. Briggs, N. Franceschine, Problem 1302. Math. Mag. 62(4), 275–276 (1989)
40. T. J.I’A. Bromwich, An Introduction to the Theory of Infinite Series, 2nd edn. (Macmillan,

London, 1926)
41. R.A. Brualdi, Mathematical notes. Am. Math. Mon. 84(10), 803–807 (1977)
42. R. Bumcrot, Irrationality made easy. College Math. J. 17(3), 243–244 (1986)
43. F. Burk, Euler’s constant. College Math. J. 16(4), 279 (1985)
44. F. Cajori, A History of Mathematics, 5th edn. (Chelsea Publishing Co., Bronx, 1991)
45. F. Cajori, A History of Mathematical Notations (Dover Publications Inc., New York, 1993).

2 Vol in 1 edition
46. B.C. Carlson, Algorithms involving arithmetic and geometric means. Am. Math. Mon. 78,

496–505 (1971)
47. D. Castellanos, The ubiquitous π . Math. Mag. 61(2), 67–98 (1988)
48. D. Castellanos, The ubiquitous π . Math. Mag. 61(3), 148–163 (1988)
49. R. Chapman, Evaluating ζ (2) (1999)
50. R.R. Christian, Another completeness property. Am. Math. Mon. 71(1), 78 (1964)
51. J.A. Clarkson, On the series of prime reciprocals. Proc. Am. Math. Soc. 17(2), 541 (1966)
52. B. Cloitre, private communication
53. J.B. Conrey, The Riemann hypothesis. Notices Am. Math. Soc. 50(3), 341–353 (2003)
54. F.L. Cook, A simple explicit formula for the Bernoulli numbers. Two Year College Math. J.

13(4), 273–274 (1982)
55. J.L. Coolidge, The number e. Am. Math. Mon. 57, 591–602 (1950)
56. Fr.G. Costa, Solution 277. College Math. J. 17(1), 98–99 (1986)
57. R. Courant, H. Robbins, What is Mathematics? (Oxford University Press, New York, 1979).

An elementary approach to ideas and methods
58. J.W. Dauben, Georg Cantor (Princeton University Press, Princeton, 1990)
59. R. Dedekind, Essays on the Theory of Numbers, "Continuity and Irrational Numbers" (Dover

Publications Inc., New York, 1963)



Bibliography 703

60. E.J. Dijksterhuis, Archimedes (Princeton University Press, Princeton, 1987). Translated from
the Dutch by C. Dikshoorn, Reprint of the 1956 edition

61. U. Dudley, A Budget of Trisections (Springer, New York, 1987)
62. W. Dunham, A historical gem from Vito Volterra. Math. Mag. 63(4), 234–237 (1990)
63. W. Dunham, Euler and the fundamental theorem of algebra. College Math. J. 22(4), 282–293

(1991)
64. E. Dunne, M. Mcconnell, Pianos and continued fractions. Math. Mag. 72(2), 104–115 (1999)
65. E. Dux, Ein kurzer beweis der divergenz der unendlichen reihe

∑∞
r=1 1/pr . Elem. Math. 11,

50–51 (1956)
66. P. Erdös, Uber die reihe

∑
p. Mathematica Zutphen. B 7, 1–2 (1938)

67. L. Euler, De progressionibus transcendentibus seu quarum termini generales algebraice dari
nequeunt (on transcendental progressions that is, those whose general terms cannot be given
algebraically), Commentarii academiae scientiarum Petropolitanae 5, 36–57 (1738). Pre-
sented to the St. Petersburg Academy on November 28, 1729. Published in Opera Omnia:
Series 1, vol. 14, pp. 1–24, Eneström Index is E19, and is available at EulerArchive.org

68. L. Euler, Variae observationes circa series infinitas (various observations about infinite series).
Commentarii academiae scientiarum Petropolitanae 9, 160–188 (1744). Published in Opera
Omnia: Series 1, vol. 14, pp. 217–244, Eneström Index is E72, and is available at EulerAr-
chive.org

69. L. Euler, Introductio in analysin infinitorum (Introduction to analysis of the infinite. Book I),
vol. 1 (Springer, New York, 1988)

70. L. Euler, Introductio in analysin infinitorum (Introduction to analysis of the infinite. Book II),
vol. 2 (Springer, New York, 1990)

71. H. Eves, Irrationality of
√
2. Math. Teacher 38(7), 317–318 (1945)

72. H. Eves, Mathematical Circles Squared (Prindle Weber & Schmidt, Boston, 1972)
73. P. Eymard, J.-P. Lafon, The number π (American Mathematical Society, Providence, 2004).

Translated from the 1999 French original by Stephen S. Wilson
74. C. Fefferman, An easy proof of the fundmental theorem of algebra. Am. Math. Mon. 74(7),

854–855 (1967)
75. W. Feller, An Introduction to Probability Theory and Its Applications, vol. I, 3rd edn. (Wiley,

New York, 1968)
76. W. Feller, An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. (Wiley,

New York, 1971)
77. R. Fenn, The table theorem. Bull. Lond. Math. Soc. 2, 73–76 (1970)
78. D. Ferguson, Evaluation of π . Are Shanks’ figures correct? Mathematical Gazette 30, 89–90

(1946)
79. W.L. Ferrar, A Textbook of Convergence (The Clarendon Press, Oxford University Press, New

York, 1980)
80. J. Ferreirós, Labyrinth of thought, 2nd edn. (Birkhäuser Verlag, Basel, 2007)
81. S.R. Finch, Mathematical Constants, vol. 94 (Encyclopedia of Mathematics and its Applica-

tions (Cambridge University Press, Cambridge, 2003)
82. P. Flajolet, I. Vardi, Zeta function expansions of classical constants (1996). preprint
83. T. Fort, Application of the summation by parts formula to summability of series. Math. Mag.

26(26), 199–204 (1953)
84. G. Fredricks, R.B. Nelsen, Summation by parts. College Math. J. 23(1), 39–42 (1992)
85. R.J. Friedlander, Factoring factorials. Two Year College Math. J. 12(1), 12–20 (1981)
86. J.A. Gallian, Contemporary Abstract Algebra, 6th edn. (Houghton Mifflin Company, Boston,

2005)
87. M. Gardner, Mathematical Games (Scientific American (Simon and Schuster, New York,

1958)
88. M. Gardner, Second Scientific American Book of Mathematical Puzzles and Diversions (Uni-

versity of Chicago press, Chicago, 1987). Reprint edition
89. J. Glaisher, History of Euler’s constant. Messenger Math. 1, 25–30 (1872)
90. E.J. Goodwin, Quadrature of the circle. Am. Math. Mon. 1(1), 246–247 (1894)



704 Bibliography

91. R.A. Gordon, The use of tagged partitions in elementary real analysis. Am. Math. Mon.
105(2), 107–117 (1998)

92. H.W. Gould, Explicit formulas for Bernoulli numbers. Am. Math. Mon. 79(1), 44–51 (1972)
93. D.S. Greenstein, A property of the logarithm. Am. Math. Mon. 72(7), 767 (1965)
94. R. Grey, Georg Cantor and transcendental numbers. Am.Math. Mon. 101(9), 819–832 (1994)
95. L. Guilbeau, The history of the solution of the cubic equation. Math. News Lett. 5(4), 8–12

(1930)
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Abel, Niels, 194, 422
Abel’s

definition of summable (series), 464
lemma (summation by parts), 422
limit theorem, 460
multiplication theorem, 494
test for series, 431

Absolute convergence
double series, 471
infinite products, 541
series, 210

Absolute convergence theorem, 210
Absolute value, 23, 55

of complex numbers, 133
rules of, 55

Additive function, 268
Algebraic number, 143
Algebra of limits

functions, 254
sequences, 168

Algorithm
Archimedes’s, 371
Borchardt’s, 375
Brahmagupta’s, 687
canonical continued fraction, 626
division, 59
Euclidean, 65

Almost integer, 334
Alternating

harmonic series, 212, 238, 428
harmonic series rearrangement, 484
log 2 formula, 311
series error estimate, 429
series test, 428

Angle, 127, 335
Anthoniszoon’s π approximation, 366, 637

Apéry, Roger, 413
Approximable numbers, 692
Approximation(s)

eπ − π ≈ 20, 334

eπ
√
163 = 262537412640768744, 334

π ≈ √
10,

(
227
23

)1/2
, 311/3, etc., 649

π ≈ 6
5�2, 625

π ≈
(
2143
22

)1/4
, 649

Archimedean
ordering of the natural numbers, 35
property of reals, 97

Archimedes of Syracuse, 237, 364, 365, 637,
680

Archimedes’s
algorithm, 371
cattle problem, 680
three propositions, 367

Argument (principal) of a complex number,
353, 354

Arithmetic-geometric mean (AGM)
application to e, 182
inequality, 46, 312
method to compute π , 373

Arithmetic mean, 46
Arithmetic properties of series theorem, 198
Axiom(s)

complex numbers, 130
Euclidean space Rm /vector space, 119
integers, 49
natural numbers, 30
rationals, 75
reals, 75, 115
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B
b-adic representation

of integers, 71
of real numbers, 227

Ball (open, close, norm), 124, 125
Barber puzzle, 3
Base

of a power, 38, 305, 358
to represent integers, 71
to represent real numbers, 227

Basel problem, 198, 378, 394
Bell’s translation of Euler, 379
Bernoulli, Jacob, 42, 196, 394, 419, 502
Bernoulli, Nicolaus, proof on π2/6, 524
Bernoulli numbers, 412, 420, 502
Bernoulli’s inequality, 42
Best approximation, 639
Best approximation theorem, 640, 646
Big O notation, 451
Bijective function, 24
Binary system, 71
Binomial

coefficient, 42, 509
series, 510, 514
theorem, 43

Bisection method, 283
Blaise, see Children
Bolzano–Weierstrass theorem for R, 179
Bolzano–Weierstrass theorem for Rm , 179
Bombelli’s continued fraction, 625
Borchardt’s algorithm, 375
Bounded

above/below, 90, 91
sequence, 163
variation, 424

Boundedness theorem, 275
Box norm, 128
Brahmagupta, 684

algorithm, 687
quote, 689
zero and negative numbers, 29

Bromwich’s book’s proof on π2/6, 404
Brouncker, Lord William, 374, 589
Brouwer’s fixed point theorem, 292

C
Calendar

Julian and Gregorian, 651
Persian, 656

Cantor, Georg, 134
Cantor’s

diagonal argument (original), 234, 235

first proof that c > ℵ0, 141
second proof that c > ℵ0, 234
theorem on cardinalities of algebraic and
transcendental numbers, 144

theorem on power sets, 146
unbelievable theorem, 235

Cardinality, 135
of algebraic numbers, 144
of (irrationals in) nontrivial intervals, 140
of rational numbers, 140
of Rm , 235

Cartesian product, 21
Cassini’s identity, 619
Castellanos’s formulas for π , 521
Cataldi’s early continued fraction, 634
Cattle problem, 680
Cauchy

arithmetic mean theorem, 525
condensation test, 208
criterion theorem for convergence of
sequences, 188

criterion theorem for series, 206
double series theorem, 225, 477
multiplication theorem of series, 492,
493

product of infinite series, 490
root test, 441
sequence, 184

Cauchy-Hadamard theorem, 446
CBS (Cauchy–Bunyakovsky–Schwarz)

inequality, 122, 126
Chain of intervals, 283
Change of base formula, 313
Characteristic function, 27
Children, see Melodie, Blaise, Theo, Har-

monie
Chung-Chi, Tsu, π approximation, 365, 637
Cloitre’s e and π in a mirror, 585
Closed

ball, 125
interval, 5
under an operation, 30

Coconut puzzles, 615, 618
Codomain of function, 22
Coin game, 46
Commutative ring, 50
Compact set, 271
Compactness lemma, 271
Comparison test, 207
Complement of sets, 10
Complete quotients, 627
Completeness property of R, 89, 91, 109
Completeness property of Rm , 188
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Complex conjugate, 133
Complex numbers (C), 128
Component functions, 253
Component theorem

for continuity, 264
for functions, 253
for sequences, 163

Composite number, 62
Composition of functions, 24
Composition of limits theorem, 255
Confluent hypergeometric function, 656
Congruent modulo n, 66
Conjugate in Z[√d] or Q[√d], 672
Connected set, 272
Connectedness lemma about intervals, 273
Constant function, 27
Continued fraction convergence theorem,

628
Continued fraction(s)

canonical continued fraction algorithm,
626

canonical (simple), 628
convergent of, 596
finite, 591, 596
fundamental recurrence relations, 613
infinite, 192, 596
nonnegative, 610
regular, 620
simple, 595
terminating, 596
transformation rules of, 598
unary, 636
Wallis–Euler recurrence relations, 611

Continuity theorem for power series, 457
Continuous function(s), 261

algebra of, 264
at a point, 242, 261
composition of, 264
on a set, 262

Continuum hypothesis, 141
Contractive sequence (theorem), 189
Contrapositive, 8, 15, 34
Convergence

double series, 466
functions, 239
infinite products, 535
infinite series, 194
sequences, 151

Converse statement, 17
Convex set, 102
Coprime numbers, 66, 237, 375, 574
Cosecant function, 326

power series, 506

Cosine function, 223, 323
Cotangent function, 326

continued fraction, 666
partial fraction expansion, 556
power series, 504

Countable/countably infinite set, 135
Cover of sets, 270
Cut (of rationals), 104

D
D’Alembert, Jean, 151, 442
D’Alembert’s ratio test, 442
Decimal place accuracy, 429
Decimal system

integers, 69
real numbers, 226

Degree (angle), 329
De Lagny, Thomas, π calculation, 523
Delucchi, Emanuele and Rachele, 393
De Moivre’s formula, 323
De Morgan and Bertrand’s test, 453
De Morgan, Augustus, 48

laws on set complements, 12
Dense (topological definition), 266
Density of the (ir)rationals, 98
Difference of sets, 10
Difference sequence, 192
Difference trick, 285
Digit(s), 69, 227
Diophantine equations, 616
Diophantus’s epitaph, 616
Dirac, Paul, 377
Direct proof, 33
Directed line (for slicing regions in IVT

applications), 285
Dirichlet eta function, 570
Dirichlet function, 23, 251

modified, 265
Dirichlet’s test, 426
Dirichlet’s theorem for rearrangements, 488
Disconnected set, 272
Discontinuity, jump, 295
Disjoint sets, 9
Distance between vectors or points, 124
Divergence

infinite products, also to zero, 536
infinite series, 194
sequences, 151
proper, to ±∞ (for functions), 258
proper, to ±∞ (for sequences), 171

Divide, divisible, rules of, 58, 59
Divisibility tricks, 74
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Division algorithm, 59
Divisor, 58
Domain of function, 22
Dot product, 120
Double a cube, 366
Double sequence, 225, 466
Double series, 466
Duodecimal system, 73
Dyadic system, 71

E
e, 106, 148, 179

approximation, 222
infinite nested product formula, 223
irrationality, 222, 430, 634
nonsimple continued fraction, 589, 607
simple continued fraction, 589, 632, 664

e and π in a mirror, 585
Eddington, Sir Arthur, 29
Einstein, Albert, 571
Empty set, 5
Enharmonic Harmonium, 655
ε/3-trick, 431
ε/2-trick, 169, 187
ε-δ arguments, 244
ε-δ Definition of Limit, 241, 243
ε-N arguments, 152
ε-N definition of limit, 149
Equality

of functions, 27
of sets, 6

Eratosthenes’s sieve, 568
Erdős’s proof for

∑
1/p, 322

Euclidean algorithm, 65
Euclidean space (Rm ), 118
Euclid’s theorem, 62
Eudoxus of Cnidus, 97
Euler, Leonhard, 198, 237, 374, 394, 517,

520, 589, 604, 662, 689
Euler–Mascheroni constant γ , 238, 309
Euler numbers, 420, 505
Euler’s identity, 323
Euler’s sum for π2/6, see Basel problem
Euler, Leonhard

e, 180
f (x) notation, 22
identity for eiz , 323
letter to a princess, 653
on the series 1 − 1 + 1 − · · · , 147
on transcendental numbers, 144
popularization of π , 366
quote, 58

role played in FTA, 340
summation notation 	, 39

Even function, 463
Even number, 61
Existential quantifier, 19
Exponent, 38, 305, 358
Exponential function, 148, 219, 300, 443

application of Cauchy multiplication,
492

continued fraction, 663
the most important function, 237

Extended real numbers, 172, 435

F
Factor, 58
Factorial(s), 42, 64

how to factor, 68
Family of sets, 11
Ferguson’s π calculation, 374
Fermat’s

last theorem, 689
little theorem, 66
two squares theorem, 689, 691

Fibonacci, Leonardo, 521
Fibonacci sequence, 47, 193, 204, 432, 447,

521, 619, 630
Field and ordered field, 76
Finite set, 135
Finite subcover, 270, 271
Flajolet–Vardi formula for γ , 517
Flajolet–Vardi formula for π , 520
FOIL law, 33
Formula(s)

2 = 2 = e1

e1/2
· e1/3

e1/4
· · · , 311

� = limn→∞ Fn+1
Fn

, 193
π
4 = ∑∞

n=1 arctan
(

1
F2n+1

)
, 521

√
π = limn→∞ (n)2 22n

(2n)
√

n
, 392

∑∞
n=0

(−1)n

(2n+1)z = 3z

3z+1 · 5z

5z−1 · · · , 584
∑∞

n=0
(−1)n

(2n+1)2k+1 = (−1)k E2k
2(2k)!

(
π
2

)2k+1
,

584
e = 2 + 2

2+ 3
3+ 4

4+ . . ., 607
addition for (co)sine, 324
arctan x = x

1+
x2

3−x2 +
32x2

5−3x2 + . . ., 603

Castellanos’s, 521
change of base, 313
continued fraction for ex , 663
cosecant power series, 506
cotangent continued fraction, 666
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cotangent power series, 504
de Moivre’s, 323
double angle for (co)sine, 324
e nonsimple continued fraction, 590
e simple continued fraction, 590, 664

e
e−1 = limn→∞

{( n
n

)n + · · · + ( 1
n

)n
}
,

306

e = limn→∞
{(

2
1

)1(
3
2

)2 · · ·
(

n+1
n

)n
}1/n

,

306
e = 2

1 · 5
4 · 16

15 · · · , 538
eπ −e−π

2π = ∏∞
n=1

(
1 + 1

n2

)
, 551

e2/x +1
e2/x −1

= x + 1
3x + 1

5x + . . ., 661

Euler’s (π2/6), 115, 374, 420
Proof I, 393
Proof II, 396
Proof III, 398
Proof IV, 404
Proof V, 405
Proof VI, 414
Proof VII, 526
Proof VIII, 561
Proof IX, 564
Proof X, 565
Proof XI, 581

Euler’s (π4/90), 405, 412, 563, 581
Euler’s (π6/945), 406, 412, 563, 581
Euler’s formula (η(2k)), 581
Euler’s formula (ζ(2k)), 412, 581
Euler’s infinite product (π2/15), 582
Euler’s infinite product (π2/6), 534, 569,
581

Euler’s infinite product (π4/90), 581
Euler’s infinite product (cosπ z), 553

Proof I, 554
Proofs II,III,IV, 554

Euler’s infinite product (sin π z), 378,
533, 547
Proof I, 383
Proof II, 393
Proof III, 549
Proof IV, 551

Euler’s partial fraction (π/ sin π z), 534
Euler’s partial fraction (π tan π z

2 ), 560
Euler’s partial fraction (π z cot π z), 556
Euler’s partial fraction ( π

cosπ z ), 560
Euler’s partial fraction ( π

sin π z ), 556, 560

Euler’s product ( π
2 = 3

2 · 5
6 · 7

6 · · · ), 535,
585

Euler’s product ( π
4 = 3

4 · 5
4 · 7

8 · · · ), 534,
584

γ = 1 − ∑∞
n=2

1
n

(
ζ(n) − 1

)
, 517

γ = 3
2 − log 2 − ∑∞

n=2
(−1)n

n

(
n −

1)
(
ζ(n) − 1

)
, 517

γ = ∑∞
n=2

(−1)n

n ζ(n), 419, 517
4/π continued fraction, 589
Gregory–Leibniz–Madhava’s, 374, 380,
420
Proof I, 400
Proof II, 519
Proof III, 560
Proof IV, 584

Gregory–Madhava’s arctangent, 517
half-angle for (co)sine, 325
hyperbolic cotangent continued fraction,
660

hyperbolic secant power series, 505
hyperbolic tangent continued fraction,
661

log(1 + x) = x
1+ 12x

(2−1x)+ 22x
(3−2x)+ . . .,

607
log 2 = 1

1+
12
1 +

22
1 + . . ., 600

log 2 = ∑∞
n=2

1
2n ζ(n), 481

Machin’s, 374, 420, 522
partial fraction of 1/ sin2 x , 404
� = limn→∞ Fn+1

Fn
, 636

� = ∑∞
n=1

(−1)n−1

Fn Fn+1
, 636

�−1 = ∑∞
n=2

(−1)n

Fn Fn+2
, 636

π = 3 + 12
6 + 32

6 + 52
6 + . . ., 606

cos πx
2

π
2

= x + 1 + (x+1)2

−2·1 + (x−1)2

−2 + . . .,

609
π cot πx = 1

x + x2
1−2x + (1−x)2

2x + . . .,
609

π
2 = 1 + 1

1+ 1·2
1 + 2·3

1 + . . ., 604
sin πx

πx = 1 + −2x2

x2+1+
(x2−12)2

3 + . . ., 608

sin πx
πx = 1 − x

1+ 1·(1−x)
x + 1·(1+x)

1−x + . . .,
609

tan πx
πx = 1 + x

1−2x + (1−x)2

2x + . . ., 609
secant power series, 505
Seidel’s for log 2, 533, 538
Seidel’s for log θ

θ−1 , 539
6

π2 = 02+12− 14

12+22 + −24

22+32 + −34

32+42 + . . .,
604

π2

6 = 1
02+12 + −14

12+22 + −24

22+32 + −34

32+42 + . . .,
604
6

π2 = 1− 1
22

− 1
32

· · · + μ(n)
n2

+ · · · , 582
Sondow’s, 390
tangent continued fraction, 666
tangent power series, 504
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Viète’s, 373, 377, 381
Wallis’s, 374, 377, 389
William Brouncker’s, 374, 589, 602
1

ζ(z) = ∑∞
n=1

μ(n)
nz , 569

ζ(z) = ∏ (
1 − 1

pz

)−1
, Proof I,II, 566

ζ(z) = ∏ (
1 − 1

pz

)−1
, Proof III, 575

ζ(z)2 = ∑∞
n=1

τ(n)
nz , 577

ζ(2z)
ζ(z) = ∑∞

n=1
λ(n)
nz , 577

(k +2) ζ(k +1) = ∑k−2
=1 ζ(k − ) ζ(+

1) + 2
∑∞

n=1
Hn
nk , 415

ζ(k) = ∑k−2
=1

∑∞
m=1

∑∞
n=1

1
m(m+n)k− ,

482
Fraction rules, 79
Function definition, 22
Fundamental theorem

of algebra, 340
of algebra, proof I, 342
of algebra, proof II, 345
of algebra, proof III, 349
of arithmetic, 63
of continuous functions, 275, 278

G
Galois, Évariste, 309, 676
Galois’s theorem on quadratic irrationals,

676
Game

coin, 46
of Nim, 57, 71
Towers of Hanoi, 46

Gauss, Carl Friedrich
childhood story, 40
fundamental theorem of algebra, 340
on Borchardt’s algorithm, 375
quotation, 14, 131
quote, 226, 258, 324

Gauss’s test, 454
Generalized power rules theorem, 305
Geometric mean, 46
Geometric series (theorem), 202
Gilfeather–Meister proof for

∑
1/p, 320

Glaisher, James, 519
Golden ratio, 47, 148, 177, 593, 624

continued fraction, 148, 193, 593
false rumors, 177, 594
infinite continued square root, 148, 177
the “most irrational” number, 643

Good approximation, 637
Goodwin’s π debacle, 366

Graph of function, 22
Greatest common divisor, 64
Greatest integer function, 98
Greatest lower bound, 91
Gregorian calendar (after Pope Gregory

XIII), 651
Gregory–Leibniz–Madhava formula, 374,

380, 519, 560, 584
Gregory–Madhava’s arctangent series, 516

H
Hadamard, Jacques, 446
Halmos, Paul, 3, 4
Harmonic

product, 536
series, 197, 204

Harmonie, see Children
Hermite, Charles, 380, 422, 666

almost integer, 334
Heron’s area formula, 127
Hexadecimal system, 71
Hidden assumptions, 16
High school

graph of the exponential function, 301
horizontal line test, 297
i = √−1, 348
logarithms, 313
long division, 231
plane trigonometry facts, 323, 336
trig identities, 324
zeros of (co)sine, 333

Hilbert, David, 589
Hobbes, Thomas, 5
Hofbauer’s proofs on π2/6, 393, 396, 404
Holy Bible, 237, 365, 637
House bill No. 246, 237, 366
Hui Lin’s condensation test, 215
Hurwitz zeta function, 577
Huygens’s solar system model, 656
Hyperbolic

cosine/sine, 326
cotangent continued fraction, 660
function identities, 338
inverse functions, 364
secant, power series of, 505
tangent continued fraction, 661

Hypergeometric function, 656

I
Identity

Cassini, 619
Euler’s, 323
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function, 27
Lagrange, 126
Pythagorean, 324

Identity theorem, 462
If … then statements, 6, 15
If and only if statements, 17
II Chronicles, 365, 637
i (imaginary unit), 131
I Kings, 365, 637
Image of a set under a function, 25
Image (value) of function, 22
Independent events, 572
Index of a polynomial, 145
Induction, 31
Inductive definitions, 38
Inequality/inequalities

Arithmetic-geometric mean, 46, 312
Bernoulli, 42
CBS (Cauchy–Bunyakovsky–Schwarz),
122, 126

rules, 53
strict, 31

Inequality lemma for functions, 274
Infimum, 91
Infinite

interval, 5
limits, 258
product, 161, 382
set (countable or uncountable), 135

Injective function, 24
Inner product (space), 120, 121
Integer(s), 4, 48

almost, 334
Intermediate value property/theorem, 277,

278
Intersection of (a family of) sets, 9, 12
Interval(s)

chains of, 283
nested, 99
nontrivial, 140, 267
of music, 653
various types, 5

Inverse hyperbolic functions, 364
Inverse image of a set, 25
Inverse of a function, 24
Inverse or arc trig functions

cosine/sine (complex), 363
cosine/sine (real), 352
tangent (complex), 360
tangent (real), 353

Irrationality of
er for r ∈ Q, 661
e, proof I, 222

e, proof II, 430
e, proof III, 634
log r for r ∈ Q, 668
logarithmic numbers, 87√
2, 82, 85, 89

trigonometric numbers, 85, 89
Irrational number, 77
Isolated point, 262
Iterated double series, 225
Iterated series, 468

J
Jones on the symbol π , 366
Jordan decomposition of a sequence, 433
Julian calendar (after Julius Caesar), 651
Jump

discontinuity, 295
function, 298

K
Kanada’s π calculations, 374, 519
Kasner’s number, 183
Khayyam’s calendar, 653, 656
Knopp on a π2/6 proof, 524
Kortram’s proof on π2/6, 565
kth-power-free number, 578
Kummer’s test, 449

L
Lagrange identity, 126
Lagrange’s theorem, 673
Lambert, π is irrational, 366, 661
Law of cosines/sines, 127
Leading coefficient of polynomial, 84
Leap year, 651
Least upper bound, 90
Left-hand limit, 256
Legendre’s approximation theorem, 646
Lehmer’s π/4 and Fibonacci formula, 521
Leibniz, Gottfried, 653

function word, 21
Length

Euclidean, 121
of complex numbers, 133

L’Hospital’s rule, 311
lim inf (limit infimum), 436
Limit comparison test, 214
Limit points and sequences lemma, 240
Limit(s)

at infinity, 257
left and right-hand, 256



718 Index

of a function, 243
of a sequence, 151
open ball definition for functions, 244
open ball definition for sequences, 151
point, 239
recipe, 153, 161, 244

lim sup (limit supremum), 435
Lindemann, π is transcendental, 366
Liouville’s function (number theory), 577
Liouville’s theorem/Liouville numbers, 696
log 2, 238, 311

log 2 = 1
1+

12
1 +

22
1 + . . ., 600

log 2 = ∑∞
n=2

1
2n ζ(n), 481

as alternating harmonic series, 238, 311
rearrangement, 484

Logarithm
common, 87
complex, 356
general bases, 313
natural logarithm function, 303
power series, 514

Logarithmic test, 456
Logical quantifiers, 19
Lower bound (greatest), 91
Lucas numbers, 631
Lu, Chao, reciting π , 237

M
Machin, John, 237, 366, 374, 521
Machin’s formula, 522
Madhava of Sangamagramma, 508
Massaging (an expression), 153, 154, 184,

244, 247
Maximum

of a set, 100, 177
strict, 282

Max/min value theorem, 276
Mazur, Marcin, 89
Measurement of the circle, 364, 367
Melodie, see Children
Mengoli’s great question, 393
Mercator’s arctangent series, 508
Mersenne number/prime, 67
Mertens’s multiplication theorem, 493
Minimum of a set, 100
MIT cheer, 323
Mnemonic π , γ , 237, 309
Möbius function, 569, 576
Möbius inversion formula, 576
Modular arithmetic, 66
Modulus, 133, 335
Monotone

function, 293
sequence, 174

Monotone criterion theorem, 176
Monotone inverse theorem, 297
Monotone subsequence theorem, 178
“Most”

extreme irrational, 697
important equation eiπ + 1 = 0, 330
important function, 237, 300
irrational number, 643
real numbers are irrational, 75, 134, 226

Multinomial theorem, 48
Multiple of a number, 58
Multiple-valued function, 353
Multiplicative function, 268
Multiplicity of a root, 143
Multiply by conjugate trick, 247
Musical scales, 653

King-Fang, Mercator, Bosanquet, 655

N
Natural numbers (N), 4, 30
Negation of a statement, 19
Nested intervals (theorem), 99, 100
Newcomb, Simon, 364
Newton’s binomial series, 508
Niven’s proof for

∑
1/p, 318

Nn , 135
Nondecreasing/nonincreasing

function, 293
sequence, 174

Nonnegative series test, 197
Nontrivial interval, 140, 267
Norm, 124

ball, 124
box/sup (or supremum), 127, 128
Euclidean, 121

Normed space, 124
nth term test, 196
Null sequence, 152, 161
Number theory series, 483

O
Octal system, 71
Odd function, 463
Odd number, 61
1/n-principle, 96
One-to-one function, 24
Onto function, 24
Open

ball, 125
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interval, 5
set, 272

Order laws
integers, 53
natural numbers, 31
reals, 78

Ordered field, 76
Orthogonal, 126
Oscillation theorem, 331

P
Pandigital, 649
Pappus’s quotation of Archimedes, 680
Parallelogram law, 126
Partial

products, 535
quotients, 627
sum, 194

Partial fractions method, 195, 200, 340
Pascal, Blaise, 533
Pascal’s method, 47
Pascal’s triangle rule, 43, 45
Peirce, Benjamin, 330
Pell equation, 683
Perfect number, 67
Period(ic)

b-adic expansions, 231
continued fraction, 669
purely periodic continued fraction, 675

Persian calendar, 656
Pfaff’s AGM solution, 375
�, see Golden ratio
π , 107, 323, 364

and the unit circle, 332
continued fraction, 606, 631
definition of, 328
formulas, 373
origin of letter, 366
Viète’s formula, 373, 377

Pigeonhole principle, 136
Pochhammer symbol, 656
Poincaré, Henri, 36, 303
Pointwise discontinuous, 267
Polar decomposition, 134
Polar representation, polar coordinates, 335
Polynomial, 84, 142
Power

complex, 305, 358
rules (generalized), 305
rules (integer powers), 80
rules (rational powers), 95

Power series, 445, 456

composition theorem, 499
division theorem, 501

Preimage of a set, 25
Preservation of inequalities theorem

limits of functions, 256
limits of sequences, 166

Prime(s)
definition, 62
infinite series of, 238, 315
infinitude, 62
sparseness, 64

Primitive Pythagorean triple, 66, 67, 649
Principal

argument, 354
inverse or arc cosine, also hyperbolic,
363, 364

inverse or arc sine, also hyperbolic, 363,
364

inverse or arc tangent, 360
logarithm, 357
nth root, 348
value of az , 358

Principle, 1/n, 96
Pringsheim’s theorem

for double series, 471
for sequences, 214

Probability, 572
number is square-free, 375, 574
numbers being coprime, 375, 574

Proof
by cases, 55
contradiction, 35
contrapositive, 34, 54
direct, 33

Properly divergent
functions, 258
sequences, 172

Properties of zero and one theorem, 54
p-series/test, 207, 209
Purely periodic continued fraction, 675
Puzzle

antipodal points on earth, 292
barber, 3
bent wire puzzle, 290
birthday cake, 292
bobble dog, 291
cocktail, 291
coconut, 615, 618
irrational-irrational, 312
mountain, 284
numbers one more than their cubes, 281
over easy egg, 286
pancake, 285
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photo cropping, 292
pizza, 288
rational-irrational, 307
square root, 81
which is larger, πe or eπ ?, 334
wobbly table, 289

Pythagorean
identity, 324
theorem, 126
triple, 66, 67, 649, 690

Q
Quadratic irrational, 670
Quantifier (logical), 19
Quotient, 58, 60

of power series, 501
of sequences, 170

Quotients, complete and partial, 627

R
Raabe’s test, 450
Radius of convergence, 446

of (co)tangent, 587
Ramanujan, Srinivasa, 649

approximation to π , 649
Range of function, 22
Ratio comparison test, 215
Ratio test

for sequences, 173
for series, 442

Rational numbers (Q), 5, 76
Rational zeros theorem, 84
Real numbers (R), 75

construction, 103
Rearrangement of a series, 484
Recurrence relations for continued fractions,

611, 613
Reductio ad absurdum, 35
Region, 285
Relatively prime numbers, 66, 375, 574
Remainder, 60
Remmert’s proof of the FTA, 340
Rhind (or Ahmes) papyrus, 365
Richardson, Lewis, 15
Riemann zeta function, 308, 419, 443, 566,

569
infinite product, 534
in terms of Möbius function, 569
in terms of primes, 566

Riemann’s rearrangement theorem, 485
Right-hand limit, 256
Ring, 49

Root
of a complex number, 340, 347
of a real number, 81, 93, 115
principal nth, 348
rules, 95

Root test
for sequences, 173
for series, 441

Root (zero) of a function, 142, 279
Rules of sign, 52
Russell, Bertrand, 14

barber puzzle, 3
paradox, 14

S
s-adic expansions, 235
Schrödinger, Erwin, 77
Schwarz inequality, see CBS inequality
Secant function, 326

partial fraction, 560
power series, 505

Seidel’s formula for log, 533, 538, 539
Semiperimeter, 127
Septimal system, 70
Sequence, 23

Cauchy, 184
contractive, 189
definition, 149
difference, 192
double, 225, 466
Fibonacci, 47, 193, 204, 432, 447, 521,
619, 630

Lucas, 631
monotone, 174
nondecreasing/nonincreasing, 174
null, 152, 161
of bounded variation, 424
of sets, 11
strictly decreasing/increasing, 180
subsequence of, 167
tail, 162

Sequence criterion
for continuity, 263
for limits of functions, 250

Series involving number and sumof divisors,
483

Series, infinite, 194
Set, definition, 4
Shanks’ π calculation, 374
Sharp, Abraham, π calculation, 523
Sieve of Eratosthenes, 568
Sine function, 223, 323



Index 721

Smith, David, 237
Somayaji, Nilakantha, 519
Sondow’s formula for π , 390
Square-free numbers, 237, 318, 375, 574
Square root, computing via sequences, 182
Squaring the circle, 237, 366
Squeeze theorem

functions, 256
sequences, 165

Standard deviation, 690
Stirling’s formula, weak form, 181
Stolz angle, 459, 465
Strictly decreasing/increasing

function, 293
sequence, 180

Strict maxima, 282
Subcover, finite, 270
Subsequence, 167
Subset, 6
Sum by curves theorem, 475∑

1/p, 315
Summation

arithmetic progression, 40
by curves, 475
by parts, 422
by squares, 472
by triangles, 473
definition, 39
geometric progression, 41
of powers of integers, 423, 507
Pascal’s method, 47

Sup (or supremum) norm, 127
Supremum, 90
Surjective function, 24

T
Tail of a sequence, 162
Tails theorem for sequences, 162
Tails theorem for series, 198
Tangent function, 326

continued fraction, 666
partial fraction, 560
power series, 504

Tannery’s theorem
for products, 548
for series, 216, 225

Target of function, 22
Telescoping comparison test, 214
Telescoping series (theorem), 200

generalization, 205
Temperament (even, for piano), 654
Terminating decimal, b-adic expansion, 229

Test(s)
alternating series, 428
Cauchy condensation, 208
comparison, 207
De Morgan and Bertrand’s, 453
Dirichlet, 426
Gauss’s, 454
Hui Lin’s condensation, 215
Kummer’s, 449
limit comparison, 214
logarithmic, 456
nonnegative series test, 197
nth term test, 196
p-test, 209
Raabe’s, 450
ratio comparison, 215
ratio for sequences, 173
ratio for series, 442
root for sequences, 173
root for series, 441
telescoping comparison, 214

The Sand Reckoner, 680
Theo, see Children
Thomae’s function, 265, 299
Towers of Hanoi, 46
Transcendental number, 143
Transformation rules of continued fractions,

598
Transitive law

cardinality, 136
for inequalities, 32
for sets, 8

Triangle inequality
for Rm , 123
for integers, 55
for series, 211

Trick(s)
difference, 285, 286, 289, 290
divisibility, 74
ε/3, 431
ε/2, 169, 187
multiply by conjugate, 247
probability of being divisible by k, 573
to find N in limit problems, 155

Trisect an angle, 366
Tropical year, 650

U
Unary continued fraction, 636
Uncountable, 135

various numbers, 141, 144
Union of (a family of) sets, 9, 11
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Uniqueness
additive identities and inverses for Z, 51
multiplicative inverse for R, 78
of limits for functions, 253
of limits for sequences, 162

Universal quantifier, 19
Upper bound (least), 90

V
Vectors, 118
Vector space, 120
Venn diagram, 10
Viète, François, 373, 533
Volterra’s theorem, 267
Vredenduin’s paradox, 146

W
Waldo stops Goodwin, 366

Wallis–Euler recurrence relations, 611
Wallis, John, 374, 377, 389

infinity symbol ∞, 6
Wallis’s formulas, 389
Wantzel on unsolvable problems, 366
Well-ordering (principle) of N, 35
Wigner, Eugene, 128
Williams’s formula, 407
Williams’s other formula, 415

Z
Zagier, Don, 62
Zeno’s function, 293
Zero

of a function, 279
set of a function, 268

Zeta function, 209, see also Riemann zeta
function
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