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Preface

This book has grown out of more than 15 years of lecturing an introductory course in
system theory, control and identification for students in the areas of Business Mathematics
and Computer Science, Econometrics and Mathematics at the Vrije Universiteit in
Amsterdam. The interests and mathematical background of our students motivated our
choice to focus on systems in discrete time only, because the topics can then be studied and
understood without preliminary knowledge of (deterministic and stochastic) differential
equations. This book does require some preliminary knowledge of calculus, linear algebra,
probability and statistics, and some parts use the elementary results on Fourier series.

The book treats the standard topics of introductory courses in linear systems and
control theory. Deterministic systems are discussed in the first five chapters, with the
following main topics: realization theory, observability and controllability, stability and
stabilization by feedback, and linear quadratic optimal control. Stochastic systems are
treated in Chaps. 6 to 8, with main topics: realization, filtering and prediction (including
the Kalman filter), and linear quadratic Gaussian optimal control. Chapters 9 and 10
discuss system identification and modelling from data, and Chap. 11 concludes with a
brief overview of further topics.

Exercises form an essential ingredient of any successful course in this area. The
exercises are not printed in the book and are instead incorporated on the accompanying
CD-ROM. The exercises are of two types: that is, theory exercises to train mathematical
skills in system theory and practical exercises applying system and control methods to data
sets that are also included on the CD-ROM. Many exercises require the use of Matlab or a
similar software package.

We did benefit greatly from the comments of many colleagues who, over the years,
participated in teaching from this book. In particular, we like to mention the contributions
of (in alphabetical order) Sanne ter Horst, Rien Kaashoek, Derk Pik, Jan H. van Schuppen
and Alistair Vardy. We thank them for their comments, which have improved the text
considerably. In addition, many students helped us in improving the text by asking
questions and pointing out misprints.

v



vi Preface

Preface to the Second Edition

The second edition of the book is a slightly altered version of the first edition. We corrected
many misprints and mis-statements that were present in the first edition. In addition, we
made many small changes to the text to improve readability.

There are several more extensive changes as well. Chapter 3 has been expanded to
incorporate two sections dealing with the subspace identification algorithm, providing
a construction of a minimal realization directly from sequences of inputs and outputs.
In Sect. 6.5, material was added to make the discussion of spectra of several types of
processes more complete. Chapter 11 has been expanded with several parts dealing with
modern developments. In connection with this, the list of references has been expanded
considerably. We hope this will be useful by providing pointers for further study.

Changing technology has changed the way in which the exercises are presented. At the
time of writing of the first edition, a CD-ROM was state of the art; however, present-day
laptops are not equipped with a CD drive anymore. For that reason, we have decided to
make the exercises available as a separate file on the SpringerLink’s book website.

Rotterdam, The Netherlands Christiaan Heij
Amsterdam, The Netherlands André C. M. Ran
Amsterdam, The Netherlands Frederik van Schagen

Electronic Supplementary Material The online version of this book (https://doi.org/10.1007/978-
3-030-59654-5_11) contains supplementary material, which is available to authorized users.

https://doi.org/10.1007/978-3-030-59654-5_11
https://doi.org/10.1007/978-3-030-59654-5_11
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1Dynamical Systems

1.1 Introduction

Many phenomena investigated in such diverse areas as physics, biology, engineering,
and economics show a dynamical evolution over time. Examples are thermodynamics
and electromagnetism in physics, chemical processes and adaptation in biology, control
systems in engineering, and decision making in macro economics, finance, and business
economics. The main questions analysed in this book are the following.

• What type of mathematical models can be used to study such dynamical processes?
• Once a model class is selected and we know the parameters in the model, how can we

achieve specific objectives such as stability, uncertainty reduction and optimal decision
making?

• If we do not know the parameters in the model exactly, how can we estimate them from
available data and how reliable is the obtained model?

The first question is the topic of Chaps. 2, 3 and 6, the second one of Chaps. 4, 5, 7,
8 and 9, and the third one of Chaps. 9 and 10. The answers to these questions will in
general depend on accidental particularities of the problem at hand. However, there are
important common characteristics of these problems which can be expressed in terms
of mathematical models. We first give some examples to illustrate the main ideas in
modelling, estimation, forecasting and control.

Example 1.1.1 Suppose that for a certain good the market functions as follows. The
quantity currently produced will be supplied to the market in the next period. Supply
and demand determine the market price. Let D denote the quantity demanded, S the
quantity supplied, P the market price, P̂ the anticipated price used by the suppliers in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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2 1 Dynamical Systems

their production decisions, and let t denote the time period. A simple market model is
given by the equations

D(t) = α0 + α1P(t) (1.1)

S(t) = β0 + β1P̂ (t) (1.2)

P̂ (t) = f (P (s); s ≤ t − 1) (1.3)

S(t) = D(t) (1.4)

Here (1.1) and (1.2) are (linearized) behavioural equations, in general with α1 < 0
and β1 > 0. Equation (1.3) describes how the suppliers predict future prices, and
Eq. (1.4) expresses the equilibrium condition of market clearing. In practice Eqs. (1.1)
and (1.2) are of course only approximations, and the same holds true for the equilibrium
condition (1.4). The precise form of the forecasting function (1.3) will in general also
be unknown. Depending on the specification of (1.3), different dynamical systems result
with corresponding different evolutions of prices and quantities. Adaptive forecasts can be
described as follows, with 0 < λ < 1,

P̂ (t) = P̂ (t − 1) + λ{P(t − 1) − P̂ (t − 1)}. (1.5)

Another specification is to let the price consist of an unobserved permanent component,
denoted by X, that it is affected by stochastic disturbances, u and v,

P(t) = X(t) + u(t); X(t) = X(t − 1) + v(t). (1.6)

The price forecast could be obtained by minimizing the expected quadratic forecast error
E(P(t) − P̂ (t))2, where EX denotes the expectation of the stochastic variable X. This is
called a prediction or filtering problem.

If the form of (1.3) has been specified, then the dynamical evolution of price and
quantity depends on the model parameters. In practice these parameters are in general
unknown. Let us denote the model error in D(t) by εD(t), and the model error in S(t)

by εS(t). Such model errors εD and εS arise for several reasons, for example neglected
relevant variables and misspecification of the functional form and of the dynamics.
Incorporating these model errors into the behavioural equations (1.1, 1.2) leads to the
following model

D(t) = α0 + α1P(t) + εD(t) (1.7)

S(t) = β0 + β1P̂ (t) + εS(t) (1.8)
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System identification is concerned with the estimation of the unknown model parame-
ters from available data on quantity and prices.

Example 1.1.2 National governments are confronted with the task of designing a macro
economic policy. A much simplified version of this problem is the following model of the
business cycle. Let C denote consumption expenditures, Y national income, I investments
and G government expenditure. We assume that consumption depends on the income of
the last period and that investments are based on the so-called accelerator principle. This
gives the model

C(t) = α + βY (t − 1) (1.9)

I (t) = γ + δ{C(t) − C(t − 1)} (1.10)

Y (t) = C(t) + I (t) + G(t) (1.11)

Here (1.11) is a definitional equality, and Eqs. (1.9) and (1.10) are behavioural equations.
From the viewpoint of macro economic policy this leaves the variable G as policy or
control variable. In econometrics this is called an exogenous variable, in systems theory
an input variable. The other variables Y, C and I are the policy targets. In econometrics
these are called endogenous variables, in systems theory output variables.

The government could be interested in regulating income, consumption and invest-
ments. A possible objective is to keep these macro economic variables as close as possible
to pre-assigned target trajectories, denoted by Y ∗, C∗ and I∗. If N denotes the planning
horizon, then deviations from these objectives could, for instance, be measured by the cost
function

J =
N∑

t=1

[g1{Y (t) − Y ∗(t)}2 + g2{C(t) − C∗(t)}2 + g3{I (t) − I∗(t)}2]. (1.12)

Here the coefficients gi, i = 1, 2, 3, reflect the relative importance of the objectives. This
is an example of a dynamic optimization problem, known as the linear quadratic control
problem.

We should mention that in modern economics control theory plays a role mainly in the
following two areas. First, in micro economic theory to model the behaviour of individual
economic agents. Second, in business applications, for example in production planning
and financial decision making. Macro economic models and control theory play only a
minor role in government decisions. Originally such an approach was inspired by the wish
to smooth business cycles. However, macro economic policy depends on many factors that
are not easily captured in a model.
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Example 1.1.3 Consider a firm producing a single good. The production is organized in
planning periods of 3 months. At the beginning of each period the production quantity is
determined. In order to meet random fluctuations in demand the firm also holds inventories
of the good. Let D denote demand, Q the quantity produced, and X the inventory of the
good. The inventory develops according to

X(t + 1) = X(t) + Q(t) − D(t) (1.13)

We assume that a negative inventory corresponds to excess demand that will be satisfied
by the production in the next period. Let f (X) denote the cost of holding inventory (if
X > 0) and the cost of delayed demand (if X < 0). Further let α denote the production
cost per unit, and let N be the planning horizon. As the demand shows random variations,
the firm could minimize the expected total cost

J = E[
N∑

t=1

{αQ(t) + f (X(t + 1))}] (1.14)

This is a stochastic optimal control problem. Here Q is the input or control variable. The
optimal production plan depends on the cost function f and on the demand process D.

If the demand D(t) contains trends and seasonal patterns, these may be incorporated in
a model for the demand. In such a so-called structural model the demand is decomposed
in a trend term T with varying slope B, a seasonal term S consisting of a yearly recurring
pattern, and a random component ε. We then have equations for the trend, for the varying
slope of the trend, and for the seasonal term S. The demand model is not driven by control
variables, but by noise terms in each of the equations, representing unanticipated random
shocks. The auxiliary variables T (t), B(t) and S(t) are unobserved. A possible model of
this kind is

D(t) = T (t) + S(t) + ε(t) (1.15)

T (t) = T (t − 1) + B(t − 1) + η(t) (1.16)

B(t) = B(t − 1) + ξ(t) (1.17)

S(t) = −S(t − 1) − S(t − 2) − S(t − 3) + ω(t) (1.18)

Here ε, η, ξ and ω are random components. Note that (1.18) with ω(t) = 0 gives a
periodicity for S(t). Indeed, starting with S(0) = a, S(1) = b, S(2) = c leads to a
repeating pattern in the sequence S(t) of a, b, c,−a − b − c, as one readily checks.
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1.2 Systems and Laws

In this section we shall consider several types of models that can be used to describe
dynamical systems. A dynamical system is characterized by a collection of system
variables that evolve in mutual dependence. Denoting the time axis by T and the outcome
space for the system variables at each time instant by W , we formalize a (deterministic)
dynamical system as follows.

Definition 1.2.1 A dynamical system consists of a set of allowable trajectories of the
system variables, i.e., it is characterized by its behaviour B ⊂ {w : T → W }.

This gives a deterministic description, as trajectories in B are possible within the system
and the other trajectories are excluded. In this book we only consider systems that evolve
in discrete time (T = Z). We will not discuss continuous time systems (with T = R),
as the theory of linear systems largely coincides for both cases. In economics one uses
mostly discrete time models, because the available data are often observed in discrete time.
The mathematical models for discrete time systems involve difference equations, whereas
models for continuous time systems involve differential equations.

In many applications a system is considered as a part of reality which interacts with its
environment. In this case the variables are divided into inputs, consisting of the variables
from the environment that influence the system, and outputs, the variables that describe
the effects. A system is then seen as a mechanism producing the outputs (endogenous
variables) from the inputs (exogenous variables).

Definition 1.2.2 An input-output system consists of a set of input trajectories
{u : T → U} and output trajectories {y : T → Y } related by a mapping F . The system
behaviour is given by B = {(u, y) : T → U × Y ; y = F(u)}.

This definition is somewhat limited, as it requires that the input uniquely determines
the output. Sometimes an additional effect of so-called initial conditions is allowed.

For purposes of forecasting and control it is of particular interest to consider causal
input-output systems. This means that the present output is completely determined by the
past evolution of the inputs (including the present input).

Definition 1.2.3 A causal input-output system is a system for which the input-output
mapping F has the property that y(t) = Ft (u(s); s ≤ t) for certain mappings Ft , t ∈ T .

For identification and control of dynamical systems it is of crucial importance that the
system is expressed in a convenient way. A given system can be represented in many
alternative ways. Which representation is preferred will depend on the model objectives.

A system can often be described by a set of equations, the system laws, each of which
describes a relationship between the variables. Of special interest are (vector) difference
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equations of the form

G(t,w(t),w(t − 1), . . . , w(t − L)) = 0, (1.19)

where w(t) is a vector in R
q for all t ∈ Z, and where G is a map from Z × (Rq)L+1 to

R
p for some p. The parameter L specifies the order of the equation. If the system laws are

invariant over time then they can be expressed in the form

G(w(t),w(t − 1), . . . , w(t − L)) = 0 (1.20)

Equations of this type (and their continuous time counterparts, being differential equa-
tions) are at the heart of most dynamical models in physics, biology, engineering,
economics, and other sciences. The system is called linear if the function G is linear in
its arguments. Linear difference equations are very useful in practice for the following
reasons.

• In many cases nonlinear systems can be approximated rather well by linear ones.
• In most applications the precise nature of possible nonlinearities is unclear, but methods

based on nonlinear models are often sensitive with respect to the chosen type of
nonlinearity.

• Practical identification and control methods are mostly developed for linear systems.

Nonlinear systems can be approximated by linearization. Let w0 be a solution of interest
and let Ak(t) be the matrix of first derivatives of G in (1.20) with respect to the k-th
position, k = 0, . . . , L, and evaluated at w0 and time t . If w has q variables and G

consists of p equations then these matrices have size p × q . Locally around the solution
w0, other system trajectories w satisfying (1.20) are approximately described by the first
order Taylor expansion in terms of w� := w − w0, that is

A0(t)w�(t) + A1(t)w�(t − 1) + . . . + AL(t)w�(t − L) ≈ 0 (1.21)

This is a linear difference equation with time-varying parameters. If w0 is constant over
time, for instance identically zero, then the parameters are constant, and locally around
zero the system is described by the approximate law

A0w(t) + A1w(t − 1) + . . . + ALw(t − L) = 0 (1.22)

Systems of the form (1.22) are called linear, time invariant and finite dimensional. These
systems are of fundamental importance in identification and control. Linearity means
that the behaviour defined by the solution set of equation (1.22) is a linear space. Time
invariance means that solutions shifted in time remain within the system. The property of
finite dimensionality has to do with state space models, as discussed in the next section.
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Because of their relative simplicity and because good theory for solving systems of the
type (1.22) exists, these models are very useful.

We illustrate the concept of linearization with a well-known example from physics, for
once using a continuous time model. The mathematical model for a swinging pendulum
with no friction is given by the differential equation x(t)′′ = c·sin(x(t)). Here x(t) denotes
the angle of the swinging pendulum with the downward vertical measured in radians and
c is a constant depending on the length of the pendulum. The pendulum is at rest when
x(t) ≡ 0; this is called an equilibrium solution. Linearization around this equilibrium
solution is obtained by observing that for small values of x(t) one has sin(x(t)) ≈ x(t),
whereby the differential equation for the linearized model becomes a linear equation:
x(t)′′ = c · x(t).

1.3 State Representations

In the foregoing section the system structure was made explicit by means of functional
relationships between the system variables. In order to derive and use these relationships
it is often helpful to introduce auxiliary variables. An auxiliary variable of particular
importance is the state, which summarizes all the past information that is relevant for
the future evolution of the system. State space models have the following form, where
A,B,C,D are matrices of appropriate dimensions.

x(t + 1) = Ax(t) + Bv(t) (1.23)

w(t) = Cx(t) + Dv(t) (1.24)

Here v is an auxiliary variable which drives the evolution of the state x via the first
order equation (1.23), with resulting observed system trajectory w described by the static
equation (1.24). To describe the evolution of w for future times, t ≥ t0, it suffices to know
x(t0) and the future driving forces v(t), t ≥ t0. So x(t0) summarizes the past information
that is relevant for the future. For this reason x is called a state variable.

Definition 1.3.1 A state space representation of a system with variables w is a represen-
tation of the form (1.23), (1.24), so that the behaviour is given by

B = {w : T → W ; there exist (x, v) such that (1.23) and (1.24) are satisfied }.

The practical usefulness of state space models lies in their simple first order dynamical
structure. It can be shown that it is precisely the class of systems described by (1.22)
which can be represented in state space form. As the state vector contains a finite number
of elements, these systems are called finite dimensional.
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Stochastic state space systems are of the form (1.23), (1.24) with w an observed
stochastic process and with v an auxiliary white noise process. In this case the process
x has the Markov property and acts as a sufficient statistic in prediction and control.
The class of stochastic processes which can be represented in this way corresponds to
the widely used class of so-called autoregressive moving average processes.

For causal input-output systems satisfying Eq. (1.22) we obtain, by splitting the system
variables w into inputs u and outputs y, a representation of the form

P0y(t)+P1y(t−1)+. . .+PLy(t−L) = Q0u(t)+Q1u(t−1)+. . .+QLu(t−L) (1.25)

Causality is guaranteed if P0 is invertible. A state space representation of such a system
can be obtained with the input variables u as the auxiliary variables v. As we shall see
later, this leads to the following so-called input-state-output representation

x(t + 1) = Ax(t) + Bu(t), (1.26)

y(t) = Cx(t) + Du(t). (1.27)

This model forms the corner stone in linear control theory. In the next chapter we shall
show the equivalence of the representations (1.25) and (1.26, 1.27) for appropriately
chosen matrices A,B,C and D.

If we neglect the influence of initial conditions and consider the effect of the inputs on
the outputs, then this relationship can be described by a convolution, i.e., under certain
boundedness conditions we get

y(t) =
∞∑

k=0

Gku(t − k). (1.28)

Convolution systems are sometimes more easily analysed in the so-called frequency
domain, where the system trajectories are decomposed into cyclical components. Stochas-
tic processes allow a similar decomposition into cyclical components.

1.4 Illustration

To give a simple illustration of the concepts and models discussed in this chapter we
consider the business cycle model of Example 1.1.2. Suppose that the purpose of this
model is to describe the macro economic business cycle in Y,C and I , and the possible
effects of government spending G.
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This system, in the sense of Definition 1.1, is characterized by the solution set of
the three Eqs. (1.9)–(1.11). The equilibrium values, for a fixed level of government
expenditure G, are obtained by solving the equations for fixed levels of all the variables,
so that

C = α + βγ + βG

1 − β
, I = γ, Y = α + γ + G

1 − β
. (1.29)

Defining the deviations from equilibrium by c(t) = C(t) − C, i(t) = I (t) − I , y(t) =
Y (t) − Y and g(t) = G(t) − G, we obtain the linear model

c(t) = βy(t − 1), (1.30)

i(t) = δ{c(t) − c(t − 1)}, (1.31)

y(t) = c(t) + i(t) + g(t). (1.32)

Let us consider what happens if we take consumption as an input variable in the sense
of Definition 1.2.2. Specification of c(t) for all t ∈ Z gives unique corresponding values
of y(t), i(t) and g(t), for all t ∈ Z. However, this is not a causal input-output system as
{c(t); t ≤ t0} determines {i(t); t ≤ t0}, {y(t); t ≤ t0 − 1} and {y(t) − g(t); t ≤ t0}. Hence
it is not possible to determine y(t0) and g(t0).

A causal input-output system can be obtained, for instance, by taking government
expenditure as input. This can be seen from the relationship

y(t) = β(1 + δ)y(t − 1) − βδy(t − 2) + g(t), (1.33)

which one readily checks. This shows that income, consumption and investment are
determined in a causal way by government expenditure for two given initial values of
income. When the model is used to explain the business cycle in income and the effect of
government policy, then Eq. (1.33) is the core of the model after the auxiliary variables c

and i have been eliminated. This so-called “final form equation” contains all dynamical
information on the income process. Note that Eq. (1.33) would probably not easily have
been specified on theoretical grounds, but it is motivated by the auxiliary behavioural
relations (1.30) and (1.31).

An input-output description of the form (1.25) is easily obtained:

⎛

⎜⎝
1 0 0

−δ 1 0

−1 −1 1

⎞

⎟⎠

⎛

⎜⎝
c(t)

i(t)

y(t)

⎞

⎟⎠+
⎛

⎜⎝
0 0 −β

δ 0 0

0 0 0

⎞

⎟⎠

⎛

⎜⎝
c(t − 1)

i(t − 1)

y(t − 1)

⎞

⎟⎠ =
⎛

⎜⎝
0

0

1

⎞

⎟⎠ g(t). (1.34)
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An input-state-output representation is obtained from this by taking as past information
the state variable x(t) with components c(t − 1), i(t − 1), and y(t − 1), so that

x(t + 1) =
⎛
⎜⎝

0 0 β

−δ 0 βδ

−δ 0 β(1 + δ)

⎞
⎟⎠ x(t) +

⎛
⎜⎝

0

0

1

⎞
⎟⎠ g(t), (1.35)

⎛
⎜⎝

c(t)

i(t)

y(t)

⎞
⎟⎠ =
⎛
⎜⎝

0 0 β

−δ 0 βδ

−δ 0 β(1 + δ)

⎞
⎟⎠ x(t) +

⎛
⎜⎝

0

0

1

⎞
⎟⎠ g(t). (1.36)

This state representation is not minimal, in the sense that there exist representations with
fewer state variables. For example, by taking z(t) = (y(t −1), y(t−2))T we get the model

z(t + 1) =
(

β(1 + δ) −βδ

1 0

)
z(t) +
(

1

0

)
g(t), (1.37)

⎛
⎜⎝

c(t)

i(t)

y(t)

⎞
⎟⎠ =
⎛
⎜⎝

β 0

βδ −βδ

β(1 + δ) −βδ

⎞
⎟⎠ z(t) +

⎛
⎜⎝

0

0

1

⎞
⎟⎠ g(t). (1.38)

It can be shown that this is a minimal state representation. We shall return to this example
in the next chapter.



2Input-Output Systems

In this chapter we consider input-output systems. Such systems can be described in the
time domain, in terms of the impulse response, and in the frequency domain, by the
transfer function. For rational transfer functions the system can be represented by a finite
dimensional state space model.

2.1 Inputs and Outputs in the Time Domain

Dynamical systems are characterized by a collection of variables and their interrelation-
ships over time. As stated before, we shall only consider discrete time systems. For
input-output systems there are two types of variables, namely inputs, which one may
choose freely and outputs, which are determined by the choice of the inputs. Such systems
may be schematically described by the following figure:

u y

Here u(t) =
(
u1(t) . . . um(t)

)T
is the vector with the m input variables at time t and

y(t) =
(
y1(t) . . . yp(t)

)T
is the vector with the p output variables. The box is called the

plant or the process and stands for the way the outputs depend on the inputs. If m = p = 1,
then the system is called a single input, single output (SISO) system, and all other cases
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are referred to as multi-variable systems. If the input variables are meant to control the
system they are called control or command variables. It may also be that some of the input
variables are not in our hands. Such inputs may result from outside disturbances.

If the input is given beforehand, this is an open loop system. One may wish to choose
the input in such a way that a prescribed goal is reached. This is called an optimal control
problem. If the input is regulated by information on the past evolution of the system then
this is a closed loop system. This may be depicted as follows.

u

F

S
y

Example 2.1.1 We consider the business cycle model of Sect. 1.4. The system equations
(1.30)–(1.32) lead to the following relation between national income y(t) and government
spending g(t)

y(t) − β(1 + δ)y(t − 1) + βδy(t − 2) = g(t). (2.1)

Here we may think of y as the output and of g as the input of the system. If the government
spends without regarding the income this is an open loop system. If spending is seen as an
instrument to steer the income in a desired path of evolution, then the value of g(t) may
be based on the realized past incomes y(t − 1), y(t − 2), . . .. This is a closed loop system.
The use of past information to generate the current input is called feedback.

We denote a system by the symbol �. For convenience we assume that � starts
operating at time instant t = 0. For time t < 0 the values of all variables are supposed
to be zero. Since the system operates in discrete time, the input trajectories are sequences
u = (u(0), u(1), . . .) of which the elements are vectors in R

m. The output trajectories are
sequences y = (y(0), y(1), . . .) with elements in R

p. The map which assigns to a given
input trajectory u the corresponding output trajectory y is called the input-output map and
is denoted by G� . So the output y(t) is given by y(t) = (G�u)(t).
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The system is called causal if the output does not depend on future inputs and is totally
dependent on past and present inputs, that is, if for any two input trajectories u and v the
following implications holds for each t0:

{u(t) = v(t), ∀t ≤ t0} ⇒ {(G�u)(t) = (G�v)(t), ∀t ≤ t0}.

The system � is said to be linear if the input-output map is a linear transformation, i.e.,

G�(u + v) = G�u + G�v, G�(λu) = λG�u (λ ∈ R).

If � is linear and causal, then the output y(t) at time k depends linearly on the inputs
u(0), . . . , u(t). It follows that the input-output map can be written in the form

(G�u)(t) =
t∑

k=0

G(t, k)u(k), t = 0, 1, 2, . . . . (2.2)

where G(t, k), 0 ≤ k ≤ t are p × m matrices.
The system � is said to be time-invariant if the input-output behaviour does not depend

on time. That is, if an input trajectory u is applied k time instants later, then the resulting
output trajectory is the original output trajectory but now also starting k time instants later.
To make this more precise, we consider the shift operator S on trajectories, defined by

S(x(0), x(1), x(2), . . .) = (0, x(0), x(1), . . .).

The condition that the system � is time-invariant is equivalent to

G�S = SG�. (2.3)

(Strictly speaking, we abuse notation here. The letter S on the left hand side of the equality
is the shift on trajectories of input vectors, while on the right-hand side of the equality it
denotes the shift on trajectories of output vectors.)

Proposition 2.1.1 Let � be a causal linear time-invariant system. Then the input-output
map of � has the following form

(G�u)(t) =
t∑

k=0

G(t − k, 0)u(k), t ≥ 0. (2.4)



14 2 Input-Output Systems

Proof Let e be an impulse applied at time t = 0, so e = (u(0), 0, 0, . . .), with u(0) an
arbitrary vector in R

m. Using (2.2) it follows that

(SkG�e)(t) = G(t − k, 0)u(0), t ≥ k, while (G�Ske)(t) = G(t, k)u(0), t ≥ k.

Thus, using (2.3) repeatedly, we see that G(t, k) = G(t − k, 0). ��

From now on we shall denote G(t, 0) by G(t). For a causal linear time-invariant system
� the sequence of matrices (G(0),G(1),G(2), . . .) is called the impulse response of the
system. This terminology is motivated by the output response to an impulse input:

G�(u(0), 0, 0, . . .) = (G(0)u(0),G(1)u(0),G(2)u(0), . . .). (2.5)

Example 2.1.2 Consider again the relation (2.1) between government spending g(t) and
national income y(t). It is easily checked that this is a causal, linear, time invariant system
if we take g as input and y as output. We suppose that the economy starts at equilibrium, so
that y(t) = g(t) = 0 for t < 0, see Sect. 1.4. One can deduce from (2.1) that the impulse
response of this system is given by G(0) = 1, G(1) = β(1 + δ), whereas for k ≥ 2 the
impulse response matrices satisfy the second order difference equation

G(k) = β(1 + δ)G(k − 1) − βδG(k − 2), k ≥ 2.

(The verification of this is left to the reader as an exercise.) Hence they can be computed
recursively.

2.2 Frequency Domain and Transfer Functions

Let u = (u(0), u(1), . . .) be a sequence with elements u(t) ∈ R
m. By definition the z-

transform of u is the formal power series in z−1 given by

û(z) := u(0) + 1

z
u(1) + 1

z2 u(2) + · · · . (2.6)

This is a formal power series in the sense that it is not required that the series in the right-
hand side of (2.6) converges. In a similar way, if G = (G(0),G(1), . . .) is a sequence of
p × m matrices then the z-transform of G is the formal power series in z−1 given by

Ĝ(z) = G(0) + 1

z
G(1) + 1

z2
G(2) + · · · . (2.7)
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For û(z) and Ĝ(z) as above the product Ĝ(z)̂u(z) is defined as the formal power series
which one obtains by carrying out the product formally,

Ĝ(z)̂u(z) =
∞∑

k=0

(
1

z

)k

(G(k)u(0) + G(k − 1)u(1) + · · · + G(0)u(k)). (2.8)

To discuss convergence of the sequence in (2.8) we first introduce the following notion.
A sequence x = (x(0), x(1), . . .) of vectors or matrices is exponentially bounded if there
exist positive constants M and α such that

‖x(t)‖ ≤ Mαt , t = 0, 1, 2, . . . . (2.9)

The norm in (2.9) is the Euclidean norm for vectors, that is, if the vector is given by

x(t) =
(
x1(t) · · · xn(t)

)T
then ‖x(t)‖2 =∑n

j=1 |xj (t)|2. The norm in (2.9) is the induced

matrix norm if x(t) are matrices, i.e., if x(t) is an p × q matrix then

‖x(t)‖ = sup
‖w‖=1, w∈Rq

‖x(t)w‖.

An important property of the induced matrix norm is the inequality

‖Ax‖ ≤ ‖A‖ · ‖x‖

for any matrix A and any vector x (provided, of course, the product Ax makes sense), and

‖AB‖ ≤ ‖A‖ · ‖B‖

for any pair of matrices A and B for which the product AB can be formed. Under this
condition, the series x(0) + 1

z
x(1) + 1

z2 x(2) + . . . is convergent for z ∈ C with |z| > α,
and in that case x̂(z) is a well-defined function on |z| > α.

If the impulse response sequence G(j), j = 0, 1, . . . is exponentially bounded, then

Ĝ(z) =
∞∑

k=0

1

zk
G(k),

is called the transfer function of the system.

Proposition 2.2.1 Let � be a causal linear time invariant system with exponentially
bounded impulse response sequence (G(0),G(1), . . .). If u = (u(0), u(1), . . .) is an
exponentially bounded input trajectory, then the output trajectory y = G�u is also
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exponentially bounded, and for |z| sufficiently large we have

ŷ(z) = Ĝ(z)̂u(z). (2.10)

Proof Suppose that ‖u(t)‖ ≤ M1α
t
1 and ‖G(t)‖ ≤ M2α

t
2. We may always take α2 > α1.

From Proposition 2.1.1 it follows that the sequence of outputs y(t) is given by y(t) =∑t
j=0 G(t − j)u(j) (cf. (2.4)), and therefore

‖y(t)‖ ≤
t∑

k=0

M2α
t−k
2 M1α

k
1 = M2M1

αt+1
2 − αt+1

1

α2 − α1
≤ M1M2

α2

α2 − α1
αt

2 = M3α
t
2,

where M3 = M1M2
α2

α2−α1
. Thus the sequence of outputs is exponentially bounded.

Since
∑

y(t)z−t ,
∑

u(t)z−t and
∑

G(t)z−t converge absolutely for |z| big enough, we
conclude from a well-known result in analysis (see, e.g., [65, Theorem 3.50]) that (2.10)
holds for z ∈ C, with |z| sufficiently large. ��

When we apply the z-transform to a trajectory we say that we pass from the time domain
to the so-called frequency domain. In the time domain the action of the system is given
by the input-output map which is the somewhat complicated convolution (2.4). In the
frequency domain the action of the system is given by a straightforward multiplication, see
(2.10). To justify the use of the term “frequency domain” consider the following example.

Example 2.2.1 The transfer function describes the way in which the frequencies in the
inputs are transferred to the outputs. We illustrate this for a SISO system with impulse-
response sequence satisfying |G(k)| ≤ Mαk for some α < 1. In particular

∑∞
k=0 |G(k)| <

∞. Assume we have a summable input trajectory, that is,
∑∞

k=0 |u(k)| < ∞. Then u(t)

has a well-defined Fourier transform û(eiω) = ∑∞
t=0 u(t)e−iωt . The same holds for G(t)

and y(t), and, moreover, we have ŷ(eiω) = Ĝ(eiω)̂u(eiω). In particular, the absolute value
of Ĝ(eiω) is called the gain, and this number shows the amplification of the frequency 2π

ω

by the system.

2.3 State SpaceModels

The input-output map T of a system has a state space representation if the action T u = y

can be described by a system of equations of the following type:

⎧
⎪⎪⎨

⎪⎪⎩

x(t + 1) = Ax(t) + Bu(t), t = 0, 1, 2, . . . ,

y(t) = Cx(t) + Du(t),

x(0) = 0.

(2.11)
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As before, the system is assumed to be at rest for t < 0, so that y(t) = 0, u(t) = 0,
and x(t) = 0 for t < 0. Further, A is a linear transformation acting on an n-dimensional
Euclidean space Rn, called the state space, and B : Rm → R

n, C : Rn → R
p, D : Rm →

R
p are linear transformations. Choosing standard bases in Euclidean space, A,B,C and

D correspond to matrices with real coefficients. A is called the state transition matrix, B

the input matrix, C the output matrix, and D the external (or feedthrough) matrix.

Example 2.3.1 Consider the equation

y(t) − β(1 + δ)y(t − 1) + βδy(t − 2) = g(t) (2.12)

of Example 2.1.1 for the relation between government spending g(t) and national income
y(t). If we assume y(t0 − 1) and y(t0 − 2) to be known, then for t ≥ t0 the values of y(t)

are uniquely determined by g(t) for t ≥ t0. Thus the vector

x(t) =
(

y(t − 1)

y(t − 2)

)

describes the “state” of the economy at year t , and the input-output map corresponding to
(2.12) is described by the following state space equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(t + 1) =
⎛

⎝β(1 + δ) −βδ

1 0

⎞

⎠ x(t) +
⎛

⎝1

0

⎞

⎠ g(t), t ≥ t0,

y(t) =
(
β(1 + δ) −βδ

)
x(t) + g(t).

(2.13)

It is left as an exercise to the reader to verify this.

If in (2.11), the state x(t0) is known, then for t ≥ t0 the state x(t) is given by

x(t) = At−t0x(t0) +
t−1∑

j=t0

At−j−1Bu(j), t > t0. (2.14)

Consequently, the output y(t) is given by

y(t) = Du(t) + CAt−t0x(t0) +
t−1∑

j=t0

CAt−j−1Bu(j).

The information about the past contained in the state x(t0) together with the input
trajectory for t ≥ t0 allows us to determine the output trajectory for t ≥ t0. A state
variable is a vector function x(t) with the property that for each t > t0 ≥ 0 the
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output trajectory (y(t0), . . . , y(t)) is uniquely determined by the state x(t0) and the input
trajectory (u(t0), . . . , u(t)). In particular, we need no information on the past inputs and
outputs u(s), y(s) for s < t0. To achieve an effective reduction in the required past
information, the initial state x(t0) and the input trajectory (u(t0), . . . , u(t −1)) should also
uniquely determine the state x(t). The variable x(t) in (2.11) has this additional property,
because of (2.14).

Theorem 2.3.1 The state space model (2.11) describes the input-output map of a causal
linear time-invariant system with impulse response

G(t) =
⎧
⎨

⎩
D for t = 0,

CAt−1B for t > 0,

and with transfer function equal to

Ĝ(z) = D + C(z − A)−1B. (2.15)

In formula (2.15) we use the notation z − A to denote z · I − A. This convention will
be used frequently in the sequel.

Proof The solution of the state equation x(t +1) = Ax(t)+Bu(t), t ≥ 0, with x(0) = 0
is given by x(t) =∑t−1

k=0 At−1−kBu(k), for t ≥ 1. So the input-output map T of the state
space model (2.11) is given by (T u)(t) =∑t−1

k=0 CAt−1−kBu(k) + Du(t) (compare (2.2)
where T is denoted by G�).

It remains to prove the formula for the transfer function. The sequence CAk−1B, k =
1, 2, . . . is exponentially bounded because ‖CAk−1B‖ ≤ ‖C‖ · ‖B‖ · ‖A‖k−1 = Mαk−1,

where M = ‖C‖ · ‖B‖ and α = ‖A‖. It follows that (2.11) has a well-defined transfer
function,

Ĝ(z) = D +
∞∑

k=1

1

zk
CAk−1B. (2.16)

For |z| > ‖A‖ we have I = (z−A)
∑∞

k=1
1
zk Ak−1, and hence (z−A)−1 =∑∞

k=1
1
zk Ak−1,

where the convergence of the series on the right-hand side is interpreted in the norm sense,
i.e., we say that the series converges to a matrix E when limn→∞ ‖E −∑n

k=1
1
zk Ak−1‖ =

0. So for |z| > ‖A‖ the series on the right-hand side of (2.16) converges to C(z − A)−1B

which proves (2.15). ��

State space models can also be characterized in terms of transfer functions. A matrix
valued function W is called a rational matrix function if its entries are quotients of
polynomials. It is called proper if lim|z|→∞ W(z) exists.
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Proposition 2.3.2 The transfer function of the system represented by (2.11) is a rational
matrix function that is proper.

Proof By Cramer’s rule it follows that (z − A)−1 is a rational matrix function, and as
lim|z|→∞(z − A)−1 = 0, it is also proper. ��

Conversely, every system with a proper rational transfer function has a state space
representation. this is what we shall show in the next theorem.

Theorem 2.3.3 The input-output map of a causal linear time-invariant system � admits
a state space representation if and only if � has a transfer function that is rational and
proper.

To prove this result we use the following lemma.

Lemma 2.3.4 Consider the matrix polynomials H(z) = ∑
−1
j=0 zjHj and L(z) = z
I +

∑
−1
j=0 zjAj of sizes p × m and m × m, respectively. Let

A =

⎛

⎜⎜⎜⎜⎝

0 I

. . .

I

−A0 −A1 . . . −A
−1

⎞

⎟⎟⎟⎟⎠
, B =

⎛

⎜⎜⎜⎜⎝

0
...

0

I

⎞

⎟⎟⎟⎟⎠
, C =

(
H0 H1 . . . H
−1

)
.

Then H(z)L(z)−1 = C(z − A)−1B for z not an eigenvalue of A.

Proof First we assume that H(z) ≡ I , so that C = (I, 0, 0, . . . , 0). Let z ∈ C and
consider the equation

L(z)x = y (2.17)

where x, y ∈ C
m. Defining x1 = x, x2 = zx1, . . . , x
 = zx
−1, Eq. (2.17) can be

rewritten as −A0x1 − A1x2 − · · · − A
−1x
 = zx
 − y. Therefore

A

⎛
⎜⎜⎝

x1
...

x


⎞
⎟⎟⎠ = z

⎛
⎜⎜⎝

x1
...

x


⎞
⎟⎟⎠− By, x = x1 = C

⎛
⎜⎜⎝

x1
...

x


⎞
⎟⎟⎠ .
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If z is not an eigenvalue of A, then

⎛
⎜⎜⎝

x1
...

x


⎞
⎟⎟⎠ = (z − A)−1By,

and hence x = C(z − A)−1By, which proves the lemma for the case H(z) ≡ I .
Next we consider the general case. Let

⎛
⎜⎜⎝

C1(z)
...

C
(z)

⎞
⎟⎟⎠ = (z − A)−1B.

From the previous result we know that C1(z) = L(z)−1. Since

(z − A)

⎛
⎜⎜⎝

C1(z)
...

C
(z)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0
...

0

I

⎞
⎟⎟⎟⎟⎠

,

the special form of A implies that Cj(z) = zj−1C1(z), j = 1, . . . , 
. Hence

C(z − A)−1B =
(
H0 . . . H
−1

)

⎛

⎜⎜⎜⎜⎝

C1(z)

zC1(z)
...

z
−1C1(z)

⎞

⎟⎟⎟⎟⎠
= H(z)C1(z) = H(z)L(z)−1,

which proves the Lemma. ��

Proof (Proof of Theorem 2.3.3) Proposition 2.3.2 already shows that the transfer
function of a state space model is rational.

To prove the converse, let � be a causal linear time-invariant system with rational
transfer function Ĝ(z) that is proper. We have to prove that y(t) = (G�u)(t) =∑t

k=0 G(t−k)u(k), t = 0, 1, 2, . . ., admits a state space representation. As Ĝ(z) is rational
and proper, each entry is rational and proper as well. So Ĝ(z) → G(0) for |z| → ∞, and
hence we can write Ĝ(z) = G(0) + K(z), where

lim|z|→∞ K(z) = 0. (2.18)
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The (i, j)-th entry kij (z) of K(z) is a quotient of two polynomials, kij (z) = pij (z)/qij (z),
where we take qij (z) to be monic, that is, with leading coefficient equal to 1. Condition
(2.18) implies that the degree of pij is strictly less than the degree of qij . Let r(z) be the
product of all qij (z), that is, r(z) = �ij qij (z) and H(z) = r(z)K(z), then H(z) is a matrix
polynomial, H(z) = H0 + zH1 + · · · + z
−1H
−1, and from the property of the degrees
of pij and qij it follows that 
 is not larger than the degree of r(z). Define L(z) = r(z)I ,
where I is the m × m identity matrix, then L(z) is a monic matrix polynomial (i.e., its
leading coefficient is I ) and K(z) = H(z)L(z)−1. Thus, by Lemma 2.3.4 we can find
matrices A, B and C so that K(z) = C(z − A)−1B, whenever z is not an eigenvalue of
A. This shows that G(t) = CAt−1B for t ≥ 1, so that G� has a state space representation
(with D = G(0)). ��

The choice of r(z) in the proof above is certainly not the most practical one. Taking
r(z) as the least common multiple of the denominators qij (z) is already better.

The foregoing result in terms of the transfer function has the following corollary for
system representation in the time domain.

Corollary 2.3.5 A causal linear time-invariant system � has a state space representation
if and only if the input-output map is of polynomial form, that is,

y(t) = A1y(t − 1) + · · · + ALy(t − L) + B0u(t) + B1u(t − 1) + · · · + BLu(t − L)

for p × p matrices Ai and p × q matrices Bj , i = 1, . . . , L, j = 0, . . . , L. Here we take
u(j) = 0 for j < 0.

Proof This is an immediate consequence of Theorem 2.3.3. As we have seen in the proof
of Theorem 2.3.3 a proper rational transfer function can be written as Ĝ(z) = G(0) +
H(z)
r(z)

. Denoting L(z) = r(z)I , we rewrite this as Ĝ(z) = L(z)−1(G(0)r(z) + H(z)). We
conclude that any proper rational transfer function can be written as the quotient of two
matrix polynomials: Ĝ(z) = Â−1(z)B̂(z) with Â(z) = I − A1z

−1 − · · · − ALz−L and
B̂(z) = B0 + B1z

−1 + · · · + BLz−L. Observe that it is quite well possible that some of
the Bj ’s are zero. Rewriting the relation ŷ(z) = Ĝ(z)̂u(z) as Â(z)ŷ(z) = B̂(z)̂u(z), and
transforming this relation to the time domain gives the result. Note that there may be many
ways in which we can write Ĝ(z) as Â−1(z)B̂(z), i.e., the matrix polynomials A(z) and
B(z) are not uniquely determined.

Conversely, suppose that Â(z)ŷ(z) = B̂(z)̂u(z). As Â is proper, Â−1(z) is rational and
proper. Hence Ĝ(z) = Â−1(z)B̂(z) is rational and proper as well. Consequently it has a
state space representation. ��
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2.4 Equivalent andMinimal Realizations

An ordered quadruple (A,B,C,D) is called a realization of the system � if

⎧
⎨

⎩
x(t + 1) = Ax(t) + Bu(t), t = 0, 1, 2, . . . ,

y(t) = Cx(t) + Du(t)
(2.19)

is a state space representation of the input-output map of �. In other words, (A,B,C,D)

is a realization of � if and only if � has transfer function Ĝ(z) = D + C(z − A)−1B.
Realizations are not unique. For example, we may carry out a basis transformation in

the state space, replacing the state variable x(t) in (2.19) by x̃(t) = Sx(t), where S is an
invertible matrix. In terms of the state x̃(t), we have

x̃(t + 1) = Sx(t + 1) = SAx(t) + SBu(t) = SAS−1x̃(t) + SBu(t),

and y(t) = Cx(t) + Du(t) = CS−1x̃(t) + Du(t). One sees that G(k) = CAk−1B =
CS−1(SAS−1)k−1SB, so the impulse response does not change, and hence also the
transfer function does not change. Thus if (A,B,C,D) is a realization of �, then the
same holds true for (SAS−1, SB,CS−1,D).

There is another source of non-uniqueness. Let (A0, B0, C0,D0) be a realization, and
let

A =
⎛
⎜⎝

A1 A3 A4

0 A0 A5

0 0 A2

⎞
⎟⎠ , B =

⎛
⎜⎝

B1

B0

0

⎞
⎟⎠ , C =

(
0 C0 C2

)
, (2.20)

where A1, A2, A3, A4, A5, B1 and C2 are free to choose. Then

Ak =
⎛

⎜⎝
∗ ∗ ∗
0 Ak

0 ∗
0 0 ∗

⎞

⎟⎠ ,

where the ∗’s denote entries which we do not specify further. It then follows that CAkB =
C0A

k
0B0 (for k ≥ 0). So, if (A0, B0, C0,D0) is a realization of � then the same holds true

for (A,B,C,D0) (compare Theorem 2.3.1).
The above two operations describe all possible realizations, as will be shown in Chap. 3.

Of course, the realization (2.20) is less attractive than the realization (A0, B0, C0,D0), as
it involves more parameters and more state variables.

A realization (A,B,C,D) of a system � is called minimal if among all realizations of
� the state space dimension (that is, the size of A) is as small as possible.
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2.5 The Restricted Shift Realization

We shall now construct a minimal realization from the matrices in the impulse response
sequence. The construction is done using as a starting point an infinite dimensional vector
space, and some linear transformations acting on it. By Lm we denote the linear space
of all sequences u = (u(1), u(2), u(3), . . .) with elements in R

m, and similarly, by Lp

we denote the space of all sequences y = (y(1), y(2), y(3), . . .) with elements in R
p.

By Lm
0 we denote the subspace of Lm consisting of all sequences with finite support,

that is, only a finite number of the u(j)’s are nonzero. Equivalently, u(t) = 0 for
sufficiently large t . Similarly, Lp

0 is the subspace of Lp consisting of all sequences of finite
support. Let V be the linear transformation on Lp, defined by V (y(1), y(2), y(3), . . .) =
(y(2), y(3), y(4), . . .). This linear transformation is called the backward shift. Observe
that V leaves the space Lp

0 invariant. By H : Lm
0 → Lp we denote the linear

transformation with matrix representation

H =

⎛

⎜⎜⎜⎜⎝

G(1) G(2) G(3) . . .

G(2) G(3) G(4) . . .

G(3) G(4) G(5) . . .
...

...
...

⎞

⎟⎟⎟⎟⎠
. (2.21)

That is, for u = (u(1), u(2), . . .) ∈ Lm
0 the sequence y = Hu has i-th entry y(i) =∑∞

j=1 G(i + j − 1)u(j). Since u has finite support the right-hand side is a finite sum that
always converges. (If sequences in Lm are considered as infinite columns, then the action
of H is given by the usual matrix multiplication.) The infinite matrix (2.21) is called a
block-Hankel matrix, as it has constant values on the counter (block) diagonals. The range
of the linear transformation H will play an important role in the next theorem, we shall
denote it by Im H .

Theorem 2.5.1 Let � be a causal linear time-invariant system with p × m impulse
response matrices G(0),G(1),G(2), . . .. Let H : Lm

0 → Lp be given by (2.21), and
define X = Im H . Let V denote the backward shift on Lp. Then the minimal state
space dimension of realizations of � is equal to the dimension of X. Furthermore, if
k = dim X < ∞ then a minimal realization is obtained by taking

A = V |X : X → X,

B =

⎛

⎜⎜⎝

G(1)

G(2)
...

⎞

⎟⎟⎠ : Rm → Im H, (2.22)
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C =
(
I 0 0 . . .

)
|Im H : Im H → R

p,

D = G(0) : Rm → R
p.

Proof Let �̃ = (Ã, B̃, C̃, D̃) be a realization of � with state space R
n. Define

�̃ =
(
B̃ ÃB̃ Ã2B̃ . . .

)
: Lm

0 → R
n,

and

�̃ =

⎛
⎜⎜⎜⎜⎝

C̃

C̃Ã

C̃Ã2

...

⎞
⎟⎟⎟⎟⎠

: Rn → Lp,

where sequences in Lm and Lp are written as infinite columns. As sequences in Lm
0 have

finite support, the operator �̃ is well-defined. Since �̃ is a realization of �, the j -th value
of the impulse response of � is given by G(j) = C̃Ãj−1B̃ for j ≥ 1. It follows that
H = �̃�̃, and hence k = dim Im H ≤ dim Im �̃ ≤ n. So if a realization exists, then
dim Im H < ∞ and the state dimension is at least k = dim Im H . To complete the proof,
it suffices to show that � = (A,B,C,D) as given by (2.22) is a realization of �. Let
X = Im H be finite dimensional. As

V H =

⎛

⎜⎜⎜⎜⎝

G(2) G(3) . . .

G(3) G(4) . . .

G(4) G(5) . . .
...

...

⎞

⎟⎟⎟⎟⎠
: Lm

0 → Lp,

it follows that V X = V (Im H) = Im V H ⊂ Im H = X, and hence X is invariant under
V . Therefore A in (2.22) is a well-defined linear transformation. Since Im B ⊂ Im H , we
have

Aj−1B = V j−1B =

⎛
⎜⎜⎝

G(j)

G(j + 1)
...

⎞
⎟⎟⎠ , j ≥ 1.

This shows that G(j) = CAj−1B for j ≥ 1, that is, � = (A,B,C,D) is a realization
of �. ��
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The realization � = (A,B,C,D) described in Theorem 2.5.1 is called a restricted
shift realization. An algorithm to construct a minimal realization from the Hankel matrix
H will be given in Sect. 3.4.
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This chapter discusses structure theory of state space systems. The central concepts
are observability (the possibility to reconstruct the state from inputs and outputs) and
controllability (the possibility to influence the state by manipulating the inputs). Minimal
realizations are observable and controllable, and the converse is also true. We characterize
all non-minimal realizations, and give an algorithm to compute the matrices in a minimal
realization from the impulse response of the system.

3.1 Controllability

A realization � = (A,B,C,D) of a system � is called controllable if, starting from an
arbitrary initial state x0, any other state x1 can be reached in finite time by choosing an
appropriate input sequence. To make this more precise, let x(t; x0, u) be the solution at
time t of the recursion x(k + 1) = Ax(k) + Bu(k), k = 0, 1, 2, . . . , with x(0) = x0,
and input sequence u, so that

x(t; x0, u) = Atx0 +
t−1∑

j=0

At−1−jBu(j), t ≥ 1. (3.1)

Thus � is controllable if and only if for every x0, x1 ∈ R
n there exist t > 0 and an input

sequence u such that x1 = x(t; x0, u).

A related notion is that of reachability. A realization is called reachable if starting from
the origin x0 = 0 every other state can be reached with an appropriate input sequence in
a finite time interval, so that for every x ∈ R

n there exist t > 0 and an input sequence u

such that x = x(t; 0, u). Obviously, a controllable realization is also reachable.
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For the analysis of controllability and reachability it is helpful to consider the sets
Rt (�) of states that can be reached at time t with an appropriate input sequence
u(0), u(1), . . . , u(t − 1) starting from the origin, that is

Rt (�) = {x ∈ R
n | there exists u such that x = x(t; 0, u)}.

It follows from (3.1) with x0 = 0 that Rt (�) is the image of the partitioned matrix(
B AB . . . At−1B

)
, i.e.,

Rt (�) = Im
(
B AB . . . At−1B

)
. (3.2)

In the sequel we shall use the notation XT for the transpose of a matrix X.

Theorem 3.1.1 Let � = (A,B,C,D) be a realization of the system � with state space
dimension n. Then the following statements are equivalent:

(i) � is controllable,
(ii) � is reachable,

(iii) rank
(
B AB . . . An−1B

)
= n,

(iv) the matrix
∑n−1

j=0 AjBBT (AT )j is non-singular.

Proof (i) ⇒ (ii). This follows directly from the definitions.
(ii) ⇒ (iii). Let us denote by p(z) = zn + pn−1z

n−1 + · · · + p0 the characteristic
polynomial of A. By the Cayley-Hamilton theorem we have p(A) = 0, and so the matrix
An is a linear combination of the matrices I,A, . . . , An−1. It follows from this that also
the matrix An+k (k ≥ 0) is a linear combination of the matrices I,A, . . . , An−1. Hence
Rk(�) = Rn(�) for all k ≥ n. When � is reachable there holds Rn = ∪k≥1Rk(�) =
Rn(�) = Im

(
B AB . . . An−1B

)
, and this shows (iii).

(iii) ⇒ (i). By assumption Rn(�) = R
n, so that x − Anx0 ∈ Rn(�) for every x, x0 ∈

R
n. So there exists an input sequence u = (u(0), u(1), . . . , u(n − 1)) with x − Anx0 =∑n−1
j=0 An−1−jBu(j). Therefore, x = x(n; x0, u), and � is controllable.

(iii) ⇔ (iv). Let � =
(
B AB . . . An−1B

)
, then we have the equality ��T =

∑n−1
j=0 AjBBT (AT )j , and the result follows from the fact that rank � = rank ��T , and

the fact that the square n × n matrix ��T is non-singular if and only if its rank is n. ��



3.1 Controllability 29

Note that controllability of the realization � = (A,B,C,D) is independent of the
matrices C and D. For that reason, instead of saying that the realization � = (A,B,C,D)

is controllable, this is also expressed by saying that the pair (A,B) is controllable.
The condition (iv) shows that controllability is a “robust” property, as controllability is
preserved under small perturbations of the system parameters A and B.

Example 3.1.1 Consider the state space representation (2.13) of the model of a national
economy discussed in Example 2.3.1. Here the state space dimension is 2, and

A =
(

β(1 + δ) −βδ

1 0

)
, B =

(
1

0

)
.

Thus

(
B AB

)
=
(

1 β(1 + δ)

0 1

)
,

which obviously has rank 2. So this realization is controllable.
In Sect. 1.4 we also considered a three-dimensional realization of this system, with the

state space matrices (corresponding to the single output y(t)) given by

A =
⎛

⎜⎝
0 0 β

−δ 0 βδ

δ 0 β(1 + δ)

⎞

⎟⎠ , B =
⎛

⎜⎝
0

0

1

⎞

⎟⎠ , C =
(
−δ 0 β(1 + δ)

)
,D = 1.

It is easily seen that this system is controllable provided β �= 0 and δ �= 0. If for example
δ = 0, so that investments are constant, then

(
B AB A2B

)
=
⎛
⎜⎝

0 β β2

0 0 0

1 β β2

⎞
⎟⎠ ,

and the set of reachable states is given by

R = {
(
x1 x2 x3

)T ∈ R
3 | x2 = 0}.

So, if δ = 0 then this state space system is not reachable.
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3.2 Observability

A state space system is called observable if the state vector can be reconstructed from the
inputs and outputs. By y(t; x0, u) we denote the output at time t generated by the input
sequence u and initial state x(0) = x0 in the system

⎧
⎨

⎩
x(t + 1) = Ax(t) + Bu(t), t ≥ 0,

y(t) = Cx(t) + Du(t).
(3.3)

In other words, y(t; x0, u) = Cx(t; x0, u) + Du(t), where x(t; x0, u) is given by (3.1).
The realization � = (A,B,C,D) is called observable if for some input sequence the
following implication holds:

y(t; x0, u) = y(t; x̃0, u), t ≥ 0 ⇒ x0 = x̃0. (3.4)

This means that the initial state at time t = 0 is uniquely determined by the
inputs and outputs. The particular choice of the input u is irrelevant here. Indeed,
x(t; x0, u) = x(t; x0, 0) +∑t−1

j=0 At−1−jBu(j), and hence y(t; x0, u) = y(t; x0, 0) +
∑t−1

j=0 CAt−1−jBu(j) + Du(t), so (3.4) holds if and only if

y(t; x0, 0) = y(t; x̃0, 0), t ≥ 0 ⇒ x0 = x̃0. (3.5)

A state x in the state space R
n is said to be unobservable over the time interval t =

0, . . . , k − 1 if y(t; x, 0) = CAtx = 0, t = 0, . . . , k − 1. The set of all states that are
unobservable over t = 0, . . . , k − 1 is denoted by

Nk(�) = {x ∈ R
n | y(t; x, 0) = 0 for t = 0, . . . , k − 1}.

It follows that

Nk(�) = Ker

⎛
⎜⎜⎜⎜⎝

C

CA
...

CAk−1

⎞
⎟⎟⎟⎟⎠

. (3.6)
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Theorem 3.2.1 Let � = (A,B,C,D) be a realization of the system � with state space
dimension n. Then the following statements are equivalent:

(i) � is observable,

(ii) rank

⎛
⎜⎜⎜⎜⎝

C

CA
...

CAn−1

⎞
⎟⎟⎟⎟⎠

= n,

(iii) the matrix
∑n−1

j=0(A
T )jCT CAj is non-singular.

Proof (i) ⇔ (ii). By the Cayley-Hamilton theorem, the matrix At (t ≥ n) is a linear
combination of the matrices I,A, . . . , An−1. This means that Nt (�) = Nn(�) for all
t ≥ n. According to (3.5), the realization is observable if and only if

{0} = ∩k≥1Nk(�),

which in turn is equivalent to

{0} = Nn(�).

The result now follows from (3.6).
(ii) ⇔ (iii). This follows from the fact that rank M = rank MT M , and the matrix MT M

is non-singular if and only if its rank is n. ��
The equivalence of (i) and (iii) in Theorem 3.2.1 shows that observability is preserved

under small perturbations of the system parameters. Since the condition for observability
does not involve the matrices B and D, one says that (A,C) is observable if the realization
� = (A,B,C,D) is observable.

From Theorem 3.1.1 (iv) and Theorem 3.2.1 (iii) we see that there is a kind of duality
between observability and controllability, as (A,C) is observable if and only if (AT ,CT )

is controllable.

Example 3.2.1 Consider the realization (2.13) given in Example 2.3.1. The state space
dimension is n = 2, and

A =
(

β(1 + δ) −βδ

1 0

)
, C =

(
β(1 + δ) −βδ

)
,
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so that

(
C

CA

)
=
(

β(1 + δ) −βδ

β2(1 + δ)2 − βδ −β(1 + δ)βδ

)
.

This matrix has rank 2 if and only if βδ �= 0, so the realization is observable if and only
if β �= 0 and δ �= 0. In our model of a national economy we may assume that β > 0 and
δ > 0, and hence for that case the system observable.

Next we consider the three dimensional realization of this system discussed in Sect. 1.4
with

A =
⎛

⎜⎝
0 0 β

−δ 0 βδ

δ 0 β(1 + δ)

⎞

⎟⎠ , C =
(
−δ 0 β(1 + δ)

)
.

This gives

⎛

⎜⎝
C

CA

CA2

⎞

⎟⎠ =
⎛

⎜⎝
∗ 0 ∗
∗ 0 ∗
∗ 0 ∗

⎞

⎟⎠ ,

where ∗’s denote entries that depend on β and δ. Clearly, this matrix has rank 2 at most,
so that this realization is not observable. In particular, it is not possible to reconstruct the
second state variable.

This result may be understood by considering the model in Sect. 1.4 in more detail. If
we apply the input g(t) = 0, t ≥ 0, then the output y(t), t ≥ 0 can be used to reconstruct
the initial values y(−1) and y(−2) in (1.33). It follows from (1.30) and (1.31) that also
c(t), t ≥ −1 and i(t), t ≥ 0, can be derived from this information. However, the state

x(t) =
(
c(t − 1) i(t − 1) y(t − 1)

)T
at time t = 0 also contains i(−1), and this can not

be calculated from the information in y(t), t ≥ 0. Therefore, this state component is not
observable.

Another characterization of observability can be given in terms of the eigenvalues of the
matrix A. Let � = (A,B,C,D), and let N (�) be the subspace of unobservable states,

N (�) := ∩k≥1Nk(�) = ∩k≥1Ker CAk−1.

Note that N (�) = Nn(�) by the Cayley-Hamilton theorem. This subspace is invariant
under A, that is, if x ∈ N (�), then also Ax ∈ N (�). We denote by AN the restriction
of A to N (�) viewed as a map from N (�) to itself. If N (�) �= {0}, decompose R

n as
R

n = N (�)⊕N (�)⊥. (Here and in the sequel the symbol ⊕ denotes the orthogonal direct
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sum of two subspaces.) Choosing bases in N (�) and N (�)⊥, and combining these bases
to a basis for Rn, we can write a matrix for A with respect to this basis. The invariance of
N (�) implies that this matrix for A has the form

A =
(

A11 A12

0 A22

)
. (3.7)

Here, A11 is a matrix representation of AN . So, if N (�) �= {0}, then AN has eigenvalues.
Every eigenvalue of AN is also an eigenvalue of A. An eigenvalue of A is called a
(A,C)-observable if it is not an eigenvalue of AN . The (A,C)-unobservable eigenvalues
are defined as the eigenvalues of A that are also eigenvalues of AN . Hence, in the
representation (3.7) the (A,C)-unobservable eigenvalues are those of A11, while the
observable eigenvalues are those of A22 that are not also eigenvalues of A11.

Theorem 3.2.2 Let � = (A,B,C,D) be a realization with state space dimension n.
Then the following statements are equivalent:

(i) � is observable,

(ii) rank

(
A − λI

C

)
= n for each λ ∈ C,

(iii) rank

(
A − λI

C

)
= n for each eigenvalue λ of A,

(iv) all eigenvalues of A are (A,C) observable.

Proof Let M(λ) =
(

A − λI

C

)
: Cn → C

n+p . It is important here that we consider this

as a map between complex vector spaces, as the eigenvalues of the (real) matrix A may be
complex, and its eigenvectors may be complex vectors.

(ii)⇔(iii) If λ is not an eigenvalue of A then M(λ) has rank n, so this equivalence is
trivial.

(iii)⇔(iv) Suppose rank M(λ) < n. Then there exists a (possibly complex) vector x �=
0 with M(λ)x = 0, so that Ax = λx and Cx = 0. This implies that CAt−1x = λt−1Cx =
0 for t ≥ 0, and the same holds true for the real and imaginary parts of the vector x. This
shows that λ is also an eigenvalue of AN , so that it is an (A,C)-unobservable eigenvalue.
Conversely, if λ is an (A,C)-unobservable eigenvalue then there exists x �= 0 with Ax =
λx and x ∈ N (�)+ iN (�). (Observe that N (�) is a real vector space.) This implies that
Cx = 0, so that M(λ)x = 0, and hence rank M(λ) < n.
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(i)⇔(iv) If � is observable then N (�) = {0} by definition, and hence there can be no
(A,C)-unobservable eigenvalues. On the other hand, if all eigenvalues of A are (A,C)-
observable, this means that N (�) = {0} so that � is observable. ��

The condition (iii) is called the Hautus test for observability.
By using transposition and the remark preceding Example 3.2.1, one obtains the notions

of controllable and uncontrollable eigenvalues. An eigenvalue λ of A is called an (A,B)-

controllable eigenvalue if rank
(
A − λI B

)
= n. Otherwise it is called an uncontrollable

eigenvalue. For example, if A =
(

1
2 0

0 1
2

)
and B =

(
1

0

)
, then 1

2 is not a controllable

eigenvalue. The following Hautus test for controllability is an immediate corollary of
Theorem 3.2.2.

Theorem 3.2.3 Let � = (A,B,C,D) be a realization with state space dimension n.
Then the following statements are equivalent:

(i) � is controllable,

(ii) rank
(
A − λI B

)
= n for each λ ∈ C,

(iii) rank
(
A − λI B

)
= n for each eigenvalue λ of A,

(iv) all eigenvalues of A are (A,B) controllable.

3.3 Structure Theory of Realizations

In this section we describe the structure of state space representations of a given system.
We pay particular attention to minimal realizations, that is, realizations with the lowest
state space dimension. As a first step, we show that realizations that are uncontrollable or
unobservable can be reduced to realizations of smaller dimension. For this purpose we use
the following terminology.

Two realizations � = (A,B,C,D) and �0 = (A0, B0, C0,D0) are called similar if
(i) D = D0, (ii) � and �0 have the same state space R

n and (iii) there exists an invertible
linear transformation S : Rn → R

n such that A = SA0S
−1, B = SB0, C = C0S

−1.

The realization � is called a dilation of �0 or equivalently, �0 is a reduction of �,
if (i) D = D0, and (ii) for a suitable choice of A1, A2, A3, A4, A5, B1 and C2 the three
identities in (2.20) hold true, that is,

A =
⎛
⎜⎝

A1 A3 A4

0 A0 A5

0 0 A2

⎞
⎟⎠ , B =

⎛
⎜⎝

B1

B0

0

⎞
⎟⎠ , C =

(
0 C0 C2

)
.
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It is an easy exercise to show that similar realizations produce the same input-output
behavior, provided both are started with initial state zero. Likewise, if � is a dilation of
�0, then these two realizations produce the same input-output behavior when started with
initial state zero.

Let � = (A,B,C,D) be a realization of the system �, and let the state space
dimension of this realization be n. The reachable subspace associated with � is denoted
by R(�) and the unobservable subspace by N (�). Thus

R(�) = Im
(
B AB . . . An−1B

)
,

N (�) =
n−1⋂

k=0

Ker CAk.

Observe that R(�) = Im
(
B AB A2B . . .

)
by the Cayley-Hamilton theorem. The state

space is decomposed as a direct sum as

R
n = X1+̇X2+̇X3+̇X4, (3.8)

where X1 = N (�) ∩ R(�), X1+̇X2 = N (�), X1+̇X3 = R(�), and {N (�) +
R(�)}+̇X4 = R

n. (Here and in the sequel +̇ denotes the direct sum of subspaces.) Let Xi

have dimension ni, i = 1, 2, 3, 4, so that n1 + n2 + n3 + n4 = n, and let b1, . . . , bn be a
basis for Rn ordered in such a way that the first n1 vectors are a basis for X1, the next n2

vectors are a basis for X2, the next n3 vectors from a basis of X3, and finally, the last n4

vectors are a basis for X4. Let S =
(
b1 . . . bn

)
, so that S is invertible, and let

�̃ := (S−1AS, S−1B,CS,D). (3.9)

As � and �̃ are similar, both are realizations of �. The matrices S−1AS, S−1B and CS

have a special structure, namely

S−1AS =

⎛
⎜⎜⎜⎝

A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44

⎞
⎟⎟⎟⎠ ,

S−1B =

⎛

⎜⎜⎜⎝

B1

0

B3

0

⎞

⎟⎟⎟⎠ , CS =
(

0 0 C3 C4

)
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The partitioning is in accordance with the above decomposition of the state space, and we
have used that AN (�) ⊂ N (�), AR(�) ⊂ R(�), Im B ⊂ R(�) and N (�) ⊂ Ker C. It
follows that �̃ is a dilation of �0 = (A33, B3, C3,D).

Proposition 3.3.1 The quadruple �0 = (A33, B3, C3,D) is a controllable and observ-
able realization of �.

Proof As �̃ is a dilation of �0 it is easily checked that they have the same impulse
response. Therefore they represent the same system �.

The realization �0 is controllable. If this were not the case, then A33 has an (A33, B3)-
uncontrollable eigenvalue λ. Thus there exists a vector x3 �= 0 in C

n3 such that

x∗
3A33 = λx∗

3 , x∗
3B3 = 0.

Let x =
(

0 0 xT
3 0
)T

, then x∗(S−1AS)kS−1B = 0, k = 0, 1, 2, . . ., so that x is

orthogonal to S−1R(�). As on the other hand Sx ∈ X3 ⊂ R(�) it follows that x = 0,
and hence x3 = 0. This shows that �0 is controllable.

The realization �0 is also observable. Let x3 ∈ N (�0), so C3A
k
33x3 = 0 for each

k ≥ 0. Hence CS(S−1AS)kx = 0, k ≥ 0, where x =
(

0 0 xT
3 0
)T

. This means that

Sx ∈ N (�) = X1+̇X2, but also Sx ∈ X3 and therefore x = 0 and thus also x3 = 0. ��

Proposition 3.3.2 Two controllable and observable realizations of the same system � are
similar, and the corresponding state space similarity transformation is unique.

Proof Let �1 = (A1, B1, C1,D) and �2 = (A2, B2, C2,D) be controllable and
observable realizations of � with state space dimensions n1 and n2, respectively. Let G(·)
be the impulse response matrix of �, then

G(j) = C1A
j−1
1 B1 = C2A

j−1
2 B2, j ≥ 1. (3.10)

Let n be the largest of the two numbers n1 and n2, and let Hn be the block Hankel matrix
defined by

Hn =

⎛

⎜⎜⎜⎜⎝

G(1) G(2) . . . G(n)

G(2) G(3) . . . G(n + 1)
...

...
...

G(n) G(n + 1) . . . G(2n − 1)

⎞

⎟⎟⎟⎟⎠
.



3.3 Structure Theory of Realizations 37

It follows from (3.10) that Hn = �1(n)�1(n) = �2(n)�2(n), where

�i(n) =

⎛

⎜⎜⎜⎜⎝

Ci

CiAi

...

CiA
n−1
i

⎞

⎟⎟⎟⎟⎠
, �i(n) =

(
Bi AiBi . . . An−1

i Bi

)
, i = 1, 2. (3.11)

As �1 and �2 are controllable and observable and n ≥ ni, i = 1, 2, it follows that
Im �i(n) = R

ni and Ker �i(n) = {0}, so that rank Hn = n1 = n2 = n.
To prove the similarity of �1 and �2, we define S : Rn → R

n as follows. For every
x ∈ R

n and every k ≥ n there exist uj ∈ R
m, j = 0, . . . , k − 1, so that

x =
k−1∑

j=0

A
j
1B1uj . (3.12)

We define Sx = ∑k−1
j=0 A

j
2B2uj . This definition does not depend on the particular

choice of the vectors u0, . . . , uk−1. Indeed, let k′ ≥ n and x = ∑k′−1
j=0 A

j

1B1u
′
j . By

adding zero vectors if necessary we may assume without loss of generality that k = k′.
Let u and u′ be the vectors in (Rm)k with components uj and u′

j , respectively. Then
Hk(u − u′) = �1(k)�1(k)(u − u′) = �1(k)(x − x) = 0. As Hk = �2(k)�2(k) it follows
that �2(k)�2(k)(u−u′) = 0, and as �2 is observable this implies that �2(k)(u−u′) = 0,
that is
∑k−1

j=0 A
j
2B2uj =∑k−1

j=0 A
j
2B2u

′
j . This shows that S is well-defined.

It is straightforward to check that S is a linear operator that is surjective, as Im S =
Im �2(n) = R

n because �2 is controllable. Therefore S is invertible. From the definition
of S it follows that SB1u = B2u for every u ∈ R

m, so that SB1 = B2. Further, for x as in
(3.12) there holds

S(A1x) = S

( k−1∑

j=0

A
j+1
1 B1uj

)
=

k−1∑

j=0

A
j+1
2 B2uj = A2

( k−1∑

j=0

A
j
2B2uj

)
= A2Sx.

As �1 is controllable this implies that SA1 = A2S. Finally, for x as in (3.12) it follows
from (3.10) that

C2Sx =
k−1∑

j=0

C2A
j

2B2uj =
k−1∑

j=0

C1A
j

1B1uj = C1x,
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so that C2S = C1. We have proved that A2 = SA1S
−1, B2 = SB1, C2 = C1S

−1, and
hence �1 and �2 are similar.

To prove the uniqueness of S, let S̃ : Rn → R
n be invertible with A2 = S̃A1S̃

−1, B2 =
S̃B1, C2 = C1S̃

−1, Then C2A
j

2S = C1A
j

1 = C2A
j

2S̃, j ≥ 0, and as (A2, C2) is
observable this implies that S = S̃. ��

We now come to the two central results of realization theory.

Theorem 3.3.3 A realization is minimal if and only if it is controllable and observable.

Proof First we prove that a minimal realization is observable and controllable. Let � be
a realization of the system � with state space R

n, and suppose that � is not observable
or not controllable. In terms of the decomposition (3.8) of the state space, this means that
N (�) = X1+̇X2 �= {0}, or R(�) �= R

n so that X4 �= {0}. Therefore dim X3 < n, and
the realization of Proposition 3.3.1 has dimension smaller than n. This shows that � is not
minimal.

To prove the converse, let � be a controllable and observable realization of � and
let �0 be a minimal realization of �, so that �0 is also controllable and observable.
Proposition 3.3.2 shows that � and �0 are similar, so that the state space dimensions
of � and �0 are equal. Therefore � is also minimal. ��

Theorem 3.3.4 (i) Two minimal realizations of � are similar, and the corresponding
similarity transformation is unique.
(ii) Every realization of � is similar to a dilation of a minimal realization.

Proof (i) This follows directly from Theorem 3.3.3 and Proposition 3.3.2.
(ii) Let � be a realization of � with state space Rn = X1+̇X2+̇X3+̇X4, decomposed as in
(3.8). Then � is similar to the realization �̃ in (3.9), and �̃ is a dilation of the controllable
and observable realization �0 in Proposition 3.3.1. Theorem 3.3.3 implies that �0 is a
minimal realization. ��
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3.4 An Algorithm for Minimal Realizations

In this section we present a matrix algorithm to construct minimal realizations for systems
� with rational transfer function. The impulse response of � is denoted by G(·), and for
every k ≥ 1 we define the pk × mk block Hankel matrix

Hk =

⎛

⎜⎜⎜⎜⎝

G(1) G(2) . . . G(k)

G(2) G(3) . . . G(k + 1)
...

...
...

G(k) G(k + 1) . . . G(2k − 1)

⎞

⎟⎟⎟⎟⎠

The result in Theorem 2.5.1 shows that the minimal state dimension of realizations of �

is given by n = maxk≥1 rankHk. Let �0 be a minimal realization, for instance the one
constructed in Theorem 2.5.1. Then Hn = �(n)�(n) where �(n) and �(n) are defined
in (3.11), and Im �(n) = R

n, Ker �(n) = {0}. This means that rank Hn = n, a result we
shall use shortly in the algorithm. In what follows we assume that n > 0, as the case n = 0
is trivial. The following steps provide an algorithm to construct a minimal realization from
a given impulse response.

Step 1. Determine n = maxk≥1 rank Hk, and recall that rank Hn = n.
Step 2. Construct a minimal rank decomposition of Hn, that is, a factorization Hn = ��

where � is a pn × n matrix and � is a n × mn matrix. Let

� =
(
�1 . . . �n

)
, � =

⎛

⎜⎜⎝

�1
...

�n

⎞

⎟⎟⎠ ,

where �j are n × m matrices and �j are p × n matrices, for j = 1, . . . , n. Define
B = �1 and C = �1, and let D = G(0).

Step 3. Determine a right inverse �+ of � and a left inverse of �+ of �, and define

A = �+

⎛

⎜⎜⎜⎜⎝

G(2) G(3) . . . G(n + 1)

G(3) G(4) . . . G(n + 2)
...

...
...

G(n + 1) G(n + 2) . . . G(2n)

⎞

⎟⎟⎟⎟⎠
�+.

Theorem 3.4.1 The realization � = (A,B,C,D) constructed in the three steps above is
a minimal realization of �.

Proof Let �̃ = (Ã, B̃, C̃, D̃) be a minimal realization of �. According to Theorem 2.5.1
�̃ has state space dimension equal to n. Clearly, D̃ = G(0) = D, and as G(j) = C̃Ãj−1B̃
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there holds Hn = �̃�̃, with �̃ and �̃ defined as in (3.11) in terms of Ã, B̃, C̃. Then
Hn = �̃�̃ = �� are two minimal rank decompositions, so there exists an invertible n×n

matrix S such that �̃ = �S and �̃ = S−1�. Comparing � and � with �̃ and �̃ it follows
that CS = C̃ and S−1B = B̃. Since Hn = �� is a minimal rank decomposition of Hn,
it follows that � has a left inverse �+ and � has a right inverse �+. At this point it is
instructive to note that �̃Ã�̃ is equal to the matrix

⎛
⎜⎜⎜⎜⎝

G(2) G(3) . . . G(n + 1)

G(3) G(4) . . . G(n + 2)
...

...
...

G(n + 1) G(n + 2) . . . G(2n)

⎞
⎟⎟⎟⎟⎠

.

Thus, the matrix A in step 3 is given by A = �+�̃Ã�̃�+ = �+�SÃS−1��+ =
SÃS−1. It follows that � = (SÃS−1, SB̃, C̃S−1, D̃), and hence � is also a minimal
realization. ��

To apply this algorithm we have to construct the factorization Hn = �� and the matrices
�+ and �+. This can be done in many ways. An explicit and convenient construction is
as follows. The singular value decomposition of Hn gives

Hn = U

(
D̂ 0

0 0

)
V T ,

where U and V are orthogonal matrices and D̂ is an invertible n×n diagonal matrix. (See
[20].) We rewrite this as

Hn = U

(
D̂

0

)(
In 0
)

V T .

Now define � = U

(
D̂

0

)
and � =

(
In 0
)

V T . Clearly Hn = ��, and it is easy to see

that this is a minimal rank decomposition of Hn. The matrices B and C are simply read

off from � and �. In step 3 we can take �+ =
(
D̂−1 0
)

UT and �+ = V

(
In

0

)
.

Example 3.4.1 As an illustration, we consider again the example of a national economy
described by Eq. (2.12) and the minimal state space model (2.13). We assume that β = 0.5
and δ = 1 in this model. Using (2.13) and Theorem 2.3.1, it follows that the impulse
response of this system is given by G(0) = 1, G(1) = 1, G(2) = 0.5, G(3) = 0,
G(4) = −0.25, and G(4k + j) = (−0.25)kG(j) for all k ≥ 1 and j = 1, 2, 3, 4.
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Step 1 of the algorithm gives n = 2 and

H2 =
(

1 0.5

0.5 0

)
.

For the rank decomposition we could of course use the singular value decomposition.
However, in this case it can be taken very simple, as the matrix H2 is invertible. So, we
can use � = H2 and � = I2. Using this minimal rank decomposition we see that B is the

first column of I2 and C is the first row of H2, that is, B =
(

1

0

)
and C =

(
1 0.5
)

. Finally,

A = H−1
2

(
G(2) G(3)

G(3) G(4)

)
=
(

0 −0.5

1 1

)
.

In Examples 3.1.1 and 3.2.1 we considered the observable and controllable realization
given by

A0 =
(

1 −0.5

1 0

)
, B0 =

(
1

0

)
, C =
(

1 −0.5
)

.

It is easily verified that (A,B,C) = (SA0S
−1, SB0, C0S

−1) with S =
(

1 −1

0 1

)
. It follows

that (A,B,C) as constructed by the algorithm is indeed a minimal realization.

3.5 The Subspace Identification Algorithm

Assume that we have given a linear system

xk+1 = Axk + Buk,

yk = Cxk + Duk,

with uk ∈ R
m, xk ∈ R

n and yk ∈ R

 and x0 = 0. Suppose that the sequences (uk)k and

(yk)k are given and that we want to reconstruct the system matrices (A,B,C,D) from
these data. One should not expect to find a unique solution since for any invertible Q the
quadruple (Q−1AQ,Q−1B,QC,D) will generate the same outputs from the inputs as
does the system (A,B,C,D).

The results in this section are based upon the subspace identification algorithm as it is
described for a more general class of system in [55].
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For the results that we are going to describe we need two integers, i and j , with i larger
than n and j much larger than i. From the data we construct a number of matrices. We
assume k ≤ p to be integers and put

Uk|p =

⎛
⎜⎜⎜⎜⎝

uk uk+1 · · · uk+j−1

uk+1 uk+2 uk+j

...
...

up up+1 · · · up+j−1

⎞
⎟⎟⎟⎟⎠

, Yk|p =

⎛
⎜⎜⎜⎜⎝

yk yk+1 · · · yk+j−1

yk+1 yk+2 yk+j

...
...

yp yp+1 · · · yp+j−1

⎞
⎟⎟⎟⎟⎠

,

Hk|k+i−1 =
(

Uk|k+i−1

Yk|k+i−1

)

Note that Hk|k+i−1 is a (
 + m)i × j matrix.
Suppose for a moment that we have a realization (A,B,C,D). Then we also can

construct the sequence of states (xk)k . We define the n × j matrix

Xk =
(
xk xk+1 · · · xk+j−1

)
.

By Sect. 2.3, see formula (2.14) and following, we have the relation

Yk|k+i−1 = �Xk + HT Uk|k+i−1, (3.1)

with

� =

⎛

⎜⎜⎜⎜⎝

C

CA
...

CAi−1

⎞

⎟⎟⎟⎟⎠
, HT =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D
.. .

...
...

...
. . .

. . . 0

CAi−2B CAi−3B · · · CB D

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

So each row in Yk|k+i−1 is a combination of the rows of Xk and Uk|k+i−1. Assuming that
these rows are independent for the large j we did choose, which is natural in this context,
we have that

rank Hk|k+i−1 = mi + n, (j ≥ mi + n), (3.2)

and also

rank

(
H1|i

Hi+1|2i

)
= 2mi + n, (j ≥ 2mi + n). (3.3)
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Observe that from (3.2) and (3.3) we can deduce the value of n. In fact something stronger
holds, as stated in the following theorem.

For a matrix M we denote the row space, i.e., the span of the row vectors, by rowM .

Theorem 3.5.1 Assume that (3.2) and (3.3) hold true. Then

row Xi+1 = row H1|i ∩ row Hi+1|2i . (3.4)

Proof Since

dim row

(
H1|i

Hi+1|2i

)
= dim row H1|i + dim row Hi+1|2i − dim

(
row H1|i ∩ rowHi+1|2i

)
,

we conclude from (3.2) and (3.3) that dim
(
row H1|i ∩ row Hi+1|2i

) = n. Since we assume
that � has full rank, there exists a matrix �+ such that �+� = In. Therefore (3.1) gives
that Xi+1 = �+Yi+1|2i − �+HT Ui+1|2i and thus row Xi+1 ⊂ rowHi+1|2i . Similarly we
find that X1 ⊂ row H1|i . Note that

Xi+1 = AiX1 +
(
Ai−1B Ai−2B · · · B

)
U1|i .

Therefore also row Xi+1 ⊂ row H1|i . Now use that both row Xi+1 and row H1|i ∩
row Hi+1|2i have dimension n, to conclude the equality (3.4). ��

We are now ready to describe the algorithm to determine a system (A,B,C,D) that
with the given input sequence (uk)k generates the given output sequence (yk)k .

The first step is to find a basis for the space row H1|i ∩ row Hi+1|2i . We know that such
a basis consists of n row vectors. A way to compute such a basis will be described below.
Here we use these n row vectors as rows for a matrix X′

i+1. The row space of X′
i+1 is then

equal to the row space of Xi+1. So QX′
i+1 = Xi+1, where Q is an unknown invertible

matrix. Also we know that the rows of X′
i+1 are combinations of the rows of Hi+1|2i . So we

have that X′
i+1 = T Hi+1|2i for some n×(
+m)i matrix T . Here T represents the way the

basis is constructed from all rows. We put X′
i = T Hi|2i−1. All but one column (the first)

of X′
i corresponds with a column of X′

i+1. For these columns we know that multiplying
with Q gives the corresponding column of Xi . Since we took j large it follows that also
QX′

i = Xi .
If we would have possession of A and B we would have Xi+1 = AXi +BUi|i and thus

X′
i+1 = Q−1AQX′

i +Q−1BUi|i . But we know neither Q nor A and B. On the other hand
knowing Q−1AQ and Q−1B is good enough. This brings us at the second step. Solve A′
and B ′ from the equation

X′
i+1 = A′X′

i + B ′Ui|i .
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With A′, B ′ and Ui|i we construct the corresponding states (x̃k)k and put

X̃i =
(
x̃i · · · x̃i+j−1

)
.

Then solve C′ and D′ from the equation

Yi|i = C′X̃i + D′Ui|i .

This way we have found system matrices (A′, B ′, C′,D′) such that the system

xk+1 = A′xk + B ′uk,

yk = C′xk + D′uk,

generates the given output sequence (yk)k from the given input sequence (uk)k with
x0 = 0.

Finally it remains to describe a method to actually obtain a basis for the space
row H1|i ∩ row Hi+1|2i . First we use the singular value decomposition

(
H1|i

Hi+1|2i

)
=
(

U11 U12

U21 U22

)(
S11 0

0 0

)
V T = USV T (3.5)

Here the sizes of the matrices are

U11 : (mi + 
i) × (2mi + n), U12 : (mi + 
i) × (2
i − n)

U21 : (mi + 
i) × (2mi + n), U22 : (mi + 
i) × (2
i − n)

S11 : (2mi + n) × (2mi + n).

By applying UT to the left of (3.5) and considering the last 2
i − n rows, we get that

UT
12H1|i + UT

22Hi+1|2i = 0.

So the (2
i − n) rows of UT
22Hi+1|2i are in row H1|i and in row Hi+1|2i and span the

intersection of these row spaces. Therefore a basis of row
(
UT

22Hi+1|2i

)
is also a basis

of Xi+1. To find a basis of row
(
UT

22Hi+1|2i

)
we once again use the singular value

decomposition and write

UT
22Hi+1|2i = U ′S′(V ′)T ,
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with U ′ of size (2
i − n) × (2
i − n), S′ of size (2
i − n) × j , and (V ′)T of size j × j .
However, S′ has only n nonzero singular values on its diagonal. Write

S′ =
(

S′
11 0

0 0

)
, (V ′)T =

(
V ′

11 V ′
12

V ′
21 V ′

22

)
,

where S′
11 is n × n, and

(
V ′

11 V ′
12

)
is n × j . The rows of

(
V ′

11 V ′
12

)
form an orthogonal

basis of row
(
UT

22Hi+1|2i

)
and hence of row H1|i ∩ row Hi+1|2i . So we choose the desired

X′
i+1 by putting X′

i+1 =
(
V ′

11 V ′
12

)
. Finally we also need the matrix X′

i . To that end we

notice that

(
V ′

11 V ′
12

)
= (S′

11

)−1

(
U ′

11

U ′
21

)T

UT
22Hi+1|2i = T Hi+1|2i,

where T = (S′
11

)−1

(
U ′

11

U ′
21

)T

UT
22, and hence we choose

X′
i = T Hi|2i−1 = (S′

11

)−1
(
(U ′

11)
T (U ′

21)
T
)

UT
22Hi|2i−1.

3.6 An Example

Let

A0 =
(

−1 1

0 1

)
, B0 =

(
0

1

)
, C0 =

(
1 0
)

, D0 = 1,

and consider the system

xk+1 = A0xk + B0uk, yk = C0xk + D0uk,

Then, with x0 = 0 and with input sequence

u =
(

1 0 −1 1 0 −2 1 0 −3 1 0 −4 1 0 −5 · · ·
)

we get the outputs

y =
(

1 0 0 1 0 −1 1 −1 −2 0 −2 −4 −1 −4 −6 · · ·
)

.
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We will use the subspace algorithm to determine a system from the uk and yk that generates
the output sequence (yk)

∞
k=1 from the input sequence (uk)

∞
k=1.

We choose numbers i and j with i not to small (larger than the estimated state space
dimension) and j much larger than i. So we take i = 3 and j = 10. Note that m = 
 = 1
for the system we have under consideration. From the given data we construct 2i × j =
6 × 10—matrices

H1|3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1 u2 · · · u10

u2 u3 · · · u11

u3 u4 · · · u12

y1 y2 · · · y10

y2 y3 · · · y11

y3 y4 · · · y12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, H4|6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u4 u5 · · · u13

u5 u6 · · · u14

u6 u7 · · · u15

y4 y5 · · · y13

y5 y6 · · · y14

y6 y7 · · · y15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then

H1|3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 1 0 −2 1 0 −3 1

0 −1 1 0 −2 1 0 −3 1 0

−1 1 0 −2 1 0 −3 1 0 −4

1 0 0 1 0 −1 1 −1 −2 0

0 0 1 0 −1 1 −1 −2 0 −2

0 1 0 −1 1 −1 −2 0 −2 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

H4|6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −2 1 0 −3 1 0 −4 1

0 −2 1 0 −3 1 0 −4 1 0

−2 1 0 −3 1 0 −4 1 0 −5

1 0 −1 1 −1 −2 0 −2 −4 −1

0 −1 1 −1 −2 0 −2 −4 −1 −4

−1 1 −1 −2 0 −2 −4 −1 −4 −6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We determine a basis for the intersection of the row spaces of H1|3 and H4|6. Although it
is not so straightforward, one can check that the rows of the matrix X′

4 given by

X′
4 =
(

0 1 0 −1 1 −1 −2 0 −2 −4

0 0 1 0 −1 1 −1 −2 0 −2

)

are indeed a basis for the intersection of the row spaces of H1|3 and H4|6. Indeed, from
the theory we already know that the dimension of the intersection of these row spaces is
2(mi + n) − (2mi + n) = n, and by inspection we see that the ranks of H13 and H14 are

both 5, while by computation one can see that the rank of

(
H13

H24

)
is 8. So n = 2.
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To be more precise, we have that

X′
4 =
(

0 0 1 1 0 0

0 0 0 0 1 0

)
H13

and

X′
4 =
(

0 −1 0 0 1 0

−1 0 0 1 0 0

)
H46.

This also shows that we can take

T =
(

0 −1 0 0 1 0

−1 0 0 1 0 0

)
.

Next we use T to determine the X′
3, the ’states’ one unit in time earlier, by X′

3 = T H35,
where

H35 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 −2 1 0 −3 1 0 −4

1 0 −2 1 0 −3 1 0 −4 1

0 −2 1 0 −3 1 0 −4 1 0

0 1 0 −1 1 −1 −2 0 −2 −4

1 0 −1 1 −1 −2 0 −2 −4 −1

0 −1 1 −1 −2 0 −2 −4 −1 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Then

X′
3 =
(

0 0 1 0 −1 1 −1 −2 0 −2

1 0 0 1 0 −1 1 −1 −2 0

)

We next determine A and B from the equation

X′
4 = AX′

3 + B
(
u3 u4 · · · u12

)
=
(
A B

)(
X′

3

U3|3

)

So

(
X′

3

U3|3

)
=
⎛

⎜⎝
0 0 1 0 −1 1 −1 −2 0 −2

1 0 0 1 0 −1 1 −1 −2 0

−1 1 0 −2 1 0 −3 1 0 −4

⎞

⎟⎠ .
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Solving for
(
A B

)
from

(
A B

)(
X′

3

U3|3

)
= X′

4,

one finds

A =
(

0 1

1 0

)
, B =

(
1

0

)
.

With A and B we generate, starting at x̃0 = 0 a new set of states x̃k

X̃ =
(

0 1 0 0 1 0 −1 1 −1 −2 0 −2 −4 −1 −4 −6 · · ·
0 0 1 0 0 1 0 −1 1 −1 −2 0 −2 −4 −1 −4 · · ·

)

Then X̃3 is the matrix composed of the columns 3 to 12 of this matrix:

X̃3 =
(

0 0 1 0 −1 1 −1 −2 0 −2

1 0 0 1 0 −1 1 −1 −2 0

)

and solving C and D from Y3|3 = CX̃3 + DU3|3 we obtain

C =
(

0 1
)

, D = 1

as indeed

Y3|3 =
(

0 1 0 −1 1 −1 −2 0 −2 −4
)

=
(

0 1 1
)
⎛

⎜⎝
0 0 1 0 −1 1 −1 −2 0 −2

1 0 0 1 0 −1 1 −1 −2 0

−1 1 0 −2 1 0 −3 1 0 −4

⎞

⎟⎠ .

The system (A,B,C,D) indeed generates the outputs yk from the inputs uk . Notice
that the system (A,B,C,D) is similar to the system (A0, B0, C0,D0), which we started

with. To be precise A0 = QAQ−1, QB = B0 and CQ−1 = C0 with Q =
(

0 1

1 1

)
.
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Input-output systems are applied in control, where the inputs are chosen in such a way
that the system shows satisfactory performance. Stability is an important objective, that is,
disturbances have a limited effect on the system. Systems can be stabilized by feedback,
where past performance is used to choose the input variables.

4.1 Internal Stability

Stated in general terms, a system is stable if perturbations have no long lasting effects.
That is, if a system at rest is brought out of equilibrium, then the dynamics tends to bring
the system back to its original position. If a system is not stable, then we may wish to
make it stable by applying an appropriate control input to the system. In this chapter we
consider these questions for linear systems. As a first step we consider the stability of the
state vector when no control is applied. The system is then given by the equation

x(t + 1) = Ax(t), (4.1)

where A is an n× n matrix with real entries. Clearly, the zero vector is an equilibrium, i.e.
the function x(t) ≡ 0 is a constant solution, and the question is whether the state vector
tends to zero when started at x(0) = x0 �= 0.

Definition 4.1.1 The system (4.1) is called asymptotically stable if x(t) → 0 for t → ∞
for every initial value x(0) = x0 ∈ R

n.

We describe two methods to check the stability of (4.1), one in terms of eigenvalues
and the other in terms of linear matrix inequalities.
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Theorem 4.1.2 The system (4.1) is asymptotically stable if and only if A has all its
eigenvalues in the open unit disc.

Proof For simplicity we prove this result only under the simplifying assumption that
A is diagonalizable, The general case requires the use of the Jordan canonical form of
A. Readers that are familiar with the Jordan canonical form may adjust the following
argument to prove the general case.

Assume A = Sdiag (λ1, . . . , λn)S
−1, then Ak = Sdiag (λk

1, . . . , λ
k
n)S

−1. If all |λi | < 1
then λt

i → 0 as t → ∞ for all i. Therefore x(t) = Atx0 → 0 for t → ∞ for every initial
vector x(0) = x0. Conversely, suppose |λi | ≥ 1 for some i, say for i = 1. Let x(0) = x0

be a (complex) eigenvector of A corresponding to λ1, then x(t) = Akx0 = λt
1x0, and

‖x(t)‖ = |λ1|t‖x0‖. This does not tend to zero, so that (4.1) is not asymptotically stable.
��

The matrix A is called stable if all its eigenvalues are in the open unit disc. The next
result is a test on the stability of a matrix in terms of positive definite matrices.

Theorem 4.1.3 An n×n matrix A is stable if and only if there is a positive definite matrix
P such that P − AT PA is positive definite.

This is a corollary of the following result; it will be proved after the next result.

Theorem 4.1.4 Let (A,C) be observable, then A is stable if and only if there is a positive
definite solution of the equation

P − AT PA = CT C. (4.2)

In that case P is unique and is given by

P =
∞∑

j=0

(AT )jCT CAj . (4.3)

Proof First suppose that A is stable. For simplicity we assume that A is diagonalizable,

the general case uses the Jordan canonical form again. So let A = Sdiag
(
λ1 . . . λn

)
S−1

with m = max1≤i≤n |λi | < 1. We first show that (4.3) is a convergent series. Now Aj =
Sdiag
(
λ

j
1 . . . λ

j
n

)
S−1, so that (with the induced matrix norm) ‖Aj‖ ≤ ‖S‖ · ‖S−1‖mj .

Therefore

‖(AT )jCT CAj‖ ≤ ‖(AT )j‖‖CT C‖‖Aj‖ ≤ ‖ST ‖‖(S−1)T ‖ · ‖S‖‖S−1‖‖CT C‖ · m2j ,
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so that ‖(AT )jCT CAj‖ ≤ c0m
2j for some constant c0. Hence the series (4.3) converges.

It is easy to see that P as defined in (4.3) satisfies (4.2), and as (AT )jCT CAj is positive
semidefinite for all j it follows that also P is positive semidefinite. It remains to show that
P is nonsingular. Suppose Px = 0, then (4.3) implies that (AT )jCT CAjx = 0 and hence
〈(AT )jCT CAjx, x〉 = 〈CAjx,CAjx〉 = ‖CAjx‖2 = 0. So CAjx = 0 for j ≥ 0 and as
(A,C) is observable this implies x = 0. The solution of (4.2) is also unique in this case.
Indeed, let Q be a solution of (4.2), let P be given by (4.3). Then

PQ−1 =
∞∑

j=0

(AT )jCT CAjQ−1

=
∞∑

j=0

(AT )jQAjQ−1 −
∞∑

j=0

(AT )jAT QAAjQ−1

=
∞∑

j=0

(AT )jQAjQ−1 −
∞∑

j=1

(AT )jQAjQ−1 = QQ−1 = I,

so that P = Q.
Conversely, suppose there is a solution P of (4.2). Then we have to show that A is

stable. Let λ be an eigenvalue of A, so that Ax = λx with x �= 0. Then

‖Cx‖2 = 〈CT Cx, x〉 = 〈(P − AT PA)x, x〉 =
= 〈Px, x〉 − 〈PAx,Ax〉 = (1 − |λ|2)〈Px, x〉.

As P is positive definite, either |λ| < 1 or |λ| = 1 with Cx = 0. However, Cx = 0 and
Ax = λx, x �= 0 is impossible as (A,C) is observable, see Theorem 3.2.2. Thus |λ| < 1,
so that A is stable. ��

Proof (of Theorem 4.1.3) Suppose that there exists a P > 0 such that P − AT PA > 0.
Put V = P − AT PA. This matrix is symmetric and positive definite. Hence there is a

unitary matrix U and a positive diagonal matrix � such that V = U�U∗. Put C = V
1
2 =

U�
1
2 U∗. Then P −AT PA = CT C. Since C = V

1
2 is positive definite, it is invertible and

hence (A,C) is observable. From Theorem 4.1.4 it now follows that A is stable.
The converse is immediate from Theorem 4.1.4 by taking C = I . ��

The dual version of Theorem 4.1.4 is the following result.

Theorem 4.1.5 Let (A,B) be controllable, thenA is stable if and only if there is a positive
definite solution of the equation

Q − AQAT = BBT . (4.4)
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In that case Q is unique and is given by

Q =
∞∑

j=0

AjBBT (AT )j . (4.5)

Equations (4.2) and (4.4) are called Stein equations (or discrete Lyapunov equations).
Their solutions P and Q given by (4.3) and (4.5) are called, respectively, the observability
Grammian and controllability Grammian of (A,B,C).

As an illustration we consider the stability of the second order difference equation

y(t) = ay(t − 1) + by(t − 2).

Introduce as state x(t) =
(

y(t − 1)

y(t − 2)

)
, then the equation can be written as

x(t + 1) =
(

a b

1 0

)
x(t)

y(t) =
(
a b

)
x(t).

The equilibrium solution y(t) ≡ 0 is asymptotically stable if and only if the equilibrium
state x(t) ≡ 0 is asymptotically stable. The eigenvalues of the state transition matrix are
given by

λ1,2 = 1
2a ± 1

2

√
a2 + 4b if a2 > −4b,

λ1,2 = 1
2a ± i

2

√−a2 − 4b if a2 ≤ −4b.

We consider three cases: (i) a2+4b > 0, a > 0; (ii) a2+4b > 0, a < 0; (iii) a2+4b ≤ 0.
In case (i) |λ1,2| < 1 if and only if 1

2a+ 1
2

√
a2 + 4b < 1, so that 0 ≤ 1

2

√
a2 + 4b < 1− 1

2a,

that is, 0 < a < 2 and b < 1 − a. In case (ii) |λ1,2| < 1 if and only if 1
2a − 1

2

√
a2 + 4b >

−1, so that 0 ≥ − 1
2

√
a2 + 4b > −1 − 1

2a, that is, −2 < a < 0 and b < 1 + a. In case
(iii) |λ1| = |λ2|, so |λ1,2| < 1 if and only if ( 1

2a)2 + (−b − 1
4a2) = −b < 1. Combining

these results, the system is stable if and only if (a, b) lies in the triangle in the following
Fig. 4.1.

Example 4.1.1 In Sect. 1.4 we considered a simple model for the macro-economic busi-
ness cycle. Taking the variables in deviation from their equilibrium values corresponding
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Fig. 4.1 The stability region for y(t) = ay(t − 1) + by(t − 2)

to a given level of government spending, the model is described by

c(t) = βy(t − 1),

i(t) = δ(c(t) − c(t − 1)),

y(t) = c(t) + i(t) + g(t).

Here c denotes consumption, y national income, i investment and g government expen-
ditures. Now assume that government spending is constant for t ≥ 0, so that g(t) = 0
for t ≥ 0. The economy is stable if the other variables tend to their equilibrium values
corresponding to this level of government spending, that is, if c(t), y(t) and i(t) all tend
to zero if t → ∞. Clearly it is necessary and sufficient that y(t) → 0 for t → ∞.

For t ≥ 0 the dynamics of national income is described by (1.33) with g(t) ≡ 0, that is,

y(t) = β(1 + δ)y(t − 1) − βδy(t − 2)

This is a second order difference equation with coefficients a = β(1 + δ) and b = −βδ.
From an economic point of view, the restrictions β > 0 and δ > 0 are reasonable. This
implies that a > 0 and b < 0. From the above result for general second order difference
equations it follows that this system is asymptotically stable if and only if b > −1 and
a + b < 1, that is, βδ < 1 and β < 1. The last restriction is plausible for economic
reasons, while the first restriction means that investors should not react too strongly to



54 4 Stability

increased consumption. Finally, the path towards equilibrium will show oscillations if the
characteristic roots of the equation are non-real, that is, if a2 + 4b < 0 or, equivalently,
β < 4δ

(1+δ)2 .

4.2 Input-Output Stability

So far we considered stability of the state of a system. This internal stability is closely
connected to external stability, which is defined as follows. We consider the system

⎧
⎨

⎩
x(t + 1) = Ax(t) + Bu(t), x(0) = 0,

y(t) = Cx(t) + Du(t).
(4.6)

Definition 4.2.1 The system (4.6) is called externally stable (or bounded-input, bounded-
output stable) if for each M > 0 there exists N > 0 such that ‖u(t)‖ ≤ M for t ≥ 0
implies ‖y(t)‖ ≤ N for t ≥ 0.

The next result gives a criterion in terms of the impulse response of the system.

Theorem 4.2.2 (i) The system (4.6) is externally stable if and only if

∞∑

j=0

‖G(j)‖ < ∞,

where G(j) = CAj−1B is the impulse response of (4.6) and G(0) = D.
(ii) If A is a stable matrix, then the system is externally stable.

Proof (i) Suppose that
∑∞

j=0 ‖G(j)‖ < ∞ and let u be an input sequence with ‖u(t)‖ ≤
M for all t ≥ 0. Then

‖y(t)‖ =
∥∥∥∥

t∑

j=0

G(t − j)u(j)

∥∥∥∥ ≤
t∑

j=0

‖G(t − j)‖‖u(j)‖ ≤ M ·
∞∑

j=0

‖G(j)‖.

So we can take N = M ·∑∞
j=0 ‖G(j)‖.

The converse we will prove first for single input, single output systems. Assume that
the system is externally stable. Let N be such that each input u with |u(t)| ≤ 1 for all t
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gives an output y with |y(t)| ≤ N . Now, for fixed j , define the input sequence v by

v(t) =
⎧
⎨

⎩

|G(j−t )|
G(j−t )

for all 0 ≤ t ≤ j, G(j − t) �= 0

0 for all other t ≥ 0.

As |v(t)| ≤ 1 for all t , the corresponding output satisfies |y(t)| ≤ N for all t and in
particular,

|y(j)| =
∣∣∣∣

j∑

t=0

G(j − t)v(t)

∣∣∣∣ =
j∑

t=0

|G(j − t)| =
j∑

t=0

|G(t)| ≤ N.

As this holds for all j , it follows that
∑∞

t=0 |G(t)| ≤ N < ∞.
For the general case we assume that the system is externally stable. To fix notation, the

input space is Rm, the output space is Rp. The single-input, single-output case one obtains
by using as input the l’th coordinate of u(t) and as output the k’th coordinate of y(t) is also
externally stable. Its impulse respons matrices are the 1 × 1 matrices G(j)k,l . Therefore∑∞

j=0 |G(j)k,l| < ∞. Now we use a well-known estimate of the norm of a matrix in terms

of the absolute values of its entries: ‖G(j)‖ ≤ ∑p,m

k,l=1 |G(j)k,l|. So
∑∞

j=0 ‖G(j)‖ ≤∑∞
j=0
∑p,m

k,l=1 |G(j)k,l| =∑p,m
k,l=1

∑∞
j=0 |G(j)k,l| < ∞.

(ii) We show this only for the case when A is diagonalizable, so that S−1AS =
diag (λ1, . . . , λn). As before, the general case requires the use of the Jordan canonical
form. Let the eigenvalues of A be ordered such that |λ1| ≥ |λj | for j = 1, . . . , n. Then
‖G(j)‖ ≤ ‖C‖ · ‖B‖ · ‖S‖ · ‖S−1‖ · |λ1|j−1 = c0|λ1|j−1 for some constant c0. If A is
stable, then |λ1| < 1, so that

∑∞
j=1 ‖G(j)‖ ≤ c0 ·∑∞

j=0 |λ1|j = c0
1−|λ1| < ∞. ��

Theorem 4.2.3 Let (4.6) be a minimal realization. Then (4.6) is externally stable if and
only if A is a stable matrix.

Proof Given the results in Theorem 4.2.2, it remains to prove that stability of the matrix
A follows from

∑∞
j=0 ‖CAjB‖ < ∞. Let λ be an eigenvalue of A, and let x �= 0 be

a corresponding eigenvector. As (A,C) is observable, we have Cx �= 0. As (A,B) is
controllable, there exist T ≥ 1 and an input sequence {u(t)}T −1

t=0 such that the state x(T ) at

time T resulting from this input sequence is equal to x, that is,
∑T −1

j=0 AT −1−jBu(j) = x.
Let this input sequence be continued with zero inputs from time T onwards, that is
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u(t) = 0, t ≥ T . The corresponding output is given by y(t) = ∑t−1
j=0 CAt−j−1Bu(j),

and for t ≥ T this equals

y(t) =
T −1∑

j=0

CAt−j−1Bu(j) = CAt−T
T −1∑

j=0

AT −j−1Bu(j) = (4.7)

= CAt−T x = λt−T Cx.

Using the first equality in (4.7) and defining M = max0≤j≤T −1 ‖u(j)‖, it follows that

‖y(t)‖ ≤
T −1∑

j=0

‖CAt−j−1B‖‖u(j)‖ ≤ M

T −1∑

j=0

‖CAt−j−1B‖ =

= M

t−1∑

i=t−T

‖CAiB‖ → 0

for t → ∞, because
∑∞

i=0 ‖CAiB‖ < ∞. As also ‖y(t)‖ = |λ|t−T ‖Cx‖ with Cx �= 0,
this can only converge to zero for t → ∞ if |λ| < 1. This shows that A is a stable matrix.

��

Example 4.2.1 We consider the model for the demand process in Example 1.1.3, given by

⎛

⎜⎜⎜⎜⎜⎝

T (t + 1)

B(t + 1)

S(t + 1)

S(t)

S(t − 1)

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

1 1 0 0 0

0 1 0 0 0

0 0 −1 −1 −1

0 0 1 0 0

0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

T (t)

B(t)

S(t)

S(t − 1)

S(t − 2)

⎞

⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎝

η(t + 1)

ξ(t + 1)

ω(t + 1)

0

0

⎞

⎟⎟⎟⎟⎟⎠

D(t) = T (t) + S(t) + ε(t).

Here D is the observed demand, T is the trend term with slope B, S is a seasonal term,

and η, ξ, ω and ε are noise terms. Taking D as output and
(
ε η ξ ω

)T
as input variables,

it is easily checked that this realization is controllable and observable, hence minimal. If
all noise terms are zero, then D(t) = 0 is an equilibrium. However, this equilibrium is not
asymptotically stable because the state transition matrix does not have all its eigenvalues
within the unit disc. In fact, the characteristic polynomial is given by (λ − 1)2(λ + 1)(λ +
i)(λ − i), so that all the eigenvalues are exactly on the unit circle.
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4.3 Stabilization by State Feedback

In control applications, one of the basic objectives is to construct stable systems. If a
system is not stable by itself, the question arises whether it can be stabilized by choosing
the control inputs appropriately. This is called the stabilization problem. More in particular,
we wish to construct a control law such that the system is brought to rest from any given
initial position. The idea is that the system may be excited by external disturbances, and
that the control inputs should eliminate these effects.

We consider the input-output system described by

⎧
⎨

⎩
x(t + 1) = Ax(t) + Bu(t),

y(t) = Cx(t).
(4.8)

The fundamental idea of feedback control is to use the past information on inputs and
outputs to choose the current value of the input. As the state variable summarizes all past
information that is relevant for the future, this suggests to consider so-called static state
feedback controllers of the form

u(t) = Fx(t), (4.9)

where F is an m × n matrix. In this section we assume that the state x(t) is known at time
t , so that this control can be implemented. In the next section we discuss controllers for
the case that the state is not directly observed, so that it should be reconstructed from the
observed inputs and outputs.

The closed loop system obtained by applying the control law (4.9) to the system (4.8)
has state equation

x(t + 1) = (A + BF)x(t), x(0) = x0.

The stability of this system depends on the matrix A + BF , where A and B are given and
F has to be constructed.

Theorem 4.3.1 Let A be an n × n matrix and B an n × m matrix. The pair (A,B) is
controllable if and only if for every monic polynomial p(λ) = λn + pn−1λ

n−1 + · · · +
p1λ + p0 there exists an m × n matrix F such that

det(λIn − (A + BF)) = p(λ).

This result is called the pole placement theorem. It shows that for controllable systems
the feedback law (4.9) can achieve any desired level of stability. For example, by an
appropriate choice of (4.9) the closed loop polynomial is equal to λn. This means that



58 4 Stability

(A + BF)n = 0, that is, the system is back at equilibrium in finite time, after n time
periods. Such a controller is called a dead-beat controller.

Proof We prove this only for systems with a single input, so that m = 1.
First assume that (A,B) is controllable. We shall first show that in this case we may

assume that in an appropriately chosen basis we have

A =

⎛

⎜⎜⎜⎜⎝

0 1
. . .

1

−a0 . . . . . . −an−1

⎞

⎟⎟⎟⎟⎠
, B =

⎛

⎜⎜⎜⎜⎝

0
...

0

1

⎞

⎟⎟⎟⎟⎠
. (4.10)

Indeed, let det(λI−A) = a0+a1λ+· · ·+an−1λ
n−1+λn = a(λ). Now we define vectors sj

for j = 1, . . . , n as follows: s1 = b and sj+1 = Asj +an−j b, and we define a matrix S by

S =
(
sn · · · s1

)
. Then by using the Cayley-Hamilton theorem (0 = a0+a1A+· · ·+anA

n)

one sees that

AS = S

⎛
⎜⎜⎜⎜⎝

0 1
. . .

1

−a0 . . . . . . −an−1

⎞
⎟⎟⎟⎟⎠

, S−1B =

⎛
⎜⎜⎜⎜⎝

0
...

0

1

⎞
⎟⎟⎟⎟⎠

.

So, we may as well assume that A and B are given by (4.10). Recall that det(λI − A) is

equal to a(λ). Define F =
(
a0 − p0 a1 − p1 . . . an−1 − pn−1

)
, then

A + BF =

⎛

⎜⎜⎜⎜⎝

0 1
. . .

1

−p0 . . . . . . −pn−1

⎞

⎟⎟⎟⎟⎠
.

Now note that, analogously to det(λI − A) = a(λ) we have det(λI − (A + BF)) = p(λ).
Conversely, if (A,B) is not controllable then by an appropriate choice of basis we may

write

A =
(

A11 A12

0 A22

)
, B =

(
B1

0

)
.

In this case the characteristic polynomial of A + BF will always have roots at the
eigenvalues of A22. ��
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As minimal realizations are controllable, the pole placement theorem solves the state
feedback stabilization problem for minimal systems. In practice it may also be of interest
to consider non-minimal realizations and to investigate whether all states in a non-minimal
realization are stable. For this purpose we use the concept of stabilizability.

Definition 4.3.2 The pair (A,B) is called stabilizable if there exists a matrix F such that
A+BF is stable. In this case any matrix F such that A+BF is stable is called a stabilizing
feedback matrix.

That (A,B) is stabilizable if and only if the system (4.8) can be stabilized by the static
state feedback (4.9). The next result shows under which conditions stabilization is possible.

Theorem 4.3.3 The pair (A,B) is stabilizable if and only if every (A,B)-uncontrollable
eigenvalue of A lies in the open unit disc.

Proof Let (A,B) be stabilizable and let λ be an uncontrollable eigenvalue of A, so that

xT
(
A − λI B

)
= 0 for some x �= 0. Then for every F we have xT (A + BF) = xT A =

λxT , so that λ is an eigenvalue of A + BF . Stabilizability implies that |λ| < 1.
Conversely, if every uncontrollable eigenvalue of A lies within the open unit disc, then

after basis transformation we can write

A =
(

A11 A12

0 A22

)
, B =

(
B1

0

)
,

where (A11, B1) is controllable and all eigenvalues of A22 are in the open unit disc. By
Theorem 4.3.1 there exists a matrix F1 such that A11 + B1F1 is stable. Now define F =(
F1 0
)

, then

A + BF =
(

A11 + B1F1 A12

0 A22

)
,

is a stable matrix. ��

Example 4.3.1 In Sect. 1.4 we derived the following state space model

x(t + 1) =
(

β(1 + δ) −βδ

1 0

)
x(t) +

(
1

0

)
g(t),

⎛

⎜⎝
c(t)

i(t)

y(t)

⎞

⎟⎠ =
⎛

⎜⎝
β 0

βδ −βδ

β(1 + δ) −βδ

⎞

⎟⎠ x(t) +
⎛

⎜⎝
0

0

1

⎞

⎟⎠ g(t).
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Here the state vector is defined by x(t) = (y(t − 1), y(t − 2))T .

Assuming that δ > 0 and 0 < β < 1, we showed in Example 4.1.1 that this system
is asymptotically stable if and only if βδ < 1. Now suppose that βδ ≥ 1. As the system

is controllable, it is certainly stabilizable. If F =
(
f1 f2

)
, then the feedback law (4.9) is

given by

g(t) = f1y(t − 1) + f2y(t − 2).

Combining this with (1.33), this gives the closed loop system

y(t) = (β(1 + δ) + f1)y(t − 1) + (−βδ + f2)y(t − 2).

The conditions for stability are described by the triangle in Fig. 4.1, with a = β(1 + δ) +
f1 and b = −βδ + f2. In particular, if βδ ≥ 1, then it follows that the system cannot
be stabilized with f2 = 0, that is, the government cannot stabilize the system if it only
considers the deviation from equilibrium occurring in the last year. It has to take into
account also the year before. If, for example, we take f2 = βδ and f1 = −β(1 + δ),
then we obtain a dead beat controller that brings the economy back to equilibrium in two
periods of time.

4.4 Stabilization by Output Feedback

In the foregoing we assumed that the state is observed, so that the feedback law (4.9) can
be implemented. Now suppose that x(t) in (4.6) is not available at time t . The control
input can then be based on past inputs and outputs. Also, we assume that the controller is
described by the system

⎧
⎨

⎩
z(t + 1) = Mz(t) + Nu(t) + Ly(t),

u(t) = Fz(t).
(4.11)

This is called a dynamic compensator. It is called a stabilizing compensator or stabilizing
dynamic feedback if the closed loop system composed of (4.6) and (4.11) is stable, that is,
if for every initial values x(0) and z(0) all signals u(t), y(t), x(t) and z(t) tend to zero for
t → ∞.
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The closed loop system is described by the equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎝x(t + 1)

z(t + 1)

⎞

⎠ =
⎛

⎝ A BF

LC M + (N + LD)F

⎞

⎠

⎛

⎝x(t)

z(t)

⎞

⎠ ,

⎛

⎝y(t)

u(t)

⎞

⎠ =
⎛

⎝C DF

0 F

⎞

⎠

⎛

⎝x(t)

z(t)

⎞

⎠ .

(4.12)

Of particular interest are compensators where the state vector z(t) of the controller can be
seen as an estimate of the state vector x(t) of the system. Define the estimation error by

e(t) = x(t) − z(t).

The quality of the state estimate can be measured by comparing the predicted output Cz(t)

with the observed output y(t) = Cx(t). Now z(t) is supposed to be an estimate of the
state. Hence, it is natural to expect it to satisfy a dynamic relation of the form z(t + 1) =
Az(t)+Bu(t)+f (t), where f (t) denotes an error term that should be based on the quality
of the state estimate, that is, on y(t)−Cz(t)−Du(t). This suggests to choose the following
particular form of the state dynamics in the compensator (4.11):

z(t + 1) = Az(t) + Bu(t) + R(y(t) − Cz(t) − Du(t)), (4.13)

for some matrix R. In this case the error dynamics is given by

e(t + 1) = (A − RC)e(t). (4.14)

The system (4.13) is called a state observer for the system (4.11) if e(t) → 0 for t → ∞,
for all initial values x(0) and z(0). So, state observers are characterized by the condition
that A − RC is stable.

Definition 4.4.1 The pair (A,C) is called detectable if there exists a matrix R such that
A − RC is stable.

Theorem 4.4.2 (i) The pair (A,C) is detectable if and only if every (A,C)-unobservable
eigenvalue of A lies in the open unit disc.
(ii) There exists a state observer (4.13) for the system (4.6) if and only if the pair (A,C)

is detectable.
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Proof (i) This is the dual version of Theorem 4.3.1. Indeed, the pair (A,C) is detectable
if and only if the pair (AT ,CT ) is stabilizable.

(ii) This is evident from the definitions. ��

Next we consider conditions for the existence of a stabilizing compensator.

Theorem 4.4.3 (i) The system (4.6) can be stabilized by a compensator (4.11) if and only
if (A,B) is stabilizable and (A,C) is detectable.
(ii) Let R and F be such that A− RC and A + BF are stable matrices. Then a stabilizing
compensator is given by (4.11) with state dynamics (4.13), that is, M = A − RC, N =
B − RD and L = R.

Proof First assume that (A,B) is stabilizable and (A,C) is detectable. Let R and F be
such that A − RC and A + BF are stable. Then the closed loop system (4.12) obtained
by taking (4.11) as compensator with state dynamics (4.13) can be obtained as follows for
t = 0, 1, . . .:

�cl

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t + 1) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

u(t) = Fz(t),

z(t + 1) = Az(t) + Bu(t) + R(y(t) − ȳ(t)),

ȳ(t) = Cz(t) + Du(t).

Here:

x(t) is the unknown state of the system,
y(t) is the measured output of the system,
z(t) is the known estimated state of the system,
u(t) is the computed input of the system,
ȳ(t) is the known estimate of the output based on the estimated state.

By eliminating u(t), y(t) and ȳ(t) from �cl one finds for the state (x(t)T z(t)T )T the
following for t = 0, 1, . . .:

�cl

⎧
⎨

⎩
x(t + 1) = Ax(t) + BFz(t),

z(t + 1) = RCx(t) + (A − RC + BF)z(t).
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Thus the state transition matrix is

(
A BF

RC A − RC + BF

)
.

If we compute the state transition matrix in terms of the transformed state variables
(x(t)T e(t)T )T = (x(t)T x(t)T − z(t)T )T we obtain

(
I 0

I −I

)(
A BF

RC A − RC + BF

)(
I 0

I −I

)
=
(

A + BF −BF

0 A − RC

)
.

This is a stable matrix. This proves part (ii) and the “if” part of (i).
It remains to prove that stabilizability of the system implies that the pair

(A,B) is stabilizable and the pair (A,C) is detectable. Stabilizability means that(
A BF

LC M + (N + LD)F

)
is stable. Let λ be an (A,C)-unobservable eigenvalue, and

let x �= 0 be such that Ax = λx, Cx = 0. Then

(
A BF

LC M + (N + LD)F

)(
x

0

)
= λ

(
x

0

)
,

and as this matrix is stable it follows that |λ| < 1. According to Theorem 4.4.3 (i) the pair
(A,C) is detectable. Now let λ be an (A,B)-uncontrollable eigenvalue and let xT �= 0 be
such that xT A = λxT , xT B = 0. Then

(
xT 0
)(

A BF

LC M + (N + LD)F

)
= λ
(
xT 0
)

.

Again we conclude |λ| < 1 and according to Theorem 4.3.3 the pair (A,B) is
stabilizable. ��

The result in part (ii) of the above theorem is called the separation principle. It shows
that the stabilization problem with unobserved state can be solved in two independent
steps. First the unobserved state x(t) is estimated by z(t) by a state observer of the form
(4.13), by choosing R such that A − RC is stable. Then the controller u(t) = Fz(t) is
applied, with F chosen as in the case of observed states, that is, with A + BF stable.
This separation of estimation and control is possible for linear input-output systems. Later
we will obtain a similar result for linear stochastic input-output systems. It should be
mentioned that the separation principle may fail to produce stability for more complex
systems.
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Example 4.4.1 Continuing our analysis of Example 4.3.1, the system (4.6) has input g(t)

and outputs
(
c(t) i(t) y(t)

)T
with state space matrices

A =
(

β(1 + δ) −βδ

1 0

)
, B =

(
1

0

)
, C =

⎛

⎜⎝
β 0

βδ −βδ

β(1 + δ) −βδ

⎞

⎟⎠ , D =
⎛

⎜⎝
0

0

1

⎞

⎟⎠ .

As β �= 0 and δ �= 0 it follows that rank C = 2, so that (A,C) is observable. Also
(A,B) is controllable. Therefore the system can be stabilized by output feedback. In
Example 4.3.1 we already constructed a matrix F such that A + BF is stable. A matrix

R such that A − RC is stable is given, for example, by R =
(

0 0 −1

0 0 0

)
, as in this case

A − RC =
(

0 0

1 0

)
. With this choice the state estimation error e(t) = (A − RC)t e0 = 0

for t ≥ 2. So this gives a dead beat observer.

For observable systems a dead beat observer can always be constructed. This follows from
the pole placement theorem, by choosing R such that A−RC has all its eigenvalues equal
to zero.

Likewise, when (A,B) is controllable, one may construct a dead beat controller F ,
being the matrix such that A + BF has all its eigenvalues equal to zero. Although this
may seem to be a perfect choice for all purposes, a dead beat controller may not always
be the most desirable one. We shall see this in the next chapter, when additional design
conditions are considered. However, even from a purely numerical point of view one may
see that a dead beat controller can have disadvantages. Indeed, if A is imperfectly known
then trying to place all eigenvalues of A+BF at zero may result in loss of accuracy in the
computed eigenvalues.
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In this chapter we consider quantitative control objectives for rather general systems. The
inputs are chosen to minimize a function that expresses the costs associated with the
system evolution. This can be solved by dynamic programming. We pay special attention
to the so-called LQ problem, where the system is linear and the cost function is quadratic.
In this case the optimal control is given by state feedback, and the feedback matrix can be
computed by solving certain matrix equations (so called Riccati equations).

5.1 Problem Statement

Whereas stability is a qualitative property, in many control applications one is also
interested in the quantitative performance of the system. For instance, one could wish
to keep the outputs close to a desired trajectory. In most situations the application of
control inputs will be associated with costs, for example in terms of energy or money.
We assume that these control objectives can be expressed in a single cost function. The
resulting optimal control problem is analysed first in a general setting, and then for the
case of linear systems with quadratic cost functions. In the latter case the optimal control
law can be obtained simply in terms of the parameters of a state space realization of the
system. Throughout this chapter we assume that the system is given in state space form
and that the state is observed, so that state feedback controllers can be applied.

The general optimal control problem is formulated as follows. The system is
described by

x(t + 1) = ft (x(t), u(t)), x(0) = x0 given. (5.1)
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Here ft is a function of states and inputs with values in the state space. Note that this
function may also depend on t , a fact which is expressed in the notation by the subscript t .
We are interested in the behaviour of the system for a fixed set of times t = 0, 1, . . . , N .
In addition to the system we have cost functions at each time instant t , which we denote
by kt . The function kt is a scalar valued function of the state and the input at time t , except
for the function kN which we assume to depend only on the state at time N . The objective
is to minimize the total cost function

J (x0, u) = kN(x(N)) +
N−1∑

t=0

kt (x(t), u(t)), (5.2)

over all trajectories u(t) = (u(0), . . . , u(N − 1)), where the state evolution is controlled
by (5.1). So we should choose the inputs {u(t) | t = 0, . . . , N − 1} such that this cost
is minimized, for given initial state x0. Hence kN expresses the final cost, and kt the
combined cost of control and system performance at time t . If N < ∞ this is called a
finite horizon problem. If the term kN(x(N)) is dropped from (5.2), and the summation in
the second term runs up to N = ∞, then this is an infinite horizon problem. In the latter
case the control problem only makes sense if the inputs can be chosen so that the total cost
is finite.

As a particular case of special interest we consider the so-called LQ problem, where the
system (5.1) is linear and the cost function (5.2) is quadratic. For simplicity we describe
only the time invariant case, for which the finite horizon problem is to minimize

J (x0, u) = x(N)T Mx(N) +
N−1∑

t=0

(x(t)T Qx(t) + u(t)T Ru(t)) (5.3)

subject to

x(t + 1) = Ax(t) + Bu(t), x(0) = x0 given. (5.4)

Here M , Q and R are symmetric matrices with M and Q positive semidefinite and R

positive definite. So the objective is to keep both the states and the inputs small. The
interpretation in many applications is that the system describes the deviation from a desired
trajectory. Further, as R is positive definite this means that every control action gives rise
to costs. The LQ problem is of much practical relevance, because it leads to a relatively
simple optimal control law.

Example 5.1.1 Consider a trader on a single commodity market. Every day the trader can
buy or sell the commodity. We assume that also short selling is possible, that is, the trader
can sell more than he owns right now. Further we assume that the net amount bought or
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sold per day is limited. Let u(t) denote the amount sold on day t , negative values meaning
that the trader bought the commodity. The trade restriction is formulated as

|u(t)| ≤ K, t = 0, 1, . . . , N.

Let m(t) denote the amount of money and g(t) the amount of goods owned by the trader
at day t . By p(t) we denote the price per unit of the good at day t . Further, let s be the
cost per day to keep one unit of the good in portfolio. Starting with the initial capital
m(0) + p(0)g(0), the goal of the trader is to maximize the final capital

m(N) + p(N)g(N).

The amount of money and goods evolves according to

m(t + 1) = m(t) + p(t)u(t) − sg(t),

g(t + 1) = g(t) − u(t).

In a situation of perfect foresight, the price trajectory {p(t) | t = 0, . . . , N} is

known. Defining the state variable x(t) =
(
m(t) g(t)

)T
, this problem fits in the general

formulation (5.1), (5.2). The final cost is kN(x(N)) = −m(N)−p(N)g(N), and k(t) = 0
for t = 0, . . . , N − 1.

Example 5.1.2 We return to Example 1.1.2. Suppose that the government aspires to
bring consumption, income and investment close to their equilibrium values expressed
in (1.29), for a given equilibrium value G of government spending. In state space form
the deviations from equilibrium are described by (1.37), (1.38), that is, with state variable

z(t) =
(
y(t − 1) y(t − 2)

)T
, input u(t) = g(t) and with state space parameters

A =
(

β(1 + δ) −βδ

1 0

)
, B =

(
1

0

)
, C =

⎛
⎜⎝

β 0

βδ −βδ

β(1 + δ) −βδ

⎞
⎟⎠ , D =

⎛
⎜⎝

0

0

1

⎞
⎟⎠ .

As objective function the government could consider

J (z0, g) =
N−1∑

t=0

(k1c(t)
2 + k2i(t)

2 + k3y(t)2 + k4g(t)2)
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with ki > 0, i = 1, 2, 3, 4, the relative costs of deviations from equilibrium for each of the
variables. Using (1.38) it follows that this cost function is quadratic and given by

J (z0, g) =
N−1∑

t=0

(z(t)T Qz(t) + g(t)T Rg(t) + 2x(t)T Sg(t))

with cost parameters given by

Q = CT diag (k1, k2, k3)C, R = k3 + k4, S = CT

⎛

⎜⎝
0

0

k3

⎞

⎟⎠ .

So this is a slightly more general LQ problem where (5.3) is extended with the cross term
2z(t)T Su(t). (See also (5.7) below.)

5.2 Dynamic Programming

We consider the dynamical system (5.1) with cost function (5.2). The optimal control
problem is to minimize (5.2) by choosing the input sequence {u(t) | t = 0, . . . , N − 1}.
We restrict the attention to static state feedback controllers, so that

u(t) = ht (x(t)),

for some function ht . The input set may also depend on the current state of the system, so
that u(t) ∈ Ut(x(t)).

Dynamic programming gives a recursive solution for this optimal control problem. The
idea is as follows. Let {u∗(t) | t = 0, . . . , N − 1} be the optimal solution, and let {x∗(t) |
t = 0, . . . , N − 1} be the resulting state trajectory generated by (5.1). At time t = i, the
inputs {u∗(t) | t = i, . . . , N − 1} will then minimize the costs

kN(x(N)) +
N−1∑

t=i

kt (x(t), u(t)), x(i) = x∗(i).

Indeed, if another input {u+(t) | t = i, . . . , N − 1} would give smaller costs, then the
input defined by u(t) = u∗(t) for t ≤ i − 1 and u(t) = u+(t) for t ≥ i would give a cost
(5.2) that is smaller than that obtained by taking the inputs {u∗(t) | t = 0, . . . , N − 1}.
This contradicts optimality of the inputs {u∗(t) | t = 0, . . . , N − 1}. This is called
the principle of optimality, or Bellman’s principle of optimality. It leads to the following
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dynamic programming solution, in terms of the cost-to-go functions Jt : Rn → R defined
recursively by

JN(x) = kN(x), (5.5)

Jt (x) = min
u∈Ut (x)

(kt (x, u) + Jt+1(ft (x, u))). (5.6)

Theorem 5.2.1 For given x ∈ R
n let u = ht (x) be a minimizing input for (5.6). Then the

control input defined by

u∗(t) = ht (x
∗(t)), x∗(t + 1) = ft (x

∗(t), u∗(t)), x∗(0) = x0

minimizes (5.2) and the minimal cost is equal to J (x0, u
∗) = J0(x0).

Proof The minimization of (5.2) can be written as

min
u(0),...,u(N−1)

J (x0, u) = minu(0),...,u(N−1){k0(x0, u(0)) + k1(x(1), u(1)) +

+ · · · + kN−1(x(N − 1), u(N − 1)) + kN(x(N))}.

As only the last two terms depend on u(N − 1), we may write this as

min
u(0),...,u(N−2)

[{k0(x0, u(0)) + · · · + kN−2(x(N − 2), u(N − 2))} +

+ min
u(N−1)

{kN−1(x(N − 1), u(N − 1)) + kN(x(N))}].

Using kN(x(N)) = JN(x(N)) = JN(fN−1(x(N − 1), u(N − 1))) it follows that

min
u(N−1)

{kN−1(x(N − 1), u(N − 1)) + kN(x(N))}

= min
u(N−1)

{kN−1(x(N − 1), u(N − 1)) + JN(fN−1(x(N − 1), u(N − 1)))}

= JN−1(x(N − 1)),

so that u∗(N − 1) = hN−1(x(N − 1)) is optimal and

min
u(0),...,u(N−1)

J (x0, u)

= min
u(0),...,u(N−2)

[
k0(x0, u(0)) + · · ·

+kN−2(x(N − 2), u(N − 2)) + JN−1(x(N − 1))
]
.
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Again, as only the last two terms depend on u(N − 2), this can be written as

min
u(0),...,u(N−1)

J (x0, u)

= min
u(0),...,u(N−3)

[{k0(x0, u(0)) + · · · + kN−3(x(N − 3), u(N − 3))} +

+ min
u(N−2)

{kN−2(x(N − 2), u(N − 2)) + JN−1(x(N − 1))}],

where

min
u(N−2)

{kN−2(x(N − 2), u(N − 2)) + JN−1(x(N − 1))}

= min
u(N−2)

{kN−2(x(N − 2), u(N − 2)) + JN−1(fN−2(x(N − 2), u(N − 2)))}

= JN−2(x(N − 2)).

This shows that u∗(N − 2) = hN−2(x(N − 2)) is optimal, and continuing in this fashion
shows that the algorithm of the theorem indeed gives minimum costs. ��

This algorithm can only be applied for finite horizons, as the recursions (5.5), (5.6) start
at the final time t = N . The infinite horizon problem requires techniques that are beyond
the scope of this book. See for instance [7] for an excellent book on dynamic programming.

Although in the other parts of the book we restrict attention to linear systems we have
chosen to treat here the general problem of minimizing (5.2) subject to (5.1). The reason
for this is that the argument in the proof of Theorem 5.2.1 works just as well and probably
even more transparent in the more general case discussed here.

Example 5.2.1 Consider the trader described in Example 5.1.1. It is assumed that the price
trajectory {p(t) | t = 0, . . . , N} is known to the trader. Before giving a formal analysis,
common sense suggests the following strategy. On day t , the trader has to decide whether
to buy or to sell the good. This decision has no effect on his future options, as the only
restriction is that |u(t)| ≤ K on all days. Therefore he should buy if the final profit p(N) is
larger than the cost p(t) + (N − t − 1)s associated with buying the good now and keeping
it until time N . He should sell if p(N) < p(t) + (N − t − 1)s.

To prove the optimality of this strategy we solve the optimization problem explicitly.
In this simple case this can be done directly by writing out the objective function
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J ((m0, g0), u) = −m(N) − p(N)g(N). Indeed, there holds g(N) = g0 −∑N−1
t=0 u(t)

and

m(N) = m0 +
N−1∑

t=0

(p(t)u(t) − sg(t))

= m0 +
N−1∑

t=0

p(t)u(t) − s

N−1∑

t=0

(g0 −
t−1∑

i=0

u(i))

= m0 − Nsg0 +
N−1∑

t=0

p(t)u(t) + s

N−1∑

t=0

(N − t − 1)u(t),

so that the cost function is given by

J ((m0, g0), u) = −(m0 + (p(N) − sN)g0) +
N−1∑

t=0

(p(N) − p(t) − (N − t − 1)s)u(t).

This is minimized by choosing u(t) = K , that is, to sell the maximal amount, if p(t) +
(N−t−1)s > p(N), and to buy the maximal amount, u(t) = −K , if p(t)+(N−t−1)s <

p(N).
The optimality can be checked also by the dynamic programming algorithm. The cost

functions are given by kN(m, g) = −m − p(N)g and kt = 0 for t = 0, . . . , N − 1. The
first step is to solve (5.6) for t = N − 1, by chosing u(N − 1) equal to the value u in
[−K,K] that minimizes

JN(m(N − 1) + p(N − 1)u(N − 1) − sg(N − 1), g(N − 1) − u(N − 1))

= −(m(N − 1) + p(N − 1)u(N − 1) − sg(N − 1)) −
−p(N)(g(N − 1) − u(N − 1))

= −(m(N − 1) + (p(N) − s)g(N − 1)) + u(N − 1)(p(N) − p(N − 1)).

This shows that u(N − 1) = K if p(N) ≤ p(N − 1) and u(N − 1) = −K if p(N) >

p(N − 1), with resulting cost-to-go function

JN−1(m(N − 1), g(N − 1))

= −(m(N − 1) + (p(N) − s)g(N − 1) + K|p(N) − p(N − 1)|).
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The next step is to choose u(N − 2) equal to the u ∈ [−K,K] that minimizes

Jn−2
(
m(N − 1), g(N − 1)

) = −(m(N − 2) − sg(N − 2) + p(N − 2)u+
+ (p(N) − s

)(
g(N − 2) − u

)+ K|p(N) − p(N − 1)|
= (m(N − 2) − (p(N) − 2s)g(N − 2)

)− (p(N) − p(N − 2) − s
)
u.

Hence uN−2 = K if p(N) − p(N − 2) − s < 0 and uN−2 = −K otherwise. Continuing
in this way shows the optimality of the above strategy, with cost-to-go functions

Jt (m(t), g(t))

= −(m(t) + [p(N) − (N − t)s]g(t) + K

N−1∑

i=t

|p(N) − p(i) − (N − i − 1)s|).

Note that the optimal strategy leads to extreme actions, that is, always the maximally
allowed amount is bought or sold. This is a widespread phenomenon, called bang-bang
control. Further, the strategy requires perfect foresight. In practice the price trajectory,
and in particular the final price p(N), will not be known when the trader has to make his
decisions on days t < N . If the price is uncertain then this decision problem also becomes
uncertain. Later we describe stochastic systems to model this kind of uncertainty. The
optimal strategy can then be determined by stochastic dynamic programming.

5.3 Linear Quadratic Control

Dynamic programming is a very general technique. The principal condition for practical
applications is that the minimization in (5.6) should be solved as a function of the state
variable x, that is, we need to determine the feedback functions ht (x) in Theorem 5.2.1. In
this section we show that for the LQ problem these feedbacks can be computed in a simple
way.

Let the system be linear as in (5.4), that is

x(t + 1) = Ax(t) + Bu(t), x(0) = x0 given.

We consider a generalization of the cost function (5.3), that is,

J (x0, u) =xT (N)Mx(N)+

+
N−1∑

t=0

xT (t)Qx(t) + uT (t)Ru(t) + uT (t)Sx(t) + xT (t)ST u(t).
(5.7)
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We impose the conditions that both matrices

(
Q ST

S R

)
and M are positive semidefinite and

that R is positive definite. Note that uT (t)Sx(t) + xT (t)ST u(t) = 2uT (t)Sx(t), so (5.7)
can be rewritten as

J (x0, u) = xT (N)Mx(N) +
N−1∑

t=0

xT (t)Qx(t) + uT (t)Ru(t) + 2uT (t)Sx(t).

The LQ optimal control problem is to minimize (5.7) for a given system (5.4).
Before solving this optimal control problem, we comment on another form of cost

function that is useful, and that will appear later. Consider a cost function of the form

J1(x0, u) = xT (N)Mx(N) +
N−1∑

t=0

‖R1x(t) + S1u(t)‖2, (5.8)

where we impose that conditions that M is positive semidefinite and that ST
1 S1 is positive

definite. Obviously, this type of cost function can be viewed as a special case of (5.7), with
R = ST

1 S1,Q = RT
1 R1, and S = ST

1 R1. Conversely, every cost function (5.7) can also be

rewritten in the form (5.8), by taking R1 =
(

Q1/2

R−1/2S

)
and S1 =

(
0

R1/2

)
. Thus, results

we shall present in the sequel for the cost function of the form (5.7) can be reformulated
in terms of the equivalent cost function (5.8).

The solution of the LQ optimal control problem is given by dynamic programming, and
has the following form.

Theorem 5.3.1 The optimal control law for the LQ problem (5.4), (5.7) is given by the
state feedback law

u∗(t) = ht (x(t)) = Ftx(t) (5.9)

where

Ft = −(R + BT Kt+1B)−1(S + BT Kt+1A). (5.10)

The minimal cost is given by

J (x0, u
∗) = xT

0 K0x0, (5.11)
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where the matrices Kt are defined by the backwards recursion given by the Riccati
difference equation

⎧
⎪⎪⎨

⎪⎪⎩

Kt = Q + AT Kt+1A − FT
t (R + BT Kt+1B)Ft ,

Ft = −(R + BT Kt+1B)−1(S + BT Kt+1A),

KN = M.

(5.12)

Moreover, the cost-to-go functions Jt are given by Jt (x) = x(t)T Ktx(t).

Proof We apply Theorem 5.2.1, with the cost functions kN(x) = xT Mx and kt (x, u) =
xT Qx + uT Ru + 2uT Sx. First, we will prove that Jt (x) = xT Ktx with Jt as defined in
(5.6) and Kt as in (5.12). This is evidently correct for t = N .

We proceed by induction and suppose that Jt+1(x) = xT Kt+1x. First remark that
cost functions kt ≥ 0 for t = 0, . . . , N . Hence the cost to go function Jt+1(x) also has
Jt+1(x) ≥ 0 for all x ∈ R

n. So Kt+1 is positive semidefinite, and R is positive. This
implies that R +BT Kt+1B is invertible. We see that Ft is well defined by (5.12). Now we
prove that Jt (x) = xT Ktx, with the minimizing input given by (5.9). In (5.6) the following
expression should be minimized:

kt (x, u) + Jt+1(ft (x, u)) = xT Qx + uT Ru + 2uT Sx + Jt+1(Ax + Bu)

= xT Qx + uT Ru + 2uT Sx + (Ax + Bu)T Kt+1(Ax + Bu)

= xT (Q + AT Kt+1A)x +
+uT (R + BT Kt+1B)u − 2uT (R + BT Kt+1B)Ftx.

By completing the squares the above expression can be rewritten as

(u − Ftx)T (R + BT Kt+1B)(u − Ftx) +
+ xT (Q + AT Kt+1A)x −
− (Ftx)T (R + BT Kt+1B)(Ftx).

As R+BT Kt+1B is positive definite, this expression is minimized by taking the input (5.9)
with resulting cost-to-go Jt (x) = xT Ktx, where Kt is given by (5.12). This concludes the
inductive proof.

Finally, according to Theorem 5.2.1 the minimal cost is given by J0(x0) =
xT

0 K0x0. ��

From the theorem one sees that the LQ controller is given by linear state feedback.
This makes LQ control attractive, as this controller can be implemented relatively easily.
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The feedback gains in (5.9) depend on time, but they can be computed recursively and
independent of the actual observations of the system. One says that the control problem is
solved off-line. That is, we only need to know the system (5.4) and the cost parameters in
(5.7), to compute the optimal feedback matrices in (5.9), by the recursions (5.12). So, the
controller can be constructed before the actual observations are available.

The result of Theorem 5.3.1 is true as well for time-varying linear systems with time
varying cost function. That is, a similar result holds when the objective is to minimize the
cost function J (x0, u) = ∑N−1

t=0 (x(t)T Q(t)x(t) + u(t)T R(t)u(t) + 2x(t)T S(t)u(t)) +
x(N)T Mx(N), where Q(t) = Q(t)T and R(t) = R(t)T > 0, subject to x(t + 1) =
A(t)x(t) + B(t)u(t).

In some applications it may not be so clear how to choose the horizon N . This motivates
study of the infinite horizon problem with cost function

J∞(x0, u) =
∞∑

t=0

xT (t)Qx(t) + uT (t)Ru(t) + 2uT (t)Sx(t), (5.13)

or the infinite horizon analogue of (5.8) given by

J1,∞(x0, u) =
∞∑

t=0

‖R1x(t) + S1u(t)‖2, (5.14)

subject to x(t + 1) = Ax(t) + Bu(t) with x(0) = x0 given. Of course, this only makes
sense if the cost can be given a finite value by appropriate choice of the inputs. A sufficient
condition for this is that the pair (A,B) is stabilizable.

One could expect that the infinite horizon problem can be approximated by considering
finite horizon problems with horizon N → ∞. Under suitable conditions this idea indeed
works. Moreover, the solutions of the Riccati difference equations (5.12) then converge
to a limit, which is independent of the choice of the final cost M , and the corresponding
control law (5.9) becomes time invariant in the limit. So the solution of the infinite horizon
problem becomes quite simple in this case.

Theorem 5.3.2 Assume that the pair (A − BR−1S,Q − ST R−1S) is detectable and that
the pair (A,B) is stabilizable. Denote the solutions of (5.12) at t = 0, obtained by starting
at KN = M , with M positive definite, by K0(N,M). Then the following hold true:

(i) limN→∞ K0(N,M) = K+ exists and is independent of M . Denote

F+ = −(R + BT K+B)−1(BT K+A + S). (5.15)
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(ii) K+ satisfies the algebraic Riccati equation

K = Q + AT KA − (AT KB + ST )(R + BT KB)−1(BT KA + S). (5.16)

Moreover, it is the largest Hermitian solution of (5.16), in the sense that for any other
Hermitian solution K the matrix K+ − K is positive semidefinite. Furthermore, it
is also the unique solution K for which A − B(R + BT KB)−1(BT KA + S) is a
stable matrix. In particular, A + BF+ is a stable matrix. If, in addition, the pair
(A − BR−1S,Q − ST R−1S) is observable, then K+ is positive definite.

(iii) The optimal control law for (5.4), (5.13) is given by

u∗(t) = ht (x) = F+x(t), (5.17)

with cost J∞(x0, u
∗) = xT

0 K+x0.

Proof We shall not prove all statements of the theorem, but we will concentrate our
attention on the ones that are most relevant for our purpose. In particular, we will prove
only part of the statements in (i) and (ii). See [1] for full proofs.

The reader should be forewarned that the pace of the arguments in this proof is
considerably higher than the pace usual for the preceding parts of the book.

As (A,B) is stabilizable there exists a matrix F such that A + BF is stable, that is, all
eigenvalues of A + BF are inside a circle of radius less than one. Hence if we employ F

as feedback and take u(t) = Fx(t), then the state x(t) is given by x(t) = (A + BF)tx0.
Note that ‖(A + BF)t‖ ≤ C0r

t for some constant C0 and some 0 < r < 1. Hence ‖x(t)‖
can be estimated as follows: ‖x(t)‖ ≤ C · rt for some constant C. But then also

‖
(

x(t)

u(t)

)
‖ = ‖
(

x(t)

Fx(t)

)
‖ = ‖
(

I

F

)
(A + BF)tx0‖ ≤ C1 · rt ,

for some constant C1. Hence for this choice of inputs the cost function J∞(x0, u) is finite
for each choice of x0. This implies that the optimal cost, infu J∞(x0, u) is finite.

Let M = 0 in (5.12) and denote kt for t = 0 by K0(N). Let us denote by u∗ the input
minimizing J∞(x0, u) and by u∗

n the input minimizing Jn(x0, u). Then

infu JN(x0, u) ≤∑N−1
t=0

(
u∗(t)T x∗(t)T

)(
Q ST

S R

)(
u∗(t)
x∗(t)

)
≤

≤∑∞
t=0

(
u∗(t)T x∗(t)T

)(
Q ST

S R

)(
u∗(t)
x∗(t)

)
= infu J∞(x0, u)
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This implies that x∗
0K0(N)x0 ≤ infu J∞(x0, u). Therefore, the sequence {K0(N)}∞N=1

has an upper bound.
The same reasoning applies to show that K0(N) ≤ K0(N + 1). Thus the sequence

{K0(N)}∞N=0 is a increasing sequence of positive semidefinite matrices that is bounded
above. Thus there is a limit, which we denote by K+ for the time being. As K0(N) satisfies
the Riccati difference equation (5.12) (with M = 0) it is immediate that K+ satisfies the
algebraic Riccati equation (5.16). Moreover, it is clear that 0 ≤ xT

0 K+x0 ≤ infu J∞(x0, u).
To show that the corresponding closed loop feedback matrix A + BF+ is stable, we

can rewrite (5.16) for K = K+ as follows, where we use for convenience the notation
A+ = A + BF+:

K+ = Q + AT K+A + (AT K+B + ST )F+ =
= Q + AT+K+A+ − FT+ (BT K+A + BT K+BF+) + ST F+ =
= Q + AT+K+A+ + FT+ (RF+ + S) + ST F+ =

= AT+K+A+ +
(
I FT+
)(

Q ST

S R

)(
I

F+

)
.

This shows that K+ − AT+K+A+ is positive semidefinite. Since (A,B) is stabilizable and
(A−BR−1S,Q−ST R−1S) is detectable A+ is stable. Compare Theorem 4.1.4. We shall
not provide the details here.

Let us consider the input obtained by taking the static state feedback u(t) = −(R +
BT K+B)−1(S + BT K+A)x(t) = −F+x(t). The cost associated with this input is equal
to xT

0 K+x0, as one sees by the same completion of the squares argument as used in the
proof of Theorem 5.3.1. Indeed, consider for this choice of input

J∞(x0, u) +
∞∑

t=0

(x(t + 1)T K+x(t + 1) − x(t)T K+x(t))

= −x(0)T K+x(0) + J∞(x0, u)

(as A+ is a stable matrix). On the other hand, using x(t + 1) = Ax(t) + Bu(t), and the
definition of J∞(x0, u), this is equal to the following, where we suppress the dependence
on t for the sake of clarity:

∞∑

t=0

(
xT AT K+Ax − xT K+x + xT Qx

+xT (AT K+B + ST )u + uT (S + BT K+A)x + uT Ru + uT BT K+Bu
)
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=
∞∑

t=0

{(u + F+x)T (R + BT K+B)(u + F+x) +

+xT (−K+ + AT K+A + Q)x −
−xT (AT K+B + ST )(R + BT K+B)−1(BT K+A + S))x}.

As K+ satisfies (5.16) it follows that

J∞(x0, u) = x(0)T K+x(0) +
∞∑

t=0

‖(R + BT K+B)1/2(u + F+x)‖.

But then, for the particular choice of inputs u = −F+x, we have J∞(x0, u) = xT
0 K+x0.

So infu J∞(x0, u) ≤ xT
0 K+x0 and thus infu J∞(x0, u) = xT

0 K+x0. It follows that the
optimal input is given by u(t) = F+x(t). ��

The assumptions in Theorem 5.3.2 that the pair (A,B) is stabilizable and that the pair
(A − BR−1S,Q − ST R−1S) is detectable are made to guarantee that the cost function
(5.13) makes sense (that is, (5.13) is finite for some control inputs u), and that the optimal
control law (5.17) actually stabilizes the system. Without these assumptions there could
exist inputs that minimize (5.13), but which are not stabilizing. Such inputs do not have
much practical significance.

As an example, the assumptions of Theorem 5.3.2 are satisfied for cost functions of the
form

J (x0, u) =
∞∑

t=0

(y(t)T Q1y(t) + uT (t)Ru(t))

with Q1 and R positive definite and with y(t) = Cx(t) the output of the system (5.4)
with (A,B,C) a minimal realization. Indeed, in that case (A,B) is controllable and hence
stabilizable. As concerns the detectability, clearly in (5.13) we have S = 0 and Q =
CT Q1C, so detectability of (A,Q) follows from observability of (A,C) and positivity of
Q1.

Let us formulate also the main results of Theorem 5.3.2 for the alternative infinite
horizon cost function (5.14). Assume that the pair (A,B) is stabilizable, that ST

1 S1 is
positive definite, and that the pair (A − B(ST

1 S1)
−1ST

1 R1, R1 − S1(S
T
1 S1)

−1ST
1 R1) is

detectable. Consider the algebraic Riccati equation

K = RT
1 R1 + AT KA − (ST

1 R1 + BT KA)T (ST
1 S1 + BT KB)−1(ST

1 R1 + BT KA)

together with the control law u(t) = Fx(t), where the feedback matrix F is given by
F = −(ST

1 S1 + BT KB)−1(ST
1 R1 + BT KA). If we take for K the unique positive
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semidefinite solution K+ of this Riccati equation, then this control law is the optimal
one, it is a stabilizing control, and the optimal costs are given by xT

0 K+x0.

Example 5.3.1 In Example 5.1.2 we described a control problem for government policy.
As an example, suppose that the government expects to be in power for this and the coming
3 years and that the objective is to keep the national income as close as possible to a
desired level Ȳ . Associated with this are equilibrium values of consumption, investment
and government expenditures as described in (1.29). Taking all variables in deviation from
equilibrium, this gives the linear system described in Example 5.1.2. Thenew objective
function is a special case of the one given in Example 5.1.2 and is given by

J (x0, g) =
3∑

t=0

y(t)2,

where x0 =
(
y(−1) y(−2)

)T
and g =

(
g(0) g(1) g(2) g(3)

)
. Introduce the matrix

S =
(
β(1 + δ) −βδ

)
, then in terms of (5.7), we have M = 0, R = 1 and Q = ST S.

The optimal control follows from Theorem 5.3.1. Here K4 = M = 0 and it follows from
(5.12) that also K3 = K2 = K1 = K0 = 0. Therefore, the optimal controller (5.9) is given
by

g∗(t) = −Rx(t) = −β(1 + δ)y(t − 1) + βδy(t − 2).

Of course, this result could also have been obtained directly from equation (1.33). The
minimal cost if given by xT

0 K0x0 = 0.

A more realistic cost function would also penalize deviations from equilibrium of the
other economic variables, see Example 5.1.2. For given values of β and δ and of the relative
weights gi, i = 1, 2, 3, 4, the optimal control law and associated cost are easily obtained
by applying Theorem 5.3.1. In practice β and δ are unknown and have to be estimated
from observed data. Furthermore, it may be unclear how the relative weights in the cost
function should be chosen. Here a sensitivity analysis may be of interest, where the effect
of the policy objectives on the economic developments is considered.

For the infinite horizon problem with J∞(x0, g) =∑∞
t=0 y(t)2 the optimal control law

is of course the same as before. This can also be checked by means of Theorem 5.3.2.
More realistic cost functions require the solution of (5.16).

There exist several reliable algorithms for solving Riccati equations. A simple method
is to start with K0 = 0, and to compute Kt , t ≤ −1 backwards in time using the
Riccati difference equation (5.12). For t → −∞ the matrices Kt converges to the required
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solution of (5.16). This is never used in practice. A faster method uses an approach via
eigenvalues and eigenvectors of certain matrices, and another way to approximate the
solution of (5.16) is to apply Newton’s method to the nonlinear matrix equation (5.16).
However, it would lead us to far afield to explain these methods here in detail. A good
source for results on the algebraic Riccati equation is [45].



6Stochastic Systems

In stochastic systems, the outputs are (partly) driven by unobserved random inputs.
This chapter is concerned with stationary processes and their approximation with finite
dimensional linear stochastic systems. Similar to the results for deterministic input-output
systems there is an equivalence between finite dimensional stochastic state space models,
polynomial (ARMA) representations, and rational spectra (in the frequency domain),
which are the analogue of the transfer function.

6.1 Modelling

The methods introduced in the foregoing chapters concern the representation and control
of completely specified systems. In most applications, however, the precise form of the
system is not known. This is the case, for example, in complex technical systems like
an airplane or a chemical plant. The situation is even more complicated in economic
applications. The reaction mechanisms between economic variables are often known only
in qualitative terms, and one cannot identify all factors that influence the system behaviour.
This motivates the study of imperfectly known dynamical systems. The uncertainties
involved may be modelled in several ways, one of which is the use of stochastic models.
System identification is concerned with the construction of a dynamical system for an
observed process. The main purpose is to determine the so-called systematic part, which
explains the process up to unpredictable variations. In practice one tries to capture these
systematic relations by equations of the form

G(w, a) = 0. (6.1)
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Here w denotes trajectories of the observed variables and a denotes auxiliary variables
used to facilitate the system description. The auxiliary variables represent unobserved
influences. For practical purposes one is interested in relatively simple representations,
for example of the form

G(t,w(t),w(t − 1), . . . , w(t − L), a(t), a(t − 1), . . . , a(t − L)) = 0. (6.2)

Time invariant models are of particular interest, which means that the function G does not
explicitly depend on time. The linearized form of the model consists of linear difference
equations of the type

F0w(t) + . . . + FLw(t − L) = B0a(t) + . . . + BLa(t − L). (6.3)

The essential difference with the models in the foregoing chapters (see for example
(1.22)) is that the auxiliary variables a(t) are not observed and that the system parameters
F0, . . . , FL and B0, . . . , BL are unknown. If we assume that F0 = B0 = I then the
term a(t) can be interpreted as the modelling error at time t . For a good specification this
model error should not have any predictable dynamical pattern, as this would indicate
misspecification. Such a completely unpredictable process is called white noise. This
forms the building block for the processes described in this chapter.

Specializing (6.3) to the case of input-output systems with w =
(
uT yT
)T

, writing

FT
i = (−CT

i − AT
i ), and taking −A0 = B0 = I we get the so-called ARMAX

representation

y(t) = A1y(t − 1) + . . . + ALy(t − L) + a(t) + B1a(t − 1) + . . .

+ BLa(t − L) + C0u(t) + C1u(t − 1) + . . . + CLu(t − L) (6.4)

In this model the current value of the output y is explained by an autoregression (AR) on
its own past, a moving average (MA) of the auxiliary variables a, and the exogeneous (X)

inputs u. Note that this model imposes no restrictions on the input-output behaviour if the
variables a are considered as completely arbitrary. For the reason mentioned before it is
often supposed that a is a white noise stochastic process. In this chapter we first consider
systems without control inputs u, so that the observed process y is driven by white noise.
This means that the output y is a stochastic process.

6.2 Stationary Processes

A stochastic process is defined as a collection of random variables {y(t), t ∈ Z}. A time
series is an outcome of this process, that is, a series of observed vectors y(t). In practice,
the available information often consists of an observed time series and the question is how
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to estimate the properties of the underlying process. The statistical properties of primary
importance are the mean μ(t) := E{y(t)} and the covariances

R(t, s) := E{(y(t) − μ(t))(y(s) − μ(s))T }.

Definition 6.2.1 A stochastic process is (weakly) stationary if μ(t) = μ(s) and R(t, s) =
R(t + k, s + k) for all t, s, k ∈ Z, that is, if its mean and covariances exist and are time-
invariant. In this case we write μ(t) = μ and R(t, s) = R(t − s).

In the case of a Gaussian process, that is, a process {y(t), t ∈ Z} such that the
distribution function of each y(t) is multivariable normal, this is equivalent to strong
stationarity in the sense that the probability distributions are time invariant, that is, for
all n ∈ N, k ∈ Z, ti ∈ Z, i = 1, . . . , n, there holds

p(y(t1), y(t2), . . . , y(tn)) = p(y(t1 + k), y(t2 + k), . . . , y(tn + k)),

where p denotes the joint probability distribution. In the sequel, whenever we say
stationary, we mean strongly stationary. Note that for a stationary process we have
R(−k) = R(k)T .

In practice the mean and covariances of a stationary process are often not known.
If the process is observed on a time interval of length N so that the available data are
y(1), y(2), · · · , y(N), then the sample mean is defined by

μ̂N := 1

N

N∑

t=1

y(t) (6.5)

and the sample covariances are defined by

R̂N (k) := 1

N

N∑

t=k+1

(y(t) − μ̂N )(y(t − k) − μ̂N )T , 0 ≤ k ≤ N − 1, (6.6)

while for k < 0 we have R̂N (k) = R̂N (−k)T .

Definition 6.2.2 A stationary stochastic process is ergodic if the following holds true
almost surely:

lim
N→∞ μ̂N = μ (6.7)

lim
N→∞ R̂N (k) = R(k) (6.8)
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In the sequel we will simply assume that ergodicity holds true. The sample mean and
covariances then provide reliable information on the underlying process if the number of
observations is sufficiently large.

Example 6.2.1 A white noise process is a stationary process characterized by the property
that values at different time instants are uncorrelated, in the sense that R(k) = 0 for all
k �= 0. The law of large numbers implies that (6.7) holds true. Condition (6.8) requires
some additional assumptions, for example, that the process has bounded fourth moments.
In case R(0) = I and μ = 0 the white noise process is called standard white noise.

A useful evaluation of estimated stochastic systems is to test whether the model errors
can be considered as white noise. If this is not the case then additional (linear) dynamical
relationships are present in the data.

Example 6.2.2 Consider the univariate process described by the equation

y(t) = sin(ωt + θ) (6.9)

Suppose that ω is unknown but fixed, and that the phase θ is a random variable with
uniform distribution on the interval [0, 2π). Then y is a stochastic process. This process
is very particular, as it is perfectly predictable. Indeed, from the equality sin a + sin b =
2 sin( a+b

2 ) cos( a−b
2 ) one can derive

y(t + 2) + y(t) = (2 cosω)y(t + 1). (6.10)

For every time series generated by the process the value of cos ω can be determined
from three subsequent observations, and this makes the whole future of the trajectory
perfectly predictable. The process y is nonetheless stationary, as it has mean μ(t) = 0
and covariances

R(t, s) = 1

2π

∫ 2π

0
sin(ωt + θ) sin(ωs + θ)dθ = 1

2
cos(ω(t − s)) = R(t + k, s + k).

This shows that the interdependence between the observations never dies out, even if the
distance in time is arbitrarily large.

Example 6.2.3 A moving average (MA) process is modelled in terms of uncorrelated
driving forces, that is,

y(t) =
∞∑

k=0

G(k)ε(t − k) (6.11)
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where ε is an unobserved standard white noise process. If
∑∞

k=0 ‖G(k)‖ < ∞, then this
process is well-defined. The process y is stationary and ergodic with covariances

R(t, s) =
∞∑

k=k(t,s)

G(t − s + k)G(k)T = R(t − s) (6.12)

where k(t, s) = max{0, s − t}. The auxiliary variables ε act like inputs that generate
the observed output process via a convolution relation, that is, via a linear, time invariant
system. An essential difference with input-output convolution systems is that the auxiliary
variables need not have an external significance. They merely facilitate the system
description, and the process representation (6.11) is non-unique. The MA-representation
(of the model) is called (causally) invertible if it can be rewritten as

∞∑

k=0

H(k)y(t − k) = ε(t) (6.13)

with
∑∞

k=0 ‖H(k)‖ < ∞. This is called an autoregressive (AR) representation. It expresses
y(t) in terms of its past values and an additional innovation ε(t) which is uncorrelated with
this past.

The processes described in Examples 6.2.2 and 6.2.3 are in a sense the building blocks
of all stationary processes. The Wold decomposition theorem, which we state below, tells
us that every stationary process can be decomposed into a moving average part and a
perfectly predictable part.

Definition 6.2.3 A stationary process y is called perfectly predictable if there exists a
prediction function with error zero, that is, for some function F there holds

E‖y(t) − F(y(s), s ≤ t − 1)‖2 = 0 ∀t ∈ Z (6.14)

For example, a cyclical process as in Example 6.2.2 is perfectly predictable, in the case of
Example 6.2.2 the function F(y(s), s ≤ t − 1) is given by (2 cos ω)y(t − 1) − y(t − 2),
as in (6.10).

A process is called harmonic if it is of the form y(t) = ∑n
k=1 αk sin(ωkt + θk)

with αk, ωk fixed and the θk independent and uniformly distributed on [0, 2π). One can
prove that such processes are stationary and perfectly predictable, also for n ≥ 2 (cf.
Example 6.2.2).

The proof of the following result requires mathematical methods that are beyond the
scope of this book. The interested reader is referred to [10, page 187, Theorem 5.9.1].
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Theorem 6.2.4 Every stationary process y has a Wold decomposition y = y1 + y2 where

(i) y1 and y2 are stationary and uncorrelated,
(ii) y1 is an invertible moving average process (6.11)with

∑∞
k=0 ‖G(k)‖2 < ∞, and with∑∞

k=0 ‖H(k)‖2 < ∞ in the inverse representation (6.13),
(iii) y2 is a perfectly predictable process with a linear function F in (6.14).

Note that we only get here
∑∞

k=0 ‖G(k)‖2 < ∞, and not the stronger condition∑∞
k=0 ‖G(k)‖ < ∞.

6.3 ARMA Processes

In this section we assume that any perfectly predictable component of the process has
been removed, so that by Theorem 6.2.4 a moving average process remains. For the MA-
process (6.11) the function Ĝ(z) = ∑∞

k=0 G(k)z−k is called the filter generating y(t)

from standard white noise. The relevance of filters is that the composition of processes
corresponds with the multiplication of filters. Note its similarity with the transfer function
of a linear time invariant system. The moving average process in principle involves an
infinite number of parameters. This presents the problem to construct approximate models
involving fewer parameters. A suitable approximation is a so-called autoregressive moving
average model

y(t) = A1y(t −1)+ . . .+Apy(t −p)+B0ε(t)+B1ε(t −1)+ . . .+Bqε(t −q) (6.15)

This is called an ARMA(p, q) model. In case q = 0 it is called an AR(p) model and
for p = 0 it is called an MA(q) model. Here the filter Ĝ(z) = ∑∞

k=0 G(k)z−k , is
approximated by a rational function A−1(z)B(z), where A(z) = I −A1z

−1 − . . .−Apz−p

and B(z) = B0 + B1z
−1 + . . . + Bqz−q are matrices with entries that are polynomials

in z−1. The next result states that these approximations become arbitrarily accurate if the
orders p and q are chosen sufficiently large.

Theorem 6.3.1 Every stationary process without perfectly predictable component can be
approximated by AR and MA processes, that is, for every process y of the form (6.11) and
for every δ > 0 there exist orders p, q and an AR(p) process yA and anMA(q) process yM

such that for all t = 1, 2, · · · we have E‖y(t) − yA(t)‖2 < δ and E‖y(t) − yM(t)‖2 < δ.

Proof For simplicity we will only construct the approximation by an MA process in the
zero mean, univariate case. The construction of the AR(p) process is more involved, and
we refer to the literature for this.

So, let y(t) be a scalar stationary process without perfectly predictable component.
From Theorem 6.2.4 it follows that y(t) =∑∞

k=0 G(k)ε(t − k), where
∑∞

k=0 G(k)2 < ∞
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and with autoregressive representation (6.13) with the property that
∑∞

k=0 H(k)2 < ∞.
By appropriate scaling we may assume that G(0) = 1, so that H(0) = 1 as well. The
variance of the corresponding white noise process is denoted by E(ε2) = σ 2.

For given δ > 0 let q be such that
∑∞

k=q+1 G(k)2 < δ
σ 2 , then yM(t) :=∑q

k=1 G(k)ε(t − k) is an MA(q) process with the desired property. ��

Although from an approximation viewpoint the AR and MA processes are sufficiently
rich, ARMA models may provide a more accurate approximation with fewer parameters.

The moving average process (6.11) has an ARMA representation (6.15) if and only if
the filter Ĝ(z) = ∑∞

k=0 G(k)z−k is a rational matrix function. However, the parameters
of the model (6.15) are not uniquely determined. First, the noise process ε may be chosen
in different ways. Second, for a given choice of ε, the factorization Ĝ(z) = A−1(z)B(z)

in terms of the polynomials A(z) and B(z) is not unique. We illustrate this by two simple
examples.

Example 6.3.1 Consider the scalar MA(1) process y given by y(t) = ε(t)+θε(t −1) with
|θ | < 1, where ε is standard white noise. Then ε(t) =∑∞

k=0(−θ)ky(t − k), almost surely,
which means that the process can be decomposed as y(t) = ε(t) + f (y(s), s ≤ t − 1). As
ε(t) is uncorrelated with the past observations of y, i.e. {y(s), s ≤ t − 1}, it follows that ε

is the forward prediction error process corresponding to the process y. Actually, this is the
Wold representation of Theorem 6.2.4(ii) for this process.

Now define the process ω by ω(t) =∑∞
k=0(−θ)ky(t + 1 + k). Use E(y(s)y(s − 1)) =

E(y(s − 1)y(s)) = θ , E(y(s)2) = 1 + θ2 and Ey(s)y(t) = 0 if |s − t| ≥ 2 to check
that ω is a standard white noise process and that y(t) = θω(t) + ω(t − 1). This is an
alternative MA(1) representation of the process y. Actually, ω is the backward prediction
error process corresponding to the process y. So the process y can be described by the
filter 1 + θz−1 and also by the filter θ + z−1, by appropriate choice of the driving white
noise process.

Example 6.3.2 Consider the bivariate MA(1) process

y1(t) = ε1(t) + θε2(t − 1),

y2(t) = ε2(t).
(6.16)

One easily derives the alternative AR(1) representation

y1(t) − θy2(t − 1) = ε1(t)

y2(t) = ε2(t).
(6.17)
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That is, this process can be written in ARMA form (6.15) with A(z) = I and B(z) =(
1 θz−1

0 1

)
or alternatively with A(z) =

(
1 −θz−1

0 1

)
and B(z) = I .

In practice one prefers representations with few parameters and where the noise process
ε has a good interpretation. The first condition is related to the notion of coprimeness, the
second to the notions of stationarity and invertibility.

Two matrices that are polynomial in z−1, A(z) and B(z) are called left coprime if they
have no non-trivial common left factors, i.e., if there are polynomial matrices C,A1, B1,
in z−1, such that A(z) = C(z)A1(z) and B(z) = C(z)B1(z), then C must be unimodular,
i.e. det C(z) does not depend on z, and hence C(z)−1 is also a polynomial in z−1. In the
univariate case, coprimeness means that the two polynomials A and B have no common
factors. If A and B are not coprime, then one can find A1 and B1 such that A−1

1 B1 =
A−1B, but (A1, B1) are of lower degree than (A,B).

Proposition 6.3.2 If the stationary process y in (6.15) has no perfectly predictable
component, then it can be represented by a coprime ARMA model.

Proof For simplicity we only consider the univariate case, in the multivariate case the
proof is more complicated.

Recall that multiplication of filters corresponds to composition of corresponding (MA
or AR) representations. Write (6.15) for simplicity as Ay = Bε. Let F be the greatest
common divisor of A and B, so that A = FÃ, B = FB̃, and Ã and B̃ have no common
factors. Introduce x = Ãy − B̃ε. Define the processes y1 and y2 by Ãy1 = B̃ε and
Ãy2 = x. Then y = y1 + y2 because A(y1 + y2) = Bε. We have Ay2 = FÃy2 = Fx =
F(Ãy − B̃ε) = 0. This means that y2 is perfectly predictable and hence, by assumption
y2 = 0. Therefore y = y1 and Ãy = B̃ε is a coprime ARMA representation. ��

Further, the ARMA model (6.15) is said to be stationary if the process it represents
can be written as in (6.11) with

∑ ‖G(k)‖ < ∞, and the model is called invertible if the
process it represents can be written as in (6.13) with

∑ ‖H(k)‖ < ∞. The corresponding
filters are called causal, and invertible, respectively. So stationarity of the model means
that y is related to ε in a causal way, invertibility means that ε is related to y in a causal
way. These conditions mean that the process ε consists of the (forward) prediction errors of
the process y. The first filter in Example 6.3.1 is causal with a causal inverse. A filter Ĝ is
called anticausal if it can be represented as

∑0
k=−∞ G(k)z−k with

∑0
k=−∞ ‖G(k)‖ < ∞.

The second filter in Example 6.3.1 is causal with an anticausal inverse.
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Theorem 6.3.3 Consider a stationary process with coprime ARMA representation (6.15).

(i) The representation is stationary if and only if det A(z) has all its roots inside the unit
circle |z| < 1; in this case (6.11) is obtained by the filter Ĝ(z) = A(z)−1B(z).

(ii) The representation is invertible if and only if det B(z) has all its roots inside the unit
circle, and (6.13) is then given by the filter Ĥ (z) = B(z)−1A(z).

Proof Again, for simplicity we only consider the univariate case. The multivariate result
follows in a similar way by using the Smith form of polynomial matrices (see, e.g., [19]).

First assume that A has all its roots inside the unit circle. Then Ĝ(z) = A−1(z)B(z) is
a rational function which has all its poles inside the unit disk and has limit B0 for z → ∞.
It is well known in scalar complex function theory that such a rational function Ĝ(z), has
a series expansion

∑∞
k=0 G(k)z−k with

∑∞
k=0 |G(k)| < ∞.

For the converse we first remark that A(z) and B(z) do not have a common zero because
they are coprime. Hence any zero of A(z) gives a pole of Ĝ(z) = A−1(z)B(z). Since Ĝ(z),
has a series expansion

∑∞
k=0 G(k)z−k with

∑∞
k=0 |G(k)| < ∞ it is known from complex

function theory that Ĝ(z) has all its poles inside the unit disk. Thus A(z) has all its zeros
inside the unit disk.

Part (ii) is proved in a similar way. ��

Let y be a stationary process without perfectly predictable component and with a
coprime ARMA representation (6.15). In the next chapter we will show that this process
then also has a stationary and invertible ARMA representation. We conclude that within
this setting it is no restriction to assume that an ARMA model is stationary and invertible.
However, this representation is still not unique. For instance, the representation in (6.16)
and (6.17) are both coprime, stationary and invertible. To obtain uniqueness one should
impose additional restriction on the parameters in ARMA models.

6.4 State SpaceModels

The state of a system contains all the information on the interdependence between the
past and the future of the system. Given the current state, the future evolution becomes
independent from the past.

Consider stochastic vectors x and y. The best linear prediction of x in terms of y is
a stochastic vector Ly, where L is a matrix such that E(x − Ly)(x − Ly)T is minimal.
The solution is then given by projecting each component x1, . . . , xn of x orthogonally on
the space spanned by the components y1, . . . , ym of y. This means that we look for row
vectors lj , j = 1, . . . , n, such that E(xj − lj y)yk = 0 for k = 1, . . . ,m. This gives m

linear equations for the lj , which can be written as Exjy
T = ljEyyT . In the case that

EyyT is invertible we find lj = Exjy
T (EyyT )−1. For the matrix L we therefore get

L = ExyT (EyyT )−1. For this Ly we use the notation E(x|y) and call this best linear
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prediction of x based on y, or the conditional expectation of x based on y. Therefore,
E(x|y) = 0 if and only if E(xyT ) = 0, so that all components of x and y are uncorrelated.
In a similar way we define E(x|y(1), y(2), . . .) as the best linear approximation of x by
a combination of the components of the vectors y(1), y(2), . . .. This then has the form
�jH(j)y(j) for appropriate matrices H(j).

Definition 6.4.1 The process x is called a state process for the process y if for every t ∈ Z

E(y(t + k)|x(t), y(t − 1), y(t − 2), . . .) = E(y(t + k)|x(t)) ∀k ≥ 0,

E(y(t − k)|x(t), y(t), y(t + 1), . . .) = E(y(t − k)|x(t)) ∀k ≥ 1.
(6.18)

Thus the process x summarizes all correlations between the past and the future of the
process y.

We consider models of the form

⎧
⎨

⎩
x(t + 1) = Ax(t) + ε1(t), t ∈ Z

y(t) = Cx(t) + ε2(t),
(6.19)

where (ε1, ε2) is a joint white noise process with covariance matrix

E

(
ε1(t)

ε2(t)

)(
ε1(t)

ε2(t)

)T

=
(

�11 �12

�21 �22

)
= �. (6.20)

We restrict the attention to stationary representations, where the filter generating x from ε1

is causal. According to Theorem 6.3.3 (i) this means that det(I −Az−1) has all its zeros in
the unit disk. This is equivalent to A being a stable matrix, that is, A has all its eigenvalues
in the open unit disc. Further we assume for simplicity that all processes considered have
zero mean.

Proposition 6.4.2 If the matrix A is stable, then the process x in (6.19) is a Markov
process, that is,

E(x(t + 1)|x(s), s ≤ t) = E(x(t + 1)|x(t)),

and it is a state for the process y (6.19).
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Proof Since A is stable we have x(t) = ∑∞
k=1 Ak−1ε1(t − k). If s ≤ t then

E(x(s)ε1(t)
T ) = ∑∞

k=1 Ak−1E(ε1(s − k)ε1(t)
T ) = 0. We conclude that ε1(t) and x(s)

are uncorrelated. Therefore

E(x(t + 1)|x(s), s ≤ t) = E(Ax(t) + ε1(t)|x(s), s ≤ t) = E(Ax(t)|x(s), s ≤ t).

Now by definition E(Ax(t)|x(s), s ≤ t) = Ax(t) = E(Ax(t)|x(t)). Again using that
ε1(t) and x(t) are uncorrelated we get

E(Ax(t)|x(t)) = E(Ax(t) + ε1(t)|x(t)) = E(x(t + 1)|x(t)).

Further, y(t) = ε2(t) + ∑∞
k=1 CAk−1ε1(t − k). This shows that (ε1(t), ε2(t)) and

y(s), s ≤ t − 1, are uncorrelated. For ν ≥ t there holds y(ν) = CAν−t x(t) + ε2(ν) +∑ν−t
k=1 CAk−1ε1(ν − k), so that

E(y(ν)|x(t), y(s), s ≤ t − 1) = CAν−t x(t) = E(y(ν)|x(t)).

This proves one part of (6.18).
Because y(ν) is for ν ≥ t a linear expression in x(t), ε2(ν), and ε1(ν), we get

E(y(t−k)|x(t), y(t), y(t+1), . . .) = E(y(t−k)|x(t), ε1(t), ε2(t), ε1(t+1), ε2(t+1), . . .).

Once again use that y(t − k) and ε1(t + j), ε2(t + j), j ≥ 0, are uncorrelated. We get
E(y(t − k)|x(t), y(t), y(t + 1), . . .) = E(y(t − k)|x(t)). ��

The state space model (6.19) is of much practical use because of its simple first order
structure. We will now show which processes can be represented in state space form and
how such representations can be obtained. The following result is the stochastic analogue
of Theorem 2.3.3 for deterministic input-output systems. Recall the a model is stationary
means that the corresponding filter is causal.

Theorem 6.4.3 A stationary process y can be represented in state space form (6.19) with
a stable matrix A if and only if it can be represented by a stationary ARMA model (6.15).

Proof First suppose that the model (6.15) is given. For the moment denote Â(z) = I −
A1z

−1 − · · · − Apz−p. Let m := max{p, q} and define Ai = 0, i ≥ p + 1, and Bj = 0,
j ≥ q + 1. Let x(t) = (x1(t)

T , . . . , xm(t)T )T where

xi(t) :=
m∑

k=1

Ak+i−1y(t − k) +
m∑

k=1

Bk+i−1ε(t − k), i = 1, . . . ,m.
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This gives a representation (6.19) with C =
(
I 0 . . . 0

)
, ε2(t) = B0ε(t) and ε1(t) =

Bε(t), where

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 I 0 . . . 0

A2 0 I 0
...

...
...

. . .
...

Am−1 0 0 . . . I

Am 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1B0 + B1

A2B0 + B2
...

Am−1B0 + Bm−1

AmB0 + Bm

⎞
⎟⎟⎟⎟⎟⎟⎠

.

It follows that det(zI −A) = det zmÂ(z), and thus by Theorem 6.3.3 the stationary ARMA
model gives a stable matrix A.

Conversely, for a given model (6.19) with A a stable n×n matrix, define P̂ (z) := I− 1
z
A

and p̂(z) := det P̂ (z). Further let the polynomial matrix P̂+(z) in 1
z

denote the adjoint of

P̂ (z), so that P̂+(z)P̂ (z) = p̂(z) · I . Like in the proof of Theorem 6.3.3 we relate to the
matrix polynomials P̂ , p̂ · I , and P̂+ the corresponding filters P , p, and P+. This way the
state process in (6.19) can be written as Px = ε1, so that py = Cpx + pε2 = CP+Px +
pε2 = CP+ε1 +pε2. This is an ARMA(n, n) representation with AR polynomial p̂(z) ·I .
This representation is stationary because p̂(z) has its roots inside the unit circle. ��

In the univariate case the construction above leads to a minimal state space representa-
tion if Ap �= 0 and Bq �= 0 in (6.15). In the multivariate case it may be non-minimal.

Stochastic realization theory concerns the relationship between stochastic processes and
their state space representations. Let y be a given stationary process with representation
(6.19) where A is a stable matrix. We assume that �22 in (6.20) is invertible, so that y has
no perfectly predictable component. The autocovariances of the process are easily obtained
from this representation.

Proposition 6.4.4 Let A be a stable matrix. Then the autocovariances of the process y in
(6.19), (6.20) with �22 invertible, are given by

R(0) = C�CT + �22, (6.21)

R(k) = CAk−1M, k ≥ 1, (6.22)

where M = E(x(t + 1)y(t)T ) = A�CT +�12, and � = E(x(t)x(t)T ) satisfies the Stein
equation

� = A�AT + �11. (6.23)
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Proof As A is stable the state process (6.19) satisfies x(s) = ∑∞
k=1 Ak−1ε1(s − k), so

that ε1(t) and ε2(t) are uncorrelated with x(s) for s ≤ t . Further, x(t) is a stationary
process, so that E(x(t)x(t)T ) = E(x(t + 1)x(t + 1)T ). Hence

� = E(Ax(t) + ε1(t))(Ax(t) + ε1(t))
T = A�AT + �11.

In addition,

R(0) = E(y(t)y(t)T ) = E(Cx(t) + ε2(t))(Cx(t) + ε2(t))
T = C�CT + �22

and

M = E(x(t + 1)y(t)T ) = E(Ax(t) + ε1(t))(Cx(t) + ε2(t))
T = A�CT + �12.

Furthermore, for k ≥ 1 there holds x(t) = Ak−1x(t − k + 1) +∑k−1
j=1 Aj−1ε1(t − j), so

that

R(k) = E{y(t)y(t − k)T } =
= E{[CAk−1x(t − k + 1) +∑k−1

j=1 CAj−1ε1(t − j)]y(t − k)T }
= CAk−1M

as ε1(t) is uncorrelated with y(s) for s < t . ��

Next we consider the converse problem of weak stochastic realization. In this case the
autocovariances R(k) (with

∑ ‖R(k)‖ < ∞) of the process are given and the problem
is to determine a state space model (6.19), (6.20) with the same autocovariances. The
foregoing result expresses the involved restrictions on the parameters in this model. The
first step in the solution of the weak stochastic realization problem is to construct the
matrices (A,C,M) so that R(k) = CAk−1M, k ≥ 1. This may be done using for example
the algorithm of Sect. 3.4. The noise covariance matrices in (6.20) can then be derived from
the state covariance matrix � = E(x(t)x(t)T ) because

� =
(

�11 �12

�21 �22

)
=
(

� − A�AT M − A�CT

MT − C�AT R(0) − C�CT

)
. (6.24)

Therefore it remains to determine a positive semidefinite matrix � such that � is positive
semidefinite. The next theorem describes the solution set in qualitative terms. For a proof
we refer to [12].
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Theorem 6.4.5 For given R(0) and minimal (A,C,M), the set of positive semidefinite
matrices� such that (6.24) is positive semidefinite is convex and bounded. It has a minimal
solution �− and a maximal solution �+ such that for all other solutions �− ≤ � ≤ �+.

A realization (6.19) of the covariances {R(k), k ∈ Z} is called minimal if both the

number of state variables x(t) and the number of independent noise variables in

(
ε1(t)

ε2(t)

)

are as small as possible. The minimal number of states is obtained if (A,C,M) is a
minimal triple. The number of independent noise terms is minimized by selecting a matrix
� of the solution set in Theorem 6.4.5 that minimizes the rank of � in (6.24). As �22 is
assumed to be invertible, it follows that

� =
(

�11 �12

�21 �22

)
=
(

I �12

0 �22

)(
Z 0

0 �−1
22

)(
I 0

�21 �22

)
,

where Z = �11 −�12�
−1
22 �21. The rank is minimized by taking Z = 0, so that � satisfies

the algebraic Riccati equation

� = A�AT + (M − A�CT )(R(0) − C�CT )−1(M − A�CT )T . (6.25)

The solution of this equation is in general not unique. Of particular interest is the minimal
solution �−, which is obtained as the limit for k → ∞ of the recursion

�0 = 0, �k+1 = A�kA
T + (M − A�kC

T )(R(0) − C�kC
T )−1(M − A�kC

T )T .

For this solution the state covariance matrix is as small as possible.

6.5 Spectra and the Frequency Domain

Let y be a stationary process with zero mean and covariances

R(k) = Ey(t)y(t − k)T , k ∈ Z. (6.26)

Definition 6.5.1 The spectrum of a stationary process is defined by the formal power
series

S(z) = 1

2π

∞∑

k=−∞
R(k)z−k. (6.27)
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The spectrum is a well-defined function of the complex variable z = eiω on the unit
circle if we impose the condition

∞∑

k=−∞
||R(k)|| < ∞. (6.28)

As S(eiω) = S(e−iω)T it suffices to consider the spectrum only for ω ∈ [0, π]. For each
ω, the value of S(eiω) is a complex-valued positive semidefinite matrix, and in the scalar
case S(eiω) is real-valued and non-negative. In Fourier Analysis the following theorem is
well known.

Theorem 6.5.2 The autocovariances of a process with spectrum S, which satisfies the
condition

∫ π
−π

‖S(eiω)‖dω < ∞, are given by

R(k) =
∫ π

−π

eikωS(eiω)dω (6.29)

and (6.28) is satisfied.

Note that
∫ π
−π

einωdω = 0 if n �= 0 and that this integral equals 2π if n = 0. So if
(6.28) is satisfied, then

∫ π

−π

eikωS(eiω)dω =
∞∑

l=−∞

1

2π
R(l)

∫ π

−π

ei(k−l)ωdω = R(k).

The formulas (6.27) and (6.29) show that the covariance sequence {R(k), k ∈ Z} and the
function S(eiω) contain the same information.

The condition (6.28) on the summability of the norms of the autocovariances is a
necessary one for the spectrum to be a well-defined function. To see this consider the
spectrum of a cyclic process y(t) = sin(ω0t + θ). Then we know from Example 6.2.2 that
R(k) = 1

2 cos(ω0k). Hence the spectrum

S(eiω) = 1

4π

( ∞∑

k=−∞
cos(ωk) cos(ω0k) + i

∞∑

k=−∞
sin(ωk) cos(ω0k)

)
.

As sin(ω(−k)) = − sin(ωk) the second summand vanishes, and since cos(ω(−k)) =
cos(ωk) we have

S(eiω) = 1

4π

(
1 + 2

∞∑

k=1

cos(ωk) cos(ω0k)

)
.
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Now from Fourier Analysis it is known that the sum on the right will converge to zero
if ω �= ω0 and to ∞ when ω = ω0. So the limit is a Dirac-delta function. To get an
impression, the graph below shows the sum of the first 40 and the first 100 terms in the
series for ω0 = π

4 , and the second graph shows 1024 terms. Note the different scales on
the y-axis.

0 0.5 1.5 2.5 3.51 2 3 0 0.5 1.5 2.5 3.51 2 3
-1

0

1

2

3

4

5

6

7

8

9
Cyclic process with o= /4

40 terms
100 terms

-10

0

10

20

30

40

50

60

70

80

90
Cyclic process with o= /4

1024 terms

We now consider the spectrum of a moving average process

y(t) =
∞∑

k=0

G(k)ε(t − k) (6.30)

where ε is a white noise process with Eε(t)ε(t)T = I , and where∑∞
k=0 ‖G(k)‖ < ∞.

Theorem 6.5.3 The spectrum of the moving average process (6.30) is given by

S(z) = 1

2π
Ĝ(z)ĜT (z−1) (6.31)

where Ĝ(z) :=∑∞
k=0 G(k)z−k .

Proof It follows from (6.30) that

R(k) = Ey(t)yT (t − k) =
∞∑

i=0

G(i + k)GT (i),
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which is also the coefficient of z−k in

Ĝ(z)ĜT (z−1) =
∞∑

i=0

∞∑

j=0

G(j)GT (i)zi−j .

These series are well-defined as
∑∞

k=0 ||G(k)|| < ∞. ��

From this result we easily obtain the spectrum of an ARMA process with a coprime,
stationary and invertible representation

y(t) = A1y(t −1)+ . . .+Apy(t −p)+B0ε(t)+B1ε(t −1)+ . . .+Bqε(t −q). (6.32)

Theorem 6.5.4 The spectrum of an ARMA process (6.32), where ε is a standard white
noise, is given by

S(z) = 1

2π
A−1(z)B(z)BT (z−1)(AT )−1(z−1). (6.33)

Proof According to Theorem 6.3.3 the filter of the moving average representation of the
process is given by Ĝ(z) = A−1(z)B(z). The result then follows from Theorem 6.5.3. ��

Recall that a stochastic system has a finite dimensional state space realization if and
only its filter is rational. We proved that if the filter is rational, then the spectrum is
rational. Conversely, if the spectrum is rational, one can prove that the filter is also rational.
So, stochastic systems have a finite dimensional state space realization if and only if the
spectrum is rational. This is similar to the result for deterministic input-output systems in
terms of the transfer function.

Example 6.5.1 For univariate ARMA processes with E{ε(t)}2 = σ 2
ε we obtain

S(eiω) = σ 2
ε

2π

b(e−iω)b(eiω)

a(e−iω)a(eiω)
.

Here a and b are scalar polynomials.

In particular, a standard white noise process has spectrum S(eiω) = (2π)−1, so that the
spectrum is constant for all frequencies. The filter of an AR(1) process y(t) = αy(t −1)+
ε(t) with |α| < 1 is given by

Ĝ(z) = A(z)−1 = 1

1 − αz−1
=

∞∑

k=0

αkz−k.
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Hence the autocorrelations are R(k) =∑∞
i=0 αk+iαi = αk/(1−α2), k ≥ 0. The spectrum

of this process is given by

S(eiω) = 1

2π(1 + α2 − 2α cos ω)
.

If α > 0 the spectrum is monotonically decreasing in ω ∈ [0, π), indicating that the lower
frequencies are dominant in this process. This is in agreement with the positive correlations
R(k) = αk/(1 − α2), k ≥ 0, so that this process tends to oscillate less as compared
with white noise. On the other hand, if α < 0 the process oscillates more heavily, and
this translates into a monotonically increasing spectrum in ω ∈ [0, π). So here the high
frequency components are dominant. Such interpretations of the spectrum can often be
made for stationary processes.

Finally, we consider the spectrum of the state space model (6.19). Proposition 6.4.4
describes the R(k)’s through formulas (6.21) and (6.22). Thus, let A be stable, and let the
process y(t) be given by (6.19). Then

S(z) = 1

2π

(
�22 + C�CT +

∞∑

k=1

CAk−1Mz−k +
∞∑

k=1

MT (AT )k−1CT zk

)
,

where M = �12 + A�CT and � is the unique solution to � − A�AT = �11. Now

∞∑

k=1

CAk−1z−kM = C(zI − A)−1M

and

∞∑

k=1

MT (AT )k−1CT zk = zMT
(
I − zA

)−1
CT .

Hence we arrive at the following theorem.

Theorem 6.5.5 The spectrum of a stationary process y(t) which is given by (6.19), where
A is a stable matrix, and where (ε1, ε2) is a joint white noise process with covariance
matrix (6.20), is given by

S(z) = 1

2π

(
�22 + C�CT + C(zI − A)−1M + zMT

(
I − zA

)−1
CT
)

, (6.34)

where M = �12 + A�CT and � is the unique solution to � − A�AT = �11.
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6.6 Stochastic Input-Output Systems

In this section we present a short description of the broad class of stochastic input-output
systems that can be described by the convolutions

y(t) =
∞∑

k=0

G1(k)u(t − k) +
∞∑

k=0

G2(k)ε(t − k). (6.35)

In this case the output process y is generated by a linear, time invariant system driven by
control inputs u and an auxiliary white noise process ε. If Ĝ1(z) = ∑∞

k=0 G1(k)z−k and
Ĝ2(z) =∑∞

k=0 G2(k)z−k are both rational, so that Ĝi(z) = Âi(z)
−1B̂i (z) for polynomial

matrices Âi , B̂i , i = 1, 2, then the process y can be represented in ARMAX form (6.4).
Indeed, define A = (det Â1)Â2, B = (det Â1)Â2Â

−1
1 B̂1, and C = (det Â1)B̂2, then A, B

and C are polynomial matrices and (6.35) can be written as

y(t)+A1y(t − 1) + . . . + ALy(t − L) = B0ε(t) + B1ε(t − 1) + . . .

+ BLε(t − L) + C0u(t) + C1u(t − 1) + . . . + . . . CLu(t − L),
(6.36)

where Â(z) = I − ∑L
k=1 Akz

−k , B̂(z) = ∑L
k=0 Bkz

−k , and Ĉ(z) = ∑L
k=0 Ckz

−k .
The output process y of (6.35) can be decomposed as y = y1 + y2, where the process
y1(t) = ∑∞

k=0 G1(k)u(t − k) describes the impact of the control inputs and the process
y2(t) = ∑∞

k=0 G2(k)ε(t − k) the impact of the disturbance terms. If Ĝ1 and Ĝ2 are
both rational, then y1 has a finite dimensional deterministic realization and y2 a finite
dimensional stochastic realization. By combining these models we obtain a state space
representation of the ARMAX process of the form

x(t + 1) = Ax(t) + Bu(t) + Eε(t)

y(t) = Cx(t) + Du(t) + Fε(t)
(6.37)

The models (6.35), (6.36) and (6.37) describe the stochastic properties of the output
process y only after the interdependence between u and ε has been specified. One
possible interpretation of these models is that they describe the stochastic evolution of y

conditionally, for a fixed input trajectory u. This is the so-called open-loop interpretation.
A similar interpretation is possible if the processes u and ε are uncorrelated. In many
cases, however, the input will be correlated with the noise. This is the case, for example,
in controlled processes where u depends on past observations of y. This leads to a closed-
loop interpretation. For example, a finite dimensional controller could be of the form∑N

k=0 P(k)u(t − k) = ∑N
k=0 Q(k)y(t − k) +∑N

k=0 R(k)η(t − k), where η is a white
noise process modelling additional influences on the control input. Combining this with
(6.36) would lead to a joint stochastic ARMA model for the external variables (u, y).
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Stochastic systems can be applied for forecasting purposes. The classical solution for
filtering, smoothing and prediction of linear systems was proposed by Wiener and
Kolmogorov in terms of spectral representations. The Kalman filter is a much more
efficient, recursive solution in terms of state space models.

7.1 The Filtering Problem

For a deterministic input-output system the future outputs are exactly known once the
future inputs have been chosen. For stochastic systems, however, the future disturbances
are unknown, and therefore the future outputs can only be predicted with some error.
The objective is to construct predictions that minimize the prediction error in some
sense. Forecasting is one of the major applications of stochastic systems, in economics,
engineering and many other disciplines.

The filtering problem is formalized as follows. Suppose that two jointly stationary
processes, y and z, are mutually correlated and that the covariances (or the spectrum)
of the joint process are completely known, but that only y is observed and z is not. As
an example, you may think of z as the state in a model of the type (6.19), and y as the
output. The aim is to form an optimal reconstruction ẑ of the unobserved process z on the
basis of the observed process y, via some function f of (possibly only some of) the values
{y(s); s ∈ Z}, i.e., f {y(s); s ∈ Z}. So the problem will be to determine this function f .

If for the reconstruction ẑ of z(t) only the past and current values of y, i.e. {y(s); s ≤ t},
can be used, this is called filtering. If only {y(s); s ≤ t − m} for some m > 0 can be used
this is the m-step ahead prediction problem, and if m < 0 this is called smoothing. The case
where m = −∞ is called unrestricted smoothing. The one-step ahead prediction problem
is often called the filtering problem, and we will pay special attention to this case. For this
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case, as objective we consider here the minimization of the mean squared prediction error,

E‖z(t) − f {y(s); s ≤ t − 1}‖2 (7.1)

In particular, if z = y then this corresponds to the one-step ahead prediction of a process
based on the past observed values of this process.

The next proposition states that for the most common instances of the problem, when
the process {y, z} is jointly Gaussian, we may as well assume that the function f is a linear
function.

Proposition 7.1.1 The optimal predictor in (7.1) is given by the conditional expectation
E{z(t) | y(s); s ≤ t − 1}. This is a linear function in case the process {y, z} is jointly
Gaussian.

Moreover, if the prediction function f in (7.1) is restricted to be linear, then the optimal
solution for arbitrary distributions is as in the Gaussian case.

We do not give a detailed proof here, for a proof see, e.g., [10]. The outline of the proof
is as follows. The optimal solution in (7.1) is obtained by projecting the components of
z(t) on the space of all (measurable) functions spanned by the components of {y(s); s ≤
t − 1}. This projection is the definition of conditional expectation. In the Gaussian case
the conditional expectation is a linear function. If we require that the predictor in (7.1) is
linear, then the prediction error criterion depends only on the first and second moments of
the processes, so the optimal solution is the same as in the Gaussian case.

For background material on conditional expectation, see, e.g., [64, Chapter 7, Sections
6 and 7].

Restricting the attention to linear predictors, in particular, to the Gaussian case, the
filtering problem consists of determining the parameters of an optimal predictor. As the
processes y and z are assumed to be jointly stationary, by time-invariance, instances of the
filtering problem all reduce to finding matrices F(k) such that

ẑ(t) =
∞∑

k=−∞
F(k)y(t − k). (7.2)

In the m-step ahead problem the filter F satisfies F(k) = 0 for k ≤ m − 1. In particular,
the optimal one-step ahead predictor ẑ(t) is given by a time invariant filter of the form

ẑ(t) =
∞∑

k=1

F(k)y(t − k). (7.3)
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For the smoothing problem we have

ẑ(t) =
∞∑

k=m

F(k)y(t − k)

for some m < 0. The case m = −∞ is called the unrestricted smoothing problem.
Obviously, the problem is now to determine the matrices F(k) based on given data for

the processes y and z. The solution depends essentially on what we assume to be known.
As a first illustration, let y be a purely nondeterministic process with invertible moving

average representation y(t) = ∑∞
k=0 G(k)ε(t − k). Here the process ε is standard white

noise and can be written as ε(t) = ∑∞
k=0 H(k)y(t − k). We denote the optimal linear

m-step ahead predictor of y on the basis of its own past by ŷ(t + m | t) = E(y(t + m) |
y(s), s ≤ t). We assume here that the matrices G(k) are known, and we are interested in
the case y = z. In this case the m-step ahead prediction problem has a particularly easy
solution.

Proposition 7.1.2 Let y(t) = ∑∞
k=0 G(k)ε(t − k) be a causal and invertible MA

representation with ε standard white noise. Then the optimal linearm-step ahead predictor
of y is given by

ŷ(t + m | t) =
∞∑

k=m

G(k)ε(t + m − k) (7.4)

and the covariance matrix of the prediction error ŷ(t + m|t) − y(t + m) is equal to∑m−1
k=0 G(k)G(k)T .

Proof Observe that y(t + m) = ∑m−1
k=0 G(k)ε(t + m − k) +∑∞

k=m G(k)ε(t + m − k).
Now ŷ(t + m|t) = ∑∞

k=m G(k)ε(t + m − k), because for s > t the white noise ε(s) is
uncorrelated with y(t), and due to the invertibility of the moving average representation

E(y(t + m)|y(s); s ≤ t) = E(y(t + m)|ε(s); s ≤ t).

This proves (7.4) and also

y(t + m) − ŷ(t + m|t) =
m−1∑

k=0

G(k)ε(t + m − k).

The latter formula gives that the error that it expresses has covariance matrix∑m−1
k=0 G(k)G(k)T . ��
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Let us consider what this means for a causal and invertible ARMA (p, q)-process
y(t) =∑p

k=1 Aky(t −k)+ε(t)+∑q
k=1 Bkε(t −k). First observe that y(t)− ŷ(t|t −1) =

ε(t), and that ŷ(t|t−1) is linear in ε(s) and y(s), s < t . Note that E(ε(t)|y(s); s < t) = 0,
E(y(t−k)|y(s); s < t) = y(t−k), and E(ŷ(t−k|t−k−1)|y(s); s < t) = ŷ(t−k|t−k−1).
Thus

ŷ(t | t − 1) =
p∑

k=1

Aky(t − k) +
q∑

k=1

Bk{y(t − k) − ŷ(t − k | t − k − 1)}. (7.5)

Note that this is a recursive expression for the one step ahead predictor. Similarly we obtain
for the two-step ahead predictor

ŷ(t | t − 2) = A1ŷ(t − 1 | t − 2) +∑p
k=2 Aky(t − k)

+∑q

k=2 Bk{y(t − k) − ŷ(t − k | t − k − 1)}.

An analogous formula holds for the m-step ahead predictor.

7.2 Spectral Filtering

Wiener and Kolmogorov solved the filtering problem in terms of the spectral properties
of the processes. Suppose that the joint process (y, z) has zero mean and that it has no
perfectly predictable component. The process y then has an invertible MA representation,
see Theorem 6.2.4. We denote this by y(t) = ∑∞

k=0 Gy(k)ε(t − k), where Ĝy(z) =∑∞
k=0 Gy(k)z−k. Denote the autocovariances by

Ryy(k) := E(y(t)yT (t − k)) and Rzy(k) := E(z(t)yT (t − k)),

and the spectra by Syy(eiω) and Szy(eiω) respectively, as defined in formula (6.27).
According to Theorem 6.5.3 there holds

Syy(eiω) = 1

2π
Ĝy(eiω)Ĝy

T
(e−iω).

We shall assume here that the information given to us regarding the processes
y and z is the spectra Syy and Szy , or equivalently, the autocovariances Ryy and
Rzy . Although, as already stated, the process y has an invertible MA representation
y(t) =∑∞

k=0 Gy(k)ε(t − k) we do not assume that the function Ĝy(z) is known. In fact,
it turns out that finding this function is the key step in solving the m-step ahead filtering
(or smoothing) problem.

The solution of the filtering problem in terms of the spectral properties in the
unrestricted smoothing case are covered by the next result.
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Proposition 7.2.1 For the joint Gaussian process (y, z) with zero mean and no pre-
dictable component and given spectra Syy and Szy , we define

F̂ (eiω) = Szy(eiω)S−1
yy (eiω) =

∞∑

k=−∞
F(k)e−ikω.

Then ẑ(t) =∑∞
k=−∞ F(k)y(t − k), is the best linear predictor for z(t) based on all y(s).

Proof The prediction ẑ(t) should be such that E(z(t) − ẑ(t))yT (s) = 0 for all s. So for
each k the condition is that

Rzy(k) = Eẑ(t)yT (t − k) = E

⎛

⎝
∞∑

j=−∞
F(j)y(t − j)

⎞

⎠ yT (t − k)

=
∞∑

j=−∞
F(j)Ey(t − j)yT (t − k) =

∞∑

j=−∞
F(j)Ryy(k − j) k ∈ Z.

The very left hand side of this equality is the coefficient of e−ikω in Szy(eiω) and the right
hand side is the coefficient of e−ikω in F̂ (eiω)Syy(eiω). ��

The set of equations Rzy(k) = ∑∞
j=−∞ F(i)Ryy(k − j) for the unknown F(j) is

sometimes called the discrete time Wiener-Hopf equation.
The solution of the m-step ahead prediction problem needs a factorization of the

spectrum of the observed process y. That is, we need the function Ĝy explicitly. The

problem to recover the MA filter Ĝy from the spectrum Syy(e
iω) = 1

2π
Ĝy(eiω)Ĝy

T
(e−iω)

is called the spectral factorization problem. In particular, we wish to determine the so-
called Wold factor, that is Ĝy should be causal and should have a causal inverse. For the
case where Syy is a rational matrix valued function this means that Gy should be a rational
matrix valued function with all its poles in the open unit disc, and its inverse should also
have all its poles in the open unit disc. The problem can be solved by means of state space
techniques for rational spectra, as we will see in the next section.

Before stating the theorem, we introduce the following notation: for a formal power
series H(z) :=∑∞

k=−∞ Hkz
−k we use the notation [H ]+m(z) :=∑∞

k=m Hkz
−k .

Theorem 7.2.2 (i) For the joint Gaussian process (y, z) with zero mean and no pre-
dictable component and given spectra Syy and Szy , assume that Ĝy is a causal filter

with causal inverse such that Syy(eiω) = 1
2π

Ĝy(e
iω)Ĝy

T
(e−iω). We define

F̂m(eiω) =
∞∑

k=m

Fm(k)e−ikω = [2πSzy(eiω){Ĝy
T
(eiω)}−1]+m{Ĝy(e

iω)}−1.
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Then ẑ(t) =∑∞
k=m Fm(k)y(t − k), is the optimal m-step ahead predictor.

(ii) If z(t) = y(t), then

F̂m(eiω) =
∞∑

k=m

Fm(k)e−ikω = [Ĝy
T
(eiω)]+m{Ĝy(e

iω)}−1

gives the optimal m-step ahead predictor, that is

ŷ(t | t − m) =
∞∑

k=m

Gy(k)ε(t − k).

Proof The m-step ahead prediction ẑ(t) should be orthogonal to the space of available
observations, that is, E{z(t)− ẑ(t)}yT (s) = 0 for all s ≤ t −m. So for k ≥ m the condition
is that Rzy(k) = Eẑ(t)yT (t − k) = 0. Let F̂∞(eiω) = Szy(eiω)S−1

yy (eiω) According to
Proposition 7.2.1 the process F∞y is the optimal linear prediction of z based on y. Hence,
η = z − F∞y is uncorrelated with y. Put y = Gyε with ε a standard white noise and
Ĥ = F̂∞Ĝy . Then η = z − Hε and η is uncorrelated with ε. Defining Gy(k) = 0 for
k < 0 and using Ĝy(eiω) =∑∞

k=0 Gy(k)(e−ikω), we get that

E‖z(t) −
∞∑

k=m

Fm(k)y(t − k)‖2

= E‖η(t)‖2 + E‖
∞∑

j=−∞
H(j)ε(t − j) −

∞∑

k=m

∞∑

j=0

Fm(k)Gy(j)ε(t − k − j)‖2

= E‖η(t)‖2 + E‖
∞∑

j=−∞
H(j)ε(t − j) −

∞∑

j=m

{
∞∑

k=m

Fm(k)Gy(j − k)}ε(t − j)‖2.

As the process ε is white noise, the optimal solution is obtained by taking

∞∑

k=m

Fm(k)Gy(j − k) = H(j) for all j ≥ m.

This means that the coefficients in F̂m(eiω)Ĝy(e
iω) should coincide with those in Ĥ (eiω)

for all terms e−ijω with j ≥ m, i.e., F̂m(eiω)Ĝy(eiω) = [Ĥ (eiω)]+m.
Finally, to prove (ii), apply result (i) with z = y. Notice that we get Ĥ = Ĝy and

hence F̂m(eiω)Ĝy(eiω) = [Ĝy(e
iω)]+m. Hence ŷ = Fy = FGyε = [Gy]+mε, which means

ŷ(t | t − m) =∑∞
k=m Gy(k)ε(t − k). This is in agreement with (7.4). ��
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In the case of univariate rational spectra, i.e., univariate ARMA processes, the spectral
factor can be constructed from formula (6.33). We illustrate this by a simple example.

Example 7.2.1 Consider the ARMA(1,1) model y(t) = ay(t − 1) + ε(t) + bε(t − 1)

with σ 2
ε = 1. Assume that this model is causal and invertible, so that, −1 < a < 1 and

−1 < b < 1. In this case the spectral factor is Ĝ(eiω) = b(eiω)

a(eiω)
= {1 + be−iω}/{1 −

ae−iω} = 1 + (a + b)
∑∞

k=1 ak−1e−ikω. Here a and b are easily determined from the
spectrum in (6.33), as a is the stable pole and b is the stable zero of this function.

So for m ≥ 1 the m-step ahead predictor is given by

[Ĝ(eiω)]+mĜ−1(eiω) = (a + b)

∞∑

k=m

ak−1e−ikω · 1 − ae−iω

1 + be−iω
=

= (a + b)am−1e−imω

∞∑

k=0

(−b)ke−ikω.

So the optimal predictor of y(t + m) based on the data {y(s); s ≤ t} is obtained from

ŷ(t + m | t) = (a + b)am−1
∞∑

k=0

(−b)ky(t − k).

The variance of the prediction error is (see Proposition 7.1.2)

1 +
m−1∑

k=1

{(a + b)ak−1}2 = 1 + (a + b)2 · 1 − a2m−2

1 − a2

For m → ∞ this tends to the unconditional variance 1 + (a + b)2/(1 − a2) of the process,
as would be expected.

Note that for an MA(1) process, with a = 0, one has

ŷ(t + 1 | t) = b

∞∑

k=0

(−b)ky(t − k) = bε(t)

and ŷ(t +m | t) = 0 for m ≥ 2, which reflects that process values more than one time unit
apart are uncorrelated. For an AR(1) process, with b = 0, it follows that ŷ(t + m | t) =
amy(t). These results are also easily obtained from Proposition 7.1.2.
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7.3 The Kalman Filter

An efficient approach to filtering and prediction was developed by Kalman and Bucy. Here
the starting point is not a spectral representation of the process, but a state space model,
that is

⎧
⎪⎪⎨

⎪⎪⎩

x(t + 1) = Ax(t) + Fε(t)

y(t) = C1x(t) + G1ε(t)

z(t) = C2x(t) + G2ε(t)

(7.6)

We make the following assumptions. The white noise process ε has zero mean and
covariance Eε(t)εT (t) = I , which can always be achieved by appropriate transformations.
The matrices in (7.6) are given. However, we do not require that A is a stable matrix,
that is, the processes need not be causal. The process y is assumed to have no perfectly
predictable component. For this reason we assume that G1 has full row rank, i.e., has
linearly independent rows. We further assume that observations y(t) are available for
t ≥ 0, and that the initial condition x(0) is a zero mean Gaussian random variable with
covariance matrix P(0). Finally, we assume that x(0) is independent of ε(t) for t ≥ 0.

As before, we consider the problem (7.1) of optimal filtering of z on the basis of
observations from y. For simplicity we restrict the attention to Gaussian processes,
because the solution for this case is also optimal among the linear predictors for arbitrary
distributions. As Eε(t)yT (s) = 0 for all s < t it follows from (7.6) that the optimal filter
ẑ(t) is given by ẑ(t) = C2x̂(t), where

x̂(t) = E(x(t) | y(s), 0 ≤ s ≤ t − 1) (7.7)

So the filtering problem can be expressed in terms of the question how to predict
the state in (7.6) from the observations of the process y. As this does not cause any
additional problems, we will consider this state filtering problem for ARMAX systems
with exogenous inputs, that is, for which the inputs are completely uncorrelated with the
outputs

Eu(t)yT (s) = 0 for all t, s ≥ 0

So we consider systems of the form

x(t + 1) = Ax(t) + Bu(t) + Fε(t) (7.8)

y(t) = Cx(t) + Du(t) + Gε(t) (7.9)
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where the white noise process ε has zero mean and unit covariance matrix, and where the
matrix G has full row rank. We remark that if x in (7.6) is a minimal state for the joint
process (y, z), then it is also a state for the process y, but in general not a minimal one. Also
the number of auxiliary noise variables ε is in general not minimal for the representation
of y. We will show that the process x̂ of (7.7) is also a (non-minimal) state for y, although
in general not for (y, z).

The solution (7.7) of the filtering problem for the system (7.8), (7.9) is given by the
Kalman-Bucy filter, also referred to as Kalman filter. We use the notation

ŷ(t) := E(y(t) | y(s); 0 ≤ s ≤ t − 1) = Cx̂(t) + Du(t) (7.10)

and denote the corresponding prediction error by

ω(t) = y(t) − ŷ(t) = y(t) − Cx̂(t) − Du(t). (7.11)

This is the forward innovations process. Further we denote the covariance matrix of the
state reconstruction error by

P(t) = E
(
x(t) − x̂(t)

)(
x(t) − x̂(t)

)T

The following result gives recursive formulas for the computation of x̂ and P , which are
of immediate use in prediction and filtering.

Theorem 7.3.1 The optimal filter for the state is given by

x̂(t + 1) = Ax̂(t) + Bu(t) + K(t)ω(t), x̂(0) = 0, (7.12)

where

ω(t) = y(t) − Cx̂(t) − Du(t),

and where K(t) is defined recursively in terms of P(t) as follows

K(t) = {AP(t)CT + FGT }{CP(t)CT + GGT }−1, (7.13)

P(t + 1) = {A − K(t)C}P(t){A − K(t)C}T + {F − K(t)G}{F − K(t)G}T , (7.14)

where P(0) is the covariance matrix of x(0).

Before proving the theorem, let us comment on the recursive nature of the filter
computation. First of all, given P(0), the matrices P(t) and K(t) can be computed
independent of observations of the process y(t) and the input u(t). Then, as soon as we
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know u(0) and have observed y(0) we also know ω(0) = y(0) − Du(0). From this we
can compute x̂(1). Once we have the input u(1) we can also compute ŷ(1). Subsequently,
after observing y(1) we can compute ω(1) = y(1)−Cx̂(1)− Du(1), as well as x̂(2), and
we continue in this fashion.

Note that the optimal filter has the structure of a state observer.
Let us also comment on the choice of P(0), which may or may not be given. In case

P(0) = 0 we have x(0) = 0 and conversely, if x(0) is deterministic, we have P(0) = 0. In
case P(0) is unknown one can make appropriate choices, which we shall comment upon
in the next section.

Proof As the inputs are exogenous they can be considered as fixed. For simplicity we
assume that u(t) = 0 for all t ≥ 0 and that P(0) is given as the covariance matrix of x(0).
We put x̂(0) = 0, motivated by x̂(0) = E(x(0) | y(s), 0 ≤ s ≤ −1) = 0. The proof
for the general case can be done in an analogous way. Under these assumptions, ε, x, y, x̂

and ω all are Gaussian process with zero mean. It follows from (7.8), (7.9) and (7.11) that
the components of {y(s), s ≤ t}, and those of {ω(s), s ≤ t} span the same subspace of
random variables as the components of {ε(s), s ≤ t}. Remark that Eω(t)ω(s)T = 0 for
all s �= t .

To prove (7.12) we make the following computation

x̂(t + 1) = E
(
x(t + 1) | y(s), s ≤ t

) = E
(
x(t + 1) | ω(s), s ≤ t

)

= E
(
x(t + 1) | ω(s), s ≤ t − 1

)+ E
(
x(t + 1) | ω(t)

)

= E
(
Ax(t) + Fε(t) | ω(s), s ≤ t − 1

)+ E
(
x(t + 1) | ω(t)

)

= Ax̂(t) + E
(
x(t + 1) | ω(t)

)
.

Here we used in the second line the orthogonality of ω(t) and {ω(s), s ≤ t − 1}, and
in the third line the fact that ε(t) is uncorrelated with {ε(s), s ≤ t − 1}, hence also with
{ω(s), s ≤ t − 1}. According to the second paragraph of Sect. 6.4 we have that

E
(
x(t + 1) | ω(t)

) = E
(
x(t + 1)ω(t)T

)
E
(
ω(t)ω(t)T

)−1
ω(t).

So to prove (7.12) and (7.13) it is sufficient to show that

Eω(t)ω(t)T = CP(t)CT + GGT , (7.15)

Ex(t + 1)ω(t)T = AP(t)CT + FGT . (7.16)

To check the first formula remark that ω(t) = y(t) − ŷ(t) = C(x(t) − x̂(t)) + Gε(t), and
use that x(t) − x̂(t) and ε(t) are uncorrelated because x(t) and x̂(t) are linear functions of
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{ε(s), s ≤ t − 1}. For the second formula we observe

Ex(t + 1)ω(t)T = E
(
Ax(t) + Fε(t)

)(
Cx(t) + Gε(t) − Cx̂(t)

)T

= E
(
A(x(t) − x̂(t)) + Ax̂(t) + Fε(t)

)(
C(x(t) − x̂(t)) + Gε(t)

)T

= AP(t)CT + FGT ,

because x(t) − x̂(t) and x̂(t) are uncorrelated with ε(t), and because x(t) − x̂(t) is
orthogonal to x̂(t). We proved (7.12) and (7.13).

The result in (7.14) follows from

x(t + 1) − x̂(t + 1) = A(x(t) − x̂(t)) + Fε(t) − K(t)ω(t)

= A(x(t) − x̂(t)) + Fε(t) − K(t)(C(x(t) − x̂(t)) + Gε(t))

= (A − K(t)C)(x(t) − x̂(t)) + (F − K(t)G)ε(t)

and the fact that x(t) − x̂(t) and ε(t) are uncorrelated. ��

Rewrite Eqs. (7.12) and (7.11) as

x̂(t + 1) = Ax̂(t) + Bu(t) + K(t)ω(t) (7.17)

y(t) = Cx̂(t) + Du(t) + ω(t) (7.18)

This is a state space model for the process y, with state x̂ and with the innovations ω

as driving noise process. The state updating Eq. (7.17) expresses the new state in terms
of the predicted part, Ax̂(t) + Bu(t), and an adjustment based on the prediction error
ω(t). The so-called Kalman gain K(t) measures the extent in which this new information
is taken into account. The filter is recursive and the matrix recursions (7.13), (7.14) are
independent of the data. This means that the Kalman gain K(t) and the error covariances
P(t) can be computed off-line, before the actual observations are coming in. This is an
attractive property for applications that require fast updating.

The Kalman filter can be applied directly in prediction.

Proposition 7.3.2 The optimal one-step ahead predictor is given by

ŷ(t) = Cx̂(t) + Du(t),

with covariance matrix of the prediction error equal to

E
((

(y(t) − ŷ(t)
)(

y(t) − ŷ(t)
)T ) = CP(t)CT + GGT .
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The optimal m-step ahead predictor (for given inputs) is

ŷ(t + m − 1 | t − 1) = CAm−1x̂(t) + Du(t + m − 1) +
m−1∑

j=1

CAj−1Bu(t + m − 1 − j)

with prediction error covariance

CAm−1P(t)(AT )m−1CT + GGT +
m−1∑

j=1

CAj−1GGT (AT )j−1CT .

Proof The results on the one step ahead predictor appeared already in the formulas (7.10)
and (7.15).

For m-step ahead prediction note that (7.8) and (7.9) imply that

y(t + m − 1) = CAm−1x(t) + Du(t + m − 1) + Gε(t + m − 1)

+∑m−1
j=1 CAj−1

(
Bu(t + m − 1 − j) + Gε(t + m − 1 − j)

)
.

Since ε(j) is uncorrelated with y(s) for j ≥ s we have

ŷ(t + m − 1 | t − 1) = CAm−1E
(
x(t) | y(s), s < t)

) + Du(t + m − 1)

+∑m−1
j=1 CAj−1

(
Bu(t + m − 1 − j)

)
.

This proves the formula for ŷ(t + m − 1 | t − 1). Furthermore

y(t + m − 1) − ŷ(t + m − 1 | t − 1) = CAm−1(x(t) − x̂(t)) + Gε(t + m − 1)

+∑m−1
j=1 CAj−1Gε(t + m − 1 − j).

Again use that x(t) − x̂(t) is uncorrelated with ε(s) for s ≥ t to obtain the formula for
covariance of y(t +m− 1)− ŷ(t +m− 1 | t − 1), i.e., the prediction error covariance. ��

The Kalman filter can also be used in smoothing and filtering. Let observations
{y(t), t = 0, . . . , N} be available and suppose we wish to determine the smoothed value
x̂(t0 | N) = E

(
x(t0) | y(t), t = 0, . . . , N

)
, for some 0 ≤ t0 ≤ N . Define the extended

state by xe(t) =
(
x(t)T x(t0)

T
)T

, then we can rewrite (7.8) and (7.9) in terms of this

extended state with parameters

Ae =
(

A 0

0 I

)
, Be =

(
B

0

)
, Ce =

(
C 0
)

, De = D, Fe =
(

F

0

)
, Ge = G.
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Applying the Kalman filter to this extended system, we obtain x̂e(N +1) = E
(
xe(N +1) |

y(t), t = 0, . . . , N
)
, and therefore also x̂(t0 | N). In fact, it is not necessary to run the

Kalman filter separately for every time instant t0. All smoothed values x̂(t | N) can be
calculated by first applying the Kalman filter, followed by a backward recursion starting
from the final filtered state x̂(N +1) in (7.12). For algorithmic details we refer to [24], [1].

The following result solves the true filtering problem, that is, the best state estimate
based on the past and current observations.

Proposition 7.3.3 The filtered state x̂(t | t) := E{x(t) | y(s); 0 ≤ s ≤ t} and its error

covariance P(t | t) := E
((

x(t) − x̂(t | t))(x(t) − x̂(t | t))T
)
are given by

x̂(t | t) = x̂(t) + P(t)CT {CP(t)CT + GGT }−1ω(t) (7.19)

P(t | t) = P(t) − P(t)CT {CP(t)CT + GGT }−1CP(t) (7.20)

Proof The space spanned by the components of {y(s); 0 ≤ s ≤ t} can be decomposed
into the two orthogonal components, the first spanned by the components of {y(s); 0 ≤
s ≤ t − 1} and the second spanned by the components of {ω(t)}. Because of this, and
using that (x(t), ω(t)) has a joint Gaussian distribution, it follows that

x̂(t | t) = E
(
x(t) | y(s), s ≤ t − 1

)+ E
(
x(t) | ω(t)

) =
= x̂(t) + E

(
x(t)ω(t)T

)
E
(
ω(t)ω(t)T

)−1
ω(t).

Here E
(
ω(t)ω(t)T

) = CP(t)CT + GGT and

Ex(t)ω(t)T = E
((

x(t) − x̂(t)
)(

Cx(t) − Cx̂(t) + Gε(t)
)T ) = P(t)CT ,

because Ex̂(t)ω(t)T = 0, Ex(t)εT (t) = 0 and Ex̂(t)εT (t) = 0. This proves (7.19).
Further, let L(t) := P(t)CT {CP(t)CT + GGT }−1, and recall that E(ω(t)ω(t)T ) =
CP(t)CT and E(x(t)ω(t)T ) = P(t)CT . Then

P(t | t) = E
((

x(t) − x̂(t) − L(t)ω(t)
)(

x(t) − x̂(t) − L(t)ω(t)
)T )

= P(t) + L(t)E(ω(t)ω(t)T )L(t)T −
−E
((

x(t) − x̂(t)
)
ωT (t)
)

L(t)T − L(t)E
(
ω(t)
(
x(t) − x̂(t)

)T )

= P(t) + P(t)CT L(t)T − P(t)CT L(t)T − L(t)CP(t)

= P(t) − L(t)CP(t),

where we also used the fact that Ex̂(t)ωT (t) = 0. This shows (7.20). ��
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Example 7.3.1 Consider again the ARMA(1,1) model y(t) = ay(t −1)+ε(t)+bε(t −1)

with σ 2
ε = 1. Define x(t) = ay(t − 1)+bε(t − 1), then y(t) = x(t)+ ε(t) and x(t + 1) =

ay(t)+bε(t) = ax(t)+(a+b)ε(t). So a state space representation is obtained by defining
the parameters in (7.8), (7.9) by

A = a, B = 0, C = 1, D = 0, F = a + b, G = 1.

Suppose that x(0) is a zero mean Gaussian random variable with variance p(0), then the
filter equations (7.12), (7.13) and (7.14) are given by

x̂(t + 1) = ax̂(t) + k(t)(y(t) − x̂(t)) = (a − k(t))x̂(t) + k(t)y(t),

k(t) = (ap(t) + a + b)/(p(t) + 1),

p(t + 1) = p(t)(a − k(t))2 + (a + b − k(t))2.

We consider the case of an MA(1) process in more detail. Then a = 0 and y(t) =
ε(t)+bε(t −1). By using the values of A,B,C,D,F and G given above and substituting
(7.13) in (7.14) it follows that p(t + 1) = b2p(t)/(1 + p(t)), or more explicitly

p(t + 1) = p(1)b2t

(1 + p(1)
∑t−1

j=0 b2j )
.

If the MA process is invertible, that is, if |b| < 1, then p(t) → 0 as t → ∞. So, in the limit,
we can reconstruct the state x(t) = bε(t−1) without error from the information {y(s), 0 ≤
s ≤ t − 1}. We also refer to Example 6.3.1, in this case ε(t) = ∑∞

k=0(−b)ky(t − k), so
that ε(t − 1) is a function of {y(s), s ≤ t − 1}. The error occurs because the observations
{y(s), s ≤ −1} are not available, but this error disappears in the limit when |b| < 1.

If b = ±1, then still p(t) → 0 for t → ∞. On the other hand, if |b| > 1, then by
rewriting p(t+1) = p(1)b2t (1−b2)/(1−b2+p(1)(1−b2t)) it follows that p(t) → b2−1
for t → ∞. So in this case the error does not vanish in the limit.

Example 7.3.2 Suppose that z is a random process that is observed under noise. We
assume that

z(t + 1) = z(t) + ε1(t), y(t) = z(t) + ε2(t),

where (ε1(t), ε2(t))
T is a bivariate Gaussian white noise process with mean zero and

covariance matrix

(
σ 2

1 0

0 σ 2
2

)
. Here y is observed, but z is unobserved. This was proposed,

for instance as a possible model of price formation in Example 1.1.1, where y denotes
the observed price and z the underlying fundamental price that is affected by random
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variations in the market. The aim here is to construct an optimal estimate of the
fundamental price on the basis of past observations, that is, the filtering problem ẑ(t) =
E (z(t) | y(s), 0 ≤ s ≤ t − 1). This is solved by the Kalman filter, where the matrices in
(7.8) and (7.9) are given by

A = 1, B = 0, C = 1, D = 0, F =
(
σ1 0
)

, G =
(

0 σ2

)
.

Using these values and substituting (7.13) in (7.14) one finds that the filter formulas are

k(t) = p(t)

p(t) + σ 2
2

, p(t + 1) = p(t)(σ 2
1 + σ 2

2 ) + σ 2
1 σ 2

2

p(t) + σ 2
2

,

and the optimal estimate is given by

ẑ(t + 1) = ẑ(t) + k(t)(y(t) − ẑ(t)) = (1 − k(t))ẑ(t) + k(t)y(t).

This is also called an adaptive expectations model, where the expectations ẑ(t) are updated
because of the prediction errors y(t)−ẑ(t). If t → ∞ then for every p(0) > 0 the sequence
p(t) converges to the positive solutions of p = ((σ 2

1 + σ 2
2 )p + σ 2

1 σ 2
2 )/(p + σ 2

2 ), that is,

to p = 1
2 (σ 2

1 +
√

σ 4
1 + 4σ 2

1 σ 2
2 ). The corresponding gain is

k =
σ 2

1 +
√

σ 4
1 + 4σ 2

1 σ 2
2

σ 2
1 + 2σ 2

2 +
√

σ 4
1 + 4σ 2

1 σ 2
2

.

So 0 < k < 1, and k is small if σ 2
2 is large relative to σ 2

1 , and k is large if σ 2
2 is small relative

to σ 2
1 . In the limit, the adaptive expectations model can be rewritten as the following

forecast model for the process y

ŷ(t + 1) = ẑ(t + 1) = ẑ(t) + k(y(t) − ẑ(t)) = k

∞∑

j=0

(1 − k)j y(t − j).

This is also called the method of exponentially weighted moving averages for forecasting.
The forecast series ŷ(t) is smooth if k ≈ 0, that is, if the variance σ 2

2 in the observations
is large relative to the variance σ 2

1 in the underlying process. On the other hand, if k ≈ 1,
so that the observation variance σ 2

2 is relatively small, then ŷ(t) ≈ y(t − 1) and so the up-
and down- movements of the observed series are followed fast.
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7.4 The Steady State Filter

The application of the Kalman filter requires initial values x̂(0) and P(0) in the recursion
(7.12) and (7.14). If the observed series is relatively short then the results may be sensitive
with respect to these initial values. Their specification becomes less important if the
number of observations increases. Under appropriate conditions the filter becomes time-
invariant and independent of the initial conditions if the number of observations tends to
infinity. To make this more precise, we first state an auxiliary result.

Proposition 7.4.1 The recursions (7.13) and (7.14) are equivalent to

P(t + 1) = AP(t)AT + FFT −
(GFT + CP(t)AT )T (CP(t)CT + GGT )−1(GFT + CP(t)AT )

(7.21)

Proof The result follows by substituting (7.13) into (7.14) and rewriting the resulting
expression. ��

The filter Riccati equation (7.21) closely resembles the control Riccati equation (5.12).
The result in Theorem 5.3.2 describes the limiting properties for t → ∞ of this equation.
As before we assume that y has no perfectly predictable component, so that G has full row
rank and GGT is invertible.

Theorem 7.4.2 Assume that the pair (A − FGT (GGT )−1C,F − FGT (GGT )−1G) is
stabilizable, and that the pair (A,C) is detectable. Then the following holds true.

(i) For any positive definite P(0), the solution of (7.21) converges as t → ∞ to a
positive semidefinite matrix P , which does not depend on the choice of P(0). The
corresponding solution K of (7.13) is such that A − KC is stable.

(ii) P is the largest Hermitian solution of the algebraic Riccati equation

P = APAT + FFT − (GFT + CPAT )T (GGT + CPCT )−1(GFT + CPAT )

(7.22)
Moreover, P is positive semidefinite.

Proof This follows directly from Theorem 5.3.2. ��

Recall that in Example 7.3.1 for b > 1 there are two semi definite solutions: p = 0
if P(0) = 0 and p = b2 − 1 if p(0) �= 0. Both p = 0 and p = b2 − 1 are positive
semidefinite solutions of the equation (7.22).

The assumptions in the theorem are satisfied, for example, if A is a stable matrix with
(A,C) observable and with FGT = 0. This is the case if y is a stationary process with
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representation (6.19), (6.20) with �12 = 0. However, the assumptions in the theorem are
far more general.

Note that the theorem also gives insight in the choice of P(0) for the Kalman filter when
P(0) is unknown. It turns out that in case the assumptions of the theorem are satisfied the
choice of P(0) is immaterial to the asymptotic behaviour of the Kalman filter, provided
we take P(0) to be positive definite.

Under the above conditions, the Kalman filter converges to the so-called steady state
filter

x̂(t + 1) = Ax̂(t) + Bu(t) + Kω(t),

y(t) = Cx̂(t) + Du(t) + ω(t),
(7.23)

K = (APCT + FGT )(GGT + CPCT )−1. (7.24)

The state equation can be written as x̂(t + 1) = (A−KC)x̂(t)+ (B −KD)u(t)+Ky(t),
and as A − KC is stable this means that the filtered state x̂ is indeed a strictly causal
function of the observed process y.

Next we consider this model without control inputs, that is, with u(t) = 0 for all t ∈ Z.
We further assume that y is a stationary process with no perfectly predictable component
and with rational spectrum. In this case the steady state filter has several interesting
interpretations. It corresponds to the Wold decomposition of the process (Theorem 6.2.4),
it provides a causal and invertible ARMA representation (Sect. 6.3), it solves the rational
spectral factorization problem (Sect. 7.2), and it gives a state representation with minimal
state covariance matrix (Theorem 6.4.5).

First we consider the Wold decomposition. So we wish to determine a moving average
representation y(t) =∑∞

k=0 G(k)ε(t−k) with causal inverse ε(t) =∑∞
k=0 H(k)y(t − k).

This can also be formulated as the spectral factorization problem, that is, the rational
spectrum S of the process y should be factorized as S(z) = 1

2π
G(z)G(z−1)T , where G

is a rational causal function with causal inverse. Writing G(z) = A(z)−1B(z) with A(z)

and B(z) polynomial matrices, this also corresponds to a causal and invertible ARMA
representation of the process.

Theorem 7.4.3 Every purely nondeterministic stationary process with rational spectrum
and with no perfectly predictable component has a causal and invertible ARMA represen-
tation. The corresponding spectral factor is given by

G(z) = (I + C(zI − A)−1K)(GGT + CPCT )1/2 (7.25)

where (A,C, F,G) define a realization (7.8), (7.9) (with B = 0 and D = 0) and with P

and K as defined in (7.22) and (7.24). The Wold decomposition of the process has filter
(7.25).
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Proof Because the spectrum of y is rational, it has a state space realization (7.8), (7.9)
with A stable, B = 0 and D = 0. Take a minimal realization, so that in particular, (A,C)

is observable, and let n be the dimension of the state space, so that A is an n × n matrix.
The corresponding steady state Kalman filter realization is given by (7.23) (again, with

B = 0,D = 0). Put Q =
(
CT AT CT . . . (AT )n−1CT

)T
, then this matrix has full column

rank n. Now

⎛

⎜⎜⎝

y(t)
...

y(t + n − 1)

⎞

⎟⎟⎠ = Qx̂(t) + R

⎛

⎜⎜⎝

ω(t)
...

ω(t + n − 1)

⎞

⎟⎟⎠ ,

where R is a matrix that can be determined explicitly in terms of A, C and K . It follows
that x̂(t) can be expressed in terms of y(s) and ω(s) for t ≤ s ≤ t +n−1. Substituting this
in the state space equation we obtain an ARMA representation of the process y with ω as
the driving noise process. This model is causal, as y(t) = ω(t)+∑∞

k=1 CAk−1Kω(t −k),
and invertible, as ω(t) = y(t) − Cx̂(t) is by construction a function of {y(s), s ≤ t} (see
(7.11)). As y is a causal function of ω and ω is also a causal function of y, this model
corresponds to the Wold decomposition.

Finally, the spectral factor follows from the filter I + C(zI − A)−1K that produces y

from ω, where ω is white noise with ω(t) = y(t) − Cx̂(t) = C(x(t) − x̂(t)) + Gε(t), so
that its covariance matrix is given by GGT + CPCT (see also Proposition 7.3.2). ��

Now consider a process y with given covariances {R(k), k ∈ Z} and minimal realization
(A,C,M) such that R(k) = CAk−1M for k ≥ 1. The corresponding stochastic realization
problem is discussed in Sect. 6.4, see in particular Theorem 6.4.5. For given (A,C,M),
�− denotes the minimal achievable covariance matrix of the state in realizations of the
process y.

Theorem 7.4.4 For given (A,C,M) with R(k) = CAk−1M for k ≥ 1, consider the
steady state filter (7.23), with B = 0 and D = 0, i.e.,

x̂(t + 1) = Ax̂(t) + Kω(t),

y(t) = Cx̂(t) + ω(t),
(7.26)

where

K = (APCT + FGT )(GGT + CPCT )−1. (7.27)

Denote the covariance matrix of the state x̂ in (7.26) by �−. Then �− is minimal
among all covariance matrices of all possible state space representations with the same
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(A,C,M), and �− satisfies the algebraic Riccati equation (6.25), that is

� = A�AT + (M − A�CT )(R(0) − C�CT )−1(M − A�CT )T .

Proof For fixed (A,C,M) let (7.8), (7.9) with B = 0 and D = 0, be an arbitrary
realization of the process. The optimal predictor of the state of this process is given by
x̂(t) = E (x(t) | y(s), s ≤ t − 1). The steady state Kalman filter (7.26), with K given by
(7.27) is another realization of the process. The matrices A,C and M are the same for
this representation as for the original one. For the matrix M this follows because M =
Ex(t + 1)y(t)T , see Proposition 6.4.4, and Ex(t + 1)y(t)T = Ex̂(t + 1)y(t)T as x̂ is the
optimal predictor, so that x̂(t + 1) − x(t + 1) is uncorrelated with {y(s), s ≤ t}. Because
it is an optimal predictor, it follows that the covariance matrix of x̂(t) is not larger than
that of x(t), that is, cov(x(t)) − cov(x̂(t)) is positive semidefinite. This holds true for
every realization with the same matrices A,C,M , so it follows that cov(x̂(t)) = �−, by
definition.

It remains to show that �− satisfies the algebraic Riccati equation (6.25). The steady
state Kalman filter realization is given by (7.26). Here x̂(t) and ω(t) are uncorrelated,
as ω(t) = y(t) − ŷ(t) is uncorrelated with {y(s), s ≤ t − 1}. This shows that �− =
A�−AT + K�ωKT , where �ω = Eω(t)ω(t)T = R(0) − C�−CT is the covariance
matrix of ω(t). Further, M = Ex̂(t + 1)y(t)T , which by (7.26) is equal to E(Ax̂(t) +
Kω(t))(Cx̂(t)+ω(t))T = A�−CT +K�ω, so that K = (M−A�−CT )�−1

ω . Combining
these results we get that �− satisfies

�− = A�−AT + (M − A�−CT )(R(0) − C�−CT )−1(M − A�−CT )T ,

that is, �− satisfies (6.25). ��

Note that this motivates to take for P(0) in the Kalman filter the choice P(0) = �−
when P(0) happens to be unknown, even though the long term behaviour of the Kalman
filter is asymptotically the same for all P(0) under the appropriate conditions.

Example 7.4.1 Consider again an MA(1) process y(t) = ε(t)+bε(t −1) with σ 2
ε = 1 and

with |b| > 1. This is a stationary process, but the representation is not invertible. Defining
x(t) = bε(t −1), we can write y(t) = x(t)+ε(t) and x(t +1) = bε(t), so that in terms of
(7.8), (7.9) the parameters are given by A = 0, B = 0, C = 1, D = 0, F = b, G = 1.
The Riccati equation (7.22) is given by p = b2 −b2(1+p)−1, and the largest semidefinite
solution is p = b2 − 1, and then (7.24) gives k = b(p + 1)−1 = b−1. The steady state
filter is x̂(t + 1) = b−1ω(t) and y(t) = x̂(t) + ω(t). By eliminating the state, we obtain
the model

y(t) = ω(t) + b−1ω(t − 1).
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As |b| > 1, this is indeed a causal and invertible representation of the process. To
determine the variance σ 2

ω of the white noise process ω, note that Ey(t)2 = 1 + b2 =
σ 2

ω(1+b−2), so that σ 2
ω = b2. The causal and causally invertible spectral factor is therefore

given by (1 + b−1z). Further, the variance of the process x̂(t) is equal to b−2σ 2
ω = 1,

whereas the original state variable x(t) = bε(t − 1) has variance b2 > 1. In terms of
(6.24), there holds R(1) = b = CM = M and the variance � of any state variable should

satisfy the condition that

(
� b

b 1 + b2 − �

)
is positive semidefinite. This is equivalent to

the condition that 1 ≤ � ≤ b2. So the steady state filter has minimal variance among all
realizations.



8Stochastic Control

Stochastic optimal control problems can in principle be solved by stochastic dynamic
programming. We pay special attention to the LQG problem where the system is linear,
the cost function is quadratic, and the random variables have Gaussian distributions.
The optimal controller is given by the LQG feedback law where the unobserved state
is replaced by the Kalman filter estimate.

8.1 Introduction

In this chapter we discuss control of uncertain systems. The methods discussed are mostly
applied in engineering. Here one often has good knowledge of the system structure and
of the costs involved in performing control actions. The situation is quite different in
most economic applications. In general there is much uncertainty concerning the effect of
decision variables on target variables, and there may be many objectives that are not easily
quantified. This does not mean that the methods described in this chapter are of no value
in economic decision making. Models of optimal control may assist in organizing relevant
information, by making the objectives more explicit, and by indicating possible effects
of different strategies. In this way one can get a better understanding of the source and
extent of the involved uncertainties. Further, for example in business applications, firms
may have a relatively clear idea of their objectives and the means which are available to
them to achieve their goals.

Given the extent of uncertainty in economic decision making, simple models will often
be more helpful than complex ones. We describe in this chapter some of the main ideas
and techniques. We pay particular attention to the case of linear stochastic systems and
quadratic control criteria. This leads to a relatively simple algorithm.
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There are important differences between deterministic and stochastic control. In
deterministic systems, the future development is completely determined by the current
state and the future inputs. This means that every control strategy leads to known costs.
In stochastic systems, however, there is an additional and unknown source of dynamics
due to the disturbances. This means that, as opposed to the deterministic case, there is an
essential distinction between open loop and closed loop control. A closed loop strategy
may lead to lower costs, as the observed system trajectories may provide information
on the disturbances and the current state of the system. This also means that the control
variables play a dual role, that is, they can be manipulated to obtain additional information
from the system and they should also lead to low costs. These two objectives may in
general be conflicting.

If the choice of the control inputs does not affect the uncertainty about the system
this is called neutrality. We will show that this holds true for the control of linear
stochastic systems with quadratic costs. In this case the optimal controller has moreover
the properties of certainty equivalence and separation. A controller is called certainty
equivalent if it coincides with the controller for the deterministic system, replacing all
uncertain quantities by their optimal estimates. A controller has the separation property
if control and estimation do not influence each other in the following sense. The required
estimates of uncertain quantities depend only on the stochastic properties of the system,
not on the control objectives, and the control actions do not depend on the stochastic
specification of the model.

In most applications it is difficult or even impossible to compute optimal controllers.
Further, there often exists considerable uncertainty about the correct model specification
and the control objectives. It may then be better to use relatively simple controllers,
instead of complicated methods that are more sensitive to misspecifications. Suboptimal
controllers can be based on heuristic principles, for instance separation and certainty
equivalence. Such controllers are relatively easy to compute, and they may lead to
acceptable performance.

8.2 Stochastic Dynamic Programming

The method of stochastic dynamic programming closely resembles the deterministic
algorithm. It is again based on Bellman’s principle of optimality. This requires that the
control problem has finite horizon and that all the parameters of the problem are known,
that is, the parameters of the cost function and the ones describing the dynamical and
stochastic properties of the system.

Consider a system with control variables u, observed state vector x and unobserved
disturbances ε related by

x(t + 1) = f (t, x(t), u(t), ε(t)), t = 0, . . . , N − 1 (8.1)
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Here the system function f , the horizon N , the initial state x(0) and the probability
distribution of ε are all assumed to be known. We impose the condition that

p
(
ε(t)|x(s), u(s), ε(s − 1), s ≤ t

) = p
(
ε(t)|x(t), u(t)

)
. (8.2)

The input at time t may depend on the available information {x(s); s ≤ t}, and it may
further be restricted to belong to a set u(t) ∈ U{t, x(t)}. The costs in period t are given by
gt = g(t, x(t), u(t), ε(t)), for t = 0, . . . , N − 1, while for t = N the cost only depends
on x(N). As the costs are random variables there does not exist, in general, a control
policy that minimizes the costs for all possible disturbances. As criterion one often takes
the expected cost. In some cases the variance of the outcomes may also be of importance,
and this can easily be incorporated in the cost function by appropriate definition of the
functions gt . The cost of a control policy u = {u(t), t = 0, . . . , N − 1} is given by

J (u) = E
(
g(N, x(N)) +

N−1∑

t=0

g(t, x(t), u(t), ε(t))
)
. (8.3)

Here certain (measurability) conditions on the control law have to be imposed in order
that the expectation in (8.3) is well-defined. For the rather simple cases that we will
consider in this chapter this causes no problems, but in more complicated problems it may.
As in the deterministic case the objective is to find an input sequence u∗(0), . . . , u∗(N −1)

that minimizes J (u) (if possible).
The dynamic programming algorithm can be expressed, as in the deterministic case, in

terms of the optimal-cost-to-go functions

JN(x(N)) = g(N, x(N)), (8.4)

Jt (x(t)) = inf
u(t)

E
(
gt + Jt+1(x(t + 1)) | x(t), u(t)

)
, t = N − 1, . . . , 0. (8.5)

The optimality principle states that if u∗ = {u∗(t), t = 0, . . . , N−1} is an optimal control
policy, then the truncated policy {u∗(t), t = t0, . . . , N − 1} is also optimal for the system
starting at x(t0) at time t0 and with horizon N . This is expressed in the following theorem,
which is completely analogous to the deterministic result in Theorem 5.2.1.

Theorem 8.2.1 Let u∗(t) achieve the infimum in (8.5), then the optimal control law for
(8.3) is given by u∗ = {u∗(t), t = 0, . . . , N − 1} and the minimal cost is J0(x(0)).

Proof Let Et denote the conditional expectation with respect to {x(t), u(t)}. For fixed
initial state we obtain, by repeated conditioning and using (8.2), that J (u) = E0

(
g0 +

E1
(
g1 + . . .+EN−1(gN−1 + gN) . . .

))
. Because the current input only affects the current
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and future costs this implies that

inf
u

J (u) = inf
u(0)

E0
(
g0 + inf

u(1)
E1
(
g1 + . . . + inf

u(N−1)
EN−1(gN−1 + gN) . . .

))
,

so the minimal cost is obtained by solving (8.5) for t = N − 1, . . . , 0 with cost J0(x(0)).
��

Although the optimality principle seems quite trivial it should be mentioned that it states
sufficient conditions for optimality, not necessary ones.

The stochastic dynamic programming algorithm solves (8.3) by iteratively solving the
simpler, non-dynamic optimization problems (8.5), t = N − 1, . . . , 0. These simpler
problems may still be hard to solve. The dynamic programming algorithm is feasible
only in relatively simple cases, for example if there is only a small finite number of
possible values of the state or if the models have relatively simple dynamical and stochastic
properties. We give an example from inventory control.

Example 8.2.1 Consider a shop manager who is faced with a randomly varying demand.
We assume that the demand can be modelled as a white noise process ε with known
probability distribution. The cost of ordering u units, with u > 0, is K + c · u, with
K ≥ 0 the fixed cost per order and with c > 0 the cost per unit. Define c(u) = K + cu for
u > 0 and c(u) = 0 for u = 0. Further, let h ≥ 0 denote the cost of holding inventory per
unit and let p ≥ 0 be the depletion cost per unit demand that can not be met immediately.
We assume that this excess demand is fulfilled as soon as additional inventory becomes
available and that p > c, as else the manager better stops business. Let x denote the stock
available at the beginning of a period, then the problem of minimizing the total expected
costs over a time horizon of N periods can be formulated as follows. The state evolves
according to

x(t + 1) = x(t) + u(t) − ε(t). (8.6)

Using the notation [a]+ = max{0, a}, the expected cost is given by

J (u) = E

N−1∑

t=0

(
c(u(t)) + h[x(t) + u(t) − ε(t)]+ + p[ε(t) − x(t) − u(t)]+). (8.7)

The initial stock x(0) is given, and it is assumed that the final stock x(N) has no value.
In order to state the optimal policy it is helpful to define the functions F(a) = ca +

hE[a − ε]+ +pE[ε−a]+ and Gt(a) = F(a)+E
(
Jt+1(a − ε(t))

)
with Jt+1 the optimal-

cost-to-go function. Let S be the value minimizing F and let s be the smallest value such
that F(s) = K + F(S). Then the single period problem, with N = 1, has the following
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solution. Order u∗(0) = 0 if x(0) ≥ s, and u∗(0) = S − x(0) if x(0) < s. This is called
the (s, S) policy, below the critical level s one should order an amount so that the target
inventory S is reached. If the fixed order costs are zero, that is, K = 0, then s = S and
this is the desired inventory. If K = 0, then the multi period solution also has the form
u∗(t) = 0 if x(T ) ≥ St and u∗(t) = St − x(t) if x(t) < St , where St minimizes Gt . It is
somewhat more involved to show that for K > 0 the optimal policy is still of the (st , St )

type, with St as before and with st the smallest value such that Gt(st ) = K + Gt(St ). For
details we refer to [7].

8.3 LQG Control with State Feedback

The LQG problem is one of the stochastic control problems for which the optimal control
law is relatively simple. The LQG controllers are popular because the control strategy
allows a very straightforward implementation. The definition is as follows.

Definition 8.3.1 The LQG problem is the stochastic control problem with f in (8.1)
linear, with gt in (8.3) quadratic, and with x(0) Gaussian and ε in (8.1) Gaussian white
noise. Allowable controls are of the form u(t) = u{y(s), s ≤ t}, with y a linear function
of x and ε.

We restrict the attention to the time-invariant case, but the results are similar if the
parameters change over time. Under the above conditions, the system can be represented
as

x(t + 1) = Ax(t) + Bu(t) + Fε(t), (8.8)

y(t) = Cx(t) + Gε(t), (8.9)

and the cost functions as

gN = xT (N)QNx(N) (8.10)

gt = ‖Rx(t) + Su(t)‖2 = (Rx(t) + Su(t)
)T (

Rx(t) + Su(t)
)
. (8.11)

So the system is of the ARMAX type with D = 0, so that there is no direct feed through
from the inputs to the outputs. All matrices appearing in (8.8)–(8.11) are supposed to
be known. We will assume throughout that ε(t) ∼ N(0, I ) and that x(0) is a Gaussian
random variable, x(0) ∼ N(m0, P0), independent of {ε(t); t ≥ 0}. This also implies
that x(t) and ε(s) are independent for all s ≥ t . Further we assume that ST S is positive
definite, so that no controls are without cost. The cost function (8.11) contains as a special
case gt = y(t)T Q1y(t) + u(t)T Q2u(t), with Q1 and Q2 positive semidefinite matrices.
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Indeed, as E(x(t)ε(t)T ) = 0 it follows that in this case E(gt ) = E(g̃t ) + c, where g̃t =
x(t)T CT Q1Cx(t) + u(t)T Q2u(t) is of the form (8.11) with R =

(
Q

1/2
1

0

)
and S =

(
0

Q
1/2
2

)
, and where c = trace(GT Q1G) is independent of the control so that it can be

neglected.
In this section we consider the LQG problem with full state observation, that is, we

assume that G = 0, C = I . Note that in this case g̃t = gt . The general case where the
available information consists of the observed outputs {y(s), 0 ≤ s ≤ t − 1} is discussed
in the next section.

For ease of exposition we first summarize the results obtained in Chap. 5 for LQ control.
This corresponds to the LQG problem with F = 0,G = 0, P0 = 0 and C = I .
According to Theorem 5.3.1, see also (5.8) to see the connection, the solution is given
by Jt = x(t)T Q(t)x(t) achieved by the optimal control law

u∗(t) = −L(t)x(t), (8.12)

where

L(t) = (BT Q(t + 1)B + ST S
)−1(

BT Q(t + 1)A + ST R
)
, (8.13)

and where the matrices Q are generated by the Riccati difference equation

Q(t) = AT Q(t + 1)A + RT R+
− (BT Q(t + 1)A + ST R

)T (
BT Q(t + 1)B + ST S

)−1(
BT Q(t + 1)A + ST R

)
.

(8.14)

solved backwards in time starting from the final value

Q(N) = QN.

The infinite horizon problem, with N → ∞, has a solution with finite cost if the pair
(A,B) is stabilizable and the pair (A−B(ST S)−1ST R, (I−S(ST S)−1ST )R) is detectable,
for example, if A is stable and ST R = 0 so that the cost function does not involve the
cross product between x(t) and u(t). In this case the infinite horizon optimal control law
becomes time invariant, that is, u∗(t) = −Lx(t) with L = (BT QB + ST S)−1(BT QA +
ST R) and where Q is the largest Hermitian solution of the following algebraic Riccati
equation

Q = AT QA + RT R − (BT QA + ST R)T (BT QB + ST S)−1(BT QA + ST R) (8.15)
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which is positive semidefinite in this case. Also, the closed loop system is stable, that is,
A − BL is a stable matrix.

Now we consider the LQG problem with full information on the state. This means that
the allowable control strategies are of the form u(t) = u{x(s), s ≤ t}. The following
result states that in this case the optimal control law is precisely the same as that for the
deterministic LQ problem.

Theorem 8.3.2 Consider the LQG problemwith full state observation, that is, with G = 0,
and C = I in (8.9), and where ε is Gaussian standard white noise and where x(0) ∼
N(m0, P0) is independent of {ε(t), t ≥ 0}. This LQG problem with full state observation
has the LQ solution given in (8.12)–(8.14) with minimal cost equal to

E
(
xT

0 Q(0)x0
)+

N−1∑

t=0

trace(F T Q(t + 1)F ) =

= mT
0 Q(0)m0 + trace(Q(0)P0) +

N−1∑

t=0

trace(F T Q(t + 1)F ).

Proof The optimal-cost-to-go functions are given by

JN(x(N)) = x(N)T QNx(N)

and

Jt (x(t)) = inf
u(t)

(‖Rx(t) + Su(t)‖2+

+ E (Jt+1(Ax(t) + Bu(t) + Fε(t))|x(t))
)
.

By induction we will prove that Jt (x(t)) = x(t)T Q(t)x(t) + c(t), with Q(t) as defined in
(8.14) and with

c(t) =
N−1∑

k=t

trace(F T Q(k + 1)F ).

For t = N this is evident. Suppose it is correct for Jt+1, then Jt involves the term

E
(
x(t + 1)T Q(t + 1)x(t + 1) + c(t + 1)|x(t)

)
,
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and as ε(t) is independent of x(t) and u(t) this term is equal to

(
Ax(t) + Bu(t)

)T
Q(t + 1)

(
Ax(t) + Bu(t)

)+
+ E
(
ε(t)T F T Q(t + 1)Fε(t)

)+ c(t + 1) =
= (Ax(t) + Bu(t)

)T
Q(t + 1)

(
Ax(t) + Bu(t)

)+ c(t).

This implies that

Jt (x(t)) = inf
u(t)

(‖Rx(t) + Su(t)‖2+

+ (Ax(t) + Bu(t)
)T

Q(t + 1)
(
Ax(t) + Bu(t)

))+ c(t).

Up to the constant term c(t), this is precisely the optimal-cost-to-go function of the
deterministic LQ problem. It follows from Theorem 5.3.1 that Jt (x(t)) = x(t)T Q(t)x(t)+
c(t), with Q(t) as defined in (8.14). The optimal value of the control input is then of course
also the same as in the LQ case, so that (8.12) gives the solution. The optimal cost is
J0(x(0)) = E(x(0)T Q(0)x(0)) + c(0). Since x0 ∼ N(m0, P0) this is easily computed to
be J0(x(0)) = mT

0 Q(0)m0 + trace(Q(0)P0) + c(0). ��

This result shows that in general the costs are unbounded for the infinite horizon
problem, as the second cost term will be

∑∞
t=0 trace(F T QF) with Q the solution of (8.15).

In the deterministic case the costs remain bounded if the control inputs can force the state
to zero. In the stochastic case this is not possible, because the disturbances ε in (8.8) will
always excite the state. Of course it makes no sense to compare control strategies if even
the optimal cost is infinite. In this situation the definition of the cost criterion should be
adjusted to obtain suitable comparisons.

One of the possibilities is to consider the discounted cost criterion

Jρ(u) = E
(
ρNxT (N)QNx(N) +

N−1∑

t=0

ρt‖Rx(t) + Su(t)‖2) (8.16)

where 0 < ρ < 1 denotes the discount factor. Redefining the state and input as xρ(t) =
ρ

1
2 t x(t) and uρ(t) = ρ

1
2 t u(t), it is easily seen that this control problem is equivalent to an

undiscounted control problem by redefining (A,B) as (ρ
1
2 A, ρ

1
2 B). Note in particular that

for ρ sufficiently small the stabilizability and detectability conditions stated before will be
satisfied, and then there is a finite optimal discounted cost for the infinite horizon problem.
For the discounted cost criterion (8.16), the infinite horizon problem has finite cost if ρ

is sufficiently small. Then the optimal control law is of the form (8.12), in terms of the

adjusted parameters (ρ
1
2 A, ρ

1
2 B, ρ

1
2 (t+1)F, ρ− 1

2 tC) instead of (A,B, F,C). The optimal
cost is xT

0 Qρx0 + ρ
1−ρ

trace(F T QρF), with Qρ the corresponding solution of (8.15).
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In a sense, the discounted cost criterion favours the short run performance, as the
long run costs get a relatively smaller weight. Another method to obtain finite costs is
to consider the long run average cost, defined as

J̄ (u) = lim
N→∞

1

N
E

N−1∑

t=0

‖Rx(t) + Su(t)‖2. (8.17)

For a finite horizon the average cost criterium is of course equivalent to the undis-
counted total cost criterium, as they only differ by the factor 1

N
. Under the stability and

detectability conditions stated before, the optimal control law therefore converges for
N → ∞ to the time invariant LQ control law. The result in Theorem 8.3.2 shows that
the minimal cost is equal to trace(F T QF) where Q is the solution of (8.15).

8.4 LQG Control with Output Feedback

In the foregoing section we assumed that y(t) = x(t) in (8.9), so that the state is observed.
Now we consider the LQG problem in its general form, with observed outputs. So there
is only partial information on the state. We first restrict the attention to control laws of the
form

u(t) = u{y(s), s ≤ t − 1}. (8.18)

This has the interpretation that decisions u(t) are made at the beginning of time period t ,
when the observations y(t) over that period are not yet available. Later we will consider
the situation where the control input may also depend on the current output.

We recall that the state is merely an auxiliary variable used to simplify the description
of the dynamical relationships between inputs, outputs and disturbances. The complication
of the current LQG problem is that the state process is not observed. This would suggest
to construct an alternative realization of the system for which the state is observable. Such
a realization is obtained by the Kalman filter, because the state x̂(t) = E(x(t)|y(s), s ≤
t − 1) is a function of past observations. So, by using this alternative state space model
we could solve the LQG problem by state feedback as in Theorem 8.3.2. The only
complication is that the Kalman filter was derived in Chap. 7 under the assumption that
the inputs are exogenous in the sense that E(u(t)y(s)T ) = 0 for all t, s, whereas in the
current situation the inputs u(t) = −L(t)x̂(t) depend on the past outputs.

We will now first prove that for Gaussian systems the conditional expectation x̂(t) is
still generated by the Kalman filter, independent of the control law. This means that the
LQG problem has the property of neutrality, because the information on the state process
is not influenced by the chosen control action. The assumption of Gaussian distributions
is crucial here. It can be shown that neutrality in general does not hold true in the non-
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Gaussian case, and that then the best linear predictor of the state under linear control laws
need not be given by the Kalman filter.

Theorem 8.4.1 Consider the system (8.8), (8.9), where G has full row rank, ε is Gaussian
standard white noise and where x(0) ∼ N(m0, P0) independent of {ε(t), t ≥ 0}.
Then for every control law u(t) = u{y(s); s ≤ t}, the conditional expectation x̂(t) =
E
(
x(t)|y(s), s ≤ t −1

)
and its covariance P(t) = E

(
x(t)− x̂(t)

)(
x(t)− x̂(t)

)T
are given

by the Kalman filter (7.12)–(7.14), with starting conditions x̂(0) = m0 and P(0) = P0.
The processes u, y, x, and x̂ are in general not Gaussian, but the innovations process
ω = y − Cx̂ is Gaussian.

Proof The control law need not be linear, and therefore u, y, x, and x̂ are in general not
Gaussian. (Note that they are Gaussian if the control law is linear.)

The idea is to split the system in two parts, one subsystem describing the effect of the
control inputs and the other one the effect of the disturbances. We indicate the controlled
part by a subindex c and the noisy part by a subindex n. So let

xc(t + 1) = Axc(t) + Bu(t),

xc(0) = m0,

yc(t) = Cxc(t)

and let

xn(t + 1) = Axn(t) + Fε(t),

xn(0) = x(0) − m0 ∼ N(0, P0),

yn(t) = Cxn(t) + Gε(t).

Then x = xc+xn and y = yc+yn. An according decomposition of the predictor is given by
x̂ = x̂c+x̂n, where x̂c(t) = E(xc(t)|y(s), s ≤ t−1) and x̂n(t) = E(xn(t)|y(s), s ≤ t−1).
In fact there holds that

x̂(t) = xc(t) + E (xn(t)|yn(s), s ≤ t − 1) . (8.19)

To prove this, note that xc(t) is a function of {u(s), s ≤ t − 1} as xc(0) = m0 is known,
so it is also a function of {y(s), s ≤ t − 1} and hence x̂c = xc. Concerning the noisy
part, it is sufficient to prove that {y(s), s ≤ t − 1} and {yn(s), s ≤ t − 1} contain the
same information, that is, that there exists a bijection between these two sets of random
variables.

To see this, notice that yn(s) = y(s) − yc(s) = y(s) − Cxc(s) is a function of
the known initial condition m0 and of {y(s), u(r), r ≤ s − 1}, hence of {y(r), r ≤ s}.
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Conversely, y(0) = yn(0) + Cm0, and supposing that for all σ ≤ s, y(σ ) is a function
of {yn(r), r ≤ σ } it follows that y(s + 1) = yn(s + 1) + C

(
Axc(s) + Bu(s)

)
is a

function of {yn(s + 1), u(r), r ≤ s}, hence of {yn(s+1), y(r), r ≤ s}, and by the induction
assumption hence also of {yn(r), r ≤ s + 1}. This proves (8.19).

In (8.19) xc is deterministic and x̂n is independent of the control inputs. Therefore x̂n

can be calculated by the standard Kalman filter, x̂n(t + 1) = Ax̂n(t) + K(t)ωn(t) where
ωn = yn − Cx̂n with the Kalman gain (7.13), (7.14). As xn(0) ∼ N(0, P0) the starting
conditions are x̂n(0) = 0 with P(0) = P0. The innovation process ωn is Gaussian, as yn

and x̂n are Gaussian, and as ω = y − Cx̂ = yc + yn − Cxc − Cx̂n = ωn the innovation
process ω is also Gaussian. Further, from (8.19) and ω = ωn it follows that x̂(t + 1) =
xc(t +1)+ x̂n(t +1) = Ax̂(t)+Bu(t)+K(t)ω(t) which coincides with the Kalman filter
equation (7.12). The starting condition is x̂(0) = xc(0) + x̂n(0) = m0. Finally, P(t) is the
state error covariance matrix, as xn(t)− x̂n(t) = xn(t)+ xc(t)− (x̂n(t) + xc(t)

) = x(t)−
x̂(t) so that P(t) = E

(
xn(t)− x̂n(t)

)(
xn(t)− x̂n(t)

)T = E
(
x(t)− x̂(t)

)(
x(t)− x̂(t)

)T
. ��

Theorem 8.4.1 provides an alternative state space representation of the system (8.8),
(8.9) with observed state, namely

x̂(t + 1) = Ax̂(t) + Bu(t) + K(t)ω(t) (8.20)

y(t) = Cx̂(t) + ω(t). (8.21)

The initial condition is x̂(0) = m0, and ω is a Gaussian white noise process with ω(t) ∼
N(0, CP(t)CT + GGT ). So the parameters of this state space model are time varying.
The optimal control law is now obtained from Theorem 8.3.2.

Theorem 8.4.2 The optimal LQG controller of the form u(t) = u{y(s), s ≤ t − 1} for the
system (8.8), (8.9) and the cost (8.10), (8.11) is given by

u∗(t) = −L(t)x̂(t) (8.22)

The feedback gain L(t) is obtained by (8.13) and (8.14), and x̂(t) is obtained by (8.20)
and (8.21) with Kalman filter gain (7.13), (7.14). The minimal cost is given by

mT
0 Q(0)m0 + trace

(
Q(0)P (0) + QNP(N)

)+

+
N−1∑

t=0

trace
(
RP(t)RT + Q(t + 1)K(t)

(
CP(t)CT + GGT

)
KT (t)
)
.

(8.23)

Proof Note that we can rewrite (8.20) into the form

x̂(t + 1) = Ax̂(t) + bu(t) + F(t)εt,
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with F(t) = K(t)
(
CP(t)Ct + GGT

) 1
2 . We shall apply Theorem 8.3.2 to this situation.

In order to do so, we first express the cost function in terms of x̂ instead of x. For this
purpose let x̃(t) = x(t) − x̂(t). From (8.19) it follows that x̃(t) = xn(t) − x̂n(t), so that
x̃(t) ∼ N(0, P (t)), which implies E(x̃(t)) = trace(RP(t)RT , and E(x̃(t)y(s)T ) = 0 for
s ≤ t − 1. Let Et−1 denote the conditional expectation with respect to {y(s), s ≤ t − 1},
then Et−1x̃(t) = Et−1(x(t) − x̂(t)) = x̂(t) − x̂(t) = 0. As u(t) = u{y(s), s ≤ t − 1} it
follows that

Et−1‖Rx(t) + Su(t)‖2 = Et−1‖Rx̂(t) + Rx̃(t) + Su(t)‖2 =
= ‖Rx̂(t) + Su(t)‖2 + Et−1‖Rx̃(t)‖2 + 2

(
Rx̂(t) + Su(t)

)T
REt−1x̃(t) =

= ‖Rx̂(t) + Su(t)‖2 + trace
(
RP(t)RT

)
.

Further for the final cost

EN−1
(
x(N)T QNx(N)

) =
= x̂(N)T QNx̂(N) + EN−1

(
x̃(N)T QNx̃(N)

)+ 2x̂(N)T QNEN−1x̃(N) =
= x̂(N)T QNx̂(N) + trace

(
QNP(N)

)
.

Using these results, the cost function can be reformulated as

J (u) = E
(
x(N)T QNx(N) +

N−1∑

t=0

‖Rx(t) + Su(t)‖2) =

= E
(
EN−1x(N)T QNx(N) +

N−1∑

t=0

Et−1‖Rx(t) + Su(t)‖2) =

= E
(
x̂(N)T QNx̂(N) +

N−1∑

t=0

‖Rx̂(t) + Su(t)‖2)+

+trace
(
QNP(N)

) +
N−1∑

t=0

trace
(
RP(t)RT

)
. (8.24)

So, apart from the constant term (8.24) which does not depend on the control law,
the cost function in terms of x̂ is precisely the same as the original one in terms of
x. The optimal control law is then obtained from Theorem 8.3.2, with x̂ replacing x.
Actually, in Theorem 8.3.2 all parameters are time-invariant and the white noise ε is
distributed as ε(t) ∼ N(0, I ), whereas in the current case the parameter K in (8.20)
varies over time and the white noise ω has distribution ω(t) ∼ N(0, CP(t)CT + GGT ).
However, Theorem 8.3.2 holds also true for parameters that vary over time, provided that
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all parameters are known (compare [44, Section 3.6], where this is shown for continuous
time systems). This is the case here, see (7.13) and (7.14). It follows that the control
law (8.22) is optimal. In order to compute the minimal cost, recall that (8.20) can be

standardised by defining F(t) = K(t)
(
CP(t)CT + GGT

) 1
2 . Then from the foregoing

expression of J (u) and Theorem 8.3.2 we obtain

J (u) =E
(
x(0)T Q(0)x(0)

)+
N−1∑

t=0

trace
(
F(t)T Q(t + 1)F (t)

)+

+trace
(
QNP(N)

) +
N−1∑

t=0

trace
(
RP(t)RT

)
,

and because E
(
x(0)T Q(0)x(0)

) = mT
0 Q(0)m(0) + trace (Q(0)P0) this proves the

expression for the minimal cost given in the theorem. ��

The optimal LQG controller has a simple recursive structure. The two involved Riccati
difference equations, (7.21) for the filter, and (8.14) for the controller, can be solved off-
line, independent of the observations. This gives the Kalman filter gains (7.13) and the
feedback gains (8.13). The state is recursively estimated by the Kalman filter (7.12), and
then the control is obtained by linear feedback (8.22).

The LQG controller has the certainty equivalence property. It consists of the deter-
ministic LQ controller (8.12), with the unobserved state replaced by its optimal estimate.
Further, it also satisfies the separation principle. This means that the form of the controller
is independent of the parameters (F,G) of the stochastic part of the model and that the
form of the estimator is independent of the parameters (Q,R, S) of the control objectives.

It can be shown that the LQG problem with control law u(t) = u {y(s), s ≤ t }
has optimal solution u∗(t) = −L(t)x̂(t|t), where x̂(t|t) = E (x(t)|y(s), s ≤ t) can be
obtained recursively as described in Proposition 7.3.3.

Under the stabilizability and detectability conditions of Theorems 5.3.2 and 7.4.2 the
controller and the filter become time-invariant in the limit if the number of observations
N → ∞. The state observer is then obtained from (7.22), (7.23), and (7.24), and the
controller from (8.13), (8.15). It follows from Theorem 8.4.2 that the long-run average
cost (8.17) is in this case equal to

J̄ (u) = trace
(
RPRT + QK(CPCT + GGT )KT

)
.

For the discounted cost criterion (8.16) the optimal controller is given by u∗(t) =
−Lρ(t)x̂(t), with x̂(t) as before and with the feedback gain calculated in terms of the

transformed parameters (ρ
1
2 A, ρ

1
2 B, ρ

1
2 (t+1)F, ρ− 1

2 C). Under the conditions of Theo-
rems 5.3.2 and 7.4.2 the filter and the controller become again time-invariant for N → ∞.
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The controller gain (8.13) is in terms of the solution Qρ of (8.15) with the transformed

parameters (ρ
1
2 A, ρ

1
2 B) instead of (A,B).

In practice it may be difficult to choose the parameters (R, S,QN ) of the cost function.
An alternative is minimum variance control, which uses the criterion (8.17) with R = C

and S = 0. In this case the costs are expressed in terms of the outputs, and the possible
costs of the inputs are neglected. This violates the assumption in LQG that ST S is
positive definite. However, the criterion can be approximated by choosing S = αI with α

sufficiently small.
Further, in practice the system parameters (A,B,C, F,G) are often not known. A

possible approach is to use the certainty equivalence principle, that is, first estimate
the unknown parameters and then determine the control law. The estimation of system
parameters from observed data is called the system identification problem. The parameters
may be varying over time, and it may then be necessary to update the parameter estimates
when new observations become available. This is called recursive identification, and in
connection with control applications this is called adaptive control.

We conclude by an example of LQG control with output feedback.

Example 8.4.1 Consider the ARMAX system with single input and single output

y(t) = y(t − 1) + u(t − 2) + ε(t)

where ε is a standard white noise process with Eε(t)y(s) = 0 for all s < t . The input u(t)

is allowed to be a function of the outputs y(s), s ≤ t − 1; i.e. u(t) = u{y(s), s ≤ t − 1}.
As cost function we consider

J (u) = lim
N→∞

N∑

t=1

E(y(t)2 + u(t)2).

Define two state variables by x1(t) = y(t − 1) + u(t − 2) and x2(t) = u(t − 1), then a
state space realization (8.8), (8.9) is obtained with

A =
(

1 1

0 0

)
, B =

(
0

1

)
, C =

(
1 0
)

, F =
(

1

0

)
, G = 1.

For controls u(t) = u{y(s), s ≤ t − 1} it follows that E(y(t)2 + u(t)2) = E(x1(t)
2 +

ε(t)2 +2x1(t)ε(t)+u(t)2) = 1+E(x1(t)
2 +u(t)2), so the control objective is to minimize

(8.17) with

R =
(

1 0

0 0

)
, S =
(

0

1

)
.
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Concerning the conditions in Theorem 5.3.2 there holds ST R = 0 and (A,B) is control-
lable (hence stabilizable) and (A,R) is observable (hence detectable). Also the conditions
of Theorem 7.4.2 are satisfied, because (A,C) is observable and A − FGT (GGT )−1C =(

0 1

0 0

)
is a stable matrix. From Theorem 8.4.2 it follows that the optimal control law is

given by the feedback u(t) = −Lx̂(t) where L = (BT QB + ST S)−1BT QA, see (8.13),
(8.14), and (8.15) and with x̂ the filtered state in (7.22), (7.23), and (7.24). As the two state
variables in our model are functions of past inputs and outputs, it follows that x̂ = x. This
can also be checked by observing that the filter equation (7.22) has solution P = 0. This

means in (7.24) that K =
(

1

0

)
. Direct calculation of the solution Q =

(
q1 q2

q2 q3

)
of the

control equation (8.15) shows that q1 = 1
2 (3 + √

5) and q2 = q3 = 1
2 (1 + √

5), so that the

feedback gain is given by L =
(
f f

)
, where f = q2

(q3+1)
. Substituting the expressions for

the state variables, this gives the control law

u∗(t) = −f
(
y(t − 1) + u(t − 1) + u(t − 2)

)
.

With this control law, the closed loop system is

y(t) = −fy(t − 1) + ε(t) + f ε(t − 1) + f ε(t − 2).

Without controls, that is, with u(t) = 0 for all t ∈ Z, the output process y is not stationary
and Ey(t)2 → ∞ for t → ∞. However, the controlled system makes the process y

stationary because |f | < 1 in the above ARMA(1,2) model.



9System Identification

System identification is concerned with the estimation of a system on the basis of observed
data. This involves specification of the model structure, estimation of the unknown model
parameters, and validation of the resulting model. Least squares and maximum likelihood
methods are discussed, for stationary processes (without inputs) and for input-output
systems.

9.1 Identification

In the foregoing chapters we always assumed that the system is known to us, and we
considered the representation, regulation, and prediction of linear systems with given
parameters. In most practical applications the system is not known and has to be estimated
from the available information. This is called the identification problem. The identification
method will depend on the intended model use, as this determines what aspects of the
system are of relevance. The three main choices in system identification are the following.

(i) Data In some situations it is possible to generate a large amount of reliable data by
carefully designed experiments. In other situations the possibilities to obtain data are
much more limited and it is not possible to control for external factors that influence
the outcomes. That is, the magnitude of outside disturbances (’noise’) may differ
widely from one application to another.

(ii) Model Class A model describes relations between the observed variables. For
practical purposes the less important aspects are neglected to obtain sufficiently
simple models. The identified model should be validated to test whether the imposed
simplifications are acceptable.
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(iii) Criterion The criterion reflects the objectives of the modeller. It expresses the
usefulness of models in representing the observed data.

In practice, system identification often involves several runs of the empirical cycle which
consists of the specification of the problem, the estimation of a model by optimization
of the criterion, the validation of the resulting model, and possible adjustments that may
follow from this validation.

In the following we restrict our attention to linear systems, quadratic criteria and data
that consists of observed time series of the system variables. The advantage of this linear
quadratic framework is that it leads to relatively simple identification algorithms. Further,
the ideas and concepts for these methods form the basis for more advanced approaches.

Models are simplifications of reality and therefore they involve errors. It is often
assumed that the data can be decomposed into two parts, a systematic part (related to
the underlying system) and a disturbance part that reflects unmodelled aspects of the
system. By assuming that the disturbances are random variables, the statistical properties
of identification methods can be evaluated. In particular, one considers the properties of
unbiasedness, efficiency, and consistency. Let θ denote the unknown system parameters,
and let θ̂ be an estimator of θ based on the observed data. Because the data are influenced
by the random disturbances, the estimator θ̂ is also a random variable. It is called an
unbiased estimator if E(θ̂) = θ , and it is called an efficient estimator in a class of
estimators if it minimizes the variance var(θ̂ ) = E(θ̂ − E(θ̂))(θ̂ − E(θ̂))T , that is, if
for every other estimator θ̃ in this class var(θ̃ ) − var(θ̂ ) is a positive semidefinite matrix.
To define consistency, let θ̂N denote the estimator based on data that are observed on a
time interval of length N . The estimator is called (weakly) consistent if, for every δ > 0,
there holds

lim
N→∞ P(‖θ̂N − θ‖ ≥ δ) = 0 (9.1)

where ‖ · ‖ denotes the Euclidean norm. This is also written as plim(θ̂N ) = θ . Hereby it
is assumed that the system under investigation belongs to the model class, but this can be
generalized to the situation where θ is the optimal (but not perfectly correct) model within
the model class.

9.2 Regression Models

In this section we consider single input, single output systems with a finite impulse
response (FIR), that is,

y(t) = β1u(t − 1) + · · · + βku(t − k) + ε(t) (9.2)
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We assume that y is observed for t = 1, . . . , N , and u for t = 1 − k, . . . , N − 1 with
N ≥ k. Let x(t) := (u(t − 1), . . . , u(t − k)

)T and let y = (y(1), · · · , y(N)
)T , X =

(
x(1), . . . , x

)T , ε = (ε(1), . . . , ε(N)
)T and β = (β1, . . . , βk)

T . Then (9.2) can be written
as the regression model

y = Xβ + ε. (9.3)

In the sequel, whenever necessary, we shall write XN instead of X to emphasize the
dependence of X on N .

From the data, y and X, we have to estimate the parameters β. The least squares
estimator β̂ minimizes the sum of squared errors

N∑

t=1

ε2(t) = ‖ε‖2 = ‖y − Xβ‖2.

This is obtained by projecting y onto the column space of X, so that
XT (y − Xβ̂) = 0. Assuming that rank(X) = k, the solution is given by

β̂ = (XT X)−1XT y (9.4)

In order to investigate under which conditions this is a good estimator, we make the
following assumptions.

Assumptions
The data satisfy the relation y = Xβ + ε, where

A1 all entries of the matrix X are non-random, and rank(X) = k;
A2 all entries of the (unobserved) disturbance vector ε are outcomes of random variables

with E(ε) = 0, E(ε2(t)) = σ 2 (equal variance), and E(ε(t)ε(s)) = 0 for all t �= s (no
serial correlation).

Definition 9.2.1 We call an estimator linear if it is of the form β̃ = Ay, with A a non-
random matrix, and it is called a best linear unbiased estimator (BLUE) if it is unbiased
with minimal variance in the class of all linear unbiased estimators.

The following result is called the Gauss-Markov theorem.

Theorem 9.2.2 Under assumptions A1 and A2, the least squares estimator (9.4) is BLUE
with var(β̂) = σ 2(XT X)−1. A sufficient condition for consistency is that

lim
N→∞ λmin(XT

NXN) = ∞,
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where XN is the regressor matrix in (9.3) for the first N observations and λmin denotes
the smallest eigenvalue.

Proof It follows from (9.3) and (9.4) that β̂ = β + (XT X)−1XT ε. As X is non-random,
E(ε) = 0 and var(ε) = σ 2I , it follows that E(β̂) = β and

var(β̂) = (XT X)−1XT var(ε)X(XT X)−1 = σ 2(XT X)−1.

Let β̃ = Ay be another unbiased estimator and define � = A − (XT X)−1XT .
Unbiasedness requires that E(β̃) = AXβ = β for every β, so that AX = I and �X = 0.
Then β̃ − Eβ̃ = A(Xβ + ε) − β = Aε and

var(β̃) = E(β̃ − Eβ̃)(β̃ − Eβ̃)T = E(AεεT AT ) = σ 2AAT

= σ 2(��T + (XT X)−1) = σ 2��T + var(β̂).

As ��T is positive semidefinite this shows that β̂ is BLUE.
From now on we emphasize that X = XN and denote β̂ by β̂N .
To prove consistency we use the Markov inequality, that is, for every random variable

z and every c > 0 there holds E(z2) ≥ c2P(| z |≥ c) so that P(| z |≥ c) ≤ c−2E(z2). It
then follows that for every δ > 0

P(‖β̂N − β‖ ≥ δ) ≤ P(| β̂n,i − βi |≥ k− 1
2 δ for some i = 1, · · · , k) ≤

≤ kδ−2E(β̂N,i − βi)
2 = kδ−2var(β̂N,i ) ≤ kδ−2σ 2λmax{(XT

NXN)−1} =
= kδ−2σ 2{λmin(X

T
NXN)}−1

and this converges to zero for N → ∞, by assumption. ��

Returning to the FIR system (9.2), assumptions A1 and A2 mean that the input is not
random but the output is random. This may be relevant in experimental situations where the
input is controlled. However, often the input will be affected by uncertain factors that fall
outside the scope of the model. The above results remain asymptotically valid for random
inputs, provided some conditions are satisfied. We restrict the attention to consistency, and
replace assumption A1 by the following.

A1* The matrix X is random and such that plim( 1
N

XT
NXN) = Q exists with Q

invertible (sufficiency of excitation).

For the FIR system (9.2) there holds 1
N

XT
NXN = 1

N

∑N
t=1 x(t)T x(t), where

x(t) = (u(t − 1), . . . , u(t − k)
)
, so that Q corresponds to the covariance matrix of the

input and its lags. The excitation condition basically means that the input satisfies no
polynomial equations and that it does not die out when N → ∞.
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Theorem 9.2.3 Under assumptions A1* and A2, the least squares estimator is consistent
if and only if plim( 1

N

∑N
t=1 x(t)T ε(t)) = 0 (orthogonality condition).

Proof The least squares estimator is β̂N = β + ( 1
N

XT
NXN)−1( 1

N
XT

Nε) where 1
N

XT
Nε =

1
N

∑N
t=1 x(t)T ε(t). The definition of convergence in probability gives that if plim(an) = a

and f is a continuous function, then plim(f (an)) = f (a). Therefore plim(β̂N ) = β +
Q−1plim( 1

N
XT

Nε), which proves the result. ��

The orthogonality condition essentially requires that the regressor variables x(t) show
no contemporaneous correlation with the error term ε(t). For the FIR system this means
that the output error in (9.2) is uncorrelated with the past inputs.

Many time series that are observed in practice show trends and seasonal variation. The
modelling of trends and seasonals is discussed in the next chapter. In the current chapter
we will either assume that the data are stationary, which can sometimes be achieved by
appropriate data transformations, or that the model explicitly includes variables for the
nonstationary part.

9.3 Maximum Likelihood

Stochastic models assign (relative) probabilities to the observations of the system vari-
ables. Suppose that the model class consists of a set of probability densities {pθ , θ ∈ �},
where θ ∈ � is the vector of unknown parameters. If the data consists of q time series that
are observed on a time interval of length N , then pθ is a probability density on (Rq)N . The
maximum likelihood method chooses the model that assigns the highest probability to the
observed data. If we denote the data by w ∈ (Rq)N , then this means that the likelihood
function L(θ) := pθ (w) is maximized over the parameter set �.

Maximum likelihood estimation (ML) requires that the probability distribution is
specified as an explicit function of the parameters θ . As an example, we consider the
regression model (9.3) y = Xβ + ε. In this case, the parameters θ are given by (βT , σ 2)T .
We extend assumption A2 as follows.

A2* The disturbance vector ε has the multivariate normal distribution with mean
E(ε) = 0 and covariance matrix E(εεT ) = σ 2I .

Theorem 9.3.1 Under assumptions A1 and A2*, the maximum likelihood estimators in the
regression model (9.3) are given by β̂ = (XT X)−1XT y and σ̂ 2 = 1

N
(y −Xβ̂)T (y −Xβ̂).

Proof Let θ = (βT , σ 2)T denote the vector of the model parameters. As ε = y − Xβ

has the normal distribution, the likelihood function is given by

L(β, σ 2) = pθ (y,X) = (2πσ 2)−
N
2 exp{−(2σ 2)−1(y − Xβ)T (y − Xβ)} (9.5)
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As the logarithm is a monotonic function, maximization of L(β, σ 2) is equivalent to
maximization of

2

N
log L(β, σ 2) = − log(2π) − log(σ 2) − 1

2σ 2

1

N
(y − Xβ)T (y − Xβ).

It follows that the maximum is obtained for β̂ = (XT X)−1XT y and that σ̂ 2 = 1
N

(y −
Xβ̂)T (y − Xβ̂). ��

Theorem 9.3.2 Under assumptions A1 and A2*, the least squares estimator β̂ in (9.4) is
minimum variance unbiased, that is, it is unbiased and if β̃ is another unbiased estimator
then var(β̃) − var(β̂) is positive semidefinite.

Proof Again, let θ = (βT , σ 2)T denote the model parameters. The Cramer-Rao theorem

states that every unbiased estimator θ̂ has a covariance matrix var(θ̂) ≥ [−E(
∂2 log L

∂θ∂θT )]−1,
see [40]. It follows by direct calculation from (9.5) that in this case the lower bound is a
block-diagonal matrix with blocks σ−2(XT X) and (2σ 4)−1N . This implies that for every
unbiased estimator there holds var(β̃) ≥ σ 2(XT X)−1 = var(β̂), see Theorem 9.2.2. ��

Under very general conditions, maximum likelihood estimators have optimal asymptotic
properties, provided that the model is correctly specified. That is, if the data are generated
by a probability distribution pθ0 , with θ0 ∈ �, and θ̂N is the ML estimate based on N

observations, then under very general conditions there holds that

(i) θ̂N is consistent, that is, plim(θ̂N ) = θ0;
(ii) θ̂N is asymptotically efficient in the class of all consistent estimators, that is,

limN→∞ N(var(θ̃N)−var(θ̂N )) is positive semidefinite for every consistent estimator
θ̃ ;

(iii) θ̂N has an asymptotic normal distribution, in the sense that
√

N(θ̂N − θ0) converges

to a normal distribution with mean zero and covariance matrix [−E(
∂2 log L

∂θ∂θT )]−1.

We refer to , e.g., [25] for a proof of this result. From a computational point of view,
ML estimation requires the maximization of the likelihood function or equivalently, of its
logarithm, both of which are functions of several real variables. The first order conditions
will in general consist of a set of nonlinear equations in θ that can be solved by numerical
methods. Such methods differ in the choice of initial estimates, search strategies, and
convergence criteria. The Newton-Raphson method consists of an iterative linearization
of the stationarity condition for a maximum. Consider this for the maximization of
the logarithm of the likelihood functions. If θ̂i is the current estimate, Gi = ∂logL(θ)

∂θ

the gradient and Hi = ∂2 log L

∂θ∂θT the Hessian in θ̂i , then locally around θ̂i there holds
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∂ log L(θ)
∂θ

≈ Gi + Hi(θ − θ̂i ) by Taylor’s formula. This motivates the iterations

θ̂i+1 = θ̂i − H−1
i Gi (9.6)

A possible disadvantage is that this requires the computation and inversion of the Hessian
matrix. For nonlinear regression models of the form

y(t) = f (x(t), θ) + ε(t) (9.7)

one could use the Gauss-Newton method for the minimization of
∑N

t=1 ε2(t) as an
alternative. This corresponds to maximum likelihood if the disturbances satisfy assumption
A2*. Here x(t) is the vector of regressors at time t , and f is a nonlinear function of the
model parameters θ . If θ̂i is the current estimate, then the model (9.7) is linearized by
f (x, θ) ≈ f (x, θ̂i)+xT

i (θ − θ̂i), where xi = ∂
∂θ

f (x, θ) is the gradient evaluated at (x, θ̂i).

The linearized model gives ε(t) = y(t)−f (x(t), θ) ≈ y(t)−f (x(t), θ̂i)−xT
i (t)(θ−θ̂i ) =

εi(t) − xT
i (t)(θ − θ̂i ), where εi(t) denotes the residuals of (9.7) for the estimate θ̂i and

xi(t) is the gradient of f at (x(t), θ̂i ). The corresponding approximation of the criterion
function gives

∑N
t=1 ε2(t) ≈∑N

t=1{εi(t)−xT
i (t)(θ − θ̂i)}2. This is a least squares problem

with estimate θ̂i+1 = (XT
i Xi)

−1XT
i (εi + Xiθ̂i), that is

θ̂i+1 = θ̂i + (XT
i Xi)

−1XT
i εi (9.8)

Here Xi is the matrix with N rows consisting of the gradients xi(t), t = 1, · · · , N , and εi

is the N × 1 vector with the residuals for θ̂i .

9.4 Estimation of AutoregressiveModels

In this section, we suppose that the data consists of observations of a single output variable
y(t), observed for t = 1, · · · , N , and generated by an autoregressive model

y(t) = α1y(t − 1) + · · · + αpy(t − p) + ε(t). (9.9)

Here ε is a white noise process with mean zero, variance σ 2, and finite fourth order
moments, so that assumption A2 is satisfied. We assume that this model is causal, that
is, that the polynomial 1 −∑p

i=1 αiz
−i has all its roots inside the unit disc. Moreover, we

assume that p is known and correctly specified. In Sect. 9.6.1 we shall discuss methods to
estimate the lag order p from the data.

Theorem 9.4.1 The least squares estimator of (α1, · · · , αp) in a causal autoregressive
model (9.9) is consistent.
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Outline of Proof According to Theorem 9.2.3, it suffices to prove that assumption A1* is
satisfied and that plim( 1

N

∑N
t=1 ε(t)y(t − i)) = 0 for i = 1, · · · , p. As was discussed in

Sect. 6.3, stationarity implies that y(t) can be written as a function of the past disturbances
{ε(s), s ≤ t}. Therefore E(ε(t)y(t − i)) = 0 for all t and i = 1, · · · , p, so that ε(t)

is uncorrelated with all the regressors in (9.9). This means that 1
N

∑N
t=1 ε(t)y(t − i) is

the sample mean of N mutually uncorrelated terms with mean 0 and constant variance
E(ε(t)y(t − i))2 < ∞, because ε has finite fourth order moments. The weak law of large
numbers implies that

plim(
1

N

N∑

t=1

ε(t)y(t − i)) = 0.

As concerns assumption A1*, 1
N

XT
NXN is a p × p matrix with (i, j)-th element

1
N

∑N
t=1 y(t − i)y(t − j). Under the above conditions the process y can be shown to be

ergodic. The proof requires a generalized law of large numbers for the sample mean of N

correlated terms (but with exponentially decaying correlation between y(t − i)y(t −j) and
y(t − i + k)y(t − j + k) for k → ∞). Ergodicity implies that the matrix Q in assumption
A1* exists, and that Qij = E(y(t − i)y(t −j)). Further Q is invertible, because otherwise
there would exist a ∈ R

p such that aT Qa = var(
∑p

i=1 aiy(t − i)) = 0 which contradicts
that the autoregressive process (9.9) has no perfectly predictable component. �

In the model (9.9) the observations have mean Ey(t) = 0. In practice, one may add
regressors to take care of, for example, non-zero mean and trends, so that

y(t) = μ1 + μ2T (t) + α1y(t − 1) + · · · + αpy(t − p) + ε(t). (9.10)

Least squares is also consistent for this model under the conditions of Theorem 9.4.1.

Theorem 9.4.2 If in the autoregressive model (9.9) the noise ε satisfies assumption A2*
(normality), then the least squares estimator is consistent, asymptotically efficient, and
asymptotically normally distributed.

Proof It is sufficient to prove that under these conditions least squares is asymptotically
equivalent to maximum likelihood. The likelihood function of (9.9) can be written, by
conditioning, as

L(α1, · · · , αp) = p(y(1), · · · , y(N))

= p(y(1), · · · , y(p))�N
t=p+1p(y(t) | y(1), · · · , y(t − 1))

= p(y(1), · · · , y(p))�N
t=p+1p(y(t) | y(t − p), · · · , y(t − 1))

= p(y(1), · · · , y(p))�N
t=p+1p(ε(t)).
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As p(ε(t)) = (2πσ 2)− 1
2 exp{−(2σ 2)−1ε(t)2} this gives

1

N
log L = 1

N
log(p(y(1), · · · , y(p))) + 1

N

N∑

t=p+1

log p(ε(t))

= 1

N
log(p(y(1), · · · , y(p))) − 1

2
log(2πσ 2) − (2σ 2)−1

N

N∑

t=p+1

ε(t)2.

Apart from the first term, that vanishes for N → ∞, this shows that the ML estimates of
α1, · · · , αp are obtained by minimizing

∑N
t=p+1 ε(t)2. ��

There is a close connection between least squares and the so-called Yule-Walker
equations. As E(ε(t)y(t − i)) = 0 for i = 1, · · · , p, it follows from (9.9) that the
autocovariances R(k) = E(y(t)y(t − k)) of the process y satisfy

⎛

⎜⎜⎜⎜⎝

R(1)

R(2)
...

R(p)

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

R(0) R(1) · · · R(p − 1)

R(1) R(0) · · · R(p − 2)
...

...
...

R(p − 1) R(p − 2) · · · R(0)

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

α1

α2
...

αp

⎞

⎟⎟⎟⎟⎠
. (9.11)

If we replace R(k) by R̂(k) = 1
N

∑N
t=k+1 y(t)y(t − k) then (9.11) can be solved for

the parameters αi, i = 1, · · · , p. For numerical reasons, the autocovariances are often
scaled by using the correlations ρ̂(k) = R̂(k)/R̂(0) in (9.11) instead of R̂(k). That is, one
considers estimates α̂j obtained by solving the following set of linear equations:

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ρ̂(1)

ρ̂(2)
...
...

ρ̂(p)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ̂(1) · · · · · · ρ̂(p − 1)

ρ̂(1) 1
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . ρ̂(1)

ρ̂(p − 1) · · · · · · ρ̂(1) 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

α̂1

α̂2
...
...

α̂p

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (9.12)

The structure of the matrix in the right hand side of this equation is a very special one: it is
symmetric positive definite, but also it is a Toeplitz matrix: along diagonals the same entry
occurs. Fast methods to solve sets of equations of this kind for α̂1, . . . , α̂p are important,
in particular in cases where p is large. One such fast algorithm is known as the Levinson
algorithm; it requires considerably fewer numerical operations than the O(p3) operations
needed for Gaussian elimination. See, e.g., [20].
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To discuss the estimation of σ 2 resulting from the estimates for the αj we use the fact
that

ε(t) ≈ ε̂(t) = y(t) − α̂1y(t − 1) − · · · − α̂py(t − p).

Note that σ 2 = E(ε(t)2) = E(ε(t)y(t)). Replacing in the latter formula ε(t) by ε̂(t) we
arrive at the following estimate σ̂ 2 for σ 2:

σ̂ 2 = E(ε̂(t)y(t)) = R̂(0) − α̂1R̂(1) − · · · − α̂pR̂(p).

One can check that the estimates resulting from solving (9.12) are approximately equal
to the least squares estimates (where the summations run from t = p + 1 to N instead of
from t = k + 1 to N).

Next we consider autoregressive models with inputs, that is,

y(t) =
p∑

i=1

αiy(t − i) +
q∑

i=0

βiu(t − i) + ε(t) (9.13)

Such a model is also called an ARX model, that is, an autoregressive model with
exogenous variables. We assume that

∑p

i=1 αiy(t − i) +∑q

i=0 βiu(t − i) is the optimal
linear predictor of y(t), in the sense that it minimizes the mean squared prediction error
E(y(t)− ŷ(t))2 over the class of all linear predictors of the type ŷ(t) =∑i≥0(aiy(t − i −
1)+biu(t−i)). Optimality implies that E((y(t)−ŷ(t))ŷ(t)) = 0, so that E(ε(t)y(t−i)) =
0 for all i ≥ 1 and E(ε(t)u(t − i)) = 0 for all i ≥ 0. Further we assume that the
uncontrolled system with input u(t) = 0 is causal, that is, that 1 − ∑p

i=1 αiz
−i has

all its roots inside the unit disc. We use the notation θ = (α1, · · · , αp, β0, · · · , βq)T ,
x(t) = (y(t − 1), · · · , y(t − p), u(t), u(t − 1), · · · , u(t − q))T , and

QN =
(

QN(yy) QN(yu)

QN(uy) QN(uu)

)
= 1

N

N∑

t=m

x(t)x(t)T

where m = max{p, q}. So [QN(yy)]ij = 1
N

∑N
t=m y(t − i)y(t − j) = R̂y(i − j),i, j =

1, · · · , p, are the sample autocovariances of the output, and similarly for the other entries
of the matrix QN .

Theorem 9.4.3 Under the above conditions, the least squares estimators of the param-
eters in the ARX system (9.13) are consistent if the inputs are sufficiently excited in the
sense that plimQN(uu) = Q(uu) exists and is invertible.

Details of the proof fall outside the scope of this book, we refer to [21]. The idea
is similar to the proof of Theorem 9.4.1. That is, the least squares estimator is given by
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θ̂N = θ +Q−1
N δN where δN = 1

N

∑N
t=m+1 ε(t)x(t). As plimQN(uu) exists and the system

(9.13) is causal, it follows that also plimQN(yy) = Q(yy) and plimQN(yu) = Q(yu)

exist. Further, Q = plimQN is invertible, because otherwise there would exist a ∈ R
p and

b ∈ R
q+1 such that (aT , bT )Q(aT , bT )T = var(

∑p
i=1 aiy(t − i)+∑q

i=0 biu(t − i)) = 0.
Because Q(uu) is invertible, ai �= 0 for at least one i = 1, · · · , p, and this contradicts
the fact that y(t) is not perfectly predictable from the observations {y(s − 1), u(s), s ≤ t}.
Therefore, plim(θ̂N) = θ+Q−1plim(δN), and plim(δN) = 0. This orthogonality condition
again follows from a weak law of large numbers.

Note that this result does not require that the input is deterministic. It may, for instance,
be generated by feedback, where u(t) depends on the past outputs {y(s), s ≤ t − 1}.
However, the input u(t) may not depend on the current output y(t), as in this case the
orthogonality condition E(ε(t)u(t)) = 0 would be violated. The input condition stated in
Theorem 9.4.3 can be weakened, but some persistency of excitation is needed.

In the foregoing we restricted our attention to systems (9.9) with one output and (9.13)
with one input and one output. Similar results hold true for multivariate systems, with
multiple inputs and outputs.

9.5 Estimation of ARMAXModels

In the foregoing section it was assumed that the disturbances ε(t) in (9.9) and (9.13)
are white noise. If the disturbances are correlated over time then this indicates that the
dynamic specification of the model is not correct. This can be repaired by increasing the
lag orders of the model, but this may lead to a large number of parameters. It may then be
preferable to estimate more parsimonious models. For example, for single-input, single-
output systems one can use ARMAX models defined by

y(t) =
p∑

i=1

αiy(t − i) +
q∑

i=0

βiu(t − i) + ε(t) +
r∑

i=1

γiε(t − i) (9.14)

If the inputs are u(t) = 0, then this is an ARMA model. We assume that this model
is coprime, causal and invertible, i.e., the equations 1 − ∑p

i=1 αiz
−i = 0 and 1 +∑r

i=1 γiz
−i = 0 have all their solutions in | z |< 1 and the equations have no common

solutions. The white noise process ε(t) then has the interpretation of the one-step ahead
prediction errors, see Sect. 6.3.

Theorem 9.5.1 For an ARMAX system (9.14) with p �= 0 and r �= 0, the least squares
estimate in the regression model (9.13) is in general not consistent.

Proof The disturbances in the model (9.13) are given by ε(t) + ∑r
i=1 γiε(t − i). If

p �= 0 �= r , then these are in general correlated with the output regressors in (9.13).
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Therefore the orthogonality condition is violated, and it follows from Theorem 9.2.3 that
least squares is not consistent.

As a simple example, consider the ARMA(1,1) model y(t) = αy(t−1)+ε(t)+γ ε(t−1)

with α �= 0 �= γ and |α| < 1, |γ | < 1. The least squares estimate of α is given by
α̂N = (

∑N
t=2 y(t)y(t − 1))/(

∑N
t=2 y2(t − 1)). From this it follows that plim(α̂N ) =

α + γ σ 2/var(y(t)). This is inconsistent if γ �= 0. ��

Consistent estimators may be obtained by using so-called instrumental variables. We
formulate this in terms of the regression model (9.3), with plim( 1

N
XT

NεN) �= 0 where XN

is the N × k regressor matrix and εN the N × 1 disturbance vector for sample size N .
The variables zi(t), i = 1, · · · , l, are called instruments if the following conditions are
satisfied, where ZN denotes the N × l matrix with elements zi(t).

plim(
1

N
ZT

NεN) = 0, plim(
1

N
ZT

NZN) = Qzz, plim(
1

N
ZT

NXN) = Qzx

rank(Qzz) = l, rank(Qzx) = k.

(9.15)

The idea is to replace the regressors XN by the instruments ZN , because they satisfy the
orthogonality condition. In order to approximate XN as well as possible, they are regressed
on ZN . Therefore, the instrumental variables estimator θ̂IV is defined by the following two
steps. First regress XN on ZN , with fitted values X̂N = ZN(ZT

NZN)−1ZT
NXN , and then

regress y on X̂N . Let PN = ZN(ZT
NZN)−1ZT

N be the projection operator on the column
space of ZN,, then

θ̂IV = (X̂T
NX̂N)−1X̂T

Ny = (XT
NPNXN)−1XT

NPNy (9.16)

Theorem 9.5.2 The instrumental variables estimator θ̂IV is consistent if the conditions
(9.15) are satisfied, and var(θ̂IV ) is approximately given by σ 2(XT

NPNXN)−1.

Proof By filling in (9.4) into (9.16) it follows that

θ̂IV = θ + {XT
NZN(ZT

NZN)−1ZT
NXN }−1XT

NZN(ZT
NZN)−1ZT

NεN .

Consistency now follows immediately from the assumptions in (9.15). The expression for
the variance follows from Theorem 9.2.2, replacing X by X̂N . ��

For the ARMAX model (9.14), assuming that the input u(t) only depends on the past
outputs {y(s), s ≤ t}, one can choose instruments from the set {y(s), u(s), s ≤ t − r − 1}
as these are uncorrelated with the composite disturbance term ε(t)+∑r

i=1 γiε(t − i). The
resulting IV estimator is consistent, but it may be far from efficient.

From an asymptotic point of view, it is optimal to use maximum likelihood. Denot-
ing the lag operator by (z−1y)(t) = y(t − 1), the model (9.14) can be written as



9.5 Estimation of ARMAXModels 149

α(z−1)y(t) = β(z−1)u(t) + γ (z−1)ε(t). Because the model is assumed to be invertible,
ε(t) = (γ (z−1))−1(α(z−1)y(t) − β(z−1)u(t)) = F(y(s), u(s), s ≤ t) for a function
F that is linear in the observed data but nonlinear in the unknown parameters θ =
(α1, · · · , αp, β0, · · · , βq , γ1, · · · , γr ). Because α(∞) = γ (∞) = 1, this can also be
written in prediction error form

ε(t, θ) = y(t) − f (θ, y(s − 1), u(s), s ≤ t) (9.17)

If the process ε(t) satisfies assumption A2*, then (conditionally on starting conditions in
(9.14)) the maximum likelihood estimators are obtained by minimizing

∑N
t=m+1 ε2(t, θ)

over θ , where m = max{p, q, r}. Note that (9.17) corresponds to a nonlinear regression
model of the type (9.7), so that the parameters θ can be estimated, for instance, by the
Gauss-Newton iterations (9.8).

An alternative is to use the Kalman filter. For given parameter vector θ , the ARMAX
system (9.14) can be expressed in state space form, see Sect. 6.6. The mean μ(t) and
variance σ 2(t) can then be computed by means of the Kalman filter, see Theorem 7.3.1 and
Proposition 7.3.3. In fact, in terms of the notation of Theorem 7.3.1 and Proposition 7.3.3
we have μ(t) = ŷ(t) and σ 2(t) = CP(t)CT + GGT . Considering the inputs as fixed and
using the notation Ut = {u(t), u(t − 1), · · · , u(1)} and similarly for Yt , the likelihood
function can be written by sequential conditioning as logL(θ) = ∑N

t=1 log(p(y(t) |
θ,Ut , Yt−1). Under assumption A2*, the densities p(y(t) | θ,Ut , Yt−1) are normal, with
mean μ(t) = E(y(t) | θ,Ut , Yt−1) and variance σ 2(t), so that

log L(θ) = −N

2
log(2π) − 1

2

N∑

t=1

(y(t) − μ(t))2/σ 2(t) − 1

2

N∑

t=1

log σ 2(t). (9.18)

This can then serve for a numerical optimization algorithm to obtain the maximum
likelihood estimate.

The foregoing results can be generalized to multivariate systems. As mentioned in
Sect. 6.3, the parameters of multivariate VARMAX systems are in general not uniquely
defined. That is, there exist different parameter vectors that describe exactly the same
(stochastic) input-output system. This so-called non-identifiability implies that the likeli-
hood function is constant for such parameters, so that the gradient may be zero in such
directions. This causes numerical problems, that can be solved by choosing a canonical
form for the parameters. We refer to [52].

Identification methods that are based on the prediction errors as in (9.17) are called
prediction error identification (PEI) methods. For multivariate systems, let V (θ) =
1
N

∑N
t=1 ε(t, θ)εT (t, θ) denote the sample covariance matrix of the prediction errors. Least

squares corresponds to the criterion trace(V (θ)), and it can be shown that maximum
likelihood corresponds to the criterion log(det(V (θ)). So, in the case of a single output
these two methods are equivalent, but for multi-output systems this only holds true if V (θ)
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is diagonal and there are no cross-equation parameter restrictions in the equations (9.17).
The consistency and relative efficiency of PEI methods has been investigated under quite
general conditions, see [47].

9.6 Model Validation

Different model specifications may lead to different estimates of the underlying system. In
order to decide about the model structure, and accordingly about the estimation method to
be used, we can estimate different models and perform diagnostic tests on the underlying
model assumptions. In this section we discuss some of the diagnostic tools that may be
helpful in this respect.

9.6.1 Lag Orders

The estimation of ARMAX models requires that the lag orders (p, q, r) in (9.14) have
been specified. If the orders are chosen too large this means that many parameters have
to be estimated, with a corresponding loss of efficiency. On the other hand, if the orders
are too small then the estimates become inconsistent. That is, the choice of the lag orders
involves a trade-off between efficiency and consistency. We illustrate this by an example.

Example 9.6.1 Consider the causal AR(2) model y(t) = α1y(t − 1) + α2y(t − 2) + ε(t),
where ε satisfies assumption A2. First assume that the order is specified too large, that is,
that α2 = 0. Using the variance expression in Theorem 9.2.2, with the regressors x(t) =
(y(t − 1), y(t − 2))T , it follows that α̂1 in the AR(2) model has variance

var(α̂1) = σ 2[(XT X)−1]1,1

= σ 2∑ y2(t − 2)∑
y2(t − 1)

∑
y2(t − 2) − (

∑
y(t − 1)y(t − 2))2

≈ σ 2

NR(0){1 − (R(1)/R(0))2} = 1

N
,

where R(k) denotes the autocovariances of the process y(t). Because α2 = 0, there holds
R(0) = σ 2(1 − α2

1)−1 and R(1) = α1R(0). In the correctly specified AR(1) model, the
estimator has variance

var(α̂1) = σ 2
∑

y2(t − 1)
≈ σ 2

NR(0)
= 1 − α2

1

N
.
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This shows that too large models lead to inefficient estimators. On the other hand, if an
AR(1) model is estimated while in fact α2 �= 0, then

plim(α̂1) = plim

(
1
N

∑
y(t)y(t − 1)

1
N

∑
y2(t − 1)

)
= α1 + α2

R(1)

R(0)
. (9.19)

So in this case the estimator is inconsistent if R(1) �= 0.

Several methods have been developed for choosing the lag orders. For example, if the
parameters are estimated by maximum likelihood then the results in Sect. 9.3 show that
the estimators are approximately normally distributed. The significance of the parameters
in model (9.14) can then be evaluated by the usual t- and F -tests.

If only a single output is observed, then the order of AR(p) models and MA(q) models
can be based on the (partial) autocorrelations. The autocorrelations of a stationary process
are defined by AC(k) = R(k)/R(0), with corresponding sample estimates SAC(k) =
R̂(k)/R̂(0). If y is an MA(q) process, then AC(k) = 0 for k > q . If y is an AR(p) process
then in the regression model (9.9) of an AR(k) model there holds αk = 0 for k > p. The
sample partial autocorrelations are defined by SPAC(k) = α̂k , the parameter of y(t − k)

in the estimated AR(k) model for the data (including constant, trends and dummies if
needed). As a rule of thumb, estimated values SAC and SPAC are considered significant
if they are (in absolute value) larger than 2/

√
N , where N is the sample size.

An alternative is to use information criteria, for instance the Akaike or Bayes criterion

AIC = log(σ̂ 2) + 2M

N
, BIC = log(σ̂ 2) + M log(N)

N
(9.20)

Here σ̂ 2 is the estimated variance of the residuals of the model, and M is the number of
AR and MA parameters of the model. For instance, for a univariate ARMA(p, q) process
M = p + q , and for the model AR(p) model (9.10) with constant and trend M = p. The
model with the smallest value of AIC or BIC is preferred. These criteria make an explicit
trade-off between bias, measured by the error variance σ̂ 2, and efficiency, measured by the
number of parameters.

9.6.2 Residual Tests

The estimation methods in Sects. 9.4 and 9.5 are based on the assumptions A2 or A2* for
the error terms. If, for example, the lag orders have been misspecified then this may result
in serial correlation of the error terms. And if the data are not appropriately transformed
then the error terms may show changing variance. If the error terms are not normally
distributed, then least squares is no longer equivalent to maximum likelihood. In all these
cases, the methods discussed in Sects. 9.4 and 9.5 may give misleading results.
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Tests of these assumptions are based on the model residuals ε̂(t) = y(t) − ŷ(t),

where ŷ(t) denotes the fitted values. For instance, for the ARMAX model (9.14) ε̂(t) =
y(t) −∑p

i=1 α̂iy(t − i) −∑q

i=0 β̂iu(t − i) −∑r
i=1 γ̂i ε̂(t − i). It is always informative to

make a time plot of the residuals to get an idea of possible misspecification. The sample
autocorrelations SACε(k) = R̂ε(k)/R̂ε(0) give an indication of possible serial correlation,
where R̂ε(k) are the sample autocovariances of ε̂(t). As before, if there exist many values
of k for which | SACε(k) |> 2/

√
N then this is a sign of serial correlation.

A combined test is the Box-Pierce test Qm = N
∑m

k=1(SACε(k))2. Under the null-
hypothesis that the model is correctly specified, this test follows a χ2

(m−p−r) distribution
for large enough sample sizes. The following Ljung-Box test involves an adjustment for
finite sample effects, and also follows an asymptotic χ2

(m−p−r) distribution.

LBm = N(N + 2)

m∑

k=1

(N − k)−1(SACε(k))2. (9.21)

The null hypothesis of no serial correlation is rejected for large values of LBm. This means
that the model is not correct, and a possible solution is to enlarge the lag orders.

As concerns heteroscedasticity, it may be that the variance is related to the level of the
series or that the variance shows correlation over time. Tests are based on the series of
squared residuals ε̂(t)2. For example, if an ARX(1, 0) model (9.13) is estimated then one
can consider the regressions

ε̂2(t) = λ0 + λ1y(t − 1) + λ2y
2(t − 1) + λ3u(t) + λ4u

2(t), (9.22)

ε̂2(t) = λ0 + λ1ε̂
2(t − 1) + λ2ε̂

2(t − 2). (9.23)

These equations can of course be generalized. The null hypothesis is that λi = 0 for all
i �= 0. In both cases an F -test can be used, and under the null hypothesis the distribution
is approximately χ2

(m) where m is the number of restrictions (m = 4 in (9.22), and m = 2
in (9.23)). If there is significant heteroscedasticity then the data can be transformed, or one
can adjust the identification criterion. More general, the following result holds true.

Theorem 9.6.1 For the regression model (9.3), assume that A1 is satisfied and that
E(ε) = 0 and var(ε) = V with V nonsingular. Then the BLUE estimator is obtained
by minimizing εT V −1ε, with solution β̂ = (XT V −1X)−1XT V −1y and var(β̂) =
(XT V −1X)−1.

Proof As V is a nonsingular covariance matrix, it is positive definite and has a symmetric

square root V
1
2 such that V

1
2 V

1
2 = V . Let y∗ = V − 1

2 y, X∗ = V − 1
2 X and ε∗ = V − 1

2 ε,
then (9.3) implies that y∗ = X∗β + ε∗ with var(ε∗) = I . According to Theorem 9.2.2,
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the BLUE estimator is given by β̂ = (XT∗ X∗)−1XT∗ y∗ with var(β̂) = (XT∗ X∗)−1, and this
corresponds to the minimization of εT∗ ε∗ = εT V −1ε. ��

The technique to transform the data in such a way that the error term satisfies
assumption A2 is called pre-whitening. In practice, the covariance matrix V is unknown
and has to be estimated. In the case of heteroscedasticity, V is a diagonal matrix and the
entries vtt = E(ε2(t)) can be estimated, for example, by models of the type (9.22), (9.23).
The parameters β are then estimated by weighted least squares, with criterion function∑N

t=1 ε2(t)/vtt .
Finally we consider the assumption of normality of the error terms. This can be

tested by considering the standardized third and fourth moments of the residuals. Let
ε̄ = 1

N

∑N
t=1 ε̂(t) and σ̂ 2 = 1

N

∑N
t=1(ε̂(t) − ε̄)2, then μ̂i = 1

N

∑N
t=1(ε̂(t) − ε̄)i/σ̂ i

are the skewness (for i = 3) and kurtosis (for i = 4). It can be shown that, asymptotically
and under the null hypothesis that A2* is satisfied, the Jarque-Bera test

JB = N(
1

6
μ̂2

3 + 1

24
(μ̂4 − 3)2) (9.24)

has the χ2
(2) distribution. The normal distribution is symmetric (skewness zero) and has

kurtosis equal to 3 (a measure of the thickness of the tails of the distribution). Normality
may be rejected, for instance, because there are some excessively large residuals. They may
arise because of special circumstances, for instance a measurement error or a temporary
disruption of the process. Because the least squares criterion penalizes residuals by taking
the squares, such outliers may have large effects on the estimates. This can be reduced by
using more robust identification criteria, for example by minimizing

∑N
t=1 | ε(t) |.

9.6.3 Inputs and Outputs

For multivariable systems, the question arises how many equations should be estimated
and what are the properties of the error process. It is usual to model either all the variables
as a multivariate stochastic process or to model some of the variables (the outputs) in terms
of the others (the inputs). This is also the basis for the methods described in Sects. 9.4
and 9.5. Here we will not discuss alternative modelling approaches, but we give two
examples indicating the importance of these questions.

Example 9.6.2 In this example we analyse the effect of incomplete model specification.
Assume that three variables are observed that actually consist of one input and two outputs,
related by the equations

y1(t) = α1y2(t) + β1y1(t − 1) + γ1u(t) + ε1(t),

y2(t) = α2y1(t) + β2y2(t − 1) + γ2u(t) + ε2(t),
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where (ε1, ε2)
T is a white noise process with covariance matrix I . Suppose that we do not

know that y2 is an output and that we estimate only the first equation for y1, seen as an
ARX(1, 0) model with output y1 and inputs u and y2. This model structure suggests to
estimate the parameters by least squares, see Sect. 9.4. However, this gives inconsistent
estimates. The result in Theorem 9.4.3 does not apply, because the regressor y2(t) is
correlated with ε1(t) if α2 �= 0. More precisely, assume that the processes y1, y2 and u are
all stationary, and let θ = (α1, β1, γ1)

T and x(t) = (y2(t), y1(t−1), u(t))T . Then the least
squares estimator θ̂N in the equation for y1 has the property that plim(θ̂N) = θ + V −1δ,
where V = var(x(t)) is invertible and δ ∈ R

3 has as first entry E(y2(t)ε1(t)). Taking into
account the two model equations, it follows that E(y2(t)ε1(t)) = α2/(1−α1α2) �= 0. This
is called the simultaneity bias, that arises when some of the system equations are missing
in the model.

Example 9.6.3 Next we analyse the consequences of a wrong specification of the proper-
ties of the error process. Suppose that the system consists of a single input and a single
output that are both measured with error, for instance,

y(t) = y∗(t) + ε1(t), u(t) = u∗(t) + ε2(t), y∗(t) = βu∗(t − 1) + ε3(t).

Here the underlying system for the unobserved variables (y∗, u∗) is ARX(0, 1). We assume
that εi are independent white noise processes with zero mean and variance σ 2

i , i = 1, 2, 3,
and that u∗ is a stationary process with mean zero and variance σ 2∗ that is independent of
εi , i = 1, 2, 3. In terms of the observed input and output, the ARX(0, 1) model y(t) =
θu(t − 1) + ε(t) is correctly specified, in so far as the lag order is correct, the input
and output are chosen correctly, and the errors satisfy assumption A2. Indeed, actually
y(t) = βu(t − 1) + ε(t) where ε(t) = ε1(t) − βε2(t − 1)+ ε3(t) is a white noise process.
However, the least squares estimator is not consistent because the orthogonality condition
of Theorem 9.2.3 is not satisfied. As E(ε(t)u(t−1)) = −βσ 2

2 and E(u2(t−1)) = σ 2∗ +σ 2
2 ,

it follows that

plim(θ̂N) = β − βσ 2
2

σ 2∗ + σ 2
2

= β(1 − 1

S + 1
),

where S = σ 2∗ /σ 2
2 is the so-called signal-to-noise ratio for the input. This shows that a

wrong specification of the error assumptions may lead to inconsistent results. Especially
when the noise is relatively large, that is, when S is small, the estimates may be very
unreliable. Note that the orthogonality condition can not be checked by computing the
correlation between the regressor u(t − 1) and the residuals ε̂(t) = y(t) − θ̂u(t − 1),
because plim( 1

N

∑N
t=1 ε̂(t)u(t − 1)) = E(y(t)u(t − 1)) − plim(θ̂N )E(u2(t − 1)) = 0.
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9.6.4 Model Selection

In system identification one is confronted with the choice of data, model class, estimation
method, and tools for evaluating the model quality. The validation techniques for the lag
orders and the residuals discussed in Sects. 9.6.1 and 9.6.2 are of help. Further, the intended
model use may suggest additional evaluation criteria. For instance, if forecasting is the
objective then the models can be compared with respect to their forecast performance. The
standard deviation

σ̂ = { 1

N

N∑

t=1

ε̂(t)2} 1
2 (9.25)

is an indication of this. However, in least squares the data are first used to minimize σ̂ , so
that this may underestimate the future forecast errors. A more reliable criterion is σ ∗ =
{ 1
N

∑N
t=1 ε∗(t)2} 1

2 , where ε∗(t) = y(t) − y∗(t) is the residue corresponding to the model
that is estimated using the data {y(s−1), u(s), s ≤ t}. The disadvantage is that this requires
the estimation of a sequence of models, a new one for every additional observation. One
can also consider m-step-ahead prediction, where only the data {y(s−1), u(s), s ≤ t −m}
are used to estimate a model to forecast y(t). Instead of quadratic criteria one can also
consider the absolute errors 1

N

∑N
t=1 | ε(t) | or the relative errors 1

N

∑N
t=1(| ε(t) | / |

y(t) |). For input-output systems that allow experiments with the inputs, one can also
compare the simulated outputs of the model with the outputs that result in reality.
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For many time series, trends and cyclical fluctuations dominate the stationary part. The
main cyclical components can be identified by spectral analysis. Trends and seasonals can
either be incorporated explicitly in the model or they can be removed by filtering the data.

10.1 The Periodogram

In this section we consider the modelling of a univariate time series in terms of underlying
cyclical components. Let the data consist of N observations {y(t); t = 1, . . . , N}, then a
cyclical process with n components is described by

y(t) =
n∑

k=1

αk sin(ωkt + θk) + ε(t), t = 1, · · · , N. (10.1)

The parameters θk are assumed to be independent and uniformly distributed on [0, 2π).
The process ε takes account of the fact that the observed time series is not purely cyclical.
Here ε is assumed to be independent of the parameters θk , with variance E(ε2(t)) = σ 2.
The aim is to estimate the number n of cyclical components, the frequencies ωk , and their
variance contributions α2

k , k = 1, · · · , n. First we assume that n and ωk are known and
that θk and αk unknown. The observed time series corresponds to a single realization of
the process, so that the parameters θk are fixed. Let βk = αk sin θk and γk = αk cos θk ,
then (10.1) can be written as the regression model

y(t) =
n∑

k=1

βk cos(ωkt) +
n∑

k=1

γk sin(ωkt) + ε(t). (10.2)
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In the vector notation (9.3), the parameter vector is

q := (β1, γ1, β2, γ2, · · · , βn, γn)
T

and the regression matrix is

X =

⎛
⎜⎜⎜⎜⎝

cos(ω1) sin(ω1) · · · cos(ωn) sin(ωn)

cos(2ω1) sin(2ω1) . . . cos(2ωn) sin(2ωn)
...

...
...

...

cos(Nω1) sin(Nω1) . . . cos(Nωn) sin(Nωn)

⎞
⎟⎟⎟⎟⎠

,

that is, we rewrite (10.2) as

y = Xq + ε.

Here, y = (y(1), . . . , y(N))T , and ε = (ε(1), . . . , ε(N))T . The estimates q̂ =
(β̂1, γ̂1, β̂2, γ̂2, · · · , β̂n, γ̂n)

T are given by

q̂ = (XT X)−1XT y.

Observe also that tan θk = βk

γk
.

The least squares estimates of β̂k , γ̂k give

α̂2
k = β̂2

k + γ̂ 2
k and θ̂k = arctan(β̂k/γ̂k).

Theorem 10.1.1 Assume that

ωk = 2πmk

N
, mk ∈ N, 0 < mk <

N

2
, k = 1, · · · , n. (10.3)

Then for the regression matrix X there holdsXT X = N
2 I , and the least squares estimators

in (10.2) are given by

β̂k = 2

N

N∑

t=1

y(t) cos(ωkt), γ̂k = 2

N

N∑

t=1

y(t) sin(ωkt).

If in addition ε satisfies assumption A2* (Gaussian white noise), then the estimators α̂2
k

are independent with distribution N
2σ 2 α̂2

k ∼ χ2
(2) if αk = 0.
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Proof To prove that XT X = N
2 I we have to prove that

N∑

t=1

cos(ωj t) sin(ωkt) = 0 for all j, k, (10.4)

that

N∑

t=1

cos(ωj t) cos(ωkt) =
N∑

t=1

sin(ωj t) sin(ωkt) = 0 for all j �= k, (10.5)

and that for j = k the last expressions are equal to N
2 . We use that

cos(ωj t) sin(ωkt) = 1

2
sin
(
(ωj + ωk)t

)− 1

2
sin
(
(ωj − ωk)t

)
,

cos(ωj t) cos(ωkt) = 1

2
cos
(
(ωj − ωk)t

)+ 1

2
cos
(
(ωj + ωk)t

)
,

sin(ωj t) sin(ωkt) = 1

2
cos
(
(ωj − ωk)t

)− 1

2
cos
(
(ωj + ωk)t

)
.

Also for 0 < |m| < N we have that

N∑

t=1

e

(
2πmi

N t
)

=
N∑

t=1

e

(
2πmi

N

)t
=
(

e

(
2πmi

N (N+1)
)

− e

(
2πmi

N

))
/

(
e

(
2πmi

N

)

− 1

)
= 0

since exp
(

2πmi
N

(N + 1)
)

= exp
(

2πmi
N

)
. Then the real and imaginary parts are equal to

zero and hence for 0 < |m| < N we have that

N∑

t=1

cos

(
2πm

N
t

)
=

N∑

t=1

sin

(
2πm

N
t

)
= 0.

Now notice that for j �= k we have ωj ±ωk = 2π
N

mjk with 0 < |mjk| < N , and for j = k

also ωj + ωk = 2π
N

mjk with 0 < |mjk| < N . Therefore for j �= k

N∑

t=1

sin
(
(ωj +ωk)t

) =
N∑

t=1

cos
(
(ωj +ωk)t

) =
N∑

t=1

sin
(
(ωj −ωk)t

) =
N∑

t=1

cos
(
(ωj −ωk)t

) = 0.
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For j = k we have that

N∑

t=1

sin
(
(ωj + ωk)t

) =
N∑

t=1

cos
(
(ωj + ωk)t

) =
N∑

t=1

sin
(
(ωj − ωk)t

) = 0,

and
∑N

t=1 cos
(
(ωj − ωk)t

) = N . Using all this we obtain (10.4) and (10.5). This result
implies the expressions given for β̂k and γ̂k Under assumption A2∗, the covariance matrix
of these estimators is σ 2(XT X)−1 = 2σ 2

N
I , and if αk = 0 then βk = γk = 0 and β̂k , γ̂k

are independently distributed as N(0, 2σ 2

N
). The distribution of α̂2

k follows by definition of
the chi-square distribution. ��

So the least squares estimates of a harmonic process with frequencies satisfying (10.3)
have attractive properties. The estimates of βk and γk , and hence also of α2

k and θk , remain
unchanged if an extra cyclical component is added to the model. The efficiency of the
estimates, as measured by the variance, depends only on the number N of observations
and is independent of possible misspecifications of the model like omission of a relevant
frequency or inclusion of an irrelevant one. These results hold also approximately true for
frequencies that do not satisfy condition (10.3).

In practice the frequencies ωk are unknown and have to be estimated from the data. For
this purpose it is helpful to analyse the observed time series in the frequency domain. A
cyclical process y(t) = sin(ωt +θ) has covariances R(k) = 1

2 cos(ωk) = 1
4 (eiωk +e−iωk).

Hence, in analogy with (6.27) the spectrum is given by S(eiω) = 1
4 (δ(ω) + δ(−ω)),

where δ(ω) is the Dirac distribution with the property that
∫ π
−π

eiλkδ(ω)dλ = eiωk (a point
distribution with all mass at ω). So the frequency of a cyclical process is easily determined
from the spectrum S(eiω) = 1

2π

∑∞
k=−∞ R(k)e−iωk . A natural estimate of the spectrum

is obtained by replacing the covariances by the sample autocovariances. This is called the
periodogram.

Definition 10.1.2 The periodogram of the N observations {y(t), t = 1, · · · , N}, is
defined as

ŜN (eiω) = 1

2π

N−1∑

k=−(N−1)

R̂(k)e−iωk (10.6)

where the autocovariances are estimated by R̂(k) := 1
N

∑N
t=k+1 y(t)y(t − k)T , k =

0, · · · , N − 1 and with R̂(k) = R̂(−k)T for k < 0.

Note that on the basis of the available N observations it is not possible to compute R̂(k)

for k ≥ N , and in (10.6) these autocovariances are replaced by zero.
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Theorem 10.1.3 The periodogram is given by

ŜN (eiω) = 1

2πN
|

N∑

t=1

y(t)e−iωt |2 .

At the frequencies ωk = 2πk
N

, 0 < k < N
2 , the periodogram takes the values ŜN (eiωk ) =

N
8π

α̂2
k with α̂2

k = β̂2
k + γ̂ 2

k as defined in Theorem 10.1.1.

Proof This follows from

1

N

∣∣∣∣∣

N∑

t=1

y(t)e−iωt

∣∣∣∣∣

2

= 1

N

N∑

t=1

N∑

s=1

y(t)y(s)eiω(s−t ) =

=
N−1∑

k=−(N−1)

e−iωk 1

N

N∑

r=|k|+1

y(r)y(r− | k |) =
N−1∑

k=−(N−1)

e−iωkR̂(k).

For ωk = 2πk
N

, and using that β̂2
k + γ̂ 2

k = α̂2
k , we obtain from Theorem 10.1.1 that

ŜN (eiωk ) = 1

2πN

(
{

N∑

t=1

y(t) cos(ωkt)}2 + {
N∑

t=1

y(t) sin(ωkt)}2

)
= N

8π
α̂2

k .

��

Theorem 10.1.4 Let y be a cyclical process (10.1) where ε is Gaussian white noise and
with frequencies ωk satisfying condition (10.3). The periodogram then has the properties
that

E{ŜN (eiωk )} = 1

8π
(Nα2

k + 4σ 2), (10.7)

4π

σ 2 ŜN (eiωk ) ∼ χ2
(2) if αk = 0. (10.8)

Proof The result in (10.8) follows from Theorems 10.1.1 and 10.1.3. It further fol-
lows from Theorem 9.2.2, with (XT X)−1 = 2

N
I according to Theorem 10.1.1, that

E{ŜN (eiωk )} = N
8π

E(β̂2
k + γ̂ 2

k ) = N
8π

{var(β̂k)+ var(γ̂k)+ (Eβ̂k)
2 + (Eγ̂k)

2} = 1
8π

(4σ 2 +
Nα2

k ). ��

This means that the periodogram tends linearly to infinity at the frequencies that are
present in the process. If the cycle with frequency ωk

2π
is absent, then the periodogram has

a finite average value. So, on average, the periodogram can clearly detect the cyclical
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components. If the periodogram shows a peak around a certain frequency, then this
indicates that cycles with this frequency contribute substantially to the variations in the
process.

It should be mentioned that the sampling period may influence the location of the peaks
in the periodogram. As a simple example, if the process y(t) = sin(ωt) is observed at time
instants t = k�, k ∈ N, then the frequencies ω + 2πl

�
, l ∈ N, can not be discriminated by

the data. This effect is called aliasing.

Example 10.1.1 As an illustration, we consider the cyclical process (10.1) with n = 2
frequencies. Here ε is a white noise process with variance σ 2 = 1, θ1 and θ2 are randomly
chosen on [0, 2π), ωk = πk

10 and αk = k, k = 1, 2. The periodograms for sample sizes
N = 16, N = 128 and N = 1024 are shown in the following figure.
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The computation of the periodogram, when done via direct calculations as described in
Definition 10.1.2 for all frequencies ωk = 2πk

N
, k = 0, · · · , N − 1, requires the order of

N2 operations of multiplication and addition. This can be reduced to the order N log(N)

by the Fast Fourier transform (FFT). The idea is as follows.
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Proposition 10.1.5 Let N = n1n2 and consider the periodogram at the frequencies ωk =
2πk
N

, k = 0, · · · , N − 1, where k = n2k1 + k2, k1 = 0, · · · , n1 − 1, k2 = 1, · · · , n2. Then

ŜN (eiωk ) = 1

2πN
|

n1∑

t1=1

e
2πikt1

N {
n2−1∑

t2=0

y(n1t2 + t1)e
2πik2t2

n2 } |2 . (10.9)

The number of operations involved in calculating (10.7) for all k = 0, · · · , N − 1 is of the
order N(n1 + n2).

Proof Let t = n1t2 + t1, then (10.9) follows directly from the periodogram formula in
Theorem 10.1.3, using the fact that

exp

(
2πikt

N

)
= exp

(
2πikt1

N

)
exp

(
2πi(n2k1 + k2)n1t2

N

)

= exp

(
2πikt1

N

)
exp

(
2πik2t2

n2

)
.

Now observe that the term in braces in (10.9) depends on k only via k2, not via k1. For
fixed t1 and k2 this term requires the order of n2 additions and multiplications. In total this
gives n1n

2
2 operations for all possible terms in brackets. The term in front of it implies

n1 operations for each value of k, so in total this needs an additional number of Nn1

operations. The total number is hence Nn1 + n1n
2
2 = N(n1 + n2). ��

By a similar factorization N = �k
i=1ni this leads to the order of N(

∑k
i=1 ni)

operations, and if N = 2n this gives 2nN which is of the order N log(N).

10.2 Spectral Identification

In most observed time series there are no sharply defined frequencies that dominate
the fluctuations. Instead there may exist certain bands of frequencies that are relatively
more important than other ones. Instead of the cyclical process (10.1) that has discrete
spectrum, such series are better described by the continuous spectrum of a moving average
process. In this section we consider frequency domain identification methods for univariate
stationary processes and for single input, single output systems.

First we consider the case that the observed process is white noise. The periodogram is
not a completely satisfactory estimate of the spectrum in this case.
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Theorem 10.2.1 The periodogram of a white noise process with variance σ 2 is an
unbiased but inconsistent estimate of the theoretical spectrum S(eiω) = σ 2

2π
, that is, for

ωk = 2πk
N

, 0 < k < N
2 , there holds

E{ŜN (eiωk )} = σ 2

2π
= S(eiωk ), (10.10)

var{ŜN (eiωk )} = σ 4

4π2 = S2(eiωk ). (10.11)

Furthermore, the periodogram estimates ŜN (eiωk ) and ŜN (eiωl ) are uncorrelated for
k �= l.

Proof A white noise process satisfies equation (10.1) with all coefficients αk = 0.
So (10.10) follows from (10.7) and (10.11) from (10.8) because a χ2

(2) distribution has
variance equal to 4. That the estimates are uncorrelated follows from Theorems 10.1.1
and 10.1.3. ��

This shows that the periodogram is an unbiased estimate of the spectrum but that
the variance does not decrease when the sample size increases. Moreover, as adjoining
estimates are uncorrelated the periodogram typically has a very irregular shape. Similar
results hold true for other processes with continuous spectrum.

Theorem 10.2.2 If the data are generated by a moving average process y(t) =∑∞
k=0 Gkε(t − k) with

∑∞
k=0 G2

k < ∞, then the periodogram at frequencies ωk = 2πk
N

has the properties that

lim
N→∞ E{ŜN (eiωk )} = S(eiωk ),

lim
N→∞ var{ŜN (eiωk )} = S2(eiωk ),

lim
N→∞ cov{ŜN (eiωk ), ŜN (eiωl )} = 0 for k �= l.

Proof We will not give a complete proof. Instead we will make the results plausible.
According to Theorem 10.1.3 the periodogram is given by

ŜN (eiω = 1
2πN

∣∣∣∣∣

N∑

t=1

y(t)e−iωt

∣∣∣∣∣

2

.
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Since y(t) =∑∞
k=0 Gkε(t − k), it follows that

ŜN (eiω) = 1
2πN

∣∣∣∣∣

N∑

t=1

∞∑

k=0

Gkε(t − k)e−iωt

∣∣∣∣∣

2

= 1
2πN

∣∣∣∣∣

∞∑

k=0

Gke
−iωk

N∑

t=1

ε(t − k)e−iω(t−k)

∣∣∣∣∣

2

.

Next note that according to Theorem 10.1.3 we also have

Ŝε
N (eiω) = 1

2πN

∣∣∣∣∣

N∑

t=1

ε(t)e−iωt

∣∣∣∣∣

2

.

Then

2πS(eiω)Ŝε
N (eiω)) =

∣∣∣G(e−iω
∣∣∣
2
Ŝε

N (eiω) = 1
2πN

∣∣∣∣∣

∞∑

k=0

Gke
−iωk

N∑

t=1

ε(t)e−iωt

∣∣∣∣∣

2

This way it is plausible that

lim
N→∞ ŜN (eiω) −

∣∣∣G(e−iω)

∣∣∣
2
Ŝε

N (eiω) = 0 (10.12)

Also we have that S(eiω) = 1
2π

G(eiω)G(e−iω). According to Theorem 10.2.1, Ŝε
N has

mean 1
2π

and variance 1
4π2 , and the values at different frequencies are uncorrelated. Using

this in (10.12) the results follow. ��

If the spectrum is continuous then adjoining estimates can be used for smoothing
to reduce the variance. However, this may introduce a bias as sharp peaks in the
spectrum are smoothed over a larger region, the so-called leakage effect. Various consistent
smoothing procedures have been developed that differ in their bias and variance properties.
The idea is as follows. For given frequency ω and M < N , let I be the set of
M integers k for which ωk = 2πk

N
are closest to ω. Then estimate the spectrum by

the average S∗
N(eiω) = 1

M

∑
k∈I ŜN (eiωk ). This introduces a bias, but according to

Theorem 10.2.2, E(S∗
N(eiω)) = 1

M

∑
K∈I S(eiωk ), and if S is continuous this converges

to S(eiω) if M
N

→ 0. Because the periodogram estimates are uncorrelated, it follows that
var(S∗

N(eiω)) = 1
M2

∑
k∈I S2(eiωk ) → 0 if M → ∞. This shows that consistent estimates

are obtained by smoothing, provided that the smoothing interval M
N

→ 0 and the number
of included frequencies M → ∞. Other smoothed estimates are obtained by

S∗
N(eiω) =

∫ π

−π

F (ω − λ)ŜN (eiλ)dλ
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where F is the smoothing filter. The foregoing corresponds to a uniform filter and is called
the Daniell window. In practice one often uses filters that are more smooth, for instance,
Hamming and Bartlett windows.

Example 10.2.1 The spectrum of an AR(1) process y(t) = αy(t − 1) + ε(t) is given by
σ 2{2π(1 + α2 − 2α cos ω)}−1, see Example 6.5.1. The reader is urged to produce (for
instance using Matlab) graphs of the spectra and (smoothed) periodograms for the cases
α = 0 and α = 0.9, for sample sizes N = 128 and N = 1024. The smoothing can be
done for instance as follows: replace in the formula for the periodogram the R̂(k)’s by
Ŝ(k) = (1 − |k|

M
)R(k), for k = −M + 1, · · · ,M − 1, and Ŝ(k) = 0 for |k| ≥ M , where

M is (much) smaller than N . For example, for the sample sizes indicated one may take
M = 15.

Clearly, smoothing reduces the variance and the bias diminishes for larger sample sizes.
Because the spectrum of a white noise process is constant, smoothing introduces no bias
when α = 0.

Smoothed periodograms can be interpreted as nonparametric estimates of stationary
processes. This method of spectral identification can be extended to input-output systems.
For example, consider the single input, single output system described by

y(t) =
∞∑

k=0

Gku(t − k) + ε(t). (10.13)

Theorem 10.2.3 The least squares estimate of the transfer functionG(z) is approximately
given by

Ĝ(eiω) = Ŝyu(e
iω)/Ŝuu(eiω) (10.14)

where Ŝyu(e
iω) = 1

2π

∑N−1
k=−(N−1) R̂yu(k)e−iωk with

R̂yu(k) = 1

N

N∑

t=|k|+1

y(t)u(t − k)

and where Ŝuu = 1
2π

∑N−1
k=−(N−1) R̂uu(k)e−iωk with

R̂uu(k) = 1

N

N∑

t=|k|+1

u(t)u(t − k)

With a small calculation we shall make the result plausible. First, we neglect the fact
that the summations are finite. The least squares criterion corresponds to finding Gk’s
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which minimize

∑

t

‖y(t) −
∑

l

Glu(t − l)‖2.

The first order conditions for a minimum imply that

∑

t

{y(t) −
∑

l

Ĝlu(t − l)}u(t − k) = 0,

so that R̂yu(k) =∑l ĜlR̂uu(k − l). Therefore

Ŝyu(e
iω) = 1

2π

∑

k

∑

l

ĜlR̂uu(k − l)e−iωk =

=
∑

l

Ĝle
−iωl 1

2π

∑

k

R̂uu(k − l)e−iω(k−l) ≈ Ĝ(eiω)Ŝuu(eiω).

The approximation error tends to zero for N → ∞.
This is called the empirical transfer function estimate. It can be expressed in terms of

the so-called discrete Fourier transform of the observations, defined as

y(eiω) := 1√
N

N∑

t=1

y(t)e−itω, 0 ≤ ω ≤ π. (10.15)

Theorem 10.2.4 The approximate least squares estimate in (10.14) is equal to

Ĝ(eiω) = y(eiω)/u(eiω). (10.16)

Proof Recall that the we took u(t) = 0 and y(t) = 0 whenever t < 1 or t > N . Then

Ŝyu(e
iω) = 1

2πN

N−1∑

k=−(N−1)

N∑

t=1

y(t)u(t − k)e−iωk

= 1
2πN

N−1∑

k=−(N−1)

N∑

t=1

y(t)e−iωtu(t − k)eiω(t−k)

= 1
2πN

N∑

t=1

y(t)e−iωt

N−1∑

k=−(N−1)

u(t − k)eiω(t−k)

= 1
2πN

N∑

t=1

y(t)e−iωt

N∑

s=1

u(s)eiωs = 1
2π

y(eiω)u∗(eiω).
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Replacing y by u in the above computation gives Ŝuu(e
iω) = 1

2π
u(eiω)u∗(eiω). The result

follows from (10.14). ��

According to Chap. 2, in the noise-free case the relation between input and output is
described in the frequency domain by y(eiω) = G(eiω)u(eiω). This provides a direct
motivation for (10.16). To investigate the asymptotic properties of this estimation method,
suppose that the input and output are related by the system (10.13) with

∑∞
k=0 G2

k < ∞
and with u and ε independent. We assume that the input is stationary in the sense that
Suu(e

iω) = limN→∞ Ŝuu(e
iω) exists and that ε is stationary with zero mean and with

spectrum Sεε (it need not be white noise).

Theorem 10.2.5 Under the above conditions, and with
∑∞

k=−∞ |kRεε(k)| < ∞, the least
squares estimator (10.13) of the transfer function has the following properties:

lim
N→∞ E{Ĝ(eiω)} = G(eiω), (10.17)

lim
N→∞ var{Ĝ(eiω)} = Sεε(e

iω)/Suu(e
iω), (10.18)

lim
N→∞ cov{Ĝ(eiω1), Ĝ(eiω2)} = 0 for ω1 �= ω2. (10.19)

Sketch of a Proof We only give the main ideas. From (10.13) we obtain that, for
N sufficiently large, y(eiω) ≈ G(e−iω)u(eiω) + ε(eiω). So (10.16) shows that
Ĝ(e−iω) ≈ G(e−iω) + ε(eiω)/u(eiω). Then (10.17) is evident, as u is independent of
ε and E{ε(eiω)} = 0 for all ω. The variance is given by

E{ε(eiω)/u(eiω)}{ε(e−iω)/u(e−iω)} ≈ Sεε(e
iω)/Suu(e

iω).

For example,

E{ε(eiω)ε(e−iω)} = E{ 1

N

N∑

t=1

N∑

s=1

ε(t)ε(s)e−i(t−s)ω}

= E{
N−1∑

k=−(N−1)

e−ikω 1

N

N∑

t=k+1

ε(t)ε(t − k)} ≈

≈
N−1∑

k=−(N−1)

e−ikωRεε(k) ≈ 2πSεε(e
iω).
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To prove (10.19), the foregoing shows that Ĝ(eiω) − E(Ĝ(eiω)) ≈ ε(eiω)/u(eiω), so it
suffices to prove that, for k �= l and N sufficiently large, E(ε(eiωk )ε∗(eiωl )) ≈ 0. Now

E(ε(eiωk )ε∗(eiωl )) = 1

N

N∑

r=1

N∑

s=1

ei(ωls−ωkr)Rε(r − s) =

= 1

N

N∑

r=1

ei(ωl−ωk)r

r−1∑

t=r−N

Rε(t)e
−iωl t =

= Sεε(e
iωl )

1

N

N∑

r=1

ei(ωl−ωk)r − aN,

where aN = 1
N

∑N
r=1 ei(ωl−ωk)r {∑r−N−1

t=−∞ Rε(t)e
−iωl t + ∑∞

t=r Rε(t)e
−iωl t }. Using

the fact that Rε(−t) = Rε(t) for t > 0 and collecting terms, one sees |aN | ≤
2
N

∑∞
k=−∞ |kRε(k)| and therefore aN → 0 for N → ∞.

Finally, for k �= l there holds ω = ωl − ωk = 2πm
N

for some m ∈ {±1,±2, · · · ,

±(N − 1)}, so that
∑N

r=1 ei(ωl−ωk)r = ∑N
r=1 eiωr = (1 − eiω)−1(eiω − eiω(N+1)) =

(1−eiω)−1eiω(1−e2πim) = 0. This completes the sketch of the proof of Theorem 10.2.5.
The expression (10.18) shows that the estimator has smaller variance for frequencies

which are relatively strongly present in the input signal. The variance is inversely
proportional to the signal-to-noise ratio. Consistency is obtained after smoothing the
periodograms Ŝyu and Ŝuu in (10.14), provided that the input is sufficiently exciting in
the sense that Suu(eiω) > 0 for all frequencies ω.

In the foregoing we considered least squares estimation of the unrestricted model
(10.13). If the model is expressed in terms of finitely many parameters, then these
parameters can also be estimated in the frequency domain. As an example we consider the
ARMAX model (9.14), which in terms of the lag polynomials α(z) = 1 −∑p

i=1 αiz
−i ,

β(z) =∑q
i=0 βiz

−i and γ (z) = 1 +∑r
i=1 γiz

−i can be written as

α(eiω)y(eiω) = β(eiω)u(eiω) + γ (eiω)ε(eiω). (10.20)

Assume that the model is stationary and invertible, as defined in Sect. 6.3, and that ε is
Gaussian white noise.

Theorem 10.2.6 The maximum likelihood estimators of the ARMAX model (10.20) are
obtained, for N → ∞, as the minimum of

∫ π

−π

∣∣∣∣
y(eiω)

u(eiω)
− β(eiω)

α(eiω)

∣∣∣∣
2

·
∣∣∣∣
α(eiω)

γ (eiω)

∣∣∣∣
2

· Suu(eiω)dω. (10.21)
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Proof Because ε is Gaussian white noise, ML corresponds to the minimization of
1
N

∑N
t=1 ε2(t) = R̂εε(0) = ∫ π−π

Ŝεε(e
iω)dω = 1

2π

∫ π
−π

|ε̂(ω)|2dω, where ε̂(eiω) is
the discrete Fourier transform defined in (10.15). It follows from the time domain
equation (10.20), with z the lag operator, that (for N sufficiently large) γ (eiω)ε̂(eiω) ≈
α(eiω)y(eiω)−β(eiω)u(eiω). Therefore ε̂(eiω) ≈ α(eiω)

γ (eiω)
u(eiω){ y(eiω)

u(eiω)
− β(eiω)

α(eiω)
}. This shows

(10.21). ��

The interpretation is that the nonparametric estimator (10.16) is approximated by the
transfer function β/α of the ARMAX model (10.20). Each frequency has a weighting
factor, determined by the inverse noise filter α/γ and the input spectrum Suu. The
approximation by the parametric model (10.20) will be most accurate where the noise
filter γ /α has smallest amplitude, as for these frequencies |α(eiω)/γ (eiω)| is relatively
large so that errors at these frequencies are heavily penalized. The approximation in certain
frequency regions can be improved by giving the inputs relatively larger power |u(eiω)| for
such frequencies. This will be at the expense of worse approximations at other frequencies.

10.3 Trends

From here on the chapter will have more an overview character, and many details will be
omitted. For proofs and details we refer to the literature on time series, e.g., [10].

For many time series the trending pattern is the most dominant characteristic. For
purposes of forecasting and control, it is crucial to take appropriate account of the trend.
The two main approaches are data transformation and explicit trend modelling. In the
first case the data are transformed to obtain stationarity, and the identified model for the
stationary data can be transformed into a model for the original data. In the second case the
model contains, apart from a stationary part, also variables that model the trend explicitly.

In order to remove the trend by transforming the data we need a model for the trend
component. For instance, if an economic variable is expressed in nominal terms then it
often shows exponential growth over time because of price inflation. This can be removed
by expressing the variable in real terms, by dividing it by a price index series. Also in real
terms, many series still exhibit exponential growth. By taking the logarithm this transforms
into a more linear trend pattern. In this case the trend can be estimated as the local average
of the series. This is called smoothing. If y denotes the observed series and T the trend,
then T (t) =∑∞

k=−∞ βky(t − k) with βk ≥ 0 and
∑∞

k=−∞ βk = 1. The current trend can
only be estimated if the filter is causal, that is, if βk = 0 for all k < 0. A popular method
is exponential smoothing with coefficients βk = β(1 − β)k, k ≥ 0, for some 0 < β < 1.
This assigns a larger weight to more recent observations, and the trend can be expressed
recursively as

T (t) = T (t − 1) + β(y(t) − T (t − 1)). (10.22)
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The parameter β is called the forgetting factor. If β is small this produces smooth trends,
and if β is nearly one then the trend follows the fluctuations in the process very rapidly. If
the time series shows a relatively stable trend, that is, if y(t) − T (t − 1) is more or less
constant over time, then (10.22) can be written as the deterministic linear trend

T (t) = μ1 + μ2t . (10.23)

This can be extended to other time functions, for instance a quadratic trend T (t) = μ1 +
μ2t + μ3t

2 or a trend with saturation T (t) = μ1(1 + μ2e
−μ3t )−1. The parameters μi of

these time functions can be estimated, for instance by least squares, replacing T (t) by the
observed series y(t).

Another type of trend is expressed by stochastic models, for instance the random walk
with drift

y(t) = μ + y(t − 1) + ε(t), (10.24)

where ε is a stationary process. For such processes the trend can be removed by taking
the first difference �y(t) = y(t) − y(t − 1). The process y in (10.24) is called
integrated of order 1. More general, y is an ARIMA(p, d, q) process if �dy is a stationary
ARMA(p, q) process, whereas �d−1y is non-stationary. This process can therefore be
described as

α(z)(1 − z−1)dy = β(z)ε (10.25)

with ε white noise and where α(z) and β(z) have all their roots inside the unit disc. To
estimate an ARIMA model, we can follow the procedures described in Chap. 9 once the
order of integration d has been selected. In practice, often d = 0 (so that there are no
trends) or d = 1. A simple method to test whether d = 0 or d = 1 is to consider the
autocorrelations ρ(k) = R(k)/R(0) of the process. If the process is a stationary ARMA
process then the autocorrelations tend exponentially to zero for k → ∞. On the other
hand, if y is a random walk process (10.24) without drift (μ = 0) and with y(0) = 0 then

ρ(t, k) = [Ey(t)y(t −k)][Ey2(t)Ey2(t −k)]− 1
2 = (1− k

t
)

1
2 . The sample autocorrelations

will decrease only slowly, as for small k there holds (1− k
t
)

1
2 ≈ 1− k

t
which gives a linear

decline instead of an exponential one. The order of integration d can be chosen such that
�d−1y has a linear decline but �dy has an exponential decline of the autocorrelations.
Alternatively, one can also test for the unit coefficient of y(t − 1) in (10.24) against the
stationary alternative that y(t) = μ+αy(t −1)+ε(t) with |α| < 1. By defining ρ = α−1,
this can be written as

�y(t) = μ + ρy(t − 1) + ε(t), H0 : ρ = 0. (10.26)
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The so-called Dickey-Fuller test is the t-statistic of ρ obtained from the regression in
(10.26). If ε is not a white noise process, the model can be extended, for example, to

�y(t) = μ1 + μ2t + ρy(t − 1) +
k∑

i=1

γi�yt−i + ε(t), H0 : ρ = 0. (10.27)

The null hypothesis of a stochastic trend (ρ = 0) is rejected for values of ρ = α−1 that are
significantly smaller than zero. Because the regressor y(t − 1) in (10.27) is not stationary
under the null hypothesis, the standard regression theory does not apply in this case. This
is because assumption A1* in Chap. 9 is not satisfied, as plim( 1

N

∑N
t=2 y2(t − 1)) = ∞.

Critical values for the t-statistic of ρ can therefore not be obtained from the t-distribution.
For example, at 5% significance level the critical value (for N → ∞) of the t-distribution
is −1.65, whereas for the test in (10.27) it is −3.41.

In models like (10.22), (10.23) and (10.24) the trend is modelled directly in terms of
the observations. An alternative is a model with latent trend variable, for example

T (t + 1) = ϕT (t) + ε1(t), y(t) = T (t) + ε2(t). (10.28)

Assume that ε = (ε1, ε2)
T is a Gaussian white noise process with mean zero and

covariance matrix

(
σ 2

1 0

0 σ 2
2

)
. If |ϕ| < 1 then y is a stationary process, if ϕ = 1 then y

is integrated of order d = 1, and if ϕ > 1 then y grows exponentially. This is a stochastic
state space model of the form (7.8), (7.9), with parameters A = ϕ, B = 0, C = 1, D = 0,
F = (σ1, 0) and G = (0, σ2). The trend acts as a state variable that can be estimated by
the Kalman filter, see Theorem 7.3.1. Let T̂ (t + 1) = E(T (t + 1)|y(s), 0 ≤ s ≤ t), then

T̂ (t + 1) = ϕT̂ (t) + k(t)(y(t) − T̂ (t)). (10.26)

This is of the form (10.19) with forgetting factor k(t) computed by the Kalman filter
equations (7.13), (7.14). In particular, for ϕ = 1 the process y has a stochastic trend.
In Example 9.6.3 it was shown that, for t → ∞, the forgetting factor k is small if the
signal-to-noise ratio σ 2

1 /σ 2
2 is small, and k is nearly one if this ratio is large.

10.4 Seasonality and Nonlinearities

Seasonal variation may occur for time series that are observed, for example, every quarter
or every month. For ease of exposition we will assume that the data consists of quarterly
observations, but the following can be generalized to other observation frequencies.
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A deterministic model is given by

S(t) = μ1D1(t) + μ2D2(t) + μ3D3(t) + μ4D4(t), (10.29)

where Di(t) = 1 if the t-th observation falls in quarter i and Di(t) = 0 otherwise. A
stochastic model is

y(t) = y(t − 4) + ε(t). (10.30)

This is a non-stationary AR(4) process with polynomial α(z) = 1−z−4 that has four roots
on the unit circle. A seasonal ARIMA model is of the form α(z4)(1 − z−4)d y = β(z4)ε,
and mixtures of ARIMA and seasonal ARIMA models are also possible. A model with
latent seasonal component is

S(t) = S(t − 4) + ε1(t), y(t) = S(t) + ε2(t). (10.31)

The seasonal component S(t) of this model can be estimated by the Kalman filter. The
seasonal component can also be estimated by smoothing, for example

S(t) = 1

4
(y(t) + y(t − 1) + y(t − 2) + y(t − 3)). (10.32)

If the time series contains trends and seasonals, then an additive model for this is given by

y(t) = T (t) + S(t) + R(t), (10.33)

where T denotes the trend component, S the seasonal and R a stationary process. If
trend and seasonal are proportional to the level of the series this can be expressed by
the multiplicative model y(t) = T (t)S(t)R(t), which gives a model of the form (10.33)
by taking logarithms. If T̂ (t) and Ŝ(t) are estimates of the trend and seasonal, then
R̂(t) = y(t) − T̂ (t) − Ŝ(t) is called the detrended and deseasonalized series. In many
cases the series R̂ is related to the original data y by means of a linear filter. The effect
of this filter can be analysed in the frequency domain, where the data transformation is
described in terms of spectra.

Proposition 10.4.1 Let y be a stationary process with spectrum S, and consider the
process y(t) = ∑∞

k=−∞ βky(t − k) with
∑∞

k=−∞ β2
k < ∞. Then the spectrum S of y

is given by S(eiω) =| β(eiω) |2 S(eiω).
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Proof Straightforward computation gives:

S(eiω) = 1

2π

∞∑

t=−∞
e−itω

∞∑

j=−∞

∞∑

k=−∞
βjβkE{y(t − j)y(t − k)} =

= 1

2π

∞∑

j=−∞
βje

−ijω
∞∑

k=−∞
βke

ikω
∞∑

t=−∞
R(t − j + k)e−i(t−j+k)ω =

=| β(eiω) |2 S(eiω).
��

So the effect of a filter is to reduce the importance of certain frequencies and to
increase that of others. This is very useful in engineering applications, for example in
communication where the low frequency signal is enhanced and the high frequency noise
is suppressed. In economics this is of use to remove trends and seasonal effects. For
example, if the observed time series is integrated as in (10.24) then the trend is removed by
the transformation �y(t) = y(t) − y(t − 1). This corresponds to the filter c = 1 − e−iω,
and the resulting spectrum is S�y(eiω) = 2(1 − cos ω)S(eiω). For frequency ω = 0
the filter has value zero, so that the long term component is removed. In a similar way, the
stochastic seasonal (10.30) can be removed by the transformation �4y(t) = y(t)−y(t−4),
so that S�4y(e

iω) = 2(1 − cos(4ω))S(eiω). The seasonal smoother (10.32) has filter
β(z) = 1 + z−1 + z−2 + z−3 = (1 − z−4)/(1 − z−1), so this corresponds to the
spectral transformation 1

16
1−cos(4ω)
1−cos(ω)

. As a comment on the difference between the filters
corresponding to (10.30) and (10.32): the filter (10.30) models the short run fluctuations
(high frequencies) and (10.32) the long run trend (low frequencies). The filter (10.30) is
therefore called high pass, and (10.32) is called low pass.

In practice, the modelling of time series often proceeds in two steps. First the data are
filtered to obtain stationarity, and then a model is estimated for the filtered data. As an
example, suppose that an ARMAX model (10.20) is estimated for filtered input-output
data y∗(t) =∑k fky(t − k) and u∗(t) =∑k fku(t − k). According to Theorem 10.2.6 it
follows that, in terms of the original input series u(t) and output series y(t), the maximum
likelihood estimator is given by

∫ π

−π

∣∣∣∣
y(eiω)

u(eiω)
− β(eiω)

α(eiω)

∣∣∣∣
2

·
∣∣∣∣
α(eiω)

γ (eiω)

∣∣∣∣
2

|f (eiω)|2Suu(eiω)dω,

because Su∗u∗(e
iω) = |f (eiω)|2Suu(e

iω) according to Proposition 10.4.1. That is,
prefiltering the data can be seen as a method to assign weights to the different frequencies
in the identification criterion.

Trends and seasonals can also be seen as specific examples of time-varying parameters.
For example, the models (10.23) and (10.29) describe time variations of the mean level of
the series. For regression models, for example the ARX model (9.13), possible parameter
variations can be analysed by recursive least squares. Let the regression model be written
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in the form y(t) = xT (t)β + ε(t) and let β̂(t) be the least squares estimate of β based on
the observations {y(s), x(s), s ≤ t}.

Theorem 10.4.2 The recursive least squares estimates β̂(t) satisfy

β̂(t) =β̂(t − 1) + K(t)(y(t) − xT (t)β(t − 1)),

K(t) =P(t)x(t)/(1 + xT (t)P (t)x(t)),

P (t + 1) =P(t) − P(t)x(t)xT (t)P (t)/(1 + xT (t)P (t)x(t)),

where P(t + 1) = var(β̂(t)). If β has k components, then the starting values are given
by β̂k = (XT

k Xk)
−1XT

k yk and P(k + 1) = (XT
k Xk)

−1, where yk and Xk contain the
observations for t = 1, · · · , k.

Proof The regression model can be written in state space form, with constant state vector
β(t +1) = β(t) and with output equation y(t) = xT (t)β(t)+ση(t), where η(t) = ε(t)/σ

is standard white noise. In terms of the Kalman filter model (7.8), (7.9) the parameters are
given by A = I, B = 0, F = 0,D = 0,G = σ , and with C = xT (t) known but
time-varying. The Kalman filter equations of Theorem 7.3.1 also apply for non-stationary
and time-varying systems. The given expressions then follow by the result in Chap. 9
(for the starting values), dividing P(t) in these formulas by σ 2, and noting that β̂(t) =
E(β|y(s), x(s), s ≤ t) is x̂(t + 1) in the notation of Theorem 7.3.1. ��

If the coefficients are constant, then the variance of the recursive residuals ω(t) =
y(t) − xT (t)β̂(t − 1) follows from Proposition 7.3.3. Therefore, ω∗(t) = ω(t)/(1 +
xT (t)P (t)x(t)) should be a white noise series. Several tests on parameter constancy have
been developed that are based on the series ω∗(t). If the parameters turn out to be time
varying, a possible model is the random walk β(t + 1) = β(t) + η(t), with η white
noise. For given values of the regression variance σ 2 = E(ε2(t)) and parameter variance
V = var(η(t)), the parameters β(t) can then be estimated recursively by the Kalman

filter (Theorem 7.3.1) now with F = V
1
2 . The parameters σ 2 and V can be estimated by

maximum likelihood. An alternative way to deal with time-varying parameters is to apply
weighted least squares, for example, with the criterion

∑N
t=1 α−t ε2(t) with 0 < α < 1.

This assigns more weight to recent observations.
Time-varying parameters are one example of nonlinearity in observed time series. One

of the possible causes is local linearization as shown in (1.21). As shown above, the
estimates react more quickly to variations by applying weighted least squares. This can
be generalized to local regression methods, where only the more recent observations are
used in estimation. An alternative is to incorporate explicit nonlinear terms in the model.
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That is, an ARMAX model like (10.20) is linear in the observed inputs and outputs and in
the disturbances ε. Nonlinear models are of the type

y(t) = f (y(s − 1), u(s), ε(s), s ≤ t) (10.34)

Higher order Taylor expansions of f may be useful, but in general the resulting number of
parameters is too large for practical purposes. An alternative is to expand f in other basis
functions that provide a more parsimonious description of the involved nonlinearities.
Examples are neural networks and wavelets. Such models can be estimated, for instance,
by nonlinear least squares methods. Theoretical knowledge on the general shape of the
function f in (10.34) may be helpful in choosing an appropriate basis.
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We close this book with a few sections that provide glimpses of further developments in
the area of systems and control theory. In all sections we shall give a pointer to further
literature on the subject.

11.1 Continuous Time Systems

In this book we have focussed our attention on systems in discrete time. The reason for
this was that discrete time systems are in many ways easier to understand than continuous
time systems, in particular this holds true for stochastic systems. We shall return to this
issue in a later section.

Causal, linear, time-invariant input-output systems in continuous time can be modelled
by a system of differential equations of the type

ẋ(t) =Ax(t) + Bu(t),

y(t) =Cx(t) + Du(t),

x(0) =x0.

(11.1)

Here, as in Chap. 2, A,B,C and D are matrices of appropriate sizes. Most of the theory
of Chaps. 2, 3, and 4 holds in more or less the same way for continuous time systems.
Obviously, there are differences as well: stability will hold in case A has all its eigenvalues
in the open left half plane (instead of the open unit circle). Also, the Stein equations of
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Chap. 4 have to be replaced by Lyapunov equations of the type

A∗P + PA = −C∗C,

AQ + QA∗ = −BB∗.
(11.2)

Continuous time systems have traditionally been very important in applications in
engineering, where models are usually built from first principles, that is, from the
description of physical components in mathematical models that involve differential
equations (like in mechanics and electronics). The theory is well explained in many
standard textbooks in systems theory, see for instance [27, 37, 58, 76].

Other approaches to continuous time systems, using more the transfer function and
input-output operator, rather then state space models have also been influential. See for
instance the book [17].

In certain applications the state is not only subject to differential equations, but also to
algebraic equations. Situations like that can be modelled by so-called descriptor systems,
of the type

Eẋ(t) =Ax(t) + Bu(t),

y(t) =Cx(t) + Du(t),

x(0) =x0.

Descriptor systems have been studied in detail in the literature, a good source is [43].
Time varying and periodic systems also occur in many applications. In particular

periodicity has been studied in connection with technical applications that require a
periodical behaviour. Such systems are usually modelled as in (11.1) where instead of
fixed matrices A,B,C and D, these matrices are taken to be time varying or periodic.

In recent decades the view of systems has changed from an input-output view to a
view using only external and internal variables. This point of view is particularly useful
in certain applications, and we have tried to show some of this point of view in our first
chapter when we discussed the system behaviour. Systems theory developed from this
point of view is sometimes called the behavioural approach, see [62].

11.2 Optimal Control

Optimal control as outlined in Chaps. 5 and 8 has been one of the topics that most
influenced the development of control theory. The program of missions to the moon and to
the planets would not have been possible without substantial developments in optimal
control theory. It is precisely in these applications that optimal control in state space
terminology was so successful. Besides LQ-optimal control the topic of time-optimal
control is well studied and well-described in the literature. In the time-optimal control
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problem the problem is to reach a given target state from a given initial state in the shortest
possible time, under restrictions on the size of the input. See [30, 50] for good elementary
treatments.

There are many different approaches to optimal control theory. One is the use of
dynamic programming, as we have done here. Others make use of the Pontryagin
optimality principle. See [1, 30, 50].

For optimal control of stochastic systems we refer to [7, 8].
As an example of results in this area, let us state here the main result of the infinite

horizon LQ-optimal control for a continuous time system of the form

ẋ(t) = Ax(t) + Bu(t),

x(0) = x0,
(11.3)

with cost function given by

J (x0, u) =
∫ ∞

0
x(t)∗Qx(t) + u(t)∗Ru(t) dt. (11.4)

As in the discrete time case we shall assume that (A,B) is stabilizable, Q is positive
semidefinite and R is positive definite. The goal is to find the minimum of J (x0, u) over
all stabilizing input functions u(t), and to find the minimizing input function. As in the
discrete time case, there is a matrix equation to be solved, in this case too it is called the
(continuous) algebraic Riccati equation. The result is as follows.

Theorem 11.2.1 Assume that (A,B) is stabilizable and that (A,Q) is detectable. Then
the minimum of (11.4) subject to (11.3) is given by x∗

0Xx0, where X is the unique solution
of the algebraic Riccati equation

XBR−1B∗X − XA − A∗X − Q = 0 (11.5)

for which the closed loop matrix A − BR−1B∗X is asymptotically stable. In this case the
minimizing input is given by the static state feedback u(t) = −R−1B∗Xx(t).

Note that here we fix the endpoint, that is, we fix limt→∞ x(t) to be zero. Other
possibilities also have been considered, both in the continuous time and in discrete time
case. For instance, problems with indefinite cost (that is with Q and R possibly indefinite),
problems with free endpoint or with endpoint constrained to be in a given subspace. See
[75, 79] for the continuous time case and in the discrete time case [63].
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11.3 Nonlinear Systems

Nonlinear systems are typically studied in the form of a system of nonlinear differential
equations coupled to an output equation. In wide generality such systems can be described
as follows:

ẋ(t) =f (x(t), u(t), t),

x(0) =x0,

y(t) =g(x(t), u(t), t).

Stability of equilibrium solutions can then be discussed using methods from the theory of
ordinary differential equations. A common approach to studying the systems would be to
linearize around the equilibrium solutions, and for each equilibrium solution one arrives at
a linear system.

In many examples the control variable u enters in a linear way, and the functions f and
g are time invariant. That leads to systems of the form

ẋ(t) =f (x(t)) + h(x(t)) · u(t),

x(0) =x0,

y(t) =g(x(t)) + k(x(t)) · u(t).

As a simple example, consider the pendulum of the following figure

θ
l

F
F1
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A pendulum of length l, mass m hangs on an axis. We suppose friction plays no role (that
is why we call this the “mathematical” pendulum). Denote by θ(t) the deviation of the
pendulum from the downward vertical. The differential equation for θ(t) that governs the
motion of the pendulum under influence of gravity is given by

θ ′′(t) = −g

l
sin(θ(t)).

As initial conditions we take θ(0) = θ0, θ
′(0) = θ ′

0. This has two equilibrium solutions,
the stable equilibrium being the restposition in the downward position, the unstable one
being the upright position. Now suppose that on the axis we can put a torque.

u=Fmotor

ϕ

This torque is viewed as an input. In terms of ϕ(t) = π − θ(t) the differential equation
becomes

ϕ′′(t) = g

l
sin(ϕ(t)) + c · u(t),

where c is a constant. The goal is to show that it is possible to find a control function
that will bring the pendulum in upright position for small deviations of that equilibrium
position.

Nonlinear systems theory has many important applications. In engineering we mention
applications in robotics. But also recent activity in bio-medical sciences has lead to
interesting applications of nonlinear systems.

There are many excellent books on nonlinear systems theory. We mention here [34,35,
41, 57, 66, 76, 80].

An important issue in some control problems, both linear and nonlinear, is positivity.
Several applications, notably those where the states are concentrations of substances,
require state variables to be always nonnegative. This is a very difficult issue that is still
under research. See for instance [6, 31].
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Applications in engineering frequently also involve some form of energy considera-
tions, e.g. energy conservation or dissipation of energy. This point of view has led to a
new view on systems and control theory in the framework of Port-Hamiltonian systems
[67, 68].

11.3.1 Applications in Life Sciences

It has long been recognized that the concept of feedback plays a role in many biochemical
pathways in the cell. With the advent of better understanding of these pathways using
mathematical modeling there is scope for applying nonlinear control theory to problems
in biology. For instance, metabolical pathways in the cell can now be modelled by large
scale systems of (relatively simple) nonlinear differential equations of the Michaelis-
Menten type, coming from reaction kinetics. Understanding the system as a whole is then
a formidable task, as there are really many equations involved, and it is at this point that
systems theory may help by considering methods of reducing the model to a smaller one
(model reduction), and still keep the most salient behaviour.

As an example, we refer to the mathematical model for glycolysis in Trypanosoma bru-
cei, the organism responsible for sleeping sickness. A mathematical model for glycolysis
in this organism was developed and studied with a view to use this as a basis for control.
Steps to apply systems and control theory to further understand such models coming from
biochemical pathways were taken in [56] (see also references give there), [61, 77, 81].

11.4 Infinite Dimensional Systems

Much of the theory described in the first five chapters of this book, i.e., the deterministic
part, has a counterpart in continuous time infinite dimensional systems. For example,
systems that require a physical description using a partial differential equation (like the
equation for a vibrating string, or the heat equation), or systems with a delay in the time
argument, can usually be modelled quite well in the form (11.1), where A is the generator
of a C0-semigroup on a Banach or Hilbert space, and B and C are linear (possibly also
unbounded) operators acting between the input and state space, respectively, the state space
and the output space.

Continuous time systems that are only observed at regular time intervals (sampled) and
controlled at the same time intervals, after which the control is kept constant until the
next sampling time, are commonly known as sampled data systems. Such systems can be
modelled fruitfully in terms of a discrete time system with an infinite dimensional state
space.

The theory of infinite dimensional systems requires a solid background in functional
analysis. An excellent place to start when learning this subject is the book [14]. This book
deals with both a state-space approach and a frequency domain approach (i.e., using the
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transfer function as the main tool for the study of the system). We also mention the two
books [4, 5]. A different approach is to study the systems entirely from the point of view
of partial differential equations. For this point of view, see e.g., [46].

As a sample of the kind of systems that is studied in the theory of infinite dimensional
systems consider the following delay system:

ẋ(t) = ax(t) + bx(t − 1) +
∫ t

t−1
u(τ) dτ.

The initial condition for such an equation needs to be a function on the interval [−1, 0],
and hence equations of this type have a state space that must be some function space over
that interval. That may be the Banach space of continuous functions on [−1, 0], or the
Hilbert space of L2 functions on that interval, or some other Banach space. For details, see
[14, 23].

For infinite dimensional systems too the framework of Port-Hamiltonian systems plays
an important role in new developments, in particular with a view to applications in systems
governed by partial differential equations. We refer to [36] for a mathematically oriented
introduction into the subject with many applications mentioned there as well.

11.5 Robust and Adaptive Control

Uncertainty in systems has been described in this book largely in terms of stochastic
additive uncertainties. However, in practice issues like unmodelled dynamics often lead
to other types of uncertainties. For instance, one can think of the given model as an
approximation of the “true” model in a certain neighbourhood of the true model. Robust
control methods then strive to design a controller that not only will stabilize the given
model, but also all models in a given neighbourhood. Also other design criteria, besides
stabilizing the system, are considered.

This all depends heavily on the way the model is given, and in modern H∞ control
the model is usually considered to be given as a transfer function. This naturally leads to
the fact that robust control theory is a theory in the frequency domain to start with. See,
e.g., [17, 54]. However, very nice results have been obtained in the state space framework
as well. See, e.g., [18, 22, 83], the later chapters in [27] and [3], Chapters 19 and 20.
Most of this is developed for continuous time systems. For discrete time systems, see also
[26, 33, 78].

In a sense, also adaptive control does the same: its goal is to stabilize a large class
of systems with a single controller. The main idea is that this may be possible using a
nonlinear controller that adapts to the unknown parameters in the system. For instance, in
this way linear first order systems of the type ẏ = ay + bu, with b �= 0 but otherwise
unknown, can all be stabilized with a single control algorithm. For more developments in
this direction see, e.g., [53].
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As a sample of results in the area of H∞ control, consider the following problem: given
is a continuous time system with two inputs (w and u) and two outputs (y and z) as in the
following figure.

w

u

z

y

We consider u as usual as the input that we can control, w as the disturbances, y as the
measurements we can take, and z as the output that we wish to control. In this section we
study the full information case, that is we take y = x. The system is then given by the
equations

ẋ(t) = Ax(t) + B1w(t) + B2u(t),

z(t) = Cx(t) + Du(t),

y(t) = x(t).

The goal is to make the influence of w on z small in an appropriate measure, which we
shall make more precise below.

We consider state feedback u(t) = Kx(t), where K is a constant matrix.

P

K

y

z

u

w

Hence the closed loop system is determined by the following equations:

ẋ(t) = (A + B2K)x(t) + B1w(t),

z(t) = (C + DK)x(t).
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Let GK(s) denote the transfer function from w to z, that is, GK(s) = (C + DK)(sI −
(A +B2K))−1B1. Then we want to find K such that the following two conditions hold: 1.
for some pre-specified tolerance level γ we have

‖GK‖∞ := max
s∈iR

‖GK(s)‖ < γ

and 2. in addition K is a stabilizing feedback, that is,

A + B2K is stable.

We shall make the following assumptions:

1. the pair (C,A) is observable,
2. the pairs (A,B1) and (A,B2) are stabilizable,
3. DT C = 0 and DT D = I .

Note that the first two assumptions are not so unnatural, but that the third one may seem
a little strange. However, it can be proven that this can always be achieved by applying a
state feedback at the start, as long as we assume that D has full column rank. Indeed, in
that case DT D is invertible, and we can assume without loss of generality that DT D = I ,
as this only entails a change of bases in the input space and in the output space. After that,
consider applying a feedback with feedback matrix K = −DT C, so that C is replace by
C + DK . Then DT (C + DK) = DT C + K = 0. Under these assumptions we have the
following theorem.

Theorem 11.5.1 There exists a matrix K such that A+B2K is stable and ‖GK‖∞ < γ if
and only if there exists a positive definite matrixX∞ for which the following two conditions
are met:

1. X∞ satisfies the algebraic Riccati equation

X( 1
γ 2 B1B

T
1 − B2B

T
2 )X + XA + AT X + CT C = 0,

2. A + ( 1
γ 2 B1B

T
1 − B2B

T
2 )X∞ is stable.

In that case one such state feedback is given by K = −BT
2 X∞.

It may be observed that if γ → ∞ then X∞, considered as a function of γ will go to the
solution of the LQ-optimal control problem.
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11.6 Stochastic Systems

Most applications of stochastic systems in engineering and economics employ discrete
time models. This is because the data are often recorded at discrete time instants and
because stochastic processes in discrete time are somewhat simpler to analyze and
implement than processes that evolve in continuous time. Stochastic systems in discrete
time and their applications in system estimation and control are discussed, for instance, in
[12, 16, 42].

Finite dimensional continuous time stochastic systems are described by a set of
stochastic differential equations of the form

dx(t) = Ax(t)dt + Bu(t)dt + Edε

y(t) = Cx(t) + Du(t) + Fε(t)

where ε is a continuous time white noise process. This is the continuous time analogue of
the stochastic input-output system (6.37) described in Sect. 6.6, obtained by adding a noise
process to the deterministic continuous time system (11.1) of Sect. 11.1. For given input
trajectory u(t), the solution processes for x(t) and y(t) of the above system of equations
are defined in terms of stochastic integrals.

Systems of this type are used in (continuous time) stochastic control. Another area
of application is mathematical finance, where price movements of financial assets and
derivatives are modelled in this way. For instance, the Black-Scholes formula for option
prices is based on the assumption that stock prices follow a Brownian motion, see e.g.
[32]. The analysis and solution of such continuous time stochastic systems is based on
the theory of stochastic differential equations, see e.g. [2] and [15] and for applications in
mathematical finance [38, 73].

11.7 Networked Systems

Modern control systems are frequently highly structured. In many applications the overall
system consists of a hierarchical structure, with a central coordinating system, which
controls subsystems, which in turn, may act as coordinator for subsystems at a lower
level. Communication restrictions may exist between the systems at the lower level and
the systems at the higher level. In particular, communication may use a network such as
internet or a mobile communication network, on which communication is uncertain and
subject to delays.

Examples of this are to be found, e.g., in communication between cars on highways to
form platoons, the development of self-driving cars, and control of systems of which the
architecture may change, via e.g. telecommunication networks.
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There are several sources on this topic, of which we mention [39, 51, 70–72] and the
references given there.

11.8 Hybrid Systems

Hybrid systems are systems where continuous or discrete time systems may switch
between different regimes, triggered by a discrete event. Because of the latter point, such
systems differ from time-varying systems, as in that case the system matrices may be time-
varying, but they are explicitly known as functions of time. In a hybrid system that is not
the case: the changes in the system dynamics may occur for instance when the state reaches
a certain boundary, which triggers the dynamics to change drastically. Such systems are
not easy to analyse and control, but play an important role in many applications. A good
introduction to the subject is [69], a thorough discussion of realization theory for such
systems may be found in [60].

11.9 System Identification

System identification covers a very broad area, because modelling dynamical phenomena
from observed data is applied in numerous fields that are as diverse as e.g., astronomy,
micro biology, psychology, management. Therefore it is not well possible to provide a
brief overview of even just the main developments. However, one common characteristic
is that the development of more advanced methods goes hand in hand with the tremendous
growth in computing power. This allows the modelling of very large data sets (for instance
in biology and in finance and marketing) and the development of more advanced (non-
linear) models.

We briefly mention some issues of particular interest in two application areas, engi-
neering and economics. In engineering, nonlinear models are employed to incorporate
nonlinear response, e.g., due to saturation effects. For controlled systems the issue of
closed loop identification is of importance, as the applied regulator affects the observed
system dynamics. Further, apart from the more conventional input-output based estimation
methods, one sometimes also uses state space models in (so-called) subspace identification
techniques. For more background on system identification in engineering we refer to [48]
and [74].

In economics, the availability of large data sets in areas like finance and marketing
allows the estimation of more and more elaborate models to describe the movements of
economic variables like prices and sales. Recent developments include the modelling of
trending patters and changes in volatility and risk. More background on these and other
issues in modern business and economics can be found, e.g., in [11, 29, 59] and [82].
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Input-output system, 5
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Instrumental variables, 148
Invertible ARMA model, 88
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Kalman-Bucy filter, 109
Kalman gain, 111

L
Left coprime, 88
Linear system, 13
LQG controller, 125
LQG problem, 121, 125
LQ optimal control problem, 72
Lyapunov equations, 52

M
MA process, 84
Minimal realization, 22, 34
Minimal stochastic realization, 94

N
Neutrality, 122

O
Observability Grammian, 52
Observable eigenvalue, 33
Observable realization, 30
Observable system, 30
One-step ahead prediction, 102
Output matrix, 17
Output trajectories, 5, 12

P
Perfectly predictable process, 85
Periodogram, 160
Pole placement theorem, 57
Prediction problem, 101

Principle of optimality, 68
Proper, 18

R
Rational matrix function, 18
Reachable, 27
Realization, 22
Reduction of a realization, 34
Restricted shift realization, 25
Riccati difference equation, 74, 126
Riccati equation, algebraic, 76, 78, 94, 126
Riccati equation, filter, 116

S
Sample covariances, 83
Sample mean, 83
Separation principle, 63
Separation property, 122
Similar realizations, 34
Smoothing, 101
Spectral factorization problem, 105
Spectrum of a process, 94
Stabilizable, 59
Stabilizing compensator, 60
Stabilizing dynamic feedback, 60
Stabilizing feedback, 59
Stable matrix, 50
Standard white noise, 84
State observer, 61
State process, 90
State space, 17
State space model, 16
State space representation, 16
State transition matrix, 17
State variable, 17
Static state feedback, 57
Stationary ARMA model, 88
Stationary process, 83
Stationary process, strongly, 83
Stein equations, 52

T
Time domain, 16
Time-invariant system, 13
Transfer function, 15
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Unobservable state, 30
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W
White noise process, 84

Wold decomposition, 86

Y
Yule-Walker, 145

Z
z-transform, 14
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