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Preface

Theories of the known, which are described by different physical ideas, may be equivalent
in all their predictions and hence scientifically indistinguishable. However, they are not
psychologically identical when trying to move from that base into the unknown. For dif-
ferent views suggest different kinds of modifications which might be made and hence are
not equivalent in the hypotheses one generates from them in one’s attempt to understand
what is not yet understood.

R. P. Feynman [1966]

A Parable

Imagine a society in which the citizens are encouraged, indeed compelled up to
a certain age, to read (and sometimes write) musical scores. All quite admirable.
However, this society also has a very curious—few remember how it all started—
and disturbing law: Music must never be listened to or performed!

Though its importance is universally acknowledged, for some reason music is
not widely appreciated in this society. To be sure, professors still excitedly pore
over the great works of Bach, Wagner, and the rest, and they do their utmost to
communicate to their students the beautiful meaning of what they find there, but
they still become tongue-tied when brashly asked the question, “What’s the point
of all this?!”

In this parable, it was patently unfair and irrational to have a law forbidding
would-be music students from experiencing and understanding the subject directly
through “sonic intuition.” But in our society of mathematicians we have such a
law. It is not a written law, and those who flout it may yet prosper, but it says,
Mathematics must not be visualized!

More likely than not, when one opens a random modern mathematics text
on a random subject, one is confronted by abstract symbolic reasoning that is
divorced from one’s sensory experience of the world, despite the fact that the very
phenomena one is studying were often discovered by appealing to geometric (and
perhaps physical) intuition.

This reflects the fact that steadily over the last hundred years the honour of
visual reasoning in mathematics has been besmirched. Although the great mathe-
maticians have always been oblivious to such fashions, it is only recently that the
“mathematician in the street” has picked up the gauntlet on behalf of geometry.

The present book openly challenges the current dominance of purely symbolic
logical reasoning by using new, visually accessible arguments to explain the truths
of elementary complex analysis.
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Computers

In part, the resurgence of interest in geometry can be traced to the mass-availability
of computers to draw mathematical objects, and perhaps also to the related, some-
what breathless, popular interest in chaos theory and in fractals. This book instead
advocates the more sober use of computers as an aid to geometric reasoning.

I'have tried to encourage the reader to think of the computer as a physicist would
his laboratory—it may be used to check existing ideas about the construction of
the world, or as a tool for discovering new phenomena which then demand new
ideas for their explanation. Throughout the text I have suggested such uses of the
computer, but I have deliberately avoided giving detailed instructions. The reason
is simple: whereas a mathematical idea is a timeless thing, few things are more
ephemeral than computer hardware and software.

Having said this, the program “f(z)” is currently the best tool for visually
exploring the ideas in this book; a free demonstration version can be downloaded
directly from Lascaux Graphics [http://www.primenet.com/ lascaux/]. On occa-
sion it would also be helpful if one had access to an all-purpose mathematical
engine such as Maple® or Mathematica®. However, 1 would like to stress that
none of the above software is essential: the entire book can be fully understood
without any use of a computer.

Finally, some readers may be interested in knowing how computers were
used to produce this book. Perhaps five of the 501 diagrams were drawn us-
ing output from Mathematica®; the remainder I drew by hand (or rather “by
mouse”) using CoreDRAW™, occasionally guided by output from “f(z)”. I
typeset the book in I4TEX using the wonderful Y&Y TgX System for Windows
[http://www.YandY.com/], the figures being included as EPS files. The text is
Times, with Helvetica heads, and the mathematics is principally MathTime™,
though nine other mathematical fonts make cameo appearances. All of these
Adobe Type 1 fonts were obtained from Y&Y, Inc., with the exception of Adobe’s
Mathematical Pi-Six font, which I used to represent quaternions. Having typeset
the book, I used the DVIPSONE™ component of the Y&Y TgX System for Win-
dows to generate a fully page-independent, DSC-compliant PostScript® file, which
I transmitted to Oxford via the Internet (using FTP) in the form of a single ZIP
file. Finally, OUP printed the book directly from this PostScript® file.

The Book’s Newtonian Genesis

In the summer of 1982, having been inspired by Westfall’s [1980] excellent biog-
raphy, I made an intense study of Newton’s [1687] masterpiece, Philosophiae Nat-
uralis Principia Mathematica. While the Nobel physicist S. Chandrasekhar [1995]
has sought to lay bare the remarkable nature of Newton’s results in the Principia,
the present book instead arose out of a fascination with Newton’s methods.

It is fairly well known that Newton’s original 1665 version of the calculus
was different from the one we learn today: its essence was the manipulation of
power series, which Newton likened to the manipulation of decimal expansions
in arithmetic. The symbolic calculus—the one in every standard textbook, and
the one now associated with the name of Leibniz—was also perfectly familiar to
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Newton, but apparently it was of only incidental interest to him. After all, armed

with his power series, Newton could evaluate an integral like | e* dx just as
easily as [ sinx dx. Let Leibniz try that!

It is less well known that around 1680 Newton became disenchanted with both
these approaches, whereupon he proceeded to develop a third version of calculus,
based on geometry. This “geometric calculus” is the mathematical engine that
propels the brilliant physics of Newton’s Principia.

Having grasped Newton’s method, I immediately tried my own hand at using it
to simplify my teaching of introductory calculus. An example will help to explain
what I mean by this. Let us show that if T = tan, then 4% = 1 + T2 If we
increase 8 by a small amount 46 then T will increase by the amount d7 in the
figure below. To obtain the result, we need only observe that in the limit as d6 tends
to zero, the black triangle is ultimately similar [exercise] to the shaded triangle.
Thus, in this limit,

dT L
Ldo 1 do

dT
=L%2=1+T2

=

Only gradually did I come to realize how naturally this mode of thought could
be applied—almost exactly 300 years later!—to the geometry of the complex
plane.

Reading This Book

In the hope of making the book fun to read, I have attempted to write as though I
were explaining the ideas directly to a friend. Correspondingly, I have tried to make
you, the reader, into an active participant in developing the ideas. For example, as
an argument progresses, I have frequently and deliberately placed a pair of logical
stepping stones sufficiently far apart that you may need to pause and stretch slightly
to pass from one to the next. Such places are marked “[exercise]”; they often require
nothing more than a simple calculation or a moment of reflection.

This brings me to the exercises proper, which may be found at the end of each
chapter. In the belief that the essential prerequisite for finding the answer to a
question is the desire to find it, I have made every effort to provide exercises that
provoke curiosity. They are considerably more wide-ranging than is common, and
they often establish important facts which are then used freely in the text itself.
‘While problems whose be all and end all is routine calculation are thereby avoided,
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I believe that readers will automatically develop considerable computational skill
in the process of seeking solutions to these problems. On the other hand, my
intention in a large number of the exercises is to illustrate how geometric thinking
can often replace lengthy calculation.

Any part of the book marked with a star (“*”’) may be omitted on a first reading.
If you do elect to read a starred section, you may in turn choose to omit any starred
subsections. Please note, however, that a part of the book that is starred is not
necessarily any more difficult, nor any less interesting or important, than any other
part of the book.

Teaching from this Book

The entire book can probably be covered in a year, but in a single semester course
one must first decide what kind of course to teach, then choose a corresponding
path through the book. Here I offer just three such possible paths:

e Traditional Course. Chapters 1 to 9, omitting all starred material (e.g., the
whole of Chapter 6).

e Vector Field Course. In order to take advantage of the Pélya vector field ap-
proach to visualizing complex integrals, one could follow the “Traditional Course”
above, omitting Chapter 9, and adding the unstarred parts of Chapters 10 and 11.

¢ Non-Euclidean Course. At the expense of teaching any integration, one could
give a course focused on Mdbius transformations and non-Euclidean geometry.
These two related parts of complex analysis are probably the most important ones
for contemporary mathematics and physics, and yet they are also the ones that are
almostentirely neglected in undergraduate-level texts. On the other hand, graduate-
level works tend to assume that you have already encountered the main ideas as
an undergraduate: Catch 22!

Such a course might go as follows: All of Chapter 1; the unstarred parts of
Chapter 2; all of Chapter 3, including the starred sections but (possibly) omitting
the starred subsections; all of Chapter 4; all of Chapter 6, including the starred
sections but (possibly) omitting the starred subsections.

Omissions and Apologies

If one believes in the ultimate unity of mathematics and physics, as I do, then
a very strong case for the necessity of complex numbers can be built on their
apparently fundamental role in the quantum mechanical laws governing matter.
Also, the work of Sir Roger Penrose has shown (with increasing force) that com-
plex numbers play an equally central role in the relativistic laws governing the
structure of space—time. Indeed, if the laws of matter and of space—time are ever
to be reconciled, then it seems very likely that it will be through the auspices of
the complex numbers. This book cannot explore these matters; instead, we refer
the interested reader to Feynman [1963, 1985], to Penrose [1989, 1994], and to
Penrose and Rindler [1984].

A more serious omission is the lack of discussion of Riemann surfaces, which I
had originally intended to treat in a final chapter. This plan was aborted once it be-
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came clear that a serious treatment would entail expanding the book beyond reason.
By this time, however, I had already erected much of the necessary scaffolding,
and this material remains in the finished book. In particular, I hope that the inter-
ested reader will find the last three chapters helpful in understanding Riemann’s
original physical insights, as expounded by Klein [1881]. See also Springer [1957,
Chap. 1], which essentially reproduces Klein’s monograph, but with additional
helpful commentary.

I consider the history of mathematics to be a vital tool in understanding both
the current state of mathematics, and its trajectory into the future. Sadly, however,
can do no more than touch on historical matters in the present work; instead I refer
you to the remarkable book, Mathematics and Its History, by John Stillwell [1989].
Indeed, I strongly encourage you to think of his book as a companion to mine:
not only does it trace and explain the development of complex analysis, but it also
explores and illuminates the connections with other areas of mathematics.

To the expert reader I would like to apologize for having invented the word
“amplitwist” [Chapter 4] as a synonym (more or less) for “derivative”, as well the
component terms “amplification” and “twist”. I can only say that the need for some
such terminology was forced on me in the classroom: if you try teaching the ideas
in this book without using such language, I think you will quickly discover what
I mean! Incidentally, a precedence argument in defence of “amplitwist” might be
that a similar term was coined by the older German school of Klein, Bieberbach,
et al. They spoke of “eine Drehstreckung”, from “drehen” (to twist) and “strecken”
(to stretch).

A significant proportion of the geometric observations and arguments con-
tained in this book are, to the best of my knowledge, new. I have not drawn atten-
tion to this in the text itself as this would have served no useful purpose: students
don’t need to know, and experts will know without being told. Howeyver, in cases
where an idea is clearly unusual but I am aware of it having been published by
someone else, [ have tried to give credit where credit is due.

In attempting to rethink so much classical mathematics, I have no doubt made
mistakes; the blame for these is mine alone. Corrections will be gratefully received,
and then posted, at http://www.usfca.edu/vca.

My book will no doubt be flawed in many ways of which I am not yet aware, but
there is one “sin” that I have intentionally committed, and for which I shall not re-
pent: many of the arguments are not rigorous, at least as they stand. This is a serious
crime if one believes that our mathematical theories are merely elaborate mental
constructs, precariously hoisted aloft. Then rigour becomes the nerve-racking bal-
ancing act that prevents the entire structure from crashing down around us. But
suppose one believes, as I do, that our mathematical theories are attempting to
capture aspects of a robust Platonic world that is not of our making. I would then
contend that an initial lack of rigour is a small price to pay if it allows the reader to
see into this world more directly and pleasurably than would otherwise be possible.

San Francisco, California T.N.
June, 1996
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Geometry and Complex Arithmetic

I Introduction
1 Historical Sketch

Four and a half centuries have elapsed since complex numbers were first discov-
ered. Here, as the reader is probably already aware, the term complex number
refers to an entity of the form a 4 ib, where a and b are ordinary real numbers and,
unlike any ordinary number, i has the property that i = —1. This discovery would
ultimately have a profound impact on the whole of mathematics, unifying much
that had previously seemed disparate, and explaining much that had previously
seemed inexplicable. Despite this happy ending—in reality the story continues to
unfold to this day—progress following the initial discovery of complex numbers
was painfully slow. Indeed, relative to the advances made in the nineteenth century,
little was achieved during the first 250 years of the life of the complex numbers.

How is it possible that complex numbers lay dormant through ages that saw
the coming and the passing of such great minds as Descartes, Fermat, Leibniz, and
even the visionary genius of Newton? The answer appears to lie in the fact that,
far from being embraced, complex numbers were initially greeted with suspicion,
confusion, and even hostility.

Girolamo Cardano’s Ars Magna, which appeared in 1545, is conventionally
taken to be the birth certificate of the complex numbers. Yet in that work Car-
dano introduced such numbers only to immediately dismiss them as “subtle as
they are useless”. As we shall discuss, the first substantial calculations with com-
plex numbers were carried out by Rafael Bombelli, appearing in his L’Algebra
of 1572. Yet here too we find the innovator seemingly disowning his discoveries
(at least initially), saying that “the whole matter seems to rest on sophistry rather
than truth”. As late as 1702, Leibniz described i, the square root of —1, as “that
amphibian between existence and nonexistence”. Such sentiments were echoed
in the terminology of the period. To the extent that they were discussed at all,
complex numbers were called “impossible” or “imaginary”, the latter term having
(unfortunately) lingered to the present day!. Even in 1770 the situation was still
sufficiently confused that it was possible for so great a mathematician as Euler to

mistakenly argue that v/—2 /=3 = /6.

IHowever, an “imaginary number” now refers to a real multiple of i, rather than to a general
complex number. Incidentally, the term “real number” was introduced precisely to distinguish
such a number from an “imaginary number”.
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The root cause of all this trouble seems to have been a psychological or philo-
sophical block. How could one investigate these matters with enthusiasm or confi-
dence when nobody felt they knew the answer to the question, “What is a complex
number?”’

A satisfactory answer to this question was only found at the end of the eigh-
teenth century?. Independently, and in rapid succession, Wessel, Argand, and
Gauss all recognized that complex numbers could be given a simple, concrete,
geometric interpretation as points (or vectors) in the plane: The mystical quantity
a + ib should be viewed simply as the point in the xy-plane having Cartesian
coordinates (a, b), or equivalently as the vector connecting the origin to that point.
See [1]. When thought of in this way, the plane is denoted C and is called the

complex plane3.

7 The Cdm[;léi i’lané / NG e
R 74 e e

L F
—2-3i.

Figure [1]

The operations of adding or multiplying two complex numbers could now be
given equally definite meanings as geometric operations on the two corresponding
points (or vectors) in the plane. The rule for addition is illustrated in [2a]:

The sum A+ B of two complex numbers is given by the parallelogram )
rule of ordinary vector addition.
Note that this is consistent with [1], in the sense that 4 4 3i (for example) is indeed
the sum of 4 and 3i.

Figure [2b] illustrates the much less obvious rule for multiplication:

The length of AB is the product of the lengths of A and B, and the ?)
angle of AB is the sum of the angles of A and B.

This rule is not forced on us in any obvious way by [1], but note that it is at least
consistent with it, in the sense that 3i (for example) is indeed the product of 3 and

2Wallis almost hit on the answer in 1673; see Stillwell [1989, p. 191] for an account of this
interesting near miss.

3 Also known as the “Gauss plane” or the “Argand plane”.
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i. Check this for yourself. As a more exciting example, consider the product of i
with itself. Since i has unit length and angle (77/2), i? has unit length and angle
n. Thus i2 = —1.

The publication of the geometric interpretation by Wessel and by Argand went
all but unnoticed, but the reputation of Gauss (as great then as it is now) ensured
wide dissemination and acceptance of complex numbers as points in the plane.
Perhaps less important than the details of this new interpretation (at least initially)
was the mere fact that there now existed some way of making sense of these
numbers—that they were now legitimate objects of investigation. In any event, the
floodgates of invention were about to open.

It had taken more than two and a half centuries to come to terms with complex
numbers, but the development of a beautiful new theory of how to do calculus
with such numbers (what we now call complex analysis) was astonishingly rapid.
Most of the fundamental results were obtained (by Cauchy, Riemann, and others)
between 1814 and 1851—a span of less than forty years!

Other views of the history of the subject are certainly possible. For example,
Stewart and Tall [1983, p. 7] suggest that the geometric interpretation* was some-
what incidental to the explosive development of complex analysis. However, it
should be noted that Riemann’s ideas, in particular, would simply not have been
possible without prior knowledge of the geometry of the complex plane.

2 Bombelli’'s “Wild Thought”

The power and beauty of complex analysis ultimately springs from the multipli-
cation rule (2) in conjunction with the addition rule (1). These rules were first
discovered by Bombelli in symbolic form; more than two centuries passed before
the complex plane revealed figure {2]. Since we merely plucked the rules out of
thin air, let us return to the sixteenth century in order to understand their algebraic
origins.

Many texts seek to introduce complex numbers with a convenient historical
fiction based on solving quadratic equations,

4We must protest one piece of their evidence: Wallis did #of possess the geometric interpretation
in 1673; see footnote 2.
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xZ =mx +c. 3)

Two thousand years Bc, it was already known that such equations could be solved
using a method that is equivalent to the modern formula,

x=% [m:t m2+4c].

But what if m? + 4c is negative? This was the very problem that led Cardano to
consider square roots of negative numbers. Thus far the textbook is being histor-
ically accurate, but next we read that the need for (3) to always have a solution
forces us to take complex numbers seriously. This argument carries almost as little
weight now as it did in the sixteenth century. Indeed, we have already pointed out
that Cardano did not hesitate to discard such “solutions” as useless.

It was not that Cardano lacked the imagination to pursue the matter further,
rather he had a fairly compelling reason not to. For the ancient Greeks mathematics
was synonymous with geometry, and this conception still held sway in the sixteenth
century. Thus an algebraic relation such as (3) was not so much thought of as a
problem in its own right, but rather as a mere vehicle for solving a genuine problem
of geometry. For example, (3) may be considered to represent the problem of
finding the intersection points of the parabola y = x2 and the line y = mx + c.
See [3a].

[a] bl

Figure [3]

In the case of L the problem has a solution; algebraically, (m2+4c) >0
and the two intersection points are given by the formula above. In the case of Lj
the problem clearly does not have a solution; algebraically, (m? + 4c) < 0 and
the absence of solutions is correctly manifested by the occurrence of “impossible”
numbers in the formula.

It was not the quadratic that forced complex numbers to be taken seriously, it
was the cubic,

=3 px +2q.

[Ex. 1 shows that a general cubic can always be reduced to this form.] This equation
represents the problem of finding the intersection points of the cubic curve y = x3
and the line y = 3px + 2q. See [3b]. Building on the work of del Ferro and
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Tartaglia, Cardano’s Ars Magna showed that this equation could be solved by
means of a remarkable formula [see Ex. 2]:

x=§/q+\/q2~p3+§/ —va* - P €}

Try it yourself on x> = 6x + 6.

Some thirty years after this formula appeared, Bombelli recognized that there
was something strange and paradoxical about it. First note that if the line y =
3px + 2q is such that p3 > g2 then the formula involves complex numbers. For
example, Bombelli considered x3 = 15x + 4, which yields

x= Y2+ 11i + 42— 11i.

In the previous case of [3a] this merely signalled that the geometric problem had
no solution, but in [3b] it is clear that the line will always hit the curve! In fact
inspection of Bombelli’s example yields the solution x = 4.

As he struggled to resolve this paradox, Bombelli had what he called a “wild
thought”: perhaps the solution x = 4 could be recovered from the above expression
if 324+ 11i = 2+ ni and /2 — 11i = 2 — ni. Of course for this to work he
would have to assume that the addition of two complex numbers A = a + i @ and
B = b + i b obeyed the plausible rule,

A+B=@+id)+®B+ib)=(@+b)+i@+b). (5)

Next, to see if there was indeed a value of n for which /2 + 11/ = 2 + in, he
needed to calculate (2 + in)3. To do so he assumed that he could multiply out
brackets as in ordinary algebra, so that

(@a+id) (b+ib)=ab+i(ab+ab)+i%ab.

Using i2 = —1, he concluded that the product of two complex numbers would be
given by

AB=(a+id)(b+ib)=(ab—ab)+i(ab+ab). 6)

This rule vindicated his “wild thought”, for he was now able to show that (2+i =
2 £ 11i. Check this for yourself.

While complex numbers themselves remained mysterious, Bombelli’s work
on cubic equations thus established that perfectly real problems required complex
arithmetic for their solution. :

Just as with its birth, the subsequent development of the theory of complex
numbers was inextricably bound up with progress in other areas of mathematics
(and also physics). Sadly, we can only touch on these matters in this book; for a full
and fascinating account of these interconnections, the reader is instead referred to
Stillwell [1989]. Repeating what was said in the Preface, we cannot overstate the
value of reading Stillwell’s book alongside this one.
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3 Some Terminology and Notation

Leaving history behind us, we now introduce the modern terminology and notation
used to describe complex numbers. The information is summarized in the table
below, and is illustrated in [4].

Name Meaning Notation
modulus of z length r of z z|
argument of z angle 6 of z arg (z)
real part of z x coordinate of z Re(z)

imaginary part of z y coordinate of z Im(z)
imaginary number real multiple of i
real axis set of real numbers
imaginary axis set of imaginary numbers
complex conjugate of z | reflection of z in the real axis z
T Jof? C

’z=x+iy=r£0

y =Im(z) = imaginary partof z -

6 = arg(z) = argument of z

\_,/YX_/ real axis

x = Re(z) =real part of z

ol imaginary axis -

7 = complex conjugate of z = x — iy |
o
Figure [4]

It is valuable to grasp from the outset that (according to the geometric view)
a complex number is a single, indivisible entity—a point in the plane. Only when
we choose to describe such a point with numerical coordinates does a complex
number appear to be compound or “complex”. More precisely, C is said to be two
dimensional, meaning that two real numbers (coordinates) are needed to label a
point within it, but exactly how the labelling is done is entirely up to us.

One way to label the points is with Cartesian coordinates (the real part x and
the imaginary part y), the complex number being written as z = x +iy. This is the
natural labelling when we are dealing with the addition of two complex numbers,
because (5) says that the real and imaginary parts of A + B are obtained by adding
the real and imaginary parts of A and B.

In the case of multiplication, the Cartesian labelling no longer appears natural,

for it leads to the messy and unenlightening rule (6). The much simpler geometric
rule (2) makes it clear that we should instead label a typical point z with its polar
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coordinates, r = |z| and = arg z. In place of z = x 4 iy we may now write
z = r /6, where the symbol Z serves to remind us that 6 is the angle-of z. [Although
this notation is still used by some, we shall only employ it briefly; later in this
chapter we will discover a much better notation (the standard one) which will then
be used throughout the remainder of the book.] The geometric multiplication rule
(2) now takes the simple form,

(RLY) (rL6) = (Rr)L(¢ +0). )

In common with the Cartesian label x + iy, a given polar label r /6 specifies a
unique point, but (unlike the Cartesian case) a given point does not have a unique
polar label. Since any two angles that differ by a multiple of 27r correspond to the
same direction, a given point has infinitely many different labels:

. =rlO@ —4n)=rl(0@ =2a)=rl0 =rl(O@+27)=rl@+47)=...

This simple fact about angles will become increasingly important as our subject
unfolds.

The Cartesian and polar coordinates are the most common ways of labelling
complex numbers, but they are not the only ways. In Chapter 3 we will meet
another particularly useful method, called “stereographic” coordinates.

4 Practice

Before continuing, we strongly suggest that you make yourself comfortable with
the concepts, terminology, and notation introduced thus far. To do so, try to con-
vince yourself geometrically (and/or algebraically) of each of the following facts:

Re(z) = 5[z +27] ImGx) = 5[z —7) lz] = /%% + y2

tan[arg z] = gggg 27 =|z|? rl6 =r(cos6 +isin0)

Defining 1 by (1/2)z = 1, it follows that 1 = -1, = 1/(-6).

Rli¢ _ R _ 1 _ X .y

ro = THO-0 GEm T iy
(1+i)*=—-4 (141 =251 +1i) (14iv/3)0 =2
A+iv3 _ 4 A4+D’ 5,12 718 = rl(—0
- CAriE T YR @) rl=rio)
n+n=u+22 2122 =2122 /22 =7/72.

Lastly, establish the so-called generalized triangle inequality:
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lz1 +z2+ -+ zal S Mzl + lz2l + - - + lzal- ®

When does equality hold?

5 Equivalence of Symbolic and Geometric Arithmetic

We have been using the symbolic rules (5) and (6) interchangeably with the geo-
metric rules (1) and (2), and we now justify this by showing that they are indeed
equivalent. The equivalence of the addition rules (1) and (5) will be familiar to
those who have studied vectors; in any event, the verification is sufficiently straight-
forward that we may safely leave it to the reader. We therefore only address the
equivalence of the multiplication rules (2) and (6).

First we will show how the symbolic rule may be derived from the geometric
rule. To do so we shall rephrase the geometric rule (7) in a particularly useful and
important way. Let z denote a general point in C, and consider what happens to it—
where it moves to—when it is multiplied by a fixed complex number A = R/¢.
According to (7), the length of z is magnified by R, while the angle of 7 is increased
by ¢. Now imagine that this is done simultaneously to every point of the plane:

Geometrically, multiplication by a complex number A = R/¢ isa
rotation of the plane through angle ¢, and an expansion of the plane  (9)
by factor R.

A few comments are in order:

e Both the rotation and the expansion are centred at the origin.

o It makes no difference whether we do the rotation followed by the expansion,
or the expansion followed by the rotation.

e If R < 1 then the “expansion” is in reality a contraction.

Figure [5] illustrates the effect of such a transformation, the lightly shaded
shapes being transformed into the darkly shaded shapes. Check for yourself that
in this example A = 1 +iv/3=2/%.

It is now a simple matter to deduce the symbolic rule from the geometric
rule. Recall the essential steps taken by Bombelli in deriving (6): (i) i2 = —1;
(i) brackets can be multiplied out, i.e., if A, B, C, are complex numbers then
A(B + C) = AB + AC. We have already seen that the geometric rule gives
us (i), and figure [5] now reveals that (ii) is also true, for the simple reason that
rotations and expansions preserve parallelograms. By the geometric definition of
addition, B + C is the fourth vertex of the parallelogram with vertices 0, B, C. To
establish (ii), we merely observe that multiplication by A rotates and expands this
parallelogram into another parallelogram with vertices 0, AB, AC and A(B + C).
This completes the derivation of (6).

Conversely, we now show how the geometric rule may be derived from the
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A(B+C)

\4

B+C

Figure 5]

v

A\ 4

Figure [6]
symbolic rule®. We begin by considering the transformation z — iz. According
to the symbolic rule, this means that (x + iy) — (—y + ix), and [6a] reveals
that iz is z rotated through a right angle. We now use this fact to interpret the
transformation z — A z, where A is a general complex number. How this is done
may be grasped sufficiently well using the example A = 4 + 3i = 5/¢, where

5In every text we have examined this is done using trigonometric identities. We believe that
the present argument supports the view that such identities are merely complicated manifestations
of the simple rule for complex multiplication.
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¢ = tan~1(3/4). See [6b]. The symbolic rule says that brackets can be multiplied
out, so our transformation may be rewritten as follows:

Z> Az 4+ 3i)z
4z +3@2)

4z + 3 (z rotated by %) .

This is visualized in [6c]. We can now see that the shaded triangles in [6¢] and
[6b] are similar, so multiplication by 5/¢ does indeed rotate the plane by ¢, and
expand it by 5. Done.

Il Euler’'s Formula

1 Introduction

It is time to replace the r /6 notation with a much better one that depends on the
following miraculous fact:

el = cos +isinf| ! (10)

This result was discovered by Leonhard Euler around 1740, and it is called Euler’s
formula in his honour.

Before attempting to explain this result, let us say something of its meaning
and utility. As illustrated in [7a], the formula says that e'f is the point on the unit
circle at angle 6. Instead of writing a general complex number as z = r /6, we can
now write z = r ¢, Concretely, this says that to reach z we must take the unit
vector ¢'? that points at z, then stretch it by the length of z. Part of the beauty of
this representation is that the geometric rule (7) for multiplying complex numbers
now looks almost obvious:

(R ei¢) (r eie) = Rr /@9,

Put differently, algebraically manipulating ¢’ in the same way as the real function
e* yields true facts about complex numbers.

In order to explain Euler’s formula we must first address the more basic ques-
tion, “What does ¢’ mean?” Surprisingly, many authors answer this by defining
¢'?, out of the blue, to be (cos 6 +i sin §)! This gambit is logically unimpeachable,
but it is also a low blow to Euler, reducing one of his greatest achievements to a
mere tautology. We will therefore give two heuristic arguments in support of (10);
deeper arguments will emerge in later chapters.

2 Moving Particle Argument

Recall the basic fact that e* is its own derivative: 5—xe" = ¢*. This is actually

a defining property, that is, if ‘%f(x) = f(x), and f(0) = 1, then f(x) =
¢*. Similarly, if k is a real constant, then e* may be defined by the property
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V@)

Figure [7]
Ed; f(x) = k f(x). To extend the action of the ordinary exponential function &*

from real values of x to imaginary ones, let us cling to this property by insisting
that it remain true if £ = i, so that

d i .
7 e’ =ie". ay

We have used the letter ¢ instead of x because we will now think of the variable
as being time. We are used to thinking of the derivative of a real function as the
slope of the tangent to the graph of the function, but how are we to understand the
derivative in the above equation?

To make sense of this, imagine a particle moving along a curve in C. See
[7b]. The motion of the particle can be described parametrically by saying that at
time # its position is the complex number Z (¢). Next, recall from physics that the
velocity V (t) is the vector—now thought of as a complex number—whose length
and direction are given by the instantaneous speed, and the instantaneous direction
of motion (tangent to the trajectory), of the moving particle. The figure shows the
movement M of the particle between time ¢ and 7 + &, and this should make it
clear that 2G4+ 8) — Z()

dt z0 = }1—% P -
Thus, given a complex function Z(¢) of a real variable ¢, we can always visualize
Z as the position of a moving particle, and % as its velocity.

We can now use this idea to find the trajectory in the case Z(t) = &' See [8].

According to (11),

im X — v
1 -—_ = .
§—0 &

velocity = V = i Z = position, rotated through a right angle.

Since the initial position of the particle is Z(0) = ¢ = 1, its initial velocity is i,
and so it is moving vertically upwards. A split second later the particle will have
moved very slightly in this direction, and its new velocity will be at right angles to
its new position vector. Continuing to construct the motion in this way, it is clear
that the particle will travel round the unit circle.
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V=iZ
Il
=y
<
3]
>
g
g
& 01 initial position =1

Figure [8]

Since we now know that |Z ()| remains equal to 1 throughout the motion, it
follows that the particle’s speed |V (¢)| also remains equal to 1. Thus after time
t = 0 the particle will have travelled a distance 8 round the unit circle, and so the
angle of Z(0) = ¢'® will be 6. This is the geometric statement of Euler’s formula.

3 Power Series Argument

For our second argument, we begin by re-expressing the defining property ;1‘1; fx) =
f(x) in terms of power series. Assuming that f (x) can be expressed in the form
ag+aix +ax?+---a simple calculation shows that

2 x3

x
X p— —_ J— e
e —f(x)—1+x+2! +3! +---,
and further investigation shows that this series converges for all (real) values of x.
Putting x equal to a real value 6, this infinite sum of horizontal real numbers
is visualized in [9]. To make sense of ¢'?, we now cling to the power series and
putx = if:

i6)*  (i6)°

2! 3
Asillustrated in [9], this series is just as meaningful as the series for &%, butinstead
of the terms all having the same direction, here each term makes a right angle with
the previous one, producing a kind of spiral.

This picture makes it clear that the known convergence of the series for e’
guarantees that the spiral series for ¢/® converges to a definite point in C. However,
it is certainly not clear that it will converge to the point on the unit circle at angle
6. To see this, we split the spiral into its real and imaginary parts:

el =1+i6+

% = C©O) +iS0),

where
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(i6)?/2!
[~ A (C
eiG
y i0
OZ\ > — — —> ,5 :
1 0 62 /2! 63 /31
Figure [9]
2 ot 63 6

At this point we could obtain Euler’s formula by appealing to Taylor’s Theorem,
which shows that C () and S(0) are the power series for cos 6 and sin 8. However,
we can also get the result by means of the following elementary argument that
does not require Taylor’s Theorem.

We wish to show two things about e'? = C(0) +iS(H): (i) it has unit length,
and (ii) it has angle 6. To do this, first note that differentiation of the power series
C and S yields

C'=-S and S =C,

where a prime denotes differentiation with respect to 6.
To establish (i), observe that

d .
26-|e“"|2 =(C?*+ 8% =2(CC’ + 8S§') =0,
which means that the length of ¢'9 is independent of 6. Since ¢/ = 1, we deduce
that |¢'®| = 1 for all 6.

To establish (ii) we must show that ®(8) = 6, where ®(0) denotes the angle

of €'?, so that 56)
tan ©(9) = ——~ .
006 = o)

Since we already know that C? + §2 = 1, we find that the derivative of the LHS
of the above equation is

5 §? e
[tan ®(0)] = (1 +tan“ ©) Q' = (1 + a) e = Vot

and that the derivative of the RHS is
[s]’ _sc-c's

Cc C?

1
EZ—.



14 Geometry and Complex Arithmetic

Thus 46
— =0'=1,
de
which implies that ®(0) = 6 + const. Taking the angle of €% = 1 to be 0 [would
it make any geometric difference if we took it to be 27 7], we find that ® = 6.
Althoughitis incidental to our purpose, note that we can now conclude (without

Taylor’s Theorem) that C(0) and S(6) are the power series of cos 6 and sin 6.

4 Sine and Cosine in Terms of Euler’s Formula

A simple but important consequence of Euler’s formula is that sine and cosine can
be constructed from the exponential function. More precisely, inspection of [10]
yields

né

2i si

Figure [10]
é? +e7% =2c0s0 and €9 —e? =2isin 0,

or equivalently,
. e
cos§ = ——— and sinf=-———. (12)

Il Some Applications
1 Introduction

Often problems that do not appear to involve complex numbers are nevertheless
solved most elegantly by viewing them through complex spectacles. In this section
we will illustrate this point with a variety of examples taken from diverse areas
of mathematics. Further examples may be found in the exercises at the end of the
chapter.

The first example [trigonometry] merely illustrates the power of the concepts
already developed, but the remaining examples develop important new ideas.

2 Trigonometry

All trigonometric identities may be viewed as arising from the rule for complex
multiplication. In the following examples we will reduce clutter by using the fol-
lowing shorthand: C = cos 6, § = sin 6, and similarly, ¢ = cos ¢, s = sin ¢.
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Figure [11]

To find an identity for cos(8 + ¢), view it as a component of ¢/ ®*+%)_ See [11a].
Since

cos(@ + @) +isin@@+¢) = 69
210 ¢i®

(C +iS)(c+is)

[Cc — Ss]1+i[Sc + Cs],

we obtain not only an identity for cos(6 + ¢), but also one for sin(9 + ¢):
cos(@ +¢)=Cc—Ss and sin(@ + ¢) = Sc + Cs.
This illustrates another powerful feature of using complex numbers: every complex

equation says two things at once.
To simultaneously find identities for cos 30 and sin 30, consider ¢ 36,

c0s360-+isin30 = ¢ = (°)? = (C+i5)* = [€* - 3¢5?|+i [3¢%5 - 8°].
Using C? 4 §? = 1, these identities may be rewritten in the more familiar forms,
0830 =4C> —3C and sin30 = —45% +3S.

We have just seen how to express trig functions of multiples of 6 in terms of
powers of trig functions of 9, but we can also go in the opposite direction. For
example, suppose we want an identity for cos* @ in terms of multiples of 6. Since
2c080 = €'? + 710,

4. 4 i0 i0)*
2%cos*e = (e‘ +e”! )
= (ei‘w + e—i‘w) +4 (eize + e'iw) +6

= 2cos46 +8cos20 +6
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= cos*l = %[cos49+400529+3].

Although Euler’s formula is extremely convenient for doing such calculations,
it is not essential: all we are really using is the equivalence of the geometric and
symbolic forms of complex multiplication. To stress this point, let us do an example
without Euler’s formula.

To find an identity for tan 36 in terms of T = tan @, consider z = 1 4+ iT. See
[11b]. Since z is at angle 0, z3 will be at angle 36, so tan30 = Im(z3)/Re(z3).
Thus,

3 3 2 3 37 - 713
2=+iTP=(1-3T)+iGT -T%) = wund="—070.
3 Geometry

We shall base our discussion of geometric applications on a single example. In
[12a] we have constructed squares on the sides of an arbitrary quadrilateral. Let

Figure [12]

us prove what this picture strongly suggests: the line-segments joining the centres
of opposite squares are perpendicular and of equal length. It would require a
great deal of ingenuity to find a purely geometric proof of this surprising result,
so instead of relying on our own intelligence, let us invoke the intelligence of the
complex numbers!

Introducing a factor of 2 for convenience, let 2a, 2b, 2¢, and 2d represent
complex numbers running along the edges of the quadrilateral. The only condition
is that the quadrilateral close up, i.e.,

a+b+c+d=0.

As illustrated, choose the origin of C to be at the vertex where 2a begins. To reach
the centre p of the square constructed on that side, we go along a, then an equal
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distance at right angles to a. Thus, since ia is a rotated through a right angle,
p=a+ia=(1+i)a.Likewise,

g=2a+0+Db, r=2a+2b+{+i), s=2a+2b+2c+(1+i)d.

The complex numbers A = s — g (from g to s) and B = r — p (from p tor) are
therefore given by

A=0b+2c+d)+i(d—b) and B=(@+2b+c)+i(c—a).

We wish to show that A and B are perpendicular and of equal length. These
two statements can be combined into the single complex statement B = j A, which
says that B is A rotated by (;r/2). To finish the proof, note that this is the same
thing as A + i B = 0, the verification of which is a routine calculation:

A+iB=(@+b+c+d)+i@a+b+c+d)=0.

As a first step towards a purely geometric explanation of the result in [12a],
consider [12b]. Here squares have been constructed on two sides of an arbitrary
triangle, and, as the picture suggests, the line-segments from their centres to the
midpoint m of the remaining side are perpendicular and of equal length. As is
shown in Ex. 21, [12a] can be quickly deduced® from [12b]. The latter result can,
of course, be proved in the same manner as above, but let us instead try to find a
purely geometric argument.

To do so we will take an interesting detour, investigating translations and
rotations of the plane in terms of complex functions. Inreality, this “detour” is much
more important than the geometric puzzle to which our results will be applied.

Let T, denote a translation of the plane by v, so that a general point z is mapped
to T,(2) = z + v. See [13a], which also illustrates the effect of the translation on
a triangle. The inverse of T, written 7,”!, is the transformation that undoes it;
more formally, 7, is defined by 7,7! 0 7, = £ = T, o 7,71, where £ is the
“do nothing” transformation (called the identity) that maps each point to itself:
£@) = z.Clearly, T, ! = T_,,

If we perform 7, followed by another translation 7, then the composite
mapping T, o T, of the plane is another translation:

TwoTy(2) =Ty(z+v) =24 (W +v) = T4 (2).

This gives us an interesting way of motivating addition itself. If we had introduced
a complex number v as being the translation 7, then we could have defined the
“sum” of two complex numbers 7, and T, to be the net effect of performing
these translations in succession (in either order). Of course this would have been
equivalent to the definition of addition that we actually gave.

SThis approach is based on a paper of Finney [1970].
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Figure [13]

Let 'RZ denote a rotation of the plane through angle 6 about the point a. For
example, RS oR? = RE™® and (RY) ™' = R?. Asafirst step towards expressing
rotations as complex functions, note that (9) says that a rotation about the origin-
can be written as ’Rg (z) =€z,

Asillustrated in [13b], the general rotation RS can be performed by translating
a to 0, rotating & about 0, then translating 0 back to a:

RO@ = (ToRE o T, ) @ = e —a) +a =¥z +k,

where k = a(1 — ¢'?). Thus we find that a rotation about any point can instead
be expressed as an equal rotation about the origin, followed by a translation:
RS = (’1}c o ’Rg). Conversely, a rotation of « about the origin followed by a
translation of v can always be reduced to a single rotation:

T,oRE =RY, where c=v/(l—eY).

In the same way, you can easily check that if we perform the translation before the
rotation, the net transformation can again be accomplished with a single rotation:
R§ o T, = RS. Whatis p?

The results just obtained are certainly not obvious geometrically [try them],
and they serve to illustrate the power of thinking of translations and rotations as
complex functions. As a further illustration, consider the net effect of perform-
ing two rotations about different points. Representing the rotations as complex
functions, an easy calculation [exercise] yields

(R}‘,’ o 732) () =Pz Ly where v =ae®(l — %) +b(1 — £?).
Unless (6 + ¢) is a multiple of 27, the previous paragraph therefore tells us that

v _ae®(1—€) +b(1 — '?)
1 — i6+d) 1 — £i6+9) )

Ry oRE = RO+, where ¢ =

[What should ¢ equal if » = a or ¢ = 0?7 Check the formula.] This result is
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RZ(Z) [b]

Figure [14]
illustrated in [14a]. Later we shall find a purely geometric explanation of this
result, and, in the process, a very simple geometric construction of the point ¢

given by the complicated formula above. )
If, on the other hand, (8 + ¢) is a multiple of 27, then ¢/®+¢) = 1, and

’R,Z’ ORZ =7,, where v=(1—-¢e?0b-a).

For example, putting § = ¢ = m, this predicts that R} o R} = Tp—q) is a
translation by twice the complex number connecting the first centre of rotation to
the second. That this is indeed true can be deduced directly from [14b].

The above result on the composition of two rotations implies [exercise] the
following:

Let M = Rg’," 0-:-0 ’R,% o 2‘1 be the composition of n rotations,
andlet © = 601 + 62 + - - - + 6, be the total amount of rotation. In
general, M = R® (for some c), but if © is a multiple of 27 then
M =T, for some v.

Returning to our original problem, we can now give an elegant geometric
explanation of the result in [12b]. Referring to [15a], let M = RJ o ’R},"/ 2,

Rﬁ”/ 2, According to the result just obtained, M is a translation. To find out what
translation, we need only discover the effect of M on a single point. Clearly,
M(k) = k, so M is the zero translation, i.e., the identity transformation £. Thus

R o RYP = (RE) ™ o M = R,
If we define s’ = R (s) then m is the midpoint of ss’. But, on the other hand,
s = (RF o RED) (5) = RE(s).

Thus the triangle sps’ is isosceles and has a right angle at p, so sm and pm are
perpendicular and of equal length. Done.
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ibt

i Z(t) — eateibt

Figure [15]
4 Calculus

For our calculus example, consider the problem of finding the 100t derivative of
e* sin x. More generally, we will show how complex numbers may be used to find
the n'? derivative of ¢%* sin bx.

In discussing Euler’s formula we saw that e’ may be thought of as the location
at time ¢ of a particle travelling around the unit circle at unit speed. In the same
way, ¢?* may be thought of as a unit complex number rotating about the origin
with (angular) speed b. If we stretch this unit complex number by e# as it turns,
then its tip describes the motion of a particle that is spiralling away from the origin.
See [15b].

The relevance of this to the opening problem is that the location of the particle
at time ¢ is

Z(t) = e” e’ = e cos bt + i e sinbt.

Thus the derivative of % sin bt is simply the vertical (imaginary) component of
the velocity V of Z.

We could find V simply by differentiating the components of Z in the above
expression, but we shall instead use this example to introduce the geometric ap-
proach that will be used throughout this book. In [16], consider the movement
M = Z(t + 8) — Z(¢) of the particle between time ¢ and (¢ + §).

Recall that V is defined to be the limit of (M/8) as § tends to zero. Thus V
and (M/4$) are very nearly equal if 8 is very small. This suggests two intuitive
ways of speaking, both of which will be used in this book: (i) we shall say that
“V = (M/8) when § is infinitesimal” or (ii) that “V and (M/8) are ultimately
equal” (as § tends to zero).

We stress that here the words “ultimately equal” and “infinitesimal” are being
used in definite, technical senses; in particular, “infinitesimal” does not refer to
some mystical, infinitely small quantity’. More precisely, if two quantities X and

7For more on this distinction, see the discussion in Chandrasekhar [1995].




Some Applications 21
Y depend on a third quantity &, then

X
lim — =1 — “X =Y for infinitesimal 8",
—»0Y

— “X and Y are ultimately equal as § tends to zero™.

It follows from the basic theorems on limits that “ultimate equality” inherits many
of the properties of ordinary equality. For example, since V and (M/§) are ulti-
mately equal, so are V§ and M.

We now return to the problem of finding the velocity of the spiralling particle.
As illustrated in [16]}, draw rays from O through Z(¢) and Z (¢ + §), together with
circular arcs (centred at 0) through those points. Now let A and B be the complex
numbers connecting Z(¢) to the illustrated intersection points of these rays and
arcs. If 8 is infinitesimal, then B is at right angles to A and Z, and M = A + B.

e @ +ib) °

Figure [16]

Let us find the ultimate lengths of A and B. During the time interval §, the
angle of Z increases by bé, so the two rays cut off an arc of length b§ on the unit
circle, and an arc of length |Z|bé on the circle through Z. Thus | B| is ultimately
equal to |Z|b3. Next, note that |A| is the increase in |Z(¢)| occurring in the time
interval 8. Thus, since

d d
Elz(t)l = Ee‘" =alZ|,

|A{ is ultimately equal to | Z|a3.

The shaded triangle at Z is therefore ultimately similar to the shaded right
triangle with hypotenuse a + i b. Rotating the latter triangle by the angle of Z, you
should now be able to see that if § is infinitesimal then
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M = (a+ib) rotated by the angle of Z, and expanded by |Z|§
(a+ib)Zs
d

Thus all rays from the origin cut the spiral at the same angle [the angle of (a +ib)],
and the speed of the particle is proportional to its distance from the origin.

Note that although we have not yet given meaning to e* (where z is a general
complex number), it is certainly tempting to write Z(z) = e? e = £@+ib)* This
makes the result (13) look very natural. Conversely, this suggests that we should
define e¢ = e to be e*e'?; another justification for this step will emerge in
the next chapter.

Using (13), it is now easy to take further derivatives. For example, the accel-
eration of the particle is

@ ol ib)* Z ib) V

Eti —E —(a+l) —(d+l) .

Continuing in this way, each new derivative is obtained by multiplying the previous
one by (a + ib). [Try sketching these successive derivatives in [16].] Writing (a +
ib) = Re'®, where R = +/a? + b2 and ¢ is the appropriate value of tan~!(b/a),
we therefore find that

n

7 = (a + lb)n 7 = Rn einq) eateibt — Rneatei(bt+n¢).

dm
Thus u

o [ sinbt] = (a* + b))% & sin [bt +n tan~! (b/a)] . (14)
5 Algebra

In the final year of his life (1716) Roger Cotes made a remarkable discovery that
enabled him (in principle) to evaluate the family of integrals,

f dx
xn—1’
where n = 1,2,3,.... To see the connection with algebra, consider the case

n = 2. The key observations are that the denominator (x> — 1) can be factorized
into (x — 1)(x + 1), and that the integrand can then be split into partial fractions:

/ dx 1 / 1 1 d 1) x—1
_ —_— X =5In .
x2-1 2 |x—-1 =x+1 2 [x+1
As we shall see, for higher values of n one cannot completely factorize (x" —1)
into linear factors without employing complex numbers—a scarce and dubious
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commodity in 1716! However, Cotes was aware that if he could break down (x” —1)
into real linear and quadratic factors, then he would be able to evaluate the integral.
Here, a “real quadratic” refers to a quadratic whose coefficients are all real numbers.

For example, (x* —1) can be broken down into (x — 1)(x + 1)(x2+1), yielding
a partial fraction expression of the form

1 A N B N Cx N D
-1 x—1 x+1 x2+1 x2+1

and hence an integral that can be evaluated in terms of In and tan~!. More generally,
even if the factorization involves more complicated quadratics than (x2 + 1), it is
easy to show that only In and tan~! are needed to evaluate the resulting integrals.

In order to set Cotes’ work on (x” — 1) in a wider context, we shall investigate
the general connection between the roots of a polynomial and its factorization.
This connection can be explained by considering the geometric series,

Gp-1= cm—l _+_Cm-‘2z +cm—3z2 I +sz—2 +Zm_1,

in which ¢ and z are complex. Just as in real algebra, this series may be summed
by noting that zG,,—1 and cGp,—1 contain almost the same terms—try an example,
say m = 4, if you have trouble seeing this. Subtracting these two expressions
yields

@=0)Gm-1=7" =", (15)
and thus
m—-c"
Gm—l = .
Z—c

If we think of ¢ as fixed and z as variable, then (z™ — ¢™) is an mth-degree
polynomial in z, and z = ¢ is a root. The result (15) says that this mth—degree
polynomial can be factored into the product of the linear term (z — ¢) and the
(m— l)th—degree polynomial G,,_i.

In 1637 Descartes published an important generalization of this result. Let
P,(z) denote a general polynomial of degree n:

Px)=7"+A""'4+...+ Dz +E,
where the coefficients A, ..., E may be complex. Since (15) implies
Pr(z) — Pu(c) = (2 _C)[Gn—l +AGn—2+"‘+D],

we obtain Descartes’ Factor Theorem linking the existence of roots to factoriz-
ability:

If ¢ is a solution of P,(z) = 0 then P,(z) = (z — ¢) P,—1, where
P,_1 is of degree (n — 1).
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If we could in turn find a root ¢’ of P,_1, then the same reasoning would yield
P, = (z — ¢)(z — ¢) P,—>. Continuing in this way, Descartes’ theorem therefore
holds out the promise of factoring P, into precisely » linear factors:

Pa(z) = (z—c)(z—c2)---(z2—cn). (16)

If we do not acknowledge the existence of complex roots (as in the early 18t
century) then this factorization will be possible in some cases (e.g., z2 — 1), and
impossible in others (e.g., 22+ 1). But, in splendid contrast to this, if one admits
complex numbers then it can be shown that P, always has n roots in C, and the
Jactorization (16) is always possible. This is called the Fundamental Theorem of
Algebra, and we shall explain its truth in Chapter 7.

Each factor (z —c¢) in (16) represents a complex number connecting the root cy
to the variable point z. Figure [17a] illustrates this for a general cubic polynomial.
Writing each of these complex numbers in the form Ry £'% (16) takes the more
vivid form

P,(z) = RiR;- - R, & @1+oattdn)

Although the Fundamental Theorem of Algebra was not available to Cotes, let
us see how it guarantees that he would succeed in his quest to decompose x" — 1
into real linear and quadratic factors. Cotes’ polynomial has real coefficients, and,
quite generally, we can show that

If a polynomial has real coefficients then its complex roots occur in
complex conjugate pairs, and it can be factorized into real linear
and quadratic factors.

For if the coefficients A, ..., E of P,(z) are all real then P,(c) = O implies
[exercise] P,(c¢) = 0, and the factorization (16) contains

z—0)z—0) =z —(c+0)z+cc=2z*—2Re(c)z+|c|?,

which is a real quadratic.

Let us now discuss how Cotes was able to factorize x” — 1 into real linear and
quadratic factors by appealing to the geometry of the regular n-gon. [An “n-gon” is
an n-sided polygon.] To appreciate the following, place yourself in his 18t century
shoes and forget all you have just learnt concerning the Fundamental Theorem of
Algebra; even forget about complex numbers and the complex plane!

For the first few values of n, the desired factorizations of U, (x) = x" — 1 are
not too hard to find:

U(x) = (x—1Dx+1), (17)
Us(x) = (x—=DEP4+x4+1), (18)
Us(x) = (x— D+ D2+, (19)

Us(x) = x-—1 (x2+[1—+2£]x+1) (x2+[#]x+l),
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"
: x—1
e
Ca! (4] 1 C1 ‘P
T
Figure [17]

but the general pattern seems elusive.

To find such a pattern, let us try to visualize the simplest case, (17). See [17b].
Let O be a fixed point, and P a variable point, on a line in the plane (which we are
not thinking of as C), and let x denote the distance O P. If we now draw a circle
of unit radius centred at O, and let C; and C; be its intersection points with the
line, then clearly® U,(x) = PC; - PC.

To understand quadratic factors in this spirit, let us skip over (18) to the simpler
quadratic in (19). This factorization of Us(x) is the best we could do without
complex numbers, but ideally we would have liked to have decomposed Us(x)
into four linear factors. This suggests that we rewrite (19) as

Ug(x) = (x = Dx+ D Vx2 +1vVx2 41,

the last two “factors” being analogous to genuine linear factors. If we are to interpret
this expression (by analogy with the previous case) as the product of the distances
of P from four fixed points, then the points corresponding to the last two “factors”
must be off the line. More precisely, Pythagoras’ Theorem tells us that a point
whose distance from P is +/x2 4 12 must lie at unit distance from O in a direction
at right angles to the line O P. Referring to [18a], we can now see that Us(x) =
PCy - PCy - PC3 - PCy4, where C1C2C3Cy is the illustrated square inscribed in
the circle.

Since we have factorized Us(x) with the regular 4-gon (the square), perhaps
we can factorize U3 (x) with the regular 3-gon (the equilateral triangle). See [18b].
Applying Pythagoras’ Theorem to this figure,

PCi-PCy-PC; = Pa-(Pcz)2=(x—1)([x+%]2+[°z@]2)
= x-DE2+x+1),

8Here, and in what follows, we shall suppose for convenience that x > 1, so that Up(x) is
positive.
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Figure [18]

which is indeed the desired factorization (18) of Us(x)!
A plausible generalization for U, now presents itself:

If C1C2C3 - - - C, is a regular n-gon inscribed in a circle of unit
radius centred at O, and P is the point on OC1 at distance x from
0O, thenU,(x) = PCy- PCy--- PC,,.

This is Cotes’ result. Unfortunately, he stated it without proof, and he left no clue
as to how he discovered it. Thus we can only speculate that he may have been
guided by an argument like the one we have just supplied®.

Since the vertices of the regular n-gon will always come in symmetric pairs
that are equidistant from P, the examples in [18] make it clear that Cotes’ result
is indeed equivalent to factorizing U, (x) into real linear and quadratic factors.

Recovering from our feigned bout of amnesia concerning complex numbers
and their geometric interpretation, Cotes’ result becomes simple to understand
and to prove. Taking O to be the origin of the complex plane, and C; to be 1, the
vertices of Cotes’ n-gon are given by Cpy1 = ek @m/m)  See [19], which illustrates
the case n = 12. Since (Ci41)" = €¥?™ = 1, all is suddenly clear: The vertices of
the regular n-gon are the n complex roots of U, (z) = z* — 1. Because the solutions
of z* — 1 = 0 may be written formally as z = /1, the vertices of the n-gon are
called the n' roots of unity.

By Descartes’ Factor Theorem, the complete factorization of (z” — 1) is there-
fore

= 1=Un(2) =z —-C1)z—C2)---(z—Cp),

with each conjugate pair of roots yielding a real quadratic factor,

(z _ eik(27t/n)) (z _ e—ik(Zn/n)) — 72— 27cos [Zk_yr] 1.

n

Each factor (z — Cy) = Ry €'%* may be viewed (cf. [17a]) as a complex number
connecting a vertex of the n-gon to z. Thus, if P is an arbitrary point in the plane

9Stillwell [1989, p. 195] has instead speculated that Cotes used complex numbers (as we are
about to), but then deliberately stated his findings in a form that did not require them.
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Figure [19]
(not merely a point on the real axis), then we obtain the following generalized form
of Cotes’ result:

Un(P) = [PCy- PCy--- PCn]€'®,

where ® = (¢ +¢2+- - - +¢y). If P happens to be a real number (again supposed
greater than 1) then & = 0 [make sure you see this], and we recover Cotes’ result.

We did not immediately state and prove Cotes’ result in terms of complex
numbers because we felt there was something rather fascinating about our first,
direct approach. Viewed in hindsight, it shows that even if we attempt to avoid
complex numbers, we cannot avoid the geometry of the complex plane!

6 Vectorial Operations

Not only is complex addition the same as vector addition, but we will now show
that the familiar vectorial operations of dot and cross products (also called scalar
and vector products) are both subsumed by complex multiplication. Since these
vectorial operations are extremely important in physics—they were discovered
by physicists!—their connection with complex multiplication will prove valuable
both in applying complex analysis to the physical world, and in using physics to
understand complex analysis.

When a complex number z = x + iy is being thought of merely as a vector,
we shall write it in bold type, with its components in a column:

I1=x+iy z=(;).

Although the dot and cross product are meaningful for arbitrary vectors in space,
we shall assume in the following that our vectors all lie in a single plane—the
complex plane.

Given two vectors a and b, figure [20a] recalls the definition of the dot product
as the length of one vector, times the projection onto that vector of the other vector:

a-b = |a| |b|cosf = b-a,
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Figure [20]

where 6 is the angle between a and b.

Figure [20b] recalls the definition of the cross product: a x b is the vector
perpendicular to the plane of a and b whose length is equal to the area A of the
parallelogram spanned by a and b. But wait, there are two (opposite) directions
perpendicular to C; which should we choose?

Writing A4 = |a| |b| sin @, the area A has a sign attached to it. An easy way to
see this sign is to think of the angle 6 from a to b as lying in range —n to m; the
sign of A is then the same as 8. If A > 0, as in [20b], then we define a x b to point
upwards from the plane, and if A < 0 we define it to point downwards. It follows
thatax b = —(b x a).

This conventional definition of a x b is intrinsically three-dimensional, and it
therefore presents a problem: if a and b are thought of as complex numbers, ax b
cannot be, for it does not lie in the (complex) plane of a and b. No such problem
exists with the dot product because a-b is simply a real number, and this suggests
a way out. .

Since all our vectors will be lying in the same plane, their cross products will
all have equal (or opposite) directions, so the only distinction between one cross
product and another will be the value of .A. For the purposes of this book we will
therefore redefine the cross product to be the (signed) area A of the parallelogram
spanned by a and b:

axb=|a||b|sinf = —(bxa).

Figure [21] shows two complex numbers a = |a| ¢'® and b = |b| €', the angle
from a to b being 8 = (B — «). To see how their dot and cross products are related
to complex multiplication, consider the effect of multiplying each point in C by
a. This is a rotation of —« and an expansion of |a|, and if we look at the image
under this transformation of the shaded right triangle with hypotenuse b, then we
immediately see that

ab=a-‘b+i(axb). 20)

Of course we could also have got this by simple calculation:

ab = (lale”')(|b| €P) = |a| |b| &P~ = |a| |b| €'® = |a| |b|(cos® + i sin6).
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Figure [21]
When we refer to the dot and cross products as “vectorial operations” we
mean that they are defined geometrically, independently of any particular choice
of coordinate axes. However, once such a choice has been made, (20) makes it easy

to express these operations in terms of Cartesian coordinates. Writing a = x + iy
andb =x"+ iy,

ab=(x—iy +iy)=@x' +yy)+ixy —yx'),

4 I4
(;)-(;,)zxx'+yy' and (i)x(i,):xy’—yx’.

We end with an example that illustrates the importance of the sign of the area
(a x b). Consider the problem of finding the area .4 of the quadrilateral in [22a]
whose vertices are, in counterclockwise order, a, b, ¢, and d. Clearly this is just
the sum of the ordinary, unsigned areas of the four triangles formed by joining the
vertices of the quadrilateral to the origin. Thus, since the area of each triangle is

SO

b fa]

Figure [22]
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simply half the area of the corresponding parallelogram,

A = %[(axb)+(bXC)+(CXd)+(dxa)]
= %Im[ﬁb+5c+5d+3a]. (21

Obviously this formula could easily be generalized to polygons with more than
four sides.

But what if 0 is outside the quadrilateral? In [22b], A is clearly the sum of
the ordinary areas of three of the triangles, minus the ordinary area of the striped
triangle. Since the angle from b to ¢ is negative, %(b x ¢) is automatically the
negative of the striped area, and A is therefore given by exactly the same formula
as before!

Can you find a location for 0 that makes two of the signed areas negative?
Check that the formula still works. Exercise 35 shows that (21) always works.

IV Transformations and Euclidean Geometry*
1 Geometry Through the Eyes of Felix Klein

Even with the benefit of enormous hindsight, it is hard to introduce complex
numbers in a compelling manner. Historically, we have seen how cubic equations
forced them upon us algebraically, and in discussing Cotes’ work we saw something
of the inevitability of their geometric interpretation. In this section we will attempt
to show how complex numbers arise very naturally, almost inevitably, from a
careful re-examination of plane Euclidean geometry'©. -

As the * following the title of this section indicates, the material it contains
may be omitted. However, in addition to “explaining” complex numbers, these
ideas are very interesting in their own right, and they will also be needed for an
understanding of other optional sections of the book.

Although the ancient Greeks made many beautiful and remarkable discover-
ies in geometry, it was two thousand years later that Felix Klein first asked and
answered the question, “What is geometry?”

Let us restrict ourselves from the outset to plane geometry. One might begin
by saying that this is the study of geometric properties of geometric figures in the
plane, but what are (i) “geometric properties”, and (ii) “geometric figures”? We
will concentrate on (i), swiftly passing over (ii) by interpreting “geometric figure”
as anything we might choose to draw on an infinitely large piece of fiat paper with
an infinitely fine pen.

As for (i), we begin by noting that if two figures (e.g., two triangles) have
the same geometric properties, then (from the point of view of geometry) they
must be the “same”, “equal”, or, as one usually says, congruent. Thus if we had
a clear definition of congruence (“geometric equality’) then we could reverse this

10The excellent book by Nikulin and Shafarevich [1987] is the only other work we know of in
which a similar attempt is made.
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observation and define geometric properties as those properties that are common
to all congruent figures. How, then, can we tell if two figures are geometrically
equal?

Consider the triangles in [23], and imagine that they are pieces of paper that
you could pick up in your hand. To see if T is congruent to 7”, you could pick up
T and check whether it could be placed on top of 7'. Note that it is essential that
we be allowed to move T in space: in order to place T on top of 7 we must first
flip it over; we can’t just slide T around within the plane. Tentatively generalizing,
this suggests that a figure F is congruent to another figure F' if there exists a
motion of F through space that makes it coincide with F'. Note that the discussion
suggests that there are two fundamentally different types of motion: those that
involve flipping the figure over, and those that do not. Later, we shall return to this
important point.

Figure [23]

It is clearly somewhat unsatisfactory that in attempting to define geometry in
the plane we have appealed to the idea of motion through space. We now rectify
this. Returning to [23], imagine that 7 and 7’ are drawn on separate, transparent
sheets of plastic. Instead of picking up just the triangle T, we now pick up the
entire sheet on which it is drawn, then try to place it on the second sheet so as to
make T coincide with T'. At the end of this motion, each point A on T’s sheet
lies over a point A’ of T"’s sheet, and we can now define the motion M to be this
mapping A > A’ = M(A) of the plane to itself.

However, not any old mapping qualifies as a motion, for we must also capture
the (previously implicit) idea of the sheet remaining rigid while it moves, so that
distances between points remain constant during the motion. Here, then, is our
definition;

A motion M is a mapping of the plane to itself such that the distance
between any two points A and B is equal to the distance between (22)
their images A’ = M(A) and B’ = M(B).

Note that what we have called a motion is often termed a “rigid motion”, or an
“isometry”.

Armed with this precise concept of motion, our final definition of geometric
equality becomes
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F is congruent to F', written F = F’, if there exists a motion M (23)
such that F' = M(F).

Next, as a consequence of our earlier discussion, a geometric property of a figure
is one that is unaltered by all possible motions of the figure. Finally, in answer to
the opening question of “What is geometry?”, Klein would answer that it is the
study of these so-called invariants of the set of motions.

One of the most remarkable discoveries of the last century was that Euclidean
geometry is not the only possible geometry. Two of these so-called non-Euclidean
geometries will be studied in Chapter 6, but for the moment we wish only to
explain how Klein was able to generalize the above ideas so as to embrace such
new geometries.

The aim in (23) was to use a family of transformations to introduce a concept
of geometric equality. But will this =-type of equality behave in the way we would
like and expect? To answer this we must first make these expectations explicit. So
as not to confuse this general discussion with the particular concept of congruence
in (23), let us denote geometric equality by ~.

(i) A figure should equal itself: F ~ F, for all F.
(ii) If F equals F’, then F’ should equal F: F ~ F/ = F' ~ F.

(iii) If F and F’ are equal, and F’ and F” are equal, then F and F” should also
beequal: F~F & F'~F' = F ~ F’.

Any relation satisfying these expectations is called an equivalence relation.

Now suppose that we retain the definition (23) of geometric equality, but that
we generalize the definition of “motion” given in (22) by replacing the family of
distance-preserving transformations with some other family G of transformations.
It should be clear that not any old G will be compatible with our aim of defining
geometric equality. Indeed, (i), (ii), and (iii) imply that G must have the following
very special structure, which is illustrated!! in [24].

(1) The family G must contain a transformation £ (called the identity) that maps
each point to itself.

(ii) If G contains a transformation M, then it must also contain a transformation
M1 (called the inverse) that undoes M. [Check for yourself that for M~!
to exist (let alone be a member of G) M must have the special properties of
being (a) onto and (b) one-to-one, i.e., (a) every point must be the image of
some point, and (b) distinct points must have distinct images.]

(iii) If M and A are members of G then so is the composite transformation
N o M = (M followed by N). This property of G is called closure.

We have thus arrived, very naturally, at a concept of fundamental importance in the

HHere G is the group of projections. If we do a perspective drawing of figures in the plane,
then the mapping from that plane to the “canvas” plane is called a perspectivity. A projection is
then defined to be any sequence of perspectivities. Can you see why the set of projections should
form a group?
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whole of mathematics: a family G of transformations that satisfies these three!?
requirements is called a group.

Let us check that the motions defined in (22) do indeed form a group: (i) Since
the identity transformation preserves distances, it is a motion. (i) Provided it exists,
the inverse of a motion will preserve distances and hence will be a motion itself.
As for existence, (a) it is certainly plausible that when we apply a motion to the
entire plane then the image is the entire plane—we will prove this later—and (b)
the non-zero distance between distinct points is preserved by a motion, so their
images are again distinct. (iii) If two transformations do not alter distances, then
applying them in succession will not alter distances either, so the composition of
two motions is another motion.

Klein’s idea was that we could first select a group G at will, then define a
corresponding “geometry” as the study of the invariants of that G. [Klein first
announced this idea in 1872—when he was 23 years old!—at the University of
Erlangen, and it has thus come to be known as his Erlangen Program.] For example,
if we choose G to be the group of motions, we recover the familiar Euclidean
geometry of the plane. But this is far from being the only geometry of the plane,
as the so-called projective geometry of [24] illustrates.

Klein’s vision of geometry was broader still. We have been concerned with
what geometries are possible when figures are drawn anywhere in the plane, but
suppose for example that we are only allowed to draw within some disc D. It
should be clear that we can construct “geometries of D” in exactly the same way
that we constructed geometries of the plane: given a group H of transformations
of D to itself, the corresponding geometry is the study of the invariants of H. If
you doubt that any such groups exist, consider the set of all rotations around the
centre of D.

1211 more abstract settings it is necessary to add a fourth requirement of associativity, namely,
Ao (BoC) = (Ao B)oC. Of course for transformations this is automatically true.
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The reader may well feel that the above discussion is a chronic case of mathe-
matical generalization running amuck—that the resulting conception of geometry
is (to coin a phrase) “as subtle as it is useless”. Nothing could be further from
the truth! In Chapter 3 we shall be led, very naturally, to consider a particularly
interesting group of transformations of a disc to itself. The resulting non-Euclidean
geometry is called hyperbolic or Lobachevskian geometry, and it is the subject of
Chapter 6. Far from being useless, this geometry has proved to be an immensely
powerful tool in diverse areas of mathematics, and the insights it continues to
provide lie on the cutting edge of contemporary research.

2 Classifying Motions

To understand the foundations of Euclidean geometry, it seems we must study its
group of motions. At the moment, this group is defined rather abstractly as the set
of distance-preserving mappings of the plane to itself. However, it is easy enough
to think of concrete examples of motions: a rotation of the plane about an arbitrary
point, a translation of the plane, or a reflection of the plane in some line. Our aim
is to understand the most general possible motions in equally vivid terms.

‘We begin by stating a key fact:

A motion is uniquely determined by its effect on any triangle (i.e., (24)
on any three non-collinear points).

By this we mean that knowing what happens to the three points tells us what must
happen to every point in the plane. To see this, first look at [25]. This shows that
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Figure [25]
each point P is uniquely determined by its distances from the vertices A, B, C of
such a triangle!3. The distances from A and B yield two circles which (in general)
intersect in two points, P and Q. The third distance (from C) then picks out P.

To obtain the result (24), now look at [26]. This illustrates a motion M mapping
A, B,Cto A', B’, C’. By the very definition of a motion, M must map an arbitrary

3This is how earthquakes are located. Two types of wave are emitted by the quake as it
begins: fast-moving “P-waves” of compression, and slower-moving “S-waves” of destructive
shear. Thus the P-waves will arrive at a seismic station before the S-waves, and the time-lag
between these events may be used to calculate the distance of the quake from that station. Repeating
this calculation at two more seismic stations, the quake may be located.
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Figure [26]
point P to a point P’ whose distances from A’, B’, C’ are equal to the original
distances of P from A, B, C. Thus, as shown, P’ is uniquely determined. Done.

A big step towards classification is the realization that there are two funda-
mentally different kinds of motions. In terms of our earlier conception of motion
through space, the distinction is whether or not a figure must be flipped over before
it can be placed on top of a congruent figure. To see how this dichotomy arises in
terms of the new definition (22), suppose that a motion sends two points A and
B to A’ and B’. See [27]. According to (24), the motion is not yet determined:
we need to know the image of any (non-collinear) third point C, such as the one
shown in [27]. Since motions preserve the distances of C from A and B, there are
just two possibilities for the image of C, namely, C’ and its reflection C in the line
L through A’ and B’. Thus there are precisely two motions (M and M, say) that
map A, Bto A’, B': M sends C to C’, and M sends C to C.

A distinction can be made between M and M by looking at how they affect
angles. All motions preserve the magnitude of angles, but we see that M also
preserves the sense of the angle 6, while M reverses it. The fundamental nature of
this distinction can be seen from the fact that M must in fact preserve all angles,
while M must reverse all angles.

Figure [27]
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To see this, consider the fate of the angle ¢ in the triangle T. If C goes to C’
(i-e., if the motion is M) then, carrying out the construction indicated in [26], the
image of T is T’, and the angle is preserved. If, on the other hand, C goes to c
(i.e., if the motion is M) then the image of T is the reflection T of T’ in L, and
the angle is reversed. Motions that preserve angles are called direct, and those that
reverse angles are called opposite. Thus rotations and translations are direct, while
reflections are opposite. Summarizing what we have found,

There is exactly one direct motion M (and exactly one
opposite motion M) that maps a given line-segment AB
to another line-segment A’'B’ of equal length. Furthermore,
M = (M followed by reflection in the line A’B’).

(25)

To understand motions we may thus consider two randomly drawn segments
AB and A’ B’ of equal length, then find the direct motion (and the opposite motion)
that maps one to the other. It is now easy to show that

Every direct motion is a rotation, or else (exceptionally) a transla- (26)
tion.

Note that this result gives us greater insight into our earlier calculations on the
composition of rotations and translations: since the composition of any two direct
motions is another direct motion [why?], it can only be a rotation or a translation.
Conversely, those calculations allow us to restate (26) in a very neat way:

Every direct motion can be expressed as a complex function of the

form M(z) = €%z + v. @7

We now establish (26). If the line-segment A’B’ is parallel to AB then the
vectors AB and A’B’ are either equal or opposite. If they are equal, as in [28a],
the motion is a translation,; if they are opposite, as in [28b], the motion is a rotation
of 7 about the intersection point of the lines AA’ and BB'.

If the segments are not parallel, produce them (if necessary) till they meet at
M, and let 8 be the angle between the directions of ﬁ and ATfS’ . See [28c]. First
recall an elementary property of circles: the chord AA’ subtends the same angle 6
at every point of the circular arc AM A’. Next, let O denote the intersection point of
this arc with the perpendicular bisector of AA’. We now see that the direct motion
carrying AB to A’B’ is a rotation of 6 about O, for clearly A is rotated to A’, and
the direction of AB is rotated into the direction of A’B’. Done.

The sense in which translations are “exceptional” is that if the two segments
are drawn at random then it is very unlikely that they will be parallel. Indeed, given
AB, atranslation is only needed for one possible direction of A’ B’ out of infinitely
many, so the mathematical probability that a random direct motion is a translation
is actually zero!

Direct transformations will be more important to us than opposite ones, so we
relegate the investigation of opposite motions to Exs. 39, 40, 41. The reason for
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Figure [28]
the greater emphasis on direct motions stems from the fact that they form a group

(a subgroup of the full group of motions), while the opposite motions do not. Can
you see why?

3 Three Reflections Theorem

In chemistry one is concerned with the interactions of atoms, but to gain deeper
insights one must study the electrons, protons, and neutrons from which atoms are
built. Likewise, though our concern is with direct motions, we will gain deeper
insights by studying the opposite motions from which direct motions are built.
More precisely,

Every direct motion is the composition of two reflections. (28)

Note that the second sentence of (25) then implies that every opposite motion
is the composition of three reflections. See Ex. 39. In brief, every motion is the
composition of either two or three reflections, a result that is called the Three
Reflections Theorem!*.

Earlier we tried to show that the set of motions forms a group, but it was not
clear that every motion had an inverse. The Three Reflections Theorem settles this
neatly and explicitly, for the inverse of a sequence of reflections is obtained by
reversing the order in which the reflections are performed.

In what follows, let 37 denote reflection in a line L. Thus reflection in L
followed by reflection in Lj is written Rz, o Rz,. According to (26), proving
(28) amounts to showing that every rotation (and every translation) is of the form
R, o Rr,. This is an immediate consequence of the following:

If Ly and Ly intersect at O, and the angle from L1 to L, is ¢, then
R, o R, is a rotation of 2¢ about O,

and

l4Results such as (26) may instead be viewed as consequences of this theorem; see Still-
well [1992] for an elegant and elementary exposition of this approach.
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If Ly and L, are parallel, and V is the perpendicular connecting
vector from L1 to Ly, then R, o R, is a translation of 2V.

Both these results are easy enough to prove directly [try it!], but the following is
perhaps more elegant.

First, since R, o R, is a direct motion (because it reverses angles twice),
it is either a rotation or a translation. Second, note that rotations and translations
may be distinguished by their invariant curves, that is, curves that are mapped into
themselves. For a rotation about a point O, the invariant curves are circles centred
at O, while for a translation they are lines parallel to the translation.

[b] F

Figure [29]

Now look at [29a]. Clearly :,, o R, leaves invariant any circle centred at O,
so it is a rotation about O. To see that the angle of the rotation is 2¢, consider the
image P’ of any point P on L. Done.

Now look at [29b]. Clearly R, o R, leaves invariant any line perpendicular
to L1 and L, so it is a translation parallel to such lines. To see that the translation
is 2V, consider the image P’ of any point P on L. Done.

Note that a rotation of 6 can be represented as Ry, o R, where Ly, L, is
any pair of lines that pass through the centre of the rotation and that contain an
angle (6/2). Likewise, a translation of T corresponds to any pair of parallel lines
separated by T/2. This circumstance yields a very elegant method for composing
rotations and translations.

For example, see [30a]. Here a rotation about a through 9 is being represented
as R, oR,, and a rotation about b through ¢ is being represented as R L,° R L

To find the net effect of rotating about a and then about b, choose L, = L’1 to be
the line through a and b. If 6 + ¢ # 2m, then L; and L), will intersect at some
point ¢, as in [30b]. Thus the composition of the two rotations is given by

Gty oRpr) o Ry o Rey) =Ry o Ry,

which is a rotation about ¢ through (6 4 ¢)! That this construction agrees with our
calculation on p. 18 is demonstrated in Ex. 36.
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Figure [30]
Further examples of this method may be found in Ex. 42 and Ex. 43.

4 Similarities and Complex Arithmetic

Let us take a closer look at the role of distance in Euclidean geometry. Suppose we
have two right triangles T and T drawn in the same plane, and suppose that Jack
measures T while Jill measures 7. If Jack and Jill both report that their triangles
have sides 3, 4, and 5, then it is tempting to say that~ the two triangles are the same,
in the sense that there exists a motion M such that 7 = M(T'). But wait! Suppose
that Jack’s ruler is marked in centimetres, while Jill’s is marked in inches. The
two triangles are similar, but they are not congruent. Which is the “true” 3, 4, 5
triangle? Of course they both are.

The point is that whenever we talk about distances numerically, we are pre-
supposing a unit of measurement. This may be pictured as a certain line-segment
U, and when we say that some other segment has a length of 5, for example, we
mean that precisely 5 copies of U can be fitted into it. But on our flat!’ plane any
choice of U is as good as any other—there is no absolute unit of measurement,
and our geometric theorems should reflect that fact.

Meditating on this, we recognize that Euclidean theorems do not in fact depend
on this (arbitrary) choice of U, for they only deal with ratios of lengths, which
are independent of U. For example, Jack can verify that his triangle T satisfies
Pythagoras’ Theorem in the form

(3cm)2 + (4cm)2 = (5cm)2,

but, dividing both sides by (5cm)?, this can be rewritten in terms of the ratios of
the sides, which are pure numbers:

(3/5)% + (4/5)* = 1.

Try thinking of another theorem, and check that it too deals only with ratios of
lengths.

151 the non-Euclidean geometries of Chapter 6 we will be drawing on curved surfaces, and
the amount of curvature in the surface will dictate an absolute unit of length.
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Since the theorems of Euclidean geometry do not concern themselves with
the actual sizes of figures, our earlier definition of geometric equality in terms of
motions is clearly too restrictive: two figures should be considered the same if they
are similar. More precisely, we now consider two figures to be the same if there
exists a similarity mapping one to the other, where

A similarity S is a mapping of the plane to itself that preserves ratios
of distances.

It is easy to see [exercise] that a given similarity S expands every distance
by the same (non-zero) factor r, which we will call the expansion of S. We can
therefore refine our notation by including the expansion as a superscript, so that a
general similarity of expansion r is written S”. Clearly, the identity transformation
is a similarity, S¥ 0 " = 8%, and (§")~! = SU/7 5o it is fairly clear that the
set of all similarities forms a group. We thus arrive at the definition of Euclidean
geometry that Klein gave in his Erlangen address:

Euclidean geometry is the study of those properties of geometric (29)
figures that are invariant under the group of similarities.

Since the motions are just the similarities S' of unit expansion, the group of
motions is a subgroup of the group of similarities; our previous attempt at defining
Euclidean geometry therefore yields a “subgeometry” of (29).

A simple example of an S” is a central dilation D}, As illustrated in [31a], this
leaves o fixed and radially stretches each segment 0 A by r. Note that the inverse of
acentral dilation is another central dilation with the same centre: (D)~! = D",
If this central dilation is followed by (or preceded by) a rotation ’R,g with the same
centre, then we obtain the dilative rotation

0 __ b 6
Dy =R, oD, =D, oR],

shown in [31b]. Note that a central dilation may be viewed as a special case of a
dilative rotation: D/, = Dj°.

”D;(A)

DrP(A)

Figure [31]
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This figure should be ringing loud bells. Taking o to be the origin of C, (9)
says that D5° corresponds to multiplication by r '

D (2) = (r eie) z.

Conversely, and this is the key point, the rule for complex multiplication may be
viewed as a consequence of the behaviour of dilative rotations.

Concentrate on the set of dilative rotations with a common, fixed centre o,
which will be thought of as the origin of the complex plane. Each Dy is uniquely
determined by its expansion r and rotation 6, and so it can be represented by a
vector of length r at angle 6. Likewise, Df ® can be represented by a vector of
length R at angle ¢. What vector will represent the composition of these dilative
rotations? Geometrically it is clear that

DR o Db = prf o DRO = DRRG+6)

so the new vector is obtained from the original vectors by multiplying their lengths
and adding their angles—complex multiplication!

On page 17 we saw that if complex numbers are viewed as translations then
composition yields complex addition. We now see that if they are instead viewed
as dilative rotations then composition yields complex multiplication. To complete
our “explanation” of complex numbers in terms of geometry, we will show that
these translations and dilative rotations are fundamental to Euclidean geometry as
defined in (29).

To understand the general similarity S” involved in (29), note that if p is an
arbitrary point, M = §” o’D‘f,1 /") is amotion. Thus any similarity is the composition
of a dilation and a motion:

S =Mo 'D; 30)

Our classification of motions therefore implies that similarities come in two kinds:
if M preserves angles then so will 8™ [a direct similarity]; if M reverses angles
then so will 8™ [an opposite similarity].

Just as we concentrated on the group of direct motions, so we will now concen-
trate on the group of direct similarities. The fundamental role of translations and
dilative rotations in Euclidean geometry finally emerges in the following surprising
theorem:

Every direct similarity is a dilative rotation or (exceptionally) a

31
translation. 3D

For us this fact constitutes one satisfying “explanation” of complex numbers; as
mentioned in the Preface, other equally compelling explanations may be found in
the laws of physics.

To begin to understand (31), observe that (25) and (30) imply that a direct
similarity is determined by the image A’ B’ of any line-segment A B. First consider
the exceptional case in which A’ B’ are of equal length A B. We then have the three
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' [a]

Figure [32]

cases in [28], all of which are consistent with (31). If A’ B’ and A B are parallel but
not of equal length, then we have the two cases shown in [32a] and [32b], in both
of which we have drawn the lines AA’ and B B’ intersecting in p. By appealing
to the similar triangles in these figures, we see that in [32a] the similarity is Dr’o,
while in [32b] it is D}, where in both cases r = (pA’/pA) = (pB’/pB).

Now consider the much more interesting general case where A’B’ and A B are
neither the same length, nor parallel. Take a peek at [32d], which illustrates this.
Here n is the intersection point of the two segments (produced if necessary), and
6 is the angle between them. To establish (31), we must show that we can carry
AB to A’ B’ with a single dilative rotation. For the time being, simply note that if
AB is to end up having the same direction as A’B’ then it must be rotated by 6,
so the claim is really this: There exists a point q, and an expansion factor r, such
that ’D,rl’e carries Ato A’ and B to B’.

Consider the part of [32d] that is reproduced in [32c]. Clearly, by choosing
r = (nA’/nA), Df,'e will map A to A’. More generally, you see that we can map A
to A’ with Dfl’e if and only if A A’ subtends angle 8 at g. Thus, with the appropriate
value of r, DZ’Q maps A to A’ if and only if q lies on the circular arc AnA’. The
figure illustrates one such position, g = m. Before returning to [32d], we need to
notice one more thing: m A subtends the same angle (marked e) at n and A’.

Let us return to [32d]. We want D,’I’e to map A to A’ and B to B’. According
to the argument above, g must lie on the circular arc AnA’ and on the circular arc
BnB’. Thus there are just two possibilities: ¢ = n or g = m (the other intersection
point of the two arcs). If you think about it, this is a moment of high drama. We have
narrowed down the possibilities for g to just two points by consideration of angles
alone; for either of these two points we can choose the value of the expansion 7 so
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as to make A go to A’, but, once this choice has been made, either B will map to
B’ or it won’t! Furthermore, it is clear from the figure that if ¢ = n then B does
not map to B’, so ¢ = m is the only possibility left.

In order for D,r,’,‘9 to simultaneously map A to A’ and B to B’, we need to have
r = (mA’/fmA) = (mB’/mB); in other words, the two shaded triangles need to
be similar. That they are indeed similar is surely something of a miracle. Looking
at the angles formed at n, we see that 8 + © + ¢ = 7, and the result follows
immediately by thinking of the RHS as the angle-sum of each of the two shaded
triangles. This completes our proof'® of (31).

The reader may feel that it is unsatisfactory that (31) calls for dilative rotations
about arbitrary points, while complex numbers represent dilative rotations about
a fixed point o (the ori%in). This may be answered by noting that the images of
AB under Df,’e and D" will be parallel and of equal length, so there will exist a
translation [see Ex. 44 for details] 7,, mapping one onto the other. In other words, a
general dilative rotation differs from an origin-centred dilative rotation by a mere
translation: D,’I’e =T, oD:’. To sum up,

Every direct similarity S” can be expressed as a complex function
of the form 8" (z) = re?z + v.

5 Spatial Complex Numbers?

Let us briefly attempt to generalize the above ideas to three-dimensional space.
Firstly, a central dilation of space (centred at O) is defined exactly as before, and
a dilative rotation with the same centre is then the composition of such a dilation
with a rotation of space about an axis passing through O. Once again taking (29)
as the definition of Euclidean geometry, we get off to a flying start, because the
key result (31) generalizes: Every direct similarity of space is a dilative rotation,
a translation, or the composition of a dilative rotation and a translation along its
rotation axis. See Coxeter [1969, p. 103] for details.

It is therefore natural to ask if there might exist “spatial complex numbers” for
which addition would be composition of translations, and for which multiplication
would be composition of dilative rotations. With addition all goes well: the position
vector of each point in space may be viewed as a translation, and composition of
these translations yields ordinary vector addition in space. Note that this vector
addition makes equally good sense in four-dimensional space, or n-dimensional
space for that matter.

Now consider the set Q of dilative rotations with a common, fixed centre O.
Initially, the definition of multiplication goes smoothly, for the “product” Q1 o Q2
of two such dilative rotations is easily seen to be another dilative rotation (Q3, say)
of the same kind. This follows from the above classification of direct similarities
by noting that Q1 o @ leaves O fixed. If the expansions of Q7 and Q, are r; and

16The present argument has the advantage of proceeding in steps, rather than having to be
discovered all at once. For other proofs, see Coxeter and Greitzer [1967, p. 97], Coxeter [1969,
p- 73], and Eves [1992, p. 71]. Also, see Ex. 45 for a simple proof using complex functions.
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r; then the expansion of Q3 is clearly r3 = ry r;, and in Chapter 6 we shall give a
simple geometric construction for the rotation of Q3 from the rotations of Q1 and
(Q». However, unlike rotations in the plane, it makes a difference in what order we
perform two rotations in space, so our multiplication rule is not commutative:

Q1002 # (02001. (32)

We are certainly accustomed to multiplication being commutative, but there is
nothing inconsistent about (32), so this cannot be considered a decisive obstacle
to an algebra of “spatial complex numbers”.

However, a fundamental problem does arise when we try to represent these
dilative rotations as points (or vectors) in space. By analogy with complex mul-
tiplication, we wish to interpret the equation Q1 o Q; = (3 as saying that the
dilative rotation Q1 maps the point Q> to the point Q3. But this interpretation is
impossible! The specification of a point in space requires three numbers, but the
specification of a dilative rotation requires four: one for the expansion, one for the
angle of rotation, and two!7 for the direction of the axis of the rotation.

Although we have failed to find a three-dimensional analogue of complex
numbers, we have discovered the four-dimensional space Q of dilative rotations
(centred at O) of three-dimensional space. Members of Q are called guaternions,
and they may be pictured as points or vectors in four dimensions, but the details
of how to do this will have to wait till Chapter 6. Quaternions can be added by
ordinary vector addition, and they can be multiplied using the non-commutative
rule above (composition of the corresponding dilative rotations).

The discoveries of the rules for multiplying complex numbers and for multiply-
ing quaternions have some interesting parallels. As is well known, the quaternion
rule was discovered in algebraic form by Sir William Rowan Hamilton in 1843. It
is less well known that three years earlier Olinde Rodrigues had published an ele-
gant geometric investigation of the composition of rotations in space that contained
essentially the same result; only much later!® was it recognized that Rodrigues’
geometry was equivalent to Hamilton’s algebra.

Hamilton and Rodrigues are just two examples of hapless mathematicians who
would have been dismayed to examine the unpublished notebooks of the great Karl
Friedrich Gauss. There, like just another log entry in the chronicle of his private
mathematical voyages, Gauss recorded his discovery of the quaternion rule in
1819.

In Chapter 6 we shall investigate quaternion multiplication in detail and find that
it has elegant applications. However, the immediate benefit of this discussion is that
we can now see what a remarkable property it is of two-dimensional space that it is
possible to interpret points within it as the fundamental Euclidean transformations
acting on it.

I7To see this, imagine a sphere centred at O. The direction of the axis can be specified by its
intersection with the sphere, and this point can be specified with two coordinates, e.g., longitude
and latitude.

185ee Altmann [1989] for the intriguing details of how this was unravelled.
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V Exercises

1 The roots of a general cubic equation in X may be viewed (in the X Y -plane) as
the intersections of the X-axis with the graph of a cubic of the form,

Y =X3+AX?+BX +C.

(i) Show that the point of inflection of the graph occurs at X = —%.

(ii) Deduce (geometrically) that the substitution X = (x - %) will reduce the
above equation to the form ¥ = x3 + bx + ¢.

(iii) Verify this by calculation.
2 In order to solve the cubic equation x3 = 3px + 24, do the following:

(i) Make the inspired substitution x = s + ¢, and deduce that x solves the cubic
if st = p and 53 + 13 = 2¢.

(if) Eliminate ¢ between these two equations, thereby obtaining a quadratic

equation in s3.

(iii) Solve this quadratic to obtain the two possible values of s>. By symmetry,
what are the possible values of 13?

(iv) Given that we know that s3 + 13 = 2g, deduce the formula (4).

3 In 1591, more than forty years after the appearance of (4), Francois Viete pub-
lished another method of solving cubics. The method is based on the identity
(see p. 15) cos 36 = 4C3 —3C, where C = cosf.

(i) Substitute x = 2,/p C into the (reduced) general cubic x3=3px+2gto
obtain 4C? —3C = -4 .
pVp
(ii) Provided that g2 < p3, deduce that the solutions of the original equation
are

x =2,/pcos [%(qb + 2mrr)] ,

where m is an integer and ¢ = cos™!(gq/ p/D).

(iii) Check that this formula gives the correct solutions of x> = 3x, namely,
x =0, £/3.

4 Here is a basic fact about integers that has many uses in number theory: If two
integers can be expressed as the sum of two squares, then so can their product.
With the understanding that each symbol denotes an integer, this says that if
M = g% +b*and N = ¢ + d?, then MN = p? + ¢°. Prove this result by
considering |(a + ib)(c + id)|%.
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5 The figure below shows how two similar triangles may be used to construct the
product of two complex numbers. Explain this.

ab

6 (i) If ¢ is a fixed complex number, and R is a fixed real number, explain with a
picture why |z — ¢| = R is the equation of a circle.

(i) Given that z satisfies the equation |z + 3 — 4i| = 2, find the minimum and
maximum values of |z|, and the corresponding positions of z.

7 Use a picture to show that if a and b are fixed complex numbers then |z — a| =
|z — b| is the equation of a line.

8 Let L be a straight line in C making an angle ¢ with the real axis, and let d be
its distance from the origin. Show geometrically that if z is any point on L then

d= lIm[e_i‘i’ z]i .

[Hint: Interpret e~*¢ using (9).]

9 Let A, B, C, D be four points on the unit circle. If A + B + C + D = 0, show
that the points must form a rectangle.

10 Show geometrically that if |z| = 1 then

Im[_z_] —o.
Z+1)?

Apart from the unit circle, what other points satisfy this equation?

11 Explain geometrically why the locus of z such that

Z—a
= t.
arg(z_b) cons

is an arc of a certain circle passing through the fixed points a and b.

12 By using pictures, find the locus of z for each of the following equations:

11— 1
Re (Z—-—’) =0, and Im (Z———’) =0
z+1+i 24+ 1+
[Hints: What does Re(W) = 0 imply about the angle of W? Now use the
previous exercise.]
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13 Find the geometric configuration of the points a, b, and c if

(=9)-G=)

[Hint: Separately equate the lengths and angles of the two sides.]

14 By considering the product (2 + i) (3 + i), show that

15 Draw '™/, ¢/™/2_ and their sum. By expressing each of these numbers in the
form (x +iy), deduce that

3
tan—8£:1+«/§.

16 Starting from the origin, go one unit east, then the same length north, then (1/2)
of the previous length west, then (1/3) of the previous length south, then (1/4)
of the previous length east, and so on. What point does this “spiral” converge
to?

17 If z = €'® % —1, then (z — 1) = (i tan §) (z + 1). Prove this (i) by calculation,
(ii) with a picture.

18 Prove that

, . i(6+¢) . .
e + % = 2cos [#] e 2 and €% — ¢ = 2isin [e%q’] e

i(0+¢)
2

(i) by calculation, and (ii) with a picture.

19 The “centroid” G of a triangle T is the intersection of its medians. If the vertices
are the complex numbers a, b, and c, then you may assume that

G=1%@+b+o).
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20

21

22

23

24

25

On the sides of T we have constructed three similar triangles [dotted] of arbitrary
shape, so producing a new triangle [dashed] with vertices p, g, r. Using complex
algebra, show that the centroid of the new triangle is in exactly the same place
as the centroid of the old triangle!

Gaussian integers are complex numbers of the form m + in, where m and n are
integers—they are the grid points in [1]. Show that it is impossible to draw an
equilateral triangle such that all three vertices are Gaussian integers. [Hints: You
may assume that one of the vertices is at the origin; try a proof by contradiction;
if a triangle is equilateral, you can rotate one side into another; remember that
J3is irrational.]

Make a copy of [12a], draw in the diagonal of the quadrilateral shown in [12b],
and mark its midpoint m. As in [12b], draw the line-segments connecting m to
pP>q,r,and s. According to the result in [12b], what happens to p and to r under
a rotation of (;r/2) about m? So what happens to the line-segment pr? Deduce
the result shown in [12a].

Will the result in [12a] survive if the squares are instead constructed on the
inside of the quadrilateral?

Draw an arbitrary triangle, and on each side draw an equilateral triangle lying
outside the given triangle. What do you suspect is special about the new triangle
formed by joining the centroids (cf. Ex. 19) of the equilateral triangles? Use
complex algebra to prove that you are right. What happens if the equilateral
triangles are instead drawn on the inside of the given triangle?

From (15), we know that

<
l+z+22+ 4" = -

(i) In what region of C must z lie in order that the infinite series 1 +z 422 +- -
converges?

(ii) If z lies in this region, to which point in the plane does the infinite series
converge?

(ii1) In the spirit of figure [9], draw a large, accurate picture of the infinite series
in the case z = %( 1+ i), and check that it does indeed converge to the point
predicted by part (ii).

Let S = cosf + cos36 + cos56 + - - - + cos(2n — 1)8. Show that
sin 2n6 . sin nf cosné
= — orequivalently S=-———
2sin6 sin @

[Hint: Use Ex. 24, then Ex. 18 to simplify the result.]



Exercises 49

26 (i) By considering (a + ib)(cos6 + i sin ), show that

bcosf +asinf = va? + b2 sin [0 + tan”l(b/a)] .

(i) Use this result to prove (14) by the method of induction.
27 Show that the polar equation of the spiral Z(t) = ¢* ¢ in [15b]is r = ¢(@/?)9,

28 Reconsider the spiral Z(t) = ¢*¢'® in [15b], where a and b are fixed real
numbers. Let t be a variable real number. According to (9), z > F;(z) =
(7€t ™) z is an expansion of the plane by factor ¢**, combined with a rotation
of the plane through angle bz.

(1) Show that F.[Z(t)] = Z(t + ), and deduce that the spiral is an invariant
curve (cf. p. 38) of the transformations F.

(ii) Use this to give a calculus-free demonstration that all rays from the origin
cut the spiral at the same angle.

(iii) Show that if the spiral is rotated about the origin through an arbitrary angle,
the new spiral is again an invariant curve of each F.

(@iv) Argue that the spirals in the previous part are the only invariant curves of
F.

29 (i) If V(¢) is the complex velocity of a particle whose orbit is Z(¢), and dt is
an infinitesimal moment of time, then V (¢) dt is a complex number along
the orbit. Thinking of the integral as the (vector) sum of these movements,
what is the geometric interpretation of fttlz V(t)dt?

(ii) Referring to [15b], sketch the curve Z(t) = a_-il-iE e eiht
(ii)) Given the result (13), what is the velocity of the particle in the previous
part.
. 91
(iv) Combine the previous parts to deduce that fol eMeitdt = [a++b e et ]0’
and draw in this complex number in your sketch for part (ii).

(v) Use this to deduce that

a(e® cosb—1)+be? sinb
a’ + b2 :

1
f e cosbtdt =
0

and
b(1 —e? cosb) +ae” sinb

a2+b2

1
/ e sinbtdt =
0
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30

31

32

Given two starting numbers S1, Sz, let us build up an infinite sequence S, S,
$3, 84, . . . with this rule: each new number is twice the difference of the previous
two.Forexample,if §1 = 1and S = 4,weobtain1,4, 6,4, —4, —16, —24, .. ..
Our aim is to find a formula for the n® number Sn.

(i) Our generating rule can be written succinctly as S, 12 = 2(S;+1— Sn). Show
that S,, = z" will solve this recurrence relation if 72 — 2z +2 = 0.

(i) Use the quadratic formula to obtain z = 1 % i, and show that if A and B
are arbitrary complex numbers, S, = A(1 + )" + B(1 —i)" is a solution
of the recurrence relation.

(>iii) If we want only real solutions of the recurrence relation, show that B = A,
and deduce that S,, = 2Re[A(1 +i)"].

(iv) Show that for the above example A = —(1/2) — i, and by writing this in
polar form deduce that S, = 2"/2/5 cos [Q‘# + tan~! 2] .

(v) Check that this formula predicts S34 = 262144, and use a computer to verify
this.

[Note that this method can be applied to any recurrence relation of the form
Sn+2 = PSn+1 + qSn.]

With the same recurrence relation as in the previous exercise, use a computer
to generate the first 30 members of the sequence given by S§; = 2 and S; = 4.
Note the repeating pattern of zeros.

(i) With the same notation as before, show that this sequence corresponds to
A = —i,sothat S, = 2Re[—i (1 +i)"].

(i) Draw a sketch showing the locations of —i (1 +i)" forn = 1ton = 8, and
hence explain the pattern of zeros.

(iii) Writing A = a + ib, our example corresponds to a = 0. More generally,
explain geometrically why such a repeating pattern of zeros will occur if
and only if (a/b) =0, 1 orb = 0.

(iv) Show that % = % [1 - 5’5], and deduce that a repeating pattern of zeros
will occur if and only if S = 25; (as in our example), S1 = S2, S1 =0, or
S> =0.

(v) Use a computer to verify these predictions.
The Binomial Theorem says that if » is a positive integer,
(a + b)" i " g b", where " n!
a = a . e
=\r r n=r)tr!

are the binomial coefficients [rot vectors!]. The algebraic reasoning leading to
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this result is equally valid if @ and b are complex numbers. Use this fact to show
that if n = 2m is even then

2m 2m 2m m+1 2m _Aam _: mm
(1)_(3>+(5)_”'+("1) +(2m—1)_2 sin (%)

33 Consider the equation (z — )10 = 210,

(i) Without attempting to solve the equation, show geometrically that all 9
solutions [why not 10?] must lie on the vertical line, Re (z) = % [Hint:
Ex.7.]

(ii) Dividing both sides by z10, the equation takes the form w!0 = 1, where
w = (z — 1)/z. Hence solve the original equation.

(iii) Express these solutions in the form z = x +iy, and thereby verify the result
in (i). [Hint: To do this neatly, use Ex. 18.]

34 Let S denote the set of 12® roots of unity shown in [19], one of which is
£ = ¢!"/%) Note that £ is a primitive 121 root of unity, meaning that its powers
yield all the 12 roots of unity: S = {£, £2, £3, ..., £12}.

(i) Find all the primitive 12% roots of unity, and mark them on a copy of {19].

(ii) Write down, in the form of (16), the factorization of the polynomial ®12(z)
whose roots are the primitive 120 roots of unity. [In general, ®,(z) is the
polynomial (with the coefficient of the highest power of z equal to 1) whose
roots are the primitive n'! roots of unity; it is called the n cyclotomic
polynomial..]

(iii) By first multiplying out pairs of factors corresponding to conjugate roots,
show that ®12(z2) = -2 41.

(iv) By repeating the above steps, show that ®g(z) = 41

(v) For a general value of n, explain the fact that if { is a primitive n® root
of unity, then so is ¢. Deduce that ®,(z) always has even degree and real
coefficients.

(vi) Show that if p is a prime number then ®,(z) =1+ 2z + R L
[Hint: Ex. 24.]

{In these examples it is striking that ®,(z) has integer coefficients. In fact it

can be shown that this is true for every ®,(z)! For more on these fascinating

polynomials, see Stillwell [1994].]

35 Show algebraically that the formula (21) is invariant under a translation by %,
i.e., its value does not change if a becomes a + k, b becomes b + k, etc. Deduce
from {22a] that the formula always gives the area of the quadrilateral. [Hinz:
Remember, (z + 7) is always real.]
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~ RE+®

36 According to the calculation on p. 18, ’RZ o ’RZ , where

_ ad?(1 - &%) +b(1 - €%
€= 1 — &6+

Letus check that this c is the same as the one given by the geometric construction
in [30b].

(i) Explain why the geometric construction is equivalent to saying that c satisfies
the two conditions

c—b c—a

(ii) Verify that the calculated value of ¢ (given above) satisfies the first of these
conditions by showing that

c—b [ sin % ] i6)2
= &2, (33)
— 0 (6+¢)
a b sin —

[Hint: Use (1 — €'®) = —2i sin(et/2) €'*/2.]
(iii) In the same way, verify that the second condition is also satisfied.
37 Deduce (33) directly from [30b]. [Hint: Draw in the altitude through b of the

triangle abc, and express its length first in terms of sin %, then in terms of
sin @ 1

38 On page 18 we calculated that for any non-zero «, 7, o Rj is a rotation:
T,oRE =RY, where ¢ =v/(l—e).

However, if @ = 0 then 7, o R = 7, is a translation. Try to reconcile these
facts by considering the behaviour of RY in the limit that & tends to zero.

39 A glide reflection is the composition 7, o R, = R o 7, of reflection in a line
L and a translation v in the direction of L. For example, if you walk at a steady
pace in the snow, your tracks can be obtained by repeatedly applying the same
glide reflection to a single footprint. Clearly, a glide reflection is an opposite
motion.

(1) Draw aline L, a line-segment A B, the image AB of the segment under Rz,
and the image A’B’ of AB under the glide reflection 7, o Ry.

(i) Suppose you erased L from your picture; by considering the line-segments
AA’ and BB’, show that you can reconstruct L.

(iii) Given any two segments AB and A’B’ of equal length, use the previous
part to construct the glide reflection that maps the former to the latter.
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(iv) Deduce that every opposite motion is a glide reflection.
(v) Express a glide reflection as the composition of three reflections.

40 Let L be a line making angle ¢ (or ¢ + 7) with the real axis, and let p be the
point on L that is closest to the origin, so that |p| is the distance to the line.
Consider the glide reflection [cf. previous exercise] G = T, o R, where the
translation is through distance r parallel to L. Let us fix the value of ¢ by writing
v=+re?.

(i) Use a picture to show that p = =i|p| €%, and explain the geometric signif-
icance of the +.

(i) What transformation is represented by the complex function H(z) =7z +r?
(iii) Use pictures to explain why G =T, o ’Rg oHoRy ?oT. p-
(iv) Deduce that G(z) = €?#Z + €% (r £ 2i|p|).

(v) Hence describe (in geometric terms) the glide reflection represented by
G(z) = iz + 4i. Check your answer by looking at the images of —2,
2i, and 0.

41 Let M (z) be the representation of a general opposite motion as a complex
function.

(i) Explain why M(2) is a direct motion, and deduce from (27) that M () =
€% 7 + w, for some o and w.

(ii) Using the previous exercise, deduce that every opposite motion is a glide
reflection.

42 On p. 19 we calculated that if (6 + ¢) = 27 then

'R? o’R,Z =T, where v=(l-¢é?®b-na).

(i) Let @ = (b — a) be the complex number from the first centre of rotation to
the second. Show algebraically that v has length 2 sin(6/2) | Q|, and that its
direction makes an angle of (%52) with Q.

(ii) Give direct geometric proofs of these results by redrawing figure [30b] in
the case (60 + ¢) = 2x.

43 On p. 18 we calculated that

T,oRy =RY, where c=v/(1 —€%).

(i) Show algebraically that the complex number from the old centre of rotation
(the origin) to the new centre of rotation (c) has length 751%@’ and that its
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direction makes an angle of (%) with v.

(i) Representing both R and 7, as the composition of two reflections, use the
idea in [30b] to give direct, geometric proofs of these results.

44 Just as in [13b], a dilative rotation D;'o centred at an arbitrary point p may be

performed by translating p to the origin, doing Df;o, then translating o back to
p. Representing these transformations as complex functions, show that

’DI’;G(z) =ré%z+v, where v=p—reé?).
Conversely, if v is given, deduce that

T,0D,% =D}°, where p=v/(1-re?).

45 In the previous exercise you showed that an arbitrary dilative rotation or trans-
lation can be written as a complex function of the form f(z) = az + b, and,
conversely, that every such function represents a unique dilative rotation or
translation.

(i) Given two pairs of distinct points {A, B} and {A’, B'}, show [by finding
them explicitly] that a and b exist such that f(A) = A’ and f(B) = B'.

(i) Deduce the result (31).
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Complex Functions as
Transformations

| Introduction

A complex function f is a rule that assigns to a complex number z an image
complex number w = f(z). In order to investigate such functions it is essential
that we be able to visualize them. Several methods exist for doing this, but (until
Chapter 10) we shall focus almost exclusively on the method introduced in the
previous chapter. That is, we shall view z and its image w as points in the complex
plane, so that f becomes a transformation of the plane.

Conventionally, the image points w are drawn on a fresh copy of C, called the
image plane or the w-plane. This convention is illustrated in [1], which depicts
the transformation z > w = f(z) = (1 +iv/3)z (cf. figure [5], p. 9).

A
”
C C
j"/ w=f(@)=u+iv:
AN
y O
x
O >
\‘\ \z=x+ly
\\\

Figure [1]

Usually, the real and imaginary parts of z are denoted x and y, and those of the
image point w are denoted u and v, so that w = f(z) = u(z) +iv(z), where u(z)
and v(z) are real functions of z. The precise forms of these functions will depend
on whether we describe z with Cartesian or polar coordinates. For instance, writing
z = x + iy in the above example yields

u(x+iy)=x—\/§y and v(x+iy)=\/§x+y,

while writing z = r ¢/® and (1 + i/3) = 2¢/"/3 yields
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u(r €%y = 2r cos [p+%] and @ ')y =2rsin[6 + z].

Of course we may also describe the w-plane with polar coordinates so that
w = f(z) = Re'?, where R(z) and ¢ (z) are real functions of z. With the same
example as before, the transformation becomes

R(rée®)y=2r and ¢(rei0)=0+%.

We shall find that we can gain considerable insight into a given f by drawing
pictures showing its effect on points, curves, and shapes. However, it would be
nice if we could simultaneously grasp the behaviour of f for all values of z. One
such method is to instead represent f as a vector field, whereby f(z) is depicted
as a vector emanating from the point z; for more detail, the reader is invited to read
the beginning of Chapter 10.

Yet other methods are based on the idea of a graph. In the case of areal function
f(x) of areal variable x we are accustomed to the convenience of visualizing the
overall behaviour of f by means of its graph, i.e., the curve in the two-dimensional
xy-plane made up of the points (x, f(x)). In the case of a complex function this
approach does not seem viable because to depict the pair of complex numbers
(z, f(2)) we would need four dimensions: two for z = x 4+ iy and two for f(z) =
u+iv.

Actually, the situation is not quite as hopeless as it seems. First, note that al-
though two-dimensional space is needed to draw the graph of a real function f, the
graph itself [the set of points (x, f(x))] is only a one-dimensional curve, meaning
that only one real number (namely x) is needed to identify each point within it.
Likewise, although four-dimensional space is needed to draw the set of points with
coordinates (x, y,u,v) = (z, f(2)), the graph itself is rwo-dimensional, mean-
ing that only two real numbers (namely x and y) are needed to identify each
point within it. Thus, intrinsically, the graph of a complex function is merely a
two-dimensional surface (a so-called Riemann surface), and it is thus susceptible
to visualization in ordinary three-dimensional space. This approach will not be
explored in this book, though the last three chapters in particular should prove
helpful in understanding Riemann’s original physical insights, as expounded by
Klein [1881]. See also Springer [1957, Chap. 1], which essentially reproduces
Klein’s monograph, but with additional helpful commentary.

There is another type of graph of a complex function that is sometimes useful.
The image f(z) of a point z may be described by its distance | f(z)| from the
origin, and the angle arg[ f (z)] it makes with the real axis. Let us discard half
of this information (the angle) and try to depict how the modulus | f(z)| varies
with z. To do so, imagine the complex z-plane lying horizontally in space, and
construct a point at height | f(z)| vertically above each point z in the plane, thereby
producing a surface called the modular surface of f. Figure [2] illustrates the
conical modular surface of f(z) = z, while [3] illustrates the paraboloid modular
surface of f(z) = z2.
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Figure [3]

A note on computers. Beginning in this chapter, we will often suggest that you
use a computer to expand your understanding of the mathematical phenomenon
under discussion. However, we wish to stress that the specific uses of the computer
that we have suggested in the text are only a beginning. Think of the computer as a
physicist would his laboratory—you may use it to check your existing ideas about
the construction of the world, or as a tool for discovering new phenomena which
then demand new ideas for their explanation. In the Preface we make concrete
suggestions (probably of only fleeting relevance) as to how your laboratory should
be equipped.

Il Polynomials
1 Positive Integer Powers
Consider the mapping z > w = 2", where nis a positive integer. Writingz =re
this becomes w = r" ¢ j.e., the distance is raised to the n'! power and the angle
is multiplied by n. Figure [4] is intended to make this a little more vivid by showing
the effect of the mapping on some rays and arcs of origin-centred circles. As you
can see, here n = 3.

On page 27 we saw that the n solutions of z” = 1 are the vertices of the regular
n-gon inscribed in the unit circle, with one vertex at 1. This can be understood

i
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Figure [4]

more vividly from our new transformation point of view. If w = f(z) = 7" then
the solutions of z = 1 are the points in the z-plane that are mapped by f to
the point w = 1 in the w-plane. Now imagine a particle in orbit round the unit
circle in the z-plane. Since 1" = 1, the image particle w = f(z) will also orbit
round the unit circle (in the w-plane), but with n times the angular speed of the
original particle. Thus each time z executes (1/n) of a revolution, w will execute
a complete revolution and return to the same image point. The preimages of any
given w on the unit circle will therefore be successive positions of z as it repeatedly
executes (1/n) of a revolution, i.e., they will be the vertices of a regular n-gon.
With w = 1, figure [5] illustrates this idea for the mapping w = f(z) = z°.

Figure [5]

More generally, [6] shows how to solve z> = ¢ = R4 by inscribing an
equilateral triangle in the circle |z| = 3/R. By the same reasoning, it is clear that
the solutions of z" = c are the vertices of the regular n-gon inscribed in the circle
lz| = /R, with one vertex at angle (¢/n).

To arrive at the same result symbolically, first note that if ¢ is one value of arg ¢,
then the complete set of possible angles is (¢ + 2mm), where m is an arbitrary

integer. Setting z = r €%,

e — Mt — o= RO PR and no = ¢ +2mm,
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Figure [6]
so the solutions are z,, = /R &!@+2m™)/" Each time we increase m by 1, z,, is

2mi
rotated by (1/n) of arevolution (because z,,4+1 = e n z,,), producing the vertices

of a regular n-gon. Thus the complete set of solutions will be obtained if we let m
take any » consecutive values, saym = 0,1,2,...,(n — 1).

2 Cubics Revisited*

As aninstructive application of these ideas, let us reconsider the problem of solving
a cubic equation in x. For simplicity, we shall assume in the following that the
coefficients of the cubic are all real.

In the previous chapter we saw [Ex. 1] that the general cubic could always be
reduced to the form x> = 3px + 2g. We then found [Ex. 2] that this could be
solved using Cardano’s formula,

x=s+t, where s°>=gq+/q2—p3, t?=qg—/q?—p} and st=p.

Once again, observe that if g2 < p? then this formula involves complex numbers.
On the other hand, we also saw [Ex. 3] that the cubic could be solved using
Viete’s formula:

ifg? <p3 then x= 2./pcos [%(d) + 2m7r)] ,

where m is an integer and ¢ = cos~!(g/ p+/P). At the time of its discovery,
Viete’s “angle trisection” method was a breakthrough, because it solved the cubic
(using only real numbers) precisely when Cardano’s formula involved “impossi-
ble”, complex numbers. For a long time thereafter, Viéte’s method was thought
to be entirely different from Cardano’s, and it is sometimes presented in this way
even today. We shall now take a closer look at these two methods and see that they
are really the same.
If g? < p3, then in Cardano’s formula s> and 3 are complex conjugates:

53=(I+i\/p3—q2 and t3=s_3=q_,' /p3—q2.

These complex numbers are illustrated on the RHS of [7]. By Pythagoras’ Theorem,
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Figure [7]
they both have length |s3]| = P+/P, and so the angle ¢ occurring in Viéte’s formula
is simply the angle of s3.

Since s and #3 lie on the circle of radius (ﬁ)3, their preimages under the
mapping z — z> will lie on the circle of radius +/P- The LHS of [7] shows these
preimages; note that the three values of ¢ are the complex conjugates of the three
values of s.

According to the Fundamental Theorem of Algebra, the original cubic should
have three solutions. However, by combining each of the three values of s with
each of the three values of ¢, it would seem that Cardano’s formula x = s + ¢
yields nine solutions.

The resolution lies in the fact that we also require st = p. Since p is real, this
means s and ¢ must have equal and opposite angles. In the formula x = s +¢, each
of the three values of s must therefore be paired with the conjugate value of . We
can now see how Cardano’s formula becomes Viete’s formula:

Xm = Sm + tm =sm+m=2ﬁcos[%(¢+2m7r)].

In Ex. 4 the reader is invited to consider the case g2 > p°.

3 Cassinian Curves*

Consider [8a]. The ends of a piece of string of length / are attached to two fixed
points a1 and a3 in C, and, with its tip at z, a pencil holds the string taut. The figure
illustrates the well known fact that if we move the pencil (continuing to keep the
string taut) it traces out an ellipse, with foci a; and a;. Writing r1 2 = |z — a1 2],
the equation of the ellipse is thus

ri+rp=1.

By choosing different values of ! we obtain the illustrated family of confocal
ellipses.

In 1687 Newton published his great Principia, in which he demonstrated that
the planets orbit in such ellipses, with the sun at one of the foci. Seven years earlier,
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Figure (8]

however, Giovanni Cassini had instead proposed that the orbits were curves for
which the product of the distances is constant:

ri-rp = const. = k2. )

These curves are illustrated in [8b]; they are called Cassinian curves, and the points
a; and a are again called foci.

The following facts will become clearer in a moment, but you might like to
think about them for yourself. If £ is small then the curve consists of two separate
pieces, resembling small circles centred at a; and a». As k increases, these two
components of the curve become more egg shaped. When k reaches a value equal
to half the distance between the foci then the pointed ends of the egg shapes meet
at the midpoint of the foci, producing a figure eight [shown solid]. Increasing the
value of k still further, the curve first resembles an hourglass, then an ellipse, and
finally a circle.

Although Cassinian curves turned out to be useless as a description of planetary
motion, the figure eight curve proved extremely valuable in quite another context.
In 1694 it was rediscovered by James Bernoulli and christened the lemniscate—
it then became the catalyst in unravelling the behaviour of the so-called elliptic
integrals and elliptic functions. See Stillwell [1989, Chap. 11] and Siegel [1969]
for more on this fascinating story.

Cassinian curves arise naturally in the context of complex polynomials. A
general quadratic Q(z) = 2+ pz + q will have two roots (say, a; and a,) and so
can be factorized as Q(z) = (z — a1)(z — a3). In terms of [8b], this becomes

Q@) = riry /@0,
Therefore, by virtue of (1), z = w = Q(z) will map each curve in [8b] to an
origin-centred circle, |w| = k2, and it will map the foci to the origin.

If we follow this transformation by a translation of c, i.e., if we change z >
Q(z) to z = Q(z) + ¢, then the images will instead be concentric circles centred
at ¢ = (image of foci). Conversely, given any quadratic mapping z — w = Q(z2),
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the preimages of a family of concentric circles in the w-plane centred at ¢ will be
the Cassinian curves whose foci are the preimages of c.

In particular, consider the case ¢ = 1 and w = Q(z) = z2. The preimages of
w = 1 are z = %1, so these are the foci, and the Cassinian curves are thus centred
at the origin. See [9]. Since Q leaves the origin fixed, the lemniscate must be
mapped (as illustrated) to the circle of radius 1 passing through the origin. Writing
z=re w =r2e?? and so we see from the figure that the polar equation of
the lemniscate is

r? =2cos26. )

Figure [9]

Returning to [8b], the form of the Cassinian curves may be grasped more
intuitively by sketching the modular surface of Q(z) = (z — a1)(z — a2). First
observe that as z moves further and further away from the origin, Q(z) behaves
more and more like z2. Indeed, since the ratio [Q(z)/z?] is easily seen [exercise]
to tend to unity as |z| tends to infinity, we may say that Q(z) is ultimately equal
to z2 in this limit. Thus, for large values of |z|, the modular surface of Q will look
like the paraboloid in [3].

Next, consider the behaviour of the surface near a;. Writing D = |a; — a3|
for the distance between the foci, we see [exercise] that | Q(z)| is ultimately equal
to Dr; as z tends to a;. Thus the surface meets the plane at a; in a cone like that
shown in [2]. Of course the same thing happens at a;.

Combining these facts, we obtain the surface shown in [10]. Since a Cassinian
curve satisfies |Q(z)| = rira = k2, it is the intersection of this surface with a
plane parallel to C, and at height k2 above it. As k increases from O to a large
value, it is now easy to follow the evolution of the curves in [8b] by looking at
how this intersection varies as the plane moves upward in [10]. Thus the Cassinian
curves may be viewed as a geographical contour map of the modular surface of
the quadratic.

Interestingly, Cassinian curves were already known to the ancient Greeks.
Around 150 Bc, Perseus considered the intersection curves of a torus [obtained
by rotating a circle C about an exterior line / in its plane] with planes parallel to
1. It turns out that if the distance of the plane from / equals the radius of C then
the resulting spiric section of Perseus is a Cassinian curve. See [11]; in particular,
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Figure [10]

note how the lemniscate [dashed] makes its surprise appearance when the plane
touches the inner rim of the torus. We have adapted this figure from Brieskorn and
Knorrer [1986, p. 17], to which the reader is referred for more details.

Returning to the complex plane, there is a natural way to define Cassinian
curves with more than two foci: A Cassinian curve with n foci, a1, ay, ..., a,,
is the locus of a point for which the product of the distances to the foci remains
constant. A straightforward extension of the above ideas shows that these curves
are the preimages of origin-centred circles |w| = const. under the mapping given
by the nth degree polynomial whose roots are the foci:

P w=P()=GC—a))(z—ay)--(z—an).

Equivalently, the Cassinian curves are the cross-sections of the modular surface
of P,(z). This surface has n cone-like legs resting on C at ay, as, . . ., a,, and for
large values of |z| it resembles the axially symmetric modular surface of z".

Figure [11]
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Il Power Series
1 The Mystery of Real Power Series

Many real functions F(x) can be expressed (e.g., via Taylor’s Theorem) as power
series:

00
F(x)=Zijj =C()+Clx+6‘2x2+c3x3+...,
j=0

where the ¢;’s are real constants. Of course, this infinite series will normally only
converge to F(x) in some origin-centred interval of convergence —R < x < R.
But how is R (the radius of convergence) determined by F(x)?

It turns out that this question has a beautifully simple answer, but only if we in-
vestigate it in the complex plane. If we instead restrict ourselves to the real line—as
mathematicians were forced to in the era in which such series were first employed—
then the relationship between R and F (x) is utterly mysterious. Historically, it was
precisely this mystery! that led Cauchy to several of his breakthroughs in complex
analysis.

To see that there is a mystery, consider the power series representations of the
functions

1 1
Gix)=—— d H(x)= .
x) -2 @) 1+ x2
The familiar infinite geometric series,
1 S
=Zx’:1+x+x2+x3+--~ ifandonlyif -1 <x <1, (3)
1—x =
immediately yields
w . w . .
Gx)=Y x* and H(x)= PNCVESE
j=0 j=0

where both series have the same interval of convergence, —1 < x < 1.

It is easy to understand the interval of convergence of the series for G (x) if we
look at the graph [12a]. The series becomes divergent at x = %1 because these
points are singularities of the function itself, i.e., they are places where |G (x)|
becomes infinite. But if we look at y = |H(x)| in [12b], there seems to be no
reason for the series to break down at x = 1. Yet break down it does.

To begin to understand this, let us expand these functions into power series
centred at x = k (instead of x = 0), i.e., into series of the form Z;io i X J, where
X = (x — k) measures the displacement of x from the centre k. To expand G we
first generalize (3) by expanding 1/(a — x) about k:

ICauchy was investigating the convergence of series solutions to Kepler’s equation, which
describes where a planet is in its orbit at any given time.
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To apply this result to G, we factorize (1 — x%) = (1 — x) (1 + x) and then
decompose G into partial fractions:

Lot 1 :li 1 B 1 X
1-x2" ?2|1-x —1-x 2,-=0 (1 —k)y*tl (=1 —k)it! ’

where | X| < |1 — k| and | X| < |1 + k|. Thus the interval of convergence | X| < R
is given by

R =min {|1 — k|, |1 + k|} = (distance from k to the nearest singularity of G).

This readily comprehensible result is illustrated in [13a]; ignore the shaded disc
for the time being.

Inthe case of H (x), I cannot think of an elegant method of finding the expansion
using only real numbers, but see Ex. 9 for an attempt. Be that as it may, it can be
shown that the radius of convergence of the series in X is given by the strange
formula R = +/1 +k2. As with Cotes’ work in the previous chapter, we have
here a result about real functions that is trying to tell us about the existence of the
complex plane.

If we picture the real line as embedded in a plane then Pythagoras’ Theorem
tells us that R = +/12 + k2 should be interpreted as the distance from the centre
k of the expansion to either of the fixed points that lie off the line, one unit from 0
in a direction at right angles to the line. See [13b]. If the plane is thought of as C,
then these points are +i, and

= (distance from k to =%i).
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Figure [13]

The mystery begins to unravel when we turn to the complex function h(z) =
1/(1 4 z%), which is identical to H (x) when z is restricted to the real axis of the
complex plane. In fact there is a sense—we cannot be explicit yet—in which A(z)
is the only complex function that agrees with H on this line.

While [12b] shows that k(z) is well-behaved for real values of z, it is clear
that h(z) has two singularities in the complex plane, one at z = i and the other
at z = —i; these are shown as little explosions in [13b]. Figure [14] tries to make
this more vivid by showing the modular surface of h(z), the singularities at =i
appearing as “volcanoes” erupting above these points. We will sort through the
details in a moment, but the mystery has all but disappeared: in both [13a] and

imaginary

Figure [14]
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[13b], the radius of convergence is the distance to the nearest singularity.

If we intersect the surface in [14] with a vertical plane through the real axis
then we recover the deceptively tranquil graph in [12b], but if we instead slice the
surface along the imaginary axis then we obtain the graph in [12a]. That this is
no accident may be seen by first noting that G (x) is just the restriction to the real
axis of the complex function g(z) = 1/(1 — z2). Since g(z) = h(iz), h and g are
essentially the same: if we rotate the plane by (;r/2) and then do h, we obtain g. In
particular the modular surface of g is simply [14] rotated by (;r /2), the volcanoes
at +i being rotated to £1.

2 The Disc of Convergence

Let us consider the convergence of complex power series, leaving aside for the
moment the question of whether a given complex function can be expressed as
such a series.

A complex power series P(z) (centred at the origin) is an expression of the
form

o0
P(z)=chzf=co+c1z+0222+03z3+-~, )
j=0
where the ¢;’s are complex constants, and z is a complex variable. The partial sums
of this infinite series are just the ordinary polynomials,

n
Pn(z)=ZCij =cotcrz+at+a+ -+
j=0

For a given value of z = a, the sequence of points P;(a), P2(a), P3(a), ...
is said to converge to the point A if for any given positive number €, no matter
how small, there exists a positive integer N such that |[A — P,(a)| < € for every
value of n greater than N. Figure [15a] illustrates that this is much simpler than
it sounds: all it says is that once we reach a certain point Py (a) in the sequence
Pi(a), Pr(a), P3(a), .. .,all of the subsequent points lie within an arbitrarily small
disc of radius € centred at A.

In this case we say that the power series P(z) convergesto A at z = a, and we
write P(a) = A. If the sequence P;(a), P2(a), P3(a), ... does not converge to a

[a] :v' i B [b] |
) e Pm (a) Critl am+]\
=g Em+2 i
 Py(a) [ Ba@ = Pu(@ X
- ,
T
P \\ Pn(a) /‘ ‘ ;

Figure [15]
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particular point, then the power series P(z) is said to diverge at z = a. Thus for
each point z, P(z) will either converge or diverge.

Figure [15b] shows a magnified view of the disc in [15a]. f n > m > N then
P, (a) and P,(a) both lie within this disc, and consequently the distance between
them must be less than the diameter of the disc:

lem1a™ ! + cmy2a™? + -+ cpa"| = |Py(a) — Pn(a)l <26.  (6)

Conversely, it can be shown [exercise] that if this condition is met then P(a)
converges. Thus we have a new way of phrasing the definition of convergence:
P(a) converges if and only if there exists an N such that inequality (6) holds (for
arbitrarily small €) whenever m and n are both greater than N.

The complex power series P(z) is said to be absolutely convergent at z = a if
the real series

o0
P@y=) Il =lcol +lerzl + le2 22| + le3 2’| + -+,
j=0

converges there. Absolute convergence is certainly different from ordinary con-
vergence. For example, [exercise] P(z) = Y_ z//j is convergentat z = —1, but it
is not absolutely convergent there. On the other hand,

If P(z) is absolutely convergent at some point, then it will also be
convergent at that point.

)

Thus absolute convergence is a stronger requirement than convergence.
Toestablish (7), suppose that P (z) is absolutely convergentat z = a, so that (by
definition) P (a) is convergent. In terms of the partial sums P,(z) = Z}lzo |c; 7/
of the real series P (z), this says that for sufficiently large values of m and n we
can make [ P,(a) — P (a)] as small as we please. But, referring to [15b], we see
that _ _
Py@) — Pn@) = lems18™ ' + lomi2a™ P + - + [cad”|

is the total length of the roundabout journey from P,,(a) to P,(a) that goes via
P, 11(a), Pypi2(a), etc. Since | P, (a) — P, (a)| is the length of the shortest journey
from P, (a) to P,(a),

| Pa(@) — Pp(@)| < Py(a) — Pp(a).

Thus | P,(a) — P, (a)| must also become arbitrarily small for sufficiently large m
and n. Done.
We can now establish the following fundamental fact:

If P(z) converges at 7 = a, then it will also converge everywhere
inside the disc |z| < |a].

®)

See [16a]. In fact we will show that P(z) is absolutely convergent in this disc; the
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— divergent ™

Figure [16]

result then follows directly from (7).

If P(a) converges then the length |c, a”| of each term must die away to zero
as n goes to infinity [why?]. In particular, there must be a number M such that
lcna®| < M for all n. If |z| < |a]| then p = |z|/]a] < 1 and so |c, 2| < Mp".
Thus,

~ ~ M
Po@) = Pu(@) < MG 4 "2 4k 0" = T M =)

where the RHS is as small as we please for sufficiently large m and n. Done.

If P(z) does not converge everywhere in the plane then there must be at least
one point d where it diverges. Now suppose that P(z) were to converge at some
point p further away from the origin than d. See [16a]. By (8) it would then
converge everywhere inside the disc |z| < |p/|, and in particular it would converge
at d, contradicting our initial hypothesis. Thus,

If P(z) diverges at z = d, then it will also diverge everywhere

outside the circle |z| = |d|. (10)

At this stage we have settled the question of convergence everywhere except
in the “ring of doubt”, |a| < |z| < |d|, shown in [16a]. Suppose we take a point
q half way across the ring of doubt (i.e., on the circle |z| = ﬂgﬂ), then check
whether P (q) converges or not. Regardless of the outcome, (8) and (10) enable us
to obtain a new ring of doubt that is half as wide as before. For example, if P(g)
is convergent then P(z) is convergent for |z| < |g|, and the new ring of doubt is
lg] < |z| < |d|. Repeating this test procedure in the new ring will again halve its
width. Continuing in this manner, the ring of doubt will narrow to a definite circle
{z] = R (called the circle of convergence) such that P(z) converges everywhere
inside the circle, and diverges everywhere outside the circle. See [16b]. The radius
R is called the radius of convergence—at last we see where this name comes
from!—and the interior of the circle is called the disc of convergence.

Note that this argument tells us nothing about the convergence of P(z) on the
circle of convergence. In principle, we can imagine convergence at all, some, or
none of the points on this circle, and one can actually find examples of power series
that realize each of these three possibilities. See Ex. 11.
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All of the above results immediately generalize to a power series centred at an
arbitrary point k, that is to a series of the form P(z) = ) _ cj ZJ where Z = (z—k)
is the complex number from the centre & to the point z. Thus, restating our main
conclusion (due to Niels Abel) in general form,

Given a complex power series P(z) centred at k, there exists a circle
|z—k| = R centred at k such that P (z) converges everywhere inside (11)
the circle, and P (z) diverges everywhere outside the circle.

Of course one can also have a series that converges everywhere, but this may be
thought of as the limiting case in which the circle of convergence is infinitely large.

Returning to figures [13a] and [13b], we now recognize the illustrated discs as
the discs of convergence of the series for 1/(1 F z2).

3 Approximating a Power Series with a Polynomial

Implicit in the definition of convergence is a simple but very important fact: if
P (a) converges, then its value can be approximated by the partial sum Py, (a),
and by choosing a sufficiently large value of m we can make the approximation as
accurate as we wish. Combining this observation with (11),

At each point 7 in the disc of convergence, P(z) can be approximated
with arbitrarily high precision by a polynomial Py, (z) of sufficiently
high degree.

For simplicity’s sake, let us investigate this further in the case that P(z) is
centred at the origin. The error E,,(z) at z associated with the approximation
Py,,(z) can be defined as the distance E,,(z) = | P(z) — P, (z)| between the exact
answer and the approximation. For a fixed value of m, the error E,, (z) will vary as
z moves around in the disc of convergence. Clearly, since E,, (0) = 0, the error will
be extremely small if z is close to the origin, but what if z approaches the circle
of convergence? The answer depends on the particular power series, but it can
happen that the error becomes enormous! [See Ex. 12.] This does not contradict
the above result: for any fixed z, no matter how close to the circle of convergence,
the error E,, (z) will become arbitrarily small as m tends to infinity.

This problem is avoided if we restrict z to the disc |z] < r, where r < R,
because this prevents z from getting arbitrarily close to the circle of convergence,
|z| = R. In attempting to approximate P(z) within this disc, it turns out that we
can do the following. We first decide on the maximum error (say ¢) that we are
willing to put up with, then choose (once and for all) an approximating polynomial
Py, (z) of sufficiently high degree that the error is smaller than ¢ throughout the
disc. That is, throughout the disc, the approximating point P, (z) lies less than ¢
away from the true point, P(z). One describes this by saying that P (z) is uniformly
convergent on this disc:

If P(z) has disc of convergence |z| < R, then P(z) is uniformly

convergent on the closed disc |z| < r, wherer < R. (12)



Power Series 71

Although we may not have uniform convergence on the whole disc of conver-
gence, the above result shows that this is really a technicality: we do have uniform
convergence on a disc that almost fills the complete disc of convergence, say
r = (0.999999999) R.

To verify (12), first do Ex. 12, then have a good look at (9).

4 Uniqueness

If a complex function can be expressed as a power series, then it can only be done
so in one way—the power series is unique. This is an immediate consequence of
the Identity Theorem:

If
cotcizta+al+ o =do+diz+dr +d3 4

for all 7 in a neighbourhood (no matter how small) of O, then the
power series are identical: c; = dj.

Putting z = 0 yields cp = dp, so they may be cancelled from both sides. Dividing
by z and again putting z = O then yields ¢; = di, and so on. [Although this
was easy, Ex. 13 shows that it is actually rather remarkable.] The result can be
strengthened considerably: If the power series merely agree along a segment of
curve (no matter how small) through 0, or if they agree at every point of an infinite
sequence of points that converges to 0, then the series are identical. The verification
is essentially the same, only instead of putting z = 0, we now take the limit as z
approaches 0, either along the segment of curve or through the sequence of points.

We can perhaps make greater intuitive sense of these results if we firstrecall that
apower series can be approximated with arbitrarily high precision by a polynomial
of sufficiently high degree. Given two points in the plane (no matter how close
together) there is a unique line passing through them. Thinking in terms of a
graph y = f(x), this says that a polynomial of degree 1, say f(x) = co + c1x, is
uniquely determined by the images of any two points, no matter how close together.
Likewise, in the case of degree 2, if we are given three points (no matter how close
together), there is only one parabolic graph y = f (x) = co + c1x + c2x? that can
be threaded through them. This idea easily extends to complex functions: there is
one, and only one, complex polynomial of degree n that maps a given set of (n +1)
points to a given set of (n + 1) image points. The above result may therefore be
thought of as the limiting case in which the number of known points (together with
their known image points) tends to infinity.

Earlier we alluded to a sense in which A (z) = 1/(1 + z?) is the only complex
function that agrees with the real function H(x) = 1/(1 + x2) on the real line.
Yet clearly we can easily write down infinitely many complex functions that agree
with H (x) in this way. For example,

cos[x2y] + i sin[y?]
e¥ 4+ x2In(e + y*)

gx) =glx +iy)=
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Then in what sense can k(z) be considered the unique generalization of H (x)?

We already know that /2(z) can be expressed as the power series Z,?io (-1)J 2%,
and this fact yields [exercise] a provisional answer: 4(z) is the only complex func-
tion that (i) agrees with H (x) on the real axis, and (ii) can be expressed as a power
series in z. This still does not completely capture the sense in which A(z) is unique,
but it’s a start.

More generally, suppose we are given areal function F (x) that can be expressed
as a power series in x on a (necessarily origin-centred) segment of the real line:
F(x)=3720¢ x/. Then the complex power series f(z) = Y20¢ zJ with the
same coefficients can be used to define the unique complex function f(z) that
(i) agrees with F on the given segment of the real axis, and (ii) can be expressed
as a power series in z.

For example, consider the complex exponential function, written %, the geom-
etry of which we will discuss in the next section. Since ¢* = Zﬁo x//jl,

=142+ 57+ 52 + 4zt +e

Note that our heuristic, power-series approach to Euler’s formula [Chapter 1] is
starting to look more respectable!

5 Manipulating Power Series

The fact that power series can be approximated with arbitrarily high precision by
polynomials implies [see Ex. 14] that

Two power series with the same centre can be added, multiplied,
R, ) (13)
and divided in the same way as polynomials.
If the two series P(z) and Q(z) have discs of convergence Dy and D,, then the
resulting series for [P + Q] and P Q will both converge in the smaller of D{ and
Dy, though they may in fact converge within a still larger disc. No such general
statement is possible in the case of (P/Q) = P(1/Q), because the convergence
of the series for (1/Q) is limited not only by the boundary circle of D,, but also
by any points inside D, where Q(z) = 0.

Let us illustrate (13) with a few examples. Earlier we actually assumed this
result in order to find the series for 1/(1 —z?) centred at k. Using the partial fraction
decomposition

L_ap a4/
1—-z22 " 1—-z 1+2
we obtained two power series for the functions on the RHS, and then assumed that
these power series could be added like two polynomials, by adding the coefficients.

In the special case k = 0 we can check that this procedure works, because we

already know the correct answer for the series centred at the origin:

1
1_22=1+22+z4+z6+---.
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Since
1
=z = l+z+2+2+2+2 4
1
and = 1-z+22-22+2* -2+,
I+z

we see that adding the coefficients of these series does indeed yield the correct

series for 1/(1 — z2).
1 [1 1
1-z2  |1—-z |14z

Since
we can recycle this example to illustrate the correctness of multiplying power
series as if they were polynomials:

Ntz+2+2+2+2+ Ml —z+2 -2+ =2+
= 14 1-Dz+ A-141) 2% + (1-141-1) 23 + (1-141-1+D) 2* + - - -,

which is again the correct series for 1/(1 — 22).
Next, let’s use (13) to find the series for 1/(1 — z)2:

N4z+2 42+ +2+ Ml +z+22+ 2+ 42+
= 14 +Dz+ A+141) 22 + (Q+1+141) 22 + Q+1+1+141) 24 + - -+

andso (1-2)72 = Y220 + D 2/.

You may check for yourself that the above series for (1 —z)~! and (1 — z) 2
are both special cases of the general Binomial Theorem, which states that if n is
any real number (not just a positive integer), then within the unit disc,

(1+2)" = 1+nz+ 28102 4 2=V 3 4 2= DEDEI 4 4 ... (14)

Historically, this result was one of Newton’s key weapons in developing calculus,
and later it played an equally central role in the work of Euler.

In Exs. 16, 17, 18, we show how manipulation of power series may be used
to demonstrate the Binomial Theorem, first for all negative integers, then for all
rational powers. Although we shall not discuss it further, the case of an irrational
power p may be treated by taking an infinite sequence of rational numbers that
converges to p. Later we shall use other methods to establish a still more general
version of (14) in which the power # is allowed to be a complex number!

Next we describe how to divide two power series P(z) and Q(z). In order to
find the series P(z)/Q(z) = ) _¢j zJ/, one multiplies both sides by Q(z) to obtain
P(2)=0Q@@) Y ¢j 7/, and then multiplies the two power series on the right. By the
uniqueness result, the coefficients of this series must equal the known coefficients
of P(z), and this enables one to calculate the ¢;’s. An example will make this
process much clearer.
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In order to find the coefficients c; in the series 1/e* =} ¢; 7/, we multiply
both sides by e? to obtain

2 3 4

Z Z
1 = [+z+ +3,+ +odlcoteiztad+a o+
= co+(co+cl)z+(—+1'+—) 2+(—+2'+ +—)

By the uniqueness result, we may equate coefficients on both sides to obtain an
infinite set of linear equations:

€0,

co+ci,

co/2!'+c1/11 4+ ¢ /0!,

= co/3'+c1/2'+c2/11 4+ ¢3/0!,  etc.

S OO -
]

Successively solving the first few of these equations [exercise] quickly leads to the
guess ¢, = (—1)"/n!, which is then easily verified [exercise] by considering the
binomial expansion of (1 — 1)™, where m is a positive integer. Thus we find that

l/e —1_Z+2vZ |Z + ,Z - !ZS+"'=egz,
just as with the real function e*.

6 Finding the Radius of Convergence

Given a complex power series P(z) = ) _ ¢j 7/, there are several ways of determin-
ing its radius of convergence directly from its coefficients. Since they are formally
identical to the methods used on real series, we merely state them, leaving it to
you to generalize the standard real proofs.

The ratio test says that

R = lim

n—00

’

Cn+1
provided this limit exists. For example, if

2 Z3 Z4

P(z)—1+z+ 32+ +,
then
. 1/ n2 . 1

R=lim —"— = fim (1+1) =1.
n— 00 1/(n+1)2 n— 00 n
If |cn/cn+1] tends to infinity then (formally) R = oo, corresponding to convergence
everywhere in the plane. For example, e¢* = Zf.io 7/ /j! converges everywhere,
because
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. 1/n! .
R —nlglolom —nli»nc}o(n_i— 1) = o0.
When the ratio test fails, or becomes difficult to apply, we can often use the
root test, which says that
1
R = lim

n—oo I |Cn|

’

provided this limit exists. For example, if we first recall [we will discuss this later]
that the real function e* may be written as

n
¢ = lim (1+f) ,
n

n—oo

then applying the root test to the series

yields [exercise] R = e3.

On occasion both the ratio and root tests will fail, but there exists a slightly
refined version of the latter which can be shown to work in all cases. It is called
the Cauchy-Hadamard Theorem, and it says that

1
R=——r"—
lim sup %/|cy|

We will not discuss this further since it is not needed in this book.

The above examples of power series were plucked out of thin air, but often
our starting point is a known complex function f(z) which is then expressed as a
power series. The problem of determining R then has a conceptually much more
satisfying answer. Roughly?,

If f(2) can be expressed as a power series centred at k, then the
radius of convergence is the distance from k to the nearest singularity (15)

of f(2).

Figure {17a] illustrates this, the singularities of f(z) being represented as explo-
sions. To understand which functions can be expanded into power series we need
deep results from later in the book, but we are already in a position to verify that
a rational function [the ratio of two polynomials] can be, and that the radius of
convergence for its expansion is given by (15).

To begin with, reconsider [13a] and [13b], both of which are examples of (15).
Recall that in [13b] we merely claimed that R = +/1 + k2 for the series expansion

21 ater [p. 96] we shall have to modify the statement in the case that f(z) is a “multifunction”,
having more than one value for a given value of z.
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divergent [b]
: ky :
P _-—--“-_‘ A 2
"‘\‘8 / ‘\\I /, \‘_.:‘ a,’—- -_"/a’! \‘
Wz ; k2o J:E e
: ii “R=la—kp
convergent g “k i
Figure [17]

of h(z) = 1/(1 + z?) centred at the real point k. We now verify this and explicitly
find the series.
To do so, first note that (4) easily generalizes to

1 e zi . .
a_z=j§ @ if and only if | Z| < |a — k|, (16)

where a and k are now arbitrary complex numbers, and Z = (z — k) is the complex
number connecting the centre of the expansion to z. The condition |z —k| < |a —k]
for convergence is that z lie in the interior of the circle centred at k and passing
through a. See [17b], which also shows the discs of convergence when we instead
choose to expand 1/(a — z) about kj or k;. Since the function 1/(a — z) has just
one singularity at z = a, we have verified (15) for this particular function.

Earlier we found the expansion of 1/(1—x2) by factorizing the denominator and
using partial fractions. We are now in a position to use exactly the same approach
to find the expansion of h(z) = 1/(1+ z2) centred at an arbitrary complex number
k:

I 1 1 [ 1 1 ]
1+22 (z—i)z+i) 2i|—i—z i—z]
Applying (16) to both terms then yields

00 1 )
1+z:2 Z [ k)1+1 T G- k)j+1:| z’. an

The series for 1/(+i — z) converge inside the concentric circles {z —k| = | £i — k]|
centred at k and passing through the points i, which are the singularities of
h(z). But (17) will only converge when both these series converge, i.e., in the disc
|z — k| < R where R is the distance from the centre k to the nearest singularity of
h(z). Thus we have confirmed (15) for A(z).

In particular, if k is real then (17) converges in the disc shown in [13b]. If z
is restricted to the real axis then A(z) reduces to the real function 1/(1 + x2), and
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the expansion of this function into powers of X = (x — k) can be deduced easily
from (17). Since k is now real, |i — k| = +/1 + k2, and we may write (i — k) =
V14 k2 ¢'®, where ¢ = arg(i — k) is the appropriate value of tan~1(—1/k). Thus
[exercise]

1 K[sinG+e 1,;
bt _jgo[(m)fﬂ]x ' 4

Again, we have here a result concerning real functions that would be very difficult
to obtain using only real numbers.

The above analysis of 1/(1 + z2) can easily be generalized [exercise] to show
that any rational function can be expressed as a power series, with radius of con-
vergence given by (15).

7 Fourier Series*

On the 21st of December 1807, Joseph Fourier announced to the French Academy
adiscovery so remarkable that his distinguished audience found it literally incred-
ible. His claim was that any? real periodic function F' (), no matter how capricious
its graph, may be decomposed into a sum of sinusoidal waves of higher and higher
frequency. For simplicity’s sake, let the period be 27 ; then the Fourier series is

o0
F@®) =1ao+ Z [an cosnf + by sinnb],

n=1

where [see Ex. 20]
1 2r 1 2r
a, = —/ F(@@)cosnfdf and b, = —/ F(6)sinnb db. (19)
T Jo T Jo

This optional section is addressed primarily to readers who have already en-
countered such series. For those who have not, we hope that this brief discussion
(together with the exercises at the end of the chapter) may whet your appetite for
more on this fascinating subject*.

In the world of the real numbers there appears to be no possible connection
between the concepts of Fourier series and Taylor series, but when we pass into
the complex realm a beautiful and remarkable fact emerges:

Taylor series and Fourier series of real functions are merely two
different ways of viewing complex power series.

We will explain this cryptic pronouncement by means of an example.

3Later it was found that some restrictions must be placed on F, but they are astonishingly
weak.

“In many areas of mathematics it is hard to find even one really enlightening book, but Fourier
analysis has been blessed with at least two: Lanczos [1966], and Korner [1988].
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Consider the complex function f(z) = 1/(1 —z). Writingz = r "%, one finds
[exercise] that the real and imaginary parts of f(r €'?) are given by

) . . 1 —rcos6 rsin @
iy ___ i0 . 0y — .
fre®) =ulren)+ivire™) |:1+r2—2rc059:l+l[1+r2—2rcos9:|'

Let’s concentrate on just one of these real functions, say v.
If z moves outward from the origin along a ray @ = const. then v(r '?)
becomes a function of r alone, say Vy(r). For example,

r

Vn = .
70 V2(1 +72) —2r

If z instead travels round and round a circle » = const. then v becomes a function
of 6 alone, say V, (8). For example,

2siné

Vi) = ————.
%() 5 —4cosb

Note that this is a Beriodic function of 6, with period 27. The reason is simple
and applies to any V(@) arising from a (single-valued) function f(z): each time z
makes a complete revolution and returns to its original position, f(z) travels along
a closed loop and returns to its original position.

Now, to see the unity of Taylor and Fourier series, recall that (within the unit
disc) f(z) = 1/(1 — z) can be expressed as a convergent complex power series:

f(r ei9) =14+( ei9) +(r ei9)2 +(r ei9)3 +(r ei0)4 4 ...
=1+4r(cosf +isin@) + r(cos 20 + i sin26) + r3(cos 30 + i sin30) + - - -.
In particular,
v(re?) =rsing +r?sin20 + r>sin 30 + r*sin46 + > sin56 + - - - .

If we put # = (7 /4), we immediately obtain the Taylor series for V% r):
d - — L ,q,2t 3 1,5 6 1 .7,1 9,
ﬁ(1+r2)_2r—V%(r)—ﬁr+r +ﬁr BT +ﬁr+

Once again, consider how difficult this would be to obtain using only real numbers.
From this we find, for example, that

= 98!
r=0

d* r
dr% [ V21 + 7% - 2r]

_ If we instead put r = (1/2), we immediately obtain the Fourier series for
V1(6):
2
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2sin @ ~

5 _dcosd %(0):%sin9+zizsin29+21—3sin39+2i4sin49+~._

The absence of cosine waves in this series correctly reflects the fact that Vl ) is
2

an odd function of 6.

This connection between complex power series and Fourier series is not merely
aesthetically satisfying, it can also be very practical. The conventional derivation
of the Fourier series of V% (0) requires that we evaluate the tricky integrals in (19),
whereas we have obtained the result using only simple algebra! Indeed, we can
now use our Fourier series to do integration:

2” . .
] l:2 sin 6 s1nn0] P
0 5 —4cos6 2n
Further examples may be found in Exs. 21, 37, 38.

We end with a premonition of things to come. The coefficients in a Taylor
series may be calculated by differentiation, while those in a Fourier series may be
calculated by integration. Since these two types of series are really the same in
the complex plane, this suggests that there exists some hidden connection between

differentiation and integration that only complex numbers can reveal. Later we
shall see how Cauchy confirmed this idea in spectacular fashion.

IV The Exponential Function
1 Power Series Approach

We have seen that the only complex function expressible as a power series that
generalizes the real function ¢* to complex values is

E=1+z+ 57+ 50+ 520+,

which converges everywhere in C. We now investigate the geometric nature of this
function.

Figure [18] visualizes the above series as a spiral journey, the angle between
successive legs of the journey being fixed and equal to arg z. In the special case
where this angle is a right angle, we saw in Chapter 1 that the spiral converges to a
point on the unit circle given by Euler’s formula, ¢’ = cos y + i sin y. In fact this
special spiral enables us to figure out what happens in the case of the general spiral
in [18]: for an arbitrary value of z = x + iy, the spiral converges to the illustrated
point at distance e* and at angle y. In other words,

&Y = ¢* eV,

This is a consequence of the fact that if a and b are arbitrary complex numbers,

then e® e = ¢2*?. To verify this we just multiply the two series:
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Figure [18]
et = [l+a+2i!a2+%a3+-~-][1+b+2l!b2+%b3+~--]
2 4 2ab+b? 3 +3a2b + 3ab® + b3
— 1+(a+b)+[a +2ab+ ]+[” +oabt A ]+
2! 3!
= 1+@+b)+5@+b?+f@a+b?’+--
— ea+b.

Here we have left it to you to show that the general term in the penultimate line is
indeed (a + b)" /n!.

2 The Geometry of the Mapping

Figure [19] illustrates the essential features of the mapping z — w = €%. Study it
carefully, noting the following facts:

e If 7 travels upward at a steady speed s, then w rotates about the origin at
angular speed s. After z has travelled a distance of 27, w returns to its starting
position. Thus the mapping is periodic, with period 27i.

o If z travels westward at a steady speed, w travels towards the origin, with
ever decreasing speed. Conversely, if z travels eastward at a steady speed, w
travels away from the origin with ever increasing speed.

e Combining the previous two facts, the entire w-plane (with the exception of
w = 0) will be filled by the image of any horizontal strip in the z-plane of
height 27.

e A line in general position is mapped to a spiral of the type discussed in the
previous chapter.



The Exponential Function 81

Figure [19]

e Euler’s formulae’” = cos y+i sin y can be interpreted as saying that ¢? wraps
the imaginary axis round and round the unit circle like a piece of string.

e The half-plane to the left of the imaginary axis is mapped to the interior of
the unit circle, and the half-plane to the right of the imaginary axis is mapped
to the exterior of the unit circle.

e The images of the small squares closely resemble squares, and (related to
this) any two intersecting lines map to curves that intersect at the same angle
as the lines themselves.

The last of these observations is not intended to be self-evident—in Chapter 4
we will begin to explore this fundamental property and to see that it is shared by
many other important complex mappings.

3 Another Approach

The advantage of the power series approach to e® is that it suggests that there is
something unique about this generalization of ¢* to complex values. The disad-
vantage is the amount of unilluminating algebra needed to decipher the geometric
meaning of the series. We now describe a different approach in which the geometry
lies much closer to the surface. The idea is to generalize the real result,

¢ = lim (1 + f)". 20)

n—o00 n

Here is one way of understanding (20). As we discussed in Chapter 1, f(x) =
¢* may be defined by the property f'(x) = f(x). Figure [20a] interprets this in
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terms of the graph of y = f(x). Drawing a tangent at an arbitrary point, the base
of the shaded triangle is always equal to 1. As you see from the figure, it follows
that if the height is y,4 at some point x, then moving x an infinitesimal distance §

to the right yields a new height given by
Yaew = (1 + 8) youa.

To find the height ¢* at x, we divide the interval [0, x] into a large number n

[b]

[1+ (x/3)}
[1+ G/3)P-3
[1+ @/3)P

|

=

Figure [20]
of very short intervals of length (x/r). Since the height at x = 0 is 1, the height
at (x/n) will be approximately [1 + (x/n)] - 1, and so the height at 2(x/n) will
be approximately [1 + (x/n)} - [1 + (x/n)] - 1, and so....... , and so the height at
x = n(x/n) willbe approximately [14(x/n)]". [For clarity’s sake, [20b] illustrates
this geometric progression with the small (hence inaccurate) value n = 3.] Itis now
plausible that the approximation [1 4 (x/n)}" becomes more and more accurate as
n tends to infinity, thereby yielding (20). Try using a computer to verify empirically
that the accuracy does indeed increase with .

Generalizing (20) to complex values, we may define ¢ as

et = lim (1 + E)n . @3]

n—00 n

First we should check that this is the same generalization of ¢* that we obtained
using power series. Using the Binomial Theorem to write down the first few terms

of the n'h degree polynomial [1 + (z/n)]", we get

(43 = reafZ]e O] e mRe =2
= l+z+ (1_%)22+ (1_%) (1—%)z3+~--,

2! 3!
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which makes it clear that we do recover the original power series as n tends to
infinity.

Next we turn to the geometry of (21). In deciphering the power series for ¢*
we felt free to assume Euler’s formula, because in Chapter 1 we used the power
series to derive that result. However, it would smack of circular reasoning if we
were to assume Euler’s formula while following our new approach to e%, based on
(21). Temporarily, we shall therefore revert to our earlier notation and write r /6
instead of r ¢'?; the fact we wish to understand is therefore written e*+? = ¢*/ y.

Withn = 6, figure [21] uses Ex. 5, p. 46, to geometrically construct the succes-
sive powers of a = [1 + (z/n)] for a specific value of z. [All six shaded triangles

Figure [21]

are similar; the two kinds of shading merely help to distinguish one triangle from
the next.] Even with this small value of n, we see empirically that in this particular
case [1 + (z/n)]" is close to e* / y. To understand this mathematically, we will try
to approximate a = [1 + (z/n)].

Let € be a small, ultimately infinitesimal, complex number. Consider the length
r and angle 6 of the number (1 + €) = r /6 shown in [22]. The origin-centred
circular arc [not shown] connecting (1 + €) to the point  on the real axis almost
coincides with the illustrated perpendicular from (1 + €) to the real axis. Thus r is
approximately equal to [1 4+ Re(e)], and is ultimately equal to it as € tends to zero.
Similarly, we see that the angle 8 (the illustrated arc of the unit circle) is ultimately
equal to Im(e). Thus

Figure [22]
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(1+¢)~[1+Re(¢)]LIm(e) for small ¢,

with equality holding for infinitesimal €.

Now set € = (z/n) = (x + iy)/n. With the same values of z and » as in [21],
figure [23] shows the approximation b = (1+ ) / (2) to a, together with its
successive powers.

)
S
/b6 oez *
%
l
N’

Figure [23]
Returning to the general case, the geometry of (21) should now be clear. If n

e A0+ (T = (-2 o

Taking the limit as » tends to infinity, and using (20), we deduce that
ex+iy =5/ y,

as was to be shown. In particular, if we put x = 0 then we recover Euler’s formula,
e’ = 1/ y, and so we are entitled to write e*17 = ¢* "7,
For a slightly different way of looking at (21), see Ex. 22.

V Cosine and Sine
1 Definitions and Identities

In the previous chapter Euler’s formula enabled us to express cosine and sine in
terms of the exponential function evaluated along the imaginary axis:

eix 4 e—ix eix _ e—ix
cosx = — and sinx = ———
2 2i
Now that we understand the effect of e* on arbitrary points (not merely points on

the imaginary axis), it is natural to extend the definitions of cosine and sine to the
complex functions
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ei? + e iz ) il — 7z
cosz=———— and sing= ———. (22)
2 2i
Of course another way of generalizing cos x and sin x would be via their power
series, discussed in the previous chapter. This leads to the alternative definitions,

2 8 3 7P 7

cosz=1—2—!+z—a+-~, and s1nz=z—§+§—ﬂ+---

However, by writing down the series for e**Z you can easily check that these two
approaches both yield the same complex functions.

From the definitions (22) we see that cos z and sin z have much in common
with their real ancestors. For example, cos(—z) = cos z, and sin(—z) = —sinz.
Also, since €* is periodic with period 27i, it follows that cos z and sin z are also
periodic, but with period 2. The meaning of this periodicity will become clearer
when we examine the geometry of the mappings.

Other immediate consequences of (22) are the following important general-
izations of Euler’s formula:

et =cosz+isinz and e ** =cosz—isinz.

WARNING: cos z and sin z are now complex numbers—they are not the real and
imaginary parts of e'Z.

It is not hard to show that all the familiar identities for cos x and sin x continue
to hold for our new complex functions. For example, we still have

cos?z +sinz = (cosz +isinz)(cosz —isinz) = e'Ze 1 =0 =1,

despite the fact that this identity no longer expresses Pythagoras’ Theorem. Simi-
larly, we will show that if a and b are arbitrary complex numbers then

cos(a+b) = cosa cosb—sina sinb (23)
sinfa+b) = sina cosb+ cosa sinb, (24)

despite the fact that these identities no longer express the geometric rule for mul-
tiplying points on the unit circle. First,

cos(a + b) + i sin(a + b) = /@ th) = giaib
= (cosa +isina)(cosb + i sinb)
= (cosa cosb —sina sinb) + i(sina cos b + cosa sinb),

exactly as in the previous chapter. However, in view of the warning above, we
do not obtain (23) and (24) simply by equating real and imaginary parts. Instead
[exercise] one first finds the analogous identity for cos(a + b) — i sin(a + b), then
adds it to (or subtracts it from) the one above.
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2 Relation to Hyperbolic Functions
Recall the definitions of the hyperbolic cosine and sine functions:
ex + e—x ex _ e—x

hx= ——— inhx =
cosh x > and sinhx 5

By interpreting each of these as the average (i.e., midpoint) of e* and +e™%, it is

easy to obtain the graphs y = cosh x and y = sinh x shown in [24a] and [24b].

y ;o " y

] i [b]

Figure [24]

As you probably know, cosh x and sinh x satisfy identities that are remarkably
similar to those satisfied by cos x and sin x, respectively. For example, if r1 and r»
are arbitrary real numbers, then [exercise]

cosh(ri +r;) = coshry coshry + sinhr; sinhry (25)
sinh(r; +r2) = sinhry coshry 4+ coshry sinhrs. (26)

Nevertheless, [24] shows that the actual behaviour of the hyperbolic functions is
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quite unlike the circular functions: they are not periodic, and they become arbi-
trarily large as x tends to infinity. It is therefore surprising and pleasing that the
introduction of complex numbers brings about a unification of these two types of
functions.

We begin to see this if we restrict z = iy to the imaginary axis, for then

cos(iy) =coshy and sin(iy) =i sinhy.

This connection becomes particularly vivid if we consider the modular surface of
sin z. Since | sin z| is ultimately equal to |z| as z approaches the origin, it follows that
the surface rises above the origin in the form of a cone. Also, | sin(z+)| = | sin z|,
so there is an identical cone at each multiple of = along the real axis. These are the
only points [exercise] at which the surface hits the plane. Figure [25]—which we
have adapted from Markushevich [1965, p. 149]—shows a portion of the surface.
Notice that this surface also yields the cosh graph, forif we restrict z = (37 /2)+iy

Figure [25]

to the line x = (37/2), for example, then | sin z| = cosh y.

A practical benefit of this unification is that if you can remember (or quickly
derive using Euler’s formula) a trig identity involving cosine and sine, then you can
immediately write down the corresponding identity for the hyperbolic functions.
For example, if we substitute a = ir; and b = ir; into (23) and (24), then we
obtain (25) and (26).

The connection between the circular and hyperbolic functions becomes stronger
still if we generalize the latter to complex functions in the obvious way:

e+ et et —e?

coshz = — and sinhz = 3

Since we now have

coshz =cos(iz) and sinhz = —i sin(iz),
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the distinction between the two kinds of function has all but evaporated: cosh is
the composition of a rotation through (77 /2), followed by cos; also, sinh is the

composition of a rotation through (;r/2), followed by sin, followed by a rotation
through — (77 /2).

3 The Geometry of the Mapping

Just as in the real case, sin z = cos(z — %), which means that we may obtain sin
from cos by first translating the plane by —(z/2). It follows from the preceding
remarks that it is sufficient to study just cosz in order to understand all four
functions, cos z, sin z, cosh z, and sinh z. We now consider the geometric nature
of the mapping z — w = cosz.

We begin by finding the image of a horizontal line y = —c lying below the
real axis. It is psychologically helpful to picture the line as the orbit of a particle
moving eastward at unit speed, whose position at time ¢ is z = t — ic. See [26], in
which the line is shown heavy and unbroken. As z traces this line, —z traces the
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line y = c, but in the opposite direction. Applying the mapping z — iz (whichisa
rotation of 7), the image particles trace the vertical lines x = =, again with unit
speed and in opposite directions. Finally applying z — %ez, the image particles
orbit with equal and opposite angular speeds in origin-centred circles of radii %eﬂ.

The image orbit under z — w = cos z of the original particle travelling on
the line y = —c is just the sum of these counter-rotating circular motions. This
is clearly some kind of symmetrical oval hitting the real and imaginary axes at
a = coshc and ib = i sinhc. It is also clear that cos z executes a complete orbit
of this oval with each movement of 27 by z; this is the geometric meaning of the
periodicity of cos z.

I'haven’t found a simple geometric explanation, but it’s easy to show symboli-
cally that the oval traced by cos z is a perfect ellipse. Writing w = u 4 iv, we find
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from the figure [exercise] that u = a cost and v = b sin ¢, which is the familiar
parametric representation of the ellipse (u /a)? + (v/b)? = 1. Furthermore,

Va2 —-bp?2 = \/coshzc— sinh?c = 1,

so the foci are at 1, independent of which particular horizontal line z travels
along.

Try mulling this over. How does the shape of the ellipse change as we vary ¢?
How do we recover the real cosine function as ¢ tends to zero? What is the orbit of
cos z as z travels eastward along the line y = c, above the real axis? What is the
image of the vertical line x = ¢ under z > cosh z? What is the orbit of sin z as z
travels eastward along the line y = c; how does it differ from the orbit of cos z;
and is the resulting variation of | sin z| consistent with the modular surface shown
in [25]?

Before reading on, try using the idea in [26] to sketch for yourself the image
under z > cos z of a vertical line.

As illustrated in [27], the answer is a Ayperbola. We can show this using the

x=mn/4

.

Figure [27]
addition rule (23), which yields

u+iv=-cos(x +iy) =cosx coshy —i sinx sinhy.

On a horizontal line, y is constant, so (u/ cosh y)? + (v/sinh y)? = 1, as before.
On a vertical line, x is constant, so (#/cosx)? — (v/sinx)?> = 1, which is the
equation of a hyperbola. Furthermore, since cos? x +sin® x = 1, it follows that the
foci of the hyperbola are always +1, independent of which vertical line is being
mapped.

Figure [27] tries to make these results more vivid by showing the image of a
grid of horizontal and vertical lines. Note the empirical fact that each small square
in the grid is mapped by cosz to an image shape that is again approximately
square. This is the same surprising (and visually pleasing) phenomenon that we
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observed in the case of z > €%.

We hope your curiosity is piqued—Ilater chapters are devoted to probing this
phenomenon in depth. In the present case of z +— cosz we can at least give a
mathematical explanation of part of the result, namely, that the sides of the image
“squares” do indeed meet at right angles; in other words, each ellipse cuts each
hyperbola at right angles.

This hinges on the fact that these ellipses and hyperbolas are confocal. To
prove the desired result [exercise], think of each curve as a mirror, then appeal to
the familiar reflection property of the conic sections: a ray of light emitted from a
focus is reflected directly towards the other focus by the ellipse, and it is reflected
directly away from the other focus by the hyperbola. See [27].

VI Multifunctions
1 Example: Fractional Powers

Thus far we have considered a complex function f to be a rule that assigns to
each point z (perhaps restricted to lie in some region) a single complex number
f(z). This familiar conception of a function is unduly restrictive. Using examples,
we now discuss how we may broaden the definition of a function to allow f(z)
to have many different values for a single value of z. In this case f is called a
“many-valued function”, or, as we shall prefer, a multifunction.

We have, in effect, already encountered such multifunctions. For example, we
know that 3/z has three different values (if z is not zero), so it is a three-valued
multifunction. In greater detail, [28] recalls how we can find the three values of
}/p using the mapping z — z3. Having found one solution a, we can find the
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Figure [28]

other two (b and c¢) using the factthatas z = r ¢'? orbits round an origin-centred
circle, z3 = r? ¢/3 orbits with three times the angular speed, executing a complete
revolution each time z executes one third of a revolution. Put differently, reversing
the direction of the mapping divides the angular speed by three. This is an essential
ingredient in understanding the mapping z — 3/z, which we will now study in
detail.

Writing z = r €%, we have 3/z = 3/r ¢/ Here }/r is uniquely defined as
the real cube root of the length of z; the sole source of the three-fold ambiguity in
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the formula is the fact that there are infinitely many different choices for the angle
6 of a given point z.

Think of z as a moving point that is initially at z = p. If we arbitrarily choose
6 to be the angle ¢ shown in [28], then }/p = a. As 7z gradually moves away from
p. 0 gradually changes from its initial value ¢, and 3/7 = 3/r ¢/®/? gradually
moves away from its initial position a, but in a completely determined way—its
distance from the origin is the cube root of the distance of z, and its angular speed
is one third that of z.

Figure [29] illustrates this. Usually we draw mappings going from left to right,
but here we have reversed this convention to facilitate comparison with [28].

Figure [29]

As 7 travels along the closed loop A (finally returning to p), 3/z travels along
the illustrated closed loop and returns to its original value a. However, if z instead
travels along the closed loop B, which goes round the origin once, then 3/z does
not return to its original value but instead ends up at a different cube root of p,
namely b. Note that the detailed shape of B is irrelevant, all that matters is that
it encircles the origin once. Similarly, if z travels along C, encircling the origin
twice, then 3/z ends up at c, the third and final cube root of p. Clearly, if z were
to travel along a loop [not shown] that encircled the origin three times, then 3/z
would return to its original value a.

The premise for this picture of z > 3/Z was the arbitrary choice of }/p = a,
rather than b or c. If we instead chose }/p = b, then the orbits on the left of [29]
would simply be rotated by (277/3). Similarly, if we chose 3/p = c, then the orbits
would be rotated by (47/3).

The point z = 0 is called a branch point of 3/z. More generally, let f(z) be a
multifunction andleta = f(p) be one of its values at some point z = p. Arbitrarily
choosing the initial position of f(z) to be a, we may follow the movement of f(z)
as z travels along a closed loop beginning and ending at p. When z returns to p,
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f (2) will either return to a or it will not. A branch point z = g of f is a point such
that f(z) fails to return to a as z travels along any loop that encircles g once.

Returning to the specific example f(z) = 3/z, we have seen that if z executes
three revolutions round the branch point at z = 0 then f(z) returns to its original
value. If f(z) were an ordinary, single-valued function then it would return to its
original value after only one revolution. Thus, relative to an ordinary function, two
extra revolutions are needed to restore the original value of f(z). We summarize
this by saying that 0 is a branch point of 3/z of order two.

More generally, if g is a branch point of some multifunction f(z), and f(z)
first returns to its original value after N revolutions round ¢, then q is called an
algebraic branch point of order (N — 1); an algebraic branch point of order 1 is
called a simple branch point. We should stress that it is perfectly possible that f(z)
never returns to its original value, no matter how many times z travels round g.
In this case q is called a logarithmic branch point—the name will be explained in
the next section.

By extending the above discussion of 3/z, check for yourself that if n is an
integer then z(/™ is an n-valued multifunction whose only (finite) branch point is
at z = 0, the order of this branch point being (n — 1). More generally, the same is
true for any fractional power z™/™), where (m/n) is a fraction reduced to lowest
terms.

2 Single-Valued Branches of a Multifunction

Next we will show how we may extract three ordinary, single-valued functions
from the three-valued multifunction 3/z. First, [30] introduces some terminology
which we need for describing sets of points in C.

A set S is said to be connected (see [30a]) if any two points in S can be
connected by an unbroken curve lying entirely within S. Conversely, if there exist
pairs of points that cannot be connected in this way (see [30b]), then the set is
disconnected. Amongst connected sets we may single out the simply connected
sets (see [30c]) as those that do not have holes in them. More precisely, if we

~ simply connected y
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disconnected @ ~ multiply connected /7

Figure [30]
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picture the path connecting two points in the set as an elastic string, then this string
may be continuously deformed into any other path connecting the points, without
any part of the string ever leaving the set. Conversely, if the set does have holes
in it then it is multiply connected (see [30d]) and there exist two paths connecting
two points such that one path cannot be deformed into the other.

Now let us return to [29]. By arbitrarily picking one of the three values of i/p
at z = p, and then allowing z to move, we see that we obtain a unique value of
/Z associated with any particular path from p to Z. However, we are still dealing
with a multifunction: by going round the branch point at 0 we can end up at any
one of the three possible values of ¥/Z.

On the other hand, the value of /Z does not depend on the detailed shape
of the path: if we continuously deform the path without crossing the branch point
then we obtain the same value of ¥/ Z. This shows us how we may obtain a single-
valued function. If we restrict z to any simply connected set S that contains p but
does not contain the branch point, then every path in S from p to Z will yield the
same value of +/Z, which we will call f1(Z). Since the path is irrelevant, f; is
an ordinary, single-valued function of position on §; it is called a branch of the
original multifunction /7.

Figure [31] illustrates such a set S, together with its image under the branch f;
of 3/z. Here we have reverted to our normal practice of depicting the mapping going
from left to right. If we instead choose 3/p = b then we obtain a second branch
f2of 3/z, while 3/p = c yields the third and final branch f3. Notice, incidentally,
that all three branches display the by now ubiquitous (yet mysterious) preservation
of small squares.

We now describe how we may enlarge the domain § of the branches so as to
obtain the cube roots of any point in the plane. First of all, as illustrated in [32], we
draw an arbitrary (but not self-intersecting) curve C from the branch point 0 out

Figure [31]
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Figure [32]

to infinity; this is called a branch cut. Provisionally, we now take S to be the plane
with the points of C removed—this prevents any closed path in S from encircling
the branch point. We thereby obtain on S the three branches f1, f>, and f3. For
example, the figure shows the cube root fi(d) of d.

What about a point such as e on C? Imagine that z is travelling round an origin-
centred circle through e. The figure illustrates the fact that fi(z) approaches two
different values according as z arrives at e with positive or negative angular speed. If
we (arbitrarily) define f](e) to be the value of f(z) when z travels counterclockwise
round the circle, then fi(z) is well defined on the whole plane. Similarly for the
other two branches.

Of course the branch cut C is the work of man—the multifunction 3/7 is
oblivious to our desire to dissect it into three single-valued functions. As we have
just seen, this shows up in the fact that the resulting branches are discontinuous
on C, despite the fact that the three values of 3/z always move continuously as
z moves continuously. As z crosses C travelling counterclockwise then we must
switch from one branch to the next in order to maintain continuous motion of 3/z:
for example, f; switches to f;. If z executes three counterclockwise revolutions
round the branch point, then the branches permute cyclically, each finally returning
to itself: using an arrow to denote a crossing of C,

h f2 /3 h
o= B =3 0 23 N~
f3 Bjl f2 f3

A common choice for C is the negative real axis. If we do not allow z to cross
the cut then we may restrict the angle 6 = arg(z) to lie in the range —7 < 6 < 7.
This is called the principal value of the argument, written Arg (z); note the capital
first letter. With this choice of 8, the single-valued function /7 ¢/©/3) is called the
principal branch of the cube root; let us write it as [ 3/z ]. Note that the principal
branch agrees with the real cube root function on the positive real axis, but not on
the negative real axis; for example, [3/—8] = 2¢/*/3, Also note that the other
two branches associated with this choice of C can be expressed in terms of the
principal branch as ¢/®*/3[ 3/z] and £/“*/3[ 3/7].
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It should be clear how the above discussion extends to a general fractional
power.

3 Relevance to Power Series

Earlier we explained the otherwise mysterious interval of convergence for a real
function such as 1/(1 + x2) by extending the function off the real line and into
the complex plane: the obstruction to convergence was the existence of points at
which the complex function became infinite (singularities). We now discuss the
more subtle fact that branch points also act as obstacles to the convergence of
power series.

The real Binomial Theorem says that if  is any real number (not just a positive
integer), then

a +x)n =14nx+ n(nz?l)xZ + n(n—13)!(n—2)x3 + n(n—l)(r:;2)(n—3)x4 4oael

Ifn is a positive integer then the series terminates at x" and the issue of convergence
does not arise. If n is not a positive integer then the ratio test tells us that the
interval of convergence of the power series is —1 < x < 1. This interval is
easily understood when r is negative, because the function then has a singularity
at x = —1. But how, for example, are we to explain this interval of convergence
in the case n = (1/3)?

Figure [33a] shows the graph y = (1+x)% of the real function f (x) = (I+x) 3 s
which is well defined for all x since every real number has a unique real cube root.
Looking at this graph, there seems to be no good reason for the series to break
down at 1, yet break down it does. This is illustrated rather vividly by the dashed
curve, which is the graph of the 30® degree polynomial obtained by truncating the
binomial series at x3°. As you can see, this curve follows y = f(x) very closely
(actually more closely than illustrated) between =1, but just beyond this interval
it suddenly starts to deviate wildly.

Unlike the case of 1/(1 + x2), observe that the mystery does not disappear

when we extend the real function f (x) to the complex function f(z) = (1 + z) 5 s
because f(z) does not have any singularities.
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We have already discussed the fact [see (14) and Exs. 16, 17, 18] that the
Binomial Theorem extends to the complex plane. In the present case it says that

f@Q=0+25 =1+1z-32+ 52 - 204+ 25—,
with convergence inside the unit disc shown in [33b]. In common with all power
series, the RHS of the above equation is a single-valued function. For example, at
z = 0 the series equals 1. But while f(x) was an ordinary single-valued function
of x, the LHS of the above equation is a three-valued multifunction of z, with a
second order branch point at z = —1. For example, f(0) takes three values: 1,

P ,and e’ % Wenow recognize that the power series represents just one branch
of f(z), namely the one for which f(0) = 1.

This solves the mystery. For suppose that the series were to converge inside

the larger circle in [33b], and in particular at the illustrated point z. Starting at

= 0 with the value f(0) = 1, then travelling along the two illustrated paths
to z, we clearly end up with two different values of f(z), because together the
two paths enclose the branch point at —1. But the power series cannot mimic
this behaviour since it is necessarily single-valued—its only way out is to cease
converging outside the unit disc. We have demanded the impossible of the power
series, and it has responded by committing suicide!

This example shows that a branch point is just as real an obstacle to conver-
gence as a singularity. Quite generally, this argument shows that if a branch of a
multifunction can be expressed as a power series, the disc of convergence cannot
be large enough to contain any branch points of the multifunction. This strongly
suggests a further generalization of the (unproven) statement (15):

Ifa complex function or a branch of a multifunction can be expressed
as a power series, the radius of convergence is the distance to the 27
nearest singularity or branch point.

Much later in the book we will develop the tools necessary to confirm this conjec-
ture.

4 An Example with Two Branch Points

Choosing the positive value of the square root, [34a] illustrates the graph y =
f(x) = ~/1 4 x2, which is a hyperbola. Again, the Binomial Theorem yields a
power series that mysteriously only converges between =41, namely,

1
fO)=A+x)2 =1+4x? = b + Lx® - Zox® + ..
The divergence of the series beyond this interval is vividly conveyed by the dashed
curve, which is the graph of the 20! degree polynomial obtained by truncating the
binomial series at x20.
As before, the explanation lies in C, where f(x) becomes the two-valued

multifunction f(z) = +~/z2 + 1. This can be rewritten as 1 (z) = /(z — )z + i),
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Figure [34]
which makes it clear that f(z) has two simple branch points, one at i and the other
at —i. These branch points obstruct the convergence of the corresponding complex
series, limiting it to the unit disc shown in [34b].

In greater detail, the notation of [34b] enables us to write

f2) = Jrir &G 10/2, (28)

Here we must bear in mind that the figure illustrates only one possibility (out of
infinitely many) for each of the angles 8; and ;. To see that i is indeed a branch
point, suppose we start with the value of f(z) given by the illustrated values of 6,
and 6,. Now let z travel round the illustrated loop L. As it does so, (z + i) rocks
back and forth, so 6, merely oscillates, finally returning to its original value. But
(z — i) undergoes a complete revolution, and so 8; increases by 2. Thus when z
returns to its original position, (28) shows that f(z) does not return to its original
value, but rather to

Foew(2) = Jrarz ECOTIHON2 _ pin S G102 o f4(2).

Of course the same thing happens if z travels along a loop that goes once round
—i, instead of round +i.

In order to dissect f(z) into two single-valued branches, we appear to need
two branch cuts: one cut C; from i to infinity (to prevent us encircling the branch
pointat i), and another cut C; from —i to infinity, for the same reason. Figure [35a]
illustrates a particularly common and important choice of these cuts, namely, rays
going due west. If we do not allow z to cross the cuts then we may restrict the
angle 8; = arg(z — i) to its principal value, in the range —w < 6; < m. For
example, the angle in [34b] is not the principal value, while the one in [35a] is. If
6, is likewise restricted to its unique principal value then (28) becomes the single-
valued principal branch of f(z), say F(z). The other branch of f(z) is simply
—-F(2).

Let us return to the previous situation in which we allowed 6; and 6, to take
general values rather than their principal values. Figure [35b] illustrates the fact
that it is possible to define two branches of f(z) using only a single branch cut
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C that connects the two branch points. If z is restricted to the shaded, multiply-
connected region S, then it cannot loop around either branch point singly. It can,
however, travel along a loop such as L that encircles both branch points together.
But in this case both 6; and 8, increase by 2, so (28) shows that f(z) returns to
its original value. Thus we can define two single-valued branches on S. Finally,
we may expand S until it borders on C.

VIl The Logarithm Function
1 iInverse of the Exponential Function

The complex logarithm function log(z) may be introduced as the “inverse” of e*.
More precisely, we define log(z) to be any complex number such that ¢l°8?) = 7.
It follows [exercise] that

log(z) = In|z| + i arg(z).

Since arg(z) takes infinitely many values, differing from each other by multiples
of 277, we see that log(z) is a multifunction taking infinitely many values, differing
from each other by multiples of 2. For example,

log(2 + 2i) = In2v2 + i(w/4) + 2nmi,

where n is an arbitrary integer.

The reason we get infinitely many values is clear if we go back to the expo-
nential mapping shown in [19], p. 81: each time z travels straight upward by 27 i,
e* executes a complete revolution and returns to its original value. Figure [36]
rephrases this using the above example of log(2 4 2i). If we arbitrarily choose the
initial value w = In2+/2 +i (7 /4) for log(2 + 2i), then as z travels along a loop
that encircles the origin v times in the counterclockwise direction, log(z) moves
along a path from w to w 4 2vsri. Check that you understand (roughly) the shapes
of the illustrated image paths.

Clearly log(z) has a branch point at z = 0. However, this branch point is quite
unlike that of z(1/", for no matter how many times we loop around the origin (say
counterclockwise), log(z) never returns to its original value, rather it continues
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moving upwards forever. You can now understand the previously introduced term,
“logarithmic branch point”. ;

Here is another difference between the branch points of z(!/ and log(z). As z
approaches the origin, say along a ray, |z(1/")| tends to zero, but | log(z)| tends to
infinity, and in this sense the origin is a singularity as a well as a branch point. On
the other hand, algebraic branch points can also be singularities; consider (1/,/7).

To define single-valued branches of log(z) we make a branch cut from 0 out
to infinity. The most common choice for this cut is the negative real axis. In this
cut plane we may restrict arg(z) to its principal value Arg (z); remember, this is
defined by — < Arg (z) < m. This yields the principal branch or principal value
of the logarithm, written Log (z), and defined by

Log(z) =In|z| +i Arg(2).

Forexample, Log (—+/3—i) = In2—i (57/6),Log (i) = i(/2),and Log (—1) =
im. Note that if z = x is on the positive real axis, Log (x) = In(x).

Figure [37] illustrates how the mapping z — w = Log(z) sends rays to
horizontal lines, and circles to vertical line-segments connecting the horizontal
lines at heights +; the entire z-plane is mapped to the horizontal strip of the w-
plane bounded by these lines. Study this figure until you are completely at peace
with it. You can see the price we pay for forcing the logarithm to be single-valued: it
becomes discontinuous at the cut. As z crosses the cut travelling counterclockwise,
the height of w suddenly jumps from 7 to —z. If we wish w to instead move
continuously, then we must switch to the branch Log (z) + 27 of the logarithm.

Another problem with restricting ourselves to the principal branch is that the
familiar rules for the logarithm break down. For example, Log (ab) is not always
equal to Log (a) + Log (b); try a = —1 and b = i, for example. However, if we
keep all values of the logarithm in play then it is true [exercise] that
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log(ab) = log(a) +log(b) and log(a/b) = log(a) — log(b),

in the sense that every value of the LHS is contained amongst the values of the
RHS, and vice versa.

2 The Logarithmic Power Series

If we wish to find a power series for the complex logarithm, two problems imme-
diately arise. First, since a power series is single-valued, the best we can hope for
is to represent a single branch of log(z); let’s choose the principal branch, Log (z).
Second, the origin is both a singularity and a branch point of Log (z) so we cannot
have a power series centred there (i.e., in powers of z); let us therefore try an ex-
pansion centred at z = 1, i.e., in powers of (z — 1). [Of course any other non-zero
point would be equally suitable.] Writing Z = (z — 1), our problem, then, is to
expand Log (1 + Z) in powers of Z.

Let us use the abbreviation L(z) = Log (1 + z). Since the branch point of L(z)
is z = —1, the largest disc of convergence we can have is the unit disc. To find the
series we will use the fact that e£® = (1 + z). Recall from (21) [on p. 82] that
by taking 7 to be a sufficiently large positive integer, we can approximate e’ as
precisely as we wish using [1 + (L/n)]*. Thus

L\" L 1
1+; ret=(14+2) = 1+;N(1+z)n.
There are n branches of (1 + z)% within the unit disc, but since L(0) = 0 we need

the branch of (1 + z)% that equals 1 when z = 0. Appealing to the Binomial series
for this principal branch, we obtain

1,1 1.1 1
L 1 id g 1d 1yl 2
1+—’f¥1+—z+"(" )22+”(" G )z3+--~,
n n 2! 3!
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and hence

G- G-DG-DZ G-DG-DG -

L _s
(@)~ z+ 7 3 2

Finally, since this becomes exact in the limit that n tends to infinity, we obtain the
following logarithmic power series:

2 23 Z4 5 z6

Z Z
Log(1+2)=z2 2+3 4+ 5 6+---. 29)
For other approaches to this series, see Exs. 31, 32.

Using the ratio test, you can check for yourself that this series does indeed
converge inside the unit circle. In fact it can be shown [see Ex. 11] that the series
also converges everywhere on the unit circle, except obviously at z = —1. This
yields some very interesting special cases. For example, putting z = i and then
equating real and imaginary parts, we get

11 1 1 1 1
Ina2 = — L4l _ .1 _ 2 4.
nv2 s ate st 2"
- 1 1 1 1 1
and 7= 1-§+§_7+§_ﬁ+”"

Try checking the first series by noting that if z = 1, then In V2 =1mQa+7z).
For interesting applications of the logarithmic series, see Exs. 36, 37, 38.

3 General Powers

If x is a real variable then we are accustomed to being able to express x>, for
example, as e>!"* . Let’s see whether we can do the same thing using the complex
exponential and logarithm. That is, let us investigate the possibility of writing

& = ks (30)

Let z = r ¢'?, where @ is chosen to be the principal value, Arg (z). Then

ALog@ _ 3nr+if) _ 3y i30 _ 3 ,i36 _ 3
But the most general branch of log(z) is simply Log (z) + 2nmi, where n is an
integer, so

e3log(z) — e6nm’ e3L0g(z) — eGnm Z3 = z3

is true irrespective of which branch of the logarithm is chosen. Clearly, by the
same argument, (30) is true for all integer values of k.

Next, consider the three branches of z%. Recalling that the principal branch
[z% ] of this functionis 3/7 ¢/®/3, where 6 again represents the principal angle, you



102 Complex Functions as Transformations

can easily check that e3los@ — [z%]. Thus the general branch of the logarithm

yields

1 -2 1
e§1°g(z) = el_’f'&_n[z§],

Thus we have again confirmed (30), in the sense that the infinitely many branches
of log(z) yield precisely the three branches of the cube root: [z7], &/ @*/3[z3],

and ¢! @T/I[£3]. By the same reasoning, if (p/q) is a fraction reduced to lowest

Llog(z) . . 2
terms then e4 yields precisely the g branches of z4.

Finally, note that the RHS of (30) is still meaningful if k = (a+ib) is a complex
number. Emboldened by the above successes, we now take (30) as the definition of
a complex power. If we use Log (z) in (30) then we find that the principal branch
of z(@+) is given by [exercise]

[Z(a+ib)] = e(a+ib) Log(z) _ rae—bH ei(a9+b1nr).

If z now travels along a closed loop encircling the origin » times, then log(z) moves
along a path from Log (z) to Log (z) + 2n7i, and z*+*®) moves along a path from
Iz (a+i b)] to

z(a+ib) — ei2nnae—2ﬂnb [Z(a+ib)]_

If b # 0 then the factor e~2*"? makes it obvious that z@*%®) never returns to
its original value, no matter how many times we go round the origin. Thus z = 0
is a logarithmic branch point in this case. This is still true even if & = 0, provided
[exercise] that the real power a is irrational. Only when a is a rational number
does z? return to its original value after a finite number of revolutions, and only
when a is an integer does z? become single-valued.

We end with an important observation on the use of “e*” to denote the single-
valued exponential mapping. Reversing the roles of the constant and variable in
(30), we are forced to define f(z) = k* to be the “multifunction” [see Ex. 29]
f(z) = €21°8® But if we now put k = e = 2.718... then we are suddenly
in hot water: the exponential mapping “e*” is merely one branch [what are the
others?] of the newly defined multifunction (2.718 .. .). To avoid this confusion,
some authors always write the exponential mapping as exp(z). However, we shall
retain the notation “e?”, which is both convenient and rooted in history, with the
understanding that e* always refers to the single-valued exponential mapping, and
never to the multifunction (2.718 .. .)%.

VIl Averaging over Circles*
1 The Centroid

This entire section is optional because the chief result to which we shall be led
(“Gauss’ Mean Value Theorem™) will be derived again later, in fact more than
once. It is nevertheless fun and instructive to attempt to understand the result using
only the most elementary of methods.
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Consider a set of n point particles in C, located at z1, 22, .. ., Z,. If the mass
of the particle at z; is m; then the centroid Z of the set of particles (also called the
“centre of mass”) is defined to be

ZJ lsz]

, =1M;

Z=

If we imagine the plane to be massless, Z is the point at which we could rest the
plane on a pin so as to make it balance.

Throughout this section we shall take the masses of the particles to be equal,
in which case the centroid becomes the average position of the particles:

1 n
=-2 4

This is the case depicted in [38a]. An immediate consequence of this definition is

[b]

Z(Zj -2

Figure [38]

that ) (z; — Z) = 0. In other words, the complex numbers from Z to the particles
cancel. This Vamshlng sum is illustrated in [38b]. Conversely, if some point Z has
the property that the complex numbers connecting it to the particles cancel, then
Z must be the centroid.

Another immediate result is that if we translate the set of points by b, then the
centroid will translate with them, i.e., the new centroid will be Z + b. The same
thing happens if we rotate the set of points about the origin—the centroid rotates
with them. In general,

If Z is the centroid of {z;}, then the centroid of {azj + b} isaZ + b. 31

Given a second set of n points {Z;} (with centroid 2‘) we may add pairs from
the two sets to obtain the set {z; +z Z;j}, and it is easy to see that the centroid of the
latter is Z+ Z. In particular, the centroid Z of {zJ = xj+1iy;}is the sum X 4iY of
the centroid X of the points {x;} on the real axis and the centroid ;Y of the points
{iyj} on the imaginary axis.

Our next result will play a minor role at the end of this section, but later we
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shall see that it has other interesting consequences. The convex hull H of the set of
particles {z;} is defined to be the smallest convex polygon such that each particle
lies on H or inside it. More intuitively, first imagine pegs sticking out of the plane
at each point z;, then stretch an imaginary rubber band so as to enclose all the pegs.
When released, the rubber band will contract into the desired polygon H shown
in [39a]. We can now state the result:

The centroid Z must lie in the interior of the convex hull H. (32)

For if p is outside this set, we see that the complex numbers from p to the particles
cannot possibly cancel, as they must do for Z. More formally, we take it as visually
evident that through any exterior point p we may draw a line L such that A and
its shaded interior lie entirely on one side of L. The impossibility of the complex
numbers cancelling now follows from their lying entirely on this side of L, for
they all must have positive components in the direction of the illustrated complex
number N normal to L. Except when the particles are collinear (in which case H
collapses to a line-segment), the same reasoning forbids Z from lying on H.

Figure [39]

As illustrated in [39b], an immediate consequence of (32) is that

If all the particles lie within some circle then their centroid also lies (33)
within the circle.

The main result we wish to derive in this section is based on the following fact.
Defining the “centre” of a regular n-gon to be the centre of the circumscribing
circle,

The centre of a regular n-gon is the centroid of its vertices. 34)

By virtue of (31), we may as well choose the n-gon to be centred at the origin,
in which case the claim is that the sum of the vertices vanishes. As illustrated in
[40a], this is obvious if n is even since the vertices then occur in opposite pairs.
The explanation is not quite so obvious when 7 is odd; see [40b], which illus-
trates the case n = 5. However, if we draw ) _ z ;i systematically, taking the vertices
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[l

Figure [40]

z; in counterclockwise order, then we obtain [40c], and the answer is suddenly
clear: the sum of the vertices of the regular 5-gon forms another regular 5-gon.
The figure explains why this happens. Since the angle between successive vertices
in [40b] is (27/5), this is also the angle between successive terms of the sum in
[40c]. Clearly this argument generalizes to arbitrary n (both odd and even), thereby
establishing (34). For a different approach, see Ex. 40.

2 Averaging over Regular Polygons

If a complex mapping z +» w = f(z) maps the set of points {z;} to the set
{wj = f(z;)}, then the centroid W of the image points may be described as the
average of f(z) over the set {z;} of n points. Writing this average as { f(2))n,

1 n
(F@hn==>" ).
Jj=1

Note that if f(z) = c is constant, then its average over any set of points is equal
toc.

Henceforth, we shall restrict ourselves to the case where {z;} are the vertices of
aregular n-gon; correspondingly, { f (z)), will be understood as the average of f(z)
over the vertices of such a regular n-gon. Note that if we write f(z) = u(z)+iv(z),
then

(f@)n = W@)n +i (v(@))n. (35)

Initially, we consider only origin-centred polygons.

Consider, then, the average of f(z) = z™ over the vertices of such a regular
n-gon. Figure [41] illustrates the case n = 6. In the centre of the figure is a shaded
regular hexagon, and on the periphery are the images of its vertices under the
mappings z, 22, ..., 2. Study this figure carefully, and see if you can understand
what’s going on. If we take still higher values of m, then this pattern repeats
cyclically: 77 is like z1, z8 is like z2, and so on.

For us the essential feature of this figure is that unless m is a multiple of 6,
the image under z™ of the regular 6-gon is another regular polygon. [Note that
we count two equal and opposite points as a regular 2-gon, but we do not count a
single point as a regular polygon.] More precisely, and in general,
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Figure [41]
Unless m is a multiple of n, the image under 7™ of an origin-
centred regular n-gon is an origin-centred regular N-gon, where
N = (n divided by the highest common factor of m and n). If m is
a multiple of n, then the image is a single point.

(36)

Check that this agrees with [41]. Try to establish the result on your own, but see
Ex. 41 if you get stuck.

Combining this result with (34), we obtain the following key fact: If n > m
then (z™), = 0. This is easy to generalize. If

Pm(Z)=CO+012+6222+C3z3+...+cmzm

is a general polynomial of degree m, then its average over the vertices of the n-gon
is

(P (@0 = (ol + 1 (2n + 2 (22 n + 3 () + -+ cm (Z™)n

If the number n of vertices is greater than the degree m of the polynomial, we
therefore obtain

(Pm(2))n = (co)n = co = Pp(0).
In other words, the centroid of the image points is the image of the centroid.
Expressing this result in the language of averages,

Ifn > m then the average of an mh degree polynomial P, (z) over
the vertices of an origin-centred regular n-gon is its value Py, (0) at 37
the centre of the n-gon.

Finally, let us generalize to regular n-gons that are centred at an arbitrary point
k, instead of the origin. Of course when we apply z” to the vertices of such a
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Figure [42]

regular polygon, the image points do not form a regular polygon. See [42], which
shows the effect of z* on the vertices of a regular hexagon H centred at k, together
with the image of the entire circle on which these vertices lie. Nevertheless, the
figure also illustrates the surprising and beautiful fact that, once again, the centroid
of the image points is the image of the centroid of H. Figure [43a] confirms this
empirically by showing that the sum of complex numbers connecting k* to the
image points is indeed zero.

Extending our notation slightly, we may write the average of z* over the vertices
of H as (z™) g, so what we must show is that (z*) = k*. It is no harder to treat
the general case of ;™ acting on the vertices of a regular n-gon H centred at k.
First note that H can be obtained by translating an origin-centred n-gon H by k.
See the example in [43b]. Since a vertex z; of H translates to a vertex z; + k of
H, it follows that

(" ={z+b") g

But (z + k)" =37, ('}’)zj k™=J is just an m™ degree polynomial which maps
0 to k™. Using (37), we conclude that if n > m then (z™)y = k™, as was to be
shown.

=
N\,

Figure [43]

[b]
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Generalizing the argument that led to (37), we see that (37) is a special case of
the following result:

Ifn > m then the average of an mth degree polynomial P,,(z) over
the vertices of a regular n-gon centred at k is its value Py, (k) at the (38)
centre of the n-gon.

3 Averaging over Circles

Since at least the time of Archimedes, mathematicians have found it fruitful to
think of a circle as the limit of a regular n-gon as n tends to infinity. We will now
use this idea to investigate the average of a complex function over a circle.

Inscribing a regular n-gon in a given circle, and taking the limit as n tends to
infinity, (38) shows that

The average over a circle C of a polynomial of arbitrarily high

degree is equal to the value of the polynomial at the centre of C. (39)

By (35), the average ( f(z))¢ of a complex function f(z) = u(z) +iv(z) over
a circle C may be expressed as (f(z))c = (u(2))c +i (v(2))c. Using a familiar
idea from ordinary calculus, the averages of the two real functions ¥ and v may be
expressed as integrals. If C has centre k and radius R, then as 8 varies between 0
and 27, z = k + R €'° traces out C. Thus,

2 2
u@)c = if u(k+Re®do and (v(@))c = if v(k+ R %) do.
2w Jo 27 Jo

More compactly, we may write

2

1 4
(f@)c = 7 fk+ Re®)ao,
T Jo

in which it is understood that the complex integral may be evaluated in terms of
the real integrals above.

Once again denoting a general m® degree polynomial by Pp(z), (39) can
therefore be expressed as an integral formula:

2

Py Pn(k + R€)d6 = (Pn(2))c = Pn(k). (40)
21 0

For example, if C is centred at the origin and P, (z) = 7™, then

m 1 ad m _im6 R™ 2 . .
(z )C=Z_[‘ A R™e d9=g A [cosm@ + i sinmf] df = 0,

in agreement with (40).
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The fact that (40) holds for polynomials of arbitrarily high degree immediately
suggests that it might also hold for power series. We shall show that it does.

As usual we will only give the details for origin-centred power series, the gen-
eralization to arbitrary centres being straightforward. Let P(z) = Zf’io cj 7/ be
the power series, so that P, (z) = Z;":O Cj zJ are its approximating polynomials.
If the circle C lies inside the disc of convergence of P(z), then (12) implies the
following. No matter how small we choose a real number €, we can find a suffi-
ciently large m such that P, (z) approximates P (z) with accuracy € throughout C
and its interior. If we write £(z) for the complex number from the approximation
P,,(z) to the exact answer P(z), then

P(z) = Pp(z) +€(z), where |E(z)] <€

for all z on and inside C, and in particular at the centre k of C.

At this point we could immediately study (P(z))c in terms of its integral
representation, but it is more instructive to first consider the average (P (z)), of
P(2) over a regular n-gon inscribed in C. Once this is done, we may let » tend to
infinity to obtain (P (z2))c.

First note that £(z) maps the vertices of the n-gon to points lying inside an
origin-centred disc of radius €. By (33), or directly from the generalized triangle
inequality (8) on p. 8, the centroid (£(z)), of these points must also lie in this disc.
Choosing n greater than m, say n = (m + 1), (38) yields

(P@)m+1 = (Pm@)mt+1 + €@ m+1
P (k) + (£(@))m+1
P(Kk) + [(E@)ms1 — EK)].

The term in square brackets is the connecting complex number from £(k) to
(€(2))m+1, and since both these points lie within a disc of radius e, their con-
necting complex number must be shorter than 2¢. Finally, since the term in square
brackets may also be interpreted as the connecting complex number from P (k) to
{P(2))}m+1, We have the following result:

Let m be chosen so that Py, (z) approximates the power series P(z)
with accuracy € on and within a circle C centred at k. If a regular
(m 4+ 1)-gon is inscribed in C, then the average (P(2))m+1 of P(2)
over its vertices will approximate P (k) with accuracy 2e.

@41

We have thus transformed an exact result concerning the approximation P,,(z)
into an approximation result concerning the exact mapping P(z).

For example, let C be the unit circle, and let P(z) = . If we desire an accuracy
of € = 0.004 everywhere on the unit disc then it turns out that m = 5 is sufficient,
i.e., the approximating polynomial of lowest degree that has this accuracy is

Ps() =1 +z+ 422 + 52> + 2t + 42°.
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Figure [44]

Figure [44] shows the image under z > e* of C, and in particular it shows
the images of the vertices of a regular hexagon inscribed in C. According to the
result, the centroid of these image points should differ from ¢? = 1 by no more
than 0.008—an indiscernible discrepancy in a drawing done to this scale. This
prediction is convincingly borne out in [45], which shows the sum of the complex
numbers connecting 1 to the images of the vertices of the hexagon. To within the
accuracy of the drawing, the sum is indeed zero!

Figure [45]

In the limit that € tends to zero and m tends to infinity, (41) yields a form of
Gauss’ Mean Value Theorem:

If a complex function f (z) can be expressed as a power series, and a
circle C (radius R and centre k) lies within the disc of convergence
of that power series, then

2

1 .
(f@)c = 7— flk+ Re9)do = f(k).
T Jo

In addition to its theoretical importance, this formula can sometimes be used to
evaluate difficult real integrals. For example, the exact version of [44] is {(e*)c =

¢ = 1, and this implies [exercise] that f02 ™ e°50 cos[sin6]dO = 2. See Ex. 43
for another example of this idea.
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IX Exercises

1 Sketch the circle [z — 1| = 1. Find (geometrically) the polar equation of the
image of this circle under the mapping z — z2. Sketch this image curve, which
is called a cardioid.

2 Consider the complex mapping z — w = (z —a)/(z — b). Show geometrically
that if we apply this mapping to the perpendicular bisector of the line-segment
joining a and b, then the image is the unit circle. In greater detail, describe the
motion of w round this circle as z travels along the line at constant speed.

3 Consider the family of complex mappings

Z—a

= (a constant).
az—1

2> My (z) =

[These mappings will turn out to be fundamental to non-Euclidean geometry.]
Do the following problems algebraically; in the next chapter we will provide
geometric explanations.

(i) Show that M,[M,(2)] = z. In other words, M, is self-inverse.
(ii)) Show that M,(z) maps the unit circle to itself.

(iii) Show that if a lies inside the unit disc then M, (z) maps the unit disc to
itself.
Hint: Use |q|? = q ¢ to verify that

laz =12 —|z—al> =1 —la») A - Iz%.

4 In figure [7] we saw that if g2 < p> then the solutions of x> = 3px + 2q are
all real. Draw the corresponding picture in the case g2 > p3, and deduce that
one solution is real, while the other two form a complex conjugate pair.

5 Show that the mapping z — z2 doubles the angle between two rays coming
out of the origin. Use this to deduce that the lemniscate (see [9] on p. 62) must
self-intersect at right angles.

6 This question refers to the Cassinian curves in [9] on p. 62.

(i) Onacopy of this figure, sketch the curves that intersect each Cassinian curve
at right angles; these are called the orthogonal trajectories of the original
family of curves.

(ii) Give an argument to show that each orthogonal trajectory hits one of the
foci at £1.

(iii) If the Cassinian curves are thought of as a geographical contour map of the
modular surface (cf. [10]) of (z2 — 1), then what is the interpretation of the
orthogonal trajectories in terms of the surface?
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(iv) In Chapter 4 we will show that if two curves intersect at some point p #
0, and if the angle between them at p is ¢, then the image curves under
z > w = z* will also intersect at angle ¢, at the point w = p2. Use this
to deduce that as z travels out from one of the foci along an orthogonal
trajectory, w = z? travels along a ray out of w = 1.

(v) Check the result of the previous part by using a computer to draw the images
under w — /w of (A) circles centred at w = 1; (B) the radii of such circles.

(vi) Writing z = x + iy and w = u + iv, find 4 and v as functions of x and
y. By writing down the equation of a line in the w-plane through w = 1,
show that the orthogonal trajectories of the Cassinian curves are actually
segments of hyperbolas.

7 Sketch the modular surface of C(z) = (z+1)(z—1)(z+1+i). Hence sketch the
Cassinian curves |C(z)| = const., then check your answer using a computer. To
answer the following questions, recall that if R(z) is a real function of position
in the plane, then R(p) is a local minimum of R if R(p) < R(z) for all z in the
immediate neighbourhood of p. A local maximum is defined similarly.

(i) Referring to the previous exercise, what is the significance of the orthogonal
trajectories of the Cassinian curves you have just drawn?

(i) Does |C(z)| have any local maxima?
(iii)) Does |C(z)| have any non-zero local minima?

(iv) If D is a disc (or indeed a more arbitrary shape), can the maximum of |C (z)|
on D occur at a point inside D, or must the maximum occur at a boundary
point of D? What about the minimum of |C(z)| on D?

(v) Do you get the same answers to these questions if C(z) is replaced by an
arbitrary polynomial? What about a complex function that is merely known
to be expressible as a power series?

8 On page 62 we saw that the polar equation of the lemniscate with foci at £1 is
r? = 2cos 2. In fact James Bernoulli and his successors worked with a slightly
different lemniscate having equation 7> = cos 26. Let us call this the standard
lemniscate.

(1) Where are the foci of the standard lemniscate?

(i1) What is the value of the product of the distances from the foci to a point on
the standard lemniscate?

(iii) Show that the Cartesian equation of the standard lemniscate is

(2 +y)2 = x2 — 2.
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9 Here is an attempt [ultimately doomed] at using real methods to expand H (x) =
1/(1 + x?) into a power series centred at x = k, i.e., into a series of the form
Hx) = Z}’io cj X7, where X = (x — k). According to Taylor’s Theorem,
¢j = HD(k)/j!, where HD (k) is the j% derivative of H.

(i) Show that co = 1/(1 +k2) and ¢; = —2k/(1 4+ k?)2, and find c;. Note how
it becomes increasingly difficult to calculate the successive derivatives.

(ii) Recall (or prove) that the nth derivative of a product AB of two functions
A(x) and B(x) is given by Leibniz’s rule:

(AB)® = i (n) AV =D,
< r
j=0

By applying this result to the product (1 + x2) H (x), deduce that
A+ kHHP k) + 2nkH V&) + n(n — DH" D (k) = 0.

Because the coefficients in this recurrence relation depend on n, we cannot
solve it using the technique of Ex. 30 on p. 50.

(iii)) Deduce from the previous part that the recurrence relation for the ¢;’s is
(1 + ke + 2kcy—1 + cnpy =0,

which does have constant coefficients.
(iv) Solve this recurrence relation, and hence recover the result (17) on p. 76.
10 Reconsider the series (18) on p. 77.

(i) Show that we recover the correct series (missing the odd powers of x) when
the centre k of the series is at the origin.

(ii) Find a value of k such that the series is missing all the powers X", where
n=2,5,8,11,14,.... Check your answer using a computer.

11 Show that each of the following series has the unit circle as its circle of con-
vergence, then investigate the convergence on the unit circle. You can guess the
correct answers by “drawing the series” in the manner of [18] on p. 80.

@ Y.z Gy 2 i) Y %
n=0 n=1 n=1"

[By virtue of (29), note that the second series is —Log (1 — z).]

12 Consider the geometric series P(z) = }'io zJ, which converges to 1/(1 — z)
inside the unit disc. The approximating polynomials in this case are P, (z) =

Z;'n=0 Zj .



114 Complex Functions as Transformations

13

14

15

(i) Show that the error E,,(z) = |P(z) — P, (2)| is given by

|z|m+1

En(z)=———

m(2) T

(i) If z is any fixed point in the disc of convergence, what happens to the error
as m tends to infinity?

(iii) If we fix m, what happens to the error as z approaches the boundary point
z=1?

(iv) Suppose we want to approximate this series in the disc |z| < 0.9, and further
suppose that the maximum error we will tolerate is € = 0.01. Find the lowest
degree polynomial P,,(z) that approximates P (z) with the desired accuracy
throughout the disc.

We have seen that if we set P,(z) = 7", then the representation of a com-
plex function f(z) as an infinite series ZZ‘;O cn Py(2) (i-e., a power series) is
unique. This is not true, however, if P, (z) is just any old set of polynomials. The
following example is taken (and corrected) from Boas [1987, p. 33]. Defining

Zn—l Z"
Py(z)=-1, and P,(9)=———-= ®=123,..),
(n=-1! n!
show that
2Py — P+ P3+2P4+3Ps+---=e* =Py +2P, +3P;+4P4+ - --.

Consider two power series, P(z) = Y2 pj z/ and Q(z) = Yit0di ZJ,
which have approximating polynomials P,(z) = 27:0 Dj 7/ and Qp(z) =
Z;‘n:o qj 7/ . If the radii of convergence of P(z) and Q(z) are Ry and R, then
both series are uniformly convergent in the disc |z] < r, wherer < min{Rj, Rz}.
Thus if € is the maximum error we will tolerate in this disc, we can find a suffi-
ciently large n such that

Pa(@)=P@)+&1(z) and  Qn(z) = Q(2) + &£2(2),

where the (complex) errors &1 2(z) both have lengths less than €. Use this to
show that by taking a sufficiently high value of n we can approximate [ P(z) +
Q(z)] and P(z) Q(z) with arbitrarily high precision using [ P, (z) + @, (z)] and
P,(z) On(z), respectively.

Give an example of a pair of origin-centred power series, say P(z) and Q(z),
such that the disc of convergence for the product P(z) Q(2) is larger than either
of the two discs of convergence for P(z) and Q(z). [Hint: think in terms of
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rational functions, such as [z:2 /(56— 2)3], which are known to be expressible as
power series.]

16 Our aim is to give a combinatorial explanation of the Binomial Theorem (14)
for all negative integer values of n. The simple yet crucial first step is to write
n = —m and to change z to —z. Check that the desired result (14) now takes
the form (1 —z)™™ = Zfio ¢r 7, where ¢, is the binomial coefficient

cr=<m+r—1). )

r

[Note that this says that the coefficients ¢, are obtained by reading Pascal’s tri-
angle diagonally, instead of horizontally.] To begin to understand this, consider
the special case m = 3. Using the geometric series for (1 —z) !, we may express
(1-2)3as

M+z+24+2+ - Jell+z+22+2+ - Je[l+z+22+22 +--1],

where o simply denotes multiplication. Suppose we want the coefficient cg of
z°. One way to get z° is to take z> from the first bracket, z* from the second,
and z2 from the third.

(i) Write this way of obtaining z° as the sequence zzzezzzz0zz0f 9 z’sand 2 o’s,
where the latter keep track of which power of z came from which bracket. [I
got this nice idea from my friend Paul Zeitz.] Explain why c9 is the number
of distinguishable rearrangements of this sequence of 11 symbols. Be sure
to address the meaning of sequences in which a e comes first, last, or is
adjacent to the other e.

(ii) Deduce that ¢y = (191), in agreement with (42).
(iii) Generalize this argument and thereby deduce (42).
17 Here is an inductive approach to the result of the previous exercise.

(i) Write down the first few rows of Pascal’s triangle and circle the numbers
(g) (;) (?), (g) Check that the sum of these numbers is (g) Explain this.

(ii) Generalize your argument to show that
n n—1 n—2 n—3
= + + .-+ 1
r r r—1 r—2

(iii) Assumethat(1—z)~™ = Z?;o (M+rr_1) Z" holds for some positive integer
M. Now multiply this series by the geometric series for (1 — z)~! to find
(1 — z)~™+D_ Deduce that the binomial series is valid for all negative
integer powers.
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18 The basic idea of the following argument is due to Euler. Initially, let n be any
real (possibly irrational) number, and define

sem= 3o (1) whee (7)2mOTDOD0mrD

!
r=0 r

and (j) = 1. We know from elementary algebra that if n is a positive integer
then B(z, n) = (1 4+ z)". To establish the Binomial Theorem (14) for rational
powers, we must show that if p and ¢ are integers then B(z, 5) is the principal

branch of (1 + z)g.

(i) With a fixed value of n, use the ratio test to show that B(z, n) converges in
the unit disc, |z| < 1.

(i) By multiplying the two power series, deduce that

B(z,n) B(z, m) = ZC’(n’ m)z" where C,(n,m) = Z (n)( " )

r=0 j=0 J r—1J

(iii) If m and n are positive integers, then show that
B(z,n) B(z,m) = B(z,n +m), “43)

and deduce that C,(n,m) = ("t'"). But C,(n, m) and ('H;"') are simply
polynomials in n and m, and so the fact that they agree at infinitely many
values of m and n [positive integers] implies that they must be equal for all
real values of m and n. Thus the key formula (43) is valid for all real values
of m and n.

(iv) By substituting n = —m in (43), deduce the Binomial Theorem for negative
integer values of n.

(v) Use (43) to show that if g is an integer then [B(z, %)]q = (1 + z). Deduce
that B(z, 1) is the principal branch of (1 + 1.

(vi) Finally, show thatif p and g are integers, then B(z, 5) isindeed the principal
branch of (1 + )7 .

19 Show that the ratio test cannot be used to find the radius of convergence of the
power series (18) on p. 77. Use the root test to confirm that R = /1 + k2.

20 Show that if m and n are integers, then f02" cosmf cosnf df vanishes un-
less m = n, in which case it equals 7. Likewise, establish a similar result for

f02 ™ sinm6 sinnb d6. Use these facts to verify (19), at least formally.
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21 Do the following problems by first substituting z = r ¢/? into the power series
for e, then equating real and imaginary parts.

(i) Show that the Fourier series for [cos(sin 6)] €% is 320 %"LQ, and write
down the Fourier series for [sin(sin 8)] e°*s?.

(ii) Deduce that f02 ™ €989 [cos(sin )] cosmO dO = (/m!), where m is a pos-
itive integer.

(iii) By writing x = (r/+/2), find the power series for f(x) = e* sin x.

(iv) Check the first few terms of the series for f(x) by multiplying the series
for ¢* and sin x.

(v) Calculate the n™ derivative £ (0) using (14) on p. 22 of Chapter 1. By
using these derivatives in Taylor’s Theorem, verify your answer to part (iii).

22 Reconsider the formula,

n
e* = lim P,(z), where P,(z)= (l + E) .
n—00 n

(i) Check that P,(z) is the composition of a translation by », followed by a
contraction by (1/n), followed by the power mapping z +—> z”.

(ii) Referring to figure [4] on p. 58, use the previous part to sketch the images
under P,(z) of circular arcs centred at —»n, and of rays emanating from —n.

(iii) Let S be an origin-centred square (say of unit side) in the z-plane. With a
large value of n, sketch just those portions of the arcs and rays (considered
in the previous part) that lie within S.

(iv) Use the previous two parts to qualitatively explain figure [19] on p. 81.

23 If you did not do so earlier, sketch the image of a vertical line x = k under
Z +— w = cos z by drawing the analogue of [26]. Deduce that the asymptotes of
this hyperbola are arg w = +k. Check this using the equation of the hyperbola.

24 Consider the multifunction f(z) = vz — 1 3/z — i.

(i) Where are the branch points and what are their orders?

(i) Why is it not possible to define branches using a single branch cut of the
type shown in [35b]?

(iii) How many values does f(z) have at a typical point z? Find and then plot
all the values of f(0).

(iv) Choose one of the values of f(0) which you have just plotted, and label
it p. Sketch a loop L that starts and ends at the origin such that if £(0) is
initially chosen to be —1, then as z travels along L and returns to the origin,
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25

26

27

28

29

f(z) travels along a path from —1 to p. Do the same for each of the other
possible values of f(0).

Describe the branch points of the function f(z) = 1/+/1 — z*. What is the
smallest number of branch cuts that may be used to obtain single-valued branches
of f(z)? Sketch an example of such cuts. [Remark: This function is historically
important, owing to the fact (Ex. 20, p. 214) that [ f(x) dx represents the
arc length of the lemniscate. This integral (the lemniscatic integral) cannot be
evaluated in terms of elementary functions—it is an example of a new kind of
function called an elliptic integral. See Stillwell [1989, Chap. 11], for more
background and detail.]

For each function f(z) below, find and then plot all the branch points and
singularities. Assuming that these functions may be expressed as power series
centred at k [in fact they can be], use the result (27) on p. 96 to verify the stated
value of the radius of convergence R.

() If f(z) =1/(€"* — 1) and k = (1 + 2i), then R = 1.
(ii) If f(z) is a branch of /2% — 1 and k = 3i, then R = 2.
(iii) If f(z)isabranchof +/z —i/(z — 1) and k = —1,then R = V2.

Until Euler cleared up the whole mess, the complex logarithm was a source
of tremendous confusion. For example, show that log(z) and log(—z) have no
common values, then consider the following argument of John Bernoulli:

logl(—2)%] = log[z?] = log(—z) + log(—z) = log(z) + log(z)
= 2log(—z) = 2log(z)
= log(—z) = log(z).

What is wrong with this argument?!

What value does 7' take at z = —1 if we start with the principal value at 7 = 1
(i.e., 1' = 1), and then let z travel one and a half revolutions clockwise round
the origin?

In this exercise you will see that the “multifunction” k? is quite different in
character from all the other multifunctions we have discussed. For integer values
of n, define [, = [Log (k) + 2nmi].

(i) Show that the “branches” of k? are e’ 2.

(ii) Suppose that z travels along an arbitrary loop, beginning and ending at
z = p. If we initially choose the value €2 ? for k%, then what value of k% do
we arrive at when z returns to p? Deduce that k% has no branch points.

Since we cannot change one value of k? into another by travelling round a loop,

we should view its “branches” {..., 1z eloz ghz .} as an infinite set of

completely unrelated single-valued functions.



Exercises 119

30 Show that all the values of i are real! Are there any other points z such that 7’
is real?

31 In the case of a real variable, the logarithmic power series was originally dis-
covered [see next exercise] as follows. First check that In(1 + X) can be written
as fOX[l/(l + x)]dx, and then expand [1/(1 + x)] as a power series in x. Fi-
nally, integrate your series term by term. [Later in the book we will be able to
generalize this argument to the complex plane.]

32 Here is another approach to the logarithmic power series. As before, let L(z) =
Log (1 + z). Since L(0) = 0, the power series for L(z) must be of the form
L(z) = az + bz% + cz® + dz* + - - . Substitute this into the equation

l4z=el =1+L+ L%+ L3+ FL% +- -,

then find a, b, ¢, and d by equating powers of z. [Historically the logarithmic
series came first—both Mercator and Newton discovered it using the method
in the previous exercise—then Newton reversed the reasoning of the present
exercise to obtain the series for ¢*. See Stillwell {1989, p. 108]. ]

33 (i) Use [26] to discuss the branch points of the multifunction cos~!(2).

(ii) Rewrite the equation w = cos z as a quadratic in ‘2. By solving this equa-
tion, deduce that cos™!(z) = —i log[z + +/z2 — 1]. [Why do we not need
to bother to write =+ in front of the square root?]

(iii)) Show that as z travels along a loop that goes once round either 1 or —1 (but
not both), the value of [z + +/z2 — 1] changes to 1/[z + v/z2 —1].

(iv) Use the previous part to show that the formula in part (ii) is in accord with
the discussion in part (i).

34 Write down the origin-centred power series for (1 — cos z). Use the Binomial
Theorem to write down the power series (centred at Z = 0) for the principal
branch of /1 — Z, then substitute Z = (1 — cos z). Hence show that if we
choose the branch of ,/cos z that maps 0 to 1, then

Verify this using a computer. Where does this series converge?

35 What value does (z/ sin z) approach as z approaches the origin? Use the series
for sin z to find the first few terms of the origin-centred power series for (z/ sin z).
Check your answer using a computer. Where does this series converge?

36 By considering Log (1+ix), where x is a real number lying between %1, deduce
that
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x3 x3 x! ¥ 511

—1 - — ——— — —— — — e —— ..
e T T B S T M
In what range does this value of tan~!(x) lie? Give another derivation of the

series using the idea in Ex. 31.

37 (i) Show geometrically thatas z = ¢? goes round and round the unit circle (with
ever increasing ), Im [Log a+ z)] = (©/2), where © is the principal
value of 0, i.e., —r < ©® < 7.

(i) Consider the periodic “saw tooth” function F(6) whose graph is shown
below. By substituting z = ¢ in the logarithmic series (29), use the previous
part to deduce the following Fourier series:

sin20 sin36 sin46

F(@) =sing —
(@) =sin 6@ 2+3 7

(iii) Check this Fourier series by directly evaluating the integrals (19).

(iv) Use a computer to draw graphs of the partial sums of the Fourier series. As
you increase the number of terms, observe the magical convergence of this
sum of smooth waves to the jagged graph above. If only Fourier could have
seen this on the screen, not just in his mind’s eye!

- rr / >0

38 As in the previous exercise, let ® = Arg (2).
(i) Use (29) to show that

bog 1] p 22,2,
2 B T2 T3 TS T

F(0)

(ii) Show geometrically that as z = ¢’® goes round and round the unit circle,

1 14z . T
Im {5 Log [:]} = (sign of ®) [Z]

(iii) Consider the periodic “square wave” function G (@) whose graph is shown
below. Use the previous two parts to deduce that its Fourier series is

sin30 sin50 sin76

G(@) =siné
@) =sin@ + 3 + 5 —|-7
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Finally, repeat parts (iii) and (iv) of the previous exercise.

G
- /4 ()‘

— - >0
i —n/4 L

39 Show that (32) is still true even if the (positive) masses of the particles are not

all equal.

40 Here is another simple way of deriving (34). If the vertices of the origin-centred

41

regular n-gon are rotated by ¢, then their centroid Z rotates with them to /% Z.
By choosing ¢ = (27/n), deduce that Z = 0.

To establish (36), let zg, z1, 22, - . ., Zn—1 be the vertices (labelled counterclock-
wise) of the regular n-gon, and let C be the circumscribing circle. Also, let
wj = zj" be the image of vertex z; under the mapping z — z = z™. Think of
z as a particle that starts at zo and orbits counterclockwise round C, so that the
image particle w = z™ starts at wo and orbits round another circle with m times
the angular speed of z.

(i) Show that each time z travels from one vertex to the next, w executes (m/n)
of a revolution. Thus as z travels from zg to zz, w executes k(m/n) revolu-
tions as it travels from wq to wg.

(i) Let wy be the first point in the sequence wj, w», etc., such that wy = wy.
Deduce that if (M/N) is (m/n) reduced to lowest terms, then k = N. Note
that N = (n divided by the highest common factor of m and n).

(iii)) Explain why wy 41 = wi, wy42 = wy, etc.
(iv) Show that wg, wy, ..., wy—1 are distinct.

(v) Show that wg, wy, ..., wy-1 are the vertices of a regular N-gon.

42 Consider the mapping z > w = P,(z), where P,(z) is a general polynomial

of degree n > 2. Let §, be the set of points in the z-plane that are mapped to a
particular point g in the w-plane. Show that the centroid of S, is independent
of the choice of q, and is therefore a property of the polynomial itself. [Hint:
This is another way of looking at a familiar fact about the sum of the roots of a
polynomial.]

43 Use Gauss’ Mean Value Theorem [p. 110] to find the average of cos z over the

circle |z| = r. Deduce (and check with a computer) that for all real values of r,

2
f cos[r cos 0] cosh[r sin0]d0 = 2.
0
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Mobius Transformations and
Inversion

| Introduction
1 Definition and Significance of Mdbius Transformations

A Mébius transformation' is a mapping of the form

_az+b
T cz+d’

M) ¢))
where a, b, ¢, d are complex constants. These mappings have many beautiful
properties, and they find very varied application throughout complex analysis.
Despite their apparent simplicity, Mobius transformations lie at the heart of several
exciting areas of modern mathematical research. This is due in large part to their
intimate and somewhat miraculous connection with the non-Euclidean geometries
alluded to in Chapter 1. [This connection is the subject of Chapter 6.] Moreover,
these transformations are also intimately connected”? with Einstein’s Theory of
Relativity! This connection has been exploited with remarkable success by Sir
Roger Penrose; see Penrose and Rindler [1984].

Thus, although more than 150 years have passed since August Ferdinand
Mobius first studied the transformations that now bear his name, it is fair to say
that the rich vein of knowledge which he thereby exposed is still far from being
exhausted. For this reason, we shall investigate Mobius transformations in consid-
erably greater depth than is customary.

2 The Connection with Einstein’s Theory of Relativity*

Clearly it would be neither appropriate nor feasible for us to explore this connection
in detail, but let us at least briefly indicate how Md&bius transformations are related
to Einstein’s Theory of Relativity.

Inthat theory, the time 7" and the 3-dimensional Cartesian coordinates (X, Y, Z)
of an event are combined into a single 4-vector (T, X, Y, Z) in 4-dimensional
space—time. Of course the spatial components of this vector have no absolute sig-
nificance: rotating the coordinate axes yields different coordinates (X, Y, Z) for
one and the same point in space. But if two people choose different axes, they

s

1 Also known as a “linear”, “bilinear”, “linear-fractional”, or “homographic” transformation.
2According to Coxeter [1967], this connection was first recognized by H. Liebmann in 1905.
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will nevertheless agree on the value of X2 + ? 24 72 = X2 4+ Y2 + 72, for this
represents the square of the distance to the point.
In contrast to this, we are accustomed to thinking that the fime component
T does have an absolute significance. However, Einstein’s theory—confirmed by
" innumerable experiments—tells us that this is wrong. If two (momentarily co-
incident) observers are in relative motion, they will disagree about the times at
which events occur. Furthermore, they will no longer agree about the value of
(X? + Y? + Z%)—this is the famous Lorentz contraction. Is there any aspect of
space-time that has absolute significance and on which two observers in relative
motion must agree? Yes: making a convenient choice of units in which the speed
of light is equal to 1, Einstein discovered that both observers will agree on the
value of
-+ +Z2H=T"-X*+72+7%.

A Lorentz transformation L is a linear transformation of space-time (a 4 x 4
matrix) that maps one observer’s description (7, X, Y, Z) of an event to another
observer’s description (7', X, Y, Z) of the same event. Put differently, £ is a linear
transformation that preserves the quantity T2 — (X2 4+ Y2 + Z2), upon which both
observers must agree.

Now imagine that the space—time coordinate origin emits a flash of light—an
origin-centred sphere whose radius increases at the speed of light. It turns out
that any given L is completely determined by its effect on the coordinates of
the light rays that make up this flash. Here is the next crucial idea: in Ex. 8 we
explain how we may set up a one-to-one correspondence between these light rays
and complex numbers. Thus each Lorentz transformation of space—time induces a
definite mapping of the complex plane. What kinds of complex mappings do we
obtain in this way? The miraculous answer turns out to be this:

The complex mappings that correspond to the Lorentz transforma-
tions are the Mobius transformations! Conversely, every Mobius
transformation of C yields a unique Lorentz transformation of
space—time.

@

Even among professional physicists, this “miracle” is not as well known as it
should be.

The connection exhibited in (2) is deep and powerful. Just for starters, it means
that any result we establish concerning Mobius transformations will immediately
yield a corresponding result in Einstein’s Theory of Relativity. Furthermore, these
Mobius transformation proofs turn out to be considerably more elegant than direct
space—time proofs. '

To really understand the above claims, we strongly recommend that you consult
Penrose and Rindler [1984, Chap. 1] after reading this chapter.

3 Decomposition into Simple Transformations

As a first step towards making sense of (1), let us decompose M (z) [exercise] into
the following sequence of transformations:
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G z—>z+4+ %, which is a translation;
@) zwe (1/2);

(iii)) z+H> — adc‘bc) z, which is an expansion and a rotation;

3
(iv) z > z+ £, which is another translation.

Note thatif (ad —bc) = 0 then M () is an uninteresting constant mapping, sending
every point z to the same image point (a/c); in this exceptional case M (z) is called
singular. In discussing Mobius transformations we shall therefore always assume
that M (2) is non-singular, meaning that (ad — bc) # 0.

Of the four transformations above, only the second one has not yet been inves-
tigated. This mapping z — (1/z) holds the key to understanding Mébius transfor-
mations; we shall call it complex inversion. The next section examines its many
remarkable and powerful properties.

Il Inversion
1 Preliminary Definitions and Facts

The image of z = r ¢/® under complex inversion is 1/(r €®) = (1/r) e~ the
new length is the reciprocal of the original, and the new angle is the negative of
the original. See [1a]. Note how a point outside the unit circle C is mapped to a
point inside C, and vice versa.

I=Tx(@)

Figure [1]
Figure [1a] also illustrates a particularly fruitful way of decomposing complex
inversion into a two-stage process:

(i) Send z = r €% to the point that is in the same direction as z but that has
reciprocal length, namely the point (1/r) ¢'® = (1/7).

(ii) Apply complex conjugation (i.e., reflection in the real axis), which sends
(1/2) to (1/2) = (1/2).

Check for yourself that the order in which we apply these mappings is immaterial.
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While stage (ii) is geometrically trivial, we shall see that the mapping in stage
(i) is filled with surprises; it is called® geometric inversion, or simply inversion.
Clearly, the unit circle C plays a special role for this mapping: the inversion inter-
changes the interior and exterior of C, while each point on C remains fixed (i.e.,
is mapped to itself). For this reason we write the mapping as z — Z¢(z) = (1/2),
and we call Z¢ (a little more precisely than before) “inversion in C”.

This added precision in terminology is important because, as illustrated in [1b],
there is a natural way of generalizing Z¢ to inversion in an arbitrary circle K (say
with centre ¢ and radius R). Clearly, this “inversionin K, writtenz > 7 = Zx (z),
should be such that the interior and exterior of K are interchanged, while each point
on K remains fixed. If p is the distance from g to z, then we define 7 = Ik (z)
to be the point in the same direction from q as z, and at distance (R?/p) from q.
[Check for yourself that this definition does indeed perform as advertised.]

As usual, we invite you to use a computer to verify empirically the many
results we shall derive concerning inversion. However, in the case of this particular
mapping, you can also construct (fairly easily) a mechanical instrument that will
carry out the mapping for you; see Ex. 2.

Although we shall not need it for a while, it is easy enough to obtain a formula
for Zx (z). Because the connecting complex numbers from ¢ to z and to 7 both
have the same direction, and their lengths are p and (R? /p), it follows that (z —
q)(z — q) = R2. Solving for 7,

2 = 2 2
Tx@ = e+ q = LEE WD @
z—q Z—q
For example, if we put ¢ = 0 and R = 1, then we recover Z¢(2) = (1/7).

There is a very interesting similarity (which will deepen as we go on) between
inversion Zx (z) in a circle K and reflection Rz (z) in a line L. See [2a] and [2b].
First, L divides the plane into two pieces, or “‘components”, which are interchanged
by R (z); second, each point on the boundary between the components remains
fixed; third, Ry (z) is involutory or self-inverse, meaning that Ry oR is the identity
mapping, leaving every point fixed. To put this last property differently, consider
a point z and its reflection 7 = Ry (z) in L. Such a pair are said to be “mirror
images”, or to be “symmetric with respect to L”. The involutory property says that
the reflection causes such a pair of points to swap places.

Check for yourself that T (z) shares all three of these properties. Furthermore,
the black triangle in [2b] illustrates the fact that if K is large then the effect of 7
on a small shape close to K looks very much like ordinary reflection. [We will
explain this later, but you might like to check this empirically using a computer.]
For these reasons, and others still to come, Zx (z) is often also called reflection
in a circle, and the pair of points z and 7 = Zx (z) are said to be symmetric with
respect to K.

3In older works it is often called “transformation by reciprocal radii”.
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o

;N(;

Figure [2]

We end this subsection with two simple properties of inversion, the first of
which will serve as the springboard for the investigations that follow. Let us use
the symbol [cd] to stand for the distance |c — d| between two points ¢ and d.
We hope that no confusion will arise from this, the square brackets serving as a
reminder that [cd] is not the product of the complex numbers ¢ and d.

In [2c], a and b are two arbitrary points, and @ = Zg (a) and b = Zx (b) are
their images under inversion in K. By definition, [ga][ga] = R?> = [gbllgb],
and so N

[gal/[gb] = [gb]/[qal.

Noting the common angle Zagh = ZEqZ;, we deduce that

If inversion in a circle centred at g maps two points a and b to @
and b, then the triangles aqb and bqa are similar.

&)

Lastly, let us find the relationship between the separation [ab] of two points,
and the separation [ab ] of their images under inversion. Using (5),

[@b1/lab] = [qb 1/[qal = R*/Iqallgh),

and so the separation of the image points is given by

2

~ R
bl=| —— bl. 6
lab] ([qa][qb]) Lab] ©

2 Preservation of Circles

Let us examine the effect of Zx on lines and then on circles. If a line L passes
through the centre g of K, then clearly Zx maps L to itself, which we may write
as Tx (L) = L. Of course we don’t mean that each point of L remains fixed, for
Tk interchanges the portions of L interior and exterior to K ; the only points of L
that remain fixed are the two places where it intersects K.
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Matters become much more interesting when we consider a general line L that
does not pass through ¢q. Figure [3] provides the surprising answer:

If a line L does not pass through the centre q of K, then inversion
; . M
in K maps L to a circle that passes through q.

Here b is an arbitrary point on L, while a is the intersection of L with the perpen-
dicular line through q. By virtue of (5), Zgba = /qab = (7/2), so b lies on the
circle having the line-segment ga as diameter. Done. Notice, incidentally, that the
tangent at g of the image circle is parallel to L.

Figure [3]

Note that (7) makes no mention of the radius R of K. You may therefore be
concerned that in [3] we have chosen R so that K does not intersect L; what
happens if K does intersect L? Check for yourself that, while the picture looks
somewhat different in this case, the geometric argument above continues to apply
without any modification.

We now give a less direct, but more instructive way of understanding why (7)
does not depend on the size of K. We will show that if the result holds for one
circle K (radius Rp) centred at g, then it will hold for any other circle K7 (radius
Rp) centred at g.

Let z be an arbitrary point, and let 7; = Zx, (z) and Zo = Zg,(z). Obviously
71 and 7 are both in the same direction from g as z, and you can easily check that
the ratio of their distances from q is independent of the location of z:

[q721/[9Z1] = (R2/R1)? =k, say.

Thus
I, = Dk o Ix,, (8)

where the “central dilation” D’; [see p. 40] is an expansion (centred at g) of the
plane by a factor of k. It follows [exercise] that if (7) holds for K then it also holds
for K.
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Look again at [3]. Since T is involutory, it simply swaps the line and circle,
and so the image of any circle through q is a line not passing through q. But what
happens to a general circle C that does not pass through ¢? Initially, suppose that
C does not contain ¢ in its interior. Figure [4] provides the beautiful answer:

If a circle C does not pass through the centre q of K, then inversion ©)
in K maps C to another circle not passing through q.
This fundamental result is often described by saying that inversion “preserves
circles”.

It follows from (8) that if (9) is true for one choice of K, then it will be true for
any choice of K. We may therefore conveniently choose K so that C lies inside
it, as illustrated. Here a and b are the ends of a diameter of C, and they therefore

subtend a right angle at a general point ¢ on C. To understand (9), first use (5)
to check that both the shaded angles are equal, and that both the black angles are
equal. Next look at the triangle abc, and observe that the external shaded angle at
a is the sum of the two illustrated internal angles: the right angle at ¢ and the black
angle at b. It follows that Za ¢ b = (7r/2), and hence that @ and b are the ends of a
diameter of a circle through ¢. Thus we have demonstrated (9) in the case where
C does not contain g. We leave it to you to check that the same line of reasoning
establishes the result in the case where C does contain q.

The result (7) is in fact a special limiting case of (9). Figure [5] shows a line L,
the point p on L closest to the centre g of the inversion, and a circle C tangent to L
at p. As its radius tends to infinity, C tends to L, and the image circle C = Zg (C)
tends to a circle through g.

Later we will be able to give a much cleaner way of seeing that (7) and (9) are
two aspects of a single result.

3 Constructing Inverse Points Using Orthogonal Circles

Consider [6a]. The circle C cuts the circle of inversion K at right angles at a and
b. In other words, the tangent T to C at a (for example) passes through g. Under
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Figure [5]

inversion in K, a and b remain fixed, and T is mapped into itself. Thus the image
of C must be a circle that again passes through a and b and that is again orthogonal
to K. But clearly there is only one circle with these properties, namely C itself.
Thus,

Under inversion in K, every circle orthogonal to K is mapped to

itself. (10)

Figure [6a] illustrates two immediate consequences of this result. First, the disc
bounded by C is also mapped to itself, the shaded and hatched regions into which
K divides it being swapped by the inversion. Second, a line from g through a point
zon C intersects C for the second time at the inverse point Z.

] o m

K

Figure [6]

Another consequence (the key result of this subsection) is the geometric con-
struction shown in [6b], the verification of which is left to you.

The inverse 7 of z in K is the second intersection point of any two
circles that pass through 7 and are orthogonal to K.

Note that the construction of Z in [6a] is the special limiting case in which the
radius of one of the circles tends to infinity, and so becomes a line through g. For
other, less important, geometric constructions of inversion, see Ex. 1.

The previously mentioned analogy between inversion in K and reflection in a
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Figure [7]
line L now deepens, for the reflection 7 = R (z) of z in L can be obtained using
precisely the same construction; see [7a]. Note that the line-segment joining z and
7 is orthogonal to L, and that its intersection p with L is equidistant from z and 7:
[pzl/[pZ]=1.

Asillustrated in [7b], the segment of L in the vicinity of p can be approximated
by an arc of a large circle K tangent to L at p. Here 7 = Zk (2) is the image under
inversion in K of the same point z as before. As you can see, there is virtually
no difference between the two figures. More precisely, as the radius of X tends to
infinity, inversion in X becomes reflection in L. In particular, [pz]/[p 7] tends to
unity, or equivalently, [pZ] is “ultimately equal” to [ pz]. We can now understand
what was happening in figure [2b].

We can also check this result algebraically. First, though, observe that from
the geometric point of view it is sufficient to demonstrate the result for a single
choice of the line L and a single point p on it. Let us therefore choose L to be the
real axis, and let p be the origin. The circle K of radius R centred at ¢ = iR is
therefore tangent to L at p. Using (4), we obtain [exercise]

Z
K@= 1"Gm
Thus as R tends to infinity we find that 7k (z) is ultimately equal to R (z) = z,
as was to be shown.

Here is another way of looking at the result. Instead of making K larger and
larger, let z move closer and closer to an arbitrary point p on a circle K of fixed
size. As z approaches p from any direction, Zk (z) is ultimately equal to Rr(z),
where T is the tangent to K at p.

Again, we can also get this algebraically using the above equation. If R is fixed
and |z| < R, then [exercise]

iz¥ 73

Ix(D) =2+ — —

R Rt

Thus as z approaches p = 0, Zx (z) is ultimately equal to R (z) = Z, which is
reflection in the tangent to K at p.
4 Preservation of Angles

Let us begin by discussing what is meant by “preservation of angles”. In the centre
of [8] are two curves S; and S; intersecting at a point p. Provided these curves
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Figure [8]

are sufficiently smooth at p, then, as illustrated, we may draw their tangent lines
T1 and 7> at p. We now define the “angle between S; and S;” at p to be the
acute angle @ from T to T,. Thus this angle 6 has a sign attached to it: the angle
between S; and S; is minus the illustrated angle between S; and S;. If we now
apply a sufficiently smooth transformation to the curves, then the image curves
will again possess tangents at the image of p, and so there will be a well-defined
angle between these image curves.

If the angle between the image curves is the same as the angle between the
original curves through p, then we say that the transformation has “preserved”
the angle at p. It is perfectly possible that the transformation preserves the angle
between one pair of curves through p, but not every pair through p. However, if
the transformation does preserve the angle between every pair of curves through
D, then we say that it is conformal at p. We stress that this means that both the
magnitude and the sign of the angles are preserved; see the right of [8]. If every
angle at p is instead mapped to an angle of equal magnitude but opposite sign, then
we say that the mapping is anticonformal at p; see the left of [8]. If the mapping
is conformal at every point in the region where it is defined, then we call it a
conformal mapping; if it is instead anticonformal at every point, then we call it an
anticonformal mapping. Finally, if a mapping is known to preserve the magnitude
of angles, but we are unable to say whether or not it preserves their sense, then we
call it an isogonal mapping.

It is easy enough to think of concrete mappings that are either conformal
or anticonformal. For example, a translation z > (z + c¢) is conformal, as is a
rotation and expansion of the plane given by z + az. On the other hand, z > Zz is
anticonformal, as is any reflection in a line. The analogy between such a reflection
and inversion in a circle now gets even deeper, for

Inversion in a circle is an anticonformal mapping.

To see this, first look at [9]. This illustrates the fact that given any point z not
on K, there is precisely one circle orthogonal to K that passes through z in any
given direction. [Given the point and the direction, can you think how to construct
this circle?]

As in [8], suppose that two curves S; and S, intersect at p, and that their
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Figure [9]
tangents there are 77 and 7>, the angle between them being 6. To find out what
happens to this angle under inversion in K, let us replace S and S, with the unique
circles orthogonal to K that pass through p in the same directions as directions 1
and S, i.e., circles whose tangents at p are 77 and 75. See [10a]. Since inversion
in K maps each of these circles to themselves, the new angle at p = Zx (p) is —6.
Done.

Figure [10b] illustrates the effect of z > (1/z) on angles. Since this mapping
is equivalent to reflection (i.e., inversion) in the unit circle followed by reflection
in the real axis (both of which are anticonformal), we see that their composition
reverses the angle twice, restoring it to its original value:

Complex inversion, z — (1/z), is conformal.

By the same reasoning, it follows more generally that

The composition of an even number of reflections (in lines or circles)
is a conformal mapping, while the composition of an odd number of
such reflections is an anticonformal mapping.

(4]
Y
L
HERL
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Figure [10]
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5 Preservation of Symmetry

Consider [11a], which shows two points a and b that are symmetric with respect
to a line L. If reflection in a line M maps a to a,bto b,and L to L, then clearly
the image points @ and b are again symmetric with respect to the image line L.In
brief, reflection in lines “preserves symmetry” with respect to lines.

We now show that reflection in circles also preserves symmetry with respect
to circles:

If a and b are symmetric with respect to a circle K, then their images
a and b under inversion in any circle J are again symmetric with
respect to the image K of K.

To understand this, first note that, since inversion is anticonformal, (10) is just a
special case of the following more general result:

Inversion maps any pair of orthogonal circles to another pair of
orthogonal circles.

Of course if one of the circles passes through the centre of inversion then its image
will be a line. However, if we think of lines as merely being circles of infinite
radius then the result is true without qualification.

The preservation of symmetry result is now easily understood. See [11b]. Since
the two dashed circles through a and b are orthogonal to K, their images under
inversion in J are likewise orthogonal to K, and they therefore intersect in a pair
of points that are symmetric with respect to XK.

6 Inversion in a Sphere

Inversion Zg of three-dimensional space in a sphere S (radius R and centre q) is
defined in the obvious way: if p is a point in space at distance p from g, then Zs(p)
is the point in the same direction from g as p, and at distance (R?/p) from q. We
should explain that this is not generalization for its own sake; soon we will see how
this three-dimensional inversion sheds new light on two-dimensional inversion in
C.

Without any additional work, we may immediately generalize most of the

Figure [11]
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Figure [12]

above results on inversion in circles to results on inversion in spheres. For example,
reconsider [3]. If we rotate this figure (in space) about the line through g and g,
then we obtain [12], in which the circle of inversion K has swept out a sphere of
inversion S, and the line has swept out a plane Il. Thus we have the following
result:

Under inversion in a sphere centred at q, a plane 11 that does not

contain q is mapped to a sphere that contains q and whose tangent

plane there is parallel to T1. Conversely, a sphere containing q is an
mapped to a plane that is parallel to the tangent plane of that sphere

atq.

By the same token, if we rotate figure [4] about the line through ¢ and a, then
we find that

Under inversion in a sphere, the image of a sphere that does not con-
tain the centre of inversion is another sphere that does not contain
the centre of inversion.

This resultimmediately tells us what will happen to a circle in space under inversion
in a sphere, for such a circle may be thought of as the intersection of two spheres.
Thus we easily deduce [exercise] the following result:

Under inversion in a sphere, the image of a circle C that does not
pass through the centre q of inversion is another circle that does not
pass through q. If C does pass through q then the image is a line
parallel to the tangent of C at q.

(12)
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The close connection between inversion in a circle and reflection in a line also
persists: reflection in a plane is a limiting case of inversion in a sphere. For this
reason, inversion in a sphere is also called “reflection in a sphere”. Of particu-
lar importance is the fact that such three-dimensional reflections again preserve
symmetry:

Let K be a plane or sphere, and let a and b be symmetric points with
respect to K. Under a three-dimensional reflection in any plane or
sphere, the images of a and b are again symmetric with respect to
the image of K.

13)

We now describe the steps leading to this result; they are closely analogous to the
steps leading to the two-dimensional preservation of symmetry result.

If we rotate figure [6a] about the line joining the centres of K and C, we deduce
that

Under inversion in a sphere K, every sphere orthogonal to K is

mapped to itself. (14

When we say that spheres are “orthogonal” we mean that their tangent planes
are orthogonal at each point of their circle of intersection. However, in order to
be able to easily draw on previous results, let us rephrase this three-dimensional
description in two-dimensional terms:

Let S1 and S, be intersecting spheres, and let C1 and C; be the great
circles in which these spheres intersect a plane Il passing through
their centres. Then S1 and S, are orthogonal if and only if C1 and
C, are orthogonal.

See [13]. This figure is also intended to help you see that if we restrict attention to
IT then the three-dimensional inversion in S is identical to the two-dimensional
inversion in C;. This way of viewing inversion in spheres allows us to quickly
generalize earlier results.

For example, referring back to [6b], we find—make sure you see this—that if
p lies in IT then p = Zg, (p) may be constructed as the second intersection point
of any two circles like C5 that (i) lie in I, (ii) are orthogonal to Cy, and (iii) pass

Figure [13]
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through p.

Next, suppose that S; and §; in [13] are subjected to inversion in a third sphere
K. Choose IT to be the unique plane passing through the centres of Sj, Sz, K, and
let C be the great circle in which K intersects I1. Since Z¢ maps Cy and C, to
orthogonal circles, we deduce [exercise] that (14) is a special case of the following
result:

Orthogonal spheres invert to orthogonal spheres. (15)

Here we are considering a plane to be a limiting case of a sphere.
Putting these facts together, you should now be able to see the truth of (13).

lll Three lllustrative Applications of Inversion
1 A Problem on Touching Circles

Figure [14]

For our first problem, consider [14], in which we imagine that we are given two
circles A and B that touch at g. As illustrated, we now construct the circle Cp that
touches A and B and whose centre lies on the horizontal line L through the centres
of A and B. Finally, we construct the chain of circles Cy, C3, etc., such that C, ;|
touches Cp,, A, and B.

The figure illustrates two remarkable results about this chain of circles:

o The points of contact of the chain Cy, C1, C», etc., all lie on a circle [dashed]
touching A and B at q.

o If the radius of C, is r,, then the height above L of the centre of C,, is 2nr),.
The figure illustrates this for C3.

Before reading further, see if you can prove either of these results using conven-
tional geometric methods.

Inversion allows us to demonstrate both these results in a single elegant swoop.
In [14], we have drawn the unique circle K centred at g that cuts C3 at right angles.
Thus inversion in K will map Cj3 to itself, and it will map A and B to parallel
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o

Figure [15]

vertical lines; see [15]. Check for yourself that the stated results are immediate
consequences of this figure.

2 A Curious Property of Quadrilaterals with Orthogonal Diagonals

Figure [16]

Figure [16] shows a shaded quadrilateral whose diagonals intersect orthogonally
at g. If we now reflect ¢ in each of the edges of the quadrilateral, then we obtain
four new points. Very surprisingly, these four points lie on a circle*. As with the
previous problem, see if you can prove this by ordinary means.

To demonstrate the result using inversion, we first use the construction in [7a]
to represent the reflection of ¢ in an edge as the second intersection point of any
two circles through g whose centres lie on that edge. More precisely, let us choose
the centres of these circles to be the vertices of the quadrilateral; see the LHS of
[17]. Note that, because the diagonals are orthogonal, a pair of these circles centred
at the ends of an edge will intersect orthogonally both at ¢ and at the reflection of
q in that edge.

It follows that if we now apply an inversion in any circle centred at g, then a
pair of such orthogonal circles through g will be mapped to a pair of orthogonal

41 am grateful to my friend Paul Zeitz for challenging me with this problem, which appeared
in the USA Mathematical Olympiad.
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|
|
|
1
1
1
|

inversion

§

R v

Figure [17]

lines (parallel to the diagonals of the original quadrilateral); see the RHS of [17].
Thus the images of the four reflections of g are the vertices of a rectangle, and they
therefore lie on a circle. The desired result follows immediately. Why?

3 Ptolemy’s Theorem

Figure [18a] shows a quadrilateral abcd inscribed in a circle. Ptolemy (c. ap 125)
discovered the beautiful fact that the sum of the product of the opposite sides is the
product of the diagonals. In symbols,

[ad] [bc] + [ab] [cd] = [ac] [bd].

We note that for Ptolemy this was not merely interesting, it was a crucial tool
for doing astronomy! See Ex. 9. His original proof (which is reproduced in most
geometry texts) is elegant and simple, but it is very difficult to discover on one’s
own. On the other hand, once one has become comfortable with inversion, the
following proof is almost mechanical.

Figure [18]
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Inverting figure [18a] in a circle K centred at one of the vertices (say a), we
obtain [18b], in which

bS]+ [Cd]=[bd].

Recalling that (6) tells us how the separation of two inverted points is related to
the separation of the original points, we deduce that

[bel [cd]  [bd]
[abllac]  [acllad] ~ [abllad]’

Multiplying both sides by ([ab] [ac] [ad]), we deduce Ptolemy’s Theorem.

IV The Riemann Sphere
1 The Point at Infinity

In discussing inversion we saw that results about lines could always be understood
as special limiting cases of results about circles, simply by letting the radius tend
to infinity. This limiting process is nevertheless tiresome and clumsy; how much
better it would be if lines could literally be described as circles of infinite radius.

Here is another, related inconvenience. Inversion in the unit circle is a one-to-
one mapping of the plane to itself that swaps pairs of points. The same is true of the
mapping z > (1/z). However, there are exceptions: no image point is presently
associated with z = 0, nor is 0 to be found among the image points.

To resolve both these difficulties, note that as z moves further and further away
from the origin, (1/z) moves closer and closer to 0. Thus as z travels to ever greater
distances (in any direction), it is as though it were approaching a single point at
infinity, written oo, whose image is 0. Thus, by definition, this point co satisfies
the following equations:

The addition of this single point at infinity turns the complex plane into the so-
called extended complex plane. Thus we may now say, without qualification, that
7z (1/z) is a one-to-one mapping of the extended plane to itself.

If a curve passes through z = O then (by definition) the image curve under
z > (1/z) will be a curve through the point at infinity. Conversely, if the image
curve passes through 0 then the original curve passed through the point co. Since
z > (1/z) swaps a circle through 0 with a line, we may now say that a line is
just a circle that happens to pass through the point at infinity, and (without further
qualification) inversion in a “circle” sends “circles” to “circles”.

This is all very tidy, but it leaves one feeling none the wiser. We are accustomed
to using the symbol oo only in conjunction with a limiting process, not as a thing
in its own right; how are we to grasp its new meaning as a definite point that is
infinitely far away?
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2 Stereographic Projection

Riemann’s profoundly beautiful answer to this question was to interpret complex
numbers as points on a sphere X, instead of as points in a plane. Throughout the
following discussion, imagine the complex plane positioned korizontally in space.
In order to be definite about which way up the plane is, suppose that when we
look down on C from above, a positive (i.e., counterclockwise) rotation of (7/2)
carries 1 to i. Now let X be the sphere centred at the origin of C, and let it have
unit radius so its “equator” coincides with the unit circle?.

We now seek to set up a correspondence between points on X and points in C. If
we think of X as the surface of the Earth, then this is the ancient problem of how to
draw a geographical map. In an atlas you will find many different ways of drawing
maps, the reason for the variety being that no single map can faithfully represent
every aspect of a curved® surface on a flat piece of paper. Although distortions of
some kind are inevitably introduced, different maps can “preserve” or “faithfully
represent” some (but not all) features of the curved surface. For example, a map
can preserve angles at the expense of distorting areas.

Ptolemy (c. ap 125) was the first to construct such a map, which he used to
plot the positions of heavenly bodies on the “celestial sphere”. His method is
called stereographic projection, and we will soon see how perfectly it is adapted
to our needs. Figure [19] illustrates its definition. From the north pole N of the

Figure [19]

sphere X, draw the line through the point p in C; the stereographic image of p
on X is the point p where this line intersects . Since this gives us a one-to-one
correspondence between points in C and points on X, let us also say that p is the
stereographic image of p. No confusion should arise from this, the context making
it clear whether we are mapping C to X, or vice versa.

Note the following immediate facts: (i) the interior of the unit circle is mapped

5Some works instead define X to be tangent to the complex plane at its south pole.
6This concept of “curvature” will be defined more precisely in Chapter 6.
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to the southern hemisphere of X, and in particular 0 is mapped to the south pole,
S; (ii) each point on the unit circle is mapped to itself, now viewed as lying on
the equator of ¥; (iii) the exterior of the unit circle is mapped to the northern
hemisphere of X, except that N is not the image of any finite point in the plane.

However, it is clear that as p moves further and further away from the origin
(in any direction), p moves closer and closer to N. This strongly suggests that N
is the stereographic image of the point at infinity. Thus stereographic projection
establishes a one-to-one correspondence between every point of the extended com-
plex plane and every point of X. Instead of merely speaking of a “correspondence”
between complex numbers and points of X, we can imagine that the points of ¥
are the complex numbers. For example, S = 0 and N = oc. Once stereographic
projection has been used to label each point of ¥ with a complex number, ¥ is
called the Riemann sphere.

We have already discussed the fact that a line in C may be viewed as a circle
passing through the point at infinity. The Riemann sphere now transforms this
abstract idea into a literal fact:

The stereographic image of a line in the plane is a circle on ¥ (16)
passing through N = oo.

To see this, observe that as p moves along the line shownin [19], the line connecting
N to p sweeps out a plane through N. Thus p moves along the intersection of this
plane with ¥, which is a circle passing through N. Done. In addition, note that the
tangent to this circle at N is parallel to the original line. Why?

From this last fact it follows that stereographic projection preserves angles.
Consider [20], which shows two lines intersecting at p, together with their circular,
stereographic projections. By symmetry, the magnitude of the angle of intersection
between the circles is the same at their two intersection points, p and N. Since
their tangents at N are parallel to the original lines in the plane, it follows that the
illustrated angles at p and p are of equal magnitude. But before we can say that

Figure [20]
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stereographic projection is “conformal”, we must assign a sense to the angle on
the sphere.

According to our convention, the illustrated angle at p (from the black curve
to the white one) is positive, i.e., it is counterclockwise when viewed from above
the plane. From the perspective from which we have drawn [20], the angle at p
is negative, i.e., clockwise. However, if we were looking at this angle from inside
the sphere then it would be positive. Thus

If we define the sense of an angle on ¥ by its appearance to an
observer inside %, then stereographic projection is conformal.

Clearly, any origin-centred circle in the plane is mapped to a horizontal circle
on X, but what happens to a general circle? The startling answer is that it too
is mapped to a circle on the Riemann sphere! This is quite difficult to see if we
stick to our original definition of stereographic projection, but it suddenly becomes
obvious if we change our point of view. Look again at [ 12], and observe how closely
it resembles the definition of stereographic projection.

; . o

NN Ll

[a]

Figure [21]

To make the connection precise, let K be the sphere centred at the north pole N

of X that intersects X along its equator (the unit circle of C). Figure [21a] shows

a vertical cross section (through N and the real axis), of K, ¥, and C. The full

three-dimensional picture is obtained by rotating this figure about the line through
N and S. We now see that

If K is the sphere of radius ~/2 centred at N, then stereographic
projection is the restriction to C or T of inversion in K.

In other words, if a is a point of C and 4 is its stereographic projection on ¥, then
ZI= IK(a) anda = IK(ZI\)
Appealing to our earlier work on inversion in spheres, (12) confirms our claim
that
Stereographic projection preserves circles.

Note that (16) could also have been derived from (12) in this way.



The Riemann Sphere 143

3 Transferring Complex Functions to the Sphere

Stereographic projection enables us to transfer the action of any complex function
to the Riemann sphere. Given a complex mapping z +— w = f(z) of C to itself,
we obtain a corresponding mapping Z — w of I to itself, where 7 and w are the
stereographic images of z and w. We shall say that z > w induces the mapping
Z+> wof X.

For example, consider what happens if we transfer f(z) = 7z to X. Clearly
[exercise],

Complex conjugation in C induces a reflection of the Riemann sphere
in the vertical plane passing through the real axis.

For our next example, consider z > 7 = (1/z), which is inversion in the unit
circle C. Figure [21b] shows a vertical cross section of X taken through N and the
point z in C. This figure also illustrates the very surprising result of transferring
this inversion to X:

Inversion of C in the unit circle induces a reflection of the Riemann a7
sphere in its equatorial plane, C.

Here is an elegant way of seeing this. First note that not only are the pair of points
z and 7 symmetric (in the two-dimensional sense) with respect to C, but they
are also symmetric (in the three-dimensional sense) with respect to the sphere X.
Now apply the three-dimensional preservation of symmetry result (13). Since z
and 7 are symmetric with respect to X, their stereographic images 7 = Zk (z) and
7 = Ik (7) will be symmetric with respect to Zx (). But Zx (X) = C. Done! A
more elementary (but less illuminating) derivation may be found in Ex. 6.

By combining the above results, we can now find the effect of complex in-
version on the Riemann sphere. In C, we know that z — (1/z) is equivalent to
inversion in the unit circle, followed by complex conjugation. The induced map-
ping on X is therefore the composition of two reflections in perpendicular planes
through the real axis—one horizontal, the other vertical. However, it is not hard to
see (perhaps with the aid of an orange) that the net effect of successively reflecting
¥ in any two perpendicular planes through the real axis is a rotation of £ about
the real axis through angle 7. Thus we have shown that

The mapping z v (1/z) in C induces a rotation of the Riemann 18)
sphere about the real axis through an angle of .

Recall that the point co was originally defined by the property that it be swapped
with 0 under complex inversion, z +> (1/z). The result (18) vividly illustrates
the correctness of identifying N with the point at infinity, for the point 0 in C
corresponds to the south pole S of X, and the rotation of 7 about the real axis does
indeed swap S with N.
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4 Behaviour of Functions at Infinity

Suppose two curves in C extend to arbitrarily large distances from the origin.
Abstractly, one would say that they meet at the point at infinity. On X this becomes
a literal intersection at N, and if each of the curves arrives at N in a well defined
direction, then one can even assign an “intersection angle at co”. For example,
[20] illustrates that if two lines in C intersect at a finite point and contain an angle
« there, then they intersect for a second time at co and they contain an angle —«
at that point.

Transferring a complex function to the Riemann sphere enables one to examine
its behaviour “at infinity” exactly as one would at any other point. In particular,
one can look to see if the function preserves the angle between any two curves
passing through oco. For example, the result (18) shows that complex inversion does
preserve such angles at N, and it is therefore said to be “conformal at infinity”.
By the same token, this rotation of X will also preserve the angle between two
curves that pass through the singularity z = 0 of z — (1/z), so complex inversion
is conformal there too. In brief, complex inversion is conformal throughout the
extended complex plane.

In this chapter we have found it convenient to depict z +— w as a mapping
of C to itself, and in the above example we have likewise interpreted the induced
mapping Z — @ as sending points on the sphere to other points on the same
sphere. However, it is often better to revert to the convention of the previous
chapter, whereby the mapping sends points in the z-plane to image points residing
in a second copy of C, the w-plane. In the same spirit, the induced mappingZ > W
may be viewed as mapping points in one sphere (the z-sphere) to points in a second
sphere (the w-sphere). We illustrate this with an example.

Consider z — w = 7", where n is a positive integer. The top half of [22]
illustrates the effect of the mapping (in the case n = 2) on a grid of small “squares”
abutting the unit circle and two rays containing an angle 6. Very mysteriously, the
images of these “squares” in the w-plane are again almost square. In the next
chapter we will show that this is just one consequence of a more basic mystery,
namely, that z > w = 2" is conformal. Indeed, we will show that if a mapping is
conformal, then any infinitesimal shape is mapped to a similar infinitesimal shape.

Since stereographic projection is known to be conformal, we would therefore
anticipate that when we transfer the grid from the z-plane to the z-sphere, the result
will again be a grid of “squares”. That this does indeed happen can be seen at the
bottom left of [22]; the bottom right of [22] illustrates the same phenomenon as
we pass from the image grid in the w-plane to the image grid on the w-sphere.
Quite generally, any conformal mapping of C will induce a conformal mapping
of X that will (as one consequence) map a grid of infinitesimal squares to another
grid of infinitesimal squares.

Figure [22] not only manifests the conformality of z - w = z2, but it also
illustrates that there exist points at which this conformality breaks down. Clearly,
the angle 6 at the origin is doubled; more generally, z — w = z" multiplies angles
at 0 by n. Quite generally, if the conformality of an otherwise conformal mapping
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Figure [22]

breaks down at a particular point p, then p is called a critical point of the mapping.
Thus we may say that 0 is a critical point of z > w = z".

If we restrict ourselves to C then this is the only critical point of this mapping.
However, if we look at the induced mapping of X, then the figure makes it clear
that in the extended complex plane there is a second critical point at infinity: angles
there are multiplied by =, just as they were at 0. Thus, more precisely than before,
the claim is that z — w = z" is a conformal mapping whose only critical points
are 0 and oco.

Next, we discuss how the behaviour of a complex mapping at infinity may be
investigated algebraically. Complex inversion rotates X so that a neighbourhood
of N = 0o becomes a neighbourhood of S = 0. Thus to examine behaviour near
infinity we may first apply complex inversion and then examine the neighbourhood
of the origin. Algebraically, this means that to study f(z) at infinity we should
study F(z) = f(1/z) at the origin. For example, f(z) is conformal at infinity if
and only if F(z) is conformal at the origin.

For example, if f(z) = (z + 1)3/(z° — 2), then F(z) = z2(1 + 2)3/(1 — 2%),
which has a double root at 0. Thus instead of merely saying that f(z) “dies away
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to zero like (1/z2) as z tends to infinity”, we can now say (more precisely) that
f(z) has a double root at z = 0.

This process can also be used to extend the concept of a branch point of a
multifunction to the point at infinity. For example, if f(z) = log(z) then F(z) =
—log(z). Thus f(z) not only has a logarithmic branch point at 7z = 0, it also has
one at 7 = o0.

5 Stereographic Formulae*

In this subsection we derive explicit formulae connecting the coordinates of a point
z in C and its stereographic projection 7 on . These formulae will prove useful
in investigating non-Euclidean geometry, but if you don’t plan to study Chapter 6
then you should feel free to skip this subsection.

To begin with, let us describe z with Cartesian coordinates: z = x + iy.
Similarly, let (X, Y, Z) be the Cartesian coordinates of 7 on X; here the X- and
Y-axes are chosen to coincide with the x- and y-axes of C, so that the positive
Z-axis passes through N. To make yourself comfortable with these coordinates,
check the following facts: the equation of X is X2 + Y2 4+ Z2 = 1, the coordinates
of N are (0, 0, 1), and similarly S = (0,0, —1),1 = (1,0,0),i = (0, 1, 0), etc.

Now let us find the formula for the stereographic projection z = x + iy of the
point Z on X in terms of the coordinates (X, Y, Z) of 7. Let z/ = X + iY be the
foot of the perpendicular from Z to C. Clearly, the desired point z is in the same
direction as 7/, so

z= Izl Z.
']
Now look at [23a], which shows the vertical cross section of ¥ and C taken
through N and Z; note that this vertical plane necessarily also contains z’ and z.
From the similarity of the illustrated right triangles with hypotenuses N Z and Nz,
we immediately deduce [exercise] that

Izl _ 1
lz|  1-2’

and so we obtain our first stereographic formula:

X+iY

—Z" (19)

x+iy=

Let us now invert this formula to find the coordinates of Z in terms of those of
z. Since [exercise]

1+7Z
2 _
=1z
we obtain [exercise]
2z 2x +i2y 2P -1

X+iY = z 20)

1+ 122 1+x22+2 S
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N [b]

~)

Figure [23]

Although it is often useful to describe the points of X with the three coordinates
(X, Y, Z), this is certainly unnatural, for the sphere is intrinsically fwo dimensional.
If we instead describe Z with the more natural (two-dimensional) spherical polar
coordinates (¢, 6) then we obtain a particularly neat stereographic formula.

Firstrecall’ that ® measures angle around the Z-axis, with @ = 0 being assigned
to the vertical half-plane through the positive X-axis: thus for a point z in C, the
angle @ is simply the usual angle from the positive real axis to z. The definition of
¢ is illustrated in [23b]—it is the angle subtended at the centre of ¥ by the points
N and 7: for example, the equator corresponds to ¢ = (r/2). By convention,
0<¢=<m.

If z is the stereographic projection of the point Z having coordinates (¢, 9),
then clearly z = r ¢, and so it only remains to find r as a function of ¢. From
[23b] it is clear [exercise] that the triangles N Z S and NO z are similar, and because
the angle /NSZ = (¢/2), it follows [exercise] that r = cot(¢/2). Thus our new
stereographic formula is

z = cot(¢/2) €. 1)

We will now illustrate this formula with two applications. In Ex. 8 we also show
how this formula may be used to establish a beautiful alternative interpretation of
stereographic projection, due to Sir Roger Penrose.

As our first application, let us rederive the result~ (18). As above, let 7 be a
general point of ¥ having coordinates (¢, 8), and let 7 be the point to which it is
carried when we rotate ¥ by 7 about the real axis. Check for yourself (perhaps
with the aid of an orange) that the coordinates of Zare (r — ¢, —0). Thus if 7 is
the stereographic image of Z, then

- . 1 . 1
Z = cot T_¢% e 0= 0=

2 2 cot(¢/2) z
as was to be shown.

TThis is the American convention; in my native England the roles of 8 and ¢ are the reverse
of those stated here.
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For our second application, recall that if two points on a sphere are diametrically
opposite each other (such as the north and south poles) then they are said to be
antipodal. Let us show that

If P and q are antipodal points of X, then their stereographic pro-
Jections p and q are related by the following formula:
(22)
q =-(01/p).

Put differently, g = —Zc(p), where C is the unit circle. Note that the relationship
between p and q is actually symmetrical (as clearly it should be): p = —(1/9).
To verify (22), first check for yourself that if p has coordinates (¢, ) then g has
coordinates (w — ¢, = + 6). The remainder of the proof is almost identical to the
previous calculation. For an elementary geometric proof, see Ex. 6.

V Mobius Transformations: Basic Results

1 Preservation of Circles, Angles, and Symmetry

From (3) we know that a general Mobius transformation M(z) = ’gig can be

decomposed into the following sequence of more elementary transformations: a
translation, complex inversion, a rotation, an expansion, and a second translation.
Since each of these transformations preserves circles, angles, and symmetry, we
immediately deduce the following fundamental results:

o Mobius transformations map circles to circles.
e Mobius transformations are conformal.

o Iftwo points are symmetric with respect to a circle, then their images under
a Mobius transformation are symmetric with respect to the image circle. This
is called the “Symmetry Principle”.

‘We know that a circle C will map to a circle—of course lines are now included
as “circles”—but what will happen to the disc bounded by C? First we give a useful
way of thinking about this disc. Imagine yourself walking round C moving coun-
terclockwise; your motion gives C what is a called a positive sense or orientation.
Of the two regions into which this positively oriented circle divides the plane, the
disc may now be identified as the one lying to your left.

Now consider the effect of the four transformations in (3) on the disc and on
the positively oriented circle bounding it. Translations, rotations, and expansions
all preserve the orientation of C and map the interior of C to the interior of the
image C of C. However, the effect of complex inversion on C depends on whether
or not C contains the origin. If C does not contain the origin, then C has the
same orientation as C, and the interior of C is mapped to the interior of C. This
is easily understood by looking at [24]. If C does contain the origin then C has
the opposite orientation and the interior of C is mapped to the exterior of C.IfC
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Figure [24]

Figure [25]

passes through the origin then its interior is mapped to the half-plane lying to the
left of the oriented line C. See [25].
To summarize,

A Mobius transformation maps an oriented circle C to an oriented
circle C in such a way that the region to the left of C is mapped to (23)
the region to the left of C.

2 Non-Uniqueness of the Coefficients
az+b

To specify a particular Mobius transformation M (z) = £ it seems that we need
to specify the four complex numbers a, b, c, and d, which we call the coefficients
of the Mobius transformation. In geometric terms, this would mean that to specify
a particular Mo6bius transformation we would need to know the images of any four
distinct points. This is wrong.

If k is an arbitrary (non-zero) complex number then

az+b kaz + kb
=M _
cz+d @ kcz + kd
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In other words, multiplying the coefficients by & yields one and the same mapping,
and so only the ratios of the coefficients matter. Since three complex numbers
are sufficient to pin down the mapping—(a/b), (b/c), (c/d), for example—we
conjecture (and later prove) that

There exists a unique Mobius transformation sending any three

points to any other three points. 24

In the course of gradually establishing this one result we shall be led to further
important properties of Mobius transformations.

If you read the last section of Chapter 1, then (24) may be ringing a bell: the
similarity transformations needed to do Euclidean geometry are also determined by
their effect on three points. Indeed, we saw in that chapter that such similarities can
be expressed as complex functions of the form f(z) = az+ b, and so they actually
are Mobius transformations, albeit of a particularly simple kind. However, for such
a similarity to exist, the image points must form a triangle that is similar to the
triangle formed by the original points. But in the case of Mobius transformations
there is no such restriction, and this opens the way to more flexible, non-Euclidean
geometries in which Mobius transformations play the role of the “motions”. This
is the subject of Chapter 6.

Let us make a further remark on the non-uniqueness of the coefficients of a
Mobius transformation. Recall from the beginning of this chapter that the interest-
ing Mdbius transformations are the non-singular ones, for which (ad — bc) # 0.
For if (ad — bc) = 0 then M(2) = ‘szig crushes the entire plane down to the
single point (a/c). If M is non-singular, then we may multiply its coefficients by
k = £1/+/ad — bc, in which case the new coefficients satisfy

(ad — bc) =1,

the Mobius transformation is then said to be normalized. When investigating the
properties of a general Mobius transformation, it turns out to be very convenient to
work with this normalized form. However, when doing calculations with specific
Mobius transformations, it is usually best not to normalize them.

3 The Group Property
In addition to preserving circles, angles, and symmetry, the mapping

az+b

d —
cz+d (ad = bc) #0

2P w=M() =

is also one-to-one and onto. This means that if we are given any point w in the
w-plane, there is one (and only one) point z in the z-plane that is mapped to w. We
can show this by explicitly finding the inverse transformation w — z = M~ 1(w).
Solving the above equation for z in terms of w, we find [exercise] that M —1isalso
a Mobius transformation:

MY =-—"2"" (25)
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Note that if M is normalized, then this formula for M~} is automatically normal-
ized as well.

If we look at the induced mapping on the Riemann sphere, then we find that a
Mobius transformation actually establishes a one-to-one correspondence between
points of the complete z-sphere and points of the complete w-sphere, including
their points at infinity. Indeed you may easily convince yourself that

M(co) = (a/c) and M(—d/c) = oo.

Using (25), you may check for yourself that M “a/c) = o0 and M~ 1(c0) =
—(d/c).
Next, consider the composition M = (M2 o M;) of two Mdbius transforma-

tions,

a2z + by a1jz+ by
M) =—— and M) = ——.
2@ 2+ dr 1@ c1z+ di

A simple calculation [exercise] shows that M is also a M6bius transformation:

(az2a; + bac1)z + (a2by + bad))

M(z) = (Ma 0o My)(2) = (c2a1 + dac1)z + (c2b1 + dady)

(26)

It is clear geometrically that if M| and M, are non-singular, then so is M. This is
certainly not obvious algebraically, but later in this section we shall introduce a
new algebraic approach that does make it obvious.

If you have studied “groups”, or if you read the final section of Chapter 1,
then you will realize that we have now established the following: The set of non-
singular Mobius transformations forms a group under composition. For, (i) the
identity mapping £ (z) = z belongs to the set; (ii) the composition of two members
of the set yields a third member of the set; (iii) every member of the set possesses
an inverse that also lies in the set.

4 Fixed Points

As another step towards establishing (24), let us show that if a Mobius transforma-
tion exists mapping three given points to three other given points, then it is unique.
To this end, we now introduce the extremely important concept of the fixed points
of a M6bius transformation. Quite generally, p is called a fixed point of a mapping
fif f(p) = p, in which case one may also say that p is “mapped to itself”, or
that it “remains fixed”. Note that under the identity mapping, z +> £(z) = z, every
point is a fixed point.

By definition, then, the fixed points of a general Mobius transformation M (z)

are the solutions of +b
az
z=M@) = .
@ cz+d

Since this is merely a quadratic in disguise, we deduce that

With the exception of the identity mapping, a Mobius transformation
has at most two fixed points.
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From the above result it follows that if a Mobius transformation is known
to have more than two fixed points, then it must be the identity. This enables us
to establish the uniqueness part of (24). Suppose that M and N are two Mobius
transformations that both map the three given points (say g, r, s) to the three given
image points. Since (N~ o M) is a Mobius transformation that has g, r, and s
as fixed points, we deduce that it must be the identity mapping, and so N = M.
Done.

We now describe the fixed points explicitly. If M(z) is normalized, then the
two fixed points &, £_ are given by [exercise]

£ @a-d)ytJ/(a+d)?—-4
i: .
2c

@7

In the exceptional case where (a +d) = %2, the two fixed points £1. coalesce into
the single fixed point £ = (a — d)/2c¢. In this case the M&bius transformation is
called parabolic.

5 Fixed Points at Infinity

Provided ¢ # O then the fixed points both lie in the finite plane; we now discuss the
fact thatif ¢ = O then at least one fixed point is at infinity. If ¢ = 0 then the Mbius
transformation takes the form M(z) = Az + B, which represents, as we have
mentioned, the most general “direct” (i.e., conformal) similarity transformation
of the plane. If we write A = p ¢/® then this may be viewed as the composition
of an origin-centred rotation of «, an origin-centred expansion by p, and finally
a translation of B. Let us visualize each of these three transformations on the
Riemann sphere.

With o > 0, figure [26a] illustrates that the rotation z — ¢'*z in C induces
an equal rotation of £ about the vertical axis through its centre. Horizontal circles
on X rotate (in the direction of the arrows) into themselves and are therefore
called invariant curves of the transformation. This figure makes its vividly clear
that the fixed points of such a rotation are 0 and oc. Note also that the (great)
circles through these fixed points (which are orthogonal to the invariant circles)
are permuted among themselves. This pure rotation is the simplest, archetypal
example of a so-called elliptic Mobius transformation.

With p > 1, figure [26b] illustrates the induced transformation on ¥ corre-
sponding to the origin-centred expansion of C, z — pz. If p < 1 then we have
a contraction of C, and points on £ move due South instead of due North. Again
it is clear that the fixed points are O and oo, but the roles of the two families of
curves in [26a] are now reversed: the invariant curves are the great circles through
the fixed points at the poles, and the orthogonal horizontal circles are permuted
among themselves. This pure expansion is the simplest, archetypal example of a
so-called hyperbolic Mobius transformation.

Figure [26c] shows the combined effect of the rotation and expansion in [26a]
and [26b]. Here the invariant curves are the illustrated “spirals”’; however, the two
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hyperbolic
[b]

[d]

Figure [26]

families of circles in [26a] (or [26b]) are both invariant as a whole, in the sense
that the members of each family are permuted among themselves. This rotation
and expansion is the archetypal loxodromic Mobius transformation, of which the
elliptic and hyperbolic transformations are particularly important special cases.

Finally, [26d] illustrates a translation. Since the invariant curves in C are the
family of parallel lines in the direction of the translation, the invariant curves on
X are the family of circles whose common tangent at co is parallel to the invariant
lines in C. Since oo is the only fixed point, a pure translation is an example of a
parabolic Mobius transformation.

Note the following consequence of the above discussion:

A Mobius transformation has a fixed point at 0o if and only if it is a
similarity, M (z) = (az + b). Furthermore, oo is the sole fixed point (28)
if and only if M (2) is a translation, M (z) = (z + b).

Later we will use this to show that each Mobius transformation is equivalent, in a
certain sense, to one (and only one) of the four types shown in [26].
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6 The Cross-Ratio

Returning to (24), we have already established that if we can find a Mobius trans-
formation M that maps three given points g, r, s to three other given points g, 7,
s, then M is unique. It thus remains to show that such an M always exists.

To see this, first let us arbitrarily choose three points ¢’, v/, s/, once and for
all. Next, suppose we can write down a Mobius transformation mapping three
arbitrary points g, r, s to these particular three points, ¢’, r’, s'; let My, (z) denote
this Mobius transformation. In exactly the same way we could also write down
M77+(z). By virtue of the group property, it is now easy to see that

— a1
M= Mm o Mq”

is a Mobius transformation mapping g, r, s to g, r’, s’ and thence to ¢, 7, 5, as
was desired.

Now the real trick is to choose ¢, 7/, s’ in such as way as to make it easy
to write down M,,;(z). We don’t like to pull rabbits out of hats, but try q =0,
r' = 1, and s’ = oo. Along with this special choice comes a special, standard
notation: the unique Mdbius transformation mapping three given points q, r, s to
0, 1, oo (respectively) is written [z, q, 1, s].

In order to map ¢ to ¢’ = 0 and s to s’ = oo, the numerator and denom-
inator of [z, g, r, s] must be proportional to (z — g) and (z — s), respectively.

Thus [z,q,r,s] = k{%=L), where k is a constant. Finally, since k (==£) =
Z—Ss

r—s
[r,q,r, 5] =1, we deduce that

Z—q)r—ys)
z—5)r—q)

[z,q,7r, 5] =

This is not quite so rabbit-like as it appears. Two hundred years prior to Mobius’
investigations, Girard Desargues had discovered the importance of the expression
[z, g, r, s] within the subject of projective geometry, where it was christened the
cross-ratio of z, g, r, s (in this order®). Its significance in that context is briefly
explained in Ex. 14, but the reader is urged to consult Stillwell [1989, Chap. 7] for
greater detail and background.

We can now restate (24) in a more explicit form:

The unique Mobius transformation z — w = M (z) sending three
points q, r, s to any other three points ¢, T, 5 is given by

(w—-q9)F=5)

~ _=gr—9
m-[w,q,r,ﬂ—[x,q,r,s]———————

. (29)
z—950—q)

8Different orders yield different values; see Ex. 16. Unfortunately, there is no firm conven-
tion as to which of these values is “the” cross-ratio. For example, our definition agrees with
Carathéodory [1950], Penrose and Rindler [1984], and Jones and Singerman [1987], but it is
different from the equally common definition of Ahlfors [1979].
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Although we have not done so, in any concrete case one could easily go on to solve
this equation for w, thereby obtaining an explicit formula for w = M (z).

The result (29) may be rephrased in various helpful ways. For example, if a
Mobius transformation maps four points p, g, r, s to p, ¢, 7, s (respectively) then
the cross-ratio is invariant: [p, ¢, 7,5] = [p, q, r, s]. Conversely, p, g, r, s can be
mapped to p, ¢, 7, s by a Mobius transformation if their cross-ratios are equal.

Recalling (23), we also obtain the following:

Let C be the unique circle through the points q, r, s in the z-plane,
oriented so that these points succeed one another in the stated order.
Likewise, let C be the unique oriented circle through g, 7, 5 in the
w-plane. Then the Mobius transformation given by (29) maps C to
C, and it maps the region lying to the left of C to the region lying to
the left of C.

(30)

This is illustrated in [27].

SN, OO
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¥ \.\\\\\
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e AN unique
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AN \\\ ‘.\\\\\ \\ . ;
DR SNNRN transformation -
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Figure [27]

This in turn gives us a more vivid picture of the cross-ratio: w = [z, q, r, 5]
is the image of z under the unique Mobius transformation that maps the oriented
circle C through g, r, s to the real axis in such a way that these three points map to
0,1, 00.If g, r, s induce a positive orientation on C then the interior of C is mapped
to the upper half-plane; if they induce a negative orientation, then the image is the
lower half-plane. This is illustrated in [28], from which we immediately deduce a
neat equation for the circle C:

A point p lies on the circle C through q, r, s if and only if

Im[p,q,r,s]=0. 31

Furthermore, if q, r, s induce a positive orientation on C (as in
[28]), then p lies inside C if and only if Im [p, q,r, s] > O. If the
orientation of C is negative, then the inequality is reversed.

For a more elementary proof of (31), see Ex. 15.
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z,q,1,5] w
R A a—.c
P 0 1 C to 00
Figure [28]

VI Médébius Transformations as Matrices*
1 Empirical Evidence of a Link with Linear Algebra

As you were reading about the group property of Mobius transformations, you
may well have experienced déja vu, for the results we obtained were remarkably
reminiscent of the behaviour of matrices in linear algebra. Before explaining the
reason for this connection between Mobius transformations and linear algebra,
let us be more explicit about the empirical evidence for believing that such a
connection exists.

We begin by associating with every Mobius transformation M (z) a correspond-
ing 2 x 2 matrix [M]:

az+b a b
M(Z)_cz+d > [M]_[c d:l.

Since the coefficients of the Mobius transformation are not unique, neither is the
corresponding matrix: if k is any non-zero constant, then the matrix k[ M] corre-
sponds to the same Mobius transformation as [M]. However, if [M] is normalized
by imposing (ad — bc) = 1, then there are just two possible matrices associated
with a given Mobius transformation: if one is called [M], the other is —[M]; in
other words, the matrix is determined “uniquely up to sign”. This apparently triv-
ial fact turns out to have deep significance in both mathematics and physics; see
Penrose and Rindler [1984, Chap. 1].

At this point there exists a strong possibility of confusion, so we issue the
following WARNING: In linear algebra we are—or should be!-—accustomed to
thinking of a real 2 x 2 matrix as representing a linear transformation of R2. For

example, (‘1] ‘(1)) represents a rotation of the plane through (;r/2). That is, when

we apply it to a vector (’;) in R?, we obtain

(1 $)6)= (2)[(5) s

In stark contrast, the matrix 3 corresponding to a Mobius transformation

generally has complex numbers as its entries, and so it cannot be interpreted as a
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linear transformation of R?. Even if the entries are real, it must not be thought of in
this way. For example, the matrix (‘1’ _0) corresponds to the Mébius transforma-

tion M(z) = —(1/z), which is certainly not a linear transformation of C. To avoid
confusion, we will adopt the following notational convention: We use (ROUND)
brackets for a real matrix corresponding to a linear transformation of R? or of C,
and we use [SQUARE] brackets for a (generally) complex matrix corresponding
to a Mobius transformation of C.

Despite this warning, we have the following striking parallels between the
behaviour of Mobius transformations and the matrices that represent them:

e The identity Mobius transformation £(z) = z corresponds to the familiar
1 0

identity matrix, [£] =[0 1l

o The Mobius transformation M (z) with matrix [M] = Z Z] possesses an

inverse if and only if the matrix possesses an inverse. For recall that [M] is
non-singular if and only if its determinant det[M] = (ad — bc) is non-zero.

o If welook at (25), we see that the matrix of the inverse Mobius transformation
M~1(2) is the same as the inverse matrix [M]~!. To put this succinctly,

M~ =[M]7.

e In linear algebra we compose two linear transformations by multiplying their
matrices; indeed, this is the origin of the multiplication rule. If we multiply
the matrices [M>] and [ M1] corresponding to the two M&bius transformations
M5 (z) and M{(z), then we obtain

a, by a1 by | _| ;a1 +bicr axby + bady
c d c1 di || ca1+drci b1 +dady |

But look at (26)! This is simply the matrix of the composite Mobius transfor-
mation (M, o M1)(z). Thus multiplication of Mobius matrices corresponds
to composition of Mobius transformations:

[M3] [M1] = [M3 o M;].

2 The Explanation: Homogeneous Coordinates

Clearly this cannot all be coincidence, but what is really going on here?! The
answer is simple, yet subtle. To see it we must first describe the complex plane
with a completely new kind of coordinate system. Instead of expressing z = x +iy
in terms of two real numbers, we write it as the ratio of two complex numbers, 31
and 3p:
_a

78

Z
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The ordered pair of complex numbers {31, 32] are called homogeneous coordi-
nates of z. In order that this ratio be well defined we demand that [31, 32] # [0, O].
To each ordered pair [3; arbitrary, 3, # 0] there corresponds precisely one point
z = (31/32), but to each point z there corresponds an infinite set of homogeneous
coordinates, [k31, k32] = k[31, 32], where k is an arbitrary non-zero complex num-
ber.

What about a pair of the form [31, 0]? By holding 3; fixed as 3, tends to 0, it
is clear that [31, 0] must be identified with the point at infinity. Thus the totality of
pairs [31, 32] provide coordinates for the extended complex plane. The introduction
of homogeneous coordinates thereby accomplishes for algebra what the Riemann
sphere accomplishes for geometry—it does away with the exceptional role of co.

Just as we use the symbol R? to denote the set of pairs (x, y) of real numbers,
so we use the symbol C2 to denote the set of pairs [31, 2] of complex numbers. To
highlight the distinction between R? and (Cz, we use conventional round brackets
when writing down an element (x, y) of Rz, but we use square brackets for an
element [31, 32] of 2.

Just as a linear transformation of R? is represented by a real 2 x 2 matrix, so
a linear transformation of C? is represented by a complex 2 x 2 matrix:

31 wp|_|a b 31| _ | ag1+ba
A I A [ R et
But if [31, 32] and [ivy, t02] are thought of as the homogeneous coordinates in C?
of the point z = (31/32) in C and its image point w = (iv;/v2), then the above
linear transformation of C? induces the following (non-linear) transformation of
C:
31 wy a3z +bzp  a@Gi/zp)+b  az+b
= — —> wW=—= = = .
32 my c3a+dan cGi/n)+d cz+d

This is none other than the most general Mébius transformation!

We have thus explained why Mobius transformations in C behave so much
like linear transformations—they are linear transformations, only they act on the
homogeneous coordinates in C2, rather than directly on the points of C itself.

As with the cross-ratio, homogeneous coordinates first arose in projective ge-
ometry, and for this reason they are often also called projective coordinates. See
Stillwell [1989, Chap. 7] for greater detail on the history of the idea. We cannot
move on without mentioning that in recent times these homogeneous coordinates
have provided the key to great conceptual advances (and powerful new compu-
tational techniques) in Einstein’s Theory of Relativity. This pioneering body of
work is due to Sir Roger Penrose. See Penrose and Rindler [1984], particularly
Chapter 1.

3 Eigenvectors and Eigenvalues*

The above representation of Mobius transformations as matrices provides an el-
egant and practical method of doing concrete calculations. More significantly,
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however, it also means that in developing the theory of Mobius transformations
we suddenly have access to a whole range of new ideas and techniques taken from
linear algebra.

We begin with something very simple. We previously remarked that while it is
geometrically obvious that the composition of two non-singular Mobius transfor-
mations is again non-singular, it is far from obvious algebraically. Our new point
of view rectifies this, for recall the following elementary property of determinants:

det{[M>] [M]} = det[M>] det[M].

Thus if det[M>;] # 0 and det[M;] # O, then det{[M;][M;]} # 0, as was
to be shown. This also sheds further light on the virtue of working with nor-
malized Mobius transformations. For if det[M;] = 1 and det[M;] = 1, then
det{[M;][M]} = 1. Thus the set of normalized 2 x 2 matrices form a group—a
“subgroup” of the full group of non-singular matrices.

For our second example, consider the eigenvectors of a linear transformation
[M] = [Z 3] of C2. By definition, an eigenvector is a vector 3 = [ g;] whose
“direction” is unaltered by the transformation, in the sense that its image is sim-
ply a multiple A3 of the original; this multiple A is called the eigenvalue of the
eigenvector. In other words, an eigenvector satisfies the equation

a b 31 31
=A .
[c d][&] [&}
In terms of the corresponding Mébius transformation in C, this means that z =
(31/32) is mapped to M (z) = (231/A32) = z, and so

z = (31/32) is a fixed point of M(2) if and only if 3 = [ 2;] is an (32)

eigenvector of [M].

Note that one immediate benefit of this approach is that there is no longer any
real distinction between a finite fixed point and a fixed point at oo, for the latter
31
0
how elegantly we may rederive the fact that oo is a fixed point if and only if M (z)
is a similarity transformation. If oo is a fixed point then

2| @ b 31| _| aa
0 | c d 0 ca i’
Thusc =0, A =a,and M(z) = (a/d)z + (b/d).
Recall that if the matrix [ M] represents the Mobius transformation M (z), then

so does the matrix k[M] obtained by multiplying the entries by k. The fact that
eigenvectors carry geometric information about M(z) shows up in the fact that

merely corresponds to an eigenvector of the form [ ] For example, consider
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they are independent of the choice of k. Indeed, if 3 is an eigenvector of [M] (with
eigenvalue A) then it is also an eigenvector of k[M], but with eigenvalue kA:

(k[M1}3 = kA 3.

Since the eigenvalue does depend on the arbitrary choice of k, it appears that its
value can have no bearing on the geometric nature of the mapping M (z). Very
surprisingly, however, if [M] is normalized then the exact opposite is true! In
the next section we will show that the eigenvalues of the normalized matrix [M]
completely determine the geometric nature of the corresponding Mobius trans-
formation M(z). In anticipation of this result, let us investigate the eigenvalues
further.

Recall the fact that the eigenvalues of [M] are the solutions of the so-called
characteristic equation, det{[M] — A[E]} = 0, where [£] is the identity matrix

[(1) (1)] Using the fact that [M] is normalized, we find [exercise] that the charac-

teristic equation is
M—(@+dr+1=0,

which (for later use) may be written as

1
)\+x=a+d. (33)

The first thing we notice about this equation is that there are typically two
eigenvalues, A1 and X,, and they are determined solely by the value of (a + d). By
inspecting the coefficients of the quadratic we immediately deduce that

AMAir=1 and A+ Ay = (a +4d). (34

Thus if we know Ap, then A2 = (1/A1). We emphasize this point because it is not
obvious when we simply write down the formula for the eigenvalues:

Mo =t @+ 2 Va+ar -4},

Aficionados of linear algebra will recognize (34) as a special case of the fol-
lowing general result on the eigenvalues A1, A2, ..., A, of any n X n matrix N:

AMAy...Ap =det N and AM+A+---4+A,=trN,

where tr N = (the sum of the diagonal elements of N) is called the trace of N.
For future use, recall the following nice property of the trace function: If N and P
are both n x n matrices, then

tr {NP} =tr{PN}. 35)

In the case of 2 x 2 matrices (which is all that we shall ever need) this is easily
verified by a direct calculation [exercise].
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4 Rotations of the Sphere as Mébius Transformations*

This subsection is optional because its main result is only needed in Chapter 6.
Furthermore, in that chapter we shall treat the same result in a much better and sim-
pler way; the only purpose of this subsection is to further illustrate the connections
that exist between Mobius transformations and linear algebra.

Let us investigate what it might mean to say that two vectors p and q in Cc?
are “orthogonal”. Two vectors p and q in RR? are orthogonal if and only if their dot
product vanishes:

p1 q1
ca — . — =0.
Pq= (pz) (42) P141 p2gq2 =

Thus it would seem natural to say that p and q are “orthogonal” if p+q = 0. This
will not do. In particular, whereas we would like the dot product of any nonzero

vector with itself to be a positive real number, we find that [ } ] [ } ]: 0, for
example. As it stands, the dot product is not suitable for use in (oL

The standard solution to this difficulty is to generalize the dot product p«q to
the so-called inner product, {p,q) =p-q:

p,q) =<[§;],[2;]>=ﬁq1 + P2 dp-

We cannot go into all the reasons why this is the “right” generalization, but observe
that it shares the following desirable properties of the dot product:

(p,p) >0 and (p,p)=0ifandonlyifp; =0=p,;
p+q.v=(Pp,v)+(q,vr) and (vr,p+q)=(v,p)+ (v, q).

Note, however, that it is not commutative: (q, p) = (p, q).
‘We now agree that p and q are “orthogonal” if and only if

(P,q)=p1a; +p29, =0.

What does this “orthogonality” mean in terms of the points p = (p;/p,) and
q = (q1/9,) whose homogeneous coordinate vectors are p and q? The answer is
surprising. As you may easily check, the above equation says that g = —(1/p),
and so from (22) we deduce that

Two vectors in C? are orthogonal if and only if they are the homo-
geneous coordinates of antipodal points on the Riemann sphere.

Suppose we could find a linear transformation [R] of C? that were analogous
to a rotation—what transformation of the Riemann sphere ¥ would be induced by
the corresponding Mobius transformation R(z)? By “analogous to a rotation”, we
mean that [R] preserves the inner product:
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([Rlp,[Rla) = (p,q). (36)

In particular, [R] maps every pair of orthogonal vectors to another such pair, and
R(z) therefore maps every pair of antipodal points on X to another such pair. We
shall not attempt a real proof, but since the transformation of X is also known to
be continuous and conformal®, it can only be a rotation of X.

The desired invariance of the inner product (36) may be neatly rephrased using
an operation called the conjugate transpose, denoted by a superscript . This opera-
tion takes the complex conjugate of each element in a matrix and then interchanges
the rows and columns:

* * - —

x _ | P11 _ = = «_ | a b _la ¢
[T o= 3]<[3 5]
Since the inner product can now be expressed in terms of ordinary matrix multi-
plication as {p, q) = p*q, and since [exercise] {[R]p}* = p*[R]*, we find that

(36) takes the form
p* {[RI*[R]} q = p*q.
Clearly this is satisfied if
[RI*[R] = [£], @37

and in linear algebra it is shown that this is also a necessary condition.

Matrices satisfying equation (37) are extremely important in both mathematics
and physics—they are called unitary matrices. In the present case of normalized
2 x 2 matrices, we can easily find the most general unitary matrix [R] by re-
expressing (37) as [R]* = [R]™":

2214 ] - we[22]

Although we have left some unsatisfactory gaps in the above reasoning, we
have nevertheless arrived at an important truth: The most general rotation of the
Riemann sphere can be expressed as a Mobius transformation of the form

b
RG) = 22 (38)
—~bz+a

This was first discovered by Gauss, around 1819.

VIl Visualization and Classification*
1 The Main Idea

Although the decomposition (3) of a general Mobius transformation M(z) has
proved valuable in obtaining results, it makes M (z) appear much more complicated

91f it were not continuous then it could, for example, exchange points on two antipodal patches
of ¥ while leaving the remainder fixed. If it were continuous but anticonformal, then it could map
each point to its antipodal point, or to its reflection in a plane through the centre of X.
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than itis. In this section we will reveal this hidden simplicity by examining the fixed
points in greater detail; this will enable us to visualize Mobius transformations in a
particularly vivid way. In the process we will clarify our earlier remark that Mobius
transformations can be classified into four types, each M (z) being “equivalent”
to one (and only one) of the four types of transformation illustrated in [26]. The
lovely idea behind this classification scheme is due to Felix Klein.

To begin with, suppose that M (z) has two distinct fixed points, &, and §_. Now
look at the LHS of [29], and in particular at the family C; of circles [shown dashed]
passing through the fixed points. If we think of M (z) as amapping z > w = M(z)
of this figure to itself, then each member of Cy is mapped to another member of
C1. Why?

Still with reference to the LHS of [29], suppose that p [not shown] is an arbitrary
point on the line through &, and &, but lying outside the segment connecting the
fixed points. If X is the circle of radius /[ p&, J[pE_] centred at p, then £, and £_
are symmetric with respect to K. Thus K cuts each member of C; at right angles
(cf. [9]). By varying the position of p we thus obtain a family C; of circles [shown
solid] such that &, and &_ are symmetric with respect to each member of C3, and
each member of C, is orthogonal to each member of Cy.

Figure [29]

Now we come to the main idea: to the LHS of [29] we apply a Mébius trans-
formation F (7) that sends one fixed point (say &) to 0, and the other fixed point
(5-) to 00. The RHS of [29] shows the image of the LHS under such a M&bius
transformation, the simplest example of which is

_z—&y

F() = e

[Note that we have not bothered to write this in normalized form.] Since F is
a Mobius transformation, it must map the members of C; to the circles passing
through 0 and oo, i.e., to lines through the origin [shown dashed]. Furthermore,
since F is conformal, two such lines must contain the same angle at O as the
corresponding C; circles do at £;. We have tried to make this easy to see in our
picture by drawing C; circles passing through & in evenly spaced directions, each
one making an angle of (;r/6) with the next.
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As an aside, observe that we now have a second, simpler explanation of the
existence of the family C, of circles orthogonal to C;. Since the illustrated set of
origin-centred circles are orthogonal to lines through 0, their images under F~!
must be circles orthogonal to each member of C;.

Next, letZ = F(z) and W = F(w) be the images under F of z and w = M ().
We may now think of F as carrying the original Mdbius transformation z > w =
M (z) on the left over to a transformation M on the right, namely 7 — w = M (7).
More explicitly,

B =Fw) =F M) =F(M[F@)]),

and so _
M=FoMoF\ (39)

Since M is the composition of three M6bius transformations, it is itself a Mobius
transformation. Furt’llermore, it follows immediately from the construction that
the fixed points of M are 0 and co. But we have already seen that if a Mobius
transformation leaves these points fixed, it can only be of the form

M(3) =m?Z,

where m = p ¢!® is simply a complex number. Geometrically, Mis just a rotation
by «¢ combined with an expansion by p.

This complex number m not only constitutes a complete description of the
mapping M but, as we will see shortly, it also completely characterizes the geo-
metric nature of the original Mobius transformation M. The number m is called
the multiplier of M(z).

2 Elliptic, Hyperbolic, and Loxodromic Transformations

Before reading on, refresh your memory of the classification (shown in [26a,b,c])
of Mobius transformations of the form M(7) = m7.

We call M(z) an elliptic Mobius transformation if M is elliptic, meaning that
the latter is a pure rotation corresponding to m = ¢'®. Since M is a rotation if and
only if it maps each origin-centred circle to itself, M(z) is elliptic if and only if it
maps each C; circle to itself. With @ = (:7/3), the RHS of [29] illustrates the effect
of M on the point Z. On the LHS you can see the corresponding, unambiguous
effect of M: it moves z along its C; circle till it lies on the C; circle making angle
(7t /3) with the original C; through z.

Figure [30]'° is intended to give a more vivid impression of this same elliptic
transformation. Each shaded “rectangle” is mapped by M (z) to the next one in
the direction of the arrows—some of these regions have been filled with black to
emphasize this. This figure may be viewed as typical, with one exception. Because
we have chosen o = (ir/3), six successive applications of M yield the identity,

108hading inspired by Ford [1929, p. 19].
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Elliptic

Figure [30]

and one therefore says that M has period 6. More generally, if « = (m/n)2m,
where (m /n) is a fraction reduced to lowest terms, then M has period n. Of course
this is not typical. In general («/2m) will be irrational, and no matter how many
times we apply M we will never obtain the identity. ~

We call M (z) a hyperbolic Mébius transformation if M is hyperbolic, meaning
that the latter is a pure expansion corresponding to m = p # 1. Since M is an
expansion if and only if it maps each line through the origin to itself, M(z) is
hyperbolic if and only if it maps each C; circle to itself. Figure [31] illustrates
such a transformation with p > 1. Note that if we repeatedly apply this mapping
then any shape (such as the small black square near £ ) is repelled away from &,
eventually being sucked into &_. In this case &, is called the repulsive fixed point
and &_ is called the attractive fixed point; if m = p < 1 then the roles of &, and
&_ are reversed.

Hyperbolic

Figure [31]
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Finally, if m = p e%has a general value, and M is the composition of both a
rotation and an expansion, then M is called a loxodromic Mébius transformation.
In this case neither the C; circles, nor the C; circles are invariant. The curves
that are invariant are illustrated in [32], which also shows the effect of successive
applications of M to a small square near &... In studying this figure, you may find
it helpful to note that

The loxodromic Mobius transformation with fixed points £+ and
