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Preface

The origins of this book go back more than twenty years when, funded by small
grants from the European Union, the control theory groups from the universities of
Bremen and Warwick set out to develop a course in finite dimensional systems the-
ory suitable for students with a mathematical background, who had taken courses in
Analysis, Linear Algebra and Differential Equations. Various versions of the course
were given to undergraduates at Bremen and Warwick and a set of lecture notes
was produced entitled “Introduction to Mathematical Systems Theory”. As well
as ourselves, the main contributors to these notes were Peter Crouch and Dietmar
Salamon. Some years later we decided to expand the lecture notes into a textbook
on mathematical systems theory. When we made this decision we were not very
realistic about how long it would take us to complete the project. Mathematical
control theory is a rather young discipline and its foundations are not as settled
as those of more mature mathematical fields. Its basic principles and what is con-
sidered to be its core are still changing under the influence of new problems, new
approaches and new currents of research. This complicated our decisions about the
basic outline and the orientation of the book. During the period of our writing,
problems of uncertainty and robustness, which had been forgotten for some time
in ’modern control’, gradually re-emerged and came to the foreground of control
theory. Convinced of their key importance we finally deemed it necessary to make
them a central subject of the book. Indeed we had already worked on problems of
uncertainty ourselves, trying to develop tools for their analysis in state space theory
where they had been largely neglected in the aftermath of geometric control theory.
Our endeavour to develop a mathematical framework for dealing with such prob-
lems, both in the analysis and in the synthesis of control systems, brought up new
research problems, and this interaction between the work on the book and work on
research further delayed its completion.
Our aim has been to give a rigorous and detailed mathematical treatment of the ba-
sic elements of systems theory which could serve as a reference. But we also wanted
to do justice to the origins of the subject in engineering and illustrate its inter-
disciplinary character by many examples and discussions on aspects of application.
With this in mind we decided at an early stage that the book should be focussed
on finite dimensional time-invariant linear systems. There were two main reasons
for this choice. Firstly, nearly all the main problems, concepts and approaches in
the theories of nonlinear and infinite dimensional control have their origins in linear
finite dimensional theory. Secondly, advanced theories require more sophisticated
mathematics, and there is the risk that technical problems of mathematics obscure
the system theoretic content. This was in conflict with our wish to write a book
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accessible to students of mathematics after two years of study and to concentrate
on the main issues and fundamental concepts of systems theory. Nevertheless, in
spite of the focus on finite dimensional linear systems we have made it a rule to de-
velop the basic system theoretic notions in full generality. Throughout the book the
presentation proceeds in a systematic way from the abstract to the concrete. The
exposition is restricted to time-invariant linear systems only where a development
for other classes of systems would require advanced mathematical tools beyond those
outlined in the appendix. For instance, we do not touch on any topics of nonlinear
systems and control theory which require the use of differential geometric tools, nor
do we deal with infinite dimensional systems theory since then a substantial prepa-
ration in functional analysis would be necessary.
The first two chapters of this volume are of an introductory nature whereas the others
are more demanding and prepare the reader for research. The rigorous mathematical
treatment is complemented by many examples, illustrations and explanatory com-
ments. Also computational issues are discussed. As such, we hope the volume will
be useful for established researchers in systems theory as well as those just starting
in the field. For teaching it can be used at two different levels. The material can
be filtered to obtain undergraduate courses, and individual graduate courses can be
based on single or pairs of chapters. Indeed we have based undergraduate courses
on Chapter 3, graduate ones on Chapters 3, 4, and Chapters 4, 5 and a seminar on
Chapter 1. It is our experience that a first course in mathematical systems theory
in the third year of a mathematics curriculum is an excellent way of showing stu-
dents the usefulness of what they have studied in their first two years. In control
theory they can learn that methods from different mathematical fields, like analysis,
linear algebra, differential equations, complex analysis, integral transformations and
numerical analysis, which they have studied separately in their first years, must be
combined to develop a successful theory for applications.
The book is divided into two volumes. The second one will be concerned with con-
trol aspects and contains chapters on controllability and observability, input-output
systems, geometric control theory, the linear quadratic problem and H∞ control
theory. The present first volume consists of five chapters and is concerned mainly
with systems analysis. At the end of this volume there is a detailed index preceded
by a glossary and an extensive bibliography. Every chapter, with the exception of
the first, has the same format. Each is divided into sections and subsections with
exercises and notes and references at the end of each section. Sections are numbered
consecutively within chapters and subsections are numbered consecutively within
sections. For example, Section 5.3 is the third section in Chapter 5 and Subsec-
tion 5.3.1 is the first subsection in Section 5.3. Theorems, propositions, definitions
etc. are numbered consecutively by chapter and section in a single list and are in-
dexed with three numbers. Thus Theorem 5.1.8 refers to a theorem in Section 1
of Chapter 5 and is the eighth theorem or example etc. in the list of that section.
Figures and tables are numbered consecutively, e.g. Figure 4.1.7 could be followed
by Table 4.1.8. Equations are numbered by single numbers in each section, and are
referenced by this number in the section where it occurs. For example (9) refers
to the ninth equation in the same section. However, within say Chapter 3, the
ninth equation in Section 2 is written (2.9) when cross-referenced in say Section 3,
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whereas, if the equation is referred to in any other chapter we give the triple (3.2.9).
Exercises are referenced in a similar way, i.e. we write Ex. 9, Ex. 2.9 or Ex. 3.2.9.
A survey of the material in each of the chapters can be obtained by looking at the
table of contents. Below we give a brief overview.
The first chapter is of an illustrative and motivational character. It presents a se-
ries of dynamic models from six areas of application and explains by examples how
dynamic phenomena in different fields of science and engineering can be translated
into appropriate mathematical representations. It also shows how typical system
theoretic problems and concepts arise in these fields. The descriptive style adopted
in this chapter is rather different from the mathematical style of the ensuing chap-
ters. Most of the sections just give a catalogue of examples from the corresponding
field of application. The sections on mechanics and electromagnetism are different.
These fields have their own well-established theories of dynamics. In fact control
theory has emerged from mechanical and electrical engineering which are still the
main areas of application. We therefore deemed it appropriate to explain some of
the scientific principles behind the dynamic models in these areas and sketch some
modelling techniques in use. Altogether, the chapter is meant as an introduction
to dynamic models and an illustration of the diversity of dynamical phenomena to
which system theoretic concepts may be applied. Some of the models described here
are taken up later in the examples of the following chapters.
The introduction to mathematical systems theory begins with Chapter 2. Some
readers may prefer to start directly with this chapter and go back to Chapter 1
for more details whenever an example from the first chapter is used for illustration.
Chapter 2 provides an introduction to state space theory. We have chosen to use
the input-state-output approach put forward by Kalman. The general concept of a
dynamical system is developed and then it is specialized to the linear case. Contin-
uous time and discrete time systems are treated in parallel and are interrelated by a
discussion of sampling and approximations problems. Some preliminary elements of
input-output theory are also introduced and the relationship between the analysis
of input-output systems in time and in frequency domain is explained.
The next chapter deals with stability theory. Some elements of topological dynamics
and Liapunov’s stability theory are developed in a general setting and then special-
ized to different classes of systems. A notable feature of this chapter is that the
sections on Liapunov’s analytical approach are complemented by an extensive final
section on classical algebraic stability theory.
One would expect to find some of the material of the previous chapters in a book
on systems theory, but the inclusion of a chapter on perturbation theory (the sub-
ject of Chapter 4) might seem surprising. We felt it was necessary because many
of the results we give permeate various branches of systems theory but are rarely
explicitly stated and proved in books on systems and control. Moreover we wished
to address the robustness question in a general setting and so needed to introduce
some elements of µ-analysis.
The final chapter of this first volume reflects our joint research on uncertain systems.
Our main objective is to develop a spectral theory for uncertain time-invariant lin-
ear systems. We do this via spectral value sets and stability radii and most of the
chapter is devoted to deriving both qualitative and quantitative results for them.
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However we also deal with the problem of transient deviations of trajectories from
an equilibrium point and in a final section obtain results for stability radii of uncer-
tain systems with respect to time-varying, nonlinear and dynamic perturbations.
Since the range of mathematics used in this volume is quite wide we have included
some of the background mathematics in fairly substantial appendices.
We have tried our best to eliminate any errors in the book. However our experi-
ence has shown that this is a never ending process and we would be very grateful if
readers could communicate to us any errors and inaccuracies they encounter in this
volume.
In conclusion we would like to thank those colleagues who helped us, directly or
indirectly, with the preparation of this book. As students of mathematics we did
not come into contact with systems theory. We learnt it whilst lecturing at univer-
sity and have been strongly influenced by friends and colleagues who at an early
stage in our careers introduced us to their fields of research during periods when
they were guest professors of our universities or when we were invited to their re-
search centres. We benefited greatly from their knowledge and advice, and would
like to express our special thanks to Roger Brockett, Chris Byrnes, Ruth Curtain,
Paul Fuhrmann, Michiel Hazewinkel, Michael Heymann, Alan Laub, Larry Markus,
Howard Rosenbrock, Jan Willems, Murray Wonham and Jerzy Zabczyk. We also
owe thanks to our doctoral students and co-workers at that time, who are now
friends and colleagues. Their enthusiasm and manifold contributions spurred our
research and without them we would not have undertaken this project.
More recently, we have profited from the expertise of the many people who visited us
in Bremen and Warwick. In particular we are indebted to Vladimir Kharitonov. His
series of lectures on algebraic stability theory in Bremen helped us with the prepara-
tion of Section 3.4. Our doctoral students and colleagues Eduardo Gallestey, Michael
Karow, Elmar Plischke and Fabian Wirth have collaborated with us in the research
which led to the results presented in Chapter 5. Many of the examples and figures
in this chapter are due to them. Fabian read some of the sections and made sug-
gestions for their improvement. We also would like to thank Buddug Pritchard who
helped us with the English. In the early days Bernd Kelb typed some of the sections,
computed some of the examples, constructed some of the figures and helped us with
LATEX. More recently Elmar has taken on this role. Not only has he contributed in
research to the development of the material on transient behaviour in Chapter 5, he
has also computed many figures and read, and suggested improvements to many of
the sections. Moreover he has been a rock for us with his technical knowledge of and
expertise with the computer. Whenever we had problems with Unix, Linux, LATEX,
xfig, matlab he willingly gave us his assistance and always did so with a wry sense
of humour. Finally we would like to thank the team at Springer, in particular Ruth
Allewelt and Martin Peters who have been most helpful, patient and understanding.

Bremen Diederich Hinrichsen

Warwick Tony Pritchard

October, 2004
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Chapter 1

Mathematical Models

In this chapter we present a range of dynamical systems from different areas of ap-
plication and use them as examples to illustrate some typical problems from systems
and control theory. Several of the mathematical models we introduce and discuss in
the following sections will be taken up as examples in later chapters.
The development of mathematical systems theory starts in the next chapter. Read-
ers who prefer to go directly to Chapter 2 can do so without any difficulty as the
mathematical exposition in that chapter is self-contained and independent of fol-
lowing material. On encountering an example based on a dynamic model from
Chapter 1, they may wish to look back to its origin here to find more details and
get additional background information.
This chapter consists of six sections in which we present dynamical models from the
following areas:

• Biology (Population Dynamics)

• Economics

• Mechanics

• Electromagnetism and Electrical Systems

• Digital Systems

• Heat Transfer

The mathematical models in the first three sections are described by ordinary differ-
ential equations and by difference equations. Also in Section 1.4, although the basic
equations of electromagnetism are partial differential equations, we will only con-
sider so-called lumped models of electromagnetic devices which again are described
by ordinary differential equations. Different types of models are presented in the
remaining two sections. In Section 1.5 we consider digital systems which have only
a finite number of different states and are represented as finite automata. In the
last section we deal with an example of a distributed parameter system described
by partial differential equations.
In all these sections we will not only discuss the mathematical models but also point
out some of the problems encountered in determining a mathematical model for a
real process. While most of the sections just present a gallery of typical examples,
some modelling methods will be sketched out in the sections on mechanical and
electrical systems.
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1.1 Population Dynamics

In order to predict or estimate the growth of a given population one needs a dynam-
ical model. Such models may also be useful if one wants to control the development
of a population. For example problems of control arise in fisheries management
where one would like to keep fishing at a sustainable level and maximize the average
catch over long time periods. In other applications interaction between different
populations may be important and one may make use it for control purposes, e.g.
in pest control where one introduces predators to reduce the pest. In this section
we consider two classical models of population dynamics.

Example 1.1.1. (Logistic growth model). The simplest growth model is

ẋ(t) = ax(t). (1)

Here x(t) is the size, density or biomass of a given population at time t and the growth
parameter a is the intrinsic growth rate (difference between the birth rate and the death
rate) of the population. If the initial size of the population is x(0) = x0 > 0 the develop-
ment follows the exponential law x(t) = eatx0. Thus we have exponential growth if a > 0
(i.e. the birth rate is larger than the death rate) and exponential decay if a < 0. The
idea that human populations when “unchecked by the difficulties of subsistence” have a
positive constant natural growth rate goes back to Malthus. In his Essay on Population
(1798) he contrasted the natural geometric growth of mankind with the linear growth of
subsistence resources and drew far reaching conclusions from this which had a profound
effect on political economics.
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Figure 1.1.1: Exponential and logistic growth models

The exponential growth model, although adequate in many applications over a limited
time span becomes unrealistic in the long run since eatx0 → ∞ as t → ∞. The growth
rate ẋ(t)/x(t) cannot be constant over arbitrarily long periods of time, since resources are
limited. As the population becomes larger and larger, restraining factors will have an in-
creasingly negative effect on population growth (“crowding”). In 1838 Verhulst proposed
another growth model which incorporated the limiting factors and accounted for the fact
that individuals compete for food, habitat, and other limited resources,

ẋ(t) = r(K − x(t))x(t). (2)
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According to this model a small population will initially grow at an exponential rate rK

but as the population increases the growth rate will be diminished.
If the system is initially at x0 = K then it will remain at x(t) = K for all time. Then the
population is at an equilibrium x(t) ≡ x̄ = K, t ≥ 0. If 0 < x0 < K the population x(t)
will increase continuously and approximate K as t → ∞. If x0 > K, the population size
x(t) will converge towards K from above. In fact the following formula for the solution is
easily obtained by separation of variables

x(t) =
K

1 + (K/x0 − 1) e−rKt
.

The graphs of these solutions are called logistic curves and Verhulst’s model is also known
as the logistic growth model. Figure 1.1.1 illustrates that x(t) ≡ K is a stable equilibrium,
i.e. all trajectories with initial state x0 > 0 converge towards this equilibrium as t →
∞. The saturation level K is interpreted as the environmental carrying capacity of the
corresponding ecosystem.Now suppose that we want to describe the dynamics of a fish
population under the influence of fishing. If u(t) ≥ 0 is the catch rate and we assume the
logistic growth model for the undisturbed fish population, we obtain Schaefer’s model

ẋ(t) = r(K − x(t))x(t) − u(t). (3)

Note that only non-negative solutions x(t, u) ≥ 0 make sense. Given an initial state
x0 > 0 and a fixed time period [t0, t1], a fishing policy u(·) : [t0, t1] → R+ may be called
“admissible” if it leads to a non-negative solution x(t, u) of (3) for t ∈ [t0, t1] and “optimal”
if it maximizes the overall catch during that period. Such an “optimal” fishing policy will,
however, lead to depletion at time t1. To prevent this one may wish to impose a “terminal
constraint” x(t1) ≥ x1 where x1 > 0 is a lower bound to an acceptable fish population at
the end of the period. Thus we end up with the following optimal control problem:

Maximize

∫ t1

t0

u(t)dt subject to u(t) ≥ 0, x(t, u) ≥ 0, t ∈ [t0, t1], x(t1) ≥ x1.

If u(t) is required to be constant, the problem is easily solved, see Ex. 2.1.15.
Another optimal control problem which can be solved by elementary means is the optimal
constant-effort harvesting problem. Here the harvesting rate u(t) is by definition propor-
tional to x(t), i.e. u(t) = cx(t). This is a simple example of feedback control where the
control variable u(t) is determined as a given function of the instantaneous state x(t) of
the system. Following this control strategy one obtains a Verhulst model in which the
parameters have changed

ẋ(t) = r(K − c/r − x(t))x(t).

If c < rK there is an equilibrium solution x(t) = x̄ = K − c/r, t ≥ 0 corresponding to the
constant harvesting policy u(t) = cx̄, t ≥ 0. Again one can determine the optimal constant
harvesting policy which yields the highest sustainable harvesting rate, see Ex. 2.1.15. �

Remark 1.1.2. Although the logistic model is a widely used and successful model which
predicts quite well the growth of various laboratory populations (see Notes and Refer-
ences), it is a highly simplified model. It is based on a number of assumptions which are
not usually satisfied when the growth of a species in a real ecosystem is considered, e.g.

(i) The influence of environmental factors on the growth of the species is assumed to be
constant in time. But these factors and the behaviour of a species usually vary with
the time of the year. Also there are often random variations in the environment.
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(ii) The effects of limited resources are assumed to affect all individuals of the species
in an equal manner. A more realistic model would take the spatial distribution of
the species and its resources into account (partial differential equations).

(iii) It is assumed that the birth and death rates of the population respond instantly to
the population size, whereas usually there is a delay between birth and the ability
to give birth.

(iv) The age distribution of the population is assumed to be constant or that if it changes
it does not influence the growth of the species.

Although the assumptions are not realistic, highly simplified models like that of Verhulst
are often of great scientific value. Their purpose is not to give an accurate portrait
of an underlying real process but to enhance the understanding of some of its internal
mechanisms. As such they can be more important motors for scientific progress than
complex “realistic” simulation models1. �

Often the dynamics of a population are strongly influenced by the interaction with
other populations in the same ecosystem. Several species may compete for the same
natural resources or a species may be predatory on some species while serving as
prey for others. In the following example we describe a classical predator-prey model
due to Lotka and Volterra2.

Example 1.1.3. (Predator-prey system). Suppose that an island is populated by
goats and wolves. The goats survive by eating the island’s vegetation and the wolves
survive by eating the goats. Often oscillations are observed in the development of such
predator-prey populations. If, initially, there are only a few wolves but many goats, the
wolves have a lot to eat and the number of goats will be diminished while the number of
wolves will increase until there are not enough goats to feed them. Then the number of
wolves will be reduced so that the goats will be able to recover and this closes the cycle.
The classical Lotka-Volterra model for such a predator-prey system is

ẋ1 = ax1 − bx1 x2

ẋ2 = −cx2 + dx1 x2, (4)

where x1 and x2 are the densities (number per unit area) of the prey and predator popu-
lations respectively, and a, b, c, d are positive constants. The model mirrors a qualitative
feature which has been observed in many real predator-prey systems, the persistence of
periodic fluctuations. This is illustrated in Figure 1.1.2. x̄ = (c/d, a/b) is an equilibrium
point of (4) and any initial state x0 �= x̄, x0

1 > 0, x0
2 > 0 leads to a periodic trajectory

cycling around this equilibrium point in the positive orthant.
Clearly, this is a simplistic model and does not aim at simulating or predicting a real
process. The model is based on the following assumptions.

1“This work seeks to gain general ecological insights with the help of general mathematical
models. That is to say the models aim not at realism in detail, but rather at providing mathematical
metaphors for broad classes of phenomena. Such models can be useful in suggesting interesting
experiments or data collecting enterprises, or just in sharpening discussion.” (R. M. May, Preface
of “Stability and Complexity in Model Ecosystems”).

2The story of how Volterra came to design the model (independently of Lotka) is interesting. For
many years fishermen had observed periodic fluctuations between sharks and their prey populations
in the Adriatic Sea. During World War I, commercial fishing was greatly reduced and so it was
expected that there would be plentiful fish stocks for harvesting after the war was over. Instead the
catches of commercially valuable fish declined after the war while the number of sharks increased.
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(i) In the absence of predators the prey population grows exponentially with rate a.

(ii) In the absence of prey the predator population decreases at the death rate c.

(iii) The growth of the predator population depends affinely on the food intake, i.e. on
predation.

(iv) Predation depends on the likelihood that a victim is encountered by a predator and
this likelihood is proportional to the product x1x2 of the two populations’ densities.

An assumption similar to (iv) is made in chemical kinetics where, according to the so-
called law of mass action, the rate of molecular collisions of two substances in a given
solution is assumed to be proportional to the product of their concentrations.
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Figure 1.1.2: Predator-prey trajectories

Many “more realistic” models have been obtained from (4) by modifying the predator-free
prey growth term ax1 to include crowding effects or by allowing for saturation effects
and lags in the predators’ response to increasing prey densities. For instance, in order to
eliminate the assumption that the prey grows exponentially in the absence of predators
one could introduce a term −ex2

1 in the first equation of (4) which accounts for the effect
of crowding on the growth of the prey (see Example 1.1.1).

ẋ1 = ax1 − bx1 x2 − ex2
1 = e(a/e − x1)x1 − bx1 x2

ẋ2 = −cx2 + dx1 x2. (5)

This drastically alters the qualitative behaviour of the predator-prey system. In the ab-
sence of predators the prey now evolves according to a logistic growth model with carrying
capacity a/e. Moreover, the new system does not always have an equilibrium with positive
coordinates. In fact the equilibrium equations are

(a − bx2 − ex1)x1 = 0, (−c + dx1)x2 = 0

and these equations have a (unique) positive solution x̄ = (c/d, (da − ec)/bd) if and only
if a/e > c/d. Figure 1.1.3 illustrates the changed behaviour of the modified predator-
prey system (5). In particular, it has no non-constant periodic solutions and its only
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Figure 1.1.3: The effect of crowding

positive equilibrium point x̄ = (c/d, (ad−ec)/bd) is now asymptotically stable. It attracts
all trajectories starting at initial states close to it, but not necessarily those starting
further away, see Figure 1.1.3. In Chapter 3 we will show how the stability or instability
of an equilibrium point can be examined for a given set of parameters. Using these
results it is possible to show that the other two equilibrium points (0, 0) and (a/e, 0) are
unstable. The qualitative changes between (4) and (5) do not depend on the size of e > 0
which can be arbitrarily small. This shows that the classical predator-prey system is not
structurally stable in the sense that a perturbation of the model, however small, may
exhibit a qualitatively different behaviour.
In spite of their simplicity predator-prey systems and other models of two species are used
in a number of control applications, e.g. in the management of renewable resources or in
pest control where predators are introduced to control pests feeding on agricultural crops.
Consider for instance a predator-prey system of salmon and herring in marine fishing.
Choosing a suitable predator-prey model and adding control terms to both equations
(catch rates) one may ask what are the optimal sustainable harvesting rates given the prices
for salmon and herring, and what is the corresponding equilibrium point of the system,
i.e. the stocks of salmon and herring which allow one to realize the optimal rates. If this
optimal equilibrium point is found, The problem then arises of how the optimal equilibrium
can be attained from a given initial population of salmon and herring by applying a suitable
fishing policy. This is a controllability problem which we consider in Vol. II. In order to
be of any practical value, the optimal equilibrium must be asymptotically stable since
otherwise unavoidable small deviations of the populations from their optimal sizes may
lead to large deviations from the optimal equilibrium solution. But asymptotic stability
is not enough. It is important that this property is preserved under perturbations which
reflect the uncertainties about the model and its parameters. This is a problem of robust
stability which we will analyze in Chapter 5. �

1.1.1 Notes and References

Modelling in general

There are a number of introductions to dynamical systems which emphasize modelling.
In particular, we recommend the book by Luenberger (1979) [349]. Many elementary
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examples of control systems can be found in a collection of case studies by MacClamroch
(1980) [369]. Additional information about modelling and a large number of examples can
be found in textbooks on the analysis, modelling and design of dynamic systems, see for
example Ogata (1992) [397], Burton (1994) [84], Close and Frederick (1995) [105].
The reader who is interested in modelling techniques for a variety of physical systems is
referred to Wellstead (1979) [516], Shearer et al. (1967) [462], MacFarlane (1970) [355].

Population Dynamics

A comprehensive textbook discussing dynamic models in various areas of biology and the

life sciences is Murray (1993) [385], see also Edelstein-Keshet (1988) [146], Hoppensteadt

and Peskin (1992) [263]. The book by Murray also contains an extensive bibliography.

Population Dynamics is one of the core subjects of mathematical biology and was amongst

the first areas in life sciences which attracted mathematical methods. Classical references

are Malthus (1798) [358], Verhulst (1938) [506], [347], Volterra (1927) [509] [510], Kostitzin

(1934) [315] and Kolmogoroff (1936) [313]. English translations of some of their papers

and brief discussions of their work can be found in [489].

Various empirical investigations have shown a good fit between the logistic model and

the growth of actual laboratory populations, see e.g. Lotka (1924) [347] (Drosophila) and

Gause (1959) [185] (Paramecium caudatum). A detailed discussion of the Verhulst model

can be found in May (1981) [368]. The behaviour of the discrete time logistic equation

x(t + 1) = rx(t)(1 − x(t)) has been analyzed by means of cobweb diagrams in Edelstein-

Keshet (1988) [146]. The qualitative features of the model change drastically at certain

critical parameter values (bifurcation values) and for certain values of r chaotic behaviour

is observed, see Ex. 3.1.15. A discussion of this model in the context of Population Dy-

namics can be found in May (1976) [367].

The controlled Verhulst equation (3) was used by Schaefer (1954) [449] to study the

tuna fisheries of the tropical Pacific. It is probably the simplest dynamical model in

Bio-economics (an interdisciplinary field which combines Mathematics, Biology and Eco-

nomics), and has been used to study the effect of harvesting on growing populations. A

standard reference on this subject is Clark (1976) [101], see also [102]. Control aspects are

also important in bio-technology. A book on modelling bio-reactions and bio-reactors is

Nielsen and Villadsen (1994) [392].

There is a large variety of models for interacting populations and some of them can al-

ready be found in the classical references above. These models play an important role in

theoretical Ecology, see Pielou (1977) [411], May (1981) [368] and [366]. Important areas

to be analyzed are the existence and stability of equilibria, the existence and stability

of periodic solutions, their dependency on parameters, the effect of lags, the relationship

between stability and complexity, the effect of competition, age structure and migration

on growth rates, the extinction of species etc. An interesting mathematical discussion of

various two species models is given in Hirsch and Smale (1974) [258]. The problem of

robust stability or “resilience” is of particular interest in Ecology, for a discussion in the

context of “complexity versus stability”, see May (1974) [366].

Supplemented with a control term population models are also used in the management of

renewable resources, see Clark (1985) [102]. Other areas of application include Epidemi-

ology Bailey (1975) [31]), theories of evolution Hofbauer and Sigmund (1988) [259], and

pest control (rabies, weed dispersal, foot and mouth, etc.), see e.g. Evans and Pritchard

(2001) [153] and the references therein.
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1.2 Economics

In contrast to the previous examples we will now consider dynamic models which
evolve in discrete time t = 0, 1, 2, . . . . The time axis is sub-divided in periods of
equal length and x(t) denotes the value of x in the period t. Usually economic data
is not available in a continuous way, but is given as a time series accumulated over
certain periods (days, months, years,...). So discrete time models are particularly
appropriate here.

Example 1.2.1. (Cobweb model). Supply and demand of a given commodity depend
upon its price. With an increasing price p the supply S(p) increases whilst the demand
D(p) decreases. Given the supply and demand curves of a commodity its equilibrium
price will be that value p̄ which clears the market, i.e. the supply matches the demand.
Thus p̄ is the abscissa of the intersection point of the supply and the demand curves, see
Figure 1.2.1. This is a static supply and demand model for determining the price of a
single commodity in a market. It remains unclear how this equilibrium price is actually
realized by the interaction of sellers and buyers in the market place. But the model is not
unreasonable if we assume that the commodity is not stored (and will perish if it is not
sold). Let us now consider an economy where pork for example is produced for immediate

pp

D(p)

S(p)

S(p)

D(p)

(a)  stability (b)  instability

p(0)p(1) p(2)p(3) p(1) p(0)    p(2)p(3)

Figure 1.2.1: Cobweb Diagram

consumption and let us take into account the fact that the production (raising pigs) takes
time. Choosing the production time as the basic period, the supply of pigs at time t ∈ N

will depend on the price p(t − 1) valid at the time t − 1 when the decision was taken to
produce the pigs for consumption in period t. On the other hand the actual demand for
pork at time t depends on the current price p(t). Let us assume – according to the above
static model – that the price p(t) is determined in such a way that the complete supply
is sold at time t. Assuming that the demand curve is strictly decreasing and its range
contains the range of the supply function there will exist a unique value of p = p(t) for
which this happens, p(t) = D−1(S(p(t−1))). Thus, starting with an initial price p(0) = p0

the prices p(t) will develop according to the difference equation

p(t + 1) = D−1(S(p(t))), t ∈ N, p(0) = p0. (1)

Using the given supply and demand curves the solution p(·) of this initial value problem
can easily be constructed, see Figure 1.2.1. The initial price p(0) determines the supply
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S(p(0)) at period 1 via the supply curve and this supply determines the equilibrium price
p(1) which clears the market at period 1 as the unique solution p of D(p) = S(p(0)). Going
through the same cycle with p(1) instead of p(0) and continuing the process we obtain a
sequence (p(t))t∈N of prices. The corresponding time series of purchases/sales is given by
D(p(t)) = S(p(t − 1)), t ∈ N. The cobweb-like picture generated in this way led to the
naming of the model.
p̄ is an equilibrium of the above system i.e. a solution starting in p̄ will always remain
there, if and only if, it is a fixed point of the function on the RHS1 of the difference
equation. Equivalently, S(p̄) = D(p̄). So (p̄,D(p̄)) is just the intersection point of the
demand and supply curves. In the situation depicted in Figure 1.2.1(a) the prices p(t) and
purchases/sales D(p(t)) = S(p(t−1)) converge towards the equilibrium values p̄ and D(p̄)
as t → ∞ (asymptotic stability). The second picture shows that a different configuration
of the two curves can lead to a diverging spiral around the equilibrium point (instability).
This means that a small initial deviation of p(0) from p̄ will lead to ever larger oscillations
of prices and purchases/sales around their equilibrium values. Here a weakness of the
model becomes apparent since in this case prices will eventually become negative.
We now analyze the conditions under which stability and instability may occur. For this
let us suppose that the supply and demand curves are linear,

D(p) = D0 − ap, S(p) = S0 + bp

where D0 ≥ 0, a, b > 0 and S0 ∈ R are constants. Then the price p clearing the market
with supply S > 0 is determined by the equation D0 −ap = S, i.e. p = (D0 −S)/a. Hence
the difference equation (1) reads

p(t + 1) = (D0 − S0 − bp(t))/a = (D0 − S0)/a − (b/a)p(t), t ∈ N, p(0) = p0. (2)

The corresponding equilibrium price is p̄ = (D0 − S0)/(a + b). An easy calculation shows
that the deviations from the equilibrium x(t) = p(t) − p̄ satisfy the difference equation

x(t + 1) = −(b/a)x(t), t ∈ N, x(0) = p0 − p̄.

The solution of this equation is x(t) = (−b/a)tx(0) and so we have damped oscillations
(asymptotic stability) if and only if b < a i.e. the demand curve is steeper than the supply
curve. In economic terms this means that the consumers react more sensitively to changes
in the price than the suppliers. Similarly we have instability if and only if b > a. Equality
between the two parameters leads to periodic oscillations around the equilibrium.
The cobweb model assumes that the suppliers do not learn from past experience - in
making their production decision they always expect the price in the next period to be
equal to the present one. This is rather unrealistic. The following model, due to Goodwin,
assumes that price expectations which guide the production decisions are modified by past
experiences according to the rule

p̂(t) = p(t − 1) + ρ[p(t − 1) − p(t − 2)]

where ρ ∈ R is a constant. The case ρ = 0 corresponds to the cobweb model. Usually
the value of ρ is chosen between −1 and 0, in which case the price is expected to move in
the opposite direction to that of the previous period, i.e. suppliers expect oscillations in
the price. If ρ > 0 the price is expected to move in the same direction as in the previous

1RHS: right hand side, LHS: left hand side.
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period. Assuming the same linear demand and supply curves as before we are led to the
following difference equation for the price clearing the market at period t + 1

p(t + 1) = (D0 − S(p̂(t)))/a = (D0 − S0)/a − (b/a) {p(t − 1) + ρ[p(t − 1) − p(t − 2)]}.

Equivalently

p(t + 1) = (1 + ρ)(b/a) p(t − 1) − (b/a) ρp(t − 2) + (D0 − S0)/a. (3)

This is a difference equation with two time lags and hence two initial values, say p(0)
and p(1), have to be specified to start up an iterative solution process. In the next
chapter we will derive explicit formulas for the solutions of such equations. (3) has the
same equilibrium solution p(t) ≡ p̄ = (D0 − S0)/(a + b) as (1), but now it is no longer
immediately obvious how the asymptotic stability of this equilibrium depends on the
parameters (a, b, ρ) of the system. In Chapter 3 we will develop methods for analyzing
stability properties of equilibria of discrete time systems, see Ex. 3.3.16. �

The cobweb model is concerned with a micro-economic dynamical problem – the
price dynamics in a single product market. In contrast we will now consider a model
for the dynamics of a whole national economy. One would expect such a model to
involve an enormous number of difference equations representing the production,
pricing and consumption of a large variety of goods, incomes, saving and investment
activities, tax flows and public expenditures etc. In fact such large, “realistic” mod-
els have been built in econometrics and have been used for economic forecasting and
policy making. On the other hand highly aggregated models are used in theoretical
macro-economics in order to gain insight into basic economic mechanisms. The next
example deals with a classical model of the business cycle.

Example 1.2.2. (Samuelson-Hicks multiplier-accelerator model). We begin with
a nonlinear version of the model. The basic variables are

Y (t) the total national income (= national product) in year t

C(t) the total consumer expenditure in year t

I(t) the total (net) investment in year t

G(t) the total government expenditure in year t.

We make the following assumptions:

(i) the total national product is the sum of consumer, investment and government
expenditure,

Y (t) = C(t) + I(t) + G(t), t ∈ N, (4)

(ii) the consumer expenditure in year t + 1 depends only on the income in the previous
two years t and t − 1,

C(t + 1) = f(Y (t), Y (t − 1)), (5)

(iii) the investment in year t + 1 only depends on the increase of national income from
year t − 1 to year t,

I(t + 1) = h(Y (t) − Y (t − 1)). (6)

Substituting (6) and (5) in (4) gives

Y (t + 1) = f(Y (t), Y (t − 1)) + h(Y (t) − Y (t − 1)) + G(t + 1). (7)
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(7) is an example of a nonlinear second order difference equation. Given future government
expenditure G(t), t = 2, 3, . . . and the national income Y (0), Y (1) in the initial two years
one can solve (7) recursively to determine the future national income Y (t), t = 2, 3, . . . .
Since the government is free to determine its expenditures (within certain constraints)
G(t) represents a control variable.
Let us now suppose that Y (t) ≡ Y is some given equilibrium solution of (7) corresponding
to constant government expenditure G(t) = G, i.e.

Y = f(Y , Y ) + h(0) + G. (8)

In order to analyze the system’s behaviour close to this equilibrium solution let y(t) =
Y (t) − Y , u(t) = G(t) − G and assume that up to first order we have

f(Y + y1, Y + y2) ∼ f(Y , Y ) + c1y1 + c2y2, h(y) ∼ h(0) + ay.

The constant a is called the acceleration coefficient, c = c1 + c2 the marginal propensity
to consume and s = 1 − c the marginal propensity to save (it is always assumed that
0 < c < 1). Subtracting (8) from (7) we obtain to first order

y(t + 1) = cy(t) + k(y(t) − y(t − 1)) + u(t), k = a − c2. (9)

This is the Samuelson-Hicks multiplier-accelerator model. It describes how the deviations
y(t) = Y (t) − Y of the actual national product from an equilibrium Y evolves given
the initial deviations y(0), y(1) and the deviation u(t) = G(t) − G of the government
expenditure from the constant value G.
In the fifties considerable attention was paid to the possibility of “progressive expansion”
of an economy in the presence of constant government expenditures. For the above linear
model, this question is easily analyzed. y(t) = (1 + r)ty0 with r ∈ R, y0 �= 0 solves (9)
with u(t) ≡ 0 for all t ∈ N if and only if (1 + r)2 = c(1 + r) + k(1 + r − 1), i.e.

r2 − (k − s − 1)r + s = 0, (s = 1 − c).

This equation has a positive solution r (and hence (9) has a solution with constant growth
rate r > 0) if and only if

k − s − 1 > 0 and (k − s − 1)2 ≥ 4s, i.e. k ≥ (1 +
√

s)2.

It was concluded from this result that, even with fixed government expenditure, an accel-
eration coefficient of moderate size could produce enough investment to make a constant
growth rate of the national income possible. Although this result seems to be quite sat-
isfactory at first sight, it must be regarded with some scepticism. The linear multiplier-
accelerator model (9) is at best an appropriate model for small deviations y(t) from the
equilibrium solution Y . Therefore the solution y(t) = (1 + r)ty0 will, in the long run,
move out of the neighbourhood of the origin where the model is meaningful. Adequate
models for long term economic growth cannot be expected to be linear. Assuming the
validity of the nonlinear model the significance of the above analysis for the long term
behaviour of (7) is that the equilibrium solution Y (t) ≡ Y is unstable if the parameters of
the linearization (9) satisfy the inequality k = a−c2 ≥ (1+

√
s)2. We will illustrate this in

Chapter 3. Another question which is of obvious importance for the theory of the business
cycle is to determine those values of the parameters a, c1, c2 for which the solutions of the
linear model are oscillatory. This question can be answered by applying the formulas for
solutions derived in the next chapter or via the spectral analysis of Chapter 3. �
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1.2.1 Notes and References

Standard references for dynamic models in Economics are Allen (1959) [9], Gandolfo (1980)

[181]. The cobweb model can be found in these books and they also discuss models with

stocks or inventories where supply and demand may be different. Goodwin’s model which

allows for the influence of past price changes on the suppliers’ price expectations is de-

scribed in [200]. In the econometric literature there are reports on single markets of a

particular commodity where prices show an oscillatory behaviour similar to that gener-

ated by an undamped cobweb model.

The multiplier-accelerator model is discussed in most textbooks on Mathematical Eco-

nomics and Macro-economics. The model was first described by Samuelson (1939) [446]

and later elaborated by Hicks (1950) [227]. Various stabilization policies for these type of

models have been suggested and analyzed by Phillips (1954) [409]. As in classical control

engineering Phillips distinguishes between proportional, derivative and integral stabiliza-

tion policies and analyzes their effects on the national income in the presence of constant

external disturbances.
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1.3 Mechanics
In this section we describe some mathematical models of simple mechanical systems.
The modelling of such systems is based on the laws of classical mechanics and various
techniques have been developed for this over the centuries. These methods have been
corroborated by experiments and as a consequence reliable models are available
for a great number of mechanical devices. We begin by describing a modelling
technique which builds up an approximate lumped model of a mechanical system by
representing it as an interconnection of ideal translational and rotational elements
characterized by simple constitutive laws. To understand the interaction of these
elements within the system, the forces and torques generated by the connection
of one element with another must be considered. In a final subsection we briefly
describe the variational (Lagrangian or Hamiltonian) approach to modelling which is
based on energy considerations. Here the interconnecting forces and torques do not
play a role. For this approach an elegant and powerful coordinate free framework
has been developed in the general setting of symplectic manifolds, see Notes and
References. However, an exposition of this framework is beyond the scope of this
section. Instead we limit ourselves to a description of the variational method based
on local (generalized) coordinates. We emphasize that the purpose of this section
is not to give an introduction to classical mechanics, but to present some models of
technical mechanical devices and sketch a few modelling techniques.

1.3.1 Translational Mechanical Systems

The dynamic behaviour of a mechanical system is described by vectors of displace-
ments, velocities, forces and torques. A common modelling technique is to repre-
sent a mechanical system approximately as an interconnection of a finite number
of idealized elements (masses,1 springs, dampers, transformers and their rotational
counterparts). The behaviour of each element is governed by a simple law relating
the external force to the displacement, velocity or acceleration associated with the
element. This law is called the constitutive relation or equation of the element.2

Table 1.3.1 summarizes the constitutive laws for a pure mass, a linear spring and
a linear damper. In the table arrows are associated with the forces. This does not
mean that the forces are actually in these directions since the magnitude of F (t)
may be negative. For example if for the spring y12(t) > y12 then the force required
to produce the extension is in the direction shown. However if y12(t) < y12, then one
needs to compress the spring, so F (t) < 0 and the force is actually in the opposite
direction to the one shown.
For a single particle, Newton’s Second Law of Motion states that the sum of the forces
acting on the particle is equal to the time rate of change of its linear momentum.
Therefore the constitutive law of a mass element is given by d

dt
(mv(t)) = F (t). Here

1It may seem strange to some readers that mass is regarded as a constitutive element of a
mechanical system in parallel with springs and dashpots. This is, however, common practice in
the modelling of engineering systems. The reader should distinguish between the fundamental
concept of mass in theoretical mechanics and the notion of a mass element as a building block
(”pure mass”) in the modelling of a mechanical system.

2Throughout the present and the following section the predicate constitutive will only be used
in this terminological sense, see [84], [105].
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Symbol Constitutive Law Variables

1 2
M

F

v12

d

dt
(Mv(t)) = F (t)

v(t) = v12(t) velocity of mass
F (t) force applied to mass

1 2

y12

FF ky(t) = F (t)
y(t) = y12(t) − y12 net elongation

F (t) force applied to spring

1 2 FF

v12

cv(t) = F (t)
v(t) = v12(t) relative velocity of

piston
F (t) force applied to damper

Table 1.3.1: Symbols and constitutive laws of mass, spring, and damper

the velocity and acceleration must be measured with respect to an inertial reference
frame (in classical mechanics this is usually fixed at the centre of the Sun).
The constitutive law of the linear spring is given by Hooke’s law. In reality this
linear relation between force and elongation will only be approximately valid within
certain bounds on the elongation. Hence the use of a linear spring element in a
mechanical model imposes constraints on the variables involved.
Similarly for models involving a damper. A physical realization of a linear damper
is a dashpot where a piston moves through an oil-filled cylinder and there are holes
in the face of the piston through which the oil passes. If the rates of flow are kept
within certain bounds viscous damping results in a linear relation between the force
and the relative velocity of the piston with respect to the cylinder. At higher veloc-
ities such a dashpot will show nonlinear characteristics.
The spring, damper and mass in the above table are also idealized objects from an-
other point of view. Any real spring has some (albeit comparatively small) inertia
and damping. Similarly any damper has some mass and exhibits small spring effects.
We may account for the difference between the real devices and idealized objects by
lumping all inertias of a given mechanical system together in the masses, all stiffness
effects in the springs and all frictional forces in the dashpots (“lumped parameter
model”). This lumped parameter approach to modelling a mechanical system is
not limited to linear models. Nonlinear relations between stresses and deflections in
a mechanical system can be modelled by nonlinear springs, and nonlinear viscous
frictions between adjacent bodies can be modelled by nonlinear dampers.
If we describe a mechanical system as an interconnection of a finite number of
masses, springs and dampers, a model of the overall system is obtained by combin-
ing the constitutive relations of its elements with the interconnection laws governing
the interaction between them. Throughout this section we will assume that the
forces between mechanical elements obey Newton’s third law of action and reaction:
Any force of one element on another is accompanied by a reaction force on the first
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element of equal magnitude and opposite direction along the line joining them, see
Table 1.3.1 where the forces on the left of the spring and damper symbols are the
reaction forces to those on the right. There are various methods of obtaining the
equations for the overall mechanical system from the constitutive relations of its
elements and the interconnection laws e.g. bond graph methods and network meth-
ods, see Section 1.4. For more detailed information about this mass-spring-damper
modelling approach, see Notes and References.
We now give a few examples of mechanical systems.

Example 1.3.1. (Trolley). Consider a trolley of mass M moving on rails under the
influence of a force βu(t) as in Figure 1.3.2. Here β is a constant which converts the control
variable u (e.g. a voltage) into a force. We neglect all frictions present in the system –

βu(t)

y(t)

M

Figure 1.3.2: Pure mass: trolley

friction between wheels and rails, friction in the wheel bearings, drag friction of the trolley
moving through the atmosphere. We also neglect the masses of the wheels and assume
that the trolley behaves like a rigid body. Finally we assume that the line of action of the
force is through the trolley’s centre of mass, parallel to the rails. So the trolley does not
rotate and, under the influence of gravity, does not loose contact with the rails. Since the
mass of the trolley is constant Newton’s second law yields the following scalar equation of
motion,

Mÿ(t) = βu(t) (1)

where y(t) is the displacement of the centre of mass of the trolley from a fixed point in
an inertial reference frame. In order to determine the motion of the system for t ≥ 0 it
is necessary to know the initial position y(0) and the initial velocity ẏ(0) of the trolley.
Moreover the exterior force βu(t) must be known as a function of time t ≥ 0. If we
consider the force as a control variable and fix a rest position at y = 0 as the set point of
the trolley, a typical control problem is to find a feedback control law u(t) = f(y(t), ẏ(t))
which brings the trolley back or approximately back to the prescribed rest position from
any given pair of initial values (y(0), ẏ(0)). If we assume that the control values are limited
by |u(t)| ≤ c, t ≥ 0 where c > 0 is a given constant, a typical optimal control problem is:
given the initial conditions (y(0), ẏ(0)), find a control u(·) : [0, t1] → [−c, c] which steers
the trolley back to the rest position (y(t1), ẏ(t1)) = (0, 0) in minimal time t1. Additionally
constraints may be imposed on the trajectory of the trolley (e.g. |y(t)| ≤ d, d > 0) and
this leads to an optimal control problem with state constraints. �

In the next example we consider interconnections of mechanical elements. The
harmonic oscillator is used as a highly simplified model for many technical systems.
We illustrate this by a mass-spring-damper model for an automobile suspension
system.
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Example 1.3.2. (Linear oscillator). Consider the vertical motion of a mass M sliding
in some bearing and suspended to a support by a spring as in the left hand figure in
Figure 1.3.3. Besides the exterior forces (gravity and an additional time-depending force

β

M

u(t)

k
c

y(t)
M

u(t)

k
c

y(t)

2y (t)
2

y (t)
1

M

w(t)

M
1

2y (t)
2

y (t)
1

M

w(t)

M
1

Figure 1.3.3: Mass-spring-damper systems

βu(t)) two types of interior forces act on the mass. These are modelled by a linear
spring and a linear damper with coefficients k and c, respectively. Let us determine
the equation of motion of the above mass-spring-damper system. The behaviour of the
system is completely described by the vertical position and velocity of the mass. In order
to eliminate the gravitational force we introduce the displacement y of the centre of mass
from its equilibrium position under the influence of gravity. By Newton’s second law the
sum of the forces acting on M must equal Mÿ. Note that the force exerted by the spring
and the damper on the mass is opposite to the direction of the displacement and velocity
respectively. The resulting equation of motion is

Mÿ(t) + cẏ(t) + ky(t) = βu(t). (2)

We will now construct a simple mass-spring-damper model for an automobile suspension
system. The purpose of such a suspension system is to smooth the response of the car body
to the irregular ups and downs of the road. We will only consider the vertical movements
of the car body and axles and make the non-realistic assumptions that both axles move
in the same way so that they can be lumped together and the rotational motion of the
car body can be ignored. We first assume that the road is flat. Since the car body and
the axle can move independently, we need two position variables y1 and y2. As reference
points for these positions we choose the rest positions of the car body (mass M1) and of
the axle (mass M2) over the nominal road level under the influence of gravity. The tyres
are modelled as springs with comparatively high stiffness k2 coupled in parallel with a
dashpot accounting for the energy dissipation through the tyres. The main suspension
mechanism consisting of coil springs, leaf springs and shock absorbers, is modelled in a
lumped manner by a linear spring and a linear damper connecting the axle with the car
body, see the right hand figure in Figure 1.3.3. Let w(t) be the displacement of the point
of contact between tyre and road from the nominal road level. w(t) is determined by
the profile of the road and the position of the car. The tyre spring force (in an upward
direction) corresponding to the deviation of the tyre from the nominal road level is k2w,
the corresponding frictional force is c2ẇ. Applying Newton’s second law to each of the
two masses and Newton’s third law to the interaction between the two masses we obtain
the equations of motion

M1ÿ1 + c1(ẏ1 − ẏ2) + k1(y1 − y2) = 0

M2ÿ2 + c1(ẏ2 − ẏ1) + k1(y2 − y1) + c2ẏ2 + k2y2 = c2ẇ + k2w. (3)



1.3 Mechanics 17

Here w(t) may be considered as a perturbation and an important design objective would be
to ensure that the road conditions which the car is likely to encounter, will not generate
vibrations of the car body i.e. values of y1(t) and ẏ1(t) which are not acceptable from
the point of view of passenger comfort. If the suspension mechanism can be controlled, a
typical problem would be to design a feedback control which decouples the vertical velocity
of the car body ẏ1(t) as much as possible from the (largely unknown) perturbations w(t)
generated by the irregular road surface (disturbance attenuation problem). �

The previous two examples deal with translational mechanical systems whose move-
ments are restricted to one direction. Arbitrary motions of a mass in three dimen-
sional space are governed by a vector version of Newton’s second law. Here and in
the next section all vectors in R

3 or families of such vectors are written in bold face
and we use vector analysis definitions and notations as found, for example, in [362].
We assume that the positions are determined with respect to a cartesian coordinate
system which is fixed in an inertial frame. If the position vector of a particle of mass
m at time t is denoted by r(t) and F(t) is the vector sum of all individual forces
applied to the mass at time t, then

ṗ(t) = (mr̈)(t) = F(t), (4)

where p = mṙ is the linear momentum of the mass point.
Now consider a system of N particles with masses mi at positions ri, i ∈ N . The
linear momentum of such a system is by definition the sum of the linear momenta
of each particle,

p(t) =

N∑
i=1

pi(t) =

N∑
i=1

miṙi(t). (5)

Applying Newton’s second law to each of the particles we must distinguish between
the external forces Fe

i (t) and the interactive forces Fij(t) between the particles of
the system. Summing over all particles we obtain from (4)

ṗ(t) =

N∑
i=1

mir̈i(t) =

N∑
i=1

Fe
i (t) +

N∑
i,j=1. i�=j

Fij(t). (6)

By Newton’s third law of action and reaction Fij(t) + Fji(t) is zero for all t and
i, j ∈ N, i �= j and so the second term on the right vanishes. Hence, if we define the
total external force and the centre of mass of the system at time t by

Fe(t) =
N∑

i=1

Fe
i (t), r(t) =

N∑
i=1

miri(t)

M
where M =

N∑
i=1

mi (7)

equations (5) and (6) can be written in the form

p(t) = M ṙ(t) and ṗ(t) = M r̈(t) = Fe(t). (8)

In particular, the centre of mass of the system moves as if the total external force
were acting on the entire mass of the system concentrated at the centre of mass.
In order to describe a rigid body in three-dimensional space, the position of its centre
of mass and the orientation of the rigid body with respect to an inertial reference
frame must be specified. We therefore need a counterpart of Newton’s second law
for rotational motions.
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1.3.2 Mechanical Systems with Rotational Elements

Consider a fixed point O in an inertial reference frame with origin O∗. The angular
momentum H(t) of a particle of mass m about the reference point O is defined by
the vector product

H(t) = r(t) × p(t) = r(t) × mṙ(t)

where r(t) is the “moment arm”, i.e. the vector from the point O to the position of
the particle, and p(t) = mṙ(t) is the linear momentum of the mass (with respect
to the inertial reference frame). The corresponding moment of force or torque N(t)
due to the force F(t) is defined by N(t) = r(t)×F(t). As a consequence of (4) one
obtains the following relation between the net torque applied to the particle and the
rate of change of its angular momentum

Ḣ(t) =
d

dt
(r(t) × mṙ(t)) = ṙ(t) × mṙ(t) + r(t) × mr̈(t) = r(t) × F(t) = N(t). (9)

Note that the angular momentum and the torque both depend upon the point O
about which moments are taken.
Let us now consider a system of N particles with the same setup as that which
led to (8). The total angular momentum of such a system about O is obtained by
summing up the angular momenta of all the particles, i.e.

H(t) =

N∑
i=1

ri(t) × miṙi(t) ,

so that by (6) and (9)

Ḣ(t) =

N∑
i=1

ri(t) × mir̈i(t) =

N∑
i=1

ri(t) ×
(

Fe
i (t) +

N∑
j=1, j �=i

Fij(t)

)
.

Now Fij(t) = −Fji(t) by Newton’s third law, and the same law implies that the
vectors ri(t) − rj(t) and Fij(t) are linearly dependent. Hence, if

Ne(t) =
N∑

i=1

ri(t) × Fe
i (t) (10)

is the total external torque, then

Ḣ(t) = Ne(t) +
N∑

i=1

N∑
j=i+1

(ri(t) − rj(t)) × Fij(t) = Ne(t). (11)

So the rate of change of the total angular momentum of a system of particles about
a fixed point O is equal to the sum of the moments of the external forces about O.
By (8) the total linear momentum of a system of N particles is the same as if the
entire mass were concentrated at the centre of mass and moving with it. We now
develop a counterpart of this result for the angular momentum which includes the
possibility that the point about which we take moments is moving. Let us denote
this moving point by Ot and suppose the vector from O∗ to Ot is r∗(t), the vector
from Ot to the centre of mass is r(t), the vector from the centre of mass to the i-th
particle is r′i(t) and v∗(t) = ṙ∗(t), v(t) = v∗(t) + ṙ(t), vi(t) = v(t) + ṙ′i(t) are the
velocity vectors of Ot, of the centre of mass and of the i-th particle (with respect to
the inertial frame). The angular momentum about Ot takes the form3

3In order to compactify the equations we drop the time variable t where necessary.
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H =

N∑
i=1

(r + r′i) × mi(v + ṙ′i)

=
N∑

i=1

r × miv +
N∑

i=1

r′i × miṙ
′
i +

(
N∑

i=1

mir
′
i

)
× v + r× d

dt

N∑
i=1

mir
′
i.

Since
∑N

i=1 mir
′
i(t) = 0 by the definition of the centre of mass (7), the last two terms

on the right hand side vanish and we obtain

H(t) = r(t) × M v(t) +
N∑

i=1

r′i(t) × mi ṙ
′
i(t). (12)

Note that by the above argument H′(t) =
∑N

i=1 r′i(t)×mi ṙ
′
i(t) =

∑N
i=1 r′i(t)×mivi(t)

is the angular momentum of the system about the centre of mass. Thus the total
angular momentum of the system about Ot is the angular momentum of its total
mass concentrated at the centre of mass, plus the angular momentum of the system
about the centre of mass. Only if the centre of mass is at rest (i.e. v = 0) will the
angular momentum be independent of the reference point Ot and its velocity. In
this case H(t) reduces to the angular momentum taken about the centre of mass.
Differentiating H(t) −H′(t) = r(t) × M v(t) we obtain

Ḣ− Ḣ′ = ṙ× Mv + r ×Mv̇ = (v − v∗) × Mv + r × Mv̇ = −v∗ × Mv + r ×Mv̇.

In particular if Ot is the moving centre of mass we have Ḣ(t) = Ḣ′(t). So in
calculating the rate of change of angular momentum of a particle system about its
centre of mass, we may treat the centre of mass as if it were at rest.
Let Fe

i (t) be the external forces, Fe(t) =
∑N

i=1 Fe
i (t) the total external force and

define the total torque about the moving reference point Ot by (see (10))

Ne(t) =

N∑
i=1

(r(t) + r′i(t)) × Fe
i (t).

Then, if Ne∗(t) is the total torque about O∗, we get

Ne∗(t) =
N∑

i=1

(r∗(t)+r(t)+r′i(t))×Fe
i (t) = r∗(t)×Fe(t)+Ne(t) = r∗(t)×M v̇(t)+Ne(t).

since Fe(t) = M v̇(t), see (8). The total angular momentum H∗(t) about O∗ satisfies

H∗(t) =
N∑

i=1

(r∗(t) + r(t) + r′i(t)) × mivi(t) = H(t) + r∗(t) × Mv(t).

Since we have Ḣ∗(t) = r∗(t) × M v̇(t) + Ne(t) by (11) we get

Ḣ = r∗ × M v̇ + Ne − ṙ∗ × Mv − r∗ × M v̇ = Ne − v∗ × Mv. (13)

In particular if Ot is the moving centre of mass we have Ḣ(t) = Ne(t). Therefore
the rate of change of the angular momentum of a particle system about its centre of
mass is the sum of the moments about the centre of mass of all the external forces,
irrespective of whether the centre of mass is moving or at rest.



20 1. Mathematical Models

There is an angular momentum law for rigid bodies which complements Newton’s
second law. However we will not develop this for general rotational motions in
R3, since in the following examples we only consider plane rotational systems. This
means, in particular, that all the elements are rotating around axes which are parallel
to each other and all forces are restricted to the plane. This assumption greatly
simplifies the analysis. If we describe the motion of a system in an inertial reference
frame where the z axis is parallel to the axes of rotation, then all vector products
of vectors in the x, y plane are parallel to the z axis. As a consequence only the
z-coordinates of these vector products are nontrivial. Now consider any particle of
mass m rotating about an axis parallel to the z axis through a fixed point O =
(x0, y0, 0) in the x, y plane and let (x0, y0, 0) + r(t) = (x0, y0, 0) + (x(t), y(t), 0)
be the coordinates of the particle at time t. Since by assumption the distance
‖r(t)‖ = r = (x(t)2 + y(t)2)1/2 between the particle and the point O is constant we
obtain by differentiation

x(t)ẋ(t) + y(t)ẏ(t) = 0.

Hence there exists a real number ω(t) satisfying

ṙ(t) = (ẋ(t), ẏ(t), 0) = ω(t)(−y(t), x(t), 0).

Let ω(t) = (0, 0, ω(t)), then ω is called the angular velocity of the particle about
O and we obtain ṙ(t) = ω(t) × r(t). The angular momentum of the particle about
O is r × mṙ = mr × (ω × r) = m(0, 0, ω(x2 + y2)). Hence, for plane rotations, the
equation of motion (9) is reduced to the scalar differential equation

d

dt

[
mω(t)(x(t)2 + y(t)2)

]
= mr2ω̇(t) = N(t). (14)

Here
N(t) = x(t)F2(t) − y(t)F1(t) (15)

is the z-component of the torque generated by a given force F(t) = (F1(t), F2(t), 0)
applied to the particle.
Now consider a two dimensional rigid body B ⊂ R2 rotating in the x, y plane about
a perpendicular axis through a fixed point O with angular velocity ω. Suppose that
the rigid body has mass density ρ(x, y), (x, y) ∈ B. Then for this rigid body the
angular momentum law takes the form

d

dt
(Jω)(t) = N(t) where J =

∫
B

ρ(x, y)(x2 + y2)dxdy (16)

and J is the moment of inertia of the body about O. Moreover (16) also holds if O
is a moving centre of mass. For many rigid bodies with uniform mass distribution
the moments of inertia about given axes can be found in textbooks on analytic
mechanics. The centre of mass (x, y) and total mass M of a body B with mass
distribution ρ(x, y) are given by

x =
1

M

∫
B

xρ(x, y)dx dy, y =
1

M

∫
B

yρ(x, y)dx dy, M =

∫
B

ρ(x, y)dx dy.

There is a close relationship between plane rotations and one-dimensional transla-
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Symbol Constitutive Law Variables

1 2

ω12

J

Nω

d

dt
(Jω(t)) = N(t)

ω(t) = ω12(t) angular velocity
N(t) torque applied about the axis

1 2

θ12

θ1 θ2N N

kθ(t) = N(t)

θ(t) = θ12(t) = θ2(t) − θ1(t) relative
angular displacement of torsional spring

N(t) torque applied to spring

1 2

ω12

ω1 ω2N N

c ω(t) = N(t)

ω(t) = ω12(t) = ω2(t) − ω1(t) relative
angular velocity

N(t) torque applied to damper

Table 1.3.4: Symbols and constitutive laws of rotational elements

tional motions. The rotational counterparts of displacements, velocities and forces
are angles, angular velocities and torques. The rotational counterpart of mass is, as
we have seen, the moment of inertia. Table 1.3.4 summarizes the rotational counter-
parts of masses, springs and dampers (again the directions indicated by the arrows
are arbitrary since the values of the functions may be positive or negative).
Physical devices which may be modelled as rotational springs are, for example, the
mainspring of a clock or an elastic rod joining two masses rotating about the same
axis. Rotational viscous damping occurs for example if two concentric cylinders sep-
arated by an oil film rotate with different angular velocities about a common axis.
The interconnection laws for rotational elements are strictly analogous to those for
translational systems if the interacting elements rotate about the same axis. Then
the torque exerted by one element on another is accompanied by a reaction torque
of the same magnitude but of opposite direction on the first element. This holds, in
general, but is no longer true if the elements rotate about different (albeit parallel)
axes. For instance, the contact forces by which two gears act on one another are
of equal magnitude and opposite direction, but the corresponding torques will be
different if the radii of the gears are different.
In order to decide whether a rotation in the plane is positive or negative we have
to fix an orientation of the plane (clockwise or anticlockwise)4. In the following
examples we will always specify such an orientation. A directed angle (the direction
being indicated by an arrowhead) is positive if it coincides with the given orienta-
tion of the plane, otherwise it is negative. The next example is a purely rotational

4Equivalently we could impose a direction to the axis of rotation and define the orientation of
the plane by the right hand screw law.
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mechanical system.

Example 1.3.3. (Pendulum). Consider a pendulum of length l suspended from a
fixed point O as shown in Figure 1.3.5. We first model the pendulum as a point mass m

l

m

mg

O

θ(t)

�y

�
x

Figure 1.3.5: Pendulum

attached to a mass-less rigid rod of length l which rotates in the plane without any friction
about O. Suppose that the directed angle from the downward vertical to the rod measured
with respect to the anti-clockwise orientation is θ. Then the motion of the pendulum is
completely described by the angle θ(t) as a function of time. Taking moments about O

we obtain from (14) the following equation of motion

ml2θ̈ = −mgl sin θ (17)

where g is the gravitational constant.
Let us now abandon the assumption that the rod is mass-less and the rotation is without
friction. Instead we assume that the pendulum is a plane rigid body of total mass m and
there is viscous rotational friction with coefficient c at the pivot. Since the horizontal
component of the gravitational force is zero, the torque about O exerted by the uniform
gravitational field on the rigid body B(t) at time t is by (15)∫

B(t)
xρ(x, y)gdx dy = mgx(t),

i.e. the torque is equal to the torque about O exerted by the gravitational force on a
particle of mass m located at the centre of mass (x(t), y(t)) of the rigid body at time t,
see Figure 1.3.6 (b) . We therefore obtain from (16) the equation of motion

d

dt
(Jθ̇)(t) = −c θ̇(t) − mgx(t) = −c θ̇(t) − mgl sin θ(t) (18)

where J is the moment of inertia of the rigid body rotating about O and l is the distance
of the centre of mass from O. Note that this equation specializes to (17) if the rigid body
is a particle and no friction is present. If, for example, the pendulum consists of a slender
bar of length l and mass m uniformly distributed along the bar then the moment of inertia
about O would be J = (1/3)ml2 and l = (1/2)l.
Equations (17) and (18) are nonlinear time-invariant equations of second order. Given an
initial angle θ(0) = θ0 and an initial angular velocity θ̇(0) = θ̇0 there exist unique solutions
of (17) and (18) for all t ∈ R satisfying these initial conditions. The angle θ is treated
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here as a real variable although only its values modulo 2π matter. Both systems (17)
and (18) have the same equilibrium solutions corresponding to the pendulum being in a
vertical position (either downward or upright) with zero angular velocity: If either of the
two systems satisfies the initial conditions (θ(0), θ̇(0)) = (0, 0) or (θ(0), θ̇(0)) = (π, 0) it
will remain in this position indefinitely. However, the two equilibria exhibit very different
behaviour when the initial conditions are slightly perturbed. If the pendulum is initially
in the downward rest position a slight perturbation will only lead to small deviations from
the equilibrium (see Example 2.1.10), whereas an arbitrarily small initial perturbation
of the upper rest position will produce large deviations, because the pendulum will fall
down. Hence the first equilibrium position is stable and the other is unstable. Whilst
these statements hold for both systems considered here, there is an important difference
between them with regard to their behaviour in a neighbourhood of the stable equilibrium
point. In the presence of friction the pendulum will gradually return to the downward
equilibrium position whereas it will swing with constant amplitude about the equilibrium
in the absence of friction. To determine the stability properties of an equilibrium point
for a given system is a basic problem in control theory. Since in most applications there
are no simple analytic formulas for the solutions of the equation of motion one needs to
find a method which allows one to determine the stability or instability of an equilibrium
without solving the differential equations. Such a method has been developed by Liapunov
whose central idea was to use the energy or an energy-like real valued function for this
purpose. This method will be studied in detail in Chapter 3. �

The unstable upward position of a pendulum can be stabilized by a control mech-
anism which applies a torque N(t) to the pendulum depending on the deviation
θ(t) − π from the equilibrium position. A more interesting problem is to stabilize
the inverted pendulum by moving its base e.g. in a horizontal or vertical way. This
leads to a mechanical system which combines translational and rotational move-
ments.

Example 1.3.4. (Cart-pendulum system). Consider a pendulum which rotates
about a pivot which is mounted on a cart. The cart has mass M and is driven on a
horizontal rail by a force βu(t) in the same way as the trolley in Example 1.3.1. However,
here we allow for viscous friction between the cart and the rail. The centre of mass of the
pendulum lies at a distance l from the pivot and the moment of inertia of the pendulum
(modelled as a rigid body) about its centre of mass is J . We allow for viscous friction at the
pivot point. The position of the cart is measured by the horizontal displacement r of its
centre of mass from the origin of an inertial coordinate system. We assume that the centre
of mass of the cart is moving along the x-axis of this coordinate system. The position of
the pendulum is measured by the angular displacement θ of the line joining its centre of
mass with the pivot from the downward vertical (measured in an anti-clockwise direction).
Although we view the cart as a rigid body we assume that its motion is one-dimensional,
i.e. the torques generated by the totality of forces acting on the cart are in balance. This
means that we can neglect the moments about its centre of mass and treat the cart as a
point mass. To simplify the notation we assume that the pivot point coincides with the
centre of mass of the cart.
In order to obtain a model of the system we will use free-body diagrams for each element,
representing all external and interactive forces between the elements by symbols together
with arrows which define their “positive senses”, see Figure 1.3.6: The forces are positive
if they operate in the directions shown, they are negative if they operate in the opposite
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direction. For instance, if the system is at rest in the downward position, the force F2(t)
acting on the pendulum at the hinge will be directed upwards and hence it will be positive
with respect to the direction indicated in Figure 1.3.6. In general, all forces are vectors
but since the cart’s motion is restricted to one dimension we decompose the forces into
their horizontal and vertical components.

r(t)

G(t)

w1(t) w2(t)

βu(t) cṙ(t)F1(t)
M

F2(t)

m

l

F1(t)

F2(t)

mg

θ(t)

Figure 1.3.6: Free-body diagrams of cart and pendulum

The horizontal forces on the cart are the driving force βu(t), the viscous friction force
−cṙ(t) and the horizontal component of the (unknown) contact force, F1(t) at the pivot.
The vertical forces on the cart are the contact forces w1(t), w2(t) through the wheels sup-
porting the cart on the rail, the gravitational force G(t) and the vertical component of the
(unknown) contact force, F2(t) at the pivot. Since we assume that the cart is constrained
to the one-dimensional motion along the rails, the vertical forces on the cart are in balance.
The horizontal motion of the cart is governed by the equation

Mr̈(t) = βu(t) − cṙ(t) + F1(t). (19)

In order to describe the planar motion of the pendulum it is sufficient to consider the
motion of its centre of mass and its rotation about its centre of mass. If (x(t), y(t))
denotes the coordinates of the centre of mass at time t with respect to the given inertial
coordinate system, then (see (8)) the horizontal and vertical motions are determined by

mẍ(t) =m
d2

dt2
[r̈(t) + l (sin θ(t))] = −F1(t)

mÿ(t) =ml
d2

dt2
(− cos θ(t)) = −mg + F2(t).

Calculating the double derivatives we obtain

m
[
r̈(t) + lθ̈(t) cos θ(t) − lθ̇(t)2 sin θ(t)

]
= −F1(t) (20)

ml
[
θ̈(t) sin θ(t) + θ̇(t)2 cos θ(t)

]
= −mg + F2(t). (21)

Since the cart-pendulum system is described by two independent variables, r(t) and θ(t),
and since the two contact forces F1(t), F2(t) are unknown we need one more equation of
motion. It remains to determine the rotation of the pendulum about its centre of mass.
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The gravitational force does not produce any torque on the pendulum about its centre
of mass, G. So the rotation of the pendulum is determined by the torque of the force
F(t) = (−F1(t), F2(t)) about (x(t), y(t)). Now the vector from (x(t), y(t)) to the pivot
where the force F(t) is applied is given by (−l sin θ(t), l cos θ(t)) and so the torque of
the force F(t) about (x(t), y(t)) is −F2(t)l sin θ(t) + F1(t)l cos θ(t), see (15). The force of
rotational friction cP θ̇(t) acts to oppose the motion. Therefore we obtain from (16) with
O the centre of mass

Jθ̈(t) = −F2(t)l sin θ(t) + F1(t)l cos θ(t) − cP θ̇(t). (22)

Using (20) and (21) to express the unknown reaction forces F1(t), F2(t) between the cart
and the pendulum and replacing F1(t), F2(t) by these expressions in (19), (22) we obtain
the following two equations which describe the dynamic behaviour of the cart-pendulum
system (we drop the time variable)

(M + m)r̈ + (ml cos θ)θ̈ + cṙ − mlθ̇2 sin θ = βu

(ml cos θ)r̈ + (J + ml2)θ̈ + cP θ̇ + mgl sin θ = 0.
(23)

Subtracting suitable multiples of these equations from each other in order to eliminate
firstly θ̈ and then r̈ one obtains the equivalent equations

M(θ)r̈ = (J + ml2)(βu − cṙ + mlθ̇2 sin θ) + ml cos θ (mgl sin θ + cP θ̇)

M(θ)θ̈ = −ml cos θ (βu − cṙ + mlθ̇2 sin θ) − (M + m)(cP θ̇ + mgl sin θ) (24)

where
M(θ) = (M + m)J + ml2M + m2l2 sin2 θ.

Setting
x1(t) = r(t), x2(t) = θ(t), x3(t) = ṙ(t), x4(t) = θ̇(t)

yields the following system of nonlinear first order differential equations for the cart pen-
dulum system

ẋ1 = x3, ẋ2 = x4

ẋ3 =
1

M(x2)

[
(J + ml2)(βu − cx3 + mlx2

4 sin x2) + ml cos x2 (mgl sin x2 + cP x4)
]

ẋ4 =
−ml cos x2

M(x2)

(
βu − cx3 + mlx2

4 sin x2

)
− (M + m)

M(x2)
[cP x4 + mgl sin x2] . (25)

If u(t) ≡ 0 the system will remain at rest provided that the initial velocities x3(0) =
ṙ(0), x4(0) = θ̇(0) are zero and the initial angular displacement x2(0) = θ(0) is either zero
or π. Cart pendulum systems which are required to operate close to these equilibrium
positions occur in practice. For instance, consider a loading plant (see Figure 1.3.7(a))
where a grab is suspended from a cart rolling on horizontal rails. These plants operate
around the downward position of the pendulum and are required to be close to this equi-
librium before putting down the load. On the other hand consider the balancing problem
illustrated by the inverse pendulum in Figure 1.3.7(b). Such inverse pendulum systems
are used in university laboratories for experimentation with controllers which stabilize the
system at the upward position. A more practical example of a three dimensional balancing
problem is that of the control of a rocket in an upright position in preparation for launch.
Another (not so obvious) example is that of maintaining a satellite in a prescribed orbit
(see Example 2.1.27). For the inverted pendulum shown in Figure 1.3.7(b) it is usual to
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βu(t)

r(t) θ(t)

l

M

m

(a)

rr(t)

βu(t)

ϕ(t)
l

M

m

(b)

Figure 1.3.7: (a) Loading plant and (b) Inverted pendulum

express the equations of motion in terms of the angle5 ϕ = θ − π (the deviation of θ from
the equilibrium value π). Setting θ = π + ϕ in (24) yields

M(ϕ)r̈ = (J + ml2)(βu − cṙ − mlϕ̇2 sin ϕ) − ml cos ϕ (−mgl sin ϕ + cP ϕ̇)

M(ϕ)ϕ̈ = ml cos ϕ (βu − cṙ − mlϕ̇2 sin ϕ) − (M + m)(cP ϕ̇ − mgl sin ϕ). (26)

Let
x1(t) = r(t), x2(t) = ϕ(t), x3(t) = ṙ(t), x4(t) = ϕ̇(t)

then one obtains a system of nonlinear first order equations similar to (25), but with a
different sign pattern.

ẋ1 = x3, ẋ2 = x4

ẋ3 =
1

M(x2)

[
(J + ml2)(βu − cx3 − mlx2

4 sin x2) − ml cos x2 (−mgl sin x2 + cP x4)
]

ẋ4 =
ml cos x2

M(x2)

(
βu − cx3 − mlx2

4 sin x2

)
− (M + m)

M(x2)
[cP x4 − mgl sin x2] . (27)

Now assume that for the loading plant |x2(t)| = |θ(t)| and |x4(t)| = |θ̇(t)| remain suffi-
ciently small so that

sin x2(t) ≈ x2(t), cos x2(t) ≈ 1, x4(t)
2 sinx2(t) ≈ 0, sin2 x2(t) ≈ 0. (28)

Then M(x2) ≈ M0 = (M + m)J + ml2M is approximately constant and we obtain the
following approximate linear equation of motion for the loading plant (pendulum down)

ẋ = Ax + bu, (29)

where x(t) = [r(t), θ(t), ṙ(t), θ̇(t)]� and

A =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
0 a32 a33 a34

0 a42 a43 a44

⎤⎥⎥⎦ , b =

⎡⎢⎢⎣
0
0
b3

b4

⎤⎥⎥⎦ . (30)

With constant entries

a32 = M−1
0 m2l2g, a33 = −M−1

0 (J + ml2)c, a34 = M−1
0 mlcP ,

a42 = −M−1
0 (M + m)mgl, a43 = M−1

0 mlc,

a44 = −M−1
0 (M + m)cP , b3 = M−1

0 (J + ml2)β, b4 = −M−1
0 mlβ.

(31)

5Note that the angle ϕ(t) as depicted in Figure 1.3.7 (b) is negative.
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For the inverted pendulum if |ϕ(t)| and |ϕ̇(t)| remain small, then (28) again holds but now
x2(t) = ϕ(t) and x4(t) = ϕ̇(t). The approximate linear model has matrices of the same
form as (30), however some of the matrix entries have different signs

a32 = M−1
0 m2l2g, a33 = −M−1

0 (J + ml2)c, a34 = −M−1
0 mlcP ,

a42 = M−1
0 (M + m)mgl, a43 = −M−1

0 mlc,

a44 = −M−1
0 (M + m)cP , b3 = M−1

0 (J + ml2)β, b4 = M−1
0 mlβ.

(32)

For the purpose of automatic control, sensors are required which provide continuous infor-
mation about the current state of the system. Let us consider the balancing problem for the
inverted pendulum and suppose that we can measure the current values of r(t), ϕ(t). These
measurements (“outputs”) are related to the “state” x(t) = [x1(t), x2(t), x3(t), x4(t)]

� by
the output or measurement equation

y =

[
1 0 0 0
0 1 0 0

]
x. (33)

The balancing problem consists in designing a regulator which keeps the pendulum in an
upright position at a fixed value of r, say 0. The regulator accepts the values y(t) ∈ R

2

as input values and produces the values u(t) ∈ R
1 as output values. This must be done

in such a way that the inherently unstable equilibrium xe = [0, 0, 0, 0]� becomes a stable
equilibrium of the feedback system. This stabilization problem can be solved using the
linearized equations about the equilibrium state xe. Linear models are often sufficient in
order to design stabilizing controllers even if the underlying system is nonlinear. By keep-
ing the system close to the equilibrium position the controller ensures that the linearized
model yields a good approximation of the nonlinear dynamics. This partially explains the
surprising success of linear models in feedback control.
Another control problem is best explained for the loading plant. If it is required to posi-
tion a load accurately at a certain point the question arises whether there exists a control
function u(·) which steers the system from any given initial position to the desired final
position in finite time. Additionally, it will be required that the load is at rest at the final
position. This is a controllability problem. Note that for this problem the use of a linear
model is questionable since this is a global problem and its solution requires a model which
is accurate for a wide range of values of the system’s state. �

1.3.3 The Variational Method

The previous example illustrates that even for an apparently simple mechanical de-
vice it is by no means trivial to find the equations of motion by analyzing the system
as an interconnection of masses, springs and dampers. The interconnection of trans-
lational and rotational elements poses particular problems. The main difficulty in
the modelling process is that the interaction between the elements must be described
by introducing “contact forces” or “forces of constraint”, which are not given a pri-
ori. They are among the unknowns of the problem and must be eliminated in order
to get the system equations. Often the interconnective constraints are quite compli-
cated and if there is a large number of them the above modelling procedure becomes
cumbersome. For such cases an alternative procedure is available which is based on
energy considerations. As a preparation we need some formulas for the energies of
translational masses, springs and dampers and their rotational counterparts which
we present in the next example. Additionally we discuss the kinetic and potential
energy of a rigid body moving in three-dimensional space.
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Example 1.3.5. The kinetic energy associated with a point mass m moving with velocity
v(t) at time t is

T (t) = (m/2) ‖v(t)‖2 = (m/2) 〈v(t),v(t)〉.
For arbitrary motions of a rigid body in three dimensional space the determination of
the kinetic energy is more complicated. First consider a rigid body composed of N point
masses mi. Let r(t) be the position of the centre of mass of the body at time t (with respect
to some inertial coordinate system) and fix a coordinate system in the body (moving with
the body) whose origin is at the centre of mass. Suppose the body is rotating about an
axis through the centre of mass with angular velocity ω(t). So ω(t) ∈ R

3 points in the
direction of the instantaneous axis of rotation of the body about its centre of mass given
by the right hand screw law. If r̃i is the (constant) coordinate vector of the point mass
mi of the rigid body with respect to the body coordinates then the position vector of this
point with respect to the inertial reference system is ri(t) = r(t) + r̃i and the velocity
vector of the point (with respect to the given inertial coordinate system) is

vi(t) = ṙi(t) = ṙ(t) + ω(t) × r̃i.

Hence the kinetic energy is

T (t) =
N∑

i=1

(mi/2)‖vi(t)‖2 =
N∑

i=1

(mi/2)〈ṙ(t) + ω(t) × r̃i, ṙ(t) + ω(t) × r̃i〉

= (M/2) ‖ṙ(t)‖2 +

〈
ṙ(t),ω(t) ×

N∑
i=1

mir̃i

〉
+

N∑
i=1

(mi/2)‖ω(t) × r̃i‖2,

where M =
∑N

i=1 mi is the total mass. The middle term in the above expression is zero
since r̃i is the vector from the centre of mass to the i-th point mass. The last term is a
quadratic form in ω(t), so we may write

T (t) = (M/2) ‖ṙ(t)‖2 + (1/2) 〈ω(t),Jω(t)〉,

where J = J� ∈ R
3×3 is called the moment of inertia matrix of the rigid body. This

analysis can be extended to continuous distributions and hence the above formula for the
kinetic energy holds for arbitrary rigid bodies. So the kinetic energy of a rigid body is
the kinetic energy obtained if all the mass of the body were concentrated at the centre of
mass, plus the kinetic energy of its motion about the centre of mass.
We now consider potential energy. The potential energy stored in a translational or rota-
tional spring displaced from its equilibrium state is equal to the work done to achieve this
displacement. If the spring is translational and linear its potential energy at a displace-
ment y is given by (k/2) y2. Similarly the potential energy of a linear torsional spring
(where the torque is kθ) at an angular displacement θ is (k/2) θ2. Note that an ideal
spring does not have kinetic energy since its mass is zero.
The potential energy of any point mass is defined relative to a given conservative field of
force to which it is subjected, e.g. the gravitational field of the Earth. If F : R

3 → R
3 is

a conservative field of force then the work done by moving a point mass from a ∈ R
3 to

b ∈ R
3 only depends upon the points a,b ∈ R

3 and not on the path along which the mass
has been moved. Fixing a reference point O the potential energy of a particle positioned
at a point P is, by definition, equal to the work needed in order to move the particle
within the force field from O to P . The potential energy of a system of N point masses at
positions r1, . . . , rN is simply the sum of the individual potential energies. Approximating
a rigid body of mass M by a system of point masses we see that at an altitude h above
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the Earth (h not too large) its potential energy with respect to the gravitational field of
the Earth is approximately Mgh. Note that the potential energy of a body relative to a
conservative force field is only determined up to a constant depending on the reference
point. For any system of point masses moving in a conservative field, if no energy dissi-
pation occurs, then the sum of the kinetic and potential energies is constant in time.
Usually, dissipation of energy occurs because kinetic energy is transformed to thermal
energy by friction. Frictional forces have to be overcome whenever bodies in contact have
a relative velocity. A pure dissipator (damper) is an idealized object in which there is no
kinetic or potential energy storage. However there is a dissipation of energy, for example
the power absorbed at time t by a linear translational damper (where the force is cv)
is cv(t)2. Similarly the power absorbed by a linear rotational damper (where the torque
is cω) is cω(t)2. More generally, suppose that there is a system of N particles moving
with velocities vi(t) ∈ R

3, i ∈ N and that the particles are subjected to frictional forces
which depend linearly on the velocities, Fi(t) = ci vi(t), then the total energy dissipated
is
∑N

i=1 ci‖vi(t)‖2. �

The variational method has been developed in the context of classical mechanics
by, amongst many, Lagrange and Hamilton. We will not explain the derivation of
the method here, nor discuss it in detail, but just sketch the essential steps to be
followed. For a careful mathematical treatment, see Notes and References.
As the previous examples illustrate, the position vectors ri(t) of the point masses
of a mechanical system are usually not free to vary independently of each other.
The constraints which limit their movements may be classified in various ways.
If they can be expressed by equations of the form f(r1, . . . , rN , t) = 0 they are
called holonomic. A typical example is given by a rigid body where all the distances
between its mass points are constant in time. Another example is given by a particle
which moves along a curve (a bead sliding on a wire) or on a surface. Nonholonomic
constraints are obtained if not only position but also velocity coordinates enter the
constraint equation or if the constraint takes the form of an inequality (for example,
gas molecules within a container). We will only consider holonomic constraints. All
the constraints in our mechanical examples are of this type.
Now suppose that a system of N particles is given, together with a number of
holonomic constraints of the form

fj(r1, . . . , rN , t) = 0, j ∈ m (34)

where ri ∈ R3 denotes the position of the i-th particle and the fj are real-valued
smooth functions on (R3)N × R. The set M(t) of all possible configurations of the
system at time t, i.e. the set of all the vectors r = (r1, . . . , rN) ∈ (R3)N satisfying
the constraints f1(r, t) = 0, . . . , fm(r, t) = 0, is called the configuration space of
the constrained mechanical system at time t. Let us fix the time t for a moment
and consider the configuration space M(t). If the gradients of the functions fj(·, t)
are linearly independent at every point in M(t), the configuration space (at time t)
carries the structure of an �-dimensional differentiable manifold where � = 3N −m.6

This implies that M(t) is provided with a finite or countable collection of charts, so
that every point is represented in at least one chart. A chart is an open set U in R�

6In this case the constrained mechanical system is said to be a system with � degrees of freedom.
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with a diffeomorphic mapping φ from U onto some open subset V = φ(U) of M(t)
which we write in the following way.

φ : q �→ r(q, t)=(r1(q, t), . . . , rN(q, t)) where ri(q, t) = ri(q1, . . . , q�, t), q ∈ U. (35)

The coordinates qj, j ∈ � of the vector q are called the generalized coordinates of
the configuration r = r(q, t) (at time t). They yield a parametrization of the open
subset V = φ(U) of the configuration space. The inverse mapping φ−1 : V → U
maps every configuration r ∈ V onto its generalized coordinate vector q(r, t) (at
time t). Note that the coordinates of the generalized coordinate vector q ∈ U can
be varied independently (provided q remains in the open set U) whereas the coor-
dinates of a position vector r = (r1, . . . , rN) ∈ V cannot be varied independently
without violating some of the holonomic constraints (34) (at time t). In practice the
generalized coordinates are usually obtained by applying the implicit function the-
orem to the constraint equations. This technique is sometimes called “elimination
of the dependent coordinates”. The position vectors r(q, t) corresponding to the
generalized coordinate vectors q ∈ U at time t automatically satisfy the constraints.
The advantage of “getting rid of the constraints” by introducing the generalized
coordinates is, however, not obtained without any cost. Firstly, the generalized co-
ordinates describe, in general, only a part of the configuration space. Secondly, they
need not have an immediate physical interpretation similar to the original position
variables. And often they cannot be related to single elements of the system but are
mathematical constructions for the description of the system as a whole.
Now suppose for a moment that the constraints (34) do not depend upon t (an as-
sumption which is often satisfied in applications) so that the configuration manifold
M(t) = M, the charts (U, φ) and the corresponding open subsets V = φ(U) of M are
independent of time. Then, as the system moves, the position vector r(t) describes
a curve in the configuration manifold M. If r(t) belongs to the scope V of some
chart (U, φ) for t ∈ [t1, t2], the motion of the system during this time interval can
alternatively be described in terms of the position vectors ri(t), i ∈ N (satisfying
the constraints) or in terms of the generalized coordinates qj(t), j ∈ �.
We will now briefly point out how velocities, forces, kinetic and potential energies
are expressed in terms of the generalized coordinates. With every family of velocity
vectors vi = ṙi = d

dt
ri, i ∈ N which is consistent with the given constraints there

is an associated generalized velocity vector q̇ = d
dt

q(r, t) = (q̇j)j∈� which can be
determined by solving the system of 3N linear equations

vi = ṙi =

�∑
j=1

∂ri

∂qj
q̇j +

∂ri

∂t
, i ∈ N. (36)

Similarly, for any family of external forces fi = (fi,1, fi,2, fi,3) ∈ R
3, i ∈ N applied to

the i-th particle at time t there is an associated vector (F1, . . . , F�) ∈ R� called the
generalized force at time t defined by

Fj =
N∑

i=1

〈
fi,

∂ri

∂qj

〉
R3

=
N∑

i=1

(
fi,1

∂xi(q, t)

∂qj
+ fi,2

∂yi(q, t)

∂qj
+ fi,3

∂zi(q, t)

∂qj

)
, j ∈ �.

where ri(q, t) = (xi(q, t), yi(q, t), zi(q, t)). If the i-th particle of the system has mass
mi and is moving with velocity vi, the associated kinetic energy of the system is
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T =
∑N

i=1(mi/2)‖vi‖2. By means of (36) the kinetic energy can be expressed in
terms of the generalized coordinates and velocities,

T (q, q̇, t) =

N∑
i=1

(mi/2)‖vi(q, t)‖2 =

N∑
i=1

(mi/2)

∥∥∥∥∥
�∑

j=1

∂ri

∂qj
(q, t)q̇j +

∂ri

∂t
(q, t)

∥∥∥∥∥
2

.

We see therefore that if the constraints are independent of time, then T is a ho-
mogeneous quadratic form in the generalized velocities. Now assume for a moment
that the mechanical system is conservative, i.e. there exists a real valued function
W(r1, . . . , rN , t) such that the force fi applied to the i-th particle is given by the
i-th partial gradient of W (i.e. with respect to the coordinates xi, yi, zi of ri)

fi(r1, . . . , rN , t) = −∇iW(r1, .., rN , t).

In this case the generalized force is precisely the negative gradient of W viewed as
a function of the generalized coordinates:

Fj(q, t)=

N∑
i=1

〈
fi,

∂ri

∂qj

〉
(q, t)=−

N∑
i=1

〈
∇iW(r1, . . . , rN , t),

∂ri(q)

∂qj

〉
(q, t)=−∂W(q, t)

∂qj

where W(q, t) = W(q1, . . . , q�, t) := W(r1(q, t), . . . , rN(q, t), t) is called the general-
ized potential energy.
In 1788 Lagrange published in Paris his celebrated Mécanique Analytique [325] in
which he set out a method for determining the equations of a mechanical system
from a knowledge of the kinetic and potential energies. His ideas were developed
further by Boltzmann in 1802 and Hamel in 1804 and the form in which we state the
equations are essentially due to them, although they are widely referred to as La-
grange’s equations. Lagrange [325] introduced what is now known as a Lagrangian:

L(q, q̇, t) = T (q, q̇, t) −W(q, t). (37)

Then Lagrange’s equations of motion take the form

d

dt

(
∂L

∂q̇j
(q(t), q̇(t), t)

)
− ∂L

∂qj
(q(t), q̇(t), t) = 0, j = 1, . . . , �. (38)

In practice most mechanical systems are not conservative, since, they either have
significant internal frictions, or external forces are applied which are not derived
from a potential. If Fj are the generalized forces which are not taken into account
by the potential energy and D(q̇) = D(q̇1, . . . , q̇�) is the total energy dissipated by
linear dissipators (e.g. dampers), then the equations of motion take the form

d

dt

(
∂L

∂q̇j

(q(t), q̇(t), t)

)
− ∂L

∂qj

(q(t), q̇(t), t)+
1

2

∂D
∂q̇j

(q̇(t))=Fj(q(t), t), j = 1, .., �. (39)

Note that if the generalized external forces Fj do not depend on the generalized
coordinates q they can easily be accounted for by modifying the potential energy

W � W −
�∑

j=1

Fjqj . (40)
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By suitably modifying the Lagrangian it is also possible to include other generalized
forces in Lagrange’s equations (38), see Notes and References.
If, for a given mechanical system, generalized coordinates can be found, Lagrange’s
method is a very convenient way to eliminate the forces of constraint from the equa-
tions of motion. By this elimination the modelling procedure is greatly simplified.
In fact, in order to model a complicated multi-body mechanical system by the free-
body diagram approach illustrated in the previous examples, many vector forces and
velocities must be handled, whereas whenever a Lagrangian formulation is applica-
ble there is – in principle – a straight forward procedure for deriving the equations
of motion. One “only” has to write three scalar functions T , W, D in generalized
coordinates (which may not be so easy), form L, determine the generalized forces
and substitute in (39). Sometimes, of course, one would like to know the contact
forces and then it is necessary to resort to free-body diagrams. However, assuming
Lagrange’s equations have been solved for the generalized coordinates qi(t) as func-
tions of time t and consequently the vector functions ri(·) are known, the equations
for the contact forces obtained via free-body diagrams can often be easily resolved.

Remark 1.3.6. Lagrange’s equations have the following interesting interpretation. Con-
sider any given trajectory r(t) of a conservative mechanical system in configuration space
from time t0 to time t1 and suppose that the trajectory remains inside the scope of a chart
so that it can equivalently be described by a curve t → q(t) = (q1(t), . . . , q�(t)), t ∈ [t0, t1]
in R

� (satisfying r(t) = r(q(t), t)). Hamilton’s Principle says: The motion of a conservative
system from time t0 to time t1 is such that the action integral

I(z(·)) =

∫ t1

t0

L(z(t), ż(t), t) dt

is an extremum for the actual path of motion q(·) amongst all other curves z(·) : [t0, t1] →
R

� connecting q(t0) with q(t1). There are global, coordinate free formulations of this
principle which avoid the restriction to parts of the configuration manifold parametrized
by a chart, see e.g. [1], [18].
It is shown in the calculus of variations that Lagrange’s equations are exactly the necessary
and sufficient conditions for the functional

I : {z(·) ∈ C1([t0, t1], R
�); z(t0) = q(t0), z(t1) = q(t1)} → R

to have an extremum at z(·) = q(·). In 1766 Lagrange joined Euler as a court mathemati-
cian in Berlin under the patronage of Frederick the Great. Euler also developed necessary
and sufficient conditions which are equivalent to those of Lagrange and it is usual, at least
in the field of the calculus of variations, to refer to the equations as the Euler-Lagrange
equations. The variational approach is of great importance since variational principles can
be used in many fields of physics to express the equations of motion. This makes it pos-
sible to transfer the Lagrangian method to other fields and uncover structural analogies
between them. �

Before we consider some examples we briefly outline the Hamiltonian approach to
classical mechanics which yields another method for deriving the equations of motion
of a conservative mechanical system. The result is a transformation of Lagrange’s
equations (38) which are second order into an equivalent system of Hamiltonian
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equations which are first order. This is accomplished by applying a Legendre trans-
formation to the Lagrangian, see Notes and References. For arbitrary given q, t this
transforms L(q, q̇, t) viewed as a function of q̇ into a function of the new variable p
where q̇ and p are related via the formula p = ∂L/∂q̇ ,

H(q, p, t) = 〈p, q̇ (q, p, t)〉 − L(q, q̇ (q, p, t), t), (q, p, t) ∈ R
� × R

� × R. (41)

Here the function q̇ = q̇(q, p, t) is defined implicitly by the equation

p =
∂L

∂q̇
(q, q̇, t) (42)

which is assumed to have a unique solution q̇ for every (q, p, t) ∈ R� × R� × R. H
is called the Hamiltonian and p = (p1, p2, . . . , p�) the generalized momentum of the
conservative mechanical system. Now the total differential of the Hamiltonian

dH =
∂H

∂p
dp +

∂H

∂q
dq +

∂H

∂t
dt

is equal to the total differential of 〈p, q̇〉 − L(q, q̇, t),

dH = 〈q̇, dp〉 + 〈p, dq̇〉 −
〈

∂L

∂q
, dq

〉
−
〈

∂L

∂q̇
, dq̇

〉
− ∂L

∂t
dt.

where 〈·, ·〉 denotes the usual inner product in R�. The second and fourth terms
cancel because of (42), hence

∂H

∂p
= q̇,

∂H

∂q
= −∂L

∂q
,

∂H

∂t
= −∂L

∂t
.

Applying Lagrange’s equations (38) we obtain Hamilton’s equations

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (43)

We now illustrate the Lagrangian and Hamiltonian approaches by deriving the equa-
tions of motion for the cart-pendulum system studied in Example 1.3.4.

Example 1.3.7. (Cart-pendulum system). In order to derive the equations of motion
for the cart-pendulum system via Lagrange’s equations we must determine the kinetic
energy T , the potential energy W and the dissipated energy D of this system in terms of
its generalized coordinates r, θ and the corresponding velocities ṙ, θ̇. The kinetic energy
T of the system is the sum of the kinetic energies of the cart and of the pendulum, and
the latter is the sum of the kinetic energy of the centre of mass plus the energy of the
pendulum rotating about its centre of mass, see Figure 1.3.6. Hence

T = (M/2) ṙ2 + (m/2)

[[
d

dt
(r + l sin θ)

]2

+

[
d

dt
l cos θ

]2
]

+ (J/2) θ̇2

= (M/2) ṙ2 + (J/2) θ̇2 + (m/2)
[
(ṙ + lθ̇ cos θ)2 + (−lθ̇ sin θ)2

]
.

The potential energy, W is the same as that of a single mass m located at the centre of
mass of the pendulum in a gravitational field, i.e −mgl cos θ (modulo an additive constant).
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Since the time varying external force βu(t) does not depend on the generalized coordinates,
we can take it into account by modifying the potential energy as in (40).

W = −mgl cos θ − βur.

D is the sum of the dissipated energies due to viscous friction cṙ between cart and rails
and due to viscous friction cP θ̇ at the pivot,

D = cṙ2 + cP θ̇2.

The generalized Lagrange equations (39) in terms of the generalized coordinates and as-
sociated velocities r, θ, ṙ, θ̇ are

d

dt

(
∂T
∂ṙ

)
− ∂T

∂r
+

∂W
∂r

+
1

2

∂D
∂ṙ

=0

d

dt

(
∂T
∂θ̇

)
− ∂T

∂θ
+

∂W
∂θ

+
1

2

∂D
∂θ̇

=0.
Or

d

dt

[
Mṙ + m(ṙ + lθ̇ cos θ)

]
+ cṙ = βu

d

dt

[
Jθ̇ + m(ṙ + lθ̇ cos θ)l cos θ + ml2θ̇(sin θ)2

]
+ m(ṙ + lθ̇ cos θ)lθ̇ sin θ − ml2θ̇2 sin θ cos θ + mgl sin θ + cP θ̇ = 0.

A simple calculation yields the nonlinear differential equations

(M + m)r̈ + mlθ̈ cos θ − mlθ̇2 sin θ + cṙ = βu

(J + ml2)θ̈ + mr̈l cos θ + mgl sin θ + cP θ̇ = 0.

Thus the Lagrangian approach leads to the same equations of motion as the approach via
free-body diagrams in Example 1.3.4, see (23).
Assuming that frictions can be neglected and the pendulum behaves like a point mass
connected to a light rod of length l (i.e. c = cP = J = 0), the nonlinear equations of
motion reduce to

(M + m)r̈ + mlθ̈ cos θ − mlθ̇2 sin θ = βu (44)

lθ̈ + g sin θ + r̈ cos θ = 0. (45)

Setting x1 = r, x2 = θ, x3 = ṙ, x4 = θ̇ (resp. x1 = r, x2 = ϕ, x3 = ṙ, x4 = ϕ̇, see
Example 1.3.4) the linearized models of the loading plant and the inverted pendulum,
respectively, reduce to

ẋ = Ax + bu, (46)

where (see (31), (32))

A =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
0 a32 0 0
0 a42 0 0

⎤⎥⎥⎦ , b =

⎡⎢⎢⎣
0
0
b3

b4

⎤⎥⎥⎦ ,
a32 = mg/M, a42 = ∓(M + m)g/(Ml),
b3 = β/M, b4 = ∓β/(Ml).

Let us now consider Hamilton’s equations for the frictionless case. By (42), the generalized
momentum has components

p1 =
∂L

∂ṙ
= (M + m)ṙ + ml cos θ θ̇ (47)

p2 =
∂L

∂θ̇
= ml(ṙ cos θ + lθ̇). (48)
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Hence

ṙ = (ml2p1 − ml cos θ p2)/(ml2(M + m sin2 θ)) (49)

θ̇ = (−ml cos θ p1 + (M + m)p2)/(ml2(M + m sin2 θ)). (50)

So by (41) the Hamiltonian is

H(r, θ, p1, p2) = (ml2p2
1 − 2ml cos θ p1p2 + (M + m)p2

2)/(2ml2(M + m sin2 θ))

−mgl cos θ − βru.

Hamilton’s equations are, therefore, (49), (50) augmented with

ṗ1 = −∂H

∂r
=βu

ṗ2 = −∂H

∂θ
= − p1p2 sin θ/(l(M + m sin2 θ)) − mgl sin θ

+ (ml2p2
1 − 2ml cos θ p1p2 + (M + m)p2

2) sin θ cos θ/(l2(M + m sin2 θ)2).

(51)

The linearization of equations (49), (50), (51) yields

˙̃x = Ãx̃ + b̃u, (52)

where x̃ = [r, θ, p1, p2]
�, b̃ = [0, 0, β, 0]� and Ã is the matrix

Ã =

⎡⎢⎢⎣
0 0 ã13 ã14

0 0 ã23 ã24

0 0 0 0
0 ã42 0 0

⎤⎥⎥⎦ ,
ã13 = 1/M, ã14 = ã23 = −1/(Ml),
ã24 = (M + m)/(mMl2), ã42 = −mgl.

Equations (46) and (52) for the loading plant are two different mathematical models of
the linearized system which are related by the transformations

x̃ = Tx, Ã = TAT−1, b̃ = Tb,

where

T =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 t33 t34
0 0 t43 t44

⎤⎥⎥⎦ , t33 = M + m, t34 = t43 = ml, t44 = ml2.

Such systems are called similar and we will discuss this concept in Section 2.4. �

We conclude this section by using Lagrange’s equations to derive the equations of
motion of an inverted double pendulum.

Example 1.3.8. (Inverted double pendulum). Consider a double pendulum which
is mounted on a cart as illustrated in Figure 1.3.8. In a similar way to Example 1.3.4 we
assume that the motion of the system is restricted to the vertical plane, the cart is moving
on a horizontal rail with viscous friction and the two pendulums behave like rigid bodies
with viscous friction at the pivots. Let mi, li, Ji, ci (i = 1, 2) denote the mass, the distance
between the centre of gravity and the lower hinge, the moment of inertia about the centre
of mass and the friction coefficient for the lower (i = 1) and the upper (i = 2) pendulums.
L is the total length of the lower pendulum and M, c0 denote the mass and the friction
coefficient of the cart. As generalized coordinates we choose the distance r of the cart
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M

θ2(t)

l1

l2

r(t)

βu(t)

θ1(t) �

Figure 1.3.8: Double pendulum

from an inertial reference position, and the angles θi, i = 1, 2 of the two pendulums to
the vertical, with clockwise orientation. We apply the method of Lagrange in order to find
the equations of motion of the system. The potential energy of the system is equal to the
sum of the potential energies of the masses mi located at the centres of mass of the two
pendulums, together with an adjustment for the external force. In terms of the chosen
generalized coordinates it is given by

W = m1gl1 cos θ1 + m2g(L cos θ1 + l2 cos θ2) − βur. (53)

The energy dissipated by the translational viscous friction between cart and rails and the
rotational friction at the two hinges is given by

D = c0ṙ
2 + c1θ̇

2
1 + c2(θ̇2 − θ̇1)

2. (54)

The kinetic energy is the sum of the kinetic energies of the cart plus the kinetic energies
of the two pendulums:

T0 = (M/2) ṙ2

T1 = (J1/2) θ̇2
1 + (m1/2)

{[
d

dt
(r + l1 sin θ1)

]2

+

[
d

dt
(l1 cos θ1)

]2
}

T2 = (J2/2) θ̇2
2 + (m2/2)

{[
d

dt
(r + L sin θ1 + l2 sin θ2)

]2

+

[
d

dt
(L cos θ1 + l2 cos θ2)

]2
}

.

A simple calculation yields the total kinetic energy of the system

T = (M/2) ṙ2 + (J1/2) θ̇2
1 + (J2/2) θ̇2

2 + (m1/2)
{
ṙ2 + 2l1ṙθ̇1 cos θ1 + l21θ̇

2
1

}
+

(m2/2)
{
ṙ2 + L2θ̇2

1 + l22 θ̇
2
2 + 2ṙ

[
Lθ̇1 cos θ1 + l2θ̇2 cos θ2

]
+ 2Ll2θ̇1θ̇2 cos(θ1 − θ2)

}
. (55)
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Using (53), (54) and (55) we write down Lagrange’s equations and obtain by elementary
calculations the following equations of motion

d

dt

(
∂T
∂ṙ

)
− ∂T

∂r
+

∂W
∂r

+
1

2

∂D
∂ṙ

= 0,

(M + m1 + m2)r̈ + [(m1l1 + m2L) cos θ1]θ̈1 + (m2l2 cos θ2)θ̈2

− (m1l1 + m2L)θ̇2
1 sin θ1 − (m2l2 sin θ2)θ̇

2
2 + c0ṙ = βu.

d

dt

(
∂T
∂θ̇1

)
− ∂T

∂θ1
+

∂W
∂θ1

+
1

2

∂D
∂θ̇1

= 0,

[(m1l1 + m2L) cos θ1]r̈ + (m1l
2
1 + m2L

2 + J1)θ̈1 + [m2Ll2 cos(θ1 − θ2)]θ̈2

+ m2Ll2θ̇
2
2 sin(θ1 − θ2) − (m1l1 + m2L)g sin θ1 + c1θ̇1 + c2(θ̇1 − θ̇2) = 0.

d

dt

(
∂T
∂θ̇2

)
− ∂T

∂θ2
+

∂W
∂θ2

+
1

2

∂D
∂θ̇2

= 0,

(m2l2 cos θ1)r̈ + [m2Ll2 cos(θ1 − θ2)]θ̈1 + (m2l
2
2 + J2)θ̈2+

− m2Ll2θ̇
2
1 sin(θ1 − θ2) − m2gl2 sin θ2 + c2(θ̇2 − θ̇1) = 0.

Introducing the vector z = [r, θ1, θ2]
� ∈ R

3, the equations of motion can be written in the
following concise form

K1z̈ = K2ż + K3 + k4u

where

K1 =

⎡⎢⎣ m1 + m2 + M (m1l1 + m2L) cos θ1 m2l2 cos θ2

(m1l1 + m2L) cos θ1 J1 + m1l
2
1 + m2L

2 m2l2L cos(θ1 − θ2)

m2l2 cos θ2 m2l2L cos(θ1 − θ2) J2 + m2l
2
2

⎤⎥⎦

K2 =

⎡⎢⎢⎣
−c0 (m1l1 + m2L)θ̇1 sin θ1 m2l2θ̇2 sin θ2

0 −c1 − c2 −m2l2Lθ̇2 sin(θ1 − θ2) + c2

0 m2l2Lθ̇1 sin(θ1 − θ2) + c2 −c2

⎤⎥⎥⎦

K3 =

⎡⎢⎣ 0

(m1l1 + m2L)g sin θ1

m2l2g sin θ2

⎤⎥⎦ , k4 =

⎡⎣ β

0
0

⎤⎦ .

An equivalent system of first order equation is obtained by setting x =

[
z

ż

]
∈ R

6

ẋ =

[
ż

K−1
1 (K2ż + K3 + k4u)

]
. (56)

Is it possible to stabilize the double pendulum in the upright position? Most readers will
find it difficult to decide this question relying only on their physical intuition. In Vol. II
we show that if the deviations from the upright position are small it is possible to find
a control which restores this position in finite time. Then we prove that this implies the
existence of a regulator which makes the upright position a stable equilibrium point of the
feedback system. This regulator accepts as input values r(t), ṙ(t), θ1(t), θ̇1(t), θ2(t), θ̇2(t)
and so sensors must determine these values for all t ≥ 0. Since sensors are expensive one
is interested in reducing the number. In particular the question arises whether or not
it is possible to design a regulator which accepts as values, say r(t), θ1(t). This means
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that within the regulator it is necessary to reconstruct the angle θ2(t) and the velocities
ṙ(t), θ̇1(t), θ̇2(t) from the measurements r(t), θ1(t). This is a typical observability problem,
see Vol. II. �

1.3.4 Notes and References

Many books on modelling and dynamics contain chapters on the modelling of mechani-
cal systems, see Ogata (1992) [397], Burton (1994) [84], Close and Frederick (1995) [105].
More realistic automobile suspension systems separating, for example, the motions of the
front and the rear axles (see Example 1.3.2) can be found in [84] and [103]. In the presence
of rotational friction at the hinge Antman (1998) [15] has shown that the derivation of
the equations of motion of a compound pendulum may be flawed by the assumption that
the reactive force at the hinge acts along the pendulum. Modelling the cart-pendulum
system of Example 1.3.4 is discussed in more detail in Clark (1995) [103]. Ackermann
(1977) [2] has analyzed the feedback control of the linearized loading plant. The inverted
pendulum has been a favourite example for the illustration of modern control methods in
textbooks since the sixties, see Elgerd (1967) [150]. The balancing problem was solved by
various methods on the basis of the linearized model. However, the swinging up problem,
i.e. moving the system from the downward to the upright rest position and keeping it
there, requires the use of the nonlinear model. This problem has been studied in Mori
et al. (1976) [382]. The stabilization of double and multiple pendulum systems has been
investigated in Furuta et al. (1980) [177], Maletinsky et al. (1982) [357] and Kwakernaak
and Westdijk (1995) [323].
An excellent introduction to Newtonian mechanics is contained in the first volume of the
Feynman Lectures on Physics (1975) [161]. Brief introductions to Lagrangian and Hamil-
tonian modelling techniques from an engineering point of view are given in MacFarlane
(1970) [355], Wellstead (1979) [516], Burton (1994) [84]. More information concerning
variational principles, Lagrangian and Hamiltonian mechanics, can be found in standard
textbooks on classical mechanics, Whittaker (1970) [520], Gantmacher (1975) [184], Lan-
dau and Lifshitz (1976) [329], Goldstein (1980) [194], Chorlton (1983), [99]. Lagrange’s
Mécanique Analytique is now available in English [325]. It is shown in [194] that by in-
troducing velocity dependent potentials it is possible, under certain conditions, to include
non-conservative generalized forces in Lagrange’s equations (38). In particular the Lorentz
force (4.12), which in general is not conservative, satisfies these conditions.
The Hamiltonian formulation was proposed by Hamilton in a British Association Report
in 1834, although in part it had been anticipated by Lagrange and Poisson in 1809/1810.
The Legendre transformation maps functions on a vector space to functions on the dual
space: Let f(x) be a convex function of x ∈ R

n, then the Legendre transform is the
function g : R

n∗ → R defined by

g(y) = F (y, x(y)) = max
x

F (y, x), F (y, x) = 〈y, x〉 − f(x), y = ∂f/∂x.

Details can be found in most references on mathematical physics, see e.g. Courant and

Hilbert (1953) [112]. Modern advanced mathematical treatments of classical mechanics

are given in Arnold (1978) [18], Abraham and Marsden (1978) [1] and Marsden and Ratiu

(1999) [361]. These standard references develop the mathematical framework for a co-

ordinate free treatment of the configuration space in the general setting of (symplectic)

manifolds. [1] and [361] also contain many instructive historical remarks and comments

on the literature.



1.4 Electromagnetism and Electrical Systems 39

1.4 Electromagnetism and Electrical Systems

This section is divided into two subsections. In the first we give a brief review
of some of the historical developments of electromagnetism and describe the basic
building blocks of circuits. Then in the second we show how to obtain the equations
governing the current flows in networks of circuits.

1.4.1 Maxwell’s Equations and the Elements of Electrical
Circuits

Some of the most outstanding discoveries of the 19th century were connected with
electricity and magnetism and their interaction. As a reference we quote Richard
Feynman (1975) [161]: “From a long view of the history of mankind–seen from, say,
ten thousand years from now–there can be little doubt that the most significant
event of the 19th century will be judged as Maxwell’s discovery of the laws of elec-
trodynamics”. In this subsection we recall some of the electromagnetic experiments
that were carried out and indicate how the conclusions drawn from them can be
formulated in a mathematical way, i.e. can be cast in the form of equations. We
then use these equations in a number of different examples to obtain mathematical
models of various electrical circuits and systems.

Maxwell’s Equations

If a piece of amber is rubbed with a cloth and then the amber and cloth are separated
they are found to attract each other. Such forces are called electrical forces and
the amber and cloth are said to be electrified or charged with electricity. In 1729
Gray [201] discovered that some materials could convey electricity from one place
to another. He carried out an experiment with a glass rod connected by a hemp
cord of length 400 feet to an ivory ball and was able to electrify the ball by rubbing
the glass tube. Further experiments were carried out by Desaguliers (1739) [128]
who introduced the word conductors for those materials which transport electricity
easily. Cavendish (1776) [93] anticipated Ohm’s law, although much of his work
was not published until 100 years later in a collection of his papers put together by
Maxwell (1879) [365]. In 1821 Ampère put forward a workable definition of current
and invented a galvanometer to measure it. He thought of voltage as the cause and
current as the effect and although he knew that there was a relationship between
them, he did not realize that, across a resistor, they are directly proportional. This
discovery was made by Ohm (1826) [398]. He used as a source a thermoelectric
battery with strips of copper and bismuth joined at their two ends. He kept one
point of contact in boiling water and the other in ice and thereby obtained a stable
current in an external circuit C which he connected across the two points of contact.
Working with this rather deficient apparatus, Ohm performed a series of carefully
devised experiments which established, for this circuit, the law of conduction (now
known as Ohm’s law):

If I is the current in the circuit, C and V the voltage drop between the
two points of contact, then V = IR, where R is a constant called the
resistance which varies with the wire which is used to close the circuit,
but does not depend on V or I.
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That electric charges exert forces on each other with a magnitude inversely propor-
tional to the square of the distance between them was suspected early in the 18th
century. Benjamin Franklin (1755) [106] carried out experiments to determine this
law and Robison (1769) observed experimentally that the force was proportional
to r−2.06 where r is the distance between the charges. Although, as in the case of
Cavendish (who gave the law as between r−1.98 and r−2.02), the results were not
available universally and were published posthumously in 1822. Unaware of their
results Coulomb (1785) [124] carried out completely different experiments and put
forward the inverse square law and now the discovery is usually attributed to him.
In 1936 Plimpton and Lawton [414] showed, experimentally, that the force deviated
from an inverse square law by less than two parts in one billion.
Coulomb’s experiments led to the formulation:

If a charge of magnitude q is placed at the origin O ∈ R3, then the force
on a positive unit charge at a point r is proportional to qr−2r̂, where
r̂ = r/‖r‖ and r = ‖r‖. Moreover the force is one of attraction if q < 0
and repulsion if q > 0.

Hence if we denote this electrical force at the point r by E(r) and write the constant
of proportionality in the form (4πε0)

−1, we have

E(r) =
qr̂

4πε0r2
= − grad Φ(r), where Φ : R

3 \ {O} → R, Φ(r) =
q

4πε0r
. (1)

Φ(r) is called the electrostatic potential at the point r and the constant of propor-
tionality ε0 the permittivity of free space.
The mapping r → E(r) = q (4πε0r

2)−1 r̂ defines a vector field on R3 \ {O} which
assigns to each r ∈ R3 \ {O} the electrical force exerted on a positive unit charge at
that point1. This vector field is called the electric field of the charge q placed at O.
In the following most of the vector fields we consider will depend upon time.
There are two important quantities associated with a vector field which are used to
describe the results of electromagnetic experiments, namely the flux and the circu-
lation. These terms have their origins in fluid dynamics where the “flux of velocity”
through a surface is the net amount of fluid going through the surface per unit time
and the “circulation” around some loop is the net rotational motion around it. More
generally for any vector field F the flux of F through a bounded oriented piecewise
smooth surface S is defined by the surface integral2

Flux of F through the surface S =

∫
S

〈F,n〉 dS,

where n is the unit normal defining the orientation of S and 〈·, ·〉 is the standard
inner product on R3. The circulation of F around an orientated piecewise smooth
closed curve C is

Circulation of F around the curve C =

∮
C

〈F, t〉 ds,

1More generally, a vector field on some region D ⊂ R3 is a map F : D → R3 that assigns to
each point r in its domain a vector F(r).

2In this section we often suppress the dependency of a vector field on space and time to simplify
notation. Where necessary, we use either r or x as a space variable.
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where t is the unit tangent to the curve. For the definition of the above integrals, see
[362]. The line integral of a conservative electric field E along an arbitrary piecewise
smooth curve C connecting A ∈ R3 to B ∈ R3, VAB =

∫
C
〈E, t〉 ds, is called the

voltage (or potential difference) between the points A and B. We sometimes talk of
the voltage of a point and by this we mean the difference in the potential of that
point and the potential of an arbitrary established reference point called the ground
state.
Now suppose that S is an orientated piecewise smooth closed surface in R3. Then
it can be shown that the flux of the electric field E (given by (1)) through S is∫

S

〈E,n〉 dS =
qω

4πε0

where ω = 4π if O is inside S and ω = 0 if O is outside S.
Let us now consider a continuous distribution of charge with volume charge density
ρ(x) in a bounded region Ω ⊂ R3 and suppose that S encloses Ω, then the electric
field E generated by this charge satisfies∫

S

〈E ,n〉 dS =
1

ε0

∫
Ω

ρ(x) dx =
Q

ε0
, (2)

where Q is the total charge on Ω and dx is the Lebesgue measure in R3. By the
divergence theorem∫

S

〈E ,n〉 dS =

∫
Ω

divE dx and so

∫
Ω

(div E− ρ/ε0) dx = 0.

Since this holds for any closed surface S it follows that divE = ρ/ε0. If additionally
we suppose the electric field is derived from a potential Φ, then

divE = ρ/ε0 and we have Poisson’s equation �Φ = −ρ/ε0, (3)

where � is the Laplacian defined (in Cartesian coordinates) by

� =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

. (4)

In the case of free space where ρ = 0, divE = 0 and Φ satisfies the Laplace equation
�Φ = 0.
An awareness of the existence of magnetized materials can be traced back to the
Greeks who were familiar with loadstone and its power to attract iron. Indeed the
term magnet came into use because loadstone pieces were found near the ancient
Greek city called Magnesia3. Experiments with magnetic materials were of a much
older vintage than those with electricity and the first application of magnetism, the
compass, was used in Europe at the end of the twelfth century. Newton in Principia
speculated that the law of force between two magnetic poles was proportional to the
inverse cube of the distance between them, and Michell (1750) [373] was the first to
give the correct law as being an inverse square. Thus if there is a magnetic pole of

3Plato in the dialogue Ion gives Socrates the words “impelling you like the power in the stone
Euripides called the magnet....This stone does not simply attract iron rings, just by themselves; it
also imparts to the rings a force enabling them to do the same thing as the stone itself”.
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strength m at the origin O, the force on a magnetic pole of positive unit strength
at a point r is proportional to mr−2r̂. Hence if we denote this magnetic force at the
point r by B(r), we have

B(r) =
mr̂

4πµ−1
0 r2

= − gradΨ(r), Ψ(r) =
m

4πµ−1
0 r

. (5)

Ψ(r) is called the magnetostatic potential at the point r and the constant of pro-
portionality µ0 the permeability of free space. The vector field B : r → B(r) on the
domain D = R3 \ {O} is called the magnetic field of the pole of strength m at O.
The equations in (5) have the same form as those given in (1) and hence one can
develop a theory of magnetostatics in parallel with that of electrostatics, see [151].
However there is an important difference. Whereas positive and negative electric
charges can exist separately from each other, magnetic poles cannot. In any volume
(no matter how small) the density of North poles is always the same as the density
of South poles. So the net volume density must be zero and in analogy with the
electric case the corresponding equations to (3) are

div B = 0 and �Ψ = 0. (6)

Now we leave the static case and consider the dynamic case where charges move and
hence generate electric currents. In 1820 Oersted conducted some experiments which
showed that a magnetic field can be generated by an electric current flowing in a
wire. Faraday (1821) [159] also discovered this and the precise relation as enunciated
by Ampère takes the form:

The circulation of a magnetic field in a non-magnetic medium around
a closed path is equal to µ0 times the total current flowing through a
surface bounded by the path.

Suppose that at a point P with position vector r the volume charge density of
electrons is ρ(r) and their velocity4 is v(r), then j(r) = ρ(r)v(r) is defined to be the
current density at the point r. So if S is an orientated piecewise smooth surface and
I is the total current through S, we have

I =

∫
S

ρ 〈v ,n〉 dS =

∫
S

〈j ,n〉 dS.

Hence if C is a closed orientated piecewise smooth curve Ampère’s law takes the
form ∮

C

〈B , t〉 ds = µ0I = µ0

∫
S

〈j ,n〉 dS,

where the the surface S is such that ∂S = C. By Stokes’ Theorem∮
C

〈B , t〉 ds =

∫
S

〈curlB ,n〉 dS and so

∫
S

〈curlB − µ0j ,n〉 dS = 0.

And since this holds for any surface S, we have

curlB = µ0j. (7)

This is the differential form of Ampère’s law. Note that since div curl = 0, the above
equation implies div j = 0 which we will see later is not in general true.
Another major advance was made in 1831 when Faraday [159] discovered, experi-
mentally, that a current was induced in a conducting loop when the magnetic field
changed. Faraday found that:

4Strictly speaking, v(r) is the average velocity of the electrons in a small volume containing P .
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The circulation of the electric field vector around a closed path is equal
to the rate of decrease of the magnetic flux flowing through a surface
bounded by the path.

The mathematical articulation of this law, now known as Faraday’s law was first
given by Maxwell.

V :=

∮
C

〈E , t〉 ds = − d

dt

∫
S

〈B ,n〉 dS, (8)

where C and S are as above with ∂S = C. The circulation V of the electric field
E around C is called the induced voltage. Using Stokes’ Theorem, the differential
form of Faraday’s law is

curlE = −∂B

∂t
. (9)

Maxwell, when only 24, set out to put Faraday’s experimental work on a firm math-
ematical footing. The work, including a correction of Ampère’s law (7) (which
allowed for the possibility that div j �= 0), culminated in his paper “A dynamical
theory of the electromagnetic field” published in (1865) [363]. If ρ is the volume
charge density of electrons and v their velocity, then given an orientated piecewise
smooth closed surface S enclosing a volume Ω, conservation requires that the flux
of electrons through S must be balanced by their rate of decrease in Ω, i.e.∫

S

〈ρv ,n〉 dS = − d

dt

∫
Ω

ρ dx.

By the divergence theorem we get

∂ρ

∂t
+ div (ρv) = 0.

This equation is called the continuity equation. Using the first equation in (3) and
the fact that j = ρv yields

div

(
ε0

∂E

∂t
+ j

)
= 0.

We have seen that (7) implies div j = 0 which, in general, contradicts this equation.
Maxwell saw that if, however, µ0j was replaced with µ0(ε0

∂E

∂t
+ j) in (7), then there

would be no contradiction. Therefore his equations consist of the first equations of
(3) and (6) together with (9) and the adjustment to (7). Hence they take the form

divE = ρ/ε0,

curlE = −∂B

∂t
,

divB = 0,

curlB = µ0

(
ε0

∂E

∂t
+ j

)
. (10)

Maxwell’s hypotheses, together with confirmation of the correction term were sub-
stantiated experimentally by Hertz (1885) eight years after Maxwell’s death.
There is a different version of Faraday’s law for the case where the magnetic field
B is constant in time but the wire circuit C is moving with a velocity v. Then the
induced voltage, V, is given by
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V =

∮
C

〈v × B , t〉 ds. (11)

One can interpret the induced voltage V as being caused by an electric field E′ =
v ×B, so that V =

∮
C
〈E′ , t〉 ds. This suggests that if a charge of magnitude q is

moving with velocity v in both an electrostatic field E and a magnetic field B, the
total force on it, F, will be q(E + E′), i.e.

F = q(E + v × B). (12)

This is known as Lorentz’s force law and its validity has been unquestionably estab-
lished by experiments.

The Elements of Electric Circuits

In electrical engineering an important role is played by circuits in which power in the
form of currents and fields is channelled by slender conductors (wires) connecting
discrete elements. To understand the fine detail of the behaviour of these elements
it is necessary to solve Maxwell’s partial differential equations. Fortunately most
elements are amenable to an adequately accurate, approximate treatment which sim-
plifies the situation enormously. This is called the lumped parameter approximation
and we now illustrate this with a number of examples.

Example 1.4.1. (Resistor). Consider a conductor made of homogeneous material in
the form of a cylinder of length � and cross section area S. It is assumed that the current
density j and the electric field E within the conducting material are both constant and in
the direction of the axis of the cylinder, ẑ. A more general version of Ohm’s law is j = σE,
where σ is called the conductivity of the material, see Notes and References. The voltage
V between the ends of the cylinder and the total current I are

V =

∫ �

0
〈E , ẑ〉 ds = ‖E‖�, I =

∫
S
〈j ,n〉 dS = ‖j‖S.

Now since ‖j‖ = σ‖E‖, we have V =
(

�
σS

)
I = RI, where R =

(
�

σS

)
is the resistance. For

example the resistance of a silver wire of length 1.265 m with a circular cross section of
radius .048 cm is .0281 ohms.
Joule (1841) [281] reasoned, and then confirmed experimentally, that the energy dissipated
as heat when a current I flows in a metallic conductor of resistance R is RI2. �

Example 1.4.2. (Capacitor). Consider two parallel plates charged with constant
charges of equal magnitude but opposite sign. If the distance between the plates is small
compared with the size of the plates, the charge will reside almost entirely on the inner
surfaces of the plates, the electric field will be zero in the interior of the plates and
away from the edges of the plates the electric field between the plates is approximately
normal to them. Hence in this region between the plates the potential will only change
in a direction x1 perpendicular to the plates. So Poisson’s equation for the potential in
Cartesian coordinates reduces to Φx1x1 = 0, where ( )x1 = ∂

∂x1
. The solution of this

equation has the form Φ(x1) = αx1 + β, where α and β are constants. Suppose the plates
are at x1 = a and x1 = b and the potentials are constant on each plate and are Φ(a) = Va

and Φ(b) = Vb, then

Φ(x1) =
(Vb − Va)x1 + bVa − aVb

b − a
.
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Now consider a closed cylindrical surface S where the axis of the cylinder is in the x1

direction and the plane ends of area A are at x1 = a− ε and x1 = a + ε with ε << b − a.
If q is the constant surface density of charge (positive on the one at x1 = a and negative
on the other), then the charge enclosed in S is qA. Hence by (2)

qA/ε0 =

∫
S
〈E ,n〉 dS = −

∫
S1

〈grad Φ ,n〉 dS =
Va − Vb

b − a

∫
S1

dS =
(Va − Vb)A

b − a
,

where S1 is the plane surface at x1 = a + ε. Thus

Va − Vb = Q/C, C =
Aε0

b − a

where Q is the total charge on the plate at x1 = a. So the potential (or voltage) change
across the plates is proportional to the charge. The proportionality constant C is called
the capacitance and such a configuration is called a capacitor or condenser. The above
result neglects fringing of the electric field at the edges of the plates, for a more accurate
expression for the capacitance see Notes and References.
Now let us consider the electric energy stored in the capacitor. The capacitor is charged
by connecting the plates in a circuit with a battery which has the effect of transferring
charge from one plate to the other. If a small charge dQ is brought from a position x1 = b

where the potential is Φ(b) = Vb to a position x1 = a where potential is Φ(a) = Va, then
the work done is dW = (Va − Vb)dQ. Hence dW = (Q/C)dQ and so the the total work
done in charging the capacitor is W = Q2/(2C), where ±Q are the final charges on the
plates. �

Example 1.4.3. (Inductor). Consider a coil consisting of n turns of wire which are
tightly wound on a toroidal frame of rectangular cross section and permeability µ0. The
inner and outer radii of the frame are r1 and r2, respectively, the height of the frame is h

and there is a current of magnitude I(t), t ≥ 0 in the conducting wire.
Suppose that cylindrical coordinates are such that the z-axis is the axis of symmetry
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�
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� �

�
Cr
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�
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r2

r

Figure 1.4.1: Toroidal inductor

and the frame is located between r = r1 and r = r2. Let Cr be a circular path within
the toroidal frame of radius r with r1 < r < r2, We assume axial symmetry so that the
magnetic field B = B(r, z, t) only depends on r, z and t. By Ampère’s law applied to the
surface of the disk bounded by Cr, we have

µ0 n I(t) =

∮
Cr

〈B , t〉 ds

where t is the unit tangent to Cr. If B2 is the magnitude of the magnetic field in the
direction t, then
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∮
Cr

〈B , t〉 ds =

∫ 2π

0
B2(r, z, t) ds = 2π rB2(r, z, t).

So B2(r, z, t) = µ0(2π r)−1nI(t). Since the coil is tightly wound around the toroidal frame,
every loop approximately traces out the perimeter of a surface which is a rectangular cross
section of the frame. Let us apply Faraday’s law to one such surface S. Then the normal
to this surface n = t. So if V(t) is the induced voltage

V(t) = − d

dt

∫
S
〈B ,n〉 dS = − d

dt

∫ h

0

∫ r2

r1

B2(r, z, t)drdz = −µ0n

2π

dI

dt
(t)

∫ h

0

∫ r2

r1

r−1drdz

= −µ0nh

2π
ln (r2/r1)

dI

dt
(t).

Since there are n such coils, if V is the total voltage dropped, we have

V (t) = Lİ(t), L =
µ0n

2h

2π
ln (r2/r1).

The constant L is called the inductance and such a configuration is called an inductor.
Now let us consider the magnetic energy stored in the inductor. Each charge in the wire
is receiving energy at a rate 〈E ,v〉 where E is the force on it and v is its velocity. So that
if ρ is the density of charge per unit length the rate of doing work on the coil is

dW

dt
=

∮
coil

〈E ,v〉ρ ds =

∮
coil

〈E , j〉 ds = I

∮
coil

〈E , t〉 ds = V I = LI
dI

dt
,

by (8). So we see that the energy required to build up the current I in the inductor is
W = (L/2)I2. �

Symbol Constitutive Law Variables

1 2

L

V1 − V2 = Lİ
voltage change across an inductor of

inductance L with a current I

1 2

C

V1 − V2 = Q/C
voltage change across a capacitor of
capacitance C with a charge Q on

one plate and −Q on the other

1 2

R

V1 − V2 = IR
voltage change across a resistor of

resistance R with a current I

Table 1.4.2: Symbols and constitutive laws of a resistor, capacitor and inductor

Inductors, capacitors and resistors are the classical elements of electric circuits.
Their symbols and constitutive laws are shown in Table 1.4.2. They are, respectively,
the counterparts of masses, springs and dampers in mechanical systems. This corre-
spondence is shown in Table 1.4.3 where M, k, c are the mass, spring constants and
damping coefficient respectively, F is force, y displacement, v velocity and T ,W,D
are the kinetic energy of the mass, the potential energy of the spring and the energy
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mass inductor spring capacitor damper resistor

M L k 1/C c R

F V1 − V2 F V1 − V2 F V1 − V2

v I y Q v I

F = Mv̇ V1 − V2 = Lİ F = ky V1 − V2 = Q/C F = cv V1 − V2 = IR

T =(M/2)v2 W =(L/2)I2 W=(k/2)y2 W =Q2/(2C) D=cv2 W =RI2

Table 1.4.3: Table of corresponding quantities

dissipated by the damper. For example in the first column mass corresponds to
inductance, the force on the mass corresponds to the voltage change across the in-
ductor and the velocity of the mass corresponds to the current in the inductor. The
last two rows gives the corresponding constitutive laws and energies of the elements.
The correspondence given in Table 1.4.3 is called the Force-Voltage analogy. There
is also a Force-Current analogy, see [397]. These analogies suggest that the varia-
tional method described for mechanical systems in the previous section can also be
applied to electrical systems, and indeed this is the case, see Notes and References
and the following example.

Example 1.4.4. (Linear RLC circuit). Consider the circuit driven by a voltage
source e(t) as in Figure 1.4.4. The corresponding mechanical system is given on the left
hand side of Figure 1.3.3. A systematic way of determining the laws of motion for the
circuit will be explained in the next subsection. There we will see that by Kirchhoff’s

L

C

�I

R

e
+

−

Figure 1.4.4: RLC circuit

voltage law the sum of the voltages around the closed circuit is zero. To be more precise
if the current is in the direction indicated in Figure 1.4.4, then there will be a drop in
the voltage across each of the elements. And Kirchhoff’s law states that the total voltage
drop across these elements must be balanced by that supplied by the voltage source. So
if the voltage across the resistor, capacitor and inductor at time t are VR(t), VC(t), VL(t),
respectively, we have

e(t) − VR(t) − VC(t) − VL(t) = 0, t ≥ 0.

But if the current around the circuit at time t is I(t) and the charge on the capacitor is
Q(t), then

VR(t) = I(t)R, VC(t) = Q(t)/C, VL(t) = Lİ(t), I(t) = Q̇(t), t ≥ 0.
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Hence
e(t) = LQ̈(t) + RQ̇(t) + Q(t)/C, t ≥ 0.

If T = (L/2)Q̇2 is the magnetic energy of the inductor, W = Q2/(2C) the electric energy of
the capacitor, D = RQ̇2 the energy dissipated by the resistor, F (t) = e(t) and L = T −W,
then the above equation can be obtained directly via the variational method by writing
down Lagrange’s equation (3.39).

d

dt

(
∂L

∂Q̇
(Q(t), Q̇(t))

)
− ∂L

∂Q
(Q(t), Q̇(t)) +

1

2

∂D
∂Q̇

(Q̇(t)) = F (t).

Setting x1 = Q, x2 = Q̇, we can re-write the equation of motion as a system of first order
equations, namely [

ẋ1

ẋ2

]
=

[
0 1

−1/LC −R/L

] [
x1

x2

]
+

[
0

1/L

]
e.

Suppose we are interested in determining the charge on the capacitor. It is difficult to
measure the charge directly, so we may ask whether or not it is possible to determine
the charge by measuring the current I = Q̇ = x2. Setting y = x2 = [0 1]x, this is an
observability problem: given the observation y(·) and the input e(·) on some time interval,
is it possible to determine the state x(·)? �

In the following example we illustrate how the Lorentz force law (12) can be used
to describe the interaction between electromagnetic forces and mechanical motion.

Example 1.4.5. (Loudspeaker). A loudspeaker is an electromechanical system in
which the mechanical part is a loudspeaker diaphragm. Electromagnetic forces are used
to make the diaphragm move and the consequent motion generates sound which is then
transmitted through the air to the ear. Basically a signal from a tape, record, or disk
generates an input voltage e(t) in a circuit. Part of this circuit is in the form of a coil
within a fixed permanent magnet. The motion of the electric charges in the coil interacts
with the magnetic field generated by the magnet to produce a Lorentz force as given by
(12). Since the speaker diaphragm is rigidly attached to the coil this force on the coil causes
the diaphragm to move. The whole idea is that the diaphragm motion which produces
the sound should be proportional to the original input signal. An idealized model is given
in Figure 1.4.5.
The magnet is cylindrical with an inner solid cylindrical core which is the South pole and
an outer concentric cylindrical shell which is the the North pole. It is assumed that this
configuration results in a radial magnetic field in the air gap between the North and South
poles directed to the axis of the magnet. In the figure the magnet is shown as dotted
rectangles with small dots. The diaphragm is on the right of the figure and is shown as a
rectangle with small circles, whereas the coil, which is rigidly connected to the diaphragm,
is situated in the air gap between the North and South poles and is represented by small
black circles inside other circles. It consists of n turns of wire each of which is at a distance
a from the axis of the magnet. The motion of the diaphragm is modelled as an oscillator
with mass m, damping c and stiffness k whereas the electric circuit is modelled as one
which contains a resistor with resistance R and an inductor with inductance L. Suppose
(r, θ, z) are cylindrical coordinates where the z-axis is along the central axis of the magnet
directed from the magnet to the diaphragm. It is assumed that the diaphragm and coil
are constrained so that only motion in the z direction is allowed. Then if F (t) is the
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Figure 1.4.5: Loudspeaker
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Figure 1.4.6: Magnet-coil geometry

component of the Lorentz force on the coil in this direction, since the coil and diaphragm
are rigidly connected, the mechanical equation of motion of the diaphragm is

mz̈(t) + cż(t) + kz(t) = F (t).

And if V (t) is the voltage induced as a consequence of the motion of the coil in the magnetic
field, then just as in Example 1.4.4, one obtains the following equation of motion for the
current I(t) in the circuit

Lİ(t) + RI(t) = e(t) + V (t).

In order to complete the picture we find expressions for the terms F (t) and V (t). The
magnitude of the magnetic field B at r = a is denoted by B and it is assumed to be
independent of z, θ and t. If at a point in the coil parametrized by an angle θ, θ ∈ [0, 2nπ)
there is a charge q(t, θ) which has a velocity v(t, θ) the Lorentz force on it is qv × B.
The velocity v has a component v1 in the direction of the z-axis, but since v1 × B is
perpendicular to the z-axis it will not make any contribution to F (t). The other component
of the charge’s velocity is due to the movement of the charge around the coil. If its
magnitude at (t, θ) is v2(t, θ), then the magnitude of the Lorentz force F2 in the direction
of the z-axis is

F2(t, θ) = q(t, θ)v2(t, θ)B.
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Hence
d

dθ
F2(t, θ) = B

d

dθ
(q(t, θ)v2(t, θ)) = aBI(t).

So the total force in the direction of the z-axis is F (t) = 2nπaBI(t). We see therefore that
our mathematical model for the motion of the diaphragm is that of an oscillator driven
by a force proportional to the current I(t) in the coil.
The induced voltage V (t) in the circuit is due to the motion of the coil in the z direction.
In order to determine it we apply Faraday’s law (11) with C being one loop of the coil in
the magnet. If t is the unit tangent to C, we have

V =

∮
C
〈v1 × B , t〉 ds = −aBż

∫ 2π

0
dθ = −2πaBż.

And since the coil consists of n turns of wire the total induced voltage is given by V (t) =
−2nπaBż(t). Setting x1 = z, x2 = ż, x3 = I, we obtain the following state space system⎡⎣ ẋ1

ẋ2

ẋ3

⎤⎦ =

⎡⎣ 0 1 0
−k/m −c/m 2nπaB/m

0 −2nπaB/L −R/L

⎤⎦⎡⎣ x1

x2

x3

⎤⎦+

⎡⎣ 0
0
1

⎤⎦ e.

Suppose y(t) = x1(t) = z(t), then the design problem is that of choosing some or all of
the parameters k, c, L,R, n, a,B so that y(t) approximates the input e(t) for all t ≥ 0. �

1.4.2 Electrical Networks

In this subsection we give a brief account of how graph theoretical methods are
used to obtain models of interconnected electrical systems. We will only consider
electrical networks consisting of voltage sources, current sources, resistors, inductors
and capacitors. For the modelling of more general networks and more detail of
network methods, see Notes and References.
Determining the differential equations which govern a complicated network can be
quite difficult. Nowadays it is common to use computer aided modelling procedures.
These are based on a graph theoretical representation of the electrical network.
Before describing the details we recall some basic facts from graph theory.
A directed graph G = (V, E, ϕ) consists of a finite vertex set V , a finite edge set E
and an incidence map

ϕ : E → V 2, e → ϕ(e) = (ϕ1(e), ϕ2(e)).

If ϕ(e) = (v1, v2), then one calls v1 the initial vertex and v2 the terminal vertex of
the edge e. Equivalently, edge e is said to be directed from v1 to v2. For a vertex
v ∈ V it is useful to define the sets of edges with initial and terminal vertex v ∈ V ,
viz.

E(v, ·) = ϕ−1
1 (v) = {e ∈ E; ϕ1(e) = v}

E(·, v) = ϕ−1
2 (v) = {e ∈ E; ϕ2(e) = v}. (13)

The cardinalities of these sets are called the out-degree, dout(v), and in-degree, din(v),
of v, respectively. Then d(v) = dout(v)+din(v) is the total number of edges incident
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on v and is called the degree of v.
A path of length r ≥ 1 is a sequence e = (e1, e2, ..., er) ∈ Er with the property

ϕ1(ei+1) = ϕ2(ei) =: vki
, 1 ≤ i ≤ r − 1.

vk0 := ϕ1(e1) is called the initial vertex and vkr := ϕ2(er) is called the terminal
vertex. So one may equally think of e as a path from vk0 to vkr . An elementary
path is one in which vk1, ..., vkr are distinct and a cycle is an elementary path with
vk0 = vkr . The directed graph G is said to be strongly connected 5 if for any two
distinct vertices v, v′ ∈ V there exists a path from v to v′.
In our application to networks we do not always want the direction associated with
an edge to play a role. A succinct way of achieving this with the above set up is to
define for every edge e ∈ E an additional edge −e which is directed from the termi-
nal vertex of e to the initial vertex of e. Let −E denote the set of these additional
edges. Then E ∩−E = ∅. ϕ is extended to an incident map ϕ̃ on Ẽ = E ∪̇ −E by
setting ϕ̃(−e) = (ϕ2(e), ϕ1(e)) for e ∈ E. This results in the graph G̃ = (V, Ẽ, ϕ̃).
A graph G′ = (V ′, E′, ϕ′) is called a subgraph of G = (V, E, ϕ) if V ′ ⊂ V , E ′ ⊂ E and
ϕ′ = ϕ |E′. A spanning subgraph of G = (V, E, ϕ) is a subgraph G′ = (V, E′, ϕ |E′)
with the same vertex set as G. It is a proper spanning subgraph of G if E ′ �= E.
Finally a cut-set C of G is a set of edges in E such that if all the edges c,−c with
c ∈ C are removed from the graph G̃, the resulting graph decomposes into two
strongly connected graphs (one of these may consist of a single vertex).
For the graph G̃ we need the concept of a subgraph which inherits the “undirected”
structure of G̃. We say that G′ ⊂ G̃ is a symmetric subgraph if it is a subgraph
whose edge set E ′ has the following property: e ∈ E ′ ⇔ −e ∈ E ′ for all e ∈ E. A
tree in G̃ is a minimal symmetric strongly connected subgraph of G̃ (or equivalently,
a symmetric strongly connected subgraph without non-trivial cycles). One can show
that a symmetric subgraph of G̃ is a tree with n vertices if and only if it has 2(n−1)
edges. Moreover, if one adds one edge ẽ ∈ Ẽ to a tree this creates exactly one cycle.
A spanning tree in G̃ is a spanning subgraph which is a tree in G̃. One can show
that G̃ always contains a spanning tree if it is strongly connected.
Now suppose that G̃ is strongly connected. Given a spanning tree T of G̃, any cycle
obtained by adding to T an edge of the graph G̃ which is not an edge of the tree is
called a fundamental cycle of G̃ (with respect to the given spanning tree).
In electrical networks there are no self-loops, i.e. there are no edges with the prop-
erty that ϕ1(e) = ϕ2(e). The constitutive laws of the elements in the network are
assumed to be the ones given in Table 1.4.2 and the resistances, capacitances and
inductances of the connecting wires are neglected. A directed graph of the network
is defined by replacing every element (resistor, inductor, capacitor, voltage and cur-
rent sources) by an edge and the junction points of the wires (where the elements are
connected together) by a vertex. Let E be the corresponding set of edges (network
elements) and V the set of vertices (junction points). If a network element e joins
the junction points v and v′, we may choose the direction of the edge e arbitrarily

5The directed graph G is called connected if the extended graph G̃ is strongly connected. Note
that a directed graph consisting of just two vertices and one edge between them, is connected but
not strongly connected.
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by setting either ϕ(e) := (v, v′) or ϕ(e) := (v′, v). The incidence map ϕ : E → V 2 is
defined by choosing one of these two possibilities for each edge e ∈ E. With these
specifications we obtain a directed graph G = (V, E, ϕ) representing the electrical
network. Associated with each edge e ∈ E are two time-varying weighting functions
Ie(·), Ve(·) : [0,∞) → R; the current and voltage across the element which is rep-
resented by the edge. The direction of each edge is taken as reference direction for
the current and the voltage drop. This is not a restriction, since negative values of
Ie and Ve are allowed. However it does mean that Ie and Ve have the same sign.
Since we also consider the graph G̃ we have to associate with each edge −e ∈ −E a
current and voltage and it is natural to set I−e = −Ie and V−e = −Ve, respectively.
In assembling an electrical network by interconnecting various elements there are
constraints on the currents and voltages given by Kirchhoff laws. The current law
can be expressed in terms of the graph G whereas we need the extended graph G̃ in
order to state the voltage law.

Kirchhoff’s current law states that the net current flow in and out of every vertex
at the time t is zero, i.e.∑

e∈E(·,v)

Ie(t) −
∑

e∈E(v,·)
Ie(t) = 0, t ≥ 0, v ∈ V. (14)

Here E(v, ·) and E(·, v) are defined by (13).
Since the current in the edge −e ∈ −E is by definition −Ie we could also have
expressed the current law for the graph G̃ with the result that the LHS of (14)
would have doubled.

Kirchhoff’s voltage law states that the total voltage drop around every cycle in
G̃ must be zero, i.e. if e = (e1, e2, ..., er) is a cycle in Ẽ, then

r∑
j=1

Vej
(t) = 0, t ≥ 0. (15)

Suppose Kirchhoff’s current law is written down for each vertex of G and we are
given a cut-set for this graph. If we sum up the equations for all the vertices in
either of the two subgraphs of G defined by the cut-set, only those currents entering
or leaving the subgraph remain since the others cancel. So for the currents in the
edges of the cut-set we have:

Cut-set condition: The sum of the currents entering one of the two subgraphs of G
defined by a cut-set must equal the sum of the currents leaving it.

This version of Kirchhoff’s current law is applied to each cut-set in E. Then Kirch-
hoff’s voltage law is applied to each cycle in G̃. The resulting equations together
with the constitutive laws of the elements are used to obtain a dynamical model for
the electrical network. However there is a certain amount of redundancy if Kirch-
hoff’s laws are applied to every cut-set and every cycle, in the sense that some of the
equations are linearly dependent. Moreover it is not clear which variables should
be eliminated and which ones retained in order to get a dynamical system model.
Engineers have devised methods for overcoming these problems by means of a judi-
cious choice of cut-sets, cycles and state space variables, see Notes and References.
They recommend the following:
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(C1) Select a spanning tree of the graph G̃ so that it contains all resistors, no
current sources, and has as many capacitors and as few inductors as possible.
In general these last two aims may be contradictory and a compromise must
be made. For each edge in e ∈ E of the tree, find a cut-set6 (a subset of E)
which contains the edge but no other edge in E of the spanning tree. Then for
each such cut-set write down the equation determined by the corresponding
cut-set condition.

(C2) For every fundamental cycle obtained by adding to the spanning tree any edge
of G̃ write down Kirchhoff’s voltage law (15).

(C3) For every edge of the graph write down the constitutive law of the correspond-
ing element of the network.

(C4) Choose the charges on the capacitors and the currents through inductors which
appear in the equations obtained by (C1), (C2) and (C3) as state space vari-
ables and eliminate all the others.

Example 1.4.6. Consider the network shown in Figure 1.4.7. The vertices of the asso-

R6

+
−

I7

u

I6

L4
I3

C3

R1

I1
I2

L2

R5

I5I4

Figure 1.4.7: RLC Network

ciated graph correspond to the junction points marked with a • in Figure 1.4.8 and the
edges correspond to the network elements (1 capacitor, 2 inductors, 3 resistances and a
voltage source). Directions for the edges are chosen arbitrarily and the choice we have
made is shown in the directed graph on the left of Figure 1.4.8. The extended graph G̃ is
obtained from G by eliminating the arrowheads on the edges in G. Thus every line segment
in the right hand graph of Figure 1.4.8 stands for a pair of edges {ei,−ei} of G̃. There are
many spanning trees of the graph G̃, e.g. {±e1,±e3,±e5,±e6}, {±e3,±e5,±e6,±e7}, and
{±e6,±e7,±e4,±e3}. Guided by (C1) we choose to work with {±e1,±e3,±e5,±e6} since

6The cut-set is uniquely determined. It consists of e together with all those edges in E which
connect a vertex of one of the subgraphs with a vertex of the other.
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Figure 1.4.8: Directed graph G and spanning tree of G̃

it contains all resistors, the capacitor and no inductor. This tree is drawn with continuous
edges in the right hand figure of Figure 1.4.8 whereas all other edges of the graph are
dashed. The cut-set containing edge e3, is {e3, e2, e4, e7} and by the cut-set condition,

I2 + I3 + I4 = I7. (16)

The cut-set containing edge e1 is {e1, e4, e7}, so

I1 + I4 = I7, (17)

The cut-set containing edge e5 is {e5, e2, e7}, so

I5 + I2 = I7. (18)

Finally the cut-set containing edge e6 is {e6, e7}, so

I6 = I7. (19)

Guided by (C2) we have to find the fundamental cycles in G̃ associated with the spanning
tree {±e1,±e3,±e5,±e6}. These are (−e2, e3, e5) and the reverse cycle (e2,−e5,−e3),
(−e4, e1, e3) and the reverse cycle (e4,−e3,−e1), (e1, e3, e5, e6, e7) and the reverse cycle
(−e1,−e7,−e6,−e5,−e3). Applying Kirchhoff’s voltage law to these cycles we have

−V2 + V5 + V3 = 0, (20)

−V4 + V3 + V1 = 0, (21)

V1 + V3 + V5 + V6 = u. (22)

The equations (16)-(19) and (20)-(22) are augmented with the constitutive laws

V1 = I1R1, V2 = Lİ2, V3 = Q3/C3, V4 = Lİ4, V5 = I5R5, V6 = I6R6. (23)

We now follow (C4) and choose I2, Q3, I4 as state variables and eliminate all the other
variables in (16)–(23). To this end, from (16)–(19) we have⎡⎣ I1

I5

I6

⎤⎦ =

⎡⎣1 1 0
0 1 1
1 1 1

⎤⎦⎡⎣I2

I3

I4

⎤⎦



1.4 Electromagnetism and Electrical Systems 55

and substituting in (20)–(22) and using the expressions for V1, V5, V6 in (23) yields⎡⎣1 −R5 0
0 −R1 1
0 R 0

⎤⎦⎡⎣V2

I3

V4

⎤⎦ =

⎡⎣ 0 1 R5

R1 1 0
−(R1 + R6) −1 −(R5 + R6)

⎤⎦⎡⎣I2

V3

I4

⎤⎦+

⎡⎣0
0
1

⎤⎦u ,

where R = R1 + R5 + R6. But⎡⎣1 −R5 0
0 −R1 1
0 R 0

⎤⎦−1

= R−1

⎡⎣R 0 R5

0 0 1
0 R R1

⎤⎦
and hence

R

⎡⎣V2

I3

V4

⎤⎦ =

⎡⎣−R5(R1 + R6) (R1 + R6) R1R5

−(R1 + R6) −1 −(R5 + R6)
R1R5 R5 + R6 −R1(R5 + R6)

⎤⎦⎡⎣I2

V3

I4

⎤⎦+

⎡⎣R5

1
R1

⎤⎦u .

Then using (23) and I3 = Q̇3 we get

R

⎡⎣ İ2

Q̇3

İ4

⎤⎦ =

⎡⎣−R5(R1 + R6)/L2 (R1 + R6)/L2C3 R1R5/L2

−(R1 + R6) −1/C3 −(R5 + R6)
R1R5/L4 (R5 + R6)/L4C3 −R1(R5 + R6)/L4

⎤⎦⎡⎣ I2

Q3

I4

⎤⎦+

⎡⎣R5

1
R1

⎤⎦u .

This is the dynamical model for the given RLC network obtained by following the guide-
lines (C1)-(C4). Note that⎡⎣ I2

Q3

I4

⎤⎦ =

⎡⎣ 0 −1 1
−R1C3 −R5C3 −R6C3

−1 0 1

⎤⎦⎡⎣I1

I5

I6

⎤⎦+

⎡⎣ 0
C3

0

⎤⎦u .

Using this transformation we could also write down differential equations for I1, I5, I6 in
violation of the guidelines. In this case both u and its derivative u̇ will appear on the RHS.
We will later restrict our analysis to dynamical models which do not contain derivatives of
input variables. So without further modification the dynamical model in terms of I1, I5, I6

will not fit this specification. �

1.4.3 Notes and References

A classical reference on electromagnetic theory is the book of Elliott (1966) which has been

republished as an IEEE reprint, see [151]. Its main features are the historical material

in each chapter and the development, via special relativity, of a complete electromagnetic

theory. We also recommend the Lecture Notes on Physics by Feynman (1975) [161].

The more general version of Ohm’s law and the effect of the fringing of the electric field

on the capacitor considered in Example 1.4.2 can be found in [151]. A good book on

vector fields developed through its application to engineering is Shercliff (1977) [463]. As

an elementary mathematical introduction to Vector Analysis we recommend the textbook

of Marsden and Tromba (1996) [362]. For a discussion of the modelling of electrical and

electromechanical systems, see Ogata (1992) [397], Burton (1994) [84], Close and Frederick

(1995) [105] and for references on electrical circuits see e.g. Johnson et al. (1992) [278]

and Wellstead (1979) [516]. A comprehensive account of graph theory is contained in Thu-

lasiraman and Swamy (1992) [495]. A concise description of how to use graph theoretical

tools for the modelling of electrical networks can be found in Zerz (2000) [545], see also

[278] and [516].
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1.5 Digital Systems

In recent years, due mainly to the simultaneous dramatic improvement and reduction
in cost of digital hardware, digital systems have become all pervasive in technology.
They form a class of dynamical systems with quite distinctive features and there-
fore special engineering and mathematical disciplines have been developed for their
analysis and design: “Theory of Switching Networks”, “Automata Theory”, “Logic
Design”, see Notes and References. Although these areas are not subjects of this
book, it is appropriate to discuss some examples and special features of digital sys-
tems since they are not only an important class of dynamical systems in themselves
but are also increasingly used in the control and measurement of analog signals and
systems. Indeed many analog devices in signal processing, filtering and control have
been replaced by digital counterparts which are often cheaper, more robust and more
reliable.
The essential difference between analog and digital systems is that in the former
ones input, output and internal state variables take on a continuous range of values
whereas in the latter ones there are only a finite number of input, output and state
values. Most digital systems are binary, i.e. their input, output and state variables
take only two different values, “on” and “off”. Physically these values may be en-
coded by different voltages (e.g. 5 volts versus 0 volts), by the flow or non-flow of an
electrical current or by magnetic polarization (North and South). Mathematically
the “on” and “off” values are usually represented by 1 and 0, the elements of the
simplest nontrivial Boolean algebra B = {0, 1} or, alternatively, the binary field
Z2 = Z/(2).
Because of its binary components a digital system is often viewed as a network of
switches which operates in discrete time t ∈ N or Z. There are two basic classes.

• Combinational switching networks are those whose current outputs depend
only on the current inputs. Dynamical systems with this property are called
memoryless, they transform the inputs directly into outputs without interme-
diate storage of energy or information. Physically, the output changes a short
time after the input changes, but this short time delay is neglected in the
mathematical description of the digital system. By convention the “current”
input at time t ∈ Z, u(t), determines the “current” output, y(t).1 If such a
combinational network has m input and p output channels its behaviour is
completely described by a function F mapping the 2m possible input vectors
u(t) ∈ Bm into the corresponding output vectors y(t) = F (u(t)) ∈ Bp.

• Sequential switching networks or finite state machines are those digital systems
whose current outputs depend not only on the current inputs but also on the
sequence of previous inputs. Such systems (for example a digital clock or a
computer) contain memory elements in which information about the history
of previous inputs is stored. The (binary) contents of all its, say n, memory
elements form together a binary vector x ∈ Bn which is called the state of

1Alternatively, one could redefine the time dependence of the output function in such a way
that the present input u(t) determines the next output y(t+1). In fact, this alternative convention
is usually chosen in the mathematical description of sequential networks, see Example 1.5.2.
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the system. The current state and the current input together determine the
current output and the next state of the system. The behaviour of a sequential
switching network is therefore described by two maps, which determine the
current output and the next state as functions of the current input and the
current state of the system. This is in contrast with combinational switching
networks where there is no need to introduce the notion of state.

Before describing some elementary building blocks of these two types of digital
systems we illustrate the difference between combinational and sequential switching
networks by two examples.

Example 1.5.1. (Half and full adder). Suppose we want to add two binary digits
A and B. A combinational switching network which performs this addition is called a half
adder. It accepts two binary digits A and B (bits) as inputs and produces two binary
digits as outputs, the “sum” S = A · (1 − B) + (1 − A) · B in Z2 (i.e. A + B mod 2) and
the “carry” C = A · B. The binary number CS formed by the two outputs is the dyadic
representation of the sum of A and B in Z, A + B = C21 + S20.

�

�

�

�

B

A

S

C
H A

A B C S

0 0 0 0
1 0 0 1
0 1 0 1
1 1 1 0

Figure 1.5.1: Block diagram and input-output table of half adder

When two binary numbers are added digit by digit, a third input must be considered,
the carry-in from the next lower position. This yields the full adder. By a combination
of half and full adders one can construct memoryless digital systems for the addition of
arbitrary binary numbers of limited length. For instance, one can construct a machine for
computing the sum of two binary numbers of 4 digits each by connecting in series one half
adder and three full adders.
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�
�

�
B

A

Cin
S

Cout
F A

A B Cin Cout S

0 0 0 0 0
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
1 1 0 1 0
1 0 1 1 0
0 1 1 1 0
1 1 1 1 1

Figure 1.5.2: Block diagram and input-output table of full adder

In the above descriptions of the half and the full adder, time does not play a role since
these digital systems are both memoryless and time–invariant. The current output y(t) =
(Cout, S) is completely determined by the current input u(t) = (A,B) (resp. u(t) =
(A,B,Cin)); it does not depend upon the previous inputs (the system has no memory).
Moreover, identical input vectors always determine the same output vector (independent
of the time t at which they are applied), the input-output relationship does not change
with time, it is time–invariant. �



58 1. Mathematical Models

Example 1.5.2. (Parity check machine). Whenever digital systems are used in
computing or communication it is necessary to convert numbers and letters into strings
of 1’s and 0’s. A map F : U → B

p which maps a finite input alphabet (set of characters)
U injectively into the set B

p of p-bit strings (code words) is called a block code of size p.
An arbitrary string of p bits may or may not be a code word for the code F . An encoding
device can be described as a memoryless time–invariant digital system which accepts inputs
u from the finite input alphabet U and transforms these into outputs y = F (u) ∈ B

p. A
widely used alpha-numerical code is the ASCII code. This is a seven-bit code for the 10
decimal numbers, the 26 lower-case and 26 upper-case characters of the English language
and a large number of special characters, such as “+”, “)”, “%” etc. With seven bits it is
possible to encode at most 27 characters.
When information is encoded and transmitted some bits may be changed due to electrical
noise or other transient failures. The change of a single bit can be detected by adding
one bit to each code word in such a way that after this addition each valid code word has
an even number of 1’s, e.g. the ASCII code word for a is 1100001. This word has odd
parity and so a 1 would be prefixed to the code word in order to achieve even parity. Thus
the enlarged code word permitting error detection would be 11100001. If now one bit is
changed in the code word, say by a transmission failure, the error would be detected by
examining the parity of the transmitted word.2 This can be done by a parity checker, a
device which responds to a finite binary sequence (u(0), u(1), . . . , u(t)) with the output
y(t + 1) = 0 (in the next time unit) if the number of 1’s in the sequence is even (no
error), and with a 1 if not (error). The next output of a parity checker clearly depends
not only on the current but also on the past inputs. If the number of ones in the past
input sequence (u(0), u(1), . . . , u(t − 1)) is even the next output y(t + 1) is equal to the
current input u(t). If, however, the number of ones in the past input sequence is odd, the
next output is the complement of the current input, y(t + 1) = u(t) = 1−u(t). These two
cases lead to the idea of constructing a parity checker as a machine with two states, Even
and Odd, which “remember” the parity of the past output sequence and are encoded by 0
and 1. The state transition of the parity checker under the influence of the present input
is represented by its state transition graph and is explicitly described in the “next state
table”, see Figure 1.5.3.

00

1

1

Even

Reset

Odd
0 1

Current State Input Next State Output
0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1

Figure 1.5.3: State transition graph and next state table of a parity checker

The system equations of the parity checking machine are

x(t + 1) = x(t) + u(t), t ∈ N, x(0) = 0

y(t) = x(t)

2Note that if two bits are simultaneously changed in a code word this will not be discovered by a
parity checker. However, the occurrence of a double error is much less probable than the occurrence
of a single error (p2 instead of p if p is the probability of a single error, assuming independence of
the transmission errors).
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where u(t), x(t), y(t) ∈ Z2 denote the current input, state and output, and x(t + 1) ∈ Z2

is the next state. (The addition on the RHS of the first equation is taken in the binary
field Z2). In order that this machine can be used for detecting errors in code words, a
reset mechanism is needed which allows one to reset the state of the machine to 0 after
the examination of each code word. �

1.5.1 Combinational Switching Networks

In this brief subsection we describe some of the elementary building blocks of combi-
national networks, the logic gates, and illustrate how simple arithmetic units, like the
half and the full adder, can be built from these gates. We also explain by means of
an example how the digital input–output behaviour of a gate can be approximately
realized by a continuous nonlinearity.

Example 1.5.3. (Logic gates and half adder). A logic gate is an electronic device
with two (or more) binary inputs and one binary output which performs simple logical
operations. Its input–output behaviour can be described by a truth table or in terms of
the three basic Boolean operations ∧,∨ and complementation. The three logic gates AND,
OR, NOT which perform these operations are described in the following table together
with a NOR gate which is a cascade connection of an OR-gate and the “inverter” NOT.

yu

y = u [= 1 − u]

NOT

u y = u

0 1
1 0

yu1
u2

y = u1 ∧ u2 [= u1 · u2]

AND

u1 u2 y = u1 ∧ u2

0 0 0
0 1 0
1 0 0
1 1 1

yu1
u2

y = u1 ∨ u2 [= 1 − (1 − u1) · (1 − u2)]

OR

u1 u2 y = u1 ∨ u2

0 0 0
0 1 1
1 0 1
1 1 1

yu1
u2

y = u1 ∨ u2 [= (1 − u1) · (1 − u2)]

NOR

u1 u2 y = u1 ∨ u2

0 0 1
0 1 0
1 0 0
1 1 0

Table 1.5.4: Logic Gates

The table shows the standard symbols of these gates, their truth tables and the expression
of their outputs in terms of their inputs (in the Boolean algebra B). Note that these gates
can also be described by arithmetic expressions in the binary field Z2, but while the AND
gate corresponds to multiplication the OR gate does not correspond to addition in Z2

(although ∨ is often replaced by + in textbooks on logic design). The four gates NOT,
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AND, OR, NOR correspond, respectively, to the following four operations in Z2: X → X =
1−X (complementation), (X,Y ) → X ·Y (multiplication), (X,Y ) → 1− (1−X) · (1−Y )
and (X,Y ) → (1 − X) · (1 − Y ).
These gates can be combined to produce digital networks which perform more complicated
logic or arithmetic functions. As an example we show in Figure 1.5.5 the realization of a

A

B
S (sum)

C (carry)

Figure 1.5.5: Realization of a half adder

half adder by a network of gates. The half adder is the simplest arithmetic circuit. The
full adder (see Example 1.5.1) can be constructed from two half adders and an OR gate.

HA 1

HA 2

C2

S2

S1

C1
A

B

Cin

Cout

S

Figure 1.5.6: Realization of a full adder

Half and full adders are simple examples of composite systems i.e. systems composed of
a number of interconnected subsystems. Very complex systems can be built in this way.
In fact any function F : Z

m
2 → Z2 or, equivalently, any logical/Boolean operation can be

realized by the three gates NOT, AND, OR3. �

Usually a given Boolean operation can be realized by an interconnection of gates in
many different ways. A basic problem in logic design is that of “minimal realization”:
Realize a given Boolean function by a network in which there is a minimum

• number of gates,

• number of gate inputs–this determines the amount of wiring within the net-
work,

• number of cascaded levels of gates (i.e. the number of gates in the largest path
from any input to any output). This number determines the overall time delay
between inputs and outputs of the network.

Usually the above numbers cannot be minimized simultaneously so one must find a
suitable compromise. Problems of minimal realization also arise in systems theory
when one wants to realize a given input-output behaviour by a continuous or dis-
crete time linear system with a minimal number of state variables, see Vol. II.
Before going on to discuss the notion of a sequential network (finite state machine)

3For a variety of reasons, NAND and NOR gates (i.e. the inverted AND and OR gates) are
preferred in practice to AND and OR gates for realizing logic circuits.



1.5 Digital Systems 61

it is useful to comment on some important points related to the physical realization
of both kinds of switching networks (combinational and sequential). The physi-
cal components of a digital system are constructed from electronic building blocks
(resistors, diodes, transistors) – in other words a digital system is built with analog
building blocks operating in continuous time with real valued input, output and state
coordinates. Natura non facit saltus. So the physical quantities within the system
(voltages, currents) when they move from one of their two values to the other, will
vary over a continuous range of transitional values. One must, therefore, distinguish
between the digital system as a mathematical model and its physical realization by
an electronic circuit. A precise modelling of the latter would be based on ordinary or
partial differential equations with a continuous time domain, and these differential
equations would describe not only the transition from the current steady state of the
circuit to the next one but the whole continuous trajectories of its state and output
vectors. In the above, what has been written about digital systems is concerned
with their ideal mathematical behaviour and does not exactly apply to their phys-
ical realization. In the following example we illustrate how a simple digital system
can be approximately realized by an analog device.

Example 1.5.4. (Inverter circuit). The logic inverter NOT is a digital system whose
inputs and outputs are binary digits. It transforms the input 0 into the output 1 and the
input 1 into the output 0. However, the circuit which realizes this ideal digital behaviour
operates over electrical voltages rather than digits. It accepts arbitrary input voltages
in the range of say, 0 to 5 volts and produces output voltages over the same range.
The essential property which makes it a good realization of the logic inverter is that
it transforms voltages which are “not too far” from 0 volts into voltages very close to +5
volts (representing a logical 1) and voltages which are “not too far” from +5 volts into
voltages very close to 0 volts (representing a logical 0). A typical input-output behaviour of

1

2

3

4

5

1 2 3 4 5

y

u0

Figure 1.5.7: Input-output behaviour of an inverter circuit

such a circuit is shown in Figure 1.5.7. Here an input in the range of 0 to 2 volts produces
an output of approximately 5 volts and an input in the range of 3 to 5 volts produces an
output of approximately 0 volts. Thus we may say that the circuit “interprets” an input
in the range of 0 to 2 volts as an input 0 producing an output 1 and if the input is in the
range of 3 to 5 volts it interprets it as an input 1 and produces the output 0. So minor
fluctuations in voltage levels are not misinterpreted by the circuit and have practically no
influence on its output. A similar nonlinear behaviour which produces only two different
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output values in response to a relatively wide range of inputs values is also exhibited by
other building blocks of digital systems. �

Remark 1.5.5. In general, due to unavoidable variations in the manufacturing process
the input–output behaviour of an electrical device will differ from its prescribed perfor-
mance. Furthermore, every interconnection of electrical components is subject to noise
and signal degradation along the wires. Hence it is important that the components of a
switching network are sufficiently tolerant with respect to input variations. The tolerance
of a digital device to deviations of the input signal from the reference voltages is called
its noise margin. A good noise margin of the components is fundamental for the accuracy
and reliability of a digital system. Cascaded digital circuits with a good noise margin
(such as the above inverter) can correct signal degradations. �

1.5.2 Sequential Switching Networks

Sequential networks are required if data is to be stored in a network for future use.
In this subsection we describe how data can be stored by latches and flip–flops and
we discuss the use of clocks in order to synchronize the network elements and thereby
enhance the reliability of the network. We outline the main steps in the design of a
finite state machine and illustrate this by constructing a three bit counter.
In the next example we describe some basic memory elements of sequential networks.

Example 1.5.6. (R–S latch and J–K latch). Broadly speaking a digital system
consists of a memory part that stores past data and a combinational part by which new
outputs are generated from the stored data and the current inputs. The basic memory
elements of a digital system are constructed by feedback interconnection between a (small)
number of gates. The most primitive memory devices are latches, these are circuits which
“latch” onto one bit (0 or 1) and remember it. As an example we consider the R–S latch
which is obtained by feedback coupling of two NOR gates. It follows immediately from
the definition that a NOR gate acts as an inverter if one of the inputs is set to 0. If one
of the inputs is set to 1 its output is always 0. Now consider the cross–coupled NOR
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y1
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Q

Q
Q

Q

S

R

Figure 1.5.8: R–S latch: block diagram and realization by feedback of NOR gates

gates as depicted in Figure 1.5.8. It is required that the outputs of the two NOR gates
have complementary values Q and Q, respectively. The output Q of the lower NOR gate
Q is said to be the state of the latch. If Q = 1 it is said to be in the set state and if
Q = 0 it is said to be in the reset or clear state. Suppose that both inputs R and S are
set to zero. Since each of the two NOR gates acts as inverter to the signal received from
the other, the output values and hence the state remain unchanged (i.e. are stored) as
long as both inputs are kept to zero. If R = 0 and S = 1 then the state (output of the
lower NOR gate) is set to 1 whereas the output of the upper NOR gate is set to 0. If
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R = 1 and S = 0 then Q is reset to 0. Therefore S is called the set input and R the
reset input. What happens if both inputs are set to 1, i.e. if the latch is simultaneously
set and cleared? In that case the outputs of both NOR gates would necessarily take the
value 0 so that the complementarity assumption of the two outputs would be violated.
Moreover, if afterwards both inputs were to be simultaneously changed from 1 to 0 at
time t the resulting (next) state and output value Q(t + τ) would become unpredictable.
If the upper gate switches first, its output Q would switch to 1 and so the next state
would be set to Q(t + τ) = 0. If the lower gate switches first, then its output would

u1(t) u2(t) x(t) x(t + τ) Comment
0 0 0 0 HOLD

0 0 1 1
1 0 0 1 SET

1 0 1 1
0 1 0 0 RESET

0 1 1 0
1 1 0 ? NOT ALLOWED

1 1 1 ?

Table 1.5.9: Next state table of the R–S latch

switch to Q(t + τ) = 1 whilst Q would switch to 0. Thus the next state Q(t + τ) of the
latch would depend upon which gate happens to be faster. Such a situation is referred
to as a race condition. This unpleasant phenomenon is excluded if the two outputs never
have the same value and this is secured if the input pair (u1, u2) = (1, 1) is not allowed.
For admissible input pairs the behaviour of the R–S latch is described by the output map
(y1, y2) = (x, 1−x) and the next state map x(t+ τ) = (1−x(t))u1(t)+x(t)(1−u2(t)), see
the next state Table 1.5.9. Here τ is the propagation delay of the R–S latch, i.e. the time
lag before the new steady state (output) is achieved in response to a change in the inputs.
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Figure 1.5.10: J–K Latch: Block diagram and circuit

In order to avoid the possibility of inadmissible inputs, the R–S latch can be connected
with two additional AND gates as in Figure 1.5.10. By feeding back the outputs in the
described manner it is guaranteed that the inputs R and S to the R–S latch are never
simultaneously 1. The resulting circuit is called a J-K latch and is represented by the
block diagram shown on the left in Figure 1.5.10. In addition to avoiding the forbidden
input combination (R,S) = (1, 1) at the internal R-S latch the configuration shows a
new capability, toggling. If J = K = 1 then the current state Q(t) = 0 will toggle to
Q(t + τ) = 1 and the current state Q(t) = 1 will toggle to Q(t + τ) = 0. Thus all possible
input combinations lead to useful functions for the J-K latch: hold, reset, set, and toggle,
see the next state Table 1.5.11. The behaviour of a J–K latch is described by the output
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u1(t) u2(t) x(t) x(t + τ) Comment
0 0 0 0 HOLD

0 0 1 1
1 0 0 1 SET

1 0 1 1
0 1 0 0 RESET

0 1 1 0
1 1 0 1 TOGGLE

1 1 1 0

Table 1.5.11: J–K Latch: Next state table

function (y1, y2) = (x, 1 − x) and the next state equation

x(t + τ) = (1 − x(t))u1(t) + x(t)(1 − u2(t)) x ∈ Z2, u ∈ Z
2
2 . (1)

Note, however, that this equation is not to be understood in discrete time. Both the
R–S and the J–K latches are asynchronous (or unclocked), i.e. they may change their
state and outputs at any time in response to changes in the inputs.4 This leads to a
problem which becomes evident when these memory elements are realized by a circuit. For
an asynchronous circuit to work properly, the inputs must be (approximately) constant
for a sufficiently long time to allow the circuit to reach the corresponding next steady
state. Moreover, only one external input should be effective (different from zero) at any
given time. The reason for this is that if the two inputs u1(t) = u2(t) = 1 for a time
interval longer than the propagation delay through the latch, the outputs will toggle an
unknown number of times, determined by the length of the interval and the time lag with
which a change in the output signal travels, via the feedback loop, through the circuit
back to the output. The phenomenon of “oscillating outputs” caused by identical inputs
u1(t) = u2(t) = 1 is illustrated in the timing diagram shown in Figure 1.5.12. So, although

t

J

K

Q

Figure 1.5.12: Timing behaviour of the J–K latch

all input combinations are allowable for the J–K latch, the problem of forbidden inputs
reappears in a different form when the memory element is actually realized by a circuit.
The input combination u1(t) = u2(t) = 1 causes the J–K latch to produce oscillating
outputs in continuous time. �

We have seen in Example 1.5.4 that high reliability can be achieved in spite of
unavoidable signal degradation and noise within a network if the network elements

4This is why we have denoted the next state by x(t + τ) in the above next state tables.
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produce signals with only a finite number of steady state/output values (“quanti-
zation of signal values”). In order that only these values (representing 0 and 1)
determine the behaviour of the network and that the transitional signal values have
no effect, time must be discretized as well (“quantization of time”). This is per-
formed by synchronizing the functioning of the network elements. A periodic signal
(clock) is distributed throughout the circuit in order to ensure that all memory ele-
ments change state and output at approximately the same instant. The clock usually
generates a square-wave pulse train. By adding for example the clock signal to the
inputs of a J–K latch as in Figure 1.5.13 the output and state of this latch will be
updated only if the clock is asserted (takes its upper value). When the clock is low,
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Figure 1.5.13: Clocked J–K Latch: Block diagram and circuit

the steering AND gates are disabled, and the output of the latch remains unaffected
by the data inputs J and K. Such a method of synchronization is called level trig-
gering, and level triggered storage devices are called clocked latches. If the inputs to
the network elements do not change during the time when the clock is high and the
corresponding steady state and output values are reached within one clock cycle the
level triggered network behaves approximately like a digital system. However, level
triggering cannot always handle asynchronous inputs, i.e. inputs which are chang-
ing whilst the clock is high. This may lead to racing problems and unpredictable
outputs.
Flip–flops differ from latches in that their outputs change only with respect to the

0 1 2 3 4 5 6 7

L

F

Ck

u

Figure 1.5.14: Time behaviour of a positive edge-triggered flip-flop (F) and a clocked
latch (L)

clock whereas clocked latches change output if their inputs change (and the clock is
high). Edge–triggered flip–flops respond to a rising or falling edge of the clock signal.
This is of a very short duration so that racing and oscillating outputs are avoided.
A positive (negative) edge–triggered flip–flop samples its inputs on the low–to–high
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(resp. high-to-low) transition of the clock and, after a short propagation delay, pro-
duces the next state corresponding to the current input and the current state. After
this the input may change but the flip–flop will not respond until the next signal
from the clock. This is in contrast to the behaviour of a clocked latch as illustrated
in Figure 1.5.14. We see that the outputs differ if the input changes when the clock
is high. This difference is particularly noticeable between the times 5 and 6 where
the clocked latch responds to the decreasing input, but the output of the flip-flop
remains at 1.
For reliable operation of flip–flops, the inputs must be “stable” (approximately con-
stant) for a time interval from a setup time before, to a hold time after the clocking
event, see Figure 1.5.15. Proper operation of the circuit requires that the steady

t

Ck

u

Tsu Th

Figure 1.5.15: Setup Tsu and hold Th times

state value changes only once per clock cycle. In order to guarantee that the correct
next state is achieved in spite of varying propagation delays of the input signals the
period of the clock should be longer than the worst case propagation delay through
the combinational network. If a network is designed in such a way that these con-
straints are respected, the resulting circuit behaves like a discrete time finite state
machine. A careful timing methodology is fundamental for designing reliable se-
quential networks.
Different types of edge-triggered flip-flops can be created by an interconnection of
latches, i.e. by an interconnection of feedback coupled gates. An edge-triggered J–K
flip–flop for example, which is one of the most versatile and reliable flip–flops, can
be built from 8–10 gates using suitable interconnections and feedback couplings.
We do not go into details and refer the interested reader to the literature, see Notes
and References. Edge triggered flip–flops are represented by block diagrams with a
triangle in front of the clock input, see Figure 1.5.16.
In order to illustrate how the above memory elements are used to build a sequential
network we conclude this section with an example of a finite state machine design.
The main steps in such a design process are listed below.

1. Abstract representation of the machine. Identify the inputs, outputs,
and introduce internal states of the machine which permit an easy description
of the desired input–output behaviour. Draw a state diagram, i.e. a graph
with vertices representing the states and directed arcs which represent the
possible transitions from one state to the next one under the influence of the
available inputs. Additionally, a next state table can be established. Describe
the outputs associated with given input and state combinations.

2. State minimization. Sometimes the first step results in a description that
has a number of redundant states. These states can be eliminated without
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affecting the input–output behaviour of the finite state machine. A reduction
in the number of states usually reduces the number of logic gates and flip-flops
which are needed for the realization of the finite state machine5. There are
formal procedures and computational algorithms for state minimization, see
Notes and References.

3. Choice of flip–flops for implementing the states.

4. Implementation of the finite state machine. Realize the next state
and output mappings by a combinational network connecting inputs, states
and outputs.

As an illustration, let us design a synchronous binary counter. Counters are used in
many digital systems (e.g. in digital clocks) to count events. They are amongst the
simplest possible finite state machines. They typically have only one input (e.g. a
square wave signal–the clock) and their outputs are identical with their current state.
Their state transition graph consists of a single cycle joining the finitely many binary
numbers through which the counter runs successively on each clock pulse.

Example 1.5.7. (Three bit counter). We construct a synchronous modulo-8 counter
which is driven by a clock. Following the above procedure we begin with an abstract
description of the digital system (Step 1). The clock is the only input to the counter.
There are three binary output channels corresponding to the three bits Q1, Q2, Q3 which
are needed to represent the numbers 0, . . . , 7 in the dyadic system. We introduce 8 different
states of the counter corresponding to the eight different output combinations and encode
the states by the output combination they generate. On each clock pulse the counter
advances successively through its 8 states in the following cycle

000 → 001 → 010 → 011 → 100 → 101 → 110 → 111 → 000.

In this simple case we may omit the state transition table. The output vector correspond-
ing to the current state x(t) = Q3Q2Q1 is (Q1, Q2, Q3). If we want the present output
of the counter to be a function of the present state alone, the number of states we have
introduced is clearly minimal and we may skip Step 2.
To store the three binary digits Q3, Q2, Q1 three flip–flops are needed. From the state
transition graph we see that the digit Q1 toggles at every clock pulse, the digit Q2 toggles
on every second clock pulse and the digit Q3 on every fourth clock pulse. This suggests
that a toggle flip–flop (T flip–flop) may be most suitable for the implementation of the
counter. The T flip–flop has a single input that causes the stored state to remain un-
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Figure 1.5.16: Edge-triggered T Flip–Flop: Block diagram and construction from an

edge-triggered J–K flip–flop

5To realize a machine with n states at least m flip–flops are needed where 2m−1 < n ≤ 2m.
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changed if the input is zero and to be complemented when the input is asserted (u = 1).
A toggle flip–flop can be constructed from a J–K flip–flop by tying its two inputs together
(see Figure 1.5.16). If the input is 0, both J and K are 0 and the flip–flop holds its state; if
the input is 1, both J and K are 1 and the flip–flop complements its state, see Table 1.5.11.
The state transition of the positive edge triggered T flip–flop takes place on the rising clock
edge after the toggle input is set (u = 1).
In the final step (Step 4) we express each bit of the next–state6 x(t + 1) = Q+

3 Q+
2 Q+

1

Clock

1 T Q1

Q1

T Q2

Q2

Q1
Q2 T Q3 Q3

Q3

Figure 1.5.17: Three-bit counter circuit

as a combinational logic function of the current state bits and the clock signal. In this
simple case the combinational logic for each of the three flip–flops can easily be determined
by examining the state transition graph. The flip–flop storing Q1 toggles on each clock
pulse, the flip–flop storing Q2 toggles at a clock pulse whenever Q1 is asserted (Q1 = 1)
and the flip–flop storing Q3 toggles at a clock pulse whenever Q2 and Q3 are asserted
(Q1 = Q2 = 1). This leads to the circuit shown in Figure 1.5.17. �

Another simple and important class of sequential networks are shift registers, which
play a key role in many finite state machines and communication systems. A simple
example of a four bit shift register will be described in Example 2.1.7. For examples
of more complicated finite state machines we refer to the literature, see Notes and
References.

1.5.3 Notes and References

The realization of Boolean functions by combinational switching networks is based on

Boolean algebra and discussed in all textbooks on switching theory and logic design. Im-

portant historical references are Boole (1849) [66] and Huntington (1904) [271].

Shannon (1938) [459] was the first to show how Boolean algebra could be applied to digital

design. The digital designer wishes to realize a given Boolean function with the minimum

number of gates and wires in order to reduce the size, power dissipation and cost of a

digital circuit. There are many techniques (and CAD tools) for achieving minimal realiza-

tions of a given Boolean function, see Katz (1994) [296], Fabricius (1992) [154], Wakerley

(1990) [513] and Roth (1985) [437].

The fundamental building blocks of sequential switching networks, latches and flip-flops

6That is the state in the next clock cycle.
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are extensively discussed in most textbooks on digital systems, see the above references.

The same holds for registers, memories and counters which can be built from such building

blocks, see Example 2.1.7. A more complicated issue is the design of finite state machines

for control and decision-making logic in digital systems. The central problem is the re-

alization of a prescribed input-output behaviour by a finite state machine with minimal

number of states (minimal realization) and efficient state encoding. Good references are

Roth (1985) [437], Green (1986) [202], Prosser and Winkel (1987) [422] and Katz (1994)

[296]. The latter is especially recommended since it contains many case studies (and two

chapters describing how digital design techniques are applied to stored program comput-

ers).

The capabilities and behaviours of finite state machines are the subject of Automata

Theory which had a strong influence on the early development of mathematical systems

theory. Automata Theory studies finite machines as mathematical models of switching

and encoding networks in abstraction from specific hardware realizations. For references

and further comments on Automata Theory see the Notes and References in Section 2.1.

In using discrete time domains for modelling digital systems one should not overlook the

fact that these systems are implemented by electronic circuits in continuous time. The

resulting timing and synchronization problems are of fundamental importance in the prac-

tical design of digital systems. Detailed discussions of these issues can be found in Katz

(1994) [296], see also Mead and Conway (1980) [370].
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1.6 Heat Transfer

Heat transfer is the term used for the exchange of thermal energy. Here we only
consider the transfer accomplished by conduction in a solid body and ignore con-
vection and radiation effects. Nowadays it is usual to think of thermal energy or
heat as the kinetic energy of the elementary particles of a solid, liquid or gas. The
energy levels are a function of temperature with hot regions corresponding to high
levels of energy. If a solid is a good electrical conductor there will be a large num-
ber of electrons which move freely through the lattice and thermal conduction is a
consequence of this motion. In impure metals or in disordered alloys there is also
a transfer of energy via lattice vibrations which may be comparable in magnitude
to the electronic contribution. For gases the main mechanism is the exchange of
kinetic energy from fast moving molecules to slow moving ones caused by collisions
amongst themselves. In all cases (including liquids where a variety of mechanisms
may be present) there is a flow of energy from regions of high temperature to ones
of low temperature.
Given some initial temperature profile within a compact body B ⊂ R3, our objective
is to describe the evolution of the profile in time. We will use the law of conservation
of energy to obtain the corresponding differential equations. Let V ⊂ B ⊂ R

3 be
an arbitrary fixed, open, connected set with closure in the interior of the body B.
We assume that its boundary S is orientated and piecewise smooth. If there are no
sources of heat in V the conservation law states that:

The rate of change of the thermal energy in V with respect to time is
equal to the net flow of energy across the surface S of V .

We will now translate this law into mathematical formulas and make the statement
more precise. Let e(x, t) be the specific thermal energy (i.e. the energy per unit
mass) at position x = (x1, x2, x3) ∈ R3 and time t. We assume that the density
ρ = ρ(x) of the solid body is independent of time and temperature, then the total
thermal energy in V is ∫

V

ρ(x)e(x, t)dx

where dx denotes the Lebesgue measure in R3. Assuming that all the functions are
continuously differentiable, the time rate of change of the thermal energy in V is

d

dt

∫
V

ρ(x)e(x, t) dx =

∫
V

ρ(x)et(x, t)dx, et(x, t) =
∂e

∂t
(x, t).

Let q : B × R → R3 be the time-dependent vector field which describes the flow of
thermal energy in the body B. The vector q(x, t) is called the heat flux vector at
x ∈ B at time t. Let n(x) denote the unit outward normal to the surface S at the
point x ∈ S. By the conservation law,∫

V

ρ(x) et(x, t) dx = −
∫

S

〈q(x, t),n(x)〉 dS(x).

Applying the divergence theorem to the surface integral over S we obtain∫
V

(ρ(x) et(x, t) + divq(x, t)) dx = 0.
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Since the open set V is arbitrary, we have

ρ(x) et(x, t) = −div q(x, t), x ∈ int B, t ∈ R. (1)

In order to get an equation for the temperature Θ = Θ(x, t), additional information
of an empirical nature is required. For many materials the function e is linear in the
temperature Θ over quite large temperature ranges. That is e = c Θ, where c = c(x)
is time–invariant and is called the specific heat at x ∈ int B (the amount of heat
absorbed by the body at the point x per unit mass per unit rise in temperature).
Now the heat energy flows from hot to cold, so the heat flow in any direction d ∈ R3

will be negative (i.e. 〈d,q〉 < 0) if the temperature is rising in that direction
(i.e. 〈d, gradΘ 〉 > 0), and conversely, if 〈d, gradΘ 〉 < 0 then 〈d,q〉 > 0. As a
consequence there will exist a positive scalar function k such that q = −k gradΘ.
k is called the conductivity and in general will vary with the medium itself, the
position in the medium, the temperature and time. However if the temperature
variations are not large, a first approximation which agrees with experiments is to
assume that, for a given medium, k = k(x) is only a function of position. This
relationship was postulated by Fourier in 1822 and is now known as Fourier’s Law.
With these assumptions (1) becomes

c(x)ρ(x) Θt(x, t) = div (k(x) gradΘ(x, t)) , (x, t) ∈ int B × (0,∞). (2)

This is the general three-dimensional heat equation. If k does not depend on position,
then one obtains the classical form of the heat conduction equation

Θt(x, t) = α(x)�Θ(x, t) (3)

where α(x) = (c(x)ρ(x))−1k is called the thermometric conductivity and � denotes
the Laplacian. In order to solve it, an initial temperature distribution must be
stipulated and boundary conditions must be specified which describe the way the
body interacts with its surroundings. We illustrate this in the following example.

Example 1.6.1. Consider a metal rod heated in a furnace. The rod is assumed to be a
cylinder of uniform cross sectional radius a which is heated by jets along its length. The
heat from the jets affects the temperature distribution at the surface of the rod which in
turn results in changes of the temperature within the rod. Suppose (r, φ, z) are cylindrical
polar coordinates with the z-axis along the axis of the cylinder. We will assume that the
heat supplied by the jets at point z along the rod and time t is the same for all values of φ

and is given by v(z, t). We will also assume the thermometric conductivity α is constant
throughout the rod and the initial temperature distribution at time t = 0 is independent
of φ. So it is reasonable to seek solutions Θ of (3) which have axial symmetry (i.e. are
independent of φ), in which case (3) takes the form

Θt(r, z, t) = α�Θ(r, z, t) = αΘzz(r, z, t) + αr−1(rΘr(r, z, t))r . (4)

Let
Θ(z, t) = (πa2)−1

∫ 2π

0

∫ a

0
Θ(r, z, t) r dr dφ = 2a−2

∫ a

0
Θ(r, z, t) r dr

be the average cross sectional area temperature, then integrating (4) over the cross section
at z we get

Θt(z, t) = αΘzz(z, t) + 2αa−2 [rΘr(r, z, t)]a0 = αΘzz(z, t) + 2αa−1Θr(a, z, t).
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But v(z, t) = −kΘr(a, z, t) and hence

Θt(z, t) = αΘzz(z, t) + βv(z, t),

where β = −2α(ak)−1. Let us further assume that the distribution b(·) of the jets along
the rod is fixed, but the magnitude can be varied in time by a control u, so that v(z, t) =
b(z)u(t), then

Θt(z, t) = αΘzz(z, t) + βb(z)u(t) (5)

Suppose the temperature at each end of the rod is kept at a constant value C, and the
initial value of Θ at z ∈ [0, �] is Θ0(z), so that

Θ(0, t) = Θ(�, t) = C, t ≥ 0, Θ(z, 0) = Θ0(z), z ∈ [0, �], (6)

where � is the length of the rod. Note that if the initial temperature profile is constant with
Θ0(z) ≡ C, then the corresponding solution of (5) and (6) with u(t) = 0, t ≥ 0 is given
by the equilibrium solution Θ0(z, t) = C, z ∈ [0, �], t ≥ 0. For any given solution Θ(z, t)
of the partial differential equation (5) let us denote by θ(z, t) the deviation of Θ(z, t) from
the equilibrium solution, i.e.

Θ(z, t) = θ(z, t) + C, Θ0(z) = θ0(z) + C, (z, t) ∈ [0, �] × R+ .

Then we obtain from (5) and (6) the one-dimensional controlled heat equation

θt(z, t) = αθzz(z, t) + βb(z)u(t)

θ(0, t) = θ(�, t) = 0, θ(z, 0) = θ0(z), (z, t) ∈ [0, �] × R+.
(7)

Finally suppose we sense the temperature at a given point z1 ∈ (0, �). In reality the sensor
measures a weighted average of the temperature at nearby points. Let us assume that the
measurement Y (t) can be expressed in terms of the average temperature Θ(z, t) in the

form Y (t) = πa2
∫ �
0 c(z)Θ(z, t)dz, where the support of the continuous density c(·) is a

small interval around z1. If we denote by y(t) the deviation of Y (t) from the steady state

output Y0(t) = Cπa2
∫ �
0 c(z) dz (corresponding to the equilibrium solution Θ0(z, t) = C),

then

y(t) = πa2

∫ �

0
c(z) θ(z, t) dz, t ≥ 0. (8)

Equations (7) and (8) represent a single input single output system. The state of this
system at each time t is given by the temperature profile θ(·, t) which is an infinite dimen-
sional object varying in a function space. Such systems are called infinite dimensional.
In applications the above model may be used to determine control laws which drive an
initial temperature distribution to some desired final distribution in a given time interval
(a controllability problem), see Subsection 2.2.4. Another possible application is to use the
model to obtain an estimate of the whole temperature profile θ(·, t) from the knowledge
of the input and output functions u(·), y(·) on a given time interval [0, T ], T > 0 (an
observability problem). �

1.6.1 Notes and References

J. B. Fourier’s treatise on heat, “Théorie Analytique de la Chaleur”, was published in 1822

and an English translation can be found in [171]. There are, of course, whole sections of

libraries devoted to heat transfer. One book on the subject is Ozisik (1993) [401]. A similar

statement is true for books on partial differential equations. We quote Sobolev (1964) [469]

because some of the material in this section was based on it and because of the influence

that Sobolev has had on the mathematical development. A standard reference for the

control theory of infinite dimensional systems is Curtain and Zwart (1995) [116].



Chapter 2

Introduction to State Space
Theory

State space theory deals with dynamical models describing both the internal dynam-
ics of a given physical process and the interaction of the process with the outside
world. In this chapter we introduce the general notion of a dynamical system and
set the basis for the study of various important system classes.
We emphasize that for us a dynamical system is a mathematical model and hence
should be carefully distinguished from the physical process for which it is a model.
Dynamical systems of different types may be used as models of one and the same
physical process. Nevertheless it will sometimes be convenient to use the word “sys-
tem” for the real physical process described by the dynamical model and in this case
we shall add the epithet “real” or “physical” whenever this is necessary for a clear
distinction.
In Section 2.1 we begin with a description of the components which constitute the
mathematical concept of a dynamical system and then give a very general defini-
tion. This definition incorporates the basic common structure of most dynamic state
space models in current use and in particular comprises all the state space models
described in Chapter 1. Its scope will be further illustrated by subsequent sections of
this chapter. In the second and third section we focus on the class of linear systems
and discuss in some detail the dynamics of linear models described by differential or
difference equations with constant coefficients. The study of these models represents
the core of dynamical systems theory and has strongly influenced the development
of other branches. Section 2.2 is concerned with their free motions and Section 2.3
with their forced motions. We also describe some elements of input-output theory
and explain the relationship between their representations in time and frequency
domain. In Section 2.4 we introduce structure preserving mappings (“morphisms”)
between linear systems. We show how new systems of this class can be obtained via
standard constructions and describe various interconnection schemes for building
complex systems. Finally in the last section we analyze the problem of converting
continuous time signals and systems into discrete time versions and vice versa. This
is a problem of increasing importance due to the replacement of analog devices by
digital ones in the control and measurement of processes which evolve continuously
in time. Numerical Analysis offers many techniques for the discretization of differ-
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ential equations. We will describe some basic numerical schemes and indicate the
difficulties which can occur in their use for approximating differentiable dynamical
systems by discrete ones.

2.1 Dynamical Systems

In this section we introduce the general mathematical concept of a dynamical sys-
tem in state space. This concept has evolved as a unification of a variety of notions
which have been used in, for example, the classical theory of differentiable dynam-
ical systems, circuit theory and automata theory. We will illustrate the scope of
the general definition by different examples taken from these fields. In order to
obtain additional structure we also introduce some basic properties which lead to
a broad classification of dynamical systems. Since the section has mainly concep-
tual objectives the presentation is descriptive and contains just a few mathematical
results.

2.1.1 The General Concept of a Dynamical System

Before presenting the formal definition we consider the main terms and relations
which need to be specified in order to define a dynamical system.

Time domain. A dynamical system evolves in time and so the variables which
describe the behaviour of the system are functions of time. With every dynamical
system there is an associated time domain T ⊂ R which contains all the times t at
which the system variables may be evaluated. The time domain may be continuous,
i.e. an interval as in Example 1.1.1 where T = [0,∞) or discrete, i.e. T consists
of isolated points in R e.g. T = Z or T = N, see Example 1.2.1. For notational
convenience we will write [t0, t1) rather than T ∩ [t0, t1) in order to denote the
interval {t ∈ T ; t0 ≤ t < t1} in T whenever the underlying time domain is clear.

External variables. These are the variables which describe the interactions of the
system with the exterior world. Since a complete description of all the interactions
is never possible, the modeller must select a set of variables which are thought to
be the most important for the problem in hand. In Example 1.1.1 ecological factors
such as pollution may well affect the population dynamics but have not been taken
into account in the model.
It is usual to divide the external variables into a family u = (ui) of inputs and a
family y = (yi) of outputs. By “inputs” we mean those variables which model the in-
fluence of the exterior world on the physical system. These can be of different types
— either controlled inputs or uncontrolled inputs (for instance, disturbances). By
“outputs” we mean those variables with which the system acts on the exterior world.
Sometimes the outputs are divided into two (not necessarily mutually disjoint) sets
of variables. Those which are actually measured will be called measurements and
those which must be controlled in order to meet specified requirements will be called
regulated. In certain contexts it is important to distinguish between modelled inputs
and outputs and the actual inputs and outputs of the physical system. In this book
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Figure 2.1.1: External variables

the external variables are to be understood as variables of the model and not as
quantities of the underlying physical system.
It should be noted that it may not be a priori clear which external variables are to
be considered as inputs and which as outputs. For instance, in the electrical circuit
problem of Example 1.4.6 it is not obvious that the current should be taken as input
and the voltage as output, or vice-versa. A general definition of dynamical systems
which does not classify a priori the external variables into inputs and outputs has
been developed by J.C. Willems (see Notes and References). We will not pursue
this “behavioural approach” here, but presuppose that a distinction between inputs
and outputs has already been made.
A dynamical system must specify the set U of input values (input alphabet) and
the set Y of output values (output alphabet), for instance in Example 1.3.4 U = R

and Y = R2 and in Example 1.1.1 U = [0,∞), Y = [0,∞). Throughout the text
we assume that the set U of admissible input values does not change with time and
does not depend on the values of any other system variables.
Let UT denote the set of all functions u(·) : T → U . In general it is not possible
to admit arbitrary functions u(·) ∈ UT as input signals. For instance, in the con-
trolled differential equations of Example 1.3.2 it would not be possible to allow for
non-measurable controls since the equations could not be integrated. Therefore, in
addition to the set of input values, we must specify a set U ⊂ UT of admissible input
functions. By an appropriate choice of U , measurability or smoothness properties
of the control functions can be imposed as well as time-varying constraints on the
control values. Whenever there is a risk of confusion we distinguish in our notation
between input values u ∈ U and input functions u(·) ∈ U .
We do not include a space Y of admissible output functions in our general definition
since this space is only occasionally needed in the context of state space theory.
However, when we consider input-output systems the space Y of output signals will
become important.

Internal state. The notion of state plays a central role in the definition of a
dynamical system. Unlike external variables, the internal or state variables describe
processes in the interior of the system. Not every set of internal variables of a system
can be accepted as a state vector. Three basic conditions are required.

(I) The present state and the chosen control function together determine the fu-
ture states of the system. More precisely, given the state x(t0) = x0 of the
system at some time t0 ∈ T and a control u(·) ∈ U , the evolution of the
system’s state x(t) is uniquely determined for all t in a suitable time interval
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Tt0,x0,u(·) of T starting at t0. Tt0,x0,u(·) may be considered as the “life span” of
the trajectory x(·) starting at x0 at time t0 under the control u(·).

(II) Given x(t0) = x0 at some time t0 ∈ T , the state x(t) at any later time t ∈ T ,
t ≥ t0 only depends on the input values u(s) for s ∈ [t0, t). Thus, at time t, the
present state x(t) is not influenced by the present and future values u(s), s ≥ t
of the control. Moreover, knowledge of the state x(t0) at some time t0 < t
supersedes the information about all previous input and state values.

(III) The output value at time t is completely determined by the simultaneous
input and state values u(t) and x(t). In other words, the past inputs act on
the present output only via accumulated effects on the system’s present state.

These requirements ensure that the principle of causality is built into the concept of
state. If we regard the output y(t) as the “effect” of past and present “causes” (=
inputs), then u(t) represents the instantaneous cause and the state x(t) incorporates
the totality of past causes.
The choice of an adequate state vector is usually a much more difficult problem
than the specification of the external variables. There are no general prescriptions.
However, in physical systems state variables are often associated with the important
energy stores of the system. For example, in mechanical systems the position and
velocity of each mass point, or of each rigid body, are possible internal variables
which together represent the state of the system at a given time. Similarly in
electrical LRC circuits the charge on each capacitor and the current through each
inductor may be chosen as the components of the state vector. Again, depending
essentially on the objectives of the modeller the system may be roughly characterized
by a few aggregated internal variables or may be more closely modelled by using
a state vector with a large number or even infinitely many components. Since the
state mediates the influence of past inputs on the output a rough characterization
will in general yield only a rough approximation of the input-output behaviour of
the physical plant.
The state variables need not represent physical quantities of the system. Indeed,
from an information processing point of view the system’s state may be regarded
as a kind of continually updated memory or information storage. In this respect,
the set X of possible states of the system can be substituted by any other set X̃
which is in one-to-one correspondence with X and hence can carry the same amount
of information. So there is more scope for the definition of the state than for the
definition of the external variables which usually refer to measurable or physically
meaningful quantities. The arbitrariness can be reduced by requiring that the state
of the system represents the minimal amount of information needed to describe the
effect of past history on the future development of the system.
Conditions (I), (II) and (III) lead to the introduction of two maps which must be
specified in the definition of every dynamical system.

State transition map. According to (I) and (II), the evolution of the state of a
system (trajectory) can be described by a map ϕ called the state transition map as
follows

x(t) = ϕ(t; t0, x
0, u(·)), t ∈ Tt0,x0,u(·). (1)
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Actually, ϕ(t; t0, x
0, u(·)) only depends upon the restriction u(·)|[t0, t) because of (II).

In most applications this map is implicitly defined by the equations of motion of the
system. If these are differential or difference equations in x(·) as in Example 1.3.4
(1.3.25) and Example 1.5.6 (1.5.1) an initial value problem with x(t0) = x0 must
be solved for a given control function u(·) in order to obtain ϕ(t; t0, x

0, u(·)) = x(t),
t ∈ Tt0,x0,u(·).

Output map. By requirement (III), the output of the system at time t is completely
determined by the state and input values at time t,

y(t) = η(t, x(t), u(t)). (2)

η is called the output map.

Differential equations can be solved forwards and backwards in time. Hence, if the
state transition map is defined by a differential equation, the present state x(t0) = x0

has a life span Tt0,x0,u(·) which encompasses both past and future moments of time
and the state trajectory x(t) = ϕ(t; t0, x

0, u(·)) is defined for t < t0 as well. The
following definition allows for this possibility.

Definition 2.1.1 (Dynamical system). A structure Σ = (T, U,U , X, Y, ϕ, η) is
said to be a dynamical system or state space system with time domain T , input value
space U , input function space U , state space X, output value space Y , state transition
map ϕ and output map η, if T , U , U , X, Y are non void sets, T ⊂ R, U ⊂ UT , and
η : T × X × U → Y , ϕ : Dϕ → X (where Dϕ ⊂ T 2 × X × U) are functions such
that the following axioms hold.

Interval Axiom: For every t0 ∈ T, x0 ∈ X, u(·) ∈ U the life span of ϕ(·; t0, x0, u(·))

Tt0,x0,u(·) = {t ∈ T ; (t; t0, x
0, u(·)) ∈ Dϕ} (3)

is an interval in T containing t0.

Consistency Axiom: For every t0 ∈ T , x0 ∈ X, u(·) ∈ U

ϕ(t0; t0, x
0, u(·)) = x0. (4)

Causality Axiom: For all t0 ∈ T , x0 ∈ X, u(·), v(·) ∈ U , t1 ∈ Tt0,x0,u(·) ∩ Tt0,x0,v(·)

( ∀ t ∈ [t0, t1) : u(t) = v(t) ) ⇒ ϕ(t1; t0, x
0, u(·)) = ϕ(t1; t0, x

0, v(·)). (5)

Cocycle property: If t1 ∈ Tt0,x0,u(·) and x1 = ϕ(t1; t0, x
0, u(·)) for some t0 ∈ T ,

x0 ∈ X, u(·) ∈ U then Tt1,x1,u(·) ⊂ Tt0,x0,u(·) and

ϕ(t; t0, x
0, u(·)) = ϕ(t; t1, x

1, u(·)), t ∈ Tt1,x1,u(·) . (6)

The product space T ×X is sometimes called the event space of Σ. We shall say that

a control u(·) ∈ U transfers an event (t0, x
0) to (t1, x

1) (notation: (t0, x
0)

u(·)
� (t1, x

1))
if x1 = ϕ(t1; t0, x

0, u(·)). Although this expression intuitively only makes sense if
t1 ≥ t0 it is convenient to use it also if t1 < t0. The cocycle property says that if
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a control u(·) transfers the event (t0, x
0) to the event (t1, x

1) and (t1, x
1) to (t2, x

2)
then it also transfers (t0, x

0) to (t2, x
2). Without this assumption it would be im-

possible to interpret ϕ(t; t0, x
0, u(·)) as the state of Σ at time t when Σ is initialized

at (t0, x
0) and controlled by u(·). The axiom of consistency then implies that the

argument x0 of ϕ is in fact the initial state x(t0) of the system.
The interval axiom, the axiom of consistency and the axiom of causality together
guarantee that the state of the system satisfies requirements (I) and (II). Require-
ment (III) is automatically satisfied if we interpret y(t) = η(t, x, u) to be the output
of Σ at time t when x is its state and u the instantaneous input value at time t.
For any t0 ∈ T , x0 ∈ X, u(·) ∈ U the function

t �→ x(t) = ϕ(t; t0, x
0, u(·)), t ∈ Tt0,x0,u(·)

describes the evolution of the system’s state and is called the (state) trajectory of
Σ determined by the initial condition x(t0) = x0 and the control function u(·).
Its domain of definition, Tt0,x0,u(·), is the life span of the trajectory. Its image
{ϕ(t; t0, x

0, u(·)); t ∈ Tt0,x0,u(·)} is said to be an orbit of Σ. The corresponding output
trajectory or output signal is

y(·) = y(·; t0, x0, u(·)) : t �→ y(t) = η(t, x(t), u(t)), t ∈ Tt0,x0,u(·). (7)

Definition 2.1.1 allows for the possibility that the state trajectory of a system starting
at x(t0) = x0 under the control u(·) ∈ U does not exist for all future times t ≥ t0.
This may reflect a situation where the system “blows up” or the trajectory “leaves
the state space” X under the influence of the control u(·). As an extreme case,
Definition 2.1.1 allows for the possibility that ϕ(t; t0, x

0, u(·)) is not defined for any
t > t0 and we will express this by saying that the control u(·) is not applicable to Σ
initialized at (t0, x

0).

Remark 2.1.2. For some dynamical systems control aspects do not play a role. This
can be expressed in the framework of Definition 2.1.1 by choosing for the input space
U a singleton {u∗} and for U the singleton which only consists of the constant input
function u(t) = u∗, t ∈ T . Such a system will be called uncontrolled or free. In order to
avoid dependency on the specific singleton it is convenient to use the standard singleton
{∅} for U . In other situations measurement aspects may not be important. This can
be expressed in the framework of Definition 2.1.1 by choosing for the output space the
standard singleton so that there is only one constant output signal. Such a dynamic model
will be called a system without outputs. �

Definition 2.1.3. A dynamical system Σ is said to be complete if, for all (t0,x
0,u(·))

∈ T × X × U ,
Tt0,x0,u(·) ⊃ Tt0 = {t ∈ T ; t ≥ t0}.

Thus Σ is complete if and only if Dϕ ⊃ T 2
≥×X×U where T 2

≥ = {(t, t0) ∈ T 2; t ≥ t0}.
Now suppose that Σ is complete and the system is initialized at (t0, x

0), i.e. the
initial state x(t0) = x0 is fixed. Then the output signal (7) is defined on Tt0 and the
restriction y(·) |Tt0 of y(·) = y(·; t0, x0, u(·)) only depends upon the restriction v(·) =
u(·) |Tt0 ∈ Ut0 = {u(·) |Tt0; u(·) ∈ U} by the causality axiom. By a slight abuse of
notation we may therefore write y(·; t0, x0, u(·) |Tt0) instead of y(·; t0, x0, u(·)) |Tt0.
The input-output behaviour of Σ is then described by the following operator.
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Definition 2.1.4. Given a complete system Σ and (t0, x
0) ∈ T ×X the input-output

operator of Σ initialized at (t0, x
0) is defined by

Gt0,x0 : Ut0 → Y Tt0 , v(·) �→ y(·; t0, x0, v(·)). (8)

A complete dynamical system is called reversible if it is also a dynamical system for
reverse time.

Definition 2.1.5. A complete dynamical system Σ is said to be reversible if

Dϕ = T 2 × X × U ,

i.e. Tt0,x0,u(·) = T for all (t0, x
0, u(·)) ∈ T × X × U .

Hence all state trajectories of a reversible system are defined on the whole time
domain T . Given any event (t1, x

1) and any t0 ∈ T, t0 < t1, u(·) ∈ U , there exists
a unique x0 ∈ X such that u(·) transfers (t0, x

0) into (t1, x
1). In fact this state is

given by x0 = ϕ(t0; t1, x
1, u(·)). It is the only state with this property since, for every

other x̂0 ∈ X satisfying (t0, x̂
0)

u(·)
� (t1, x

1) it follows from the cocycle property and

(t1, x
1)

u(·)
� (t0, x

0) that (t0, x̂
0)

u(·)
� (t0, x

0), hence x̂0 = x0 by the consistency axiom.
Definition 2.1.1 of a dynamical system is far too general a definition on which to
build a substantial mathematical theory. However we feel that it is useful

• for showing the unity of similar developments in different fields,

• for establishing bridges for the transfer of ideas from one area of application
to another,

• for recognizing more clearly the additional structures of the objects in a par-
ticular field.

We will illustrate the definition with a simple example of a digital system (see
Example 1.5.6). Digital systems have only finitely many states and are automata in
the following sense.

Definition 2.1.6 (Automaton). A five tuple A = (U, X, Y, ψ, η) where U , X, Y
are non-void sets and ψ : X × U → X, η : X × U → Y are maps, is called an
automaton with input space U , state space X, output space Y , next-state function ψ
and output function η.

The dynamics of an automaton are described by the following state and output
equations

x(t + 1) = ψ(x(t), u(t)), t ∈ N

y(t) = η(x(t), u(t))
(9)

It follows that any automaton can be viewed as a dynamical system by setting
T = N, U = UN and defining ϕ : T 2

≥ × X × U → X recursively by

ϕ(t0 + k + 1; t0, x
0, u(·)) = ψ(ϕ(t0 + k; t0, x

0, u(·)), u(t0 + k)) , k ∈ N

ϕ(t0; t0, x
0, u(·)) = x0.
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Example 2.1.7 (Switching networks). A (binary) switching network is an automa-
ton whose input, state and output variables admit only two different values (symbolized
by 0 and 1), so

U = Z
m
2 , X = Z

n
2 , Y = Z

p
2

where Z2 = Z/2 is the binary field (see Section 1.5). Physically, these two values may,
for example, be realized by two different voltage levels. If n = 0 (so that the switching
network has the trivial state space {0} and trivial state transition map ϕ ≡ 0) the output
at time t is completely determined by the input in time t, y(t) = η(0, u(t)). Dynamical
systems with this property are called memoryless . They represent physical devices which
directly transform inputs into outputs without intermediate storage of energy or informa-
tion. Simple examples of memoryless switching networks are the logic gates described in
Chapter 1. Their output map is given by truth tables.
Switching networks with memory are called sequential because a sequence of inputs must
be specified in order to determine the output. The basic memory elements used in se-
quential networks are flip-flops. The “J–K flip-flop” described in Example 1.5.6 has input
space U = Z

2
2, output space Y = Z

2
2, state space X = Z2, output function y = [x, 1 − x]�

and next state function

ψ(x, u) = x(1 − u2) + (1 − x)u1 x ∈ Z2, u ∈ Z
2
2.

In large sequential networks it is common to synchronize the operation of all the flip-flops
by a common clock or pulse generator emitting pulses at each time kτ , k ∈ N where τ > 0
is fixed. A synchronized sequential circuit changes state only after the occurrence of a
clock pulse and the inputs and states of each of the flip-flops are not allowed to change at
other times. It is natural to choose T = Zτ as the time domain of such a system.
An important and simple example of a sequential network containing several flip-flops is
the shift register. This is used in many digital systems to store and shift binary num-
bers arriving from a serial source. Figure 2.1.2 illustrates a four bit right shift regis-
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�
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Figure 2.1.2: Shift register

ter constructed from clocked J − K flip-flops. If the initial contents of the register is
x(0) = [x1, x2, x3, x4]

� = [1, 0, 1, 1]� and the input sequence is u(0) = 1, u(τ) = 0,
u(2τ) = 0, u(3τ) = 1, then its successive states are x(τ) = [1, 1, 0, 1]�, x(2τ) = [0, 1, 1, 0]� ,
x(3τ) = [0, 0, 1, 1]� , x(4τ) = [1, 0, 0, 1]� . The bit shifted out of the right hand end is lost.
We can construct a dynamical system modelling the register by setting U = Z2, U = UT ,
X = Z

4
2, Y = Z2,

x1((k + 1)τ) = u(kτ), x2((k + 1)τ) = x1(kτ)
x3((k + 1)τ) = x2(kτ), x4((k + 1)τ) = x3(kτ)

and choosing y(kτ) = x4(kτ). Obviously the output at time kτ , k ≥ 4 is equal to the
delayed input u((k−4)τ) and the state vector x(kτ) stores exactly the four preceding input
values u((k − i)τ), i = 1, 2, 3, 4. Thus the shift register is an example which highlights the
interpretation of the state as a continually updated memory of the system. �
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Traditionally the concept of a dynamical system was more or less synonymous with
“a system described by differential equations”. The classical theory of dynamical
systems was motivated by problems in mechanics particularly celestial mechanics.
Then it was natural to assume that the external forces were given and not subject
to human manipulation. This explains why input and output aspects are absent in
the classical view of a dynamical system. The following concept of a differentiable
flow can be regarded as the classical equivalent of a reversible dynamical system,
in fact together with the concept of an automaton it motivated the more general
Definition 2.1.1.

Definition 2.1.8 (Differentiable flow). A triple (T, X, ψ) is called a differentiable
flow or dynamical system in the classical sense if T ⊂ R is an open interval, X an
open subset of Kn, K = R or C (or, more generally a differentiable manifold) and ψ
is a continuously differentiable map from T 2 × X into X, such that

ψ(t; t, x) = x , t ∈ T, x ∈ X

ψ(t; t1, ψ(t1; t0, x)) = ψ(t; t0, x) , t0, t1 ∈ T, x ∈ X .

Local differentiable flows which avoid the completeness assumption are defined sim-
ilarly by introducing initial time and state depending life spans Tt0,x0 of the trajec-
tories ψ(·; t0, x0). More general local flows will be considered later in the context of
stability theory, see Chapter 3.
Local differentiable flows are usually generated via the solution of differential equa-
tions. Consider

ẋ(t) = g(t, x(t)) (10)

where g : T ×X → Kn is continuous, with T an open interval and X an open subset
of K

n. We say that x(·) is a solution of (10) on an open interval I ⊂ T if x(·) is
continuously differentiable on I, (t, x(t)) ∈ T ×X for all t ∈ I and x(·) satisfies (10)
on I. We have the following theorem, see Notes and References.

Theorem 2.1.9. Let T ⊂ R be an open interval, X an open subset of Kn and
suppose that g : T × X → Kn is continuous and continuously differentiable with
respect to x on T ×X. Then for any (t0, x0) ∈ T ×X, there exists a unique solution,
x(·) = ψ(·; t0, x0) of (10) on some maximal open interval Tt0,x0 ⊂ T containing t0
such that x(t0) = x0. Moreover the set

Dψ = {(t, t0, x0); t ∈ Tt0,x0, (t0, x0) ∈ T × X},

is open in T 2 × X and ψ : Dψ → Kn is continuously differentiable (ψ is said to be
the general solution of (10)).

We see that under the conditions of the above theorem the differential equation (10)
generates a local differentiable flow, (T, X, ψ). It will be shown later that if X = Kn

and g is linearly bounded as in (22), then Tt0,x0 = T and hence in this case (T, X, ψ)
is a differentiable flow in the sense of Definition 2.1.1.
To subsume a flow (T, X, ψ) under the general definition of a dynamical system
we have to endow it with trivial inputs and outputs as described in Remark 2.1.2.
Comparing Definitions 2.1.8 and 2.1.1 (under the completeness assumption) we note
the following differences:
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• only the evolution of the state is described,

• a smoothness condition is imposed on the state transition map,

• reversibility is built into the definition of a differentiable flow.

The following example illustrates the concept of a differential flow.

Example 2.1.10 (Pendulum). In Example 1.3.3 we saw that the equation of motion
of a simple swinging pendulum of length l and mass m suspended from a fixed point is

ml2θ̈ = −mgl sin θ (11)

where g is the gravitational constant. Let x = [x1, x2]
� = [θ, θ̇]�, then

ẋ(t) =

[
ẋ1(t)
ẋ2(t)

]
=

[
x2(t)

−gl−1 sin x1(t)

]
=: g(t, x(t)).

Suppose T = R, X = R
2, then it is easy to see that g(·, ·) satisfies the conditions of Theo-

rem 2.1.9 and is linearly bounded. Hence there exists a unique solution x(t) = ψ(t; t0, x
0)

on T satisfying x(t0) = x0, and (T,X,ψ) is a differentiable flow.
To obtain a graphical representation of the flow ψ the corresponding orbits {ψ(t; t0, x

0); t ∈
T} are provided with an orientation indicating the direction of motion as time increases.
For a given t0 ∈ T the collection of oriented orbits corresponding to various initial condi-
tions x(t0) = x0 in a given region of the state space form a so-called phase-portrait of the
flow at time t0, see Figure 2.1.3. The different character of these trajectories correspond
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Figure 2.1.3: Phase portrait for the pendulum

to different motions of the pendulum. For example the pendulum stays at rest if it starts
at x0 = [0, 0]� (vertically downwards with zero velocity) or at x0 = [π, 0]� (vertically
upwards with zero velocity). It swings periodically backwards and forwards if it starts at
x0 = [θ0, 0]

� where 0 < θ0 < 2π, θ0 �= π and rotates continuously around 0 if it starts at
x0 = [0, ω0]

� where |ω0| is large enough. �

Remark 2.1.11. The equations of motion of a physical system are often described by
higher order differential equations. In these cases a state vector must be found which
enables the equations of motion to be transformed into an equivalent system of the form
(10), see Ex. 8 and Ex. 9. �

Both examples considered in this subsection are complete systems. An example of
a differentiable system which is not complete will be given in Example 2.1.16.
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2.1.2 Differentiable Dynamical Systems

Let us now consider differentiable systems which are controlled and measured. Since
we do not intend to develop a systematic theory of nonlinear control systems in this
book, we will only deal with differentiable systems on open subsets X ⊂ Kn and not
on general differential manifolds. In the following we suppose that every space K�,
� ∈ N

∗ is provided with an arbitrary norm denoted by ‖ · ‖.
Definition 2.1.12 (Differentiable system). A dynamical system Σ = (T, U,U , X,
Y, ϕ, η) is called differentiable if the following conditions are satisfied.

(i) T ⊂ R is an open interval.

(ii) U , Y are subsets of K
m and K

p, X is an open subset of K
n.

(iii) There exists a function f : T ×X ×U → Kn such that for all t0 ∈ T , x0 ∈ X,
u(·) ∈ U the initial value problem

ẋ(t) = f(t, x(t), u(t)), t ≥ t0, t ∈ T
x(t0) = x0 (12)

has a unique solution x(·) on a maximal open time interval I satisfying I =
Tt0,x0,u(·) and x(t) = ϕ(t; t0, x

0, u(·)), t ∈ I.

(iv) η : T × X × U → Y is continuous.

Remark 2.1.13. A continuous time system Σ = (T,U,U ,X, Y, ϕ, η) whose time interval
T ⊂ R is not open will be called differentiable if it is obtained by restriction of the time
domain from a differentiable system in the sense of the previous definition. �

Some remarks concerning the choice of U and the underlying solution concept for
(12) are in order. Often it is necessary to consider jumps in the input functions. For
example, if u(·) is a set point control a switch from one set point u(t) = u1, t ≤ t1 to
another u(t) = u2, t > t1 should be allowed. This leads to choices for U as the space
of piecewise constant functions from T to U or the space of piecewise continuous
functions PC(T ; U). Sometimes it will be necessary to extend the set of input
signals to arbitrary Lebesgue measurable functions u which are locally integrable
on T (i.e.

∫ b

a
‖u(t)‖dt < ∞ for all a, b ∈ T, a < b). Then f(t, x, u(t)) will not,

in general, depend continuously on t for each fixed x, hence the solution concept
used in Theorem 2.1.9 is not applicable. Instead we will call x(·) : I → X a
solution of (12) on an interval I ⊂ T if it is absolutely continuous and satisfies (12)
“almost everywhere” on I (that is “except on a set of Lebesgue measure zero”).
Here “absolutely continuous” means that x(·) is continuous, differentiable almost
everywhere (a.e.) with locally integrable derivative and can be reconstructed from
its derivative by integration (see Definition A.3.12)∫ t

t0

ẋ(s)ds = x(t) − x(t0), t0, t ∈ T, t ≥ t0.

For later use we formulate two basic results concerning the existence and uniqueness
of solutions of differential equations with measurable RHS1

ẋ(t) = g(t, x(t)) (13)

1RHS: right hand side, LHS: left hand side
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where g : T × X → Kn, T ⊂ R an interval and X an open subset of Kn. We say
that g : T × X → Kn satisfies the Carathéodory conditions if

(Car 1) g(·, x) : T → Kn is measurable for each fixed x ∈ X;

(Car 2) g(t, ·) : X → Kn is continuous for each fixed t ∈ T ;

(Car 3) ‖g(·, x̃)‖ is locally integrable on T for some x̃ ∈ X;

(Car 4) for each compact set C = I × K ⊂ T × X there exists an integrable
function LC(·) : I → R+ such that

‖g(t, x) − g(t, y)‖ ≤ LC(t)‖x − y‖, (t, x), (t, y) ∈ C. (14)

Recall that in any metric space (X, d) the distance between a point x ∈ X and a
subset S ⊂ X is defined by

dist(x, S) = inf{d(x, y); y ∈ S}. (15)

Theorem 2.1.14 (Carathéodory). If T is an open interval, X is an open subset
of Kn and g : T ×X → Kn satisfies the Carathéodory conditions on T ×X, then for
any (t0, x

0) ∈ T ×X there exists a unique solution x(·) = ψ(·; t0, x0) of (13) on some
maximal open interval Tt0,x0 ⊂ T containing t0, such that x(t0) = x0. Moreover

(i) if t+(t0, x
0) := sup Tt0,x0 < sup T then x(t) is unbounded as t ↗ t+(t0, x

0) or
the boundary ∂X of X is not empty and dist(x(t), ∂X) → 0 as t ↗ t+(t0, x

0).
An analogous statement holds for t ↘ t−(t0, x

0) := inf Tt0,x0 if t−(t0, x
0) >

inf T .

(ii) If Dψ is the domain of definition of the general solution ψ,

Dψ = {(t, t0, x0); t ∈ Tt0,x0, (t0, x0) ∈ T × X},

then Dψ is open in T 2 × Kn and ψ : Dψ → Kn is continuous.

If t+ = t+(t0, x
0) < sup T as in (i) then t+ is called a finite escape time of the solution

ψ(·; t0, x0). If additionally ψ(·; t0, x0) is unbounded on [t0, t+) we say that it “blows
up” or “explodes” in finite time.
In order to establish that differentiable equations of the form (12) define a differ-
entiable dynamical system one must verify that g(t, x) = f(t, x, u(t)) satisfies the
Carathéodory conditions for all u(·) ∈ U . The following corollary gives a sufficient
condition.

Corollary 2.1.15. Suppose T, U,U , X, Y are sets as in Definition 2.1.12, η : T×X×
U → Y is continuous and f : T ×X×U → Kn is jointly measurable in (t, u) ∈ T ×U
for every x ∈ X and continuous in x ∈ X for each fixed (t, u) ∈ T × U . If U ⊂ UT

consists of locally Lp-integrable functions (1 ≤ p < ∞) on T and for each compact
set C = I × K ⊂ T × X there exist constants mC , lC such that
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‖f(t, x, u)‖ ≤ mC(‖u‖p + 1), t ∈ I, u ∈ U for some x ∈ X, (16)

‖f(t, x, u) − f(t, y, u)‖ ≤ lC(‖u‖p + 1)‖x − y‖, (t, x), (t, y) ∈ C, u ∈ U. (17)

Then the initial value problem

ẋ(t) = f(t, x(t), u(t)), t ∈ T

x(t0) = x0

has a unique solution x(·) = x(· ; t0, x0, u(·)) on a maximal interval of existence
Tt0,x0,u(·) for all (t0, x

0, u(·)) ∈ T ×X×U . Moreover, if we define the state transition
map ϕ : Dϕ → X by

ϕ(t; t0, x
0, u(·))=x(t; t0, x

0, u(·)), Dϕ ={(t; t0, x0, u(·)) ∈ T 2×X×U ; t ∈ Tt0,x0,u(·)}
then Σ = (T, U,U , X, Y, ϕ, η) is a differentiable dynamical system.

In general, differentiable systems are not complete. The following example illustrates
this fact and shows that the maximal intervals of existence Tt0,x0,u(·) will in general
depend on both x0 and u(·) ∈ U .

Example 2.1.16 (Exploding solutions). Consider the initial value problem

ẋ(t) = x(t)2 + u(t), x(0) = x0 (18)

where t ∈ T := R, x0 ∈ X := R. For the constant control u(t) ≡ 1, t ≥ 0 we obtain the
solution

x(t) = tan(t + c(x0)), t ≥ 0 , c(x0) = arctan x0 ∈ (−π/2, π/2)

which “explodes” at the times t±(x0) = ±π/2 − c(x0). Hence in this case the interval of
existence is (−π/2 − c(x0),+π/2 − c(x0)). For the constant control u(t) ≡ 0 it is easily
seen that x(t) = x0/(1 − x0t) is a solution of (18) on (1/x0 ,∞) if x0 < 0. For x0 = 0 the
solution is zero for all t ∈ R and for x0 > 0 the interval of existence is (−∞, 1/x0). �

We will now determine conditions under which a differentiable dynamical system
with state space X = Kn is complete. The existence of solutions in the large (i.e.
for all inf T < t < sup T ) can be derived from Theorem 2.1.14 (i). Indeed, if
X = K

n then sup Tt0,x0 < sup T (resp. inf T < inf Tt0,x0) can only occur when x(t)
is unbounded as t → sup Tt0,x0 (resp. t → inf Tt0,x0) . Thus we need criteria to
ensure that a given solution will not escape to infinity at some time inf T < t1 <
sup T . Gronwall’s lemma is fundamental for estimating the growth of solutions of
differential equations. We give two versions of the lemma. The first one is important
in this chapter, the more standard second version (which cannot be deduced from
the first one) will be used in later chapters.

Lemma 2.1.17 (Generalized Gronwall inequality). Suppose that T is an in-
terval, a ∈ T , β(·) is a locally integrable non-negative function on T and α(·), ξ(·)
are non-negative continuous functions on T such that

ξ(t) ≤ α(t) +

∣∣∣∣∫ t

a

β(r)ξ(r)dr

∣∣∣∣ , t ∈ T. (19)

Then
ξ(t) ≤ α(t) +

∣∣∣∣∫ t

a

α(r)β(r) exp

(∣∣∣∣∫ t

r

β(s)ds

∣∣∣∣) dr

∣∣∣∣ , t ∈ T. (20)
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Lemma 2.1.18 (Gronwall). Suppose that T is an interval, a ∈ T α ∈ R, β(·) is
a locally integrable non-negative function on T and ξ(·) is a continuous function on
T satisfying

ξ(t) ≤ α +

∫ t

a

β(r)ξ(r)dr, t ∈ T, t ≥ a.

Then
ξ(t) ≤ α exp

(∫ t

a

β(s)ds

)
, t ∈ T, t ≥ a. (21)

Proposition 2.1.19. Suppose T ⊂ R is an open interval, X ⊂ Kn is open and
g : T × X → Kn is affinely bounded, that is

‖g(t, x)‖ ≤ M(t)‖x‖ + m(t), (t, x) ∈ T × X. (22)

where M(·), m(·) are locally integrable non-negative functions on T . Then every
solution of (13) is bounded on every finite interval (t1, t2), t1, t2 ∈ T, t1 < t2 on
which it is defined. If moreover X = K

n then every solution of (13) can be continued
to all of T .

Proof : Let x(·) be a solution of (13) on (t1, t2) ⊂ T , t1, t2 ∈ T and let t0 ∈ (t1, t2).
It suffices to show that x(·) is bounded on [t0, t2). The proof for (t1, t0] is similar.
Now

‖x(t)‖ ≤ ‖x(t0)‖ +

∫ t

t0

‖g(r, x(r))‖dr

≤
[
‖x(t0)‖ +

∫ t

t0

m(r)dr

]
+

∫ t

t0

M(r)‖x(r)‖dr, t0 ≤ t ≤ t2.

Applying the generalized Gronwall inequality with α(t) = ‖x(t0)‖ +
∫ t

t0
m(r)dr,

ξ(t) = ‖x(t)‖ and β(t) = M(t) we see that ‖x(t)‖ is bounded on [t0, t2).
To conclude the proof, suppose that X = Kn. It suffices to show that every maximal
solution2 x(·) : (t−, t+) → X of (13) is defined on T . But if t+ < sup T then
x(·) would be bounded on [t0, t+) for any t0 ∈ (t−, t+) and this would contradict
Theorem 2.1.14 (i) since ∂X = ∅. t− = inf T is shown similarly. �

As a corollary we obtain the following sufficient criterion for the completeness of a
differentiable system.

Corollary 2.1.20. Under the conditions of Corollary 2.1.15 with X = K
n, if for

every compact subinterval I ⊂ T there exist constants CI and cI such that

‖f(t, x, u)‖ ≤ CI(‖u‖p + 1)‖x‖ + cI(‖u‖p + 1), (t, x, u) ∈ I × X × U (23)

then the differentiable system Σ = (T, U,U , X, Y, ϕ, η) is complete and reversible.

Now let Σ be a differentiable system as in Definition 2.1.12 and u(·) ∈ U . The input
function u(·) defines at every time t ∈ T a vector field x �→ f(t, x, u(t)) on X. Of

2A solution of (13) which cannot be continued to a solution of (13) on a larger interval is called
maximal.
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particular importance are those states x̄ at which the vector fields x �→ f(t, x, u(t))
vanish for all times t ∈ T

f(t, x̄, u(t)) = 0, t ∈ T. (24)

These states are singular points for all the vector fields x �→ f(t, x, u(t)), t ∈ T .
They represent equilibria of the system in the sense that if the state at an arbitrary
initial time t0 ∈ T is x̄ and Σ is controlled by u(·) then it remains in this state for
all t ∈ Tt0 . The following definition applies to arbitrary dynamical systems.

Definition 2.1.21 (Equilibrium state). Let Σ be a dynamical system and u(·) ∈
U , then x̄ ∈ X is said to be an equilibrium state of Σ under the control u(·) if

ϕ(t; t0, x̄, u(·)) = x̄, t0, t ∈ T, t ≥ t0.

Systems which arise from technical processes are often designed to operate at a
variety of equilibrium states. These different states are obtained by altering the
input signal u(·). The next example describes a simple differentiable system in the
sense of Definition 2.1.12 which has this property.

Example 2.1.22. Consider a tank of infinite height with constant cross sectional area a

to which an incompressible fluid is supplied by a pipe with flow rate u(t). The fluid leaves
the tank via an orifice of cross sectional area a0 (see Figure 2.1.4). Neglecting all inertia

y(t)

x(t)

u(t)

area a0

area a

pump

gravity

Figure 2.1.4: Fluid level control in a tank

effects of the fluid in the tank, the outlet flow rate y is related to the height x of the liquid
level in the tank by the equation

y = a0γ
√

2gx (25)

where γ is a “discharge coefficient” (0.62 for a sharp-edged orifice) and g is the gravitational
constant. The principle of conservation of mass yields the following differential equation

ẋ = −a0

a
γ
√

2gx(t) +
u(t)

a
. (26)

Clearly, (25) and (26) make sense only for x > 0. We regard x as the state of our system
and choose X = (0,∞) to be the state space and U to be the set of all piecewise continuous
non-negative functions u(·) : R → U = R+ . Applying Corollary 2.1.15 we see that for each
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initial height x0 > 0 of the liquid level in the tank and any control u(·) ∈ U (26) admits
a unique solution x(t) > 0 with x(0) = x0 on some maximal time interval (t1, t2). Thus
(25) and (26) define a differentiable dynamical system Σ with the above specification of
U , U , X and Y = (0,∞). Since the RHS of (26) is affinely bounded x(t) does not explode
in finite time by Proposition 2.1.19. But x(t) may leave the state space X = (0,∞) in
finite time (e.g. for u(·) = 0) so that Σ is not complete. If, however, u(t) ≥ ε > 0 for all t

then x(t) cannot tend to 0 in finite time. Hence Σ is complete for all controls which are
bounded away from zero.
Now suppose that the control is kept constant u(t) ≡ ū > 0, then for each value of ū there
is exactly one equilibrium state x̄ namely

x̄(ū) =
1

2g

(
ū

a0γ

)2

.

The corresponding equilibrium output value is, as it should be, ȳ = ū. �

2.1.3 System Properties

In the previous subsections we introduced some special properties of dynamical
systems - complete, reversible, differentiable. We shall now define further classifying
properties which will play an important role later.
With respect to the time domain we distinguish between continuous time systems
where T is a bounded or unbounded interval and discrete time systems where T is
a discrete subset of R. Typical discrete time domains are T = Z, T = N or some
corresponding equidistant time sequences Zτ = {kτ ; k ∈ Z}, Nτ = {kτ ; k ∈ N}
where τ > 0. Discrete time counterparts to differentiable systems are systems
described by difference equations. Unlike differentiable systems they can be defined
in a purely set theoretic framework.

Example 2.1.23 (Recursive system). Let U , X, Y be non-empty sets, T = N or Z

and

f : T × X × U → X, η : T × X × U → Y

be two arbitrary mappings. For any u(·) ∈ U = UT , t0 ∈ T , x0 ∈ X let ϕ(t; t0, x
0, u(·)),

t ∈ T , t ≥ t0 be the unique solution of the recursive (or difference) equation

x(t + 1) = f(t, x(t), u(t)) (27)

with initial value x(t0) = x0. Then Σ = (T,U,U ,X, Y, ϕ, η) is a discrete-time dynamical
system. Every discrete time system (with the above time domains) can be described in
this way (with possible restriction of U) and, in particular, automata may be regarded as
special recursive systems. �

Although the state of a dynamical system evolves in time, the system itself may be
time–invariant in the sense that the state transition map is invariant with respect to
time shifts and the output map does not depend explicitly on time. These systems
are more easily analyzed than time–varying ones and so time invariance is often
assumed although in reality the system dynamics may change slowly by the effect
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of growth, ageing, wear and tear, etc.. If T ⊂ R, U is any non-empty set and τ ∈ R

we denote by Sτ the shift operator on UT defined by

(Sτu) (t) =

{
u(t − τ) if t − τ ∈ T

0 otherwise.
(28)

Sτ is called the right or forward shift if τ > 0 and the left or backward shift if τ < 0.

Definition 2.1.24 (Time–invariant system). A dynamical system Σ is said to
be time–invariant if it satisfies the following axioms

(i) T ⊂ R contains 0 and is closed under addition, i.e. T + T ⊂ T .

(ii) U is invariant under the right shift, i.e. Sτ U ⊂ U for all τ ∈ T , τ ≥ 0.

(iii) For every t0, t, τ ∈ T , t ≥ t0, τ ≥ 0 and every x0 ∈ X, u(·) ∈ U

ϕ(t + τ ; t0 + τ, x0, Sτu(·)) = ϕ(t; t0, x
0, u(·)).

(iv) The output map η does not depend on time, i.e. η(t, x, u) = η(x, u), t ∈ T .

From (iii) we see that if x(·) is the state response to u(·) starting at (t0, x
0), the

state response x̃(·) to the control ũ = Sτu starting at (t0 + τ, x0) is given by x̃(t) =
(Sτx) (t), t ≥ t0 + τ (see Figure 2.1.5).

u x

t0 t0 + τ t t0 t0 + τ t

ũ(·)u(·)
x̃(·)x(·)

� �

Figure 2.1.5: Time invariance.

The state transition map of a time–invariant system is completely determined by
its state transition map at the fixed initial time t0 = 0

ϕ(t; x0, u(·)) := ϕ(t; 0, x0, u(·)), (t, x0, u(·)) ∈ T × X × U .

A differentiable or recursive system

ẋ(t) = f(t, x(t), u(t)) , t ∈ R+

y(t) = η(t, x(t), u(t))
x(t + 1) = f(t, x(t), u(t)) , t ∈ N

y(t) = η(t, x(t), u(t))

is time–invariant if f and η do not depend explicitly on time. In particular every
automaton is a time-invariant dynamical system.
Sometimes it is mathematically convenient to convert a time–varying differentiable
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or difference system into a time–invariant one by introducing time as a new state
variable xn+1(t) = t. Then the system equations become

ẋ(t) = f(xn+1(t), x(t), u(t))
ẋn+1(t) = 1

y(t) = η(xn+1(t), x(t), u(t)),

x(t + 1) = f(xn+1(t), x(t), u(t))
xn+1(t + 1) = xn+1(t) + 1

y(t) = η(xn+1(t), x(t), u(t)).

Note that this method increases the dimension of the state space by one.
A system is called finite, finite dimensional or infinite dimensional depending on
whether its state space X is a finite set, or a finite or infinite dimensional vector
space. The system described in Examples 2.1.7 and 1.5.6 are finite, those in Ex-
amples 2.1.10, 2.1.22 are finite dimensional, and the heat equation of Section 1.6
describes an infinite dimensional system. Another infinite dimensional system is pre-
sented in the next example which illustrates very clearly the relationship between
the state space and the memory of a system.

Example 2.1.25 (Delay system). Consider the system described by

ẋ(t) = A0x(t) + A1x(t − h) + Bu(t)

y(t) = Cx(t)
(29)

where A0, A1 ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and h > 0 are given. Here the velocity ẋ(t)

depends not only on the present state x(t) and control value u(t) but also on the past
value x(t − h). Thus the system has a memory of positive length h whereas differentiable
systems, in the sense of Definition 2.1.12, have only a memory of infinitesimal duration.
Mathematical models of the above type (both linear and nonlinear) play an important
role whenever an action produces an effect with some delay. For example in engineering,
feedback control systems sometimes contain long transmission lines which induce non-
negligible time lags in the response of the plant regulator. In biology, the growth of a
species is influenced by the time lag between birth and procreation. Also in economics,
there is a time delay between an investment decision and its effect on productive capacity–
the so-called “period of realization” of an investment.
In order to obtain a suitable state space for the system we have to find the amount of
initial data required at any time t0 ∈ T = R to determine the future evolution of x(·) on
[t0,∞). Obviously we need to know the values of x(s) for t0 − h ≤ s ≤ t0. In fact we
will show that for an arbitrary continuous initial function z(·) ∈ X := C([−h, 0], Rn) and
piecewise continuous control u(·) : [t0,∞) → R

m there exists a unique continuous function
x(·) : [t0 − h,∞) → R

n which coincides with St0z(·) on [t0 − h, t0] and satisfies (29) for
t ≥ t0. We construct this solution by the method of steps. On the interval [t0, t0 +h], x(t)
is uniquely determined by the variation-of-parameters formula for ordinary differential
equations (see Example 2.2.1)

x(t) = eA0(t−t0)z(0) +

∫ t

t0

eA0(t−s)[A1z(s − t0 − h) + Bu(s)]ds, t ∈ [t0, t0 + h]. (30)

If we set x(t0+s) = z(s) for s ∈ [−h, 0], then obviously x(·) is continuous on [t0−h, t0+h].
Now knowledge of x(·) on [t0, t0 +h] enables us via (30) to construct x(·) on [t0 +h, t0 +2h]
(replace t0 by t0 + h, z(0) by x(t0 + h) and z(s − t0 − h) by x(s − t0 − h)). Continuing
this process we see that there is a unique continuous solution x(·) of (29) on [t0,∞) with
x(t0 + s) = z(s) for s ∈ [−h, 0]. Since we need to know the whole function segment

xt : s �→ x(t + s) s ∈ [−h, 0]
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t0 − h t0 t − h t

x(t − h) x(t)

−h 0

xt(·)

x0(·)

Figure 2.1.6: State of the delay system

in order to determine the system’s future evolution under a given control u(·), we regard
xt as the state of our system at time t (see Figure 2.1.6) and take a suitable function space,
e.g. X = C([−h, 0], Rn), as state space. xt(·) is simply the trajectory x(·) seen through a
window of width h moving with time. The corresponding state transition map ϕ is given
by

ϕ(t; t0, z(·), u(·)) = xt(·)
where t ∈ [t0,∞), z(·) ∈ X and x(·) is the corresponding solution of (29) with initial state
xt0(·) = z(·). If we apply a time shift τ ≥ 0, the solution of (29) on [t0 + τ,∞) with initial
state xt0+τ (·) = z(·) and shifted input function Sτu(·) will be Sτx(·). Hence if the output
map is given by

η(t, z(·), u) = Cz(0), z(·) ∈ X, u ∈ R
m

we have an example of a time–invariant infinite dimensional system.
Note that any solution of (29) must be absolutely continuous on its domain of definition.
So if z(·) ∈ X is not absolutely continuous, then there cannot exist a solution of (29) on
all of R which coincides with z(·) on [−h, 0]. Hence the system is not reversible. �

Besides time–invariance another system property which will play a central role
throughout this book is that of linearity.

Definition 2.1.26 (Linear system). Let K be an arbitrary field. A dynamical
system Σ is said to be K-linear if

(i) U , U , X, Y are vector spaces over K,

(ii) the maps

ϕ(t; t0, ·, ·) : X × U → X and η(t, ·, ·) : X × U → Y

are K-linear for all t, t0 ∈ T , t ≥ t0.

Condition (ii) implies that

ϕ(t; t0, 0X , 0U) = 0X , t, t0 ∈ T, t ≥ t0

where 0X is the origin in X and 0U the origin in U (zero function). This means
that 0X is an equilibrium state of Σ under the control 0U whenever Σ is linear.
Example 2.1.25 is a linear system as is the system described by equations (1.3.29),
(1.3.33) in Example 1.3.2.
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2.1.4 Linearization

We conclude this section with some remarks on how linear models can be used
to approximate the behaviour of a nonlinear differentiable system close to a given
trajectory or equilibrium point. Let Σ be a differentiable dynamical system with
state equation

ẋ(t) = f(t, x(t), u(t)), t ∈ T (31)

and output equation
y(t) = η(t, x(t), u(t)) (32)

where T ⊂ R is an open interval, U ⊂ Rm and X ⊂ Rn are open, Y = Rp,
U = C(T, U). Let x̃(·) be the trajectory corresponding to a given control ũ(·) ∈ U
and initial condition (t0, x̃

0) ∈ T × X, so that

˙̃x(t) = f(t, x̃(t), ũ(t)), t ≥ t0, t ∈ T

x̃(t0) = x̃0.

We assume that the functions f : T × X × U → R
n and η : T × X × U → Y

are continuous and continuously differentiable with respect to (x, u) on T ×X ×U .
Consider the Fréchet derivatives (Jacobians)

A(t) = Dxf(t, x̃(t), ũ(t)) =

[
∂fi

∂xj
(t, x̃(t), ũ(t))

]
n×n

B(t) = Duf(t, x̃(t), ũ(t)) =
[

∂fi

∂uk
(t, x̃(t), ũ(t))

]
n×m

C(t) = Dxη(t, x̃(t), ũ(t)) =

[
∂ηi

∂xj
(t, x̃(t), ũ(t))

]
p×n

D(t) = Duη(t, x̃(t), ũ(t)) =
[

∂ηi

∂uk
(t, x̃(t), ũ(t))

]
p×m

.

(33)

The linear differentiable system described by

ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t)

(34)

is said to be the linearization of (31) and (32) along the pair (x̃(·), ũ(·)).
Let ξ0 ∈ Rn, u(·) ∈ U and for all small ε > 0 denote by x(t, ε) the solution of (31)
corresponding to the control u(t, ε) = ũ(t)+εu(t) and the initial condition x(t0, ε) =
x̃0 + εξ0. It follows from basic results concerning the dependence of solutions on
parameters and initial conditions that x(t, ε) is differentiable with respect to ε at

ε = 0 and the derivative ξ(t) = ∂x
∂ε

(t, 0) satisfies

ξ̇(t) = A(t)ξ(t) + B(t)u(t), t ∈ T, t ≥ t0

(see Notes and References). Hence, if ξ(·) is a solution of (34) corresponding to a
control u(·) and initial state ξ0 then, for small ε > 0, x̃(t) + εξ(t) is a first order
approximation to the solution of (31) corresponding to the control ũ(t) + εu(t) and
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Figure 2.1.7: Phase portraits near an equilibrium point

initial state x̃0 + εξ0. Note however, that as ε → 0 this approximation is, in general,
only uniform in t on compact intervals. Nevertheless, the behaviour of the linear
system (34) near the origin gives an approximate picture of the behaviour of the
nonlinear system (31), (32) in a sufficiently small neighbourhood of the trajectory
x̃(t). The phase portraits in Figure 2.1.7 illustrate this for a time–invariant free
system near an equilibrium solution x̃(t) ≡ x̄ (saddle point). Note that the global
properties of the nonlinear and linear systems are quite different.
As (33) shows, the linearized model is, in general, time varying even if the nonlinear
system is time–invariant, and this is one of the main reasons for the importance
of time–varying linear systems in control theory. However, if we linearize a time–
invariant system at an equilibrium point corresponding to some constant control the
linearized model will again be time–invariant.

Example 2.1.27 (Satellite). The motion of a satellite of mass m=1 in a 2-dimensional
central gravitational field of the form k(r) = −γr−2, r �= 0 can be described by the
following equations

r̈(t) = r(t)θ̇2(t) − γr−2(t) + u1(t) (35)

r(t)θ̈(t) = −2ṙ(t)θ̇(t) + u2(t) . (36)

Here r(t) is the distance of the satellite from the centre of gravitation at time t, θ̇(t) is the
angular velocity of the radius vector from the centre of gravitation to the satellite at time
t, and u1(t), u2(t) are radial and tangential thrusts which we take to be control inputs.
If u1(·) = u2(·) = 0, the circular motion r(t) = 1, θ(t) =

√
γ t solves (35). Introducing the

state variables x1 = r, x2 = ṙ, x3 = θ, x4 = θ̇, we see that (35), (36) can be written in the
form (31) where the coordinates of f(t, x, u) are given by

f1(t, x, u) = x2, f2(t, x, u) = x1x
2
4 − γx−2

1 + u1

f3(t, x, u) = x4, f4(t, x, u) = −2x2x4x
−1
1 + u2x

−1
1 .

If x̃(t) = [1, 0,
√

γ t,
√

γ ]�, ũ(t) = [0, 0]� the linearized equation about this trajectory is

ẋ = Ax + Bu
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where

A =

⎡⎢⎢⎣
0 1 0 0

3ω2 0 0 2ω
0 0 0 1
0 −2ω 0 0

⎤⎥⎥⎦ B =

⎡⎢⎢⎣
0 0
1 0
0 0
0 1

⎤⎥⎥⎦ (37)

and ω = +
√

γ. If the distance x1(t) and the angle x3(t) are measured then the (linear)
output equation is

y = Cx , C =

[
1 0 0 0
0 0 1 0

]
. (38)

�

2.1.5 Exercises

1. (RC network) Introduce a suitable state vector and determine the state and the output
equations of the electrical circuit represented in Figure 2.1.8. Choose the driving voltage

C

R

u(t)
+
−

Figure 2.1.8: RC circuit

u(·) (piecewise continuous) as input and the current through the resistor R as output.
Specify all the components of a differentiable dynamical system Σ = (T,U,U ,X, Y, ϕ, η)
modelling this circuit.

2. (Tank system) Determine the equation of motion and the output map of the fluid
system shown in Figure 2.1.9. The cross sectional areas of the tanks are a1, a2 > 0. The

u(t) �

�

�

x1(t)

�

x2(t)1/R1

��

1/R2

�

y(t)

�a1 a2

Figure 2.1.9: Fluid system

flow through the first orifice is proportional (with constant 1/R1) to x1(t)−x2(t), and the
flow through the second orifice is proportional with constant 1/R2 to x2(t). Specify all
items of the corresponding dynamical system Σ = (T,U,U ,X, Y, ϕ, η).

3. (Mass-spring system) Consider the mechanical system illustrated in Figure 2.1.10.
Two masses m1, m2 are suspended on ideal springs with stiffness coefficients k1, k2, hanging
from a fixed support. The outputs are the displacements y1(t), y2(t) of the two masses
from their equilibrium positions. The input is a piecewise continuous force u(t) applied
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u(t)

y2

y1

m2

m1

equilibrium

equilibrium

Figure 2.1.10: Mass-spring system

to the second mass. Assuming that the frictional resistances for the two masses in the
surrounding medium are c1 and c2, we obtain the following equations of motion

m1ÿ1 + c1ẏ1 + k1y1 = k2(y2 − y1)

m2ÿ2 + c2ẏ2 + k2(y2 − y1) = u
(39)

Introduce a suitable state vector and specify a differentiable dynamical system Σ describing
the above mechanical system. If u(t) = ū ∈ R is constant determine the corresponding set
of equilibrium states. (see Driver (1977), [138, pp.173-74])

4. (RLC circuit) Consider the electrical circuit illustrated in Figure 2.1.11. If y1, y2

are the currents across the resistors R1, R2 show that the equations of motion are of the
same form as (39) but with u̇(t) instead of u(t) on the right hand side of the second
equation. Introduce the currents through the inductor and the charge of the capacitor

u(t)
+

−

�
y2(t)

�
y1(t)

C2 C1

R2 R1L2 L1

Figure 2.1.11: RLC-network

as state variables and specify the corresponding dynamical system Σ. Compare the state
equation obtained with that of the previous exercise. Determine the equilibrium states
corresponding to constant voltage u(t) ≡ ū. (see Driver (1977) [138, pp.177-178]).

5. (Parity checker) Construct an automaton A = (U,X, Y, ψ, η) with U = Y = Z2 and
an initial state x0 ∈ X such that A acts as a “parity check machine” when initialized at
x0. This means it responds to an arbitrary finite sequence of zeros and ones with 0 if the
number of ones is even and with 1 if the number of ones is odd (see Birkhoff and Bartee
(1970) [60, pp.69-70]).

6. (Coin operated dispenser) Specify an automaton A = (U,X, Y, ψ, η) which models a
candy machine that accepts two sorts of coins (nickels N and dimes D). The price of a
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candy is 15p. According to the amount of money inserted, it returns nothing or a piece of
candy or a piece of candy plus change. Assume that the candy store within the dispenser
is infinite (see MacClamroch (1980) [369, pp.192]).

7. (Communication system) Consider a communication system of the structure as shown
in Figure 2.1.12. A binary message (sequence of zeros and ones) is firstly encoded, then
transmitted by a communication channel and then decoded to obtain the received mes-

encoder channel decoderu input
message

w w youtput
message

� � � �

Figure 2.1.12: Communication system

sage. Assume that the channel transmits the signal w without noise and that the encoder
algorithm is described by

w(t) = u(t) + u(t − 1) + u(t − 2), t ∈ N (40)

where we set u(t) = 0 for t < 0.

(i) Specify a dynamical system Σ1 and an initial state x(0) = x0 such that the correspond-
ing input-output relation is identical with (40). Verify this for the input sequence
(0 1 1 0 1 1 0 0 1 0 1 0 1).

(ii) Find a decoder algorithm which reconstructs the input message (such that y(·) is a
shifted version of u(·)).

(iii) Describe this decoder by a dynamical system Σ2 and an appropriate initial state
x̄(0) = x̄0.

(iv) Specify a dynamical system Σ which describes the complete communication system,
consisting of the encoder and the decoder coupled in series.

8. Sometimes the equations of motion of a differentiable system contains higher order
derivatives of an internal variable z and/or derivatives of the control function u. The
output equation may also contain derivatives of the internal variable z. In these cases
one must seek a state vector x which enables these equations to be transformed into state
and output equations of the prescribed form (see Definition 2.1.12). Find an appropriate
state vector and determine the state and output equations corresponding to the following
equations where ai, bj ∈ R, n ∈ N, n ≥ 1 are given parameters

(i) z̈(t) + a1ż(t) + a0z(t) = u(t), y(t) = ż(t),

(ii) y(n)(t) + an−1y
(n−1)(t) + . . . + a1y

(1)(t) + a0y(t) = u(t), y(i) =
diy

dti
,

(iii)
···
y (t) + a2ÿ(t) + a1ẏ(t) = b1u̇(t) + b0u(t).

9. Find a suitable state vector and determine state and output equations for the discrete
time systems described by the following higher order difference equations on T = N.

(i) z(t + 2) + a1z(t + 1) + a0z(t) = u(t), y(t) = z(t + 1),

(ii) y(t + n) + an−1y(t + n − 1) + . . . + a1y(t + 1) + a0y(t) = u(t),
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(iii) y(t + n) + an−1y(t + n − 1) + . . . + a0y(t) = bn−1u(t + n − 1) + . . . + b0u(t).

10. Examine which of the following equations describe a complete dynamical system Σ.
Determine the dimension of Σ and determine whether Σ is linear and/or time–invariant.

(i) z(t) = u(t), y(t) = ż(t), t ∈ R,

(ii) z̈(t) = u(t), y(t) = ż(t), t ∈ R,

(iii) z(t) = u̇(t), y(t) = z(t), t ∈ R,

(iv) ż(t) = z(t)u(t), y(t) = ż(t), t ∈ R,

(v) z(t) = (z(t − 1) + z(t + 1))/2, y(t) = z(t), t ∈ Z,

(vi) z(t) = (u(t − 1) + u(t + 1))/2, y(t) = z(t − 1), t ∈ Z,

(vii) z(t + 1) = z(t) + u(t − 1), y(t) = z(t − 1), t ∈ Z,

(viii) z(t + 1) = −z(t) + u(t + 1), y(t) = z(t)2, t ∈ Z,

(ix) ż(t) = z(t)2/3, y(t) = z(t)3, t ∈ [0,∞),

(x) z̈(t) + tż(t) + t2z(t) = u(t), y(t) = z̈(t), t ∈ [0,∞),

(xi) z(t) = z(t − 1) + z(t − 2) + u(t), y(t) = z(t), t ∈ R,

(xii) ż(t) = z(t − 1) + ż(t − 1) + u(t), y(t) = z(t − 1/2), t ∈ R.

11. Consider the scalar delay system

ẋ(t) = x(t − 1) + u(t), y(t) = x(t), t ≥ 0. (41)

(i) Specify a dynamical system Σ described by these equations (see Example 2.1.25).

(ii) Determine the solution x(·) corresponding to the control function u(t) ≡ 0 and
the initial condition x(t) = 1, t ∈ [−1, 0] (give an explicit formula for x(·) on the
intervals [k, k + 1], k ∈ N). Show that (41) cannot be solved backwards in time.

(iii) Solve (41) when u(t) ≡ 1 and x(t) = 1, t ∈ [−1, 0].

(cf. Bellman and Cooke (1963))

12. Prove Gronwall’s Lemma 2.1.18.

13. In Example 2.1.16 we saw that the equation ẋ(t) = x(t)2 + u(t) does not have a
common interval of existence for all initial states x0 ∈ R and constant controls u(·). Now
introduce a small delay ε > 0

ẋ(t) = x(t − ε)2 + u(t), t ≥ 0.

Specify T , X, U , U , ϕ for a dynamical system Σ (without outputs) described by this
equation of motion. Determine whether Σ is complete and/or reversible.

14. (Euler’s equations) The rotation of a rigid body around its centre of mass is described
by the equations

I1 ω̇1(t) = (I2 − I3)ω2(t)ω3(t) + u1(t)

I2 ω̇2(t) = (I3 − I1)ω1(t)ω3(t) + u2(t)

I3 ω̇3(t) = (I1 − I2)ω1(t)ω2(t) + u3(t)
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where ω is the angular velocity in a coordinate system coinciding with the principal axes
of the rigid body. I1, I2, I3 are the principal moments of inertia and u = [u1, u2, u3]

� is
the applied torque, see Goldstein (1980) [194, pp.158]. Assume I1 = I2 (symmetry) and
consider the free motion (ũ ≡ 0)

ω̃1(t) = cos [ω(I2 − I3)t/I2]

ω̃2(t) = sin [ω(I3 − I2)t/I2]

ω̃3(t) = ω0

where ω0 > 0 is given. Linearize the above system about (ω̃(·), ũ(·)).

15. Case study: Fisheries model. Consider a simple Verhulst model (see Exam-
ple 1.1.1) for the dynamics of a fish population x(t) in a pond

ẋ(t) = αx(t)(K − x(t)) − u(t)), t ≥ 0 (42)

x(0) = x0 > 0

where u(t) is the harvesting rate, K > 0 the saturation level of the population and α > 0
a constant. We require that x(t) ≥ 0, u(t) ≥ 0 for all t.

(i) No harvesting. For u(t) = 0 determine an explicit formula for the solution of (42) on
[0,∞) by separation of variables. Show that for all initial states x0 > 0 the solution
tends to the equilibrium state x̄ = K.

(ii) Constant harvesting with over-exploitation. Show that a constant harvesting rate
u(t) ≡ ū > αK2/4 leads to depletion in finite time for all initial conditions.

(iii) Constant harvesting without over-exploitation. Assume that the harvesting rate
u(t) ≡ ū is constant but ū < αK2/4. Show that there exist two equilibrium states
x̄, x̂, 0 < x̄ < x̂, and that for x0 > x̄ (42) admits a (unique) solution x(t) on [0,∞)
which tends to x̂ as t → ∞. However, if x0 < x̄, show that depletion occurs in finite
time.

(iv) What happens if u(t) ≡ αK2/4, t ≥ 0?

(v) Constant effort harvesting. If a constant effort for harvesting is made the harvesting
rate u(t) will be proportional to x(t) so u(t) = e x(t). Show that depletion occurs in
finite time if e > αK. Thus assume e < αK. Prove that there exist two equilibrium
states 0 and x̄ and that for any initial state x0 > 0 the corresponding solution of (42)
tends to x̄ as t → ∞. Determine the effort coefficient e ∈ [0, αK] which leads to an
equilibrium state with maximal harvesting rate e x̄. Discuss the result in comparison
with the result obtained in (iv).

(vi) Let U be the set of all piecewise continuous control functions u(·) : [0,∞) → [0, u1]
where 0 < u1 < αK2/4. Determine x1 > 0 such that for any initial state x0 ∈
X := [x1,∞) and any control function u(·) there exists a (unique) solution of (42)
on [0,∞).

2.1.6 Notes and References

A general concept of a dynamical system was first formulated by Kalman (1963) [287] (see

also the introduction of Kalman et al. (1969) [290]). A concept of equal generality from an

input-output point of view was defined by Zadeh and Desoer (1963) [542]. Sontag (1998)
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has given a state space oriented general definition allowing for local existence of solutions

in [472]. A novel comprehensive framework for the theory of dynamical systems has been

developed by J. C. Willems in his behavioural approach to dynamical systems, see [529]

and Polderman and Willems (1997) [416]. Its most salient feature is that it does not make

an a priori distinction between inputs and outputs.

The relationship between the theory of dynamical systems and the theory of automata

has been emphasized by Arbib (1968) [16]. The emergence of automata theory which was

stimulated by the development of information-processing technology dates back to the

fifties. An interesting early reference is the volume on Automata Theory in the Annals of

Mathematics Studies series edited by Shannon and McCarthy (1956) [461]. This volume

contains contributions by some of the pioneers of the field, Shannon, v. Neumann, Kleene,

and Moore. Other important early contributions which led to the concept of finite state

machine (Definition 2.1.6 with finite input, state and output sets) were Huffman (1954)

[270], Mealy (1955) [371] and the papers collected in [381]. Finite state machines were

studied as mathematical models of switching and encoding networks in abstraction from

hardware considerations. The theory was strongly influenced by earlier developments in

logic and the theory of computability of recursive functions, in particular by the concept

of a Turing machine (invented by Turing in 1935). A comprehensive treatise on automata

is Eilenberg (1974) [147], a more recent reference is Khoussainov and Nerode (2001) [307].

Many elementary examples of differentiable control systems are described in MacClam-

roch (1980) [369] and in the excellent introduction of Luenberger (1979) [349]. The satellite

model (Example 2.1.27) is discussed in Brockett (1970) [77].

For the existence and uniqueness results from the theory of differential equations, see

Dieudonné (1970) [132], Hale (1980) [214] and Amann (1990) [11]. The generalized Gron-

wall inequality can be found in [11] under the additional assumption that β(·) is continuous

on T . However it is easy to see that local integrability suffices. For the more standard

version of Gronwall’s Lemma see e.g. [541]. Differential equations where the RHS depends

measurably on t are carefully dealt with in Aulbach and Wanner (1996) [27]. For the

continuous dependence of solutions on parameters, see e.g. [11], [214]. Differentiability

theorems on which Subsection 2.1.4 on Linearization is based can be found in [11].

Some results on nonlinear control systems can be found in Lee and Markus (1967) [336]. A

differential geometric approach has been developed by Isidori (1989) [275] and Nijmeyer

and van der Schaft (1990) [393]. A comprehensive recent textbook which presents different

methods for the study and design of nonlinear control systems both in state space and in

an input-output framework is Sastry (1999) [448]. Advanced treatments of the classical

theory of dynamical systems are Palis and de Melo (1982) [404], Arnold (1983) [20], De-

vaney (1989) [131] and Katok and Hasselblatt (1995) [295].

An elementary introduction to delay equations is given in Driver (1977) [138]. Many

examples and interesting results on delay equations can be found in Bellman and Cooke

(1963) [45]. Another standard reference for functional differential equations is Hale (1977)

[213].
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2.2 Linear Systems

The assumption of linearity allows every state and output trajectory to be repre-
sented as a linear combination (“superposition”) of a fixed set of simpler trajectories.
The use of this superposition principle for the analysis of linear systems is the cen-
tral topic of this section.
We begin by considering general linear systems and show that every trajectory can
be decomposed into a free motion which depends only on the initial state and a
forced motion starting at zero which depends only on the control function. Then we
specialize to the class of linear time–invariant finite dimensional systems described
by differential and difference equations. Their free motions are analyzed in detail
and we show that every free trajectory can be decomposed into generalized eigenmo-
tions. The forced motions will be considered more thoroughly in the next section.
We conclude with the study of a particular infinite dimensional system described by
partial differential equations.

2.2.1 General Linear Systems

Let K be an arbitrary field and Σ = (T, U,U , X, Y, ϕ, η) a K-linear system, then for
every t0, t ∈ T , t ≥ t0 and λi ∈ K, xi ∈ X, ui ∈ U , ui(·) ∈ U , i = 1, . . . , k we have

ϕ(t; t0,
k∑

i=1

λixi,
k∑

i=1

λiui(·)) =
k∑

i=1

λiϕ(t; t0, xi, ui(·)) (1)

η(t,
k∑

i=1

λixi,
k∑

i=1

λiui) =
k∑

i=1

λiη(t, xi, ui). (2)

These equations express the superposition principle for the state and the output. As
a special case we obtain the so-called decomposition principle

ϕ(t; t0, x
0, u(·)) = ϕ(t; t0, x

0, 0U) + ϕ(t; t0, 0X , u(·)). (3)

This shows that every trajectory of a linear system can be decomposed into the sum
of a free motion t �→ ϕ(t; t0, x

0, 0U) which depends only on the initial state x0 and a
forced motion t �→ ϕ(t; t0, 0X , u(·)) which depends only on the control u(·).
Again as a special case of (1), by setting ui(·) = 0U , we get the superposition law of
free motions

ϕ(t; t0,
k∑

i=1

λixi, 0U) =
k∑

i=1

λiϕ(t; t0, xi, 0U) (4)

and, by setting xi = 0X , the superposition law of forced motions

ϕ(t; t0, 0X ,
k∑

i=1

λiui(·)) =
k∑

i=1

λiϕ(t; t0, 0X , ui(·)). (5)

It is easy to see that the general superposition principle for state trajectories (1) is
equivalent to the decomposition principle (3) together with the superposition laws
(4) and (5).
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The decomposition law leads us to introduce the following two families of linear
maps. For any pair of times (t, t0) ∈ T 2

≥ we define the evolution operator Φ(t, t0) :
X → X by

Φ(t, t0)x = ϕ(t; t0, x, 0U), x ∈ X (6)

and the input-to-state map Θ(t, t0) : U → X by

Θ(t, t0)u(·) = ϕ(t; t0, 0X , u(·)), u(·) ∈ U . (7)

The two maps are linear because of (4), (5). Φ(t, t0) associates with any state x the
state x(t) at time t resulting from the free motion of Σ starting at x(t0) = x. Θ(t, t0)
maps any control function u(·) onto the state x(t) to which Σ is steered at time t
by u(·) from the initial state x(t0) = 0. By (3) all trajectories t �→ ϕ(t; t0, x

0, u(·))
of Σ are completely determined by these two families of linear operators

ϕ(t; t0, x
0, u(·)) = Φ(t, t0)x

0 + Θ(t, t0)u(·), (t, t0) ∈ T 2
≥.

We shall see later that for all linear systems of practical importance the linear map
Θ(t, t0) can be expressed with the aid of the operators Φ(t, s)(t,s)∈T 2

≥
. Therefore it

is particularly important to study the properties of the family (Φ(t, s))(t,s)∈T 2
≥
. The

axioms (1.4) and (1.6) of a state transition map imply the following basic equations

Φ(t, t) = IX , t ∈ T (8)

Φ(t2, t1) ◦ Φ(t1, t0) = Φ(t2, t0), t0, t1, t2 ∈ T, t0 ≤ t1 ≤ t2. (9)

A family (Φ(t, s))(t,s)∈T 2
≥

of linear operators on X with these properties is called a

family of evolution operators on X. If Σ is time–invariant we may fix t0 = 0 and
obtain a one-parameter family (Φ(t))t∈T0 of linear operators Φ(t) : X → X defined
by

Φ(t)x = Φ(t, 0)x = ϕ(t; 0, x, 0U), t ∈ T0 = {t ∈ T ; t ≥ 0}. (10)

Equations (8) and (9) then imply

Φ(0) = IX (11)

Φ(t) ◦ Φ(s) = Φ(t + s), s, t ∈ T, t, s ≥ 0. (12)

A family (Φ(t))t∈T0 of linear operators on X with these properties is called a semi-
group of linear operators on X. The theory of operator semigroups on normed
spaces provides a mathematical basis for the study of infinite dimensional time–
invariant linear systems (see Notes and References and Section 1.6). The following
finite-dimensional example relates the abstract notions introduced above to familiar
concepts from the theory of linear differential equations.

Example 2.2.1. (Linear differentiable systems). Let T ⊂ R be an interval,
X = K

n, U = K
m, Y = K

p, U any linear subspace of L1
loc(T, Km), e.g. U = PC(T, Km) and

A(·) ∈ PC(T, Kn×n), B(·) ∈ PC(T, Kn×m), C(·) ∈ PC(T, Kp×n), D(·) ∈ PC(T, Kp×m).
By Corollary 2.1.20, there exists a unique solution of the initial value problem

ẋ(t) = A(t)x(t) + B(t)u(t), t ∈ T (13)

x(t0) = x0
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for every u(·) ∈ U , t0 ∈ T , x0 ∈ X. Recall that the fundamental matrix X(t, t0) associated
with (13) is, by definition, the solution of the matrix differential equation

Ẋ(t) = A(t)X(t), t ∈ T (14)

X(t0) = In.

This means that the columns xj(t, t0) of X(t, t0) solve the initial value problems

ẋ(t) = A(t)x(t), t ∈ T

x(t0) = ej

where ej is the j-th column of In, j ∈ n. The variation-of-constants formula gives the
following explicit representation for the solution x(t) = ϕ(t; t0, x

0, u(·)) of (13)

ϕ(t; t0, x
0, u(·)) = X(t, t0)x0 +

∫ t

t0

X(t, s)B(s)u(s) ds, t ∈ T. (15)

If we set
η(t, x, u) = C(t)x + D(t)u

then Σ = (T,U,U ,X, Y, ϕ, η) is a linear differentiable system (defined by the matrix-valued
functions A(·), B(·), C(·), D(·)). Since ϕ is defined on T 2 × X × U , Σ is complete and
reversible. Let us now determine the linear operators Φ(t, t0), Θ(t, t0) associated with Σ.
As an immediate consequence of (6) and (15) we obtain for all t0, t ∈ T

Φ(t, t0)x = X(t, t0)x.

So the fundamental matrix of (13) is just the matrix representation of the evolution
operator Φ(t, t0) with respect to the standard basis of K

n. In the sequel we shall use
the same notation Φ(t, t0) for both the linear operators and their matrix representations.
Since Φ(t, t0)Φ(t0, t) = In, the operators Φ(t, t0), t, t0 ∈ T are all invertible. From (7) and
(15) we obtain for all t0, t ∈ T

Θ (t, t0)u(·) =

∫ t

t0

Φ(t, s)B(s)u(s)ds, u(·) ∈ U . (16)

This specifies the relation between the input-to-state operators Θ(t, t0) and the evolution
operators Φ(t, s) for the system Σ.
We conclude this example with a few words about the important special case where T = R

and A(t) ≡ A, B(t) ≡ B, C(t) ≡ C, D(t) ≡ D are independent of time. In this case the
system equations are

ẋ(t) = Ax(t) + Bu(t), t ∈ R

y(t) = Cx(t) + Du(t).
(17)

Let eAt denote the matrix exponential defined by the absolutely converging series

eAt =

∞∑
k=0

tk

k!
Ak, t ∈ R. (18)

Then the fundamental matrix has the form X(t, t0) = eA(t−t0) and so the state transition
map is given by

ϕ(t; t0, x
0, u(·)) = eA(t−t0)x0 +

∫ t

t0

eA(t−s)Bu(s) ds, t ∈ R. (19)
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This formula shows that the system Σ is time–invariant, with associated semigroup of
linear operators Φ(t) = eAt. Since Σ is reversible this semigroup can actually be extended
to a one-parameter group Φ = (eAt)t∈R of linear operators on K

n. �

In the following example we briefly discuss the discrete time counterpart of the
previous example.

Example 2.2.2. (Linear difference systems). Let K be an arbitrary field, U = K
m,

X = K
n, Y = K

p, T ⊂ Z a time-domain satisfying t ∈ T ⇒ t + 1 ∈ T , U = UT , and
A(·) = (A(t))t∈T , B(·) = (B(t))t∈T , C(·) = (C(t))t∈T , D(·) = (D(t))t∈T sequences of
n×n, n×m, p×n, p×m matrices over K. Consider the discrete time counterpart of the
system equations (13)

x(t + 1) = A(t)x(t) + B(t)u(t), t ∈ T

y(t) = C(t)x(t) + D(t)u(t).
(20)

It is easily verified that for every u(·) ∈ U , t0 ∈ T , x0 ∈ X the difference equation in (20)
admits a unique solution x(t) = ϕ(t; t0, x

0, u(·)) with x(t0) = x0, namely

ϕ(t; t0, x
0, u(·)) = Φ(t, t0)x

0 +

t−1∑
s=t0

Φ(t, s + 1)B(s)u(s), t ∈ Tt0 (21)

where Φ(t, s) = In for s = t ∈ T and

Φ(t, s) = A(t − 1)A(t − 2) . . . A(s), s, t ∈ T, s < t.

If we set η(t, x, u) = C(t)x + D(t)u, then Σ = (T,U,U ,X, Y, ϕ, η) is a discrete time linear
time–varying dynamical system. The associated input-to-state operator Θ(t, t0) can again
be expressed in terms of the evolution operator Φ(t, s),

Θ(t, t0)(u(·)) =
t−1∑
s=t0

Φ(t, s + 1)B(s)u(s) , u(·) ∈ U , t0, t ∈ T, t0 < t .

In the time–invariant case where A(t), B(t), C(t), D(t) are constant matrices the system
equations are

x(t + 1) = Ax(t) + Bu(t), t ∈ Z

y(t) = Cx(t) + Du(t),
(22)

so that the state transition map is given by

ϕ(t; t0, x
0, u(·)) = A(t−t0)x0 +

t−1∑
s=t0

A(t−1−s)Bu(s) .

It follows from this formula that Σ is time–invariant with an associated discrete semigroup
of linear operators (Φ(t))t∈N given by

Φ(t) = Φ(t, 0) = At, t ∈ N . (23)

In contrast with the differentiable system of Example 2.2.1, Σ is not necessarily reversible.
It is reversible if and only if A is nonsingular. �

In the next two subsections we will study the free motions of the time-invariant
linear systems (17) and (22) in more detail.
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2.2.2 Free Motions of Time–Invariant Linear Differential

Systems

Let A ∈ K
n×n be a given matrix. In this subsection we will study the state trajec-

tories of the free system without output (see Remark 2.1.2) given by

ẋ(t) = Ax(t), t ∈ R. (24)

First note that the origin x̄ = 0 is always a singular point of the vector field x �→ Ax
on Kn and is, therefore, an equilibrium point of (24). More generally, x̄ ∈ Kn is an
equilibrium point if and only if Ax̄ = 0, i.e. ker A is the set of equilibria of (24).
We have seen in Example 2.2.1 that the trajectories of (24) (i.e. the free motions of
(17)) are described by the group of linear operators

Φ(t) = eAt =

∞∑
k=0

tk

k!
Ak, t ∈ R. (25)

This group has the following basic properties.

Lemma 2.2.3. If A ∈ Kn×n, then for every s, t ∈ R we have

(i) d
dt

eAt = AeAt = eAtA

(ii) eA(t+s) = eAteAs

(iii) (eAt)−1 = e−At

(iv) eS−1ASt = S−1eAtS , S ∈ Gln(K).

Proof : Properties (ii) and (iii) express the fact that (eAt)t∈R is a group of linear
operators, (i) follows because eAt is the fundamental matrix of (24) at t0 = 0 and
(iv) follows from the series representation (25) since (S−1AS)k = S−1AkS, k ∈ N

and the similarity action A �→ S−1AS is continuous on Kn×n. �

Our aim is to show that every trajectory of (24) can be represented as a superposition
of a finite number of relatively simple trajectories, the (generalized) eigenmotions.
These eigenmotions are easily determined once a basis of generalized eigenvectors of
A has been found. Before we make this more precise we recall some spectral results
from Linear Algebra. Suppose K = C so that Cn is the state space and A ∈ Cn×n.
Let σ(A) denote the spectrum of A, i.e. the set of eigenvalues

σ(A) = {λ ∈ C ; det(λIn − A) = 0} .

σ(A) is the set of roots of the characteristic polynomial of A

χA(s) = det(sIn − A) = sn + an−1s
n−1 + · · ·+ a1s + a0 . (26)

Factorizing χA(s) ∈ C[s] according to the Fundamental Theorem of Algebra we
obtain

χA(s) =

�∏
j=1

(s − λj)
m(λj ) , λi �= λj for i �= j . (27)

m(λj) is said to be the algebraic multiplicity of the eigenvalue λj while dim ker(λjIn−
A) ≤ m(λj) is its geometric multiplicity. The following well-known decomposition
result is basic for our analysis.
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Lemma 2.2.4 (Spectral Decomposition Lemma). If λ1, . . . , λ� are the distinct
eigenvalues of A ∈ Cn×n with algebraic multiplicities m(λ1), . . . , m(λ�) then

C
n = ker(λ1In − A)m(λ1) ⊕ · · · ⊕ ker(λ�In − A)m(λ�) (28)

i.e. Cn is the direct sum (see Definition A.1.19) of the generalized eigenspaces
ker(λjIn −A)m(λj ), j ∈ �. Moreover dim ker(λjIn − A)m(λj ) = m(λj) for each j ∈ �.

z ∈ Cn is said to be a generalized eigenvector of order m ≥ 1 of A if

(λIn − A)mz = 0 and (λIn − A)m−1z �= 0 . (29)

Hence the non-zero elements of ker(λjIn − A)m(λj ) are the generalized eigenvectors
of order ≤ m(λj). The projections corresponding to the decomposition (28)

Pj : C
n −→ ker(λjIn − A)m(λj) , j ∈ �

x = x1 ⊕ · · · ⊕ x� �→ xj

are called eigenprojections of A. The following properties of the Pj, j ∈ � are obvious
from the definition

P 2
j = Pj , PjPk = 0 if j �= k ,

�∑
j=1

Pj = In . (30)

Moreover
APj = PjA = λjPj + Nj , j ∈ � (31)

where Nj = (A− λjIn)Pj is nilpotent. Nj is called the eigennilpotent corresponding
to the eigenvalue λj of A. Adding up these equalities and making use of (30) we
obtain the spectral representation of A

A = A
�∑

j=1

Pj =
�∑

j=1

(λjPj + Nj). (32)

If Nj = 0, λj is said to be semi-simple. A is diagonalizable if and only if every
eigenvalue is semi-simple and in this case

A = A

�∑
j=1

Pj =

�∑
j=1

λjPj. (33)

We now return to the free motions of (24). An initial state z ∈ ker(λIn −A)m gives
rise to the following generalized eigenmotion of (24)

eAtz = eλte(A−λI)tz = eλt
m−1∑
j=0

tj

j!
(A − λI)jz , t ∈ R . (34)

The trajectory remains in the linear subspace spanned by z, Az, . . . , Am−1z for all
t ≥ 0. In particular, if z is an eigenvector, Az = λz, then

eAtz = eλtz , t ∈ R (35)
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remains always in the one-dimensional complex subspace through z. These trajec-
tories are called (complex) eigenmotions of the system (24).
As functions of time, any generalized eigenmotion of order m (i.e. starting at a gen-
eralized eigenvector of order m) is the product of an exponential eλt and a vector

polynomial
∑m−1

j=0
tj

j!
(A−λIn)jz ∈ Cn[t] of degree m−1. If Re λ �= 0 the exponential

part determines the long term behaviour of the trajectory. ‖eAtz‖ tends to zero or
infinity depending on whether Reλ < 0 or Reλ > 0.
Remark 2.2.5. If λ0 = 0 ∈ σ(A) the associated eigenvectors are equilibrium points
of (24). If z is an associated generalized eigenvector of order m then the corresponding
generalized eigenmotion depends polynomially on time, z(t) = eAtz =

∑m−1
j=0 (1/j!)Ajz tj.

�

Since by Lemma 2.2.4 every initial state can be represented as a sum of generalized
eigenvectors we obtain the following corollary.

Corollary 2.2.6. Every trajectory of the free system (24) is a superposition of the
generalized eigenmotions. More precisely, if P1, . . . , P� are the eigenprojections of
A ∈ C

n×n corresponding to the distinct eigenvalues λ1, . . . , λ� with algebraic multi-
plicities m(λ1), . . . , m(λ�) then

eAtx0 =
�∑

j=1

eλjt

m(λj)−1∑
k=0

tk

k!
(A − λjIn)kPjx

0 , t ≥ 0, x0 ∈ C
n . (36)

In particular, if A is diagonalizable then

eAtx0 =

�∑
j=1

eλjtPjx
0 , t ≥ 0, x0 ∈ C

n . (37)

The latter formula gives us a method for computing eAt in the diagonalizable case. If
(z1, . . . , zn) is a basis of eigenvectors of A, Azi = λiz

i then S = [z1, . . . , zn] ∈ Gln(C)
satisfies

eAt = S diag (eλ1t, . . . , eλnt) S−1 . (38)

For the general case, recall that if J(λ, m) is a Jordan block of order m ∈ N∗, i.e.

J(λ, m) =

⎡⎢⎢⎢⎣
λ 1 0

. . .
. . .
. . . 1

0 λ

⎤⎥⎥⎥⎦ ∈ C
m×m , λ ∈ C , m ∈ N . (39)

Then

eJ(λ,m)t = eλt

⎡⎢⎢⎢⎢⎢⎢⎣

1 t/1! t2/2! · · · tm−1/(m−1)!
. . .

. . .
. . .

...
. . .

. . . t2/2!

0
. . . t/1!

1

⎤⎥⎥⎥⎥⎥⎥⎦ , t ∈ R , λ ∈ C, m ∈ N .

(40)
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Now suppose that S−1AS is in Jordan canonical form

S−1AS = ⊕�
j=1 ⊕

kj

k=1 J(λj, mjk) (41)

where m(λj) =
∑kj

k=1 mjk is the algebraic multiplicity of the eigenvalue λj ∈ σ(A)
and ⊕ denotes the direct sum of matrices, see Definition A.1.20. Then

eAt = S
[
⊕�

j=1 ⊕
kj

k=1 eJ(λj ,mjk)t
]
S−1 , t ∈ R. (42)

Whilst these formulas are useful for analytical purposes (see Chapter 3) they should
not be used for the numerical computation of eAt, see Notes and References.
In most applications where A is real, one is only interested in real state trajectories.
What, then, is the significance of the above analysis?

Remark 2.2.7. From an operator theoretic point of view one has to distinguish between
a linear map L : R

m → R
n and its complexification LC : C

m → C
n defined by

LC(x + ıy) = Lx + ıLy , x, y ∈ R
m . (43)

However, if there is no risk of confusion, we use the same symbol for a matrix L ∈ R
n×m,

the corresponding linear map v �→ Lv from R
m to R

n and its complexification as a linear
map from C

m to C
n. Where necessary, we distinguish between the kernels (resp. ranges)

of L and LC by using the notations kerK L (resp. imK L). �

For the rest of this subsection we suppose that A ∈ R
n×n. The real eigenmotions

or modes of the system (24) are obtained by taking the real and imaginary parts of
the complex eigenmotions. If λ ∈ σ(A) is real and z a real eigenvector for λ, then
the associated eigenmotion (35) is real. Whereas if λ = γ + ıω ∈ σ(A) is non-real
(ω �= 0) and z = (zi) ∈ Cn is an associated eigenvector then λ = γ − ıω ∈ σ(A) and
the conjugate complex vector z = (zi) ∈ C

n is an eigenvector of A for λ. Choosing
Re z = (1/2)(z + z) ∈ Rn and Im z = 1/(2ı)(z − z) ∈ Rn as initial states we obtain
the following real eigenmotions of (24)

eAt(Re z) = Re(eAtz) = Re(eλtz) = eγt [(cos ωt) Re z − (sin ωt) Im z] (44)

eAt(Im z) = Im(eAtz) = Im(eλtz) = eγt [(sin ωt) Re z + (cosωt) Im z] . (45)

There is a qualitative difference between the modes corresponding to real and to
non-real eigenvalues. In the real case we have a ‘one-dimensional’ trajectory along
the real line Rz which is contractive if λ < 0, constant if λ = 0 and expansive if
λ > 0. In the complex case we have a ‘two-dimensional’ oscillatory motion in the
plane spanned by Re z, Im z ∈ Rn. This motion is contractive if Reλ < 0, and
expansive if Reλ > 0. Some typical eigenmotions are shown in Figure 2.2.3.
Generalized real eigenmotions are obtained by taking the real and imaginary parts of
generalized complex eigenmotions (34). If λ ∈ σ(A) is real and z is a generalized real
eigenvector of order m for λ then (34) is a generalized real eigenmotion, remaining
for all t ≥ 0 in the m-dimensional linear subspace

spanR{z, Az, . . . , Am−1z} ⊂ R
n.



108 2. Introduction to State Space Theory

If λ = γ + ıω ∈ σ(A), ω �= 0 and z ∈ Cn is an associated generalized eigenvector of
order m then we obtain two generalized real eigenmotions associated with the pair
λ, λ ∈ σ(A) and the generalized eigenvector z

eAt Re z = Re(eAtz) = Re eλt

m−1∑
j=0

tj

j!
(A − λIn)jz (46)

= eγt

m−1∑
j=0

tj

j!

[
(cos ωt) Re(A−λIn)jz−(sin ωt) Im(A−λIn)jz

]
, t ≥ 0,

eAt Im z = Im(eAtz) = Im eλt
m−1∑
j=0

tj

j!
(A − λIn)jz (47)

= eγt
m−1∑
j=0

tj

j!

[
(cos ωt) Im(A−λIn)jz+(sin ωt) Re(A−λIn)jz

]
, t ≥ 0.

Both trajectories remain for all t ≥ 0 in the 2m-dimensional linear subspace

spanR{Re(A − λIn)jz , Im(A − λIn)jz ; j = 0, . . . , m − 1} .

Since A is real, its spectrum can be written in the form

σ(A) = {ρ1, . . . , ρr, λ1, . . . , λc, λ1, . . . , λc} (48)

where ρi ∈ R, i ∈ r and λi ∈ C\R, i ∈ c. The algebraic multiplicities of λi and λi are

the same. Moreover, if z1, . . . , zm(λi) is a basis of ker(λiIn−A)m(λi) then z1, . . . , zm(λi)

is a basis of ker(λiIn − A)m(λi) and Re z1, . . . , Re zm(λi), Im z1, . . . , Im zm(λi) ∈ Rn is
a basis (over R) of the 2m(λi)-dimensional real linear subspace

R
n ∩

[
ker(λiIn−A)m(λi) ⊕ ker(λiIn−A)m(λi)

]
=kerR(|λi|2In−2(Reλi)A+A2)m(λi).

The real version of the spectral decomposition (28) is

R
n = ⊕r

i=1 kerR(ρiIn − A)m(ρi) ⊕⊕c
i=1 kerR(|λi|2In − 2(Reλi)A + A2)m(λi) .

As a consequence we obtain the following real version of Corollary 2.2.6.

Corollary 2.2.8. Let A ∈ Rn×n, then every real trajectory eAtx0, x0 ∈ Rn of (24)
is a superposition of generalized real eigenmotions (modes).

In the following example we determine the real modes of a linear oscillator.

Example 2.2.9. (Oscillator). Consider the motion of a unit mass connected to a
support by a spring immersed in a homogeneous medium (see Figure 2.2.1). The spring
constant is taken to be ν2 (where ν ≥ 0) and the friction forces are proportional to the
velocity with the constant 2α. If ξ measures the displacement of the mass from equilibrium
then (see Example 1.3.2)

ξ̈(t) + 2αξ̇(t) + ν2ξ(t) = 0. (49)

Introducing the state vector x = [x1, x2]
� = [ξ, ξ̇]� we obtain the state space model

ẋ(t) = Ax(t), A =

[
0 1

−ν2 −2α

]
.



2.2 Linear Systems 109

ξ(t) = x1(t) m = 1
0

Figure 2.2.1: Mass-spring system

The eigenvalues of A are given by λ1,2 = −α±
√

α2 − ν2 with corresponding eigenvectors

z1 =

[
1
λ1

]
, z2 =

[
1
λ2

]
. (50)

Clearly λ1, λ2 are real if and only if |α| ≥ ν. In this case the eigenvalues have negative
real parts (i.e. produce contracting eigenmotions) if and only if α > 0. For |α| > ν the
real eigenmotions x1(t), x2(t) starting at z1 resp. z2 are

x1(t) = eAtz1 = e(−α+
√

α2−ν2) t

[
1
λ1

]
, x2(t) = eAtz2 = e(−α−√

α2−ν2) t

[
1
λ2

]
or in terms of ξ (the first coordinate)

ξ1,2(t) = e(−α±√
α2−ν2) t.

If |α| = ν, then λ1 = λ2 = −α and the corresponding generalized eigenspace is spanned
by

z1 =

[
1
−α

]
, z2 =

[
0
1

]
where z1 is a real eigenvector and z2 is a generalized eigenvector of second order. By (34)
the corresponding (generalized) real eigenmotions are

x1(t) = e−αt

[
1
−α

]
, x2(t) = e−αt

[
0
1

]
+ te−αt

[
1
−α

]
.

If |α| < ν (hence z2 = z1) then λ1,2 = −α ± ı
√

ν2 − α2 and the corresponding real modes
are by (44), (45) and (50)

x1(t) = e−αt

(
cos(

√
ν2 − α2 t)

[
1
−α

]
− sin(

√
ν2 − α2 t)

[
0√

ν2 − α2

])
x2(t) = e−αt

(
sin(

√
ν2 − α2 t)

[
1
−α

]
+ cos(

√
ν2 − α2 t)

[
0√

ν2 − α2

])
.

In terms of the first coordinates ξi(t) of xi(t), i = 1, 2 this yields the following oscillatory
eigenmotions corresponding to initial conditions ξ1(0) = 1, ξ̇1(0) = −α and ξ2(0) = 0,
ξ̇2(0) =

√
ν2 − α2

ξ1(t) = e−αt cos(
√

ν2 − α2 t), and ξ2(t) = e−αt sin(
√

ν2 − α2 t).
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√

α2−ν2 t

ξ(t) = e−αt cos(
√

ν2 − α2 t)

Figure 2.2.2: Eigenmotions of an oscillator

So if there is no damping (α = 0) then the ξi(·) are periodic with period 2π/ν. If α > 0
the oscillations die out whereas they are intensified if α < 0. Some typical eigenmotions
ξ(·) are shown in Figure 2.2.2. If we fix the coefficient ν > 0 of the restoring force we
observe a qualitative change as the damping 2α > 0 decreases from large values to zero.
For α ≥ ν the eigenmotions converge monotonically to zero along the lines Rzi as t → ∞
whereas, for α ∈ [0, ν), the eigenmotions are oscillatory. �

Example 2.2.10. (Inverted pendulum). Consider the cart pendulum system of Ex-
ample 1.3.4 with no damping. The matrix A of the linearization about the upright position
is of the form

A =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
0 a32 0 0
0 a42 0 0

⎤⎥⎥⎦ (51)

where a32 = M−1
0 m2l2g, a42 = M−1

0 (M + m)mgl, see (1.3.32). Now

det(λIn − A) = λ2(λ −√
a42)(λ +

√
a42). (52)

So A has the following eigenvalues and eigenvectors

λ1 = 0 , z1 = [1, 0, 0, 0]�

λ2 =
√

a42 , z2 = [1, a42/a32,
√

a42,
√

a42 a42/a32]
�

λ3 = −√
a42 , z3 = [1, a42/a32,−

√
a42,−

√
a42 a42/a32]

�.

By (52) we have m(λ1) = 2, but the eigenspace of λ1 is only one dimensional, so there
is a generalized eigenvector z1,2 of second order, for example z1,2 = [0, 0, 1, 0]�. All the
eigenvalues are real and the corresponding eigenmotions are

eAtz1 ≡ z1, eAtz2 = e
√

a42tz2, eAtz3 = e−
√

a42tz3.
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The first is an equilibrium state (upright position of the pendulum), the second is an
expanding motion whilst the last is a contracting motion. The generalized eigenmode
corresponding to the initial state z1,2 is (see (34))

eAtz1,2 = z1,2 + tAz1,2 = z1,2 + tz1.

As t → ∞ we see that one eigenmode tends to zero, one is stationary and the other
two both go to infinity (one exponentially and the other linearly). These results for the
linearized model indicate (not unexpectedly) that the inverted pendulum has a relatively
complicated dynamics which will probably be difficult to control. �

By superposition of the eigenmotions of a system (24), different patterns of free
motions around the origin can be generated depending on the numbers of con-
tracting, expanding, stationary or periodic eigenmotions of the system. For a two
dimensional linear system it is possible to give a complete classification of the flow
patterns around the equilibrium state x̄ = 0. Let (z1, z2) be a basis of R2 such
that the matrix representation of A : R2 → R2 with respect to this basis is in real
Jordan canonical form. There are three types of 2× 2 matrices in real Jordan form

(i)

[
λ1 0
0 λ2

]
(ii)

[
λ 1
0 λ

]
(iii)

[
α −β
β α

]
where λ1, λ2, λ, α, β ∈ R. The corresponding free motions through any initial point
a ∈ R2 are

(i)

[
a1e

λ1t

a2e
λ2t

]
, (ii)

[
a1e

λt + a2te
λt

a2e
λt

]
, (iii)

[
a1e

αt cos βt − a2e
αt sin βt

a1e
αt sin βt + a2e

αt cos βt

]
.

As a result we obtain for any A ∈ R2 a phase portrait of ẋ = Ax around the origin
which coincides qualitatively with exactly one of the patterns shown in Figure 2.2.3.
The first six pictures correspond to the case (i), the next three pictures to case
(ii) and the last six pictures to case (iii). Clearly the particular phase portrait will
depend on the vectors z1, z2 and the magnitude of λ1 and λ2, λ, α and β.
In order to obtain a picture of the flow of a nonlinear time–invariant differentiable
system with state space R2, an important first step is to determine the phase por-
traits of its linearizations around each of its equilibrium states. In a second step
global features have to be specified, such as limit cycles, connections between saddle
points (separatrices), connections to infinity (unbounded orbits), periodic orbits etc.
There is a rich qualitative theory of differential systems in the plane (see Notes and
References). We will not develop this. Instead we conclude this subsection with an
illustrative example showing the phase portrait of a simple nonlinear system with
two distinct equilibria (a saddle point and a stable focus, see Figure 2.2.4).

Example 2.2.11. (Nonlinear oscillator). Consider an oscillator with nonlinear restor-
ing force ξ̈ + 2ξ̇ + 5ξ + ξ2 = 0 or

ẋ(t) =

[
0 1
−5 −2

]
x(t) +

[
0

−x2
1(t)

]
. (53)

Contrary to the linear oscillator (see Example 2.2.9), we have two equilibrium states [0, 0]�
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SADDLE POINT

λ1 < 0, λ2 > 0

STABLE NODE

λ1, λ2 < 0

UNSTABLE NODE

λ1, λ2 > 0

UNSTABLE SINGULAR LINE

λ1 = 0, λ2 > 0

STABLE SINGULAR LINE

λ1 = 0, λ2 < 0

ONLY SINGULAR POINTS

λ1 = λ2 = 0 (A = 0)

(i)

SPECIAL STABLE NODE

λ < 0

SPECIAL UNSTABLE NODE

λ > 0

SINGULAR LINE

λ = 0

(ii)

UNSTABLE FOCUS

α > 0, β < 0

STABLE FOCUS

α < 0, β < 0

CENTRE

α = 0, β < 0

(iii)

UNSTABLE FOCUS

α > 0, β > 0

STABLE FOCUS

α < 0, β > 0

CENTRE

α = 0, β > 0

Figure 2.2.3: Phase portraits of two dimensional linear systems ẋ = Ax
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Figure 2.2.4: Phase portrait of the nonlinear oscillator (53) with two equilibria

and [−5, 0]�. The matrix of the linearization about [0, 0]� is A =

[
0 1
−5 −2

]
which has

eigenvalues −1 ± 2i. Thus the local phase portrait of (53) around the origin has the
form of a (nonlinear) stable focus. The matrix of the linearized system about [−5, 0]�

is A =

[
0 1
5 −2

]
and this matrix has real eigenvalues −1 ±

√
6 with corresponding

eigenvectors z1 = [1,−1 +
√

6]�, z2 = [1,−1 −
√

6]�. Thus [−5, 0]� is a saddle point
of the nonlinear system (53). Figure 2.2.4 shows the actual trajectories of the nonlinear
oscillator. �

2.2.3 Free Motions of Time–Invariant Linear Difference

Systems

As in the differentiable case, every free motion of a discrete time system (22) can be
represented as a superposition of generalized eigenmotions. Therefore the analysis
of the free system

x(t + 1) = Ax(t) (54)

reduces more or less to the spectral analysis of the operator A. If z ∈ ker(A− λI)m

is a generalized eigenvector of A ∈ Cn×n corresponding to the eigenvalue λ ∈ σ(A),
the associated generalized eigenmotion of (54) in Cn is given by

Atz = [(A − λI) + λI]tz =

t∑
ν=0

(
t

ν

)
λt−ν(A − λI)νz

= λt+1−m

m−1∑
ν=0

(
t

ν

)
λm−1−ν(A − λI)νz, t ≥ m − 1. (55)

If λ = 0 and z is an associated generalized eigenvector of order m then the free
motions Atz ends at zero after m steps. This convergence to zero in finite time
cannot occur in the continuous time case. However, if λ �= 0 the generalized complex
eigenmotion (55) is, as in the differentiable case, the product of an exponential term
(λt/λm−1) in t and a vector polynomial

∑m−1
ν=0

(
t
ν

)
λm−1−ν(A−λI)νz of degree m− 1
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in t.
In the case of an eigenvector (m = 1) we get the complex eigenmotion

Atz = λtz, t ∈ N. (56)

Now suppose A ∈ Rn×n. If λ = r(cos θ + ı sin θ) ∈ σ(A) \ R and z is an associated
eigenvector of A, the real eigenmotions corresponding to the pair of eigenvalues λ, λ
and associated eigenvectors z, z are

At(Re z) = ReAtz = rt[(cos θt) Re z − (sin θt) Im z], t ∈ N

At(Im z) = Im Atz = rt[(cos θt) Im z + (sin θt) Re z], t ∈ N.
(57)

If z is a generalized eigenvector of order m of A for λ the associated generalized real
eigenmotions for t ≥ m − 1 are

At(Re z)=

m−1∑
ν=0

(
t

ν

)
rt−ν [cos(t−ν)θ Re(A−λI)νz−sin(t−ν)θ Im(A−λI)νz]

At(Im z)=
m−1∑
ν=0

(
t

ν

)
rt−ν [cos(t−ν)θ Im(A−λI)νz+sin(t−ν)θ Re(A−λI)νz] .

(58)

As a discrete time counterpart to Corollaries 2.2.6 and 2.2.8 we obtain

Proposition 2.2.12. Suppose A ∈ Kn×n, then very free motion of (54) in Kn can
be represented as a sum of generalized eigenmotions of the form (55) if K = C and
(58) if K = R. If A is diagonalizable over C then all free motions of (54) in Kn are
superpositions of eigenmotions of the form (56) if K = C and (57) if K = R.

Example 2.2.13. (Fibonacci’s model). In 1202 the mathematician L. Fibonacci
(1180 - 1240) introduced a model of a fictitious rabbit population which is a simple example
of a population model with age structure. Assume that a single pair of rabbits starts the
population. They reproduce twice, once at time 1 and once at time 2, then die. At each
reproduction they produce a new pair of rabbits, one male and one female. These will go
on to reproduce twice etc.. The resulting dynamics of the population is summarized in
Table 2.2.5.

Time 0 1 2 3 4 5 6

Age group-1 1 1 2 3 5 8 13

Age group-2 0 1 1 2 3 5 8

Table 2.2.5: Number of rabbits pairs

If we denote by x1(t) and x2(t) the numbers of rabbit pairs in the first and second age
group at time t and set x(t) = [x1(t), x2(t)]

� we obtain the following population model

x(t + 1) =

[
1 1
1 0

]
x(t), x(0) =

[
1
0

]
. (59)

Alternatively, the evolution of ξ(·) = x1(·) can be described by the second order difference
equation (Fibonacci Renewal Equation)

ξ(t + 2) = ξ(t + 1) + ξ(t), t ∈ N
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with initial conditions ξ(0) = ξ(1) = 1. The resulting sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

is called the Fibonacci sequence and plays a role in various fields of mathematics. The
eigenvalues of the matrix in (59) are λ1,2 = (1±

√
5)/2 and the corresponding real modes

are

z1(t) =

(
1 +

√
5

2

)t [
(1 +

√
5)/2

1

]
, z2(t) =

(
1 −

√
5

2

)t [
(1 −

√
5)/2

1

]
.

The solution of the initial value problem (59) is of the form x(t) = α1z
1(t) + α2z

2(t) for
some (α1, α2) ∈ R

2. Since x(0) = [1, 0]� we obtain α1 = 1/
√

5, α2 = −1/
√

5 and hence
the following analytic expression for the Fibonacci sequence

ξ(t) =
1√
5

⎡⎣(1 +
√

5

2

)t+1

−
(

1 −
√

5

2

)t+1
⎤⎦ .

�

2.2.4 Infinite Dimensional Systems

In Example 2.1.25 we showed that the state space for a delay equation is an infinite
dimensional vector space. This is also the case for the partial differential equation
described in Section 1.6. It is natural to ask therefore, whether there are results for
infinite dimensional linear systems similar to those for time–invariant linear systems
defined on finite dimensional vector spaces. The answer is often yes, but to develop
these results in a general way is beyond the scope of this book. Instead we ana-
lyze the one-dimensional heat equation (taken from Section 1.6) in some detail and
illustrate some of the main ideas and difficulties. As explained in Section 1.6 the
evolution of the temperature in a heated metal bar of length � with a fixed constant
temperature at its ends can be determined via the equations

∂θ

∂t
(ξ, t) = k

∂2θ

∂ξ2 (ξ, t) + b(ξ)u(t), t ∈ (0,∞), ξ ∈ (0, �) (60a)

θ(0, t) = θ(�, t) = 0, t ∈ (0,∞), (60b)

θ(ξ, 0) = θ0(ξ), 0 ≤ ξ ≤ �. (60c)

The output equation is

y(t) =

∫ �

0

c(ξ)θ(ξ, t)dξ = 〈c(·), θ(·, t)〉L2 (61)

where 〈·, ·〉L2 is the inner product on L2(0, �; R). We will show that in a suitable
setting we can write this controlled partial differential equation and the output
equation in the form

ẋ(t) = Ax(t) + Bu(t), t ∈ (0,∞), x(0) = x0, (62)

y(t) = Cx(t),
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where the state space is an infinite dimensional Hilbert space. Let X = L2(0, �; R)
and denote by D(A) the linear space

D(A) = {x ; x(·) ∈ C2([0, �], R), x(0) = x(�) = 0}

where C2([0, �]; R) is the vector space of twice continuously differentiable functions
on [0, �] (at 0, and � one-sided derivatives are considered). D(A) can be viewed as a
linear subspace of X and will be endowed with the corresponding L2 norm. We will
assume

b (·), θ0(·) ∈ D(A), c (·) ∈ X and U = C(R+, R).

The operators A, B, C in (62) are defined by

A : D(A) → X, (Az)(ξ) = kd2z
dξ2 (ξ), ξ ∈ (0, �), z(·) ∈ D(A)

B : R → X, (Bu)(ξ) = b (ξ)u, ξ ∈ [0, �], u ∈ R

C : X → R, Cz = 〈c (·), z(·)〉L2, z(·) ∈ X.

(63)

Before we can discuss the relationship between the operator differential equation
(62) and the partial differential equation (60) we need to define what is meant by a
solution of these equations.

Definition 2.2.14. A continuous function θ(·, ·) : [0, �] × R+ → R is said to be a
solution of (60) if all the derivatives

∂θ

∂t
(·, ·), ∂θ

∂ξ
(·, ·), ∂2θ

∂ξ2
(·, ·)

exist and are continuous on (0, �) × (0,∞) and the three equations in (60) are
satisfied.

Definition 2.2.15. A continuous function x(·) : R+ → X is a solution of (62) if
it is Fréchet differentiable on (0,∞) and satisfies (62) in X.

Let us now construct the solution of (60). At the beginning of this section we saw
that for time-invariant finite dimensional systems both the free and forced motions
can be determined via a semigroup Φ(t) which is constructed from the (generalized)
eigenmotions. This suggests that we should examine the eigenvalues and associated
eigenvectors of the operator A,

Aψ = λψ, ψ ∈ D(A), ψ �= 0, λ ∈ C (64)

or, equivalently, the nontrivial solutions of

k
d2ψ

dξ2 (ξ) = λψ(ξ), ξ ∈ (0, �), ψ(0) = ψ(�) = 0. (65)

The differential equation in (65) has the general solution

ψ(ξ) = ae
√

λ/k ξ + be−
√

λ/k ξ, a, b ∈ C.
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To satisfy the boundary condition ψ(0) = 0 we must have a + b = 0, hence ψ(ξ) =
2a sinh

√
λ/k ξ. Now let

√
λ/k � = α + ıβ α, β ∈ R, then the second boundary

condition ψ(�) = 0 implies

sinh
√

λ/k � = sinh(α + ıβ) = sinh α cos β + ı cosh α sin β = 0.

As a consequence we obtain α = 0 and β ∈ Zπ, β �= 0 (since β = 0 would yield the
trivial solution). Hence

√
λ/k � = ± ınπ for n ∈ N∗. So there is an infinite sequence

of eigenvalues and associated eigenvectors

λn = −k
n2π2

�2
, ψn(ξ) =

√
2

�
sin

nπξ

�
, n ∈ N

∗ (66)

with corresponding eigenmotions

θn(ξ, t) =

√
2

�
exp

(
−k

n2π2t

�2

)
sin

nπξ

�
, t ≥ 0, n ∈ N

∗.

It is easily verified that the eigenvectors ψn(·) ∈ D(A) ⊂ L2(0, �; R) are orthogonal
to each other in the Hilbert space L2(0, �; R)

〈ψn, ψm〉L2 =

∫ �

0

ψn(ξ)ψm(ξ)dξ = δmn. (67)

In fact it is known from the theory of Fourier series that the functions {ψn}n∈N∗

form an orthonormal basis of the Hilbert space L2(0, �; R) in the sense that (67)
holds and any z(·) ∈ L2(0, �; R) can be expressed in a unique way as an infinite
linear combination of the ψn’s, viz z(ξ) =

∑∞
n=1 αnψn(ξ). Here αn = 〈z, ψn〉L2,

n = 1, 2, . . ., and the equality is to be interpreted in the sense of L2(0, �; R), i.e.
limN→∞ ‖z(·) −

∑N
n=1 αnψn(·)‖L2 = 0 (see Section A.3). If, in particular, z(·) ∈

D(A), then

αn =

∫ �

0

z(ξ)ψn(ξ)dξ = − �2

n2π2

∫ �

0

d2z

dξ2
(ξ)ψn(ξ)dξ, n ∈ N

on integrating by parts twice and using the fact that z(0) = z(�) = 0. Thus for
z(·) ∈ D(A), there exists a constant M such that

|αn| ≤
M

n2
, n ∈ N

∗. (68)

Now, since the pre-Hilbert space D(A) ⊂ X has a basis consisting of eigenvectors of
the operator A, if we mirror the development for time–invariant finite dimensional
systems, we would expect the associated semigroup on D(A) to be given by the
superposition of eigenmotions

(Φ(t)z(·))(ξ) =
∞∑

n=1

eλnt〈z(·), ψn(·)〉L2 ψn(ξ). (69)
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Then the solution of the controlled equation (60) would be

θ(ξ, t) = (Φ(t)θ0(·))(ξ) +

∫ t

0

(Φ(t − s)b(·)) (ξ)u(s)ds

(see (19)) or more explicitly

θ(ξ, t) =
∞∑

n=1

eλnt〈θ0(·), ψn(·)〉L2 ψn(ξ) +

∫ t

0

∞∑
n=1

eλn(t−s)〈b(·), ψn(·)〉L2 ψn(ξ)u(s)ds. (70)

Using (68) with constants M0, resp. Mb for θ0(·) and b(·) ∈ D(A), it is easy to see
that the series in (70) is uniformly absolutely convergent in (ξ, t) ∈ [0, �]× [0, t1] for
arbitrary t1 > 0 and

|θ(ξ, t)| ≤
√

2

�
M0

∞∑
n=1

eλnt

n2
+

√
2�3

kπ2
Mb sup

0≤s≤t
|u(s)|

∞∑
n=1

1 − eλnt

n4
.

Therefore θ(·, ·) is well defined and continuous on [0, �] × R+.

Theorem 2.2.16. Given θ0 ∈ D(A), u(·) ∈ U , then (60) has exactly one solution
in the sense of Definition 2.2.14 and this solution is given by the function θ(·, ·)
defined by (70).

Proof : It follows directly from the definition, from (70) and the above convergence
result that θ(·, ·) satisfies conditions (60b), (60c). In order to prove that θ(·, ·) solves
the partial differential equation (60a) one proceeds as follows. First it is shown that
the partial derivatives ∂θ

∂t
(ξ, t) and k ∂2θ

∂ξ2 (ξ, t) can be calculated from (70) term by
term. This can be done by proving that the resulting series are uniformly absolutely
convergent on [0, �] × [0, t1] for arbitrary t1 > 0 (making use of the estimate (68) as
above). Then comparing the two series for ∂θ

∂t
(ξ, t) and k ∂2θ

∂ξ2 (ξ, t) term by term it

becomes clear that (60a) holds. We omit the details.
To prove uniqueness we assume that there is a second solution θ̂(· , ·) and set e(· , ·) =
(θ − θ̂)(· , ·). Then e(· , ·) must satisfy

∂e

∂t
(ξ, t) = k

∂2e

∂ξ2
(ξ, t), t ∈ (0,∞), ξ ∈ (0, �)

e(0, t) = e(�, t) = 0, t ∈ R+

e(ξ, 0) = 0, ξ ∈ [0, �].

Consider the function E(t) =
∫ �

0
e2(ξ, t)dξ, then

dE

dt
(t) = 2

∫ �

0

e(ξ, t)
∂e

∂t
(ξ, t)dξ = 2k

∫ �

0

e(ξ, t)
∂2e

∂ξ2
(ξ, t)dξ = −2k

∫ �

0

(
∂e

∂ξ
(ξ, t)

)2

dξ

on integration by parts. So E(t) is non-increasing, but we have E(0) = 0 and
E(t) ≥ 0. Hence e(· , ·) ≡ 0 and the solution of (60) is unique. �
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Up until now we have analyzed (60) on the pre-Hilbert space D(A). For technical
reasons it is advantageous to associate with (60) a dynamical system with the whole
Hilbert space X as state space and an extended space of control functions. To
achieve this suppose that θ0 ∈ X and u(·) ∈ Û = L2

loc(R+, R). Then the series in
(70) are still absolutely convergent for each t ≥ 0 with respect to the norm of the
Hilbert space X = L2(0, �; R). Hence the map

ϕ : {(t, t0) ∈ R
2; t ≥ t0} × X × Û → X, (t; t0, θ0, u(·)) �→ ϕ(t; t0, θ0, u(·))(·)

is well defined by ϕ(t; t0, θ0, u(·))(·) = z(·) where for ξ ∈ [0, �]

z(ξ) =
∞∑

n=1

eλn(t−t0)〈θ0(·), ψn(·)〉L2 ψn(ξ)+

∫ t

t0

∞∑
n=1

eλn(t−s)〈b(·), ψn(·)〉L2 ψn(ξ)u(s)ds. (71)

This formula extends the solution formula (70) so that it is applicable for all
(θ0, u(·)) ∈ X × Û instead of (θ0, u(·)) ∈ D(A) × U . The coordinates αn(t), n ∈ N

∗

of ϕ(t; t0, θ0, u(·)) with respect to the basis (ψn)n∈N∗ of X are given by

αn(t) = eλn(t−t0)〈θ0(·), ψn(·)〉L2 +

∫ t

t0

eλn(t−s)〈b(·), ψn(·)〉L2 u(s) ds

and hence satisfy the differential equations

α̇n(t) = λnαn(t) + 〈b(·), ψn(·)〉L2 u(t).

Using this fact it is easy to see that ϕ satisfies the axioms of a state transition map
(Definition 2.1.1). Therefore, defining the output map by η(x, u) = 〈c, x〉L2, we ob-
tain a dynamical system Σ = (R, R, Û , X, R, ϕ, η) with state space X = L2(0, �; R).
This system is obviously linear and time-invariant. The associated operator semi-
group (69) describing the free motions of the system is given by (69) where z(·) is
now allowed to vary in X. The associated input-state map Θ(t, 0) : Û → X (see
(7)) is given by

(Θ(t, 0)u(·))(ξ) =

∫ t

0

∞∑
n=1

eλn(t−s)〈b(·), ψn(·)〉L2 ψn(ξ)u(s)ds, ξ ∈ [0, �].

For initial states x(0) = θ0 ∈ D(A) and controls u(·) ∈ U , we have by Theorem 2.2.16

ϕ(t; 0, θ0, u(·))(·) = θ(·, t), t ≥ 0,

where θ(·, ·) solves the partial differential equation (60). Hence t �→ ϕ(t; 0, θ0, u(·))(·)
describes the evolution of the temperature profile along the metal bar under the
influence of the control u(·). A typical controlled temperature profile is shown in
Figure 2.2.6. Here the initial temperature is zero along the bar and the object of
the control is to steer the temperature to the profile θ(ξ, T ) = sin πξ, ξ ∈ [0, �]
in time [0, 5]. Since the process of heat propagation is not reversible we expect
that the system Σ is not reversible. In fact the series in (71) do not converge in
X = L2(0, �; R) for t < t0. Moreover, it follows from an analysis of (71) that
ϕ(t; t0, θ0, 0) ∈ D(A) for arbitrary t > 0 and θ0 ∈ X, hence any free trajectory
enters the dense subspace D(A) ⊂ X of smooth temperature profiles immediately
after leaving the possibly discontinuous initial temperature profile θ0.
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Figure 2.2.6: Evolution of the controlled temperature profile

Remark 2.2.17. We have used the abstract differential equation (62) only as a heuristic
tool in order to obtain the expression (70) for a solution of the partial differential equation
(60). In fact it is possible to show that, for every x0 ∈ X, the semigroup Φ(t) on X yields
a solution Φ(t)x0 of (62) for u(t) ≡ 0 in the sense of Definition 2.2.15, see Notes and
References. Then using similar estimates as in the proof of Theorem 2.2.16 one can show
that, for θ0 ∈ D(A), u(·) ∈ U , the solution θ(·, ·) of (60) gives rise to a unique solution
t �→ x(t) = θ(·, t) of (62). For the more general initial condition x(0) = θ0 ∈ X and
arbitrary controls u(·) ∈ Û = L2

loc(R+; R), it can be shown that the solution t �→ x(t) =
ϕ(t; t0, θ0, u(·)) is a mild solution of (62), i.e. satisfies the variation-of-constants formula

x(t) = Φ(t)x0 +

∫ t

0
Φ(t − s)bu(s)ds

where the integral is a Bochner integral [538].
However, one should not be misled by the formal analogy with the finite dimensional
situation. There are essential differences between the theories of finite and of infinite
dimensional linear systems, not all of which are illustrated by the above example.

(i) As in the example the operator A is in general an unbounded linear operator and is
not defined on the whole state space but only on a dense subspace D(A) of X.

(ii) The initial value problem (62) does not necessarily have a differentiable solution
and the mild solution given by the variation-of-constants formula will in general
only be a solution of (62) in the sense of Definition 2.2.15 if x0 ∈ D(A) and u(·) is
sufficiently smooth.

(iii) In contrast with the example the spectrum of the operator A will not in general con-
sist of eigenvalues only (see Section A.4) and even if this is the case the generalized
eigenvectors of A will not in general span the whole state space X.

(iv) The operators B and C need not be bounded (e.g. if the control is acting through
the boundary conditions or if point measurements are taken).

As a consequence of (iii) the semigroup Φ cannot always be constructed via the eigenmo-
tions by using a series representation as in (69). The relationship between semigroups of
operators (Φ(t))t∈R+ and their “infinitesimal generators” A must be put on another footing
and criteria must be found under which a given unbounded linear operator A : D(A) → X
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“generates” a semigroup (Φ(t))t∈R+ . This is done in the theory of operator semigroups,
see Remark 5.5.44 and Notes and References. �

2.2.5 Exercises

1. Prove that a linear system with continuous coefficient matrices A(t), B(t), C(t) and
D(t) is time–invariant if and only if the matrix functions are constant.

2. Determine the evolution operator Φ(t, t0) of the time–varying scalar differential equa-
tion

ẋ(t) = a(t)x(t)

where a(·) : R → R is continuous. Show that the result can be generalized to vector
differential equations

ẋ(t) = A(t)x(t)

where A(·) is a continuous n×n-matrix function such that A(t)A(s) = A(s)A(t), s, t ∈ R.
Apply this to A(t) = a(t)A where a(·) : R → R is continuous and A ∈ R

n×n.

3. If A(·) ∈ C([t0, t1]; R
n×n) is a continuous n×n-matrix function show that the solution

Φ(t, t0) of the matrix differential equation

Ẋ(t) = A(t)X(t), t0 ≤ t ≤ t1, X(t0) = In

can be obtained as the uniform limit of the recursive sequence

Φ0(t, t0) ≡ In, t ∈ [t0, t1]

Φk(t, t0) = In +

∫ t

t0

A(s)Φk−1(s, t0)ds, t ∈ [t0, t1]

(cf. Hale (1980) [214, III.3]).

4. Find an appropriate state vector and determine matrices A,B,C,D for the discrete
time linear system represented in the block diagram shown in Figure 2.2.7, where ∆ is the
unit time delay.

∆ ∆ ∆ ∆a1 a2 an−1

u x1 x2 xn−1 xn
· · ·� � � � � � � � �

Figure 2.2.7: Block diagram of discrete time system

5. Consider the discrete time system (A,B,C,D) represented in Figure 2.2.7 (Ex. 4).

(i) Determine the spectrum of A.

(ii) Compute At, t ∈ N.

(iii) Specify a basis of R
n consisting of generalized eigenvectors of A.

(iv) What can be said of the free motions of this system?

6. Compute At, t ∈ N and eAt, t ∈ R for the following matrices A where α, β > 0

(i)

[
0 β

α 0

]
, (ii)

[
0 β

−α 0

]
, (iii)

⎡⎣ 0 1 0
0 0 1
0 0 0

⎤⎦ , (iv)

⎡⎣ 0 1 0
0 0 1
1 0 0

⎤⎦ .
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7. Compute the characteristic polynomial, the eigenvalues, the real modes and the free
motions for the following systems and initial states

(i) x(t + 1) =

⎡⎣ 0 1 0
0 0 1
−6 −11 −6

⎤⎦x(t), x(0) =

⎡⎣ 1
0
0

⎤⎦ ,

(ii) x(t + 1) =

⎡⎣ 0 1 0
0 0 1
0 0 0

⎤⎦x(t), x(0) =

⎡⎣ 1
1
1

⎤⎦ ,

(iii) ẋ(t) =

⎡⎣ 0 1 0
0 −1 1
−2 0 −1

⎤⎦x(t), x(0) =

⎡⎣ 1
0
−1

⎤⎦ ,

(iv) ẋ(t) =

[
0 1
−1 −2

]
x(t), x(0) =

[
1
1

]
.

8. Let Z3 = {0, 1, 2} be the field of integers modulo 3. Consider the finite linear machine
over K = Z3 represented in Figure 2.2.8 where ∆ is the unit delay operator. The summer

∆ ∆+

2

u(t) x2(t) x1(t) y(t)� � � �

��

Figure 2.2.8: Finite linear machine

adds mod 3 and the gain multiplies mod 3.

(i) Determine the system equations

x(t + 1) = Ax(t) + Bu(t), t ∈ N; y(t) = Cx(t) + Du(t).

(ii) Show that A2 − A + I = 0.
(iii) Determine the fundamental matrix At, t ∈ N.

(Note that all calculations have to be carried out in Z3)

9. Consider the electrical circuit represented in Figure 1.4.4. If the voltage source e(t) is
taken as input u(t) and the charge on the capacitor is q(t) it is shown in Example 1.4.4
that

Lq̈(t) + Rq̇(t) + (1/C)q(t) = u(t).

(i) If the current y(t) through the inductor together with the charge on the capacitor
are state variables and the output is the current through the inductor specify the
matrices A, B, C describing the system.

(ii) Determine the eigenvalues, eigenvectors and real eigenmodes of the system in terms
of the parameters L, R ≥ 0, C > 0.

(iii) Under which conditions do oscillating eigenmotions occur? Express the frequency in
terms of R, C, L. What happens if R = 0? What happens if C approaches 0? What
happens if L = 0?

(Driver (1977), pp.119-122 [138])
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2.2.6 Notes and References

The analysis of free motions of linear differentiable systems is contained in most books on

ordinary differential equations. For basic results we refer to the introductory textbooks

Driver (1977) [138], Polking et al. (2001) [417] and the books recommended in the Notes

and References of Section 2.1. For analogous results on difference equations see Agarwal

(1992) [5] and Kelley and Peterson (2001) [298]. The results from Linear Algebra required

for the spectral analysis of linear time-invariant systems can be found in most textbooks

on Matrix Theory. Standard references which contain many results which are useful in

different areas of Linear Systems Theory are Gantmacher (1959) [182] and Horn and John-

son (1985) [264].

For the numerical problems involved in computing the exponential of a matrix, see Mohler

and Van Loan (1978) [378] and Section 2.5.

An excellent textbook on control theoretic aspects of linear differentiable systems is Brock-

ett (1970) [77] which also contains many results on time-varying linear systems as does the

book of Rugh (1993) [442]. For discrete time linear control systems see Ogata (1987) [396],

Franklin et al. (1998) [169], and a comprehensive book which treats continuous time and

discrete time systems in parallel is Oppenheim et al. (1997) [399].

Some results and a number of references concerning the qualitative theory of differential

systems in the plane can be found in Section 3.1.

Example 2.2.13 (Fibonacci’s model) is discussed in Hoppenstead (1982) [262]. Many in-

teresting examples of a non-technological kind are described in the introductory text by

Luenberger (1979) [349]. Linear models for real life mechanical, electrical and electrome-

chanical control systems are discussed in Franklin et al. (1986) [168].

A classical reference for the theory of operator semigroups which also contains the neces-

sary functional analytic foundations is Hille and Phillips (1957) [231]. Other references are

Pazy (1983) [406] and the graduate textbook of Engel and Nagel (2000) [152], the latter

one contains many interesting examples and applications. A comprehensive introduction

to the theory of infinite dimensional linear systems is the excellent text book by Curtain

and Zwart (1995) [116] and a concise introduction to infinite dimensional as well as finite

dimensional control systems is given in Zabczyk (1992) [541].
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2.3 Linear Systems: Input–Output Behaviour

In this section we study the forced motions of systems of the form (2.17) (resp. (2.22))
and begin by explaining how they can be represented as superpositions of trajectories
generated by impulse controls. Then we analyze the input-output behaviour of time–
invariant linear systems in time domain. Norms on the input and output function
spaces are introduced and conditions are given under which the input-output map
of a system is a bounded linear operator between these normed spaces. Systems
with this property are called input-output stable. In the second subsection Laplace
and Fourier transforms are used to obtain a frequency domain representation of
the input-output behaviour in terms of transfer matrices. Under a diagonalizability
assumption a dyadic decomposition of these matrices is constructed and it is shown
how the transfer matrix is related to the response of the system to sinusoidal input
signals. Finally the relationship between the time domain and frequency domain
representations is discussed and leads in the case of input-output stable systems to
a computable formula for the norm of the input-output operator.

2.3.1 Input-Output Behaviour in Time Domain

In many applications only the input-output behaviour of a system is of interest. We
have seen that in state space theory a pointwise approach is possible because the
instantaneous state of the system at time t contains all the necessary information
needed to determine the effect of the past inputs upon the present output. In general
the present output of a dynamical system is not determined by its present input
alone, but by the whole control function on the preceding time interval. So if the
concept of state is dropped, a functional viewpoint must be adopted which looks at
the signal as a whole rather than its values at certain points in time. The analysis of
the input-output behaviour of a system involves the investigation of the dependence
of the output function (“output signal”) on the input function (“input signal”).
This is why functional analytical methods become important in this context (see
Section A.3 and Section A.4). In this subsection we first initialize the linear state
space systems (2.17) and (2.22) at x(0) = 0 and study the input-output behaviour on
the time domain T = R+ (resp. N). Then, under a stability assumption, we consider
the input-output behaviour on the time domain T = R (resp. Z). Throughout the
section we assume that U = Km, X = Kn and Y = Kp for some given m, n, p ∈ N∗.

Impulse Responses

For the systems (2.17) and (2.22) initialized at x(0) = 0 the dependence of the state
and output trajectories on the control function is described by the input-state map

u(·) �→ x(·; u(·)) = ϕ(· ; 0, 0, u(·)), u(·) ∈ U (1)

and the input-output map

u(·) �→ y(·; u(·)) = Cϕ(· ; 0, 0, u(·)) + Du(·), u(·) ∈ U . (2)
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on the time domain T = R+ (resp. N). We assume that in the discrete time case
U = UN and in the continuous time case U = L1

loc(R+; U). Obviously (1) is a special
case of (2) with Y = X, C = IX , D = 0 and thus it is sufficient to study (2). Let
us first consider the discrete time case (2.22) with T = N. Since x(0) = 0 we have

y(t; u(·)) = Du(t) +

t−1∑
s=0

CAt−s−1Bu(s), u(·) ∈ U , t ∈ N. (3)

(3) can be written in a more concise form using the convolution of sequences, see
Section A.3.

Definition 2.3.1 (Convolution of sequences). If g = (g(t))t∈N, v = (v(t))t∈N ∈
KN are sequences over a field K the convolution y = g∗v is defined to be the sequence
y = (y(t))t∈N ∈ KN given by

y(t) =

t∑
s=0

g(t − s)v(s), t ∈ N. (4)

It is an easy exercise to prove that the set K
N of scalar sequences is a commutative

ring with respect to the operations + and ∗. In fact, KN is even an integral do-
main (i.e. has no zero divisors) and has the sequence (1, 0, 0, . . .) as a unit element.
Considering matrices and vectors with entries in this ring we define the convolution
G ∗ u of a sequence G = (G(t))t∈N of p×m-matrices and a sequence u = (u(t))t∈N of
m-vectors to be the sequence of p-vectors given by

(G ∗ u)(t) =

t∑
s=0

G(t − s)u(s) =

t∑
s=0

G(s)u(t− s), t ∈ N. (5)

Using this notation (3) can be written in the form

y(t) = (G ∗ u)(t), t ∈ N (6)

where
G = (D, CB, CAB, . . . , CAt−1B, . . . ) ∈ (Kp×m)N. (7)

The matrices CAt−1B, t ≥ 1 occurring in this sequence are called the Markov pa-
rameters of the system (2.22). Together with the matrix D of direct input-output
coupling they completely determine the input-output behaviour of (2.22) under the
condition that the system is initialized at x(0) = 0. The sequence G can be viewed
as a weighting pattern which determines the present output y(t) as the weighted sum
over the past and present inputs u(s), s ≤ t, see (5).
The sequence (7) can be obtained (at least theoretically) by a series of experiments
as follows: Let (e1, . . . , em) be the standard basis of Km and suppose the following
input signals are applied to the system

uj(t) =

{
ej if t = 0, j ∈ m
0 if t > 0

. (8)

This particular test signal is called the jth unit impulse . By (6) the corresponding
output sequences are
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y(t; uj(·)) = (G ∗ uj)(t) = G(t)ej = Gj(t)

where Gj(t) is the jth column vector of G(t). Because of this property G is also called
the impulse response of the system (2.22). We see, therefore, that if we were able
to take exact measurements of the output signals (state trajectories for the special
case C = IX , D = 0) corresponding to the m test signals u1(·), . . . , um(·), the input-
output map (2) (resp. input-to-state map (1)) of the system would be completely
determined.

Example 2.3.2. Consider the discrete time scalar system

x(t + 1) = ax(t) + bu(t), x(0) = 0

y(t) = x(t)
(9)

where a, b ∈ R, b �= 0 are given. Solving this equation for u(·) = (1, 0, 0, . . .) we obtained
the impulse response

g = (0, b, ab, a2b, . . . ).

Let us compute the step response of (9) which is the output ȳ(·) corresponding to the
constant input ū(t) ≡ 1. We get from (5)

ȳ(t;u(·)) =

t∑
s=1

as−1b =

{
tb if a = 1
1 − at

1 − a b if a �= 1
, t ∈ N.

Now ȳ(t;u(·)) − ȳ(t − 1;u(·)) = g(t) for t ≥ 1. Furthermore limt→∞ |ȳ(t;u(·))| = ∞ if
|a| > 1 or a = 1, and limt→∞ ȳ(t;u(·)) = b(1 − a)−1 if |a| < 1. Note that x̄ = b(1 − a)−1

is just the equilibrium state of the system (9) for the control ū(t) ≡ 1. �

A similar analysis can be carried out for continuous time systems with T = R+. For
simplicity we assume that there is no direct input-output coupling so that D = 0,
then the output function of (2.17) corresponding to an input u(·) ∈ L1

loc(R+; Km)
and zero initial condition is given by

y(t; u(·)) = Cϕ(t; 0, 0, u(·)) =

∫ t

0

CeA(t−s)Bu(s)ds, t ∈ R+. (10)

Recall the following definition, see Section A.3.

Definition 2.3.3 (Convolution of functions). If g, v ∈ L1
loc(R+; K) the convo-

lution of g and v is defined almost everywhere by

(g ∗ v)(t) =

∫ t

0

g(t − s)v(s) ds, a.e. t ∈ R+. (11)

The integral in (11) exists almost everywhere and defines a locally integrable func-
tion. L1

loc(R+; K) is in fact a commutative ring over the field K with respect to the
operations + and ∗ . Considering matrices and vectors with entries in this ring
we define the convolution of a matrix function G(·) ∈ L1

loc(R+; Kp×m) and a vector
function u(·) ∈ L1

loc(R+; Km) by

(G ∗ u)(t) =

∫ t

0

G(t − s)u(s) ds =

∫ t

0

G(s)u(t − s) ds, a.e. t ∈ R+. (12)
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Using this notation (10) can be written

y(t) = (G ∗ u)(t), t ≥ 0

where G is the continuous p × m-matrix function (called the convolution kernel of
(2.17) with D = 0) given by

G(t) = CeAtB, t ≥ 0. (13)

Again G(t) can be viewed as a weighting pattern. However we run into some theo-
retical difficulties in attempting to mirror the interpretation of G(t) as an impulse
response. In order to see why this is the case, let us consider a test signal of the
form u(·) = v(·)ej where v(·) ∈ L1

loc(R+; K). At time t the ith component of the
corresponding output y(t, v(·)ej) is

yi(t, v(·)ej) =

∫ t

0

Gij(t − s)v(s)ds, t ≥ 0

and we would like this to equal Gij(t). This means that v(·) must have the property

Gij(t) =

∫ t

0

Gij(t − s)v(s)ds, t ≥ 0. (14)

However, there is no function v(·) satisfying (14) for a non-zero Gij(t). In fact the
commutative ring L1

loc(R+; K) does not have a unit element. This is an important
difference between the discrete and continuous time cases. To get around this dif-
ficulty we show that it is possible to use piecewise continuous input signals which
result in outputs approximating the components Gij(t) of G(t).

Lemma 2.3.4. Let (uk(·))k∈N be a sequence of non-negative integrable functions on
R+ such that ∫ ∞

0

uk(s)ds = 1 and uk|[αk,∞) ≡ 0, k ∈ N (15)

where αk ↘ 0 as k → ∞. Then for every f ∈ C(R+; R) we have

f(t) = lim
k→∞

(f ∗ uk)(t), t ∈ R+ (16)

uniformly on compact intervals in R+.

Proof : The statement follows from the uniform continuity of f on compact inter-
vals I ⊂ R+ since

|(f ∗ uk)(t) − f(t)| ≤
∫ t

0

|f(t − s) − f(t)|uk(s)ds ≤ sup
0≤s≤αk

|f(t − s) − f(t)|, t ∈ I.

�
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0 τ 0 τ τ+k−1 0 τ τ+k−1

k

2k

Figure 2.3.1: The Dirac impulse δτ and approximations

Now suppose that a sequence (uk(·))k∈N of input signals is chosen to satisfy (15)
where αk ↘ 0 as k → ∞. Because of (16) such sequences are called approximate
identities. If the input is uk(·)ej, the ith component of the corresponding output will
approximate Gij(·) uniformly on compact intervals.

Gij(t) = lim
k→∞

yi(t; uk(·)ej) = lim
k→∞

(Gij∗uk)(t), uniformly on compact intervals. (17)

Typical candidates for the test functions uk(·), k ∈ N are shown on the right in
Figure 2.3.1. They can be viewed as approximations of the so-called Dirac impulse
δ0 which is not a function but the unit point measure at 0. Because of (17) the p×m-
matrix function (13) is called the impulse response of the differentiable system (2.17)
(with D = 0).

Remark 2.3.5. For every τ ∈ R+, the Dirac impulse δτ (on R+) at time τ is the unit
point measure at τ , defined by∫

f(s) δτ (d s) = f(τ), f ∈ C(R+; K). (18)

Although δτ has no density with respect to the Lebesgue measure it is usual in the control
literature to write∫

f(s)δτ (s)ds or

∫
f(s)δ(τ − s)ds or

∫
f(τ − s)δ(s)ds instead of

∫
f(s) δτ (d s).

Note, however, that this is only a suggestive notation and does not mean that δτ is a
function. The general definition of convolution between a measure and a function (see
Remark A.3.16) implies that for all f ∈ C(R+; K), τ ∈ R+

(δτ ∗ f)(t) = (f ∗ δτ )(t) =

{
f(t − τ), t ∈ [τ,∞)

0, t ∈ [0, τ)
.

Hence δτ acts as a forward shift on f via the convolution. In particular, δ0 ∗f = f ∗δ0 = f

for f ∈ C(R+, K). This, together with Lemma 2.3.4 explains why we may regard δ0 as the
limit of the above sequences (uk(·)). Graphically the Dirac impulse δτ is represented by a
vertical arrow of length 1 at τ (see Figure 2.3.1). �
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m = 1

m = 1
ξ(t)

u(t)

equilibrium

(i) (ii)

Figure 2.3.2: (i) Free linear oscillator at rest (ii) Forced linear oscillator in motion

Example 2.3.6. (Forced linear oscillator). Consider the mass-spring system de-
scribed in Example 2.2.9 but suppose now that the support can be moved vertically. Let
u(t) denote the displacement of the support from some nominal reference point (see Figure
2.3.2). The displacement ξ(t) of the mass from its equilibrium position (under the control
u(·) = 0) is taken as the output. Now since the restoring force is ν2(ξ(t) − u(t)) instead
of ν2ξ(t) we obtain the following equation of motion

ξ̈(t) + 2αξ̇(t) + ν2ξ(t) = ν2u(t), y(t) = ξ(t), t ∈ R+.

The system matrices of the corresponding state space model are (see Example 2.2.9)

A =

[
0 1

−ν2 −2α

]
, B =

[
0
ν2

]
, C = [1, 0].

The (scalar) impulse response of this system is CeAtB, t ≥ 0, and hence equal to the
first coordinate of the free motion starting at x0 = [0, ν2]�. To compute it we have to
represent x0 as a linear combination of the eigenvectors z1 = [1, λ1]

�, z2 = [1, λ2]
� where

λ1,2 = −α ±
√

α2 − ν2. A short calculation yields

x0 =
ν2

2
√

α2 − ν2
(z1 − z2).

Hence the impulse response is

G(t) =
ν2

2
√

α2 − ν2
(eλ1t − eλ2t), t ≥ 0.

For |α| < ν this response is oscillating with frequency ω =
√

ν2 − α2

G(t) = ν2e−αt

[
eıωt − e−ıωt

2ωı

]
= (ν2/ω)e−αt sin ωt.

�

The fact that the impulse response completely determines the input-output be-
haviour (resp. forced motions) of the system is, as in the discrete time case, an
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immediate consequence of the explicit formula for the output (10). However, it is
instructive to explain this fact directly by the basic properties of time-invariance
and linearity (superposition principle). For the sake of simplicity, we suppose that
m = p = 1, i.e. Σ is a single input single output (siso) system.
For discrete time systems Σ of the form (2.22) the situation is simple. The output
value y(t) only depends on the input values u(s), s ∈ [0, t] ∩ N. On the finite time
set [0, t] ∩ N, u(·) can be represented as linear combination of shifted unit impulses
(8). Hence, by linearity and time-invariance of Σ, y(t) is completely determined if
the system responses to the unit impulses are known.
For differentiable systems Σ of the form (2.17) (with D = 0) an additional property
is used. For any t1 > 0 the restriction of the output y(·; u(·))|[0, t1] ∈ C([0, t1]; K)
depends continuously on the restriction of the input u(·)|[0, t1] ∈ L1(0, t1; K). In-
deed, it follows immediately from (10) that, for arbitrary u(·), v(·) ∈ U and any
fixed t1 > 0

sup
t∈[0,t1]

|y(t; u(·))− y(t, v(·))| ≤ K

∫ t1

0

|u(s) − v(s)|ds, (19)

where K = sup0≤s≤t1 |CeAsB|.
Now consider for any continuous u(·) ∈ U the step function approximation

vk(t) =

k−1∑
j=0

u(jt1/k)(1/k)Sjt1/kwk(t), t ∈ [0, t1] (20)

where Sjt1/k is the forward shift by τ = jt1/k and wk(·) is the approximate Dirac
impulse (see Figure 2.3.3)

wk(t) =

{
k if 0 ≤ t < t1/k
0 if t ≥ t1/k.

�

�u

tt1

u(jt1/k)(1/k)Sjt1/kwk(·)


jt1
k

(j+1)t1
k

Figure 2.3.3: Step function approximation to an input

From the definition of the Riemann integral it is known that∫ t1

0

|u(t) − vk(t)|dt → 0 as k → ∞
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and hence by (19) y(t; vk(·)) → y(t; u(·)) as k → ∞.
By linearity and time invariance of Σ the system’s response to vk(·) is the following
superposition of shifted system responses to the approximate Dirac impulses wk(·)

y(t; vk(·)) =

k−1∑
j=0

u(jt1/k)(1/k)Sjt1/ky(t; wk(·)), t ∈ [0, t1].

Since by Lemma 2.3.4 y(t; wk(·)) → G(t) uniformly on compact intervals as k → ∞,
we finally obtain, for any t1 > 0,

sup
t∈[0,t1]

|y(t; u(·))−
k−1∑
j=0

u(jt1/k)(1/k)Sjt1/kG(t)| → 0 as k → ∞. (21)

Thus making use of only the three basic properties of linearity, time invariance and
continuity, we see that the output signal y(t; u(·)) corresponding to a continuous
control function u(·) ∈ U can be approximated by linear combinations of shifted
impulse responses with coefficients determined by u(·).

Input-Output Operators in Time Domain

The input-output behaviour of the system (2.17)1 with time domain T = R+, ini-
tialized at x(0) = 0, is described by the input-output operator

L+ : L1
loc(R+; Km) → L1

loc(R+; Kp)

(L+u)(t) = Du(t) +

∫ t

0

CeA(t−τ)Bu(τ) dτ = Du(t) + (G ∗ u)(t), t ∈ R+.
(22)

Its counterpart for the discrete time system (2.22) on the time domain T = N is

L+ : �1
loc(N; Km) = (Km)N → �1

loc(N; Kp) = (Kp)N

(L+u)(t) = Du(t) +

t−1∑
k=0

CAt−k−1Bu(k) = (G ∗ u)(t), t ∈ N.
(23)

Here the continuous and discrete time convolution kernels are given by

G(t) = CeAtB, t ∈ R+ and G(t) = CAt−1B, t ∈ N
∗, G(0) = D. (24)

Remark 2.3.7. Note that in the discrete time case the feedthrough matrix is determined
by the convolution kernel G whereas we have seen that in the continuous time case it is
not possible to express the direct input-output coupling via convolution with a (locally)
integrable convolution kernel. However, if we allow for a Dirac impulse in the convolution
kernel and set G(t) = δ0(t)D + CeAtB, t ∈ R+, then we may write the first equation in
(40) as y(t) = (G ∗ u)(t). More general convolution kernels involving measures or, more
generally, distributions on R+ are considered in the literature, see Notes and References.

�

1Now we allow for an arbitrary direct input-output coupling D ∈ Kp×m.
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If Sτ , τ ∈ R+ are the forward shift operators for the time domain T = R+ (see
(1.28)), then

(L+Sτu)(t)=Du(t−τ)+

∫ t

τ

CeA(t−s)Bu(s−τ) ds=Du(t−τ)+

∫ t−τ

0

CeA(t−τ−s)Bu(s) ds

and (L+Sτu)(t) = 0 for t < τ . Hence the continuous time input-output operator L+

is time-invariant in the sense that it commutes with the forward shift operators Sτ ,
τ ∈ R+

(L+ Sτ u)(·) = (Sτ L+ u)(·), u(·) ∈ L1
loc(R+; Km). (25)

Similarly it can be shown that the discrete time input-output operator L+ commutes
with the discrete time forward shift operators Sτ , τ ∈ N.
Up until now we have discussed the input-output behaviour of the linear systems
(2.17) (resp. (2.22)) without comparing the sizes of the input and output signals.
For such a comparison, which is of great importance in applications, we need to
introduce norms on the signal spaces. Suppose that Km and Kp are provided with
arbitrary norms ‖ ·‖Km and ‖ ·‖Kp and K

p×m with the corresponding operator norm,
see Definition A.1.42. Then, for any fixed q ∈ [1,∞], the size of an input or output
signals can be measured by their Lq-norm (resp. �q-norm), see Definitions A.3.10 and
A.3.1). However, the system response t �→ y(t; u(·)) is not necessarily in Lq(R+; Kp)
(resp. �q(N; Kp)) if u(·) ∈ Lq(R+; Km) (resp. u(·) ∈ �q(N; Km)). Thus, in general, the
input-output operator L+ may transform an input signal of finite Lq-norm (resp. �q-
norm) into an output signal of infinite Lq-norm (resp. �q-norm). The system is
called input-output stable or, more precisely, Lq-stable (resp. �q-stable) if this can-
not happen. The following proposition gives a sufficient condition for Lq-stability
(resp. �q-stability).3

Proposition 2.3.8. Suppose

σ(A) ⊂ C− (resp. σ(A) ⊂ D). (26)

Then the continuous (resp. discrete) time input-output operator L+ given by (22)
(resp. (23)) defines a bounded linear operator from Lq(R+; Km) to Lq(R+; Kp) (resp.
�q(N; Km) to �q(N; Kp)).

Proof : The linearity of L+ follows directly from the definition (see (22), (23)).
By assumption there exists ω > 0 such that Re λ < −ω (resp. |λ| < e−ω) for all
λ ∈ σ(A). We will see later (Lemma 3.3.19) that this implies

‖eAt‖ ≤ Mωe−ωt, t ∈ R+, ‖At‖ ≤ Mωe−ωt, t ∈ N (27)

for a suitable constant Mω ≥ 1. As a consequence, we have G ∈ L1(R+; Kp×m)
(resp. G ∈ �1(N; Kp×m)). It then follows from (22) and the convolution inequality
(A.3.24) that y = L+u ∈ Lq(R+; Kp) for all u ∈ Lq(R+; Km) and

‖L+u‖Lq(R+;Kp) ≤
(
‖D‖L(Km,Kp) + ‖G‖L1(R+;Kp×m)

)
‖u‖Lq(R+;Km), u ∈ Lq(R+; Km).

2In the following we only make the norm explicit in the statements of theorems or propositions
or where the particular norm used may be unclear

3We will see in the next chapter that condition (26) is equivalent to the asymptotic stability of
the system (22) (resp. (23)), see Section 3.3.
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Hence L+ is a bounded linear operator from Lq(R+; Km) into Lq(R+; Kp) (see Sec-
tion A.4). An analogous inequality holds in the discrete time case and this concludes
the proof. �

In applications the square of the L2-norm (resp. �2-norm) of a signal can often be
interpreted as a measure of its energy, see Section 1.4. The previous proposition
(with q = 2) implies that, if (26) holds, the system (2.17) (resp. (2.22)) transforms
finite energy input signals into finite energy output signals.
So far we have described the input-output behaviour on R+ (resp. N) by setting the
initial state to be zero at time t0 = 0. We will now show that under assumption (26)
we can do without fixing an initial condition and study the input-output behaviour
of the systems (2.17) (resp. (2.22)) on the extended time domain T = R (resp. Z).
First we note that for any t0 ∈ R the input-output behaviour of the continuous time
system (2.17) with fixed initial state x(t0) = x0 at time t0 ∈ R and control functions
u(·) ∈ Lq(t0,∞; Km) is given by

y(t) = y(t; t0, x
0, u(·)) = Du(t) + CeA(t−t0)x0 +

∫ t

t0

CeA(t−s)Bu(s) ds

= y(t− t0; 0, x
0, St0u(·)) = CeA(t−t0)x0+ L+(St0u(·))|R+)(t − t0), t ≥ t0.

(28)

It follows from (28) and the convolution inequality (A.3.24) that y(·; t0, x0, u(·)) ∈
L2(t0,∞; Kp) for every u(·) ∈ L2(t0,∞; Km). Moreover if D = 0 the output function
y(t) tends to zero as t → ∞. To prove this last result we need the following lemma.

Lemma 2.3.9. Suppose t0 ∈ R and y(·) : [t0,∞) → Cp is absolutely continuous
such that y(·), ẏ(·) ∈ L2(t0,∞; Cp), then y(t) → 0 as t → ∞.

Proof : For the usual inner product on Cp and t ≥ t1 ≥ t0, we have∫ t

t1

[〈ẏ(s), y(s)〉+ 〈y(s), ẏ(s)〉]ds = ‖y(t)‖2
2 − ‖y(t1)‖2

2.

Now since all norms on Cp are equivalent y(·), ẏ(·) ∈ L2(t0,∞; Cp) where Cp is
normed with the 2-norm. Hence 〈ẏ(·), y(·)〉 ∈ L1(t0,∞; C) and so, for any given
ε > 0, there exists tε ≥ t0, such that for all t1 ≥ tε∣∣‖y(t)‖2

2 − ‖y(t1)‖2
2

∣∣ =

∣∣∣∣∫ t

t1

[〈ẏ(s), y(s)〉+ 〈y(s), ẏ(s)〉]ds

∣∣∣∣ < ε, t ≥ t1. (29)

On the other hand since y(·) ∈ L2(t0,∞; Cp), there exists tε1 ≥ tε such that ‖y(tε1)‖2 <
ε, hence choosing t1 = tε1 in (29) we get ‖y(t)‖2

2 < 2ε for t ≥ tε1. �

Proposition 2.3.10. Suppose that D = 0 and σ(A) ⊂ C−. Then there exists a
constant K such that for all t0 ∈ R, x0 ∈ Kn, u(·) ∈ L2(t0,∞; Km)

‖y(t; t0, x
0, u(·))‖Kp ≤ K

[
‖x0‖Kn + ‖u(·)‖L2(t0,∞;Km)

]
, t ≥ t0, (30)

where y(·) = y(·; t0, x0, u(·)) : [t0,∞) → Kp is the associated output function of the
system (2.17) defined by (28). Moreover y(·), ẏ(·) ∈ L2(t0,∞; Kp) and y(t) → 0 as
t → ∞.
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Proof : Since ‖eAt‖ ≤ Me−ωt for some M ≥ 1, ω > 0 we obtain from (28)

‖y(t; t0, x
0, u(·))‖ ≤ ‖C‖Me−ω(t−t0)‖x0‖ + ‖C‖‖B‖M

∫ t

t0

e−ω(t−s)‖u(s)‖ ds

≤ ‖C‖M‖x0‖ + (M‖C‖‖B‖/
√

2ω)‖u(·)‖L2(t0,∞;Km), t ≥ t0

by the Cauchy-Schwarz inequality (A.3.20). This implies the inequality (30) for a
suitably large constant K > 0. Now it follows from (28), (27) and the convolution
inequality (A.3.24) that y(·) ∈ L2(t0,∞; Kp). Applying the same argument with C =
In we obtain x(·) ∈ L2(t0,∞; Kn). Moreover y(·) = Cx(·) is absolutely continuous
and since ẏ(t) = Cẋ(t) = CAx(t) + CBu(t) for t ≥ 0, we get ẏ(·) ∈ L2(t0,∞; Kp).
Thus y(t) → 0 as t → ∞ by Lemma 2.3.9. �

Remark 2.3.11. Applying the above proposition with C = In we see that if σ(A) ⊂ C−,
then ϕ(t; t0, x

0, u(·)) → 0 as t → ∞, for all initial states x0 ∈ K
n and input functions

u(·) ∈ L2(t0,∞; Km). �

Remark 2.3.12. The condition D = 0 is not needed in the discrete time case. The
reason is that ‖u(t)‖ ≤ ‖u(·)‖�2(t0,∞;Km) for all t ≥ t0. We leave it to the reader (see Ex. 4)
to prove the following discrete time counterpart of Proposition 2.3.10.
Suppose σ(A) ⊂ D. Then there exists a constant K such that for all t0 ∈ Z, x0 ∈ K

n

‖y(t; t0, x
0, u(·))‖ ≤ K

[
‖x0‖+‖u(·)‖�2(t0,∞;Km)

]
, u(·) ∈ �2(t0,∞; Km), t ∈ Z, t ≥ t0 (31)

where y(·) = y(·; t0, x0, u(·)) is the corresponding output function of the discrete time
system (2.22) given by

y(t) = y(t; t0, x
0, u(·)) = CAt−t0x0 + Du(t) +

t−1∑
k=t0

CAt−k−1Bu(k) (32)

Moreover y(·) ∈ �2(t0,∞; Kp) and y(t) → 0 as t → ∞. �

Now let t0 → −∞ in (28). Because of (27), we see that as t0 goes back, the influence
of the initial state on the output y(t) gets less and less. This leads us to define the
input-output operator of (2.17) with time domain T = R by

L : Lq(R; Km) → Lq(R; Kp)

(Lu)(t) = Du(t) +

∫ t

−∞
CeA(t−s)Bu(s) ds = Du(t) + (G ∗ u)(t) t ∈ R, (33)

where G ∗ u is to be understood as a convolution of two functions defined on R, see
(A.3.23). In the discrete time case we define the input-output operator of (2.22) with
the time domain T = Z by

L : �q(Z; Km) → �q(Z; Kp)

(Lu)(t) = Du(t) +
t−1∑

s=−∞
CAt−s−1Bu(s) = (G ∗ u)(t), t ∈ Z (34)

where the convolution is as in (A.3.6). In both cases the convolution kernel G
defined by (24) is trivially extended to R (resp. Z) by setting G(t) = 0 for t < 0.
The assumption (26) then implies
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G ∈ L1(R; Kp×m), (resp. G ∈ �1(Z; Kp×m)). (35)

As a consequence of Propositions A.3.14 and A.3.3 the input-output operator L is
well defined, linear and bounded in both the continuous and the discrete time case,
see Corollary 2.3.16.

Remark 2.3.13. Suppose t0 ∈ R and v(·) ∈ Lq(−∞, t0; K
m), then

x0 =

∫ t0

−∞
eA(t0−s)Bv(s)ds (36)

is well defined because of (27). In fact since ‖eAt‖ ≤ Me−ωt for some M ≥ 1, ω > 0 the
function t �→ ‖eAt‖ is Lq∗-integrable on R+, where q∗ ∈ [1,∞] is the conjugate exponent
of q, and therefore ‖eA(t0−s)‖ ‖Bu(s)‖ is integrable on (−∞, t0] by the Hölder inequality
(A.3.21) with r = 1. Now let u(·) ∈ Lq(t0,∞; Km) be arbitrary and denote by uv(·) ∈
Lq(R; Km) the extension of u(·) to R by uv(t) = v(t) for t < t0. Then for t ≥ t0,∫ t

−∞
CeA(t−s)Buv(s) ds = CeA(t−t0)x0+

∫ t

t0

CeA(t−s)Bu(s) ds, u(·) ∈ Lq(t0,∞; Km), (37)

where x0 is given by (36). Hence we recover from the input-output operator L on the time
domain R the expression (28) for the input-output behaviour of the system (2.17) at the
initial state x(t0) = x0 ∈ K

n. An analogous result holds in the discrete time case.
In the first section we described how the internal state x(t) at any time t incorporates the
total effect of all past controls. This is again illustrated by (37) in combination with (36).
These formulas show that, in order to predict the future output, once the state at time
x(t0) = x0 (36) is known, one may forget about the previous control values u(t), t < t0. �

We have seen above that under the assumption (26) the input-output behaviour
of a state space system with the time domain R (resp. Z) can be described by a
suitable convolution kernel. If one is only interested in the input-output behaviour
of the system, it suffices to know the convolution kernel and one may forget about
the state. Discarding the internal dynamics the state space system is reduced to a
black box model or input-output system. An input-output system is basically just a
map which associates with any input signal the corresponding output signal. In the
remainder of this subsection we will make this concept more precise and consider
especially those input-output systems whose behaviour is described by convolution
kernels.

Definition 2.3.14. Let T ⊂ R, U, U ⊂ UT , Y, Y ⊂ Y T be non-empty sets and
G : U → Y a causal map, i.e. G satisfies

∀t ∈ T ∩ (−∞, t1] : u(t) = v(t) ⇒ (Gu)(t1) = (Gv)(t1) (38)

for all t1 ∈ T , u(·), v(·) ∈ U . Then the sextuple (T, U,U , G, Y,Y) is said to be an
input-output system with time domain T , set of input values U , set of output values
Y , set of input signals U , set of output signals Y and input-output operator G.

Input-output systems are represented by blockdiagrams as in Figure 2.3.4. If there
is no risk of confusion, an input-output system is denoted by (U , G,Y).
Every complete state space system Σ (see Definition 2.1.3) together with an initial
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G
u(·) y(·)

Figure 2.3.4: Input-output system with input-output operator G

condition x(t0) = x0 where (t0, x
0) ∈ T ×X is fixed, defines an input-output system

with time domain Tt0 and input-output operator (1.8).
An input-output system is said to be linear if U,U , Y,Y are vector spaces over some
field K and G : U → Y is K-linear. If Σ is a linear state space system with zero
initial state x(t0) = 0 then the corresponding input-output system with time domain
Tt0 is linear.
An input-output system is said to be time-invariant if T contains 0 and is closed
under addition, U ,Y are forward shift-invariant and G commutes with the forward
shift operators Sτ , τ ∈ T, τ ≥ 0, compare Definition 2.1.24.
A wide class of time-invariant linear input-output systems can be described by con-
volution kernels. In particular, most input-output systems which are given by linear
ordinary, partial or delay differential equations with time-invariant parameters are
convolution systems. An input-output system (T, U,U+, G+, Y,Y+) with time do-
main T = R+ (resp. T = N), input space U = Km, output space Y = Kp is called a
convolution system if U+, Y+ are linear subspaces of Lq

loc(R+, Km), Lq
loc(R+, Kp) for

some 1 ≤ q ≤ ∞ (resp. linear subspaces of (Km)N, (Kp)N) and if the input-output
operator G+ : U+ → Y+ is of the form

(G+u)(t) = Du(t) +

∫ t

0

G(t − s)u(s) ds = Du(t)+(G ∗ u)(t), t ∈ R+, u(·) ∈ U+

(G+u)(t) = G(0)u(t) +
t−1∑
s=0

G(t − s)u(s) = (G ∗ u)(t), t ∈ N, u(·) ∈ U+.

(39)

Here D ∈ Kp×m is a given feedthrough matrix and G ∈ L1
loc(R+; Kp×m) (resp. G ∈

(Kp×m)N) is a given convolution kernel. Convolution systems with time domain
T = R (resp. T = Z) are defined in a similar way by equations of the form

(Gu)(t) = Du(t) +

∫ t

−∞
G(t − s)u(s) ds = Du(t) + (G ∗ u)(t), t ∈ R, u(·) ∈ U

(Gu)(t) = G(0)u(t) +

t−1∑
s=−∞

G(t − s)u(s) = (G ∗ u)(t), t ∈ Z, u(·) ∈ U
(40)

where U is a linear subspace of Lq(R; Km) (resp. �q(Z; Km)). But for these equations
to make sense one needs to assume that the convolution kernel is integrable (resp.
summable), i.e. G satisfies assumption (35) where G(t) = 0 for all t < 0 (resp. all
t ∈ Z, t < 0). In the next proposition Sτ denotes the shift operator (1.28) for the
corresponding time domains T = R+, N, R, Z. Note that, for all τ ∈ R (resp. τ ∈
Z), the shift Sτ is a norm preserving automorphism of Lq(R; Kk) (resp. �q(Z; Kk)) and
for all τ ∈ R+ (resp. τ ∈ N) the forward shift Sτ is a norm preserving automorphism
of Lq(R+; Kk) (resp. �q(N; Kk)).
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Proposition 2.3.15. Suppose that G ∈ L1(R+; Kp×m) and D ∈ Kp×m (resp. G ∈
�1(N; Kp×m)). Then, for arbitrary 1 ≤ q ≤ ∞,

(i) G+ defined by (39) yields a bounded linear operator from U+ = Lq(R+; Km)
to Y+ = Lq(R+; Kp) (resp. U+ = �q(N; Km) to Y+ = �q(N; Kp)) which is time-
invariant, i.e. commutes with the shift operators Sτ , τ ∈ R+ (resp. τ ∈ N).

(ii) G defined by (40) yields a bounded linear operator from U = Lq(R; Km) to Y =
Lq(R; Kp) (resp. U = �q(Z; Km) to Y = �q(Z; Kp)) which is time-invariant,
i.e. commutes with the shift operators Sτ , τ ∈ R (resp. τ ∈ Z).

(U+, G+,Y+) and (U , G,Y) are time-invariant linear Lq-stable (resp. �q-stable) input-
output systems. Moreover,

‖G+‖L(Lq(R+;Km),Lq(R+;Kp)) = ‖G‖L(Lq(R;Km),Lq(R;Kp)) ≤ ‖D‖L(Km,Kp) + ‖G‖L1(R+;Kp×m)

(resp. ‖G+‖L(�q(N;Km),�q(N;Kp)) = ‖G‖L(�q(Z;Km),�q(Z;Kp)) ≤ ‖G‖�1(N;Kp×m)).

Proof : We only prove the statements for the continuous time case, the proof for
the discrete time case is similar.
It follows from the integrability of the kernel and Proposition A.3.14 that the output
signals y(·) = (G ∗ u)(·) are q-integrable for all u(·) ∈ U+ and all u(·) ∈ U . By the
same proposition it follows that G+ : U+ → Y+ and G : U → Y are bounded linear
operators satisfying the above inequality. The time-invariance of G+, G is shown in
exactly the same way as the time-invariance of L+, see (25). This proves (i) and (ii)
and the statement thereafter (which is equivalent to (i) and (ii)).
It only remains to prove that G and G+ have the same operator norm. Since the
Banach spaces Lq(R+; Kk) can be embedded isometrically into the Banach spaces
Lq(R; Kk), k = m, p (by trivial extension), we have ‖G+‖ ≤ ‖G‖. To prove the
converse inequality, suppose u(·) ∈ Lq(R+; Km), let τ ≤ 0 and define the shifted
signal uτ (·) ∈ Lq(R; Km) by uτ(t) = u(t − τ), t ≥ τ , uτ (t) = 0, t < τ . In particular,
u0(·) is the trivial extension of u(·) to R and uτ (·) = (Sτu0)(·). The subspace
U−∞ ⊂ Lq(R; Km) of all the shifted uτ where u(·) ∈ Lq(R+; Km) and τ < 0, is dense
in Lq(R; Km). Since G commutes with the shift operator Sτ and G+ has the same
operator norm as the restriction of G to Lq(R+; Km) ⊂ Lq(R; Km), the restriction of
G to the normed subspace U−∞ has the same operator norm as G+. Hence it follows
from the continuity of G and the density of U−∞ in Lq(R; Km) that G and G+ have
the same norm. �

We have seen in the proof of Proposition 2.3.8 that the weighting pattern (13) and
(7) of the state space systems (2.17) and (2.22) initialized at x(0) = 0 satisfies
condition (35) if σ(A) ⊂ C− and σ(A) ⊂ D. Applying the previous proposition to
these weighting patterns we obtain

Corollary 2.3.16. Suppose σ(A) ⊂ C− (resp. σ(A) ⊂ D) then the input-output
operator L of the state space system (2.17) (resp. (2.22)) defined by (33) (resp. (34))
is a time-invariant bounded linear operator from Lq(R; Km) to Lq(R; Kp) (resp. from
�q(Z; Km) to �q(Z; Kp)) and satisfies

‖L+‖L(Lq(R+;Km),Lq(R+;Kp)) = ‖L‖L(Lq(R;Km),Lq(R;Kp)) ≤ ‖D‖L(Km,Kp) + ‖G‖L1(R+;Kp×m)

(resp. ‖L+‖L(�q(N;Km),�q(N;Kp)) = ‖L‖L(�q(Z;Km),�q(Z;Kp)) ≤ ‖G‖�1(N;Kp×m)).
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2.3.2 Transfer Functions

In the previous subsection we studied the input-output behaviour of linear state
space systems in the time domain, i.e. state trajectories and input and output sig-
nals were considered as functions of time, and the system’s input-output behaviour
was modelled as a mapping between spaces of these time functions. We have seen
that these mappings can be described by convolution kernels and this suggests that
transform techniques may be a useful tool for their analysis (see Section A.3). In
fact, Fourier and Laplace transforms have been used to describe the input-output
behaviour of electrical circuits since the early decades of the past century. Via
these transforms, convolution is converted into multiplication, and so the convolu-
tion operator of a system is transformed into a multiplication operator, determined
by the Laplace transform of the convolution kernel, the so-called transfer function
(or transfer matrix). A variety of graphical design methods has been developed in
terms of these transfer functions, see Notes and References.
Transform techniques are based on the idea of representing continuous time signals
as superpositions of harmonic oscillations. The variables of Fourier and Laplace
transforms are interpreted as frequencies and therefore the analysis of the input-
output behaviour of linear systems using these methods is called frequency domain
analysis. In this subsection we give a brief introduction to some basic notions of
this field. For a summary on transforms, see Section A.3.
Throughout the subsection it is assumed that all finite dimensional vector spaces
Km, Kp are equipped with Euclidean norms and Kp×m with the corresponding op-
erator norm (spectral norm).

Signal Transforms

We first define the Fourier transform for signals defined on T = R and the Laplace
transform for signals defined on T = R+. Then we define the discrete Fourier
transform of discrete time signals on T = Z and the z-transform of signals defined
on T = N.
The Fourier transform of a function u(·) ∈ L1(R; Km) is defined by

ũ(ω) = (F u)(ω) :=

∫ ∞

−∞
u(t)e−ıωtdt, ω ∈ R.

For every u(·) ∈ L1(R; Km) the Fourier transform ũ(ω) is continuous in ω ∈ R and
tends to 0 as |ω|→±∞ by Riemann’s Lemma, see Proposition A.3.28. Note that if
u takes its values in Rm, then ũ(ω) = ũ(−ω).
We also need to consider the Fourier transform of signals u(·) ∈ L2(R; Km). There
is an initial difficulty to be overcome since L2(R; Km) �⊂ L1(R; Km). However (see
Plancherel’s Theorem A.3.33) the Fourier transforms ũN(·) of the truncated func-
tions uN(·) = u(·)1[−N,N ] ∈ L1(R; Km) converge in L2(R; Cm) to a limit ũ(·) called
the Fourier-Plancherel transform of u(·),

ũ(·) = lim
N→∞

ũN(·) in L2(R; Cm), ũN(ω) =

∫ N

−N

u(t)e−ıωtdt, ω ∈ R. (41)

Note that for u(·) ∈ L1(R; Km), the Fourier transform ũ(ω) is defined pointwise for
every ω ∈ R, whereas for u(·) ∈ L2(R; Km) the Fourier-Plancherel transform ũ(·) is
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only determined as an element of L2(R; Cm), i.e. almost everywhere.
For u(·) ∈ L1

loc(R+; Km), α ∈ R we set uα(·) : t → e−αtu(t), t ∈ R+ and define

Eα(Km) = {u(·) ∈ L1
loc(R+; Km); uα(·) ∈ L1(R+; Km)}, α ∈ R.

Functions belonging to Eα(Km) for some α ∈ R are called Laplace transformable and
all signals occurring in control theory belong to this class. The Laplace transform
(see Definition A.3.17) of u(·) ∈ Eα(Km) is defined by

û(s) = (L u)(s) :=

∫ ∞

0

u(t)e−stdt, Re s ≥ α. (42)

û(·) is continuous and bounded on the closed set {s ∈ C; Re s ≥ α}. It is analytic
on {s ∈ C; Re s > α} and will be identified with its analytic extensions to complex
domains containing this set. Note that if u takes its values in R

m, then û(s) = û(s).
Now suppose u(·) ∈ Eα(Km). Then for every β ≥ α the Laplace transform û(β + ıω)
on the vertical line {β + ıω; ω ∈ R} can be expressed by the Fourier transform of
the integrable function uβ(·) where uβ(t) = u(t)e−βt, t ≥ 0 and uβ(t) = 0, t < 0

(L u)(β + ıω) =

∫ ∞

0

(u(t)e−βt)e−ıωtdt = (F uβ)(ω), ω ∈ R. (43)

Hence û(β + ıω) → 0 as |ω| → ∞ by Riemann’s Lemma.
The counterpart of the Fourier transform for discrete time signals on Z (two-sided
sequences) is the discrete Fourier transform . For an arbitrary summable two-sided
sequence u(·) ∈ �1(Z; Km) it is given by

ũ(θ) = (FD u)(θ) :=

∞∑
t=−∞

u(t)e−ıtθ, θ ∈ [−π, π]. (44)

The series converges uniformly for θ ∈ [−π, π] and its limit ũ(·) : [−π, π] → Cm

is continuous with ũ(−π) = ũ(π). Note that if u(·) takes its values in Rm, then
ũ(θ) = ũ(−θ).
For signals u(·) ∈ �2(Z; Km), we have a similar difficulty to that of the continu-
ous time case since �2(Z; Km) �⊂ �1(Z; Km). However since the functions ψt(θ) :=
(2π)−1/2e−ıtθ, t ∈ Z form an orthonormal basis of the Hilbert space L2(−π, π; Cm)
(see Example A.4.6) the series in (44) converges in L2(−π, π; Cm) to some function
ũ(·) ∈ L2(−π, π; Cm), for every sequence u(·) ∈ �2(Z; Km). Note again that for
u(·) ∈ �1(Z; Km), the discrete Fourier transform ũ(θ) is defined pointwise for every
θ ∈ [−π, π], whereas for u(·) ∈ �2(Z; Km) the transform ũ(·) is only determined as
an element of L2(−π, π; Cm), i.e. almost everywhere.
The counterpart of the Laplace transform for discrete time signals on N is the z-
transform which associates with any one-sided sequence u(·) : N → Km, the formal
power series in z−1

û(z) = (Zu)(z) =

∞∑
t=0

u(t)z−t, (45)

see Definition A.3.5. If the sequence (u(t)) is exponentially bounded this formal
power series defines a complex analytic function û(·) on some neighbourhood of ∞.
For u(·) ∈ (Km)N, γ > 0 we set uγ(t) = u(t)γ−t, t ∈ N and define

Sγ(K
m) = {u(·) ∈ (Km)N; uγ(·) ∈ �1(N; Km)}, γ > 0.
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Then if u(·) ∈ Sγ(K
m) the series on the RHS of (45) is absolutely convergent for

all z ∈ C, |z| ≥ γ and defines a continuous function û(·) on {z ∈ C; |z| ≥ γ}. This
function is analytic on {z ∈ C; |z| > γ} and it will be identified with its analytic
extensions to complex domains containing this set. We will use the same symbol
û(z) to denote the formal power series (45) and the associated complex analytic
function. Note that if u(·) takes its values in Rm, then û(z) = û(z).
Now suppose u(·) ∈ Sγ(K

m) for some γ > 0. Then the holomorphic function given
by the z-transform (45) may be viewed as the frequency domain representation of
the discrete time signal u(·) ∈ Sγ(K

m). In fact, on any circle {reıθ; θ ∈ [−π, π]}
with r ≥ γ the function û(z) defined by (45) can be expressed as the discrete
Fourier transform of the summable sequence ur(·) where ur(t) = u(t)r−t, t ∈ N and
ur(t) = 0, t ∈ Z \ N,

(Zu)(reıθ) =
∞∑

t=0

(u(t)r−t)e−ıtθ = (FD ur)(θ), θ ∈ [−π, π]. (46)

Transfer Matrices

We now turn from the representation of signals to the representation of input-
output behaviours in frequency domain, and begin our discussion for convolution
systems with time domain T = R+ (resp. N) and input-output operator described
by (39). Suppose that for some α ∈ R (resp. γ > 0), G(·) ∈ Eα(Kp×m) and
u(·) ∈ Eα(Km) (resp. G(·) ∈ Sγ(K

p×m) and u(·) ∈ Sγ(K
m)). Then it follows from

(A.3.14) and (A.3.32) that the corresponding output signal y(·) = (G ∗ u)(·) is in
Eα(Kp) (resp. Sγ(K

p)). Taking the Laplace transform (resp. z-transform) of both
sides of equation (39) we obtain (see Theorem A.3.21 (resp. Theorem A.3.7))4

ŷ(s) = G(s)û(s), Re s ≥ α, ŷ(z) = G(z)û(z), |z| ≥ γ (47)

where G(s) (resp. G(z)) is defined as follows.

Definition 2.3.17. Suppose that D ∈ Kp×m and for some α ∈ R (resp. γ >
0), G(·) ∈ Eα(Kp×m) (resp. G(·) ∈ Sγ(K

p×m)). Then the Laplace transform of
Dδ0(t) + G(·) (resp. z-transform of G(·))

G(s) = D +

∫ ∞

0

G(t)e−stdt, Re s ≥ α, G(z) = G(0) +

∞∑
t=1

G(t)z−t, |z| ≥ γ, (48)

is called the transfer matrix of the input-output system described by (39) or (40).

The convolution kernel G is uniquely determined in the continuous time case (almost
everywhere) by its Laplace transform and in the discrete time case by its z-transform
(see Theorems A.3.19 and A.3.8). So the transfer matrix completely determines the

4Note that in the discrete time the conditions G ∈ Sγ(Kp×m), u ∈ Sγ(Km)) are not needed
if an interpretation of the z-transform as a function on {z ∈ C; |z| ≥ γ} is not required. The
algebraic z-transform can be applied to arbitrary signals and convolution kernels on N and yields
formal power series with matrix and vector coefficients, respectively, see Subsection A.3.1. The
algebraic z-transform converts the convolution of time functions into the multiplication of formal
power-series.
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input-output operator of the convolution system described by (39) or (40).
Going back to the input-output behaviour of a state space system of the form (24)
we can obtain an explicit expression for the associated transfer matrix by using the
Laplace transform of (eAt)t∈R+ (resp. z-transform of (At)t∈N). However, it is also
possible to obtain this expression directly from the system equations as we show in
the following example.

Example 2.3.18. Consider the state space system of the form (2.17)

ẋ(t) = Ax(t) + Bu(t), t ∈ R+

y(t) = Cx(t) + Du(t).
(49)

with initial state x(0) = 0, and let u(·) be a Laplace transformable input function. Since
‖eAt‖ ≤ e‖A‖t, t ≥ 0 the convolution kernel t �→ eAt is exponentially bounded. Hence it
follows from (A.3.32) that the state and output trajectories

t �→ x(t) = (eA· ∗ Bu(·))(t), t �→ y(t) = Du(t) + Cx(t)

are Laplace transformable. Applying the Laplace transform to (49) we obtain

sx̂(s) = Ax̂(s) + Bû(s)
ŷ(s) = Cx̂(s) + Dû(s), Re s ≥ α

for some suitably large α. Therefore ŷ(s) = (D + C(sIn −A)−1B)û(s) and so the transfer
matrix of the above system is given by

G(s) = D + C(sIn − A)−1B. (50)

Note that this matrix-valued function is defined on ρ(A) = C \σ(A). Since (sIn −A)−1 =
det(sIn−A)−1 adj(sIn−A) where the adjugate adj(sIn−A) is a polynomial matrix whose
entries are of degree ≤ n− 1, we see that the transfer function of the time-invariant linear
system (2.17) is a proper rational matrix, i.e. a matrix with entries gij(s) satisfying

gij =
pij

qij
, pij, qij ∈ K[s], deg pij ≤ deg qij, i = 1, ..., p, j = 1, ...,m.

If D = 0, G(s) is strictly proper rational, i.e. its entries satisfy deg pij < deg qij. �

Remark 2.3.19. It is shown in realization theory that, conversely, for every proper
rational matrix G(s) ∈ K

p×m(s) there exists a time-invariant linear state space system of
the form (49) whose transfer-matrix is G(s). �

In the next example we present a system with an irrational transfer function.

Example 2.3.20. Consider the delay differential system

ẋ(t) = A0x(t) + A1x(t − h) + Bu(t), y(t) = Cx(t), t > 0,

where (A0, A1, B,C) ∈ K
n×n×K

n×n×K
n×m×K

p×n, h > 0 are given and the initial state is
zero: x(τ) = 0, τ ∈ [−h, 0]. A state space description of such a system has been presented
in Example 2.1.25. Constructing the state trajectory by successive application of the
variation-of-constant formula (see (1.30)) one can show that if the input u is exponentially
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bounded then so will x(·) and y(·) be exponentially bounded. Hence we may take the
Laplace transform to obtain (see Proposition A.3.20)

sx̂(s) = A0x̂(s) + A1e
−hsx̂(s) + Bû(s), ŷ(s) = Cx̂(s), Re s ≥ α

for some suitably large α. So the transfer matrix of the above system is given by

G(s) = C(sIn − A0 − e−hsA1)
−1B, Re s ≥ α.

Note that this matrix function is no longer rational. Applying the inverse Laplace trans-
form (see Theorem A.3.19) we conclude that the input-output behaviour of the above
delay system can be described in time domain by a convolution kernel

y(t) = (G ∗ u)(t), where G = L−1(G).

The kernel G can be determined as follows. Let t �→ Φ(t) ∈ K
n×n be the fundamental

solution of the delay equation, i.e. the matrix solution of the initial value problem

Φ̇(t) = A0Φ(t) + A1Φ(t − h), t ≥ 0; Φ(s) = 0, s ∈ [−h, 0), Φ(0) = In

(Existence and uniqueness of the solution follow as in Example 2.1.25.) Then, see [213],
the state trajectories with initial function zero are given by

x(t) =

∫ t

0
Φ(t − τ)Bu(τ)dτ, t ≥ 0.

Hence the input-output behaviour (starting at zero) will be described by a convolution
operator with kernel G(t) = CΦ(t)B, t ≥ 0. �

In the next example we derive a formula for the transfer matrix of the discrete time
system (2.22).

Example 2.3.21. Consider the state space system of the form (2.22)

x(t + 1) = Ax(t) + Bu(t), t ∈ N

y(t) = Cx(t) + Du(t)
(51)

with initial state x(0) = 0. Applying the algebraic z-transform we obtain for arbitrary
input sequences u(·) : N → K

m

zx̂(z) = Ax̂(z) + Bû(z),

ŷ(z) = Cx̂(z) + Dû(z)

and hence
ŷ(z) = G(z)û(z) where G(z) = D + C(zIn − A)−1B. (52)

We know from Example 2.3.18 that G(z) is proper rational and defined on ρ(A). The cor-
responding formal power series in K

p×m[[z−1]] can be obtained by expressing the proper ra-
tional functions gij(z) = qij(z)/pij(z) (via long division) in the form gij(z) =

∑∞
k=0 γ

ij
k z−k

(the Laurent expansion of gij(z) at ∞, see Section A.2). �

Examples 2.3.18 and 2.3.21 show that the transfer functions of the continuous time
system (2.17) and the discrete time system (2.22) coincide. This makes it possible
to transfer results concerning the input-output behaviour from one class of systems
to the other.
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Dyadic Decomposition of Transfer Matrices

We now examine how the input and output signals of a state space system of the
form (2.17) and (2.22) are coupled via the internal dynamics of the system. In order
to simplify the analysis we will only consider the (generic) case where the system
matrix A is diagonalizable. Then there exists a basis v1, ..., vn of Cn consisting of
eigenvectors of A. Let Vj = Cvj, j ∈ n and let λ1, ..., λn be the corresponding (not
necessarily distinct) eigenvalues of A. If P̃i : Cn → Cn is the canonical projection
from Cn = ⊕n

j=1Vj onto Vi,
∑n

j=1 αjv
j �→ αiv

i, then these projections P̃i, i = 1, ..., n

have the properties given in (2.30), (2.33) with � = n and P̃i instead of Pi. In
particular

(sIn − A)−1 =
n∑

i=1

(s − λi)
−1P̃i, s ∈ ρ(A).

If (w1, ..., wn) is the biorthogonal basis of (v1, ..., vn), i.e. wj∗vi = δij (Kronecker
symbol) , then P̃i = viwi∗. Hence the transfer matrix for (2.17) and (2.22) is

G(s)=D+C(sIn−A)−1B=D+
n∑

i=1

(s−λi)
−1CP̃iB=D+

n∑
i=1

(s−λi)
−1(Cvi)(wi∗B)

=D +

n∑
i=1

ci(s − λi)
−1bi∗

where ci = Cvi ∈ Cp and bi = B∗wi ∈ Cm. This representation is called the dyadic

u �
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Figure 2.3.5: Dyadic decomposition of the transfer function with D = 0

decomposition of the transfer function for the system (A, B, C, D) and is illustrated
in Figure 2.3.5. The components bi

1, ..., b
i
m of bi specify the intensity by which the m

inputs excite the i-th eigenmode of the system. Whereas the components ci
1, ..., c

i
p

of ci determine the intensity by which the i-th eigenmode influences the p outputs.
If bi = 0, no input will affect the i-th eigenmode and if ci = 0, the i-th eigenmode
will not affect the output. So, in both cases the i-th eigenmode is not important for
the input-output behaviour of the system (A, B, C, D) initialized at x(0) = 0.

Interpretation of the Transfer Function: Response to Sinusoidal Inputs

In the previous subsection we showed that the weighting pattern G(t) of a continuous
time convolution system can be approximately obtained by testing the input-output
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system with approximations to Dirac impulses. We will now show that the transfer
function of such a system can be determined approximately by applying harmonic
test signals of various frequencies to the system and interpolating the results. In
contrast to the impulse approximations, this procedure is not only of theoretical but
also of some practical importance, see Notes and References.
For simplicity we only consider the real scalar case with time domain T = R+ (resp.
T = N) and integrable (resp. summable) convolution kernel. Then the associated
transfer function g(s) is defined and continuous on the closed right half-plane C+

(resp. on D+) and hence also on the imaginary axis ıR (resp. the unit circle ∂D).

Proposition 2.3.22. Let g(·) be the transfer function of a real scalar convolution
system (40) with integrable kernel G(·) ∈ L1(R+; R) (resp. summable kernel G(·) ∈
�1(N; R)) and a real feedthrough coefficient D ∈ R. Then, for every ω ∈ R (resp.
θ ∈ [−π, π]), the system response to the input signal u(t) = sin ωt, t ∈ R+ (resp.
u(t) = sin θt, t ∈ N) approximates for large t the “steady state response”

yss(t) = |g(ıω)| sin (ωt+ϕ(ω)), t ≥ 0 (resp. yss(t) = |g(eıθ)| sin (θt+ϕ(θ)), t ∈ N)

where ϕ(ω) (resp. ϕ(θ)) is an argument function of g(ıω) (resp. g(eıθ)).

Proof : We only prove the proposition for the continuous time case. The discrete
time case is left to the reader, see Ex. 8. First note that

yss(t) = |g(ıω)| Im eı(ωt+ϕ(ω)) = |g(ıω)| Im(eıϕ(ω)eıωt) = Im (g(ıω)eıωt), t ≥ 0.

The system response to u(t) = sin ωt = Im eıωt is y(t) = D sin ωt + (G ∗ u)(t) for
t ∈ R+. On the other hand Im (g(ıω)eıωt) = Im (Deıωt + Ĝ(ıω)eıωt) = D sin ωt +
Im (Ĝ(ıω)eıωt). Therefore

|y(t) − Im (g(ıω)eıωt)| = |
∫ t

0

G(τ) sin ω(t − τ) dτ − Im

∫ ∞

0

G(τ)e−ıωτdτ eıωt|

= | Im
∫ ∞

t

G(τ)eıω(t−τ)dτ |, as G(·) is real

≤ |
∫ ∞

t

G(τ)eıω(t−τ)dτ | ≤
∫ ∞

t

|G(τ)|dτ → 0 as t → ∞.

(53)

Since yss(t) = Im (g(ıω)eıωt) this concludes the proof. �

In the continuous time case the steady state response yss(t) is a harmonic oscillation
of the same frequency as the harmonic input signal but amplified by |g(ıω)| and
phase shifted by arg g(ıω). Consequently, the values of the transfer function g on the
imaginary axis can be determined experimentally (sometimes with great accuracy)
by measuring for each interesting frequency ω the magnitude and phase shift (with
respect to the phase of the input signal) of the steady state response. This procedure
can, in principle, also be applied to multivariable convolution systems by feeding
harmonic inputs successively into each of the m input channels (keeping the other
input channels at zero) and measuring the amplifications and phase shifts of the
system’s responses on each of p output channels. Analogous results hold for the
discrete time case.
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Frequency Responses

We have just seen that the transfer function g(s) of a scalar convolution system (40)
with integrable kernel on T = R+ (resp. summable kernel on T = N) is defined and
continuous on the imaginary axis ıR (resp. the unit circle ∂D). g(·) is completely
determined by its values on the imaginary axis (resp. the unit circle), see Proposi-
tion A.3.41 (resp. Proposition A.3.45). Thus the restriction of g(s) to ıR (resp. ∂D)
determines the input-output behaviour of the convolution system. This motivates
the following definition.

Definition 2.3.23. Let g(·) be the transfer function of a real scalar convolution
system with integrable kernel G on R+ (resp. summable kernel G on N). Then
the complex valued function ω → g(ıω) (resp. θ → g(eıθ)) on R (resp. [−π, π])
is called the complex frequency response. The real valued function ω → |g(ıω)|
(resp. θ → |g(eıθ)|) is called the amplitude (gain) response and any (continuous)
argument function ω → arg g(ıω) (resp. θ → arg g(eıθ)) the phase response of the
continuous (resp. discrete) time scalar convolution system (40).

The importance of these concepts for classical control theory, results from the fact
that three of the four most prominent classical analysis and design techniques for lin-
ear siso systems (Nyquist, Bode, Nichols chart and root locus methods) are based on
graphical representations of the frequency response. In particular, Nyquist’s method
proceeds from the polar plot {g(ıω); ω ∈ R} of the complex frequency response, and
Bode’s method proceeds from the graphs of the amplitude and the phase responses,
see Notes and References.

Remark 2.3.24. Classical techniques have been developed for siso systems. Clearly
they can be applied individually to represent graphically the influence of the j-th input
channel on the i-th output of a multivariable system (2.17) or (2.22) described by the
entry gij(s) of the associated transfer matrix G(s) = (gij(s)) ∈ K

p×m(s). However, these
graphical methods are, in general, not suitable for analyzing the input-output behaviour
of a multivariable system as a whole. �

Before illustrating the concept of complex frequency response by the polar plots of
some simple siso systems let us make some general remarks concerning these plots.

(i) The transfer functions of stable real siso systems satisfy g(ıω) = g(−ıω) for all
ω ∈ R, so that their polar plots are symmetric with respect to the real axis,
and hence need only be computed for ω ≥ 0.

(ii) It is usual to indicate the orientation of the polar plot by an arrow showing
the direction in which g(ıω) evolves as ω is increasing. If g(s) and h(s) are two
transfer functions satisfying h(s) = g(−s) then g and h have the same polar
plots but they have reverse orientations.

(iii) For a continuous time siso convolution system with integrable kernel G and
D = 0, the amplitude response |g(ıω)| tends to zero as |ω| → ∞ and so the
harmonic inputs with large frequencies will be attenuated by the system, see
(53). On the contrary, siso systems whose amplitude response is constant
(i.e. |g(ıω)| = c > 0 for all ω ∈ R) amplify/dampen harmonic inputs by the
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same factor c for all frequencies. They are called all-pass functions and in the
rational case are characterized by the property of pole-zero symmetry with
respect to the imaginary axis: if s0 is a pole of g, then −s0 is a zero.

Example 2.3.25. The transfer function of any first order real siso system is of the form
d + b/(s + a). If a �= 0 the corresponding polar plot is a circle since |g(ıω)− d− b/(2a)| =
|b|/|2a| for all ω ∈ R. For a = 0 the polar plot is a vertical line since g(ıω) = d − ıb/ω.
In Figure 2.3.25 we illustrate, by their polar plots for ω ≥ 0, the frequency responses of five
simple real siso systems (with and without delay). (The full polar plots are then obtained
by adding their reflections about the real axis). Consider the transfer functions

g1(s) = 1/(s2 + 2s + 5), g2(s) = 1/s(s2 + 2s + 5), g3(s) = (s + 1)/(s2 + 2s + 5),

g4(s) = e−s/(1 + s), g5(s) = 1/(s + 1 + e−s).
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Figure 2.3.6: Polar plots of the transfer functions g1(·), . . . , g5(·)

It is easy to construct state space systems of the form (49) whose transfer functions are
g1(s), g2(s) and g3(s), see Ex. 11. g4(s) and g5(s) are the transfer functions of the delay
systems

ẋ(t) = −x(t) + u(t − 1), y(t) = x(t) and ẋ(t) = −x(t) − x(t − 1) + u(t), y(t) = x(t).

In the six pictures of Figure 2.3.6 the origin in the complex plane is indicated by ◦. The
pictures were produced via the plot command in matlab with a frequency band, in the
main, from 0 to 100. The exceptions are the polar plot of g2 (with frequency range [0.5, 6])
and the right hand plot of g5 which is a zoom in (for higher frequencies) of the left hand
one. g1 has two complex poles at −1 ± 2ı and its plot is a typical one for a second order
system. g2 is obtained from g1 by adding a pole at the origin. Obviously the polar plot
will be unbounded if there is a pole of the transfer function on the imaginary axis. Here
Re g2(ıω) → −.08 and Im g(ıω) → −∞ as ω → 0 (see Ex. 10). g3 is obtained from g1
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by adding a zero at s = −1. The polar plot is quite different to that of g1. For small
positive values of ω we have Im g3(ıω) ≥ 0 and for all ω we have Re g3(ıω) ≥ 0, whereas
this is not the case for g1. In fact g3 is analytic on C+ and maps this closed right half-
plane into itself. Transfer functions with this property are called positive real. g4 is the
transfer function of a first order system where there is a delay of one unit in the input.
The effect of the delay is to change the non-delayed plot of a circle to that of a spiral.
Such behaviour is exhibited even if the delay is very small. This shows that in designing
controls (or analyzing stability) by frequency domain methods one should be careful about
neglecting delays. g5 is another transfer function of a system with a delay, this time not in
the control but in the state. For ω = 0 we have g5(0) = 1/2 which lies on the polar plot of
g(s) = 1/(s+2) which is a circle ∂D((1/4, 0), 1/4) of radius 1/4 around the centre (1/4, 0).
Then at ω = π it hits the imaginary axis ıR for the first time. At ω = 2π it returns to
the circle ∂D((1/4, 0), 1/4) and at ω = 3π it hits ıR again. The process is continued at
multiples of π as seen in the right hand figure for g5. Again this type of behaviour would
also occur if the delay was small.
The transfer functions g1, g3, g4 and g5 are all in H∞(C+; C), i.e. they are continuous and
bounded on C+ and analytic in C+, see Ex. 11. We will see in the next subsection that
this implies that the corresponding convolution systems are L2-stable. g2 is not L2-stable.

�

2.3.3 Relationship Between Input–Output Operators and
Transfer Matrices

In this subsection we consider convolution systems in both time domain and fre-
quency domain and clarify the relationship between their input-output operators
and transfer matrices. The technical development relies on Section A.3. Through-
out the subsection it is assumed that all finite dimensional vector spaces Kp, Km

are equipped with their standard Euclidean norms ‖ · ‖2 and Kp×m with the corre-
sponding operator norm ‖ · ‖2,2.
We suppose that an integrable convolution kernel G(·) ∈ L1(R+; Cp×m) (resp. G(·) ∈
�1(N; Cp×m)) and a feedthrough matrix D ∈ Cp×m are given and first consider the as-
sociated convolution system with the time domain T = R+ (resp. N). This convolu-
tion system is described by (U+, G+,Y+) where U+ = Lq(R+; Cm), Y+ = Lq(R+; Cp)
(resp. U+ = �q(N; Cm), Y+ = �q(N; Cp)) and the input-output operator G+ : U+ →
Y+ is of the form (39), see Proposition 2.3.15. In order to describe the relationship
between G+ and the transfer matrix G(·) we introduce the Hardy spaces Hq(C+; Cn)
(resp. Hq(D+; Cn)).

Definition 2.3.26. For 1 ≤ q ≤ ∞ denote by Hq(C+; Cn) the space of all analytic
functions v(·) on C+ with values in Cn satisfying ‖v(·)‖Hq(C+;Cn) < ∞ where

‖v(·)‖Hq(C+;Cn) =

⎧⎨⎩supα>0

(∫∞
−∞ ‖v(α + ıω)‖q

2dω
)1/q

, if 1 ≤ q < ∞
sups∈C+

‖v(s)‖2, if q = ∞.
(54)

For some properties of these vector spaces see Subsection A.3.4. It is known that
Hq(C+; Cn) provided with the norm (54) is a Banach space.
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Definition 2.3.27. For 1 ≤ q ≤ ∞ denote by Hq(D+; Cn) the space of all analytic
functions v(·) on D+ with values in Cn satisfying ‖v(·)‖Hq(D+;Cn) < ∞ where

‖v(·)‖Hq(D+;Cn) =

⎧⎨⎩supr>1

(∫ π

−π
‖v(reıθ)‖q

2dθ
)1/q

, if 1 ≤ q < ∞
supz∈D+

‖v(z)‖2, if q = ∞.
(55)

Again it is known that Hq(D+; Cn) provided with this norm (55) is a Banach space.
We now specialize to the case where q = 2 so that U+ = L2(R+; Cm), (resp. U+ =
�2(N; Cm),) and Y+ = L2(R+; Cp), (resp. Y+ = �2(N; Cp)). Let G(s) = (D + LG)(s)
(resp. G(z) = ZG(z)) be the transfer matrix of the convolution system (U+, G+,Y+),
see Definition 2.3.17. Since G(·) ∈ L1(R+; Cp×m), its Laplace transform is analytic
on C+, bounded and continuous on C+ so that G(·) ∈ H∞(C+; Cp×m). Similarly, in
the discrete time case, G(z) is analytic on D+, bounded and continuous on D+ so
that G(·) ∈ H∞(D+; Cp×m). Moreover by Proposition A.3.41 and Proposition A.3.45
we have

‖G(·)‖H∞(C+;Cp×m) =sup
ω∈R

‖G(ıω)‖2,2, ‖G(·)‖H∞(D+;Cp×m) = max
θ∈[−π,π]

‖G(eıθ)‖2,2. (56)

If u(·) ∈ L2(R+; Cm) (resp. u(·) ∈ �2(N; Cm)), then u(·) ∈ Eα(Cm) (resp. Sγ(C
m))

for every α > 0 (resp. γ > 1). Therefore by (47)

L((G+u)(·))(s) = G(s)û(s), Re s > 0, Z ((G+u)(·))(z) = G(z)û(z), |z| > 1 (57)

for every u(·) ∈ L2(R+; Cm) (resp. u(·) ∈ �2(N; Cm)). From (54) and (55) we get

‖G(·)w(·)‖H2(C+;Cp) ≤ ‖G(·)‖H∞(C+;Cp×m)‖w(·)‖H2(C+;Cm), w(·)∈H2(C+; Cm)

‖G(·)w(·)‖H2(D+;Cp) ≤ ‖G(·)‖H∞(D+;Cp×m)‖w(·)‖H2(D+;Cm), w(·)∈H2(D+; Cm).
(58)

This shows that pointwise multiplication of an H2-function by G(s) yields an H2-
function. Let M+

G : H2(C+; Cm) → H2(C+; Cp) be the associated multiplication
operator for the continuous time case defined by

(M+
G w)(s) = G(s)w(s), w(·) ∈ H2(C+; Cm), s ∈ C+, (59)

and M+
G : H2(D+; Cm) → H2(D+; Cp) be its counterpart for the discrete time case

defined by

(M+
G w)(z) = G(z)w(z), w(·) ∈ H2(D+; Cm), z ∈ D+. (60)

From (57) we see that the following diagrams commute

L2(R+; Cm)
G+−−−→ L2(R+; Cp)

L
⏐⏐/ ⏐⏐/L

H2(C+; Cm) −−−→
M+

G

H2(C+; Cp)

,

�2(N; Cm)
G+−−−→ �2(N; Cp)

Z

⏐⏐/ ⏐⏐/Z

H2(D+; Cm) −−−→
M+

G

H2(D+; Cp)

.
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By Theorem A.3.43 the normalized z-transform (2π)−1/2Z is an isometry between
the two �2 and H2 spaces in the second diagram. Similarly by Theorem A.3.47 the
normalized Laplace transform (2π)−1/2L is an isometry between the two L2 and H2

spaces in the first diagram. Hence

‖G+‖L(L2(R+;Cm),L2(R+;Cp)) = ‖M+
G‖L(H2(C+;Cm),H2(C+;Cp)) ,

‖G+‖L(�2(N;Cm),�2(N;Cp)) = ‖M+
G‖L(H2(D+;Cm),H2(D+;Cp)) .

(61)

We will see later in Theorem 2.3.28 that the operator norms (61) of the multiplication
operators M+

G can be computed by maximizing ‖G(s)‖2,2 on the imaginary axis and
the unit circle, respectively.
We now turn to the case where T = R (resp. Z) and consider the convolution
system (U , G,Y) where U = L2(R; Cm), Y = L2(R; Cp) (resp. U = �2(Z; Cm), Y =
�2(Z; Cp)) and the input-output operator G is given by (40). Again it follows from
the convolution inequalities (A.3.24) and (A.3.7) that G : U → Y is a bounded linear
operator. Since the control functions may admit non-zero values on (−∞, 0) the
Laplace transform L is no longer applicable to these signals. Instead we make use of
the Fourier-Plancherel transform defined by (41) and the discrete Fourier transform
defined by (44) where the limit of the series is to be understood in L2(−π, π; Cm).
We extend G(·) trivially to R (resp. Z) by setting G(t) = 0 for t < 0. By (43)
(with β = 0) and (46) (with r = 1) the Fourier transform (resp. discrete Fourier
transform) of this extension is

F(G)(ω) = (LG)(ıω) = G(ıω) − D, FD(G)(θ) = (ZG)(eıθ) = G(eıθ).

Hence by Proposition A.3.35 (iii) (resp. Proposition A.3.39) the Fourier-Plancherel
transform (resp. discrete Fourier transform) of the output signal y(·) = (Gu)(·),
u(·) ∈ U is given by

ỹ(ω) = (F(Du + G ∗ u))(ω) = G(ıω)ũ(ω), a.e. ω ∈ R,

ỹ(θ) = (FD(G ∗ u))(θ) = G(eıθ)ũ(θ), a.e. θ ∈ [−π, π]
(62)

where ũ(·) ∈ L2(R; Cm) (resp. ũ(·) ∈ L2(−π, π; Cm)) denotes the Fourier-Plancherel
transform (resp. discrete Fourier transform) of u(·). Now for w(·) ∈ L2(R; Cm)
(resp. w(·) ∈ L2(−π, π; Cm)) we have

‖G(ı·)w(·)‖L2(R;Cp) ≤ max
ω∈R

‖G(ıω)‖2,2‖w(·)‖L2(R;Cm),

‖G(eı·)w(·)‖L2(−π,π;Cp) ≤ max
θ∈[−π,π]

‖G(eıθ)‖2,2‖w(·)‖L2(−π,π;Cm).
(63)

Hence the multiplication operators

MG : L2(R; Cm) → L2(R; Cp), (MGw)(ω) = G(ıω)w(ω), a.e. ω ∈ R,

MG :L2(−π, π; Cm) → L2(−π, π; Cp), (MGw)(θ)=G(eıθ)w(θ), a.e. θ∈ [−π, π]
(64)

are well defined, linear and bounded. The equations in (62) imply that the following
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diagrams commute

L2(R; Cm)
G−−−→ L2(R; Cp)

F
⏐⏐/ ⏐⏐/F

L2(R; Cm) −−−→
MG

L2(R; Cp)

�2(Z; Cm)
G−−−→ �2(Z; Cp)

FD

⏐⏐/ ⏐⏐/FD

L2(−π, π; Cm) −−−→
MG

L2(−π, π; Cp)

Since by Theorem A.3.33 the normalized Fourier transform (2π)−1/2F is an isometry
between the two L2 spaces on the left diagram and by Remark A.3.38 the normalized
discrete Fourier transform (2π)−1/2FD is an isometry between the two �2 and L2

spaces of the right diagram, it follows that G and MG have the same norm,

‖G‖L(L2(R;Cm),L2(R;Cp)) = ‖MG‖L(L2(R;Cm),L2(R;Cp)),

‖G‖L(�2(Z;Cm),�2(Z;Cp)) = ‖MG‖L(L2(−π,π;Cm),L2(−π,π;Cp)).
(65)

The following theorem links these results with the corresponding ones for G+ given
in (61). It will be used in Section 5.3 to characterize the complex stability radius.

Theorem 2.3.28. Suppose G(·) ∈ L1(R+; Kp×m) (resp. G(·) ∈ �1(N; Kp×m)) and
D ∈ Kp×m, G ∈ L(L2(R; Km), L2(R; Kp)) (resp. G ∈ L(�2(Z; Km), �2(Z; Kp))),
G+ ∈ L(L2(R+; Km), L2(R+; Kp)) (resp. G ∈ L(�2(N; Km), �2(N; Kp)) are the input-
output operators defined by (39) (resp. (40)) and G(·) is the associated transfer
matrix (48), then

‖G‖H∞ = sup
ω∈R

‖G(ıω)‖2,2= ‖G+‖L(L2(R+;Km),L2(R+;Kp)) = ‖G‖L(L2(R;Km),L2(R;Kp)),

‖G‖H∞ = max
θ∈[−π,π]

‖G(eıθ)‖2,2 = ‖G+‖L(�2(N;Km),�2(N;Kp)) = ‖G‖L(�2(Z;Km),�2(Z;Kp)).
(66)

Proof : The proof is for the continuous time case. If G is a real convolution operator
we have ‖G‖L(L2(R;Rm),L2(R;Rp)) = ‖G‖L(L2(R;Cm),L2(R;Cp)), so we need only consider the
case K = C. By (56)

‖G‖H∞(C+;Cp×m) = sup
ω∈R

‖G(ıω)‖2,2.

So because of (65) and Proposition 2.3.15 it remains to prove that

‖MG‖L(L2(R;Cm),L2(R;Cp)) = sup
ω∈R

‖G(ıω)‖2,2.

By (63) the inequality ≤ holds. To prove the converse inequality let ε > 0 be
arbitrary. Then there exist ω0 ∈ R, δ > 0 and u ∈ Cm, ‖u‖2 = 1 such that

‖G(ıω)u‖2 ≥ sup
ω∈R

‖G(ıω)‖2,2 − ε, ω ∈ [ω0 − δ, ω0 + δ]. (67)

This follows from the fact that G(·) is continuous and bounded on C+ : One first
chooses ω0 such that

‖G(ıω0)‖2,2 ≥ sup
ω∈R

‖G(ıω)‖2,2 − ε/2,
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then u ∈ Cm, ‖u‖2 = 1 such that ‖G(ıω0)u‖2 = ‖G(ıω0)‖2,2 (see Definition A.1.4)
and finally δ > 0 such that

‖G(ıω)u − G(ıω0)u‖2 ≤ ε/2, ω ∈ [ω0 − δ, ω0 + δ].

Define ũ(·) ∈ L2(R; Cm) by ũ(ω) = u/
√

2δ for ω ∈ [ω0 − δ, ω0 + δ] and ũ(ω) = 0
otherwise. Then ‖ũ‖L2(R;Cm) = 1 and by (67)∫ ∞

−∞
‖(MGũ)(ω)‖2

2dω =
1

2δ

∫ ω0+δ

ω0−δ

‖G(ıω)u‖2
2dω ≥

(
sup
ω∈R

‖G(ıω)‖2,2 − ε

)2

.

This completes the proof of the continuous time case. The proof for the discrete
time case is similar, see Ex. 13. �

The following example illustrates how the norm of the input-output operator of a
state space system (49) (resp. (51)) can be determined by applying (66).

Example 2.3.29. Consider the oscillator described in Example 2.3.6,

ξ̈(t) + 2αξ̇(t) + ν2ξ(t) = ν2u(t), y(t) = ξ(t), t ∈ R+.

We assume α > 0, ν �= 0 so that the corresponding state space system satisfies σ(A) ⊂ C−.
The transfer function is g(s) = ν2/(s2 + 2αs + ν2) and a simple calculation gives

sup
ω∈R

|g(ıω)| =

⎧⎪⎨⎪⎩
1 if ν2 ≤ 2α2

ν2

2α
√

ν2 − α2
if ν2 > 2α2 .

The discrete time counterpart is

ξ(t + 2) + 2αξ(t + 1) + ν2ξ(t) = ν2u(t), y(t) = ξ(t), t ∈ N.

The corresponding state space system satisfies σ(A) ⊂ D if 1 > ν2 > |2α|−1. The transfer
function is as above and an easy calculation gives

max
θ∈[−π,π]

|g(eıθ)| =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|ν|3

(1 − ν2)[ν2 − α2]1/2
if |α|(1 + ν2) < 2ν2

ν2

1 − 2|α| + ν2
if |α|(1 + ν2) ≥ 2ν2. �

2.3.4 Exercises

1. Compute the impulse response G = (G(t))t∈N and the step response (corresponding to
the constant input u(t) ≡ 1, t ∈ N) for the discrete time system (A, B, C) of Ex. 2.2.4
and the discrete time system (A, B, C, D) of Ex. 2.2.8.

2. Calculate the impulse response for the continuous time system (49) with

A =

[
0 1
−1 0

]
, B =

[
0
1

]
, C = [1 , 0].
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Find also the response yk(·) to the input uk(·) where

uk(t) =

{
k if t ∈ [0, 1/k)

0 if t ≥ 1/k

and show that yk(·) converges uniformly on compact intervals to the impulse response.

3. Consider the input-output relation of a siso convolution system of the form

y(t) =

∫ t

0
G(t − τ)u(τ)dτ, t ≥ 0,

where G : R+ → R is continuous. Let ȳ(t), t ≥ 0 be the step response (corresponding to
u(t) ≡ 1, t ≥ 0). Show that ȳ(·) is differentiable on [0,∞) and its derivative is the impulse
response G(·). Formulate and prove an analogous result for discrete time systems.

4. Prove the discrete time counterpart of Proposition 2.3.10 as stated in Remark 2.3.12.

5. Consider the scalar system

y(n)(t) + an−1y
(n−1)(t) + . . . + a0y(t) = bn−1u

(n−1)(t) + . . . + b0u(t), y(i) =
diy

dti
. (68)

Find an appropriate state space model (A,B,C) for this system, see Ex. 2.1.8 and Ex. 2.1.9.
Show that the impulse response G(t) = CeAtB is a quasi-polynomial of the form G(t) =∑�

i=1 pi(t)e
λit where the pi are polynomials and λ1, . . . , λ� are the distinct roots of the

characteristic polynomial p(λ) = λn +an−1λ
n−1 + . . .+a0. Find an explicit expression for

the transfer function and verify your answer by applying the Laplace transform to (68)
with zero initial conditions.

6. Construct a dyadic decomposition of the system (A,B,C) where

A =

[
1 4
1 −2

]
, B =

[
0 1
1 1

]
, C = I2.

7. Calculate the impulse response G(t) and the transfer function g(s) for the continuous
time system (A,B,C,D) where

A =

[
0 1
−1 −1

]
, B =

[
0
1

]
, C = [1 , 0], D = 1.

Use matlab to plot the gain and frequency responses. Determine ‖g‖H∞(C+;C).

8. Prove Proposition 2.3.22 for the discrete time case.

9. Find the convolution kernels Gi corresponding to the transfer functions g1, ..., g5 given
in Example 2.3.25. In the case of g5 you need only compute G5(t) for t ∈ [0, 3].

10. If, as in Example 2.3.25, g1(s) = 1/(s2+2s+5) and x(ω) = Re g1(ıω), y(ω) = Im g1(ω)
find an algebraic equation in x, y for the polar plot of g1(·). Carry out the same programme
for g2(s) = 1/s(s2 + 2s + 5) and show that Re g2(ıω) → −.08 and Im g2(ıω) → −∞ as
ω → 0.

11. Prove that the transfer functions g1, g3, g4 and g5 given in Example 2.3.25 are in
H∞(C+; C) and calculate their H∞-norms. Find corresponding state space models for
the scalar transfer functions g1, g2 and g3.
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12. Consider the transfer function

G(s) =
1

s2 + 2s + 2

[
s + 1 +1
−1 s + 1

]
.

Show that ‖G‖H∞(C+;C2×2) = 1. For any ε ∈ (0, 1), construct a function ũ(·) ∈ L2(R; C2)
with ‖ũ‖L2(R;C2) = 1 such that ‖MGũ‖2

L2(R;C2) ≥ (1− ε)2, see the proof of Theorem 2.3.28.

13. Prove Theorem 2.3.28 for the discrete time case.

14. Consider the electrical circuit of Ex. 2.2.9 with input the driving voltage u and output
the charge q on the capacitor. Determine the impulse response of the system. Let u(t) =
sin ω0t where ω0 > 0 is given. Specify conditions in terms of R, L, C under which the
system admits a periodic trajectory with period ω0 > 0 (substitute q(t) = a cos ω0t +
b sin ω0t in the differential equation). Show that if these conditions are satisfied and R > 0
every trajectory of the system with initial state x0 �= 0 (under the control u(t) = sin ω0t)
will approaches this periodic solution as t → ∞.

2.3.5 Notes and References

The seminal monograph of Desoer and Vidyasagar (1975) [130] on input-output systems

is still a standard reference. More recent textbooks which contain chapters on input-

output systems are Delchamps (1988) [125], Sontag (1998) [472] and Sastry (1999) [448].

In [130] one can find details of a convolution algebra which allows for Dirac impulses in

the convolution kernel, see also [116].

For background material on convolutions, z and Laplace transforms and Fourier transforms

see the books recommended in Section A.3. An excellent introductory textbook which

covers much of the material of this section, written from an engineering point of view and

aimed at undergraduates is Kwakernaak and Sivan (1991) [322].

The Hardy space Hq play a role in systems theory in the context of robust control and

H∞ theory, see Zhou et al. (1996) [546].

Frequency response methods spread rapidly in the 1930’s after the appearance of Nyquist’s

classical paper on feedback amplifier stability (1932) [395] which arose from problems of

long distance telephony. By the early 1950’s frequency domain methods dominated the

analysis and design of automatic control systems. Nyquist’s method proceeds from a

modification of the polar plot of the complex frequency response. Bode’s method proceeds

from the graphs of amplitude and phase response and the Nichols chart combines the

two Bode plots into a plot of the gain in decibels against phase shift in degrees, see

e.g. Macfarlane (1979) [356]. Other standard references are [322], [168]. A recent book

on system identification via frequency domain methods is Pintelon and Schoukens (2001)

[413].
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2.4 Transformations and Interconnections of

Linear State Space Systems

In this section we only consider continuous time systems of the form (2.17) which we
denote by the shorthand notation Σ = (A, B, C, D). All the definitions and results
can also be applied to discrete time systems of the form (2.22). The first subsection
is concerned with showing that the systems (A, B, C, D) form a category and we
specify some standard constructions for this category (subsystems, quotient systems,
direct sum, . . . ). In the second subsection we introduce the basic coupling schemes
for two systems Σi = (Ai, Bi, Ci, Di) i = 1, 2 and discuss the general form of a
composite linear time–invariant system. As usual we do not distinguish notationally
between a linear map and the matrix representing it with respect to a given basis.
In Subsection 2.4.1 a coordinate free interpretation of A, B, C, D as linear maps
between vector spaces will prevail. However in applications these maps will be
described by matrices with respect to given bases of the input, state and output
spaces.

2.4.1 Morphisms and Standard Constructions

Changes of bases in the state space X, the input space U and/or the output space
Y of a system (A, B, C, D) lead to transformations of the matrices A, B, C, D.
Hence a given physical system may be modelled by different quadruples of the form
(A, B, C, D). This raises the question – which conditions render two systems to be
isomorphic or similar? Two vector spaces (groups) are called isomorphic if there
exists a linear isomorphism (resp. group isomorphism) between them. Using the
terminology of category theory, isomorphisms are invertible morphisms and mor-
phisms are structure preserving “maps” between structured objects of a given class.
We do not intend to explore these generalities, but just to mention that the con-
cepts of “isomorphism” and “(homo)morphism” are of fundamental importance in
the construction of a mathematical theory.
Morphisms between dynamical systems can be defined in various ways. One possible
definition would be:
If Σi = (T, Ui,Ui, Xi, Yi, ϕi, ηi), i = 1, 2 are two dynamical systems of a given class S
then a morphism from Σ1 to Σ2 is a triple (ρ, τ, σ) consisting of maps ρ : U1 → U2,
τ : X1 → X2, σ : Y1 → Y2 which have certain properties (such as smoothness, linear-
ity etc.) depending on the specific class S. Moreover the following three conditions
must be satisfied for all t, t0 ∈ T , u ∈ U1, u(·) ∈ U1, x ∈ X1.

u(·) ∈ U1 ⇒ ρ ◦ u(·) ∈ U2 and TΣ1

t0,x,u(·) ⊂ TΣ2

t0,τ(x),ρ◦u(·) (1)

τ(ϕ1(t; t0, x, u(·))) = ϕ2(t; t0, τ(x), ρ ◦ u(·)), t ∈ TΣ1

t0,x,u(·), u(·) ∈ U1 (2)

σ(η1(t, x, u)) = η2(t, τ(x), ρ(u)). (3)

Other definitions may allow for transformations of the time and for more general
mappings between U1 and U2. We do not go into further details at this general
level, but now give a precise definition for time–invariant linear finite dimensional
systems.
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Definition 2.4.1. (Linear system morphism). Consider two finite dimensional
linear systems Σi = (Ai, Bi, Ci, Di) with input space Ui, state space Xi, output
space Yi (i = 1, 2). A triple (R, T, S) of linear maps R : U1 → U2, T : X1 → X2,
S : Y1 → Y2 is called a linear system morphism from Σ1 to Σ2 (with the notation
(R, S, T ) ∈ Mor(Σ1, Σ2) or (R, S, T ) : Σ1 �→ Σ2) if

A2T = TA1, B2R = TB1, C2T = SC1, D2R = SD1, (4)

i.e. the following diagrams commute

U1
B1−−−→ X1

A1−−−→ X1
C1−−−→ Y1

R

⏐⏐/ ⏐⏐/T

⏐⏐/T

⏐⏐/S

U2 −−−→
B2

X2 −−−→
A2

X2 −−−→
C2

Y2

U1
D1−−−→ Y1

R

⏐⏐/ ⏐⏐/S

U2 −−−→
D2

Y2

If we represent the system (A, B, C, D) by the linear map

Σ : X × U → X × Y,

[
x
u

]
�→
[

x
y

]
=

[
A B
C D

] [
x
u

]
, (5)

then conditions (4) can be expressed equivalently by one compound equation[
T 0
0 S

]
Σ1 = Σ2

[
T 0
0 R

]
. (6)

In other words the matrices T ⊕S = diag (T, S) and T ⊕R = diag (T, R) intertwine
the linear maps Σ1 and Σ2. Intertwining operators play an important role in system
theory.

Remark 2.4.2. It is a simple matter to verify that the class of all time–invariant finite
dimensional linear systems together with the morphisms defined above form a category if
the composition of two morphisms is defined in the obvious way

(R2, T2, S2) ◦ (R1, T1, S1) = (R2R1, T2T1, S2S1).

�

A morphism (R, T, S) ∈ Mor(Σ1, Σ2) is called a (linear system) isomorphism if it
admits a left and right inverse in the sense of the above composition, and this is
the case if and only if R : U1 → U2, T : X1 → X2, S : Y1 → Y2 are vector space
isomorphisms.
In terms of matrix representations a linear system isomorphism describes changes
of bases in the input, state and output spaces. In fact, consider system equations of
the form (2.17)

ẋ(t) = Ax(t) + Bu(t), t ∈ R

y(t) = Cx(t) + Du(t),

where (A, B, C, D) ∈ Ln,m,p(K) := Kn×n × Kn×m × Kp×n × Kp×m, n, m, p ≥ 1 and
suppose we introduce new bases (v1, . . . , vm) in U = Km, (z1, . . . , zn) in X = Kn,
and (w1, . . . , wp) in Y = K

p. The coordinate vectors of u ∈ K
m, x ∈ K

n, and y ∈ K
p

with respect to the new bases are given by
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û = R−1u, x̂ = T−1x, ŷ = S−1y (7)
where

R= [v1, . . . , vm] ∈ Glm(K), T = [z1, . . . , zn] ∈ Gln(K), S = [w1, . . . , wp] ∈ Glp(K).

In terms of the new coordinate vectors the system equations read

˙̂x(t) = Âx̂(t) + B̂û(t), t ∈ R

ŷ(t) = Ĉx̂(t) + D̂û(t)
(8)

where
Â = TAT−1, B̂ = TBR−1, Ĉ = SCT−1, D̂ = SDR−1. (9)

In applications the external variables often represent physical quantities such as cur-
rent, velocity, temperature. Linear transformations of the input and output vectors
would destroy this physical interpretation and so usually one does not consider co-
ordinate transformations in the input and output spaces. If only linear coordinate
transformations x̂ = T−1x in the state space are allowed, the system equations are
transformed into

˙̂x(t) = TAT−1x̂(t) + TBu(t)
y(t) = CT−1x̂(t) + Du(t).

(10)

This leads us to the more restrictive class of similarity transformations

T · (A, B, C, D) = (TAT−1, TB, CT−1, D), T ∈ Gln(K). (11)

Definition 2.4.3. (Isomorphy, Similarity). Two finite dimensional linear sys-
tems Σi = (Ai, Bi, Ci, Di), i = 1, 2 are said to be

(i) isomorphic if there exists a linear system isomorphism (R, S, T ) : Σ1 �→ Σ2,

(ii) similar if U1 = U2, Y1 = Y2, and there exists a linear isomorphism T : X1 → X2

satisfying

A2 = TA1T
−1, B2 = TB1, C2 = C1T

−1, D1 = D2. (12)

The input–output operator of a linear system will in general change under arbitrary
linear system isomorphisms, but not under similarity transformations.

Proposition 2.4.4. The input–output operator and the transfer matrix of a linear
system (2.17) are invariant under similarity transformations.

Proof : It suffices to show the invariance of the transfer matrix. But this follows
immediately from (12) since

C2(sI − A2)
−1B2+D2 =C1T

−1(sI−TA1T
−1)−1TB1 + D1 =C1(sI−A1)

−1B1+D1.

�

We now introduce the concepts of subsystem and quotient system.

Definition 2.4.5. (Subsystem). Σ1 = (A1, B1, C1, D1) is called a subsystem of
Σ2 = (A2, B2, C2, D2) if there exist linear injections R : U1 → U2, T : X1 → X2,
S : Y1 → Y2 such that (4) holds. In this case (R, T, S) is called a system embedding.
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Suppose a system (A, B, C, D) is given. If U1 ⊂ U , X1 ⊂ X, Y1 ⊂ Y are linear
subspaces such that

BU1 ⊂ X1, AX1 ⊂ X1, CX1 ⊂ Y1, DU1 ⊂ Y1 (13)

then the system (A1, B1, C1, D1) obtained by restricting A, B, C, D to X1, U1, X1,
U1 respectively is a subsystem of (A, B, C, D). The embedding is given by (R, T, S)
where R : U1 → U , T : X1 → X, S : Y1 → Y are the canonical injections.
Now let R̂ : U → U/U1, T̂ : X → X/X1, Ŝ : Y → Y/Y1 be the natural projec-
tions. Then there exist linear maps Â, B̂, Ĉ, D̂ which make the following diagrams
commute, and the maps are uniquely determined by this property.

U
B−−−→ X

A−−−→ X
C−−−→ Y

R̃

⏐⏐/ ⏐⏐/T̃

⏐⏐/T̃

⏐⏐/S̃

U/U1
B̃−−−→ X/X1

Ã−−−→ X/X1
C̃−−−→ Y/Y1

U
D−−−→ Y

R̃

⏐⏐/ ⏐⏐/S̃

U/U1
D̃−−−→ Y/Y1

(14)

Definition 2.4.6. (Quotient system). Suppose (A, B, C, D) is a linear system
with input space U , state space X, output space Y and U1 ⊂ U , X1 ⊂ X, Y1 ⊂ Y are
linear subspaces such that (13) holds. If Σ1 denotes the corresponding subsystem
of Σ then the linear system Σ̂ = (Â, B̂, Ĉ, D̂) with input space Û = U/U1, state
space X̂ = X/X1 and output space Ŷ = Y/Y1 defined by (14) is called the quotient
system of Σ by Σ1 and is denoted by Σ/Σ1.

If
R̂ : U → Û = U/U1, T̂ : X → X̂ = X/X1, Ŝ : Y → Ŷ = Y/Y1

are the canonical projections then the quotient system Σ̂ = Σ/Σ1 is uniquely de-
termined by the property that (R̂, T̂ , Ŝ) is a linear system morphism from Σ to Σ̂.
This morphism is called the canonical system projection from Σ to Σ̂.
Now suppose that U2, X2, Y2 are algebraic complements of U1, X1, Y1 in U , X, Y
respectively, then A, B, C, D have the following representations with respect to the
decompositions U = U1 ⊕ U2, X = X1 ⊕ X2, Y = Y1 ⊕ Y2

A=

[
A11 A12

0 A22

]
, B=

[
B11 B12

0 B22

]
, C =

[
C11 C12

0 C22

]
, D=

[
D11 D12

0 D22

]
. (15)

It is straightforward to verify that the isomorphisms

U2
∼= U/U1, X2

∼= X/X1, Y2
∼= Y/Y1

induced by the restriction of R, T , S to U2, X2, Y2 respectively define a system
isomorphism between Σ2 = (A22, B22, C22, D22) and (Â, B̂, Ĉ, D̂).

Example 2.4.7. Consider the mass-spring-damper system Σ shown in Figure 2.4.1. The
masses m1, m2 slide on a horizontal surface without friction. The stiffness coefficients of
the springs are k1, k2 and the damping coefficient is c. The outputs are the displacements
y1(t), y2(t) of the two masses from some given equilibrium positions and the inputs u1(t),
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u1 y1 y2 u2

m1 m2

ck1 k2

Figure 2.4.1: Mass-spring-damper system

u2(t) are the displacements of the outer ends of the springs from their corresponding rest
positions. The equations of motion of this mechanical system are given by

m1ÿ1 = k1(u1 − y1) + c(ẏ2 − ẏ1)

m2ÿ2 = k2(u2 − y2) − c(ẏ2 − ẏ1).
(16)

If we define the state variables to be x1 = y1, x2 = ẏ1, x3 = y2, x4 = ẏ2 we obtain the

time–invariant linear system (A,B,C,D) where C =

[
1 0 0 0
0 0 1 0

]
, D = 0 and

A =

⎡⎢⎢⎣
0 1 0 0

−k1/m1 −c/m1 0 c/m1

0 0 0 1
0 c/m2 −k2/m2 −c/m2

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0 0

k1/m1 0
0 0
0 k2/m2

⎤⎥⎥⎦ .

Now suppose k1/m1 = k2/m2 and define

X1 = {x ∈ R
4; x1 = x3, x2 = x4}, U1 = {u ∈ R

2; u1 = u2}, Y1 = {y ∈ R
2; y1 = y2}

then it is easy to verify the conditions (13) are satisfied. This means that if the initial
state lies in X1 and the same control is applied to both spring ends then the distance
between the two masses remains constant (y1(t) = y2(t)), so there is no actual interaction
between the masses via the damper. The subsystem Σ1 = (A1, B1, C1, 0) obtained by
the restriction of A, C, and B to X1 and U1, respectively, describes simultaneously the
motions of two “decoupled” mass spring systems. To obtain a matrix representation of
A1, B1, C1 we choose the basis vectors z1 = [1, 0, 1, 0]�, z2 = [0, 1, 0, 1]�, z3 = [1, 0, 0, 0]� ,
z4 = [0, 1, 0, 0]� in X, v1 = [1, 1]�, v2 = [1, 0]� in U and w1 = [1, 1]�, w2 = [1, 0]� in Y .
With respect to these bases A, B, C have the following matrix representations (see (9))

A ∼

⎡⎢⎢⎣
0 1 0 0

−k1/m1 0 0 c/m2

0 0 0 1
0 0 −k1/m1 −(c/m1 + c/m2)

⎤⎥⎥⎦ , B ∼

⎡⎢⎢⎣
0 0

k1/m1 0
0 0
0 k1/m1

⎤⎥⎥⎦ ,

C ∼
[

1 0 0 0
0 0 1 0

]
. (17)

X1 is spanned by z1, z2, U1 by v1 and Y1 by w1. Hence

A1 =

[
0 1

−k1/m1 0

]
, B1 =

[
0

k1/m1

]
, C1 = [1 , 0].

Equivalently the subsystem can be described by the following second order differential
equation

ÿ1(t) + (k1/m1)y
1(t) = (k1/m1)u1(t).
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Since k1/m1 = k2/m2, the above equation is equivalent to

(m1 + m2)ÿ
1(t) + (k1 + k2)(y

1(t) − u1(t)) = 0

and hence describes the motion of the “aggregated” mass-spring system shown in Fig-
ure 2.4.2.

u1 y1 u1

m1 + m2

k1 k2

Figure 2.4.2: Aggregated mass-spring system

Now let us consider the quotient system Σ̂ := Σ/Σ1. We choose as bases for the quotient
spaces X̂, Û , Ŷ the vectors (equivalence classes) z3 + X1, z4 + X1 and v2 + U1, w2 + Y1

respectively. Then by (17) the matrix representation of the quotient system Σ̂ = Σ/Σ1 is
given by

Â =

[
0 1

−k1/m1 −(c/m1 + c/m2)

]
, B̂ =

[
0

k1/m1

]
, Ĉ = [1 , 0].

This yields a second order differential equation

m1
d2ŷ

dt2
+ c

m1 + m2

m2

dŷ

dt
+ k1ŷ = k1û. (18)

It can be interpreted as follows: Suppose that for given initial conditions y1(0) = ŷ(0),
ẏ1(0) = ˙̂y(0) and a control u1(·) = û(·), the initial values y2(0), ẏ2(0) for the second mass
and control u2(·) are chosen in such a way that the centre of mass remains at equilibrium.
Then m1y1(t) + m2y2(t) ≡ 0 and substituting for y2(t) in the first equation of (16) we
see that y1(·) satisfies (18). Hence (18) describes the equation of motion of the first mass
under the assumption that the centre of mass of Σ remains at rest. Σ̂ admits an analogous
interpretation with respect to the second mass. �

Note that if a subsystem Σ1 of Σ and the corresponding quotient system Σ̂ = Σ/Σ1

are known, it is not, in general possible to reconstruct the complete system Σ from
them. Whilst A11 and A22 can be reconstructed from Σ1 and Σ̂ respectively, this is
not the case for A12. Hence Σ is not, in general, the direct sum of Σ1 and Σ̂ in the
sense of the following definition.

Definition 2.4.8. (Direct sum). Let Σi = (Ai, Bi, Ci, Di) be systems with state
space Xi, input space Ui and output space Yi, i ∈ N . The direct sum is a system
(A, B, C, D) with state space X, input space U and output space Y given by

X =

N∏
i=1

Xi, U =

N∏
i=1

Ui, Y =

N∏
i=1

Yi,

A =

N⊕
i=1

Ai, B =

N⊕
i=1

Bi, C =

N⊕
i=1

Ci, D =

N⊕
i=1

Di . (19)
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2.4.2 Composite Systems

The direct sum is a trivial way of building a composite system from a collection
of systems. In fact it is just a collection of uncoupled systems. Hence in a direct
sum each subsystem can be studied independently of the other subsystems. This is
not the case if the subsystems Σi, i ∈ N are interconnected within the composite
system Σ. In many areas of application one encounters large scale systems which
are made up of complex arrays of many interconnected subsystems. The purpose of
this subsection is to provide a general framework for describing such systems where
Σi = (Ai, Bi, Ci, Di), i ∈ N . In order to do this we introduce various interconnection
schemes and also the general form of a composite time–invariant linear system.
The following four examples illustrate the most important ways that a system can
be interconnected with other systems or with itself (feedback). We denote by U ,
X, Y the input, state and output spaces of the composite system. When X is not
defined explicitly it is understood that X = X1 × X2.

Example 2.4.9. (Series connection). A series connection of Σ1 and Σ2 is obtained
when the input of Σ2 is connected to the output of Σ1. Thus it requires U2 = Y1. The
input and output of the composite system is u1 and y2 respectively and U = U1, Y = Y2.
The composite system Σ = (A,B,C,D) is given by

A =

[
A1 0

B2C1 A2

]
, B =

[
B1

0

]
, C = [0 , C2], D = D2D1. (20)

The transfer matrix of the series connection is simply the product of the individual transfer
matrices

G(s) = C(sI − A)−1B + D = G2(s)G1(s) (21)

where Gi(s), i = 1, 2 are the transfer function matrices of the subsystems connected in
series. Thus multiplication of transfer matrices corresponds to series connection of the
respective systems.

� �� �K21Σ1 Σ2ū
u1 y1 u2 y2

ȳ

Figure 2.4.3: Series connection

If a direct coupling of the two subsystems in series is not possible because Y1 �= U2

an adapter or coupling matrix K21 : Y1 → U2 can be used to connect y1 with u2, viz.
u2 = K21y

1, see Figure 2.4.3. The corresponding state space equation and transfer matrix
are obtained by replacing C1 by K21C1 in (20) and G1(s) by K21G1(s) in (21). �

Example 2.4.10. (Parallel connection). A parallel connection of Σ1, Σ2 is obtained
if both systems have the same input, and the output of the composite system is the sum
of the individual outputs (see the left hand figure in Figure 2.4.4).
In this case U = U1 = U2, Y = Y1 = Y2, u1 = u2 = ū and Σ is described by
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1
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Figure 2.4.4: Parallel connection and extended parallel connection

A =

[
A1 0
0 A2

]
, B =

[
B1

B2

]
, C = [C1 , C2], D = D1 + D2. (22)

The transfer matrix of Σ is given by G(s) = G1(s) + G2(s). Thus the addition of transfer
matrices corresponds to the parallel connection of the respective systems. If Σ1, Σ2 do not
have the same input and output spaces an extended parallel connection can be obtained
by setting

u1 = Kc
1ū, u2 = Kc

2ū, ȳ = Ko
1y1 + Ko

2y2

where Kc
i : U → Ui and Ko

i : Yi → Y , i = 1, 2, are called input and output coupling
matrices (see the right hand figure in Figure 2.4.4). The corresponding system equation
and transfer matrix are easily determined. �

The third basic way of coupling two systems is via feedback. This configuration is
of fundamental importance in control where a central problem is that of producing
a desired input-output behaviour of a given system by feedback.

Example 2.4.11. (Dynamic output feedback). The feedback interconnection of

Σ2

Σ1+

�

�

� � �ū
u1 y1

y2 u2

ȳ

Figure 2.4.5: Dynamic output feedback

two systems Σ1,Σ2 connects the output of Σ1 to the input of Σ2 and the output of Σ2 to
the input of Σ1 according to the formulas u2 = y1 and u1 = y2 + ū (see Figure 2.4.5). ū

is considered as the input of the feedback system Σ and ȳ = y1 as the output. Clearly,
this interconnection presupposes that Y1 = U2 and Y2 = U1 (otherwise coupling matrices
Kij , i, j = 1, 2, i �= j must be used). But in contrast with the previous interconnections
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this compatibility condition is not sufficient for the feedback system to be well-defined.
The couplings u2 = y1 and u1 = y2 + ū lead to the feedback equations

u1 = y2 + ū = C2x
2 + D2[C1x

1 + D1u
1] + ū

and similarly
u2 = y1 = C1x

1 + D1[C2x
2 + D2u

2 + ū].

These equations can be solved for u1 and u2 if and only if the matrices IU1 − D2D1 or,
equivalently, IU2 − D1D2 are invertible. This is the so-called well-posedness condition for
the feedback configuration. If it is satisfied the feedback system is well defined and denoted
by Σ = Σ1�Σ2. It has the input space U = U1, the output space Y = Y1, the state space
X = X1 × X2 and its system equations are given by the data

A =

[
A1 + B1Π21D2C1 B1Π21C2

B2Π12C1 A2 + B2Π12D1C2

]
, B =

[
B1Π21

B2Π12D1

]
,

C = [C1 + D1Π21D2C1 D1Π21C2], D = D1Π21 (23)

where Πij = (I − DiDj)
−1. The Laplace transform of the input and output signals are

related by the feedback equations,

ŷ1(s) = G1(s)û
1(s), û1(s) = G2(s)ŷ

1(s) + ˆ̄u

Assuming the well-posedness condition it is easily seen that (I −G2(s)G1(s)) is invertible
(as a rational matrix). Hence the transfer matrix of the feedback system Σ1�Σ2 is

G(s) = G1(s)(I − G2(s)G1(s))
−1. (24)

Many variants of the above feedback configuration are used in control theory. For example
it is sometimes necessary to distinguish between the to be controlled output variables of Σ1

(which are taken as the output of Σ) and the measured output variables of Σ1 which can
be used for feedback; or some of the input variables of Σ1 cannot be controlled and only
the remaining ones are available for feeding back the output of Σ2. These configurations
can be described by adding input and output coupling matrices to the above feedback
configuration. �

A given system can also be coupled to itself by constant feedback couplings. Again,
the possibilities of changing the system dynamics by constant linear feedback is a
fundamental question in linear control theory.

Example 2.4.12. (Static state and output feedback). Static state feedback connects

+

�

K �

Σ1
� ��̄u u y ȳ

+ +

�

F �

(A,B,I,0)� � C

D

�
�

�

� �ū

u

x ȳ

Figure 2.4.6: Static state and output feedback

the state of a system Σ = (A,B,C,D) with the input of the same system via an affine
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transformation u = Fx + ū (see Figure 2.4.6). In this case U = U , Y = Y , X = X and
the feedback system is described by

A = A + BF, B = B, C = C + DF, D = D. (25a)

In the special case when F = K C, D = 0 we obtain static output feedback where the
output of the system Σ is connected with the input of the same system via u = Ky + ū

(see Figure 2.4.6), so

A = A + BKC, B = B, C = C. (25b)

The respective transfer matrices of these feedback configurations are

G(s) = [C + DF ](sI − A − BF )−1B + D,

G(s) = C(sI − A − BKC)−1B = G(s)(I − KG(s))−1,
(26)

where G(s) is the transfer matrix of Σ. �

Let us now proceed to describe the general form of a composite system obtained
by connecting finitely many subsystems Σi = (Ai, Bi, Ci, Di) , i ∈ N via constant
coupling matrices. All of the above examples (for N = 2) are special cases of the
connection scheme shown in Figure 2.4.7.

K22
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Σ1
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+
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K12
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+ � ȳū
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Figure 2.4.7: General composite system of two subsystems

For arbitrary N ≥ 1 a general linear, time–invariant connection scheme for the
systems Σ1, Σ2,. . . , ΣN is given by the (N + 1)2 matrices

Kc
i : U → Ui, Kij : Yj → Ui, Ko

i : Yi → Y , Do : U → Y

(i, j ∈ N) where U =
∏N

i=1 Ui is the input space, Y =
∏N

i=1 Yi the output space and

X =
∏N

i=1 Xi is the state space of the composite system.
The compound matrix K = (Kij)i,j∈N is called the matrix of interconnections be-
tween the subsystems. If Kij �= 0 the output of Σj exercises an influence on the
input of Σi. The matrices Kii describe static feedback loops for the subsystems
Σi. Since, in general, not all subsystems are connected with every other subsystem,
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many of the matrices (Kij) i, j ∈ N will be zero matrices.
The matrices

Kc =

⎡⎢⎣ Kc
1

...
Kc

N

⎤⎥⎦ , Ko = [Ko
1 . . .Ko

N ]

are called matrices of input couplings and output couplings respectively. Ko contains
the matrix coefficients which specify those linear combinations of the subsystem’s
outputs which yield the output of the composite system. Do describes the direct
input-output coupling of Σ,

ȳ =

N∑
i=1

Ko
i y

i + Doū =

N∑
i=1

Ko
i Cix

i +

N∑
i=1

Ko
i Diu

i + Doū. (27)

The inputs ui of Σi are obtained by adding the terms Kijy
j from each of the sub-

systems plus the terms Kc
i ū from the external control ū,

ui =
N∑

j=1

Kijy
j + Kc

i ū =
N∑

j=1

KijCjx
j +

N∑
j=1

KijDju
j + Kc

i ū. (28)

In the general case when input-output couplings are present (28) is an implicit
formula for the ui’s i ∈ N in terms of x1, . . . , xN and ū. So not every connection
scheme is feasible and there will only exist unique solutions if the following well-
posedness condition is satisfied by K

det(I − K diag (D1, . . . , DN)) �= 0. (29)

Let (A, B, C, D) be the direct sum of the systems Σ1, . . . , ΣN as described by equa-
tion (19), then if (29) holds the unique solution of (28) can be expressed in the
form

u = (I − KD)−1(KCx + Kcū) (30)

where u ∈ U , x ∈ X are the vectors with components ui and xi. Substituting (30) in
the system equations of Σi and in (27) we see that the composite system is described
by

A = A + B(I − KD)−1KC , B = BKc

C = KoC + KoD(I − KD)−1KC , D = KoD(I − KD)−1Kc + Do.
(31)

If there are no direct input-output couplings in the subsystems, condition (29) is
trivially satisfied and (31) simplifies to

A =

⎡⎢⎢⎢⎣
A1 + B1K11C1 B1K12C2 . . . B1K1NCN

B2K21C1 A2 + B2K22C2 . . . B2K2NCN
...

...
BNKN1C1 . . . AN + BNKNNCN

⎤⎥⎥⎥⎦
B = BKc, C = KoC, D = KoDKc + Do.

(32)

The interconnection structure of a composite system Σ can be represented by a
directed graph with (N + 2) nodes denoted by U , Y and Σi (i ∈ N), directed edges
Σj → Σi, U → Σi, Σi → Y for those i, j ∈ N with Kij �= 0, Kc

i �= 0, Ko
i �= 0.



2.4 Transformations and Interconnections 165

�

�

�
�
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Figure 2.4.8: Directed graph

Example 2.4.13. If N = 4 and the interconnection structure is given by the matrices

K =

⎡⎢⎢⎣
0 0 0 K14

K21 0 K23 K24

0 0 0 K34

0 K42 0 0

⎤⎥⎥⎦ , Kc =

⎡⎢⎢⎣
Kc

1

Kc
2

Kc
3

0

⎤⎥⎥⎦ , Ko =

⎡⎢⎢⎣
0
0
0

Ko
4

⎤⎥⎥⎦
the representation as a directed graph is shown in Figure 2.4.8. �

A more detailed picture of the input and output couplings is obtained if the vertices
ūi

1, . . . , ū
i
m, ȳi

1, . . . , ȳ
i
p are introduced. An edge ūi

j → Σi or Σi → ȳi
k is drawn when-

ever the jth column of Kc
i or the kth row Ko

i is non-zero.
In particular any system Σ = (A, B, C, D) with input space U = Km, state space
X = K

n and output space Y = K
p can always be represented as an interconnection

of integrators (resp. unit delays in the discrete time case)

Σi : ẋi = ui, yi = xi (i = 1, . . . , n). (33)

Indeed if we define
Kc = B, K = A, Ko

c = C, Do = D (34)

it is easy to verify that the resultant composite system is identical with Σ. The
graph (with separate representation of each input and output channel) associated
with the interconnection scheme (34) is called the system graph of Σ.

Example 2.4.14. The matrices describing the overhead crane of Example 1.3.4 have
the following structure

A =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
0 a32 0 0
0 a42 0 0

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0
0
b3

b4

⎤⎥⎥⎦ , C =

[
1 0 0 0
0 1 0 0

]
, D =

[
0
0

]

where a32, a42, b3, b4 are determined by physical parameters. The corresponding system
graph is shown in Figure 2.4.9.

�

Note that the system graph will in general be altered by a similarity transformation.
Hence system graphs are only meaningful for the analysis of a system if the quantities
and subsystems represented by the vertices correspond to real physical parts of the
system, and if their interconnection is of importance in the overall analysis of the
system. When this is the case, only system isomorphisms which do not destroy the
structure of the graph can be allowed.
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Figure 2.4.9: System graph for the overhead crane

2.4.3 Exercises

1. Consider the RLC-circuit described in Ex. 2.9

(i) Derive state space models of this circuit with state variables

(a) x1 = current i through inductor, x2 = charge q of capacitor

(b) x1 = i, x2 = voltage v across inductor

(c) x1 = voltage across capacitor, x2 = i.

(ii) Show that the linear systems (A,B,C) obtained in (i) are all similar.

(iii) Let R = 3, L = 1, C = 0.5. Define a state vector x = [x1, x2]
� for which the

corresponding system matrix A is diagonal.

(iv) For which triples (R,L,C) are the resulting dynamical systems of (i) similar to the
one defined in (iii).

2. Let
A =

[
0 1

−1 −2

]
, B =

[
0
1

]
, C = [0 , 1].

Examine whether or not the triple (A,B,C) is similar or isomorphic to (Â, B̂, Ĉ) where

(i) Â =

[
1 −2
0 −1

]
, B̂ =

[
0
1

]
, Ĉ = [1 , 1].

(ii) Â =

[
−1 0

0 −1

]
, B̂ =

[
−1

1

]
, Ĉ = [−1 , 0].

(iii) Â =

[
−1 1

0 −1

]
, B̂ =

[
−1

1

]
, Ĉ = [−1 , 0].

(iv) Â =

[
0 1

−1 −2

]
, B̂ =

[
1
0

]
, Ĉ = [2 , 4].

3. Let (A,B,C) and (Â, B̂, Ĉ) be similar.

(i) Show by means of an example that A = Â, B = B̂ does not imply C = Ĉ.

(ii) Specify conditions for A, B under which A = Â, B = B̂ does imply C = Ĉ.

4. Show that the system Σ1 = (A1, B1, C1) where

A1 =

[
0 1
0 1

]
, B1 =

[
0 −2
0 −3

]
, C1 = [0 , 1]

is a subsystem of Σ = (A,B,C) where

A =

⎡⎣ 0 0 0
−1 2 4

1 −1 −3

⎤⎦ , B =

⎡⎣ 0 1
1 −2

−1 1

⎤⎦ , C =

[
2 −1 1
−1 1 0

]
.
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Determine the quotient system Σ/Σ1.

5. Let Σi = (Ai, Bi, Ci,Di) be two time-invariant linear systems. Prove

(i) if Σ1 is a subsystem of Σ2, then σ(A1) ⊂ σ(A2),

(ii) if Σ2 is a quotient system of Σ1, then σ(A2) ⊂ σ(A1).

6. Let (R,T, S) be a morphism from Σ to Σ̂. Specify conditions under which, given Σ,
the linear maps R, T , S uniquely determine the system Σ̂ = (Â, B̂, Ĉ, D̂).

7. Extend the set Mor (Σ, Σ̂) by allowing in addition state feedback transformations F :
X → Û . Find a counterpart of (6) for these feedback morphisms (R,T, S, F ) : Σ → Σ̂.
Define a composition rule (R,T, S, F )◦(R,T , S, F ) and determine necessary and sufficient
conditions for (R,T, S, F ) ∈ Morfeedback(Σ, Σ̂) to be a feedback isomorphism.

8. Draw the graphs of the linear systems in

(i) Example 2.1.27,

(ii) Exercises 1.1, 1.2, 1.3, 1.4, 1.9(i) and 2.4

2.4.4 Notes and References

More details concerning categories of time–invariant linear systems can be found in Prätzel-

Wolters (1983) [419]. System morphisms in the context of abstract realization theory are

studied in Sontag (1990) [472].

The field of large scale systems and decentralized control has generated considerable in-

terest amongst control theorists, see the special issue of IEEE Transactions Automatic

Control (1978) [24], Siljak (1991)[465], the collection of papers edited by Leondes [339],

[338] and the informative Control Handbook edited by Levine (1996) [342].



168 2. Introduction to State Space Theory

2.5 Sampling and Approximation: Relations

Between Continuous and Discrete Time

Systems

The practical implementation of a particular control scheme on a physical plant often
involves both continuous and discrete time signals. Such systems are called hybrid-
time or sampled-data systems and can arise, for example, when a digital computer
is used to control a continuous time process. In these systems it is necessary to
have interfaces which convert (continuous time) analog signals into (discrete time)
digital signals (A/D-converter, sampler) and digital signals into analog ones (D/A-
converter, hold).

SAMPLER HOLD

DIGITAL
COMPUTER

CONTINUOUS
SYSTEM

SAMPLER

+r y� � � � �

�

� �

u∗ u

−

A/D CONVERTER D/A CONVERTER PLANT

CONTROLLER A/D CONVERTER

Figure 2.5.1: Digital control of a continuous time plant

The use of a digital computer as a controller implies two types of discretizations a)
discretization of time and b) discretization of the system parameters and variables
(quantization). Quantization effects arise because real numbers have to be stored
and processed using a finite number of digits. The problem of how the various round
off errors interact and propagate in a given feedback algorithm needs to be investi-
gated by methods which have been developed in the field of Numerical Analysis and
are outside the scope of this book (see Notes and References).
In this section we first examine the relationship between discrete and continuous
time signals and prove a sampling theorem which specifies conditions under which a
continuous time signal can be completely restored from its sampled values. Then we
go on to examine the relationship between discrete and continuous time systems, ne-
glecting quantization errors. We begin by describing the sampling of a differentiable
system, i.e. the conversion of a continuous time system into a discrete time one by
connecting it in series with a hold element and a sampler. We then discuss in some
detail the use of numerical integration methods for the approximation of continuous
time systems by discrete time systems. This is obviously of great importance for
the digital simulation of continuous time processes and is relevant in many areas of
control and communication where analog devices are replaced by “equivalent” dig-
ital devices. We use Euler’s method as the simplest numerical integration scheme
to explain some basic concepts. Some higher order methods (single and multistep)
are also briefly described and their convergence properties are illustrated by an ex-
ample with strong oscillations in the control. Whereas Numerical Analysis usually
considers the approximation of single trajectories, for system theoretic purposes it is
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more important to consider the approximation of differentiable systems by discrete
time systems with controls and initial states which are not fixed. At the end of the
section we point out some specific difficulties related to this problem.

2.5.1 A/D- and D/A-Conversion of Signals

A sampler associates with each continuous time signal f(·) on [0,∞) a sequence
f ∗ = (f(tk))k∈N of values of f at given sampling instants tk ∈ [0,∞), k ∈ N. We
will find it useful to represent this discrete time signal by a series of impulses

f ∗(t) =
∑
k∈N

f(tk)δ(t − tk) =
∑
k∈N

f(tk)δtk(t) (1)

where δ(t−tk) = δtk(t) is the Dirac impulse at tk. Graphically (1) is represented by a
sequence of vertical arrows of lengths f(tk) symbolizing the impulse f(tk)δ(t−tk) (see
Figure 2.5.3). Usually equidistant sequences tk = kτ , k ∈ N are chosen. In this case

�

�

�

�

�

�

τ 2τ 3τ 4τ 5τ

τ 2τ 3τ 4τ 5τ

τ 2τ 3τ 4τ 5τ

c(t)

f(t)

m(t)

t

t

t

PULSE CARRIER

MESSAGE

MODULATED PULSE

Figure 2.5.2: Pulse amplitude modulation

τ > 0 is called the sampling period , 2π/τ the sample rate . In communication theory
frequent use is made of pulse amplitude modulation (see Notes and References). A
continuous time signal (“message”)f(·) modulates the amplitude of a unit pulse
train c(·) of period τ (“the carrier”) to give a modulated pulse m(t) = f(t)c(t) (see
Figure 2.5.2). The representation (1) corresponds to an impulse modulation model
for the sampler where the pulses are idealized to have “infinitely small” width and
the carrier signal is a train of impulses

∑
k∈N

δkτ (·) which are modulated by f to
yield the sampled signal f ∗(·) =

∑
k∈N

f(kτ)δkτ (·).
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τ
� �

f f ∗

f(t) f ∗(t)

t t

Figure 2.5.3: Ideal sampler with sampling period τ

A hold is a device which transforms a series of impulses into a continuous time signal
f(·) by a given extrapolation formula. If a kth-order polynomial is used for the
extrapolation it is called a kth–order hold. The simplest and most widely used is the
zero-order hold H0

τ defined by f(t) = f(kτ) if kτ ≤ t < (k + 1)τ (see Figure 2.5.4).
A first order hold H1

τ (see Figure 2.5.5) associates with f ∗ the piecewise linear signal

f(t) = f(kτ) + [f(kτ) − f((k − 1)τ)](t − kτ)/τ, kτ ≤ t < (k + 1)τ.

The continuous time signals produced by the zero and first order holds are both

�

�

�

�

H0
τ

� �
f ∗ f

�

�

�

�

�

f ∗(t) f(t)

τ 2τ 3τ 4τ τ 2τ 3τ 4τ 5τ

Figure 2.5.4: Zero order hold

�

�

�

�

H1
τ

� �
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f ∗(t) f(t)

τ 2τ 3τ 4τ τ 2τ 3τ 4τ 5τ

Figure 2.5.5: First order hold

discontinuous. A continuous signal may be produced by the following formula which
yields a piecewise linear interpolation of the discrete time signal, i.e. a function f(t)
whose values at the sampling times kτ coincide with those of the discrete time signal,

f(t) = f(kτ) + [f((k + 1)τ) − f(kτ)](t − kτ)/τ, kτ ≤ t < (k + 1)τ. (2)

Unfortunately, this formula is not implementable since it requires the knowledge of
f((k + 1)τ) at time t < (k + 1)τ : the operator f ∗ �→ f defined by (2) is not causal.
To obtain causality it is necessary to introduce a delay τ , i.e.

f(t) = f((k − 1)τ) + [f(kτ) − f((k − 1)τ)](t − kτ)/τ, kτ ≤ t < (k + 1)τ. (3)
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This is a delayed first order interpolator since its value at the sampling time kτ
coincides with the value of the discrete time signal at the previous sampling time
(k − 1)τ .

Remark 2.5.1. Representing discrete time signals (f(kτ))k∈N as series of impulses f∗ =∑
k∈N

f(kτ)δkτ allows us to describe hold elements via convolutions. Let h : R → R be
piecewise continuous and continuous on R\Nτ . and zero on (−∞, 0). Then the convolution
f∗ ∗ h is almost everywhere defined and given by

(f∗ ∗ h)(t) =
∑
k∈N

f(kτ)(δkτ ∗ h)(t) =

n∑
k=0

f(kτ)h(t − kτ), nτ < t < (n + 1)τ.

It is easily verified (Ex. 1) that the zero order hold is described by the convolution kernel
h = 1[0,τ) and the first order hold is described by the piecewise linear convolution kernel

h : t �→ (1 + t/τ)1[0,τ)(t) + (1 − t/τ)1[τ,2τ)(t).

�

An A/D-converter is a system which accepts continuous time signals (for example,
voltages) and produces a sequence of binary numbers which represent the signal
values at the sampling times. In practice it contains a sampler-and-hold element
and the converter proper. The function of the sampler-and-hold is to sample the
signal and hold its value long enough to allow the converter to code it by binary
numbers and store it in a register. If we neglect the difference between the sampled
signal value and its binary code the A/D-converter may be modelled as a sampler.
Similarly the D/A-converter may be modelled as a hold.

2.5.2 The Sampling Theorem

When a continuous time signal is sampled there will in general be a loss of informa-
tion and one would expect that the amount lost depends in some way on the rate of
sampling. An analysis of this problem is obviously important in communication sys-
tems where continuous time signals are encoded, processed, transmitted and stored
in a digital fashion. It is also important for the analysis and design of automatic
control systems where a continuous time plant is regulated by digital controls. It
is not a priori clear that a theoretically well behaved continuous time control law
will actually perform well when implemented (digitally) on a computer. The same
applies to the converse design methodology where the continuous time system is first
discretized and then discrete time controls are designed for the discrete model. In
both cases essential information may be lost either by sampling the output (sampled
observations) or by discretizing the system.
In the following we determine conditions under which a continuous time signal
v(·) : R → C can be completely reconstructed from its sampled values v(kτ), k ∈ Z.
Mathematically this is an interpolation problem.
A sampler with sampling period τ > 0 cannot distinguish between a signal v : t �→
v(t) and a signal w : t �→ v(t)+ sin(2πt/τ). This indicates that it might be useful to
represent the signal as a superposition of harmonic oscillations. In order to explain
how this can be done we will need to use some results on Fourier series and Fourier
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transforms (see Sections A.3 and A.4).
It is well known that, for every l > 0, the functions ψk : θ �→ eıkπθ/l, k ∈ Z form an
orthonormal basis of the Hilbert space L2(−l, l; C) provided with the inner product

〈u(·), w(·)〉 =
1

2l

∫ l

−l

u(θ) w(θ)dθ, u(·), w(·) ∈ L2(−l, l; C). (4)

In other chapters of this book the Hilbert space L2(−l, l; C) is provided with an
inner product without the scalar 1/2l. We have chosen not to do this here since the
use of the inner product in (4) simplifies some of the formulas.
Every function u(·) ∈ L2(−l, l; C), l > 0 is the sum of its Fourier series in L2(−l, l; C)
(see Example A.4.6 and Theorem A.4.7)

u(·) =
∑
k∈Z

ckψk(·); ψk(θ)= eıkπθ/l, θ∈ [−l, l]; ck =
1

2l

∫ l

−l

u(θ)e−ıkπθ/ldθ, k ∈ Z (5)

where the two-sided sequence (ck)k∈Z of Fourier coefficients ck = 〈u(·), eıkπ(·)/l〉 be-
longs to �2(Z; C). Note that the sequence of harmonic oscillations ckψk(·), though
summable in L2(−l, l; C), is not necessarily pointwise summable for all θ ∈ [−l, l].
It follows from (5) that the restriction of every signal v(·) ∈ L2(R; C) to any finite
interval [−l, l], l > 0 is almost everywhere equal, on this interval, to the sum of
its Fourier series in L2(−l, l; C). But it is not possible, in general, to represent the
signal v(·) on the whole real axis as a superposition of a countable set of harmonic
oscillations t �→ eıkπt/l. However, under an additional condition v(·) ∈ L1(R; C) can
be represented as an integral over all harmonic oscillations eıωt, ω ∈ R, with the
Fourier transform ṽ(·) as a density function. More precisely the Fourier transform
ṽ(·) : R → C is defined by

ṽ(ω) = (Fv)(ω) =

∫ ∞

−∞
v(t)e−ıωtdt, ω ∈ R. (6)

Although ṽ(·) is continuous it may not be integrable on R. But when this is the
case then

v(t) =
1

2π

∫ ∞

−∞
ṽ(ω)eıωtdω , a. e. t ∈ R, (7)

see Theorem A.3.29. If v(·) ∈ L1(R; C) is also continuous then equality holds in (7)
for all t ∈ R.
In the sampling theorem we will be concerned with signals v(·) of finite energy,
i.e. v(·) ∈ L2(R; C). Since the Lebesgue measure of R is infinite, L2(R; C) is not
contained in L1(R; C) and so the definition (6) of the Fourier transform is not directly
applicable. However by Plancherel’s Theorem A.3.33 for any given v(·) ∈ L2(R; C)
the sequence of functions

ṽN(ω) =

∫ N

−N

v(t)e−ıωtdt, ω ∈ R, N ∈ N

converges in L2(R; C). Its limit is again denoted by Fv or ṽ and is called the
Fourier-Plancherel transform of v. Let

vN (t) =
1

2π

∫ N

−N

ṽ(ω)eıωtdω, t ∈ R, N ∈ N
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then by the inversion result in Plancherel’s Theorem A.3.33 vN(·) converges to v(·)
in L2(R; C).
v(·) ∈ L2(R; C) is said to be of limited bandwidth if there exists ω0 < ∞ such that

ṽ(ω) = 0 for all ω ∈ R, |ω| > ω0 . (8)

The smallest ω0 ≥ 0 with this property is called the bandwidth of v(·) and is denoted
by ωv. The following theorem shows that it is possible to reconstruct the signal v(·)
from its sampled values v(kτ), k ∈ Z if v(·) is of limited bandwidth and the sampling
frequency 2π/τ is at least twice the bandwidth ωv of the signal. This reconstruction
will be carried out via a series of sinc functions where the function sinc : C → C is
defined by

sinc : z �→
{

z−1 sin z , z �= 0
1 , z = 0

. (9)

sinc(·) is an entire analytic function on C with the globally convergent power series
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Figure 2.5.6: The sinc function

expansion

sinc(z) =

∞∑
k=0

(−1)kz2k/(2k + 1)! . (10)

Moreover we note without proof that (see [479] and Ex. 3)∑
k∈Z

| sinc [t − kπ] |2 = 1, t ∈ R. (11)

Theorem 2.5.2. (Sampling Theorem). Suppose v(·) ∈ L2(R; C) is a continuous
function of limited bandwidth ωv < ∞ and τ is chosen such that

0 < τ < π/ωv. (12)

Then the sequence of functions (v(kτ) sinc [(π/τ)(·) − kπ])k∈Z
is absolutely summable

in L2(R; C) with sum v(·). Moreover, this sequence is pointwise absolutely summable,
uniformly in t ∈ R, and

v(t) =
∑
k∈Z

v(kτ) sinc [(π/τ)t − kπ], t ∈ R. (13)

Proof : Since v is of limited bandwidth we have ṽ(·) ∈ L1(R; C). Using the conti-
nuity of v(·) we obtain from (7) and (12)
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v(t) =
1

2π

∫ ∞

−∞
ṽ(ω)eıωtdω =

1

2π

∫ π/τ

−π/τ

ṽ(ω)eıωtdω, t ∈ R. (14)

In particular

v(kτ) =
1

2π

∫ π/τ

−π/τ

ṽ(ω)eıωkτdω, k ∈ Z. (15)

The restriction u(·) = ṽ(·)|[−π/τ, π/τ ] of ṽ(·) to the interval [−π/τ, π/τ ] is square in-
tegrable. Hence, on this interval, it is the sum of its Fourier series in L2(−π/τ, π/τ ; C)
(see (5) with l = π/τ

u(·)=
∑
k∈Z

ckψk(·), ψk(θ) = eıkτθ, θ ∈ [−π/τ, π/τ ], ck =
τ

2π

∫ π/τ

−π/τ

ṽ(θ)e−ıkτθdθ (16)

where (ck)k∈Z ∈ �2(Z; C). It follows from (15) that ck = τv(−kτ) for k ∈ Z and
so
∑

k∈Z
|v(kτ)|2 < ∞. Let ψe

k be the trivial extension of ψk to R, i.e. ψe
k(ω) =

eıkτω1[−π/τ,π/τ ](ω). The two-sided sequence (ψe
k(·))k∈Z forms an orthogonal family

in the Hilbert space L2(R; C) with ‖ψe
k(·)‖2

L2(R;C) = 2π/τ . Hence (see Proposi-

tion A.4.3) (ckψ
e
k(·))k∈Z = (τv(−kτ)ψe

k(·))k∈Z is absolutely summable in L2(R; C)
and since ṽ(·) vanishes outside the interval [−π/τ, π/τ ], we obtain from (16) that

ṽ(·) =
∑
k∈Z

τv(−kτ)ψe
k(·) =

∑
k∈Z

τv(kτ)e−ıkτ(·) 1[−π/τ,π/τ ](·) (17)

in L2(R; C). Applying the inverse Fourier-Plancherel transform to the function
1[−π/τ,π/τ ](·) we get, see (45)

F−1(1[−π/τ,π/τ ](·))(t) = (1/τ) sinc ((π/τ) t), t ∈ R.

and by the time shifting property of the Fourier-Plancherel transform we have

F−1(τe−ıkτ(·)1[−π/τ,π/τ ](·))(t) = sinc [(π/τ)t − kπ], t ∈ R, k ∈ Z. (18)

(see Proposition A.3.35). Since the inverse Fourier-Plancherel transform is a bounded
linear operator on L2(R; C) it follows from (14), (17) and (18) that

v(·) =
∑
k∈Z

v(kτ) sinc [(π/τ)(·) − kπ] (19)

where the sequence (v(kτ) sinc [(π/τ)(·) − kπ])k∈Z = (v(kτ)F−1(τψe
k(−(·))))k∈Z is

absolutely summable in L2(R; C) since we have shown above that the sequence
(τv(kτ)ψe

k(−(·)))k∈Z is absolutely summable in L2(R; C). This proves the first state-
ment of the theorem.
Now

∑
k∈Z

|v(kτ)|2 < ∞ and it follows easily from (9) that the function t �→∑
k∈Z

|sinc [(π/τ)t−kπ]|2 is bounded on R, see Ex. 3. Hence by the Cauchy-Schwarz
inequality in �2(Z; C) (see (A.3.3)) the sequences (v(kτ) sinc [(π/τ)t − kπ])k∈Z

, t ∈ R

are absolutely summable, uniformly in t ∈ R. As a consequence the sum of the
series in (13) is continuous in t ∈ R and equals v(t) almost everywhere (see Proposi-
tion A.3.11). Since v(·) is continuous by assumption, we finally obtain the equality
in (13) for all t ∈ R. �
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The equation (13) is an explicit interpolation formula for the values of the time
signal in between the sampling instants. Note, however that the sampled values
v(kτ) of the past kτ < t as well as the future kτ > t are needed in order to compute
the value of v(·) at time t. Hence the interpolation (13) cannot be implemented as
a causal system with the sampled signal as input and the reconstructed signal as
output.

Remark 2.5.3. (i) If the signal v(t) is real then each term in the series on the RHS of
(13) is also real.

(ii) If t ∈ R is replaced by z ∈ C in (14) then v(·) can be extended to a continuous function
vC(·) : C → C by

vC(z) =
1

2π

∫ π/τ

−π/τ
ṽ(ω)eıωzdω, z ∈ C.

vC(·) is analytic on C as can be shown by applying e.g. the theorems of Morera and Fubini.
So we see that there would be no restriction in assuming that v(·) = vC(·) |R is real analytic
in the statement of the sampling theorem. Now the extension vC(·) satisfies the following
exponential estimate

|vC(z)| ≤ eπ|z|/τ 1

2π

∫ π/τ

−π/τ
|ṽ(ω)|dω = Ceπ|z|/τ , z ∈ C. (20)

By a theorem of Paley-Wiener the fact that vC(·) is analytic on C and satisfies the inequal-
ity |vC(z)| ≤ Ceπ|z|/τ , z ∈ C for some constant C is actually equivalent to v(·) ∈ L2(R, C)
being of limited bandwidth [−π/τ, π/τ ], see Notes and References.

(iii) Let l > 0 and define the Paley-Wiener space

PW (l) = {v(·) ∈ L2(R; C) ; ṽ(ω) = 0 for all ω ∈ R, |ω| > l}.
Then PW (l) is a closed subspace of L2(R; C). In the above proof (see (18)) we have
seen that for l = π/τ the 2-sided sequence of sinc functions (sinc [l (·) − kπ])k∈Z form an
orthogonal family in L2(R, C). In fact it is a real orthogonal basis for the space PW (l)
and the formula (19) is just the expansion of v with respect to this basis. �

2.5.3 Sampling Continuous Time Systems

Consider a series connection of a zero-hold, a continuous time system Σ of the form
(2.17) and a sampler. We write (uτ (k))k∈N for the input sequence in order to indicate
that the input value uτ (k) is fed into the hold at time kτ . The corresponding sampled
states are given by

xτ (k) = eAkτx0 +

∫ kτ

0

eA(kτ−s)Bu(s)ds.

Now u(t) = uτ (k), t ∈ [kτ, (k + 1)τ), so the evolution of the sampled states is
described by the difference equation

xτ (k + 1) = eAτxτ (k) +

(∫ τ

0

eAsBds

)
uτ(k).

The discrete time system Σ(τ) = (eAτ ,
∫ τ

0
eAsBds, C, D) is called the sampled system

obtained from Σ by sampling at times kτ , k ∈ N. Note that the system matrix eAτ

of the sampled system is always nonsingular. This is a distinctive feature of discrete
time systems obtained from sampling continuous time systems of the form (2.17).
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Remark 2.5.4. If (i) only sampled times kτ , k ∈ N are considered, (ii) only step inputs
are used as controls, (iii) quantization errors are neglected, then the sampled system exactly
reproduces the state and output values of the corresponding continuous time system at
the times t = kτ , k ∈ N. �

Example 2.5.5. The linearized equations of motion of the inverted pendulum as de-
scribed in Example 1.3.4 are

ẋ(t) =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
0 a32 0 0
0 a42 0 0

⎤⎥⎥⎦x(t) +

⎡⎢⎢⎣
0
0
b3

b4

⎤⎥⎥⎦u(t). (21)

If the crane is controlled by a digital computer so that the force on the crane only changes
at discrete instants kτ , k ∈ N, τ > 0, then the sampled state trajectories (xτ (k))k∈N are
described by

xτ (k + 1) = Aτxτ (k) + Bτu
τ (k)

where

Aτ = eAτ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 a32 a−1
42 (cosh(

√
a42τ) − 1) τ a32 a

−3/2
42 (sinh(

√
a42τ) −√

a42τ)

0 cosh(
√

a42τ) 0 a
−1/2
42 sinh(

√
a42τ)

0 a32a
−1/2
42 sinh(

√
a42τ) 1 a32 a−1

42 (cosh(
√

a42τ) − 1)

0
√

a42 sinh(
√

a42τ) 0 cosh(
√

a42τ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bτ =

∫ τ

0
eAsBds =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b4 a32 a−2
42 (cosh(

√
a42τ) − 1) + τ2(b3 − b4a32 a−1

42 )/2

b4a42−1(cosh(
√

a42τ) − 1)

b4a32 a
−3/2
42 sinh(

√
a42τ) + τ(b3 − b4a32 a−1

42 )

b4 a
−1/2
42 sinh(

√
a42τ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

In general the sampled system will not yield information about the state values
of the continuous time system between the sampling times. The dynamics of the
continuous time system, particularly the location of the eigenvalues of A, and the
frequency spectrum of the control and disturbance signals will determine which
sampling rates are necessary to obtain sufficient information about the trajectories
of the continuous plant from the sampled system. For example, if the feedback
system shown in Figure 2.5.1 is required to track signals r(t) having spectral content
up to a frequency ω0, then the sampling theorem enables us to specify an absolute
lower bound on the sampling frequency 2πτ−1 ≥ 2ω0. However in practice the
sampling times have to be considerably higher (5-20 times this theoretical lower
bound) depending upon dynamic characteristics of the closed loop system, such as
its bandwidth, and additional performance requirements, e.g. reducing the delays
between reference input and system response, see Notes and References.
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2.5.4 Approximation of Continuous Systems by Discrete

Systems

Control and communication systems are increasingly making use of digital rather
than analog devices. Very often a feedback controller for a continuous plant is de-
signed in continuous time and then a discrete time “equivalent” is implemented on
the computer. In communication engineering the development of integrated circuit
technology has generated a trend to replace analog by digital filters. A filter is a de-
vice which passes “desirable” frequency components of an input function (the useful
signal) and rejects all others (noise). There are well established techniques for the
design of analog filters, usually time invariant linear circuits, which meet prescribed
performance specifications. Thus a common method in digital filter design is to first
design a good analog filter and then approximate it by a digital filter. There are
two aspects to the approximation problem:

(i) one must find a good discrete-time approximation Σ(τ) of the continuous time
system at the sampling instants and implement the discrete time system by a
digital device,

(ii) the discrete time system Σ(τ) must be converted into a continuous time system
Στ by extrapolating the output values of Σ(τ) between the sampling instants.

This latter conversion is usually carried out with a sampler and hold as illustrated in
Figure 2.5.7. Note that if Σ(τ) is a time-invariant linear system the resulting system

Στ Hτ
� � � �

τ
y(t)

Στ

u(t)
uτ (k) yτ (k)

Figure 2.5.7: Conversion of a discrete time system into a continuous time system

Στ is linear but not time-invariant since Στ will only be invariant with respect to
time shifts which are multiples of τ . If the sample period τ > 0 cannot be made
small, due to measurement costs or technical reasons, the choice of the extrapolating
hold Hτ may be crucial for the performance of the continuous time system Στ as an
approximation of the original system Σ.
In the following we will deal mainly with problem (i) and present various approxima-
tion schemes derived from numerical integration methods. However, we start with
the ideal theoretical solution of the approximation problem for the system Σ(τ).
Throughout this subsection ‖·‖ is an arbitrary norm on Rn and matrices are normed
by the corresponding operator norm. We do not distinguish between these norms
unless their use is unclear.

Sample and hold method

If Σ is given by the matrices (A, B, C, D), we have shown in the previous subsection,
that under the assumption of Remark 2.5.4 approximation errors at the sampling
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instants can be avoided if we choose the sampled system

Σ(τ) = (eAτ ,

∫ τ

0

eAsBds, C, D)

as the discrete time approximation of Σ. The resulting continuous time system Στ

(Figure 2.5.7) is called the hold equivalent approximation of Σ. The approximation
error x(t)−x̄τ (t) is zero for t ∈ τN and is reduced to the extrapolation error between
the sampling instants. The extrapolation error depends on the sampling period and
the chosen hold element.

Example 2.5.6. Let Σ be the scalar system

ẋ(t) = ax(t) + bu(t), a > 0

y(t) = x(t).
(22)

Then Σ(τ) has the form

xτ (k + 1) = eaτxτ (k) + b a−1(eaτ − 1)uτ (k)

yτ (k) = xτ (k).

Since Σ(τ) reproduces exactly the state trajectory of the continuous time system Σ at the
instants kτ , the approximation error of the hold equivalent system only depends on the
hold element in Figure 2.5.7. For the zero hold we have

xτ (t) = xτ (k) for t ∈ [kτ, (k + 1)τ) = Ik(τ)

and the corresponding approximation error is

|x(t) − xτ (t)| = |(eat − 1)x(kτ) +

∫ t

kτ
ea(t−s)buτ (k)ds |, t ∈ Ik(τ)

≤ |eaτ − 1||x(kτ)| + |b a−1(eaτ − 1)||uτ (k)|.

�

It should be noted that the sampled system Σ(τ) requires the computation of eAτ

and
∫ τ

0
eAsBds and so can only be implemented approximately on the computer.

This leads us to consider more direct approximating procedures.

Euler’s method

Euler’s method is the simplest integration method. Although it is numerically in-
efficient (see Table 2.5.12) we feel it is worthwhile discussing in some detail since
it illustrates the concepts and problems which are typical for all finite difference
methods. An important advantage of these methods is that they are applicable to
nonlinear as well as linear systems. Since the output map of the approximating
discrete time system is usually chosen to be the same as that of the continuous
time system we disregard the output map in the following analysis. Consider a
differentiable system Σ (as in Definition 2.1.12) with equation of motion

ẋ(t) = f(t, x(t), u(t)), t ∈ T. (23)



2.5 Sampling and Approximation 179

We assume that U = Rm, X = Rn, T = [a, b] ⊂ R is compact, f : T × X × U → X
is continuous and satisfies for a given control u(·) ∈ U and all t ∈ T a Lipschitz
condition

‖f(t, x, u(t)) − f(t, x̄, u(t))‖ ≤ L‖x − x̄‖, x, x̄ ∈ R
n (24)

where L may depend upon the control u(·).
For a given step-size τ > 0 and initial time t0 ∈ T we let tk = t0 + kτ and write Nτ

for the largest natural number N ≤ (b − t0)/τ . The approximate value of x(tk) will
be denoted by xτ (k) and the control value at time kτ by uτ (k).
Euler’s method associates with the differential equation (23) (and initial time t0 ∈ T )
the difference equation

xτ (k + 1) = xτ (k) + τf(tk, x
τ (k), uτ(k)), (25)

with the domain Tτ = {k ∈ N; 0 ≤ k ≤ Nτ}. Equation (25) is obtained if the
derivative in (23) is replaced by the difference quotient

[x(t + τ) − x(t)]/τ at t = tk .

Alternatively Euler’s method can be interpreted in terms of numerical integration.
In fact, integration of (23) over [tk, tk+1] yields

x(tk+1) = x(tk) +

∫ tk+1

tk

f(t, x(t), u(t))dt. (26)

Euler’s method is obtained by approximating the above integral according to the
“forward rectangular rule”∫ tk+1

tk

f(t, x(t), u(t))dt ≈ τf(tk, x(tk), u(tk)).

Example 2.5.7. For linear time invariant system (2.17), the discretized version (25) has
the special form

xτ (k + 1) = (I + τA)xτ (k) + τBuτ (k), k ∈ N . (27)

Comparing this with the sampled system Σ(τ) we see that the matrix exponential eAτ is
approximated by I + Aτ while

∫ τ
0 eAtBdt is approximated by τB.

Now let u(t) ≡ 0, t0 = 0, x(0) = xτ (0) = x0 and τN = t/N for a fixed t > 0, N ∈ N. With
respect to this step size the state x(t) = eAtx0 of the continuous time system corresponds
to the state xτN (N) of the discrete time system (27). The approximation error is

‖x(t) − xτN (N)‖ = ‖eAtx0 − (I + tA/N)Nx0‖.

As in the scalar case it is easy to show

‖eAt − (I + tA/N)N‖ → 0 as N → ∞.

Hence
lim

N→∞
‖x(t) − xτN (N)‖ = 0.

So for any given initial state the corresponding free motion of (27) approximates (point-
wise) the trajectory of the continuous time system at times kτ as τ → 0. �
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The following theorem shows that the convergence result of the preceding example
is true for arbitrary differential systems (23) if suitable smoothness assumptions are
made.

Theorem 2.5.8. Assume that x(·) is a twice continuously differentiable trajectory of
(23) corresponding to some control function u(·) with ‖ẍ(t)‖ ≤ γ for t ∈ [t0, b). Let
xτ (·) be the trajectory of (25) corresponding to the control function uτ (·) : k �→ u(tk)
and initial state xτ (0) = x(t0) + e0 where e0 is an initial error. If f satisfies (24)
then

‖x(tk) − xτ (k)‖ ≤ eLkτ‖e0‖ + τγ(eLkτ − 1)/(2L), 0 ≤ k ≤ Nτ . (28)

In particular if ‖x(t0) − xτ (0)‖ ≤ c1τ for some constant c1, then

max
k≤Nτ

‖x(tk) − xτ (k)‖ ≤ cτ (29)

for some constant c ≥ 0.

Proof : Since x(·) is twice continuously differentiable, we have

x(tk+1) = x(tk) + τ ẋ(tk) + R(tk). (30)

where
‖R(tk)‖ ≤ (τ 2/2) max

tk≤t≤tk+1

‖ẍ(t)‖ ≤ τ 2γ/2. (31)

Let ek = x(tk) − xτ (k), k ≤ Nτ , then from (30)

x(tk+1) = x(tk) + τf(tk, x(tk), u(tk)) + R(tk)

xτ (k + 1) = xτ (k) + τf(tk, x
τ (k), uτ(k)), uτ (k) = u(tk).

So
ek+1 = ek + τ [f(tk, x(tk), u(tk)) − f(tk, x

τ (k), uτ (k))] + R(tk).

Using (24) and (31) we obtain ‖ek+1‖ ≤ (1 + τL)‖ek‖ + τ 2γ/2. Therefore

‖ek‖ ≤ (1 + τL)k‖e0‖ +

k−1∑
i=0

(1 + τL)iτ 2γ/2

= (1 + τL)k‖e0‖ + τγ[(1 + τL)k − 1]/(2L)

for k ≤ Nτ . Since (1 + τL)k ≤ ekτL, the theorem is proved. �

The inequality (29) indicates that the approximation error should be halved when
τ is halved (see Table 2.5.8). Although this characterizes the convergence rate of
Euler’s integration method, the explicit estimate (28) is much too conservative in
most applications (see Table 2.5.8).
Note that the preceding theorem only describes the approximation of the trajectory
x(t) by the discrete time trajectory xτ (k) at the instants tk = t0 + kτ . In order to
obtain an approximation on the whole interval [t0, t0 + Nτ ] the integration method
must be combined with an extrapolation procedure, as in Example 2.5.6. As a
result the overall approximation error is a combination of integration errors and
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extrapolation errors. For instance, if a zero hold is used for extrapolation, the
overall error is

‖x(t) − x̄τ (t)‖ = ‖x(t) − xτ (k)‖ ≤ ‖x(t) − x(kτ)‖ + ‖x(kτ) − xτ (k)‖ ≤ c2τ + cτ ,

where t0 ≤ t ≤ t0 + Nτ , c is any constant such that (29) is satisfied and

c2 = max{‖ẋ(t)‖, t0 ≤ t ≤ t0 + Nτ}.

Example 2.5.9. Let us consider the same scalar equation as in Example 2.5.6 on a given
time interval [0, Nτ ]. In order to apply Theorem 2.5.8 we require a bound on |ẍ(t)|. If u(·)
is differentiable, we have

ẍ(t) = aẋ(t) + bu̇(t) = a2x(t) + abu(t) + bu̇(t).

Hence we can choose

Exact Error: e(t) = x(t) − xτ (t/τ) Error bound
solution (28)

t x(t) τ = 0.2 τ = 0.1 τ = 0.05 τ = 0.05

2.0 2.631 -0.015 -0.007 -0.004 0.007
4.0 3.967 -0.024 -0.012 -0.006 0.017
8.0 5.956 -0.033 -0.016 -0.008 0.049

u(t) ≡ 1

t x(t) τ = 0.2 τ = 0.1 τ = 0.05 τ = 0.05

2.0 2.624 -0.050 -0.013 -0.005 1.403
4.0 3.954 -0.089 -0.022 -0.009 3.118
8.0 5.934 -0.141 -0.034 -0.013 7.774

u(t) = 1 + sin 8πt

Table 2.5.8: Euler’s method applied to ẋ = −0.1x + u, x(0) = 1

γ = a2 max
0≤t≤Nτ

|x(t)| + |ab| max
0≤t≤Nτ

|u(t)| + |b| max
0≤t≤Nτ

|u̇(t)|

where
max

0≤t≤Nτ

|x(t)| ≤ eaNτ |x0| + |b a−1(eaNτ − 1)| max
0≤t≤Nτ

|u(t)|. (32)

We see that the upper bound (28) for the integration error depends through γ not only
on the control function u(·)|[0, Nτ ] but also on its rate of change u̇(·)|[0, Nτ ]. This depen-
dence is illustrated in Table 2.5.8. In particular the integration error may become large
if the control function changes rapidly even if τ is small. If a zero order hold is used for
interpolation, the overall approximation error is

|x(t) − x̄τ (t)| ≤ eaNτ |e0| + γ (2a)−1(eaNτ − 1)τ

+ [a max
0≤t≤Nτ

|x(t)| + |b| max
0≤t≤Nτ

|u(t)|]τ.

Here the third term (which represents an upper bound for the extrapolation error) can be
estimated in terms of |x0| and max0≤t≤Nτ |u(t)| using (32).
If u(·) is only piecewise differentiable with jumps at some kτ , k ≤ N , the preceding analysis
must be applied successively to each interval on which u(·) is differentiable. �
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Single and multi-step methods

Euler’s method is a typical single-step method. These methods are characterized
by the property that they only require knowledge of the present approximate state
xτ (k) in order to compute the next value xτ (k + 1). The general form of an explicit
single-step method is

xτ (k + 1) = xτ (k) + τF (tk, x
τ (k); τ, f, u). (33)

Here, for any given t ∈ T , z ∈ Rn, F (t, z; τ, f, u) is a specific approximation of the
difference quotient τ−1[x(t + τ) − z] where x(·) is the exact solution of (23) with
x(t) = z and control function u(·). In the special case of Euler’s method we have
F (t, z; τ, f, u) = f(t, z, u(t)).
A (ν + 1)-step method requires the values xτ (k), . . . , xτ (k − ν) in order to compute
xτ (k + 1). The general form of such a multi-step method for k ≥ ν is

xτ (k + 1) =

ν∑
j=0

ajx
τ (k − j) + τF (tk, x

τ (k + 1), xτ (k), . . . , xτ (k − ν); τ, f, u), (34)

where a0, . . . , aν are given constants. The method is called explicit if F does not
depend upon xτ (k + 1); otherwise it is called implicit. Hence in implicit methods it
is necessary to solve (34) for xτ (k + 1) at each step. Nevertheless implicit methods
are often more efficient than explicit ones.
Note that whereas single-step methods are self starting, multi-step methods need to
be initialized by a single-step method.
In the following we will briefly describe some results for single-step methods and
also linear multi-step methods of the following form

xτ (k + 1) =

ν∑
j=0

ajx
τ (k − j) + τ

ν∑
j=−1

bjf(tk−j, x
τ (k − j), u(tk−j)), k ≥ ν (35)

where a0, . . . , aν , b−1, . . . , bν are given constants. For the sake of simplicity we treat
the scalar case. The expression (35) is a (ν + 1)-step method if aν �= 0 or bν �= 0. It
is explicit if b−1 = 0 and implicit if b−1 �= 0.

Example 2.5.10. (Trapezoidal and Heun’s method). The trapezoidal method is
defined by

xτ (k + 1) = xτ (k) + (τ/2)[f(tk, xτ (k), u(tk)) + f(tk+1, x
τ (k + 1), u(tk+1))] . (36)

It is an implicit single-step method and is called the trapezoidal method since if f does not
depend on x it reduces to the trapezoidal rule for numerical integration (see Figure 2.5.9).
This implicit method can be converted into an explicit method by using Euler’s method
to predict xτ (k + 1) and then substituting this in the RHS of (36). As a result we obtain
the so-called Heun method

xτ (k + 1)=xτ (k)+(τ/2)[f(tk , xτ (k), u(tk))+f(tk+1, x
τ (k) + τf(tk, x

τ (k), u(tk)), u(tk+1))].

This is an explicit single-step method of the form (33) with

F (t, z; τ, f, u) = (1/2)[f(t, z, u(t)) + f(t + τ, z + τf(t, z, u(t)), u(t + τ))].

It is a simple example of a predictor-corrector algorithm with Euler’s method as predictor
and the trapezoidal method as corrector. At each step it requires two evaluations of f . �
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tk tk+1

f(t)

(τ/2)[f(tk) + f(tk+1)]

Figure 2.5.9: Trapezoidal method

Example 2.5.11. (Midpoint method). The midpoint method is defined by

xτ (k + 1) = xτ (k − 1) + 2τf(tk, x
τ (k), u(tk)), k ≥ 1.

It is an explicit two-step method which requires one evaluation of f at each step and

tk−1 tk+1tk

f(t)

2τf(tk)

Figure 2.5.10: Midpoint rule

corresponds to the midpoint rule of numerical integration (see Figure 2.5.10). The value
of xτ (1) must be provided by a single step method. �

Example 2.5.12. (Classical Runge-Kutta method). The Runge-Kutta method is
defined by

xτ (k + 1) = xτ (k) + (τ/6)[f τ
1 (k) + 2f τ

2 (k) + 2f τ
3 (k) + f τ

4 (k)]

where
f τ
1 (k) = f(tk, x

τ (k), u(tk)),

f τ
2 (k) = f(tk + τ/2, xτ (k) + (τ/2)f τ

1 (k), u(tk + τ/2)),

f τ
3 (k) = f(tk + τ/2, xτ (k) + (τ/2)f τ

2 (k), u(tk + τ/2)),

f τ
4 (k) = f(tk + τ, xτ (k) + τf τ

3 (k), u(tk+1)).

It is an explicit single-step method requiring 4 evaluations of f per step. �

Euler’s method, the trapezoidal and midpoint methods are special cases of numerical
methods which are based on numerical integration procedures. The general idea of
their construction is as follows:
Let j ∈ N be given and integrate (23) from tk−j to tk+1, k ≥ j to obtain

x(tk+1) = x(tk−j) +

∫ tk+1

tk−j

f(t, x(t), u(t))dt, k ≥ j. (37)
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Determine the polynomial P (t) of a given degree ν ≥ 0 which coincides with the
integrand f(t, x(t), u(t)) at the (ν + 1) points ti, i ≤ k + 1. The integral of P (t)
over the interval [tk−j, tk+1] is then used as an approximation for the integral in (37).
To illustrate the above scheme we derive the explicit method of Adams-Bashforth
which is frequently used in practice.

Example 2.5.13. (Adams-Bashforth method). We choose j = 0 and replace the
integrand in (37) by the interpolating polynomial Pν(t) of degree ν in t satisfying

Pν(ti) = f(ti, x(ti), u(ti)), i = k − ν, . . . , k.

Using the Lagrange’s interpolation formula, we have

Pν(t) =

ν∑
i=0

f (tk−i, x(tk−i), u(tk−i)) Li(t)

where
Li(t) =

ν∏
�=0,� �=i

t − tk−�

tk−i − tk−�
.

This yields the following Adams-Bashforth integration formula

xτ (k + 1) = xτ (k) + τ [βν0fk + βν1fk−1 + . . . + βννfk−ν]

where

β00 = 1

βνi =
1

τ

∫ tk+1

tk

Li(t)dt =

∫ 1

0

ν∏
�=0,� �=i

r + �

−i + �
dr, i = 0, . . . , ν,

f� = f(t�, x
τ (�), u(t�)).

Some values of βνi and the corresponding formulas are given in Table 2.5.11. �

i 0 1 2 3 xτ (k + 1) =

β0i 1 xτ (k) + τfk

β1i
3
2 −1

2 xτ (k) + (τ/2) [3fk − fk−1]

β2i
23
12 −16

12
5
12 xτ (k) + (τ/12) [23fk − 16fk−1 + 5fk−2]

β3i
55
24 −59

24
37
24 − 9

24 xτ (k) + (τ/24) [55fk − 59fk−1 + 37fk−2 − 9fk−3]

Table 2.5.11: Adams-Bashforth formulas

The above method can also be used to obtain implicit multi-step methods which
are combined with a suitable explicit method (predictor) to yield efficient predictor-
corrector algorithms. A popular example of this type is Milne’s method.



2.5 Sampling and Approximation 185

Example 2.5.14. (Milne’s method). Choose j = 1 in (37) and use a quadratic
polynomial P (t) which interpolates f(t, x(t), u(t)) on the nodes tk−1, tk, tk+1. The result
for k ≥ 1 is

xτ (k + 1) = xτ (k − 1) + (τ/3)[fk−1 + 4fk + fk+1], where fk = f(tk, x
τ (k), u(tk)). (38)

This is the corrector of Milne’s method and if f does not depend on x it reduces to
Simpson’s rule for numerical integration. The predictor of Milne’s method is obtained by
using a quadratic interpolation to the integrand at tk−2, tk−1, tk in (37)

xτ (k + 1) = xτ (k − 3) + (4τ/3)[2fk−2 − fk−1 + 2fk], k ≥ 3. (39)

Thus in the kth step of Milne’s method xτ (k + 1) is computed via (38) where fk+1 =
f(tk+1, x

τ (k + 1), u(tk+1)) and xτ (k + 1) is evaluated by (39). �

Note that not all the methods we have presented define discrete time dynamical
systems, in the sense of Definition 2.1.1. Indeed in the trapezoidal, Heun, Runge-
Kutta and Milne methods (corrector plus predictor) the state xτ (k + 1) is influenced
by the control value uτ (k+1). This direct input-state coupling contradicts the axiom
of causality. On the other hand if Euler’s method, Milne’s predictor, the midpoint
rule or Adams-Bashforth methods are used for the discretization of a differentiable
system (23), then discrete time dynamical systems are always obtained. However the
discrete time systems obtained by the application of multi-step methods do not have
the same state space as the corresponding continuous time system. If the method
has a memory of length ν, i.e. if xτ (k + 1) is determined as function of fk−ν , . . . , fk,
then since the past values of xτ and uτ have to be “stored” in the state vector
the state space of the resulting discrete time system is Xν+1 × Uν . This may give
rise to certain “instability phenomena” which are observed in multi-step methods
such as the midpoint rule and Milne’s method. If these are applied for example
to linear systems of the form (2.17), rounding errors can incite unstable parasitic
oscillations of the discretized model which do not correspond to any eigenmotion of
the continuous time system (see Ex. 10, 11 and Subsection 3.3.3).
In Theorem 2.5.8 we showed that the approximation error for Euler’s method can
be bounded by cτ as τ → 0. This is expressed by saying that Euler’s method is of
order 1. More generally, a particular method is said to be of order p if it yields for
all initial value problems

ẋ(t) = f(t, x(t)), t ∈ T = [a, b]

x(t0) = x0
(40)

(where f has continuous and bounded derivatives up to order p on T × R) ap-
proximate solutions xτ (·) such that the global approximation error is order p. This
means

max
0≤k≤Nτ

|x(tk) − xτ (k)| = O(τ p) as τ → 0,

whenever the initial errors tend to zero with order p

max
0≤i≤ν

|x(ti) − xτ (i)| = O(τ p) as τ → 0.
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It can be shown that the Heun and midpoint methods are of order 2, the classical
Runge-Kutta and Milne methods are of order 4. A linear multi-step method (35) is
of order p ≥ 1 if and only if aj ≥ 0 j = 0, . . . , ν and

ν∑
j=0

aj = 1 and
ν∑

j=0

jaj +
ν∑

j=1

bj = 1 (41a)

ν∑
j=0

(−1)jaj + i

ν∑
j=−1

(−j)i−1bj = 1 for i = 2, . . . , p (41b)

(see Atkinson (1989) [26]). The following example illustrates how the order of a
method is reflected in the reduction of the approximation error with diminishing
stepsize.

Example 2.5.15. Table 2.5.12 displays the approximation errors ek = x(tk)−xτ (k) for
a variety of methods applied to the initial value problem

ẋ(t) = −0.1x(t) + 10 (1 + sin 10πt), x(0) = 1.

All the multistep methods are initialized with “exact” values. Observe the behaviour of

Euler Heun Milne Runge-K. Adams-B.
(order 1) (order 2) (order 4) (order 4) (order 4)

τ tk x(tk) ek ek ek ek ek

0.2 5.0 39.829 1.218684 1.573321 1.541310 -0.689172 1.546893
10.0 63.382 5.220485 5.649258 5.650283 -2.144811 5.631805
20.0 86.342 17.319951 17.631950 17.645748 -6.221867 17.624505

0.1 5.0 39.829 -0.315121 -0.123519 -0.618127 0.005845 -0.798817
10.0 63.382 -0.459733 -0.196185 -2.742330 0.009268 -0.983663
20.0 86.342 -0.550889 -0.258111 -12.553442 0.012160 -1.422443

0.05 5.0 39.829 -0.121190 -0.026503 0.027124 0.000289 0.203423
10.0 63.382 -0.172322 -0.042103 0.026776 0.000456 0.307603
20.0 86.342 -0.200045 -0.055414 0.028282 0.000594 0.424276

0.001 5.0 39.829 -0.001891 -0.000010 0.000000 0.000007 0.000000
10.0 63.382 -0.002604 -0.000016 0.000000 0.000008 0.000000
20.0 86.342 -0.002896 -0.000021 0.000000 0.000006 0.000000

0.0005 5.0 39.829 -0.000943 -0.000002 0.000000 0.000007 0.000000
10.0 63.382 -0.001298 -0.000004 0.000000 0.000008 0.000000
20.0 86.342 -0.001442 -0.000005 0.000000 0.000006 0.000000

Table 2.5.12: Approximation errors and their dependence on the step size τ

the errors as τ is halved. In accordance with the sampling theorem for τ = 0.2 > π/ωu =
π/10π no approximation is achieved. All the methods except those of Milne and 4-step
Adams-Bashforth yield reasonable first approximation for τ = 0.1 = π/ωu. The next
halving (τ = 0.05) yields an improvement of the approximation which is better than the
orders of the various methods predict. For τ = 0.001 → τ = 0.0005 the magnitude of the
errors reduces more or less as the order predicts, with the exception of the Runge-Kutta
method for which the error reduction rate deteriorates more and more. This is due to the
increasing influence of the rounding errors (see Ex. 9). �
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Small errors in the initial state and rounding errors may eventually lead to large
errors in the solution if they incite unbounded eigenmotions of the discretized system.
In Subsection 3.3.3 we will briefly discuss numerical stability properties of the above
methods and we will see that (theoretically) very accurate methods such as Milne’s
may produce “unstable” discretized systems although the differential system itself
is “stable”. The selection of an adequate numerical method for a concrete initial
value problem relies very much on experience and is still something of an art.
Additional problems arise when we apply theorems of Numerical Analysis, not to
the problem of approximating a single solution of a differential equation, but to the
much more complex problem of approximating a differential dynamical system by a
discrete time one. We conclude this section by pointing out some specific difficulties
in this context.

Dependence on the control functions

We have seen in Example 2.5.9 and Table 2.5.8 that the error bounds depend not
only on the magnitude of the control function but also on the magnitude of its
derivative. So we cannot expect that there exists a step-size τ which will yield good
approximations for arbitrary control functions with values in a prescribed set. For
example the Sampling Theorem suggests that the frequency spectrum of the input
signals should be small outside [−π/τ, π/τ ].
The following example shows that bang-bang jumps of the control may cause con-
siderable deviations and lead to oscillations around the exact solution which remain,
even after the control u(·) has been switched off (u(t) ≡ 0, t ≥ t1).

Example 2.5.16. Consider the controlled harmonic oscillator without damping[
ẋ1

ẋ2

]
=

[
0 −1
1 0

] [
x1

x2

]
+

[
1
1

]
u, x(0) =

[
5/2
0

]
. (42)

Let τ = 0.05 and choose

u(t) =

{
(−1)k20 if k ≤ t < k + 1; k = 0, 1, 2, 3
0 if t ≥ 4

.

For t ≥ 4 the solution of (42) should coincide with the periodic free motion[
ẋ1

ẋ2

]
=

[
0 −1
1 0

] [
x1

x2

]
, x(4) =

[
−11.4
−28.2

]
. (43)

Figure 2.5.13 shows the “exact” solution curve of (42) for 0 ≤ t ≤ 30 (as obtained by a
Runge-Kutta method with step size τ/10 = 0.005). It also shows the approximate solution
curves (computed with step size τ = 0.05 over the same time interval) by Euler’s method,
the 4-step method of Adams-Bashforth, the midpoint rule, the predictor of Milne’s method
and the complete Milne method (predictor and corrector). All the multistep methods were
initialized with accurate initial values (computed by Runge-Kutta’s method with step size
τ/10).
Apart from the various deviations from the true solution (which are particularly large
for the predictor of Milne’s method) two facts are remarkable. If the same methods are
applied to solve the initial value problem (43), all of them, with the exception of Euler’s
method, track the true circular solution very precisely. They do not show the dramatic
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Figure 2.5.13: Approximation of a bang-bang controlled trajectory by various inte-

gration schemes
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deviations which must, therefore, be caused by the large initial control oscillations. On
the other hand Euler’s method, which does not reproduce the periodic behaviour of the
true solution, is very robust with respect to the effects of the control and shows for t ≥ 4
the same qualitative behaviour when applied to (42) or (43). �

Advanced controls

We have seen above that several higher order methods (such as the methods of
Heun, Runge-Kutta, all implicit multi-step methods) produce difference equations
with direct input state couplings when applied to a controlled differential equation
(23). To obtain a discrete-time dynamical system we have to introduce the shifted
function ūτ : N → R, ūτ (k) = u(tk+1) instead of uτ (k) = u(tk) as input signal.
The following example shows that it is essential to feed the discrete time systems
generated by these methods with the anticipated control value ūτ (k) = u(tk+1) at
time tk. Otherwise the order of convergence will not be preserved.

Example 2.5.17. Consider

ẋ(t) = −2x(t) + u(t), x(0) = 1, u(t) = t2, t ≥ 0. (44)

Application of Heun’s method yields the following discrete time system

xτ (k + 1) = (1 − 2τ + 2τ2)xτ (k) + (τ/2)uτ (k − 1) + (τ/2)(1 − 2τ)uτ (k) (45)

where uτ (k) := u((k+1)τ). Table 2.5.14 shows the difference between the solution of (44)

Step size Exact solution Heun Heun (non-advanced control)

tk x(tk) ek ek

τ = 0.2 1.000 0.352 -0.018 0.079
5.000 10.250 -0.013 0.867

τ = 0.1 1.000 0.352 -0.004 0.049
5.000 10.250 -0.003 0.442

τ = 0.05 1.000 0.352 -0.001 0.026
5.000 10.250 -0.001 0.223

Table 2.5.14: Errors for advanced and non-advanced controls

and the solution of (45) with control uτ (k) = (k + 1)2τ2 and initial value xτ (0) = 1. The
table also gives the approximation error when the non-advanced control uτ (k) = k2τ2 is
used in (45). A comparison of the results in this table shows that the use of non-advanced
control not only deteriorates the approximation but changes the order of convergence.
The same is true for the Runge-Kutta method. If an analogous time shift is applied to
the control function in the difference equation obtained from (44) via the Runge-Kutta
method, the resulting discretization approximates the solutions of (44) with order 1 instead
of 4. �

2.5.5 Exercises

1. Prove the statements at the end of Remark 2.5.1.
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2. Determine the convolution kernels which describe the first order interpolator (2) and
the delayed first order interpolator (3).

3. (i) Prove that the function θ �→∑
k∈Z

|sinc [(θ − kπ]|2 is bounded on R.

(ii) Prove (11).

4. Prove that under conditions of the Sampling Theorem v(·) is analytic on R and can
be extended analytically to C. Show that this extension satisfies the exponential estimate
(20) (see Remark 2.5.3).

5. Let t0 < t1 < t2 and f0, f1, f2 be real numbers. Determine the quadratic polynomial
P (t) with P (ti) = fi, i = 0, 1, 2. Apply this to obtain a second order hold H2

τ .
Suppose u : R → R is three times continuously differentiable, u(t) = 0 for t ≤ 0 and
|u(t)| ≤ M for t ∈ R. Denote by ū(·) the function obtained by applying H2

τ to the
sampled signal

∑
k∈Z

u(kτ)δ(t − kτ). Show that |u(t) − ū(t)| ≤ Mτ3.
Find the impulse response and the step response of H2

τ .

6. Determine the sampled system Σ(τ) corresponding to the continuous time system

ẋ(t) =

[
0 1
0 −1

]
x(t) +

[
0
1

]
u(t), y(t) = [0 , 1]x(t).

7. Describe the sampling of a continuous time system (A,B,C,D) with a first order hold
instead of a zero order hold by

(i) determining the equations of motion as higher order difference equations.

(ii) Finding a state space model of the sampled system (hint: it is a (n + m)-dimensional
system).

(iii) Determining the class of controls for which the sampled system exactly reproduces
the state values of the continuous time system at the sample times kτ .

8. Derive an error estimation analogous to that given in Example 2.5.6 if a first order
hold is used instead of a zero order hold for the second hold element (see Figure 2.5.5).

9. Suppose the conditions in Theorem 2.5.8 hold and Euler’s method is applied to

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0.

Because of rounding errors the operations performed at each step are actually

x̃τ (k + 1) = x̃τ (k) + τf(tk, x̃
τ (k), u(tk)) + ρk

where ρk is the so-called local rounding error. Assume x̃τ (t0) = x0 and |ρk| ≤ ρ for all
k ≥ 0.

(i) Show the following estimate for the total error (approximation and quantization)

|x(tk) − x̃τ (k)| ≤ (τγ/2 + ρ/τ)(eLkτ − 1)/L, 0 ≤ k ≤ Nτ .

(ii) Discuss the behaviour of the above error bound as a function of τ .
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(iii) Apply Euler’s method to the initial value problem

ẋ(t) = −x2(t), x(0) = 1.

Find the exact solution, tabulate the errors |x(3)−x̃τ (3/τ)| for τ = 10−k, k = 2, . . . , 8
and interpret the table with reference to (ii).

10. Case study: Instability of the midpoint rule.

(i) Write a computer program to solve the initial value problem

ẋ(t) = ax(t) + b, x(0) = x0

by the midpoint rule. Your program should be for arbitrary reals a, b, x0, stepsize
τ > 0 and interval [0, t̄], t̄ > 0.

(ii) Choose a = −2, b = 1, x0 = 1, τ = 0.02 and t̄ = 50. Print the true solution values
x(kτ) and the errors x(kτ) − xτ (k) for k = m · 100 + r where m = 0, 1, 2, 4, 8, 16
and r = 1, . . . , 10.

(iii) Determine the discrete time system obtained by discretizing the equation from (i) via
the midpoint rule. Find its eigenvalues and explain the results of (ii). (A systematic
analysis will be given later in Subsection 3.3.3).

11. Case study: Impulse response.

(i) Write a computer program to solve ẋ = Ax + bu, x(0) = x0 with A ∈ R
2×2, b ∈ R

2

by Euler’s method, Heun’s method and the midpoint rule. Your program should be
for an arbitrary matrix A, control of the form α · 1[0,β], α ∈ R, β > 0, initial states
x0 ∈ R

2, stepsize τ and interval [0, t̄], t̄ > 0.

(ii) Use Euler’s method to solve the above initial value problem with

A =

[
0 1
−1 0

]
, b =

[
0
1

]
, x0 = 0, u =

1

10τ
1[0,10τ ], τ = 0.1, 0.01, 0.001, t̄ = 10

(print solution values at t = 0.1, 0.2, . . . , 1.0 and 2.0, . . . , 10.0).

(iii) Repeat (ii) with u = (1/10τ2)(1[0,10τ ] − 1[10τ,20τ ]).

(iv) Compare the solutions of (ii), (iii) with the solutions of the corresponding homoge-
neous equation ẋ = Ax with initial values x(0) = b = [0, 1]� and x(0) = Ab =
[1, 0]� (if available use a graphical display). Interpret the result of (ii) by means of
Lemma 2.3.4 on the approximations of the Dirac impulse. Analyze the result of (iii)
in the same way.

(v) Predict what will happen if the midpoint rule is used instead of Euler’s method in
(ii). Solve (ii) by means of Heun’s method and by the midpoint rule (use a graphical
display if available).

(vi) Determine the discrete time systems xτ (k +1) = Aτx
τ (k)+ bτuτ (k) obtained by each

of the three methods in (i). Compare the spectra of Aτ with the spectrum of A.
What happens if τ → 0? Determine the behaviour of the true solution x(kτ) and
the approximate solutions xτ (k) as k → ∞. Try to explain the phenomena observed
in (v).



192 2. Introduction to State Space Theory

2.5.6 Notes and References

There was very little work carried out on the analysis of sampled-data systems until 1950
when research was motivated by the first use of digital computers in control systems. Fre-
quency domain analysis was used in the first generation of textbooks dedicated exclusively
to sampled-data systems, Franklin and Ragazzini (1958) [170], Jury (1958) [283]. Later
textbooks put much more emphasis on the state space approach, Kuo (1980) [321], Acker-
mann (1985) [3] and Oppenheim et al. (1997) [399]. Recently there has been an upsurge
in the analysis and design of hybrid systems, formed when continuous time and discrete
time systems are interconnected, in the context of H∞ theory, see Dullerud (1996) [140]
and the references therein.
Basic problems concerning the relationship between continuous time and discrete time sig-
nals and systems, e.g. sample rate selection, effects of quantization errors, approximation
errors, are neglected in most control theoretic textbooks. Our guide in this important area
has been the book by Franklin and Powell (1998) [169], which gives a good introduction
from an engineering point of view, see also the final chapter in Franklin et al. (1986) [168],
Chapters 9 and 10 in Kwakernaak and Sivan (1991) [322] and Franklin et al. (1998) [169].
These references also contain further information about the A/D and D/A conversion of
signals.
In the context of interpolation theory Whittaker (1915) [519] proved that

f(z) =

∞∑
k=−∞

f(kτ)sinc[π(z − kτ)/τ ], z ∈ C

for every analytic function f : C → C with |f(z)| ≤ Ceπ|z|/τ , see the monograph by

Stenger (1993) [479]. By Theorem X in Paley and Wiener (1934) [403] we have seen in

Remark 2.5.3 that these conditions are equivalent to the ones in Theorem 2.5.2. Shannon

(1948) [460] was the first to state the sampling theorem in form we have given it and

he also recognized its basic importance for communication theory. Nyquist (1928) [394]

also made early contributions to the field and the sampling rate 1/τ per second is known

as the Nyquist sampling rate. For generalizations of the sampling theorem to irregular

spaced samples see Beutler (1961) [53]. Higgins (1996) [228] contains many interesting

historical remarks on the sampling theorem and shows how it plays a role in different

areas of mathematics and engineering. Nowadays there are a great variety of sampling

results available in the literature and a comprehensive theory is gradually evolving, see

e.g. Benedetto (1992) [48].

Applications to signal processing and communication are discussed in the well-known

introductory textbook of Kwakernaak and Sivan (1991) [322]. For further reading on

communication systems we refer to Benedetto et al. (1987) [49] and Carlson (1986) [90].

The difficulties involved in computing the exponential of a matrix are discussed in the

paper Moler and van Loan (1978) [378], and the update Moler and van Loan (2003) [379].

Numerical methods for solving ordinary differential equation are presented in most text-

books on numerical mathematics, see e.g. Stoer and Bulirsch (1993). A detailed study

can be found in the two volumes Hairer et al. (1993)and (1996) [210], [211]. In the control

engineering literature numerical integration methods are described as recipes for digital

simulation of continuous time systems. However, one must be cautious since the approxi-

mation of continuous time systems by discrete time systems is complicated by the fact that

instead of determining a fixed solution, it is necessary to consider the system behaviour

for a variety of controls and initial states.



Chapter 3

Stability Theory

The Oxford English Dictionary’s definition of stable is “not easily moved, changed
or destroyed”. Most of us have an intuitive notion of stability which corresponds
more or less with this definition. However, in order to build a theory of stability it
is necessary to be more precise about terms like “not easily moved or changed”. We
need to define the basic class of objects to which the notion of stability is applied
and also specify the type of perturbations which are considered. In this chapter we
study the stability of state trajectories under the influence of perturbations in the
initial state and in the next two chapters we consider perturbations in the system
parameters. The stability of output trajectories under the influence of perturbations
in the input signal will be discussed in Volume II.
The development of modern stability theories was initiated by Maxwell (1868) [364]
and Vyshnegradskiy (1876) [511] in their work on governors, but the importance of
the concept of stability in many other scientific fields was soon recognized and now
it is a cornerstone of applied mathematics. For example, the prediction of instabil-
ities from a mathematical model has in many instances led to a confirmation that
the model adequately represents the corresponding physical process. In 1923 G.I.
Taylor [492], using the Navier-Stokes equations, showed that the flow of a viscous
fluid between rotating cylinders would become unstable at a particular value of a
parameter, now known as the Taylor number. He confirmed this experimentally and
so increased confidence in modelling viscous fluid flows by the Navier-Stokes equa-
tions. Perhaps more relevant to this text is the fact that almost all control system
designs are founded on a stability requirement and our treatment of the subject will
be slanted in this direction.
In Section 3.1 we introduce the important concept of stability due to Liapunov,
which is used to investigate variations in system trajectories with respect to per-
turbations in the initial conditions. We also discuss some basic notions from the
qualitative theory of dynamical systems which enable us to describe more precisely
the limiting behaviour of trajectories as time tends to infinity. The definitions in
Section 3.1 will be given in terms of the system’s trajectories, so that if the sys-
tem is modelled by differential equations or difference equations, we must first solve
these equations if we wish to check whether or not the conditions in the definitions
hold. Liapunov had the ingenious idea of using generalized energy functions (Lia-
punov functions) to investigate stability properties directly from the differential or
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difference equations. In Section 3.2 we first introduce a very general concept of a
Liapunov function for a flow on a metric space and determine conditions for (uni-
form) stability, asymptotic stability and instability. Again these conditions will be
given in terms of the system’s trajectories, however when we specialize the results
to finite dimensional systems we will show that they can be verified directly. The
theorems are illustrated by a number of examples from a variety of different fields.
The main development in Section 3.3 is for linear finite dimensional systems. First
we consider time-varying systems and relate stability and uniform asymptotic sta-
bility to the boundedness and exponential decay of the evolution operator Φ. Bohl
and Liapunov exponents are introduced and it is shown that uniform asymptotic
stability is equivalent to the fact that the upper Bohl exponent is negative, which is
itself equivalent to the existence of a uniform estimate for the Lp-norm of Φ, p > 0.
For time-invariant systems one does not need to compute Φ to see whether these
conditions hold, instead all the stability properties are shown to be equivalent to
constraints on the spectrum of the generator A. In order to prepare the ground
for one of Liapunov’s main results (Liapunov’s indirect method) quadratic forms
are used as Liapunov functions for the linear equations and stability and instability
theorems deduced. These forms are then used for nonlinear systems to prove that
uniform asymptotic stability of the linearized equation implies that the nonlinear
system will also have this property. The section concludes with a theorem which
shows that in the case of time-invariant nonlinear systems an equilibrium state is
exponentially stable if and only if the linearization at the equilibrium state is expo-
nentially stable.
The final section is a substantial one and contains many classical stability crite-
ria for polynomials. Routh (1887), Hurwitz (1895) showed that instead of actually
determining the spectrum of the system matrix, criteria for stability could be deter-
mined directly from the coefficients of its characteristic polynomial. In the section
both real and complex polynomials are considered and we start by showing how the
principle of the argument is used to prove the Hermite-Biehler Theorem, the test
for Hurwitz stability by the Routh Array, and a characterization of Hurwitz stable
polynomials by the Cauchy index of an associated real rational function. Then the
Hermite form, Bézoutiant and Hankel form are introduced and these quadratic forms
are used to derive algebraic stability tests for Hurwitz polynomials. In Subsection
3.4.6 the corresponding analytic and algebraic stability tests for the discrete time
case are obtained. Finally, in the last subsection, stability criteria for other algebraic
stability regions in the complex plane are given in terms of algebraic Liapunov-type
equations.

3.1 General Definitions

In 1875 it was announced that the Adams Prize at the University of Cambridge for
1877 would be awarded for the best essay on “The Criteria of Dynamic Stability”.
The announcement went on to say (see Fuller (1976) [176]):

“To illustrate the meaning of the quotation imagine a particle to slide down

inside a smooth inclined cylinder along the lowest generating line, or to slide
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down along the highest generating line. In the former case a slight derange-

ment of the motion would merely cause the particle to oscillate about the

generating line, while in the latter case the particle would depart from the

generating line altogether. The motion in the former case would be in some

sense stable, and in the latter case unstable . . . ”

Figure 3.1.1: Stable and unstable motions on a cylinder

The winner of the prize was E. J. Routh of whom we will say more later (see Sec-
tion 3.4). The stability criteria implied in the citation are not obvious. However,
it is clear that they are concerned with the variation of a trajectory from a distin-
guished trajectory. This variation is achieved by a slight change in the state at a
particular time, and the distinguished trajectory is said to be stable if the resulting
perturbed trajectory is close to the distinguished one for all future times. We start
with a mathematical formulation of this idea due to Liapunov (1893) [354], and give
the definitions in their full generality so that they are applicable to a wide class of
systems, discrete and continuous time, finite and infinite dimensional.
In the first subsection we introduce the concept of a local flow and illustrate its
generation by difference and differential equations. Stability definitions for both
trajectories and equilibrium states are given in the next subsection and we show
how it is often possible to reduce the stability considerations of a trajectory to those
of an equilibrium state. In the third subsection we restrict our considerations to
time-invariant systems and introduce limit points and the limit set of a given trajec-
tory. An important theorem is proved which gives conditions for the limit set to be
non-empty and compact. As an example of the application of the theorem we study
the flow generated by a nonlinear delay equation. Next, in a starred subsection we
consider recurrency properties of time-invariant global flows; proving Birkhoff’s and
Poincaré’s Recurrency Theorems and illustrating the results with a study of ratio-
nal systems on the plane. Finally we extend the stability definitions to closed sets,
introduce the basin of attraction and describe two examples – the Cayley Problem
and the Lorenz attractor.

3.1.1 Local Flows

The purpose of this chapter is to study the long term behaviour of trajectories under
perturbations of the initial state, so we will only consider time domains T which are
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unbounded to the right. We will also assume that the control ū(·) ∈ U is fixed and
neglect the output. In other words we study the local flow F = (T, X, ϕ) determined
by the fixed control ū(·)

ϕ(t; t0, x
0) = ϕ(t; t0, x

0, ū(·)) , t ∈ Tt0(x
0) := Tt0,x0,ū(·) , (t0, x

0) ∈ T × X .

The following concept of a local flow extends the notion of a differentiable local flow
given in Definition 2.1.8. It does not require differentiability of the trajectories and
is applicable to both continuous and discrete time systems.

Definition 3.1.1. (Local flow). F = (T, X, ϕ) is said to be a local flow with
time domain T ⊂ R and state transition function ϕ on a metric space (X, d), if for
every (t0, x

0) ∈ T × X there exists t+(t0, x
0) ∈ (t0,∞] such that ϕ(t; t0, x

0) ∈ X is
defined for all t ∈ Tt0(x

0) = T ∩
[
t0, t+(t0, x

0)
)

and satisfies for all (t0, x
0) ∈ T ×X,

t, t1 ∈ Tt0(x
0), t ≥ t1

(LF1) ϕ(t0; t0, x
0) = x0.

(LF2) Tt1(ϕ(t1; t0, x
0)) = Tt1 ∩ Tt0(x

0) and ϕ(t; t0, x
0) = ϕ(t; t1, ϕ(t1; t0, x

0)).

(LF3) The map (t, s, x) �→ ϕ(t; s, x) is continuous in the sense: If (tk, sk, x
k) con-

verges in T × T ×X to (t, s, x) where t ∈ Ts(x), t > s, then tk ∈ Tsk
(xk) for k

sufficiently large and limk→∞ ϕ(tk; sk, x
k) = ϕ(t; s, x).

F = (T, X, ϕ) is called a global flow if additionally t+(t0, x
0) = ∞ for all (t0, x

0) ∈
T × X.

Note that in the discrete time case the above definition includes the possibility that
there is no flow starting at (t0, x

0), i.e. Tt0(x
0) = {t0}, whereas this cannot happen

in the continuous time case.
(LF 1) and (LF 2) are counterparts of the consistency axiom and the cocycle property
in the Definition 2.1.1 of a dynamical system. (LF 3) is a continuity condition which
implies that the trajectories t �→ ϕ(t, t0, x

0) are continuous on Tt0(x
0) and the current

state x(t) = ϕ(t, t0, x
0) depends continuously on the initial condition x(t0) = x0. By

(LF 3)
Dϕ = {(t; t0, x0) ∈ T × T × X; t > t0, t ∈ Tt0(x

0)}
is an open subset of T × T × X and ϕ : Dϕ → X is continuous.
Tt0(x

0) is called the life span of the trajectory ϕ(· ; t0, x0), and it is required to be
a (semi-open) interval in T . For every t0, the set of initial states x0 ∈ X which
generate, at time t0, trajectories with infinite life span is denoted by

X∞(t0) =
{
x0 ∈ X ; t+(t0, x

0) = ∞
}

. (1)

By (LF3), if x0 ∈ X∞(t0) then, for every t ∈ T , t > t0, there exists a positive
δ = δ(t, t0, x

0) > 0 such that t ∈ Tτ (x) for all τ ∈ [t0−δ, t0 +δ]∩T and x ∈ B(x0, δ).
But, in general, there will not exist δ > 0 such that t+(t0, x) = ∞ for all x ∈ B(x0, δ),
i.e. X∞(t0) will in general not be open (see Example 3.1.5).
A local flow F with time domain T = R+ or N is called time–invariant, if Tt0(x

0) =
t0 + T0(x

0) and ϕ(t0 + t; t0, x
0) = ϕ(t; 0, x0) for all t0 ∈ T , t ∈ T0(x

0). Then
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t+(t0, x
0) = t0 + t+(0, x0) and X∞(t0) = X∞(0), for all t0 ∈ T . For time–invariant

local flows we simplify the notation and write t+(x0), T (x0), ϕ(t; x0) and X∞ instead
of t+(0, x0), T0(x

0), ϕ(t; 0, x0) and X∞(0). Note that F induces a global flow on X∞.

Example 3.1.2. Consider the difference equation

x(t + 1) = f(t, x(t)) (2)

where f : T × X → X̃ is continuous, T = N or Z, and X is an open subset of a metric
space (X̃, d). For every (t0, x

0) ∈ T × X let x(·) = ϕ(·; t0, x0) denote the solution of
(2) with x(t0) = x0 on a maximal T -interval Tt0(x

0) = [t0, t1 + 1) ∩ T, t1 ∈ T , i.e.
x(t) ∈ X for t ∈ Tt0(x

0), x(·) is a solution of (2) for all t = t0, . . . , t1 and, if t1 < ∞, then
f(x(t1), t1) �∈ X. Note that if f(t0, x

0) /∈ X there is no flow starting (t0, x
0).

If t ∈ Tt0(x
0), t > t0 it is easily shown by induction that, for every ε > 0, there exists

δ > 0 such that t ∈ Tt0(x) and d(ϕ(t; t0, x), ϕ(t; t0, x
0)) < ε for all x ∈ B(x0, δ). Hence

F = (T,X,ϕ) is a local flow on X. If the RHS of (2) does not depend upon t the
corresponding local flow is time–invariant. In this case

X∞ =
⋂
k∈N

f−k(X)

where f−k(X) is the preimage of f−(k−1)(X) by f , k ∈ N
∗, f0 = IX . �

In an analogous fashion a differential equation ẋ(t) = f(t, x(t)) on Kn defines a
local flow if the right hand side satisfies the Carathéodory conditions. This is a
consequence of the continuous dependence of solutions on initial conditions as stated
in the following theorem, see Notes and References.

Theorem 3.1.3. Let T be an interval, X an open subset of Kn and assume f : T ×
X → Kn satisfies the Carathéodory conditions. Suppose [a, b] ⊂ T , t0 ∈ [a, b], x0 ∈ X
and x(·) = ϕ(·; t0, x0) is a solution of

ẋ(t) = f(t, x(t)), (3)

on [a, b] satisfying x(t0) = x0. Then there exists δ > 0 such that for all (τ, x) ∈ T×X
satisfying |τ − t0| < δ, ‖x − x0‖Kn < δ the (unique) solution ϕ(·; τ, x) of (3) with
x(τ) = x exists on [a, b]. Moreover,

ϕ(t; τ, x) → ϕ(t; t0, x
0) as (τ, x) → (t0, x

0)

uniformly in t ∈ [a, b].

The study of local flows on metric spaces is called Topological Dynamics. One of its
basic concepts is the notion of an invariant set.

Definition 3.1.4 (Invariant set). A non-empty subset S ⊂ X is said to be weakly
invariant for F if (t0, x) ∈ T × S implies ϕ(t; t0, x) ∈ S for all t ∈ Tt0(x). It is said
to be invariant for F if in addition S ⊂ X∞(t0) for all t0 ∈ T .

X is weakly invariant for any local flow on X, whereas it is invariant if and only if
F is a global flow on X. F induces a global flow on every invariant subset S of X.
Now suppose that a local flow F is time–invariant, then a subset S ⊂ X is weakly
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invariant for F if and only if it is a union of the orbits O(x0) = {ϕ(t; x0), t ∈
T (x0)}, x0 ∈ S of F. By time–invariance, if x0 ∈ X∞ then ϕ(t; x0) ∈ X∞ for all
t ∈ T . Hence X∞ is the largest invariant set in X for F.
In the next example we present two local flows defined by differential equations, one
time–invariant and the other time–varying. The example illustrates that X∞(t0)
will in general depend upon t0 in the latter case.

Example 3.1.5. Consider the scalar time–invariant system

ẋ = −x(1 − x2) , x(t0) = x0 . (4)

The solution is given by

ϕ(t; t0, x0) = x0/
(
x2

0 − (x2
0 − 1)e2(t−t0)

)1/2
.

By Theorem 3.1.3 F = (R+, R, ϕ) is a time–invariant local flow and it is easy to see that

t+(x0) = ln{|x0|/(x2
0 − 1)1/2} , |x0| > 1 , X∞ = {x ∈ R ; |x| ≤ 1}.

Any interval of the form [a, b] where −1 ≤ a ≤ 0 ≤ b ≤ 1 is invariant for F. An interval
[a, b] with b > 1 is neither invariant nor weakly invariant for F. Intervals of the form [a,∞)
with a ≥ 1 are weakly invariant, but not invariant.
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Figure 3.1.2: Local flows for (4) and for (5) with t0 = 1

Now consider
˙̃x = −(1 + 1/t)x̃ + x̃3t2 , t > t0 > 0 . (5)

This equation is related to (4) in the sense that x̃(t) solves (5) if and only if x(t) = tx̃(t)
solves (4). Hence the solution is given by

ϕ̃(t; t0, x0) = x0t0/[t (x2
0t

2
0 − (x2

0t
2
0 − 1)e2(t−t0))1/2] .

So F̃ =
(
(0,∞), R, ϕ̃

)
is a local flow and

t+(t0, x0) = t0 + ln{|x0|t0/(x2
0t

2
0 − 1)1/2} , |x0|t0 > 1 , X∞(t0) = {x ∈ R ; |x| ≤ t−1

0 } .

The only invariant subset for F̃ is {0}. The intervals [0,∞) and (0,∞) are weakly invariant
for F̃. �
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3.1.2 Stability Definitions

In this subsection we introduce the basic notions of stability for local flows F =
(T, X, ϕ) on a metric space (X, d). We assume that T is unbounded to the right
and is either an interval or a discrete additive semigroup of R (typically T = R+ or
T = N).
In order to prove that a given trajectory ϕ(·; t0, x0) : Tt0 → X of a differential or dif-
ference equation is stable we have to show that all the solutions starting sufficiently
close to x0 at time t0 have infinite life span, i.e. do not escape from the domain
of definition in finite time (see Theorem 2.1.14). This is a natural requirement of
stability; a trajectory (with infinite life span) should certainly not be called stable
if a small deviation from the initial state leads to an explosion (finite escape time).

Definition 3.1.6. (Stability of a trajectory). A trajectory t �→ ϕ(t; t0, x),
x ∈ X∞(t0) of a local flow F is said to be stable at time t0 ∈ T if for all ε > 0, there
exists δ = δ(ε, t0) > 0 such that B(x, δ) ⊂ X∞(t0) and for all x0 ∈ B(x, δ)

d(ϕ(t; t0, x
0), ϕ(t; t0, x)) < ε , t ∈ Tt0 . (6)

X

t

B(x, δ)

X

t

ϕ(·; t0, x0)

ϕ(·; t0, x)

B(x, ε)

B(x, ρ)

ϕ(·; t0, x0)

ϕ(·; t0, x)

B(x, ε)

�



� �

�

�

� �

Figure 3.1.3: Stability and asymptotic stability of a trajectory

Definition 3.1.7. (Asymptotic stability of a trajectory). A trajectory t �→
ϕ(t; t0, x), x ∈ X∞(t0) is said to be asymptotically stable at time t0 ∈ T if it is stable
at time t0 and there exists ρ = ρ(t0) > 0 such that B(x, ρ) ⊂ X∞(t0) and for all
x0 ∈ B(x, ρ)

lim
t→∞

d(ϕ(t; t0, x
0), ϕ(t; t0, x)) = 0. (7)

Here and in the following we omit obvious restrictions like “t ∈ Tt0” under the limit.
The trajectory ϕ(t; t0, x

0) is called uniformly stable or uniformly asymptotically stable
if in the previous definitions δ, ρ do not depend on t0 and the limit in (7) is uniform
in t0. If F is time–invariant then (asymptotic) stability implies uniform (asymptotic)
stability.
Now suppose that x is an equilibrium state of a local flow F, i.e. ϕ(t; t0, x) = x for
all t ∈ Tt0 , t0 ∈ T . Then the above definitions specialize to the following.
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Definition 3.1.8. (Stability of an equilibrium state). An equilibrium state x
of a local flow F is stable at time t0 ∈ T if for all ε > 0 there exists δ = δ(ε, t0) such
that B(x, δ) ⊂ X∞(t0) and

x0 ∈ B(x, δ) ⇒ ϕ(t; t0, x
0) ∈ B(x, ε), t ∈ Tt0 . (8)

Definition 3.1.9. (Asymptotic stability of an equilibrium state).

(i) An equilibrium state x of a local flow F is called attractive at time t0 if there
exists ρ = ρ(t0) > 0 such that B(x, ρ) ⊂ X∞(t0) and

x0 ∈ B(x, ρ) ⇒ lim
t→∞

ϕ(t; t0, x
0) = x. (9)

(ii) x is said to be asymptotically stable at time t0, if it is stable and attractive at
time t0.

(iii) If x is attractive the basin of attraction of x at time t0 is given by

A(t0, x) = {x0 ∈ X∞(t0); lim
t→∞

ϕ(t; t0, x
0) = x}. (10)

x is said to be globally attractive at time t0 if A(t0, x) = X.

B(x, δ)

x

B(x, ε) B(x, δ) B(x, ε)

A(t0, x)

�

�

�

�

�

stable asymptotically stable

Figure 3.1.4: Stability and asymptotic stability of an equilibrium point

An equilibrium point x will be unstable at time t0 if either there does not exist δ > 0
such that B(x, δ) ⊂ X∞(t0) or there exists ε > 0 and for every δ > 0, no matter
how small, there exist x0 ∈ B(x, δ) and t ∈ Tt0 such that ϕ(t; t0, x

0) �∈ B(x, ε).

Example 3.1.10. (i) Consider again the time-invariant flow defined by (4). There are
equilibrium points at 0, +1, −1. If x2

0 > 1, then t+(x0) < ∞ for all t0 ∈ R+ and hence both
+1 and −1 are unstable. Whereas if x2

0 < 1 we have |ϕ(t; t0, x0)| ≤ |x0|e−(t−t0)/(1−x2
0)

1/2

and hence the origin is uniformly asymptotically stable with basin of attraction A(0) =
{x ∈ R; |x| < 1}.
For the flow F̃ defined by (5) the origin is asymptotically stable at time t0 ∈ (0,∞) with
basin of attraction A(t0, 0) = {x ∈ R ; |x| < t−1

0 }. Note that both the sets A(t0, 0) and
X∞(t0) contract to {0} as t0 → ∞. Hence the origin is not uniformly attractive.
(ii) The linear scalar system

ẋ =
ġ(t)

g(t)
x , g(t) = t−2+cos t
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defines a flow F = ((0,∞), R, ϕ) with ϕ(t; t0, x0) = g(t)x0/g(t0), t ∈ Tt0 . The origin is
stable and attractive at any time t0 > 0. But it is not uniformly stable since if tk = 2kπ,
t0k = (2k − 1)π, k = 1, 2, . . . then

lim
k→∞

ϕ(tk; t0k, x0) = lim
k→∞

(2kπ)−1x0/((2k − 1)π)−3 = ∞ .

(iii) Consider the time–invariant reversible flow on R
2 \ {(0, 0)} described in polar coordi-

nates by the differential equations

ṙ = r(1 − r), θ̇ = sin2(θ/2).

The flow has one equilibrium state which in Cartesian coordinates is given by x̄ = (1, 0).
It is unstable, yet all trajectories ϕ(t;x0) in R

2 \ {(0, 0)} are attracted by x̄. So x̄ is
an attractive but unstable equilibrium state. Note further that any trajectory ϕ(t;x0)
starting on the unit circle remains on the unit circle and ϕ(t;x0) converges towards x̄ for
t → ∞ and for t → −∞. �

B(x, δ) B(x, ε)

�

�

Unstable Unstable and attractive

Figure 3.1.5: Unstable equilibrium points

For many local flows it is possible to reduce stability considerations of a trajectory
to the corresponding considerations for an equilibrium state. To see how this can
be carried out consider a dynamical system where the state evolution is determined
via the differential equation

ż(t) = f̄(t, z(t), u(t)) , z(t0) = z0 . (11)

For fixed ū(·) ∈ U let the trajectory under consideration be

z̄(t) = ϕ(t; t0, z̄) = ϕ(t; t0, z̄, ū(·)) , t ∈ Tt0 .

Setting z(t) = z̄(t) + x(t) and u(t) = ū(t) in (11), we obtain

ẋ(t) = f̄(t, x(t) + z̄(t), ū(t)) − f̄(t, z̄(t), ū(t)), x(t0) = z0 − z̄. (12)

If we define

f(t, x) = f̄(t, x + z̄(t), ū(t)) − f̄(t, z̄(t), ū(t)) and x0 = z0 − z̄,

then (12) becomes
ẋ(t) = f(t, x(t)), x(t0) = x0 (13)
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where f(t, 0) = 0 for all t ∈ Tt0 . So the origin is an equilibrium state of (13) and
the deviations of the solutions of (11) from the trajectory z̄(·) are identical to the
deviations of the solutions of (13) from the origin. In particular, the trajectory z̄(·)
of the local flow described by (11) is stable (asymptotically stable, unstable) if and
only if the equilibrium point x = 0 of (13) is stable (resp. asymptotically stable,
unstable). Now suppose f̄ is linear in z and u, f̄(t, z, u) = A(t)z + B(t)u then (13)
becomes

ẋ(t) = A(t)x(t) . (14)

Hence the (asymptotic) stability of the origin with respect to the free system (14)
(at time t0) implies the (asymptotic) stability of every trajectory

t �→ ϕ(t; t0, z
0, ū(·)) , z0 ∈ X , ū(·) ∈ U

of the original system ż(t) = A(t)z(t) + B(t)ū(t). A similar statement can easily be
proved for discrete time linear systems. So, by abuse of terminology we will call,
a linear system (asymptotically) stable if the origin is an (asymptotically) stable
equilibrium state with respect to (14). Note, however, that for nonlinear systems
this phraseology is not permissible.

3.1.3 Limit Sets

In this subsection we suppose that F = (T, X, ϕ) is a time–invariant local flow on
a metric space (X, d) with time domain T = R+ or T = N. For such flows we
introduce the concept of a limit point and limit set, prove a theorem which gives
conditions for the limit set to be non-empty and compact, and illustrate the result
by a differential delay example.

Definition 3.1.11 (Limit point and limit set). Let x ∈ X∞. A point y ∈ X is
said to be a limit point of the trajectory ϕ(·; x) if there exists a sequence (tk) in T
satisfying

y = lim
k→∞

ϕ(tk; x) and lim
k→∞

tk = ∞.

The set ω(x) of all limit points of ϕ(·; x) is called the limit set of ϕ(·; x).

Figure 3.1.6: Orbits (light lines) and limit sets (heavy lines)

For every x0 ∈ X we denote by O(x0) the (positive) orbit: O(x0) = {ϕ(t; x0); t ∈
T (x0)}. Then it follows from the continuity condition (LF 3) (see Ex. 4) that

O(x0) = O(x0) ∪ ω(x0), x0 ∈ X∞. (15)
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An equilibrium point x̄ of F is attractive if and only if it belongs to the interior of
X∞ and is the unique limit point of all trajectories starting in a small neighbourhood
of x̄.

Remark 3.1.12. In the qualitative theory of differentiable systems backward limit points
and backward limit sets α(x0) where tk → −∞ are also introduced. Intuitively α(x0) is
where the orbit of x0 is “born” and ω(x0) is where it “dies”. Since we do not suppose F

to be reversible, we will only consider forward limit points and omit this qualification in
the sequel. �

Definition 3.1.13 (Minimal set). A subset M ⊂ X is called minimal for a local
flow if it is non-empty, closed and invariant and does not contain a proper subset
with the same properties.

The simplest minimal sets consist of just one closed orbit. If x0 is an equilibrium
point or a periodic point (i.e. x0 = ϕ(τ ; x0) for some τ > 0) then O(x0) is clearly
minimal. All the minimal sets of the flow shown in Figure 3.1.6 are of this kind. In
fact, equilibrium points and periodic orbits are the only bounded minimal sets of a
differentiable system on R2. This follows from the theorem of Poincaré-Bendixson
which we state here without proof, see Notes and References.

Theorem 3.1.14 (Poincaré-Bendixson Theorem). The limit set of every boun-
ded trajectory of a differentiable flow on the plane R2 either contains an equilibrium
point or is a periodic orbit.

Every closed (i.e. periodic) orbit of a differentiable planar flow is a Jordan curve
and hence encircles a domain which is called its interior. It can be proved that the
interior of every such orbit contains an equilibrium point.

Example 3.1.15. (Limit cycle). Consider the nonlinear differential equation

ẋ1 = x1 − x2 − x1(x
2
1 + x2

2), ẋ2 = x1 + x2 − x2(x
2
1 + x2

2). (16)

x1

x2

Figure 3.1.7: Stable limit cycle

If we introduce polar coordinates x1 = r cos θ, x2 = r sin θ, these equations become

ṙ = r(1 − r2), θ̇ = 1,

with solutions
r(t) =

r0 et√
1 − r2

0(1 − e2t)
, θ(t) = t + θ0.
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Thus r(t) ≡ 1 if r0 = 1, and limt→∞ r(t) = 1 if r0 �= 0. This shows that the unit circle
S1 = {x ∈ R

2;x2
1 + x2

2 = 1} is a periodic orbit of (16) and is the limit set ω(x0) of any
trajectory ϕ(t;x0) with x0 �= 0. Closed orbits which attract all trajectories starting in a
suitable neighbourhood of the orbit are called stable limit cycles. The phase portrait of
(16) is shown in Figure 3.1.7. �

Contrary to the two dimensional case, limit sets of a differentiable system in Rn,
n ≥ 3 may be of a very complex structure (see Example 3.1.27). Nevertheless we
will prove that all the limit sets of bounded differentiable trajectories share two nice
properties of the limit cycle in Figure 3.1.7. They are invariant and connected. In
the following theorem we call a subset S ⊂ X relatively compact in X if its closure
S in X is compact. We say that ϕ(t; x0), x0 ∈ X∞, approaches a set S as t → ∞ if

lim
t→∞

dist(ϕ(t; x0), S) = 0, (17)

where dist is defined by (2.1.15). For any ε > 0, an ε-neighbourhood of S is denoted
by B(S, ε) = {x ∈ X; dist(x, S) < ε}.

Theorem 3.1.16. If an orbit O(x0), x0 ∈ X∞ of a time-invariant local flow F

is relatively compact in X, then the corresponding limit set ω(x0) is non-empty,
compact, weakly invariant and is the smallest closed subset that ϕ(t; x0) approaches
as t → ∞. In the continuous time case ω(x0) is connected.

Proof : Note first that ω(x0) =
⋂

τ∈T Γτ (see Ex. 4) where

Γτ = {ϕ(t; x0); t ∈ Tτ} , τ ∈ T.

So ω(x0) is the intersection of a decreasing family of non-empty compact sets and
hence ω(x0) itself is non-empty and compact.
Now let y ∈ ω(x0) and t ∈ T (y), then there exists a sequence (tk) in T , such that
tk → ∞ and ϕ(tk; x

0) → y as k → ∞. By (LF 2), t ∈ T (ϕ(tk; x
0)) for k sufficiently

large and ϕ(t; ϕ(tk; x
0)) → ϕ(t; y) as k → ∞. But ϕ(t; ϕ(tk; x

0)) = ϕ(t + tk; x
0)

and hence ϕ(t, y) = limk→∞ ϕ(t + tk; x
0) ∈ ω(x0). This proves that ω(x0) is weakly

invariant.
If S is any closed set in X satisfying (17) and y = limk→∞ ϕ(tk; x

0) is any limit point
then y ∈ S; hence ω(x0) ⊂ S. To prove

lim
t→∞

dist(ϕ(t; x0), ω(x0)) = 0,

assume - by way of contradiction - that there exist an ε > 0 and a sequence (tk) in
T such that tk → ∞ as k → ∞ and dist(ϕ(tk; x

0), ω(x0)) ≥ ε for all k ∈ N. Since
the sequence (ϕ(tk; x

0))k∈N
is relatively compact in X, it contains a subsequence

converging to some x∗ ∈ X. But then x∗ ∈ ω(x0) by definition although we have by
assumption dist(x∗, ω(x0)) ≥ ε. This contradiction proves the above equality.
It remains to prove the connectedness result. Suppose T = R+ and assume that
ω(x0) is the union of two disjoint closed non-empty sets Ω1, Ω2. Since Ω1, Ω2 are
compact there exists ε > 0 such that the two open ε-neighbourhoods U1 = B(Ω1, ε)
and U2 = B(Ω2, ε) are disjoint. Since ϕ(t; x0) approaches ω(x0) = Ω1 ∪̇Ω2 as t → ∞
there exists τ ∈ T such that
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ϕ(t; x0) ∈ B(ω(x0), ε) = U1 ∪̇U2, t ∈ (τ,∞).

On the other hand, ω(x0) is the smallest closed set that ϕ(t; x0) approaches as
t → ∞. Hence Ii := {t ∈ (τ,∞); ϕ(t; x0) ∈ Ui}, i = 1, 2 are both non-empty. It
follows that (τ,∞) = I1 ∪̇ I2 is a disjoint union of non-empty open subsets. This is
a contradiction since the interval (τ,∞) is connected. �

Note that the assumption of compactness is indispensable here. This is illustrated
in Figure 3.1.8 where the unboundedness of the trajectory prevents the two limit
lines a, b from joining.

b

a

Figure 3.1.8: Unconnected limit set

Remark 3.1.17. If F is a local flow defined by a time–invariant differential equation
satisfying the conditions of Theorem 2.1.14 on X, X open in K

n, the above theorem is
applicable to any bounded orbit O(x0) whose closure is in X. Then ω(x0) is not only
weakly invariant but is in fact invariant. To see this note that if supT (y) = t+(y) < ∞,
y ∈ ω(x0), then by Theorem 2.1.14 either limt→t+(y) ‖ϕ(t; y)‖Kn = ∞ or there is a sequence
(tk) in T (y) such that tk → t+(y) and ϕ(tk; y) → x∗ ∈ ∂X as k → ∞. Since ϕ(tk; y) ∈
ω(x0) by Theorem 3.1.16 both consequences contradict the fact that ω(x0) ⊂ O(x0) is
compact in X (see also Lemma 3.2.14). �

The comments made in the above remark also hold true for certain classes of infinite
dimensional systems as the following example illustrates.

Example 3.1.18. Let X ⊂ C be an open subset of the Banach space C = C([−h, 0], Rn)
provided with the sup-norm ‖ψ‖ = maxt∈[−h,0]‖ψ(t)‖Rn , and let f : X → R

n be continu-
ously differentiable. Consider the time-invariant retarded differential equation

ẏ(t) = f(yt) , yt0 = ψ (18)

where yt ∈ C, t ≥ 0 denotes the segment s �→ y(t + s), s ∈ [−h, 0] and ψ ∈ X is a given
initial function (cf. Example 2.1.25). For any t0 ∈ R, a continuous function

y(·) : [t0 − h, t1) → R
n, t1 > t0

is called a solution of (18) if y(t0 + t) = ψ(t) for t ∈ [−h, 0], y(·) is differentiable on (t0, t1)
and satisfies ẏ(t) = f(yt) for t ∈ (t0, t1). It is well known that (18) admits a unique
solution y(·; t0, ψ) on some maximal time interval [t0 − h, t+(t0, ψ)). Define

ϕ(t; t0, ψ) = yt(t0, ψ), t ∈ Tt0(ψ) := [t0, t+(t0, ψ)), (t0, ψ) ∈ R × X . (19)

Clearly y(·) : [t0−h, t1) → R
n is a solution of (18) if and only if y(t0+·) : [−h, t1−t0) → R

n

is a solution of (18) with 0 instead of t0. Therefore

ϕ(t; t0, ψ) = ϕ(t − t0; 0, ψ) =: ϕ(t − t0;ψ), t ∈ Tt0(ψ) = t0 + T0(ψ).

Moreover, just as for ordinary differential equations one can prove the following basic
properties [214].



206 3. Stability Theory

(i) If y(t) = y(t; 0, ψ) is a bounded solution on [0, t+(ψ)) (where t+(ψ) := t+(0, ψ)) and
the closure of the orbit O(ψ) in C is contained in X then t+(ψ) = ∞.

(ii) If ψ ∈ X, t < t+(ψ) then (tk, ψk) → (t, ψ) implies tk < t+(ψk) for all k sufficiently
large and ϕ(tk;ψk) → ϕ(t;ψ) as k → ∞.

As a consequence we see that F = (R+,X, ϕ) is a time–invariant local flow.
Now let us assume that f maps closed bounded subsets of X into bounded sets of R

n and
consider a bounded trajectory y(t) = y(t; 0, ψ) satisfying O(ψ) ⊂ X. Then by property
(i) ψ ∈ X∞. In order to apply Theorem 3.1.16 we have to show that O(ψ) is relatively
compact in X, i.e. O(ψ) ⊂ X is compact in C. Let c be an upper bound of ‖f(yt)‖Rn ,
t ≥ 0, then

‖y(t′) − y(t)‖ = ‖
∫ t′

t
f(ys) ds‖ ≤ c|t′ − t| , t, t′ ≥ 0 .

Since y0 = ψ is uniformly continuous on [−h, 0] it follows that O(ψ) = {yt; t ≥ 0} ⊂ C is
equicontinuous at each point s ∈ [−h, 0] : For any ε > 0 there exists δ > 0 such that for
all s′ ∈ [−h, 0], |s′ − s| < δ, we have

‖yt(s
′) − yt(s)‖ = ‖y(t + s′) − y(t + s)‖ < ε , t ∈ R+ .

By the theorem of Arzela–Ascoli any bounded and equicontinuous subset of C is relatively
compact. So the conditions of Theorem 3.1.16 are satisfied. Applying this theorem, for
any x ∈ ω(ψ) we have ϕ(t;x) ∈ ω(ψ) ⊂ O(ψ) for all t ∈ T (x), and so T (x) = R+ by
property (i). Concluding we have: if y(·, ψ) is a bounded trajectory satisfying O(ψ) ⊂ X

then the limit set ω(ψ) of t �→ yt(ψ) is a non-empty, compact, connected, invariant subset
of C such that yt(ψ) → ω(ψ) as t → ∞. �

3.1.4 Recurrence

We continue our development of time-invariant flows but now we make the further
assumption that we have a global flow F = (T, X, ϕ) so that T (x) = T = R+ or
N for all x ∈ X. An important classification of orbits is based on the relation be-
tween the initial point x0 and the corresponding limit set ω(x0). Various concepts
of “recurrence” or “almost periodicity” are used in the literature to describe the
(approximate) return of a trajectory to its initial state as t → ∞. In this subsection
we first define the concept of a wandering point and prove a theorem due to Poincaré
which gives conditions for the set of non-wandering points to be X. Then we in-
troduce the notion of a recurrent point and prove Birkhoff’s Recurrence Theorem
which characterizes compact minimal sets in terms of recurrent points. Finally we
give an example of a discrete time rational system on the plane which illustrates
some of the ideas.
A point x0 is called wandering if the trajectories which start near x0 move uniformly
away from their origins as t → ∞. More precisely

Definition 3.1.19 (Wandering, non–wandering). A point x0 ∈ X is said to be
a wandering point for F if there exists a neighbourhood U of x0 and τ ∈ T such that
U ∩ Ut = ∅ for all t ∈ Tτ , where

Ut = ϕ(t; U) = {ϕ(t; x); x ∈ U}. (20)
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(a) wandering (b) non–wandering

U

	

U



x0

Ut

�
Ut

�

Figure 3.1.9: Wandering and non–wandering sets

Otherwise x0 is called non–wandering . The set of non–wandering points is denoted
by Ω (F).

If x0 is a wandering point in a state space of bounded volume, it is intuitively clear
that the volumes of the moving neighbourhoods Ut must contract as t → ∞. To
make this precise, let X be an open set in Rn and λ be the Lebesgue measure on
Rn. A flow F on X is said to be volume preserving if λ(Ut) = λ(U) for all open
subsets U in X and t ∈ T .

t t

Figure 3.1.10: Volume preserving and volume contracting flows

If F is described by a difference equation of the time–invariant form of (2), this is
equivalent to

λ(f(U)) = λ(U), U ⊂ X open. (21)

A differentiable system of the time–invariant form of (3) is volume preserving if and
only if

div f(x) =
n∑

i=1

∂fi

∂xi

(x) = 0 , x ∈ X. (22)

In fact, by Liouville’s Theorem (see Arnold (1978) [18]), div f determines the rate
of volume expansion due to the corresponding flow

d

dt
(λ(Ut)) =

∫
Ut

div f(x) dx. (23)
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Theorem 3.1.20 (Poincaré’s Recurrence Theorem). Suppose that F = (T, X, ϕ)
is a global, time–invariant, volume preserving flow on an open set X ⊂ Rn of finite
measure λ(X) < ∞. Then Ω (F) = X.

Proof : Let x0 be any point in X, V an open neighbourhood of x0 and τ ∈ N∗.
Then there exist t1, t2 ∈ N, t2 − t1 ≥ τ such that λ(Vt1 ∩ Vt2) > 0 since otherwise
λ(X) ≥ ∑

k∈N
λ(Vkτ ) = ∞. Let W = Vt1 ∩ Vt2 and Wi = {x ∈ X; ϕ(ti; x) ∈ W}.

Then W ⊃ (Wi)ti
⊃ (Wi ∩ V )ti

⊃ W and hence λ(Wi) = λ(Wi ∩ V ) = λ(W ) > 0,
i = 1, 2. To prove that x0 is non–wandering it suffices to show that V ∩ Vt2−t1 �= ∅.
Now suppose V ∩ Vt2−t1 = ∅. Then (V ∩ W1) ∩ (W2 ∩ V )t2−t1 = ∅. So

λ(W1) + λ(W2) = λ(W1 ∩ V ) + λ ((W2 ∩ V )t2−t1) = λ ((W1 ∩ V ) ∪ (W2 ∩ V )t2−t1)

≤ λ(W1),

since (W2)t2−t1 ⊂ W1. Hence we have a contradiction. �

The following proposition shows that the dynamics of a system is ultimately con-
centrated on the set of all its non–wandering points; all limit sets and in particular
all equilibrium points, periodic and recurrent orbits lie in Ω (F).

Proposition 3.1.21. Suppose that F = (T, X, ϕ) is a global, time–invariant flow.
Then the set Ω (F) of non–wandering points of F is closed, invariant and contains
all the limit sets ω(x), x ∈ X of trajectories of F.

Proof : x ∈ Ω (F) if and only if for every neighbourhood U of x and every τ ∈ T
there exists t ∈ Tτ , such that Ut ∩ U �= ∅. Hence Ω (F) is closed. In order to prove
ϕ(t; x0) ∈ Ω (F) for all x0 ∈ Ω (F), t ∈ T , let V be a neighbourhood of ϕ(t; x0)
and τ ∈ T . By continuity of ϕ(t; ·) there exists a neighbourhood U of x0 such that
Ut ⊂ V . Since x0 is non–wandering there is t1 ∈ Tτ , satisfying Ut1 ∩ U �= ∅, hence

Vt1 ∩ V ⊃ Ut+t1 ∩ Ut ⊃ (Ut1 ∩ U)t �= ∅

and so ϕ(t; x0) ∈ Ω (F). Finally, let z ∈ ω(x), x ∈ X and tk → ∞, tk+1 ≥ tk such
that ϕ(tk; x) → z as k → ∞. If U is any neighbourhood of z then there exists
k0 ∈ N satisfying ϕ(tk; x) ∈ U , for k ≥ k0, hence ϕ(tk; x) = ϕ(tk − tk0; ϕ(tk0 ; x)) ∈
U ∩ Utk−tk0

�= ∅ for k ≥ k0. �

“Non–wandering” is a very weak concept of recurrence (compare Figure 3.1.9(b)).
A stronger recurrence concept requires that the trajectory ϕ(t; x0) itself - not only
the moving neighbourhoods Ut (20) - returns arbitrarily close to x0 as t → ∞. Then
x0 is called (positively) Poisson stable. This recurrence condition can be expressed
in terms of the limit set ω(x0) in three equivalent ways (see Ex. 12)

x0 ∈ ω(x0) or ϕ(t; x0) ∈ ω(x0), t ∈ T or O(x0) = ω(x0). (24)

An even stronger condition is formulated in the next definition where it is required
that the trajectory ϕ(t; x0) returns to any neighbourhood U of x0 at least once in
every period of length τ(U), where τ(U) is chosen suitably large.
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Definition 3.1.22 (Recurrent point). A point x0 ∈ X is said to be recurrent for
a time–invariant global flow F if for any neighbourhood U of x0 there exist τ(U) > 0
and an increasing sequence (tk)k∈N in T such that

ϕ(tk, x
0) ∈ U and tk+1 − tk < τ(U), k ∈ N, lim

k→∞
tk = ∞. (25)

A recurrent point x0 clearly satisfies condition (24). In Figure 3.1.9(b) the non–
wandering point x0 does not satisfy (24) hence it is not recurrent. Another example
of a non–wandering point which is not recurrent can be found in Example 3.1.24.
The next theorem, due to Birkhoff, characterizes compact minimal sets as the limit
sets of recurrent points with relatively compact trajectories.

Theorem 3.1.23 (Birkhoff’s Recurrence Theorem). Suppose that F = (T, X, ϕ)
is a global, time–invariant flow. Then

(i) if M ⊂ X is a compact minimal set for F and x ∈ M , then x is recurrent and
ω(x) = M .

(ii) If x is recurrent and ω(x) is compact, then M = ω(x) is minimal.

Proof : (i) Suppose that M is compact and minimal for F. If x ∈ M , we have
ω(x) ⊂ M is non–empty, invariant and compact by Theorem 3.1.16, and so ω(x) =
M follows from Definition 3.1.13. If x ∈ M were not recurrent there would exist an
open neighbourhood U of x and an increasing sequence (tk) in T such that

ϕ(t; x) �∈ U for all t ∈ T ∩ [tk, tk + k]. (26)

Let x0 be the limit of a convergent subsequence of ϕ(tk; x). Then, for any t ∈
T , ϕ(t; x0) is the limit of a convergent subsequence of ϕ(t + tk; x). But by (26)
ϕ(t + tk; x) = ϕ(t; ϕ(tk, x)) �∈ U for all k ∈ N sufficiently large and since U is
open this implies ϕ(t; x0) �∈ U . Hence O(x0) ∩ U = ∅, but this would contradict
ω(x0) = M . Thus x is recurrent.
(ii) Now suppose that x is recurrent and ω(x) is compact. By Theorem 3.1.16, ω(x)
is invariant. Let M ⊂ ω(x) be a non-empty closed invariant set. We have to show
M = ω(x). This is clear if x ∈ M . If x �∈ M there exist open ε-neighbourhoods U
of x and V of M in X such that U ∩ V = ∅. Choose any x0 ∈ M and (tk) in T such
that tk → ∞ and ϕ(tk; x) → x0 as k → ∞. By continuity, ϕ(t; ϕ(tk; x)) → ϕ(t, x0)
uniformly in t ∈ [0, τ ] ∩ T , for all τ ∈ N. Since ϕ(t; x0) ∈ M for all t ∈ T there
exists for each τ ∈ N a Nτ ∈ N such that ϕ(t; ϕ(tk; x)) = ϕ(t + tk; x) �∈ U for all
t ∈ T ∩ [0, τ ], k ≥ Nτ . But this contradicts the assumption that x is recurrent. �

The following example illustrates the dichotomy of wandering and non–wandering
points for a seemingly simple class of two-dimensional discrete time systems.

Example 3.1.24. (Rational systems in the plane). Let f(z) = p(z)/q(z) ∈ C(z)
be any complex rational function with deg p+deg q ≥ 2. The nonlinear difference equation

z(t + 1) = f(z(t)) , t ∈ N (27)

defines a time–invariant, discrete time, global flow F on the compactified complex plane
C = C ∪ {∞} which we endow with the metric of the Riemannian sphere S2 ∼= C. f is
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said to be normal at z0 ∈ C if there exists a neighbourhood U of z0 such that the family
of maps

z �→ ϕ(t; z) = f t(z), t ∈ N, is equicontinuous on U . (28)

The set J of all points in C where f is not normal is called the Julia set of f , in honour
of G. Julia (1918) [282] who established the following properties of J

(i) J is a non-empty closed invariant set and for any neighbourhood U of a point z ∈ J

there exists a number k ∈ N such that fk(U ∩ J) = J .

(ii) If z0 ∈ C is an attractive equilibrium point of F then the boundary of the corre-
sponding domain of attraction ∂A(z0) is equal to J .

(iii) The periodic points in J are dense in J .

It follows from (i) that every point in J is non–wandering, i.e. J ⊂ Ω (F). The motion
in J is “turbulent–like” in the following sense: If the initial state z0 is only known up to
finite precision then the trajectory ϕ(t; z0) = f t(z0) becomes unpredictable in finite time,
i.e. ϕ(t; z0) may be anywhere in J for t ≥ k ! 1.
For illustrative purposes we shall now analyze one of the simplest systems of this kind

z(t + 1) = z(t)2 , t ∈ N. (29)

In particular, we will verify the above facts (i) – (iii) for this example. The system has
three equilibrium points in C, z1 = 0, z2 = ∞ and z3 = 1. Obviously z1 and z2 are
asymptotically stable with domains of attraction

A(0) = {z ∈ C; |z| < 1} and A(∞) = {z ∈ C; |z| > 1}.

The boundaries of these basins are in fact identical, in accordance with (ii). Moreover it
is not difficult to prove that f(z) = z2 is normal at z ∈ C if and only if |z| �= 1. Hence
J = {z ∈ C; |z| = 1} = ∂A(0) = ∂A(∞) and this concludes the verification of (ii).
All the points in A(0) \ {0} and in A(∞) \ {∞} are wandering (converging to 0 and ∞
respectively) and so Ω (F) = J ∪ {0,∞}.
Whereas the asymptotic dynamics of F on the invariant open sets A(0) and A(∞) are
simple (convergence towards an attracting fixed point) the dynamics on J are quite com-
plicated. To see this we parametrize the points in J by z = e2πiθ, 0 ≤ θ < 1 and identify
θ =

∑∞
k=1 θk2

−k (dyadic expansion) with (θ1, θ2, θ3, . . .). Then the flow F on J can equiv-
alently be described by the equation

θ(t + 1) = Sθ(t),

where S : (θ1, θ2, θ3, . . .) �→ (θ2, θ3, θ4, . . .) is the left shift on the space Θ of all 0-1-
sequences with the identification (0, 0, 0, . . .) = (1, 1, 1, . . .). It is now easy to verify (i).
Let z = e2πiθ be any point in J and U an arbitrary neighbourhood of z. There exists
k ∈ N such that U contains all z′ = e2πiθ′ for which the first k digits of θ′ and θ coincide.
As a consequence we obtain fk(U ∩ J) = J .
Finally let us verify (iii). z = e2πiθ ∈ J is periodic with period τ ∈ N

∗ if and only if
z2τ = z, i.e. z2τ−1 = 1 or, equivalently, the dyadic expansion of θ is periodic after 2τ − 1
digits. It follows that the set of periodic points in J is dense in J . Note that not all the
points in J are recurrent. In fact, z = e2πiθ is recurrent if and only if for every k ∈ N

∗

there exists τ(k) ∈ N such that the block of the first k binary digits of θ recurs at least
once every τ(k) digits in the dyadic expansion of θ. Hence z = e2πiθ with θ =

∑∞
k=1 2−k!



3.1 General Definitions 211

is not recurrent. However, it can be shown that almost all points z ∈ J (in the sense of
the Lebesgue measure on the unit circle) are recurrent. Moreover it can be shown that F

is ergodic on J in the sense that - modulo zero sets - the only non-empty invariant subset
of J is J .
By continuity the chaotic dynamics on J communicates itself to a close neighbourhood of
J although the turbulent–like behaviour near to J is transient and dies out (with respect
to the standard metric of C ∼= S2) as t → ∞. In fact we know that for |z0| �= 1 and t

sufficiently large ϕ(t; z0) = f t(z0) is either close to 0 or ∞ on C ∼= S2. �

3.1.5 Attractors

To describe the asymptotic behaviour of more complicated systems the stability
concepts introduced in Definitions 3.1.8 and 3.1.9 for equilibrium states have to be
extended to arbitrary closed invariant subsets of the state space. In keeping with
our usual philosophy we give these definitions for general (possibly) time–varying
local flows F = (T, X, ϕ).

Definition 3.1.25 (Stable attractor). (i) A closed subset Ω ⊂ X is said to be
stable at time t0 if for every neighbourhood W of Ω there exists a neighbour-
hood V of Ω such that V ⊂ X∞(t0) and, for each x0 ∈ V , ϕ(t; t0, x

0) ∈ W for
all t ∈ Tt0 .

(ii) A closed subset Ω ⊂ X is called an attractor at time t0 if there exists a
neighbourhood V of Ω such that V ⊂ X∞(t0) and ϕ(t; t0, x

0) → Ω as t → ∞
for every x0 ∈ V .

(iii) The basin of attraction of an attractor Ω at time t0 is given by

A(t0, Ω) = {x ∈ X∞(t0); ϕ(t; t0, x) → Ω as t → ∞}.

Example 3.1.15 presents a 2-dimensional differential system whose asymptotic be-
haviour is determined by a limit cycle Ω encircling an unstable equilibrium point.
The corresponding basin of attraction of Ω is the whole plane punctured at x = 0.
The following example shows that, for two-dimensional discrete time systems, the
simplest attractors may have extremely complicated basins of attraction.

Example 3.1.26. (Cayley’s problem). If Newton’s method is applied to find the
complex roots of a polynomial p(z) = (z − λ1) · · · (z − λn), one obtains a discrete time
rational system on the complex plane described by

z(t + 1) = z(t) − p(z(t))

p′(z(t))
, t ∈ N . (30)

For a starting value z(0) sufficiently close to a root λi the corresponding sequence z(t) =
ϕ(t; z(0)) converges to λi. Hence the roots λ1, . . . , λn of p(z) are attractors of the system
(30). Cayley raised the problem of determining the basins of attraction of these roots. He
treated the quadratic case, but noted that the calculations for the cubic case appeared to
be much more complicated. That this is indeed the case follows from the discoveries of
Julia (1918) reported in Example 3.1.24. In the cubic case the system (30) has in general
three attractors λ1, λ2, λ3 and the corresponding three basins of attraction must all have
the same boundary J in C. It is not easy to construct three sets in C with this property
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Figure 3.1.11: Basin of the attractor λ1 = 1 of (30) with p(z) = z3 − 1 in the region

|Re z| ≤ 1, | Im z| ≤ 1

(try to colour the plane such that wherever two colours meet the third is present as well).
The basin of attraction corresponding to the root 1 of p(z) = z3 − 1 is shown in black in
Figure 3.1.11. The basin consists of infinitely many connected components. �

The Poincaré-Bendixson Theorem ensures that in two dimensions the only compact
minimal attractors of a differentiable system are equilibrium points and limit cycles.
In higher dimensions much more is possible. In 1963 Lorenz [346] found what is
probably the first example of a “strange attractor”.

Example 3.1.27. (Lorenz attractor). If a fluid cell is heated from below and cooled
from above the resulting convective motion in cross section can be modelled by partial
differential equations. Lorenz expanded the solutions into an infinite number of modes.
Setting all but three of them equal to zero he obtained the following system of ordinary
differential equations

ẋ(t) = σ(y(t) − x(t))

ẏ(t) = rx(t) − y(t) − x(t)z(t) (31)

ż(t) = x(t)y(t) − bz(t)

where σ, r and b are (positive) physical parameters. Roughly speaking, x measures the
rate of convective overturning and y, z the horizontal and vertical temperature variations.
Figure 3.1.12 shows the projection onto the x, z plane of one computed solution of (31)
when σ = 10, b = 8/3, r = 28. (Crossings are the result of projection). It is noteworthy
that the general form of the figure does not depend upon the choice of initial conditions
(provided that initial transient sections of the trajectory are ignored). On the other hand,
the details of the figure, e.g. the exact sequence of loops which the trajectory performs,
depend crucially on the initial condition (and the integration procedure chosen). As a
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consequence it is not possible to predict how an individual trajectory will develop over
any longer time interval. Extensive numerical experiments seem to indicate that the “final
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Figure 3.1.12: Trajectory of Lorenz equation

motions” of the Lorenz system are governed by a strange attractor whose projection is
roughly the shape shown in Figure 3.1.12, the Lorenz attractor. Lorenz (1963) [346] proved
that there is a bounded invariant ellipsoid E0 ⊂ R

3 into which all trajectories eventually
enter. Moreover, the divergence of the vector field (x, y, z) �→ (σ(y−x), rx−y−xz, xy−bz)
is a negative constant −(σ + b + 1) on R

3. Thus the Lorenz flow is volume contracting.
We conclude that the set Ω (F) of non–wandering points of (31) is a compact invariant set
of Lebesgue measure zero. �

One of the most useful tools for determining (approximately) the locus of an attractor
and its basin of attraction are Liapunov functions. An introduction to this method
will be given in the next section. In particular we will see how the ellipsoid E0 in
the last example can be obtained via a Liapunov function (see Example 3.2.33).

3.1.6 Exercises

1. Let x be an equilibrium state of F. Suppose that for every K > 0, ε > 0 there exists a
point x0 and some time t ∈ T such that d(x0, x) < ε and d(ϕ(t;x0), x) > Kd(x0, x). Does
this imply that x is unstable?

2. A function V : G → R is said to be a first integral of the differential equation ẋ(t) =
f(t, x(t)) if V is constant along every solution, i.e. V (ϕ(t;x0)) ≡ V (x0). Find a first
integral of the differential system ÿ + y3 = 0. Sketch its phase portrait and analyze the
stability of its equilibrium state.

3. (Properties of Invariant Sets) Given a time–invariant global flow F = (R+,X, ϕ), prove

(i) the union and intersection of invariant sets are invariant.
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(ii) Each subset E ⊂ X contains a largest invariant subset M . M is the union of all orbits
O(x0) remaining in E.

(iii) The closure of an invariant set is invariant. If F is reversible (i.e. ϕ is defined and
satisfies (LF1) – (LF2) on T 2 × X) then the interior of an invariant set is invariant
(if non-empty).

(iv) A set S ⊂ X is invariant if and only if each of its connected components is invariant.

(v) If K ⊂ X is compact and invariant then K contains a minimal set.

(vi) Every minimal set is connected.

4. (Properties of Limit Sets) Given a time–invariant global flow F = (R+,X, ϕ), prove

(i) ω(x0) =
⋂

τ∈T0
{ϕ(t;x0); t ∈ T, t ≥ τ},

(ii) ω(x0) is closed and invariant,

(iii) O(x0) = O(x0) ∪ ω(x0) is invariant.

5. Prove the following discrete time counterpart of the connectedness statement in The-
orem 3.1.16: Given a global flow (N,X, ϕ) on a metric space X and an x0 ∈ X which has
a relatively compact orbit in X, then the (non-empty, compact, invariant) limit set ω(x0)
is invariantly connected, i.e. it is not the disjoint union of two non-empty closed invariant
sets.

6. Prove: A non-empty set S ⊂ X∞ is minimal (with respect to a given time–invariant
local flow F) if and only if O(x) = S for all x ∈ S.

7. (Equilibrium States) Given a local flow F on X. Prove

(i) if ϕ(t;x0) �= x0 then there exists a neighbourhood U of x0 such that U ∩ Ut = ∅.
(ii) The set of all equilibrium points in X is closed in X∞.

(iii) If ϕ(t;x) → y as t → ∞ then y is an equilibrium point.

(Bhatia and Szegö (1970), pp. 16 [54]).

8. Consider the flow described in Example 3.1.10 (iii) and prove the assertions made
there. In particular, show that x is an attractive but unstable equilibrium point. Compute
a phase portrait of the flow on the rectangle [−2, 2] × [−2, 2].

9. Consider the system on R
2 \ {0} described in polar coordinates by

θ̇ = sin2 θ + (1 − r)2, ṙ = r(1 − r).

If ω(r0, θ0) is the limit set of a solution initialized at (r0, θ0) show that ω(r0, θ0) = {r :
r = 1} if r0 �= 1. Prove that the orbits on r = 1 consist of the equilibrium points {θ = 0},
{θ = π} and the arcs of the circle {θ : 0 < θ < π}, {θ : π < θ < 2π} and show that the
minimal sets on this circle are {θ = 0}, {θ = π}. (Hale (1969), pp. 48 [212]).

10. (Periodic Points) Given a time–invariant global flow F, prove

(i) if x ∈ X is periodic (i.e. generates a periodic orbit) then O(x) is a minimal set.

(ii) If x ∈ X is periodic but not an equilibrium point then there is τ ∈ T such that τ is
the smallest period of x (fundamental period). Moreover, if ϕ(t;x) = x then t = kτ

for some k ∈ N.
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(iii) If (xk) is a sequence of periodic points with periods τk → 0 and xk → x as k → ∞
then x is an equilibrium point.

(iv) Given any ρ > 0 then the set of all x ∈ X∞ which are periodic with period τ ≤ ρ is
closed.

(Bhatia and Szegö (1970), pp. 18 [54]).

11. Prove that x ∈ X∞ is a periodic point for a time-invariant local flow F = (T,X,ϕ) if
and only if O(x) = ω(x). (Bhatia and Szegö (1970), pp. 32 [54]).

12. Prove the equivalence of the three conditions for Poisson stability in (24).

13.∗ Prove that if F is a global flow on a complete metric space X then the Poisson stable
points are dense in the set Ω (F) of non–wandering points of F (Bhatia and Szegö (1970),
pp. 36 [54]).

14. Consider the discrete time system z(t + 1) = f(z(t)) where f(z) = z2 on C, see
Example 3.1.24. Prove that if z̃ ∈ J then J = {z ∈ C; f t(z) = z̃ for some t ∈ N}.

15. Case study: Stability to Chaos. The population growth of a single species can some-
times be modelled (see Example 1.1.1) by a discrete time logistic equation of the form

N(t + 1) = N(t)[1 + r(1 − N(t)/K)] , t ∈ N (32)

where N denotes the population size of the species, r is the growth rate and K is the
carrying capacity for the population. Show that if N = K(1 + r)x/r, then equation (32)
is transformed into

x(t + 1) = ax(t)(1 − x(t)) , where a = 1 + r. (33)

(i) Prove that if a ∈ [0, 4] and x(0) ∈ I := [0, 1], then x(t) ∈ I for all t ∈ N. Show that
there are two equilibrium states x = 0 and x = 1 − 1/a and that for a ∈ (1, 3) the
former is unstable whilst the latter is asymptotically stable.

(ii) If a > 3 show that there is a periodic orbit of period 2. Take a value of a ∈ (1, 1+
√

6)
and compute the solution of (33) for t ∈ [0, 100] and a variety of initial states x0.
Does this suggest that the periodic orbit is the limit set ω(x0) for all x0 ∈ (0, 1)?

(iii) Show that if a > 1 +
√

6 there is a periodic orbit of period 4. By computational
studies determine a value of a for which this periodic orbit is not the limit set ω(x0)
for a variety of initial states x0 ∈ (0, 1).

(iv) Take a value of a > 3.57 and compute the solution for t ∈ [0, 1000] and a variety of
initial states x0 ∈ (0, 1).

(Li and Yorke (1975) [343], May (1976) [367]).

3.1.7 Notes and References

Liapunov (1893) [354] was the first to define the concept of stability in a precise way.

His stability theory dealt with the local properties of finite dimensional differentiable sys-

tems. Poincaré was mainly interested in global properties of planar systems. Many of

the basic concepts and ideas of the qualitative theory of differential equations originate

from his pioneering work (Poincaré (1892/99) [415]). Another landmark in the history

of classical dynamical systems theory was the monograph of Birkhoff (1927) [61] which
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strongly influenced research in the 1930’s and 1940’s. A standard reference for the major

developments in the qualitative theory up to the mid 1940’s is Nemytskii and Stepanov

(English translation, 1960) [389].

A proof of Theorem 3.1.3 can be found in standard references on ordinary differential

equations such as Hale (1980) [214]. As a first introduction to geometric or qualitative

aspects of differential equations we recommend Arnold (1978) [19]. Excellent advanced

textbooks are Arnold (1983) [20] and Palis and De Melo (1982) [404]. A comprehensive

compendium emphasizing Hamiltonian systems and applications to classical mechanics is

Abraham and Marsden (1978) [1]. Topological aspects of dynamical systems on metric

spaces are studied in Bhatia and Szegö (1970) [54].

Formal definitions of the notions of recurrence, limit point and minimal set go back to

Birkhoff and have been central concepts of topological dynamics ever since. For further

information, see Sell (1971) [457]. Details of Poincaré-Bendixson theory may be found in

the classical texts of Hirsch and Smale (1974) [258], Hartman (1982) [217], Hale (1980)

[214], Palis and De Melo (1982) [404]. A good more recent reference text is Perko (2001)

[408].

Under certain conditions the non-wandering set of a differentiable system can be decom-

posed into a finite number of closed, connected invariant sets each of which contains a

dense orbit (Spectral Decomposition Theorem, Smale (1967) [467]). These basic sets play

the same fundamental role in differentiable dynamics as minimal sets play in topological

dynamics, see Abraham and Marsden (1978) [1].

The iteration of rational maps on the plane was first analyzed systematically by Julia

(1918) [282] and Fatou (1919/20) [160]. A nicely illustrated tutorial exposition of their

findings can be found in Peitgen et al. (1984) [407]. Cayley’s problem (Example 3.1.26)

was first formulated in Cayley (1879) [94] and treated for p(z) = z2 − 1 in Cayley (1890)

[95]. For details of the Lorenz attractor (Example 3.1.27) see Sparrow (1982) [475]. A

first introduction to “chaotic systems” is Devaney (1989) [131], and more comprehensive

treatments are Arrowsmith and Place (1990) [22], Katok and Hasselblatt (1995) [295] and

Alligood et al. (1997) [10].
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3.2 Liapunov’s Direct Method

The stability concepts we introduced in the first section have been defined in terms
of the state transition map ϕ of a local flow F. However, to determine ϕ(t; t0, x

0)
one must solve the equations of motion of the system. Hence a direct verification
of stability properties is only possible if an explicit formula for the solution is avail-
able for every initial pair (t0, x

0). In practice this will rarely be the case unless the
system is linear. Liapunov developed two methods to cope with this dilemma. One
natural idea is to use linearizations for the stability analysis of nonlinear systems
(Liapunov’s indirect method). This is a practical and efficient procedure which we
describe in detail in Section 3.3. However, a serious drawback is that it only yields
local information and does not give estimates for the basin of attraction. In this sec-
tion we describe Liapunov’s second method, often referred to as the direct method.
It is applicable in situations of “marginal stability” where the linearization method
does not work and in addition it also enables one to obtain estimates for the basin of
attraction. Some of the results obtained by Liapunov’s direct method will be used
in Section 3.3 to develop the indirect method.
We begin by describing the basic idea of the direct method. A general concept of a
Liapunov function is defined for any flow on a metric space and used to prove a very
general stability criterion. This stability result is complemented by an instability
theorem of similar generality. In the second subsection we characterize Liapunov
functions for time-varying finite dimensional differential or difference systems by lo-
cal properties which can be checked directly, without solving the system equations.
This allows us to derive verifiable sufficient criteria for stability, uniform asymp-
totic stability, exponential stability and instability. Counterparts to these results
for time-invariant systems are presented in the third subsection. Moreover we prove
LaSalle’s Invariance Principle and describe how Liapunov functions can be used to
obtain estimates for basin of attraction. It is shown that these results are powerful
tools for the stability analysis not only of equilibrium points but also of periodic
orbits and more complicated compact invariant sets.
Throughout the section discrete and continuous time systems are considered simul-
taneously and the results are illustrated by examples of dynamical models from a
range of areas of application.

3.2.1 General Definitions and Results

Liapunov’s direct method was inspired by the use of energy functions in analyzing
dynamical systems of classical mechanics. In order to illustrate the idea let us con-
sider a time-invariant conservative mechanical system having n degrees of freedom.
Its state is described by n generalized position coordinates q1, q2, . . . , qn and n gen-
eralized momentum coordinates p1, p2, . . . , pn.
We assume that the kinetic energy of the system T is a positive definite quadratic
form in p = (p1, . . . , pn), whereas the potential energy W depends only on the
generalized position vector q = (q1, . . . , qn). The Hamiltonian H(q, p) (see Subsec-
tion 1.3.3) is given by

H(q, p) = W(q) + T (p) , (q, p) ∈ R
2n (1)
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and represents for every state (q, p) ∈ R2n the corresponding total energy of the
system. Assuming that q �→ W(q) is continuously differentiable, the equations of
motion are

q̇(t) =
∂H

∂p
(q(t), p(t)) , ṗ(t) = −∂H

∂q
(q(t), p(t)). (2)

Thus a state (q̄, p̄) is an equilibrium state if and only if all the partial derivatives of
H vanish at (q̄, p̄), i.e. q̄ is a critical point of W and p̄ = 0.
Now suppose that the potential energy has a strict local minimum at q̄. Then there
exists a small open neighbourhood D of the equilibrium point (q̄, 0) in R2n such that
the sublevel sets

Dε = {(q, p) ∈ D; H(q, p) < H(q̄, 0) + ε}, ε > 0

contract to (q̄, 0) as ε → 0. We choose ε > 0 sufficiently small so that Dε ⊂ D.
If the system is slightly perturbed from the equilibrium (q̄, 0) at time t = 0, so
that (q(0), p(0)) �= (q̄, 0), then H(q(0), p(0)) > H(q̄, 0), i.e. the initial total energy is
above the total energy of the system at the equilibrium point. But

dH

dt
(q(t), p(t)) =

∂H

∂q
(q(t), p(t))q̇(t) +

∂H

∂p
(q(t), p(t))ṗ(t) ≡ 0. (3)

So the total energy is conserved and the state (q(t), p(t)) remains in the set of
constant energy H(q(t), p(t)) = H(q(0), p(0)). In particular (q(t), p(t)) does not
return to the equilibrium point (q̄, 0) as t → ∞. So (q̄, 0) is not asymptotically
stable. On the other hand, the sublevel sets Dε ⊂ Dε ⊂ D are invariant because
H(q(t), p(t)) ≡ H(q(0), p(0)), t ≥ 0 and a trajectory (q(t), p(t)) starting in Dε

cannot jump out of D, by continuity. Since Dε contracts to (q̄, 0) as ε → 0, we
conclude that the equilibrium point (q̄, 0) of the conservative mechanical system is
(marginally) stable.
In 1893 Liapunov realized that this method of analyzing the stability of mechanical
systems could also be applied to arbitrary differential systems. This proved to be an
extremely productive idea. Let x be an equilibrium point of a differential system. He
showed in his PhD thesis [354] that any continuous real valued function V defined
on some neighbourhood D of x could be used as an energy-type function to deduce
stability, provided that it enjoys the following two properties

• V (x) has a unique minimum in D at x.

• V (ϕ(t)) decreases monotonically along every system trajectory ϕ(t) contained
in D.

The first property implies that the sublevel sets Dε = {x ∈ D; V (x) < ε} contract
to x as ε → 0. The second property is used to show (Figure 3.2.1) that the sublevel
sets are invariant under the system’s flow. From these two implications stability is
deduced.
Throughout this subsection we assume that F = (T, X, ϕ) is a local flow on a metric
state space (X, d) with time domain T , an interval in R or Z which is unbounded to
the right. For every (t0, x

0) ∈ T ×X, t �→ ϕ(t; t0, x
0), t ∈ Tt0(x

0) is a state trajectory
of F (see Definition 3.1.1). In order to explain the simple logic behind Liapunov’s
idea and to emphasize its wide applicability we will give a general definition of a
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V (·)

V (ϕ(·))

ϕ(·) D
�



�

Figure 3.2.1: Liapunov function

Liapunov function which applies to discrete as well as to continuous time systems,
to infinite dimensional systems as well as to systems on manifolds. But before we
give the formal definition we introduce the following classes of comparison functions
which are often used for obtaining estimates of solutions in stability analysis.

Definition 3.2.1. Let 0 < r1 ≤ ∞. A function α : [0, r1) → R+ is said to be

(i) of class K if α(·) is monotonically increasing on [0, r1), α(r) > 0 for r ∈ (0, r1)
and limr↘0 α(r) = 0,

(ii) of class K∞ if additionally r1 = ∞ and limr→∞ α(r) = ∞.

A function β : R+ × [0, r1) → R+ is said to be of class LK if for each t ∈ R+,
β(t, ·) : [0, r1) → R+ is of class K and, for each r ∈ [0, r1), β(·, r) : R+ → R+ is
monotonically decreasing with limt→∞ β(t, r) = 0.

Some elementary properties of these functions are given in Ex. 1. In Ex. 2 and Ex. 3
the reader is asked to show how uniform stability and uniform asymptotic stability
of an equilibrium point x of F can be characterized in terms of class K and class
LK functions.
The following definition formalizes the first basic property of a Liapunov function.
It applies to equilibrium points x as well as, more generally, to closed invariant
sets Ω. For time-varying systems we have to consider Liapunov functions depending
on time.

Definition 3.2.2. Let D be a subset of X and ∅ �= Ω = Ω ⊂ D. A function
V : T ×D → R+ is said to be positive definite away from Ω on D if V (T ×Ω) = {0}
and there exists α1 ∈ K on [0, r1) such that

V (t, x) ≥ α1(d(x, Ω)) , (t, x) ∈ T × D. (4)

If additionally, there exists α2 ∈ K on [0, r2) such that

V (t, x) ≤ α2(d(x, Ω)) , (t, x) ∈ T × D , (5)
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then V is said to be bounded by a class K function on D.

Remark 3.2.3. (i) If there is a sequence (xk) in D such that d(xk,Ω) → ∞ as k → ∞
then necessarily r1 = r2 = ∞ and this may seem at first sight to be a restriction. However
since stability is a local property it will usually be possible to reduce D in order to examine
whether or not a closed set Ω is stable with respect to a flow F. Where the set D becomes
very important is in determining global stability properties or in obtaining estimates for
the basin of attraction. In this latter case we will see that in order to get good estimates
we have to examine the interplay between the choice of the set D and upper and lower
bounds for V .
(ii) It is often convenient to restrict the class K to those functions α(·) : [0, r1) → R+

which are continuous and strictly increasing with α(0) = 0, see Hahn (1967), [209], Khalil
(1996) [299]. We do not need these additional properties in our analysis. However, the
reader is asked in Ex. 4 to show that there is no restriction in requiring that the class K

functions α1 and α2 in (4) and (5) be continuous and strictly increasing. �

If V is positive definite away from a point x, then all the functions V (t, ·), t ∈ T
have a strict minimum on D at x and are bounded below uniformly in t ∈ T by a
positive definite function x �→ α1(d(x, x)) which is independent of t. In applications
positive definiteness of a time-varying function V : T × D → R+ is often proved by
constructing a time-invariant lower bound W1(x) ≤ V (t, x), (t, x) ∈ T ×D which is
itself positive definite. Note that a function V : T × D → R+ vanishing on T × Ω
is positive definite away from Ω if and only if for all ε > 0

inf{V (t, x); t ∈ T, x ∈ D and d(x, Ω) ≥ ε} > 0. (6)

If Ω ⊂ D is compact and U ⊂ D is a neighbourhood of Ω (i.e. Ω ⊂ int U) then
X \ U has a positive distance d(X \ U, Ω) = minx∈Ωd(X \ U, x) > 0 from Ω. So for
every neighbourhood U of Ω there exists ε > 0 such that the ε-neighbourhood of Ω,
B(Ω, ε) = {x ∈ X; d(x, Ω) < ε}, is contained in U .
Now let W1 : D → R+ be a time-invariant positive definite (away from Ω) lower
bound for V , i.e. W1(x) ≤ V (t, x) for all (t, x) ∈ T ×D. For any t ∈ T , ρ > 0 we de-
note by Dρ(t) the time-varying sublevel set of V (t, ·) and by DW1

ρ the corresponding
time-invariant sublevel set of W1(·)

Dρ(t) = {x ∈ D; V (t, x) < ρ}, DW1
ρ = {x ∈ D; W1(x) < ρ}.

Then it follows from Definition 3.2.2 applied to W1 ≤ V , that

Ω ⊂ Dρ(t) ⊂ DW1
ρ and Ω =

⋂
ρ>0

Dρ(t) =
⋂
ρ>0

DW1
ρ , t ∈ T, (7)

i.e the sublevel sets Dρ(t), DW1
ρ shrink to Ω as ρ ↓ 0. Let V (t, x) ≥ α1(d(x, Ω))

(resp. W1(x) ≥ α1(d(x, Ω))) for all (t, x) ∈ T × D where α1 ∈ K on [0, r1), then for
every ε ∈ (0, r1),⋃

t∈T

Dρ(t) ⊂ B(Ω, ε) (resp. DW1
ρ ⊂ B(Ω, ε)), 0 < ρ ≤ α1(ε). (8)

So, for ρ > 0 sufficiently small, every ε-neighbourhood of Ω contains all sublevel
sets Dρ(t), t ∈ T which are themselves neighbourhoods of Ω if V (t, ·) is continuous
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Figure 3.2.2: Time-varying sublevel sets of V (ρ > ρ′ > 0)

(see Figure 3.2.2). On the other hand if V satisfies the boundedness condition (5)
then for any ρ > 0 the intersection of all the time-varying sublevel sets Dρ(t) is a
neighbourhood of Ω (see Figure 3.2.3).

δ ∈ (0, r2) and α2(δ) < ρ ⇒ B(Ω, δ) ∩ D ⊂ Dρ(t) for all t ∈ T. (9)

Dρ(t0)

�

Dρ(t)

�

Ω

B(Ω, δ)

�

Figure 3.2.3: Intersection of time-varying sublevel sets

We now make precise the second main property of a Liapunov function which re-
quires that V decreases along the trajectories of the flow. Whilst this property is
sufficient to obtain stability results we need a stronger property in order to establish
asymptotic stability. Roughly speaking V must decrease with “positive velocity”
along all parts of trajectories which are outside any given ε-neighbourhood of Ω.

Definition 3.2.4. Let F = (T, X, ϕ) be a local flow and D a neighbourhood of Ω
in X.

(i) A function V : T × D → R is said to be decreasing along the trajectories of F

(or for short F-decreasing) if for all (t0, x
0) ∈ T × D and all t ∈ Tt0(x

0)

ϕ([t0, t] ∩ T ; t0, x
0) ⊂ D ⇒ V (t, ϕ(t; t0, x

0)) ≤ V (t0, x
0) . (10)

(ii) V is said to be strictly F-decreasing away from Ω if additionally, for all (t0, x
0) ∈

T × D, t ∈ Tt0(x
0) and every ε > 0,

ϕ([t0, t] ∩ T ; t0, x
0) ⊂ D \ B(Ω, ε) ⇒ V (t, ϕ(t; t0, x

0)) ≤ V (t0, x
0) − γ(t−t0) (11)

for some function γ(·) = γ(·, ε) : R+ → R+ satisfying limτ→∞ γ(τ) = ∞.
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If V is strictly decreasing away from Ω then V (t, ϕ(t; t0, x
0)) decreases by an amount

γ(t− t0) which becomes arbitrarily large, provided the trajectory ϕ(·; t0, x0) remains
outside a given ε–ball of Ω for a sufficiently large time t− t0. Later, in applications
to differential and difference equations we will always have γ(τ) > 0 for τ > 0
(which explains the terminology “strictly decreasing”). But this property is not
really important whereas the asymptotic behaviour of γ(·) is essential. Note that
the decrease of V in condition (11) only depends on the time difference t − t0 and
not on the initial time t0. This is needed in order to establish uniform asymptotic
stability in Theorem 3.2.7.

Remark 3.2.5. Suppose V is F-decreasing. Then V is strictly decreasing away from Ω
if, for every ε > 0 there exist τ ∈ T, τ > 0 and γ > 0 such that for all t0 ∈ T

ϕ([t0, t0 + τ ] ∩ T ; t0, x
0) ⊂ D \ B(Ω, ε) ⇒ V (t0 + τ, ϕ(t0 + τ ; t0, x

0)) ≤ V (t0, x
0) − γ.

In fact, let t ∈ T, t0 + kτ ≤ t < t0 + (k + 1)τ for some k ∈ N and ϕ([t0, t] ∩ T ; t0, x
0) ⊂

D \ B(Ω, ε). Set

tj = t0 + jτ, xj = ϕ(tj ; t0, x
0), j = 0, ..., k.

Then by (LF 2) we obtain xj+1 = ϕ(tj +τ ; tj , x
j) for j = 0, ...k−1 and hence by induction

V (t, ϕ(t; t0, x
0)) ≤ V (tk, x

k) ≤ V (tk−1, x
k−1) − γ ≤ ... ≤ V (t0, x

0) − kγ.

Thus (11) is satisfied with γ(·) defined by γ(t) = kγ, t ∈ [kτ, (k + 1)τ), k ∈ N.
If V decreases with a guaranteed positive average velocity along the trajectories of the
flow, i.e. given ε > 0 there exist τ > 0 and v = v(ε) > 0 such that

ϕ([t0, t]∩T ; t0, x
0) ⊂ D \B(Ω, ε) ⇒ V (t0, x

0) − V (t0 + τ, ϕ(t0 + τ ; t0, x
0))

τ
≥ v, t0 ∈ T,

then V is strictly F-decreasing. �

Definition 3.2.6 (Generalized Liapunov function). Let F = (T, X, ϕ) be a
local flow, Ω ⊂ X a closed set and D a neighbourhood of Ω. A continuous function
V : T × D → R+ is said to be a (strict) generalized Liapunov function for F at Ω
on T × D if

(i) V is positive definite away from Ω on T × D,

(ii) V is (strictly) F-decreasing on T × D away from Ω.

The mechanism of a proof of stability via Liapunov functions is illustrated in Fig-
ure 3.2.4. Suppose V is a generalized Liapunov function for F at Ω and

α1(d(x, Ω)) ≤ V (t, x) ≤ α2(d(x, Ω)), (t, x) ∈ T × D

where α1, α2 ∈ K. Given any ε > 0 sufficiently small, choose δ > 0, such that
α2(δ) < α1(ε). Then every trajectory ϕ(t; t0, x

0) starting at any time t0 ∈ T at
x0 ∈ B(Ω, δ) ⊂ Dα1(ε)(t0) (see (9)) remains in Dα1(ε)(t) ⊂ B(Ω, ε) for all t ∈ Tt0 .
For time-varying flows the existence of a (strict) generalized Liapunov function in a
neighbourhood D of Ω is not sufficient to prove (asymptotic) stability. We need a
weak additional assumption in order to ensure, that in the discrete time case, tra-
jectories which start sufficiently close to Ω do not leap out of the domain D in one
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Figure 3.2.4: How to choose δ for a given ε > 0

step. In the continuous time case we must exclude the possibility that every neigh-
bourhood of Ω, no matter how small, contains a trajectory of finite life time which
never leaves that neighbourhood. The following theorem is our main Liapunov–type
stability result for local flows.

Theorem 3.2.7 (Stability Theorem). Let F = (T, X, ϕ) be a local flow, Ω ⊂ X a
compact set and D a neighbourhood of Ω. Suppose there is a neighbourhood U ⊂ D
of Ω in X such that, in the continuous time case, U ⊂ int D and

(t0, x
0) ∈ T × U and t+(t0, x

0) < ∞ ⇒ ∃ t ∈ Tt0(x
0) : ϕ(t; t0, x

0) �∈ U, (12)

whilst in the discrete time case

(t0, x
0) ∈ T × U ⇒ t0 + 1 ∈ Tt0(x

0) and ϕ(t0 + 1; t0, x
0) ∈ D. (13)

If V is a generalized Liapunov function for F at Ω on T ×D with a positive definite
lower bound W1(x) ≤ V (t, x), (t, x) ∈ T × D, then

(i) Ω is F–invariant and stable at any time t0 ∈ T . If ρ > 0 is such that DW1
ρ ⊂ U ,

then

x0 ∈ Dρ(t0) =⇒ t+(t0, x
0) = ∞ ∧ ∀t ∈ Tt0 : ϕ(t; t0, x

0) ∈ DW1
ρ . (14)

(ii) If V is bounded in the sense of (5), then Ω is uniformly stable.

(iii) If V is strict generalized Liapunov function which is bounded in the sense of
(5), then Ω is uniformly asymptotically stable.

(iv) If under the conditions of (iii) we have W1(x) ≤ V (t, x) ≤ W2(x) for all
(t, x) ∈ T × D and W1, W2 : D → R+ are positive definite away from Ω, then
DW2

ρ is in the basin of attraction of Ω for all ρ > 0 such that DW1
ρ ⊂ U .

Proof : (i) Suppose ρ > 0 is such that DW1
ρ ⊂ U , and let t0 ∈ T . We will show

that every trajectory starting in Dρ(t0) has infinite life span and does not leave
DW1

ρ ⊃ Dρ(t0). The first assertion follows from the second, since ϕ(Tt0(x
0); t0, x

0) ⊂
DW1

ρ ⊂ U implies t+(t0, x
0) = ∞ by (12) (resp. (13)). Now assume by way of

contradiction that the second assertion does not hold for some x0 ∈ Dρ(t0) and set
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t1 = inf{t ∈ Tt0(x
0); ϕ(t; t0, x

0) �∈ DW1
ρ }. In the discrete time case it follows that

ϕ(t1; t0, x
0) �∈ DW1

ρ , but by (13) we have ϕ(t1; t0, x
0) ∈ D and so by (11)

W1(ϕ(t1; t0, x
0)) ≤ V (t1, ϕ(t1; t0, x

0)) ≤ V (t0, x
0) < ρ.

Then ϕ(t1; t0, x
0) ∈ DW1

ρ and so we have a contradiction. In the continuous time

case ϕ(t1; t0, x
0) ∈ DW1

ρ ⊂ U ⊂ int D by the continuity of ϕ(·; t0, x0). Again by
continuity there exists a time t2 > t1 in Tt0(x

0) such that ϕ(t; t0, x
0) ∈ D for all

t ∈ [t0, t2]. But then (11) implies

W1(ϕ(t; t0, x
0)) ≤ V (t, ϕ(t; t0, x

0)) ≤ V (t0, x
0) < ρ, t ∈ [t0, t2],

which contradicts the definition of t1. This concludes the proof of (14). Now the
stability of Ω at time t0 follows from the fact that every ε-neighbourhood of Ω,
ε > 0, contains DW1

ρ for sufficiently small ρ > 0 and the corresponding Dρ(t0) is a
neighbourhood of Ω. Finally, since Ω ⊂ Dρ(t0) for every ρ > 0 and

⋂
ρ>0 Dρ(t) = Ω,

t ∈ Tt0 , no trajectory starting in Ω at t0 can leave it. So Ω is invariant and the proof
of (i) is complete.
(ii) Suppose W1(x) ≤ V (t, x) ≤ W2(x) for all (t, x) ∈ T × D where W1, W2 : D →
R+ are positive definite away from Ω (e.g. Wi(x) = αi(d(x, Ω)), i = 1, 2 where
α1, α2 ∈ K). Given any ε > 0, choose ρ > 0 such that DW1

ρ ⊂ U ∩ B(Ω, ε). Then
V (t, x) ≤ W2(x), (t, x) ∈ T × D implies that DW2

ρ ⊂ Dρ(t) for all t ∈ T and so it

Dρ(t0)

DW1
ρ

�

DW2
ρ

Ω

�

Figure 3.2.5: The sets Ω ⊂ DW2
ρ ⊂ Dρ(t0) ⊂ DW1

ρ

follows from (14) that

x0 ∈ DW2
ρ =⇒ ∀t0 ∈ T : t+(t0, x

0) = ∞ ∧ ∀t ∈ Tt0 : ϕ(t; t0, x
0) ∈ DW1

ρ . (15)

But DW2
ρ is a neighbourhood of Ω in X, so Ω is uniformly stable.

(iii) and (iv) Now assume additionally that V is a strict Liapunov function, and
let ρ > 0 be such that DW1

ρ ⊂ U . Then again (15) holds. It remains to prove
for every x0 ∈ DW2

ρ that d(ϕ(t; t0, x
0), Ω) → 0 uniformly in t0 as t → ∞. By

(8) it suffices to show that for every ρ′ ∈ (0, ρ) there exists a τ > 0 such that
ϕ(t; t0, x

0) ∈ DW1

ρ′ for all t ∈ Tt0+τ and all t0 ∈ T . For this we only need to show

that ϕ([t0, t0 + τ ] ∩ T ; t0, x
0) ∩ DW2

ρ′ �= ∅ for all t0 ∈ T , since then, by (15)

ϕ(t; t0, x
0) = ϕ(t; t0 + τ, ϕ(t0 + τ ; t0, x

0)) ∈ DW1

ρ′
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for all t ∈ Tt0+τ . Now choose δ′ > 0 such that B(Ω, δ′) ⊂ DW2

ρ′ . By assumption there
exists a γ(·) = γ(·, δ′) : R+ → R+ satisfying limr→∞ γ(r) = ∞ and for every t ∈ Tt0

ϕ([t0, t] ∩ T ; t0, x
0) ⊂ D \ B(Ω, δ′) ⇒ V (t, ϕ(t; t0, x

0)) ≤ V (t0, x
0) − γ(t − t0).

We choose τ > 0 such that γ(τ) > ρ and suppose that for some t0 ∈ T , x0 ∈ DW2
ρ′

we have ϕ(t; t0, x
0) �∈ B(Ω, δ′) for all t ∈ [t0, t0 + τ ] ∩ T . Then by (11)

V (t0 + τ, ϕ(t0 + τ ; t0, x
0)) ≤ V (t0, x

0) − γ(τ) ≤ ρ − γ(τ) < 0.

and this contradiction concludes the proof. �

Remark 3.2.8. (i) If the flow F in Theorem 3.2.7 is time–invariant and Ω is invariant the
conditions (12) and (13) are always satisfied. This can be seen as follows. Since Ω ⊂ D

is invariant every trajectory starting in Ω has an infinite life span. By the continuity
assumption (LF3) of a local flow, there exists, for every τ > 0 and each x0 ∈ Ω a
neighbourhood Ux0 ⊂ D such that every trajectory ϕ(t;x), x ∈ Ux0 has a life span > τ

and remains in D for t ∈ [0, τ ] ∩ T . Hence U =
⋃

x∈Ω Ux is a neighbourhood of Ω such
that every trajectory starting in U, has a life span > τ . Thus (13) follows in the discrete
time case by setting τ = 2. In the continuous time case U satisfies (12) whatever τ > 0 we
have chosen. Otherwise there would exist x0 ∈ U such that t+(x0) < ∞ and ϕ(t;x0) ∈ U

for all t ∈ Tt0(x
0). But then x1 = ϕ(t+(x0) − τ/2;x0) ∈ U and so ϕ(·, x1) would have a

life span < τ/2 which is a contradiction.

(ii) Even in the time-varying case condition (12) is automatically satisfied for local flows
F defined by differential equations on an open set X in a finite dimensional space K

n.
In fact, it follows from Theorem 2.1.14 that in this case (12) holds for every bounded
neighbourhood U of Ω whose closure (in K

n) is contained in X. In the discrete time case,
if the local flow is defined by a difference equation as in Example 3.1.2, condition (13) need
not be satisfied, e.g. if x(t + 1) = tx(t), t ∈ N, Ω = {0} and D is bounded. However it will
be satisfied if the sequence f(t, ·), t ∈ T0 is defined and equicontinuous at each point of Ω.

(iii) The proof of Theorem 3.2.7 shows that for all ε > 0 satisfying B(Ω, ε) ⊂ U (where U is
a neighbourhood of Ω satisfying (12) (resp. (13)) and every t0 ∈ T, x0 ∈ Dρ(t0), ρ = α(ε)

Tt0(x
0) = Tt0 and ϕ(t; t0, x

0) ∈ Dρ(t) ⊂ B(Ω, ε), t ∈ Tt0 . (16)

Moreover if V is also bounded in the sense of (5), then by (9)

ϕ(t; t0, x
0) ∈ Dα(ε)(t) ⊂ B(Ω, ε), (t0, x

0) ∈ T × B(Ω, δ), t ∈ Tt0 (17)

for any δ > 0 such that β(δ) < α(ε) and B(Ω, δ) ⊂ D. Finally, if V is a bounded strict
generalized Liapunov function then we obtain the following lower bound for the basin of
attraction of Ω at time t0

A(Ω, t0) ⊃ Dα(ε)(t0), t0 ∈ T. (18)

(iv) If we replace “uniform asymptotic stability” in (iii) of the above theorem by “asymp-
totic stability”, the assumption that V is strictly F-decreasing may be weakened so that
γ may depend upon the initial time t0; i.e. γ(t) = γ(t; t0, ε) where limt→∞ γ(t; t0, ε) → ∞.

�

Many systems are not specified completely but contain parameters which can take
a range of values. Sometimes these systems have a fixed equilibrium state for all
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possible values of the parameters. For such systems a stability analysis may require
us to determine the set of parameter values for which the fixed equilibrium state is
asymptotically stable. Since the use of the stability theorem yields only sufficient
conditions for asymptotic stability, complementary information is needed to deter-
mine parameter values for which the equilibrium state is unstable. This information
is provided by instability theorems. To obtain Liapunov–type instability theorems
one uses real valued functions V : T × D → R which admit negative values in any
neighbourhood of Ω and are F-decreasing on the subset of T × D where V < 0.

Theorem 3.2.9 (Instability Theorem). Let F = (T, X, ϕ) be a local flow. Sup-
pose that Ω is a compact invariant set, ε > 0, t0 ∈ T and there exists a continuous
function V : Tt0 × B(Ω, ε) �→ R satisfying V (Tt0 × Ω) = {0} with the following
properties.

(i) For any r ∈ (0, ε) there exists x0 ∈ B(Ω, r) such that V (t0, x
0) < 0.

(ii) There exists a class K function α : [0, ε) → R+ such that

(t, x) ∈ Tt0 × B(Ω, ε) ∧ V (t, x) < 0 =⇒ V (t, x) ≥ −α(d(x, Ω)).

(iii) For every r ∈ (0, ε), there exists a function γ(·) = γ(·, r) : R+ → R+ such that
γ(τ) → ∞ as τ → ∞ and for all x0 ∈ B(Ω, ε), t ∈ Tt0(x

0)

(∀s ∈ [t0, t) ∩ T ; ϕ(s; t0, x
0) ∈ B(Ω, ε) \ B(Ω, r) ∧ V (s, ϕ(s; t0, x

0)) < 0)

∧ (ϕ(t; t0, x
0) ∈ B(Ω, ε)) =⇒ V (t, ϕ(t; t0, x

0)) ≤ V (t0, x
0) − γ(t − t0). (19)

Then Ω is unstable at the time t0. More precisely, every point x0 ∈ B(Ω, ε) such
that V (t0, x

0) < 0 generates a trajectory ϕ(·; t0, x0) which either has finite life span
or leaves B(Ω, ε) at some time t ∈ Tt0 .

Proof : Let x0 ∈ B(Ω, ε), V (t0, x
0) < 0 and suppose by way of contradiction that

Tt0(x
0) = Tt0 and ϕ(t; t0, x

0) ∈ B(Ω, ε) for all t ∈ Tt0 . Choose r ∈ (0, ε) such that
V (t0, x

0) < −α(r) < 0. Then

(t, ϕ(t; t0, x
0))∈S ={(s, x) ∈ Tt0×B(Ω, ε); V (s, x)<0∧ x /∈ B(Ω, r)}, t ∈ Tt0 . (20)

In fact if this were not the case there would exist a smallest number t1 ∈ Tt0 such
that (t1, ϕ(t1; t0, x

0)) /∈ S. So

∀s ∈ [t0, t1) ∩ T : ϕ(s; t0, x
0) ∈ B(Ω, ε) \ B(Ω, r) ∧ V (s, ϕ(s; t0, x

0)) < 0.

It follows from (ii) and (iii) that

−α(d(ϕ(t1; t0, x
0), Ω)) ≤ V (t1, ϕ(t1; t0, x

0)) ≤ V (t0, x
0) < −α(r) < 0.

Hence d(ϕ(t1; t0, x
0), Ω)) > r and so (t1, ϕ(t1; t0, x

0)) ∈ S, a contradiction. Thus
(20) holds for all t ∈ Tt0 and by (iii) we obtain

V (t, ϕ(t; t0, x
0)) ≤ V (t0, x

0) − γ(t − t0) , t ∈ Tt0 .

But this implies that V (t, ϕ(t; t0, x
0)) is not bounded below on Tt0 , although by (ii)

V (t, ϕ(t; t0, x
0)) ≥ −α(ε) for all t ∈ Tt0 . Hence we again obtain a contradiction

and it follows that either Tt0(x
0) is bounded or there exists a t ∈ Tt0 such that

ϕ(t; t0, x
0) /∈ B(Ω, ε). Thus Ω is unstable at t0. �
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Sometimes it is difficult to construct a strict Liapunov function in order to establish
the asymptotic stability of an attractor Ω. For time-invariant local flows F =
(T, X, ϕ) we now present an alternative way of proving asymptotic stability. It is
based on the fact that every relatively compact trajectory t �→ ϕ(t; x0) with infinite
life span is attracted by its limit set ω(x0) (Theorem 3.1.16). LaSalle’s Invariance
Principle says that if x0 ∈ X∞ and there is a time-invariant function V (x) which
is F-decreasing, then ω(x0) is contained in a suitable level set V −1(c). Thus if, for
example, x is an equilibrium point and V −1(c) does not contain an invariant subset
�= {x} for any c ∈ R then x is an attractor for ϕ(t; x0). Neither positive definiteness
nor strict F- decreasing are required to draw this conclusion. LaSalle’s Principle is
based on the following simple lemma.

Lemma 3.2.10. Let F = (T, X, ϕ) be a time-invariant flow, D ⊂ X and V : D → R

a continuous function. If O(x0) ⊂ D for some x0 ∈ X∞ and V (·) decreases along
the trajectory ϕ(·, x0) then ω(x0) ⊂ V −1(c) for some c ≤ V (x0).

Proof : Let (tk), (sk) be two sequences in T such that tk → ∞, sk → ∞ and
ϕ(tk; x

0) → y, ϕ(sk; x
0) → z as k → ∞. By taking subsequences if necessary we

may suppose sk < tk < sk+1 for all k ∈ N. Then V (ϕ(sk; x
0)) ≥ V (ϕ(tk; x

0)) ≥
V (ϕ(sk+1; x

0)), k ∈ N and hence, by continuity of V (·), V (z) ≥ V (y) ≥ V (z). It
follows that ω(x0) ⊂ V −1(c) for some c ≤ V (x0). �

Theorem 3.2.11 (LaSalle’s invariance principle for flows). Suppose that F =
(T, X, ϕ) is a time-invariant local flow, D ⊂ X, x0 ∈ X∞ and V : D → R is
a continuous function which is decreasing along the trajectory ϕ(·, x0). If O(x0),
x0 ∈ X∞, is a relatively compact orbit whose closure is contained in D then, for
some c ∈ R, c ≤ V (x0),

ϕ(t; x0) → Mc as t → ∞, (21)

where Mc ⊂ V −1(c) is the largest weakly invariant subset of V −1(c).

Proof : By Theorem 3.1.16, ω(x0) is a non-empty compact weakly invariant subset
of D and ϕ(t; x0) → ω(x0) as t → ∞. It follows from the previous lemma that
ω(x0) ⊂ V −1(c) for some c ≤ V (x0), hence ω(x0) ⊂ Mc. �

The following direct consequence of the previous theorem provides a sufficient cri-
terion for global asymptotic stability.

Corollary 3.2.12. Suppose that F = (T, X, ϕ) is a global flow, (i.e. X∞ = X) and
every orbit is relatively compact. If V : X → R is continuous and F-decreasing
on X, then

⋃
c∈R

Mc is a global attractor for F. In particular if V is a Liapunov
function for F at Ω = V −1(0) and Mc = ∅ for every c > 0 then Ω is a globally
asymptotically stable attractor for F.

We now give an example illustrating how Liapunov’s method (Theorem 3.2.7) and
LaSalle’s principle (Theorem 3.2.11) are applied to a nonlinear infinite dimensional
system.



228 3. Stability Theory

Example 3.2.13. Consider the one-dimensional time-invariant delay equation

ẋ(t) = −x(t)3 + bx(t − h)3, t ≥ 0

x(s) = ψ(s), −h ≤ s ≤ 0 (22)

where h is the length of memory of the system. (22) defines a time–invariant local flow
F = (R+,X, ϕ) on the Banach space X = C([−h, 0]; R) (see Example 3.1.18). The zero
function x(s) ≡ 0, s ∈ [−h, 0] is an equilibrium state. Consider the function

V (ψ) = (1/2)ψ(0)4 +

∫ 0

−h
ψ(s)6ds, ψ ∈ X.

Note that this function is not positive definite away from x(s) ≡ 0 if we provide X with
the supremum norm ‖ · ‖∞. However, we are free to introduce another norm on X, e.g.

‖ψ‖ := |ψ(0)| +
[∫ 0

−h
|ψ(t)|6dt

]1/6

. (23)

With respect to the corresponding metric on X the function V is positive definite away
from x(·) ≡ 0. We will now prove that V is decreasing along the trajectories if |b| < 1.
For every solution x(·) = ϕ(·, ψ) of the initial value problem (22),

V (xt) = (1/2)x(t)4 +

∫ t

t−h
x(s)6ds , t ∈ [0, t+(ψ)).

Multiplying (22) by 2x(t)3 and integrating from 0 to t ∈ [0, t+(ψ)), we have

(1/2)(x(t)4 − x(0)4) =

∫ t

0

[
− 2x(s)6 + 2bx(s)3x(s − h)3

]
ds.

Hence

V (xt) − V (ψ) =

∫ t

0

[
− 2x(s)6 + 2bx(s)3x(s − h)3

]
ds +

∫ t

t−h
x(s)6ds −

∫ 0

−h
ψ(s)6ds.

But
∫ t

t−h
x(s)6ds −

∫ 0

−h
ψ(s)6ds =

∫ t

0

[
x(s)6 − x(s − h)6

]
ds.

So

V (xt) − V (ψ) =

∫ t

0

[
− x(s)6 + 2bx(s)3x(s − h)3 − x(s − h)6

]
ds (24)

= −
∫ t

0

[[
x(s)3 − bx(s − h)3

]2
+ (1 − b2)x(s − h)6

]
ds.

Let us now assume |b| < 1, then we see that V is F-decreasing and hence V is a time-
invariant generalized Liapunov function for F on (X, ‖·‖). Applying the Stability Theorem
we obtain that the equilibrium state x(·) ≡ 0 is stable for (22) (with respect to the norm
(23)).
One can in fact prove that x(·) ≡ 0 is asymptotically stable by showing that V is strictly
F-decreasing. But we find it easier to apply LaSalle’s Invariance Theorem. For this, note
that every solution x(t) = ϕ(t, ψ), ψ ∈ X is bounded (with respect to the supremum norm
and the norm (23)) because

|x(t)|4 ≤ 2V (xt) ≤ 2V (ψ) , t ∈ [0, t+(ψ)). (25)



3.2 Liapunov’s Direct Method 229

Hence t+(ψ) = ∞ for all ψ ∈ X and the orbit O(ψ) is relatively compact in (X, ‖ ·‖∞) (cf.
Example 3.1.18). We may therefore apply Theorem 3.2.11. Now from (24) V (ϕ(t;ψ)) <

V (ψ), t > 0 if ψ �≡ 0. So V −1(c) does not contain a weakly invariant subset (i.e. Mc = ∅)
if c > 0. But V (ψ) > 0 for non-zero ψ ∈ X and so we conclude from Corollary 3.2.12 that

ϕ(t;ψ) → 0 as t → ∞ , ψ ∈ X (26)

in (X, ‖ · ‖). It is easily deduced from (25) and V (ψ) ≤ 1
2‖ψ‖4∞ + h‖ψ‖6∞, that x(·) ≡ 0

is also stable for (22) with respect to the supremum norm. Therefore the origin in X is
globally asymptotically stable for (22). �

Note that in the above example the function V was used to obtain information on
the set X∞. This idea is taken up in a more systematic way in the next subsection.
Whilst the results of this subsection are very general, their application seems to suf-
fer from the drawback that in order to verify the properties of a Liapunov function it
is necessary to determine the trajectories ϕ(t; t0, x

0) of F, i.e. solve the equations of
motion which define the flow. In the next subsection, we will show that for differen-
tiable and discrete time systems in Kn, Liapunov functions can be characterized by
local properties which are directly verifiable without solving the system equations.
The success of Liapunov’s direct method relies on this fact.

3.2.2 Time–Varying Finite Dimensional Systems

In this subsection we show how Liapunov’s direct method may be applied to study
the stability properties of equilibrium points for time-varying finite dimensional
systems. Since all norms on K

n are equivalent, any stability or instability statement
is independent of the specific norm chosen. So in the rest of the section we provide
Kn with the usual Euclidean norm ‖ · ‖ induced by the inner product 〈·, ·〉. We
suppose that x is an equilibrium point of the differential equation

ẋ(t) = f(t, x(t)) , t ∈ T = R+ (27a)

or the difference equation

x(t + 1) = f(t, x(t)) , t ∈ T = N (27b)

and make the following assumptions on f .

(A1) In the continuous time case X ⊂ Kn is an open set, f : T × X → Kn satisfies
the Carathéodory conditions.

(A2) In the discrete time case X ⊂ Kn is an open set, f(t, ·) : X → Kn is continuous
for every t ∈ T and {f(t, ·); t ∈ T} is equicontinuous at x, i.e. for every
ε > 0 there exists δ > 0 such that ‖f(t, x) − x‖ < ε for all t ∈ T and
x ∈ K

n, ‖x − x‖ < δ.

We do not suppose that the equations (27) have global solutions ϕ(t; t0, x
0) ∈ X

for all (t0, x
0) ∈ T × X. So we only have a local flow with state transition function

ϕ(·; t0, x0) defined on maximal time intervals Tt0(x
0). The concept of stability (Def-

inition 3.1.8) requires that trajectories starting near to x have an infinite life span.
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Thus a first stability requirement for systems of the form (27) is that for t0 ∈ T , if
x0 is near x, the trajectory ϕ(t; t0, x

0) does not blow up as t → ∞ or leave X in
finite time. As an immediate consequence of Theorem 2.1.14 we obtain

Lemma 3.2.14. Suppose that x(t) = ϕ(t; t0, x
0) is a bounded trajectory of (27a)

such that the orbit closure {x(t) ; t ∈ Tt0(x
0)} ⊂ X, then t+(t0, x

0) = ∞.

We will now replace the condition of (strictly) F-decreasing in the definition of a
generalized Liapunov function by an easily verifiable local condition. For this we
suppose, throughout this subsection, that

(A3) D ⊂ X is a neighbourhood of x and V : T × D → R is a continuous func-
tion. For the continuous time case we additionally assume that V is continuously
differentiable on T × int D and for D(V̇ ) = T × int D, we set

V̇ (t, x) = 〈gradV (t, x), f(t, x)〉 +
∂V

∂t
(t, x) , (t, x) ∈ D(V̇ ). (28a)

In the discrete time case for D(V̇ ) = {(t, x) ∈ T × D; f(t, x) ∈ D}, we set

V̇ (t, x) = V (t + 1, f(t, x)) − V (t, x), (t, x) ∈ D(V̇ ). (28b)

The functions V̇ are called derivatives of V along the solutions of (27). In fact,
if (t, ϕ(t; t0, x

0)) remains in D(V̇ ) for t ∈ [t0, t1) ∩ T , t1 ∈ Tt0(x
0), then in the

continuous time case1

V̇ (t, ϕ(t; t0, x
0)) = 〈gradV (t, ϕ(t; t0, x

0)), f(t, ϕ(t; t0, x
0))〉 +

∂V

∂t
(t, ϕ(t; t0, x

0))

=
dV

dt
(t, ϕ(t; t0, x

0)) , a.e. t ∈ [t0, t1).

In the discrete time case

V̇ (t, ϕ(t; t0, x
0)) = V (t + 1, ϕ(t + 1; t0, x

0)) − V (t, ϕ(t; t0, x
0)) , t0 ≤ t ≤ t1 − 1 .

So for both cases V̇ (t, ϕ(t; t0, x
0)) is the rate of change of V along the trajectory

ϕ(·; t0, x0). Thus V is decreasing along the trajectories of (27) in int D (cf. Defini-
tion 3.2.4) if and only if V̇ ≤ 0 on D (V̇ ). This condition can easily be checked if V
and f are given.
We will now show that the other defining properties of a Liapunov function can be
replaced by more easily verifiable criteria in the present setting. The verifications
of these properties require the construction of (non-decreasing) real functions α1, α2

and γ satisfying (4), (5) and (11). The proof of the following lemma shows how any
one of these functions may be constructed from a continuous function W : D → R+

satisfying for some δ > 0 with B(x, δ) ⊂ D

W (x) = 0, W (x) > 0, for x ∈ D \ {x}, and inf
x∈D, ‖x−x‖≥δ

W (x) > 0. (29)

It is easily seen that a continuous function W : D → R+ satisfies (29) if and only
if W is positive definite away from x on D in the sense of Definition 3.2.2.

1Note that ϕ(·; t0, x0) is absolutely continuous and hence differentiable almost everywhere.
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Lemma 3.2.15. Suppose D is a neighbourhood of x, W : D → R+ is continuous
and W (x) = 0.

(i) If W satisfies (29) (resp. is bounded on B(x, r) ∩ D for all r > 0) and V :
T × D → R+ satisfies

V (T, x) = {0}, V (t, x) ≥ W (x) (resp. V (t, x) ≤ W (x)), (t, x) ∈ T × D,

then V is positive definite away from x (resp. bounded in the sense of (5)) on
D.

(ii) If W satisfies (29) and V̇ satisfies

V̇ (t, x) ≤ −W (x) , (t, x) ∈ D (V̇ )

then V is strictly F-decreasing away from x.

Proof : (i) For x ∈ D, ‖x − x‖ = r, we have

inf
r≤‖y−x‖, y∈D

W (y) ≤ W (x) ≤ sup
‖y−x‖≤r, y∈D

W (y) . (30)

Let us denote the LHS by α1(r) and the RHS by α2(r) and set r1 = supy∈D ‖y−x‖.
If W satisfies (29), then α1 is of class K on [0, r1) and even on [0, r1] if r1 < ∞ and
there exists a y ∈ D such that ‖y−x‖ = r1. If W is bounded on all bounded subset
B(x, r) ∩ D, r ∈ [0, r1] then α2 : [0, r1] → R+ is of class K. Hence (i) follows from
(30) and Definition 3.2.2.
(ii) Suppose that for some r > 0 and t ∈ Tt0(x

0) we have

ϕ([t0, t] ∩ T ; t0, x
0) ⊂ D \ B(x, r),

then, in the continuous time case2

V (t, ϕ(t; t0, x
0)) − V (t0, x

0) ≤ −
∫ t

t0

W (ϕ(τ ; t0, x
0))dτ ≤ −α1(r)(t− t0)

and a similar result holds in the discrete time case. We may therefore choose
γ(τ, r) = α1(r)τ in Definition 3.2.4. �

The previous lemma motivates the following definition of a Liapunov function for
systems of the form (27). The defining properties of a Liapunov function are slightly
stronger than those of a generalized Liapunov function, but they can be directly
verified from the system equations without knowledge of their solutions.

Definition 3.2.16 (Liapunov function). Let D be a neighbourhood of x and
V : T × D → R+ satisfy (A3). Then V is called a Liapunov function for (27) at x
on T × D if V (t, x) = 0 for all t ∈ T and

(i) there exists a function W1 : D → R+ positive definite away from x on D such
that

W1(x) ≤ V (t, x) , (t, x) ∈ T × D , (31)

2Note that v(t) = V (t, ϕ(t; t0, x
0)) is absolutely continuous so that v(t) − v(t0) =

∫ t

t0
v̇(s) ds.
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(ii) V̇ ≤ 0 on D (V̇ ).

V is said to be a strict Liapunov function for (27) at x on T × D if in addition to
(i) and (ii) there exists a function W3 : D → R+ positive definite away from x on
D, such that

V̇ (t, x) ≤ −W3(x) , (t, x) ∈ D (V̇ ). (32)

Note that W3 is independent of time. This enables us to derive sufficient Liapunov
type conditions for uniform asymptotic stability. Strict Liapunov functions are not
only useful tools for establishing asymptotic stability of an equilibrium point but
also for estimating its basin of attraction. This is illustrated in the next theorem.

Theorem 3.2.17 (Liapunov Stability Theorem). Let V be a Liapunov function
on T × D for (27) at x, then

(i) x is stable at any time t0 ∈ T .

(ii) If V (t, x) ≤ W2(x) for all (t, x) ∈ T ×D where W2 : D → R+ is a continuous
function with W2(x) = 0, then x is uniformly stable.

(iii) If additionally V is a strict Liapunov function then x is uniformly asymptoti-
cally stable.

(iv) Suppose in the case of (iii) that

W1(x) ≤ V (t, x) ≤ W2(x), (t, x) ∈ T × D, (33)

where W1, W2 : D → R+ are positive definite away from x. Let ρ > 0 be such
that in the continuous (resp. discrete) time case

DW1
ρ = {x ∈ D; W1(x) < ρ} ⊂ int D is compact (resp. f(T ×DW1

ρ ) ⊂ D). (34)

Then DW2
ρ is in the basin of attraction of x.

Proof : We apply Theorem 3.2.7 to the flow F defined by (27), with Ω = {x}. In
the continuous time case let U be any bounded neighbourhood of x with closure U ⊂
int D. In the discrete time case, let U be any bounded neighbourhood containing x
such that f(t, U) ⊂ D for all t ∈ T (such a neighbourhood of x exists by assumption
(A2)). Then T × U ⊂ D(V̇ ) and the conditions (12), (13) in Theorem 3.2.7 are
satisfied. In the discrete time case this follows from the definition of U and in
the continuous time case it is a consequence of Carathéodory’s Theorem 2.1.14.
Moreover, by Lemma 3.2.15, if V is a (strict) Liapunov function for (27) at x on
D × T (in the sense of Definition 3.2.16), then V is a (strict) generalized Liapunov
function for the flow generated by (27) at x on T × D (in the sense of Definition
3.2.6). Finally, if V is bounded above by a continuous function W2 : D → R+ with
W2(x) = 0, then, by Lemma 3.2.15, it is bounded in the sense of (5) on any compact
neighbourhood of x in D. Therefore (i) – (iii) follow from Theorem 3.2.7.
(iv) Finally assume that V is a strict Liapunov function and (33), (34) are satisfied.
Then U := DW1

ρ is a neighbourhood of x with the properties specified above for both
the continuous and discrete time cases. Hence the assertion (iv) follows from (iv) of
Theorem 3.2.7. �
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The following global version of the previous theorem is an easy consequence of the
assertion (iv).

Corollary 3.2.18. Let X = Kn and suppose that V is a strict Liapunov function
on T × Kn for (27) at x. If (33) holds on T × Kn and W1(x) → ∞ for ‖x‖ → ∞,
then x is globally uniformly asymptotically stable.

Proof : Setting D = Kn the sublevel sets DW1
ρ are bounded for all ρ > 0 by

assumption and so DW1
ρ is compact. Hence all the assumptions of Theorem 3.2.17

are satisfied for all ρ > 0. Since the sublevel sets DW2
ρ , ρ > 0 cover Kn the result

follows. �

Definition 3.2.19. An equilibrium point x of the nonlinear system (27) is said to
be exponentially stable at time t0 if it is stable and exponentially attractive at time
t0, i.e. there are δ = δ(t0) > 0, M = M(t0) > 0, ω = ω(t0) < 0, such that ϕ(t; t0, x

0)
exists for all t ∈ Tt0 and

‖x0 − x‖ < δ ⇒ ‖ϕ(t; t0, x
0) − x‖ ≤ Meω(t−t0) , t ∈ Tt0 . (35)

If x is uniformly stable and (35) holds with constants δ, M, ω independent of t0 then
x is said to be uniformly exponentially stable.

The following corollary gives a sufficient condition for an even stronger version of
exponential stability.

Corollary 3.2.20. Suppose V is Liapunov function for (27) at x on T×D satisfying

α1‖x − x‖p ≤ V (t, x) ≤ α2‖x − x‖p, V̇ (t, x) ≤ −α3‖x − x‖p, (t, x) ∈ D (V̇ ) (36)

for some positive constants α1, α2, α3, p. Then there are constants δ > 0, M ′ > 0
and ω < 0 such that for all t0 ∈ T , x0 ∈ B(x, δ), the solution ϕ(·; t0, x0) exists on
Tt0 and

‖ϕ(t; t0, x
0) − x‖ ≤ M ′eω(t−t0)‖x0 − x‖, t ∈ Tt0 . (37)

In particular x is uniformly exponentially stable.
If X = Kn, V is a global Liapunov function for (27) and (36) holds for all (t, x) ∈
T × Kn, then x is globally uniformly exponentially stable, i.e (37) holds for all
(t0, x

0) ∈ T × Kn.

Proof : By (A1), resp. (A2) we can choose ε > 0 such that T ×B(x, ε) ⊂ D(V̇ ) and
applying Theorem 3.2.17 we see that x is uniformly stable. Hence there exists δ > 0
such that x0 ∈ B(x, δ) implies ϕ(t; t0, x

0) ∈ B(x, ε) and so (t, ϕ(t; t0, x
0)) ∈ D(V̇ )

for all t ∈ Tt0 , t0 ∈ T . Now let x0 ∈ B(x, δ) then v(t) = V (t, ϕ(t; t0, x
0)) satisfies

v̇(t) ≤ −α3‖ϕ(t; t0, x
0) − x‖p ≤ −(α3/α2)v(t) , t ∈ Tt0 . (38)

In the continuous time case d
dt

(
e(α3/α2)tv(t)

)
≤ 0 and so v(t) ≤ v(t0)e

−(α3/α2)(t−t0).
Hence for t ∈ Tt0 ,

α1‖ϕ(t; t0, x
0) − x‖p ≤ v(t) ≤ v(t0)e

−(α3/α2)(t−t0) ≤ α2‖x0 − x‖pe−(α3/α2)(t−t0).
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So (37) holds with M ′ = (α2/α1)
1/p and ω = −α3/α2p.

In the discrete time case (36) implies v(t + 1)− v(t) ≤ −(α3/α2)v(t) for t ∈ Tt0 and
so α3 ≤ α2. If α3 = α2 then necessarily ϕ(t; t0, x

0) = x for t ≥ t0 + 1. Hence (37)
holds for any (M ′ ≥ 1, ω < 0). Now assume α3 < α2, then for t ∈ Tt0

α1‖ϕ(t; t0, x
0) − x‖p ≤ v(t) ≤ (1 − α3/α2)

t−t0v(t0) ≤ (1 − α3/α2)
t−t0α2‖x0 − x‖p.

So (37) holds with ω = (1/p) ln(1 − α3/α2) and M ′ = (α2/α1)
1/p.

In both cases it follows from (37) that (35) holds with the same ω and M = M ′δ.
In the global case, x is globally uniformly asymptotically stable by Corollary 3.2.18
and the above estimates are obtained for arbitrary x0 ∈ Kn. �

Example 3.2.21. Consider the discrete time system on R
2 with time domain T = Z

x1(t + 1) = a(t)x2(t)/(1 + x2
1(t))

x2(t + 1) = b(t)x1(t)/(1 + x2
2(t))

(39)

where |a(t)|, |b(t)| < 1, t ∈ Z. x = (0, 0) is an equilibrium point of (39) on D = R
2. Let

us try the time-invariant function V (t, x) = x2
1 + x2

2 as a possible Liapunov function for
(39) at (0, 0). V is positive definite on R

2 away from (0, 0) and

V̇ (t, x) =
a2(t)x2

2

(1 + x2
1)

2
+

b2(t)x2
1

(1 + x2
2)

2
− (x2

1 + x2
2) =

[ a2(t)

(1 + x2
1)

2
− 1

]
x2

2 +
[ b2(t)

(1 + x2
2)

2
− 1

]
x2

1

≤ (a2(t) − 1)x2
2 + (b2(t) − 1)x2

1 ≤ 0, x ∈ R
2, t ∈ Z.

From Theorem 3.2.17 we conclude that x = (0, 0) is uniformly stable. If there exist
constants a, b such that |a(t)| ≤ a < 1, |b(t)| ≤ b < 1, t ∈ Z, then by Corollary 3.2.20,
x = (0, 0) is uniformly exponentially stable. �

We now specialize the Instability Theorem 3.2.9 to the present setting.

Theorem 3.2.22 (Instability Theorem). Let t0 ∈ T and D be a neighbourhood
of x. Suppose that V : T × D → R satisfies (A3), V (T, x) = {0} and has the
following properties:

(i) For any r > 0 there exists x0 ∈ B(x, r) such that V (t0, x
0) < 0.

(ii) |V (t, x)| ≤ W (x) for all (t, x) ∈ S = {(s, x) ∈ Tt0 × B(x, ε); V (s, x) < 0}
where ε > 0 is such that B(x, ε) ⊂ D(V̇ ) and W : D → R+ is a continuous
function which is bounded on B(x, r) ∩ D for all r > 0 with W (x) = 0.

(iii) In addition V̇ (t, x) ≤ −W3(x) for all (t, x) ∈ S where W3 : D → R+ is positive
definite away from x.

Then x is unstable at t0.

Proof : We apply Theorem 3.2.9 to the flow F defined by (27) with Ω = {x}.
Then the restriction of V to T × B(x, ε) satisfies the conditions (i)–(iii) of that
theorem. In fact condition (i) of Theorem 3.2.9 follows directly from the above
assumption (i). Setting α(r) = sup{W (y); y ∈ D, ‖y − x‖ ≤ r}, then just as in the
proof of Lemma 3.2.15 we see that α : [0, ε) → R+ is a class K function satisfying
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W (x) ≤ α(‖x − x‖), x ∈ B(x, ε). So V (t, x) ≥ −α(‖x − x‖) for all (t, x) ∈ S and
hence condition (ii) of Theorem 3.2.9 holds. By assumption there exists a class K

function α3 : [0, ε) → R+ such that W3(x) ≥ α3(‖x− x‖) on B(x, ε). Now if for any
r ∈ (0, ε)

∀s ∈ [t0, t) ∩ T : (s, ϕ(s; t0, x
0)) ∈ S and ϕ(s; t0, x

0) /∈ B(x, r),

then again just as in the proof of Lemma 3.2.15 we see that in the continuous
(resp. discrete) time case (iii) implies

V (t, ϕ(t; t0, x
0)) − V (t0, x

0) ≤−
∫ t

t0

W3(ϕ(s; t0, x
0))ds (resp. −

t−1∑
k=t0

W3(ϕ(k; t0, x
0)))

≤ −α3(r)(t − t0).

Thus (iii) of Theorem 3.2.9 holds with γ(t − t0, r) = α3(r)(t − t0). Therefore x is
unstable at t0. �

Example 3.2.23. Consider the differentiable system on R
2 with time domain T = R

ẋ1 = tx1 + x2, ẋ2 = x1 − tx2 + t2 sin x2, t ∈ R.

Then x = (0, 0) is an equilibrium point. Now if V (x) = −x1x2, we have V̇ (x) = −x2
2 −

x2
1 − t2x1 sin x2 for x ∈ R

2, t ∈ R. Let t0 ∈ R and set

ε = π/2, S = Tt0 × {x ∈ R
2; x1x2 > 0, x2

1 + x2
2 < π2/4}

(see (ii) in the above theorem). Then |V (x)| ≤ 1
2(x2

1 + x2
2) and V̇ (x) ≤ −(x2

1 + x2
2) on

S. Hence we may apply Theorem 3.2.22 to conclude that (0, 0) is an unstable equilibrium
state for the above system at any time t0 ∈ T . �

3.2.3 Time–Invariant Systems

We now specialize the previous results to time-invariant versions of (27) and we will
see that the stability and instability theorems take on simpler forms. In part this is
due to the fact that the definiteness properties of V and V̇ need not be expressed
in terms of positive definite functions Wi. Instead these properties can be stated
directly in terms of V and V̇ . The results in this subsection will be illustrated by
some examples of classical stability problems.
The equations of motion are assumed to be of the form

ẋ(t) = f(x(t)), t ∈ T = R+ ; x(t + 1) = f(x(t)), t ∈ T = N (40)

where f is Lipschitz continuous3 (resp. continuous) on an open set X ⊂ Kn. We
assume that x is an equilibrium point of (40), i.e. f(x) = 0 (resp. f(x) = x). By
time-invariance the equilibrium point x is (asymptotically) stable if and only if it is
uniformly (asymptotically) stable.

3A function f : X → Kn is called Lipschitz continuous or locally Lipschitz if for every compact
set C ⊂ X there exists a constant LC such that ‖f(x) − f(y)‖Kn ≤ LC‖x − y‖Kn for all x, y ∈ C.
In the time–invariant case the Carathéodory conditions reduce to Lipschitz continuity.



236 3. Stability Theory

For time–invariant systems we only consider time–invariant Liapunov functions. In
this case the derivative along the solutions of (40) (see (28)) takes a simpler form.
Throughout the subsection we make the following assumption.

(A) D ⊂ X is a neighbourhood of x and V : D → R is continuous, and in the
continuous time case continuously differentiable on int D. Then V̇ is defined to be

V̇ (x) = 〈gradV (x), f(x)〉 , x ∈ D (V̇ ) = int D (41a)

for the continuous time case and in the discrete time case:

V̇ (x) = V (f(x)) − V (x) , x ∈ D (V̇ ) = {x ∈ D; f(x) ∈ D}. (41b)

Remark 3.2.24. Let X0 ⊂ X be an arbitrary weakly invariant set for (40). If V̇ (x0) ≤ 0
for all x0 ∈ X0 ∩D (V̇ ) then V decreases along the flow defined by (40) on X0 in the sense
of Definition 3.2.4:

V (ϕ(t, x0)) ≤ V (x0) if x0 ∈ X0, t ∈ T (x0) and ϕ([t0, t] ∩ T ;x0) ⊂ D. (42)

Making use of this fact most of the following results can be directly applied to flows induced
by (40) on weakly invariant subsets X0 (replace X by X0 and interpret all topological
statements relative to the induced topology of X0). �

Theorem 3.2.25 (Stability Theorem). Let x be an equilibrium point of (40),
D a neighbourhood of x, V : D → R+ a Liapunov function for (40) at x, i.e. V
satisfies (A) and

V (x) = 0, V (x) > 0, x ∈ D \ {x}, and V̇ (x) ≤ 0, x ∈ D (V̇ ). (43)

Then x is stable If V is a strict Liapunov function, i.e. additionally

V̇ (x) = 0 and V̇ (x) < 0 , x ∈ D (V̇ ) \ {x} (44)

then x is asymptotically stable

Note that V is not necessarily a Liapunov function on D in the sense of Defini-
tion 3.2.16 since the positivity assumption (43) does not necessarily imply positive
definiteness away from x on the (possibly unbounded) set D. However the restriction
of V to, for example, any compact neighbourhood D̃ ⊂ D of x yields a Liapunov
function on T × D̃ in the sense of Definition 3.2.16 (see Lemma 3.2.15). Therefore
the above theorem is an immediate consequence of Theorem 3.2.17.
The condition V̇ (x) ≤ 0 is illustrated in Figure 3.2.6 for the continuous time case.
It means that the “distance” of the point x from the given equilibrium point, as
measured by V (x), is decreased when x is moved in the direction of f(x).

Before we illustrate the above results by some examples we first show how estimates
for the basin of attraction of an equilibrium state can be obtained directly via the
sublevel sets of Liapunov functions. For this the following lemma is useful and is of
independent interest.
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grad V (x)

x
f(x)

V (·) = c1



V (·) = c2
�

c1 > c2

Figure 3.2.6: 〈gradV (x), f(x)〉 ≤ 0

Lemma 3.2.26. Suppose D is any subset of X, V : D → R is continuous and
decreases along the flow defined by (40) (see (42)). If, for some ρ ∈ R, the sublevel
set Dρ = {x ∈ D; V (x) < ρ} satisfies

Dρ ⊂ int D (resp. f(Dρ) ⊂ D) (45)

then Dρ is weakly invariant for (40). In the discrete time case Dρ is invariant.

Proof : In the continuous time case, it follows from (45) that the boundary of Dρ

in Kn is given by

∂Dρ = Dρ \ Dρ = {x ∈ D; V (x) = ρ} ⊂ int D.

Hence, if x ∈ Dρ the solution ϕ(·; x) cannot leave Dρ since otherwise there would
exist by continuity a time t̄ < t+(x) such that V (ϕ(t̄; x)) = ρ > V (x) which contra-
dicts the assumption that V decreases along the flow defined by (40). Hence Dρ is
weakly invariant.
For the discrete time case, if x ∈ Dρ, then by (45) f(x) ∈ D and V (f(x)) ≤ V (x) <
ρ. Hence f(Dρ) ⊂ Dρ and every x ∈ Dρ generates a trajectory with infinite life span
which remains in Dρ. �

The condition (45) is illustrated in Figure 3.2.7 for the continuous time case. If Dρ

is bounded, Dρ is in fact invariant (see the proof of the next proposition). If Dρ is
unbounded, it may contain orbits with finite life span.

D

x0
x0

x0

x

Dρ
�

Dρ ⊂ int D, Dρ bounded Dρ �⊂ intD Dρ ⊂ int D, Dρ unbounded

D

x

Dρ

�

D

x

Dρ




Figure 3.2.7: The condition Dρ ⊂ int D
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Remark 3.2.27. Using the fact that positive definiteness of a Liapunov function ensures
that the sublevel sets shrink to x, the previous lemma can be used to give a simple direct
proof of the stability statement in Theorem 3.2.25. (The reader is asked to do this in
Ex. 12). �

Combining Lemma 3.2.26 with LaSalle’s Invariance Principle (Theorem 3.2.11) we
obtain the following result. It does not assume positive definiteness of V and is also
applicable in situations where the domain of definition D contains more than one
equilibrium point (see Example 3.2.34).

Theorem 3.2.28 (LaSalle’s invariance principle). Suppose D ⊂ X, V : D → R

satisfies (A) and V̇ (x) ≤ 0 for all x ∈ D (V̇ ). Let M be the largest invariant subset
of E = {x ∈ D (V̇ ); V̇ (x) = 0} with respect to (40) and suppose that, for a given
ρ ∈ R, the sublevel set Dρ of V satisfies

(i) Dρ ⊂ int D (resp. f(Dρ) ⊂ D).

(ii) Every orbit O(x0) ⊂ Dρ is bounded (in the continuous time case).

Then Dρ is invariant and ϕ(t, x0) → M ∩ Dρ as t → ∞, for all x0 ∈ Dρ.

Proof : We prove the proposition for the continuous time case. By (i) Dρ = {x ∈
int D; V (x) < ρ} is open and by the previous lemma it is weakly invariant. Let
x0 ∈ Dρ. It follows from (i) and (ii) that the orbit closure O(x0) is compact and
contained in int D. Hence t+(x0) = ∞ by Lemma 3.2.14 and we see that Dρ is in
fact invariant. Applying Theorem 3.2.11 to the time–invariant flow F := (T, Dρ, ϕ)
defined by (40) on Dρ we obtain ϕ(t, x0) → Mc as t → ∞, for some c < ρ, where
Mc is the largest invariant set in V −1(c) ⊂ Dρ. Since Mc ⊂ M ∩ Dρ, this concludes
the proof. �

If V is a Liapunov function the previous result implies the following estimate for the
basin of attraction of x.

Corollary 3.2.29. Let x be an equilibrium point of (40), D ⊂ X a neighbourhood
of x and V : D → R+ a Liapunov function for (40) at x. Suppose that the sublevel
set Dρ is bounded and Dρ ⊂ int D (resp. f(Dρ) ⊂ D) for a given ρ > 0. If the
largest invariant set M in E = {x ∈ D (V̇ ), V̇ (x) = 0} satisfies

M ∩ V −1(c) = ∅, c ∈ (0, ρ),

then x is asymptotically stable and Dρ is contained in the basin of attraction of x.
In particular this holds if V is a strict Liapunov function.

Proof : The assumptions of LaSalle’s Invariance Principle Theorem 3.2.28 are sat-
isfied and M ∩ Dρ = {x}. �

Recall that an equilibrium point x is said to be globally asymptotically stable for
a flow on X if it is stable and globally attractive in the sense that its basin of
attraction equals X. In the following corollary we assume that V is defined on
D = X and is therefore open in Kn. We use the notation limx→∂X V (x) = ∞ to
mean that for every r > 0 there exists a compact set K ⊂ X such that V (x) > r
for all x ∈ X \ K. In particular, if X = K

n then limx→∂X V (x) = ∞ is equivalent
to lim‖x‖→∞ V (x) = ∞.
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Corollary 3.2.30. Suppose x ∈ X is an equilibrium point of (40) and V : X → R+

satisfies (A) and

V (x) = 0 ; V (x) > 0 and V̇ (x) < 0 , x ∈ X \ {x} . (46)

If limx→∂X V (x) = ∞ and in the discrete time case X is invariant, then x is globally
asymptotically stable.

Proof : Since limx→∂X V (x) = ∞, the sublevel set Dρ of V is bounded with closure
in D for every ρ > 0. In the discrete time case the invariance of X implies that
f(Dρ) ⊂ X. Hence the conditions of the previous corollary are satisfied for every
Dρ, ρ > 0. Now X =

⋃
ρ>0 Dρ and so the result follows. �

Example 3.2.31. Consider again the discrete time system of Example 3.2.21 where
now a(t) ≡ a, b(t) ≡ b, t ∈ N are constant and suppose |a|, |b| ≤ 1. We have seen that
V (x) = x2

1 + x2
2, x ∈ D = X = R

2 is a Liapunov function for the system at x = (0, 0).
Therefore, x = (0, 0) is stable. Moreover,

V̇ (x) =

[
a2

(1 + x2
1)

2
− 1

]
x2

2 +

[
b2

(1 + x2
2)

2
− 1

]
x2

1 ≤ (a2 − 1)x2
2 + (b2 − 1)x2

1 .

In Example 3.2.21 it was proved that the origin is exponentially stable if |a| < 1 and
|b| < 1. We now use Theorem 3.2.28 and the notations therein to discuss the remaining
possibilities.
(i) a2 < 1, b2 = 1. The set E is given by E = {x ∈ R

2; x2 = 0}. However, f(x1, 0) =
(0, bx1) and so the only invariant set in E is M = {(0, 0)}. The assumptions of Corol-
lary 3.2.29 are satisfied for all ρ > 0. Since R

2 =
⋃

ρ>0 Dρ, we conclude that the origin is
globally asymptotically stable.
(ii) a2 = b2 = 1. In this case E = {x ∈ R

2 : x1 = 0} ∪ {x ∈ R
2 : x2 = 0}. This set is

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 3.2.8: System (39) with a = 1 and b = −1

invariant and hence M = E. The hypotheses of Theorem 3.2.28 are satisfied for arbitrary
ρ > 0. Now let x0 ∈ R

2, x0 �= (0, 0) and c = limt→∞ V (ϕ(t;x0)), then c ≥ 0. If c = 0 then
M ∩ V −1(c) = {(0, 0)} and so ϕ(t;x0) → (0, 0) as t → ∞. It is easily verified that c = 0
if x0 belongs to the invariant set {x ∈ R

2; x1 = x2}. If c > 0 then M ∩ V −1(c) consists of
the points (

√
c, 0), (0,

√
c), (−√

c, 0) and (0,−√
c) which are the intersections of E with

the circle x2
1 + x2

2 = c. In this case there are two possibilities.
If ab = 1, then
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f(±
√

c, 0) = (0,±b
√

c) and f(0,±b
√

c) = (±ab
√

c, 0) = (±
√

c, 0).

Analogously f2(0,±√
c) = f ◦ f(0,±√

c) = (0,±√
c). In this case the solution ϕ(t;x0)

approaches a periodic motion of period 2 (which will depend on x0).
If ab = −1, one verifies that

f4(±
√

c, 0) = (±
√

c, 0) and f4(0,±
√

c) = (0,±
√

c).

In this case the solution approaches a periodic motion of period 4 (depending on x0), see
Figure 3.2.8. �

If the asymptotic behaviour of a system is too complicated to determine its limit
sets exactly one may try to locate them approximately in attractive sublevel sets
[V ≤ c] = {x ∈ D; V (x) ≤ c}.

Proposition 3.2.32. Suppose D ⊂ X, V : D → R satisfies (A), c ∈ R, ρ > c and
Dρ = {x ∈ D; V (x) < ρ}. If

(i) Dρ is bounded and Dρ ⊂ int D (resp. f(Dρ) ⊂ D).

(ii) V (x) > c ⇒ V̇ (x) < 0 (resp. V (f(x)) > c ⇒ V̇ (x) < 0 ) for all x ∈ Dρ.

Then the largest invariant set in [V ≤ c] (and hence [V ≤ c] itself) attracts all
trajectories of (40) starting in Dρ.
In particular, if D = X = Kn, lim‖x‖→∞ V (x) = ∞ and (ii) holds for all x ∈ Kn

then [V ≤ c] is a global attractor.

Proof : The proof is for the continuous time case. Let Ṽ : D → R, Ṽ (x) =
max {V (x), c}, then Ṽ is continuous on D and coincides with V on [V > c]. We
will show that Ṽ is decreasing along the flow generated by (40). If this were not the
case there would exist x0 ∈ D and t1 > 0 such that Ṽ (ϕ(t1; x

0)) > Ṽ (x0), which can
only happen if Ṽ (ϕ(t1; x

0)) = V (ϕ(t1; x
0)) > c. Let t0 = inf{τ > 0 ; V (ϕ(t; x0)) >

c for all t ∈ [τ, t1]}. Then t0 < t1, V̇ (ϕ(t; x0)) < 0 for all t ∈ (t0, t1] and either
V (ϕ(t0; x

0)) = c or t0 = 0 and V (x0) > c. Both possibilities lead to a contradiction
since V (ϕ(t; x0)) is decreasing on [t0, t1]. Thus Ṽ is decreasing along the flow defined
by (40).
It follows from (i) and Lemma 3.2.26 that Dρ is weakly invariant under the flow of
(40). Moreover, by (i) every orbit O(x0), x0 ∈ Dρ has compact closure in D. Hence
all x0 ∈ Dρ have an infinite life span and so Dρ is invariant. By LaSalle’s Invariance
Principle (Theorem 3.2.11) there exists α ∈ R such that ϕ(t; x0) → Mα as t → ∞
where Mα is the largest invariant set in Ṽ −1(α). But by (ii) Mα = ∅ for α �= c and
this proves the first assertion since Ṽ −1(c) = [V ≤ c]. Now assume D = X = Kn

and lim‖x‖→∞ V (x) = ∞. Then every sublevel set Dρ = {x ∈ Kn; V (x) < ρ} is
bounded and condition (i) is satisfied for all ρ > c. This proves the second assertion
of the proposition. �

Example 3.2.33. Consider the Lorenz equation (1.31) with parameters r, σ, b > 0 and
choose

V (x, y, z) = rx2 + σy2 + σ(z − 2r)2, (x, y, z) ∈ R
3.

Then V (x, y, z) → ∞ as ‖(x, y, z)‖ → ∞ and

V̇ (x, y, z) = −2σ(rx2 + y2 + bz2 − 2brz).
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Figure 3.2.9: Attractive sublevel set containing an attractor

Let C = {(x, y, z); rx2 + y2 + bz2 − 2brz ≤ 0} and c = max{V (x, y, z); (x, y, z) ∈ C}.
Then V and c satisfy Proposition 3.2.32. Therefore [V ≤ c] is a global attractor. In
particular, the Lorenz attractor (see Example 3.1.27) is contained in the ellipsoid [V ≤ c].
All trajectories of the Lorenz system eventually enter the ellipsoid [V ≤ c+ ε] where ε > 0
is arbitrary. �

The next three extended examples illustrate the application of the previous results.
We begin with some comments on the motivation of Liapunov’s direct method by
the use of energy functions in mechanics as mentioned in the introduction. The total
energy H(q, p) of an autonomous mechanical system (2) with n degrees of freedom
yields a Liapunov function at each equilibrium point (q̄, 0) where H(·) admits a strict
local minimum. If the system is conservative the Hamiltonian H is a first integral
of the system, i.e. every trajectory remains within a surface of constant energy
{(q, p) ∈ Rn × Rn; H(q, p) = const}. In this case the local minima (q̄, 0) are stable
but not asymptotically stable. If however the mechanical system dissipates energy
e.g. by generating heat, one would expect the local minima to be asymptotically
stable. Our first example illustrates this.

Example 3.2.34. (Pendulum with and without friction). Consider a simple
swinging pendulum of unit length and mass m (see Examples 1.3.4, 2.1.10). Allowing for
friction in the bearing, the equations of motion in state space form are

θ̇(t) = ω(t) (47)

ω̇(t) = −g sin θ(t) − (c/m)ω(t)

where θ(t) is the angle, ω(t) the angular velocity and c the friction coefficient. (θ̄, ω̄) ∈ R
2

is an equilibrium point of (47) if and only if θ̄ ∈ Zπ, ω̄ = 0. It is intuitively clear that the
state (θ̄, ω̄) = (0, 0) (vertically downwards with zero velocity) is a stable equilibrium point
of (47), which is asymptotically stable if energy is dissipated by friction, i.e. c > 0. The
mechanical energy of the system (kinetic plus potential energy) is

V (θ, ω) = (1/2)mω2 + mg(1 − cos θ). (48)

V defines a Liapunov function for (47) on D = (−2π, 2π) × R at (θ̄, ω̄) = (0, 0) (in the
sense given in the Stability Theorem 3.2.25). In fact, V is continuously differentiable,
positive definite on D and satisfies
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V̇ (θ, ω) = mgω sin θ − mgω sin θ − cω2 = −cω2 ≤ 0.

Given any ε > 0, V is positive definite away from (0, 0) on D̃ = [−2π + ε, 2π − ε] × R.
So (θ̄, ω̄) = (0, 0) is stable for all values of c ≥ 0. If c = 0, the energy V is a first integral
of (47), i.e. the trajectories of (47) remain in the level sets of V . For small α > 0 the
level sets V −1(α) are closed curves around (0, 0) (see Figure 2.1.3). Since these curves do
not contain an equilibrium point, they are closed orbits of (47). This can easily be veri-
fied by elementary means but can also be inferred directly from the Poincaré-Bendixson
Theorem 3.1.14. Thus all trajectories in a small neighbourhood of (0, 0) are periodic and
(θ̄, ω̄) = (0, 0) is a centre (see Figure 2.2.3).
In the presence of friction, i.e. c > 0, we expect the origin to be asymptotically stable
(Figure 3.2.10) and we are interested in obtaining a good estimate for its basin of attrac-
tion. We will apply Corollary 3.2.29 and we will see that estimate depends crucially on
the choice of D. In the present case

Dρ = {(θ, ω) ∈ D; (1/2)mω2 + mg(1 − cos θ) < ρ},

and so Dρ is bounded. We would like to choose ρ such that Dρ ⊂ intD = D. However
since V (0, θ) → 0 as θ → 2π, no such ρ exists. We must therefore take a smaller D. Let
D = [−3

2π, 3
2π] × R, then Dmg ⊂ intD (and this will not be the case for any Dρ with

ρ > mg). The largest invariant set M in E = {(θ, ω) ∈ D; V̇ (θ, ω) = 0} = [−3
2π, 3

2π]×{0}
is M = {(0, 0), (−π, 0), (π, 0)}. But the equilibrium points (±π, 0) /∈ V −1(α) for any
α < mg, so by Corollary 3.2.29, (0, 0) is asymptotically stable and Dmg is contained in the
basin of attraction of (0, 0). The question is can we do better by further reduction of D.
Let D = (−π, π)×R, then Dρ ⊂ int D = D provided we choose ρ < 2mg (and this will not
be the case for any ρ ≥ 2mg). The largest invariant set M in E = {(θ, ω) ∈ D; V̇ (θ, ω) =
0} = (−π, π) × {0} is M = {(0, 0)}. By Corollary 3.2.29, (0, 0) is asymptotically stable
and D2mg =

⋃{Dρ; ρ<2mg} is contained in the basin of attraction of (0, 0). Note that D2mg

consists of all those states (θ, ω) in D which generate periodic orbits around (0, 0) if no
friction is present (swinging motions without rotations, see Figure 2.1.3).
By an analogous analysis on (k2π, 0)+D one verifies that the equilibrium points (k2π, 0),
k ∈ Z are stable if c = 0, asymptotically stable if c > 0 and in this case the basin of
attraction of (k2π, 0), k ∈ Z contains the translates (k2π, 0) + D2mg.
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Figure 3.2.10: Phase portrait of pendulum with friction
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To obtain a global result we have to consider the above V on D = R
2 and apply Theo-

rem 3.2.28. It is not difficult to prove that all trajectories of (47) are bounded if c > 0.
Since M = Z2π × {0} is the largest invariant subset of E = {(θ, ω) ∈ R

2; V̇ (θ, ω) =
0} = R×{0}, every trajectory of (47) converges to some equilibrium point (k2π, 0). This
is in accordance with our physical intuition. Because of friction, the pendulum rotates
only a finite number k times and then continues swinging with ever decreasing amplitudes
gradually approaching the equilibrium point (k2π, 0). �

In the following example we study a “conservative” ecological system.

Example 3.2.35. Consider the Lotka-Volterra model for predator-prey system of two
interacting populations (cf. Example 1.1.3)

ẋ1(t) = ax1(t) − bx1(t)x2(t)

ẋ2(t) = −cx2(t) + dx1(t)x2(t)
(49)

where x1 and x2 are the densities (number per area) of the prey and predator populations,
respectively, and a, b, c, d are positive constants. Note that no trajectory of (49) starting
in D = (0,∞)× (0,∞) can leave D, since R+×{0} and {0}×R+ are invariant under (49).
The system has two equilibrium points (0, 0) and (c/d , a/b). (0, 0) is unstable since the
restriction of (49) to the invariant set R×{0} yields the unstable linear system ẋ1 = ax1.
To study the second equilibrium point it is convenient to normalize the variables. Setting
z1 = dx1/c, z2 = bx2/a we obtain the transformed equations of motion

ż1(t) = az1(t)(1 − z2(t))

ż2(t) = −cz2(t)(1 − z1(t))
(50)

with equilibrium point z = (1, 1). In order to find a first integral of (50) note that

ż2(t)

ż1(t)
= − cz2(t)(1 − z1(t))

az1(t)(1 − z2(t))

and hence

cż1(t) − c
ż1(t)

z1(t)
+ aż2(t) − a

ż2(t)

z2(t)
= 0.

Integrating with respect to t, we obtain

W (z1, z2) := cz1 − c log z1 + az2 − a log z2, z ∈ D (51)

is constant along the trajectories of (50). It is easily verified that V (z1, z2) = W (z1, z2)−
W (1, 1) is positive definite away from z̄ = (1, 1). So V is a Liapunov function for (50)
at (1, 1) and this equilibrium point is stable. In fact, the level sets {z ∈ D; V (z) = γ}
are closed curves for all γ > 0 (see Figure 1.1.2) and none of these curves contains an
equilibrium point. Hence by the Poincaré-Bendixson Theorem 3.1.14 these level curves
are periodic orbits of (50). Thus z = (1, 1) is a centre and all the trajectories of (50) in
D are periodic.
The effect of “friction” in a Lotka-Volterra model (due to overcrowding, see Figure 1.1.3),
is considered in Ex. 14. �

We now study an extended example which illustrates how to use strict Liapunov
functions to obtain estimates for the basin of attraction of an asymptotically stable
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equilibrium point. Often various Liapunov functions have to be constructed in order
to get an approximate picture of this region. The construction of “good” Liapunov
functions (i.e. those which yield good estimates of the basin of attraction) is still
something of an art although some constructive methods have been suggested in the
literature, see Notes and References and the Exercises.

Example 3.2.36. (Van der Pol equation). Van der Pol suggested the following
second order differential equation as a possible model for the study of oscillations in
vacuum tubes

z̈ + ε(1 − z2)ż + z = 0. (52)

In a paper published in 1926 he discovered that if ε < 0, the trajectories converge to a
stable limit cycle for all non-zero initial states. Figure 3.2.11 shows this limit cycle and
some additional trajectories in the (z, ż) plane. Reversing time in (52) leads to the same
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Figure 3.2.11: Stable limit cycle for ε = −4.0

equation but with changed sign of ε: if z(·) is a solution of (52) then y(t) := z(−t) is a
solution of (52) with ε replaced by −ε. Hence if ε > 0 the equilibrium point at the origin
is asymptotically stable for (52) and its basin of attraction is simply the reflection of the
interior of the Van der Pol’s limit cycle about the z–axis (because ẏ(t) = −ż(−t)). As an
example for more complicated situations where the basin of attraction may be unknown,
we now show how to estimate the basin for the Van der Pol equation with positive ε via
a family of Liapunov functions. Our knowledge in the present case allows us to judge the
tightness of these estimates.
Let x1 = z, x2 = ż, then (52) becomes

ẋ1 = x2, ẋ2 = −ε(1 − x2
1)x2 − x1. (53)

For (53) with ε > 0 consider the functions Vr : R
2 → R

Vr(x) = x2
2 + rε(x1 − x3

1/3)x2 + (rε2/2)(x1 − x3
1/3)

2 + x2
1

where 0 ≤ r ≤ 2. Then

V̇r(x) = −ε[(2 − r)(1 − x2
1)x

2
2 + r(1 − x2

1/3)x
2
1]. (54)

Note that

Vr(x) = [x2 + (rε/2)(x1 − x3
1/3)]

2 + x2
1 + (rε2/4)(2 − r)x2

1(1 − x2
1/3)

2.

Hence if 0 ≤ r ≤ 2, Vr(x) > 0 for any x �= 0 and lim‖x‖→∞ Vr(x) = ∞. In order to
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Figure 3.2.12: The curves V̇r(·) = 0 (dashed lines) and Vr(·) = ρ (solid lines) for two

values of ρ with r = 0.05 in the left figure and r = 1.9 in the right figure

apply Corollary 3.2.29 we have to choose a neighbourhood D(r) of x = (0, 0) on which
Vr is a strict Liapunov function. Then choose ρ as large as possible so that the set
Dρ(r) = {x ∈ D(r); Vr(x) < ρ} is bounded and Dρ(r) ⊂ int D(r). We denote this choice
of ρ by ρ(r) and illustrate the procedure in Figure 3.2.12 for ε = 4.0.
For r = 0.05 we find that ρ(r) may be chosen to be approximately 1.37. Note that
D1.37(.05) does not contain the point (0.5,−2.0) . However for r = 1.9 we may choose
ρ(r) ≈ 3.0 and D3(1.9) does contain the point (0.5,−2.0).
Then ∪r∈[0,2]Dρ(r)(r) will yield an estimate for the basin of attraction and this is illustrated
in Figure 3.2.13 (shaded area) together with the exact boundary obtained by reflecting
the limit cycle at the z axis.
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Figure 3.2.13: Estimate for the region of asymptotic stability of the origin, ε = 4.0

�

Our final result in this subsection strengthens the Instability Theorem 3.2.22 for the
time–invariant case.

Theorem 3.2.37 (Instability Theorem). Let x be an equilibrium point of (40),
D a compact subset of X such that x ∈ D and assume that in the discrete time case
f(D) ⊂ X. Suppose there exists a continuously differentiable4(resp. continuous)
real-valued function V defined on D with the following properties.

4By definition, V is continuously differentiable on a subset D ⊂ Kn if V is defined and contin-
uously differentiable on some open set U ⊃ D.
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(i) V (x) = 0 and for every r > 0 there exists x0 ∈ D∩B(x, r) such that V (x0) < 0.

(ii) V̇ (x) ≤ 0 for all x ∈ S = {x ∈ D; V (x) < 0}.

(iii) There are no invariant sets in E = {x ∈ S; V̇ (x) = 0}.

Then for every x0 ∈ D such that V (x0) < 0, the trajectory ϕ(·; x0) leaves D at some
time t > 0. In particular, if D is a neighbourhood of x then x is unstable.

Proof : The proof is for the continuous time case. Because of (i), it suffices to
prove the first assertion of the theorem. Suppose there exists x0 ∈ D such that
V (x0) < 0 and ϕ(t; x0) ∈ D for all t ∈ T (x0). Then this trajectory has infinite life
span by Lemma 3.2.14 since D ⊂ X is compact. By Theorem 3.1.16 the limit set
ω(x0) is nonempty and weakly invariant. Again by Lemma 3.2.14, ω(x0) ⊂ D is
even invariant. By (ii)

s ≥ t ≥ 0 ⇒ V (ϕ(s; x0)) ≤ V (ϕ(t; x0)) ≤ V (x0) < 0,

and so, by Lemma 3.2.10, there exists c < 0 such that ω(x0) ⊂ V −1(c) ⊂ S. Since
ω(x0) is invariant and V (·) is constant on ω(x0) it follows that ω(x0) ⊂ E. But this
contradicts (iii). �

Note that assumptions (ii) and (iii) are automatically satisfied if

V̇ (x) < 0 , x ∈ D \ {x}. (55)

Example 3.2.38. Consider the conservative mechanical system described in the intro-
duction to this section. The equations of motion are

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(56)

where the Hamiltonian is given by H(q, p) = T (p)+W(q). In this example we assume that
(q̄, p̄) = (0, 0) is an equilibrium point of (56), the kinetic energy is a positive quadratic
form in p and W is continuously differentiable function which is strictly concave on some
ball B = B(0, r) around q̄ = 0 and admits a local maximum at q̄ = 0. By strict concavity

W(q) + 〈W ′(q), (0 − q)〉 > W(0) q ∈ B, q �= 0

and hence 〈W ′(q), q〉 < 0 for all q ∈ B, q �= 0. Consider the function V (q, p) = −〈q, p〉
on a compact neighbourhood D ⊂ B × R

n of (0, 0). Then the derivative of V along the
trajectories of (56) is

V̇ (q, p) = −〈T ′(p), p〉 + 〈W ′(q), q〉 = −2T (p) + 〈W ′(q), q〉 < 0, (q, p) ∈ D \ {0, 0} .

Thus V̇ satisfies (55) on D. Now for any ρ > 0 we can always choose an initial state (q0, p0)
of norm less than ρ such that −〈q0, p0〉 < 0. Hence (0, 0) is unstable by Theorem 3.2.37.

�
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A finite-dimensional system is called positive it its state space is the positive orthant
X = Rn

+, n ∈ N∗. Equations of the form (40) describe positive systems if every
trajectory ϕ(t; x0) starting in the positive orthant remains in it for all t ∈ T (x0),
i.e. if R

n
+ is weakly invariant. For example, if the flow of the Lotka-Volterra model

(49) is restricted to Rn
+, we obtain a positive system.

If the stability of an equilibrium point x ∈ Rn
+ of a positive system is investigated,

the analysis must be restricted to the state space of the system, so only points and
trajectories in X = Rn

+ are considered and the neighbourhoods of any x ∈ Rn
+ must

be understood as neighbourhoods of x in X = Rn
+. More generally, suppose that

X0 is a weakly invariant subset for the flow defined by (40). In order to analyze the
stability of an equilibrium point x ∈ X0 with respect to the induced flow on X0 we
combine the results of Subsection 3.2.1 with those of the present subsection. For
instance, in order to establish stability of x we construct a continuously differentiable
(resp. continuous) function V : D → R on a neighbourhood D of x in Kn, which
satisfies the properties of a Liapunov function on X0:

V (x) = 0; V (x) > 0, x ∈ (X0 ∩ D) \ {x}; V̇ (x) ≤ 0, x ∈ X0 ∩ D (V̇ ) . (57)

In fact, the restriction of such a function to D0 := X0 ∩ D is then a generalized
Liapunov function for the induced flow on X0 (see Remark 3.2.24) and the stability
results of Subsection 3.2.1 are applicable. In the following discrete time example the
natural state space is a compact subset of R2

+.

Example 3.2.39. We consider a discrete time epidemic model for the spread of gon-
orrhoea. Let us assume that the male and female populations are constant in time and
the disease is transmitted by sexual contact of infected members of one population with
members of the other. Recovery from the disease is possible, but no one is immune from
infection. Let x1(t), resp. x2(t) be the fraction of males, resp. females infected at time t.
A possible model is

x1(t + 1) = αx2(t)(1 − x1(t)) + (1 − β)x1(t)

x2(t + 1) = γx1(t)(1 − x2(t)) + (1 − δ)x2(t)
(58)

where the first terms represent the fractions which are newly infected by contact with
infected members and the second terms represent the fractions that have not recovered
within one time unit. We assume 0 < α, β, γ, δ < 1. Since solutions of (58) are only
meaningful as long as 0 ≤ xi(t) ≤ 1, i = 1, 2 we restrict (58) to the compact set

X0 = {x ∈ R
2; 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}

which is invariant under the global flow defined by (58). Let us analyze the stability of
the equilibrium state x = (0, 0) ∈ X0. Consider

V (x) = (γ + δ)x1 + (α + β)x2, x ∈ D = R
2

which is positive on X0 \ {x} and satisfies

V̇ (x) = (γ + δ)[αx2(1 − x1) + (1 − β)x1] − (γ + δ)x1

+(α + β)[γx1(1 − x2) + (1 − δ)x2] − (α + β)x2

= (αγ − βδ)(x1 + x2) − [α(γ + δ) + γ(α + β)]x1x2.
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If αγ ≤ βδ, then V is a (generalized) Liapunov function at {x} = {(0, 0)} for the system
(58) on D0 = X0. Since the only invariant set in V̇ −1(0) is x = (0, 0), the largest invariant
subset Mc of V −1(c) is empty for every c > 0. Hence it follows from Corollary 3.2.12 that
x = (0, 0) is a globally asymptotically stable equilibrium point of the system defined by
(58) on X0. So for any initial distributions of the disease the number of infected people
will gradually decay to zero as t → ∞.
Now suppose αγ − βδ > 0. Then V̇ (x) > 0 for x ∈ X0 \ {(0, 0)} if

(αγ − βδ)(x1 + x2) > [α(γ + δ) + γ(α + β)]x1x2.

It is easy to show that this will be the case if x ∈ D̃ where D̃ is the set of all (x1, x2) ∈ X0

satisfying

x1 + x2 < η :=
4(αγ − βδ)

α(γ + δ) + γ(α + β)
.

Hence the function Ṽ = −V satisfies (55) on D̃ and Theorem 3.2.37 can be applied to
Ṽ and any compact neighbourhood C of (0, 0) in D̃. So in this case x is an unstable
equilibrium point of the flow defined by (58) on X0, and every trajectory no matter how
close to x = (0, 0) in X0 will eventually leave C. In other words, the total fraction of
infected members of the population will eventually be greater than or equal to η. �

3.2.4 Exercises

1. Let α1 and α2 be class K functions on [0, r1), α3 and α4 be class K∞ functions and β

be a class LK function on R+ × [0, r1). Prove

(i) α1 ◦ α2 belongs to class K on [0, r1).
(ii) α3 ◦ α4 belongs to class K∞.
(iii) If σ(s, r) = α1(β(α2(s), r)), (s, r) ∈ R+ × [0, r1), then σ belongs to class LK on
R+ × [0, r1).

2. Let F = (T,X,ϕ) be a local flow on a metric space X and x ∈ X an equilibrium point
of this flow. Suppose there exists a neighbourhood U of x such that t+(t0, x

0) = ∞ for all
(t0, x

0) ∈ T × U . Prove the following.

(i) If there exists a class K function α such that for all x0 ∈ B(x, ρ) ⊂ U, ρ > 0 sufficiently
small we have

d(ϕ(t; t0, x
0), x) ≤ α(d(x0, x)), t ∈ Tt0 , t0 ∈ T,

then x is uniformly stable.

(ii) If there exists a class LK function β such that for all x0 ∈ B(x, ρ) ⊂ U, ρ > 0
sufficiently small we have

d(ϕ(t; t0, x
0), x) ≤ β(t − t0, d(x0, x)), t ∈ Tt0 , t0 ∈ T,

then x is uniformly asymptotically stable.

3. Show that the sufficient stability conditions specified in the previous exercise are also
necessary. (See Khalil (1996) [299] Lemma 3.3 and Section A.3).

4. Let α : [0, r1) → R+ be a class K function . Prove that there exist continuous and
strictly increasing functions α1, α2 : [0, r1) → R+ of class K such that

α1(r) ≤ α(r) ≤ α2(r), r ∈ [0, r1).
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(Hint: To construct α1, define α1(r) =
∫ r
0 α(ρ)dρ for r ∈ [0, 1] ∩ [0, r1) and if r > 1 define

α1(r) = α1(1) +

∫ r

1
(α(ρ) − α1(1))dρ for r ∈ [1, 2] ∩ [0, r1),

etc. To construct α2, define for any r ∈ (0, r1), α̃(r) = (r̃ − r)−1
∫ r̃
r α(ρ)dρ where r̃ =

min{2r, (r + r1)/2} and α̃(0) = 0. Then α̃ : [0, r1) → R+ is continuous and satisfies
α(r) ≤ α̃(r) ≤ α(r̃). Now set α2(r) = max0≤ρ≤r α̃(ρ) + r).

5. Use Liapunov’s direct method to show that the origin for each of the following systems
is stable
(i) ẋ1 = −x3

1 − x2
2, ẋ2 = x1x2 − x3

2.

(ii) ẋ1 = −6x1/(1 + x2
1)

2 + 2x2, ẋ2 = −2x1 − 2x2/(1 + x2
1)

2.

(iii) ẋ1 = x2(1−x1), ẋ2 = −x1(1−x2), use V (x) = −x1− log(1−x1)−x2− log(1−x2).

(iv) ẋ1 = −2x1 + 2x4
2, ẋ2 = −x2, use V (x) = 6x2

1 + 12x2
2 + 4x1x

4
2 + x8

2.

(v) ẋ1 = x2, ẋ2 = sin α − sin (α + x1), where 0 < α < π/2, use V (x) = 1
2x2

2 + cos α −
cos (α + x1) − x1 sin α.

6. Analyze the stability properties of the equilibrium points of the following system by
Liapunov’s direct method

x1(t + 1) = x1(t)
2 − x2(t)

2, x2(t + 1) = 2x1(t)x2(t).

7. If c > 0 prove that for some suitable D

V (θ, ω) = (1/2)mω2 + mg(1 − cos θ) + (c/2) θω + (c2/4m2)θ2

is a strict Liapunov function at (0, 0) on D for the system given in Example 3.2.34.

8. Consider the time-varying second order system y(t+2)+a(t)y(t) = 0 or, equivalently,

x1(t + 1) = x2(t), x2(t + 1) = −a(t)x1(t),

where a(t) ∈ R, t ∈ N is given such that a(t)2 ≤ α < 1 for all t. Prove that the equilibrium
point x = 0 is globally asymptotically stable.

9. Consider the time-varying system (5) in Example 3.1.5, ẋ = −(1+1/t)x+x3t2. Show
that if V (t, x) = t2x2, then V̇ = −2V (1−V ). Hence prove that the origin is asymptotically
stable with basin of attraction A(t0, 0) ⊃ {x ∈ R; V (x, t0) < 1}.

10. Consider the linear system ẍ + ẋ + e−tx = 0 and the function V (t, x) = x2 + etẋ2.
Prove that the origin is stable at any time t0 ≥ 0. Is it uniformly stable?

11. Use the function V (x, y) = (x2 + y2) for the system

ẋ = a(t)y + b(t)x(x2 + y2), ẏ = −a(t)x + b(t)y(x2 + y2),

to determine conditions on b(t) for the zero state to be (i) stable, (ii) uniformly asymp-
totically stable.

12. Prove Theorem 3.2.25 making use of Lemma 3.2.26.
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13. A model for the oscillations of a damped hard spring is Duffing’s equation

ÿ + ẏ + ay + y3 = 0.

If a ≥ 0 use the Liapunov function V (y, ẏ) = ay2 + (1/2)y4 + ẏ2 to prove that (0, 0) is
globally asymptotically stable. If a < 0 show that there are three equilibrium states, two
of which are asymptotically stable, and one of which is unstable. Find estimates for the
basins of attraction for the stable equilibrium states.

14. Consider the following predator prey model which accounts for the effects of crowding
on the prey

ẋ1 = ax1 − bx1x2 − ex2
1, ẋ2 = −cx2 + dx1x2.

(cf. Example 3.2.35). Note that in the absence of predators (x2 ≡ 0) the prey grows
according to a logistic law of growth. Assume a/e > c/d so that the system has a positive
equilibrium point x1 = c/d, x2 = (da − ec)/bd. Proceed as in Example 3.2.35 to analyze
the stability of this equilibrium point via the “ecological Liapunov function” (51).

15. A gradient system on an open set X ⊂ R
n is given by a differential equation

ẋ(t) = − grad V (x(t))

where V : X → R is a C2-function. Prove:

(i) V̇ (x) = −‖ grad V (x)‖2, x ∈ X.

(ii) If x is an isolated minimum of V then x is an asymptotically stable equilibrium point.

(iii) Find the asymptotically stable equilibria when V : R
2 → R is given by V (x, y) =

x2(x − 1)2 + y2.

16. Steepest descent. Suppose that a function f : R
n → R is to be minimized and assume

(i) f has a unique minimum at the point x,

(ii) f is continuously differentiable and grad f(x) vanishes only at x,

(iii) f(x) → ∞ as ‖x‖ → ∞.

Let α : R
n → R+ be a continuous stepsize function such that for each x ∈ R

n

f(x − α(x) grad f(x)) < f(x), x �= x.

Prove that the method of steepest descent

xk+1 = xk − α(xk) grad f(xk),

converges from any initial value x0 to the minimum x.

17. Consider the nonlinear oscillator (Liénard’s equation) ÿ + f(y)ẏ + g(y) = 0 or, equiva-
lently, ẋ1 = x2, ẋ2 = −f(x1)x2 − g(x1), where the damping f(y) and the restoring force
g(y) are given real valued continuous functions on R with g(0) = 0. Use the total energy

V (x) = (1/2)x2
2 + G(x1), G(x1) =

∫ x1

0
g(ξ) dξ

as Liapunov function to prove that the origin is a globally asymptotically stable equilibrium
point under the assumptions

yg(y) > 0 for y �= 0, f(y) > 0 for y �= 0, G(y) → ∞ as |y| → ∞.
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18. In the situation of Ex. 17 consider

V (x) = x2
2 + F (x1)x2 + (1/2)F (x1)

2 + 2G(x1), F (x1) =

∫ x1

0
f(ξ) dξ

Determine conditions on f , g for the origin to be a stable equilibrium state. If f(x) = 1−x2,
g(x) = x + x3, determine estimates for the basin of attraction of the origin.

19. Krasovskii’s method Consider the system ẋ = f(x) where f : X → R
n is continuously

differentiable and f(x) = 0 if and only if x = 0. Krasovskii’s method is to try V (x) =
〈f(x), f(x)〉 as a possible Liapunov function. Prove that V is a Liapunov function for
ẋ = f(x) at x = 0 if

∀x ∈ K
n : 〈x, Fx〉 ≥ 0 where F =

(
∂fi

∂xj
(0)

)
+

(
∂fi

∂xj
(0)

)�
.

Apply Krasovskii’s method to prove that the equilibrium state x = (0, 0) of the system
ẋ1 = −3x1 + x2, ẋ2 = x1 − x2 − x3

2 is globally asymptotically stable.

3.2.5 Notes and References

Good introductory texts on Liapunov stability are LaSalle and Lefschetz (1961) [332] and
J.L. Willems (1970) [530]. Comprehensive works on Liapunov stability and related prop-
erties of differential systems are Hahn (1967) [209], Krasovskii (1963) [316] and Yoshizawa
(1966) [537]. There are of course many different versions of the stability and instability the-
orems. For example one may dispense with the boundedness condition in Theorem 3.2.17
(ii) if one assumes that the right hand side of (27a) is bounded, see Hahn (1967) [209].
A Liapunov theory for general dynamical systems on metric spaces has been developed by
various authors, see Zubov (1964) [547] and Bhatia and Szegö (1970) [54]. More instability
criteria can be found in LaSalle and Lefschetz (1961) [332], Hahn (1967) [209], Yoshizawa
(1963) [536], Chetaev (1961) [98]. In Krasovskii (1963) [316], Yoshizawa (1966) [537] and
Hahn (1967) [209] converse theorems are proved which give conditions under which cer-
tain stability properties imply the existence of Liapunov functions of corresponding type.
Converse theorems for flows on metric spaces can be found in Bhatia and Szegö (1970)
[54]. Constructional methods have been suggested by Zubov (1964) [547], Schultz and
Gibson (1962) [452], Krasovskii (1963) [316] and Brockett (1966) [76]. The construction of
a Liapunov function for dissipative input-output systems is discussed in Willems (1971)
[528].
One of the first uses of Liapunov functions in control theory was by Lur’e (1951) [352].
He considered the stability problem for the system

ẋ = Ax + bu, u = f(σ), σ̇ = c�x − ru, (59)

where b, c ∈ R
n and r is a scalar. For this system Lur’e introduced a Liapunov function

containing an integral term

V (x, σ) = x�Px +

∫ σ

0
f(s)ds , (60)

see Ex. 3.24.

A concise exposition of LaSalle’s invariance principle and its applications to discrete and

continuous time systems is given in LaSalle and Artstein (1976) [331] and Example 3.2.35

(spread of gonorrhoea) is based on this reference. A standard reference for the mathemat-

ical theory of epidemics is Bailey (1957) [30].
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Stability results for time-varying systems are presented in most of the books cited here, see

also, Miller and Michel (1982) [375] and Khalil (1996) [299]. For results on the stability

of periodic trajectories see e.g. Rouché and Mawhin (1980) [438].

Liapunov functions for differentiable systems on smooth manifolds have been considered

by Shub (1973) [464]. For infinite dimensional systems stability results see the survey by

Pritchard and Zabczyk (1983) [421].

Liapunov’s direct method for discrete time systems has been described in Hahn (1958)

[207] and Bertram and Kalman (1960) [52].

In recent years a good deal of research activity has been devoted to the stability analysis of

sets of systems (systems with time-varying perturbations and controls, systems described

by differential or difference inclusions). Here again Liapunov techniques play an impor-

tant role, see Lin et al. (1996) [345], Camilli et al. (2002) [88], Wirth (2002) [532]. For

a survey of some of these results see Sontag (2000) [473]. A research monograph in this

area is Grüne (2002) [203].

In many areas such as economics, population dynamics, process control etc., components

of the state vector are restricted to be positive quantities see Luenberger (1979) [349].

Liapunov functions for such systems are analyzed in Arrow and Hahn (1971) [21].
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3.3 Linearization and Stability

Linearization of a nonlinear differential or difference equation of the form (2.27)
about a given trajectory (in particular an equilibrium state) yields a linear system
which, in general, will be time-varying. Since stability is a local property one might
expect that the linearization provides sufficient information to determine whether
or not the trajectory is stable. This is the idea behind an approach adopted by Li-
apunov which is now known as Liapunov’s indirect method. In order to prepare the
ground for the development of this method we need to consider stability problems
for linear systems. Actually linear models are often used in areas of application
and especially in control, so linear stability analysis is important in its own right.
Moreover, as we shall see, the theory is well developed and yields a number of spe-
cific stability criteria which lead to computable tests. By using Liapunov’s indirect
method these linear stability tests can be applied to nonlinear systems as well.
Our stability analysis will be for both time-varying and time–invariant linear sys-
tems and we will also include methods related to Liapunov functions since they will
enable us to prove the validity of the indirect method. In the last section of this
chapter the stability analysis of linear systems will be continued with a derivation
of the classical algebraic stability criteria for time–invariant linear systems.
In the first subsection we characterize the asymptotic and exponential stability of
time–varying linear systems via their evolution operator Φ and associated Liapunov
and Bohl coefficients. Whilst these results are quite satisfactory they suffer from
the drawback that one needs to compute Φ in order to check them. In Subsection
3.3.2 time-invariant systems are considered and we show that the conditions are
equivalent to constraints on the spectrum of A. We illustrate the results with some
examples and also carry out an extended case study where the numerical stabil-
ity of linear multi-step discretization methods, described in Section 2.5 is analyzed.
In Subsection 3.3.4 we examine the possibility of using time–dependent quadratic
forms as Liapunov functions for time-varying linear systems. Then these quadratic
forms are used for nonlinear systems (2.27) to derive stability properties of a given
trajectory from stability properties of the associated linearized model (Liapunov’s
indirect method). In fact we will see that the properties of asymptotic stability and
of instability can be tested via the linearized model. However this is not possible
for (marginal) stability, since the stability of a solution which is not asymptotically
stable can be destroyed by arbitrary small perturbations of the system equation (see
Subsection 3.3.2). Finally, in the last subsection we consider time-invariant systems
and time–invariant quadratic Liapunov functions. For their construction a linear
matrix equation, the algebraic Liapunov equation, must be solved. We analyze this
equation in some detail and characterize the asymptotic stability and instability
of a time-invariant linear system via the solutions of the associated algebraic Lia-
punov equation. This in turn allows us to conclude that an equilibrium point x of
a nonlinear system is exponentially stable if and only if the spectrum σ(A) of the
matrix obtained from the linearization at x satisfies σ(A) ∈ C− (resp. σ(A) ∈ D).
In addition, if σ(A) /∈ C− (resp. σ(A) /∈ D), then x is an unstable equilibrium point
of the nonlinear system.
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3.3.1 Stability Criteria for Time-Varying Linear Systems

In this subsection we analyze the stability of finite dimensional time-varying linear
systems described by differential and difference equations. Recall that for these sys-
tems the (asymptotic) stability of the equilibrium solution at the origin is equivalent
to the (asymptotic) stability of any other solution (see Subsection 3.1.2). Hence we
may attribute the stability properties to the system itself instead of the solutions.
We first express the stability properties of a linear system in terms of the associ-
ated evolution operator Φ(t, t0). We then introduce Liapunov and Bohl exponents
which measure the (uniform) exponential growth (or decrease) of the trajectories.
The main theorem of the subsection is Theorem 3.3.15 where uniform exponential
stability is shown to be equivalent to the Bohl exponent being negative and also to
the existence of a uniform estimate on the Lp-norm of the evolution operator Φ.
We consider the following system equations

ẋ(t) = A(t)x(t), t ∈ T ⊂ R (1a)

x(t + 1) = A(t)x(t), t ∈ T ⊂ Z (1b)

where the time domain T is either an interval in R or in Z which is unbounded to
the right. By assumption A(·) ∈ PC(T ; Kn×n) in (1a) and A(t) ∈ Kn×n, t ∈ T in
(1b). In both cases A(·) generates an evolution operator Φ(·, ·) (see Section 2.2),
and the solution of (1) satisfying x(t0) = x0 is given by x(t) = Φ(t, t0)x

0, t ∈ Tt0 for
all x0 ∈ Kn. Linear systems of the form (1) induce a global flow F = (T, X, ϕ) on
X = Kn given by ϕ(t; t0, x

0) = Φ(t, t0)x
0, (t0, x

0) ∈ T × Kn, t ∈ Tt0 .
As in the previous section we provide Kn with the Euclidean norm and Kn×n with
the corresponding operator norm (spectral norm). The first two propositions are
immediate consequences of Definitions 3.1.8, 3.1.9.

Proposition 3.3.1. Let (z1, . . . , zn) be any basis of Kn. Then the following state-
ments are equivalent.

(i) The system (1) is stable at time t0 (resp. uniformly stable).

(ii) There exists a constant M which may depend on t0 (resp. independent of t0)
such that ‖Φ(t, t0)‖ ≤ M for all t ∈ Tt0.

(iii) There exists a constant M which may depend on t0 (resp. independent of t0)
such that ‖Φ(t, t0)z

i‖ ≤ M for all t ∈ Tt0 , i ∈ n.

Proof : (i) ⇒ (ii). Suppose that (1) is stable at time t0 (resp. uniformly stable).
Then for ε = 1, there exists δ > 0 depending on t0 (resp. independent of t0) such
that

‖x0‖ ≤ δ ⇒ ‖Φ(t, t0)x
0‖ ≤ 1 , t ∈ Tt0 .

Hence ‖Φ(t, t0)‖ ≤ δ−1 for all t ∈ Tt0 .
As (ii) ⇒ (iii) is trivial it only remains to prove (iii) ⇒ (i). Suppose (iii). Since
there exist a, b > 0 such that

a max
i∈n

|ξi| ≤ ‖
n∑

i=1

ξiz
i‖ ≤ b max

i∈n
|ξi|, ξ ∈ K

n. (2)
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we have for all x0 =
∑n

i=1 ξiz
i ∈ Kn,

‖Φ(t, t0)x
0‖ = ‖Φ(t, t0)

n∑
i=1

ξiz
i‖ ≤ max

i∈n
|ξi|

n∑
i=1

‖Φ(t, t0)z
i‖ ≤ a−1nM‖x0‖.

This proves (i). �

Proposition 3.3.2. Let (z1, . . . , zn) be any basis of Kn. Then the following state-
ments are equivalent.

(i) The system (1) is asymptotically stable at time t0 (resp. uniformly asymptoti-
cally stable).

(ii) The system (1) is globally asymptotically stable at time t0 (resp. globally uni-
formly asymptotically stable).

(iii) ‖Φ(t, t0)‖ → 0 as t → ∞ (resp. uniformly in t0).

(iv) For i ∈ n, ‖Φ(t, t0)z
i‖ → 0 as t → ∞ (resp. uniformly in t0).

Proof : (i) ⇒ (ii) follows directly from linearity and (ii) ⇒ (iv) and (iii) ⇒ (i) are
trivial.
(iv) ⇒ (iii). Suppose (iv) holds, then for every ε > 0 there exists a time τ(ε)
depending on t0 (independent of t0) such that ‖Φ(t, t0)z

i‖ < ε for all t ∈ Tt0+τ(ε),
i ∈ n. But then, for every x0 =

∑n
i=1 ξiz

i, ‖x0‖ = 1 we have maxi∈n |ξi| ≤ a−1 where
a > 0 satisfies (2), and thus

‖Φ(t, t0)x
0‖ = ‖

n∑
i=1

ξiΦ(t, t0)z
i‖ ≤ a−1nε , t ∈ Tt0+τ(ε) ,

hence (iii) holds. �

Remark 3.3.3. In the discrete time case

Φ(t, t0) = A(t − 1)A(t − 2) . . . A(t0) , t ∈ Tt0 . (3)

So if (1b) is (asymptotically) stable at time t0 ∈ T it will also be (asymptotically) stable
at time τ ∈ T for all τ < t0. A similar statement also holds for τ ∈ T, τ > t0 provided
that detA(k) �= 0 for k = t0, . . . , τ − 1. Furthermore, taking norms in (3) we obtain

(∀t ∈ T : ‖A(t)‖ ≤ γ ) ⇒ ‖Φ(t, t0)‖ ≤ γt−t0 , t0 ∈ T , t ∈ Tt0 . (4)

Hence the zero state of (1b) will be uniformly stable if ‖A(t)‖ ≤ 1, t ∈ T and it will
be uniformly asymptotically stable if ‖A(t)‖ ≤ γ < 1 for all t ∈ T . These conditions,
however, are far from being necessary. �

An estimate of the spectral norm ‖Φ(t, t0)‖ for the continuous time case is provided
by the next lemma.

Lemma 3.3.4. If Φ(t, t0) is the evolution operator of (1a), then

e
− R t

t0
‖A(s)‖ds ≤ σmin(Φ(t, t0)) = ‖Φ(t0, t)‖−1, ‖Φ(t, t0)‖ ≤ e

R t
t0

‖A(s)‖ds
, t ≥ t0 . (5)
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Proof : Since Φ(t0, t) = Φ(t, t0)
−1, we have

∂

∂t
Φ(t, t0) = A(t)Φ(t, t0),

∂

∂t
Φ(t0, t) = −Φ(t, t0)

−1A(t)Φ(t, t0)Φ(t, t0)
−1 = −Φ(t, t0)

−1A(t) = −Φ(t0, t)A(t)

for a.e. t > t0. Integrating yields

Φ(t, t0) − I =

∫ t

t0

A(s)Φ(s, t0)ds, Φ(t0, t) − I = −
∫ t

t0

Φ(t0, s)A(s)ds, t ≥ t0.

Hence for t ≥ t0

‖Φ(t, t0)‖ ≤ 1 +

∫ t

t0

‖A(s)‖‖Φ(s, t0)‖ds, ‖Φ(t0, t)‖ ≤ 1 +

∫ t

t0

‖Φ(t0, s)‖‖A(s)‖ds.

By Gronwall’s Lemma 2.1.18, we have

‖Φ(t, t0)‖ ≤ e
R t
t0

‖A(s)‖ds
, ‖Φ(t0, t)‖ ≤ e

R t
t0

‖A(s)‖ds
, t ≥ t0.

So the second inequality holds and the first is a consequence of σmin(Φ(t, t0)) =
‖Φ(t0, t)‖−1 for t ≥ t0. �

As a corollary of this lemma and Propositions 3.3.1, 3.3.2 we obtain

Corollary 3.3.5. The continuous time system (1a) with time-domain T = [t0,∞)
is uniformly stable if

∫∞
t0

‖A(s)‖ds < ∞. It is (asymptotically) stable at time t1 ∈ T
if and only if it is (asymptotically) stable at time t0 ∈ T .

Proof : The first part is clear from the previous Proposition 3.3.1 and the above
lemma. The second follows from the estimates

‖Φ(t, t0)‖ ≤ ‖Φ(t, t1)‖‖Φ(t1, t0)‖, ‖Φ(t, t1)‖ ≤ ‖Φ(t, t0)‖‖Φ(t0, t1)‖, t ≥ t1 ≥ t0 (6)

and Proposition 3.3.2 and (5). �

The following proposition shows that for periodic systems (1) the stability properties
can be characterized via those of an associated time–invariant linear system. We
will see in the next subsection that efficient stability tests are available for such
systems.

Proposition 3.3.6. Suppose the generators A(·) of (1) are periodic with period
τ ∈ T , T = R or Z, τ > 0: A(t + τ) = A(t) , t ∈ T . Then (1) is uniformly
stable (uniformly asymptotically stable) if and only if the time–invariant discrete
time system

x̂(k + 1) = Φ(τ, 0)x̂(k) , k ∈ N (7)

is stable (asymptotically stable) where Φ is the evolution operator generated by (1).
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Proof : By periodicity Φ(t, t0) = Φ(t + τ, t0 + τ), t ∈ Tt0 , t0 ∈ T . Hence if t ∈ Tt0

and
t0 = k0τ + t′0 , t = kτ + t′ , 0 ≤ t′0, t′ < τ, k, k0 ∈ N, (8)

then

Φ(t, t0) = Φ(t, kτ)Φ(kτ, (k − 1)τ) · · ·Φ((k0 + 1)τ, t0) (9)

= Φ(t′, 0)Φ(τ, 0)k−k0−1Φ(τ, t′0) .

By (3), (5) there exists c > 0 such that ‖Φ(t′, 0)‖, ‖Φ(τ, t′0)‖ ≤ c for all t′0, t′ ∈
[0, τ ] ∩ T . Therefore (9) implies

‖Φ(t, t0)‖ ≤ c2‖Φ(τ, 0)k−k0−1‖ , t ∈ Tt0 as in (8) .

Applying Proposition 3.3.1 (Proposition 3.3.2) we see that (1) is uniformly (asymp-
totically) stable if (7) has this property. The converse implication is obvious since
Φ(τ, 0)k = Φ(kτ, 0). �

The next example shows that a system (1) may be unstable even though every time–
invariant system ẋ(t) = A(τ)x(t) (resp. x(t + 1) = A(τ)x(t)) frozen at time τ ∈ T
is asymptotically stable. It is also possible that every frozen system is unstable yet
(1) is stable, see Ex. 7.

Example 3.3.7. Consider the two dimensional periodic system of period 2π, where

A(t) =

[
cos t − sin t

sin t cos t

] [
−1 −5
0 −1

] [
cos t sin t

− sin t cos t

]
. (10)

Then σ(A(τ)) = {−1}, τ ∈ R+ and we will see in the next subsection that time–invariant
continuous time systems with spectrum in the open left half plane are asymptotically
stable. However it is easily verified that the evolution operator generated by A(·) is such
that

Φ(t, 0) =

[
et(cos t + 1

2 sin t) e−3t(cos t − 1
2 sin t)

et(sin t − 1
2 cos t) e−3t(sin t + 1

2 cos t)

]
,

which is clearly unbounded. �

Let us now turn to exponential stability. The linear system (1) is (uniformly)
exponentially stable if there exist for every t0 ∈ T a constant M > 0, and a decay
rate ω < 0 which may depend upon t0 (resp. independent of t0), such that

‖Φ(t, t0)‖ ≤ Meω(t−t0), t ∈ Tt0 . (11)

The next theorem is rather surprising. A similar result does not hold for nonlinear
systems.

Theorem 3.3.8. The system (1) is uniformly exponentially stable if and only if it
is uniformly asymptotically stable.

Proof : The only if part follows immediately from (11) and Proposition 3.3.2. Con-
versely suppose that (1) is uniformly asymptotically stable. By Proposition 3.3.2
there exists τ ∈ T such that ‖Φ(t + τ, t)‖ ≤ 1/2 for all t ∈ T . Hence using the
concatenation property of Φ
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‖Φ(t0 + kτ, t0)‖ ≤ ‖Φ(t0 + kτ, t0 + (k − 1)τ)‖ . . . ‖Φ(t0 + τ, t0)‖ ≤ 2−k.

Now suppose t0 + kτ ≤ t < t0 + (k + 1)τ , t ∈ Tt0 , k ∈ N, then

‖Φ(t, t0)‖ ≤ ‖Φ(t, t0 + kτ)‖‖Φ(t0 + kτ, t0)‖ ≤ ‖Φ(t, t0 + kτ)‖2−k .

By Proposition 3.3.1 there exists M ′ > 0 such that ‖Φ(t, t0 + kτ)‖ ≤ M ′ for all
t ≥ t0 + kτ, k ∈ N, and hence

‖Φ(t, t0)‖ ≤ M ′2−[(t−t0)/τ −1] , t ∈ Tt0, t0 ∈ T.

Setting M = 2M ′, ω = −(ln 2)/τ we obtain (11). �

In his doctoral thesis in 1892 Liapunov introduced characteristic numbers associated
with the flow generated by the differential equation (1a). They are now known as
Liapunov exponents and we will be particularly interested in the upper one which
characterizes the supreme exponential growth rate of the system. Our definition is
applicable to both continuous and discrete time systems (1).

Definition 3.3.9 (Liapunov exponents). If Φ(·, ·) is the evolution operator of
(1) and t0 ∈ T , the upper and lower Liapunov exponents α(Φ), α(Φ) are defined by

α(Φ) = inf{ω ∈ R; ∃Mω > 0 ∀ t ∈ Tt0 : ‖Φ(t, t0)‖ ≤ Mωeω(t−t0)}
α(Φ) = sup{ω ∈ R; ∃Mω > 0 ∀ t ∈ Tt0 ∀x ∈ K

n : ‖Φ(t, t0)x‖ ≥ Mωeω(t−t0)‖x‖}

(where we set inf ∅ := ∞, sup ∅ := −∞).

It is easily seen that the two Liapunov exponents do not depend upon t0 in the
continuous time case. In the discrete time case this is also true if det A(t) �= 0 for
all t ∈ T . But, if det A(t1) = 0 for some t1 ∈ T then det Φ(t, t0) = 0 for all (t, t0)
with t0 ≤ t1 ≤ t. So by (3) α(Φ) = −∞ if we choose t0 ≤ t1 (as we will always do
in this case). Therefore we need not indicate the dependency on t0 in our notation
of the Liapunov exponents.
While exponential stability can be characterized by α(Φ) < 0 (see the next remark),
uniform exponential stability can be characterized in terms of the upper Bohl expo-
nent introduced by Bohl in 1913.

Definition 3.3.10 (Bohl exponents). If Φ(·, ·) is the evolution operator generated
via (1), the upper and lower Bohl exponents β(Φ), β(Φ) are defined by

β(Φ) = inf{ω ∈ R; ∃Mω ∀t0 ∈ T ∀t ∈ Tt0 : ‖Φ(t, t0)‖ ≤ Mωeω(t−t0)},
β(Φ) = sup{ω ∈ R; ∃Mω ∀t0 ∈ T ∀t ∈ Tt0 ∀x ∈ K

n : ‖Φ(t, t0)x‖ ≥ Mωeω(t−t0)‖x‖}.

Remark 3.3.11. (i) Clearly α(Φ) ≤ β(Φ) and β(Φ) ≤ α(Φ).

(ii) If ‖A(t)‖ ≤ γ, for all t ∈ T and some γ > 0, it follows from (3) in the discrete time case
that β(Φ) ≤ ln γ, whereas in the continuous time case we have β(Φ) ≤ γ and β(Φ) ≥ −γ

by (5).

(iii) Suppose that α(Φ) < ∞ (resp. β(Φ) < ∞), then given γ > α(Φ) (resp. γ > β(Φ))
there exists M depending on γ such that ‖Φ(t, t0)‖ ≤ Meγ(t−t0), t ∈ Tt0 for a given
t0 ∈ T (resp. ‖Φ(t, t0)‖ ≤ Meγ(t−t0), t0 ∈ T, t ∈ Tt0). So we conclude that the system
(1) is exponentially stable at time t0 (resp. uniformly exponentially stable) if and only if
α(Φ) < 0 (resp. β(Φ) < 0).
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(iv) If Φ̃(t, t0) = Φ(t0, t)
∗ denotes the evolution operator generated by −A(t)∗, then

β(Φ) = β(Φ̃). �

In general the Bohl and Liapunov exponents are not the same as the following scalar
example shows.

Example 3.3.12. (Perron). Consider the scalar system

ẋ(t) = a(t)x(t) , where a(t) = sin ln t + cos ln t, t > 0. (12)

The corresponding evolution operator is

Φ(t, t0) = et sin ln t−t0 sin ln t0 , t ≥ t0 > 0

and ‖Φ(t, 1)‖ ≤ et, t ≥ 1 so α(Φ) ≤ 1.
For small ε > 0 let ln tn = 2nπ + π/4 + ε, ln t0n = 2nπ + π/4, then

tn sin ln tn − t0n sin ln t0n = e2nπ+π/4
[
eε sin(π/4 + ε) − sin π/4

]
.

But for small ε, eε sin(π/4+ ε)− sin π/4 ≈ (1+ ε)(1+ ε)/
√

2− 1/
√

2 ≈
√

2 ε. Hence given
any small δ > 0 there exists ε > 0 such that eε sin(π/4 + ε) − sinπ/4 ≥ (

√
2 − δ)(eε − 1).

And so for this ε

tn sin ln tn − t0n sin ln t0n ≥ (
√

2 − δ)(tn − t0n) .

But then
|Φ(tn, t0n)| ≥ e(

√
2−δ)(tn−t0n) .

Since tn − t0n → ∞ as n → ∞, this shows β(Φ) ≥
√

2. Now |a(t)| ≤
√

2, t > 0. Hence

|Φ(t, t0)| = |e
R t
t0

a(s)ds| ≤ e
√

2(t−t0), t ≥ t0 > 0 and so in fact β(Φ) =
√

2. �

Remark 3.3.13. In the continuous time case if A(·) generates Φ(·, ·), then for any λ ∈ C,
A(·) + λIn generates Φλ(t, t0) = eλ(t−t0)Φ(t, t0) and

α(Φλ) = α(Φ) + Re λ, β(Φλ) = β(Φ) + Reλ . (13)

If a(·) is as in the above example and −
√

2 < λ < −1 we see that α(Φλ) < 0 and β(Φλ) > 0
so that all solutions of ẋ = (a(t) + λ)x decrease exponentially although β(Φλ) > 0. �

It is easily verified (see Ex. 5) that for the upper upper Liapunov exponent we have

α(Φ) = lim sup
t→∞

ln ‖Φ(t, 0)‖
t

. (14)

The corresponding formula for the Bohl exponent is given in the next proposition.

Proposition 3.3.14. β(Φ) < ∞ if and only if

sup
t0,t∈T, 0≤t−t0≤1

‖Φ(t, t0)‖ < ∞ , (15)

and when this is the case

β(Φ) = lim sup
t0, t−t0→∞

ln ‖Φ(t, t0)‖
t − t0

. (16)
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Proof : Suppose β(Φ) < ∞, then choosing γ > max{β(Φ), 0} there exists M(γ) >
0 such that

‖Φ(t, t0)‖ ≤ M(γ)eγ(t−t0) , t0 ∈ T , t ∈ Tt0 . (17)

Hence sup0≤t−t0≤1 ‖Φ(t, t0)‖ ≤ M(γ)eγ < ∞. Conversely suppose (15) holds so that
‖Φ(τ, σ)‖ ≤ K for some K ≥ 1 and all σ, τ ∈ T , 0 ≤ τ − σ ≤ 1. Then for every
t0 ∈ T , t ∈ Tt0 such that t0 + (n − 1) ≤ t < t0 + n

‖Φ(t, t0)‖ ≤ ‖Φ(t, t0+n−1)‖
n−1∏
k=1

‖Φ(t0+k, t0+k−1)‖ ≤ Kn ≤ Ke(t−t0) ln K . (18)

So β(Φ) ≤ ln K and this concludes the proof of the equivalence statement.

To prove (16) we suppose β(Φ) < ∞. Then (17) holds for every γ > β(Φ) and so

µ = lim sup
t0,t−t0→∞

ln ‖Φ(t, t0)‖
t − t0

≤ lim sup
t0,t−t0→∞

ln M(γ)

t − t0
+ γ = γ .

Hence µ ≤ β(Φ). Conversely, for every γ > µ there exists a time tγ ∈ T such that

ln ‖Φ(t, t0)‖
t − t0

≤ γ , i.e. ‖Φ(t, t0)‖ ≤ eγ(t−t0) , t0 ∈ Ttγ , t ∈ Tt0+tγ .

By (18)

Kγ := sup{‖Φ(t, t0)‖; t0, t ∈ T, 0 ≤ t − t0 ≤ tγ} ≤ Ketγ lnK < ∞. (19)

So
‖Φ(t, t0)‖ ≤ Kγe

|γ|tγeγ(t−t0), t0 ≤ t ≤ t0 + tγ. (20)

Therefore
‖Φ(t, t0)‖ ≤ Neγ(t−t0) , t0 ∈ Ttγ , t ∈ Tt0 ,

where N = max{1, Kγe
|γ|tγ}. But by (20) this same estimate is also valid for

0 ≤ t0 ≤ t ≤ tγ . Finally if t0 ≤ tγ < t we have

‖Φ(t, t0)‖ ≤ ‖Φ(t, tγ)‖‖Φ(tγ, t0)‖ ≤ Neγ(t−tγ )Neγ(tγ−t0) = N2eγ(t−t0)

and so there exists M such that ‖Φ(t, t0)‖ ≤ Meγ(t−t0) , for all t0 ∈ T , t ∈ Tt0 .
Thus β(Φ) ≤ µ and (16) is proved. �

Note that in the discrete time case (15) holds if and only if supt∈T ‖A(t)‖ =: γ < ∞
in which case α(Φ) ≤ β(Φ) ≤ ln γ.
The following theorem gives an alternative characterization for uniform exponential
stability of (1). It is closely related to the Liapunov results which we will develop
in Subsection 3.3.4.

Theorem 3.3.15. Suppose the evolution operator Φ of (1) satisfies β(Φ) < ∞ then
the following statements are equivalent.

(i) The system (1) is uniformly exponentially stable.

(ii) β(Φ) < 0.
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(iii) For any p ∈ (0,∞) there exists a constant c independent of t0 ∈ T such that∫ ∞

t0

‖Φ(t, t0)‖pdt ≤ c
(
resp.

∞∑
t=t0

‖Φ(t, t0)‖p ≤ c
)
, t0 ∈ T. (21)

(iv) For any p ∈ (0,∞) there exists a constant c independent of t0 ∈ T such that∫ ∞

t0

‖Φ(t, t0)x‖pdt ≤ c‖x‖p
(
resp.

∞∑
t=t0

‖Φ(t, t0)x‖p ≤ c‖x‖p
)
, x ∈ K

n, t0 ∈ T. (22)

Proof : The proof is for the continuous time case. (i) ⇔ (ii) and (iii) ⇒ (iv) is
clear.
(i) ⇒ (iii): Suppose (i) then there exist constants M > 0, ω < 0 independent of
t0 ∈ T such that ‖Φ(t, t0)‖ ≤ Meω(t−t0), for all t0 ∈ T , t ∈ Tt0 . Hence (21) holds
with c = Mp/p(−ω).
(iv) ⇒ (i): Since β(Φ) < ∞ there exists M, ω > 0 independent of t0 such that
‖Φ(t, t0)‖ ≤ Meω(t−t0), for all t0 ∈ T , t ∈ Tt0 . So

1 − e−p ω(t−t0)

p ω
‖Φ(t, t0)x‖p =

∫ t

t0

e−p ω(t−s)‖Φ(t, t0)x‖pds (23)

≤
∫ t

t0

e−p ω(t−s)‖Φ(t, s)‖p‖Φ(s, t0)x‖pds

≤ M
p
∫ t

t0

‖Φ(s, t0)x‖pds ≤ M
p
c‖x‖p, t ≥ t0 .

Hence there exists γ independent of t0 ∈ T such that ‖Φ(t, t0)‖ ≤ γ, t ≥ t0. But
then for t ≥ t0, t0 ∈ T

(t − t0)‖Φ(t, t0)x‖p =

∫ t

t0

‖Φ(t, t0)x‖pds ≤
∫ t

t0

‖Φ(t, s)‖p‖Φ(s, t0)x‖pds ≤ γpc‖x‖p.

So for τ = 2pγpc
‖Φ(t0 + τ, t0)‖ ≤ 1/2 , t0 ∈ T . (24)

Now suppose t0 + (n − 1)τ ≤ t < t0 + nτ , then from (24)

‖Φ(t, t0)‖≤‖Φ(t, t0+(n−1)τ)‖
n−1∏
k=1

‖Φ(t0+kτ, t0+(k−1)τ)‖≤ γ

2n−1
<2γe−(ln 2)(t−t0)/τ .

Hence β(Φ) < −(ln 2)/τ . The reader is asked to prove the discrete time case in
Ex. 23. �

We now consider the effect of time–varying linear coordinate transformations of
the form x̃(t) = S(t)−1x(t) on the system (1), where S(·) ∈ PC1(T ;Gln(C))
(resp. S(t) ∈ Gln(C), t ∈ T ). The associated similarity transformation converts
the system (1) into

˙̃x(t) = Ã(t)x̃(t), t ∈ T, (resp. x̃(t + 1) = Ã(t)x̃(t), t ∈ T ) (25)
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where

Ã(t) = S(t)−1A(t)S(t) − S(t)−1Ṡ(t), t ∈ T, (resp. = S(t + 1)−1A(t)S(t), t ∈ T ).

The evolution operator of the system (25) is

Φ̃(t, s) = S(t)−1Φ(t, s)S(s), t, s ∈ T. (26)

In order that these transformations preserve stability properties additional assump-
tions must be imposed.

Definition 3.3.16 (Liapunov and Bohl transformation). A time-varying trans-
formation S(·) ∈ PC1(T ;Gln(C)) (resp. S(t) ∈ Gln(C), t ∈ T ) is called a Liapunov
transformation if S(·), S(·)−1 and Ṡ(·) are bounded on T . It is called a Bohl trans-
formation if

inf
{
ε ∈ R; ∃Mε > 0 ∀ t, s ∈ T : ‖S(t)−1‖ ‖S(s)‖ ≤ Mεe

ε|t−s|
}

= 0.

It is easily seen that the Liapunov transformations on T form a group with respect to
pointwise multiplication, and this group of transformations preserves the properties
of stability, instability and asymptotic stability. The next proposition shows that
the property of exponential stability is invariant with respect to the larger group of
Bohl transformations.

Proposition 3.3.17. The Bohl exponent is invariant with respect to Bohl transfor-
mations.

Proof : Let ˙̃x(t) = Ã(t)x̃(t), (resp. x̃(t+1) = Ã(t)x̃(t)) be similar to (1) via a Bohl
transformation S(·). Since the evolution operator of the transformed equation is
given by (26), we have

‖Φ̃(t, s)‖ ≤ ‖S(t)−1‖‖Φ(t, s)‖‖S(s)‖, t, s ∈ T.

But by Definitions 3.3.10 and 3.3.16, for every ε > 0, there exists a constant Mε

such that

‖S(t)−1‖‖S(s)‖ ≤ Mεe
ε(t−s), ‖Φ(t, s)‖ ≤ Mεe

(β(Φ)+ε)(t−s), t ≥ s ∈ T.

So β(Φ̃) ≤ β(Φ). Using the fact that S(·)−1 is also a Bohl transformation we
conclude that β(Φ̃) = β(Φ). �

It is a simple exercise to show that every time-varying linear system (1) can be
transformed into the trivial system ẋ = 0 by a time-varying coordinate transforma-
tion. In the context of stability theory it is interesting to know which time-varying
systems can be transformed into time–invariant ones via Liapunov or Bohl trans-
formations. According to a result of Liapunov this is always possible for periodic
systems.

Proposition 3.3.18. Suppose the generator A(·) of (1) is periodic with period τ >
0, τ ∈ T : A(t + τ) = A(t), t ∈ T , and det A(t) �= 0, t ∈ T in the discrete time case.
Then there exists a Liapunov transformation such that the transformed system (25)
is time-invariant.
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Proof : Suppose Φ(·, ·) is generated by A(·). Since A(·) is periodic, we have

Φ̇(t + τ, 0) = A(t)Φ(t + τ, 0), t ∈ T (resp. Φ(t+τ+1, 0) = A(t)Φ(t+τ, 0), t ∈ T ).

So there must exist a constant nonsingular matrix V such that Φ(t+τ, 0) = Φ(t, 0)V .
Choose L ∈ Cn×n such that eL = V and set S(t) = Φ(t, 0)e−tL/τ , t ∈ T . Then

S(t + τ) = Φ(t + τ, 0)e−(tL/τ)−L = Φ(t, 0)eLe−(tL/τ)−L = S(t).

Hence S(·) is periodic with period τ . In the continuous time case Φ is automatically
invertible and in the discrete time case this is a consequence of the assumption that
det A(t) �= 0, t ∈ T . It follows therefore that S(t), t ∈ T is invertible. Moreover

Ṡ(t) = A(t)Φ(t, 0)e−tL/τ − Φ(t, 0)e−tL/ττ−1L = A(t)S(t) − S(t)τ−1L, t ≥ 0.

And in the discrete case

S(t + 1) = Φ(t + 1, 0)e−(t+1)L/τ = A(t)S(t)e−L/τ , t ∈ T.

So the transformed system (25) is given by Â(t) = τ−1L, t ∈ T, (resp. = eL/τ ).
Clearly S(·) ∈ PC1(T ;Gln(C)) (resp. S(t) ∈ Gln(C), t ∈ T ) and the bounded-
ness of S(·), S(·)−1, Ṡ(·) is a consequence of periodicity. Hence S is a Liapunov
transformation and this completes the proof. �

3.3.2 Time–Invariant Systems: Spectral Stability Criteria

We consider systems of the form

ẋ(t) = Ax(t), t ∈ T, (resp. x(t + 1) = Ax(t), t ∈ T ) (27)

where A ∈ Kn×n and T = R+ (resp. T = N). The following result relates growth
properties of the semigroup generated by the matrix A ∈ Kn×n to the spectrum of
A, σ(A).

Lemma 3.3.19. Given A ∈ K
n×n and ω ∈ R. If

α(A) = max{Reλ ; λ ∈ σ(A)} < ω, (resp. �(A) = max{|λ| ; λ ∈ σ(A)} < eω) (28)

then there exists M , depending on ω such that

‖eAt‖ ≤ Meωt , t ∈ R+, (resp. ‖At‖ ≤ Meωt , t ∈ N). (29)

Proof : The proof will be for the discrete time case. Since the spectral norm and the
spectrum of a real linear operator do not change by complexification we may assume
K = C. Let (z1, . . . , zn) be a basis of Cn consisting of generalized eigenvectors zi

of order mi, corresponding to eigenvalues λi of A. Applying Proposition 3.3.1 to
the time–invariant evolution operator Φ(t) = (Ate−ωt) we see that (Ate−ωt)t∈N is
bounded if and only if (Ate−ωtzi)t∈N is bounded for all i ∈ n. Now if �(A) = 0, then
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At = 0 for t sufficiently large and it follows from (2.2.55) that for t ≥ mi − 1 and
� := �(A) �= 0

‖Ate−ωtzi‖ = e−ωt‖
mi−1∑
ν=0

λt−ν
i

(
t

ν

)
(A − λiI)νzi‖ ≤

[
�e−ω

]t mi−1∑
ν=0

(
t

ν

)
�−ν‖(A − λiI)νzi‖.

Since for every α ∈ (0, 1) and every polynomial p(t) ∈ K[t] we have limt→∞ αt p(t) =
0, we see that ‖Ate−ωtzi‖ → 0 as t → ∞ and so there exists M > 0 such that
‖Ate−ωt‖ ≤ M for all t ∈ N. This proves (29). �

If (Φ(t)) is the semigroup of operators generated by A (continuous or discrete time),
then it is an easy consequence (see Ex. 1) of the above lemma that the Liapunov and
Bohl exponents are equal. They are sometimes called the growth rate of Φ, denoted
by ω(A) and are given by

ω(A) = β(Φ) = α(Φ) = α(A), (ω(A) = β(Φ) = α(Φ) = ln �(A)) . (30)

For time invariant systems stability and uniform stability properties are equivalent
and hence as a consequence of Theorem 3.3.8 asymptotic stability is equivalent to
uniform exponential stability. The following theorem derives necessary and sufficient
conditions for the asymptotic stability of the system (27).

Theorem 3.3.20. The system (27) is asymptotically (or, equivalently, exponen-
tially) stable if and only if

Reλ < 0, (resp. |λ| < 1), λ ∈ σ(A). (31)

Proof : The proof is for the discrete time case. If (31) holds then ln �(A) < 0 and
so by Lemma 3.3.19 there exists ω < 0, and M such that

‖Atx0‖ ≤ ‖At‖‖x0‖ ≤ Meωt‖x0‖, t ∈ N, x0 ∈ K
n.

This implies that (27) is exponentially stable. To prove necessity suppose there
exists λ ∈ σ(A) such that |λ| ≥ 1 and let z ∈ Cn be a corresponding eigenvector.
Then

‖Atz‖ = ‖λtz‖ ≥ ‖z‖ t ∈ N

and hence (27) is not asymptotically stable. �

Theorem 3.3.21. The system (27) is stable if and only if both of the following
conditions hold for all λ ∈ σ(A)

(i) Re λ ≤ 0, (resp. |λ| ≤ 1).

(ii) If Reλ = 0 (resp. |λ| = 1) then there exist kλ linearly independent eigenvectors,
where kλ is the algebraic multiplicity of λ.

Proof : The proof is for the discrete time case. By Proposition 3.3.1 the origin is
stable if and only if all the (generalized) eigenmotions are bounded. This clearly
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implies |λ| ≤ 1 for all λ ∈ σ(A). Now suppose there exists λ ∈ σ(A) with |λ| = 1
and a generalized eigenvector z of order m > 1 then for t ≥ m − 1

Atz = λt
m−1∑
ν=0

(
t
ν

)
λ−ν(A − λI)νz and ‖Atz‖ = ‖

m−1∑
ν=0

(
t
ν

)
λ−ν(A − λI)νz‖.

The RHS is a polynomial in t of degree m−1 ≥ 1 and is therefore unbounded. Thus
conditions (i), (ii) are necessary.
Conversely if (i) and (ii) hold there exist generalized eigenvectors of order m > 1 only
for eigenvalues λ ∈ σ(A) with |λ| < 1. We know already that these eigenmotions
tend exponentially to the origin as t → ∞. On the other hand if z is an eigenvector
corresponding to λ ∈ σ(A), then since |λ| ≤ 1

‖Atz‖ = ‖λtz‖ ≤ ‖z‖.

Hence all generalized eigenmotions are bounded and (27) is stable. �

Figure 3.3.1 shows the stability regions for the eigenvalues in the continuous and
discrete time case. They are denoted by C− and D respectively.

Im Im

Re Re

Re λ < 0 |λ| < 1

Figure 3.3.1: Stability regions for continuous and discrete time systems

As a consequence of Lemma 2.3.9 and Proposition 2.3.10 we have the following
characterization of asymptotic stability in terms of properties of the solutions of the
controlled systems

ẋ(t) = Ax(t) + Bu(t), t ∈ R+, x(t + 1) = Ax(t) + Bu(t), t ∈ N. (32)

We denote the solutions with x(0) = x0 ∈ K
n by ϕ(t; x0, u(·)), t ∈ R+ (resp. N).

Proposition 3.3.22. The following are equivalent.

(i) σ(A) ⊂ C− (resp. σ(A) ⊂ D).

(ii) For every x0 ∈ Kn, eAtx0 → 0 (resp. Atx0 → 0) as t → ∞.

(iii) If u(·) ∈ L2(R+; Km) (resp. �2(N; Km)), then ϕ(·; x0, u(·)) ∈ L2(R+; Kn)
(resp. �2(N; Kn)) for all x0 ∈ Kn.

Proof : The proof is for the continuous time case. (i) implies (ii) by Theorem 3.3.20.
Let z ∈ Cn be an eigenvector for the eigenvalue λ ∈ σ(A), then eAtz = eλtz.
Choosing x0 = z in the complex case and x0 = Re z or Im z in the real case we see
from (2.2.44) that if (ii) holds then necessarily Reλ < 0. So (ii) implies (i). By
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Proposition 2.3.10 with C = In and t0 = 0, (i) implies (iii). Now suppose u(·) ≡ 0
and (iii) holds, then x(·) = eA·x0 ∈ L2(R+; Kn) for all x0 ∈ Kn. But ẋ(·) = Ax(·)
and so x(·) is absolutely continuous and ẋ(·) ∈ L2(R+; Kn). Applying Lemma 2.3.9
with p = n, y(·) = x(·) and t0 = 0 we see that x(t) = eAtx0 → 0 as t → ∞ for all
x0 ∈ Kn. So (iii) implies (ii). �

Remark 3.3.23. In the previous section (Proposition 3.3.6) we showed that a peri-
odic system with evolution operator Φ is stable (resp. uniformly asymptotically stable)
if and only if the associated discrete time system with system matrix Φ(τ, 0) is stable
(resp. asymptotically stable). The eigenvalues of Φ(τ, 0) are called the characteristic mul-
tipliers of (1). It follows from Theorems 3.3.20 and 3.3.21 that a periodic system (1) is sta-
ble (resp. asymptotically stable) if and only if its characteristic multipliers µ ∈ σ(Φ(τ, 0))
satisfy conditions (i) (ii) of Theorem 3.3.21 (resp. (31)) in their discrete time versions.
In contrast we have seen in Example 3.3.7 that, in general, the stability properties of a
periodic time-varying system cannot be determined via the eigenvalues of A(t). �

In the next two examples we illustrate the stability criteria by applying them to
second order scalar systems.

Example 3.3.24. Consider the second order differential equation

ξ̈(t) + 2αξ̇(t) + βξ(t) = 0, t > 0. (33)

The matrix A of the corresponding state space system has eigenvalues λ1,2 = −α ±√
α2 − β. So

(a) if α > 0, β > 0, the origin is exponentially stable;

(b) if α > 0, β = 0, the origin is marginally stable (i.e. stable but not asymptotically
stable);

(c) if α = 0, β > 0, the origin is marginally stable;

(d) if α = 0, β = 0, there is a generalized eigenvector for the zero eigenvalue and so the
origin is unstable;

(e) if α < 0 or β < 0, the origin is unstable.

The stability chart, i.e. the set of all parameter values (α, β) ∈ R
2 for which the system is

asymptotically stable is given by the positive orthant (0,∞)2. �

Example 3.3.25. Using the approximations

ξ̇(t) ≈ ξ(t + τ) − ξ(t)

τ
, ξ̈(t) ≈ ξ(t + 2τ) − 2ξ(t + τ) + ξ(t)

τ2
, τ > 0

the differential equation of the previous example gives rise to the difference equation

ξ(t + 2τ) − 2(ατ − 1)ξ(t + τ) + (1 − 2ατ + βτ2)ξ(t) = 0, t ∈ N τ. (34)

We will examine the stability properties of this discrete time system and compare the
results with those obtained in the previous example. In order to do this we first obtain
results for the general second order difference equation

ξ(t + 2) + a1ξ(t + 1) + a0ξ(t) = 0, t ∈ N. (35)
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The eigenvalues of the matrix A =

[
0 1

−a0 −a1

]
of the corresponding state space system

are
λ1,2 = (1/2)[−a1 ± (a2

1 − 4a0)
1/2].

The parameter set (a0, a1) for which the system is stable must satisfy

−1 ≤ (1/2)[−a1 ± (a2
1 − 4a0)

1/2] ≤ 1 if a2
1 ≥ 4a0

(1/4)(a2
1 + (4a0 − a2

1)) ≤ 1 if a2
1 < 4a0.

The first condition is equivalent to a2
1 − 4a0 ≤ (2 + a1)

2 and (a1 − 2)2 ≥ a2
1 − 4a0, i.e.

1 + a1 + a0 ≥ 0 and 1 − a1 + a0 ≥ 0. (36)

The second condition is equivalent to

1 − a0 ≥ 0 if a2
1 < 4a0. (37)

This leads to the stability chart for (35) shown on the LHS of Figure 3.3.2. The shaded

α

τ
−1

α  = 1/τ + (τ/4) β

α = (τ/2) β

β-1 +1

1 − a1 + a0 = 0

1 + a1 + a0 = 0

a1

a0

Figure 3.3.2: Stability charts for (35) and (34)

region inside the left triangle represents values of the parameters (a0, a1) for which |λi| < 1,
i = 1, 2 and hence values for which the system is asymptotically stable. Now consider
the boundary of the triangle. When 1 − a1 + a0 = 0 (resp. 1 + a1 + a0 = 0) then
σ(A) = {−1,−a0} (resp. {+1, a0}) and so if a0 < 1 the system is marginally stable, and
this is also the case if a0 = 1, |a1| < 2. However if a0 = 1, |a1| = 2 there are generalized
eigenvectors of order 2 so the system is unstable.
Note that if a0 = a1 = 0 the system matrix A is nilpotent and so At+2 = 0 for t ∈ N.
Thus any initial state is transferred to the origin in finite time. This can never occur in
the differentiable case.
For the discretized differential equation (34), we have

a0 = 1 − 2ατ + τ2β, a1 = 2ατ − 2.

Hence 1+a1+a0 = τ2β, 1−a1+a0 = 4−4ατ +τ2β , 1−a0 = 2ατ−τ2β. So the discretized
system will be asymptotically stable if β > 0, 2ατ − τ2β > 0, 4 − 4ατ + τ2β > 0. The
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stability chart is shown on the RHS of Figure 3.3.2. Note that for any β > 0 , α > 0 there
exists τ sufficiently small such that the discretized system is asymptotically stable and as
τ → 0 the shaded region fills up the positive orthant (0,∞)2. Thus the stability chart
for the discretized system gradually approaches the stability region of the differentiable
system as τ → 0. This is not the case for all discretization schemes as we will show in the
next subsection. �

We conclude this subsection with a brief discussion of the relationship between
spectral stability criteria for continuous and discrete time systems (27) (see Ex. 27).
There is a well known rational map transforming the open left half plane C− onto
the open unit disk D and vice versa, the so-called Möbius map

m(·) : λ �→ λ + 1

λ − 1
, λ ∈ C \ {1} (38)

with inverse m−1(·) = m(·). In particular this map sends 0 to −1, ∞ to 1, −1 to 0.
The matrix version of this transformation

A �→ (A + I)(A − I)−1 (39)

is well defined on {A ∈ Kn×n; 1 �∈ σ(A)} and is known as the Cayley transform.

Proposition 3.3.26. Given A ∈ K
n×n, 1 �∈ σ(A), let Â = (A + I)(A − I)−1, then

A = (Â − I)−1(Â + I) and

σ(Â) =
{
(λ + 1)(λ − 1)−1, λ ∈ σ(A)

}
. (40)

Proof : Suppose Ax = λx, x ∈ Cn, λ ∈ C, x �= 0, then (A − I)x = (λ − 1)x,
(λ − 1)−1x = (A − I)−1x and (A + I)x = (λ + 1)x. Hence

Âx = (λ + 1)(λ − 1)−1x

and so (λ + 1)(λ − 1)−1 ∈ σ(Â), i.e. m(σ(A)) ⊂ σ(Â). Since Â(A − I) = A + I, we
get (Â−I)A = Â+I that is A = (Â−I)−1(Â+I). So applying the above argument
to Â instead of A and making use of m−1(·) = m(·) we obtain (40). �

As a result of the above proposition and Theorem 3.3.20 we see that the continuous
time system ẋ = Ax is asymptotically stable if and only if the discrete time system
x(t + 1) = (A + I)(A − I)−1x(t) is asymptotically stable. For further details and
applications of the Cayley transform see Subsection 3.4.6 and Subsection 5.3.7.

3.3.3 Numerical Stability of Discretization Methods

In this subsection we examine the stability of linear multistep discretizations meth-
ods as described in Subsection 2.3.1 (see (35))

xτ (k + 1) = xτ (k − p) + τ [b−1fk+1 + b0fk + . . . + bνfk−ν], p ∈ N. (41)

We apply this integration formula to the scalar differential equation,

ẋ = ax (42)
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(with a ∈ R, aτb−1 �= 1), i.e. we set fk = axτ (k). Substitution in (41) yields the
difference equation

xτ (k + 1) = xτ (k − p) + aτ [b−1x
τ (k + 1) + b0x

τ (k) + . . . + bνx
τ (k − ν)].

Let us first assume ν ≥ p, then introducing x1(k) = xτ (k − ν), x2(k) = xτ (k − ν +
1), . . . , xν+1(k) = xτ (k), we obtain the matrix difference equation

x(k + 1) = Ax(k)

where x(k) = [x1(k), . . . , xν+1(k)]� ∈ Rν+1 and

A =

⎡⎢⎢⎢⎢⎣
0 1 0 . . . . . . . . . 0
0 0 1 . . . . . . . . . 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 . . . . . . . . . 1

aτbνγ
−1 . . . . . . . . . (1 + aτbp)γ

−1 . . . aτb0γ
−1

⎤⎥⎥⎥⎥⎦ , γ = 1−aτb−1 �= 0.

The characteristic equation of A, after multiplication by γ is

(1 − aτb−1)λ
ν+1 − λν−p − aτ [b0λ

ν + . . . + bν ] = 0. (43)

If τ = 0, the eigenvalues of A are 0 (with multiplicity ν − p) and the p + 1 distinct
roots ω1, . . . , ωp+1 of zp+1 = 1. It follows from Corollaries 4.2.4 and 4.2.3 of the
next chapter that for small τ ≥ 0 the eigenvalues of A can be written in the form
λ1(τ), . . . , λν(τ) where the first p + 1 eigenvalues with λi(0) = ωi are analytic in τ

λi(τ) = ωi + αiτ + O(τ 2), i = 1, 2, . . . , p + 1 (44)

and the remaining eigenvalues with λi(0) = 0, i = p + 2, . . . , ν + 1 are continuous in
τ . Hence if τ ≥ 0 is sufficiently small, then

|λi(τ)| < 1, i = p + 2, . . . , ν + 1.

Substituting (44) in (43) and equating terms of order 1 in τ , yields

αi =
a

p + 1
[b−1ωi + b0 + . . . + bνω

−ν
i ], i = 1, . . . , p + 1. (45)

Hence
λp+1

i (τ) = ωp+1
i + aτ [b−1ω

p+1
i + b0ω

p
i + . . . + bνω

p−ν
i ] + O(τ 2)

and since ωp+1
i = 1,

|λp+1
i (τ)|2 = 1 + 2τa Re[b−1 + b0ω

p
i + . . . + bνω

p−ν
i ] + O(τ 2).

We say that a particular discretization method is stable if, on application to an
asymptotically stable scalar differential equation (42), the resulting discrete time
system is also asymptotically stable for sufficiently small τ . Thus the discretization
method (41) is stable if and only if all the roots of (43) lie in D, for every a < 0 and
τ sufficiently small 0 < τ ≤ δ(a). So a sufficient condition is

Re[b−1 + b0ω
p
i + . . . + bνω

p−ν
i ] > 0, i = 1, . . . , p + 1, (46)
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and a necessary condition is

Re[b−1 + b0ω
p
i + . . . + bνω

p−ν
i ] ≥ 0, i = 1, . . . , p + 1.

In the case of equality higher order approximation of λi(τ) must be considered to
determine whether or not the discretization method (41) is stable.
The case p > ν leads to the same conclusions and is slightly easier to analyze since
when τ = 0 there are no roots at 0. Now let us apply the results to some of the
integration schemes introduced in Section 2.5.

Example 3.3.27. (Euler’s method). In this case (see (2.5.25)), p = 0, ν = 0, b−1 = 0,
b0 = 1, so (46) holds and Euler’s method is stable. �

Example 3.3.28. (Runge-Kutta method). This is a single step method with p = 0,
ν = 0, b−1 = 0, b0 = 1 + (1/2)τa + (1/6)τ2a2 + (1/24)τ3a3 (see Example 2.5.12), so (46)
holds and the Runge-Kutta method is stable. �

Example 3.3.29. (Midpoint method). For this method (see Example 2.5.11) p = 1,
ν = 0, b−1 = 0, b0 = 2. So ω1 = +1, ω2 = −1 and

Re[b0ω1] > 0 but Re[b0ω2] < 0.

Hence the midpoint method is unstable. �

Example 3.3.30. (Adams-Bashforth methods). For these methods (see Exam-
ple 2.5.13), p = 0, b−1 = 0 and some typical values of bi, i = 0, . . . , ν are given in Table
2.5.11. The stability condition (46) is b0 + b1 + . . . + bν > 0. Note that the values of
bi given in Table 2.5.11 all have the property that

∑ν
i=0 bi = 1, so the Adams-Bashforth

methods are stable. �

Example 3.3.31. (Milne’s method). The implicit corrector of Milne’s method (see
Example 2.5.14) applied to the scalar differential equation (42), yields

xτ (k + 1) = xτ (k − 1) + (aτ/3)[xτ (k + 1) + 4xτ (k) + xτ (k − 1)].

Hence p = 1, ν = 1, b−1 = 1/3, b0 = 4/3, b1 = 1/3. So ω1 = 1, ω2 = −1 and substitution
in the left hand side of (46) gives

Re[b−1 + b0ω1 + b1] = 2 > 0, but Re[b−1 + b0ω2 + b1] = −2/3 < 0.

So the corrector of Milne’s method is unstable and this will be the case for the predictor-
corrector algorithm as well. �

These results seem to contradict some of the convergence properties of the above
schemes as described in Section 2.5. However, the important thing to remember is
that convergence is defined relative to a finite interval [0, b] whereas stability is a
requirement on the asymptotic behaviour as t → ∞. We illustrate this distinction
by the following example.

Example 3.3.32. (Instability of the midpoint rule). Applying the midpoint rule
to the scalar differential equation (42) yields the difference equation

xτ (k + 1) = xτ (k − 1) + 2τaxτ (k), k ∈ N (47)
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Assume a < 0 so that (42) is asymptotically stable. The eigenvalues of the second order
system (47) are given by

λ1(τ) = aτ +
√

1 + a2τ2 = 1 + aτ + O(τ2), λ2(τ) = aτ −
√

1 + a2τ2 = −1 + aτ + O(τ2).

Every solution of (47) can be represented in the form

xτ (k) = c1λ
k
1(τ) + c2λ

k
2(τ). (48)

If τ = t/k, with t > 0 fixed arbitrarily, then the first eigenmotion

xτ (k) = λ1(τ)kx0 = (1 + at/k + O(t2/k2) )kx0 → eatx0 as k → ∞.

Hence, on any compact interval [0, b], this eigenmotion of (47) generated by the initial
conditions xτ (0) = x0, xτ (1) = λ1(τ)x0 yields a uniform approximation of the eigenmotion
eatx0 of (42) generated by x(0) = x0. Moreover the eigenmotion xτ (k) = λ1(τ)kx0 tends
to 0 for k → ∞, as does eatx0. However, the discretization (47) has a second eigenmotion

xτ (k) = λ2(τ)kx0 = (−1 + aτ + O(τ2) )k, k ∈ N

which is an unbounded oscillation. This eigenmotion of (47) is called spurious or parasitic
since it does not correspond to a solution of the differential equation (42). Any deviation
from the initial conditions xτ (0) = x0, xτ (1) = λ1(τ)x0 or any rounding error will excite
this spurious eigenmotion and then, for any given τ > 0, this eigenmotion will completely
dominate the true solution after some time. This is illustrated in Table 3.3.3 where we
apply the midpoint rule to

ẋ(t) = −x(t), x(0) = 1. (49)

We started the algorithm with the exact value xτ (0) = 1 and an order 2 approximation of

t TRUE SOL’N ERRORS t TRUE SOL’N ERRORS
kτ x(kτ) kτ x(kτ)
0.0 1.00000000 0.0000000 5.0 0.00673795 -0.0000371
0.5 0.60653066 -0.0000003 7.5 0.00055308 -0.0004520
1.0 0.36787944 -0.0000006 10.0 0.00004540 -0.0055066
1.5 0.22313016 -0.0000011 12.5 0.00000373 -0.0670841
2.0 0.13533528 -0.0000019 15.0 0.00000031 -0.8172517
2.5 0.08208500 -0.0000031 17.5 0.00000003 -9.9561596

Table 3.3.3: Errors of the midpoint rule applied to (49) with τ = 0.001

the corresponding value at time τ : xτ (1) = 1−τ . Note that we have a good approximation
of the true solution for t in the range [0, 2.5] because of the relatively small stepsize
τ = 0.001. However, for values t ≥ 15 the parasitic oscillations excited by the initial errors
and by rounding errors become so strong that any correlation between the true and the
“approximate” solutions is lost. �

The previous example illustrates the general problem. Suppose we apply a linear
multistep method of the form (41) to an initial value problem ẋ = Ax, x(0) = x0.
If the differential system is n-dimensional and ν ≥ 1 or p ≥ 1 then the dimension
of the state space X of the corresponding discrete time system x(t + 1) = Aτx(t) is
higher, namely



272 3. Stability Theory

dim X = n · (max{ν, p} + 1). (50)

Only n of the n · (max{ν, p}+ 1) eigenvalues of Aτ (counting multiplicities) approx-
imate eigenvalues of A, all the others correspond to parasitic eigenmotions of the
discrete time system introduced by the multistep method. Thus a crucial question is
whether or not these parasitic eigenmotions are tending to zero with an appropriate
decay rate as t → ∞. Numerically unstable integration methods of the form (41)
generate unstable discrete time systems (27) when applied to certain asymptotically
stable differentiable systems (27). Although these integration methods may be very
efficient for the solution of initial value problems on fixed compact intervals they are
not suitable for the approximation of differentiable systems by discrete time systems
(see Section 2.5).

3.3.4 Liapunov Functions for Time-Varying Linear
Systems

In this subsection we return to time-varying linear systems of the form (1). The
time domain T is either an interval in R unbounded to the right or an interval in
Z unbounded to the right. For linear systems it is natural to choose (time–varying)
quadratic forms x �→ V (t, x) = 〈x, P (t)x〉, t ∈ T , as possible candidates for Liapunov
functions. Here we characterize stability properties of (1) in terms of these quadratic
Liapunov functions. In contrast to the previous section (where we assumed Liapunov
functions to be given) we develop a systematic construction procedure. At the end
of the subsection we will see that quadratic Liapunov functions provide a tool for
deriving stability properties of a given nonlinear system trajectory from stability
properties of the associated linearized model. Thus we will use Liapunov’s direct
method in order to prove the validity of Liapunov’s indirect method.
Throughout the subsection we assume P (t), t ∈ T is symmetric if K = R and
Hermitian if K = C. Moreover in the continuous time case we suppose that P (·) :
T �→ Hn(K) is continuous and piecewise continuously differentiable, i.e. P (·) ∈
PC1(T ; Hn(K))1. We do not assume P (·) to be continuously differentiable since
our construction process will only yield piecewise continuously differentiable P (·) if
A(·) ∈ PC(T ; Kn×n) has jump points.
Now consider

V (t, x) = 〈x, P (t)x〉 (t, x) ∈ T × K
n (51)

as a candidate for a Liapunov function for the linear system (1). In the continuous
time case the derivative of V along the flow of (1a) is defined by

V̇ (t, x) = 〈x, Ṗ (t)x〉 + 〈A(t)x, P (t)x〉 + 〈x, P (t)A(t)x〉
= 〈x, (Ṗ (t) + A(t)∗P (t) + P (t)A(t))x〉 , (t, x) ∈ T × K

n (52)

1This means that the derivative Ṗ (t) exists for all t ∈ T \ S where S ⊂ T is a subset without
accumulation point in R and the limit limt↓s Ṗ (t) exists at every s ∈ S. Extending Ṗ (·) by

Ṗ (s) = limt↓s Ṗ (t) to all of T , we obtain a piecewise continuous and right continuous matrix

function Ṗ (·) : T → Hn(K).
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where Ṗ (t) is defined for all t ∈ T as in the footnote. In the discrete time case

V̇ (t, x) = 〈A(t)x, P (t + 1)A(t)x〉 − 〈x, P (t)x〉
= 〈x, (A(t)∗P (t + 1)A(t) − P (t))x〉 , (t, x) ∈ T × K

n . (53)

Suppose we define a matrix Q(t) ∈ Kn×n, t ∈ T by

Ṗ (t) + A(t)∗P (t) + P (t)A(t) + Q(t) = 0 , t ∈ T (54a)

A(t)∗P (t + 1)A(t) − P (t) + Q(t) = 0 , t ∈ T . (54b)

Then in the continuous time case Q(·) ∈ PC(T ; Hn(K)) and in the discrete time
case Q(·) = (Q(t))t∈T ∈ Hn(K)T , i.e. Q(·) is a sequence in Hn(K) defined on T . In
both cases

V̇ (t, x) = −〈x, Q(t)x〉 , (t, x) ∈ T × K
n . (55)

As a counterpart of Theorem 3.2.17 for quadratic Liapunov functions we have

Theorem 3.3.33. Suppose that P (·) ∈ PC1(T ; Hn(K)) and Q(·) ∈ PC(T ; Hn(K))
(resp. P (·), Q(·) ∈ Hn(K)T ) satisfy (54). If α1, α2, α3 > 0, then

(i) ∀t∈T : P (t) $ α1In, Q(t) $ 0 ⇒ stability of (1) at any time t0 ∈ T .

(ii) ∀t∈T : α2In $ P (t) $ α1In , Q(t) $ 0 ⇒ uniform stability of (1) on T .

(iii)∀t∈T : α2In $P (t)$ α1In , Q(t)$α3In ⇒ uniform asymptotic stability of (1).

Proof : In the discrete time case the theorem is a specialization of Theorem 3.2.17
using (51) as a Liapunov function. However, for the continuous time case, V will
not, in general be a Liapunov function in the sense of Definition 3.2.16 since V may
not be continuously differentiable on T × Kn. But t �→ V (t, x(t)) = 〈x(t), P (t)x(t)〉
is continuous and piecewise continuously differentiable for trajectories x(·) of (1).
By (52), for all t ∈ T where x(·) and P (·) are both differentiable, we have

dV

dt
(t, x(t))=〈ẋ(t), P (t)x(t)〉+〈x(t), Ṗ (t)x(t)〉+〈x(t), P (t)ẋ(t)〉= V̇ (t, x(t)). (56)

Hence if the premises in (i) are satisfied, V is a generalized Liapunov function for
(1) and then (i) follows from Theorem 3.2.7. In a similar way (ii) and (iii) follow
since V is bounded in the sense of (5) (and strictly decreasing along the flow of (1))
if the premises in (ii) (resp. (iii)) hold. �

For quadratic functions the instability Theorem 3.2.22 specializes to the following
result.

Theorem 3.3.34. Suppose that P (·) ∈ PC1(T ; Hn(K)) and Q(·) ∈ PC(T ; Hn(K))
(resp. P (·), Q(·) ∈ Hn(K)T ) satisfy (54). If there exists (t0, x

0) ∈ T × Kn and
positive constants α3, α2 such that 〈x0, P (t0)x

0〉 < 0 and for all t ∈ Tt0 , x ∈ Kn

〈x, P (t)x〉 < 0 ⇒ 〈x, Q(t)x〉 ≥ α3‖x‖2 and |〈x, P (t)x〉| ≤ α2‖x‖2

then (1) is unstable at time t0 ∈ T .
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The proof is set as Ex. 9.

Example 3.3.35. The damped Mathieu equation is of the form

ÿ + 2ζẏ + (a − 2r cos 2t)y = 0 , t ≥ 0

where ζ > 0, a > 0, r ∈ R are constants. If x1 = y, x2 = ẏ we obtain the state space
system [

ẋ1(t)
ẋ2(t)

]
=

[
0 1

−a + 2r cos 2t −2ζ

] [
x1(t)
x2(t)

]
=: A(t)x(t) , t ≥ 0 . (57)

Consider the matrix function

P (t) =

[
2ρζ2 + a − 2r cos 2t ρζ

ρζ 1

]
, t ≥ 0

where ρ is constant. A straight forward calculation yields

Ṗ (t) + A(t)∗P (t) + P (t)A(t) =

[
−2ζρ(a − 2r cos 2t) + 4r sin 2t 0

0 −ζ(4 − 2ρ)

]
.

So Q(t) as defined by (54a) is

Q(t) =

[
2ζρ(a − 2r cos 2t) − 4r sin 2t 0

0 ζ(4 − 2ρ)

]
, t ≥ 0 .

There exist positive constants α1, α2, α3 such that α2I2 $ P (t) $ α1I2, Q(t) $ α3I2, t ≥ 0

Figure 3.3.4: Stability domain for the Mathieu equation

provided

0 < ρ < 2 , 2ρζ2 + a − 2r cos 2t > ρ2ζ2 , 2ρζ(a − 2r cos 2t) − 4r sin 2t > 0 , t ≥ 0 .

And these inequalities will hold if the following time–invariant inequalities are satisfied:

0 < ρ < 2 , ρ(2 − ρ)ζ2 + a > 2|r| , ρζa > 2|r|(1 + ρ2ζ2)1/2 . (58)

Now suppose ζa > |r| (1 + 4ζ2)1/2 then by choosing ρ close to 2 it can be shown that (58)
holds and hence by Theorem 3.3.33 the time-varying system (57) is uniformly exponen-
tially stable. For ζ = 1 the stability domain determined by this inequality is shown in
Figure 3.3.4 (below the dotted line) together with the actual stability boundaries (below
the continuous lines). �
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In order to prepare the ground for Liapunov’s indirect method we now seek a partial
converse to statement (iii) in Theorem 3.3.33. For this the following lemma is useful.

Lemma 3.3.36. Suppose that A(·) generates a uniformly exponentially stable evolu-
tion operator Φ(·, ·). Given a bounded Q(·) ∈ PC(T ; Hn(K)) (resp. bounded Q(·) ∈
Hn(K)T ), the only bounded P (·) ∈ PC1(T ; Hn(K)) (resp. bounded P (·) ∈ Hn(K)T )
which solves (54) is

P (t) =

∫ ∞

t

Φ(s, t)∗Q(s)Φ(s, t)ds , t ∈ T, (59a)

P (t) =
∞∑
s=t

Φ(s, t)∗Q(s)Φ(s, t) , t ∈ T . (59b)

Proof : The proof is for the continuous time case. Suppose P (·) ∈ PC1(T ; Hn(K))
is a bounded solution of (54a) then

∂

∂s
(Φ(s, t)∗P (s)Φ(s, t)) = Φ(s, t)∗

[
Ṗ (s) + A(s)∗P (s) + P (s)A(s)

]
Φ(s, t)

= −Φ(s, t)∗Q(s)Φ(s, t) , a.e. s > t, t ∈ T. (60)

By assumption there exist constants p, q, M > 0 and ω < 0 such that ‖P (s)‖ ≤ p
and

‖Q(s)‖ ≤ q , ‖Φ(s, t)‖ ≤ Meω(s−t) , s ≥ t, t ∈ T. (61)

So we may integrate (60) on [t,∞), t ∈ T to obtain (59a). It remains to show that
P (·) defined by (59a) is a bounded solution of (54a) on T . Since (61) holds, P (·) is
well defined by (59a), Hermitian and bounded on T (see (62a)). Now just as in the
proof of Lemma 3.3.4, we have

∂Φ(s, t)

∂t
= −Φ(s, t)A(t) for a.e. s > t.

Differentiating the integral in (59a)

Ṗ (t) = −Q(t) − A(t)∗
∫ ∞

t

Φ(s, t)∗Q(s)Φ(s, t)ds −
∫ ∞

t

Φ(s, t)∗Q(s)Φ(s, t)A(t)ds

= −Q(t) − A(t)∗P (t) − P (t)A(t) , a.e. t ∈ T.

This shows that P (·) ∈ PC1(T ; Hn(K)) and solves (54a). �

Note that if (61) holds and P (·) is given by (59) then P (·) is bounded by

‖P (t)‖ ≤ M2q

∫ ∞

t

e2ω(s−t)ds = M2q/(−2ω) , t ∈ T , (62a)

‖P (t)‖ ≤ M2q
∞∑
s=t

e2ω(s−t) = M2q/(1 − e2ω) , t ∈ T . (62b)

Q(t) needs not necessarily be positive definite in order to conclude uniform asymp-
totic stability of (1) via the Liapunov function (51). Suppose that Q(t) = C(t)∗C(t),
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where C(·) ∈ PC(T ; Kp×n) (resp. C(·) ∈ (Kp×n)T ). We will need an extra assump-
tion which is expressed in terms of the matrices

Q(t, t0) =

∫ t

t0

Φ(s, t0)
∗C(s)∗C(s)Φ(s, t0)ds, t ∈ Tt0 , t0 ∈ T (63a)

Q(t, t0) =

t−1∑
s=t0

Φ(s, t0)
∗C(s)∗C(s)Φ(s, t0), t ∈ Tt0 , t0 ∈ T. (63b)

We will say that (A(·), C(·)) is uniformly observable on T (see Volume II) if there
exist constants τ > 0, c > 0 such that

Q(t0 + τ, t0) $ cIn, t0 ∈ T. (64)

Clearly in this case Q(t1, t0) $ cIn for all t0, t1 ∈ T such that t1 − t0 ≥ τ . In
the next theorem we will show that condition (64) (instead of Q(t) $ α3In, see
Theorem 3.3.33 (iii)) suffices to obtain uniform asymptotic stability of (1) via the
Liapunov function (51).

Remark 3.3.37. If Q(t) = C(t)∗C(t) satisfies

Q(t) $ α3In, t ∈ T, (65)

then in the discrete time case (A(·), C(·)) is uniformly observable and we may choose
the observability time τ = 1. This need not be the case for continuous time systems
(see Ex. 22). However, if β(A) > −∞ and (65) holds, then (A(·), C(·)) is uniformly
observable and the observability time τ can be made arbitrarily small (with c > 0 chosen
appropriately). In fact, we have, by assumption, the existence of ε > 0, ω < 0 such that

Φ(t, t0)
∗Φ(t, t0) $ εeω(t−t0)In, t ≥ t0, t0 ∈ T.

Hence it follows from (65) that for all τ > 0,

Q(t0 + τ, t0) $ α3

∫ t0+τ

t0

Φ(s, t0)
∗Φ(s, t0)ds $ cτIn, t0 ∈ T,

where cτ = εα3(1 − eωτ )/(−ω). �

Theorem 3.3.38. Suppose that Q(t) = C(t)∗C(t) for a bounded C(·) ∈ PC(T ; Kp×n)
(resp. bounded C(·) ∈ (Kp×n)T ) and (A(·), C(·)) is uniformly observable on T . Then
the following are equivalent.

(i) A(·) generates a uniformly exponentially stable evolution operator.

(ii) There exists a solution P (·) ∈ PC1(T ; Hn(K)) (resp. P (·) ∈ Hn(K)T ) of (54)
such that α2In $ P (t) $ α1In, t ∈ T , for some α1, α2 > 0.

(iii) There exists a bounded positive definite solution P (·) ∈ PC1(T ; Hn(K)) (resp.
bounded positive definite solution P (·) ∈ Hn(K)T ) of (54).



3.3 Linearization and Stability 277

Proof : The proof is for the continuous time case.
(i) ⇒ (ii) Suppose that (1a) is uniformly exponentially stable, then by Lemma 3.3.36

P (t) =

∫ ∞

t

Φ(s, t)∗C(s)∗C(s)Φ(s, t)ds $ 0 (66)

satisfies (54a) and hence satisfies (60). An upper bound for P (t) is given by (62a).
(60) implies that for t1 ≥ t0, t0 ∈ T

0 % Φ(t1, t0)
∗P (t1)Φ(t1, t0) = P (t0) −

∫ t1

t0

Φ(s, t0)
∗C(s)∗C(s)Φ(s, t0)ds . (67)

By the observability assumption there exists τ > 0 satisfying (64) where Q(t, t0) is
defined by (63a). Hence (ii) follows from

P (t0) $
∫ t1

t0

Φ(s, t0)
∗C(s)∗C(s)Φ(s, t0)ds $ cIn , t1 ≥ t0 + τ, t0 ∈ T. (68)

(ii) ⇒ (iii) is trivial.
(iii) ⇒ (i) Suppose (iii) and let v(t) = 〈x(t), P (t)x(t)〉 where x(t) = Φ(t, t0)x

0,
(t0, x

0) ∈ T × Kn. Then v̇(t) = −〈x(t), C(t)∗C(t)x(t)〉 (see (56) and (55)) and
integrating from t0 to t1 > t0 yields (67) and hence (68). So α2In $ P (t) $ cIn,
t ∈ T for some α2 > 0 and c > 0 as in (64). Using again the assumption of uniform
observability, we have

v(t+τ)−v(t) = −〈x(t),Q(t+τ, t)x(t)〉 ≤ −c‖x(t)‖2 ≤ −(c/α2)v(t) , t ≥ t0, t0 ∈ T.

Setting c̃ = c/α2, we obtain v(t + τ) ≤ (1 − c̃)v(t), t ≥ t0 and hence c̃ < 1 and

0 ≤ v(t + kτ) ≤ (1 − c̃)kv(t) , k ∈ N , t ≥ t0 , t0 ∈ T.

For every t = t0 + kτ + r where k ∈ N, r ∈ [0, τ) we get

v(t) ≤ (1 − c̃)kv(t0 + r) ≤ (1 − c̃)(t−t0−τ)/τ 〈x(t0 + r), P (t0 + r)x(t0 + r)〉 .

By Theorem 3.3.33 the system (1a) is uniformly stable on T and hence there exists
M > 0 such that ‖Φ(t, t0)x

0‖ ≤ M‖x0‖, t > t0, t0 ∈ T . So

〈Φ(t, t0)x
0, P (t)Φ(t, t0)x

0〉 = v(t) ≤ M2α2(1 − c̃)−1(1 − c̃)(t−t0)/τ‖x0‖2 .

Now using the lower bound of P (t) and choosing ω = (2τ)−1 ln(1 − c̃) < 0, we
conclude

‖Φ(t, t0)‖ ≤ M([c̃(1 − c̃)])−1/2eω(t−t0) , t ≥ t0, t0 ∈ T.

Hence (1) is uniformly exponentially stable on T . �

We now derive a necessary and sufficient instability criterion in terms of quadratic
Liapunov functions.

Theorem 3.3.39. Let t0 ∈ T and suppose that Q(t) = C(t)∗C(t), for a bounded
C(·) ∈ PC(Tt0; K

p×n) (resp. bounded C(·) ∈ (Kp×n)Tt0), (A(·), C(·)) is uniformly
observable on Tt0 and there exists a bounded P (·) ∈ PC1(Tt0 ; Hn(K)) (resp. bounded
P (·) ∈ Hn(K)Tt0 ) which solves (54). Then the following are equivalent
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(i) (1) is not exponentially stable at time t0.

(ii) (1) is unstable at t0.

(iii) There exist τ > 0, ω > 0, Mω > 0 and x0 ∈ Kn, x0 �= 0 such that

‖Φ(t0 + kτ, t0)x
0‖ ≥ Mωekτω‖x0‖, k ∈ N.

(iv) There exist x0 ∈ Kn such that 〈x0, P (t0)x
0〉 < 0.

Moreover, when this is the case the Bohl exponent β(Φ) > 0.

Proof : The proof is for the continuous time case.
(iii) ⇒ (ii) ⇒ (i) is obvious.
(i) ⇒ (iv): Suppose 〈x, P (t)x〉 ≥ 0 for all (t, x) ∈ Tt0 × Kn then by Theorem 3.3.38
A(·) generates an exponentially stable evolution operator at time t0.
(iv) ⇒ (iii): Suppose that x0 ∈ Kn is such that 〈x0, P (t0)x

0〉 < 0. Setting t1 =
t0 + kτ , k ∈ N in (67) (where τ satisfies the uniform observability condition (64))
we obtain from (67)

〈x0, P (t0)x
0〉 − 〈Φ(t0 + kτ, t0)x

0, P (t0 + kτ)Φ(t0 + kτ, t0)x
0〉

=

∫ t0+kτ

t0

‖C(s)Φ(s, t0)x
0‖2ds =

k∑
j=1

∫ t0+jτ

t0+(j−1)τ

‖C(s)Φ(s, t0)x
0‖2ds

=

k∑
j=1

∫ t0+jτ

t0+(j−1)τ

‖C(s)Φ(s, t0 + (j − 1)τ)Φ(t0 + (j − 1)τ, t0)x
0‖2ds

≥ c

k∑
j=1

‖Φ(t0 + (j − 1)τ, t0)x
0‖2 . (69)

Assume 〈x0, P (t0)x
0〉 = −α‖x0‖2, α > 0, ‖P (t)‖ ≤ α2 for all t ∈ Tt0 and set

rk =
∑k

j=1 ‖Φ(t0 + (j − 1)τ, t0)x
0‖2, then r1 = ‖x0‖2 and using (69)

crk+α‖x0‖2 ≤ −〈Φ(t0+kτ, t0)x
0, P (t0+kτ)Φ(t0+kτ, t0)x

0〉 ≤ α2‖Φ(t0+kτ, t0)x
0‖2.

Hence

α2(rk+1 − rk) = α2‖Φ(t0 + kτ, t0)x
0‖2 ≥ crk + α‖x0‖2 , r1 = ‖x0‖2 . (70)

So rk+1 ≥ (1 + c/α2)rk + α/α2‖x0‖2. From which it is easy to see that

rk ≥
[
(1 + c/α2)

k−1(1 + α/c) − α/c
]
‖x0‖2 .

Inserting this inequality in (70) we obtain

α2‖Φ(t0 + kτ, t0)x
0‖2 ≥ (1 + c/α2)

k−1(α + c)‖x0‖2 = α2M
2e2kωτ‖x0‖2 (71)

where M = ((α+c)/(α2+c))1/2, ω = (2τ)−1 ln (1+c/α2) > 0. This proves (iii) and
β(Φ) ≥ ω > 0. �
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Remark 3.3.40. (i) The system (1) is not uniformly exponentially stable if and only if
there exists a t0 ∈ T such that one of the conditions (ii)-(iv) is satisfied.
(ii) Since the in the continuous time case the Liapunov exponent α(Φ) is independent of
t0 we must have α(Φ) > 0. The same conclusion also holds for the discrete time case
provided detA(t) �= 0 for all t ∈ T (this will be the case if β(Φ) > −∞).
(iii) In comparison with the Stability Theorem 3.3.38 the Instability Theorem 3.3.39
is rather unsatisfactory since it assumes the existence of a bounded solution of (54).
On the other hand Theorem 3.3.39 is surprising in that it shows that under its as-
sumptions marginal stability cannot occur. More precisely we obtain as a consequence
of Theorem 3.3.39 and Theorem 3.3.38: If β(Φ) = 0 and Q(t) = C(t)∗C(t), where
C(·) ∈ PC(T ; Kp×n) is bounded (resp. C(·) ∈ (Kp×n)T is bounded) then either there
is no bounded P (·) ∈ PC1(Tt0 ;Hn(K)) (resp. P (·) ∈ Hn(K)Tt0 ) solving (54), for any
t0 ∈ T , or (A(·), C(·)) is not uniformly observable. �

We now describe Liapunov’s indirect method of stability analysis which proceeds via
linearization. Consider the nonlinear equations (2.27), namely

ẋ(t) = f(t, x(t)) , t ∈ T (72a)

x(t + 1) = f(t, x(t)) , t ∈ T. (72b)

Let x ∈ X ⊂ K
n be an equilibrium point of (72) and assume that f satisfies the

conditions (A1), (A2) in Subsection 3.2.2. In addition we also require that

f(t, x) = A(t)(x − x) + h(t, x − x) , (t, x) ∈ T × X . (73)

where A(·) ∈ PC(T ; Kn×n) (resp. A(·) ∈ (Kn×n)T ) and for any ε > 0 there exists
δ > 0, such that

‖h(t, x − x)‖ ≤ ε‖x − x‖, (t, x) ∈ T × B(x, δ) . (74)

Theorem 3.3.41 (Liapunov’s indirect method). Suppose that f satisfies (73),
(74), A(·) generates a uniformly exponentially stable evolution operator and (A(·), I)
is uniformly observable. Then the equilibrium point x is uniformly exponentially sta-
ble for the nonlinear system (72). More precisely for x0 ∈ B(x, r), r > 0 sufficiently
small, the solutions ϕ(t; t0, x

0) of (72) have infinite life time and there exist con-
stants M > 0, ω < 0 such that for all t0 ∈ T

x0 ∈ B(x, r) =⇒ ∀t ∈ Tt0 : ‖ϕ(t; t0, x
0) − x‖ ≤ Meω(t−t0)‖x0 − x‖. (75)

Proof : The proof is for the discrete time case. Let Q(t) ≡ In, then by Theo-
rem 3.3.38 there exists a solution P (t) ∈ Hn(K), t ∈ T of (54b) with α2In $ P (t) $
α1In, t ∈ T , for some α1, α2 > 0. Consider V (t, x) = 〈x − x, P (t)(x − x)〉, (t, x) ∈
T × X. Setting ∆x = x − x we obtain by (73) for every (t, x) ∈ T × X

V̇ (t, x) = V (t + 1, f(t, x)) − V (t, x)

= 〈A(t)∆x + h(t, ∆x), P (t + 1)(A(t)∆x + h(t, ∆x))〉 − 〈∆x, P (t)∆x〉
= −‖∆x‖2+2 Re〈h(t, ∆x), P (t+1)A(t)∆x〉+〈h(∆x, t), P (t+1)h(t, ∆x)〉.

So
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V̇ (t, x) ≤ −‖∆x‖2 + 2‖h(t, ∆x)‖ ‖P (t + 1)‖ ‖A(t)‖ ‖∆x‖ + ‖P (t + 1)‖ ‖h(t, ∆x)‖2.

In the discrete time case ‖A(·)‖ is bounded on T by the uniform stability assumption,
so we may choose ε > 0 sufficiently small to obtain

1 − 2α2‖A(t)‖ε − α2ε
2 ≥ 1/2, t ∈ T.

By (74), there exists a δ > 0, such that B(x, δ) ⊂ X and

‖h(t, ∆x)‖ ≤ ε‖∆x‖ for (t, x) ∈ T × B(x, δ).

Hence
V̇ (t, x) ≤ −(1/2)‖∆x‖2 for (t, x) ∈ T × B(x, δ).

Setting D = B(x, δ) we may apply Corollary 3.2.20 with p = 2 to conclude that
the equilibrium point x is uniformly exponentially stable and there exist constants
M > 0, ω < 0 such that (75) holds. �

Remark 3.3.42. (i) The formulation of Theorem 3.3.41 in terms of uniform exponen-
tial stability is essential and cannot be replaced by for example asymptotic stability (see
Bellman (1953) [44] for a counter example).

(ii) By Remark 3.3.37 (A(·), I) is necessarily uniformly observable in the discrete time
case and this will also hold in the continuous time case if β(Φ) > −∞. �

In order to apply the previous theorems to the stability analysis of a non-constant
trajectory of the nonlinear system (72) we proceed as described in Subsection 2.1.4.
Suppose that x̃ : Tt0 → X is a trajectory of (72) and that (t, x̃(t) + x) ∈ X for all
t ∈ Tt0 , x ∈ B(0, ρ), ρ > 0. Let

g(t, x) = f(t, x̃(t) + x) − f(t, x̃(t)), (t, x) ∈ Tt0 × B(0, ρ).

Then x = 0 is an equilibrium point of (72) with f replaced by g and x = 0 is
exponentially stable for this system if and only if x̃(·) is exponentially stable for (72).
Now g will satisfy (73), (74) with T = Tt0 (so that we may apply Theorem 3.3.41
to the equilibrium point x = 0 of the system described by g) if and only if f is
uniformly differentiable along the trajectory x̃(·) in the following sense

f(t, x) = f(t, x̃(t)) + A(t)(x − x̃(t)) + h(t, x − x̃(t)), (t, x) ∈ Tt0 × X . (76)

where A(·) ∈ PC(Tt0 ; K
n×n) (resp. A(·) ∈ (Kn×n)Tt0 ) and for any ε > 0 there exists

δ > 0, such that

‖h(t, x − x̃(t))‖ ≤ ε‖x − x̃(t)‖, (t, z) ∈ Tt0 × B(x̃(t), δ) . (77)

This condition will be satisfied if, for example, f is twice continuously differentiable
with respect to x in an ε-neighbourhood of the integral curve {(t, x̃(t)); t ∈ Tt0},
and its second derivative is bounded on this neighbourhood. This follows from the
fact that

‖f(t, x)− f(t, x̃(t))− f ′(t, x̃(t))(x− x̃(t))‖ ≤ (1/2)‖f ′′(t, x̃(t) + θ(t)(x− x̃(t)))‖‖x− x̃(t)‖2
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where f ′ and f ′′ denote the first and the second derivative of f with respect to x
and θ(t) ∈ [0, 1].
In the following instability theorem we use a quadratic Liapunov function which
is associated with a perturbation of the linearization (1) of (72). This widens the
applicability of the theorem.

Theorem 3.3.43. Assume that f satisfies (73), (74) and t0 ∈ T . For some r ≥ 0
let Ar(t) = A(t) − rIn (resp. r ≥ 1, Ar(t) = r−1A(t)), t ∈ T and suppose the
following hold

(i) (Ar(·), In) is uniformly observable on Tt0 .

(ii) For Q(t) ≡ In there exists a bounded Pr(·) ∈ PC1(Tt0 ; Hn(K)) (resp. bounded
Pr(·) ∈ Hn(K)Tt0 ) which solves (54) with A(t) replaced by Ar(t) on Tt0.

Then, if ẋ(t) = Ar(t)x(t) (resp. x(t + 1) = Ar(t)x(t)) is unstable at time t0, the
equilibrium point x of the nonlinear system (72) will also be unstable at time t0.

Proof : The proof is for the continuous time case. Suppose ẋ(t) = Ar(t)x(t) is
unstable at time t0. By applying Theorem 3.3.39 with Q(t) ≡ In we see that there
exists x̃ ∈ X, ‖x̃‖ = 1 such that 〈x̃, Pr(t0)x̃〉 < 0. Let V (t, x) = 〈x−x, Pr(t)(x−x)〉
for (t, x) ∈ T × X. Setting ∆x = x − x, the derivative of V along the flow of (72a)
is given by

V̇ (t, x) = 〈∆x, Ṗr(t)∆x〉+〈A(t)∆x + h(t,∆x), Pr(t)∆x〉+〈∆x, Pr(t)(A(t)∆x + h(t,∆x))〉
= −‖∆x‖2 + 2r〈∆x, Pr(t)∆x〉 + 2Re〈h(t,∆x), Pr(t)∆x〉, (t, x) ∈ T × X.

So
V̇ (t, x) ≤ −‖∆x‖2 + 2rV (t, x) + 2‖h(t, ∆x)‖ ‖Pr(t)‖ ‖∆x‖.

By assumption there exists α2 > 0 such that ‖Pr(t)‖ ≤ α2 for all t ∈ Tt0 . Choose
ε > 0 such that 4εα2 < 1. By (74), there exists a δ > 0, such that B(x, δ) ⊂ X and

‖h(t, ∆x)‖ ≤ ε‖∆x‖ for (t, x) ∈ T × B(x, δ).

Hence

V̇ (t, x) − 2rV (t, x) ≤ −(1/2)‖∆x‖2 for (t, x) ∈ T × B(x, δ). (78)

First suppose that r = 0. Setting D = B(x, δ) and choosing x0 = x + ρx̃ for any
ρ ∈ (0, δ) we have an x0 ∈ B(x, ρ) with V (t0, x

0) < 0. Moreover since V̇ (t, x) ≤
−(1/2)‖∆x‖2 and |V (t, x)| ≤ α2‖∆x‖2, for all (t, x) ∈ Tt0 × B(x, δ), we may apply
the Instability Theorem 3.2.22 to conclude that x is unstable at t0 for (72a) .
Now suppose that r > 0 and assume by way of contradiction that x is stable for
(72a) at time t0. Then there exists a δ̃ ∈ (0, δ) such that

‖x − x‖ < δ̃ =⇒ ‖ϕ(t; t0, x) − x‖ < δ, t ≥ t0.

For every ρ ∈ (0, δ̃) we again choose x0 = x+ρx̃, then ‖x0−x‖ = ρ and V (t0, x
0) < 0.

By (78) we have

d

dt

[
e−2r(t−t0)V (t, ϕ(t; t0, x

0))
]
≤ −(1/2)e−2r(t−t0)‖ϕ(t; t0, x

0) − x‖2 ≤ 0, t ≥ t0.
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Hence, for t ≥ t0

V (t, ϕ(t; t0, x
0) ≤ e2r(t−t0)V (t0, x

0) = −e2r(t−t0)|〈x̃, Pr(t0)x̃〉|‖x0 − x‖2.

This contradicts the fact that V (t, x) is bounded on T × B(x, δ). So x is unstable
for (72a) at time t0. �

One might think that if the linear system is unstable at time t0, there will not exist
any bounded solution Pr(t) on Tt0 which solves (54) with A(t) replaced by Ar(t) and
Q(t) ≡ In. In part this is suggested by the solution formulas (59) for the uniformly
exponentially stable case. Note that even if the right hand side of this formula is
well defined we cannot use the resulting Pr(t) in applying the theorem since it is
positive definite for all t ∈ Tt0 . Let us denote by Φr(·, ·) the evolution operator
generated by Ar(·), then integrating the equation (60) with the above replacements
from t0 to t, the unique solution with initial value Pr(t0) is

Pr(t) = Φr(t0, t)
∗Pr(t0)Φr(t0, t) −

∫ t

t0

Φr(s, t)
∗Φr(s, t)ds, t ≥ t0 . (79)

So in order to apply the theorem we have to seek a non-positive definite Pr(t0) for
which the Pr(·) defined by (79) is bounded on Tt0 . Similar considerations apply in
the discrete time case, see Ex. 14. We illustrate the continuous time case for the
case r = 0 in the following simple example, see also Ex. 15.

Example 3.3.44. Consider the scalar system ẋ(t) = a(t)x(t), t ∈ R. First let us assume
that a(t) ≡ a > 0, t ∈ R, then the solution given by (59a) is not defined. However by
(79) we have p(t) = e−2a(t−t0)(p(t0) + 1/2a) − 1/2a, t ≥ t0. Choosing p(t0) = −1/2a we
conclude from the above theorem that any nonlinear system satisfying (73), (74) for which
ẋ(t) = ax(t) is the linearization will be unstable at any time t0.
Now suppose a(t) = t, t ∈ R, then Φ(t, t0) = e(t2−t20)/2 and so again the solution given by
(59a) is not defined. But from (79) we get

p(t) = et20−t2p(t0) −
∫ t

t0

es2−t2ds, t ≥ t0.

Hence for t ≥ t0 ≥ 1/2

et20−t2p(t0) ≥ p(t) ≥ et20−t2p(t0) −
∫ t

t0

2ses2−t2ds = et20−t2p(t0) − (1 − et20−t2).

So p(t) is bounded for t ≥ t0 ≥ 1/2 and since we may choose p(1/2) < 0 we conclude from
the above theorem that any nonlinear system satisfying (73), (74) for which ẋ(t) = tx(t)
is the linearization will be unstable at any time t0 ≥ 1/2. �

3.3.5 Liapunov Functions for Time-Invariant Linear
Systems

In this subsection we specialize the results of the previous one to the time–invariant
case. The dynamic Liapunov equations (54) then reduce to linear matrix equations
for which effective solution procedures are available. This enables us to construct
Liapunov functions in an efficient way. Moreover we obtain a more satisfactory
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instability criterion (Theorem 3.3.49 (iv)), and the application of Liapunov’s indirect
method is simplified by the fact that it only requires the differentiability of the right
hand side of the nonlinear system at the equilibrium point in question.
In a time–invariant setting it is natural to assume that Q is constant and to require
time–invariant solutions of (54). Then the dynamic Liapunov equations become
static and take the form

A∗P + PA + Q = 0 (80a)

A∗PA − P + Q = 0 . (80b)

In contrast to the dynamic Liapunov equations it is not clear whether these linear
matrix equations have solutions. For the case where σ(A) ⊂ C− (resp. σ(A) ⊂ D) a
solution could be constructed as in Lemma 3.3.36. However this would presuppose
asymptotic stability. We need to prove the existence of solutions under more general
conditions and with a view to later applications we do this by characterizing the
eigenvalues of the Liapunov maps for a generalized version of the equations (80).

Proposition 3.3.45. Suppose A ∈ Kn×n, A1 ∈ Kn1×n1 and let L (resp. LD) be the
associated generalized Liapunov operator

L : K
n1×n → K

n1×n, X → L(X) = A1X + XA (81a)

LD : K
n1×n → K

n1×n, X → LD(X) = A1XA − X. (81b)

Then
σ(L) = {µ1 + µ; µ1 ∈ σ(A1), µ ∈ σ(A)} (82a)

σ(LD) = {µ1µ − 1; µ1 ∈ σ(A1), µ ∈ σ(A)}. (82b)

In particular, L, LD : Kn1×n → Kn1×n is a linear isomorphism if and only if

µ1 + µ �= 0 (resp. µ1µ �= 1), µ1 ∈ σ(A1), µ ∈ σ(A). (83)

Proof : The proof is for the continuous time case. Suppose that A1x
1 = µ1x

1, x1 ∈
C

n1 , x1 �= 0 and xA = µx, x� ∈ C
n, x �= 0. Then for X = x1x, we have

L(X) = A1X + XA = A1x
1x + x1xA = (µ1 + µ)x1x = (µ1 + µ)X.

Hence µ1 + µ ∈ σ(L), i.e. the inclusion ⊂ in (82a). To prove the converse we
transform A to Schur form. In Section 4.5 we will show that for A ∈ Kn×n, there
exists a unitary matrix U ∈ Un(C) such that U∗AU is in upper triangular complex
Schur form, namely

U∗AU = S =

⎡⎢⎢⎢⎢⎣
s11 s12 · · · s1n

0 s22 · · · s2n

. 0 . . . .

. . . . . .
0 0 . . . snn

⎤⎥⎥⎥⎥⎦ (84)

where each diagonal element is an eigenvalue of A. Now suppose that λ is an
eigenvalue of L with eigenvector X ∈ K

n1×n, X �= 0. Then A1X + XA = λX and
multiplying on the right by U , we obtain

A1XU + XUU∗AU = A1XU + XUS = λXU.
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Defining Z = [z1 z2 . . . zn] := XU, zj ∈ Cn1 , j ∈ n, then Z �= 0 and

[A1 + sjjIn1 ]z
j = λzj −

j−1∑
i=1

sijz
i, j ∈ n . (85)

Since Z �= 0 there exists j ∈ n, such that zj �= 0 and zk = 0, k < j. But then from
(85) [A1 + sjjIn1 ]z

j = λzj and hence λ−sjj ∈ σ(A1) and this completes the proof of
(82). Since the linear map L is a vector space isomorphism if and only if 0 �∈ σ(L)
the second assertion follows. �

As a direct consequence of Proposition 3.3.45 the generalized Liapunov equations

A1P + PA + Q = 0 , (resp. A1PA − P + Q = 0). (86)

have unique solutions P ∈ Kn1×n for every Q ∈ Kn1×n if and only if condition (83)
holds. In the present context the particular case where A1 = A∗ is of special interest.
If Q = Q∗ is Hermitian and P is a solution of (86) then P ∗ is also a solution of
(86). Hence if (86) has a unique solution then the solution is necessarily Hermitian.
This leads us to introduce the following Liapunov operator on the real vector space
Hn(K) of Hermitian n × n matrices

LA : Hn(K) → Hn(K), X �→ A∗X + XA (resp.LD
A : X �→ A∗XA − X). (87)

As an immediate consequence of Proposition 3.3.45 we obtain

Corollary 3.3.46. Suppose A ∈ K
n×n. The Liapunov operator LA (resp. LD

A) is a
linear bijection from Hn(K) onto itself if and only if

λ + µ �= 0, (resp. λ µ �= 1) λ, µ ∈ σ(A). (88)

In this (and only in this) case the algebraic Liapunov equation (80) has a unique
(Hermitian) solution for every Q ∈ Hn(K).

If σ(A) ⊂ C− (resp. σ(A) ⊂ D), then by Lemma 3.3.36 we know that the solution
of (80) is given by

P =

∫ ∞

t

eA∗(s−t)QeA(s−t)ds =

∫ ∞

0

eA∗ρQeAρdρ , (89a)

P =
∞∑
s=t

A∗(s−t)QAs−t =
∞∑

ρ=0

A∗ρQAρ . (89b)

Clearly, if Q & 0 then P defined by (89) is positive definite. Therefore

Corollary 3.3.47. Suppose A ∈ Kn×n and σ(A) ⊂ C− (resp. σ(A) ⊂ D). Then the
Liapunov operator LA (resp.LD

A) : Hn(K) → Hn(K) is invertible and −L−1
A (resp.

−(LD
A )−1) is a positive operator from the vector space Hn(K) ordered by $ into itself,

i.e.

Q & 0 ⇒ P = −L−1
A (Q) & 0, (resp. . − (LD

A)−1(Q) & 0, (90)
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Remark 3.3.48. As a consequence of the next theorem the converse of Corollary 3.3.47
is also true. Hence −L−1

A , (resp. − (LD
A )−1) is a positive operator on Hn(K) if and only

if the associated system ẋ = Ax (resp. x(t + 1) = Ax(t)) is asymptotically stable. This
observation shows that there is a close relationship between the stability theory of time–
invariant linear systems and the theory of positive operators. �

For time-invariant systems the matrix Q(t, t0) defined in (63) takes the form

Q(t, t0) =

∫ t

t0

eA∗(s−t0)C∗CeA(s−t0)ds =

∫ t−t0

0

eA∗ρC∗CeAρdρ , (91a)

Q(t, t0) =

t−1∑
s=t0

A∗(s−t0)C∗CAs−t0 =

t−t0−1∑
ρ=0

A∗ρC∗CAρ . (91b)

Hence the pair (A, C) is uniformly observable if and only if there exists c > 0, τ > 0,
such that Q(τ, 0) ≥ cIn. And it is not difficult to show (cf. Volume II) that this will
be the case if and only if (A, C) is observable in the sense that

n⋂
i=1

ker CAi−1 = {0}. (92)

As a consequence of these observations the results developed in the previous sub-
section take a simpler form.

Theorem 3.3.49. Suppose Q = C∗C, where C ∈ Kp×n.

(i) If (A, C) is observable, then (27) is asymptotically stable if and only if there
exists a solution P of (80) with P & 0.

(ii) If there exists a solution P of (80) with P $ 0 and ker P �= {0}, then (A, C)
is not observable.

(iii) If there exists a solution P of (80) with P & 0, then the time-invariant system
(27) is stable, and if in fact it is asymptotically stable then (A, C) is necessarily
observable.

(iv) Suppose (A, C) is observable and there exists a solution P ∈ Hn(K) of (80).
Then there exists x0 ∈ K

n with 〈x0, Px0〉 < 0 if and only if Reλ > 0
(resp. |λ| > 1) for some λ ∈ σ(A).

Proof : The proof is for the continuous time case.
(i) The “if” statement follows from Theorem 3.3.38. Conversely, suppose that (27) is
asymptotically stable. Then P defined by (89a) solves (80a) and is positive definite
by the observability of (A, C).
(ii) If P $ 0 is a solution of (80a) then it follows from (67) that

eA∗tPeAt = P −
∫ t

0

eA∗ρC∗CeAρdρ, t ≥ 0.

Now suppose x ∈ ker P , x �= 0 then −
∫ t

0
‖CeAρx‖2dρ = 〈x, eA∗tPeAtx〉 ≥ 0 and

hence 〈x,Q(t, 0)x〉 =
∫ t

0
‖CeAρx‖2dρ = 0 for all t ≥ 0. Thus (A, C) is not observ-

able.
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(iii) Suppose that P & 0 solves (80a) then (27) is stable by Theorem 3.3.33. If ad-
ditionally σ(A) ⊂ C− then

∫∞
0

eA∗ρC∗CeAρdρ = P & 0 and so (A, C) is observable.
(iv) follows from Theorem 3.3.39 and Theorem 3.3.38, see Remark 3.3.40. �

Remark 3.3.50. (i) If Q & 0 then rank C = n and (92) is automatically satisfied.

(ii) For higher dimensions it is a nontrivial task to solve the linear matrix equation (80).
In the next chapter we will describe an algorithm based on the reduction of A to Schur
form. An alternative is to make an inspired choice of a P = P ∗ & 0 and compute Q from
(80). If Q & 0 ($ 0) then (27) is asymptotically stable (stable) whereas if this is not the
case no conclusion can be drawn.

(iii) If P & 0 solves (80) with Q = Q∗ & 0 then V (x) = 〈x, Px〉 = 〈x, x〉P = ‖x‖2
P satisfies

V̇ (x) = 2Re〈x,Ax〉P < 0 (V̇ (x) = ‖Ax‖2
P − ‖x‖2

P < 0), x ∈ K
n, x �= 0. (93)

So the flow is contracting with respect to the induced norm ‖ · ‖P , i.e. the distance from
the origin measured by this norm is continually decreasing along the trajectory.

(iv) If the spectral abscissa α(A) = 0 (resp. �(A) = 1) and Q & 0, then there is no solution
of (80), see Remark 3.3.40.

(v) Given r ∈ R (resp. r > 0), Q = Q∗ & 0, let us assume that (88) holds for the matrix
(A−rI) (resp. r−1A). Then from the above theorem we have that Re λ > r (resp. |λ| > r)
for some λ ∈ σ(A) if and only if the solution Pr ∈ Hn(K) of following equation (94)

P (A − rI) + (A − rI)∗P + Q = 0 (94a)
r−2 A∗PA − P + Q = 0. (94b)

satisfies 〈x0, Prx
0〉 < 0 for some x0 ∈ K

n. Moreover (88) will hold for all but a finite
number of values of r. �

Example 3.3.51. We again consider the linear oscillator studied in Example 3.3.24. For
different parameter combinations (α ∈ R, β ≥ 0) we will determine the stability properties
via the use of Liapunov functions. The Liapunov equation (80a) takes the following form[

0 1
−β −2α

]∗ [
p1 p2

p2 p3

]
+

[
p1 p2

p2 p3

] [
0 1
−β −2α

]
+

[
q1 q2

q2 q3

]
= 0

i.e.
−2βp2 + q1 = 0, p1 − 2αp2 − βp3 + q2 = 0, 2(p2 − 2αp3) + q3 = 0.

1. case: α �= 0, β > 0. In this case we choose Q = I2 and obtain the solution

p1 =
α

β
+

1

4α
(1 + β), p2 =

1

2β
, p3 =

1 + β

4αβ
.

Since p1p3 − p2
2 > 0, P & 0 if and only if p1 > 0 (or p3 > 0). 〈x, Px〉R2 < 0 for some

x ∈ R
2 (in fact −P & 0) if and only if p1 < 0 (or p3 < 0). Thus by Theorem 3.3.49 the

system is asymptotically stable if α > 0, β > 0 and it is unstable if α < 0, β > 0.
If α = 0 or β = 0 there are no solutions of the Liapunov equation when Q = I2, so we
examine the modified Liapunov equation (94a).
2. case: α < 0, β = 0. The solution of (94a) with Q = I2 is

Pr =
1

4r(α + r)(2α + r)

[
2(α + r)(2α + r) 2α + r

2α + r 2r2 + 2αr + 1

]
.
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Now 2(α+r)(2α+r)(2r2 +2αr+1)− (2α+r)2 = r(2α+8α3)+O(r2), so for α < 0, r > 0
sufficiently small there exists x ∈ R

2 such that 〈x, Prx〉 < 0. Hence by Remark 3.3.50 A

has an eigenvalue with Reλ > r for small r > 0. So there is a λ ∈ σ(A) with Reλ > 0
and hence the system is unstable.

If α ≥ 0, β = 0 it is easily verified from the above formula that Pr & 0 for r > 0 and
〈x0, Prx

0〉 < 0 for some x0 ∈ K
n when r < 0 is near r = 0. Hence there is a λ ∈ σ(A) with

Reλ = 0. A similar analysis can be carried out for the case α = 0, β > 0. But as in the
case where β = 0, α ≥ 0 no stability or instability result is obtained (only the existence
of λ ∈ σ(A) with Re λ = 0). Thus stability results for these remaining cases cannot be
obtained with the choice of Q = I2, even if we use the modified Liapunov equation (94a).
In order to proceed using quadratic Liapunov functions we need to make an inspired
choice for P (or equivalently Q). The total energy of the oscillator is 1

2(βx2
1 + x2

2), so let

us consider P =

[
1
2β 0
0 1

2

]
, with the associated

Q = −A∗P − PA =

[
0 0
0 2α

]
=
[

0
√

2α
] [ 0√

2α

]
=: C∗C. (95)

The parameter values we still have to analyze are α ≥ 0, β = 0 and α = 0, β �= 0, however
for these values there is more than one solution of (80a) with Q given by (95).
3. case: α = 0, β > 0. In this case there are many solutions of (80a)

P (γ, δ) =

[
βδ γ

−γ δ

]
, γ, δ ∈ R.

which are, in general, non-symmetric. However, P (0, 1) ∈ H2(R) is positive definite and
so the system is stable by Corollary 3.3.46.
4. case: β = 0, α > 0. In this case there are many symmetric solutions of (80a) with Q

given by (95)

P (γ) =

[
2αγ γ

γ 1
2 + γ

2α

]
, γ ∈ R.

Since P (1) & 0 for α > 0 we conclude from Theorem 3.3.49 the system is stable.
5. case: α = 0, β = 0. In this case there are again many symmetric solutions of (80a)

P (δ) =

[
0 0
0 δ

]
, δ ∈ R

and the pair (A,C) is unobservable since C = 0. We know from Example 3.3.24 that the
system is (marginally) unstable in the present case but we cannot infer this result from
Theorem 3.3.49.
This example illustrates the usual situation when Liapunov equations are used. Stability
or instability can be deduced for most of the parameter values by the choice of Q = In.
However certain combinations of the parameters (associated with the case Re λ = 0,
λ ∈ σ(A)) require a more subtle analysis. �

We now turn to the time-invariant version of Liapunov’s indirect method. Consider
the nonlinear equations

ẋ(t) = f(x(t)), t ∈ R, (96a)

x(t + 1) = f(x(t)), t ∈ Z (96b)
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where f is Lipschitz continuous (resp. continuous) on an open subset X ⊂ Kn,
x ∈ X, f(x) = 0 (resp. f(x) = x). In addition, suppose that f is differentiable at x
and f ′(x) = A, i.e.

f(x) = A(x − x) + h(x − x), x ∈ X. (97)

and for any ε > 0 there exists δ > 0, such that

‖h(x − x)‖ ≤ ε‖x − x‖, x ∈ B(x, δ). (98)

Theorem 3.3.52. Assume that (97), (98) hold for the nonlinear system (96). Then

(i) if Re λ < 0 (|λ| < 1) for all λ ∈ σ(A), the equilibrium state x is exponentially
stable with respect to the nonlinear system (96).

(ii) If Re λ > 0 (|λ| > 1) for some λ ∈ σ(A) then the equilibrium state x is unstable
with respect to the nonlinear system (96).

Proof : Since (A, In) is uniformly observable (i) is an immediate consequence of
Theorem 3.3.20 and Theorem 3.3.41. We prove (ii) for the continuous time case
leaving the proof for the discrete time case to the reader (Ex. 23). Suppose Re λ0 > 0
for some λ0 ∈ σ(A) and choose r ∈ (0, Reλ0) such that (88) holds for Ar = A− rIn.
Then (Ar, In) is uniformly observable and there exists a solution Pr ∈ Hn(K) of
(94a). Moreover ẋ = Arx is unstable and so by Theorem 3.3.43 we must have that
x is unstable for the nonlinear system (96a). �

As an immediate consequence of Theorem 3.3.52 we know that if the equilibrium
point x of the nonlinear system (96) is unstable then there exists λ ∈ σ(A) such that
Re λ ≥ 0 (|λ| ≥ 1), but the linearized system is not necessarily unstable. Conversely
if the equilibrium point x of the nonlinear system is (asymptotically) stable then
necessarily Re λ ≤ 0 (|λ| ≤ 1), λ ∈ σ(A), but we cannot infer that the linearization
is (asymptotically) stable. In contrast in the case of exponential stability there is a
tighter relationship between the behaviour of a nonlinear system near an equilibrium
point and its linearization. In order to express this relationship in a succinct way
we need the following definition. The solution of (96) with initial state x0 will be
denoted by ϕ(t; x0), t ∈ T (x0).

Definition 3.3.53. Let r > 0 be such that B(x, r) ⊂ X. The infimum of all ω ∈ R

for which there exists Mω ≥ 1 such that

x0 ∈ B(x, r) =⇒ ∀t ∈ T (x0) : ‖ϕ(t; x0) − x‖ ≤ Mωeωt‖x0 − x‖ (99)

is called the (upper) growth rate of the nonlinear system (96) with initial state in
B(x, r) and is denoted by ω(f, x, r). ω(f, x) := limr↘0 ω(f, x, r) is said to be the
(upper) growth rate of (96) at the equilibrium state x.

It follows from the definition that 0 < r1 < r2 implies ω(f, x, r1) ≤ ω(f, x, r2) and
therefore ω(f, x) = infr>0 ω(f, x, r). By definition ω(f, x, r) = ∞ if there does not
exist an Mω ≥ 1, ω ∈ R such that (99) holds.



3.3 Linearization and Stability 289

Example 3.3.54. Let f(x) = Ax, x ∈ K
n where A ∈ K

n×n is given and x = 0. Then
ω(f, 0, r) = ω(f, 0) = ω(A) for all r > 0 where ω(A) equals the upper Liapunov (or Bohl)
coefficient of the semigroup Φ(t) = eAt generated by A, see (30). Hence Definition 3.3.53
generalizes the concept of growth rate as introduced in Subsection 3.3.2 for time-invariant
linear systems. �

Theorem 3.3.55. Assume (97), (98) hold for the nonlinear system (96). Then
the equilibrium point x is exponentially stable if and only if the linearization at x is
exponentially stable. In this case ω(f, x) = ω(A).

Proof : The proof is for the continuous time case, the proof for the discrete time
case is set as Ex. 23. Assume ω(A) < 0 and β ∈ (0,−ω(A)). Given ε > 0 choose
δ > 0 such that (98) holds and consider the time-varying nonlinear equation

ż(t) = (A + βIn)z(t) + h̃(t, z(t)), h̃(t, z) = eβth(e−βtz), z ∈ B(0, δ), t ≥ 0. (100)

Now

‖z‖ < δ =⇒ ‖h̃(t, z)‖ = eβt‖h(e−βtz)‖ ≤ eβtε‖e−βtz‖ = ε‖z‖, t ≥ 0. (101)

Hence h̃(·, ·) has the property (74) for the pair (ε, δ). Moreover σ(A+βIn) ⊂ C− and
(A +βIn, In) is uniformly observable. So we may apply Theorem 3.3.41 to conclude
that there exist positive constants δ̃, ε̃, M̃ such that

‖z(0)‖ < δ̃ =⇒ ‖z(t)‖ ≤ M̃e−ε̃t‖z(0)‖, t ≥ 0.

Let x0 = x + z(0) and ϕ(t; x0) − x = e−βtz(t), t ≥ 0, then

‖x0 − x‖ < δ̃ =⇒ ‖ϕ(t; x0) − x‖ ≤ M̃e−(β+ε̃)t‖x0 − x‖, t ≥ 0.

Moreover for t > 0, we have

ϕ̇(t; x0) = −βe−βtz(t) + e−βt[(A + βIn)z(t) + eβth(e−βtz(t))]

= A(ϕ(t; x0) − x) + h(ϕ(t; x0) − x).

So ϕ(t; x0) is the solution of (96a) with initial state x0. We see, therefore, that x is
exponentially stable for the system (96a) and its growth rate at x, ω(f, x) ≤ ω(A).
Conversely, assume that x is exponentially stable for (96a). Then given ε > 0 and
ω ∈ (ω(f, x), 0), there exists positive constants δ, M such that (98) holds and

‖x0 − x‖ < δ =⇒ ‖ϕ(t; x0) − x‖ ≤ Meωt‖x0 − x‖, t ≥ 0.

Choose β ∈ (0,−ω) such that λ + µ + 2β �= 0 for all λ, µ ∈ σ(A) and set z(t) =
eβt(ϕ(t; x0) − x), t ≥ 0. Then z(·) satisfies (100) with initial state x0 − x and by
(101) h̃(·, ·) has the property (74) for the pair (ε, δ). Now if λβ ∈ σ(A + βIn), then
λβ = λ + β for some λ ∈ σ(A). So by the restriction on the choice of β we see that
λβ + µβ �= 0 for all λβ, µβ ∈ σ(A + βI) and hence there exists a solution P of the
algebraic Liapunov equation (80a) with A replaced by A+βIn and Q = In. Finally,
since (A+βIn, In) is observable, we see that all the conditions of Theorem 3.3.43 for
the equation given by (100) are satisfied. But ‖z(t)‖ ≤ Me(ω+β)t‖z(0)‖, t ≥ 0 and
so the the equilibrium point 0 of (100) is exponentially stable. Therefore A + βIn

cannot be unstable and Reλ ≤ −β for all λ ∈ σ(A). Thus ω(A) ≤ ω(f, x) and this
completes the proof. �
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Liapunov’s indirect method provides a very simple way of determining whether or
not an equilibrium state is stable since it relates the nonlinear flow to that of the
linearized flow. However it is important to stress that stability or instability of an
equilibrium state is a local property and from a practical point of view may give
misleading information. For example an equilibrium state may be asymptotically
stable but its basin of attraction may be so small that from a practical standpoint
one should think of it as being unstable. Similar considerations apply to unstable
equilibrium points. Although the construction of Liapunov functions for nonlinear
systems may be difficult, the great advantage of Liapunov’s direct method is that it
provides information about the basin of attraction.

Example 3.3.56. Consider the nonlinear oscillator

ÿ + h(y, ẏ)ẏ + g(y) = 0

where g(0) = 0. Setting x = [x1, x2]
� = [y, ẏ]�, we get the corresponding state space

system

ẋ =

[
x2

−g(x1) − h(x1, x2)x2

]
:= f(x).

Since
∂f

∂x
(0) =

[
0 1

−g′(0) −h(0, 0)

]
,

the origin will be exponentially stable if and only if g′(0) > 0 and h(0, 0) > 0. It will be
unstable if either g′(0) < 0 or h(0, 0) < 0. �

Example 3.3.57. Let us analyze the stability of an oscillator with nonlinear friction
described by the following equation

ξ̈ + (2α + ξ̇2)ξ̇ + βξ = 0.

Mechanical systems with this equation of motion are used to regulate the angular position
ξ of a gyrating mass. The corresponding state space system is

ẋ =

[
ẋ1

ẋ2

]
=

[
0 1
−β −2α

] [
x1

x2

]
−
[

0
x3

2

]
, (102)

which has one equilibrium state at (0, 0). The linearization about this equilibrium state is

ẋ =

[
0 1
−β −2α

]
x and we have analyzed the stability of this system in Example 3.3.24.

Using these results and Theorem 3.3.52, we are able to conclude that the origin is expo-
nentially stable if α > 0, β > 0 and it is unstable if α < 0. If α = 0, β > 0 the origin
of the linearized system is a centre and since it is only marginally stable we cannot apply
Theorem 3.3.52. In order to obtain information about this case and the basin of attraction
when α ≥ 0, consider the function

V (x) = (1/2)(βx2
1 + x2

2), x ∈ R
2.

This function associates with any state x, the corresponding total energy of the system.
Then lim‖x‖→∞ V (x) = ∞ and V̇ (x) = −(2α + x2

2)x
2
2. The largest invariant subset in

{x ∈ R
2 : V̇ (x) = 0} = {(x1, 0);x1 ∈ R} for (102) is {(0, 0)} when α ≥ 0, β > 0. So by

Corollary 3.2.29 the origin is asymptotically stable even when α = 0, β > 0. Moreover
since every sublevel set V (x) < ρ is bounded the asymptotic stability is global. �
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Example 3.3.58. The discrete time system

x1(t + 1) = αx1(t) + x2
2(t), x2(t + 1) = x1(t) + βx2(t) (103)

has two equilibrium points x1 = (0, 0) and x2 = ((1 − α)(1 − β)2, (1 − α)(1 − β)).

The linearized system about (0, 0) is given by the matrix

[
α 0
1 β

]
which has eigenvalues

α, β. So the equilibrium state (0, 0) will be exponentially stable if |α| < 1 and |β| < 1. It
will be unstable if |α| or |β| is greater than one.
The linearized system about the second equilibrium state is given by the matrix[

α 2(1 − α)(1 − β)
1 β

]
.

The characteristic equation is (λ − α)(λ − β) = 2(1 − α)(1 − β). The shaded region
in Figure 3.3.5 corresponds to those values of α, β for which this equilibrium state is
exponentially stable. The boundaries α = 1, β = 1 are obtained when λ = +1, the

(3 − α)(3 − β) = 8

(α − 2)(β − 2) = 1

β

α

(1, 1)

Figure 3.3.5: Stability chart for x2 with respect to (103)

boundary (3−α)(3−β) = 8 is obtained when λ = −1 and the other part of the boundary
is determined by setting λ = eıθ with cos θ = (α + β)/2. Note that the first equilibrium
point is unstable if the second one is exponentially stable. �

3.3.6 Exercises

1. Prove that the growth rate ω(A) = inf{ω ∈ R; ∃M > 0 : ‖Φ(t)‖ ≤ Meωt} of
a continuous (resp. discrete) time semigroup Φ with generator A ∈ C

n×n is equal to
the spectral abscissa α(A) = maxλ∈σ(A) Reλ (resp. the logarithm of the spectral radius
ln �(A) = ln maxλ∈σ(A) |λ|).

2. If A =

[
0 1
−2 −2

]
show that

eAt = e−t

[
cos t + sin t sin t

−2 sin t cos t − sin t

]
, At = (

√
2)t

[
cos π

4 t − sin π
4 t sin π

4 t

−2 sin π
4 t sin π

4 t + cos π
4 t

]
.

Determine
lim
t→∞

ln ‖eAt‖
t

, and lim
t→∞

ln ‖At‖
t

.
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3. Find the continuous time evolution operator generated by a(t) = t sin t on T = R+.
Show that the upper Liapunov exponent is +1, whereas the upper Bohl exponent is not
finite.

4. Show the upper Liapunov exponent for a continuous time system (1) is finite if
supt∈R+

∫ t+1
t ‖A(s)‖ds < ∞.

5. Show that the Liapunov exponent of (1) is given by

α(Φ) = lim sup
t→∞

ln ‖Φ(t, 0)‖
t

(where ln ‖Φ(t, 0)‖ = −∞ if ‖Φ(t, 0)‖ = 0).

6. Prove Theorem 3.3.15 in the discrete time case.

7. Consider

A(t) =

[
−11/2 + (15/2) sin 12t (15/2) cos 12t

(15/2) cos 12t −11/2 − (15/2) sin 12t

]
.

Show that the system ẋ = A(t)x is exponentially stable even though σ(A(t)) = (2,−13)
for all t ≥ 0.

8. Prove that every scalar system ẋ(t) = a(t)x(t), t ∈ R+ (resp. x(t + 1) = a(t)x(t), t ∈
N) which has a finite upper Bohl exponent β, can be transformed via a Bohl transformation

θ(t) = e
R t
0
(a(s)−β)ds (resp. θ(t) = e−βt

∏t−1
s=0 a(s)) into the time invariant system ẋ(t) =

βx(t), (resp. x(t + 1) = eβx(t)).

9. Consider the scalar system ẋ(t) = (4t sin t − 2t)x(t), t > t0, x(t0) = x0, t0 ∈ R+.
Prove that the solution is

Φ(t, t0)x0 = x0 exp(4 sin t − 4t cos t − t2 − 4 sin t0 + 4t0 cos t0 + t20) .

Hence show that the origin is asymptotically stable at any time t0 ∈ R+. Prove that
Φ((2n + 1)π, 2nπ) = exp((4n + 1)π(4 − π)) for n ∈ N and so the origin is not uniformly
asymptotically stable.

10. If a(t) = −(1 + t)−1, q(t) = 2(1 + t)−1 − 3(1 + t)−2 for t ∈ R+ show that a solution of
the Liapunov equation (54a) is p(t) = 1− (1+ t)−1. What conclusion can be drawn about
the stability properties of the evolution operator generated by a(·) on R+.

11. Let A(t) =

[
−2 + cos t − sin t

− sin t −2 − cos t

]
, t ∈ R+, choose P (t) ≡ I2 and compute Q(t)

such that the Liapunov equation (54a) is satisfied. Use this to prove that the evolution
operator generated by A(·) is uniformly exponentially stable.

12. Let A(t) =

[
0 1

−a(t) −1/2

]
, t ∈ N, choose P (t) =

[
a(t)2 + 1/4 0

0 1

]
and compute

Q(t) such that the discrete time Liapunov equation (54b) is satisfied. Hence show that the
evolution operator generated by A(·) is uniformly exponentially stable if |a(t)| < 1/2, t ∈ N.

13. Prove the Instability Theorem 3.3.34

14. Show that the unique solution of (54b) on Tt0 with initial state P (t0) is

P (t) = Φ(t0, t)
∗P (t0)Φ(t0, t) −

t−1∑
s=t0

Φ(s, t)∗Q(s)Φ(s, t), t ≥ t0 .
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15. Suppose A(t) =

[
t 0
0 0

]
, t ∈ R. Show that for Q(t) = I2 there is not a bounded

solution of (54a). However for every r > 0 if Ar(t) = A(t) − rI2 there are bounded
solutions of (54a) on T1/2+r when A(t) is replaced by Ar(t).

16. Determine conditions on a, b, ρ for which the equilibrium state is asymptotically stable
for Goodwin’s model of supply and demand considered in Example 1.2.1.

17. Determine whether or not the following matrices correspond to asymptotically stable
systems in the continuous time and discrete time cases

(a)

[
0 1

2
1
2 0

]
(b)

[
−1 1
1 −2

]
(c)

[
0 1
−1

8 −1
2

]
.

Verify your conclusions by solving the Liapunov equations with Q = I2.

18. Find the linearized equations of motion about the equilibrium states in Ex. 2.5, 2.6.
Determine whether or not these systems are asymptotically stable.

19. Show that the system ẋ = αx3 is asymptotically stable if α < 0 and unstable if α > 0.
Note that the linearized system about the origin is marginally stable for all α ∈ R. This
example shows that no conclusions for the stability with respect to the nonlinear system
can be drawn from this fact.

20. Consider the discrete time system with matrix

A =

[
0 1

−a1 −a0

]
.

Determine the values of a0, a1 for which there is not a unique solution of the Liapunov
equation (80b). Solve the Liapunov equation when Q = I2 and hence determine those
values of a0, a1 for which the system is asymptotically stable, marginally stable or unstable.
Solve the modified Liapunov equation (94b). What further conclusions can be drawn?
Compare your results with those given in Example 3.3.25.

21. Suppose that the system ẋ = Ax is asymptotically stable, where A ∈ R
n×n. For a

step size τ > 0 consider the following discretizations

(a)
xτ (t + 1) − xτ (t)

τ
= Axτ (t), (b)

xτ (t + 1) − xτ (t)

τ
= Axτ (t + 1), t ∈ N.

Show that the system in (b) is necessarily asymptotically stable but the system in (a) need
not be asymptotically stable.

22. If Φ(·, ·) is generated by a(t) = −t, t ∈ R+ show that for every τ > 0,
∫ t0+τ
t0

Φ(s, t0)
2ds ≤

(2t0)
−1, t0 ≥ 0. This example shows that the pair (a(·), 1) is not uniformly observable.

23. Prove Theorems 3.3.43, 3.3.52 and 3.3.55 for the discrete time case.

24. Consider the system

ẋ1 = x2, ẋ2 = −2x1 − 3x2 − h(x1 + x2)

where h : R → R is continuous h(0) = 0 and xh(x) > 0 for all x �= 0.
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(i) Find a matrix P ∈ R
n×n such that

PA + A�P + 4I = 0 where A =

[
0 1
−2 −3

]
.

(ii) Use the function V (x) = x�Px +
∫ x1+x2

0 h(s) ds to show that the origin is asymp-
totically stable.

25. Show that for the Lur’e problem (2.58) the function V (2.60) has the property

V̇ (x, σ) = −〈x,Qx〉 − rf2(σ) + 2f(σ)〈Pb + (1/2)c, x〉

where PA + A�P + Q = 0. Hence prove that if σ(A) ⊂ C−, f(0) = 0, σ �= 0 ⇒ σf(σ) > 0
and

r > 〈Pb + (1/2)c,Q−1(Pb + (1/2)c)〉,

then the origin x = 0, σ = 0 is asymptotically stable.

26. Newton’s method for solving the equation F (x) = 0, where F : R
n → R

n is differen-
tiable, is the iterative scheme

x(t + 1) = x(t) − [F ′(x(t))]−1F (x(t)) t ∈ N

where the inverse is assumed to exist.
This method is used to solve the scalar equation e−x − x = 0, so that

x(t + 1) = x(t) +
e−x(t) − x(t)

e−x(t) + 1
, t ∈ N. (104)

If x is the required unique solution find the linearized equations about x and show that x

is an exponentially stable equilibrium state of (104). Use the function V (x) = |x − x| to
obtain an estimate for the basin of attraction of this equilibrium state.

27. The second order differential system ξ̈+αξ̇+βξ = 0 is asymptotically stable if and only
if α > 0, β > 0. Use the Cayley transform to obtain necessary and sufficient conditions
for the second order difference equation

ξ(t + 2) + a ξ(t + 1) + b ξ(t) = 0, t ∈ N

to be asymptotically stable.

28. Case study: A model for a continuous flow stirred tank reactor is given by

Ṫ = a(T0 − T ) + bkCe−α/T

Ċ = a(C0 − C) − kCe−α/T

where C0, T0 are the concentration and temperature of the reactant in the influent and
C, T are the concentration and temperature of the reactant in the effluent. a, b, α, k are
positive constants.

(i) Show that all equilibrium states (Ce, Te) satisfy

1 +
a

k
eα/Te =

bC0

Te − T0
,

Ce − C0

Te − T0
= −1

b
.
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(ii) Linearize the equations about an equilibrium state and hence show that an equilibrium
state is stable if C0

Te − T0
>

αCe

T 2
e

.

(iii) If T0 = 300, C0 = 10, a = 2−9, b = 30, k = 0.5, α = 3600 ln 2, find three equilibrium
states and determine whether or not they are stable. Are there any other equilibrium
states?

(iv) Use a computer to obtain a phase portrait of the system around the three equilibrium
points.

3.3.7 Notes and References

Many of the results for time-varying linear systems can be found in Daleckii and Krein

(1974) [118]. The notion of Bohl exponent is due to Bohl (1913) [65]. The proof of

Theorem 3.3.15 is given in [118] and was proved for the case p = 2 in [120]. Our proof

is based on that of [115]. Many of the books quoted in Section 3.2 contain results for

time-varying systems. For further results on time-varying Liapunov transformations, see

Gantmacher (1959 Vol. 2) [183].

The result that the growth rate of a strongly continuous semigroup is supλ∈σ(A) Re λ is

known as the spectrum determined growth condition. It holds for a large class of strongly

continuous semigroups on infinite dimensional Banach spaces. However it is not true in

general, see Zabczyk (1975) [540] for a counterexample with supλ∈σ(A) = 0 yet ‖S(t)‖ = et.

For a discussion of numerical stability of discretization methods see for example Stoer and

Bulirsch (1978) [485] and the references in Section 4.5.

The quadratic Liapunov function for linear systems was introduced in Liapunov’s original

work and many of the results in Subsection 3.3.4 and Subsection 3.3.5 can be found there.

A good account can also be found in Barbashin (Translation 1970) [33]. Extensions of

Liapunov’s result which relate the inertia i(A) to the inertia i(P ) where PA+A∗P +Q = 0,

are called inertia theorems see Carlson and Schneider (1963) [91], Wimmer (1975) [531],

Glover (1984) [188] and Datta (1999) [123].

Generalizations of Liapunov’s Theorem 3.3.33 to infinite dimensional systems, continuous

or discrete time have been obtained by Datko (1970) [119] and Zabczyk (1974) [539].

In the late 60’s determining stability domains via Liapunov functions (or otherwise) was

much in vogue and there have been many such attempts for the Mathieu equation. For

example Narenda and Taylor (1973) [387] obtained the stability domain πaζ/2 > |q|, a !
ζ2, ζ ' 1.

The linearization result in Subsection 3.3.5 is essentially due to Liapunov and the fact

that an equilibrium point is exponentially stable if and only if the linearization at the

equilibrium point is exponentially stable can be found in Zabczyk (1992) [541].
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3.4 Stability Criteria for Polynomials

We have seen that for the asymptotic stability of continuous time systems (3.1a)
(resp. discrete time systems (3.1b)) it is required that all the eigenvalues lie in C−
(resp. D). These spectral stability criteria were already known in the 19th century.
However, in the absence of systematic solution procedures for algebraic equations
of order n ≥ 5 and without computers for their approximate solution these spectral
criteria could only be verified for lower dimensional systems. It was therefore a
problem of fundamental importance, both for mathematical stability theory and its
applications, to express the spectral stability criteria by verifiable conditions on the
coefficients of the characteristic polynomial. This problem was stated by Maxwell in
1868. In mathematics the analysis of real algebraic equations was one of the driving
forces in algebra and analysis in the early decades of the 19th century. Many leading
mathematicians contributed to this field and developed methods for determining the
number of roots of a polynomial in certain locations of the complex plane (e.g. the
real axis, the upper half-plane). Some further historical comments are given in the
extended Notes and References. The purpose of this section is to present some of
the most important methods and results which have been obtained in this field.
In the first two subsections we will deal with analytic methods and results. In
Subsection 3.4.1 we obtain stability criteria by the argument principle. Both real
and complex polynomials are considered. Important results are the Hermite-Biehler
Theorem and a recursive stability test due to Routh who was the the winner of the
Adams Prize mentioned in the introduction to this chapter. In Subsection 3.4.2 we
characterize stable polynomials by the Cauchy index of an associated real rational
function.
The algebraic methods we present in this section are based on quadratic forms. The
idea of using quadratic forms for the root location of polynomials is due to Hermite
(1856) [226]. In Subsection 3.4.3 it is shown that the number of roots of a polyno-
mial in C− can be obtained from the Hermite form. Moreover we will discuss its
relationship with another important quadratic form in this context, the Bézoutiant.
In Subsection 3.4.4 the Hankel form will be introduced. Hankel matrices play an
important role, not only in stability analysis, but also in other areas of systems
theory such as realization theory and model reduction. We will prove Kronecker’s
Theorem which is fundamental in realization theory, and show that the Cauchy in-
dex of a real rational function can be expressed by the signature of an associated
Hankel matrix. These results will then be used to derive Brockett’s Theorem on the
connected components of the space of real rational functions of order n. In Subsec-
tion 3.4.5 we prove the classical stability criteria of Liénard–Chipart and Hurwitz.
Subsection 3.4.6 is dedicated to the discrete time case, i.e. the problem of charac-
terizing those polynomials whose roots are all located in D (Schur polynomials).
Counterparts of the Hermite form, the Bézoutiant and the Hankel form are intro-
duced, the Schur-Cohn Theorem is proved and a recursive stability test similar to
the Routh test is presented. We conclude the chapter with a unifying framework for
obtaining stability criteria with respect to a large class of algebraic stability regions
(including arbitrary open half-planes and disks) and derive for these stability regions
a Liapunov-type stability criterion.
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3.4.1 Stability Criteria and the Argument Principle

In the next five subsections we will derive stability criteria for real and complex
polynomials with respect to the open left half plane C−. A polynomial p is said to
be a Hurwitz polynomial orHurwitz stable if all the roots si of p lie in the open left
half plane C−. We begin in this subsection by applying some methods from complex
analysis and we will see that the argument function plays a central role. First we deal
with arbitrary complex polynomials and then later derive special stability criteria
for real ones. We conclude this subsection with the Routh test for Hurwitz stability
and its application to a problem of feedback stabilization first studied by Maxwell.

Complex polynomials

Given any continuous function f : ıR → C
∗ := C \ {0}, we denote by ∆b

a arg f(ıω)
the change of the argument of the arc γ : ω �→ f(ıω) on [a, b], see Section A.2. The
change of the argument of f along the imaginary axis is defined by

∆∞
−∞ arg f(ıω) := lim

k→∞
∆k

−k arg f(ıω).

The following example illustrates how the Hurwitz stability of a linear polynomial
can be characterized by its change of the argument along ıR.

Example 3.4.1. Let s1 = ρ1 + ıω1 ∈ C \ ıR. We want to determine the change of the
argument of p(s) = s−s1 along the imaginary axis. It is intuitively clear (see Figure 3.4.1)
that

∆∞
−∞ arg p(ıω) =

{
π if ρ1 < 0
−π if ρ1 > 0

.

(As ω moves from −∞ to ∞, arg p(ıω) changes continuously from −π/2 to π/2 if Re s1 < 0

s1

s1

ıω

ıω

Figure 3.4.1: arg(ıω − s1) increases if Re s1 < 0, decreases if Re s1 > 0

and from 3π/2 to π/2 if Re s1 > 0). We will verify that this agrees with our definition of
the change of the argument in the Section A.2. Denoting the arc ω �→ p(ıω) on [−k, k] by
γk we have by (A.2.8)

∆k
−k arg p(ıω)= Im

∫
γk

ds

s
=

∫ k

−k
Im

ı dω

ıω − (ρ1 + ıω1)
=

∫ k

−k

−ρ1 dω

ρ2
1 + (ω − ω1)2

=

∫ − k+ω1
ρ1

k−ω1
ρ1

dt

1 + t2
.

Hence
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∆∞
−∞ arg p(ıω) = lim

k→∞
∆k

−k arg p(ıω) =

∫ ±∞

∓∞

dt

1 + t2
= [arctan t]±∞

∓∞ = ±π

according to whether ρ1 < 0 or ρ1 > 0. �

In order to extend this criterion to arbitrary complex polynomials we need the
following lemma.

Lemma 3.4.2. Let D ⊂ C be open, f, g : D → C holomorphic and α : [a, b] → D
an integration path which does not hit any zero of f or g. Then

∆b
a arg(fg)(α(t)) = ∆b

a arg f(α(t)) + ∆b
a arg g(α(t)).

Proof : The proof follows directly from (A.2.10) since

(fg)′(s)
(fg)(s)

=
f ′(s)g(s) + f(s)g′(s)

(fg)(s)
=

f ′(s)
f(s)

+
g′(s)
g(s)

, s ∈ D, (fg)(s) �= 0.

�

The next proposition shows that the number of roots of a polynomial which lie in the
left half plane can be determined by the change of the argument of the polynomial
along the imaginary axis.

Proposition 3.4.3. Given a polynomial p(s) ∈ C[s] of degree n without zeros on
the imaginary axis. Then

∆∞
−∞ arg p(ıω) = (n − 2ν)π

where ν is the number of zeros of p(s) in the open right half-plane (taking account of
multiplicities). In particular, p(s) is Hurwitz stable if and only if ∆∞

−∞ arg p(ıω) =
nπ.

Proof : Let p(s) = an

∏n
j=1(s − sj). Then by Example 3.4.1 and Lemma 3.4.2

∆∞
−∞ arg p(ıω) = lim

k→∞

n∑
j=1

∆k
−k arg(ıω − sj) = (n − ν)π − νπ.

�

An alternative proof of this proposition can be given by applying the Argument
Principle (see Section A.2) to p on a semicircle in the right half-plane with centre
at the origin and radius r → ∞, the reader is asked to prove this in Ex. 1.
Having determined the overall change of the argument of p(ıω) along the imaginary
axis, we will now analyze the rate of change of the argument. Given a polynomial
p(s) ∈ C[s], let ϕ(ω) = arg p(ıω) be any argument function for the curve γ : ω �→
γ(ω) = p(ıω), ω ∈ I where I ⊂ R is an interval such that p does not have a zero on

the segment ıI of the imaginary axis. Since γ′(ω) =
dp(s)

ds

∣∣∣
s=ıω

d(ıω)

dω
= ıp′(ıω) we

have by (A.2.6)

d arg p(ıω)

dω
=

dϕ(ω)

dω
= Im

γ′(ω)

γ(ω)
= Re

p′(ıω)

p(ıω)
, ω ∈ I. (1)

Sometimes it is useful to express this rate of change of the argument directly in terms
of the real and imaginary parts of p(ıω). Given any complex polynomial p(s) =∑n

k=0 aks
k we denote by p(s) the polynomial with conjugate complex coefficients:

p(s) =
∑n

k=0 aks
k.
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Definition 3.4.4. Let n ∈ N be fixed. For every p(s) =
∑n

i=0 ais
i ∈ C[s], the

Hurwitz-reflection of p is defined by

p�(s) = p(−s).

p(s) ∈ C[s] is called Hurwitz-symmetric if p = p�.

For Hurwitz stability, the Hurwitz-symmetric polynomials play the role of real poly-
nomials. In fact, if p is symmetric and s ∈ ıR, then −s = s and p(s) = p(s) =
p(−s) = p�(s) = p(s), hence every symmetric polynomial is real on the imaginary
axis, the boundary of the Hurwitz stability region C−.
The reflection operator p �→ p� is an R-linear degree preserving bijection of C[s] onto
itself with (ap)� = ap� for all a ∈ C and (pq)� = p�q�. Moreover p �→ p� is involutive,
i.e. (p�)� = p. For polynomials of degree ≤ n the reflection operator induces the
following transformation of the coefficient vectors

�n : a = (a0, a1, . . . , an) �→ a� = (a0, −a1, ..., (−1)nan), a ∈ C
n+1.

Every polynomial p(s) ∈ C[s] can be decomposed into a symmetric part p+ and an
antisymmetric part ıp− (satisfying (ıp−)� = −ıp−) as follows

p(s) = p+(s) + ıp−(s) where p+(s)=(p(s) + p�(s))/2, p−(s)=(p(s) − p�(s))/(2ı).

The symmetric polynomials p+, p− have real values on ıR and so the polynomials

pR(s) := (p(ıs) + p�(ıs))/2 = p+(ıs), pI(s) := (p(ıs) − p�(ıs))/(2ı) = p−(ıs). (2)

are real on R and hence have real coefficients. p and p� can be expressed by these
real polynomials as follows

p(ıs) = pR(s) + ıpI(s) and p�(ıs) = pR(s) − ıpI(s), s ∈ C. (3)

For ω ∈ R, pR(ω) and pI(ω) are the real and imaginary parts of p(ıω)

pR(ω) = Re p(ıω) and pI(ω) = Im p(ıω), ω ∈ R. (4)

The rate of change of the argument of p(ıω) can now be expressed in terms of the
real and imaginary parts of p(ıω) by

d arg p(ıω)

dω
= Im

d(pR(ω) + ıpI(ω))/dω

pR(ω) + ıpI(ω)
=

pR(ω)p′I(ω) − pI(ω)p′R(ω)

pR(ω)2 + pI(ω)2
, ω ∈ I. (5)

Proposition 3.4.5 (Phase increasing property). If p(s) ∈ C[s] is a complex

Hurwitz polynomial of degree n ≥ 1 then
d

dω
arg p(ıω) > 0 for all ω ∈ R, i.e.

pR(ω)p′I(ω) − pI(ω)p′R(ω) > 0. (6)

Proof : Suppose p(s) = an

n∏
j=1

(s − sj) and ω ∈ R. Then by (1)
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d arg p(ıω)

dω
= Re

p′(ıω)

p(ıω)
=

n∑
j=1

Re

(
1

ıω − sj

)
.

Hence it suffices to show that Re

(
1

ıω − (ρ1 + ıω1)

)
> 0 for all ρ1, ω1 ∈ R, ρ1 < 0.

But this follows from

Re
1

−ρ1 + ı(ω − ω1)
= Re

−ρ1 − ı(ω − ω1)

ρ2
1 + (ω − ω1)2

=
−ρ1

ρ2
1 + (ω − ω1)2

> 0. (7)

Now equation (6) is a direct consequence of (5). �

Real Polynomials

For real polynomials, some of the stability criteria we have derived can be simplified
or strengthened. Moreover, we can prove some additional stability criteria which
only hold for this case.
A simple, necessary (but not sufficient) criterion for a real polynomial p to be Hur-
witz stable is that all its coefficients are non-zero and of the same sign. In particular,
if p is a monic real Hurwitz polynomial all its coefficients must be positive.

Proposition 3.4.6. If a real polynomial p(s) =
∑n

j=0 ajs
j of degree n is Hurwitz

stable, then
ai aj > 0, i, j ∈ n.

Proof : Suppose p(s) = an

∏n
j=1(s − sj) is Hurwitz stable. By hypothesis for each

sj, either sj is real and sj < 0, or sj is complex in which case its complex conjugate
sj is also a root, and

(s − sj)(s − sj) = s2 − 2(Re sj) s + |sj|2

with Re sj < 0. Hence all the coefficients of the polynomial
∏n

j=1(s − sj) will be
positive, i.e. all coefficients of p(s) = an

∏n
j=1(s−sj) are non-zero and have the same

sign as an. �

For a real polynomial p(s) ∈ R[s] we have p(−ıω) = p(ıω) and so ∆0
−∞ arg p(ıω) =

∆∞
0 arg p(ıω). Hence the formula in Proposition 3.4.3 can be replaced by

∆∞
0 arg p(ıω) = (n − 2ν)π/2

and we obtain the following special version of the stability criterion for real polyno-
mials

p(s) ∈ R[s] is Hurwitz stable ⇔ ∆∞
0 arg p(ıω) = nπ/2. (8)

The phase increasing property can be strengthened for real Hurwitz polynomials.

Proposition 3.4.7 (Phase increasing property). If p(s) ∈ R[s] is a real Hurwitz
polynomial then

d arg p(ıω)

dω
≥
∣∣∣∣sin(2 arg p(ıω))

2ω

∣∣∣∣ , ω ∈ R
∗, (9)

with equality if deg p = 1 and strict inequality if deg p ≥ 2.
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Proof : First consider a linear polynomial p(s) = s − ρ1 ∈ R[s], ρ1 < 0. Then∣∣∣∣sin(2 arg p(ıω))

2ω

∣∣∣∣ =

∣∣∣∣sin(arg p(ıω)) cos(arg p(ıω))

ω

∣∣∣∣ =
ω

ω
√

ρ2
1 + ω2

−ρ1√
ρ2
1 + ω2

=
−ρ1

ρ2
1 + ω2

.

Hence, applying (7) with ω1 = 0, we see that (9) holds with equality.
Now consider p(s) = (s− ρ1)(s− ρ2) = s2 − (ρ1 + ρ2)s + ρ1ρ2 with ρ1, ρ2 < 0. Then

d arg p(ıω)

dω
= Re

1

ıω − ρ1
+ Re

1

ıω − ρ2
=

−ρ1

ρ2
1 + ω2

+
−ρ2

ρ2
2 + ω2

.

But 2 arg p(ıω) = 2(α + β) where α = arg(ıω − ρ1), β = arg(ıω − ρ2), hence∣∣∣∣sin(2 arg p(ıω))

2ω

∣∣∣∣ ≤ | sin 2α|
2|ω| | cos 2β| + | sin 2β|

2|ω| | cos 2α|

=
| sin α|| cosα|

|ω| | cos 2β| + | sinβ|| cosβ|
|ω| | cos 2α|

≤ −ρ1

ρ2
1 + ω2

| cos 2β| + −ρ2

ρ2
2 + ω2

| cos 2α| ≤ d arg p(ıω)

dω
.

Since ρ1, ρ2 < 0 we have 0 < α, β < π/2 if ω > 0 and −π/2 < α, β < 0 if ω < 0
so that | cos 2α|, | cos 2β| < 1. Thus strict inequality holds in (9) for quadratic
polynomials with two real roots.
Finally consider the case where p is of degree 2 and has non-real roots, i.e. p(s) =
(s − (ρ1 + ıω1))(s − (ρ1 − ıω1)) = s2 − 2ρ1s + ρ2

1 + ω2
1 where ρ1 < 0. Then

d arg p(ıω)

dω
= Re

p′(ıω)

p(ıω)
= Re

2ıω − 2ρ1

−ω2 − 2ıρ1ω + ρ2
1 + ω2

1

=
−2ρ1(ρ

2
1 + ω2

1 + ω2)

(ρ2
1 + ω2

1 − ω2)2 + 4ρ2
1ω

2
.

On the other hand, for all ω ∈ R
∗,∣∣∣∣sin(2 arg p(ıω))

2ω

∣∣∣∣ =

∣∣∣∣sin(arg p(ıω)) cos(arg p(ıω))

ω

∣∣∣∣
=

∣∣∣∣∣ −2ρ1ω

ω
√

(ρ2
1 + ω2

1 − ω2)2 + 4ρ2
1ω

2

ρ2
1 + ω2

1 − ω2√
(ρ2

1 + ω2
1 − ω2)2 + 4ρ2

1ω
2

∣∣∣∣∣
=

∣∣∣∣ −2ρ1(ρ
2
1 + ω2

1 − ω2)

(ρ2
1 + ω2

1 − ω2)2 + 4ρ2
1ω

2

∣∣∣∣ <
−2ρ1(ρ

2
1 + ω2

1 + ω2)

(ρ2
1 + ω2

1 − ω2)2 + 4ρ2
1ω

2
=

d arg p(ıω)

dω
.

This proves that strict inequality holds in (9) for all real polynomials of degree 2.
Now suppose that (9) has been proved for all real polynomials of degree n ≥ 1 and
let p(s) ∈ R[s] be a polynomial of degree n + 1. Then there exist p1(s) ∈ R[s] of
degree n − 1 and p2(s) ∈ R[s] of degree 2 such that p = p1p2. Now let ω ∈ R

∗,
α = arg p1(ıω), β = arg p2(ıω), then by induction∣∣∣∣sin(2 arg p(ıω))

2ω

∣∣∣∣ =

∣∣∣∣sin 2(α + β)

2ω

∣∣∣∣ ≤ | sin 2α| + | sin 2β|
2|ω| <

d arg p1(ıω)

dω
+

d arg p2(ıω)

dω
.

Since by Lemma 3.4.2 the latter sum is equal to
d arg p(ıω)

dω
, this concludes the

proof. �



302 3. Stability Theory

Remark 3.4.8. Note that in each of the three cases considered in the above proof we
have

lim
ω→0

(
d arg p(ıω)

dω
−
∣∣∣∣sin(2 arg p(ıω))

2ω

∣∣∣∣) = 0

and so this equality holds for any p(s) ∈ R[s]. �

We will now prove the Hermite–Biehler Theorem which expresses the stability cri-
terion (8) for p in terms of its even and odd parts. Given any complex polynomial
p(s) ∈ C[s] the even and odd parts u, v of p are, by definition, the unique polyno-
mials u, v ∈ C[s] such that

p(s) = pe(s2) + spo(s2) = u(s2) + sv(s2). (10)

If deg p = 2m is even, then deg u = m and deg v ≤ m−1, whereas if deg p = 2m+1
is odd then deg v = m and deg u ≤ m.
Now suppose that p(s) ∈ R[s] is real. Then the real and imaginary parts of p(ıω)
(see (2)) can be expressed via its even and odd parts as follows:

pR(ω) = Re p(ıω) = u(−ω2), pI(ω) = Im p(ıω) = ωv(−ω2). (11)

As a consequence we obtain the following equivalent formulation of the phase in-

creasing property (9) in terms of u and v. Remember that p′(s) =
dp

ds
(s).

Remark 3.4.9. Let p(s) ∈ R[s] and ϕ(ω) = arg p(ıω), ω ∈ R. Then

d arg p(ıω)

dω
= Re

p′(ıω)

p(ıω)
= Re

v(−ω2) − 2ω2v′(−ω2) + 2ıωu′(−ω2)

u(−ω2) + ıωv(−ω2)

=

[
v(−ω2) − 2ω2v′(−ω2)

]
u(−ω2) + 2ω2u′(−ω2)v(−ω2)

u(−ω2)2 + ω2v(−ω2)2
,

sin(2ϕ(ω))

2ω
=

sin ϕ(ω) cos ϕ(ω)

ω
=

u(−ω2)

ω
√

u(−ω2)2 + ω2v(−ω2)2
ωv(−ω2)√

u(−ω2)2 + ω2v(−ω2)2

Therefore (9) can be written

v(−ω2)u(−ω2) + 2ω2
[
u′(−ω2)v(−ω2) − v′(−ω2)u(−ω2)

]
u(−ω2)2 + ω2v(−ω2)2

≥
∣∣∣∣ v(−ω2)u(−ω2)

u(−ω2)2 + ω2v(−ω2)2

∣∣∣∣ .
We conclude that the phase increasing property (9) is equivalent to the fact that ω ∈
R, p(ıω) �= 0 implies

u′(−ω2)v(−ω2) − v′(−ω2)u(−ω2) ≥ 0 if v(−ω2)u(−ω2) ≥ 0
ω2(u′(−ω2)v(−ω2) − v′(−ω2)u(−ω2)) ≥ |v(−ω2)u(−ω2)| if v(−ω2)u(−ω2) < 0,

with equality if deg p = 1 and strict inequality if deg p ≥ 2. �

Let ϕ(ω) = arg p(ıω) be an argument function for p(ıω), ω ∈ R+ with initial value
arg p(0) = arg u(0) ∈ {0, π}. Then we have p(ıω) = |p(ıω)|eıϕ(ω) and (11) implies
the following relationship between the zeros of u, v on the negative real axis and
values of the argument function for ω > 0

u(−ω2) = 0 ⇔ arg p(ıω) ∈ π/2 + Zπ; v(−ω2) = 0 ⇔ arg p(ıω) ∈ Zπ. (12)

In order to state the Hermite–Biehler Theorem the following definition is useful.
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Definition 3.4.10. A pair of real polynomials (u, v) is said to be a positive pair if
the leading coefficients of u and v have the same sign, the roots ti of u and t′j of
v are all simple, real and negative and satisfy one of the following two interlacing
conditions where m = deg u, � = deg v

m = � and t′m < tm < t′m−1 < . . . < t′1 < t1 < 0, (13)

m = � + 1 and tm < t′m−1 < tm−1 < . . . < t′1 < t1 < 0. (14)

Theorem 3.4.11 (Hermite–Biehler). A polynomial p(s) = u(s2) + sv(s2) with
real coefficients is Hurwitz stable if and only if (u, v) is a positive pair.

Proof : Suppose that p is Hurwitz stable of degree n and let ϕ(ω) = arg p(ıω) be the
argument function for p on the positive imaginary axis considered above. Then ϕ(ω)
moves monotonically from 0 (resp. π) to nπ/2 (resp. π +nπ/2) by Proposition 3.4.7
and (8). For n = 2m even, as ω is moving through (0,∞) ϕ(ω) first arrives at
an odd multiple of π/2 then at a multiple of π, then at the next odd multiple of
π/2 and so on until it finally approaches a multiple of π from below. Denoting the
corresponding values of ω by

0 < ν1 < ν′
1 < ν2 < . . . < ν′

m−1 < νm ϕ(νi) ∈ (π/2 + Zπ), ϕ(ν ′
i) ∈ Zπ

we see from (12) that ti = −ν2
i are zeros of u whilst t′i = −(ν ′

i)
2 are zeros of v and we

have 0 > t1 > t′1 > . . . > tm. Since deg u = m, all the m zeros of u must be simple,
real and negative. Since deg v ≤ m − 1 and we have just seen that v has m − 1
zeros t′j , all the zeros of v must also be simple, real and negative and deg v = m− 1.
Finally by Proposition 3.4.6 the leading coefficients of u and v have the same sign.
Therefore u, v form a positive pair. A similar proof shows that u, v form a positive
pair if p has an odd degree.
Conversely assume that (u, v) is a positive pair and suppose, for instance, that
deg p = 2m is even, i.e. (14) holds. Let

0 < ν1 < ν′
1 < ν2 < . . . < ν′

m−1 < νm, −ν2
i = ti, −(ν ′

j)
2 = t′j

where the ti, t′j are the zeros of u and v, respectively, as in (14). By assumption there
are no joint zeros of u and v, so that p(ıω) �= 0 for all ω ≥ 0. Let ω increase from
0 to ∞ and consider the open frequency intervals Ij = (ν ′

j−1, νj) (where ν ′
0 := 0)

and I ′
j = (νj , ν

′
j) (where ν ′

m := ∞) for j ∈ m. Both ω �→ u(−ω2) and ω �→ v(−ω2)
do not change signs on these intervals so that we can associate with each of these
intervals the sign pattern

(Sj(u), Sj(v)) = (sign u(−ω2), sign v(−ω2)), ω ∈ Ij ,

(S ′
j(u), S ′

j(v)) = (sign u(−ω2), sign v(−ω2)), ω ∈ I ′
j .

Since the zeros of u (resp. v) are simple, u (resp. v) are changing signs at each of
their zeros, respectively. This implies that the sign patterns of the intervals change
as follows

(S ′
j(u), S ′

j(v)) = (−Sj(u), Sj(v)), (Sj+1(u), Sj+1(v)) = (S ′
j(u),−S ′

j(v)) (15)
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By assumption u(t) and v(t) have the same sign for large t > 0 and hence for all
t > −ν2

1 since both polynomials have no zeros on (−ν2
1 ,∞). As a consequence we

have S1(u) = S1(v) = ±1 i.e. p(ıω) = u(−ω2) + ıωv(−ω2) is either in the open
first or the open third quadrant for ω ∈ I1 starting at ω = 0 at either a positive or
negative value. p(ıω) hits the imaginary axis at the zeros of u and the real axis at
the zeros of v. Moreover, according to the sign change rule (15) if it is positive at
ω = 0, as ω increases, it moves from the first to the second (resp. third to the fourth
if negative at ω = 0) quadrant at ν1. Then from the second to the third (resp. from
the fourth to the first) quadrant at ν ′

1 and so on. Hence the change of the argument
of p(ıω) is π/2 on each compact interval Ij , j ∈ m and on each compact interval
I ′
j , j = 1, . . . , m−1. Finally, since limω→∞ p(ıω)/|p(ıω)| ∈ R and since p(ıνm) ∈ ıR∗,

we have ∆∞
νm

arg p(ıω) = π/2. This shows that ∆∞
0 arg p(ıω) = nπ/2 and hence p is

Hurwitz by (8). �

In the following lemma we apply the above theorem to derive an iterative procedure
for testing whether or not a polynomial is Hurwitz stable.

Lemma 3.4.12. Let p(s) =
∑n

k=0 aks
k = u(s2) + sv(s2) be a real polynomial of

degree n ≥ 2, an > 0. Then p is Hurwitz stable if and only if an−1 > 0 and

q(s) = an−1s
n−1 + (an−2 − κan−3)s

n−2 + an−3s
n−3 + (an−4 − κan−5)s

n−4 + . . .

with κ = an/an−1 and an−k = 0 for k > n, is Hurwitz stable.

Proof : The decomposition of q into its even and odd parts has the form

q(s) =

{
(u(s2) − κs2v(s2)) + sv(s2) if n is even,

u(s2) + s(v(s2) − κu(s2)) if n is odd.

Let us, for instance, consider the case where n = 2m is even. Then p and q have
the same odd part v. The even part of q is given by ũ(t) = u(t)−κtv(t), and so the
values of u and ũ coincide at the zeros of v and at t = 0.
Now assume that p is Hurwitz stable. Then an−1 > 0 by Proposition 3.4.6, and by
the Hermite-Biehler Theorem all the roots of u, v are negative, simple and satisfy the
interlacing condition (13). Thus ũ(0) = u(0), ũ(t′1) = u(t′1), . . . , ũ(t′m−1) = u(t′m−1)
form an alternating sequence and therefore ũ has exactly m − 1 zeros, one in each
of the intervals (t′m−1, t

′
m−2), . . . , (t

′
2, t

′
1), (t

′
1, 0). Hence all the zeros of ũ and v are

simple, real, negative, and interlacing. Moreover ũ(0)v(0) = u(0)v(0) > 0 and since
ũ, v have no zeros on R+, the leading coefficients of ũ and v have the same sign.
Thus these two polynomials form a positive pair and q is Hurwitz stable by the
Hermite-Biehler Theorem.
Conversely, assume that q is Hurwitz stable and an−1 > 0. Then (ũ, v) is a positive
pair and the above arguments show that u has m−1 zeros interlacing the m−1 zeros
of v. By the Hermite-Biehler Theorem it only remains to prove that there is another
root of u in (−∞, t′m−1). Since deg u = deg ũ + 1 and the leading coefficients of u
and ũ, an and an−2 − κan−3, are both positive, we have u(t)ũ(t) < 0 for t → −∞.
Since ũ(t) does not have a zero in (−∞, t′m−1), the sign of ũ(t) for t → −∞ must be
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equal to the sign of ũ(t′m−1) = u(t′m−1). Hence u(t)u(t′m−1) < 0 for t → −∞ and we
conclude that u has a zero in (−∞, t′m−1).
The proof for n odd is similar and is left as an exercise, see Ex. 3. �

This lemma gives rise to the following recursive algorithm for testing whether or not
a polynomial p(s) ∈ R[s] of degree n ≥ 2 with an > 0 is Hurwitz stable.

Algorithm 3.4.13 (Test for Hurwitz stability of real polynomials).

1. Start: p0(s) = p(s), i = 0.

2. Verify that all the coefficients of pi(s) are positive. If not, p is not Hurwitz. If
yes and deg pi = 2 then p is Hurwitz. If yes and deg pi > 2, continue.

3. Construct pi+1(s) = q(s) from pi(s) according to Lemma 3.4.12 with p replaced
by pi, set i := i + 1 and go back to 2.

Remark 3.4.14. Algorithm 3.4.13 is equivalent to the Routh test1 for Hurwitz polyno-
mials. Given a real polynomial p(s) =

∑n
k=0 aks

k with an > 0 the associated Routh array
has n + 1 rows and is given by

an an−2 an−4 an−6 . . . an−2j+2 . . . 0
an−1 an−3 an−5 an−7 . . . an−2j+1 . . . 0
c3,1 c3,2 c3,3 c3,4 . . . c3,j . . . 0
c4,1 c4,2 c4,3 c4,4 . . . c4,j . . . 0
...

...
ci,1 ci,2 ci,3 ci,4 . . . ci,j . . . . . .
...

...
cn+1,1 cn+1,2 cn+1,3 cn+1,4 . . . cn+1,j . . . . . .

where an−k := 0 for k > n and every row of index i > 2 is obtained from the preceding
two by the following rule.

From the entries of the row i − 2 subtract the corresponding entries in row
i− 1 multiplied by the number which makes the difference in the first column
zero. Delete this 0 entry and shift the row by one entry to the left

ci,j = ci−2,j+1 −
ci−2,1

ci−1,1
ci−1,j+1.

Routh proved that a necessary and sufficient condition for p to be Hurwitz is that the first
column of the Routh array contains only positive elements.
The relationship between the Routh array and the Algorithm 3.4.13 is simple. If e.g.
deg p = 2m is even, then the coefficients of the even and the odd parts of p0(s) are given
in rows 1 and 2, in this order, starting with the leading coefficients. The coefficients of
the odd and the even parts of p1(s) are given, in this order, in rows 2 and 3, respectively.
Those of the even and odd parts of p2(s) are given in rows 3 and 4, respectively, etc. In
particular, we see that all non-zero entries in the Routh array of a Hurwitz polynomial
with positive coefficients must be positive. �

1E. J. Routh [439] was the winner of the Adams Prize mentioned in the introduction to this
chapter.
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Example 3.4.15. Consider the cubic polynomial p(s) = s3 + a2s
2 + a1s + a0. The

associated Routh array is

1 a1 0 0 . . .

a2 a0 0 0 . . .

(a1a2 − a0)/a2 0 0 0 . . .

a0 0 0 0 . . .

. (16)

So p(s) is Hurwitz if and only if a2, a0 > 0 and a1a2 −a0 > 0. The same result is obtained
by Algorithm 3.4.13 after the first step which gives p1(s) = a2s

2 + (a1 − a0/a2)s + a0.
Now consider the quartic polynomial p(s) = s4 + a3s

3 + a2s
2 + a1s + a0. Algorithm 3.4.13

generates the following two polynomials

p1(s) = a3s
3 + (a2 − κ1a1)s

2 + a1s + a0, κ1 = 1/a3

p2(s) = (a2 − κ1a1)s
2 + (a1 − κ2a0)s + a0, κ2 = a2

3/(a3a2 − a1).

Thus p is Hurwitz if and only if

a0, a1, a3 > 0, (a2 − (1/a3)a1) > 0, a1 − a2
3a0/(a3a2 − a1) > 0.

The same result is provided by the Routh test:

1 a2 a0

a3 a1 0
a2 − a1/a3 a0 0

a1 − a2
3a0/(a3a2 − a1) 0 0

a0 0 0
�

Example 3.4.16. In one of the first mathematical analyses of feedback control systems,
Maxwell (1868) in his paper “On Governors” [364] considered the problem of regulating
the angular velocity of driving shafts. We will describe his study of Jenkin’s governor.
It is rather difficult to understand the exact form of this governor from Maxwell’s paper
and so we have used the schematic given in Bennett (1979) [50], see Figure 3.4.2. Ex-
periments were made with the governor by Maxwell, Balfour Stewart and Jenkin in 1863.
Unfortunately, no description of the governor from that time has been found, although the
governor itself is preserved in the Whipple Museum of Science at Cambridge University.
The purpose of the governor is to ensure that deviations of the angular speed of the drive
shaft from a nominal value are small. It is basically a friction governor; if the angular
speed increases above its nominal value the fly balls move out and the force between the
fly balls and the friction ring is increased. This causes the ring to rotate at an increased
angular velocity, which in turn has the following effects:

the weight in the damping fluid is raised to provide hydraulic damping,
the toothed worm gear worked by a revolving spiral causes the band brake to tighten
on the drive shaft,
an extra torque proportional to the angular deviation of the friction ring from a
nominal value is applied to the driving shaft.

The friction ring can rotate in either direction so that if the angular speed decreases below
its nominal value the last two effects are reversed. Let
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band brake�

friction ring

drive shaft�

�

damping fluid

weight

worm gear �

�

�

��
��
��
��

Figure 3.4.2: Jenkin’s governor

y = angular deviation of ring from a nominal value
dx
dt

= angular velocity of shaft

P = driving torque on the shaft
R = fixed load torque on the shaft
M = moment of inertia of the machine

G = constant relating torque applied to the machine to y

F = friction coefficient
V1 = fixed lowest possible operating velocity
B = moment of inertia of the ring
Y = viscous damping coefficient
W = torque due to weight.

Maxwell used the equations

M
d2x

dt2
= P − R − F

(
dx

dt
− V1

)
− Gy

B
d2y

dt2
= F

(
dx

dt
− V1

)
− Y

dy

dt
− W. (17)

We will take as state variables

x1 =
dx

dt
, x2 = y, x3 =

dy

dt

then (17) may be written in the form

Mẋ1 = P − R − F (x1 − V1) − Gx2

ẋ2 = x3

Bẋ3 = F (x1 − V1) − Y x3 − W. (18)

There is an equilibrium state xe = (x1e, x2e, x3e) where

x1e =
W

F
+ V1, x2e =

P − R − W

G
, x3e = 0.
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Setting x = xe + x′ and substituting in (18) we obtain the following equations for the
perturbation x′

ẋ′ =

⎡⎣ ẋ′
1

ẋ′
2

ẋ′
3

⎤⎦ =

⎡⎣ −F/M −G/M 0
0 0 1

F/B 0 −Y/B

⎤⎦⎡⎣ x′
1

x′
2

x′
3

⎤⎦ .

The eigenvalues of the above matrix satisfy the characteristic equation

p(λ) = λ3 +

(
Y

B
+

F

M

)
λ2 +

FY

MB
λ +

FG

BM
= 0.

Hence by applying (16) the polynomial p will be Hurwitz if(
Y

B
+

F

M

)
FY

MB
− FG

BM
> 0

or
Y

B
+

F

M
>

G

Y
. (19)

Thus the equilibrium state xe will be asymptotically stable if (19) is satisfied. This is the
result obtained by Maxwell from which he concluded “If it is not fulfilled there will be a
dancing motion of the governor which will increase till it is as great as the limits of motion
of the governor. To ensure stability the value of Y must be sufficiently great . . . ”. �

3.4.2 Characterization of Stability via the Cauchy Index

In this subsection we will characterize complex Hurwitz polynomials p(s) ∈ C[s] via
the Cauchy index of an associated real rational function.

Definition 3.4.17 (Cauchy index). Let f(s) ∈ R(s) be a real rational function.
The local Cauchy index of f at a pole s0 ∈ R is by definition

Cs0(f) =
1

2

[
lim
s↓s0

f(s)

|f(s)| − lim
s↑s0

f(s)

|f(s)|

]
.

If −∞ ≤ a < b ≤ ∞ then the sum of the local Cauchy indices at the poles of f in
(a, b) is said to be the Cauchy index of f on the interval (a, b) and is denoted by
CIb

a(f). CI∞
−∞(f) is called the (global) Cauchy index of f .

Intuitively speaking, CIb
a(f) is the difference in the number of jumps of f(s) from

−∞ to +∞ and the number of jumps from +∞ to −∞ as s goes from a to b on the
real axis, see Figure 3.4.3.

Remark 3.4.18. All the finite poles of f are taken into account by CI∞−∞(f). However,
the pole at infinity is neglected and as a consequence CI∞−∞(f) = CI∞−∞(f + p) for every
real rational function f and every real polynomial p. In order to take into account the
pole at infinity, we set

CI(f) = CI∞−∞(f) +
1

2

[
lim

s→−∞
f(s)

|f(s)| − lim
s→+∞

f(s)

|f(s)|

]
.

Then CI(f) = CI∞−∞(f) if and only if the polynomial part of f is of even degree. If it is
of odd degree and an is its leading coefficient then CI(f) = CI∞−∞(f) − sign an. �
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−1 +1 +1 0

Figure 3.4.3: Local Cauchy indices of a function with CI∞
−∞(f) = 1

Example 3.4.19. By partial fraction decomposition every real rational function can be
represented in the form

f(s) =
r∑

i=1

qi(s)

(s − si)mi
+ f0(s)

where s1, . . . , sr are the real poles of odd order, the qi are real polynomials of degree < mi

with qi(si) �= 0 and f0 has no real poles of odd order. The sign of qi(si) determines the
local Cauchy index of f at si: CIsi(f) = sign qi(si). The global Cauchy index CI∞−∞(f) is
the number of positive qi(si) minus the number of negative qi(si). For instance, if

fν(s) =

n−ν∑
k=−ν

k

s + k
, ν = 0, 1, . . . , n,

then the Cauchy index CI∞−∞(fν) = n− 2ν. In fact it is easy to see that −n, −n + 2, . . .,
n − 2, n are the only possible values of the Cauchy index of a real rational function with
denominator degree n. �

π/2

−π/2

τ ′

τ

tanf

tan(τ ′)

tan(τ)

f(tan(τ))

f(tan(τ ′))

θ

2θ

θ′

2θ′

−1

γf(τ)

γf(τ
′)

Figure 3.4.4: Construction of γf

We will now show that the index CI(f) of a function f(s) = u(s)/v(s) ∈ R(s) can
be expressed as the winding number of a closed curve γf associated with f . To



310 3. Stability Theory

obtain a closed curve we parametrize the compactified real axis R = [−∞,∞] by
the order preserving homeomorphism

tan : [−π/2, π/2] → R, tan(τ) = tan τ, τ ∈ (−π/2, π/2), tan(±π/2) = ±∞

and let θ : R → [−π/2, π/2] be the inverse of tan

θ(t) = arctan t, t ∈ R, θ(±∞) = ±π/2. (20)

Define the curve γf : [−π/2, π/2] → C by

γf(τ) = e2ıθ(f(tan(τ))), τ ∈ [−π/2, π/2], (21)

see Figure 3.4.4. γf is a (continuous) curve with values in S1 = {s ∈ C : |s| = 1}. If
deg u ≤ deg v, then the limits f(±∞) := limt→±∞ f(t) are equal and α := f(±∞) ∈
R, otherwise we have f(±∞) ∈ {−∞,∞}. In the former case the curve starts and
returns to the point s0 = e2ı arctan α and in the latter it starts and returns to s0 = −1.
So the curve is always closed. The winding number w(γf , 0) (see Section A.2) counts
the number of times that the curve γf(τ) crosses −1 in the anticlockwise sense minus
the number of crossings in the clockwise sense as τ moves from −π/2 to π/2. Now
γf(τ0) = −1 if and only if |f(t0)| = ∞ for t0 = tan(τ0), i.e. v(t0) = 0 or |t0| = ∞
with deg u > deg v. γf(τ) crosses −1 in the anticlockwise (resp. clockwise) direction
at τ0 ∈ (−π/2, π/2) if and only if f(t) jumps from +∞ to −∞ (resp. −∞ to +∞)
at t0 = tan(τ0). Besides these contributions to the winding number from finite
t, there will be a contribution of +1 (resp. −1) if f(+∞) = +∞, f(−∞) = −∞
(resp. f(+∞) = −∞, f(−∞) = +∞).2 If however f(−∞) = f(+∞) there will be
no added contribution. Thus

CI(f) = −w(γf , 0). (22)

The graph of γf describes a curve on the cylinder [−π/2, π/2] × S1. Figure 3.4.5
shows this graph for the rational function f illustrated in Figure 3.4.3.
Since γf(−π/2) = γf(+π/2), we may identify the ends of the cylinder to obtain a

−π/2 π/2

+1

S1

+1

−1−1

Figure 3.4.5: Graph of a curve with winding number 1

closed curve on a torus. The winding number w(γf , 0) is just the net number of
times the graph winds around the torus in the positive sense as τ increases from
−π/2 to π/2.

2To see this the reader should consider the reparametrized curve τ �→ e2ıθ(f(tan(τ))) for τ ∈
[−π/2 + ε, π/2 + ε] at τ0 = π/2 (0 < ε ' 1). As τ crosses τ0 in increasing order the corresponding
t = tan(τ) jumps from ∞ to −∞.
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Remark 3.4.20. For every t ∈ R
∗ we have

θ(−1/t) = arctan(−1/t) = arctan(t) + π/2 = θ(t) + π/2 mod π

and since eı2 θ(±∞) = −1 it follows that eı2 θ(−1/t) = eı2(θ(t)+π/2) = −eı2 θ(t) for all t ∈
R ∪ {−∞,∞}. Thus, for any f(s) = u(s)/v(s) ∈ R(s),

γ−1/f (τ) = eı2θ(−1/f(tan(τ))) = −eı2θ(f(tan(τ))) = −γf (τ), τ ∈ [−π/2, π/2].

Hence w(γ−1/f , 0) = w(γf , 0) and so

CI(v/u) = −CI(−1/f) = w(γ−1/f , 0) = w(γf , 0) = −CI(u/v). (23)

In particular if p is a real polynomial then CI(1/p) = −CI(p) ∈ {+1,−1, 0}. �

We now express the change of the argument of a polynomial by the Cauchy index
of an associated real rational function. Consider a complex polynomial p(s) =∑n

j=0 ajs
j ∈ C[s], and let pR(ω) and pI(ω) be the real and the imaginary parts of

p(ıω), see (2). The explicit formulas for these real polynomials are different for the
even and odd cases. Suppose aj = αj + ıβj , αj , βj ∈ R. If n is even then

pR(ω) = (−1)
n
2 (αnωn + βn−1ω

n−1 − αn−2ω
n−2 − βn−3ω

n−3 + + −−
pI(ω) = (−1)

n
2 (βnω

n − αn−1ω
n−1 − βn−2ω

n−2 + αn−3ω
n−3 + −− +

(24)

and if n is odd then

pR(ω)=(−1)
n+1

2 (βnωn − αn−1ω
n−1 − βn−2ω

n−2 + αn−3ω
n−3 + −− +

pI(ω)=(−1)
n−1

2 (αnωn + βn−1ω
n−1 − αn−2ω

n−2 − βn−3ω
n−3 + + −−

(25)

Proposition 3.4.21. Suppose p(s) ∈ C[s] is a polynomial of degree n without zeros
on the imaginary axis and pR(s), pI(s) ∈ R[s] are given by (24) or (25). If ν
is the number of zeros of p(s) in the open right half-plane (taking into account
multiplicities), then

CI∞
−∞(fp) = (n − 2ν) where fp(ω) =

{
pR(ω)/pI(ω) if deg pR ≤ deg pI

−pI(ω)/pR(ω) if deg pI < deg pR
(26)

and ∆∞
−∞ arg p(ıω) = CI∞

−∞(fp)π. In particular, p is Hurwitz stable if and only if
CI∞

−∞(fp) = n.

Proof : Note that, for all n, the real rational function f = fp has the form f(ω) =
u(ω)/v(ω) where u, v do not have joint real roots (since p has no roots on the
imaginary axis). Now assume e.g. that deg pI < deg pR. Let ϕ(ω) = arg p(ıω) be
an argument function for p on ıR, hence tan ϕ(ω) = pI(ω)/pR(ω) for all ω ∈ R such
that pR(ω) �= 0. Define θ by (20) and γ−f = γpI/pR

by (21). Then θ(−f (ω)) =
arctan(pI(ω)/pR(ω)) = ϕ(ω) mod 2π for all ω ∈ R such that pR(ω) �= 0. Thus

eıθ(−f(ω)) = eıϕ(ω) = p(ıω)/|p(ıω)|
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for all ω ∈ R, pR(ω) �= 0. Hence

γ−f(τ) = e2ıθ(−f(tan τ)) = e2ıϕ(tan τ) = p(ı tan τ)2/|p(ı tan τ)|2

for all τ ∈ (−π/2, π/2) satisfying pR(tan τ) �= 0. By continuity it follows that

γ−f(τ) = p(ı tan τ)2/|p(ı tan τ)|2, τ ∈ [−π/2, π/2],

and so γ−f(τ), τ ∈ [−π/2, π/2] is just a reparametrization of p(ıω)2/|p(ıω)|2, ω ∈ R.
This implies

w(γ−f , 0)2π = ∆
π/2
−π/2 arg γ−f(τ) = ∆∞

−∞ arg
p(ıω)2

|p(ıω)|2
whence by (22)

∆∞
−∞ arg p(ıω) = w(γ−f , 0)π = −CI∞

−∞(−f ) π = CI∞
−∞(f) π.

Making use of Proposition 3.4.3 this proves the proposition for deg pI < deg pR. The
proof is similar in the other case. �

Remark 3.4.22. (i) In Remark 3.4.20 we saw that for every real rational function f we
have CI(1/f) = −CI(f). Moreover, the Cauchy index and the extended Cauchy index
coincide for proper functions f(s) ∈ R(s). Therefore, using the extended Cauchy index
formula (26) simplifies to

CI(pR/pI) = CI(−pI/pR) = CI∞−∞(fp) = (n − 2ν).

(ii) Suppose that the leading coefficient of p is real, i.e. an = αn, βn = 0. Then deg pR >

deg pI if n is even, and deg pR < deg pI if n is odd. Hence, using the expressions (24) and
(25) for pR, pI we obtain the following unified formula for fp in (26)

fp(ω) =
αn−1ω

n−1 + βn−2ω
n−2 − αn−3ω

n−3 − βn−4ω
n−4 + + −− · · ·

αnωn + βn−1ωn−1 − αn−2ωn−2 − βn−3ωn−3 + + −− · · ·
If p is a real polynomial this formula simplifies further to

fp(ω) =
αn−1ω

n−1 − αn−3ω
n−3 + αn−5ω

n−5 − + · · ·
αnωn − αn−2ωn−2 + αn−4ωn−4 − + · · ·

(iii) Let p be any complex Hurwitz polynomial of degree n and f(s) = −pI(s)/pR(s). Since
CI(f) = n (see (i)) we must have n ≥ deg pR ≥ n − 1. Moreover all the poles of f (roots
of pR) must be real and simple, say ti, i = 1, . . . , n or n − 1. Let us now consider the real
zeros, t′i of f . First suppose there are n poles, then f is proper and hence CI∞−∞(f) = n.
So there must be at least n − 1 real zeros which interlace the poles

tn < t′n−1 < tn−1 < . . . < t2 < t′1 < t1.

If deg pI = n, there will be one more zero of f and, depending on the sign of αn/βn (see
(24) and (25)), it will either be greater than tn or less than t1.
Now suppose there are only n − 1 poles, then CI(f) = n implies deg pI = n and
CI∞−∞(pR/pI) = n. Hence in this case the n − 1 real roots ti of pR and the n real
roots t′j of pI are again all simple and interlaced as follows

t′n < tn−1 < . . . t2 < t′2 < t1 < t′1.

Summarizing we see that the roots of pR and pI are all simple, real and interlacing (as for
real Hurwitz polynomials). Note, however, that in contrast with the real case the roots
of pR and pI may be nonnegative and the interlacing condition alone is not sufficient for
Hurwitz stability (see the following example). A necessary and sufficient condition for
Hurwitz stability is given in Corollary 3.4.63. �
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Example 3.4.23. Consider the polynomial p(s) = s2+ (α1+ıβ1)s +ıβ0, where β0, α1, β1

∈ R. Then for the fp given by (26), we have

fp(ω) = − pI(ω)

pR(ω)
=

α1ω + β0

ω(ω + β1)
.

So if β1 = 0, p cannot be Hurwitz since pR would have a double root. Now suppose β1 > 0,
then CI∞−∞(fp) = 2, if and only if β0 > 0 and −α1β1 + β0 < 0. Whereas if β1 < 0, then
CI∞−∞(fp) = 2 if and only if β0 < 0 and −α1β1 + β0 > 0. Hence by Proposition 3.4.21 p

is Hurwitz if and only if α1 > 0 and α1β0β1 > β2
0 .

Suppose β1 < 0 and p is Hurwitz, then by Remark 3.4.22, we have the interlacing 0 <

−β0/α1 < −β1, but note that this condition is not sufficient for p to be Hurwitz (choose
β0 positive, α1 negative and β1 < β0/α1). �

3.4.3 Hermite Forms and Bézoutiants

In this subsection and the next we will use quadratic forms in order to determine
how many roots of a given complex algebraic equation lie in the open left half-plane
C−. We first consider a quadratic form which has been introduced by Hermite in
order to separate the roots of algebraic equations with complex coefficients. Then we
introduce another quadratic form, the Bézoutiant, and study its relationship with
the Hermite form.

Hermite Form

For any complex polynomial p(s) =
∑n

k=0 aks
k with p� its Hurwitz-reflection, we

have

p(s)p(w) − p�(s)p�(w)= p(s)p(w) − p(−s)p(−w)=
n∑

i=0

n∑
j=0

aiaj(s
iwj− (−s)j(−w)i).

For 0 ≤ i, j ≤ n, necessarily (siwj − (−s)j(−w)i) = 0 if i = j, and for i < j

siwj−(−s)j(−w)i =(−1)i
[
(−s)iwj−(−s)jwi

]
=(−1)i(−s)iwi

[
wj−i−(−s)j−i

]
,

= siwi(s + w)
[
wj−i−1 + wj−i−2(−s) + . . . w(−s)j−i−2 + (−s)j−i−1

]
.

Hence there exist hij ∈ C, i, j ∈ n such that

p(s)p(w) − p�(s)p�(w) = (s + w)
n∑

i=1

n∑
j=1

hijs
i−1wj−1.

Indeed comparing coefficients of equal powers yields

aiaj − (−1)i+jajai = hi,j+1 + hi+1,j, hi,0 = h0,j = hn+1,j = hi,n+1 = 0.

But −hij =
∑min{i,n+1−j}

k=1 (−1)k(hi−k,j+k + hi−k+1,j+k−1) and hence

hij =

min{i,n+1−j}∑
k=1

(−1)k−1
[
ai−kaj+k−1 − (−1)i+j−1ai−kaj+k−1

]
. (27)

For any n ∈ N we introduce the following notation

l(w)� = [1, w, w2, . . . , wn−1], w ∈ C. (28)
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Definition 3.4.24. Given a complex polynomial p(s) =
∑n

k=0 aks
k, the associated

Hermite generating function is given by

h(p; s,w)=
p(s)p(w) − p�(s)p�(w)

s + w
=

n∑
i=1

n∑
j=1

hijs
i−1wj−1 = l(s)�Hn(p)l(w). (29)

The matrix Hn(p) = (hij) ∈ Cn×n is called the associated Hermite matrix (of order
n ≥ deg p), and the corresponding bilinear form (x, y) �→ x∗Hn(p)y on Cn is called
the associated Hermite form. If n = deg p we write H(p) for Hn(p).

The matrix Hn(p) is Hermitian since

n∑
i,j=1

hijs
i−1wj−1 = h(p; s,w) =

p(s)p(w) − p�(s)p�(w)

s + w
= h(p;w, s) =

n∑
i,j=1

hijw
i−1sj−1.

Also since hij = 0 for i > deg p or j > deg p, we have

rankHn(p) = rankH(p), signHn(p) = signH(p), n ≥ deg p. (30)

In the following example we use (27) to determine Hn(p) for n = 1, 2, 3.

Example 3.4.25. (a) If p(s) = a1s + a0, then H1(p) = (a0a1 + a0a1).

(b) If p(s) = a2s
2 + a1s + a0, then

H2(p) =

[
a0a1 + a1a0 (a0a2 − a0a2)

−(a0a2 − a0a2) a1a2 + a2a1

]
.

(c) If p(s) = a3s
3 + a2s

2 + a1s + a0, a short calculation yields

H3(p) =

⎡⎣ (a0a1 + a0a1) (a0a2 − a0a2) (a0a3 + a0a3)
−(a0a2 − a0a2) (a1a2 + a1a2 − a0a3 − a0a3) (a1a3 − a1a3)
(a0a3 + a0a3) −(a1a3 − a1a3) (a2a3 + a2a3)

⎤⎦ .

Note that if a3 = 0 the last row and the last column of this matrix are zero and the
remaining entries coincide with the corresponding entries of H2(p). �

Given a Hermitian matrix H ∈ Hn(C) we denote by n+(H), n0(H), n−(H) the
number of its positive, zero and negative eigenvalues, respectively, accounting for
multiplicities. The triplet i(H) = (n+(H), n0(H), n(H)) is called the inertia of H .
The signature of H , denoted by sign(H), is by definition the number of its positive
eigenvalues minus the number of its negative eigenvalues, sign(H) = n+(H)−n−(H).
Two Hermitian matrices H, K ∈ Hn(C) are called congruent if there exists a non-
singular matrix T ∈ Gln(C) such that T ∗HT = K. By Sylvester’s Law of Inertia
(see Theorem A.1.33) two Hermitian matrices in Hn(C) are congruent if and only
if they have the same rank and the same signature.
We will now investigate the rank and the signature of the Hermite matrix Hn(p).
Let d(s) = (p(s), p�(s)) be the normalized greatest common divisor of p(s) and
p�(s), so p(s) = d(s)p0(s), p�(s) = d(s)p0

�(s). Then p0(s) and p0
�(s) are coprime,

d�(s) = d(s) and

d(λ) = 0 ⇔ p(λ) = 0 and p(−λ) = 0 ⇔ d(−λ) = 0. (31)

In particular, purely imaginary roots of p are also roots of d, and p0 has no roots on
the imaginary axis.
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Lemma 3.4.26. H(p) and H(p0) have the same invariants

rankH(p) = rankH(p0), signH(p) = sign H(p0).

Proof : Let d(s) = sm + dm−1s
m−1 + . . . + d0 = (p(s), p�(s)) and n = deg p. Since

p(s)p(w) − p�(s)p�(w)

s + w
= d(s)d(w)

p0(s)p0(w) − p0
�(s)p0

�(w)

s + w

we have⎡⎢⎢⎢⎣
1
s
...

sn−1

⎤⎥⎥⎥⎦
�

H(p)

⎡⎢⎢⎢⎣
1
w
...

wn−1

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
d(s)

sd(s)
...

sn−m−1d(s)

⎤⎥⎥⎥⎦
�

H(p0)

⎡⎢⎢⎢⎣
d(w)

wd(w)
...

wn−m−1d(w)

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
1
s
...

sn−1

⎤⎥⎥⎥⎦
�

D∗HD

⎡⎢⎢⎢⎣
1
w
...

wn−1

⎤⎥⎥⎥⎦
where3

H =

⎡⎣H(p0) | 0
−−− −|−−

0 | 0

⎤⎦
n×n

, D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0 d1 d2 · · · · · · 1 0 · · · · · · 0
0 d0 d1 · · · · · · · · · 1 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 · · · 0 d0 d1 d2 d3 · · · 1 0
0 · · · · · · 0 d0 d1 d2 · · · · · · 1

Im | 0m×(n−m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
n×n

.

But two polynomials in C[s, w] having the same values for all (s, w) ∈ C × C must
have the same coefficients. Hence H(p) = D∗HD, and since D is nonsingular H
and H(p) have the same invariants. This concludes the proof. �

Before enunciating the next lemma we recall the notion of the resultant of two
polynomials.

Definition 3.4.27. Given two complex polynomials

p(s) =

n∑
k=0

aks
k, q(s) =

m∑
k=0

bks
k, n, m ≥ 1

the associated (m + n) × (m + n) resultant matrix is

R(p, q) = Rn,m(p, q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 · · · an 0 · · · · · · · · · 0
0 a0 a1 · · · an 0 · · · · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . . · · · 0

0 · · · 0 a0 a1 · · · · · · · · · an

b0 b1 · · · bm−1 bm · · · · · · · · · 0
0 b0 b1 · · · · · · bm · · · · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . . · · · 0

0 · · · 0 b0 b1 · · · · · · · · · bm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(m+n)×(m+n)

⎫⎪⎪⎬⎪⎪⎭ m

⎫⎪⎪⎬⎪⎪⎭ n

. (32)

3the precise column alignment in the matrix D and in next matrix R(p, q) will depend on m

and n
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It is well known that Rn,m(p, q) is singular if and only if the two polynomials p, q
have a common non-trivial factor or an = bm = 0 [503, §34].

Lemma 3.4.28. Suppose p(s) ∈ C[s] is such that p(s) and p�(s) are coprime. If
p = p1p2 in C[s] then

H(p) = R∗
[
H(p1) 0

0 H(p2)

]
R

where R is the (nonsingular) resultant of p1
�(s) and p2(s). In particular,

rankH(p) = rankH(p1) + rankH(p2), signH(p) = sign H(p1) + signH(p2).

Proof : Let n = deg p, � = deg p1, m = deg p2, so that n = � + m. Since

p(s)p(w) − p�(s)p�(w)

s + w

= p2(s)p2(w)
p1(s)p1(w) − p1

�(s)p1
�(w)

s + w
+ p1

�(s)p1
�(w)

p2(s)p2(w) − p2
�(s)p2

�(w)

s + w

we have⎡⎢⎢⎢⎣
1
s
...

sn−1

⎤⎥⎥⎥⎦
�

H(p)

⎡⎢⎢⎢⎣
1
w
...

wn−1

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
p2(s)
sp2(s)

...
s�−1p2(s)

⎤⎥⎥⎥⎦
�

H(p1)

⎡⎢⎢⎢⎣
p2(w)

wp2(w)
...

w�−1p2(w)

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
p1

�(s)
sp1

�(s)
...

sm−1p1
�(s)

⎤⎥⎥⎥⎦
�

H(p2)

⎡⎢⎢⎢⎣
p1

�(w)
wp1

�(w)
...

wm−1p1
�(w)

⎤⎥⎥⎥⎦ .

If

p1
�(w) =

�∑
k=0

akw
k, a� �= 0, p2(w) =

m∑
k=0

bkw
k, bm �= 0,

we obtain H(p) = F ∗
1 H(p1)F1 + F ∗

2 H(p2)F2 where4

F1 =

⎡⎢⎢⎢⎢⎣
b0 b1 · · · bm 0 · · · · · ·
0 b0 b1 · · · bm

. . . · · ·
...

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 b0 b1 · · · bm

⎤⎥⎥⎥⎥⎦
�×n

, F2 =

⎡⎢⎢⎢⎢⎣
a0 a1 · · · a� 0 · · · · · ·
0 a0 a1 · · · a�

. . . · · ·
...

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 a0 a1 · · · a�

⎤⎥⎥⎥⎥⎦
m×n

.

Hence

H(p) = F ∗
[
H(p1) 0

0 H(p2)

]
F where F =

[
F1

F2

]
n×n

.

Since F is the resultant of p2(s) and p1
�(s) and (p1

�(s), p2(s)) are coprime, F is
nonsingular and the results follow. �

The following theorem, due to Hermite, shows how the Hermite form can be used
in order to determine the number of roots of a polynomial in the open left and right
half-planes (assuming that the polynomial does not have roots on the imaginary
axis).

4again the column alignment will depend on � and m



3.4 Stability Criteria for Polynomials 317

Theorem 3.4.29 (Hermite). Let p(s) ∈ C[s] be a polynomial of degree n and
H(p) the associated Hermite matrix. If r = rankH(p), σ = signH(p), then p(s)
has n − r roots in common with p�(s), (r + σ)/2 additional roots in the open left
half-plane, and (r−σ)/2 additional roots in the open right half-plane. In particular,
p is Hurwitz stable if and only if H(p) is positive definite.

Proof : Let d(s) = (p(s), p�(s)), m = deg d, p = dp0 and p0(s) = an

∏n−m
k=1 (s − sk).

By induction we obtain from the previous lemma

rankH(p0) =
n−m∑
k=1

rankH(s − sk), signH(p0) =
n−m∑
k=1

signH(s − sk).

But H(s− sk) = −(sk + sk) = −2 Re sk, see Example 3.4.25. Now since p0 does not
have any imaginary roots we obtain from Lemma 3.4.26

r = rankH(p) = n − m = n−(p0) + n+(p0), σ = signH(p) = n−(p0) − n+(p0).

This proves the first statement of the theorem. The second follows immediately
since by (31) p is Hurwitz stable if and only if p = p0 and n−(p) = n. �

Example 3.4.30. Consider again the polynomial studied in Example 3.4.23, p(s) =
s2 + (α1 + ıβ1)s + ıβ0, where β0, α1, β1 ∈ R. Using Example 3.4.25, we have

H(p) =

[
−ıβ0(α1 + ıβ1) + ıβ0(α1 − ıβ1) −2ıβ0

+2ıβ0 2α1

]
=

[
2β0β1 −2ıβ0

+2ıβ0 2α1

]
.

Hence H(p) & 0 if and only if α1 > 0 and α1β0β1 > β2
0 . These conditions are precisely the

necessary and sufficient conditions for the stability of p obtained in Example 3.4.23. �

Bézoutiants

Given two complex polynomials

u(s) =

n∑
k=0

uks
k and v(s) =

n∑
k=0

vks
k (33)

the polynomial in two variables u(s)v(w) − u(w)v(s) is divisible by s − w since

u(s)v(w)−u(w)v(s)=
n∑

i=0

n∑
j=0

uivj(s
iwj − wisj)=

∑
0≤i<j≤n

(uivj − viuj)(s
iwj − wisj)

and siwj − wisj = (w − s)
∑j−i−1

k=0 si+kwj−k−1 for 0 ≤ i < j ≤ n. Therefore there
exist uniquely determined bij ∈ C such that

u(s)v(w)− u(w)v(s)

s − w
=

n∑
i=1

n∑
j=1

bijs
i−1wj−1 = l(s)�Bn(u, v)l(w) (34)

where Bn(u, v) = (bij)i,j∈n. Indeed, multiplying (34) by s − w and comparing the
coefficients of equal powers yields

uivj − ujvi = bi,j+1 − bi+1,j , bi,0 = b0,j = bn+1,j = bi,n+1 = 0. (35)
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But −bij =
∑min{i,n+1−j}

k=1 bi−k,j+k − bi−k+1,j+k−1 and hence

bij =

min{i,n+1−j}∑
k=1

uj+k−1vi−k − ui−kvj+k−1, i, j ∈ n. (36)

Clearly bij = 0 for i, j > max{deg u, deg v}.

Definition 3.4.31. The matrix Bn(u, v) = (bij) ∈ Cn×n defined by (34) is called
the Bézout matrix or Bézoutian of order n for the polynomial pair (u, v) given by
(33) and the associated bilinear form (x, y) �→ x∗Bn(u, v)y is called the Bézoutiant
of (u, v) on Cn. The Bézout matrix of order max{deg u, deg v} for (u, v) is denoted
by B(u, v).

The Bézoutian of order n for (u, v) is defined whenever max{deg u, deg v} ≤ n. By
definition and (35) it has the following elementary properties.

Lemma 3.4.32. Given u(s), v(s) ∈ C[s] with max{deg u, deg v} ≤ n, then

(i) Bn(u, v) is symmetric, i.e. Bn(u, v)� = Bn(u, v).

(ii) Bn(u, v) = −Bn(v, u), Bn(u, u) = 0n×n.

(iii) Bn(u, v) is bilinear in (u, v).

(iv) rankBn(u, v) = rankB(u, v).

(v) Bn(u, v) ∈ Rn×n if u, v ∈ R[s], and in this case signBn(u, v) = signB(u, v).

The Bézoutians for n = 1, 2, 3 are given in the next example.

Example 3.4.33. (a) For n = 1:

B1(u, v) = u1v0 − u0v1.

(b) For n = 2:

B2(u, v) =

[
u1v0 − u0v1 u2v0 − u0v2

u2v0 − u0v2 u2v1 − u1v2

]
.

(c) For n = 3:

B3(u, v) =

⎡⎣ u1v0 − u0v1 u2v0 − u0v2 u3v0 − u0v3

u2v0 − u0v2 u2v1 − u1v2 + u3v0 − u0v3 u3v1 − u1v3

u3v0 − u0v3 u3v1 − u1v3 u3v2 − u2v3

⎤⎦ .

�

The following proposition relates the Hermite form of a complex polynomial with the
real Bézout matrix of the pair (pR, pI) where pR(s), pI(s) are the real and imaginary
parts of p(ıs), see (2).

Proposition 3.4.34. Suppose p(s) ∈ C[s] and let pR(s), pI(s) ∈ R[s] be the real
polynomials satisfying p(ıs) = pR(s) + ıpI(s). Then the Hermite matrix Hn(p) and
the Bézoutian Bn(pI , pR) are congruent

Hn(p) = 2DBn(pI , pR)D∗, where D = diag(1, ı, . . . , ın−1).
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Proof : Since p(s) = pR(−ıs) + ıpI(−ıs) and p(s) = pR(ıs) − ıpI(ıs), we obtain by
straight forward calculations

l(s)�Hn(p)l(w) =
p(s)p(w) − p�(s)p�(w)

s + w

= 2
pR(ıs)pI(−ıw) − pR(−ıw)pI(ıs)

−ı(s + w)
= 2

pI(ıs)pR(−ıw) − pR(ıs)pI(−ıw)

ıs − (−ıw)

= 2 l(ıs)�Bn(pI , pR) l(−ıw) = 2l(s)�DBn(pI , pR)D∗ l(w), s, w ∈ C.

�

As a consequence of Theorem 3.4.29 and this proposition we obtain

Corollary 3.4.35. With the notations of the proposition, suppose deg p = n and let
r be the rank and σ the signature of Bn(pI , pR). Then p(s) has n−r roots in common
with p�(s), and additionally (r + σ)/2 roots in the open left half plane, (r − σ)/2
roots in the open right half plane. In particular, p is Hurwitz stable if and only if
Bn(pI , pR) & 0.

Example 3.4.36. Consider again the polynomial p(s) = s2 + (α1 + ıβ1)s + ıβ0, where
β0, α1, β1 ∈ R. Then pR(s) = −s2 − β1s, pI(s) = α1s + β0 and using the expression given
in Example 3.4.33

B2(pI , pR) =

[
β0β1 β0

β0 α1

]
.

Then B2(pI , pR) & 0 if and only if α1 > 0 and α1β0β1 > β2
0 . �

For real polynomials p(s) analogous results can be obtained in terms of the even
and odd parts of p(s).

Proposition 3.4.37. Suppose p(s) = u(s2) + sv(s2) ∈ R[s]. Then the invariants
of the Hermite matrix H(p) are equal to the sum of the invariants of B(u, v) and
B(ṽ, u) where ṽ(t) = tv(t)

rankH(p) = rankB(u, v) + rankB(ṽ, u), signH(p) = sign B(u, v) + sign B(ṽ, u). (37)

Proof : Choose n = 2m ≥ deg p, then deg u ≤ m and deg ṽ ≤ m and we have

l(s)Hn(p) l(w) =
p(s)p(w) − p(−s)p(−w)

s + w

= 2sw
u(s2)v(w2) − v(s2)u(w2)

s2 − w2
+ 2

s2v(s2)u(w2) − w2v(w2)u(s2)

s2 − w2

= 2swl(s2)�Bm(u, v) l(w2) + 2l(s2)�Bm(ṽ, u) l(w2).

Now let P be the n × n-permutation matrix such that

[1, s, s2, . . . , sn−1]P = [s, s3, . . . , s2m−1, 1, s2, . . . , s2(m−1)].

Then

l(s)�Hn(p) l(w) = 2l(s)�P

[
Bm(u, v) 0

0 Bm(ṽ, u)

]
P�l(w).

From this the equations (37) follow by Lemma 3.4.32 and (30). �
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As a consequence of the preceding proposition we obtain the following stability
criterion.

Corollary 3.4.38. Suppose p(s) = u(s2) + sv(s2) ∈ R[s], ṽ(t) = tv(t). Then p is
Hurwitz stable if and only if B(u, v) & 0 and B(ṽ, u) & 0.

We illustrate the application of this result in the following example.

Example 3.4.39. Consider the real cubic polynomial p(s) = a3s
3 + a2s

2 + a1s + a0.
Then u(t) = a2t+a0, v(t) = a3t+a1, ṽ(t) = a3t

2 +a1t and using the formulas in Example
3.4.33 we have

B1(u, v) = a2a1 − a0a3, B2(ṽ, u) =

[
a0a1 a0a3

a0a3 a3a2

]
.

Then B1(u, v) & 0 and B2(ṽ, u) & 0 if and only if

a2a1 − a0a3 > 0, a0a1 > 0, a0a1a2a3 > a2
0a

2
3.

This is equivalent to either the coefficients all being positive or all being negative plus
a2a1 − a0a3 > 0 and reduces to the conditions given in Example 3.4.15 for the case where
a3 = 1. �

3.4.4 Hankel Matrices and Rational Functions

We now introduce another quadratic form, the Hankel form, which plays an impor-
tant role not only in stability analysis, but also in other areas of systems theory
such as realization theory and model reduction (see Volume II). We will see that this
quadratic form has a close relationship with the Bézoutiant and with strictly proper
rational functions. In particular, we will see that the Cauchy index of a real rational
function can be expressed by the signature of the associated Hankel matrix. We
conclude the subsection with a proof of Brockett’s Theorem which determines the
connected components of the space of real rational functions of fixed degree.
Every rational function g(s) = c(s)/d(s) where c(s), d(s) ∈ C[s] can be developed
as a power series in s−1 (Laurent expansion at ∞, see (A.2.20)),

g(s) =

∞∑
k=−ν

gks
−k =

ν∑
k=0

g−ks
k +

∞∑
k=1

gks
−k, (where ν ≥ 0). (38)

The first sum on the RHS is called the polynomial part of g(s) and the second one is
called its strictly proper part. g(s) is strictly proper (i.e. deg c < deg d) if and only
if its polynomial part is zero.

Definition 3.4.40. Given any formal Laurent series of the form (38) with complex
coefficients gk, k ≥ −ν, the associated infinite Hankel matrix (resp. Hankel matrix
of order n ≥ 1) is given by Hk(g) = (gi+j−1)i,j∈N∗ (resp. Hkn(g) = (gi+j−1)i,j∈n)

Hk(g) =

⎡⎢⎢⎢⎣
g1 g2 g3 g4 . . .
g2 g3 g4 g5 . . .
g3 g4 g5 g6 . . .
...

...
...

...
...

⎤⎥⎥⎥⎦ , Hkn(g) =

⎡⎢⎢⎢⎣
g1 g2 . . . gn

g2 g3 . . . gn+1
...

...
...

gn gn+1 . . . g2n−1

⎤⎥⎥⎥⎦ . (39)



3.4 Stability Criteria for Polynomials 321

An infinite complex matrix Hk = (hij)i,j∈N∗ is called a Hankel matrix if there exists
a sequence (hk)k∈N∗ in C such that hij = hi+j−1 for i, j ∈ N∗. Analogously, a matrix
Hk ∈ KM×N is called a Hankel matrix if it is of the form Hk = (hi+j−1)i∈M,j∈N .

In the real case there is a close relationship between Hankel matrices and Bézoutians
which is explained in the following theorem.

Theorem 3.4.41. Let c, d ∈ R[s] be of the form

c(s) =
n∑

k=0

cks
k; d(s) =

n∑
k=0

dks
k, dn �= 0 (40)

and g(s) = c(s)/d(s). Then the associated Bézout and Hankel matrices of order n,
Bn(d, c) and Hkn(g) are congruent and hence have the same rank and signature

Bn(d, c) = D�Hkn(g)D where D =

⎡⎢⎢⎢⎢⎢⎣
d1 d2 · · · dn−2 dn−1 dn

d2 d3 · · · dn−1 dn 0
...

...
...

...
...

...
dn−1 dn 0 · · · · · · 0
dn 0 · · · · · · · · · 0

⎤⎥⎥⎥⎥⎥⎦
n×n

= D�.

(41)

Proof : If Bn(d, c) = (bij) we have by Definition 3.4.31

n∑
i,j=1

bijs
i−1wj−1 =

d(s)c(w) − d(w)c(s)

s − w
= d(s)d(w)

g(w) − g(s)

s − w

= d(s)d(w)

∞∑
i=1

gi
w−i − s−i

s − w
= d(s)d(w)

∞∑
i=1

gi

∑
k, l≥1, k+l−1=i

s−kw−l

= d(s)d(w)

∞∑
k,l=1

gk+l−1s
−kw−l =

∞∑
k,l=1

gk+l−1(dnsn−k+. . .+ d0s
−k)(dnwn−l+. . .+ d0w

−l).

Since there are no negative powers of s, w on the LHS we may omit those on the
RHS and so

n∑
i,j=1

bijs
i−1wj−1 =

n∑
k,l=1

gk+l−1(dns
n−k+ . . . + dk+1s + dk)(dnw

n−l+ . . . +dl+1w + dl).

Or, in matrix terms

l(s)�Bn(d, c) l(w) = l(s)�D�Hkn(g)D l(w)

where D is given by (41). �

Observe that the matrix D in this theorem can be viewed as a Bézout matrix,
D = Bn(d, 1). For later use we note the following immediate consequence of the
previous theorem and the properties of Bézoutians given in Lemma 3.4.32(ii): If
g(s) = c(s)/d(s), deg c = deg d = n then

rankHkn(g) = rankHkn(1/g) and signHkn(g) = signHkn(−1/g). (42)
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Corollary 3.4.42. The principal minors from the lower right corner of Bn(d, c) are
given by the principal minors of the upper left corner of Hkn(g)

det(bij)
n
i,j=n−k+1 = d2k

n detHkk(g), k ∈ n.

Proof : If (bij)
n
i,j=n−k+1 = Bk equation (41) can be written in the form[

M11 M12

M21 Bk

]
=

[
D�

11 D�
21

D�
12 0

] [
Hkk H12

H21 H22

] [
D11 D12

D21 0

]
,

where D11 ∈ Rk×(n−k), D12 ∈ Rk×k and the other matrices are of commensurate
dimensions. Hence⎡⎣bn−k+1, n−k+1 . bn−k+1, n

. . .
bn, n−k+1 . bn, n

⎤⎦ =

⎡⎣dn−k+1 . dn

. . .
dn . 0

⎤⎦⎡⎣g1 . gk

. . .
gk . g2k−1

⎤⎦⎡⎣dn−k+1 . dn

. . .
dn . 0

⎤⎦ .

The proof is concluded by taking determinants. �

We will now explain the relationship between Hankel matrices and rational functions
in some detail. By definition, two rational functions g(s), g̃(s) determine the same
Hankel matrix if their strictly proper parts coincide. Let g(s) = c(s)/d(s) be a
proper rational function where c(s), d(s) ∈ K[s] are of the form (40). Then g(s) has
a Laurent expansion of the form (38) with ν = 0. The coefficients gj, j ∈ N are
uniquely determined by the equation

c(s) = d(s)(g0 + g1s
−1 + g2s

−2 + . . .). (43)

Comparing coefficients of s−j, j ≥ 1, yields the following recurrence relation

0 = d0gj + d1gj+1 + . . . + dn−1gj+n−1 + dngj+n, j ≥ 1. (44)

And comparing coefficients of sn−j, 0 ≤ j ≤ n, yields

cn = dng0

cn−1 = dn−1g0 + dng1

...

c0 = d0g0 + d1g1 + . . . + dn−1gn−1 + dngn. (45)

Together, (44) and (45) are equivalent to (43). The relation (44) is expressed by say-
ing that d(s) = dnsn + dn−1s

n−1 + . . .+ d0 is a recursive polynomial for the sequence
(g1, g2, g3, . . .). Given g1, . . . , gn, the recursive polynomial determines all the subse-
quent Laurent coefficients gk, k ≥ n+1 of g(s). Such a recursive polynomial of degree
n ≥ 1 exists if and only if the n + 1-st row (column) of the infinite Hankel Hk(g)
is linearly dependent on the n previous ones. Let rankHk(g) denote the dimension
of the linear subspace of KN∗

generated by the rows (or, equivalently, columns) of
Hk(g). If rankHk(g) ≤ n then there exists r ≤ n such that the r+1-st row of Hk(g)
depends linearly on the previous r rows, hence there exists a recursive polynomial
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of degree r ≤ n. We now want to show the converse, i.e. that rankHk(g) ≤ n if
there exists a recursive polynomial of degree n for the sequence (gk)k∈N∗ . Let S de-
notes the left shift on the sequence space KN∗

, i.e. S(g1, g2, g3, . . . ) = (g2, g3, g4, . . . ).
Then the i-th row (column) of Hk(g) is given by the sequence Si−1(gk)k∈N∗ written
as an infinite row (resp. column) vector. The recurrence relation (44) is equivalent
to saying that the operator d(S) =

∑n
k=0 dkS

k annuls the first row (resp. column)
of Hk(g). But then d(S) annuls the sequence Si−1(gk)k∈N∗ , i.e. the n + i-th row
(column) of Hk(g) depends linearly on the preceding n rows (resp. columns). Hence
rankHk(g) ≤ n. Altogether we have proved

Lemma 3.4.43. There exists a recursive polynomial of degree ≤ n for the sequence
(gk)k∈N∗ if and only if rankHk(g) ≤ n.

Let Ratn(K) denote the set of all strictly proper rational functions of degree n with
coefficients in K. The elements of Ratn(K) are of the form g(s) = c(s)/d(s) ∈ K(s)
where c, d are coprime polynomials as in (40) with dn �= 0, cn = 0. A formal Laurent
series (38) is said to be rational if g(s) is the Laurent expansion of a rational function
c(s)/d(s) at ∞. We write g(s) ∈ Ratn(K) if g(s) = c(s)/d(s) in a neighbourhood
of ∞ and c(s)/d(s) ∈ Ratn(K). The following theorem due to Kronecker (1881)
[320] determines the relationship between infinite Hankel matrices of finite rank and
strictly proper rational functions.

Theorem 3.4.44 (Kronecker). Let g(s) =
∑∞

k=1 gks
−k be any strictly proper for-

mal Laurent series with coefficients in K. Then

(i) g(s) is rational if and only if there exists a recursive polynomial for its coeffi-
cient sequence (gk).

(ii) g(s) ∈ Ratn(K) if and only if rankHk(g) = n. In this case

rankHk(g) = rankHkN(g) = n for all N ≥ n.

Moreover, if K = R then signHkN(g) = signHkn(g) for all N ≥ n.

Proof : (i) We have seen that if g(s) = c(s)/d(s) is rational then d(s) is a recur-
sive polynomial for (gk)k∈N∗. Conversely, if d(s) =

∑n
k=0 dks

k is a monic recursive
polynomial for (gk) and the coefficients of c are defined by (45) with g0 := 0 then
g(s) = c(s)/d(s).
(ii) Suppose rankHk(g) = n. By Lemma 3.4.43 there exists a monic recursive poly-
nomial d of degree n for (gk) and there does not exist a recursive polynomial of
smaller degree. Its coefficients d0, . . . , dn−1 ∈ K satisfy the linear equations⎡⎢⎢⎢⎣

g1

g2
...

gN

⎤⎥⎥⎥⎦ d0 +

⎡⎢⎢⎢⎣
g2

g3
...

gN+1

⎤⎥⎥⎥⎦ d1 + . . . +

⎡⎢⎢⎢⎣
gn

gn+1
...

gN+n−1

⎤⎥⎥⎥⎦ dn−1 +

⎡⎢⎢⎢⎣
gn+1

gn+2
...

gN+n

⎤⎥⎥⎥⎦ = 0 (46)

for all N ≥ 1. Defining c by (45) (with g0 := 0) we get g(s) = c(s)/d(s), deg c <
deg d. The pair (c, d) is coprime, since if this were not the case there would exist
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a recurrence relation (44) of length ≤ n − 1 among the gi’s, i.e. d would not be a
recursive polynomial of minimal degree. Hence g(s) = c(s)/d(s) ∈ Ratn(K).
Now suppose g(s) = c(s)/d(s) ∈ Ratn(K) where d, c are coprime polynomials of the
form (40) with dn = 1 and cn = 0. Then by equation (44) the (n + 1)-st column of
the Hankel matrix Hk(g) is linearly dependent on the preceding n columns. Hence
rankHk(g) ≤ n. But if r = rank Hk(g) < n then the r-th column of Hk(g)
would depend linearly on the preceding columns, and there would exist a recursive
polynomial d̃ for (gj) with deg d̃ ≤ r ≤ n − 1. Defining c̃ via (45) (with d replaced

by d̃) we would obtain g(s) = c̃(s)/d̃(s) and this would contradict the coprimeness
of c, d. Hence rankHk(g) = n.
Since rankHkn(g) ≤ rankHkN(g) ≤ rankHk(g) = n for all N ≥ n it remains
to prove rankHkn(g) = n. Now there exists N ≥ n such that rankHkN(g) =
n. Otherwise the first n columns of HkN(g) would be linearly dependent for all
N ≥ n and so there would exist a recursive polynomial of degree < n for (gk), in
contradiction with rankHk(g) = n. Choose N ≥ n such that rankHkN(g) = n and
set

DN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In

∣∣∣ 0n×(N−n)

d0 d1 · · · dn−1 1 0 0 · · · 0
0 d0 d1 · · · dn−1 1 0 · · · 0
0 0 d0 d1 · · · dn−1 1 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 d0 d1 · · · · · · · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×N

∈ GlN (K)

where the dk are the coefficients of d(s). Then using (44)

DNHkN (g)D�
N =

[
Hkn(g) 0

0 0

]
and therefore rankHkn(g) = rankHkN (g) = n (and signHkN(g) = signHkn(g) in
the real case). �

For future use we define signHk = signHkn if Hk is an infinite real Hankel matrix
of finite rank n.

Corollary 3.4.45. Let c(s), d(s) ∈ K[s] be of the form (40), deg d = n, and g(s) =
c(s)/d(s). Then dim ker Hkn(g) is equal to the degree of the greatest common divisor
of d and c. In particular, d and c are coprime if and only if detHkn(g) �= 0.

Proof : If cn �= 0, then we may write c(s)/d(s) = cn/dn + c̃(s)/d(s) where deg c̃ <
deg d and the greatest common divisor of d and c is the same as that of d and c̃. So
without restriction of generality we may assume deg c < deg d. Let ñ = n−deg d̃(s)
where d̃ = (c, d) is the greatest common divisor of d, c. Then g ∈ Ratñ(K), hence
dim ker Hkn(g) = n − rankHkn(g) = n − ñ = deg d̃ by Theorem 3.4.44. �

We illustrate this result in the following example.

Example 3.4.46. Consider c(s) = s2 + s, d(s) = s3 + s2 + 2s + 2 then equations (44)
and (45) take the form
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2g1 + 2g2 + g3 + g4 = 0
2g2 + 2g3 + g4 + g5 = 0

resp.
g1 = 1

g1 + g2 = 1,
2g1 + g2 + g3 = 0

Hence g1 = 1, g2 = 0, g3 = −2, g4 = 0, g5 = 4 and Hk3(c/d) =
[ 1 0 −2

0 −2 0
−2 0 4

]
. So

dim kerHk3(c/d) = 1 and hence the highest common factor of c and d is of degree 1;
it is, of course, d̃(s) = s + 1. �

Let Hank(K) be the set of all infinite Hankel matrices with entries in K, and, for
any n ∈ N

∗

Hank(n, K) = {Hk ∈ Hank(K); rankHk = n}, n ∈ N.

The corresponding counterpart of finite Hankel matrices of rank n is denoted by

Hank∗
n(K) = {Hk ∈ Hankn(K); rankHk = n} ⊂ Hankn(K)

where Hankn(K) ∼= K2n−1 denotes the vector space of all n × n Hankel matrices.
Kronecker’s Theorem establishes a close relationship between Ratn(K), Hank(n, K)
and Hank∗

n(K). We will now determine this relationship more precisely, endowing
the sets with their natural topologies. For many purposes (e.g. parametrization
problems, the study of identification algorithms, analysis of uncertain systems, con-
tinuity arguments etc.) topologies are needed on sets of rational functions and
Hankel matrices. We first introduce a topology on the space Ratn(K). For every
g ∈ Ratn(K) there exists a unique pair of coprime polynomials d, c of the form (40)
such that g(s) = c(s)/d(s) and dn = 1, cn = 0. Identifying g(s) with its coefficient
vector (d0, . . . , dn−1; c0, . . . cn−1) ∈ K2n we provide Ratn(K) with the topology and
Euclidean metrics induced from K2n. Note that with this identification Ratn(K)
may be considered as an open subset of K2n, obtained by removing from K2n the
closed subset of vectors (d0, . . . , dn−1; c0, . . . cn−1) for which the resultant R(d, c) of
the associated polynomials d(s), c(s) has zero determinant, see Definition 3.4.27.
Identifying every Hk = (hi+j−1)i,j∈N∗ ∈ Hank(K) with the corresponding sequence
(hk)k∈N∗ of its entries, Hank(K) is identified with the sequence space KN∗

and we
provide Hank(K) with the product topology of KN∗

. With respect to this topol-
ogy a sequence of Hankel matrices Hk� = (h�

i+j−1)i,j∈N∗ converges in Hank(K) to
Hk = (hi+j−1)i,j∈N∗ if and only if the sequences h�

i → hi as � → ∞, for all i ∈ N∗.
The subsets Hank(n, K) ⊂ Hank(K) are provided with the induced topologies. Note
that theses subspaces are not closed in Hank(K). If (Hk�)�∈N converges to Hk in
Hank(K) and Hk� ∈ Hank(n, K) for all � ∈ N, it may be that rankHk < n. The
space of finite Hankel matrices Hankn(K) ∼= K2n−1 is endowed with the usual topol-
ogy of K2n−1, and with respect to this topology the subset Hank∗

n(K) is open and
dense in Hankn(K). The next proposition is a topological version of Kronecker’s
Theorem.

Proposition 3.4.47. For every n ∈ N∗ the following maps are homeomorphisms.

H : Ratn(K) → Hank(n, K), g �→ Hk(g);

Hn : Ratn(K) → Hank∗
n(K) × K, g �→ (Hkn(g), g2n);

πn : Hank(n, K) → Hank∗
n(K) × K, Hk = (hi+j−1) �→ (Hkn, h2n).
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Proof : By Kronecker’s Theorem Hk(g) ∈ Hank(n, K), Hkn(g) ∈ Hank∗
n(K) for all

g ∈ Ratn(K) and Hkn ∈ Hank∗
n(K) for all Hk ∈ Hank(n, K). Therefore the above

mappings are well defined with the specified image spaces. Clearly πn is continuous.
The Laurent coefficients g0 = 0, g1, . . . , gn of g(s) = c(s)/d(s) ∈ Ratn(K) are deter-
mined from the linear equations (43) (with cn = 0) and depend continuously (even
rationally) on the coefficients c0, . . . , cn−1 and d0, . . . , dn−1. The gj for j ≥ n + 1 are
then determined recursively by (44). Hence H : g → Hk(g) and Hn : g �→ (Hkn, h2n)
are continuous on their domains of definition. For this we identify every finite Hankel
matrix with the finite sequence of its entries. This yields

Hank∗
n(K) × K ∼= {(h1, . . . , h2n) ∈ K

2n; (hi+j−1)i,j∈n ∈ Hank∗
n(K)}.

Let h = (h1, . . . , h2n) = (Hkn, h2n) be any vector in this set and define gk = hk for
k = 1, . . . , 2n. Then there exists a unique solution (d0, . . . , dn−1) of the equation (46)
with N = n. Define gn+j, j = n+1, . . . by the recursive equation (44) (with dn = 1).
Then (d0, . . . , dn−1) and gn+j, j = n + 1, . . . depend continuously (even rationally)
on h. By construction d(s) =

∑n
k=0 dks

k (with dn = 1) satisfies (44) for all j ≥ 1 and
so c(s) defined by (43) is a polynomial such that g(s) := c(s)/d(s) =

∑∞
k=1 gks

−k and
hence Hkn(g) = h. Since n = rankHkn = rankHkn(g) ≤ rankHk(g) ≤ deg d = n
it follows from Kronecker’s Theorem that g ∈ Ratn(K). Whence Hn is surjective,
and the coefficient vectors of c(s), d(s) depend continuously on h. On the other
hand the rational function g(s) = c(s)/d(s) =

∑∞
k=1 gks

−k ∈ Ratn(K) is uniquely
determined by Hn(g) = h, since this equation is equivalent to equations (46) and
(43) where gi = hi, i = 1, . . . , 2n, g0 = 0. This proves that Hn is a homeomorphism
from Ratn(K) onto Hank∗

n(K) × K.
The same arguments show that for every h=(h1,. . ., h2n)=(Hkn, h2n)∈Hank∗

n(K)×
K there exists exactly one Hk ∈ Hank(n, K) such that πn(Hk) = (Hkn, h2n), and
the entries of Hk depend continuously on h. Thus πn is a homeomorphism between
Hank(n, K) and Hank∗

n(K) × K. This concludes the proof since π2n ◦ H = Hn. �

Remark 3.4.48. The preceding proof shows that for any given sequence (h1, . . . , h2n) ∈
K

2n with rank(hi+j−1)i,j∈n = n there exists a unique infinite sequence (gk)k∈N∗ satisfying
gk = hk for k = 1, . . . , 2n and rankHk(g) = n. Such a sequence g = (gk) is called a singular
extension of (h1, . . . , h2n). Moreover, π−1

2n : (h1, . . . , h2n) �→ (gk)k∈N∗ is a homeomorphism
from Hank∗n(K) × K onto Hank(n, K). �

We will now specialize to real rational functions and real Hankel matrix. We begin
by determining the signature of the real Hankel matrix Hk = Hk(g) where g(s) =
c(s)/d(s) ∈ Ratn(R). Suppose that d is monic and decompose d(s) into irreducible
real polynomials

d(s) =

r∏
j=1

(s − ρj)
mj

�∏
j=r+1

(s2 − 2ρjs + ρ2
j + ω2

j )
mj , ρj , ωj ∈ R, ωj > 0. (47)

ρ1, . . . ρr are the distinct real roots of d and ρr+1± ıωr+1, . . . , ρ�± ıω� are the distinct
pairs of complex conjugate roots of d. As a consequence of the above factorization of
d we obtain the following representation of g (e.g. by partial fraction decomposition)
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g(s) =
r∑

j=1

cj(s)

(s − ρj)mj
+

�∑
j=r+1

cj(s)

(s2 − 2ρjs + ρ2
j + ω2

j )
mj

where the cj(s) are real polynomials with deg cj < mj for j ∈ r and deg cj < 2mj

for j = r + 1, . . . , �. Let

Hkj = Hk

(
cj(s)

(s − ρj)mj

)
, j ∈ r, Hkj = Hk

(
cj(s)

(s2 − 2ρjs + ρ2
j + ω2

j )
mj

)
, r < j ≤ � (48)

be the associated infinite Hankel matrices. Then Hk(g) = Hk1 + . . . + Hk� and

rankHk = n = m1 + . . . + mr + 2(mr+1 + . . . + m�) =
�∑

j=1

rankHkj

by Kronecker’s Theorem. Applying Lemma A.1.32 of Section A.1 it follows that

signHk = signHk1 + . . . + signHk�. (49)

So it remains to determine the signatures of the Hankel matrices Hkj. For this we
will use a transformation technique where the rational functions represented by the
Hankels are continuously transformed into simpler rational functions for which the
signature is easily determined. This technique is based on the following lemma.

Lemma 3.4.49. If H ⊂ Hn(C) is a connected set of n × n Hermitian matrices of
fixed rank r, then all the matrices in H have the same signature.

Proof : For ν = −r, . . . , r let Hν = {H ∈ H; sign(H) = ν}. If H ∈ Hν then H
has exactly (r + ν)/2 positive eigenvalues, (r − ν)/2 negative eigenvalues and n− r
zero eigenvalues (taking into account multiplicities). Since all the matrices in H
have exactly n − r zero eigenvalues, it follows from the continuous dependence of
the spectrum σ(H) on the entries of H that Hν is an open (possibly empty) subset
of H. But these subsets form a partition of H, and so, by connectivity of H there
exists a ν0 such that Hν0 = H. �

We now apply this lemma to the above real Hankel matrices by transforming the
associated rational functions continuously to more simple ones.

Lemma 3.4.50. Suppose ρ ∈ R, m, n ∈ N∗, m ≤ n and c(s) ∈ R[s], deg c < m,
c(ρ) �= 0. Then

signHkn

(
c(s)

(s − ρ)m

)
=

{
0 if m even
sign c(ρ) if m odd.

(50)

Proof : Dividing c(s) by (s−ρ) we obtain c(s) = c̃(s)(s−ρ)+c(ρ) where c̃(s) ∈ R[s].
Let

ct(s) = (1 − t) c̃(s)(s − ρ) + c(ρ), t ∈ [0, 1].

Then c0(s) = c(s), c1(s) = c(ρ) and the polynomials ct(s) and d(s) = (s − ρ)m are
coprime for all t ∈ [0, 1]. It follows from Theorem 3.4.44 that rankHkn(ct/d) = m,
and so the preceding Lemma implies that signHkn(c/d) = signHkn(c(ρ)/d). Now
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we transform d(s) = (s−ρ)m continuously to d0(s) = sm (replacing ρ by tρ, t ∈ [0, 1])
and applying the same argument we obtain

signHkn(c/d) = sign Hkn(c(ρ)/d) = signHkm(c(ρ)/sm) = sign

[
0 0 ... 0 c(ρ)
· · ·· · ·· · ·

c(ρ) 0 ... 0 0

]
m×m

.

From this (50) follows, since this latter matrix has two eigenvalues ±c(ρ), where
both eigenvalues have the same multiplicity m/2 if m is even, whereas c(ρ) is of
multiplicity (m + 1)/2 and −c(ρ) of multiplicity (m − 1)/2 if m is odd. �

Lemma 3.4.51. Suppose d(s) = (s2 − 2ρs + ρ2 + ω2)m where ρ, ω ∈ R, ω �= 0 ,
m ∈ N∗, and let c(s) ∈ R[s], deg c < 2m, c(ρ ± ıω) �= 0. Then

signHkn(c/d) = 0, n ≥ 2m.

Proof : Dividing c(s) by (s2 − 2ρs + ρ2 + ω2) we obtain

c(s) = c̃(s)(s2− 2ρs + ρ2+ ω2)+ e1s + e0, where c̃(s)∈ R[s], (e1, e0)∈ R
2\ {(0, 0)}.

For t ∈ [0, 1], we define dt(s) = [s2 − 2(1 − t)ρs + (1 − t)2(ρ2 + ω2)]m and

ct(s) = (1 − t) c̃(s)(s2 − 2(1 − t)ρs + (1 − t)2(ρ2 + ω2)) + (1 − t)[tδ(e1)s + e1s + e0] + t,

where δ(e1) = 0 if e1 �= 0 and δ(0) = 1. Then c0(s) = c(s), c1(s) ≡ 1 and
d0(s) = d(s), d1(s) = s2m. Now since (1− t)[(tδ(e1)s + e1s + e0)] + t is a linear real
polynomial in s for every t ∈ (0, 1) and therefore has only real roots we see that
ct(s), dt(s) are coprime for all t ∈ [0, 1]. Hence rankHkn(ct/d) = 2m for all t ∈ [0, 1]
by Theorem 3.4.44, and so by Lemma 3.4.49 signHkn(c/d) = signHkn(1/s2m). Now
the result follows from the previous lemma. �

Remark 3.4.52. The proof shows that under the conditions of the preceding lemma
g(s) = c(s)/d(s) can be connected by an arc in Rat2m(R) to 1/s2m. �

Theorem 3.4.53 (Hermite–Hurwitz). Let g(s) = c(s)/d(s) be a proper real
rational function and consider the decomposition

g(s) = cn/dn +

r∑
j=1

cj(s)

(s − ρj)mj
+

�∑
j=r+1

cj(s)

(s2 − 2ρjs + ρ2
j + ω2

j )
mj

(51)

where cj(s), j ∈ � are real polynomials of degree < mj for j ∈ r and < 2mj for
j = r+1, . . . , �, and ρ1, . . . ρr are the distinct real roots and ρr+1±ıωr+1, . . . , ρ�±ıω�

are the distinct pairs of complex conjugate roots of d. Then

signHk(g) =
∑

j∈r, mj odd

sign cj(ρj) = CI∞
−∞(g). (52)

Proof : Define Hkj, j ∈ � by (48). Then, applying the previous two lemmata to
the Hkj and making use of (49) we get

signHk = signHk1 + . . . + signHk� =
∑

j∈r, mj odd

signHkj =
∑

j∈r, mj odd

sign cj(ρj).

The proof is concluded by noting that the RHS is just the Cauchy index of g(s), see
Example 3.4.19. �
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The following corollary serves as an illustration of how Hankel matrices can be
used to count the number of roots of a polynomial located in certain subsets of the
complex plane. It is of historical interest since its proof by Jacobi is considered to
be the first application of quadratic forms to the investigation of the roots of an
algebraic equation, see [318] and Notes and References.

Corollary 3.4.54. Let p(s) be a real non-constant polynomial and g(s) =p′(s)/p(s).
Then the number of distinct roots of p(s) is equal to rankHk(g), and the number of
distinct real roots of p(s) is equal to signHk(g).

Proof : Let s1, . . . , s� be the distinct roots of p and p(s) = an

∏�
i=0(s − si)

mi the
corresponding factorization of p(s). Then

g(s) =
p′(s)
p(s)

=
�∑

i=0

mi

s − si

∈ Rat�(R), (53)

and it follows from Kronecker’s Theorem that � = rankHk(g). On the other hand,
(53) implies that the Cauchy index of g(s) is equal to the number r of real roots of
p (see Example 3.4.19), hence r = signHk(g) by Theorem 3.4.53. �

The next corollary is of importance for stability analysis since it gives necessary and
sufficient conditions for Hkn(g) to be positive definite.

Corollary 3.4.55. Suppose g(s) = c(s)/d(s) is a proper real rational function,
deg d = n and d(s), c(s) are coprime. Then the following conditions are equivalent.

(i) The Hankel matrix Hkn(c/d) is positive definite.

(ii) All the roots tj , j ∈ n of d are real and simple, and the numbers c(tj)/d
′(tj),

j ∈ n are all positive.

(iii) All the roots tj of d and t′i of c are real, simple and interlacing, and dncn−1 −
cndn−1 > 0.

(iv) All the roots tj of d and t′i of c are real, simple, interlacing, and

∃t ∈ R : d′(t)c(t) − d(t)c′(t) > 0. (54)

If one of these conditions is satisfied, then the inequality in (54) holds for all t ∈ R.

Proof : (i) =⇒ (ii): By the previous theorem we know that Hkn(g) is positive
definite, i.e. signHk(g) = n, if and only if there are n real roots tj of d of odd
degree, such that cj(tj) > 0, j ∈ n (see (52)). This means that all the roots of d are
real and simple, and g(s) has the representation

g(s) = γ0 +

n∑
j=1

γj

s − tj
, tn < . . . < t1 (55)

with γj > 0, j ∈ n. Multiplying this equality by d(s) = dn

∏
i∈n(s − ti) we obtain

c(s) = γ0d(s) +
n∑

j=1

γjdn

∏
i∈n,i�=j

(s − ti) and c(tj) = γjdn

∏
i∈n,i�=j

(tj − ti) = γjd
′(tj).
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Hence c(tj)/d
′(tj) = γj > 0 for all j ∈ n, i.e. (ii) holds.

(ii) =⇒ (iii): Suppose (ii) so that g(s) has the representation (55) with γj =
c(tj)/d

′(tj) > 0 for j ∈ n. It follows that

d(t)c′(t) − d′(t)c(t)
d(t)2

= g′(t) = −
n∑

j=1

γj

(t − tj)2
< 0, t ∈ R \ {tj; j ∈ n}, (56)

and so g(t) is strictly decreasing on each interval I ⊂ R \ {tj ; j ∈ n}. Moreover,
since d(s)/(s − tj) = dn

∏
i∈n,i�=j(s − ti) → d′(tj) �= 0 as s → tj ,

d′(t)c(t) − d(t)c′(t) =

n∑
j=1

c(tj)

d′(tj)
d(t)2

(t − tj)2
> 0, t ∈ R. (57)

It follows from this inequality that every real zero of c(·) cannot also be a zero of
c′(·) and hence must be simple. Now g(t) tends to ∞ (resp. −∞) as t tends from
the right (resp. left) towards any pole tj , j ∈ n. So g(t) must have exactly one zero
between each pair of neighbouring poles. Thus deg c(s) ≥ n− 1. If deg c(s) = n− 1
then all the roots t′j of c(s) must be real and can be ordered as follows

tn < t′n−1 < tn−1 < · · · < t′2 < t2 < t′1 < t1.

If deg c(s) = n, again each interval between neighbouring poles must contain exactly
one simple root of c(s). The n-th root of c(s) is either smaller than tn (if γ0 =
lim|t|→∞ g(t) > 0) or larger than t1 (if γ0 < 0). This proves the interlacing condition.
Now (57) shows that d′(t)c(t) − d(t)c′(t) tends to ∞ as t2n−2 for t → ∞. On the
other hand, the leading terms of d′(t)c(t) and d(t)c′(t) cancel, so that the leading
power of d′(t)c(t) − d(t)c′(t) is t2n−2 with coefficient

[ndncn−1 + (n − 1)dn−1cn] − [ncndn−1 + (n − 1)cn−1dn] = dncn−1 − cndn−1.

Therefore it follows that dncn−1 − cndn−1 > 0.
(iii) =⇒ (iv): This is clear, since dncn−1 − cndn−1 > 0 implies d′(t)c(t)− d(t)c′(t) for
all large t by the previous consideration.
(iv) =⇒ (i): Since all the roots of d are simple and real, g(s) can be represented
in the form (55). We will now prove that all the γi are of the same sign. In fact,
if this were not so, there would exist an 1 ≤ i < n such that γiγi+1 < 0. Assume
e.g. γi > 0, γi+1 < 0, then g(t) would tend to −∞ as t → ti from the left and as
t → ti+1 from the right. As a consequence g(t) would either have no zero or a zero
of higher multiplicity or at least two zeros in [ti, ti+1]. But the interlacing condition
excludes all these possibilities. Hence all the γi in (55) have the same sign. But
then it follows from (54) and (56) that all γi must be positive. �

Remark 3.4.56. Suppose that g(s) = c(s)/d(s) ∈ Ratn(R) with c and d coprime and the
roots of d are all real and simple. Then the previous proof shows that signHk(g) = ±n,
i.e. all coefficients γi in (55) are of the same sign, if and only if the roots of c and d are
real, simple and interlacing.
The additional conditions in (iii) and (iv) only serve to ensure that Hkn(g) is not negative
but positive definite, or, in terms of the rational function g, that g′(t) < 0 (and not
g′(t) > 0) for all t ∈ R \ {tj; j ∈ n}. �
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We conclude this subsection by determining the connected components of the space
Ratn(R) of strictly proper real rational functions of degree n. For this we need the
following lemmata.

Lemma 3.4.57. Let gi
t(s) = ci

t(s)/d
i
t(s), t ∈ [0, 1] be two arcs in Ratni

(R) with
deg di

t(s) = ni for all t ∈ [0, 1] and suppose that d1
t (s), d2

t (s) have no common roots
for all t ∈ [0, 1]. Then gt(s) = g1

t (s) + g2
t (s), t ∈ [0, 1] is an arc in Ratn1+n2(R).

Proof : We have

gt(s) =
c1
t (s)

d1
t (s)

+
c2
t (s)

d2
t (s)

=
c1
t (s)d

2
t (s) + c2

t (s)d
1
t (s)

d1
t (s)d

2
t (s)

.

By assumption the greatest normalized divisor (ci
t(s), d

i
t(s)) = 1, i ∈ 2 and also

(d1
t (s), d

2
t (s)) = 1, for each t ∈ [0, 1] . Hence if λ is a root of d1

t (s) then (c1
t d

2
t +

c2
td

1
t )(λ) = c1

t (λ)d2
t (λ) �= 0. Similarly if d2

t (λ) = 0, then (c1
t d

2
t + c2

td
1
t )(λ) =

d1
t (λ)c2

t (λ) �= 0. Hence d1d2 and c1
td

2
t +c2

td
1
t are coprime so that gt ∈ Ratn1+n2(R). Fi-

nally it is clear that the coefficients of the polynomials (c1
t d

2
t +c2

td
1
t )(s) and (d1

td
2
t )(s)

depend continuously on t ∈ [0, 1] since the coefficients of c1
t , c

2
t , d

1
t , d

2
t have this prop-

erty by assumption. �

Lemma 3.4.58. Suppose γ1, γ2 ∈ R, γ1γ2 < 0 and ρ1, ρ2 ∈ R, ρ1 �= ρ2 and let
ρ = (ρ1 + ρ2)/2. Then there exists an arc gt(s), t ∈ [0, 1] in Rat2(R) connecting
g0(s) = γ1/(s − ρ1) + γ2/(s− ρ2) with g1(s) = γ1(ρ1 − ρ2)/(s − ρ)2 such that all the
poles of gt, t ∈ [0, 1] are real and lie between ρ1 and ρ2.

Proof : Transforming γi continuously to sign γi and applying the preceding lemma
we may assume that |γi| = 1 and hence γ1 +γ2 = 0. Suppose e.g. ρ1 < ρ2 and define
ρi(t) = ρi + t(ρ − ρi), γi(t) = γi/(1 − t) so that ρ1(t) − ρ2(t) = (1 − t)(ρ1 − ρ2) and
ρi(t) ∈ [ρ1, ρ2]. Now γ1(t) + γ2(t) = 0 for t ∈ [0, 1), and hence

γ1(t)(s − ρ2(t)) + γ2(t)(s − ρ1(t)) = γ1(t)(s − ρ2(t)) − γ1(t)(s − ρ1(t))

= γ1(t)(ρ1(t) − ρ2(t)) = γ1(ρ1 − ρ2), t ∈ (0, 1).

Since ρ1(t) �= ρ2(t) for all t ∈ (0, 1) we have by Lemma 3.4.57

gt(s) :=
γ1(t)

s − ρ1(t)
+

γ2(t)

s − ρ2(t)
=

γ1(ρ1 − ρ2)

(s − ρ1(t))(s − ρ2(t))
∈ Rat2(R), t ∈ [0, 1).

This equation shows that t �→ gt can be extended continuously to [0, 1] and describes
an arc in Rat2(R) connecting g0(s) with g1(s). �

The previous lemmata allow us to determine the number of connected components
of Ratn(R) for n = 1, 2.

Example 3.4.59. (a) Rat1(R) consists of all rational functions of the form

g(s) = c/(s − ρ), ρ ∈ R, c ∈ R
∗.

Thus Rat1(R) is homeomorphic (via the map g �→ (ρ, c)) to R×R
∗ and has two connected

components. These two connected components are classified by the Cauchy index: c < 0
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if and only if CI∞−∞g = −1 and c > 0 if and only if CI∞−∞g = 1.
(b) Each element in Rat2(R) has a real partial fraction decomposition of one of the fol-
lowing forms

(i) g(s) =
γ1

s − ρ1
+

γ2

s − ρ2
, ρi ∈ R, ρ1 > ρ2 or (ii) g(s) =

c1s + c0

(s − ρ)2 + ω2
, ρ ∈ R, ω ≥ 0

where γ1, γ2 ∈ R
∗ and (c0, c1) ∈ R

2 \ {(0, 0)}, respectively. The proof of Lemma 3.4.51
shows that in case (ii) g(s) can be connected to 1/s2 in Rat2(R) (see Remark 3.4.52). By
the preceding Lemma the same holds true in case (i) if γ1γ2 < 0. Thus every g ∈ Rat2(R)
of Cauchy index 0 can be connected to f2,0(s) := 1/s2 by an arc in Rat2(R). It remains to
consider the case (i) with γ1γ2 > 0. Then the numerators γi can be continuously deformed
to sign γi and the poles ρ1, ρ2 to −1 and −2, respectively. Therefore, if g(s) ∈ Rat2(R) has
Cauchy index 2, i.e. sign γi = 1, then g can be connected to f2,2 := 1/(s + 1) + 1/(s + 2)
by an arc in Rat2(R); and if g has Cauchy index −2, i.e. sign γi = −1, then g can be
connected to f2,−2 := −[1/(s+1)+1/(s+2)]. We will see in a more general context below
that two elements of Ratn(R) of different Cauchy index cannot be connected by an arc in
Ratn(R). Thus Rat2(R) has exactly 3 connected components which are classified by the
Cauchy index. �

The following theorem generalizes the findings of the previous example.

Theorem 3.4.60 (Brockett). For n ≥ 1, Ratn(R) has n+1 connected components
given by

Rat(n, ν) = {g ∈ Ratn(R); CI∞
−∞(g) = n − 2ν}, ν = 0, . . . , n. (58)

Proof : Let gt, 0 ≤ t ≤ 1 be an arc in Ratn(R) then H = {Hkn(gt); 0 ≤ t ≤ 1} is a
connected set of Hermitian matrices of fixed rank n (by Proposition 3.4.47), and so
all the Hkn(gt) have the same signature by Lemma 3.4.49. Hence all gt, 0 ≤ t ≤ 1
have the same Cauchy index by Theorem 3.4.53. Therefore any arc in Ratn(R)
which intersects Rat(n, ν) is contained in Rat(n, ν).
It remains to prove that Rat(n, ν) is connected. For this it suffices to verify that
every f ∈ Rat(n, ν) can be continuously transformed to a fixed rational function
fn,ν ∈ Rat(n, ν). We will show this in several steps.
1. Given any f(s) ∈ Rat(n, ν), let g(s) = c(s)/d(s) ∈ Rat(n, ν) be a function such
that the number of distinct real roots minus the number of pairs of complex roots
with distinct non-zero imaginary parts is minimal amongst all elements in Rat(n, ν)
which can be connected to f(s) by an arc in Rat(n, ν). d(s) can be factorized as

d(s) =
r∏

i=1

(s − ρi)
h∏

j=1

(s2 − 2ρr+js + ρ2
r+j + ω2

j )

where ρ1, . . . , ρr are distinct real numbers, ρr+j ∈ R and ωj ≥ 0 for j ∈ h. Then
necessarily ω1, . . . , ωh are all positive and mutually distinct. Otherwise, Ratn(R)
being open and hence locally connected, the number of complex roots with distinct
imaginary parts could be increased by small perturbations (replacing ωj by ωj +
εj where ε1, . . . , εh > 0 are distinct and sufficiently small to ensure c(s)/dε(s) ∈
Rat(n, ν)). It follows that g(s) has the partial fraction decomposition

g(s) =

r∑
i=1

γi

(s − ρi)
+

h∑
j=1

cj1s + cj0

(s2 − 2ρr+js + ρ2
r+j + ω2

j )
. (59)
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2. We will now show that the number r of distinct real poles ρi of g(s) is equal to
the absolute value of the Cauchy index n−2ν and all the residues γi, i ∈ r have the
same sign: sign γi = sign(n − 2ν). In fact, since (see Example 3.4.19)

n − 2ν = CI(g) =

r∑
j=1

sign γj (60)

it follows that r ≥ |n − 2ν|, and that r > |n − 2ν| if and only if there are i, j ∈ r
such that γi and γj have different signs. Now suppose r > |n−2ν|. Then there exist
i, j ∈ r such that γiγj < 0 and ρi < ρj are “neighbours” in the sense that ρk �∈ [ρi, ρj]
for all k ∈ r \ {i, j}. After suitable renumbering we may assume i = 1, j = 2. By
Lemma 3.4.58 the function γ1/(s−ρ1)+γ2/(s−ρ2) can be continuously deformed in
Rat2(R) to γ3/(s−ρ)2 (where ρ = (ρ1+ρ2)/2) such that the poles of the deformations
always remain in [ρ1, ρ2]. Now γ3/(s − ρ)2 can be further deformed along a small
arc in Rat2(R) into γ3/[(s − ρ)2 + ω2] where ω > 0 is chosen sufficiently small so
that ω < min{ωj; j ∈ h}. Let ft, 0 ≤ t ≤ 1 be an arc in Rat2(R) along which
f0(s) = γ1/(s − ρ1) + γ2/(s − ρ2) is deformed into f1(s) = γ3/[(s − ρ)2 + ω2]. Then
it follows from Lemma 3.4.57 that

gt(s) =

r∑
i=3

γi

(s − ρi)
+ ft(s) +

h∑
j=1

cj1s + cj0

(s2 − 2ρr+js + ρ2
r+j + ω2

j )
, t ∈ [0, 1]

describes an arc in Rat(n, ν) connecting g0(s) = g(s) with a function g1(s) ∈
Rat(n, ν) having a smaller number of real poles and more pairs of complex poles
with distinct positive imaginary parts. This is a contradiction to the choice of g.
Hence r = |n − 2ν| and, as a consequence of (60), sign γi = sign(n − 2ν), i ∈ r.
3. It remains to prove that the function g(s) ∈ Rat(n, ν) given by (59) with
r = |n − 2ν| and sign γi = sign(n − 2ν), i ∈ r can be connected in Rat(n, ν) to
a fixed function fn,ν(s) ∈ Rat(n, ν). Since r = |n − 2ν| we must have h = ν if
n − 2ν ≥ 0 and h = n − ν if n − 2ν < 0. We choose

fn,ν(s) =

|n−2ν|∑
i=1

sign(n − 2ν)

s + i
+

h∑
j=1

1

s2 + j2
.

We can enumerate the ρi and ωj in such a way that ρr < . . . < ρ1 and ω1 < . . . <
ων . Then we can transform g(s) into fn,ν(s) by moving the complex poles of g(s)
horizontally to the imaginary axis, and transforming γi to sign γi = sign(n−2ν) and
ρi to −i for i ∈ r, cj1s + cj0 to 1 and ωj to j2 for j ∈ h. More precisely, let

ĝt(s) =

|n−2ν|∑
i=1

γi(t)

s − ρi(t)
+

h∑
j=1

cj1(t)s + cj0(t)

s2 − 2ρr+j(t)s + ρr+j(t)2 + ωj(t)2
, t ∈ [0, 1]

where γi(t) = (1 − t)γi + t sign γi, ρi(t) = (1 − t)ρi − ti for i ∈ r and

cj1(t)s + cj0(t) = (1 − t)[(tδ(cj1)s + cj1s + cj0)] + t

ρr+j(t) = (1 − t)ρr+j , ωj(t)
2 = (1 − t)ω2

j + tj2, j ∈ h,
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where δ(cj1) = 0 if cj1 �= 0 and δ(0) = 1. Then as in the proof of Lemma 3.4.51
it is easily verified that the numerators and denominators in the previous sum are
(non-zero and) coprime and the order ρr(t) < . . . < ρ1(t), 0 < ω1(t) < . . . < ωh(t)
is preserved, whence ĝt(s) has n simple poles for all t ∈ [0, 1]. Since the above
coefficient functions are obviously continuous and sign γi(t) = sign γi = sign(n−2ν)
for all t ∈ [0, 1], it follows from Lemma 3.4.57 that ĝt, 0 ≤ t ≤ 1 describes an arc
in Rat(n, ν) connecting ĝ0(s) = g(s) with ĝ1(s) = fn,ν(s). Summarizing we see that
every f(s) ∈ Rat(n, ν) can be connected to fn,ν(s) by an arc in Rat(n, ν). This
concludes the proof. �

Remark 3.4.61. Since Ratn(R) ∼= Hank(n, R) ∼= Hank∗n(R) × R by Proposition 3.4.47,
it follows from Theorem 3.4.53 that Hank(n, R) and Hank∗n(R) each have n + 1 connected
components classified by the signature.
In the complex case, Ratn(C) ∼= Hank(n, C) ∼= Hank∗n(C) × C is connected for all n ≥ 1.
This result can be proved along similar lines, but the proof is easier since the realness
constraints are absent and all poles can be moved onto the imaginary axis, see Ex. 8. �

3.4.5 Applications to Stability

We now return to the problem of characterizing Hurwitz stable polynomials and
derive a variety of classical stability criteria by means of Bézout and Hankel matrices.
We have seen in the second subsection that a complex polynomial p(s) of degree
n is Hurwitz stable if and only if the associated real rational function fp(s) (26)
has Cauchy index n and, by Theorem 3.4.53, this will be the case if and only if
Hkn(fp) & 0. We will now give a purely algebraic proof of this result by making
use of the relationship between Hankel and Bézout matrices.

Theorem 3.4.62. If p(s) is a complex polynomial of degree n and fp(s) is the
associated rational function (26) then p is Hurwitz stable if and only if Hkn(fp) & 0.

Proof : Define the real polynomials pR, pI by p(ıs) = pR(s) + ıpI(s), see (2). By
Corollary 3.4.35 p is Hurwitz stable if and only if the Bézout matrix Bn(pI , pR) is
positive definite. If deg pR ≤ deg pI then Bn(pI , pR) is congruent to Hkn(pR/pI) =
Hkn(fp) (see (26)) by Theorem 3.4.41. Thus the theorem holds in this case. If
deg pR > deg pI then (again see (26)) fp = −pI/pR, and by Theorem 3.4.41 Bn(pR, pI)
is congruent to Hkn(pI/pR). Hence Hkn(fp) is congruent to −Bn(pR, pI) which is
equal to Bn(pI , pR) by Lemma 3.4.32 and this concludes the proof. �

Similarly one can prove a complex version of the Hermite-Biehler Theorem.

Corollary 3.4.63 (Hermite–Biehler, complex version). Suppose that p(s) =∑n
i=1(αi + ıβi)s

i is a complex polynomial of degree n and the real polynomials pR, pI

are defined by p(ıs) = pR(s) + ıpI(s). Then p(s) is Hurwitz stable if and only if the
following two conditions are satisfied.

(i) All the roots of pR, pI are real, simple and interlacing.

(ii) αn−1αn + βn−1βn > 0.

In this case p′I(ω)pR(ω) − pI(ω)p′R(ω) > 0 for all ω ∈ R.
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Proof : By the previous theorem it is sufficient to show that Hkn(fp) is positive
definite if and only if the two conditions are satisfied. This follows directly from
Corollary 3.4.55 and the unified formula for fp given in Remark 3.4.22. In fact, if
p is monic then this formula yields fp(s) = c(s)/d(s) with cn = 0, cn−1 = αn−1

and dn = αn = 1, dn−1 = βn−1, whence dncn−1 − cndn−1 = αn−1. On the other
hand condition (ii) reduces to αn−1 > 0 in the monic case. Therefore conditions
(i) and (ii) combined are equivalent to statement (iii) of Corollary 3.4.55, i.e. to
Hkn(fp) = Hkn(c/d) & 0. This proves the theorem for monic p. For the general
case it suffices to note that the monic polynomial a−1

n p has the second coefficient
(αn−1 + ıβn−1)/(αn + ıβn) whose real part is (αn−1αn +βn−1βn)/(α2

n +β2
n). This real

part is positive if and only if condition (ii) is satisfied. Finally the last statement of
the corollary follows from Corollary 3.4.55. �

Remark 3.4.64. Suppose that only the first condition in the previous corollary is sat-
isfied. Then we know from Remark 3.4.56 that Hkn(fp) is either positive or negative
definite. If p�(s) = p(−s) is the Hurwitz-reflection of p then the associated Hankel matrix
is Hkn(fp�) = −Hkn(fp) since (p�)R(s) = pR(s) and (p�)I(s) = −pI(s), see (3). By
Theorem 3.4.62 Hkn(fp) & 0 if and only if p is stable, and Hkn(fp) ≺ 0 if and only if
Hkn(fp�) = −Hkn(fp) & 0, i.e. p� is stable or, equivalently, p is anti-stable. Summarizing
we see that if condition (i) is satisfied then p is either stable or anti-stable. �

We now turn to real polynomials and present a more algebraic proof of the real
version of the Hermite–Biehler Theorem, which was proved by analytic means in
the first subsection.

Corollary 3.4.65 (Hermite–Biehler, real version). A real polynomial p(s) =
u(s2) + sv(s2) of degree n is Hurwitz stable if and only if (u, v) is a positive pair.
Moreover, if p is Hurwitz stable then

u′(ω)v(ω) − u(ω)v′(ω) > 0, ω ∈ R. (61)

Proof : Suppose that p is Hurwitz and let ṽ(s) = sv(s). Then deg v ≤ deg u ≤
deg ṽ, and B(u, v) & 0, B(ṽ, u) & 0 by Corollary 3.4.38. B(u, v) & 0 implies
Hkm(v/u) & 0 (where m = deg u), hence (61) is satisfied and all the roots of u, v
are real, simple and interlacing by Corollary 3.4.55. Since p is Hurwitz, the leading
coefficients of u(s) and v(s) have the same sign. In order to prove (13) resp. (14),
it only remains to show that the largest roots t1 of u and t′1 of v satisfy t′1 < t1 < 0.
Now (61) implies that the derivative of v(t)/u(t) is negative to the right of t1.
Hence t′1 > t1 would imply that v(t)/u(t) < 0 for large t, which is impossible since
the leading coefficients of u(s) and v(s) are of the same sign. So t′1 < t1. To prove
t1 < 0 we make use of B(ṽ, u) & 0, i.e. Hkm̃(u/ṽ) & 0 where m̃ = deg ṽ. From
Corollary 3.4.55 we obtain

ṽ′(ω)u(ω) − ṽ(ω)u′(ω) = (v(ω) + ωv′(ω))u(ω)− ωv(ω)u′(ω) > 0, ω ∈ R.

Combining this with (61) we obtain

v(ω)u(ω) > ω[u′(ω)v(ω)− u(ω)v′(ω)] ≥ 0, ω ≥ 0.
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This shows that all the roots of u(s), v(s) are negative.
Conversely, suppose that (u, v) is a positive pair. Then u(t) and v(t) have the
same sign to the right of t1 < 0. Thus u′(t1)v(t1) > 0. Moreover, all the roots of
v, u are simple, real, and interlacing. Hence we conclude that Hkm(v/u) & 0 by
Corollary 3.4.55 and therefore B(u, v) & 0 by Theorem 3.4.41. On the other hand,
all the roots of ṽ and u are interlacing, and since the roots are negative it follows
that −ṽ(t1)u

′(t1) = −t1v(t1)u
′(t1) > 0. Hence (54) holds at t1 with c(t1) = u(t1)

and d(t1) = ṽ(t1) and it follows from Corollary 3.4.55 that Hkm̃(u/ṽ) & 0. So
B(ṽ, u) & 0 and p is Hurwitz by Corollary 3.4.35. �

The proof shows that the condition B(ṽ, u) & 0 is only needed to ensure that the
simple real roots of u are negative. If we assume that u has only positive or only
negative coefficients, then |u(ω)| > 0 for all ω ≥ 0 so that all its real roots must be
negative. Hence in this case Hurwitz stability is equivalent to B(u, v) & 0.

Corollary 3.4.66 (Liénard–Chipart). A real polynomial p(s) = u(s2)+ sv(s2) of
degree n is Hurwitz stable if and only if all its coefficients a2k, k = 0, . . . , [n/2] have
the same sign and B(u, v) & 0 (or, equivalently, Hkn(v/u) & 0).

In order to apply one of the above stability criteria based on quadratic forms it is
necessary to compute the Laurent series for the rational function u/v or the entries
of the Bézout matrix and then check for positive definiteness. In order to apply the
Hermite–Biehler criterion one must either plot the graphs or compute the roots of the
even and odd parts of the polynomial in question. We will now derive the Hurwitz
criterion which is expressed directly in terms of the coefficients a0, . . . , an−1, an of
the real polynomial p.

Lemma 3.4.67. Let c(s), d(s) ∈ C[s] be of the form (40) and g(s) = c(s)/d(s).
Then the principal minors of Hkn(g) satisfy

d2k
n detHkk(g) = det M2k, k ∈ n

where

M2k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dn dn−1 dn−2 · · · · · · dn−2k+1

cn cn−1 cn−2 · · · · · · cn−2k+1

0 dn dn−1 · · · · · · dn−2k+2

0 cn cn−1 · · · · · · cn−2k+2
...

...
0 · · · · · · 0 dn · · · dn−k

0 · · · · · · 0 cn · · · cn−k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2k×2k

, c−j = d−j = 0, j > 0. (62)

Proof : By equations (44) and (45) the Laurent coefficients gk of g(s) satisfy

cn−j = dn−jg0 + dn−j+1g1 + · · ·dngj, j = 0, . . . , n

0 = d0gj + d1gj+1 + · · ·+ dn−1gj+n−1 + dngj+n, j ≥ 1.
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From these equations we obtain the following equation between 2k × 2k-matrices,
k ∈ n,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
g0 g1 g2 · · · g2k−1

0 1 0 · · · 0
0 g0 g1 · · · g2k−2
...

. . .
...

...
...

0 · · · 0 1 · · · 0
0 · · · 0 g0 · · · gk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
dn dn−1 dn−2 · · ·dn−2k+1

0 dn dn−1 · · ·dn−2k+2

0 0 dn · · ·dn−2k+3
...

...
. . .

. . .
...

0 0 · · · 0 dn

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dn dn−1 dn−2 · · · dn−2k+1

cn cn−1 cn−2 · · · cn−2k+1

0 dn dn−1 · · · dn−2k+2

0 cn cn−1 · · · cn−2k+2
...

. . .
...

...
...

0 · · · 0 dn · · · dn−k

0 · · · 0 cn · · · cn−k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Taking determinants of both sides gives

det M2k = d2k
n det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · · · · · · · 0
g0 g1 g2 · · · · · · · · · g2k−1

0 1 0 · · · · · · · · · 0
0 g0 g1 · · · · · · · · · g2k−2
...

. . .
...

0 · · · 0 1 0 · · · 0
0 · · · 0 g0 g1 · · · gk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, k ∈ n.

The right hand determinant can be rearranged by interchanging rows an even num-
ber of times so that it is equal to

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 | 0 · · · 0
0 1 0 · · · 0 | 0 · · · 0
0 0 1 · · · 0 | 0 · · · 0
...

. . .
. . .

... | ...
...

...
0 · · · · · · 0 1 | 0 · · · 0

0 · · · · · · 0 g0 | g1 · · · gk

0 · · · 0 g0 g1 | g2 · · · gk+1
...

...
...

...
... | ...

...
...

0 g0 g1 · · · gk−2 | gk−1 · · · g2k−2

g0 g1 g2 · · · gk−1 | gk · · · g2k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= det

⎡⎢⎣g1 · · · gk
... · · · ...
gk · · · g2k−1

⎤⎥⎦ = detHkk(g).

�

Theorem 3.4.68 (Hurwitz criterion, complex version). Suppose that p(s) is
a complex polynomial of degree n and the real polynomials pR, pI are defined by
p(ıs) = pR(s) + ıpI(s) and write pR(s) =

∑n
j=0 cjs

j, pI(s) =
∑n

j=0 djs
j. Then p is

Hurwitz stable if and only if the even order principal minors of the matrix

MC(p) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dn dn−1 dn−2 · · · · d0 0 · · · · 0
cn cn−1 cn−2 · · · · c0 0 · · · · 0
0 dn dn−1 dn−2 · · · · d0 · · · · 0
0 cn cn−1 cn−2 · · · · c0 · · · · 0
...

...
0 · · · · · · 0 dn dn−1 dn−2 · · · · d0

0 · · · · · · 0 cn cn−1 cn−2 · · · · c0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2n×2n

∈ R
2n×2n (63)
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are positive, i.e.

det

[
dn dn−1

cn cn−1

]
> 0, det

⎡⎢⎢⎣
dn dn−1 dn−2 dn−3

cn cn−1 cn−2 cn−3

0 dn dn−1 dn−2

0 cn cn−1 cn−2

⎤⎥⎥⎦ > 0, . . . , det MC(p) > 0.

Proof : By Corollary 3.4.35 p is Hurwitz stable if and only if B(pI , pR) & 0. Sup-
pose that deg pI ≥ deg pR, then necessarily dn �= 0 and so by Corollary 3.4.42 and
Lemma 3.4.67 the principal minors from the lower right corner of B(pI , pR) coincide
with the even order principal minors of MC(p). Now B(pI , pR) & 0 if and only if all
these minors are positive, and so the theorem follows in this case. If deg pI < deg pR

we consider the polynomial p̃(s) = ıp(s) for which p̃R = −pI and p̃I = pR, so that
deg p̃I = n > p̃R. By the first step p̃ is Hurwitz stable if and only if the even or-
der principal minors of MC(p̃) are positive. But MC(p̃) is obtained from MC(p) by
interchanging the d-rows and the c-rows and multiplying the d-rows by −1. Hence
the even order principal minors of MC(p̃) and MC(p) coincide and the theorem is
proved. �

The matrix MC(p) in the previous theorem is called the Hurwitz matrix of the
complex polynomial p. Explicit expressions for c and d in terms of the coefficients
of p(s) are given in (24) and (25).

Example 3.4.69. Consider once again the polynomial p(s) = s2 + (α1 + ıβ1)s + ıβ0,
where β0, α1, β1 ∈ R. Then as in Example 3.4.36 pR(s) = −s2 −β1s, pI(s) = α1s+β0 and
hence c2 = −1, c1 = −β1, c0 = 0, d2 = 0, d1 = α1, d0 = β0. So the Hurwitz matrix is

MC(p) =

⎡⎢⎢⎣
0 α1 β0 0
−1 −β1 0 0
0 0 α1 β0

0 −1 −β1 0

⎤⎥⎥⎦ .

The two even order principal minors are α1 and α1β1β0 − β2
0 and so we obtain the same

stability criteria as in Example 3.4.36. �

For real polynomials we have the following counterpart.

Definition 3.4.70. Given a real polynomial p(s) = ansn+an−1s
n−1+· · ·+a0, an �= 0,

MR(p)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an−1 an−3 an−5 · · · an−2n+3 an−2n+1

an an−2 an−4 · · · an−2n+4 an−2n+2

0 an−1 an−3 · · · an−2n+5 an−2n+3

0 an an−2 · · · an−2n+6 an−2n+4
...

...
0 0 · · · · · · a1 0
0 0 · · · · · · a2 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

n×n, a−k = 0, k > 0 (64)

is called the Hurwitz matrix of the real polynomial p.
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Theorem 3.4.71 (Hurwitz criterion, real version). A real polynomial p(s) =∑n
j=0 ajs

j with an > 0 is Hurwitz stable if and only if all the principal minors ∆k,

k ∈ n of the associated Hurwitz matrix MR(p) are positive,

an−1 > 0, det

[
an−1 an−3

an an−2

]
> 0, det

⎡⎣an−1 an−3 an−5

an an−2 an−4

0 an−1 an−3

⎤⎦ > 0, . . . , detMR(p) > 0.

Proof : Let p(s) = u(s2) + sv(s2). By Corollary 3.4.38 p is Hurwitz stable if and
only if B(u, v) & 0 and B(ṽ, u) & 0 where ṽ(s) = sv(s). Suppose e.g. that n = 2m
is even, then

u(t) = antm + an−2t
m−1 + · · ·+ a0, v(t) = an−1t

m−1 + an−3t
m−2 + · · ·+ a1.

By Corollary 3.4.42 and Lemma 3.4.67, B(u, v) & 0 holds if and only if

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an an−2 an−4 · · · · · · · · an−4k+2

0 an−1 an−3 · · · · · · · · an−4k+3

0 an an−2 · · · · · · · · an−4k+4

0 0 an−1 · · · · · · · · an−4k+5
...

...
0 · · · · · · 0 an an−2 · · · an−2k

0 · · · · · · 0 0 an−1 · · · an−2k+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2k×2k

= an∆2k−1 > 0, k ∈ m

where a−j = 0, j > 0. On the other hand, we have

ṽ(t) = an−1t
m + an−3t

m−1 + · · ·+ a1t.

Hence by Lemma 3.4.67, B(ṽ, u) & 0 if and only if

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an−1 an−3 an−5 · · · an−4k+1

an an−2 an−4 · · · an−4k+2

0 an−1 an−3 · · · an−4k+3

0 an an−2 · · · an−4k+4
...

...
0 0 · · · · · · an−2k+1

0 0 · · · · · · an−2k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2k×2k

= ∆2k > 0, k ∈ m.

This concludes the proof for even n. The case where n is odd can be dealt with in
a similar way. �

Example 3.4.72. Consider the real cubic polynomial p(s) = a3s
3 + a2s

2 + a1s + a0 as
in Example 3.4.39, but now with a3 > 0. Then

MR(p) =

⎡⎣a2 a0 0
a3 a1 0
0 a2 a0

⎤⎦ .

The minors are a2, a2a1 − a0a3 and a0(a2a1 − a0a3). So p will be Hurwitz if and only if
all the coefficients are positive and a2a1 − a0a3 > 0. �
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By the criterion of Liénard-Chipart (Corollary 3.4.66) only half of the determinant
inequalities in the previous theorem need to be verified if the polynomial p has
positive coefficients.

Corollary 3.4.73 (Liénard-Chipart). A real polynomial p(s) =
∑n

j=0 ajs
j with

positive coefficients is Hurwitz stable if and only if all the principal minors of odd
or even order of the Hurwitz matrix MR(p) are positive:

∆1 > 0, ∆3 > 0, . . . or ∆2 > 0, ∆4 > 0, . . . .

Thus Hurwitz’ determinant inequalities are not independent from each other for
polynomials with positive coefficients. In particular, if the principal minors of odd
order are positive then also the principal minors of even order are positive, and vice
versa. We leave the details of the proof to the reader, see Ex. 16.

3.4.6 Schur Polynomials

A polynomial
p(z) = anzn + an−1z

n−1 + . . . + a0 ∈ C[z] (65)

is said to be a Schur polynomial or Schur stable if all the roots zi of p lie in D.
Most of the results on Hurwitz polynomials which we have derived in the previous
subsections have counterparts for Schur polynomials. In this subsection we will
derive and discuss some of them. We begin with counterparts to the analytic stability
criteria presented in Subsection 3.4.1.

Analytic criteria for Schur stability

A counterpart of Proposition 3.4.3 can be directly inferred from the argument prin-
ciple (see Section A.2).

Proposition 3.4.74. Given a polynomial p(z) ∈ C[z] of degree n without roots on
the unit circle ∂D, then

∆2π
0 arg p(eıθ) =

∫ 2π

0

p′(eıθ)

p(eıθ)
eıθdθ = (n − ν)2π

where ν is the number of roots of p(z) outside of D (taking into account multiplici-
ties). In particular, p(z) is Schur stable if and only if ∆2π

0 arg p(eıθ) = n2π.

Proof : By the argument principle the number nz of zeros of p in D is

nz =
1

2πi

∫
Γ

p′(s)
p(s)

ds =
1

2πi

∫
p(Γ)

ds

s
= w(p(Γ), 0)

where Γ is the positively oriented unit circle. Since nz = n − ν, it follows that
∆2π

0 arg p(eıθ) = (n − ν)2π (see (A.2.11)), whence the result. �

In geometric terms this proposition says that the polynomial p is Schur stable if and
only if the frequency plot θ �→ p(eıθ), θ ∈ [0, 2π] describes a curve which surrounds
the origin n times in the anticlockwise direction.
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Figure 3.4.6: Frequency plot of a Schur and an anti-Schur polynomial

Example 3.4.75. Consider the Schur polynomial p(z) = (z+3/4)(z±2ı/5)(z+3/8±ı/4)
and the anti-stable Schur-reflection polynomial p∗(z) = z5p(1/z). Since deg p = 5 the
frequency plot ω �→ p(ıω) encircles the origin anticlockwise five times (see the left hand
figure in Figure 3.4.6), whilst the frequency plot ω �→ p∗(ıω) does not encircle the origin
(see the right hand figure in Figure 3.4.6). �

It is intuitively clear that, for any z0 ∈ D, arg(eıθ − z0) is strictly increasing with
θ ∈ [0, 2π]. This yields the following counterpart of Proposition 3.4.5.

Proposition 3.4.76 (Phase increasing property). If p(z) ∈ C[z] is a non-con-

stant Schur polynomial then
d

dθ
arg p(eıθ) > 0 for all θ ∈ [0, 2π).

Proof : Let γ(θ) = p(eıθ), θ ∈ [0, 2π] and p(z) = an

∏n
i=1(z − zi). Then by (1)

d

dθ
arg p(eıθ) = Im

γ′(θ)

γ(θ)
= Re

p′(eıθ)eıθ

p(eıθ)
=

n∑
i=1

Re

(
eıθ

eıθ − zi

)
> 0, θ ∈ [0, 2π).

since Re(1/(1 − z)) > 0 for all z ∈ D. �

In the Hurwitz case we defined the Hurwitz-reflection of a polynomial by reflecting
its roots at the imaginary axis, the boundary of the Hurwitz stability domain C−.
Analogously, we now define the Schur-reflection of a polynomial by reflecting its
roots at the unit circle, the boundary of the Schur stability domain. Let Kn[z]
denote the n + 1-dimensional vector space of polynomials p(z) ∈ K[z] of degree ≤ n
and hence representable in the form (65).

Definition 3.4.77. Let n ∈ N∗ be fixed. For every p(z) =
∑n

i=0 aiz
i ∈ Cn[z], the

Schur-reflection5 of p is defined by

5Since a polynomial p is contained in all spaces Cn[z] with n ≥ deg p its reflection is not uniquely
determined but depends on the chosen n. This dependency on a previously chosen degree bound
n distinguishes the Schur-reflection p �→ p∗ from the Hurwitz-reflection p �→ p� which is defined on
the whole polynomial ring C[s] without degree constraints. In order to avoid this restriction and
achieve uniqueness one could allow n ∈ N to vary and set n = deg p in the definition. This would,
however, destroy the additivity of the reflection operator p �→ p∗.
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p∗(z) = znp(1/z) =

n∑
i=0

aiz
n−i.

p(z) ∈ C[z] is called Schur-symmetric if p = p∗.

In this subsection we will – as a rule – only be concerned with reflections in the sense
of the previous definition and use the epithet “Schur-” only when it is necessary for
their distinction from Hurwitz-reflections.
Schur reflections induce the following decomposition of any p ∈ Cn[z] into its sym-
metric and antisymmetric parts

p(z)=p+(z)+ıp−(z), p+(z)=(p(z)+p∗(z))/2, p−(z)=(p(z)−p∗(z))/(2ı) (66)

Note that with this notation p+ and p− are both symmetric, p+ is the symmetric
part and ıp− is the antisymmetric part of p.
If zi is a non-zero root of p then its reflection at the unit circle, 1/zi, is a root of p∗(z),
and the multiplicities of these roots are equal. This follows from the factorizations

p(z)=am

m∏
i=1

(z−zi) ⇒ p∗(z)=znp(1/z)=zn am

m∏
i=1

(1/z−zi) = amzn−m
m∏

i=1

(1−ziz).

In particular, if p is of degree n and symmetric then every root zi of p is non-zero
and its reflection 1/zi is also a root of p (of the same multiplicity as zi). Conversely,
it can be shown that every polynomial with this property is symmetric after multi-
plication with a suitable non-zero constant factor, see Ex. 20.
The reflection p �→ p∗ on Cn[z] is completely described by the corresponding trans-
formation of the coefficient vectors

∗n : (a0, a1, . . . , an) �→ (an, . . . , a1, a0), a ∈ C
n+1.

Besides reflections the use of rotations will also be helpful in the sequel. For any
polynomial p(z) ∈ Cn[z] define the rotation pα of p by an angle α as follows

pα(z) = e−ıαn/2p(eıαz). (67)

Obviously, the roots of pα are obtained by rotating the roots of p

pα(z0) = 0 ⇔ p(eıαz0) = 0. (68)

Further elementary properties of reflections and rotations are summarized in the
following lemma.

Lemma 3.4.78. Let α, β ∈ R, p ∈ Cn[z].

(i) The map p �→ p∗ is an R-linear bijection of Cn[z] onto itself with (ap)∗ = ap∗

for all a ∈ C. Moreover p �→ p∗ is involutive, i.e. (p∗)∗ = p.

(ii) deg p∗ = n if and only if p(0) �= 0.

(iii) If p is symmetric then θ �→ e−ıθn/2p(eıθ) is a real-valued function on R.
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(iv) The map p �→ pα is a degree preserving vector space isomorphism of Cn[z] onto
itself, and (pα)β = pα+β.

(v) (pα)∗ = (p∗)α, (pα)+ = (p+)α and (pα)− = (p−)α.

(vi) p ∈ Cn[z] is symmetric if and only if pα is symmetric.

(vii) If d is a greatest common divisor of p and p∗, then dα is a greatest common
divisor of pα and (pα)∗.

Proof : (i),(ii), (iv) follow directly from the above formula for the reflection oper-
ator ∗n and (67).
(iii) If p is symmetric then

e−ıθn/2p(eıθ) = eıθn/2p(e−ıθ) = eıθn/2e−ıθnp∗(eıθ) = e−ıθn/2p(eıθ).

(v) The first equation in (v) follows from

(pα)∗(z)=zn pα(1/z) = zneıαn
2 p(eıα/z) = zneıαn

2 p(1/(eıαz)) = e−ıαn
2 p∗(eıαz) = (p∗)α(z).

The two remaining equations in (v) follow from the first one and (66).
(vi) follows directly from (v).
(vii) Suppose p(z) = d(z)q(z) then pα(z) = dα(z)q(eıαz), hence dα divides pα. Com-
bining this with (v), statement (vii) follows. �

An efficient method for deriving algebraic criteria for Schur stability proceeds via
the linear fractional transformation m : s �→ (s + 1)/(s − 1) (the Möbius map,
see Subsection 3.3.2 and Subsection 5.3.7). We will need the following elementary
properties of this map.

Lemma 3.4.79. The Möbius map m : s �→ (s + 1)/(s − 1) is a bijection of C \ {1}
onto itself with inverse m−1 = m. It maps C− onto D, and ıR onto ∂D \ {1} =
{eıθ; 0 < θ < 2π}. Moreover the map

ω �→ θ(ω) = arg(m(ıω)) = arg((ıω + 1)/(ıω − 1)) ∈ (0, 2π), ω ∈ R

is strictly increasing. In particular, if two sequences (ti)i∈n and (t′j)j∈m (where m = n
or m = n − 1) are interlacing in R then (θ(ti))i∈n and (θ(t′j))j∈m are interlacing in
(0, 2π).

The Möbius map induces the following transformation of polynomials.

Definition 3.4.80. The Möbius transform of a polynomial p(z) ∈ Cn[z] of the form
(65) is defined by

p̃(z) = (z − 1)np

(
z + 1

z − 1

)
=

n∑
i=0

ai(z + 1)i(z − 1)n−i. (69)

We will obtain results on the location of the roots of p(·) relative to the stability
domain D from the ones that we have obtained in the previous subsections for p̃(·)
relative to C−. In order to highlight this in the sequel we will usually write p̃(s)
instead of p̃(z). Some elementary properties of the Möbius transform of polynomials
are summarized in the next lemma.
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Lemma 3.4.81. (i) The map p �→ p̃ is a vector space isomorphism of Cn[z] onto
itself. Moreover, p �→ p̃ is involutive modulo a non-zero constant: ˜̃p = 2np.

(ii) If ν ≥ 0 is the maximal integer such that (z − 1)ν divides p(z) then deg p̃ =
n − ν.

(iii) A polynomial p ∈ Cn[z] has k roots in D (resp. in D+) if and only if p̃ has k
roots in C− (resp. in C+), taking into account multiplicities.

(iv) A polynomial p ∈ Cn[z] of degree n with p(1) �= 0 is Schur stable if and only if
p̃ is Hurwitz stable.

(v) If p ∈ Cn[z] then p̃(s) = p̃(s) and p̃∗(s) = (−1)np̃(−s) = (−1)n(p̃)�(s). Thus
the Möbius transform of a Schur-symmetric polynomial is Hurwitz-symmetric
if n is even, and Hurwitz-antisymmetric if n is odd.

(vi) Suppose deg p = n and p(1) �= 0. Then d is a g.c.d. of p and its Schur-
reflection p∗ if and only if d̂(s) = (s−1)deg dd(m(s)) ∈ Cn[s] is a g.c.d. of p̃(s)
and its Hurwitz-reflection (p̃)�(s).

Proof : (i) The linearity of p �→ p̃ follows directly from (69). If p̃ = 0 then
p(m(z)) = 0 for all z ∈ C \ {1} and hence p = 0. Thus p �→ p̃ is a vector space
isomorphism of Cn[z] onto itself. Moreover

˜̃p(z) = (z − 1)np̃(m(z)) = (z − 1)n(m(z) − 1)np(m(m(z))) = 2np(z).

(ii) Suppose deg p = m and p(z) = am(z − 1)ν
∏m−ν

i=1 (z − zi) where zi �= 1 for
i ∈ m − ν. Then deg p̃ = n − ν follows from

p̃(s) = am(s − 1)n
[
s + 1

s − 1
− 1

]ν m−ν∏
i=1

(
s + 1

s − 1
− zi

)
= am(s−1)n−m 2ν

m−ν∏
i=1

(s+1−zi(s−1))

= 2νam(s − 1)n−m
m−ν∏
i=1

(1 − zi)

m−ν∏
i=1

(s − m(zi)). (70)

(iii), (iv) Since m(zi) is in C− (resp. C+) if and only if zi ∈ D (resp. D+), the
statements (iii) and (iv) are direct consequences of the preceding formula.

(v) By definition p̃(s) = (s − 1)np(m(s)) = (s − 1)np(m(s)) = p̃(s) = p̃(s).
The second equation in (v) follows from

(s − 1)np∗(m(s)) = (s − 1)n (m(s))n p

(
1

m(s)

)
= (−1)n(−s − 1)n p

(−s + 1

−s − 1

)
.

(vi) Suppose deg p = n and p(1) �= 0, hence also deg p̃ = n and p̃(1) �= 0. If
p(z) = d(z)q(z) and d̂ = (s − 1)deg dd(m(s)), q̂ = (s − 1)deg qq(m(s)) then p̃(s) =
d̂(s)q̂(s) so that d̂|p̃. Hence, if d is a g.c.d. of p and its Schur reflection p∗, and e
is a g.c.d. of p̃ and its Hurwitz reflection (p̃)� = (−1)np̃∗ (see (v)), then d̂ divides

e, and ê = (s − 1)deg ee(m(s)) divides ˜̃p = 2np and ˜̃p∗ = 2np∗, hence ê|d. Since
deg d = deg d̂ ≤ deg e = deg ê ≤ deg d (because of d(1)e(1) �= 0, d̂|e and ê|d) it
follows that d̂ = ae and ê = bd for some constants a, b ∈ C∗. �
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The following example shows that the Möbius transform p̃(s) may be Hurwitz stable
without p(z) being Schur stable. By (70) and statements (ii), (iii) of the previous
Lemma this can only occur if deg p̃ < deg p = n, hence p(1) = 0.

Example 3.4.82. Let n = 2 and p(z) = z(z−1), then p̃(s) = 2(s+1) by (70) is Hurwitz
stable whereas p(z) is not Schur stable. �

The previous lemma shows that the Schur stability of a polynomial p can be tested by
applying Hurwitz stability criteria to the Möbius transform p̃(s) defined by (69) with
n = deg p. Alternatively it is possible to derive direct tests from the known criteria
for continuous time systems by pull-back to the Schur case via the map p �→ p̃. We
will now follow this route and first establish a counterpart of the Hermite-Biehler
Theorem 3.4.63 for complex Schur polynomials.
We say that two finite subsets {zi; i ∈ n} and {z′i, i ∈ m} of ∂D are interlacing on
the unit circle if any arc in ∂D connecting two distinct point of the first set contains
at least one point of the second set, and vice versa. It follows immediately from this
definition that the interlacing property is preserved if both subsets of ∂D are rotated
by the same angle. Moreover, in contrast with the real line, two interlacing subsets
on the unit circle must have the same number of elements. Two sets {eıθk ; k ∈ n}
and {eıθ′k , k ∈ n}, θk, θ

′
k ∈ [0, 2π) of n elements each are interlacing on the unit circle

if and only if the sets {θk; k ∈ n} and {θ′k, k ∈ n} are interlacing in [0, 2π).

Theorem 3.4.83 (Schur–Biehler). A polynomial p(z) of the form (65) with de-
composition (66) is a Schur polynomial of degree n if and only if the following two
conditions are satisfied.

(i) |an| > |a0|.
(ii) p+ and p− each have n distinct simple roots on the unit circle, and these roots

are interlacing.

Proof : Suppose p(z) of the form (65) is a Schur polynomial of degree n with roots
z1, . . . , zn. Then |a0/an| =

∏n
i=1 |zi| < 1, whence condition (i). The leading coeffi-

cients of p+, p− are (an+a0)/2 and (an−a0)/(2ı), respectively. Hence both polynomi-
als are of degree n because |an| > |a0|. Without restriction of generality we suppose
that p+(1)p−(1) �= 0. (Otherwise, since the conditions (i),(ii) and the property of
Schur stability are invariant with respect to arbitrary rotations of z we could replace
p(z) by pα(z) where α ∈ R is such that (pα)+(1)(pα)−(1) = e−ıαnp+(eıα)p−(eıα) �= 0.)
Therefore the Möbius transforms p̃+ and p̃− of p+ and p− are of degree n. Making
use of the symmetry of p+ and p− we obtain by Lemma 3.4.81 that

p̃(s) = p̃+(s) + ıp̃−(s), p̃+(s) = (−1)np̃+(−s), p̃−(s) = (−1)np̃−(−s).

Now let us assume that n is even. Then we obtain for s = ıω that p̃+(ıω) =
p̃+(−ıω) = p̃+(ıω) and p̃−(ıω) = p̃−(ıω), i.e. p̃+(ıω), p̃−(ıω) ∈ R for all ω ∈ R. Since
p̃(ıω) = p̃R(ω) + ıp̃I(ω) (see (2)) we see that

p̃R(ω) = p̃+(ıω) and p̃I(ω) = p̃−(ıω), ω ∈ R. (71)
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But p̃ is Hurwitz stable by Lemma 3.4.81, and so the n roots ti of p̃R and t′j of p̃I

are real, simple and interlacing in R by the complex version of the Hermite-Biehler
Theorem 3.4.63. As a consequence all the roots of p+(z) and p−(z) are simple and
of the form m(ıtk) = eıθk , k ∈ n and m(ıt′j) = eıθ′j , j ∈ n, respectively, where the
arguments θk and θ′j are interlacing in (0, 2π) by Lemma 3.4.79. (Note that here we
have used our assumption that p+(1), p−(1) �= 0). This proves condition (ii) because
p+ and p− have the same number of roots.
Conversely, suppose that the two conditions (i), (ii) are satisfied and – without
restriction of generality – p+(1)p−(1) �= 0. Then the roots of p̃R and p̃I must be real,
simple and interlacing in R so that by Remark 3.4.64, p̃ is either Hurwitz stable
or anti-stable. As a consequence p is either Schur stable or anti-stable. But if p
were anti-stable then |a0/an| =

∏n
i=1 |zi| > 1, in contradiction to condition (i). This

concludes the proof for the case where n is even.
If n is odd then p̃+(ıω) = −p̃+(ıω) and p̃−(ıω) = −p̃−(ıω), hence p̃+(ıω), p̃−(ıω) ∈ ıR
and

p̃(ıω) = ıp̃−(ıω) + ı(−ıp̃+(ıω)), −ıp̃+(ıω) = −ıp̃+(ıω), ıp̃−(ıω) = ıp̃−(ıω).

Therefore
p̃R(ω) = ıp̃−(ıω), p̃I(ω) = −ıp̃+(ıω) (72)

and the above proof can be applied with p+ replaced by ıp− and p− replaced by
−ıp+. �
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Figure 3.4.7: Roots of p+, p− and frequency plots of e−ıθn/2p+ and e−ıθn/2p−

Condition (ii) can be examined by plotting the roots of p+ and p− or by plotting
the graphs of the functions θ �→ e−ıθn/2p+(eıθ) and θ �→ e−ıθn/2p−(eıθ) on [0, 2π]
which are real-valued by Lemma 3.4.78 (iii). This is illustrated in Figure 3.4.7 for
the polynomial p in Example 3.4.75. The roots of p− and p+ are represented by
× and ◦, respectively; the graphs of θ �→ e−ıθn/2p+(eıθ) and θ �→ e−ıθn/2p−(eıθ) are
represented by continuous and dashed lines, respectively.
The previous proof has shown that condition (ii) is satisfied if and only if p is Schur
stable or Schur anti-stable. In the following remark we briefly discuss the real case.

Remark 3.4.84. Suppose p has real coefficients. Then the product of the n-th coeffi-
cients of p+ and ıp− is (a2

n − a2
0)/4. Hence condition (i) will be satisfied if and only if p+

and ıp− are both of degree n and their leading coefficients are of the same sign. Moreover,
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we have in this case p(1) = p∗(1), so that 1 is a root of p−. Since both p+ and ıp− are
real polynomials, the roots of p+, p− are located symmetrically with respect to the real
axis. Therefore, if condition (ii) is satisfied then the zero of p+p− on the unit circle with
the smallest positive argument must be a zero of p+. Now since p∗(−1) = (−1)np(−1),
either p+(−1) = 0 or p−(−1) = 0. In the former case the root of p+p− on the unit circle
which has the largest argument < π must be a root of p− and in the latter case of p+ (if
condition (ii) is satisfied). In particular, the interlacing condition can be checked by only
examining the roots on the upper closed semicircle. �

Hermitian Forms and Schur Polynomials

We will now apply the method of Hermitian forms (developed in Subsections 3.4.3
- 3.4.6 for the Hurwitz case) to Schur polynomials. We begin by introducing the
Schur form which is a counterpart of the Hermite form studied in Subsection 3.4.3.
With every complex polynomial p of the form (65) we associate n pairs of triangular
matrices

Um(p)=

⎡⎢⎢⎢⎢⎢⎣
an an−1 an−2 . . . an−m+1

0 an an−1 . . . an−m+2
...

...
0 . . . 0 an an−1

0 . . . 0 0 an

⎤⎥⎥⎥⎥⎥⎦ , Lm(p)=

⎡⎢⎢⎢⎢⎢⎣
0 . . . 0 0 a0

0 . . . 0 a0 a1
...

...
0 a0 a1 . . . am−2

a0 a1 a2 . . . am−1

⎤⎥⎥⎥⎥⎥⎦ , m ∈ n.

(73)

Definition 3.4.85. Given any polynomial p of the form (65), the associated Schur
matrix of order n is defined by

Sn(p) = Un(p)∗Un(p) − Ln(p)∗Ln(p). (74)

The bilinear form (x, y) �→ x∗Sn(p)y on Cn is called the associated Schur form and

h̃(p; z, w) =
p(z)p(w) − p∗(z)p∗(w)

zw − 1
=

p(z)p(w) − znp(1/z)wnp(1/w)

zw − 1
(75)

is said to be its generating function. If n = deg p we write S(p) for Sn(p).

Note that the formula for the generating function has the same structure as the Her-
mite generating function (29) with s+w replaced by zw−1 and the Hurwitz-reflected
polynomial p�(s) defined in Definition 3.4.4 replaced by the Schur-reflected polyno-
mial p∗(z) defined by Definition 3.4.77. The next lemma shows that h̃(p; z, w) does
in fact generate the Schur form. We again use the notation lm(z)� = [1, z, . . . , zm−1].

Lemma 3.4.86. For any p of the form (65), the entries of the associated Schur
matrix Sn(p) = (h̃ij)i,j∈n of order n are given by

h̃ij =

min {i,j}∑
k=1

an−i+kan−j+k − ai−kaj−k, i, j ∈ n. (76)

The principal submatrices of Sn(p) are

(h̃ij)i,j∈m = Um(p)∗Um(p) − Lm(p)∗Lm(p), m ∈ n, (77)
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and the generating function (75) satisfies

h̃(p; z, w) =
n∑

i,j=1

h̃ijz
i−1wj−1= ln(z)�Sn(p)ln(w) ∈ C[z, w]. (78)

Proof : Due to the triangular structures of Um(p), Lm(p) the k-th coordinate of
Um(p)lm(w) is given by

∑m−k
j=0 an−jw

k+j−1 and the (m − k + 1)-th coordinate of

Lm(p)lm(w) is given by
∑m−k

j=0 ajw
k+j−1, j ∈ m. Moreover

lm(z)�Um(p)∗Um(p)lm(w) = 〈Um(p)lm(z), Um(p)lm(w)〉

and a similar expression holds for lm(z)�Lm(p)∗Lm(p)lm(w). Therefore

lm(z)�(Um(p)∗Um(p) − Lm(p)∗Lm(p))lm(w) =

=

m∑
k=1

⎡⎣(m−k∑
i=0

an−iz
k+i−1

)⎛⎝m−k∑
j=0

an−jw
k+j−1

⎞⎠−
(

m−k∑
i=0

aiz
k+i−1

)⎛⎝m−k∑
j=0

ajw
k+j−1

⎞⎠⎤⎦
=

m∑
k=1

m−k∑
i,j=0

(an−ian−j−aiaj)z
k+i−1wk+j−1 =

m∑
µ,ν=1

zµ−1wν−1

min {µ,ν}∑
k=1

an−µ+kan−ν+k−aµ−kaν−k

where we have set µ = k + i and ν = k + j. If m = n the LHS of this equality
coincides with ln(z)�Sn(p)ln(w) =

∑n
i,j=1 h̃ijz

i−1wj−1 by definition (74), and so we

obtain (76). Making use of (76) the same equality shows that (77) holds. Thus it

only remains to prove (78). Setting h̃ij = 0 for (i, j) �∈ n × n we have

(zw − 1)

n∑
i,j=1

h̃ijz
i−1wj−1 =

n∑
i,j=1

h̃ijz
iwj −

n∑
i,j=1

h̃ijz
i−1wj−1 =

n∑
i,j=0

(h̃ij − h̃i+1,j+1)z
iwj .

(76) yields the following expression for h̃ij − h̃i+1,j+1 (which also holds in the cases
where i or j are either 0 or n)

min {i,j}∑
k=1

(an−i+kan−j+k − ai−kaj−k) −
min {i,j}+1∑

k=1

(an−i−1+kan−j−1+k − ai+1−kaj+1−k)

= −(an−ian−j − aiaj), i.e. h̃ij − h̃i+1,j+1 = aiaj − an−ian−j.

Using this equality we obtain

p(z)p(w) − p∗(z)p∗(w) =

(
n∑

i=0

aiz
i

)(
n∑

j=0

ajw
j

)
−
(

n∑
i=0

an−iz
i

)(
n∑

j=0

an−jw
j

)

=
n∑

i,j=0

(aiaj − an−ian−j)z
iwj =

n∑
i,j=0

(h̃ij − h̃i+1,j+1)z
iwj.

Hence

(zw − 1)h̃(p; z, w) = p(z)p(w) − p∗(z)p∗(w) = (zw − 1)
n∑

i,j=1

h̃ijz
i−1wj−1.

This concludes the proof. �
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Remark 3.4.87. If p(z) is of the form (65) then pα(z) = e−ınα/2
∑n

k=0 ake
ıkαzk by

definition (67). It follows from (76) that the entries h̃ij(α) of Sn(pα) are given by

h̃ij(α)=

min {i,j}∑
k=1

eı(n−i+k)αan−i+ke
−ı(n−j+k)αan−j+k − e−ı(i−k)αai−ke

ı(j−k)αaj−k = eı(j−i)αh̃ij ,

hence Sn(pα)=D−1Sn(pα)D with D=diag(eıα, . . . , eınα) and so rankSn(pα) = rankSn(p)
and signSn(pα) = signSn(p). �

Example 3.4.88. For n = 2 the Schur matrix associated with the polynomial p(z) =
a2z

2 + a1z + a0 is

S2(p) =

[
|a2|2 − |a0|2 a2a1 − a0a1

a1a2 − a1a0 |a2|2 − |a0|2
]

.

If n = 3 the Schur matrix for the polynomial p(z) = a3z
3 + a2z

2 + a1z + a0 is

S3(p) =

⎡⎣|a3|2 − |a0|2 a3a2 − a0a1 a3a1 − a0a2

a3a2 − a0a1 |a3|2 + |a2|2 − |a1|2 − |a0|2 a3a2 − a0a1

a3a1 − a0a2 a3a2 − a0a1 |a3|2 − |a0|2

⎤⎦ .

�

The following result is a counterpart of Hermite’s Theorem 3.4.29.

Theorem 3.4.89 (Schur–Cohn). Let p(z) ∈ C[z] be a polynomial of degree n and
S(p) be the associated Schur matrix. If r = rankS(p), σ = signS(p), then p(z) has
n − r roots in common with p∗(z), (r + σ)/2 additional roots in D and (r − σ)/2
additional roots in D+. In particular, p is Schur stable if and only if S(p) & 0.

Proof : If p̃ is the Möbius transform of p then by Definition 3.4.24 and Lemma 3.4.81
the Hermite generating function associated with p̃ can be expressed as follows

p̃(s)p̃(t) − p̃(−s)p̃(−t)

s + t
= 2

(s − 1)np(s+1
s−1)(t − 1)np( t+1

t−1) − (s − 1)np∗(s+1
s−1)(t − 1)np∗( t+1

t−1 )

(s + 1)(t + 1) − (s − 1)(t − 1)

= 2(s − 1)n−1(t − 1)n−1
p(s+1

s−1)p( t+1
t−1 ) − p∗(s+1

s−1)p∗( t+1
t−1 )

s+1
s−1

t+1
t−1 − 1

where p∗ is the Schur-reflection as in Definition 3.4.77. The LHS and the RHS of
this equation can be rewritten in terms of the Hermite matrix associated with p̃ and
the Schur matrix of p, respectively. Setting z = (s + 1)/(s− 1), w = (t + 1)/(t− 1)
we obtain

ln(s)�Hn(p̃)ln(t) = 2(s − 1)n−1ln(z)�Sn(p)ln(w)(t − 1)n−1

= 2

⎡⎢⎢⎢⎣
(s − 1)n−1

(s − 1)n−2(s + 1)
...

(s + 1)n−1

⎤⎥⎥⎥⎦
�

Sn(p)

⎡⎢⎢⎢⎣
(t − 1)n−1

(t − 1)n−1(t + 1)
...

(t + 1)n−1

⎤⎥⎥⎥⎦ = 2

⎡⎢⎢⎢⎣
1
s
...

sn−1

⎤⎥⎥⎥⎦
�

Q�Sn(p̃)Q

⎡⎢⎢⎢⎣
1
t
...

tn−1

⎤⎥⎥⎥⎦
where Q ∈ Rn×n is the nonsingular matrix whose rows are the coefficient vectors of
the polynomials (s − 1)n−1, (s − 1)n−2(s + 1), . . . , (s + 1)n−1. We conclude that

Hn(p̃) = 2Q�Sn(p)Q. (79)
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Now choose α ∈ R such that pα(1) = p(eıα) �= 0. From Remark 3.4.87 and (79)
(applied to pα instead of p) we know that rankHn(p̃α) = rankSn(pα) = rankSn(p) =
r and signHn(p̃α) = signSn(pα) = signSn(p) = σ. By Hermite’s Theorem 3.4.29
p̃α has n − r roots in common with its Hurwitz-reflection p̃α

�, (r + σ)/2 additional
roots in the open left half-plane, and (r − σ)/2 additional roots in the open right
half-plane. By Lemma 3.4.81 (iii), (vi) this proves the statements of the theorem for
pα instead of p. But then these statements hold for p by (68) and Lemma 3.4.78. �

Example 3.4.90. Consider the polynomial p(z) = z2 +(α1 + ıβ1)z+ ıβ0 where α1, β1, β0

∈ R. By the formula given in Example 3.4.88

S2(p) =

[
1 − β2

0 α1 − β0β1 + ı(α1β0 − β1)
α1 − β0β1 − ı(α1β0 − β1) 1 − β2

0

]
.

Hence p is a Schur polynomial if and only if 1 − β2
0 > 0 and (1 − β2

0)2 > (α1 − β0β1)
2 +

(α1β0 − β1)
2. �

Combining Lemma 3.4.86 with the previous theorem we obtain Jury’s criterion for
Schur stability. This criterion is expressed in terms of “inners” of the Jury matrix

Jn(p) =

[
Un(p) Ln(p)
Ln(p) Un(p)

]
∈ C

2n×2n. (80)

If M = (mij) is any � × � matrix, the inners of M are the matrices obtained by
deleting the first and last rows as well as the first and last columns of M , and then
applying the same procedure to the remaining (� − 2) × (� − 2)-matrix etc.

Corollary 3.4.91 (Jury). A polynomial p(z) ∈ C[z] of the form (65) is a Schur
polynomial of degree n if and only if the determinants of the associated Jury matrix
(80) and all its inners are positive.

Proof : We write Um, Lm instead of Um(p), Lm(p). It follows from the definition of

Um, Lm (73) that the inners of Jn(p) are of the form Jm :=

[
Um Lm

Lm Um

]
, m ∈ n. It

is easily verified that U∗
mLm is of the same structure as Lm, and in particular it is

symmetric. Therefore U∗
mLm = (U∗

mLm)� = L∗
mUm. As a consequence we obtain[

U∗
m −L∗

m

0 I

] [
Um Lm

Lm Um

]
=

[
U∗

mUm − L∗
mLm U∗

mLm − L∗
mUm

Lm Um

]
=

[
U∗

mUm − L∗
mLm 0

Lm Um

]
.

Now if p(z) ∈ C[z] is a Schur polynomial of degree n then an �= 0 and hence
det(U∗

mUm − L∗
mLm) = detJm. But by Lemma 3.4.86, det(U∗

mUm − L∗
mLm) is the

m-th principal minor of S(p), and so S(p) is positive definite implies Jn(p) and all
its inners have positive determinant. Conversely since detJ2(p) = |an|2 − |a0|2 > 0
we have an �= 0 and so again detJm is the m-th principal minor of S(p). Thus
S(p) & 0 and so p is Schur stable by Theorem 3.4.89. �

Jury’s criterion can be simplified if p is a real polynomial. We describe this result
in the following remark, omitting the proof.
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Remark 3.4.92. Given a real polynomial p(z) ∈ R[z] of the form (65) with an > 0, let

R =

⎡⎢⎢⎢⎢⎢⎣
an an−1 an−2 . . . a2

0 an an−1 . . . a3
...

...
0 . . . 0 an an−1

0 . . . 0 0 an

⎤⎥⎥⎥⎥⎥⎦ S =

⎡⎢⎢⎢⎢⎢⎣
0 . . . 0 0 a0

0 . . . 0 a0 a1
...

...
0 a0 a1 . . . an−3

a0 a1 a2 . . . an−2

⎤⎥⎥⎥⎥⎥⎦ . (81)

Then it can be shown (see [284]) that p is a Schur polynomial of degree n if and only if

(i) p(1) > 0, (−1)np(−1) > 0

(ii) the determinants of R + S, R − S and all their inners are positive.
This criterion corresponds to the Liénard-Chipart criterion for Hurwitz polynomials (Corol-
lary 3.4.66). The structure of the matrices R ± S and their inners is shown below for the
case n = 7.

R ± S =

⎡⎢⎢⎢⎢⎢⎢⎣

a7 a6 a5 a4 a3 a2 ± a0

0 a7 a6 a5 a4 ± a0 a3 ± a1

0 0 a7 a6 ± a0 a5 ± a1 a4 ± a2

0 0 ±a0 a7 ± a1 a6 ± a2 a5 ± a3

0 ±a0 ±a1 ±a2 a7 ± a3 a6 ± a4

±a0 ±a1 ±a2 ±a3 ±a4 a7 ± a5

⎤⎥⎥⎥⎥⎥⎥⎦ .

The computation of the determinants is aided by the triangular arrays of zeros in the
matrices R and S. �

We will now introduce “discrete time” counterparts to the Bézout and Hankel ma-
trices which we considered in Subsection 3.4.3 for Hurwitz polynomials. In that
subsection we saw that the Hermite form of a complex polynomial p can be ex-
pressed by the Bézoutiant of the two associated real polynomials pR and pI defined
by (2). Similarly the Schur form of p can be expressed by a “discrete Bézoutiant”
of the two associated symmetric polynomials p+, p−. We have

h̃(p; z,w) = ln(z)�Sn(p)ln(w) =
p(z)p(w) − p∗(z)p∗(w)

zw − 1
=

(p++ıp−)(z) (p++ıp−)(w)−(p+ − ıp−)(z) (p+−ıp−)(w)

zw − 1
= 2ı

p+(z) p−(w)−p−(z) p+(w)

zw − 1
.

This equality gives rise to the following definition.

Definition 3.4.93. Given two symmetric polynomials c(z), d(z) of degree n, the
Hermitian matrix B̃(c, d) satisfying

ı
c(z)d(w) − d(z)c(w)

zw − 1
= ln(z)�B̃(c, d)ln(w) (82)

is called the discrete Bézout matrix for the symmetric pair (c, d), and the corre-
sponding bilinear form (x, y) �→ x∗B̃(c, d)y is called the discrete Bézoutiant of (c, d)
on Cn.

The fact that B̃(c, d) is well defined by (82) follows from the preceding calculation:
setting p(z) = c(z) + ıd(z) we have c(z) = p+(z), d(z) = p−(z) and so

Sn(p) = 2B̃(p+, p−) = 2B̃(c, d), p(z) = c(z) + ıd(z), c = c∗, d = d∗. (83)
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In particular, it follows from the Schur-Cohn Theorem 3.4.89 that p(z) = p+(z) +
ıp−(z) is a Schur polynomial if and only if B̃(p+, p−) is positive definite.
We now turn to the discrete time counterpart of Hankel matrices, the Toeplitz ma-
trices. An infinite complex matrix T = (tij)i,j∈N∗ is called a Toeplitz matrix if
there exists a (bi-infinite) sequence (ak)k∈Z in C such that tij = aj−i for i, j ∈ N∗.6

Analogously, a matrix T ∈ KM×N is called a Toeplitz matrix if it is of the form
T = (aj−i)i∈M,j∈N . With any formal power series a(z) =

∑
k∈N

akz
k (or polynomial)

we associate the upper triangular finite Toeplitz matrices Tn(a) = (aj−i)i,j∈n where
a−k = 0 for k ∈ N∗,

Tn(a) =

⎡⎢⎢⎢⎢⎢⎣
a0 a1 a2 · · · an−1

0 a0 a1 · · · an−2
...

. . .
. . .

. . .
...

0 · · · 0 a0 a1

0 · · · 0 0 a0

⎤⎥⎥⎥⎥⎥⎦ , n ∈ N
∗.

If a(z), b(z), c(z) ∈ K[[z]] and n ∈ N∗, then it is easily verified that

a(z)b(z) = c(z) ⇒ Tn(a)Tn(b) = Tn(b)Tn(a) = Tn(c). (84)

Definition 3.4.94. Given n ∈ N
∗ and a pair of symmetric polynomials c(z), d(z)

of degree n the associated Toeplitz matrix of order n is defined by

T(c, d) = Tn(γ) + Tn(γ)∗ =

⎡⎢⎢⎢⎢⎢⎣
γ̃0 γ1 γ2 · · · γn−1

γ1 γ̃0 γ1 · · · γn−2
...

. . .
. . .

. . .
...

γn−2 · · · γ1 γ̃0 γ1

γn−1 · · · γ2 γ1 γ̃0

⎤⎥⎥⎥⎥⎥⎦ (85)

where γi, i ∈ N are the Taylor coefficients of ıc(z)/d(z) =
∑∞

i=0 γiz
i and γ̃0 = γ0+γ0.

The following proposition is a counterpart to Theorem 3.4.41.

Proposition 3.4.95. Let c(z), d(z) ∈ C[z] be symmetric polynomials of the form

c(z) =

n∑
k=0

ckz
k, d(z) =

n∑
k=0

dkz
k, dn, cn �= 0. (86)

Then the associated Toeplitz and discrete Bézout matrices are congruent,

B̃(c, d) = Tn(d)∗T(c, d)Tn(d) (87)

In particular, B̃(c, d) and T(c, d) have the same rank and signature.

6It is standard notation to associate with a given sequence (ak)k∈Z of a formal power series∑
k∈Z

akzk the Toeplitz matrix (ai−j)i,j∈N∗ whereas in our definition we associate the transpose
of this matrix with the sequence. In the present context our notation is more convenient.
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Proof : By the previous definition we have ıc(z) = d(z)
∑∞

i=0 γiz
i and so by (84)

ıTn(c) = Tn(γ)Tn(d). Therefore

Tn(d)∗ [Tn(γ) + Tn(γ)∗]Tn(d) = ı [Tn(d)∗Tn(c) − Tn(c)∗Tn(d)] . (88)

Since c is symmetric we have ci = cn−i for i = 0, . . . , n and so

Tn(c)∗Tn(d) =

⎡⎢⎢⎢⎢⎢⎣
cn 0 · · · · · · 0

cn−1 cn 0 · · · 0
...

. . .
. . .

. . .
...

c2 c3 · · · cn 0
c1 c2 · · · cn−1 cn

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
d0 d1 d2 . . . dn−1

0 d0 d1 . . . dn−2
...

...
0 . . . 0 d0 d1

0 . . . 0 0 d0

⎤⎥⎥⎥⎥⎥⎦ .

Hence the (i, j)-entry of Tn(c)∗Tn(d) is
∑min{i,j}

k=1 cn−i+kdj−k, and

(Tn(d)∗Tn(c) − Tn(c)∗Tn(d))ij =

min{i,j}∑
k=1

(dn−i+kcj−k − cn−i+kdj−k).

Now let p(z) = c(z)+ ıd(z) =
∑n

i=0 aiz
i. Then c(z) = p+(z), d(z) = p−(z) and thus,

for every µ, ν = 0, . . . , n,

dµcν − cµdν =
aµ − an−µ

2ı

aν + an−ν

2
− aµ + an−µ

2

aν − an−ν

2ı
=

1

2ı
(aµan−ν − an−µaν).

Setting µ = n − i + k and ν = j − k and substituting the preceding expression into
the above formula we get

ı (Tn(d)∗Tn(c) − Tn(c)∗Tn(d))ij =
1

2

min{i,j}∑
k=1

(an−i+kan−j+k − ai−kaj−k) =
1

2
h̃ij.

This concludes the proof because of (83) and (88). �

As a consequence of this result and the Schur-Cohn Theorem we obtain the following

Corollary 3.4.96. Let p(z) ∈ C[z] be a complex polynomial of degree n and let
T(p+, p−) be the associated Toeplitz matrix. Then rankT(p+, p−) = n if and only
if p− and p+ are coprime. In this case signT(p+, p−) is the difference between the
numbers of roots of p(z) inside and outside of the unit circle. In particular, p is
Schur stable if and only if T(p+, p−) & 0.

We have seen that the Cauchy index of a real rational function on the real line
can be expressed by the signature of the associated Hankel matrix. We now show
that the index of a symmetric rational function (i.e. a quotient of two symmetric
polynomials) on the unit circle can be expressed by the signature of the associated
Toeplitz matrix. Given two symmetric polynomials c(z), d(z) of degree n, then since
both c(z), d(z) are real valued on ∂D their quotient f(z) = c(z)/d(z) will also be real
valued on ∂D. The index of f(z) = c(z)/d(z) along the unit circle (in the positive
direction) is defined by

CI2π
0 f(eıθ) =

∑
i∈m

1

2

[
lim
θ↓θi

f(eıθ)

|f(eıθ)| − lim
θ↑θi

f(eıθ)

|f(eıθ)|

]
where eıθi , i ∈ m are the zeros of d(z) on ∂D.
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Theorem 3.4.97 (Herglotz). Given two symmetric polynomials c(z) and d(z) of
degree n, the index of f(z) = c(z)/d(z) along the unit circle (in the positive direction)
equals the signature of T(c, d).

Proof : Let α ∈ R be such that c(eıαz)d(eıαz) �= 0 and set fα = c(eıαz)/d(eıαz). It
follows from (83), (87) and Remark 3.4.87 that T(cα, dα) is congruent with T(c, d).
Moreover the index of fα(z) = f(eıαz) is equal to the index of f . Therefore it is
sufficient to prove the theorem for fα instead of f . In other words we may assume
without restriction of generality that c(1)d(1) �= 0. Now

f̂ : ω �→ f̃(ıω) = f(m(ıω)) =
c(m(ıω))

d(m(ıω))
=

c̃(ıω)

d̃(ıω)

is a real rational function. Since θ : ω �→ θ(ω) = arg(m(ıω)) maps R onto (0, 2π) in
a strictly increasing fashion (Lemma 3.4.79) and f has no pole at 1 it follows from
the definition and f̂(ω) = f(eıθ(ω)) that the Cauchy index of f̂ on R is equal to the
index of f on the unit circle. From Theorem 3.4.53 we obtain

CI2π
0 (f(eıθ)) = CI∞

−∞(f̂) = signHkn(f̂).

It remains to prove that signHkn(f̂) = signT(c, d). Setting p(z) = c(z) + ıd(z) we
get p̃(ıω) = c̃(ıω) + ıd̃(ıω). Let us assume that n is even. Then c̃(ıω) = p̃R(ω) and
d̃(ıω) = p̃I(ω) by (71), whence f̂(ω) = p̃R(ω)/p̃I(ω). But by Proposition 3.4.34 and
Theorem 3.4.41 Hkn(f̂) = Hkn(p̃R/p̃I) is congruent to the Hermite matrix Hn(p̃),
and from Proposition 3.4.95, (83) and (79) we know that T(c, d), S(p) and Hn(p̃)
are congruent. This proves the theorem in the even case. If n is odd, then by (72)

p̃R(ω) = ıd̃(ıω), p̃I(ω) = −ıc̃(ıω), p̃R(ω)/p̃I(ω) = −d̃(ıω)/c̃(ıω) = −1/f̂(ω).

But then signHn(p̃) = signHkn(p̃R/p̃I) = signHkn(−1/f̂) = sign Hkn(f̂) (since
deg c̃ = n = deg d̃, see (42)), and this concludes the proof. �

We conclude this subsection with a recursive test for Schur stability. The following
counterpart of Lemma 3.4.12 is an easy consequence of the Schur-Cohn Theorem.

Corollary 3.4.98. A polynomial p(z) ∈ C[z] of the form (65) is a Schur polynomial
of degree n if and only if |an| > |a0| and the polynomial q(z) determined by the
equation

zq(z) = anp(z) − a0p
∗(z)

is a Schur polynomial.

Proof : For any λ ∈ C we have

(zw − 1)h̃(p + λp∗; z,w) = (p + λp∗)(z)(p + λp∗)(w) − (p + λp∗)
∗
(z)(p + λp∗)∗(w)

= p(z)p(w) + λp∗(z)p(w) + λp(z)p∗(w) + |λ|2p∗(z)p∗(w) − p∗(z)p∗(w)

− λp(z)p∗(w) − λp∗(z)p(w) − |λ|2p(z)p(w) = (1 − |λ|2)p(z)p(w) − (1 − |λ|2)p∗(z)p∗(w)

= (1 − |λ|2)(zw − 1)h̃(p; z,w).
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Hence if deg(p + λp∗) = n and |λ| �= 1 we obtain from Theorem 3.4.89 that p and
p+λp∗ have the same number of zeros in D, taking into account multiplicities. Now
let λ = −a0/an. If p is a Schur polynomial then |an|2 − |a0|2 > 0 by Theorem 3.4.83
(i) and hence |λ| < 1. Hence an(p+λp∗)(z) = zq(z) is a Schur polynomial of degree
n, i.e. q(z) is a Schur polynomial of degree n− 1. Conversely, if |an| > |a0| and q(z)
is a Schur polynomial then |λ| < 1, and p + λp∗ is a Schur polynomial of degree n,
whence p is a Schur polynomial. �

This corollary gives rise to the following recursive algorithm for testing a polynomial
p(z) ∈ C[z] for Schur stability.

Algorithm 3.4.99 (Test for Schur stability of complex polynomials).

1. Start: p0(z) = p(z), i = 0.

2. If pi(z) =
∑n−i

j=0 ai
jz

j verify that |ai
n−i| > |ai

0|. If not, p is not Schur stable. If
yes and deg pi = 1 then p is Schur stable. If yes and deg pi ≥ 2, continue.

3. Compute pi+1(z) = z−1[ai
n−ipi(z) − ai

0p
∗
i (z)], set i := i + 1 and go back to 2.

Example 3.4.100. Consider again the polynomial p(z) = z2 + (α1 + ıβ1)z + ıβ0 where
α1, β1, β0 ∈ R. Then p∗(z) = −ıβ0z

2 + (α1 − ıβ1)z + 1 and

p1(z) = (p(z) − a0p
∗(z))/z = (1 − β2

0)z + α1 − β0β1 + ı(β1 − α1β0).

Hence p is a Schur polynomial if and only if

1 − β2
0 > 0, (α1 − β0β1)

2 + (β1 − α1β0)
2 < (1 − β2

0)2.

These are precisely the conditions obtained via the Schur matrix in Example 3.4.90. �

If p(z) is real with coefficients an > an−1 > . . . > a0 > 0 then it is easily verified
by induction that all the pi(z) generated by this algorithm have the same property.
Thus we obtain the following sufficient criterion.

Corollary 3.4.101. Every real polynomial p(z) of the form (65) with coefficients
an > an−1 > . . . > a0 > 0 is a Schur polynomial.

Example 3.4.102. Let p(z) = z3+a2z
2+a1z+a0 ∈ R[z]. Then the preceding algorithm

yields the following polynomials,

p1(z) = (p(z) − a0p
∗(z))/z = (1 − a2

0)z
2 + (a2 − a0a1)z + a1 − a0a2,

p2(z) =
[
(1 − a2

0)p1(z) − (a1 − a0a2)p
∗
1(z)

]
/z

=
[
(1 − a2

0)
2 − (a1 − a0a2)

2
]
z + (a2 − a0a1)(1 − a2

0 − (a1 − a0a2)).

Thus p(z) is a Schur polynomial if and only if

1 − a2
0 > |a1 − a0a2|, (1 − a2

0)
2 − (a1 − a0a2)

2 > |(a2 − a0a1)(1 − a2
0 − (a1 − a2a0))|.

�
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Corollary 3.4.91 shows that the set of Schur polynomials of a given degree can be
described by algebraic inequalities on their coefficient vectors. For a monic real
polynomial of degree n = 3 the inequalities are specified in Example 3.4.102 (see
also Ex. 21). In the next chapter we derive some geometric properties of the set of
Schur polynomials and determine its convex hull by linear inequalities.

Example 3.4.103. (Cohort population model). A cohort population model de-
scribes the evolution of the age distribution of a given population in time. Let xi(t) be
the number in the ith age group at time period t, where the groups are indexed from 0 to
n, with 0 being the youngest age group. Assume that all age groups are of equal span and
that βi is the constant survival rate of the ith-age group. So

xi+1(t + 1) = βixi(t), i = 0, . . . , n − 1, t ∈ N (89)

if we take the basic time period to be equal to the span of the age groups. By (89) the
age distribution at time period t = 0, 1, 2, . . . determines the number of individuals in the
age groups 1, . . . , n at time t + 1. The number in the youngest age group at time (t + 1)
is given by

x0(t + 1) = α0x0(t) + . . . + αnxn(t)

where αi ≥ 0 is the constant birth rate of the ith-age group i = 0, . . . , n.
If we set x(t) = [x0(t), . . . , xn(t)]� we obtain the following discrete time system

x(t + 1) =

⎡⎢⎢⎢⎢⎢⎣
α0 α1 α2 . . . αn

β0 0 0 . . . 0
0 β1 0 . . . 0
... 0 0 0

...
0 . . . 0 βn−1 0

⎤⎥⎥⎥⎥⎥⎦x(t) (90)

with characteristic polynomial

zn+1 − α0z
n − α1β0z

n−1 − α2β0β1z
n−2 . . . − αnβ0 . . . − βn−1.

Here β0β1 · · · βk can be interpreted as the probability that a new born will reach the kth

age group. Now consider the special case that α0 = 0, αi = 0, i > 2. So the characteristic
polynomial has the form

zn+1 − α1β0z
n−1 − α2β0β1z

n−2

and the roots are determined by

p(z) = z3 − α1β0z − α2β0β1 and z = 0 (if n ≥ 3).

Let a1 = −α1β0, a0 = −α2β0β1 and apply the Jury test for real polynomials (see Remark
3.4.92). Since

R ± S =

[
1 0
0 1

]
±
[

0 a0

a0 a1

]
=

[
1 ±a0

±a0 1 ± a1

]
we obtain the following necessary and sufficient conditions for p to be a Schur polynomial

(i) 1 + a1 + a0 > 0, 1 + a1 − a0 > 0

(ii) 1 + a1 − a2
0 > 0, 1 − a1 − a2

0 > 0.

Condition (ii) is equivalent to |a1| < 1−a2
0 and since a0 ≤ 0 the first condition in (i) implies

the second. Let us assume that β0 = β1 = 1, then characteristic polynomial zn−2p(z) is
Schur stable if 1 > α1 + α2. So for these parameter values the number of individuals in
the age groups will converge to zero and the species will die out. �
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3.4.7 Algebraic Stability Domains and Linear Matrix
Equations

In this subsection we present a unifying framework for obtaining stability criteria
with respect to a large class of algebraic stability regions which include arbitrary
half-planes, disks and also many other domains in the complex plane. The approach
is based on Hermitian linear matrix equations generalizing Liapunov’s equations for
the Hurwitz and Schur stability domains. In contrast with the previous subsections
the stability criteria are directly applicable to matrices. However they can also be
used for polynomials via companion matrices.
Let q(z1, z2) ∈ C[z1, z] be a Hermitian polynomial, i.e. a polynomial of the form

q(z1, z2) =

�∑
i=1

�∑
j=1

cijz
i−1
1 zj−1

2 = l(z1)
�Cl(z2), C = (cij)i,j∈� ∈ H�(C). (91)

where l(·) is given by (28) with n = �. We will consider algebraic stability domains
of the following form

D(q) = {z ∈ C; q(z, z) < 0}. (92)

Kalman (1969) [289] posed the following: Which is the largest class of algebraic
domains D(q) for which the property that any polynomial p ∈ C[z] of given (but
arbitrary) degree n has all its roots in D(q) can be characterized by a system of
rational inequalities in the real and imaginary parts of the coefficients of p? (This
system of inequalities will depend on the degree n and on the domain D(q)). Here
we obtain a partial answer to this problem.
Given an arbitrary matrix A ∈ Cn×n, n ∈ N∗ and a positive definite matrix
Y ∈ Hn(C), we associate with the Hermitian polynomial q the following gener-
alized Liapunov equation

�∑
i=1

�∑
j=1

cij (A∗)i−1XAj−1 = −Y. (93)

Example 3.4.104. (i) Let q(z1, z2) = z1 + z2. Then the associated coefficient matrix
Cq, algebraic domain and linear matrix equations are, respectively,

Cq =

[
0 1
1 0

]
, D(q) = C−, A∗X + XA = −Y.

Thus we obtain the classical algebraic Liapunov equation for continuous time systems.
More generally, for any half-plane H = {z ∈ C; Re(c1z) < c0} (where c1 ∈ C

∗, c0 ∈ R) we
choose q(z1, z2) = c1z1 + c1z2−2c0 to obtain D(q) = H and c1A

∗X + c1XA−2c0X = −Y .

(ii) Let q(z1, z2) = z1z2 − 1. Then the corresponding items are

Cq =

[
−1 0
0 1

]
, D(q) = D, A∗XA − X = −Y.

Hence we obtain the classical Liapunov equation for discrete time systems. To get an
arbitrary open disk of center c ∈ C and radius ρ > 0 as stability domain D(q) we choose
q(z1, z2) = (z1 − c)(z − c) − ρ2. The corresponding matrix equation is

A∗XA − (ρ2 − |c|2)X − cA∗X − cXA = −Y.
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(iii) Let q(z1, z2) = 2 − z1z2(z1 + z2). Then q(z, z) = 2 − 2|z|2 Re z, hence

Cq =

⎡⎣2 0 0
0 0 −1
0 −1 0

⎤⎦ , D(q) = {ρ + ıω; ρ(ρ2 + ω2) < 1}, 2X − (A∗)2XA − A∗XA2 = −Y.

D(q) is neither a half-plane nor a disk. �

We know from Section 3.3 that the classical Liapunov equations have a positive defi-
nite solution X for every positive definite Y if and only if σ(A) ⊂ C− resp. σ(A) ⊂ D.
We will now investigate for which Hermitian polynomials (91) an analogous state-
ment can be proved for the generalized Liapunov equation (93). As a preparation we
ask the reader (see Ex. 24) to verify that the spectrum of the generalized Liapunov
operator associated with A and C

LA,C : Hn(C) → Hn(C), X �→
�∑

i=0

�∑
j=0

cij (A∗)iXAj (94)

is given by σ(LA,C) = {q(λ1, λ2); λ1, λ2 ∈ σ(A)}. A consequence of this is that LA,C

is an isomorphism on the real vector space Hn(C) if and only if q(λ1, λ2) �= 0 for all
λ1, λ2 ∈ σ(A). The following lemma gives a sufficient condition.

Lemma 3.4.105. Let q be a Hermitian polynomial of the form (91) with coefficient
matrix C and assume that C has exactly one simple negative eigenvalue, i.e. rank C−
sign C = 2. Then q(λ1, λ2) �= 0 for all λ1, λ2 ∈ D(q).

Proof : Suppose rank C = r, then C can be written in the form C =
∑r−1

k=1 vk(vk)∗−
vr(vr)∗, where the vj ∈ C� are linearly independent. Thus

q(z1, z2) = l(z1)
�Cl(z2) =

r−1∑
k=1

qk(z1)qk(z2) − qr(z1)qr(z2) (95)

where (vk)� ∈ C1×� is the coefficient vector of qk. Now let λ1, λ2 ∈ D(q). Since by
definition of D(q) we have q(λj , λj) < 0 for j = 1, 2 it follows that

r−1∑
k=1

qk(λj)qk(λj) < qr(λj)qr(λj), i.e.
r−1∑
k=1

|qk(λj)|2 < |qr(λj)|2, j = 1, 2.

Therefore the assumption that

q(λ1, λ2) =

r−1∑
k=1

qk(λ1)qk(λ2) − qr(λ1)qr(λ2) = 0

would imply (by the Cauchy-Schwartz inequality)

∣∣qr(λ1)qr(λ2)
∣∣= ∣∣∣∣∣

r−1∑
k=1

qk(λ1)qk(λ2)

∣∣∣∣∣≤
√√√√r−1∑

k=1

|qk(λ1)|2
√√√√r−1∑

k=1

|qk(λ2)|2 < |qr(λ1)||qr(λ2)|.

This contradiction proves q(λ1, λ2) �= 0. �
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Example 3.4.106. Let c = (ci)i∈� ∈ C
� and C = −cc∗, then the assumption of the above

lemma is satisfied. The corresponding Hermitian polynomial is q(z1, z2) = −c(z1)c(z2)
where c(·) is the polynomial with coefficient vector c�. The stability domain is D(q) =
{z ∈ C;−|c(z)| < 0}, i.e. the complement of the set of roots of c(·) in the complex plane.
Given any matrix A ∈ C

n×n the associated generalized Liapunov operator (94) is

LA,C(X) : Hn(C) → Hn(C), X �→ −
�∑

i,j=1

cicj(A
∗)i−1XAj−1 = −[c(A)]∗Xc(A). (96)

�

Kharitonov (1981) [302] proved the following theorem.

Theorem 3.4.107. Suppose q is a Hermitian polynomial of the form (91) and
the coefficient matrix C has exactly one negative eigenvalue. Then the following
conditions are equivalent for arbitrary A ∈ Cn×n.

(i) σ(A) ⊂ D(q).

(ii) There exists Y ∈ Hn(C), Y & 0 such that the generalized Liapunov equation
(93) has a (uniquely determined) positive definite solution.

(iii) For every Y ∈ Hn(C), Y & 0 (93) has a (uniquely determined) positive definite
solution (i.e. the operator LA,C : Hn(C) → Hn(C) is inverse positive).

Proof : (i) ⇒ (ii). First observe that all the conditions do not change if A is
replaced by a similar matrix. Hence we may assume that A is of the form A = D+N
where D = diag(λ1, . . . , λn) is diagonal and N is nilpotent and upper triangular.
Applying a similarity transformation S(ε) = diag(1, ε, . . . , εn−1) we obtain A(ε) :=
S(ε)−1AS(ε) = D + εN . For k ∈ N∗, the k-th power of A(ε) can be represented
in the form A(ε)k = Dk + εN(k, ε) where N(k, ε) is a nilpotent upper triangular
matrix which is bounded as ε ↓ 0 for every k ∈ N

∗. Since σ(A) ⊂ D(q) we have
q(λi, λi) �= 0, i ∈ n by Lemma 3.4.105. Choose

X = − diag(q(λ1, λ1)
−1, . . . , q(λn, λn)−1) & 0.

Now q(λk, λk)
−1
∑�

i,j=1 cijλk
i
λj

k = 1 for k ∈ n, and there exists a Hermitian matrix
Q(ε) dependent on ε such that limε→0 Q(ε) = 0 and

�∑
i,j=1

cij(A(ε)∗)i−1XA(ε)j−1 =
�∑

i,j=1

cijD
i−1

XDj−1 + Q(ε) = −In + Q(ε) & 0

for ε > 0 sufficiently small. Setting Y = In − Q(ε) we see that there exist Y & 0
and X & 0 such that (93) is satisfied. Moreover, since σ(A) ⊂ D(q), Lemma 3.4.105
implies that the solution X of (93) is uniquely determined by Y .
(ii) ⇒ (i). Suppose Y & 0 and X & 0 satisfy (93). For any λ ∈ σ(A) let v ∈ Cn be
an associated eigenvector so that Av = λv and v∗A∗ = λv∗. Then

0 > −v∗Y v = v∗
[

�∑
i,j=1

cij(A
∗)i−1XAj−1

]
v =

�∑
i,j=1

cijλ
i−1

λj−1v∗Xv = q(λ, λ)v∗Xv.
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Since X & 0 we conclude that q(λ, λ) < 0 and hence λ ∈ D(q).
(iii) ⇒ (ii) being trivial it only remains to prove (ii) ⇒ (iii). Suppose Y0 & 0 and
X0 & 0 satisfy (93). Then σ(A) ⊂ D(q) by the previous step, and so it follows
from Lemma 3.4.105 that the operator LA,C : Hn(C) → Hn(C) defined by (94) is
an isomorphism. Let Y1 ∈ Hn(C) be positive definite and X1 the corresponding
solution of (93). In order to show that X1 & 0 we set

Yt = (1 − t)Y0 + tY1 & 0, Xt = (1 − t)X0 + tX1, t ∈ [0, 1]

and suppose that there exists an x ∈ Cn, x �= 0 such that x∗X1x ≤ 0. By continuity
of t �→ x∗Xtx there exists τ ∈ [0, 1] such that Xτ $ 0 and x∗Xτx = 0. Now let

C =
∑r−1

k=1 vkvk∗ − vrvr∗ as in the proof of the preceding lemma. We have seen in
that proof that |qr(λ)| > 0 for all λ ∈ D(q), whence for all λ ∈ σ(A). Therefore qr(A)
is nonsingular. It follows from the definition of the generalized Liapunov operator
LA,C : Hn(C) → Hn(C) in (94) that it depends linearly on the coefficient matrix C.
Therefore, making use of the formula (96) for X = Xτ

LA,C(Xτ ) =

r−1∑
k=1

LA,vkvk∗(Xτ ) − LA,vrvr∗(Xτ ) =

r−1∑
k=1

[qk(A)]∗Xτqk(A) − [qr(A)]∗Xτqr(A).

Now choose x ∈ C
n, x �= 0 such that Xτx = 0 and y ∈ Cn such that qr(A)y = x.

Then, multiplying the equation from the left by y∗ and from the right by y we obtain

y∗LA,C(Xτ )y =

r−1∑
k=1

y∗[qk(A)]∗Xτqk(A)y = −y∗Yτy < 0.

This contradicts the fact that Xτ $ 0, hence X1 & 0. �

Remark 3.4.108. The proof of (ii) ⇒ (i) shows that condition (ii) is sufficient for
σ(A) ⊂ D(q) without any assumption on the coefficient matrix C ∈ H�(C). �

Given a polynomial p, one can use the associated companion matrix for A in order
to test the D(q)-stability of p. This is illustrated in the next example.

Example 3.4.109. Let us find the conditions for all the roots of the monic polynomial
p(s) =

∑n
i=0 ais

i, an = 1 to lie in D(q) where q(z1, z2) = 2− z1z(z1 + z2) is as described in
Example 3.4.104 (iii). For this we choose A to be the companion matrix of p and Y = In.
The previous theorem is applicable since the only negative eigenvalue of C is −1. Hence
p will have all its roots in D(q) if and only if the solution X of the linear matrix equation

2X − (A∗)2XA − A∗XA2 = −In (97)

is positive definite. The entries of X are rational functions of the coefficients a0, . . . , an−1

of p. Expressing the positive definiteness of X by the positivity of its principal minors we
obtain a system of rational inequalities for the coefficients of p which will be satisfied if and
only if all the roots of p lie in D(q). For instance, in the real case with n = 2, (97) yields
the following equations for the entries x1, x2, x3 ∈ R of X (x2 denotes the off-diagonal
entry)

−2x1 + 2a2
0x2 − 2a2

0x3 = 1,

−a0x1 + (3a0a1 − 2)x2 + (a2
0 − 2a0a

2
1)x3 = 0,

−2a1x1 + (4a2
1 − 2a0)x2 + (2a0a1 − 2a3

1 − 2)x3 = 1.
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where (a0, a1) is the (real) coefficient vector of p. Solving this linear system we obtain
rational expressions for the entries xi = xi(a0, a1), and so the necessary and sufficient
conditions for the D(q)-stability of p are given by

x1(a0, a1) > 0, x1(a0, a1)x3(a0, a1) − x2(a0, a1)
2 > 0.

�

We conclude this subsection with a counterexample which illustrates that, in general,
the previous theorem will not hold if C does not have exactly one negative eigenvalue.

Example 3.4.110. Let q(z1, z2) = −9+4(z1+z2)−z2
1z2

2 so that the associated coefficient
matrix, algebraic domain and linear matrix equations are, respectively,

Cq =

⎡⎣−9 4 0
4 0 0
0 0 −1

⎤⎦, D(q)={ρ +ıω; 8ρ−(ρ2+ω2)2 <9}, −9X+4A∗X+4XA−(A∗)2XA2 =−Y.

C has two positive eigenvalues and so the assumption of Theorem 3.4.107 is not satisfied.

Let A = diag(1, 2) and Y =

[
2 1
1 1

]
. Then σ(A) ⊂ D(q), but the solution X =

[
1 1
1 1/9

]
is not positive definite. On the other hand if we choose Y = I2 then the solution X =
diag(1/2, 1/9) & 0. So we see that the conditions (ii) and (iii) of the theorem are not
equivalent in this case. �

3.4.8 Exercises

1. Prove Proposition 3.4.3 using the principle of the argument.

2. Real polynomials are characterized (up to multiplication with a non-zero constant
factor) by the property that their root sets are invariant with respect to reflection at
the real axis (taking into accounting multiplicities). To show that Hurwitz-symmetric
polynomials can be characterized in a similar way, prove the following.
(i) If si is a non-zero root of a Hurwitz-symmetric polynomial p then its reflection at the
imaginary axis, −si, is also a root of p, and the multiplicities of these roots are equal.
(ii) Conversely, every polynomial with this property is symmetric after multiplication with
a suitable non-zero constant factor7.

3. Prove Lemma 3.4.12 for the odd case.

4. Determine the first six terms of the Laurent expansion at ∞ of

g(s) =
2s + 3

s2 + 3s + 2

and check your result using the formulas (44) and (43).

5. Determine the Cauchy index CI∞−∞(g), the Hankel matrix Hk(g) and its signature for
each of the following rational functions

(i) g(s) =
2s + 3

s2 + 3s + 2
, (ii) g(s) =

1

s2 + 3s + 2

(iii) g(s) =
4 − 2s

s2 − 4s + 3
, (iv) g(s) =

s2 + s + 3

s3 + s2 + 2s + 2
.

7See Ex. 20 for the Schur case.
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6. Let p(s) be a real non-constant polynomial and g(s) = p′(s)/p(s). Prove:

(i) The number of distinct roots of p is equal to codim ker Bn(p, p′).
(ii) The number of distinct real roots of p is equal to sign Bn(p, p′).
(iii) All the roots of p are real if and only if Bn(p, p′) $ 0.

7. Prove that if the roots of two real polynomials c(s), d(s) are all real, simple, and
interlacing then the derivatives c′(s) and d′(s) have the same property.

8. Prove that Ratn(C) is connected for all n ≥ 1.

9. Prove that two real polynomials c(s), d(s) ∈ R[s] with deg d = m and deg c = m or
m − 1 form a positive pair if and only if CI∞−∞(c/d) = m, CI∞−∞(c̃/d) = −m (where
c̃(s) := sc(s)), and additionally the leading coefficients of c and d are of equal sign in case
deg c = deg d.

10. Consider the third order system
...
ξ + a2ξ̈ + a1ξ̇ + a0ξ = 0, where a0, a1, a2 ∈ R.

Determine the Hermite matrix H3(p) for the associated characteristic polynomial p. If
x = [ξ, ξ̇, ξ̈]� and V (x) = 〈x,H3(p)x〉, prove that for the corresponding state space
system

V̇ (x) = −2〈b, x〉2

where b = [a0, 0, a2]
�. Conclude that V is a Liapunov function for the system if and only

if the system is asymptotically stable.

11. Show that the set of stable Hurwitz polynomials of fixed degree is, in general, not
convex. Give an example of two monic real Hurwitz polynomials p, q ∈ R[s] of suitable
degree n such that the segment [p, q] = {µq + (1 − µ)p;µ ∈ [0, 1]} contains a polynomial
which is not Hurwitz stable.

12. Let p(s) = u(s2) + sv(s2) be a real polynomial of degree n = 2m or n = 2m + 1 and
v(s)/u(s) =

∑∞
k=0 gks

−k. Prove that p is Hurwitz stable if and only if the Hankel matrix
Hkm(v/u) = (gi+j−1)i,j∈m is positive definite, the Hankel matrix Hkm(ṽ/u) = (gi+j)i,j∈m

is negative definite, and g0 > 0 in case n = 2m + 1.

13. Consider the differentiable system

ẋ = Ax + Bu

y = Cx
where A =

⎡⎣ 0 0 3
10 −3 13
5 1 6

⎤⎦ , B =

⎡⎣ 1 0
2 1
1 1

⎤⎦ , C =

[
1 0 0.6
0 1 −0.2

]
.

If static output feedback is applied via the feedback gain matrix F = −αI2 where α ∈ R

(see Example 2.4.12) prove that the characteristic polynomial of the closed loop system is

λ3 + (2.4α − 3)λ2 + (0.2α2 + 12.2α − 46)λ + 0.2α2 + 14α − 75.

Hence show that the closed loop system is asymptotically stable if α > 0 is sufficiently
large and it can not be asymptotically stable if α ≤ 5.

14. A continuous time single input single output system with transfer function g(s) =
p(s)/q(s) ∈ R(s) (p, q coprime) is called input-output stable if q(s) is a Hurwitz stable
polynomial. Show that the transfer function of a closed loop system with plant g(s) and
static linear output feedback u = −Ky is given by gK(s) = p(s)/(q + Kp(s)). Prove that

g(s) =
p(s)

q(s)
=

(s + 2)(s + 3)

s2(s + 1)(s + 24)(s + 30)
.
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can be input-output stabilized by negative feedback u = −Ky, K > 0, but that input-
output stability is destroyed if the gain K ! 0 is sufficiently large. Determine the set
of all static gains K ∈ R for which the closed system transfer function gK(s) is stable
(i.e. p(s) + Kq(s) is Hurwitz).

15. A mathematical model for the vibrations of a rotating shaft of mass m, stiffness k and
damping c is

ξ̈ + 2Ωiξ − Ω2ξ = −(k/m)ξ − (c/m)ξ̇

where the displacement of the shaft is given by ξ = x + iy and Ω is the constant angular
velocity of the shaft. By using Hermite’s Theorem 3.4.29 and the expression for H2(p)
given in Example 3.4.25 show that the equilibrium state [0, 0]� ∈ C

2 of the corresponding
state space system is stable provided Ω2 < k/m.

16. Prove Theorem 3.4.71 and Corollary 3.4.73 for the odd case n = 2m + 1. Conclude
from the theorem that a quartic polynomial

p(s) = a4s
4 + a3s

3 + a2s
2 + a1s + a0

with positive coefficients is Hurwitz if and only if ∆3 > 0. Show that the Hurwitz stability
of a polynomial of degree n = 5 and n = 6 can be characterized by the positivity of two
principal minors, if the polynomial has positive coefficients.

17. By applying the Liénard-Chipart test Corollary 3.4.66 and using the formula for the
Bezoutian B2 given in Example 3.4.33 derive necessary and sufficient conditions for a real
polynomial of degree 5 with positive coefficients to be Hurwitz stable.

18. In Maxwell’s paper “On Governors” as well as considering the governor described in
Example 3.4.16 he also considered a more complicated governor system described by the
equations

Aθ̈ + Xθ̇ + Kφ̇ + Tφ + Jψ = P − R

Bφ̇ + Y φ − Kθ = Q

Cψ̈ + Zψ̇ − Tφ = 0

where θ, φ, ψ are the angles of the main shaft, centrifugal arm and the movable wheel
respectively. All of the constants A, X, K, T , J , P , R, B, Y , Q, C and Z are positive.
Maxwell studied the stability of the equilibrium state of a corresponding state space system
and obtained a fifth degree characteristic polynomial. Prove that this polynomial is

s5 + a4s
4 + a3s

3 + a2 + s2a1s + a0

where

a0 = TJK/ABC, a1 = ZTK/ABC, a2 = Z(XY + K2)/ABC + KT/AB,

a3 = (XY + K2)/AB + Z(XB + Y A)/ABC, a4 = X/A + Y/B + Z/C.

Show that the conditions given in Ex. 17 for a real polynomial of degree 5 to be Hurwitz
stable reduce in the case of the above polynomial to

a2a1 − a0a3 > 0 and (a2a1 − a0a3)(a4a3 − a2) > (a4a1 − a0)
2.

Hence show that the state space system is not asymptotically stable if

Z2(XY + K2) + KTCZ < J((XY + K2)C + Z(XB + Y A)).
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In particular observe that the system will not be asymptotically stable if the damping
coefficient Z is sufficiently small. Show, however that if

(XY + K2)(XB + Y A) > TKAB

then the system will be asymptotically stable for Z sufficiently large.

19. Prove the following result of Bialas (1985) [57]: Suppose pi(s) =
∑n

j=0 ai
js

j, i = 0, 1

are two real Hurwitz polynomials with ai
0 > 0. Then all polynomials pµ in the segment

[p0, p1] = {µp1 +(1−µ)p0; 0 ≤ µ ≤ 1} are Hurwitz stable if and only if (M0
n−1)

−1M1
n−1 has

no negative eigenvalues, where M i
n−1, i = 0, 1 denotes the (n − 1)-th principal submatrix

of the Hurwitz matrix associated with pi.
(Hint: Compare the proof of Theorem 3.4.71 and make use of Lemma 3.4.49. If the
(n − 1)-th principal minor ∆n−1 of a Hurwitz matrix MR(p) is positive and a0 > 0 then
detMR(p) = a0∆n−1 is positive, see (64)).

20. Suppose p(z) is a polynomial of degree n with the property that every root zi of p is
non-zero and its reflection at the unit circle, 1/zi, is a root of p of the same multiplicity
as zi. Prove that cp(z) is Schur-symmetric for a suitable constant c ∈ C

∗.

21. Let p(z) = anzn + an−1z
n−1 + . . . + a1z + a0 ∈ R[z] with an > 0. Prove the following

conditions are necessary and sufficient for p(·) to be Schur stable.
(i) in case n = 2

(a) a0 + a1 + a2 > 0, (b) a0 − a1 + a2 > 0, (c) a0 < a2.

(ii) in case n = 3

(a) a0 + a1 + a2 + a3 > 0, (b) − a0 + a1 − a2 + a3 > 0, (c) a2
3 − a2

0 > |a0a2 − a1a3|.

(iii) in case n = 4

(a) a0 + a1 + a2 + a3 + a4 > 0, (b) a0 − a1 + a2 − a3 + a4 > 0,

(c) a4(a
2
4+a0a2−a2

1−a2
0)+a0(a1a3−a0a2)> |a0(a

2
3−a2

0)+a4(a4a0+a2a4−a1a3−a0a2)|.

22. Show that the set of monic Schur polynomials of fixed degree is, in general, not convex.
Give an example of two monic real Schur polynomials p, q ∈ R[s] of suitable degree n such
that the segment [p, q] = {µq + (1 − µ)p;µ ∈ [0, 1]} contains a polynomial which is not
Schur stable.

23. If c(z) is a Schur-symmetric polynomial of degree n and f(θ) = e−ıθn/2c(eıθ), θ ∈ R,
show that f is a trigonometric polynomial of the form

f(θ) =

{
a0 +

∑m
k=1(ak cos kθ + bk sin kθ) if n = 2m∑m

k=1(ak cos(k − 1/2)θ + bk sin(k − 1/2)θ) if n = 2m − 1.

Verify that f ′(θ) = −ıe−ıθn/2ĉ(eıθ) where ĉ(z) = (n/2)c(z)−zc′(z) is Schur-antisymmetric.
Suppose that c and d are symmetric polynomials of degree n and f, g are the associated
trigonometric polynomials. Prove that if the roots of c, d (resp. f, g) are all simple, lie on
the unit circle (resp. real axis) and are interlacing on the unit circle (resp. the real axis),
then the roots of ĉ and d̂ (resp. f ′, g′) have the same property.
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24. If C ∈ H�(C), A ∈ C
n×n, prove that the spectrum of the linear operator

LA,C : Hn(C) → Hn(C), X �→
�∑

i=1

�∑
j=1

cij(A
∗)i−1XAj−1

is given by σ(LA,C) = {q(λ1, λ2);λ1, λ2 ∈ σ(A)} where q(·, ·) is given by (91).

25. Case study: The flow of traffic along a motorway is modelled by the partial differential
equations

∂ρ
∂t

+ ∂
∂x

(ρv) = 0

∂v
∂t

+ v ∂v
∂x

= −α
[
v − V (ρ) +

µ
ρ

∂ρ
∂x

]
where α, µ are positive constants, V (·) : R+ → R is a given function, ρ(x, t) is the density
and v(x, t) is the velocity at distance x ∈ [0, �] along the motorway and time t ≥ 0. The
first equation is the continuity equation and the second states that the acceleration is a
function of three terms, the velocity, the density of traffic and the last term µ

ρ
∂ρ
∂x represents

a model for the way drivers take account of increasing or decreasing density of the traffic
ahead. Show that (ρ0, v0) is a constant equilibrium state if v0 = V (ρ0). It is assumed
that the function V (·) is differentiable, has a maximum at zero and decreases to zero at
ρ = ρm (the value of the density for which the cars are bumper to bumper). For a single
lane the maximum density is taken to be 225 vehicles per mile. A model which fitted data
for traffic flow through the Lincoln tunnel is V (ρ) = a log ρm/ρ and it was observed that
there was a maximum number of cars passing through the tunnel if the velocity was 20
miles per hour.
(i) Show that if ρ(x, t) = ρ0 + ρ1(x, t), v(x, t) = v0 + v1(x, t) and nonlinear terms in the
perturbations ρ1, v1 are neglected, then

∂ρ1

∂t
+ v0

∂ρ1

∂x
+ ρ0

∂v1

∂x
= 0

∂v1

∂t
+ v0

∂v1

∂x
= −α

[
v − V ′(ρ0)ρ1 +

µ

ρ0

∂ρ1

∂x
.

]
(ii) If the perturbations are represented by the real parts of the Fourier series ρ1(x, t) =∑∞

k=−∞ ρ̃k(t)e
ıkπx/�, v1(x, t) =

∑∞
k=−∞ ṽk(t)e

ıkπx/�, show that the coefficients satisfy

˙̃ρk(t) + (ıv0kπ/�)ρ̃k(t) + (ıρ0kπ/�)ṽk(t) = 0

˙̃vk(t) + (ıv0kπ/�)ṽk(t) + α
[
ṽk(t) − V ′(ρ0)ρ̃k(t) + (µıkπ/(�ρ0))ρ̃k(t)

]
= 0.

(iii) Prove that the characteristic equation of the the corresponding state space system is

λ2 + ((2ıkπ/�)v0 + α)λ − (kπ/�)2v2
0 + αµ(kπ/�)2 + αc0ıkπ/� = 0

where c0 = v0 + ρ0V
′(ρ0).

(iv) By using Hermite’s Theorem 3.4.29 and the expression for H2(p) given in Exam-
ple 3.4.25 show that this is a Hurwitz polynomial if αµ > (v0 − c0)

2 for all values of k.
(v) Calculate the right hand side of this inequality for the above function V (·) and interpret
the result, see Whitham (1974) [518].
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3.4.9 Notes and References

Introductory historical remarks

In 1868 Maxwell posed the mathematical problem of finding conditions under which all the

roots of an algebraic equation belong to the open left half of the complex plane. At this

time there were about 75,000 steam engines working in England alone, and “large num-

bers of them were hunting” [356]. Due to changes in engine design (less friction, smaller

flywheels) the generated angular velocities of the shaft tended to be unstable: Oscillations

about the set angular velocity, caused by load changes did not die out. These technolog-

ical developments formed the background of Maxwell’s problem. He knew that a system

behaves in a stable way if all the roots of its characteristic polynomial have negative real

parts. But, as Maxwell pointed out in his paper, how this condition could be verified for

polynomials of degree > 3 or 4 was unknown. Therefore the pioneering papers of Maxwell

and Vyshnegradskii on the stability of controlled systems (like the steam engine) were

limited to linear models of low order, see [364], [511], [512], Example 3.4.16 and Ex. 18.

However, mathematicians had dealt with the problem of determining the number of roots

of algebraic equations in certain locations (on and off the real axis, in half-planes etc.)

since the early decades of the nineteenth century. It suffices to mention here the work of

Cauchy, Sturm, Jacobi, Borchardt, Cayley, Sylvester and Hermite. In fact, Hermite (1853)

[226] had already solved Maxwell’s problem well before it was stated, but his results were

not known outside of world of mathematics. Throughout the nineteenth century the anal-

ysis of real algebraic equations was a central theme of mathematics. Excellent surveys,

including some historical remarks, are given in the classical paper of Krein and Naimark

(1939, translation 1981) [318] and in the concluding chapter of Gantmacher (1959) [183].

Both sources contain extensive bibliographies where many references on the root location

problem can be found. For an exposition of some results of Hermite and Hurwitz in the

context of Real Algebra, see Knebusch (1989) [310].

It was Maxwell’s problem statement which brought the above mathematical developments

into contact with the emerging theory of stability and control. In 1877 Routh received the

Adams Prize of the University of Cambridge for the best essay on “The Criteria of Dynamic

Stability”. In [439] he described an algorithm for determining the number of roots of a

real polynomial in the right half-plane, based on Sturm’s Theorem and the Cauchy index.

The corresponding stability test is described in Algorithm 3.4.13 (see also Remark 3.4.14).

Two decades later Stodola rediscovered Maxwell’s problem in his research on the stability

of turbines. He was unaware of Routh’s essay and Maxwell’s paper, and asked Hurwitz

for help in solving the mathematical problem. The determinant inequalities obtained by

Hurwitz are nowadays known as the Routh-Hurwitz stability criteria (Subsection 3.4.5).

For a description of the early development of stability theory in the context of feedback

control, see Rörentrop (1971) [436], Fuller (1976) [176], and Bennett (1979) [50].

Notes and references concerning the subsections

3.4.1 Analytical techniques based on the argument principle and the Cauchy index have

been used since the beginning of stability analysis, see [183]. The phase-increasing prop-

erty of real Hurwitz polynomials has been known in the theory of electrical networks since

the sixties (see [68]) and the lower bound (9) was rediscovered in the context of robust

stability analysis by Rantzer (1992) [427]. In fact Rantzer proved that “convex directions”
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q(s) ∈ R[s] (for which the stability of p and p + q always implies the stability of the whole

segment [p, p + q] of polynomials) are characterized by the reverse inequality to (9). A

different characterization can be found in Kharitonov and Hinrichsen (1995) [236].

The Hermite-Biehler Theorem 3.4.11 has become an important tool in the stability analysis

of polynomials with parametric uncertainty, see Kharitonov (1979) [301] and the mono-

graph of Bhattacharyya et al. (1995) [56]. Example 3.4.16 is taken from Maxwell’s classical

paper [364] which has been republished together with other classical papers on stability

and control (e.g. Hurwitz’ paper [272]) in Bellman and Kabala (eds.) 1964 [46], see also

the collection of articles edited by MacFarlane (1979) [356].

3.4.2 The geometric interpretation of the Cauchy index in Subsection 3.4.2 and its ap-

plication to the analysis of Ratn(R) has been inspired by Brockett (1976) [78]. A system

theoretic characterization of the Cauchy index is given in Anderson (1972) [12].

3.4.3 This and the next subsections on the use of quadratic forms in stability theory have

been strongly influenced by the fundamental paper of Krein and Naimark (1939) [318] and

a lecture series by Kharitonov at the University of Bremen (1993/94). Hermite’s Theorem

3.4.29 has been proved in [226] for the case where p(s) and p�(s) are coprime. Our proof

follows the method of Liénard and Chipart (1914) [344] as presented in Kharitonov’s lec-

ture series.

Bézout matrices played an important role in the study of root locations and in elimination

theory in the 19th century, but have been largely ignored in 20th century mathematics. In

systems theory they have been subordinated to Hankel matrices, but their use has been

advocated by Helmke and Fuhrmann (1989) in [220] where Bézout matrices were applied to

construct invariants for static linear output feedback. In comparison with Hankel matrices

Bézout matrices have the advantage that they are not constrained by degree restrictions

(deg c ≤ deg d), and there are simple explicit formulas for their entries (see (36)) whereas

the entries of the Hankel matrix depend in a more complicated manner on the coefficients

of the two polynomials. More results about Bézout and Hankel matrices can be found in

the textbook of Fuhrmann (1996) [173]. This book also contains further applications of

quadratic forms in systems theory.

3.4.4 Our proof of the congruence of the Bézout and the associated Hankel matrix (Theo-

rem 3.4.41) follows Krein and Naimark (1981) [318]. In the case when the denominator has

only simple roots, Theorem 3.4.53 was proved by Sylvester in 1853 and Hermite in 1854,

the general result is due to Kronecker (1881) [320] and Hurwitz (1895) [272]. Topological

aspects of this result are discussed in Byrnes (1983) [87].

Brockett’s theorem was published in 1976, [78] and initiated the investigation of topo-

logical problems in linear systems theory. The topology of Ratn(R) was studied in more

detail by Segal (1979) [456]. The problem of parametrizing the connected components of

Ratn(R) as stated in [78] led to the problem of finding a cell decomposition for Ratn(R).

Different subdivisions of Ratn(R) were proposed by Fuhrmann and Krishnaprasad (1986)

in [174], via continued fractions. That these subdivisions yield true cell decompositions

was established in [238].

The proof of Brockett’s Theorem in Subsection 3.4.4 is different from that of [78]. Another

proof, based on the cellular subdivision of the space of Hankels of rank ≤ n in [237], is

given in Helmke et al. (1989) [221].

More information about the algebraic theory of Hankel matrices and forms can be found
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in Iohvidov (1977) [274] and Heinig and Rost (1984), [219].

3.4.5 The determinant conditions given in Theorems 3.4.71 were Hurwitz’s answer to

Stodola’s question. Corollary 3.4.66 was first proved by Liénard and Chipart (1914) [344].

Surprisingly it took more than half a century to clarify the connection between algebraic

stability criteria and Liapunov’s equation. In 1962 Parks [405] derived the Routh-Hurwitz

stability criteria by Liapunov’s direct method.

3.4.6 The stability criterion for discrete time systems contained in Theorem 3.4.89 was

found by Schur (1918) [454] in his analysis of bounded power series on the unit disk.

Theorem 3.4.89 itself was first proved by Cohn (1922) [107] under the condition that p(z)

and p∗(z) are coprime and the general theorem was proved by Fujiwara (1926) [175]. The

explicit formula (76) for the entries of the Schur form is due to Wilf (1959) [522]. The

use of symmetric polynomials and Möbius transforms in the treatment of the Schur-Cohn

problem is based on Krein and Naimark [318]. Theorem 3.4.97, the counterpart of the

Hermite-Hurwitz Theorem 3.4.53 was first derived by Herglotz (1923) [225] following Hur-

witz’ method of proof in [272]. The recursive stability test (3.4.99) was found by Schur

(1918) [454]. An interesting algebraic derivation of the Schur-Cohn stability criterion via

Liapunov’s equation for discrete time systems is given in Kalman (1965) [288]. In this

paper Kalman shows that the Schur-Hermite matrix of a real polynomial p satisfies a Lia-

punov equation of the form A�XA−X = −cc� where A is the companion matrix of p and

c ∈ R
n. Additional references are Marden (1966) [360] and the book of Jury (1982) [284]

which presents a unified approach to algebraic stability criteria for discrete and continuous

time systems based on the concept of “inners”. A proof of Theorem 3.4.91 can be found

in [284].

Further information about the algebraic theory of Toeplitz matrices and forms can be

found in Iohvidov (1977) [274] and Heinig and Rost (1984), [219].

The cohort population model is briefly discussed in Luenberger (1979) [349].

3.4.7 Several attempts have been made to develop a unifying algebraic theory of stability

which is applicable to different stability regions described by algebraic inequalities. As

early as the 19th century Hermite studied the problem of determining how many roots

of an algebraic equation p(z) = p(x + ıy) = 0 are in a domain of the form V (x, y) > 0

where V (x, y) is the imaginary part of some rational function in z = x + ıy, see [226],

[318]. An interesting algebraic approach for deriving a general Hermite type criterion for

stability regions described by quadratic inequalities has been developed by Kalman (1969)

[289] for domains described by Hermitian polynomials q of the form (91) with rankC = 2

and sign C = 0. Kalman posed in [289] the “open question” of whether this is the largest

class for which the statement p(z0) = 0 =⇒ z0 ∈ D(q) can be decided from inequalities

employing only rational functions of the coefficients of p. The question was answered in

the negative by Kharitonov (1981) [302], who showed that a Liapunov type stability test

is available for a much larger class of stability regions (see Theorem 3.4.107). Unnoticed

in systems theory a more general version of this theorem had already been derived fif-

teen years earlier by Schneider (1965) [451] in an article about positive operators. Thus

Kalman’s question had already been answered in the negative before it was raised. Sub-

section 3.4.7 is based on Kharitonov’s paper. Further generalized Liapunov criteria for

stability regions described by algebraic inequalities can be found in the books of Jury

(1982) [284] and Gutman (1990) [206].



Chapter 4

Perturbation Theory

The aim of this chapter is to study how the root and eigenvalue locations of polyno-
mials and matrices change under perturbations. The chapter is quite a substantial
one since we address a number of different issues. First and foremost we consider a
variety of perturbation classes, ranging from highly structured perturbations which
are determined via a single parameter to unstructured perturbations where all the
entries of the matrix or coefficients of the polynomial are subject to independent
variation. The size of the perturbations will, in the main, be measured by arbitrary
operator norms. Moreover we will develop the theory for both complex and real
perturbations which often require quite different approaches.
The first section is concerned with polynomials. We establish some continuity and
analyticity results for the roots, then describe the sets of all Hurwitz and Schur poly-
nomials in coefficient space. We also consider the problem of determining conditions
under which all polynomials with real coefficients belonging to prescribed intervals
are stable and prove Kharitonov’s Theorem. The effect of perturbations on the
eigenvalues of matrices is considered in Section 4.2. We first state some simple con-
tinuity and analyticity results which follow directly from the results of Section 4.1.
Then we assume that the matrix depends analytically on a single parameter and ex-
amine the smoothness of eigenvalues, eigenprojections and eigenvectors. Section 4.3
deals with singular values and singular value decompositions which are important
tools in the quantitative perturbation analysis of linear systems. Section 4.4 is dedi-
cated to structured perturbations and presents some elements of µ-analysis, both for
complex and for real parameter perturbations. We finish the chapter in Section 4.5
with a brief introduction to some numerical issues which are important for Systems
Theory, focussing on those aspects which have a relationship with the material of
this and the previous chapters.

4.1 Perturbation of Polynomials

In the previous chapter we derived necessary and sufficient conditions for a given
polynomial to have all its roots in the open left half plane or inside the open unit
disk. Often in applications the coefficients of a polynomial are not known precisely
or they depend on physical parameters which may vary between specified bounds.
It is important therefore to study the root locations and stability properties for sets
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or (parametrized) families of polynomials. Here we establish some basic results for
such problems.
The section is divided into four subsections. In the first one we use function theo-
retic tools to analyze the dependence of the roots of a polynomial on the coefficient
vector. We show that in general this dependence is continuous and for a simple root
(multiplicity one) it is analytic. In the second subsection we study parametrized
polynomials where the coefficient vector is a function of one real or complex pa-
rameter. Critical values of this parameter are those where the number of distinct
roots decreases. We investigate the distribution of critical points and analyze the
behaviour of the roots in the vicinity of both critical and non-critical parameter
values. In order to obtain quantitative information about root changes under pa-
rameter perturbations we introduce the sensitivity of a root as a measure of the
variation in the root with respect to infinitesimal changes in the parameter.
The third subsection is concerned with the sets of Hurwitz and Schur polynomials,
respectively. We establish some elementary topological properties of these sets in
the space of coefficient vectors and characterize their boundaries and convex hulls.
In the final subsection we restrict our considerations to Hurwitz polynomials and
examine some convexity properties which are useful in studying the effect of large
parameter variations. The main result will be Kharitonov’s Theorem which specifies
necessary and sufficient conditions for an n-dimensional interval of polynomials to
consist of only Hurwitz ones.

4.1.1 Dependence of the Roots on the Coefficient Vector

Consider the polynomial

p (s, a) = ansn + an−1s
n−1 + · · ·+ a0 ∈ Cn[s] (1)

with coefficient vector a = (a0, a1, . . . , an) ∈ Cn+1. We assume that the vector
space Cn+1 of coefficient vectors is endowed with an arbitrary norm ‖ · ‖. Let
n(a) = deg p (s, a) denote the degree of p (s, a). Then an(a) is called the leading
coefficient of p (s, a), and we have an(a) �= 0 and aj = 0 for j = n(a) + 1, . . . , n.
By the fundamental theorem of algebra p(s, a) has n(a) complex roots, taking into
account multiplicities. We say that a polynomial p (s, a) has (exactly) � distinct roots
s1, . . . , s�, � ≥ 1 with multiplicity m1, . . . , m� ≥ 1, if and only if n(a) =

∑�
j=1 mj and

p (s, a) admits the factorization

p (s, a) = an(a)

�∏
j=1

(s − sj)
mj and si �= sj for i �= j.

We want to analyze the dependency of the roots sj, j ∈ � on the coefficient vector a.
Later in this section we will assume that p (s, a) is monic of degree n, i.e. an = 1. But
in our first results we do not assume n(a) = n. As a consequence, small variations
of the coefficient vector may lead to an upward jump in the overall number of roots.
The following example illustrates that the “additional” roots generated in this way
have large moduli for small variations of the coefficient vector.

Example 4.1.1. Consider the polynomials p(s, a(z)) = zs2 − s + z, a(z) = (z,−1, z)
where z ∈ C is a parameter. For z �= 0 the polynomial p(s, a(z)) has two simple zeros,
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namely s±(z) = (1 ±
√

1 − 4z2)/(2z) = [1 ± (1 − 2z2 + O(z4))]/2z. As z → 0, we see that
s−(z) converges to 0 (which is the only root of p(s, a(0))) whereas s+(z) tends to ∞. �

In an intuitive way we may interpret the previous example by saying that the
polynomial p(s, a(0)) = 0s2 + s + 0 regarded as an element of C2[s] has one zero
at the origin and one at infinity, and these zeros attract the zeros of p(s, a(z)) as
z → 0. A precise statement is given in the next theorem. For any s0 ∈ C we denote
the disk of radius r > 0 centered at s0 by D(s0, r) = {s ∈ C; |s− s0| < r}. Whereas
by B(ã, δ) we denote the open ball of radius δ > 0 and centre ã in the coefficient
vector space Cn+1, i.e.

B(ã, δ) = {a ∈ C
n+1; ‖a − ã‖ < δ}.

Theorem 4.1.2. Let p (s, ã) be a non-constant polynomial of the form (1) having
degree n(ã) ≤ n and exactly � distinct roots s̃j, of multiplicities mj, j ∈ �. Then, for

any given ε > 0 such that the closed disks D(s̃j, ε), j ∈ � are mutually disjoint, there
exists δ(ε) > 0 such that for all a ∈ B(ã, δ(ε)) there are exactly mj roots of p (s, a)
inside the disk D(s̃j, ε) for j ∈ � and n(a) − n(ã) roots outside the disk D(0, ε−1)
(taking into account multiplicities).

Proof : Choose any ε > 0 so that the disks Dj = D(s̃j, ε) and their boundaries
Γj = ∂Dj do not overlap for j ∈ �. Then p (s, ã) has exactly one root (of multiplicity
mj) in Dj and µj := mins∈Γj

|p(s, ã)| > 0. Choose δ > 0 such that

a ∈ B(ã, δ) ⇒ max
s∈Γj

|p(s, a) − p(s, ã)| < µj , j ∈ �.

Then it follows from Rouché’s Theorem A.2.20 that, for any a ∈ B(ã, δ), the poly-
nomial p(s, a) has exactly mj roots in Dj accounting for multiplicities. This proves
the first assertion in the theorem. We claim that by choosing δ(ε) < δ sufficiently
small we can also ensure that the second half holds. Otherwise there would exist a
sequence of coefficient vectors ak ∈ B(ã, δ) converging to ã such that at least one
root zk of p (·, ak) would lie in D(0, ε−1) \

⋃n
j=1 Dj . By a compactness argument

we may assume that the bounded sequence (zk) is convergent in C. But then the
limit z0 ∈ C \

⋃n
j=1 Dj would satisfy p (z0, ã) = limk→∞ p (zk, a

k) = 0 and hence
p (·, ã) would have more than n(ã) roots (taking into account multiplicities). This
contradiction shows that the second assertion also holds. �

We now describe a more specific result which is useful in several areas of systems
theory. Real affine one-parameter perturbations of the form ã � ã + ra, where a, ã
are given and r ≥ 0 is a small real parameter, are considered.

Proposition 4.1.3. Consider the parametrized polynomial p(s, a(r)) = p(s, ã) +
rp(s, a) where r ≥ 0 is a parameter, p(s, ã) is a polynomial of degree m < n and

p(s, a) is a monic polynomial of degree n. Denote by ã
1/(n−m)
m any fixed (n − m)-

th root of the leading coefficient ãm of p(s, ã), and let λ1, . . . , λn−m be the roots of
sn−m +1. Then m of the roots of p (·, a(r)) tend to the roots of p (·, ã) as r ↓ 0, while
the remaining n − m roots tend asymptotically to

B(r) = {r−1/(n−m) ã1/(n−m)
m λj ; j = 1, . . . , n − m}, (2)
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i.e. there are n − m roots sm+1(r), ..., sn(r) of p(s, a(r)) such that

lim
r↓0

|si(r) − r−1/(n−m) ã1/(n−m)
m λi−m| = 0 for i = m + 1, ..., n.

Proof : Suppose that p(s, ã) has � distinct roots s̃j of multiplicities mj , j ∈ �. By
the previous theorem there exists for every sufficiently small ε > 0 a δ(ε) > 0 such
that the disks D(s̃j, ε) contain exactly mj roots of p (s, a(r)) for r ∈ (0, δ), j ∈ �
(taking account of multiplicities). Thus m of the roots of p (s, a(r)) approach the m
roots of p(s, ã) as r ↓ 0.
To prove the second part of the proposition, let r > 0 and ζ = (r/ãm)1/(n−m)s =
γ(r)s where γ(r) = (r/ãm)1/(n−m). Then a(r) = ra + ã implies

p(γ(r)−1ζ, a(r)) = rγ(r)−nζn + ran−1 γ(r)−(n−1)ζn−1 + . . . + ra0

+ ãmγ(r)−mζm + ãm−1γ(r)−(m−1)ζm−1 + . . . + ã0.

Now ãmγ(r)−m/(rγ(r)−n) = ãmγ(r)n−m/r = 1 and so

p(γ(r)−1ζ, a(r)) = rγ(r)−n
[
ζn + γ(r)an−1ζ

n−1 + . . . + γ(r)na0

+ ζm + γ(r)(ãm−1/ãm)ζm−1 + . . . + γ(r)mã0/ãm

]
=: rγ(r)−npr(ζ).

But

pr(ζ) = ζn + ζm + γ(r)
[
an−1ζ

n−1 + γ(r)an−2ζ
n−2 + . . . + γ(r)n−1a0

+ (ãm−1/ãm)ζm−1 + γ(r)(ãm−2/ãm)ζm−2 + . . . + γ(r)m−1ã0/ãm

]
and limr↓0 γ(r) = 0. So we obtain from Theorem 4.1.2 that m roots of pr(ζ) tend to
0 and the remaining n−m roots tend to the roots of ζn−m + 1. Since by the above
equations, for every r > 0 and ζ0 ∈ C, pr(ζ0) = 0 if and only if p(γ(r)−1ζ0, a(r)) = 0,
the second statement in the proposition follows. �

Figure 4.1.1: Butterworth pattern for deg p(s, ã) = 2 and deg p(s, a) = 5

Proposition 4.1.3 is illustrated in Figure 4.1.1 where the two roots of the polynomial
p(s, ã) are marked by �, the five roots of the polynomial p(s, a(1)) = p(s, ã)+p(s, a)
are marked by small circles and the roots of p(s, a(r)) = p(s, ã)+ rp(s, a) are shown
for r decreasing from 1 to 0. The limiting distribution of the far roots is known as
a Butterworth pattern and has been used in network theory for the design of filters.
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It also plays a role in other branches of systems and control theory, see Notes and
References.
It seems natural to expect that if deg p(s, ã) = n the roots of p(s, a) can be repre-
sented as continuous functions of a ∈ B(ã, δ) ⊂ C

n+1 for small δ > 0. However the
following example shows that this is not possible in general.

Example 4.1.4. Consider the parametrized monic polynomial p(s, a(z)) = s2 − z with
complex parameter z. The roots of this polynomial are s1,2(z) = ±√

z where for z = reıϕ,
0 ≤ ϕ < 2π, we set

√
z =

√
reıϕ/2.

We first consider these roots for parameter values z ∈ C close to ẑ = 1. Let z = 1 + δ eıθ,
0 ≤ θ < 2π. For small δ = |z − 1| we have the first order approximation

√
z =

√
1 + δ eıθ ≈

{
1 + (δ/2) (cos θ + ı sin θ) if 0 ≤ θ ≤ π,

−[1 + (δ/2) (cos θ + ı sin θ)] if π < θ < 2π.

Therefore the two roots s1,2(z) = ±√
z = ±

√
1 + δ eıθ of p(s, a(z)) depend discontinuously

on z. Discontinuities occur at real values of z �= 1 (corresponding to θ = π and θ = 0).
However a continuous selection of the roots is possible. In fact, for z = 1 + δ eıθ let

s̃1(z) =

{√
1 + δ eıθ if 0 ≤ θ ≤ π,

−
√

1 + δ eıθ if π < θ < 2π;
s̃2(z) =

{
−
√

1 + δ eıθ, if 0 ≤ θ ≤ π,√
1 + δ eıθ, if π < θ < 2π.

Then s̃1(z) and s̃2(z) are roots of p(s, a(z)) which depend in a continuous way on z in a
small neighbourhood of 1.
Now consider the above polynomials close to the parameter value ẑ = 0. For z = δeıϕ,
0 ≤ ϕ < 2π, 0 < δ ' 1, the polynomial p(s, a(z)) = s2− z has two simple roots ±

√
δeıϕ =

±
√

δeıϕ/2. But in this case it is not possible to find continuous functions s1(·), s2(·) on
a small disk D(0, ε), ε > 0 such that {s1(z), s2(z)} = {√z, −√

z} for all z ∈ D(0, ε). In
fact assume the contrary and let δ ∈ (0, ε) be fixed. Setting z(θ) = δeıθ , 0 ≤ θ < 2π and
choosing j ∈ {1, 2} such that sj(z(0)) =

√
δ, then by continuity sj(δe

ıθ) =
√

δeıθ/2 for
θ ∈ [0, 2π). But then sj(·) is discontinuous at z = δ = δeı0 = δeı2π. �

From this example we see that, even if p(s, ã) is a monic polynomial of degree n, it
is in general not possible to find continuous functions sj(a), j ∈ n on a small neigh-
bourhood of ã in Cn+1 so that the set of roots of p(s, a) coincides with {sj(a); j ∈ n}
for ‖a − ã‖ sufficiently small. A problem may occur if p(s, ã) has multiple roots.
Continuous dependence of the roots of a polynomial on the coefficient vector can
be established if we consider the whole n-tuple of roots instead of the single roots
individually. For any a = (a0, . . . , an) ∈ C

n+1 with an �= 0 let

Λ(a) = )s1(a), · · · , sn(a)*

be the unordered n-tuple of the roots of p (s, a) taking account of multiplicities.
We define the distance1 between two unordered n-tuples Λ = )λ1, · · · , λn*, Λ′ =
)λ′

1, · · · , λ′
n* by

d(Λ, Λ′) = min
π∈Πn

max
k∈n

|λπ(k) − λ′
k| , (3)

1d(Λ, Λ′) is sometimes called “matching distance” in the literature, see [484].
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where Πn is the group of permutations of the set n. Note that the distances between
(0, 0, 1) and (0, 1, 1) with respect to this metric is 1 although the two underlying
number sets are identical. We denote the metric space of all unordered complex
n-tuples equipped with the metric (3) by Tn(C).
Theorem 4.1.2 implies the following corollary which gives a precise meaning to the
phrase “the roots of a polynomial depend continuously on its coefficient vector”.

Corollary 4.1.5. The map a �→ Λ(a) which associates with every coefficient vector
a ∈ {x ∈ C

n+1; xn �= 0} the unordered n-tuple of the roots of p(s, a) is continuous.

Example 4.1.6. The quadratic polynomial p (s, a) = s2 + a1s + a0 has roots

s1(a) =
−a1 +

√
a2

1 − 4a0

2
, s2(a) =

−a1 −
√

a2
1 − 4a0

2
, a0, a1 ∈ C

where again we set
√

z =
√

reıϕ/2 if z = reıϕ, 0 ≤ ϕ < 2π. We have already seen that for
the special case a1 = 0, a0 = −δ eıθ the individual roots sj(a) are not analytic at ã = 0
and are not continuous on any ball B(0, δ), δ > 0. Now let us consider the unordered
pair Λ(a) = (s1(a), s2(a)). Suppose a2

1 − 4a0 = r(a)eıϕ(a), 0 ≤ ϕ(a) < 2π, then the only
points of discontinuity of sj(a) occur when ϕ(a) = 0. Now if ϕ(a) > 0 is close to 0, then
s1(a) ≈ −[a1 −

√
r(a)]/2, s2(a) ≈ −[a1 +

√
r(a)]/2, whereas if ϕ(a) < 2π is close to 2π,

s1(a) ≈ −[a1 +
√

r(a)]/2, s2(a) ≈ −[a1 −
√

r(a)]/2. So we see that the map a �→ Λ(a)
is continuous at points where ϕ(a) = 0. Hence the map a �→ Λ(a) from C

2 to T2(C) is
continuous. �

In the following remark we state two important consequences of Corollary 4.1.5.

Remark 4.1.7. Let Ω ⊂ R
N be a parameter set in R

N , N ≥ 1 and suppose that
a : ω → (a0(ω), ..., an(ω)) is a continuous map from Ω to K

n+1 such that an(ω) �= 0 for all
ω ∈ Ω. If Cg ⊂ C is an open subset of the complex plane (“stability region”) then the set
of all ω ∈ Ω such that p(s, a(ω)) is Cg-stable (i.e. has all its roots in Cg) is open in Ω. If Ω
is connected and there exist ω1, ω2 ∈ Ω such that p(s, a(ω1)) is Cg-stable and p(s, a(ω2))
is not Cg-stable, then there exists ω0 ∈ Ω such that p(s, a(ω0)) has all its roots in the
closure of Cg and at least one root on the boundary ∂Cg of Cg. This latter statement is
called the Boundary Crossing Theorem in the literature, see Ex. 3. �

We will now extend some of the previous continuity results to sets of polynomials.
This generalization will be useful later for the spectral analysis of uncertain linear
systems. The following notation will be used. For any metric space (X, d) we denote
by K(X) the space of all compact subsets of X provided with the Hausdorff metric

dH(K1, K2) = max{max
x∈K1

dist(x, K2), max
x∈K2

dist(x, K1)} (4)

where, as usual, dist(x, K) := miny∈K d(x, y) for x ∈ X, K ∈ K(X). By this
definition we have for all K1, K2 ∈ K(X), ε > 0

dH(K1,K2) < ε ⇔ ∀x ∈ K1 ∃y ∈ K2 : d(x, y) < ε ∧ ∀y ∈ K2 ∃x ∈ K1 : d(x, y) < ε. (5)

Note that by the definition of the metric on Tn(C)

dH({Λ}, {Λ′}) ≤ d(Λ, Λ′), Λ, Λ′ ∈ Tn(C)

where {Λ} denotes the set of the elements of Λ, i.e. {Λ} := {λ1, . . . , λn} for Λ =
)λ1, . . . , λn*. The following lemma is an easy consequence of the above definitions.
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Lemma 4.1.8. Let h : K(Tn(C)) → K(C) be defined by

h(K) =
⋃

Λ∈K

{Λ}, K ∈ K(Tn(C)).

Then
dH(h(K), h(K ′)) ≤ dH(K, K ′), K, K ′ ∈ K(Tn(C)). (6)

Proof : Let K, K ′ be two compact subsets of Tn(C) and let Λ ∈ K be arbitrary,
then we have for every λ ∈ {Λ}

dist(λ, h(K ′)) = min
Λ′∈K ′

dist(λ, {Λ′}) ≤ min
Λ′∈K ′

d(Λ, Λ′) = dist(Λ, K ′).

Hence

max
λ∈h(K)

dist(λ, h(K ′)) = max
Λ∈K

max
λ∈{Λ}

dist(λ, h(K ′)) ≤ max
Λ∈K

dist(Λ, K ′),

and similarly
max

λ′∈h(K ′)
dist(λ′, h(K)) ≤ max

Λ′∈K ′
dist(Λ′, K).

This concludes the proof. �

We will also make use of the following lemma from topology.

Lemma 4.1.9. Let X, Y be metric spaces and f ∈ C(X, Y ) be a continuous map.
Then the induced map K �→ f(K) from the metric space K(X) into the metric space
K(Y ) (both provided with the corresponding Hausdorff metrics) is continuous.

Proof : Suppose K0 ∈ K(X) and ε > 0. For each x ∈ K0 there exists δx = δ(x, ε) >
0 such that dY (f(x), f(y)) < ε/2 for all y ∈ B(x, δx) = {w ∈ X; dX(w, x) < δx}.
By compactness there exist finitely many xi ∈ K0, i ∈ N such that K0 ⊂ U :=⋃

i∈N B(xi, δi/2) where δi = δ(xi, ε). Now choose 0 < δ < mini∈N δi/2 and let
K ∈ K(X) be such that dH(K0, K) < δ. Then for every x ∈ K0 ⊂ U there exist
i ∈ N and y ∈ K such that x ∈ B(xi, δi/2) and d(x, y) < δ. Hence x, y ∈ B(xi, δi)
and so

∀x ∈ K0 ∃y ∈ K : dY (f(x), f(y)) ≤ dY (f(x), f(xi)) + dY (f(xi), f(y)) < ε.

Similarly

∀y ∈ K ∃x ∈ K0 : dY (f(x), f(y)) ≤ dY (f(x), f(xi)) + dY (f(xi), f(y)) < ε.

By (5) the two inequalities together prove dH(f(K0), f(K)) < ε. �

In the following proposition we identify a polynomial p(s, a) of degree n with its
coefficient vector and consider the space Pn(C) ⊂ Cn[s] of all complex polynomials
of degree n as an (open) subset of Cn+1 ∼= Cn[s] with the induced metric.

Proposition 4.1.10. For every compact subset P ⊂ Pn(C) of complex polynomials
of degree n the associated root set

R(P) := {s ∈ C; ∃p ∈ P : p(s) = 0}

is compact. Moreover, the maps P �→ R(P) and P �→ Λ(P) from K(Pn(C)) into
K(C) and K(Tn(C)), respectively, are continuous.
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Proof : Since Λ : Pn(C) → Tn(C) is continuous by Corollary 4.1.5, Λ(P) is compact
in Tn(C) for every P ∈ K(Pn(C)). It follows from Lemma 4.1.9 that Λ : P �→ Λ(P)
is a continuous map from K(Pn(C)) into K(Tn(C)). But the map P �→ R(P) is the
composition of the map P �→ Λ(P) and the map h : K(Tn(C)) → K(C) defined in
Lemma 4.1.8. Hence the proposition follows by application of this lemma. �

In the situation of the proof of Theorem 4.1.2, suppose that s̃j is a simple root of
p (s, ã) ∈ Cn[s] for some j ∈ �, then D(s̃j, ε) will contain exactly one root sj(a)
of p (s, a) for each a ∈ B(ã, δ(ε)) ⊂ Cn+1. Applying the Residue Theorem (more
precisely, Theorem A.2.20 (ii) with g(s) = s) we obtain

1

2πı

∫
Γj

s p′(s, a)

p (s, a)
ds = sj(a), a ∈ B(ã, δ(ε))

where p′(s, a) = d
ds

p(s, a). The LHS is analytic in a and so we have

Theorem 4.1.11. If s̃j is a root of multiplicity one of the polynomial p (s, ã), then
there exist δ, ε > 0 such that for all a ∈ B(ã, δ) the polynomial p (s, a) has exactly
one root sj(a) (of multiplicity one) in D(s̃j, ε). This root sj(a) depends analytically
on a in B(ã, δ) and satisfies sj(ã) = s̃j.

4.1.2 Polynomials with Holomorphic Coefficients

Now suppose the coefficients of the polynomial are continuous functions ai(z) of one
real or complex parameter z. As a consequence of Theorem 4.1.2 the unordered
n-tuple of roots of p (s, a(z)) depends continuously on z. However, the number
of distinct roots may change quite irregularly – the splitting and coalescence of
roots may take place in a very complicated manner. More specific results can be
obtained if the coefficients depend analytically on the parameter z so that tools from
the complex analytic theory of algebraic functions can be employed. This will be
the subject of the present subsection. For the terminology and some elements of
Complex Analysis we refer to Section A.2.

Let Ω be a domain (connected open subset) in the complex plane and denote
by O(Ω) the ring of holomorphic, i.e. complex analytic functions on Ω. Since Ω is
connected, it follows from the Identity Theorem A.2.9 that a product in O(Ω) is zero
if and only if one of the factors is zero. Thus O(Ω) is an integral domain, that is a
commutative ring with multiplicative unit2 and without zero divisors. The quotient
field of this integral domain is the field of meromorphic functions on Ω, denoted by
M(Ω). By O(Ω)[s] (resp. M(Ω)[s]) we denote the ring of all polynomials in s

p (s, a(z)) = an(z)sn + an−1(z)sn−1 + · · ·+ a0(z) (7)

with coefficients ai(z) in O(Ω) (resp. M(Ω)), i = 0, . . . , n, n ∈ N. For the conve-
nience of the reader we recall some basic algebraic results concerning polynomials
with coefficients in an arbitrary field, see [503, §34], [330].

2the constant function 1 on Ω
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Remark 4.1.12. Let K be a field and K[s] the ring of polynomials in the variable s

with coefficients in K. p(s) ∈ K[s] is said to be irreducible if deg p ≥ 1 and p has no
proper factor, i.e. there exists no q ∈ K[s], 0 < deg q < deg p such that q|p. An irreducible
polynomial p(s) ∈ K[s] is automatically prime, i.e. if p divides a product q1q2 in K[s] then
p divides q1 or q2. It follows easily by induction on n = deg p that an arbitrary polynomial
p(s) ∈ K[s] admits a factorization of the form

p(s) = an

�∏
i=1

pi(s)
mi , mi ≥ 1, i ∈ �

where an ∈ K is the leading coefficient of p(s) and the factors pi are monic, irreducible
and mutually distinct. Modulo permutation of the pi this decomposition of p into its
irreducible factors is uniquely determined.
The resultant matrix of two polynomials p, q ∈ K[s] is defined in the same way as for
complex polynomials. Given p(s) =

∑n
k=0 aks

k, q(s) =
∑m

k=0 bks
k, n,m ≥ 1, the resultant

matrix R(p, q) = Rn,m(p, q) ∈ K
(m+n)×(m+n) defined by (3.4.32) is singular if and only

if p, q have a common factor of positive degree or am = bn = 0. If K = C and deg p =
n,deg q = m, R(p, q) vanishes if and only if p and q have a common root.
The discriminant Dn(p) of p is by definition the determinant of the (2n − 1) × (2n − 1)
resultant matrix R(p, p′) = Rn,n−1(p, p′) where p′(s) =

∑n
k=1 kaks

k−1 is the derivative
of p(s) with respect to s. The discriminant is a polynomial in the coefficients a0, . . . , an

of p and vanishes exactly at those coefficient vectors (a0, . . . , an) ∈ K
n+1 for which the

polynomials p and p′ have a non-trivial common factor or an = 0. In particular, if K = C,
the discriminant Dn(p) of the complex polynomial p(s) of degree n is zero if and only if p

has multiple roots (in which case p(s) and p′(s) have a joint linear factor). �

Definition 4.1.13. Let p (s, a(z)) ∈ M(Ω)[s] be any polynomial with meromorphic
coefficients of the form (7) with an(z) �≡ 0. z0 ∈ Ω is said to be a critical point or
critical value of z for p, if the leading coefficient an(z) vanishes at z0 or z0 is a pole
of one of the coefficients ai(z) or the polynomial p (s, a(z0)) ∈ C[s] has a strictly
smaller number of distinct roots than p (s, a(z)), for some other z ∈ Ω. The set of
critical points of p (s, a(z)) is denoted by Cp.

Outside the set Cp ⊂ Ω of critical points, the equation (7) has a constant number of
distinct roots. The next theorem shows that the critical points are isolated in Ω.

Theorem 4.1.14. Let p(s) = p(s, a(z)) ∈ M(Ω)[s] be a polynomial of the form (7)
with an(z) �≡ 0. Then

(i) the critical set Cp is locally finite in Ω, i.e. for every compact subset K ⊂ Ω
the set K ∩ Cp is finite.

(ii) In every simply connected domain D ⊂ Ω\Cp there exist n = deg p holomorphic
functions s1(·), . . . , sn(·) ∈ O(D) (not necessarily all distinct), such that

p (s, a(z)) = an(z)

n∏
i=1

(s − si(z)) , z ∈ D. (8)

(iii) The multiplicity of each root si(z) of p (s, a(z)) is constant on every simply
connected domain D ⊂ Ω \ Cp.



378 4. Perturbation Theory

Proof : p can be represented as a product p = an

∏�
i=1 pmi

i where an = an(z) ∈
M(Ω) is the leading coefficient of p, mi ≥ 1 and the pi ∈ M(Ω)[s], 1 ≤ i ≤ � are
the irreducible monic factors of p in M(Ω)[s], see Remark 4.1.12.
We will first prove assertions (i)-(iii) for irreducible monic polynomials.3 Let q(s) =
q(s, b(z)) ∈ M(Ω)[s] be an irreducible monic polynomial of degree m with coefficient
vector b(z) = (b0(z), . . . , bm−1(z), 1). The set Pq of all the poles of the coefficients
bi(z) of q is locally finite in Ω. Since q(s) is irreducible, q cannot have a non-trivial
common factor with q′ in M(Ω)[s] and so, applying Remark 4.1.12 to q ∈ K[s] where
K = M(Ω), we see that the discriminant of q, ψq = Dm(q) ∈ M(Ω), must be a
non-zero meromorphic function on Ω. ψq(z) is analytic on Ω\Pq, and for each point
z0 ∈ Ω \ Pq, ψq(z0) is the discriminant of the complex polynomial q(s, b(z0)) ∈ C[s].
By Remark 4.1.12 ψq(z0) = 0 if and only if q(s, b(z0)) has multiple roots. Let Zq

denote the set of zeros of ψq(z) in Ω \ Pq. Then Zq is locally finite in Ω, and
q(s, b(z0)) has m distinct simple zeros if z0 ∈ Ω \ (Pq ∪ Zq). This proves that
the set of critical points of q is given by Cq = Pq ∪ Zq and hence it is locally
finite in Ω. Now let D be any simply connected domain in Ω \ Cq. For every
z0 ∈ D there exist by Theorem 4.1.11 a neighbourhood U of z0 in D and m analytic
functions s1(·), · · · , sm(·) : U → C such that q(s, b(z))) =

∏m
i=1(s − si(z)) and

si(z) �= sj(z) for i �= j, z ∈ U . It follows from the Monodromy Theorem A.2.24 that
this representation of q(s, b(z)) as a product of distinct analytic linear factors can
be extended to the whole domain D. We see therefore that assertions (i)-(iii) hold
for arbitrary irreducible monic polynomials.
We will now prove statements (i)-(iii) for the given polynomial p(s) = p(s, a(z)) by
applying the above results to its irreducible monic factors pi, i ∈ �. Let Pp be the set
of poles of the coefficients ai(z), i = 0, . . . , n of p in Ω and let Ω0 be the set of zeros
of the leading coefficient an(z). Then Pp ∪ Ω0 is locally finite in Ω and contained
in Cp by Definition 4.1.13. It is a straightforward exercise (see Ex. 4) to prove that
every pole z0 of one of the coefficients of pi(s), i ∈ � is a pole of one of the coefficients
of the product

∏�
i=1 pmi

i , hence belongs to Pp∪Ω0. So the union of the pole sets Ppi
,

i ∈ � is contained in Cp. Let bi(z) be the coefficient vector of pi, pi(s) = pi(s, b
i(z)),

ni = deg pi, i ∈ �, then pi has ni simple roots for z ∈ Ω \ Cpi
. For i, j ∈ �, i �= j the

polynomials pi, pj ∈ M(Ω)[s] are coprime and therefore (see Remark 4.1.12) the
resultant ψi,j = Rni,nj

(pi, pj) ∈ M(Ω) must be a non-zero meromorphic function on
Ω. ψi,j(z) is analytic on Ω\Pp, and for each point z0 ∈ Ω\Pp, ψi,j(z0) is the resultant
of the complex polynomials pi(s, b

i(z0)), pj(s, b
j(z0)) ∈ C[s]. By Remark 4.1.12

ψi,j(z0) = 0 for z0 ∈ Ω \ Pp if and only if pi(s, b
i(z0)) and pj(s, b

j(z0)) have common
roots. The set Zi,j of zeros of ψi,j(z) in Ω \ Pp is locally finite in Ω. Let Z denote

the union of these sets for all i, j ∈ �, i �= j. If z0 ∈ Ω \
(
Ω0 ∪ Pq ∪ Z ∪

⋃
i∈� Zpi

)
,

the complex polynomial p(s, a(z0)) has ν =
∑�

i=1 ni distinct roots, and this is the
maximal number of distinct roots of p(s, a(z)) for z ∈ Ω \ (Pp ∪ Ω0). On the other
hand if z0 ∈ Zpi

, i.e. pi(s) = pi(s, b
i(z0)) has strictly less than ni distinct roots, or

if z0 ∈ Zi,j for some i, j ∈ �, i �= j then p(s, a(z0)) has strictly less than ν distinct

3Throughout the proof we make use of the fact that the sets of poles and zeros of a meromorphic
function on Ω are locally finite in Ω, see Section A.2.
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roots. Thus
Cp = Pp ∪ Ω0 ∪ Z ∪

⋃
i∈�

Zpi
,

so that Cp (as a finite union of locally finite subsets) is locally finite in Ω.
To prove (ii) and (iii) let D be a simply connected subset of Ω\Cp. Since Cpi

= Ppi
∪

Zpi
⊂ Cp for i ∈ �, all the irreducible factors pi can be decomposed on D into linear

factors with analytical roots. Hence there exist n analytic functions si(·) : D → C

(not necessarily distinct) such that (8) holds. It follows from Definition 4.1.13 that
two roots si(z), sj(z) of p which coincide at some point z ∈ D ⊂ Ω \Cp coincide on
the whole domain D. This proves (ii) and (iii). �

In the sequel we will focus on monic polynomials with analytic coefficients on Ω,
p (s, a(z)) ∈ O(Ω)[s]. Then z0 ∈ Ω is in Cp if and only if the number of roots of
p (s, a(z)) strictly decreases at z = z0. The following example illustrates what may
happen at a critical parameter value z0 ∈ Cp. In particular it shows that the roots
si(z) of p (s, a(z)) may have a branch point at z0 (see below) but not necessarily so.

Example 4.1.15. Consider the quadratic polynomial p (s, a(z)) = s2 + a1(z)s + a0(z),
z ∈ Ω = C.
(i) If a1(z) = −(1 + 2z), a0(z) = z + z2 then the two roots s1(z) = z, s2(z) = 1 + z are
distinct for all z ∈ C, so that there are no critical points and s1(z), s2(z) are both analytic
on C.
(ii) If a1(z) = z, a0(z) = 0, then s1(z) = 0, s2(z) = −z are analytic functions on C

although there is one critical point at z = 0.
(iii) If a1(z) = 0, a0(z) = −(1+z2), then s1,2(z) = ±(1+z2)1/2 are branches of one double
valued analytic function with (algebraic) singularities at the two critical points z = ±ı. �

We now analyze how the roots of a monic polynomial p (s, a(z)) ∈ O(Ω)[s] behave
around a critical point z0 ∈ Cp. For this we rely heavily on results from Complex
Analysis and refer to the literature for the required background, see Notes and
References. Let D(z0, r), r > 0 be a disk such that D(z0, r) ∩ Cp = {z0}. Suppose
that s1, . . . , s� are the distinct roots of p(s, a(z0)), with multiplicities m1, . . . , m�

respectively, and let ε > 0 be sufficiently small so that the closed disks D(sj, ε), j ∈ �
are mutually disjoint. By Theorem 4.1.2 there exists δ ∈ (0, r) such that p(s, a(z))
has exactly mj roots (accounting for multiplicities) in D(sj, ε) for all z ∈ D(z0, δ).
Since D(z0, δ) ⊂ D(z0, r) the number of distinct roots of p(s, a(z)) in D(sj, ε) will
be the same, say κj , for all z ∈ D◦(z0, δ) := D(z0, δ) \ {z0}. Now consider the
punctured disk D◦(z0, r) and the cut disk D−(z0, r) := {z ∈ D◦(z0, r); 0 < arg(z −
z0) < 2π} (see Figure 4.1.2). Since D−(z0, r) is simply connected, the distinct
roots of p(s, a(z)) can be represented by analytic functions si(z) on D−(z0, r) and
their multiplicities are constant on D−(z0, r) (by the previous theorem). Now for
z ∈ D◦(z0, δ) ∩ D−(z0, r) = D−(z0, δ) the root si(z) belongs to exactly one of the
disks D(sj, ε). Grouping the roots on D−(z0, r) according to the disk D(sj, ε), j ∈ �
to which they belong when z is restricted to |z − z0| < δ, we obtain, for each j ∈ �,
κj analytic functions sjk(z) on D−(z0, r) such that

p(s, a(z)) =

�∏
j=1

κj∏
k=1

(s − sjk(z))µjk , z ∈ D−(z0, r), lim
z→z0

sjk(z) = sj, k ∈ κj, (9)
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where µjk ≥ 1 denotes the (constant) multiplicity of the root sjk(z) of p(s, a(z)), z ∈
D−(z0, r). In the sequel we identify notationally the analytic functions sjk(z) with
the function elements (or power series) they determine at given points in D−(z0, r).
The power series sjk(z) can be continued analytically (see Section A.2) along every
arc in D◦(z0, r). Now consider the function element sjk(z) for any j ∈ �, k ∈ κj in

a small neighbourhood of z1 = z0 + ρe−ıα where ρ ∈ (0, r), α ∈ (0, 2π) are fixed.
Continuing this function element analytically along the circular arc

γ(t) = z0 + ρeıt, t ∈ [−α, 2π − α] (10)

we obtain a new function element s̃jk(z) at z1 for each j ∈ �, k ∈ κj , (see Fig-

ure 4.1.2). The identity theorem implies that the factorization (9) is preserved by
analytic continuation, i.e. equality (9) holds with each of the sjk(z) replaced by the
corresponding s̃jk(z). Moreover, continuing any function element sjk(z) at some
point in the small cut disk D−(z0, δ) analytically along a circular arc γ0 in D◦(z0, δ)
the resulting root element s̃jk(z) remains in D(sj, ε) since by construction of δ no
continuous root function can leave D(sj, ε) along an arc in D◦(z0, δ). Thus every
root function s̃jk(z) on D−(z0, r) obtained by analytic continuation of sjk(z) along
the arc γ (10) coincides with one of the analytic roots sjk′(z), k′ ∈ κj , and this root

has the same multiplicity as sjk(z), i.e. µjk = µjk′ (since multiplicities are preserved
by analytic continuation, see Theorem 4.1.14 (iii)).
Summarizing, the map πz0 : sjk(·) �→ sjk′(·) defines a permutation of the finite set
of root functions on D−(z0, r), {sjk(·); j ∈ �, k ∈ κj}, and each sjk(·) belongs to a
unique cycle of this permutation. We have just seen that πz0 preserves multiplicities
and leaves the sets {sjk(·); k ∈ κj} invariant. Suppose that via analytic extension

along a circular arc γ, sjk1(z) produces sjk2(z), sjk2(z) produces sjk3(z) and so on.
For some q ≤ κj the analytic extension of sjkq(z) along γ reproduces sjk1(z). In
this case we say that sjk1(z) generates a cycle of period q in D◦(z0, r). The cycle
(sjk1(z), . . . , sjkq(z)) represents a q-valued analytic function f(z) on D◦(r) which
consists of all function elements obtained by analytic continuation of the power se-
ries sjk1(z), · · · , sjkq(z) along arbitrary paths in D◦(r). The function elements thus
obtained at a point on the cut coincides with some sjki

(z) on the lower half disk
and with the corresponding analytic continuation across the cut, sjki+1

(z) (where
kq+1 := k1), on the upper half disk, (see Figure 4.1.2 where the change in root is

z0

z1

γ

Figure 4.1.2: Analytic continuation defining the permutation πz0

symbolized by shading). On the other hand, every function element of f at a point
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z1 ∈ D−(z0, r) coincides with the function element determined by some sjki
(z), i ∈ q

at that point. Thus the q-valued function f associates with every point z in the
punctured disk D◦(z0, r) a set f(z) of q distinct values of the following form:

f(z) =

{
{sjk1(z), · · · , sjkq(z)} if z ∈ D−(z0, r),
{lim t↑2π sjki

(z0 + ρeıt) ; i ∈ q} if z = z0 + ρ, 0 < ρ < r.

By continuity of the roots (Theorem 4.1.2) all the q elements of f(z) converge to sj

as z → z0. In particular, if q = 1, then z = z0 is a removable singularity of f so that
f defines an analytic function on the whole disk D(z0, r). Otherwise z0 is called a
branch point of order q − 1 of f and the root functions fi(z) = sjki

(z), i ∈ q are
called the branches of f on D−(z0, r). Now suppose that q ≥ 2. We will show that
f(z) can be represented by a single-valued analytic function F (ζ) of ζ = (z − z0)

1/q

near ζ0 = 0. Let D̃◦(r) = {ζ ∈ C ; 0 < |ζ | < r1/q} and define ϕ : D̃◦(r) → D◦(z0, r)
by ϕ(ζ) = z0 + ζq. ϕ maps each sector

Ck = {s ∈ D̃◦(r); ((k − 1)/q)2π ≤ arg s < (k/q)2π}, k ∈ q

one-to-one onto D◦(z0, r). Now fix any z1 = z0 + ρe−ıα ∈ D−(z0, r) and choose ζ1 ∈
ϕ−1(z1) in C1. The function ζ �→ sjk1(ϕ(ζ)) is analytic near ζ1 and hence determines

a power series S1(ζ) at ζ1. We can continue S1(ζ) along all paths in D̃◦(r) to obtain

a (possibly multi-valued) analytic function F (ζ) on D̃◦(r). In fact F (ζ) is single-
valued. To see this consider the circular path γ̃ starting at ζ1 whose trace is mapped
by ϕ onto the trace of the circular arc γ (10). As ζ travels along γ̃ once around
0, ϕ(ζ) = z0 + ζq travels q times around z0 in D◦(z0, r) and S1(ζ) = sjk1(ϕ(ζ)) is
analytically continued via S2(ζ) = sjk2(ϕ(ζ)), · · · , Sq(ζ) = sjkq(ϕ(ζ)), to Sq+1(ζ) =
S1(ζ). Hence S1(ζ) = sjk1(ϕ(ζ)) remains unchanged by analytic continuation along
γ̃ and this proves that F is single valued. F (ζ) coincides with sjki

(ϕ(ζ)) on the
open sector int Ci. As a single-valued analytic function on a punctured disk, F (·)
admits a Laurent expansion F (ζ) =

∞∑
k=−∞

αkζ
k on D̃◦(r) (see Section A.2). Since

the roots in f(z) converge to sj as z → z0, it follows that αk = 0 for k < 0 and
limζ→0 F (ζ) = α0 = sj . Thus F (ζ) = sj +

∑∞
k=1 αkζ

k is an analytic function on the
full disk D(0, r1/q) satisfying F (ζ) = sjki

(ϕ(ζ)) on the open sectors int Ci, i ∈ q. As
a consequence we see that the q values of f at z ∈ D◦(r) are given by F (ζν), ν ∈ q
where ζν runs through all the q-th roots of z − z0:

f(z) = {F (ζν); ζν = ρ1/qeν2πı/qeıθ/q, ν ∈ q}, z = z0 + ρeıθ ∈ D◦(z0, r), 0 ≤ θ < 2π. (11)

Summarizing, we obtain the following

Theorem 4.1.16. Suppose that p (s, a(z)) ∈ O(Ω)[s] is a monic polynomial of the
form (7) with analytic coefficients, z0 ∈ Cp is a critical value of z and D(z0, r) is a
disk with centre z0 such that D(z0, r)∩Cp = {z0}. Let (s1(z), · · · , sq(z)) be any one
of the cycles obtained by analytic continuation of the roots of (7) along a circular
path around z0 in D(z0, r). Then the following hold.

(i) If q = 1, s1(z) can be continued analytically onto D(z0, r). If q ≥ 2,
(s1(z), · · · , sq(z)) defines by analytic continuation in D◦(z0, r) a q-valued holo-
morphic function with branch point z0.
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(ii) The branches of this q-valued analytic function are represented by the
Puiseux series

sν(z) =
∞∑

k=0

αkw
νk(z − z0)

k/q , z ∈ D−(z0, r), ν = 1, · · · , q, (12)

where w = e2πı/q and (z − z0)
1/q = ρ1/qeıθ/q for z = z0 + ρeı θ, 0 < θ < 2π.

(iii) All the roots sν(z), ν ∈ q have the same multiplicities, which are constant
throughout D−(z0, r), and converge to the same root α0 of p (s, a(z0)) (the
absolute term of the Puiseux series) as z → z0.

For later use we note the following.

Remark 4.1.17. (i) Suppose that s1, . . . , s� are the distinct roots of p(s, a(z0)), with
multiplicities m1, . . . ,m�, and z0 ∈ Cp. Let r > 0 be such that D(z0, r)∩Cp = {z0} so that
we have the factorization (9) of p(s, a(z)) for z ∈ D−(z0, r). The analytic root branches
sjk(z), k ∈ κj are said to depart from the centre sj by splitting at z = z0. The set of

these root elements sjk(z), k ∈ κj is called the sj-group of roots of p(s, a(z)) near z = z0

with centre sj. In general such a sj-group consists of several cycles (resp. the associated
q-valued analytic functions) with the same centre sj.
(ii) If f is any q-valued analytic function, q ≥ 2 in the sj-group of roots of p(s, a(z))
near z0 and F the associated single valued analytic function constructed above, then (11)
implies

{sj} ∪
⋃

0<|z|<r

f(z) = F (D(0, r1/q)) .

Since F is analytic and non-constant, hence an open map (see Theorem A.2.11), the set
F (D(0, r1/q)) is an open neighbourhood of sj for all sufficiently small r > 0. �

Example 4.1.18. Consider again Example 4.1.15 (iii) where the roots are s1,2(z) =
±(1+z2)1/2 and the critical set is Cp = {ı,−ı}. The circular path γ(θ) = ı+eıθ, θ ∈ [0, 2π]
from z1 = 1 + ı to z1 winds once around the critical point z0 = ı (see Figure 4.1.3). Since

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

γ

ı γ(0) = z1

s1(γ(θ))

s1(γ(0))

s2(γ(0))
s2(γ(θ))

Figure 4.1.3: Interchange of the roots: s1(γ(2π)) = s2(γ(0))

s1,2(γ(θ)) = ±(1 + γ(θ)2)1/2 = ±(γ(θ) + ı)1/2(γ(θ) − ı)1/2

= ±(2ı + eıθ)1/2eıθ/2 , 0 ≤ θ < 2π,

we see that the root s1(z) = +(1 + z2)1/2 produces by analytic continuation along γ the
root s2(z) and vice versa (see Figure 4.1.3). Hence z0 = ı is a branch point (of order 1)
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for the roots of p (s, a(z)) = s2 − (1 + z2). Note further that for z near ı, by using the
binomial theorem, we have

s1(z) = (1 + z2)1/2 = (z + ı)1/2(z − ı)1/2 = (2ı)1/2(1 +
z − ı

2ı
)1/2(z − ı)1/2

= (2ı)1/2(z − ı)1/2 +

∞∑
h=1

1
2 (1

2 − 1) · · · (1
2 − h + 1)

h! (2ı)(h−
1
2
)

(z − ı)(h+ 1
2
).

This is the Puiseux series of s1(z) at z0 = i. �

If z0 ∈ Cp is a branch point for the roots of p, i.e. the permutation πz0 defined by
the analytic continuation of the roots along a circular path around z0 is not the
identity, it will not be possible to find continuous (single-valued) functions si(z),
i = 1, · · · , n representing the complete set of roots p (s, a(z)) on a disk around the
branch point z0, see Example 4.1.4. However, a continuous parametrization of the
roots is possible if the parameter z is restricted to a real interval. In this case it is
even sufficient to only assume the continuous dependence of the coefficient vector
on z = r.

Proposition 4.1.19. Suppose I ⊂ R is an interval and p (s, a(r)) ∈ C(I, C)[s] is a
monic polynomial of the form (7) whose coefficient vector a(r) depends continuously
on r ∈ I. Then there exist n (single-valued) continuous functions si(·) : I → C such
that, for each r ∈ I, Λ(a(r)) = )s1(r), · · · , sn(r)* is the unordered n-tuple of roots
of p (s, a(r)) taking into account multiplicities.

The proposition can be proved by induction on n, but since the proof is not in-
structive and cumbersome (though elementary) we omit it (see Kato (1980) [293,
Theorem II.5.2].
At a branch point z = z0 of p (s, a(z)) ∈ O(Ω)[s] the distances |si(z) − si(z0)| of a
root from its value at z0 will, in general, be of the order |z − z0|1/q where q is the
period of the cycle to which si(z) belongs (cf. (12)). If q ≥ 2 the rate of change
of si at z = z0 will then be infinitely large. On the other hand, if z0 ∈ Ω is not a
branch point of p (s, a(z)), all the roots sj are analytic on some neighbourhood of

z0 (Theorems 4.1.14 and 4.1.16). The derivative s′j(z0) =
dsj

dz
(z0) is then called the

sensitivity of the root sj at z0. If |s′j(z0)| is large the uncertainty about the location
of sj(z0) is large when the parameter value z0 is not known exactly. In the following
simple example we derive a formula for the sensitivity of sj for the case where the
coefficient vector a(z) depends affine linearly on z.

Example 4.1.20. Let p (·), q(·) ∈ C[s] be two given polynomials with deg q < deg p and
consider the parametrized family

p (s, a(z)) = p (s) + zq (s), z ∈ C. (13)

Suppose that s̃j is a simple root of p (·) and let sj(z) be the analytic root of p(s, a(z))
in the vicinity of z0 = 0 satisfying sj(0) = s̃j (see Theorem 4.1.11). Differentiation of
p (sj(z)) + zq (sj(z)) = 0 with respect to z at z = 0 yields

dsj

dz
(0)p′(sj(0)) + q (sj(0)) = 0.
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Hence the sensitivity of the root s̃j is given by s′j(0) = − q (s̃j)

p′(s̃j)
and to first order

sj(z) ≈ s̃j − z
q (s̃j)

p′(s̃j)
. (14)

�

Formula (14) indicates that the root sensitivity of an affinely perturbed polynomial
(13) may become arbitrarily large in the vicinity of a multiple zero z0 of p, where
p′(z0) = 0. But root sensitivities may even be very high for polynomials whose roots
are all simple and well-separated. This is illustrated in the next example. Due to the
presence of rounding errors the accurate computation of such roots will be difficult.

Example 4.1.21. Consider the Wilkinson polynomial

p (s) = (s − 1)(s − 2) · · · (s − 20) = s20 + a19s
19 + . . . + a0

and the root s̃20 = 20. If we change a19 = −210 to a19(1 + z), so that q(s) = a19s
19 (see

(13)) then the corresponding sensitivity of s̃20 is

s′20(0) = − q(20)

p′(20)
=

210 · 2019

19!
≈ 0.9 · 1010.

�

4.1.3 The Sets of Hurwitz and Schur Polynomials

In this subsection we consider the sets of real monic Hurwitz and Schur polynomials
of a given degree n. We establish some elementary topological properties of these
sets in the space of coefficient vectors and characterize their boundaries and convex
hulls.
Since we only consider monic polynomials we omit the leading coefficient from the
coefficient vector and identify each real polynomial of the form

p(s, a) = sn + an−1s
n−1 + . . . + a0 (15)

with its coefficient vector a = (a0, . . . , an−1) ∈ Rn. Let Hn (resp. Sn) denote the
set of coefficient vectors of all the real monic Hurwitz (resp. Schur) polynomials of
degree n. By Theorem 4.1.2 the sets Hn and Sn are open subsets of Rn, and by
the results of Section 3.4 both of them can be described by finite sets of algebraic
inequalities. However, it is difficult to get some idea of the geometry of these sets
from the inequalities. In the following, we mainly concentrate on the Schur case and
leave some of the corresponding development of the Hurwitz case to the exercises (see
also Notes and References). We first derive some elementary topological properties
by studying the boundary ∂Sn of the set Sn.

Lemma 4.1.22. The boundary ∂Sn consists of all those polynomials with roots in
D which have at least one root on ∂D.
Proof : Since the set of roots depends continuously on the coefficient vector, every
polynomial p (s, a), a ∈ ∂Sn has all its roots in D and at least one root on ∂D.
Conversely suppose p (s, a) = p1(s, a) p2(s, a) where p1(s, a) ∈ R[s] has all its roots
in D and p2(s, a) =

∏k
i=1(s − si) ∈ R[s] with si ∈ ∂D and k ≥ 1. Then a �∈ Sn

and setting p (s, a(t)) = p1(s, a)
∏k

i=1(s − tsi) for t ∈ [0, 1] we see that a(t) ∈ Sn for
t ∈ [0, 1), whence lim

t→1
a(t) = a ∈ ∂Sn. �
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If a real polynomial p (s, a) ∈ R[s] has a root on ∂D, there are two possibilities:
either the root is ±1, or the root is in C \ R in which case its complex conjugate is
also a root. The set of coefficient vectors a ∈ Rn with p (1, a) = 0 resp. p (−1, a) = 0
form two hyperplanes in R

n denoted by H1, H−1

H1 = {a ∈ R
n ; 1 + an−1 + an−2 + · · ·+ a0 = 0},

H−1 = {a ∈ R
n ; 1 − an−1 + an−2 − · · ·+ (−1)na0 = 0}. (16)

Let us now determine the set of coefficient vectors a ∈ Rn for which p (s, a) has a
pair of complex roots α± ıω ∈ ∂D, α, ω ∈ R, ω �= 0, α2+ω2 = 1. If p (α± ıω, a) = 0,
then p (s, a) is of the form

p (s, a) = (s2 − 2αs + 1)q(s), where q(s) = sn−2 + qn−3s
n−3 + · · ·+ q0 ∈ R[s]. (17)

By comparing the coefficients of sj , j = 0, · · · , n − 1 on both sides of the first
equation in (17) we see that

a0 = q0 , a1 = q1 − 2αq0 , and ai = qi − 2αqi−1 + qi−2, i = 2, . . . , n − 1 (18)

where qn−1 := 0. For fixed α ∈ (−1, 1) the coefficient vectors a lie in an (n − 2)–
dimensional linear subspace Hα parametrized by the coefficient vector of the monic
polynomial q. Whereas for fixed q0, · · · , qn−3 the coefficient vector moves along
a straight line as α varies between −1 and +1. Altogether we get the following
decomposition of the boundary of Sn into the intersections of Sn with two (n − 1)–
dimensional and infinitely many (n − 2)–dimensional affine subspaces of Rn.

∂Sn = Sn ∩

⎛⎝H1 ∪ H−1 ∪
⋃

α∈(−1,1)

Hα

⎞⎠ . (19)

Example 4.1.23. In this example we determine ∂Sn for n = 1, 2, 3.

(i) n = 1, p (s,a) = s + a0. Then S1 = (−1, 1), H±1 = {±1}, ∂S1 = {−1,+1}.
(ii) n = 2, p (s,a) = s2 + a1s + a0. In this case ∂S2 is given by (19) where

H1 = {a ∈ R
2 ; 1 + a1 + a0 = 0}, H−1 = {a ∈ R

2 ; 1 − a1 + a0 = 0}
Hα = {a ∈ R

2 ; a1 = −2α , a0 = 1}, α ∈ (−1, 1).

a1

a0

1−a1+a0=0

+1

1+a1+a0=0

−1

S2

Figure 4.1.4: The set S2

(iii) n = 3, p (s,a) = s3 + a2s
2 + a1s + a0. By (16) and (18) we have
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Figure 4.1.5: The set S3

H1 = {a ∈ R
3 ; 1 + a2 + a1 + a0 = 0}, H−1 = {a ∈ R

3 ; 1 − a2 + a1 − a0 = 0}
Hα = {(q0, 1 − 2αq0, q0 − 2α) ∈ R

3 ; q0 ∈ R}, α ∈ (−1, 1).

Hence
⋃

α∈(−1,1)

Hα is part of the hyperbolic paraboloid described by a0a2−a2
0−a1 +1 = 0,

see Figure 4.1.5. The boundary ∂S3 is composed of the two flat triangles ABC, BCD

and the hyperbolic paraboloid spanned between A, B, D, C where A = (1, 3, 3), B =
(−1,−1, 1), C = (+1,−1,−1), D = (−1, 3,−3). More precisely, H1 ∩ ∂S3 is just the
triangle BCD and H−1 ∩ ∂S3 is the triangle ABC. For each α ∈ (−1, 1), Hα ∩ ∂S3 is a
straight line joining the point (1, 1 − 2α, 1 − 2α) on AC (q0 = 1) to the point (−1, 1 +
2α,−1 − 2α) on BD (q0 = −1). �

In the above example, Si, i ∈ 3 is the unique bounded connected component of the
set Ri \ ∂Si i ∈ 3 obtained by removing the surface ∂Si from Ri, and its convex hull
is a simplex. We will now generalize these findings to arbitrary n.

Definition 4.1.24. A set Ω ⊂ Rn is contractible to x0 ∈ Ω if there exists a contin-
uous map F : Ω × [0, 1] → Ω, such that for all x ∈ Ω

F (x, 0) = x , F (x, 1) = x0.

Proposition 4.1.25. The set of Schur polynomials Sn is contractible to the origin.
R

n\∂Sn consists of two connected components of which one is bounded and the other
is unbounded. The bounded one coincides with Sn.

Proof : For any a ∈ Sn, t ∈ [ 0, 1] let

F (a, t) = ((1 − t)na0, (1 − t)n−1a1, · · · , (1 − t)an−1).

Clearly F (a, 0) = a and F (a, 1) = 0 for all a ∈ Sn. F (a, t) is the coefficient vector
of the polynomial

pt(s, a) = sn + (1 − t)an−1s
n−1 + · · · + (1 − t)na0

= (1 − t)n
(
[s/(1 − t)]n + an−1[s/(1 − t)]n−1 + · · ·+ a0

)
, if t ∈ [0, 1).
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So for t ∈ [ 0, 1], the roots of pt(s, a) are the same as those of p0(s, a) = p (s, a)
multiplied by (1 − t). Hence F (a, t) ∈ Sn for all t ∈ [ 0, 1], a ∈ Sn and F :
Sn × [ 0, 1] → Sn is clearly continuous. This proves contractibility and in particular
that Sn is arcwise connected. Moreover, since the coefficients of a polynomial depend
continuously (even polynomially) on its roots, Sn is bounded. Now choose r > 0
large enough so that the closure of Sn is contained in the ball B(0, r) ⊂ Rn. Since
Rn \ B(0, r) is connected, there is only one unbounded connected component C of
Rn \ ∂Sn and this unique unbounded component contains Rn \ B(0, r). Hence Sn

is contained in a bounded connected component C ′ of Rn \ ∂Sn. But no boundary
point of Sn is contained in C ′, so Sn is both open and closed in C ′, hence Sn = C ′.
It remains to show that every a ∈ Rn \ ∂Sn which is not a coefficient vector of
a Schur polynomial is contained in the unbounded connected component C. But

then p (s, a) =
n∏

k=1

(s − sk) has a root sj with |sj| > 1 and so all coefficient vectors

a(t), t ≥ 1 defined by p (s, a(t)) = (s − tsj)
∏

k �=j(s − sk) are contained in Rn \ ∂Sn.
Obviously {a(t); t > 1} is unbounded and so the curve t �→ a(t) will connect a with
C ⊃ Rn \ B(0, r). Therefore a ∈ C, and this concludes the proof. �

The convex hull of Sn has a surprisingly simple form.

Proposition 4.1.26 (Fam–Meditch). The convex hull of the closure of Sn is an n-
dimensional simplex with vertices given by the coefficient vectors of the polynomials

pj(s) = (s + 1)j(s − 1)n−j, j = 0, · · · , n. (20)

Proof : By Lemma 3.4.81 every Schur polynomial p̃ can be obtained from a Hurwitz
polynomial p(s, a) via the Möbius transformation

p̃(s) = (s − 1)np

(
s + 1

s − 1

)
(21)

= an(s + 1)n + an−1(s + 1)n−1(s − 1) + · · · + a0(s − 1)n =
n∑

j=0

ajpj(s).

Thus every Schur polynomial p̃(s) is a linear combination of the polynomials pj(s).
Now suppose that p̃(s) is monic. Then

∑n
j=0 aj = 1 since all pj(s) are monic and

of degree n. But the coefficients of a Hurwitz polynomial are all of the same sign
and so we get aj > 0 for j = 0, · · · , n. Hence every Schur polynomial is a convex
combination of the pj. Since pj ∈ Sn for j = 0, · · · , n it follows that conv Sn =
conv{p0, . . . , pn}. Finally conv{p0, . . . , pn} is an n-simplex (i.e. the polynomials
p0, . . . , pn are affinely independent) because Sn has nonempty interior in Rn. �

The above proposition yields a simple necessary linear stability criterion. If p (s, a)
is a monic polynomial of degree n and if v0, · · · , vn are the coefficient vectors of
p0, . . . , pn (20) one solves the equations

a =

n∑
j=0

αjv
j ,

n∑
j=0

αj = 1 (22)

for (αj) ∈ Rn+1, then the necessary condition is that each αj be positive. The vectors
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v0

1

]
, · · · ,

[
vn

1

]
are linearly independent in Rn+1, so there is a unique solution and

since the vectors v0, · · · , vn are easy to compute, the necessary condition is readily
verified (see Ex. 17). Note however that this stability criterion is far from being
sufficient. In fact it can be shown that vol(Sn)/ vol(conv(Sn)) = 2−(n2−n log n+O(n))/2

(see [156]).

Example 4.1.27. Conv(S3) is generated by the coefficient vectors of the polynomials
(s + 1)3, (s + 1)2(s − 1), (s + 1)(s − 1)2, (s − 1)3. So its vertices are A = (1, 3, 3),
B = (−1,−1, 1), C = (1,−1,−1), D = (−1, 3,−3) (see Example 4.1.23 (iii)). �

Making use of the Möbius transformation given by (21) one obtains the following
results for the set of Hurwitz polynomials.

Corollary 4.1.28. The set Hn of monic Hurwitz polynomials of degree n has the
properties.

(i) The boundary ∂Hn consists of all coefficient vectors a ∈ Rn for which p (s, a)
has all its roots in C− and at least one root on ıR.

(ii) Hn is contractible to the coefficient vector of the polynomial (s + 1)n, i.e. to
the vector [

(
n
1

)
,
(

n
2

)
, · · · , 1].

(iii) Hn is a connected component of R
n
+\∂Hn with boundary ∂Hn ⊂ H ′

0∪ ∪ω>0H
′
ω

where

H ′
0 = {a ∈ R

n
+; a0 = 0}, H ′

ω = {a ∈ R
n
+; (s2 + ω2) divides p(s, a)}, ω > 0. (23)

We leave the proof to the reader (see Ex. 13).
The Möbius map p (s) �→ (s − 1)np ( s+1

s−1
) transforms the polynomial pj(s), defined

in (20) into a polynomial of degree j. So it is not clear how one should formulate a
counterpart to the Fam–Meditch result for conv(Hn). In fact we have

Proposition 4.1.29.
conv(Hn) := conv(Hn) = R

n
+. (24)

Proof : Consider the Hurwitz polynomials

pt
j(s) = (s + t)j(s + t−1)n−j , t > 0 , j = 0, · · · , n. (25)

For any a = (a0, · · · , an−1) ∈ Rn
+, let pt(s) =

∑n
j=0 αj(t)p

t
j(s), where

αj(t) = ajt
n−j, j = 0, · · · , n − 1 , αn(t) = 1 − (α0(t) + . . . + αn−1(t)).

Then
∑n

j=0 αj(t) = 1 and for t sufficiently small αj(t) ≥ 0, j = 0, · · · , n. Hence

pt ∈ conv(Hn) for small t. But

pt(s) =

(
1 −

n−1∑
j=0

ajt
n−j

)
(s + t)n +

n−1∑
j=0

aj(s + t)j(ts + 1)n−j.

Since pt(s) → p (s, a) as t → 0, for every s ∈ C, it follows that a ∈ conv(Hn). �
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Example 4.1.30. In this example we characterize the sets Hn and H ′
ω, n = 1, 2, 3.

(i) n = 1, p (s,a) = s + a0. Then H1 = {a0 ∈ R : a0 > 0} and H ′
ω = ∅, ω > 0.

(ii) n = 2, p (s,a) = s2 + a1s + a0. In this case

H2 = {a ∈ R
2 ; a1 > 0, a0 > 0} = int R

2
+, H ′

ω = {a ∈ R
2 ; a1 = 0, a0 = ω2}, ω > 0.

(iii) n = 3,p (s,a) = s3 + a2s
2 + a1s + a0. By the Hermite-Hurwitz Theorem 3.4.53

H3 = {a ∈ R
3 : a2 > 0, a1 > 0, a0 > 0, a2a1 > a0}.

Moreover, we have

H ′
ω = {a ∈ R

3; p (s, a) = (s2 + ω2)(s + q0) , q0 ≥ 0}
= {a ∈ R

3; a0 = ω2q0 , a1 = ω2 , a2 = q0 ≥ 0}, ω > 0.

So
⋃
ω>0

H ′
ω is part of the surface described by a1a2 = a0 in R

3
+. �

4.1.4 Kharitonov’s Theorem

In this subsection we will deal with the following problem: “If for a real monic poly-
nomial all we know about the coefficients is that they lie between certain bounds,
how can we decide whether it is Hurwitz stable?” In order to answer this question
we must find necessary and sufficient conditions for the stability of the whole set of
monic polynomials whose coefficients belong to prescribed intervals. Such sets are
called interval polynomials. We must therefore characterize those interval polyno-
mials which are contained in Hn. This problem was solved by Kharitonov (1978)
[300] and we will present his result in this subsection.
For the description of interval polynomials it is convenient to introduce the following
partial ordering on Rn

a = (a0, . . . , an−1) ≤ b = (b0, . . . , bn−1) � ai ≤ bi, i = 0, · · · , n − 1.

If a ≤ a, then [ a, a ] denotes the closed n–dimensional interval between a and a, i.e.

[ a, a ] = {a ∈ R
n; a ≤ a ≤ a}.

a

a

a1

a0

a2

Figure 4.1.6: Interval [ a, a ] ⊂ R3
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With any such interval we associate the value sets

K(s0) = {p (s0, a) ; a ∈ [ a, a ]} ⊂ C , s0 ∈ C (26)

which will play a central role in the sequel. In order to describe K(ıω), ω ∈ R+ we
need the following four polynomials{

v1(s) = a0 + a2s
2 + a4s

4 + · · · , v2(s) = a0 + a2s
2 + a4s

4 + · · ·
u1(s) = a1s + a3s

3 + a5s
5 + · · · , u2(s) = a1s + a3s

3 + a5s
5 + · · ·

(27)

Clearly, for ω ∈ R, v1(ıω), v2(ıω) are real and u1(ıω), u2(ıω) are purely imaginary.

Lemma 4.1.31. For any ω ∈ R+ the value set K(ıω) is a rectangle in the complex
plane with vertices kij(ıω) = vi(ıω) + uj(ıω) for i, j = 1, 2.

Proof : For any a ∈ [ a, a ] we have

v1(ıω) ≤ Re p (ıω, a) ≤ v2(ıω)

ı−1u1(ıω) ≤ Im p (ıω, a) ≤ ı−1u2(ıω), ω ∈ R+.

Hence K(ıω) is contained in the rectangle with corners kij(ıω). To prove the converse
it suffices to note that K(ıω) is convex and kij(ıω) ∈ K(ıω), i, j = 1, 2. �

�

�

v1(ıω) v2(ıω)

u1(ıω)

u2(ıω)

k11(ıω) k21(ıω)

k12(ıω) k22(ıω)

K(ıω)

Figure 4.1.7: The value set K(ıω)

The four polynomials

kij(s) = vi(s) + uj(s) , i, j = 1, 2 (28)

are called the Kharitonov polynomials associated with [ a, a ]. They have coefficient
vectors

[−−−−] a11 = [ a0, a1, a2, a3, a4, a5, · · · ]
[−−−−] a12 = [ a0, a1, a2, a3, a4, a5, · · · ]
[−−−−] a21 = [a0, a1, a2, a3, a4, a5, · · · ]

[−−−−] a22 = [a0, a1, a2, a3, a4, a5, · · · ].

(29)

Figure 4.1.8 illustrates the location of the Kharitonov polynomials in the coefficient
space. The shaded area represents the convex set generated by the four Kharitonov
polynomials. The evaluation a �→ p (ıω, a) maps this rectangle affinely onto the
value set K(ıω).
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a2

a0

a1

a

a

a11

a21

a22

a12

a

Figure 4.1.8: Kharitonov polynomials in R3

Theorem 4.1.32 (Kharitonov). Suppose a, a ∈ Rn, a ≤ a, then all the polyno-
mials p (s, a), a ∈ [ a, a ] are Hurwitz if and only if the associated four Kharitonov
polynomials (29) are Hurwitz.

Proof : Necessity is clear. Now assume that the Kharitonov polynomials are Hur-
witz, but [ a, a ] �⊂ Hn. Since [ a, a ] is connected there exists by Corollary 4.1.5
a ∈ [ a, a ] and ω ≥ 0 such that p (ıω, a) = 0, i.e. 0 ∈ K(ıω), see Remark 4.1.7.
By Proposition 3.4.6 ai > 0 for i = 0, · · · , n − 1, hence 0 /∈ K(0). Since the four
vertices of K(ıω) vary continuously with ω there exists ω̃ > 0 such that 0 lies on the
boundary of K(ıω̃). Since no vertex passes through zero there is an edge containing
0 in its interior. Assume for example that this is the bottom edge (see Figure 4.1.9).

Then k11(ıω̃) < 0 < k21(ıω̃). But by Proposition 3.4.7 ω �→ arg kij(ω) is strictly

�

�

K(ıω̃)

0 k21(ıω̃)

k11(ıω̃)

�
� K(ıω̃) �

�

k11(ıω̃)

k12(ıω̃)

0

�

	

Figure 4.1.9: 0 ∈ ∂K(ıω̃) implies contradiction

increasing. Hence for ω > ω̃ sufficiently close to ω̃ the vertex k11(ıω) will lie in the
open third quadrant whilst k21(ıω) lies in the open first quadrant. This contradicts
the fact that Im k21(ıω) = Im k11(ıω) (by (28)). The cases where 0 lies on one of the
other edges are treated analogously (see Figure 4.1.9). �

As a consequence of the above proof and Proposition 3.4.7 we see that the whole
value set K(ıω), 0 < ω < ∞ is travelling (with increasing ω) counterclockwise
through a total angle of nπ/2 and always completely enters one quadrant before
crossing into the next.
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0

4

-8 0 4

ooooooooooooooooooooooooooooooooooooooooo

Figure 4.1.10: ω �→ K(ıω)

Remark 4.1.33. Kharitonov’s Theorem can easily be extended to the non-monic case
provided the degree remains invariant over the interval, see Ex. 9. �

Example 4.1.34. Consider the polynomial of degree 3

p (s, a) = s3 + a2s
2 + a1s + a0 , ai > 0 i = 0, 1, 2.

We have seen in Section 3.4 that such a polynomial is Hurwitz if a1a2 > a0. Now suppose
that a = (1/2 , 2, 2), a = (7/2, 4, 4), then by Kharitonov’s Theorem the box [a, a ] ⊂ H3

provided that the points (1/2 , 2, 4), (1/2 , 4, 4), (7/2 , 2, 2), (7/2 , 4, 2) all lie in H3. It is
easily seen that this is indeed the case. �

Polynomials which arise from practical problems usually have uncertain coefficients.
However it is often known that the coefficient vector lies in some set Ω ⊂ Rn.
One way of determining whether or not Ω ⊂ Hn is to try to cover it with boxes
[ ak, ak] ⊂ Hn, k ∈ N . This is illustrated in the next example (see Notes and
References for other applications of Kharitonov’s Theorem).

Example 4.1.35. In Example 3.4.16 we described Maxwell’s stability analysis of Jenkin’s
governor. The system matrix is

A =

⎡⎣ −F/M −G/M 0
0 0 1

F/B 0 −Y/B

⎤⎦
where M , B are moments of inertia and G is a torque. We suppose that these quantities
are known accurately and for simplicity we assume M = B = G = 1. F and Y are friction
and viscous damping coefficients and are assumed to be uncertain, both with values in the
interval [3/4, 5/4]. The characteristic polynomial of A is

p(s, a) = s3 + a2s
2 + a1s + a0

where a2 = F + Y , a1 = FY , a0 = F . If (F, Y ) ∈ [3/4, 5/4]2 the coefficient vector
a = a(F, Y ) lies in the 2-dimensional surface Ω = {(F,FY, F + Y ); (F, Y ) ∈ [3/4, 5/4]2}
shown in Figure 4.1.11. The vertices of this surface are given by a = a(3/4, 3/4) =
(3/4, 9/16, 3/2), b = a(3/4, 5/4) = (3/4, 15/16, 2), c = a(5/4, 3/4) = (5/4, 15/16, 2) and
a = a(5/4, 5/4) = (5/4, 25/16, 5/2). Note that the smallest box containing Ω is [a, a]. In
order to apply Kharitonov’s Theorem to this box one would require a11 = (3/4, 9/16, 5/2),
a12 = (3/4, 25/16, 5/2), a21 = (5/4, 9/16, 3/2) and a22 = (5/4, 25/16, 3/2) to be vectors in
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a1= a a2 a3

a4 a5

a5= a

a1
a2

a3

a4

b

d

c Ω

�

a11

a12

a21

a22

Figure 4.1.11: The set Ω and its covering with 5 Kharitonov boxes

H3. But a21 /∈ H3 and hence [a, a] �⊂ H3.
However, we can cover Ω with 5 boxes with opposite vertices denoted by ⊗, ∗, ◦, •, × as
shown in Figure 4.1.11. To simplify the calculations we have chosen the lower vertices on
the segment conv{a, d} where d = (5/4, 15/16, 3/2) is the projection of c onto the bottom
face of the box [a, a]. Now any point in conv{a, d} has the form

a(t) = (3/4 + t/2 , 9/16 + 3t/8 , 3/2) = (a0(t), a1(t), a2(t)), t ∈ [0, 1].

Since a2(t)a1(t) = (3/2)(9/16 + 3t/8) > 3/4 + t/2 = a0(t), t ∈ [0, 1] it follows from
the Hurwitz criterion (see Example 4.1.34) that a(t) ∈ H3 for all t ∈ [0, 1]. Note that
by the above definition a1(t) = (3/4) a0(t). The boxes are generated by setting a1 = a

and searching along the segment conv{b, a} for the first point ã such that [a1, ã] �⊂ H3.
a1 = (a1

0, a
1
1, a

1
2) is chosen by stepping back slightly from ã to ensure [a1, a1] ⊂ H3. Then

a2 = (a2
0, a

2
1, 3/2) is chosen on the segment conv{a, d} such that a2

0 = a1
0, hence a2

1 =
(3/4)a1

0. Then the process is continued. In this way we can ensure that each box is in
H3 and their union covers Ω. Hence the system is asymptotically stable for all possible
parameter values in the interval [3/4, 5/4]2 . �

Even though this approach was successful it seems rather artificial and cumbersome.
The reason is that in the example the uncertainty was expressed by intervals in the
parameter space, whereas Kharitonov’s Theorem presupposes that the uncertainty
is expressed by intervals in the coefficient space. If the dimension d of the parameter
space is smaller than the degree n of the polynomial, a direct application of the
theorem requires one to cover a d-dimensional surface in Rn by n-dimensional boxes.
In general, this will mean that either many thin boxes will have to be used which
makes the method cumbersome, or the results will be conservative. For an extension
of Kharitonov’s result to structured perturbations of the coefficient vector, see Notes
and References.

4.1.5 Exercises

1. Let p(s, ak), a
k ∈ C

n+1 be a sequence of (not necessarily monic) polynomials in Cn[s]
and p(s, a) ∈ Cn[s]. Prove that the following statements are equivalent.

(i) p(s, ak) → p(s, a) for all s ∈ C as k → ∞.



394 4. Perturbation Theory

(ii) There are n + 1 distinct complex numbers s1, . . . , sn+1 such that p(sj, a
k) → p(sj, a)

for all j = 1, . . . , n + 1, as k → ∞.

(iii) ak → a in C
n+1 as k → ∞.

If the polynomials p(s, ak), p(s, a) are all monic then (i)-(iii) are equivalent to

(iv) Λ(ak) → Λ(a) as k → ∞, i.e. the unordered n-tuples of the roots of p(s, ak) converge
to the unordered n-tuple of the roots of p(s, a).

2. Let Cg ⊂ C be an open subset of the complex plane and suppose

pk(s) =

n∑
j=0

a
(k)
j sj , k ∈ N

is a sequence of Cg-stable polynomials of degree ≤ n. Prove: If the sequence converges
(coefficientwise) to a polynomial q(s) =

∑n
j=0 ajs

j, then the roots of q(s) are contained in
the closure of Cg.

3. Prove the two statements in Remark 4.1.7 and give an example which shows that the
Boundary Crossing Theorem does not hold if the constant degree assumption (an(ω) �= 0
for all ω ∈ Ω) is dropped. (Bhattacharyya [56], pp 34-36.)

4. Let Ω ⊂ C be a domain and p, q, r ∈ M(Ω)[s] monic polynomials of the form

p(s) =
n∑

i=0

ai(z)si, q(s) =
�∑

j=0

bj(z)sj , r(s) =
m∑

k=0

ck(z)sk

with meromorphic coefficients ai(z), bj(z), ck(z) on Ω, an(z) = b�(z) = cm(z) ≡ 1. Prove
that if p = qr and z0 is a pole of one of the coefficients bj(z), ck(z) then z0 is a pole of one
of the coefficients ai(z) (cf. Baumgärtel (1985) [43, A.2.6]).

5. Let p(s, a(z)) = s2 + 2(1 + z)s + α(1 − z) = 0 where α ∈ R is given. Show that for
α �= 1 the roots s1,2(z) of p(s, a(z)) depend analytically on z for |z| ' 1:

s1,2(z) = −1 ± (1 − α)1/2 − z

[
1 ∓ 2 + α

2(1 − α)1/2

]
∓ z2 α(8 + α)

8(1 − α)3/2
· · · , α �= 1,

whereas, for α = 1, we have s1,2(z) = −1 ±
√

3z1/2 − z ± (2
√

3)−1z3/2 · · · .

6. Determine the sensitivities at z = 0 of the roots sj(z), j = 1, 2, 3 of the polynomial

p(s, a(z)) = s3 + (2 + z)s2 − (1 − z)s + (z − 2).

7. Show that if a = (1, 2, 8, 1), a = (2, 3, 9, 2), then [ a, a ] ⊂ H4.

8. Show that the polynomial p (s, a∗) = s3+3s2+12s+10 is Hurwitz. Find a, a such that
a < a∗ < a and [ a, a ] ⊂ H3. Calculate t̄ = sup{t > 0; [a∗ − t(a − a), a∗ + t(a − a)] ⊂ H3.
Find a polynomial in [a∗ − t̄(a − a), a∗ + t̄(a − a)] which does not belong to H3.

9. Prove the following Kharitonov Theorem for non-monic interval polynomials: Suppose
a, a ∈ R

n+1, a ≤ a and an+1an+1 > 0, i.e. the leading coefficients are of the same sign.
Then all the polynomials p (s, a), a ∈ [ a, a ] are Hurwitz stable if and only if the associated
four Kharitonov polynomials (with coefficients given by (29)) are Hurwitz.
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10. If [ a, a ] ⊂ H3, show that the set of monic polynomials p (s, a) where

a0 ≤ 1 − a0 + a1 − a2

1 + a0 + a1 + a2
≤ a0, a1 ≤ 3 − a2 − a1 + 3a0

1 + a0 + a1 + a2
≤ a1, a2 ≤ 3 + a2 − a1 − 3a0

1 + a0 + a1 + a2
≤ a2

is Schur stable.

11. For continuous time systems practical considerations often require that the eigenvalues
lie to the left of the hyperbola ω2 = v2−1, v ≤ −1 in the complex s–plane s = v+ıω. This
guarantees 1/

√
2 damping for second order systems and a real part of all eigenvalues less

than −1. Determine the sets Ĥ2, Ĥ3 which consist of all coefficient vectors of quadratic
or cubic polynomials with all roots to the left of the above hyperbola.

12. Consider the discrete time system

x(t + 2) + (5/6)x(t + 1) + (1/6)x(t) = 0, t ∈ N

Find the distance dist(a, ∂S2) with respect to the ∞–norm where a = [16 , 5
6 ]. Hence

determine the maximum joint bound on |δ1|, |δ2| guaranteeing that

x(t + 2) + (5/6 + δ1)x(t + 1) + (1/6 + δ2)x(t) = 0, t ∈ N

is asymptotically stable.

13. Prove Corollary 4.1.28 (i), (ii), (iii).

14. If p̃(s) = p(s, ã) is the Möbius transform (21) of a monic polynomial p(s) = p(s, a)
of degree n then ãn = 1 +

∑n−1
j=0 aj is the leading coefficient of p̃(s) and p̆(s) = (1 +∑n−1

j=0 aj)
−1p̃(s) is the normalized Möbius transform of p(s). Prove that under the trans-

formation p �→ p̆ the polynomials pt
j(s), j = 0, · · · , n − 1 (see (25)) are transformed into

p̆t
j(s), where

p̆t
j(s) =

[(s + 1) + t(s − 1)]j [(s + 1)t + (s − 1)]n−j

tn−j(1 + t)j + (1 + t)n−j − tn−j
, j = 0, . . . , n − 1

and hence p̆t
j(s) → pj(s) for j = 0, . . . , n− 1 as t → 0 (see (20)). Describe the relationship

between the roots of pt
j(s) and the roots of pj(t), j = 0, · · · , n−1 via the Möbius transform.

15. Show that

∂H4 = {(0, a1, a2, a3) ∈ R
4
+; a2a3 ≥ a1} ∪ {(a0, a1, a2, a3) ∈ R

4
+; a1a2a3 = a2

1 + a0a
2
3}

16. If f(s) is a polynomial of degree n, then g = Γf defined by

g(z) = 2−n/2(z − 1)nf

(
z + 1

z − 1

)
is called the Γ–transform of f . Prove that

(i) g is a polynomial of degree n in z,

(ii) f = Γg, that is f(s) = 2−n/2(s − 1)ng

(
s + 1

s − 1

)
.
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17. Consider the (n + 1) × (n + 1) matrix Qn = (qij) defined by

(s + 1)i(s − 1)n−i =
n∑

j=0

qijs
j , i = 0, 1, · · · , n.

(Note that the row vectors of Qn after deletion of the last column of Qn, coincide with
the vertices of conv S̄n). Prove that

(i) qin = 1 for i = 0, · · · , n, q0j = (−1)n−j
(n

j

)
for j = 0, · · · , n.

(ii) qij = qij+1 + qi−1j + qi−1j−1, i = 1, · · · , n, j = 0, · · · , n − 1.

(Note that Qn is completely determined by (i) and (ii)).

(iii) If f(s) =

n∑
i=0

ais
i and g(z) =

n∑
j=0

cjz
j is the Γ–transform, then

cj = 2−n/2
n∑

i=0

aiqij , ak = 2−n/2
n∑

j=0

cjqjk .

(iv) Q2
n = 2nIn+1 (hence Q−1

n = 2−n Qn).

Determine Q4 with the aid of (i), (ii).

18. If n is even show that the polynomial map fn : S1 × Sn → Sn+1, (a(1), a(n)) �→ a(n+1)

defined by

a
(n+1)
0 = a

(1)
0 a

(n)
0 , a

(n+1)
1 = a

(n)
0 + a

(1)
0 a

(n)
1 , . . . , a(n+1)

n = a
(n)
n−1 + a

(1)
0

is surjective but not injective. (Hint: consider the polynomial p (s, an+1) = (s + a0)(s
n +

an
n−1s

n−1 + · · · + an
0 ) ). Obtain a similar result for the case where n is odd.

4.1.6 Notes and References

The continuous dependence of the roots of a polynomial on its coefficient vector is proved

as an application of Rouché’s Theorem in most textbooks on function theory. The study

of the roots of a polynomial whose coefficients depend on a single complex parameter is a

central issue of Complex Analysis, see the chapters on multivalued algebraic functions in

classical textbooks such as Knopp (1945) [311] and Ahlfors (1979) [6]. For a deeper analysis

of algebraic functions the concept of a Riemann surface is indispensable, see Weyl (1955),

Ahlfors (1979) [6], Jones and Singerman (1986) [279]. A concise review of polynomials

with meromorphic coefficients from the viewpoint of Perturbation Theory can be found

in the appendix of Baumgärtel (1985) [43]. A classical reference for the geometry of the

zeros of polynomials is Marden (1949) [359].

Newton et al. (1957) [391] discuss the design of filters via the Butterworth pattern. A brief

account can be found in the Signal Processing Toolbox of matlab. Proposition 4.1.3 also

plays a role in cheap control, i.e. optimal control problems where the control costs are very

small, see Francis (1979) [165]. Numerical aspects of root computations are discussed in

Householder (1970) [268], Wilkinson (1965) [524], Stoer and Bulirsch (1993) [486], Golub

and Van Loan (1996) [197]. Root sensitivities have been used for the analysis of stability

robustness by Cruz et al. (1981) [113]. However, we emphasize that sensitivities give

valuable information only for small parameter variations. They can be quite misleading

as indices of the robustness of stability, see Section 5.2.
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The characterization of the boundary and convex hull of the set of Schur polynomials is

due to Fam and Meditch (1978) [157]. A systematic description of the relationship between

Hurwitz and Schur polynomials (cf. Ex. 16 and Ex. 17) can be found in Duffin (1969) [139].

The boundary of the set of Hurwitz polynomials has been analyzed from a geometric point

of view by Levantovskii (1980) [340], a more transparent proof of his formulas can be found

in Burke et al. (2004) [83]. The volume of the set of Schur polynomials has been studied

and related to the volume of its convex hull by Fam (1989) [156]. Proposition 4.1.26 has

also been used in the robustness analysis of polynomials and systems, see Soh et al. (1985)

[470], Biernacki et al. (1987) [59]. The interval polynomial problem was first posed by

Faedo (1953) [155] who obtained some necessary and some sufficient conditions using the

Routh-Hurwitz conditions. The elegant result obtained by Kharitonov was published in

1978, see [300]. Its significance for control theory was only discovered several years later

and generated a flurry of papers presenting new proofs and various generalizations and

applications, see the conference proceedings [374] edited by Milanese et al. (1988) , the

survey Barmish (1988) [35], the collection of papers [134] edited by Dorato and Yedavalli

(1990), and the books by Barmish (1994) [36] and Bhattacharyya et al. (1995) [56].

Our exposition follows the proof given by Minichelli et al. (1989) [376]. As mentioned

in Remark 4.1.33 Kharitonov’s Theorem can easily be extended to the non-monic case

provided the degree remains invariant over the interval for the leading coefficient. Mori

and Kokame (1992) [383] dealt with the modifications required to extend Kharitonov’s

Theorem to the case where the degree can fall. A detailed account of the problem of

robustness under parametric uncertainty can be found in Bhattacharyya et al. (1995)

[56]. This book also contains some Kharitonov type results for uncertain polynomials

with structured perturbations.
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4.2 Perturbation of Matrices

In this section we analyze the effect of perturbations of a matrix on its eigenstruc-
ture. There are two basic approaches towards linear perturbation theory. Classical
perturbation theory has emerged from Mathematical Physics and was developed in
an infinite dimensional operator theoretic context. The focus is on qualitative issues
like continuity, differentiability and analyticity of eigenvalues and eigenbases. It is
mainly concerned with highly structured perturbations and most of the results deal
with operators depending analytically on one complex parameter. Quantitative per-
turbation theory has its origins in Numerical Analysis and is mainly concerned with
unstructured perturbations of matrices. The aim is to derive tight bounds on the
variation of eigenvalues and eigenvectors, growth rates, etc. in terms of a norm on
the perturbation. On the boundary between these two fields lies sensitivity analysis
which is concerned with changes of the eigenstructure under infinitesimal parameter
variations.
In the first subsection we begin with qualitative aspects of the behaviour of eigen-
values under independent perturbations of all the matrix entries. We use the results
of the previous section to discuss the continuity and analyticity of the eigenvalues
and also determine the sensitivity of simple eigenvalues with respect to infinitesimal
changes of a single parameter.
In the second subsection we study some quantitative issues. Estimates for the change
of eigenvalues under bounded unstructured parameter variations are derived. These
are used to prove Gershgorin’s Theorem which provides estimates for the location
of the spectrum of a matrix relative to its diagonal entries.
In the third subsection we continue the qualitative studies of the first by investi-
gating the behaviour of eigenprojections and eigenvectors of a holomorphic matrix
family (A(z))z∈D. A central question will be whether or not the eigenprojections
and eigenvectors of A(z) can be expressed as analytic functions of z. The results
we obtain will allow us to prove some deeper analyticity results for eigenvalues in
the normal case. Finally, if A(z0) has n different eigenvalues, we obtain an explicit
formula for the sensitivity of the eigenvectors of A(z) under small variations of z
around z0.

4.2.1 Continuity and Analyticity of Eigenvalues

As usual we identify a linear operator A ∈ L(Cn) with its matrix representation
with respect to the standard basis of Cn. We assume that Cn×n ∼= L(Cn) is endowed
with an operator norm ‖ · ‖ = ‖ · ‖L(Cn). For any A ∈ C

n×n we denote by Λ(A)
the unordered n-tuple of the eigenvalues of A taking into account multiplicities. If
A ⊂ Cn×n is a set of matrices we set Λ(A) = {Λ(A); A ∈ A} and define the spectrum
of A by

σ(A) =
⋃

A∈A

σ(A).

Since the coefficients of the characteristic polynomial χA(s) = det(sI −A) are poly-
nomial functions of the entries of A the following corollaries are immediate con-
sequences of the continuity and analyticity results in the previous section. Corol-
lary 4.1.5 implies
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Corollary 4.2.1. The map A �→ Λ(A) is continuous on Cn×n, i.e. for any given
A0 ∈ Cn×n, ε > 0 there exists δ > 0 such that

‖A − A0‖ < δ ⇒ dist(Λ(A), Λ(A0)) < ε

where the distance between n-tuples is defined by (1.3).

By Proposition 4.1.10 and Lemma 4.1.9 we have

Corollary 4.2.2. For every compact set of matrices A ∈ K(Cn×n) the associated
spectrum σ(A) is compact and the maps A �→ σ(A), A �→ Λ(A) from K(Cn×n)
into K(C) and K(Tn(C)), respectively, are continuous (with respect to the Hausdorff
metrics).

Theorem 4.1.11 implies

Corollary 4.2.3. If λ0 ∈ C is a simple eigenvalue of a matrix A0 ∈ Cn×n, then
for any ε > 0 sufficiently small there exists δ = δ(ε) > 0 such that all matrices
A ∈ B(A0, δ) have exactly one simple eigenvalue λ(A) in D(λ0, ε), λ(A0) = λ0 and
λ(A) depends analytically on the entries of A in B(A0, δ).

Note that Corollary 4.2.1 does not mean that the eigenvalues of A ∈ Cn×n can be
represented as continuous functions of A (see Example 4.1.6). However, if the entries
of A depend continuously on one real parameter τ we have the following consequence
of Proposition 4.1.19.

Corollary 4.2.4. Suppose that I ⊂ R is an interval and A(τ) ∈ Cn×n depends
continuously on τ ∈ I. Then there exist (single valued) continuous functions λi :
I �→ C, i ∈ n such that

Λ(A(τ)) = (λ1(τ), . . . , λn(τ)), τ ∈ I.

Remark 4.2.5. If A(τ) is differentiable in τ on an interval I ⊂ R and A(τ) is diago-
nalizable for all τ ∈ I then by a theorem of Kato (1980) [293, Thm. II.5.6] the λi(·) in
Corollary 4.2.4 can be chosen to be differentiable. �

The following two examples show that diagonalizability of A(τ) is needed in order to
ensure differentiability and that Kato’s Theorem cannot be generalized to matrices
depending on two real parameters.

Example 4.2.6. The real analytic matrix

A(τ) =

[
0 1
τ 0

]
, τ ∈ R

has eigenvalues λ±(τ) = ±√
τ which are continuous on R but not differentiable at τ = 0

(where A(τ) is not diagonalizable). �

Example 4.2.7. Consider the family of real symmetric (hence diagonalizable) matrices

A(τ1, τ2) =

[
τ1 τ2

τ2 −τ1

]
, τ1, τ2 ∈ R

which is analytic on R
2. The eigenvalues λ±(A(τ1, τ2)) = ±(τ2

1 + τ2
2 )1/2 are not differen-

tiable at (0, 0). �
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Now suppose that the entries of A depend analytically on one complex parameter
z ∈ Ω where Ω is a domain in C. By the results of Section 4.1, problems with
analyticity of the eigenvalues can only arise at exceptional parameter values z0 ∈ Ω
for which the number of distinct eigenvalues decreases. z0 ∈ Ω is said to be a critical
point for A(·) = (A(z))z∈Ω if it is a critical point for the characteristic polynomial
χA(z)(s) = det(sI − A(z)) in the sense of Definition 4.1.13. By Theorem 4.1.14 we
have

Corollary 4.2.8. If A(·) : Ω �→ Cn×n is analytic on a domain Ω ⊂ C, then the
following hold.

(i) The set CA of critical points of A(·) is locally finite.

(ii) In every simply connected domain D ⊂ Ω \ CA there exist analytic functions
λi(·) ∈ O(D), i ∈ n (not necessarily all distinct) such that

Λ(A(z)) = (λ1(z), . . . , λn(z)), z ∈ D.

(iii) The multiplicity of each eigenvalue λi(z) is constant on every simply connected
domain D as in (ii).

It remains to examine the behaviour of the eigenvalues of A(z) in the neighbourhood
of a critical point z0 ∈ CA. Let λ1, . . . , λ� be the distinct eigenvalues of A(z0)
with algebraic multiplicities m1, . . . , m�,

∑�
j=1 mj = n. Suppose that Γj , j ∈ � are

positively oriented non-overlapping circles around each λj (see Figure 4.2.1), and let
δ > 0 be sufficiently small so that D(z0, δ)∩CA = {z0} and every A(z), z ∈ D(z0, δ)
has exactly mj eigenvalues (accounting for multiplicities) in the disk surrounded by
Γj (Corollary 4.2.1). The number nj of distinct eigenvalues of A(z) enclosed by Γj

is the same throughout the punctured disk D◦(z0, δ) := D(z0, δ) \ {z0}. We say that
the eigenvalue λj of A(z0) splits into these nj eigenvalues as z moves away from z0.
The set of these eigenvalues (or the unordered mj-tuple of eigenvalues if we want
to account for multiplicities) will be called the λj-group of eigenvalues of A(z) near
z0 . In every simply connected domain D ⊂ D◦(z0, δ) (e.g. every disk in D◦(z0, δ))
these distinct eigenvalues can be represented by analytic functions λj1(·), . . . , λjnj

(·)
on D and the multiplicity µjk of each eigenvalue λjk(z) is constant throughout D
with

∑nj

k=1 µjk = mj (Corollary 4.2.8). As a consequence we obtain the following
factorization of the characteristic polynomial of A(z).

χA(z)(s) =

�∏
j=1

nj∏
k=1

(s − λjk(z))µjk , z ∈ D, lim
z→z0

λjk(z) = λj, k ∈ nj , j ∈ � . (1)

A more precise picture of the splitting of λj is obtained by analyzing how the λjk(·) ∈
O(D) are linked by analytic continuation along arcs in D◦(z0, δ), see Section 4.1.
By analytic continuation along small circles around z0 the nj eigenvalues form one
or more cycles of the form (λjk1(·), . . . , λjkq(·)) where all the eigenvalues in a given
cycle have the same constant multiplicity on D◦(z0, δ). λj = limz→z0 λjki

(z) is called
the centre of these cycles. For all the cycles obtained in this way we obtain the
following corollary of Theorem 4.1.16.



4.2 Perturbation of Matrices 401

Corollary 4.2.9. Given an analytic matrix function A(·) : Ω �→ Cn×n on a domain
Ω ⊂ C, let D(z0, r) ⊂ Ω be a disk with centre z0 ∈ CA such that D(z0, r) ∩ CA =
{z0}, and suppose that (λ1(·), . . . , λq(·)) is one of the cycles obtained by analytic
continuation of an eigenvalue element λ1(z) of A(z) along a circular path around z0

in the punctured disk D◦(z0, r). Then the following hold.

(i) If q = 1, λ1(·) can be continued analytically onto D(z0, r).

(ii) If q ≥ 2, (λ1(z), . . . , λq(z)) defines a q-valued analytic function on D◦(z0, r)
with branch point z0. The branches of this function are represented by a
Puiseux series of the form

λν(z) =
∞∑

k=0

αkw
νk(z − z0)

k/q , z ∈ D−(z0, r), ν = 1, · · · , q (2)

where w = e2πı/q and (z − z0)
1/q = ρ1/qeıθ/q for z = z0 + ρeıθ, 0 < θ < 2π. In

particular limz→z0 λν(z) = α0 for ν ∈ q where α0 (the centre of the cycle) is
an eigenvalue of A(z0).

The whole λj-group of eigenvalues of A(z) near z = z0 consists of a set of qi-
valued analytic functions fi, i = 1, . . . , hj, each one being associated with a cycle
(λjk(·))k∈Ki

where qi = |Ki| and Ki, i ∈ hj forms a partition of nj .
Each eigenvalue element in the λj-group belongs to exactly one of these cycles. If
mji is the multiplicity of the cycle (λjk(·))k∈Ki

(i.e. the algebraic multiplicity µjk of

its elements λjk(z), k ∈ Ki) then
∑hj

i=1 qimji = mj is the algebraic multiplicity of
the eigenvalue λj of A(z0). As z moves away from z0 this eigenvalue splits into the
hj cycles of eigenvalues described by Puiseux series of the form (2) with α0 = λj.
Figure 4.2.1 illustrates this splitting process (as z moves away from z0 along a given
ray z0 + tz1, t > 0).

Γ1

Γ2

Γ3

λ1

λ2

λ3

Figure 4.2.1: Splitting of eigenvalues at a critical parameter value z0

Remark 4.2.10. (i) It may happen that, for a given j ∈ �, all the cycles with centre λj

are of period q = 1. In this case all the nj distinct eigenvalues of A(z) enclosed by Γj can
be represented by analytic functions on the whole disk D(z0, δ), and the critical point z0

will not be a branching point for the λj-group of eigenvalues of A(z).
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(ii) If (λ1(·), . . . , λq(·)) is any cycle of eigenvalues of A(z) near z = z0 and f(z) the
associated q-valued analytic function on D◦(z0, r), then the product

pf(z)(s) =

q∏
k=1

(s − λk(z)) =: p(s, a(z)), 0 < |z − z0| < r

is invariant with respect to analytic continuation along arcs in the punctured disk D◦(z0, r).
Therefore the coefficients ai(z) of this monic polynomial in s can be extended to analytic
functions on D(z0, r). In particular, an−1(z) and a0(z), hence the sum and the product of
the eigenvalues λk(z), k ∈ q are analytic on D(z0, r).

(iii) Given any eigenvalue cycle (λ1(·), . . . , λq(·)) with centre λ ∈ σ(A(z0)), the expansion
(2) shows that |λk(z)− λ|, k ∈ q is, in general, of the order |z − z0|1/q for small deviations
|z − z0|. Therefore, if the cycle’s period is q ≥ 2, the rate of change |λk(z) − λ|/|z − z0|
tends to ∞ as z → z0, for all k ∈ q. Moreover, the larger the period of the cycle, the faster,
in general, the associated eigenvalues move away from λ (as illustrated in Figure 4.2.1).

(iv) It may happen that all the eigenvalue elements λjk(·) in a λj-group of A(z) at z0 are
constant. In this case λj will be an isolated point in

⋃
|z−z0|<δ σ(A(z)), for δ sufficiently

small. On the other hand, it follows from Remark 4.1.17 that
⋃

|z−z0|<δ σ(A(z)) is an open
neighbourhood of λj if the λj-group of A(·) near the critical point z0 contains at least one
non-constant analytic function or at least one cycle of period ≥ 2. �

The following example illustrates the previous two corollaries.

Example 4.2.11. (i) Consider A(z) =

[
0 z

z 0

]
, z ∈ C. z0 = 0 is the only critical

point of A(·) and the eigenvalues λ±(z) = ±z are represented by functions which
are analytic in the whole complex plane including the critical point. Note that A(z)
is normal for all z ∈ C.

(ii) Let A(z) =

[
0 1
z 0

]
. Again z0 = 0 is the only critical parameter value, but here the

eigenvalues λ±(z) = ±z1/2 constitute one double-valued algebraic function. Con-
trary to the real case (Example 4.2.6) they cannot be represented by two continuous
functions of z in a neighbourhood of z0 = 0. However, in every simply connected
domain D ⊂ C \ {0} there exist two analytic functions λi(·), i = 1, 2 such that
Λ(A(z)) = (λ1(z), λ2(z)), z ∈ D.

(iii) Let A(z) =

[
1 z

z −1

]
. The eigenvalues are λ±(z) = ±(1+z2)1/2 and so the critical

set is CA = {ı,−ı}. Around these critical points the eigenvalues λ±(·) are branches
of one double-valued algebraic function. The Puiseux series for z near ı is

(2ı)1/2(z − ı)1/2 +

∞∑
k=1

1
2(1

2 − 1) · · · (1
2 − k + 1)

k! (2ı)(k−
1
2
)

(z − ı)(k+ 1
2
),

see Example 4.1.18.
�

We have seen in Remark 4.2.10 that, given an eigenvalue element λ(z) which gener-
ates a cycle of period ≥ 2 and centre λ0

j in a small neighbourhood of a critical point
z0 of A(·), the deviation |λ(z) − λ0

j | gets infinitely large compared with |z − z0| as
z → z0. We will now consider the case where an eigenvalue λ(z) of A(z) depends
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in a differentiable way on the parameter z at z = z0. Then its sensitivity (or rate of
change) of λ(z) at the point z = z0 is defined by

λ′(z0) =
dλ

dz
(z0) .

A formula for the sensitivity is given in the next proposition.

Proposition 4.2.12. Let Ω be an open subset of R or C and suppose that A(·) : Ω →
Cn×n is differentiable at z = z0 and λ0 is an eigenvalue of A(z0) with corresponding
left and right eigenvectors w, v such that w∗v �= 0. Suppose λ(·) : Ω → C, v(·) :
Ω → Cn are differentiable at z0 and satisfy

A(z)v(z) = λ(z)v(z) , λ(z0) = λ0 , v(z0) = v. (3)

Then

λ′(z0) =
w∗A′(z0)v

w∗v
, where A′(z0) =

dA

dz
(z0). (4)

Proof : Differentiating the first equation in (3) at z0 we obtain

(λ0I − A(z0))v
′(z0) + (λ′(z0)I − A′(z0))v = 0

and multiplying this equation from the left by w∗ yields (4). �

If A(z) is analytic at z0, λ0 ∈ C is a simple eigenvalue of A(z0) and D(λ0, ε) is a
disk whose closure does not contain any other eigenvalue of A(z0), then for |z − z0|
sufficiently small there exists a unique simple eigenvalue λ(z) of A(z) in D(λ0, ε).
λ(z) depends analytically on z (Corollary 4.2.3) and since λ(z)I − A(z) is of rank
n − 1 for |z − z0| sufficiently small, it is easy to see (and will be proved later in a
more general context, see Subsection 4.2.3) that there exists an analytic vector v(z)
such that (3) is satisfied in a neighbourhood of z0.
In order to discuss (4) let us suppose ‖v‖ = ‖w‖ = 1, then

|λ′(z0)| ≤
1

|w∗v|‖A
′(z0)‖. (5)

For this reason |w∗v|−1 is sometimes known as the condition number of the eigenvalue
λ0. Note that, if w, v are real then w∗v is the cosine of the angle between w and v.
If A(z0) is normal, one may choose w = v, see [264, 2.5]. So

λ′(z0) ≤ ‖A′(z0)‖

and this shows that, ceteris paribus, normal matrices have minimal eigenvalue sen-
sitivity.

Example 4.2.13. Let

A0 =

[
3 4
4 −3

]
, Ã0 =

[
1 1
0 0.01

]−1

A0

[
1 1
0 0.01

]
, A1 =

[
0 0
1 0

]
,
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and define A(τ) = A0 + τA1, Ã(τ) = Ã0 + τA1, τ ∈ Ω = R. A0 and Ã0 are similar
with eigenvalues ±5, A0 is normal. Normalized left and right eigenvectors for λ0 = 5 are,
respectively,

w = v = (−0.8944, −0.4472)� , w̃ = (0.7053, 0.7089)�, ṽ = (−0.7, 0.7142)�

with w∗v = 1, w̃∗ṽ = 0.0126. Let λ(τ), λ̃(τ) be the analytic eigenvalues of A(τ) and Ã(τ)
in a small neighbourhood of τ0 = 0 satisfying λ(0) = λ̃(0) = 5. Then the sensitivities of
these eigenvalues at τ0 = 0 are

λ′(0) =
w∗A1v

w∗v
= 0.400 , λ̃′(0) =

w̃∗A1ṽ

w̃∗ṽ
= −39.396 .

�

4.2.2 Estimates for Eigenvalues and Growth Rates

We now turn from the qualitative analysis of the previous subsection to the quantita-
tive analysis of eigenvalue changes under matrix perturbations. In Chapter 5 we will
introduce the set of all eigenvalues which can be obtained from a given matrix via
additive (real or complex) perturbations of size less than a given number. We will
show how these sets can be characterized and we will see that the computation of
the sets from these characterizations can be difficult. Here we derive some easy and
useful upper bounds for the change of eigenvalues and growth rates under arbitrary
matrix perturbations. The bounds are then used to prove Gershgorin’s Theorem.
The estimates we derive will be expressed in terms of the norm of the perturbation
matrix, so our results will depend upon the particular norm ‖ · ‖ which is chosen
on Cn×n. The following lemma holds for a large class of norm including all oper-
ator norms. We suppose that ‖ · ‖ is sub-multiplicative, i.e. ‖XY ‖ ≤ ‖X‖ ‖Y ‖ for
X, Y ∈ Cn×n.

Lemma 4.2.14. Let A ∈ Cn×n, T ∈ Gln(C), and ∆ ∈ Cn×n be arbitrary. Then for
every µ ∈ σ(A + ∆) \ σ(A) and every sub-multiplicative norm ‖ · ‖ on Cn×n

‖T−1(µIn − A)−1T‖−1 ≤ ‖T−1∆T‖. (6)

Proof : For µ ∈ σ(A + ∆) \ σ(A) we have

T−1 [µIn − (A + ∆)] T = T−1(µIn − A)T
[
In − T−1(µIn − A)−1T (T−1∆T )

]
.

But the RHS cannot be singular if ‖(T−1(µIn − A)−1T (T−1∆T )‖ < 1. Hence

1 ≤ ‖(T−1(µIn − A)−1T (T−1∆T )‖ ≤ ‖(T−1(µIn − A)−1T‖ ‖T−1∆T‖ (7)

and this proves the lemma. �

Specializing to diagonalizable matrices and a particular class of operator norms we
get the following result which is called the lemma of Bauer and Fike in the literature.
A norm ‖ · ‖Cn on C

n is said to be absolute if it satisfies ‖ |x| ‖Cn = ‖x‖Cn for all
x ∈ Cn, see Section A.1.
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Lemma 4.2.15 (Bauer-Fike). Let A ∈ Cn×n be diagonalizable with A = TDT−1,
T ∈ Gln(C), D diagonal and ∆ ∈ Cn×n be arbitrary. If µ ∈ σ(A + ∆), then

dist(µ, σ(A)) = min
λ∈σ(A)

|λ − µ| ≤ ‖T‖ ‖T−1‖ ‖∆‖ (8)

where ‖ · ‖ is any operator norm on C
n×n induced by an absolute norm on C

n.

Proof : Let µ ∈ σ(A+∆). We need only consider the case µ /∈ σ(A)=σ(D). Since
T−1(µIn − A)−1T = (µIn − T−1AT )−1 = (µIn − D)−1 we obtain from (6)

‖ diag((µ − d1)
−1, ..., (µ − dn)

−1)‖−1 = ‖(µIn − D)−1‖−1 ≤ ‖T−1‖ ‖∆‖ ‖T‖.

But ‖ diag((µ − d1)
−1, ..., (µ − dn)−1)‖ = maxi∈n |(µ − di)

−1| = [mini∈n |µ − di| ]−1

holds for all operator norms induced by absolute norms (see Theorem A.1.9) and so
(8) follows. �

If A is normal, then it is possible to choose T to be unitary, so that ‖T−1‖2,2 =
‖T ∗‖2,2 = ‖T‖2,2 = 1, and we obtain

Corollary 4.2.16. Let A ∈ C
n×n be normal and ∆ ∈ C

n×n be arbitrary. If µ ∈
σ(A + ∆) and ‖ · ‖2,2 denotes the spectral norm, then

min
λ∈σ(A)

|λ − µ| ≤ ‖∆‖2,2 . (9)

In the general diagonalizable case the column vectors of T may be chosen to form a
basis of normalized eigenvectors of A. If the angle between two of these eigenvectors
is small (the eigenframe is not well spread out) then ‖T−1‖ will be large. The
estimate (8) suggests that in this case small perturbations of A may result in large
variations of the eigenvalues. The following example illustrates this.

Example 4.2.17. The matrix A(α) =

[
−1 α

0 −2

]
, α ∈ R+ has normalized eigenvectors

(1 , 0)� and (α/(1 + α2)1/2 , −1/(1 + α2)1/2)�. If θ = θ(α) ∈ [0, π/2] is the angle between

them, then cos θ = α/(1+α2)1/2, sin θ = 1/(1+α2)1/2 and for T =

[
1 cos θ

0 − sin θ

]
an easy

calculation yields T−1 = (sin θ)−1

[
sin θ cos θ

0 −1

]
and

T−1A(α)T = diag(−1,−2), ‖T‖2
2,2 = 1 + cos θ , ‖T−1‖2,2 = ‖T‖2,2/ sin θ .

Hence for any µ ∈ σ(A(α) + ∆) the estimate (8) (with respect to ‖ · ‖ = ‖ · ‖2,2 ) is

dist(µ, σ(A)) ≤ (1 + cos θ)

sin θ
‖∆‖2,2 =

[
(1 + α2)1/2 + α

]
‖∆‖2,2 (10)

which indicates there may be large variations in the spectrum if θ is small (α large). In

fact, consider ∆(ε) =

[
0 0
ε 0

]
, ε > 0, then µ = [−3 − (1 + 4εα)1/2]/2 ∈ σ(A(α) + ∆(ε))

and
dist(µ, σ(A)) = |µ + 2| = |1 − (1 + 4εα)1/2|/2 . (11)
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So the spectrum changes considerably under the perturbation ∆(ε) if α is large, even for
small ε. Note that as εα → 0 the RHS of (11) is of order εα whereas for large α the RHS
of (10) is of order 2εα. Thus, if in the present example ε = α−2 and α → ∞ then the
upper bound (8) is “asymptotically tight” modulo a factor of 2. In general, however, this
upper bound can be very conservative. �

In Chapter 3 we introduced the growth rate ω(A) of a continuous time semigroup
generated by A ∈ Cn×n and showed that ω(A) = supλ∈σ(A) Re λ. If A is diagonal-
izable, A = T diag(λ1, . . . , λn)T−1, we can apply Lemma 4.2.15 to obtain for the
growth rate ω(A + ∆) of the perturbed matrix A + ∆, ∆ ∈ Cn×n the upper bound

ω(A + ∆) ≤ ω(A) + ‖T‖‖T−1‖‖∆‖ .

In fact the following stricter perturbation result is valid for arbitrary matrices A.

Proposition 4.2.18. Suppose A ∈ Cn×n and

‖eAt‖ ≤ M eαt , t ≥ 0 (12)

where α ∈ R and ‖ · ‖ is any operator norm on Cn×n. Then for arbitrary ∆ ∈ Cn×n

‖e(A+∆)t‖ ≤ M e(α+M ‖∆‖) t , t ≥ 0. (13)

Proof : Consider the initial value problem

ẋ = (A + ∆)x , x(0) = x0.

By the variation-of-constants formula the solution x(·) satisfies

x(t) = eAtx0 +

∫ t

0

eA(t−s)∆ x(s) ds, t ≥ 0.

Hence
‖x(t)‖Cn ≤ M eαt‖x0‖Cn +

∫ t

0

M eα(t−s)‖∆‖‖x(s)‖Cn ds .

Let γ(t) = e−αt‖x(t)‖Cn , then

γ(t) ≤ M ‖x0‖Cn +

∫ t

0

M ‖∆‖ γ(s) ds, t ≥ 0.

So by Gronwall’s Lemma 2.1.18

γ(t) = e−αt‖e(A+∆)tx0‖Cn ≤ MeM ‖∆‖t ‖x0‖Cn , t ≥ 0, x0 ∈ C
n

and this proves (13). �

A corresponding result can also be proved for discrete time systems (see Ex. 9).
An immediate corollary of the above proposition is that if the system ẋ = Ax
is asymptotically stable, so that (12) holds for some M, α with α < 0, then the
perturbed system ẋ = (A + ∆)x will also be asymptotically stable if

‖∆‖ < |α|/M . (14)
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Since M in (12) may be decreased by increasing α, one can try to optimize the RHS
of (14) with respect to α in order to determine the maximum allowable perturbation
bound given by this result (not a particularly easy problem, see Ex. 7). But the
optimal bound obtained in this way will, in general, still be conservative. In the
next chapter we introduce a stability radius for stable matrices and obtain tight
estimates.
As a final result in this subsection we consider a matrix A = (aij) ∈ Cn×n as a
perturbation of the diagonal matrix Ad = diag(a11, . . . , ann) with the same diagonal
as A. This will allow us to obtain approximate information about the location of
the spectrum of A relative to its diagonal entries.

Theorem 4.2.19 (Gershgorin). If A = (aij) ∈ C
n×n, then

σ(A) ⊂
(

n⋃
i=1

D(aii, ρi)

)
∩
(

n⋃
j=1

D(ajj, γj)

)
=: GA (15)

where the radii of the closed disks D(aii, ρi) (resp. D(ajj, γj)), i, j ∈ n are given by

ρi =
n∑

j=1, j �=i

|aij| ,

(
resp. γj =

n∑
i=1, i�=j

|aij |
)

, i, j ∈ n. (16)

Moreover, the number of eigenvalues of A in each connected component of GA is
equal to the number of aii’s within this component.

Proof : Let t ∈ [0, 1], A(t) = Ad + t(A−Ad). By (7) with A = Ad, ∆ = t(A−Ad),
T = I and ‖ · ‖ = ‖ · ‖∞,∞ (the operator norm with respect to the ∞-norm on Cn),
we obtain for all λ ∈ σ(A(t)) \ σ(Ad)

1 ≤ t‖(λI − Ad)
−1(A − Ad)‖∞,∞ = max

i

tρi

|λ − aii|
.

The last equality holds since ‖B‖∞,∞ = maxi∈n

∑n
j=1 |bij| for B = (bij) ∈ Cn×n, see

(A.1.3). With respect to the 1–norm on C
n we have analogously1

1 ≤ t‖(A − Ad)(λI − Ad)
−1‖1,1 = max

j

tγj

|λ − ajj |
,

for all λ ∈ σ(A(t)) \ σ(Ad). Hence

σ(A(t)) ⊂
(

n⋃
i=1

D(aii, tρi)

)
∩
(

n⋃
j=1

D(ajj, tγj)

)
, t ∈ [0, 1] . (17)

Setting t = 1 gives (15). Now suppose that GA = S1∪̇ · · · ∪̇Sm where the Si, i ∈ m
are the connected components of the Gershgorin set GA (maximal connected subsets
of GA). By Corollary 4.2.4 there exist continuous functions λi(·), i ∈ n, on [0, 1]
such that λi(0) = aii and Λ(A(t)) = (λ1(t), . . . , λn(t)). Since the set on the RHS of
(17) is increasing with t, we have λi(t) ∈ S1∪̇ · · · ∪̇Sm for all t ∈ [0, 1], i ∈ n. But
no curve λi(t), t ∈ [0, 1] can leave the connected component in which it starts. This
concludes the proof. �

1making use of (A.1.3) and 1 ≤ ‖(T−1∆T )(µIn − D)−1‖ instead of the first inequality in (7).
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Note that the Gershgorin set changes under similarity transformations on A whereas
the eigenvalues remain the same. Applying Gershgorin’s Theorem to TAT−1, T ∈
Gln(C) yields additional information about σ(A). In particular, one may use scaling
transformations T = diag(α1, . . . , αn) (which leave the diagonal entries of A invari-
ant) to obtain tighter bounds on the location of the eigenvalues, see Ex. 11 and
Notes and References.

Example 4.2.20. Consider the matrix

A =

⎡⎣ 6 3 −3
0 2 2

−1 −3 −7

⎤⎦ .

Then ρ1 = 6, ρ2 = 2, ρ3 = 4, γ1 = 1, γ2 = 6, γ3 = 5 and the set on the RHS of (15) is
given by

GA = {λ ∈ C ; |λ − 6| ≤ 6 or |λ − 2| ≤ 2 or |λ + 7| ≤ 4} ∩
{λ ∈ C ; |λ − 6| ≤ 1 or |λ − 2| ≤ 6 or |λ + 7| ≤ 5}

= {λ ∈ C ; |λ − 6| ≤ 6 and |λ − 2| ≤ 6} ∪ {λ ∈ C ; |λ + 7| ≤ 4}

(see Fig. 4.2.2). Applying the scaling transformation T = diag(2/3, 2, 2), A is transformed

-7 -6 -5 -2 -1 1 2 3 5 6 7 8 9-9 -8 4-3-4 10-10

Figure 4.2.2: Gershgorin sets GA and GÃ

to

Ã = TAT−1 =

⎡⎣ 6 1 −1
0 2 2

−3 −3 −7

⎤⎦
with Gershgorin radii ρ̃1 = 2, ρ̃2 = 2, ρ̃3 = 6, γ̃1 = 3, γ̃2 = 4, γ̃3 = 3 and Gershgorin set

GÃ = {λ ∈ C; |λ − 6| ≤ 2} ∪ {λ ∈ C; |λ − 2| ≤ 2} ∪ {λ ∈ C; |λ + 7| ≤ 3} ⊂ GA

(the shaded area in Fig. 4.2.2). By Theorem 4.2.19 σ(A) ⊂ GÃ. It follows from the last
statement in Theorem 4.2.19 that each of the three shaded disjoint open disks in Fig. 4.2.2
contains one eigenvalue of A and so the spectrum of A must be real. The actual spectrum
of A is σ(A) = {6.1056, 1.4899, −6.5956}. �
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4.2.3 Smoothness of Eigenprojections and Eigenvectors

In this subsection we return to qualitative perturbation theory. We first prove
that the sum of the eigenprojections for any λj-group of eigenvalues of A = A0 +
∆ depends analytically on the entries of ∆ for ‖∆‖ sufficiently small. We then
specialize to matrix families A(z) depending analytically on one complex parameter
z and study in some detail the problem of whether or not the eigenprojections and
eigenvectors of A(z) can be expressed as analytic functions of z. In a similar way to
eigenvalues, eigenprojections are analytic at non-critical points. However, at branch
points eigenprojections necessarily have poles and thus behave quite differently from
eigenvalues. We will see that branching cannot occur at parameter values z0 for
which each neighbourhood contains a point z �= z0 where A(z) is normal (Rellich’s
Theorem). We conclude the section by determining the sensitivity of eigenvectors
at parameter values z0 where A(z0) has n distinct eigenvalues.
Throughout this subsection we assume that L(Cn) resp. Cn×n is provided with a
given operator norm ‖ · ‖. We begin with some basic results on resolvents and
eigenprojections of single matrices. Let A ∈ Cn×n, then the operator

R(s, A) = (sI − A)−1 , s ∈ ρ(A) = C \ σ(A) (18)

is called the resolvent of A at s ∈ ρ(A), and ρ(A) is called the resolvent set of A.
R(s, A) commutes with A and this implies via

R(s, A) − R(s0, A) = R(s, A)R(s0, A)(s0I − A) − (sI − A)R(s, A)R(s0, A),

the resolvent equation

R(s, A) − R(s0, A) = (s0 − s)R(s, A)R(s0, A), s, s0 ∈ ρ(A). (19)

In particular, R(s, A) and R(s0, A) commute. Moreover,

R(s, A) = R(s0, A)[I + (s − s0)R(s0, A)]−1, s, s0 ∈ ρ(A) ,

and we obtain the following absolutely convergent series expansion of R(s, A) at
s0 ∈ ρ(A).

R(s, A) =

∞∑
k=0

(s0 − s)k(R(s0, A))k+1, |s − s0| < ‖R(s0, A)‖−1. (20)

Thus R(s, A) is analytic on ρ(A) and its derivatives at s0 ∈ ρ(A) are given by

R(k)(s0, A) = (−1)k k! (R(s0, A))k+1, k ∈ N
∗.

For the convenience of the reader we recall some elements from the spectral anal-
ysis of A presented in Subsection 2.2.2. Suppose that λ1, . . . , λ� are the distinct
eigenvalues of A with algebraic multiplicities m1, . . . , m�. Consider the spectral
decomposition (see Lemma 2.2.4)

C
n = ker(λ1I − A)m1 ⊕ · · · ⊕ ker(λ�I − A)m� (21)
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of Cn into the A-invariant generalized eigenspaces and the corresponding eigenpro-
jections of A

Pj : Cn → ker(λjI − A)mj , j ∈ �.
x1 ⊕ · · · ⊕ x� �→ xj

(22)

By (2.2.30) the eigenprojections satisfy

�∑
j=1

Pj = I, APj = PjA, PjPk = δjkPj, j, k ∈ � . (23)

We have APj = PjA = λjPj + Nj where Nj = (A − λjI)Pj is the eigennilpotent
associated with the eigenvalue λj of A. By (2.2.32) the spectral representation of A
is given by

A = A
�∑

j=1

Pj =
�∑

j=1

(λjPj + Nj). (24)

A is diagonalizable if and only if every eigenvalue of A is semi-simple (i.e. Nj = 0
for all j ∈ �) and in this case

A =

�∑
j=1

λjPj, R(s, A) =

�∑
j=1

(s − λj)
−1Pj , s ∈ ρ(A). (25)

If A is normal then A is diagonalizable and every eigenprojection Pj is selfadjoint,
i.e. Pj = P ∗

j , with spectral norm ‖Pj‖2,2 = 1.2 If A is real and symmetric then the
eigenvalues λj are all real, and it follows from (25) that all the eigenprojections Pj

are real (i.e. Pjx ∈ Rn for all x ∈ Rn) and symmetric.

Lemma 4.2.21. Suppose that A ∈ Cn×n has exactly � distinct eigenvalues λ1, . . . , λ�,
of algebraic multiplicities m1, . . . , m� with associated eigenprojections P1, . . . , P� and
eigennilpotents N1, . . . , N�. Then we have the partial fraction decomposition,

R(s, A) =

�∑
j=1

[
(s − λj)

−1Pj +

mj−1∑
k=1

(s − λj)
−k−1Nk

j

]
. (26)

If Γj is a positively oriented circle in ρ(A) enclosing λj but no other eigenvalue of
A then

Pj =
1

2πı

∫
Γj

R(s, A) ds . (27)

Proof : If Ã = T−1AT , T ∈ Gln(C) and the eigenprojections and eigennilpotents
of Ã are denoted by P̃j , Ñj , j ∈ � then it is easily verified that

R(s, Ã) = T−1R(s, A)T, P̃j = T−1PjT, Ñj = T−1NjT, j ∈ � . (28)

To prove (26) and (27) we may therefore assume that A is in Jordan canonical form

A =
�⊕

j=1

rj⊕
k=1

J(λj , njk)

2Recall that the eigenprojections of a normal matrix are orthogonal and orthogonal projections
are selfadjoint.
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with Jordan blocks J(λj, njk) ∈ Cnjk×njk , k = 1, . . . , rj associated with the eigenval-
ues λj , j ∈ �. The associated eigenprojections and eigennilpotents are, respectively,

Pj = 0m1 ⊕ · · · ⊕ 0mj−1
⊕ Imj

⊕ 0mj+1
⊕ · · · ⊕ 0m�

(29)

(where 0mj
denotes the mj × mj zero matrix and mj =

∑rj

k=1 njk, j ∈ �), and

Nj = 0m1 ⊕ · · · ⊕ 0mj−1
⊕

rj∑
k=1

J(0, njk) ⊕ 0mj+1
⊕ · · · ⊕ 0m�

. (30)

Now

R(s, A) =

�⊕
j=1

rj⊕
k=1

R(s, J(λj, njk)). (31)

And for any λ ∈ C, m ∈ N,

R(s, J(λ, m)) =

⎡⎢⎢⎢⎣
s − λ −1 0

. . .
. . .
. . . −1

0 s − λ

⎤⎥⎥⎥⎦
−1

=

⎡⎢⎢⎢⎢⎢⎢⎣
(s − λ)−1 (s − λ)−2 · · · (s − λ)−m

. . .
. . .

...
. . .

. . .
...

. . . (s − λ)−2

0 (s − λ)−1

⎤⎥⎥⎥⎥⎥⎥⎦
= (s − λ)−1Im +

m−1∑
k=1

(s − λ)−k−1Nk (32)

where N = J(0, m). Hence we obtain (26). Moreover, it follows from (32) via the
Residue Theorem A.2.19 (applied to each entry of R(s, J(λi, nik))) that

1

2πı

∫
Γj

R(s, J(λi, nik)) ds =

{
0nik

if i �= j

Injk
if i = j

.

But this together with (31) and (29) implies (27). �

Corollary 4.2.22. Let A ∈ C
n×n and Γ be a positively oriented simple closed curve

in ρ(A) enclosing the eigenvalues λ1, . . . , λk of A and no others, then

1

2πı

∫
Γ

R(s, A) ds =
k∑

j=1

Pj (33)

where the Pj are the eigenprojections of A associated with the eigenvalues λj, j ∈ k.

Proof : By the Residue Theorem A.2.19 we have

1

2πı

∫
Γ

R(s, A) ds =

k∑
j=1

Res(R(s, A), λj) =

k∑
j=1

1

2πı

∫
Γj

R(s, A) ds

where Γj, j ∈ k are small circles around λj as in Lemma 4.2.21. Hence (33) follows
from Lemma 4.2.21. �
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We now investigate the effect of (small) perturbations on the eigenprojections of a
matrix. First recall that if X ∈ L(Kn), ‖X‖ < 1 for some operator norm ‖ · ‖ (or,
more generally, if �(X) < 1), then In − X is invertible and its inverse has a square
root (In − X)−1/2 ∈ L(Kn) which is given by the absolutely convergent binomial
series

(In − X)−1/2 = In +

∞∑
k=1

(−1/2

k

)
(−X)k, where

(
α

k

)
=

α(α − 1) . . . (α − k + 1)

k !
.

Hence if Y ∈ L(Kn) commutes with X, then it also commutes with (I − X)−1/2.
The following proposition will play an important role.

Proposition 4.2.23. Let P be the set of pairs of projections P, Q ∈ L(Kn) satisfying
‖P − Q‖ < 1. Then any two projections P, Q with (P, Q) ∈ P are similar. The
matrix family

UP,Q = [PQ + (I − P )(I − Q)][I − (P − Q)2]−1/2 ∈ L(Kn), (P, Q) ∈ P (34)

satisfies
UP,P = I, U−1

P,Q = UQ,P , P = UP,Q Q U−1
P,Q. (35)

If ‖ · ‖ is the spectral norm on L(Kn) then (P ∗, Q∗) ∈ P for all (P, Q) ∈ P and

U∗
P ∗,Q∗ = UQ,P = U−1

P,Q . (36)

In particular, if (P, Q) ∈ P and P = P ∗, Q = Q∗, then UP,Q is unitary (orthogonal
if K = R).

Proof : Let R = (P − Q)2 and note that

PR = P (P − Q)2 = P (P + Q − PQ − QP ) = P − PQP = (P − Q)2P = RP .

Thus R commutes with P and Q. Since ‖P − Q‖ < 1, UP,Q is well defined by (34)
and the first formula in (35) is immediate. Since (I − R)−1/2 commutes with P , Q,
we have

UP,Q[QP + (I − Q)(I − P )][I − R]−1/2

= [PQ + (I − P )(I − Q)][QP + (I − Q)(I − P )][I − R]−1

= [PQP + (I − P )(I − Q)(I − P )][I − R]−1

= [I − Q − P + QP + PQ][I − R]−1 = [I − (P − Q)2][I − R]−1 = I.

Hence U−1
P,Q = [QP + (I − Q)(I − P )][I − R]−1/2 = UQ,P . Moreover

UP,QQ = [I − R]−1/2[PQ + (I − P )(I − Q)]Q = [I − R]−1/2PQ

= PQ[I − R]−1/2 = PUP,Q.

So P and Q are similar and the other formulas in (35) hold.
Now if ‖ · ‖ is the spectral norm and (P, Q) ∈ P then ‖P ∗ − Q∗‖ = ‖P − Q‖< 1,
hence (P ∗, Q∗) ∈ P and

U∗
P ∗,Q∗ = ([I − R∗]−1/2)∗[P ∗Q∗ + (I − P ∗)(I − Q∗)]∗

= [I − R]−1/2[QP + (I − Q)(I − P )] = UQ,P .

This completes the proof. �
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In order to investigate the change of eigenprojections under arbitrary perturbations
of a matrix we return to Corollary 4.2.1. Suppose that A0 ∈ Cn×n has � distinct
eigenvalues λ1, . . . , λ� with algebraic multiplicities m1, . . . , m�,

∑�
j=1 mj = n. There

exists a δ > 0 and positively oriented non-overlapping circles Γj around each λj

such that for all ∆ ∈ Cn×n with ‖∆‖ < δ, Γj encloses exactly mj eigenvalues of
A0 + ∆ taking account of multiplicities. The set (or the unordered mj-tuple) of
these eigenvalues is called the λj-group of eigenvalues of A = A0 + ∆ for small ‖∆‖.
By Corollary 4.2.22 the operator

Pj(A) =
1

2πı

∫
Γj

R(s, A) ds , ‖A − A0‖ < δ (37)

is equal to the sum of eigenprojections for all the eigenvalues of A lying inside Γj.
Pj(A) is called the total projection for the λj-group of eigenvalues of A = A0 + ∆,
‖∆‖ < δ. Pj(A0) coincides with the eigenprojection for the eigenvalue λj of A0.

Proposition 4.2.24. Suppose A0∈Cn×n has exactly � distinct eigenvalues λ1, . . . , λ�,
of algebraic multiplicities m1, . . . , m�. Then, for ‖A−A0‖ sufficiently small, the to-
tal projections Pj(A) (37) depend analytically on the entries of A, Pj(A) and Pj(A0)
are similar and, in particular, rank Pj(A) = rankPj(A0) = mj, j ∈ �. Moreover if
UPj(A), Pj(A0) is defined by (34) with P = Pj(A), Q = Pj(A0), then

Pj(A) = UPj(A),Pj(A0) Pj(A0) U−1
Pj(A),Pj(A0), j ∈ �, ‖A − A0‖ ' 1.

Proof : If ∆ ∈ Cn×n, s ∈ ρ(A0) and ‖∆‖ < ‖R(s, A0)‖−1 then s ∈ ρ(A) for
A = A0 + ∆ and

R(s, A) = (sI − (A0 + ∆))−1 =
[
(I − ∆(sI − A0)

−1)(sI − A0)
]−1

= (sI − A0)
−1[I − ∆R(s, A0)]

−1 .

Hence

R(s, A) = R(s, A0)

∞∑
k=0

[(A − A0)R(s, A0)]
k , ‖A − A0‖ < ‖R(s, A0)‖−1 . (38)

If ‖A − A0‖ < mins∈Γj
‖R(s, A0)‖−1 =: δ the power series on the RHS of (38)

converges uniformly in s ∈ Γj , so that by (37) the integration of (38) along Γj yields

Pj(A) =
1

2πı

∞∑
k=0

∫
Γj

R(s, A0)[(A − A0)R(s, A0)]
k ds .

Thus, for ‖A − A0‖ < δ, Pj(A) can be expressed as a power series in the entries of
(A−A0) with coefficients in Cn×n. In particular, for ‖A−A0‖ sufficiently small we
have ‖Pj(A) − Pj(A0)‖ < 1. Applying Proposition 4.2.23 completes the proof. �

If ‖A − A0‖ is sufficiently small then A has at least as many distinct eigenvalues
as A0. On the other hand every neighbourhood of A0 in Cn×n contains matrices
with any number of different eigenvalues between � = |σ(A0)| and n. The situation
greatly simplifies if we consider analytic one parameter families of matrices (see
Subsection 4.2.1). In this case it follows directly from Proposition 4.2.24 that the
total projections depend analytically on z.



414 4. Perturbation Theory

Corollary 4.2.25. Suppose A(·) : Ω → Cn×n is analytic on the domain Ω ⊂ C,
z0 ∈ Ω and A0 = A(z0) has exactly � distinct eigenvalues λ1, . . . , λ�, of algebraic
multiplicities m1, . . . , m�. Then, for |z − z0| sufficiently small, the total projections
Pj(z) := Pj(A(z)), defined by (37) with A = A(z), depend analytically on z and are
of constant rank Pj(z) = mj, j ∈ �.

Moreover, by Corollary 4.2.8 the number �(z) = |σ(A(z))| of distinct eigenvalues of
A(z) is constant (= maxz∈Ω |σ(A(z))|) throughout the domain Ω with the exception
of isolated critical points z0 ∈ CA at which some of these eigenvalues may coalesce.
If z0 ∈ Ω \ CA is an arbitrary non-critical point, A0 = A(z0), and Γj are non-
overlapping circles around the � = �(z0) eigenvalues of A0 then there is exactly one
eigenvalue λj(z) of A(z) lying inside the circle Γj for |z − z0| ' 1. In this case the
total projection

Pj(z) =
1

2πı

∫
Γj

R(s, A(z)) ds = Res (R(s, A(z)), λj(z)) (39)

is in fact the eigenprojection for λj(z).3 Hence we obtain from the preceding corollary
that these eigenprojections depend analytically on z in a sufficiently small neighbour-
hood of z0. Now suppose that we have a domain D ⊂ Ω\CA and on this set there are
� analytic eigenvalue functions λj(·) : D → C such that σ(A(z)) = {λ1(z), . . . , λ�(z)}
for z ∈ D. Then the associated eigenprojections Pj(z) = Pj(A(z)) (see (22)) are
well defined operator (matrix) valued functions on D. Since we have just seen that
they are analytic in suitable neighbourhoods of any z0 ∈ D we obtain the following
result.

Corollary 4.2.26. Suppose A(·) : Ω → Cn×n is analytic on a domain Ω ⊂ C and
assume that there exist � distinct analytic eigenvalue functions λj(·) : D → C on a
subdomain D of Ω \CA such that σ(A(z)) = {λ1(z), . . . , λ�(z)} for z ∈ D. Then the
corresponding eigenprojections Pj(z) are analytic and of constant rank on D. As
a consequence, the eigennilpotents Nj(z) = (A(z) − λj(z)In)Pj(z), j ∈ � are also
analytic on D, and A(z) admits the following analytic spectral representation

A(z) =

�∑
j=1

(λj(z)Pj(z) + Nj(z)), z ∈ D. (40)

Remark 4.2.27. Note that by Corollary 4.2.8 we know that for any simply connected
subdomain D ⊂ Ω \ CA there indeed exist � analytic eigenvalue functions λj(·) : D →
C such that σ(A(z)) = {λ1(z), . . . , λ�(z)} for z ∈ D so that the preceding corollary is
applicable. �

Example 4.2.28. Consider A(z) =

[
1 z

z −1

]
on C (see Example 4.2.11(iii)) with

eigenvalues λ1,2(z) = ±(1 + z2)1/2 and critical points at ±ı. We have seen that these two
critical points are branch points of order two for the eigenvalues. By analytic continuation
along a small circle around z0 = ±ı the roots form a cycle (λ1(z), λ2(z)) of order 2
representing a double-valued algebraic function on a small neighbourhood of z0.

3Res (R(s, A(z)), λj(z)), the residue of the resolvent R(s, A(z)) at s = λj(z)), is defined com-
ponentwise by applying Definition A.2.18 to each entry of R(s, A(z)).
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Now let D ⊂ C \ {±ı} be an arbitrary simply connected domain which does not contain
any of these critical points. On D the eigenvalues of A(z) are given by the two analytic
functions λi(·) : D → C, see Corollary 4.2.8. On the other hand, we have

R(s,A(z)) =
1

s2 − (1 + z2)

[
s + 1 z

z s − 1

]
, s �= ±(1 + z2)1/2 .

To compute the eigenprojections via (39) we integrate the resolvent along small circles
around λ1,2(z) or, alternatively, calculate the residue of the resolvent at s = λ1,2(z),
z ∈ C \ {±ı}. This yields the following eigenprojections of A(z)

P1(z) =
1

2(1 + z2)1/2

[
1 + (1 + z2)1/2 z

z −1 + (1 + z2)1/2

]
,

P2(z) =
1

2(1 + z2)1/2

[
−1 + (1 + z2)1/2 −z

−z 1 + (1 + z2)1/2

]
, z ∈ D.

In accordance with Corollary 4.2.26 these projections are represented by analytic matrix
functions of constant rank 1 on the simply connected domain D ⊂ C \ {±ı}. By analytic
continuation along a small circle around the critical points ±ı the two eigenprojections form
a 2-cycle, i.e. by analytic continuation of P1(z) along such a cycle we obtain P2(z) and vice
versa. Note further that both P1(·), P2(·) have a pole at ±ı and so these eigenprojections
cannot be extended continuously to z = ±ı. The total projection P (z) close to the critical
point z0 = ı is of rank 2 (= the algebraic multiplicity of the eigenvalue 0 of A(ı), see
Corollary 4.2.25), hence P (z) = I, |z − ı| ' 1. An analogous statement holds for the
critical point z = −ı. �

Given an analytic eigenvalue λj(·) of algebraic multiplicity mj on a subdomain D
of Ω \ CA, it is of interest to find for each z ∈ D, mj generalized eigenvectors
vj,k(z), k = 1, . . . , mj which form a basis for the generalized eigenspace ker(λj(z)I −
A(z))mj and which depend analytically on z ∈ D. The following specialization of
Proposition 4.2.23 is our main tool for the construction of analytic (generalized)
eigenbases.

Corollary 4.2.29. Let P (·) : D → L(Kn) be an analytic projection-valued function
on a connected open set4 D⊂K, and assume ‖P (z)−P (z0)‖<1 for all z, z0 ∈ D. If

U(z, z0) = [P (z)P (z0) + (I − P (z))(I − P (z0))][I − (P (z) − P (z0))
2]−1/2, (41)

then U(·, ·) is analytic on D × D and, for all z, z0 ∈ D,

U(z0, z0) = I, U(z, z0)
−1 = U(z0, z), P (z) = U(z, z0)P (z0)U(z, z0)

−1. (42)

If for some z, z0 ∈ D we have z0, z ∈ D and P (z)∗ = P (z), P (z0)
∗ = P (z0), then

U(z, z0)
∗ = U(z, z0)

−1.

In particular if z0, z ∈ D are real and P (z), P (z0) are Hermitian (resp. real and
symmetric), then U(z, z0) is unitary (resp. orthogonal).

4i.e. D is a complex domain if K = C and an open interval if K = R.
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Proof : Since ‖P (z) − P (z0)‖ < 1, for z, z0 ∈ D, U(z, z0) is well defined by (41)
and analytic on D × D because P (·) is analytic on D. The proof is completed by
applying Proposition 4.2.23 with P = P (z), Q = P (z0). �

Corollary 4.2.30. Let P (·) and D be as in Corollary 4.2.29 and z0, z ∈ D. If
(v1, . . . , vm) is a basis for ImK P (z0) := P (z0)K

n and U(z, z0) is defined as in (41),
then the vectors vi(z) = U(z, z0)v

i, i ∈ m form a basis of ImK P (z) ⊂ Kn depending
analytically on z ∈ D.

Proof : We have

P (z)vi(z) = P (z)U(z, z0)v
i = U(z, z0)P (z0)v

i = U(z, z0)v
i = vi(z).

So the vectors vi(z), i∈m belong to ImK P (z). But dimK ImK P (z)=dimK ImK P (z0)
and the transformations U(z, z0) are invertible, so the vectors vi(z), i ∈ m are
linearly independent and form a basis of ImK P (z) for z ∈ D. �

Remark 4.2.31. It is clear from the construction of U(z, z0) in (41) that if the conditions
on the parameter dependent projection are relaxed so that P (z) is e.g. only continuous
(resp. differentiable) on D, then the corresponding transformation U(·, ·) will be continuous
(resp. differentiable) on D × D, and so we obtain a continuous (resp. differentiable) basis
of ImK P (z) by the preceding corollary. �

Applying Corollary 4.2.30 to the eigenprojections of A(z), analytic generalized eigen-
vectors can be constructed locally around a non-critical parameter point z0.

Corollary 4.2.32. Suppose A(·) : Ω → C
n×n is analytic on a domain Ω ⊂ C,

CA is the set of critical points of A(·), z0 ∈ Ω \ CA and λj is an eigenvalue of
A(z0) of algebraic multiplicity mj. Then there exist an analytic function λj(·) on
a suitable disk D(z0, r), r > 0 and mj analytic functions vj,k(·) : D(z0, r) → Cn,
k = 1, . . . , mj such that λj(z) is an eigenvalue of algebraic multiplicity mj of A(z)
with λj(z0) = λj and (vj,1(z), . . . , vj,mj(z)) is a basis of the generalized eigenspace
ker(λj(z)In − A(z))mj for all z ∈ D(z0, r).

Proof : Since z0 is non-critical, the λj-group of eigenvalues of A(z) near z = z0

consists of only one eigenvalue λj(z) (of multiplicity mj), and this eigenvalue of A(z)
depends analytically on z in a small disk D(z0, δ). The associated total projection
Pj(z) defined by (39) is identical with the eigenprojection for λj(z) and depends
analytically on z ∈ D(z0, δ) if δ > 0 is small enough. Now choose r ∈ (0, δ) such
that ‖P (z)−P (z0)‖< 1 for all z∈D(z0, r) and let (vj,1, . . . , vj,mj) be a basis of the
generalized eigenspace ker(λjIn − A(z0))

mj . If we define U(z, z0) by (41), then the
vectors vj,k(z) = U(z, z0)v

j,k, k ∈ mj form a basis of Im P (z)=ker(λj(z)In−A(z))mj

and depend analytically on z ∈ D(z0, r) by Corollary 4.2.30. �

The following example shows that if v is an eigenvector of A(z0), for z0 ∈ Ω\CA with
corresponding eigenvalue λ and λ(z) is an eigenvalue of A(z) depending analytically
on z in a neighbourhood of z = z0 such that λ(z0) = λ, then U(z, z0)v is not
necessarily an eigenvector corresponding to λ(z), for any z �= z0.
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Example 4.2.33. Consider the analytic matrix on the open unit disk

A(z) =

⎡⎣ z2(1 − z2)−1 1 −z(1 − z2)−1

−(1 − z2)−1 2 z(1 − z2)−1

z(1 − z2)−1 z −(1 − z2)−1

⎤⎦ , z ∈ D.

It is easy to verify that the unordered 3-tuple of eigenvalues of A(z) is constant, Λ(A(z)) =
{1, 1,−1}, and even the Jordan form of A(z) is independent of z. The eigenprojection P (z)
of A(z) corresponding to λ(z) ≡ 1 is computed by (39) and the associated transformation
U(z, 0) by (41),

P (z)=

⎡⎣ (1 − z2)−1 0 −z(1 − z2)−1

0 1 0
z(1 − z2)−1 0 −z2(1 − z2)−1

⎤⎦, U(z, 0)=

⎡⎣ (1 − z2)−1/2 0 z(1 − z2)−1/2

0 1 0

z(1 − z2)−1/2 0 (1 − z2)−1/2

⎤⎦.

Consider the eigenvector v = (1, 1, 0)� of A(0) corresponding to λ = 1. Then

v(z) = U(z, 0)v = ((1 − z2)−1/2, 1, z(1 − z2)−1/2)�, A(z)v(z) = (1, 2 − (1 − z2)−1/2, z)�.

Thus we see that v(z) is not an eigenvector of A(z) for z �= 0. �

Clearly the situation illustrated in the above example will not occur if the eigenvalue
λ(z) is semi-simple for all z ∈ D.

Remark 4.2.34. Proposition 4.2.29 is a local result since it assumes ‖P (z)−P (z0)‖ < 1
for z, z0 ∈ D and this assumption will in general only be satisfied for small D. Now assume
that D is an arbitrary simply connected domain in the complex plane on which P (z) is
analytic. In [293, II.4] (see also [43]), Kato shows how to construct a transformation
U(z, z0) on D × D via the solution of differential equations. More precisely he proved:
Let P1(z), . . . , P�(z) ∈ L(Kn) be projections which are analytic functions of z ∈ D , such
that for every z ∈ D

�∑
j=1

Pj(z) = In, Pj(z)Pk(z) = δjkPk(z), j, k = 1, . . . , �.

Then there is a transformation U(·, ·) analytic on D × D which has the properties given
in (42) where the last one is valid for every Pj , j ∈ �, i.e.

Pj(z) = U(z, z0)Pj(z0)U(z, z0)
−1, z0, z ∈ D, j ∈ � ,

and in addition U(·, ·) satisfies the cocycle condition

U(z2, z1)U(z1, z0) = U(z2, z0), z0, z1, z2 ∈ D.

For some hints on the construction, see Ex. 16. The analyticity requirement can be
relaxed, but Kato’s construction requires at least the differentiability of the projections,
see Remark 4.2.31. �

We will now briefly discuss analytic properties of eigenprojections at critical param-
eter values. Suppose that z0 ∈ Ω is a possibly critical point for A(·) and that A(z0)
has exactly � distinct eigenvalues λ1, . . . , λ�, of algebraic multiplicities m1, . . . , m�.
Given � non-overlapping positively oriented circles Γ1, . . . , Γ� around these eigen-
values of A(z0), there exists δ > 0 such that D(z0, δ) ⊂ Ω, the punctured disk
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D◦(z0, δ) ⊂ Ω does not contain any critical point of A(·), and for all z ∈ D(z0, δ)
each circle Γj , j ∈ �, encloses exactly mj eigenvalues of A(z), taking account of
multiplicities. Let nj be the number of distinct eigenvalues of A(z) enclosed by Γj

for z ∈ D◦(z0, δ). These eigenvalues constitute the λj-group of eigenvalues of A(z)
near z0. By analytic continuation in D◦(z0, δ) the nj eigenvalues of the λj-group
form a number of different cycles (λjk1(z), . . . , λjkqjk

(z)), k = 1, . . . , hj, see Fig-
ure 4.2.1. Each cycle (λjk1(z), . . . , λjkqjk

(z)) defines a qjk-valued algebraic function
fjk on D◦(z0, δ). The eigenvalues λjki(z), i ∈ qjk of A(z) pertaining to a given cycle

are all of the same algebraic multiplicity mjki(z) = mjk(z), and these multiplicities
mjk(z) = mjk remain constant throughout the punctured disk D◦(z0, δ). Altogether

A(z) has
∑�

j=1 nj =
∑�

j=1

∑hj

k=1 qjk distinct eigenvalues for z ∈ D◦(z0, δ), and their

multiplicities add up to
∑�

j=1

∑hj

k=1 qjkmjk = n.
The total projection Pj(z) (39) associated with any one of the λj-groups

{λjki(z); k = 1, . . . , hj, i = 1, . . . , qjk}, j ∈ �

is the sum of all the eigenprojections corresponding to the nj eigenvalues of the λj-
group and depends analytically on z according to Corollary 4.2.25. The behaviour
of the eigenprojections themselves near a critical point is more complicated. By
Corollary 4.2.26 (see also Remark 4.2.27) the eigenprojection of A(z)

Pjki(z) :

�⊕
j=1

hj⊕
k=1

qjk⊕
i=1

ker (λjki(z)In − A(z))mjki → ker (λjki(z)In − A(z))mjki ,

corresponding to the eigenvalue branch λjki(z) is defined and analytic on the (simply
connected) cut disk D−(z0, δ). The same holds for the associated eigennilpotent
Njki(z) = (A(z) − λjki(z)In)Pjki(z). The eigenprojection branches Pjki(z) (resp.
eigennilpotents branches Njki(z)) are linked by analytic continuation in D◦(z0, δ)
if and only if the same holds for the corresponding eigenvalue branches λjki(z).
Therefore the operator sum

∑qjk

i=1 λjki(z)Pjki(z) (resp. the sum of eigennilpotents∑qjk

i=1 Njki(z)) associated with the eigenvalue cycle (λjk1(z), . . . , λjkqjk
(z)) is invariant

with respect to analytic continuation along circular arcs in D◦(z0, r) and hence

can be extended analytically to the punctured disk. Pj(z) =
∑hj

k=1

∑qjk

i=1 Pjki(z),
z ∈ D◦(z0, r) is the total projection associated with the λj-group and we have the
following spectral representation of A(z)

A(z) =
�∑

j=1

hj∑
k=1

qjk∑
i=1

(λjki(z)Pjki(z) + Njki(z)) , z ∈ D◦(z0, δ). (43)

The eigenprojection branches Pjki(z) in (43) are linked by analytic continuation in
D◦(z0, δ) if and only if the same holds for the corresponding eigenvalue branches
λjki(z). The proof of the next theorem proceeds from the partial fraction decom-
position (26) of R(s, A(z)) and can be found e.g. in Kato (1980) and Baumgärtel
(1985), see Notes and References.

Theorem 4.2.35. If A(·) : Ω → Cn×n is an analytic matrix function on a domain
Ω ⊂ C the eigenprojections and eigennilpotents of A(z) are branches of analytic
functions of z ∈ Ω with only algebraic singularities at some (but not necessarily all)
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critical points z0 ∈ CA. The branch points and their orders are the same for the
eigenvalues and the eigenprojections.
If A(z0) =

∑�
j=1 λjPj + Nj is the spectral representation of A(z0) at some (possibly

critical) point z0 ∈ Ω, there exists δ > 0 such that the spectral representation of A(z)
in the punctured disk D◦(z0, δ) is of the form (43) where hj is the number of cy-
cles (λjk1(z), . . . , λjkqjk

(z)), of order qjk ≥ 1, in the λj-group
5 of eigenvalues of A(z)

near z0 and (Pjk1(z), . . . , Pjkqjk
(z)) resp. (Njk1(z), . . . , Njkqjk

(z)) are the correspond-
ing cycles of eigenprojections, resp. eigennilpotents obtained by analytic continuation
in D◦(z0, δ).
If qjk = 1, the functions λjk1(z), Pjk1(z), Njk1(z) can be continued analytically
to the whole disk D(z0, δ). If qjk ≥ 2 the branches of the eigenprojection cycle
(Pjk1(z), . . . , Pjkqjk

(z)) near z0 can be represented by a Laurent-Puiseux series of the
form

Pjki(z) =

∞∑
l=−ljk

Bjkl (w
i(z − z0)

1/q)l , z ∈ D−(z0, δ) (44)

where w = e2πı/qjk , ljk ∈ N, Bjkl ∈ Cn×n for l ≥ −ljk, and (z − z0)
1/q = ρ1/qeıθ/q for

z = z0 + ρeıθ, 0 < θ < 2π.

Although the eigenvalues and the eigenprojections have common branch points their
behaviour near these points are very different. The eigenvalues λjki(z) of a cycle
with centre z0 are continuous at z0 and as z → z0 they all converge to the same
root λj of the polynomial det (sI − A(z0)), see Corollary 4.2.9. On the other hand
we will now show that the eigenprojections Pjki(z) necessarily have a pole at each
branch point.

Theorem 4.2.36 (Butler). Suppose that z = z0 is a branch point of order qjk ≥ 2
of an eigenvalue λjki(z) of A(z). Then the Laurent-Puiseux expansion (44) of the
associated eigenprojection Pjki(z) in powers of (z − z0)

1/q contains negative powers.
In particular ‖Pjki(z)‖ → ∞ as z → z0.

Proof : Suppose that Pjki(z) belongs to the cycle (Pjk1(z), . . . , Pjkqjk
(z)) of eigen-

projections. By analytic continuation along a small circle around z0, Pjki(z) is
changed to Pjk(i+1)(z), i = 1, . . . , qjk − 1 and Pjkqjk

(z) is changed into Pjk1(z). Now
assume that the Laurent-Puiseux expansion (44) does not contain negative powers
of (z − z0)

1/q. Then Pjki(z) is continuous at z0 and it follows that (see (44))

Bjk0 = lim
z→z0

Pjk(i+1)(z) = lim
z→z0

Pjki(z) , (qjk + 1 := 1) . (45)

But since Pjki(z)Pjk(i+1)(z) = 0 and Pjki(z)Pjki(z) = Pjki(z) by (23), we have Bjk0 =
Bjk0Bjk0 = 0. On the other hand Pjki(z) is a non-zero projection hence ‖Pjki(z)‖ ≥
1. This contradicts Bjk0 = 0 in view of (45). �

We see, therefore, that we cannot expect analyticity of eigenprojections at branch
points of an associated eigenvalue. For an illustration, see Example 4.2.28. So it is
interesting to ask what properties of A(z) ensure that branch points do not exist for
z ∈ Ω. One such property is given in the following definition.

5hence limz→z0
λjki(z) = λj for j = 1, . . . hj , i = 1, . . . , qjk.
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Definition 4.2.37. A continuous matrix function A(·) : Ω → Cn×n is said to satisfy
the normality condition at a point z0 ∈ Ω if there exists a sequence (zi)i∈N∗ in Ω\{z0}
converging to z0 such that the matrices A(zi) are all normal.

By continuity it follows that under the above condition A(z0) must also be nor-
mal. The next theorem provides an important analyticity result for eigenvalues and
eigenprojections.

Theorem 4.2.38 (Rellich). Let A(·) : Ω → C
n×n be analytic and satisfy the

normality condition at z0 ∈ Ω. Suppose the spectral representation (24) of A(z0)
is given by A(z0) =

∑�
j=1 λjPj where the distinct eigenvalues λj have algebraic

multiplicities mj. Then the following statements hold for sufficiently small disks
D(z0, δ) ⊂ Ω of radius δ > 0 around z0.

(i) For each j ∈ � there exist nj ≤ mj distinct analytic functions λj,k(·) : D(z0, δ) →
C such that {λj,1(z), . . . , λj,nj

(z)} is the λj-group of eigenvalues of A(z) on
D(z0, δ). In particular, λj,k(z0) = λj for j ∈ �, k = 1, . . . , nj.

(ii) For each j ∈ � there exist nj analytic matrix functions Pj,k(·) : D(z0, δ) →
Cn×n such that, for every z ∈ D◦(z0, δ), Pj,k(z) is the eigenprojection of A(z)
for the eigenvalue λj,k(z), k = 1, . . . , nj, and

∑nj

k=1 Pj,k(z0) = Pj. Pj,k(z) is of
constant rank on D(z0, δ), for every j ∈ �, k = 1, . . . , nj.

(iii) The spectral representation of A(z) for z ∈ D◦(z0, δ) is given by

A(z) =

�∑
j=1

nj∑
k=1

λj,k(z)Pj,k(z), 0 < |z| < δ. (46)

Proof : Let Γj, j ∈ � be non-overlapping circles around λj in C and let δ > 0 be
such that D(z0, δ) ⊂ Ω, D◦(z0, δ) ∩ CA = ∅, and each Γj encloses exactly mj eigen-
values of A(z) for z ∈ D(z0, δ) (taking account of multiplicities). Let (zi)i∈N∗ be a
sequence in D◦(z0, δ) converging to z0 such that the matrices A(zi) are all normal.
We will first prove (i). If z0 is not a critical point, then every λj-group of eigenvalues
of A(z) contains only one eigenvalue (nj = 1) and (i) follows from Corollary 4.2.8.
Now suppose z0 ∈ CA. For j ∈ � let (λj,1(z), . . . , λj,nj

(z)) be the λj-group of eigen-
values of A(z) surrounded by Γj and (Pj,1(z), . . . , Pj,nj

(z)) the associated eigenpro-
jections. Since A(zi) is normal we have ‖Pj,k(zi)‖2,2 = 1 for each eigenprojection
Pj,k(z), k ∈ nj. Hence by Theorem 4.2.36, z0 is not a branch point for any λj,k(z)

and so the λj,k(z) can be continued analytically onto D(z0, δ) by Corollary 4.2.9.
Now set D = D◦(z0, δ). Applying Corollary 4.2.26 the eigenprojections Pjk(z)
are analytic and of constant rank on D. z0 is not a branch point for any λj,k(z)
and so by Theorem 4.2.35 the associated eigenprojection Pj,k(·) and eigennilpotent
Nj,k(z) = (A(z) − λj,k(z)I)Pj,k(z), j ∈ �, k = 1, ..., nj can be extended analytically
to D(z0, δ).

6 But Nj,k(zi) = 0 for i ∈ N∗ since A(zi) is normal and so Nj,k(z) = 0 for
all z ∈ D(z0, δ) by the Identity Theorem A.2.9 for holomorphic functions. Therefore
the spectral representation (24) of A(z), z ∈ D is given by (46). By continuity
the total projections Pj(z) =

∑nj

k=1 Pj,k(z) (see Corollary 4.2.22) converge to Pj as
z → z0. This shows

∑nj

k=1 Pj,k(z0) = Pj and concludes the proof of (ii) and (iii). �

6Note, however, that Pjk(z) will, in general, not be an eigenprojection for λj,k(z) at z = z0.
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A global version of the preceding theorem is presented in the next corollary.

Corollary 4.2.39. Let A(·) : Ω → Cn×n be analytic, D ⊂ Ω a simply connected
subdomain and assume that A(·) satisfies the normality condition at each critical
point in D. Then there exist analytic functions λi : D → C and analytic projection-
valued functions Pi(·) : D → Cn×n, i ∈ N such that for every non-critical point
z ∈ D the spectral representation of A(z) is given by A(z) =

∑N
i=1 λi(z)Pi(z). In

particular, A(z) is diagonalizable for all z ∈ D.

Proof : Let N be the number of distinct eigenvalues of A(z) at the non-critical
points of Ω. Given any z0 ∈ D, there exist (by Theorem 4.2.38) N analytic func-
tions λi(·) : D(z0, δ) → C on some small disk D(z0, δ) ⊂ D such that σ(A(z)) =
{λ1(z), . . . , λN(z)} for z ∈ D(z0, δ), and N projection-valued analytic functions
Pi(·) : D(z0, δ) → Cn×n such that, for every z ∈ D◦(z0, δ), Pi(z) is the eigen-
projection of A(z) corresponding to the eigenvalue λi(z), i ∈ N , and the spectral
representation of A(z) takes the form A(z) =

∑N
i=1 λi(z)Pi(z) for z ∈ D◦(z0, δ).

Each of the functions λi(·) and Pi(·) can be continued analytically along any arc
in D such that A(z) =

∑N
i=1 λi(z)Pi(z) is the spectral representation of A(z) for

every noncritical point on the arc. Since D is simply connected this defines, by the
Monodromy Theorem A.2.24, N complex analytic functions λi(·) : D → C and N
analytic projection-valued functions Pi(·) : D → Cn×n which satisfy the corollary.
�

We now return to the problem of constructing an analytic eigenbasis of A(z) and
solve it locally under the normality assumption of Rellich’s Theorem.

Corollary 4.2.40. Let A(·) : Ω → Cn×n be analytic and satisfy the normality con-
dition at z0 ∈ Ω. Then, for δ > 0 sufficiently small, there exists an analytic matrix
function V (·) : D(z0, δ) → Cn×n such that V (z) ∈ Gln(C) and V (z)−1A(z)V (z) is
diagonal for all z ∈ D(z0, δ).

Proof : Suppose the same set-up as in the proof of Rellich’s Theorem and choose
δ > 0 sufficiently small so that additionally ‖Pj,k(z) − Pj,k(z

′)‖ < 1 for all z, z′ ∈
D(z0, δ), j ∈ �, k ∈ nj . Then we can apply Proposition 4.2.29 to each analytic

projection-valued function Pj,k(z) on D(z0, δ) and obtain invertible transformations
Uj,k(z, z

′) which depend analytically on (z, z′) ∈ D(z0, δ) × D(z0, δ). For every
j ∈ �, k ∈ nj let (vj,k,1, . . . , vj,k,mjk) be a basis of Im Pj,k(z0). By Corollary 4.2.30

the vectors Uj,k(z, z0)v
j,k,l, l = 1, . . . , mjk form a basis of Im Pj,k(z). Hence by

Theorem 4.2.38 the vectors

Uj,k(z, z0)v
j,k,l, 1 ≤ j ≤ �, 1 ≤ k ≤ nj , 1 ≤ l ≤ mjk

form an eigenbasis of A(z), for each z ∈ D(z0, δ). Choosing these n vectors as
columns of V (z) we obtain a diagonal matrix V (z)−1A(z)V (z) whose diagonal entries
are the eigenvalues λj,k(z) of A(z). �

Choosing complex parameters in Example 4.2.7 we see that the previous three results
do not hold for analytic matrix families A(z1, z2) depending on two parameters. The
following example illustrates, that the normality condition in Theorem 4.2.38 cannot
be replaced by diagonalizability.
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Example 4.2.41. Consider the affine linear matrix function

z �→ A(z) =

⎡⎣ 0 z 0
0 0 z

z 0 1

⎤⎦ , z ∈ C.

The characteristic equation of A(z) is λ3 −λ2 − z3 = 0. For |z| sufficiently small there are
three distinct eigenvalues provided z �= 0. Since also A(0) is diagonal, A(z) is diagonaliz-
able in a neighbourhood of z0 = 0. But z0 = 0 is a branch point and the Puiseux series
for the eigenvalues at z0 = 0 are of the form

λ1(z) = 1 + z3 + · · · , λ2,3 = ±ız3/2 + · · · .

Thus local diagonalizability of an analytic matrix family A(·) : Ω → C
n×n at a critical

point z0 does not ensure analyticity of the eigenvalues of A(z) at z0.
A surprising theorem of Motzkin-Taussky states that if a matrix of the form A(z) =
A0 + A1z is diagonalizable for all z ∈ C then all eigenvalues of A(z) are affine linear in
z, i.e. the eigenvalues of A(z) are of the form λj(z) = λj(A0) + ηjz with ηj ∈ C and the
associated eigenprojections Pj(z) on C\CA can be extended to analytic functions on C [293,
II.Thm.2.6]. The present example shows that the assumption of global diagonalizability is
essential for this theorem and cannot be replaced by local diagonalizability at the critical
parameter value considered. On the other hand, it follows from the theorem of Motzkin-
Taussky that the above matrix A(z) cannot be diagonalizable for all z ∈ C. In fact one
verifies that A(z) is not diagonalizable at the solutions of z3 = −4/27. �

We will now briefly deal with the spectral analysis of matrix families parametrized by
a real parameter. Suppose A(·) : I → Cn×n is analytic on an open interval I ⊂ R. At
every point τ0 ∈ I, A(·) can be expanded into a power series A(τ) =

∑∞
k=0 Ak(τ−τ0)

k

which is absolutely convergent on a small interval I(τ0, r(τ0)) of radius r(τ0) > 0
around τ0. If r(τ0) is chosen sufficiently small, the complex analytic extension to
the disk D(z0, r(τ0)) given by A(z) =

∑∞
k=0 Ak(z − τ0)

k, z ∈ D(τ0, r(τ0)) does not
contain a non-real critical point, i.e. the number of eigenvalues of A(z) at non-real
z ∈ D(τ0, r(τ0)) will be equal to the number of eigenvalues of A(τ) at non-critical
real points τ ∈ I. The union D of all these disks is a simply connected domain in C

with I = D ∩R. The analytic extension of A(·) to D will again be denoted by A(·).
By construction D does not contain any critical point of A(·) off the real axis.

Proposition 4.2.42. Suppose that A(·) : I → Cn×n is analytic on an open interval
I ⊂ R and � is the maximum number of distinct eigenvalues of A(τ), τ ∈ I.

(i) If I does not contain any critical points of A(·), then there exist analytic func-
tions λj : I → C and Pj : I → Cn×n, j ∈ � such that λ1(τ), . . . , λ�(τ) are the
distinct eigenvalues of A(τ) and P1(τ) . . . , P�(τ) are the corresponding eigen-
projections of A(τ) for all τ ∈ I.

(ii) Suppose that A(·) satisfies the normality condition at all critical points in I.
Then there exist analytic functions λj : I → C and analytic projection-valued
functions Pj : I → Cn×n, j ∈ � such that for every non-critical point τ ∈ I

the spectral representation of A(τ) is given by A(τ) =
∑�

j=1 λj(τ)Pj(τ). In
particular, A(τ) is diagonalizable for all τ ∈ I.
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(iii) Suppose A(τ)∗ = A(τ) ∈ Kn×n for all τ ∈ I. Then the previous statement
holds with selfadjoint projections Pj(τ) = Pj(τ)∗ ∈ Kn×n. Moreover, for any
τ0 ∈ I, there exists δ > 0 and an analytic orthonormal basis of Kn con-
sisting of eigenvectors of A(·) on I(τ0, δ), i.e. an analytic matrix function
V (·) : I(τ0, δ) → Kn×n such that V (τ) ∈ Un(K) and V (τ)−1A(τ)V (τ) is diag-
onal for all τ ∈ I(τ0, δ).

Proof : Let A(·) be extended analytically to a simply connected domain D ⊂ C

with D ∩ R = I as above. If I does not contain any critical points then D does not
contain any critical points and so (i) is an immediate consequence of Corollary 4.2.8
and Corollary 4.2.26. (ii) follows directly from Corollary 4.2.39 since D does not
contain any non-real critical point and so by assumption A(·) is normal at all its
critical points in D.
Now suppose that A(τ) is Hermitian (i.e. real and symmetric if K = R) for all
τ ∈ I. Then A(τ) is normal on I and so the first statement in (iii) follows from
(ii). In fact, since the eigenprojections of a Hermitian matrix are selfadjoint, we
have Pj(τ) = Pj(τ)∗ ∈ Kn×n at all non-critical points τ ∈ I and hence by continuity
we obtain Pj(τ) = Pj(τ)∗ ∈ Kn×n for all τ ∈ I. Similarly it follows that the
images ImK Pj(τ), j ∈ � (which are the eigenspaces of A(τ) at non-critical points
τ ∈ I) are mutually orthogonal for all τ ∈ I. To prove the second statement
in (iii) we proceed as in the proof of Corollary 4.2.40. Let τ0 ∈ I and choose
δ > 0 sufficiently small so that ‖Pj(τ) − Pj(τ

′)‖ < 1 for all τ, τ ′ ∈ I(τ0, δ), j ∈ �.
Then we can apply Proposition 4.2.29 to each projection-valued function Pj(·) on
I(τ0, δ). Since Pj(τ) = Pj(τ)∗ we obtain transformations Uj(τ, τ

′) ∈ Un(K) which
depend analytically on (τ, τ ′) ∈ I(τ0, δ)×I(τ0, δ). For every j ∈ �, let (vj1, . . . , vjmj)
be an orthonormal basis of ImK Pj(τ0). By Corollary 4.2.30 the vectors vjk(τ) =
Uj(τ, τ0)v

jk, k = 1, . . . , mj form a basis of ImK Pj(τ) and this basis is orthonormal
since the transformations Uj(τ, τ0) are unitary. As we have already seen that the
subspaces ImK Pj(τ), j ∈ � are mutually orthogonal for all τ ∈ I, we conclude that
the vectors vjk(τ), j ∈ �, k = 1, . . . , mj form an orthonormal basis of eigenvectors
of A(τ) for all τ ∈ I(τ0, δ). This concludes the proof. �

In the next corollary (which will be useful in the next section) we show how to
construct locally an analytic unitary (resp. orthogonal) matrix function whose first
columns are identical with a given orthonormal family of analytic vectors.

Corollary 4.2.43. Let I ⊂ R be an open interval and V1 : I → Kn×r, r < n
an analytic matrix function whose columns form an orthonormal system at each
τ ∈ I. Then, for any τ0 ∈ I, there exists δ > 0 and an analytic matrix function
V2 : I(τ0, δ) → Kn×(n−r), such that I(τ0, δ) ⊂ I and V (τ) = [V1(τ) V2(τ)] ∈ Un(K)
for all τ ∈ I(τ0, δ).

Proof : The Hermitian matrix function A(·) : I → K
n×n defined by A(τ) =

V1(τ)V1(τ)∗ is analytic on I. Given any τ0 ∈ I, there exists by Proposition 4.2.42 an
analytic orthonormal basis (vr+1(τ), ..., vn(τ)) of the eigenspace ker A(τ) ⊂ Kn on
a sufficiently small interval I(τ0, δ) ⊂ I, δ > 0. Let V2(τ) = [vr+1(τ)....vn(τ)], then
[V1(τ) V2(τ)] ∈ Un(K) for τ ∈ I(τ0, δ). �
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Remark 4.2.44. Global versions of Corollary 4.2.30, Proposition 4.2.42 (iii) and Corol-
lary 4.2.43 can be proved by using Kato’s construction of globally defined transformation
matrices U(z, z0), see Remark 4.2.34. �

Example 4.2.7 illustrates that the statements of Proposition 4.2.42 do not hold
for analytic matrix families A(τ1, τ2) depending on two real parameters. The next
example shows that the eigenspaces of a real normal matrix family can behave quite
irregularly if the assumption of analyticity is weakened to infinite differentiability.
It also illustrates once more the fact that, in general, the eigenspaces of a matrix
vary less smoothly than the eigenvalues.

Example 4.2.45. Consider the family of real symmetric matrices

A(τ) = e
− 1

τ2

[
cos 2

τ sin 2
τ

sin 2
τ − cos 2

τ

]
, τ ∈ R

∗, A(0) = 02×2 .

A(·) is infinitely differentiable on R and so are the eigenvalues λ±(τ) = ±e−1/τ2
, τ ∈ R

∗,
λ±(0) = 0. For τ ∈ R

∗ the associated eigenspaces are spanned by (cos(1/τ), sin(1/τ))�

and (− sin(1/τ), cos(1/τ))�, respectively. The corresponding eigenprojections are

P+(τ) =

[
cos2 1

τ cos 1
τ sin 1

τ
cos 1

τ sin 1
τ sin2 1

τ

]
, P−(τ) =

[
sin2 1

τ − cos 1
τ sin 1

τ
− cos 1

τ sin 1
τ cos2 1

τ

]
, τ ∈ R

∗.

But these projections cannot be extended to τ = 0 in a continuous fashion. Even more,
there does not exist a continuous function v : [0, ε) �→ R

2 for some ε > 0 such that v(τ) is
an eigenvector of A(τ) for all τ ∈ [0, ε). In fact, suppose e.g. that A(τ)v(τ) = λ+(τ)v(τ)
for 0 ≤ τ < ε and let (τk) be a positive sequence converging to 0 such that cos(1/τ2k) = 1
and cos(1/τ2k+1) = 0, k ∈ N. Then v(τ2k) = α2k(1 0)�, v(τ2k+1) = α2k+1(0 , 1)�, k ∈ N

for suitable αk ∈ R. If v(·) is continuous at 0 then limk→∞ v(τ2k) = limk→∞ v(τ2k+1) and
so (αk) must converge to 0, whence v(0) = (0 , 0)� which is not an eigenvector of A(0). �

We conclude this section with a few remarks concerning the sensitivity of eigen-
vectors (for eigenvalues, see Subsection 4.2.1). The eigenvectors of a parametrized
matrix A(z) are not uniquely determined. If v(z) is a parametrized eigenvector
of A(z), continuously differentiable at z = z0 and α(z) is a complex-valued func-
tion, continuously differentiable at z = z0 such that α(z0) = 1. Then the rescaled
eigenvector ṽ(z) = α(z)v(z) has sensitivity

ṽ′(z0) =
dṽ

dz
(z0) =

dα

dz
(z0)v(z0) + α(z0)

dv

dz
(z0) = α′(z0)v(z0) + v′(z0) . (47)

We see therefore that the sensitivity of v(z) at z0 can be changed arbitrarily in the
direction of v(z0) by scaling.

Proposition 4.2.46. Let Ω be an open subset of R or C and suppose that A(·) :
Ω → Cn×n is differentiable and has n distinct eigenvalues λj, j ∈ n at z = z0 with
corresponding left and right eigenvectors wj, vj for j ∈ n. For a given i ∈ n, let
λi(·) : Ω → C, vi(·) : Ω → C

n be differentiable at z0 and satisfy

A(z)vi(z) = λi(z)vi(z), λi(z0) = λi, vi(z0) = vi, z ∈ Ω. (48)
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Then

dvi

dz
(z0) =

n∑
j=1

βijv
j, where βij =

wj∗A′(z0)v
i

(λi − λj)wj∗vj
, j ∈ n, j �= i. (49)

By rescaling vi(z) the coefficient βii can be made zero whilst the other coefficients
βij, j ∈ n, j �= i are invariant under rescaling of vi(z).

Proof : Differentiating the first equation in (48) at z = z0 we have

(A(z0) − λiIn)
dvi

dz
(z0) + (A′(z0) − λ′

i(z0)In)vi = 0 .

Multiplication on the left by wj∗, j �= i gives

(λj − λi)w
j∗dvi

dz
(z0) + wj∗(A′(z0) − λ′

i(z0)I)vi = 0 .

Now choose βik ∈ C such that dvi

dz
(z0) =

∑n
k=1 βikv

k. Since wj∗vk = 0 for k �= j
(because λj �= λk), we get wj∗vj �= 0 and

(λj − λi)βijw
j∗vj + wj∗A′(z0)v

i = 0, j ∈ n, j �= i.

This proves (49). Rescaling vi(z), i.e. replacing vi(z) by ṽi(z) = αi(z)vi(z) where

αi(z0) = 1, we obtain dṽi(z)
dz

(z0) = (βii + α′(z0))v
i +

∑n
j=1,j �=i βijv

j from (47). This
proves the last part of the proposition. �

If A(·) is analytic and A(z0) has n distinct eigenvalues then there exist analytic
functions λi(·), vi(·) satisfying (48) on a neighbourhood of z0, by Corollary 4.2.3
and Corollary 4.2.26. Expression (49) shows that in this case the sensitivity of the
eigenvector vi(·) at z = z0 is strongly dependent on the separation of λi(z0) from
the other eigenvalues of A(z0). In the words of Golub and Van Loan (1996) [197],
“Eigenvectors associated with nearby eigenvalues are wobbly”. This wobbliness
anticipates the indeterminacy of eigenvector directions when λi = λj.

Example 4.2.47. Consider the matrices

A(z) =

[
10.01 0.01

0 9.99

]
+ z

[
0 0
1 0

]
, z ∈ R

at z0 = 0. The eigenvalues of A0 = A(0) are λ1 = 10.01, λ2 = 9.99 with corresponding
left and right eigenvectors

w1 =

[
2
1

]
, v1 =

[
1
0

]
; w2 =

[
0
1

]
, v2 =

[
1
−2

]
,

and sensitivities

λ′
1(0) =

1

w1∗v1
w1∗A′(0)v1 = 1/2 , λ′

2(0) = −1/2 .

Since the eigenvalues are close we expect large sensitivities of the eigenvectors. Indeed
since β12 = w2∗A′(0)v1/(λ1 − λ2)w

2∗v2 = 1/0.02(−2) = β21, we have

dv1

dz
(0) = β12v

2 = −v2/0.04 = −25v2 ,
dv2

dz
(0) = β21v

1 = −v1/0.04 = −25v1 .
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As a result small changes of the parameter z may strongly affect the eigenvectors whereas
the eigenvalues are only slightly perturbed.

For instance, changing A(0) to A(−0.005) =

[
10.01 0.01
−0.005 9.99

]
we obtain a slightly changed

eigenvalue λ1(−0.005) = 10.0071, but there is a considerable change in the corresponding
normalized right eigenvector ‖v1(−0.005)‖−1

2 v1(−0.005) = [0.9597 , −0.2811]�. �

4.2.4 Exercises

1. Consider A(z) =

[
1 cos z

0.5 2

]
, z ∈ C. Find the critical points of A(·) and determine

the first three terms of the Puiseux series for the branches of Λ(A(z)) near the branch
point 2π/3.

2. Calculate the sensitivities at z0 = 0 of the eigenvalues of the matrices

(i) A(z) =

[
6 + 2z 8 − z

8 −6 + 2z

]
, (ii) A(z) =

⎡⎣ 6 8 − z 0
8 − z −6 0

0 0 10 − z

⎤⎦ , z ∈ C.

3. Suppose that A(·) : Ω → C
n×n is continuously differentiable at z0 ∈ Ω. Prove that the

sensitivity of eA(z) at z = z0 is

eA(z0)

∫ 1

0
e−A(z0)tA′(z0)e

A(z0)t dt .

(Hint: eA(z)t solves the matrix differential equation Ẋ = A(z)X, X(0) = I.)

4. Consider

A(τ) =

[
|τ |1.5 |τ |1.5 − |τ |2.5(2 + sin |τ |−1)
−|τ |1.5 −|τ |1.5

]
, τ ∈ R

∗, A(0) = 0 .

Show that A(·) is continuously differentiable and diagonalizable for all τ . Calculate the
eigenvalues of A(τ) and show that their derivatives are discontinuous at τ = 0. Hence in
Remark 4.2.5 differentiability cannot be replaced by continuous differentiability.

5. Consider the matrix A(z) of Ex. 2 (ii). Find its eigenvalues λi(z), i ∈ 3. Use Corol-
lary 4.2.16 to show that there exist µi ∈ σ(A(0)) such that |µi − λi(z)| ≤ |z| for i = 1, 2, 3
and all z ∈ C. Determine the µi for each of the λi(z). Relate your findings to the theorem
of Motzkin-Taussky, see Example 4.2.41.

6. Suppose U∗AU = D + N where D is diagonal, U is unitary and Np = 0 for some
integer p. If ∆ ∈ C

n×n, µ ∈ σ(A + ∆) show that there exists λ ∈ σ(A) such that

|µ − λ| ≤ max{θ, θ
1
p }

where θ = ‖∆‖2,2
∑p−1

k=0 ‖N‖k
2,2 (see Golub and Van Loan (1996) [197, 7.2.1]).

7. If A =

[
0 1

−2 −2

]
show that ‖eAt‖2,2 =

∣∣ 1
2(2 + 5 sin2 t + [20 sin2 t + 25 sin4 t]1/2)

∣∣ e−t.

For any α ∈ [0, 1) determine some M(α) > 0 such that the RHS of the above expression
is bounded by M(α)e−(1−α)t. By Proposition 4.2.18 A + ∆, ∆ ∈ R

2×2 is a Hurwitz stable
matrix if

‖∆‖2,2 < (1 − α)/M(α).

Show that if ‖∆‖2,2 < 0.4 then A + ∆ is Hurwitz stable.
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8. Suppose A ∈ C
n×n is asymptotically stable. Show that A + ∆, ∆ ∈ C

n×n will also be
asymptotically stable if

‖∆‖2,2 <

[∫ ∞

0
‖eAt‖2,2 dt

]−1

.

9. Suppose A ∈ C
n×n and ‖At‖ ≤ M αt for all t ∈ N where α ≥ 0, M ≥ 1 and ‖ · ‖ is

any operator norm. Prove that for any ∆ ∈ C
n×n

‖(A + ∆)t‖ ≤ M (α + M ‖∆‖)t , t ∈ N.

10. Determine the Gershgorin set for the matrix

⎡⎣10 1 −1
−2 6 1
0 1 3

⎤⎦ .

11. Applying the scaling transformation T = diag(α, 1, 1), α ∈ R to the matrix Ã of
Example 4.2.20, one obtains

Aα = TÃT−1 =

⎡⎣ 6 α −α

0 2 2
−3/α −3 −7

⎤⎦ .

Find conditions on α so that the Gershgorin set GAα contains a disjoint disk centered at
6, and prove that there is an eigenvalue of A in such a disk with radius 5 −

√
19. Carry

out similar scaling transformations for the other rows and columns to conclude that there
are eigenvalues of A in the disks centered at 2, −7 with radii 3−

√
3, 4−

√
7 respectively.

12. If A =

⎡⎣−2 −2 0
−1 −3 1
1 −1 −3

⎤⎦ find σ(A) and determine the resolvent operator R(s,A). Com-

pute the projections Pj using (27) and verify the equalities in (23), (24).

13. Show that the eigenprojections of A(z) =

[
z 1
0 0

]
, z ∈ C have a pole at the critical

point z0 = 0 (whereas the eigenvalues of A(z) are clearly analytic).

14. Let A(z) =

[
1 z

z −1

]
, z ∈ C (see Example 4.2.28) and z0 ∈ C \ {ı,−ı}. Following the

procedure in the proof of Corollary 4.2.32, construct an analytic eigenbasis for A(z) in a
small disk around z0.

15. If A(z) =

[
1 z

0 2

]
, z ∈ C, calculate the projection P1(z) corresponding to the eigen-

value λ = 1 and show that ‖P1(z)−P1(z0)‖ < 1 provided that z, z0 ∈ C satisfy |z−z0| < 1.
Observe that (P1(z) − P1(z0))

2 = 02 and use this to suggest an improvement to Proposi-

tion 4.2.29. Prove that the transformation U(z, z0) given by (41) is

[
1 z − z0

0 1

]
.

16. This exercise gives some hints for the construction of a transformation U(z, z0) with
the properties given in Remark 4.2.34. Let P1(z), . . . , P�(z) be projections which are
analytic functions of z on a simply connected domain D, such that for every z ∈ D

�∑
j=1

Pj(z) = In, Pj(z)Pk(z) = δjkPk(z), j, k = 1, . . . , �.
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If P ′
j(z) denotes the derivative of Pj(z) with respect to the complex variable z, prove that

for all z ∈ D, j ∈ �

P ′
j(z)Pj(z)+Pj(z)P ′

j(z) = P ′
j(z); Pj(z)P ′

j(z)Pj(z) = 0; Pj(z)P ′
k(z) = −P ′

j(z)Pk(z), k �= j.

Let Q(z) = 1
2

∑�
k=1[P

′
k(z)Pk(z) − Pk(z)P ′

k(z)], z ∈ D. Prove that for z ∈ D, j ∈ �

Q(z)Pj(z) = P ′
j(z)Pj(z), Pj(z)Q(z) = −Pj(z)P ′

j(z), P ′
j(z) = Q(z)Pj(z) − Pj(z)Q(z).

It is known that for every z0 ∈ D there exists a unique solution U(·, z0) on D of the complex
differential matrix equation X ′(z) = Q(z)X(z) with initial value X(z0) = I. U(z, z0) is
called the evolution operator of the complex differential equation X ′(z) = Q(z)X(z) and
has the following properties.

U(z0, z0) = I, U(z, z0)
−1 = U(z0, z), U(z1, z)U(z, z0) = U(z1, z0), z1, z, z0 ∈ D.

Prove that Pj(z)U(z, z0), j ∈ � is a solution of the initial value problem

X ′(z) = Q(z)X(z), X(z0) = Pj(z0) z, z0 ∈ D.

Hence show that Pj(z)U(z, z0) = U(z, z0)Pj(z0), j ∈ � and verify that U(z, z0) has all the
properties mentioned in Remark 4.2.34.

17. Calculate the sensitivities of the eigenvectors of A(z) =

[
6 + 2z 8 − z

8 −6 + 2z

]
at z0 = 0.

18. Suppose that A(·) : Ω → C
n×n is twice differentiable at z0 ∈ Ω and λ is an eigenvalue of

A(z0) of multiplicity m. Assume there exist λi(·) : Ω → C, vi(·) : Ω → C
n, wi(·) : Ω → C

n,
i ∈ m, twice differentiable at z0, satisfying

[A(z) − λi(z)In] vi(z) = 0, wi∗(z) [A(z) − λi(z)In] = 0, i ∈ m

and
λi(z0) = λ, vi(z0) = vi, wi(z0) = wi, wi∗vi �= 0, i ∈ m,

where vi (resp. wi), i ∈ m are linearly independent right (resp. left) eigenvectors of A(z0)
corresponding to the eigenvalue λ. By (4)

λ′
i(z0) =

wi∗A′(z0)v
i

wi∗vi
, i ∈ m .

If in addition λm+1, . . . , λn are distinct eigenvalues of A(z0) with right and left eigenvectors
vi, wi, i = m + 1, . . . , n, and

dvi

dz
(z0) =

n∑
j=1
j �=i

βijv
j ,

dwi∗

dz
(z0) =

n∑
j=1
j �=i

γijw
j∗ , i ∈ m.

Prove

βij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wj∗A′(z0)v

i

(λ − λj)wj∗vj
, i ∈ m, j = m + 1, . . . , n

1
2wj∗A′′(z0)v

i + wj∗(A′(z0) − λ′
i(z0)I)

∑n
k=m+1 βikv

k

(λ′
i(z0) − λ′

j(z0))wj∗vj
, 1 ≤ i �= j ≤ m

γij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wi∗A′(z0)v

j

(λ − λj)wj∗vj
, i ∈ m, j = m + 1, . . . , n

1
2wi∗A′′(z0)v

j +
∑n

k=m+1 γikw
k∗(A′(z0) − λ′

i(z0)I)vj

(λ′
i(z0) − λ′

j(z0))wj∗vj
, 1 ≤ i �= j ≤ m.
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As a consequence we see that for eigenvectors corresponding to eigenvalues of multiplicity
greater than one, their sensitivities are not only strongly influenced by the separation
of the eigenvalues but also by the separation of the sensitivities of the eigenvalues. If

A(0) = I2, A′(0) =

[
1 0
0 .9

]
, A′′(0) =

[
0 1
1 0

]
, show that λ′

1(0) = 1, λ′
2(0) = 0.9 and

β12 = γ12 = 5.

4.2.5 Notes and References

A very successful method of mathematical analysis (which in some applications may be

the only viable approach) is to consider a given system as a slight perturbation of a sim-

pler system for which a complete solution of the problem under consideration is known.

In order to derive results for the given system from the simplified model, an appropriate

perturbation theory is needed. The perturbation theory of linear operators was initiated

by Rayleigh and Schrödinger (cf. Sz.–Nagy (1946), [491]) in their analysis of eigenvalue

problems arising from acoustics and quantum mechanics, respectively. Whilst their pio-

neering work remained mathematically incomplete, the necessary mathematical founda-

tions (convergence proofs etc.) were laid in a series of papers by Rellich (1937-42), see

the monograph [433]. Motivated by applications in physics most perturbation theory was

originally developed in an infinite dimensional (Hilbert space) context. The investigations

of Rellich were mainly concerned with real-analytic families of selfadjoint operators where

perturbations of isolated eigenvalues of finite algebraic multiplicity were studied. The

consideration of complex perturbation parameters allowed the use of function theoretic

methods and led to results for non-selfadjoint operators on Hilbert spaces and more gen-

erally for bounded and unbounded operators on Banach spaces. Kato (1980) [293] gives an

excellent wide ranging account of perturbation theory with emphasis on spectral proper-

ties of infinite-dimensional linear operators. This standard reference also contains a brief

description of the historical development of the theory. A separate concise treatment of

finite-dimensional operators based on the exposition in Kato (1980) [293] is Kato (1982)

[294]. A more detailed analysis of the finite dimensional case is given in the monograph

of Baumgärtel (1985) [43].

Most of our presentation in Subsections 4.2.1 and 4.2.3 is based on Kato (1980) [293]

and Baumgärtel (1985) [43]. The sensitivity of eigenvalues and eigenvectors (Proposi-

tions 4.2.12 and 4.2.46) has been a basic tool of robustness analysis in control theory, see

Cruz et al. (1981) [114]. Sensitivity formulas for matrices A(z0) with repeated eigenval-

ues are given in Ex. 18. Formulas for higher derivatives of simple eigenvalues and their

eigenprojections can be found in Kato (1980) [293, II.2].

The quantitative results presented in Subsection 4.2.2 have their origins in Numerical

Analysis. The unavoidable presence of rounding errors in computing eigenvalues and

eigenvectors provided a strong incentive for numerical analysts to investigate the effects of

matrix perturbations on these computations. As a consequence many textbooks in numer-

ical linear algebra contain estimates for the perturbation of eigenvalues due to errors in the

data – we mention in particular Householder (1964) [269], Henrici (1974) [224], Stoer and

Bulirsch (1993) [486], Golub and Van Loan (1996) [197]. Standard references for the nu-

merical analysis of matrix perturbations are Wilkinson (1965) [524] and Stewart and Sun

(1990) [484] (which contains many further references to the numerical literature), see also

Bhatia (1987) [55]. Lemma 4.2.15 is due to Bauer and Fike (1960) [41]. Generalizations of
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Proposition 4.2.18 to infinite dimensional operators and further estimates on the growth

of perturbed semigroups of operators are given in Kato (1980) [293, IX.2]. Gershgorin

(1931) [186] established his theorem as a corollary to the fact that a diagonally dominant

matrix is nonsingular. The problem of determining what can be achieved by combining

scaling transformations with Gershgorin’s Theorem has been studied in Wilkinson (1965)

[524], see also Ex. 11. We will continue our study of Gershgorin type perturbations in

Section 5.2.

The integral formula (27) for eigenprojections was first used by Sz.–Nagy (1946) [491] and

Kato (1980) [293] in the context of perturbation theory and is now of fundamental impor-

tance in the field. The analytic similarity transformations mentioned in Remark 4.2.34

were developed in connection with the adiabatic theorem in quantum mechanics.

A proof of Theorem 4.2.35 can be found in Kato (1980) [293, II.1.5] and in Baumgärtel

(1985) [43, 3.3]. Butler’s Theorem (Theorem 4.2.36) originally appeared in Butler (1959)

[85]. The normality assumption greatly simplifies the spectral analysis of A(z). Theo-

rem 4.2.38 was proved in Rellich (1937) [432]. Further results on normal and selfadjoint

perturbations can be found in Baumgärtel (1985) [43, 3.5]. An application of Proposi-

tion 4.2.42 to the analysis of singular values of analytic matrix families will be given in

the next section, see Theorem 4.3.17.
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4.3 The Singular Value Decomposition

It is well known that the analysis and computation of eigenvalues and eigenvec-
tors is greatly simplified when the matrix is Hermitian. Hermitian matrices have
real eigenvalues, orthonormal bases of eigenvectors, and they can be diagonalized
by unitary similarity transformations. In the previous section we have seen that
perturbation analysis is also greatly simplified for such operators. If a Hermitian
matrix1 depends analytically on a real parameter it can be diagonalized by unitary
matrices depending analytically on the parameter, see Proposition 4.2.42 (iii). In
this section we will show how these results can be used for the analysis of arbitrary
rectangular matrices G ∈ Km×n (and matrix families) by applying them to the as-
sociated positive semidefinite Hermitian matrix G∗G ∈ Hn(K). The non-negative
square roots of eigenvalues of G∗G are called the singular values of G and the uni-
tary diagonalization of G∗G leads to the singular value decomposition of G. This
decomposition has become a powerful tool in many areas of mathematics and is of
fundamental importance in Numerical Linear Algebra. In Linear System Theory
it has played an increasingly important role since the late seventies, particularly
in model reduction and robust control, see Notes and References. Some numerical
aspects will be discussed in Section 4.5.
We begin with the definition of the singular values of a matrix G ∈ Km×n, discuss
their geometric significance, and derive a minimax characterization in terms of the
associated quadratic form x → x∗G∗Gx (Courant-Fischer Theorem). In the second
subsection we construct the singular value decomposition of G and determine the
distance of a matrix from the set of matrices of given lower rank (Schmidt-Mirsky
Theorem). We also obtain an elementary but fundamental estimate for the singular
values of perturbations of G (Corollary 4.3.11). In the third subsection we consider
a matrix G(τ) which depends analytically on a real parameter τ and derive a modi-
fied analytic singular value decomposition of G(τ) which depends analytically on τ .
Finally, in the fourth subsection the relationship between eigenvalues and singular
values of a square matrix is discussed.

4.3.1 Singular Values and Singular Vectors

Let G ∈ Km×n be a matrix of rank r. Throughout this section we provide all vector
spaces Kq, q ∈ N∗ with the standard Euclidean inner product 〈·, ·〉 and the associated
norm ‖ · ‖2 = 〈·, ·〉1/2. For short, the corresponding operator norm (spectral norm)
‖·‖2,2 will be denoted by ‖·‖. Since G∗G ∈ Kn×n is a positive semidefinite Hermitian
matrix of rank r there exists a unitary2 matrix V = [v1, . . . , vn] ∈ Un(K) such that

V ∗G∗GV = Σ = diag(σ2
1, . . . , σ

2
n) (1)

where the σi are the non-negative square roots of the eigenvalues of G∗G ordered by

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0. (2)

1Recall that ’Hermitian’ means ’symmetric’ if K = R.
2Un(R) = On is the group of orthogonal matrices. Thus ’unitary’ means ’orthogonal’ if K = R.



432 4. Perturbation Theory

The (right) eigenvectors of G∗G are called right singular vectors of G. So the columns
of V form an orthonormal basis of Kn consisting of right singular vectors of G.
Moreover the singular vectors v1, . . . , vr form an orthonormal basis of ImG∗G =
(ker G)⊥ and vr+1, . . . , vn form an orthonormal basis of ker G.
The numbers σ1, . . . , σn are called the ordered singular values of G, and will be
denoted by σ1(G), . . . , σn(G), respectively. We will always assume they are ordered
according to (2). The maximal and minimal singular values of G will be denoted by
σmax(G) and σmin(G).
It follows directly from the definition that the singular values of G remain unchanged
under unitary transformations G �→ U∗

1 GU2 (U1 ∈ Um(K), U2 ∈ Un(K)). Since
rank G∗ = rankG = r and, for any λ ∈ C,

det(λIn − G∗G) = 0 ⇔ det(λIn − G G∗) = 0 ,

we have
σk(G

∗) = σk(G), k = 1, . . . , min{m, n}. (3)

A geometric interpretation of the singular values σk(G), k ∈ n can be given via the
following quadratic form on K

n

x �→ ‖Gx‖2
2 = 〈x, G∗Gx〉 = 〈V ∗x, V ∗G∗GV V ∗x〉 =

r∑
j=1

σ2
j |(V ∗x)j |2 . (4)

Here (V ∗x)j = 〈x, vj〉 is the j-th coordinate of x with respect to the basis (v1, . . . , vn)
of Kn. Now consider the set

E−1(G) := {x ∈ K
n ; ‖Gx‖ ≤ 1} = {x ∈ K

n ; 〈x, G∗Gx〉 ≤ 1} . (5)

E−1(G) is the preimage of the closed unit ball in Km by G, or alternatively the

v1/σ1

v2/σ2

v3

ellipsoidal base

Figure 4.3.1: The cylinder E−1(G) with σ3 = 0

preimage of the closed unit ball in Kn by the square root of G∗G. This square root
is given by

(G∗G)1/2 = V diag(σ1, . . . , σr, 0, . . . , 0)V ∗ ∈ K
n×n. (6)

It follows from (4) that E−1(G) is an ellipsoid with semi-axes vj/σj , j ∈ n,

x =
n∑

j=1

αjv
j ∈ E−1(G) ⇔

r∑
j=1

σ2
j |αj|2 ≤ 1. (7)

If r < n this ellipsoid is degenerate, i.e. E−1(G) is a ‘cylinder’ with an ellipsoidal
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σ2v
2

σ3v
3

σ1v
1

Figure 4.3.2: Ellipsoid E(G) with σ1 ≥ σ2 ≥ σ3 > 0

base having semi-axes vj/σj , j ∈ r , see Figure 4.3.1. An alternative geometric
interpretation is obtained by considering the image of the unit ball in Kn by the
linear map (G∗G)1/2

E(G) := {(G∗G)1/2x ; x ∈ K
n ; ‖x‖2 ≤ 1}. (8)

By (6), E(G) is the ellipsoid with semi-axes σjv
j, j ∈ r in span{v1, . . . , vr} ⊂ Kn,

see Figure 4.3.2.
A characterization of the singular values is contained in the following minimax the-
orem. If E is any linear subspace of the Euclidean space Kn, we denote by ‖G|E‖
the operator norm of the restriction of G to E and set

σ2
max(G|E) = max

x∈E
‖x‖2=1

〈x, G∗Gx〉 = max
0�=x∈E

〈x, G∗Gx〉
‖x‖2

2

= ‖G|E‖2. (9)

Theorem 4.3.1 (Minimax Theorem of Courant and Fischer). For any matrix
G ∈ K

m×n the ordered singular values σk = σk(G) are characterized by

σk(G) = min
codim E = k−1

σmax(G|E) = min
codim E ≤ k−1

σmax(G|E), k ∈ n . (10)

Proof : Given k ∈ n, we have to show

(i) σ2
k ≤ σ2

max(G|E) for any E ⊂ K
n with codim E ≤ k − 1,

(ii) σ2
k ≥ σ2

max(G|Ẽ) for some Ẽ with codim Ẽ = k − 1.

Let E be any linear subspace of K
n with codim E ≤ k − 1. The k–dimensional

subspace span{v1, . . . , vk} contains a vector x̂ =
∑k

j=1 α̂jv
j of norm ‖x̂‖2 = 1 in

common with E. By (4) with x = x̂, hence (V ∗x)j = α̂j , we have

σ2
max(G|E) ≥ 〈x̂, G∗Gx̂〉 =

k∑
j=1

σ2
j |α̂j|2 ≥ σ2

k

k∑
j=1

|α̂j|2 = σ2
k‖x̂‖2

2 .

This proves (i). To prove (ii), let Ek = span{vk, . . . , vn} so that codim Ek = k − 1.
Every x ∈ Ek is of the form

∑n
j=k αjv

j, hence (V ∗x)j = 〈x, vj〉 = 0 for 1 ≤ j ≤ k−1
and so (4) implies

〈x̃, G∗Gx̃〉 =
r∑

j=k

σ2
j |(V ∗x)j|2 ≤ σ2

k

n∑
j=k

|αj|2 = σ2
k‖x‖2

2, x ∈ Ek.

This proves (ii). �
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This theorem characterizes the singular values σk(G), k ∈ n without any reference
to the eigenvectors vj of G∗G. In particular, for k = 1, (10) implies that σ1(G) =
σmax(G) = ‖G‖. Moreover, the proof of the above theorem shows that the linear
subspaces Ek = span{vk, . . . , vn}, k ∈ n satisfy

σk = ‖G|Ek‖ ≤ ‖G|E‖, E ⊂ K
n, codim E ≤ k − 1. (11)

An alternative expression of (10) is

σk(G) = min
y1,...,yk−1∈Kn

max
0�=x∈Kn

x⊥y1,...,yk−1

‖Gx‖2

‖x‖2
, k ∈ n. (12)

As a direct consequence of the Courant-Fischer Theorem we obtain the following
monotonicity property of singular values. If G ∈ Km×n, G̃ ∈ Km̃×n then(

∀x ∈ K
n : ‖G̃x‖2 ≤ ‖Gx‖2

)
⇒ ∀k ∈ n : σk(G̃) ≤ σk(G). (13)

Remark 4.3.2. In an analogous way it is possible to show that the singular values have
a maximum property in the following sense. If we set for any linear subspace E ⊂ K

n

σ2
min(G|E) := min

x∈E, ‖x‖2=1
〈x,G∗Gx〉 = min

0�=x∈E

〈x,G∗Gx〉
‖x‖2

2

, (14)

then for all k ∈ n

σk(G) = max
dim E=k

σmin(G|E) = max
dim E≥k

σmin(G|E) = max
y1,...,yk∈Kn

min
x�=0

x∈span{y1,...,yk}

‖Gx‖2

‖x‖2
. (15)

�

Corollary 4.3.3. Let G ∈ Km×n and 1 ≤ ν < n. If G1 ∈ Km×ν is obtained from G
by eliminating n − ν columns of G then

σk+n−ν(G) ≤ σk(G1) ≤ σk(G) , 1 ≤ k ≤ ν. (16)

Similarly, if 1 ≤ µ < m and G2 ∈ Kµ×n is obtained from G by eliminating m − µ
rows of G then

σk+m−µ(G) ≤ σk(G2) ≤ σk(G), 1 ≤ k ≤ min{µ, µ + n − m}. (17)

Proof : Let G1 be obtained by eliminating the columns j1, . . . , jn−ν of G and sup-
pose 1 ≤ k ≤ ν. We denote the standard unit vectors in Kn by e1, . . . , en. Then by
(12)

σk(G) = min
y1,...,yk−1∈Kn

max
0�=x∈Kn

x⊥y1,...,yk−1

‖Gx‖2

‖x‖2

≥ min
y1,...,yk−1∈Kn

max
0�=x∈Kn

x⊥y1,...,yk−1

x⊥ej1 ,...,ejn−ν

‖Gx‖2

‖x‖2
= min

u1,...,uk−1∈Kν
max

0�=z∈Kν

z⊥u1,...,uk−1

‖G1z‖2

‖z‖2
= σk(G1).

Also by (15)
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σn−ν+k(G) = max
y1,...,yν−k∈Kn

min
0�=x∈Kn

x⊥y1,...,yν−k

‖Gx‖2

‖x‖2

≤ max
y1,...,yν−k∈Kn

min
0�=x∈Kn

x⊥y1,...,yν−k

x⊥ej1 ,...,ejn−ν

‖Gx‖2

‖x‖2
= max

u1,...,uν−k∈Kν
min

0�=z∈Kν

z⊥u1,...,uν−k

‖G1z‖2

‖z‖2
= σk(G1) .

The second statement of the corollary follows from the first by means of (3). �

As an immediate consequence of this corollary we obtain σk(G̃) ≤ σk(G), k ∈ ν for
every submatrix G̃ ∈ Kµ×ν of G ∈ Km×n.

4.3.2 Singular Value Decomposition

The singular values of a matrix G ∈ Km×n are defined via the associated Hermitian
matrix G∗G. In the previous section they have been characterized in term of the
corresponding quadratic form x �→ 〈x, G∗Gx〉. In this subsection we will relate them
directly to G.

Proposition 4.3.4 (Singular Value Decomposition). Let G ∈ Km×n be a matrix
with singular values σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0 and an associated
orthonormal basis (v1, . . . , vn) of (right) singular vectors, V = [v1, . . . , vn] ∈ Un(K).
Then there exists a unitary matrix W = [w1, . . . , wm] ∈ Um(K) such that

G =

r∑
i=1

σiw
ivi∗ (18)

or, equivalently,

G = WΣV ∗ where Σ =

[
Σr 0
0 0

]
m×n

, Σr = diag (σ1, . . . , σr). (19)

Conversely, if W ∈ Um(K) and V ∈ Un(K) are unitary matrices such that (19)
holds, then σ1, . . . , σr > 0 are the non-zero singular values of G and of G∗. Moreover,
the columns of V form an orthonormal basis of eigenvectors of G∗G (right singular
vectors of G), and the columns wj of W form an orthonormal basis of eigenvectors
of GG∗ (right singular vectors of G∗) satisfying Gvj = σjw

j and G∗wj = σjv
j.

Proof : For the first statement, let W1 = [w1, . . . , wr] where

wj = σj
−1Gvj, j ∈ r . (20)

Then W ∗
1 W1 = Σ−1

r [v1, . . . , vr]∗ G∗G [v1, . . . , vr] Σ−1
r = Ir. Augmenting the matrix

W1 by columns wr+1, . . . , wm which form an orthonormal basis of (ImG)⊥ = ker G∗

we obtain a unitary m × m-matrix W satisfying

W

[
Σr 0
0 0

]
m×n

V ∗vj = W

[
Σr 0
0 0

]
m×n

ej = σjw
j = Gvj, j ∈ n

(because of (20) and Gvj = 0, j = r + 1, . . . , n). Hence (19) and (18).
The second statement of the proposition follows immediately since (19) implies

V ∗G∗GV = diag (σ2
1, . . . , σ

2
r , 0, . . . , 0), W ∗GG∗W = diag (σ2

1 , . . . , σ
2
r , 0, . . . , 0)

and Gvj = (
∑r

i=1 σiw
ivi∗) vj = σjw

j, G∗wj = (
∑r

i=1 σiv
iwi∗) wj = σjv

j. �
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The factorization (19) of G is called the singular value decomposition (SVD) of G.
Note that if σ1 > σ2 > · · · > σn, then Proposition 4.3.4 implies that the columns of
V are uniquely determined up to multiplication by scalars αi ∈ K satisfying |αi| = 1.
If G is a non-singular n × n-matrix then σi > 0, i ∈ n and (19) implies

G−1 = (WΣnV
∗)−1 = V Σ−1

n W ∗. (21)

So the ordered singular values of G−1 are σ−1
n ≥ σ−1

n−1 ≥ · · · ≥ σ−1
1 , and we obtain

by applying (10) with k = 1 to G−1

σn(G) = σ1(G
−1)−1 = ‖G−1‖−1 . (22)

For later use, the next remark explains the relationship between the SVD of a
complex matrix and the SVD of its real form.

Remark 4.3.5. If G = WΣV ∗ is the singular value decomposition (19) of G ∈ C
m×n

and GR is the representation of G in real form, it follows from Lemma A.1.18 that

GR = W R ΣR (V R)� =

[
Re W − Im W

ImW Re W

] [
Σ 0
0 Σ

] [
Re V − ImV

ImV Re V

]�
(23)

is the singular value decomposition of GR ∈ R
2m×2n. In particular, we see that GR has

the same singular values as G, but with double multiplicities. �

Proposition 4.3.4 shows how we may define singular values and singular vectors
directly in terms of G.

Definition 4.3.6. Let G ∈ Km×n and σ ≥ 0. A normalized pair (w, v) ∈ Km ×Kn,
‖w‖ = 1, ‖v‖ = 1 is called a singular pair (or Schmidt pair) of G for the singular
value σ if

Gv = σw and G∗w = σv . (24)

If a pair of non-zero vectors (w, v) ∈ K
m × K

n satisfies (24), v is called a right
singular vector and w a left singular vector of G for σ.

If a pair of non-zero vectors (w, v) satisfies (24) then G∗Gv = σ2v and so σ is a
singular value and v a right singular vector of G as defined in Subsection 4.3.1.
Similarly, w is a right singular vector of G∗. Moreover, (v, w) is a singular pair for
G∗ if and only if (w, v) is a singular pair for G. The dyadic decomposition (18)
shows that every matrix G : Kn → Km of rank r is a linear combination of r rank 1
matrices wjvj∗ associated with the singular pairs (wj, vj), j ∈ r of G.
Our main reason for introducing singular values is their importance to perturbation
theory and model reduction. In fact the (k + 1)-th singular value of G measures the
distance of G from the set of m× n–matrices of rank less than or equal to k (in the
operator norm ‖ · ‖). We make this precise in the following theorem.

Theorem 4.3.7 (Schmidt-Mirsky Theorem). Let G ∈ Km×n be a matrix of
rank r with singular value decomposition (18) and denote by Mm,n

k (K), the set

Mm,n
k (K) = {X ∈ K

m×n; rankX ≤ k} , k = 0, 1, . . . , n. (25)

Then
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σk+1(G) = min
X∈Mm,n

k (K)
‖G − X‖ = ‖G − Gk‖ , k = 0, 1, . . . , n − 1 (26)

where

Gk =

k∑
j=1

σj(G) wjvj∗ ∈ Mm,n
k (K). (27)

Proof : If X ∈ Mm,n
k (K) then codim ker X ≤ k, so by the Minimax Theorem 4.3.1

σk+1(G) ≤ ‖G| kerX‖ = max
0 �=x∈ker X

‖(G − X)x‖2

‖x‖2
≤ ‖G − X‖ .

On the other hand we have rank Gk ≤ k and

G − Gk =
r∑

j=k+1

σj(G) wjvj∗.

Hence ‖G − Gk‖ = σk+1(G) by Proposition 4.3.4 applied to G − Gk. �

Remark 4.3.8. Among the many solutions of the minimization problem (26), Gk enjoys
the special property that

σ�(Gk) = σ�(G) , � ∈ k , (28)

and hence the distance of Gk to M
m,n
� (K), � < k, is the same as the distance of G to

M
m,n
� (K). Moreover G� =

∑�
j=1 σj(G)wjvj∗ is an optimal approximation of rank � to G

as well as to Gk. �

If G ∈ Kn×n is invertible the above theorem enables us to find the distance of G
from the set Mn,n

n−1(K) of singular matrices.

Corollary 4.3.9. For any G ∈ Gln(K), σn(G) is equal to the distance of G from
the set of singular matrices in Kn×n with respect to the operator norm ‖ · ‖

σn(G) = min{‖X‖ ; X ∈ K
n×n , det(G − X) = 0}. (29)

If the singular value decomposition of G is of the form (18), then Gn−1 = G −
σnwnvn∗ is an optimal singular approximation of G.

Example 4.3.10. For fixed α, β ∈ K
∗ = K \ {0}, α �= β, consider the matrices

G(γ) =

[
α γ

0 β

]
, γ ∈ K .

All these matrices are similar to the diagonal matrix G(0) and hence belong to the same
similarity class. Obviously σ1(G(γ)) = ‖G(γ)‖ → ∞ if |γ| → ∞. Applying this to G(γ)−1

(which has the same form) we get from (22) that σ2(G(γ)) = ‖G(γ)−1‖−1 → 0 if |γ| → ∞.
Thus similarity transformations can change the singular values to make σ1(G) arbitrarily
large and σ2(G) arbitrarily small. In particular, by Corollary 4.3.9 the distance between
the similarity class of G and the set of singular matrices is zero. This observation extends
to arbitrary matrices G ∈ Gln(K) which are not multiples of In, see Ex. 16. �

For the singular values of perturbations of G we have a general estimate analogous
to the estimate for eigenvalues in the normal case, see (2.9).
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Corollary 4.3.11. Suppose G, ∆ ∈ Km×n and denote by σk(G), σk(G + ∆), k ∈ n
the ordered singular values of G and G + ∆. Then

|σk(G) − σk(G + ∆)| ≤ ‖∆‖ , k ∈ n . (30)

Proof : By Theorem 4.3.7 for k = 0, . . . , n − 1

σk+1(G) = min
X∈Km×n

rank X≤k

‖G − X‖ ≤ min
X∈Km×n

rank X≤k

[‖∆‖ + ‖G + ∆ − X‖] = ‖∆‖ + σk+1(G + ∆) .

Interchanging the roles of G and G + ∆, we obtain (30). �

The above result explains why, from a numerical point of view, singular values are
“safer” to compute than eigenvalues, see Section 4.5.

Example 4.3.12. Consider again the matrices A(α), ∆(ε) of Example 4.2.17 and fix
α = 9. A simple calculation shows that the singular values of A = A(9) are σ1 =
(43 +

√
1845)1/2 = 9.2711 and σ2 = (43 −

√
1845)1/2 = 0.2157. The singular values of

A + ∆(ε) are[
43 + ε2/2 ± (1845 + 36ε − 38ε2 + ε4/4)1/2

]1/2
≈
[
43 ±

√
1845 ± 18ε/

√
1845

]1/2

to first order in ε. Hence to first order in ε the change in σ1 is 9ε/
√

1845 = 0.213ε and the
change in σ2 is −9ε/

√
1845 = −0.209ε, confirming (30). The change in the eigenvalues

due to a perturbation ∆(ε) is more than 40 times larger (≈ 9ε, see Example 4.2.17). �

The following characterizations will be of use in the next section.

Theorem 4.3.13. Let G ∈ Km×n, then for every k ∈ n

σk(G) = min{‖∆‖; ∆ ∈ K
m×n, rank (G − ∆) < k} (31)

= [inf{‖∆‖; ∆ ∈ K
n×m, dim ker (In − ∆G) ≥ k}]−1 (32)

where, by convention, inf ∅ = ∞ and ∞−1 = 0.

Proof : (31) follows from Theorem 4.3.7 by setting G − X = ∆.
If σk(G) = 0, i.e. rank G < k, then rank (∆G) < k and dim ker (In−∆G) < k for all
∆ ∈ K

n×m. So (32) holds in this case. Now suppose 1 ≤ k ≤ rank G. If ∆ ∈ K
n×m

and E := ker(In − ∆G) has dimension ≥ k, then

‖x‖2 = ‖∆Gx‖2 ≤ ‖∆‖ ‖Gx‖2, x ∈ E.

Hence ‖∆‖ σmin(G|E) ≥ 1 so that σk(G) ≥ ‖∆‖−1 by (15). On the other hand if
(18) is a SVD of G and ∆ ∈ Kn×m is defined by

∆ =
k∑

j=1

σj(G)−1vjwj∗

then (In − ∆G)vj = 0, j = 1, . . . , k and ‖∆‖ = σk(G)−1. This proves (32). �

Since dim ker (In − ∆G) = dim ker (Im − G∆), ∆ ∈ K
n×m (see Ex. 9), we may

replace (In − ∆G) by (Im − G∆) in (32).
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4.3.3 Matrices Depending on a Real Parameter

Let us now consider the case where the matrix G depends analytically on a scalar
parameter. Since singular values are always real we cannot expect them to depend
analytically on a complex parameter (every analytic map from a domain Ω ⊂ C

into R is constant). Therefore we consider matrices depending analytically on a
real parameter τ . In particular, these matrices are Lipschitz continuous in τ and
so by Corollary 4.3.11 the ordered singular values σi : τ → σ(G(τ)) are Lipschitz
continuous. However, they will in general not be analytic. Consider G(τ) =

[
τ 0

]
,

τ ∈ (−1, +1). The uppermost singular value is σ1(G(τ)) = |τ | and although G(·) is
analytic on (−1, +1), this singular value is not. The problem here is the positivity
requirement on the singular values. Another problem may be caused by the ordering
of the singular values. Figure 4.3.3 shows an example where the uppermost singular
value σ1(G(τ)) is not differentiable at the points τ1, τ2 where it meets the second sin-
gular value σ2(G(τ)). Dispensing with the ordering and positivity requirements we
will see in the following that the singular values of G(τ) together with their negatives
can be represented by analytic functions. Moreover we will construct an analytic
pseudo-SVD where the diagonal entries, the “pseudo singular values”, are analytic
in τ and the set of absolute values of these entries is identical with the set of singular
values of G(τ).
The following lemma provides a basis for our construction. Its proof is straightfor-
ward and is set as Ex. 11.

Lemma 4.3.14. Given G ∈ Km×n of rank r, then A =

[
0 G

G∗ 0

]
∈ K(m+n)×(m+n)

is of rank 2r and the unordered 2r-tuple of non-zero eigenvalues of A is given by

)σ1(G), ..., σr(G),−σ1(G), ...,−σr(G)*.

Suppose I ⊂ R is an open interval and G(·) : I → Km×n is an analytic matrix

function of generic rank r = maxτ∈I rank G(τ). Then A(τ) =

[
0 G(τ)

G(τ)∗ 0

]
∈

Hm+n(K) is an analytic family of Hermitian matrices on I of generic rank 2r. Let
CG := CA be the set of critical parameter values of A(·), see Section 4.2. Then
CG ⊂ I is the discrete subset of all τ0 ∈ I where the number of distinct singular
values of G(τ0) is strictly smaller than the maximal number of distinct singular
values of G(τ) on I.

Lemma 4.3.15. Suppose G(·) : I → K
m×n is an analytic matrix function of generic

rank r = maxτ∈I rank G(τ) on an open interval I ⊂ R and let σj(τ) = σj(G(τ)),
j ∈ n be the ordered singular values of G(τ), τ ∈ I. Then

(i) there exist 2r analytic functions λj(·) : I → R, j = 1, . . . , 2r such that

)λ1(τ), . . . , λ2r(τ)* = )σ1(τ), ..., σr(τ),−σ1(τ), ...,−σr(τ)*, τ ∈ I. (33)

(ii) If (33) holds for some analytic λj(·) : I → R, j = 1, . . . , 2r and J ⊂ I is an
open subinterval with J ∩ CG = ∅ then there exist for each j ∈ r a subindex
1 ≤ ij ≤ 2r such that σj(τ) = λij(τ) for all τ ∈ J . In particular, every ordered
singular value of G(·) is analytic on J .
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Proof : (i) Applying Proposition 4.2.42 (iii) to A(τ)=

[
0 G(τ)

G(τ)∗ 0

]
∈ Hm+n(K)

we see that there exist m+n analytic functions λj(·) : I → R such that the unordered
(m+n)-tuple of eigenvalues of A(τ) is given by Λ(A(τ)) = )λ1(τ), . . . , λm+n(τ)* for
τ ∈ I. Since the generic rank of A(τ) is 2r by Lemma 4.3.14, we may order the λj(τ)
in such a way that λj(τ) �≡ 0 for j = 1, . . . , 2r and λj(τ) ≡ 0 for j = 2r+1, . . . , m+n.
Then (33) follows from Lemma 4.3.14 (at the critical points τ ∈ CG by continuity).
(ii) Let J ⊂ I be an open subinterval with J ∩ CG = ∅. Then the graphs of two
distinct non-zero eigenvalue functions λi(·), λj(·), 1 ≤ i, j ≤ 2r do not intersect over
the interval J . Hence if σj(τ

′) = λij (τ
′) for some τ ′ ∈ J then σj(τ) = λij(τ) for all

τ ∈ J by Lemma 4.3.14. �

We now begin with the local construction of an analytic pseudo-SVD of G(τ). Let
τ0 ∈ I be an arbitrary point, possibly critical. By Proposition 4.2.42 (iii) there exist
δ > 0, analytic functions λj(·) : I(τ0, δ) = (τ0 − δ, τ0 + δ) → R and an analytic
unitary matrix

U(τ) =

[
u1

1(τ) · · · um+n
1 (τ)

u1
2(τ) · · · um+n

2 (τ)

]
∈ Um+n(K), τ ∈ I(τ0, δ)

where uj
1(τ) ∈ Km, uj

2(τ) ∈ Kn, j = 1, . . . , m + n are such that

A(τ)U(τ) = U(τ) diag (λ1(τ), ..., λm+n(τ)), τ ∈ I(τ0, δ). (34)

Choosing δ > 0 sufficiently small we may assume that I(τ0, δ) does not contain
any point of CG \ {τ0}. By Lemma 4.3.14 A(τ) has exactly 2r non-zero eigenval-
ues (taking account of multiplicities) for each τ ∈ I(τ0, δ) \ {τ0}, the remaining
m + n − 2r eigenvalues are identically zero on I(τ0, δ)

3. Reordering the eigenvalue
functions λj(·) and the corresponding columns of U(τ) appropriately we may as-
sume that λ2r+1(τ), . . . , λm+n(τ) are identically zero. We have seen in the proof of
Lemma 4.3.15 that the unordered 2r-tuple of non-zero eigenvalue functions of A(τ)
satisfies the equation (33) on I(τ0, δ). These eigenvalues can be ordered in such a
way that the first r of them (taking account of multiplicities), λ1(τ), . . . , λr(τ), are
positive to the left of τ0 in I(τ0, δ). Since CA ∩ (I(τ0, δ) \ {τ0}) = ∅ two eigenvalue
functions λi(·), λj(·), 1 ≤ i, j ≤ 2n are identically equal if they admit the same value
at some point τ ∈ I(τ0, δ) \ {τ0}. Thus we can order the first r eigenvalue functions
in such a way that λ1(τ) ≥ . . . ≥ λr(τ) > 0 for τ ∈ (τ0 − δ, τ0). As a consequence
we obtain

σj(G(τ)) = λj(τ), j ∈ r, τ ∈ (τ0 − δ, τ0).

By (34)

G(τ)uj
2(τ) = λj(τ)uj

1(τ)

G(τ)∗uj
1(τ) = λj(τ)uj

2(τ), τ ∈ I(τ0, δ), j ∈ m + n. (35)

Hence

G(τ)∗G(τ)uj
2(τ) = λj(τ)2uj

2(τ),

G(τ)G(τ)∗uj
1(τ) = λj(τ)2uj

1(τ), τ ∈ I(τ0, δ), j ∈ m + n. (36)

3If a non-zero eigenvalue function λj(·) vanishes at τ ′ ∈ I then τ ′ ∈ CA since at this point the
two distinct eigenvalue functions λj(·) and −λj(·) of A(·) coalesce.
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Lemma 4.3.16. Let vj(τ) =
√

2 uj
2(τ), wj(τ) =

√
2uj

1(τ) for j = 1, . . . , 2r. Then
the following hold.

(i) If 1 ≤ j ≤ 2r and τ ∈ I(τ0, δ), then ‖vj(τ)‖2 = ‖wj(τ)‖2 = 1 and (wj(τ), vj(τ))
is an analytic singular pair of G(τ) for λj(τ) on I(τ0, δ) in the following sense

G(τ)vj(τ) = λj(τ)wj(τ), G(τ)∗wj(τ) = λj(τ)vj(τ), τ ∈ I(τ0, δ).

For each τ ∈ I(τ0, δ), either (wj(τ), vj(τ)) or (wj(τ),−vj(τ)) is a singular
pair of G(τ) for the singular value |λj(τ)|.

(ii) 〈vi(τ), vj(τ)〉 = δij , 〈wi(τ), wj(τ)〉 = δij for all 1 ≤ i, j ≤ r, τ ∈ I(τ0, δ).

Proof : Let 1 ≤ j ≤ 2r, then λj(τ) �= 0 for every τ ∈ I(τ0, δ), τ �= τ0. By (35)
uj

2(τ) = 0 (resp. uj
1(τ) = 0) would imply uj

1(τ) = 0 (resp. uj
2(τ) = 0), and since

‖uj
2(τ)‖2

2 + ‖uj
1(τ)‖2

2 = 1 we have uj
2(τ) �= 0 and uj

1(τ) �= 0 for all τ ∈ I(τ0, δ) \ {τ0}.
By (35) and (36)

λj(τ)2 ‖uj
1(τ)‖2

2 = ‖G(τ)uj
2(τ)‖2

2 = uj
2(τ)∗G(τ)∗G(τ)uj

2(τ) = λj(τ)2 ‖uj
2(τ)‖2

2.

So ‖uj
1(τ)‖2 = ‖uj

2(τ)‖2 = 1/
√

2 for τ ∈ I(τ0, δ) \ {τ0} and hence by continuity for
all τ ∈ I(τ0, δ). This proves ‖vj(τ)‖ = ‖wj(τ)‖ = 1, τ ∈ I(τ0, δ), and the remaining
statements of (i) are direct consequences of (35). (wj(τ), vj(τ)) is a singular pair of
G(τ) for λj(τ) if λj(τ) ≥ 0, whereas (wj(τ),−vj(τ)) is a singular pair for −λj(τ) if
λj(τ) < 0.
(ii) It only remains to prove (ii) for i �= j. Let i �= j, 1 ≤ i, j ≤ r be fixed,
τ ∈ I(τ0, δ). The columns of U(τ) are mutually orthogonal, so

〈uj
1(τ), ui

1(τ)〉 + 〈uj
2(τ), ui

2(τ)〉 = 0. (37)

From (35) we have

λi(τ)〈uj
1(τ), ui

1(τ)〉=〈uj
1(τ), G(τ)ui

2(τ)〉=〈G(τ)∗uj
1(τ), ui

2(τ)〉=λj(τ)〈uj
2(τ), ui

2(τ)〉.

So by (37)

λi(τ)〈uj
1(τ), ui

1(τ)〉 = −λj(τ)〈uj
1(τ), ui

1(τ)〉, i.e. (λi(τ) + λj(τ))〈uj
1(τ), ui

1(τ)〉 = 0.

If λi(τ) + λj(τ) �= 0 we obtain 〈uj
1(τ), ui

1(τ)〉 = 0 and from (37) 〈uj
2(τ), ui

2(τ)〉 = 0
as well. But λi(τ) + λj(τ) �= 0 for all but isolated points τ ∈ I(τ0, δ) so that (ii)
follows for all τ ∈ I(τ0, δ) by continuity. �

Lemma 4.3.16 shows that

V1(τ) = [v1(τ), ..., vr(τ)], W1(τ) = [w1(τ), ..., wr(τ)], τ ∈ I(τ0, δ) (38)

define analytic matrix functions with orthonormal columns on I(τ0, δ). By Corol-
lary 4.2.43 there exist analytic matrix functions

V2(·) : I(τ0, δ) → K
n×(n−r) , W2(·) : I(τ0, δ) → K

m×(m−r)

such that V (τ) = [V1(τ) V2(τ)] ∈ Un(K) and W (τ) = [W1(τ) W2(τ)] ∈ Um(K)
for all τ ∈ I(τ0, δ). For τ ∈ I(τ0, δ) \ {τ0} we have rank G(τ)∗G(τ) = r and by
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(36) G(τ)∗G(τ)vj(τ) = λj(τ)2vj(τ) for j ∈ r, hence the r-dimensional subspace
Im G(τ)∗G(τ) is spanned by the columns of V1(τ). It follows that ker G(τ)∗G(τ) =
(Im G(τ)∗G(τ))⊥ = (Im V1(τ))⊥ = Im V2(τ) for τ ∈ (I(τ0, δ) \ {τ0}) and so, by
continuity G(τ)V2(τ) = 0, τ ∈ I(τ0, δ). Similarly G(τ)∗W2(τ) = 0 for all τ ∈ I(τ0, δ).
Thus by (35) we obtain the analytic pseudo-SVD : G(τ) = W (τ)Σ(τ)V (τ)∗ on
I(τ0, δ) where

Σ(τ) = W (τ)∗G(τ)V (τ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1(τ) 0 · · · 0 0 · · · 0
0 λ2(τ) · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · · · · λr(τ) 0 · · · 0
0 · · · · · · 0 0 · · · 0
...

...
...

...
0 · · · · · · 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m×n

. (39)

We have therefore proved the following theorem.

Theorem 4.3.17. Suppose I ⊂ R is an open interval and G(·) : I → Km×n is an
analytic matrix function with r = maxτ∈I rank G(τ). Then for every τ0 ∈ I there
exist a neighbourhood I(τ0, δ), δ > 0 and analytic functions λj(·) : I(τ0, δ) → R, j ∈
r, V (·) : I(τ0, δ) → Un(K), W (·) : I(τ0, δ) → Um(K) such that

(i) λj(τ) = σj(G(τ)) for all τ ∈ (τ0 − δ, τ0) and j ∈ r.

(ii) For all τ ∈ I(τ0, δ), the unordered r-tuple of (generically) non-zero singular
values of G(τ) is given by )|λ1(τ)|, . . . , |λr(τ)|*.

(iii) For all τ ∈ I(τ0, δ), we have the analytic pseudo-SVD G(τ) = W (τ)Σ(τ)V (τ)∗

where Σ(τ) is the diagonal matrix on the RHS of (39).

Remark 4.3.18. (i) If λj(τ) �= 0 for all τ ∈ I(τ0, δ), then λj(τ) > 0 is an (unordered)
analytical singular value of G(τ) on I(τ0, δ) by Lemma 4.3.14. In particular, if rankG(τ) =
r for all τ ∈ I(τ0, δ) then the unordered r-tuple of the non-zero singular values of G(τ) is
given by )λ1(τ), . . . , λr(τ)* for all τ ∈ I(τ0, δ). Note, however, that the analytic eigenvalues
λj(τ) will, in general, not be ordered for all τ ∈ I(τ0, δ) and, conversely, the ordered non-
zero eigenvalues σ1(G(τ)) ≥ · · · ≥ σr(G(τ)) will, in general, not be analytic on I.

(ii) We have noted in Remark 4.2.44 that Proposition 4.2.42 (iii) can be shown to hold
globally. Using this, a global version of the previous theorem can be proved, i.e. the
analytic functions λj(·), V (·), W (·) exist on the whole interval I. �

Example 4.3.19. Consider the analytic family of full rank matrices

G(τ) = eıτ I2−
[

0.1 −0.3
−0.3 0.2

]
=

[
cos τ−0.1+ı sin τ 0.3

0.3 cos τ−0.2+ı sin τ

]
, τ ∈ (0, 2π).

It follows from the global version of Theorem 4.3.17 that there exist two analytic functions
λ1(τ), λ2(τ) on (0, 2π) which represent the two (unordered) singular values of G(τ) for all
τ ∈ (0, 2π). The graphs of these functions are shown in Fig. 4.3.3. Clearly the ordered
singular values σ1(·) and σ2(·) are not differentiable at the points τ1, τ2 ∈ (0, 2π) where
the two graphs cross. �
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λ1(τ) λ2(τ)
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�

Figure 4.3.3: Singular values of G(τ), 0 < τ < 2π

In the next corollary we obtain an equation for the derivative (sensitivity) of λj(·).

Corollary 4.3.20. Suppose the conditions of Theorem 4.3.17 and let vj(τ), wj(τ),
j ∈ r denote the first r columns of V (τ) and W (τ), respectively. Then

dλj(τ)

dτ
= Re

(
wj(τ)∗

dG(τ)

dτ
vj(τ)

)
, τ ∈ I(τ0, δ), j ∈ r. (40)

Proof : (39) implies λj(τ) = wj(τ)∗G(τ)vj(τ) and by (35) differentiation yields

dλj(τ)

dτ
=

dwj(τ)

dτ

∗
G(τ)vj(τ) + wj(τ)∗

dG(τ)

dτ
vj(τ) + wj(τ)∗G(τ)

dvj(τ)

dτ

= λj(τ)
dwj(τ)

dτ

∗
wj(τ) + wj(τ)∗

dG(τ)

dτ
vj(τ) + λj(τ)vj(τ)∗

dvj(τ)

dτ
.

But wj(τ)∗wj(τ) = vj(τ)∗vj(τ) = 1 and so

Re

(
vj(τ)∗

dvj(τ)

dτ

)
= Re

(
dwj(τ)

dτ

∗
wj(τ)

)
= 0.

Hence dλj(τ)

dτ
= Re

dλj(τ)

dτ
= Re

(
wj(τ)∗

dG(τ)

dτ
vj(τ)

)
.

�

We conclude this subsection with a result which will be of use in the next section.

Proposition 4.3.21. Under the conditions of Theorem 4.3.17, suppose that an or-
dered singular value σj(·) �≡ 0 of G(·) has a local extremum (minimum or maximum)
at τ̂ ∈ I, then there exists an associated singular pair (wj, vj) ∈ Km × Kn of G(τ̂)
such that

Re

(
wj∗ dG

dτ
(τ̂) vj

)
= 0. (41)

Proof : Suppose the set-up is that of Theorem 4.3.17 with τ0 = τ̂ and let σj(·) �≡ 0
be an ordered singular value of G(·). If σj(·) is analytic on an open subinterval J ⊂ I
containing τ̂ it follows from Theorem 4.3.17 that σj(τ) = λj(τ) for all τ ∈ J . Since τ̂

is a local extremum of σj(·) we have dσ(τ̂ )
dτ

= 0, and so, setting wj = wj(τ̂ ), vj = vj(τ̂),
equation (41) is a direct consequence of (40).
Now suppose that σj(·) is not analytic around τ̂ , hence τ̂ ∈ CG by Lemma 4.3.15,
and let δ > 0 be sufficiently small such that I(τ̂ , δ)∩CG = {τ̂}. By Theorem 4.3.17
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we have σj(τ) = λj(τ) for τ ∈ (τ̂ − δ, τ̂ ) and by Lemma 4.3.15 there exists 1 ≤
ij ≤ 2r, ij �= j such that σj(τ) = λij (τ) for τ ∈ (τ̂ , τ̂ + δ). By continuity λj(τ̂) =
σj(τ̂) = λij(τ̂ ). Let (wj(τ), vj(τ)), (wij(τ), vij(τ)) be analytic singular pairs of G(τ)
for λj(τ) and λij (τ) respectively, see Lemma 4.3.16. Then by (40)

dλj(τ)

dτ
= Re

(
wj(τ)∗

dG(τ)

dτ
vj(τ)

)
,

dλij (τ)

dτ
= Re

(
wij (τ)∗

dG(τ)

dτ
vij (τ)

)
, τ ∈ I(τ̂ , δ).

Set wα(τ) = αwj(τ) + (1 − α2)1/2wij(τ), vα(τ) = αvj(τ) + (1 − α2)1/2vij (τ) for
α ∈ [0, 1], τ ∈ I(τ̂ , δ). Since j �= ij , 〈wj(τ), wij(τ)〉 = 〈vj(τ), vij(τ)〉 = 0 for all
τ ∈ I(τ̂ , δ). Hence (wα(τ̂ ), vα(τ̂)) is also a singular pair of G(τ̂) corresponding to
σj(τ̂). Define

f(α) = Rewα(τ̂ )∗
dG

dτ
(τ̂ ) vα(τ̂).

Because τ̂ is a local extremum of σj(·) and σj(τ) = λj(τ) on (τ̂−δ, τ̂ ), σj(τ) = λij (τ)
on (τ̂ , τ̂ + δ), we have

f(1)f(0) =
dλj

dτ
(τ̂)

dλij

dτ
(τ̂) ≤ 0.

Hence by continuity there exists α̂ ∈ [0, 1] such that f(α̂) = 0. Setting wj =
wα̂(τ̂ ), vj = vα̂(τ̂) proves the proposition. �

4.3.4 Relations between Eigenvalues and Singular Values

In this subsection we specialize to square matrices G ∈ Kn×n and discuss the rela-
tionship between eigenvalues and singular values of G.
Whereas the eigenvalues of a matrix are similarity invariants, the singular values
of a matrix are only invariant with respect to unitary similarity transformations.
Let G ∈ Kn×n have singular values σj = σj(G) and eigenvalues λj = λj(G) taking
account of multiplicity and ordered by

|λ1| ≥ |λ2| ≥ · · · ≥ |λn| . (42)

If G has a singular value decomposition G = WΣV ∗, Σ = diag(σ1, . . . , σn), then

|λ1 · · ·λn| = | det WΣV ∗| = det Σ = σ1 · · ·σn. (43)

Now suppose that G is normal. Then there exists a unitary matrix V ∈ Un(K) such
that

V ∗GV = diag(λ1, λ2, . . . , λn).

So V ∗G∗GV = (V ∗GV )∗V ∗GV = diag(|λ1|2, . . . , |λn|2) and hence

σj = |λj|, j ∈ n . (44)

In particular, if G ∈ Hn(K), G $ 0 then σj = λj ≥ 0, j ∈ n. Now let (v1, . . . , vn) be
an orthonormal eigenvector basis corresponding to the eigenvalues λ1 ≥ . . . ≥ λn ≥ 0
and r = rank(G). If we define wj by (20) we obtain wj = σj

−1Gvj = vj for
j = 1, . . . , r. So the SVD of G has the form

G =

r∑
j=1

σjv
jvj∗ = CC∗ where C = [σ

1/2
1 v1 · · ·σ1/2

r vr]. (45)
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Remark 4.3.22. (45) shows that every G ∈ H+
n (K) has a factorization of the form

G = CC∗ where C ∈ K
n×r is a rectangular matrix of full column rank. Setting B =

[σ
1/2
1 v1 · · · σ1/2

n vn] = [C 0n×(n−r)] we obtain instead a factorization G = BB∗ with a
square factor B ∈ K

n×n. Now B in turn can be factorized in the form B = LU where L

is lower triangular with non-negative diagonal entries and U ∈ U(K) (see Lemma 4.5.12).
So we obtain G = LUU∗L = LL∗. Such a factorization is called a Cholesky factorization
of G. If G is positive definite, the Cholesky factor L is uniquely determined, see Ex. 5. �

In general the relationship between eigenvalues and singular values of a square matrix
is far less tight than for normal matrices. We have, however, the following estimates.

Proposition 4.3.23 (Weyl). Let G ∈ K
n×n be a square matrix with eigenvalues

λ1, . . . , λn and singular values σ1, . . . , σn ordered by (42) and (2), respectively. Then

|λ1 · · ·λk| ≤ σ1 · · ·σk, k ∈ n, (46)

with equality for k = n.

Proof : By unitary similarity transformation (see Theorem 4.5.16) G can be brought
into upper triangular form (complex Schur form) T = (tij) = U∗GU, U ∈ Un(C)
such that the diagonal entries of T are tjj = λj , j ∈ n. For any k ∈ n, let Uk ∈ C

n×k

be the submatrix consisting of the first k columns of U . Then Tk := U∗
kGUk is the

upper left k× k-submatrix of T with diagonal entries λ1, . . . , λk. By Corollary 4.3.3
and the unitary invariance of singular values we have σj(Tk) ≤ σj(T ) = σj for
j = 1, . . . , k, hence by application of (43) to Tk

|λ1 · · ·λk| = | detTk| = σ1(Tk) · · ·σk(Tk) ≤ σ1 · · ·σk.
�

Corollary 4.3.24. Under the conditions of the preceding proposition

σn ≤ |λn| ≤ σ
1
n
n (σ1)

n−1
n , σ

1
n
1 (σn)

n−1
n ≤ |λ1| ≤ σ1. (47)

Proof : By the previous proposition

|λn|n ≤ |λ1||λ2| · · · |λn| = σ1σ2 · · ·σn ≤ σn−1
1 σn .

Similarly
|λ1|n ≥ |λ1| · · · |λn| = σ1σ2 · · ·σn ≥ σ1σ

n−1
n .

This proves half of the inequalities in (47). The other half follows from

σ1 = ‖G‖ = max
‖x‖2=1

‖Gx‖2 ≥ |λ1|,

σ−1
n = ‖G−1‖ = max

‖x‖2=1
‖G−1x‖2 ≥ |λn|−1 if σn �= 0.

�

The next proposition shows that the estimate σn ≤ |λn| is tight on every similarity
orbit.

Proposition 4.3.25. For any G ∈ Cn×n,

sup
T∈Gln(C)

σn(TGT−1) = |λn(G)|. (48)
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Proof : By (47) for every T ∈ Gln(C)

σn(TGT−1) ≤ |λn(TGT−1)| = |λn(G)| .

Hence ≤ holds in (48). Conversely, given any ε > 0 there exists Tε ∈ Gln(C)
such that TεGT−1

ε is in Jordan canonical form but with entries ε instead of 1 on
the superdiagonal. Now for diagonal matrices (44) holds and since σn(G) depends
continuously on G by Corollary 4.3.11, we obtain (48). �

Formula (48) has an interesting interpretation. We know that σn(TGT−1) measures
the distance of the matrix TGT−1 from the set of singular matrices Mn,n

n−1(C) (see
Corollary 4.3.9). Hence |λn(G)| measures the supremum of the distances of the
matrices in the similarity orbit of G from the set of singular matrices in (Cn×n, ‖·‖):

|λn(G)| = sup
T∈Gln(C)

dist(TGT−1, Mn,n
n−1(C)). (49)

On the other hand note that (see Example 4.3.10 and Ex. 16)

inf
T∈Gln(C)

dist(TGT−1, Mn,n
n−1(C)) = 0 (50)

if G is not a multiple of the identity matrix In.

4.3.5 Exercises

1. Find the singular values, right singular vectors and SVD’s of the matrices

(i)

[
0 1

−1 0

]
, (ii)

[
2 0
1 −1

]
, (iii)

[
ı 1 + ı

0 2ı

]
.

2. Sketch the ellipsoids E−1, E given by (5) and (8) for the matrices in Ex. 1.

3. Let G ∈ K
m×n, m ≥ 1, n > 1 and let G̃ be obtained by deleting one column of G.

Prove the following interlacing property: If σ1 ≥ . . . ≥ σn (resp. σ̃1 ≥ . . . ≥ σ̃n−1) are the
singular values of G (resp. G̃) then

σ1 ≥ σ̃1 ≥ σ2 ≥ σ̃2 ≥ · · · ≥ σ̃n−1 ≥ σn.

4. Show that G =

⎡⎣ 2 2 2
2 4 6
2 6 10

⎤⎦ is positive semi-definite and of rank 2. Find a matrix

C ∈ R
3×2 such that G = CC∗.

5. Prove the following results related to Remark 4.3.22.

(i) A Hermitian matrix H ∈ Hn(K) is positive semi-definite if and only if it has a Cholesky
factorization (i.e. H = LL∗ with L lower triangular and non-negative diagonal en-
tries). If H is positive definite, the Cholesky factor L is uniquely determined.

(ii) Let B,C ∈ K
n×n. Then BB∗ = CC∗ if and only if there exists a unitary matrix

U ∈ Un(K) such that B = CU . (Hint: ker B∗ = ker C∗ and ‖B∗x‖2 = ‖C∗x‖2 for
all x ∈ K

n.)

(iii) Suppose B ∈ K
n×m, C ∈ K

n×r and rankC = r (C is of full column rank). Then
BB∗ = CC∗ if and only if there exists a matrix U ∈ K

r×m such that B = CU and
UU∗ = Ir.
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6. If A ∈ K
n×n prove that there exist positive semi-definite matrices P, P̃ ∈ Hn(K) and

a unitary U ∈ Un(K) such that A = PU = UP̃ (polar decomposition of A). The matrices
P , P̃ are uniquely determined by P = (AA∗)1/2 and P̃ = (A∗A)1/2, see (6). If A is
nonsingular then also U is uniquely determined by U = P−1A.

7. Suppose G ∈ K
m×n has a SVD G = WΣV ∗ (19) and define G† = V Σ+W ∗ ∈ K

n×m

where Σ+ ∈ K
n×m is the transpose of the matrix obtained from Σ by replacing the positive

singular values in Σ by their reciprocals. By construction rankG = rankG†. Prove:

(i) GG†, G†G ∈ Hn(K), (ii) GG†G = G, (iii) G†GG† = G†.

Show that G† = G−1 if G ∈ Gln(K). The matrix G† is called the Moore-Penrose gen-
eralized inverse (or pseudoinverse) of G. Show that G† is uniquely determined by the
requirements (i)-(iii).

8. If ‖·‖F denotes the Frobenius norm on C
m×n, prove that ‖G‖2

F = σ1(G)2+· · ·+σn(G)2

for all G ∈ C
m×n.

9. Let B ∈ K
n×m, C ∈ K

m×n. If x1, . . . , xk ∈ K
n are linearly independent and span

ker(In − BC) prove that Cx1, . . . , Cxk are linearly independent and span ker(Im − CB).
In particular, dim ker(In − BC) = dim ker(Im − CB).

10. A norm ‖ · ‖ on C
m×n is called unitarily invariant if ‖UGV ∗‖ = ‖G‖ holds for all

G ∈ C
m×n and all U ∈ Um(C), V ∈ Un(C). Prove that if ‖·‖ is a unitarily invariant norm

on C
m×n then ‖G‖ can be represented as a function of the singular values σi(G), i ∈ n,

‖G‖ = Ψ(σ1(G), . . . , σn(G)), G ∈ C
m×n (51)

where Ψ(·) : R
n → R has the following two properties4

(i) x �→ Ψ(x) defines an absolute norm on R
n.

(ii) Ψ(·) is symmetric, i.e. Ψ(Px) = Ψ(x) for all perturbation matrices P of order n.

11. Prove Lemma 4.3.14.

12. If G(τ) ∈ K
m×n, τ ∈ (τ0−δ, τ0+δ) is analytic in τ and σ0 > 0 is a simple singular value

of G(τ0), show that there exists an analytic function σ(·) on a suitable small neighbourhood
J of τ0 such that σ(τ0) = σ0 and σ(τ) is a simple singular value of G(τ) for τ ∈ J . Prove
that the sensitivity of σ(τ) at τ0 is given by σ′(τ0) = Rew∗ G′(τ0) v where (w, v) is a
singular pair of G(τ0) for σ(τ0).

13. Calculate the sensitivities at the origin of the singular values of the matrix Ã(τ), τ ∈ R

of Example 4.2.13.

14. For H ∈ Hn(K) denote by λ1(H) ≥ . . . ≥ λn(H) the eigenvalues of H in decreasing
order. Prove that, for each k ∈ n, the map H �→ λk(H) is monotonically increasing on
Hn(K) (ordered by %).

15. Prove the following generalization of the inequality Re z ≤ |z|, z ∈ C,

λk([A + A∗]/2) ≤ σk(A), k ∈ n, A ∈ C
n×n,

4It can be shown that in the case m = n the converse holds true, every function Ψ(·) : Rn → R

with the two properties (i),(ii) defines a unitarily invariant norm on Cn×n via (51), see [484, II.3].
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where λk denotes the k-th ordered eigenvalue of a Hermitian matrix (as in Ex. 14), and
σk the k-th ordered singular value, k ∈ n.
Hint: Use x∗(A + A∗)x/2 = Re x∗Ax ≤ ‖Ax‖2 for x ∈ K

n, ‖x‖2 = 1 and Theorem 4.3.1.

16. If G ∈ C
n×n is not a multiple of the identity, prove that

inf
T∈Gln(C)

dist(TGT−1,M
n,n
n−1(C)) = 0.

4.3.6 Notes and References

The singular value decomposition of real square matrices goes back to Beltrami (1873) [47]

and Jordan (1874) [280] and has been rediscovered since by various authors. An infinite di-

mensional analogue of the singular value decomposition was introduced by Schmidt (1907)

[450]. He was the first to use this decomposition for obtaining optimal approximations

of prescribed rank to a given operator. A proof of the SVD for general complex m × n

matrices was given in Eckart and Young (1936) [145], but for square complex matrices the

result had already been derived over twenty years earlier by Autonne (1915) [28]. Singular

values of non-selfadjoint operators on Hilbert spaces have been discussed under the name

of s-numbers in Gohberg and Krein (1969) [191]. Counterparts for operators on Banach

spaces are studied in Pietsch (1987) [412]. This monograph also contains an axiomatic

theory of s-numbers. Historical reviews of the early days of the singular value decomposi-

tion in Linear Algebra and Functional Analysis can be found in Horn and Johnson (1991)

[265, 3.0] and Stewart (1993) [481], see also the historical remarks in Pietsch (1987) [412].

Good modern references for the theory and/or numerics of singular value decompositions

in Linear Algebra are Horn and Johnson (1991) [265], Stewart and Sun (1990) [484] and

Golub and Van Loan (1996) [197]. More references concerning numerical issues can be

found in the Notes and References of Section 4.5.

As early as in the 1930s singular value decompositions played an important role in Statis-

tics under the name of “principal component analysis”, see Hotelling (1933) [266] and

(1936) [267]. Dempster (1969) [127] gives a geometric treatment of principal component

analysis and an overview over its history in multivariate analysis. In Systems Theory

singular values became an important tool when the numerical problems of computing the

theoretical constructions of geometric control theory were considered in the late seventies,

see Klema and Laub (1980) [309]. For early applications in model reduction, see Moore

(1981) [380] and Glover (1984) [188], and for early applications in robust stability and

control, see Safonov (1980) [444] and Doyle and Stein (1981) [136].

The Minimax Theorem 4.3.1 is due to Fischer (1905) [162]. Courant (1920) extended the

result to differential operators and therefore the result is often called the Courant-Fischer

Theorem. For matrices this result is a special case of Wielandt’s Theorem, see [484,

IV.4.2]. Theorem 4.3.7 was first established by Schmidt (1907) [450] for integral opera-

tors with respect to the Schmidt norm. For matrices it was proved in Eckart and Young

(1936) [145] with respect to the Frobenius norm (the finite dimensional specialization

of the Schmidt norm). Later this result was generalized to arbitrary unitarily invariant

norms by Mirsky (1963) [377]. In the same paper Mirsky extended the perturbation result

in Corollary 4.3.11 to unitarily invariant norms. Proposition 4.3.23 was first published in

Weyl (1949) [517]. More results concerning the relationship between singular values and

eigenvalues can be found in Horn and Johnson (1991) [265, Ch. 3].
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4.4 Structured Perturbations

In the next chapter we will introduce two very useful tools for analyzing spectral
properties of dynamical systems with uncertain parameters, stability radii and spec-
tral value sets. In order to characterize them it will be necessary to calculate, for a
given set of perturbations ∆ ⊂ C�×q and a given matrix G ∈ Cq×�, the norm of the
smallest perturbation ∆ ∈ ∆ which achieves ∆Gz = z for some z ∈ C�, z �= 0. The
inverse of the norm of this smallest ∆ is called the µ-value of G with respect to the
perturbation set ∆.
Up until now we have considered two types of perturbations to matrices and poly-
nomials. Either the matrices or coefficient vectors of the polynomials have been
subjected to arbitrary unstructured perturbations (independent perturbations of
the entries/coefficients) or the perturbations are defined in terms of a single real
or complex parameter. In many applications parameter perturbations occur which
do not fall into either of these categories. So in order to obtain non-conservative
estimates we have to build the perturbation structure into our definitions and con-
sequent development. This will be carried out in this section which is subdivided
into two subsections.
In the first one we consider general perturbation sets ∆ ⊂ C�×q whose span is pro-
vided with an arbitrary operator norm. We define the µ-value of a matrix with
respect to these sets of perturbations and derive some elementary properties. In
the special case of complex full-block perturbations (i.e. ∆ = C�×q) the µ-value of a
matrix coincides with its operator norm. We then introduce sets of block-diagonal
perturbations for which the concept of the µ-value was originally defined, see Notes
and References, and derive characterizations of the µ-value for these sets. Unfortu-
nately it is usually very difficult to compute the µ-value from these characterizations,
for which a global non-convex optimization problem must be solved. So we derive
some bounds which can be calculated more easily. In particular we obtain an upper
bound which can be computed via the resolution of a convex optimization problem.
Finally we examine the continuity of the µ-function G �→ µ∆(G).
Most of the results in Subsection 4.4.1 require that C∆ = ∆ and hence they are
not applicable to real perturbation sets where ∆ ⊂ R�×q. However, we will see in
Chapter 5 that the spectral analysis of linear systems with uncertain real param-
eters leads naturally to such perturbation sets. The problem of determining the
µ-value for real perturbation sets is the subject of Subsection 4.4.2. We will not
solve this problem in its full generality, but restrict our considerations to full-block
real perturbations (i.e. ∆ = R�×q). For the case where � = 1 or q = 1 we obtain
formulas which are valid for arbitrary perturbation norms and are comparatively
easy to compute. For other values of � and q, we only consider the spectral norm
and obtain a characterization which involves a scalar optimization problem for the
second singular value of a scaled matrix. subsection 4.4.1

4.4.1 Elements of µ-Analysis

In Section 4.3 we saw that the largest singular value of a matrix G ∈ C
q×� is

characterized by
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σmax(G) =
[
inf{‖∆‖; ∆ ∈ C

�×q and det(I� − ∆G) = 0}
]−1

where ‖∆‖ is the spectral norm of ∆. We will now define a counterpart to the largest
singular value for the case where ∆ (viewed as a perturbation) is constrained to a
given non-empty subset ∆ ⊂ C�×q and its size is not necessarily measured by the
spectral norm but by any norm ‖ ·‖∆ on the subspace spanC ∆ generated by ∆ over
C. This so-called µ-value is a flexible tool for dealing with structured uncertainties
in the analysis and synthesis of control systems. It was originally introduced for
the special case of block-diagonal perturbations (see below) and the spectral norm
‖∆‖∆ = σmax(∆) [135]. Because of its close relationship with the maximal singular
value it was called the structured singular value. In this subsection we develop some
elements of µ-analysis and derive a number of basic results which are useful for the
spectral analysis of uncertain systems studied in Chapter 5.

Definition 4.4.1. Suppose ∆ is any non-empty subset of C�×q and spanC ∆ is
endowed with a norm ‖ · ‖∆. Then the µ-value of a matrix G ∈ Cq×� with respect
to the perturbation set ∆ and the norm ‖ · ‖∆ is defined by

µ∆(G) = [inf {‖∆‖∆; ∆ ∈ ∆ and det(I� − ∆G) = 0}]−1 , G ∈ C
q×�. (1)

Here as elsewhere we set inf ∅ = ∞ and ∞−1 = 0, so that µ∆(G) = 0 if and only if
there does not exist ∆ ∈ ∆ satisfying det(I� − ∆G) = 0. Throughout the section
we tacitly assume that ∆ �= ∅.

Remark 4.4.2. In the case where ∆ ⊂ R
�×q consists only of real perturbations, it would

seem more natural to define µ∆(·) with respect to a given norm ‖ · ‖spanR ∆ on the real
linear subspace generated by ∆,

µ∆(G) =
[
inf

{
‖∆‖spanR ∆; ∆ ∈ ∆ and det(I� − ∆G) = 0

}]−1
, G ∈ C

q×�. (2)

This can be made a special case of Definition 4.4.1 by choosing a norm ‖ · ‖∆ on spanC ∆

which is compatible with ‖ · ‖spanR ∆ (see Definition A.1.6), i.e.

‖∆‖∆ = ‖∆‖spanR ∆, ∆ ∈ spanR ∆ ⊂ R
�×q.

Then µ∆(G) as defined by (1) coincides with µ∆(G) as defined by (2) for all G ∈ Cq×�.
For most of this section and nearly all of the next chapter we will assume that spanC ∆

is provided with a norm ‖ · ‖∆ which is an operator norm with respect to a given pair of
norms on C

� and C
q. Again if ∆ ⊂ R

�×q it would seem more natural to endow spanR ∆

with an operator norm ‖ · ‖L(Rq ,R�) rather than ‖ · ‖L(Cq,C�) and define

µ∆(G) =
[
inf{‖∆‖L(Rq ,R�); ∆ ∈ ∆ and det(I� − ∆G) = 0}

]−1
, G ∈ C

q×�. (3)

Let (‖ · ‖R� , ‖ · ‖Rq) be a given pair of norms on R
�, Rq. A pair of norms (‖ · ‖C� , ‖ · ‖Cq)

on C
�, Cq is said to be compatible with (‖ · ‖R� , ‖ · ‖Rq) if ‖v‖C� = ‖v‖R� for all v ∈ R

�,
‖z‖Cq = ‖z‖Rq for all z ∈ R

q and the corresponding operator norms on R
�×q and R

q×� are
equal,

‖∆‖L(Cq ,C�) = ‖∆‖L(Rq ,R�), ∆ ∈ R
�×q; ‖G‖L(C� ,Cq) = ‖G‖L(R� ,Rq), G ∈ R

q×�.
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It is shown in Lemma A.1.7 that for any given pair of norms on R
�, Rq there exists a

compatible pair of norms on C
�, Cq. By choosing such a compatible pair of norms and

providing spanR ∆ with the operator norm ‖ · ‖L(Cq ,C�) the µ-value as defined by (1) again

coincides with µ∆(G) as defined by (3) for all G ∈ C
q×�. We see therefore that Definition

4.4.1 also covers the natural definitions for real perturbation structures. �

µ-values admit a feedback interpretation as illustrated in Figure 4.4.1. Here we

G

∆ �

�

u y

Figure 4.4.1: Feedback interpretation of µ∆(G)

regard G : C� → Cq as the input-output map of a memoryless linear system and
∆ ∈ ∆ as an unknown feedback operator. The resulting feedback system G�∆ is
well-posed (see Section 2.4) if and only if I�−∆G is invertible. Thus µ∆(G)−1 is the
largest ρ ∈ (0,∞] such that G�∆ is well-posed for all ∆ ∈ ∆ of norm ‖∆‖∆ < ρ.
The following simple example shows that the calculation of µ may be far from trivial.

Example 4.4.3. Suppose ∆ has a diagonal structure

∆ = {∆ = diag (δ1, δ2); δ1, δ2 ∈ C} with norm ‖∆‖∆ = max{|δ1|, |δ2|}.

Consider first the case G1 =

[
1 0
1 1

]
, then I2 − ∆G1 =

[
1 − δ1 0
−δ2 1 − δ2

]
and so

µ∆(G1) = 1. Now consider G2 =

[
1 1
1 1

]
, then

det(I2 − ∆G2) = det

[
1 − δ1 −δ1

−δ2 1 − δ2

]
= (1 − δ1)(1 − δ2) − δ1δ2 = 1 − δ1 − δ2.

Hence to find µ∆(G2) we have to solve the problem (whose optimal value is µ∆(G2)
−1)

minimize max{|δ1|, |δ2|} subject to 1 − δ1 − δ2 = 0.

The calculation is easy and yields µ∆(G) = 2. Finally consider G3 =

[
1 2ı
1 2

]
, then

det(I2 − ∆G3) = det

[
1 − δ1 −2ıδ1

−δ2 1 − 2δ2

]
= 1 − δ1 − 2δ2 + 2δ1δ2(1 − ı).

So in order to find µ∆(G3) it is necessary to solve the minimization problem

minimize max{|δ1|, |δ2|} subject to 1 − δ1 − 2δ2 + 2δ1δ2(1 − ı) = 0.

This time the calculation is not so easy. You are asked to carry it out in Ex. 2. �

The formulas in the next remark are simple but useful consequences of the definition.
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Remark 4.4.4. (i) For G ∈ C
q×�, we have

µ∆(G) =

[
inf{‖∆‖∆; ∆ ∈ ∆ and det

[
I� ∆
G Iq

]
= 0}

]−1

,

= [inf{‖∆‖∆; ∆ ∈ ∆ and det(Iq − G∆) = 0}]−1
.

Sometimes these alternative formulas for µ∆(G) may lead to simpler calculations.

(ii) If ∆ is a closed subset of C
�×q and µ∆(G) > 0 then {∆ ∈ ∆; det(I� − ∆G) = 0} is

a non-empty closed subset of C
�×q and hence contains a perturbation ∆min of minimum

norm (which is, in general, not uniquely determined). By definition, ∆min satisfies

∆min ∈ ∆, det(I� − ∆minG) = 0, ‖∆min‖∆ = µ∆(G)−1. (4)

Therefore the “inf” in (1) can be replaced by “min” if µ∆(G) > 0 and ∆ is closed. �

In the next lemma we list some simple properties of the µ-value.

Lemma 4.4.5. Given any non-void ∆ ⊂ C�×q and a norm ‖ · ‖∆ on spanC ∆, then

A∆ = {α ∈ C
∗; α∆ = ∆}, (5)

U∆ = {U ∈ Glq(C); ∆U = ∆ and ‖∆‖∆ = ‖∆U‖∆ for all ∆ ∈ ∆}1, (6)

C∆ = {R ∈ Glq(C); ∃LR ∈ Gl�(C) ∀∆ ∈ ∆ : L−1
R ∆R = ∆}2, (7)

are subgroups of C
∗ and Glq(C), respectively. For all G ∈ C

q×�,

(i) µ∆(αG) = |α|µ∆(G) for all α ∈ A∆.

(ii) µ∆(UG) = µ∆(G) for all U ∈ U∆.

(iii) µ∆(RGL−1
R ) = µ∆(G) for all R ∈ C∆.

Moreover, if ‖ · ‖∆ is an operator norm induced by given norms on Cq and C� then

µ∆(G) ≤ inf
R∈C∆

‖RGL−1
R ‖L(C�,Cq). (8)

Proof : The subgroup properties and (i) are easily verified. Statement (ii) follows
from the fact that for U ∈ U∆ we have ‖∆‖∆ = ‖∆U−1‖∆ and

(det(I� − ∆G) = 0 and ∆ ∈ ∆) ⇔ (det(I� − ∆U−1UG) = 0 and ∆U−1 ∈ ∆).

Similarly, (iii) follows from the fact that for ∆ ∈ ∆, R ∈ C∆

det(I� − ∆G) = det(LR(I� − ∆G)L−1
R ) = det(I� − ∆RGL−1

R ).

Finally, if ‖ · ‖∆ = ‖ · ‖L(Cq,C�) on ∆ then for all ∆ ∈ ∆

det(I� − ∆G) = 0 ⇒ ‖∆‖∆‖G‖L(C�,Cq) ≥ 1 ⇒ ‖∆‖−1
∆

≤ ‖G‖L(C�,Cq).

Hence µ∆(G) ≤ ‖G‖L(C�,Cq) and so (8) is a consequence of (iii). �

2∆U := {∆U ; ∆ ∈ ∆}.
2C∆ is a generalization of the commutant subgroup of a given set ∆ ⊂ Cn×n of square matrices.
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Another elementary property of the µ-value is captured in the following monotonicity
statement which shows that µ∆(G) is increased if the perturbation set is increased
and the perturbation norm is decreased

(∆1⊂ ∆2 and ∀∆∈∆1 : ‖∆‖∆1 ≥ ‖∆‖∆2) ⇒ µ∆1(G) ≤ µ∆2(G), G ∈ C
q×�. (9)

In particular, we obtain for any given perturbation set ∆ ⊂ C�×q and the subset
∆R = ∆ ∩ R�×q of real perturbations in ∆

µ∆R
(G) ≤ µ∆(G). (10)

In the following, spanR ∆R will always be endowed with the norm induced from
spanC ∆. The following example illustrates that the inequality in (10) will in general
be strict.

Example 4.4.6. Let ∆ = CIq carry the norm ‖zIq‖∆ = |z| and consider the matrix
G = λIq where λ ∈ C \ R is given. Then µ∆(G) = |λ|. However, there does not exist a
real ∆ ∈ ∆R = RIq such that det(Iq − ∆G) = 0, whence µ∆R

(G) = 0. �

If ∆ is a complex structure, i.e. C∆ = ∆, then the µ-value can be characterized in
terms of the spectral radius.

Lemma 4.4.7. Suppose ∆ is a closed subset of C�×q, spanC ∆ is endowed with a
norm ‖ · ‖∆ and C∆ = ∆. Then for all G ∈ Cq×�

µ∆(G) = max
∆∈∆

‖∆‖∆=1

�(∆G) = max
∆∈∆\{0}

�(∆G)

‖∆‖∆

. (11)

If µ∆(G) > 0, we have

µ∆(G)−1 = min
∆∈∆

�(∆G)≥1

‖∆‖∆ = min
∆∈∆

�(∆G)=1

‖∆‖∆. (12)

Proof : Since the spectral radius is positive homogeneous, the second equalities in
(11) and (12) are immediate. The first equality in (11) can be verified as follows. If
�(∆G) = 0 for all ∆ ∈ ∆ with ‖∆‖∆ = 1 then σ(∆G) = {0} for all ∆ ∈ ∆ and
so (11) holds with µ∆(G) = 0. Now suppose that the maximum in (11) is positive.
Since ∆ �→ �(∆G) is continuous on the non-empty compact set {∆ ∈ ∆; ‖∆‖∆ = 1}
there exists ∆0 ∈ ∆ such that

‖∆0‖∆ = 1 and �0 := �(∆0G) = max
∆∈∆

‖∆‖∆=1

�(∆G).

Choosing λ0 ∈ σ(∆0 G) such that |λ0| = �0 we obtain a matrix λ−1
0 ∆0 ∈ ∆ satisfying

‖λ−1
0 ∆0‖∆ = �−1

0 and det(I� − λ−1
0 ∆0 G) = 0.

Thus µ∆(G)−1 ≤ �−1
0 . Conversely, choose ∆min ∈ ∆ such that (4) holds, then

�(∆minG) ≥ 1 and

µ∆(G)−1 = ‖∆min‖∆ ≥ ‖∆min‖∆�(∆minG)−1 ≥ �(‖∆min‖−1
∆

∆minG)−1 ≥ �−1
0
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by the definition of �0. This concludes the proof of (11).
Now suppose µ∆(G) > 0. Then it follows from (11) and the positive homogeneity
of �(·) and ‖ · ‖ that

µ∆(G)−1 = min
∆∈∆\{0}

‖∆‖∆

�(∆G)
= min

∆∈∆

�(∆G)=1

‖∆‖∆.

Thus (12) follows. �

Example 4.4.8. Let ∆ be the normed perturbation space of Example 4.4.3, ∆ ∈ ∆

and G2 =

[
1 1
1 1

]
, then ∆G2 =

[
δ1 δ1

δ2 δ2

]
. Hence �(∆G2) = |δ1 + δ2| and to calculate

µ∆(G2) by means of formula (11) we have to solve the optimization problem

maximize |δ1 + δ2| subject to max{|δ1|, |δ2|} = 1.

We see therefore that in comparison to the direct analysis of Example 4.4.3 the application
of Lemma 4.4.7 leads to a reversal of the role of the function to be optimized and the
constraint. Clearly µ∆(G2) = 2 as before. �

The following example illustrates that in general the previous lemma is not valid for
real perturbation structures.

Example 4.4.9. Let ∆ = RI2 (with the norm ‖δI2‖∆ = |δ|) and G =

[
0 −1
1 0

]
. Then

µ∆(G) = 0 but the maximum in (11) is 1. �

Remark 4.4.10. We have seen that the determination of µ∆(G) for a given matrix and
a given disturbance set ∆ is in general a difficult one. So it is important to have reasonable
estimates for it. Lemma 4.4.5 and Lemma 4.4.7 provide upper and lower bounds. If ‖ · ‖∆
is an operator norm, we have

∀R ∈ C∆ : µ∆(G) ≤ ‖RGL−1
R ‖L(C�,Cq) (13)

and in particular ‖G‖L(C�,Cq) is an upper bound. Whereas if ∆ is a closed subset of C
�×q

and C∆ = ∆, then by (11)

∆ ∈ ∆, ‖∆‖∆ = 1 ⇒ �(∆G) ≤ µ∆(G) (14)

and in particular �(G) is a lower bound for µ∆(G) if � = q and CIq ⊂ ∆. �

In the full-block case where ∆ = K�×q we write µK(G) for µK�×q(G), i.e.

µK(G) =
[
inf{‖∆‖L(Kq,K�); ∆ ∈ K

�×q, det(I� − ∆G) = 0}
]−1

, G ∈ C
q×�. (15)

The following proposition extends the result of Theorem 4.3.13 from the spectral
norm to arbitrary operator norms and shows that in the full-block case the upper
bound in (13) is tight.

Proposition 4.4.11. Suppose that ∆ = K�×q is endowed with an operator norm
‖ · ‖L(Kq,K�), then

µK(G) = ‖G‖L(K�,Kq), G ∈ K
q×�. (16)
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If G �= 0 there exist u0 ∈ K�, v0 ∈ Kq such that

v∗
0Gu0 = ‖G‖L(K�,Kq), ‖u0‖K� = ‖v∗

0‖∗Kq = 1 (17)

(where ‖ · ‖∗
Kq denotes the dual norm of ‖ · ‖Kq on K1×q). For each such pair

∆min = ‖G‖−1
L(K�,Kq)

u0v
∗
0 = µK(G)−1u0v

∗
0 (18)

is of minimal norm amongst all matrices ∆ ∈ K�×q satisfying det(I� − ∆G) = 0.

Proof : Let G ∈ Kq×� and suppose G �= 0 (otherwise (16) holds trivially). Since

det(I� − ∆G) = 0 =⇒ ‖∆‖L(Kq,K�)‖G‖L(K�,Kq) ≥ ‖∆G‖L(K�,K�) ≥ 1,

we have µK(G) ≤ ‖G‖L(K�,Kq). To prove the converse inequality choose u0 ∈
K�, ‖u0‖K� = 1 such that ‖G‖L(K�,Kq) = ‖Gu0‖Kq . By the Hahn-Banach Theorem
(see Example A.4.11) there exists a vector v0 ∈ Kq of dual norm ‖v∗

0‖∗Kq = 1 such
that

v∗
0Gu0 = ‖Gu0‖Kq = ‖G‖L(K�,Kq).

Now define ∆min = ‖G‖−1
L(K�,Kq)

u0v
∗
0. Since ‖u0v

∗
0‖L(Kq,K�) = 1 we have

‖∆min‖L(Kq,K�) = ‖G‖−1
L(K�,Kq)

and ∆minGu0 = u0.

Therefore I� − ∆minG is singular and so µK(G)−1 ≤ ‖∆min‖ = ‖G‖−1
L(K�,Kq)

. This

concludes the proof. �

It follows from the previous proof that, under the conditions of Proposition 4.4.11,
for G ∈ Kq×�, G �= 0

µK(G) =
[
min{‖∆‖L(Kq,K�); ∆ ∈ K

�×q, rank ∆ = 1 and det(I� − ∆G) = 0}
]−1

.

As a consequence we obtain the following corollary which extends the formula (16)
to perturbation norms which may not be operator norms.

Corollary 4.4.12. Suppose that ∆ = K�×q is endowed with a norm ‖ · ‖K�×q which
is rank one consistent with an operator norm ‖ · ‖L(Kq,K�), i.e. for all ∆ ∈ K�×q

‖∆‖L(Kq,K�) ≤ ‖∆‖K�×q , and ‖∆‖K�×q = ‖∆‖L(Kq,K�) if rank ∆ = 1. (19)

Then equality (16) holds for all G ∈ Kq×�.

Remark 4.4.13. For 1 ≤ p, r ≤ ∞ the (p|r)-Hölder norm of ∆ ∈ C
�×q is

‖∆‖p|r =
∥∥∥(‖∆�e1‖p, . . . , ‖∆�e�‖p)

�
∥∥∥

r
(20)

where e1, . . . , e� are the column vectors of I�. So if p, r ∈ [1,∞) then

‖∆‖p|r =

⎛⎜⎝ �∑
i=1

⎛⎝ q∑
j=1

|∆ij|p
⎞⎠r/p

⎞⎟⎠
1/r

, ∆ = (∆ij) ∈ C
�×q.
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Otherwise

‖∆‖p|∞ = max
i∈�

⎡⎣ q∑
j=1

|∆ij|p
⎤⎦1/p

, ‖∆‖∞|r =

[
�∑

i=1

[max
j∈q

|∆ij|]r
]1/r

, ‖∆‖∞|∞ = max
i∈�,j∈q

|∆ij|.

These perturbation norms are easy to compute.
When K

q is normed with an p-norm and K
� is normed with a r-norm, we write ‖ · ‖p,r for

the operator norm ‖ · ‖L(Kq,K�). By Lemma A.1.12 the Hölder norm ‖ · ‖p|r is rank one

consistent with the operator norm ‖ · ‖L(Kq ,K�) induced by the r-norm on K
� and the dual

p-norm on K
q. That is ‖ · ‖p|r is rank one consistent with ‖ · ‖p∗,r, where 1/p + 1/p∗ = 1.

Hence (16) holds if the perturbations are normed with Hölder norms. Note however, that
in this case the corresponding operator norm of G is ‖G‖r,p∗ which will in general not be a
Hölder norm. In order to compute most operator norms one needs to solve an optimization
problem which may be difficult. But the following operator norms of G = (gij) ∈ K

q×�

(see (A.1.3)) are computed more easily

‖G‖1,1 = max
j∈�

q∑
i=1

|gij |, ‖G‖2,2 = σmax(G), ‖G‖∞,∞ = max
i∈q

�∑
j=1

|gij |.

The corresponding Hölder norms on ∆ are ‖ · ‖∞|1, ‖ · ‖2|2 (Frobenius norm) and ‖ · ‖1|∞,
respectively. �

Block-diagonal perturbation classes

We will see in the next chapter that model uncertainties are often represented by
block-diagonal perturbations. µ-values were originally introduced to deal with such
perturbation classes (see Notes and References).

Definition 4.4.14. ∆ ⊂ C
�×q is said to be a class of complex block-diagonal per-

turbations, if there exist “book-keeping” integers N ≥ 1, �i ≥ 1, qi ≥ 1 for i ∈ N
and a subset J ⊂ N such that �i = qi for i ∈ N \ J , � =

∑N
i=1 �i, q =

∑N
i=1 qi, and

∆={diag (∆1, . . . , ∆N ); ∆i∈∆i, i ∈ N} where ∆i =

{
C�i×qi if i ∈ J
CIqi

if i ∈ N \ J.
(21)

The norm on ∆ is

‖∆‖∆ = max
i∈N

‖∆i‖∆i
, ∆ = diag (∆1, . . . , ∆N) ∈ ∆

where the norms ‖ · ‖∆i
on ∆i coincide with operator norms ‖ · ‖L(Cqi ,C�i) on ∆i.

So the i-th block of ∆ ∈ ∆ is either an arbitrary complex �i× qi-matrix (if i ∈ J) or
a diagonal matrix with identical diagonal elements (if i ∈ N \ J). Moreover, ‖ · ‖∆

coincides on ∆ with the operator norm induced e.g. by the vector norms

‖(ui)i∈N‖C� =

(
N∑

i=1

‖ui‖2
C�i

)1/2

, ‖(yi)i∈N‖Cq =

(
N∑

i=1

‖yi‖2
Cqi

)1/2

. (22)

In fact, there are many other norms on C� and Cq which induce the same operator
norm on ∆ (see Ex. 3). Since the upper bound in (8) depends on the specific pair
of norms chosen on C� and Cq this can be used to tighten it, see Ex. 4.
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.

..

........ G=
(
Gij

)u1

uN

y1

yN

∆N

∆1

Figure 4.4.2: Multi-loop feedback interpretation of µ∆(G)

The µ-value with respect to a class ∆ of block-diagonal perturbations admits the
following interpretation. Given any matrix G ∈ Cq×�, let G be partitioned according
to the decompositions C� =

⊕N
i=1 C�i , Cq =

⊕N
i=1 Cqi, i.e.

G = (Gij)i,j∈N , Gij ∈ C
qi×�j with Gu = (

∑N
j=1Gijuj)i∈N , u = (uj)j∈N ∈ C

�. (23)

We may interpret G = (Gij)i,j∈N as an input-output operator of a memoryless

linear system with N inputs uj and N outputs yi =
∑N

j=1 Gijuj. If the inputs
and outputs are connected by multi-loop feedback with the feedback operator ∆ =
diag (∆1, . . . , ∆N), see Figure 4.4.2, the resulting feedback system G�∆ is well-
posed (see Section 2.4) if and only if I� −∆G = I� − (∆iGij)i,j∈N is invertible. Thus
µ∆(G)−1 is the largest ρ ∈ [0,∞] such that G�∆ is well-posed for all ∆ ∈ ∆ such
that ‖∆i‖L(Cqi ,C�i) < ρ if i ∈ J and ‖∆i‖ = |δi| < ρ if i ∈ N \ J .

The full-block perturbation class ∆ = C�×q which we considered before corresponds
to the simple case N = 1, J = {1}. In the following two examples we will consider
proper block-diagonal disturbances (with N > 1) corresponding to the two extreme
cases J = N and J = ∅ in Definition 4.4.14.

Example 4.4.15. (Multi-block perturbations). If N > 1 and J = N the corre-
sponding perturbation classes have the form

∆ = {diag (∆1, . . . ,∆N );∆i ∈ C
�i×qi , i ∈ N} (24)

where
∑N

i=1 �i = �,
∑N

i=1 qi = q. The elements of such a perturbation class are called
multi-block perturbations with block structure (�i×qi)i∈N . For arbitrary scaling parameters
γ=(γ1, . . . , γN )∈(C∗)N consider the scaling transformations Rγ =diag (γ1Iq1, . . . , γNIqN

),
Lγ = diag (γ1I�1 , . . . , γN I�N

). Then

L−1
γ ∆Rγ = ∆, ∆ ∈ ∆

and so we obtain from Lemmata 4.4.5 and 4.4.7 that for any ∆ ∈ ∆ of norm ‖∆‖∆ = 1,

�(∆G) ≤ µ∆(G) ≤ inf
γ∈(C∗)N

‖RγGL−1
γ ‖L(C�,Cq) = inf

γ∈(0,∞)N
‖RγGL−1

γ ‖L(C�,Cq) (25)

where C
�, Cq are provided with the norms (22). The last equality results from the fact

that Lγ , Rγ are isometries on C
� and C

q if |γi| = 1 for i ∈ N . If �i = qi for some i ∈ N ,
the index set J in Definition 4.4.14 is not necessarily equal to N . Hence the perturbation
set ∆ defined by (24) is not the only one having the block structure (�i × qi)i∈N , but it is
the largest one. Therefore the upper bound (25) obtained by scaling is valid for all sets of
block-diagonal perturbations with this block structure. �
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Example 4.4.16. (Diagonal perturbations). If N > 1 and J = ∅ then �i = qi, i ∈ N

and the corresponding perturbation class has the form

∆ = {diag (δ1Iq1, . . . , δN IqN
); δi ∈ C, i ∈ N.} (26)

Since any operator norm of the identity map is 1 the perturbation norm is given by the
�∞-norm of δ = (δ1, . . . , δN )

‖∆‖∆ = max
i∈N

|δi| = ‖δ‖∞, ∆ = diag (δ1Iq1, . . . , δN IqN
) ∈ ∆.

Now R−1∆R = ∆ for all R = diag (R1, . . . , RN ), Ri ∈ Glqi(C) and all ∆ ∈ ∆. Therefore
we obtain from Lemmata 4.4.5 and 4.4.7 that �(G) ≤ µ∆(G) and

µ∆(G) ≤ inf{‖RGR−1‖L(C�,Cq); R = diag (R1, . . . , RN ), Ri ∈ Glqi(C) for i ∈ N}. (27)

This estimate is in general much tighter than the estimate (25) (which is also applicable
in the present case). Consider e.g. the case where N = 2 and G = diag (G1, G2), G1 ∈
C

q1×q1, G2 ∈ C
q2×q2. Then (25) yields the estimate µ∆(G) ≤ max{‖G1‖L(Cq1 ), ‖G2‖L(Cq2 )}

whereas (27) yields µ∆(G) ≤ max{�(G1), �(G2)} 3. The latter estimate is in fact an equal-
ity, hence the estimate yields the precise µ-value in this case, µ∆(G) = max{�(G1), �(G2)}
(see Ex. 6). �

Returning to multi-block perturbations of the form (24) we will now see that the
upper bound in (25) is tight under a differentiability constraint when the norms on
C�i, Cqi, i ∈ N are Euclidean and the norm on the right hand side is the correspond-
ing operator norm. To prove this we need the following lemma.

Lemma 4.4.17. Let G = (Gij)i,j∈N be partitioned as in (23), Gγ = RγGL−1
γ ,

where Rγ = diag (γ1Iq1, . . . , γNIqN
), Lγ = diag (γ1I�1 , . . . , γNI�N

) are the scaling
transformations associated with γ ∈ (0,∞)N . Suppose that in a neighbourhood
B(γ̂, ε) ⊂ (0,∞)N of some γ̂ ∈ (0,∞)N we are given a singular value σ(γ) of
Gγ and an associated singular pair (w(γ), v(γ)) partitioned as

w(γ) =

⎡⎢⎣w1(γ)
...

wN(γ)

⎤⎥⎦with wj(γ)∈ K
qj , v(γ) =

⎡⎢⎣v1(γ)
...

vN(γ)

⎤⎥⎦with vj(γ)∈ K
�j , γ∈ B(γ̂, ε).

If, for a given i ∈ N , the partial derivatives of σ(·), w(·), and v(·) with respect to γi

exist at γ = γ̂ then

∂σ

∂γi
(γ̂) =

σ(γ̂)

γ̂i

[
‖wi(γ̂)‖2

2 − ‖vi(γ̂)‖2
2

]
. (28)

Proof : By definition of a singular pair we have w(γ)∗Gγv(γ) = σ(γ) and differen-
tiation yields as in the proof of Corollary 4.3.20

∂σ

∂γi
(γ̂) = Re

(
w(γ̂)∗

∂Gγ̂

∂γi
v(γ̂)

)
3Note that min{‖RiGiR

−1
i ‖L(Cqi ); Ri ∈ Glqi

(C)} = �(Gi) for i=1,2.



4.4 Structured Perturbations 459

where ∂Gγ̂/∂γi := ∂Gγ/∂γi|γ=γ̂ . Since Gγ =
(
γjγ

−1
k Gjk

)
j,k∈N

we have

∂Gγ̂

∂γi
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 −γ̂1γ̂
−2
i G1i 0 · · · 0

...
...

...
...

...
...

...
0 · · · 0 −γ̂i−1γ̂

−2
i Gi−1 i 0 · · · 0

γ̂−1
1 Gi1 · · · γ̂−1

i−1Gi i−1 0 γ̂−1
i+1Gi i+1 · · · γ̂−1

N GiN

0 · · · 0 −γ̂i+1γ̂
−2
i Gi+1 i 0 · · · 0

...
...

...
...

...
...

...
0 · · · 0 −γ̂N γ̂−2

i GNi 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= γ̂−1
i

⎡⎢⎢⎢⎢⎢⎣
0
...

Iqi

...
0

⎤⎥⎥⎥⎥⎥⎦ [0 · · · Iqi
· · · 0]Gγ̂ − γ̂−1

i Gγ̂

⎡⎢⎢⎢⎢⎢⎣
0
...

I�i

...
0

⎤⎥⎥⎥⎥⎥⎦ [0 · · · I�i
· · · 0].

So

w(γ̂)∗
∂Gγ̂

∂γi
v(γ̂) = γ̂−1

i [w∗
i (γ̂) (Gγ̂v(γ̂))i − (w∗(γ̂)Gγ̂)i vi(γ̂)]

= σ(γ̂)γ̂−1
i [w∗

i (γ̂)wi(γ̂) − v∗
i (γ̂)vi(γ̂)] ∈ R

by (3.24), and this proves (28). �

Proposition 4.4.18. Let ∆ be given by (24), G, Gγ as in Lemma 4.4.17 and
let C�i, Cqi, i ∈ N be provided with Euclidean norms. Suppose that for γ in a
neighbourhood of some γ̂ ∈ (0,∞)N , (wmax(γ), vmax(γ)) is a singular pair of Gγ

for the maximum singular value σmax(γ) = σmax(Gγ). If the partial derivatives of
σmax(·), wmax(·), vmax(·) exist at γ̂ ∈ (0,∞)N and ∇ σmax(γ̂) = 0, then

µ∆(G) = σmax(Gγ̂). (29)

Proof : If σmax(γ̂) = 0, the equality follows immediately from (25). So we may
assume σmax(γ̂) > 0. Since ∇ σmax(γ̂) = 0 we have by Lemma 4.4.17

∂σmax(γ̂)

∂γi

=
σmax(γ̂)

γi

[
‖wi(γ̂)‖2

2 − ‖vi(γ̂)‖2
2

]
= 0, i ∈ N.

So ‖wi(γ̂)‖2 = ‖vi(γ̂)‖2 for i ∈ N . Let

∆i = σmax(γ̂)−1vi(γ̂)wi(γ̂)∗/‖wi(γ̂)‖2
2 if wi(γ̂) �= 0 and ∆i = 0 otherwise.

Then ∆iwi(γ̂) = σmax(γ̂)−1vi(γ̂) for i ∈ N , and

‖∆i‖ = σmax(γ̂)−1‖vi(γ̂)‖2/‖wi(γ̂)‖2 = σmax(γ̂)−1 if wi(γ̂) �= 0.

Now for ∆ = diag (∆1, . . . , ∆N)

∆Gv(γ̂) = σmax(γ̂)∆w(γ̂) = v(γ̂).

Thus σmax(γ̂) = ‖∆‖−1 ≤ µ∆(G) ≤ ‖Gγ̂‖ = σmax(γ̂) and (29) is proved. �
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Example 4.4.19. Consider the matrix G = G3 =

[
1 2ı
1 2

]
and the same perturbation

set as in Example 4.4.3. If Rγ = Lγ = diag (γ1, γ2), γ1 > 0, γ2 > 0, then

Gγ := RγGL−1
γ =

[
1 2ıγ1γ

−1
2

γ−1
1 γ2 2

]
.

Let β = γ1γ
−1
2 , then

GγG∗
γ =

[
1 + 4β2 β−1 + 4ıβ

β−1 − 4ıβ 4 + β−2

]
.

So the eigenvalues of GγG∗
γ are the roots of the equation

λ2 − (5 + 4β2 + β−2)λ + 8 = 0.

In order to find the minimum of the largest eigenvalue with respect to β > 0 we have to
minimize 4β2 + β−2. Clearly the minimum is achieved at β = 1/

√
2 and for this value

of β the eigenvalues of GγG∗
γ satisfy λ2 − 9λ + 8 = 0 and hence by (25), µ∆(G) ≤

√
8.

In fact since there are distinct eigenvalues at β = 1/
√

2 (corresponding to γ̂ = (1,
√

2)),
σmax(Gγ) is analytic in a neighbourhood of γ̂ and the conditions of Proposition 4.4.18 hold
by Corollary 4.3.20. So we actually have µ∆(G) =

√
8. In Remark 4.4.21 we will see that

for the type of perturbation structure considered here the upper bound in (25) is tight
without requiring the differentiability conditions assumed in Proposition 4.4.18.
The eigenvalues of G are (3±

√
1 + 8ı)/2, i.e. approximately 2.56+ 0.94ı and 0.44− 0.94ı.

Hence �(G) ≈ 2.73, whereas µ∆(G) ≈ 2.83 and so the lower bound �(G) ≤ µ∆(G)
mentioned in Example 4.4.16 is good but not tight. �

The upper bound in (25) is of special interest since it can be computed by solving
a convex optimization problem if ‖ · ‖L(C�,Cq) is the spectral norm.

Lemma 4.4.20. Let G = (Gij)i,j∈N ∈ C
q×�, Gij ∈ C

qi×�j ,
∑N

j=1 �j = �,
∑N

i=1 qi = q

and for α = (α1, . . . , αN) ∈ RN ,

Gα = diag (eα1Iq1, . . . , e
αN IqN

) G diag (e−α1I�1, . . . , e
−αN I�N

). (30)

Then the map f : α �→ ‖Gα‖ = σmax(Gα) is convex on RN .

Proof : Since f : RN → R+ is continuous it suffices to prove that

f(α) + f(β) ≥ 2f((α + β)/2), α, β ∈ R
N .

Let γ = (α + β)/2 and (v, w) be a singular pair of Gγ for the largest singular value,

Gγv = ‖Gγ‖w, w∗Gγ = ‖Gγ‖v∗,

and define L, R by

L = diag (e(β1−α1)/2I�1 , . . . , e
(βN−αN )/2I�N

), R = diag (e(β1−α1)/2Iq1, . . . , e
(βN−αN )/2IqN

).

Using the fact that (t + 1/t) ≥ 2 for all t > 0 we obtain by simple calculation

f(α)+f(β)≥‖Gα+ Gβ‖ = ‖R−1GγL + RGγL
−1‖≥w∗R (R−1GγL + RGγL

−1)Lv

‖Rw‖2 ‖Lv‖2

=
v∗L2v + w∗R2w

‖Rw‖2 ‖Lv‖2

‖Gγ‖ =

[ ‖Lv‖2

‖Rw‖2

+
‖Rw‖2

‖Lv‖2

]
‖Gγ‖ ≥ 2‖Gγ‖ = 2f(γ).

This concludes the proof. �
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Remark 4.4.21. The upper bound in (25) is in general strictly larger than µ∆(G). How-
ever, we have equality in the multi-perturbation case if N ≤ 3, see [135]. More precisely,
suppose that ∆ is a class of block-diagonal perturbations with N1 = |J | square blocks and
N2 = N − |J | diagonal blocks, then it has been proved (see Notes and References) that
with respect to the spectral norm on ∆ if N1 + 2N2 ≤ 3, then

µ∆(G) = inf
γ∈(0,∞)N

σmax(LγGL−1
γ ), G ∈ C

q×q. (31)

�

Let ∆ be an arbitrary class of block-diagonal perturbations (see Definition 4.4.14).
From Lemma 4.4.7 we have µ∆(G) = max{�(∆G); ∆ ∈ ∆, ‖∆‖∆ = 1}. The next
theorem shows that we can replace the set ∆ on the RHS of this equation with a
much smaller set. In order to prove the theorem we need the following lemma.

Lemma 4.4.22. Let p(s) = p(s1, . . . , sN) ∈ C[s1, . . . , sN ] be a non-constant complex
polynomial in N variables. Then there exists a zero ẑ ∈ CN of p(s) such that

‖ẑ‖∞ = min{‖z‖∞; z ∈ C
N , p(z) = 0} =: δ and |ẑi| = δ, i ∈ N.

Proof : Let ẑ ∈ CN be such that p(ẑ) = 0, ‖ẑ‖∞ = δ and the index set Î := {i ∈
N ; |ẑi| = δ} is maximal amongst all z ∈ CN satisfying p(z) = 0 and ‖z‖∞ = δ. Such
ẑ exists, since the zero set of p is nonempty and closed in CN . Suppose that |ẑk| < δ
for some k ∈ N . Renumbering the variables if necessary we may assume k = N .
We can write p(s) in the form

p(s1, . . . , sN) =

dN∑
j=0

pj(s1, . . . , sN−1)s
j
N .

If pj(ẑ1, . . . , ẑN−1) = 0 for j = 0, . . . , dN the vector z = (ẑ1, . . . , ẑN−1, δ) satisfies
p(z) = 0, ‖z‖∞ = δ and the corresponding index set I := {i ∈ N ; |zi| = δ} is
strictly larger than Î which is a contradiction. Hence not all pj(ẑ1, . . . , ẑN−1) are
zero. Now consider the non-zero polynomial

q(sN) = p(ẑ1, . . . , ẑN−1, sN) =

dN∑
j=0

pj(ẑ1, . . . , ẑN−1)s
j
N ∈ C[sN ].

This is a non-constant polynomial of degree, say d ≤ dN , which has a zero at ẑN

with |ẑN | < δ. By Proposition 4.1.2, for ε > 0 sufficiently small, the polynomial

p((1 − ε)ẑ1, . . . , (1 − ε)ẑN−1, sN) =

dN∑
j=0

pj((1 − ε)ẑ1, . . . , (1 − ε)ẑN−1)s
j
N ∈ C[sN ]

has a root zN of modulus |zN | < δ. But then z := ((1−ε)ẑ1, . . . , (1−ε)ẑN−1, zN) is a
zero of p satisfying ‖z‖∞ < δ and this contradicts the minimality of ‖ẑ‖∞. Therefore
|ẑi| = δ for all i ∈ N . �

Theorem 4.4.23. Let ∆ be a class of multi-block perturbations of the form (24)
endowed with a norm as in Definition 4.4.14. Then

µ∆(G) = max
U∈V�

∆
,V ∈Vq

∆

�(V ∗GU) ≤ �
((

‖Gij‖L(C�i ,Cqi)

)
i,j∈N

)
, G ∈ C

q×�, (32)

where
V�

∆
= {diag (u1, . . . , uN); ∀j ∈ N : uj ∈ C�j , ‖uj‖C

�j = 1} ⊂ C�×N ,

Vq
∆

= {diag (v1, . . . , vN); ∀j ∈ N : vj ∈ Cqj , ‖vj‖∗Cqj = 1} ⊂ Cq×N .
(33)
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Proof : Let U ∈ V�
∆

, V ∈ Vq
∆

U = diag (u1, . . . , uN) ∈ C�×N , uj ∈ C�j , ‖uj‖C
�j = 1, j ∈ N,

V = diag (v1, . . . , vN) ∈ C
q×N , vj ∈ C

qj , ‖vj‖∗Cqj = 1, j ∈ N.
(34)

Then �(V ∗GU) = �(UV ∗G) where UV ∗ = diag (u1v
∗
1 , . . . , uNv∗

N) ∈ ∆ and

‖UV ∗‖∆ = max
j∈N

‖ujv
∗
j‖L(Cqj ,C�j ) = max

j∈N
‖uj‖C

�j‖vj‖∗Cqj = 1.

Hence by Lemma 4.4.7

µ∆(G) = max
∆∈∆

‖∆‖∆=1

�(∆G) ≥ max
U∈V�

∆
,V ∈Vq

∆

�(V ∗GU).

Conversely, if µ∆(G) = 0, equality follows trivially from the above estimate and so
we may suppose µ∆(G) > 0. Let ∆min = diag (∆1, . . . , ∆N ) ∈ ∆ be such that (4) is
satisfied. Then there exists û = (ûi)i∈N ∈ C�, û �= 0 such that (I� − ∆minG)û = 0,
i.e. ∆iŷi = ûi where the ŷi ∈ C

qi are given by (ŷi)i∈N = Gû. By the Hahn-Banach
Theorem (see Example A.4.11) there exists vj ∈ Cqj aligned with ŷj, j ∈ N such
that

‖vj‖∗Cqj = 1, v∗
j ŷj = ‖ŷj‖C

qj , j ∈ N.

Choose u1
j ∈ C�j such that ‖u1

j‖C
�j = 1 and ûj = ‖ûj‖C

�j u1
j , j ∈ N . Then

(rju
1
jv

∗
j )ŷj = ûj, j ∈ N where rj = ‖ûj‖C

�j /‖ŷj‖C
qj if ŷj �= 0 and otherwise rj = 0.

Hence det (I − ∆(r)G) = 0 for ∆(r) = diag (r1u
1
1v

∗
1, . . . , rNu1

Nv∗
N) ∈ ∆. Since

‖∆(r)‖∆ = max
i∈N

ri ≤ max
i∈N

‖∆i‖∆i
= ‖∆min‖∆

it follows from the minimality of ‖∆min‖∆ that δ := ‖∆min‖∆ = maxi∈N ri. Now
consider the polynomial

p(s1, . . . , sN) = det(I−∆(s)G) ∈ C[s1, . . . , sN ], ∆(s) = diag (s1u
1
1v

∗
1, . . . , sNu1

Nv∗
N).

r = (r1, . . . , rN) is a zero of minimal norm ‖r‖∞ = δ of p(s). Applying the previous
lemma, there exists a zero ẑ = (ẑ1, . . . , ẑN ) of p(s) such that ẑj ∈ C and |ẑj | = δ for
all j ∈ N . Now let uj = δ−1ẑju

1
j , j ∈ N , vj as before, and define U, V as in (34).

Then U ∈ V�
∆

, V ∈ Vq
∆

and det(I − δUV ∗G) = det(I − ∆(ẑ)G) = 0, and so

�(V ∗GU) = �(UV ∗G) = δ−1�(∆(ẑ)G)) ≥ δ−1 = µ∆(G).

This proves the equality in (32). To prove the inequality note that from the theory
of non-negative matrices it is known that (see [183, §2.3])

A = (aij) ∈ C
N×N , B = (bij) ∈ R

N×N
+ , ∀i, j ∈ N : |aij | ≤ bij ⇒ �(A) ≤ �(B).

Hence
�(V ∗GU) ≤ �

(
(|v∗

i Gijuj|)i,j∈N

)
≤ �

((
‖Gij‖L(C�i ,Cqi)

)
i,j∈N

)
.

This completes the proof. �
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Remark 4.4.24. If ∆ ⊂ C
�×q is a class of multi-block perturbations of the form (24)

and the spaces C
�i×qi are endowed with norms ‖ · ‖∆i

= ‖ · ‖
C�i×qi which are not operator

norms but satisfy condition (19) with respect to operator norms ‖ · ‖L(Cqi ,C�i), i ∈ N , then
the formula (32) remains valid. �

Proposition 4.4.23 can be viewed as a generalization of Proposition 4.4.11. In fact
it implies for the single block case (N = 1) that (by the Hahn-Banach Theorem)

µ∆(G) = max
u∈C�, v∈Cq

‖u‖
C�=‖v‖∗

Cq =1

|v∗Gu| = ‖G‖L(C�,Cq), G ∈ C
q×�.

The following characterization is applicable to a wide class of perturbation sets,
namely block-diagonal structures with prespecified multiplicities of blocks . How-
ever, it is assumed that the blocks are square (i.e. �i = qi) and the norm on the
perturbation set is the spectral norm.

Proposition 4.4.25. Suppose that for given integers m1, . . . , mN , q1, . . . , qN ≥ 1,
∆ is the set of block-diagonal matrices of the form

∆ = diag (∆1, . . . ,∆1; . . . ;∆N , . . . ,∆N ) ∈ C
q×q, q =

N∑
i=1

miqi, ∆i ∈ C
qi×qi , i ∈ N (35)

where the blocks ∆i are square and repeated mi times for i ∈ N . Then, with respect
to the spectral norm on ∆,

µ∆(G) = max
U∈U∆

�(UG), G ∈ C
q×q (36)

where

U∆ := ∆∩Uq(C) = {diag (U1, . . . , U1; . . . ; UN , . . . , UN) ∈ ∆; Ui ∈ Uqi
(C), i ∈ N}.

Proof : For every U ∈ U∆, we have U ∈ ∆ and ‖U‖∆ = σmax(U) = 1. Therefore
Lemma 4.4.7 implies maxU∈U∆

�(UG) ≤ µ∆(G). If µ∆(G) = 0, equality follows
trivially and so we may suppose µ∆(G) > 0. By homogeneity we may assume
µ∆(G) = 1. It remains to show that there exists a U ∈ U∆ such that �(UG) ≥ 1 =
µ∆(G). By Lemma 4.4.7 there exists ∆ of the form (35) such that �(∆G) = 1 and
‖∆‖∆ = 1. Let ∆i = WiΣiV

∗
i be a singular value decomposition of the block ∆i,

i ∈ N , and set

W= diag (W1, . . .W1; . . . ; WN , . . . , WN), V = diag (V1, . . . V1; . . . ; VN , . . . , VN),

Σ= diag (Σ1, . . . , Σ1; . . . ; ΣN , . . . , ΣN ), diag (σ1, . . . , σq̄)= diag (Σ1, Σ2, . . . , ΣN).

Here the multiplicities of the blocks in W, V, Σ are m1, . . . , mN respectively, and
q̄ =

∑N
i=1 qi. Then ∆ = WΣV ∗ and hence σ = (σ1, . . . , σq̄) has the ∞-norm

‖σ‖∞ = ‖∆‖∆ = 1. For any s = (s1, . . . , sq̄) ∈ C
q̄, let Σ1(s) = diag (s1, . . . , sq1),

Σ2(s) = diag (sq1+1, . . . sq1+q2), etc. and

Σ(s) = diag (Σ1(s), . . . , Σ1(s); . . . ; ΣN(s), . . . , ΣN(s)).

Now consider the polynomial

p(s) = det (Iq − WΣ(s)V ∗G) ∈ C[s1, . . . , sq̄].

Since WΣ(s)V ∈ ∆ for all s ∈ Cq̄ and ‖WΣ(s)V ‖∆ = ‖s‖∞, σ is a zero of p(s)
with minimal ∞-norm. By Lemma 4.4.22 there exists a zero ẑ ∈ Cq̄ of p(s) such
that |ẑi| = 1, i = 1, . . . , q̄. Thus Σi(ẑ) ∈ Uqi

, and U := WΣ(ẑ)V ∗ ∈ U∆ satisfies
det(I − UG) = 0. So there exists U ∈ U∆ such that �(UG) ≥ 1 = µ∆(G). �
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Unfortunately, the map U �→ �(UG) on U∆ may have many local maxima which
are not global ones. Therefore optimization algorithms applied to this map will in
general only provide lower bounds for µ∆(G), see Notes and References.

Example 4.4.26. Consider again the perturbation set and the matrix G3 =

[
1 2ı
1 2

]
as given in Example 4.4.3. The diagonal perturbations ∆ ∈ ∆ are of the form (24) with
�i = qi = 1, i ∈ N = {1, 2}. They are also of the form (35) with q1 = q2 = 1, m1 = m2 = 1
and N = 2. Therefore, to compute µ∆(G3) we may apply both Theorem 4.4.23 and
Proposition 4.4.25. Applying the first result we have by (33) V�

∆
= {diag(u1, u2); |u1| =

|u2| = 1} and Vq
∆

= V�
∆

, hence by (32)

µ∆(G3) = max
|ui|=|vi|=1

� (diag(v1, v2)G3 diag(u1, u2)) ≤ �

([
1 2
1 2

])
= 3.

But � is similarity invariant. Moreover, it does not change if the matrix is multiplied by
z ∈ U1(C) = {u ∈ C; |u| = 1}. Therefore

µ∆(G3) = max
w1,w2∈U1(C)

� (diag(w1, w2)G3) = max
w∈U1(C)

� (diag(1, w)G3) .

Proposition 4.4.25 yields the same result since

U∆ = ∆ ∩ U1(C) = {diag(u1, u2);u1, u2 ∈ U1(C)}

and therefore by (36)

µ∆(G3) = max
U∈U∆

� (UG3) = max
u∈U1(C)

� (diag(1, u)G3) .

Now let U = diag (1, u), u ∈ C, |u| = 1. Then UG3 =

[
1 2ı
u 2u

]
and the eigenvalues of

UG3 are the roots s1,2(u) of the equation

s2 − (1 + 2u)s + 2u(1 − ı) = 0.

In fact, one can show that the largest absolute value of the roots of this equation is obtained
for u = (4 + 3ı)/5. The corresponding root is λ = 2(1 + ı). Hence µ∆(G3) = |λ| =

√
8 in

accordance with the result of Ex. 2. �

We conclude this subsection with a brief discussion of the continuity of the µ-value.
The following result holds true for both complex and real perturbation structures.

Lemma 4.4.27. Let ∆ be a closed non-empty subset of C�×q and spanC ∆ be en-
dowed with a norm ‖·‖∆. Then the map µ∆(·) : Cq×� → R+ is upper semicontinuous,
i.e. for every G0 ∈ Cq×� and r > µ∆(G0) there exists a neighbourhood W of G0 in
Cq×� such that µ∆(G) < r for all G ∈ W .

Proof : Given any G0 ∈ C
q×� and r > µ∆(G0), let

∆r = {∆ ∈ ∆; ‖∆‖∆ ≤ r−1}.

By the definition of µ∆(G0) we have det(I − ∆G0) �= 0 for all ∆ ∈ ∆r. Since the
determinant is continuous, for every ∆ ∈ ∆r, there exist a neighbourhood U∆ of
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∆ in ∆ and a neighbourhood W∆ of G0 in Cq×� such that det(I − ∆̃G) �= 0 for
all ∆̃ ∈ U∆, G ∈ W∆. Since ∆r is compact, finitely many of these neighbourhoods
U∆k

, k ∈ N cover ∆r. Thus, setting W =
⋂N

k=1 W∆k
we obtain a neighbourhood

W of G0 satisfying det(I − ∆G) �= 0 for all ∆ ∈ ∆r, G ∈ W . We conclude that
µ∆(G) < r for all G ∈ W . �

As a consequence of this lemma, µ∆(·) is continuous at each G0 satisfying µ∆(G0) =
0. For complex perturbation classes we obtain the following continuity result from
the previous lemma and Lemma 4.4.7.

Proposition 4.4.28. Suppose ∆ is a closed non-empty subset of C�×q such that
C∆ ⊂ ∆ and ‖ · ‖∆ is a norm on spanC ∆. Then µ∆(·) : C

q×� → R+ is continuous.

Proof : By Lemma 4.4.7 we have, µ∆(G) = max∆∈∆, ‖∆‖∆=1 �(∆G), for all G ∈
Cq×�. Since the supremum of a family of continuous functions is lower semicon-
tinuous it follows that µ∆(·) : Cq×� → R+ is lower semicontinuous and hence it is
continuous by the previous lemma. �

4.4.2 µ-Values for Real Full-Block Perturbations

In the introduction to this section we mentioned that the analysis of spectral vari-
ations under real parameter perturbations leads to the problem of determining,
for a given complex matrix G ∈ Cq×�, the norm of the smallest real perturbation
∆ ∈ ∆ ⊂ R�×q for which det (I − ∆G) = 0. In this subsection we deal with this
real µ-problem for the full-block case, i.e. ∆ = R�×q, where we assume that R�×q is
endowed with an operator norm ‖·‖L(Rq,R�) induced by a pair of norms on the vector
spaces R� and Rq. For this case we denote the µ-value of G ∈ Cq×� by µR(G), i.e

µR(G) =
[
inf{‖∆‖L(Rq,R�); ∆ ∈ R

�×q and det (I� − ∆G) = 0}
]−1

. (37)

In order to determine µR(G) we make use of the representation GR of G as an R-
linear operator (see Subsection A.1.3). Suppose that G = X + ıY with X, Y ∈ Rq×�.
Then GR =

[
X −Y
Y X

]
and by Lemma A.1.18, for every ∆ ∈ R

�×q,

det(I� − ∆G) = 0 ⇔ det(I� − ∆G)R = det

(
I2� −

[
∆ 0
0 ∆

] [
X −Y

Y X

])
= 0. (38)

So
µR(G) = µ∆(GR) where ∆ = {diag (∆, ∆); ∆ ∈ R

�×q}, (39)

if we provide ∆ with the norm ‖ diag (∆, ∆)‖∆ = ‖∆‖L(Rq,R�). We see, therefore,
that in order to characterize µR(G), we may equally well consider real double block
perturbations diag (∆, ∆) ∈ ∆ of the real linear operator GR. We find it more con-
venient to do this.
Most of the results of the previous subsection were developed for complex perturba-
tion structures, i.e. C∆ = ∆. However some of them are applicable to the present
problem. The next lemma summarizes some elementary facts which we will need in
the sequel.
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Lemma 4.4.29. Suppose G ∈ Cq×� is given, µR(G) is defined by (37) and ∆ by
(39). Then

(i) µR(G) = µ∆(GR) = µ∆�((GR)�) = µR(G∗) where ∆� = {diag (∆�, ∆�); ∆ ∈
R�×q} is endowed with the norm ‖ diag (∆�, ∆�)‖

∆
� = ‖∆�‖L(R�,Rq).

(ii) If GR

γ =

[
X −γY

γ−1Y X

]
, γ �= 0, then µ∆(GR) = µ∆(GR

γ ) ≤ ‖GR

γ ‖L(R2�,R2q).

(iii) The map µR(·) : Cq×� → R+ is upper semicontinuous.

Proof : (iii) is a specialization of Lemma 4.4.27. (ii) follows from Lemma 4.4.5 (iii)

with R =

[
γIq 0
0 Iq

]
, LR =

[
γI� 0
0 I�

]
. (i) follows from the definition and (39),

since (G∗)R = (GR)�, ‖∆�‖L(R�,Rq) = ‖∆‖L(Rq,R�) and det (Iq − ∆�G∗) = 0 ⇔
det (I� − ∆G) = 0. �

We first examine the case where � = 1. Then G ∈ Cq×1 is a complex column vector
and the matrices ∆ are real row vectors representing linear forms on Rq ⊂ Cq,
∆ ∈ R

1×q = (Rq)∗. This leads to a considerable reduction in the difficulty of the
problem. Given any norm ‖ · ‖Rq on Rq the associated operator norm on ∆ = R1×q

(with respect to the norm | · | on R) is simply the dual norm of ‖ · ‖Rq ,

‖∆‖∆ = ‖∆‖∗Rq = max{|∆X|; X ∈ R
q, ‖X‖Rq = 1} .4 (40)

Remark 4.4.30. Of particular interest are the 1, 2, and ∞-norms on R
q = R

q×1 and
their dual norms on the perturbation set ∆ = R

1×q = (Rq)∗. Recall that ‖ · ‖∗∞ = ‖ · ‖1,
‖ · ‖∗2 = ‖ · ‖2, and ‖ · ‖∗1 = ‖ · ‖∞, see Section A.1. �

�.....................

�

0
θ

X

Y
d(X, RY ) = ||X||2 sin θ

Figure 4.4.3: The distance dist(X, RY ) in (Rq, ‖ · ‖2) if Y �= 0

Let dist (X, RY ) denote the distance of the point X ∈ Rq from the linear subspace
RY = {αY ; α ∈ R} spanned by Y ∈ Rq in the normed space (Rq, ‖ · ‖Rq)

dist(X, RY ) = min
α∈R

‖X − αY ‖Rq . (41)

4In our discussion of the special case � = 1 we will use capital letters to denote the elements of
Rq = Rq×1 considered as the space of q × 1 matrices in which G lives.
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In the Euclidean case, illustrated by Figure 4.4.3, it is easy to see that

dist(X, RY )2 =

⎧⎨⎩‖X‖2
2 −

〈X, Y 〉2
‖Y ‖2

2

if Y �= 0,

‖X‖2
2 if Y = 0.

(42)

We do not have analogous formulas to (42) for the 1 and ∞-norms. However, for
these norms one can reduce the optimization problem (41) to a finite search process.
The reader is asked to prove this for the ∞-norm in Ex. 7.
The following theorem holds for arbitrary norms on R

q.

Theorem 4.4.31. Suppose ‖·‖Rq is any norm on Rq = Rq×1 and G = X+ıY ∈ Cq×1

is given, with X, Y ∈ Rq×1. Then, with respect to the perturbation norm (40),

µR(G) = µ∆(GR) = dist (X, RY ). (43)

Proof : By (37) and (38) we have to find a ∆ ∈ R1×q of minimum norm, ‖∆‖∗
Rq ,

such that the equations

∆(Xu − Y v) = u, ∆(Y u + Xv) = v, (44)

admit a non-trivial solution (u, v) ∈ R2. But this is equivalent to ∆X = 1 and
∆Y = 0. Suppose that ∆ ∈ R1×q satisfies these two equations, then ∆(X−αY ) = 1
for all α ∈ R. If X = αY for some α ∈ R, we have dist (X, RY ) = µR(G) = 0,
otherwise ‖∆‖∗

Rq ≥ ‖X − αY ‖−1
Rq for all α ∈ R. So

µR(G)−1 = min
∆X=1,∆Y =0

‖∆‖∗Rq ≥ max
α∈R

‖X − αY ‖−1
Rq = [ dist (X, RY )]−1

and hence µR(G) ≤ dist (X, RY ). Conversely, by the duality theorem for minimum
norm problems (Theorem A.4.12) there exists z∗ ∈ R

1×q = (Rq)∗ with ‖z∗‖∗
Rq = 1,

such that
z∗X = dist(X, RY ) and z∗Y = 0 .

But then ∆0 = [ dist (X, RY )]−1z∗ satisfies (44) for arbitrary (u, v) ∈ R
2 and has

norm ‖∆0‖∗Rq = [ dist(X, RY )]−1. This proves (43). �

The map (X, Y ) �→ dist(X, RY ) is not, in general, continuous at points (X, Y ) where
Y = 0. The geometric reason for this can be seen from Figure 4.4.3 by letting Y
tend to zero along a ray which is not orthogonal to X.

Example 4.4.32. Consider G = (x1 + ıy1, x2 + ıy2)
� and first assume x1, x2, y1, y2 �= 0.

Then X = [x1 x2]
�, Y = [y1 y2]

�. So with respect to the 2-norm, we have by (42)

µR(G)2 =µ∆(GR)2 =x2
1+x2

2−(x1y1+x2y2)
2/(y2

1+y2
2)=(x1y2−x2y1)

2/(y2
1+y2

2).

For the ∞-norm on ∆ = R
1×2 (the dual of the 1-norm on R

2), we have to find the α’s
which minimize |x1 − αy1| + |x2 − αy2|. This is achieved by α = x1/y1 or α = x2/y2 so
that in this case

µR(G) = µ∆(GR) = min{|(x2y1 − y2x1)/y1|, |(x2y1 − y2x1)/y2|}.

Now if y1 = y2 = 0, then with respect to the 2-norm µR(G)2 = ‖G‖2
2,2 = x2

1 + x2
2 and

with respect to the ∞-norm µR(G) = ‖G‖1,1 = |x1| + |x2| (by Proposition 4.4.11). We
see therefore that for these two norms the function G �→ µR(G) is discontinuous at the
non-zero points G ∈ R

2×1 ⊂ C
2×1. �
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In the general case, where G is not a complex vector but a complex matrix (�, q ≥ 2),
a computable formula for µR(G) has only been obtained with respect to the spectral
norm on ∆. In the following sequence of lemmata and propositions we will derive
such a formula. Throughout the rest of this section we assume that all vector spaces
are equipped with Euclidean norms and ‖·‖ denotes the corresponding operator norm.
We have seen above that µR(G) = µ∆(GR), where ∆ is the block-diagonal set of
all perturbations diag(∆, ∆) with ∆ ∈ R�×q. The scaled matrix GR

γ introduced in
Lemma 4.4.29 plays a fundamental role in the sequel. By this lemma, for every
(non-zero) value of the scaling parameter γ

µR(G)−1 =µ∆(GR
γ )−1 =inf

{
‖∆‖;∆∈R

�×q, det

(
I2�−

[
∆ 0
0 ∆

] [
X −γY

γ−1Y X

])
=0

}
. (45)

For any ∆ ∈ R�×q and v1, v2 ∈ R� we have[
∆ 0
0 ∆

] [
X −γY

γ−1Y X

] [
v1

v2

]
=

[
v1

v2

]
⇒

[
∆ 0
0 ∆

][
X −γY

γ−1Y X

][
−γv2

γ−1v1

]
=

[
−γv2

γ−1v1

]
. (46)

If (v1, v2) �= (0, 0) then (v1, v2) and (−γv2, γ−1v1) are linearly independent. Hence if

ker

(
I2� − diag(∆, ∆)

[
X −γY

γ−1Y X

])
is nontrivial then the dimension of this kernel

will be ≥ 2. In view of Theorem 4.3.13, this suggests that a characterization of µR(G)
will involve the second singular value. We will see that this is indeed the case. First
we obtain an upper bound for µR(G).

Lemma 4.4.33. If σ2 denotes the second singular value (see Section 4.3) then

µR(G) = µ∆(GR)≤ inf
γ �=0

σ2(G
R

γ ) = inf
γ∈(0,1]

σ2(G
R

γ ) where GR

γ =

[
X −γY

γ−1Y X

]
. (47)

Proof : By Lemma 4.4.29 (ii) we have µR(G) = µ∆(GR

γ ), γ �= 0 and for ∆ ∈ R�×q,
we get from (46),

det

(
I2� −

[
∆ 0
0 ∆

]
GR

γ

)
= 0 ⇔ dim ker

(
I2� −

[
∆ 0
0 ∆

]
GR

γ

)
≥ 2.

Hence by Theorem 4.3.13, either µ∆(GR

γ ) = σ2(G
R

γ ) = 0 or µ∆(GR

γ )−1 ≥ σ2(G
R

γ )−1.
This establishes the inequality in (47). Since[

I 0
0 −I

]
GR

γ

[
I 0
0 −I

]
= GR

−γ ,

[
0 −I
I 0

]
GR

γ

[
0 I
−I 0

]
= GR

1/γ ,

the equality in (47) follows because GR

γ , GR

−γ and GR

γ−1 all have the same singular
values. �

Remark 4.4.34. If G = X + ıY ∈ C
q×� and there exist v1, v2 ∈ R

� such that y1 :=
Xv1 − Y v2, y2 := Y v1 + Xv2 ∈ R

q are linearly independent then there exists ∆ ∈ R
�×q

satisfying

∆y1 = v1 and ∆y2 = v2, i.e.

[
∆ 0
0 ∆

] [
X −Y

Y X

] [
v1

v2

]
=

[
v1

v2

]
, i.e. ∆Gv = v �= 0, (48)
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where v = v1 + ıv2 ∈ C
�. Hence µR(G) ≥ ‖∆‖−1 > 0. Therefore, if µR(G) = 0 then

y1 := Xv1 − Y v2 and y2 := Y v1 + Xv2 ∈ R
q are linearly dependent for all v1, v2 ∈ R

�

and a similar statement holds for G� since µR(G�) = µR(G) by Lemma 4.4.29. It follows
from this observation that for any G0 = X0 + ıY0 ∈ C

q×� and every ε > 0 there exists
G ∈ C

q×� such that ‖G − G0‖ < ε and µR(G) > 0, provided that max{q, �} > 1. In fact,
if q ≥ 2 and µR(G0) = 0, it suffices to change slightly the first columns of X and Y so
that they become linearly independent and the resulting matrix G1 = X1 + ıY1 satisfies
‖G1 − G0‖ < ε. Then, setting v1 = e1 (the first standard unit vector of R

�) and v2 = 0,
the vectors y1 := X1v

1 − Y1v
2 and y2 := Y1v

1 + X1v
2 are linearly independent so that

µR(G1) > 0. If q = 1 but � ≥ 2, we apply the above argument to G�
0 and obtain the same

result by transposition. �

We will show that the inequality in (47) is in fact an equality. In order to do this we
have to examine each of the following three possible cases for σ∗ = infγ∈(0,1] σ2(G

R

γ )

Case 1 σ∗ = σ2(G
R

γ∗) for some γ∗ ∈ (0, 1),

Case 2 σ∗ = σ2(G
R

γ∗) for γ∗ = 1,

Case 3 σ∗ = lim infγ→0 σ2(G
R

γ ).

We will deal with these three cases in a series of lemmata and propositions. First
we consider Case 3 and will show that in this case we obtain a formula for µR(G)
which does not require the resolution of an optimization problem.

Proposition 4.4.35. Let G = X + ıY , X, Y ∈ Rq×�. Then σ∗ = lim infγ→0 σ2(G
R

γ )
(case 3) holds if and only if rank Y ≤ 1, and in this case

µR(G) = inf
γ∈(0,1]

σ2(G
R

γ ) = lim
γ→0

σ2(G
R

γ ) = max{‖X| ker Y ‖, ‖X�| ker Y �‖}. (49)

Proof : By Corollary 4.3.3 we have σ2(G
R
γ ) ≥ γ−1σ2(Y ). So if infγ∈(0,1] σ2(G

R
γ ) =

lim infγ→0 σ2(G
R

γ ), then σ2(Y ) = 0 and hence rankY ≤ 1.
Conversely, let rank Y ≤ 1. If Y = 0 then G is real and GR

γ = diag(X, X) is indepen-
dent of γ so that(49) follows directly from Proposition 4.4.11 because σ2(G

R) = ‖G‖,
X| ker Y = X = G, X�| ker Y � = X� and so µR(G) = ‖G‖ = ‖X| ker Y ‖ =
‖X�| ker Y �‖. Now suppose Y �= 0 and let Y = WΣV � be a singular value decom-
position of Y where W = [w1 . . . wq] ∈ Rq×q, V = [v1 . . . v�] ∈ R�×� are orthogonal
matrices. Setting W2 = [w2 . . . wq] ∈ R

q×(q−1), V2 = [v2 . . . v�] ∈ R
�×(�−1)

Y = WΣV � = [w1 W2]

[
σ 0
0 0

]
q×�

[
v1�

V �
2

]
= σw1v1� (50)

where σ = ‖Y ‖ > 0 is the only non-zero singular value of Y . The columns of V2

(resp. W2) form an orthonormal basis of ker Y (resp. ker Y �) and so

‖XV2‖ = ‖X| kerY ‖, ‖W�
2 X‖ = ‖X�W2‖ = ‖X�| ker Y �‖. (51)

Let (w, v) be a singular pair of W�
2 X for the largest singular value σ1(W

�
2 X) =

‖W�
2 X‖ and set ∆ = ‖W�

2 X‖−1vw�W�
2 ∈ R�×q. Then ‖∆‖ ≤ ‖W�

2 X‖−1 and since
w�W�

2 Xv = ‖W�
2 X‖ and W�

2 Y = 0 we have

∆Xv = ‖W�
2 X‖−1vw�W�

2 Xv = v, ∆Y v = ‖W�
2 X‖−1vw�W�

2 Y v = 0.
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Hence ∆Gv = ∆Xv = v and so ‖W�
2 X‖−1 ≥ ‖∆‖ ≥ µR(G)−1.

Similarly let (w̃, ṽ) be a singular pair of XV2 for σ1(XV2) = ‖XV2‖ and set ∆̃ =
‖XV2‖−1w̃ṽ�V �

2 ∈ Rq×�. Then ‖∆̃‖ ≤ ‖XV2‖−1 and since w̃�XV2ṽ = ‖XV2‖ and
Y V2 = 0 we have

∆̃X�w̃ = ‖XV2‖−1w̃ṽ�V �
2 X�w̃ = w̃, ∆̃Y �w̃ = ‖XV2‖−1w̃ṽ�V �

2 Y �w̃ = 0.

Hence ∆̃G∗w̃ = ∆̃(X� − ıY �)w̃ = w̃ and so ‖XV2‖−1 ≥ ‖∆̃‖ ≥ µR(G∗)−1. Alto-
gether making use of Lemma 4.4.29 (i) this shows that

max{‖XV2‖, ‖W�
2 X‖} ≤ µR(G). (52)

We now prove the reverse inequality. The singular value decomposition (50) gives

σ2(G
R

γ ) = σ2

⎛⎝⎡⎣ Iq 0
0 w1�

0 W�
2

⎤⎦[ X −γY
γ−1Y X

] [
v1 V2 0
0 0 I�

]⎞⎠
= σ2

⎛⎝⎡⎣ Xv1 XV2 −γY
σγ−1 0 w1�X

0 0 W�
2 X

⎤⎦⎞⎠ .

Subtracting from this matrix a matrix of rank 1 we obtain by Theorem 4.3.7

σ2(G
R

γ ) ≤

∥∥∥∥∥∥
⎡⎣ Xv1 XV2 −γY

σγ−1 0 w1�X
0 0 W�

2 X

⎤⎦−

⎡⎣ Xv1 0 γσ−1Xv1w1�X
σγ−1 0 w1�X

0 0 0

⎤⎦∥∥∥∥∥∥
=

∥∥∥∥∥∥
⎡⎣ 0 XV2 −γ(Y + σ−1Xv1w1�X)

0 0 0
0 0 W�

2 X

⎤⎦∥∥∥∥∥∥ .

Hence for γ → 0

lim sup
γ→0

σ2(G
R

γ ) ≤

∥∥∥∥∥∥
⎡⎣ 0 XV2 0

0 0 0
0 0 W�

2 X

⎤⎦∥∥∥∥∥∥ = max{‖XV2‖, ‖W�
2 X‖}.

Since by Lemma 4.4.33 µR(G) ≤ infγ∈(0,1] σ2(G
R
γ ) ≤ lim infγ→0 σ2(G

R
γ ) we obtain

from (52)

µR(G) ≤ lim inf
γ→0

σ2(G
R

γ ) ≤ lim sup
γ→0

σ2(G
R

γ ) ≤ max{‖XV2‖, ‖W�
2 X‖} ≤ µR(G).

Thus limγ→0 σ2(G
R

γ ) exists and the proof is complete by (51). �

Now let us consider Case 1 where σ∗ = infγ∈(0,1] σ2(G
R

γ ) = σ2(G
R

γ∗) for some γ∗ ∈
(0, 1). In order to prove equality in (47) we need only consider the case where σ∗ > 0.
The following two lemmata concerning singular pairs of GR

γ will be important.

Lemma 4.4.36. Suppose γ > 0, γ �= 1 and σ is a non-zero singular value of GR

γ .

Then, for all singular pairs (w, v) =
([

w1

w2

]
,
[

v1

v2

])
of GR

γ corresponding to σ, we have
〈w1, w2〉 = 〈v1, v2〉.
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Proof : We have

σ

[
w1

w2

]
=

[
X −γY

γ−1Y X

] [
v1

v2

]
, σ

[
v1

v2

]
=

[
X� γ−1Y �

−γY � X�

] [
w1

w2

]
. (53)

Multiplying the first equality in (53) by [w2� w1�] and subtracting [v2� v1�] times
the second, yields

(γ + γ−1)(〈w1, Y v1〉 − 〈w2, Y v2〉) = 2σ(〈w1, w2〉 − 〈v1, v2〉).

Whereas multiplying the first equality in (53) by [w2� −w1�] and adding [v2� −v1�]
times the second, yields

(γ − γ−1)(〈w1, Y v1〉 − 〈w2, Y v2〉) = 0.

Hence for σ �= 0, γ �= 1, we have 〈w1, w2〉 = 〈v1, v2〉. �

Our next lemma shows that equality holds in (47) under an extra condition.

Lemma 4.4.37. Suppose σ̂ = σ2(G
R

γ̂ ) > 0 for some γ̂ ∈ (0, 1]. If there exists a

singular pair (w, v) =
([

w1

w2

]
,
[

v1

v2

])
for σ̂ such that

〈w1, w2〉 = 〈v1, v2〉, ‖w1‖ = ‖v1‖, ‖w2‖ = ‖v2‖, (54)

then γ̂ is a global minimum of γ �→ σ2(G
R

γ ) and µR(G) = µ∆(GR) = σ̂ = σ∗.

Proof : If w1 = 0 then necessarily v1 = 0 and Y v2 = 0. In this case, let

∆ = σ̂−1‖w2‖−2v2w2�. (55)

Then ‖∆‖ = σ̂−1 and making use of (53) with σ = σ̂, γ = γ̂ we get

∆(Xv1 − γ̂Y v2) = 0 = v1,
∆(γ̂−1Y v1 + Xv2) = σ̂∆w2 = v2 i.e.

[
∆ 0
0 ∆

]
GR

γ

[
v1

v2

]
=

[
v1

v2

]
. (56)

So by (45) σ̂−1 = ‖∆‖ ≥ µ∆(GR

γ̂ )−1 = µR(G)−1. On the other hand we have
µR(G) ≤ σ∗ ≤ σ̂ by Lemma 4.4.33 and this proves µR(G) = σ̂ = σ∗. So γ̂ is a global
minimum of γ �→ σ2(G

R

γ ). A similar argument shows that the same equality holds
if w2 = 0.
Now assume that w1 �= 0 and w2 �= 0 are linearly independent and set

∆ = σ̂−1[v1 v2]

[
‖w1‖2 〈w1, w2〉
〈w1, w2〉 ‖w2‖2

]−1 [
w1�

w2�

]
. (57)

By linear independence of w1 and w2 the inverse in the above expression exists and so
∆ is well defined. Now ∆[w1 w2] = σ̂−1[v1 v2], hence σ̂∆wj = vj , j = 1, 2 and it fol-
lows from (54) that σ̂∆ defines an isometry from span{w1, w2} onto span{v1, v2}. On
the other hand σ̂∆ vanishes on the orthogonal complement span{w1, w2}⊥. There-
fore ‖∆‖ = σ̂−1 and, applying (53) with σ = σ̂, γ = γ̂,

∆(Xv1 − γ̂Y v2) = σ̂∆w1 = v1, ∆(γ̂−1Y v1 + Xv2) = σ̂∆w2 = v2.
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Hence again the right equation in (56) holds and we get σ̂−1 ≥ µ∆(GR

γ̂ )−1 = µR(G)−1

and so µR(G) = σ̂ = σ∗ as above.
Finally, if w1 �= 0, w2 �= 0 are linearly dependent, then v1 �= 0, v2 �= 0 are linearly
dependent because

0 = det

[
‖w1‖2 〈w1, w2〉
〈w1, w2〉 ‖w2‖2

]
= det

[
‖v1‖2 〈v1, v2〉
〈v1, v2〉 ‖v2‖2

]
.

Let v2 = αv1 and set ∆ = σ̂−1‖w1‖−2v1w1�, then ‖∆‖ = σ̂−1, ∆w1 = σ̂−1v1, and

∆w2 = σ̂−1‖w1‖−2v1v1�v2 = σ̂−1‖w1‖−2v1v1�αv1 = σ̂−1αv1 = σ̂−1v2.

So again the right equation in (56) holds and we conclude that µR(G) = σ̂ = σ∗ as
before. �

Our aim, of course, is to show that the conditions (54) required in Lemma 4.4.37
necessarily hold. First we obtain a formula for the derivative with respect to γ of a
singular value of GR

γ .

Lemma 4.4.38. Let η > 1 and suppose σ(γ) is an analytic singular value of GR

γ for

γ ∈ (0, η) and
([

w1(γ)

w2(γ)

]
,
[

v1(γ)

v2(γ)

])
an associated analytic singular pair. Then

dσ

dγ
(γ) = γ−1σ(γ)

(
‖w1(γ)‖2 − ‖v1(γ)‖2

)
= γ−1σ(γ)

(
‖v2(γ)‖2 − ‖w2(γ)‖2

)
. (58)

Proof : For N = 2, G11 = X, G12 = −Y, G21 = Y, G22 = X, γ1 = γ, γ2 = 1, the
conditions of Lemma 4.4.17 are satisfied. Hence the first equation in (58) follows
from (28) and the second from the fact that ‖w1(γ)‖2 + ‖w2(γ)‖2 = ‖v1(γ)‖2 +
‖v2(γ)‖2 = 1. �

We want to apply the preceding lemma to σ2(γ) := σ2(G
R

γ ). Since GR

γ is analytic on
(0, 1) it follows from Corollary 4.3.11 and Lemma 4.3.15 that this ordered singular
value is continuous and piecewise analytic on (0, 1). However, it may not be differ-
entiable on all of (0, 1). Differentiability may be lost at points γ0 where σ2(γ) meets
some distinct ordered singular value branch σ(γ) of GR

γ . The possible presence of
these points is where we encounter the main difficulties.

Lemma 4.4.39. Suppose σ2(γ) has a local extremum at γ̂ ∈ (0, 1) and σ2(γ̂) > 0,
then γ̂ is a global minimum of σ2(·) on (0, 1), µR(G) = µ∆(GR) = σ2(γ̂) = σ∗, and
there exists a singular pair (w, v) =

([
w1

w2

]
,
[

v1

v2

])
of GR

γ̂ for σ2(γ̂), such that (54)
holds.

Proof : By Proposition 4.3.21 there exists a singular pair (w, v) =
([

w1

w2

]
,
[

v1

v2

])
of

GR

γ̂ for σ2(γ̂) satisfying w�dGR

γ̂

dγ
v = 0. Since

dGR

γ

dγ
=

[
0 −Y

−γ−2Y 0

]
= γ−1

([
Iq 0
0 0

]
GR

γ − GR

γ

[
I� 0
0 0

])
we have for γ = γ̂

0 = w�dGR

γ̂

dγ
v = γ̂−1σ2(γ̂)(‖w1‖2 − ‖v1‖2) = γ̂−1σ2(γ̂)(‖v2‖2 − ‖w2‖2).

Hence the assertion follows from Lemma 4.4.36 and Lemma 4.4.37. �
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It remains to consider Case 2 where σ∗ = infγ∈(0,1] σ2(G
R

γ ) = σ2(G
R

γ∗) > 0 for γ∗ = 1.

Lemma 4.4.40. Suppose σ∗ = σ2(G
R

γ∗) > 0 for γ∗ = 1, then

µR(G) = µ∆(GR) = σ∗ = ‖G‖ = µC(G).

Proof : We have seen in Section 4.3 that GR

1 = GR has the same singular values
as G, but of double multiplicity. First assume that the multiplicity of the largest
singular value of G is one. Then σ∗ = σ1(G

R) = σ2(G
R) > σ3(G

R

1 ). In this case there
exists, by continuity, an open neighbourhood I ⊂ (0, 2) of γ∗ = 1 such that σ1(G

R

γ ) ≥
σ2(G

R
γ ) > σ3(G

R
γ ) for γ ∈ I (if � > 1). Applying Theorem 4.3.17 to the analytic

matrix GR

γ at γ∗ = 1 we obtain two analytic functions σ(·), σ̂(·) : I(1, δ) → (0,∞) on
an open neighbourhood I(1, δ) ⊂ I of 1 such that {σ(γ), σ̂(γ)} = {σ1(G

R

γ ), σ2(G
R

γ )}
for γ ∈ I(1, δ). It follows that σ(1) = σ̂(1) = σ∗ and σ2(G

R

γ ) = min{σ(γ), σ̂(γ)}
for γ ∈ I(1, δ). Now GR

γ and GR

γ−1 have the same singular values, so γ = 1 is a

minimum of σ2(G
R

γ ) on I(1, δ) and we conclude that γ = 1 is a local minimum of

both σ(γ) and σ̂(γ) on I(1, δ). Let (w(γ), v(γ)) =
([

w1(γ)

w2(γ)

]
,
[

v1(γ)

v2(γ)

])
be an analytic

singular pair of GR

γ for the analytic singular value σ(γ). By Lemma 4.4.36 for γ �= 1,
we have 〈w1(γ), w2(γ)〉 = 〈v1(γ), v2(γ)〉. But then by continuity 〈w1(1), w2(1)〉 =
〈v1(1), v2(1)〉. Also by Lemma 4.4.38, we have

0 = σ′(1) = σ(1)(‖w1(1)‖2 − ‖v1(1)‖2) = σ(1)(‖v2(1)‖2 − ‖w2(1)‖2).

Hence µR(G) = σ∗ by Lemma 4.4.37.
Now suppose that the multiplicity of the largest singular value of G is greater than
or equal to two and G has the singular value decomposition G = WΣV ∗ (see (3.19))
where W ∈ Uq(C), V ∈ U�(C) and σ1 = σ2 = ‖G‖. Let v, ṽ and w, w̃ be the first
two columns of V and W , respectively, and set[

wz

vz

]
:= (1 + |z|2)−1/2

[
w ŵ
v v̂

] [
z
1

]
, z ∈ C.

Since v, ṽ (resp. w, w̃) are normalized and orthogonal to each other, (wz, vz) is a
singular pair of G for σ∗ = ‖G‖. Our objective is to choose z, so that w�

z wz−v�
z vz =

0. The reason for this is that if wz = w1
z + ıw2

z , vz = v1
z + ıv2

z , then

w�
z wz − v�

z vz = (w1
z + ıw2

z)
�(w1

z + ıw2
z) − (v1

z + ıv2
z)

�(v1
z + ıv2

z)

= w1�
z w1

z − w2�
z w2

z − v1�
z v1

z + v2�
z v2

z + 2ı(w1�
z w2

z − v1�
z v2

z)

= 2(‖w1
z‖2 − ‖v1

z‖2) + 2ı(w1�
z w2

z − v1�
z v2

z),

since wz and vz are normalized. Hence w�
z wz − v�

z vz = 0 is equivalent to

‖w1
z‖2 − ‖v1

z‖2 = 0, w1�
z w2

z − v1�
z v2

z = 0,

which would then show that µR(G) = σ∗ by Lemma 4.4.37. If w�w− v�v = 0, then
there is no need for the construction of wz, vz, so we assume w�w − v�v �= 0. Now

w�
z wz−v�

z vz =(1+|z|2)−1[(w�w−v�v)z2+(w�ŵ+ŵ�w−v�v̂−v̂�v)z+ŵ�ŵ−v̂�v̂].

There always exists z ∈ C such that the RHS of the above expression is zero. The
proof is completed by noting that σ∗ = ‖GR

1 ‖ = ‖GR‖ = ‖G‖ = µC(G). �
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Remark 4.4.41. (i) If the infimum of γ �→ σ2(G
R
γ ) is not achieved at γ = 1, then

there exists γ ∈ (0, 1) such that σ2(G
R
γ ) < σ2(G

R
1 ) = ‖G‖, hence µR(G) < ‖G‖.

(ii) In the second part of the proof of the preceding lemma we did not use the assumption
that γ = 1 is a minimum of γ �→ σ2(G

R
γ ) but showed that this follows automatically

if σ1(G) has multiplicity ≥ 2. Thus we always have µR(G) = σ∗ = ‖G‖ = µC(G) if
σ1(G) = σ2(G).

�

We have now dealt with each of the Cases 1–3, and summarizing we see that equality
holds in (47). Actually we have proved a bit more. To state the full result we need
the following definition.

Definition 4.4.42. A continuous function f : (0, 1) → R+ is said to be unimodal if
any local extremum (maximum or minimum) is a global minimum of f .

We now state the main theorem of this subsection which summarizes the previous
results concerning µR(G) (for the general case �, q ≥ 1).

Theorem 4.4.43. The µ-value of any matrix G ∈ Cq×� with respect to the pertur-
bation class R�×q (provided with the spectral norm) is given by

µR(G) = µ∆(GR) = inf
γ∈(0,1]

σ2

([
X −γY

γ−1Y X

])
(59)

and the function γ �→ σ2(G
R
γ ) is unimodal on (0, 1). Moreover, if G = X+ıY, X, Y ∈

Rq×� and rank Y ≤ 1, then

µR(G) = µ∆(GR) = max{‖X| ker Y ‖, ‖X�| ker Y �‖}. (60)

Proof : The final statement is a direct consequence of Proposition 4.4.35.
If σ∗ = infγ∈(0,1] σ2(G

R

γ ) = 0 formula (59) follows from Lemma 4.4.33. Now suppose
σ∗ > 0. If σ∗ = lim infγ→0 σ2(G

R
γ ) we can apply Proposition 4.4.35 to conclude that

rank Y ≤ 1 and (59) holds. Otherwise there exists γ∗ ∈ (0, 1] such that σ∗ = σ2(G
R

γ∗)
and we can apply Lemmata 4.4.39 and 4.4.40 to obtain (59).
It remains to prove that σ2(G

R
γ ) is unimodal on (0, 1). Suppose that σ2(G

R
γ ) has a

local extremum at γ0 ∈ (0, 1). If σ2(G
R

γ0
) = 0 then γ0 is clearly a global minimum

of σ2(G
R

γ ). If, however, σ2(G
R

γ0
) > 0 we obtain the same conclusion by applying

Lemma 4.4.39. �

As an easy corollary of the previous theorem we obtain the following formula for
the distance of an invertible complex matrix from the set of real singular matrices,
compare Corollary 4.3.9.

Corollary 4.4.44. Suppose G ∈ Cn×n is invertible, then

inf {‖∆‖; ∆ ∈ R
n×n, det (G − ∆) = 0} = [µR(G−1)]−1 = sup

γ∈(0,1]

σ2n−1(G
R

γ ). (61)

Proof : The first equality follows directly from the definition of µR(G−1) since
det(G − ∆) = 0 ⇔ det(In − ∆G−1) = 0. To prove the second equality we use

(G−1)
R

=
(
GR
)−1

(see Lemma A.1.18) and obtain

(G−1)R

γ =

[
In 0
0 γ−1In

]
(G−1)R

[
In 0
0 γIn

]
=

[[
In 0
0 γ−1In

]
GR

[
In 0
0 γIn

]]−1

=(GR

γ )−1.
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Hence

µ∆((G−1)R) = inf
γ∈(0,1]

σ2((G
−1)R

γ ) = inf
γ∈(0,1]

σ2((G
R

γ )−1) = inf
γ∈(0,1]

[σ2n−1(G
R

γ )]−1

by (3.21). �

In general, numerical algorithms are needed to evaluate the formula (59). There
are standard search algorithms such as the golden section search for computing
the minima of unimodal functions, which can be employed to determine µR(G) via
(59). We illustrate the formula by an example for which the minimization can be
carried out using pen and parchment. Further examples of this kind can be found
in Ex. 9–13.

Example 4.4.45. Let M ∈ R
q×�, M �= 0 be given and consider G = G(θ) = eıθM for

an arbitrary but fixed θ ∈ [0, 2π]. Then

GR
γ =

[
M cos θ −γM sin θ

γ−1M sin θ M cos θ

]
=

[
cos θ −γ sin θ

γ−1 sin θ cos θ

]
⊗ M, θ ∈ [0, 2π], γ ∈ R

∗.

Hence, if the ordered singular values of M are σi, i ∈ �, then the unordered 2�-tuple of
singular values of GR

γ is equal to )σi σ(γ), σi σ(γ); i ∈ �* where σ(γ), σ(γ) are the upper

and lower singular values of the 2× 2 matrix

[
cos θ −γ sin θ

γ−1 sin θ cos θ

]
(see Theorem A.1.27).

Since the determinant of this matrix is one we must have σ(γ)σ(γ) = 1. Now σ2(G
R
γ ) =

max {σ1 σ(γ), σ2 σ(γ)} and there are three cases, depending on the value of θ. If θ ∈
{0, π, 2π}, then σ(γ) = σ(γ) = 1, so σ2(G

R
γ ) = σ1 for all γ ∈ (0, 1] and consequently

µR(G) = σ1 by Theorem 4.4.43. If θ ∈ (0, 2π)\{π} then, by Corollary 4.3.3, σ(γ) → ∞ as
γ → 0 and since σ(γ)σ(γ) = 1, we must have σ(γ) → 0 as γ → 0. Now assume that σ2 > 0.
Then γ �→ σ2(G

R
γ ) takes its minimum at some γ∗ ∈ (0, 1] where σ1 σ(γ∗) = σ2 σ(γ∗). Such a

γ∗ always exists since σ(γ) → 0 and σ(γ) → ∞ as γ → 0. But then, since σ(γ∗)σ(γ∗) = 1,
we have σ(γ∗)2 = σ1 σ−1

2 . Hence σ2(G
R
γ∗) =

√
σ1 σ2. The same formula holds if σ2 = 0

because then σ2(G
R
γ ) = σ1 σ(γ) → 0 as γ → 0. Summarizing:

µR(G(θ)) =

{
σ1 if θ ∈ {0, π, 2π}
√

σ1 σ2 otherwise.

In particular, µR(G(θ)) = 0 if and only if rankM = 1 and θ �∈ {0, π, 2π}. Moreover we see
that the map θ �→ µR(G(θ)) is discontinuous at θ ∈ {0, π, 2π} if σ2 < σ1. �

Remark 4.4.46. In the overall proof of Theorem 4.4.43 we have distinguished between
the following five possibilities for σ∗ = infγ∈(0,1] σ2(G

R
γ ).

(a) σ∗ = σ2(G
R
γ∗) where γ∗ ∈ (0, 1) and σ2(G

R
γ ) is smooth at γ∗ (Lemma 4.4.38).

(b) σ∗ = σ2(G
R
γ∗) where γ∗ ∈ (0, 1) and σ2(G

R
γ ) is non-smooth at γ∗ (Lemma 4.4.39).

(c) σ∗ = σ2(G
R
γ∗) where γ∗ = 1 and σ2(G

R
1 ) has multiplicity 2 (Lemma 4.4.40).

(d) σ∗ = σ2(G
R
γ∗) where γ∗ = 1 and σ2(G

R
1 ) has multiplicity > 2 (Lemma 4.4.40).

(e) σ∗ = limγ→0 σ2(G
R
γ ) (Proposition 4.4.35).

Table 4.4.46 (taken from [424]) illustrates the five possibilities.
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Case G Singular values of GR
γ µR(G) Minimizing ∆

(a)

[
4 + ı 1
−1 ı

]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

3.80

[
0.14 −0.22
0.22 0.14

]

(b)

[
2 + ı 1

1 2 + ı

]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

2.45

[
0.33 −0.24
0.24 0.33

]

(c)

[
1 + ı −1

1 1 + ı

]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

2.24

[
0.20 0.40
−0.40 0.20

]

(d)

[
2 + ı 0

0 2 + ı

]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

2.24

[
0.33 −0.30
0.30 0.33

]

(e)

[
1 + ı 2

0 1

]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

2.24

[
0.00 0.00
0.40 0.20

]

Table 4.4.4: The five different cases

The proofs in the previous lemmata were constructive, i.e. for each of the above possibilities
it was shown how a ∆ of minimum norm satisfying det(I� − ∆G) = 0 can, in principle,
be determined, see Proposition 4.4.35 for (e) and (55), (57) for the remaining possibilities
(a)-(d). �

We have seen above that in contrast to the complex case the real µR-value is discon-
tinuous, see Examples 4.4.32, 4.4.45. Note that in both examples the discontinuities
occur at real matrices G. This is necessarily so, since we will prove that the function
µR(·) : C

q×� → R+ is continuous at all G ∈ C
q×� \ R

q×�. In order to prepare the
ground for the proof we need the following lemma.

Lemma 4.4.47. Suppose that

∆0U0 = V0 where U0 ∈ R
q×k, V0 ∈ R

�×k \ {0}, ∆0 ∈ R
�×q.

If the columns of U0 are linearly independent, then there exist a neighbourhood U of
U0 and an analytic function

Φ : U × R
�×k → R

�×q (U, V )
Φ�−→ ∆U,V

such that
∀ (U, V ) ∈ U × R

�×k : ∆U,V U = V, ∆U0,V0 = ∆0.
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Proof : Fix any U1 ∈ Rq×(q−k) such that [U0 U1] ∈ Glq(R) and set V1 = ∆0U1 ∈
R�×(q−k) so that ∆0[U0 U1] = [V0 V1].

5 Hence ∆0 = [V0 V1][U0 U1]
−1. Then

U = {U ∈ Rq×k; det[U U1] �= 0} is an open neighbourhood of U0 in Rq×k and the
analytic map

Φ : U × R
�×k → R

�×q Φ(U, V ) = [V V1][U U1]
−1 = ∆U,V

has the required properties. �

Theorem 4.4.48. If ∆ = R�×q is normed by some operator norm ‖·‖ = ‖·‖L(Rq,R�),
the map µR(·) : Cq×� → R+ is continuous at all non-real matrices G ∈ Cq×� \ Rq×�.

Proof : By Lemma 4.4.27 µR(·) is upper semicontinuous, therefore continuous at
all G0 ∈ Cq×� with µR(G0) = 0. It remains to prove that G �→ (µR(G))−1 is upper
semicontinuous at all G0 ∈ Cq×�\Rq×� satisfying µR(G0) > 0. For any such G0 there
exist ∆0 ∈ R�×q and v0 ∈ C�, v0 �= 0 such that ‖∆0‖ = (µR(G0))

−1 and ∆0G0v
0 = v0.

Taking real and imaginary parts we have

∆0 [Re(G0v
0) Im(G0v

0)] = [Re(v0) Im(v0)], ‖∆0‖ = (µR(G0))
−1. (62)

We have to consider two cases

(i) Re(G0v
0) and Im(G0v

0) are linearly independent.

(ii) Re(G0v
0) and Im(G0v

0) are linearly dependent.

In the first case we can apply Lemma 4.4.47 with

U0 := [Re(G0v
0) Im(G0v

0)], V0 := [Re(v0) Im(v0)]

to obtain for every ε > 0 a number δ > 0 such that for all G ∈ Cq×� in a δ-
neighbourhood of G0 there exists a matrix ∆ ∈ R�×q in the ε-neighbourhood of ∆0

satisfying

∆ [Re(Gv0) Im(Gv0)] = [Re(v0) Im(v0)] i.e. ∆Gv0 = v0,

hence µR(G)−1 ≤ ‖∆‖ ≤ ‖∆0‖ + ε = (µR(G0))
−1 + ε. This proves the upper

semicontinuity of G �→ µR(G)−1 in a neighbourhood of G0 in the first case.
Now assume (ii). Then there exist z ∈ C∗ and a real vector w0 ∈ Rq \ {0} such that
G0v

0 = zw0, hence G0v = w0 ∈ Rq for v = z−1v0 and ∆0G0v = z−1∆0G0v
0 = v. It

follows that

‖∆0‖ = µR(G0)
−1 ≥ ‖v‖R�‖G0v‖−1

Rq .

But by the Hahn-Banach Theorem there exists w ∈ Rq with dual norm ‖w�‖∗
Rq =

‖G0v‖−1
Rq such that w�G0v = 1. Setting ∆̃0 = vw� we obtain

∆̃0G0v = vw�G0v = v and ‖∆̃0‖ = ‖v‖R�‖G0v‖−1
Rq .

5U1 and V1 are empty matrices if q = k.
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So ‖∆̃0‖ = ‖∆0‖ and we may assume without restriction of generality that ∆0 =
vw�. It then follows that

∆�
0 G�

0 w = w(v�G�
0 w) = w and ‖∆�

0 ‖ = (µR(G�
0 ))−1

where the perturbation norm ‖ · ‖L(R�,Rq) on ∆� = Rq×� is induced by the same
vector norms on Rq, R� as the given norm ‖ · ‖ = ‖ · ‖L(Rq ,R�) on ∆. Taking real and
imaginary parts we see that ∆�

0 satisfies (62) with G0 replaced by G�
0 and v0 by w.

Again we distinguish between two cases

(i’) Re(G�
0 w) and Im(G�

0 w) are linearly independent.

(ii’) Re(G�
0 w) and Im(G�

0 w) are linearly dependent.

In the first case we obtain as in case (i) that G� �→ µR(G�)−1 is upper semicontin-
uous at G�

0 . Hence G �→ µR(G)−1 = µR(G�)−1 is upper semicontinuous at G0.
Now assume (ii’), then necessarily Im(G�

0 w) = 0 since w = ∆�
0 G�

0 w = ∆�
0 (ReG�

0 w+
ı Im G�

0 w) �= 0 is real. It follows that w�G0u ∈ R for all u ∈ R� and so

∆(u) := (w�G0u)−1uw� ∈ R
�×q, ∆(u)G0u = u

for all u in a suitable neighbourhood V ⊂ R� of v. Clearly ∆(v) = ∆0 and the func-
tion ∆(·) : V → R�×q is continuous. Since G0 is not real we can find a u arbitrarily
close to v such that Im(G0u) �= 0. Then Re(G0u) and Im(G0u) are linearly indepen-
dent. Otherwise Re(G0u) = α Im(G0u) for some α ∈ R and then ∆(u)G0u = u ∈ R�

would imply ∆(u) Im(G0u) = 0 and ∆(u) Re(G0u) = α Im(G0u) = 0. Hence
u = ∆(u)G0u = 0 which is inconsistent with Im(G0u) �= 0. Now let ε > 0 be
arbitrary and choose u ∈ V such that Im(G0u) �= 0 and ‖∆(u) − ∆0‖ < ε/2. Pro-
ceeding as in case (i) (with v0 replaced by u, ∆0 by ∆(u) and ε by ε/2) we find
a δ > 0 such that for every G in a δ-neighbourhood of G0 ∈ Cq× there exists a
∆ ∈ R�×q in the ε/2-neighbourhood of ∆(u) such that ∆Gu = u. Thus for all G in
this δ-neighbourhood

µR(G)−1 ≤ ‖∆‖ ≤ ‖∆(u)‖ + ε/2 < ‖∆0‖ + ε = (µR(G0))
−1 + ε.

This proves that G �→ (µR(G))−1 is upper semicontinuous at G0. �

We conclude the section with the following result proving that µR(G)(·) is even Lip-
schitz continuous at complex matrices G ∈ Cq×� whose imaginary part has rank ≥ 2.

Proposition 4.4.49. Suppose G0 = X0 + ıY0 ∈ Cq×�, X0, Y0 ∈ Rq×� and rank Y0 ≥
2. Then with respect to the spectral norm on ∆ = R

�×q

|µR(G) − µR(G0)| ≤ σ2(Y0)
−1µR(G0)‖G − G0‖ (63)

for all G ∈ C
q×� satisfying ‖G−G0‖ < σ2(Y0). Moreover, µR(·) is Lipschitz contin-

uous on U := {X + ıY ∈ Cq×�; X, Y ∈ Rq×�, rank Y ≥ 2}.
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Proof : Since rank Y0 ≥ 2, by Proposition 4.4.35 there exists γ0 ∈ (0, 1] such that
µR(G0) = minγ∈(0,1] σ2((G0)

R
γ ) = σ2((G0)

R
γ0

). Now let G = X + ıY ∈ Cq×� be

arbitrary and set G̃ := G − G0 = X̃ + ıỸ . By Corollary 4.3.11,

µR(G) = inf
γ∈(0,1]

σ2(G
R

γ ) ≤ σ2(G
R

γ0
) ≤ σ2((G0)

R

γ0
) + ‖(G − G0)

R

γ0
‖ = µR(G0) + ‖G̃R

γ0
‖,

and for all u, v ∈ R�∥∥∥∥G̃R

γ0

[
u

γ−1
0 v

]∥∥∥∥2

=

∥∥∥∥[ X̃ −γ0Ỹ

γ−1
0 Ỹ X̃

] [
u

γ−1
0 v

]∥∥∥∥2

=

∥∥∥∥[ X̃ −Ỹ

γ−1
0 Ỹ γ−1

0 X̃

] [
u
v

]∥∥∥∥2

= ‖X̃u−Ỹ v‖2 + γ−2
0 ‖Ỹ u+X̃v‖2 ≤ γ−2

0 [‖X̃u−Ỹ v‖2 + ‖Ỹ u+X̃v‖2]

= γ−2
0

∥∥∥∥[X̃ −Ỹ

Ỹ X̃

] [
u
v

]∥∥∥∥2

≤ γ−2
0 ‖G̃R‖2

[
‖u‖2 + γ−2

0 ‖v‖2
]
,

because γ0 ≤ 1. Hence ‖G̃R

γ0
‖ ≤ γ−1

0 ‖G̃R‖ = γ−1
0 ‖G̃‖ and since γ−1

0 σ2(Y0) ≤
σ2((G0)

R

γ0
) = µR(G0)

µR(G) − µR(G0) ≤ γ−1
0 ‖G̃‖ ≤ σ2(Y0)

−1µR(G0)‖G̃‖. (64)

Now suppose ‖G − G0‖ = ‖G̃‖ < σ2(Y0), then ‖Ỹ ‖ < σ2(Y0) and we obtain from
Corollary 4.3.11 that σ2(Y ) = σ2(Y0 + Ỹ ) > 0, whence rank (Y ) ≥ 2. So by
Proposition 4.4.35 there exists γ1 ∈ (0, 1] such that minγ∈(0,1] σ2(G

R

γ ) = σ2(G
R

γ1
).

Interchanging the roles of G0 = G − G̃ and G in the above analysis, we obtain the
following counterpart of (64)

µR(G0) − µR(G) ≤ γ−1
1 ‖G̃‖ ≤ σ2(Y )−1µR(G)‖G̃‖.

But σ2(Y ) ≥ σ2(Y0)−‖Ỹ ‖ ≥ σ2(Y0)−‖G̃R‖ = σ2(Y0)−‖G̃‖ and so multiplying the
above inequality by σ2(Y0) − ‖G̃‖, we get

(σ2(Y0) − ‖G̃‖)(µR(G0) − µR(G)) ≤ µR(G)‖G̃‖

or, equivalently,

σ2(Y0)(µR(G0) − µR(G)) ≤ µR(G)‖G̃‖ + ‖G̃‖(µR(G0) − µR(G)) = µR(G0)‖G̃‖.

This together with (64) completes the proof of (63). It remains to prove that every
G0 ∈ U has a neighbourhood on which µR(·) is Lipschitz bounded. By (63) and the
continuity of σ2(·) there exists δ > 0 such that for all

G = X + ıY ∈ B(G0, δ) = {G ∈ C
q×�; ‖G − G0‖ < δ}

we have σ2(Y ) > 0 and σ2(Y )−1µR(G) < σ2(Y0)
−1µR(G0)+1 =: L. Now let G1, G2 ∈

B(G0, δ) be arbitrary. Applying (63) with G0 replaced by G1 = X1 + ıY1 we get

|µR(G2) − µR(G1)| ≤ σ2(Y1)
−1µR(G1)‖G2 − G1‖ ≤ L‖G2 − G1‖.

Hence µR(·) is Lipschitz bounded on B(G0, δ). �
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4.4.3 Exercises

1. If ∆ = CIq is provided with the norm ‖zIq‖∆ = |z| show that µ∆(G) = �(G) for all
G ∈ C

q×q.

2. Suppose ∆, ‖ · ‖∆, G1, G2, G3 are as in Example 4.4.3. Verify that �(G1) = µ∆(G1),
�(G2) = µ∆(G2) and determine µ∆(G3) by solving the optimization problem in Exam-
ple 4.4.3. Verify that in this case �(G3) < µ∆(G3).

3. Let ‖ · ‖RN be an absolute norm on R
N . Suppose that C

� =
⊕

i∈N C
�i and C

q =⊕
i∈N C

qi are provided with the norms

‖(ui)i∈N‖C� = ‖(‖ui‖C�i )i∈N‖RN , ‖(yi)i∈N‖Cq = ‖(‖yi‖Cqi )i∈N‖RN

where ‖ · ‖Cqi and ‖ · ‖
C�i are given norms. Prove that for every ∆ = diag (∆1, . . . ,∆N )

where ∆i ∈ C
�i×qi , i ∈ N , the induced operator norm is given by

‖∆‖L(Cq ,C�) = max
i∈N

‖∆i‖L(Cqi ,C�i).

4. Suppose γi > 0, i ∈ N and ∆, C
�, C

q are as in the previous exercise with

‖(ui)i∈N‖C� =

[
N∑

i=1

γ2
i ‖ui‖2

C�i

]1/2

, ‖(yi)i∈N‖Cq =

[
N∑

i=1

γ2
i ‖yi‖2

Cqi

]1/2

.

Use the fact that µ∆(G) ≤ ‖G‖L(C�,Cq) to infer directly that µ∆(G) ≤ ‖RγGL−1
γ ‖L(C�,Cq),

where Lγ , Rγ are as in Example 4.4.15.

5. If G ∈ R
N×N is a matrix with non-negative entries and

∆ = {∆ = diag (δ1, . . . , δN ); δi ∈ C, i ∈ N}, ‖∆‖∆ = max
i∈N

|δi|,

prove that µ∆(G) = �(G).

6. Let ∆ be a given block-diagonal perturbation class as in Definition 4.4.14. Prove that
if G = diag (G1, . . . , GN ), Gi ∈ C

qi×�i then

µ∆(G) = max {max
j∈J

‖Gj‖L(C�j ,Cqj )
, max

i∈N\J
�(Gi)}. (65)

7. Let R
q be provided with the ∞-norm and X,Y ∈ R

q. In order to compute dist(X, RY )
one can proceed as follows: Let I0 = {i ∈ q ; Yi = 0}, Ji = {j ∈ q \ I0 ; j < i, (Xj , Yj) =
±(Xi, Yi)} for i ∈ q \ I0 and J0 =

⋃
i∈q\I0 Ji. Prove that the search for α ∈ R in (41) may

be restricted to the finite set R := {α ∈ R; ∃i, j ∈ q \ I0 ∪ J0 : i �= j and |Xi − αYi| =
|Xj − αYj |}. More precisely, prove

(i) q = I0 ∪ J0 if and only if q = I0.

(ii) If q \ (I0 ∪ J0) does not contain more than one element, then R = ∅ and
dist (X, RY ) = maxi∈I0 |Xi|.

(iii) If q \ (I0 ∪ J0) contains more than one element then R is a non-empty finite set and

dist (X, RY ) = max{max
i∈I0

|Xi| , min
α∈R

max
i∈q\I0∪J0

|Xi − αYi|}.
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8. Consider G = [x1+ıy1 x2+ıy2]
�, where x1, x2, y1, y2 are real scalars, such that y1 �= 0.

Show that if the perturbation norm (40) is the 1-norm (hence ‖ · ‖R2 = ‖ · ‖∞), then

µR(G) = min{|(x1y2 − y1x2|/|y1 − y2| , |x1y2 − y1x2|/|y1 + y2|}.

In the following exercises the norm is assumed to be the spectral norm.

9. Consider

G =

[
a + ıb 0

0 α + ıβ

]
, a, b, α, β ∈ R, a2 + b2 > α2 + β2.

By interchanging rows and columns show that GR
γ is congruent to⎡⎢⎢⎣

a −γb 0 0
γ−1b a 0 0

0 0 α −γβ

0 0 γ−1β α

⎤⎥⎥⎦ .

If σ(a, b, γ), σ(a, b, γ), σ(α, β, γ), σ(α, β, γ) are the upper and lower singular values of[
a −γb

γ−1b a

]
,

[
α −γβ

γ−1β α

]
,

respectively, show that generically µR(G) = σ(a, b, γ0) = σ∗, where γ0 is chosen so that
σ(a, b, γ0) = σ(α, β, γ0). Hence show that σ∗ satisfies

b−2[σ∗4 + 2a2σ∗2 + (a2 + b2)2] = β−2[σ∗4 + 2α2σ∗2 + (α2 + β2)2].

Discuss some of the nongeneric cases.

10. Find µR(U) if U ∈ C
q×q is unitary.

11. Suppose that M ∈ R
2×2 is symmetric with eigenvalues λ1, λ2 and let ω ∈ R, ω �= 0.

Show that µR(M + ıωI2) = (λ2
1 + λ2

2 + ω2)1/2.

12. Prove that µR(G ⊕ G) = ‖G‖ = µC(G).

13. Use Proposition 4.4.35 to prove Theorem 4.4.31 with respect to Euclidean norms.

14. Show that if G ∈ C
q×� and R ∈ R

m×q, then

σmin(R)µR(G) ≤ µR(RG) ≤ σmax(R)µR(G).

4.4.4 Notes and References

The renaissance of robustness issues in modern control theory began in the seventies with
various attempts at generalizing classical notions of gain and phase margins to multivari-
able systems, see the Special Issue on “Linear Multivariable Control Systems” [445] (1981)
of the IEEE Transactions on Automatic Control. This development led to multivariable
analysis and design techniques based on singular values (see e.g. [25]) and to the emergence
of H∞ Control Theory.
At the start of the eighties it was realized that the available singular value based techniques
for determining stability margins or ensuring robust performance gave conservative results
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if the perturbations were highly structured. Several authors recognized the importance
of block-diagonal perturbations for describing structured uncertainties of interconnected
systems where the uncertainty of the overall model is a consequence of uncertainties in its
components, see Safonov (1978, 1980) in [443], [444] and Doyle et al. (1982) [137].
Structured singular values were introduced by Doyle (1982) [135] as a tool for analyzing
the effect of block-diagonal perturbations. Definition 4.4.1 extends his definition to arbi-
trary perturbation sets endowed with arbitrary perturbation norms. In this generality, the
term “structured singular value” is no longer appropriate since it suggests a relation to
Euclidean metrics. This is the reason why we use the term “µ-value”. Many authors have
contributed to the development of µ-analysis and a comprehensive survey of the state of
the theory up to 1993 can be found in Packard and Doyle (1993) [402]. This survey also
contains a brief historical account and a summary of related work.
The results in Subsection 4.4.1 are mainly extensions of results of Doyle (1982) [135] to
more general perturbation classes and/or perturbation norms. The observation that a
number of these results can be proved for norms which are not operator norms but are
bounded below by an operator norm such that condition (19) is satisfied (see Corollary
4.4.12 and Remark 4.4.24) is due to Op’t Hof (1998) [400]. The importance of absolute
norms for the analysis of block-diagonal perturbations has been pointed out in Hinrichsen
and Son (1998) [257]. Lemma 4.4.20 is due to Sezginer and Overton (1990) [458] and
Lemma 4.4.22 to Doyle (1982) [135]. Theorem 4.4.23 generalizes Theorem 6.4 in [402].
In [135] an analogous characterization of the µ-value has been stated for sets of block-
diagonal perturbations with repeated blocks. Proposition 4.4.25 [135] provides the basis
for the power algorithm which computes lower bounds for the µ-value, see [158], [402].
The upper bound (25) was established for spectral norms by Safonov (1978, 1980) in
[443], [444], see also Doyle (1982) [135], and plays an important role in the numerics of
µ-analysis, see e.g. [158], [222]. A proof of the result mentioned in Remark 4.4.21 that for
multi-block perturbations with N ≤ 3 blocks the upper bound (25) is equal to the µ-value
can be found in [135], see also Appendix C of Dullerud and Paganini (2000) [141]. The
analysis of this upper bound and its relationship to the µ-value has been at the centre
of theoretical research in µ-analysis. Details of conditions under which equality holds for
other block-diagonal perturbation classes and a number of counterexamples are given in
[402], see also [141]. The upper bound (65) given in Ex. 5 was derived in [273] for the
spectral norm and square diagonal blocks (�j = qj). The fact that the upper bound in (65)
always lies above the upper bound in (25) follows from the Balancing Theorem of Stoer
and Witzgall (1962) [487], see [257]. For the special case of �j = qj = 1, the inequality

inf
γ∈(0,∞)N

∥∥∥∥(γiGijγ
−1
j

)
i,j∈N

∥∥∥∥
L(C�,Cq)

≤ �

((
‖Gij‖L(C�i ,Cqi )

)
i,j∈N

)
.

can already be found in [444]. Further upper bounds for the µ-value are given in Chen
and Nett (1992) [97].
The real µ-value studied in the second subsection was motivated by the notions of real sta-
bility radius and real spectral value sets which were introduced by Hinrichsen and Pritchard
(1986), (1992), [242], [251] and will be studied in detail in the next chapter. In [242] a
function was introduced which in essence is the reciprocal of the real µ-value. In (1988)
Hinrichsen and Pritchard [244] proved the formula given in Theorem 4.4.31 for the case
� = 1 and applied it to obtain stability radii results for polynomials. However the general
problem remained an open one for some time. Using tensor product techniques in the
context of the stability radius problem, Qiu and Davison (1991) [425] obtained several
upper bounds for the real µ-value with respect to the spectral norm. In the case where



4.4 Structured Perturbations 483

G is square, they obtained in [426] (1992) the estimate (47) given in Lemma 4.4.33 and
conjectured that it was tight. Then in [424] (1993) in conjunction with Bernhardsson,
Rantzer, Young and Doyle, they proved the equality. The proof we have given is based on
this paper. Their work on the real µ-value motivated Bernhardsson, Rantzer and Qiu to
introduce counterparts to singular values for the analysis of real perturbations. Analogous
to the characterizations (3.32) and (3.31) of σj(G) they associated with any G ∈ C

q×� two
ordered sequences of non-negative numbers τ1(G) ≥ . . . ≥ τ�(G) and τ̃1(G) ≥ . . . ≥ τ̃�(G)
defined by

τj(G) = [inf{‖∆‖; ∆ ∈ R
�×q,dim ker (In − ∆G) ≥ j}]−1, j ∈ � (66)

τ̃j(G) = inf {‖∆‖; ∆ ∈ R
�×q, rank (G − ∆) < j}, j ∈ �. (67)

The τj(G) (resp. τ̃j(G)) are called the lower (resp. upper) real perturbation values of G. By
the Schmidt-Mirsky Theorem 4.3.7 τj(G) ≤ σj(G) ≤ τ̃j(G), but in contrast to the singular
values, τj(G) and τ̃j(G) are in general distinct. Bernhardsson et al. (1998) [51] gave a full
characterization of real perturbation values and discussed their various properties. They
showed that

τj(G) = inf
γ∈(0,1]

σ2j(G
R
γ ), τ̃j(G) = sup

γ∈(0,1]
σ2j−1(G

R
γ ) (68)

where GR
γ is as in (47). Their methods of proof are quite different from the one given in

Subsection 4.4.2 and are based on inequalities between an Hermitian form and a symmetric

bilinear form associated with G. In [51], they proved the continuity of the real perturbation

values on C
q×� \ R

q×�. This implies the continuity statement of Theorem 4.4.48 for the

special case where ∆ = R
�×q is provided with the spectral norm. The general continuity

result is due to Karow (2003) [292] and we have followed his proof.

We will see in the next chapter that real perturbations of complex G are important for

the spectral analysis of linear systems with uncertain real parameters. It is surprising,

therefore, that although µ-values were introduced for complex perturbations circa 1980,

the development of real µ-analysis had to wait for about another 10 years. Even today, with

the exception of the results presented in Subsection 4.4.2, little is known about µ∆ with

respect to arbitrary norms and more general structured perturbation classes ∆ ⊂ R
�×q.

There are a number of interesting unsolved problems in this area which have been open

for some time, see the PhD thesis of Karow (2003) [292].
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4.5 Computational Aspects

Nowadays there are many software packages available for computing solutions to
problems encountered in Systems Theory. However one must be cautious, since
these packages may give spurious results in applications. To avoid mistakes some
knowledge is required about the numerical properties of the algorithms used. In
this section we give a brief introduction to a few topics in Numerical Linear Alge-
bra which are of special importance for Systems Theory, focussing on those aspects
which have a relationship with the material of this and previous chapters (for more
comprehensive accounts, see Notes and References).
When solving a problem numerically, errors can occur in the computation because
the use of finite arithmetic necessarily means that numbers are rounded. The accu-
mulation of rounding errors may mean that the computed solution is far from the
true one. This may be the fault of the particular algorithm used for the resolution
of the problem or it may be rooted in the problem itself. Numerical analysts have
developed general guidelines in order to consider these questions. They have found
it convenient to separate the problem into two parts – one called conditioning is
problem orientated, and the other called numerical stability is algorithm orientated.
In the first subsection we introduce the notion of a condition number for a given
problem and obtain formulas and estimates for the problems of

• solving linear matrix equations,

• solving Liapunov equations,

• determining the eigenvalues of a matrix,

• determining the singular values of a matrix.

In the second subsection we describe Householder transformations and show how
they can be used to reduce a matrix to Hessenberg and bidiagonal form and to
factorize a matrix into a unitary matrix and a triangular one (QR factorization).
We also prove that a matrix is unitarily similar to one in Schur form.
In the third subsection we explain the details of some important algorithms. Both
the transformation to Hessenberg form and the QR factorization are used in an
algorithm for computing the eigenvalues of a matrix. The algorithm reduces a matrix
to Schur form and is known as Francis’ double-shift QR algorithm. We explain the
details of this and discuss its simplifications and shortcomings when used to find
singular values. We also briefly discuss algorithms for solving linear equations and
describe in more detail an algorithm for solving Liapunov equations.
An important consideration in using a particular algorithm is the amount of work
the computer is required to carry out in implementing it. This is measured in terms
of the number of flops that are needed. A flop is a floating point operation such
as addition or multiplication of real numbers.1 The number of flops depends of
course on the dimensions of the matrices and when discussing the algorithms we
will indicate the approximate number of flops required in the form ≈ Knk where
K, k are constants and n is a typical dimension. We say that an algorithm requires
O(nk) flops if the number of flops increases at the order of nk as n → ∞.

1Note that complex multiplication requires four real multiplications and two real additions.
Hence the flop count is six times greater than in the real case.
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4.5.1 Condition Numbers

We begin by giving a very general definition of a condition number. Then we derive
an explicit formula for the condition number of three specific problems: a) finding
solutions of linear matrix equations, b) finding solutions of Liapunov equations and
c) computing eigenvalues and singular values. Although these exact formulas are
interesting we will see that in the first two cases they suffer the drawback of being
given in terms of the unknown solutions of the problems. To get around this we
use each formula to find an estimate for the condition numbers which are expressed
solely in terms of the given data of the problem.
Suppose that the problem under consideration can be represented abstractly as the
evaluation of a continuous function f : W0 → X at a data point w ∈ W0 ⊂ W.
Here W represents the set of possible problem data, W0 is the subset of data points
w ∈ W for which the given problem is solvable, X is the solution space and f is a
solution operator. We assume that W, X are metric spaces.
In general, it will not be possible to determine f(w) exactly. Instead a numerical
procedure will be carried out which yields, for every w ∈ W0, a computed value
f ∗(w) which may be different from f(w).
A problem is said to be well conditioned if small changes in the data (assuming
perfect computation) do not affect the solution very much. One of the ways of
examining whether or not a problem is well conditioned is via a condition number.
Suppose that W0 is an open subset of W and define for sufficiently small δ > 0

κδ(f, w) = inf{r > 0 ; f(BW(w, δ)) ⊂ BX(f(w), rδ)}, (1)

κ(f, w) = lim sup
δ→0

κδ(f, w) (2)

where, for any metric space (Y, dY), we denote by BY(y, δ) the open ball in Y centred
at y ∈ Y with radius δ > 0. κδ(f, w) (resp. κ(f, w)) is called the δ-condition number
(resp. condition number) of f at w. If for small δ the δ-condition number is not
large then the problem is well conditioned. Of course the terms “small” and “large”
are subjective and their meaning depends on the concrete application.
There are other definitions of condition numbers. The ones we have given here were
introduced by Rice (1966) [434] and are widely used. A nice feature is that if W and
X are Banach spaces, W0 is an open subset of W and f is Fréchet differentiable at
w ∈ W0, then

κ(f, w) = ‖f ′(w)‖L(W,X) (3)

where f ′(w) is the Fréchet derivative of f at w, see Definition A.4.16. This makes
the computation of κ tractable as we illustrate below in examples where W and X

are spaces of matrices.
In order to check whether for a given w ∈ W0 the evaluation f ∗(w) is a good approx-
imation of f(w) we would need to estimate the errors at every arithmetic operation
of, perhaps, a large series of complex calculations. This is usually impossible. It
turns out, however, that often there is a w ∈ W0 such that f ∗(w) = f(w). An
algorithm f ∗ for computing f is said to be numerically stable if for every w ∈ W0

there exists w ∈ W0 near w such that f ∗(w) = f(w). Recall that a problem is well
conditioned if w near w implies f(w) near f(w). Thus good conditioning of the
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problem plus numerical stability of the algorithm ensure that the computed solution
f ∗(w) is near the true solution f(w).

Condition Number for Solving Linear Matrix Equations

Suppose A ∈ Kn×n, B ∈ Kn×m, where A is invertible and consider the linear matrix
equation AX = B with solution X = A−1B ∈ Kn×m. Our aim is to obtain a formula
for the condition number of this problem. Now since the distance of an invertible
matrix A ∈ Kn×n from the set of singular ones (with respect to the spectral norm)
is σmin(A) we would expect that the condition number should involve σmin(A). We
will see that this is indeed the case.

If M ∈ Kq×� we denote by ‖M‖F =
(∑q

i=1

∑�
j=1 |mij |2

)1/2

its Frobenius norm. For

the above linear matrix equation we have the following data set W, solution set X

and solution operator fS : W0 → X on W0 = Gln(K) × K
n×m

W = K
n×n × K

n×m, X = K
n×m and fS(w) = A−1B, w = (A, B) ∈ W0

where we endow the spaces W and X with the Frobenius norms

‖w‖W = ‖(A, B)‖W = (‖A‖2
F + ‖B‖2

F )1/2, ‖X‖X = ‖X‖F . (4)

Besides the ease by which it can be calculated there is another reason for taking
the Frobenius norm. If M ∈ Kq×� we denote by vec(M) the vector in Kq� formed
by stacking each column of the matrix M (from the left to the right) one beneath
the other (see Subsection A.1.4). Then the Frobenius norm of a matrix M ∈ Kq×�

is the same as the Euclidean norm of vec(M) ∈ Kq�. By (3) the condition number
for solving the linear matrix equation is κ(fS, (A, B)) = ‖f ′

S(A, B)‖L(W,X) where
f ′

S(A, B) is the Fréchet derivative of fS at the point (A, B). In the following propo-
sition we identify f ′

S(A, B) ∈ L(W, X) with its standard matrix representation in
Knm×(n2+nm).

Proposition 4.5.1. For (A, B) ∈ Gln(K) × Kn×m we have

f ′
S(A, B) =

[
− (A−1B)� ⊗ A−1 | Im ⊗ A−1

]
, (5)

κ(fS, (A, B)) = ‖A−1‖2,2

(
‖A−1B‖2

2,2 + 1
)1/2

, (6)

where the symbol ⊗ denotes the Kronecker product.

Proof : For (∆A, ∆B) ∈ W small enough, we have (A + ∆A, B + ∆B) ∈ W0 and

fS(A + ∆A, B + ∆B)−fS(A, B) = (A + ∆A)−1(B + ∆B) − A−1B

= [I +

∞∑
k=1

(−1)k(A−1∆A)k]A−1(B + ∆B)−A−1B.

Hence
f ′

S(A, B)(∆A, ∆B) = −A−1∆AA−1B + A−1∆B. (7)
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In order to express the linear operator f ′
S(A, B) as a matrix, we represent ∆A and

∆B as vectors in Kn2
and Knm respectively and then use the Kronecker product (see

Subsection A.1.4). In Proposition A.1.25 we see that vec(M0XM1) = (M�
1 ⊗ M0)

vec(X). So from (7) we have

vec (f ′
S(A, B)(∆A, ∆B)) = −((A−1B)� ⊗ A−1)vec(∆A) + (Im ⊗ A−1)vec(∆B).

From which (5) follows and

κ(fS, (A, B)) = ‖f ′
S(A, B)‖2,2 =

∥∥[−(A−1B)� ⊗ A−1 | Im ⊗ A−1
]∥∥

2,2
(8)

where ‖ · ‖2,2 denotes the spectral norm. Now (see Subsection A.1.4) for M ∈ Kq×�,
M1 ∈ Kq1×�1 , M2 ∈ Kq1×�2

[M1 ⊗ M | M2 ⊗ M ] = ([M1 | M2] ⊗ M),

‖M1 ⊗ M‖2,2 = ‖M1‖2,2‖M‖2,2 , ‖M1 ⊗ M‖F = ‖M1‖F‖M‖F .

Since ‖[M | αIm]‖2
2,2 = ‖M‖2

2,2 + |α|2 for every M ∈ K
m×n, α ∈ K, we have

κ(fS, (A, B)) =
∥∥[−(A−1B)� | Im

]
⊗ A−1

∥∥
2,2

= ‖A−1‖2,2

∥∥[−(A−1B)� | Im

]∥∥
2,2

= ‖A−1‖2,2

(
‖A−1B‖2

2,2 + 1
)1/2

.

�

When the Frobenius norms of the data A ∈ Kn×n, B ∈ Kn×m and the solution
A−1B ∈ Kn×m have different orders of magnitude, it is appropriate to consider
relative errors instead of absolute errors. If, for instance, a change ∆A in A results
in a change in the solution ∆X , one compares ‖∆X‖/‖X‖ with ‖∆A‖/‖A‖ rather
than ‖∆X‖ with ‖∆A‖. This leads to the use of the following weighted norms on W

and X

‖(w1, w2)‖W =
(
‖w1‖2

F/‖A‖2
F + ‖w2‖2

F/‖B‖2
F

)1/2
, ‖X‖X= ‖X‖F/‖A−1B‖F . (9)

With respect to these norms the condition number κrel(fS, (A, B)) is given by

κrel(fS, (A, B)) = ‖A−1B‖−1
F

∥∥[(−(A−1B)� ⊗ A−1)‖A‖F | (Im ⊗ A−1)‖B‖F

]∥∥
2,2

.

Then in a similar way to the unweighted case one gets

κrel(fS, (A, B)) = ‖A−1‖2,2‖A−1B‖−1
F

(
‖A−1B‖2

2,2‖A‖2
F + ‖B‖2

F

)1/2
. (10)

Both formulas (6) and (10) suffer from the fact that we have to know the norm of
the solution A−1B before they can be evaluated. To get around this problem we use
the following upper estimate for ‖A−1B‖2,2 and lower estimate for ‖A−1B‖F .

‖A−1B‖2,2 ≤ ‖A−1‖2,2‖B‖2,2, ‖A−1B‖2,2 ≤ ‖A−1B‖F ,

‖B‖F = ‖AA−1B‖F ≤ ‖A‖2,2‖A−1B‖F .

Then

κ(fS, (A, B))≤‖A−1‖2,2

(
‖A−1‖2

2,2‖B‖2
2,2+1

)1/2
= σmin(A)−2

(
‖B‖2

2,2+σmin(A)2
)1/2

,

κrel(fS, (A, B))≤‖A−1‖2,2

(
‖A‖2

F +‖A‖2
2,2

)1/2
= σmin(A)−1

(
‖A‖2

F +‖A‖2
2,2

)1/2
. (11)

The above formulas show the importance of σmin(A) in obtaining an estimate of the
condition number for solving linear matrix equations AX = B.
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Remark 4.5.2. (i) If B = In is not subject to perturbations then it is easy to see from
the above calculations that the condition number and the relative condition number for
inverting a matrix A ∈ Gln(K) are, respectively,

κ(fI , A) = ‖A−1‖2
2,2 and κrel(fI , A) = ‖A−1‖2

2,2‖A‖F ‖A−1‖−1
F ≤ ‖A‖F ‖A−1‖F .

The reader is asked to prove this in Ex. 1. If for the weighted norm (9) (with B = In, w2 =
0) we use the weight ‖A‖−1

2,2 rather than ‖A‖−1
F , we get κrel(fI , A) = ‖A−1‖2

2,2‖A‖2,2‖A−1‖−1
F

and hence the estimate κrel(fI , A) ≤ ‖A‖2,2‖A−1‖2,2.

(ii) Suppose x ∈ K
n is the true solution and y is the computed solution of a linear equation

Ax = b with A ∈ K
n×n and 0 �= b ∈ K

n. Let ‖ · ‖Kn be any norm on K
n and ‖ · ‖ the

associated operator norm on K
n×n. If r = b − Ay is the residual vector, then it is easily

seen that
‖y − x‖Kn

‖x‖Kn
≤ ‖A‖ ‖A−1‖‖r‖Kn

‖b‖Kn
,

cf. Ex. 3. In the literature, κ(A) = ‖A‖ ‖A−1‖ is called the condition number of A. Actu-
ally, κ(A) is the operator norm of the Fréchet derivative of the map A �→ A−1 with respect
to weighted operator norms on the matrix spaces and is therefore a condition number for
inverting A in the sense of (3), see Ex. 2 and Notes and References.

(iii) In the above formulas for κ(fI , A), κrel(fI , A) and κ(A) there is a problem in com-
puting ‖A−1‖ without knowing A−1. For the spectral norm one can utilize ‖A−1‖2,2 =
σmin(A)−1. With respect to other norms there are computational procedures for estimating
‖A−1‖, see Notes and References. �

Condition Number for Solving Liapunov Equations

In the following we only consider Liapunov Equations for the real continuous time
case

XA + A�X + Q = 0 (12)

(see (3.3.80a)) and assume

(A, Q) ∈ W1 × R
n×n, W1 = {A ∈ R

n×n; ∀λ, µ ∈ σ(A) : λ + µ �= 0}.

We do not require that Q is symmetric. Let LA : Rn×n → Rn×n be the Liapunov
operator X �→ LA(X) = XA + A�X. Then by Theorem 3.3.46 LA is invertible and
the solution of the Liapunov equation is −L−1

A (Q). Our aim is to obtain a formula
for the corresponding condition number (with respect to perturbations of the data
w = (A, Q)). For this we define

W=R
n×n×R

n×n, W0 =W1×R
n×n, X=R

n×n, fL(A, Q) = −L−1
A (Q), (A, Q)∈W0

where the matrix spaces W and X are again provided with Frobenius norms

‖w‖W = ‖(A, Q)‖W =
(
‖A‖2

F + ‖Q‖2
F

)1/2
, ‖X‖X = ‖X‖F .

It follows from (3) that the condition number for the Liapunov equation is given by
κ(fL, (A, Q)) = ‖f ′

L(A, Q)‖L(W,X). To express ‖f ′
L(A, Q)‖L(W,X) in terms of the data,

we identify f ′
L(A, Q) ∈ L(W, X) with its standard matrix representation in Rn2×2n2
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and write the Liapunov equation as an ordinary linear equation for vec(X) using
Kronecker products. Then (12) takes the form

(A� ⊗ In + In ⊗ A�)vec(X) = −vec(Q). (13)

So one might think that one could apply the previous results on solving linear
matrix equations to obtain the condition number for solving the Liapunov equation.
However this would mean that arbitrary perturbations of the matrices A� ⊗ In +
In ⊗ A� ∈ Rn2×n2

and Q ∈ Rn×n would be taken into account. Whereas we only
consider perturbations of (A, Q) ∈ R

n×n × R
n×n.

Proposition 4.5.3. Suppose (A, Q) ∈ W0, X = L−1
A (Q), and P is a permutation

matrix such that P vec(Z) = vec(Z�) for all Z ∈ Rn×n. Then

f ′
L(A, Q) = −

(
A� ⊗ In + In ⊗ A�)−1 [

(In ⊗ X + (X� ⊗ In)P ) | In2

]
, (14)

κ (fL, (A, Q))≤ ‖
(
A� ⊗ In + In ⊗ A�)−1‖2,2

(
1+‖In ⊗ X + (X� ⊗ In)P )‖2

2,2

)1/2
. (15)

Proof : For ‖∆A‖ sufficiently small, we have A+∆A ∈ W1, so that fL(A+∆A, Q+
∆Q) =: X + ∆X is well defined. By the definition of fL we have

(X + ∆X)(A + ∆A) + (A + ∆A)�(X + ∆X) + Q + ∆Q = 0,

and so

∆XA + A�∆X = −∆Q − X∆A − (∆A)�X − ∆X∆A − ∆�
A∆X .

Making use of the Kronecker product we obtain

(A� ⊗ In + In ⊗ A�)vec(∆X) =

−vec(∆Q) − (In⊗X)vec(∆A)−(X�⊗In)vec(∆�
A) − vec(∆X∆A + ∆�

A∆X).

But vec(∆�
A) = Pvec(∆A), so (14) holds and

κ(fL, (A, Q)) = ‖
(
A� ⊗ In + In ⊗ A�)−1 [

In ⊗ X + (X� ⊗ In)P | In2

]
‖2,2

≤ ‖
(
A� ⊗ In + In ⊗ A�)−1 ‖2,2

(
1 + ‖In ⊗ X + (X� ⊗ In)P )‖2

2,2

)1/2
.

�

Since
‖(In ⊗ X + (X� ⊗ In)P )‖2,2 ≤ 2‖X‖2,2 , (16)

we obtain from (15) the following estimate

κ(fL, (A, Q)) ≤ ‖
(
A� ⊗ In + In ⊗ A�)−1 ‖2,2

(
1 + 4‖X‖2

2,2

)1/2
. (17)

If instead we endow W and X with the weighted Frobenius norms

‖(w1, w2)‖W =
(
‖w1‖2

F /‖A‖2
F + ‖w2‖2

F /‖Q‖2
F

)1/2
, ‖X‖X = ‖X‖F/‖L−1

A (Q)‖F ,

then

κrel(fL, (A,Q))≤‖X‖−1
F ‖(A�⊗In+In⊗A�)−1‖2,2

[
‖Q‖2

F +‖In⊗X+(X�⊗In)P‖2
2,2‖A‖2

F

]1/2
.
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Using the estimate in (16) we obtain

κrel(fL, (A,Q)) ≤ ‖X‖−1
F ‖

(
A� ⊗ In + In ⊗ A�

)−1
‖2,2

(
‖Q‖2

F + 4‖X‖2
2,2‖A‖2

F

)1/2
. (18)

Again both estimates (17) and (18) suffer from the drawback that the solution
X = L−1

A (Q) is required before they can be computed. Now

‖Q‖F =‖XA+A�X‖F ≤ 2‖X‖F‖A‖2,2, ‖L−1
A ‖L(Rn×n) =‖

(
A�⊗In + In⊗A�)−1 ‖2,2

where R
n×n carries the Frobenius norm. Hence

κ (fL, (A, Q)) ≤ ‖L−1
A ‖L(Rn×n)

(
1 + 4‖L−1

A ‖2
L(Rn×n)‖Q‖2

2,2

)1/2

,

κrel(fL, (A, Q)) ≤ 2‖L−1
A ‖L(Rn×n)

(
‖A‖2

2,2 + ‖A‖2
F

)1/2
.

(19)

The above estimates clearly show, as one would expect, the importance of the
term ‖L−1

A ‖2,2. However one should be cautious since there are examples where
the estimates given by (19) can be very bad in comparison with the exact values of
κ (fL, (A, Q)) and κrel(fL, (A, Q)), see Higham (2002) [230].

Remark 4.5.4. In the above analysis we have not assumed that Q and hence X are
symmetric. Clearly we could have restricted our analysis to the symmetric case, but then
we would have been forced to assume that the perturbations ∆Q are also symmetric. This
assumption might be too restrictive. �

Condition Number for Determining the Eigenvalues of a Matrix

We have seen in Corollary 4.2.3 that if λ0 is a simple eigenvalue of A0 ∈ Cn×n,
then there exists a neighbourhood B(A0, ε), ε > 0 of A0 in Cn×n and an analytic
function A �→ λ(A) on B(A0, ε) such that λ(A) is a simple eigenvalue of A for
all A ∈ B(A0, ε) and λ(A0) = λ0. In this case we can use Proposition 4.2.12 to
determine the condition number of λ(A) at A0. For this we endow W = Cn×n with
the Frobenius norm and set

W0 = B(A0, ε) ; X = C ; fE(A) = λ(A), A ∈ W0.

The condition number of fE at A0 is κ(fE , A0) = ‖f ′
E(A0)‖L(W,X). In the following

proposition we identify f ′
E(A0) ∈ L(W, X) with its matrix representation in C1×n2

.

Proposition 4.5.5. Let A0 ∈ C
n×n and assume that for some ε > 0 we are given

two functions, λ(·) : B(A0, ε) → C and v(·) : B(A0, ε) → Cn \ {0}, which are
differentiable at A0 and satisfy

Av(A) = λ(A)v(A), A ∈ B(A0, ε).

If w is a left eigenvector of A0 corresponding to the eigenvalue λ0 = λ(A0) and
w∗v �= 0 where v = v(A0), then

f ′
E(A0) = (w∗v)−1 v� ⊗ w∗, (20)

κ(fE , A0) = |w∗v|−1‖w‖2‖v‖2. (21)
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Proof : Given ∆ ∈ Cn×n, ∆ �= 0, let Ω = {z ∈ C; |z| < ε‖∆‖−1
F } and A(z) =

A0 + z∆, z ∈ Ω. Then the assumptions of Proposition 4.2.12 hold with z0 = 0.
Hence from (2.4)

f ′
E(A0) : ∆ �→ (w∗v)−1w∗∆v.

Thus
vec(f ′

E(A0)(∆)) = (w∗v)−1v� ⊗ w∗vec(∆).

So (20) holds and κ(fE , A0) = |w∗v|−1‖v� ⊗ w∗‖2 = |w∗v|−1‖w‖2‖v‖2. �

By Proposition 4.2.24 and Corollary 4.2.3 the assumptions of the previous proposi-
tion will hold if λ0 is a simple eigenvalue of A0. But if λ0 is not simple it may not
be possible to find a differentiable eigenvalue function λ(·) : B(A0, ε) → C satisfying
λ(A0) = λ0. In this case the condition number can no longer be expressed via a
derivative as in (3). However, our definitions (1), (2) are applicable to the λ0-group
of eigenvalues of A ∈ B(A0, ε) denoted by )λ1(A), . . . , λk0(A)* (ε sufficiently small).
It follows from Remark 4.2.10 (iii) that the condition number of the λ0-group (con-
sidered as a map from B(A0, ε) to the metric space of k0-tuples) is infinite if for
some A1 ∈ Cn×n the λ0-group of A(z) = A0 + zA1 has a branch point at z = 0.
Formula (21) shows that under the conditions of the previous proposition the prob-
lem of determining the eigenvalue λ0 = λ(A0) will be ill-conditioned if w∗v ≈ 0.
On the other hand, if A0 is normal we have seen in Section 4.2 that we can choose
w = v and in this case Proposition 4.5.5 yields κ(fE , A0) = 1. But κ(fE , A0) ≥ 1
for all A0 ∈ C

n×n. So of all the matrices satisfying the assumption of the previous
proposition the normal ones have the best condition number for determining eigen-
values.
Let A0 = B∗

0B0, B0 ∈ Cm×n, then we have κ(fE , B∗
0B0) = 1 and one might conjec-

ture that the condition number for determining the singular values of B0 is also 1.
We will now see that this indeed the case. Let C

m×n be provided with the operator
norm ‖ · ‖2,2, and consider

W = W0 = C
m×n ; X = R ; σi : W → X, A �→ σi(A)

where σi denotes the i-th ordered singular value, i ∈ n. From Corollary 4.3.11 we
know that for arbitrary A0, A ∈ Cm×n we have

|σi(A) − σi(A0)| ≤ ‖A − A0‖2,2 .

Thus σi(BW(A0, δ)) ⊂ BX(σi(A0), δ) for all δ > 0. It follows from our definitions (1)
and (2) that κδ(σi, A0) ≤ 1 for all δ > 0 and so κ(σi, A0) ≤ 1. Since the i-th ordered
singular value is zero for all A ∈ Cm×n if min{m, n} < i ≤ n, it is only of interest
to determine the condition number of the first min{m, n} singular values.

Proposition 4.5.6. For i = 1, . . . , min{m, n} and δ > 0, the condition number and
the δ-condition number of the i-th ordered singular value of A0 ∈ Cm×n are both
equal to 1, i.e. κ(σi, A0) = κδ(σi, A0) = 1.

Proof : It only remains to prove that κδ(σi, A0) ≥ 1 if 1 ≤ i ≤ min{m, n}, and this
is left to the reader. �
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4.5.2 Matrix Transformations

In this subsection we introduce Householder transformations and show how they
can be used (i) to reduce a matrix A ∈ Kn×n to Hessenberg form, (ii) to reduce a
matrix by pre- and post-multiplication to bidiagonal form, and (iii) to factorize A
into a unitary (resp. orthogonal) matrix and an upper triangular one. Moreover,
we prove that every A ∈ C

n×n can be reduced by unitary similarity transforma-
tions to upper triangular complex Schur form and every A ∈ Rn×n can be reduced
by orthogonal similarity transformations to upper quasi-triangular real Schur form.
These pseudo-canonical forms are not uniquely determined for a given matrix A, but
play a fundamental role in Numerical Linear Algebra and in the numerics of Linear
Control. In particular, the eigenvalues of A can be read directly from the diagonal
entries (blocks) of the complex (resp. real) Schur form of A. An iterative algorithm
for reducing a given matrix A ∈ Rn×n to real Schur form will be presented in the
next subsection.
Throughout this subsection we only consider unitary (resp. orthogonal) transforma-
tions. The reason for this is that unitary transformations do not increase the size
of perturbations of A if these are measured by the spectral or the Frobenius norms.
Indeed, these two matrix norms are unitarily invariant in the sense that

‖UAV ‖2,2 = ‖A‖2,2 , ‖UAV ‖F = ‖A‖F , U, V ∈ Un(K).

Therefore, if A is perturbed to A + ∆ where ∆ ∈ Kn×n is arbitrary, the resulting
perturbation Â � Â + ∆̂ = Â + U∆V of the transformed matrix Â = UAV
satisfies ‖∆̂‖2,2 = ‖∆‖2,2 and ‖∆̂‖F = ‖∆‖F . Whereas if S, T ∈ Kn×n are not

unitary and ∆̂ = S∆T , then one has ‖∆̂‖2,2 ≤ ‖S‖2,2‖∆‖2,2‖T‖2,2 and ‖∆̂‖F ≤
‖S‖2,2‖∆‖F‖T‖2,2. In particular, for S = T−1, T ∈ Gln(K) we get

‖∆̂‖2,2 ≤ ‖T‖2,2‖∆‖2,2‖T−1‖2,2 , ‖∆̂‖F ≤ ‖T‖2,2‖∆‖F‖T−1‖2,2, (22)

indicating that there may be numerical problems if κ(T ) = ‖T‖2,2‖T−1‖2,2 is large.

Remark 4.5.7. In order to determine the Jordan form of a given matrix A, general
similarity transformations must be used. The above considerations indicate why it may
be risky to apply numerical methods which are based on the computation of Jordan normal
forms. Any Jordan normal form of A depends discontinuously on A in any neighbourhood
of a non-diagonalizable matrix. The n × n diagonalizable matrices are dense in R

n×n

and therefore changes of some entries in a non-diagonalizable matrix, however small, can
radically alter its Jordan block structure. Also the matrix of eigenvectors of a matrix
which is nearly non-diagonalizable can be poorly conditioned. For instance, any matrix

T ∈ Gln(K) which diagonalizes

[
1 + ε 1

0 1 − ε

]
, 0 < ε ' 1 has condition number κ(T ) =

‖T‖2,2‖T−1‖2,2 of order ε−1. �

Householder transformations

Householder transformations are rank one modifications of the identity and take the
following form

V = In − 2vv∗ ∈ K
n×n, (23)
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where v ∈ Kn, ‖v‖2 = 1. Note that V = V ∗ and

V V ∗ = In − 4vv∗ + 4vv∗vv∗ = In,

so V is a unitary involution (orthogonal in the real case). Geometrically x �→
V x describes the reflection at the hyperplane (Kv)⊥ in the Euclidean space Kn.
Therefore V is also called a Householder reflection, and v is called the associated
Householder vector.
A basic step in the reduction of a n × n matrix A to Hessenberg form (or in the
construction of a QR factorization of A) consists in transforming a given vector
c ∈ Kn to a multiple of the first standard unit vector e1 of the same norm.2 In the
real case if c ∈ R

n \Re1, this can be achieved by reflecting the vector c across either
the hyperplane H+ or the hyperplane H−, where H+ = {x ∈ Rn; 〈x, c−‖c‖2e

1〉 = 0}
and H− = {x ∈ Rn; 〈x, c + ‖c‖2e

1〉 = 0}. This yields two possibilities for the
Householder vector v, v = v+/‖v+‖2 or v = v−/‖v−‖2, where v+ = c − ‖c‖2e

1,
v− = ‖c‖2e

1 + c, see Figure 4.5.1. Mathematically either v+ or v− will suffice, but

�

c

H−
H+

‖c‖2e
1−‖c‖2e

1

v− v+

�

Figure 4.5.1: Householder reflections

from a numerical point of view it is best to choose the one which has the same order
of magnitude as c. For, if say v+ is of much smaller magnitude than c, then the
calculation of v+/‖v+‖2 may suffer errors. So if c is very close to ‖c‖2e

1 one would
choose v− ≈ 2c instead of v+.
In the complex case a Householder reflection which transforms a non-zero vector c ∈
Cn into a multiple of e1 can be constructed as follows (see Ex. 8). If c = [c1, ..., cn]�

and c1 = |c1|eıθ, θ ∈ [0, 2π), define u = c + eıθ‖c‖2e
1 and v = u/‖u‖2. Then the

Householder transformation V = In − 2vv∗ maps c to V c = −eıθ‖c‖2e
1.

Transformation to Hessenberg form

A matrix H = (hij)i,j∈n ∈ Kn×n is said to be in Hessenberg form if hij = 0 for
all i, j ∈ n such that i − j ≥ 2. For any given matrix A ∈ K

n×n our objective is

2While Householder reflections can be used to introduce zeros at all but the first components of a
vector c ∈ Rn, selected components of c may be zeroed utilizing so-called Givens rotations G = (gij)
which differ from the identity by a 2× 2 principal submatrix where gii = gjj = cos θ, gij = −gji =
− sin θ, 1 ≤ i < j ≤ n. These matrices describe a rotation of θ degrees in the (i, j) coordinate
plane, see Notes and References.
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to construct a unitary matrix U ∈ Un(K) such that H := U∗AU is in Hessenberg
form. This will be accomplished via n − 2 Householder transformations. Note that
if n ≤ 2, then A is already in Hessenberg form, so we may assume that n ≥ 3.
Suppose that k ≥ 1 and after k − 1 iterations Ak has the form

Ak =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ · · · ∗ ∗ ∗ . . . ∗
∗ ∗ . . . .
0 ∗ . . . .
...

...
. . .

...
... . . . . .

0 0 · · · ∗ ∗ ∗ . . . ∗
0 0 · · · 0 � ∗ . . . ∗
...

...
...

...
...

...
0 0 · · · 0 � ∗ . . . ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
Hk Fk

0 · · · 0 ck Ck

]
(24)

where ck ∈ Kn−k, Fk ∈ Kk×(n−k), Ck ∈ K(n−k)×(n−k) and Hk ∈ Kk×k is in Hessen-
berg form. The entries of Ak marked by � are the components of the vector ck

which is to be transformed into a multiple of e1 ∈ Kn−k by a suitable Householder

transformation. Note that for k = 1, (24) takes the form A1 := A =

[
a11 F1

c1 C1

]
where a11 ∈ K, c1 ∈ Kn−1, F1 ∈ K1×(n−1), C1 ∈ K(n−1)×(n−1). If ck is a multiple of
e1 ∈ Kn−k, set vk+1 = 0n−k and Wk+1 = In. Otherwise choose vk+1 ∈ Kn−k such
that

(In−k − 2vk+1(vk+1)∗)ck is a multiple of e1 ∈ K
n−k and ‖vk+1‖2 = 1. (25)

Set Vk+1 = In−k − 2vk+1(vk+1)∗ and

Wk+1 =

[
Ik 0
0 Vk+1

]
=

[
Ik 0

0 In−k − 2vk+1(vk+1)∗

]
∈ Un(K). (26)

Then define

Ak+1 = Wk+1AkWk+1 =

[
Hk FkVk+1

0 · · · 0 fk Vk+1CkVk+1

]
,

where fk = Vk+1c
k = [∗, 0, · · · , 0]� ∈ Kn−k. Note that Ak+1 = (a

(k+1)
ij ) is in

Hessenberg form up to the (k +1)-th column, i.e. a
(k+1)
ij = 0 for j ≤ k +1, i− j ≥ 2.

Iterating this step we obtain the following lemma.

Lemma 4.5.8. Given A = (aij) ∈ Kn×n, then A can be reduced to Hessenberg form
H = U∗AU with U ∈ Un(K). In the following algorithm this is achieved by means
of a sequence of n − 2 Householder transformations.

1. Init: Set k = 1, A1 = A, U1 = In.

2. while (k < n − 1)
2.1 Write Ak in the form (24).
2.2 If ck is a multiple of e1 ∈ Kn−k, set vk+1 = 0n−k and Wk+1 = In.
2.3 Else determine the Householder vector vk+1 ∈ Kn−k and Wk+1 such that (25)

and (26) hold.
2.4 Put Ak+1 = Wk+1AkWk+1, Uk+1 = UkWk+1.
2.5 Set k = k + 1.
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3. End: Return H = An−1 and U = Un−1.

The above algorithm requires ≈ (14/3)n3 flops.

Remark 4.5.9. (i) Note that by construction the first column (resp. first row) of U is
the first standard unit vector e1 of K

n (resp. its transpose).

(ii) If in the above iteration one of the terms ck = 0, then Ak, will have a block triangular

structure Ak =

[
Hk Fk

0 Ck

]
with Hk in Hessenberg form. Continuing with the algorithm

the resulting Hessenberg matrix H will also have a block triangular structure with two
square blocks on the diagonal which are both in Hessenberg form. When this is the case
the Hessenberg matrix H is said to be reduced. �

The Hessenberg form is not unique. In fact, if A ∈ K2×2 then A is in Hessenberg
form and for any U ∈ U2(K), U∗AU is another Hessenberg form of A. However, we
have the following restricted uniqueness result.

Proposition 4.5.10. Suppose A ∈ Kn×n and U = [u1, ..., un], Ũ = [ũ1, ..., ũn] ∈
Un(K) are such that H = (hij) = U∗AU and G = (gij) = Ũ∗AŨ are in Hessenberg
form. If H is unreduced and u1 = eıθ1 ũ1 for some θ1 ∈ [0, 2π) then necessarily G is
unreduced and uj = eıθj ũj for some θj ∈ [0, 2π), j = 2, ..., n. Moreover

G = DHD∗ where D is of the form D = diag (eıθ1 , ..., eıθn), θj ∈ [0, 2π). (27)

(If K = R we have θj ∈ {0, π} for j ∈ n in (27)).

Proof : Let Q = [q1, ..., qn] ∈ Un(K) be the matrix defined by Q = Ũ∗U . Then

GQ = Ũ∗AŨŨ∗U = Ũ∗AU = Ũ∗UU∗AU = QH.

Hence the (j − 1)-th column of GQ, j = 2, . . . , n is given by

Gqj−1 = [q1, ..., qn]hj−1 = hj j−1 qj +

j−1∑
k=1

hk j−1q
k.

Thus qj can be represented as a linear combination of q1, ..., qj−1 and Gqj−1. Since
q1 = eıθ1e1 for some θ1 ∈ [0, 2π) (q1 = ±e1 in the real case), it follows by induction
that [q1, ..., qn] is upper triangular. But since Q is unitary it must be diagonal so
that qj = eıθjej for some θj ∈ [0, 2π), j ∈ n (qj = ±ej in the real case). Now by
definition uj = Ũqj and so uj = eıθj ũj, j ∈ n (= ±ej in the real case). Finally we
have G = QHQ∗, so (27) follows by setting D = Q. �

The essence of the proposition is that if U∗AU = H , Ũ∗AŨ = G with H an unre-
duced Hessenberg matrix and U and Ũ have the same first column, then H and G
are “essentially equal” in the sense that (27) holds.

Transformation to bidiagonal form

In the next subsection we will see that the first step in the Golub-Kahan-Reinsch
algorithm for computing the singular values of a matrix is to reduce the matrix to
bidiagonal form. A matrix B = (bij) ∈ K

m×n is in bidiagonal form if bij = 0 for all i ∈
m, j ∈ n such that i−j ≥ 1, j−i ≥ 2. For a given A ∈ Km×n our objective is to find
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P ∈ Um(K), Q ∈ Un(K) such that B := PAQ is in bidiagonal form. The algorithm
we describe in Lemma 4.5.11 proceeds by alternately creating zeros in the columns
and rows by pre- and post-multiplying the matrix A by Householder transformations.
Suppose that after k ≤ min{m, n} iterations A has been transformed into a matrix
of the form

Ak =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ 0 . . 0 0 0 . . . 0
0 ∗ ∗ 0 . 0 0 . . . . 0
0 0 ∗ ∗ . 0 . . . . . .
. . . . . . . . . . . .
0 . . 0 ∗ ∗ 0 0 . . . 0
0 . . . 0 ∗ ∗ 0 . . . 0
0 . . . . 0 � . . . . ∗
...

...
...

...
0 . . . . 0 � . . . . ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣ Bk

0 . . . 0
. . . . .
. . . . .

fk,k+1 . . . 0
0 Ck

⎤⎥⎥⎥⎥⎦ (28)

where Bk ∈ Kk×k is bidiagonal, fk,k+1 ∈ K and Ck ∈ K(m−k)×(n−k). Note that for
k = 0 the matrix Bk is void and A0 = C0 = A. On the other hand if k = n,
the submatrices on the right hand side of the vertical line are empty and An is in
bidiagonal form. Similarly, if k = m the submatrices below the horizontal line are
empty and Am is in bidiagonal form. Now suppose k < min{m, n}. The entries of
Ak marked by � form a vector (the first column ck of Ck) which is to be transformed
into a multiple of e1 ∈ Rm−k by a suitable Householder transformation. If ck is a
multiple of e1 ∈ Km−k, set vk = 0m−k.

3 Otherwise choose vk ∈ Km−k such that

(Im−k − 2vk(vk)∗)ck is a multiple of e1 ∈ K
m−k and ‖vk‖2 = 1. (29)

Set

Wk =

[
Ik 0

0 Im−k − 2vk(vk)∗

]
∈ Um(K). (30)

Then define

Ak+1/2 = WkAk =

⎡⎢⎢⎢⎢⎢⎣
Bk

0 . . . 0
. . . . .
. . . . .

fk,k+1 . . . 0

0 (Im−k − 2vk(vk)∗)Ck

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎣ Bk+1

0

(fk+1)∗

0 Ĉk

⎤⎥⎦ (31)

where Bk+1 ∈ K(k+1)×(k+1) is bidiagonal, fk+1 ∈ Kn−k−1, Ĉk ∈ K(m−k−1)×(n−k−1). If
k + 1 = n then Ak+1/2 is bidiagonal. If k + 2 = n then Ak+1 := Ak+1/2 is of the form
(28) with k + 1 instead of k. If k + 2 < n we post-multiply Ak+1/2 by a Householder
transformation to zero out all but the first element of fk+1. Choose v̂k+1 ∈ Kn−k−1

so that

(In−k−1−2v̂k+1v̂k+1∗)fk+1 is a multiple of e1 ∈ R
n−k−1 and ‖v̂k+1‖2 =1. (32)

3Note that this is always the case if k = m − 1.
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Set

Ŵk+1 =

[
Ik+1 0

0 In−k−1 − 2v̂k+1(v̂k+1)∗

]
∈ Un(K). (33)

Then Ak+1 defined by

Ak+1 = Ak+1/2Ŵk+1 =

⎡⎢⎣ Bk+1

0

(fk+1)∗(In−k−1 − 2v̂k+1(v̂k+1)∗)

0 Ĉk(In−k−1 − 2v̂k+1(v̂k+1)∗)

⎤⎥⎦ , (34)

is of the form (28) with k + 1 instead of k. This leads to the following lemma.

Lemma 4.5.11. Given A ∈ Km×n, m ≥ n, m > 1,4 then A can be reduced to
bidiagonal form B = PAQ with P ∈ Um(K), Q ∈ Un(K). This is achieved by
means of a sequence of 2n − 2 if m > n > 1 or 2n − 3 if m = n > 1 Householder
transformations as follows:

1. Init: Set A0 = A, P0 = Im, Q0 = In, k = 0.

2. while (k < min{n, m − 1})

2.1 Write Ak in the form (28) (with C0 = A for k = 0).
2.2 If the first column ck of Ck is a multiple of e1 ∈ K

m−k, set vk = 0m−k.
2.3 Else determine the Householder vector vk ∈ Km−k for ck so that

(29) holds.
2.4 Put Ak+1/2 = WkAk, Pk+1 = WkPk, where Wk is given by (30).
2.5 If k < n − 2

2.5.1 Write Ak+1/2 in the form (31).
2.5.2 If fk+1 is a multiple of e1 ∈ Kn−k−1 set v̂k+1 = 0n−k−1.
2.5.3 Else determine the Householder vector v̂k+1 ∈ Kn−k−1 for fk+1

so that (32) holds.

2.5.4 Put Ak+1 = Ak+1/2Ŵk+1, Qk+1 = QkŴk+1 where Ŵk+1 is given
by (33).

2.6 Else Set Ak+1 = Ak+1/2, Qk+1 = Qk.
2.7 Set k=k+1.

3. End: Return B = Ak, P = Pk, Q = Qk.

The algorithm requires ≈ 4mn2 − (4/3)n3 flops for the computation of B and an
additional ≈ 4m2n− (4/3)n3 (resp. ≈ 4n3) flops for the computation of P (resp. Q).

QR factorization

For A ∈ Kn×n our objective is to determine Q ∈ Un(K) and R ∈ Kn×n upper
triangular such that A = QR. This will be accomplished via n − 1 Householder

4Essentially the same algorithm can also be used for the case m < n, but the stopping condition
and number of Householder transformations will, of course, be different.
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transformations. Let n ≥ 2 and suppose that after k ≥ 0 iterations Ak has the form

Ak =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ · · · · · · ∗ ∗ · · · ∗
0 ∗ · · · · · · · · ·
...

. . .
. . .

. . .
... ·

· · · ∗ ∗ · · · · ·
0 · · · · 0 ∗ ∗ · · · ∗
0 · · · · · 0 � ∗ · · ∗
...

...
...

...
0 · · · · · 0 � ∗ · · ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
Rk Fk

0 Ck

]
(35)

where Fk ∈ K
k×(n−k), Ck ∈ K

(n−k)×(n−k), and Rk ∈ K
k×k is in triangular form. Note

that for k = 0 the matrices Rk and Fk are void and A0 = C0. The algorithm proceeds
by reducing all but the first components of the first column ck of Ck to zero via a
suitable Householder transformation. If ck is already in this form set vk+1 = 0n−k

and Wk+1 = In. Otherwise choose vk+1 ∈ Kn−k, ‖vk+1‖2 = 1 and Wk+1 so that (25)
and (26) hold and set

Ak+1 = Wk+1Ak =

[
Rk Fk

0 (In−k − 2vk+1vk+1�)Ck

]
=

[
Rk+1 Fk+1

0 Ck+1

]
.

Then the (k + 1) × (k + 1) principal submatrix of Ak+1 is in triangular form.
Repeating this step for k = 0, . . . , n − 2, we obtain the following lemma.

Lemma 4.5.12. Given A ∈ K
n×n, n ≥ 2 then A can be factorized so that A = QR

with Q ∈ Un(K) and R upper triangular. This is achieved by means of a sequence
of n − 1 Householder transformations as in the following algorithm.

1. Init: Set k = 0 and A0 = A, Q0 = In.

2. while (k < n − 1)

2.1 Write Ak in the form (35) (C0 = A for k = 0).
2.2 If the first column of Ck, ck is a multiple of e1 ∈ Kn−k then set

vk+1 = 0n−k and Wk+1 = In.
2.3 Else determine the Householder vector vk+1 ∈ Kn−k for ck and Wk+1

so that (25) and (26) hold.
2.4 Put Ak+1 = Wk+1Ak, Qk+1 = Wk+1Qk and set k = k + 1.

3. End: Return R = An−1 and Q = Q∗
n−1.

In the real case the above algorithm requires ≈ (4/3)n3 flops.

Remark 4.5.13. If A = [a1, . . . , an] ∈ K
n×n is nonsingular and we have a QR factoriza-

tion A = QR, then the columns q1, . . . , qn of Q = AR−1 form an orthonormal basis of K
n

satisfying span{q1, . . . , qj} = span{a1, . . . , aj} for j = 1, . . . , n. Conversely, a QR factor-
ization of A can be obtained by applying an orthonormalization procedure to the columns
of A. Recall that the Gram-Schmidt procedure determines an orthonormal sequence of
vectors qj, j = 1, . . . , n from a linearly independent sequence of vectors aj , j = 1, . . . , n
by computing sequentially for j = 1, . . . , n
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f j = aj −
j−1∑
i=1

〈aj , qi〉qi, qj = f j/‖f j‖2.

If Q = [q1, . . . , qn], A = [a1, . . . , an] and T = (tij) where tij = 〈aj , qi〉 for j = 2, . . . , n, i =
1, . . . , j − 1, and tij = 0 otherwise, then

Qdiag (‖f1‖2, . . . , ‖fn‖2) = [f1, . . . , fn] = A − QT.

Hence A = QR, where R = diag (‖f1‖2, . . . , ‖fn‖2)+T is upper triangular and Q ∈ Un(K).
So if A is nonsingular it is possible to find a QR factorization via the Gram-Schmidt
orthonormalization process. Unfortunately this method has poor numerical properties in
that there may be a severe loss of orthogonality among the computed qj. It is possible
to rearrange the calculations into what is known as a modified Gram-Schmidt algorithm
which has certain advantages over the algorithm given in the above lemma. But again it
may suffer a loss of orthogonality in Q in comparison with the Householder approach if
the condition number κ(A) = ‖A‖2,2‖A−1‖2,2 is large, see Notes and References. �

Schur form

Every matrix A ∈ Cn×n can be converted into upper triangular form (complex Schur
form) by unitary similarity transformations. This is a key result from Numerical
Linear Algebra which is also of special importance in the numerics of Linear Systems
Theory. There does not exist an exact counterpart for the real case, since a matrix
A ∈ Rn×n with non-real eigenvalues cannot be transformed into real upper triangular
form by any similarity transformations. However, it can be reduced by an orthogonal
similarity transformation U ∈ On into upper quasi-triangular form (real Schur form)

U�AU = S =

⎡⎢⎢⎢⎣
S11 S12 · · · S1�

0 S22 · · · S2�
...

...
. . .

...
0 0 · · · S��

⎤⎥⎥⎥⎦ ∈ R
n×n, (36)

where each diagonal block Sii, i ∈ � is either a real 1 × 1 matrix consisting of an
eigenvalue of A or a real 2 × 2 matrix with eigenvalues a complex pair λ, λ ∈ σ(A).
In the sequel we will derive these two basic results. Since the proof for the real case
is slightly more complicated than for the complex one, we give a detailed proof for
the real case, and leave the details for the complex case as an exercise.

Theorem 4.5.14 (Real Schur form). Suppose A ∈ Rn×n and λ1, . . . , λn is a given
ordering of the eigenvalues of A accounting for multiplicities where we assume that
none of the complex conjugate pairs of eigenvalues is separated by the numbering.
Then there exists an orthogonal matrix U ∈ On such that U�AU has the quasi-
triangular form (36) where the eigenvalues of the blocks S11, . . . , S�� occur in the
prescribed order.

Proof : The proof is by induction. Suppose we have already constructed Uk ∈ On

such that

U�
k A Uk =

[
Sk ∗
0 An−k

]
, An−k ∈ R

(n−k)×(n−k), (37)
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where Sk is in real Schur form with the k eigenvalues λ1, . . . λk of the diagonal
blocks occurring in the prescribed order. For k = 0, (37) holds with S0 void, if we
set An = A and U0 = In.
It follows from the assumption that λk+1 ∈ σ(An−k). First suppose that λk+1 is a
real eigenvalue of An−k with some corresponding normalized eigenvector x ∈ Rn−k,
‖x‖2 = 1. Choose zi ∈ Rn−k, i = 2, . . . , k so that ‖zi‖2 = 1 and (x, z2, . . . , zn−k) is
an orthonormal basis for Rn−k, then

An−k [x z2 . . . zn−k] = [x z2 . . . zn−k]

⎡⎢⎢⎢⎣
λk+1 ∗ · · · ∗

0 ∗ · · · ∗
...

...
...

...
0 ∗ · · · ∗

⎤⎥⎥⎥⎦ .

So if Vn−k = [x z2 . . . zn−k], then Vn−k is orthogonal and

V �
n−k An−k Vn−k =

[
λk+1 ∗

0 An−k−1

]

for some An−k−1 ∈ R(n−k−1)×(n−k−1). Setting Uk+1 = Uk

[
Ik 0
0 Vn−k

]
, we obtain

U�
k+1AUk+1 =

[
Sk ∗
0 V �

n−k An−k Vn−k

]
=

⎡⎣ Sk ∗ ∗
0 λk+1 ∗
0 0 An−k−1

⎤⎦=

[
Sk+1 ∗

0 An−k−1

]
,

where Sk+1 is in real Schur form with the k+1 eigenvalues λ1, . . . λk+1 of the diagonal
blocks occurring in the prescribed order.
Now suppose that λk+1 is a non-real eigenvalue of An−k, then λk+1 and λk+1 = λk+2

form a pair of complex conjugate eigenvalues of An−k. If x, x ∈ Cn−k is a pair of
corresponding eigenvectors then

An−k [Re x Im x] = [Re x Im x]

[
Re λk+1 Im λk+1

− Im λk+1 Re λk+1

]
.

Now choose an orthonormal basis (v1, v2) of span{Re x, Im x} ⊂ Rn−k and let
α, β, γ, δ ∈ R such that

Re x = α v1 + β v2

Im x = γ v1 + δ v2 , i.e. [Re x Im x] = [v1 v2]

[
α γ
β δ

]
,

then
An−k [v1 v2] = An−k [Re x Im x]

[
α γ
β δ

]−1

= [v1 v2] A22

where
A22 =

[
α γ
β δ

] [
Re λk+1 Im λk+1

− Im λk+1 Re λk+1

] [
α γ
β δ

]−1

.

Let v3, . . . , vn−k be normalized vectors such that v1, v2, . . . , vn−k is an orthonormal
basis for R

n−k, then Vn−k = [v1 v2 . . . vn−k] ∈ On−k, and we have

An−k Vn−k = Vn−k

[
A22 ∗
0 An−k−2

]
, A22 ∈ R

2×2, σ(A22) = {λk+1, λk+1}
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where An−k−2 ∈ R(n−k−2)×(n−k−2). Setting Uk+2 = Uk

[
Ik 0
0 Vn−k

]
we get

U�
k+2AUk+2 =

[
Sk ∗
0 V �

n−k An−k Vn−k

]
=

⎡⎣ Sk ∗ ∗
0 A22 ∗
0 0 An−k−2

⎤⎦=

[
Sk+2 ∗

0 An−k−2

]
where Sk+2 is in real Schur form with the k + 2 eigenvalues λ1, . . . , λk+2 of the
diagonal blocks occurring in the prescribed order. �

Remark 4.5.15. One should note that the 2 × 2 blocks in (36) are similar, but cannot

in general be chosen equal to

[
Re λ Im λ

− Im λ Re λ

]
, λ ∈ σ(A). The reader is asked to provide

a counterexample in Ex. 9. �

The reduction of A ∈ Cn×n by unitary transformations to complex Schur form can
be accomplished in exactly the same way as in the first part of the above proof using
unitary instead of orthogonal transformations (Ex. 10).

Theorem 4.5.16 (Complex Schur form). Suppose A ∈ Cn×n and λ1, . . . , λn is
a given ordering of the eigenvalues of A accounting for multiplicities. Then there
exists a unitary matrix U ∈ Un(C) such that

U∗AU =

⎡⎢⎢⎢⎣
λ1 ∗ · · · ∗
0 λ2 · · · ∗
...

...
. . .

...
0 0 · · · λn

⎤⎥⎥⎥⎦ ∈ C
n×n. (38)

As is the case of the Hessenberg form neither the orthogonal matrix U nor the
Schur form S constructed in the proof of Theorem 4.5.14 are unique, see Ex. 10.
Note however that if S = U∗AU = diag (λ1, ..., λn) + N is a Schur decomposition
of A with N strictly upper triangular, then ‖N‖F is independent of the choice of
U . In fact, since the Frobenius norm of a matrix is not changed by unitary pre- or
post-multiplications, it follows that ‖S‖F = ‖A‖F , hence

‖N‖2
F = ‖A‖2

F −
n∑

i=1

|λi|2.

The expression on the RHS is called the departure of A from normality with respect
to the Frobenius norm.

4.5.3 Algorithms

In this subsection we give details of algorithms for computing the eigenvalues and
singular values of a real matrix and also for computing the solution of a Liapunov
equation. The most widely used algorithm for reducing a matrix to Schur form
is Francis’ double–shift QR algorithm ([166], [167]). This is an iterative algorithm
which, after first reducing A to Hessenberg form, performs at each iteration a QR
factorization. We describe the essential features of this algorithm and the simplifi-
cations that occur when A is symmetric. Computation of the Schur form of A will
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yield the eigenvalues of A and when applied to the symmetric matrix A�A it will
yield the singular values of A. However we will see that working with A�A can
cause discrepancies so we also describe the Golub-Kahan-Reinsch algorithm which
computes the singular values directly from a bidiagonal matrix which is unitarily
equivalent to A, see Lemma 4.5.11. Finally we describe the Bartels and Stewart
algorithm for solving Liapunov equations which in a first step reduces A to Schur
form. For the precise coding of the algorithms, see Notes and References.

Solution of linear equations

We only make some very brief remarks about algorithms for solving linear equations.
If A ∈ Rn×n, B ∈ Rn×m the matrix equation AX = B is usually solved by computing
the solutions of m linear equations of the form Axi = bi where bi, i ∈ m are the
columns of B. All the books we recommend in Notes and References have extensive
sections on algorithms for solving linear equations of the form Ax = b, A ∈ Rn×n, b ∈
Rn. The algorithms are basically divided into two groups, direct and iterative.
Direct methods such as Gaussian elimination compute the exact answer after a finite
number of iterations (in the absence of roundoff errors). In general the methods
proceed by decomposing A = LU via Householder transformations into a real lower
triangular matrix L = (lij) with lii = 1, and a real upper triangular matrix U .5

Then the triangular equations Ly = b, Ux = y are solved. The LU factorization
costs ≈ (1/3)n3 flops and the solution of the triangular equations ≈ (1/2)n2 flops.
Iterative methods produce a sequence of vectors (xk) which converge to the desired
solution. Since they use the matrix A only in matrix-vector multiplications they are
suitable for the solution of large systems of linear equations. Jacobi and Gauss-Seidel
iterations and Krylov subspace methods are classical algorithms in this group, see
for example Datta (1995) [121], Trefethen and Bau (1997) [500] and Demmel (1997)
[126]. They are particularly useful for large sparse matrices and typically cost O(n2)
flops.
If the condition number of A, κ(A), is large then one would expect difficulties in both
direct and iterative methods. Suppose M ∈ R

n×n is invertible, then solving Ax = b is
equivalent to solving MAx = Mb. It may be possible to improve the conditioning of
the problem by a suitable choice of M . Finding a good pre-conditioner M is usually
a difficult task. For a survey, see [500]. A different approach to ill-conditioned or
even singular linear equations is based on regularization methods, see Notes and
References.

The QR Algorithm

The QR algorithm is the most widely used general purpose eigenvalue algorithm.
It is an iterative algorithm where for a given n × n matrix A a sequence (Ak) is
constructed which, under mild conditions (see [525]), converges to a Schur form
of A. Contrary to the procedure in the proof of Theorem 4.5.14 which constructs
such a Schur form in a finite number of steps, the QR algorithm does not presuppose
knowledge of the eigenvalues of A. In the following we will describe the main features
of the algorithm in real arithmetic. There is a complex arithmetic analogue working

5This is always possible if the n principal minors of A do not vanish.
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for complex matrices. Let A ∈ Rn×n and n ≥ 3. The purpose of the QR algorithm is
to determine U ∈ On such that U�AU = S is in real Schur form. In each iteration
there are two main steps.

Step 1: Given Ak ∈ R
n×n, compute a QR factorization QkRk = Ak.

Step 2: Compute Ak+1 = RkQk.

As a consequence Ak+1 = RkQk = Q�
k AkQk, so that Ak+1 and Ak are orthogonally

similar. In general each QR factorization costs ≈ (4/3)n3 flops. However if Ak is
in Hessenberg form the cost is reduced to ≈ 6n2 flops. Moreover the Hessenberg
form is inherited by Ak+1. In fact, if Ak is in unreduced Hessenberg form, the
first n − 1 columns of Ak, a1

k, . . . , a
n−1
k must be linearly independent. But since

Ak = QkRk with Rk triangular, one has span{a1
k, ..., a

j
k} ⊂ span{q1

k, ..., q
j
k}, j =

1, ..., n − 1 where qj
k are the columns of Qk. But {a1

k, ..., a
j
k} is linearly independent

and hence span{a1
k, ..., a

j
k} = span{q1

k, ..., q
j
k}, for j = 1, ..., n − 1. Thus each column

qj
k of Qk is a linear combination of a1

k, . . . , a
j
k. Hence Qk is in Hessenberg form and

since Ak+1 = RkQk, so is Ak+1. Thus after a single first cost of ≈ (14/3)n3 flops
required to reduce A to Hessenberg form, the remaining iterations need only ≈ 6n2

flops. Steps 1 and 2 are iterated provided each Ak is unreduced, k = 0, 1, . . .. If
at some stage Ak is in reduced form, then the problem is deflated by applying the
algorithm to the unreduced Hessenberg submatrices. It is therefore necessary to
decide when a subdiagonal term can be neglected. A natural criterion is to choose
a small ε and set a subdiagonal term6 Ak(j + 1, j) to zero if |Ak(j + 1, j)| ≤ ε‖A‖F .
Then the error in computing Ak+1 = Q�

k AkQk assuming perfect computation is
E = Q�

k Ak(j + 1, j)ej+1ej�Qk and the relative error is ‖E‖F/‖A‖F ≤ ε.
In order to speed up convergence, shifts are employed, i.e. the above two steps are
replaced by

Step 1: Given Ak ∈ Rn×n and αk ∈ R, compute Qk ∈ On, Rk triangular so that
QkRk = Ak − αkIn.

Step 2: Compute Ak+1 = RkQk + αkIn.

If Ak is in Hessenberg form then so is Ak − αkIn. Moreover, since

Ak+1 = RkQk + αkIn = Q�
k (QkRk + αkIn)Qk = Q�

k AkQk,

we see that once again Ak+1 and Ak are orthogonally similar. The idea is to try to
choose αk close to a real eigenvalue of Ak. Indeed if αk is a real eigenvalue then
Ak − αkIn is singular, so Rk is also singular and hence must have a diagonal ele-
ment equal to zero. If, in this case, Ak − αkIn is in reduced Hessenberg form, we
may deflate the problem in iteration k and continue with the unreduced Hessenberg
submatrices. If, however, Ak −αkIn is in unreduced Hessenberg form, then as shown
above Qk is in Hessenberg form. Thus RkQk and consequently Ak+1 = RkQk +αkIn

are in reduced Hessenberg form. So we may deflate the problem in iteration k + 1
and continue with the unreduced Hessenberg submatrices. In practice, of course,
we do not know the eigenvalues of Ak. Indeed they are the very objects that we are

6Here we adopt the matlab notation for matrix entries. If M is any matrix we denote by
M(i, j) the entry of M at position (i, j).
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trying to compute. For the moment let us suppose that the block S�� in the Schur
form S of A (36) is the 1× 1 matrix consisting of the real eigenvalue λn. Then if Ak

converges to S we must have Ak(n, n−1) → 0 and Ak(n, n) → λn. So αk = Ak(n, n)
is a good choice for the shift and in fact will yield local quadratic convergence, see
[126].
We are left with the question of how to choose αk to accelerate the convergence to
a complex eigenvalue. For this we assume that Ak is in unreduced Hessenberg form,
since otherwise we may deflate the problem and apply the following considerations
to the unreduced diagonal blocks of Ak. If αk is chosen to be complex then the
arithmetic used in Steps 1 and 2 must be complex and this may increase the com-
putational cost by a factor of about 6 over that of real arithmetic. However suppose
that for complex αk the above single shifts are replaced by double shifts as follows:

Q ′
kR

′
k = Ak − αkIn, Ak+1/2 = R ′

kQ
′
k + αkIn,

Q ′′
k R ′′

k = Ak+1/2 − αkIn, Ak+1 = R ′′
k Q ′′

k + αkIn, (39)

where Q ′
k, Q

′′
k ∈ Un(C) and R ′

k, R
′′
k triangular. Then Ak+1/2 = Q ′ ∗

k AkQ
′
k, Ak+1 =

Q ′′ ∗
k Ak+1/2Q

′′
k and hence Ak+1 = Q ′′ ∗

k Q ′ ∗
k AkQ

′
kQ

′′
k . Now since Q ′′

k R ′′
k = Ak+1/2 −

αkIn = R ′
kQ

′
k + (αk − αk)In, we have

Q ′
kQ

′′
k R ′′

k R ′
k = Q ′

k(R
′
kQ

′
k + (αk − αk)In)R ′

k = (Q ′
kR

′
k + (αk − αk)In)Q ′

kR
′
k

= (Ak − αkIn + (αk − αk)In)(Ak − αkIn) = (Ak − αkIn)(Ak − αkIn).

So (Q ′
kQ

′′
k )(R ′′

k R ′
k) is a QR decomposition of the real Hessenberg matrix Mk :=

(Ak −αkIn)(Ak −αkIn). This suggests that one should use a real QR decomposition
of this matrix, i.e. Mk = QkRk with Qk ∈ On, Rk real upper triangular, and define
Ak+1 = Q�

k AkQk. This is the essence of the idea put forward by Francis and is
reflected in the epithet “double” in the title of the algorithm.
Unfortunately in order to compute Qk and Rk one must first compute the real ma-
trix Mk = A2

k − 2(Reαk)Ak + |αk|2In and this step requires O(n3) flops. In order to
circumvent this, one uses the so-called implicit QR iterations which require O(n2)
flops. These are based on Proposition 4.5.10 and proceed as follows:

Step 1: Compute the first column bk = Mke
1 of Mk (see below) and find a House-

holder transformation W ∈ Rn×n such that Wbk ∈ Re1.

Step 2: Set A′ = WAkW .

Step 3: Reduce A′ to Hessenberg form H ′ = U�A′U by an orthogonal transforma-
tion U ∈ On, see Lemma 4.5.8.

Step 4: Set Wk = WU and Ak+1 = W�
k AkWk.

It follows from equation (40) below that bk �∈ Re1, since Ak is not reduced and so
Ak(2, 1)Ak(3, 2) �= 0. In particular, bk �= 0 and We1 ∈ W (RWbk) = Rbk. Now
by construction Ue1 = e1 (see Remark 4.5.9) and hence the first column of Wk is
Wke

1 = We1 ∈ Rbk. But if Mk = QkRk were a real QR factorization of Mk, the
first column of the orthogonal matrix Qk would also be a unit vector in Rbk. Hence
Wke

1 = ±Qke
1 and so by Proposition 4.5.10 the constructed Wk is essentially equal

to Qk provided the Hessenberg matrix Ak+1 = W�
k AkWk is unreduced. So the cal-

culation of the matrix Qk can be replaced by the Steps 1-4.
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Since Ak is in Hessenberg form, only the first three components of the first column
of A2

k (and hence of Mk) are possibly non-zero and these are⎡⎣ Ak(1, 1) Ak(1, 2)
Ak(2, 1) Ak(2, 2)

0 Ak(3, 2)

⎤⎦[ Ak(1, 1)
Ak(2, 1)

]
=

⎡⎣ Ak(1, 1)2 + Ak(1, 2)Ak(2, 1)
Ak(2, 1)Ak(1, 1) + Ak(2, 1)Ak(2, 2)

Ak(2, 1)Ak(3, 2)

⎤⎦ .

Hence bk is of the form bk = [b�, 0�n−3]
� where

b :=

⎡⎣ bk
1

bk
2

bk
3

⎤⎦ =

⎡⎣ Ak(1, 1)2 + Ak(1, 2)Ak(2, 1) − 2 Re αkAk(1, 1) + |αk|2
Ak(2, 1)Ak(1, 1) + Ak(2, 1)Ak(2, 2) − 2 ReαkAk(2, 1)

Ak(2, 1)Ak(3, 2)

⎤⎦ . (40)

This calculation can be carried out in O(1) flops and means that the matrix W in

Step 1 has the form W =

[
V 0
0 In−3

]
where V ∈ R3×3 is a Householder transfor-

mation such that V b = [a, 0, 0]� for some a ∈ R. As a consequence the matrix A′

has the following structure

A′ =

⎡⎢⎣ B C

f�

0
H

⎤⎥⎦ , B ∈ R
3×3, C ∈ R

3×(n−3), f ∈ R
3, H ∈ R

(n−3)×(n−3),

where H is in Hessenberg form. This reduces the computational burden in Step 3.
The result is that Step 3 can be carried out in O(n2) flops rather than the O(n3)
flops required to reduce a general matrix to Hessenberg form.
As in the case of a single real shift one would like to choose the complex shift αk

close to a complex eigenvalue of Ak. But the eigenvalues of Ak are not known. Now
suppose that the block S�� in the Schur form of A is a 2×2 matrix which has complex
eigenvalues. Then if Ak converges to S, we have Ak(n− 1, n− 2) → 0 and the 2× 2
blocks

Ak(�) =

[
Ak(n − 1, n − 1) Ak(n − 1, n)

Ak(n, n − 1) Ak(n, n)

]
converge to S�� as k → ∞. So it seems a good idea to choose αk to be an eigenvalue
of Ak(�) and this choice will in fact yield local quadratic convergence.
Note that in order to compute the vector bk we only need to know 2 Reαk and |αk|2,
and these are the trace t and determinant d of Ak(�), if we choose αk ∈ σ(Ak(�)).
This allows us to use real arithmetic. We do not need to check that Ak(�) has in
fact non-real eigenvalues, i.e. d > t2/4, since the double shift algorithm also works
if the eigenvalues of Ak(�) are real. Alternatively, in this case a single shift may be
employed and then it is usual to employ the Wilkinson shift, i.e. the real eigenvalue
of Ak(�) which is closest to Ak(n, n).
After first balancing7 the matrix A and transforming A into Hessenberg form, the
QR algorithm usually starts by choosing shifts based on the 2×2 block in the bottom
right hand corner. Deflation occurs at iteration k if Ak(n − 1, n − 2) is sufficiently

7Balancing is briefly discussed in the next subsubsection.
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small and when this is the case the process is repeated for the Hessenberg submatrix
obtained by removing rows and columns n − 1 and n. Finally all 2 × 2 blocks that
have real eigenvalues are upper triangularized. In practice the QR algorithm with
double shifts almost always converges and on average only two shifts are required
before a reduction occurs. However there are small sets of matrices for which this
is not the case. When these are discovered, “exceptional shifts” are introduced to
patch the algorithm.
We now discuss the application of the QR algorithm to three different problems.

Determining the eigenvalues of a matrix

Since the middle of the 20th century there have been many significant advances in
the numerical resolution of the eigenvalue problem, see Notes and References. The
essential feature of most of these methods is that a given matrix A ∈ Rn×n is reduced
by orthogonal transformations to real Schur form S.
The power and inverse power are particularly simple methods for approximating
eigenvalues and eigenvectors of a matrix. Moreover they have connections to the
QR algorithm which indicate why the sequence of iterates of the QR algorithm con-
verges. To explain this let us assume that A ∈ Rn×n is diagonalizable with eigenpairs
(λi, xi)i∈n, ‖xi‖2 = 1 and that A has a unique simple eigenvalue of maximum mag-
nitude

|λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn|. (41)

The power method is particularly suited for finding the dominant eigenvalue λ1 and
an associated eigenvector of A. (To approximate other eigenvalues, one may use
shifts, see below.) For every z0 =

∑n
i=1 γix

i ∈ Cn, γi ∈ C, we have

zk := Akz0 =

n∑
i=1

γiA
kxi =

n∑
i=1

γiλ
k
i x

i = λk
1

(
γ1x

1 +

n∑
i=2

γi

(
λi

λ1

)k

xi

)
, k ∈ N.

Because of (41) the second term in the parenthesis tends to zero since (λi/λ1)
k → 0

as k → 0. As a consequence we have zk ≈ λk
1γ1x

1 for large k and if γ1 �= 0 then
the associated Rayleigh quotients8 ρk := 〈Azk, zk〉/〈zk, zk〉 tend to λ1. The rate of
convergence will depend mainly on the ratio |λ�/λ1| where � is the smallest index
i ≥ 2 such that γi �= 0 and convergence will be slow if |λ�/λ1| is close to 1.
Because (λk

1)k∈N tends to zero or is unbounded if |λ1| �= 1, it is convenient to scale
the sequence (zk). This leads us to consider, for any given z0 ∈ Cn with γ1 �= 0, the
normalized sequence (yk) and the associated sequence of Rayleigh quotients defined
by

y0 = z0/‖z0‖2, yk+1 = Ayk/‖Ayk‖2, ρk = 〈Ayk, yk〉, k ∈ N.

It is easily seen by induction that in fact yk = zk/‖zk‖2, k ∈ N, and therefore the
Rayleigh quotients of yk and zk coincide. As a consequence we obtain (if γ1 �= 0)

|ρk − λ1| → 0, ‖yk − (λ1/|λ1|)k (γ1/|γ1|) x1‖2 → 0 as k → ∞, (42)

i.e. (ρk) approximates the dominant eigenvalue of A and the sequence (yk), although
not necessarily convergent, approximates the eigenspace spanned by x1.

8The Rayleigh quotient 〈Az, z〉/〈z, z〉 of a vector z ∈ Kn, z �= 0 can also be characterized as the
value of µ ∈ K which minimizes ‖Az − µz‖2, see Ex. 14.
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If A is invertible, the power method can be applied to A−1, provided there is a
unique and simple eigenvalue of A of smallest magnitude, i.e. |λn| < |λn−1|. To
approximate different simple eigenvalues shifts are used. For any α ∈ C, the inverse
power method applied to the shifted matrix A − αIn and the vector z0 proceeds as
follows

y0=z0/‖z0‖2, (A−αIn)zk+1 =yk, ρk =〈zk+1, yk〉, yk+1=zk+1/‖zk+1‖2, k ∈N (43)

where the initial vector z0 ∈ Kn, z0 �= 0 is arbitrary. Since the eigenvalues of
(A − αIn)

−1 are (λi − α)−1, the inverse power method will yield the eigenvalue
closest to α, provided this eigenvalue is unique and simple.
Now suppose that we are at the kth iteration in the QR algorithm with single,
possibly complex, shifts αk. For simplicity of notation we write (A, A1, α, Q, R)
instead of (Ak, Ak+1, αk, Qk, Rk) and set Aα = A−αIn, Q = [Q1, q], R∗ = [R1, rnne

n]
with q ∈ Cn, rnn ∈ C. The QR step can be written in the form[
Q∗

1

q∗

]
Aα =

[
R∗

1

rnne
n�

]
, A1 = Q∗AαQ+αIn =

[
Q∗

1AαQ1 + αIn−1 Q∗
1Aαq

q∗AαQ1 q∗Aαq + α

]
. (44)

If α �∈ σ(A), then q = rnn(A∗
α)−1en and since ‖q‖2 = 1 we have |rnn| = ‖(A∗

α)−1en‖−1
2 .

This shows that the last column q of the matrix Q generated by a QR factoriza-
tion of Aα is the result of an inverse power iteration (43) with the matrix A∗

α ap-
plied to the vector eıθen where rnn = eıθ|rnn|, θ ∈ [0, 2π). So by the above power
and inverse power analysis one might expect that q is a good approximation of an
eigenvector of A∗

α. To explore this further we again assume that A is diagonaliz-
able, but now (xi)i∈n, ‖xi‖2 = 1 are eigenvectors of A� with eigenvalues λi. Then
A∗

αxi = (λi − α)xi, i ∈ n and by (44)

q∗Aα = rnne
n� = e−ıθ|rnn|en� =

e−ıθen�

‖(A∗
α)−1en‖2

.

Suppose that en =
∑n

i=1 γi x
i, γi ∈ C, γ1 �= 0, then, if we set ε = λ1 − α,

‖(A∗
α)−1en‖2 = ‖γ1 ε−1x1 +

n∑
i=2

γi(λi − α)−1xi‖2.

Hence

‖q∗Aα‖2 = |ε||γ1|−1| ‖x1 + ε

n∑
i=2

(γi/γ1)(λi − α)−1xi‖−1
2

Now suppose that λ1 is a simple eigenvalue of A and that |λ1 − α| = |ε| is small
with |ε| ' mini=2,...,n |λi − α| = |λj − α|. Then there exists a constant C such that

‖
∑n

i=2(γi/γ1)(λi − α)−1xi‖2 ≤ C/|λj − α|. So if ε is sufficiently small we have

‖q∗Aα‖2 ≤ |ε||γ1|−1(1 − |ε|C/|λj − α|)−1.

We see therefore that for small ε, the vector q is indeed an approximate eigenvector
of A∗

α with approximate eigenvalue zero.
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Actually the above analysis also suggests a possible shift for Ak+1 = A1. By the
second equality in (44), we have for α1 ∈ C

‖en�A1 − α1e
n�‖2

2 = ‖q∗AαQ1‖2
2 + |α + q∗Aαq − α1|2.

Since for small ε the first term on the right hand side in the above expression is small,
α1 = α + q∗Aαq = q∗Aq is an approximate eigenvalue of A1 with approximate left
eigenvector en. The shift q∗Aq is called the Rayleigh quotient shift because it is the
Rayleigh quotient 〈AQen, Qen〉. Note that this is the single shift strategy advocated
in the first part of the description of the QR algorithm for the real eigenvalues.
Let us make some comments regarding the computation of the Schur form. Since
the eigenvalues can be determined from the Schur form its computation will be ill-
conditioned for certain matrices. Nevertheless it can be shown that Francis’ implicit
double-shift QR algorithm is numerically stable in that there exist Û ∈ On, ∆ ∈
Rn×n such that the computed matrix S̃ is in real Schur form with

S̃ = Û� (A + ∆) Û , (45)

where ‖∆‖2,2/‖A‖2,2 is a small multiple of machine precision. The computed matrix

Ũ is nearly orthogonal and close to Û , but it need not be close to any U satisfying
(36). We see from (45), that

‖S̃ − Û� A Û‖2,2 = ‖Û� ∆ Û‖2,2 = ‖∆‖2,2. (46)

Although (46) is very satisfactory we cannot conclude that the computed eigenvalues
are near to those of A because of the possible ill-conditioning of the eigenvalue
problem.
If the eigenvectors are also required they can be computed from the eigenvectors
of the Schur form S = U�AU . For example if S has an eigenpair (λ, x), then
A will have an eigenpair (λ, Ux). In computing the eigenvectors of S one uses a
back-substitution procedure exploiting the quasi-triangular form of S, see Notes
and References. The extra cost of determining the eigenvectors is ≈ 6n2 flops.
The eig function in matlab chooses from 16 different algorithms for computing
eigenvalues depending on the structure of the matrix, whether it is symmetric or
non-symmetric, whether eigenvectors are required etc., see Notes and References.
For the general non-symmetric case after first pre-conditioning A, matlab reduces
A to Hessenberg form, then uses a QR algorithm to reach Schur form. There are
two types of pre-conditioning: (i) one seeks a permutation matrix P so that PAP�

is nearly triangular or close to real Schur form, (ii) one tries to balance the matrix
by seeking a diagonal matrix D so that the rows and columns of D−1AD have
approximately equal norms. In general, pre-conditioning the matrix improves the
accuracy of the QR iterations. It costs O(n2) flops.

Determining the singular values of a matrix

Given A ∈ Rm×n, the squares of the singular values of A are the eigenvalues of A�A.
So Francis’ double-shift QR algorithm may be applied to the symmetric matrix A�A
to obtain the singular values of A. Now by Proposition 4.5.6 the condition number
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for computing singular values σi is κ(σi, A) = 1 and since we have just seen that
Francis’ double-shift QR algorithm is numerically stable, their computation by this
method will in general be reliable. There are two simplifications when the QR
algorithm is applied to symmetric matrices:

• There is no need to consider complex shifts since σ(A�A) ⊂ R.

• If U�A�AU = H = (hij), with H in Hessenberg form, then H is tridiagonal,
i.e. hij = 0, |i − j| > 1, i, j = 1, 2, ..., n.

Moreover, at each iteration symmetry is preserved and since the single shift QR
steps Hk−αkIn = QkRk, Hk+1 = RkQk +αkIn, αk ∈ R also preserve the Hessenberg
structure, the tridiagonal structure of the Hk is inherited by Hk+1. Now the QR
factorization of a tridiagonal matrix requires only O(n) flops, so there is an order of
magnitude less work than that involved in computing eigenvalues of non-symmetric
matrices.
The symmetric structure can also be used in calculating the shifts αk. Suppose that
Hk is in unreduced tridiagonal Hessenberg form

Hk =

⎡⎢⎢⎢⎢⎢⎢⎣
h11 h12 0 · · · 0

h21 h22
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . hn−1n−1 hn−1n

0 · · · 0 hnn−1 hnn

⎤⎥⎥⎥⎥⎥⎥⎦ .

Wilkinson suggested that one should choose αk to be the eigenvalue of the bottom
2× 2 block which is closest to hnn and he showed in [526] that when this is the case
the algorithm is locally cubically convergent for almost all matrices.
Although it would seem that the scheme that we have described here is very sat-

isfactory, one must be cautious. Consider A =

⎡⎣ 1 1
ε 0
0 ε

⎤⎦, where ε is so small that

to machine precision 1 + ε2 is the same as 1. Then A�A =

[
1 + ε2 1

1 1 + ε2

]
and

the computed singular values would be (
√

2, 0), leading to the erroneous conclusion
that rankA = 1. The discrepancy occurs because we have worked with A�A, so
introducing unnecessarily ε2. Golub and Kahan (1965) [196] have suggested a way
around this by working directly with A and not A�A. Their algorithm involves a
variant of implicit QR iterations and below we describe its essential features.
In the first step Householder transformations are used9 to reduce A to bidiagonal
form (see Lemma 4.5.11):

B =

⎡⎢⎢⎢⎢⎢⎣
d1 e1 · · · . 0

0 d2
. . . . 0

...
...

. . .
. . .

...
0 0 · · · dn−1 en−1

0 0 · · · 0 dn

⎤⎥⎥⎥⎥⎥⎦ .

9If B = PAQ with P ∈ Om, Q ∈ On then B�B = Q�A�P�PAQ = Q�A�AQ, so that A and
B have the same singular values.
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Here we have taken m = n since the rows of zeros when m > n do not really play a
role. We also assume that all the di and ei are non-zero. This is because if ei = 0
the problem can be deflated. And actually this is also the case if di = 0 since then
it is possible to zero the superdiagonal entry ei−1 by pre-multiplication by suitable
rotations, see Notes and References. It follows therefore that the tridiagonal matrix
B�B is unreduced. We will describe the first iteration of the algorithm and see
later that it amounts to a QR factorization . The 2 × 2 upper left and lower right
submatrices of B�B are[

d2
1 d1e1

d1e1 d2
2 + e2

1

]
,

[
d2

n−1 + e2
n−2 dn−1en−1

dn−1en−1 d2
n + e2

n−1

]
.

Suppose that α is the Wilkinson shift based on the right hand matrix, then the
following two steps are carried out.

Step 1: Choose a Householder vector v ∈ R2 with ‖v‖2 = 1 such that

(I2 − 2vv�)

[
d2

1 − α
d1e1

]
=

[
β
0

]
where β ∈ R

∗ and set V =

[
I2 − 2vv� 0

0 In−2

]
.

Step 2: Find W1, W2 ∈ On with the first column of W2 equal e1 ∈ Rn such that
B̂ = W�

1 BV W2 is bidiagonal.

The fact that Step 2 can indeed be carried out will be demonstrated below. Since
Householder transformations preserve Euclidean norms we have

√
(d2

1 − α)2 + d2
1e

2
1 =

|β|. By construction we have V (B�B − αIn)e
1 = βe1 = βW2e

1. Multiplying these
equalities by V from the left and using V 2 = In, we conclude that the first column
of βV W2 is equal to the first column of B�B−αIn . Moreover, B̂ being bidiagonal,
the matrix B̂�B̂ = W�

2 V �B�BV W2 is tridiagonal and hence in Hessenberg form.
Now if B�B − αIn = QR was a QR factorization, then necessarily the first col-
umn of Q would be the first column of B�B − αIn divided by its norm ±β. Hence
the first column of Q would be equal to ±V W2e

1. But B�B − αIn is unreduced
and this implies, as we have seen in the description of the QR algorithm, that Q
and Q�(B�B − αIn)Q = RQ are also in Hessenberg form. Hence it follows from
Proposition 4.5.10 (with A = B�B − αIn, U = V W2 and Ũ = Q) that

V W2 = QD where D is of the form D = diag (±1, ...,±1).

But (QD)(D−1R) would be just another QR factorization of B�B − αIn and so
determining V W2 and B̂ mimics one iteration of the QR algorithm. The purpose of
the algorithm is to achieve deflation by zeroing either en−1 or dn−1. By repeated ap-
plication of the two steps one constructs a sequence of bidiagonal matrices (B̂k) with
entries dn−1(k) and en−1(k). From the fact that the QR algorithm with Wilkinson
shifts almost always converges we can expect that dn−1(k)en−1(k) converges to zero
and so the problem can be deflated. Criteria for smallness within the bidiagonal
band are usually of the form

|ei| ≤ ε(|di| + |di+1|), |di| ≤ ε‖B‖F ,

where ε is a small multiple of machine accuracy. After successive deflations B is
eventually reduced to diagonal form. Accumulating all the orthogonal matrices one
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obtains U, V ∈ On such that U�AV = diag(σ1, ..., σn). Hence U diag(σ1, ..., σn)V �

is a singular value decomposition of A.
Let us comment on Step 2. This can be carried out by reducing BV to bidiagonal
form by the algorithm described in Subsection 4.5.2. However the fact that B is
bidiagonal can be used to simplify the algorithm. In fact both the first column of
Ck in (28) and the vector fk+1 in (31) will have all zero entries with the exception
of the first two. As a consequence the first iterations starting from BV develop in
the following way

BV =

⎡⎢⎢⎢⎢⎢⎣
∗ ∗ 0 . . . 0
+ ∗ ∗ 0 . . 0
0 0 ∗ ∗ 0 . 0
...

...
...

0 0 ∗

⎤⎥⎥⎥⎥⎥⎦ � (BV )1/2 =

⎡⎢⎢⎢⎢⎢⎣
∗ ∗ + 0 . . 0
0 ∗ ∗ 0 . . 0
0 0 ∗ ∗ 0 . 0
...

...
...

0 0 ∗

⎤⎥⎥⎥⎥⎥⎦ �

(BV )1 =

⎡⎢⎢⎢⎢⎢⎣
∗ ∗ 0 . . . 0
0 ∗ ∗ 0 . . 0
0 + ∗ ∗ 0 . 0
...

...
...

0 0 ∗

⎤⎥⎥⎥⎥⎥⎦ � (BV )3/2 =

⎡⎢⎢⎢⎢⎢⎣
∗ ∗ 0 . . . 0
0 ∗ ∗ + . . 0
0 0 ∗ ∗ 0 . 0
...

...
...

0 0 ∗

⎤⎥⎥⎥⎥⎥⎦ �

So the bulge denoted by + moves from the (2, 1) position to the (1, 3) position and
then to the (3, 2) position etc. Successive applications chases the bulge down the
subdiagonal until the bidiagonal form is reached.
Note that (BV )1 is obtained from (BV )1/2 and (BV )2 is obtained from (BV )3/2 by
Householder transformations of the form

Ŵ1 =

⎡⎢⎢⎣
1 0 0 0
0 ∗ ∗ 0
0 ∗ ∗ 0
0 0 0 In−3

⎤⎥⎥⎦ , Ŵ2 =

⎡⎢⎢⎣
I2 0 0 0
0 ∗ ∗ 0
0 ∗ ∗ 0
0 0 0 In−4

⎤⎥⎥⎦
respectively. The first column of both these matrices is e1 and this will also be the
case for the subsequent matrices Ŵ3, ..., Ŵn−2. Hence W2e

1 = Ŵ1...Ŵn−2e
1 = e1.

Remark 4.5.17. The books we cite in Notes and References give more comprehen-
sive accounts of the algorithm and describe it in terms of Givens rotations rather than
Householder transformations. �

Since the computed singular values can be shown to be the singular values of A+∆,
where ‖∆‖2,2/‖A‖2,2 is a modest multiple of machine precision, the algorithm is
numerically stable. It is regarded as the most reliable way of, for example, calcu-
lating the rank of a matrix. The flop count is dominated by the first reduction to
bidiagonal form and for m ≥ n is ≈ 4mn2 − (4/3)n3 if only the singular values are
computed and ≈ 4mn2 + 4m2n + (8/3)n3 if U and V are also required.

Solving Liapunov equations

We describe an algorithm due to Bartels and Stewart for solving the Liapunov equa-
tion
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A∗P + PA + Q = 0 (47)

where it is assumed that (3.3.88) holds, i.e. λ + µ �= 0 for all λ, µ ∈ σ(A). Under
this condition (47) has a unique solution P . This algorithm works for both the real
and the complex case. Since the real case is more complicated than the complex
one we will assume A, Q ∈ Rn×n and show how a solution of (47) can be obtained in
real arithmetic. The Bartels-Stewart algorithm [38] for the solution of a Liapunov
equation (47) proceeds via the following three steps (the notation is the same as
that in Theorem 4.5.14).

Step 1: Francis’ double-shift QR algorithm is used to transform A into real Schur
form S = U�AU where U ∈ On.

Step 2: Compute Q̂ = U�QU . Then P is a solution of (47) if and only if P̂ = U�PU
solves

S�P̂ + P̂S + Q̂ = 0. (48)

Step 3: Compute the solution P̂ of (48) and return the solution P = UP̂U� of
(47).

To compute P̂ in Step 3 the quasi-triangular structure of S is utilized in the following
way. Let

Q̂ = [q̂1, . . . , q̂n], S = (sij) =

⎡⎢⎢⎢⎣
S11 S12 · · · S1�

0 S22 · · · S2�
...

...
. . .

...
0 0 · · · S��

⎤⎥⎥⎥⎦ ∈ R
n×n.

where each diagonal block Sjj, j ∈ � is either a real 1 × 1 matrix consisting of an
eigenvalue of A or a real 2× 2 matrix with eigenvalues a complex pair λ, λ ∈ σ(A).

Algorithm 4.5.18. This algorithm computes successively the columns p̂1, . . . , p̂n

of P̂ , determining in each iteration either a single column or a pair according to
whether the corresponding diagonal block of S has order one or two.

1. Init: Set k = 1.

2. while (k ≤ n)

2.1 If k = n or sk+1k = 0 (i.e skk is a real eigenvalue of A)10 solve the following
linear equation for p̂k

[S� + skkIn] p̂k = −q̂k −
k−1∑
i=1

sik p̂i. (49)

Set k = k + 1.
2.2 Else (i.e. skk belongs to a diagonal 2× 2 block of S) solve the following

linear equation for [p̂k p̂k+1]

S�[p̂k p̂k+1] + [p̂k p̂k+1]

[
skk skk+1

sk+1k sk+1k+1

]
= −[q̂k q̂k+1]−

k−1∑
i=1

[sik p̂i sik+1 p̂i]. (50)

Set k = k + 2.

10Note that in this algorithm k can only take values for which skk is either a real eigenvalue of
A or the upper left entry of a 2 × 2 block Sjj . Hence, for these values of k, the entry skk is a real
eigenvalue of A if and only if k = n or sk+1k = 0.
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3. Set P̂ = [p̂1, . . . , p̂n].

4. End: Return P = UP̂U�.

Note that in Step 2.1 the vectors p̂i, i = 1, ..., k− 1 have been computed in previous
iterations so that (49) has a unique solution p̂k since skk ∈ σ(S) ∩ R and hence
−skk /∈ σ(S) = σ(S�) by assumption.
Also in Step 2.2 the vectors p̂i, i = 1, ..., k − 1 have been calculated in previous
iterations so that (50) admits a unique solution [p̂k p̂k+1]. In order to see this let
T ∈ C2×2 be such that

T

[
skk skk+1

sk+1k sk+1k+1

]
T−1 =

[
λk 0

0 λk

]
.

Multiplying (50) on the right by T−1 and setting [p̂k p̂k+1]T−1 = [x y], x, y ∈ Cn,
the left hand side of (50) becomes [(S�+λkIn)x, (S�+λkIn)y]. Since λk, λk ∈ σ(A)
it follows by assumption that −λk,−λk /∈ σ(S�) and so equation (50) has a unique
solution. If we rewrite (50) as a vector equation[

S� + skkIn sk+1kIn

skk+1In S� + sk+1k+1In

][
p̂k

p̂k+1

]
= −

[
qk

qk+1

]
−
[ ∑k−1

i=1 sik p̂i∑k−1
i=1 sik+1 p̂i

]
,

and reorder the scalar equations of this system via the permutation

(1, N + 1, 2, N + 2, . . . , N, 2N),

a banded system of linear equations is obtained that can be solved in O(n2) flops.
In Subsection 4.5.1 we derived various estimates of the condition number for the
problem of solving a Liapunov equation. However even if these are small, the above
algorithm may not give good results. This is because the computation of the Schur
form in Step 1 is not necessarily reliable if the eigenvalue problem is ill-conditioned.
Nevertheless the algorithm seems to be the most successful one for solving Liapunov
equations. It is the basis of lyap in matlab, although there A is first reduced to
complex Schur form, see Notes and References.

4.5.4 Exercises

1. Consider the problem of inverting a matrix A in the following setting

W = K
n×n, W0 = Gln(K), X = K

n×n and fI(w) = A−1, w ∈ W0

where W and X are endowed with Frobenius norms. Prove that κ(fI , A) = ‖A−1‖2
2,2.

Prove that with respect to weighted norms ‖w‖W = ‖w‖F /‖A‖F , ‖X‖X = ‖X‖F /‖A−1‖F ,
κrel(fI , A) = ‖A−1‖2

2,2‖A‖F ‖A−1‖−1
F .

Hint: Use the same method as in the proof of Proposition 4.5.1 with B = In fixed.

Calculate these condition numbers for the matrices

[
1 0
1 1

]
,

[
1 1
1 1.1

]
.

2. Consider the same problem as that in Ex. 1 but where now W and X are endowed with
the weighted norms ‖w‖W = ‖w‖/‖A‖, ‖X‖X = ‖X‖/‖A−1‖ with ‖ · ‖ a given operator
norm on K

n×n. Prove that κrel(fI , A) = κ(A) := ‖A‖ ‖A−1‖.
Hint: Use f ′

I(A)∆A = −A−1∆AA−1 to obtain the estimate κrel(fI , A) ≤ κ(A) and then
choose a particular ∆A to conclude equality.
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3. Suppose A ∈ Gln(K), Ax = b ∈ K
n and (A + ∆A)y = b + ∆b where ‖A−1‖ ‖∆A‖ < 1

and ‖ · ‖ is the operator norm induced by the norm ‖ · ‖Kn on K
n. Prove that

‖y − x‖Kn

‖x‖Kn
≤ κ(A)

1 − ‖A−1‖ ‖∆A‖

(‖∆A‖
‖A‖ +

‖∆b‖Kn

‖b‖Kn

)
, κ(A) := ‖A‖ ‖A−1‖.

If z is the computed solution, then r = b − Az is called the residual vector. Show that

‖z − x‖Kn

‖x‖Kn
≤ κ(A)

‖r‖Kn

‖b‖Kn
.

4. Suppose that A =

[
1 0
2 −1

]
. Let T be the set of regular real matrices T , such that

T−1AT =

[
1 0
0 −1

]
.

Prove that the condition number κ(fI , A) = ‖A−1‖2
2,2 (see Ex. 1) is bounded above by

‖T‖2
2,2‖T−1‖2

2,2 for any T ∈ T. Minimize this upper bound over the set T and compare
your answer with κ(fI , A).

5. Suppose A ∈ R
n×n has eigenvalues λ1, ..., λn. Prove that

n∑
i=1

|λi|2 = inf
det T �=0

‖T−1AT‖2
F ,

and show that A is normal if and only if
∑n

i=1 |λi|2 = ‖A‖2
F .

6. Calculate the unweighted condition numbers for solving the Liapunov equations, where
Q = I2 and

(i) A =

[
0 1
−2 −3

]
, (ii) A =

[
−1 0
1 1.1

]
.

Also calculate the estimate (14) for the two Liapunov equations.

7. Consider the discrete time Liapunov equation

A�XA − X + Q = 0. (51)

Let LD
A : R

n×n → R
n×n be the corresponding Liapunov map X �→ LD

A (X) = A�XA − X

and

W=R
n×n×R

n×n, W0 =WD
1 ×R

n×n, X=R
n×n, fD

L (A,Q) = −(LD
A )−1(Q), (A,Q)∈W0

where WD
1 = {A ∈ R

n×n; ∀λ, µ ∈ σ(A) : λµ �= 1}. If (A,Q) ∈ W0 and the matrix spaces
W, X are provided with the Frobenius norms

‖w‖W = ‖(A,Q)‖W =
(
‖A‖2

F + ‖Q‖2
F

)1/2
, ‖X‖X = ‖X‖F ,

prove that the condition number for solving (51) satisfies

κ(fD
L , A,Q) ≤ ‖[A� ⊗ A� − In2]−1‖2,2 [1 + ‖In ⊗ A�X + (A�X ⊗ In)P‖2

2,2 ]1/2,

where P is a suitable permutation matrix.



4.5 Computational Aspects 515

8. Suppose c = (ci) ∈ C
n, c �= 0 and let c1 = |c1|eıθ with θ ∈ [0, 2π). Defining u =

c+eıθ‖c‖2e
1 and v = u/‖u‖2, prove that the Householder transformation V = In−2vv∗ ∈

Un(C) maps c to V c = −eıθ‖c‖2e
1. Show that V can be expressed as follows

V = In − αuu∗ where u = (eıθ(|c1| + ‖c‖2), c2, . . . , cn)�, α = [‖c‖2(‖c‖2 + |c1|)]−1.

9. Construct a counterexample illustrating Remark 4.5.15.

10. Prove Theorem 4.5.16 and show by a counterexample that the complex and the real
Schur forms of a given matrix are, in general, not uniquely determined.

11. Suppose S =

[
A F

0 C

]
is in Schur form. Prove that if λ �= µ, for all λ ∈ σ(A), µ ∈

σ(C) then there is a matrix T of the form T =

[
I R

0 I

]
such that T−1ST =

[
A 0
0 C

]
.

12. Prove that if λ is an eigenvalue of an unreduced upper Hessenberg matrix H ∈ R
n×n,

then its geometric multiplicity is one.

13. Suppose A ∈ R
n×n is singular and is in Hessenberg form. Prove that if A = QR is a

QR factorization of A, then R(n, n) = 0.

14. Given A ∈ K
n×n and v ∈ K

n, ‖v‖2 = 1 show that µ = 〈Av, v〉 achieves minµ∈K ‖Av −
µv‖2

2 = ‖Av‖2
2 − |〈Av, v〉|2.

15. Given A =

⎡⎣ 1 1 1
0 2 1

.9999 −2 0

⎤⎦ use matlab to compute (i) a Schur form (ii) a singular

value decomposition and (iii) the solution of the Liapunov equation PA + A�P + I = 0.
Find estimates for the condition numbers for determining (i) and (iii) if the matrix spaces
involved in these problems are provided with the Frobenius norm.

4.5.5 Notes and References

For an historical account of numerical problems going back to the 16th century, see Golds-

tine (1977) [195]. Details about floating-point arithmetic can be found in Goldberg (1991)

[192]. The problems caused by the use of finite arithmetic and rounding errors are dis-

cussed in most books cited in the third paragraph.

We have used the definition of condition number due to Rice (1966) [434]. For a discus-

sion of numerical stability and conditioning see Wilkinson (1965) [524], Stewart (1973)

[480] and Stoer and Bulirsch (1993) [486]. Motivation for using κ(A) = ‖A‖ ‖A−1‖ as a

condition number for solving linear equations can be found in most of the books we cite

here. The fact that for operator norms κ(A) = ‖A‖ ‖A−1‖ is the weighted norm of the

Fréchet derivative of the map A �→ A−1 is proved in Higham (2002) [230]. For a discussion

on the problem of computing ‖A−1‖ see Chapter 14 in [230] and the references therein.

Important references for eigenvalue problems are Wilkinson (1965) [524] and Golub and

Wilkinson (1976) [198].

In preparing the material for Subsections 4.5.2 and 4.5.3 we have made use of the com-

prehensive books by Datta (1995) [121], Golub and Van Loan (1996) [197], Higham (2002)

[230], Demmel (1997) [126], Trefethen and Bau (1997) [500], Stewart (1998), (2001) [482],

[483] and Higham and Higham (2002) [229]. The transformation which now takes his name
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and many other aspects of Numerical Analysis can be found in the book by Householder

(1974) [269]. Details of the modified Gram-Schmidt algorithm (MGS) are given in Golub

and Van Loan (1996) [197]. Björck (1967) [62] has shown that MGS produces a computed

Q which satisfies Q�Q = I + EMGS where ‖EMGS‖ ≈ epsκ(A) (for spectral norms) and

eps is the machine precision. The corresponding result for the Householder approach

yields Q�Q = I + EH where ‖EH‖ ≈ eps.

The Schur form originally appeared in Schur (1909) [453]. The papers Francis (1961,1962)

[166], [167] describe the double-shift QR algorithm. An alternative algorithm for obtain-

ing a QR factorization is given in Stewart (2001) [483]. This first reduces the matrix to

Hessenberg form. Then Givens rotations are used to zero the subdiagonal entries at a cost

of O(n2) flops for n × n Hessenberg matrices. Givens rotations are discussed in most of

the textbooks cited above.

Another approach to solving linear equations AX = B when the matrix A is ill-conditioned

or even singular is based on regularization techniques. Perhaps the most important

method is Tikhonov’s regularization of the pseudo-inverse which utilizes the formula Xε =

(A�A + ε2In)−1A�B. Regularization methods have mostly been discussed in an infinite

dimensional context. A standard reference for the numerical solution of finite dimensional

linear equations via regularization methods is Hansen (1997) [216] and an instructive tu-

torial survey is Neumaier (1998) [390]. Wilkinson shifts and the fact that for symmetric

matrices one obtains cubic convergence are discussed in Wilkinson (1968) [526]. The al-

gorithm we have given for computing singular values was proposed by Golub and Kahan

(1965) [196]. If one of the diagonal terms di in a bidiagonal matrix is zero it is possible

to zero the superdiagonal entry ei−1 by pre-multiplication by a sequence of Givens trans-

formations, see e.g. [197]. The back-substitution method for computing the eigenvectors

of a matrix in Schur form is discussed e.g in Stewart (2001) [483]. The Bartels-Stewart

algorithm was originally developed for solving Sylvester equations AX + XB = C, see

Bartels and Stewart (1972) [38].

LAPACK contains a vast number of freely available well tested linear algebraic subrou-

tines, for a user’s guide see Anderson et al. (1999) [14]. As a user’s guide to matlab we

recommend Higham and Higham (2002) [229].

Linear Systems Theory has provided a rich source of new problems for Numerical Linear

Algebra. The difficulties associated with the Hessenberg form for systems, where both the

system matrix and either an input or output matrix are simultaneously simplified, have

been discussed in Laub and Linnemann (1986) [333]. They outline some basic applications

of the reduction but also show that it can be extremely sensitive to perturbations. More

comprehensive treatments of numerical problems which arise in System Theory can be

found e.g. in the books by Laub et al. (1994) [334],[335], Datta (1999) [122] and Pichler et

al. (2000) [410]. The European Network of Numerics in Control (NICONET) has devel-

oped a subroutine library for Systems and Control Theory which is based on Numerical

Linear Algebra routines from LAPACK, see [122]. More details can be found on the web

site http://www.win.tue.nl/niconet/niconet.html.



Chapter 5

Uncertain Systems

The first step in most applications of mathematics is to determine a mathematical
model for the system under investigation. The model may be used in a number
of different ways. For example, a mathematical and computational analysis of the
model often leads to a better understanding of the real physical system it represents.
From a more practical viewpoint the model can be used to make predictions about
the future behaviour of the system, or to design algorithms of automatic control
which ensure that the system behaves in some desirable fashion. However, in each
of these applications it is of fundamental importance to keep in mind that the model
is only a model, its behaviour and that of the real system might be quite different.
The origins and causes of this possible discrepancy are many and in the systems
theory literature are collectively referred to as model uncertainties:

• Parameter uncertainty. The model may depend on some physical pa-
rameters which are not known precisely.

• Imperfect knowledge of the dynamics. There may be nonlinear and/or
time-varying effects which are not known accurately.

• Unknown inputs and neglected dynamics. A system is usually in dy-
namic interaction with its environment and it is often not clear where the
boundary of the system should be drawn. Uncertainties arise if parts of the
real system dynamics are not accounted for in the model and if the inputs to
the system from the environment are not accurately known.

• Model simplification. Although an accurate complex model of the real
physical system may be available, it is often necessary to simplify this for
the purpose of analysis and design. E.g. nonlinearities and time-variations
are neglected, infinite dimensional systems are replaced by finite dimensional
ones and sometimes further model reduction techniques are used to reduce the
dimension of the system.

• Discretization and Rounding Errors. If simulations are carried out on
a computer, discretization methods must be applied and rounding errors are
introduced which will lead to unknown nonlinear model perturbations.

Some of the above points can be illustrated by the examples we have discussed in
Chapter 1. For instance, the friction and stiffness forces in the mechanical systems
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of Section 1.3 will usually depend in a nonlinear way on velocity and position, and
their linearizations (see (1.3.2)) at uncertain operating points will yield uncertain
coefficients c and k. In Example 1.1.3 there may be other predators and prey present
but their dynamics and their influence on the evolution of the real predator-prey
system have been neglected. The temperature at the ends of the heated rod in
Section 1.6 may not be a given constant but may vary because of changes in the
temperature of the environment. The pendulums in Section 1.3 have been modelled
as rigid bodies whereas, in fact, they may be flexible, requiring an infinite dimen-
sional system for their description.
The development of methods for coping with the problem of model uncertainty is a
great challenge for mathematical scientists today. There is a lack of tools for quan-
tifying the effects of model uncertainties. Sometimes this leads to the development
of more and more complex models in an attempt to account for all possible relevant
phenomena and to reduce the modelling error to a minimum. However this strategy
can fail. It may lead to models which are too complex for mathematical analysis
so that experimental studies via simulations remain the only source of information,
but then the size of the model could create new numerical uncertainties.
In this chapter we will be mainly concerned with developing tools for the spectral
analysis of time-invariant linear systems with uncertain parameters. Spectral meth-
ods have proved to be very successful in solving many problems in the mathematical
sciences. For example, eigenvalues yield information about resonance, stability, rates
of growth or decay, and together with eigenvectors provide a means of approximation
(e.g. from PDE to ODE). However we have seen in Section 4.2 that their sensitivities
may be high and so, in the presence of rounding errors and parameter uncertainties,
their computation may give misleading results. In order to take account of such
perturbations we use a multi-model approach and assume that the spectral proper-
ties of the real system are portrayed with sufficient accuracy by at least one of the
models. A nominal model is chosen on the basis of a “best guess” for the parameter
vector and then the uncertain system is modelled as a set of linear systems whose
parameter vectors lie in a given ball centred at the nominal parameter vector.
In the previous chapter we derived classical perturbation results which were mostly
of a qualitative type, namely smoothness properties of eigenvalues and the eigenframe
(continuity, analyticity) under small parameter perturbations (often restricted to a
single parameter). Here we use the results of Section 4.3 and 4.4 on singular values
and the µ-function to develop a quantitative theory, namely bounds and quantitative
information about the variation of the spectrum under arbitrary parameter pertur-
bations without any restriction on the number of parameters.
Full information about the “spectrum of the uncertain system” is given by its spec-
tral value sets. These are the unions of the spectra of all perturbed systems with
perturbation of size less than a given number (uncertainty level). The variation of
these sets as the uncertainty level changes provides a kind of spectral portrait of
the nominal system characterizing the behaviour of its spectrum under given sets of
perturbations.
Very often, and especially so in control, desired properties of a system can be ex-
pressed by constraints on the spectrum. We say that a system is Cg-stable if its
spectrum lies in a prescribed open subset Cg of the complex plane (stability region).
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In this chapter we do not deal with the design problem of moving the spectrum of
a given system into Cg by feedback control, but assume that this has been carried
out successfully so that the nominal model (of the closed loop system) satisfies the
constraints. We then introduce a stability radius as a measure of the smallest per-
turbation for which the perturbed system no longer satisfies the constraints. This
is a worst case robustness measure expressed by a single number and provides an
efficient tool for assessing the robustness of the stability of a given system.
If an asymptotically stable linear system has a stability radius which is very small
compared to the distance of its spectrum from the imaginary axis, this may indicate
an unpleasant transient behaviour. In certain directions small initial deviations from
the origin will generate large transient deviations before these are reduced to zero
in the long term. In the presence of model uncertainties an analysis of the transient
behaviour is particularly important and is an essential complement of spectral sta-
bility analysis. If the state trajectories of a linearized model move temporarily far
away from the origin they may incite neglected nonlinearities which drive the sys-
tem permanently away from the corresponding equilibrium point. From a practical
viewpoint such equilibria are unstable (due to an extremely flat basin of attrac-
tion), even though the spectral analysis of the linearized model promises stability,
see Notes and References. In this chapter we will study the transient behaviour of
linear systems in some detail and discuss its relationship with spectral value sets
and stability radii.
At the end of the chapter we will extend the analysis to wider perturbation classes
accounting for time-varying parameter perturbations, neglected nonlinearities and
neglected dynamics. For each of these perturbation classes we introduce a corre-
sponding stability radius and study the relationship between them.
We will now give a brief outline of the material contained in each section.

Section 5.1 Here we define spectral value sets and stability radii in a very general set-
ting for systems with arbitrary parameter uncertainty. Elementary properties which
do not depend on special perturbation structures are derived. We then introduce
more specific perturbation structures which will be considered in later sections.

Section 5.2 In this substantial section we define spectral value sets with respect
to the structured perturbations introduced in Section 5.1 and show that they can
be characterized via the µ-function of an associated transfer function. Particular
attention is given to complex and real single block perturbations where the character-
izations are computationally feasible and lead to algorithms for their visualization.
We also consider unstructured perturbations for which the spectral value sets have
been called pseudospectra in the literature, see Notes and References.

Section 5.3 Stability radii are introduced and analyzed following essentially the same
programme as in Section 5.2. For complex full-block perturbations and the spectral
norm the stability radii can be characterized by parametrized Riccati equations or,
equivalently, by parametrized Hamiltonian matrices and this leads to an algorithm
for their computation.

Section 5.4 By specializing the results of Sections 5.2 and 5.3, we obtain explicit for-
mulas for root sets and stability radii of polynomials with uncertain coefficients.

Section 5.5 The concept of (M, β)-stability is introduced which implies both a sat-



520 5. Uncertain Systems

isfactory transient behaviour and exponential stability. We derive various estimates
for the state trajectories of a stable linear system and will see that spectral value
sets and stability radii play an important role in deriving these estimates.

Section 5.6 We introduce stability radii for time-varying, nonlinear and dynamic
perturbations and show that they are all equal in the complex case, whereas they
may differ in the real case.

Throughout this chapter the main emphasis will be on analysis, but we will also
deal with the problem of computing spectral value sets and stability radii.

5.1 Models of Uncertainty and Tools for their

Analysis

In this section we introduce the general notions of spectral value set and stability
radius for arbitrary parametrized sets of time-invariant linear systems. We sup-
pose that a nominal parameter vector is given, and view the other parameter values
as deviations from it. The uncertain system is then modelled by the set of sys-
tems whose parameter deviations are bounded in norm by a given uncertainty level
(“multi-model with norm bounded uncertainty”).
Without further assumptions no specific characterizations or algorithms are available
in order to determine spectral value sets and stability radii. So, after introducing
the general framework and illustrating the new concepts by figures and examples
we only derive some basic general properties in the first subsection. More specific
perturbation structures will be considered in the second subsection where we intro-
duce linear fractional representations of parameter uncertainties. Many parameter
uncertainties encountered in control applications can be represented in this way,
and we will restrict our studies to these in all but the last section of this chapter.
In principle, arbitrary rational parameter dependencies can be represented in linear
fractional form. However, for computational purposes further restrictions have to be
imposed on the perturbation structure. Uncertain systems, for which spectral value
sets and stability radii can be explicitly calculated, will be studied more closely in
later sections.

5.1.1 General Definitions and Basic Properties

There are many different ways of modelling uncertain dynamical systems. If e.g. the
parameters of a linear system are uncertain but some statistical information is avail-
able, one may choose a stochastic linear model where the random entries of the
system matrix fluctuate according to some probabilistic law about their given mean
values. In this chapter we will, however, only consider deterministic models of un-
certainty. More precisely we will study parametrized sets of time-invariant linear
finite dimensional systems of the following form

ẋ(t) = Aωx(t), t ≥ 0, or x(t + 1) = Aωx(t), t ∈ N (ω ∈ Ω) (1)

where the system matrix Aω ∈ K
n×n depends on some parameter vector ω ∈ Ω and

Ω is a given parameter set which is a subset of a finite dimensional normed vector
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space (V, ‖ · ‖). The whole parametrized set (1) represents our a priori knowledge
about the “real” system we wish to analyze, and although we do not know which
parameter value ω ∈ Ω is the right one, the modelling assumption is that at least
one of the systems in the set describes the real system with sufficient accuracy. The
individual models in (1) may be thought of as either uncontrolled dynamical systems
or controlled systems in which the loop has been closed by feedback.
In addition to the model class (1) there is often some a priori knowledge available
concerning the range of values of the parameter vector. For example it may be known
that the parameter values belong to certain real intervals thus specifying lower and
upper limits for the parameters. Here we regard the individual systems in (1) as
perturbations of a given nominal system with matrix A = Aω0 , which represents
the “best” or “most probable” or “averaged” model within the system family. It is
assumed that the norm of the deviation of the parameters from the nominal value is
bounded by some given level of uncertainty δ > 0 so that a satisfactory multi-model
of the “real system” is given by the set of systems with matrices

A(∆) = Aω0+∆, ∆ ∈ ∆0 := Ω − ω0, ‖∆‖ < δ. (2)

The vector ∆ ∈ ∆0 represents the deviation of the parameter vector ω = ω0+∆ from
the nominal parameter vector ω0, and A(∆) is the perturbed system matrix associ-
ated with this deviation. Identifying the matrix Aω = Aω0+∆ with the correspond-
ing continuous or discrete time system in (1), the matrix family (A(∆))∆∈∆0, ‖∆‖<δ

models a (time-invariant, linear, finite dimensional) system with norm bounded un-
certainty, centred at the nominal system A = A(0) = Aω0 .
Throughout the section we suppose the following:

Assumption 5.1.1. (A(∆))∆∈∆0 is a given continuous matrix family in K
n×n,

whose parameter set ∆0 is a subset of a finite dimensional normed K-linear space
(V, ‖ ·‖). The closure ∆ = ∆0 of ∆0 in V is starlike with respect to the origin1, and
the well-posedness radius δδδ0 = inf{‖∆‖; ∆ ∈ ∆ \ ∆0} is strictly positive (δδδ0 := ∞
if ∆ = ∆0).

Let B(δ), B∆0
(δ) and B∆(δ) denote the open balls with radius δ around the origin

in V , ∆0 and ∆, respectively. For later use we note that, as a consequence of the
previous assumption, the closed balls around the origin in ∆0 with radius δ < δδδ0

are starlike and compact:

B∆0(δ) = B∆(δ) = B(δ) ∩∆ = B(δ) ∩ ∆0, δ ∈ (0, δδδ0). (3)

In control applications it often occurs (see the next subsection) that the perturba-
tions ∆ belong to some linear space ∆ and the system matrix depends rationally
on the parameter deviations such that no entry aij(∆) = qij(∆)/pij(∆) of A(∆) has
a pole at ∆ = 0. In this case the set ∆ is given first and then ∆0 is taken as the
set of all the ∆ ∈ ∆ for which all the entries have denominators pij(∆) �= 0. Then
δδδ0 is the largest δ > 0 so that A(∆) is well defined for all ∆ ∈ ∆, ‖∆‖ < δ. With
these definitions the above assumption will be satisfied.
Our aim is to examine the extent to which dynamic properties of the nominal sys-
tem are preserved under parameter perturbations ∆ ∈ ∆0 of bounded norm. We

1i.e. ∆ ∈ ∆ ⇒ α∆ ∈ ∆ for all α ∈ [0, 1].
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suppose that these properties can be expressed by spectral constraints σ(A) ⊂ Cg

where Cg ⊂ C is a given open subset (the “good part”) of the complex plane. Cg

will also be called the “stability region”. Then the above problem can be stated as
a problem of robust stability: Given a bound δ > 0 on the norm of the parameter
deviation ∆, are all the perturbed spectra σ(A(∆)) contained in the prescribed sta-
bility region? This leads to the following definition where A(·) denotes the matrix
family (A(∆))∆∈∆0 .

Definition 5.1.2. For every δ > 0 the set

σ∆(A(·); δ) =
⋃

∆∈∆0,‖∆‖<δ

σ(A(∆))

is called the spectral value set of A = A(0) under perturbations of the form A �

A(∆), ∆ ∈ ∆0, at the uncertainty level δ.

Thus σ∆(A(·); δ) is the set of all complex numbers to which an eigenvalue of A can
be moved by a parameter perturbation ∆ ∈ ∆0 of size < δ. The shape of these sets
clearly depends on the parameter dependence ∆ �→ A(∆), the parameter set ∆0,
the chosen norm ‖ · ‖, and the uncertainty level δ.

Remark 5.1.3. We have chosen to write σ∆ rather than σ∆0 since – as mentioned above
– the perturbation class ∆ is usually fixed first and as a second step the set ∆0 is specified
as the set of all ∆ ∈ ∆ for which the matrices A(∆) are well defined. �

Methods for the computation of spectral value sets and their visualization on the
computer screen are only available for a few special perturbation structures and
special parameter sets. Some of these methods will be dealt with in the next section.
Here we make use of them in order to compute the spectral value sets of some
examples which illustrate the concept.
We have seen in Chapter 1 that rational parameter dependencies often occur in
linear models of physical systems. As a simple example we consider the spectral
value set of a linear oscillator with uncertain coefficients.

Example 5.1.4. Consider the damped oscillator mξ̈ + cξ̇ + kξ = 0 where the mass
m = m0 + ∆m, damping coefficient c = c0 + ∆c and spring coefficient k = k0 + ∆k are
uncertain, with m0, c0, k0 > 0. Taking ω0 = (m0, c0, k0) as the nominal parameter vector
and setting ∆ = (∆m,∆c,∆k), the system matrix of the state space model of the uncertain
linear oscillator is

A(∆) =

[
0 1

−(k0 + ∆k)/(m0 + ∆m) −(c0 + ∆c)/(m0 + ∆m)

]
.

Apparently, for physical reasons, the deviation vector ∆ = (∆m,∆c,∆k) should be re-
stricted so that m > 0, c, k ≥ 0, i.e.

∆R
0 = {∆ ∈ R

3;∆m > −m0, ∆c ≥ −c0, ∆k ≥ −k0}. (4)

However, we shall see later that there is a case for considering complex parameter pertur-
bations, see Example 5.3.14. Mathematically, A(∆) is defined for all

∆ ∈ ∆C
0 = {(∆m,∆c,∆k) ∈ C

3; ∆m �= −m0}. (5)
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With both parameter sets, ∆0 = ∆R
0 and ∆0 = ∆C

0, the matrix family (A(∆))∆∈∆0 satis-

fies Assumption 5.1.1. In order that the spectral value sets give significant information it is
essential that the perturbation norm is chosen in a way which reflects the actual parameter
uncertainty. For instance, if it is known a priori that the oscillator parameters m, c, k vary
in certain real symmetric intervals about their nominal values, the perturbations should
be measured by a suitably scaled ∞-norm

(i) ‖∆‖ = max{α1 |∆m|, α2 |∆c|, α3 |∆k| }, ∆ = (∆m,∆c,∆k) ∈ R
3.

Then the open ball of radius δ > 0 about the nominal parameter vector (m0, c0, k0) takes
the form of a 3-dimensional interval

(m0 − δ/α1,m0 + δ/α1) × (c0 − δ/α2, c0 + δ/α2) × (k0 − δ/α3, k0 + δ/α3).

Any product of intervals of the three parameters m, c, k ∈ (0,∞) may be represented in

this way by choosing the nominal parameter values and the weights accordingly.
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Figure 5.1.1: Evolution of spectral value sets of the oscillator for increasing δ

Similarly, if the uncertainty in the parameters is expressed in terms of their relative devi-
ations from the nominal values, adequate norms might be

(ii) ‖∆‖ = max{|∆m|/m0, |∆c|/c0, |∆k|/k0}, (iii) ‖∆‖ = ‖(|∆m|/m0, |∆c|/c0, |∆k|/k0)‖2.

By the definition of δδδ0 in Assumption 5.1.1, δδδ0 = α1m0 for the norm (i) whereas δδδ0 = 1
for the norms (ii), (iii) for both parameter sets ∆0 = ∆R

0 and ∆0 = ∆C
0.

In Figure 5.1.1 we present the spectral value sets of the oscillator with nominal parameters
m0 = 1, c0 = 4, k0 = 5 for complex perturbations with respect to the norm ‖ · ‖∞ on ∆.
The eigenvalues of the nominal system are marked by ×. The contours represent the
boundaries of σ

∆
C(A(·); δ) at different uncertainty levels δ, both smaller and larger than

the critical value δδδ0 = 1. The figure shows, from the left to the right, the spectral value
sets for δ ∈ {0.1, 0.28, 0.46, 0.64, 0.82, 1.0, 1.5, 2.5, 3, 6.0}. One observes on the left hand
side of the figure that for δ = 0.1 the set consists of two connected components, and each
one contains an eigenvalue of A(0). As δ increases the components merge and σ

∆
C expands

until at δ = δδδ0 = 1 the set is unbounded. For δ > δδδ0 the spectral value set consists of
that (unbounded) part of the complex plane which is exterior to one of the contours on
the right hand side of the figure. The interiors of the nested contours represent regions
which are increasingly difficult to reach by eigenvalues of the perturbed system, i.e. the
perturbations required for pushing eigenvalues into these regions get larger and larger. �
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In Subsection 4.2.3 we derived some estimates for the distance of the spectrum of
a perturbed matrix A(∆) = A + ∆, ∆ ∈ Cn×n from the spectrum of A. These
estimates provide upper bounds for the corresponding spectral value sets. In the
following example we compare the upper bound provided by the Bauer-Fike Lemma
4.2.14 with the exact result. A similar comparison with the estimate derived from
Gershgorin’s Theorem will be given in the next section (Example 5.2.13).

Example 5.1.5. In Example 4.2.17 we have applied the Bauer-Fike Lemma to matrices

of the form A =

[
−1 α

0 −2

]
where α ∈ R+ is given. For perturbations A � A(∆) =

A + ∆, ∆ ∈ C
2×2 we obtained the following estimate

min
λ∈σ(A)

|λ∆ − λ| ≤ (1 + cos θ)

sin θ
‖∆‖2,2 =

[
(1 + α2)1/2 + α

]
‖∆‖2,2, λ∆ ∈ σ(A∆)

where θ = θ(α) ∈ [0, ω/2] is the angle between the two unit eigenvectors [1 , 0]� and
(1 + α2)−1/2[α , −1]� of A. (Note that θ(α) → 0 as α → ∞). Using this estimate we see
that the spectral value set σC2×2(A(·), 1/2) with respect to the spectral norm is contained
in the union of the open disks of radius

[
(1 + α2)1/2 + α

]
/2 around the eigenvalues of

A. Figure 5.1.2 compares σC2×2(A(·), 1/2) with this upper bound for two values of the
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Figure 5.1.2: σC2×2(A(·), 1/2) and the Bauer-Fike bound for α = 0.1 and α = 4

parameter, α = 0.1 and α = 4. Note that the bound described by the outer broken lines is
tight for α = 0.1 (where A is nearly normal) whereas, for α = 4, σC2×2(A(·), 1/2) is quite
different from that of the upper estimate derived from the Bauer-Fike Lemma. �

The following example and the associated Figure 5.1.3 shows the difference between
spectral value sets for complex and real parameter perturbations. The figure also
illustrates how these sets evolve if the level of uncertainty δ > 0 is increasing.

Example 5.1.6. Suppose that the matrix

A =

⎡⎢⎢⎣
−7 5 0 0
0 0 8 2
0 0 6 −2
0 0 8 6

⎤⎥⎥⎦ with spectrum σ(A) = {−7, 0, 6 + 4i, 6 − 4i}

is subjected to unstructured perturbations of the form A � A(∆) = A + ∆ where ∆ ∈
C

4×4 or ∆ ∈ R
4×4. We denote the corresponding spectral value sets with respect to the

spectral norm by σC(A; δ) and σR(A; δ). These sets are shown in Figure 5.1.3 for the
uncertainty levels δ = 1, 2, 3. The spectral value sets for complex and real perturbations
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Figure 5.1.3: Evolution of spectral value sets for increasing δ

differ substantially. For δ = 1, σC(A; δ) consists of four disks of radius 1 around the
eigenvalues of A whereas in the real case the disks around the two real eigenvalues are
replaced by real intervals and the other two disks are replaced by sets of an oval form. For
δ = 2, σC(A; δ) is connected whereas σR(A; δ) is not. While all the three sets σC(A; δ) are
open subsets of C (the shaded areas inside the contours), none of the three sets σR(A; δ)
is open because of the real intervals (which form part of these sets) sticking out of the
shaded areas. This corresponds to the fact that, under real parameter perturbations,
the eigenvalues are “more mobile” along the real axis and the real eigenvalues of A may
be trapped in R for small perturbations. Note, however, that by definition σR(A; δ) ⊂
σC(A; δ), and so the real intervals sticking out of σR(A; δ) are contained in σC(A; δ). In
fact they bridge the gap between the interior of σR(A; δ) and the boundary of σC(A; δ). �

The following lemma collects some basic general properties of spectral value sets.
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Define δ(·) : C → [0,∞] by

δ(s) = inf{‖∆‖; ∆ ∈ ∆0, s ∈ σ(A(∆))}, s ∈ C (6)

where, as usual, we set inf ∅ = ∞, whence δ(s) = ∞ for s ∈ C \
(⋃

∆∈∆0
σ(A(∆))

)
.

Lemma 5.1.7. Suppose Assumption 5.1.1 holds and A = A(0), then

(i) the spectral value sets σ∆(A(·); δ) are increasing with δ ∈ R+.

(ii) The intersection of all the sets σ∆(A(·); δ), δ > 0 is equal to σ(A).

(iii) σ∆(A(·); δ) is a bounded subset of C for all δ ∈ (0, δδδ0).

(iv) If s0 ∈ σ∆(A(·);δδδ0), then there exists a perturbation ∆0 ∈ ∆0 of minimal norm
‖∆0‖ = δ(s0) such that s0 ∈ σ(A(∆0)).

(v) If δ ∈ (0, δδδ0), then the closure of σ∆(A(·); δ) in C is given by

σ∆(A(·); δ) =
⋃

∆∈B∆(δ)

σ(A(∆)) =
⋂
δ′>δ

σ∆(A(·); δ′). (7)

(vi) The closure σ∆(A(·); δ) ∈ K(C) depends continuously on δ ∈ (0, δδδ0) with re-
spect to the Hausdorff metric on K(C) (the set of compact subsets of C).2

Proof : (i) is trivial. (ii) follows from Corollary 4.2.1 since ∆ �→ A(∆) is continu-
ous.
(iii) For every δ ∈ (0, δδδ0), the closed ball B∆0(δ) = B∆(δ) is compact by (3) and
hence {A(∆); ∆ ∈ B∆(δ)} is a compact set of matrices. Therefore

⋃
∆∈B∆(δ) σ(A(∆))

is compact by Corollary 4.2.2 and so σ∆(A(·); δ) ⊂ ⋃
∆∈B∆(δ) σ(A(∆)) is bounded.

(iv) Suppose s0 ∈ σ∆(A(·);δδδ0). Then there exists a sequence (∆k) in ∆0 such that
s0 ∈ σ(A(∆k)), ‖∆k‖ < δδδ0, and ‖∆k‖ ↓ δ(s0). By compactness we may assume that
the sequence has a limit ∆ ∈ B∆(δ) for some δ < δδδ0. But then ‖∆‖ = δ(s0) by the
continuity of the norm, and s0 ∈ σ(A(∆)) by the continuity of the spectrum, see
Corollary 4.2.1.
(v) From what we have seen in the proof of (iii) it is clear that inclusions ⊂ hold
in (7). Now suppose s0 ∈

⋂
δ′>δ σ∆(A(·); δ′). By (iv) there exists a perturbation

∆0 ∈ ∆0 of minimal norm ‖∆0‖ = δ(s0) such that s0 ∈ σ(A(∆0)). Moreover we
have ‖α∆0‖ < δ(s0) ≤ δ for α ∈ (0, 1) and α∆0 ∈ ∆0 converges towards ∆0 as
α → 1. Applying again Corollary 4.2.1 we see that σ(A(∆0)) ⊂ σ∆(A(·); δ). This
proves the equalities in (7).
(vi) Since B∆(δ) = B(δ) ∩ ∆0 is starlike with respect to the origin for δ ∈ (0, δδδ0),
it is easily verified that the map δ �→ B∆(δ) from (0, δδδ0) into K(V ) is continuous
with respect to the Hausdorff metric. Hence, by Corollary 4.2.2 and Lemma 4.1.9,
the map

δ �→ σ
(
{A(∆); ∆ ∈ B∆(δ)}

)
=

⋃
∆∈B∆(δ)

σ(A(∆)) = σ∆(A(·); δ)

from (0, δδδ0) into K(C) is continuous with respect to the Hausdorff metric. �

2In Subsection 5.2.1 we will see that the closure of the spectral value sets even depends contin-
uously on the whole set of data (A, B, C, D, δ) for δ < δδδ0.
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Proposition 5.1.8. Suppose Assumption 5.1.1 holds. If A = A(0) has m distinct
eigenvalues, then σ∆(A(·); δ) has m connected components for δ > 0 sufficiently
small. The number ν(δ) of connected components of σ∆(A(·); δ) decreases as δ in-
creases in (0, δδδ0), and every connected component of σ∆(A(·); δ) contains at least
one eigenvalue of A.

Proof : Let λ1, . . . λm be the distinct eigenvalues of σ(A) and ε > 0 be such that
the disks D(λj, ε), j ∈ m are disjoint. Since ∆ �→ A(∆) is continuous there exists
by Corollary 4.2.1 a δ > 0 such that

σ∆(A(·); δ) =
⋃

∆∈∆0,‖∆‖<δ

σ(A(∆)) ⊂
m⋃

i=1

D(λj, ε).

Since σ∆(A(·); δ) contains λ1, . . . , λm, it has at least m connected components.
Now suppose that 0 < δ′ < δ < δδδ0 and C (resp. C ′) is a connected component of
σ∆(A(·); δ) (resp. σ∆(A(·); δ′)). If C ∩ C ′ �= ∅ then C ∪ C ′ is a connected subset
of σ∆(A(·); δ), hence C ′ ⊂ C since C is a maximal connected subset of σ∆(A(·); δ).
For each connected component C ′ of σ∆(A(·); δ′) there exists exactly one connected
component of σ∆(A(·); δ) such that C ′ ⊂ C. It remains to prove that every connected
component of σ∆(A(·); δ) contains an eigenvalue of A. This implies that each of
the (disjoint) connected components of σ∆(A(·); δ) contains at least one connected
component of σ∆(A(·); δ′) and thus ν(δ) ≤ ν(δ′). Now let λ ∈ C. Then there exists
∆ ∈ ∆0, ‖∆‖ < δ such that λ ∈ σ(A(∆)). By Corollary 4.2.4 there exists an
arc λ : [0, 1] → C such that λ(t) ∈ σ(A(t∆)) for t ∈ [0, 1]. The arc λ([0, 1]) is a
connected subset in σ∆(A(·); δ) and λ(1) = λ ∈ C. This implies λ([0, 1]) ⊂ C and
so λ(0) ∈ σ(A) ∩ C. �

We say that an eigenvalue λ ∈ σ(A(0)) is immovable under perturbations A �

A(∆) if it is an isolated point of σ∆(A(·); δ) for some δ > 0, i.e. there exists a
neighbourhood N of λ such that σ∆(A(·); δ) ∩ N = {λ}. Otherwise we say the
eigenvalue is movable. In Remark 5.1.10 we give an example where the spectral
value set consists of both movable and immovable eigenvalues.
By definition (6) the spectral value set at level δ < ∞ can be expressed as a sublevel
set of the function δ(·) : C → [0,∞]

σ∆(A(·); δ) = {s ∈ C; δ(s) < δ}, δ ∈ (0,∞).

It follows from Lemma 5.1.7 that for δ < δδδ0 the level sets {s ∈ C; δ(s) = δ} coincide
with the “frontier” of the spectral value sets in the following sense:

σ∆(A(·); δ) \ σ∆(A(·); δ) = {s ∈ C; δ(s) = δ}, δ ∈ (0, δδδ0).

We will see in the next section that the level curves of δ(·) can be computed for
certain perturbation structures.
The frontier of σ∆(A(·); δ) will coincide with its topological boundary if σ∆(A(·); δ) is
open. In view of the previous example we cannot expect, in general, a spectral value
set to be open if only real parameter perturbations are allowed. For the complex
case we have the following result. The proof relies heavily on the method of analytic
continuation as discussed in the construction of q-cycles in the previous chapter.
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Proposition 5.1.9. Suppose Assumption 5.1.1 holds and additionally for every ∆ ∈
∆0 there is an ε∆ > 0 such that z∆ ∈ ∆0 for all z ∈ D(1, ε∆) and z �→ A(z∆) is
analytic on the disk D(1, ε∆). Then σ∆(A(·); δ) \ σ(A(0)) is open for all δ ∈ (0, δδδ0).

Proof : Let λ ∈ σ∆(A(·); δ) \ σ(A(0)) with δ ∈ (0, δδδ0), and let ∆ ∈ ∆0 be a
minimum norm perturbation such that ‖∆‖ = δ(λ) < δ and λ ∈ σ(A(∆)) (Lemma
5.1.7). Denote the distinct eigenvalues of A(∆) by λ1, . . . , λm (m ≤ n) and choose
a radius r > 0 sufficiently small so that the disks D(λj, r), j ∈ m are disjoint. Then
choose ε ∈ (0, ε∆) such that (1 + ε)‖∆‖ < δ and σ(A(z∆)) ⊂ ⋃

j∈m D(λj, r) for all
z ∈ D(1, ε). Reducing ε further if necessary we may assume that the punctured disk
D◦ = D(1, ε) \ {1} does not contain any critical value of the analytic matrix family
A∆(z) := A(z∆), z ∈ D(1, ε∆), see Theorem 4.1.14.
Let z0 ∈ D◦, |z0| < 1. Then λ �∈ σ(A(z0∆)), since otherwise δ(λ) ≤ |z0| ‖∆‖ < ‖∆‖.
On the other hand, there exists λ0 ∈ σ(A(z0∆)) ∩ D(λ, r). In a sufficiently small
disk around z0 the distinct eigenvalues of A(z∆) can be expressed by power series
λi(z) (Corollary 4.2.8 (ii)). One of these admits the value λ0 at z0, say λi1(z0) =
λ0. By analytic continuation along arcs in D◦ the power series λi1(z) generates a
cycle (λi1(z), . . . , λiq(z)) (represented by a Puiseux series of the form (4.2.2) which
belongs to the λ-group of the eigenvalue λ ∈ σ(A(∆)) = σ(A∆(1)), i.e. satisfies
limz→1 λik(z) = λ for k ∈ q. First suppose that q = 1. Then λi1(z) ∈ σ(A(z∆))
can be continued analytically to the whole disk D(1, ε) by Corollary 4.2.9 (i). Since
λi1(z0) = λ0 �= λ, λi1(·) cannot be constant. But then z �→ λi1(z) is an open
mapping and hence λi1(D(1, ε)) is an open neighbourhood of λ = λi1(1). Since
(1 + ε)‖∆‖ < δ implies ‖z∆‖ < δ for all z ∈ D(1, ε), it follows that this open
neighbourhood is contained in σ∆(A(·); δ).
Now suppose q ≥ 2. Then the cycle (λi1(z), . . . , λiq(z)) defines a q-valued analytic
function on D◦ which can be extended continuously to the whole disk D(1, ε). The
associated value set

⋃
z∈D(1,ε){λi1(z), . . . , λiq(z)} is open in C by Remark 4.2.10 and

contains λ. Since this set again is contained in σ∆(A(·); δ) (by the same argument
as before), the proof is complete. �

Remark 5.1.10. The whole spectral value set σ∆(A(·); δ) will in general not be open
since some of the eigenvalues of A may be immovable under the perturbations A � A(∆).

For instance, if A(∆) =

[
2 ∆1

0 ∆2

]
for ∆ ∈ ∆ = ∆0 = C

2, then 2 is a fixed eigenvalue of

A(∆) and, with respect to the ∞-norm on C
2, σ∆(A(·); 1) = D∪{2} is not open, although

the assumptions of the previous proposition are clearly satisfied. �

As mentioned at the beginning of this section, spectral value sets are of special
interest if one wants to examine whether or not a given Cg-stable system remains Cg-
stable under all parameter perturbations of norm below a given bound δ. A natural
measure for the robustness of Cg-stability is the supremal value of the bounds δ > 0
which guarantee Cg-stability. This leads to the following definition where we set, as
usual, inf ∅ = ∞.

Definition 5.1.11. Under the conditions of Assumption 5.1.1 suppose that Cg ⊂ C

is a given non-trivial open subset of C and the nominal matrix A = A(0) is Cg-stable.
Then
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r∆(A(·); Cg) = inf{‖∆‖; ∆ ∈ ∆ \ ∆0 or (∆ ∈ ∆0 and σ(A(∆)) �⊂ Cg)} (8)

is called the Cg-stability radius of A under the perturbations A � A(∆), ∆ ∈ ∆0.

Thus the stability radius is the infimum of the norms of all perturbations ∆ ∈ ∆
for which A(∆) is either not defined or not Cg-stable. If r∆(A(·); Cg) < δδδ0 (the
well-posedness radius) then only the latter case can occur and the stability radius
can be expressed in terms of spectral value sets. In fact, if σ∆(A(·);δδδ0) �⊂ Cg and
Cb := C \ Cg then

r∆(A(·); Cg) = inf{δ; σ∆(A(·); δ) ∩ Cb �= ∅}. (9)

Example 5.1.12. Consider the damped linear oscillator studied in Example 5.1.4 with
the real perturbation set ∆R

0 defined in (4). Then

∆R = ∆R
0 = {∆ ∈ R

3;∆m ≥ −m0,∆c ≥ −c0,∆k ≥ −k0} ⊂ R
3.

Let R
3 be provided with the standard Euclidean norm and consider the Hurwitz stability

region Cg = C−. The perturbed system equations have the state space form

ẋ = A(∆)x =

[
0 1

−(k0 + ∆k)/(m0 + ∆m) −(c0 + ∆c)/(m0 + ∆m)

]
x.

∆ = (−m0, 0, 0) is the smallest perturbation in ∆R such that A(∆) is not defined, and so
δδδ0 = m0. On the other hand, if ∆ ∈ ∆R, ∆m > −m0 the well defined perturbed system
ẋ = A(∆)x will not be Hurwitz stable if and only if ∆c = −c0 or ∆k = −k0. Hence
r∆(A(·); C−) = min{m0, c0, k0}. �

Many more examples will be presented in Section 5.3, where we will also derive
characterizations and numerical algorithms for determining stability radii for special
perturbation structures. Here we only list some general properties of the stability
radius, which are easy consequences of the Definition 5.1.11 and Lemma 5.1.7.

Lemma 5.1.13. Suppose Assumption 5.1.1 holds and σ(A(0)) ⊂ Cg where Cg is a
non-trivial open subset of C. Then

(i) 0 < r∆(A(·); Cg) ≤ δδδ0, and r∆(A(·); Cg) = δδδ0 if and only if σ∆(A(·);δδδ0) ⊂ Cg.

(ii) If r∆(A(·); Cg) < δδδ0 there exists a minimum norm destabilizing perturbation,
i.e. ∆ ∈ ∆0 such that σ(A(∆)) �⊂ Cg and ‖∆‖ = r∆(A(·); Cg).

(iii) r∆(A(·); Cg) = ∞ if and only if ∆ = ∆0 and σ(A(∆)) ⊂ Cg for all ∆ ∈ ∆0.

(iv) If the stability region Cg increases then r∆(A(·); Cg) increases.

(v) The stability radius remains the same if we replace Cg by the complement in
C of the boundary ∂Cg = Cg \ Cg

r∆(A(·); Cg) = r∆(A(·); C \ ∂Cg). (10)
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(vi) If ∆0 decreases and δδδ0 increases, then r∆(A(·); Cg) increases. More precisely,
suppose that ∆′

0 ⊂ ∆0 satisfies the conditions of Assumption 5.1.1 and ∆′

is the closure of ∆′
0 in V . If δδδ′0 = inf{‖∆‖; ∆ ∈ ∆′

0 \ ∆′
0} ≥ δδδ0 then

r∆
′(A(·)|∆′

0 ; Cg) ≥ r∆(A(·); Cg) (with respect to the same norm on V ).

Proof : Since σ(A(0)) ⊂ Cg, the continuity of the spectrum implies σ(A(·), δ) ⊂ Cg

for δ < δδδ0 sufficiently small. Therefore r∆(A(·); Cg) > 0. The remaining statement
in (i) follows directly from Definition 5.1.11.
(ii) If r∆(A(·); Cg) < δδδ0 there exists a sequence of ∆k ∈ ∆0 satisfying σ(A(∆k)) �⊂ Cg

and ‖∆k‖ → r∆(A(·); Cg) as k → ∞. By a compactness argument we may assume
that (∆k) is convergent. Then ∆ := limk→∞ ∆k ∈ ∆0, ‖∆‖ = r∆(A(·); Cg), and
σ(A(∆)) �⊂ Cg by the continuity of the spectrum and the openness of Cg.
Statements (iii), (iv) and (vi) follow directly from Definition 5.1.11. So it remains
to prove (v). Since Cg ⊂ C \ ∂Cg, it follows from (iv) that ≤ holds in (10). If
r∆(A(·); Cg) = δδδ0 then equality holds by (i). If r∆(A(·); Cg) < δδδ0 then there exists
a minimum norm ∆ ∈ ∆0 such that σ(A(∆)) �⊂ Cg by (ii). Note that α∆ ∈
∆0 for all α ∈ [0, 1] by Assumption 5.1.1, since ‖∆‖ = r∆(A(·); Cg) < δδδ0. By
continuity of the spectrum A(∆) cannot have any eigenvalue in C\Cg since otherwise
σ(A((1 − ε)∆)) �⊂ Cg for ε > 0 sufficiently small and this yields a contradiction.
Thus σ(A(∆)) ∩ ∂Cg �= ∅ and this concludes the proof. �

The proof shows that every minimum norm destabilizing perturbation moves at
least one eigenvalue onto the boundary ∂Cg. We conclude this subsection with an
example illustrating the difference between stability radii of stable real systems for
real and for complex perturbations.

Example 5.1.14. Let Cg = C− and consider the matrix family A(∆) =
[ −1 1+∆
−1−∆ −1

]
,

∆ ∈ R where we provide ∆ = ∆0 = R with the norm | · |. Since all the matrices
A(∆), ∆ ∈ R are Hurwitz stable we have rR(A(·); C−) = ∞. On the other hand, if we
allow complex perturbations ∆ ∈ C where ∆ = ∆0 = C is also provided with the norm
| · |, then ∆ = −1− ı is a minimal norm destabilizing perturbation, so rC(A(·); C−) =

√
2.
�

5.1.2 Perturbation Structures

At present the computation of spectral value sets is only feasible for very specific
perturbation structures. In this subsection we will describe these structures and
illustrate by means of examples the type of parameter uncertainty they can portray.

Affine Perturbations

Much of our development will be for affine perturbations of the form

A � A(∆) = A + B∆C, ∆ ∈ ∆ (11)

where (B, C) ∈ Kn×�× Kq×n are given, ∆ ⊂ K�×q is a closed convex cone as in
Section 4.4 with some operator norm ‖ · ‖∆ on span ∆. Assumption 5.1.1 is then
trivially satisfied with ∆0 = ∆ (hence δδδ0 = ∞) and (V, ‖ ·‖) = (span ∆, ‖ ·‖∆).
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The perturbed matrix A(∆) can be interpreted as the system matrix of a feedback
system obtained by applying static linear output feedback w = ∆z to the system

Σ :
ẋ(t) = Ax(t) + Bw(t), t ≥ 0
z(t) = Cx(t)

or
x(t + 1) = Ax(t) + Bw(t), t ∈ N

z(t) = Cx(t)
(12)

(see Example 2.4.12 and Figure 5.1.4).

Σ

∆ �

�

w z

Figure 5.1.4: Feedback interpretation of the perturbed system

Here the matrices B, C are not given control and measurement matrices as in Chap-
ter 2 but are chosen to reflect the structure and possible scaling of the perturbation
of the system matrix A. The input w may be interpreted as a disturbance input
coupled to the output z by an unknown feedback matrix ∆. This feedback inter-
pretation is fundamental for the following control theoretic treatment of parameter
uncertainties, and is the main reason we represent parameter deviations by matrices
instead of vectors, and measure their size by operator norms. In concrete applica-
tions the set of all possible perturbed system matrices {A(∆); ∆ ∈ ∆} is determined
by our a priori knowledge about the perturbation structure and it is assumed that
the “real” system is adequately described by at least one model in this set (multi-
model approach).
In general, the model class (11) depends upon the structure matrices B, C and the
set ∆ of parameter perturbations, and can be represented in many different ways
by choosing B, C and ∆ appropriately. In fact, choosing e.g. ∆′ = {B∆C; ∆ ∈ ∆}
the set of perturbed models can also be represented in the form {A + ∆′; ∆′ ∈ ∆′}
where the corresponding structure matrices are B′ = C ′ = In.
If B = C = In and ∆ = Kn×n, the perturbations of the form

A � A(∆) = A + ∆, ∆ ∈ K
n×n (13)

are called unstructured and the corresponding unstructured spectral value sets3 are
denoted by σK(A; δ) := σKn×n(A(·); δ).
The flexibility introduced by the matrices B, C can be used in order to reduce the set
of parameter perturbations ∆ to a form for which spectral value sets and stability
radii can be effectively computed. The simplest type of affine perturbations are
the full-block perturbations for which ∆ is maximal, i.e. ∆ = K�×q. The associated
spectral value sets are denoted by

σK(A; B, C; δ) = {λ ∈ C; ∃∆ ∈ K
�×q, ‖∆‖K�×q < δ : λ ∈ σ(A + B∆C)}. (14)

3For K = C the unstructured spectral value sets σC(A; δ) are called pseudospectra, spectral
portraits or ε-spectra of A in the literature (see Notes and References).
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It often happens that certain submatrices of A do not contain any parameters,
since their entries are completely determined by the structure of the system or by
the modelling process. By an appropriate choice of B and C, formula (11) with
∆ = K

�×q can describe parameter uncertainties where all the entries in certain rows
and columns of A are uncertain whilst the other entries are precisely known. This
is illustrated in the following simple example.

Example 5.1.15. Consider the linear oscillator with mass one, ξ̈+cξ̇+kξ = 0, k, c ∈ R,
or in state space form

ẋ = Ax, A =

[
0 1
−k −c

]
. (15)

A perturbation of the entries in the first row of A does not make sense since these entries
result from the transformation into state space form, they are fixed entries and do not
contain any system parameters. Therefore the use of the unstructured spectral value set
σK(A; δ) = σK(A; I2, I2; δ) would be inappropriate. In order that the perturbations do not
affect the first row of A we choose B = [0 1]�. If both the restoring force and friction
coefficients, k and c are uncertain, we can take this into account by setting C = I2.
Whereas if e.g. only c is uncertain we take C = [0 1]. In the former case the natural
disturbance class is ∆ = K

1×2 and in the latter ∆ = K.
In order to illustrate the difference between spectral value sets with respect to unstructured
and structured perturbations, we take c0 = 4, k0 = 5 as nominal parameters, provide all
vector spaces with their usual Euclidean norm and consider, for computational reasons,
the case of complex perturbations K = C. Figure 5.1.5 compares the spectral value

Figure 5.1.5: Spectral value sets σC(A;B, [0 1]; 1) ⊂ σC(A;B, I2; 1) ⊂ σC(A; 1)

sets σC(A;B, I2; δ) (both physical parameters c, k uncertain), σC(A;B, [0 1]; δ) (only c is
uncertain) and σC(A; δ) (unstructured perturbations of A), for δ = 1. Identifying the
perturbation ∆ ∈ C

1×2 (∆ ∈ C) with the unstructured one ∆′ = B∆ ∈ C
2×2 (resp. ∆′ =

B∆C ∈ C
2×2), we obtain a norm preserving embedding of C

1×2 (resp. C) into C
2×2,

so that necessarily σC(A;B,C; δ) ⊂ σC(A;B, I2; δ) ⊂ σC(A; δ). The figure shows that
the unstructured spectral value set can be a misleading indicator of the robustness of
stability. In fact, the pseudospectrum σC(A; 1) seems to indicate that the oscillator can
be destabilized by perturbations of size < 1 whereas, in reality, the oscillator is robustly
stable for all parameter perturbations ∆ ∈ C

1×2 of norm < 1, as shown by the spectral
value set σC(A;B, I2; 1). �

Remark 5.1.16. In general the map ∆ �→ B∆C from ∆ into K
n×n will not be one-

to-one so that the matrix perturbation set {B∆C; ∆ ∈ ∆} will be overparametrized.
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However, this can often be avoided by choosing B and C carefully. E.g., in the full-block
case, one can eliminate the linearly dependent columns in B (resp. rows in C) so that B

(resp. C) has full column (resp. row) rank. Then ∆ �→ B∆C will be one-to-one. �

The matrices B, C determine – together with ∆ – not only the structure of the per-
turbations but also the scale of how the overall matrix perturbation B∆C depends
on the parameter ∆. As in the previous subsection we assume that the uncertainty
is norm bounded, so that the uncertain system can be described by a system family
of the form

ẋ(t) = (A + B∆C)x(t) or x(t + 1) = (A + B∆C)x(t), ∆ ∈ ∆, ‖∆‖∆ < δ.

In order to ensure that the bound δ adequately represents the degree of the ac-
tual model uncertainty, the matrices B, C must be carefully scaled and the norm
‖ · ‖∆ carefully chosen. For instance, if one parameter is quite accurately known
whereas another one is very uncertain, their different degrees of uncertainty should
be balanced by appropriate scaling of B, C or by the introduction of weighted norms.

Example 5.1.17. In Franklin et al. (1986) a mathematical model for the attitude control
of a satellite is given. The satellite comprises two wings connected to a central body which
supports antennae and sensors. It is required that the antennae, sensors and solar panels
are properly orientated and usually this is achieved by pairs of gas jets which can exert
torques about each of three perpendicular axes. Once the correct orientations have been
obtained, there is a stabilization problem of maintaining them.
As a first step to the general three axis problem of controlling the motion of one of the
wings, the motion about a single axis is considered. The wing and the rest of the satellite
are modelled as rigid bodies (with moments of inertia J1, J2) connected by a rotational
spring (with spring constant k) and a rotational viscous damper (with damping constant
c). If θ1, θ2 are the angular displacement of the wing and the rest of the satellite and τ

the control torque exerted on the wing, the equations of motion take the form

J1θ̈1 + c(θ̇1 − θ̇2) + k(θ1 − θ2) = τ

J2θ̈2 + c(θ̇2 − θ̇1) + k(θ2 − θ1) = 0.

Note that this system is a rotational counterpart of the car suspension system discussed
in Example 1.3.2 with zero tyre friction and zero spring constants. Let x = [θ2 θ̇2 θ1 θ̇1]

�

and u = τ/J1, then these equations can be written in state space form ẋ = Ax+bu, where

A =

⎡⎢⎢⎣
0 1 0 0

−k/J2 −c/J2 k/J2 c/J2

0 0 0 1
k/J1 c/J1 −k/J1 −c/J1

⎤⎥⎥⎦ , b =

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ . (16)

Physical constraints associated with temperature variations imply that the parameters k

and c are constrained by

0.09 ≤ k ≤ 0.4, 0.04
√

k/10 ≤ c ≤ 0.2
√

k/10. (17)

We denote the set of ω = (k, c) ∈ R
2 which satisfy the above bounds by Ω. In Franklin

et al. (1986) the moments of inertia are assumed to be exactly known: J1 = 1, J2 = 0.1
and the problem of designing a feedback control u = f�x, f� = [f1, f2, f3, f4] ∈ R

1×4
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which stabilizes the system for all (k, c) ∈ Ω is considered. Choosing a nominal ω0 =
(k0, c0) ∈ Ω, the equations of motion of the uncertain closed loop system ẋ = (A + bf�)x
with J1 = 1, J2 = 0.1 and parameters k, c restricted by (17) can be re-written as

ẋ = A(k0, c0, f)x + P (∆1,∆2)x, ∆1 = k − k0, ∆2 = c − c0

where the nominal closed loop system matrix A(k0, c0, f) and the overall perturbation
matrix P (∆1,∆2) are defined by

A(k0, c0, f) =

⎡⎢⎢⎣
0 1 0 0

−10k0 −10c0 10k0 10c0

0 0 0 1
f1 + k0 f2 + c0 f3 − k0 f4 − c0

⎤⎥⎥⎦ ,

P (∆1,∆2) =

⎡⎢⎢⎣
0 0 0 0

−10∆1 −10∆2 10∆1 10∆2

0 0 0 0
∆1 ∆2 −∆1 −∆2

⎤⎥⎥⎦ .

The perturbation matrices P (∆1,∆2) have a very distinct structure and can be represented
as full-block perturbations of the form B∆C, ∆ ∈ ∆ = R

1×2, viz.

P (∆1,∆2) =

⎡⎢⎢⎣
0

−10
0
1

⎤⎥⎥⎦ [∆1, ∆2]

[
1 0 −1 0
0 1 0 −1

]
= B∆C, ∆ ∈ ∆ = R

1×2.

Let B∆(δ) = {∆ ∈ ∆; ‖∆‖∆ < δ} and A(∆) = A(k0, c0, f) + B∆C. Note that only the
nominal closed loop system depends upon f whereas the perturbations of the closed loop
system remain the same for all possible feedback vectors f� ∈ R

1×4. Given (k0, c0) ∈ Ω,
f ∈ R

4 such that σ(A(k0, c0, f)) ⊂ C− one way of testing whether the robustness objective
has been met, is to check if there exists a δ > 0 such that

Ω ⊂ (k0, c0) + B∆(δ) and σ∆(A(·); δ) =
⋃

∆∈B∆(δ)

σ(A(k0, c0, f) + B∆C) ⊂ C−. (18)

In order to achieve this, one tries to choose a norm ‖·‖∆ such that (k0, c0)+B∆(δ) contains
and is a good approximation of Ω for some δ. Now since the maximal deviation of k from

c

0.1

0.5

∗
(k0, c0)

k
0

Figure 5.1.6: Covering the (shaded) set Ω by the set (k0, c0) + B∆(δ)
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its nominal value is greater than that of c, one might think of using a weighted perturbation
norm ‖∆‖2

α = ∆2
1 + α2∆2

2 for some α > 1. This is illustrated in Figure 5.1.6 which shows
the (shaded) parameter set Ω and the estimates (k0, c0)+B∆(δ) for the standard Euclidean
norm and the weighted norm ‖ · ‖α where α2 = 14.67. Here (k0, c0) = (0.25, 0.02) and the
δ > 0 is chosen to be minimal so that (k0, c0)+B∆(δ) ⊃ Ω (δ = 0.1068 for the unweighted
Euclidean norm and δ = 0.1684 for ‖ · ‖α). We see that, for the unweighted Euclidean
norm, perturbations yielding much larger values of c than those in Ω must be considered.
This suggests that by using the weighted norm there is greater chance of finding a δ such
that (18) holds. Of course it might be that there exists a destabilizing ∆ in the small
part of the set bounded by the ellipse which is not in the set bounded by the circle. So
we cannot be sure at this stage that using the weighted norm is better. However we will
show that this is indeed the case in Example 5.3.19 where we use a characterization of the
stability radius to check, in a succinct way, whether or not a particular feedback control
achieves the objective. �

Not every affine matrix perturbation can be represented as a full-block perturbation
of the form A � A + B∆C with suitably chosen structure matrices B, C. In
fact, if (B∆C)ij = 0 for all ∆ ∈ K�×q then necessarily the i-th row vector of B
or j-th column vector of C is zero. Hence if the (i, j)-th element of A + B∆C
does not depend on ∆ then all the elements of the i-th row or j-th column remain
unchanged under the perturbation. In particular it is not possible to represent (in
this form) affine perturbations of A which affect exclusively the diagonal elements
of A. However, every affine perturbation can be represented in the form (11) with
∆ a linear subspace of diagonal matrices (compare Example 4.4.16). This is shown
in the following example.

Example 5.1.18. Consider a general affine matrix valued mapping of the form

z = (z1, . . . , zN ) �→ A(z1, . . . , zN ) = A +

N∑
i=1

ziAi, z ∈ K
N

where the matrices Ai ∈ Kn×n are given. Let Ai = BiCi be arbitrary factorizations of the
Ai and Bi ∈ K

n×�i, Ci ∈ K
�i×n. Then, setting

B = [B1 B2, . . . , BN ]; C = [C�
1 , . . . , C�

N ]�; ∆(z) = diag (z1I�1 , . . . , zN I�N
), z ∈ K

N

we obtain
A(z1, . . . , zN ) = A + B∆(z)C, z ∈ K

N .

Hence the affine perturbation A � A(z1, . . . , zN ) can be represented in the form (11) with
∆ = {∆(z); z ∈ K

N}. �

We conclude our discussion of affine matrix perturbations by briefly considering the
interconnection of systems with affine parameter uncertainties. For this we need sub-
systems with two (vector) inputs and two (vector) outputs where one input/output
pair (u(i), y(i)) is suitable for interconnection whereas the other input/output pair
(w(i), z(i)) is used for the feedback representation of uncertainty:

Σi(∆i) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ(i) = A(i)x(i)+B

(i)
1 w(i)+B

(i)
2 u(i)

z(i) = C
(i)
1 x(i)

w(i) = ∆iz
(i)

y(i) = C
(i)
2 x(i)

i.e.

⎧⎨⎩ ẋ(i) =
(
A(i)+B

(i)
1 ∆iC

(i)
1

)
x(i)+B

(i)
2 u(i)

y(i) = C
(i)
2 x(i).
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Here the dimensions of x(i), w(i), u(i), z(i), y(i) are ni, �i, mi, qi, pi, respectively. In the
following example we consider the feedback coupling of two uncertain subsystems of
this kind.

Example 5.1.19. Consider two uncertain systems Σi(∆i), i = 1, 2 of the above form
with full-block uncertainties and associated nominal systems Σ1 = Σ1(0) and Σ2 = Σ2(0).
Then the uncertain feedback system Σ(∆1,∆2) = Σ1(∆1)�Σ2(∆2) obtained by feedback
interconnection of Σ1(∆1) and Σ2(∆2) (see Figure 5.1.7 (a)) can equivalently be described

Σ1

Σ2

∆1

∆2

Σ1

Σ2

[
∆1 0
0 ∆2

]

(a) (b)

Figure 5.1.7: Feedback interconnection of two uncertain systems: Pulling out the ∆s

by applying the perturbation diag(∆1,∆2) to the nominal feedback system Σ1�Σ2 as
indicated in Figure 5.1.7 (b). The system matrix A(∆1,∆2) of the uncertain feedback
system Σ(∆1,∆2) is obtained by setting u(1) = y(2) and u(2) = y(1). So

A(∆1,∆2) =

[
A(1) B

(1)
2 C

(2)
2

B
(2)
2 C

(1)
2 A(2)

]
+

[
B

(1)
1 0

0 B
(2)
1

][
∆1 0
0 ∆2

] [
C

(1)
1 0

0 C
(2)
1

]
.

Hence the uncertainty of the feedback system can be represented in the form (11) with

structure matrices B = diag(B
(1)
1 , B

(2)
1 ), C = diag(C

(1)
1 , C

(2)
1 ) and perturbations ∆ =

diag(∆1,∆2) ∈ ∆ := ∆1 ⊕ ∆2 = K
�1×q1 ⊕ K

�2×q2. �

The previous example illustrates that the full-block uncertainty of two subsystems
yields a block diagonal perturbation set for their feedback interconnection. The tran-
sition from the individual uncertainties of the system components (Figure 5.1.7(a))
to the representation of the resulting uncertainty of the interconnected system in
output feedback form (11) is graphically referred to as “pulling out the ∆s”. We will
now see that the same can be done for general networks of uncertain linear systems
as considered in Section 2.4, even if not only the subsystems but also the couplings
between them are affinely perturbed. This shows the importance of block-diagonal
perturbation sets for the analysis of uncertain composite systems.
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Example 5.1.20. Consider an arbitrary linear interconnection of N nominal linear sys-
tems (Ãi, B̃i, C̃i) ∈ Lni,mi,pi(K) as described in Section 2.4. If Kij , i, j ∈ N are the linear
coupling matrices between these systems, the system matrix A of the overall intercon-
nected system has the form (see (2.4.32) in Section 2.4)⎡⎢⎣A11 . . . A1N

...
...

...
AN1 . . . ANN

⎤⎥⎦ ∈ K
n×n where

Aii = Ãi + B̃iKiiC̃i ∈ K
ni×ni , i ∈ N

Aij = B̃iKijC̃j ∈K
ni×nj , i, j ∈ N, i �= j

n = n1 + . . . + nN .

(19)

Now suppose that each block Aij is subjected to an affine full block perturbation of the
form Aij � Aij(∆ij) = Aij + Bij∆ijCij where Bij ∈ K

ni×�ij , Cij ∈ K
qij×nj are given and

the ∆ij ∈ K
�ij×qij are unknown. Let

�i =
∑N

j=1 �ij, � =
∑N

i=1 �i; qi =
∑N

j=1 qij, q =
∑N

i=1 qi

and define the N × N block matrix A(∆) = (Aij(∆ij))i,j∈N where the parameter vector
∆ := diag(∆ij)i,j∈N ∈⊕i∈N

⊕
j∈N K

�ij×qij . Then A(∆) = A + B∆C where

B = diag(B1, . . . , BN ) ∈ K
n×�, Bi = [Bi1, . . . , BiN ] ∈ K

ni×�i , i ∈ N

C = [C�
1 , . . . , C�

N ]� ∈ K
q×n, Ci = diag(Ci1, . . . , CiN ) ∈ K

qi×n, i ∈ N

∆ = diag(∆11,∆12, . . . ,∆1N ;∆21, . . . ,∆2N ; . . . ;∆N1, . . . ,∆NN ) ∈ K
�×q.

Thus the full-block perturbations Aij � Aij(∆ij) = Aij +Bij∆ijCij, ∆ij ∈ K
�ij×qij of the

system components result in perturbations of the composite system matrix of the form (11)
with block-diagonal perturbation set ∆ = {diag (∆ij)i,j∈N ; ∀i, j ∈ N : ∆ij ∈ K

�ij×qij}.
The perturbation structure is greatly simplified if the Bij only depend on the row index

i, i.e. Bij ≡ Bi ∈ K
ni×�̃i , and the Cij only depend on the column index j so that Cij ≡

Cj ∈ K
q̃j×nj , for all i, j ∈ N . Then A(∆) can be represented in the form A + B∆C with

B = diag(B1, . . . , BN ), C = diag(C1, . . . , CN ), ∆ =

⎡⎢⎣∆11 . . . ∆1N
...

...
...

∆N1 . . . ∆NN

⎤⎥⎦∈ K
�̃×q̃ (20)

where �̃ =
∑N

i=1 �̃i, q̃ =
∑N

j=1 q̃j. So in this case we obtain a full-block representation of the
uncertainty of the composite system. A special subcase is obtained if all the subsystems
(Ãi, B̃i, C̃i) are certain and only the coupling matrices are perturbed: Kij � Kij(∆ij) =
Kij + ∆ij . Then the resulting uncertainty of the composite system can be described by
a full-block perturbation structure as in (20) with Bi = B̃i, Cj = C̃j. On the other
hand, if only the input matrices B̃i or only the output matrices C̃j are perturbed to
B̃i(∆i) = B̃i +∆i, ∆i ∈ K

ni×mi (resp. C̃j(∆j) = C̃j +∆j, ∆j ∈ K
pj×nj ) then the resulting

overall perturbations of the composite system matrix A are affine and can be represented
in block-diagonal form B∆C, ∆ = diag(∆1, . . . ,∆N ), but in general not by a set of full-
block perturbations. We leave it to the reader to determine the corresponding structure
matrices B and C. If both the input and output matrices are uncertain, the composite
system will no longer depend in an affine way on the parameter perturbations, but in a
bilinear one. �

Linear Fractional Perturbations

The parameter dependencies representable by static linear output feedback w = ∆z
can be widened considerably if we introduce a direct feedthrough matrix in the
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system equations (12). Consider the uncertain feedback system in Figure 5.1.4
where now Σ is of the form

Σ :
ẋ(t) = Ax(t) + Bw(t), t ≥ 0
z(t) = Cx(t) + Dw(t)

or
x(t + 1) = Ax(t) + Bw(t), t ∈ N

z(t) = Cx(t) + Dw(t).
(21)

Here A, B, C,∆ are as in (11) and D ∈ Kq×�. The feedback system Σ�∆ is well-
posed if and only if I�−∆D is invertible, and in this case we get w = (I�−∆D)−1∆Cx
from w = ∆z = ∆(Cx+Dw), see (2.4.29) and (2.4.30). Replacing w in (21) by this
expression, we see that the feedback system Σ(∆) = Σ�∆ has the system matrix

A(∆) = A + B(I� − ∆D)−1∆C, ∆ ∈ ∆0 = {∆ ∈ ∆; det(I� − ∆D) �= 0}. (22)

Remark 5.1.21. In complex analysis a map of the form f : s �→ (α + βs)/(γ + δs)
on the complex plane is called a linear fractional transformation if det(αδ − βγ) �= 0. If
γ �= 0, the map can also be written in the form f(s) = a + b(1 − sd)−1s. Comparing
with (22) we see that A(∆) can be viewed as a linear fractional transformation of ∆
with matrix coefficients. More generally, one defines for every partitioned matrix M =[
M11 M12

M21 M22

]
∈ C

(n1+n2)×(m1+m2) and any closed convex cone ∆ ⊂ C
m2×n2 the linear

fractional transformation with coefficient M on ∆ by

F(M,∆) := M11 + M12(Im2 − ∆M22)
−1∆M21 ∈ C

n1×m1 , ∆ ∈ ∆0 (23)

where ∆0 := {∆ ∈ ∆; det(Im2 −∆M22) �= 0}. In terms of this definition the matrix A(∆)

in (22) is a linear fractional transformation of ∆ ∈ ∆0 with coefficient

[
A B

C D

]
. �

Thus the incorporation of a direct feedthrough matrix D in (21) allows us to extend
the output feedback representation of uncertainty from affine to linear fractional
parameter perturbations. Whilst this is a very substantial extension – as we shall
see soon – a complication arises in comparison to the affine case: the well-posedness
problem. The perturbed system matrices A(∆) will, in general, not be well defined
for all ∆ ∈ ∆, but only for the ∆ in the subset ∆0 of admissible disturbances

∆0 = {∆ ∈ ∆; det(I� − ∆D) �= 0}. (24)

We have ∆ = ∆0. In fact, ∆ is closed, and for any ∆ ∈ ∆ and for all t <
1 sufficiently close to 1, we have t∆ ∈ ∆0 and limt↑1 t∆ = ∆. It follows that
Assumption 5.1.1 is satisfied with

δδδ0 = inf{‖∆‖; ∆ ∈ ∆ \ ∆0} = inf{‖∆‖; ∆ ∈ ∆, det(I� − ∆D) = 0} = µ∆(D)−1

where µ∆(D) is the µ-value of D with respect to the perturbation set ∆, as defined
in Section 4.4.

Example 5.1.22. We again consider the uncertain linear oscillator of Example 5.1.4.
The system matrix of the corresponding state space model is

A(∆) =

[
0 1

−(k0 + ∆k)/(m0 + ∆m) −(c0 + ∆c)/(m0 + ∆m)

]
, ∆ ∈ ∆C

0
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and it is easily verified that A(∆), ∆ ∈ ∆C
0 can be represented in the form (22) where

A =

[
0 1

−k0/m0 −c0/m0

]
, B =

[
0
1

]
, C = −m−1

0

⎡⎣ −k0/m0 −c0/m0

0 1
1 0

⎤⎦ ,

D = −m−1
0 [1 0 0]�, ∆ = [∆m , ∆c , ∆k] ∈ ∆C

0.

In this representation ∆C = C
1×3 is a full-block perturbation set. We will see in the

next section that this greatly simplifies the computational problem of determining the
associated spectral value sets. �

The representation of the uncertainty in the above example by full block linear
fractional perturbations can be generalized. In fact in Section 5.4 we will show
that every scalar higher order linear differential equation whose coefficient vector is
perturbed in an arbitrary affine way can be written as a linear fractionally perturbed
system with a full-block perturbation set ∆ = K

1×q.
It follows from Cramer’s formula, (Im2 −∆D)−1 = det(Im2 −∆D)−1adj(Im2 −∆D),
that every linear fractional transformation (23) of ∆ is a matrix whose entries depend
rationally on the entries of ∆. It can be shown (see Notes and References) that the
converse is also true, i.e. every matrix depending rationally on a parameter vector
z = (z1, . . . , zN ) ∈ K

N

R(z) = (qij(z)/pij(z))i∈n1, j∈m1
, pij(z), qij(z) ∈ K[z1, . . . , zN ], pij(0) �= 0 (25)

can be represented in linear fractional form (23) by choosing for ∆ a suitable diag-
onal perturbation class of the form

∆ = {diag(z1Id1 , . . . , zNIdN
); (z1, . . . , zN) ∈ K

N} ⊂ K
m2×n2 = K

d×d

where (d1, . . . , dN) ∈ NN are chosen appropriately, m2 = n2 = d := d1 + . . . + dN .
Making use of the fact that the sum, product and inverse of linear fractional trans-
formations (LFT) can again be represented as linear fractional transformations
(Ex. 6, 7, 8), the problem can be reduced to the task of finding an LFT for an ar-
bitrary monomial ανz

ν1
1 zν2

2 · · · zνN
N Eij where αν ∈ K∗, ν = (ν1, . . . , νN) ∈ NN , ν �= 0

and Eij denotes the p × m-matrix whose entries are all zero except for the entry at
position (i, j) which is 1. Such LFTs are easily constructed (Ex. 9), but the combi-
nation of these LFTs to obtain an LFT representation of the rational matrix R(z)
usually leads to an explosion of the dimension d = d1 + . . .+ dN of the perturbation
matrices ∆ . Therefore the above construction procedure is only of theoretical value.
It proves the existence of an LFT representation for the given rational matrix (25),
but cannot be used in practice. So we will not enter into details of the procedure.
There are more efficient construction methods available in the literature, but no
general procedures are known to date which produce LFT representations of mini-
mal dimension d = d1 + . . . + dN (see Notes and References).
We conclude this subsection with an example where the entries of the system matrix
depend rationally on three parameters. Whilst an application of the above general
procedure would result in a high dimensional linear fractional representation with
diagonal ∆, we will see that the rational matrix can in fact be represented in a low
dimensional linear fractional form by using a block-diagonal instead of a diagonal
perturbation set.
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Example 5.1.23. Let

A(z) = A(z1, z2, z3) =

⎡⎣ 1

1 − a1z1

b2z2 + b3z3

1 − c2z2 − c3z3

0 1

⎤⎦ ,

(z1, z2, z3) ∈ K
3,

a1z1 �= 1,
c2z2 + c3z3 �= 1

where a1, b2, b3, c2, c3 ∈ K are given. Then A(0) = I2 and setting

A = A(0), B =

[
a1 b2 b3

0 0 0

]
, C2 = I2, D =

[
a1 0 0
0 c2 c3

]
it is easily verified that

A(z)=A + B(I3 − ∆D)−1∆C, ∆=

⎡⎣z1 0
0 z2

0 z3

⎤⎦∈ ∆0 = {∆ ∈ K ⊕ K
2×1; det(I − ∆D) �= 0}.

�

5.1.3 Exercises

1. Consider the matrix family Aω

Aω =

⎡⎣ (3ω2 − 2)/(1 − ω2) 1 −ω/(1 − ω2)
−1/(1 − ω2) 0 ω/(1 − ω2)
ω/(1 − ω2) ω (2ω2 − 3)/(1 − ω2)

⎤⎦ , ω ∈ Ω = C \ {−1, 1},

and let ω0 = 0. Determine ∆0, ∆, δδδ0 and the stability radius r∆(A(·); C−) for this case.
Show that σ∆(A(·); 1) = {−1,−3} = σ(A0).

2. Consider the matrix A(∆) =

[
−1 cos ∆
0.5 −2

]
, ∆ ∈ ∆ = R. Determine σ∆(A(·); δ) for

all δ > 0. Calculate the smallest value δ̂ such that σ∆(A(·); δ) is connected for δ > δ̂.

3. Suppose

A =

[
a11 a12

a21 a22

]
, A(∆) =

[
a11 a12 + ∆1

a21 + ∆2 a22 + ∆1 + ∆2

]
, (∆1,∆2) ∈ C

2.

Find B,C such that A(∆) = A+ B diag(∆1,∆2)C for all (∆1,∆2) ∈ C
2. Show that there

do not exist B,C such that A(∆) = A + B[∆1 ∆2]C for all (∆1,∆2) ∈ C
2.

4. Consider the uncertain system

ẋ = A(∆)x = (1 − ∆1 − ∆1∆2)
−1

[
1 − ∆1∆2 ∆2

2

∆2
1 −1 + ∆1 + ∆2

]
x.

Show that the perturbed system matrix can be represented in the form (22) where

A =

[
1 0
0 −1

]
, B = C = I2, D =

[
1 1
1 0

]
, ∆ = diag (∆1,∆2).
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Σ1

∆1

�u1

�

�
y1 u2

w1 z1

Σ2

∆2
�

�
� y2

w2 z2

�

Figure 5.1.8: Series connection of two uncertain systems

5. Consider two uncertain systems connected in series as shown in Figure 5.1.8. Assume
that the two systems are of the form

ẋi = Aixi + Bi
1w

i + Bi
2u

i

zi = Ci
1x

i + Di
11w

i

yi = Ci
2x

i + Di
21w

i
, i = 1, 2.

with uncertain feedback wi = ∆iz
i, ∆i ∈ ∆i, i = 1, 2.

Describe the perturbed system matrix A(∆1,∆2) of the series connection in linear frac-
tional form (22) (specify A,B,C,D,∆).

6. Sum of LFTs Consider two linear fractional transformations F(M,∆1) and F(N,∆2)
where M11 and N11 have the same format n1×m1. Show that the sum F(M,∆1)+F(N,∆2)
can be represented as a linear fractional transformation F(Q,∆) with ∆ = diag (∆1,∆2)

F(Q,∆) = F(M,∆1) + F(N,∆2), Q =

⎡⎢⎣ M11 + N11 M12 N12

M21 M22 0
N21 0 N22

⎤⎥⎦ .

7. Product of LFTs Consider two linear fractional transformations F(M,∆1) and
F(N,∆2) where M11 and N11 have the formats n1×m1 and m1×q1 respectively. Show that
the product F(M,∆1)F(N,∆2) can be represented as a linear fractional transformation
F(Q,∆) with ∆ = diag (∆1,∆2)

F(Q,∆) = F(M,∆1)F(N,∆2), Q =

⎡⎢⎣ M11N11 M12 M11N12

M21N11 M22 M21N12

N21 0 N22

⎤⎥⎦ .

8. Inverse of an LFT Let M =

[
M11 M12

M21 M22

]
and suppose that F(M,∆) is well defined,

M11 is square and nonsingular. Prove that the inverse of F(M,∆) exists and can be
represented as a linear fractional transformation of ∆ as follows

F(M,∆)−1 = F(Q,∆), Q =

[
M−1

11 M−1
11 M12

−M21M
−1
11 M22 − M21M

−1
11 M12

]
.

9. Consider the monomial ανz
νEij = ανzν1

1 zν2
2 · · · zνN

N Eij with multi-exponent ν ∈ N
N ,

ν = (ν1, . . . , νN ) �= 0, coefficient αν ∈ K
∗ and Eij = êiẽj� where êi, ẽj denote the standard

unit vectors in K
p and K

m, respectively. Let � ∈ N be the largest integer such that ν� �= 0
and |ν| = ν1 + . . . + ν�. Define the partitioned matrix M by

M11 = 0p×m, M12 = αν êi (e1)�, M21 = e|ν| (ẽj)�, M22 = J
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where J = J(0, |ν|) denotes the nilpotent Jordan block of order |ν| (see (2.2.39)) and ek

the k-th standard unit vector in K
|ν|. Verify that

F(M,∆) = αν êi (e1)� (I|ν| − ∆J)−1∆ e|ν| (ẽj)� = αν zν1
1 zν2

2 · · · zν�
� êi (ẽj)� = ανz

νEij

for ∆ = diag(z1Iν1 , . . . , z�Iν�
).

(Hint: Show that

(e1)� (I|ν| − ∆J)−1∆ e|ν| = (e1)�
[
I|ν| + ∆J + . . . + (∆J)|ν|−1

]
z�e

|ν| = zν1
1 zν2

2 · · · zν�
� ).

10. Consider the rational matrix

R(z) =

[
0 1/(1 + z1)

1/(1 + z2) z2/(1 + z1)

]
.

Show that R(z) can be written in the form q(z)−1P (z), where q(z) = (1 + z1)(1 + z2) and

P (z) =

[
0 1
1 0

]
+

[
0 0
z1 0

]
+

[
0 z2

0 0

]
+

[
0 0
0 z1z2

]
+

[
0 0
0 z2

2

]
.

Show that P (z) = F(M,∆1) where ∆1 = diag(z1, z2, z1, z2, z2, z2) and

M11 =

[
0 1
1 0

]
, M12 =

[
0 1 0 0 0 0
1 0 1 0 1 0

]
, M21 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0
0 1
0 0
0 1
0 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎦ , M22 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦.

Prove that q(z) = F(N,∆2) where ∆2 = diag(z1, z2, z1, z2) and

N11 = 1, N12 =
[
1 1 1 0

]
, N21 =

⎡⎢⎢⎣
1
1
0
1

⎤⎥⎥⎦ , N22 =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ .

Hence using the formula given in Ex. 8 for the inverse show that 1/q(z) = F(Q,∆2), where

Q11 = 1, Q12 =
[
1 1 1 0

]
, Q21 = −

⎡⎢⎢⎣
1
1
0
1

⎤⎥⎥⎦ , Q22 =

⎡⎢⎢⎣
−1 −1 −1 0
−1 −1 −1 0
0 0 0 1
−1 −1 −1 0

⎤⎥⎥⎦ .

Check that this is indeed correct. Use the addition rule given in Ex. 6 to obtain a linear
fractional representation of q(z)−1I2. Finally use the product rule given in Ex. 7 to obtain
a linear fractional representation of R(z). Check your result.

5.1.4 Notes and References

We have seen that the spectrum of non-normal operators may be highly sensitive to

small perturbations. The importance of this fact has been recognized in various fields of

mathematics such as Numerical Linear Algebra, Differential Equations, Non-Selfadjoint

Operators Theory and Perturbation Theory, see e.g. Wilkinson (1963) [523], Kreiss (1962)
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[317], Halmos (1968) [215], Gohberg and Krein (1969) [191], Kato (1980) [293].

Spectral analysis is a fundamental tool of the mathematical sciences and has been used

in many areas of application for more than a century. In recent years awareness has been

growing that for certain problems of science and engineering, the predictions based on

eigenvalues do not always match the observations, see Trefethen (1997) [498]. It was discov-

ered that in these applications the operators involved were highly non-normal with volatile

eigenvalues, and this suggested that one should look for a substitute for the spectrum.

Since the norm of the resolvent ‖(sIn − A)−1‖ tends to infinity as s approaches an eigen-

value of A, it was a natural idea to choose the superlevel sets {s ∈ C; ‖(sIn−A)−1‖ > δ−1}
as a substitute. Due to the growing power of computers it became possible at the begin-

ning of the 1990’s to compute and visualize these sets for medium size matrices. It was

known that these superlevel sets can alternatively be characterized in terms of the spectra

of perturbed operators. In fact we will see in the next section that they coincide with the

unstructured spectral value sets in the complex case, σC(A; δ). Resolvent based versions of

spectral value sets were independently introduced by Landau (1975) under the name of “ε-

spectrum” [327], by Godunov et al. (1990) under the name of “spectral portrait” [190] and

by Trefethen (1990) [497] under the name of “pseudospectrum”. An excellent introduction

to the field with ten illustrative examples from various areas of application is Trefethen

(1997) [498]. This article also contains some historical remarks. More historical remarks

and a comprehensive list of applications can be found in the instructive survey article on

the computation of pseudospectra by the same author (1999) [499]. Another nice overview

of the field is offered on the web site ”Pseudospectral Gateway”, set up by Embree and

Trefethen: http://web.comlab.ox.ac.uk/projects/pseudospectra/index.html.

Spectral value sets for unstructured real and structured complex perturbations were first

considered in the context of control theory, see Hinrichsen and Pritchard (1991, 1992)

[249], [251] and Hinrichsen and Kelb (1993) [233]. The general framework presented in

Subsection 5.1.1 is new. For more references and comments see the next section. Exam-

ple 5.1.6 and Figure 5.1.3 are due to Karow (2003) [292].

The notion of a stability radius with respect to real and complex, unstructured and struc-

tured full-block perturbations was introduced in Hinrichsen and Pritchard (1986) [242],

[243]. For more references and comments see Section 5.3.

Linear Fractional Transformations were first studied by Redheffer (1960) [430]. They have

proved to be an important tool in Systems Theory. Their use in modelling uncertainty

is discussed in Packard and Doyle (1993) [402] and Zhou et al. (1995) [546]. These ref-

erences also give hints of how to represent a rational matrix family in LFT form with

∆ = diag(z1Id1 , . . . , zN IdN
). A detailed proof can be found in Op’t Hof (1997) [400]. A

systematic graph theoretical method of constructing LFT representations for transfer ma-

trices depending polynomially on a finite number of parameters is described in Zerz (2000)

[545]. This reference also considers the problem of reducing the dimension and shows in

particular how to achieve “trim” LFT representations, but trim representations do not

guarantee minimality of the dimension, see also Sugie and Kawanishi (1995) [490]. The

problem of finding a minimal LFT representation (with diagonal ∆) for a given rational

matrix in several variables is closely related to the minimal realization of ND-transfer ma-

trices by Roesser type models, see Roesser (1975) [435], Kaczorek (1985) [285],Zerz (2000)

[545]. There are no 1D-like characterizations of minimal realizations for ND systems (see

Zerz (1999) [544]) and the minimal realization problem is still unsolved for N ≥ 2.
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5.2 Spectral Value Sets

In this section we continue the study of spectral value sets with the aim of deriving
explicit and, if possible, computable characterizations of them for different classes
of linear fractional perturbation classes ∆. General results expressed in terms of the
µ-function are obtained in the first subsection. These are specialized in the second
subsection to complex full block perturbations for which computable formulas are
obtained. Spectral value sets for real full-block perturbations are analyzed in the
third subsection. The characterization of these sets is more complicated but still
leads to computable formulas. In the final subsection we specialize even further
to unstructured perturbations A � A + ∆ (pseudospectra) considering both the
complex and the real case. Besides presenting the simplified characterizations for
the spectral value sets in this case, we also determine bounds for them and analyze
the behaviour of pseudospectra along similarity orbits.

5.2.1 General Definitions and Results

We begin by specializing the definition of spectral value sets given in Section 5.1 to
linear fractional perturbations and prove some simple properties. The main purpose
of this subsection is to characterize spectral value sets in terms of the µ-function. By
using the properties derived in Section 4.4, more explicit descriptions and estimates
can be obtained with respect to block-diagonal perturbations. As an illustration
we apply these characterizations to derive computable formulas for Gershgorin type
perturbations of a diagonal matrix (see Subsection 4.2.2). We conclude the subsec-
tion with a general theorem on the continuous dependence of spectral value sets on
the data.
Throughout the subsection the assumptions are

• (A, B, C, D) ∈ Ln,�,q(C).

• ∆ ⊂ K�×q is a closed convex cone and spanK ∆ is provided with a norm ‖ · ‖∆

which is an operator norm with respect to a given pair of norms on K�, Kq.
If K = R, the complex spaces C�, Cq are provided with a compatible pair of
norms and C�×q, Cq×� with the corresponding operator norms, as explained in
Remark 4.4.2.

• We consider perturbations A � A(∆) where

A(∆)=A+B(I� −∆D)−1∆C, ∆∈∆0 := {∆ ∈ ∆; det(I� −∆D) �= 0}. (1)

Then ∆0 = ∆ and Assumption 5.1.1 is satisfied with well-posedness radius δδδ0 =
inf{‖∆‖∆; ∆ ∈ ∆ \∆0} = µ∆(D)−1. If D = 0, the perturbations (1) are affine and
δδδ0 = ∞. For perturbations of the form (1) Definition 5.1.2 specializes to

Definition 5.2.1. Given a δ > 0, then

σ∆(A; B, C, D; δ) =
⋃

∆∈∆0, ‖∆‖∆<δ

σ(A(∆)) =
⋃

∆∈∆0, ‖∆‖∆<δ

σ(A + B(I� − ∆D)−1∆C)
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is called the spectral value set of (A, B, C, D) with respect to the perturbation
class ∆ at the uncertainty level δ. If D = 0 the spectral value set is denoted
by σ∆(A; B, C; δ).

From the results proved in Section 5.1 for more general types of perturbation, we
know that as δ increases from zero, the set σ∆(δ) = σ∆(A; B, C, D; δ) increases and
takes different shapes. For small values of δ, σ∆(δ) is a union of disjoint connected
components (each one containing exactly one eigenvalue of A) and possibly a set
of fixed eigenvalues of A (isolated points of σ∆(δ)). As δ increases, the connected
components expand and merge, with the number of components decreasing. The
rates and ways in which they do this give valuable information about the variability
of the spectrum under perturbations of different sizes. From Lemma 5.1.7 we know
that the sets σ∆(δ) are bounded whenever δ < δδδ0 = µ∆(D)−1, and their compact
closures are given by

σ∆(A;B,C,D; δ) =
⋃

∆∈∆

‖∆‖∆≤δ

σ(A(∆)) = {s ∈ C ;∃∆ ∈ ∆, ‖∆‖∆ ≤ δ : s ∈ σ(A(∆))}. (2)

These compact closures depend continuously on δ ∈ [0, δδδ0) with respect to the Haus-
dorff metric on K(C). Moreover, for complex perturbation structures ∆ (i.e. C∆ =
∆) we know from Proposition 5.1.9 that σ∆(δ) \ σ(A) is open in C.
Usually we will only consider levels of uncertainty δ < δδδ0 = µ∆(D)−1 so that all
A(∆) with ∆ ∈ ∆, ‖∆‖∆ ≤ δ are well defined. If δ ≥ δδδ0 we can no longer expect
σ∆(δ) to be bounded. In fact, if δ > δδδ0, it will be the complement of σ∆(δ) rather
than σ∆(δ) which is bounded. This is illustrated in the following example.

Example 5.2.2. Consider the uncertain system

ẋ =

[
−(1 − ∆)−1 0

0 0

]
x(t) =

[
−1 − ∆

1−∆ 0

0 0

]
x(t), ∆ ∈ ∆ = C

which can be represented in the form ẋ = A(∆)x = (A + B(I� − ∆D)−1∆C)x with

A =

[
−1 0
0 0

]
, B =

[
1
0

]
, C =

[
−1 0

]
, D = 1.

The set of admissible disturbances is given by ∆0 = C \ {1}, and so the well-posedness
radius is δδδ0 = 1. Now s ∈ σC(A;B,C,D; δ), provided s = 0 or

s = −(1 − ∆)−1, |∆| < δ, i.e. (s + 1)/s = ∆, |∆| < δ.

Therefore
σC(A;B,C,D; δ) = {0} ∪ {s ∈ C

∗ ; |s + 1|/|s| < δ}.
s ∈ C

∗ belongs to the boundary of the spectral value set at level δ > 0 if and only if
|s + 1|/|s| = δ. An easy calculation shows that this is a circle in the complex plane
centred at −(1 − δ2)−1 with radius |δ/(1 − δ2)|. For δ ∈ (0, 1) this circle is to the left
of the line −(1 + δ)−1 + ıR and as δ → 1 its centre tends to −∞ and its radius tends
to +∞. Moreover for any s ∈ C with Re s < −1/2 there exists δ < 1 such that s is in
the spectral value set of level δ. So as δ ↑ 1 the spectral value sets gradually fill up the
half plane {s ∈ C ; Re s < −1/2}, see Figure 5.2.1. For δ > 1, the centre (δ2 − 1)−1 lies
in the open right half plane and the associated radius is δ/(δ2 − 1). It is easily verified
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-1 1 2-2

−0.5+ıR

Figure 5.2.1: Spectral value sets for δ = 0.4, 0.6, 0.8, 1.2, 2, 3

that the corresponding spectral value sets (modulo the isolated spectral value s = 0) are
the complements of the closed disks circumscribed by the circles in the right half-plane.
Since (δ2 − 1)−1 − δ(δ2 − 1)−1 = −(1 + δ)−1 and δ(δ2 − 1)−1 → ∞ as δ ↓ 1 we see that
the union of these disks is the open half plane Re s > −1/2. Hence, modulo the point 0,
the intersection of all the spectral value sets σC(A;B,C,D; δ) \ {0}, δ > 1 is the closed
left half-plane {s ∈ C; Re s ≤ −1/2}. As δ > 1 increases the disks are decreasing and as
δ → ∞ they shrink towards 0 (always containing 0 which belongs to σC(A;B,C,D; δ)).
Summarizing we obtain: For δ ∈ (0, δδδ0) = (0, 1), σC(δ) is bounded, and for δ = 1, σC(1)
is the open left halfplane Re s < −1/2. For δ > 1, σC(δ) is the complement of a disk
punctured at 0 whose centre and radius tend to 0 as δ → ∞. Note that s = 0 is an
isolated point of σC(δ) for all δ > 0. In particular we see that the spectral value sets
σ∆(A;B,C,D; δ) do not necessarily become connected as δ → ∞. �

We mention two elementary properties of spectral value sets which follow immedi-
ately from Definition 5.2.1 and the fact that

TAT−1 + TB(I� − ∆D)−1∆CT−1 = TA(∆)T−1, T ∈ Gln(C).

Lemma 5.2.3. (i) Invariance under similarity. For all δ > 0,

σ∆(A; B, C, D; δ) = σ∆(TAT−1; TB, CT−1, D; δ), T ∈ Gln(C). (3)

(ii) Decomposition property. Given (Ai, Bi, Ci, Di) ∈ Lni,�i,qi
(C) and perturba-

tion classes ∆i ⊂ C�i×qi, i = 1, 2, let

A =

[
A1 0
0 A2

]
, B =

[
B1 0
0 B2

]
, C =

[
C1 0
0 C2

]
, D =

[
D1 0
0 D2

]
,

∆ = {diag(∆1, ∆2); ∆1 ∈ ∆1, ∆2 ∈ ∆2}, ‖ diag(∆1, ∆2)‖∆ = max
i=1,2

‖∆i‖∆
i.

Then ∆0 ={diag(∆1, ∆2); ∆1∈∆1
0, ∆2∈∆2

0} (see (1)) and for all δ > 0

σ∆(A; B, C, D; δ) = σ∆
1(A1, B1, C1, D1; δ) ∪ σ∆

2(A2, B2, C2, D2; δ). (4)

Remark 5.2.4. (i) Spectral value sets share the property of invariance under similarity
transformations with transfer functions. We will see later that the spectral value sets of
(A,B,C,D) can be characterized in terms of the transfer function of (A,B,C,D).
(ii) The decomposition property is useful in constructing examples and counter-examples.
It shows that every finite union of spectral value sets is again a spectral value set. �
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Before dealing with the problem of how spectral value sets can be determined,
we illustrate by an example that for some highly non-normal matrices it may be
impossible to determine the spectrum itself. This is because the eigenvalues are so
sensitive that unavoidable rounding errors render the calculation of the spectrum
unreliable, no matter which software is used. Since the notion of a spectral value
set is a robust version of the notion of a spectrum, one would expect that spectral
value sets can be determined in a more reliable way, if the uncertainty level δ is not
too close to the machine precision eps (i.e. 1 + eps/2 is indistinguishable from 1).
This is illustrated in the following example due to Godunov [189].1

Example 5.2.5. (Godunov). Consider the matrices Ã and A = L−1ÃL where

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2048 256 128 64 32 16
0 −2 1024 512 256 128 32
0 0 4 512 1024 256 64
0 0 0 0 512 512 128
0 0 0 0 −4 1024 256
0 0 0 0 0 2 2048
0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 1 0 0
1 0 0 0 0 1 0
0 1 1 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Obviously
σ(A) = σ(Ã) = {0, 1, 1,±2,±4}.

However, applying standard software for the computation of eigenvalues we obtain the

−20 −15 −10 −5 0 5 10 15 20

−15

−10

−5

0

5

10

15

10−11

10−12

Figure 5.2.2: Computed spectral value sets of the Godunov matrix

following computed spectrum of A

{8.57 ± 3.73ı, 2.29 ± 8.33ı, −5.43 ± 6.56ı, −8.85}.
1For a related theoretical result, see Proposition 5.2.48.
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Permuting the first two rows and columns by a permutation matrix P and computing the
spectrum of PAP� we should obtain the same set of eigenvalues but instead we get

{6.21 ± 2.48ı, 1.70 ± 5.5ı, −3.78 ± 6.56ı, −6.29}.
The calculation of the unstructured spectral value sets of A with respect to the spectral
norm indicates that the computed values for the spectrum are unreliable. In fact, even for
δ-values close to the machine accuracy the computed spectral value set remains connected,
whereas theoretically it should separate into as many connected components as there are
distinct eigenvalues of A, see Proposition 5.1.8. Figure 5.2.2 shows the boundaries of
σC7×7(A; I7, I7; δ) for δ = 10−11, 10−12 and 10−13. While the boundaries for the first
two values of δ (the two circular contours) appear to be reliable, the highly disconnected
contour for the third value of δ (≈ ‖A‖1,1 eps) reveals that the calculation of this spectral
value set is incorrect. The stars and small circles mark the location of the computed
eigenvalues of A and PAP�, respectively. �

We now consider the question of how spectral value sets can be determined. A
first idea might be to approximate σ∆(A; B, C, D; δ) by computing σ(A(∆)) for a
large number of randomly generated disturbance matrices ∆ of norm smaller than δ.
But this method is cumbersome, yields only rough approximations and is sometimes
misleading. This is illustrated in the following example.

Example 5.2.6. Consider a matrix A ∈ R
6×6 in companion form with characteristic

polynomial
χA(s) = (s + 0.5 ± 1.2ı)(s + 1.1 ± 0.6ı)(s + 2.2 ± 1.9ı).

We choose B = C = I6, D = 0 and ∆ = C
6×6 provided with the spectral norm. Fig-

ure 5.2.3 shows the spectral value sets σ∆(A; I, I; δ) for δ = 1/2, 1/3.
Two large contours and a very small one form the boundaries of the sets and were ob-
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Figure 5.2.3: Spectral value sets and random perturbations

tained by the methods we will describe in this section. The small contour describes a hole
in σ∆(A; I, I; 1/2). We hoped to get a rough approximation of the set at level δ = 1/3
by plotting the spectra σ(A + ∆), for 5000 pseudo randomly generated ∆ ∈ C

6×6 with
‖∆‖ = 1/3. Figure 5.2.3 shows the result and reveals that the approximation is quite
poor. The reason is that within the sphere of matrices ∆ ∈ C

6×6 of norm ‖∆‖ = 1/3 the
probability of hitting a matrix which moves an eigenvalue of A close to the contour is very
low. The perturbations ∆ of norm < 1/3 which move eigenvalues to the locations “x” are
not random but have been constructed via the formulas in Remark 5.2.20. �
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Of course, one may argue that if it is very unlikely that a ∆ ∈ ∆0 of norm < δ
will produce eigenvalues near the boundary of the spectral value set, then the set is
not a good measure of the way the spectrum is perturbed. This approach has been
adopted by some authors who define spectral value sets in probabilistic terms, see
Notes and References. In contrast, our deterministic approach represents a worst
case analysis. It ensures that every spectral value λ ∈ C satisfying λ ∈ σ(A(∆)) for
some ∆ ∈ ∆0 with norm ‖∆‖ < δ is accounted for, independent of the fact that the
probability of encountering a ∆ ∈ ∆0 with ‖∆‖ < δ producing an eigenvalue close
to λ may be extremely small. Even in the context of a probabilistic investigation
a worst case analysis is an indispensable supplementary tool for comparison and
control of the results.
Since an experimental approach is not appropriate for a worst case analysis, our
first step is to derive a theoretical characterization of spectral value sets. With
every quadruple (A, B, C, D) ∈ Ln,�,q(K) we associate the transfer function

G(s) = D + C(sIn − A)−1B ∈ K(s)q×�, (5)

see Subsection 2.3.1. The following lemma is the main vehicle for obtaining our
results.

Lemma 5.2.7. Suppose ∆ ∈ C�×q, det(I� − ∆D) �= 0 and s0 ∈ ρ(A). Then

s0 ∈ σ(A(∆)) ⇔ det (I� − ∆G(s0)) = 0.

Proof : Suppose s0 ∈ σ(A(∆)) then there exists x ∈ C
n, x �= 0, such that

s0x = (A + B(I� − ∆D)−1∆C)x. (6)

Since s0 ∈ ρ(A), (6) is equivalent to

x = (s0In − A)−1B(I� − ∆D)−1∆Cx.

Multiplying this equation with (I� − ∆D)−1∆C from the left we obtain

w = (I� − ∆D)−1∆C(s0In − A)−1Bw,

where w = (I� − ∆D)−1∆Cx ∈ C�. This, together with (s0In − A)−1Bw = x �= 0,
implies

w = ∆G(s0)w and w �= 0. (7)

Conversely if det (I� − ∆G(s0)) = 0, there exists w ∈ C� such that (7) holds. Let
x = (s0In − A)−1Bw, then x ∈ Cn, ∆Dw + ∆Cx = w and since det(I� − ∆D) �= 0

w = (I� − ∆D)−1∆Cx �= 0.

So x �= 0 and (s0In − A)x = Bw = B(I� − ∆D)−1∆Cx. Hence x satisfies (6) and
therefore s0 ∈ σ(A(∆)). �

As a corollary to the above lemma we determine the size of the minimal perturbations
∆ achieving s0 ∈ σ(A(∆)) for a given s0 ∈ ρ(A) (cf.(1.6)).
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Corollary 5.2.8. If s0 ∈ ρ(A) is such that µ∆(D) < µ∆(G(s0)), then

δ(s0) := min {‖∆‖∆; ∆ ∈ ∆, s0 ∈ σ(A(∆))} = µ∆(G(s0))
−1. (8)

Proof : If ∆ ∈ ∆ is such that s0 ∈ σ(A(∆)), then necessarily ‖∆‖∆ ≥ µ∆(G(s0))
−1

by Lemma 5.2.7. This shows the inequality ≥ in (8). To prove the converse we note
that since µ∆(G(s0)) > 0 there exists ∆ ∈ ∆ such that ‖∆‖∆ = µ∆(G(s0))

−1 and
det (I� − ∆G(s0)) = 0 (see Remark 4.4.4 (ii)). But I� − ∆D is nonsingular since
µ∆(D) < µ∆(G(s0)). Hence again by Lemma 5.2.7 s0 ∈ σ(A(∆)) and this proves
(8). �

The above lemma and corollary enable us to characterize spectral value sets in terms
of the µ-function.

Theorem 5.2.9. Suppose 0 < δ ≤ µ∆(D)−1, then

σ∆(A; B, C, D; δ) = σ(A) ∪̇ {s ∈ ρ(A); µ∆(G(s)) > δ−1}. (9)

Proof : Suppose s0 ∈ σ(A(∆))∩ρ(A), ∆ ∈ ∆ and ‖∆‖∆ < δ, then by Lemma 5.2.7
µ∆(G(s0))

−1 ≤ ‖∆‖∆ < δ. Conversely if s0 ∈ ρ(A) and µ∆(G(s0)) > δ−1, then
µ∆(G(s0)) > µ∆(D) and by the above corollary there exists a ∆ with ‖∆‖∆ =
µ∆(G(s0))

−1 < δ such that s0 ∈ σ(A(∆)). �

The application of formula (9) requires the calculation of the µ-value µ∆(G(s)) for
a grid of s-values covering a region in the complex plane where the spectral value
set is to be determined. Since we know already that the calculation of the µ-value
of a single matrix can be very difficult (depending on the perturbation class) the
evaluation of formula (9) will, in general, be an awesome computational task. We
briefly discuss this problem for multi-block perturbations in the next subsection
where we will make use of the characterizations and estimates for the µ-function
obtained in Section 4.4. As an application we then discuss in some detail off-
diagonal perturbations of diagonal matrices. We will see that these Gershgorin type
perturbations can be represented as block-diagonal perturbations, and in this case
(9) yields a computable characterization of the associated spectral value sets.

Multi-Block Perturbations

For N > 1, �i ≥ 1, qi ≥ 1, i ∈ N , � = �1 + . . . + �N , q = q1 + . . . + qN , we consider
perturbations of the form

A � A(∆) = A +

N∑
i=1

Bi(I�i
− ∆iDi)

−1∆iCi, ∆i ∈ C
�i×qi, i ∈ N (10)

where (A, Bi, Ci, Di) ∈ Ln,�i,qi
(C), i ∈ N are given. These perturbations can be

recast in the form of a linear fractional perturbation (1) with perturbation set ∆ =
{diag (∆1, . . . , ∆N); ∀i ∈ N : ∆i ∈ C�i×qi} and

B = [B1 B2 . . . BN ], C =

⎡⎢⎢⎢⎣
C1

C2
...

CN

⎤⎥⎥⎥⎦ , D = diag (D1, ..., DN), ∆ = diag (∆1, . . . , ∆N ).
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Given any operator norms ‖ · ‖i on C�i×qi, i ∈ N , we provide ∆ with the norm

‖∆‖∆ = max
i∈N

‖∆i‖i, ∆ = diag (∆1, . . . , ∆N) ∈ ∆.

This is an operator norm with respect to a variety of pairs of norms on C� and Cq

(see Definition 4.4.14 and Ex. 4.4.3). We fix such a pair and denote the spectral
value sets for this perturbation structure by σC(A; (Bi, Ci, Di)i∈N ; δ) or, for short,
σC(δ). We know from Lemma 4.4.7 that

µ∆(G) = max{�(∆G); ∆ ∈ ∆, ‖∆‖∆ = 1}, G ∈ C
q×� (11)

where � denotes the spectral radius. Another characterization (see Theorem 4.4.23)
is

µ∆(G) = max
U∈V�

∆
,V ∈Vq

∆

�(V ∗GU), G ∈ C
q×�

where

V�
∆

= {diag (u1, . . . , uN); ∀j ∈ N : uj ∈ C�j , ‖uj‖C
�j = 1},

Vq
∆

= {diag (v1, . . . , vN ) ; ∀j ∈ N : vj ∈ Cqj , ‖vj‖∗Cqj = 1}.

Combining these characterizations with Theorem 5.2.9, we get

Corollary 5.2.10. Suppose 0 < δ ≤ mini∈N ‖Di‖−1
L(C�i ,Cqi )

, then

σC(A; (Bi, Ci,Di)i∈N ; δ) = σ(A) ∪̇ {s ∈ ρ(A);∃∆ ∈ ∆ : ‖∆‖∆ = 1 ∧ �(∆G(s)) > δ−1}
= σ(A) ∪̇ {s ∈ ρ(A);∃U ∈ V�

∆, V ∈ Vq
∆

:�(V ∗G(s)U)>δ−1}. (12)

Unfortunately the above expressions are, in general, very difficult to compute. Upper
and lower bounds for σC(δ) can be derived from available upper and lower estimates
for the µ-function, see Section 4.4. If ∆∈∆, ‖∆‖∆ =1, Rγ =diag(γ1Iq1 , . . . , γNIqN

)
and Lγ = diag (γ1I�1 , . . . , γNI�N

), γi > 0, i ∈ N , we have by (4.4.25),

�(∆G) ≤ µ∆(G) ≤ ‖RγGL−1
γ ‖ (13)

where the norm ‖ · ‖ is the operator norm on L(C�, Cq). We know from (11) that
by a judicious choice of ∆ the lower bound in (13) can be made tight but we do not
have an algorithm to achieve this. With respect to spectral norms we have seen in
Lemma 4.4.20 that the minimization of the upper bound in (13) can be reformulated
as a convex optimization problem. However, both the maximizing ∆ in (12) and the
minimizing scaling vector γ for G(s) depend on s, and consequently the problem of
computing optimized upper and lower bounds for σC(δ) via (13) is still a formidable
one. Very rough but readily computable estimates are obtained by choosing a fixed
∆ ∈ ∆ with ‖∆‖∆ = 1 and a fixed scaling vector γ = (γ1, . . . , γN), γi > 0 for all
s ∈ ρ(A)

{s ∈ ρ(A); �(∆G(s)) > δ−1} ⊂ σC(δ) \ σ(A) ⊂ {s ∈ ρ(A); ‖RγG(s)L−1
γ ‖ > δ−1}. (14)

Here the scaled transfer matrix RγG(s)L−1
γ = D + RγC(sI − A)−1BL−1

γ can be
interpreted as the transfer matrix of the scaled system (A, B(γ), C(γ), D) where

B(γ) = BL−1
γ =

[
γ−1

1 B1, · · · , γ−1
N BN

]
, C(γ) = RγC =

[
γ1C

�
1 , · · · , γNC�

N

]�
.
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We will see in the next subsection that, with these scaled matrices, the upper bound
in (14) is identical with the spectral value set of A with respect to full-block pertur-
bations of the form A � A + B(γ)(I� − ∆D)−1∆C(γ), ∆ ∈ C�×q.
For square multi-block perturbations, with prescribed multiplicities of the blocks,
we have shown in Proposition 4.4.25 that with respect to spectral norms we have
µ∆(G) = maxU∈U∆

�(UG), where U∆ is the set of block-diagonal unitary matrices
defined in Proposition 4.4.25. We can use this result to characterize the spectral
value sets for this type of perturbations, but once again the computational problem
is severe.

Gershgorin Type Uncertainty

Gershgorin obtained an estimate for the spectrum of a given matrix A = (aij) ∈
Cn×n by regarding it as a perturbation of the associated diagonal matrix diag(A) :=
diag(a11, . . . , ann) ∈ Cn×n (see Theorem 4.2.19):

σ(A) ⊂
⋃
i∈n

D(aii, ρi), where ρi =
∑
j �=i

|aij|, i ∈ n.

Better estimates can be obtained by using more information about A than its diag-
onal elements and the off-diagonal row sums ρi, see Notes and References. Here we
change the point of view: Instead of a given matrix A we consider a set of matrices
A(∆) obtained by perturbing a fixed diagonal matrix by off-diagonal disturbances
of norm < δ; and instead of deriving an estimate for the spectrum of a given matrix,
we determine the union of all the spectra of the matrices A(∆), ‖∆‖ < δ.
More precisely, let the set of off-diagonal perturbations

∆ = {∆ ∈ C
n×n; diag (∆) = 0n×n} (15)

be provided with the norm

‖∆‖∆ = max
i∈n

∑
j �=i

|∆ij |, ∆ ∈ ∆. (16)

Note that ‖∆‖∆ is the operator norm of ∆ : C
n → C

n if C
n is endowed with the

maximum norm (see (A.1.3)). Our aim is to describe the spectral value sets

σ∆(A; δ) =
⋃

∆∈∆, ‖∆‖∆<δ

σ(A + ∆)

where A = diag (a11, ..., ann) is assumed to be diagonal2. Then A(∆) = A + ∆ has
the form

A(∆) := A + ∆ =

⎡⎢⎢⎢⎢⎣
a11 ∆12 ∆13 . . . ∆1n

∆21 a22 ∆23 . . . ∆2n

. . . . . . .

. . . . . . .
∆n1 ∆n2 . . . ∆nn−1 ann

⎤⎥⎥⎥⎥⎦ , ∆ = (∆ij) ∈ ∆.

2For non-diagonal A ∈ Cn×n the problem of determining σ∆(A; δ) is as yet unsolved.
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By Gershgorin’s Theorem 4.2.19 we have the following upper bound for σ∆(A; δ)

σ∆(A; δ) ⊂
⋃
i∈n

D(aii, δ). (17)

In order to derive an exact characterization from Theorem 5.2.9 we first represent
the perturbation A � A + ∆, ∆ ∈ ∆ as a multi-block perturbation and obtain an
improved (and in fact tight) upper bound of the associated µ-function via scaling.
For every ∆ = (∆ij) ∈ ∆, let

∆̃ =

⎡⎢⎢⎢⎢⎣
∆12 ∆13 · · · ∆1n 0 0 · · · · · · · · · · · · · · 0
0 0 · · · 0 ∆21 ∆23 · · · ∆2n 0 · · · · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · · · · · · · · · · · · 0 ∆n1 ∆n2 · · · ∆n n−1

⎤⎥⎥⎥⎥⎦ (18)

Then we have ∆̃ ∈ Cn×n(n−1) and ∆ = In∆̃C for all ∆ ∈ ∆ if we define

C =

⎡⎢⎢⎣
C1

·
·

Cn

⎤⎥⎥⎦
n(n−1)×n

, Ci =

[
Ii−1 0 0
0 0 In−i

]
(n−1)×n

, i ∈ n (19)

where I0 is void. Note that Cix = [x1, .., xi−1, xi+1, .., xn]� = (xj)j �=i for x ∈ Cn and

∆̃ :
⊕n

1 Cn−1 �→ Cn. Let ∆̃ ⊂ Cn×n(n−1) be the vector space of all complex matrices
∆̃ of the form (18) endowed with the operator norm ‖ · ‖

∆̃
induced by the ∞-norms

on both
⊕n

1 Cn−1 = Cn(n−1) and Cn. Then by (A.1.3)

‖∆̃‖
∆̃

= max
i∈n

∑
j �=i

|∆ij | = ‖∆‖∆, ∆ ∈ ∆.

As a consequence, we have for all δ > 0

σ∆(A; δ) =
⋃

∆∈∆, ‖∆‖∆<δ

σ(A + ∆) =
⋃

∆̃∈∆̃, ‖∆̃‖
∆̃

<δ

σ(A + ∆̃C) = σ
∆̃

(A; In, C; δ).

The transfer function associated with the triple (A, In, C) is

G(s) =

⎡⎢⎢⎣
C1

.

.
Cn

⎤⎥⎥⎦ diag ((s − a11)
−1, ..., (s − ann)−1) ∈ C

n(n−1)×n(s). (20)

So every row of G(s) has exactly one entry different from zero and this is of the form
(s − aii)

−1. It follows that the operator norm of G(s) with respect to the ∞-norms
on Cn and Cn(n−1) is

‖G(s)‖L(Cn,Cn(n−1)) = max
i∈n

|s − aii|−1. (21)

After representing the off-diagonal representations in block-diagonal form we can
now apply a scaling technique in order get an upper bound for µ

∆̃
(G(s)). The

proof of the next proposition shows that the optimized upper bound (13) is in fact
tight so that we obtain a computable formula for the spectral value set σ∆(A; δ) via
Theorem 5.2.9.
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Proposition 5.2.11. Let A = diag(a11, . . . , ann) ∈ Cn×n and suppose that the set of
off-diagonal perturbations ∆ (15) is provided with the norm (16). Then the spectral
value set of A with respect to the perturbations A � A(∆) = A + ∆, ∆ ∈ ∆ is

σ∆(A; δ) = {s ∈ C ; min
i,j∈n, i�=j

|s − aii||s − ajj| < δ2}, δ > 0. (22)

Proof : Scaling by matrices Rγ = diag (γ1In−1, . . . , γnIn−1), Lγ = diag (γ1, . . . , γn)
where γi > 0, i ∈ n, results in a scaled transfer function matrix

Gγ(s) = RγG(s)L−1
γ =

⎡⎢⎢⎣
γ1C1

.

.
γnCn

⎤⎥⎥⎦ diag (γ−1
1 (s − a11)

−1, ..., γ−1
n (s − ann)−1). (23)

Every row of Gγ(s) has exactly one entry which is non-zero and this entry is of
the form (γi/γj)(s − ajj)

−1, i �= j. Therefore, with respect to the ∞-norms on
Cn, Cn(n−1),

‖Gγ(s)‖L(Cn, Cn(n−1)) = max
i,j∈n, i�=j

γi

γj
|s − ajj|−1.

Given any s ∈ C \ {a11, . . . , ann}, let γi = |s − aii|−1/2, i ∈ n, then by (13)

µ
∆̃

(G(s)) ≤ ‖Gγ(s)‖L(Cn,Cn(n−1)) = max
i,j∈n, i�=j

|s − aii|−1/2|s − ajj|−1/2. (24)

We want to show that the inequality is in fact an equality. Suppose that the maxi-
mum on the RHS of (24) is m(s) and this occurs for i = ı̂, j = ĵ with ı̂ < ĵ. Define
∆ ∈ ∆ by ∆ı̂ĵ = ∆ĵ̂ı = 1 and ∆ij = 0 for all other i, j. Then ‖∆̃‖

∆̃
= ‖∆‖∆ = 1

and ∆̃G(s) = ∆ diag ((s−a11)
−1, ..., (s−ann)−1) is a matrix with zero entries except

the (̂ı, ĵ) entry which is (s − aĵĵ)
−1 and the (ĵ, ı̂) entry which is (s − aı̂̂ı)

−1. Hence

�(∆̃G(s))2 = |s − aı̂̂ı|−1|s − aĵĵ|−1 = m(s)2

and so m(s) ≤ µ
∆̃

(G(s)) by (13). It follows from (24) that µ
∆̃

(G(s)) = m(s). The
proof is completed by applying Theorem 5.2.9 to obtain (22). �

Remark 5.2.12. (i) Under the assumptions of the previous proposition we have by (22)

σ∆(A; δ) =
⋃

i,j∈n i�=j

{s ∈ C ; |s − aii||s − ajj| < δ2}, δ > 0.

The sets {s ∈ C ; |s − aii||s − ajj| < δ2} are known as ovals of Cassini (see Figure 5.2.4
and Notes and References).

(ii) Computable formulas can also be derived for other norms on the Gershgorin pertur-
bation class ∆. In Ex. 3 the reader is guided towards the result for the Hölder norm
‖∆‖∆ = ‖∆‖∞|∞ = maxi,j∈n,i�=j |∆ij| on ∆ (see Section A.1). �

Example 5.2.13. Consider A = diag (−1,−2,−3). The spectral value sets σ∆(A; δ),
δ = 0.45, 0.5, 0.55, 0.7, 1,

√
2 with respect to the norm (16) on ∆ are given in the figure

on the left. The figure on the right shows the estimates for these sets obtained by using
Gershgorin’s Theorem as in (17). In both figures the sets are connected for δ > 0.5. Note
that the Cassini oval for δ =

√
2 touches the imaginary axis and hence if the stability

region is C− then the stability radius r∆ =
√

2. From the figure on the right one obtains
the conservative estimate r∆ ≥ 1. �
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Figure 5.2.4: Spectral value sets and estimates obtained via Gershgorin’s Theorem

Dependence on System Data

We now return to the general situation as described by the initial assumptions of
this subsection. At the very beginning we mentioned already that the map δ �→
σ∆(A; B, C, D; δ) is continuous with respect to the Hausdorff metric. We will now
show that the closures of spectral value sets depend continuously on the whole
collection of data A, B, C, D, δ. Recall the following definition, see Section 4.1.
Given a metric space (Z, dZ), the Hausdorff metric on the space K(Z) of compact
subsets of Z is defined by

d(C1, C2) := max{max
c1∈C1

dist(c1, C2), max
c2∈C2

dist(c2, C1)}, dist(a, C) := min
c∈C

dZ(a, c).

Lemma 5.2.14. Let (X, dX), (Y, dY ), (Z, dZ) be metric spaces, X locally compact,
Y compact, and let the space K(Z) be provided with the Hausdorff metric. If f :
X × Y → Z is continuous, then the set-valued map

F : X → K(Z), x �→ F (x) = f(x, Y ) = {f(x, y); y ∈ Y }
is continuous.

Proof : Let x0 ∈ X and C be a compact ball with centre x0 and radius r > 0 in
X. Then f is uniformly continuous on the compact set C × Y . For any ε > 0 we
find 0 < δ < r such that dZ(f(x, y), f(x′, y)) < ε for all y ∈ Y and all x, x′ ∈ C such
that dX(x, x′) < δ. But then it follows from the definition of the Hausdorff metric
that d(F (x), F (x0)) < ε for all x ∈ X with dX(x, x0) < δ. This proves that F is
continuous at x0. �

Theorem 5.2.15. Suppose (A0, B0, C0, D0, δ0) ∈ Ln,�,q(C) × (0,∞), with δ0 <
µ∆(D0)−1 and let K(C) be provided with the Hausdorff metric. Then the map

(A, B, C, D, δ) �→ σ∆(A; B, C, D; δ) ∈ K(C)

is well defined and continuous on an open neighbourhood of (A0, B0, C0, D0, δ0) in
Ln,�,q(C) × (0,∞).
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Proof : Let ∆1 = {∆ ∈ ∆; ‖∆‖∆ ≤ 1}, then ∆1 is compact and by (2)

0 < δ < µ∆(D)−1 ⇒ σ∆(A; B, C, D; δ) =
⋃

∆∈∆1

σ(A(δ∆)),

where A(δ∆) = A + B(I� − δ∆D)−1δ∆C. By the upper semicontinuity of µ∆(·)
(Lemma 4.4.27) there is an open neighbourhood N of (A0, B0, C0, D0, δ0) in the
space Ln,�,q(C) × (0,∞) such that δ < µ∆(D)−1 for all (A, B, C, D, δ) ∈ N. Now
define f((A, B, C, D, δ), ∆) := A(δ∆) for (A, B, C, D, δ) ∈ N, ∆ ∈ ∆1. Then
f : N × ∆1 → Cn×n is well defined and continuous on N × ∆1. Since N is locally
compact and ∆1 is compact we conclude from the previous lemma that the map

F : N → K(Cn×n), (A, B, C, D, δ) �→ {A(δ∆); ∆ ∈ ∆1}

is continuous with respect to the Hausdorff metric on K(Cn×n). Therefore using
Lemma 4.1.9 the map

(A, B, C, D, δ) �→ σ(F (A, B, C, D, δ)) =
⋃

∆∈∆1

σ(A(δ∆)) = σ∆(A; B, C, D; δ)

is continuous on N. �

5.2.2 Complex Full-Block Perturbations

For complex full-block perturbations Theorem 5.2.9 immediately yields an easily
computable criterion for deciding whether any s ∈ C belongs to a spectral value set
or not. We illustrate this criterion by a simple example and then show how spectral
value sets for complex full-block perturbations can be visualized by drawing the
level curves (“spectral contours”) of the norm of the associated transfer matrix in
the complex plane. We conclude the subsection with an illustrative example.
Throughout the subsection we suppose the following

• (A, B, C, D) ∈ Ln,�,q(C).

• The perturbation set is ∆ = C�×q provided with a norm ‖ · ‖∆ which is an
operator norm with respect to a given pair of norms on C

� and C
q.

• The perturbations are of the form

A � A(∆) = A + B(I� − ∆D)−1∆C, ∆ ∈ C
�×q. (25)

The associated spectral value sets are denoted by σC(A; B, C, D; δ). The subset ∆0

of admissible perturbations is

∆0 = {∆ ∈ C
�×q; det(I� − ∆D) �= 0} and hence δδδ0 = ‖D‖−1

L(C�,Cq)
.

Since µ∆(G) = ‖G‖L(C�,Cq) for all G ∈ Cq×� if ∆ = C�×q (see Proposition 4.4.11),
the following characterization is an immediate consequence of Theorem 5.2.9.

Theorem 5.2.16. Suppose 0 < δ ≤ ‖D‖−1
L(C�,Cq)

, then

σC(A; B, C, D; δ) = σ(A) ∪̇ {s ∈ ρ(A); ‖G(s)‖L(C�,Cq) > δ−1}. (26)

where G(s) = D + C(sI − A)−1B, s ∈ ρ(A).
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We illustrate this theorem by showing how it may be employed to compute the
spectral value sets visualized in Figure 5.1.1.

Example 5.2.17. Consider the perturbed oscillator (1+∆m)ξ̈+(4+∆c)ξ̇+(5+∆k)ξ = 0
as described in Example 5.1.4. The perturbed system can be modelled as a linear fractional
perturbation with a full-block perturbation set ∆ = C

1×3

A =

[
0 1
−5 −4

]
, B =

[
0
1

]
, C = −

⎡⎣ −5 −4
0 1
1 0

⎤⎦ , D =

⎡⎣−1
0
0

⎤⎦ ,

see Example 5.1.22. The associated transfer function is

G(s) = −

⎡⎣ 1
0
0

⎤⎦− (s2 + 4s + 5)−1

⎡⎣ −5 −4
0 1
1 0

⎤⎦[ 1
s

]
= −(s2 + 4s + 5)−1

⎡⎣ s2

s

1

⎤⎦ .

If we endow ∆ = C
1×3 with the norm ‖ · ‖∆ = ‖ · ‖∞ and C

3 with the corresponding dual
norm ‖ · ‖1 on C

3 then

‖G(s)‖1 = (1 + |s| + |s|2)/|s2 + 4s + 5|.

So provided δ ≤ ‖D‖−1
L(C�,Cq)

= 1, we have

σC(A;B,C,D; δ) = {s ∈ C; (1 + |s| + |s|2)/|s2 + 4s + 5| > δ−1},

where we set |s2 + 4s + 5|−1 = ∞ at s = −2 ± ı. The spectral value sets for δ ∈
{0.1, 0.28, 0.46, 0.64, 0.82} are the bounded regions circumscribed by the closed curves
on the left hand side of Figure 5.1.1. �

We will now describe how spectral value sets for complex full-block perturbations
can be visualized on the computer screen by plotting the level curves of s → ‖G(s)‖.
For every δ, the level set

Cδ = {s ∈ ρ(A); ‖G(s)‖L(C�,Cq) = δ−1}

is called the spectral contour of level δ−1. Cδ is closed in C\σ(A), but not necessarily
in C (see the following remark). However, Cδ ∪ σ(A) is closed in C.

Remark 5.2.18. (i) In spite of the term “contour” the set Cδ will, in general, consist
of several curves, some of which may degenerate to isolated points (which must be local
minima of ‖G(s)‖, see Remark 5.2.20 (v) and Example 5.2.21).
(ii) For some values of δ the spectral contour may not be closed. In fact, there may
be an isolated eigenvalue s0 ∈ σ(A) which is a removable singularity of G(s) such that
lims→s0 ‖G(s)‖L(C� ,Cq) = δ−1, whereas by definition s0 /∈ Cδ. For instance, if

A =

[
1 0
0 2

]
, B = I2, C = [1 0], D = 0, ∆ = C

2,

then G(s) = [(s − 1)−1 0] and the spectral norm of G(s) is ‖G(s)‖ = |(s − 1)−1|. Let
δ = 1 then the eigenvalue s0 = 2 of A does not lie in Cδ, but lims→2 ‖G(s)‖ = 1 so that
2 ∈ Cδ \ Cδ. �



558 5. Uncertain Systems

The next proposition describes how the spectral value set σC(A; B, C, D; δ) is de-
termined by the spectral contour Cδ. The formulations “modulo σ(A)” in the
proposition cannot be avoided since some of the eigenvalues of A may be iso-
lated points in σC(A; B, C, D; δ). By ∂σC(A; B, C, D; δ) we denote the boundary
of σC(A; B, C, D; δ) in C.

Proposition 5.2.19. Let G(s) = D + C(sIn − A)−1B and 0 < δ < ‖D‖−1
L(C�,Cq)

.

Then σC(A; B, C, D; δ) \ σ(A) is a bounded open subset of C and its boundary in
ρ(A) is given by

∂σC(A; B, C, D; δ) \ σ(A) = Cδ. (27)

Moreover, the following statements hold.

(i) For every s0 ∈ ρ(A) with ‖G(s0)‖L(C�,Cq) = δ−1 (i.e. for every s0 ∈ Cδ) there
exists a perturbation ∆ ∈ C�×q with norm ‖∆‖ = δ such that s0 ∈ σ(A(∆)),
and there is no smaller perturbation matrix with this property.

(ii) σC(A; B, C, D; δ) is the union of σ(A) and of those connected components of
C \ Cδ which contain a point s0 ∈ ρ(A) with ‖G(s0)‖ > δ−1 (or, equivalently,
a pole of G(s)).

Proof : For brevity, we write σC(δ) = σC(A; B, C, D; δ) and use ‖ · ‖ to denote
the norm ‖ · ‖L(C�,Cq) on Cq×� in this proof. Boundedness and openness follow from
(26) in Theorem 5.2.16 since ‖G(·)‖ is continuous on the resolvent set ρ(A) and
lim|s|→∞ ‖G(s)‖ = ‖D‖ < δ−1. Moreover, the statement in (i) is a direct consequence
of Corollary 5.2.8.
The inclusion ⊂ in (27) follows from the continuity of s �→ ‖G(s)‖ and formula
(26). Conversely, let s0 ∈ ρ(A), ‖G(s0)‖ = δ−1 and suppose s0 /∈ ∂σC(δ), hence
s0 /∈ σC(δ). By (26) this implies that s0 is a local maximum of s �→ ‖G(s)‖.
Choose y ∈ Cq, ‖y∗‖∗

Cq = 1, u ∈ C�, ‖u‖C� = 1 such that |y∗G(s0)u| = ‖G(s0)‖
(see Section A.4). The function f : s �→ y∗G(s)u is holomorphic on ρ(A) and
s �→ |f(s)| has a local maximum at s0. Since ρ(A) is connected, f(s) is constant
on ρ(A) (with value δ−1) by the maximum principle (see Theorem A.2.25). But
lim|s|→∞ |f(s)| = |y∗Du| < δ−1 and so we obtain a contradiction. Thus (27) is
proved.
(ii) Let K be a connected component of C \ Cδ and suppose that there is an s0 ∈
K \ σ(A) satisfying ‖G(s0)‖ > δ−1. (Such an s0 always exists if K contains a pole
of G(s)). We will show that then ‖G(s)‖ > δ−1 for every s ∈ K \ σ(A), hence
K ⊂ σC(δ) by (26). In fact, since K is open and connected in C there exists, for
every s ∈ K \ σ(A), an arc γ(t), 0 ≤ t ≤ 1 in K \ σ(A) connecting s0 = γ(0) and
s = γ(1). Since t �→ ‖G(γ(t))‖ is continuous and never takes the value δ−1, it follows
that ‖G(s)‖ > δ−1.
Conversely, assume s0 ∈ σC(δ) \ σ(A), hence ‖G(s0)‖ > δ−1 by (26). Then s0 /∈ Cδ

and there exists a connected component K of C \ Cδ such that s0 ∈ K. It only
remains to prove that K contains a pole of G(s). By the above argument it follows
that ‖G(s)‖ > δ−1 for all s ∈ K \ σ(A). Now let P ⊂ σ(A) be the set of poles of
G(s) and suppose K ∩ P = ∅. Since K is closed in C \ Cδ we have K ⊂ K ∪ Cδ

and so K ∩ P = ∅. G(s) can be extended holomorphically to C \ P ⊃ K. The
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extension G̃(s) satisfies ‖G̃(s)‖ ≥ δ−1 > ‖D‖L(C�,Cq) on K and thus K is compact.

Let z ∈ K be a maximum of ‖G̃(s)‖ on K. Then ‖G̃(z)‖ > δ−1 and z ∈ K. Since
K is open in C, z is a local maximum of ‖G̃(s)‖. Reasoning as in the first part of
the proof we again obtain a contradiction. Hence K must contain a pole of G(s)
and the proposition is proved. �

Remark 5.2.20. (i) It follows from the previous theorem and Theorem 5.2.16 that
every connected component K of C \Cδ is either contained in σC(δ) or disjoint from
σC(δ) ∩ ρ(A). K ⊂ σC(δ) (resp. K ∩ σC(δ) ∩ ρ(A) = ∅) if and only if ‖G(s0)‖ > δ−1

(resp. ‖G(s0)‖ < δ−1) for an arbitrarily chosen s0 ∈ K ∩ ρ(A).

(ii) In order to compute a spectral value set σC(δ) according to formula (26) the operator
norm ‖G(s)‖L(C� ,Cq) has to be computed for many points s ∈ ρ(A). It is therefore

convenient to choose a perturbation norm ‖·‖ on ∆ = C
�×q such that the correspond-

ing operator norm on C
q×� is easily computed, e.g. ‖∆‖ = ‖∆‖1,1, ‖∆‖ = ‖∆‖∞,∞

or ‖∆‖ = ‖∆‖2,2. The corresponding norms on C
q×� are ‖G‖1,1 = ‖G∗‖1|∞,

‖G‖∞,∞ = ‖G‖1|∞ and ‖G‖2,2 = σmax(G), respectively, see Remark 4.4.13 and
(A.1.3), (A.1.7).

(iii) Given s0 ∈ ρ(A), a ∆min ∈ C
�×q of minimum norm such that s0 ∈ σ(A(∆min)) may

be constructed as in Proposition 4.4.11: Let u0 ∈ C
�, v0 ∈ C

q be such that

v∗0G(s0)u0 = ‖G(s0)‖L(C�,Cq), ‖u0‖C� = ‖v∗0‖∗Cq = 1

(where ‖ · ‖∗
Cq is the dual norm of ‖ · ‖Cq). Then for each such pair ∆min =

‖G(s0)‖−1
L(C�,Cq)

u0v
∗
0 achieves s0 ∈ σ(A(∆min)) with ‖∆min‖L(Cq ,C�) =‖G(s0)‖−1

L(C�,Cq)
.

(iv) Suppose ∆ = C
�×q is provided with a norm ‖ · ‖C�×q which is rank one consistent

with an operator norm ‖ · ‖L(Cq ,C�) induced by a given pair of norms on C
q and C

�

(see Definition A.1.11). It follows from Corollary 4.4.12 that the spectral value set
σC(δ) with respect to the perturbation norm ‖ · ‖C�×q coincides with the spectral
value set with respect to the operator norm ‖ · ‖L(Cq ,C�) and

σC(δ) =
⋃

∆∈C�×q, ‖∆‖
C�×q <δ

σ(A(∆)) = σ(A) ∪̇ {s ∈ ρ(A); ‖G(s)‖L(C� ,Cq) > δ−1}.

(v) For δ < ‖D‖−1
L(C�,Cq)

, the complement C\σC(δ) has exactly one unbounded connected
component.

(vi) The above proof shows that the function s �→ ‖G(s)‖L(C� ,Cq) has no local maxima
on ρ(A); it may, however, have strict local minima s̃, see Figure 5.2.5 where the
location of such a minimum is indicated by a small square. As a consequence a
strictly larger perturbation may be necessary to move an eigenvalue of A(∆), to
s̃ ∈ C than to all the other points in a small disk around s̃. In general, due to
the existence of local minima of ‖G(s)‖L(C�,Cq), the connected components of σC(δ)
may not be simply connected, i.e. they may contain holes, for some δ > 0. In many
examples the contours Cδ contains two disjoint closed curves one of which lies inside
the other, see Example 5.2.21. If the smaller one does not contain a pole of G(s), it
describes a hole in the corresponding spectral value set.
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(vii) Suppose that for some 0 < δ < ‖D‖−1
L(C�,Cq)

we have σC(δ) = σ(A), i.e. all eigenvalues

are fixed for small perturbations. By (26) this is equivalent to G(s) having no poles
on C. But G(s) is a proper rational function so that by Liouville’s Theorem this
can only happen if G(s) is constant, i.e. G(s) ≡ D. Thus

∃δ > 0 : σC(δ) = σ(A) ⇔ G(s) ≡ D.

An equivalent condition is that C(sI−A)−1B =
∑∞

k=1 CAk−1Bs−k ≡ 0, i.e. CAjB =
0 for all j ∈ N. In this case we have σC(δ) = σ(A) for all δ ∈ (0, ‖D‖−1

L(C� ,Cq)
).

�

Example 5.2.21. Consider

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1595.48 −2113.96 −1361.70 −518.13 −122.38 −15.92

⎤⎥⎥⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎦
and C = I6, D = 0. So the bottom row of A is subject to perturbations and we suppose
these are arbitrary complex numbers and set ∆ = C

1×6 with ‖ · ‖∆ taken to be the
Euclidean norm. A is the companion matrix of a (randomly generated) stable monic
polynomial

χA(s) = (s + 4.42 ± 3.83 ı)(s + 1.36 ± 2.39 ı)(s + 2.18 ± 1.19 ı).

Hence σ(A) ⊂ C−. The transfer matrix is given by

G(s) = C(sI6 − A)−1B =
1

χA(s)

[
1 s s2 s3 s4 s5

]�
. (28)

We computed the spectral value sets for various values of δ and the results are shown in
Figure 5.2.5. The three dimensional portrait in (a) is the graph of the function ‖G(·)‖

−8 −6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 5.2.5: (a) Graph of s �→ ‖G(s)‖ (b) Spectral contours for specific δ

and the spectral contours shown in (b) are obtained from it via a contour plotter. In (b)
the spectral contours have been computed for δ = 0.5, 0.66, 0.83, 1, 8.77, 100. The figures
show that the eigenvalues −4.42 ± 3.83ı are more sensitive to the perturbations than the
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others. This is indicated by the broader peaks around them in (a) and the larger circular
contours around them for δ = 0.5 in (b). In fact the four “front line eigenvalues” near
the imaginary axis remain stubbornly close to their original location under perturbations
of size ≤ 1. At an uncertainty level of about δ = 0.83 the spectral value set is connected
and all the eigenvalues “interact”. It is only after this stage has been reached, that the
spectral value sets begins to approach the imaginary axis. This approach is very slow and
the first contour to touch it is at level δ = 8.77. So if the stability region is C−, then
the stability radius r∆ = rC1×6 = 8.77. A similar behaviour of spectral value sets can be
observed for many stable matrices and explains why high sensitivity of the eigenvalues can
coexist with a considerable robustness of stability.
The closed curve to the right of Figure 5.2.5 (b) belongs to the contour C100. The re-
gion circumscribed by this closed curve does not contain a pole of G(s) and hence does
not intersect σC(A;B,C,D; 100). In fact it describes a hole in this spectral value set:
σC(A;B,C,D; 100) contains all points in Figure 5.2.5 (b) except those lying in this hole
and its boundary. The small square inside the curve marks the location of a local mini-
mum of ‖G(s)‖. To push an eigenvalue to this location a disturbance of size ‖∆‖ ≈ 2800
is required. The outer boundary of the connected set σC(A;B,C,D; 100) is described by
another closed curve contained in C100 which is out of the range of Figure 5.2.5 (b). �

5.2.3 Real Full-Block Perturbations

In the sequel we derive real counterparts to the results of the previous subsection.
We first prove two general results applicable to real full-block perturbations provided
with an arbitrary operator norm. We then deal separately with the two cases where
either � = 1 and the perturbation norm is arbitrary, or � is arbitrary and the
perturbation norm is the spectral norm. We have seen in Section 4.4 that in these
two cases the real µ-value µR can actually be computed.
Throughout the subsection we suppose the following

• (A, B, C, D) ∈ Ln,�,q(R).

• The perturbation set is ∆ = R�×q provided with a norm ‖ · ‖ which is an
operator norm with respect to a given pair of norms (‖ · ‖R�, ‖ · ‖Rq) on R� and
Rq. Moreover we suppose that C� and Cq are provided with a pair of norms
(‖ · ‖C� , ‖ · ‖Cq), compatible with (‖ · ‖R� , ‖ · ‖Rq). (Such a pair of norms always
exists, see Lemma A.1.7).

• The perturbations are of the form

A � A(∆) = A + B(I� − ∆D)−1∆C, ∆ ∈ R
�×q. (29)

The associated spectral value sets are denoted by σR(A; B, C, D; δ). The subset of
admissible perturbations and the corresponding radius of well-posedness are

∆0 = {∆ ∈ R
�×q; det(I� − ∆D) �= 0}, δδδ0 = ‖D‖−1

L(R�,Rq)
.

If we allow for complex instead of real full-block perturbations of the real data we
obtain the spectral value set σC(A; B, C, D; δ) and since ‖∆‖L(Rq ,R�) = ‖∆‖L(Cq,C�)

for ∆ ∈ R�×q we have
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σR(A; B, C, D; δ) ⊂ σC(A; B, C, D; δ). (30)

We will see that in general the complex and real sets are quite different with the real
ones sometimes exhibiting a somewhat eccentric behaviour. It follows immediately
from the definition that for real data the real spectral value sets are symmetric with
respect to the real axis, i.e. if s ∈ σR(A; B, C, D; δ), then the complex conjugate
s ∈ σR(A; B, C, D; δ). So we need only construct the sets in {s ∈ C; Im s ≥ 0}.
Recall that for ∆ = R�×q the µ-value µ∆(G) is denoted by µR(G). Therefore
Theorem 5.2.9 takes the following form in the present context.

Theorem 5.2.22. Suppose 0 < δ ≤ ‖D‖−1
L(R�,Rq)

, then

σR(A; B, C, D; δ) = σ(A) ∪̇ {s ∈ ρ(A); µR(G(s)) > δ−1}, (31)

where G(s) = D + C(sIn − A)−1B is the transfer function of (A, B, C, D).

The evaluation of the above formula is complicated by the possible discontinuity of
µR. We know that µR : Cq×� → R+ is continuous at complex G ∈ Cq×� \Rq×� but it
may not be continuous at real G ∈ Rq×�. As a consequence an important role will
be played by those points s ∈ ρ(A) for which G(s) is real.

Definition 5.2.23. Let G(s) = D + C(sIn − A)−1B = GR(s) + ıGI(s) where
GR(s), GI(s) ∈ Rq×� are the real and imaginary parts of G(s) for s ∈ ρ(A). Then

RG = {s ∈ ρ(A); GI(s) = 0} = {s ∈ ρ(A); G(s) ∈ R
q×�} (32)

is called the realness locus of G.

Remark 5.2.24. The real and imaginary parts of G(s) are given by the formulas

GR(α + ıω) = D − C(ω2I + (A − αI)2)−1(A − αI)B

GI(α + ıω) = −ωC(ω2I + (A − αI)2)−1B, α + ıω ∈ ρ(A).
(33)

So the non-real part of the realness locus consists exactly of those s=α+ ıω∈ρ(A) \R for
which α, ω satisfy the system of real algebraic equations C(ω2I + (A − αI)2)−1B = 0. �

RG always contains the real axis. If G(s) is non-constant then RG has empty
interior in C. For the scalar case where G(s) = p(s)/q(s), the realness locus is given
by {s ∈ C ; p(s) = kq(s) for some k ∈ R} and in control theory this set is known as
the root locus of G(s). If there are two non-constant elements g1(s), g2(s) of G(s)
and the associated root loci curves are in general position then away from the real
axis they will only intersect at a finite number of points. So generically if there are
three distinct non-constant elements of G(s) the realness locus will be the real axis.
Since µR(G(s)) = ‖G(s)‖L(R�,Rq) = ‖G(s)‖L(C�,Cq) for s ∈ RG, we have

RG(δ) := σR(A; B, C, D; δ) ∩ RG = {s ∈ RG; ‖G(s)‖L(C�,Cq) > δ−1}
= σC(A; B, C, D; δ) ∩ RG.

(34)
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Since σ(A) is closed in C and RG is closed in ρ(A) = C \σ(A), the union σ(A)∪RG

is closed in C. It follows from Theorem 4.4.48 that outside of this closed set the
map µR(G(·)) : s �→ µR(G(s)) is continuous. Hence

σR(A; B, C, D; δ) \ (σ(A) ∪ RG) = {s ∈ ρ(A) \ RG; µR(G(s)) > δ−1} (35)

is open in C. In order to characterize the real spectral value sets in terms of spectral
contours as was done in Proposition 5.2.19 for the complex case, we consider the
level sets of µR(G(·)) : C \ (σ(A) ∪ RG) → R+

Cδ = {s ∈ C \ (σ(A) ∪ RG) ; µR(G(s)) = δ−1}. (36)

These spectral contours for the real case are closed in C\(σ(A)∪RG) by the continuity
of µR(G(s)) on this set, and as a consequence σ(A) ∪ RG ∪ Cδ is closed in C. The
following proposition is a counterpart to Proposition 5.2.19.

Proposition 5.2.25. If 0 < δ < ‖D‖−1
L(R�,Rq)

, then σR(A; B, C, D; δ)\(σ(A)∪RG) is

a bounded open subset of C, and modulo σ(A)∪RG the boundary ∂σR(A; B, C, D; δ)
of the spectral value set σR(A; B, C, D; δ) in C is given by

∂σR(A; B, C, D; δ) \ (σ(A) ∪ RG) = Cδ. (37)

Moreover, the following two statements hold.

(i) For every s0 ∈ ρ(A) with µR(G(s0)) = δ−1 (in particular for every s0 ∈ Cδ)
there exists a perturbation ∆ ∈ R�×q of norm ‖∆‖ = δ such that s0 ∈ σ(A(∆)),
and there is no smaller disturbance matrix with this property.

(ii) σR(A; B, C, D; δ) is the union of σ(A) ∪RG(δ) and of those connected compo-
nents of C \ RG ∪ Cδ which contain a point s0 with µR(G(s0)) > δ−1. Those
components of C \ RG ∪ Cδ which contain a point s0 ∈ ρ(A) with µR(G(s0)) <
δ−1 are disjoint from σR(A; B, C, D; δ) \ σ(A).

Proof : (i) Suppose s0 ∈ ρ(A) and µR(G(s0)) = δ−1 where 0 < δ < ‖D‖−1
L(R�,Rq)

.

Then µR(G(s0)) > ‖D‖L(R�,Rq) = µR(D). Hence (i) is a consequence of Corol-
lary 5.2.8.
σR(δ) := σR(A; B, C, D; δ) is bounded since σC(δ) := σC(A; B, C, D; δ) is bounded
by Proposition 5.2.19 and the inclusion (30) holds. Moreover we have already seen
above that the set (35) is open. It remains to prove (37) and (ii). To prove (37), we
have to show that for any s ∈ C \ (σ(A) ∪ RG),

s ∈ ∂σR(δ) := ∂σR(A; B, C, D; δ) ⇔ µR(G(s)) = δ−1 (⇔ s ∈ Cδ ).

Since σR(δ) \ (σ(A)∪RG) is open, no s ∈ ∂σR(δ) \ (σ(A)∪RG) belongs to σR(δ) and
so µR(G(s)) = δ−1 follows from Theorem 5.2.22 and the continuity of µR(G(·)) on
C \ (σ(A) ∪ RG). Conversely, suppose s0 ∈ C \ (σ(A) ∪ RG) and µR(G(s0)) = δ−1.
By Theorem 5.2.22 s0 �∈ σR(δ) and by (i) there exists ∆ ∈ R�×q of norm ‖∆‖ = δ
such that s0 ∈ σ(A(∆)). But then every neighbourhood V of s0 in C contains an
eigenvalue λ of the perturbed matrix A(t∆) where t < 1 is sufficiently close to 1.
So λ ∈ σ(A(t∆)) ⊂ σR(δ), i.e. V ∩ σR(δ) �= ∅, and therefore s0 ∈ ∂σR(δ).
(ii) Let K be a connected component of C \ RG ∪ Cδ and suppose that there is an
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s0 ∈ K ∩ ρ(A) satisfying µR(G(s0)) > δ−1. We will show that then µR(G(s)) > δ−1

for every s ∈ K ∩ ρ(A), hence K ⊂ σR(δ) by (31). Since K is open and arc-
wise connected, there exists for every s ∈ K ∩ ρ(A) an arc γ(t), 0 ≤ t ≤ 1 in
K ∩ ρ(A) ⊂ ρ(A) \ RG connecting s0 = γ(0) with s = γ(1). But t �→ µR(G(γ(t))) is
continuous on [0, 1] and µR(G(γ(t))) �= δ−1 for all t ∈ [0, 1], since K ∩Cδ = ∅. Hence
µR(G(s)) > δ−1 by the intermediate value theorem.
Conversely, assume s ∈ σR(δ) \ (σ(A) ∪ RG(δ)). Then µR(G(s)) > δ−1 by (31)
and s �∈ σ(A) ∪ RG ∪ Cδ ⊃ RG ∪ Cδ, and there exists a connected component K of
C \ RG ∪ Cδ containing s.
For the last statement of the proposition assume again that K is a connected
component of C \ RG ∪ Cδ but now suppose there is an s0 ∈ K ∩ ρ(A) satisfy-
ing µR(G(s0)) < δ−1. By the same argument as above this holds true for every
s ∈ K ∩ ρ(A), so K ∩ σR(δ) ∩ ρ(A) = ∅. �

In order to visualize σR(A; B, C, D; δ), one applies the previous proposition and
proceeds as follows.

Procedure 5.2.26. 1. Compute σ(A) and the realness locus RG.

2. Compute RG(δ) = σR(A; B, C, D; δ) ∩ RG. This can be done by intersecting
RG with the complex spectral value set σC(A; B, C, D; δ), see (34).

3. Determine the contours Cδ so that the set RG ∪ Cδ can be visualized.

4. Check at any point s0 �∈ σ(A) in each connected component K of C \ RG ∪ Cδ

to see whether µR(G(s0)) > δ−1 (in which case K ⊂ σR(A; B, C, D; δ)) or
µR(G(s0)) < δ−1 (in which case K ∩ σR(A; B, C, D; δ) ∩ ρ(A) = ∅).

To carry out this procedure, the essential prerequisite is that the µ-value µR(G(s))
can actually be computed. At present this is not feasible for arbitrary operator
norms on ∆ if �, q ≥ 2. Applying the results of Section 4.4 we will now discuss two
situations in which µR(G) is computable for arbitrary G ∈ Cq×�.

Real Case � = 1

Assume � = 1, R� = R is provided with the norm | · |, Rq with an arbitrary norm
‖ · ‖Rq and ∆ = R1×q = (Rq)∗ with the dual norm ‖ · ‖R1×q = ‖ · ‖∗

Rq . Note that
in this case the transfer matrix G(s) = D + C(sIn − A)−1B is a q-vector of real
proper rational functions. As an immediate consequence of Theorem 5.2.22 and
Theorem 4.4.31, we have

Theorem 5.2.27. Suppose 0 < δ ≤ ‖D‖−1
Rq , then

σR(A; B, C, D; δ) = σ(A) ∪̇ {s ∈ ρ(A); dist (GR(s), RGI(s)) > δ−1}, (38)

where G(s) = D + C(sIn − A)−1B = GR(s) + ıGI(s), GR(s), GI(s) ∈ Rq, s ∈ ρ(A)
and the distance is taken with respect to the norm ‖ · ‖Rq .

We know that µR(G(s)) = dist (GR(s), RGI(s)) is continuous on C \ (σ(A) ∪ RG).
Following the Procedure 5.2.26, the visualization of σR(A; B, C, D; δ) is based on the
partition

σR(A;B,C,D; δ) = σ(A) ∪̇RG(δ) ∪̇ {s ∈ ρ(A) \ RG; dist (GR(s), RGI(s)) > δ−1}. (39)
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Remark 5.2.28. (i) In the case q = � = 1, since RGI(s) = R if s �∈ (σ(A) ∪ RG), the
third term on the RHS of (39) is empty and so

σR(A;B,C,D; δ) = σ(A) ∪̇RG(δ). (40)

(ii) Given s0 ∈ ρ(A) with dist(GR(s0), RGI(s0)) > 0, a minimum norm perturbation
∆min ∈ R

1×q such that s0 ∈ σ(A(∆min)) may be constructed as in the proof of Theo-
rem 4.4.31: Let z∗ ∈ R

1×q with ‖z∗‖∗
Rq = 1 be such that

z∗GR(s0) = dist(GR(s0), RGI(s0)) and z∗GI(s0) = 0 .

Then ∆min = [dist(GR(s0), RGI(s0))]
−1

z∗ achieves s0 ∈ σ(A(∆min)) with norm ‖∆min‖ =
[dist(GR(s0), RGI(s0))]

−1.

(iii) With respect to the 2-norm, we have by (4.4.42)

dist (GR(s), RGI(s))
2 = ‖GR(s)‖2

2 −
〈GR(s), GI (s)〉2

‖GI(s)‖2
2

, s ∈ ρ(A) \ RG . (41)

(iv) Using Corollary 4.4.29 we obtain a similar formula to (39) when q = 1 and � ≥ 1 is
arbitrary. Let R

q = R be provided with the norm | · |, R
� with any norm ‖ · ‖R� , ∆ = R

�

with the norm ‖ · ‖R� and R
1×� with the dual norm ‖ · ‖∗

R� , then

σR(A;B,C,D; δ) = σ(A) ∪̇RG(δ) ∪̇ {s ∈ ρ(A) \ RG; dist (GR(s), RGI(s)) > δ−1}.

where RG(δ) = {s ∈ RG; ‖G(s)‖∗
R� > δ−1} and the distance is taken with respect to the

dual norm ‖ · ‖∗
R� in (R�)∗ = R

1×�. �

Example 5.2.29. Consider the nominal oscillator ξ̈ + 4ξ̇ + 5ξ = 0 of Example 5.2.17,
but now we do not consider perturbations to the mass, i.e. the perturbed system is ξ̈ +
(4 + ∆c)ξ̇ + (5 + ∆k)ξ = 0. This can be modelled as an affine perturbation (1.11) with

A =

[
0 1
−5 −4

]
, B =

[
0
1

]
, C = I2, D = 0, ∆ =

[
∆c ∆k

]
.

Then σ(A) = {−2 ± ı} and the transfer function is given by

G(s) = (s2 + 4s + 5)−1

[
1
s

]
.

If s = α + ıω and we write s2 + 4s + 5 = qR(s) + ı qI(s) with qR(s), qI(s) ∈ R, then

qR(α + ıω) = α2 + 4α + 5 − ω2, qI(α + ıω) = 2αω + 4ω

and

GR(s) = [qR(s)2 + qI(s)
2]−1

[
qR(s)

αqR(s) + ωqI(s)

]
, s = α + ıω �= −2 ± ı

GI(s) = [qR(s)2 + qI(s)
2]−1

[
−qI(s)

ωqR(s) − αqI(s)

]
, s = α + ıω �= −2 ± ı.

Hence RG = R and using (41) a short calculation yields that with respect to the 2-norm

dist (GR(s), RGI(s))
2 = ω2[qI(s)

2 + (ωqR(s) − αqI(s))
2]−1 s /∈ (RG ∪ {−2 ± ı}).

The contours bounding the real spectral value sets for δ = .33, 1.5, 3.6, 4, 6 are shown on
the left of Figure 5.2.6. The interval along the real axis belongs to the spectral value set
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Figure 5.2.6: Real and complex spectral value sets for the 2-norm.

at the uncertainty level δ = 6. For comparison we show the complex contours in the figure
on the right for the same values of δ. Note that in accordance with (34) the interval in
the left figure is equal to the intersection of R with σC(A;B,C; 6). The contour for δ = 4
touches the imaginary axis in the figure on the left, and in the figure on the right this
happens for the contour at level δ = 3.6. We see, therefore, that if the stability region is
C− then the real stability radius is ≈ 4 and the complex one is ≈ 3.6. �

Example 5.2.30. In this example we consider the same system (A,B,C) as in Exam-
ple 5.2.21 but now we assume the perturbations are real. It follows directly from expression
(28) for the associated transfer function that RG = R. Figure 5.2.7 shows the real contours
with respect to the Euclidean norm for the same values of δ as in Figure 5.2.5, namely
δ = 0.5, 0.66, 0.83, 1, 8.77, 100. One observes the qualitative and quantitative differences
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Figure 5.2.7: Real spectral value sets for specific δ

between them and the complex contours of Example 5.2.21. The intervals on the real axis
belong to the set RG(100). The points located to the right of the rightmost contour, which
do not belong to these intervals, do not belong to the spectral value set σR(A;B,C; 100)
but to a hole in this set (spiked by the realness locus RG(δ)). This hole is much larger than
in the complex case, see Figure 5.2.5. It is not possible to move an eigenvalue into this
domain with a real perturbation of norm ≤ 100. As in the complex case, the larger contour
line surrounding the connected set σR(A;B,C; 100) is out of the range of Figure 5.2.7. �
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General Real Case

We now deal with the general case where �, q ≥ 1 are arbitrary and assume through-
out the rest of the subsection that ∆ = R�×q and Rq×� as well as their complex
counterparts are provided with the spectral norm denoted by ‖ · ‖. Then using the
characterization of µR in Theorem 4.4.43 we obtain from Theorem 5.2.22

Theorem 5.2.31. Suppose 0 < δ ≤ ‖D‖−1, then

σR(A; B, C, D; δ) = σ(A) ∪̇ {s ∈ ρ(A); inf
γ∈(0,1]

σ2(G
R

γ (s)) > δ−1} (42)

where G(s) = D + C(sIn − A)−1B = GR(s) + ıGI(s), GR(s), GI(s) ∈ R
q×� and

GR

γ (s) =

[
GR(s) −γGI(s)

γ−1GI(s) GR(s)

]
, s ∈ ρ(A). (43)

Following the Procedure 5.2.26, we compute σR(A; B, C, D; δ) according to the par-
tition

σR(A; B, C, D; δ) = σ(A) ∪̇RG(δ) ∪̇ {s ∈ ρ(A) \ RG; inf
γ∈(0,1]

σ2(G
R

γ (s)) > δ−1}. (44)

In the following example we apply this formula to the case where � = 1 and re-derive
the result in Theorem 5.2.27 with respect to the Euclidean norm.

Example 5.2.32. Suppose � = 1 and 0 < δ ≤ ‖D‖−1
Rq , then

GR
γ (s)�GR

γ (s) =

[
‖GR(s)‖2 + γ−2‖GI(s)‖2 (γ−1 − γ)〈GR(s), GI (s)〉
(γ−1 − γ)〈GR(s), GI (s)〉 ‖GR(s)‖2 + γ2‖GI(s)‖2

]
2×2

.

We know from Proposition 4.4.35 that

inf
γ∈(0,1]

σ2(G
R
γ (s)) = lim

γ→0
σ2(G

R
γ (s)).

For a real symmetric matrix H =

[
a b

b c

]
the lowest eigenvalue is given by λmin(H) =

[a + c−
√

(a − c)2 + 4b2]/2. Hence with f(γ) =
√

(γ−1 + γ)2‖GI(s)‖4 + 4〈GR(s), GI(s)〉2

2σ2(G
R
γ (s))2 =

{
2‖GR(s)‖2 + (γ2 + γ−2)‖GI(s)‖2 − |γ−1 − γ| f(γ) if s∈ρ(A) \ RG

2‖GR(s)‖2 if s∈RG.

But for γ ↓ 0,

(γ−2 − γ2)2‖GI(s)‖4 + 4(γ−1 − γ)2〈GR(s), GI(s)〉2

= γ−4‖GI(s)‖4 + 4γ−2〈GR(s), GI(s)〉2 + O(1)

= γ−4‖GI(s)‖4
[
1 + 4γ2〈GR(s), GI(s)〉2/‖GI(s)‖4 + O(γ4)

]
.

Hence using (1 + x)1/2 = 1 + x/2 + O(x2) (for |x| small), we have

2σ2(G
R
γ (s))2 =2‖GR(s)‖2+γ−2‖GI(s)‖2−γ−2‖GI(s)‖2(1+2γ2〈GR(s), GI(s)〉2/‖GI(s)‖4)

+ O(γ2)

for s ∈ ρ(A) \ RG. Hence by (41)

lim
γ→ 0

σ2(G
R
γ (s))2 = ‖GR(s)‖2 − 〈GR(s), GI(s)〉2/‖GI(s)‖2 = dist(GR(s), GI (s)R)2.

and so
σR(A;B,C,D; δ) = σ(A) ∪̇ {s ∈ ρ(A); dist (GR(s), RGI(s)) > δ−1}.

since σ2(G
R
γ (s)) = ‖GR(s)‖ = dist (GR(s), RGI(s)) for s ∈ RG. �
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Remark 5.2.33. Given s0 ∈ ρ(A) and γ0 ∈ (0, 1] such that

inf
γ∈(0,1]

σ2(G
R
γ (s0)) = σ2(G

R
γ0

(s0)) = σ∗.

Then a minimum norm ∆min satisfying s0 ∈ σ(A(∆min)) may be constructed as in the

proof of Lemma 4.4.37. Let w =

[
w1

w2

]
and v =

[
v1

v2

]
be left and right singular vectors

of GR
γ0

(s0) corresponding to σ∗, such that w1�w2 = v1�v2, ‖w1‖ = ‖v1‖ and ‖w2‖ = ‖v2‖.
Then if ‖D‖ < σ∗ and w1 �= 0 and w2 �= 0 are independent,

∆min = σ∗−1[v1 v2]

[
‖w1‖2 〈w1, w2〉
〈w1, w2〉 ‖w2‖2

]−1 [
w1�

w2�

]
achieves s0 ∈ σ(A(∆min)) with norm ‖∆min‖ = σ∗−1. �

The following example has been especially constructed to obtain a substantial real-
ness locus. It illustrates the relationship between real and complex spectral value
sets and the realness locus.

Example 5.2.34. Let (Ac, Bc, Cc, 0), c ∈ R be a system with transfer function
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Figure 5.2.8: Realness locus and real and complex spectral value sets

Gc(s) =

[
q(s)/p(s) 0

0 (q(s) + c)/4p(s)

]
,

p(s) = s((s − 1)2 + 1)((s + 1)2 + 4))
q(s) = ((s + 1/2)2 + 1)((s + 2)2 + 1)

and ∆ = R
2×2. The figures have been computed for δ = 2, the one on the left for c = 0 and

the one on the right for c = 2. The crosses mark the eigenvalues of A and the dashed line
is the boundary of the complex spectral value set σC(Ac;Bc, Cc; 2). For c = 0 the realness
locus consists of the real axis and the curved solid lines which do not circumscribe a shaded
area. For c = 2 it is reduced to the real axis. The real spectral value set σR(Ac;Bc, Cc; 2)
consists of the shaded area plus (in the case c = 0) those parts of the realness locus which
lie in the complex spectral value set. �
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5.2.4 The Unstructured Case (Pseudospectra)

In this subsection we consider unstructured perturbations A � A + ∆, where
∆ ∈ ∆ = Kn×n is arbitrary. So each element of the matrix A is subject to an
independent complex or real perturbation. After characterizing the corresponding
spectral value sets we will obtain set bounds for them and explore when they are
tight. These set bounds are expressed in terms of intervals or disks around the eigen-
values of A. It is well known that the sensitivities of the eigenvalues of a matrix may
become arbitrarily large under similarity transformations (see Proposition 4.2.12).
At the end of the subsection we derive a global version of this local result by ana-
lyzing changes of the spectral value sets along similarity orbits in Kn×n.
Unstructured perturbations are a special case of the full-block perturbations con-
sidered in the previous two subsections, with corresponding structure matrices B =
C = In, D = 0n×n. Therefore all the results of those two subsections have specializa-
tions to unstructured perturbations. For the sake of brevity we will only give explicit
statements for the spectral perturbation norm ‖·‖2,2 for which more concrete results
are available. Throughout this subsection we suppose the following

• A ∈ Kn×n.

• The perturbation set is ∆ = Kn×n, the spaces Kn are provided with the
standard Euclidean norms and ∆ = Kn×n is provided with the associated
operator norm ‖ · ‖ = ‖ · ‖2,2 (the spectral norm).

• The perturbations are A � A + ∆, ∆ ∈ Kn×n (whence ∆0 = Kn×n, δδδ0 = ∞).

The associated spectral value sets are denoted by

σK(A; δ) = σK(A; In, In, 0n×n; δ) =
⋃

∆∈Kn×n, ‖∆‖<δ

σ(A + ∆).

These sets are called (complex resp. real) unstructured spectral value sets or pseu-
dospectra of A. The corresponding transfer matrix is G(s) = (sIn − A)−1, the
resolvent operator of A. Since ‖∆‖L(Rn) = ‖∆‖L(Cn) for ∆ ∈ Rn×n we have

σR(A; δ) ⊂ σC(A; δ). (45)

If A ∈ R
n×n, the realness locus of G(s) = (sI −A)−1 is trivial, i.e. RG = R. In fact,

(sIn −A)−1 ∈ Rn×n if and only if (sIn −A) ∈ Rn×n, and this is equivalent to s ∈ R

if A is real.

Theorem 5.2.35. Suppose A ∈ Cn×n (resp. A ∈ Rn×n) and δ > 0. Then

σC(A; δ) = {s ∈ C; σn(sI − A) < δ}, (46)

resp. σR(A; δ) = {s ∈ C; sup
γ∈(0,1]

σ2n−1((sI − A)R

γ ) < δ} (47)

where

(sI − A)R

γ =

[
Re(sIn − A) −γ Im(sIn − A)

γ−1 Im(sIn − A) Re(sIn − A)

]
∈ R

2n×2n, s ∈ C. (48)



570 5. Uncertain Systems

Proof : As an immediate consequence of Theorem 5.2.16 and Theorem 5.2.31, we
have for any given δ > 0

σC(A; δ) = σ(A) ∪̇ {s ∈ ρ(A); σ1((sI − A)−1) > δ−1},

σR(A; δ) = σ(A) ∪̇
{

s ∈ ρ(A); inf
γ∈(0,1]

σ2

(
(sI − A)−1)R

γ

)
> δ−1

}
.

Now since (sI−A) is invertible for s∈ ρ(A), we have σ1((sI−A)−1)= (σn(sI − A))−1.
Moreover σn(λI − A) = 0 for λ ∈ σ(A). This proves (46). To prove (47) we use

(4.3.21) and obtain for s∈ρ(A) (since (G−1)
R

γ =
(
GR

γ

)−1
by Lemma A.1.18)

µR

(
(sI − A)−1

)
= inf

γ∈(0,1]
σ2

(
((sI − A)−1)R

γ

)
=

[
sup

γ∈(0,1]
σ2n−1

(
(sI − A)R

γ

)]−1

, s ∈ ρ(A).

Moreover, if λ ∈ σ(A) then there exists v = v1 + ıv2 ∈ Cn, v �= 0 such that

(λI − A)v = 0. It follows that (λI − A)R

γ annulls both

[
v1

γ−1v2

]
and

[
γv2

−v1

]
for all

γ ∈ (0, 1] and this implies σ2n−1((λI − A)R

γ ) = 0, γ ∈ (0, 1]. Thus (47) holds. �

We illustrate the above formulas by a simple example which can be evaluated ana-
lytically. We will use this example later in order to determine the unstructured real
spectral value sets for arbitrary normal A ∈ R2×2. As usual we denote by D(λ, δ)
resp. I(λ, δ) the open disk (resp. open real interval) with centre λ and radius δ.

Example 5.2.36. Consider the matrix A = diag (λ1, λ2), λ1, λ2 ∈ R, and write s =
α + ıω, α, ω ∈ R. Then an easy calculation shows that

σ2(sI−A) =
(
min {(α − λ1)

2 + ω2, (α − λ2)
2 + ω2}

)1/2
= dist(s, σ(A)), s = α+ ıω ∈ C.

Hence (46) yields

σC(A; δ) = {s ∈ C ; dist(s, σ(A)) < δ} = D(λ1, δ) ∪ D(λ2, δ). (49)

The real case is not quite so simple. We have

(sI − A)R
γ =

⎡⎢⎢⎣
α − λ1 0 −γω 0

0 α − λ2 0 −γω

γ−1ω 0 α − λ1 0
0 γ−1ω 0 α − λ2

⎤⎥⎥⎦

=

⎡⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

α − λ1 −γω 0 0
γ−1ω α − λ1 0 0

0 0 α − λ2 −γω

0 0 γ−1ω α − λ2

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ .

So the singular values of (sI−A)R
γ are the singular values of A1(γ, s) =

[
α − λ1 −γω

γ−1ω α − λ1

]
and A2(γ, s) =

[
α − λ2 −γω

γ−1ω α − λ2

]
. Let σi(γ, s, λj), i = 1, 2 be the ordered singular values

of the two matrices Aj(γ, s), j = 1, 2. There are two cases. First suppose s ∈ R, i.e. ω = 0
and s = α, then

σ1(γ, s, λj) = σ2(γ, s, λj) = |α − λj |, γ ∈ (0, 1], j = 1, 2.
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So σ̂3(s) := supγ∈(0,1] σ3((sI − A)R
γ = min {|α − λ1|, |α − λ2|} = dist(α, σ(A)) and (47)

yields

σR(A; δ) ∩ R = {α ∈ R; dist(α, σ(A)) < δ} = I(λ1, δ) ∪ I(λ2, δ). (50)

Now suppose s = α + ıω ∈ C \ R. An easy calculation shows for i, j = 1, 2

σi(γ, s, λj)
4 −

[
2(α − λj)

2 + ω2(γ2 + γ−2)
]
σi(γ, s, λj)

2 + [(α − λj)
2 + ω2]2 = 0. (51)

Note that for γ = 1 the upper and lower singular value of the two matrices Aj(γ, s),
j = 1, 2 coincide:

σ1(1, s, λj)
2 = σ2(1, s, λj)

2 = (α − λj)
2 + ω2 = |s − λj |2.

The upper singular values σ1(γ, s, λj) increase strictly monotonically to ∞ as γ goes from
1 to 0, and since the products σ1(γ, s, λj)σ2(γ, s, λj), j = 1, 2 are the determinants of
the matrices Aj(γ, s) (see Proposition 4.3.23) and these are independent of γ, the lower
singular values decrease strictly monotonically to 0 as γ goes from 1 to 0. It follows that
in the case λ1 = λ2 = λ the supremum σ̂3(s) := supγ∈(0,1] σ3((sI − A)R

γ is achieved for

γ = 1, so that σ̂3(s) =
[
(α − λ)2 + ω2

]−1/2
= |s − λ|. Hence

σR(A; δ) = D(λ, δ) = σC(A; δ) if λ1 = λ2 = λ. (52)

Now suppose λ1 �= λ2, then σ̂3(s) := supγ∈(0,1] σ3((sI − A)R
γ is achieved at a γ̂(s) where a

lower singular value of one of the matrices meets an upper one of the other matrix. So by
(51) σ̂3(s) satisfies

ω2(γ̂(s)2 + γ̂(s)−2)σ̂3(s)
2 = σ̂3(s)

4 + [(α − λ1)
2 + ω2]2 − 2(α − λ1)

2σ̂3(s)
2

= σ̂3(s)
4 + [(α − λ2)

2 + ω2]2 − 2(α − λ2)
2σ̂3(s)

2.

Subtracting the two right hand sides from each other and dividing by (α−λ1)
2− (α−λ2)

2

yields

2σ̂3(s)
2 = (α − λ1)

2 + (α − λ2)
2 + 2ω2 = 2 [α − (λ1 + λ2)/2]

2 + 2 [(λ1 − λ2)/2]
2 + 2ω2.

So

σ̂3(s)
2 = [α − (λ1 + λ2)/2]

2+ω2+[(λ1 − λ2)/2]
2 = |s−(λ1+λ2)/2|2 +[(λ1−λ2)/2]

2 (53)

for s = α+ ıω, ω �= 0. It follows from Theorem 5.2.35 that for δ ≤ |λ1 −λ2|/2 the spectral
value set σR(A; δ) does not contain non-real s ∈ C, hence by (50)

δ ≤ |λ1 − λ2|/2 ⇒ σR(A; δ) = I(λ1, δ) ∪ I(λ2, δ). (54)

For larger δ, (47) and (50) yield

σR(A; δ)=I(λ1, δ) ∪I(λ2, δ) ∪D
(
m, (δ2− d2)1/2

)
, m=(λ1+λ2)/2, d= |λ1−λ2|/2. (55)

Note that this formula includes (52) and (54) if we set D(λ, r) = ∅ for r ∈ ıR. The
formula is illustrated in Figure 5.2.9. The real spectral value set σR(A; δ) is the union of
the interval (λ1 − δ, λ2 + δ) shown as a thick line and the shaded disk D(m, (δ2 − d2)1/2).
Whereas the complex set σC(A; δ) is the union of the disks D(λ1, δ) and D(λ2, δ) bounded
by the dotted circles. �
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mλ1 λ2λ1 − δ λ2 + δ

Figure 5.2.9: Illustration of (55)

The difference between the real and the complex unstructured spectral value sets
in the previous example can be intuitively explained as follows: In order to move a
simple real eigenvalue of A away from the real axis, a real perturbation must first
produce a collision with another real eigenvalue, after which it can then produce a
pair of complex eigenvalues. Therefore, in order to produce a non-real eigenvalue
λ ∈ C\R, a real perturbation of much larger size than dist(λ, σ(A)) may be required
if the two simple real eigenvalues λ1, λ2 are far apart and λ is lying close to one of the
two eigenvalues. This collision mechanism is illustrated in the following example.

Example 5.2.37. Let

A = diag(λ1, λ2) =

[
0 0
0 4

]
, ∆ =

[
a b

c d

]
∈ R

2×2

and suppose λ := ı ∈ σ(A + ∆). Then necessarily trace(A + ∆) = a + d + 4 = 0 so that
‖∆‖ ≥ max{|a|, |d|} ≥ 2 whereas dist(λ, σ(A)) = 1.

Now consider the spectrum of Aγ = A + γ∆ where γ ∈ [0, 1] and ∆ =

[
−2 −

√
5√

5 −2

]
. We
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Figure 5.2.10: Eigenvalues of Aγ = A + γ∆, 0 ≤ γ ≤ 1

have ı ∈ σ(A + ∆) and by (53)

‖∆‖ = 3 =
[
|ı − 2|2 + 22

]1/2
=
[
|ı − (λ1 + λ2)/2|2 + ((λ2 − λ1)/2)

2
]1/2

= σ̂3(ı).

Since σ̂3(ı) =
[
µR

(
(ıI − A)−1

)]−1
, ∆ is a minimum norm real perturbation achieving

ı ∈ σ(A + ∆), see Proposition 5.2.25 (i). The movement of the eigenvalues of Aγ as γ
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increases from 0 to 1 is shown in Figure 5.2.10. As γ increases from 0 to 1, the largest
eigenvalue of Aγ decreases from 4 while the lowest eigenvalue moves from zero first to
the left until its smallest value 2 − 6/

√
5 is attained at γ = 4

√
5/15. Then the lowest

eigenvalue of Aγ turns back and increases until for γ = 2/
√

5 the two real eigenvalues
collide at 2− 4/

√
5 and split into a pair of complex conjugate eigenvalues ending in ±ı for

γ = 1. �

Example 5.2.36 shows that even in a very simple case the evaluation of formula (47)
can be complicated and, in fact, in most examples it will be impossible to determine
supγ∈(0,1] σ2n−1((sI − A)R

γ ) analytically. So whilst the formulas in Theorem 5.2.35
are vital for computational purposes, in order to get some analytical estimates for
the sets it is often easier to start from the definition of σK(A; δ), especially in the
real case. Throughout the rest of this subsection we will be particularly interested
in comparing the results we obtain for normal matrices with those for non-normal
ones. Our first objective is to obtain a lower set bound and to determine when it is
tight.
For the complex case a lower estimate for the spectral value sets is easily obtained.

Corollary 5.2.38. If σ(A) = {λ1, . . . , λ�} then

�⋃
j=1

D(λj, δ) ⊂ σC(A; δ), δ > 0. (56)

If A is normal then equality holds in (56).

Proof : If λ ∈ D(λj, δ) then λ is an eigenvalue of A + ∆ with ∆ = (λ − λj)I and
this proves (56). Now equality for normal A follows from the Bauer-Fike lemma, see
Corollary 4.2.16. �

Remark 5.2.39. We have seen at the end of Subsection 4.2.1 that the eigenvalues of
normal matrices have minimal sensitivity. The previous corollary provides a global version
of this result. If λ1, . . . , λ� are any complex numbers, then all complex normal matrices
A with σ(A) = {λ1, . . . , λ�} have exactly the same complex spectral value set at a given
uncertainty level. Moreover this set is contained in the complex spectral value set (at the
same uncertainty level) of any other matrix which has the same spectrum. In this sense
the spectrum of a normal matrix is more robust with respect to unstructured parameter
perturbations than that of any other matrix. In particular normal matrices have minimal
complex spectral value sets in their similarity class. �

To obtain a corresponding bound for the real case is a much more subtle problem
and to prepare the ground we will first study the case n = 2.

Lemma 5.2.40. Suppose A ∈ R
2×2 and λ = α + ıω ∈ C. Then

(i) If σ(A) �⊂ R or if λ ∈ R then there exists ∆ ∈ R2×2 of norm ‖∆‖ ≤
dist(λ, σ(A)) such that λ ∈ σ(A + ∆).

(ii) If σ(A) ⊂ R and λ /∈ R, then there exists ∆ ∈ R2×2 of norm

‖∆‖ ≤
(
|λ − m|2 + d2

)1/2
, where m = (λ1 + λ2)/2, d = (λ1 − λ2)/2 (57)

such that λ ∈ σ(A + ∆).
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(iii) If A is normal then the perturbations ∆ in (i) (resp. (ii)) are of minimal norm
amongst those achieving λ ∈ σ(A + ∆). Moreover, in this case

‖∆‖ = dist(λ, σ(A))
(
resp. ‖∆‖ =

(
|λ − m|2 + d2

)1/2
)

.

Proof : It is an easy exercise to show that every matrix A ∈ R2×2 is orthogonally
similar to a matrix with equal entries on the diagonal:

UAU� =

[
a b
c a

]
= aI2 +

[
0 b
c 0

]
, U ∈ O2(R).

Therefore, since λ ∈ σ(A + ∆) ⇔ λ ∈ σ(UAU� + U∆U�) and ‖U∆U�‖ = ‖∆‖,
we may assume without restriction of generality that A is of the form A =

[
a b
c a

]
.

Then A has the real eigenvalues λ1,2 = a±
√

bc if bc ≥ 0 and the complex eigenvalues
λ1,2 = a ± ı

√
−bc if bc < 0.

Now consider perturbations of the form

∆ =

[
α − a −η

η α − a

]
∈ R

2×2, η ∈ R. (58)

Then λ = α + ıω, ω ≥ 0 is an eigenvalue of A + ∆ =

[
α b − η

c + η α

]
if and only if

0 ≤ ω2 = −(b − η)(c + η), i.e. η = (b − c)/2 ±
√

ω2 + ((b + c)/2)2.

Since we want to minimize the norm ‖∆‖2 = (α − a)2 + η2, we choose

η = (b − c)/2 − sign(b − c)

√
ω2 + ((b + c)/2)2. (59)

(i) First suppose σ(A) �⊂ R, i.e. bc < 0. Then we have to show that

‖∆‖2 = (α − a)2 + η2 ≤ dist(λ, σ(A)) = (α − a)2 + (ω −
√
−bc)2

i.e.

η2 = ((b − c)/2)2 + ω2 + ((b + c)/2)2 − |b − c|
√

ω2 + ((b + c)/2)2 ≤ ω2 − bc − 2ω
√
−bc.

This is equivalent to (1/2)(b + c)2 + 2ω
√
−bc ≤ |b − c|

√
ω2 + ((b + c)/2)2, hence to

(b + c)4 + 16ω2(−bc) + 8(b + c)2ω
√
−bc ≤ (b − c)2

(
4ω2 + (b + c)2

)
,

or, equivalently,

(b + c)4 + 4ω2
[
−4bc − (b − c)2

]
≤ (b − c)2(b + c)2 − 8(b + c)2ω

√
−bc.

Since the bracket is equal to −(b + c)2, this is equivalent to

(b + c)2 − 4ω2 ≤ (b − c)2 − 8ω
√
−bc, i.e. 4bc − 4ω2 ≤ −8ω

√
−bc.
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This last inequality holds since (ω −
√
−bc)2 ≥ 0. This proves (i) for the case

σ(A) �⊂ R. Now assume σ(A) ⊂ R and λ ∈ R. To prove (i) for this case it suffices to
choose ∆ = (λ− λ1)I2 where λi ∈ σ(A) is chosen such that |λ− λi| = dist(λ, σ(A)).
(ii) Now suppose σ(A) ⊂ R, i.e. bc ≥ 0, and λ = α + ıω, ω > 0. Since m = a and
d =

√
bc it remains to show that

‖∆‖2 = (α − a)2 + η2 ≤ (α − a)2 + ω2 + bc,

i.e. η2 = (1/2)(b2 + c2) + ω2 − (1/2)|b− c|
√

4ω2 + (b + c)2 ≤ ω2 + bc

i.e. (b − c)4 ≤ (b − c)2(4ω2 + (b + c)2), i.e. (b − c)2 ≤ 4ω2 + (b + c)2.

But this inequality holds since bc ≥ 0.
(iii) Suppose that A is normal. Then it follows directly from Corollary 4.2.16 that the
perturbations in (i) are of minimal norm and satisfy ‖∆‖ = dist(λ, σ(A)). To prove
that the perturbations satisfying (57) are necessarily minimal we make use of ortho-
gonal similarity transformations in order to put A into the form A = diag(λ1, λ2).
But then, for any given λ = α + ıω, ω > 0 we know from (53) and Proposition
5.2.25 (i) that there does not exist a perturbation ∆′ ∈ R2×2 of norm < σ̂3(λ) =

(|λ − m|2 + d2)
1/2

achieving λ ∈ σ(A + ∆′). This concludes the proof of (iii). �

Remark 5.2.41. Note that the perturbations constructed in the previous proof are all
multiples of isometries with respect to the Euclidean norm. �

As a consequence of the lemma and (55) we obtain the following formulas for σR(A; δ)
in the 2-dimensional case.

Corollary 5.2.42. Suppose A ∈ R2×2 has eigenvalues λ1, λ2 and m = (λ1 + λ2)/2,
d = |λ1 − λ2|/2. Then, for all δ > 0,

σR(A; δ) ⊃ D(λ1, δ) ∪ D(λ2, δ) if λi �∈ R (60)

σR(A; δ) ⊃ I(λ1, δ) ∪ I(λ2, δ) ∪ D
(
m, (δ2 − d2)1/2

)
if λi ∈ R, (61)

where D(λ, r) = ∅ for r ∈ ıR. The inclusions are equalities if A is normal.

The corollary is illustrated in the following example which shows the four different
types of unstructured real spectral value sets of normal matrices A ∈ R2×2.

Example 5.2.43. Consider the normal matrices

A0 =

[
1 0
0 3.5

]
, A1 =

[
1 0
0 2

]
, A2 =

[
1 0
0 1

]
, A3 =

[
1 1/2

−1/2 1

]
.

Figure 5.2.11 shows the spectral value sets of Ai, i = 0, 1, 2, 3 for δ = 1. The first three
matrices have a real spectrum and the corresponding pictures illustrate the three types of
spectral value sets corresponding to this case. A3 has a pair of complex eigenvalues and
so its spectral value set is just the union of two disks. The figures show also the spectra
of 3000 perturbed matrices Ai + ∆, where the ∆ ∈ R

2×2, ‖∆‖ = 1 were produced with
the help of a pseudo random generator. �
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Figure 5.2.11: Spectral value sets of normal matrices

The previous corollary implies that, in the 2-dimensional case, normal matrices have
the smallest real pseudospectra in their similarity class. It is still an open problem
whether this also holds for arbitrary dimensions, see Notes and References. The
following proposition gives only a partial answer to this question.

Proposition 5.2.44. Suppose A ∈ Rn×n has eigenvalues λ1, . . . , λn (taking account
of multiplicities), with λ1 ≤ . . . ≤ λk ∈ R and λk+1, . . . , λn /∈ R, and let δ > 0.
Then the spectral value set σR(A; δ) contains the following sets:

(i) I(λi, δ) = {λ ∈ R; |λ − λi| < δ}, i = 1, . . . , k;

(ii) D(λj, δ) = {λ ∈ C; |λ − λj | < δ}, j = k + 1, . . . , n;

(iii) D(mi, (δ
2 − d2

i )
1/2) if λi+1 − λi < 2δ, i = 1, . . . , k − 1

where mi = (λi + λi+1)/2 and di = (λi+1 − λi)/2.
(In particular, D(λi, δ) ⊂ σR(A; δ) if λi is of multiplicity ≥ 2).

(iv) Assume that A is normal and each simple real eigenvalue λ ∈ σ(A) satisfies

|λ − µ| ≥ 2δ for all µ ∈ σ(A), µ �= λ. (62)

Then
σR(A; δ) =

⋃
λ∈σ1

I(λ, δ) ∪
⋃

λ∈σ2

D(λ, δ) (63)

where σ(A) = σ1 ∪̇σ2 is the partition of σ(A) into the set of simple real eigen-
values and the set of eigenvalues which are either not simple or not real.

Proof : (i) If λ ∈ I(λi, δ) for some i ∈ k it suffices to set ∆ = (λ − λi)I to get
λ ∈ σ(A + ∆).
(ii) Suppose λ ∈ D(λj, δ), λj /∈ R. Making use of the Schur canonical form (Theo-
rem 4.5.14) there exists an orthogonal matrix U ∈ On such that

Ã = U�AU =

[
A1 A3

0 A2

]
(64)

where A2 ∈ R
2×2 has eigenvalues λj , λj . By Lemma 5.2.40 (i) there exists a matrix

∆ ∈ R2×2 of norm ‖∆‖ < δ such that λ ∈ σ(A2 + ∆). Taking

A(∆) = U

(
Ã +

[
0 0
0 ∆

])
U� = A + U

[
0 0
0 ∆

]
U�,
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we obtain ‖A(∆) − A‖ < δ and λ ∈ σ(A(∆)).
(iii) Suppose λ ∈ D(mi, (δ

2−d2
i )

1/2) with 1 ≤ i ≤ k−1. In Theorem 4.5.14 we showed
that there exists a Schur canonical form Ã (64) of A such that σ(A2) = {λi, λi+1}.
Since |λ−mi|2 + d2

i < δ2 we can apply Lemma 5.2.40 (ii) and conclude the proof as
in (ii).
(iv) By (i) and (ii) it is only necessary to prove the inclusion ⊂ in (63), under
the assumption of (iv). If s ∈ σR(A; δ) then by Corollary 5.2.38 s ∈ D(λ, δ) for
some λ ∈ σ(A). If λ ∈ σ2, then necessarily s belongs to the RHS of (63). Now
suppose that s ∈ D(λ, δ) for some simple real λ ∈ σ(A), then we have to show that
s ∈ R. Let s ∈ σ(A + ∆), ∆ ∈ Rn×n, ‖∆‖ < δ and set Aε = A + ε∆, ε ∈ [0, 1].
By Corollary 4.2.4 there exist continuous functions λ̃j(·) : [0, 1] → C, j = 1, ..., n
such that σ(Aε) = {λ̃1(ε), ..., λ̃n(ε)} for all ε ∈ [0, 1] with, say, λ̃i(0) = λ. Clearly,
σ(Aε) ⊂ σR(A; δ) ⊂

⋃n
j=1 D(λj, δ) for all ε ∈ [0, 1]. Now, by the assumption (62),

D(λ, δ) has empty intersection with D(µ, δ) for all µ ∈ σ(A), µ �= λ and so, by
continuity, λ̃i(ε) ∈ D(λ, δ) for all ε ∈ [0, 1]. By the same reason, no branch λ̃j(ε)
with λ̃j(0) �= λ can enter D(λ, δ). But λ is a simple eigenvalue of A and so λ̃i(ε) is the
only eigenvalue of Aε in D(λ, δ) taking account of multiplicity. Thus λ̃i(ε) ∈ R for

all ε ∈ [0, 1] (otherwise λ̃i(ε) �= λ̃i(ε) would both be in D(λ, δ)) and since λ̃i(1) = s
this concludes the proof. �

Remark 5.2.45. As a consequence of Corollary 5.2.38 we see that the set-valued map
A �→ σ(A) is open on C

n×n in the sense that ∪A∈Uσ(A) is open when U is an open
subset of C

n×n. Whereas by Proposition 5.2.44 we obtain that the same map A �→ σ(A)
is only conditionally open on R

n×n, in the sense that [∪A∈Uσ(A)] ∩ R is open in R and
[∪A∈Uσ(A)] ∩ (C \ R) is open in C if U is an open subset of R

n×n. �

If the condition (62) given in Proposition 5.2.44 (iv) is violated, the real unstructured
spectral values sets of normal matrices need not be given by (63) nor can they in
general be represented as unions of disks and real intervals as in the 2-dimensional
case (Corollary 5.2.42). New shapes appear already for n = 3 as illustrated in the
next example.

Example 5.2.46. Consider the normal matrices Aα,β =

⎡⎣ 0 −β 0
β 0 0
0 0 α

⎤⎦, where α, β ∈

R. In the following figures the the uncertainty level is set at δ = 6. For Figure 5.2.12
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Figure 5.2.12: σR(Aα,8; 6) for α = 9, 4.2, 4, 0

β = 8 and the real unstructured spectral value sets of Aα,8 have been calculated with
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α = 9, 4.2, 4, 0. For α = 9, the sets are given by (63), but for smaller values of α, the sets
around ±8ı seem to be attracted by the interval around the eigenvalue α. This continues
until for α = 4 the sets touch and then for lower values merge. For Figure 5.2.13 α = 9 is
kept constant and the real unstructured spectral value sets of A9,β have been calculated
with β = 8, 5.8, 5.6, 5.2. For β = 8, the sets are as in the left hand figure in Figure 5.2.12
and are given by (63). However as β decreases the interval around the eigenvalue α = 9
attracts the sets around ±βı, until they touch. Then as β decreases the sets merge, but a
diminishing hole remains temporarily within the connected spectral value set.
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Figure 5.2.13: σR(A9,β ; 6) for β = 8, 5.8, 5.6, 5.2.
�

We conclude this subsection by analyzing how much the unstructured spectral value
sets of a given matrix A can be increased by applying similarity transformations to
A. We first prove a related lemma which will be used in the next section on stability
radii.

Lemma 5.2.47. Suppose A ∈ Kn×n, A /∈ KI and σ(A) = {λ1, . . . , λn}. Then

sup
T∈Gln(K)

‖T−1AT‖ = ∞. (65)

If A ∈ Cn×n there exists a sequence (Tk) in Gln(C) such that

lim
k→∞

T−1
k ATk = diag(λ1, . . . , λn) . (66)

If A is real and λ1, . . . , λr ∈ R, α1 ± ıβ1, · · · , αh ± ıβh ∈ C \ R (r + 2h = n) are the
eigenvalues of A taking account of multiplicities, then there exists a sequence (Tk)
in Gln(R) such that

lim
k→∞

T−1
k ATk = diag

(
λ1, . . . , λr,

[
α1 β1

−β1 α1

]
, · · · ,

[
αh βh

−βh αh

])
. (67)

Proof : We prove the lemma for the real case which is slightly more complicated
than the complex one. Without restriction we may assume that A is in real Jordan
form A = D+N where D is the block-diagonal matrix on the RHS of (67) and N is a
nilpotent matrix with zero entries except for possible 1s at the positions (i, i+1), i =
1, ..., r− 1 and possible submatrices I2 to the right of the complex eigenvalue blocks[

αj βj

−βj αj

]
, j = 1, ..., h− 1. Let T (ε) = diag (1, ε, ..., εr−1, I2, εI2, ..., ε

h−1I2), then

T (ε)−1AT (ε) = D + T (ε)−1NT (ε) = D + εN, ε ∈ R. (68)
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Choosing Tk = T (1/k) proves (67). Moreover, if A is not semi-simple, i.e. N �= 0,
then (68) implies (65) by choosing T = T (ε) with ε → ∞.
If A is semi-simple, then since A �= RIn, A has either two distinct real eigenvalues
λ, µ or a pair of complex eigenvalues α ± ıβ, β �= 0. After a suitable similarity
transformation (permutation) we may assume A is of the form

A = diag (λ, µ, A2) or A = diag

([
α β
−β α

]
, A2

)
,

where A2 is of order n − 2. Let S(t) = diag

([
1 t
0 1

]
, In−2

)
, so that S(t)−1 =

S(−t). Then an elementary calculation shows that in both cases

lim
t→∞

‖S(t)−1AS(t)‖ = ∞.

This completes the proof of (65).
The same proof applies to the complex case (K = C) with the simplification that in
this case D is diagonal. �

In the next proposition we show that for any given δ, however small, the complex
pseudospectrum σC(A; δ) absorbs every bounded set in C if A varies along any
similarity orbit in Cn×n, n ≥ 2 which is not a singleton.

Proposition 5.2.48. Suppose A ∈ Cn×n, n ≥ 2, A �∈ CIn, δ > 0, c ∈ C and r > 0.
Then there exists a nonsingular transformation T ∈ Gln(C) such that

σC(T−1AT ; δ) ⊃ D(c, r).

Proof : Without restriction of generality we may assume c = 0 and that A is of
the form

A =

[
A1 ∗
0 ∗

]
where (i) A1 =

[
λ 0
0 µ

]
, λ �= µ, or (ii) A1 =

[
λ 1
0 λ

]
.

In the first case we choose t ≥ [(r + |λ|)(r + |µ|)]/(δ|λ − µ|) and for any s ∈ C

S(t) = diag

([
1 t

0 1

]
, In−2

)
, ∆(s) =

[
∆1(s) 0

0 0

]
, ∆1(s) =

[
0 0

(s−λ)(s−µ)
t(λ−µ) 0

]
.

Then

S(t)−1AS(t) + ∆(s) =

[
A1(t) + ∆1(s) ∗

0 ∗
]

, A1(t) + ∆1(s) =

[
λ t(λ − µ)

(s−λ)(s−µ)
t(λ−µ) µ

]
,

and so, for all s ∈ D(0, r),

s ∈ σ (A1(t) + ∆1(s)) ⊂ σ
(
S(t)−1AS(t) + ∆(s)

)
, ‖∆(s)‖ <

(r + |λ|)(r + |µ|)
t|λ − µ| ≤ δ.

Therefore D(0, r) ⊂ σC(T−1AT ; δ) for T = S(t) if t ≥ [(r + |λ|)(r + |µ|)]/(δ|λ− µ|).
In the second case we choose t ≥ (r + |λ|)2/δ and

S(t) = diag

([
1 0
0 t

]
, In−2

)
, ∆(s) =

[
∆1(s) 0

0 0

]
, ∆1(s) =

[
0 0

(s−λ)2

t
0

]
.
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Then

S(t)−1AS(t) + ∆(s) =

[
A1(t) + ∆1(s) ∗

0 ∗
]

, A1(t) + ∆1(s) =

[
λ t

(s−λ)2

t λ

]
,

and so, for all s ∈ D(0, r),

s ∈ σ(A1(t) + ∆1(s)) ⊂ σ(S(t)−1AS(t) + ∆(s)), ‖∆(s)‖ <
(r + |λ|)2

t
≤ δ.

Thus again D(0, r) ⊂ σC(T−1AT ; δ) for T = S(t) and the proof is complete. �

A similar result also holds in the real case with the added proviso that n ≥ 3, but
the proof is more complicated, see Notes and References. The 2-dimensional real
case is studied in Ex. 19.
The previous proposition shows that every similarity orbit in Cn×n which is not re-
duced to a single element contains matrices whose computed spectrum is arbitrarily
uncertain. In fact, choose ε > 0 smaller than half the machine accuracy. Then the
computer cannot distinguish between any matrix X and its perturbations X + ∆
with ‖∆‖ < ε. By Proposition 5.2.48, given any matrix A ∈ R

n×n\CIn, there exists,
for any c ∈ C and r > 0, a matrix Ã ∼ A such that the spectra of all the matrices
which the computer cannot distinguish from Ã cover the disk D(c, r).

5.2.5 Exercises

1. Consider

A =

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
−2 −6 −8.5 −5

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ , C =
[
3.25 2 1 0

]
, D = 1.

Calculate the corresponding scalar transfer function G(s) and visualize σ∆(A;B,C,D; δ)
where ∆ = C for δ = 0.001, 0.01, 0.1 (e.g. using the matlab-contour plotter for |G(s)|).

2. Consider the perturbed first order equation (1 − ∆2)ẋ + (1 − ∆1)x = 0 with per-
turbations ∆ = (∆1,∆2) ∈ ∆ = C

1×2. Show that this can be written in the form
ẋ = A(∆)x where A(∆) is of the form (25) and the transfer function of (A,B,C,D) is
G(s) = −(s+1)−1[1 s]�. Hence show that with respect to the Euclidean norm the bound-
ary of the complex spectral value set σC(δ) at level δ < 1 is a circle centred at −(1− δ2)−1

of radius (1 − δ2)−1|δ|
√

2 − δ2.

3. Suppose the Gershgorin perturbation class ∆ (15) is provided with the norm

‖∆‖∆ = max
i,j∈n,i�=j

|∆ij|, ∆ = (∆ij) ∈ ∆.

Following the same method as Subsection 5.2.1, prove the following counterpart of Propo-
sition 5.2.11: If A = (aij) ∈ C

n×n is diagonal, the spectral value set of A with respect to
perturbations of the form A � A(∆) = A + ∆, ∆ ∈ ∆, ‖∆‖∆ < δ is given by

σ∆(A; δ) = σ(A) ∪̇ {s ∈ ρ(A); �(P (s)) > δ−1},
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where � denotes the spectral radius and

P (s) =

⎡⎢⎢⎢⎢⎣
0 |s − a22|−1 |s − a33|−1 . . . |s − ann|−1

|s − a11|−1 0 |s − a33|−1 . . . |s − ann|−1

. . . . . . .

. . . . . . .

|s − a11|−1 |s − a22|−1 |s − a33|−1 . . . 0

⎤⎥⎥⎥⎥⎦ , s ∈ ρ(A). (69)

Discuss the relation between this result and Proposition 5.2.11 in the special case n = 2.

Hint: Prove the following sequence of statements:

(i) Let ∆̃ ⊂ C
n×n(n−1) be the set of all ∆̃ of the form (18) provided with the operator

norm ‖ · ‖
∆̃

induced by the following Hölder norm on C
n(n−1)

‖y‖ = max
i∈n

‖yi‖1 = ‖y‖1|∞, y = (yi)i∈n, yi ∈ C
n−1

and the ∞-norm on C
n. Show that

‖∆̃‖
∆̃

= max
i,j∈n,i�=j

|∆ij| = ‖∆‖∆, ∆ = (∆ij) ∈ ∆.

(ii) If C is given by (19) and G(s) by (20), prove that

‖G(s)‖L(Cn,Cn(n−1)) = max
i∈n

∑
j �=i

|s − ajj|−1, s ∈ ρ(A)

where ‖ · ‖L(Cn,Cn(n−1)) denotes the operator norm induced by the above vector norms on

C
n and C

n(n−1).

(iii) It is known from Perron-Frobenius theory [183] that �(P (s)) is an eigenvalue of the
nonnegative matrix P (s) and, since P (s) is irreducible3, the spectral radius of P (s) is
positive and there exists an associated eigenvector x(s) = (xi(s)) ∈ R

n with xi(s) > 0, i ∈
n , s ∈ ρ(A). Let Gγ(s) be defined by (23) with γi = �(P (s))/xi(s), i ∈ n , and prove

µ
∆̃

(G(s)) ≤ ‖Gγ(s)‖L(Cn,Cn(n−1)) = �(P (s)).

(iv) Define ∆ ∈ ∆ by

∆ij =
|s − ajj|
s − ajj

, i, j ∈ n, i �= j, ∆ii = 0, i ∈ n.

Show that ∆̃G(s) = ∆ diag ((s− a11)
−1, ..., (s − ann)−1) = P (s), ‖∆̃‖

∆̃
= 1, and conclude

the proof.

4. If

A =

[
1 1

−2.5 −2

]
, B =

[
1
0

]
, C = I2,

calculate σC(A;B,C; δ) with respect to the spectral norm for δ = 2−1, 1, 2.

3A nonnegative matrix M = (mij) ∈ Rn×n is said to be irreducible if there does not exist a

n×n permutation matrix P such that PMP� has the form

[
M11 0
M21 M22

]
where M11 and M22 are

square matrices of order ≥ 1.
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5. Calculate the complex spectral value set σC(A;B,C; δ) at level δ = 1 for the matrices
in Ex. 4 with respect to the 1-norm ‖∆‖1 = |∆1| + |∆2| on ∆ = C

1×2.

6. If A =

[
a11 a12

a21 a22

]
, B = C = I2 show that the complex spectral value sets σC(δ) =

σC(A; I2, I2; δ) with respect to the operator norm ‖ · ‖∞,∞ = ‖ · ‖1|∞ (see (A.13) and
(A.1.7)) on ∆ = C

2×2 are given by

σC(δ) = {s ∈ C ; |(s − a11)(s − a22) − a12a21| < δ max{|s − a11| + |a21|, |s − a22| + |a12|}.

7. Write a program (e.g. matlab code) for visualizing complex spectral value sets for
full-block perturbations with respect to the spectral norm. Compute ‖G(s)‖2,2 = ‖D +
C(sI − A)−1B‖2,2 on a suitable grid in the complex plane and use a contour plotter to
visualize the boundary of σC(A;B,C,D; δ) (see Proposition 5.2.19).

8. Consider the three matrices

A0 =

⎡⎣ 0 1 0
−1 0 0
0 0 2

⎤⎦ , A1 =

⎡⎣ 0 1 0
0 0 1
2 −1 2

⎤⎦ , A2 = TA1T
−1 =

⎡⎣ 0 4 0
0 0 4

1/8 −1/4 2

⎤⎦
where T = diag (1, 1/4, 1/16). A1 is the companion form of A0. Visualize the unstructured
complex spectral value sets (pseudospectra) of A0, A1 and A2 at the uncertainty level
δ = 1 (with respect to the spectral norm on ∆ = C

3×3). Why do we necessarily have
σC(A0; δ) ⊂ σC(Ai; δ), i = 1, 2 for all δ > 0?

9. Suppose A ∈ C
n×n, δ > 0, and ∆ = C

n×n is provided with the spectral norm ‖ · ‖ =
‖ · ‖2,2. Show that if diag (λ1, ..., λn) + N is a Schur form of A (N nilpotent, upper
triangular), then

σC(A; δ) ⊆
⋃
i∈n

D(λi, δ + ‖N‖).

10. Determine the real spectral value sets with respect to Euclidean norms for the system
given in Ex. 2 and δ < 1.

11. Consider
A =

[
0 0
0 0

]
, B =

[
1 1
1 1

]
, C =

[
1 −1
0 1

]
, D = 0.

Show that the real spectral value sets σR(A;B,C; δ) with respect to the spectral norm are
confined to the real axis for all δ > 0 and are given by

σR(A;B,C; δ) = {s ∈ R; |s| <
√

2δ} = I(0,
√

2δ).

12. Use Remark 5.2.24 and (40) to determine σR(A;B,C,D; δ) where the matrices are
given in Ex. 1 and δ = 0.01, 0.1. Alternatively, determine σR(A;B,C,D; δ) by computing
the relevant part of the root locus of (p, q) where p(s)/q(s) is the transfer function of the
system (A,B,C,D), and compare the results on the computer screen.

13. Write a program (e.g. matlab code) for visualizing real spectral value sets for full-
block perturbations with respect to the spectral norm in the case � = 1, i.e. G(s) is a col-
umn vector (see Subsection 5.2.4). Compute σR(A;B,C,D; δ)∩R separately and visualize
it by increased linewidth. Use formula (41) for computing dist (GR(s), RGI(s))

2 on a suit-
able grid in C \R and use a contour plotter to visualize the boundary ∂σR(A;B,C,D; δ)\
(σ(A) ∪ R) (see Proposition 5.2.25).
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14. Use the program developed in Ex. 13 to visualize the sets σR(A;B,C; δ) where the
matrices and δ are given as in Ex. 4.

15. Write a program (e.g. matlab code) for visualizing real spectral value sets for full-
block perturbations with respect to the spectral norm in the general case q, � ≥ 1 , i.e. G(s)
is a q × �-matrix, assuming that the realness locus is equal to the real axis. Compute
σR(A;B,C,D; δ) ∩R separately and visualize it by increased linewidth. In order to apply
Theorem 5.2.31 write a subroutine for computing µR(G(s)) = infγ∈(0,1] σ2(G

R
γ (s)) for given

s ∈ C \ R employing a suitable minimization algorithm. Using this subroutine compute
µR(G(s) on an appropriate grid in C\R and use a contour plotter to visualize the relative
boundary ∂σR(A;B,C,D; δ) \ (σ(A) ∪ R) (see Proposition 5.2.25).

16. Use the program developed in Ex. 15 to visualize the unstructured real spectral value
sets σR(Ai; δ) where the matrices Ai and δ are given as in Ex. 8. Compare these sets with
the corresponding complex counterparts obtained in Ex. 8.

17. Let λ1, λ2 ∈ C be given and consider the matrices A(α) =

[
λ1 α

0 λ2

]
for α > 0 (which

are all similar). Prove that for all δ > 0

(a) α1 < α2 =⇒ σC(A(α1); δ) ⊂ σC(A(α2); δ), (b)
⋃
α>0

σC(A(α); δ) = C.

18. Suppose λ1, λ2 ∈ R and A(α) is defined as in Ex. 17. Determine
⋃

α>0 σR(A(α); δ). Il-
lustrate your findings by visualizing σR(A(α); 1) for λ1 = −3, λ2 = −1 and α = 10, 50, 100,
making use of the program developed in Ex. 15.

19. Suppose A ∈ R
2×2, A �∈ RI2 and δ > 0.

(i) Prove that for arbitrary T ∈ Gl2(R) and ∆ ∈ R
2×2, ‖∆‖ < δ

s ∈ σ(T−1AT + ∆) \ R ⇒ |Re s − trace A/2| < δ.

Thus σR(T−1AT ; δ)\R is contained in the vertical strip {s ∈ C; |Re s−trace A/2| < δ} for
all T ∈ Gl2(R). Compare this upper bound with the tight lower bound for σR(T−1AT ; δ)
as T varies through Gl2(R), see Corollary 5.2.42.

(ii) Prove that if σ(A) = {λ, µ} ⊂ R⋃
T∈Gl2(R)

σR(T−1AT ; δ) = R ∪ {s ∈ C ; |Re s − (λ + µ)/2| < δ}.

(iii) Determine
⋃

T∈Gl2(R) σR(T−1AT ; δ) if σ(A) �⊂ R, cf. Example 2.9 in [251].

5.2.6 Notes and References

For survey articles, general remarks, applications and historical comments concerning

pseudospectra and spectral value sets, see the Notes and References of the previous sec-

tion. Here we only give more specific references related to the material of this section.

A slightly more restricted version of the continuity Theorem 5.2.15 can be found in Karow

(2000) [291]. This reference also indicates how one can show, using methods from elim-

ination theory (theorem of Tarski-Seidenberg), that the µ-function is a semi-algebraic

function and hence spectral value sets are semi-algebraic subsets of C. As a consequence
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the boundaries of spectral value sets are piecewise analytic. For more details see [292].

Probabilistic versions of spectral value sets have been studied by Barmish and Lagoa (1997)

[37], Tempo et al. (1997) [493], Bai et al. (1998) [29], and Lagoa et al. (1998) [324].

Example 5.2.5 is due to Godunov (1992) [189]. Chaitin-Chatelin and Frayssé (1996) [96]

have made use of pseudospectra in rounding error analysis.

Generalizations and refinements of Gershgorin’s Theorem have been obtained by, for ex-

ample, Ostrowski, Brauer and Brualdi (see Chapter 6 in Horn and Johnson (1990) [264]).

In particular, new inclusion regions have been discovered that are guaranteed to include

the eigenvalues of a given matrix. Brauer (1947) [75] introduced Cassini’s ovals in this

context. Using his theorem it is possible to show that the RHS of (22) is an upper bound

for the spectral value σ∆(A(·); δ). Brualdi (1982) [79] used graph theoretic means for a

refinement of Brauer’s result. More details and references to the original literature can be

found in his paper. Our µ-approach to spectral value sets for Gershgorin type perturba-

tions appears to be new (see also Ex. 3). An extension of this method to more general

off-diagonal perturbation structures (in the spirit of Brualdi (1982) [79]) can be found in

Karow (2003) [292]. The basic facts from the Perron-Frobenius theory of non-negative

matrices on which it is based can be found in Chapter 8 of Horn and Johnson (1990) [264]

and Chapter XIII of Gantmacher (1959) [183].

The characterization of spectral value sets in terms of spectral contours as given in Proposi-

tions 5.2.19 and 5.2.25 is based on the papers [233] and [234]. There are efficient algorithms

to compute spectral value sets in the complex finite dimensional case, see [178] and the

survey article of Trefethen (1999) [499].

Real pseudospectra were first considered (under the name of spectral value sets) in Hin-

richsen and Pritchard (1991) [249]. The partial characterization of real pseudospectra of

normal matrices in Proposition 5.2.44 was taken from this paper. A complete solution

of the problem has been given by Karow (2003) [292]. Examples 5.2.34, 5.2.46 and Fig-

ures 5.2.8, 5.2.12, 5.2.13 are due to him. A real counterpart to Proposition 5.2.48 (for

n ≥ 3) can be found in Hinrichsen and Pritchard (1992) [251].

In most applications pseudospectra have been investigated for matrices which are approx-

imations to infinite dimensional operators. A central area of application is the stability

analysis of fluid flows, see e.g. Reddy et al. (1993) [429], Trefethen et al. (1993) [501]. A

series of examples is presented in Trefethen (1997, 1999). Whilst there is a rapidly growing

number of applications, there are not many convergence results available which show that

the pseudospectra of the finite dimensional approximations in fact converge to the pseu-

dospectra of the corresponding infinite dimensional operators. Convergence results have

been obtained for Toeplitz and convolution operators, see Landau (1977) [328], Reichel

and Trefethen (1992) [431], Böttcher (1994) [70], Böttcher et al. (1997) [71]. The textbook

of Böttcher and Silbermann (1999) [72] is an excellent introduction to this material.

The notion of a spectral value set has been extended to infinite dimensions in Gallestey

et al. (2000) [180]. In contrast with pseudospectra this notion allows one to consider

spectral value sets for unbounded perturbations of closed linear operators by making use

of unbounded structure operators B, C. The corresponding approximation problem has

been addressed in Gallestey (1998) [179].
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5.3 Stability Radii

In the previous section we studied the variation of the spectrum under linear frac-
tional perturbations of size less than a given uncertainty level. Here we consider
the same classes of perturbations, but introduce a new feature, a stability region
Cg ⊂ C, which represents a prescribed set for the location of the system’s spectrum.
For example, if the system is continuous in time we might set Cg = C−, or for discrete
time Cg = D, in order to ensure stability. If, additionally, other system properties
are required like, for instance, a minimum decay rate or a minimum damping ratio,
these may be reflected by taking Cg to be a suitable subset of C− or D.
In applications it often suffices to know that a Cg-stable system is able to tolerate
perturbations below a given size without loosing the property of Cg-stability. Then
the detailed pictures given by the spectral value sets are not necessary and it is
enough to verify that the (more easily computable) stability radius is larger than
the expected level of the perturbations. The stability radius is a worst case mea-
sure of robustness. It measures the size of the smallest perturbation for which the
perturbed system is either not well-posed or does not have spectrum in Cg. If the
engineer is not confident that parameter uncertainties will be below this value, it
may be possible to increase the radius by feedback control. In Volume II we will
address the corresponding synthesis problem. In this section we concentrate on the
analysis of stability radii.
In Section 5.1 we defined the stability radius as a measure of robustness of Cg-
stability for very general classes of perturbations. In this section we specialize to
linear fractional perturbations A � A(∆) and obtain more concrete results. The
section is divided into seven subsections, starting from the general situation and
gradually moving to more specialized ones. In the first, general characterizations
are given for linear fractional perturbations in terms of the µ-function. As an ap-
plication we show that these characterizations lead to computable formulas for the
special case of diagonal matrices subject to off-diagonal perturbations. These results
yield a substantial refinement of Gershgorin’s Theorem (see Section 4.2).
In the next two subsections we consider full-block perturbations and obtain com-
putable formulas for both the complex and the real stability radius. In the fourth
subsection we specialize even further and consider the complex stability radius for
full-block perturbation structures with respect to the spectral norm. We show that
in this case the radius can be characterized via Riccati equations and Hamiltonian
matrices and give details of an algorithm for computing the stability radius which
is quadratically convergent.
Formulae for stability radii with respect to unstructured perturbations are deter-
mined in Subsection 5.3.5. We obtain bounds for the real radius and explore when
they are tight. We also examine the effect on the radii of similarity transformations
of A and show that under similarity the stability radii come arbitrarily close to zero,
indicating the need for a carefully chosen coordinate system if the stability radius
is to be a useful measure of robustness.
In Subsection 5.3.6 we examine whether or not the stability radii depend continu-
ously on the data. Finally in the last subsection we describe the effect on stability
radii of Cayley transformations of the data, which, in particular, allows us to obtain
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discrete time results from continuous time ones and vice versa.

5.3.1 General Definitions and Results

In this subsection we consider general linear fractional matrix perturbations where
the set ∆ of parameter deviations is only required to satisfy the minimal conditions
specified at the beginning of the previous section. The main objective will be to
characterize the stability radius under these general conditions. The results are
easy consequences of their counterparts for spectral value sets in Subsection 5.2.1.
They require the maximization of the µ-value of the associated transfer matrix
on the boundary of the stability region. Whilst these maximization problems are
hard to solve in general, we will see that they yield computable formulas for the
stability radius with respect to special perturbation structures. As an example we
will determine the stability radius of arbitrary diagonal matrices with respect to
Gershgorin type perturbations in both the real and the complex case.
Throughout this subsection we suppose that the following assumptions are satisfied.

• Cg �= ∅ is an open subset of C and Cb := C \ Cg �= ∅.

• (A, B, C, D) ∈ Ln,�,q(K) is Cg-stable, i.e. σ(A) ⊂ Cg.

• ∆ ⊂ K�×q is a closed convex cone and spanK ∆ is provided with a norm ‖ · ‖∆

which is an operator norm with respect to a given pair of norms on K� and
K

q. If K = R, the complex spaces C
�, C

q are provided with a compatible pair
of norms and C�×q, Cq×� with the corresponding operator norms, as explained
in Remark 4.4.2.

• The perturbations A � A(∆) are given by

A(∆)=A + B(I� − ∆D)−1∆C, ∆∈∆0 := {∆ ∈ ∆; det(I� − ∆D) �= 0}. (1)

For these linear fractional perturbations Definition 5.1.11 takes the following form.

Definition 5.3.1. The stability radius of A with respect to perturbations of the
form (1) and the stability region Cg is defined by

r∆(A; B, C, D; Cg) = inf{‖∆‖∆; ∆ ∈ ∆, det (I� −∆D) = 0 or σ(A(∆)) �⊂ Cg} (2)

where as usual inf ∅ := ∞.1

Here in contrast with Section 5.2 (where we usually assumed δ < δδδ0) the well-
posedness question comes into play. Since

δδδ0 = inf{‖∆‖∆; ∆ ∈ ∆, det (I� − ∆D) = 0} = µ∆(D)−1

we always have
r∆(A; B, C, D; Cg) ≤ µ∆(D)−1. (3)

1So r∆ = ∞ if and only if det (I� − ∆D) �= 0 and σ(A(∆)) ⊂ Cg for all ∆ ∈ ∆.
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In particular, if r∆ := r∆(A; B, C, D; Cg) ≥ δδδ0, then r∆ = δδδ0 and the stability radius
is a measure of how robust the well-posedness of the system is to perturbations lying
in the class ∆. On the other hand if r∆ < δδδ0 the stability radius is a measure of
how robust the Cg–stability of A is to perturbations of the form (1). In this case it
can be expressed in terms of spectral value sets as follows:

r∆(A; B, C, D; Cg) = inf{δ ∈ (0,∞); σ∆(A; B, C, D; δ) �⊂ Cg} if r∆ < δδδ0. (4)

This characterization is illustrated in Example 5.2.21 and Figure 5.2.5 where ∆ =
C1×6 and D = 0, so δδδ0 = ∞. If Cg = C− we see that at a value of about δ = 8.77
the spectral value sets first touch the imaginary axis and so r∆ ≈ 8.77.

Remark 5.3.2. Using Lemma 5.1.13 which has been proved for even more general per-
turbation classes, we have the following elementary properties of the stability radius.

(i) r∆ > 0 and if r∆ < δδδ0, then there exists a minimum norm destabilizing perturbation,
i.e. a perturbation ∆min ∈ ∆0 such that σ(A(∆min)) �⊂ Cg and ‖∆min‖∆ = r∆. Note
that by continuity of the spectrum σ(A(∆min)) ⊂ Cg and so σ(A(∆min))∩∂Cg �= ∅.

(ii) If r∆ ≥ δδδ0, then either r∆ = δδδ0 = ∞ or there exists ∆ ∈ ∆ of norm ‖∆‖∆ = δδδ0 = r∆
such that det (I� − ∆D) = 0.

(iii) If ∆ ⊂ ∆̃ and ‖∆‖∆ ≥ ‖∆‖
∆̃

for all ∆ ∈ ∆ then r∆ ≥ r
∆̃

.

(iv) The stability radius remains the same if we replace Cg by the complement in C of
its boundary ∂Cg,

r∆(A;B,C,D; Cg) = r∆(A;B,C,D; C \ ∂Cg). (5)

�

We are now in a position to prove a general characterization of the stability radius
under the above assumptions. As usual we set α/β := ∞ if α > 0, β = 0, and, in
particular, 0−1 := ∞.

Theorem 5.3.3. The stability radius r∆ := r∆(A; B, C, D; Cg) of A is given by

r∆ =

[
max

{
µ∆(D), sup

s∈∂Cg

µ∆(G(s))

}]−1

= min{µ∆(D)−1, inf
s∈∂Cg

µ∆(G(s))−1}, (6)

where G(s) = D+C(sIn−A)−1B is the transfer function associated with (A, B, C, D).

Proof : Recall that r∆ ≤ µ∆(D)−1, and if s0 ∈ ρ(A) is such that µ∆(D) <
µ∆(G(s0)), then by Corollary 5.2.8

min {‖∆‖∆; ∆ ∈ ∆, s0 ∈ σ(A(∆))} = µ∆(G(s0))
−1. (7)

Hence r∆ ≤ infs∈Cb
µ∆(G(s))−1 ≤ infs∈∂Cg µ∆(G(s))−1 and so ≤ holds in (6). If

µ∆(D)−1 ≤ r∆ < ∞ we have seen above that r∆ = µ∆(D)−1 and so equality holds
in (6) in this case.
Now suppose r∆ < µ∆(D)−1. Then r∆ < ∞ and by Remark 5.3.2 (i) there exists
∆ ∈ ∆ of norm ‖∆‖∆ = r∆ and s0 ∈ ∂Cg such that s0 ∈ σ(A(∆)). By (7) it follows
that µ∆(D)−1 > r∆ = ‖∆‖∆ ≥ µ∆(G(s0))

−1, and this proves equality in (6). �
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By (6) the stability radius r∆ is infinite if and only if ‖D‖∆ = µ∆(G(s)) = 0 for
all s ∈ ∂Cg. Even in the case where ∂Cg is unbounded one cannot automatically
dispense with the first term on the RHS of (6) without extra consideration (al-
though lim|s|→∞ G(s) = D). This is because of possible discontinuities of µ∆(·), see
Remark 5.3.17 (i) and Example 5.3.18.

Remark 5.3.4. The previous proof shows that

r∆ = min

{
µ∆(D)−1, inf

s∈Cb

µ∆(G(s))−1

}
=

[
max

{
µ∆(D), sup

s∈Cb

µ∆(G(s))

}]−1

. (8)

Theorem 5.3.3 implies that the function s �→ µ(s) = max {µ∆(D), µ∆(G(s))} satisfies a
maximum principle on ρ(A) in the sense that, for every open subset Ω �= ∅ of C with
Ω ⊂ ρ(A) we have

sup
s∈Ω

µ(s) = sup
s∈∂Ω

µ(s). (9)

In fact, setting Cg := C \ Ω, hence Cb = Ω, ∂Cg = ∂Ω, the matrix A is Cg-stable and (9)
follows from (6) and (8). �

The concept of Cg–stability allows us to develop a unified framework for studying
robust stability of continuous and discrete time systems, for which we have the
classical stability regions,

Cg = C− := {s ∈ C; Re s < 0} and Cg = D := {s ∈ C; |s| < 1} .

We denote the respective stability radii by r−
∆

(A; B, C, D) and r1
∆

(A; B, C, D).

Example 5.3.5. The perturbed linear oscillator (1 −∆)ξ̈ + 2(1− ∆)ξ̇ + (2 − 3∆)ξ = 0,
∆ ∈ R can be written in state space form ẋ = A(∆)x with A(∆) given by (1) and

A =

[
0 1
−2 −2

]
, B =

[
0
1

]
, C = [1 0], D = 1, ∆ = R.

Then δδδ0 = µR(D)−1 = 1 and G(s) = 1+(s2 +2s+2)−1. Choose Cg = C−, then ∂Cg = ıR.
But if ω �= 0 then G(ıω) ∈ C \ R and so µR(G(ıω)) = 0. Hence supω∈R µR(G(ıω)) =
µR(G(0)) = 3/2 and it follows from (6) that r−

R
(A;B,C,D) = min{1, 2/3} = 2/3. The

same result is obtained by considering the real spectral value sets σR(A;B,C,D; δ), δ > 0
and applying the characterization (4). In fact, one easily verifies that σR(A;B,C,D; δ) �⊂
C− if and only if δ > 2/3. �

Multi-Block Perturbations

As in the previous section it is possible to use the estimates for the µ-function derived
in Section 4.4 to obtain estimates for stability radii with respect to various types
of block diagonal perturbations. Here we only consider multi-block perturbations
(J = N) and for these we only present the estimate which is most readily computed.
We will see in the next subsection that the stability radius r∆(A; B, C, D; Cg) for
complex full-block perturbations can be characterized in terms of the norm of the
transfer function and this leads to a computable formula. Using the scaling method
as in Section 5.2 we obtain an upper estimate for r∆(A; B, C, D; Cg) in terms of
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such computable stability radii.
We adopt the same notation and assumptions as in the corresponding part of Sec-
tion 5.2. The perturbations are of the form (2.10):

A � A(∆) = A +

N∑
i=1

Bi(I�i
− ∆iDi)

−1∆iCi, ∆i ∈ C
�i×qi.

The corresponding complex stability radius is denoted by rC(A; (Bi, Ci, Di)i∈N ; Cg).
As a consequence of (2.14) and (6), we have

rC(A; (Bi, Ci, Di)i∈N ; Cg) ≥ sup
γ∈(0,∞)N

rC(A; B(γ), C(γ), D; Cg) (10)

where rC(A; B(γ), C(γ), D; Cg) denotes the stability radius with respect to complex
full-block perturbations of the form A � A(∆) = A + B(γ)(I� − ∆D)−1∆C(γ),
∆ ∈ C�×q with

C(γ) =
[
γ1C

�
1 , · · · , γNC�

N

]�
, B(γ) =

[
γ−1

1 B1, · · · , γ−1
N BN

]
, D = diag (D1, ..., DN).

As an extended example where the above estimate is tight we will now consider
off-diagonal perturbations of a diagonal matrix.

Gershgorin Type Uncertainty

In contrast with Subsection 5.2.1 we study both real and complex Gershgorin type
perturbations and derive explicit formulas for the corresponding stability radii with
respect to two perturbation norms, one of which was already considered in Sub-
section 5.2.1 whilst the other was studied in Ex. 5.2.3. The stability radii will be
determined for both the classical stability regions, Cg = C− and Cg = D.
The assumptions are

• A = diag (a11, ..., ann) where aii ∈ Cg for all i ∈ n.

• ∆K = {∆ ∈ Kn×n; diag (∆) = 0n×n}, with perturbation norms (see Sec-
tion A.1)

‖∆‖∆K
= ‖∆‖∞,∞ = max

i∈n

∑
j �=i

|δij| = ‖∆‖1|∞, (11)

‖∆‖∆K
= ‖∆‖∞|∞ = max

i,j∈n, i�=j
|δij |. (12)

• The perturbations are given by A � A(∆) = A + ∆, ∆ ∈ ∆K.

In Section 5.2 we showed how the spectral value set problem for complex off-diagonal
perturbations can be transformed into a spectral value set problem with multi-block
perturbation structure and this enabled us to characterize the sets. We will now
employ the same method in order to determine the stability radii

r∆K
(A; Cg) = inf{‖∆‖∆K

; ∆ ∈ ∆K, σ(A + ∆) �⊂ Cg} (13)

for both the real and the complex case. We begin with the stability region Cg = C−.

Proposition 5.3.6. Suppose A = diag (a11, ..., ann) with aii ∈ C− for i ∈ n, then
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(i) for the perturbation norm (11) ( ‖ · ‖(∞,∞) = ‖ · ‖(1|∞)), we have

r∆C
(A; C−) = min

ω∈R

min
i,j∈n, i�=j

(|ıω − aii| |ıω − ajj|)1/2 ≥ min
i,j∈n, i�=j

(Re aii Re ajj)
1/2,

and if the aii, i ∈ n are all real,

r∆R
(A; C−) = r∆C

(A; C−) = min
i,j∈n, i�=j

(aiiajj)
1/2. (14)

(ii) For the perturbation norm (12) (‖ · ‖(∞|∞)), let

P (s) =

⎡⎢⎢⎢⎢⎣
0 |s − a22|−1 |s − a33|−1 · · · |s − ann|−1

|s − a11|−1 0 |s − a33|−1 · · · |s − ann|−1

. . . · · · .

. . . · · · .
|s − a11|−1 |s − a22|−1 |s − a33|−1 · · · 0

⎤⎥⎥⎥⎥⎦ . (15)

Then
r∆C

(A; C−) = min
ω∈R

�(P (ıω))−1 ≥ r∆R
(ReA; C−) (16)

where � denotes the spectral radius. If the aii are real for i ∈ n,

r∆R
(A; C−) = r∆C

(A; C−) = �(P (0))−1. (17)

Proof : We only prove (ii) and for this we make use of Ex. 5.2.3. The proof of (i)
follows the same line making use of Proposition 5.2.11 instead. First we consider
the complex case. It follows from the characterization of the spectral value sets in
Ex. 5.2.3 that ıω ∈ σ∆C

(A; δ) if and only if �(P (ıω)) > δ−1. By (4) this implies the
equality in (16).2 Now

|ıω − aii|−1 = ((ω − Im aii)
2 + (Re aii)

2)−1/2 hence max
ω∈R

|ıω − aii|−1 = |Re aii|−1

and the maximum occurs at ω = Im aii for i ∈ n. Let P− denote the nonnegative
matrix obtained from P (ıω) by replacing the entries |ıω−aii|−1 by |Re aii|−1. Then
0 ≤ P (ıω) ≤ P− for all ω ∈ R where we write (aij) ≤ (bij) if aij ≤ bij for all i, j. It
follows that �(P (ıω)) ≤ �(P−) and so r∆C

≥ �(P−)−1.3 Note that P− coincides with
P (0) if we replace A by Re A in (15). Hence the inequality in (16) follows once we
have proved (17).
Now assume that A is real. Then P− coincides with P (0) and so r∆C

(A; C−) =
�(P (0))−1 by the equality in (16). Since r∆R

≥ r∆C
it suffices to construct a desta-

bilizing ∆ ∈ ∆R of norm �(P (0))−1 to complete the proof of (17). For this we
apply Lemma 5.2.7 with B = C = In, D = 0n×n whence G(s) = (sIn − A)−1 =
diag((s − a11)

−1, . . . , (s − ann)−1). Define ∆− = (∆−
ij) ∈ ∆R by ∆−

ij = �(P (0))−1

for i, j ∈ n, i �= j. Then ‖∆−‖∞|∞ = �(P (0))−1 and since |aii| = −aii we have
∆− diag(−a−1

11 , . . . ,−a−1
nn)) = �(P (0))−1P (0) and so

det(In − ∆−G(0)) = det(In − �(P (0))−1P (0)) = 0.

By Lemma 5.2.7 this shows 0 ∈ σ(A+ ∆−) and so ∆− is a destabilizing real pertur-
bation of norm �(P (0))−1. This completes the proof. �

2The minimum exists because lim|ω|→∞ �(P (ıω))−1 = ∞.
3It is known from the theory of nonnegative matrices that 0 ≤ X ≤ Y implies �(X) ≤ �(Y ).
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Example 5.3.7. We consider the same uncertain system as that in Example 5.2.13,
namely A = diag (−1,−2,−3). From (14) we obtain that, with respect to the (∞|1)-
perturbation norm, r∆R

(A; C−) = r∆C
(A; C−) = min{

√
2,
√

3,
√

6} =
√

2. On the other
hand

P (0) =

⎡⎣ 0 1/2 1/3
1 0 1/3
1 1/2 0

⎤⎦ .

P (0) has only real eigenvalues of which the one with maximum absolute value ≈ 1.14 and
so with respect to the (∞|∞)-perturbation norm r∆R

(A; C−) = r∆C
(A; C−) ≈ 0.88. �

The reader is asked to prove the following discrete time counterpart of Proposi-
tion 5.3.6 (i) in Ex. 1.

Proposition 5.3.8. Suppose A = diag (a11, ..., ann) with |aii| < 1 for i ∈ n, then
for the perturbation norm (11), we have

r∆C
(A; D)= min

θ∈[0,2π]
min

i,j∈n, i�=j
(|eıθ−aii| |eıθ−ajj|)1/2 ≥ min

i,j∈n, i�=j
[(1−|aii|)(1−|ajj|)]1/2.

If the aii, i ∈ n are all real,

r∆R
(A; D)=r∆C

(A; D)= min
i,j∈n, i�=j

min{[(1−aii)(1−ajj)]
1/2, [(1+aii)(1+ajj)]

1/2}. (18)

5.3.2 Complex Full-Block Perturbations

We consider complex full-block perturbations of a complex system and derive a
computable formula for the corresponding stability radius with respect to arbitrary
operator norms on ∆ = C�×q. By means of an example we discuss the significance
of complex perturbations of a real system.
The assumptions are

• Cg �= ∅ is an open subset of C and Cb := C \ Cg �= ∅.
• (A, B, C, D) ∈ Ln,�,q(C) with σ(A) ⊂ Cg.

• ∆ = C
�×q is provided with a norm ‖·‖ which is an operator norm with respect

to a given pair of norms on C� and Cq.

• The perturbations are of the form

A � A(∆) = A + B(I� − ∆D)−1∆C, ∆ ∈ C
�×q. (19)

We denote the corresponding stability radius by rC(A; B, C, D; Cg) (if D = 0 by
rC(A; B, C; Cg)) and refer to it as the complex stability radius of A with respect to
perturbations of the form (19). For the stability regions C− and D, the complex sta-
bility radii are denoted by r−

C
(A; B, C, D) and r1

C
(A; B, C, D). We have seen in Sec-

tion 4.4 that for complex full-block perturbations µC(G) := µC�×q(G) = ‖G‖L(C�,Cq)

for all G ∈ Cq×�. So Proposition 5.3.3 directly yields the following characterization.

Theorem 5.3.9. The complex stability radius of A with respect to perturbations of
the form (19) is given by

rC(A; B, C, D; Cg) =

[
max

{
sup

s∈∂Cg

‖G(s)‖L(C�,Cq), ‖D‖L(C�,Cq)

}]−1

. (20)
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Remark 5.3.10. If ∂Cg is unbounded then lim|s|→∞ ‖G(s)‖L(C�,Cq) = ‖D‖L(C�,Cq) im-
plies sups∈∂Cg

‖G(s)‖L(C�,Cq) ≥ ‖D‖L(C�,Cq), whence

rC(A;B,C,D; Cg) = inf
s∈∂Cg

‖G(s)‖−1
L(C�,Cq)

. (21)

Now suppose that Ω := C \ Cg is non-empty and unbounded, i.e. Cb has an unbounded
interior. This holds e.g. for the classical stability regions Cg = C− and Cg = D. Then
G(·) is holomorphic on Ω, bounded and continuous on the closure Ω ⊂ Cb. ‖G(·)‖ is
subharmonic (see Section A.2) on Ω and continuous on Ω. It follows from an extended
version of the maximum principle (see Theorem A.2.27 and the comments which surround
it) that

sup
s∈Ω

‖G(s)‖L(C� ,Cq) = sup
s∈∂Ω

‖G(s)‖L(C�,Cq)

and so

‖D‖L(C�,Cq) = lim
|s|→∞
s∈Ω

‖G(s)‖L(C� ,Cq) ≤ sup
s∈∂Ω

‖G(s)‖L(C� ,Cq) ≤ sup
s∈∂Cg

‖G(s)‖L(C� ,Cq)

since ∂Ω ⊂ ∂Cg. As a consequence formula (20) can be simplified to (21) in this case as
well. In particular, we have for r−

C
= r−

C
(A;B,C,D) and r1

C
= r1

C
(A;B,C,D),

r−
C

= infω∈R ‖G(ıω)‖−1
L(C� ,Cq)

= ‖G‖−1
H∞(C+;Cq×�)

(22)

r1
C = minθ∈[0,2π] ‖G(eıθ)‖−1

L(C�,Cq)
= ‖G‖−1

H∞(D+;Cq×�)
. (23)

�

Although a formula like (22) seems at first sight to be quite satisfactory, the com-
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Figure 5.3.1: A computed plot ω → ‖G(ıω)‖

putation of the RHS requires the global maximization of the real valued function
ω −→ ‖G(ıω)‖ on R, which may have many local minima, spikes etc., see Fig-
ure 5.3.1. Solving this global optimization problem is not a trivial numerical task.
In the next subsection we will derive, for the special case of the spectral norm, other
characterizations of r−

C
and show how they lead to an efficient algorithm for the

computation of the complex stability radius.

Remark 5.3.11. Suppose there exists s0 ∈ ∂Cg such that

sup
s∈∂Cg

‖G(s)‖L(C� ,Cq) = ‖G(s0)‖L(C�,Cq) > ‖D‖L(C�,Cq),
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then a minimum norm destabilizing ∆min of rank 1 may be constructed using the formula
in Proposition 4.4.11:

∆min = ‖G(s0)‖−1
L(C�,Cq)

u0v
∗
0, where v∗0G(s0)u0 = ‖G(s0)‖L(C�,Cq), ‖u0‖C� = ‖v0‖∗Cq = 1.

If A,B,C,D and G(s0) are real, the vectors u0, v0 can be chosen to be real so that the min-
imum norm complex destabilizing perturbation ∆min is real. In this case, the complex sta-
bility radius rC(A;B,C,D; Cg) coincides with the real stability radius rR(A;B,C,D; Cg) :=
rR�×q(A;B,C,D; Cg) which will be studied in the next subsection. �

In the scalar case � = q = 1, if we set G(±∞) = D, then ω �→ G(ıω), ω ∈ R resp.

(r−
C
)−1 (r1

C
)−1

Im Im

Re Re
(r−

R
)−1 (r1

R
)−1

G(ıω) G(eıθ)← ←

Figure 5.3.2: Complex and real stability radius of a continuous resp. discrete time
system (with D = 0) illustrated by their Nyquist plots

θ �→ G(eıθ), θ ∈ [0, 2π] describe closed curves Γ in the complex plane (the so-called
Nyquist plot). The inverse of the complex stability radius is the maximum distance
of a point on these curves from the origin, see Figure 5.3.2. We shall see later that
if rR < |D|−1 the real stability radius is the inverse of the maximum distance of a
point in Γ ∩ R from the origin, see Remark 5.3.17 (iv).

Example 5.3.12. Consider the perturbed oscillator ξ̈ + (4 + ∆1)ξ̇ + (5 + ∆2)ξ = 0. By
Example 5.2.29 the associated state space system and transfer function are given by

A =

[
0 1
−5 −4

]
, B =

[
0
1

]
, C = I2, D = 0, G(s) = (s2 + 4s + 5)−1

[
1
s

]
.

We choose Cg = C− and illustrate the effect of taking different perturbations norms by
considering both the 2-norm and the ∞-norm on the perturbation space ∆ = C

1×2. The
corresponding norms on C

2 are the 2-norm and the 1-norm, respectively. Since

‖G(s)‖2 = (1 + |s|2)1/2|s2 + 4s + 5|−1, ‖G(s)‖1 = (1 + |s|)|s2 + 4s + 5|−1,

we have

‖G(ıω)‖2
2 = [(5 − ω2)2 + 16ω2]−1(1 + ω2), ‖G(ıω)‖2

1 = [(5 − ω2)2 + 16ω2]−1(1 + |ω|)2.

For the 2-norm, a short calculation shows that the maximizing ω = 1.863 and hence
r−

C
(A;B,C) = 3.598 (see Figure 5.2.6). For the 1-norm of G(ıω) a slightly more difficult
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calculation yields the maximizing ω = 1.617 and r−
C

(A;B,C) = 2.634. Since ‖∆‖2 ≥
‖∆‖∞ for ∆ ∈ C

1×2, the stability radius with respect to the 2-norm must be ≥ that for
the ∞-norm.
The complex oscillator ξ̈ + a1ξ̇ + a0ξ = 0 will be stable if and only if the polynomial
p(s) = s2 + a1s + a0 is Hurwitz and we have seen in Theorem 3.4.29 that this will be the
case if and only if the Hermite matrix H2(p) & 0. By Example 3.4.25 we have

H2(p) =

[
a0a1 + a1a0 a0 − a0

a0 − a0 a1 + a1

]
.

The above stability radii are the distances in C
1×2 of the coefficient vector (5, 4) from

the set of coefficient vectors of complex non-Hurwitz polynomials, i.e. from the set {a ∈
C

1×2;H2(p(·, a)) �& 0} (with respect to the corresponding norms). It is possible to de-
termine the stability radii in this way, but the calculations are quite difficult and more
complicated than the ones we have presented above.
In contrast, the distance from the real non-Hurwitz polynomials is directly seen to be 4
since for real coefficients p(s) = s2 + a1s + a0 is Hurwitz if and only if a0, a1 > 0. �

As a consequence of the characterization (20), the complex stability radius has
the following remarkable property. Recall that for any two matrices Ai ∈ Cmi×ni,
i = 1, 2 the matrix A1 ⊕ A2 denotes the block-diagonal matrix diag(A1, A2) ∈
C(m1+m2)×(n1+n2).

Corollary 5.3.13. (Decomposition Property). Let (Ai, Bi, Ci, Di) ∈ Lni,�i,qi
(C),

σ(Ai) ⊂ Cg for i = 1, 2 and

A = A1 ⊕ A2, B = B1 ⊕ B2, C = C1 ⊕ C2, D = D1 ⊕ D2.

Suppose that ‖ · ‖R2 is an absolute norm on R2 and C�1+�2 = C�1 ⊕ C�2, Cq1+q2 =
Cq1 ⊕ Cq2 are provided with the norms

‖(u1, u2)‖C�1+�2 = ‖(‖u1‖C�1 , ‖u2‖C�2 )‖R2 , ‖(y1, y2)‖Cq1+q2 = ‖(‖y1‖Cq1 , ‖y2‖Cq2 )‖R2

where ‖ · ‖C�i , ‖ · ‖Cqi are given norms on C
�i and C

qi, respectively, i = 1, 2. Then

rC(A; B, C, D; Cg) = min {rC(A1; B1, C1, D1; Cg), rC(A2; B2, C2, D2; Cg)} . (24)

Proof : If G(s) and Gi(s) denote the transfer matrices of the systems (A, B, C, D)
and (Ai, Bi, Ci, Di), i = 1, 2 respectively, then G(s) = G1(s) ⊕ G2(s) and thus
‖G(s)‖ = max

i=1,2
‖Gi(s)‖ for s ∈ ∂Cg (see Ex. 4.4.3). So (24) follows from (20) and

‖D‖ = maxi=1,2 ‖Di‖. �

It should be noted that the perturbation class for the LHS of (24) is C
(�1+�2)×(q1+q2)

and not C�1×q1 ⊕ C�2×q2 (for which the result would be trivial). We see, rather
surprisingly, that the system (A, B, C, D) cannot be destabilized by a perturbation
which is smaller than one which destabilizes one of the two subsystems. In par-
ticular the corollary says that two Cg–stable state space systems (A1, B1, C1, D1),
(A2, B2, C2, D2) cannot be destabilized by coupling them together with intercon-
nection matrices (see Subsection 2.4.2) whose norms are strictly smaller than both
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complex stability radii. An analogous result does not hold for the real stability ra-
dius. In fact in the next example we will see that for any δ > 0 it is possible to find
two identical oscillators whose real stability radius is 1 which can be destabilized
via a coupling matrix of norm less than δ. This destabilizability is indicated by the
complex stability radius rC < δ which illustrates why the complex stability radius
may be of interest for the robustness analysis of real systems.

Example 5.3.14. Consider a linear oscillator with given damping 2α > 0 and perturbed
restoring force parameter of nominal value 1

ξ̈ + 2α ξ̇ + (1 + ∆)ξ = 0. (25)

The associated system in state space form is given by ẋ(t) = (A(α) + B∆C)x(t) where

A(α) =

[
0 1
−1 −2α

]
, B =

[
0
1

]
, C =

[
1 0

]
.

For real perturbation, (25) is asymptotically stable if and only if the characteristic polyno-
mial s2 + 2αs + (1+ ∆) is Hurwitz, i.e. 1+ ∆ > 0. Hence ∆ = −1 is the real perturbation
of minimum norm that destabilizes the oscillator (25). It follows that the real stability
radius r−

R
(A(α);B,C) = 1 is independent of the damping, no matter how small.

On the other hand G(ıω) = C(ıωI − A(α))−1B = (1 − ω2 + ı2αω)−1 and hence

|G(ıω)|2 =
[
(ω2 − 1)2 + 4α2ω2

]−1
=
[
(ω2 − 1 + 2α2)2 + 1 − (2α2 − 1)2

]−1
.

If α ≥ 1/
√

2 this expression is maximized at ω = 0 so that r−
C

(A(α);B,C) = |G(0)|−1 = 1
equals the real stability radius.
Now suppose α < 1/

√
2. Then the above expression for |G(ıω)|2 is maximized at ω(α) =√

1 − 2α2 > 0 and so the complex stability radius is given by

r−
C

(A(α);B,C) = |G(ıω(α))|−1 = 2α
√

1 − α2, α < 1/
√

2,

and hence depends on α if α < 1/
√

2. We conclude that for small α > 0 there exists a
small complex perturbation ∆ ∈ C, |∆| = 2α

√
1 − α2 ≈ 2α such that the system (25) is

not asymptotically stable. At first sight this may seem surprising since for real ∆, |∆| < 1
ensures asymptotic stability. The reason is best explained, perhaps, by considering a
purely imaginary perturbation ∆ = ıβ, β ∈ R. Setting ξ = ξR + ıξI , ξR, ξI ∈ R in (25)
and separating the real and imaginary parts, we obtain

ξ̈R + 2α ξ̇R + ξR − βξI = 0

ξ̈I + 2α ξ̇I + ξI + βξR = 0 .
(26)

We see that the perturbation ∆ = ıβ introduces a coupling between a pair of identical real
oscillators (25). The eigenvalues of the state space system corresponding to the coupled
systems (26) are −[α ± (α2 − 1 ± ıβ)1/2]. If |β| > 2α, an easy calculation yields that the
real part of one pair of these eigenvalues is positive and hence the coupled system (26) is
unstable.
This result illustrates that two real oscillators with real stability radius rR = 1 and small
complex stability radius ≈ 2α, 0 < α ' 1 may be destabilized by introducing a small
real coupling of the order 2α between them if their damping coefficients are sufficiently
small. In view of Corollary 5.3.13 this points out an important difference between the real
and the complex stability radius, suggesting that the latter may be the more appropriate
measure of robust stability in the context of interconnected systems. The example also
shows that the imaginary part of a complex perturbation can be interpreted in real terms
as a coupling between two identical systems. �
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The result in the above example can be generalized. In fact the reader is asked in
Ex. 6 to prove the following consequence of Corollary 5.3.13.

Corollary 5.3.15. Suppose (A, B, C, D) ∈ Ln,�,q(R), σ(A) ⊂ Cg, then with respect
to spectral norms on C

�×q resp. R
2�×2q

rC(A; B, C, D; Cg) = rR(A ⊕ A; B ⊕ B, C ⊕ C, D ⊕ D; Cg) (27)

where rR denotes the stability radius with respect to real full block perturbations.

The previous corollary gives a first interpretation of the complex stability radius in
real terms. In Section 5.6 the significance of complex stability radii for the robustness
analysis of real systems will be explored further.

5.3.3 Real Full-Block Perturbations

In this subsection we consider real full-block perturbations of a real system and
derive a computable formula for the corresponding stability radius. Following the
characterizations of the real µ-function, µR in Section 4.4, we discuss separately the
cases � = 1 and � > 1. In the first case we obtain a computable formula for arbitrary
operator norms on ∆ = R

�×q, in the second case we only obtain a formula valid for
the spectral norm.
The standing assumptions are

• Cg �= ∅ is an open subset of C and Cb := C \ Cg �= ∅.

• (A, B, C, D) ∈ Ln,�,q(R) with σ(A) ⊂ Cg.

• ∆ = R�×q is provided with a norm ‖·‖ which is an operator norm with respect
to a given pair of norms on R� and Rq. Moreover we suppose that C� and Cq

are provided with a pair of norms (‖·‖C� , ‖·‖Cq), compatible with (‖·‖R�, ‖·‖Rq).
(Such a pair of norms always exists, see Lemma A.1.7).

• The perturbations are given by

A � A(∆) = A + B(I� − ∆D)−1∆C, ∆ ∈ ∆ = R
�×q. (28)

We denote the corresponding stability radius by rR(A; B, C, D; Cg) (if D = 0 by
rR(A; B, C; Cg)) and refer to it as the real stability radius of A with respect to
perturbations of the form (28). By Theorem 5.3.3 we have

rR =

[
max

{
µR(D), sup

s∈∂Cg

µR(G(s))

}]−1

= min{µR(D)−1, inf
s∈∂Cg

µR(G(s))−1}. (29)

For the stability regions C− and D, the real stability radii are called r−
R
(A; B, C, D)

and r1
R
(A; B, C, D), respectively.

Since by assumption ‖∆‖L(Rq ,R�) = ‖∆‖L(Cq,C�) for ∆ ∈ R�×q it follows that

rR(A; B, C, D; Cg) ≥ rC(A; B, C, D; Cg). (30)

Example 5.3.14 has shown that, in general, the two radii are different and their ratio
rR/rC can be arbitrarily large (see also Ex. 5).
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Case � = 1

Suppose R� = R1 is provided with the norm | · | and ‖ · ‖Rq is an arbitrary norm
on Rq. Then the induced operator norms on Rq×1 = Rq and on ∆ = R1×q are the
vector norm ‖ · ‖L(R,Rq) = ‖ · ‖Rq and the dual norm ‖ · ‖L(Rq,R) = ‖ · ‖∗

Rq , respectively.
As an immediate consequence of Theorem 4.4.31 and (29), we have

Theorem 5.3.16. Suppose � = 1, ‖ · ‖Rq is an arbitrary norm on Rq and ∆ = R1×q

is provided with the dual norm ‖·‖∗
Rq . Then the real stability radius of A with respect

to perturbations of the form (28) is given by

rR(A; B, C, D; Cg) =

[
max

{
sup

s∈∂Cg

dist (GR(s), RGI(s)) , ‖D‖Rq

}]−1

, (31)

where G(s) = D + C(sIn − A)−1B = GR(s) + ıGI(s) with GR(s), GI(s) ∈ Rq and
dist (GR(s), RGI(s)) is taken with respect to the vector norm ‖ · ‖Rq on Rq.
In particular

r−
R
(A; B, C, D) =

[
max

{
sup
ω∈R

dist(GR(ıω), RGI(ıω)), ‖D‖Rq

}]−1

, (32)

r1
R
(A; B, C, D) =

[
max

{
max

θ∈[0,2π]
dist(GR(eıθ), RGI(e

ıθ)), ‖D‖Rq

}]−1

. (33)

We have seen in Section 4.4 that the map s �→ µR(G(s)) = dist(GR(s), GI(s)R) is
upper semicontinuous so that the maximum in (33) exists (see Proposition A.2.1),
but it may be discontinuous at the zeros of GI(s), so it is best to compute rR via
the formula

rR(A;B,C,D; Cg) = min

⎧⎨⎩‖D‖−1
Rq ,

[
sup

s∈∂Cg∩RG

‖G(s)‖
]−1

,

[
sup

s∈∂Cg\RG

dist(GR(s), RGI(s))

]−1
⎫⎬⎭

where RG = {s ∈ C \ σ(A) : GI(s) = 0} ⊃ R is the realness locus of G(s).

Remark 5.3.17. (i) Unlike the results in (22) and (23), we cannot remove ‖D‖Rq in
(32) and (33) without further consideration. Although we have lim|ω|→∞ GR(ıω) = D

and lim|ω|→∞ GI(ıω) = 0q, it may be that dist(GR(ıω), RGI(ıω)) does not converge to
dist(D, 0q) = ‖D‖Rq as |ω| → ∞. This possible discontinuity at ∞ will be illustrated in
Example 5.3.18.

(ii) Suppose there exists s0 ∈ ∂Cg such that

sup
s∈∂Cg

dist (GR(s), RGI(s)) = dist (GR(s0), RGI(s0)) > ‖D‖,

then a minimum norm destabilizing perturbation ∆min can be constructed as in the proof
of Theorem 4.4.31: Let z∗ ∈ R

1×q with ‖z∗‖∗
Rq = 1 be such that

z∗GR(s0) = dist(GR(s0), RGI(s0)) and z∗GI(s0) = 0 .

Then ∆min = [dist(GR(s0), RGI(s0)]
−1z∗ is a minimum norm destabilizing perturbation.

(iii) Using Corollary 4.4.29 we obtain a similar formula to (31) for the case q = 1 and
� ≥ 1. Let R

q = R be provided with the norm | · |, R
� with any norm ‖ · ‖R� , ∆ = R

�×1

with the norm ‖ · ‖R� and R
1×� with the dual norm ‖ · ‖∗

R� , then
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rR(A;B,C,D; Cg) =

[
max

{
sup

s∈∂Cg

dist(GR(s), RGI(s)), ‖D‖∗
R�

}]−1

,

where the distance is taken with respect to ‖ · ‖∗
R� on R

1×�.

(iv) In the case q = � = 1, we have dist(GR(s), RGI(s)) = 0 if GI(s)) �= 0, and therefore

rR(A;B,C,D; Cg) =

[
max

{
sup

s∈∂Cg∩RG

|G(s)|, |D|
}]−1

. (34)

We will show in the next section that if Cg = C−, A is Hurwitz stable and G(s) is not
constant, the set RG ∩ ıR consists of at most n elements. In this case r−

R
can be determined

from (34) via a search over a finite set, see Figure 5.3.2.

(v) For the stability region Cg = C−, we have

GR(ıω) = D − C(ω2I + A2)−1AB , GI(ıω) = −ωC(ω2I + A2)−1B, ω ∈ R,

RG ∩ ıR = {ıω ∈ ıR; ω = 0 or C(ω2In + A2)−1B = 0} ,

and with respect to Euclidean norms

r−
R

= min{ [ sup
ω∈R,ıω∈RG

‖G(ıω)‖]−1, [ sup
ω∈R,ıω/∈RG

dist(GR(ıω), GI (ıω)R)]−1, ‖D‖−1
Rq }, (35)

where

dist (GR(ıω), RGI(ıω))2 = ‖GR(ıω)‖2
2 −

〈GR(ıω), GI (ıω)〉2
‖GI(ıω)‖2

2

, ω ∈ R, ıω /∈ RG.

For the case q > 1 we have mentioned in Section 5.2 that if at least two entries of G(s) are
non-constant then generically, away from the real axis, the realness loci of these entries
will only intersect at a finite number of points. Hence generically RG ∩ ıR = {0}. �

Example 5.3.18. We consider the same nominal oscillator as that in Example 5.3.12,
namely ξ̈ + 4ξ̇ + 5ξ = 0 and assume that the perturbed system is

(1 − ∆2)ξ̈ + (4 − 5∆2)ξ̇ + (5 − ∆1 − 5∆2)ξ = 0.

So as in Example 5.1.15 the mass, damping and spring constants are all perturbed, but
this time the perturbations are not independent. The perturbed system may be written in

the form ẋ = A(∆)x where A(∆) is given by (28) with A =

[
0 1
−5 −4

]
, D = B = [0 1]�,

C = I2, and ∆ = [∆1, ∆2] ∈ ∆ = R
1×2. Accordingly we have

G(ıω) =

[
0
1

]
+ [(5 − ω2) + 4ıω]−1

[
1
ıω

]
.

With respect to the Euclidean norm,

‖G(ıω)‖2
2 = 1 + [(5 − ω2)2 + 16ω2]−1(1 + 9ω2).

A short calculation shows that the maximizing ω = 2.196 and hence r−
C

(A;B,C,D) =
0.797. For the real case we have

[GR(ıω) GI(ıω)] = [(5 − ω2)2 + 16ω2]−1

[
5 − ω2 −4ω

(5 − ω2)2 + 20ω2 ω(5 − ω2)

]
.
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Hence GI(ıω) = 0 only for ω = 0, and then ‖GR(0)‖ =
√

26/5. If ω �= 0, a calculation
yields

d(ω)2 := dist (GR(ıω), RGI (ıω))2 = ‖GR(ıω)‖2
2 −

〈GR(ıω), GI(ıω)〉2
‖GI(ıω)‖2

2

=
25

16 + (5 − ω2)2
.

So d(ω) → 0 as ω → ∞, whereas ‖D‖ = 1. This illustrates the discontinuity of d(·) at
ω = ∞, see Remark 5.3.17 (i). The maximum of d(ω) occurs when ω =

√
5 and hence

r−
R

(A;B,C,D) = min{5/
√

26, 4/5, 1} = 4/5. �

In our second example for the case � = 1, we return to the satellite problem described
in Section 5.1 and illustrate how state feedback may be used to achieve robust
stability in the presence of parameter uncertainty.

Example 5.3.19. For the satellite problem of Example 5.1.17 we assume J1 = 1, J2 =
0.1. The uncontrolled system is not asymptotically stable for any values of (c, k) in the
region Ω defined by (1.17) and the control objective is to find a state feedback law u = f�x

which stabilizes the system for all parameters in this uncertainty region. In the following
we show how stability radii can be used to examine whether this objective has been
achieved. Consider the state feedback control u = f�

0 x := −[0.595, 0.275, 1.32, 1.66]x.
Choosing a nominal parameter pair (k0, c0) in the region Ω leads as in Example 5.1.17 to
the equation of the perturbed feedback system

Σ∆ : ẋ = A(∆)x = [A(c0, k0, f0) + B∆C]x, ∆ ∈ ∆ = R
1×2

where

A(k0, c0, f0) =

⎡⎢⎢⎣
0 1 0 0

−10k0 −10c0 10k0 10c0

0 0 0 1
−0.595 + k0 −0.275 + c0 −1.32 − k0 −1.66 − c0

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0

−10
0
1

⎤⎥⎥⎦ ,

C =

[
1 0 −1 0
0 1 0 −1

]
, ∆ = [k − k0, c − c0] .

For given k0, c0 satisfying σ(A(c0, k0, f0)) ⊂ C−, the system Σ∆ will be asymptotically
stable for all k, c ∈ R in the interior of the circle

(x − k0)
2 + (y − c0)

2 = r(k0, c0, f0)
2

where r(k0, c0, f0) = r−
R

(A(c0, k0, f0);B,C) is the real stability radius with respect to the
2-norm. The following table gives r(k0, c0, f0) (computed via (35)) for different values
of k0, c0. The stability of the closed loop system is guaranteed for all parameter values
in Ω since it is contained within the union of the seven disks. We conclude therefore

k0 0.1 0.15 0.2 0.25 0.3 0.345 0.385

c0 0.017 0.019 0.02 0.02 0.02 0.02 0.02

r(k0, c0, f0) 0.035 0.035 0.034 0.032 0.03 0.029 0.028

Table 5.3.3: Stability radii for different values of k0, c0

that the feedback control u = f�
0 x achieves the above control objective. However the

procedure of covering Ω with disks is cumbersome and requires the calculation of seven
stability radii. It is not possible to cover the region with a single disk, but we have seen
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Figure 5.3.4: Covering the region Ω

in Example 5.1.17 that it may be better to use a weighted norm ‖∆‖2
α = ∆2

1 + α2∆2
2.

Denoting the corresponding radius by rα = rα(k0, c0, f0) the system is asymptotically
stable for all (k, c) ∈ R

2 in the interior of the ellipse

(x − k0)
2 + α2(y − c0)

2 = r2
α .

For k0 = 0.25, c0 = 0.02, α = 7.14 we computed rα(k0, c0, f0) = 0.2445 and this single
ellipse covers the whole set Ω. �

Real Case �,q > 1

For the general case ∆ = R�×q we assume that R�×q is provided with the spectral
norm. Then using (29) and the characterization of µR in Theorem 4.4.43, we have

Theorem 5.3.20. Suppose ∆ = R�×q is provided with the spectral norm ‖ · ‖2,2 =
σ1(·). Then the real stability radius of A with respect to real full-block perturbations
(28) is given by

rR(A; B, C, D; Cg) =

[
max

{
sup

s∈∂Cg

inf
γ∈(0,1]

σ2(G
R

γ (s)), ‖D‖2,2

}]−1

, (36)

where G(s) = C(sIn − A)−1B + D = GR(s) + ıGI(s), GR(s), GI(s) ∈ R
q×� and

GR

γ (s) =

[
GR(s) −γGI(s)

γ−1GI(s) GR(s)

]
, s ∈ ρ(A), γ ∈ (0, 1]. (37)

In particular4

r−
R
(A; B, C, D) =

[
max

{
sup
ω∈R

inf
γ∈(0,1]

σ2(G
R

γ (ıω)), ‖D‖2,2

}]−1

, (38)

r1
R
(A; B, C, D) =

[
max

{
max

θ∈[0,2π]
inf

γ∈(0,1]
σ2(G

R

γ (eıθ)), ‖D‖2,2

}]−1

. (39)

Remark 5.3.21. (i) Again because of possible discontinuities on the realness locus of
the map s → µR(G(s)) = infγ∈(0,1] σ2(G

R
γ (s)) one should compute rR via

rR(A;B,C,D; Cg)= min

⎧⎨⎩‖D‖−1
2,2,

[
sup

s∈∂Cg∩RG

‖G(s)‖
]−1

,

[
sup

s∈∂Cg\RG

inf
γ∈(0,1]

σ2(G
R
γ (s))

]−1
⎫⎬⎭.

4The maximum in (39) exists since the map s �→ µR(G(s)) = infγ∈(0,1] σ2(G
R
γ (s)) is upper

semicontinuous (see Lemma 4.4.27 and Proposition A.2.1).
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(ii) Since lim|ω|→∞ GR
γ (ıω) =

[
D 0
0 D

]
, we have lim|ω|→∞ σ2(G

R
γ (ıω)) = ‖D‖2,2 for γ ∈ (0, 1].

But again because of the possible discontinuity of ω �→ µR(G(ıω)) at ∞ it may be that
lim|ω|→∞ infγ∈(0,1] σ2(G

R
γ (ıω)) �= ‖D‖2,2, see Example 5.3.18.

(iii) Suppose s0 ∈ ∂Cg, γ0 ∈ (0, 1] is a saddle point of f(γ, s) = σ2(G
R
γ (s)) such that

sup
s∈∂Cg

inf
γ∈(0,1]

σ2(G
R
γ (s)) = σ2(G

R
γ0

(s0)) > ‖D‖2,2.

Let w =

[
w1

w2

]
and v =

[
v1

v2

]
be left and right singular vectors of GR

γ0
(s0) corresponding

to σ2(G
R
γ0

(s0)), such that w1�w2 = v1�v2, ‖w1‖ = ‖v1‖ and ‖w2‖ = ‖v2‖, then we may
construct a minimum norm destabilizing perturbation as in Lemma 4.4.37. For example,
if w1 �= 0 and w2 �= 0 are linearly independent and

∆min = [σ2(G
R
γ0

(s0))]
−1[v1 v2]

[
‖w1‖2 〈w1, w2〉
〈w1, w2〉 ‖w2‖2

]−1 [
w1�

w2�

]
, (40)

then s0 ∈ σ(A(∆min)) and ‖∆min‖ = rR(A;B,C,D; Cg). �

In general, even for simple low order systems, the real stability radius is difficult
to compute by hand via formula (36). Before trying this for a given example, it is
advisable to examine first whether rR = rC. We have seen in Remark 5.3.11 that
this holds, if there exists s0 ∈ ∂Cg such that G(s0) is real and

max
s∈∂Cg

‖G(s)‖L(C�,Cq) = ‖G(s0)‖L(C�,Cq) > ‖D‖L(C�,Cq).

The next example shows that for perturbed positive systems with nonnegative struc-
ture matrices the real stability radius always coincides with the complex one and
can be determined via a simple formula.

Example 5.3.22. A system ẋ = Ax, A ∈ R
n×n is said to be positive if the non-negative

orthant is invariant under its flow, i.e. eAt ≥ 0 for all t ≥ 0. ẋ = Ax is positive if and only
if A is a Metzler matrix, that is all the off-diagonal entries of A are non-negative. It can
be shown that every Metzler matrix satisfies the following entrywise inequality for λ ∈ C

Reλ > α(A) ⇒ |(λIn − A)−1| ≤ ((Re λ)In − A)−1. (41)

In particular, (αIn−A)−1 is non-negative for α > α(A). Now assume that A is a C−-stable
Metzler matrix and the structure matrices are non-negative, B ∈ R

n×�
+ , C ∈ R

q×n
+ . By

(41) the associated transfer matrix G(s) = C(sIn − A)−1B satisfies

|G(ıω)| ≤ C|(ıωIn − A)−1|B ≤ −CA−1B = G(0), ω ∈ R

and hence, for arbitrary absolute norms on C
�, C

q

‖G(ıω)‖L(C� ,Cq) ≤ ‖CA−1B‖L(C�,Cq), ω ∈ R.

Thus ‖G(0)‖L(C� ,Cq) = maxω∈R ‖G(ıω)‖L(C� ,Cq) and it follows from Remark 5.3.11 that

rR(A;B,C; C−) = rC(A;B,C; C−) = ‖CA−1B‖−1.
�
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5.3.4 Hamiltonian Characterization of the Complex

Stability Radius

In this subsection we concentrate on complex full-block perturbations of continuous
time systems and the corresponding complex stability radius r−

C
= r−

C
(A; B, C, D),

as measured by the spectral norm. For this perturbation norm, r−
C

admits several
interesting characterizations. The first is in terms of the norm of the input-output
maps associated with (A, B, C, D) (see (2.3.22) and (2.3.33)), the second is derived
from an associated optimal control problem and the third is in terms of Hamiltonian
matrices. This latter characterization forms the basis of an algorithm for the com-
putation of r−

C
. Although we only consider the continuous time case, we will make

some comments regarding the slightly more complicated discrete time counterpart
in Notes and References.
Throughout the subsection we assume

• (A, B, C, D) ∈ Ln,�,q(C) with σ(A) ⊂ Cg = C−.

• The vector spaces C
q, C�, Cn are provided with their standard Euclidean norms

and the matrix spaces ∆ = C�×q and Cq×� are endowed with the corresponding
operator norms denoted by ‖ · ‖.

• The perturbations are of the form

A � A(∆) = A + B(I� − ∆D)−1∆C, ∆ ∈ C
�×q.

By Theorem 5.3.9 the corresponding complex stability radius is

r−
C
(A; B, C, D) =

[
sup
ω∈R

‖G(ıω)‖
]−1

(42)

where G(s) = D + C(sIn − A)−1B is the transfer matrix of the continuous time
system

Σ : ẋ(t) = Ax(t) + Bw(t), z(t) = Cx(t) + Dw(t), t ∈ R. (43)

Making use of the results in Subsection 2.3.3 we will now derive a characterization
of r−

C
in terms of the input-output operator of this system. The output z(·; w) of Σ

produced by the (perturbation) input w(·) ∈ L2(R; C�) is given by

z(t; w) = Dw(t) +

∫ t

−∞
CeA(t−τ)Bw(τ) dτ , t ∈ R.

Since σ(A) ⊂ C− we have z(·, w) ∈ L2(R; Cq) for all w(·) ∈ L2(R; C�) by Proposi-
tion 2.3.15 so that the input-output operator

L : L2(R; C�) → L2(R; Cq)

(Lw)(t) = Dw(t) +
∫ t

−∞ CeA(t−s)Bw(s) ds , t ∈ R
(44)

is well defined (see Subsection 2.3.1). The norm of this linear operator is by defini-
tion

‖L‖ = sup
w∈L2(R;C�), w �=0

‖(Lw)(·)‖L2(R;Cq)

‖w(·)‖L2(R;C�)

.
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We have shown in Subsection 2.2.4 that the input-output behaviour of Σ can equiv-
alently be described in frequency domain by means of the transfer matrix G(s). If
w̃(·) is the Fourier-Plancherel transform of w(·) ∈ L2(R; C�), the Fourier-Plancherel
transform z̃(·) of z(·; w) ∈ L2(R; Cq) is determined by

z̃(ω) = G(ıω)w̃(ω), a. e. ω ∈ R.

The norms of the input-output operator L and of the transfer matrix G(s) (regarded
as an element of H∞(C+; Cq×�), see Definition A.3.44) are equal by Theorem 2.3.28.

‖L‖L(L2(R;C�),L2(R;Cq)) = sup
ω∈R

‖D + C(ıωIn − A)−1B‖Cq×� = ‖G‖H∞. (45)

Here and in the rest of the subsection we use the abbreviation H∞ for H∞(C+; Cq×�).
If Σ is at rest at time t0 = 0 (x(0) = 0) the future input-output behaviour of Σ
is described by the restriction L+ of the input-output operator L to the embedded
subspace L2(R+, C�) of L2(R; C�). L+ is defined by

L+ : L2(R+; C�) → L2(R+; Cq)

(L+w)(t) = Dw(t) +
∫ t

0
CeA(t−s)Bw(s) ds , t ∈ R+,

(46)

see (2.3.22). z(·) = (L+w)(·) is the output signal of Σ produced by the input signal
w(·) ∈ L2(R+; C�) when the system Σ is initially at rest. By Theorem 2.3.28 L+

has the same norm as L and so we obtain from (42) the following characterization
of the complex stability radius in time domain.

Proposition 5.3.23. If L as in (44) and L+ as in (46) are the input-output maps
associated with the continuous time system (43), then

r−
C
(A; B, C, D) = ‖G‖−1

H∞ = ‖L‖−1 = ‖L+‖−1. (47)

It follows that

1/r−
C

= inf{γ; ∀w ∈ L2(R+; C�) : γ‖w‖L2 − ‖L+w‖L2 ≥ 0}. (48)

This characterization is closely related to the following optimal control problem.

Problem 5.3.24. Let γ ≥ 0. For every x0 ∈ Cn find a perturbation input wopt(·) ∈
L2(R+; C�) such that wopt minimizes the cost functional

Jγ(x
0, w) =

∫ ∞

0

[
γ2‖w(t)‖2

C� − ‖z(t)‖2
Cq

]
dt (49)

amongst all w(·) ∈ L2(R+; C�), where z(t) = z(t; x0, w(·)) is determined by

ẋ(t) = Ax(t) + Bw(t), t ∈ R+, x(0) = x0

z(t) = Cx(t) + Dw(t). (50)

The cost Jγ(x
0, w) is well defined for all x0 ∈ Cn and w(·) ∈ L2(R+; C�) since

z(· ; x0, w(·)) ∈ L2(R+; Cq) by Proposition 2.3.10. For x0 = 0 it follows from (46)
that the corresponding output z(·) = z(· ; 0, w(·)) is given by z(·) = (L+w)(·) and so

Jγ(0, w) = γ2‖w‖2
L2 − ‖L+w‖2

L2.



604 5. Uncertain Systems

Hence by (48) (r−
C
)−1 is the minimal value of γ for which the cost Jγ(0, w) is non-

negative for all inputs w(·) ∈ L2(R+; C�). In other words, Problem 5.3.24 admits
a solution for x0 = 0 (with minimal costs infw∈L2 Jγ(0, w) = 0) if and only if γ ≥
(r−

C
)−1.5

Problems of the above kind will be analyzed in detail in Volume II where we will
see that the solution is obtained by solving a quadratic matrix equation, called the
algebraic Riccati equation (parametrized by γ)

A∗P + PA − C∗C − (B∗P − D∗C)∗(γ2In − D∗D)−1(B∗P − D∗C) = 0 . (51)

A solution P of (51) is said to be stabilizing if

σ(A − B(γ2In − D∗D)−1(B∗P − D∗C)) ⊂ C−.

For later use we note the following result which will be proved in the second volume.

Theorem 5.3.25. Let A ∈ Cn×n be C−-stable. Then the following statements are
equivalent for γ > ‖D‖.

(i) For every x0 ∈ Cn, Problem 5.3.24 is solvable.

(ii) There exists a stabilizing solution P ∈ Hn(C) of (51).

(iii) ‖D + C(ıωIn − A)−1B‖ < γ for all ω ∈ R.

If (i) holds, Problem 5.3.24 is solved by the optimal input (in feedback form)

wopt(t) = −(γ2In − D∗D)−1(B∗P − D∗C)xopt(t)
where

ẋopt(t) =
[
A − B(γ2In − D∗D)−1(B∗P − D∗C)

]
xopt(t) , xopt(0) = x0.

The minimal costs are given by Jγ(x
0, wopt) = 〈x0, Px0〉Cn.

As a consequence of Theorems 5.3.9 and 5.3.25 we obtain the following characteri-
zation of the complex stability radius in terms of (51).

Corollary 5.3.26. Suppose γ > ‖D‖, then (51) has a stabilizing Hermitian solution
(symmetric in the case of real data) if and only if γ > 1/r−

C
(A; B, C, D).

Remark 5.3.27. (i) If 1/r−
C

(A;B,C,D) = ‖G‖H∞(C+;Cq×�) = ‖L+‖ > ‖D‖ the pre-
ceding characterization can be extended to include the minimal admissible value of the
parameter γ:

(51) has a Hermitian solution if and only if γ ≥ 1/r−
C

(A;B,C,D).

For γ = 1/r−
C

(A;B,C,D) there will not, however, exist a stabilizing Hermitian solution of
(51), but only one which achieves σ(A−B(γ2In−D∗D)−1(B∗P −D∗C)) ⊂ C−. Moreover,
it can be proved (see Volume II) that a Hermitian solution with this spectral property
is automatically the largest Hermitian solution of (51) (in the sense of the ordering % of
Hermitian matrices) and hence unique.

(ii) It is usually not possible to solve the system of coupled quadratic equations (51)
analytically. However, there is an extensive literature on the numerical solution of algebraic
Riccati equations, see Notes and References. �

5Note that infw∈L2 Jγ(0, w) = −∞ if there exists w ∈ L2(R+; C�) such that Jγ(0, w) < 0. In
this case Problem 5.3.24 has no solution for x0 = 0.
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We will make use of the above Riccati type characterizations of r−
C

in Section 5.6
where we deal with non-parametric model uncertainty. Here we use a closely related
characterization in terms of Hamiltonian matrices in order to compute r−

C
. With any

system (A, B, C, D) and γ > 0 we associate the parametrized Hamiltonian matrix

Hγ =Hγ(A, B, C, D) =

[
A+BR−1

γ D∗C −BR−1
γ B∗

γ2C∗R̂−1
γ C −(A+BR−1

γ D∗C)∗

]
, γ2 �∈ σ(D∗D), (52)

where Rγ = γ2I� − D∗D and R̂γ = γ2Iq − DD∗.

Definition 5.3.28. A matrix H ∈ C
2n×2n is said to be Hamiltonian if

JH = (JH)∗ where J =

[
0 In

−In 0

]
. (53)

The following explicit characterization shows that Hγ (52) is in fact Hamiltonian
and has a spectrum which is symmetric with respect to the imaginary axis. We omit
the (elementary) proof.

Proposition 5.3.29. (i) A matrix H =

[
H11 H12

H21 H22

]
with Hij ∈ Cn×n, i, j = 1, 2

is Hamiltonian if and only if

H∗
11 = −H22 , H∗

12 = H12 , H∗
21 = H21 . (54)

(ii) If H is Hamiltonian, its spectrum is symmetric with respect to the imaginary
axis, i.e. λ ∈ σ(H) ⇔ −λ̄ ∈ σ(H), and the algebraic/geometric multiplici-
ties of the eigenvalues λ and −λ̄ of H coincide. Moreover every imaginary
eigenvalue of H has multiplicity ≥ 2.

The next lemma is fundamental for a Hamiltonian characterization of the complex
stability radius. For later use we prove it without the assumption σ(A) ⊂ C−.

Lemma 5.3.30. Suppose γ > 0, γ2 �∈ σ(D∗D), ω ∈ R and ıR ⊂ ρ(A), then

ıω ∈ σ(Hγ) ⇐⇒ γ2 ∈ σ(G(ıω)∗G(ıω)) . (55)

Proof : We will make use of the results for determinants contained in Lemma A.1.13.
By (A.1.8) we have γ2 �∈ σ(DD∗). For ease of notation we set Aω = ıωIn −A. Then
Aω is invertible, ıωIn + A∗ = −A∗

ω and R−1
γ D∗ = D∗R̂−1

γ . It follows that

det(ıωI2n−Hγ) = det

[
Aω − BR−1

γ D∗C BR−1
γ B∗

−γ2C∗R̂−1
γ C −A∗

ω + C∗DR−1
γ B∗

]
= (−1)n det(A∗

ωAω) det

(
I2n +

[ −A−1
ω BR−1

γ D∗ A−1
ω BR−1

γ

γ2(A∗
ω)−1C∗R̂−1

γ −(A∗
ω)−1C∗DR−1

γ

] [
C 0
0 B∗

])
= (−1)n det(A∗

ωAω) det

(
Iq+� +

[
−(G(ıω) − D)D∗R̂−1

γ (G(ıω) − D)R−1
γ

γ2(G(ıω) − D)∗R̂−1
γ −(G(ıω) − D)∗DR−1

γ

])
= (−1)n det(A∗

ωAω)(detRγ)
−1(det R̂γ)

−1 det

[
γ2Iq − G(ıω)D∗ G(ıω) − D
γ2(G(ıω) − D)∗ γ2I� − G(ıω)∗D

]
= (−1)n det(A∗

ωAω)(detRγ)
−1(det R̂γ)

−1 det

([
Iq −G(ıω)

G(ıω)∗ −γ2I�

] [
γ2Iq −D
D∗ −I�

])
= (−1)n det(A∗

ωAω)(det R̂γ)
−1 det(γ2I� − G(ıω)∗G(ıω)).
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This last equality follows by the Schur complement formula given in Lemma A.1.17.
Since det(A∗

ωAω) �= 0, we obtain (55). �

(55) implies that for all ω ∈ R, γ > 0, γ2 �∈ σ(D∗D)

ıω ∈ σ(Hγ) ⇐⇒ γ = σj(G(ıω)) for some j ∈ � . (56)

This relationship between the eigenvalues of Hγ and the singular values of G(ıω)
is illustrated in Example 5.3.35. As a consequence of Lemma 5.3.30 we obtain the
following characterization of r−

C
in terms of the spectrum of Hγ .

Proposition 5.3.31. If γ > ‖D‖ and Hγ(A, B, C, D) is the Hamiltonian matrix
(52) then

γ ≤ ‖G‖H∞ ⇐⇒ γ ≤
(
r−

C
(A, B, C, D)

)−1 ⇐⇒ σ(Hγ) ∩ ıR �= ∅ . (57)

Moreover if r−
C

= r−
C
(A, B, C, D) < ‖D‖−1, then

ıω0 ∈ σ(H(r−
C

)−1) ⇐⇒ ‖G(ıω0)‖ = max
ω∈R

‖G(ıω)‖ . (58)

Proof : By (22) it only remains to prove the second equivalence in (57). Since
σ(A) ⊂ C− and R−1

γ → 0 as γ → ∞, we have σ(Hγ) ∩ ıR = ∅ for large γ by
continuity of the spectrum (see Corollary 4.2.1). Now suppose ıω0 ∈ σ(Hγ), then
by (55),

γ ≤ ‖G(ıω0)‖ ≤ sup
ω∈R

‖G(ıω)‖ = r−1
C

.

Conversely if 0 < ‖D‖ < γ ≤ supω∈R ‖G(ıω)‖, then since limω→∞ ‖G(ıω)‖ = ‖D‖,
there exists ω0 ∈ R such that γ = ‖G(ıω0)‖. It then follows from (55) that
ıω0 ∈ σ(Hγ). This proves (57). Finally (58) follows by setting γ = (r−

C
)−1 =

supω∈R ‖G(ıω)‖ in (55). �

By (22) we have r−
C
(A, B, C, D) ≤ ‖D‖−1 and if r−

C
(A, B, C, D) < ‖D‖−1 then by

(57) and (58)

r−
C
(A, B, C, D) = min{γ−1; γ > ‖D‖ and σ(Hγ) ∩ ıR �= ∅}. (59)

So we obtain the following graphical characterization of the stability radius r−
C
:

Draw the eigenloci of Hγ as γ decreases from ∞ to ‖D‖. If σ(Hγ) ∩ ıR = ∅ for all
γ > ‖D‖ then r−

C
= ‖D‖−1. Otherwise let γ̂ be the value of γ for which one (or

more) of the eigenloci hits the imaginary axis for the first time. Then r−
C

= γ̂−1.

Remark 5.3.32. It follows from Proposition 4.2.42 that the eigenvalues of Hγ can be
represented as continuous piecewise analytic functions of the real parameter γ (“eigenloci”)
on (‖D‖,∞) and the ordered singular values σj(ω), of G(ıω) are continuous piecewise
analytic functions of the frequency ω (“singular loci”) on R. The behaviour of these loci
with decreasing γ is illustrated in Example 5.3.35.
Once r−

C
< ‖D‖−1 has been determined, formula (58) yields the set of all global maxima

of ω → ‖G(ıω)‖. Since every imaginary eigenvalue ıω0 ∈ σ(Hγ) is of multiplicity ≥ 2, the
set {ω ∈ R; ıω ∈ σ(Hγ)} has not more than n elements for each γ > 0. In particular, it
follows from (58) that there are at most n global maxima of the function ω → ‖G(ıω)‖. �
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The characterization (59) provides the basis of an algorithm for computing the
complex stability radius r−

C
, or equivalently ‖G‖H∞.

Algorithm 5.3.33. Assume G(s) = D + C(sI − A)−1B �≡ 0 so that ‖G‖H∞ > 0
and choose a tolerance level ε ≥ 0. The algorithm starts from a lower bound γ0

of ‖G‖H∞ and if ε > 0 it produces a strictly increasing sequence of lower bounds,
exiting at a γk such that γk ≤ ‖G‖H∞ ≤ γk(1 + ε).

1. Init: Set γ0 = max{‖D‖, ‖G(0)‖} and k = 0.

2. loop

2.1 Set γε
k = (1 + ε)γk.

2.2 Determine the set Ωk = {ω ∈ R; ıω ∈ σ(Hγε
k
)}.

2.3 If Ωk = ∅ then leave loop.

2.4 Determine ω
(k)
1 < ω

(k)
2 < . . . < ω

(k)
rk in Ωk, such that

{ω(k)
1 , . . . , ω

(k)
rk } = {ω ∈ Ωk; ‖G(ı ω)‖ = γε

k}.
2.5 Determine the set I(k) = {I(k)

j ; j ∈ Jk} of all intervals of the form

I
(k)
j = (ω

(k)
j , ω

(k)
j+1), j ∈ {1, . . . , rk}, such that ‖G(ıω)‖ > γε

k for all

(equivalently, for some) ω ∈ I
(k)
j .

2.6 If there are no such intervals (Jk = ∅) then leave loop.

2.7 For each interval I
(k)
j set µ

(k)
j = (ω

(k)
j + ω

(k)
j+1)/2, j ∈ Jk and compute

γk+1 = maxj∈Jk
‖G(ı µ

(k)
j )‖. Set k = k + 1 and go to Step 2.1.

3. End: Return γk.

If ‖G‖H∞ ≥ (1 + ε) max{‖D‖, ‖G(0)‖} the iterative part of the algorithm comes
into operation. Clearly γk+1 ≥ (1 + ε)γk and it has been shown, for real data with
ε = 0, that γk ↗ ‖G‖H∞ quadratically as k → ∞, i.e. there exists α > 0 such that

0 ≤ ‖G‖H∞ − γk+1 ≤ α (‖G‖H∞ − γk)
2,

see Notes and References. If the loop is left in Step 2.3 at iteration k̂ then necessarily
γk̂ ≤ ‖G‖H∞ < γε

k̂
, whereas if the loop is left in Step 2.6, then ‖G‖H∞ = γε

k̂
.

Figure 5.3.5 illustrates the last two steps of the loop.

‖G(ı·)‖

γε
k

γk+1

µ
(k)
1 µ

(k)
3 µ

(k)
4

I
(k)
1 I

(k)
2 I

(k)
3

ω
(k)
5ω

(k)
4ω

(k)
3ω

(k)
2ω

(k)
1

Figure 5.3.5: Steps 4 and 5 of the algorithm
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Remark 5.3.34. Below we comment on the various steps of the algorithm.
Init In [80] the authors suggest an initial value γ0 based on ‖D‖ and the evaluation
of ‖G(ıω)‖ at two different values of ω, one of which should be ω = 0 and the other
determined by the poles of the transfer function.
Step 2.2 If γε

k ≤ ‖G‖H∞ , γε
k > ‖D‖, then Ωk �= ∅ by Proposition 5.3.31. By Remark 5.3.32

Ωk has at most n elements. The set Ωk is determined by an eigenvalue algorithm such
as Francis’ double-shift QR algorithm (see Section 4.5) and there may be computational
difficulties. Another problem is how one decides whether or not Hγ has purely imaginary
eigenvalues. Hγ may have this property but, due to rounding errors, all the computed
eigenvalues of Hγ may have non-zero real parts. Therefore it is usual to specify a tolerance
level and to include the imaginary parts of eigenvalues in Ωk if their real parts have a
modulus less than this tolerance level.
Step 2.4 This step is carried out by determining the largest singular value of G(ıω), ω ∈
Ωk and hence the computations are numerically stable. If Ωk �= ∅ and γε

k > ‖D‖ there
exists ω ∈ R such that ‖G(ıω)‖ = γε

k (whence 1 ≤ rk ≤ |Ωk| ≤ n). This follows from
the intermediate value theorem because lim|ω|→∞ G(ıω) = D and ‖G(ıω)‖ ≥ γε

k for every

ω ∈ Ωk. By (56) we have γε
k < ‖G(ıω)‖ for all ω ∈ Ωk \{ω(k)

1 , ..., ω
(k)
rk }. Since the aim is to

maximize ‖G(ıω)‖ this suggests that one should use every ω ∈ Ωk in order to determine
the set of intervals I(k). Indeed the algorithm proposed in [81] does exactly this and
updates the γk by computing the value of ‖G(ıω)‖ at the midpoint of neighbouring points
in Ωk. Although this requires more computing time at each iteration, it may lead to faster
convergence.
Of course it is very unlikely that the computed value ‖G(ıω)‖ will be exactly equal to γε

k for
any ω ∈ Ωk, so again one uses a tolerance level at this step and includes those ω ∈ Ωk for
which ‖G(ıω)‖ ≤ γε

k(1+ε). The use of such a tolerance level leads to an algorithm which is
intermediate between the two extremes of either using all the frequencies in Ωk (see [80]) or
using only the frequencies ω(k) as recommended in [73]. Such an intermediate strategy may
speed up the convergence in certain cases without leading to an excessive increase of the
number of intervals which have to be examined in Step 2.4. For example, in Figure 5.3.5

it looks as if ‖G(ıω
(k)
4 )‖ = γε

k. However suppose that in fact ‖G(ıω
(k)
4 )‖ = γε

k + α for some

small α > 0 and ω
(k)
4 is excluded in accordance with the algorithm in [73]. Then we see

that the next value of γk+1 would be smaller than the one shown (the interval I
(k)
2 would

become (ω
(k)
3 , ω

(k)
5 )).

Step 2.5 It follows from (56) and the intermediate value theorem that (ω
(k)
j , ω

(k)
j+1) ∈ I(k)

if there exists ω ∈ (ω
(k)
j , ω

(k)
j+1) such that ‖G(ıω)‖ > γε

k. The intervals in I(k) can be found

as follows: If there exists ω ∈ Ωk with ω ∈ (ω
(k)
j , ω

(k)
j+1) then (ω

(k)
j , ω

(k)
j+1) ∈ I(k). Else check

whether ‖G(ı(ω
(k)
j + ω

(k)
j+1)/2)‖ > γε

k. When this holds, (ω
(k)
j , ω

(k)
j+1) is an interval in I(k).

Otherwise it is not. �

If (A, B, C, D) are real and ıω ∈ σ(Hγ), then we also have −ıω ∈ σ(Hγ). Now
suppose that maxω∈R ‖G(ıω)‖ = ‖G(0)‖, then 0 will be the midpoint of some I ∈
I(0). Hence the algorithm will converge in the first iteration, even if the initial value
γ0 ∈ [‖D‖, ‖G‖H∞] was not based on ω = 0.

Example 5.3.35. Consider unstructured perturbations A � A+∆ of the stable system

ẋ = Ax where A =

⎡⎣ 0 1 3
−10 −2 0
0 0 −1.5

⎤⎦. The associated transfer matrix and Hamiltonian
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have the form G(s) = (sI3 − A)−1, Hγ =

[
A −γ−2I3

I3 −A∗

]
. The eigenloci of Hγ as γ

decreases from ∞ and the three singular value loci of G(ıω) are shown in Figure 5.3.7. The
eigenloci start at the encircled eigenvalues of A and −A∗ with γ = ∞ and end where the
first two pairs of conjugate eigenvalues meet the imaginary axis for γ = (r−

C
)−1. Table 5.3.6

shows the convergence of the above algorithm to r−
C

= ‖G(ıω0)‖−1 = 2.489−1 = 0.4018,
with ω0 = 2.707. The algorithm was initialized by setting γ0 = ‖G(0)‖ = 2.358 and, since

A is real, only non-negative values of ω were considered. There was only one interval I
(k)
jk

in each iteration (i.e. Jk = {jk}, k = 1, 2, 3).

γk ω
(k)
j I

(k)
j µ

(k)
j

γ0 = 2.358 ω
(1)
1 = 0, ω

(1)
2 = 2.197, ω

(1)
3 = 3.076 I

(1)
2 = [2.197, 3.076] µ

(1)
2 = 2.636

γ1 = 2.484 ω
(2)
1 = 2.636, ω

(2)
2 = 2.774 I

(2)
1 = [2.636, 2.774] µ

(2)
1 = 2.705

γ2 = 2.489 ω
(3)
1 = 2.705, ω

(3)
2 = 2.709 I

(3)
1 = [2.705, 2.709] µ

(3)
1 = 2.707

Table 5.3.6: Convergence of the algorithm
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Figure 5.3.7: Eigenloci of Hγ and singular values of G(ıω)
�

5.3.5 The Unstructured Case

In this subsection we consider unstructured perturbations A � A + ∆ where ∆ ∈
∆ = Kn×n is arbitrary. After characterizing the stability radii for this special case
we will obtain bounds for them and explore when they are tight. One of the upper
bounds is expressed in terms of the distance of σ(A) to the boundary of the stability
region ∂Cg. We will see that under similarity transformations the stability radii
come arbitrarily close to this distance and also arbitrarily close to zero.
The basic assumptions in the subsection are

• Cg �= ∅ is an open subset of C and Cb := C \ Cg �= ∅.

• A ∈ Kn×n and σ(A) ⊂ Cg.

• ∆ = Kn×n is provided with the spectral norm denoted by ‖ · ‖.6
6Some of the ensuing results have obvious generalizations to arbitrary operator norms.
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• The perturbations are of the form

A � A(∆) = A + ∆, ∆ ∈ K
n×n.

Note that in this unstructured case D = 0n×n (so that the well-posedness problem
does not play a role) and the associated transfer matrix is the resolvent of A, G(s) =
(sIn −A)−1, s ∈ ρ(A). The corresponding stability radius is called the unstructured
stability radius of A and is given by

dK(A; Cg) := rK(A; In, In; Cg) = inf{‖∆‖; ∆ ∈ K
n×n, σ(A + ∆) ∩ Cb �= ∅}. (60)

If we denote the set of Cg-unstable matrices in Kn×n by Un(K; Cg), i.e.

Un(K; Cg) = {X ∈ K
n×n; σ(X) ∩ Cb �= ∅},

we see that dK is the distance, within the normed matrix space (Kn×n, ‖ · ‖), between
A and the set Un(K; Cg). Since Un(K; Cg) is non-empty and closed in Kn×n (by
continuity of the spectrum) there exists a matrix X ∈ Un(K; Cg) such that

‖A − X‖ = dK(A; Cg) = dist(A,Un(K; Cg)).

Therefore the “inf” in (60) can be replaced by “min”. As a consequence of the
triangle inequality we have the following estimate

|dK(A; Cg) − dK(Ã; Cg)| ≤ ‖A − Ã‖ . (61)

In particular, the function dK : A �→ dK(A; Cg) satisfies a global Lipschitz condition
on Kn×n. In Figure 5.3.8 we illustrate the difference between the structured and

{A + B∆C; ∆ ∈ K�×q}

Cg–stable
matrices

Un(K; Cg)

A

dK

Figure 5.3.8: Unstructured and structured stability radius in K
n×n

unstructured stability radius in the metric space Kn×n. Note, however, that the
structured stability radius rK(A; B, C; Cg) is not the distance in Kn×n from A to the
closest system in Un(K; Cg) ∩ {A + B∆C; ∆ ∈ K�×q} but the distance of the set of
destabilizing perturbations from the zero matrix in K�×q.

Theorem 5.3.36. (i) If A ∈ Cn×n is Cg-stable then

dC(A; Cg) = min
s∈∂Cg

σn(sIn − A). (62)
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(ii) If A ∈ Rn×n is Cg-stable then

dR(A; Cg) = min
s∈∂Cg

sup
γ∈(0,1]

σ2n−1((sIn − A)R

γ ), (63)

where (sIn − A)R

γ =

[
αIn − A −γωIn

γ−1ωIn αIn − A

]
for s = α + ıω ∈ C, γ ∈ (0, 1].

Proof : As an immediate consequence of Theorems 5.3.9 and 5.3.3

dC(A; Cg) =

[
max
s∈∂Cg

σ1((sIn − A)−1)

]−1

, dR(A; Cg) =

[
max
s∈∂Cg

µR((sIn − A)−1)

]−1

.

But 1/σ1((sIn − A)−1) = σn(sIn − A), s ∈ ρ(A) and by (4.3.21)

µR((sIn − A)−1) = [ sup
γ∈(0,1]

σ2n−1((sIn − A)R

γ )]−1, s ∈ ρ(A).

Hence (62) and (63) hold. �

The distance dC is relatively easy to compute, whereas the computation of the
distance dR is more difficult. So we explore the possibility of determining bounds
for dR for the classical stability regions Cg = C− and D. Writing d−

K
(A) = dK(A; C−),

d1
K
(A) = dK(A; D), we have by (62) and Corollary 4.3.9 that for A ∈ Rn×n

min
ω∈R

σn(ıωIn − A) = d−
C
(A) ≤ d−

R
(A) ≤ σn(A) (64a)

min
θ∈[0,2π]

σn(eıθIn − A) = d1
C
(A) ≤ d1

R
(A) ≤ min{σn(In − A), σn(In + A)}. (64b)

Unfortunately these estimates can all be very bad. In fact, as in the structured case,
the quotients d−

R
(A)/d−

C
(A), d1

R
(A)/d1

C
(A) can be arbitrarily large (see Ex. 11 and

Example 5.3.14). This is also true for the quotient of the upper bound σn(A) and
d−

R
in (64a) as we now illustrate.

Example 5.3.37. Consider the normal matrices Aβ =

[
−1 −β

β −1

]
, β ∈ R. We will show

in Proposition 5.3.38 that d−
C
(Aβ) = d−

R
(Aβ) = dist(σ(Aβ), ıR). Now σ(Aβ) = {−1 ± ıβ}

and hence d−
C
(Aβ) = d−

R
(Aβ) = 1 for all β ∈ R. But σ2(Aβ) =

√
1 + β2 and so the

quotient σ2(Aβ)/d−
R
(Aβ) is unbounded as β → ∞. �

One might think that the distance, dist(σ(A), ∂Cg), of the spectrum of A from the
boundary of the stability region (see Figure 5.3.9) is a robustness indicator for the
stability of A. So it is interesting to explore the relationship between this distance
and dC(A; Cg), dR(A; Cg). We do this by applying Proposition 5.2.44 and using the
fact that unitary (orthogonal) similarity transformations do not change the distances
in Kn×n.

dK(A; Cg) = dK(UAU∗; Cg), A ∈ K
n×n, U ∈ Un(K).
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δ

λ0 s0

∂C−

C−

Re

Im

δ

λ0

s0

∂D

D

Re

Im

Figure 5.3.9: δ = dist(σ(A), ∂Cg) = |λ0 − s0| for Cg = C−, Cg = D

Proposition 5.3.38. (i) If A ∈ Cn×n, then

dC(A; Cg) ≤ dist(σ(A), ∂Cg) (65)

and equality holds if A is normal.
(ii) If A ∈ Rn×n and one of the following assumptions is satisfied

dist(σ(A), ∂Cg) = dist(σ(A) \ R, ∂Cg) or

dist(σ(A), ∂Cg) = dist(σ(A) ∩ R, ∂Cg ∩ R),
(66)

then
dC(A; Cg) ≤ dR(A; Cg) ≤ dist(σ(A), ∂Cg) (67)

and again equalities hold if A is normal.

Proof : (i) There exists (λ0, s0) ∈ σ(A)×∂Cg such that |λ0−s0| = dist(σ(A), ∂Cg),
so σ(A + (s0 − λ0)In) ∩ ∂Cg �= ∅ and hence (65) holds. If A is normal there exists a
unitary matrix U such that UAU∗ = diag(λ1, . . . , λn). For each s ∈ ∂Cg

σn(sIn − A) = σn(sIn − diag(λ1, . . . , λn)) = min
i∈n

|s − λi| = dist(σ(A), s).

Hence it follows from (62) that equality holds in (65) when A is normal.
(ii) Let A ∈ Rn×n and δ := dist(σ(A), ∂Cg). If the first assumption in (66) is satisfied
there is a λ ∈ σ(A) such that Im λ �= 0 and dist(λ, ∂Cg) = δ. By Proposition 5.2.44,
there exists ∆ ∈ Rn×n such that ‖∆‖ ≤ δ and σ(A+ ∆) �⊂ Cg, hence dR(A; Cg) ≤ δ.
Now suppose the second assumption in (66) is satisfied. Then there exist s0 ∈ ∂Cg ∩
R, λ0 ∈ σ(A)∩R such that |λ0 − s0| = δ. It follows that σ(A+(s0−λ0In))∩Cb �= ∅
and hence again dR(A; Cg) ≤ δ. This proves (67), since dC(A; Cg) ≤ dR(A; Cg). If A
is normal, equality holds in (65) by (i) and so equality must hold in (ii). �

Assumption (66) is satisfied for all A ∈ R
n×n if Cg = C− or Cg = D, see Figure 5.3.9.

The assumption (66) excludes spectral locations as depicted in Figure 5.3.10 where
the minimal distance dist(λ, ∂Cg) = δ is only achieved for real λ ∈ σ(A) which lie
closer to non-real points on ∂Cg than to real points on this boundary. In Exs. 16, 17
it is shown that Assumption (66) cannot be dispensed with. By Proposition 5.3.38
dist(σ(A), ∂Cg) is a good robustness measure for normal matrices, but it may be
very misleading for non-normal ones as the following example illustrates.
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0

Cb

Figure 5.3.10: Assumption (66) not satisfied

Example 5.3.39. Let

Ak =

[
−k k4

0 −k2

]
, ∆k =

[
0 0

k−1 0

]
, k ∈ N .

Then det(Ak + ∆k) = 0. Hence d−
R
(Ak) ≤ k−1 → 0, whereas dist(σ(Ak), ıR) → ∞ as

k → ∞. �

Non-unitary similarity transformations A �→ TAT−1, T ∈ Gln(K) will in general
change the distance from instability. Hence in concrete applications it is essential
to carefully choose and scale the coordinate system of the state space in order to be
sure that dK(A; Cg) is a meaningful indicator of robustness.
We will show that under similarity the stability radii may be made arbitrarily small
and be increased arbitrarily close to dist(σ(A), ∂Cg) but no further.

Proposition 5.3.40. Suppose A ∈ Kn×n, A /∈ KIn, then

sup
T∈Gln(K)

dK(TAT−1; Cg) = dist(σ(A), ∂Cg), (68)

inf
T∈Gln(K)

dK(TAT−1; Cg) = 0 (69)

provided that, in the real case, the conditions (66) for (68) (resp. ∂Cg ∩ R �= ∅ for
(69)) are satisfied.

Proof : By Proposition 5.3.38 and the assumption (66) we get the inequality ≤
in (68) for K = R and C. By Lemma 5.2.47, for any given ε > 0, there exists
a T ∈ Gln(K) and a normal matrix Ad ∈ Kn×n with σ(Ad) = σ(A) such that
‖TAT−1 − Ad‖ < ε. Hence, by Proposition 5.3.38 and the triangle inequality

dK(TAT−1; Cg) ≥ dK(Ad; Cg) − ε = dist(σ(A), ∂Cg) − ε .

This proves (68). To prove (69) we use (62) and (63). For any s0 ∈ ∂Cg (resp.
s0 ∈ ∂Cg ∩ R for K = R) and any T ∈ Gln(K) we have

dK(TAT−1; Cg) ≤ σn(s0In − TAT−1)

by Corollary 4.3.9. But σn(s0In − TAT−1) = ‖T (s0In − A)−1T−1‖−1 and so (69)
follows from Lemma 5.2.47. �

In geometric terms (69) implies that every similarity orbit in Kn×n which is not
reduced to a singleton comes arbitrarily close to the set Un(K; Cg) of Cg–unstable
matrices.
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5.3.6 Dependence on System Data

Our aim in this subsection is to study how the stability radius r∆(A; B, C, D; Cg)
depends on the data (A, B, C, D). We will carry this out under the general assump-
tions of the first subsection, namely

• Cg �= ∅ is an open subset of C and Cb := C \ Cg �= ∅.

• (A, B, C, D) ∈ Sn,�,q(K; Cg) where

Sn,�,q(K; Cg) = {(A, B, C, D) ∈ Ln,�,q(K); σ(A) ⊂ Cg}

is provided with the topology induced from Ln,�,q(K).

• ∆⊂K
�×q is a closed convex cone and spanK ∆ is provided with a norm ‖ · ‖∆

which is an operator norm with respect to a given pair of norms on K�, Kq.

• The perturbations are given by A � A(∆) = A + B(I� −∆D)−1∆C, ∆ ∈ ∆0

where ∆0 = {∆ ∈ ∆; det(I� − ∆D) �= 0}.

We know from (61) that the unstructured stability radius dK(A; Cg) is continu-
ous on Kn×n. However there is no reason to expect the structured stability radii,
r∆(A; B, C, D; Cg), to be continuous either as a function of A (with B, C, D fixed) or
as a function of the structure matrices B, C, D with A fixed, see Figure 5.3.11. In the
case r∆ < µ∆(D)−1 discontinuity should be expected at quadruples (A0, B0, C0, D0)
for which the set of perturbed systems {A0 + B0(I� − ∆D0)

−1∆C0; ∆ ∈ ∆0} inter-
sects the set Un(K; Cg) tangentially at all points A0 + B0(I� −∆0D0)

−1∆0C0 where
∆0 ∈ ∆0 is any minimum norm destabilizing perturbation, see Figure 5.3.11 (which
illustrates the case for D = 0).

A0Aε �

Aε + B0∆εC0

A0 + B0∆0C0

Un(K; Cg)

(i) Perturbed system matrix

A0 + B0∆0C0

A0

A0 + Bε∆εCε
�

Un(K; Cg)

(ii) Perturbed structure matrices

Figure 5.3.11: Discontinuity of structured stability radii

The next proposition shows that the stability radius does not suddenly decrease as
a result of small perturbations of the data.

Proposition 5.3.41. The map

r∆( · ; Cg) : Sn,�,q(K; Cg) → R+, (A, B, C, D) �→ r∆(A; B, C, D; Cg)
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is lower semicontinuous, i.e. if (A0, B0, C0, D0) ∈ Sn,�,q(K; Cg) and α ∈ R satisfies
α < r∆(A0; B0, C0, D0; Cg), then there exists a neighbourhood Ω of (A0, B0, C0, D0)
in Sn,�,q(K; Cg) such that α < r∆(A; B, C, D; Cg) for all (A, B, C, D) ∈ Ω.

Proof : Let r∆(A0; B0, C0, D0; Cg) > α and suppose there exists a sequence of
systems (Ak, Bk, Ck, Dk) ∈ Sn,�,q(K; Cg) converging to (A0, B0, C0, D0) such that
r∆(Ak, Bk, Ck, Dk; Cg) ≤ α for all k ∈ N. Then, for every k ∈ N there exists a
perturbation ∆k ∈ ∆, satisfying ‖∆k‖∆ ≤ α and either det (I� − ∆kDk) = 0 and
‖∆k‖ = µ∆(Dk)

−1 or

‖∆k‖ < µ∆(Dk)
−1 and σ(Ak + Bk(I� − ∆kDk)

−1∆kCk) ∩ Cb �= ∅.

Passing over to a subsequence if necessary we may assume (∆k) converges to a matrix
∆0 ∈ ∆. Then ‖∆0‖∆ ≤ α and either det (I� − ∆0D0) = 0 or det (I� − ∆0D0) �= 0
and σ(A0 + B0(I� − ∆0D0)

−1∆0C0) ∩ Cb �= ∅ (by the continuity of the spectrum).
Hence r∆(A0; B0, C0, D0; Cg) ≤ α by definition (2) and so yields a contradiction. �

As a consequence of Proposition 4.4.28 and Theorem 5.3.3 the stability radius de-
pends continuously on the data for complex perturbation structures.

Proposition 5.3.42. Suppose C∆ = ∆, then the map

r∆( · ; Cg) : Sn,�,q(C; Cg) → R+, (A, B, C, D) �→ r∆(A; B, C, D; Cg)

is continuous.

Proof : By Proposition 5.3.41 it only remains to prove that r∆( · ; Cg) is upper
semicontinuous. Let (A0, B0, C0, D0) ∈ Sn,�,q(C; Cg) and suppose that α ∈ R and
r∆(A0; B0, C0, D0; Cg) < α. By Theorem 5.3.3

r∆(A0; B0, C0, D0; Cg) = min { inf
s∈∂Cg

µ∆(G0(s))
−1, µ∆(D0)

−1} (70)

where G0(s) = D0 + C0(sIn − A0)
−1B0. If infs∈∂Cg µ∆(G0(s))

−1 < α, then there
exists an s0 ∈ ∂Cg such that µ∆(G0(s0))

−1 < α and hence by the continuity of
µ∆ on Cq×� and the continuity of the map (A, B, C, D) �→ G(s0), there exists a
neighbourhood Ω of (A0, B0, C0, D0) in Sn,�,q(K; Cg) such that µ∆(G(s0))

−1 < α
for all G(s0) = D + C(s0In − A)−1B, (A, B, C, D) ∈ Ω. By (70) this implies
r∆(A; B, C, D; Cg) < α for all (A, B, C, D) in this neighbourhood. On the other
hand if µ∆(D0)

−1 < α, again by the continuity of µ∆ (Proposition 4.4.28), we have
µ∆(D)−1 < α and hence r∆(A; B, C, D; Cg) < α for all (A, B, C, D) ∈ Sn,�,q(C; Cg)
with D sufficiently close to D0. Thus r∆(·; Cg) is upper semicontinuous and this
together with Proposition 5.3.41 completes the proof. �

The following definition is needed to give a sufficient condition for the real stability
radius to be continuous at a given quadruple (A, B, C, D).

Definition 5.3.43. Given (A, B, C, D) ∈ Sn,�,q(K; Cg), a destabilizing perturbation
matrix ∆0 ∈ ∆0 is said to be strongly destabilizing for (A, B, C, D) (with respect
to ∆ and Cg), if for every ε > 0 there exists ∆ ∈ ∆0, ‖∆ − ∆0‖∆ < ε such that
σ(A + B(I� − ∆D)−1∆C) ∩ int Cb �= ∅ where int Cb denotes the interior of Cb.
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By definition there does not exist any strongly destabilizing perturbation if int Cb =
∅. But for all stability regions of practical interest we have Cb = int Cb. The
following proposition applies to both real and complex stability radii.

Proposition 5.3.44. The stability radius, r∆( · ; Cg) is continuous at every quadru-
ple (A0, B0, C0, D0) ∈ Sn,�,q(K; Cg) for which there exists a strongly destabilizing
perturbation ∆0 ∈ ∆0 of minimum norm ‖∆0‖∆ = r∆(A0; B0, C0, D0; Cg).

Proof : It only remains to prove that r∆( · ; Cg) is upper semicontinuous at the
quadruple (A0, B0, C0, D0). If this were not the case there would exist ε > 0 such
that each neighbourhood of (A0, B0, C0, D0) in Sn,�,q(K; Cg) contains a quadruple
(A, B, C, D) satisfying r∆(A; B, C, D; Cg) ≥ r∆(A0; B0, C0, D0; Cg) + ε. But there
exists ∆ ∈ ∆ with ‖∆−∆0‖∆ < ε such that det(I� −∆D0) �= 0 and σ(A0 +B0(I� −
∆D0)

−1∆C0)∩ int Cb �= ∅. Hence there exists a neighbourhood Ω of (A0, B0, C0, D0),
such that I� − ∆D is invertible and σ(A + B(I� − ∆D)−1∆C) ∩ int Cb �= ∅ for all
(A, B, C, D) ∈ Ω. It follows that r∆(A; B, C, D; Cg) ≤ ‖∆‖∆ < ‖∆0‖∆ + ε =
r∆(A0; B0, C0, D0; Cg) + ε for all (A, B, C, D) ∈ Ω and hence a contradiction. �

It is easily deduced from the openness of the spectral value sets σ∆(A; B, C, D; δ) \
σ(A) for complex perturbation structures ∆, that every destabilizing ∆0 ∈ ∆0 is
strongly destabilizing with respect to ∆. Hence Proposition 5.3.42 can be viewed
as a corollary of the preceding result. The following example illustrates that a
perturbation ∆0 ∈ R�×q can be destabilizing without being strongly destabilizing
with respect to ∆ = R�×q.

Example 5.3.45. Consider the Hurwitz stable quadruple defined by

A0 =

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
−1 −4 −6 −4

⎤⎥⎥⎦ , B0 =

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ , C0 = [ 17 64 97 0 ], D0 = 0

and let ∆ = R (q = � = 1). The associated (scalar) transfer function is G0(s) = c(s)/p(s)
where p(s) = (s + 1)4, c(s) = 97s2 + 64s + 17. From (34) we have

rR(A0;B0, C0; C−) = (max{|G0(ıω)|;ω ∈ R, G0(ıω) ∈ R})−1
.

Now G0(ıω) is real if and only if ω = 0 or ω = ±1/3, and the corresponding values
of |G0(ıω)| are 17 and 18. Thus rR(A0;B0, C0; C−) = 1/18. Using the Routh–Hurwitz
test it can be verified that the perturbed system matrix A0 + B0∆C0 is C−–stable for
all ∆ ∈ (−1/17, 1/17) with ∆ �= ∆0 = 1/18, hence the affine subspace of perturbed
systems, {A0 + B0∆C0;∆ ∈ R}, touches the set of C−–unstable matrices tangentially
at A0 + B0∆0C0, i.e. ∆0 = 1/18 is not strongly destabilizing. This is illustrated by
Figure 5.3.45 which shows the graph of the spectral abscissa α(A0 +B0∆C0) as a function
of the perturbation ∆ ∈ [0.05, 0.06].
Now change C0 to Cε = [ 17 (64 − 4ε) 97 0 ] with the corresponding transfer function
Gε(s) = cε(s)/p(s). For 0 < ε ' 1 one can show that Gε(ıω) is real if and only if ω = 0.
Since |Gε(0)| = 17, we have

rR(A0, B0, Cε; C−) = 1/17, for all 0 < ε ' 1.

Similarly, one can show that rR(Aε, B0, C0; C−) = 1/17 for all small ε > 0 where Aε is
obtained from A0 by subtracting ε from the second entry in the last row, see Ex. 18. �
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Figure 5.3.12: Graph of ∆ �→ α(A0 + B0∆C0)

This example confirms the above analysis and shows that the real stability radius
may jump upwards at quadruples (A0, B0, C0, D0) for which the smallest destabi-
lizing perturbations are not strongly destabilizing. Another sufficient criterion for
the continuity of rR(·; Cg) at a given quadruple (A0, B0, C0, D0) can be derived from
Theorem 4.4.48 together with Proposition 5.3.41, see Ex. 21.
It may seem paradoxical that the real stability radius, introduced to measure ro-
bustness, may itself be highly sensitive to perturbations of the data. However,
discontinuities will only occur when the structure matrices B, C are themselves per-
turbed or A is perturbed in a way which is not compatible with the given structure.
This is in harmony with the inherent logic of structured uncertainty: If the system
is subjected to perturbations which are incompatible with the given structure then
the corresponding structured stability radius is not a reliable robustness measure.
From this point of view one could say that it is not the possible discontinuity of the
real stability radius which is surprising but the continuity of the complex one (see
Proposition 5.3.42). If the perturbation structure is not exactly known, the uncer-
tainty is unstructured and consequently the unstructured stability radius should be
used.

5.3.7 Stability Radii and the Cayley Transformation

In this subsection we assume the general framework is the same as that in the
previous one. In Section 3.3 we introduced the Möbius map

m : C \ {1} → C \ {1}, m(s) =
s + 1

s − 1
, (71)

which maps C\{1} homeomorphically into itself, with inverse m−1(s) = m(s). This
homeomorphism maps C− onto D and vice-versa. We then went on to introduce
the Cayley transformation of a matrix and showed that it defined a bijection from
the set of matrices A ∈ Cn×n with 1 /∈ σ(A) onto itself. In particular we related
Hurwitz stability with Schur stability via the Cayley transform. Here our objective
is to relate stability radii of Hurwitz stable matrices with stability radii of Schur
stable matrices. In order to do this we must also transform the structure matrices
B, C, D.
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Definition 5.3.46. For every (A, B, C, D) ∈ Sn,�,q(K; C\{1}) the Cayley transform
Γ(A, B, C, D) ∈ Sn,�,q(K; C \ {1}) is defined by

Γ(A, B, C, D)=((A+I)(A−I)−1,−
√

2(A−I)−1B,
√

2C(A−I)−1, D−C(A−I)−1B).

The continuous time Liapunov equation associated with the system (A, B, C, D) is
XA+A∗X +C∗C = 0. For the Cayley transformed data Γ(A, B, C, D) this equation
takes the form

X(A + I)(A − I)−1 + (A∗ − I)−1(A∗ + I)X + 2(A∗ − I)−1C∗C(A − I)−1 = 0.

Multiplying on the left with (A∗ − I) and on the right by (A − I) yields

(A∗ − I)X(A + I) + (A∗ + I)X(A − I) + 2C∗C = 0

which simplifies, perhaps not surprisingly, to the discrete time Liapunov equa-
tion A∗XA − X + C∗C = 0. Thus the continuous time Liapunov equation for
Γ(A, B, C, D) is the discrete time Liapunov equation for (A, B, C, D). The follow-
ing lemma collects some further basic properties of the Cayley transform.

Lemma 5.3.47. For each (A, B, C, D) ∈ Sn,�,q(K, C \ {1}), let (Ã, B̃, C̃, D̃) =
Γ(A, B, C, D), then

(i) σ(Ã) = m(σ(A)).

(ii) Γ maps Sn,�,q(K, C \ {1}) homeomorphically onto itself and Γ−1 = Γ.

(iii) If Cg ⊂ C\{1} is open, then m(Cg) ⊂ C\{1} is open and Γ maps Sn,�,q(K, Cg)
onto Sn,�,q(K, m(Cg)).

(iv) If G(s), G̃(s) are the transfer functions of (A, B, C, D) and (Ã, B̃, C̃, D̃), then

G(s) = G̃(m(s)), s ∈ C \ (σ(A) ∪ {1}). (72)

Proof : (i) follows directly from Proposition A.1.15, but can also be verified by
elementary calculations.

(ii) It follows from (i) that Γ maps Sn,�,q(K, C \ {1}) onto itself. By definition,

[Ã − I]−1 = [(A + I)(A − I)−1 − I]−1 = (A − I)[(A + I) − (A − I)]−1 = (A − I)/2.

Hence

(Ã + I)(Ã − I)−1 = [(A + I)(A − I)−1 + I](A − I)/2 = A,

−
√

2(Ã − I)−1B̃ = −(1/
√

2)(A − I)(−
√

2(A − I)−1B) = B,√
2C̃(Ã − I)−1 = 2C(A − I)−1(A − I)/2 = C,

D̃ − C̃(Ã − I)−1B̃ = D − C(A − I)−1B + C(A − I)−1B = D.

So Γ(Ã, B̃, C̃, D̃) = (A, B, C, D) and Γ is a bijection from Sn,�,q(K, C \ {1}) onto
itself with inverse Γ−1 = Γ. Since Γ is continuous it is a homeomorphism.

(iii) follows directly from (i) and (ii) and the fact that m defined by (71) is a



5.3 Stability Radii 619

homeomorphism.

(iv) If s ∈ C \ (σ(A)∪ {1}), then m(s) ∈ C \ (σ(Ã)∪ {1}) by (i), so G̃(m(s)) is well
defined and (72) follows from

G̃(m(s)) = D̃ + C̃[(s + 1)(s − 1)−1I − Ã]−1B̃

= D − C(A − I)−1B−2C(A − I)−1[(s + 1)(s − 1)−1I−(A + I)(A − I)−1]−1(A − I)−1B

= D + C{−I − 2[(s + 1)(s − 1)−1(A − I) − (A + I)]−1}(A − I)−1B

= D + C{−I − 2(s − 1)[(s + 1)(A − I) − (s − 1)(A + I)]−1}(A − I)−1B

= D + C{−I + (s − 1)[sI − A]−1)}(A − I)−1B

= D + C(sI − A)−1[−(sI − A) + (s − 1)I](A − I)−1B

= D + C[sI − A]−1B = G(s).
�

Our objective is to derive formulas for stability radii with respect to the stability
region m(Cg) from formulas with respect to Cg. Note however that, if we start
with data (A, B, C, 0), then the transformed data will, in general, have D̃ �= 0.
Hence formulas for stability radii with respect to affine perturbations will give rise
to formulas for stability radii with respect to special linear fractional ones.
In the following we will assume that Cg is an open subset of C \ {1}. Then m(Cg)
is open and we have the partition C \ {1} = m(Cg) ∪̇m(Cb \ {1}). Moreover, since
m is a homeomorphism from C \ {1} onto itself, we have

s ∈ ∂Cg \ {1} ⇐⇒ m(s) ∈ ∂m(Cg) \ {1}. (73)

Now lim|s|→∞ m(s) = 1 and lims→1 |m(s)| = ∞ and so it follows that

Cg is unbounded ⇐⇒ 1 ∈ ∂(m(Cg)), m(Cg) is unbounded ⇐⇒ 1 ∈ ∂Cg.

In order to discuss stability radii for the transformed data we consider separately the
cases where Cg is bounded/unbounded and where m(Cg) is bounded/unbounded.
We set C̃g = m(Cg) and denote the stability radius for the transformed data with
respect to the perturbation class ∆, by r∆(Γ(A, B, C, D); C̃g).

Theorem 5.3.48. Suppose Cg ⊂ C \ {1}, (A, B, C, D) ∈ Sn,�,q(K, Cg) and let
(Ã, B̃, C̃, D̃) = Γ(A, B, C, D).

(i) If 1 ∈ ∂(m(Cg)) and 1 ∈ ∂Cg (i.e. Cg and m(Cg) both unbounded), then

r∆(A; B, C, D; Cg) = r∆(Ã, B̃, C̃, D̃; C̃g).

(ii) If 1 �∈ ∂m(Cg) and 1 ∈ ∂Cg (i.e. Cg bounded, m(Cg) unbounded), then

r∆(A; B, C, D; Cg) = min{µ∆(D)−1, r∆(Ã, B̃, C̃, D̃; C̃g)}.

(iii) If 1 ∈ ∂m(Cg) and 1 /∈ ∂Cg (i.e. Cg unbounded, m(Cg) bounded), then

min{µ∆(D̃)−1, r∆(A; B, C, D; Cg)} = r∆(Ã, B̃, C̃, D̃; C̃g).

(iv) If 1 �∈ ∂m(Cg) and 1 /∈ ∂Cg (i.e. Cg and m(Cg) both bounded), then

min{µ∆(D̃)−1, r∆(A; B, C, D; Cg)} = min{µ∆(D)−1, r∆(Ã, B̃, C̃, D̃; C̃g)}.
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Proof : If G(s), G̃(s) are the transfer functions of (A, B, C, D) and (Ã, B̃, C̃, D̃),
then D̃ = G(1), D = G̃(1) by Definition 5.3.46.
(i) By Lemma 5.3.47 (iv) and (73)

{G(s); s ∈ ∂Cg \ {1}} = {G̃(s); s ∈ ∂m(Cg) \ {1}}.
Hence, by Proposition 5.3.3,

r∆(A; B, C, D; Cg)
−1 = max { sup

s∈∂Cg

µ∆(G(s)), µ∆(D)}

= max { sup
s∈∂Cg\{1}

µ∆(G(s)), µ∆(G(1)), µ∆(D)}

= max { sup
s∈∂m(Cg)\{1}

µ∆(G̃(s)), µ∆(D̃), µ∆(G̃(1))}

= max { sup
s∈∂m(Cg)

µ∆(G̃(s)), µ∆(D̃)} = r∆(Ã, B̃, C̃, D̃; C̃g)
−1.

(ii) Since 1 /∈ ∂m(Cg) we have m(∂Cg \{1}) = ∂m(Cg). Hence by Lemma 5.3.47 (iv)

{G(s); s ∈ ∂Cg \ {1}} = {G̃(s); s ∈ ∂m(Cg)}.
So

r∆(A; B, C, D; Cg)
−1 = max { sup

s∈∂Cg\{1}
µ∆(G(s)), µ∆(G(1)), µ∆(D)}

= max { sup
s∈∂m(Cg)

µ∆(G̃(s)), µ∆(D̃), µ∆(D)}

= max{r∆(Ã, B̃, C̃, D̃; C̃g)
−1, µ∆(D)}.

(iii) follows by applying (ii) to m(Cg) instead of Cg and making use of Γ = Γ−1.
(iv) This is proved in a similar way to (i) and (ii). We leave the details to the reader
(Ex. 22). �

Since m(C−) = D, m(D) = C− and 1 /∈ ∂C−, 1 ∈ ∂D, we may apply Theo-
rem 5.3.48 (iii) for Cg = C− to obtain

r1
∆

(Ã, B̃, C̃, D̃) = min
{
[µ∆(D − C(A − I)−1B)]−1, r−

∆
(A; B, C, D)

}
.

This formula enables us to calculate the discrete time radius r1
C

via the algorithm
described in Subsection 5.3.4 for the computation of the continuous time radius r−

C
,

see Notes and References.

Example 5.3.49. Suppose A =

[
0 1
−5 −4

]
, D = B = [0 1]�, C = I2. Then

Ã =
1

5

[
0 −1
5 4

]
, B̃ =

√
2

10

[
1
1

]
, C̃ =

√
2

10

[
−5 −1
5 −1

]
, D̃ =

1

10

[
1
11

]
.

We have seen in Example 5.3.18 that with respect to Euclidean norms, for ∆ = C
2 we

have r−
C

(A,B,C,D) = 0.797 and for ∆ = R
2 we have r−

R
(A,B,C,D) = 4/5. Now since

‖D̃‖ =
√

122/10, we find

r1
C(Ã, B̃, C̃, D̃) = min{10/

√
122, r−

C
(A,B,C,D)} = min{10/

√
122, 0.797} = 0.797,

r1
R(Ã, B̃, C̃, D̃) = min{10/

√
122, r−

R
(A,B,C,D)} = min{10/

√
122, 4/5} = 4/5.

�
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5.3.8 Exercises

1. Prove Proposition 5.3.8. If A = diag (0, −1/2, 1/3), determine r∆C
(A, D) with respect

to the perturbation norm ‖ · ‖∞,∞ = ‖ · ‖1|∞, see (11).

2. If the perturbation norm ‖ · ‖∞,∞ = ‖ · ‖1|∞ in Proposition 5.3.8 is replaced by the
perturbation norm ‖ · ‖∞|∞ (see (12)), prove that

r∆C
(A; D) = min

θ∈[0,2π]
�(P (eıθ))−1 ≥ r∆R

(|A|; D) = �(P1)
−1, (74)

where |A| := (|aij |) and P1 is the matrix obtained from P (s) (defined by (15)) by replacing
|s − aii|−1 with (1 − |aii|)−1. Calculate r∆C

(A, D) with respect to the perturbation norm
‖ · ‖∞|∞ for A = diag (0, −1/2, 1/3).

In Ex. 3—20 all vector spaces K
n are provided with Euclidean norms and the matrix spaces

with spectral norms.

3. If

A =

[
1 1

−2.5 −2

]
, B =

[
1
0

]
, C = I2, Cg = {λ ∈ C; λ = α + ıω, α < −ω2},

find rC(A;B,C; Cg) and rR(A;B,C; Cg).

4. Calculate r−
C

(A;B,C), r−
R

(A;B,C), r1
C
(A;B,C) and r1

R
(A;B,C) for the matrices in

Ex. 3. Use the figures generated in Ex. 5.2.4 to verify your results. In each case find
minimum norm destabilizing disturbance matrices.

5. Consider the system

A =

[
0 1
−1 −ε

]
, B =

[
0
−ε

]
, C = [1, 0], D = ε/2, 0 < ε <

√
2.

Prove that r−
R

(A;B,C,D) = 2/ε and r−
C

(A;B,C,D) = (1 + ε2/4)−1/2.

6. Prove Corollary 5.3.15.
(Hint: Let ∆ = ∆1 + ı∆2, ∆1,∆2 ∈ R

�×q be such that

‖∆‖ = rC(A;B,C,D; Cg), σ(A + B∆C) ∩ Cb �= ∅.
Consider

A(∆) =

[
A 0
0 A

]
+

[
B 0
0 B

](
I�1+�2 −

[
∆1 −∆2

∆2 ∆1

] [
D 0
0 D

])−1 [
∆1 −∆2

∆2 ∆1

] [
C 0
0 C

]
and show that σ(A + B∆C) ⊂ σ(A(∆)).

7. Calculate d−
C
(A) and d−

R
(A) for A =

[
0 1
−2 −3

]
.

8. Suppose A ∈ C
n×n, σ(A) ⊂ C−, and P =

∫∞
0 eA∗teAtdt. Show that

‖P‖ ≥ (2d−
C
(A))−1.

(Hint: Consider ẋ = (A+∆)x where ∆ is a minimum norm destabilizing perturbation. Use
an argument based on the fact that for V (x) = 〈x, Px〉, we have V̇ (x) = −‖x‖2+2〈Px,∆x〉
along the flow of the perturbed system).
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9. If A ∈ R
2×2, prove that

d−
R
(A) = min {| trace A/2|, σ2(A)}.

10. If A ∈ R
2×2 has ordered singular values σ1 ≥ σ2 and A = U diag(σ1, σ2)V

� is a

singular value decomposition of A, with V �U =

[
cos θ − sin θ

sin θ cos θ

]
, show that

dR(A) =

{
σ2 if σ1/σ2 ≥ 2| cos θ|−1 − 1

(1/2)(σ1 + σ2)| cos θ| otherwise .

dC(A) =

{
σ2 if σ1/σ2 ≥ 2| cos θ|−2 − 1

[σ1σ2 − (1/4)(σ1 + σ2)
2 | cos θ|2]1/2| cot θ| otherwise .

(Hint: Use the fact that dK(A) = dK(diag(σ1, σ2)V
�U) and for the real case use Ex. 9,

see [239]).

11. Deduce from Ex. 10 that for every q ∈ (0, 1], there exists a matrix A ∈ R
2×2, σ(A) ⊂

C−, such that d−
C
(A)/d−

R
(A) = q.

12. Consider the Ostrowski matrix A ∈ R
n×n and the matrix B ∈ R

n×n:

A =

⎡⎢⎢⎢⎣
−1 1 1 . . 1
0 −1 1 . . 1
...

...
...

...
...

...
0 0 0 . . −1

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
0 0 0 . . 0
0 0 0 . . 0
...

...
...

...
...

...
1 1 1 . . 1

⎤⎥⎥⎥⎦ .

Show that det [A + εB] = 0, for ε = 2−n+1. Hence prove that d−
R
(A) ≤ √

n 2−n+1 with
respect to the spectral norm.

13. Show that if A ∈ R
n×n, then

d−
C
(A)2 = min

ω∈R

min
x,y∈Rn

‖x‖2+‖y‖2=1

{‖Ax‖2 + ‖Ay‖2 + ω2 + 2ω〈(A − A�)y, x〉}.

Hence prove

d−
C
(A)2 = min

x,y∈Rn

‖x‖2+‖y‖2=1

{‖Ax‖2 + ‖Ay‖2 − 〈(A − A�)y, x〉2}.

By choosing first x, y to maximize 〈(A−A�)y, x〉2, then to minimize ‖Ax‖2 +‖Ay‖2, show
that

σn(A)2 − (1/4)‖A − A�‖2
2 ≤ d−

C
(A)2 ≤ ‖A‖2

2 − (1/4)‖A − A�‖2
2.

14. Suppose A, ∆ ∈ C
n×n, σ(A) ⊂ C−,. If ‖∆‖ < d := d−

C
(A), prove that

[
∫∞
0 ‖e(A+∆)t − eAt‖2dt]1/2

[
∫∞
0 ‖eAt‖2dt]1/2

=
‖e(A+∆)· − eA·‖L2(R+;Cn×n)

‖eA·‖L2(R+;Cn×n)
≤ ‖∆‖

d − ‖∆‖ .

(Hint: Show that for ẋ = (A + ∆)x, x(0) = x0, ż = Az, z(0) = x0, we have

x(t) − z(t) =

∫ t

0
eA(t−s)∆(x(s) − z(s))ds +

∫ t

0
eA(t−s)∆z(s)ds,

and use the convolution inequality).
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15. For any given α, ε > 0, Ex. 10 shows that there exists a 2×2 real matrix A0 such that
d−

R
(A0) > α + ε and d−

C
(A) < ε. Using the hint in Ex. 6 show that there exist real 2 × 2

matrices X,Y such that

σ

([
A0 + X −Y

Y A0 + X

])
∩ C+ �= ∅,

∥∥∥∥[ X −Y

Y X

]∥∥∥∥ < ε.

Set A1 = A2 = A0 + X and prove that d−
R
(Ai) > α, i = 1, 2 yet the two systems ẋi = Aixi

can be destabilized by interconnecting them via coupling gains K12 = −K21 = Y , with
‖Y ‖ < ε.

16. Let Cg = {λ ∈ C : | Im λ| < |Reλ|} and Cb = C \ Cg. For A = diag(−1, −3), show
that dist (σ(A), ∂Cg) = 1/

√
2, but dR(A, Cg) = 1.

17. Show that Assumption (66) is always satisfied if Cg has the following property

∀r ∈ R ∩ Cg : dist(r, ∂Cg) = dist(r, ∂Cg ∩ R) .

Suppose A =

[
0 0
0 4

]
and Cg = C \ {ı}. Prove that Assumption (66) is not satisfied and

dR(A, Cg) = 3, whilst d(σ(A), ∂Cg) = 1).

18. Prove the last statement in Example 5.3.45.

19. Consider the system

A0 =

⎡⎣ 0 1 0
0 0 1
−1 −3 −3

⎤⎦ , B0 =

⎡⎣ 0
0
1

⎤⎦ , C0 = [6 − 4
√

2, 1, 1], D0 = 1.

Calculate r−
R

(A0;B0, C0,D0). If Cε = [6 − 4
√

2, 1 − ε, 1], 0 < ε < 4/9 − 4(1 −
√

2)2/3,
calculate r−

R
(A0;B0, Cε,D0) and show that limε→0 r−

R
(A0;B0, Cε,D0) = 1 + (6 − 4

√
2) �=

r−
R

(A0;B0, C0,D0).

20. Use the results of Ex. 5 and the Cayley transform to obtain r1
R
(A;B,C,D) and

r1
C
(A;B,C,D) for

A =
1

2 + ε

[
−ε −2
2 ε

]
, B =

−
√

2

2 + ε

[
ε

ε

]
, C� =

−
√

2

2 + ε

[
1 + ε

1

]
, D = ε2/(4 + 2ε),

where 0 < ε <
√

2.

21. Suppose ∆ = R
�×q, (A0, B0, C0,D0) ∈ Sn,�,q(R; Cg) and G0(s) = D0 + C0(sI −

A0)
−1B0. Prove: If µR(G0(s)), s ∈ ∂Cg takes its maximum at some s0 ∈ ∂Cg such

that G(s0) is not real, then the map

rR( · ; Cg) : Sn,�,q(R; Cg) → R+, (A,B,C,D) �→ rR(A;B,C,D; Cg)

is continuous at (A0, B0, C0,D0).

22. Prove Theorem 5.3.48 (iv).
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5.3.9 Notes and References

The notion of a stability radius with respect to full-block affine perturbations was first

introduced by Hinrichsen and Pritchard (1986) [242], although the idea behind it can be

found in many different fields, see e.g. Rudin (1973) [440]. The distance from instability

has been analyzed by Van Loan (1985) [505] and Hinrichsen and Pritchard (1986) [242].

The complex full-block case has a well developed theory, see the survey by Hinrichsen and

Pritchard (1990) [248]. It also extends to time-varying linear systems, see Hinrichsen et al.

(1989) [232], to infinite dimensional time-invariant and time-varying linear systems, see

Pritchard and Townley (1989) [420], Hinrichsen and Pritchard (1994) [253], Jacob (1995)

[277], [276] and to stochastic systems, see Bouhtouri and Pritchard (1992) [149], Morozan

(1995) [384], Hinrichsen and Pritchard (1996) [254], Bouhtouri et al. (2000) [148].

Linear fractional transformations have been an important tool in system theory for many

years. It is surprising therefore that stability radii for linear fractional perturbations have

only recently been developed. Our main reference for this is the diploma thesis by Op’t

Hof (1998) [400].

The formula for the real full-block stability radius in the case q or � = 1 was first given by

Hinrichsen and Pritchard (1988) [245] and was used to obtain stability radii for polynomi-

als, see Hinrichsen and Pritchard (1992) [252] and the next section. The characterization

of the general real full-block stability radius with respect to the spectral norm is of more

recent vintage. Qiu and Davison (1991), [425] obtained several lower bounds and in (1992),

[426], for the case where G(s) is square, they obtained the formula (36) given in Theo-

rem 5.3.20 as a lower bound and conjectured that it was tight. Then in (1993), [423] in

conjunction with Bernhardson, Rantzer, Young and Doyle, they proved the formula for

the µ-function and hence the formula (36). Example 5.3.22 is based on Hinrichsen and

Son (1998) [256].

A standard reference for the theory of algebraic Riccati equations is Lancaster and Rod-

man (1995) [326]. For the numerical solution of algebraic Riccati equations, see Mehrmann

(1991) [372] and Sima (1996) [466]. A variety of solution algorithms for these equations

can be downloaded from the web site http://www.win.tue.nl/niconet.

Algorithms for computing the complex stability radius have been developed by several

authors, see e.g. Hinrichsen et al. (1989) [235], Bruinsma and Steinbuch (1990) [81], and

Boyd and Balakrishnan (1990) [73]. The one we have described was proposed in [73] and

is a refinement of the algorithm described in [81], [80]. The quadratic convergence of this

algorithm was also proved in [73]. A fast algorithm for computing the real stability radius

has been developed by Sreedham et al. (1996) [478].

The continuity results and the notion of strongly destabilizing perturbations for the case

where D = 0 were first given in Hinrichsen and Pritchard (1990) [247]. The result for the

real full-block case is based on the continuity result for the µ-function, see Section 4.4.

The subsection on transformation of the data is based on Op’t Hof (1998) [400].

Discrete time results analogous to the characterization of the complex stability radius via

the Hamiltonian have been developed by Hinrichsen and Son (1991) [255] in terms of sym-

plectic matrix pencils. An algorithm for the computation of r1
C

which is based on these

results has been given by Schwiedernoch (1991) [455] and in his thesis it is compared with

the algorithm of Subsection 5.3.3 applied to the Cayley transformed data.
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5.4 Root Sets and Stability Radii of Polynomials

The stability properties of uncertain higher order differential (resp. difference) equa-
tions of the form

an(∆)ξ(n)(t) + an−1(∆)ξ(n−1)(t) + . . . + a0(∆)ξ(t) = 0, ∆ ∈ ∆

where ξ(k)(t) = dkξ
dtk

(t) (resp. ξ(k)(t) = ξ(t + k)), k ∈ n can be determined from the
location of the roots of the uncertain polynomial

p(s, a(∆)) = an(∆)sn + an−1(∆)sn−1 + . . . + a0(∆), ∆ ∈ ∆.

In Section 4.1 we mainly dealt with continuity and smoothness properties of the roots
of a polynomial with coefficient vector depending analytically on a single complex
parameter. In this section we will consider uncertain polynomials whose coefficient
vectors depend affinely on an arbitrary number of complex or real parameters. We
assume that a nominal coefficient vector is given and consider the coefficients of the
affine family of polynomials as (additive linear) perturbations of the nominal coef-
ficients. For these uncertain polynomials we will investigate analogous problems to
those in the previous two sections. First we will be interested in the set of roots of all
the perturbed polynomials with perturbations of norm less than a given uncertainty
level δ > 0. These sets are called “root sets” of the uncertain polynomial. Then
we assume that the nominal polynomial has all its roots in a prescribed stability
region Cg ⊂ C and determine the smallest level of δ (“stability radius”) for which
either the degree of a perturbed polynomial is less than n or its root set is no longer
contained in the given stability region.
We begin in the first subsection by showing how the two problems can be refor-
mulated in terms of matrices so that the results of Section 5.2 and Section 5.3 can
be applied. Then we employ these results to obtain general formulas for the root
sets and stability radii of uncertain polynomials (with respect to arbitrary pertur-
bation norms and arbitrary stability regions). In the two subsequent subsections we
specialize these results to Schur and Hurwitz polynomials with respect to special
norms and perturbation structures, dealing separately with complex and with real
perturbations. In particular we will show in Subsection 5.4.3 how Kharitonov’s The-
orem can be used to determine the unstructured stability radius of a real Hurwitz
polynomial for arbitrarily scaled ∞-norms.

5.4.1 General Formulas

In this subsection we study root sets and stability radii of given nominal polyno-
mials under arbitrary linear perturbations of the coefficient vector. Every family
of polynomials p(s, a(∆)), ∆ ∈ K1×q whose coefficient vector a(∆) = a(∆1, . . . , ∆q)
depends affinely on q parameters ∆i ∈ K can be written in the form p(s, a + ∆C)),
∆ ∈ K1×q for a suitable matrix C ∈ Kq×(n+1). Here we interpret a as the nominal
coefficient vector and ∆ as the vector of parameter deviations (deviation vector).
The matrix C determines the structure of the perturbation a � a + ∆C and is
called the structure matrix. Our basic assumptions are
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• a = [a0, . . . , an]∈K1×(n+1), an �= 0, C = [c0, . . . , cn] = (cij)i∈q,j=0,...,n ∈Kq×(n+1)

where n, q ∈ N∗.1 In particular, the nominal polynomial

p(s, a) = ansn + an−1s
n−1 + · · ·+ a0, (1)

is of degree n ≥ 1.

• The coefficients of p(s, a) are subjected to perturbations of the form

aj � aj(∆)= aj+∆cj = aj+

q∑
i=1

∆icij , j = 0, . . . , n or a � a(∆)= a+∆C (2)

where ∆ = [∆1, . . . , ∆q] ∈ K1×q.

• ∆ = K
1×q is provided with an arbitrary norm ‖ · ‖∆ and the vector space K

q

is endowed with the dual norm which we denote by ‖ · ‖Kq . So ‖ · ‖∆ is the
dual norm of ‖ · ‖Kq and hence ‖ · ‖∆ = ‖ · ‖L(Kq,K) = ‖ · ‖∗

Kq .

• Cg is an open subset of C with C = Cg ∪̇Cb, Cg, Cb �= ∅ and p(s, a) is Cg-
stable, i.e. R(a) ⊂ Cg where R(a) denotes the set of all the roots of p(s, a).

The latter assumption is only needed for stability radius considerations.

Remark 5.4.1. If the deviation vectors are measured by the p-norm, 1 ≤ p ≤ ∞

‖∆‖p =

[
q∑

i=1

|∆i|p
]1/p

, 1 ≤ p < ∞, ‖∆‖∞ = max
i∈q

|∆i|,

the associated norm on K
q is the p∗-norm where p∗ is the conjugate exponent satisfying

1/p + 1/p∗ = 1, see Section A.1. �

The root sets of an uncertain polynomial are defined in an analogous way to the
definition of spectral value sets for uncertain matrices.

Definition 5.4.2. Given an uncertainty level δ > 0, the corresponding root set of
the uncertain polynomial p(·, a(∆)) = p(·, a + ∆C), ∆ ∈ K

1×q is

RK(a; C; δ) = {s ∈ C; ∃∆ ∈ K
1×q : ‖∆‖∗Kq < δ and p(s, a(∆)) = 0}. (3)

If R1×q is provided with the norm induced from C1×q it is clear that

RR(a; C; δ) ⊂ RC(a; C; δ), δ > 0. (4)

We now describe some special perturbation structures which will be considered in
the sequel. Many of the results of this section will be developed for the monic
case where the leading coefficient of the nominal and the perturbed polynomials is
fixed at an(∆) ≡ 1. This special case is accounted for by taking cn = 0. Another
important special case is that of unstructured perturbations where all coefficients are
perturbed independently and on the same scale. Then the perturbed polynomial is

p(s, a(∆)) = (an + ∆n+1)s
n + (an−1 + ∆n)sn−1 + . . . + (a0 + ∆1), ∆ ∈ K

1×(n+1),

1Note that throughout this section the n + 1 columns of C ∈ Kq×(n+1) are indexed by 0, . . . , n

(in parallel to the indexing of the coefficient vector a = [a0, . . . , an] ∈ K1×(n+1)).
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or in the monic case

p(s, a(∆)) = sn + (an−1 + ∆n)sn−1 + . . . + (a0 + ∆1), ∆ ∈ K
1×n.

Unstructured perturbations can be represented in the form (2) by setting q = n+1,
C = In+1 and in the monic case q = n, C = [In, 0n] ∈ Rn×(n+1). We denote the
corresponding root set by RK(a; δ) and it will be clear from the context whether or
not this refers to the general unstructured case or the monic unstructured case.
Another special case of interest is obtained when one coefficient aj is perturbed while
the other coefficients remain unchanged. This case is represented by the structure
matrix C = ej� ∈ R1×(n+1) where ej , j = 0, 1, . . . , n are the standard unit vectors
in Rn+1.2 The corresponding root set RK(a; ej�; δ) is the set of all roots of the
polynomials

p(s, a(∆)) = ansn + an−1s
n−1 + · · ·+ (aj + ∆)sj + · · ·+ a0, ∆ ∈ K, |∆| < δ.

With any polynomial (1) of degree n we associate the monic polynomial p(s, a/an)
and the corresponding companion matrix

A =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
0 0 1

−a0/an −a1/an · · · · · · −an−1/an

⎤⎥⎥⎥⎥⎥⎦
n×n

. (5)

Then R(a) = σ(A). Our aim is to find structure matrices B, C̃, D such that
R(a(∆)) = σ(A(∆)) for all ∆ ∈ K1×q for which A(∆) is well defined by (3.1).
We have seen in Proposition 4.1.3 that if a perturbation ∆ decreases the degree of
p(s, a) to m = deg p(s, a(∆)) < n then n − m roots of p(s, a((1 + ε)∆)) tend to ∞
for ε ↘ 0 in the form of a Butterworth pattern. To exclude this possibility and
ensure that A(∆) is well defined by (3.1) we only consider perturbations of norm

‖∆‖∗Kq < |an|‖cn‖−1
Kq (6)

where cn = (cin)i∈q is the last column of C. This norm bound guarantees that
the degree of p is not decreased by the perturbation, i.e. deg p(s, a(∆)) = n for all
∆ ∈ K

1×q satisfying (6). Note that in the monic case we have cn = 0 so that the
RHS of (6) is infinite and all perturbations are admissible.3

Lemma 5.4.3. Let A be defined by (5) and B ∈ Kn, C̃ ∈ Kq×n, D ∈ Kq by

B = [0, . . . , 0, 1]�, D = −a−1
n cn, C̃ = −a−1

n [c0 + a0D, . . . , cn−1 + an−1D]. (7)

Then ‖D‖Kq = |an|−1‖cn‖Kq and for all ∆ ∈ K1×q satisfying (6), we have

R(a(∆)) = σ(A(∆)) where A(∆) = A + B(1 − ∆D)−1∆C̃. (8)

So RK(a; C; δ) = σK(A; B, C̃, D; δ) for all δ < |an|‖cn‖−1
Kq .

2In contrast to our usual notation (see the Glossary) we denote – throughout this section – by
ej the j + 1-st column of In+1, j = 0, 1, . . . , n.

3Recall that we set α/β := ∞ if α > 0, β = 0.
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Proof : It follows from (7) and (8) that A(∆) is a matrix in companion form whose
last row is obtained by adding to the last row of A given by (5) the row vector

(1 − ∆D)−1∆C̃ = −(1 + a−1
n ∆cn)−1a−1

n [∆c0 − a0a
−1
n ∆cn, . . . , ∆cn−1 − an−1a

−1
n ∆cn].

But (1 + a−1
n ∆cn)−1a−1

n = (an + ∆cn)−1 = (an(∆))−1 and so A(∆) has the form

A(∆) =

⎡⎢⎢⎢⎣
0 1 · · · 0
...

. . .
...

0 1
−ã0(∆)/an(∆) · · · −ãn−1(∆)/an(∆)

⎤⎥⎥⎥⎦
where

−ãj(∆) = −aja
−1
n an(∆) − (∆cj − aja

−1
n ∆cn)

= a−1
n [−aj(an + ∆cn) − an(∆cj − a−1

n aj∆cn)]

= −(aj + ∆cj) = −aj(∆), j = 0, 1, . . . , n − 1.

So A(∆) is the companion matrix of the monic polynomial p(s, an(∆)−1a(∆)) and
this proves (8). The last statement is a consequence of Definition 5.2.1 and the fact
that ‖∆‖∆ = ‖∆‖∗

Kq is the operator norm of ∆ as a linear map from (Kq, ‖ · ‖Kq) to
(K , | · |). �

By the previous lemma the root sets of arbitrary affine families of polynomials are
special cases of spectral value sets so that all the results from Sections 5.1 and 5.2
– in particular those for the case � = 1 – have their counterparts in the polynomial
context. Note however, that even in the monic case (cn = 0), unstructured perturba-
tions of the polynomial p(s, a) correspond to structured perturbations of the matrix
A given by (5).

Theorem 5.4.4. Suppose that the nominal polynomial p(s, a) is subjected to per-
turbations of the form (2), let δ < |an|‖cn‖−1

Kq and set

G(s) = −p(s, a)−1C(s) where C(s) = C

⎡⎢⎢⎢⎣
1
s
...
sn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎣
c1(s)

...

cq(s)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
∑n

j=0 c1js
j

...∑n
j=0 cqjs

j

⎤⎥⎥⎦ . (9)

(i) If K = C then

RC(a; C; δ) = R(a) ∪ {s ∈ C \ R(a); ‖G(s)‖Cq > δ−1}. (10)

(ii) If K = R then

RR(a; C; δ) = R(a) ∪ {s ∈ C \ R(a); dist(GR(s), RGI(s)) > δ−1} (11)

where GR(s), GI(s) are the real and imaginary parts of G(s) and dist is measured
with respect to ‖ · ‖Rq .
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Proof : Let (A, B, C̃, D) be as defined in Lemma 5.4.3 and s ∈ C \ R(a). In order
to prove that G(s) defined by (9) is the transfer matrix associated with (A, B, C̃, D),
define x = [x1, . . . , xn]� by (sI − A)x = B, i.e. x = (sI − A)−1B. Then

sx1 − x2 = 0
. . .

...
sxn−1 −xn = 0

sxn + a0/anx1+ a1/anx2 + · · ·+ an−1/anxn = 1.

So xj = sj−1x1 for j ∈ n and p(s, a/an) x1 = 1 for s /∈ R(a), whence x =

p(s, a/an)−1 [1, s · · · , sn−1]
�
. Thus the transfer function of (A, B, C̃, D) is

D+C̃(sIn − A)−1B

=D − a−1
n p(s, a/an)−1[c0 + a0D, . . . , cn−1 + an−1D][1, s, s2, . . . , sn−1]�

=p(s, a)−1{D[p(s, a) − an−1s
n−1 . . . − a0] − [c0, c1, . . . , cn−1][1, s, s2, . . . , sn−1]�}

=−p(s, a)−1{cnsn + [c0, c1, . . . , cn−1][1, s, s2, . . . , sn−1]�} = G(s).

The well-posedness radius of (A, B, C̃, D) is δδδ0 = ‖D‖−1
Kq = |an|‖cn‖−1

Kq . Hence using
Lemma 5.4.3, (10) follows from Theorem 5.2.16 and (11) from Theorem 5.2.27. �

In the monic case the previous theorem is applicable for all δ > 0 and the formula (9)
for the transfer function G(s) specializes to

G(s) = −p(s, a)−1C(s), C(s) = [c1(s), . . . , cq(s)]
� ∈ K

q[s], ci(s) =
n−1∑
j=0

cijs
j . (12)

So in this case G(s) is a strictly proper rational vector, whereas in the general case
it is only proper rational. In the following example we illustrate the non-monic case
where the leading coefficient is perturbed.

Example 5.4.5. Consider the perturbed linear polynomial

p(s, a(∆)) = (1 + ∆2)s + 1 + ∆1

where the nominal coefficient vector a = [a0, a1] = [1, 1] is subjected to unstructured
perturbations a � a + ∆, i.e. C = I2. By (9) G(s) = −(s + 1)−1[1 s]�. Hence given an
uncertainty level δ < a1‖c1‖−1 = 1 and Euclidean norms on K

q = K
2 and ∆ = K

1×2, the
root set of p(s, a) = s + 1 with respect to unstructured complex perturbations is

RC(a; δ) = {s ∈ C; (|s|2 + 1)−1|s + 1|2 < δ2},

which is the open disk in C centred at −(1− δ2)−1 with radius (1− δ2)−1
√

2δ2 − δ4. This
result is easily verified by direct calculation, since by definition

RC(a; δ) =

{
−1 + ∆1

1 + ∆2
; (∆1,∆2) ∈ C

2, |∆1|2 + |∆2|2 < δ2

}
.

Restricting ∆1,∆2 to the reals we see that for δ < 1, RR(a; δ) is the open interval in R

centred at −(1 − δ2)−1 with radius (1 − δ2)−1
√

2δ2 − δ4. In Ex. 5 the reader is asked to
prove this by using the characterization of RR(a; δ) as given in formula (11). �
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We will now derive formulas for stability radii of polynomials under arbitrary complex
and real affine perturbations. The stability radius is a measure of the size of the
smallest perturbation ∆ for which p(s, a(∆)) is either no longer Cg–stable or of
degree less than n.

Definition 5.4.6. The stability radius of the polynomial (1) under perturbations
of the form (2) is

rK(a; C; Cg)=inf{‖∆‖∗
Kq ; ∆ ∈ K

1×q, deg p(s, a(∆)) < n or ∃s ∈ Cb : p(s, a(∆)) = 0}.

Clearly, if p(s, a) is Cg-stable and R1×q is provided with the norm induced by ‖ · ‖∗
Cq

then
0 < rC(a; C; Cg) ≤ rR(a; C; Cg).

The most important choices of Cg are C− and D, the cases of Hurwitz and Schur
polynomials. We denote the corresponding stability radii by r−

K
(a; C) and r1

K
(a; C),

respectively. For unstructured perturbations the radius will be denoted by dK(a; Cg),
and by d−

K
(a) (resp. d1

K
(a)) for the Hurwitz (resp. Schur) case. We will use the same

notation for the non-monic (C = In+1) and the monic case (C = [In, 0n]), but
will mention it explicitly if the monic case is considered. For the one-parameter
case where only one coefficient aj is perturbed while the other coefficients remain
unchanged we denote the radii by rK(a; ej�; Cg) and for the Hurwitz (resp. Schur)
case by r−

K
(a; ej�) (resp. r1

K
(a; ej�)).

dK = dK(a, Cg) represents the distance of a Cg-stable polynomial from the set of
Cg-unstable polynomials in the coefficient space K

n+1 (resp. K
n in the monic case).4

Depending on the norm ‖ · ‖∗
Kq , q = n + 1, (q = n in the monic case), the maximal

open ball {a + ∆; ∆ ∈ K1×q, ‖∆‖∗
Kq < dK} of Cg-stable polynomials about the

central (nominal) polynomial p(s, a) has different geometric forms, see Figure 5.4.1
for an illustration in the monic case. The following theorem presents explicit general

K1×n

Cg-unstable

a

dK

K1×n

Cg-unstable

a

dK

K1×n

Cg-unstable

a

dK

(a) ‖ · ‖∗
Kn = ‖ · ‖2 (b) ‖ · ‖∗

Kn = ‖ · ‖∞ (c) ‖ · ‖∗
Kn = ‖ · ‖1

Figure 5.4.1: Distances from the set of Cg-unstable monic polynomials in K1×n

formulas for the complex and real stability radii of arbitrary Cg-stable polynomials
under arbitrary linear perturbations of the coefficient vector.

4As in previous chapters we identify polynomials p(s, a) of degree n with their coefficient vector
a = [a0, . . . , an]. In the monic case where an = 1 we will sometimes omit the leading coefficient
(which is not perturbed) and call [a0, . . . , an−1] the coefficient vector of p(s, a) and denote it also
by a if there is no risk of confusion.
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Theorem 5.4.7. Suppose p(s, a) is a Cg-stable polynomial subjected to perturbations
of the form (2), and let G(s) be given by (9).

(i) If K = C, then

rC(a; C; Cg) = min

⎧⎨⎩|an|‖cn‖−1
Cq ,

[
sup

s∈∂Cg

‖G(s)‖Cq

]−1
⎫⎬⎭ . (13)

(ii) If K = R, then

rR(a; C; Cg) = min

⎧⎨⎩|an|‖cn‖−1
Rq ,

[
sup

s∈∂Cg

dist (GR(s), RGI(s))

]−1
⎫⎬⎭ , (14)

where GR(s), GI(s) are the real and imaginary parts of G(s) and the distance
dist is measured with respect to ‖ · ‖Rq .

Proof : Let A be defined by (5), B, C̃ and D by (7) and rK(A; B, C̃, D; Cg) the asso-
ciated stability radius defined in the previous section. Then ‖D‖Kq = |an|−1‖cn‖Kq .
Moreover since an(∆) = an +∆cn = 0 if and only if det(1−∆D) = 0 it follows from
the definition of rK(A; B, C̃, D; Cg) and (8) that

rK(a; C; Cg) = rK(A; B, C̃, D; Cg).

So (13) and (14) are special cases of (3.20) and (3.31) respectively. �

Remark 5.4.8. (i) If ∂Cg is unbounded then lim|s|→∞ ‖G(s)‖ = |an|−1‖cn‖Cq implies
sups∈∂Cg

‖G(s)‖Cq ≥ |an|−1‖cn‖Cq whence by (13)

rC(a;C; Cg) =

[
sup

s∈∂Cg

‖G(s)‖Cq

]−1

. (15)

Also in the case where Ω := C \ Cg is non-empty and unbounded, formula (13) can be
simplified to (15), see Remark 5.3.10. Note however that (15) will in general not hold if
Cb is bounded. This is illustrated in Example 5.4.9 (ii).

(ii) In the monic case G(s) is given by (12) and so

rC(a;C; Cg)=

[
max
s∈∂Cg

‖G(s)‖Cq

]−1

, rR(a;C; Cg)=

[
max
s∈∂Cg

dist (GR(s), RGI(s))

]−1

. (16)

Note that in the monic case we are allowed to replace the sup in the formulas of Theo-
rem 5.4.7 by max since G(s) is strictly proper rational. �

Example 5.4.9. (i) Consider again the perturbed polynomial studied in Example 5.4.5

p(s, a(∆)) = (1 + ∆2)s + (1 + ∆1).

Then for Euclidean norms ‖G(ıω)‖2 =
√

1 + ω2/|ıω+1| ≡ 1 for all ω ∈ R and |a1|/‖c1‖2 =
1, so d−

C
(a) = 1. For the real stability radius it is obvious that d−

R
(a) = 1. The reader is

asked to show how this can be derived from (14) in Ex. 5.

(ii) To illustrate the last statement in Remark 5.4.8 (i) let Cg = C \ D and consider the
perturbed polynomial

p(s, a(∆)) = (1 + ∆2)s + (5 + ∆1), i.e. p(s, a) = s + 5, C = [c0 , c1] = I2.
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Then p(s, a) = s + 5 is Cg-stable, G(s) = (s + 5)−1 [1 , s]� and ‖c1‖2/|a1| = 1. But on
∂Cg = ∂D we have

max
θ∈[0,2π]

‖G(eıθ)‖2 = max
θ∈[0,2π]

√
2/|eıθ + 5| =

√
2/4 .

So by (13)

dC(a, Cg) = rC(a;C; Cg) = min{1, 4/
√

2} = 1 < 4/
√

2 =
[
maxθ∈[0,2π] ‖G(eıθ)‖2

]−1
.

�

If rK(a; C; Cg) < ∞ there exists a perturbation of norm rK(a; C; Cg) which ei-
ther decreases the degree or destabilizes the given Cg-stable polynomial p(s, a), a ∈
K1×(n+1). We conclude this subsection with three remarks on how to construct such
minimum norm destabilizing or degree decreasing perturbations with respect to the
1-, 2-, and ∞-norms on K1×q.

Remark 5.4.10. If rK(a;C; Cg) = |an|‖cn‖−1
Kq < ∞ a minimum norm degree decreasing

∆ ∈ K
1×q must satisfy the following alignment condition

∆cn = −an and ‖∆‖∆ = ‖∆‖∗Kq = |an| ‖cn‖−1
Kq . (17)

Such a ∆ always exists by the Hahn-Banach Theorem, see Example A.4.11. If |ckn| =
maxj∈q |cjn| = ‖cn‖∞, it is easy to check that with respect to the 1-, 2-, and ∞-norms on

K
1×q the following ∆’s satisfy (17)

1-norm : ∆ = −an ‖cn‖−1∞ [0, . . . , 0, ckn/|ckn|, 0, . . . , 0],
2-norm : ∆ = −an ‖cn‖−2

2 [c1n, . . . , cqn],

∞-norm : ∆ = −an ‖cn‖−1
1 [c1n/|c1n|, . . . , cqn/|cqn|].

(18)

Here − denotes complex conjugation and we set z/|z| := 0 if z = 0. �

If rK(a; C; Cg) < |an|‖cn‖−1
Kq there exists a destabilizing perturbation ∆ ∈ K1×q of

norm rK(a; C; Cg). In the following two remarks we show how to construct such
minimum norm destabilizing perturbations for the complex and real cases.

Remark 5.4.11. Suppose that a ∈ C
1×(n+1), rC(a;C; Cg) < |an|‖cn‖−1

Cq and that s0 ∈
∂Cg maximizes ‖G(s)‖Cq on ∂Cg. Then ∆ ∈ C

1×q (see Proposition 4.4.11) will be a
minimum norm destabilizing perturbation if it satisfies

∆G(s0) = 1, ‖∆‖∗Cq = ‖G(s0)‖−1
Cq . (19)

If G(s0) = [γ1, . . . , γq]
�, |γk| = maxj∈q |γj | the following formulas yield minimum norm

destabilizing perturbations with respect to the 1-, 2-, or ∞-norms on C
1×q, respectively

1-norm : ∆ = ‖G(s0)‖−1∞ [0, . . . , 0, γk/|γk|, 0, . . . , 0],
2-norm : ∆ = ‖G(s0)‖−2

2 [γ1, . . . , γq],

∞-norm : ∆ = ‖G(s0)‖−1
1 [γ1/|γ1|, . . . , γq/|γq|].

(20)

�

Remark 5.4.12. Suppose that K = R, rR(a;C; Cg) < |an|‖cn‖−1
Rq and s0 ∈ ∂Cg maxi-

mizes the distance between GR(s) and RGI(s) on ∂Cg

dist(GR(s0), RGI(s0)) = max
s∈∂Cg

dist(GR(s), RGI(s)) = rR(a;C; Cg)
−1.
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If GI(s0) = 0 then it suffices to choose any ∆ aligned with GR(s0) = G(s0) to obtain a
minimum norm destabilizing perturbation.

∆GR(s0) = 1, ‖∆‖∗Rq = ‖G(s0)‖−1
Rq .

G(s0) being real, the formulas given in (20) will yield minimum norm destabilizing real per-
turbations with respect to the 1-, 2- and ∞-norms on R

1×q. Now suppose GI(s0) �= 0, then
GR(s0) and GI(s0) are linearly independent since otherwise dist(GR(s0), RGI(s0)) = 0,
i.e. rR(a;C; Cg) = ∞ which contradicts rR(a;C; Cg) < |an|‖cn‖−1

Rq . By Remark 5.3.17 (ii)
a minimum norm destabilizing perturbation ∆ satisfies

∆GI(s0) = 0 , ∆GR(s0) = 1 , ‖∆‖∗Rq‖GR(s0) − α̂GI(s0)‖Rq = 1 (21)

where α̂ ∈ R is such that ‖GR(s0) − α̂GI(s0)‖Rq = dist(GR(s0), RGI(s0)). Geometrically,
the set of all ∆ ∈ R

1×q satisfying (21) is the intersection of the (q − 2)–dimensional
affine subspace determined by the first two equations and the sphere with centre 0 and
radius rR(a;C; Cg) = dist(GR(s0), RGI(s0))

−1 in (R1×q, ‖ · ‖∗
Rq). If s0 and α̂ are known, a

point ∆ in this intersection can be determined. The reader is asked to prove the explicit
expressions for such ∆ with respect to the 1-, 2- and ∞-norms given in Ex. 9. �

In the next two subsections we will use the formulas in (10)–(14) to obtain more
explicit results in a number of interesting special cases.

5.4.2 Complex Perturbation Structures

Throughout this subsection we will consider complex perturbations and obtain char-
acterizations for root sets and stability radii with respect to two special perturbation
structures, viz. unstructured perturbations and single parameter linear perturba-
tions of the coefficient vector. Otherwise the basic assumptions are the same as
those in the previous subsection with K = C, but we only consider the cases where
the perturbation space C1×q is provided with a p-norm for p = 1, 2, ∞.
We first consider unstructured perturbations. In this case q = n + 1, C = In+1

and (9) yields
G(s) = −p(s, a)−1[1, s, . . . , sn−1, sn]�. (22)

The following corollary is a consequence of (13).

Corollary 5.4.13. Suppose C1×(n+1) is provided with the 1-, 2- or ∞-norm and
G(s) is defined by (22), then the root sets of p(s, a) under unstructured complex
perturbations of size smaller than δ ∈ (0, |an|) are given by

1-norm : RC(a; δ) = R(a)∪̇{s ∈ C \ R(a); ‖G(s)‖∞ > δ−1}

=

{
s ∈ C; min

0≤j≤n

|p(s, a)|
|sj| < δ

}
,

2-norm : RC(a; δ) = R(a)∪̇{s ∈ C \ R(a); ‖G(s)‖2 > δ−1}

=

{
s ∈ C;

|p(s, a)|
(1 + |s|2 + · · · + |s|2n−2 + |s|2n)1/2

< δ

}
,

∞-norm : RC(a; δ) = R(a)∪̇{s ∈ C \ R(a); ‖G(s)‖1 > δ−1}

=

{
s ∈ C;

|p(s, a)|
(1 + |s| + · · ·+ |s|n−1 + |s|n)

< δ

}
.
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In the monic case, where G(s) is given by (12), there is no restriction on δ and for
the 1-norm the minimization is for j = 0, . . . , n− 1, for the 2-norm the term |s|2n is
absent and for the ∞-norm the term |s|n is absent.
Let us now consider the complex stability radius of Schur and Hurwitz polynomials
under unstructured perturbations. Choosing Cg = C− or Cg = D in (15) we have

d1
C(a) =

[
max

θ∈[0,2π]
‖G(eıθ)‖Cq

]−1

, d−
C
(a) =

[
sup
ω∈R

‖G(ıω)‖Cq

]−1

where G(s) is given by (22). In particular we obtain

Corollary 5.4.14. Suppose p(· , a) is a Schur polynomial. Then its distance from
the set of non-Schur polynomials in the coefficient space (C1×(n+1), ‖·‖p), p = 1, 2,∞
is given by

1-norm : d1
C
(a) = min

θ∈[0,2π]
|p(eıθ, a)| ,

2-norm : d1
C
(a) = min

θ∈[0,2π]

|p(eıθ, a)|√
n + 1

,

∞-norm : d1
C
(a) = min

θ∈[0,2π]

|p(eıθ, a)|
n + 1

.

So the ratios between the distances d1
C
(a) with respect to the above norms are given

by 1 :
√

n + 1 : n + 1, independently of the particular Schur polynomial p(s, a).

Corollary 5.4.15. Suppose p(· , a) is a Hurwitz polynomial. Then its distance from
the set of non-Hurwitz polynomials in the coefficient space (C1×(n+1), ‖ · ‖p), p =
1, 2,∞ is given by

1-norm : d−
C
(a) = inf

ω∈R

min
0≤j≤n

|p(ıω, a)|
|ω|j ,

2-norm : d−
C
(a) = inf

ω∈R

|p(ıω, a)|
(1 + ω2 + · · · + ω2n−2 + ω2n)1/2

,

∞-norm : d−
C
(a) = inf

ω∈R

|p(ıω, a)|
(1 + |ω|+ · · · + |ω|n−1 + |ω|n) .

There are obvious adjustments in the above formulas for the monic case: For monic
Schur polynomials n + 1 is replaced by n in the formulas for d1

C
(a) and for monic

Hurwitz polynomials n is replaced by n − 1 in the formulas for d−
C
(a).

Example 5.4.16. Consider the monic polynomial p(s, a) = s2 + a1s + a0 where a =
[a0, a1] ∈ R

2. We will first calculate the root set RC(a; δ) for the monic case with respect
to the 2-norm. Since

p(reıθ, a) = r2 cos 2θ + a1r cos θ + a0 + ı(r2 sin 2θ + a1r sin θ) , θ ∈ [0, 2π],

a straightforward calculation yields

|p(reıθ, a)|2 = (r2 cos 2θ + a1r cos θ + a0)
2 + (r2 sin 2θ + a1r sin θ)2

= a2
1r

2 + (r2 − a0)
2 + 2a1r(r

2 + a0) cos θ + 4a0r
2 cos2 θ

=

⎧⎪⎨⎪⎩
r4 + 2a1r

3 cos θ + a2
1r

2 if a0 = 0

4a0

[
r cos θ +

a1(r
2 + a0)

4a0

]2

+
(r2 − a0)

2

4a0
[4a0 − a2

1] if a0 �= 0 .
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Hence RC(a; δ) is the set of all s = reıθ, (r, θ) ∈ R+ × [0, 2π], such that⎧⎪⎨⎪⎩
(1 + r2) δ2 > r4 + 2a1r

3 cos θ + a2
1r

2 if a0 = 0 ,

(1 + r2) δ2 > 4a0

[
r cos θ +

a1(r
2 + a0)

4a0

]2

+
(r2 − a0)

2

4a0
[4a0 − a2

1] if a0 �= 0 .

Using these formulas for the root sets explicit formulas for the unstructured stability radii
d1

C
(a) and d−

C
(a) in the monic case can be derived. We illustrate this for the Schur case, see

Ex. 2 for the Hurwitz case. Recall that the set of real monic Schur polynomials of degree
n is denoted by Sn. To determine d1

C
(a) for a ∈ S2 we set r = 1 in the above formulas

for |p(reıθ, a)| and minimize the RHS of the two inequalities with respect to θ. If a0 �= 0
this means minimizing or maximizing the first term on the RHS of the second inequality
depending on whether a0 > 0 or a0 < 0. For example if a0 > 0, |a1|(1 + a0) < 4a0 one

chooses θ ∈ [0, 2π] such that cos θ +
a1(1 + a0)

4a0
= 0. Otherwise cos θ = +1 or −1. After

some calculations one finds that for any a ∈ S2

d1
C(a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − a0√

2

[
1 − a2

1

4a0

]1/2

if |a1|(1 + a0) < 4a0, a0 > 0 ,

1 − |a1| + a0√
2

if |a1|(1 + a0) ≥ 4a0.

d1
C
=

1−a1+a0√
2

d1
C
=

1+a1+a0√
2

|a1|(1+a0)=4a0

d1
C
=

1−a0√
2

(1− a2
1

4a0
)1/2

a0

a1

−1 +1

(1,2)

(1,−2)

Figure 5.4.2: The distances d1
C
(a), d1

R
(a) for a ∈ S2

This result is illustrated in Figure 5.4.2 where the distances of a ∈ S2 from the set of
complex resp. real non-Schur coefficient vectors are compared. The triangle is the set of
real monic Schur polynomials of degree 2. Hence the distance d1

R
(a) of a ∈ S2 from the set

of real non-Schur coefficient vectors is easily determined: It is just the Euclidean distance
of a to the boundary of the triangle. An elementary geometric consideration shows that

d1
R(a) = min

{
1 + a1 + a0√

2
,

1 − a1 + a0√
2

, 1 − a0

}
, a ∈ S2.

In the shaded area the first formula for d1
C
(a) applies, so that here

2(d1
C(a))2 =

(1− a0)
2

4a0
(4a0−a2

1) ≤
(1− a0)

2

4a0
(4a0−a2

1)+4a0

(
|a1|

1+ a0

4a0
−1

)2

= (1−|a1|+a0)
2.
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Hence d1
C
(a) < d1

R
(a) in this part of S2. On the other hand in the non-shaded area of S2

the latter two formulas for d1
C
(a) apply and so d1

C
(a) = d1

R
(a) in this part of S2. �

The distances d−
C
(a) and d1

C
(a) yield adequate robustness measures if all the coeffi-

cients p(· , a) are subject to independent perturbations of equal weight. On the other
hand it is interesting to consider the case where the coefficients of p(· , a) all depend
on one and the same unknown ∆ ∈ C (i.e. q = 1, C = [c0, . . . , cn] ∈ C1×(n+1)). This
case has received special attention in Numerical Analysis and Perturbation Theory
(see Subsection 4.4.1).

Corollary 5.4.17. Suppose that p(s, a) is subjected to perturbations of the form
a � a + ∆c, ∆ ∈ C where c = [c0, . . . , cn] ∈ C1×(n+1), then

RC(a; c; δ) =

{
s ∈ C;

|p(s, a)|
|c(s)| < δ

}
, δ <

|an|
|cn|

, (23)

and if p(s, a) is Cg-stable,

rC(a; c; Cg) = min

{ |an|
|cn|

, inf
s∈∂Cg

|p(s, a)|
|c(s)|

}
(24)

where c(s) = cns
n + · · · + c1s + c0.

For the monic case (cn = 0), (24) implies rC(a; c; Cg) = mins∈∂Cg |p(s, a)|/|c(s)|. Of
particular interest is the case where only one coefficient is perturbed, i.e. c = ej� ∈
R1×(n+1) and c(s) = sj . Then, for j = 0, . . . , n,

RC(a; ej�; δ) =

{
s ∈ C;

|p(s, a)|
|sj| < δ

}
, (for j = n we require δ < |an|).

If p(· , a) is a monic Hurwitz or Schur polynomial, then

r−
C
(a; ej�)=min

ω∈R

|p(ıω, a)|
|ω|j , r1

C
(a; ej�)= min

θ∈[0,2π]
|p(eıθ, a)|=d1

C
(a), j =0, . . . , n−1 (25)

where d1
C
(a) (monic case) is taken with respect to the 1-norm. Note that in the

Schur case the stability radii r1
C
(a, ej�), j = 0, . . . , n − 1 are independent of j.

In Example 4.1.20 we considered the parametrized family p(s, a(z)) = p(s) + zq(s),
z ∈ C and showed that the sensitivity of a simple root sj(z) of p(s)+ zq(s) at z = 0
is ξj = −q(sj(0))/p′(sj(0)). Using this result one can obtain good estimates for sj(z)
for small values of |z|. In contrast the root sets RC(a; C; δ) and the stability radius
rC(a; C; Cg) can provide information about the root variations for large parameter
changes. We illustrate these two approaches by means of a monic Hurwitz polyno-
mial which is known to be “ill-conditioned” in a Numerical Analysis sense (cf. [26],
[523]), see also Section 4.5.

Example 5.4.18. Consider the (Hurwitz stable) Wilkinson polynomial

p(s) = p(s, a) = (s + 1)(s + 2) · · · (s + 7)
= s7 + 28s6 + 322s5 + 1960s4 + 6769s3 + 13132s2 + 13068s + 5040 .

Suppose that only the coefficient a6 = 28 is perturbed, i.e. q(s) = s6 and p(s, a(z)) =
p(s) + zs6. The corresponding sensitivities of the roots sj(0) = −j, j = 1, . . . , 7 are
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ξj = − j6∏7
i�=j(−j + i)

= (−1)j
j6

(j − 1)!(7 − j)!
.

For example ξ1 = −1/720, ξ7 ≈ −163.4.
In order to examine the effect of “large” variations of the coefficient a6 = 28 we computed
RC(a; e6�; δ) for various values of δ. The sets are illustrated in Figure 5.4.3 for δ =

−35 −30 −25 −20 −15 −10 −5 0
−25

−20

−15

−10

−5

0

5

10

15

20

25

−14 −12 −10 −8 −6 −4 −2 0

−5

−4

−3

−2

−1

0

1

2

3

4

5

δ = 1δ = 18.32

δ = 10

δ = 1

δ = 10

δ = .042

Figure 5.4.3: Root sets RC(a; e6�; δ) for the Wilkinson polynomial

18.32, 10, 1, .042, .0192 and .0069, where the figure on the right is a zoom in of the one on
the left. As indicated by the low sensitivity ξ1 = −1/720 the root nearest the imaginary
axis is quite stubborn with respect to perturbations of a6. It hardly moves at all so
that no contour line is visible around s1 = −1 even for relatively large perturbations.
Moreover, the figures show that although for small δ the root sets around s3, . . . . . . s7

are expanding fast in accordance with the sensitivity measures, the expansion slows down
for larger δ so that, for example, when δ = 1 the expansion to the left is less than
1/10 of what the sensitivity ξ7 ≈ −163.4 would predict by linear extrapolation. The
discrepancy between local sensitivity and global robustness analysis becomes even more
evident when we consider the complex stability radius with respect to the Hurwitz partition
Cg = C−. In fact linear extrapolation using sensitivity indicates that the root s7(z) should
hit the imaginary axis for z = −7/163.4 ≈ −.0428. But r−

C
(a, e6�) = 18.3194. Thus the

robustness of stability of p(s, a) with respect to a perturbation of a6 is about 400 times
larger than sensitivity indicates. �

5.4.3 Real Perturbation Structures

In this subsection we carry out essentially the same programme as that of the pre-
vious one but now the data and the perturbations are assumed to be real

a = [a0, . . . , an] ∈ R
1×(n+1), an �= 0; C = [c0, . . . , cn] ∈ R

q×(n+1); ∆ = R
1×q

where n, q ∈ N∗. We first assume that Rq is provided with an arbitrary norm ‖ · ‖Rq

and ∆ = R
1×q with the corresponding dual norm ‖ · ‖∗

Rq . Later we will consider
the case where ‖ · ‖∗

Rq is the ∞-norm and relate the corresponding stability radius
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problem to Kharitonov’s Theorem. Further results for other norms can be found in
the exercises.
By GR(s), GI(s) we denote the real and imaginary parts of G(s) given in (9).
We have seen in Section 4.4 that the map s �→ dist(GR(s), GI(s)R) may not be
continuous at the zeros of GI(s) and so as in Subsections 5.2.2 and 5.3.3 we introduce
the realness locus

RG = {s ∈ C \ R(a); GI(s) = 0} ⊃ R. (26)

Note that on the realness locus GR(s) = G(s). By (11) we obtain

RR(a;C; δ) = R(a) ∪̇ {s ∈ RG; ‖G(s)‖Rq > δ−1}
∪̇ {s ∈ C \ (RG ∪R(a)); dist (GR(s), RGI(s)) > δ−1}, δ < |an| ‖cn‖−1

Rq .
(27)

If p(s, a) is Cg-stable then by (14)

rR(a;C; Cg) = min

{ |an|
‖cn‖Rq

, inf
s∈RG∩∂Cg

‖G(s)‖−1
Rq , inf

s∈∂Cg\RG

dist(GR(s), RGI(s))
−1

}
. (28)

Remark 5.4.19. If p(s, a) is Cg-stable then RG ∩ ∂Cg is closed and so the continuous
function s �→ ‖G(s)‖Rq has a maximum on RG ∩ ∂Cg if this set is non-empty and G(s) is
strictly proper. Therefore the first inf in (28) may be replaced by a min in the monic case
(cn = 0) if the realness locus of G(s) intersects the boundary of the stability region. �

We now derive more concrete versions of (27) and (28) for special perturbation
structures C ∈ Rq×(n+1) and begin with the one parameter case (∆ ∈ R, q = 1,
C = c = [c0, . . . , cn], ‖ · ‖∗

Rq = | · |). Then

G(s) = GR(s) + ıGI(s) = − c(s)

p(s, a)
, c(s) =

n∑
j=0

cjs
j .

In this case the last term on the RHS of (27) and (28) can be omitted (since RGI(s) =
R if GI(s) �= 0), so we have the following real counterpart to Corollary 5.4.17.

Corollary 5.4.20. Suppose that p(s, a) is subjected to perturbations of the form
a � a + ∆c, ∆ ∈ R where c = [c0, . . . , cn] ∈ R

1×(n+1), then

RR(a; c; δ) = R(a) ∪̇
{

s ∈ RG;
|p(s, a)|
|c(s)| < δ

}
, δ <

|an|
|cn|

. (29)

If p(s, a) is Cg-stable, then

rR(a; c; Cg) = min

{ |an|
|cn|

, inf

{ |p(s, a)|
|c(s)| ; s ∈ RG ∩ ∂Cg

}}
. (30)

By Remark 5.4.19 if RG ∩ ∂Cg is non-empty (e.g. if R ∩ ∂Cg �= ∅) we have in the
monic case

rR(a; c; Cg) = min {|p(s, a)|/|c(s)|; s ∈ RG ∩ ∂Cg} . (31)

The following example shows that it is possible that RG ∩ ∂Cg = ∅.
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Example 5.4.21. Consider the perturbed monic polynomial

p(s, a(∆)) = s + 1 + ∆, ∆ ∈ R

(i.e. n = 1, q = 1, a = [1 , 1], c = [1 , 0]) and let Cg = {s ∈ C; | Im s| < 1}. Then
all the perturbed polynomials are Cg-stable so that rR(a; c; Cg) = ∞. In fact we have
G(s) = 1/(s + 1) and RG ∩ ∂Cg = R ∩ ∂Cg = ∅. �

The RHS of (30) gives rise to an efficient procedure for the computation of rR(a; c; Cg).
We illustrate this for the Hurwitz case. In a first step we decompose c(s) and p(s, a)
into their even and odd parts

c(s) = ce(s2) + sco(s2) , p(s, a) = pe(s2) + spo(s2) (32)

where ce(s2), co(s2), pe(s2), po(s2) are real polynomials in s2 of degree ≤ n/2 (see
Section 3.4 where it follows from Proposition 3.4.6 that pe(0) and po(0) are both
non-zero if p is Hurwitz). Since

G(ıω) = − ce(−ω2) + ıωco(−ω2)

pe(−ω2) + ıωpo(−ω2)

we have

GR(ıω) = −ce(−ω2)pe(−ω2) + ω2co(−ω2)po(ω2)

pe(−ω2)2 + ω2po(−ω2)2
,

GI(ıω) = −ω[co(−ω2)pe(−ω2) − ce(−ω2)po(−ω2)]

pe(−ω2)2 + ω2po(−ω2)2
, ω ∈ R.

So GI(ıω) = 0 is equivalent to

ω = 0 or [co(−ω2)pe(−ω2) − ce(−ω2)po(−ω2)] = 0 (33)

where the expression in the bracket is a real polynomial of degree < n in ω2. It
follows that for ω ∈ R, ω �= 0 and G(ıω) ∈ R, we have

G(ıω) = −ce(−ω2)pe(−ω2) + ıωce(−ω2)po(−ω2)

pe(−ω2)[pe(−ω2) + ıωpo(−ω2)]
= −ce(−ω2)

pe(−ω2)
= −co(−ω2)

po(−ω2)
. (34)

Now suppose that G(s) is not constant. Then the polynomial in (33) cannot be
identically zero in ω2 since otherwise by (34) and the identity theorem of complex
analysis G(s) = −ce(s2)/pe(s2). But G(s) is proper rational and not constant, so
there is at least one zero λ ∈ C of pe which is not cancelled by a zero of ce, i.e. G(s)
has poles at s± = ±(λ)1/2. This contradicts the assumption that the poles of G(s)
lie in C−. We conclude, therefore, that the non-empty set R+

G := RG ∩ ıR+, i.e.

R+
G = {ω ∈ R+;GI(ıω) = 0} = {ω ≥ 0;ω [co(−ω2)pe(−ω2) − ce(−ω2)po(−ω2)] = 0} (35)

has at most n elements. To calculate r−
R
(a; c) the main step is to compute R+

G by
determining the positive solutions of (33). Then it only remains to compute the
minimum of a set of at most n real numbers

r−
R
(a; c) = min

{
|an|
|cn|

, min
ω∈R

+
G

|pe(−ω2)|
|ce(−ω2)|

}
. (36)
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The following specialization of Corollary 5.4.20 deals with the problem of determin-
ing the size of the smallest real perturbation of a single coefficient which destabilizes
a given monic Hurwitz polynomial, i.e. c = ej�, j = 0, . . . , n − 1. See Ex. 4 for the
Schur case.

Corollary 5.4.22. Suppose that p(s, a) is a monic real Hurwitz polynomial and
pe(·), po(·) are as in (32). Then for j = 0, . . . , n − 1

r−
R
(a; ej�) =

{
min {|po(−ω2)/ωj−1| ; ω ≥ 0, ωpe(−ω2) = 0} , j odd ,

min {|pe(−ω2)/ωj| ; ω ≥ 0, ωpo(−ω2) = 0} , j even ,
(37)

where 00 := 1.

Proof : We prove the odd case. Since in this case c(s) = sj = sco(s2), hence
ce(−ω2) ≡ 0 and co(−ω2) = (−1)(j−1)/2ωj−1, we have by (35) R+

G = {ω ∈ R+; ω =
0 or pe(−ω2) = 0} and |G(ıω)| = |ωj−1/po(−ω2)| for ω ∈ R+

G. This proves (37) for
the odd case. �

Many intricacies of stability theory are due to the fact that stability is a non-convex
property. If p(· , a) and p(· , b) are Cg-stable, the roots of the convex combinations

p(· , γa + (1 − γ)b) , 0 ≤ γ ≤ 1 (38)

need not be Cg-stable. It is natural to ask what conditions must be imposed in
order to guarantee that all the polynomials in the segment (38) between p(· , a) and
p(· , b) are in fact Cg-stable.

Corollary 5.4.23. Given a, b ∈ Rn+1 with anbn > 0, then all the polynomials in
(38) have their roots in Cg if and only if

p (· , (a + b)/2) has all its roots in Cg and inf
s∈RG∩∂Cg

|G(s)|−1 > 1 (39)

where G(s) = GR(s) + ıGI(s) =
p(s, (a − b)/2)

p(s, (a + b)/2)
.

Proof : The polynomials in (38) have all their roots in Cg if and only if this holds
for all polynomials of the form

p(· , (a + b)/2 − ∆0(a − b)/2) , ∆0 ∈ [−1, 1] .

But this is equivalent to

rR((a + b)/2; (a − b)/2; Cg) > 1.

Hence Corollary 5.4.23 follows from Corollary 5.4.20 since |an + bn||an − bn|−1 > 1
because anbn > 0. �

We now consider the following scaled perturbations of monic polynomials

a = [a0, . . . , an−1, 1] � a(∆) = [a0 + ∆1c0, . . . , an−1 + ∆ncn−1, 1] (40)

where ∆ = [∆1, . . . , ∆n] ∈ R1×n. This is a special case of (2) where q = n and
C ∈ Rn×(n+1) has nonnegative entries cii = ci for i = 0, . . . , n − 1 and cij = 0 for all
other i, j. Such matrices are called scaling matrices for the monic case. We will only
consider the case where the size of perturbations is measured by the ∞-norm since in
this case an interesting relationship with Kharitonov’s Theorem can be established.
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Proposition 5.4.24. Suppose that p(s, a), a ∈ R1×(n+1) is a monic Hurwitz poly-
nomial, C = [diag (c0, c1, . . . , cn−1), 0n] ∈ Rn×(n+1), ci ≥ 0, i = 0, . . . , n − 1 and

c̃ = [−c0,−c1, c2, c3,−c4,−c5, . . . ,±cn−1, 0] ∈ R
1×(n+1),

ĉ = [−c0, c1, c2,−c3,−c4, c5, . . . ,±cn−1, 0] ∈ R
1×(n+1).

Then, with respect to the ∞-norm on ∆ = R1×n,

r−
R
(a; C) = min{r−

R
(a; c̃), r−

R
(a; ĉ)}. (41)

Proof : For ∆ = [−∆0,−∆0, ∆0, ∆0,−∆0, . . .] ∈ R1×n, ∆0 ∈ R we have

a + ∆C = [a0 − ∆0c0, a1 − ∆0c1, a2 + ∆0c2, a3 + ∆0c3, . . . , 1] = a + ∆0c̃.

Similarly for ∆ = [−∆0, ∆0, ∆0,−∆0,−∆0, . . .] we have a + ∆C = a + ∆0ĉ. Since
in both cases ‖∆‖∞ = |∆0|, the inequality ≤ in (41) follows.
To prove the converse inequality, let r = r−

R
(a; C) and c = [c0, c1, . . . , cn−1, 0]. By

(40) we have

{a + ∆C; ∆ ∈ R
1×n, ‖∆‖∞ ≤ r} = [a, a] where a = a − rc, a = a + rc, (42)

and so the interval [a, a] contains the coefficient vector of an unstable polynomial.
Moreover, a + ∆0c̃ and a + ∆0ĉ, ∆0 = ±r are the coefficient vectors of the four
Kharitonov polynomials for the interval [a, a] = [a − rc, a + rc]. By Kharitonov’s
Theorem at least one of these is unstable and so min{r−

R
(a; c̃), r−

R
(a; ĉ)} ≤ r. Hence

(41) follows. �

The computation of r−
R
(a; C) with respect to the ∞-norm is considerably simplified

by the application of the formula (41) since r−
R
(a; c̃), r−

R
(a; ĉ) can be computed via

(35) and (36).
Proceeding as in the previous proof we can use stability radii to determine conditions
for a multi-dimensional interval of monic polynomials to have roots in arbitrary
stability domains.

Proposition 5.4.25. Given a, a ∈ R1×(n+1) with a ≤ a and an = an = 1, the
interval [a, a], consists of monic polynomials with roots in Cg if and only if the
central polynomial p(s, a) where a = (a + a)/2 is Cg-stable and with respect to the
∞-norm rR(a; C; Cg) > 1 where

C =
[
diag

(
(a0 − a0)/2, . . . , (an−1 − an−1)/2

)
, 0n

]
.

Proof : As in (42) (with r = 1) we have [a, a] = {a + ∆C; ∆ ∈ R1×n, ‖∆‖∞ ≤ 1}
and this proves the proposition. �

The radius rR(a; C; Cg) in Proposition 5.4.25 is the minimal factor by which the
interval [a, a] with centre a must be blown up before one of the monic polynomials
in the interval has a root in Cb.
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Figure 5.4.4: The root set RR(a;C; 1.63) with respect to the ∞-norm

Example 5.4.26. Consider the monic Hurwitz polynomial p(s, a) of degree n = 3 with
coefficient vector a = [3/4, 3/2, 5/2, 1] subjected to perturbations a � a + ∆C where
C = [diag (1/4, 1/2, 1/2), 03] ∈ R

3×4 and ∆ ∈ R
1×3. The root set RR(a;C; δ1) with

respect to the ∞-norm on R
1×3 is shown for the value δ1 = 1.63 in Figure 5.4.4. The

crosses are the roots of the nominal polynomial p(s, a), and the interval (−3.25,−.15)
which is represented by a thick line in the figure is the real part of the root set. We see
from the figure that r−

R
(a;C) with respect to the ∞-norm is approximately 1.63. If we

set c = (1/4, 1/2, 1/2, 0) then by (42), for any δ > 0, {a + ∆C;∆ ∈ R
1×3, ‖∆‖∞ ≤ δ} =

[aδ, aδ] where

aδ = a − δc = [(3 − δ)/4, (3 − δ)/2, (5 − δ)/2, 1] ,

aδ = a + δc = [(3 + δ)/4, (3 + δ)/2, (5 + δ)/2, 1] .

The most critical Kharitonov polynomial for the interval [aδ, aδ] has the coefficient vector
[(3 + δ)/4, (3− δ)/2, (5− δ)/2, 1] and by the Hurwitz criterion (see Example 3.4.72) this
is C−-stable if and only if

3 > δ and (3 − δ)(5 − δ) > (3 + δ).

The second condition requires δ2 − 9δ + 12 > 0 and together with the first one yields
δ < (9 −

√
33)/2 ≈ 1.63 = δ1, confirming the above computation. The roots of the

critical Kharitonov polynomial when δ = δ1 are ±0.8283i,−1.6861 two of which lie on
the intersection of the boundary of RR(a;C; 1.63) with the imaginary axis. The 12 roots
of the 4 Kharitonov polynomials for the interval [aδ1 , aδ1 ] are marked with circles in the
figure (the circles around two real roots in the interval [−1,−0.5] overlap). �

As an application of Proposition 5.4.24 we derive a formula for the unstructured
stability radius d−

R
(a) of a Hurwitz polynomial with respect to the ∞-norm in the

monic case. Formulas with respect to the 1- and 2-norms are set as Ex. 10 and 11.

Corollary 5.4.27. If p(· , a) is a monic Hurwitz polynomial and pe, po are as in
(32), then with respect to the ∞-norm on R1×n for the monic case

d−
R
(a) = min

ω∈Ω0

|pe(−ω2)|
1 + ω2 + · · · + ωn−2

, n even (43)
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where Ω0 = {0} ∪ {ω ∈ R+; |pe(−ω2)| = |po(−ω2)|},

d−
R
(a) = min

ω∈Ω1

|pe(−ω2)|
1 + ω2 + · · ·+ ωn−1

, n odd (44)

where Ω1 ={0}∪{ω ∈ R+; (1+ω2+· · ·ωn−3)|pe(−ω2)|=(1+ω2+· · ·ωn−1)|po(−ω2)|}.

Proof : Since C = [In, 0n], the corresponding vectors c̃, ĉ (see Proposition 5.4.24)
are

c̃ = [−1,−1, +1, +1,−1,−1, · · · , 0], ĉ = [−1, +1, +1,−1,−1, · · · , 0] .

Suppose n is odd and as in (32) c̃(s) = c̃e(s2) + sc̃o(s2), ĉ(s) = ĉe(s2) + sĉo(s2),
then

c̃e(−ω2)=−(1+ω2+. . .+ωn−1)= ĉe(−ω2), c̃o(−ω2) =−(1 + ω2+. . .+ωn−3)=−ĉo(−ω2).

Hence by (35) and (36)

r−
R
(a; c̃) = min

ω∈Ω′
1

∣∣∣∣ pe(−ω2)

1 + ω2 + · · ·+ ωn−1

∣∣∣∣
where

Ω′
1 = {0} ∪ {ω ∈ R+; (1 + ω2 + · · ·+ ωn−3)pe(−ω2) = (1 + ω2 + · · ·+ ωn−1)po(−ω2)}

and

r−
R
(a; ĉ) = min

ω∈Ω′′
1

∣∣∣∣ pe(−ω2)

1 + ω2 + · · ·+ ωn−1

∣∣∣∣
where

Ω′′
1 = {0}∪{ω ∈ R+; (1+ω2+ · · ·+ωn−3)pe(−ω2) = −(1+ω2 + · · ·+ωn−1)po(−ω2)}.

(44) follows from (41) since Ω1 = Ω′
1 ∪Ω′′

1. A similar proof can be given for the even
case. �

We conclude this section with an example illustrating the above corollary.

Example 5.4.28. Consider the Hurwitz polynomial p(s, a) = s4 + 5s3 + 8s2 + 8s + 3.
Then

pe(−ω2) = 3 − 8ω2 + ω4 , po(−ω2) = 8 − 5ω2 .

Hence the set Ω0 in (43) is

Ω0 = {ω ∈ R+; ω4 − 3ω2 − 5 = 0 or ω4 − 13ω2 + 11 = 0} .

A simple calculation gives

Ω0 =

{√
(3 +

√
29)/2,

√
(13 ± 5

√
5)/2

}
= {2.0476 , 3.4771 , 0.95385} .

ω0 =
√

0.9098 minimizes |pe(ω2)|/(1 + ω2) = |ω4 − 8ω2 + 3| |1 + ω2|−1 on Ω0 with value
|pe(ω2

0)|/(1 + ω2
0) = 1.807. So by (43) with respect to the ∞–norm, we have

d−
R
(a) = min{3 , 1.807} = 1.807

(for the monic case). �
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5.4.4 Exercises

1. If p(s, a) = s2 + s, use Corollary 5.4.13 to show that the root set RC(a; δ) of the
polynomial p(·, a) with respect to the 1-norm in the monic case is the set of all s =
reıθ, (r, θ) ∈ R+ × [0, 2π], such that (compare Example 5.4.16)

min{r4 + 2r3 cos θ + r2, r2 + 2r cos θ + 1} < δ2.

2. Use Corollary 5.4.15 to prove that for a Hurwitz polynomial p(s, a) = s2 + a1s + a0 in
the monic case with respect to the 2-norm

d−
C
(a) =

{
a0 if (1 + a0)

2 ≤ 1 + a2
1,[

a2
1 − 2a0 − 2 + 2((1 + a0)

2 − a2
1)

1/2
]1/2

if (1 + a0)
2 > 1 + a2

1.

Compare your results with the real distance d−
R
(a) (in the monic case) and produce a

similar figure to Figure 5.4.2 for the Hurwitz case.

3. If a = [1, 2, 1], c = [0, 1, 0] and δ < 1, show that

RR(a; c; δ) = {−r; 0 ≤ r−1(r − 1)2 < δ} ∪ {eıθ; 2 + 2 cos θ < δ}.

4. Prove that if p(s, a) is a real Schur polynomial, then

r1
R(a; ej�) = min

θ∈Ω
|p(eıθ, a)|, j = 0, . . . , n − 1

where Ω = {θ ∈ [0, 2π]; Im[e−ıjθp(eıθ, a)] = 0}. (Compare this with the formula for the
complex case, see (25)).

5. Consider the data in Example 5.4.5 and prove the results stated in the example for
the real case. In particular, show that

[GR(reıθ), GI(re
ıθ)] = −(1 + r2 + 2r cos θ)−1

[[
(1 + r cos θ)
r cos θ + r2

]
,

[
−r sin θ

r sin θ

]]
,

dist
(
GR(reıθ), RGI(re

ıθ)
)

= 1/
√

2 if θ �= 0, π, r �= 0,
= 1 if r = 0,

= (1 + r)−1
√

r2 + 1 if θ = 0,

= |1 − r|−1
√

r2 + 1 if θ = π.

Hence prove
RR(a; δ) = {reıπ ∈ C; (r2 + 1)−1|r − 1|2 < δ2}.

Note the discontinuity of dist at the points where GI(s) = 0. Prove that

dist (GR(ıω), RGI(ıω)) ≤ dist (GR(0), RGI (0)) = 1, ω ∈ R

and hence verify that d−
R
(a) = 1.

6. While Kharitonov’s Theorem provides a powerful method for determining the stabil-
ity of boxes of polynomials, it yields conservative results when applied to determine the
stability of segments of polynomials. Use Kharitonov’s Theorem to find the largest value
of δ > 0 such that the open segment

p(s, a(∆)) = s3 + 2s2 + 4s + 2 − ∆0(s
2 + 2s + 1), ∆0 ∈ (−δ, δ)

is Hurwitz stable by examining the boxes [a − α c, a + α c], where a = [2, 4, 2, 1], c =
[1, 2, 1, 0], α > 0. Then calculate r−

R
(a, c) and compare the results.
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7. Use (28) to prove that for a real Schur polynomial p(s, a) = s2 + a1s + a0 with respect
to the 2-norm in the monic case (compare Example 5.4.16), we have

d1
R(a) = min

{
1 − a0, (1 + a1 + a0)/

√
2, (1 − a1 + a0)/

√
2
}

.

8. If a = [1, 2, 1, 1], b = [13, 10, 5, 1], use Corollary 5.4.23 to prove that the convex
combination γp(s, a) + (1 − γ)p(s, b) is Hurwitz stable for all γ ∈ [0, 1]. Show that this
does not hold if b is replaced by b̃ = [29, 10, 5, 1] although p(s, b̃) is stable.

9. Under the assumptions of Remark 5.4.12 suppose that s0 ∈ ∂Cg maximizes the dis-
tance dist(GR(s), RGI(s)) on ∂Cg (for the 1-, 2- and ∞-norm, respectively)

dist(GR(s0), RGI(s0)) = ‖GR(s0) − α̂GI(s0)‖Rq = max
s∈∂Cg

dist(GR(s), RGI(s))

and GR(s0) − α̂GI(s0) = γ = [γ1, . . . , γq]
�. Prove that minimum norm destabilizing

perturbations ∆ = [∆1, . . . ,∆q] with respect to the 1-, 2- and ∞-norm in the monic case
are

1–norm ∆i = 0, i ∈ q \ J , J = {j ∈ q : |γj | = ‖γ‖∞}; sign ∆j = sign γj , j ∈ J ;∑
j∈J |∆j | = ‖γ‖−1∞ and the ∆i, i ∈ q \ J are chosen to satisfy the first condition in

(21).

2–norm: ∆i = γi/‖γ‖2
2, i ∈ q ;

∞–norm: ∆k = ‖γ‖−1
1 sign γk, k ∈ K = {k ∈ q ; γk �= 0} and the ∆i, i ∈ q \ K are

chosen to satisfy the first condition in (21).

10. Prove that in the monic case, if p(·, a) is a Hurwitz polynomial then with respect to
the 1-norm

d−
R
(a) = min {a0, min

ω∈R+

f(ω)},
where

f(ω)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max{|po(−ω2)−pe(−ω2)|, |po(−ω2)+pe(−ω2)|}, |ω|≤1,

max{|ω|2−n|po(−ω2)−pe(−ω2)|, |ω|2−n|po(−ω2)+pe(−ω2)|}, |ω|>1, n even,

max{|ω|1−n|po(−ω2)−ω2pe(−ω2)|, |ω|1−n|po(−ω2)+ω2pe(−ω2)|}, |ω|>1, n odd.

11. Prove that in the monic case, if p(·, a) is a Hurwitz polynomial then with respect to
the 2-norm

d−
R
(a)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min

{
a0, min

ω∈R+

[
pe(−ω2)2 + po(−ω2)2

1 + ω4 + . . . + ω2n−4

]1/2
}

, n even,

min

{
a0, min

ω∈R+

[
pe(−ω2)2(1+. . .+ω2n−6)+po(−ω2)2(1+. . .+ω2n−2)

(1 + ω4 + . . . + ω2n−6)(1 + ω4 + . . . + ω2n−2)

]1/2
}

, n odd.

12. Suppose p(s, a) is a real monic polynomial such that R(a) ⊂ C\R. If d is the distance
with respect to the Euclidean norm of p(s, a) to the set of real monic polynomials which
have at least one real root, prove that

d = min
r∈R

|p(r, a)|
(1 + r2 + . . . + r2(n−1))1/2

.
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(Hint: Take Cg = C \ R). In the quadratic case show that

d = min
r∈R

|r2 + a1r + a0|
(1 + r2)1/2

where R is the set of real roots of s3 + (2 − a0)s + a1 = 0.

In particular if a0 = 2, a2
1 < 8 show that d = (2 − |a1|2/3)(1 + |a1|2/3)1/2.

13. If p(· , a), a ∈ R
n+1 is a monic Hurwitz polynomial, n even and

ã = [a0 + ıa1, 0, a2 + ıa3, 0, . . . , an−2 + ıan−1, 0, 1]

C =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
0 0 0 0 1 · · · 0 0
· · · · · · · · · ·
0 0 0 0 0 · · 1 0 0

⎤⎥⎥⎥⎥⎦
n
2
×(n+1)

.

Prove that with respect to the Euclidean norm in the monic case (cf. [246])

d−
R
(a) = min{a0, rC(ã;C; C \ ıR)}.

5.4.5 Notes and References

The robustness analysis of polynomials has received a good deal of attention over the last
25 years. Much of this work is described in the books by Ackermann (1993) [4], Barmish
(1994) [36] and Bhattacharyya et al. (1995) [56]. In these books the authors acknowl-
edge the importance that Kharitonov’s Theorem (see Section 4.1) brought to the field.
Kharitonov’s Theorem determines sufficient stability conditions for intervals of polyno-
mials via an analysis of existing stability criteria for single polynomials. Extensions and
system theoretic applications can be found in the above books and are based on the works
of e.g. Bose (1985) [67], Hollot and Bartlett (1986) [261], Bartlett et al. (1988) [39]. In
the latter paper it is shown that for examining the stability of an arbitrary polytope of
polynomials it suffices to check the edges (Edge Theorem).
Other stability results for sets of polynomials have been derived from the Nyquist stability
criterion, see Yeung (1983) [535], Bia�las and Garloff (1985) [58], Argoun (1987) [17], or
from other sufficient stability criteria, see Bose et al. (1986) [69], Anderson et al. (1987)
[13].
Soh et al. (1985) [470] characterized the distance of a Schur (or Hurwitz) polynomial from
the set of non-Schur (resp. non-Hurwitz) polynomials in coefficient space. Extensions of
their formulas to other stability domains and to structured perturbations can be found in
Soh et al. (1987) [471] and Biernacki et al. (1987) [59]. Mathematically these results are
based on Theorem 4.1.26.
A different approach to the robust stability analysis of polynomials is based on optimiza-
tion ideas. A class of special subsets in the coefficient space (e.g. ellipsoids or polytopes)
are parametrized by a positive real number, and the supremum of this number for which
the corresponding subset consists only of Hurwitz (or Schur) polynomials, is determined.
In the context of Kharitonov’s Theorem, optimization problems have been considered by
Barmish (1984) [34], Bia�las and Garloff (1985) [58], Rantzer (1992) [427], Kharitonov and
Tempo (1994) [305]. The approach that we have adopted in this section is similar in that
the subset of polynomials is parametrized by a single number, but the results are based on
stability radii for matrices rather than Kharitonov’s Theorem, see (1992) [252]. Tsypkin
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and Polyak (1991) [502] considered the problem of determining the Hurwitz stability of a
ball of polynomials specified via weighted �p norms. Their solution was graphical in terms
of the so-called Tsypkin-Polyak loci.
Robustness analysis has been extended to quasipolynomials by Kharitonov (1991) [303]
and the results have been used to obtain robust stability criteria for delay equations, see
Kharitonov and Zhabko (1994) [306]. Robustness analysis has also been extended to poly-
nomials with probabilistic uncertainty, see the Notes and References of Section 5.2.
A polynomial p, deg p < n is called a convex direction for the set Hn of real Hurwitz
polynomials of degree n if Hn is convex in the direction R+p, i.e. for all q ∈ Hn, µ > 0

q + µp ∈ Hn =⇒ the segment [q, q + µp] = {q + αµp;α ∈ [0, 1]} ⊂ Hn.

Convex directions have been investigated by Rantzer (1992) [427] and by Kharitonov

and Hinrichsen (1997) [304]. For a survey on convex directions, see Atanassova et al.

(1997) [23].
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5.5 Transient Behaviour

Trajectories of an asymptotically stable linear system may temporarily move a long
way from the origin before approaching it as t → ∞. Such transient behaviour is
often exhibited by highly non-normal systems. From a practical point of view, if the
“state excursions” are very large the stable system actually behaves like an unsta-
ble one. Moreover, if the system is obtained by linearization of a nonlinear system
around an equilibrium point, the large transients of the linear part may incite the
nonlinearities to drive the system permanently far away from the equilibrium point.
In such cases the practical instability of the equilibrium point is reflected by an
extreme thinness of its domain of attraction in some directions of the state space.
In fluid dynamics the interaction between large transient motions of the lineariza-
tion and its nonlinear perturbations has recently been put forward as an explanation
for observed instabilities of flows which are inconsistent with the results of spectral
stability analysis, see Notes and References.
In the first subsection we introduce a new concept of stability ((M, β)-stability)
which combines information about the decay rate and the transient behaviour of a
system. As a quantitative index of the transient amplification of initial state per-
turbations the notion of a transient bound for a given exponential rate is introduced
and the interplay between the bound and the rate is discussed. In particular we
characterize those rates for which the bound is 1. Estimates for the transient bound
are obtained via the distance of A from the set of normal matrices. In the second
subsection the concept of a contraction semigroup is discussed and it is shown how
transient bounds can be estimated via Liapunov norms. These are auxiliary norms
with respect to which a given system is contractive. In the third subsection we dis-
cuss the relationship between the transient bound, stability radii and spectral value
sets. Finally, in the last subsection perturbation bounds are presented which ensure
(M, β)-stability of an uncertain system.
We will only consider the continuous time case, but set some of the discrete time
results as exercises.

5.5.1 Transient Bounds and Initial Growth Rate

Throughout this subsection it is assumed that A ∈ Kn×n, Kn is provided with an
arbitrary fixed norm ‖ · ‖ and Kn×n with the corresponding operator norm which we
also denote by ‖ · ‖. We begin by introducing the concept of (M, β)-stability.

Definition 5.5.1. Given M ≥ 1 and β ∈ R, the system ẋ = Ax is said to be
(M, β)-stable if its solutions ϕ(t; x0) = eAtx0 satisfy

‖ϕ(t; x0)‖ ≤ Meβt‖x0‖, x0 ∈ K
n, t ≥ 0. (1)

ẋ = Ax is said to be strictly (M, β)-stable if there exists ε > 0 such that (1) holds
with β − ε instead of β.

The inequality (1) is satisfied if and only if ‖eAt‖ ≤ Meβt for all t ≥ 0. In this case
we also say that the semigroup (eAt)t≥0 or the matrix A are (M, β)-stable. In most
applications interest will be focussed on the case where β ≤ 0. Then (M, β)-stability
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guarantees both a specific decay rate (given by −β ≥ 0) and a specific bound on
the transient behaviour (given by M). We have included the possibility β > 0 in
our definition since it may be that in some applications the system is unstable and
the growth rate needs to be bounded.
If ẋ = Ax is (M, β)-stable then necessarily the spectral abscissa α(A) ≤ β and
Aβ := A − βIn is stable. If it is strictly (M, β)-stable then α(A) < β and Aβ is
asymptotically stable. Conversely, for every β > α(A), Aβ is exponentially stable
and so there exists a constant M (depending on β), such that (1) holds. Hence the
system is strictly (M, β)-stable for some M ≥ 1. Similarly, if Aβ is stable, then the
system ẋ = Ax is (M, β)-stable for some M ≥ 1.
We know that the eigenvalues of A determine the long term behaviour of the system
in the sense that the growth rate of (eAt)t≥0 is equal to the spectral abscissa α(A),
see (3.3.30)

lim
t→∞

ln ‖eAt‖
t

= α(A). (2)

However no conclusion can be drawn from the spectrum of A about the transient
behaviour of ẋ = Ax. It cannot be decided upon the basis of its eigenvalues alone
whether or not (1) is satisfied for prescribed M ≥ 1, β ∈ R.
Another basic difference between the stability concepts considered in Chapter 3 and
the notion of (M, β)-stability is that the former do not depend upon the specific
norm on Kn, whereas the set of pairs (M, β) satisfying (1) and consequently the
concept of (M, β)-stability and strict (M, β)-stability depend on the given norm.
We will now briefly discuss some elementary topological properties of the set of
(M, β)-stable systems ẋ = Ax. For this we make use of the following lemma.

Lemma 5.5.2. Suppose M > 1. Then ẋ = Ax is strictly (M, β)-stable if and only
if α(A) < β and ‖eAt‖ < Meβt holds for all t > 0.

Proof : The necessity of the condition is obvious. To prove sufficiency, assume
α(A) < β and ‖eAt‖ < Meβt for all t > 0. Since ‖eAt‖ = 1 for t = 0 and M > 1,
we must have ‖eAt‖ < Meβt for all t ≥ 0. Choose δ > 0 such that α(A) + 2δ < β.
Then there exists M̃ ≥ 1 such that ‖eAt‖ ≤ M̃e(β−2δ)t for all t > 0. Let t0 be
such that M̃e−δt < M for t ≥ t0. By assumption we have supt≥0 ‖eAt‖e−βt =
maxt≥0 ‖eAt‖e−βt < M and hence there exists ε ∈ (0, δ) sufficiently small so that
eεt‖eAt‖e−βt < M for t ∈ [0, t0]. Since eεt‖eAt‖ ≤ M̃e(β−δ)t < Meβt for t ≥ t0 we
obtain eεt‖eAt‖ < Meβt for all t ≥ 0 and this concludes the proof. �

We will see in Example 5.5.27 that Lemma 5.5.2 does not hold in the case M = 1.

Proposition 5.5.3. For any M ≥ 1, β ∈ R, the set Sn(K; M, β) of all A ∈ Kn×n

generating (M, β)-stable semigroups is closed in Kn×n. The interior of Sn(K; M, β)
consists of all the matrices A ∈ Kn×n generating strictly (M, β)-stable semigroups

intSn(K; M, β) =
⋃

β′<β

Sn(K; M, β ′). (3)

Proof : If limk→∞ Ak = A in K
n×n then limk→∞ ‖eAkt‖ = ‖eAt‖ for every t≥0 and so

it follows from Definition 5.5.1 that Sn(K; M, β) is closed in Kn×n. If A∈Sn(K; M, β)
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is not strictly (M, β)-stable, then A + εIn �∈ Sn(K; M, β) for all ε > 0. Hence A
belongs to the boundary of Sn(K; M, β) in Kn×n. Now suppose that A ∈ Sn(K; M, β)
is strictly (M, β)-stable, then there exists ε > 0 such that ‖eAt‖ ≤ Me(β−ε)t for all
t ≥ 0, hence A ∈ Sn(K; M, β − ε). Applying Proposition 4.2.18 we see that for all
∆ ∈ Kn×n

‖e(A+∆)t‖ ≤ M e(β−ε+M ‖∆‖) t , t ≥ 0.

Therefore A + ∆ ∈ Sn(K; M, β) for all ∆ ∈ Kn×n satisfying ‖∆‖ ≤ ε/M . So A is
an interior point of Sn(K; M, β). The same inequality shows that Sn(K; M, β ′) ⊂
intSn(K; M, β) for β ′ < β, and this concludes the proof. �

The previous proposition shows that there is an analogy in the relationship between
stable and asymptotically stable systems and between (M, β)-stable and strictly
(M, β)-stable systems. In fact, the set of asymptotically stable systems is the interior
of the set of stable systems and the set of strictly (M, β)-stable systems is the interior
of the set of (M, β)-stable systems. Note however, that the set of stable systems is
not closed in Kn×n.

Definition 5.5.4. For every β ≥ α(A) the transient bound of (eAt)t≥0 for the expo-
nential rate β is defined to be

Mβ(A) = inf{M ∈ R; ∀t ≥ 0 : ‖eAt‖ ≤ Meβt} = sup
t≥0

‖e(A−βIn)t‖ (4)

(where as usual inf ∅ = ∞).

It is clear that
β ′ ≥ β ≥ α(A) =⇒ 1 ≤ Mβ′ ≤ Mβ. (5)

If β > α(A), then Mβ(A) < ∞ and the ‘inf’ can be replaced by ‘min’ in (4). However
(see the next example) it is possible that Mβ(A) → ∞ as β → α(A) (hence it may be
that Mβ(A) = ∞ for β = α(A)). This will happen if and only if the Jordan canonical
form of A contains blocks of order ≥ 2 corresponding to eigenvalues λ ∈ σ(A) with
Re λ = α(A).
Obviously α(A) ≤ β if and only if α(A − βIn) ≤ 0 and it follows from (4), that

Mβ(A) = M0(Aβ) where Aβ = A − βIn, β ≥ α(A). (6)

Suppose ẋ = Ax is stable. Then M0(A) is finite and M0(A) is the maximal factor
by which the size of any initial deviation x0 ∈ Kn from the equilibrium x̄ = 0 is
amplified in the course of the trajectory eAtx0, t ≥ 0. Therefore M0(A) is called the
transient amplification factor of the system.
Now if β > α(A), then limt→∞ ‖eAβt‖ = 0 and so there exists tβ ≥ 0 (not necessarily
unique) such that

‖eAtβ‖ = Mβ(A) eβtβ .

Therefore α(A) < β < β′ implies

Mβ(A)eβtβ = ‖eAtβ‖ ≤ Mβ′(A)eβ′tβ = ‖eAtβ′‖eβ′(tβ−tβ′ ) ≤ Mβ(A)eβtβ′eβ′(tβ−tβ′)
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and hence

Mβ′(A)e(β′−β)tβ′ ≤ Mβ(A) ≤ Mβ′(A)e(β′−β)tβ , α(A) < β < β′. (7)

In particular if Mβ′(A) > 1, then since tβ′ > 0, we obtain

α(A) < β < β′ =⇒ Mβ′(A) < Mβ(A) and tβ′ ≤ tβ. (8)

Proposition 5.5.5. For any given β ∈ R the map

Mβ : Sn(K; β) → [1,∞], A �→ Mβ(A) where Sn(K; β) = {A ∈ K
n×n; α(A) ≤ β}

is lower semicontinuous on Sn(K; β) and continuous on intSn(K; β) = {A ∈ Kn×n;
α(A) < β}.

Proof : Let A ∈ Sn(K; β). Suppose there exist M < Mβ(A) and a sequence (Ak)
in Sn(K; β) converging to A such that Mβ(Ak) ≤ M for all k ∈ N. Then

‖eAt‖ = lim
k→∞

‖eAkt‖ ≤ Meβt, t ≥ 0,

which contradicts the definition of Mβ(A). This proves the lower semicontinuity
of Mβ . Now let A ∈ intSn(K; β) so that α(A) < β, and suppose M > Mβ(A).
By Lemma 5.5.2 there exists ε > 0 such that ‖eAt‖ ≤ Me(β−ε)t for all t ≥ 0.
From Proposition 4.2.18 we conclude that ‖e(A+∆)t‖ ≤ M eβt for all t ≥ 0 and all
∆ ∈ K

n×n, ‖∆‖ ≤ ε/M . This proves that Mβ(·) is upper semicontinuous at A. �

In the following example we analyze in some detail the dependency of the transient
bound M0(A) on the off-diagonal entry of an upper triangular real 2 × 2 matrix.

Example 5.5.6. Suppose A =

[
a c

0 b

]
, with a, b, c ∈ R, a < 0, b < 0. Then its matrix

exponential is given by

eAt =

[
eat c(a − b)−1(eat − ebt)
0 ebt

]
, a �= b, eAt =

[
1 ct

0 1

]
eat, a = b.

For the spectral norm Figure 5.5.1 shows the function t �→ ‖eAt‖ for a = −.6, b = −1
and various values of c. One sees that the transient bound M0(A) increases as c increases
and the time at which the maximum is achieved is almost constant (≈ 1.28 for c = 4 as
predicted by the formula for tmax below). The state trajectories starting at x0 = [0, 1]�

are shown in the figures on the right for c = 8 and 24, for which M0(A) = 3.76 and
11.2 respectively. The large transient motions are clearly visible. The straight lines with
arrows represent contracting eigenmotions of the system. The angle between them is
arctan(0.4/c), so that as c increases the angle is reduced, i.e. the eigenvectors become
more aligned. We know from Section 4.2 that this is an indicator that the spectrum of a
matrix is highly sensitive to perturbations. In Proposition 5.5.12 we will see that this is
also an indicator of large transient bounds.
For b �= a, we have

(a − b)−1(eat − ebt) ≥ max{−b−1eat,−a−1ebt}, t ≥ (a − b)−1 ln(b/a).
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Figure 5.5.1: The function t → ‖eAt‖ for various c, and state trajectories for c = 8, 24.

Hence for large |c|
‖eAt‖ ≈ |c| (a − b)−1(eat − ebt), t ≥ (a − b)−1 ln(b/a).

The RHS is maximized for tmax = (a − b)−1 ln(b/a) and substitution yields, for large |c|,

M0(A) ≈ −|c|
a

[
b

a

] b
a−b

and hence by (6) Mβ(A) ≈ − |c|
a − β

[
b − β

a − β

] b−β
a−b

, β > max{a, b}.

For a = b and large |c| we have ‖eAt‖ ≈ |c|teat, t ≥ −a−1. The maximum on the RHS
occurs at tmax = −a−1. So for large |c|

M0(A) ≈ −|c|(ae)−1 and Mβ(A) ≈ −|c|((a − β)e)−1.

Note that if a > b, Mβ(A) → |c|(a − b)−1 as β ↘ a, whereas if a = b, Mβ(A) → ∞ as
β ↘ a.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.75

−0.5

−0.25

0

0.25

0.5

0.75

Figure 5.5.2: Phase portrait for (9)

Now consider the nonlinear equation

ẋ1 = −0.6x1 + 24x2 + x3
1, ẋ2 = −x2. (9)

There are three equilibrium points at [0, 0]� and [±
√

0.6, 0]�. The former is stable and the
latter ones are unstable. The phase-portrait is shown in Figure 5.5.2. The linearization
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of (9) at the equilibrium point [0, 0]� has the system matrix A =

[
−0.6 24

0 −1

]
. One might

expect that the domain of attraction of this equilibrium point will be “thin” in directions
which generate large transient excursions of the linearized system. This is illustrated in
Figure 5.5.2 where we see that small deviations in the x2 direction from the origin generate
unbounded trajectories. The boundary of the basin of attraction of the origin is depicted
by the two dashed lines. �

To obtain good upper bounds for ‖eAt‖, t ≥ 0 (which are often required in e.g.
stability analysis), one would like to have the exponential rate β as small as possible
(usually as negative as possible) and at the same time have a small transient bound
Mβ(A). However, (5) indicates that there may be a trade off between the two
objectives. Nevertheless we will see that in some cases there is an “ideal” transient
behaviour in the sense that both optimal bounds can be achieved, i.e. β = α(A) and
Mβ(A) = 1. Before describing these special cases, we first determine conditions on
β and A so that Mβ(A) = 1. Then, later we will fix β and determine estimates for
Mβ(A).

Initial Growth Rate

We can always achieve the optimal transient bound Mβ(A) = 1 by choosing β
sufficiently large, since

β ≥ ‖A‖ =⇒ ‖eAt‖ ≤ e‖A‖ t ≤ eβt, t ≥ 0.

It is of interest to know which is the smallest β ∈ R such that ‖eAt‖ ≤ eβt, t ≥ 0.

Definition 5.5.7. For any A ∈ Cn×n the initial growth rate of eAt is defined by

ν(A) = min{β ∈ R; ∀t ≥ 0 : ‖eAt‖ ≤ eβt}. (10)

This terminology is explained by the following characterization of ν(A). Here we
denote the right derivative by d+

dt
.

Proposition 5.5.8. For any A ∈ C
n×n

ν(A)= d+

dt
ln ‖eAt‖

∣∣∣
t=0

= d+

dt
‖eAt‖

∣∣∣
t=0

= lim
h↘ 0

‖In + hA‖−1

h
= lim

τ↗∞
‖A+τIn‖−τ, (11)

where the last two expressions are monotonically decreasing with h↘0, resp. τ ↗∞.

Proof : Since the function f : h �→ ‖In+hA‖ is convex on R the difference quotient
(‖In + Ah‖ − 1)/h is monotonically decreasing with h ↘ 0. But for h ≥ 0

1 = ‖In + hA − hA‖ ≤ ‖In + hA‖ + h‖A‖,

and so −‖A‖ ≤ (‖In + hA‖ − 1)/h. This shows that the limit in the last but one
expression in (11) exists and the convergence to it is monotone.
For any given ε > 0, there exists δ > 0 such that∣∣(‖eAh‖ − 1)/h − (‖In + hA‖ − 1)/h

∣∣ ≤ ‖eAh − In − hA‖/h < ε, 0 < h < δ.
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Hence the right derivative of ‖eAt‖ exists at t = 0 and

d+

dt
‖eAt‖

∣∣
t=0

= lim
h↘ 0

‖eAh‖ − 1

h
= lim

h↘ 0

‖In + hA‖ − 1

h
= lim

τ→∞
‖A + τIn‖ − τ

where the last equality follows by setting h−1 = τ . Also by the chain rule

d+

dt
ln ‖eAt‖

∣∣
t=0

=
(
‖eAt‖

∣∣
t=0

)−1 d+

dt
‖eAt‖

∣∣
t=0

= d+

dt
‖eAt‖

∣∣
t=0

.

This establishes the equality of the last four expressions in (11).
Finally, note that for any δ > 0, since ‖eAt‖ ≤ ‖eAt/k‖k for k ∈ N∗, we have

∀t > 0 : ‖eAt‖ ≤ eβt ⇔ ∀t ∈ (0, δ] : ‖eAt‖ ≤ eβt ⇔ ∀t ∈ (0, δ] :
‖eAt‖ − 1

t
≤ eβt − 1

t
.

Hence ‖eAt‖ ≤ eβt, t ≥ 0 implies d+

dt
‖eAt‖

∣∣
t=0

≤ β and so d+

dt
‖eAt‖

∣∣
t=0

≤ ν(A).

Conversely, suppose that β = d+

dt
‖eAt‖

∣∣
t=0

, then given any ε > 0, there exists δ > 0
such that

‖eAt‖ ≤ 1 + (β + ε)t ≤ e(β+ε)t, t ∈ (0, δ].

This implies ‖eAt‖ ≤ e(β+ε)t for all t ≥ 0. So the first equality in (11) holds and this
completes the proof. �

The proposition shows that ν(A) can be interpreted as a directional derivative of the
norm function evaluated at In in the direction of A. In particular, the initial growth
rate is determined by the values of ‖eAt‖ on an arbitrarily small interval [0, ε], ε > 0.
The first equation in (11) explains why ν(A) is called logarithmic derivative by some
authors. Below we list some properties of the initial growth rate.

Lemma 5.5.9. For all A, B ∈ Cn×n we have

(i) − ‖A‖ ≤ −ν(−A) ≤ α(A) ≤ ν(A) ≤ ‖A‖, (ii) e−ν(−A)t ≤ ‖eAt‖ ≤ eν(A)t, t ≥ 0,

(iii) ν(A + zIn) = ν(A) + Re z, z ∈ C, (iv) ν(γA) = γν(A), γ > 0,

(v) Reλ ∈ [−ν(−A), ν(A)] for all λ ∈ σ(A), (vi) ν : Cn×n → R is convex,

(vii) max{ν(A) − ν(−B),−ν(−A) + ν(B)} ≤ ν(A + B) ≤ ν(A) + ν(B).

Proof : (ii), (iii) and (iv) are immediate from the definition of ν(·). Suppose Av =
λv with λ ∈ C, ‖v‖ = 1. Then

eRe λ t = ‖eAtv‖ ≤ ‖eAt‖ ≤ eν(A)t and e−Re λ t = ‖e−Atv‖ ≤ ‖e−At‖ ≤ eν(−A)t

hence −ν(−A) ≤ Re λ ≤ ν(A). This proves (i) and (v). Since

‖In + h(A + B)‖ − 1

h
=

‖2In + 2h(A + B)‖ − 2

2h
≤ ‖In + 2hA‖ − 1

2h
+

‖In + 2hB‖ − 1

2h
.

we obtain ν(A + B) ≤ ν(A) + ν(B). Replacing A by A + B and B by −B, yields
ν(A) ≤ ν(A + B) + ν(−B) or ν(A) − ν(−B) ≤ ν(A + B). By symmetry we
have ν(B) − ν(−A) ≤ ν(A + B) and this establishes (vii). Finally, convexity is a
consequence of (iv) and (vii). �
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Although the initial growth rate has been called the logarithmic norm in the liter-
ature (see Notes and References), it is neither a norm nor a semi-norm on Kn×n.
Negative values are possible and the ν-function is sign-sensitive: ν(A) is in general
different from ν(−A). In Ex. 6 it is shown how the initial growth rate can be used to
obtain upper and lower estimates on the solutions of time-varying linear equations.

Remark 5.5.10. In contrast with the (long term) growth rate α(A) the initial growth
rate ν(A) depends upon the specific norm ‖ · ‖. It is easy to verify that the function
t �→ ln ‖eAt‖/t, which may be interpreted as the mean exponential growth rate of ‖eAt‖
on the interval [0, t], is monotonically decreasing. So between these growth rates we have
the following relationship

ν(A)= sup
t>0

ln ‖eAt‖
t

= lim
t↘0

ln ‖eAt‖
t

≥ ln ‖eAt‖
t

≥ lim
t→∞

ln ‖eAt‖
t

= inf
t>0

ln ‖eAt‖
t

= α(A), t > 0.

�

ν(A) is easily computable for the 1-, 2- and ∞-norms. In the following lemma we
compare formulas for the corresponding operator norms with those for ν(A).

Lemma 5.5.11. Let A = (aij) ∈ Cn×n, then

‖ · ‖ = ‖ · ‖1,1 : ‖A‖ = max
j∈n

∑
i

|aij|, ν(A) = max
j∈n

(
Re ajj +

∑
i�=j

|aij |
)

,

‖ · ‖ = ‖ · ‖2,2 : ‖A‖ =
√

λmax(A∗A), ν(A) = λmax(A + A∗)/2,

‖ · ‖ = ‖ · ‖∞,∞ : ‖A‖ = max
i∈n

∑
j

|aij|, ν(A) = max
i∈n

(
Re aii +

∑
j �=i

|aij|
)

.

Proof : The formulas for the operator norms are well known, see (A.1.3). Here we
will only derive the formula for the initial growth rate with respect to the ∞-norm.
The reader is asked to prove the formula for the 1-norm in Ex. 3. For the 2-norm
the formula will follow directly from Corollary 5.5.26.
To prove the result for the norm ‖ · ‖ = ‖ · ‖∞,∞ we first note that for every λ ∈ C

lim
τ→∞

(|λ + τ | − τ) = Reλ, λ ∈ C. (12)

In fact, since (1 + x)1/2 ≤ 1 + x/2 for x ∈ R, |x| < 1 we get for τ > 0 sufficiently
large

Reλ ≤ |λ + τ | − τ = τ

(√
1 +

2 Reλ

τ
+

|λ|2
τ 2

− 1

)
≤ τ

(
Re λ

τ
+

|λ|2
2τ 2

)
,

whence (12). Applying (12) to the diagonal entries of A the formula for ν(A) (with
respect to ‖ · ‖ = ‖ · ‖∞) follows from

ν(A) = lim
τ→∞

‖A + τIn‖− τ = lim
τ→∞

max
i∈n

(
|τ + aii| +

∑
j �=i

|aij |
)

− τ

= max
i∈n

(
lim
τ→∞

(|τ + aii| − τ) +
∑
j �=i

|aij|
)

.
�
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Using this lemma the initial growth rate is easy to determine with respect to the 1-
and ∞-norms. Moreover, in these cases two matrices A, B ∈ Cn×n have the same
initial growth rate if the absolute values of their off-diagonal entries and the real
parts of their diagonal entries coincide. This is a rare property which is not shared
by the spectral abscissa, the stability radius and the transient bounds.
As a special consequence of the previous lemma one obtains a simple criterion for real
matrices to generate a contraction semigroup with respect to the ∞-norm. A ∈ Rn×n

has this property if and only if A is diagonally dominant with non-positive diagonal
entries, see Ex. 13.
The relationship between the initial growth rate and the transient bounds is, in
general, not very close. However, it follows directly from the definition that Mβ(A) =
1 for all β ≥ ν(A). On the other hand, if α(A) < β < ν(A) one has from (7) (with
β ′ = ν(A)) only that

1 ≤ Mβ(A) ≤ e(ν(A)−β)tβ .

Here tβ may be replaced by any t̃ for which it is known that ‖eAβt‖ takes its maximum
on R+ in the interval [0, t̃ ].
If ν(A) = α(A) the system ẋ = Ax has an “ideal” transient behaviour in the sense
that it satisfies the exponential estimate (1) with both minimal exponential rate
β = α(A) and minimal transient bound Mβ(A) = 1,

‖eAt‖ ≤ eα(A)t. (13)

For the spectral norm on C
n×n all normal matrices enjoy this property.

Proposition 5.5.12. Suppose that A ∈ Cn×n is diagonalizable and A = SDS−1

with diagonal D for some S ∈ Gln(C). If ‖ · ‖ is an absolute norm on Cn, then

‖eAt‖ ≤ κ(S) eα(A)t, t ≥ 0, κ(S) = ‖S‖ ‖S−1‖. (14)

In particular, if A is normal then A satisfies (13) with respect to the spectral norm
and ν(A) = α(A).

Proof : (14) follows from

‖eAt‖ = ‖SeDtS−1‖ ≤ ‖S‖ ‖S−1‖ ‖eDt‖

and the fact that the operator norm of a diagonal matrix with respect to an absolute
vector norm is equal to the maximal absolute value of its diagonal entries (Theo-
rem A.1.9). The second statement of the proposition follows because for normal A,
the diagonalizing S can be chosen to be unitary, and unitary matrices have spectral
norm equal to 1. �

Comparing Proposition 5.5.12 and Corollary 5.2.38 we notice the close relationship
between transient behaviour of a nominal system and its robustness under (unstruc-
tured, complex) perturbations. If A ∈ Cn×n is normal then it has the smallest
pseudospectrum and the smallest transient bounds Mβ = 1, β ≥ α(A) amongst all
the matrices of its similarity class.
If A is not normal, one may hope to obtain an estimate for ν(A) − α(A) in terms
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of some measure of non-normality of A. To conclude the subsection we will briefly
discuss this problem. Through the rest of this subsection we assume ‖ ·‖ is the spec-
tral norm on Cn×n. In the literature various measures have been used to quantify
the non-normality of a matrix. The most obvious one is the distance of the matrix
from the set Nn(C) of complex normal n × n matrices

dist (A,Nn(C)) = min
X∈Nn(C)

‖A − X‖2,2. (15)

Another index of non-normality is defined via the Schur decomposition U∗AU =
DU + NU of A where U ∈ Un(C), DU is diagonal and NU is upper triangular with
zeros on the diagonal (and hence nilpotent). Amongst all Schur decompositions of A
there is one for which the spectral norm ‖NU‖2,2 is minimal1 and this norm is called
the departure of A from normality (with respect to the spectral norm, see [223])

dep (A)= min{‖NU‖2,2; U ∈Un(C), U∗AU = DU+NU Schur decomposition}. (16)

Note that, although the nilpotent part NU of a Schur decomposition U∗AU =DU +NU

varies with U , the Frobenius norm ‖NU‖F of NU does not depend on U since

‖NU‖2
F = ‖A‖2

F −
∑
i∈n

|λi|2 where Λ(A) = )λ1, . . . , λn*.

As a consequence of Proposition 5.5.12 and Lemma 5.5.9 we have

Corollary 5.5.13. If A ∈ Cn×n then with respect to the spectral norm,

ν(A) ≤ α(X) + ν(A − X) ≤ α(X) + ‖A − X‖, X ∈ Nn(C). (17)

Moreover
ν(A) ≤ α(A) + dep (A). (18)

Proof : Let X ∈ Nn(C). By Lemma 5.5.9 (vii)

ν(A) = ν(X + A − X) ≤ ν(X) + ν(A − X).

So the first inequality in (17) follows from Proposition 5.5.12 and the second from
Lemma 5.5.9 (i). The inequality (18) follows by setting X = DÛ where Û ∈ Un(C)
achieves the minimum in (16). �

Example 5.5.14. Consider A as in Example 5.5.6 and let X =

[
−0.6 c/2
−c/2 −0.6

]
, then

X ∈ N2(C), α(X) = −0.6 and A − X =

[
0 c/2

c/2 −0.4

]
∈ N2(C). Hence

ν(A − X) = α(A − X) = −0.2 + (0.04 + c2/4)1/2

and so by the corollary we obtain the estimate ν(A) ≤ −0.8 + (0.04 + c2/4)1/2, which
is tight for all c ∈ R, see Example 5.5.27 (ii). Note that in this case X is not a closest

1That such a minimum exists follows by a compactness argument making use of the fact that
Un(C) is compact, see Ex. 15.
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normal matrix although it provides via (17) an optimal estimate for ν(A). It can be shown

that, amongst all normal real matrices, the matrix X̂ =

[
−0.8 c/2
−c/2 −0.8

]
has a minimal

distance from A. Now ‖A − X̂‖2,2 = [0.04 + c2/4]1/2 and α(X̂) = −0.8, so the second
inequality in (17) yields again the estimate ν(A) ≤ −0.8 + (0.04 + c2/4)1/2 which is tight.
On the other hand, since α(A) = −0.6 and dep (A) = |c|, (18) yields the inferior estimate
ν(A) ≤ −0.6 + |c|. �

5.5.2 Contractions and Estimates of the Transient Bound

A system ẋ = Ax combines ideal transient behaviour (M0(A) = 1) with (asymptotic)
stability if ν(A) ≤ 0 (resp. ν(A) < 0). Systems with these properties are called
contractions. In this subsection we will first characterize these systems for a given
norm and then show how, for non-contractive systems, upper estimates of M0(A)
can be derived via Liapunov norms. These are auxiliary norms with respect to
which a given system is contractive. If one uses Hilbert space norms this leads to
Liapunov equations and yields a constructive method for obtaining upper estimates.
As in the previous subsection we will assume throughout that Kn is provided with
an arbitrary, but fixed norm ‖ · ‖, and Kn×n with the corresponding operator norm
which we also denote by ‖ · ‖.

Definition 5.5.15.
(
eAt
)

t≥0
is said to be a contraction semigroup if ν(A) ≤ 0, i.e.

‖eAt‖ ≤ 1 for all t > 0. (19)

It is said to be a strict contraction semigroup if ν(A) < 0, i.e. ‖eAt‖ ≤ e−εt, t ≥ 0
for some ε > 0. It is called a strong contraction semigroup if ‖eAt‖ < 1 for all t > 0.

A generates a contraction semigroup if and only if the closed unit ball B(0, 1) =
{x ∈ Kn; ‖x‖ ≤ 1} is invariant under the flow of ẋ = Ax, i.e. eAtB(0, 1) ⊂ B(0, 1)
for all t > 0. Similarly, A generates a strong contraction semigroup if and only if
eAt maps the closed unit ball into the open unit ball for all t > 0.

Remark 5.5.16. Given any β ∈ R we will call (eAt) a β-contraction semigroup if ‖eAt‖ ≤
eβt for all t ≥ 0 . A semigroup

(
eAt

)
is a (strict) contraction semigroup if and only if it is

a β-contraction semigroup for β = 0 (resp. for some β < 0). For any β ∈ R, A generates
a β-contraction semigroup if and only if ν(A) ≤ β. Since this condition defines a closed
set and ν is convex by Lemma 5.5.9, the set of all A ∈ K

n×n generating a β-contraction
semigroup forms a closed convex subset of K

n×n. �

If A generates a contraction semigroup then it is necessarily stable. Moreover, (19)
implies that t → ‖eAtx0‖ is monotonically decreasing for all x0 ∈ C

n. If additionally
γ = ‖eAτ‖ < 1 for some τ > 0 then ‖eAt‖ ≤ ‖eAkτ‖ ≤ γk for all t ≥ kτ . In
particular, every strong contraction semigroup is asymptotically stable. By the same
argument, if A generates a contraction semigroup which is not asymptotically stable
then necessarily ‖eAt‖ = 1 for all t ≥ 0. Clearly, every strict contraction semigroup is
a strong contraction semigroup. However not every strong contraction semigroup is
strict, see Example 5.5.27. If A is asymptotically stable and generates a contraction
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semigroup one might expect that it is necessarily strong. For this to be the case one
must rule out the possibility that for some τ > 0 we have ‖eAt‖ = 1, t ∈ [0, τ ]. With
respect to the spectral norm this would imply λmax(e

A∗teAt) = 1, t ∈ [0, τ ] and so
det[In − eA∗teAt] = 0, t ∈ [0, τ ]. But the LHS of this equality is analytic in t and
hence must equal 0 for all t ≥ 0 which contradicts the assumption of asymptotic
stability. In Ex. 11 conditions on the norm ‖ · ‖ are specified under which every
asymptotically stable contraction semigroup is a strong contraction. The fact that
this is not so in general is explained in the following remark and illustrated in the
subsequent example.

Remark 5.5.17. Suppose A ∈ K
n×n is asymptotically stable with ν(A) > 0 and let

|||x|||A := max
s≥0

‖eAsx‖, x ∈ K
n. (20)

Then ||| · |||A defines a norm on K
n and A generates a contraction semigroup with respect

to the induced operator norm. Moreover there exists a τ > 0 such that |||eAt|||A = 1 for
t ∈ [0, τ ]. The reader is asked to prove these statements in Ex. 9. �

Example 5.5.18. Consider the real linear system

Σ : ẋ = Ax, where A =

(
−1 −1
1 −1

)
.

Examining the trajectories starting on the boundary of the unit square, on can show that
A generates a strong contraction semigroup with respect to the maximum norm ‖ · ‖∞.
In Ex. 10 the reader is asked to prove this and the following observations. Consider the

-1

-0.5

0

0.5

1

-3 -2 -1 0 1 2 3

A

Figure 5.5.3: Two trajectories with ‖eAtx‖ = 1, t ∈ [0, π/4].

rectangle R := [−α,α]× [1, 1] where α = 1√
2
eπ/4 > 1. It is easily verified that the solution

starting at [α, 0]� is given by αe−t[cos t, sin t]� and that this curve remains entirely inside
the box R, only touching the border ∂R in [1, 1]�. If the area in the box above the
curve segment given by t ∈ [0, π/4] and the area below its central symmetric counterpart
in the lower left corner are clipped away, the remaining area A is invariant with respect
to the flow of Σ, see Figure 5.5.3. A is a convex and symmetric neighborhood of the
origin. Hence the corresponding Minkowski functional, (see Definition A.4.13) pA(x) =
inf{γ > 0, γ−1x ∈ A} is a norm on the state space R

2. The thick lines in Figure 5.5.3
describe the boundary of the unit ball with respect to this norm. By construction we have
pA(eAt) = 1, t ∈ [0, π/4] where pA(eAt) is the operator norm of eAt with respect to the
norm pA(·) on R

2. In particular, we have ν(A) = 0 with respect to this norm although
the corresponding system is asymptotically stable. Note that the norm pA(·) coincides,
for this example, with the norm |||x|||A constructed in the previous remark (starting from
the norm ‖ · ‖ whose unit ball is R). �
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By Definitions 5.5.7 and 5.5.15, A generates a (strict) contraction semigroup if
and only if ν(A) ≤ 0 (resp. ν(A) < 0). Strong contraction semigroups, however,
cannot be characterized via their initial growth rates. In Example 5.5.27 (iii) we
will encounter a strong contraction semigroup for which ν(A) = 0.
In a Hilbert space, contraction properties of a semigroup can be directly expressed
by the dissipativity of its generator. This characterization can be generalized to
arbitrary normed spaces X by introducing a semi-scalar product on X. The existence
of a semi-scalar product follows directly from the Hahn-Banach Theorem. We will
only consider the finite dimensional case.

Lemma 5.5.19. Suppose ‖ · ‖ is a norm on Kn, then there exists a scalar valued
function (x, y) → [x, y] on K

n × K
n such that for all x, y, z ∈ K

n, λ ∈ K

[x + y, z] = [x, z] + [y, z], [λx, y] = λ[x, y],

[x, x] = ‖x‖2, | [x, y] | ≤ ‖x‖‖y‖.

[·, ·] is called a semi-scalar product on the normed linear space (Kn, ‖ · ‖).

Proof : By the Hahn-Banach Theorem A.4.10 for every y ∈ Kn there exists a (not
necessarily unique) vector fy ∈ K1×n of dual norm ‖fy‖∗ = ‖y‖ such that fy is
aligned with y, i.e. fyy = ‖y‖2. Clearly [x, y] = fyx defines a semi-scalar product
for ‖ · ‖. �

Note that semi-scalar products are linear and hence continuous in the first argu-
ment. Example 5.5.21 below shows that they need not be continuous in the second
argument.

Definition 5.5.20. A matrix A ∈ Kn×n is dissipative (resp. strictly dissipative) with
respect to a semi-scalar product [ ·, ·] on (Kn, ‖ · ‖) if

Re[Ax, x] ≤ 0 (resp. Re[Ax, x] ≤ −ε‖x‖2 for some ε > 0) for all x ∈ K
n.

Just as the concept of a contraction semigroup depends on the norm ‖ · ‖ on Kn

so does the property of dissipativity. However we will see in Theorem 5.5.23 that
dissipativity does not depend on the specific semi-scalar product [·, ·] that is chosen
on (Kn, ‖·‖). We will now illustrate these concepts by an example of a matrix which
is strictly dissipative for the 2-norm, but not dissipative for the 1-norm.

Example 5.5.21. Let R
2 be normed by the 1-norm, then the dual norm is the ∞-norm

and for any vector y ∈ R
2 the linear form

fy : x �→ fy(x) = ‖y‖1 (x1y1/|y1| + x2y2/|y2|) , where yi/|yi| := 0 if yi = 0

is aligned with y since fy(y) = ‖y‖1(y
2
1/|y1| + y2

2/|y2|) = ‖y‖2
1 and ‖fy‖∗ = ‖y‖1. So

[x, y] = fy(x) is a semi-scalar product for ‖ · ‖1 on R
2. Note that y �→ [x, y] is not

continuous at y = (1, 0)� if we choose e.g. x = (0, 1)�. In fact, setting yε = (1, ε)� we
have yε → y and [x, yε] = (1 + ε) → 1 if ε ↘ 0, but [x, y] = 0.
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Now consider the matrix A =

[
a11 a12

a21 a22

]
, then A will be dissipative with respect to the

semi-scalar product [·, ·] if

‖x‖−1
1 [Ax, x] =

(a11x1 + a12x2)x1

|x1|
+

(a21x1 + a22x2)x2

|x2|
≤ 0 for all

[
x1

x2

]
∈ R

2.

The conditions on A = (aij) ∈ R
2×2 for the above to hold are given in Ex. 13 and are not

the same as in the Euclidean case. To see this consider A =

[
−1 2
2 −9

]
, then A ≺ 0 and

so A is strictly dissipative with respect to the Euclidean inner product on R
2, but

‖x‖−1
1 [Ax, x] =

(−x1 + 2x2)x1

|x1|
+

(2x1 − 9x2)x2

|x2|

and for x1 = 8/9, x2 = 1/9, we find ‖x‖−1
1 [Ax, x] = +1/9. �

Throughout the rest of this section we will make use of the well known connections
between a semigroup and its Laplace transform, the resolvent operator associated
with its generator, see Example A.3.22.

Lemma 5.5.22. Suppose that A ∈ Cn×n and R(s, A) = (sIn −A)−1, s ∈ ρ(A) is its
resolvent operator, then

R(s, A) =

∫ ∞

0

e−steAtdt, Re s > α(A),

eAt = lim
m→∞

(In − m−1tA)−m =
1

2πı

∫
Γ

estR(s, A)ds, t ≥ 0,

(21)

where Γ is any positively-oriented, piecewise smooth, simple, closed curve enclosing
σ(A).

We have the following theorem which also holds in an infinite dimensional setting,
see Notes and References.

Theorem 5.5.23. Let A ∈ Kn×n and ‖ · ‖ be a norm on Kn, then A generates a
(strict) contraction semigroup on K

n with respect to the norm ‖·‖ if and only if A is
dissipative (resp. strictly dissipative) with respect to some (or, equivalently, every)
semi-scalar product on Kn for ‖ · ‖.

Proof : Let λ > 0 and assume A is dissipative for some semi-scalar product [·, ·]
for ‖ · ‖. Then for any x ∈ Kn, we have

λ‖x‖2 = λ[x, x] ≤ Re(λ[x, x] − [Ax, x]) = Re[(λI − A)x, x] ≤ ‖(λI − A)x‖‖x‖.

Hence λ‖x‖ ≤ ‖(λI − A)x‖ for all x ∈ Kn and thus λI − A is invertible with
‖(λI −A)−1‖ ≤ λ−1, or equivalently ‖(I − λ−1A)−1‖ ≤ 1. So ‖eAt‖ ≤ 1 by applying
the second formula in (21) with λ = m−1t.
Conversely assume that A generates a contraction semigroup, then for any semi-
scalar inner product [·, ·] for ‖ · ‖

Re[eAtx − x, x] = Re[eAtx, x] − ‖x‖2 ≤ ‖eAtx‖‖x‖ − ‖x‖2 ≤ 0.
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Hence by the continuity of v �→ [v, x] we get Re[Ax, x] = limt→0 Re{t−1[eAtx −
x, x]} ≤ 0. A is strictly dissipative if and only if A + εIn is dissipative for some
ε > 0. Now e(A+εIn)t = eAteεt and so the strict case is a consequence of applying the
contraction result to A + εIn since Re[(A + εIn)x, x] = Re[Ax, x] + ε‖x‖2. �

Corollary 5.5.24. A ∈ Kn×n generates a contraction semigroup with respect to a
given norm ‖ · ‖ on Kn if and only if its resolvent satisfies

‖(λI − A)−1‖ ≤ λ−1, λ > 0. (22)

Proof : The result follows from Theorem 5.5.23 and the first part of its proof. �

Corollary 5.5.25. Let A ∈ Kn×n, then with respect to any semi-scalar product [·, ·]
on Kn for ‖ · ‖,

ν(A) = sup
x�=0

Re[Ax, x]

‖x‖2
. (23)

Proof : By definition ν(A) is the smallest β ∈ R such that
(
e(A−βIn)t

)
t≥0

is a

contraction semigroup. By Theorem 5.5.23
(
e(A−βIn)t

)
t≥0

is a contraction semigroup
if and only if

0 ≥ Re[Ax, x] − Re[βx, x] = Re[Ax, x] − β‖x‖2, x ∈ K
n

or, equivalently β ≥ supx�=0 Re[Ax, x]/‖x‖2. This proves (23). �

In specializing the previous result to the Hilbert space case we obtain a computable
formula for ν(A) in the next corollary. Moreover we obtain a characterization of
ν(A) in terms of the numerical range or field of values of A defined by

Θ(A) = {〈Ax, x〉; ‖x‖ = 1}. (24)

By a theorem of Hausdorff [218] Θ(A) is a convex compact subset of the complex
plane containing the spectrum of A, see Notes and References.

Corollary 5.5.26. Suppose that Kn is provided with an arbitrary inner product 〈·, ·〉
and ‖x‖ = 〈x, x〉1/2 is the associated norm, then for any A ∈ Kn×n

ν(A) = sup Re Θ(A) = λmax(A + A∗)/2 = min {ν ∈ R; A + A∗ % 2νIn} , (25)

where A∗ is the adjoint of A and Θ(A) is the numerical range, both with respect to
the inner product 〈·, ·〉. In particular A generates a (strict) contraction semigroup if
and only if A + A∗ % 0 (resp. A + A∗ ≺ 0).

Proof : Since Re〈Ax, x〉 = [〈Ax, x〉 + 〈x, Ax〉]/2 = 〈(A + A∗)x, x〉/2 for all x ∈ Kn

and ν(A) = supx �=0 Re〈Ax, x〉/‖x‖2 by (23), it suffices to take the maximum over
{x ∈ Cn; ‖x‖ = 1} and recall that λmax = max‖x‖=1〈Hx, x〉 (see (A.4.17)) and
H % νIn ⇔ λmax(H) ≤ ν for every Hermitian matrix H . �
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Example 5.5.27. (i) Consider the matrix A =

[
−1 1
−1 −2

]
, then with respect to the usual

Euclidean inner product A+A∗ = diag (−2,−4). Hence ν(A) = −1 and ‖eAt‖ ≤ e−t, t ≥ 0.
Note that A is not normal and α(A) = −3/2.
(ii) Now consider the matrix A of Example 5.5.6 with a = −0.6, b = −1, then

A + A∗ − 2νI2 =

[
−1.2 − 2ν c

c −2 − 2ν

]
.

So A + A∗ − 2νI2 % 0 if and only if 1.2 + 2ν ≥ 0 and (1.2 + 2ν)(2 + 2ν) ≥ c2. Hence
ν(A) = −0.8 + (0.04 + c2/4)1/2 confirming that the first two estimates in Example 5.5.14
are tight.

(iii) Consider the matrix A =

[
−1 2
0 −1

]
, then A+A∗ =

[
−2 2
2 −2

]
% 0. So A is dissipative

but not strictly dissipative. Now

eAt = e−t

[
1 2t
0 1

]
and hence with respect to the spectral norm a short calculation yields

‖eAt‖ = e−t
[
1 + 2t2 + 2t

√
1 + t2

]1/2
= e−t(t +

√
1 + t2).

Since we know that this expression is ≤ 1 and cannot be identically equal to 1 on any
interval [0, τ ], τ > 0, we must have ‖eAt‖ < 1, t > 0. So A generates a strong contraction
semigroup although it is not strictly dissipative and hence does not generate a strict
contraction semigroup. �

Estimates for Transient Bounds via Liapunov Norms

We now explore the possibility of obtaining estimates for transient bounds via Lia-
punov norms. In the 2-norm case this leads to the problem of finding well conditioned
solutions of strict Liapunov inequalities.

Definition 5.5.28. Given A ∈ Kn×n a norm p(·) on Kn is called a (strict) Liapunov
norm for a system ẋ = Ax if A generates a (strict) contraction semigroup with
respect to p. More generally, given any β ∈ R, p is called a β-Liapunov norm for
ẋ = Ax if A generates a β-contraction semigroup with respect to p, i.e.

p(eAtx0) ≤ eβtp(x0), x0 ∈ K
n, t ≥ 0.

By Definition 3.2.6 a (strict) Liapunov norm for the system ẋ = Ax defines a global
(strict) generalized Liapunov function for the flow of ẋ = Ax.

Definition 5.5.29. Suppose p(·) is any norm on Kn. Then the eccentricity of p
with respect to ‖ · ‖ is given by

ecc(p) = ecc(p, ‖ · ‖) =
max‖x‖=1 p(x)

min‖x‖=1 p(x)
. (26)

A simple calculation shows that ecc(p, ‖ · ‖) = ecc(‖ · ‖, p).
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Remark 5.5.30. If W ∈ K
n×n is nonsingular, the eccentricity of the norm p(x) = ‖Wx‖

on K
n equals the condition number of W with respect to the norm ‖ · ‖, ecc(p) = κ(W ) =

‖W‖ ‖W−1‖. In particular, if ‖ · ‖ = ‖ · ‖2 then ecc(p) = σmax(W )/σmin(W ). �

If the eccentricity of p and the initial growth rate νp(A) of ẋ = Ax with respect to
p are known, the following lemma can be applied in order to obtain an exponential
estimate for ‖eAt‖. We denote by p(T ) the operator norm of a matrix T ∈ Kn×n

with respect to the norm p on K
n.

Lemma 5.5.31. Suppose p(·) is a norm on Kn and νp(A) is the initial growth rate
of eAt with respect to p and ecc(p) is the eccentricity of p with respect to ‖ · ‖, then

‖eAt‖ ≤ ecc(p) eνp(A)t, t ≥ 0. (27)

Proof : For all y ∈ Kn, y �= 0 we have

min
‖x‖=1

p(x) ≤ p

(
y

‖y‖

)
≤ max

‖x‖=1
p(x),

p(y)

max‖x‖=1 p(x)
≤ ‖y‖ ≤ p(y)

min‖x‖=1 p(x)
. (28)

This implies for every T ∈ Kn×n

‖T‖ = max
‖x‖�=0

‖Tx‖
‖x‖ ≤ max

‖x‖�=0

(
p(Tx)

min‖z‖=1 p(z)

)(
p(x)

max‖z‖=1 p(z)

)−1

= (ecc p)p(T ).

Since p(eAt) ≤ eνp(A)t for all t ≥ 0, setting T = eAt gives the desired result. �

It follows from this lemma that if

ecc(p) ≤ M, νp(A) ≤ β (29)

for some M ≥ 1, β ∈ R then ẋ = Ax is (M, β)-stable. The converse also holds true.

Proposition 5.5.32. If ẋ = Ax is (M, β)-stable (with respect to ‖ · ‖) then there
exists a β-Liapunov norm p(·) on Kn such that (29) holds.

Proof : Consider the norm on K
n defined by p(x) = supt≥0 e−βt‖eAtx‖, x ∈ K

n. By
(M, β)-stability this norm is well defined, see Ex. 9 and we have

‖x‖ ≤ p(x) ≤ e−βtMeβt‖x‖ = M‖x‖, x ∈ K
n.

It follows from (26) that ecc(p) ≤ M . Moreover, since by definition

e−βτp(eAτx) = e−βτ sup
t≥0

e−βt‖eAteAτx‖ = sup
t≥0

e−β(t+τ)‖eA(t+τ)x‖ ≤ p(x), τ ≥ 0

we have p(eAτx) ≤ eβτp(x), τ ≥ 0 for all x ∈ Kn and so νp(A) ≤ β. �
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Although this proposition shows that the upper estimate (27) can be made arbitrar-
ily tight, there is no safe and efficient numerical procedure available for constructing
Liapunov norms whose eccentricity comes close to the optimum Mβ(A). Note that
in order to compute ecc(p) for the Liapunov norm defined in the previous proof one
needs to compute supt≥0 e−βt‖eAt‖ which is just Mβ(A) and so it would be simpler
to determine this value directly rather than via a construction of the tight Liapunov
norm.
However, if Kn is provided with the 2-norm, suboptimal estimates can be obtained
by a solution of Liapunov equations. To explain this, we assume in the rest of this
subsection that the given norm is ‖x‖ = 〈x, x〉1/2, x ∈ Kn where 〈 · , · 〉 is the usual
Euclidean inner product. Now choose any P ∈ Hn(K),P & 0 and define another

inner product 〈 ·, · 〉P with associated norm ‖ · ‖P = 〈·, ·〉1/2
P on Kn by

〈x, y〉P = 〈Px, y〉, ‖x‖P = 〈Px, x〉1/2 = ‖P 1/2x‖2, x, y ∈ K
n,

see Proposition A.4.28. We have seen that if A generates a contraction (resp. strong
contraction) semigroup then A is stable (resp. asymptotically stable). In the sequel
we derive a partial converse to this result. First note that

2 Re〈Ax, x〉P = 2 Re〈PAx, x〉 = 〈PAx, x〉 + 〈x, PAx〉 = 〈(PA + A∗P )x, x〉

where A∗ = A
�

is the adjoint of A with respect to the standard inner product.
It therefore follows from Corollary 5.5.26 that A generates a (strict) contraction
semigroup on K

n with respect to the norm ‖ · ‖P if and only if

PA + A∗P % 0 (resp. PA + A∗P ≺ 0).

Proposition 5.5.33. Let A ∈ K
n×n, Q ∈ H+

n (K), β ∈ R and suppose that P ∈
H+

n (K), P & 0 solves
PA + A∗P + Q − 2βP = 0. (30)

Then
‖eAt‖ ≤ [σmax(P )/σmin(P )]1/2 eβt, t ≥ 0. (31)

In particular, for every matrix A with spectral abscissa α(A) < β ≤ 0 there exists
an inner product 〈·, ·〉P on Kn with respect to which A is strictly dissipative and
generates a strict contraction semigroup with initial growth rate νP (A) < β.

Proof : Setting Aβ = A − βIn the equation (30) can be rewritten in the form
A∗

βP+PAβ+Q = 0. From A∗
βP+PAβ % 0 we obtain that Aβ generates a contraction

semigroup on Kn with respect to the norm ‖ · ‖P . Hence νP (Aβ) = νP (A) − β ≤ 0,
i.e. νP (A) ≤ β. Now apply Lemma 5.5.31 to the norm p(x) = ‖x‖P = ‖P 1/2x‖2.

By Remark 5.5.30 we have ecc(p) = σmax(P
1/2)/σmin(P

1/2) = (σmax(P )/σmin(P ))1/2.
Therefore (31) follows from (27).
The second statement of the proposition follows by choosing Q & 0. In fact, since
α(A) < β ≤ 0 we have σ(Aβ) ⊂ C− and so we know from Theorem 3.3.49 that
there exists a unique solution P = Pβ(Q) & 0 of (30). Since A∗

βP + PAβ = −Q ≺ 0
we conclude that Aβ (and hence A) generates a strict contraction semigroup on K

n

with respect to the norm ‖ · ‖P and νP (Aβ) = νP (A) − β < 0. �
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Given a solution P & 0 of PA + A∗P % 0, one is interested in minimizing β ∈ R

such that (31) holds. In the following corollary we determine the smallest β ≤ 0
such that ‖ · ‖P is a β-Liapunov norm for A.

Corollary 5.5.34. If P & 0 solves PA + A∗P = −Q % 0 then (31) holds with

β := −max{α ∈ R+; Q − 2αP $ 0} = −min
x�=0

〈Qx, x〉/〈2Px, x〉 = νP (A) (32)

where νP (A) denotes the initial growth rate of A with respect to the norm ‖ · ‖P .

Proof : The second equality is easily verified. Since

−〈Qx, x〉/〈2Px, x〉 = 〈(PA + A∗P )x, x〉/〈2Px, x〉 = Re〈PAx, x〉/〈Px, x〉

for x ∈ K
n, x �= 0, the third equality follows from (23). If β is defined by (32) then

PA + A∗P − 2βP = −(Q + 2βP ) % 0.

Thus (31) follows from the previous proposition. �

On the other hand, given any β > α(A) one may be interested in finding a solution
P & 0 of PA + A∗P % 0 such that κ(P ) = σmax(P )/σmin(P ) = λmax(P )/λmin(P ) is
minimized. This leads to the following problem (where we assume without loss of
generality that β = 0).

Problem 5.5.35. Given a matrix A ∈ Cn×n with σ(A) ⊂ C−, determine Q ∈
H+

n (K) such that for the unique solution P = P (Q) of the Liapunov equation

PA + A∗P + Q = 0 (33)

the condition number κ(P ) = σmax(P )/σmin(P ) is minimized.

This problem appears to be still an open one (see Notes and References) and we will
only derive an existence result. We need the following

Lemma 5.5.36. Suppose P1, P2 ∈ Hn(K), P1 & 0, P2 & 0. Then

κ(P2) < κ(P1) =⇒ κ(P2 + P1) < κ(P1). (34)

Proof : Since σmax(P1 +P2) ≤ σmax(P1)+σmax(P2) and σmin(P1 +P2) ≥ σmin(P1)+
σmin(P2), we have

κ(P2 + P1) =
σmax(P2 + P1)

σmin(P2 + P1)
≤ σmax(P2) + σmax(P1)

σmin(P2) + σmin(P1)
.

But because κ(P2) < κ(P1), we obtain σmax(P2)σmin(P1) < σmax(P1)σmin(P2) and
thus

(σmax(P2) + σmax(P1))σmin(P1) < (σmin(P2) + σmin(P1))σmax(P1).

Hence

κ(P2 + P1) ≤
σmax(P2) + σmax(P1)

σmin(P2) + σmin(P1)
<

σmax(P1)

σmin(P1)
= κ(P1).

�



5.5 Transient Behaviour 667

The following proposition shows that an optimal Q always exists and it is necessarily
singular if A is not dissipative.

Proposition 5.5.37. Let A ∈ Cn×n be such that σ(A) ⊂ C−. Then there exists
Q̂ ∈ H+

n (K) with (A, Q̂) observable such that the corresponding solution P̂ of (33)
has a minimal condition number κ̂ = κ(P̂ ) amongst all P ∈ H+

n (K), P �= 0 satisfying
A∗P + PA % 0. Moreover if κ̂ > 1, then rank Q̂ < n.

Proof : Let P (Q) be the solution of (33) for any given Q $ 0. Then since σ(A) ⊂
C−, we have by (3.3.89a)

P (Q) =

∫ ∞

0

eA∗tQeAtdt $ 0, and ‖P (Q)‖ ≤ ‖Q‖
∫ ∞

0

‖eAt‖2dt < ∞.

Since κ(αP ) = κ(P ) for all α > 0 we may restrict Q to the compact set

Q = {Q ∈ Hn(K) ; Q $ 0, ‖Q‖ = 1}.

By definition κ(P (Q)) = ∞ if P (Q) �= 0 is singular. Let (Qj)j∈N be a minimizing
sequence in Q such that κ(P (Qj+1)) ≤ κ(P (Qj)) < ∞, j ∈ N and

lim
j→∞

κ(P (Qj)) = inf{κ(P (Q)); Q ∈ Q} =: κ̂.

By compactness of Q we may assume that (Qj)j∈N is convergent. Now since Q �→
P (Q) is continuous on Q, min{σmax(P (Q)); Q ∈ Q} exists and is positive. Hence
it follows from the boundedness of (κ(P (Qj)))j∈N that there exists an ε > 0 such

that σmin(P (Qj)) ≥ ε for all j ∈ N. As a consequence the limit Q̂ = limj→∞ Qj is a
minimum of Q → κ(P (Q)) on Q:

κ(P (Q̂)) = σmax( lim
j→∞

P (Qj))/σmin( lim
j→∞

P (Qj)) = lim
j→∞

κ(P (Qj)) = κ̂.

Moreover (A, Q̂) is observable since P (Q̂) & 0, see Theorem 3.3.49. This proves
the existence result. Finally assume that κ̂ > 1, but Q̂ & 0. Choose τ > 0 such
that Qτ := Q̂ − τ(A + A∗) $ 0. Then P (Qτ ) = P (Q̂) + τIn. But κ(τIn) = 1 <
κ̂ = κ(P (Q̂)) and this implies by Lemma 5.5.36 that κ(P (Qτ )) = κ(P (Q̂) + τIn) <
κ(P (Q̂)) = κ̂. Therefore Q̂ must be singular if κ̂ > 1. �

We illustrate this result and the estimate (31) by the following simple example.

Example 5.5.38. We consider the same A as in Example 5.5.6 with a = −0.6, b =

−1, c = 1.2 and β = −0.2. Then Aβ = A − βI2 =

[
−0.4 1.2

0 −0.8

]
and (Aβ + A∗

β)/2 is

not negative semidefinite since 0.4 × 0.8 < 0.62. By Corollary 5.5.26 Aβ is not dissipative
(with respect to the standard inner product on R

2). Let Q(α) = diag (1, α) and P (Q(α)) =[
p1 p2

p2 p3

]
solve (33), then p1 = p2 = 5/4 and p3 = 15/8 + 5α/8. Hence

16σmax(PQ(α)) = 5[5+α+
√

(1 + α)2 + 16], 16σmin(P (Q(α))) = 5[5+α−
√

(1 + α)2 + 16]
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and

κ(P (Q(α))) = σmax(PQ(α))/σmin(PQ(α)) = [5+α+
√

(1 + α)2 + 16]/[5+α−
√

(1 + α)2 + 16].

α̃ = 3 minimizes the above expression yielding κ(P (Q(α̃))) = 3+2
√

2. For this value of α

we have Q(α̃) = diag (1, 3), P (Q(α̃))) =

[
5/4 5/4
5/4 15/4

]
and by (31) we obtain the estimate

‖eAt‖ ≤ [3 + 2
√

2]1/2e−0.2t = (1 +
√

2)e−0.2t = 2.14e−0.2t.
Since Q̃ := Q(α̃) & 0 and κ(P (Q̃)) > 1, we may improve this estimate via the construction
carried out at the end of the proof of Proposition 5.5.37. Now

Q̃ − τ(A + A∗) =

[
1 0
0 3

]
− τ

[
−0.8 1.2
1.2 −1.6

]
=

[
1 + 0.8τ −1.2τ
−1.2τ 3 + 1.6τ

]
.

A short calculation shows that Q̃ − τ(A + A∗) ≺ 0 for τ < 25.73 and is singular for
τ = 25.73. Now κ(PQ̃ + 25.73I2) = 1.134. This is a considerable improvement and

yields the estimate ‖eAt‖ ≤ 1.065e−0.2t. It is a good approximation of the best estimate
‖eAt‖ ≤ 1.05728e−0.2t which can be obtained by optimizing Q. �

It is known (see Notes and References) that even the optimal bound obtainable for
Mβ(A), β > α(A) via quadratic norms may be quite conservative. We conclude
this subsection with a result which shows that tight estimates can be obtained by
utilizing solutions of differential Liapunov equations.

Proposition 5.5.39. Suppose Kn×n is provided with the spectral norm, A ∈ Kn×n,
β > α(A) and Aβ = A − βIn. If Pβ(·) : R+ → Hn(K) is any continuously differen-
tiable matrix function satisfying

Ṗβ(t) − A∗
βPβ(t) − Pβ(t)Aβ $ 0, t > 0 and Pβ(0) & 0, (35)

then
Mβ(A)2 ≤ sup

t≥0
σmax(Pβ(t))/σmin(Pβ(0)). (36)

Moreover, if the inequality $ in (35) is replaced by an equation and Pβ(·) is the solu-
tion of this differential equation with Pβ(0) = In, then Mβ(A)2 = supt≥0 σmax(Pβ(t)).

Proof : Suppose Pβ(·) solves (35) and let

Q(t) = Ṗβ(t) − A∗
βPβ(t) − Pβ(t)Aβ, t > 0

then Q(t) ∈ H+
n (K) for t ≥ 0 and

d

ds

[
e
−A∗

βs
Pβ(s)e−Aβs

]
= e

−A∗
βs[−A∗

βPβ(s) − Pβ(s)Aβ + A∗
βPβ(s) + Pβ(s)Aβ + Q(s)

]
e−Aβs

= e
−A∗

βs
Q(s)e−Aβs, s ≥ 0.

Integrating from 0 to t, yields

e−A∗
βtPβ(t)e−Aβt − Pβ(0) =

∫ t

0

e−A∗
βsQ(s)e−Aβsds.

Hence
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Pβ(t) = eA∗
βtPβ(0)eAβt +

∫ t

0

eA∗
β(t−s)Q(s)eAβ(t−s)ds. (37)

So if Pβ(·) satisfies (35), then Pβ(t) $ eA∗
βtPβ(0)eAβt $ σmin(Pβ(0))eA∗

βteAβt. Hence
(36) follows from

σmax(Pβ(t)) ≥ ‖eA∗
βtPβ(0)eAβt‖ ≥ σmin(Pβ(0))‖eAβt‖2 = σmin(Pβ(0))e−2βt‖eAt‖2.

For Pβ(0) = In, the solution of the equation in (35) is Pβ(t) = eA∗
βteAβt and so

sup
t≥0

σmax(Pβ(t)) = sup
t≥0

‖eAβt‖ = Mβ(A)2. �

If β > α(A) then by (37) σmax(Pβ(t)) will be uniformly bounded for t ≥ 0 and the
smallest bound is obtained for Q = 0. This suggests that we should have restricted
our considerations to the equality in (35). We have chosen not to do so because this
precludes the possibility of constant solutions. In its present form the proposition is
applicable to constant solutions so that (31) can be viewed as a special case of (36).

5.5.3 Spectral Value Sets and Transient Behaviour

If A ∈ Kn×n is an asymptotically stable matrix (α(A) < 0), it is plausible to conjec-
ture that systems with large transient motions are somehow close to instability. By
this we mean that some small perturbation ∆ of A will move some of the eigenvalues
of A from the open left to the closed right half-plane. Information about this possi-
bility is contained in the unstructured stability radius d−

C
(A) and the pseudospectra

σC(A; δ), δ > 0. Therefore we expect a close relationship between pseudospectra,
stability radius and transient behaviour which we will now investigate.
The following proposition shows that there is a relationship between the contrac-
tion property ν(A) < 0, the pseudospectra of A and its distance from normal-
ity, dist (A,Nn(K)). For every γ ∈ R, we denote by Cγ the open left-half plane
{s ∈ C; Re s < γ}.

Proposition 5.5.40. Suppose A ∈ C
n×n, C

n×n carries the spectral norm ‖ · ‖, and

σC(A; δ) ⊂ C−δ (38)

for some given δ > 0. Then ν(A) < 0 if dist (A,Nn(C)) ≤ δ.

Proof : Let X ∈ Nn(C) be such that ‖A − X‖ ≤ δ. Then by (38) we have
α(X) < −δ and hence by (17), ν(A) ≤ α(X) + ‖A − X‖ < 0. �

Remark 5.5.41. The largest δ̂ such that the inclusion (38) holds for all δ < δ̂ satisfies
δ̂ = d−

C
(A + δ̂In) and can be determined from this equation (see Ex. 16). �

We will now apply Lemma 5.5.22 to obtain estimates for M0(A). The following
theorem is a “continuous time version” of a theorem due to Kreiss and improved by
Spijker, see Notes and References. After the proof we will show how the result can
be reformulated in terms of stability radii and spectral value sets.
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Theorem 5.5.42 (Kreiss-Spijker). Let ‖ · ‖ be any operator norm on Kn×n and
A ∈ Kn×n be such that

R(A) := sup
Re s>0

Re s ‖(sIn − A)−1‖ < ∞. (39)

Then ẋ = Ax is stable and

R(A) ≤ M0(A) = sup
t≥0

‖eAt‖ ≤ e·n R(A). (40)

Proof : Since R(A) < ∞ we have σ(A) ⊂ C−. So by (21)

(sIn − A)−1 =

∫ ∞

0

e−steAtdt, Re s > 0,

and we obtain the first inequality in (40) by taking norms

‖(sIn − A)−1‖ ≤ sup
t≥0

‖eAt‖
∫ ∞

0

e−t Re s dt = M0(A) (Re s)−1, Re s > 0. (41)

Given any γ > 0 and r > γ, let Γ(r, γ) denote the Bromwich contour which consists

r

γ + ıδ

γ − ıδ

Γ(r, γ)

γ

Figure 5.5.4: Bromwich contour

of a straight line from γ−ıδ to γ+ıδ where δ =
√

r2 − γ2, and the positively oriented
arc Γ(r, γ) connecting γ + ıδ with γ − ıδ along the circle with radius r around the
origin, see Figure 5.5.4. Now consider any r > 0 sufficiently large so that all the
eigenvalues of A lie inside the contour (this is possible since σ(A) ⊂ C−). Given any
t > 0 choose y ∈ Kn, ‖y∗‖∗

Kn = 1, x ∈ Kn, ‖x‖Kn = 1 such that |y∗eAtx| = ‖eAt‖,
then from (21)

y∗eAtx =
1

2πı

∫
Γ(r,γ)

estg(s)ds +
1

2πı

∫ γ+ıδ

γ−ıδ

estg(s)ds,

where g(s) = y∗(sIn − A)−1x. By partial integration we obtain for all r sufficiently
large

y∗eAtx = − 1

2πıt

∫
Γ(r,γ)

estg′(s)ds − 1

2πıt

∫ γ+ıδ

γ−ıδ

estg′(s)ds,



5.5 Transient Behaviour 671

where g′ = dg/ds. Since g is strictly proper rational there exists a constant M > 0
such that |g′(s)| ≤ M/r2 on Γ(r, γ) for all sufficiently large r ! 0, and so∣∣∣∣∫

Γ(r,γ)

estg′(s) ds

∣∣∣∣ ≤ M

r2

∫
Γ(r,γ)

e(Re s) t |ds| ≤ M

r2
eγ t2πr → 0 as r → ∞

(γ > 0, t > 0 arbitrary but fixed). It follows that for all t, γ > 0

y∗eAtx=− 1

2πıt
lim
r→∞

[∫
Γ(r,γ)

estg′(s)ds +

∫ γ+ıδ

γ−ıδ

estg′(s)ds

]
=− 1

2πıt

∫ γ+ı∞

γ−ı∞
estg′(s)ds.

Thus, setting γ = t−1, we obtain

‖eAt‖ = |y∗eAtx| ≤ 1

2πt

∫ γ+ı∞

γ−ı∞
eγt|g′(s)| |ds| =

e

2πt

∫ ∞

−∞
|g′(t−1 + ıω)| dω, t > 0.

Now apply the continuous time version of Spijker’s Lemma A.2.21 to the strictly
proper rational function g(s) and note that the denominator of g(s) is of degree ≤ n,
then∫ t−1+ı∞

t−1−ı∞
|g′(s)| |ds| ≤ 2πn sup

ω∈R

|g(t−1+ıω)| ≤ 2πn sup
ω∈R

‖((t−1+ıω)In−A)−1‖, t > 0.

Therefore

sup
t>0

‖eAt‖ ≤ sup
t>0

e·n
t

sup
ω∈R

‖((t−1+ ıω)In−A)−1‖ = e·n sup
Re s>0

Re s ‖(sIn−A)−1‖.

Since supt>0 ‖eAt‖ < ∞ implies stability of ẋ = Ax, this completes the proof. �

If ẋ = Ax is stable (but not necessarily asymptotically stable), then M0(A) < ∞ by
Proposition 3.3.1 and it follows from (41) that R(A) < ∞. On the other hand, we
always have R(A) ≥ 1 since α‖(αIn − A)−1‖ = ‖(In − α−1A)−1‖ → 1 as α → ∞.
The above theorem establishes bounds for M0(A). While the upper and the lower
bounds clearly depend on the matrix A ∈ Kn×n, their quotient (= e · n) is indepen-
dent of A. Note that the factor grows linearly with the system’s dimension and it
has been shown that the factor e·n in (40) cannot be reduced, if the inequality is
required to hold for all stable matrices A of arbitrary order, see Notes and Refer-
ences. As a direct consequence of the Kreiss-Spijker Theorem we obtain estimates
for all Mβ(A), β > α(A).

Corollary 5.5.43. Let ‖·‖ be any operator norm on K
n×n, A ∈ K

n×n and β > α(A).
Then

Rβ(A) ≤ Mβ(A) ≤ e·n Rβ(A). (42)

where Rβ(A) = supRe s>β(Re s − β) ‖(sIn − A)−1‖ < ∞.

Proof : Since β > α(A) we have σ(Aβ) ⊂ C− and hence R(Aβ) < ∞ for Aβ =
A − βIn. Now

R(Aβ) = sup
Re s>0

Re s ‖((s + β)In − A)−1‖ = sup
Re s>β

(Re s − β) ‖(sIn − A)−1‖ = Rβ(A).

So (42) follows by applying Theorem 5.5.42 with A replaced by Aβ and noting that
by (6), M0(Aβ) = Mβ(A). �
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Remark 5.5.44. The Hille-Yosida Theorem states that a necessary and sufficient con-
dition for a closed linear operator A with dense domain in a Banach space X to generate
a strongly continuous semigroup is that there exist real numbers M, β such that for all s

with Re s > β, we have s ∈ ρ(A) and

‖(sI − A)−m‖ ≤ M

(Re s − β)m
, m ∈ N

∗.

Moreover this condition is equivalent to ‖eAt‖ ≤ Meβt, t ≥ 0.
On the other hand if ‖(sI−A)−1‖ ≤ M/(Re s − β) holds for all Re s > β, i.e. Rβ(A) ≤ M ,
then the previous corollary only yields that ‖eAt‖ ≤ e ·nMeβt, t ≥ 0. So by restricting to a
single power of the resolvent one obtains an inferior estimate which cannot be generalized
to infinite dimensions. �

The following example illustrates that, with respect to the spectral norm, the lower
bound in (40) is achieved by all normal matrices.

Example 5.5.45. Suppose A ∈ K
n×n is normal, then we know from Proposition 5.5.12

that with respect to the spectral norm Mβ(A) = 1 for all β ≥ α(A). Now by (3.64a)

Rβ(A) = sup
α>β

sup
ω∈R

(α − β) ‖((α + ıω)In − A)−1‖ = sup
α>β

(α − β)/d−
C
(Aα)

where d−
C
(Aα) denotes the distance of Aα = A−αIn from instability. But Proposition 5.3.38

implies that d−
C
(Aα) = −α(Aα) = α − α(A) for α > α(A). Hence for all β ≥ α(A)

sup
α>β

(α − β)/d−
C

(Aα) = sup
α>β

(α − β)/(α − α(A)) = lim
α→∞(α − β)/(α − α(A)) = 1.

So (42) takes the form Rβ(A) = 1 = Mβ(A) ≤ e·n. �

In some applications we may be only interested in the transient behaviour of the
system in certain directions, e.g. if a perturbation is known to affect only certain
coordinates of the state vector. This can be taken into account by introducing
structure matrices (B, C) ∈ Kn×� × Kq×n and considering CeAtB. If ẋ = Ax is
stable the proof of Theorem 5.5.42 can easily be extended to yield

R(A; B, C) ≤ sup
t≥0

‖CeAtB‖ ≤ e·n R(A; B, C), (43)

where R(A; B, C) = supRe s>0 Re s ‖C(sIn−A)−1B‖. This formula for R(A; B, C) is
reminiscent of the formula for the complex stability radius. Note that σ(Aα) ⊂ C−
for α > 0, since ẋ = Ax is assumed to be stable. Making use of (3.22) R(A; B, C)
can be expressed in terms of this radius as follows

R(A; B, C) = sup
α>0

α sup
ω∈R

‖C((α + ıω)In − A)−1B‖ = sup
α>0

α/r−
C
(Aα; B, C),

so that for every stable system ẋ = Ax

sup
α>0

α/r−
C
(Aα; B, C) ≤ sup

t≥0
‖CeAtB‖ ≤ e·n sup

α>0
α/r−

C
(Aα; B, C). (44)

Thus, if for some α > 0 the stability radius of (Aα, B, C) is small compared with α
then we can expect large values of ‖CeAtB‖ for some t > 0.
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More generally, if A ∈ Kn×n is arbitrary and we set Rβ(A; B, C) := R(Aβ; B, C) for
any β > α(A), we have

Rβ(A; B, C) = sup
Re s>β

(Re s − β) ‖C(sIn − A)−1B‖ = sup
α>β

(α − β)/r−
C
(Aα; B, C),

and so

sup
α>β

(α−β)/r−
C
(Aα; B, C) ≤ sup

t≥0
‖Ce(A−βIn)tB‖ ≤ e·n sup

α>β
(α−β)/r−

C
(Aα; B, C). (45)

We will now interpret the lower bound R(A; B, C) in terms of spectral value sets.
For this we introduce the following

Definition 5.5.46. Given (A, B, C) ∈ Kn×n ×Kn×� ×Kq×n, the δ-spectral abscissa
of A under perturbations of the form A � A(∆) = A + B∆C is given by

αδ(A; B, C) = sup{Re s ; s ∈ σC(A; B, C; δ)}.

In the unstructured case (B=C =In) the δ-spectral abscissa is denoted by αδ(A).

By Proposition 5.2.19 we have for δ > 0 and s ∈ ρ(A)

‖C(sIn − A)−1B‖ = δ−1 ⇔ s ∈ ∂σC(A; B, C; δ).

Hence, setting G(s) = C(sIn − A)−1B and assuming G(s) �≡ 0, σ(A) ⊂ C− we get

R(A; B, C) = sup
Re s>0

Re s ‖G(s)‖ = sup
δ>0

sup
Re s>0

‖G(s)‖=δ−1

Re s ‖G(s)‖ = sup
δ>0

αδ(A; B, C)/δ,

where sup ∅ := 0. Here we have used that for every δ > 0 satisfying αδ(A; B, C) > 0

αδ(A; B, C) = sup{Re s; s ∈ ∂σC(A; B, C; δ)} = sup{Re s; s ∈ C+, ‖G(s)‖ = δ−1}

by (2.27). We conclude that

sup
δ>0

αδ(A; B, C)/δ ≤ sup
t≥0

‖CeAtB‖ ≤ e·n sup
δ>0

αδ(A; B, C)/δ. (46)

More generally, since αδ(Aβ; B, C) = αδ(A; B, C) − β we have for β > α(A)

sup
δ>0

(αδ(A; B, C) − β)/δ ≤ sup
t≥0

‖CeAβtB‖ ≤ e·n sup
δ>0

(αδ(A; B, C) − β)/δ. (47)

In particular, we obtain for the unstructured case if β > α(A)

sup
δ>0

(αδ(A) − β)/δ ≤ Mβ(A) = sup
t≥0

‖eAβt‖ ≤ e·n sup
δ>0

(αδ(A) − β)/δ. (48)

This formula, together with (45) gives a precise meaning to the intuitive reasoning at
the beginning of this subsection: If A is Hurwitz stable and if for small δ the spectral
value set σC(A; δ) moves deep into the right half plane (see Figure 5.5.5) then since
supt≥0 ‖eAt‖ ≥ supδ>0 αδ(A)/δ ! 0 some trajectories of the system ẋ = Ax will
make large transient excursions. This means that small initial deviations of the
system’s state from the equilibrium x̄ = 0 will be largely amplified during transient
motion.
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Example 5.5.47. Consider the following matrix A in real Schur form with spectrum
σ(A) = {−1 ± 10ı,−1 ± 20ı,−1,−1 ± 25ı}.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −100 0 −150 0 200 −1000
1 −1 1 −10 25 11 −200
0 0 −1 400 −30 0 250
0 0 −1 −1 5 5 200
0 0 0 0 −1 −2 30
0 0 0 0 0 −1 −625
0 0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

−15 −10 −5 0 5 10 15 20 25 30
−40

−20

0

20

40

Figure 5.5.5: Spectral contours and front locus

In Figure 5.5.5 we have plotted the spectral contours Cδ = {s ∈ ρ(A); ‖(sI − A)−1‖ =
δ−1} for δ = 0.01, 0.02, 0.04, 0.08, 0.12, 0.16, ..., 0.4. The spectral value sets move quickly
into the right half plane for δ > d−

C
(A) = 0.004, so one would expect large transient

excursions. Denote by S(δ) the set of points on the contour Cδ with largest real part.
The real parts of these points are equal to the δ-pseudospectral abscissae of A. The set
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Figure 5.5.6: Graph of t �→ ‖eAt‖ and graph of δ �→ αδ(A)/δ

F = ∪δ>0S(δ) will be called the front locus of A. This is plotted with thick lines for
0 < Re s < 30 in Figure 5.5.5. We see for small δ that S(δ) consists of two points which
follow with increasing δ > 0 parabolic-like paths until they become united for δ ≈ 0.365.
From this value of δ onwards the front locus lies on the real axis. The quotient αδ(A)/δ
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takes its maximum value αδ̂(A)/δ̂ ≈ 162.3 at δ̂ = 0.0181. The corresponding points
ŝ± = 2.9308 ± 23.2i of the contour Cδ̂ with largest real part are indicated by two crosses
in Figure 5.5.5. At these points the function Re s ‖(sI − A)−1‖ attains its maximum
on C+, i.e. R(A) = Re ŝ±‖(ŝ±I − A)−1‖ ≈ 162.3. This value is to be compared with
M0(A) = supt≥0 ‖ exp(At)‖ ≈ 598.45. In Figure 5.5.6 the graph of t �→ ‖eAt‖ is shown
alongside the graph of δ �→ αδ(A)/δ. The Kreiss-Spijker Theorem compares the maxima
of these two graphs and tells us that M0(A) belongs to the interval [162.3, 3088.3] which
is not a particularly good estimate in this case. �

5.5.4 Robustness of (M, β)-Stability

In this subsection we examine the robustness of (M, β)-stability under full-block
affine perturbations. Throughout the subsection the assumptions are

• M ≥ 1, β ∈ R are given.

• (A, B, C) ∈ Ln,�,q(K) and the nominal system ẋ = Ax is (M, β)-stable.

• The vector spaces Kn, K�, Kq are provided with fixed norms (all denoted by
‖ · ‖) and the operators between them are provided with the corresponding
operator norms (also denoted by ‖ · ‖).

• The perturbations of the system matrix A are of the form

A � A(∆) = (A + B∆C), ∆ ∈ K
�×q. (49)

Definition 5.5.48. The (M, β)-stability radius of A under perturbations of the
form (49) is defined by

rK(A; B, C; M, β) = inf {‖∆‖; ∆ ∈ K
�×q, ∃ t > 0 : ‖e(A+B∆C)t‖ > Meβt}.

It follows from this definition and the fact that Sn(K; M, β) is closed that every
system ẋ = A(∆)x with ‖∆‖ ≤ rK is (M, β)-stable. Proposition 5.5.3 implies
that rK(A; B, C; M, β) > 0 if A is strictly (M, β)-stable. In the unstructured case
(B = C = In) the (M, β)-stability radius rK(A; In, In; M, β) is the distance of A from
the open set of non-(M, β)-stable systems in Kn×n and is denoted by d−

K
(A; M, β).

In the special case where M = 1 this distance can be expressed via the initial growth
rate.

Proposition 5.5.49. Suppose that A ∈ K
n×n generates a β-contraction semigroup,

i.e. ‖eAt‖ ≤ eβt for all t ≥ 0. Then the distance of A from the set Xβ ⊂ Kn×n of
n × n-matrices which do not generate a β-contraction semigroup is given by

d−
K
(A; 1, β) := dist (A, Xβ) = β − ν(A). (50)

Proof : Suppose A generates a β-contraction semigroup and X ∈ Xβ . Then Aβ :=
A − βIn generates a contraction semigroup whilst Xβ := X − βIn does not, and so
by Lemma 5.5.9 (vii) and (i)

0 < ν(Xβ) ≤ ν(Aβ) + ν(Xβ − Aβ) ≤ ν(Aβ) + ‖A − X‖.
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Hence d−
K
(A; 1, β) = dist (A, Xβ) ≥ −ν(Aβ) = −ν(A) + β. Now for any ε > 0, we

have by Lemma 5.5.9 (iii)

ν(A + (−ν(A) + β + ε)In) = ν(A) + (−ν(A) + β + ε) = β + ε.

So A + (−ν(A) + β + ε)In ∈ Xβ and ‖(−ν(A) + β + ε)In‖ = −ν(A) + β + ε and this
proves dist (A, Xβ) ≤ −ν(A) + β. �

Specializing the above result to Euclidean norms and β = 0, the distance be-
tween any generator A of a contraction semigroup from the set of generators of
non-contractive semigroups is given by (see Corollary 5.5.26)

d−
K
(A; 1, 0) = −λmax(A + A∗)/2. (51)

We will now examine robustness aspects of (M, β)-stability by means of Liapunov
norms. We have seen in Subsection 5.5.2 that a single system ẋ = Ax is (M, β)-stable
if and only if there exists a β-Liapunov norm p for ẋ = Ax on Kn such that (29)
holds. Our aim is to extend this result to sets of systems. A direct generalization
does not work: If there exists a common β-Liapunov norm satisfying (29) for all A
in a given set A ⊂ Kn×n, then each system ẋ = Ax, A ∈ A is (M, β)-stable, but the
converse is not true, see Ex. 19. Instead of considering each time-invariant linear
system ẋ = Ax, A ∈ A separately, we have to consider the differential inclusion

ẋ(t) ∈ Ax(t), t ≥ 0. (52)

An absolutely continuous function ϕ(·) : R+ → Kn is said to be a solution of (52) if
ϕ̇(t) ∈ Aϕ(t) for almost all t ≥ 0. In other words for almost all t ∈ R+ there exists
A(t) ∈ A such that ϕ̇(t) = A(t)ϕ(t).2

Proposition 5.5.50. Suppose p is a joint β-Liapunov norm on Kn for the set
A ⊂ Kn×n satisfying ecc(p) ≤ M and νp(A) := supA∈A νp(A) ≤ β. Then

‖ϕ(t)‖ ≤ M eβt‖ϕ(0)‖, t ≥ 0 (53)

for all solutions ϕ(·) of (52). Conversely, if (53) holds for all solutions of (52) then
there exists a joint β-Liapunov norm p for A with ecc(p) ≤ M and νp(A) ≤ β.

Proof : Note that ϕ is a solution of the differential inclusion (52) if and only if t �→
e−βtϕ(t) solves the differential inclusion ϕ̇(t) ∈ (A − βIn)ϕ(t) and by Lemma 5.5.9
we have νp(A − βIn) = νp(A) − β for any norm p on Kn. Hence, without any
restriction, we may assume that β = 0.
First suppose p is a joint Liapunov norm on K

n for the set A ⊂ K
n×n satisfying

ecc(p) ≤ M and νp(A) ≤ 0. Let ϕ(·) : R+ → Kn be a solution of (52) on R+. Then
there exist A(t) ∈ A, t ≥ 0 such that t �→ A(t) is measurable and ϕ̇(t) = A(t)ϕ(t)
for almost all t ≥ 0. Since the norm p(·) : Kn → Kn satisfies a global Lipschitz
condition, the composed function p(ϕ(·)) is absolutely continuous. Therefore p(ϕ(·))

2It is known that the matrices A(t) can be chosen in such a way that t �→ A(t) is measurable.
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is almost everywhere differentiable and since ϕ(t + h) = ϕ(t) + hA(t)ϕ(t) + r(t, h)
with limh→0 r(t, h)/h = 0 for a.e. t ≥ 0 we have by (11)

d+

dt
p(ϕ(t)) = lim

h↘0
[p(ϕ(t + h)) − p(ϕ(t))] /h = lim

h↘0
[p([In + hA(t)]ϕ(t)) − p(ϕ(t))] /h

≤ lim
h↘0

[p(In + hA(t)) − 1] p(ϕ(t))/h ≤ νp(A(t))p(ϕ(t)) ≤ 0, a.e. t ≥ 0.

Integrating from 0 to t we obtain p(ϕ(t))− p(ϕ(0)) ≤ 0 for t ≥ 0 and so making use
of (28) ‖ϕ(t)‖ ≤ ecc(p)‖ϕ(0)‖ ≤ M ‖ϕ(0)‖, t ≥ 0 whence (53) for β = 0.
Conversely, suppose that (53) holds with β = 0 for all solutions of (52). For any
x0 ∈ Kn let S(x0) be the set of all solutions ϕ(·) of (52) with ϕ(0) = x0, and define

p(x) = sup
ϕ∈S(x)

sup
t≥0

‖ϕ(t)‖, x ∈ K
n. (54)

It is easily verified that p is a norm on Kn and ‖x‖ ≤ p(x) ≤ M‖x‖ for x ∈ Kn, see
Ex. 18. For every A ∈ A, τ ≥ 0, x0 ∈ Kn, and ϕ ∈ S(eAτx0) let ψϕ : R+ → Kn be
defined by

ψϕ(t) = eAtx0, t ∈ [0, τ ] and ψϕ(t) = ϕ(t − τ), t ≥ τ.

Then ψϕ ∈ S(x0) and supt≥0 ‖ϕ(t)‖ ≤ supt≥0 ‖ψϕ(t)‖. Therefore

p(eAτx0) = sup
ϕ∈S(eAτ x0)

sup
t≥0

‖ϕ(t)‖ ≤ sup
ψ∈S(x0)

sup
t≥0

‖ψ(t)‖ = p(x0), τ ≥ 0.

This proves νp(A) ≤ 0 for all A ∈ A. Finally, since ‖x‖ ≤ p(x) ≤ M‖x‖ for x ∈ K
n

it follows from Definition 5.5.29 that ecc(p) ≤ M . �

The differential inclusion (52) is called (M, β)-stable if (53) holds for all solutions
ϕ(·) of (52). Proposition 5.5.50 shows that there exists a joint β-Liapunov norm
satisfying (29) for all A ∈ A if and only if the differential inclusion (52) is (M, β)-
stable. Since for any norm p the function νp : Kn×n → R is convex by Lemma 5.5.9,
we obtain from Proposition 5.5.50 the following

Corollary 5.5.51. The differential inclusion (52) is (M, β)-stable if and only if the
differential inclusion ẋ(t) ∈ (conv A)x(t) is (M, β)-stable.

Remark 5.5.52. In the next section we will consider more general classes of perturba-
tions, in particular time-varying ones. Suppose that ∆ ⊂ K

�×p is closed, 0 ∈ ∆, ‖ · ‖ is an
operator norm on K

�×p and A(·) : ∆ �→ A(∆) is a continuous map from ∆ to K
n×n. We as-

sume that ẋ = A0x with A0 = A(0) is (M,β)-stable. Let A(r) = {A(∆);∆ ∈ ∆, ‖∆‖ ≤ r}
for r ∈ R+. Then the (M,β)-stability radius of A(·) with respect to time-varying pertur-
bations is defined by

r∆,t = r∆,t(A(·);M,β) = sup{r ∈ R+; ẋ ∈ A(r)x is (M,β)-stable}. (55)

So, for all time-varying perturbations ∆(·)∈L∞(R+,∆) with ‖∆(·)‖L∞ < r∆,t(A(·);M,β),
the solutions ϕ of

ẋ(t) = A(∆(t))x(t), t ≥ 0 (56)
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satisfy (53). On the other hand, for every ε > 0 there exists a perturbation ∆(·) ∈
L∞(R+,∆) with ‖∆(·)‖L∞ < r∆,t + ε and a solution ϕ of (56) such that ‖ϕ(t)‖ >

M eβt‖ϕ(0)‖ for some t > 0.
Proposition 5.5.50 implies that, for every r ∈ R+, r < r∆,t there exists a joint Liapunov
norm p for the set A(r) satisfying ecc(p) ≤ M and supA∈A(r) νp(A) ≤ β. As mentioned
above, an analogous result does not necessarily hold for A(r∆) where

r∆ = r∆(A(·);M,β) = sup{r ∈ R+; ẋ = A(∆)x is (M,β)-stable for all A(∆) ∈ A(r)}.

Although by definition all the systems ẋ = A(∆)x, ∆ ∈ ∆, ‖∆‖ ≤ r are (M,β)-stable if
r < r∆, there may not exist a joint Liapunov norm p for these sets of systems satisfying
ecc(p) ≤ M and supA∈A(r) νp(A) ≤ β. �

While Proposition 5.5.50 is satisfactory from a theoretical point of view, it is unclear
how a joint β-Liapunov norm p for the set A ⊂ Kn×n could be constructed in
order to obtain estimates of the form (53). We will now show that for the spectral
norm estimates of the (M, β)-stability radius of A can be obtained from solutions
of differential and algebraic Riccati equations.

Proposition 5.5.53. Suppose there exist P o ∈ Hn(K), Q ∈ Hq(K), R ∈ H�(K),
P o & 0, Q & 0, R & 0 such that

Ṗ − A∗P − PA + 2βP − C∗QC − PBRB∗P = 0, P (0) = P o (57)

has a solution on R+ which satisfies

σmax(P (t))/σmin(P
o) ≤ M2, t ≥ 0. (58)

Then with respect to Euclidean norms rC(A; B, C; M, β) ≥ (σmin(Q) σmin(R))1/2.

Proof : If P satisfies (57) on R+, then for ∆ ∈ C�×q

Ṗ − (A − βIn + B∆C)∗P − P (A − βIn + B∆C)

= C∗QC + PBRB∗P − (B∆C)∗P − PB∆C

= (B∗P − R−1∆C)∗R(B∗P − R−1∆C) + C∗(Q − ∆∗R−1∆)C.

Now assume that ‖∆‖2 ≤ σmin(Q)σmin(R), then Q $ σmin(R)−1∆∗∆ $ ∆∗R−1∆,
hence for all t ≥ 0

V (t) := (B∗P (t) − R−1∆C)∗R(B∗P (t) − R−1∆C) + C∗(Q − ∆∗R−1∆)C $ 0.

In the same way that (37) was established, we have

P (t) = e(A(∆)∗−βIn)tP oe(A(∆)−βIn)t +

∫ t

0

e(A(∆)∗−βIn)(t−s)V (s)e(A(∆)−βIn)(t−s)ds.

Therefore eA(∆)∗tP oeA(∆)t % e2βtP (t) and (58) implies

‖eA(∆)t‖2 ≤ e2βtσmax(P (t))/σmin(P
o) ≤ M2e2βt, t ≥ 0.

So ẋ = A(∆)x is (M, β)-stable for all ∆ ∈ K�×q, ‖∆‖2 ≤ σmin(Q)σmin(R). �
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The usefulness of the lower bound for rC(A; B, C; M, β) obtained from this propo-
sition depends on a judicious choice of Q & 0, R & 0 and P o & 0. The simplest
choices are Q = αQIn, R = αRIn, P o = In, where αQ > 0 and αR > 0 have to be
selected carefully, see Example 5.5.56.

Remark 5.5.54. If P = P ◦ is a constant solution of (57), i.e.

A∗P + PA − 2βP + C∗QC + PBRB∗P = 0, (59)

then the proof of the previous proposition shows that

(A − βIn + B∆C)∗P + P (A − βIn + B∆C) % 0.

Hence ‖x‖P = 〈Px, x〉1/2 defines a joint β-Liapunov norm for all the perturbed systems
ẋ = A(∆)x where ‖∆‖2 ≤ σmin(Q)σmin(R). �

We conclude this section by deriving a bound on time-varying, nonlinear perturba-
tions which ensures global (M, β)-stability of the perturbed systems. Consider the
time-varying nonlinear equation

ẋ = Ax + B∆(t, Cx), x(0) = x0, (60)

where ∆ : R+ ×K
q �→ K

�, (t, z) �→ ∆(t, z) is continuous in (t, z) ∈ R+ × K
q, locally

Lipschitz with respect to z and satisfies ∆(t, 0) = 0 for all t ≥ 0. The following
proposition extends Proposition 5.5.53 to perturbations of the RHS of the form
Ax � Ax + B∆(t, Cx).

Proposition 5.5.55. Under the assumptions of Proposition 5.5.53 suppose that

‖∆(t, z)‖2 ≤ (σmin(Q)σmin(R))1/2‖z‖2, (t, z) ∈ R+ × K
q.

Then for every x0 ∈ Kn, there exists a unique solution x(·, x0) of (60) on R+ and

‖x(t, x0)‖2 ≤ Meβt‖x0‖2, for all t ≥ 0.

Proof : The existence of a unique solution x(·) = x(·, x0) of (60) on R+ follows from
Theorem 2.1.14 and Proposition 2.1.19. By assumption there exists a Hermitian
solution P (·) of the Riccati equation (57) on R+ for which we have

d

ds
〈x(t − s), P (s)x(t − s)〉

= 〈x(t − s), Ṗ (s)x(t − s)〉 − 2Re
〈
Ax(t − s) + B∆(t − s,Cx(t − s)), P (s)x(t − s)

〉
= − 2β〈x(t − s), P (s)x(t − s)〉 + 〈Cx(t − s), QCx(t − s)〉+

+ 〈B∗P (s)x(t − s), RB∗P (s)x(t − s)〉 − 2Re〈∆(t − s,Cx(t − s)), B∗P (s)x(t − s)〉

= 〈Cx(t − s), QCx(t − s)〉 −
〈
R−1∆(t − s,Cx(t − s)),∆(t − s,Cx(t − s))

〉
+

+
〈
B∗P (s)x(t−s) − R−1∆(t−s,Cx(t−s)), R

[
B∗P (s)x(t−s) − R−1∆(t−s,Cx(t−s))

]〉
− 2β〈x(t − s), P (s)x(t − s)〉.
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Now suppose that σmin(Q)σmin(R)‖z‖2
2 ≥ ‖∆(t, z)‖2

2, (t, z) ∈ R+ × Kq, then set-
ting z := Cx(t − s) and u = ∆(t − s, z) we obtain ‖u‖2

2 = ‖∆(t − s, z)‖2
2 ≤

σmin(Q)σmin(R)‖z‖2
2 and

d

ds
〈x(t − s), P (s)x(t − s)〉 + 2β〈x(t − s), P (s)x(t − s)〉 ≥ 〈z, Qz〉 − 〈R−1u, u〉 ≥ 0.

After multiplying by e2βs, this yields

d

ds

[
e2βs〈x(t − s), P (s)x(t − s)〉

]
≥ 0

and integrating from 0 to t

σmax(P (t))e2βt‖x0‖2
2 ≥ e2βt〈x0, P (t)x0〉 ≥ 〈x(t), P ox(t)〉 ≥ σmin(P

o)‖x(t)‖2
2.

Thus under the conditions of Proposition 5.5.53, ‖x(t)‖2 ≤ Meβt‖x0‖2, t ≥ 0. �

The sufficient condition given in Propositions 5.5.53 and 5.5.55 can be effectively
used even in the borderline case where M = 1 (in which case P o must necessarily
be a multiple of the identity matrix by (58)). This is illustrated in the following
example.

Example 5.5.56. Suppose A is a normal matrix, A = U∗ diag (λ1, λ2, . . . , λn)U , with U

unitary, Re λi < 0, i ∈ n and B = C = In. Let P o = In, Q = α2In, R = α2In. A matrix
of the form P̂ (t) = UP (t)U∗ = diag (p1(t), p2(t), . . . , pn(t)) solves (57) if and only if its
diagonal entries solve the following set of n decoupled scalar differential Riccati equations:

ṗi − (λi + λ∗
i − 2β)pi − α2 − α2p2

i = 0, pi(0) = 1, i ∈ n.

Let γi = −(λi + λ∗
i − 2β)/2, γ1 ≤ γ2 ≤ . . . ≤ γn and suppose β is such that γ1 > 0.

If α2 = γ1, then p1(t) ≡ 1 and pi(t) ≤ 1 for all t ≥ 0 and i ∈ n. So 1 ≥ ‖P̂ (t)‖ =
‖P (t)‖, t ≥ 0. Thus, with respect to Euclidean norms, rK(A; I, I; 1, β) ≥ α2 = γ1 =
− [λmax(A + A∗) − 2β] /2. In particular, if σ(A) ⊂ C− then rK(A; I, I; 1, 0) ≥ −λmax(A +
A∗)/2 = ν(A). (By Proposition 5.5.49 we know that in fact the equality holds).
Now suppose that ∆ : R+ × K

n �→ K
n is continuous in (t, x) ∈ R+ × K

n, locally Lipschitz
with respect to x and satisfies ∆(t, 0) = 0 for all t ≥ 0. Then by Proposition 5.5.55 if

1/2 [λmax(A + A∗) − 2β] < 0 and ‖∆(t, x)‖2 ≤ −1/2 [λmax(A + A∗) − 2β] ‖x‖2,

then the solutions ϕ(·) of the time-varying nonlinear equation ẋ = Ax + ∆(t, x) satisfy
‖ϕ(t)‖2 ≤ eβt‖ϕ(0)‖2 for all t ≥ 0. �

5.5.5 Exercises

If not specified otherwise, the vector norms in the following exercises are arbitrary and the
matrix norms are the corresponding operator norms. Both are denoted by ‖ · ‖.

1. Prove that for all A ∈ C
n×n

σ(A) ⊂ C− ⇐⇒ ∃t > 0 : ‖eAt‖ < 1.
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2. If A =

⎡⎣−5 3 1
0 −1 1
1 2 1

⎤⎦, find ν(A) with respect to the 1-, 2- and ∞-norms and use

Lemma 5.5.9 to compute intervals in R containing the real parts of the eigenvalues of A.

3. Prove that if A = (aij) ∈ C
n×n, then with respect to the 1-norm

ν(A) = max
j∈n

(
Re ajj +

∑
i∈n\{j}

|aij |
)
.

4. If νp(A) denotes the initial growth rate of A ∈ C
n×n with respect to the p-norm for

1 ≤ p ≤ ∞, prove
ν2(A) ≤ (ν1(A) + ν∞(A)) /2.

(Hint: Use Gershgorin’s Theorem 4.2.19.)

5. Suppose ‖ · ‖ and ‖ · ‖∗ are dual vector norms on C
n. Show that the initial growth rate

of A ∈ C
n×n with respect to the norm ‖ · ‖ is given by

ν(A) = max
‖x‖=1

max
‖y‖∗=1
〈x,y〉=1

Re〈Ax, y〉.

If ν∗(A) denotes the initial growth rate with respect to the dual norm, prove that ν∗(A) =
ν(A∗) and if νp(A) is the initial growth rate with respect to the p-norm, then ν2(A) ≤
(ν(A) + ν∗(A))/2 and so, in particular,

ν2(A) ≤ (νp(A) + νp∗(A)) /2, 1 ≤ p, p∗ ≤ ∞, 1/p + 1/p∗ = 1.

6. Suppose T ⊂ R is an interval and A(·) : T → C
n×n a continuous matrix function.

Prove that for any t0 ∈ T , x0 ∈ C
n the solution x(·) = x(·; t0, x0) of the initial value

problem ẋ = A(t)x, x(t0) = x0 satisfies

exp

[∫ t

t0

−ν(−A(s))ds

]
‖x0‖ ≤ ‖x(t)‖ ≤ exp

[∫ t

t0

ν(A(s))ds

]
‖x0‖, t ∈ T, t ≥ t0.

Assuming supT = ∞, conclude that the system ẋ = A(t)x is stable at time t0 if there exists
a constant c = c(t0) > 0 such that

∫ t
t0

ν(A(s))ds ≤ c for all t ≥ t0 and it is asymptotically

stable at time t0 if
∫ t
t0

ν(A(s))ds → −∞ as t → ∞, see [111], [508].

7. If A ∈ K
n×n generates a contraction semigroup such that ‖eAτ‖ = 1 for some τ > 0

show that there exists an x ∈ K
n such that ‖eAtx‖ = 1, t ∈ [0, τ ].

8. If A =

[
−1 4
0 −2

]
, find a norm on R

2 with respect to which A generates a contraction

semigroup.

9. If ‖ · ‖ is a norm on K
n and supt≥0 ‖eAt‖ < ∞, prove that ||| · |||A defined by

|||x|||A = sup
t≥0

‖eAtx‖, x ∈ K
n

is a norm on K
n with respect to which A generates a contraction semigroup. If σ(A) ⊂ C−

and supt≥0 ‖eAt‖ > 1 prove there exist x ∈ Kn and τ > 0 such that the trajectory eAtx

remains on the unit sphere {x ∈ K
n; |||x|||A = 1} for all t ∈ [0, τ ], see Fig. 5.5.3.

10. Prove the statements in Example 5.5.18.
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11. Suppose that a norm ‖ · ‖ on K
n has the following property:

If x(t) ∈ K
n \ {0} is analytic on an interval I ⊂ R, then there exists a y∗(t) ∈

K
1×n which is also analytic on I such that ‖y∗(t)‖∗ = ‖x(t)‖ and y∗(t)x(t) =

‖x(t)‖2 for all t ∈ I where ‖ · ‖∗ is the dual norm.

Prove that if A is asymptotically stable and generates a contraction semigroup on (Kn, ‖·‖),
then the semigroup must be a strong contraction. (Hint: Make use of Ex. 7.)

12. Show that [·, ·] defined by

[x, y] =

{
x1y1 if |y1| > |y2|
x2y2 if |y2| ≥ |y1|

, x, y ∈ R
2

is a semi-scalar product on R
2 with respect to the ∞-norm. Hence prove that the real

matrix A =

[
a11 a12

a21 a22

]
generates a contraction semigroup on R

2 with respect to the

∞-norm if and only if a11 + |a12| ≤ 0, a22 + |a21| ≤ 0.

13. Prove that A = (aij) ∈ C
n×n generates a contraction semigroup with respect to the

∞-norm if and only if
∑

j �=i |aij | ≤ −Re aii for all i ∈ n, i.e. if and only if Reaii ≤ 0,
i ∈ n and the matrix obtained from A by replacing aii by Re aii is diagonally dominant.

14. Show that if A =

[
a b

c a

]
∈ C

2×2, a closest normal matrix with respect to the spectral

norm is X̂ =

[
a (b − c)/2

−(b − c)/2 a

]
, and ‖A − X̂‖2,2 = |b + c|/2. Show that ν(A) < 0 if

a < 0 and 2|a| > |b + c|. So in this case Corollary 5.5.13 gives a tight result.

15. Given any A ∈ K
n×n prove that there exists Û ∈ Un(C) such that Û∗AÛ = DÛ + NÛ

is in upper Schur form, DÛ is diagonal, NÛ is upper triangular with zeros on the diagonal
and ‖NÛ‖2,2 = dep(A) where dep(A) is defined by (16).

16. Show that (38) holds if and only if

max
ω∈R

‖((−δ + ıω)In − A)−1‖ < δ−1.

Hence prove the statement in Remark 5.5.41.

17. If A =

[
−1 6
0 −1

]
and Aα = A − αI2, α ∈ R show that for the spectral norm

d−
C
(Aα)2 = 18 + (1 + α)2 − 6[9 + (1 + α)2]1/2, α > 0.

Prove that d−
C
(Aα)/α is minimized at α = α̂ = 5/4 and so R(A) = α̂/d−

C
(Aα̂) = 5/3 where

R(A) is the Kreiss constant defined in (39).
For given δ > 0 show that α + ıω ∈ ∂σC(A, δ), α ∈ R provided

δ2 = 18 + (1 + α)2 + ω2 − 6
[
9 + ((1 + α)2 + ω2)

]1/2
.

Hence show that αδ(A) =
√

δ2 + 6δ − 1, provided δ >
√

10− 3. Use this result to confirm
that R(A) = 5/3. Prove that

eAt =

[
1 −6t
0 1

]
e−t, t ≥ 0.

and hence ‖eAt‖2 = [1 + 18t2 + 6t
√

9t2 + 1] e−2t, i.e. ‖eAt‖ = e−t(
√

9t2 + 1 + 3t).
Show that t ≈ 0.89 maximizes the right hand side and this yields M0(A) ≈ 5.35. Whereas
the estimates in (40) are 5/3 ≤ M0(A) ≤ 10e/3 = 9.06.
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18. Suppose A ⊂ K
n×n and all solutions ϕ of the differential inclusion ẋ(t) ∈ Ax(t) satisfy

‖ϕ(t)‖ ≤ M‖ϕ(0)‖, t ≥ 0. For any x0 ∈ K
n let S(x0) be the set of all solutions ϕ(·) of

ẋ(t) ∈ Ax(t) with ϕ(0) = x0, and define

p(x) = sup
ϕ∈S(x)

sup
t≥0

‖ϕ(t)‖, x ∈ K
n.

Prove that p is a norm on K
n and ‖x‖ ≤ p(x) ≤ M‖x‖ for x ∈ K

n.

19. Consider A =

[
−1 4
0 −1

]
. Prove that A+A∗ is unstable. Explain why it is not possible

to find P & 0, Qi & 0, i = 1, 2 such that

PA + A∗P + Q1 = 0, AP + PA∗ + Q2 = 0.

Let β ∈ (−1, 0) and M = Mβ(A) = Mβ(A∗). Then this exercise shows that although both
A and A∗ are (M,β)-stable, there does not exist a joint β-Liapunov function for them.

20. If
A =

[
0 1
−1 −1

]
, B =

[
0
1

]
, C = [0, 1],

show that P (t) ≡ I2 is a constant solution of (57) with R = 1, Q = 1, β = 0. Hence show
that rK(A;B,C; 1, 0) ≥ 1 (see Definition 5.5.48). Prove that this estimate is tight, i.e.
rK(A;B,C; 1, 0) = 1.

21. Consider the nonlinear scalar initial value problem

ξ̈ + ξ̇ + ξ + ∆(ξ) = 0, ξ(0) = ξ0, ξ̇(0) = ξ1

where ξ0, ξ1 ∈ R, ∆ : R → R is locally Lipschitz and satisfies |∆(ξ)| ≤ |ξ|, ξ ∈ R. If ξ(t)
solves this initial value problem, use Ex. 20 to show that ξ̇(t)2 + ξ(t)2 ≤ ξ2

0 + ξ2
1 for all

t ≥ 0.

In the next four exercises the reader is asked to prove some results about the
transient behaviour of discrete time semigroups (At)t∈N where A ∈ K

n×n is
given. For simplicity we assume that K

n×n is endowed with the spectral norm
‖ · ‖ and set

Mβ(A) = min{M ∈ R+; ∀t ∈ N : ‖At‖ ≤ Mβt}, β > �(A)

ν(A) = inf{r ∈ R+;∀t ∈ N : ‖At‖ ≤ rt}.

22. Prove that Mβ(A) = M1(β
−1A) for β > 0 and ν(A) = λmax(AA∗)1/2 = ‖A‖. If A =[

1 1
0 1

]
prove that At =

[
1 t

0 1

]
, t ∈ N and determine �(A), ν(A), Mβ(A) for β > �(A).

23. Suppose β > �(A). Prove that any Hermitian solution Pβ(·) of the difference inequality

P (t + 1) − β−2A∗P (t)A $ 0, t ∈ N (61)

satisfies supt∈N σ(Pβ(t))/σmin(Pβ(0)) ≥ Mβ(A)2. Prove also that the solution Pβ(·) of the
initial value problem

P (t + 1) = β−2A∗P (t)A, t ∈ N; P (0) = In

satisfies supt∈N σ(Pβ(t)) = Mβ(A)2.
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24. Prove a counterpart of the Kreiss-Spijker Theorem for the discrete time case, namely
if

R(A) = sup
|z|>1

(|z| − 1)‖(zIn − A)−1‖ < ∞,

then R(A) ≤ sup
t∈N

‖At‖ ≤ e·n R(A).

(Hint: For the first inequality you may wish to use the Neumann series

(zIn − A)−1 = z−1In + z−2A + z−3A2 + ...., |z| > �(A).

And for the second Cauchy’s integral representation

At =
1

2πı

∫
Γ

zt(zIn − A)−1dz, t ∈ N,

where Γ is a positively oriented, piecewise smooth, simple, closed curve enclosing σ(A),
see Example A.3.9).

25. If �δ(A) = sup{|z|; z ∈ σC(A; δ)} is the δ-spectral radius of A then prove that for R(A)
as in the previous exercise we have

R(A) = sup
r>1

(1 − r−1)/d1
C(r−1A) = sup

δ>0
(�δ(A) − 1)/δ.

26. For the spectral norm show that

‖At‖ ≤
n−1∑
i=0

(
t

i

)
[�(A)]t−i[dep (A)]i = [�(A)]t−n

n−1∑
i=0

(
t

i

)
[�(A)]n−i[dep (A)]i, t ∈ N,

where dep (A) is the departure of A from normality defined in (16), see [223].

5.5.6 Notes and References

An awareness of the importance of transient behaviour in fluid dynamics goes back many

years. Indeed more than one hundred years ago Thomson (1887) [494] recognized that

before their eventual decay there was a large transient growth of disturbances in Poiseuille

flows. But it is only recently that Boberg and Brosa (1988) [64], Gustavsson (1991) [205],

Reddy and Henningson (1993) [428], Butler and Farrell (1992) [86] found the extent of this

growth. Their results are startling since amplifications by many hundreds can occur, see

Trefethen (1997) [498]. The coupling between large transient motions of the linear part

and nonlinearities has been put forward as an explanation for the onset of turbulence at

Reynolds numbers which differ significantly from the critical Reynolds numbers obtained

from linear stability analysis, see Reddy et al. (1993) [429], Trefethen et al. (1993) [501].

Another motive for studying the transient behaviour of linear systems comes from the

stability analysis of discretization methods for ordinary and partial differential equa-

tions. Ważewski (1949) [514] used scalar functions m(·), M(·) satisfying m(t)I % 1
2(A(t)+

A∗(t)) % M(t)I in order to derive exponential estimates for the solutions of time-varying

linear systems ẋ = A(t)x. Motivated by a study of error estimates for numerical in-

tegration of ordinary differential equations Dahlquist (1959) [117] and Lozinskii (1958)

[348] independently introduced the initial growth rate (11) using the terms logarithmic

derivative and logarithmic norm. For further properties and applications see Ström (1975)
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[488] and Desoer and Vidyasagar (1975) [130] (where ν(A) is called matrix measure). In

the paper of Mohler and Van Loan (1978) [378] on “nineteen dubious ways of comput-

ing the exponential” the initial growth rate was used to obtain sensitivity estimates, see

also Mohler and Van Loan (2003) [379]. Henrici (1962) [223] defined the departure from

normality with respect to arbitrary norms and obtained the estimate given in Ex. 26.

The results of Henrici, Lozinskii, and Ważewski have been extended to time-varying and

infinite dimensional systems by Gil′ (1998) [187]. This monograph also contains a chapter

on the Aizerman conjecture.

Bauer (1962) [40] linked the initial growth rate to the numerical range. The convexity of

the numerical range was first proved by Hausdorff (1919) [218], see also Toeplitz (1918)

[496]. A detailed survey on the numerical range is given in Chapter 1 of Horn and Johnson

(1991) [265].

Lumer (1961) [350] introduced semi-scalar products and Lumer and Phillips (1961) [351]

proved Theorem 5.5.23, see also Yosida (1974) [538].

Definition 5.5.4, Example 5.5.6 and Propositions 5.5.37, 5.5.39 have been taken from Hin-

richsen et al. (2001) [240]. Problem 5.5.35 has been studied by Khusainov et al. (1984)

[308]. In this reference it is also shown that that the optimal bound obtainable for the

transient bounds via quadratic Liapunov norms may be quite conservative. That Problem

5.5.35 may be recast as a semidefinite program with LMI constraints can be seen from

Boyd et al. (1994) [74]. A number of different estimates for ‖eAt‖ are compared in a recent

paper of Veselic’ (2003) [507].

In some control applications it is desirable to use state or output feedback in order to

obtain both a reasonable decay rate and a satisfactory transient behaviour of the closed

loop system. This leads to the problem of finding feedback laws which, for prescribed

constants M and β, achieve (M,β)-stability of the controlled system. Some results on this

(M,β)-stabilization problem can be found in Hinrichsen et al. (2001) [240] (2002) [241].

For material on spectral value sets see the Notes and References of Section 5.2. Kreiss’

original theorem was proved for the discrete time case, i.e. for matrix powers instead of

matrix exponentials, see Kreiss (1962) [317]. It is one of the fundamental results avail-

able for establishing numerical stability of discretization methods, see Hairer and Wanner

(1991) [211] and Dorsselaer (1993) [504]. The upper Kreiss bound was improved by many

authors until LeVeque and Trefethen (1984) [341] obtained 2 e·n as the constant and con-

jectured that it could be e ·n. This was finally proved to be the case by Spijker (1991)

[476]. A nice account of the development can be found in Wegert and Trefethen (1994)

[515]. An instructive paper on the sharpness of the upper Kreiss estimate (in the original

discrete time case) is Spijker et al. (2002) [477].

For an introduction to the theory of differential inclusions see Smirnov (2002) [468]. This

book also contains some historical comments, a brief survey of the literature and some

applications. A short introduction to differential inclusions in a control theoretic context

is given in the last chapter of Clarke et al. (1998) [104]. The exponential growth of linear

differential inclusions has been thoroughly investigated by Wirth (2005) [533]. In his work,

the concept of eccentricity and special joint Liapunov norms (called Barabanov norms) play

a central role. These norms were introduced by Barabanov (1988) to determine the Lia-

punov exponents of differential inclusions, see [32]. The literature on Liapunov exponents

is of key importance for the determination of stability radii with respect to time-varying

parameter perturbations (to be studied in the next section).
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5.6 More General Perturbation Classes

So far, we have dealt mainly with affine parameter uncertainties of time-invariant
linear systems. Other model uncertainties were not considered and consequently not
only the nominal models but also the perturbed ones were time-invariant and linear.
From our discussion in the introduction to this chapter we know that parameter
uncertainties are not the only source of model uncertainties. In applications, time-
invariant linear models are often obtained by linearizing a nonlinear system around
an equilibrium point or by neglecting time-varying effects. In other cases they are
the result of model reduction, i.e. the approximation of high or infinite dimensional
plants by lower dimensional models (neglected dynamics). In these cases the “real”
system can be viewed as a nonlinear, time-varying or dynamic perturbation of the
simplified time-invariant linear model. We conclude this chapter by introducing
stability radii with respect to these wider perturbation classes and analyze some of
their properties. It will be of particular interest to investigate whether or not the
real and complex stability radii studied in Section 5.3 are misleading indicators of
stability in the presence of more general perturbations of the system equations.
Our basic approach will be, as in the previous sections, to assume that the nominal
system is a time-invariant linear model and that the perturbations can be represented
in output feedback form. However now, we will allow feedback operators that are (i)
nonlinear, (ii) time-varying linear or (iii) dynamic. As a consequence a number of
new features appear:

• Spectral analysis and the concept of Cg-stability are no longer applicable.
Instead the analysis must take place in the time domain with the resulting
need for a separate discussion of continuous and discrete time systems. Here
we only consider continuous time systems.

• In the case of nonlinearities we have to discuss the stability of a particular given
equilibrium state since, in contrast with the linear case, different equilibria may
exhibit different stability properties. Moreover equilibrium points may change
under nonlinear perturbations.

• There are different stability concepts, e.g. uniform, exponential, asymptotic,
globally asymptotic, etc. and each of these may give rise to different stabil-
ity radii. Here we focus on global asymptotic stability and make occasional
comments on other possibilities.

In the first subsection we describe the three perturbation classes (i)-(iii) in more de-
tail and illustrate their scope by examples. Complex and real stability radii are intro-
duced for each of the three perturbation classes in the second subsection. Whereas
the real stability radii are in general quite different for each of the classes, we will
discover the surprising fact that the complex stability radii with respect to the three
perturbation classes are all equal to r−

C
. Moreover, in the case of real data, the real

stability radius with respect to dynamic perturbations is in fact equal to r−
C
. In the

final subsection we restrict our considerations to time-invariant nonlinear perturba-
tions. Using the Riccati characterization of r−

C
we show that it is possible to find a

single Liapunov function for a maximal ball of perturbed systems, both linear and
nonlinear. This allows us to prove that the Aizerman conjecture, which is known to
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be false in its original version (i.e. for the real case) is true over the field of complex
numbers.

5.6.1 The Perturbation Classes

In this subsection we describe in detail the three classes of perturbations to be
considered: (i) nonlinear, (ii) linear but time-varying, and (iii) dynamic. We will
see that these perturbations form K-linear spaces with compatible norms. The
scope of the widest perturbation class (iii) is illustrated by two examples. The
first one shows that a nonlinear delay equation with time-varying delay can be
viewed as a dynamically perturbed time-invariant linear system, the other shows
that neglected dynamics can be represented as a dynamic perturbation. In the case
of perturbations (i) and (ii), the existence of solutions for the perturbed equations
follows from Carathéodory’s Theorem 2.1.14. However this is not the case for the
dynamic perturbation class and so a global existence theorem for this class will be
proved. We conclude the subsection by describing the stability concepts underlying
the new stability radii.
For the sake of simplification we set D = 0. Throughout the whole section we
assume the following:

• Σ = (A, B, C) ∈ Ln,�,q(K). All vector spaces are provided with Euclidean
norms ‖ · ‖ = ‖ · ‖2 and all matrix spaces are endowed with the corresponding
operator norms (spectral norms) which will also be denoted by ‖ · ‖. The
nominal model

ẋ(t) = Ax(t), t ∈ R+ (1)

is asymptotically stable. The time domain is T = R+.

It is assumed that the perturbations of this model can be represented in output
feedback form as illustrated in Figure 5.6.1, i.e. the perturbed system Σ∆ is obtained
by applying the uncertain output feedback w = ∆z to the system Σ = (A, B, C). In

ẋ = Ax + Bw, z = Cx

∆ �

�

w z

Figure 5.6.1: Feedback interpretation of the perturbed system Σ∆

the previous sections we considered the special case where the unknown operator ∆
is memoryless, time-invariant, linear, i.e. w(t) = ∆z(t), ∆ ∈ K

�×q. Here we consider
three wider classes of feedback operators ∆ : z(·) �→ w(·). The first two are again
memoryless (i.e. the output of the feedback operator at time t only depends on the
input at time t) whereas the third class is dynamic (i.e. the output at time t depends
on the input values during the whole past interval [0, t]). In this latter case ∆ does
not operate on single values of the output signal z(·) but on the whole function. More
precisely, we assume that the unknown feedback w(·) = ∆(z(·))(·) (representing the
perturbation) is defined by a causal operator ∆ : L2(R+; Kq) → L2(R+; K�). The
causality of ∆ means that for all z(·), z̃(·) ∈ L2(R+; Kq) and every t > 0

z(τ) = z̃(τ) for a.e. τ ∈ [0, t] =⇒ ∆(z(·))(τ) = ∆(z̃(·))(τ) for a.e. τ ∈ [0, t].
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In order to distinguish between the elements of the three perturbation classes we use
different symbols, namely N for time-invariant nonlinearities, ∆(·) for time-varying
linear feedback gains and N for (possibly nonlinear) causal feedback operators. The
three perturbation sets are defined as follows.

(i) Nonlinear memoryless time-invariant feedback operators. Let Pn(K)
be the set of all nonlinearities N : Kq �→ K�, differentiable at the origin with
N(0) = 0, satisfying a global Lipschitz condition, i.e. there exists γ ≥ 0 such
that ‖N(z) − N(z̃)‖K� ≤ γ‖z − z̃‖Kq for all z, z̃ ∈ Kq. For this class the
perturbed system equations are of the form

ΣN : ẋ(t) = Ax(t) + BN(Cx(t)), t ≥ 0, N ∈ Pn(K). (2)

(ii) Time-varying memoryless linear feedback operators. Let Pt(K) be the
set L∞(R+, K�×q) of all essentially bounded time-varying feedback matrices.
For this class the perturbed system equations are of the form

Σ∆(·) : ẋ(t) = Ax(t) + B∆(t)Cx(t), a.e. t ≥ 0, ∆(·) ∈ Pt(K). (3)

(iii) Dynamic feedback operators. Let Pd(K) be the set of all causal L2-stable
input-output operators N : L2(R+; Kq) �→ L2(R+; K�) with N (0) = 0 which
are of finite Lipschitz gain, i.e. there exists γ ≥ 0 such that for all z(·), z̃(·) ∈
L2(R+; Kq)

‖N (z(·))(·) −N (z̃(·))(·)‖L2(R+;K�) ≤ γ‖z(·) − z̃(·)‖L2(R+;Kq).

For this class the perturbed system equations are of the form

ΣN : ẋ(t) = Ax(t) + BN (Cx(·))(t), a.e. t ≥ 0, N ∈ Pd(K). (4)

Remark 5.6.1. (i) Although the possibility of multiple equilibrium points is not excluded
for the nonlinear system (2) , it is assumed that the equilibrium point under investigation,
x̄ = 0, is preserved under perturbations (because of N(0) = 0).

(ii) In most applications, nonlinearities will not satisfy global Lipschitz conditions on K
q.

Then a local analysis is necessary which we will address briefly in the final subsection. �

In the rest of this subsection if there is no risk of confusion we use the abbreviation
L2(T ) or even L2 for L2(T ; Kk) (where T ⊂ R is any interval and k ≥ 1).
The sets of perturbations Pn(K), Pt(K), Pd(K) are K–linear spaces and are provided
with the following norms.

‖N‖n = inf {γ ≥ 0; ∀z, z̃ ∈ K
q : ‖N(z) − N(z̃)‖K� ≤ γ‖z − z̃‖Kq} ,

‖∆‖t = ess sup{‖∆(t)‖; t ∈ R+},

‖N‖d = inf
{
γ ≥ 0; ∀z(·), z̃(·) ∈ L2(R+, Kq) : ‖N (z) −N (z̃)‖L2 ≤ γ‖z − z̃‖L2

}
.

Remark 5.6.2. If G+ : L2(R+; Kq) → L2(R+; K�) is a causal bounded linear operator
then G+ ∈ Pd(K) and ‖G+‖d is the operator norm of G+. �
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There is an obvious norm preserving embedding of the space K�×q of time-invariant
linear perturbations into the normed spaces Pn(K), Pt(K):

K
�×q ⊂ Pn(K), K

�×q ⊂ Pt(K). (5)

Similarly, there are norm preserving inclusions

Pn(K) ⊂ Pd(K), Pt(K) ⊂ Pd(K). (6)

The second inclusion is obtained by identifying any time varying ∆(·) ∈ Pt(K) with
the multiplication operator N∆ defined by N∆(z(·))(t) = ∆(t)z(t). We leave it to
the reader to prove that N∆ ∈ Pd(K) and has the norm ‖N∆‖d = ‖∆‖t. For the
first inclusion, N ∈ Pn(K) is identified with NN defined by NN(z(·))(t) := N(z(t))
for arbitrary z(·) ∈ L2(R+; Kq). To see that NN ∈ Pd(K), note that for arbitrary
z(·), z̃(·) ∈ L2(R+; Kq), NN(z(·))(·), NN(z̃(·))(·) are measurable and since

‖NN(z(·))−NN (z̃(·))‖2
L2 =

∫ ∞

0

‖N(z(t))−N(z̃(t))‖2
K� dt ≤ ‖N‖2

n

∫ ∞

0

‖z(t)−z̃(t)‖2
Kq dt

it follows that NN : L2(R+; Kq) �→ L2(R+; K�) is of finite Lipschitz gain and
‖NN‖d ≤ ‖N‖n. Also if z(τ) = z̃(τ) for a.e. τ ∈ [0, t], t > 0, then

NN(z(·))(τ) = N(z(τ)) = N(z̃(τ)) = NN(z̃(·))(τ) for a.e. τ ∈ [0, t]. (7)

So NN is causal and hence Pn(K) ⊂ Pd(K). It remains to show that ‖NN‖d ≥ ‖N‖n.
For any ε > 0, there are z, z̃ ∈ Kq such that ‖N(z)−N(z̃)‖K� ≥ (‖N‖n−ε)‖z−z̃‖Kq .
Let I ⊂ R+ be an interval of finite length and define z(t) = z, z̃(t) = z̃ for t ∈ I,
z(t) = z̃(t) = 0, t ∈ R+ \ I. Then

‖NN(z(·)) −NN(z̃(·))‖2
L2(R+;K�) =

∫
I

‖N(z) − N(z̃)‖2
K� dt ≥

≥ (‖N‖n − ε)2

∫
I

‖z − z̃‖2
Kq dt = (‖N‖n − ε)2‖z(·) − z̃(·)‖2

L2(R+;Kq).

Hence ‖NN‖d = ‖N‖n.

Remark 5.6.3. Let Pnt(K) be the set of time-varying Lipschitzian nonlinearities N(z, t)
with N(0, t) = 0, t ≥ 0 which are measurable in (z, t) and satisfy

‖N(z, t) − N(z̃, t)‖ ≤ γ(t)‖z − z̃‖, z, z̃ ∈ K
q, t ≥ 0

for some γ(·) ∈ L∞(R+, R+). Pnt(K) is a K-linear space and is provided with the norm

‖N‖nt =inf{‖γ(·)‖L∞ ; γ(·)∈L∞,∀z, z̃∈K
q ∀t ∈ R+ :‖N(z, t)−N(z̃, t)‖K� ≤γ(t)‖z−z̃‖Kq}.

Identifying every N ∈ Pnt(K) with the operator N : L2(R+; Kq) → L2(R+; K�) defined by
N (z(·))(t) = N(z(t), t), t ≥ 0 for z(·) ∈ L2(R+; Kq) the linear space Pnt(K) is embedded
isomorphically as a linear subspace in Pd(K). One can prove as in the time-invariant case
that this embedding is also norm-preserving, ‖N‖d = ‖N‖nt . �
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A basic stability requirement is that solutions exist on intervals unbounded to
the right (no finite escape time, see Section 3.2). By Proposition 2.1.19 for any
N ∈ Pn(K), ∆(·) ∈ Pt(K) and initial data (t0, x

0) ∈ R+ ×Kn there exist unique so-
lutions x(·) = x(· ; t0, x0) of ΣN , Σ∆(·), respectively, on [t0,∞) satisfying x(t0) = x0.
For dynamic perturbations the existence problem is more complicated. This is
not surprising since Pd(K) is a very large set of perturbations and contains oper-
ators which give rise to different classes of infinite dimensional systems, e.g. delay
equations, integro-differential equations and other systems with possibly unbounded
memory (see Example 5.6.5).
Since N (z(·))(t) depends not only on z(t) but the whole “past” z(·)|[0,t] of z(·), the
initial value problem for ΣN must include initial functions.

Definition 5.6.4. Let N ∈ Pd(K), (t0, x
0, φ) ∈ R+ × K

n × L2(0, t0; K
q) be given

and I = [t0, t1), t0 < t1 ≤ ∞. A function x(·) : I �→ Kn is said to be a solution of
ΣN on I with initial data (t0, x

0, φ) if it satisfies the following conditions:

(i) x(·) is absolutely continuous on I,
(ii) x(·) satisfies ẋ(t) = Ax(t) + BN (zφ(·))(t) a.e. t ∈ I, where

zφ(t) =

⎧⎪⎨⎪⎩
φ(t) if 0 ≤ t < t0

Cx(t) if t ∈ I

0, otherwise

, t ∈ R+ , (8)

(iii) x(t0) = x0.

Note that by causality N (Cx(·))(·) is determined a.e. on [0, t] by φ and x(·)|[t0,t] for
every t ∈ I. If N is memoryless, i.e. N (z(·))(t) = N(t, z(t)) for some time-varying
nonlinearity N ∈ Pnt then the function φ can be omitted from the initial data.
In the following examples we consider two different types of dynamical perturbations.
The first example shows how a nonlinear delay system with time-varying delay can be
represented as a perturbed system of the form ΣN with an appropriate N ∈ Pd(K).
In the second, we show how neglected dynamics can be accounted for by introducing
a suitable dynamic perturbation N ∈ Pd(K).

Example 5.6.5. Suppose h(·) : R+ → R+ is a continuously differentiable function such
that for some ε > 0

h′(t) ≤ 1 − ε, t ≥ 0,

and consider the nonlinear system with time-varying (and possibly unbounded) delay of
the form

ẋ(t) = Ax(t) + BN(Cx(t − h(t))), t ≥ t0 (9)

where N ∈ Pn(K). For instance, we may have h(t) ≡ h (constant delay) or we may have
h(t) = t/2 (unbounded delay as t → ∞). We want to represent this system in the form
(4). Since the initial functions of ΣN are defined on intervals of the form [0, t0] (and not
on intervals [−h, 0] as e.g. in Examples 2.1.25 and 2.3.20) we need to choose the initial
time t0 sufficiently large so that the initial delayed argument t0−h(t0) is non-negative. By
assumption α(t) := t−h(t) has a positive derivative α′(t) ≥ ε and so there exists a unique
τ0 ≥ 0 such that α(τ0) = 0. For all later times we have α(t) = t−h(t) > 0. Hence we may
choose the initial time t0 arbitrarily in [τ0,∞). A function x(·) : I → K

n on an interval
I = [t0, t1), t0 < t1 ≤ ∞ is said to be a solution of the retarded differential equation
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(9) with initial data (t0, x
0, ψ) ∈ [τ0,∞) × K

n × L2(t0 − h(t0), t0; K
n) if it is absolutely

continuous on I, and satisfies

ẋψ(t) = Axψ(t) + BN(Cxψ(t − h(t))), a.e. t ∈ I

xψ(t0) = x0

where xψ : [t0 − h(t0), t1) → K
n is the following extension of x(·) to [t0 − h(t0), t1)

xψ(t) =

{
ψ(t) if t ∈ [t0 − h(t0), t0)

x(t) if t ≥ t0
, t ∈ [t0 − h(t0), t1). (10)

Now define the operator N : L2(R+; Kq) → L2(R+; K�) by

N (z(·))(t) =

{
0 if 0 ≤ t < τ0

N(z(t − h(t))) if t ≥ τ0

, z(·) ∈ L2(R+; Kq). (11)

To show that N ∈ Pd(K) we make use of α(t) = t − h(t) as a (strictly increasing, con-
tinuously differentiable) time transformation. α(·) maps [τ0,∞) onto R+. Denoting the
inverse of α(·) by β(·) we obtain for arbitrary z(·), z̃(·) ∈ L2(R+; Kq)

‖N (z(·)) −N (z̃(·))‖2
L2(R+;K�) =

∫ ∞

τ0

‖N(z(α(t))) − N(z̃(α(t)))‖2
K� dt

≤ ‖N‖2
n

∫ ∞

τ0

‖z(α(t)) − z̃(α(t))‖2
Kq dt

= ‖N‖2
n

∫ ∞

0
‖z(α) − z̃(α)‖2

Kq

1

α′(β(α))
dα

≤ ‖N‖2
n ε−1‖z − z̃‖2

L2(R+;Kq). (12)

In particular, if z(t) = z̃(t) almost everywhere, then N (z(·))(t) = N (z̃(·))(t) almost
everywhere and so N is well defined on L2(R+; Kq) by (11). Moreover choosing z̃(t) ≡ 0
we see that N maps L2(R+; Kq) into L2(R+; K�). Since it has finite Lipschitz gain by (12)
and is causal by definition, we obtain N ∈ Pd(K) and ‖N‖d ≤ ε−1/2‖N‖n.
Now suppose that x(·) : I → K

n is a solution of (9) on I = [t0, t1) with initial data
(t0, x

0, ψ) ∈ [τ0,∞)×K
n ×L2(t0−h(t0), t0; K

n) and define zφ(·) ∈ L2(R+; Kq) by (8) with

φ(t) =

{
0 if t ∈ [0, t0 − h(t0))

Cψ(t) if t ∈ [t0 − h(t0), t0)
. (13)

Then zφ(t) = Cxψ(t) for t ∈ (t0 − h(t0), t1) and hence N (zφ(·))(t) = N(Cxψ(t− h(t))) for
t ∈ I since t0 ≥ τ0. Applying Definition 5.6.4 we see that x(·) is a solution of ΣN on I.
Conversely, if x(·) is a solution of ΣN on I with initial data (t0, x

0, φ) ∈ [τ0,∞) × K
n ×

L2(0, t0; K
q) and the initial function φ is of the form (13) with ψ ∈ L2(t0 − h(t0), t0; K

n)
then x(·) is a solution of (9) on I with initial condition (t0, x

0, ψ). �

Example 5.6.6. Consider a system[
ẋ1(t)
ẋ2(t)

]
=

[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
, t ≥ 0 (14)
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where (A11, A12, A21, A22) ∈ K
n1×n1 ×K

n1×n2 ×K
n2×n1 ×K

n2×n2, σ(A22) ⊂ C−. Suppose
that ẋ1(t) = A11x1(t) is taken as a simplified model for the system (14), neglecting a part
of the stable dynamics of the overall system. Let (A,B,C) = (A11, A12, A21) and

N (z(·))(t) =

∫ t

0
eA22(t−s)z(s)ds, t ∈ R+ , z(·) ∈ L2(R+; Kn2). (15)

Since σ(A22) ⊂ C− it follows from (3.45) that (15) defines a bounded linear operator
N : L2(R+; Kn2) → L2(R+; Kn2) with operator norm

‖N‖ = max
ω∈R

‖(ıωIn2 − A22)
−1‖.

Since N is linear we have ‖N‖ = ‖N‖d (see Remark 5.6.2). We want to represent the
overall system (14) as a dynamic perturbation of the reduced model ẋ1 = A11x1, see
Figure 5.6.2. Clearly N is causal and so N ∈ Pd(K). Let x1(·) be a trajectory of the

ẋ1 = A11x1 + A12w, z = A21x1

ẋ2 = A22x2 + z, w = x2
�

�

w z

Figure 5.6.2: Feedback representation of neglected dynamics

system ΣN with initial data (t0, x
0
1, φ) ∈ (0,∞) × K

n1 × L2(0, t0; K
n2) where t0 > 0 is

fixed. By Definition 5.6.4 and (15) this means

ẋ1(t) = A11x1(t) + A12

∫ t

t0

eA22(t−s)A21x1(s)ds + A12

∫ t0

0
eA22(t−s)φ(s)ds, t ≥ t0

x1(t0) = x0
1. (16)

Now define x2(·) : [t0,∞) → K
n2 by

x2(t) = eA22t

[ ∫ t

t0

e−A22sA21x1(s)ds +

∫ t0

0
e−A22sφ(s)ds

]
, t ≥ t0. (17)

Then
ẋ2(t) = A22x2(t) + A21x1(t), t ≥ t0, x2(t0) = x0

2 (18)

where

x0
2 =

∫ t0

0
eA22(t0−s)φ(s)ds. (19)

So every trajectory x1(·) of ΣN with initial data (t0, x
0
1, φ) defines via (17) a function x2(·) :

[t0,∞) → K
n2 such that (x1(t), x2(t)) satisfies the overall system (14) with (x1(t0), x2(t0))

= (x0
1, x

0
2).

Conversely, let (x1(t), x2(t)) be a solution of (14) with (x1(t0), x2(t0)) = (x0
1, x

0
2) ∈ K

n1 ×
K

n2. There exists φ ∈ L2(0, t0; K
n2) such that (19) holds. In fact it suffices to choose

φ(s) = eA∗
22(t0−s)y where

(∫ t0

0
eA22τeA∗

22τdτ

)
y = x0

2 (20)

(which is always possible since t0 > 0 and the integral defines a positive definite matrix).
As a consequence x2(·) satisfies (17) and so (16) holds. But then, as we have seen above,
x1(·) is a trajectory of ΣN with initial condition (t0, x

0
1, φ). �
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For solutions of the perturbed system equations ΣN (4) we have the following exis-
tence and uniqueness theorem, together with some estimates which we will use later
in the stability analysis of these systems.

Theorem 5.6.7. Suppose N ∈ Pd(K), ‖N‖d ≤ γ < r−
C
(A; B, C), (t0, x

0, φ) ∈ R+ ×
Kn × L2(0, t0; K

q), then there exists a unique solution x(·) = x(·; t0, x0, φ) of ΣN on
[t0,∞) with initial data (t0, x

0, φ). Moreover there exist constants K1, K2 depending
only on A, B, C, γ such that for all initial data (t0, x

0, φ) ∈ R+ ×Kn ×L2(0, t0; K
q)

‖x(·; t0, x0, φ)‖L2(t0,∞;Kn) ≤ K1

(
‖x0‖ + ‖φ‖L2(0,t0;Kq)

)
(21)

‖x(t; t0, x
0, φ)‖Kn ≤ K2

(
‖x0‖ + ‖φ‖L2(0,t0;Kq)

)
, t ≥ t0 (22)

and x(t; t0, x
0, φ) → 0 as t → ∞.

Proof : Let L+ : L2(R+; K�) → L2(R+; Kq) be the input-output operator of the
system (A, B, C, 0) as defined by (3.46), see also (2.3.22). Suppose (t0, x

0, φ) ∈
R+× K

n×L2(0, t0; K
q) is given and assume that N ∈ Pd(K) satisfies ‖L+ N‖d ≤ c

for some constant c < 1. Note that this assumption is automatically satisfied if
‖N‖d ≤ γ < r−

C
(A; B, C) since r−

C
(A; B, C) = ‖L+‖−1 by Corollary 5.3.23 and so

‖L+N‖d ≤ ‖L+‖d ‖N‖d ≤ r−
C
(A; B, C)−1 γ =: c < 1.

Consider the operator Ψ : L2(t0,∞; Kq) → L2(t0,∞; Kq) defined by

Ψ(z(·))(t) = CeA(t−t0)x0+C

∫ t

t0

eA(t−s)BN (zφ(·))(s) ds, t ≥ t0, z(·) ∈ L2(t0,∞; Kq) (23)

where zφ(τ) = z(τ) for τ ≥ t0 and zφ(τ) = φ(τ) for τ ∈ (0, t0). Then

‖zφ‖L2(R+) =
(
‖φ‖2

L2(0,t0) + ‖z‖2
L2(t0,∞)

)1/2

≤ ‖φ‖L2(0,t0) + ‖z‖L2(t0,∞) (24)

and

Ψ(z(·))(t) = CeA(t−t0)x0 + L+N (zφ(·))(t) − CeA(t−t0)

∫ t0

0

eA(t0−s)BN (zφ(·))(s) ds

= z0(t) + L+N (zφ(·))(t), (25)

where
z0(t) = CeA(t−t0)

(
x0 −

∫ t0

0

eA(t0−s)BN (zφ(·))(s) ds

)
, t ≥ t0. (26)

Clearly z0(·) ∈ L2(t0,∞; Kq) and if z(·), z̃(·) ∈ L2(t0,∞; Kq) then by causality
N (zφ(·))(t) = N (z̃φ(·))(t) for a.e. t ∈ [0, t0]. Hence with norms in L2 = L2(t0,∞; Kq)

‖Ψ(z(·)) − Ψ(z̃(·))‖L2 = ‖L+N (zφ(·)) − L+N (z̃φ(·))‖L2 ≤ c‖z − z̃‖L2 .

So Ψ is a contraction on L2(t0,∞; Kq). Let z(·) be the (unique) fixed point of Ψ
and consider x(·) : [t0,∞) → K

n defined by

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−s)BN (zφ(·))(s) ds , t ≥ t0. (27)

Then x(·) is absolutely continuous on [t0,∞), x(t0) = x0 and



694 5. Uncertain Systems

Cx(t) = (Ψ(z(·))(t) = z(t), a.e. t ≥ t0 .

So x(·) solves the initial value problem formulated in Definition 5.6.4. For any other
solution x̃(·) of this initial value problem, the function z̃(t) = Cx̃(t), t ≥ t0 is also
a fixed point of Ψ and hence z̃(t) = z(t), a.e. t ≥ t0. But then z̃φ = zφ and thus
x(t) = x̃(t), t ≥ t0.
For the remainder of the proof define φ0(·) ∈ L2(0,∞; Kq) by φ0(t) = φ(t) for
t ∈ [0, t0] and φ0(t) = 0 for t > t0. Then by the Cauchy-Schwarz inequality (A.3.20)
and the causality of N there exists a constant α > 0 such that∫ t0

0

∥∥eA(t0−s)BN (zφ)(s)
∥∥ ds ≤ α

(∫ t0

0

‖N (zφ)(s)‖2 ds

)1/2

= α

(∫ t0

0

‖N (φ0)(s)‖2 ds

)1/2

≤ α‖N (φ0)‖L2(0,∞;K�) ≤ α‖N‖d ‖φ‖L2(0,t0;Kq)

for any z(·) ∈ L2(t0,∞; Kq). Since σ(A) ⊂ C− it follows from (24), (25) and (26)
that there exists a constant K such that the fixed point z(·) of Ψ satisfies

‖z‖L2(t0,∞) = ‖Ψz‖L2(t0,∞) ≤ ‖z0‖L2(t0,∞) + ‖L+N (zφ)‖L2(t0,∞)

≤ K
(
‖x0‖ + α‖N‖d ‖φ‖L2(0,t0)

)
+ c

(
‖φ‖L2(0,t0) + ‖z‖L2(t0,∞)

)
.

Now 0 < c < 1 and so there exists a constant K3 such that

‖z(·)‖L2(t0,∞;Kq) ≤ K3

(
‖x0‖ + ‖φ‖L2(0,t0;Kq)

)
. (28)

By (24) and (28) w(·) := N (zφ)(·) ∈ L2(R+; K�) satisfies

‖w‖L2(R+) ≤ ‖N‖d(‖φ‖L2(0,t0) + ‖z‖L2(t0,∞)) ≤ K ′
3‖N‖d

(
‖x0‖ + ‖φ‖L2(0,t0)

)
. (29)

where K ′
3 = K3+1. Since ‖eAt‖ ≤ Me−ωt for some M ≥ 1, ω > 0 by the convolution

inequality (A.3.24)

‖x(·)‖L2(t0,∞;Kn) ≤ (M/
√

2ω)‖x0‖ + ‖eA ·B‖L1(R+;Kn×�)‖w(·)‖L2(t0,∞;K�)

which together with (29) proves (21) for a sufficiently large K1. (22) and the fact
that x(t; t0, x

0, φ) → 0 as t → ∞ follows from Proposition 2.3.10 (with C = In). �

Remark 5.6.8. (i) The previous proof shows that if N ∈ Pd(K), ‖L+N‖d ≤ c for some
c < 1 and (t0, x

0, φ) ∈ R+ × K
n × L2(0, t0; K

q) then there exists a unique solution x(·) of
ΣN on [t0,∞) with initial data (t0, x

0, φ) which satisfies the inequality (22).
Note that if N ∈ Pd(K) is a linear convolution operator defined by an integrable convo-
lution kernel K(·) (see Section 2.3) then the transfer matrix corresponding to the input
output operator L+N : L2(0,∞; Kq) → L2(0,∞; Kq) is given by C(sIn−A)−1BK(s) where
K(s) is the Laplace transform of K(t). In this case ‖N‖d = ‖K(·)‖H∞ by Theorem 2.3.28
and the assumption ‖L+N‖d < 1 is equivalent to

max
ω∈R

‖C(ıωIn − A)−1BK(ıω)‖ < 1.

(ii) Theorem 5.6.7 has been stated here in a simplified form which is needed later in
the context of the robust stability problems studied in this section. However, existence
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and uniqueness can be proved without the stability assumption σ(A) ⊂ C− and also for
arbitrary N ∈ Pd(K). Clearly in this case the inequality (22) must be modified to allow
for exponential growth, see Notes and References.

(iii) The theorem can be extended to a wider perturbation class where in the definition
of Pd(K) the global Lipschitz condition is replaced by the weaker condition that N is
Lipschitz continuous (i.e. locally Lipschitz) and of finite gain, i.e.

‖N (z(·))‖L2(R+;K�) ≤ γ‖z‖L2(R+;Kq), z(·) ∈ L2(R+; Kq) (30)

for some constant γ > 0. Let P̃d(K) denote this class of perturbations with norm ‖N‖P̃d
=

the minimal gain γ such that (30) holds. Then the previous theorem and also the following
propositions can be proved with Pd(K) replaced by P̃d(K). However the proofs are more
complicated. These results are stronger in two respects: the perturbation class is wider
and the norm is weaker, i.e. ‖N‖P̃d

≤ ‖N‖Pd
, see Notes and References. �

The stability concept we use in this section is that of global asymptotic stability.
The definition is the standard one for ΣN , Σ∆(t) (see Definition 3.1.6). However
since we have not developed a state space description of ΣN , our general definitions
in Chapter 3 are not applicable. Instead we give a “phase space” definition viewing
the solutions of ΣN as trajectories in Kn. In the definition we make use of the
fact that for every (t0, x

0, φ) ∈ R+×Kn ×L2(0, t0; K
q) there exists a unique solution

x(·) = x(·; t0, x0, φ) of ΣN on [t0,∞) with initial data (t0, x
0, φ), see Remark 5.6.8 (ii).

Definition 5.6.9. ΣN is said to be globally asymptotically stable (g.a.s.) if it satisfies
the following two conditions

(i) The origin x = 0 is stable for ΣN , i.e. for every t0 ≥ 0 and ε > 0 there exists
δ = δ(t0, ε), such that

‖x0‖ < δ , ‖φ‖L2(0,t0;Kq) < δ =⇒ ∀t ≥ t0 : ‖x(t; t0, x
0, φ)‖ < ε.

(ii) The origin x = 0 is globally attractive, i.e. for all (t0, x
0, φ) ∈ R+ × Kn ×

L2(0, t0; K
q) we have limt→∞ x(t; t0, x

0, φ) = 0.

We say that a perturbation N ∈ Pd(K) destabilizes the system Σ = (A, B, C) if ΣN
is not g.a.s..

Remark 5.6.10. (i) For memoryless linear time-invariant perturbations global asymp-
totic stability is equivalent to global exponential stability, but this is not the case for the
more general classes of perturbations considered here. It is rather difficult to work with a
stability concept requiring exponential decay for the perturbation class Pd(K). However
in Subsection 5.6.3 we will obtain some results for the class Pn(K).
(ii) Whilst global asymptotic stability is a desirable property, most nonlinear perturbations
in applications will not preserve it, e.g. if the nonlinearly perturbed system ΣN possesses
more than one equilibrium state. When this is the case one is interested in conditions
which ensure local asymptotic stability with an appropriate domain of attraction around
the given equilibrium point. We will say something about this in Subsection 5.6.3. �

Example 5.6.11. Consider again the system (14) and ΣN as defined in Example 5.6.6.
We have seen there that if x1(·) is a trajectory of ΣN with initial data (t0, x

0, φ) ∈ (0,∞)×
K

n1×L2(0, t0; K
q) then there exists a function x2(·) : [t0,∞) → K

n2 such that (x1(·), x2(·))
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is a solution of (14) with x1(t0) = x0
1, x2(t0) = x0

2 where by (19) ‖x0
2‖ ≤ K1‖φ‖L2 for some

constant K1. Conversely, if (x1(·), x2(·)) is a solution of (14) with x1(t0) = x0
1, x2(t0) = x0

2

then x1(·) is a solution of ΣN with initial data (t0, x
0, φ) where φ ∈ L2(0, t0; K

q) is defined
by (20) and satisfies ‖φ‖L2 ≤ K2‖x0

2‖ for some constant K2 > 0. From these two facts
it follows that the overall system (14) is stable if and only if ΣN is stable in the sense of
Definition 5.6.9 (i). Moreover, if (14) is g.a.s. then every trajectory x1(t) of ΣN being the
first component of a solution of (14) tends to zero as t → ∞. Conversely, if ΣN is g.a.s.
then (14) must be g.a.s. since otherwise (14) would be stable but not asymptotically stable
and hence possess a non-zero periodic eigenmotion (x1(·), x2(·)) corresponding to a purely
imaginary eigenvalue. But this implies a contradiction. In fact the first component x1(·)
is a trajectory of ΣN , hence must be identically zero if periodic because ΣN is assumed to
be asymptotically stable. But then the second component would be a non-zero periodic
solution of ẋ2 = A22x2, which is impossible since by assumption σ(A22) ⊂ C−. �

5.6.2 Stability Radii

In this subsection we introduce both real and complex stability radii for the three
perturbation classes described above and explore the relationships between them.

Definition 5.6.12. The stability radius of A with respect to the perturbation struc-
ture (B, C) and perturbation class Pd(K) is

r−
K,d(A; B, C) = inf{‖N‖d; N ∈ Pd(K) and ΣN is not g.a.s. } .

Stability radii with respect to the perturbation classes Pn(K), Pt(K) are defined in
an analogous way; they are denoted by r−

K,n(A; B, C) and r−
K,t(A; B, C), respectively.1

Proposition 5.6.13.

r−
K
(A; B, C) ≥ r−

K,n(A; B, C) ≥ r−
K,t(A; B, C) ≥ r−

K,d(A; B, C) . (31)

Proof : In view of the norm preserving inclusions (5), (6) it is only necessary to
prove r−

K,n ≥ r−
K,t. Assume N ∈ Pn(K), ‖N‖n < r−

K,t, then ‖N ′(0)‖ ≤ ‖N‖n < r−
K

and so the linearization of ΣN at x = 0, ẋ = (A + BN ′(0)C)x, is asymptotically
stable. It follows from Liapunov’s linearization Theorem 3.3.52 that the origin is
asymptotically stable for ΣN . Now suppose x(·) : R+ → K

n is an arbitrary solution
of ΣN and z(t) = Cx(t). Define ∆ ∈ Pt(K) by

∆(t) =

{
N(z(t))z∗(t)/‖z(t)‖2 if z(t) �= 0,

0 otherwise,
t ∈ R+.

Then x(·) is a trajectory of Σ∆(t). Since ‖∆‖t ≤ ‖N‖n < r−
K,t we conclude that

x(t) → 0 as t → ∞. Hence ΣN is g.a.s. . �

In fact equalities hold in (31) if K = C. To see this note that if N ∈ Pd(C),
‖N‖d < r−

C
then by Theorem 5.6.7 ΣN is g.a.s.. Hence r−

C,d ≥ r−
C

and so we obtain
by (31)

1Here − is not used as an indicator of spectral constraints but to distinguish continuous time
stability radii from discrete time ones.
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Theorem 5.6.14.

r−
C
(A; B, C) = r−

C,n(A; B, C) = r−
C,t(A; B, C) = r−

C,d(A; B, C) . (32)

As a consequence we see that the complex stability radius has the remarkable prop-
erty that it is invariant under the above extensions of the perturbation class C�×q.

Example 5.6.15. Consider the system (9) with time-varying delay described in Example
5.6.5 and assume N ∈ Pn(K), ‖N‖n < ε1/2r−

C
(A;B,C) and h′(t) ≤ 1 − ε for t ≥ 0. If x(·)

solves the delay system with initial data (t0, x
0, ψ) ∈ [τ0,∞) × K

n × L2(t0 − h(t0), t0; K
n)

we have seen that x(·) is a solution of (4) with initial data (t0, x
0, φ) where N is defined

by (11) and φ is defined by (13). Since ‖N‖d ≤ ε−1/2‖N‖n < r−
C

(A;B,C) by (12) it
follows from Theorem 5.6.14 that the delay system is globally asymptotically stable for all
t0 ≥ τ0. In particular if h(t) ≡ h > 0 is an arbitrary constant, then (9) will be g.a.s. for
all nonlinearities N ∈ Pn(K) satisfying ‖N‖n < r−

C
(A;B,C). �

Example 5.6.16. Consider the system (14) in Example 5.6.6, where σ(A11) ⊂ C−, and
assume that

σ(A22) ⊂ C− and max
ω∈R

‖A21(ıωIn1 − A11)
−1A12‖ < min

ω∈R

σmin(ıωIn2 − A22). (33)

By (5.3.45) the linear operator N : L2(R+; Kn2) → L2(R+; Kn2) as defined by (15) has
norm ‖N‖d = maxω∈R ‖(ıωIn2 − A22)

−1‖. Hence by Theorem 5.6.14, ΣN is g.a.s. if

max
ω∈R

‖(ıωIn2 − A22)
−1‖ < r−

C
(A11;A12, A21) =

[
max
ω∈R

‖A21(ıωIn1 − A11)
−1A12‖

]−1

.

In conclusion we see from Examples 5.6.6 and 5.6.11 that the overall system (14) is asymp-
totically stable if the system with neglected dynamics ẋ1 = A11x1 is asymptotically stable
and the assumption (33) is satisfied. �

Remark 5.6.17. It follows from the previous theorem that equalities hold in (31) in the
real case if r−

R
= r−

C
. In particular, if A,B,C are real and max{‖G(ıω)‖;ω ∈ R} = ‖G(0)‖

holds for G(s) = C(sIn − A)−1 then by Remark 5.3.11 and Theorem 5.3.9

r−
R

(A;B,C) = r−
R,n(A;B,C) = r−

R,t(A;B,C) = r−
R,d(A;B,C) = r−

C
(A;B,C) = ‖G(0)‖−1.

�

However, if r−
R

> r−
C
, the stability radius with respect to time-varying perturbations,

r−
R,t, may lie anywhere between r−

C
and r−

R
. We illustrate this by the next example.

Example 5.6.18. Consider the linear oscillator

ÿ(t) + 2αẏ(t) + (1 + ∆(t))y(t) = 0 , t ≥ 0 (34)

where α > 0 is given and ∆ : R+ → R represents an unknown time-varying perturbation
of the restoring force. The associated state space system can be written in the form
ẋ(t) = (A(α) + B∆(t)C)x(t) where

A(α) =

[
0 1
−1 −2α

]
, B =

[
0
1

]
, C =

[
1 0

]
.
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We know from Example 5.3.14 that the real stability radius r−
R

(A(α);B,C) equals 1
independently of the damping coefficient α > 0 whereas the complex stability radius
r−

C
(A(α);B,C) equals 1 only for α ≥ 1/

√
2 and satisfies r−

C
(A(α);B,C) = 2α

√
1 − α2 for

0 < α < 1/
√

2. In particular, r−
C

(A(α);B,C) ∼ 2α tends to zero as α ↘ 0.
For a given matrix interval [A−, A+] in R

2×2, Gonzalez (1991) [199] has derived neces-
sary and sufficient conditions under which all the time-varying systems ẋ(t) = A(t)x(t)
with measurable (or piecewise constant) A(·) : R+ → [A−, A+] are asymptotically sta-
ble. These conditions enable us to decide, for any ρ > 0, if the perturbed oscillator
(34) is asymptotically stable for all measurable functions ∆ : R+ → [−ρ, ρ]. The sta-
bility radius r−

R,t(A(α), B,C) is the supreme value of these ρ and can be determined by
solving a set of three nonlinear scalar equations, see Ex. 2 and Notes and References.
We omit the details and only present the result. Figure 5.6.3 shows the three graphs of

1

0 0.5 1

�
r−

C
(α)

�

r−
R,t(α)

�r−
R
(α)

α

Figure 5.6.3: Stability radii r−
C

, r−
R,t and r−

R
of the oscillator

r−
R

(α) := r−
R

(A(α);B,C) ≡ 1, r−
C

(α) := r−
C

(A(α);B,C) and r−
R,t(α) := r−

R,t(A(α), B,C)

as functions of α ∈ (0, 1]. By (31) and Theorem 5.6.14 the graph of r−
R,t(α) must lie be-

tween the graphs of r−
C

(α) and r−
R

(α). Since the latter two graphs coincide for α ≥ 1/
√

2,
r−

R,t(α) must coincide with r−
R

(α) for α ≥ 1/
√

2 ≈ 0.7071. In fact, one can show that

r−
R,t(α) = r−

R
(α) ≡ 1 for α ≥ α1 where α1 ≈ 0.405, see Figure 5.6.3.

In particular we see that if α is sufficiently small, (34) can be destabilized by a time-
varying real disturbance ∆(t) of arbitrarily small L∞-norm whereas there does not exist a
constant real parameter perturbation ∆ of size |∆| < 1 which destabilizes the system. It
can be shown that r−

R,t(α) ∼ πα as α ↘ 0, hence r−
R,t(α)/r−

C
(α) is bounded, see Ex. 2. �

A good deal of analysis has been carried out on r−
R,t but its computation is still a

difficult problem even for modest dimensions n, see Notes and References. Much less
is known about r−

R,n. For both r−
R,n and r−

R,t there appear to be no general necessary

and sufficient conditions under which they coincide with either r−
R

or r−
C
. Also, to

our knowledge there are no better general estimates available for both of them than
r−

C
≤ r−

R,n ≤ r−
R

and r−
C

≤ r−
R,t ≤ r−

R
. In contrast we have the following simple

characterization of r−
R,d.

Definition 5.6.19. A state space system (Â, B̂, Ĉ, D̂) ∈ Ln̂,�̂,q̂(K) is said to be a
multivariable oscillator of dimension n̂ if its transfer matrix is of the form

D̂ + Ĉ(sI − Â)−1B̂ =
1

p(s)
[K0 + K1s + K2s

2]
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where the Ki ∈ K
q̂×�̂ are constant matrices and p(s) is a non-zero polynomial of

deg p ≤ 2.2

We will show that r−
R,d = r−

C
. The idea of the proof is to interpolate a complex

minimum norm destabilizing perturbation matrix ∆ by the transfer matrix of a
stable real multivariable oscillator at a critical frequency where ‖C(ıωI − A)−1B‖
attains its maximum.

Theorem 5.6.20. For any real triple (A, B, C) ∈ Ln,�,q(K), σ(A) ⊂ C− and ε > 0

there exists a stable real multivariable oscillator with input-output operator L̂ for
which the dynamic system ΣbL of the form (4) is not globally asymptotically stable

and ‖L̂‖d ≤ r−
C
(A; B, C) + ε. In particular

r−
R,d(A; B, C) = r−

C
(A; B, C). (35)

Proof : It follows from Theorem 5.6.14 that r−
C

= r−
C,d ≤ r−

R,d. To prove the converse

inequality suppose ∆ = ∆1 + ı∆2 ∈ C
�×q, where ∆1, ∆2 ∈ R

�×q are such that ∆
is a minimum norm complex destabilizing perturbation of A with respect to the
structure (B, C). Hence ‖∆‖ = r−

C
(A; B, C) and ıR ∩ σ(A + B∆C) �= ∅. Replacing

∆ by ∆ if necessary, we may assume that ıω0 ∈ σ(A + B∆C) for some ω0 ≥ 0.
If ω0 = 0 then r−

C
= r−

R
and there exists a real destabilizing ∆ ∈ R�×q of norm

r−
C
. In this case no dynamics is needed in the feedback loop: It suffices to choose a

zero-dimensional oscillator where Â, B̂, Ĉ are void and D̂ = ∆. Thus it remains to
consider the case where ω0 > 0. By Lemma 5.2.7 we have

det [I� − ∆C(ıω0In − A)−1B] = 0. (36)

We want to construct a transfer matrix ∆̂(s) of a stable real multivariable oscillator
such that ∆̂(ıω0) = ∆ and ‖∆̂‖d = maxω∈R ‖∆̂(ıω)‖ is close to ‖∆‖. Consider

∆̂(s) =
γ−1∆2s

2 + ω0γ
−1∆1s

s2 + ω0γ−1s + ω2
0

(37)

where γ > 1 is a parameter which will be chosen later to ensure that ‖∆̂‖d is close
to ‖∆‖ = r−

C
. An elementary calculation shows that ∆̂(ıω0) = ∆ for all γ > 1 and

∆̂(s) is the transfer matrix of the real multivariable oscillator (Â, B̂, Ĉ, D̂) given by

Â =

[
0 1

−ω2
0 −ω0γ

−1

]
⊗ Iq =

[
0q×q Iq

−ω2
0Iq −ω0γ

−1Iq

]
, B̂ =

[
0
1

]
⊗ Iq =

[
0q×q

Iq

]
,

Ĉ =
[
−γ−1ω2

0∆2 , γ−1ω0(∆1 − γ−1∆2)
]

, D̂ = γ−1∆2 .

Since det (sI2q − Â) = (s2 + ω0γ
−1s + ω2

0)
q by Proposition A.1.22 (k) , we have

σ(Â) ⊂ C−. To see that the associated input-output operator L̂ : L2(R+; Rq) →
L2(R+; R�) defined by

L̂(z(·))(t) = D̂z(t) + Ĉ

∫ t

0

eÂ(t−s)B̂z(s) ds , z(·) ∈ L2(R+; Rq)

2If deg p < 2 then necessarily Ki = 0 for deg p < i ≤ 2.
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destabilizes (A, B, C) we first prove that the feedback coupling of (A, B, C) with
(Â, B̂, Ĉ, D̂) is not asymptotically stable. We have

det

(
sIn+n̂ −

[
A + BD̂C BĈ

B̂C Â

])
= det(sIn̂−Â) det[sIn−(A+BD̂C)−BĈ(sIn̂−Â)−1B̂C]

= det(sIn̂−Â) det
([

In−BD̂C(sIn−A)−1−BĈ(sIn̂−Â)−1B̂C(sIn−A)−1
]
[sIn−A]

)
= det(sIn̂−Â) det(sIn−A) det

[
In−D̂C(sIn−A)−1B−Ĉ(sIn̂−Â)−1B̂C(sIn−A)−1B

]
= det(sIn̂−Â) det(sIn−A) det

[
In−∆̂(s)C(sIn−A)−1B

]
.

By (36) det[In − ∆̂(ıω0)C(ıω0In − A)−1B] = 0 and so there exists a non-zero real
periodic solution x(·) of the feedback system[

ẋ1(t)
ẋ2(t)

]
=

[
A + BD̂C BĈ

B̂C Â

] [
x1(t)
x2(t)

]
. (38)

The first component x1(·) must be non-zero, since otherwise x2(·) would be a non-
zero periodic function satisfying ẋ2 = Âx2 which is in contradiction with σ(Â) ⊂ C−.
Let t0 > 0 be fixed and choose φ ∈ L2(0, t0, R

2q) such that∫ t0

0

eÂ(t0−s)B̂φ(s)ds = x2(t0). (39)

That this is possible follows from the controllability of the multivariable oscillator
(Â, B̂, Ĉ, D̂) (the reachability matrix [B̂ ÂB̂] has full rank n̂ = 2q, cf. Volume II).
Proceeding as in Example 5.6.6 one can show that the non-zero periodic function
x1(·) is equal to the trajectory of the system ΣbL with initial data (t0, x1(t0), φ). This

proves that ΣbL is not g.a.s., and so the input-output operator L̂ of the oscillator

(Â, B̂, Ĉ, D̂) destabilizes (A, B, C). It follows that ‖L̂‖d ≥ r−
C
(A; B, C) by Theo-

rem 5.6.14. Given any ε > 0, it remains to prove that there exists γ > 1 such that
‖L̂‖d ≤ r−

C
(A, B, C) + ε. Now by (3.45)

‖L̂‖2
d = max

ω∈R

‖∆̂(ıω)‖2 .

For any z ∈ Cq, ‖z‖ = 1 if η := ω/ω0, we have by (37)

‖∆̂(ıω)z‖2 =
γ−2ω2‖(ω0∆1 + ıω∆2)z‖2

|(ω2
0 − ω2) + ıωω0γ−1|2 =

‖(∆1 + ıη∆2)z‖2

1 + (η − η−1)2γ2

=
‖∆1z‖2 + η2‖∆2z‖2 − ıη (〈∆1z, ∆2z〉 − 〈∆2z, ∆1z〉)

1 + (η − η−1)2γ2

=
‖∆1z‖2 + η2‖∆2z‖2 + η (‖∆z‖2 − ‖∆1z‖2 − ‖∆2z‖2)

1 + (η − η−1)2γ2
.

Since ∆̂(s) is a real transfer matrix we have ‖∆̂(ıω)‖ = ‖∆̂(−ıω)‖ and so it suffices
to consider η > 0, i.e. ω > 0 (since ω0 > 0). Then because ‖∆z‖ ≤ r−

C
‖z‖, we have

‖∆̂(ıω)z‖2 ≤ η(r−
C
)2‖z‖2 + (1 − η)‖∆1z‖2 + η(η − 1)‖∆2z‖2

1 + (η − η−1)2γ2
. (40)
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Now choosing y ∈ Rq, ‖y‖ = 1 such that ‖∆1y‖ = ‖∆1‖, we get

‖∆1‖2 ≤ ‖∆1y‖2 + ‖∆2y‖2 = ‖∆y‖2 ≤ (r−
C
)2.

Similarly we have ‖∆2‖2 ≤ (r−
C
)2. If 0 < η ≤ 1

‖∆̂(ıω)‖2 = sup
z∈Cq,‖z‖=1

‖∆̂(ıω)z‖2 ≤ η(r−
C
)2 + (1 − η)‖∆1‖2

1 + (η − η−1)2γ2
≤ (r−

C
)2

1 + (η − η−1)2γ2
.

Hence ‖∆̂(ıω)‖2 ≤ (r−
C
)2 if η ≤ 1. On the other hand if η > 1, then

‖∆̂(ıω)‖2 ≤ η(r−
C
)2 + η(η − 1)‖∆2‖2

1 + (η − η−1)2γ2
≤ η2(r−

C
)2

1 + (η − η−1)2γ2
=: f(η) .

It is easy to see that for γ > 1 f(η) is maximized at η̂ =

(
2γ2

2γ2 − 1

)1/2

> 1 and so

‖L̂‖2
d = max

ω∈R+

‖∆̂(ıω)‖2 ≤ f(η̂) =
4γ2

4γ2 − 1
(r−

C
)2

if γ > 1. Choosing γ sufficiently large completes the proof. �

Remark 5.6.21. We have seen in Example 5.3.14 that for the family of linear oscillators
(3.25) with damping coefficient 2α the quotient r−

R
/r−

C
tends to ∞ as α → 0. Thus the

quotient r−
R

/r−
R,d is unbounded by (35). It follows from Ex. 2 and Ex. 3 that the quotients

r−
R

/r−
R,t and r−

R,n/r−
R,t are unbounded, too. At present it is an open question whether or

not the quotient r−
R,t/r

−
C

is bounded, see Notes and References. �

As a consequence of the above theorem and Theorem 5.6.14 one should take r−
C

rather
than r−

R
as a robustness measure whenever neglected dynamics play an important

role.

5.6.3 The Aizerman Conjecture

In this subsection we only consider time-invariant nonlinearities. The zero equilib-
rium state of ẋ = Ax is said to be absolutely stable relative to a set of nonlinear
perturbations P if ΣN is globally asymptotically stable for all N ∈ P. The origin of
this notion can be traced to the work of Lur’e where it was introduced to cope with
uncertainty in the implementation of feedback controls, see Notes and References.
For example, the precise behaviour of amplifiers, resistors, etc. may not be known,
e.g. due to saturation effects. Of course the main difficulty is to determine a set
P which reflects the practical constraints. In 1948 Aizerman made the following
conjecture for the case K = R, � = q = 1, see Figure 5.6.4.

Aizerman’s conjecture: Suppose (A, b, c) ∈ Ln,1,1(R) and the feedback systems

ẋ = Ax + bu , y = c�x , u = ky

are asymptotically stable for all k, k1 < k < k2. Then the origin is a globally
asymptotically stable equilibrium point of the nonlinear feedback systems

ẋ = Ax + bu , y = c�x , u = N(y), N ∈ P
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N(y)

k1y

y

k2y
u �

�

Figure 5.6.4: The Aizerman conjecture: sector conditions

where P := {N ∈ C(R, R); N locally Lipschitz and ∀y ∈ R∗ : k1y
2 < yN(y) < k2y

2}.
P consists of all locally Lipschitzian nonlinearities N : R → R whose graphs lie in
the sector between the lines u = k1y and u = k2y, see Figure 5.6.4. In particular
N(0) = 0. Note that the above set P can also be described by

P = {N ∈ C(R, R); N locally Lipschitz and ∀y ∈ R
∗ : |N(y) − k0y| < r|y|} .

where k0 = (k1 +k2)/2, r = (k2−k1)/2. Now let Ã = A+k0bc
�, Ñ(y) = N(y)−k0y,

then an alternative formulation of Aizerman’s conjecture is:

Suppose the linear systems

ẋ = Ãx + bu , y = c�x , u = ky

are asymptotically stable for all k ∈ R, |k| < r. Then the origin is a globally
asymptotically stable equilibrium point of all the nonlinear feedback systems

ẋ = Ãx + bu , y = c�x , u = Ñ(y), Ñ ∈ P̃

where P̃ =
{
Ñ ∈ C(R, R); Ñ locally Lipschitz and ∀y ∈ R∗ : |Ñ(y)| < r|y|

}
.

Thus a natural generalization of the conjecture to multivariable systems over both
the real and the complex fields is the following

Multivariable version of Aizerman’s conjecture: Suppose σ(A) ⊂ C−. For
any δ > 0, the origin is a globally asymptotically stable equilibrium point for all the
nonlinear feedback systems

ΣN : ẋ = Ax + BN(Cx) (41)

where N : Kq �→ K� is locally Lipschitz and satisfies

‖N(z)‖ < δ‖z‖ , z ∈ K
q , z �= 0 (42)

if and only if all the linear systems

Σ∆ : ẋ = Ax + B∆Cx , ∆ ∈ K
�×q , ‖∆‖ < δ

are asymptotically stable.
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It is well known that Aizerman’s conjecture does not hold over the field of real
numbers, see [527]. In fact there are examples which show that r−

R
/r−

R,n can become
arbitrarily large, see [248]. In contrast, using the characterization of the complex
stability radius given in Theorem 5.6.14, we have the following

Theorem 5.6.22. The Aizerman conjecture holds true over the field of complex
numbers.

Proof : The “if” part of the conjecture is obvious. Conversely suppose that the
linear systems Σ∆ are asymptotically stable for all ∆ ∈ C�×q, ‖∆‖ < δ. Then
necessarily δ ≤ r−

C
(A; B, C). By Remark 5.3.27 there exists a Hermitian solution P

of the Riccati equation (3.51) with γ = δ−1 and D = 0, i.e. of

PA + A∗P − C∗C − δ2PBB∗P = 0.

Multiplying this equation by δ2 and replacing δ2P by P there exists a Hermitian
solution P of

PA + A∗P − δ2C∗C − PBB∗P = 0. (43)

Since P also satisfies

P = −
∫ ∞

0

eA∗t[δ2C∗C + PBB∗P ]eAtdt, (44)

(see (3.3.89a)) we must have P % 0. Multiplying (43) from the right by x ∈ Cn and
from the left by x∗ we see that ker P ⊂ ker C. Suppose N ∈ Pn(C) satisfies (42)
and consider the derivative of V (x) = −〈x, Px〉 along the solutions of the nonlinear
system (41). We have

V̇ (x) = −〈Ax + BN(z), Px〉 − 〈x, P (Ax + BN(z))〉
= −δ2‖z‖2 − ‖B∗Px‖2 − 2 Re〈B∗Px, N(z)〉
= −‖B∗Px + N(z)‖2 − [δ2‖z‖2 − ‖N(z)‖2]

where z = Cx. Hence V̇ (x) ≤ 0 for all x ∈ Cn, and by (42) V̇ (x) = 0 only if
z = Cx = 0.
Let X1 = (ker P )⊥, X2 = ker P and π1 : Cn = X1 ⊕ X2 → X1 be the orthogonal
projection onto X1. Then the restriction of the quadratic form x �→ V (x) to X1 is
positive definite. Hence there exists ε > 0 such that V (x1) ≥ ε‖x1‖2 for all x1 ∈ X1.
Given any x0 ∈ Cn there exists by Proposition 2.1.19 a solution x(·) = x(·, x0) of
the nonlinear differential equation (41) on R+ with initial state x(0) = x0. Let
x1(t) = π1(x(t)). Since V (x(t)) = −〈x(t), Px(t)〉 = −〈x1(t), Px1(t)〉 = V (x1(t)) is
not increasing, we have

ε‖x1(t)‖2 ≤ V (x1(t)) ≤ V (x1(0)) = V (x0) ≤ ‖P‖‖x0‖2.

Hence x1(t) is bounded and there exists a constant c > 0 such that

‖z(t)‖ = ‖Cx(t)‖ = ‖Cx1(t)‖ ≤ c‖x0‖, t ≥ 0. (45)
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But since ‖eAt‖ ≤ Me−ωt, t ≥ 0 for suitable M, ω > 0, we have by (42) and (45)

‖x(t)‖ ≤ Me−ωt‖x0‖ +

∫ t

0

Me−ω(t−s)‖B‖ ‖N(z(s))‖ ds ≤ c̃‖x0‖, t ≥ 0 (46)

for a suitable constant c̃ > 0. Hence the origin is stable for ΣN . It remains to prove
for all x0 ∈ Cn that x(t) = x(t, x0) → 0 as t → ∞. By (42) and (46), we have for
any t0 ≥ 0

‖x(t)‖ ≤ Me−ω(t−t0)‖x(t0)‖ + ĉ‖z‖L∞(t0,∞;Kq) , t ≥ t0 (47)

with a suitable constant ĉ > 0 independent of t0. Applying LaSalle’s Invariance
Principle (Proposition 3.2.28) we conclude that x(t) → S as t → ∞ where S is the
largest invariant set in V̇ −1(0). Since V̇ −1(0) ⊂ ker C we get z(t) → 0 as t → ∞.
Hence choosing t0 in (47) sufficiently large we see that x(t) → 0 as t → ∞. �

Remark 5.6.23. Theorem 5.6.14 implies that the origin is absolutely stable with respect
to the set P0, where

P0 = {N ∈ Pn(C); ‖N‖n < r−
C

(A;B,C)}. (48)

In contrast Theorem 5.6.22 shows that the origin is absolutely stable relative to the set
PC where

PC = {N ;N : C
q �→ C

� is locally Lipschitz, ‖N(z)‖< r−
C
‖z‖, z ∈ C

q, z �= 0}. (49)

This is a considerable improvement on (48) not only because the Lipschitz bound is re-
placed by a finite gain condition, but also because ‖N‖n < r−

C
(A;B,C) implies ‖N(z)‖ ≤

δ‖z‖ for some δ < r−
C

which is more restrictive than N ∈ PC. �

Remark 5.6.24. Suppose that the pair (A,C) is observable, see Subsection 3.3.5. Then
it follows from (44) that every Hermitian solution P of (43) is negative definite. Hence
the above proof shows that V (x) = −〈x, Px〉 is a joint global quadratic Liapunov function
for all systems ΣN where N ∈ PC (49). In particular, V (x) is a joint Liapunov function
for all the linearly perturbed systems

Σ∆ : ẋ = Ax + B∆Cx , ∆ ∈ C
�×q, ‖∆‖ < r−

C
.

Now if δ > r−
C

there is no joint Liapunov function for all perturbed systems Σ∆ with ∆ ∈
C

�×q, ‖∆‖ < δ. So one could say that V (x) is a quadratic Liapunov function for ẋ = Ax

of maximal robustness with respect to perturbations of the form A � A(∆) = A + B∆C,
∆ ∈ C

�×q. �

If a given nonlinearity N does not satisfy ‖N(z)‖ < r−
C
‖z‖ for all z ∈ Kq, z �= 0 or

is not of finite gain at all, it may be possible that the above methods can be applied
locally to obtain local stability results with guaranteed domains of attraction for all
systems ΣN where N satisfies ‖N(z)‖ < r−

C
‖z‖, z �= 0 locally. For this, one proceeds

as follows. If Ω is an open neighbourhood of 0 in Kq and 0 < δ ≤ r−
C
(A; B, C) we

consider the perturbation set

PK(Ω, δ) = {N ; N : Ω → K
� is locally Lipschitz, ‖N(z)‖< δ‖z‖, z ∈ Ω\{0}}. (50)
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For N ∈ PK(Ω, δ) the RHS of (41) is defined on the preimage C−1(Ω) of Ω by C. We
say that a neighbourhood D ⊂ C−1(Ω) of 0 is a guaranteed domain of attraction of
the origin for all N ∈ PK(Ω, δ) if xN(·, x0) exists on R+ and xN (t, x0) tends to zero
as t → ∞ for all trajectories xN (·, x0) of ΣN (41) starting in x0 ∈ D where x0 ∈ D
and N ∈ PK(Ω, δ) are arbitrary. Note that if the origin is an equilibrium state of a
differentiable system and N represents the nonlinear residual after linearization at 0,
then N will belong to PK(Ω, δ) for any given 0 < δ ≤ r−

C
(A; B, C) if Ω is reduced

appropriately.

Theorem 5.6.25. Suppose that Ω is an open neighbourhood of the origin in K
q,

δ ≤ r−
C
(A; B, C) and P is one of the Hermitian solutions of (43). Assume that the

following implication holds for a given ρ > 0 and arbitrary x ∈ Kn

−〈x, Px〉 < ρ =⇒ Cx ∈ Ω, (51)

i.e. the ellipsoid Dρ = {x ∈ Kn;−〈x, Px〉 < ρ} lies in the preimage of Ω by C. Then
the origin is an asymptotically stable equilibrium point of (41) with an invariant
guaranteed domain of attraction Dρ for all N ∈ PK(Ω, δ).

Proof : Let N ∈ PK(Ω, δ). If we define V (x) = −〈x, Px〉, x ∈ Kn, then just as in
the proof of Theorem 5.6.22, we have for the derivative of V along the trajectories
of ΣN (41)

V̇ (x) = −‖B∗Px + N(z)‖2 − [δ2‖z‖2 − ‖N(z)‖2], x ∈ Dρ (52)

where z = Cx. Hence V̇ (x) ≤ 0 for x ∈ Dρ. We want to show that Dρ is invariant
under the flow of ΣN . For this we restrict the RHS of (41) to Dρ. Let x0 ∈ Dρ

and suppose that the solution x(t) = x(t, x0) of (41) has a finite maximal existence
interval [0, t+(x0)). The RHS of (41) restricted to Dρ is affinely bounded because
N ∈ PK(Ω, δ) and therefore, applying Proposition 2.1.19 to ΣN on Dρ, we see that
x(t) must be bounded. But by (52)

{x(t); t ∈ [0, t+(x0))} ⊂ {x ∈ K
n; V (x) ≤ V (x0)} ⊂ Dρ.

So by Lemma 3.2.14 x(·) cannot leave Dρ in finite time and we conclude that x(t, x0)
exists for all t ≥ 0 and remains in Dρ. Moreover we see from (52) and (50) that
Cx = 0 for every x ∈ Dρ with V̇ (x) = 0. From here onwards we can proceed in
exactly the same way as in the proof of Theorem 5.6.22 to conclude that the origin
is stable for ΣN and x(t, x0) → 0 for all x0 ∈ Dρ. �

We have seen that ker P ⊂ ker C for every Hermitian solution P of (43). Hence
there always exists a ρ > 0 such that (51) holds. But for each Hermitian solution P ,
one is interested in finding a ρ > 0 satisfying (51) such that the invariant guaranteed
domain of attraction Dρ is large. We illustrate this by an example where we will
also see that in general there are no set inclusion properties between the domains
generated via different solutions of (43). Thus, in order to find a more comprehensive
guaranteed domain of attraction, it may be a reasonable strategy to maximize the
ρ (under the constraint provided by (51)) for different Hermitian solutions of (43).
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Example 5.6.26. Consider nonlinear oscillators of the form

ΣN : ξ̈ + 2ξ̇ + ξ = N(ξ), (53)

where N : Ω → R is locally Lipschitz on Ω = (−ω, ω). Introducing the state x = [ξ, ξ̇]�,
(53) can be rewritten in the form ΣN (41) with

A =

[
0 1
−1 −2

]
, B =

[
0
1

]
, C = [1 0].

It is not difficult to show that r−
C

(A;B,C) = 1 and there are two solutions of the Riccati
equation (43) for δ = 1. The largest and the smallest solutions of (43) for the above data
are given by

P+ = −
[
2 1

1 2 −
√

2

]
and P− = −

[
2 1

1 2 +
√

2

]
,

respectively. The nonlinearity N belongs to PR(Ω, δ) with δ = 1 if and only if

|N(ξ)| < |ξ| provided ξ ∈ (−ω, ω), ξ �= 0. (54)

For example, if ω = 1 then N ∈ PK(Ω, δ) for all N(ξ) = ξp, p ≥ 1. Since for x ∈ R
2

−〈x, P+x〉 = 2x2
1 + 2x1x2 + (2 −

√
2)x2

2 = (2−1/(2−
√

2))x2
1 + (2−

√
2)[x2 + x1/(2−

√
2)]2

implication (51) holds for P = P+ if and only if ρ ≤ (2−1/(2−
√

2))ω2 = (1−
√

2/2)ω2. We
conclude therefore that if we choose P = P+ the largest guaranteed domain of attraction
of the origin for all N ∈ PR(Ω, δ) obtainable from Theorem 5.6.25 is

Dρ+ = {[x1, x2]
� ∈ R

2; 2x2
1 + 2x1x2 + (2 −

√
2)x2

2 < ρ+}, ρ+ = (1 −
√

2/2)ω2.

Carrying out a similar analysis using P− instead of P+ shows that

Dρ− = {[x1, x2]
� ∈ R

2; 2x2
1 + 2x1x2 + (2 +

√
2)x2

2 < ρ−}, ρ− = (1 +
√

2/2)ω2

is also a common domain of attraction for all N ∈ PR(Ω, δ) and is the largest one

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

Dρ+

Dρ−

Figure 5.6.5: Two guaranteed domains of attractions obtained via Theorem 5.6.25

obtainable via Theorem 5.6.25 if we choose P = P−. Note that ((
√

2 +
√

2/2)ω, 0) lies

on ∂Dρ− but not in Dρ+ and that ((−
√

2 +
√

2/2)ω,
√

2 +
√

2 ω) lies in ∂Dρ+ but not in
Dρ− , see Figure 5.6.5. For ω = 1 these two points and the two elliptic domains Dρ+ , Dρ−
are shown in Figure 5.6.5. The union Dρ+ ∪ Dρ− is a guaranteed domain of attraction of
the origin for all nonlinear oscillators ΣN where N ∈ PK(Ω, 1), Ω = (−1, 1). �
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If in the above theorem we assume the more restrictive condition that δ<r−
C
(A; B, C),

then we can strengthen asymptotic stability to exponential stability. By the conti-
nuity of r−

C
(·) (see Proposition 5.3.42) if δ < r−

C
(A; B, C) there exists α > 0, such

that σ(A + αIn) ⊂ C− and

δ ≤ r−
C
(A + αIn; B, C). (55)

Theorem 5.6.27. Suppose Ω is an open neigbourhood of the origin in Kq which is
starlike with respect to 0 and δ < r−

C
(A; B, C). Let α > 0 be such that (55) holds

and Pα be one of the Hermitian solutions of

P (A + αIn) + (A + αIn)∗P − δ2C∗C − PBB∗P = 0. (56)

If for a given ρ > 0 and all x ∈ Kn

−〈x, Pαx〉 < ρ =⇒ Cx ∈ Ω, (57)

then the origin is an exponentially stable equilibrium point of ΣN (41) for all N ∈
PK(Ω, δ) (50). Moreover there exists M ≥ 1 such that for all N ∈ PK(Ω, δ)

‖xN(t, x0)‖ ≤ Me−αt‖x0‖, t ≥ 0, x0 ∈ Dα
ρ = {x ∈ K

n;−〈x, Pαx〉 < ρ}

where xN (t, x0) denotes the trajectory of ΣN with initial state x0.

Proof : Let N ∈ PK(Ω, δ) and define Nα(z, t) = eαtN(e−αtz) for t ≥ 0, z ∈ Ω.
Then Nα is well defined since Ω is starlike, and by (57) we have for all t ≥ 0

x ∈ Dα
ρ , Cx �= 0 =⇒ Cx ∈ Ω and ‖Nα(Cx, t)‖ < eαtδ‖e−αtCx‖ = δ‖Cx‖. (58)

Consider the time-varying nonlinear system

ΣNα : ẋ(t) = Aαx(t) + BNα(Cx(t), t), t ≥ 0, Aα := A + αIn. (59)

Define V (x) = −〈x, Pαx〉, x ∈ Dα
ρ , then along the flow of (59), we have

V̇ (x) = −‖B∗Pαx + Nα(Cx, t)‖2 − [δ2‖Cx‖2 − ‖Nα(Cx, t)‖2], x ∈ Dα
ρ , t ≥ 0.

Hence V̇ (x) ≤ 0 for all x ∈ Dα
ρ . Now let us restrict the RHS of the differential

equation (59) to R+ × Dα
ρ and suppose that xNα(t) = xNα(t, x0) is any solution of

the restricted differential equation (59) with initial state xNα(0) = x0 ∈ Dα
ρ and

maximal existence interval [0, t+(x0)) in R+. The RHS of (59) is affinely bounded
on R+×Dα

ρ because of (58). Hence, applying Proposition 2.1.19 to ΣNα on R+×Dα
ρ ,

we see that xNα(t), t ∈ [0, t+(x0)) is bounded if t+(x0) < ∞. Since V̇ (x) ≤ 0 for
x ∈ Dα

ρ , it follows that V̇ (xNα(t)) ≤ 0 for t ∈ [0, t+(x0)), hence

{xNα((t); t ∈ [0, t+(x0))} ⊂ {x ∈ K
n; V (x) ≤ V (x0)} ⊂ Dα

ρ .

So t+(x0) < ∞ would yield a contradiction to Lemma 3.2.14. Therefore xNα(t, x0)
exists and remains in Dα

ρ for all t ≥ 0, x0 ∈ Dα
ρ . Proceeding now as in the proof

of Theorem 5.6.22 (following the arguments which lead to equation (45) with A
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replaced by Aα, N(z) by Nα(z, t)) we see that there exists a constant cα independent
of N ∈ PK(Ω, δ) such that

‖zNα(·)‖L∞(0,∞;Kq) ≤ cα‖x0‖, x0 ∈ Dα
ρ (60)

where zNα(t) = CxNα(t, x0) (the reader is asked to prove this in Ex. 8). But

xNα(t) = eAαtx0 +

∫ t

0

eAα(t−s)BNα(zNα(s), s) ds , t ≥ 0,

and since ‖eAαt‖ ≤ Mαe−βt, t ≥ 0 for suitable Mα, β > 0, it follows that there exists
a constant c′α such that for all x0 ∈ Dα

ρ

‖xNα(t)‖ ≤ Mαe−βt‖x0‖ + c′α‖zNα(·)‖L∞(0,∞) ≤ Mαe−βt‖x0‖ + c′αcα‖x0‖, t ≥ 0.

Hence ‖xNα(t)‖ ≤ M‖x0‖, t ≥ 0 for all x0 ∈ Dα
ρ where M is a suitable constant

only depending upon A, B, α and δ. Let x(t) = e−αtxNα(t, x0), where x0 ∈ Dα
ρ is

arbitrary. Then Cx(t) ∈ Ω, t ≥ 0 and

ẋ(t) = −αx(t) + e−αtẋNα(t, x0) = Ax(t) + e−αtBNα(CxNα(t, x0), t)

= Ax(t) + BN(Cx(t)), t ≥ 0.

So x(·) is the solution of (41) with x(0) = x0 and ‖x(t)‖ ≤ Me−αt‖x0‖. This
completes the proof. �

Remark 5.6.28. (i) Note that in Theorem 5.6.25 (resp. Theorem 5.6.27) ker P ⊂ Dρ

(resp. ker Pα ⊂ Dα
ρ ) so that Dρ (resp. Dα

ρ ) will be unbounded if P (resp. Pα) is not negative
definite.
(ii) The significance of the results in Theorem 5.6.25 (resp. Theorem 5.6.27) is not that it
yields a lower estimate for the basin of attraction of the origin for a single nonlinear system
ΣN , but yields a guaranteed domain of attraction and uniform exponential estimate for
all systems ΣN for which the nonlinearity N is in PK(Ω, δ) with δ ≤ r−

C
(resp. < r−

C
). If

P in Theorem 5.6.25 (resp. Theorem 5.6.27) is nonsingular then V (x) = −〈x, Px〉 defines
a joint Liapunov function for all the nonlinear systems ΣN , N ∈ PK(Ω, δ). �

Example 5.6.29. Consider the nonlinear oscillator ξ̈+ξ̇+ξ = N(ξ) where as in Example
5.6.26 N : Ω → R is locally Lipschitz and Ω = (−ω, ω). This can be rewritten in the state
space form ΣN (41) with

A =

[
0 1
−1 −1

]
, B =

[
0
1

]
, C = [1 0].

It follows from Example 5.3.14 that r−
C

(A;B,C) =
√

3/2. The Riccati equation (43) with

δ =
√

3/2 has the unique solution P = −
[

1 0.5
0.5 1

]
. Proceeding as in Example 5.6.26 we

find that the ellipsoid D = {[x1, x2]
� ∈ R

2;x2
1+x1x2+x2

2 < 3ω2/4} is a guaranteed domain
of attraction of the origin with respect to all the systems ΣN (41) where N ∈PR(Ω, δ), i.e.

|N(ξ)| < (
√

3/2)|ξ| provided ξ ∈ (−ω, ω), ξ �= 0, (61)
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and it is the largest one that can be obtained from Theorem 5.6.25. For instance, if
N(ξ) = ξ2 we may choose ω =

√
3/2 to secure (61).

If α = 1/4 a short calculation yields r−
C

(A + αI2;B,C) =
√

3/4 and the only Hermitian

solution of (56) for δα =
√

3/4 is Pα = −
[

0.5 0.25
0.25 0.5

]
= P/2. Now consider the set

PR(Ωα, δα) of all nonlinearities N satisfying

|N(ξ)| < (
√

3/4)|ξ| provided ξ ∈ Ωα = (−ωα, ωα), ξ �= 0. (62)

Then we find that Dα = {[x1, x2]
� ∈ R

2;x2
1 + x1x2 + x2

2 < 3ω2
α/4} is a guaranteed domain

of attraction of the origin for all nonlinearities satisfying (62) and there exists a constant
M > 0 such that every solution xN (t, x0) of ΣN (41) satisfies ‖xN (t, x0)‖ ≤ Me−αt, t ≥ 0
for all x0 ∈ Dα. �

We conclude this section with a corollary of Theorem 5.6.27 which provides a suffi-
cient condition for global exponential stability.

Corollary 5.6.30. Suppose that δ < r−
C
(A; B, C) then the origin is a globally ex-

ponentially stable equilibrium point of (41) for all locally Lipschitz N : Kq → K�

satisfying (42).

Proof : Choose α > 0 sufficiently small so that (55) holds and set Ω = Kq. Then
(57) is satisfied for all ρ > 0 and any Hermitian solution Pα of (56). Since for any
x0∈Kn there exists ρ such that x0∈Dα

ρ , the result follows from Theorem 5.6.27. �

5.6.4 Exercises

1. Consider the system ẋ =

[
a11 a12

a21 a22

]
x with aij ∈ R and a11 < 0, a22 < 0 as a special

case of the system (14) (with n1 = n2 = 1) studied in Example 5.6.6. Show that the
estimate (33) given in Example 5.6.16 reduces to |a21a12| < a11a22 and is therefore a tight
condition for σ(A) ⊂ C−.

2. Consider the time-varying oscillator

ξ̈(t) + 2αξ̇(t) + (1 + ∆(t))ξ(t) = 0 , t ≥ 0

where 0 < α ≤ 1 is given and ∆(·) ∈ L∞(R; R) represents an unknown time-varying
perturbation of the restoring force. Suppose ξ(0) = −1 , ξ̇(0) = 0 and ∆(t) = δ > 0 for
0 ≤ t ≤ t1, where t1 is the smallest value of t for which ξ(t) = 0. If α1 = 1 + δ, prove that
t1 is uniquely determined by

cos(α1 − α2)1/2t1 = −α/
√

α1 ,
π

2
√

α1 − α2
≤ t1 ≤ π√

α1 − α2

and ξ̇(t1) =
√

α1e
−αt1 . Now suppose ∆(t) = −δ > 0 for t1 < t ≤ t1 + t2, where t2 is the

first time that ξ̇(t1 + t) = 0. If α2 < α2 = 1−δ, δ < 1 prove that t2 is uniquely determined
by

cos(α2 − α2)1/2t2 = α/
√

α2 , 0 ≤ t2 ≤ π

2
√

(α2 − α2)

and ξ(t1 + t2) =
√

α1/α2e
−α(t1+t2). Show that if α and δ are sufficiently small, then

t1 ≈ t2 ≈ π/2 and ξ(t1 + t2) > 1 provided δ > πα. Explain why this shows that
r−

R,t(α) := r−
R,t(A(α);B,C) ≤ πα where
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A(α) =

[
0 1
−1 −2α

]
, B =

[
0
1

]
, C =

[
1 , 0

]
. (63)

3. Consider the nonlinear oscillator

ξ̈(t) + 2αξ̇(t) + ξ(t) + N(ξ(t)) = 0 , t ≥ 0

where α > 0, N : R → R is locally Lipschitz and satisfies |N(ξ)| < |ξ|, ξ ∈ R, ξ �= 0. Use
the Liapunov function

V (ξ, ξ̇) = ξ2 + ξ̇2 + 2

∫ ξ

0
N(s)ds + 2αξξ̇ + 2α2ξ2

to prove that the origin of the corresponding state space system is globally asymptotically
stable. Hence show that r−

R,n(A(α);B,C) = 1 for all values of α > 0, if (A(α), B,C)

is defined by (63). Determine the limit of r−
R,t(A(α);B,C)/r−

R,n(A(α);B,C) as α ↘ 0
(compare Ex. 2).

4. Consider the uncertain system

Σ∆,h : ẋ(t) = Ax(t) + B∆Cx(t − h), A =

[
0 1
−1 −2

]
, B =

[
0
1

]
, C = [1, 1]

where h > 0 is given and ∆ ∈ K is unknown. As in Example 5.6.5 define a dynamic
perturbation N : L2(R+; K) → L2(R+; K) by

N (z(·))(t) =

{
0 0 ≤ t < h

∆z(t − h) t ≥ h
, z(·) ∈ L2(R+; K).

Given t0 = h, x0 ∈ K
2, ψ ∈ L2(0, t0; K

2), the solution of the delay equation Σ∆,h with
initial data (t0, x

0, ψ) coincides with the solution of ΣN with initial data (t0, x
0, Cψ),

where
ΣN : ẋ(t) = Ax(t) + BN (Cx(·))(t), t ≥ t0.

Prove that ‖N‖d = |∆|. The real and complex stability radii of ẋ(t) = Ax(t) with respect
to the delayed perturbations of the form B∆Cx(t − h), ∆ ∈ K are defined by

r−
K,h(A;B,C) = inf{|∆|; ∆ ∈ K, Σ∆,h is not g.a.s.} .

Prove r−
C,h(A;B,C) = r−

C
(A;B,C) for all h > 0 and

lim
h→0

r−
R,h(A;B,C) = r−

R
(A;B,C), lim

h→∞
r−

R,h(A;B,C) = r−
C

(A;B,C).

5. In this example we guide the reader to prove that r1
R,d(A;B,C) = r1

C
(A;B,C) for

discrete time systems. Suppose ∆ = wz∗, w ∈ C
�, z ∈ C

q destabilizes the stable real
discrete time system (A,B,C) and is of minimum norm :

σ(A + B∆C) �⊂ D and ‖∆‖ =

[
max

θ∈[0,2π)
‖G(eıθ)‖

]−1

= ‖G(eıθ0)‖−1 = r1
C(A,B,C),

where G(s) = C(sIn − A)−1B. Explain why we may assume θ0 ∈ (0, π). Let w =
[w1, ..., w�]

� and choose θj ∈ [π, 2π), w̃j ∈ R such that wj = w̃je
ıθj , j = 1, . . . , �. Let

aj = (eıθ0 − eıθj )/(1 − eı(θj+θ0)), j ∈ � and set

wj(s) =

⎧⎨⎩
wj if wj ∈ R ,

w̃j/s if θj = −θ0 ,

w̃j(s − aj)/(1 − ajs) otherwise ,

s ∈ C.
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Prove that aj ∈ R, |aj | > 1 and

wj(e
ıθ0) = wj , |wj(e

ıθ)| = |wj | for all θ ∈ [0, 2π).

Let w(s) = [w1(s), . . . , w�(s)]
�, and construct the real, proper rational vector

z(s) = [z1(s), . . . , zq(s)]
�, corresponding to the vector z, in the same way. Prove that

∆(s) = w(s)z(s)∗ destabilizes (A,B,C) and satisfies

‖∆(eıθ)‖ = r1
C for all θ ∈ [0, 2π).

6. Show that the Aizermann conjecture does not hold for arbitrary time-varying linear
perturbations, neither for K = R nor for K = C. More precisely, show that if ∆(·) ∈ Pt(R)
satisfies ‖∆(t)‖ < r−

C
(A,D,E), t ∈ R+ , it does not necessarily follow that Σ∆(·) (3) is

asymptotically stable.
(Hint: Consider the perturbed scalar system ẋ(t) = −x(t)+∆(t)x(t) with ∆(t) = 1−e−t.)

7. This exercise shows that the Aizermann conjecture for K = C cannot be extended to
time-varying nonlinearities satisfying

sup
t∈R+

‖N(z, t)‖ < r−
C
‖z‖ , z ∈ C

q , z �= 0.

Consider the nominal system ẋ = −x and let x̃(t) = ee
−t

so that x̃(0) = e and x̃(t)
decreases monotonically to 1 as t → ∞. Define for every t ∈ R+, x ∈ C

N(x, t) =

⎧⎪⎨⎪⎩
(1 − ln |x|)x

1 + (t + ln ln |x|)2 if |x| ∈ (1, e]

0 otherwise .

Show that N ∈ Pnt(C) (see Remark 5.6.3) and supt∈R+
|N(x, t)| < |x|, x ∈ C, x �= 0.

Prove that N(x̃(t), t) = (1 − e−t)x̃(t), t ≥ 0, and show that the system ẋ(t) = −x(t) +
N(x(t), t) is not g.a.s. .

8. Prove that (60) holds (see the proof of Theorem 5.6.27).

9. Suppose the conditions in Theorem 5.6.25 hold with δ = r−
C

(A;B,C) and in addition
N ∈ PK(Ω, δ) is differentiable at the origin with derivative N ′(0) satisfying ‖N ′(0)‖ <

r−
C

(A;B,C). Prove:

(i) Every solution x(t, x0) of ΣN with initial state x0 ∈ Dρ decays exponentially.

(ii) For any ρ̃ < ρ there exists an α > 0 and M > 0 (both depending on ρ̃ and N but
not on x0) such that ‖x(t, x0)‖ ≤ Me−αt‖x0‖, t ≥ 0, x0 ∈ Dρ̃.

(Hint: For (i) use Theorem 3.3.52 and for (ii) show that there exists γ < r−
C

such that
‖Nz‖ ≤ γ‖z‖ for all z ∈ CDρ̃ and apply Theorem 5.6.27 with Ω = CDρ̃).

5.6.5 Notes and References

The stability of feedback systems, with a given time-invariant linear system in the forward

path and an uncertain nonlinearity in the feedback path, is a classic problem in control

and has led to the concept of absolute stability (see below). In the classical context the un-

certain memoryless feedback operator described a nonlinear control mechanism for which
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a precise mathematical model was not known e.g. a servo-motor of constant speed with

deadzones, see Lur’e (1951) [352]. In our context the uncertain feedback operator is just

a convenient way of describing various types of perturbations.

This section is based on the paper by Hinrichsen and Pritchard (1992) [250] where both

discrete and continuous time systems are considered. This paper also contains a proof of

the more general existence and uniqueness result for systems of the form ΣN with arbi-

trary N ∈ P̃d(K) (see Remark 5.6.8 (iii)). For existence and uniqueness results without

stability assumptions (in an infinite dimensional setting), see Jacob (1995) [277].

Whereas not very much is known about the stability radius of time-invariant linear sys-

tems with respect to time-invariant nonlinear perturbations, the theory of stability radii

under time-varying parametric uncertainties has made substantial progress over the last

decade. One important source of information is provided by the spectral analysis of flows

on vector bundles and in particular the theory of Liapunov exponents of bilinear control

systems, see the comprehensive monograph of Colonius and Kliemann (2000) [108] which

contains applications to various stability radii problems. A closely related field which

provides efficient tools for the analysis of r−
R,t is the theory of linear differential inclusions.

Here we refer to the forthcoming work of Wirth (2005) [533] which introduces the concept

of extremal norms for characterizing the exponential growth of the semigroup associated

with a linear inclusion. Roughly speaking these norms generalize the concept of a Lia-

punov norm (see Section 5.5) to linear inclusions.

For 2-dimensional interval systems Gonzalez (1991) [199] developed a method of construct-

ing a time-varying system matrix with values in a given matrix interval which achieves the

largest growth rate. An application of his results to the perturbed oscillator in Example

5.6.18 can be found in [250].

A numerical method for computing the exponential growth rate of bilinear control sys-

tems has been developed by Grüne, see Appendix D in [108] and the rate of convergence

of the algorithm was analyzed in Grüne and Wirth (2000) [204]. The method is based on

the solution of a Hamilton-Jacobi equation associated with a discounted infinite horizon

optimal control problem and can also be used in order to compute the stability radius r−
R,t

for systems of modest dimension, see Wirth (2005) [533].

For an early paper in the spirit of Theorem 5.6.20 see Desoer and Chan (1975) [129].

The basic idea of absolute stability was introduced by Lur’e and Postnikov (1945) [353].

Research on the absolute stability problem generated a wealth of important results in

nonlinear feedback theory, see the early monographs of Aizerman and Gantmacher (1963)

[8] and Lefschetz (1963) [337]. In 1949 Aizerman [7] put forward the conjecture which now

bears his name. Kalman (1957) [286] formulated a more restrictive conjecture which re-

quired the nonlinearity N to be differentiable with derivative N ′(y) ∈ [k1, k2], y ∈ R. The

discovery of counterexamples to these conjectures showed that one cannot hope to reduce

the stability analysis of nonlinear feedback systems ΣN to the analysis of a set of linear

systems, see the books of Hahn (1963) [208], J. L. Willems (1970) [530] and J. C. Willems

(1971) [527]. A detailed analysis of the counterexample in [527] shows that for each

δ ∈ (0, 1] there exist stable systems (A,B,C) such that r−
R,n(A,B,C) ≤ δ r−

R
(A,B,C),

see [250]. However, by strengthening the conditions on the linear system, it is possible

to define a restricted class of systems for which the Aizerman conjecture holds true over

the reals. Perhaps the most notable result in this direction is the Popov criterion (1962)

[418] which yields a (conservative) sufficient condition for the global asymptotic stability
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of ΣN . Popov’s paper initiated a new frequency-response approach towards the stability

theory of nonlinear feedback systems. Another important result in this vein is the circle

criterion originally proved by Sandberg (1964) [447] and Zames (1966) [543]. In contrast

to Popov’s criterion the circle criterion is also applicable to time-varying nonlinearities.

The question “How conservative is the circle criterion” has been discussed by Megretski

(1998) in the open problem book [63]. It is closely related to the open problem (mentioned

in Remark 5.6.21) of whether or not the quotient r−
R,t/r

−
C

is bounded. For instructive sur-

veys on the early developments in the stability theory of nonlinear feedback systems and

for reprints of some of the classical papers, see the IEEE volume on Frequency-Response

Methods in Control Systems edited by MacFarlane (1979). In [250] it is shown that the

complex version of the Aizerman conjecture can be extended to certain classes of time-

varying nonlinearities. However some constraints are needed, see Ex. 6.

Popov has shown that his results include those obtainable via the use of Liapunov functions

consisting of a quadratic form plus an integral of the nonlinearity. Yakubovich (1962) [534]

established the converse result that, if the Popov criterion is satisfied with some additional

constraints then there exists a Liapunov function consisting of a quadratic form plus an

integral of the nonlinear term. Recently, significant progress has been made in the con-

struction of Liapunov functions for perturbed nonlinear differential equations, see e.g. Lin

et al. (1996) [345]. In the proofs of these converse theorems for uncertain nonlinear sys-

tems, the concept of input-to-state stability due to Sontag and several variations of this

concept play a central role, see Sontag and Wang (1996) [474] and the recent monograph

of Grüne (2002) [203].

As early as the 1960s Zubov (1964) [547] derived a method of constructing a Liapunov func-

tion which characterizes the complete basin of attraction of a given asymptotically stable

equilibrium. This method is based on a partial differential equation called the Zubov

equation. Recently Camilli et al. (2000) [88] generalized Zubov’s method to perturbed

systems. They introduced the concept of robust domains of attraction and developed a

method of computing them via the viscosity solution of a suitable modification of Zubov’s

equation, see [89], [203] and [533].



Appendix

In this appendix we collect some definitions and results from

• Linear Algebra

• Complex Analysis

• Convolutions and Transforms

• Operator Theory

which are used in the text. We assume, however, that the reader is familiar with the basic
elements of these fields. Some of the results reported in the following sections are not used
in this volume, but have been included with a view towards Volume II.

A.1 Linear Algebra

Most of the results in this section can be found in Horn and Johnson (1999) [264], Stewart
and Sun (1990) [484] or Horn and Johnson (1991) [265]. We give proofs of those results
for which we were not able to find references.

A.1.1 Norms of Vectors and Matrices

In this subsection we give some definitions and results on vector and matrix norms which
are needed throughout the book and, in particular, in Chapters 4 and 5.

Definition A.1.1. For p ∈ [1,∞] the p-norm of x ∈ C
n is defined by

‖x‖p = (|x1|p + |x2|p + . . . + |xn|p)1/p
, 1 ≤ p < ∞, ‖x‖∞ = max{|x1|, |x2|, . . . , |xn|}.

If X is a normed space the dual space is denoted by X∗, see Section A.4. The dual space
of K

n can be identified with K
1×n by associating with the linear form f ∈ (Kn)∗ the row

vector [f1, f2, . . . , fn] = [f(e1), f(e2), . . . , f(en)] where (e1, . . . , en) is the standard basis of
K

n. Note that [f(e1), f(e2), . . . , f(en)] is just the matrix representation of f with respect
to the standard basis of K

n.

Definition A.1.2. If ‖ · ‖Kn is a norm on K
n, the dual norm on the dual space (Kn)∗ is

‖f‖∗Kn = max{|f1x1 + . . . + fnxn|; ‖x‖Kn = 1}, f = [f1, f2, . . . , fn] ∈ K
1×n. (1)

For p ∈ [1,∞] the dual norm of a p-norm is ‖ · ‖∗p = ‖ · ‖p∗ , where p∗ ∈ [1,∞] is the
conjugate exponent defined by 1/p + 1/p∗ = 1. In particular if p = 1 then p∗ = ∞.

Example A.1.3. For p = 2, the norm ‖ · ‖2 on C
n is induced by the inner product

〈x, y〉Cn = y∗x = y1x1 + y2x2 + . . . + ynxn, x, y ∈ C
n. (2)
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In this case we have p∗ = 2 and (Cn)∗ can be identified with C
n by associating with any

y ∈ C
n the linear form fy : x �→ y∗x on C

n. The map y �→ fy is a conjugate linear bijection
from C

n onto (Cn)∗ (fy+z = fy + fz, fαy = αfy for y, z ∈ C
n, α ∈ C) and preserves the

norms: ‖fy‖∗2 = ‖y‖2. �

Definition A.1.4. If ‖ · ‖Kn and ‖ · ‖Km are given norms on K
n and K

m, then the
corresponding operator norm of any matrix B ∈ K

n×m is defined by

‖B‖L(Km,Kn) := max{‖Bx‖Kn ; x ∈ K
m, ‖x‖Km = 1}.

The operator norm of B ∈ K
n×n corresponding to the norm ‖ · ‖Kn on K

n is denoted by
‖B‖L(Kn).

When Km is normed with a p-norm and Kn is normed with an r-norm, 1 ≤ p, r ≤ ∞, we
write ‖B‖L(Km,Kn) = ‖B‖p,r. If B = (bij) ∈ K

n×m, we have

‖B‖1,1 = max
j∈m

n∑
i=1

|bij|, ‖B‖2,2 = σmax(B), ‖B‖∞,∞ = max
i∈n

m∑
j=1

|bij |. (3)

If ‖ · ‖Cn and ‖ · ‖Cm are given norms on C
n,Cm and R

n, R
m (considered as R-linear

subspaces of C
n,Cm) are provided with the induced norms ‖ · ‖Rn and ‖ · ‖Rm , then

‖B‖L(Rm,Rn) ≤ ‖B‖L(Cm,Cn), B ∈ R
n×m. (4)

The notation ‖ · ‖p,r does not reveal whether the underlying spaces are real or complex.
We will use the convention that if it is not stated otherwise the underlying spaces are
complex. It is important to make this distinction since the inequality in (4) may be strict.

Example A.1.5. Consider the matrix B =

[
1 −1
1 1

]
as a map from (K2, ‖ · ‖∞) into

(K2, ‖ · ‖1). Then ‖Bx‖1 = |x1 − x2|+ |x1 + x2| for x ∈ C
2, and for x1 = 1, x2 = ı we have

‖x‖∞ = 1, ‖Bx‖1 = 2
√

2, hence ‖B‖∞,1 ≥ 2
√

2 in the complex case. But in the real case
max{‖Bx‖1; x ∈ R

2, ‖x‖∞ = 1} = 2. �

The above considerations motivate the following definition.

Definition A.1.6. (i) A norm ‖·‖Cn on C
n is said to be compatible with a given norm

‖ · ‖Rn on R
n if ‖x‖Cn = ‖x‖Rn for all x ∈ R

n.

(ii) Let (‖·‖Rm , ‖·‖Rn ) be a given pair of norms on R
m, Rn. A pair of norms (‖·‖Cm , ‖·‖Cn )

on C
m, Cn is said to be compatible with (‖ · ‖Rm , ‖ · ‖Rn) if ‖ · ‖Cn is compatible with

‖ · ‖Rn , ‖ · ‖Cm is compatible with ‖ · ‖Rm and the corresponding operator norms on
C

m×n, C
n×m are compatible with those on R

m×n, R
n×m in the following sense:

‖B‖L(Cm,Cn) = ‖B‖L(Rm,Rn), B ∈ R
n×m; ‖C‖L(Cn,Cm) = ‖C‖L(Rn,Rm), C ∈ R

m×n.

It follows from the formulas in (3) that if R
m, Rn, C

m, Cn are jointly normed with either
the 1-, 2- or ∞-norms, then the norm pairs (‖ · ‖Rm , ‖ · ‖Rn) and (‖ · ‖Cm , ‖ · ‖Cn) will
be compatible. The next lemma shows that for any given pair of norms on R

m, Rn there
always exists a compatible pair on C

m, Cn.
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Lemma A.1.7. Let (‖ · ‖Rm , ‖ · ‖Rn) be a given pair of norms on R
m, Rn. Then the pair

of norms (‖ · ‖Cm , ‖ · ‖Cn) defined by

‖x‖Cm = sup
0≤θ≤2π

‖ cos θ Rex + sin θ Imx‖Rm , ‖y‖Cn = sup
0≤θ≤2π

‖ cos θ Re y + sin θ Im y‖Rn

for x ∈ C
m, y ∈ C

n, is a compatible pair of norms on C
m, Cn. In particular, the norm

‖ · ‖Cn on C
n is compatible with the norm ‖ · ‖Rn on R

n.

Proof : We first show that ‖ ·‖Cm is in fact a norm on C
m which induces the norm ‖ ·‖Rm

on R
m. The same proof applies to ‖ · ‖Cn .

(i) ‖x‖Cm = 0 ⇔ x = 0 is clear from the definition (choose θ = 0, π/2).

(ii) The triangle inequality follows directly from the definition.

(iii) ‖αx‖Cm = |α|‖x‖Cm for all α ∈ C, x ∈ C
m. This is clear for real α ≥ 0. Hence it

remains only to show it for α = eıϕ. But this follows from the equality

‖x‖Cm = sup
0≤θ≤2π

‖ cos θ Rex + sin θ Imx‖Rm = sup
0≤θ≤2π

‖Re(e−ıθx)‖Rm , x ∈ C
m

by applying it to eıϕx and x.

(iv) For x ∈ R
m we have ‖x‖Cm = sup0≤θ≤2π ‖ cos θ x‖Rm = ‖x‖Rm .

It remains to prove the reverse inequality to the one in (4) for every B ∈ R
n×m. By

definition we have for every x ∈ C
m

‖Bx‖Cn = sup
0≤θ≤2π

‖ cos θ ReBx + sin θ Im Bx‖Rn = sup
0≤θ≤2π

‖B(cos θ Re x + sin θ Im x)‖Rn

≤‖B‖L(Rm,Rn)‖x‖Cm .

Hence ‖B‖L(Rm,Rn) ≥ ‖B‖L(Cm,Cn). �

Definition A.1.8. If x = (xi) ∈ K
n, we set |x| = (|xi|) and say that |x| ≤ |y| if |xi| ≤ |yi|

for all i = 1, 2, . . . , n. A norm on K
n is said to be

(i) monotone if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x, y ∈ K
n,

(ii) absolute if ‖x‖ = ‖ |x| ‖ for all x ∈ K
n.

By definition all p-norms, 1 ≤ p ≤ ∞ are absolute.

Theorem A.1.9. Let ‖ · ‖ be a norm on K
n, and ‖ · ‖L(Kn) the corresponding operator

norm it induces on K
n×n. Then the following are equivalent

(i) ‖ · ‖ is a monotone norm on K
n.

(ii) ‖ · ‖ is an absolute norm on K
n.

(iii) For every diagonal matrix D = diag (d1, d2, . . . , dn) ∈ K
n×n we have ‖D‖L(Kn) =

max{|d1|, |d2|, . . . , |dn|}.

Definition A.1.10. For 1 ≤ p, r ≤ ∞ the (p|r)-Hölder norm of norm B ∈ C
n×m is

‖B‖p|r =
∥∥∥(‖B�e1‖p, . . . , ‖B�en‖p)

�
∥∥∥

r
, (5)

where e1, . . . , en are the column vectors of In. So, if p, r ∈ [1,∞), then
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‖B‖p|r =

⎛⎜⎝ n∑
i=1

⎛⎝ m∑
j=1

|bij |p
⎞⎠r/p

⎞⎟⎠
1/r

, B = (bij) ∈ C
n×m, (6)

and otherwise

‖B‖p|∞=max
i∈n

⎡⎣ m∑
j=1

|bij |p
⎤⎦1/p

, ‖B‖∞|r =

[
n∑

i=1

(
max
j∈m

|bij |
)r
]1/r

, ‖B‖∞|∞ = max
i∈n,j∈m

|bij |. (7)

If p = r the norms ‖ · ‖p|p are just the p-norms on matrices in C
n×m regarded as vectors

in C
nm, i.e. ‖B‖p|p = ‖vec (B)‖p. Here vec (B) ∈ C

nm is formed by stacking each column
of the matrix B (from the left to the right) one beneath the other, see Definition A.1.23.
For example if n = m = 2

vec (B) = [b11 b21 b12 b22]
�.

In particular, ‖ · ‖F = ‖ · ‖2|2 is the Frobenius norm. This norm is associated with the
following inner product on K

n×m

〈X,Y 〉 = trace(XY ∗), X, Y ∈ K
n×m

Note that for n > 1 the Frobenius norm is not the operator norm ‖ · ‖2,2. From (3) and
(7) we see that the Hölder norm ‖B‖1|∞ is the operator norm ‖B‖∞,∞ induced by the ∞-

norms on K
n and K

m, and ‖B�‖1|∞ is the operator norm ‖B‖1,1 induced by the 1-norms
on K

n and K
m. But, in general, ‖ · ‖p|r is not an operator norm.

Definition A.1.11. A norm ‖ · ‖Kn×m on K
n×m is said to be rank one consistent with an

operator norm ‖ · ‖L(Km,Kn) if for all B ∈ K
n×m,

‖B‖L(Km,Kn) ≤ ‖B‖Kn×m , and ‖B‖Kn×m = ‖B‖L(Km,Kn) if rankB = 1.

Lemma A.1.12. For arbitrary p, r ∈ [1,∞], the Hölder norm ‖·‖p|r is rank one consistent
with the operator norm ‖ · ‖L(Km,Kn) induced by the dual p-norm on K

m and the r-norm
on K

n. That is ‖ · ‖p|r is rank one consistent with ‖ · ‖p∗,r, where 1/p + 1/p∗ = 1.

Proof : For B = (bij) ∈ K
n×m, we denote the ith row by bi�, i ∈ n. Since by Hölder’s

inequality |y�x| ≤ ‖y‖p‖x‖p∗ for p ∈ [1,∞], we have for x ∈ K
m

‖Bx‖r
r =

n∑
i=1

|bi�x|r ≤
n∑

i=1

‖bi‖r
p‖x‖r

p∗ = ‖B‖r
p|r‖x‖r

p∗ , 1 ≤ r < ∞

‖Bx‖∞ = max
i∈n

|bi�x| ≤ max
i∈n

‖bi‖p‖x‖p∗ = ‖B‖p|∞‖x‖p∗ .

Hence ‖B‖p∗,r ≤ ‖B‖p|r for all r, p ∈ [1,∞].

Now suppose that B = dc�, d ∈ K
n, c ∈ K

m, then clearly ‖B‖p|r = ‖d‖r‖c‖p. If 1 ≤ p < ∞
define xj = cj |cj |p−2 if cj �= 0 and xj = 0 if cj = 0. Then

‖x‖p∗
p∗ =

m∑
j=1

|cj |p
∗ |cj |(p−2)p∗ =

m∑
j=1

|cj |(p−1)p∗ = ‖c‖p
p.

Hence ‖x‖p∗ = ‖c‖p/p∗
p = ‖c‖p−1

p and

|c�x| = ‖c‖p
p = ‖c‖p‖x‖p∗ , ‖Bx‖r = ‖d‖r‖c‖p‖x‖p∗ .

So ‖B‖p∗,r ≥ ‖d‖r‖c‖p = ‖B‖p|r ≥ ‖B‖p∗,r. If |ck| = maxj∈m |cj |, by choosing xk = 1 and
xj = 0, j �= k, a similar simpler proof goes through for the case p = ∞. �

The following table lists the operator norms which are rank one consistent to some Hölder
norms
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Hölder norm operator norm Hölder norm operator norm

‖ · ‖1|∞ ‖ · ‖∞,∞ ‖ · ‖1|1 ‖ · ‖∞,1

‖ · ‖2|2 ‖ · ‖2,2 ‖ · ‖∞|∞ ‖ · ‖1,∞

Table A.1.1: Rank one consistent norms

A.1.2 Spectra and Determinants

For any A ∈ C
n×n the characteristic polynomial is denoted by χA(s), the spectrum by

σ(A), i.e.
χA(s) = det(sIn − A) and σ(A) = {λ ∈ C; χA(λ) = 0},

and the resolvent set by ρ(A) = C \ σ(A).

Lemma A.1.13. Suppose M ∈ C
n×m, N ∈ C

m×n and m ≤ n. Then

det(In − MN) = det(Im − NM) and χMN (s) = sn−mχNM(s). (8)

In particular, MN and NM have the same non-zero eigenvalues (taking account of mul-
tiplicities).

Definition A.1.14. The inertia of A ∈ C
n×n is the triple i(A) = (n+(A), n0(A), n−(A))

where, accounting for multiplicities,

n+(A) = number of eigenvalues of A with Reλ > 0,

n0(A) = number of eigenvalues of A on the imaginary axis,

n−(A) = number of eigenvalues of A with Reλ < 0.

If f is an entire function and f(s) =
∑

k∈N
aks

k its representation by a globally convergent
power series (see Section A.2), then f(A) ∈ C

n×n is defined for every A ∈ C
n×n by the

absolutely convergent power series in C
n×n

f(A) =
∑
k∈N

akA
k, A ∈ C

n×n. (9)

We have the following elementary version of the Spectral Mapping Theorem.

Proposition A.1.15. If f is an entire function and A ∈ C
n×n then

(i) f(A) is invertible if and only if f(λ) �= 0 for all λ ∈ σ(A).

(ii) σ(f(A)) = f(σ(A)).

An analogous statement holds for any rational function of a matrix A.

Proposition A.1.16. Suppose f(s) = p(s)/q(s), p, q ∈ C[s] is a complex rational function
and A ∈ C

n×n is a matrix whose spectrum does not contain any root of q. Then q(A) is
invertible and f(A) := p(A)q(A)−1 has the spectrum σ(f(A)) = f(σ(A)).

We conclude this subsection with the Schur complement formula for the determinant of a
2 × 2 block matrix with square diagonal blocks.
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Lemma A.1.17. Suppose A =

[
M N

P Q

]
∈ C

(q+�)×(q+�) and detM �= 0. Then

detA = det M det(Q − PM−1N).

Q−PM−1N is called the Schur complement of M in A. If detQ �= 0, the Schur complement
of Q in A is M − NQ−1P , and the corresponding formula for the determinant is detA =
detQ det(M − NQ−1P ).

A.1.3 Real Representation of Complex Matrices

If G ∈ C
q×� and G = X + ıY with X,Y ∈ R

q×� then the representation of G in real form
is given by

GR =

⎡⎣X −Y

Y X

⎤⎦ ∈ R
2q×2�.

GR represents the R-linear map G : u �→ Gu with respect to the standard bases (e1, . . . , e�;
ıe1, . . . , ıe�) and (e1, . . . , eq; ıe1, . . . , ıeq) of the real vector spaces C

� ∼= R
� × R

� and C
q ∼=

R
q × R

q, respectively.

Lemma A.1.18. The map G �→ GR from C
q×� to R

2q×2� has the following properties.

(a) G �→ GR is an R-linear isomorphism from C
q×� into R

2q×2�.

(b) (GH)R = GRHR for G ∈ C
q×n, H ∈ C

n×�.

(c) If G ∈ C
n×n is invertible then so is GR ∈ R

2n×2n and
(
G−1

)R
=
(
GR

)−1
.

(d) (G∗)R = (GR)� for all G ∈ C
q×�.

(e) G �→ GR maps unitary matrices G ∈ Un(C) into orthogonal matrices GR ∈ O2n.

In particular, G �→ GR defines an injective ring homomorphism from C
n×n into R

2n×2n,
and injective group homomorphisms from Gln(C) into Gl2n(R) and from Un(C) into O2n.

A.1.4 Direct Sums and Kronecker Products

In this subsection we first define the direct sum of subspaces and matrices and then
briefly review the main properties of Kronecker products. More details can be found in
[265, Ch. 4].

Definition A.1.19. Suppose V1 and V2 are linear subspaces of a vector space V . Then
V is said to be the direct sum of V1 and V2 (written V = V1 ⊕ V2) if V1 ∩ V2 = {0} and
every element of V can be expressed as the sum of an element of V1 and an element of V2.

The direct sum of two linear maps is defined as follows.

Definition A.1.20. Suppose Ai :Xi → Yi, i = 1, 2 are linear maps between vector spaces,

then A1⊕A2 : X1×X2 → Y1×Y2 is defined by (A1⊕A2)

[
x1

x2

]
=

[
A1x1

A2x2

]
for x1∈X1, x2∈X2.
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Applying this definition to matrices A1 ∈ K
n1×m1 , A2 ∈ K

n2×m2 (identified with the corre-
sponding linear maps) the resulting direct sum has a block-diagonal matrix representation

(A1 ⊕ A2) = diag(A1, A2) ∈ K
(n1+n2)×(m1+m2).

The Kronecker product of two matrices is defined as follows.

Definition A.1.21. If A ∈ K
m×n, A = (aij), B ∈ K

p×q, the Kronecker product of A and
B is the block-diagonal matrix A ⊗ B = (aijB)i∈m,j∈n ∈ K

mp×nq.

For example if m = n = 2

A ⊗ B =

⎡⎣ a11B a12B

a21B a22B

⎤⎦ .

Proposition A.1.22. The Kronecker product has the following properties.

(a) (αA) ⊗ B = A ⊗ (αB) = α(A ⊗ B), α ∈ K, A ∈ K
m×n, B ∈ K

p×q.

(b) (A ⊗ B)� = A� ⊗ B�, A ∈ K
m×n, B ∈ K

p×q.

(c) (A ⊗ B)∗ = A∗ ⊗ B∗, A ∈ C
m×n, B ∈ C

p×q.

(d) (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C), A ∈ K
m×n, B ∈ K

p×q, C ∈ K
r×s.

(e) (A + B) ⊗ C = A ⊗ C + B ⊗ C, A ∈ K
m×n, B ∈ K

m×n, C ∈ K
r×s.

(f) A ⊗ (B + C) = A ⊗ B + A ⊗ C, A ∈ K
m×n, B ∈ K

p×q, C ∈ K
p×q.

(g) A ⊗ B = 0 if and only if A = 0 or B = 0, A ∈ K
m×n, B ∈ K

p×q.

(h) (A ⊗ B)(C ⊗ D) = AC ⊗ BD, A ∈ K
m×n, B ∈ K

p×q, C ∈ K
n×s, D ∈ K

q×r.

(i) If A ∈ K
n×n and B ∈ K

q×q are nonsingular, then (A ⊗ B)−1 = A−1 ⊗ B−1.

(j) [B ⊗ A |C ⊗ A] = ([B |C] ⊗ A) and there exists a permutation matrix Q such that
[A ⊗ B |A ⊗ C] = (A ⊗ [B |C])Q for all A ∈ K

m×n, B ∈ K
p×q, C ∈ K

p×s.

(k) If A ∈ K
n×n and B ∈ K

q×q then det(A ⊗ B) = (det A)q(det B)n = det(B ⊗ A).

In the study of matrix equations it is sometimes useful to consider matrices in K
m×n as

vectors by ordering their entries in a convenient way.

Definition A.1.23. With each matrix A = (aij) ∈ K
m×n we associate the vector vec (A) ∈

K
mn defined by

vec (A) = [a11, a21, . . . , an1, a12, a22, . . . , an2, . . . , a1m, a2m, . . . , anm]�.

It follows that ‖vec (A)‖2 = ‖A‖F where ‖ · ‖F is the Frobenius norm.

Proposition A.1.24. For every m,n ∈ N
∗ there exists a unique mn × mn permutation

matrix P (m,n) such that vec (X�) = P (m,n)vec (X) for all X ∈ K
m×n. With these

permutation matrices the Kronecker products A ⊗ B and B ⊗ A are related by

B ⊗ A = P (m,p)�(A ⊗ B)P (n, q), A ∈ K
m×n, B ∈ K

p×q.

In particular, if m = n, p = q then A ⊗ B and B ⊗ A are similar via the permutation
P (m,p).
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The following proposition is useful for converting a linear matrix equation for X into a
vector equation for vec(X).

Proposition A.1.25. Suppose A ∈ K
m×n, X ∈ K

n×q and C ∈ K
q×s, then

vec (AXC) = (C� ⊗ A)vec (X).

By this proposition we see that for A ∈ K
n×n, B ∈ K

m×m, C ∈ K
n×m, X ∈ K

n×m the
equation AX + XB = C can be re-written as (Im ⊗ A + B� ⊗ In)vec (X) = vec (C).
The eigenvalues of the Kronecker product of two square matrices are determined as follows.

Theorem A.1.26. Suppose A ∈ K
n×n and B ∈ K

q×q. If λ ∈ σ(A) and x ∈ C
n is a

corresponding eigenvector, and if µ ∈ σ(B) and y ∈ C
q is a corresponding eigenvector, then

λµ ∈ σ(A⊗B) with corresponding eigenvector x⊗y ∈ C
nq. Every eigenvalue of A⊗B arises

as such a product of eigenvalues of A and B. If σ(A) = {λ1, . . . , λn}, σ(B) = {µ1, . . . , µq},
then σ(A ⊗ B) = {λiµj; i = 1, . . . , n, j = 1, . . . , q} (taking account of multiplicities). In
particular, σ(A ⊗ B) = σ(B ⊗ A) and trace(A ⊗ B) = trace(B ⊗ A) = trace(A) trace(B).

The following result about the singular value decomposition of a Kronecker product is an
immediate consequence of this theorem and Proposition A.1.22 (h).

Theorem A.1.27. Suppose A ∈ C
m×n and B ∈ C

p×q have singular value decompositions
A = W1Σ1V

∗
1 and B = W2Σ2V

∗
2 , then A ⊗ B = (W1 ⊗ W2)(Σ1 ⊗ Σ2)(V1 ⊗ V2)

∗. The
non-zero singular values of A⊗B are σi(A)σj(B), i = 1, . . . , rank(A), j = 1, . . . , rank(B)
taking account of multiplicities. In particular, A ⊗ B and B ⊗ A have the same non-zero
singular values and rank(A ⊗ B) = rank(B ⊗ A) = rank(A) rank(B).

As a direct consequence we obtain

‖A ⊗ B‖2,2 = σmax(A ⊗ B) = σmax(A)σmax(B) = ‖A‖2,2‖B‖2,2.

Similarly we have by Theorem A.1.26 and Proposition A.1.22 (h) for the Frobenius norm

‖A ⊗ B‖F = trace[(A ⊗ B) (A ⊗ B)∗] = trace (AA∗ ⊗ BB∗) = ‖A‖F ‖B‖F .

A.1.5 Hermitian Matrices

Here we give a review of some basic properties of Hermitian matrices and their order
relation $.

Definition A.1.28. For any A = (aij) ∈ C
n×n let A∗ := A

�
= (aji) be its complex

conjugate transpose. The matrix A is said to be Hermitian if A∗ = A. It is said to be
skew-Hermitian if A∗ = −A.

We note the following.

• The set Hn(K) of Hermitian matrices in K
n×n form a real vector space, i.e if A,B ∈

Hn(K), then αA + βB ∈ Hn(K) for all α, β ∈ R.

• A real matrix A ∈ R
n×n is Hermitian if and only if it is symmetric, i.e. A = A�.

• If A ∈ C
n×n then A+A∗, AA∗, A∗A are all Hermitian and A−A∗ is skew-Hermitian.

• A ∈ C
n×n is Hermitian if and only if the associated quadratic form Q(x) = x∗Ax is

real on C
n.
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Hermitian matrices have special spectral properties.

Theorem A.1.29. A matrix A ∈ C
n×n is Hermitian if and only if there is a unitary

matrix U ∈ Un(C) and a real diagonal matrix Λ such that A = UΛU∗. A is real and
Hermitian (i.e., real symmetric) if and only if there is an orthogonal matrix U ∈ On and
a real diagonal matrix Λ such that A = UΛU�.

As a consequence of this theorem if A ∈ Hn(K), we have

‖A‖2,2 = max
‖x‖=1

|〈Ax, x〉|, and λmax(A) = max
‖x‖=1

〈Ax, x〉, (10)

where 〈·, ·〉 is the usual inner product on K
n.

A ∈ Hn(K) is said to be positive definite (A & 0) (resp. positive semi-definite (A $ 0)) if

〈Ax, x〉 = 〈x,Ax〉 > 0 (resp. ≥ 0) , x ∈ K
n, x �= 0.

The set H+
n (K) of positive semi-definite matrices on K

n is a pointed convex cone, i.e.

αH+
n (K) ⊂ H+

n (K), α > 0, H+
n (K) + H+

n (K) ⊂ H+
n (K), H+

n (K) ∩ (−H+
n (K)) = 0.

The associated order on the vector space Hn(K) is defined by A $ B ⇔ A − B $ 0. We
write A & B if A,B ∈ Hn(K) and A − B & 0.

Theorem A.1.30. The following are equivalent

(a) A & 0 (resp. A $ 0),

(b) λ > 0 (resp. λ ≥ 0) for all λ ∈ σ(A),

(c) the leading principal minors of A are positive (resp. all the principal minors of A

are non-negative),

(d) there exists a unique matrix B & 0 (resp. B $ 0) such that B2 = A (we write
B = A1/2).

Since the eigenvalues of an Hermitian matrix are all real they are either positive, negative
or zero. Specializing Definition A.1.14 to Hermitian matrices we get

Definition A.1.31. The inertia of a Hermitian matrix A ∈ Hn(K) is the ordered triple
i(A) = (n+(A), n0(A), n−(A)) where n+(A), n0(A), n−(A) denote the number of positive,
zero and negative eigenvalues of A, respectively, taking account of multiplicities.
sign(A) := n+(A) − n−(A) is called the signature of A.

Notice that the rank of a Hermitian matrix is n+(A) + n−(A) and so the inertia of a
Hermitian matrix A is uniquely determined by rank(A) and sign(A). We have the following
lemma.

Lemma A.1.32. For A,B ∈ Hn(K) we have

rank(A + B) = rankA + rankB ⇒ sign(A + B) = sign(A) + sign(B).

Two matrices A,B ∈ C
n×n are said to be congruent if there exists a nonsingular matrix

S ∈ Gln(C) such that B = SAS∗. One can show that two real symmetric matrices
A,B ∈ H(R) are congruent if and only if there exists an S ∈ Gln(R) such that B = SAS�.

Theorem A.1.33 (Sylvester’s Law of Inertia). Two Hermitian matrices A,B ∈
Hn(K) are congruent if and only if they have the same inertia i(A) = i(B) = (n+, n0, n−).
In this case they are both congruent to In+ ⊕ 0n0×n0 ⊕ In− (via a matrix S ∈ Gln(K)).
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A.2 Complex Analysis

In this section we summarize some basic concepts and results from Complex Analysis.
Excellent textbooks in this field are Ahlfors (1979) [6], Cartan (1995) [92], Conway (1978,
1995) [109], [110], Fischer and Lieb (1992) [163], Narasimhan (1985) [386] and Rudin
(1987) [441]. A comprehensive introduction which contains many variants and extensions
of classical results and instructive comments on the literature is Burckel (1979) [82].

A.2.1 Topological Preliminaries

Suppose X is a metric space or, more generally, a topological Hausdorff space. For S ⊂ X

we denote by intS the interior of S (the largest open subset of X contained in S) and by
S the closure of S in X (smallest closed subset of X containing S). S ⊂ X is called dense
in X if S = X. A point a ∈ X is said to be an accumulation point of S ⊂ X if every
neighbourhood of a contains infinitely many elements of S. S is said to be a discrete (or
locally finite) subset of X if every x ∈ X has a neighbourhood which contains at most
finitely many points of S, i.e. S has no accumulation point in X. A discrete subset of X is
always closed in X. s0 is said to be an isolated point of S if there exists a neighbourhood
V of s0 in X such that V ∩ S = {s0}. A closed subset is discrete if and only if it consists
of isolated points.
A function u : X → R := [−∞,∞] is upper semicontinuous if, for every a ∈ R, the set
{x ∈ X;u(x) < a} is an open subset of X. Similarly, a function u : X → R is lower
semicontinuous if, for every a ∈ R, the set {x ∈ X;u(x) > a} is open. If (ui)i∈I is a family
of upper (resp. lower) semicontinuous functions then infi∈I ui (resp. supi∈I ui) is upper
(resp. lower) semicontinuous.

Proposition A.2.1. If K is a non-empty compact subset of X and u is an upper (resp.
lower) semicontinuous function, then there exists an x0 ∈ K such that u(x0) ≥ u(x)
(resp. u(x0) ≤ u(x)) for all x ∈ K.

An arc or curve in X is a continuous map γ from a compact interval [α, β] ⊂ R into X.
[α, β] is called the parameter set and γ([α, β]) = {γ(t); α ≤ t ≤ β} the trace of γ. γ(α)
is called the initial point and γ(β) the final point of γ. γ is said to be a closed curve if
γ(α) = γ(β). X is said to be arcwise connected if, for any two points x0, x1 ∈ X, there
exists an arc in X with initial point x0 and final point x1. Two arcs γ0, γ1 in X with
joint parameter interval [α, β] and γ0(α) = γ1(α) =: a, γ0(β) = γ1(β) =: b are said to be
homotopic in X, if one can be continuously transformed into the other leaving the initial
and final points fixed. More precisely, they are homotopic if there exists a continuous
function h : [α, β] × [0, 1] → X such that h(t, 0) = γ0(t), h(t, 1) = γ1(t), t ∈ [α, β] and
h(α, r) = a, h(β, r) = b for all r ∈ [0, 1].
If Ω ⊂ C is open, every x ∈ Ω is contained in a maximal open and arcwise connected
subset of Ω. These subsets are called the connected components of Ω. Any two connected
components of Ω are disjoint and Ω is the union of these components. Ω ⊂ C is called a
domain if it is open and arcwise connected.
U ⊂ C is said to be a neighbourhood of ∞ if it contains a set of the form {s ∈ C; |s| > r},
r > 0. If γ : [α, β] → C is any arc then its trace is contained in some disk in C and so
C \ γ([α, β]) has exactly one unbounded connected component (which is a neighbourhood
of ∞). A closed curve γ : [α, β] → C is called simple if it is one-to-one on [α, β). A
simple closed curve is called a Jordan curve. A fundamental result on the topology of the
complex plane is the following.
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Theorem A.2.2 (Jordan Curve Theorem). If γ : [α, β] → C is a Jordan curve
then C \ γ([α, β]) consists of two connected components, one bounded and one unbounded.
γ([α, β]) is the common boundary of both components.

A.2.2 Path Integrals

Every s ∈ C
∗ has a polar representation s = reiφ where r = |s| > 0 and φ ∈ R. In this case

we call arg s := φ an argument of s. Such an argument is uniquely determined modulo
a multiple of 2π. We will now associate with every arc in C

∗ a continuous argument
function. For the next proposition, see e.g. [82, IV.2].

Proposition A.2.3. Given an arbitrary interval I ⊂ R and a continuous function γ :
I → C

∗, there exists a continuous function φ : I → R such that

γ(t) = |γ(t)|eıφ(t) = eln |γ(t)|+ıφ(t), t ∈ I. (1)

Moreover φ is differentiable at each point t ∈ I where γ is differentiable.

Since the exponential function is a homomorphism of the additive group C onto the mul-
tiplicative group C

∗ with kernel 2πıZ, the continuous function φ is uniquely determined
by (1) up to an additive constant 2πk, k ∈ Z.

Definition A.2.4. Given an arbitrary interval I ⊂ R and a continuous function γ : I →
C
∗, any continuous function φ : I → R satisfying (1) is called an argument function or

continuous argument of γ. In this case we write arg γ(·) = φ(·). If I = [α, β], the net
change of the argument of γ(t) as t moves from α to β is given by

∆β
αγ(t) = φ(β) − φ(α). (2)

If γ : [α, β] → C is a closed curve and a ∈ C \ γ([α, β]) then the winding number of the
point a with respect to the closed curve γ is defined by

w(γ, a) = (2π)−1(ψ(β) − ψ(α)) = (2π)−1 ∆β
α(γ(t) − a) (3)

where ψ is any argument function of the closed curve t �→ γ(t) − a.

The winding number w(γ, a) is well defined by (3) and does not depend upon the particular
argument function ψ chosen in (3). Moreover it is integer valued. The winding number
measures the net number of encirclements the curve γ makes around the point a (in the

2

1

-1

0

Figure A.2.2: Value of w(γ, .) in various connected components of C \ γ([a, b])

positive, i.e. anticlockwise sense). If, for example, γ(t) = a + e2πikt, 0 ≤ t ≤ 1 then
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w(γ, a) = k. For every closed curve γ, w(γ, a) depends continuously upon a ∈ C\γ([α, β])
and as a consequence w(γ, a) is constant on the connected components of C\γ([α, β]) (see
Figure A.2.2). It vanishes on the unbounded connected component. If γ is a Jordan curve
then w(γ, a) = ±1 if a belongs to the bounded component. We say that a simple closed
curve γ borders the domain D in the positive (anticlockwise) sense if D is the bounded
connected component of C \ γ([a, b]) and w(γ, a) = 1 for all a ∈ D.
An arc γ : [α, β] → C is said to be piecewise continuously differentiable (or piecewise
smooth) if there are real numbers t0 = α < t1 < . . . < tN = β such that γ is continuously
differentiable on each subinterval [ti−1, ti]

3. An integration path or simply a path in a subset
Ω ⊂ C is a piecewise smooth arc γ : [α, β] → C with γ([a, b]) ⊂ Ω. If γ is an integration
path and f : γ([α, β]) → C is continuous then the integral of f over γ is defined by∫

γ
f(s)ds =

∫ β

α
f(γ(t))γ̇(t)dt. (4)

This path integral is invariant under a change of parameter. If ψ is a continuously differen-
tiable one-to-one mapping of an interval [α̃, β̃] onto [α, β], such that ψ(α̃) = α, ψ(β̃) = β,
and if we define the path γ̃ : [α̃, β̃] → C by γ̃ := γ ◦ ψ, then∫

γ
f(s)ds =

∫
γ̃
f(s)ds.

If γ : [α, β] → C is subdivided into a finite number of subpaths γi : [ri−1, ri] → C, i ∈ n

where r0 = α < r1 < . . . < rn = β and γi = γ|[ri−1, ri], i ∈ n we write symbolically
γ = γ1 + . . . + γn. The path integral is additive with respect to this operation∫

γ
f(s)ds =

∫
γ1

f(s)ds + . . . +

∫
γn

f(s)ds.

If γ−1 is the opposite path t �→ γ(α + β − t), t ∈ [α, β], then∫
γ−1

f(s)ds = −
∫

γ
f(s)ds.

A different type of path integral, which does not depend on the orientation of γ, is obtained
by integrating f with respect to the path length∫

γ
f(s) |ds| :=

∫ β

α
f(γ(t)) |γ̇(t)| dt, f ∈ C(γ([α, β]), C). (5)

(5) is called the integral of f over γ with respect to the path length and satisfies∫
γ
f(s)|ds| =

∫
γ−1

f(s)|ds| and

∣∣∣∣∫
γ
f(s) ds

∣∣∣∣ ≤ ∫
γ
|f(s)| |ds|.

We will now derive an integral expression for the change of the argument along an arbitrary
path γ : [α, β] → C

∗. Let φ : [α, β] → R be an argument function of γ, φ(t) = arg γ(t). It
follows from (1) that for all t ∈ [α, β] where γ is differentiable (hence for all but finitely
many t ∈ [α, β])

γ̇(t)

γ(t)
=

d

dt
[ln |γ(t)| + ıφ(t)] , φ̇(t) = Im

γ̇(t)

γ(t)
. (6)

3γ is continuously differentiable on [ti−1, ti] if γ is continuously differentiable on (ti−1, ti), has

a right resp. left derivative at ti−1 resp. ti and d+γ
dt

(ti−1) = limt↘ti−1
γ̇(t), d−γ

dt
(ti) = limt↗ti

γ̇(t).
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So ∫
γ

ds

s
=

∫ β

α

γ̇(t)

γ(t)
dt = ln |γ(β)| − ln |γ(α)| + ı[φ(β) − φ(α)]. (7)

Thus the change of the argument of γ(t) as t moves from α to β is given by

∆β
α arg γ(t) = φ(β) − φ(α) = Im

∫ β

α

γ̇(t)

γ(t)
dt = Im

∫
γ

ds

s
. (8)

Now suppose that γ : [α, β] → C is any closed path (piecewise smooth) in C, a ∈ C \
γ([α, β]) and apply the above considerations to the closed path γ − a : t �→ γ(t) − a with
parameter interval [α, β]. If ψ is a continuous argument for γ − a, then (3) and (7) imply
that the winding number of the point a with respect to the closed curve γ is given by

w(γ, a) =
ψ(β) − ψ(α)

2π
=

1

2πı

∫ β

α

γ̇(t)

γ(t) − a
dt =

1

2πı

∫
γ−a

ds

s
. (9)

A.2.3 Holomorphic Functions

Let Ω be an open subset of C. A function f : Ω → C is said to be complex differentiable
at s0 ∈ Ω with (complex) derivative f ′(s0) if

f ′(s0) = lim
s→s0

f(s) − f(s0)

s − s0
.

f : Ω → C is said to be holomorphic on Ω if it is complex differentiable at each point
s0 ∈ Ω. The set of holomorphic functions on Ω is a commutative unitary ring with respect
to pointwise addition and multiplication and is denoted by O(Ω). If f ∈ O(C) then f is
said to be an entire function.
If f ∈ O(Ω) and γ : [α, β] → Ω is an integration path which does not hit any zero of f ,
then (8) applied to γf = f ◦ γ : t �→ f(γ(t)) yields

∆β
α arg γf (t) = Im

∫ β

α

f ′(γ(t))γ̇(t)

f(γ(t))
dt = Im

∫
γ

f ′(s)
f(s)

ds. (10)

∆β
α arg γf (t) is called the change of the argument of f along the arc γ(t), α ≤ t ≤ β. If

additionally γ is a closed path and a ∈ C \ f(γ([α, β])), then by (3) and (9) the winding
number of γf = f ◦ γ with respect to the point a is

w(f ◦ γ, a) =
1

2πı

∫
γf−a

ds

s
=

1

2πı

∫ β

α

f ′(γ(t))γ̇(t)

f(γ(t)) − a
dt =

1

2πı

∫
γ

f ′(s)
f(s) − a

ds. (11)

The following theorem is of fundamental importance in Complex Analysis.

Theorem A.2.5 (Cauchy’s Integral Theorem and Integral Formula). Let Ω ⊂ C

be open and γ : [α, β] → Ω a closed curve which does not surround any point outside Ω
(i.e. w(γ, a) = 0 for all a ∈ C \ Ω). If f : Ω → C is holomorphic on Ω then∫

γ
f(s)ds = 0. (12)

Moreover, for every z ∈ Ω \ γ([α, β]),

w(γ, z)f(z) =
1

2πı

∫
γ

f(s)

s − z
ds. (13)
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It follows that if γ0 and γ1 are two homotopic paths in Ω and f : Ω → C is holomorphic
then ∫

γ0

f(s)ds =

∫
γ1

f(s)ds. (14)

For any a ∈ C and r > 0 let D(a, r) denote the open disk of centre a and radius r. A
function f : Ω → C is said to be (complex) analytic if it is representable by power series
in Ω, i.e. on every disk D(a, r) ⊂ Ω it can be expanded as an absolutely convergent power
series

f(s) =

∞∑
k=0

ck(s − a)k, s ∈ D(a, r). (15)

Every analytic function f on Ω is holomorphic and has holomorphic derivatives of arbitrary
order. The coefficients ck in (15) are uniquely determined and given by ck = f (k)(a)/k!,
k ∈ N. Conversely, it follows from Cauchy’s Integral Formula (13) that every f ∈ O(Ω) can
be represented by a power series in Ω. Therefore a function f : Ω → C is holomorphic on Ω
if and only if it is analytic on Ω. In particular, every f ∈ O(Ω) has holomorphic derivatives
of arbitrary order. Taking derivatives in (13), Cauchy’s Integral Formula implies the
following integral formulas for the derivatives of f

w(γ, z)f (k)(z) =
k!

2πı

∫
γ

f(s)

(s − z)k+1
ds, z ∈ Ω \ γ([α, β]), k ∈ N. (16)

Suppose F ∈ O(Ω) and F ′ = f then it follows from the Fundamental Theorem of Calculus
that for every path γ : [α, β] → Ω∫

γ
f(s)ds = F (γ(β)) − F (γ(α)). (17)

In this case equation (12) holds for every closed path γ in Ω. The next theorem states a
converse result.

Theorem A.2.6. Suppose f : Ω → C is continuous and (12) holds for every closed path
in Ω. Then there exists a function F ∈ O(Ω) such that F ′ = f . In particular f ∈ O(Ω).

If Ω is convex, it suffices in the previous theorem that (12) holds for the positively oriented
boundaries γ = ∂∆ of all triangles ∆ = conv{a, b, c} ⊂ Ω. By localization this fact implies
the following useful converse of Cauchy’s Integral Theorem on arbitrary domains Ω ⊂ C.

Theorem A.2.7 (Morera). Suppose f : Ω → C is continuous and
∫
∂∆ f(s)ds = 0 for

every triangle ∆ = conv{a, b, c} ⊂ Ω. Then f is holomorphic on Ω.

Theorems A.2.5 and A.2.7 imply that the set O(Ω) is closed in C(Ω, C) with respect to
the topology of uniform convergence on compact subsets of Ω. Applying (16) as well, we
obtain the following result.

Corollary A.2.8 (Weierstrass). Suppose fk ∈ O(Ω) for k ∈ N and fk → f uniformly

on compact subsets of Ω as k → ∞. Then f ∈ O(Ω) and f
(j)
k → f (j) uniformly on compact

sets K ⊂ Ω, for every j ∈ N
∗.

The following theorem is often used for proving the equality of holomorphic functions.

Theorem A.2.9 (Identity Theorem). If f, g are holomorphic on a domain Ω and
f(z) = g(z) for all z in a non-discrete subset of Ω then f(s) = g(s) for all s ∈ Ω.
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Corollary A.2.10. If Ω ⊂ C is a domain then the commutative ring O(Ω) has no zero-
divisors and is therefore an integral domain.

As a consequence of the Identity Theorem the zero set Zf = {z ∈ Ω; f(z) = 0} of any
non-zero function f ∈ O(Ω) is a discrete subset of Ω. Each compact subset of Ω contains
only finitely many zeros of f . For every z ∈ Zf there is a unique m = m(z) ∈ N

∗ such
that

f(s) = (s − z)mg(s)

where g ∈ O(Ω) and g(z) �= 0. m is called the order or multiplicity of the zero z of f .
z ∈ Ω is a zero of multiplicity m if and only if f(z) = 0, . . . , f (m−1)(z) = 0 and f (m)(z) �= 0
or, equivalently if, in a sufficiently small disk around z the function f can be represented
by a power series of the form

f(s) =

∞∑
k=m

ak(s − z)k, am �= 0.

Theorem A.2.11 (Open Mapping Theorem). If Ω is a domain and f ∈ O(Ω) is not
constant then f(Ω) is a domain.

A.2.4 Isolated Singularities

For any a ∈ C we denote the punctured disk of centre a and radius r > 0 by

D◦(a, r) = {s ∈ C; 0 < |s − a| < r}.

Definition A.2.12. f ∈ O(Ω) is said to have an isolated singularity at a point a ∈ C\Ω if
D◦(a, r) ⊂ Ω for some r > 0. The singularity is said to be removable if f can be extended
to a function which is holomorphic on the whole disk D(a, r).

Theorem A.2.13. If a ∈ C and f is a function which is holomorphic and bounded on
some punctured disk D◦(a, r), r > 0, then f has a removable singularity at a.

Isolated singularities are classified by the following result.

Theorem A.2.14. If a ∈ C and f is holomorphic on some punctured disk D◦(a, r), r > 0,
then one of the following three cases must occur

(i) f has a removable singularity at a.

(ii) There are c1, . . . , cm ∈ C, m ≥ 1, cm �= 0 such that f(s) −∑m
k=1 ck/(s − a)k has a

removable singularity at a.

(iii) For every ρ ∈ (0, r] the image f(D◦(a, ρ)) is dense in C.

If (ii) holds, f is said to have a pole of order (or multiplicity) m at a. In this case
|f(s)| → ∞ as s → a. If (iii) holds, f is said to have an essential singularity at a. In this
case there exists, for every z ∈ C, a sequence (sk)k∈N in D◦(a, r) converging to a such that
limk→∞ f(sk) = z.

Definition A.2.15. A meromorphic function on an open set Ω ⊂ C is a holomorphic
function f : Ω \ Pf → C where Pf is a discrete subset of Ω consisting of poles of f . The
set of meromorphic functions on Ω is denoted by M(Ω).
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For any domain Ω ⊂ C the set M(Ω) provided with the operations of pointwise addition
and multiplication is a field.

Theorem A.2.16. If Ω ⊂ C is a domain and f ∈ M(Ω) then there exist g, h ∈ O(Ω)
such that f = g/h.

Theorem A.2.17 (Laurent expansion). Let 0 ≤ r < R ≤ ∞, s0 ∈ C and let f be
holomorphic on the annulus U = {s ∈ C ; r < |s − s0| < R}. Then there exist (uniquely
determined) coefficients ak ∈ C, k ∈ Z such that

f(s) =

∞∑
k=−∞

ak(s − s0)
k, s ∈ U. (18)

The series on the RHS of (18) is absolutely convergent and converges to f uniformly on
compact subsets of U . The Laurent coefficients ak are determined by

ak =
1

2πı

∫
Γρ(s0)

f(s)

(s − s0)k+1
ds =

1

2π

∫ π

−π

f(s0 + ρeıθ)

ρkeıkθ
dθ, k ∈ Z (19)

where ρ ∈ (r,R) is arbitrary and Γρ(s0) : θ �→ s0 + ρeıθ, θ ∈ [−π, π] is the positively
oriented circle of radius ρ about s0.

In the important special case where r = 0, the annulus U reduces to the punctured disk
D◦(s0, R). Then (18) is called the Laurent expansion of f at s0. In Linear Systems Theory
the inverse special case where R = ∞ also plays an important role. Suppose that f(s)
is holomorphic on {s ∈ C; |s| > r} for some r > 0, then f(s) can be represented in this
neighbourhood of ∞ by the locally uniformly convergent series

f(s) =
∞∑

k=−∞
aks

−k, |s| > r; ak =
ρk

2π

∫ π

−π
f(ρeıθ)eıkθ dθ, k ∈ Z (20)

where ρ > r is arbitrary. (20) is called the Laurent expansion of f at infinity. Note that
f has a Laurent expansion of the form

f(s) =
∞∑

k=0

aks
−k, |s| > r (21)

if and only if f is bounded in some neighbourhood of ∞. In this case lim|s|→∞ f(s) = a0.

Definition A.2.18. If f is holomorphic on a punctured disk D◦(s0, R) and ρ ∈ (0, R),
then

Res(f, s0) :=
1

2πı

∫
Γρ(s0)

f(s) ds =
ρ

2π

∫ 2π

0
f(s0 + ρeıθ)eıθdθ

is called the residue of f at s0.

If (18) is the Laurent expansion of f at s0, then Res(f, s0) = a−1. If s0 is a pole of first
order of f then Res(f, s0) = lims→s0(s − s0)f(s).

Theorem A.2.19 (Residue Theorem). Suppose Ω ⊂ C is open, S0 a discrete subset
of Ω and f : Ω \ S0 → C is holomorphic. Then for any closed curve γ : [α, β] → Ω \ S0

satisfying w(γ, a) = 0 for all a ∈ C \ Ω,

1

2πı

∫
γ
f(s) ds =

∑
s0∈S0

Res(f, s0)w(γ, s0)

and this sum only contains finitely many non-zero terms.
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The following theorem lists some important consequences of the Residue Theorem.

Theorem A.2.20. Let Ω be a domain in C and γ : [α, β] → Ω a simple closed curve
in Ω bordering a bounded domain D ⊂ D ⊂ Ω in the anticlockwise sense and satisfying
w(γ, a) = 0 for all a ∈ C \ Ω.

(i) (Principle of the Argument) . If f is a meromorphic function on Ω having no
poles or zeros on the trace of γ, then

1

2πı

∫
γ

f ′(s)
f(s)

ds = nz(f,D) − np(f,D) (22)

where nz(f,D) and np(f,D) are the numbers of zeros and poles of f in D counted
according to their multiplicities.

(ii) If zi, i ∈ I and pj , j ∈ J are the zeros and poles of f in D, of order m(zi) and
m(pj) respectively, and g ∈ O(Ω) then4

1

2πı

∫
γ

f ′(s)
f(s)

g(s)ds =
∑
i∈I

m(zi) g(zi) −
∑
j∈J

m(pj) g(pj). (23)

(iii) (Rouché’s Theorem). If f, g are meromorphic on Ω without poles on the trace
γ([α, β]) and |f(s) − g(s)| < |f(s)| for all s ∈ γ([α, β]) then

nz(f,D) − np(f,D) = nz(g,D) − np(g,D).

Since
1

2πi

∫
γ

f ′(s)
f(s)

ds =
1

2πi

∫
f◦γ

ds

s
= w(f ◦ γ, 0) (24)

the number of zeros minus the number of poles of f in D is just the winding number of
the closed curve f ◦ γ around the origin. This is illustrated in Figure A.2.4 for a function
f with two zeros and three poles in the circular domain D.
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Figure A.2.4: Principle of the Argument

We conclude this subsection with a “continuous time version” of a lemma due to Spijker
[476] which we will need in Section 5.5, see also [504].

4Since D ⊂ Ω is compact, D contains only finitely many zeros and poles of f so that the sums
in (23) are finite.
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Lemma A.2.21. Let g(s) = p(s)/q(s) where p, q ∈ C[s] are coprime complex polynomials
and deg p ≤ deg q = n. If α ∈ R and g has no poles on the trace of Γα : ω �→ α + ıω,
ω ∈ R then ∫

Γα

|g′(s)| |ds| =

∫ ∞

−∞
|g′(α + ıω)| dω ≤ 2πn sup

Re s=α
|g(s)|,

where g′ = d
ds g is the complex derivative of g.5

Proof : Let µ(s) = [(α+1)s+(α−1)]/(s+1) be the linear fractional transformation, which
maps ∂D \ {−1} onto Γα(R) = α + ıR, and define ζ : [−π, π] → ∂D by ζ(t) = eıt. Then
γ : t �→ γ(t) = (µ ◦ ζ)(t), t ∈ (−π, π) maps (−π, π) onto α+ ıR. We write γ(t) = α+ ıβ(t).
By straightforward calculations one shows that limt↘−π β(t) = −∞, limt↗π β(t) = ∞ and
β′(t) = −ıγ′(t) > 0 for all t ∈ (−π, π). For every ε ∈ (0, π), let aε = −π + ε, bε = π − ε.
Then

I(ε) :=

∫ β(bε)

β(aε)
|g′(α + ıω)| dω =

∫ bε

aε

|g′(α + ıβ(t))|β′(t) dt =

∫ bε

aε

|g′(γ(t))| |γ′(t)| dt

and∫ bε

aε

|g′(γ(t))| |γ′(t)| dt=

∫ bε

aε

|g′(µ(ζ(t)))| |µ′(ζ(t))| |ζ ′(t)| dt=

∫ bε

aε

|(g ◦ µ)′(ζ(t))| |ζ ′(t)| dt.

Since g has no pole on Γα(R) = α + ıR and g is proper, g ◦ µ is a rational function of
degree ≤ n which has no poles on ∂D. Applying Spijker’s Lemma [476] to the rational
function g ◦ µ we obtain the following inequality∫ π

−π
|(g ◦ µ)′(ζ(t))| |ζ ′(t)| dt =

∫
ζ
|(g ◦ µ)′(s)| |ds| ≤ 2πn max

s∈∂D

|g ◦ µ(s)| = 2πn sup
s∈Γα(R)

|g(s)|.

On the other hand,∫ ∞

−∞
|g′(α+ıω)| dω= lim

ε→0
I(ε)= lim

ε→0

∫ bε

aε

|(g◦µ)′(ζ(t))| |ζ ′(t)| dt=

∫ π

−π
|(g◦µ)′(ζ(t))| |ζ ′(t)| dt

and this concludes the proof. �

A.2.5 Analytic Continuation

A domain Ω ⊂ C is called simply connected if, for every closed curve γ in Ω, w(γ, a) = 0
for all a ∈ C \ Ω. Intuitively speaking, a domain Ω is simply connected if it does not
contain holes. In this case Cauchy’s Theorem is applicable to every closed path in Ω.
Every convex domain in C is simply connected. A punctured disk D◦(a, r) is not simply
connected but a cut disk D−(a, r) = {s ∈ D(a, r); 0 < arg(s − a) < 2π} is.

Theorem A.2.22. A domain Ω ⊂ C is simply connected if and only if one of the following
equivalent conditions is satisfied.

(i) For every f ∈ O(Ω) and closed path γ in Ω we have
∫
γ f(s)ds = 0.

(ii) Any two arcs in Ω with the same initial and final points are homotopic in Ω.

(iii) Ω is homeomorphic to the open unit disk D.

(iv) For every f ∈ O(Ω) there exists F ∈ O(Ω) such that F ′ = f .

(v) If f ∈ O(Ω) has no zeros on Ω then there exists a holomorphic logarithm of f on Ω,
i.e. a holomorphic function g : Ω → C such that f(s) = eg(s) for all s ∈ Ω.

5Since g′(s) = (p′(s)q(s) − p(s)q′(s))/q(s)2 and deg(p′q − pq′) ≤ deg q2 − 2 the function |g′(s)|
is integrable over Γα.
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A holomorphic function f on a domain Ω is said to possess an analytic continuation across
a boundary point b ∈ ∂Ω if there exists a disk D = D(b, r), r > 0 and a holomorphic
function g ∈ O(D) such that f(s) = g(s) for all s in some non-void open set U ⊂ Ω ∩ D.
b ∈ ∂Ω is said to be a singular point of f if f does not possess an analytic continuation
across b. Suppose that the power series

f(s) =
∞∑

k=0

ck(s − a)k

has the radius of convergence R =
[
lim supk→∞ |ck|1/k

]−1
> 0, then the boundary of the

open disk D(a,R) contains a singular point of f .

Definition A.2.23. A function element is a pair (f,D) consisting of an open disk D

and a holomorphic function f ∈ O(D). Two function elements (f0,D0) and (f1,D1) are
direct continuations of each other (notation: (f0,D0) ∼ (f1,D1)) if D0 ∩ D1 �= ∅ and
f0(s) = f1(s) for all s ∈ D0 ∩ D1.
Given an arc γ : [α, β] → C, if there are numbers t1 = α < t2 < . . . < tn = β and
a sequence of function elements (fi,Di), i ∈ n such that γ(α) is the centre of D1, γ(β)
the centre of Dn, γ([ti, ti+1]) ⊂ Di and (fi,Di) ∼ (fi+1,Di+1) for i = 1, . . . , n − 1, then
(fn,Dn) is said to be an analytic continuation of (f1,D1) along the arc γ.

If f is holomorphic on a domain Ω then f defines by restriction to any disk D0 =
D(s0, r0) ⊂ Ω a unique function element (f |D0,D0). This function element is completely
described by a convergent power series centred at s0 and is often identified with it. If the
particular disk D0 is of no interest we briefly speak of the function element of f at s0

and mean by this any function element (f |D,D) with D = D(s0, r) and r > 0 sufficiently
small.

Theorem A.2.24 (Monodromy Theorem). Suppose Ω is a simply connected domain,
and (f0,D0) is a function element on a disk D0 ⊂ Ω which can be analytically continued
along every arc in Ω starting at the centre of D0, then there exists f ∈ O(Ω) such that
f |D0 = f0.

A.2.6 Maximum Principle and Subharmonic Functions

The following classical maximum principle plays an important role in Complex Analysis.

Theorem A.2.25 (Maximum Principle for Holomorphic Functions). Suppose f

is a holomorphic function on a domain Ω ⊂ C. If |f | has a local maximum at some point
z0 ∈ Ω then f is constant on Ω. If Ω is bounded and f can be extended continuously to
the closure Ω, then

max
s∈Ω

|f(s)| = max
s∈∂Ω

|f(s)|. (25)

Definition A.2.26. Suppose Ω is an open set in C and u : Ω → R is upper semi-
continuous, then u is said to be subharmonic on Ω if, for all, a ∈ Ω, there is ra > 0 such
that D(a, ra) ⊂ Ω and

u(a) ≤ 1

2π

∫ 2π

0
u(a + reiθ) dθ, 0 < r < ra. (26)

If u : Ω → R is continuous and both u and −u are subharmonic, i.e. equality holds in (26),
then u is harmonic.
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A continuous function u : Ω → C is harmonic if and only if ∆u = 0 where ∆ denotes the
Laplacian. It is well known that the real and imaginary parts of a holomorphic function f

on Ω are harmonic whilst |f | is subharmonic on Ω. Similarly, if the matrix-valued function
G : Ω → C

p×m is holomorphic on Ω (i.e. all the entries gij of G(s) depend holomorphically
on s ∈ Ω) and ‖ · ‖ is any operator norm on C

p×m, then s �→ ‖G(s)‖ is a subharmonic
function on Ω. In fact, if ‖ · ‖ is induced by the vector norms ‖ · ‖Cm and ‖ · ‖Cp on C

m

and C
p, respectively, then by the Hahn-Banach Theorem, see Example A.4.11

‖G(s)‖ = sup{ |y∗G(s)u|;u ∈ C
m, ‖u‖Cm = 1, y ∈ C

p, ‖y∗‖∗Cp = 1}

where ‖·‖∗
Cp is the dual norm on (Cp)∗. This proves the subharmonicity of s �→ ‖G(s)‖ on Ω

since the supremum of a locally bounded family of subharmonic functions is subharmonic
if it is upper semicontinuous [110, 19.4].
A local maximum principle similar to Theorem A.2.25 holds for harmonic but not for
subharmonic functions. However, we have the following result.

Theorem A.2.27 (Maximum Principle for Subharmonic Functions). Suppose u

is a subharmonic function on a bounded domain Ω in C with boundary ∂Ω. If u attains
its global maximum in Ω, i.e. u(s0) = sups∈Ω u(s) for some s0 ∈ Ω, then u is constant on
Ω. If u is not constant then

u(s) < sup
w∈∂Ω

lim sup
s∈Ω, s→w

u(s), s ∈ Ω.

We also make use of the following extended version which applies to unbounded open sets.

Theorem A.2.28 (Extended Maximum Principle). Suppose Ω is a proper open sub-
set of C with boundary ∂Ω and u : Ω → R is subharmonic and bounded above on Ω, then

sup
s∈Ω

u(s) = sup
w∈∂Ω

lim sup
s∈Ω, s→w

u(s). (27)

Proof : Since the boundary of each connected component of Ω lies in ∂Ω it suffices to
prove the theorem for connected Ω. But then the result is a direct consequence of a
theorem of Phragmén and Lindelöf [82, Thm. 7.15]. �

If in this theorem the subharmonic function u is continuous and can be continuously
extended to Ω then (27) can be simplified to

sup
s∈Ω

u(s) = sup
w∈∂Ω

u(w).
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A.3 Convolutions and Transforms

In this section we introduce some important sequence and function spaces which serve as
signal spaces in systems theory. We discuss the convolution of sequences and functions,
and present some basic results on Laplace, Fourier and z-transforms. A textbook which
covers much of the material of this section, written from an engineering point of view
and aimed at undergraduates is Kwakernaak and Sivan (1991) [322]. More mathematical
books are cited in the subsections for which they are relevant. Throughout the section we
will assume that K

n, K
m are provided with norms ‖ · ‖Kn , ‖ · ‖Km and K

n×m is endowed
with the corresponding operator norm.

A.3.1 Sequences: Convolution and z-Transforms

For the material in this subsection, see e.g. Cartan (1995) [92], Kalman et al. (1969) [290]
and Ogata (1987) [396].
Let T ⊂ Z be given. If V is a vector space we denote by V T the vector space of V -valued
sequences with indices in T . The elements of V T are denoted by v(·) or by v = (v(t))t∈T .
The vector space of all scalar valued sequences with index set T is denoted by K

T .

Definition A.3.1. Let T ⊂ Z be given and (X, ‖ · ‖X) a Banach space. For p ∈ [1,∞]
the p-norm of a sequence x(·) : T → X is defined by

‖x(·)‖p =

[∑
t∈T

‖x(t)‖p
X

]1/p

, 1 ≤ p < ∞, ‖x(·)‖∞ = sup
t∈T

‖x(t)‖X . (1)

The vector space of all x(·) ∈ XT with finite p-norm is denoted by �p(T ;X). We have

1 ≤ p < r ≤ ∞ ⇒ �p(T ;X) ⊂ �r(T ;X) . (2)

�p(T ;X) provided with the norm ‖·‖p is a Banach space. In the case T = {1, ..., n}, X = K

the space �p(T ;X) is just the space K
n provided with the p-norm, ‖ · ‖∞ is the maximum

norm and ‖ · ‖1 is the sum norm on K
n.

Now suppose that (X, 〈·, ·〉X ) is a Hilbert space. An inner product on �2(T ;X) is defined
by

〈x(·), y(·)〉 =
∑
t∈T

〈x(t), y(t)〉X , x(·), y(·) ∈ �2(T ;X).

The fact that the above inner product in �2(T ;X) is well defined is a consequence of the
Cauchy-Schwarz inequality in �2(T ;X):

|
∑
t∈T

〈x(t), y(t)〉X | ≤
∑
t∈T

|〈x(t), y(t)〉X | ≤ ‖x(·)‖2‖y(·)‖2, x(·), y(·) ∈ �2(T ;X). (3)

Equality holds in (3) if and only if x(·), y(·) are linearly dependent. Provided with the
above inner product �2(T ;X) is a Hilbert space. In the case T = {1, ..., n}, X = K the
space �2(T ;X) is just the space K

n and 〈·, ·〉 is the usual inner product on K
n, ‖ · ‖2 is the

associated norm on the Euclidean space K
n.

The Cauchy-Schwarz inequality in �2(T ;X) is a special case of Hölder’s inequality. This
states that if p, q, r ∈ [1,∞], 1/p + 1/q = 1/r, x(·) ∈ �p(T ;X) and y(·) ∈ �q(T ;X), then
(〈x(t), y(t)〉X )t∈T ∈ �r(T ; C) and

‖(〈x(t), y(t)〉X )t∈T ‖�r(T ;C) ≤ ‖x(·)‖�p(T ;X)‖y(·)‖�q(T ;X). (4)
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In the special case where r = 1 and 1/p + 1/q = 1, the number p∗ := q = p/(p − 1) is
called the conjugate exponent of p.
For 1 ≤ p ≤ ∞ the forward shift operator S and the backward shift operator S∗ on
�p(Z; Km), m ∈ N

∗ are defined by

(Su)(t) = u(t − 1), (S∗u)(t) = u(t + 1), t ∈ Z, u(·) ∈ �p(Z; Km). (5)

Note that for p = 2, if �2(Z; Km) is provided with its standard inner product, S∗ is the
Hilbert space adjoint of S, i.e. 〈Su(·), v(·)〉 = 〈u(·), S∗v(·)〉 for all u(·), v(·) ∈ �2(Z; Km),
see Definition A.4.23.

Definition A.3.2. For g(·), u(·) ∈ �1(Z; K) the convolution (g ∗ u)(·) is defined by

(g ∗ u)(t) =

∞∑
s=−∞

g(t − s)u(s), t ∈ Z.

The series is in fact summable so that (g∗u)(t) is well defined for all t ∈ Z. Moreover, as a
consequence of the convolution inequality (see Proposition A.3.3), (g∗u)(·) ∈ �1(Z; K) and
‖(g ∗ u)(·)‖1 ≤ ‖g(·)‖1‖u(·)‖1 for all g(·), u(·) ∈ �1(Z; K). So the Banach space �1(Z; K)
provided with the multiplication ∗ is a commutative Banach algebra. The unit impulse e

defined by e(0) = 1 and e(t) = 0 for t ∈ Z
∗ is an identity of this algebra.

Extending Definition A.3.2 the convolution of a sequence of matrices G(·) ∈ �1(Z; Kn×m)
and a sequence of vectors u(·) ∈ �p(Z; Km), 1 ≤ p ≤ ∞, is defined by

(G ∗ u)(t) =

⎛⎝ m∑
j=1

(Gij ∗ uj)(t)

⎞⎠
i∈n

=
∞∑

s=−∞
G(t − s)u(s), t ∈ Z. (6)

The series in (6) converges absolutely for every t ∈ Z and every u(·) ∈ �p(Z; Km) ⊂
�∞(Z; Km), 1 ≤ p ≤ ∞. The following convolution inequality plays an important role in
the analysis of input-output systems.

Proposition A.3.3 (Convolution inequality). Suppose G(·) ∈ �1(Z; Kn×m) and u(·) ∈
�p(Z; Km), 1 ≤ p ≤ ∞, then (G ∗ u)(·) ∈ �p(Z; Kn) and

‖(G ∗ u)(·)‖�p(Z;Kn) ≤ ‖G(·)‖�1(Z;Kn×m) ‖u(·)‖�p(Z;Km). (7)

We will now restrict the time domain from Z to N. This allows us to define the convolution
of sequences in a purely algebraic way, without any convergence requirements.

Definition A.3.4. For g(·), u(·) ∈ K
N the convolution (g ∗ u)(·) ∈ K

N is defined by

(g ∗ u)(t) =
t∑

s=0

g(t − s)u(s), t ∈ N.

The vector space K
N provided with multiplication ∗ is a commutative algebra over K with

identity e = (1, 0, 0, ...). The convolution of a sequence of matrices G(·) ∈ (Kn×m)N and a
sequence of vectors u(·) ∈ (Km)N is defined similarly by

(G ∗ u)(t) =

⎛⎝ m∑
j=1

(Gij ∗ uj)(t)

⎞⎠
i∈n

=

t∑
s=0

G(t − s)u(s), t ∈ N. (8)

On (Km)N the forward shift operator S and backward shift operator S∗ are defined by

S(u(0), u(1), ...)=(0, u(0), u(1), ...), S∗(u(0), u(1), ...)=(u(1), u(2), ...), u(·) ∈ (Km)N.

Again, if K
m is provided with its standard inner product and we restrict the shift operators

to �2(N; Km), then S∗ is the Hilbert space adjoint of S, i.e. 〈Su(·), v(·)〉 = 〈u(·), S∗v(·)〉
for all u(·), v(·) ∈ �2(N; Km).
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z-Transform

Associated with any sequence u(·) ∈ K
N is the formal power series

∑∞
t=0 u(t)z−t in z−1.

Addition, scalar multiplication and multiplication of formal power series are defined by
∞∑
t=0

u(t)z−t +
∞∑
t=0

v(t)z−t =
∞∑
t=0

(u(t) + v(t))z−t, α

∞∑
t=0

u(t)z−t =
∞∑
t=0

αu(t)z−t

∞∑
t=0

u(t)z−t
∞∑
t=0

v(t)z−t =

∞∑
t=0

w(t)z−t where w(t) =
∑

j,k∈N,j+k=t

u(j)v(k).

The set of all formal power series with coefficients in K is denoted by K[[z−1]]. Provided
with the above operations K[[z−1]] is a commutative algebra over K with identity e(z) =∑∞

t=0 e(t)z−t ∈ K (where (e(t))t∈N is the unit impulse).

Definition A.3.5. Suppose that u(·) ∈ K
N, then the z-transform of u is the formal power

series

û(z) = (Z u)(z) :=

∞∑
t=0

u(t)z−t. (9)

The z-transform is an isomorphism of the algebra K
N onto the algebra K[[z−1]] and via

this isomorphism the convolution of sequences in K
N corresponds to the multiplication of

formal power series in K[[z−1]].
One defines the z-transform of a vector sequence (u(t))t∈N ∈ (Km)N and matrix se-
quence (G(t))t∈N ∈ (Kn×m)N by taking the z-transform of each component, e.g. if u(t) =
(ui(t))i∈m, then (Z u)(z) = ((Z ui)(z))i∈m. The vector spaces of these formal power series
are denoted by K

m[[z−1]] and K
n×m[[z−1]], respectively.

Proposition A.3.6. The z-transform has the following properties.

(i) If S and S∗ are the forward and backward shift operators, then

(Z Su)(z) = z−1(Z u)(z), (Z S∗u)(z) = z((Z u)(z) − u(0)), u(·) ∈ (Km)N.

(ii) If G(·) ∈ (Kn×m)N, u(·) ∈ (Km)N and y(t) = (G ∗ u)(t), t ∈ N, then

ŷ(z) = G(z)û(z) where G(z) = (ZG)(z), û(z) = (Z u)(z), ŷ(z) = (Z y)(z). (10)

It is often useful to view a z-transform û(·) as a complex analytic function on its domain
of convergence. For any u(·) ∈ (Km)N, γ > 0 define uγ(t) = u(t)γ−t, t ∈ N and set

Sγ(Km) = {u(·) ∈ (Km)N; uγ(·) ∈ �1(N; Km)}, (11)

D
+
γ := {z ∈ C; |z| > γ}, D+ = {z ∈ C; |z| > 1}. (12)

If u(·) ∈ Sγ(Km), the series on the RHS of (9) is uniformly absolutely convergent for all

z ∈ D
+
γ , since

∞∑
t=0

‖u(t)z−t‖Km ≤
∞∑
t=0

‖uγ(t)‖Km(|z|/γ)−t ≤ ‖uγ(·)‖1, |z| ≥ γ. (13)

For every u(·) ∈ Sγ(Km) the z-transform defines a continuous function û(·) on D
+
γ which

is bounded by (13) and analytic on D
+
γ . The series on the RHS of (9) is the Laurent

expansion of û(·) at ∞, see Subsection A.2.4. We will use the same symbol û(z) to
denote the formal power series and the associated complex analytic function. Note that
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u(t), t ∈ N û(z) z ∈ D
+
γ , γ >

e(t) 1 0

1 z/(z − 1) 1

t z/(z − 1)2 1

tn, n ∈ N
∗ lima→0

∂n

∂an

(
(−1)nz
z−e−a

)
1

e−λt, λ ∈ C z/(z − e−λ) e−Re λ

te−λt, λ ∈ C ze−λ/(z − e−λ)2 e−Re λ

sin at, a ∈ R z sin a/(z2 − 2z cos a + 1) 1

cos at, a ∈ R z(z − cos a)/(z2 − 2z cos a + 1) 1

Table A.3.1: z-transforms

if u(·) ∈ Sγ(Rm) then û(z) = û(z), |z| ≥ γ. Some elementary z-transforms, together with
their domains of analyticity D

+
γ , are presented in Table A.3.1.

If u(·) ∈ Sγ(Km), G(·) ∈ Sγ(Kn×m) and y(·) = (G ∗ u)(·), then yγ = Gγ ∗ uγ because

yγ(t)=γ−t
t∑

s=0

G(t − s)u(s)=
t∑

s=0

γ−(t−s)G(t − s)γ−su(s)=
t∑

s=0

Gγ(t − s)uγ(s), t ∈ N.

Hence (7) implies

‖yγ(·)‖�1(N;Kn) ≤ ‖Gγ(·)‖�1(N;Kn×m)‖uγ(·)‖�1(N;Km). (14)

So the z-transform ŷ(·) is analytic on D
+
γ and we obtain from Proposition A.3.6 the

following result.

Theorem A.3.7. Let γ > 0 and suppose u(·) ∈ Sγ(Km), G(·) ∈ Sγ(Kn×m). If y(·) =
(G ∗ u)(·), and G(z) = (ZG)(z), then y(·) ∈ Sγ(Kn) and

ŷ(z) = (Z (G ∗ u))(z) = G(z)û(z), |z| ≥ γ. (15)

(7) is an equality between formal power series whereas (15) is an equality between func-
tions. We have the following inversion theorem for the z-transform, see (A.2.20).

Theorem A.3.8. Suppose that u(·) ∈ Sγ(Km) for some γ > 0 and r > γ. If û(z) =
(Z u)(z) and Γr is the positively oriented circle of radius r around z = 0, we have the
inversion formula

u(t) = (Z−1û)(t) =
1

2πı

∫
Γr

zt−1û(z)dz =
rt

2π

∫ π

−π
eıtθû(reıθ)dθ, t ∈ N. (16)

In particular, two sequences u(·), v(·) ∈ Sγ(Km) are equal if their z-transforms are equal
on D

+
γ .

Example A.3.9. Let A ∈ K
n×n be a matrix with spectral radius �(A) and let γ > �(A)

be arbitrary. Choosing any γ̃ ∈ R such that �(A) < γ̃ < γ we obtain from Lemma 3.3.19
that there exists M > 0 such that ‖At‖L(Kn) ≤ M γ̃ t, t ∈ N. Hence ‖γ−tAt‖L(Kn) ≤
M(γ̃/γ)t, t ∈ N and so (At)t∈N ∈ Sγ(Kn×n). We conclude that
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(
Z ((At)t∈N)

)
(z) =

∞∑
t=0

Atz−t = z(zIn − A)−1, |z| > �(A)

is analytic on D+
�(A). In fact the resolvent (zIn−A)−1 is defined and analytic on the whole

resolvent set ρ(A) = C \ σ(A) ⊃ D
+
�(A). It follows that if (A,B,C,D) ∈ Ln,m,p(K) and G

is the impulse response of the corresponding discrete time system, i.e.

G = (G(t))t∈N, G(0) = D, G(t) = CAt−1B for t ∈ N
∗,

then G ∈ Sγ(Kp×m) for every γ > �(A) and the associated transfer matrix

G(z) = (ZG(·)) (z) = D +
∞∑
t=1

CAt−1Bz−t = D + C(zIn − A)−1B, z ∈ ρ(A) (17)

is analytic on ρ(A). Hence we conclude from the inversion theorem that

G(t) =
1

2πı

∫
Γr

zt−1(D + C(zIn − A)−1B)dz, t ∈ N (18)

for all r > �(A). �

A.3.2 Lebesgue Spaces, Convolution of Functions, Laplace

Transforms

In this subsection we assume that the reader is familiar with the elements of Lebesgue
integration theory. For a brief introduction to abstract integration theory, Lebesgue inte-
gration and Lp-spaces we refer to Rudin (1987) [441]. More comprehensive accounts can
be found in e.g. Kolmogorov and Fomin (1957) [312] and Bauer (2001) [42]. Standard
references on the Laplace transform are Widder (1966) [521] and Doetsch (1974) [133],
see also Körner (1988) [314]. Material on convolutions of functions and measures can be
found in [441], [42] and Desoer and Vidyasagar (1975) [130].

Definition A.3.10. Let T ⊂ R be an interval and (X, ‖ · ‖X) a Banach space. For
p ∈ [1,∞] the p-norm of a Lebesgue measurable function x(·) : T → X is given by

‖x(·)‖p =

[∫
T
‖x(t)‖p

Xdt

]1/p

, ‖x(·)‖∞ = inf{α; ‖x(t)‖X ≤ α, a.e. t ∈ T}.

Recall that the set Lp(T ;X) of all Lebesgue measurable functions x(·) : T → X with finite
p-norm is a linear space, but it is not a normed linear space, since ‖x(·)‖p = 0 only implies
that x(·) is a zero-function, i.e. x(t) = 0 for almost all t ∈ T . In order to make it into a
normed space it is necessary to consider equivalence classes of functions [x(·)] where [x(·)]
is the class of functions which equal x(·) almost everywhere. These equivalence classes
form a linear space and ‖[x(·)]‖p = ‖x(·)‖p defines a norm on it. The resulting normed
linear space is a Banach space and is denoted by Lp(T ;X). Throughout the text we will
not distinguish between a function x(·) ∈ Lp(T ;X) and the corresponding equivalence
class [x(·)] ∈ Lp(T ;X). Any function x(·) defined almost everywhere on T is identified
with its trivial extension to all of T . Note that if λ(T ) < ∞ the following implication
holds

p < r =⇒ Lr(T ;X) ⊂ Lp(T ;X), (19)

but this is not so if λ(T ) = ∞.
The following proposition establishes a relationship between the absolute convergence of
a series of functions in Lp(T ; Cm) and its pointwise convergence.



740 Appendix

Proposition A.3.11. Let (vk(·))k∈N be a sequence in Lp(T ; Cm) such that
∑∞

k=0 ‖vk(·)‖p <

∞. Then the series
∑∞

k=0 vk(t) is absolutely convergent for almost every t ∈ T . If we set
v(t) =

∑∞
k=0 vk(t) for all t ∈ T for which the series converges and set v(t) = 0 elsewhere,

then the series
∑∞

k=0 vk(·) converges to v(·) in Lp(T ; Cn) and

‖v(·) −
N∑

k=0

vk(·)‖p ≤
∞∑

k=N+1

‖vk(·)‖p.

A measurable function x(·) : T → X is said to be locally p-integrable if
∫ t2
t1

‖x(t)‖p
Xdt < ∞

for arbitrary t1, t2 ∈ T , t1 < t2. The vector space of all such functions modulo zero
functions is denoted by L

p
loc(T ;X).

If (X, 〈·, ·〉X ) is a Hilbert space, an inner product on L2(T ;X) is defined by

〈x(·), y(·)〉 =

∫
T
〈x(t), y(t)〉Xdt, x(·), y(·) ∈ L2(T ;X).

The fact that the above inner product in L2(T ;X) is well defined is a consequence of the
Cauchy-Schwarz inequality on L2(T ;X)∣∣∣∣∫

T
〈x(t), y(t)〉Xdt

∣∣∣∣ ≤ ∫
T
|〈x(t), y(t)〉X | dt ≤ ‖x(·)‖2‖y(·)‖2, x(·), y(·) ∈ L2(T ;X). (20)

Equality holds in (20) if and only if x(·), y(·) are linearly dependent. Provided with the
above inner product, L2(T ;X) is a Hilbert space.
The Cauchy-Schwarz inequality is a special case of Hölder’s inequality. This states that if
p, q, r ∈ [1,∞], 1/p + 1/q = 1/r, x(·) ∈ Lp(T ;X) and y(·) ∈ Lq(T ;X), then the function
〈x(·), y(·)〉X : t �→ 〈x(t), y(t)〉X is r-integrable and

‖〈x(·), y(·)〉X‖Lr(T ;C) ≤ ‖x(·)‖Lp(T ;X)‖y(·)‖Lq(T ;X). (21)

Definition A.3.12. Let I ⊂ R be an interval. A function f : I → K is said to be
absolutely continuous on I if for every ε > 0, there exists a δ > 0, such that for every finite
collection {(tk, t′k)}k∈n of non-overlapping open subintervals of I

n∑
k=1

(t′k − tk) < δ =⇒
n∑

k=1

|f(t′k) − f(tk)| < ε.

The fundamental theorem of calculus for Lebesgue measurable functions states that a
function f : [a, b] → K has the form

f(t) = f(a) +

∫ t

a
ϕ(s)ds, t ∈ [a, b] (22)

for some integrable ϕ(·) on [a, b] if and only if f is absolutely continuous on [a, b]. In
this case f is continuous on [a, b] and almost everywhere differentiable with derivative
f ′(t) = ϕ(t) on (a, b).

Definition A.3.13. For g(·), u(·) ∈ L1(R; K) the convolution (g ∗ u)(·) is defined by

(g ∗ u)(t) =

∫ ∞

−∞
g(t − s)u(s) ds, a.e. t ∈ R.
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The integral in the above equation exists almost everywhere and defines an integrable
function on R. The vector space L1(R; K) provided with the multiplication ∗ is in fact a
commutative algebra over K. It is without an identity, since there is no function e(·) ∈
L1(R; K) such that g ∗ e = e ∗ g = g for every g ∈ L1(R, K). The convolution of a matrix
function G(·) ∈ L1(R; Kn×m) and a vector function u(·) ∈ L1(R; Km) is defined by

(G ∗ u)(t) =

⎛⎝ m∑
j=1

(Gij ∗ uj)(t)

⎞⎠
i∈n

=

∫ ∞

−∞
G(t − s)u(s) ds , a.e. t ∈ R. (23)

In the continuous time context the convolution inequality takes the following form.

Proposition A.3.14 (Convolution inequality). Suppose G(·) ∈ L1(R; Kn×m) and
u(·) ∈ Lp(R; Km), 1 ≤ p ≤ ∞ then y(·) = (G ∗ u)(·) ∈ Lp(R; Kn) and

‖y(·)‖Lp(R;Kn) = ‖(G ∗ u)(·)‖Lp(R;Kn) ≤ ‖G(·)‖L1(R;Kn×m) ‖u(·)‖Lp(R;Km). (24)

In particular, if g(·), u(·) ∈ L1(R; K) then ‖(g ∗ u)(·)‖L1(R;K) ≤ ‖g(·)‖L1(R;K)‖u(·)‖L1(R;K)

and so L1(R; K) is a commutative Banach algebra.
We now restrict the time domain from R to R+ and this allows us to define the convolution
of locally integrable functions on R+. This is particularly useful in Systems Theory where
often input functions are considered which are not integrable over R+.

Definition A.3.15. If g(·), u(·) ∈ L1
loc(R+; K) the convolution (g ∗ u)(·) : R+ → K is

defined by

(g ∗ u)(t) =

∫ t

0
g(t − s)u(s) ds, a.e. t ∈ R+.

The integral in the above equation exists almost everywhere and defines a locally integrable
function on R+. The vector space L1

loc(R+; K) provided with the multiplication ∗ is in fact
a commutative algebra over K (without identity). The convolution of a matrix function
G(·) ∈ L1

loc(R+; Kn×m) and a vector function u(·) ∈ L1
loc(R+; Km) is defined by

(G ∗ u)(t) =

⎛⎝ m∑
j=1

(Gij ∗ uj)(t)

⎞⎠
i∈n

=

∫ t

0
G(t − s)u(s) ds, a.e. t ∈ R+. (25)

Remark A.3.16. At some points in the text we need to convolve a function and a measure.
In order to avoid integrability conditions we restrict our considerations to the time domain
T = R+. A positive Borel measure µ on R+ is said to be finite if ‖µ‖ := µ(R+) < ∞
and it is said to be locally finite if µ(J) < ∞ for all compact intervals J ⊂ R+. For every
a ∈ R+ we denote by δa the Dirac impulse or unit mass at a. This is a finite measure
on R+ defined on the σ-algebra B of Borelian subsets of R+ by δa(E) = 1 if a ∈ E and
δa(E) = 0 if a �∈ E, E ∈ B. We are particularly interested in measures of the form

µ =
∞∑
i=0

giδti (26)

where g = (gi) ∈ �1(N; R), gi > 0, 0 ≤ t1 < t2 < ... with ti → ∞ as i → ∞. Then µ is a
finite measure on R+ with norm ‖µ‖ = ‖g‖�1(N;R).
Now suppose u(·) ∈ L1

loc(R+; K) and µ is a locally finite measure on R+, then the convo-
lution of µ and u is defined by

(µ ∗ u)(t) = (u ∗ µ)(t) =

∫ t

0
u(t − s)µ(ds), a.e. t ∈ R+.
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The integral in the above equation exists almost everywhere and defines a locally integrable

function on R+. If u(·) : R+ → K is continuous and µ is the measure defined in (26), then
(µ ∗ u)(t) is defined for every t ∈ R+, is piecewise continuous, and we have

(µ ∗ u)(t) =

k∑
i=1

giu(t − ti), t ∈ R+

where k is the largest integer such that tk ≤ t.
If u ∈ L1(R+; K) and µ is a finite Borel measure we have the convolution inequality

‖µ ∗ u‖L1(R+;K) ≤ ‖µ‖ ‖u‖L1(R+;K).
�

Laplace Transform

For u(·) ∈ L1
loc(R+; Km), α ∈ R we define uα(·) : t → e−αtu(t) on R+ and set

Eα(Km) = {u(·) ∈ L1
loc(R+; Km); uα(·) ∈ L1(R+; Km)}, (27)

C
+
α = {s ∈ C; Re s > α}, C+ = {s ∈ C; Re s > 0}. (28)

If u(·) ∈ Eα(K) then t → u(t)e−st is integrable on R+ for all s ∈ C
+
α .

Definition A.3.17. Suppose u(·) ∈ Eα(K). Then the Laplace transform of u(·) is defined

on C
+
α by

û(s) = (Lu)(s) :=

∫ ∞

0
u(t)e−stdt, Re s ≥ α.

The Laplace transform û(·) is continuous on C
+
α , analytic on C

+
α and bounded because

|û(s)| ≤ ‖uα(·)‖L1(R+;K), s ∈ C
+
α . (29)

If there is no risk of confusion, any analytic extension of û(·) to a complex domain Ω ⊃ C
+
α

will be denoted by the same symbol. If u(·) takes its values in R, then û(s) = û(s). The
Laplace transform of vectors and matrices with entries in Eα(K) for some α ∈ R are defined
by taking the Laplace transform componentwise.

Remark A.3.18. Definition A.3.17 can be extended to positive Borel measures on R+ as
follows. Assume that µ is a positive Borel measure on R+ satisfying

∫∞
0 e−αtµ(dt) < ∞

for some α ∈ R. Then the Laplace transform of µ is defined by

µ̂(s) = (Lµ)(s) =

∫ ∞

0
e−stµ(dt), Re s ≥ α.

µ̂(s) is continuous on C
+
α , analytic on C

+
α and bounded since |µ̂(s)| ≤

∫∞
0 e−αtµ(dt). In

particular, if µ(·) is the measure defined in (26) with (gi)i∈N ∈ �1(N; R), then

µ̂(s) =

∞∑
i=0

gie
−sti , Re s ≥ 0

is analytic on C+, bounded and continuous on C+. �

We have the following inversion and uniqueness result for the Laplace transform of func-
tions.
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Theorem A.3.19. (i) Suppose that u(·) ∈ Eα(Km) for some α ∈ R and let û(s) =

(Lu)(s), s ∈ C
+
α . Then for fixed β > α, the function û(β + ı ·) ∈ L1(R; Cm) and we have

the inversion formula

u(t) = (L−1û)(t) =
1

2πı

∫ β+ı∞

β−ı∞
estû(s)ds =

eβt

2π

∫ ∞

−∞
eıωtû(β + ıω)dω, a.e. t ∈ R+. (30)

If u(·) is continuous then (30) holds for all t ∈ R+.

(ii) If u(·), v(·) ∈ Eα(Km) and (Lu)(s) = (Lv)(s), s ∈ C
+
α then u(t) = v(t), a.e. t ∈ R+.

The following proposition lists some important properties of the Laplace transformation.
For τ > 0 let Sτ be the forward shift operator on L1

loc(R+; Km) defined by

(Sτu)(t) = u(t − τ), t ≥ τ and (Sτu)(t) = 0, t ∈ [0, τ).

Proposition A.3.20. Suppose a, b ∈ C, α ∈ R and u(·), v(·) ∈ Eα(Km), û(s) = (Lu)(s).
Then

(i) L (au + bv)(s) = aL (u)(s) + bL (v)(s), Re s ≥ α.

(ii) If c ∈ C and uc(t) = e−ctu(t) then (Luc)(s) = û(s + c), Re s ≥ α − Re c.

(iii) If τ > 0 then (Sτu)(·) ∈ Eα(Km) and

(LSτu)(s) = e−τsû(s), Re s ≥ α.

(iv) If c > 0, then (Lu(ct))(s) = c−1û(s/c), Re s ≥ c α.

(v) If u(·) : R+ → K
m is k times differentiable on R+ (with right-hand derivatives

u(j)(0) at 0) and u(j)(·) ∈ Eα(Km) for j = 0, . . . , k, then

(Lu(k))(s) = skû(s) − sk−1u(0) − sk−2u′(0) − · · · − u(k−1)(0), Re s ≥ α.

(vi) Let w(·) : t �→ t u(t), t ∈ R+, then (Lw)(s) = −(û)′(s), Re s > α.

u(t), t ≥ 0 û(s) s ∈ C
+
α , α >

δ(t) 1 −∞
e−λt, λ ∈ C 1/(s + λ) −Reλ

e−λttn/n!, λ ∈ C, n ∈ N 1/(s + λ)n+1 −Reλ

sin bt, b ∈ R b/(s2 + b2) 0

cos bt, b ∈ R s/(s2 + b2) 0

t sin bt, b ∈ R 2bs/(s2 + b2)2 0

t cos bt, b ∈ R (s2 − b2)/(s2 + b2)2 0

e−at sin bt, a, b ∈ R b/[(s + a)2 + b2] a

e−at cos bt, a, b ∈ R (s − a)/[(s + a)2 + b2] a

Table A.3.2: Laplace transforms

Some elementary Laplace transforms, together with their domains of analyticity C
+
α , are

given in Table A.3.2. Using partial fraction decomposition the inverse Laplace transform
of arbitrary proper rational functions can be obtained from the results in this table making
use of the above properties of the Laplace transformation.
The next theorem provides a counterpart to Theorem A.3.7.



744 Appendix

Theorem A.3.21. Suppose α ∈ R is given, u(·) ∈ Eα(Km) and G(·) ∈ Eα(Kn×m) with

Laplace transform G(s) = (LG)(s), s ∈ C
+
α . Then y(·) = (G ∗ u)(·) ∈ Eα(Kn), and

ŷ(s) = (L (G ∗ u))(s) = G(s)û(s), Re s ≥ α. (31)

The fact that y(·) ∈ Eα(Kn) in the above theorem follows from the convolution inequality

‖yα(·)‖L1(R+;Kn) =‖(Gα ∗ uα)(·)‖L1(R+;Kn) ≤ ‖Gα(·)‖L1(R+;Kn×m)‖uα(·)‖L1(R+;Km). (32)

Example A.3.22. Suppose A ∈ K
n×n, B ∈ K

n×m, C ∈ K
p×n, the spectral abscissa of A

is α(A) and α > α(A) is arbitrary. Choosing any α̃ ∈ R such that α(A) < α̃ < α we obtain
from Lemma 3.3.19 that there exists M > 0 such that ‖eAt‖L(Kn) ≤ Meα̃t for all t ∈ R+.

Hence ‖e−αteAt‖L(Kn) ≤ Me−(α−α̃)t and so G(·) : t �→ CeAtB belongs to Eα(Kp×m) for
every α > α(A). We conclude that the Laplace transform of G is well-defined and analytic
on C

+
α(A). Since limt→∞ e(A−sIn)t = 0n×n for Re s > α(A) we get

(LG)(s) =

∫ ∞

0
Ce−steAtBdt =

∫ ∞

0

d
dt

[
C(A− sIn)−1e(A−sIn)tB

]
dt = C(sIn − A)−1B (33)

for all s ∈ C
+
α(A). In fact G(s) := (LG)(s) = C(sIn −A)−1B can be extended analytically

to the whole resolvent set ρ(A). Moreover, by the inversion formula

CeAtB =
1

2πı

∫ β+ı∞

β−ı∞
estC(sIn − A)−1Bds for all t ∈ R+, β > α(A). (34)

�

A.3.3 Fourier Series and Fourier Transforms

In this subsection we present the definitions and some basic results on Fourier series and
Fourier transforms. Good references are Kolmogorov and Fomin (1957) [312], Goldberg
(1965) [193], Katznelson (1968) [297], Rudin (1987) [441], Folland (1992) [164] and Körner
(1988) [314]. It is assumed that all finite dimensional vector spaces K

m are equipped with
the Euclidean norm ‖ · ‖Km induced by the usual inner product 〈·, ·〉Km .

Fourier Series

Let l > 0. A function u(·) on R is 2l-periodic if u(t + 2l) = u(t) for all t ∈ R. Such a
function is completely determined by its values on the interval [−l, l]. Conversely, every
function u(·) on [−l, l] satisfying u(−l) = u(l) has a unique 2l-periodic extension to R. In
the following we will not distinguish notationally between a function u(·) ∈ L1(−l, l; Cm)
and its 2l-periodic extension.6 Under certain conditions a 2l-periodic function can be
represented as a superposition of harmonic oscillations.

Definition A.3.23. Given l > 0 and u(·) ∈ L1(−l, l; Cm), the Fourier coefficients of u(·)
are defined by

uk =
1

2l

∫ l

−l
u(θ)e−ıkπθ/ldθ, k ∈ Z (35)

and the associated Fourier series is
∞∑

k=−∞
uke

ıkπθ/l, θ ∈ R. (36)

6Since u(·) may be altered on a subset of measure zero, we may assume u(−l) = u(l).
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Note that if u(·) takes its values in R
m, then uk = u−k for k ∈ Z.

The two-sided sequence of Fourier coefficients (uk)k∈Z needs not be summable and so the
series (37) may not converge for some θ ∈ [−l, l]. In fact Kolmogorov has shown that there
exists a function u(·) ∈ L1(−l, l; C) whose Fourier series diverges everywhere. If, however,
(uk)k∈Z is summable in C

m, then the series

S(u, θ) =

∞∑
k=−∞

uke
ıkπθ/l, θ ∈ R (37)

defines a continuous 2l-periodic function S(u, ·) : R → C
m.

Theorem A.3.24. Suppose that u(·) ∈ L1(−l, l; Cm), l > 0 and (uk)k∈Z is the sequence
of its Fourier coefficients defined by (35). Then

(i) ‖uk‖Cm ≤ (2l)−1‖u(·)‖L1(−l,l;Cm) for all k ∈ Z and lim|k|→∞ uk = 0.

(ii) If (uk)k∈Z ∈ �1(Z; Cm) then the Fourier series S(u, θ) of u(·) defined by (37) is
absolutely convergent, uniformly in θ ∈ R, and

u(θ) =
∞∑

k=−∞
uke

ıkπθ/l, a.e. θ ∈ [−l, l].

If, additionally, u(·) is continuous then this equality holds everywhere on [−l, l].

(iii) If u(·) is piecewise continuously differentiable on [−l, l], then the symmetric partial
sums

SN (u, θ) =

N∑
k=−N

uke
ıkπθ/l, θ ∈ [−l, l], N ∈ N (38)

converge pointwise to 1
2 [u(θ+) + u(θ−)] as N → ∞.7

(iv) The Cesáro means of the symmetric partial sums Sk(u, θ), k ∈ N

σN (u, θ)=
1

N+1
(S0(u, θ) + · · · + SN (u, θ))=

N∑
k=−N

(
1− |k|

N+1

)
uke

ıkπθ/l, θ∈ [−l, l]

converge to u(·) in L1(−l, l; Cm) as N → ∞. If u(·) is continuous and u(−l) = u(l),
then σN (u, θ) converges to u(θ) uniformly on [−l, l].

The second result in (i) is called Riemann’s Lemma, (iv) is known as Fejér’s Theorem.
Statement (iii) indicates that the pointwise convergence of the Fourier series is connected
with smoothness properties of u(·) ∈ L1(−l, l; Cm). We have the following regularity
result.

Theorem A.3.25. Suppose the same situation as in the previous theorem and let n ∈ N
∗.

(i) If u(·) can be extended to an n-times differentiable 2l-periodic function on R such
that u(n)(·) is integrable on [−l, l] then

‖uk‖Cm ≤ (1/2l) min
0≤j≤n

‖u(j)(·)‖L1(−l,l;Cm)

|k|j , k ∈ Z.

(ii) If
∑∞

k=−∞ |k|n ‖uk‖Cm < ∞ then u(·) can be extended to an n-times continuously
differentiable function on R.

7By definition, u(l+) := u(−l+) and u(−l−) := u(l−).
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The pointwise convergence of Fourier series (i.e. of the symmetric partial sums SN (u, θ))
is a complicated problem and some questions in this area are still open. This is in sharp
contrast with the L2-theory of Fourier series which is simple and elegant due to the fact
that the exponential functions ψk(·) = (

√
2l)−1eıkπ(·)/l, k ∈ Z form an orthonormal basis

of L2(−l, l; C), see Example A.4.6. It follows from Theorem A.4.4 that

u(·) =
∑
k∈Z

〈u(·), ψk(·)〉L2((−l,l;C) ψk(·) =
∑
k∈Z

uke
ıkπ(·)/l, u(·) ∈ L2(−l, l; C).

More details are given in the next theorem.

Theorem A.3.26. Suppose u(·) ∈ L2(−l, l; Cm) and (uk)k∈Z is the sequence of Fourier
coefficients defined by (35). Then

(i) (uk)k∈Z ∈ �2(Z; Cm), and u(·) ∈ L2(−l, l; Rm) if and only if uk = u−k, k ∈ Z.

(ii) The Fourier series (37) converges (absolutely) to u(·) in L2(−l, l; Cm).

(iii) ‖u‖L2(−l,l;Km) =
√

2l ‖(uk)k∈Z‖�2(Z;Cm).

(iv) If u(·), v(·) ∈ L2(−l, l; Km), then∫ l

−l
〈u(θ), v(θ)〉Kmdθ = 2l

∞∑
k=−∞

〈uk, vk〉Cm .

(iv) Given any sequence (ak)k∈Z ∈ �2(Z; Cm) there exists a unique u(·) ∈ L2(−l, l; Cm)
such that ak = uk for all k ∈ Z.

It follows from this theorem that the map u(·) �→
√

2l (uk)k∈Z is a Hilbert space isomor-
phism from L2(−l, l; Cm) onto �2(Z; Cm).

Fourier Transforms

We first define the Fourier transform of L1 functions.

Definition A.3.27. Suppose u(·) ∈ L1(R; Cm), then the Fourier transform of u(·) is the
function ũ : R → C

m defined by

ũ(ω) = (F u)(ω) :=

∫ ∞

−∞
u(t)e−ıωtdt, ω ∈ R. (39)

Since ‖u(t)e−ıωt‖Cm = ‖u(t)‖Cm , the function ũ(·) : ω → ũ(ω) is well defined on R. Note
that if u takes its values in R

m, then ũ(ω) = ũ(−ω), ω ∈ R. Some basic properties of the
Fourier transform are similar to those of the Laplace transform. We list a few of these in
the following proposition.

Proposition A.3.28. Suppose u(·) ∈ L1(R; Cm), a > 0, τ ∈ R and ũ(·) = (F u)(·). Then

(i) ũ(·) : R → C
m is uniformly continuous and bounded on R, ‖ũ(ω)‖Cm ≤ ‖u(·)‖L1(R;Cm)

for all ω ∈ R, and lim|ω|→∞ ũ(ω) = 0m.

(ii) (F u(· − τ))(ω) = e−ıτωũ(ω), ω ∈ R and (Feıτ(·) u(·))(ω) = ũ(ω − τ), ω ∈ R.

(iii) (F u(a ·))(ω) = a−1ũ(ω/a), ω ∈ R.

(iv) If u(·) : R → C
m is absolutely continuous on every finite interval in R and u̇(·) ∈

L1(R; Cm), then (F u̇)(ω) = ıω ũ(ω) for all ω ∈ R.
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(v) If v(·) : t �→ tu(t), t ∈ R is in L1(R; Cm), then (F v)(ω) = ı(F u)′(ω), ω ∈ R.

(vii) If G(·) ∈ L1(R; Kn×m), G̃(·) = (F G)(·) and y(·) = (G ∗ u)(·) then

ỹ(ω) = (F(G ∗ u))(ω) = G̃(ω)ũ(ω), ω ∈ R.

(vi) If v1(t) = u(t), t ≥ 0, v2(t) = u(−t), t ≥ 0 and (L v1)(·), (L v2)(·) are the Laplace
transforms of v1(·), v2(·) ∈ L1(R+; Cm), then

(F u)(ω) = (L v1)(ıω) + (L v2)(−ıω), ω ∈ R. (40)

In particular if u(·) vanishes on (−∞, 0)

(F u)(ω) = (Lu |R+)(ıω), ω ∈ R. (41)

Tables of Fourier transforms can be obtained from tables of Laplace transforms via (40).
The last result in (i) is usually called Riemann’s Lemma. We have the following inversion
theorem.

Theorem A.3.29. (i) Suppose u(·) ∈ L1(R; Cm) and set

uN (t) =
1

2π

∫ N

−N
(1 − |ω|/N) ũ(ω)eıωtdω, t ∈ R,

then uN (·) → u(·) in L1(R; Cm) as N → ∞. In particular, if two L1-functions have the
same Fourier transform then they are equal almost everywhere.

(ii) If ũ(·) = (F u)(·) ∈ L1(R; Cm), then (F ũ)(− ·) : t �→ (F ũ)(−t) =
∫∞
−∞ ũ(ω)eıωtdω is

uniformly continuous and bounded on R and

u(t) = (F−1 ũ)(t) =
1

2π

∫ ∞

−∞
ũ(ω)eıωtdω =

1

2π
(F ũ)(−t), a.e. t ∈ R. (42)

If, additionally, u(·) is continuous then this inversion formula holds for all t ∈ R.

There is a regularity result similar to Theorem A.3.25.

Theorem A.3.30. Suppose u(·) ∈ L1(R; Cm) and let ũ(·) = (F u)(·).
(i) If u(·) is (n− 1)-times differentiable on R, n ≥ 1, u(n−1)(·) is absolutely continuous

on every finite interval in R and u(1), ..., u(n) ∈ L1(R; Cm) then

|ω|n ‖ũ(ω)‖Cm → 0 as |ω| → ∞.

(ii) On the other hand, if ũ(·) and the functions ω �→ ωkũ(ω) belong to L1(R; Cm) for
k = 1, . . . , n, then u(·) is n-times differentiable on R.

As a corollary to this theorem and Theorem A.3.29, we have

Corollary A.3.31. Suppose u(·) : R → C
m is twice differentiable on R with u(·), u′(·),

u′′(·) ∈ L1(R; Cm), then ũ(·) ∈ L1(R; Cm) and

u(t) = (F−1 ũ)(t) =
1

2π

∫ ∞

−∞
ũ(ω)eıωtdω, t ∈ R.
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Remark A.3.32. Definition A.3.27 can be extended to positive measures on R as follows.
Assume that µ is a finite Borel measure on R, see [297, VI.2]. Then the Fourier-Stieltjes
transform of µ is defined by

µ̃(ω) = (F µ)(ω) =

∫ ∞

−∞
e−ıωtµ(dt), ω ∈ R.

µ̃(ω) is continuous and bounded on R with |µ̃(ω)| ≤ ‖µ‖ for all ω ∈ R. In particular, if µ

is the following finite measure carried by a discrete subset {tk; k ∈ Z} of R

µ =
∑
k∈Z

vk δtk where (vk)k∈Z ∈ �1(Z; R),

then

µ̃(ω) =

∞∑
k=−∞

vke
−ıωtk , ω ∈ R.

�

Fourier-Plancherel Transforms

In order to obtain a counterpart to Theorem A.3.26 we need to define the Fourier transform
for L2 functions. There is an initial difficulty to be overcome since L2(R; Cm) �⊂ L1(R; Cm).
The following theorem indicates how this problem is surmounted.

Theorem A.3.33 (Plancherel). Suppose u(·) ∈ L2(R; Cm) and define for N ∈ N

ũN (ω) =

∫ N

−N
u(t)e−ıωtdt, ω ∈ R.

Then ũN (·) converges in L2(R; Cm) to a limit ũ(·) as N → ∞ (ũ(·) is called the Fourier-
Plancherel transform of u(·) and is denoted by (Fu)(·))8. If we set

uN (t) =
1

2π

∫ N

−N
ũ(ω)eıωtdω, t ∈ R

then uN (·) converges to u(·) in L2(R; Cm) for N → ∞. Moreover (
√

2π)−1/2F is a Hilbert
space isomorphism from L2(R; Cm) onto L2(R; Cm). In particular,

√
2π‖u(·)‖L2(R;Km) = ‖ũ(·)‖L2(R;Cm), u(·) ∈ L2(R; Km), (43)∫ ∞

−∞
〈u(t), v(t)〉Kmdt =

1

2π

∫ ∞

−∞
〈ũ(ω), ṽ(ω)〉Cmdω, u(·), v(·) ∈ L2(R; Km). (44)

Note that for u(·) ∈ L1(R; Cm), the Fourier-Plancherel transform ũ(·) is defined unam-
biguously for every ω ∈ R, whereas for u(·) ∈ L2(R; Cm) the Fourier-Plancherel transform
ũ(·) is only determined as an element of L2(R; Cm), i.e. almost everywhere.

Example A.3.34. For any a > 0, let 1[−a,a](·) be the indicator function of the interval
[−a, a], i.e. 1[−a,a](ω) = 1 if |ω| ≤ a and 1[−a,a](ω) = 0 if |ω| > a. Then v(·) = π 1[−a,a](·) ∈
L2(R; C) and so there exists u(·) ∈ L2(R; C) such that ũ(·) = (Fu)(·) = v(·). By the
previous theorem we have u(·) = (F−1v)(·) = limN→∞ uN (·) in L2(R; C) where, for N ≥ a,

uN (t) =
1

2π

∫ N

−N
ũ(ω)eıωtdω =

1

2π

∫ a

−a
πeıωtdω =

eıat − e−ıat

2ıt
=

sin at

t
, a.e. t ∈ R.

8This does not lead to an inconsistency, since the Fourier-Plancherel transform of any u(·) ∈
L1(R; Cm) ∩ L2(R; Cm) coincides with the Fourier transform of u(·)
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Hence u(t) = (F−1v)(t) = (sin at)/t = a sinc (at) almost everywhere9, i.e.

(F sinc (a · ))(ω) = (π/a) 1[−a,a](ω), a.e. ω ∈ R. (45)

�

In the following proposition we list some particular properties of the Fourier-Plancherel
transform which are needed in Chapter 2.

Proposition A.3.35. Suppose u(·) ∈ L2(R; Km), a > 0, τ ∈ R and let ũ(·) = (Fu)(·) be
the Fourier-Plancherel transform of u(·). Then

(i) u(·) ∈ L2(R; Rm) if and only if ũ(ω) = ũ(−ω) for a.e. ω ∈ R.

(ii) (F u(· − τ))(ω) = e−ıτωũ(ω), a.e. ω ∈ R.

(iii) If G(·) ∈ L1(R; Kn×m) and y(·) = (G ∗ u)(·) is the convolution on R defined by (23),
then y(·) ∈ L2(R; Kn) and the Fourier-Plancherel transform of y(·) satisfies

ỹ(ω) = (F(G ∗ u))(ω) = G̃(ω)ũ(ω), a.e. ω ∈ R. (46)

Moreover
‖ỹ(·)‖L2(R;Cn) ≤ ‖G̃(·)‖L∞(R;Cn×m) ‖ũ(·)‖L2(R;Cm). (47)

Discrete Fourier Transform

If, for a given l > 0, we identify any two-sided sequence (uk)k∈Z ∈ �1(Z; K) with the discrete
measure µ =

∑
k∈Z

uk δkπ/l and apply the Fourier transform to µ as in Remark A.3.32, we
are led to the following definition.

Definition A.3.36. Suppose u(·) = (uk)k∈Z ∈ �1(Z; Cm) and l > 0, then ũ(·) : R → C
m

defined by
ũ(θ) =

∞∑
k=−∞

uke
−ıkπθ/l, θ ∈ R (48)

is called the discrete 2l-periodic Fourier transform of the sequence u(·) and is denoted by
(FD u)(·).

The series on the RHS of (48) is uniformly absolutely summable in θ and hence ũ(θ) is
well defined for each θ ∈ R. Note that if (uk)k∈Z ∈ �1(Z; Cm) is a sequence of Fourier
coefficients of u(·) ∈ L1(−l, l; Cm) as in (35), then ũ(−θ) is the sum of the Fourier series
(37) for θ ∈ R and thus ũ(−θ) = u(θ) for a.e. θ ∈ [−l, l] by Theorem A.3.24.
The discrete Fourier transform has the following properties.

Proposition A.3.37. Suppose (uk)k∈Z ∈ �1(Z; Cm), l > 0 and ũ(·) is the discrete Fourier
transform of (uk)k∈Z defined by (48). Then

(i) ũ(·) : R → C
m is continuous and 2l-periodic.

(ii) If S is the unit forward shift defined in (5) and v(·) = (Su)(·), then

ṽ(θ) = e−ıπθ/lũ(θ), θ ∈ R. (49)

9For a definition of the sinc function, see (2.5.9).



750 Appendix

(iii) If we define v1(·), v2(·) ∈ �1(N; Cm) by v1
k = uk for k ∈ N and v2

0 = 0m, v2
k = u−k

for k ∈ N
∗ then the Z -transforms (Z vi)(·), i = 1, 2 are continuous on D+ and

(FD u)(θ) = (Z v1)(eıπθ/l) + (Z v2)(e−ıπθ/l), θ ∈ R. (50)

In particular if u(·) vanishes on Z \ N

(FD u)(θ) = (Z u |N)(eıπθ/l), θ ∈ R. (51)

Tables of discrete Fourier transforms can be obtained from tables of z-transforms via (50).
Definition A.3.36 is not directly applicable to arbitrary square summable sequences be-
cause �2(Z; Cm) is not contained in �1(Z; Cm). However, since the normalized exponential
functions ψk(·) = (

√
2l)−1 eıkπ(·)/l, k ∈ Z form an orthonormal basis of L2(−l, l; C), the

series on the RHS of (48) is absolutely summable in L2(−l, l; Cm) for every sequence
u(·) ∈ �2(Z; Cm), see Proposition A.4.3. The sum ũ(·) ∈ L2(−l, l; Cm) of this series
in L2(−l, l; Cm) is called the discrete Fourier transform of u(·) ∈ �2(Z; Cm) and is again
denoted by (FD u)(·). Note that for u(·) ∈ �1(Z; Cm) the discrete 2l-periodic Fourier trans-
form ũ(·) is a pointwise determined continuous function on R whereas for u(·) ∈ �2(Z; Cm),
ũ(·) is a function in L2(−l, l; Cm) and the corresponding 2l-periodic function on R (iden-
tified with ũ(·)) is only determined modulo zero functions.

Remark A.3.38. The discrete Fourier transform FD : �2(Z; Cm) → L2(−l, l; Cm) is
the discrete time counterpart of the Fourier-Plancherel transform F : L2(−l, l; Cm) →
L2(−l, l; Cm). In a similar way to the normalized Fourier-Plancherel transform the nor-
malized discrete Fourier transform (2l)−1/2FD is a Hilbert space isomorphism. �

In the next proposition we present a discrete time counterpart of Proposition A.3.35.

Proposition A.3.39. Suppose G(·) ∈ �1(Z; Kn×m), u(·) ∈ �2(Z; Km), and y(·) = (G∗u)(·)
is their convolution defined by (6). Then y(·) ∈ �2(Z; Kn) and, for any l > 0, we have the
following equality between the associated discrete 2l-periodic Fourier transforms

ỹ(θ) = (FD(G ∗ u))(θ) = G̃(θ)ũ(θ), a.e. θ ∈ R. (52)

Moreover,

‖ỹ(·)‖L2(−l,l;Cn) ≤ ‖G̃(·)‖L∞(−l,l;Cn×m) ‖ũ(·)‖L2(−l,l;Cm) . (53)

A.3.4 Hardy Spaces

In this subsection we briefly summarize some basic facts about Hardy spaces. These
spaces provide a natural setting for the study of analytic functions on D

+
γ , γ > 0 (resp.

C
+
α , α ∈ R) which converge in some sense to a boundary function on the circle ∂D

+
γ =

{s ∈ C; |s| = γ} (resp. the vertical line ∂C
+
α = α + ıR). Such functions are obtained e.g.

by taking the z-transform of sequences in Sγ(Km) (resp. Laplace transform of functions in
Eα(K)). For material on Hardy spaces, see Hoffman (1962) [260], Duren (1970) [144] and
Cima and Ross (2000) [100]. An early application of Hardy spaces to problems in infinite
dimensional system theory can be found in Fuhrmann (1981) [172].
All finite dimensional vector spaces K

m are equipped with the Euclidean norm ‖ · ‖Km

associated with the usual inner product 〈·, ·〉Km on K
m.
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Definition A.3.40. For 1 ≤ p ≤ ∞, γ > 0 we denote by Hp(D+
γ ; Cm) the space of all

analytic functions u(·) on D
+
γ with values in C

m satisfying ‖u(·)‖Hp(D+
γ ;Cm) < ∞ where

‖u(·)‖Hp(D+
γ ;Cm) =

⎧⎨⎩supr>γ

(∫ π
−π ‖u(reıθ)‖p

Cmdθ
)1/p

if 1 ≤ p < ∞ ,

supz∈D
+
γ
‖u(z)‖Cm if p = ∞ .

(54)

It is known that (54) defines norms on the vector spaces Hp(D+
γ ; Cm) and provided with

these norms they are Banach spaces. In order to explore the relationship between the
functions in Hp(D+

γ ; Cm) and the associated boundary functions on ∂D
+
γ , let σ be the

Lebesgue measure on ∂D
+
γ (defined as the image of the Lebesgue measure on [−π, π] via

the map θ �→ γeıθ) and let Lp(∂D
+
γ ; Cm) be the corresponding Lp-spaces, 1 ≤ p ≤ ∞

endowed with their usual norms so that e.g. for u(·) ∈ Lp(∂D
+
γ ; Cm) and 1 ≤ p < ∞

‖u(·)‖Lp(∂D
+
γ ;Cm) =

(∫
∂D

+
γ

‖u(z)‖p
Cm dσ(z)

)1/p

=

(∫ π

−π
‖u(γeıθ)‖p

Cmdθ

)1/p

.

The map u(·) �→ u(γeı ·) yields a Banach space isomorphism between Lp(∂D
+
γ ; Cm) and

Lp(−π, π; Cm). We have the following proposition.

Proposition A.3.41. Let 1 ≤ p ≤ ∞ and γ > 0. For every u(·) ∈ Hp(D+
γ ; Cm) the

pointwise limit u0(γeıθ) = limr↓γ u(reıθ) exists for a.e. θ ∈ [−π, π], and the boundary
function of u(·) defined by

u0(·) : ∂D
+
γ → C

m, γeıθ �→ u0(γeıθ) = lim
r↓γ

u(reıθ), θ ∈ [−π, π]

satisfies u0(·) ∈ Lp(∂D
+
γ ; Cm). Moreover, the map u(·) �→ u0(·) is a linear isometry from

Hp(D+
γ ; Cm) onto a closed linear subspace of Lp(∂D

+
γ ; Cm). In particular,

‖u(·)‖Hp(D+
γ ;Cm) = ‖u0(·)‖Lp(∂D

+
γ ;Cm), u(·) ∈ Hp(D+

γ ; Cm). (55)

The closed linear subspace of Lp(∂D
+
γ ; Cm) composed of all the boundary functions u0(·),

u(·) ∈ Hp(D+
γ ; Cm) is denoted by Hp(∂D

+
γ ; Cm) and endowed with the induced Lp-norm.

For the case p = 2 and γ = 1 we have the following complete characterization of those
functions u(·) ∈ L2(∂D; Cm) which belong to H2(∂D; Cm).

Theorem A.3.42 (F. and M. Riesz). A function u(·) ∈ L2(∂D; Cm) is in H2(∂D; Cm)
if and only if the Fourier coefficients vk ∈ �2(Z; Cm) of the function v(·) : θ �→ u(eıθ) on
[−π, π] vanish for k ∈ Z \ N.

The above theorem is a discrete version of the Paley-Wiener Theorem A.3.47 (see below).
In fact it is valid for all p ∈ [1,∞], but we only need the result for p = 2.
We have seen in Subsection A.3.1 that the z-transform û(·) = (Z u)(·) of every u(·) ∈
Sγ(Km) is a continuous function on D

+
γ which is bounded and analytic on D

+
γ . Hence Z

maps Sγ(Cm) into H∞(D+
γ ; Cm) for γ > 0. In particular, Z maps �1(N; Cm) ⊂ �p(N; Cm)

into H∞(D+; Cm) ⊂ Hp(D+; Cm), 1 ≤ p ≤ ∞. For p = 2 we have

Theorem A.3.43.
(√

2π
)−1/2

Z is a linear isometry from �2(N; Cm) onto H2(D+; Cm).

The Hardy spaces for the domains C
+
α , α ∈ R are defined as follows.
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Definition A.3.44. For 1 ≤ p ≤ ∞ and α ∈ R denote by Hp(C+
α ; Cm) the space of all

analytic functions u(·) on C
+
α with values in C

m satisfying ‖u(·)‖Hp(C+
α ;Cm) < ∞ where

‖u(·)‖Hp(C+
α ;Cm) =

⎧⎨⎩supβ>α

(∫∞
−∞ ‖u(β + ıω)‖p

Cmdω
)1/p

if 1 ≤ p < ∞ ,

sups∈C
+
α
‖u(s)‖Cm < ∞ if p = ∞ .

(56)

It is known that (56) defines norms on the vector spaces Hp(C+
α ; Cm), 1 ≤ p ≤ ∞ and pro-

vided with these norms they are Banach spaces. In the following proposition Lp(∂C
+
α ; Cm)

is the Lp-space with respect to the Lebesgue measure on the boundary ∂C
+
α = α+ ıR (im-

age of the Lebesgue measure on R by the map ω �→ α + ıω).

Proposition A.3.45. Let 1 ≤ p ≤ ∞ and α ∈ R. For every u(·) ∈ Hp(C+
α ; Cm) the

pointwise limit u0(α + ıω) = limβ↓α u(β + ıω) exists for a.e. ω ∈ R, and the boundary
function of u(·) defined by

u0(·) : ∂C
+
α = α + ıR → C

m, ω �→ u0(α + ıω) = lim
β↓α

u(β + ıω),

satisfies u0(·) ∈ Lp(∂C
+
α ; Cm). Moreover, the map u(·) �→ u0(·) is a linear isometry

from Hp(C+
α ; Cm) onto a closed linear subspace of Lp(∂C

+
α ; Cm). In particular, for any

1 ≤ p ≤ ∞,

‖u(·)‖Hp(C+
α ;Cm) = ‖u0(·)‖Lp(∂C

+
α ;Cm), u(·) ∈ Hp(C+

α ; Cm). (57)

Given 1 ≤ p ≤ ∞, we denote the vector space of all the boundary functions u0(·), u(·) ∈
Hp(C+

α ; Cm) (modulo zero functions) by Hp(∂C
+
α ; Cm), and provide this linear space with

the norm induced from Lp(∂C
+
α ; Cm). With respect to this norm, Hp(∂C

+
α ; Cm) is a

Banach space. It follows from Definition A.3.17 and (29) that the Laplace transformation
L maps Eα(C) into H∞(C+

α ; Cm), in particular L maps L1(R+; Cm) into H∞(C+; Cm).
For the case α = 0, p = 2 the following theorem gives a complete characterization of those
functions u(·) ∈ L2(ıR; Cm) which lie in H2(ıR; Cm).

Theorem A.3.46 (Paley-Wiener). A function u(·) ∈ L2(ıR; Cm) belongs to H2(ıR; Cm)
if and only if the Fourier-Plancherel transform ṽ(·) ∈ L2(R; Cm) of the function v(·) : t �→
u(ıt) vanishes almost everywhere on (−∞, 0).

Again this theorem is valid for all p ∈ [1,∞]. The following theorem is the continuous
time counterpart of Theorem A.3.43.

Theorem A.3.47. The normalized Laplace transform
(√

2π
)−1/2 L is a linear isometry

from L2(R+; Cm) onto H2(C+; Cm).
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A.4 Linear Operators and Linear Forms

This section is divided into four subsections. In a first subsection we briefly recall some
definitions and results concerning the summability of series in Banach or Hilbert spaces,
in the second we consider linear operators on Banach spaces, in the third we introduce
some additional definitions and theorems for linear operators on Hilbert spaces and in the
fourth we describe some elements of spectral analysis. Good references for the material
contained in the section are Dunford and Schwartz (1958 and 1963) [142], [143], Rudin
(1973) [440], Kato (1980) [293], Naylor and Sell (1971) [388], and Kreyszig (1978) [319].

A.4.1 Summability and Generalized Fourier Series

Definition A.4.1. A family (xi)i∈I of elements of a normed space (X, ‖ · ‖) over K is said
to be summable if there exists x ∈ X and for every ε > 0 there exists a finite subset J0 ⊂ I

such that for every finite subset J of I

J0 ⊂ J ⇒ ‖x −
∑
i∈J

xi‖ < ε.

In this case x is called the sum of (xi)i∈I and we write x =
∑

i∈I xi.

The sum x of a summable family (xi)i∈I is uniquely determined. If (X,‖·‖X ) and (Y,‖·‖Y )
are normed linear spaces, A : X → Y is a bounded linear operator (see the next subsec-
tion), and (xi)i∈I is a summable family of elements of X with sum x, then (Axi)i∈I is a
summable family of elements of Y with sum y = Ax.

Proposition A.4.2. Let (X, ‖ · ‖) be a Banach space.

1. A family (xi)i∈I of elements of X is summable if and only if for every ε > 0 there
exists J0 ⊂ I such that for every finite J ⊂ I

J ∩ J0 = ∅ ⇒ ‖
∑
i∈J

xi‖ < ε.

2. (xi)i∈I is summable with sum x ∈ X if and only if either the set I0 = {i ∈ I;xi �= 0}
is finite and

∑
i∈I0

xi = x, or the set is countable and limN→∞
∑N

k=0 xι(k) = x for
every bijection ι : N → I0.

If (xi)i∈I is a family of elements of a Banach space (X, ‖ · ‖) and (‖xi‖)i∈I is summable in
R, then (xi)i∈I is summable in X. In this case we say that (xi)i∈I is absolutely summable.
Thus in any Banach space X absolute summability implies summability. The converse
statement holds true if X is finite dimensional, but does not necessarily hold if X is
infinite dimensional. In a Hilbert space, we have

Proposition A.4.3. A family (xi)i∈I of mutually orthogonal elements of a Hilbert space
(X, 〈·, ·〉) is summable if and only if (‖xi‖2)i∈I is summable in R. In this case

‖
∑
i∈I

xi‖2 =
∑
i∈I

‖xi‖2. (1)

A family (xi)i∈I in a Hilbert space is said to be orthonormal if the xi are mutually orthog-
onal and of norm ‖xi‖ = 1, i ∈ I.

Theorem A.4.4. For any orthonormal family (xi)i∈I in a Hilbert space X the following
statements are equivalent.
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(i) If x ∈ X is orthogonal to every xi, i ∈ I then x = 0.

(ii) Every x ∈ X is the sum of its generalized Fourier series

x =
∑
i∈I

〈x, xi〉xi . (2)

(iii) For all x, y ∈ X

〈x, y〉 =
∑
i∈I

〈x, xi〉〈xi, y〉 . (3)

(iv) The generalized Parseval equation holds for every x ∈ X

‖x‖2 =
∑
i∈I

|〈x, xi〉|2. (4)

Definition A.4.5. An orthonormal family (xi)i∈I in a Hilbert space X is said to be an
orthonormal basis (or Hilbert basis) of X if it satisfies the equivalent conditions of the
previous theorem.

Example A.4.6. Consider the Hilbert space X = L2(−l, l; C) provided with the inner
product

〈u(·), v(·)〉X =

∫ l

−l
u(θ) v(θ) dθ, u(·), v(·) ∈ L2(−l, l; C). (5)

Then the family (ψk(·))k∈Z of functions ψk : θ �→ (
√

2l)−1eıkπθ/l on [−l, l] form an orthonor-
mal basis of (X, 〈·, ·〉X ). In Subsection 2.5.2, in order to simplify some of the formulas, we
endow X = L2(−l, l; C) with the normalized inner product

〈u(·), v(·)〉X =
1

2l

∫ l

−l
u(θ) v(θ) dθ, u(·), v(·) ∈ L2(−l, l; C).

With respect to this inner product the functions ψk : θ �→ eıkπθ/l, k ∈ Z form an orthonor-
mal basis of L2(−l, l; C). �

A.4.2 Linear Operators on Banach Spaces

Let X, Y be normed linear spaces over K. The corresponding norms are denoted by ‖ · ‖X

and ‖ · ‖Y , respectively. A linear operator A : X → Y is continuous if and only if it is
bounded, i.e. its operator norm

‖A‖ = ‖A‖L(X,Y ) = sup
x�=0

‖Ax‖Y

‖x‖X
= sup

‖x‖X≤1
‖Ax‖Y = sup

‖x‖X=1
‖Ax‖Y (6)

is finite. The vector space of all bounded linear operators A : X → Y is denoted by
L(X,Y ). Recall that for α ∈ K, A,B ∈ L(X,Y ) the maps αA ∈ L(X,Y ) and A + B ∈
L(X,Y ) are defined pointwise,

(αA)x = αAx, (A + B)x = Ax + Bx, x ∈ X.

We have the following theorem.

Theorem A.4.7. If X, Y are normed linear spaces, then (6) defines a norm on L(X,Y ).
If Y is a Banach space then so is L(X,Y ).
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The normed linear space of all bounded linear operators from X to itself is denoted by
L(X). In L(X) the product of two operators A1, A2 is defined by (A1A2)x = A1(A2x),
x ∈ X. If X is a Banach space then L(X) is a Banach algebra (complete normed algebra).
The inverse of a bijective linear operator A ∈ L(X,Y ) is not necessarily bounded. But it
is so if X and Y are Banach spaces.

Theorem A.4.8 (Open Mapping Theorem of S. Banach). If X,Y are Banach
spaces and A ∈ L(X,Y ) is a bijective linear operator. Then the inverse linear operator
A−1 : Y → X is bounded, A−1 ∈ L(Y,X).

If X is a normed space, the dual space X∗ ( i.e. the linear space of all bounded linear
functionals on X) is provided with the dual norm:

‖f‖X∗ = ‖f‖L(X,K) = sup
‖x‖X≤1

|f(x)| = sup
‖x‖X=1

|f(x)|. (7)

X∗ is a Banach space by Theorem A.4.7.
The following theorem is used to extend continuous linear functionals from a linear sub-
space of X to the whole space without changing its norm.

Definition A.4.9. A function p : X → R defined on a linear space X over K is called a
semi–norm on X if it satisfies the following conditions

p(x + y) ≤ p(x) + p(y), for all x, y ∈ X

p(αx) = |α|p(x) for all α ∈ K, x ∈ X.

Theorem A.4.10 (Hahn – Banach). Let X be a linear space over K and p a semi–norm
on X. If f is a linear functional on a K–linear subspace V ⊂ X satisfying |f(x)| ≤ p(x)
for x ∈ V then there exists a K–linear extension F of f on X satisfying |F (x)| ≤ p(x) for
all x ∈ X.

Example A.4.11. Suppose X is a normed linear space, x0 ∈ X, x0 �= 0, p(x) = ‖x‖X ,
V = span{x0} and f(v) = α‖x0‖X for v ∈ V , v = αx0, α ∈ K. Then |f(v)| = ‖v‖X =
p(v) for v ∈ V . Hence by the Hahn-Banach Theorem there exists F ∈ X∗ such that
|F (x)| ≤ ‖x‖X for all x ∈ X. Hence ‖F‖X∗ ≤ 1, but since |F (v)| = ‖v‖X we actually
have ‖F‖X∗ = 1. In particular we see that given x0 ∈ X, x0 �= 0, there exists an aligned10

linear form F ∈ X∗ such that F (x0) = ‖x0‖X and ‖F‖X∗ = 1. �

Another result following from the Hahn-Banach Theorem is the following duality theorem
for minimum norm problems. If V is a linear subspace of a normed space X we denote by
V ⊥ the orthogonal complement of V defined by

V ⊥ = {f ∈ X∗; ∀v ∈ V : f(v) = 0} ⊂ X∗.

Theorem A.4.12. Let (X, ‖ · ‖X) be a real normed linear space, x0 ∈ X and V ⊂ X a
linear subspace of X. Then

d := inf
v∈V

‖x0 − v||X = max
f∈V ⊥,‖f‖X∗=1

f(x0) (8)

where the maximum on the right is achieved for some f0 ∈ V ⊥ with ‖f0‖X∗ = 1. If
the infimum on the left is achieved for some v0 ∈ V then f0 is aligned with x0 − v0,
i.e. f0(x0 − v0) = ‖x0 − v0||X = d.

10x0 ∈ X and F ∈ X∗ are called aligned if F (x0) = ‖F‖X∗‖x0‖X .
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Definition A.4.13. Let K be a convex neigbourhood of the origin in a normed space X

over K and suppose that K is balanced, i.e. αx ∈ K for all x ∈ K and all α ∈ K, |α| ≤ 1.
Then the functional

pK(x) = inf{r ∈ R; r > 0, r−1x ∈ K}, x ∈ X

is called the Minkowski functional of K.

If K is the (open or closed) unit ball in (X, ‖ · ‖) then pK(·) = ‖ · ‖. In general we have

Proposition A.4.14. Let K be a balanced convex neigbourhood of the origin in a normed
space X over K. Then the Minkowski functional of K is a continuous semi–norm on X

and one has

K = {x ∈ X; pK(x) ≤ 1}, int K = {x ∈ X; pK(x) < 1}.

If K is bounded in X, then pK is a norm on X (equivalent to the given norm on X).

Contrary to the finite dimensional case different types of convergence must be considered
for infinite dimensional operators.

Definition A.4.15. Let X, Y be normed linear spaces and A,Ak ∈ L(X,Y ), k ∈ N. The
sequence (Ak) is said to converge uniformly (or in norm) to A if ‖Ak − A‖L(X,Y ) → 0 as
k → ∞. (Ak) is said to conrverge strongly to A if ‖Akx − Ax‖Y → 0 as k → ∞ for all
x ∈ X. And (Ak) is said to converge weakly to A if |f(Akx) − f(Ax)| → 0 as k → ∞ for
all x ∈ X and all f ∈ Y ∗, the dual space of Y .

Uniform convergence implies strong convergence and strong convergence implies weak
convergence.

Definition A.4.16. Suppose X,Y are Banach spaces and Ω ⊂ X is open. A map f : Ω →
Y is said to be Fréchet differentiable at x0 ∈ Ω if there exists a bounded linear operator
A ∈ L(X,Y ) such that

lim
‖h‖X→0

‖f(x0 + h) − f(x0) − Ah‖Y

‖h‖X
= 0. (9)

In this case A is said to be the Fréchet derivative11 of f at x0 and is denoted by f ′(x0).

A generalization of the semigroup (eAt)t∈R+ to infinite dimensional spaces is given in the
following

Definition A.4.17. A strongly continuous semigroup on a Banach space X is an operator-
valued function Φ(·) : R+ −→ L(X) with the following properties:

Φ(t + s) = Φ(t)Φ(s), t, s ≥ 0; Φ(0) = IX ; ∀x ∈ X : ‖Φ(t)x − x‖X → 0 as t ↘ 0.

It can be shown that Φ(t)x is continuous for all t > 0, x ∈ X.

Definition A.4.18. If X,Y are Banach spaces, a linear operator A ∈ L(X,Y ) is said to
be compact if it maps bounded subsets of X into relatively compact subsets of Y (subsets
of Y whose closures are compact). The vector space of compact linear operators from X

to Y will be denoted by C(X,Y ) (C(X) if Y = X).

11A is uniquely determined by (9).
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Clearly any composition of a compact linear operator and a bounded linear operator is
compact. For compact modifications of the identity the Fredholm alternative holds: If
A ∈ C(X,Y ), either the equation x + Ax = 0 has a nontrivial solution or the equation
x + Ax = u has a uniquely determined solution for every u ∈ X. The solution depends
continuously on the RHS. In other words,

Theorem A.4.19 (Fredholm Alternative). Suppose that X is a Banach space and
A ∈ L(X) is compact. Then IX + A is injective if and only if it is surjective, and in this
case IX + A is invertible in L(X).

Sometimes we need to consider linear operators between Banach spaces X and Y which
are not defined for all vectors x ∈ X (e.g. the differential operator d

dt on the space C(R, R)
of continuous real functions on R). Let D ⊂ X be a linear subspace of X and A a linear
map from D to Y , then A is said to be an (unbounded) linear operator from X to Y . D

Is called the domain of definition, or simply the domain of A and is denoted by D(A). Of
particular importance are the unbounded operators which are closed in the sense of the
following definition.

Definition A.4.20. A linear operator A : D(A) ⊂ X → Y is called a closed linear
operator from X to Y if its graph

Graph(A) = {(x,Ax); x ∈ D(A)} ⊂ X × Y (10)

is closed in X×Y . The space of closed operators from X to Y will be denoted by C(X,Y )
(C(X) if Y = X).

Theorem A.4.21 (Closed Graph Theorem of S. Banach). If X,Y are Banach
spaces, every A ∈ C(X,Y ) with domain D(A) = X is bounded.

Definition A.4.22. The infinitesimal generator of a strongly continuous semigroup Φ(t)
on a Banach space X is an operator A : D(A) −→ X such that

Ax = lim
t↘0

(Φ(t)x − x)/t x, x ∈ D(A),

where D(A) is the set of elements in X for which the limit exists.

It can be shown that D(A) is dense in X and if x ∈ D(A), then Φ(t)x ∈ D(A) for all
t ≥ 0. Moreover d

dtΦ(t)x = Φ(t)Ax = AΦ(t)x, x ∈ D(A).

A.4.3 Linear Operators on Hilbert Spaces

In this subsection we assume that all the underlying spaces are K-Hilbert spaces. The
inner product in a Hilbert space X will be denoted by 〈·, ·〉X .

Definition A.4.23. Let X,Y be Hilbert spaces and A : D(A) �→ Y be a linear operator
whose domain D(A) ⊂ X is dense in X. Then the adjoint operator (Hilbert space adjoint)
of A is the unique linear operator A∗ : D(A∗) ⊂ Y → X satisfying

〈Ax, y〉Y = 〈x,A∗y〉X , x ∈ D(A), y ∈ D(A∗) (11)

where D(A∗) = {y ∈ Y ;∃z ∈ X : 〈Ax, y〉Y = 〈x, z〉X for all x ∈ D(A)}.
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If A ∈ C(X,Y ) is densely defined, then D(A∗) is dense in Y , A∗ ∈ C(Y,X) and A∗∗ = A.
If A ∈ L(X,Y ) then D(A∗) = Y , A∗ ∈ L(Y,X) and ‖A‖L(X,Y ) = ‖A∗‖L(Y,X).
We make use of the following range–kernel duality between a closed linear operator and
its dual.

Theorem A.4.24 (Closed Range Theorem of S. Banach). If X,Y are Hilbert spaces
and A : D(A) �→ Y is a closed linear operator with dense domain, then the following
statements are equivalent.

(i) Im A is closed in Y .

(ii) Im A∗ is closed in X.

(iii) Im A = ker(A∗)⊥ = {y ∈ Y ; 〈y, z〉Y = 0 for all z ∈ ker(A∗)} .

(iv) Im A∗ = ker(A)⊥ = {x ∈ X; 〈z, x〉X = 0 for all z ∈ ker(A)} .

Example A.4.25. Let S : x = (x0, x1, x2, ...) �→ Sx = (0, x0, x1, x2, ...) be the forward
shift operator on X = �2(N; K). Then for y = (y0, y1, y2, ...) ∈ X

〈Sx, y〉X = 0 + x0y1 + x1y2 + x2y3 + · · · = 〈x, S∗y〉X

where S∗ : y = (y0, y1, y2, . . .) �→ S∗y = (y1, y2, y3, . . .) is the backward shift operator
on �2(N; K). Let (ej)j∈N be the standard orthonormal basis of �2(N; K), i.e. e

j
k = δjk,

k ∈ N for each j ∈ N. Clearly ker S = {0}, Im S∗ = X, ker S∗ = span{e0}, ImS =
span{e1, e2, e3, . . .}. So we see that (i)–(iv) of Theorem A.4.24 are satisfied. �

An operator A ∈ L(X) is said to be selfadjoint or Hermitian if A = A∗ and normal if
AA∗ = A∗A. Every selfadjoint operator A ∈ L(X) is normal. The set of all selfadjoint
operators A ∈ L(X) is a real vector space and will be denoted by H(X).

Theorem A.4.26. If A ∈ H(X) then

‖A‖L(X) = sup
‖x‖≤1

|〈Ax, x〉X |. (12)

A ∈ H(X) is said to be positive semi-definite

〈Ax, x〉X = 〈x,Ax〉X ≥ 0 , x ∈ X.

The set H+(X) of positive semi-definite operators on X is a pointed convex cone, i.e.

αH+(X) ⊂ H+(X), α > 0, H+(X) + H+(X) ⊂ H+(X), and H+(X) ∩ (−H+(X)) = 0.

The associated order on the real vector space H(X) is defined by A $ B ⇔ A − B $ 0.
Every decreasing sequence in this vector space which is bounded below has a pointwise
limit in H(X). More precisely,

Proposition A.4.27. Suppose (Ak) is a decreasing sequence in H(X) which is bounded
below, i.e. for all k ∈ N, x ∈ X we have 〈Akx, x〉X ≥ 〈Ak+1x, x〉X and there exists
B ∈ H(X) such that Ak $ B. Then there exists A ∈ H(X) such that limk→∞〈Akx, x〉X =
〈Ax, x〉X , for all x ∈ X.

Positive semi-definite operators have a square root.
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Proposition A.4.28. Suppose that A ∈ H+(X) then there exists a unique B ∈ H+(X)
such that B2 = A. B is called the square root of A and denoted by B = A1/2. A is
invertible in L(X) if and only if B is invertible in L(X).

As a consequence A ∈ H+(X) is invertible in L(X) if and only if there exists ε > 0 such
that

〈Ax, x〉X = ‖Bx‖2
X ≥ ε2‖x‖2

X x ∈ X. (13)

Occasionally we will need the following modification of the previous proposition.

Corollary A.4.29. If X,Y are Hilbert spaces and B ∈ L(X,Y ) then A = B∗B ∈ H+(X).
Conversely, if A ∈ H+(X) then there exist a Hilbert space Y and B ∈ L(X,Y ) such that
A = B∗B. If rankA = q then one can choose Y = K

q.

A.4.4 Spectral Theory

In this subsection we first define the spectrum and resolvent of an operator A ∈ C(X)
where X is a Banach space. Then we examine the simplifications when firstly A ∈ L(X)
and secondly A ∈ C(X) and conclude with a spectral theorem for closed linear operators
on Hilbert spaces with compact normal resolvents. The Banach and Hilbert spaces in this
subsection are assumed to be complex.

Definition A.4.30. (i) Let X be a Banach space and A ∈ C(X). The set of s ∈ C such
that sIX − A : D(A) → X is bijective with bounded inverse

R(s,A) := (sIX − A)−1 ∈ L(X),

is called the resolvent set of A and is denoted by ρ(A). The operator-valued function
R(· , A) : s �→ R(s,A) on ρ(A) is called the resolvent of A.

(ii) The complement of the resolvent set, σ(A) = C \ ρ(A), is called the spectrum of A.
λ ∈ C is said to be an eigenvalue and a non-zero x ∈ D(A) an eigenvector of A if Ax = λx.
The collection of all eigenvalues of A is called the point spectrum and denoted by σp(A).

The continuous spectrum of A, denoted by σc(A), is the set of all λ ∈ C such that λIX −A

has its range dense in X, is one-to-one, but does not have a bounded inverse.

The residual spectrum of A, denoted by σr(A), is the set of all λ ∈ C such that λIX − A

is one-to-one but does not have its range dense in X.

By definition
σ(A) = σp(A) ∪̇ σc(A) ∪̇ σr(A).

σ(A) is always closed, but for unbounded A ∈ C(X) it is possible that σ(A) is empty or
covers the whole complex plane. Correspondingly, ρ(A) is always open in C, but may be
empty. The resolvent operator satisfies the resolvent equation

R(λ1, A) − R(λ2, A) = (λ2 − λ1)R(λ1, A)R(λ2, A), λ1, λ2 ∈ ρ(A). (14)

In particular R(λ1, A) and R(λ2, A) commute. For λ, λ0 ∈ ρ(A), we have

R(λ,A) = R(λ0, A)[IX − (λ0 − λ)R(λ0, A)]−1 =

∞∑
k=0

(λ0 − λ)kR(λ0, A)k+1

and the series converges in norm if |λ0−λ| < ‖R(λ0, A)‖−1
L(X). Thus R(λ,A) is analytic on

the open (but not necessarily connected) set ρ(A). We will now deal with the case where
A is bounded.
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Definition A.4.31. The spectral radius of A ∈ L(X) is given by

�(A) = sup{|λ|;λ ∈ σ(A).}

The next theorem shows that if A ∈ L(X), then neither ρ(A) nor σ(A) are empty. More-
over, it implies that in the previous definition the “sup” may be replaced by “max”.

Theorem A.4.32. Let X be a Banach space and A ∈ L(X), then the following hold.

(i) The spectrum σ(A) is compact and nonempty.

(ii) The spectral radius is determined by

�(A) = lim
k→∞

‖Ak‖1/k
L(X) = inf

k≥1
‖Ak‖1/k

L(X). (15)

(iii) If A,B ∈ L(X), then �(AB) = �(BA).

(iv) If A is normal then �(A) = ‖A‖L(X).

(v) The resolvent operator of A has the following Laurent expansion at infinity

R(s,A) =
∞∑

k=1

s−kAk−1, |s| > �(A) (16)

where the series converges in norm.

Example A.4.33. Consider the forward and backward shift operators S and S∗ on X =
�2(N; C) as in Example A.4.25. Then

(λIX − S)x = (λx0, λx1 − x0, λx2 − x1, ...).

So for all λ ∈ C, (λIX−S)x = 0 implies x = 0 and hence σp(S) = ∅. Since ‖Skx‖X = ‖x‖X

for all x ∈ X and k ∈ N, the spectral radius formula (15) shows that �(S) = 1 and hence
σ(S) ⊂ D where D = {λ ∈ C; |λ| < 1} is the open unit disk. Now let x ∈ X and
y = (λIX − S)x, i.e. yk = λxk − xk−1, k ≥ 1, y0 = λx0, then∑N

k=0λ
kyk = λx0 + λ(λx1 − x0) + · · · + λN (λxN − xN−1) = λN+1xN .

For |λ| ≤ 1, λN+1xN → 0 as N → ∞ and hence
∑∞

k=0 λkyk = 0. Thus when |λ| < 1 the

range of λIX −S is orthogonal to xλ = (1, λ, λ
2
, ...) ∈ X and hence cannot be dense in X.

This proves that D ⊂ σr(S). It is shown in [388] that ∂D = {λ ∈ C; |λ| = 1} ⊂ σc(S) and
so

σ(S) = D, σp(S) = ∅, σc(S) = ∂D, σr(S) = D.

For the backward shift operator S∗

(λIX − S∗)x = (λx0 − x1, λx1 − x2, λx2 − x3, ...).

So every λ with |λ| < 1 is an eigenvalue of S∗ with associated eigenvector (1, λ, λ2, λ3, . . .) ∈
X. Now ‖S∗kx‖X ≤ ‖x‖X and ‖S∗kSkx‖X = ‖Skx‖X for x ∈ �2(N; C) and k ∈ N. So
‖S∗k‖L(X) = 1 for all k ∈ N and hence �(S∗) = 1 by (15). Again it can be shown (see
[388]) that ∂D ⊂ σc(S) and so

σ(S∗) = D, σp(S
∗) = D, σr(S

∗) = ∅, σc(S
∗) = ∂D.

�
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For any A ∈ L(X), we have σ(A∗) = {λ ∈ C; λ ∈ σ(A)}, but as the above example shows
this does not mean that if λ ∈ σ(A) is an eigenvalue of A, then λ is an eigenvalue of A∗.
If A ∈ L(X) is selfadjoint then σ(A) ⊂ R.
In the case where A is compact we have the following theorem.

Theorem A.4.34. Suppose X is a Banach space and A ∈ C(X). Then σ(A) is a countable
set with no non-zero accumulation point and each non-zero λ ∈ σ(A) is an eigenvalue of
A with finite multiplicity.

Most operators which arise in physics are not compact, but often they have compact
resolvents. For such operators we have

Theorem A.4.35. Suppose X is a Banach space, A ∈ C(X) is such that ρ(A) �= ∅ and
R(λ,A) is compact for some s0 ∈ ρ(A). Then σ(A) consists entirely of isolated eigenvalues
of A with finite multiplicities, and R(s,A) is compact for every s ∈ ρ(A).

For the case where X is a Hilbert space with inner product 〈·, ·〉 we have the following
spectral theorems. They show that compact normal operators on a Hilbert space have a
spectral decomposition analogous to normal matrices.

Theorem A.4.36. Suppose X is a Hilbert space and A ∈ C(X) is normal . Then there
exists an orthonormal basis of eigenvectors (vk) of A with associated eigenvalues λk such
that for all x ∈ X

Ax =
∑

k

λk〈x, vk〉 vk.

If A ∈ C(X) is selfadjoint then at least one of the two numbers ±‖A‖ is an eigenvalue of
A. If A has a maximal (resp. minimal) eigenvalue, these are given by

λmax(A) = max
‖x‖=1

〈Ax, x〉 (resp. λmin(A) = min
‖x‖=1

〈Ax, x〉). (17)

One can also express an unbounded operator as a sum of eigen-projections if its resolvent
is compact and normal.

Theorem A.4.37. Suppose X is a Hilbert space, A ∈ C(X) is such that ρ(A) �= ∅ and
R(λ,A) is compact and normal for some λ ∈ ρ(A). Then there exists an orthonormal basis
of eigenvectors (vk) of A with associated eigenvalues λk such that for every x ∈ D(A)

Ax =
∑

k

λk〈x, vk〉 vk

and D(A) = {x ∈ X;
∑

k |λk|2|〈x, vk〉|2 < ∞}. Moreover if supk Reλk < ∞ and we define

Φ(t)x =
∑

k

eλkt〈x, vk〉 vk, t ≥ 0, x ∈ X

then Φ(t) is a strongly continuous semigroup.

We see that under the conditions of the above theorem, given any x ∈ D(A), the function
x(·) : t �→ Φ(t)x is the (unique) solution of the initial value problem

ẋ(t) = Ax(t), t > 0, x(0) = x.
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[96] F. Chaitin-Chatelin and V. Frayssé. Lectures on Finite Precision Computations.
SIAM Publications, Philadelphia, 1996.

[97] J. Chen and C. N. Nett. Bounds on generalized structured singular values via the
Perron root of matrix majorants. Syst. Control Lett., 19:439–449, 1992.

[98] N. G. Chetaev. The Stability of Motion. Pergamon Press, 1961.

[99] F. Chorlton. Textbook of Dynamics. Ellis Horwood, Chichester, 2nd edition, 1983.

[100] J. A. Cima and W. T. Ross. The backward shift on the Hardy space, volume 79
of Mathematical Surveys and Monographs. American Mathematical Society, Provi-
dence, RI, 2000.

[101] C. W. Clark. Mathematical Bioeconomics: The Optimal Management of Renewable
Resources. Wiley-Interscience, New York, 1976.



768 References

[102] C. W. Clark. Bioeconomic Modelling and Fisheries Management. Wiley-Interscience,
New York, 1985.

[103] R. N. Clark. Control System Dynamics. Cambridge University Press, Cambridge,
1995.

[104] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski. Nonsmooth Analysis
and Control Theory, volume 178 of Graduate Texts in Mathematics. Springer, New
York, 1998.

[105] C. M. Close and D. K. Frederick. Modeling and Analysis of Dynamic Systems.
J. Wiley, New York, 2nd edition, 1995.

[106] B. Cohen, editor. Benjamin Franklin’s Experiments. Harvard University Press, 1941.
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Birkhäuser, Boston-Basel-Stuttgart, 1977.

[275] A. Isidori. Nonlinear Control Systems. Communication and Control Engineering
Series. Springer-Verlag, New York, 2nd edition, 1989.

[276] B. Jacob. Stability radius for evolution operators with respect to dynamical per-
turbations. In Proc. 3rd European Control Conf. 1995, pages 3298–3303, Roma,
1995.

[277] B. Jacob. Time-Varying Infinite Dimensional State-Space Systems. PhD thesis,
Universität Bremen, Bremen, 1995.

[278] D. E. Johnson, J. R. Johnson, and J. L. Hilburn. Electric Circuit Analysis. Prentice-
Hall, Englewood Cliffs, NJ, 2nd edition, 1992.

[279] G. A. Jones and D. Singerman. Complex Functions: An Algebraic and Geometric
Viewpoint. Cambridge University Press, Cambridge, 1987.

[280] C. Jordan. Mémoire sur les formes bilinéares. Journal de Mathématiques Pures et
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Glossary

Standard mathematical symbols

N, N
∗ set of natural numbers including and excluding 0

R, C, R∗, C∗ field of real and complex numbers including and excluding 0
K field, either R or C unless explicitly stated otherwise
δjk Kronecker symbol δjk = 1 for j = k, δjk = 0 for j �= k

n the set of natural numbers 1, 2, ..., n(
α
k

)
binomial coefficient for α ∈ R, k ∈ N, α(α − 1)...(α − k + 1)/k !

R+ non-negative real numbers, {x ∈ R; x ≥ 0}
Z, Zp field of integers, field of integers modulo p

B Boolean algebra B = {0, 1} with the operations ∧ and ∨
Xn n-th power of the set X, {(x1, . . . , xn); ∀i ∈ n : xi ∈ X}
K

n space of n-vectors with entries in K

R
n
+ positive orthant, {(x1, ..., xn) ∈ R

n;∀i ∈ n : xi ∈ R+}
a ≤ b elementwise comparison of vectors a, b ∈ R

n, b − a ∈ R
n
+

Re z, Im z real and imaginary parts of a complex number/vector z ∈ C
n

K
n×m space of n × m matrices with entries in K

0 zero scalar, vector, or matrix.
0n, 0m×n zero vector in K

n, zero matrix in K
m×n

I (In) the identity matrix (in K
n×n)

e1, ..., en the column vectors of In, standard basis of K
n

diag(α1, ..., αn) diagonal matrix in K
n×n with diagonal entries α1, . . . , αn ∈ K

spanK S K-linear subspace generated by a subset S of a vector space
conv(S) convex hull of a set S in a vector space
trace A trace of a matrix A = (aij) ∈ K

n×n,
∑n

i=1 aii

im A, ker A image and kernel of a matrix A

rankA rank of a matrix A

A�, A, A∗ transpose, complex conjugate and adjoint of a matrix A

adjA adjugate of a matrix A

AR real form of a complex matrix A ∈ C
m×n: 465, 720

σ(A), ρ(A) spectrum and resolvent set of a matrix or linear operator A: 759
χA(s) characteristic polynomial of a matrix A, det(sIn − A): 719
�(A) spectral radius of a matrix A, max{|λ|;λ ∈ σ(A)}
α(A) spectral abscissa of a matrix A, max{Re λ;λ ∈ σ(A)}
i(A) inertia of A, (n+(A), n0(A), n−(A)): 719
R(s,A) resolvent operator of a matrix or linear operator, (sI − A)−1
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Pj(A), Nj(A) eigenprojection and eigennilpotent of a matrix A: 410
J(λ,m) Jordan block of order m with an eigenvalue λ: 106
σi(A) ith ordered singular value of A ∈ C

m×n, σ1 ≥ · · · ≥ σn: 431
σmax(A), σmin(A) maximal and minimal singular values of A

V1 ⊕ V2 direct sum of two subspaces V1 and V2 of a vector space: 105, 720
A ⊕ B direct sum of two matrices A and B: 107, 720
A ⊗ B Kronecker product of A ∈ K

m×n and B ∈ K
p×q: 721

vec(A) vector of stacked columns of A ∈ K
m×n: 721

κ(A) condition number for inverting a matrix: 488
Gln(K) group of invertible n × n matrices over the field K

Un(K), On group of unitary matrices in K
n×n, orthogonal matrices in R

n×n

Hn(K) real vector space of Hermitian matrices in K
n×n

H+
n (K) convex cone of positive semi-definite matrices in Hn(K)

sign(H) n+(H) − n−(H), signature of H ∈ Hn(K): 314, 723
A $ 0, A & 0 A ∈ Hn(K) is positive semi-definite/positive definite: 723
p(s, a) polynomial with coefficient vector a: 370
deg p degree of a polynomial p

K[s] algebra of polynomials in s with coefficients in any field K

Kn[s] space of polynomials p(s) ∈ K[s] of degree ≤ n

K(s) field of rational functions in s with coefficients in K

K
n[[s]] algebra of all formal power series in s with coefficients in K

n

R(p, q) resultant of two polynomials p, q ∈ K[s]: 315

S, int S, ∂S closure, interior and boundary of a subset S of a topological space
d(x, y) distance between two points x and y in a metric space
dist(x, S) distance of a point x from a set S

B(x, δ) open ball in a metric space X with centre x ∈ X and radius δ

D(x, δ), I(x, δ) open disk in C and open interval in R with centre x and radius δ

1S indicator function of S⊂X, 1S(x)=1 if x∈S, 1S(x)=0 if x∈X\S
‖x‖F Frobenius norm of x ∈ K

n: 486
‖x‖p p-norm of x ∈ K

n: 715
‖ · ‖X norm of a normed space X

〈·, ·〉X inner product on a Hilbert space X

IX identity operator on a vector space X

X∗ dual space of a normed linear space X: 755
‖ · ‖∗X dual norm on X∗: 755
A∗ (Hilbert space) adjoint operator of A: 757
XT set of all maps f : T → X

C(X,Y ) space of continuous maps between metric spaces X and Y

Cm(T ;X) space of m times continuously differentiable maps x : T → X

L(X), C(X) space of bounded/compact linear operators on X

L(X,Y ) space of bounded linear operators from X to Y : 754
C(X,Y ) space of closed linear operators from X to Y : 757
D(A) domain of an unbounded linear operator A: 757
PC(T ;X) space of piecewise continuous functions x : T → X: 83
PC1(T ;X) {x ∈ PC(T ;X); ẋ ∈ PC(T ;X)}
Lp(T ;X) space of p-integrable functions x : T → X: 739
L

p
loc(T ;X) space of locally p-integrable functions x : T → X: 740

Lp(a, b;X) Lp([a, b];X)
�p(T ;X) space of p-summable sequences x : T → X: 735
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Chapter 2

T,X time domain and state space 74, 76
U, U input value and input function spaces 75
Y, Y output value and output function spaces 75
ϕ(·) state transition map, ϕ : Dϕ → X 76
Dϕ domain of definition of ϕ(·), ⊂ T 2 × X × U → X 77
Σ dynamical system (T,U,U ,X, Y, ϕ, η) 77
η(·) output map η : T × X × U → Y 77
Tt0,x0,u(·) life span of ϕ(·; t0, x0, u(·)) 77

Tt0 {t ∈ T ; t ≥ t0} 78

ψ next state function ψ of an automaton (U,X, Y, ψ, η) 79
Sτ forward (τ > 0) and backward (τ < 0) shift operators 89
Φ(t, t0) linear evolution operator, ϕ(t; t0, ·; 0U ) 101
(Φ(t)) semigroup, usually (eAt) or (At) 101
Θ(t, t0) input-to-state map, ϕ(t; t0, 0X ; ·) : u(·) �→ x(t) 101
(g ∗ u)(·) convolution of sequences or functions 125, 126
δt0(·) Dirac impulse at t0 ∈ R 128
L+, L input-output operators, time domain R+, R (or N, Z) 131
C−, C+ {z ∈ C : Re(z) < 0}, {z ∈ C : Re(z) > 0} 132, 742
D, D+ {z ∈ C; |z| < 1}, {z ∈ C; |z| > 1} 132, 737
G+, G input-output operators, U+ → Y+, U → Y 136
ũ(ω) = (Fu)(ω) Fourier transform of a function u : R → C

m 138, 748
û(z) = (Z u)(z) z-transform of a sequence u = (uk)k∈N 139, 737
û(s) = (Lu)(s) Laplace transform of a function u : R+ → C

m 139, 742

ũ(θ)=(FDu)(θ) discrete Fourier transform of a sequence u = (uk)k∈Z 139, 746
Eα(Km) {u(·) ∈ L1

loc(R+; Km); u(·)e−α · ∈ L1(R+; Km)}, α ∈ R 139, 742
Sγ(Km) {u(·) ∈ (Km)N; u(·)γ− · ∈ �1(N; Km)}, γ > 0 139, 737
G(s) transfer function 140
Hp(C+; Cm) Hardy space on C+ 147, 752
Hp(D+; Cm) Hardy space on D+ 148, 751
Ln,�,q(K) {(A,B,C,D);A∈K

n×n, B∈K
n×�, C∈K

q×n,D∈K
q×�} 155

Σ/Σ1 quotient system of Σ by Σ1 157
Σ1 ⊕ Σ2 direct sum of systems Σ1 and Σ2 159
Σ1�Σ2 feedback connection of systems Σ1 and Σ2 162
sinc(z) sinc function 173

Chapter 3

F = (T,X,ϕ) local flow, time domain T , state space X, transition map ϕ 196
ϕ(· ; t0, x0) trajectory initialized at (t0, x

0) 196
Tt0(x

0) domain of definition (life span) of ϕ(· ; t0, x0) 196
t+(t0, x

0) supTt0(x
0) 196

X∞(t0) initial states at t0 with infinite life span 196
t+(x0), T (x0) t+(0, x0), T0(x

0), in the time-invariant case 197
ϕ(t;x0), X∞ ϕ(t; 0, x0), X∞(0) in the time-invariant case 197
ω(x) forward limit set of ϕ(·;x) 202
O(x0) orbit initialized at x0, {ϕ(t;x0); t ∈ T (x0)} 202
A(t0,Ω) basin of attraction of an attractor Ω at time t0 211
K, K∞, LK classes of comparison functions 219
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α(Φ), α(Φ) upper/lower Liapunov exponent, evolution operator Φ 258

β(Φ), β(Φ) upper/lower Bohl exponent, evolution operator Φ 258

ω(A) growth rate of the semigroup generated by A 264
m(·) Möbius transformation, m(s) = s+1

s−1 268

∆b
a arg γ(t) change of argument of γ(t) as t goes from a to b 297, 727

pR(s), pI(s) real and imaginary parts of p(ıs) = pR(s) + ıpI(s) 299
p�(s) Hurwitz-reflection of a polynomial p(s) ∈ C[s], p̄(−s) 299
p+(s) symmetric part of p, Hurwitz case, (p(s)+p�(s))/2 299
p−(s) antisymmetric part of p, Hurwitz case, (p(s)−p�(s))/(2ı) 299
pe(s2), po(s2) even and odd part of a polynomial p(s)=pe(s2)+spo(s2) 302, 639

CIb
a(f) Cauchy index of f(s) ∈ R(s) on the interval (a, b) 308

CI(f) global Cauchy index of a rational function f(s) ∈ R(s) 308
w(γ, s0) winding number of a closed curve γ about s0 ∈ C 310, 727
Hn(p) Hermite matrix of a polynomial p, of order n ≥ deg p 314
Bn(u, v) Bézout matrix of a polynomial pair (u, v), of order n 317
B(u, v) Bézout matrix of order max{deg u,deg v} 318
Hk(g) infinite Hankel matrix of a rational function g(s) ∈ C(s) 321
Hkn(g) upper left n × n matrix of Hk(g) 321
Ratn(K) set of strictly proper rational functions of degree n 323
Hank(K) set of infinite Hankel matrices with entries in K 325
Hank(n, K) set of Hankel matrices in Hank(K) of rank n 325
Hankn(K) set of Hankel matrices in K

n×n 325
Hank∗n(K) set of Hankel matrices in Hankn(K) of full rank n 325
Rat(n, ν) set of g ∈ Ratn(R) with Cauchy index CI(g) = n − 2ν 332
MK(p) Hurwitz matrix of a polynomial p(s) ∈ K[s] 337
p∗(z) Schur-reflection of a polynomial p(z) ∈ Cn[z], znp̄(z−1) 341
p+(z) symmetric part of p, Schur case, (p(z)+p∗(z))/2 342
p−(z) antisymmetric part of p, Schur case, (p(z)−p∗(z))/(2ı) 342
p̃(z) Möbius transform of p(z), (z − 1)np((z + 1)/(z − 1)) 343
Sn(p) Schur matrix of a polynomial p, of order n ≥ deg p 347
S(p) Schur matrix of a polynomial p, of order n = deg p 347
Jn(p) Jury matrix of a polynomial p, of order 2n 350

B̃(c, d) discrete Bézout matrix of a polynomial pair (c, d) 351
T(c, d) Toeplitz matrix of a polynomial pair (c, d) 352

Chapter 4

Λ(a) unordered n-tuple of roots of p(s, a) 373
d(Λ,Λ′) distance between two unordered n-tuples 373
K(X) space of compact subsets of a metric space X 374
dH(K1,K2) distance between K1,K2 ∈ K(X) in the Hausdorff metric 374
O(Ω) ring of complex analytic functions on a domain Ω 376
M(Ω) field of meromorphic functions on Ω 376
O(Ω)[s] ring of polynomials with coefficients in O(Ω) 376
M(Ω)[s] ring of polynomials with coefficients in M(Ω) 376
Cp set of critical points of p(s, a(z)) ∈ M(Ω)[s] 377
D◦(z, δ) the punctured disk D(z, δ) \ {z} 379
D−(z0, r) the cut disk {z ∈ D◦(z0, r); 0 < arg(z − z0) < 2π} 379

Hn set of coefficient vectors of real monic Hurwitz polynomials 384
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Sn set of coefficient vectors of real monic Schur polynomials 384
[a, a] closed n-dimensional interval between a and a 389
Λ(A) unordered n-tuple of eigenvalues of A 398
Λ(A) {Λ(A); A ∈ A} where A is a set of matrices 398
σ(A)

⋃
A∈A σ(A) where A is a set of matrices 398

CA set of critical points of an analytic matrix family 400
∆,∆R perturbation class in C

�×q, ∆R = ∆ ∩ R
�×q 450, 453

‖ · ‖∆ norm on the subspace spanK ∆ 450
µ∆(G) µ-value of G ∈ C

q×� for the perturbation class ∆ 450
µK(G) µ-value of G ∈ C

q×� for the perturbation class K
�×q 454

‖ · ‖p|r Hölder norm 455, 717

‖ · ‖p,r operator norm of a map from (Km, ‖ · ‖p) to (Kn, ‖ · ‖r) 456, 716
LA,LD

A continuous and discrete time Liapunov operators 488, 514

Chapter 5

∆0 perturbations ∆ ∈ ∆ for which A(∆) is well defined 521
δδδ0 well-posedness radius 521
Cg, Cb Cg open set in C, Cb = C\Cg, stability/instability regions 522, 529
σ∆(A(·); δ) spectral value set, perturbation structure ∆, level δ 522
r∆(A(·); Cg) Cg-stability radius of A(0), perturbation structure ∆ 529
σK(A;B,C; δ) spectral value set, full block perturbations, level δ 531
F(M,∆) linear fractional transformation 538
σ∆(A;B,C,D; δ) spectral value set, linear fractional perturbations, level δ 544
σK(A;B,C,D; δ) σ∆(A;B,C,D; δ), ∆ = K

�×q 556, 567
Cδ spectral contour, level δ−1 557
RG realness locus 562
RG(δ) σR(A;B,C,D; δ) ∩ RG 562
GR(s), GI(s) real and complex part of G(s) 562
σK(A; δ) unstructured spectral value set (pseudospectrum), level δ 569
r∆(A;B,C,D; Cg) Cg-stability radius, linear fractional perturbations 586
r−∆(A;B,C,D) stability radius for Cg = C− 588
r1
∆(A;B,C,D) stability radius for Cg = D 588

rK(A;B,C,D; Cg) r∆(A;B,C,D; Cg) with ∆=K
�×q 591, 596

Hγ(A,B,C,D) Hamiltonian matrix of (A,B,C,D), parameter γ 605
dK(A; Cg) distance of A from Cg-instability 610
Un(K; Cg) set of Cg-unstable matrices, {X ∈ K

n×n; σ(X) ∩ Cb �= ∅} 610
d−

K
(A), d1

K
(A) dK(A, Cg) with Cg = C− and Cg = D 611

Sn,�,q(K; Cg) {(A,B,C,D) ∈ Ln,�,q(K); σ(A) ⊂ Cg} 614
Γ(A,B,C,D) Cayley transform of (A,B,C,D) 618
R(a) root set of a polynomial with coefficient vector a 626
RK(a;C; δ) root set, structure matrix C, level δ 626
rK(a;C; Cg) Cg-stability radius of p(s, a), structure matrix C 630
r−

K
(a;C) structured stability radius, Hurwitz polynomial 630

r1
K
(a;C) structured stability radius, Schur polynomial 630

dK(a; Cg) unstructured Cg-stability radius of p(s, a) 630
d−

K
(a), d1

K
(a) distance of Hurwitz, Schur polynomials to instability 630

RK(a; δ) root set, unstructured perturbations, level δ 633
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Sn(K;M,β) set of A ∈ K
n×n generating (M,β)-stable semigroups 649

Mβ(A) transient bound of A ∈ K
n×n for exponential rate β 650

Sn(K;β) {A ∈ K
n×n; α(A) ≤ β} 651

ν(A) initial growth rate, min{β ∈ R; ∀t ≥ 0 : ‖eAt‖ ≤ eβt} 653
Nn(K) set of normal matrices in K

n×n 657
dep (A) departure of A from normality 657
[·, ·] semi-scalar product on a normed space 660
Θ(A) numerical range of A, {〈Ax, x〉; ‖x‖ = 1} 662
ecc(p) eccentricity of a norm p(·) on K

n w.r.t. a norm ‖ · ‖ 663
R(A) Kreiss constant, supRe s>0 Re s ‖(sIn − A)−1‖ 670
αδ(A;B,C) δ-spectral abscissa, sup{Re s; s ∈ σC(A;B,C; δ)} 673
rK(A;B,C;M,β) (M,β)-stability radius 675
d−

K
(A;M,β) unstructured (M,β)-stability radius, rK(A; In, In;M,β) 675

r∆,t(A(·);M,β) (M,β)-stability radius, time-varying perturbations 677
Pn(K) vector space of nonlinear perturbations 688
Pt(K) vector space of linear time-varying perturbations 688
Pd(K) vector space of dynamic perturbations 688
‖ · ‖n, ‖ · ‖t, ‖ · ‖d norms on perturbation spaces Pn, Pt, Pd 688
Pnt(K) vector space of nonlinear time-varying perturbations 689
r−

K,t(A;B,C) stability radius, time-varying perturbations 696

r−
K,n(A;B,C) stability radius, nonlinear perturbations 696

r−
K,d(A;B,C) stability radius, dynamic perturbations 696

Abbreviations

RHS, LHS right/left hand side
SVD singular value decomposition
siso single input single output (system)
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A/D-converter, 168

Absolutely continuous, 83, 740

Aizerman’s conjecture, 701, 712

multivariable, 702

theorem, 703

Algebraic stability domains, 357

Algorithms

for complex stability radius, 607

for eigenvalues, 506–508

power methods, 506

for Liapunov equations

Bartels-Stewart, 512

for singular values, 508–511

Golub-Kahan-Reinsch, 509

Francis’ double-shift QR, 502–506

Ampère’s law, 42

Analytic continuation, 380, 400, 402, 733

Arc, 297, 380, 724

Argument, 297, 725

change of, 297, 725, 727

principle of, 297, 731

rate of change, 298, 299

Argument function, 298, 725

Attractive

closed set, 211

equilibrium point, 200

globally, 200, 695

Attractor, 211

asymptotically stable, 227, 240

Automaton, 79, 80, 95

–, see also Digital systems

next-state function, 79

Automobile suspension system, 16, 533

Bandwidth, 173

Basin of attraction, 223, 225, 232

guaranteed domain of attraction, 705

of an attractor, 211

of an equilibrium point, 200

Bauer-Fike Lemma, 404, 524

Bézout matrix, 317–320

discrete, 351

Bidiagonal form, 495

algorithm for reducing to, 497

Birkhoff’s Recurrence Theorem, 209

Bohl exponent, 258, 259, 262, 278

Bohl transformation, 262

Boundary Crossing Theorem, 374

Branch point, 381, 401, 419

order, 401, 419

Brockett’s Theorem, 332

Bromwich contour, 670

Butler’s Theorem, 419

Carathéodory conditions, 84

Carathéodory’s Theorem, 84

Cart-pendulum system, 23, 33, 165

Cassini ovals, 554, 584

Cauchy index, 308–312

Cauchy’s Integral Theorem, 727

Cauchy-Schwarz inequality

for functions, 134, 740

for sequences, 174, 735

Causality, 77, 135, 687

Cayley transform, 268, 618

Cayley’s problem, 211

Characteristic multipliers, 266

Cholesky factorization, 445, 446

Closed curve, 310, 724

simple, 724

Closed Graph Theorem, 757

Closed Range Theorem, 758

Cobweb model, 8

Cocycle property, 77, 196, 417

Cohort population model, 356

Comparison functions

of class K, 219, 248

of class K∞, 219

of class LK, 219, 248

Condition number, 666, 667

for determining eigenvalues, 490

for determining singular values, 491
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for solving Liapunov equations, 488

for solving linear equations, 486

Configuration space, 29, 30

Congruent, 314, 318, 321, 723

Conjugate exponent, 715

Connected

arcwise, 387, 564, 724

simply, 377, 559, 732

Connected components, 212, 527, 545, 558–
559, 563–564, 724

of Ratn(R), 332

Constraint, 27

holonomic, 29

Continuity equation, 43

Contraction, see Semigroup

Convergence

in norm, uniform, strong, weak, 756

Convex combinations of polynomials, 640

Convex direction, 366, 647
Convolution

of functions, 126, 740

of sequences, 125, 736

Convolution inequality

for functions, 133, 741

for sequences, 149, 736

Convolution kernel, 127, 136

Convolution system, 136

transfer function, 147–151
Coulomb’s law, 40

Coupling matrices, 160, 161

Courant-Fischer Minimax Theorem, 433

Critical point

of a parametrized matrix, 400

of a parametrized polynomial, 377

D/A-converter, 168

Decreasing along a trajectory, 221

strictly, 221

Delay system, 90, 141, 710

time-varying delay, 690

Departure from normality, 657

Diagonalizable, 399, 405, 423, 723

Differential inclusion, 676
Digital systems, 56–68

finite state machines, 56

latches and flip–flops, 62

parity check machine, 58, 95

realization, 69

shift register, 80

three bit counter, 67

memoryless, 56, 80

half adder, full adder, 57
logic gates, 59, 80

Dirac impulse, 128, 741
Direct sum

of matrices, 594, 720
of subspaces, vector spaces, 105, 720

of systems, 159, 594

Directed graph, 50, 164–166
cut-set, 51

cycle, edge, vertex, 50
incidence map, 50

strongly connected, 51
Discretization methods

Adams-Bashforth, 184

stability, 270
Euler, 178

stability, 270
explicit, implicit, 182

Heun, 182
midpoint, 183

stability, 270

Milne, 185
stability, 270

multi-step, single-step, 182
of order p, 185

predictor-corrector, 182
Runge-Kutta, 183

stability, 270

Discriminant, 377
Dissipative, 660, 661

strictly, 660, 661
Distance from instability, 609, 669, 672

bounds, 611, 612
characterizations, 610

of a normal matrix, 612

of polynomials, 630, 634, 642
under similarity transformations, 613

Distance from non-dissipativity, 675
Distance from normality, 657, 669

Distance from singularity, 437, 474
Domain, 376, 724

Dyadic decomposition, 143

Dynamical system, 77
complete, 78

differentiable, 83
finite, 90

finite dimensional, 90
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infinite dimensional, 90, 115, 690

inputs, outputs, 74

linear, 91

memoryless, 56, 80

output map, 77

recursive, 88

reversible, 79

state, 75
state transition map, 76

time–invariant, 89, 104

Eccentricity, 663, 676

Eigenbasis

analyticity, 416, 421

single real parameter, 423

Eigenloci, 606

Eigenmode, see Eigenmotion

Eigenmotion

complex, 106, 113
generalized, 105, 113

real, 107, 114

generalized, 107

Eigennilpotents, 105, 410

analyticity, 414

behaviour near a critical point, 419

Eigenprojections, 105, 410

analyticity, 414, 420, 421
single real parameter, 422

behaviour near a critical point, 419

total projection, 413

analyticity, 413

Eigenvalues, 759

algebraic, geometric multiplicity, 104

algorithm for determining, 506

analyticity, 399, 420, 421
single real parameter, 422

behaviour near a critical point, 401

continuity, 399

single real parameter, 399

differentiability, 425, 428

single real parameter, 399

λ-group of eigenvalues, 400, 413, 420

n-tuple of eigenvalues, 399

sensitivity, 403
Eigenvectors, 759

analyticity, 415

differentiability, 425, 428

generalized, 105

sensitivity, 424, 428

Electrical circuit, 39–50, 94, 95, 122
Energy

dissipation, 31
kinetic, 28, 30
potential, 28, 31
thermal, 70

Entire function, 173, 727
Equilibrium state, 87, 199, 214
Ergodic set, 211
Event space, 77
Evolution operator, 101, 254, 428

Fam–Meditch Theorem, 387
Faraday’s law, 43
Feedback

dynamic output, 161
representation of model uncertainties,

531, 536, 687
static output, 162
static state, 162
well-posedness condition, 164

Fejér’s Theorem, 745
Fibonacci sequence, 115
Finite escape time, 84, 85, 199, 230, 690
Fisheries model, 98
Flip-flop, 62, 80
Flow

differentiable, 81
global, 196, 206
local, 196
time-invariant, 196

Focus, stable and unstable, 111
Fourier coefficients, 744
Fourier series, 171, 745–746

generalized, 754
Fourier transform, 172, 746

discrete, 139, 749
inverse transform, 174, 747

Fourier’s law, 71
Fourier-Plancherel transform, 172, 748
Fréchet differentiable, 485, 756
Frequency response, 145
Front locus, 674
Function element, 380, 733

Gain response, 145
Generalized coordinates, 30
Generator of a semigroup, 120, 757
Gershgorin set, 407
Gershgorin type uncertainty, 552, 580, 589
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Gershgorin’s Theorem, 398, 407, 552

Godunov matrix, 547

Goodwin’s model, 9, 293

Gram-Schmidt orthogonalization, 498

Gronwall’s Lemma, 86

generalized, 85

Growth rate

at an equilibrium point, 288, 289
of a semigroup, 264, 406, 649

Hahn-Banach Theorem, 632, 660, 755

Hamilton’s equations, 33

Hamilton’s principle, 32

Hamiltonian, 33, 217, 246

Hamiltonian matrix, 605

of a system, 605

Hankel form, 320

Hankel matrix, 320–330

Kronecker’s Theorem, 323
singular extension, 326

Hardy spaces

on C+, D+, 147

on C
+
α , D

+
γ , 750, 751

Hausdorff metric, 374, 545, 555

Heat conduction equation, 115

Herglotz’ Theorem, 354

Hermite form, 313, 314
Hermite generating function, 314

Hermite matrix of a polynomial, 314–317

Hermite’s Theorem, 317

Hermite–Biehler Theorem, 303, 334, 335

Hermite–Hurwitz Theorem, 328

Hermitian matrix, 722

inertia, 314

positive definite, 276, 317, 723
positive semi-definite, 446, 723

signature, 314, 723

spectral theorem, 723

Hessenberg form, 493

algorithm for reducing to, 495

reduced, 495

Hilbert space, 116, 753

Hille-Yosida Theorem, 672

Hold, 168, 170
kth–order, 170

Hold equivalent system, 178

Hölder norm, 455, 554, 718

Hölder’s inequality

for functions, 740

for sequences, 735
Holomorphic function, 376, 727
Hooke’s law, 14
Householder reflection, 493
Householder transformation, 492–493
Householder vector, 493
Hurwitz matrix

of a complex polynomial, 338
of a real polynomial, 338, 340

Identity Theorem, 376, 420, 728
Impulse response, 126, 128
Inertia

of a complex matrix, 295, 719
of a Hermitian matrix, 723
of an Hermitian matrix, 314
Sylvester’s Law of Inertia, 723

Initial growth rate, 653, 662, 675, 676
of normal systems, 656

Inners of a matrix, 350
Input-output operator

on N, 124, 148
on R, 134, 150, 602
on R+, 131, 148, 603
on Z, 150

Input-output system, 135
–, see also Convolution system
linear, 136
Lq-stable, 132, 137
time-invariant, 136

Input-state map, 119, 124
Input-to-state map, 101
Interconnection

feedback connection, 161
of linear systems, 154
of uncertain systems, 535
parallel connection, 160
series connection, 160

Interlacing condition
on the real line, 303
on the unit circle, 345

Interval polynomial, 389, 641
Invariant set, 197, 213, 237, 238

weakly, 197, 237
Inverted pendulum, 22, 35, 110, 176

Jenkin’s governor, 306
Joint Liapunov function, 704, 708

joint Liapunov norm, 676
Jordan Curve Theorem, 725
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Julia set, 210
Jury matrix, 350
Jury’s Stability Criterion, 350

Kharitonov polynomials, 390, 641
Kharitonov’s Theorem, 391
Kirchhoff’s laws, 52
Kreiss-Spijker Theorem, 670
Kronecker product, 486, 489, 720
Kronecker symbol, 143
Kronecker’s Theorem, 323

topological version, 325

Lagrange’s equations, 31
Lagrangian, 31
Laplace transform, 139, 742

inverse, 142, 742
Laplace’s equation, 41
Laplacian, 41, 71
LaSalle’s invariance principle

for flows, 227
for time-invariant flows, 238

Laurent series, 320, 730
Laurent-Puiseux series, 419
Legendre transformation, 33, 38
Liapunov equation

algebraic, 283, 665
differential, difference, 273, 668
generalized, 357, 359

Liapunov exponent, 258, 259
Liapunov function

for flows, 222
for time-invariant systems, 236
for time-varying systems, 231
joint, see Joint Liapunov function
of maximal robustness, 704
quadratic, for linear systems

time-invariant, 282–290
time-varying, 272–282

Liapunov operator, 284, 488
generalized, 283, 358

Liapunov transformation, 262
Liapunov’s direct method, 217

instability theorems
for flows, 226
time-invariant linear, 285
time-invariant nonlinear, 245
time-varying linear, 273, 277
time-varying nonlinear, 234

stability theorems

for flows, 223, 227, 248

time-invariant linear, 285

time-invariant nonlinear, 236
time-varying linear, 273, 276

time-varying nonlinear, 232, 233
Liapunov’s indirect method, 253

exponential stability theorem, 289
instability theorem

time-invariant, 288

time-varying, 281
stability theorem

time-invariant, 288, 696
time-varying, 279

Liénard’s equation, 250

Liénard–Chipart Theorem, 336, 340
Limit cycle, 203

stable, 204
Limit point, 202

Limit set, 202–204, 208, 209, 214

Linear fractional transformation, 538
sum, product, inverse, 541

Linear operator
adjoint, 662, 757

bounded, 124, 756
closed, 756, 761

compact, 756, 761

normal, 573, 758, 761
selfadjoint, 758

unbounded, 120, 757
Linear system, 100

decomposition principle, 100

difference, 103
differentiable, 101

isomorphism, 155
morphism, 155

similar, 35, 156

superposition principle, 100
time-invariant, 102

time-varying, 101
Linearization, 92

about a trajectory, 280
about an equilibrium point, 279, 288

Lipschitz

continuous, locally Lipschitz, 235, 680,
695

gain, 688, 689

global Lipschitz condition, 688, 695
Logarithmic norm, see Initial growth rate

Logistic growth model, 3, 98, 215



800 Index

Lorentz force, 44

Lorenz attractor, 212, 241

Lotka-Volterra model, see Predator-prey
system

Lumped parameter models, 14

Markov parameter, 125

Mass-spring system, 13–17, 94, 157

Mathieu’s equation, 274

Maximum principle, 588, 592

extended, 734

for holomorphic functions, 733

for subharmonic functions, 734

Maxwell’s equations, 43
Meromorphic function, 376, 377, 729

Minimal set, 203, 209

Minkowski functional, 659, 756

Möbius map, 268, 343, 617

Möbius transform

of a polynomial, 343, 387

Model uncertainties, 517

–, see also Perturbations of systems

Momentum

angular, 18, 19
linear, 17

Monodromy Theorem, 733

Morera’s Theorem, 728

Multi-model, 518

Multiplication operator

on C+, D+, 148

on ıR, ∂D, 149

µ-value, 450, 550, 586

block-diagonal perturbations, 456

bounds
lower, 454

upper, 452

complex structures

characterization, 453

continuity, 465

diagonal perturbations

upper bound, 458

full-block perturbations, complex

characterization, 454
of minimum norm, 454

full-block perturbations, real

characterization q or � = 1, 467

characterization q, � ≥ 2, 474

continuity, 477

Lipschitz continuity, 478

upper semicontinuity, 466
multi-block perturbations

characterization, 459, 461, 463
upper bound, 457, 460

properties, 452
upper semicontinuity, 464

Neglected dynamics, 690, 697
Network

combinational switching, 56
electrical, 50–55
sequential switching, 56, 80

Newton’s second and third laws, 13
Non-wandering set, 207, 208
Norm

absolute, 404, 717
compatible, 450, 716
dual, 455, 466, 715, 755
Frobenius, 456, 718
Hölder, 455, 554, 717
Liapunov, 663

β-Liapunov, 663, 676
strict, 663

monotone, 717
of input-output operator, 602
operator norm, 716
p-norm of a function, 739
p-norm of a sequence, 715
p-norm of a vector, 735
rank one consistent, 455, 463, 559,

718
sub-multiplicative, 404

Normality of a matrix family at a point,
420–422

Numerical range, 662
Numerical stability, 268
Nyquist plot, 145, 593

Observable, uniform, 276, 285
Ohm’s law, 39
Open Mapping Theorem, 528, 755
Orbit, 78
Orthonormal, 423, 753

basis, 117, 432, 754
Oscillations, parasitic, 185, 271
Oscillator

linear, 16, 108, 129
multivariable, 698, 699
nonlinear, 111, 250, 290, 706
perturbed
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spectral value sets, 522, 529, 557

stability radii, 593, 697

Ostrowski matrix, 622

Parity check machine, 58, 95

Pendulum, 25, 82

stability analysis, 241

Periodic points, 214

Periodic system, 262, 266

criteria for stability, 256
Perron’s example, 259

Perturbation norm, 450, 456, 688

Perturbations of polynomials

complex structured, 628

complex unstructured, 633

minimum norm complex, 632

minimum norm real, 633, 645

of one coefficient, 627

real structured, 637
real unstructured, 642

scaled unstructured, 630, 640

unstructured, 626

Perturbations of systems

affine, 530

block-diagonal, 456, 536

diagonal, 458

multi-block, 457, 550, 588
specified block multiplicities, 463

complex structure, 453

full-block, 454

complex, 556, 591

real, 561, 596

unstructured, 569, 609

linear fractional, 537, 544, 586

minimum norm, 699
complex, 558, 559, 593

real, 563, 565, 568, 597, 601

neglected dynamics, 690, 697

nonparametric

dynamic, 688

linear time-varying, 688, 709

nonlinear time-invariant, 688

nonlinear time-varying, 689

off-diagonal, 552, 580, 589
Phase increasing property

Hurwitz, 299

real case, 300

Schur, 341

Phase portrait, 82, 111, 243, 652

Phase response, 145

Plancherel’s Theorem, 172, 748

Poincaré’s Recurrence Theorem, 208

Poincaré-Bendixson Theorem, 203

Poisson stability, 208

Poisson’s equation, 41

Polar plot, 145, 146

Pole, 146, 308, 521, 729

Polynomial
–, see also Roots of a polynomial

even and odd parts, 302, 639

Hermitian, 357

Hurwitz, 297, 384

irreducible, 377

leading coefficient, 370

monic, 370

positive pair, 303

real and imaginary parts, 311

recursive, 322
reflection of

Hurwitz polynomial, 299

Schur polynomial, 342

rotation of, 342

Schur, 340, 384

symmetric

Hurwitz polynomial, 299

Schur polynomial, 342

with analytic coefficients, 376
Positive definite

function, 220

away from a closed set, 219

matrix, see Hermitian matrix

Positive system, 247, 601

Predator-prey system, 4–6, 243, 518

Proper rational function

strictly, 141, 320

Pseudospectra, 531, 569, 669

characterization, 569
for complex normal matrices, 573

for real normal matrices, 576

lower bounds

complex case, 573

real case, 576

under similarity transformations, 579,
583

Puiseux series, 382, 401, 528

Pulse amplitude modulation, 169

QR Algorithm, 502
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QR Factorization, 497
Quotient system, 157

Rational dependence on parameters, 521,
539

Rational systems in the plane, 209
Real perturbation values

lower, 483
upper, 483

Real representation of complex matrices,
465, 600, 720

Realness locus, 562, 568, 597, 600, 638
Recurrence, 206
Recurrent point, 209
Rellich’s Theorem, 420
Residue Theorem, 411, 730
Resolvent

equation, 409, 759
partial fraction decomposition, 410

Resolvent operator, 409, 661, 759
compact, 761

Resolvent set, 409, 759
Resultant, 315, 377
Riccati equation

algebraic, 604, 679, 703
stabilizing solution, 604

differential, 678
Riemann’s Lemma, 138, 745, 747
Root locus, 562, 582
Root set of an uncertain polynomial, 626

complex perturbations
scalar, 636
structured, 628
unstructured, 633

real perturbations
interval polynomial, 642
scalar, 638
structured, 628, 638

Roots of a polynomial, 370
analyticity, 370, 376
continuity, 370, 374
n-tuple of roots, 373, 374
sensitivity, 370, 383, 636

Rouché’s Theorem, 371, 731
Routh array, 305
Routh Test, 305

Saddle point, 111
Sample rate, 169, 192
Sampled system, 175

Sampler, 168

Sampling period, 169

Sampling Theorem, 173
Samuelson-Hicks multiplier-accelerator, 10

Scaling parameter, 468, 551
Scaling transformation, 457, 458, 551, 554,

588

Schaefer’s model, 3

Schmidt pair, 436
Schmidt-Mirsky Theorem, 436

Schur complement formula, 606, 719
Schur form of a matrix, 499–501

algorithm for reducing to, 502

complex, 501
real, 499

Schur generating function, 347
Schur matrix of a polynomial, 347

Schur Test, 355

Schur–Biehler Theorem, 345
Schur–Cohn Theorem, 349

Semi-norm, 655, 755
Semi-scalar product, 660

Semi-simple, 410

Semicontinuous
lower, 465, 724

upper, 464, 466, 724
Semigroup, 101, 119

contraction, 658, 661

β-contraction, 658, 663
strict, 658, 661, 663

strong, 658
generator, 120, 757

strongly continuous, 120, 672, 756,
761

Shift operator, 89, 132, 137

for functions, 743

for sequences, 736, 760
Singular value decomposition, 435

of Kronecker product, 722

pseudo, 439
analyticity, 442

Singular value loci, 609
Singular values, 431

algorithm for determining, 508

continuity, 439
pseudo, 439

Singular vectors, 432, 436
pair, 436

Singularity of a complex function
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isolated, removable, essential, 729

Spectral abscissa, 263, 649

δ-spectral abscissa, 673
Spectral contour

complex perturbations, 557

real perturbations, 563
Spectral Decomposition Lemma, 105

Spectral Mapping Theorem, 719
Spectral radius, 453, 760

δ-spectral radius, 684

Spectral representation, 105, 410, 418
analyticity, 414, 420, 421

single real parameter, 422

Spectral value set, 522, 545
bounds, 551

characterization, 550, 551

connected components, 545, 558–559,
563–564

continuity, 555

full-block complex perturbations, 524,
673

boundary of, 558

characterization, 556

full-block real perturbations, 524, 561
boundary of, 563

chacterization for � = 1, 564
chacterization for spectral norm, 567

general characterization, 562

of a direct sum of systems, 546
off-diagonal perturbations, 554, 580

under similarity transformations, 546

unstructured, see Pseudospectra
Spectrum, 759

point, residual, continuous, 759

Spijker’s Lemma, 671, 731
Splitting of an eigenvalue, 400, 401, 573

Stability criteria for polynomials
Hurwitz polynomials

Bézout matrix, 319, 320

Cauchy index, 311
change of argument, complex poly-

nomial, 298

change of argument, real polyno-
mial, 300

Hankel matrix, 334

Hermite matrix, 317

Hurwitz matrix, complex case, 337
Hurwitz matrix, real case, 339

Liénard–Chipart Theorem, 336

recursive test, real polynomial, 305

Routh test, 305

Schur polynomials
change of argument, 340

recursive test, 355
Schur matrix, 349

Schur–Biehler Theorem, 345

Schur–Cohn Theorem, 349
Toeplitz matrix, 353

Stability criteria for systems
–, see also Liapunov’s indirect method

–, see also Liapunov’s direct method

time-invariant linear systems
algebraic stability domains, 357, 359

spectral criteria, 264
via algebraic Liapunov equations,

285

time-varying linear systems, 260

via differential Liapunov equations,
273, 276

Stability definitions

absolute stability, 701
asymptotic stability

of a trajectory, 199
of an equilibrium point, 200

Cg-stability, 522

exponential stability, 707
for linear systems, 257

of nonlinear systems, 233
global asymptotic stability, 695

of nonlinear systems, 200, 238

global exponential stability, 709
Lq-stability, 132

marginal stability, 218
stability

of an attractor, 211

of a trajectory, 199
of an equilibrium point, 200

uniform asymptotic stability

of a trajectory, 199
uniform stability

of a trajectory, 199
(M,β)-stability, 648, 664

of differential inclusions, 677

strict, 648
Stability radius of polynomials, 630

complex perturbations
of one coefficient, 636

scalar, 636
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structured, 630

unstructured, 634

real perturbations
of one coefficient, 640, 644

scalar, 638
scaled unstructured, 640

structured, 630, 638

unstructured, 642, 645
Stability radius of systems, 529, 586

bound for multi-block perturbations,
589

characterization, 587

continuity

complex perturbations, 615
lower semicontinuity, 614

real perturbations, 616, 623

full-block complex perturbations, 591
algorithm for computing, 607

characterization, 591
characterization for spectral norm,

602–606

continuous time, 592

discrete time, 592
full-block real perturbations, 596

characterization for � = 1, 597
general characterization, 600

of a direct sum of systems, 594, 596

off-diagonal perturbations
continuous time, 589

discrete time, 591

under dynamic perturbations, 696
real case, 699

under nonlinear perturbations, 697
under time-varying perturbations, 697

under unstructured perturbations, see
Distance from instability

(M,β)-stability radius, 675, 678
time-varying perturbations, 677

Stability region, 265, 522, 529, 585
algebraic, 357

Starlike set, 521, 707

State, see Dynamical system
of a delay system, 91

of a shift register, 80
State transition map, 76

Steady state response, 144

Step response, 126
Strongly destabilizing perturbation, 616

Structured singular value, 450

Subharmonic function, 592, 733
Sublevel set, 220, 237

attractive, 240
Subsystem, 156
Summability, 140, 753

absolute, 753
Supply and demand curves, 8
Sylvester’s Law of Inertia, 314, 723
System embedding, 156
System graph, 165
System projection, 157

Toeplitz matrix, 352–354
Transfer function, 140–142, 549, 587

dyadic decomposition, 143
experimental identification, 144
of feedback interconnection, 162
of parallel interconnection, 161
of series interconnection, 160

Transfer matrix, see Transfer function
Transient amplification factor, 650
Transient behaviour, 648

ideal, 656
Transient bound

of a linear system, 650, 669, 671
normal system matrix, 656, 672

structured, 672, 673
time-varying nonlinear perturbations,

679, 680
Tree, 51

spanning, 51
Trolley example, 15

Unimodal, 474
Unit impulse, 125

Value set, 390
Van der Pol equation, 244
Verhulst model, see Logistic growth model
Volume preserving flow, 207

Wandering point, 206
Well-posedness radius, 521, 538, 544, 556,

561, 587, 629
Weyl’s Theorem, 445
Wilkinson polynomial, 384, 636
Wilkinson shift, 509
Winding number, 310, 725, 727

z-transform, 139, 737
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