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Preface

This textbook introduces a new approach to teaching an introductory course
in abstract algebra. This text can be used for either an undergraduate level
course, or a graduate level sequence. The undergraduate students would only
cover the the basic material on groups and rings given in chapters 1–4 and 9–
12. A graduate level sequence can be implemented by covering group theory in
one semester (chapters 1–8), and covering rings and fields the second semester
(chapters 9–15). Alternatively, one semester could cover part of the group
theory chapters and part of ring theory, while the second semester covers the
remainder of the book.

This text covers many graduate level topics that are not in most standard
introductory abstract algebra courses. Some examples are semi-direct prod-
ucts (section 6.4), polycyclic groups (section 8.3), solving Rubik’s Cube©R-like
puzzles (section 8.4), and Wedderburn’s theorem (section 13.4). There are
also some problem sequences that allow students to explore interesting topics
in depth. For example, one sequence of problems outlines Fermat’s two square
theorem, while another finds a principal ideal domain that is not an Euclidean
domain. Hopefully, these extra tidbits of information will satisfy the curiosity
of the more advanced students.

What makes this book unique is the incorporation of technology into an
abstract algebra course. Either Mathematica©R or GAP (Groups, Algorithms,
and Programming) can be used to give the students a hands-on experience
to groups and rings. It is recommended to use at least one of these in the
classroom. (GAP is totally free. See the section “Mathematica vs. GAP” for
more information about both of these programs.) Every chapter includes sev-
eral interactive problems that have the students use these programs to explore
groups and rings. By doing these experiments, students can get a better grasp
of the topic. However, there are plenty of non-interactive problems as well,
so the instructor can choose not to force students into using these programs.
The exception to this is in section 3.2, since the RSA encryption requires a
computer program of some kind.

But in spite of the additional technology, this text is not short on rigor.
There are still all of the classical proofs, although some of the harder proofs
can be shortened with the added technology. For example, Abel’s theorem
is much easier to prove if we first assume that the 60-element group A5 is
simple, which Mathematica or GAP can verify in the classroom in less than a
second. In fact, the added technology allows students to study larger groups,
such as some of the Chevalley groups.

xiii



xiv Preface

This text has many tools that will aid the students. There is a symbols ta-
ble, so if a student sees an unfamiliar symbol, he can look up the description
in this table, and see where this symbol is first defined. The answers to the
odd-numbered problems are in the back, although the proofs are abbreviated.
There is an extensive index that not only lists the relevant pages for a partic-
ular terminology, but also highlights the page where the term is first defined.
A list of tables and figures allows students to find a multiplication table for a
particular group or ring.
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Mathematica
©R

vs. GAP

This textbook incorporates either GAP or Mathematica to help students
visualize the important concepts of abstract algebra. It is recommended that
one of the two programs be used with the book, but it is not necessary to
have both. This section compares the two programs, and gives instructions
for how to use these programs with the files on the included CD.

Mathematica is a symbolic manipulator package published by Wolfram Re-
search, Inc. That is, it is a general purpose mathematical program used by
scientists, engineers, and analysts. Its main feature that sets it apart from
other symbolic manipulators is the graphics capabilities. In Mathematica 7.0,
one can plot a 3-dimensional object, then use the mouse to rotate the object
in three dimensions to see it from all possible angles.

GAP, on the other hand, has no graphics capabilities. It operates in a DOS
window (or UNIX) and hence cannot display anything besides the letters
that are typed on a keyboard. GAP stands for “Groups, Algorithms, and
Programming,” and is a system designed for computational work in abstract
algebra. Hence, GAP is a natural program to use with an abstract algebra
course.

Mathematica, however, was never designed to work problems involving ab-
stract algebra. This is only possible via the two included packages “group.m”
and “ring.m.” The first of these is used for the first eight chapters of the
text, while the other is used in the remaining chapters. Both files are in the
“math” folder on the CD provided with this book. These are just two of the
supporting files that are needed to use Mathematica or GAP with this text-
book. These two files allow Mathematica to work with groups a fluently as
GAP.

However, GAP has a big advantage over Mathematica—it is totally free.
GAP is open source, which means that the source code is available to anyone
who wishes to contribute to its vast library of abstract algebra operations.
The current version of GAP can be downloaded from

http://www.gap-system.org

This textbook requires at least version 4.4.12 (December 2008). All of the
outputs in this textbook use this version. Later versions may have slight
differences, such as the order in which the terms appear, but this will not
affect the functionality.

Mathematica is not free, but price information can be obtained from

xxiii

http://www.gap-system.org
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http://www.wolfram.com

However, this book includes a 30-day Mathematica product trial. To download
your trial, go to

http://www.wolfram.com/books/resources

and enter the license number below to be guided through the installation
process.

Trial license number: L3272-0591

There is also a free Mathematica Player available from Wolfram, which will
be able to open the notebooks provided with this textbook. However, one
cannot execute any of the Mathematica commands with Mathematica Player .
Those who are using GAP might consider downloading Mathematica Player,
and directly opening the notebooks in the “math” folder on the CD to view
some of the graphics that are unable to be displayed in GAP.

IMPORTANT: In order to use either GAP or Mathematica for this text-
book, you will also need to install the supporting files into your computer.
Simply put the CD provided into the computer, and the installation program
should start running. If this program does not start automatically in any of
the Windows versions, click on the “Start” icon, and select “Run.” At this
menu, select “Browse.” and find the drive for the CD, and select the file
“AbstractAlgebraSetup.exe.” Hit “OK” to start the setup program running.
Follow the instructions to install either the Mathematica or GAP support-
ing files, or both, onto the computer. Another option would be to copy the
“math” and/or “gap” folders directly from the CD to the computer. This
method will work in any operating system. Note that this only loads the
supporting files, so you will also have to install Mathematica or GAP systems
as well.

Once the supporting files have been installed, then one of the packages can
be loaded into Mathematica with either of the two commands:

<< c:\math\group.m

<< c:\math\ring.m

This will only have to be done once in each Mathematica session.
Also in the supporting files are the 15 Mathematica notebooks “group01.nb”

through “group08.nb,” and “ring09.nb” through “ring15.nb” which corre-
spond to the 15 chapters of the book. These notebooks allow a student to
walk through the examples in the book, along with other similar examples.
Included in these notebooks are all the theorems and proofs in the textbook.

The corresponding package for GAP, textbook.g, is in the “gap” folder on
the included CD. Once the supporting software from the CD has been loaded
to the computer, the GAP command

http://www.wolfram.com
http://www.wolfram.com/books/resources
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gap> Read("c:/gap/textbook.g");

will load the main package into the GAP session. As with Mathematica, this
package must first be loaded into GAP before any other of the commands in
this textbook will work.

Another of the supporting software files, “newrings.g” written by Alexander
Hulpke, is used in chapters 9 through 15. This package is automatically
loaded, if needed, when “textbook.g” is loaded. Future versions of GAP will
have this library package incorporated into the program. Unlike Mathematica,
GAP does not use notebooks, so all GAP commands shown in the textbook
must be typed in manually. (Not even copying and pasting will work.)

Both of the programs are interactive systems. Every expression that one
types into the computer is immediately evaluated, and the result is shown.
This is known as a read-evaluate-print loop. For example, when GAP is
first run, there will be a banner displayed, followed (eventually) by the GAP
prompt

gap>

To enter an expression into GAP, simply end the expression with a semi-
colon (;) and press the enter key.

gap> 3^90;
8727963568087712425891397479476727340041449
gap>

GAP echoes the answer on the next line, showing that GAP can handle
numbers of enormous size. GAP then shows a new prompt to indicate that it
is ready for the next problem. From now on, the textbook will not show this
additional prompt.

Commands are entered into Mathematica a slightly different way. When
the Mathematica program first opens, there are no prompts, but you can type
anywhere into the “Untitled-1” window. Do not hit the enter key just yet.

3̂90

Instead of ending with a semi-colon, hold down the Shift key while pressing
the Enter key. Two things will happen: first a “In[1] :=” will appear in front
of the expression you entered, and also the result will be displayed

In[1] := 3̂90
Out[1]:= 8 727 963 568 087 712 425 891 397 479 476 727 340 041 449

Mathematica will number all of the input and output statements, but the
prompt does not appear until after some expression is entered. Because of
this, the “In[n]:=” and “Out[n]:=” are not shown in the textbook.

Had we put a semi-colon in Mathematica before pressing the Shift-Enter, we
would get a different effect. It computes the expression, but does not display
the answer. For example, entering
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a = 3̂900;

in Mathematica will assign the variable a a 430 digit number, but will not
display this number. To get this same effect in GAP, two semi-colons are
needed.

gap> a := 3^900;;

Here is another difference between GAP and Mathematica. In Mathematica,
the equal sign is used to assign an expression to a variable, whereas in GAP
this is done with the := combination, with no space between the colon and
the equal sign.

In both programs, a variable is a sequence of letters and or digits, including
at least one letter. Mathematica insists that the variable name start with a
letter, which is a good practice to avoid confusion. Both programs are case
sensitive, so a is a different variable than A. Keywords, such as if or quit, are
not allowed as variables, but the list of keywords is too long to give here. None
of the lower case letters are keywords, so we can safely use the 26 variables a
through z.

Unlike GAP, Mathematica is able to have notebooks corresponding to each
chapter. By clicking on “File” and then sliding down to “Open,” one can
locate one of the 15 notebooks with the .nb extension in the c:\math directory.
When the notebooks are first opened, none of the “In[n] :=” or “Out[n] :=”
will be present. This is because none of these commands has been executed
in this particular session of Mathematica. The first command at the top will
be the initialization, which will load either group.m or ring.m, which as we
mentioned before must be done first. Click on the bold-face command to
have the cursor on this command (it doesn’t have to be at the end) and press
Shift-Enter. Now the “In[1] := ” will appear, showing that this command
has been executed. All other bold-face commands can be executed the same
way. It is suggested that this be done in the order that they appear, but there
is nothing to prevent executing the statements in any order, or executing a
statement more than once. The “In[n] :=” and ”Out[n] :=” will show which
commands have been run and in what order. Just because there is an output
displayed for some input does not mean that this input has been executed.
For example, if the notebook displays

a = 3̂90
8 727 963 568 087 712 425 891 397 479 476 727 340 041 449

and there is no “In[n] :=” in front of the line, then the value of a will still be
undefined even though the output is already displayed. This output is from a
previous session of Mathematica, and all variables are reset at the beginning
of each session. So for a to be given the value of 390, this must be re-evaluated
using the Shift-Enter. Mathematica will then evaluate 390 and of course come
up with the same answer, but this time a “Out[n] :=” will appear in front of
the answer to show that it has been executed.
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Mathematica does not automatically expand an expression, although it
might rearrange the factors and terms.

(x̂2+3x–1)(x̂2–2x+4)
(4− 2x+ x2)(−1 + 3x+ x2)

Because we have not yet assigned a value to x, Mathematica assumes that it
is an indeterminate, so that it expresses the answer in terms of x. Also note
that Mathematica assumes that a number and letter next to each other are
to be multiplied together. In GAP, we must explicitly use the * for every
multiplication.

gap> (x^2+3*x-1)*(x^2-2*x+4);
Variable: ’x’ must have a value

This time, get an error message, since GAP has not been told what x is
yet. Unlike Mathematica, GAP must have something assigned to a variable
in order to use it. If we want x to be an unknown quantity, or indeterminate,
we must assign to the variable x an indeterminate form. Basically, this tells
GAP that x is to be treated as an unknown quantity, but of a certain type.
In this case, we will suppose that x is an unknown rational number. (GAP is
not able to work with general real numbers—more about this later.) While
we are at it, we can tell GAP how this variable is to be displayed.

gap> x := Indeterminate(Rationals,"x");
x
gap> (x^2+3*x-1)*(x^2-2*x+4);
x^4+x^3-3*x^2+14*x-4

GAP will automatically expand the expression. In order to do this in Math-
ematica, the Expand function is necessary.

Expand[%]
−4 + 14x− 3x2 + x3 + x4

Factor[%]
(4− 2x+ x2)(−1 + 3x+ x2)

Note that Mathematica uses the percent sign (%) as an abbreviation for
the last output. The corresponding GAP abbreviation is last.

gap> Factors(last);
[ x^2-2*x+4, x^2+3*x-1 ]

Here is another syntax difference between GAP and Mathematica: GAP
uses parentheses for functions, as the standard notation, but Mathematica
uses square brackets for functions. GAP mainly uses the square brackets for
lists, so the output shows a list of the factors.
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Note that we defined x to be a rational variable, not a real variable. The
truth is, GAP never works with real numbers or decimals. Since GAP is only
designed for working with groups, rings, and other similar objects, there is no
need for decimals. This means that all calculations done in GAP are exact .
Most calculations in Mathematica are also exact, but you do have the option
of finding a decimal approximation. For example, the first 50 digits of

√
2 are

N[Sqrt[2],50]
1.4142135623730950488016887242096980785696718753769

We get a surprise when we try to find
√

2 in GAP:

gap> Sqrt(2);
E(8)-E(8)^3;

GAP puts the answer in terms of a number e8, which we will cover in
section 11.3. Other common irrational numbers, such as π, cannot be entered
into GAP at all! This is only because of the specialized nature of the GAP
program.

Both GAP and Mathematica will point out any mistakes in the input line.
For example, if one types

gap> y := Indeterminate(Integers, "y");
y
gap> (y+2)(y+4);
Syntax error: ; expected
(y+2)(y+4);

^

GAP will realize a mistake, and point to the error with an arrow (̂). GAP
will try to read your mind as to your intentions, and apparently GAP thought
that we were trying to input two expressions on the same line, separated by
a semi-colon. But in fact, we forgot the multiplication symbol. Rather than
retyping the line, we can press the up arrow key (or Ctrl-P) and the last line
will be redisplayed with the error. We then can use the arrow keys (or Ctrl-B
and Ctrl-F) to get to the erroneous location and fix the problem.

gap> (y+2)*(y+4);
y^2+6*y+8

Occasionally, GAP will encounter an error that it cannot handle, and enter
into a break loop. After a fairly long error message, a special prompt brk>
appears. This prompt is very useful for debugging the program to find just
where the error occurred and why, but for our purposes the best thing to do
is to enter quit; at the break prompt, and we will return to the place before
the error. Entering quit; at the gap> prompt will exit the program.

The most common error message of this type is the “no method found!”
error, which is at first rather cryptic.
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gap> (4 = 3) * 2;
Error, no method found!
For debugging hints type ?Recovery from NoMethodFound
Error, no 1st choice method found for ‘PROD’ on 2 arguments
called from <function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk>

This error means that GAP tried to perform some operation on an object
whose type did not match the operation. In this case, GAP simplified the
expression in the parentheses first. A standard equal sign is used to test
whether two objects are equal, and since 4 and 3 are obviously not equal, this
simplified to false. But then GAP tried to calculate false * 2, and looked
through the libraries to see if there is any method to multiply an integer with
false. Obviously, there is no such method, hence the error message.

The way to recover from this is to first type in quit; to get out of the break
loop, then fix the mistake.

brk> quit;
gap> (4 + 3) * 2;
14

The same typo also produces an error in Mathematica, but for a different
reason.

(4 = 3) * 2
6

Mathematica returns an answer, but also displays a strange message,
“Set::setraw : Cannot assign to raw object 4. �”

in a separate Messages window. Because the equal sign in Mathematica is
used to assign a value to a variable, Mathematica thinks we are trying to
assign the value 3 to the number 4, which of course cannot be done. But
besides this, this value of 3 is multiplied by 2 to get the answer displayed.

Ironically, had we used a double equal sign, the Mathematica command
would not have produced an error.

(4 == 3) * 2
2 False

The double equal sign is used in Mathematica to test if two expressions are
equal. Unlike GAP, Mathematica sees no problem in symbolically multiplying
False with an integer.

Other features of the two programs will be introduced in the textbook as the
need arises. With a little practice, you will find both programs are relatively
easy to use.
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Chapter 1

Understanding the Group Concept

1.1 Introduction to Groups

To help introduce us to the concept of groups, let us meet a triangle whose
dance steps give us the first example of a group. Terry the triangle is a simple
looking three-colored triangle that appears by the Mathematica©R command

ShowTerry
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Terry can perform the dance steps listed in table 1.1. Although Mathematica
animates these dance steps, one can understand the six steps without Math-
ematica by observing scenes in figure 1.1, taken from the animation close to
the completion of each step.

Terry can combine these dance steps to form a dance routine. But in any
routine, the ending position of the triangle is the same as that of performing
just one dance step. Thus, when the triangle gets “lazy,” it can perform just
one dance step instead of several. For example, a FlipRt followed by a Spin

TABLE 1.1: Terry’s dance steps
RotRt rotate clockwise 120 degrees.
RotLft rotate counterclockwise 120 degrees.
Spin spins in three dimensions, keeping the top fixed.
FlipRt flips over the right shoulder.
FlipLft flips over the left shoulder.
Stay does nothing.

1
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FIGURE 1.1: Scenes from Terry’s animated dance steps

TABLE 1.2: Multiplication table for Terry’s dance steps
Stay FlipRt RotRt FlipLft RotLft Spin

Stay Stay FlipRt RotRt FlipLft RotLft Spin
FlipRt FlipRt Stay FlipLft RotRt Spin RotLft
RotRt RotRt Spin RotLft FlipRt Stay FlipLft
FlipLft FlipLft RotLft Spin Stay FlipRt RotRt
RotLft RotLft FlipLft Stay Spin RotRt FlipRt
Spin Spin RotRt FlipRt RotLft FlipLft Stay

puts Terry in the same position as a RotLft. These dance steps are combined
using the “multiplication table” in table 1.2.

The Mathematica commands that generated this table are

InitTerry;
MultTable[{Stay, FlipRt, RotRt, FlipLft, RotLft, Spin}]

whereas the corresponding GAP commands are

gap> Read("c:/gap/textbook.g");
gap> InitTerry();
[ Stay, FlipRt, RotRt, FlipLft, RotLft, Spin ]
gap> MultTable(Terry);

* |Stay FlipRt RotRt FlipLft RotLft Spin
-------+----------------------------------------------------
Stay |Stay FlipRt RotRt FlipLft RotLft Spin
FlipRt |FlipRt Stay FlipLft RotRt Spin RotLft
RotRt |RotRt Spin RotLft FlipRt Stay FlipLft
FlipLft|FlipLft RotLft Spin Stay FlipRt RotRt
RotLft |RotLft FlipLft Stay Spin RotRt FlipRt
Spin |Spin RotRt FlipRt RotLft FlipLft Stay
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which produce an ASCII facsimile of the table. In both these tables, the first
dance steps are on the left, and the second dance steps are on the top, so one
can use the table to see that FlipRt · Spin = RotLft.

We can notice several things from these dance steps:

1. The order in which the dance steps are performed are important. For
example, Spin · FlipRt 6= FlipRt · Spin.

2. The combination of any two dance steps is equivalent to one of the six
dance steps. In other words, there are no “holes” in table 1.2.

3. The order in which a dance routine is simplified does not matter. That
is,

x · (y · z) = (x · y) · z

where x, y, and z represent three dance steps.

4. Any dance step combined with Stay yields the same dance step. This
is apparent by looking at the row and column corresponding to Stay in
table 1.2.

5. Every dance step has another dance step that “undoes” it. That is, for
every x there is a y such that x · y = Stay. For example, the step that
undoes RotRt is RotLft.

We will use the following mathematical terminology to express each of these
properties:

1. The dance steps are not commutative.

2. The dance steps are closed under multiplication.

3. The dance steps are associative.

4. There is an identity dance step.

5. Every dance step has an inverse.

With just these properties, we are able to prove the following.

PROPOSITION 1.1
If y is an inverse of x, then x is the only inverse of y.

PROOF Let z be any inverse of y. Consider the product x·y ·z. According
to the associative property,

x · (y · z) = (x · y) · z.
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On the left side, we see that y · z is an identity element, so x · (y · z) = x. But
on the right side, we find that x · y is an identity element, so (x · y) · z = z.
Therefore, x = z, and so x is the only inverse of y.

Notice that we did not yet assume that the inverses are unique, or even that
there is only one identity element. However, these facts immediately follow
from proposition 1.1. (See problems 1.8 and 1.9.)

DEFINITION 1.1 We use the notation x−1 for the unique inverse of the
element x.

Proposition 1.1 can now be expressed simply as (x−1)−1 = x. This raises
the question as to whether other familiar exponential properties hold. For
example, does (x · y)−1 always equal x−1 · y−1?

gap> (FlipRt*Spin)^-1 = (FlipRt^-1)*(Spin^-1);
false

Apparently (x · y)−1 is not always equal to x−1 · y−1. Yet it is not hard to
determine the correct way to simplify (x · y)−1.

PROPOSITION 1.2

(x · y)−1 = y−1 · x−1.

PROOF Since the inverse (x · y)−1 is the unique dance step z such that

(x · y) · z = Stay,

it suffices to show that y−1 · x−1 has this property. We see that

(x · y) · (y−1 · x−1) = x · (y · y−1) · x−1 = x · Stay · x−1 = x · x−1 = Stay.

So (x · y)−1 = y−1 · x−1.

Another pattern of the multiplication table of the dance steps is that each
row and each column in the interior part of the table contain all six dance
steps. For example, RotRt appears only once in the row beginning with
Spin. That is, there is only one solution to Spin · x = RotRt. We can show
why this pattern holds in general using inverses.

PROPOSITION 1.3
If a and b are given, then there exists a unique x such that

a · x = b.
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PROOF Suppose that there is an x such that a · x = b. We can multiply
both sides of the equation on the left by a−1 to give us

a−1 · (a · x) = a−1 · b.

Then
(a−1 · a) · x = a−1 · b.

Stay · x = a−1 · b.

So
x = a−1 · b.

Thus, if there is a solution, this must be the unique solution x = a−1 · b. Let
us check that this is indeed a solution.

a · (a−1 · b) = (a · a−1) · b = Stay · b = b.

Thus, there is only one solution to the equation, namely a−1 · b.

This last proposition, when combined with problem 1.10, shows that the
interior of the multiplication table forms a “Latin square.” A Latin square is
a formation in which every row and every column contain each item once and
only once. The Latin square property is easy to check visually.

Even though there are very few of Terry’s dance steps, we already can see
some of the patterns that can appear when we consider the multiplication of
these dance steps. In the next section, we will consider another operation that
has many of the same patterns.

1.2 Modular Arithmetic

We have already seen that one operation, namely the combination of Terry’s
dance steps, turns out to have some interesting properties such as the Latin
square property. In this section we will find some other operations that have
this same property. These will involve the modulus of a number, and so we
must study the arithmetic on numbers modulo n.

The simple definition of the modulus of a number is the last digit of the
number when written in base n. We can also consider the modulus of a number
to be the remainder when that number is divided by n. Two numbers are
considered equivalent modulo n if the modulus of the numbers are the same.
The official definition is as follows.

DEFINITION 1.2
x ≡ y (Mod n)
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if, and only if, there is an integer k such that

(x− y) = k n.

We first consider adding numbers together modulo 10. That is, after each
addition, we only consider the last digit of the result. The command

DefSumMod[10]

loads this new type of arithmetic into Mathematica. The period is then used
to add together to numbers from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} modulo 10.
Although it seems strange to use the period instead of the plus sign, for
consistency Mathematica always uses the period for the operator, whatever
operation that operator performs. GAP can also be used to explore addition
modulo 10.

gap> (6 + 7) mod 10;
3
gap> (9 + 8) mod 10 = (8 + 9) mod 10;
true

The table for this operation on the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is given by

gap> MultTable([0..9]);

+|0 1 2 3 4 5 6 7 8 9
-+----------------------------
0|0 1 2 3 4 5 6 7 8 9
1|1 2 3 4 5 6 7 8 9 0
2|2 3 4 5 6 7 8 9 0 1
3|3 4 5 6 7 8 9 0 1 2
4|4 5 6 7 8 9 0 1 2 3
5|5 6 7 8 9 0 1 2 3 4
6|6 7 8 9 0 1 2 3 4 5
7|7 8 9 0 1 2 3 4 5 6
8|8 9 0 1 2 3 4 5 6 7
9|9 0 1 2 3 4 5 6 7 8

The corresponding Mathematica command would be

DefSumMod[10]
MultTable[{0,1,2,3,4,5,6,7,8,9}]

Notice that we still call this a “multiplication table” even though the operation
is closer to addition. Only in GAP can we use the abbreviation [0..9] for
the list [0,1,2,3,4,5,6,7,8,9]. Also, GAP uses context to determine that
we are to add modulo 10.

Having the table for addition modulo 10, we are able to establish the fol-
lowing properties:

1. For any two numbers x and y in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, x·y is in the set.
(Recall that we are using the dot to indicate the operation, regardless
of what that operation is. In this example, the operation is addition
modulo 10.)
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2. (x · y) · z = x · (y · z) for any x, y, and z.

3. x · 0 = x and 0 · x = x for all x.

4. For any x, there is a y such that x · y = 0.

5. For any x and y, x · y = y · x.

This operation can also be pictured by means of circular graphs. The Math-
ematica command

G = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
CircleGraph[G, Add[1] ]
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CircleGraph[G, Add[4]]
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FIGURE 1.2: Circle graphs for (Mod 10) arithmetic

gives us the first picture in figure 1.2, which draws an arrow from each point
to the point given by “adding 1 modulo 10.” Figure 1.2 also shows what
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happens if we replace the 1 with 3 or 4. We get different looking graphs, but
all with the same amount of symmetry. The Mathematica command

CircleGraph[G, Add[1],Add[2],Add[3],Add[4],Add[5] ]

combines several of these circular graphs together, each drawn in a different
color. The last picture in figure 1.2 shows the additive inverse of each digit.
This was created with the command

CircleGraph[G, Inv]

Of course, we could do these same experiments by considering addition
modulo n with any other base as well as n = 10. The patterns formed by the
circular graphs are very similar. But we can also consider the operation of
multiplying modulo n. The Mathematica command

DefMultMod[7]

defines the period to be multiplication modulo 7. The multiplication table
of this new operation has similar properties as the table of dance steps for
the triangle, especially if we removed the 0 and only considered the digits
{1, 2, 3, 4, 5, 6}. The identity element is 1, and each of the numbers has an
inverse. The GAP command

gap> MultTable([1..6]);

*|1 2 3 4 5 6
-+----------------
1|1 2 3 4 5 6
2|2 4 6 1 3 5
3|3 6 2 5 1 4
4|4 1 5 2 6 3
5|5 3 1 6 4 2
6|6 5 4 3 2 1

displays the multiplication table.
But when we try using a different base, we get a surprise. To display

the multiplication table for (Mod 10) arithmetic, we can either use the GAP
command MultTable([1..9]), or the Mathematica commands

DefMultMod[10]
MultTable[{0,1,2,3,4,5,6,7,8,9}]

to produce a table similar to table 1.3. We find several rows that do not
contain any 1’s. These rows indicate the numbers without inverses modulo
10. Only 1, 3, 7, and 9 have inverses. If we try this using 15 instead of 10, we
find only 1, 2, 4, 7, 8, 11, 13, and 14 have inverses.

But what if we consider the multiplication table of just those numbers that
have inverses modulo 15? We can use either the Mathematica commands

DefMultMod[15]
MultTable[{1, 2, 4, 7, 8, 11, 13, 14}]
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TABLE 1.3: Multiplication (Mod 10)

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

TABLE 1.4: Invertible elements (Mod 15)

1 2 4 7 8 11 13 14

1 1 2 4 7 8 11 13 14
2 2 4 8 14 1 7 11 13
4 4 8 1 13 2 14 7 11
7 7 14 13 4 11 2 1 8
8 8 1 2 11 4 13 14 7
11 11 7 14 2 13 1 8 4
13 13 11 7 1 14 8 4 2
14 14 13 11 8 7 4 2 1

or the GAP command MultTable([1,2,4,7,8,11,13,14]); to produce ta-
ble 1.4. Once again, many of the same patterns are found that were in for
Terry’s multiplication, namely:

1. For any two numbers x and y in {1, 2, 4, 7, 8, 11, 13, 14}, x · y is in that
set.

2. (x · y) · z = x · (y · z) for any x, y, and z.

3. x · 1 = x and 1 · x = x for all x.

4. For any x, there is a y such that x · y = 1.

5. For any x and y, x · y = y · x.

We can generalize these patterns to multiplication modulo n for any n.
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PROPOSITION 1.4
For n a positive integer greater than 1, let the dot (·) denote multiplication

modulo n. Let G be the set of all non-negative numbers less than n that have
inverses modulo n. Then the set G has the following properties:

1. For any two numbers x and y in G, x · y is in G.

2. (x · y) · z = x · (y · z) for any x, y, and z.

3. x · 1 = 1 · x = x for all x.

4. For any x that is in G, there is a y in G such that x · y = 1.

5. For any x and y, x · y = y · x.

PROOF Properties 2, 3, and 5 come from the properties of standard
multiplication.

Property 1 comes from proposition 1.2. If x and y are both invertible, then
y−1 · x−1 is an inverse of x · y, and so x · y is invertible modulo n.

Property 4 seems obvious, since if x is invertible modulo n, we let y = x−1

making x ·y = 1. But we must check that y is also invertible, which it is since
y−1 = x.

Of course, this does not tell us which of the numbers less then n have
inverses modulo n. To answer this question, we must first explore the prime
factorizations of numbers, and properties that this imposes onto the integers.

1.3 Prime Factorizations

In this section we will explore the basic properties of integers stemming
from the prime factorizations. We will denote the set of all integers,

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

by the stylized letter Z. This notation comes from the German word for
number, Zahl. Many of the properties of factorizations refer only to positive
integers, which are denoted Z+.

We define a prime as an integer that has only two positive factors: 1 and
itself. This definition actually allows negative numbers, such as −5, to be
prime. Although this may seem to be a nonstandard definition, it agrees
with the generalized definition of primes defined in chapters 10 and 12. The
numbers 1 and −1 are not considered to be prime. The familiar property
of primes is that any integer greater than 1 can be uniquely factored into a
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product of positive primes. The uniqueness aspect of this statement will be
proven in chapter 12, in a much more generalized context. We will begin by
proving that every large number has at least one prime factor.

LEMMA 1.1
Every number greater than 1 has a prime factor.

PROOF Suppose that some number greater than 1 does not have a prime
factor. Then there is a smallest such number, called n. Then n is not prime,
otherwise n would have a prime factor. Then by definition, n must have a
positive divisor besides 1 and n, say m. Since 1 < m < n, and n was the
smallest number greater than 1 without a prime factor, m must have a prime
factor, say p. Then p is also a prime factor of n, so we have a contradiction.
Therefore, every number greater than 1 has a prime factor.

The proof of lemma 1.1 introduces an important strategy in proofs. Notice
that to prove that every number greater than 1 had a prime factor, we assumed
just the opposite. It was as if we admitted defeat from the very beginning!
Yet from this we were able to reach a conclusion that was absurd—a number
without a prime factor that did have a prime factor. This strategy is known as
reductio ad absurdum, which is Latin for “reduce to the absurd.” We assume
what we are trying to prove is actually false, and proceed logically until we
reach a contradiction. The only explanation would be that the assumption
was wrong, which proves the original statement.

In problem 1.33, you will be asked to use lemma 1.1 to prove that every
positive integer can be written as a product of primes. The Mathematica
command for finding the prime factorization of an integer is

FactorInteger[420]
{{2, 2}, {3, 1}, {5, 1}, {7, 1}}

whereas the gap command is

gap> FactorsInt(420);
[ 2, 2, 3, 5, 7 ]

Mathematica lists the primes, along with how many times that prime divides
the number. GAP, on the other hand, can list the same prime several times.
As long as the integers are less than about 40 digits long, neither program
should have any trouble factoring them. However, integer factorization is
a difficult problem even with modern technology. For both programs, the
amount of time required is proportional to the square root of the second
largest prime in the factorization. [14, p. 133]

The prime factorizations lead to an important question. Is there a largest
prime number? The Greek mathematician Euclid answered this question us-
ing reductio ad absurdum in the third century B.C. [11, p. 183]
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THEOREM 1.1: Euclid’s Prime Number Theorem
There are an infinite number of primes.

PROOF Suppose that there are only a finite number of prime numbers.
Label these prime numbers

p1 = 2, p2 = 3, p3 = 5, . . . , pn.

Now consider the number

m = (2 · 3 · 5 · 7 · 11 · 13 · · · pn) + 1

This number is odd, so it cannot be divisible by 2. Likewise, m is one more
than a multiple of 3, so it is not divisible by 3. In this way we see that m
is not divisible by any of the prime numbers. But this is ridiculous, since m
must have a prime factor by lemma 1.1. Thus, the original assumption that
there is a largest prime number is false, so there are an infinite number of
prime numbers.

We define the greatest common divisor (GCD) of two numbers to be the
largest integer that divides both of the numbers. If the greatest common
divisor is 1, this means that there are no prime factors in common. We
say the numbers are coprime in this case. We can use Mathematica’s GCD
function or GAP’s GcdInt function to quickly test whether two numbers are
coprime without having to factor them.

GCD[138153809229555633320990299469,
145730407810127891189961221324529]

gap> GcdInt(138153809229555633320990299469,
> 145730407810127891189961221324529);
1

There is an important property of the greatest common divisor, given in the
following theorem.

THEOREM 1.2: The Greatest Common Divisor Theorem
Given two positive integers x and y, the greatest common divisor of x and y

is the smallest positive integer which can be expressed in the form

ux+ vy

with u and v being integers.

PROOF Let A denote the set of all positive numbers that can be expressed
in the form u · x + v · y. Note that both x and y can be written in the form
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u · x + v · y, so we can consider the smallest positive number n that can be
written in the form u · x + v · y. Note that GCD(x, y) is a factor of both x
and y, so GCD(x, y) must be a factor of n.

Next, consider the number

k ≡ x (Mod n) with 0 ≤ k < n.

Then k = x + nr for some number r. But n = ux + vy for some numbers u
and v. Thus,

k = x+ (ux+ vy)r = (1 + ru)x+ (rv)y,

so k is in A. But since n is the smallest positive integer in A, k cannot be
equivalent (Mod n) to any number less than n, other than 0. Thus,

x ≡ 0 (Mod n).

Therefore, n is a divisor of x. By a similar reasoning, n is also a divisor of y.
Thus, n is a common divisor of x and y, and since the GCD(x, y) is in turn a
divisor of n, n must be equal to GCD(x, y).

We can find the numbers u and v from the greatest common divisor theorem
(1.2) using either Mathematica or GAP. The Mathematica command

ExtendedGCD[105, 196]
{7, {-13, 7}}

gives the GCD to be 7, and also says that u = −13 and v = 7 will satisfy
theorem 1.2, so (−13) · 105 + 7 · 196 = 7. The corresponding GAP commands

gap> GcdInt(105,196);
7
gap> Gcdex(105,196);
rec( gcd := 7, coeff1 := -13, coeff2 := 7, coeff3 := 28,
coeff4 := -15 )

give even more information. The u and v are given by coeff1 and coeff2,
giving the same result as Mathematica, but GAP gives two more numbers
that can be added (or subtracted) to u and v to produce different answers.
Thus, u = −13 + 28 = 15 and v = 7 + (−15) = −8 is another solution.

In the last section we found that the invertible elements modulo n had
many of the properties of Terry’s dance steps. We now can determine which
numbers less that n have a multiplicative inverse modulo n.

PROPOSITION 1.5

Let n be in Z+. Then for x between 0 and n−1, x has a multiplicative inverse
modulo n if, and only if, x is coprime to n.
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PROOF If x and n are not coprime, then there is a common prime factor
p. In order for x to have a multiplicative inverse, there must be a y such that

x · y ≡ 1 (Mod n)

But this means that xy = 1 + wn for some w. This is impossible, since xy is
a multiple of p, but 1 + wn is one more than a multiple of p.

Now suppose that x and n are coprime. By the greatest common divisor
theorem (1.2), there are u and v in Z such that

ux+ vn = GCD(x, n) = 1.

But then
ux = 1 + (−v)n,

and so u · x ≡ 1 (Mod n). Hence, u is a multiplicative inverse of x.

There is another property of modular arithmetic involving coprime numbers
that will be used often throughout the book, known to the ancient Chinese.

THEOREM 1.3: The Chinese Remainder Theorem
If u and v in Z+ are coprime, then given any x and y in Z, there is a unique
k in Z such that

0 ≤ k < u · v,

k ≡ x (Mod u),

and
k ≡ y (Mod v).

PROOF Ironically, the way that we will show that there is such a number
is to show that there cannot be more than one such number!

Suppose we have two different numbers, k and q, which satisfy the above
conditions. Then

k − q ≡ 0 (Mod u) and k − q ≡ 0 (Mod v).

Thus, k−q must be a multiple of both u and v. But since u and v are coprime,
the least common multiple of u and v is u ·v. Thus, k− q is a multiple of u ·v.

However, both k and q are less then u · v. So the only way this is possible
is for k − q = 0, which contradicts our assumption that k and q were distinct
solutions.

Thus, we have shown that there cannot be more than one value for k. But
how does that help us prove that there must be such a k? Notice that for any
number k,

k (Mod u)
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can have u possible values, from 0 to u− 1. Also,

k (Mod v)

can have v possible values, from 0 to v − 1. Thus, for any k, there are only
u · v possible values for the ordered pair

(k (Mod u), k (Mod v)).

What is shown above is that no two values of k between 0 and u · v − 1 can
give the same ordered pair. But there are exactly u · v such values of k.

Imagine having u · v “pigeonholes” labeled by these ordered pairs. If one
has u · v pigeons and u · v pigeonholes, and each pigeon goes into a pigeonhole
with no two pigeons going into the same hole, then every hole must be filled!

In the same way, since each of the u · v possible values of k produces one of
the u · v possible ordered pairs, and no two k’s can produce the same ordered
pair, each ordered pair must be produced by some (unique) value of k. And
this is what we wanted to prove.

This proof introduced a second technique to prove theorems, called the
pigeonhole principle. Whenever we have a mapping from n objects into n
other objects, and there are no duplications, then there must be a one-to-one
correspondence between the two sets of objects. This is an important principle
that we will use several times throughout this book.

Ironically, using the pigeonhole principle does not give us a way (short of
trial and error) of finding the value of k. However, there is a GAP command
that finds k given the 2 sets {u, v} and {x, y}:

gap> ChineseRem([125,81],[23,17]);
4148
gap> 4148 mod 125;
23
gap> 4148 mod 81;
17

1.4 The Definition of a Group

We are now ready to try to generalize the examples we have studied. We
will define a group abstractly using only the properties that all of our examples
had in common.

DEFINITION 1.3 A group is a set G together with an operation (·) such
that the following four properties hold:

1. (closure) For any x and y in G, x · y is in G.
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2. (identity) There exists a member e in G which has the property that
e · x = x · e = x for all x in G.

3. (inverse) For every x in G, there exists a y in G, called the inverse of x,
such that x · y = e.

4. (associative law) For any a, b, and c in G, then (a · b) · c = a · (b · c).

Terry’s dance steps give us the first example of a group, more commonly
referred to as the group of symmetries of a triangle, D3.

The members of the group, whether they are numbers, dance steps, or
even ordered pairs, are called the elements of the group. The element e that
satisfies property 2 is called the identity element of the group.

The mathematical notation for an element x to be in a group G is

x ∈ G.

Since propositions 1.1, 1.2, and 1.3 used only these four properties, the proofs
are valid for all groups, using the identity element e in place of the dance step
Stay.

Other examples of groups come from modular arithmetic. For n in Z+, we
considered the elements

{0, 1, 2, ..., n− 1},

with the operator (·) being the sum modulo n. This group will be denoted
Zn.

We also considered having the operator (·) denote the product modulo n,
and considered only the set of numbers less than n that are coprime to n.
Proposition 1.4 shows that this set also has the four properties of groups. We
will refer to this group by Z∗n.

The groups Zn and Z∗n had a fifth property—the multiplication tables were
symmetric about the northwest to southeast diagonal. Not all groups have
this property, but those that do are important enough to give such groups a
special name.

DEFINITION 1.4 A group G is abelian (or commutative) if x · y = y · x
for all x, y ∈ G.

Although these definitions appear to be ad hoc, in fact the four properties
of groups have been carefully chosen so that they will apply to many different
aspects of mathematics. Here are some important examples of groups that
appear on other contexts besides group theory:

Example 1.1
The set of integers Z, with the binary operation being the sum of two numbers.
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The identity element is 0, and −x is the inverse of x. This forms an abelian
group.

Example 1.2

Consider the set of rational numbers, denoted by Q. We will still use addition
for our binary operation. This is also an abelian group.

Example 1.3

Consider the set of all rational numbers except for 0. This time we will
use multiplication instead of addition for our group operation. The identity
element is now 1, and the inverse of an element is the reciprocal. This abelian
group will be denoted by Q∗.

Example 1.4

Consider the set of all linear functions of the form f(x) = mx + b, with
m, b ∈ R, m 6= 0. (The R represents the real numbers.) We multiply two
linear functions together by function composition. That is, if f(x) = mx+ b
and g(x) = nx+ c, then

f · g = g(f(x)) = n(mx+ b) + c = (mn)x+ (nb+ c).

Note that in f ·g, we do f first, then g, so that it appears reversed in g(f(x)).
This group satisfies all of the group properties, but is not abelian. For ex-
ample, if f(x) = 2x + 3 and g(x) = 3x + 2, then f · g = g(f(x)) = 6x + 11,
whereas g · f = f(g(x)) = 6x+ 7.

DEFINITION 1.5 The number of elements in a group G is called the
order of the group, and is denoted |G|. If G is has an infinite number of
elements, we say that |G| =∞.

Examples 1.1 though 1.4 have infinite order, and hence we cannot form mul-
tiplication tables for these groups. On the other hand, the smallest possible
group is given by the following example.

Example 1.5

Consider the group containing just the identity element, {e}. We can have
Mathematica give a multiplication table of this group by the following com-
mand:

InitGroup[e];
MultTable[{e}]
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· e

e e

We call this group the trivial group. The last Mathematica command intro-
duces a new command—InitGroup[ ]. This command erases all previous
groups, and designates the new identity element. The command

ClearDefs

erases all groups, and returns the dot to its standard definition.

It takes a bit more work to define the trivial group in GAP so that e is the
identity:

gap> f:=FreeGroup("e");;
gap> g:=f/[f.1];;
gap> e := g.1;;
gap> MultTable([e]);

*|e
-+-
e|e

The meaning behind the command FreeGroup will be dealt with in section 2.2.
Note that sometimes the operator (·) means addition, sometimes it means

multiplication, and sometimes it means neither. Nonetheless, we can define
xn to mean x operated on itself n times. Thus,

x = x1,

x · x = x2,

x · x · x = x3,

etc.

We want to formally define xn for any integer n. We let x0 = e, the identity
element. We then define, for n > 0,

xn = xn−1 · x.

By defining the nth power in terms of the previous power, we have defined
xn whenever n is a positive integer.

Finally, we can define negative powers by letting

x−n = (xn)−1 if n > 0.

This is an inductive definition, since it defines each power in terms of a pre-
vious power. This type of definition works well for proving simple propositions
about xn.
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PROPOSITION 1.6
If x is an element in a group G, and m and n are integers, then

xm+n = xm · xn.

PROOF If m or n are 0, this proposition is very easy to verify:

xm+0 = xm = xm · e = xm · x0, x0+n = xn = e · xn = x0 · xn.

We will now prove the statement when m and n are positive integers. If n is
1, then we have

xm+1 = x(m+1)−1 · x = xm · x1,

using the inductive definition of the power of x.
We will now proceed by means of induction. That is, we will assume that

the statement is true for n = k − 1, and then prove that it is then true for
n = k. Then we will have that, since the statement is true for n = 1, and it
is true for each number that follows, it must be true for all positive n.

Thus, we will assume that

xm+(k−1) = xm · xk−1.

But then
xm+k = xm+k−1 · x = xm · xk−1 · x = xm · xk.

Thus, by assuming the statement is true for n = k − 1, we found that it was
also true for n = k. By induction, this proves that xm+n = xm · xn for all
positive n.

Once we have the statement true for positive m and n, we can take the
inverse of both sides to give us

(xm+n)−1 = (xn)−1 · (xm)−1.

But by the definition of negative exponents, this is

x(−n)+(−m) = x−n · x−m

which, by letting M = −n and N = −m, proves the proposition for the case
of both exponents being negative.

Finally, if m and n have different signs, then (m + n) will either have the
same sign as −n, or the same sign as −m. If (m + n) has the same sign as
−n, then we have already shown that

xm = x(m+n)+(−n) = xm+n · x−n.

So we have xm · (x−n)−1 = xm+n · x−n · (x−n)−1, and hence xm+n = xm · xn.
If (m+ n) has the same sign as −m, then we have already shown that

xn = x(−m)+(m+n) = x−m · xm+n.
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So we have (x−m)−1 · xn = (x−m) · x−m · xm+n, and hence xm+n = xm · xn.
Thus we have proven the proposition for all integers m and n.

This last proof introduces an important method of proving theorems called
induction. Induction is based on the simple fact that if a set of positive
integers contains the number 1, and has the property that k is in the set
whenever k − 1 is, then the set must be all positive integers.

It is not hard to see why this must be true. If there were some positive
integer not in the set, then there must be a smallest positive integer k that
is not in the set. Since 1 is in the set, we see that k > 1, and since k is the
smallest number not in the set, k− 1 must be in the set. But the property of
the set is that if k− 1 is in the set, then k also is. So we have a contradiction,
so there is no such k, meaning the the set is indeed all positive integers.

This gives us a powerful tool for proofs. In fact, we really do not need to
introduce the variable k. To prove a statement for all positive integers n, we
can first prove the statement is true for n = 1, and then we can assume that
the statement is true for the previous case n−1. This extra information often
gives us the leverage we need to be able to prove the statement is true for n.
Here is another example of the use of induction.

PROPOSITION 1.7
If x is an element in a group G, and m and n are in Z, then

(xm)n = x(mn).

PROOF Notice that this statement is trivial if n = 0 and n = 1:

(xm)0 = e = xm·0, (xm)1 = xm = x(m·1).

We will again proceed by means of induction, which means we can assume
that the statement is true for the previous case, with n replaced by n − 1.
That is, we can assume that

(xm)n−1 = xm·(n−1).

Note that
(xm)n = (xm)n−1 · xm = xm·(n−1) · xm

By proposition 1.6, this is equal to xm·(n−1)+m = xmn.
So by induction, the proposition holds for positive n. To see that it holds

for negative n as well, simply note that

(xm)n = ((xm)−n)−1 = (x−mn)−1 = xmn.

If n is negative, then −n is positive, so the second step is valid.
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The principle of induction can easily be generalized. In proving a statement
is true for the case n, not only can we assume that it is true for n − 1, but
also we can assume that the statement is true for all values smaller than n
as well. Also, there is no reason why we must start with the number 1. Any
other integer can be used for the starting point. That is, we first prove the
statement is true for the case c. If we can then prove that the statement is
true for n, utilizing the assumption that the statement is true for all numbers
between c and n − 1, then we have successfully proven that the statement is
true for all integers greater than c. Problems 1.27 through 1.33 give some
practice for using the principle of induction.

Problems for Chapter 1

Interactive Problems

1.1 If Terry was only allowed to do the dance steps FlipRt or FlipLft, could
it get itself into all six possible positions? If possible, express the other four
dance steps in terms of these two. Either the Mathematica command

InitTerry

or the GAP command

gap> InitTerry();

reloads Terry’s group.

1.2 Repeat problem 1.1, only allow Terry to do only the steps RotRt and
RotLft.

1.3 We saw that there were exactly four numbers less than 10 which were in-
vertible modulo 10. For what other values of n are there exactly four numbers
less than n which are invertible modulo n? Use Mathematica’s circle graph to
graph the inverse functions.

1.4 According to the Chinese Remainder Theorem (1.3), there is a number
less than 77 that is congruent to 4 Mod 11, and congruent to 6 Mod 7. Find
this number, using either GAP or Mathematica to help.

1.5 The following Mathematica command creates a multiplication table of
the five elements {e, a, b, c, d}. First execute this command:

InitGroup[e];
Define[a.a, e]; Define[a.b, c]; Define[a.c, d]; Define[a.d, b];
Define[b.a, d]; Define[b.b, e]; Define[b.c, a]; Define[b.d, c];
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Define[c.a, b]; Define[c.b, d]; Define[c.c, e]; Define[c.d, a];
Define[d.a, c]; Define[d.b, a]; Define[d.c, b]; Define[d.d, e];
MultTable[{e, a, b, c, d}]

Notice that this multiplication table satisfies the “Latin square” property,
hence this multiplication satisfies proposition 1.3. Does this set form a group?
Why or why not?

Non-Interactive Problems

1.6 Suppose that Terry the Triangle has a friend who is a square. (Most of
us have had such a friend from time to time.) How many dance steps would
the square have? Construct a multiplication table of all of the square’s dance
steps. This group is referred to as D4.

1.7 Suppose that Terry has a friend who is a regular tetrahedron. (A tetrahe-
dron is a triangular pyramid.) How many dance steps would this tetrahedron
have?

1.8 Using only the four basic properties of groups, prove that there can be
only one identity element. That is, there cannot be two elements e and e′ for
which x · e = e · x = x and x · e′ = e′ · x = x for all x ∈ G.

1.9 Using only the four basic properties of groups, prove that an element
cannot have two different inverses. That is, show that there cannot be to
elements y and y′ such that both x · y = e and x · y′ = e.

1.10 Prove that if a and b are two of Terry’s dance steps, then there is a
unique dance step x such that

x · a = b.

This shows that every column in the multiplication table contains one and
only one of each element.

1.11 If two of Terry’s dance steps are chosen at random, what are the chances
that these two dance steps will commute?

Hint: There are 36 ways of choosing two dance steps. Count the number
of combinations that satisfy the equation x · y = y · x.

For problems 1.12 through 1.15: Construct a multiplication table for the set
of numbers modulo n.

Hint: Since these are the numbers that have multiplicative inverses modulo
n, proposition 1.4 shows that the multiplication table has the same properties
as Terry’s dance steps.

1.12 {1, 2, 4, 5, 7, 8}, n = 9
1.13 {1, 3, 5, 9, 11, 13}, n = 14

1.14 {1, 5, 7, 11, 13, 17}, n = 18
1.15 {1, 5, 7, 11, 13, 17, 19, 23}, n = 24
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1.16 Find the GCD of the numbers 24 and 42. Find two integers u and v
such that 24u+ 42v = GCD(24, 42).

1.17 Find the GCD of the numbers 100 and 36. Find two integers u and v
such that

100u+ 36v = GCD(100, 36).

Hint: Examine the multiples of 36, in particular the last two digits.

1.18 Find a positive integer k < 35 such that

k ≡ 1 (Mod 5) and k ≡ 0 (Mod 7).

Then find an integer p < 35 such that

p ≡ 0 (Mod 5) and p ≡ 1 (Mod 7).

Show how you can use p and k to compute a number n such that

n ≡ x (Mod 5) and n ≡ y (Mod 7)

for a given x and y. The number n does not have to be less than 35.

1.19 Let u, v, and w be three positive integers that are mutually coprime.
That is, each is coprime to the other two. Given any x, y, and z in Z, prove
that there is a unique number k such that

0 ≤ k < u · v · w,

k ≡ x (Mod u),

k ≡ y (Mod v),

and
k ≡ z (Mod w).

Hint: Use the Chinese remainder theorem (1.3).

1.20 Suppose that S is a finite set (not necessarily a group) which is closed
under the operator (·). Suppose also that the equation

a · x = a · y

holds if, and only if, x = y. Prove proposition 1.3 holds for the set S, even if
S is not a group.

Hint: Use the pigeonhole principle.

1.21 Consider the set of all non-negative integers, with addition as the binary
operation. Is this a group? Why or why not?
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1.22 If G is a group such that x2 = e for all elements x in G, prove that G
is commutative.

1.23 Let G be a group. Show that G is commutative if, and only if, (a ·b)2 =
a2 · b2 for all a and b in G.

1.24 Let G be a finite group that contains an even number of elements.
Show that there is at least one element besides the identity such that a2 = e.

Hint: Show that there are an even number of elements for which a2 6= e.

1.25 Let G be a finite group. Show that there are an odd number of elements
that satisfy the equation a3 = e.

1.26 The following is a partially filled-in multiplication table for a group of
order 8.

a b c d e f g h

a b d c

b g e h

c e d g

d h b f

e c

f e b a

g e a g b

h a c

Fill in the remaining spaces in this multiplication table so that the resulting
set forms a group.

Hint: Once the row and column of the identity element are filled in, the
remaining table can be finished using only the Latin square property.

1.27 Use induction to prove that for all positive integers n,

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

1.28 Use induction to prove that for all positive integers n,

1 + 3 + 5 + · · ·+ (2n− 1) = n2.

1.29 Use induction to prove that for all positive integers n,

12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.
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1.30 Use induction to prove that for all positive integers n,

13 + 23 + 33 + · · ·+ n3 =
n2(n+ 1)2

4
.

1.31 Use induction to prove that for all positive integers n,

1 · 2 + 2 · 3 + 3 · 4 + · · ·+ n(n+ 1) =
n(n+ 1)(n+ 2)

3
.

1.32 Use induction to prove that for all positive integers n,

1
1 · 2

+
1

2 · 3
+

1
3 · 4

+ · · ·+ 1
n(n+ 1)

=
n

n+ 1
.

1.33 Use generalized induction to prove that all integers greater than 1 are
either prime, or can be written as a product of primes.
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Chapter 2

The Structure within a Group

2.1 Generators of Groups

In this section we study finite groups, such as Terry’s group, Zn, and Z∗n.
By observing the properties of a single element within such a group, we gain
insight on how to program Mathematica©R or GAP to work with finite groups.

We begin with the group Z10, which is loaded into Mathematica with the
command

DefSumMod[10]

We can map each element x to the element x · 3 with a circle graph

CircleGraph[{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, Add[3] ]
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This graph allows us to visualize powers of 3 in the group Z10. If we follow
the arrows starting with 0, we have the sequence {0, 3, 6, 9, 2, 5, 8, 1, 4, 7, 0 . . .}.
This tells us that

30 = 0, 31 = 3, 32 = 6, 33 = 9, 34 = 2, etc.

Recall that for this group the dot represents addition, so an exponent would
represent repeated addition. Note that every element in the group can be

27
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expressed as a power of 3. This property does not hold for all elements, since
the powers of 4 are seen to be {0, 4, 8, 2, 6, 0, 4, 8, . . .}, which does not include
all of the elements.

DEFINITION 2.1 We’ll say that the element g ∈ G is a generator of
the group G if every element of G can be expressed as a power of g.

The natural question that arises is whether a given element is a generator
of a group. This is not difficult for the group Zn.

PROPOSITION 2.1
The generators of Zn are precisely the integers between 0 and n that are

coprime to n.

PROOF Suppose that g is a generator of Zn. Then 1 is able to be
expressed as a power of g, so we have that

gv ≡ 1 (Mod n)

for some v. Since the group action of Zn is addition, raising to a power is
equivalent to repeated addition, or standard multiplication. Thus, we have
that

gv ≡ 1 (Mod n).

By proposition 1.5, there is such a v if, and only if, g is coprime to n.
Now suppose that g is coprime to n. By proposition 1.5, there is a v such

that
gv = gv ≡ 1 (Mod n).

So 1 can be expressed as a power of g. But 1 is a generator of Zn, and so every
element of Zn can be expressed as a power of 1, say 1w. Then that element
can be written as g(vw) = (gv)w = 1w. So every element can be expressed as
a power of g, hence g is a generator of Zn.

The count of numbers less than n that are coprime to n is called the Euler
totient function of n, and is denoted φ(n). Thus, the number of generators of
Zn is precisely φ(n). A small table of this function up to n = 36 is given in
table 2.1.

For larger values of n, we can use the Mathematica command EulerPhi or
the GAP command Phi.

EulerPhi[60]

gap> Phi(60);
16
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TABLE 2.1: Table of φ(n)
n φ(n) n φ(n) n φ(n) n φ(n)
1 1 10 4 19 18 28 12
2 1 11 10 20 8 29 28
3 2 12 4 21 12 30 8
4 2 13 12 22 10 31 30
5 4 14 6 23 22 32 16
6 2 15 8 24 8 33 20
7 6 16 8 25 20 34 16
8 4 17 16 26 12 35 24
9 6 18 6 27 18 36 12

Hence, there are 16 generators of Z60. Both programs use the following for-
mula for the totient function based on the prime factorization of the number.

THEOREM 2.1: The Totient Function Theorem
If the prime factorization of n is given by

n = pr11 · p
r2
2 · · · p

rk

k ,

where p1, p2, p3, . . . , pk are distinct primes, and r1, r2, r3, . . . , rk are positive
integers, then the count of numbers less then n which are coprime to n is

φ(n) = (p1 − 1) · p(r1−1)
1 · (p2 − 1) · p(r2−1)

2 · · · · · (pk − 1) · p(rk−1)
k .

PROOF To begin, let us show that if p is a prime, then φ(pr) = (p−1)pr−1.
Note that the only numbers that are not coprime to pr will be multiples of

p. So of the numbers between 1 and pr, exactly 1/p of them will be multiples
of p. The remaining (1− 1/p) · pr will be coprime, and this can be simplified
to (p− 1)pr−1.

Next we want to show that if n andm are coprime, then φ(nm) = φ(n)φ(m).
Let A denote the set of numbers that are less than n, but coprime to n. Let
B denote the set of numbers that are less than m, but coprime to m.

Then for any number coprime to n ·m, that number, modulo n, must be
in the set A, while that number, modulo m, must be in B. Yet for every a in
A and b in B, there is, by the Chinese remainder theorem, a unique number
less than n ·m that is equivalent to a (Mod n) and b (Mod m). This number
will be coprime to both n and m, and hence will be coprime to n ·m.

Therefore, we have a one-to-one correspondence between ordered pairs
(a, b), where a is in A, and b is in B, and numbers coprime to n ·m. Thus, we
have

φ(n ·m) = φ(n) · φ(m).

Finally, we can combine these results together. By simply noting that if

n = pr11 · p
r2
2 · · · p

rk

k ,
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then pr11 , pr22 , pr33 , . . . , p
rk

k will all be coprime. Hence, we can find φ for each
of these terms, and multiply them together, giving us our formula.

We can also consider finding generators for the groups of the form Z∗n. For
example Z∗10 has four elements, {1, 3, 7, 9}, and we find that two of these are
generators, 3 and 7. But Z∗8 also has four elements, {1, 3, 5, 7}, yet none of
these elements are generators of the group! This becomes apparent as we look
at the multiplication table for Z∗8 .

gap> MultTable([1,3,5,7]);

or, in Mathematica,

DefMultMod[8]
MultTable[{1, 3, 5, 7}]

· 1 3 5 7

1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

Notice that the square of every element is equal to 1. Hence no element of Z∗8
can generate the whole group.

DEFINITION 2.2 We say a group is cyclic if there is one element that
can generate the entire group.

Although we have seen an example of a finite group that is not cyclic, we
will later see that the structure of any finite abelian group can be expressed
in terms of the cyclic groups.

Even when a group is not cyclic, we sometimes can find two elements by
which every element of the group can be expressed. For example, consider
the two elements 3 and 5 from the group Z∗8 . Since 1 = 3 · 3 and 7 = 3 · 5, we
find that all four elements of the group can be written as some combination
of 3 and 5. We say that the set {3, 5} generates the group.

Finally, consider the group of the dancing triangle, whose multiplication
table is given in table 1.2. By experimenting, we find that no single element
can generate the entire group. However, there are many ways in which we can
have two elements generating the entire group. For example, if we pick the
two elements RotRt and Spin, we find that the other four elements can be
expressed in terms of these two: Stay = Spin ·Spin, FlipRt = Spin ·RotRt
FlipLft = RotRt · Spin, and RotLft = RotRt ·RotRt.

One of the keys for entering a group into Mathematica is finding one or two
elements (or sometimes even three are needed) that will generate the entire
group. This information begins to reveal the structure of the group itself.
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2.2 Defining Finite Groups in Mathematica and GAP

For some groups there is a single element that generates the entire group,
whereas in other groups two or more elements are required. In this section
we will show how a finite group can be entered into Mathematica or GAP
using a set of elements that generates the group. We will begin with a cyclic
group Zn which has a single generator which we will call x. By the pigeonhole
principle, the sequence of n elements

e = x0,

x = x1,

x · x = x2,

x · x · x = x3,

· · · · · ·
x · x · x · · · · · x = x(n−1),

must mention every element of Zn exactly once. This gives us a way to label
the elements of Zn in terms of the generator x. We also find that xn = e.
Thus, we can define the group Zn merely by saying “x is a generator of the
group, and n is the lowest number such that xn is the identity.”

There are Mathematica routines that allow us to quickly make these defi-
nitions. The two statements

InitGroup[e]
Define[x̂5, e]

define x5 to be the identity e. This alone is sufficient to define the group Z5.
To view this group, we use the command

Z5 = Group[{x}]

which gives a list of all of the elements in the group, and assigns this list to
the identifier Z5. The multiplication table for this group produced by the
MultTable command is shown in table 2.2.

Once the group is defined, we can multiply elements of the group with the
dot, and Mathematica will simplify them.

xˆ4 . xˆ4
x . x . x

Notice that the elements can be entered into Mathematica using the power
notation, but they are displayed as a repeated product. Although the notation
{0, 1, 2, 3, 4} is more concise for this particular example, the use of generators
is more versatile, since almost all finite groups can be expressed in an easy
way using generators.

To define the same group in GAP using generators, we begin by defining
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TABLE 2.2: Table of Z5

· e x x · x x · x · x x · x · x · x
e e x x · x x · x · x x · x · x · x
x x x · x x · x · x x · x · x · x e

x · x x · x x · x · x x · x · x · x e x

x · x · x x · x · x x · x · x · x e x x · x
x · x · x · x x · x · x · x e x x · x x · x · x

gap> f := FreeGroup("x");
<free group on the generators [ x ]>
gap> AssignGeneratorVariables(f);
#I Assigned the global variables [ x ]

There may also be a warning message saying that x was defined to be some-
thing else, but just ignore this warning. This defines a group with a generator
of x, and in fact inverses are automatically defined. GAP uses a star instead
of a dot for multiplication.

gap> x^5 * x^-7;
x^-2

At this point, though, we have an infinite group. We still need to declare that
x5 = e. We do this by defining another group g as follows:

gap> g := f/[x^5];
<fp group on the generators [x]>
gap> AssignGeneratorVariables(g);
#I Global Variable ‘x’ already defined and will be overwritten
#I Assigned the global variables [ x ]

The f/[x̂5] is GAP’s way of declaring x5 to be the identity. At this point,
g is defined to be the new group. To find its size and list its elements, we can
use the commands
gap> Size(g);
5
gap> List(g);
[ <identity ...>, x, x^2, x^3, x^4 ]

The identity element of the group is listed as <identity ...>, which of course
is the yet unnamed identity element. But the multiplication table can still be
displayed.

gap> MultTable(g);

* |e x x^2 x^3 x^4
---+-----------------------
e |e x x^2 x^3 x^4
x |x x^2 x^3 x^4 e
x^2|x^2 x^3 x^4 e x
x^3|x^3 x^4 e x x^2
x^4|x^4 e x x^2 x^3
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When the table is displayed, the identity element is displayed as e, making the
table more concise that its Mathematica counterpart. The identity element
can be given any name by changing the variable DisplayIdentity, which has
a default setting of "e". If we multiply elements together,

gap> x^4 * x^4;
x^8

we find it doesn’t simplify yet. If we give the command

gap> SetReducedMultiplication(g);
gap> x^4 * x^4;
x^-2

then GAP will simplify products, but not always to the same product that
Mathematica will simplify it to.

For an example requiring two generators, consider Z∗8 , which can be gener-
ated by a = 3 and b = 5. This group can be entered into Mathematica with
the commands:

InitGroup[e]
Define[a.a, e]
Define[b.b, e]
Define[b.a, a.b]
G = Group[{a, b}]

Note that we needed an extra Define statement to let Mathematica know
that a and b commute with each other. We can actually define several groups
at the same time in Mathematica, as long as we use the same symbol for the
identity element. However, the command

InitGroup[e]

clears all previously defined groups. This group can be defined in GAP in a
similar way.

gap> f:=FreeGroup("a","b");;
gap> AssignGeneratorVariables(f);
#I Assigned the global variables [ a, b ]
gap> h:=f/[a^2,b^2,a*b*a*b];;
gap> List(h);
[ <identity ...>, a, b, a*b ]
gap> MultTable(h);

* |e a b a*b
---+------------------
e |e a b a*b
a |a e a*b b
b |b a*b e a
a*b|a*b b a e
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FIGURE 2.1: Three books that can be rearranged

By using a different identifier h for the new group, we still have the older
group g defined in terms of the different generator x. Notice that in GAP,
we “divide” f by a list of combinations that should reduce to the identity
element. Instead of declaring b · a = a · b as we did in Mathematica, we are
declaring that a · b · a · b = e. In problem 2.18, we see that this is equivalent
to saying b · a = a · b.

To do group operations, we still need the following commands:

gap> AssignGeneratorVariables(h);
#I Global variable ‘a’ already defined and will be overwritten
#I Global variable ‘b’ already defined and will be overwritten
#I Assigned the global variables [ a, b ]
gap> SetReducedMultiplication(h);
gap> b*a;
a^-1*b^-1

Clearly GAP’s definition of simplest form is not the same as Mathematica!
In GAP’s “dictionary,” a−1 comes before a, and SetReducedMultiplication
will put the element into a form with the fewest multiplications, and for a
tie-breaker, GAP finds the form that comes first in a dictionary. Since GAP
considers a−1 coming before a, a−1 ∗ b−1 is before the simpler looking a ∗ b.

Here is another example of a group. Suppose we have three different books
on a shelf, and we consider rearrangements of the books. Such a group of
arrangements can be entered in Mathematica with the command

InitBooks[3]

which begins by showing three differently colored books, as in figure 2.2. Two
ways we could rearrange the books are to swap the first two books, or move
the first book to the other end, sliding the other two books to the left. These
two operations can be animated in Mathematica by

MoveBooks[First]
MoveBooks[Left]

By letting e be the identity element, a be the first rearrangement, and b be
the rearrangement moving the books to the left, we find that all possible
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permutations of the books are generated by a and b. Since a2 = b3 = e,
and the combination a · b essentially switches the last two books, we see that
(a · b)2 = e. Thus, we can define this group in GAP by

gap> f := FreeGroup("a","b");;
gap> a := f.1;;
gap> b := f.2;;
gap> g := f/[a^2, b^3, (a*b)^2];;
gap> a := g.1;;
gap> b := g.2;;
gap> List(g);
[ <identity ...>, a, b, a*b, a*b*a, b*a ]
gap> MultTable(g);

* |e a b a*b a*b*a b*a
-----+----------------------------------------
e |e a b a*b a*b*a b*a
a |a e a*b b b*a a*b*a
b |b b*a a*b*a a e a*b
a*b |a*b a*b*a b*a e a b
a*b*a|a*b*a a*b e b*a b a
b*a |b*a b a a*b*a a*b e

Notice that instead of using AssignGeneratorVariables, we set a to f.1,
meaning the first generator of f , and set b to f ’s second generator, f.2.
Later, we set a and b to the generators of g. This is precisely what the
AssignGeneratorVariables command did.

To define this group in Mathematica, we begin with

InitGroup[e]
Define[â2, e]
Define[b̂3, e]

We also have to define b · a in terms of a · b, just as we did in defining Z∗8 . We
observe that b · a = a · b · b instead of a · b. So to finish defining this group, we
have

Define[b.a, a.b.b]
G = Group[{a, b}]

This group is called S3, the permutation group on three objects. (Obviously it
makes no difference what the three objects are. Books are just one possibility.)
Table 2.3 shows the multiplication table.

Although many of the properties of groups can be verified by looking at the
table, the associativity is not obvious. We can have Mathematica verify that
the associative property holds for G with the command

CheckGroup[G]

If we try to take an inverse of an element using Mathematica,

(a.b)̂(–1)
b−1 · a−1
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TABLE 2.3: Multiplication table for S3

· e a b a · b b · b a · b · b
e e a b a · b b · b a · b · b
a a e a · b b a · b · b b · b
b b a · b · b b · b a e a · b
a · b a · b b · b a · b · b e a b

b · b b · b a · b e a · b · b b a

a · b · b a · b · b b a b · b a · b e

we find that Mathematica uses proposition 1.2 to express the answer in terms
of a−1 and b−1. But unlike GAP, Mathematica does not yet know the inverses
of a and b. We can remedy the situation with two more Define commands:

Define[â(–1), a]
Define[b̂(–1), b.b]

Mathematica can now find the inverse of any element x by entering either x−1

or 1/x.
Although the two programs display the elements of the group differently,

we can get GAP to display a table very similar to Mathematica’s with the
commands

gap> L := ListGroup(g);
[ <identity ...>, a, b, a*b, b^2, a*b^2 ]
gap> MultTable(L);

which will force the elements to be in a certain order in the table, and ex-
pressed in a certain way.

The multiplication tables for Terry’s group and S3 are very similar. By color
coding the elements in the table, we see that the color patterns of the two
multiplication tables are identical. Thus, these two groups behave in exactly
the same way, even though the elements have different names. We say that
these groups are isomorphic. We will cover isomorphic groups in chapter 4.

Finally, let us consider the group of rotations on the octahedron. Mathe-
matica’s command

ShowOctahedron

displays a colored octahedron like the one in figure 2.2. There are eight
triangles forming this solid. Three ways of rotating this figure are given by

RotateOctahedron[a]
RotateOctahedron[b]
RotateOctahedron[c]
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FIGURE 2.2: Octahedron with eight equilateral triangles

The first of these flips the front horizontal edge, turning it upside down. The
second rotates the closest face counterclockwise, while the third rotates the
closest vertex clockwise. If we let e be the identity element of this group, it
is easy to see that

a2 = e, b3 = e, c4 = e,

and hence
a−1 = a, b−1 = b2, c−1 = c3.

After some experimenting, we find that b · a · b · a = e, c · b · c · c · a = e, and
c · a · c3 · a · b = e. From these identities, we can come up with the identities

b · a = (b · a)−1 = a−1 · b−1 = a · b2.

c · b = (c · c · a)−1 = a−1 · c−1 · c−1 = a · c3 · c3 = a · c2 · c4 = a · c2.

c · a = (c−1 · a · b)−1 = b−1 · a−1 · c = b2 · a · c = b · a · b2 · c = a · b4 · c = a · b · c.

This allows us to define b · a, c · a, and c · b in terms of operations that
are performed in alphabetical order. This is the key to defining a group in
Mathematica.

InitGroup[e];
Define[â2, e]
Define[b̂3, e]
Define[ĉ4, e]
Define[1/a, a]
Define[1/b, b̂2]
Define[1/c, ĉ3]
Define[b.a, a.b.b]
Define[c.a, a.b.c]
Define[c.b, a.c.c]
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G = Group[{a, b, c}]
{e, a, b, c, a · b, a · c, b · b, b · c, c · c, a · b · b, a · b · c, a · c · c, b · b · c,
b · c · c, c · c · c, a · b · b · c, a · b · c · c, a · c · c · c, b · b · c · c, b · c · c · c,
a · b · b · c · c, a · b · c · c · c, b · b · c · c · c, a · b · b · c · c · c}

By expressing the product of any two generators in terms of a combination in
alphabetical order, Mathematica will make replacements in any combination
until it is finally a combination of generators in alphabetical order, and then
stop. We will cover the details of this process in section 8.3.

We call this group the octahedral group. The command

Length[G]

shows this group has 24 elements. This group is too large to print a complete
multiplication table, but Mathematica is able to produce a color-coded table
for groups of up to 27 elements.

The corresponding GAP commands for this group are

gap> f:=FreeGroup("a","b","c");; a:=f.1;; b:=f.2;; c:=f.3;;
gap> g:=f/[a^2, b^3, c^4, b*a*b*a, c*b*c*c*a, c*a*c^3*a*b];;
gap> Size(g);
24
gap> a:=g.1;; b:=g.2;; c:=g.3;;
gap> SetReducedMultiplication(g);
gap> G := List(g);
[ <identity ...>, a^-1*b^-1, b, a^-1*b^-1*c, c^-2, a^-1, c,
b^-1*c^-1*b^-1, b^-1, c*a^-1, c^-1*a^-1, a^-1*b^-1*c^-1,
a^-1*b, b^-1*c, c*b, c^-1, a^-1*c, b^-1*c^-2, a^-1*b*c^-1,
b*c, c^-1*b^-1, b^-1*c^-1, a^-1*c^-1, b*c^-1 ]

Unfortunately, the multiplication table for this group is much too big for the
screen in GAP. However, we can still multiply two elements in the list

gap> G[4]*G[7];
b^-1*c^-1*b^-1

and see that we will always get another member of the list. This group will
be an important example later on.

Notice that unlike Mathematica, we did not have to find b ·a, c ·a, and c ·b in
terms of elements multiplied in alphabetical order. This shows that entering
groups in GAP is actually more flexible than with Mathematica, which uses
a totally different algorithm.

2.3 Subgroups

A natural question to ask is whether we can have a smaller group inside
of a particular group. We begin by saying that H is a subset of a group G,
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denoted H ⊆ G, if H consists only of the elements of G. The empty set
{ } is always considered to be a subset, but we will restrict our attention to
non-empty subsets.

DEFINITION 2.3 We say that H is a subgroup of G if H is a non-empty
subset of G and H is a group with respect to the operation (·) of G.

To see if H is a group, we must test all four of the group properties. But
the associative property of H is guaranteed because the original group G is
associative. The remaining three properties,

1. H is closed under multiplication. That is, x · y ∈ H whenever x and
y ∈ H.

2. The identity element of G is in H.

3. Every element of H has its inverse in H. That is, x−1 ∈ H whenever
x ∈ H.

can be combined into one simple test.

PROPOSITION 2.2
Let H ⊆ G and H 6= { }. Then H is a subgroup of G if, and only if, we have

x · y−1 ∈ H for all x, y ∈ H.

PROOF First of all, we need to see that if H is a subgroup, then x · y−1

is in H whenever x and y are in H. By property (3), y−1 is in H, and so by
property (1), x · y−1 is in H.

Conversely, let us suppose that H ⊆ G, H 6= { }, and whenever x, y ∈ H,
then x ·y−1 ∈ H. We need to see that properties (1) through (3) are satisfied.

Since H is not the empty set, there is an element x in H, and so x ·x−1 = e
is in H. Thus, property (2) holds.

Next, we have that if y is in H, then e · y−1 = y−1 is in H, and so property
(3) holds.

Finally, if x and y are in H, then y−1 is in H, and so x · (y−1)−1 = x · y is
in H. Thus, property (1) also holds.

Let us look at S3, defined in Mathematica by the commands

InitGroup[e];
Define[â2, e]
Define[b̂3, e]
Define[b.a, a.b.b]
Define[1/a, a]



40 Abstract Algebra: An Interactive Approach

Define[1/b, b̂2]
G = Group[{a, b}]

or by the GAP commands

gap> f:=FreeGroup("a","b");; a:=f.1;; b:=f.2;;
gap> g:=f/[a^2, b^3, (a*b)^2];; a:=g.1;; b:= g.2;;
gap> G := ListGroup(g);
[ <identity ...>, a, b, a*b, b^2, a*b^2 ]

We can find smaller groups within this one, such as

H = {e, b, b2}.

It is easy to see that if x and y are in H, then x · y−1 is in H. Therefore, this
is a subgroup.

Next, consider the group Z. If we let k be any integer then we can let

kZ = {k · x | x ∈ Z}

denote the multiples of k. Since the difference of two multiples of k is again
a multiple of k, kZ is a subgroup of Z.

If we take the intersection H∩K of two subgroups of G, we can ask whether
we will obtain another subgroup of G. For both Mathematica and GAP,
this is done by the command Intersection. For example, we can take the
intersection of two sets

H = {e, b, b̂2}
K = {e, a}
Intersection[H, K]

or in GAP

gap> e := Identity(g);
<identity ...>
gap> H := [e, b, b^2];;
gap> K := [e, a];;
gap> Intersection(H, K);
[ <identity ...> ]

to find the set of all elements in common with H and K. Note that sets are
entered using curly braces in Mathematica, but with square brackets in GAP.
Moreover, we can consider taking the intersection of a collection of many sets.
If we let

gap> L := [[e, a, b], [e, a*b, b], [e, a, b, b^2]];;

L = {{e, a, b}, {e, a·b, b}, {e, a, b, b̂2}}

then L represents a “set of sets.” We can take the intersection of all of the
sets in this collection with the command
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Intersection[L]

or

gap> Intersection(L);
[ <identity ...>, b ]

The mathematical notation for this intersection is⋂
H∈L

H.

PROPOSITION 2.3
Given a group G and a non-empty collection of subgroups, donated by L, then

the intersection of all of the subgroups in the collection

H∗ =
⋂
H∈L

H

is a subgroup of G.

PROOF First of all, note that H∗ is not the empty set, since the identity
element is in each H in the collection. We now can apply proposition 2.2. Let
x and y be two elements in H∗. Then, for every H ∈ L we have x, y ∈ H.
Since each H is a subgroup of G, we have

x · y−1 ∈ H.

Therefore, x · y−1 is in H∗, and so H∗ is a subgroup of G.

This proposition allows us to generate a subgroup of G from any subset of
G.

DEFINITION 2.4 Given a subset S of a group G, we define the subgroup
generated by S to be

[S] =
⋂
H∈L

H

where L denotes the collection of subgroups of G that contain the set S.

Actually, [S] is the smallest subgroup of G that contains S. Hence, we can
determine [S] another way. It is clear that [S] contains all of the products of
the form

x1 · x2 · x3 · · · · · xn,

where either
xk ∈ S or x−1

k ∈ S (1 ≤ k ≤ n).
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But the set of all such products forms a subgroup H of G that contains S.
Thus, H = [S].

The command Group finds [S] for any set S. Thus, we can find the subgroup
of S3 generated by the element b by the Mathematica command

Group[{b}]

which produces the subgroup {e, b, b2} we observed before. The corresponding
GAP commands are

gap> Group(b);
Group([ b ])
gap> List(last);
[ <identity ...>, b, b^2 ]

Notice that the Group command in GAP did not automatically list out the
elements in the subgroup. We needed an extra List command to see the
elements. The subgroup generated by the set {b, a · b} is

gap> List(Group(b, a*b));
[ <identity ...>, b*a*b, b, a*b, b^2, b^2*a*b ]

or

Group[{b, a.b}]

which produces the entire group. Note that if SetReducedMultiplication is
not entered in GAP, the elements may appear in nonstandard combinations.
Had we entered

gap> SetReducedMultiplication(g);
gap> List(Group(b, a*b));
[ <identity ...>, a^-1, b, a^-1*b, b^-1, a^-1*b^-1 ]

we would get exactly the same thing as List(g).
Let’s look at a larger group. The following Mathematica and GAP com-

mands reload the octahedral group of order 24:

InitGroup[e];
Define[â2, e]; Define[b̂3, e]; Define[ĉ4, e]
Define[1/a, a]; Define[1/b, b̂2]; Define[1/c, ĉ3]
Define[b.a, a.b.b]; Define[c.a, a.b.c]; Define[c.b, a.c.c]
G = Group[{a, b, c}]

gap> f:=FreeGroup("a","b","c");; a:=f.1;; b:=f.2;; c:=f.3;;
gap> g:=f/[a^2, b^3, c^4, b*a*b*a, c*b*c*c*a, c*a*c^3*a*b];;
gap> a:=g.1;; b:=g.2;; c:=g.3;;
gap> SetReducedMultiplication(g);
gap> h := List(g);
[ <identity ...>, a^-1*b^-1, b, a^-1*b^-1*c, c^-2, a^-1, c,
b^-1*c^-1*b^-1, b^-1, c*a^-1, c^-1*a^-1, a^-1*b^-1*c^-1,
a^-1*b, b^-1*c, c*b, c^-1, a^-1*c, b^-1*c^-2, a^-1*b*c^-1,
b*c, c^-1*b^-1, b^-1*c^-1, a^-1*c^-1, b*c^-1 ]
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With the command

Group[{c}]
or
gap> List(Group(c));
[ <identity ...>, c^-2, c, c^-1 ]

we find that [{c}] is a subgroup of order 4. Likewise, [{b, c}] produces the
whole group. Hence, the octahedral group can be generated in GAP with just
two of the elements. For convenience, we originally used three elements to
define the group in Mathematica. Besides, it is easier to put the octahedron
back into its original position using three types of rotations instead of just
two.

Finally, the subgroup

Group[{a, b}]
or
gap> List(Group(a,b));
[ <identity ...>, a^-1*b^-1, b, a^-1, b^-1, a^-1*b ]

is simply another copy of the group S3. Thus, there is a copy of S3 inside of
the octahedral group. Notice that in GAP, the set of elements does not have
to be enclosed as a set (this is optional), whereas Mathematica does require
the elements to be in a set, even if there is only one element.

Let us now consider the cyclic subgroups of a group G. Notice that if we
pick any element x of G, then [{x}] will always be a cyclic subgroup of G.
This subgroup is usually denoted by [x].

DEFINITION 2.5 Let G be a group and let x be an element in G. We
define the order of x to be |[x]|. That is, if [x] is finite the order of x is the
number of elements in [x]. If [x] is an infinite group we define the order of x
to be infinity.

PROPOSITION 2.4
Suppose that the element x has finite order n. Then n is the smallest positive

integer such that xn = e. Furthermore,

[x] = {e, x, x2, x3, . . . , xn−1}.

PROOF Since [x] is finite, not all of the elements {x0, x1, x2, x3, x4, . . .}
can be distinct. Suppose that xp = xq for two integers p and q, with p > q.
Then x(p−q) = e and (p−q) > 0. So there exists a positive integer r such that
xr = e. We can let n be the smallest such integer. We want to prove that

[x] = {e = x0, x1, x2, x3, . . . , xn−1}
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with these elements distinct. Indeed, if xp = xq with 0 ≤ q < p ≤ n− 1, then
xp−q = e and 0 < p− q < n, which contradicts the definition of n. Therefore,
the elements in

{e = x0, x1, x2, x3, . . . , xn−1}
are all distinct.

Finally, we need to show that if y is in [x], then there exists a q such that
xq = y, with 0 ≤ q ≤ n − 1. But y = xk for some k ∈ Z. We can define
q = k (Mod n). Then 0 ≤ q ≤ n − 1 and furthermore, there is an integer r
such that k − q = n · r. Thus,

y = xk = x(nr+q) = (xn)r · xq = er · xq = xq.

So every element of [x] is of the form xq, with 0 ≤ q ≤ n− 1.

PROPOSITION 2.5
Suppose that x has infinite order. Then xn is not the identity element for all

nonzero integers n. Furthermore,

[x] = {. . . , x−3, x−2, x−1, x0 = e, x1, x2, x3, . . .},

where the powers of x are all distinct.

PROOF Suppose that xn = e for some nonzero n. It suffices to consider
the case n > 0, for if xn = e, then x−n = e.

By exactly the same reasoning as was used to prove proposition 2.4, we see
that

[x] = {e = x0, x1, x2, x3, . . . , xn−1}.
But this contradicts the fact that [x] was infinite. Therefore, xn = e only if
n = 0.

Moreover, if xp = xq, then xp−q = e and so p− q = 0 by what we have just
proved. Thus, the powers of x are all distinct.

Even though the group in proposition 2.5 cannot be defined in Mathematica
because it is infinite, it can be defined in GAP. In fact, we defined an infinite
group in the process of defining all of the other groups. If we have x as the
generator of an infinite group, then the group is defined by the following:

gap> f:=FreeGroup("x");; x := f.1;;
gap> Size(f);
infinity
gap> x^4 * x^-7;
x^-3

Granted, we cannot display all of the elements as we did for the other groups
(List(f) produces an error message), but we can still multiply elements of
this group.
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Because of propositions 2.4 and 2.5, we know that any cyclic group G is
either a finite group

G = {e, x, x2, x3, . . . , xn−1}

which resembles the group Zn, or is an infinite group

G = {. . . , x−3, x−2, x−1, x0 = e, x1, x2, x3, . . .},

which resembles the group Z.
We can use Mathematica or GAP to quickly find the order of any element in

the group. For example, to find the order of the element b ·c of the octahedral
group (which was not erased by the infinite group, since it used different
generators), we type

Length[Group[{b.c}]]

or

gap> Order(b*c);
4

to see that the order of this element is 4. We can also use Mathematica to
find the number of elements of a group of a given order. For example, we can
find the number of elements of order 2 by squaring all of the elements, and
counting the number of times the identity appears. Of course the identity
squared will be the identity, which we do not count. For example, the number
of elements of order 2 of the group Z12

DefSumMod[12]
G = Group[{1}]

can by found by the command

Ĝ2
{0, 2, 4, 6, 8, 10, 0, 2, 4, 6, 8, 10}

which computes the square of each element in the group. Only 0 and 6 satisfy
x2 = 0, and 0 is of order 1. Thus, there is only one element of order 2 in the
group Z12.

This trick of raising the entire list to a power will not work in GAP. However,
we can apply a function to all of the elements in a list with a special feature
of GAP’s List command.

gap> f:=FreeGroup("x");; x := f.1;;
gap> g:=f/[x^12];; x:=g.1;;
gap> Z12 := List(g);
[ <identity ...>, x^9, x^4, x^6, x, x^3, x^8, x^10, x^5, x^7,
x^2, x^11 ]

gap> List(Z12, Order);
[ 1, 4, 3, 2, 12, 4, 3, 6, 12, 12, 6, 12 ]
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When the List command has a second argument, it applies this function to
every element in the list. This is a handy shortcut for sending each element
of the list into any function. Using either Mathematica or GAP, we see that
there is only one element of order 2, two elements each of order 3, 4, and 6,
and four elements of order 12.

It is apparent that finding the number of elements of order k involves finding
the number of solutions to the equation xk = e. To help us find the number of
solutions for a cyclic group, let us first prove the following proposition about
modular multiplication.

PROPOSITION 2.6
Let n and k be two positive integers. Then

x · k ≡ 0 (Mod n)

if, and only if,
x =

a · n
GCD(n, k)

for some integer a.

PROOF First of all, notice that if

x =
a · n

GCD(n, k)
,

then
x · k =

a · n · k
GCD(n, k)

= a · n · k

GCD(n, k)
.

and since GCD(n, k) is a divisor of k, we see that x · k is a multiple of n.
Thus,

x · k ≡ 0 (Mod n).

Now suppose that x · k is a multiple of n. We want to show that

a =
x ·GCD(n, k)

n

is in fact an integer. By the greatest common divisor theorem (1.2), there
exist integers u and v such that GCD(n, k) = u · n+ v · k. Then

a =
x · (u · n+ v · k)

n
= x · u+

x · k · v
n

.

Since x · k is a multiple of n, we see that a is an integer. Thus,

x =
a · n

GCD(n, k)
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for some integer a.

We can now find the number of elements in a cyclic group that satisfies the
equation xk = e.

COROLLARY 2.1
There are precisely GCD(n, k) elements of Zn such that xk = e.

PROOF Let z be a generator of Zn, and let x = zy be an element of Zn.
Then xk = (zy)k = zy·k, which is equal to the identity if and only if

y · k ≡ 0 (Mod n).

By proposition 2.6, this is true if and only if

y =
a · n

GCD(n, k)

for some integer a. Hence, the number of possible values of y between 0 and
n− 1 for which zy·k = e is

n

n/GCD(n, k)
= GCD(n, k).

Each such value of y between 0 and n−1 produces a different solution x = zy,
so there are exactly GCD(n, k) solutions.

We are now ready to consider a more complicated group. One of the puz-
zles that is related to the Rubik’s Cube©Ris called the PyraminxTM. The
PyraminxTM consists of a triangular pyramid, with each of the four triangu-
lar sides partitioned into nine smaller triangles. The four “tips” can rotate,
but this does not affect the puzzle. The command

ShowPuzzle

shows a simplified puzzle with the four tips chopped off, as in figure 2.3. In
fact, removing the four tips gives us the advantage of being able to see the
colors on the back side of the puzzle through the hole created. Now the four
corners of this puzzle can rotate clockwise, using the commands

RotatePuzzle[f ]
RotatePuzzle[b]
RotatePuzzle[l]
RotatePuzzle[r]

We can always put the puzzle back into its original form with the command

ResetPuzzle
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FIGURE 2.3: The PyraminxTM puzzle without tips

The set of all actions on the puzzle forms a group, called the PyraminxTM

group. This group is generated by the elements {t, b, r, l}, and has over 900,000
elements! We can animate a sequence of moves as we did for the octahedron:

RotatePuzzle[b.f ]

We can find the order of this element by repeatedly executing this command
until the puzzle is back in order. In this particular case, the order of the
element b · f is 15, meaning that we have to execute this procedure 15 times
before we are back where we started.

Throughout this course, we will develop tools to work with groups that
will help us to solve this puzzle, and others like it. The solution to the
PyraminxTM, for example, is covered in section 8.4.

Problems for Chapter 2

Interactive Problems

2.1 Use Mathematica’s circle graph to find all of the generators of the group
Z21.

2.2 Use Mathematica or GAP to see if there an element of Z∗25 that generates
Z∗25. If so, how many such elements are there?

2.3 Use Mathematica or GAP to define a group that has two elements, a and
b, such that a5 = b4 = e, and b · a = a2 · b. (In GAP, use (b · a)/(a2 · b) = e.)
How many elements does this group have?
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2.4 Use problem 2.3 to find the subgroup generated by the set {a, b2}. How
many elements does this subgroup have?

2.5 Use Mathematica to find the order of the elements b · f , b · f · r · f · f ,
and f · b · r in the PyraminxTM group.

2.6 Can you use Mathematica to find an element of the PyraminxTM group
that has order 30?

Hint: Exactly five of the six edges must be moved out of place. The sixth
edge must flip as well.

2.7 Find all of the generators of the group Z24. Then have Mathematica or
GAP construct a multiplication table for the group Z∗24.

2.8 Since the elements b and c could generate the octahedral group, define
this group in GAP using only b and c.

Hint: Besides b3 = e and c4 = e, GAP will need one more equation. What
is the order of b2 · c?

2.9 Define a group in GAP that is generated by two elements a and b, with
a3 = b5 = (a · b)2 = e. How big is the group?

Non-Interactive Problems

For problems 2.10 through 2.12: Find all of the generators of the following
groups. How many generators are there?

2.10 Z∗9 2.11 Z∗14 2.12 Z∗18

For problems 2.13 through 2.16: Use the totient function theorem (2.1) to
find the size of the following groups:

2.13 Z∗100 2.14 Z∗1200 2.15 Z∗1260 2.16 Z∗3675

2.17 Using the totient function theorem (2.1), prove that there is no value
of n for which φ(n) = 14.

2.18 Show that if a2 = b2 = e, then saying that b · a = a · b is equivalent to
saying that a · b · a · b = e.

2.19 In defining S3, we used three facts about the group: a2 = e, b3 = e,
and b · a = a · b2. Using just these facts without Mathematica or GAP, prove
that b2 · a = a · b.

2.20 The group defined in problem 2.3 has elements a and b such that a5 = e,
b4 = e, and b ·a = a2 · b. Using just these facts without Mathematica or GAP,
prove that b3 · a = a3 · b3.
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2.21 Write down the multiplication table for the group of symmetries of a
regular tetrahedron.

Hint: Consider the octahedron with the red, yellow, orange, and cyan faces
extended as to cover the other four faces. This gives us a tetrahedron, so
the symmetries of a tetrahedron must be a subgroup of the octahedral group.
Number the elements 1, 2, 3, . . . , 9, T, E,W, with 1 as the identity element.
Then fill in the rest of the table. Once several elements are put in, use the
Latin square property to speed up the process.

2.22 Suppose we considered rearranging four books on a shelf instead of
three. How many ways could we rearrange the books?

For problems 2.23 through 2.25, find all of the subgroups of the following
groups:

2.23 Z12 2.24 Z20 2.25 Z∗15 (see table 1.4)

2.26 Use geometry to figure out how many elements of the octahedral group
are of order 4. (Rotations by 90 degrees.) How many elements are of order
3? Of order 2? Check these figures by adding up these numbers, and adding
one for the identity element, and show that this gives 24.

2.27 Prove that no element of the PyraminxTM group can have order greater
than 30.

Hint: Consider corners and edges separately. See the hint for problem 2.6.

2.28 Use corollary 2.1 to find the number of solutions to the equation x9 = e
in the group Z18. How many solutions are there to the equation x3 = e in
this group? How many elements of order 9 are in this group?

Hint: For an element to be of order 9, it must solve x9 = e, and not solve
xn = e for any lower value of n.

2.29 Using only corollary 2.1, determine the number of elements of Z42 that
are of order 6. (See the hint for problem 2.28.)

2.30 Prove that any subgroup of a finite cyclic group is cyclic.

2.31 Prove that if k is a divisor of n, then there are exactly φ(k) elements
of the group Zn that are of order k.

Hint: First do the case when n = k. Then use corollary 2.1 to show that
the number of elements of order k for the groups Zn and Zk is the same.

2.32 Use problem 2.31 to show that

n =
∑
k|n

φ(k)

where the sum has one term for each positive divisor k of n.
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2.33 If a cyclic group has an element of infinite order, how many elements
of finite order does it have? Prove your answer.

2.34 Let p be a prime number. If a group G has more than p− 1 elements
of order p, prove that G cannot be a cyclic group.

2.35 Let G be an abelian group. Show that the set of elements of G that
has finite order forms a subgroup of G. This subgroup is called the torsion
subgroup of G.

2.36 Let G be an arbitrary group, with a and b two elements of G. Show
that a · b and b · a have the same order.

Hint: First show by induction that (a · b)n = a · (b · a)(n−1) · b.

2.37 Suppose that G is a group with exactly one element of order 2, say x.
Prove that x · y = y · x for all y in G.

2.38 Let p be an odd prime number, and let G = Z∗p . Show that the set

H = {x2 | x ∈ Z∗p}

forms a subgroup of G of order (p−1)/2. This subgroup H is called the group
of quadratic residues modulo p.

Hint: Once you have shown that H is a subgroup, show that

x2 ≡ 1 (Mod p)

has exactly two solutions. Finally show that every element of H is derived
from exactly two elements of Z∗p .
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Chapter 3

Patterns within the Cosets of
Groups

3.1 Left and Right Cosets

We introduced subgroups in the last chapter, but left many questions unan-
swered. For example, is there any relationship between the size of the group
and the size of one of its subgroups?

In this chapter we will introduce the tool of cosets to determine many of the
properties of subgroups, including what possible sizes the subgroups could be.
To understand cosets, let us begin by looking at some cases where an element
does not generate the group, in hopes of finding some patterns in the circle
graphs. For example, consider the element 4 from the group Z10. This element
does not generate the entire group, as evident from the two types of arrows
in the circle graph.

DefSumMod[10]
CircleGraph[{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, Add[4] ]
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The solid arrows connect the points {0, 2, 4, 6, 8}, while the dotted arrows
connect the points {1, 3, 5, 7, 9}. Thus, the group is partitioned into two sets,
and no arrow connects these two.
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One of the two sets is actually a subgroup of Z10, the subgroup generated
by the element 4. The other set is obtained by adding 1 to each element of
the subgroup. Similar patterns arise when we use different elements of Z10

instead of 4.
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FIGURE 3.1: Circle graphs showing the cosets of [Stay, Spin]

We can try a similar partitioning on non-abelian groups, such as Terry’s
group. If we consider forming a circle graph that sends each element to that
element multiplied by Spin, we immediately see that we have a choice as to
whether we have x map to x ·Spin or to Spin ·x. The circle graph for the first
option is shown in the left half of figure 3.1. This leads to a partition of the
group into the sets {Stay, Spin}, {RotRt, FlipLft}, and {RotLft, FlipRt}.
The latter option, shown on the right side of figure 3.1, is to multiply on the
right instead of the left, giving the partition {Stay, Spin}, {RotRt, FlipRt},
and {RotLft, FlipLft}. In both cases, one of the sets in the partition is the
subgroup H = {Stay, Spin}, but the other sets are different.

DEFINITION 3.1 Let G be a group, and let H be a subgroup of G. If
x is an element of G, we define the set

xH = {x · y | y ∈ H}.

The set xH is called a left coset of H. Likewise,

Hx = {y · x | y ∈ H}

is a right coset of H.

Mathematica©R mimics this notation. Thus,
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H . RotRt

forms a right coset by multiplying every element in H by RotRt. Likewise

RotRt . H

forms a left coset. In GAP, though, we use a function Mult which multiplies
two sets of elements from a group. The first argument gives the entire group,
and the next two arguments can either be an element or a set of elements
from this group.

gap> InitTerry();
[ Stay, FlipRt, RotRt, FlipLft, RotLft, Spin ]
gap> H := [Stay, Spin];;
gap> Mult(Terry, H, RotRt);
[ FlipRt, RotRt ]
gap> Mult(Terry, RotRt, H);
[ RotRt, FlipLft ]

We will denote the set of all left cosets of the subgroup H of G by G/H,
and will denote the set of all right cosets of this subgroup by H\G. Notice
that the notation for right cosets uses a backward slash. In both cases, the
subgroup can be considered to be on the “bottom,” but since a right coset
Hx has the subgroup on the left, we use H\G, which also has H on the left,
to list all such right cosets.

Mathematica and GAP find all left and right cosets of G with H with the
commands

LftCoset[G, H]
and
RtCoset[G, H]

gap> LftCoset(Terry,H);
[ [ Stay, Spin ], [ FlipRt, RotLft ], [ RotRt, FlipLft ] ]
gap> RtCoset(Terry,H);
[ [ Stay, Spin ], [ FlipRt, RotRt ], [ FlipLft, RotLft ] ]

Each coset is displayed as a list of elements, so we end up with a “list of
lists,” giving all of the cosets.

We immediately see some patterns in the cosets. First of all, all of the
cosets are the same size. Also, every element of the group appears once, and
only once, in each of the two coset lists. We will prove that these patterns are
true in general with two lemmas.

LEMMA 3.1
Let G be a group and H be a finite subgroup of G. Then all left and right

cosets of G with respect to H contain |H| elements.
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PROOF It is clear from the definitions that Hu and uH each contains at
most |H| elements. In order to prove that the number is exactly |H| we need
to show that two distinct elements of H produce two different elements in the
cosets. Suppose that this were not the case in a right coset. We would have
two different elements x and y in H for which

x · u = y · u,

but multiplying on the right by u−1 gives x = y, a contradiction. Similar
reasoning works for left cosets. If

u · x = u · y,

multiplying on the left by u−1 shows that x = y.

Next we must show that every element of G is in exactly one left coset and
one right coset. This can be worded as follows:

LEMMA 3.2
If two left or two right cosets have an element in common, they are in fact

the same coset. That is,

Hx ∩Hy 6= { } implies that Hx = Hy,

and
xH ∩ yH 6= { } implies that xH = yH.

PROOF We begin with right cosets. Suppose there is an element g ∈
Hx ∩Hy. Then there are elements h and k in H such that

g = h · x = k · y.

Therefore,
x = h−1 · k · y,

and so

(∗) Hx = Hh−1 · k · y.

Since H is a subgroup, h−1 · k ∈ H, so that H · h−1 · k ⊆ H. Moreover, if u
is in H, then

u = (u · k−1 · h)(h−1 · k) ∈ Hh−1 · k.

Therefore
H ⊆ Hh−1 · k,

and we have shown that H = Hh−1 · k. Combining this with (∗) gives us
Hx = Hy.



Patterns within the Cosets of Groups 57

We can do left cosets in the same way. If there is an element g ∈ xH ∩ yH,
then there are elements h and k in H such that

g = x · h = y · k.

Therefore,
x = y · k · h−1,

and so
xH = y · k · h−1H = yH.

With these two lemmas, we can show that the size of any subgroup is related
to the size of the original group.

THEOREM 3.1: Lagrange’s Theorem
Let G be a finite group, and H a subgroup of G. Then the order of H divides

the order of G. That is, |G| = k · |H| for some positive integer k.

PROOF We can use either left cosets or right cosets to prove this, so let
us use right cosets. Every element of x in G is contained in at least one right
coset. For example, x is contained in Hx. Let k be the number of distinct
right cosets. Then, if the right cosets are

Hx1, Hx2, Hx3, . . . ,Hxk,

we can write
G = Hx1 ∪Hx2 ∪Hx3 ∪ · · · ∪Hxk.

The ∪’s represent the union of the cosets. But by lemma 3.2, there are no
elements in common among these sets, and so this union defines a partition
of G. By lemma 3.1, each cosets contains |H| elements. So |G| = k · |H|.

Lagrange’s theorem, which seems apparent when looking at the cosets of a
subgroup, turns out to have some far-reaching consequences. Let us look at
some of the results that can be obtained using Lagrange’s theorem.

COROLLARY 3.1
Let G be a finite group, and let x be an element of G. Then the order of x

divides |G|.

PROOF The order of x equals the order of the subgroup [x] of G. There-
fore, by Lagrange’s theorem (3.1), the assertion follows.

COROLLARY 3.2
Let G be a finite group of order n and let x be an element of G. Then

xn = e.
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PROOF Let m denote the order of x. By corollary 3.1, n = mk for some
integer k. Then we have xn = xmk = (xm)k = ek = e.

COROLLARY 3.3
A group of prime order is cyclic.

PROOF Suppose G is of order p, which is prime. Then the only positive
divisors of p are 1 and p, so by Lagrange’s theorem (3.1) any subgroup must
be of order 1 or p. If x is any element of G besides the identity, then [x]
contains x as well as the identity. Thus, G = [x] so G is cyclic.

COROLLARY 3.4
Let n be a positive integer, and x a number coprime to n. Then

xφ(n) ≡ 1 (Mod n),

where φ(n) is Euler’s totient function.

PROOF We simply apply corollary 3.2 to the group Z∗n. This group has
φ(n) elements, and if x is coprime to n then x is a generator of Zn, so x is in
Z∗n.

In particular, when n = p is prime, we have

xp−1 ≡ 1 (Mod p).

This result is known as Fermat’s little theorem.

DEFINITION 3.2 If H is a subgroup of G, we define the index of H in
G, denoted [G:H], to be the number of right cosets in H\G. Of course this
is the same as the number of left cosets in G/H.

Notice that when G is a finite group we have by the argument in Lagrange’s
theorem (3.1) that |G| = |H| · [G:H].

3.2 How to Write a Secret Message

It was mentioned in the last section that Lagrange’s theorem (3.1) has some
far-reaching implications. One of these implications is the ability to write a
message that no one can read except for the person to whom the message is
sent, even if the whole world knows the code!
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To introduce this code, we begin by considering the group Z∗33, whose order
is φ(33) = 20. The elements of Z∗33 are

{1, 2, 4, 5, 7, 8, 10, 13, 14, 16, 17, 19, 20, 23, 25, 26, 28, 29, 31, 32}.

Consider the mapping that sends every element to its square. In essence we
are defining a function f(x) = x2 on this group. We can make a circle graph
in Mathematica that maps each element to its square by the command

DefMultMod[33]
CircleGraph[{1,2,4,5,7,8,10,13,14,16,17,19,20,23,25,26,28,29,31,32},
Pow[2]]

which produces figure 3.2.
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FIGURE 3.2: Circle graph for squaring in Z∗33

This graph is rather perplexing. The squares of 2, 13, 20, and 31 are all 4.
The elements having “square roots” have four of them, while the majority of
the elements do not have square roots.

If we try cubing each element instead, using the command

CircleGraph[{1,2,4,5,7,8,10,13,14,16,17,19,20,23,25,26,28,29,31,32},
Pow[3]]

we get figure 3.3. This graph has a very different behavior: no two elements
have the same cube. Also, every element has a “cube root.” The terminology
used for standard functions over the real numbers can be used for functions
defined on groups.
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FIGURE 3.3: Circle graph for cubing in Z∗33

DEFINITION 3.3 We say that a function f(x) is one-to-one if the only
way for f(x) = f(y) is for x = y. We say that a function f(x) is onto if for
every y, there is an x such that f(x) = y.

In terms of the circle graphs, a one-to-one function cannot have two arrows
pointing to the same point. Likewise, an onto function will have at least one
arrowhead at each point. We see from figure 3.3 that the cube function is
both one-to-one and onto. Thus, every element has a unique cube root.

In fact, the cube root of any element in this group can be found by taking
the seventh power of the element! This is because φ(33) = 20, so using
corollary 3.4,

(x3)7 = x21 = x20 · x = e · x = x.

The key difference between the squaring function and the cubing function
stems from the fact that 3 is coprime to φ(33) = 20, whereas 2 is not.

PROPOSITION 3.1

Suppose G is a finite group of order m, and that r is some integer which is
coprime to m. Then the function f(x) = xr is one-to-one and onto. In other
words, we can always find the unique r-th root of any element in G.

PROOF Since G is of order m, we have by corollary 3.2 that xm = e for
all x in G. If r and m are coprime, then r is a generator in the additive group
Zm. But this means that r is an element of the group Z∗m, and so there is an
inverse element s = r−1. Thus, s · r ≡ 1 in Z∗m. Another way we could say
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this is
sr = km+ 1

for some integer k.
Now we are ready to take the r-th root of a number. If y is an element of

G, then the r-th root of y in G is merely ys. To see this, note that

(ys)r = ysr = y(km+1) = (ym)k · y = ek · y = y.

So ys is one r-th root of a. But ys must be a different element for every y in
G, since the r-th power of ys is different. Since the r-th root of every element
of G is accounted for, by the pigeonhole principle there cannot be two r-th
roots to any element. Thus, ys gives the unique r-th root of y in G.

Let us now consider the cubes of all numbers from 0 to 32. This will no
longer be a group, since we have included non-invertible elements. But with
the circle graph shown in figure 3.4, we find that the mapping x→ x3 is still
one-to-one and onto. Thus, we can still find the cube root of a number modulo
33 by taking the seventh power modulo 33. The reason is given in the next
proposition.
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FIGURE 3.4: Circle graph for cubing modulo 33

PROPOSITION 3.2
Suppose n is a product of two distinct primes and

r · s ≡ 1 (Mod φ(n)).

Then for all values of x less then n,

(xr)s ≡ x (Mod n).
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PROOF If x is coprime to n, then proposition is true by proposition 3.1.
Suppose x is not coprime to n = p · q, where p and q are the two distinct
primes. By the totient function theorem (2.1), φ(n) = (p − 1) · (q − 1). The
number x would be a multiple of either p or q, say p. Then

xr·s = (p · a)r·s = pr·s · ar·s

will be a multiple of p. Also, x is not a multiple of q since x is less than
n. Since r · s ≡ 1 (Mod (p − 1)(q − 1)), r · s ≡ 1 (Mod (q − 1)). Thus, by
proposition 3.1 again, we have

xrs ≡ x (Mod q).

Since we also have xrs ≡ x (Mod p), by the Chinese Remainder Theorem
(1.3), we have, since p and q are coprime,

xrs ≡ x (Mod pq = n).

The function x → x3 is not only one-to-one and onto, but also mixes up
the numbers 0 through 32 fairly well. This suggests an encryption scheme.
We can first convert a message to a sequence of numbers using table 3.1. For
example,

CAN YOU READ THIS

becomes
3, 1, 14, 0, 25, 15, 21, 0, 18, 5, 1, 4, 0, 20, 8, 9, 19.

The encryption scheme is to replace each number with its cube, modulo 33.

TABLE 3.1: Standard code sending
letters to numbers

A = 1 J = 10 S = 19
B = 2 K = 11 T = 20
C = 3 L = 12 U = 21
D = 4 M = 13 V = 22
E = 5 N = 14 W = 23
F = 6 O = 15 X = 24
G = 7 P = 16 Y = 25
H = 8 Q = 17 Z = 26
I = 9 R = 18 Space = 0.

This gives us

27, 1, 5, 0, 16, 9, 21, 0, 24, 26, 1, 31, 0, 14, 17, 3, 28.
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To decipher this, one would take the seventh power of each number in the
sequence modulo 33, and convert back to letters in the alphabet.

The main drawback with this code is that, for longer messages, the letter
E which encodes to 26 would appear most frequently in the encoded string.
Someone who didn’t know the code might deduce that 26 stands for E without
knowing anything about algebra. But also anyone who knew how to encrypt
the message could use proposition 3.1 to decipher the message, for they could
deduce that 7 is the inverse of 3 modulo 20. What we need is a code in which
everyone would know how to encrypt a message, but only the person who
originated the code could decipher.

We can solve both of these problems just by picking n to be the product of
two huge prime numbers p and q, say 80 digits each. Then φ(n) = (p − 1) ·
(q − 1). We then pick r to be a number of at least four digits that is coprime
to φ(n). The encryption scheme is then

x→ y = xr (Mod n).

We decode this by finding s = r−1 in the group Z∗φ(n). By proposition 3.2,
the operation

y → x = ys (Mod n)

“undoes” the encryption, since

(xr)s = x (Mod n).

One big advantage of using huge numbers for the code is that we can encrypt
an entire line at a time. For example,

CAN YOU READ THIS

can be encrypted by the single number

0301140025152100180501040020080919

by having every two digits represent one letter (still using table 3.1). This
prevents cracking the code using the frequencies of the letters. But the unusual
advantage of this code is that only the originator of the code can decipher a
message, even if the encryption scheme and the values of n and r were made
public.

In order to decode a message, one must know the value of s, which is given
by the inverse of r (Mod φ(n)). This is easy to do with Mathematica or GAP
once φ(n) is known, but how difficult it is to find φ(n)! One needs to know the
prime factorization of n, which would be about 160 digits long. Even GAP
or Mathematica could not factor this in a reasonable amount of time. In fact,
adding two digits to p and q makes the factorization 10 times harder. So by
making the prime numbers larger, we can be assured that the factorization
cannot be done within one’s lifetime. [6, p. 21] Thus, without knowing the
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original primes p and q that were multiplied together, it is virtually impossible
to determine s.

This encryption scheme is called the Rivest-Shamir-Adleman encryption.[6,
p. 374] Both Mathematica and GAP have built in routines that allow us to
experiment with RSA encryption. The Mathematica function

p = NextPrime[123456789012345678901234567890\
12345678901234567890123456789012345678901234567890]

finds the next prime number larger than that 80 digit number. In GAP, the
corresponding function is NextPrimeInt. Since we want n to be the product
of two large primes, we will find another large prime q, and multiply these
primes together.

gap> p := NextPrimeInt(123456789012345678901234567890\
> 12345678901234567890123456789012345678901234567890);;
#I IsPrimeInt: probably prime, but not proven:
12345678901234567890123456789012345678901234567890123456789012\
345678901234567997

gap> q := NextPrimeInt(987654321098765432109876543210\
> 98765432109876543210987654321098765432109876543210);;
#I IsPrimeInt: probably prime, but not proven:
98765432109876543210987654321098765432109876543210987654321098\
765432109876543391
gap> n := p*q;;

In both GAP and Mathematica, we can use a backslash to break the input
into two lines, and it will be read as a single line. GAP issues a warning that
these numbers are only probably prime, but the odds of a non-prime number
passing the prime test are astronomically small, so we can safely assume that
these are indeed prime. This is true in Mathematica as well, but no warning
is issued. In Mathematica, we finish this up with the commands

q = NextPrime[987654321098765432109876543210\
98765432109876543210987654321098765432109876543210]
n = p q

The number n can be made public, along with any four digit number r that
is coprime to both p − 1 and q − 1. For simplicity, we will use a four digit
prime number.

r = NextPrime[1234]

gap> r := NextPrimeInt(1234);
1237

We can verify that this is coprime to (p− 1)(q − 1) by computing

GCD[ (p–1)(q–1), r ]

or
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gap> GcdInt((p-1)*(q-1), r);
1

which returns 1.
To encrypt a message, the command

x = MessageToNumber[ "HERE IS A MESSAGE"]

converts any sentence into a number. Note that the message is put in quota-
tion marks. This number can now be encrypted by the command

y = PowerMod[ x, r, n ]

In GAP, we use PowerModInt instead of PowerMod.

gap> x := MessageToNumber("HERE IS A MESSAGE");
805180500091900010013051919010705

gap> y := PowerModInt(x, r, n);
14724730500997597506102032344396082021733211823548530129332813\
79106660097841745903879602610137146145206880730757815860390004\
76825576155377145604282754058969344

Deciphering a message is very similar, only we will use the secret number
s instead of r. Suppose a friend, knowing the values of n and r, gives the
message

y = 6955740514702440687061142665742560438277560654407470\
32387700788446830783525388331288538827113160595765080505\
966693143199918635215093570816224139063616551830794

gap> y := 6955740514702440687061142665742560438277560654407470\
> 32387700788446830783525388331288538827113160595765080505\
> 966693143199918635215093570816224139063616551830794;;

To decode the message, we first need to know the value of s, which is the
inverse of r modulo (p− 1)(q − 1). Thus, the command to find s is given by

s = PowerMod[ r, –1, (p–1)(q–1) ]

gap> s := PowerModInt(r, -1, (p-1)*(q-1));;

Next, compute ys (Mod n) by the command

x = PowerMod[ y, s, n ]

Finally, the command

NumberToMessage[x]

puts the message into readable form. In GAP, these final steps are as follows:
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gap> x := PowerModInt(y, s, n);
13555570006355005170003740333000669363930052555859645400705855\
006958555493

gap> NumberToMessage(x);
"Meet me at 7:30 p.m. behind the shed."

You may notice that the encryption in table 3.1 has been expanded to allow
lower case letters and punctuation. There are many other applications to this
code besides sending secret messages. For example, suppose to get an account
at the Electronic Bank, you pick two large random prime numbers, p and q.
The bank then gives you the account number n = p · q, and a number r, and
makes these public. The bank also gives you the secret number

s = r−1 (Mod (p− 1)(q − 1)).

You use the number s to decode messages such as

MessageToNumber[
"Check 1034: Pay to the order of John Brown $43.50"]
x = PowerMod[%, s, n]

gap> MessageToNumber(
> "Check 1034: Pay to the order of John Brown $43.50");
35855536100313033344000001651750070650070585500656854556800655\
6001065586400026865736400833433933530

gap> x := PowerModInt(last, s, n);
75988620333380419175786780439758234015888858383083768972777759\
85015878822767049416948949038971220635472890765736415533604270\
75056899824700000369186330479499918

This number, along with your account number and the number r, is sent to
John Brown. His bank can verify that this number is in fact a check as follows:

y = PowerMod[ x, r, n ]
NumberToMessage[y]

gap> y := PowerModInt(x, r, n);;
gap> NumberToMessage(y);
"Check 1034: Pay to the order of John Brown $43.50"

This proves that the only person knowing s sent this message. Hence, the
encryption acts as a signature to the check. Using this method, one can send
an “electronic check” (even through e-mail) that is virtually impossible to
forge.

3.3 Normal Subgroups

We can define a product of any subset of a group G by an element of G in
the same way that we defined a product of a subgroup and an element. That
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is, if X is any subset of G, we can define

Xu = {x · u | x ∈ X}, and
uX = {u · x | x ∈ X}.

If X and Y are two subsets of a group G, we can also define

X · Y = {x · y | x ∈ X and y ∈ Y }

By defining the product of subsets in this way, we find that {u} · X = uX.
We also discover that

X · (Y · Z) = (X · Y ) · Z.

This raises some interesting questions. If X and Y are subgroups of G, will
X · Y be a subgroup? Suppose X and Y are cosets of G with respect to a
subgroup H. Will X · Y be a coset of G?

We will use the octahedral group of order 24 to experiment. In Mathematica,
this can be reloaded with the commands

InitGroup[e]; Define[â2, e]; Define[b̂3, e]; Define[ĉ4, e]
Define[1/a, a]; Define[1/b, b̂2]; Define[1/c, ĉ3]
Define[b.a, a.b.b]; Define[c.a, a.b.c]; Define[c.b, a.c.c]
G = Group[{a, b, c}];

Two sample subgroups of order 4 are given by

H = Group[{c}]
{e, c, c · c, c · c · c}

and

K = Group[{b.c}]
{e, b · c, a · b · c · c, a · b · b · c · c · c}

whose product can be computed using Mathematica.

H . K
{c, e, a · b, a · c, b · b, b · c, c · c, a · b · b, c · c · c, a · b · b · c, a · b · c · c,
a · c · c · c, b · b · c · c, b · c · c · c, a · b · b · c · c, a · b · b · c · c · c}

In GAP, the commands are

gap> f:=FreeGroup("a","b","c");; a:=f.1;; b:=f.2;; c:=f.3;;
gap> g:=f/[a^2,b^3,c^4, b*a/(a*b*b), c*a/(a*b*c), c*b/(a*c*c)];;
gap> a:=g.1;; b:=g.2;; c:=g.3;;
gap> G := ListGroup(g);
[ <identity ...>, a, b, a*b, b^2, a*b^2, c, a*c, b*c, a*b*c,
b^2*c, a*b^2*c, c^2, a*c^2, b*c^2, a*b*c^2, b^2*c^2,
a*b^2*c^2, c^3, a*c^3, b*c^3, a*b*c^3, b^2*c^3, a*b^2*c^3 ]
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gap> H := Group(c);
Group([ c ])
gap> K := Group(b*c);
Group([ b*c ])
gap> Mult(G,H,K);
[ <identity ...>, a*b^2, a*b^2*c, c^2, c, a*b^2*c^2, b^2,
a*b^2*c^3, a*b, c^3, a*c, b^2*c^2, b*c, a*b*c^2, a*c^3,
b*c^3 ]

Both GAP and Mathematica show a set containing 16 elements. This cannot
be a subgroup by Lagrange’s theorem (3.1), since 16 is not a factor of 24.
Note that by having G be the ListGroup of the group in GAP, the elements
are displayed the way Mathematica displays the elements. This causes GAP’s
output for many operations to match Mathematica’s output.

If we consider multiplying two right cosets of H, say the third and the fifth,

gap> R := RtCoset(G,H);
[ [ <identity ...>, c^2, c, c^3 ],
[ a*b^2, a*b^2*c, a*b^2*c^2, a*b^2*c^3 ],
[ b, b^2*c, a*c^2, a*b*c^3 ], [ a, a*b*c, b*c^2, b^2*c^3 ],
[ b^2, a*c, a*b*c^2, b*c^3 ], [ a*b, b^2*c^2, b*c, a*c^3 ] ]

gap> Mult(G, R[3], R[5]);
[ <identity ...>, a*b^2, b, a*b^2*c, c^2, a, c, a*b^2*c^2,
a*b*c, b*c^2, a*b^2*c^3, b^2*c, a*c^2, c^3, a*b*c^3,
b^2*c^3 ]

we get something equally fruitless. However, a left coset multiplied by a right
coset produces a glimmer of hope:

gap> L := LftCoset(G,H);
[ [ <identity ...>, c^2, c, c^3 ],
[ a*b^2, a*b^2*c, a*b^2*c^2, a*b^2*c^3 ],
[ b, b*c^2, b*c, b*c^3 ], [ a, a*c^2, a*c, a*c^3 ],
[ b^2, b^2*c, b^2*c^2, b^2*c^3 ],
[ a*b*c, a*b, a*b*c^3, a*b*c^2 ] ]

gap> Mult(G, L[3], R[5]);
[ <identity ...>, a*b^2*c, a*c^2, b^2*c^3 ]

which a MultTable command shows is indeed a subgroup. In fact, experi-
menting shows that any left coset in L times a right coset in R will give four
elements, which looks like some sort of coset.

So what happens if we find a subgroup for which the right cosets and the
left cosets are the same? Then the product of a left coset and a right coset
would merely be the product of two cosets. An example of such a subset is

M = {e, c.c, a.b.b.c, a.b.b.c.c.c}

which we can verify in Mathematica by the commands

R = RtCoset[G, M]
L = LftCoset[G, M]
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or in GAP as follows:
gap> M := Group(c^2, a*b^2*c);
Group([ c^2, a*b^2*c ])
gap> R := RtCoset(G,M);
[ [ <identity ...>, a*b^2*c, c^2, a*b^2*c^3 ],
[ a*b^2, c, a*b^2*c^2, c^3 ], [ b, a*b*c, b*c^2, a*b*c^3 ],
[ a, b^2*c, a*c^2, b^2*c^3 ], [ b^2, a*c, b^2*c^2, a*c^3 ],
[ a*b, b*c, a*b*c^2, b*c^3 ] ]

gap> L := LftCoset(G,M);
[ [ <identity ...>, a*b^2*c, c^2, a*b^2*c^3 ],
[ a*b^2, c, a*b^2*c^2, c^3 ], [ b, a*b*c, b*c^2, a*b*c^3 ],
[ a, b^2*c, a*c^2, b^2*c^3 ], [ b^2, a*c, b^2*c^2, a*c^3 ],
[ a*b, b*c, a*b*c^2, b*c^3 ] ]

Two of these cosets are

H = {a, a.c.c, b.b.c, b.b.c.c.c}
K = {b, a.b.c, b.c.c, a.b.c.c.c}

and the product H ·K turns out to be another coset. In fact, the product of
any two cosets of the subgroup M will yield a coset of M .

gap> Mult(G,R[4],R[3]);
[ a*b, b*c, a*b*c^2, b*c^3 ]

First, let us give some terminology for this special type of subgroup.

DEFINITION 3.4 A subgroup H of the group G is said to be normal
if all left cosets are also right cosets, and conversely, all right cosets are also
left cosets. That is, H is normal if G/H = H\G.

Next, we need a way to test whether a subset is normal.

PROPOSITION 3.3
A subgroup H is a normal subgroup of G if, and only if, uHu−1 = H for all

elements u in G.

PROOF First of all, suppose H is normal, and let u be an element of G.
Then uH and Hu both contain the element u. Since the left and right cosets
are the same, we have

uH = Hu.

Multiplying both sides on the right by u−1 gives

uHu−1 = Hu · u−1 = H.

Now, suppose that uHu−1 = H for all elements u in G. Then

Hu = (uHu−1) · u = uHe = uH.
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Thus, every left coset is also a right coset, and vice versa.

This gives us a way to determine if a subgroup is normal, but we can improve
on this test.

PROPOSITION 3.4
Let H be a subgroup of G. Then H is normal if, and only if,

uHu−1 ⊆ H

for all elements u ∈ G.

PROOF The “only if” part of this statement is obvious from proposi-
tion 3.3. So let us suppose that for all u in G,

uHu−1 ⊆ H.

However, since (u−1)−1 = u, we have

u−1Hu = u−1H(u−1)−1 ⊆ H.

Multiplying every element in the set by u on the left gives us Hu ⊆ uH, and
multiplying on the right by u−1 gives us H ⊆ uHu−1. Since we also have that
uHu−1 ⊆ H, we can conclude that uHu−1 = H. Then from proposition 3.3,
H is normal.

Thus, to test whether H is a normal subgroup, we simply have to show that
g ·h ·g−1 is in H whenever h ∈ H and u ∈ G. There are many other examples
of normal subgroups. For example, if G is any group, then the subgroups
{e} and G are automatically normal. These normal subgroups are said to be
trivial. If G is commutative, then any subgroup will be a normal subgroup.
Here is another way to tell a subgroup is normal.

PROPOSITION 3.5
If H is a subgroup of G with index 2, then H is a normal subgroup.

PROOF Since H is a subgroup of G with index 2, there are two left cosets
and two right cosets. One of the left cosets is eH, which is the set of elements
in H. The other left coset must then be the set of elements not in H. But
the same thing is true for the right cosets, so the left and right cosets are the
same. Thus, H is normal.

When we have a normal subgroup, the set of cosets will possess more prop-
erties than for standard subgroups. We will explore these in the next section.



Patterns within the Cosets of Groups 71

3.4 Quotient Groups

In the last section we observed a case where H was a normal subgroup of G,
and the product of two cosets yielded another coset. Let us begin by proving
that this will always happen for normal subgroups.

LEMMA 3.3
If N is a normal subgroup of G, then the product of two cosets of N is again

a coset of N . In fact,
aN · bN = (a · b)N.

PROOF We simply observe that

aN · bN = a · (Nb) ·N = a · (bN) ·N = (a · b) · (N ·N) = (a · b)N.

Note that Nb = bN because N is a normal subgroup.

This result is very suggestive. If we can multiply two cosets to produce
another coset, will the set of all cosets form a group?

THEOREM 3.2: The Quotient Group Theorem
Let N be a normal subgroup of G. Then the set of all cosets is a group, which

is denoted by G/N , called the quotient group of G with respect to N .

PROOF We simply have to check that G/N satisfies the four requirements
in definition 1.3. The closure property is given by lemma 3.3. To check
associativity,

aN · (bN · cN) = aN · (b · c)N = (a · (b · c))N
= ((a · b) · c)N = (a · b)N · cN = (aN · bN) · cN.

The identity element is eN = N , and we can check that

eN · aN = (e · a)N = aN, and
aN · eN = (a · e)N = aN.

Finally, the inverse of aN is a−1N , since

aN · a−1N = (a · a−1)N = eN = N, and
a−1N · aN = (a−1 · a)N = eN = N.

Thus, the set of all cosets forms a group.
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One of the easiest groups to consider is the group of integers Z under addi-
tion. A subgroup of Z would consist of all multiples of k, with k ≥ 0. (k = 0
and k = 1 produce the two trivial subgroups.) We will denote this normal
subgroup of Z by kZ. All elements in each coset would be equivalent modulo
k. Thus, there would be k cosets of kZ (except when k = 0). Hence, Z/kZ is
essentially the same group as Zk. The notation

x ≡ y (Mod k)

indicates that x and y belong to the same coset of the subgroup kZ.
We can extend this notation to any normal subgroup. We say that

x ≡ y (Mod N)

to indicate x and y belong in the same coset of G with respect to N . It is
easy to see that

x ≡ y (Mod N) if, and only if, x · y−1 ∈ N.

The partitioning of the cosets makes it obvious that equivalence (Mod N)
satisfies the following three properties:

1. (Reflexive) Every element x is equivalent to itself.

2. (Symmetric) If x is equivalent to y, then y is equivalent to x.

3. (Transitive) If x is equivalent to y, and y in turn is equivalent to z, then
x is equivalent to z.

DEFINITION 3.5 Any relationship that satisfies these three properties
is called an equivalence relationship.

Any equivalence naturally divides a set up into smaller subsets, where mem-
bers of each subset are equivalent to each other. These subsets are called
equivalence classes.

In the last section we found a normal subgroup of the octahedral group,
namely

M = {e, c.c, a.b.b.c, a.b.b.c.c.c}

The cosets, or equivalence classes, with respect to this subgroup are given by
the command

Q = LftCoset[G, M]

We can use Mathematica to give us a multiplication table of the quotient
group Q.
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MultTable[Q]

{a,a.c.c,b.b.c,b.b.c.c.c}

{b,a.b.c,b.c.c,a.b.c.c.c}

{c,a.b.b,c.c.c,a.b.b.c.c}

{e,c.c,a.b.b.c,a.b.b.c.c.c}

{a.b,b.c,a.b.c.c,b.c.c.c}

{a.c,b.b,a.c.c.c,b.b.c.c}
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. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .

. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . . . . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . . . . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .
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Since the names of the elements are so long, Mathematica uses a color code for
the elements, which is shown here as shading. Notice that this table is very
similar to the table for the group S3, but is not quite the same color pattern,
since the identity element of Q is not listed first. If we do these calculations
in GAP, we do not have this problem. Note: If the group is still loaded from
the last section, we can skip to the Q := RtCoset(G,M); command.

gap> f:=FreeGroup("a","b","c");; a:=f.1;; b:=f.2;; c:=f.3;;
gap> g:=f/[a^2, b^3, c^4,b*a/(a*b*b),c*a/(a*b*c),c*b/(a*c*c)];;
gap> a:=g.1;; b:=g.2;; c:=g.3;;
gap> G := ListGroup(g);
[ <identity ...>, a, b, a*b, b^2, a*b^2, c, a*c, b*c, a*b*c,
b^2*c, a*b^2*c, c^2, a*c^2, b*c^2, a*b*c^2, b^2*c^2,
a*b^2*c^2, c^3, a*c^3, b*c^3, a*b*c^3, b^2*c^3, a*b^2*c^3 ]

gap> M := Group(c^2, a*b^2*c);;
gap> Q := RtCoset(G,M);
[ [ <identity ...>, a*b^2*c, c^2, a*b^2*c^3 ],
[ a*b^2, c, a*b^2*c^2, c^3 ], [ b, a*b*c, b*c^2, a*b*c^3 ],
[ a, b^2*c, a*c^2, b^2*c^3 ], [ b^2, a*c, b^2*c^2, a*c^3 ],
[ a*b, b*c, a*b*c^2, b*c^3 ] ]

gap> NumberElements := true;;
gap> MultTable(Q);

* |1 2 3 4 5 6
-------------------------+-----------------
[e,a*b^2*c,c^2,a*b^2*c^3]|1 2 3 4 5 6
[a*b^2,c,a*b^2*c^2,c^3] |2 1 4 3 6 5
[b,a*b*c,b*c^2,a*b*c^3] |3 6 5 2 1 4
[a,b^2*c,a*c^2,b^2*c^3] |4 5 6 1 2 3
[b^2,a*c,b^2*c^2,a*c^3] |5 4 1 6 3 2
[a*b,b*c,a*b*c^2,b*c^3] |6 3 2 5 4 1
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The command NumberElements := true;; allows larger tables to be dis-
played by substituting a number for each element. Since the order of the
elements along the top is the same as the order in the leading column, it is
easy to determine which element (coset) corresponds to which number. The
group S3 is already defined in Mathematica and GAP as a subset of the oc-
tahedral group. This subset is given by

H = {e, a, b, a.b, b.b, a.b.b}

Thus, the multiplication table of S3 is given by

gap> e := Identity(g);
<identity ...>
gap> H := [e, a, b, a*b, b^2, a*b^2];;
gap> MultTable(H);

* |1 2 3 4 5 6
-----+-----------------
e |1 2 3 4 5 6
a |2 1 4 3 6 5
b |3 6 5 2 1 4
a*b |4 5 6 1 2 3
b^2 |5 4 1 6 3 2
a*b^2|6 3 2 5 4 1

With this particular arrangement of the elements, we see that the number
patterns for Q and H match. In chapter 4, we will define two groups that
have the same number or color pattern as being isomorphic.

Problems for Chapter 3

Interactive Problems

3.1 This exercise is required in order to do the RSA encryption problem 3.2
or 3.3. Using Mathematica’s NextPrime command, or GAP’s NextPrimeInt,
find two large prime numbers p and q, at least 80 digits each. This is done by
the two Mathematica commands

p = NextPrime[ large number goes here ]
q = NextPrime[ another large number goes here ]

or the GAP commands
gap> p := NextPrimeInt( large number goes here );;
gap> q := NextPrimeInt( another large number goes here );;

We will use the value r = 10007. Verify that this number is coprime to
p− 1 and q − 1 by executing the following:

GCD[(p–1)(q–1), 10007]
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or

gap> GcdInt( (p-1)*(q-1), 10007);

If this yields 10007 instead of 1, go back and find new values for p and q.
Once the GCD is 1, compute n = p · q, and save this on a thumb drive. To
do this, place your thumb drive in the computer (say it becomes the E: drive)
and enter:

n = p q
Save["E:/nfile", n]

or in GAP,

gap> n := p*q;;
gap> PrintTo("E:/nfile", "n:=",n,";");

Note: If the thumb drive is some other drive, such as the F: drive, you will
have to replace the E: with F: in the last statement, and also the statements
below. Next, find the secret number s, which deciphers a message:

s = PowerMod[10007, –1, (p–1)(q–1)]

or

gap> s := PowerModInt(10007, -1,(p-1)*(q-1));

You will want to save this number for future reference. With your thumb
drive still in the computer, enter

Save["E:/secret", s]

or

gap> PrintTo("E:/secret","s:=",s,";");

This number will be needed for future assignments. Don’t lose it! Finally,
e-mail the “nfile” file as an attachment to the professor. Alternatively, you
can cut and paste the contents of “nfile” into the body of the message. Do
not send the contents of the secret file.

3.2 Using the values of n and s from problem 3.1, send an “electronic check”
to your favorite professor for $100.00. This check will be in the form of a huge
number, x. Once this number is found, insert your thumb drive and enter

Save["E:/check", x]

or

gap> PrintTo("E:/check","x:=",x,";");

E-mail the file “check” as a file attachment, or cut and paste the contents of
the file into the body of a letter.
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3.3 After doing problem 3.1, you will receive a response with an attachment
file “message.” Save this to your thumb drive and enter

<<E:/message
<<E:/nfile
<<E:/secret

or in GAP,

gap> Read("E:/message");
gap> Read("E:/nfile");
gap> Read("E:/secret");

The first command sets y to the encrypted message, while the second com-
mand reads in your value of n. The third command loads the secret number
into s that you were asked to save in problem 3.1. Using this value of s,
decode the message and hand in (on paper) what it says.

3.4 B. L. User tried creating his encryption number with the two primes

p = NextPrime[7158702734571975487341567156785678216374\
1561519737155752525673649286739584756092]
q = NextPrime[ p+1 ]

or, in GAP,

gap> p := NextPrimeInt(7158702734571975487341567156785678216374\
> 1561519737155752525673649286739584756092);;
gap> q := NextPrimeInt(p+1);;

When he publicized the product n = pq, along with the value r = 6367, he
received a message from a friend:

y = 3092722521993064335403878476414515883199432204869058005976140\
7250735465231068482494915312824566404543856784721076165212420\
43590910817888839981759972041752306977

What did this message say?

3.5 Show that there is a group Q which is generated by two elements a and
b, for which

a4 = e, b2 = a2, b · a = a3 · b, a2 6= e.

This can be entered into Mathematica with the command

InitGroup[e];
Define[â4, e]
Define[b̂2, â2]
Define[b.a, a.a.a.b]
Q = Group[{a, b}]
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or in GAP by the commands

gap> f := FreeGroup("a","b");; a := f.1;; b := f.2;;
gap> g := f/[a^4,(b^2)/(a^2),(b*a)/(a^3*b)];;
gap> a := g.1;; b := g.2;;
gap> Q := List(g);

Find all subgroups of this group, and show that all subgroups are normal,
even though the group is non-abelian. (Write down the list of left cosets and
right cosets for each subgroup found.)

3.6 Define G = Z∗105 in Mathematica. How many elements does this group
have? Consider the subgroup H generated by the element 11. A circle graph
demonstrating the cosets G/H can be obtained by the command

CircleGraph[G, Mult[11]]

By looking at the circle graph, determine the cosets of G with respect to H.
What is the order of the element 2 ·H in the quotient group G/H?

3.7 Use Mathematica or GAP, along with a bit of trial and error, to find a
subgroup of order 12 of the octahedral group. Show that this subgroup is a
normal subgroup. The following reloads the octahedral group:

InitGroup[e]; Define[â2, e]; Define[b̂3, e]; Define[ĉ4, e]
Define[1/a, a]; Define[1/b, b̂2]; Define[1/c, ĉ3]
Define[b.a, a.b.b]; Define[c.a, a.b.c]; Define[c.b, a.c.c]
G = Group[{a, b, c}]
or

gap> f:=FreeGroup("a","b","c");; a:=f.1;; b:=f.2;; c:=f.3;;
gap> g:=f/[a^2,b^3,c^4, b*a/(a*b*b), c*a/(a*b*c), c*b/(a*c*c)];;
gap> a:=g.1;; b:=g.2;; c:=g.3;;
gap> G := ListGroup(g);;

Non-Interactive Problems

3.8 Prove that the order of Z∗n is even whenever n > 2.
Hint: Find a subgroup of order 2.

3.9 Without using Mathematica or GAP, but rather by taking advantage of
corollary 3.4, compute 521 (Mod 7) and 721 (Mod 10).

3.10 Show that if H is a subgroup of G, and the left coset xH is also a
subgroup of G, then x is in H.

3.11 Show that if an element y of a group G is in the right coset Hx, where
H is a subgroup of G, then Hy = Hx.
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3.12 Let |G| = 33. What are the possible orders for the elements of G?
Show that G must have an element of order 3.

3.13 Show that proposition 3.2 is still true if n is the product of three distinct
primes. In fact, many applications of the RSA code use three large primes
instead of two.

3.14 Show that proposition 3.2 is no longer true if we let n = p2 for some
prime p.

3.15 Show that if G is an abelian group, and X and Y are two subgroups
of G, then X · Y is a subgroup of G.

3.16 List all of the left and right cosets of the subgroup { Stay, FlipRt }
of Terry’s group. Are the left and right cosets the same?

3.17 List all of the cosets of the subgroup {0, 4, 8} of Z12.

3.18 List all of the cosets of the subgroup {1, 4} of Z∗15. (See table 1.4.)

For problems 3.19 through 3.21, write the multiplication table for the fol-
lowing quotient groups:

3.19 Z12/{0, 4, 8} 3.20 Z12/{0, 6} 3.21 Z∗15/{1, 4} (See table 1.4.)

3.22 Find all of the normal subgroups of S3. (This is Terry’s group.)

3.23 Let Q be the additive group of rational numbers. Show that the group
of integers Z is a normal subgroup of Q. Show that Q/Z is an infinite group
in which every element has finite order.

3.24 Let G be the group from example 1.4 in section 1.4, the group of linear
functions of the form f(x) = mx + b, with m, b ∈ R, m 6= 0. Let N be the
subset of G for which m = 1, that is,

N = {φ(x) = x+ b | b ∈ R}.

Show that N is a normal subgroup of G. Describe the quotient group G/N .

3.25 Let G be the group of linear functions as in problem 3.24. Let T be
the subset of G for which b = 0, that is,

T = {φ(x) = mx | m ∈ R, m 6= 0}.

Show that T is a subgroup of G, but not a normal subgroup. If f(x) = 2x+3,
describe both the left and right cosets f · T and T · f .

3.26 Prove that the quotient group of a cyclic group is cyclic.

3.27 Prove that the quotient group of an abelian group is abelian.



Chapter 4

Mappings between Groups

4.1 Isomorphisms

The quotient group G/M we saw at the end of the last chapter turned out to
be very similar to the group S3. They are technically distinct, since the names
for their elements are totally different. Yet we could find a correlation between
the elements of the two groups so that the corresponding multiplication tables
would have identical color patterns. Here is one such possible correlation
between the two groups:

e ↔ {e, c2, a · b2 · c, a · b2 · c3}
a↔ {c, a · b2, c3, a · b2 · c2}
b↔ {b, a · b · c, b · c2, a · b · c3}

a · b↔ {a, a · c2, b2 · c, b2 · c3}
b2 ↔ {a · c, b2, a · c3, b2.c2}

a · b2 ↔ {a · b, b · c, a · b · c2, b · c3}

Suppose we use this correlation to define a function f(x) sending each element
of S3 to an element of G/M . Thus,

f(e) = {e, c2, a · b2 · c, a · b2 · c3}
f(a) = {c, a · b2, c3, a · b2 · c2}
f(b) = {b, a · b · c, b · c2, a · b · c3}

f(a · b) = {a, a · c2, b2 · c, b2 · c3}
f(b2) = {a · c, b2, a · c3, b2.c2}

f(a · b2) = {a · b, b · c, a · b · c2, b · c3}

The fact that the corresponding multiplication tables have the same color
patterns can now be expressed simply by

f(x · y) = f(x) · f(y).

Also, the function f(x) maps different elements of S3 to different elements of
G/M . That is, f(x) is one-to-one, or injective. Finally, every element of G/M

79
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appears as f(x) for some element x. This is expressed by saying that f(x)
is onto, or surjective. A function that is both one-to-one and onto is called
bijective.

DEFINITION 4.1 Let G1 and G2 be two groups. An isomorphism from
G1 to G2 is a one-to-one function sending elements of G1 to elements of G2

such that
f(x · y) = f(x) · f(y) for all x, y ∈ G1.

If there exists an isomorphism from G1 to G2 that is also onto, then we say
that G1 and G2 are isomorphic, denoted by

G1 ≈ G2.

For example,
S3 ≈ G/M

because of the existence of the function f(x), which we saw was both one-to-
one and onto.

One of the important yet extremely hard problems in group theory is to
find all of the non-isomorphic groups of a given order. Although this is still
an unsolved problem, we have the following upper bound for the number of
groups.

PROPOSITION 4.1

There are at most n(n2) non-isomorphic groups of order n.

PROOF If two groups have the same multiplication table, they are isomor-
phic, so a group is completely determined by its multiplication table. Notice
that each element of this table must be one of n elements, and there are n2

entries in the table. So there are n(n2) ways of creating such a table.

Of course, not very many of these tables will actually form a group. In
fact, in some cases we can show that there is only one non-isomorphic group
of order n.

PROPOSITION 4.2

For n a positive integer, every cyclic group of order n is isomorphic to Zn.

PROOF Let G be a group of order n, and let g be a generator of G. Then
gn = e, and

G = {e = g0, g1, g2, g3, . . . , gn−1}.
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Define f : Zn → G by

f(x) = gx (0 ≤ x ≤ n− 1).

That is, f will map the elements of Zn to elements of G. Clearly f is one-to-
one and onto, and we would like to show that it is an isomorphism. Suppose
x and y satisfy

0 ≤ x, y ≤ n− 1.

We let z = x+y (Mod n). Then we can find an m such that x+y = mn+z.
Now, f(x+ y) = f(z) = gz by the definition of f . Thus,

f(x+ y) = gz = g(x+y−mn) = gx · gy · (gn)−m = gx · gy = f(x) · f(y).

Since f is an isomorphism of Zn onto G, we have G ≈ Zn.

In particular if p is prime, corollary 3.3 indicates all groups of order p are
cyclic. Thus all groups of order p are isomorphic to Zp.

For example, there is only one group each, up to isomorphism, of sizes 2,
3, 5, and 7, namely Z2, Z3, Z5, and Z7. Our goal for this section is to find all
of the possible groups, up to isomorphism, up to order 8. To help us in this
endeavor we have the following lemma.

LEMMA 4.1
Suppose a group G whose order is greater than 2 has all non-identity elements

being of order 2. Then G has a subgroup isomorphic to Z∗8 .

PROOF Since the order of G is greater than 2, there are two distinct
elements a and b besides the identity element e. Then we have a2 = b2 = e.
Consider the product a · b. It can be neither a nor b since this would imply
the other was the identity. On the other hand, a · b = e implies

a = a · e = a · (b · b) = (a · b) · b = e · b = b.

So a · b is not the identity either. So there must be a fourth element in G,
which we will call c, such that a · b = c. Since all elements of G are of order
2, we have c2 = e.

Finally, note that

b · a = e · b · a · e = a · a · b · a · b · b = a · (a · b)2 · b = a · c2 · b = a · e · b = a · b = c.

With this we can quickly find the remaining products involving a, b, and c.

c·a = b·a·a = b, c·b = a·b·b = a, a·c = a·a·b = b, b·c = b·b·a = a.

Hence, the set H = {e, a, b, c} is closed under multiplication, contains the
identity, and also contains the inverses of every element in the set. Hence, H
is a subgroup of G. The multiplication table for H
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· e a b c

e e a b c

a a e c b

b b c e a

c c b a e

shows that this is isomorphic to Z∗8 using the mapping

f(e) = 1,
f(a) = 3,
f(b) = 5,
f(c) = 7.

We can now use GAP or Mathematica©R to find all non-isomorphic groups
of order up to 8. For example, if we have a group of order 6, any element of
order 6 would imply that it is isomorphic to Z6. We can’t have all non-identity
elements to have order 2, or else lemma 4.1 would give a subset of order 4,
violating Lagrange’s theorem (3.1). Thus, there must be an element b of order
3. Then N = {e, b, b2} is a normal subgroup of order 3 by proposition 3.5. If
a2 is b or b2, then a is of order 6, so to get something different a2 must be e.
Then since N is normal b · a is either b, a · b, or a · b2. GAP can eliminate the
first two possibilities:

gap> f:=FreeGroup("a","b");; a := f.1;; b := f.2;;
gap> g:=f/[a^2, b^3, b*a/b];; a := g.1;; b := g.2;;
gap> Size(g);
3
gap> f:=FreeGroup("a","b");; a := f.1;; b := f.2;;
gap> g:=f/[a^2, b^3, b*a/(a*b)];; a := g.1;; b := g.2;;
gap> Order(a*b);
6

The first case shows that we no longer have a group with six elements (a
becomes e), and the second case still has an element of order 6. The last case
of course is the S3 we are familiar with. Hence, there are two non-isomorphic
groups of order 6, Z6 and S3.

A similar exhaustive search can be used to find all groups of order 8. If such
a group has all non-identity elements of order 2, then by lemma 4.1 there is a
subgroup {e, a, b, a · b}. By problem 1.22, the group is commutative, so if we
pick c to be any other element, then c2 = e, c · a = a · c, and c · b = b · c.

gap> f:=FreeGroup("a","b","c");; a:= f.1;; b:=f.2;; c:=f.3;;
gap> g:=f/[a^2, b^2, c^2, b*a/(a*b), c*a/(a*c), c*b/(b*c)];;
gap> Size(g);
8

So there is only one group of order 8 for which all non-identity elements are of
order 2. But we can find such a group—Z∗24, whose table is given in table 4.1.
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TABLE 4.1: Multiplication table for Z∗24

· 1 5 7 11 13 17 19 23

1 1 5 7 11 13 17 19 23
5 5 1 11 7 17 13 23 19
7 7 11 1 5 19 23 13 17
11 11 7 5 1 23 19 17 13
13 13 17 19 23 1 5 7 11
17 17 13 23 19 5 1 11 7
19 19 23 13 17 7 11 1 5
23 23 19 17 13 11 7 5 1

If |G| = 8 and G is not isomorphic to either Z8 or Z∗24, then there must
be an element b of order 4. Then S = {e, b, b2, b3} is a normal subgroup, and
we can let a be any element not in S. Since G/S has order 2, a2 must be in
S, but if either a2 = b or a2 = b3, then a will have order 8. Also, b · a 6∈ S,
but b · a 6= a, since this would force b = e. So a2 is either e or b2, and b · a is
either a · b, a · b2, or a · b3. These six possibilities can be tried out in GAP or
Mathematica.

gap> f:=FreeGroup("a","b");; a := f.1;; b := f.2;;
gap> g:=f/[a^2, b^4, b*a/(a*b^3)];; a := g.1;; b := g.2;;
gap> Size(g);
8
gap> f:=FreeGroup("a","b");; a := f.1;; b := f.2;;
gap> g:=f/[a^2/(b^2), b^4, b*a/(a*b^3)];; a := g.1;; b := g.2;;
gap> Size(g);
8
gap> f:=FreeGroup("a","b");; a := f.1;; b := f.2;;
gap> g:=f/[a^2, b^4, b*a/(a*b^2)];; a := g.1;; b := g.2;;
gap> Size(g);
2
gap> f:=FreeGroup("a","b");; a := f.1;; b := f.2;;
gap> g:=f/[a^2/(b^2), b^4, b*a/(a*b^2)];; a := g.1;; b := g.2;;
gap> Size(g);
2
gap> f:=FreeGroup("a","b");; a := f.1;; b := f.2;;
gap> g:=f/[a^2, b^4, b*a/(a*b)];; a := g.1;; b := g.2;;
gap> Size(g);
8
gap> f:=FreeGroup("a","b");; a := f.1;; b := f.2;;
gap> g:=f/[a^2/(b^2), b^4, b*a/(a*b)];; a := g.1;; b := g.2;;
gap> Size(g);
8

The first possibility gives rise to the group D4, the symmetry group of the
square studied in problem 1.6. The multiplication table shown in table 4.2
can be generated by the Mathematica commands:
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InitGroup[e];
Define[â2, e]
Define[b̂4, e]
Define[b.a, a.b.b.b]
D4 = Group[{a, b}]

TABLE 4.2: Multiplication table for D4

· e a b a · b b2 a · b2 b3 a · b3

e e a b a · b b2 a · b2 b3 a · b3

a a e a · b b a · b2 b2 a · b3 b3

b b a · b3 b2 a b3 a · b e a · b2

a · b a · b b3 a · b2 e a · b3 b a b2

b2 b2 a · b2 b3 a · b3 e a b a · b
a · b2 a · b2 b2 a · b3 b3 a e a · b b

b3 b3 a · b e a · b2 b a · b3 b2 a

a · b3 a · b3 b a b2 a · b b3 a · b2 e

The second possibility produces a new group called the quaternion group
Q, described by the following:

InitGroup[e];
Define[â4, e]
Define[b̂2, â2]
Define[b.a, a.a.a.b]
Q = Group[{a, b}]

Although the group can be defined in terms of only two generators, it is more
natural to use the notation that appears in table 4.3.

TABLE 4.3: Multiplication table for Q
· 1 I J K −1 −I −J −K
1 1 I J K −1 −I −J −K
I I −1 K −J −I 1 −K J

J J −K −1 I −J K 1 −I
K K J −I −1 −K −J I 1
−1 −1 −I −J −K 1 I J K

−I −I 1 −K J I −1 K −J
−J −J K 1 −I J −K −1 I

−K −K −J I 1 K J −I −1
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The next two possibilities failed to produce a group of order 8, and the
last two possibilities are both isomorphic to Z∗15 that we have seen before. In
summary, we have the following groups up to order 8:

n = 1: The one element must be the identity, so we have just
the trivial group, {e}.

n = 2: Since 2 is prime, the only non-isomorphic group is Z2.

n = 3: Since 3 is prime, the only non-isomorphic group is Z3.

n = 4: By lemma 4.1, there are two non-isomorphic groups: Z4 and Z∗8 .

n = 5: Since 5 is prime, the only non-isomorphic group is Z5.

n = 6: There are two non-isomorphic groups: Z6 and the
non-abelian group S3.

n = 7: Since 7 is prime, the only non-isomorphic group is Z7.

n = 8: There are three abelian groups, Z8, Z∗15, and Z∗24 and two non-abelian
groups, D4 and Q.

Finally, table 4.4 gives of the number of non-isomorphic groups of order n,
when n is not prime.

TABLE 4.4: Groups of order n
n groups n groups n groups n groups n groups
4 2 26 2 46 2 65 1 85 1
6 2 27 5 48 52 66 4 86 2
8 5 28 4 49 2 68 5 87 1
9 2 30 4 50 5 69 1 88 12

10 2 32 51 51 1 70 4 90 10
12 5 33 1 52 5 72 50 91 1
14 2 34 2 54 15 74 2 92 4
15 1 35 1 55 2 75 3 93 2
16 14 36 14 56 13 76 4 94 2
18 5 38 2 57 2 77 1 95 1
20 5 39 2 58 2 78 6 96 230
21 2 40 14 60 13 80 52 98 5
22 2 42 6 62 2 81 15 99 2
24 15 44 4 63 4 82 2 100 16
25 2 45 2 64 267 84 15 102 4
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4.2 Homomorphisms

It is easy to see the application of isomorphisms, since these functions show
how two groups are essentially the same. But suppose we have a function
between two groups for which f(x ·y) = f(x) ·f(y), but this function may not
be one-to-one or onto. Can we still glean some information about the groups
from this function?

DEFINITION 4.2 Let G and M be two groups. A function

f : G→M

mapping elements of G to elements of M is called a homomorphism if it
satisfies

f(x · y) = f(x) · f(y) for all x, y ∈ G.
The group G is called the domain of the homomorphism, and the group M
is called the target of the homomorphism. Note that a homomorphism need
not be either one-to-one or onto.

Let us look at some examples of homomorphisms.

Example 4.1
Let G be any group, and let M be a group with identity e. If we let

f(x) = e for all x ∈ G

then f will obviously be a homomorphism. This is called the trivial homo-
morphism.

Example 4.2
Let R∗ = R−{0} be the group of nonzero real numbers under multiplication,
and let f(x) = x2. This forms a homomorphism

f : R∗ → R∗,

so homomorphism maps a group onto itself. Note that this homomorphism
is neither one-to-one nor onto since f(−2) = f(2) = 4, yet there is no real
number such that f(x) = −1.

Example 4.3
We can generalize example 4.2 as follows: Let G be any commutative group,
and let n be any integer. We can define f(x) = xn. Then f(x) is a homomor-
phism from G to itself, since

f(x · y) = (x · y)n = xn · yn = f(x) · f(y).
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We can prove a few properties that must be true of all homomorphisms.

PROPOSITION 4.3
Let f : G → M be a homomorphism. Let e denote the identity of G. Then
f(e) is the identity element of M .

PROOF Since e · e = e in the group G, we have

f(e) = f(e · e) = f(e) · f(e).

Multiplying both sides by [f(e)]−1 gives us that f(e) is the identity element
of M .

PROPOSITION 4.4
If f : G→M is a homomorphism, then f(a−1) = [f(a)]−1.

PROOF We merely need to show that f(a) ·f(a−1) is the identity element
of M . If e represents the identity element of G, then

f(a) · f(a−1) = f(a · a−1) = f(e).

By proposition 4.3 this is the identity element of M . So

f(a−1) = [f(a)]−1.

To define homomorphisms using Mathematica or GAP, we must first define
the two groups G and M simultaneously. Let us first load the octahedral
group with the following commands:

InitGroup[e];
Define[â2, e]; Define[b̂3, e]; Define[ĉ4, e]
Define[1/a, a]; Define[1/b, b̂2]; Define[1/c, ĉ3]
Define[b.a, a.b.b]; Define[c.a, a.b.c]; Define[c.b, a.c.c]
Oct = Group[{a, b, c}]

Next let us define the quaternion group Q from the last section. We will use
the letters i and j for the generators.

Define[î4, e]; Define[ĵ2, î2]
Define[j.i, i.i.i.j]
Define[1/i, î3]; Define[1/j, i.i.j]
Q = Group[{i, j}]

Notice that we did not perform an InitGroup in defining the second group,
since this command would have cleared the first group.

We can define the same two groups in GAP as follows:
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gap> f:=FreeGroup("a","b","c");; a:=f.1;; b:=f.2;; c:=f.3;;
gap> Oct:=f/[a^2,b^3,c^4, b*a*b*a, c*a/(a*b*c), c*b/(a*c*c)];;
gap> SetReducedMultiplication(Oct);
gap> a:=Oct.1;; b:=Oct.2;; c:=Oct.3;;
gap> f:=FreeGroup("i","j");; i:=f.1;; j:=f.2;;
gap> Q:=f/[i^4, i^2*j*2, i*j*i*j];; i:=Q.1;; j:=Q.2;;

To define a homomorphism, we only need to tell GAP or Mathematica
where the generators are sent. Thus, to define the function

e → e,

i→ c2,

i2 → e,

i3 → c2,

j → a · b2 · c,
i · j → a · b2 · c3,
i2 · j → a · b2 · c,
i3 · j → a · b2 · c3;

we have only to define F [i] and F [j]. In GAP, this is done with the command

gap> F := GroupHomomorphismByImages(Q,Oct,[i,j],[c^2,a*b^2*c]);
[ i, j ] -> [ c^-2, a^-1*b^-1*c ]

To plug a value into this function in GAP, we use the Image command

gap> Image(F,i*j);
a^-1*b^-1*c^-1

We can use the List with the function feature to see where each element is
mapped.

gap> List(Q);
[ <identity ...>, i, j, i^2, i*j, i^3, i^2*j, i^3*j ]
gap> List(Q, x->Image(F,x));
[ <identity ...>, c^-2, a^-1*b^-1*c, <identity ...>,
a^-1*b^-1*c^-1, c^-2, a^-1*b^-1*c, a^-1*b^-1*c^-1 ]

To define this homomorphism in Mathematica, we have to first explain that
F will be a homomorphism,

Homomorph[F]

and then define this function on the generators of Q,

Define[F[i], c.c]
Define[F[j], a.b.b.c]
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Mathematica can check whether this function is a homomorphism by the com-
mand

CheckHomo[F, Q]
True

where Q is the domain of the homomorphism F . Since Mathematica returns
a value of “True,” the function F is indeed a homomorphism. (GAP auto-
matically does this check for you. Had this not been a homomorphism, GAP
would have returned “fail.”) The command

GraphHomo[F, Q]

will have Mathematica draw a picture of this homomorphism as shown in
figure 4.1.
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FIGURE 4.1: Diagram of the homomorphism F

We can apply a homomorphism f to a set of elements by applying the
homomorphism to each element in the set, and consider the set of all possible
results. For example, consider the set of real numbers S = {−2,−1, 1, 2, 3, 4}.
Let f(x) be the homomorphism in example 4.2 above, f(x) = x2. Then

f(S) = {1, 4, 9, 16}.

The set f(S) is smaller than the set S, since the homomorphism mapped two
elements to both 1 and 4.

To apply the homomorphism to a set of elements in Mathematica, we must
enclose the set inside an additional pair of curly braces to let Mathematica
know that we are considering a set , rather than a coset. For example, the set
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S = {i, i.j, i.i.i, i.i.i.j}

is a subset of Q, so we can consider applying F to this set. This is done not
by entering F[S], but by the command

F[{S}]

to keep Mathematica from interpreting S as a coset of a subgroup, which S
happens to be. GAP does not need any extra set of braces.

gap> Image(F, [i,i*j, i^3, i^3*j]);
[ c^-2, a^-1*b^-1*c^-1 ]

PROPOSITION 4.5
If f : G → M is a homomorphism and H is a subgroup of G, then f(H) is

a subgroup of M .

PROOF We want to show that f(H) is a subgroup using proposition 2.2.
If u and v are elements in f(H), there must be elements x and y in H such
that f(x) = u, and f(y) = v.

Then x · y−1 is in H, and so

f(x · y−1) = f(x) · f(y−1) = f(x) · [f(y)]−1 = u · v−1

is in f(H). So by proposition 2.2, f(H) is a subgroup of M .

DEFINITION 4.3 If
f : G→M

is a homomorphism, then the group f(G) is called the range, or image of the
homomorphism f . We denote this set by

Im(f).

We can also consider taking the inverse homomorphism f−1 of an element
or a set of elements. Because homomorphisms are not always one-to-one,
f−1(x) may not represent a single element. Thus, we will define f−1(x) to be
the set of numbers such that f(y) = x. Likewise, we define

f−1(H) = {y | f(y) ∈ H}.

We can use Mathematica’s HomoInverse command to take the inverse
homomorphism of an element or set of elements.

HomoInverse[F, c.c, Q]

finds F−1(c2), using Q is the domain of F . The command
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HomoInverse[F, {a, b, a.b.b.c}, Q]

finds the inverse of a set of elements. The corresponding GAP command is
PreImage:

gap> PreImage(F, [c^2, a*b^2*c] );
[ i, j, i^3, i^2*j ]

In Mathematica, not all of the elements in the set have to be in the image of
F , but in GAP they do.

DEFINITION 4.4 If f is a homomorphism from G to M and e is the
identity element of M , then we define the kernel of f to be the set

Ker(f) = f−1(e).

The commands

Kernel[F, Q]

or
gap> Kernel(F);
Group([ i^-2 ])
gap> List(last);
[ <identity ...>, i^-2 ]

can be used to find the kernel of a homomorphism.

PROPOSITION 4.6
If f is a homomorphism from G to M , then the kernel of f is a normal

subgroup of the domain G.

PROOF First we need to show that the kernel of f is a subgroup of G.
If e is the identity element of M , and if a and b are two elements of Ker(f),
then

f(a · b−1) = f(a) · f(b)−1 = e · e−1 = e,

so a · b−1 is also in the kernel of f . Thus, by proposition 2.2, Ker(f) is a
subgroup.

Now let us show that Ker(f) is a normal subgroup of G. Let a be an element
in Ker(f), and g be any element in G. Then by proposition 3.4, since

f(g · a · g−1) = f(g) · f(a) · f(g−1) = f(g) · e · [f(g)]−1 = e,

g · a · g−1 is in Ker(f), and so Ker(f) is a normal subgroup.

Figure 4.1 is very suggestive. The inverse image of any element is a coset
of {e, i2}. The next proposition explains why this is so.
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PROPOSITION 4.7
Let f be a homomorphism from the group G to the group M . Suppose that y

is in the image of f , and that f(x) = y. Then

f−1(y) = x ·Ker(f).

PROOF First let us consider an element z ∈ x · Ker(f). Then z = x · k
for some element k in the kernel of f . Therefore,

f(z) = f(x · k) = f(x) · f(k) = f(x) · e = f(x)

since k is in Ker(f). Here, e is the identity element of M . But f(x) = y, and
so z ∈ f−1(y). Thus we have proved that

f−1(y) ⊆ x ·Ker(f).

To prove the inclusion the other way, note that if z ∈ f−1(y), then f(z) = y,
and so we have

f(x−1 · z) = [f(x)]−1 · f(z) = y−1 · y = e

Thus, x−1 · z is in the kernel of f , and since z = x · (x−1 · z) ∈ x ·Ker(f), we
have

x ·Ker(f) ⊆ f−1(y).

We now have a quick way to determine if a homomorphism is an isomor-
phism.

COROLLARY 4.1
Let f : G→M be a homomorphism. Then f is an injection (one-to-one) if,

and only if, the kernel of f is the identity element of G.

PROOF If f is an injection, it is clear that the kernel would just be
the identity element. Suppose that the kernel is just the identity. Then
proposition 4.7 states that if h is in the image of f , then f−1(h) consists of
exactly one element. Therefore, f is one-to-one.

In particular, if the image of a homomorphism f : G→M is all of M , and
the kernel is {e}, then G ≈M .

We can also consider what happens if we take the inverse image of a sub-
group.

COROLLARY 4.2
Let f : G → M be a homomorphism. Let H be a subgroup of M . Then
f−1(H) is a subgroup of G. Furthermore, if H is a normal subgroup of M ,
then f−1(H) is a normal subgroup of G.
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PROOF Let x and y be in f−1(H). Then since f(x·y−1) = f(x)·[f(y)]−1,
which is in H, we have that x · y−1 is in f−1(H). Thus, by proposition 2.2,
f−1(H) is a subgroup of G.

Now suppose that H is a normal subgroup of M . Then if y is in f−1(H),
and x is in G, then f(x · y · x−1) = f(x) · f(y) · [f(x)]−1. Since f(y) is in
H, which is normal in M , we have that f(x) · f(y) · [f(x)]−1 is in H. Thus,
x · y · x−1 is in f−1(H), and so by proposition 3.4, f−1(H) is normal in G.

We are now in a position to show how homomorphisms can be used to reveal
relationships between different groups. There are three such relationships to
be revealed, and these are covered in the next section.

4.3 The Three Isomorphism Theorems

We have seen in the last section that the kernel K of a homomorphism is
always a normal subgroup of the domain G. Furthermore, proposition 4.7
proves what is suggested by figure 4.1, that the inverse image of any element
is essentially a coset of K. Hence, the inverse image f−1(y) can be considered
as an element of the quotient group G/K. This leads us to the first of three
very useful theorems for finding isomorphisms between groups.

THEOREM 4.1: The First Isomorphism Theorem
Let f : G→M be a homomorphism with Ker(f) = K, and Im(f) = I. Then

there is a natural isomorphism

φ : I → G/K

which is surjective. Thus, I ≈ G/K.

PROOF It should be noted that this theorem states more than just I ≈
G/K, but that there is a natural isomorphism between these two groups. This
isomorphism is given by

φ(h) = f−1(h).

Proposition 4.7 states that whenever h is in the image of f , f−1(h) is a
member of the quotient group G/Ker(f). Thus, φ : I → G/K is properly
defined.

Let us show that the mapping φ is one-to-one. Suppose φ(x) = φ(y) for two
different elements of I. Then f(φ(x)) = f(φ(y)). But f(φ(x)) = f(f−1(x)) is
the set containing just the element x, and also f(φ(y)) is the set containing
just the element y. Thus, x = y, and we have shown that φ is one-to-one.
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Now let us show that φ is onto. If xK is an element of G/K, then f(x) ∈ I.
Thus,

x ∈ f−1(f(x)) = φ(f(x)) ∈ G/K.

So we have that x is an element of both cosets xK and φ(f(x)). Since two
different cosets have no elements in common, we must have φ(f(x)) = xK.
We have therefore that any coset in G/K is mapped by φ from an element in
I, so φ is surjective.

Finally, we want to show that φ is a homomorphism. That is, we wish to
show that

f−1(v) · f−1(w) = f−1(v · w).

Let x ∈ f−1(v) and y ∈ f−1(w). Then f(x) = v and f(y) = w, so we have

f(x · y) = f(x) · f(y) = v · w.

Hence,
x · y ∈ f−1(v · w).

Since f−1(v) ·f−1(w) and f−1(v ·w) are two cosets in G/K, and both contain
the element x · y, they must be the same coset. So we have that

φ(v) · φ(w) = φ(v · w).

The natural isomorphism φ can be pictured by drawing a diagram:

G I
f

φ

G/Ker(f)

......................................................................................................... ..............

..............................................................................................................
......
...........
...

This diagram suggests that there ought to be a mapping that goes directly
from G to G/Ker(f) without involving the homomorphism f .

PROPOSITION 4.8

Let G be a group, and N be a normal subgroup of G. Then there is a natural
isomorphism

iN : G→ G/N

given by iN (a) = a ·N . This homomorphism is surjective, and Ker(iN ) = N .
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G I
f

φiN

G/Ker(f)

......................................................................................................... ..............

...........................................................
......
...........
...

.........
.........
.........
.........
.........
....................
..............

.................................................................................................................
...
........
......

FIGURE 4.2: Commuting diagram for first isomorphism theorem

PROOF To show that iN is a homomorphism, we note that if a and b are
elements of G, then

iN (a · b) = a · b ·N = a ·N · b ·N = iN (a) · iN (b).

Also, iN is clearly surjective. To find the kernel of iN , we note that the
identity element of G/N is eN = N , and so x is in the kernel if, and only if,

iN (x) = N ⇐⇒ x ·N = N ⇐⇒ x ∈ N.

Therefore, the kernel of iN is N .

We call the homomorphism iN the canonical homomorphism associated with
N. We can add this homomorphism to our diagram to produce figure 4.2.

The mapping φ is shown with a double arrow to show that φ is an iso-
morphism, hence invertible. In this diagram, the functions defined by two
paths with the same beginning and ending point produce the same composi-
tion function. That is, φ(f(x)) = iN (x) and φ−1(iN (x)) = f(x). We say that
the diagram is commutative.

If we consider a group with two normal subgroups, one of which is a sub-
group of the other, we begin to see more patterns. Let us reload the octahedral
group in GAP, and look at two normal subgroups.

gap> f:=FreeGroup("a","b","c");; a:=f.1;; b:=f.2;; c:=f.3;;
gap> Oct:=f/[a^2,b^3,c^4, b*a*b*a, c*a/(a*b*c), c*b/(a*c*c)];;
gap> a:=Oct.1;; b:=Oct.2;; c:=Oct.3;;
gap> G := ListGroup(Oct);
[ <identity ...>, a, b, a*b, b^2, a*b^2, c, a*c, b*c, a*b*c,
b^2*c, a*b^2*c, c^2, a*c^2, b*c^2, a*b*c^2, b^2*c^2,
a*b^2*c^2, c^3, a*c^3, b*c^3, a*b*c^3, b^2*c^3, a*b^2*c^3 ]

gap> H:=Group(b,c^2);
Group([ b, c^2 ])
gap> N:=Group(c^2, a*b^2*c);
Group([ c^2, a*b^2*c ])
gap> Size(H);
12
gap> Size(N);
4
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Both H and N are normal subgroups, so we can consider two different quotient
groups.

gap> Q1 := RtCoset(G,H);
[ [ <identity ...>, b, a*b^2*c, c^2, b^2, a*b*c, b*c^2,

a*b^2*c^3, a*c, b^2*c^2, a*b*c^3, a*c^3 ],
[ a*b^2, a, c, a*b^2*c^2, a*b, b^2*c, a*c^2, c^3, b*c,

a*b*c^2, b^2*c^3, b*c^3 ] ]
gap> Q2 := RtCoset(G,N);
[ [ <identity ...>, a*b^2*c, c^2, a*b^2*c^3 ],
[ a*b^2, c, a*b^2*c^2, c^3 ], [b, a*b*c, b*c^2, a*b*c^3 ],
[ a, b^2*c, a*c^2, b^2*c^3 ], [b^2, a*c, b^2*c^2, a*c^3 ],
[ a*b, b*c, a*b*c^2, b*c^3 ] ]

At this point there doesn’t seem to be much connection between these. But
notice that N is also a subgroup of H. Is this a normal subgroup? To find
out let us determine the left and right cosets of H with respect to N .

gap> RtCoset(H,N);
[ [ <identity ...>, b*c^2*b^2, c^2, b^2*c^2*b ],
[ b, b^2*c^2*b^2, b*c^2, c^2*b ],
[ b^2, c^2*b^2, b^2*c^2, b*c^2*b ] ]

gap> Q3 := LftCoset(H,N);
[ [ <identity ...>, b*c^2*b^2, c^2, b^2*c^2*b ],
[ b, b^2*c^2*b^2, b*c^2, c^2*b ],
[ b^2, c^2*b^2, b^2*c^2, b*c^2*b ] ]

Since these two are the same, N must be a normal subgroup of H. We can
prove this in general.

LEMMA 4.2

Let N be a normal subgroup of G, and suppose that H is a subgroup of G
which contains N . Then N is a normal subgroup of H.

PROOF Since N is a group, and is contained in H, N is a subgroup of
H. For any x in H, we have that

x ·N · x−1 = N

since x is also in G. Therefore, by proposition 3.4, N is a normal subgroup of
H.

Thus, if both H and N are normal subgroups of G, and N ⊆ H, then there
will be three quotient groups to consider: G/H, G/N , and H/N . But H/N
will be a subgroup of G/N . Could this be a normal subgroup? In the case we
are looking at, Q3= H/N contains half of the elements of Q2= G/N , so it is
normal, giving us a fourth quotient group:
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gap> Q4 := RtCoset(Q2, Q3);
[ [ [ <identity ...>, a*b^2*c, c^2, a*b^2*c^3 ],

[ b, a*b*c, b*c^2, a*b*c^3 ],
[ b^2, a*c, b^2*c^2, a*c^3 ] ],

[ [ a*b^2, c, a*b^2*c^2, c^3 ], [ a, b^2*c, a*c^2, b^2*c^3 ],
[ a*b, b*c, a*b*c^2, b*c^3 ] ] ]

Before we try to interpret this mess, let us first see why H/N will be a normal
subgroup of G/N in general.

LEMMA 4.3
If H and N are normal subgroups of G, and if N is a subgroup of H, then
H/N is a normal subgroup of G/N .

PROOF From lemma 4.2, N is a normal subgroup of H. A typical element
of G/N is

g ·N,

where g is an element of G. A typical element of H/N is

h ·N,

where h is an element of H. Thus, H/N is contained in G/N , and so H/N is
a subgroup of G/N .

To show that H/N is in fact a normal subgroup of G/N , we will use propo-
sition 3.4. That is, we will see if

(g ·N) · (h ·N) · (g ·N)−1

will always be in H/N . But this simplifies to (g · h · g−1) ·N , and g · h · g−1

is in H since H is a normal subgroup of G. Therefore, (g · h · g−1) · N is in
H/N , and hence H/N is a normal subgroup of G/N .

The “quotient group of quotient groups” Q4 = (G/N)/(H/N) is a list con-
taining two lists, each of which contains several lists of elements. If this is too
many nested lists for you to handle, imagine what would happen if we removed
the innermost brackets. This would simplify the output to just a list of two
lists, each of which contains 12 elements. But by looking carefully, we can see
that we would get exactly Q1. We can use the canonical homomorphisms as
a tool to strip away these inside level brackets.

THEOREM 4.2: The Second Isomorphism Theorem
Let H and N be normal subgroups of G, and let N be a subgroup of H. Then

(G/N)/(H/N) ≈ G/H.
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PROOF We will use the example to guide us in finding a mapping from
(G/N)/(H/N) to a set of elements in G. We have a canonical mapping from
G to G/N , and another canonical mapping from G/N to (G/N)/(H/N). Let
us call these mappings φ and f , respectively. Thus, we have the following
diagram:

G G/N
φ

f

(G/N)/(H/N)

......................................................................................................... ..............

...................................................................................................
......
........
......

For an element x in G, the composition homomorphism f(φ(x)) gives the
element of (G/N)/(H/N) which contains x somewhere inside of it. Since f
and φ are both surjective, the composition f(φ(x)) is surjective. Thus, the
inverse of this homomorphism, φ−1(f−1(y)), gives a list of elements of G that
are somewhere inside of the element y. This inverse is the mapping that
removes the interior brackets. We only need to check that this is in fact a
coset of G/H. Let us determine the kernel of the composition homomorphism
f(φ(x)).

Note that if x is in G, and e is the identity element of (G/N)/(H/N), then

x ∈ Ker(f ◦ φ)⇐⇒ f(φ(x)) = e

⇐⇒ φ(x) ∈ Ker(f) = H/N

⇐⇒ x ∈ φ−1(H/N) = H.

Therefore, the kernel of the composition f(φ(x)) is H, and so from the first
isomorphism theorem (4.1),

(G/N)/(H/N) ≈ G/H.

G G/N
φ

fiH

G/H (G/N)/(H/N)

......................................................................................................... ..............

...................................................................................................
......
........
......

...................................................................................................
......
........
......

.......................................................................... ..................................... ..............

FIGURE 4.3: Commuting diagram for second isomorphism theorem



Mappings between Groups 99

We can describe the second isomorphism theorem visually by the diagram
in figure 4.3. Since H is the kernel of the composition homomorphism

f(φ) : G→ (G/N)/(H/N)

we have by the first isomorphism theorem that this diagram commutes.
We observed in section 3.3 that the product of two subgroups H and K was

not necessarily a subgroup. However, it is possible that if one of the groups
is normal, then indeed the product H ·K would be a subgroup. Let us try it
on the octahedral group we already defined.

gap> H := Group(c);;
gap> M := Group(a*b^2*c,c^2);;
gap> HM := Mult(G,H,M);
[ <identity ...>, a*b^2, a*b^2*c, c^2, c, a*b^2*c^2, a*b^2*c^3,

c^3 ]
gap> Size(Group(last));
8

Since the group generated by these eight elements has only eight elements,
these eight elements are a subgroup. What happens if we try this in the other
order?

gap> Mult(G,M,H);
[ <identity ...>, a*b^2, a*b^2*c, c^2, c, a*b^2*c^2, a*b^2*c^3,

c^3 ]

We discovered that not only is H ·M a subgroup, but also M ·H is exactly
the same as H ·M . It is not hard to see the connection between these two
facts.

LEMMA 4.4
Suppose H and K are two subgroups of G. Then H ·K is a subgroup if, and

only if,
H ·K = K ·H.

PROOF Let us first suppose that H ·K is a subgroup. Let h ∈ H and
k ∈ K.

We wish to show that the element h · k in H · K is also in K · H. Since
H ·K is a subgroup, (h · k)−1 is in H ·K. Thus, (h · k)−1 = x · y for some
x ∈ H and y ∈ K. But then, h · k = (x · y)−1 = y−1 · x−1, and y−1 · x−1 is in
K ·H. Thus,

H ·K ⊆ K ·H.

By a similar argument, the inverse of any element in K ·H must be in H ·K,
and so K ·H ⊆ H ·K. Therefore, we have H ·K = K ·H.

Now, let us suppose that H ·K = K ·H. We want to show that H ·K is
a subgroup. Let h, x ∈ H and k, y ∈ K so both h · k and x · y are elements
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of H · K. By proposition 2.2, it is enough to show that (h · k) · (x · y)−1 is
in H ·K. But (k · y−1) · x−1 is in K ·H = H ·K, and so there must be two
elements u ∈ H and v ∈ K such that (k · y−1) · x−1 = u · v. Then we have

(h · k) · (x · y)−1 = h · k · y−1 · x−1 = (h · u) · v

which is in H ·K. Thus, H ·K is a subgroup if, and only if, H ·K = K ·H.

We are now in a position to show that H · K is a subgroup if one of the
subgroups H or K is normal.

LEMMA 4.5
If H is a subgroup of G, and N is a normal subgroup of G, then H ·N is a

subgroup of G.

PROOF If h ∈ H and n ∈ N , then h · n · h−1 is in N , since N is normal.
Then

h · n = (h · n · h−1) · h

is in N ·H. Thus, H ·N ⊆ N ·H.
By a similar argument N ·H ⊆ H ·N , so H ·N = N ·H. Therefore, H ·N

is a group by lemma 4.4.

Lemma 4.5 gives us a second way of forming a new subgroup from two
subgroups. The first was given in proposition 2.3—the intersection of two
subgroups is again a subgroup. Recall that the Mathematica command

Intersection[H, M]

or the GAP function

gap> Intersection(H, M);
Group(<fp, no generators known>)
gap> J := List(last);
[ <identity ...>, c^-2 ]

finds the intersection of two subgroups. If, as in lemma 4.5, one of the two
subgroups is normal, we have the following.

LEMMA 4.6
If N is a normal subgroup of G, and H is a subgroup of G, then

H ∩N

is a normal subgroup of H.
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PROOF Given elements h ∈ H and x ∈ H ∩ N , we note that since x is
in N which is a normal subgroup of G, h · x · h−1 is in N . Also, x is in H, so
h · x · h−1 is in H. Thus,

h · x · h−1 ∈ H ∩N,

and so by proposition 3.4, the intersection is a normal subgroup of H.

We can ask whether there is a relationship between to two quotient groups
H/(H ∩N) and (H ·N)/N .

gap> RtCoset(H,J);
[ [ <identity ...>, c^2 ], [ c, c^3 ] ]
gap> RtCoset(HM,M);
[ [ <identity ...>, a*b^2*c, c^2, a*b^2*c^3 ],
[ a*b^2, c, a*b^2*c^2, c^3 ] ]

Notice that each coset in H ·M/M contains one of the cosets from H/J . In
fact, if we threw out all elements in a coset of H ·M/M that were not an
element of H, we would get a coset of H/J . This provides us the mechanism
to prove the isomorphism.

THEOREM 4.3: The Third Isomorphism Theorem
Suppose that N is a normal subgroup of G, and that H is a subgroup of G.

Then
H/(H ∩N) ≈ (H ·N)/N.

PROOF By lemma 4.5, H · N is a subgroup, and by lemma 4.2, N is a
normal subgroup of H ·N . Also, by lemma 4.6, H ∩N is a normal subgroup
of H, and so both of the quotient groups are defined.

We will use the two homomorphisms that we discovered were useful for
creating a filter, that is,

i : H → H ·N

f : H ·N → (H ·N)/N

where i is the identity mapping i(h) = h, and f is the canonical homomor-
phism. This gives us the following diagram:

H H ·N
i

f

(H ·N)/N

......................................................................................................... ..............

...................................................................................................
......
........
......
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H H ·N
i

fφ

H/(H ∩N) (H ·N)/N

......................................................................................................... ..............

...................................................................................................
......
........
......

...................................................................................................
......
........
......

................................................... ..................................... ..............

FIGURE 4.4: Commuting diagram for third isomorphism theorem

We can now consider the combination of the two,

f(i(h)) : H → (H ·N)/N.

We want to find the kernel of this composite homomorphism, for then we
can use the first isomorphism theorem (4.1). If we let e denote the identity
element of (H ·N)/N , then

h ∈ Ker(f · i) ⇐⇒ f(i(h)) = e

⇐⇒ i(h) ∈ Ker(f) = N

⇐⇒ h ∈ N and h ∈ H
⇐⇒ h ∈ H ∩N.

So by the first isomorphism theorem (4.1), we have

(H ·N)/N ≈ H/(H ∩N).

We can describe the third isomorphism theorem (4.3) pictorially through the
diagram in figure 4.4, which is commutative according to the first isomorphism
theorem (4.1): Note that this diagram demonstrates that

|H|/|H ∩N | = |H ·N |/|N |.

We conclude this chapter by showing that |H|/|H ∩N | = |H ·N |/|N | even
when neither of the groups H nor N is a normal subgroup.

PROPOSITION 4.9
Let H and K be two subgroups of a finite group G. Then the number of

elements in the product H ·K is given by

|H ·K| = |H| |K|
|H ∩K|

.
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PROOF Even though H ·K is not a group, it still makes sense to consider
the set of left cosets (H ·K)/K. A typical left coset belonging to (H ·K)/K
would be h · k · K, where h is an element of H, and k is an element of K.
By lemma 3.1, all cosets contain |K| elements, and by lemma 3.2 two cosets
would intersect if, and only if, they are equal. Thus the elements of H ·K are
distributed into non-overlapping cosets, each having |K| elements. Thus, the
number of cosets in (H ·K)/K is

|(H ·K)/K| = |H ·K|
|K|

.

Likewise, we have

|H/(H ∩K)| = |H|
|H ∩K|

.

Thus, if we can show that |H/(H ∩K)| = |(H ·K)/K|, we will have proven
the proposition. Let us define a mapping (not a homomorphism) that will
relate the elements of these two sets. Let

φ : (H ·K)/K → H/(H ∩K)

be defined by
φ(h ·K) = h · (H ∩K).

To see that this is well defined, note that if h ·K = x ·K for two elements
h and x in H, then h−1 · x ·K = K, so h−1 · x must be in K. Since h and x
are also in H, h−1 · x is in the intersection, and so

x · (H ∩K) = h · (h−1 · x) · (H ∩K) = h · (H ∩K).

On the other hand, if h · (H ∩K) = x · (H ∩K), then h−1 · x would have to
be in the intersection of H and K. So then, h ·K = x ·K. Hence the mapping
is one-to-one. It is clear that the mapping is also surjective. Hence, φ is a
bijection, and the proposition is proved.

Problems for Chapter 4

Interactive Problems

4.1 Prove that there are exactly two non-isomorphic groups of order 10. Find
these two groups, and have Mathematica or GAP produce the multiplication
tables.

Hint: Follow the logic for n = 6.
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For problems 4.2 through 4.4: Each of the following groups is of order 8.
Which of the known five groups (Z8, Z∗24, Z∗15, D4, or Q) is each of these
isomorphic to? First have GAP or Mathematica display a table of the new
group, and then rearrange the elements of one of the five known groups so
that the color/number patterns in the two tables are identical.

4.2 Z∗16 4.3 Z∗20 4.4 Z∗30

4.5 Define Terry’s group in Mathematica with the command

InitTerry

and then define the group S3 using “Stay” as the identity element.

Define[â2, Stay]
Define[b̂3, Stay]
Define[1/a, a]
Define[1/b, b̂2]
Define[b.a, a.b.b]
S3 = Group[{a, b}]

Now define an isomorphism F from S3 to Terry’s group. Use Mathematica’s
CheckHomo command to verify that your function is a homomorphism.
Finally, find the kernel of F to prove that F is an isomorphism.

4.6 Use Mathematica or GAP to find all of the homomorphisms from S3 to
itself. Label these homomorphisms F1, F2, F3, etc. How many of these are
isomorphisms? The following reloads S3 into Mathematica:

InitGroup[e];
Define[â2, e]; Define[b̂3, e]
Define[1/a, a]; Define[1/b, b̂2]
Define[b.a, a.b.b]
S3 = Group[{a, b}]

or, to load this group in GAP:

gap> f := FreeGroup("a","b");; a := f.1;; b := f.2;;
gap> g := f/[a^2, b^3, b*a/(a*b^2)];; a := g.1;; b := g.2;;
gap> S3 := Group(a,b);
Group([ a, b ])
gap> List(S3);
[ <identity ...>, a, b, a*b, a*b*a, b*a ]

Non-Interactive Problems

4.7 Prove that if f is a surjective isomorphism from a group G to a group
M , then f−1 is a surjective isomorphism from M to G.
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4.8 If G1, G2, and G3 are three groups, and f is an isomorphism from G1 to
G2, and φ is an isomorphism from G2 to G3, prove that φ(f) is an isomorphism
from G1 to G3.

4.9 Find an isomorphism between the group consisting of the four complex
numbers

{1,−1, i,−i}

and the group Z4.

For problems 4.10 through 4.18: Find an isomorphism between the two
groups.

4.10 Z6 and Z∗7
4.11 Z6 and Z∗9
4.12 Z6 and Z∗14

4.13 Z6 and Z∗18

4.14 Z10 and Z∗11

4.15 Z10 and Z∗22

4.16 Z12 and Z∗13

4.17 Z12 and Z∗26

4.18 Z∗8 and Z∗12

4.19 Let G be an arbitrary group. Prove or disprove that f(x) = x−1 is an
isomorphism from G to G.

4.20 Prove that any infinite cyclic group is isomorphic to Z.

4.21 Prove that if both H and N are normal subgroups of a group G, then
H ·N is a normal subgroup of G.

4.22 If φ is a homomorphism from an abelian group G to a group M , show
that Im(φ) is abelian.

4.23 If φ is a homomorphism from a cyclic group G to a group M , show
that Im(φ) is a cyclic group.

4.24 Let X, Y , and Z be three subgroups of a finite group G, with Y normal.
Use proposition 4.9 to find a formula for the number of elements in X · Y ·Z.

4.25 Let Z be the group of integers using addition. Show that the function
φ(x) = 2x is a homomorphism from Z to itself. What is the image of this
homomorphism? What is the kernel?

4.26 Let Z be the group of integers using addition. Show that the function
φ(x) = −x is a homomorphism from Z to itself. Show that this mapping is in
fact one-to-one and onto.

4.27 Let Z be the group of integers using addition. Show that the function
φ(x) = x+ 3 is not a homomorphism from Z to itself.

4.28 Let R∗ denote the group of nonzero real numbers, using multiplication
as the operation. Let φ(x) = x6. Show that φ is a homomorphism from R∗
to R∗. What is the kernel of this homomorphism? What is the image of the
homomorphism?
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4.29 Let R∗ denote the group of nonzero real numbers, using multiplication
as the operation. Let φ(x) = 2x. Show that φ is not a homomorphism from
R∗ to R∗.

4.30 Let R∗ denote the group of nonzero real numbers, using multiplication
as the operation. Recall that R is the group of real numbers using addition
for the operation. Let φ(x) = ln |x|. Show that φ is a homomorphism from
R∗ to R. What is the kernel of this homomorphism?

4.31 Let R∗ denote the group of nonzero real numbers, using multiplication
as the operation. Recall that R is the group of real numbers using addition
for the operation. Let φ(x) = ex. Show that φ is a homomorphism from R to
R∗. What is the image of this homomorphism?

4.32 Let R[t] denote the group of all polynomials in t with real coefficients
under addition, and let φ denote the mapping φ(f) = f ′, which sends each
polynomial to its derivative. Show that φ is a homomorphism from R[t] to
R[t]. What is the kernel of φ?

4.33 Let R[t] denote the group of all polynomials in t with real coefficients
under addition. Prove that the mapping from R[t] into R given by f(t)→ f(3)
is a homomorphism. Give a description of the kernel of this homomorphism.

4.34 Find a homomorphism φ from Z∗15 to Z∗15 with kernel {1, 11} and with
φ(2) = 7.

4.35 Find a homomorphism φ from Z∗30 to Z∗30 with kernel {1, 11} and with
φ(7) = 13.

4.36 Find a homomorphism from the quaternion group Q onto Z∗8 .
Hint: The kernel must be a normal subgroup of order 2. See table 4.3 for

a multiplication table of Q.

4.37 Let k be a divisor of n. Show that the mapping φ(x) = x (Mod k) is
a homomorphism from Z∗n to Z∗k . Find a formula for the number of elements
in the kernel.

4.38 Find all of the homomorphisms from Z4 to Z∗8 .

4.39 Find all of the homomorphisms from Z∗8 to S3.

4.40 Prove that there can be no nontrivial homomorphisms from S3 to Z3.
Hint: What are the normal subgroups of S3?

4.41 Suppose that there is a homomorphism from a finite group G onto Z6.
Prove that there are normal subgroups of G with index 2 and 3.

4.42 Suppose that H and K are distinct subgroups of G of index 2. Prove
that H ∩K is a normal subgroup of G of index 4 and that G/(H ∩K) ≈ Z∗8 .



Chapter 5

Permutation Groups

5.1 Symmetric Groups

In this chapter we will explore permutation groups or the symmetric groups,
which have important applications. In fact, we have already seen one example
of a symmetric group, S3. We can easily generalize this group, and consider
the group of all permutations of n objects. For example, with four books the
beginning position would be

InitBooks[4]
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There are six Mathematica©R operations that rearrange these books.

MoveBooks[First] swap the first two books.
MoveBooks[Last] swap the last two books.
MoveBooks[Left] move the first book to the end,

sliding the other books to the left.
MoveBooks[Right] move the last book to the beginning,

sliding the other books to the right.
MoveBooks[Rev] reverse the order of the books.
MoveBooks[Stay] leave the books as they are.

For three books, any permutation can be obtained by just one of these six
commands. But with four books it is a bit tricky to arrange the books in a
particular order. With even more books, it becomes very cumbersome. Thus,
we introduce a new notation for a permutation that explicitly states where
each book ends up. For example, after a MoveBooks[Left] command we
find that the 1st book ended up in the 4th position, the 2nd book ended up

107
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in the 1st position, the 3rd book ended in the 2nd position, and the 4th book
ended in the 3rd position.

The permutation can be represented writing the ending position under the
starting position for the four objects:(

1 2 3 4
4 1 2 3

)
.

We can multiply the permutations using the new notation. For example, to
calculate Left·Last, we have(

1 2 3 4
4 1 2 3

)
·
(

1 2 3 4
1 2 4 3

)
=
(

1 2 3 4
3 1 2 4

)
.

On the other hand, Last·Left is given by(
1 2 3 4
1 2 4 3

)
·
(

1 2 3 4
4 1 2 3

)
=
(

1 2 3 4
4 1 3 2

)
.

We can interpret each permutation as a function whose domain is a subset

of the integers. For example, the permutations f(x) =
(

1 2 3 4
2 3 1 4

)
and

φ(x) =
(

1 2 3 4
2 3 4 1

)
can be thought of as two functions for which

f(1) = 2 φ(1) = 2
f(2) = 3 φ(2) = 3
f(3) = 1 φ(3) = 4
f(4) = 4 φ(4) = 1.

Note that f(x) appears directly below x in the permutation
(

1 2 3 4
2 3 1 4

)
.

The product of the permutations is the same as the composition of the two
functions. Thus,

φ(f(1)) = φ(2) = 3
φ(f(2)) = φ(3) = 4
φ(f(3)) = φ(1) = 2
φ(f(4)) = φ(4) = 1.

Thus, the composition function of doing f first, and then φ, is f ·φ = φ(f(x)) =(
1 2 3 4
3 4 2 1

)
. Note that permutations are always performed from left to

right. However, composition of functions, such as φ(f(x)), is performed from
right to left (the inside function is applied first). So when representing a
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permutation as a function, we must reverse the order that the functions appear
in the formula.

To enter a permutation into Mathematica or GAP, only the bottom line is
needed. A permutation in Sn can be entered in Mathematica as

P [x1, x2, x3, . . . , xn],

where x1, x2, x3, . . . xn are distinct integers ranging from 1 to n. This permu-
tation corresponds to the function

f(1) = x1

f(2) = x2

f(3) = x3

. . .

f(n) = xn.

Thus the Mathematica product

P[4,3,5,1,2] . P[5,4,1,2,3]

yields P [2, 1, 3, 5, 4]. On the other hand,

P[5,4,1,2,3] . P[4,3,5,1,2]

yields P [2, 1, 4, 3].
Since the composition function maps 5 to itself, Mathematica drops the 5,

treating this as a permutation on four elements instead.
When we enter the same permutations into GAP, they become transforma-

tions.

gap> P([4,3,5,1,2]);
Transformation( [ 4, 3, 5, 1, 2 ] )
gap> P([4,3,5,1,2])*P([5,4,1,2,3]);
Transformation( [ 2, 1, 3, 5, 4 ] )
gap> P([5,4,1,2,3])*P([4,3,5,1,2]);
Transformation( [ 2, 1, 4, 3, 5 ] )

Note that GAP does not drop the final 5 as Mathematica did.
Mathematica can use the circle graphs on the set {1, 2, . . . , n} to visualize

permutations. For example,

CircleGraph[{1, 2, 3, 4, 5}, P[4, 3, 5, 1, 2]]

produces the circle graph on the left side of figure 5.1. The dotted arrows
form a triangle that connects 2, 3, and 5, while the dotted “double arrow”
connects 1 and 4. So this circle graph reveals some additional structure to
the permutation that we will study later.

We can graph two or more permutations simultaneously. The command
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FIGURE 5.1: Circle graphs of permutations

CircleGraph[{1, 2, 3, 4, 5}, P[4, 3, 5, 1, 2], P[5, 4, 1, 2, 3]]

produces the circle graph on the right of figure 5.1. Here, the solid arrows
represent the permutation P [4, 3, 5, 1, 2], while the dotted arrows represent
P [5, 4, 1, 2, 3]. If one imagines a permutation formed by traveling first through
a solid arrow, and then through a dotted arrow, one obtains the permutation
P [2, 1, 3, 5, 4], which is P [5, 4, 1, 2, 3] · P [4, 3, 5, 1, 2].

The inverse of a permutation can be found using Mathematica or GAP.

P[4,3,5,1,2]̂(–1)

gap>PermInv(P([4,3,5,1,2]));
Transformation( [ 4, 5, 2, 1, 3 ] )

The circle graph of the inverse permutation is similar to the circle graph of
P [4, 3, 5, 1, 2] except that all arrows are going in the opposite direction. The
product of a permutation and its inverse of course will yield the identity
element, denoted by P [ ] in Mathematica,

P[4,3,5,1,2] . P[4,5,2,1,3]
P [ ]

or in GAP,

gap> P([4,3,5,1,2])*P([4,5,2,1,3]);
Transformation( [ 1, 2, 3, 4, 5 ] )

Both Mathematica and GAP can treat a permutation as a function, but Math-
ematica’s notation is more standard:

P[4,3,5,1,2][2]

yields f(2) = 3. To do the same thing in GAP, we raise 2 to the power of the
transformation.

gap>2^P([4,3,5,1,2]);
3
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In spite of the simplicity of the notations for a permutation, we will find
that there is yet another notation that is even more concise. We will study
this in the next section.

5.2 Cycles

Although GAP is able to multiply transformations together, GAP prefers
that permutations be entered in terms of cycles. In the circle graph for the
permutation P [4, 3, 5, 1, 2], we saw that the arrows connecting 2, 3, and 5
were of one color, while a different colored arrow connected 1 and 4. By
experimenting, we find that other permutations such as P [4, 5, 2, 3, 1] have
circle graphs with arrows of only one color, as in figure 5.2.
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FIGURE 5.2: Circle graph of a cycle

These arrows indicate that the permutation can be expressed by a single
chain

1→ 4→ 3→ 2→ 5→ 1.

Other permutations, such as P [2, 4, 1, 6, 5, 3], have every straight arrow of the
same color, even though there is one point (5) that maps to itself. We can
still express this permutation as a single chain

1→ 2→ 4→ 6→ 3→ 1,

if we stipulate that all numbers that are not mentioned in the chain map to
themselves.
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DEFINITION 5.1 Any permutation that can be expressed as a single
chain is called a cycle. A cycle that moves exactly r of the numbers is called
an r-cycle.

Let us introduce a concise notation for cycles. We can abbreviate a chain
such as

1→ 2→ 4→ 6→ 3→ 1,

to simply
(1 2 4 6 3).

This is called the cycle notation for the permutation. Each number in the
cycle is mapped to the next number. The last number in the cycle is mapped
to the first number. In general, the r-cycle

(i1i2i3 . . . ir)

represents the permutation that maps i1 to i2 , i2 to i3, etc., and finally ir
back to i1. Notice that

(i1i2i3 . . . ir)−1 = (irir−1 . . . i3i2i1),

so the inverse of an r-cycle will always be an r-cycle. The identity element
can be written as the 0-cycle ( ).

A 1-cycle is really an oxymoron (a contradiction in terms), for there can
be no one-to-one mapping that moves only one element and leaves the others
fixed. We say that an r-cycle is a nontrivial r-cycle if r > 1.

Most permutations cannot be written as a single chain. This is evident from
looking at the circle graph for the permutation P [4, 3, 5, 1, 2]. However, the
two different types of arrows suggest that this permutation could be expressed
as two cycles, one that represents the triangle from 2 to 3 to 5, and back
to 2, and the other that exchanges 1 and 4. These two permutations are
P [1, 3, 5, 4, 2] and P [4, 2, 3, 1, 5]. These two cycles multiply together to give
P [4, 3, 5, 1, 2]. In fact, this product can be done in either order. If we write
these two permutations in cycle notation,

P [1, 3, 5, 4, 2] = (2 3 5), P [4, 2, 3, 1, 5] = (1 4),

we notice that there are no numbers in common between these two cycles.

DEFINITION 5.2 Two cycles

(i1i2i3 . . . ir) and (j1j2j3 . . . js)

are disjoint if none of the i’s are equal to any of the j’s.
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LEMMA 5.1
Let x be an element of Sn which is not the identity. Then x can be written

as a product of nontrivial disjoint cycles. This representation of x is unique
up to the rearrangement of the cycles.

PROOF Let us say that x fixes the integer i if x(i) = i. We will use
induction on the number of integers not left fixed by x, denoted by m. Because
x is not the identity, there is at least one integer not fixed by x. In fact, m
must be at least 2, for the first integer must have somewhere to go.

If m = 2, then only two numbers i1 and i2 are moved. Since these are the
only two integers not fixed, x must be a 2-cycle (i1i2).

We now will assume by induction that the lemma is true whenever the
number of integers not left fixed by x is fewer than m. Let i1 be one integer
that is not fixed, and let i2 = x(i1). Then x(i2) cannot be i2 for x is one-
to-one, and if x(i2) is not i1, we define i3 = x(i2). Likewise, x(i3) cannot be
either i2 or i3, since x is one-to-one. If x(i3) is not i1, we define i4 = x(i3).

Eventually this process must stop, for there are only m elements that are
not fixed by x. Thus, there must be some value k such that x(ik) = i1. Define
the permutation y to be the k-cycle (i1i2i3 . . . ik). Then x · y−1 fixes all of
the integers fixed by x, along with i1, i2, i3, . . . , ik. By induction, since there
are fewer integers not fixed by x · y−1 then by x, x · y−1 can be expressed by
a series of nontrivial disjoint cycles c1 · c2 · c3 · · · ct. Moreover, the integers
appearing in c1 · c2 · c3 · · · ct are just those that are not fixed by x · y−1. Thus,
c1 · c2 · c3 · · · ct are disjoint from y. Finally, we have

x = y · c1 · c2 · c3 · · · ct.

Therefore, x can be written as a product of disjoint nontrivial cycles. By
induction, every permutation besides the identity can be written as a product
of nontrivial disjoint cycles.

For the uniqueness, suppose that a permutation x has two ways of being
written is terms of nontrivial disjoint cycles:

x = c1 · c2 · c3 · · · cr = d1 · d2 · d3 · · · ds.

For any integer i1 not fixed by x, one and only one cycle must contain i1.
Suppose that cycle is cj = (i1i2i3 . . . iq). But by the way we constructed the
cycles above, this cycle must also be one of the dk’s. Thus, each cycle cj is
equal to dk for some k. By symmetry, each dk is equal to cj for some j. Thus,
the two ways of writing x in terms of nontrivial disjoint cycles are merely
rearrangements of the cycles.

Lemma 5.1 gives us a succinct way to express permutations. Mathematica
uses the notation

C[2,3,4,5]
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to denote the cycle (2 3 4 5). Mathematica can multiply two cycles together,

C[2,3,4,5] . C[1,2,4]

forming the answer as a product of two disjoint cycles. In GAP, the cycles
are expressed using only parentheses. Thus, this product in GAP is written

gap> (2,3,4,5)*(1,2,4);
(1,2,3)(4,5)

Note that when two cycles are disjoint, we do not need the times sign between
them. In fact, GAP sees (1, 2, 3)(4, 5) not as a product, but as a single per-
mutation. We call this the cycle decomposition of the permutation. We can
convert from the cycle notation to the permutation and vice versa in GAP
with the commands

gap> CycleToPerm( (1,3,4)(2,5) );
Transformation( [ 3, 5, 4, 1, 2 ] )
gap> PermToCycle(last);
(1,3,4)(2,5)

These commands also work in Mathematica.

CycleToPerm[ C[1,3,4] . C[2,5] ]
P [3, 5, 4, 1, 2]
PermToCycle[ P[4,6,1,8,2,5,7,3] ]
C[1, 4, 8, 3] · C[2, 6, 5]

We may even mix the two notations in Mathematica within an expression,
such as:

C[1,2,3] . P[3,1,2,5,4] . C[4,5]

Whenever Mathematica encounters a mixture like this, it puts the answer
in terms of cycles. In this case the result is the identity permutation, so
Mathematica returns C[ ], which corresponds to the 0-cycle ( ).

The group S4 is generated by P [2, 1], P [2, 3, 1], and P [4, 3, 2, 1]. Thus, we
can produce the symmetric group S4 in Mathematica.

S4 = Group[{P[2,1], P[2,3,1], P[2,3,4,1]}]

To form a group of permutations in GAP, we must use the cycle notations.
Thus, S4 is created in GAP with the command

gap> S4 := Group( (1,2), (1,2,3), (1,2,3,4) );
Group([ (1,2), (1,2,3), (1,2,3,4) ])
gap> List(S4);
[ (), (1,4)(2,3), (1,2)(3,4), (1,3)(2,4), (2,4,3), (1,4,2),
(1,2,3), (1,3,4), (2,3,4), (1,4,3), (1,2,4), (1,3,2), (3,4),
(1,4,2,3), (1,2), (1,3,2,4), (2,4), (1,4,3,2), (1,2,3,4),
(1,3), (2,3), (1,4), (1,2,4,3), (1,3,4,2) ]

gap> Size(S4);
24
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The size of S4 is 24 elements, since there are 24 ways to arrange four books
on a shelf. In general, the size of Sn is n!, where

n! = n · (n− 1) · (n− 2) · (n− 3) · . . . · 2 · 1.

The number n! is read “n factorial.” Table 5.1 gives a short table for n!.

TABLE 5.1: n! for n ≤ 10
1! = 1 6! = 720
2! = 2 7! = 5040
3! = 6 8! = 40320
4! = 24 9! = 362880
5! = 120 10! = 3628800

Both S4 and the octahedral group have 24 elements, so we could ask if
these two groups are isomorphic. The octahedral group can be reloaded by
the commands

InitGroup[e];
Define[â2, e]; Define[b̂3, e]; Define[ĉ4, e]
Define[1/a, a]; Define[1/b, b̂2]; Define[1/c, ĉ3]
Define[b.a, a.b.b]; Define[c.a, a.b.c]; Define[c.b, a.c.c]
G = Group[{a, b, c}]

or, in GAP,

gap> f:=FreeGroup("a","b","c");; a:=f.1;; b:=f.2;; c:=f.3;;
gap> G:=f/[a^2,b^3,c^4,b*a/(a*b*b),c*a/(a*b*c),c*b/(a*c*c)];;
gap> a:=G.1;; b:=G.2;; c:=G.3;;

Let us begin by defining a homomorphism from the subgroup generated by
a and b to S3, since we know that this is an isomorphism.

gap> H := Group(a,b);
Group([ a, b ])
gap> F := GroupHomomorphismByImages(H,S4,[a,b],[(1,2),(1,2,3)]);
[ a, b ] -> [ (1,2), (1,2,3) ]

To define this homomorphism in Mathematica, we have to be a bit more
careful, since the identity of G is e, whereas the identity of S4 is ( ). We
accomplish this change of identity notation by specifying the identity element
of the target group when we define the homomorphism.

Homomorph[ F, P[ ] ]
Define[ F[a], P[2,1] ]
Define[ F[b], P[2,3,1] ]
H = Group[{a, b }];
CheckHomo[F, H]
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Both Mathematica and GAP show that so far, this homomorphism is con-
sistent. To finish this homomorphism we only need to define F [c]. Since c
must map to an element of order 4, there are six possibilities: (1234), (1243),
(1324), (1342), (1423), and (1432). A little trial and error finds the right
combination.

Define[ F[c], P[2,4,1,3] ]
CheckHomo[F, G]

In GAP, we have to redefine the homomorphism from scratch each time, until
we get one that works.

gap> F := GroupHomomorphismByImages(G,S4,[a,b,c],
> [(1,2),(1,2,3),(1,2,3,4)]);
fail
gap> F := GroupHomomorphismByImages(G,S4,[a,b,c],
> [(1,2),(1,2,3),(1,2,4,3)]);
[ a, b, c ] -> [ (1,2), (1,2,3), (1,2,4,3) ]

Next we want to see that F is an isomorphism by showing that the kernel of
F ,

gap> List(Kernel(F));
[ <identity ...> ]

or, in Mathematica,

Kernel[F, G]

reveals the kernel is just the identity. Then by the pigeonhole principle, the
image of F must be all of S4, so G ≈ S4.

In Mathematica, we can create a circle graph of a cycle, or product of cycles,
just as we did for permutations. We can even treat a cycle as a function, as
we did for permutations. For example,

C[1,4,8,3][3]

determines where the cycle (1483) sends the number 3. However, to evaluate
a product of cycles at a given number, an extra pair of parentheses is needed:

(C[1,4,8,3] . C[2,6,5])[5]

In GAP, evaluating a cycle or product of disjoint cycles at a number is ac-
complished by raising the number to the cycle. Thus,

gap> 3^(1,4,8,3);
1
gap> 5^(1,4,8,3)(2,6,5);
2
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As long as the multiplication sign is not between the disjoint cycles, GAP sees
this as a single permutation, so no parentheses are needed.

DEFINITION 5.3 A transposition is a 2-cycle (i1i2), where i1 6= i2.

Observe that i1 can be any of the n numbers, and i2 can be any of the
remaining n − 1 numbers, but this counts each transposition twice, since
(i1i2) = (i2i1). Thus, there are

n(n− 1)
2

=
n2 − n

2

transpositions of Sn.

LEMMA 5.2
For n > 1, the set of transpositions in Sn generates Sn.

PROOF We need to show that every element of Sn can be written as a
product of transpositions. The identity element can be written as (12)(12),
so we let x be a permutation that is not the identity. By lemma 5.1, we can
express x as a product of nontrivial disjoint cycles:

x = (i1i2i3 . . . ir) · (j1j2 . . . js) · (k1k2 . . . kt) · · · · .

Now, consider the product of transpositions

(ir−1ir) · (ir−2ir−1) · · · (i2i3) · (i1i2) · (js−1js) · · · (j1j2) · (kt−1kt) · · · (k1k2) · · · · .

Note that this product is equal to x. (Recall that we are working from left
to right.) Therefore, we have expressed every element of Sn as a product of
transpositions.

Of course, a particular permutation can be expressed as a product of trans-
positions in more than one way. But an important property of the symmetric
groups is that the number of transpositions used to represent a given permu-
tation will always have the same parity, that is, even or odd. To show this,
we will first prove the following lemma.

LEMMA 5.3
The product of an odd number of transpositions in Sn cannot equal the identity

element.

PROOF Since S2 only contains one transposition, (1 2), raising this to
an odd power will not be the identity element, so the lemma is true for the
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case n = 2. So by induction we can assume that the lemma is true for Sn−1.
Suppose that there is an odd number of transpositions producing the identity
in Sn. Then we can find such a product that uses the fewest number of
transpositions. At least one transposition will involve moving n, since the
lemma is true for Sn−1. Suppose that the m-th transposition is the first one
that moves n. For all possibilities that use the same number of transpositions,
we can find one in which m is as large as possible. If only the last transposition
moves n, then the product would not be the identity, so there is at least
one transposition beyond the m-th. But then the m-th and the (m + 1)-th
transpositions are one of the four possibilities

(nx)(nx), (nx)(n y), (nx)(x y), or (nx)(y z)

for some x, y, and z. In the first case, the two transpositions cancel, so we
can form a product using a fewer number of transpositions. In the other three
cases, we can replace the pair with another pair,

(nx)(n y) = (x y)(nx); (nx)(x y) = (x y)(n y); (nx)(y z) = (y z)(nx);

for which m is larger. In all cases, we violate minimality, so there is no odd
product of transpositions in Sn equaling the identity.

We can use this lemma to prove the following theorem.

THEOREM 5.1: The Signature Theorem
For the symmetric group Sn, define the function

σ : Sn → Z

by
σ(x) = (−1)N(x),

where N(x) is the minimum number of transpositions needed to express x as
a product of transpositions. Then this function, called the signature function,
is a homomorphism from Sn to the set of integers {−1, 1}.

PROOF By lemma 5.2, every element of Sn can be written as a product
of transpositions, so σ(x) is well defined. Obviously this maps Sn to {−1, 1},
so we only need to establish that this is a homomorphism. Suppose that
σ(x ·y) 6= σ(x) ·σ(y). Then N(x ·y)−(N(x)+N(y)) would be an odd number.
Since N(x−1) = N(x), we would also have N(x · y) +N(y−1) +N(x−1) being
an odd number. But then we would have three sets of transpositions, totaling
an odd number, which when strung together produce x · y · y−1 · x−1 = ( ).
But this contradicts lemma 5.3, so in fact σ(x · y) = σ(x) · σ(y) for all x and
y in Sn.
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Because of the importance of the signature function, it is not surprising that
Mathematica has the signature function built in. For example, the signature
of P [4, 3, 5, 1, 2] is given by

Signature[ P[4,3,5,1,2] ]

The signature of an r-cycle will be −1 if r is even, and +1 if r is odd. Un-
fortunately, Mathematica will not compute the signature of a cycle directly.
One must first convert the cycle or product of cycles into a permutation us-
ing the command CycleToPerm, and then compute the signature. Thus, the
signature of the product of cycles

(1427)(673)

is given by

Signature[ CycleToPerm[ C[1,4,2,7] . C[6,7,3] ] ]

The corresponding function in GAP is SignPerm:

gap> SignPerm( (1,4,2,7)*(6,7,3) );
-1

DEFINITION 5.4 A permutation is an alternating permutation or an
even permutation if the signature of the permutation is 1. A permutation is
an odd permutation if it is not even, that is, if the signature is −1. The set of
all alternating permutations of order n is written An.

COROLLARY 5.1
The set of all alternating permutations An is a normal subgroup of Sn. If
n > 1, then Sn/An is isomorphic to Z2.

PROOF Clearly An is a normal subgroup of Sn, since An is the kernel
of the signature homomorphism. Also if n > 1, then Sn contains at least
one transposition whose signature would be −1. Thus, the image of the
homomorphism is {−1, 1}. This group is isomorphic to Z2. Then by the first
isomorphism theorem (4.1), Sn/An is isomorphic to Z2.

PROPOSITION 5.1
For n > 2, the alternating group An is generated by the set of 3-cycles.

PROOF Since every 3-cycle is a product of two transpositions, every 3-
cycle is in An. Thus, it is sufficient to show that every element in An can be
expressed in terms of 3-cycles. We have already seen that any element can
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be expressed as a product of an even number of transpositions. Suppose we
group these in pairs as follows:

x = [(i1j1) · (k1l1)] · [(i2j2) · (k2l2)] · · · · · [(injn) · (knln)].

If we could convert each pair of transpositions into 3-cycles, we would have
the permutation x expressed as a product of 3-cycles. There are three cases
to consider:

Case 1:
The integers im, jm, km, lm are all distinct. In this case,

(imjm) · (kmlm) = (imjmlm) · (imkmlm).

Case 2:
Three of the four integers im, jm, km, lm are distinct. The four combinations

that would produce this situation are im = km, im = lm, jm = km, or jm = lm.
However, these four possibilities are essentially the same, so we only have to
check one of these four combinations: im = km. Then we have

(imjm) · (imlm) = (imjmlm).

Case 3:
Only two of the four integers im, jm, km, and lm are distinct. Then we must

either have im = km and jm = lm, or im = lm and jm = km. In either case,
we have

(imjm) · (kmlm) = ( ) = (123)(132).

In all three cases, we were able to express a pair of transpositions in terms
of a product of one or two 3-cycles. Therefore, the permutation x can be
written as a product of 3-cycles.

Let us use this proposition to find the elements of A4. We know that this
is generated by 3-cycles, and has 4!/2 = 12 elements. Since

Group[{C[1,2,3], C[1,2,4]}]

gap> List(Group( (1,2,3),(1,2,4) ) );
[ (), (1,3)(2,4), (1,2)(3,4), (1,4)(2,3), (2,3,4), (1,3,2),
(1,2,4), (1,4,3), (2,4,3), (1,3,4), (1,2,3), (1,4,2) ]

has 12 elements, this must be A4. Eight of the twelve elements are 3-cycles.
The other four elements form a subgroup that we have seen before.
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5.3 Cayley’s Theorem

The circle graphs produced in section 5.1 demonstrated the property that
every permutation was one-to-one and onto. In fact, every one-to-one and
onto function on a finite set can be seen as a permutation on that set. For
example, we saw one-to-one and onto circle graphs in section 3.1 while working
with cosets. To demonstrate, let us work with the group Q of order 8:

InitGroup[e];
Define[î4, e]
Define[ĵ2, î2]
Define[j.i, i.i.i.j]
Q = Group[{i, j}]

To find the left and right cosets of a subgroup generated by i, we use the
commands

CircleGraph[Q, RightMult[i]]
CircleGraph[Q, LeftMult[i]]

which produce the two circle graphs in figure 5.3.
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FIGURE 5.3: Circle graphs for multiplying by i

If we number the elements of Q from 1 to 8, starting with e and going
clockwise around the circles of figure 5.3, we find that the left circle graph
mimics the permutation P [2, 4, 5, 6, 7, 1, 8, 3] = (1246)(3578), while the second
graph is similar to the permutation P [2, 4, 8, 6, 3, 1, 5, 7] = (1246)(3875). If we
used different elements of Q in place of the i, we would have a different set of
permutations. Thus, we can define two functions, φ(x) and f(x), which map
elements of Q to S8. Table 5.2 shows both of these two functions.
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TABLE 5.2: Permutations for Q
φ(x) f(x)

x RightMult[x] LeftMult[x]

e () ()
i (1246)(3578) (1246)(3875)
j (1347)(2865) (1347)(2568)
i2 (14)(26)(37)(58) (14)(26)(37)(58)
i · j (1548)(2367) (1548)(2763)
i3 (1642)(3875) (1642)(3578)
i2 · j (1743)(2568) (1743)(2865)
i3 · j (1845)(2763) (1845)(2367)

Let us use GAP to see if either of these is a homomorphism. First we have
to define both Q and S8 in GAP.

gap> f := FreeGroup("i","j");; i:=f.1;; j:=f.2;;
gap> Q := f/[i^4,j^2/i^2,j*i/(i^3*j)];; i:=Q.1;; j:=Q.2;;
gap> S8 := SymmetricGroup(8);
Sym( [ 1 .. 8 ] )
gap> Size(S8);
40320

Notice that the GAP command SymmetricGroup automatically defines S8.
We are now ready for the homomorphism.

gap> phi := GroupHomomorphismByImages(Q,S8,[i,j],
> [(1,2,4,6)(3,5,7,8), (1,3,4,7)(2,8,6,5)]);
[ i, j ] -> [ (1,2,4,6)(3,5,7,8), (1,3,4,7)(2,8,6,5) ]
gap> Image(phi, i*j);
(1,8,4,5)(2,7,6,3)

So although this produces a homomorphism, it isn’t φ, since it maps i · j to
(1 8 4 5)(2 7 6 3) instead of (1 5 4 8)(2 3 6 7). So φ must not be a homomorphism.
Let us try seeing if f is a homomorphism.

gap> F := GroupHomomorphismByImages(Q,S8,[i,j],
> [(1,2,4,6)(3,8,7,5), (1,3,4,7)(2,5,6,8)]);
[ i, j ] -> [ (1,2,4,6)(3,8,7,5), (1,3,4,7)(2,5,6,8) ]
gap> Image(F,i*j);
(1,5,4,8)(2,7,6,3)
gap> Image(F,i^3*j);
(1,8,4,5)(2,3,6,7)

This time, f(i · j) and f(i3 · j) is exactly the permutation produced by
LeftMult. So f is a homomorphism, even though φ is not. We can easily
generalize this to prove the following.
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THEOREM 5.2: Cayley’s Theorem
Every finite group of order n is isomorphic to a subgroup of Sn.

PROOF Let G be a group of order n. For each g in G, define the mapping

pg : G→ G

by pg(v) = v · g. For a given g, if pg(v) = pg(w), then v · g = w · g, so v = w.
Hence, pg is a one-to-one mapping. Also,

pg(v · g−1) = v · g−1 · g = v.

So every element of G is mapped by an element of G. Thus, pg is also an onto
mapping, and hence is a permutation of the elements of G.

We now can consider the mapping φ from G to the symmetric group S|G|
on the elements of G, given by

φ(g) = pg

Now, consider two elements φ(x) and φ(y). The product of these is the
mapping

v → py(px(v)) = py(v · x) = (v · x) · y = v · (x · y).

Since this is the same as φ(x · y), φ is a homomorphism.
The element x will be in the kernel of the homomorphism φ only if φx(v)

is the identity permutation. This means that v · x = v for all elements v in
G. Thus, the kernel consists just of the identity element of G, and hence φ is
an isomorphism. Therefore, G is isomorphic to a subgroup of S|G|.

There is a GAP command IsomorphismPermGroup that applies Cayley’s
theorem to any finite group.

gap> iso := IsomorphismPermGroup(Q);
[ i, j ] -> [ (1,2,6,3)(4,8,5,7), (1,4,6,5)(2,7,3,8) ]
gap> Image(iso, i*j);
(1,7,6,8)(2,5,3,4)

The slight difference between this isomorphism and the first one that we dis-
covered comes from the fact that GAP ordered the elements of Q differently.

Here is another example: the group D4, whose multiplication table is given
in table 4.2 in chapter 4,

gap> f := FreeGroup("a","b");; a:=f.1;; b:= f.2;;
gap> D4 := f/[a^2, b^4, a*b*a*b];; a:= D4.1;; b:= D4.2;;
gap> iso := IsomorphismPermGroup(D4);
[ a, b ] -> [ (2,3), (1,2,4,3)]
gap> List(Image(iso));
[ (), (2,3), (1,3,4,2), (1,3)(2,4), (1,4), (1,4)(2,3),
(1,2)(3,4), (1,2,4,3) ]
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Although Cayley’s theorem (5.2) shows that D4 is a subgroup of S8, GAP
actually found a subgroup of S4 containing an isomorphic copy of D4. How
did GAP do this? Let us consider a non-normal subgroup of D4:

InitGroup[e];
Define[â2, e]; Define[b̂4, e]; Define[b.a, a.b.b.b]
D4 = Group[{a,b}];
H = {e, a}

We saw in Cayley’s theorem (5.2) that LeftMult applied to the elements
of the group derived a homomorphism. What if we applied LeftMult to
the cosets of the group? Recall that LeftMult[x] can be thought of as a
function px(v) = v · x, that is, it multiplies the argument of the function
to the left of x. If we apply this function to a right coset of H, we have
px(H · g) = H · g ·x, which yields another right coset. (Left cosets won’t work
here, since px(g ·H) = g ·H · x, which is neither a left nor right coset.) The
list of right cosets is given by

R = RtCoset[D4, H]

{{b, a · b}, {e, a}, {b · b, a · b · b}, {b · b · b, a · b · b · b}}
If we multiply each coset to the left of a fixed element of the group, say a or
b, we get the circle graphs in figure 5.4.
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FIGURE 5.4: Circle graphs for multiplying cosets of D4

We see that each coset is mapped to another coset, so once again we can
treat each circle graph as a permutation. By numbering the cosets in the
order that they appear in R, we see that LeftMult[a] acts as the permu-
tation P[4,2,3,1] = (14), whereas LeftMult[b] acts as the permutation
P[3,1,4,2] = (1342). Mathematica or GAP can check that this extends to a
homomorphism.
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gap> S4 := SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> F := GroupHomomorphismByImages(D4,S4,[a,b],
> [(1,4),(1,3,4,2)]);
[ a, b ] -> [ (1,4), (1,3,4,2) ]
gap> List(Kernel(F));
[ <identity ...> ]

Since the kernel is just the identity element, we see that there is a subgroup of
S4 isomorphic to D4. Note that this is a much stronger result than Cayley’s
theorem (5.2), which only says that D4 is isomorphic to a subgroup of the
larger group S8.

PROPOSITION 5.2
Let G be a finite group of order n, and H a subgroup of order m. Then

there is a homomorphism from G to Sk, with k = n/m, and whose kernel is
a subgroup of H.

PROOF Let Q be the set of right cosets H\G. For each g in G, define
the mapping

pg : Q→ Q

by pg(H · x) = H · x · g. Note that this is well defined, since if H · x = H · y,
then H · x · g = H · y · g.

For a given g, if pg(H ·x) = pg(H ·y), then H ·x ·g = H ·y ·g, so H ·x = H ·y.
Hence, pg is a one-to-one mapping. Also,

pg(H · x · g−1) = H · x · g−1 · g = H · x,

so every element of Q is mapped by an element of Q. Thus, pg is also an onto
mapping, and hence is a permutation of the elements of Q.

We now can consider the mapping φ from G to the symmetric group S|Q|
on the elements of Q, given by

φ(g) = pg.

Now, consider two elements φ(g) and φ(h). The product of these is the
mapping

H · x→ ph(pg(H · x)) = ph(H · x · g) = H · x · (g · h).

Since this is the same as φ(g · h), φ is a homomorphism.
Finally, we must show that the kernel of φ is a subgroup of H. The element

g will be in the kernel of the homomorphism φ only if pg(H ·x) is the identity
permutation. This means that H · x · g = H · x for all right cosets H · x in Q.
In particular, the right coset H · e = H is in Q, so H · g = H. This can only
happen if g is in H. Thus, the kernel is a subgroup of H. We have found a
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homomorphism φ from the group G to the group S|Q| = Sk, whose kernel is
a subgroup of H.

We see one application of this proposition in the case of D4. Since H was
a subgroup of order 2 which was not normal, the only normal subgroup of G
that is contained in H is the trivial subgroup. Thus, the homomorphism is
an isomorphism, and we find a copy of D4 inside of S4 instead of having to
look in the larger group S8. This idea can be applied whenever we can find a
subgroup of G that does not contain any nontrivial normal subgroups of G.

But there is another important ramification from this proposition. We can
prove the existence of a normal subgroup of a group, knowing only the order
of the group!

COROLLARY 5.2

Let G be a finite group, and H a subgroup of G. Then H contains a subgroup
N , which is a normal subgroup of G, such that |G| divides (|G|/|H|)! · |N |.

PROOF By proposition 5.2, there is a homomorphism φ from G to Sk,
where k = |G|/|H|. Furthermore, the kernel is a subgroup of H. If we let N
be the kernel, and let I be the image of the homomorphism, we have by the
first isomorphism theorem (4.1) that

G/N ≈ I.

In particular, |G|/|N | = |I|, and |I| is a factor of |Sk| = k!. This means that
|G| is a factor of k! · |N |.

Here is an example of how we can prove the existence of a nontrivial normal
subgroup, using just the order of the group. Suppose we have a group G of
order 108. Suppose that G has a subgroup of order 27. (We will find in
section 7.4 that all groups of order 108 must have a subgroup of order 27.)
Using |G| = 108 and |H| = 27, we find that G must contain a subgroup N
such that 108 divides (108/27)! · |N | = 24 · |N |. But this means that |N |
must be a multiple of 9. Since N is a subgroup of H, which has order 27,
we see that N is of order 9 or 27. Hence, we have proven that G contains a
normal subgroup of either order 9 or 27. This will go a long way in finding
the possible group structures of G, using only the size of the group G.
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5.4 Numbering the Permutations

Although using cycles to denote permutations is more succinct in most
cases and more readable, Mathematica works much faster using the standard
permutation notation. Thus, for large time consuming operations, such as
checking that a function is a homomorphism, it will be much faster using the
P [. . .] notation than the C[. . .] notation. For example, we saw using Cayley’s
theorem that there was a copy of Q inside of S8. It was generated by the
elements

f(i) = P [2, 4, 8, 6, 3, 1, 5, 7] and f(j) = P [3, 5, 4, 7, 6, 8, 1, 2].

Thus, we could form a group isomorphic to Q by the command

Q = Group[{P[2,4,8,6,3,1,5,7], P[3,5,4,7,6,8,1,2]}]

Alternatively, we could have used the cycle notation.

Q = Group[{C[1,2,4,6] . C[3,8,7,5] , C[1,3,4,7] . C[2,5,6,8]}]

gap> Q := Group( (1,2,4,6)(3,8,7,5), (1,3,4,7)(2,5,6,8) );;
gap> List(Q);
[ (), (1,4)(2,6)(3,7)(5,8), (1,6,4,2)(3,5,7,8),
(1,2,4,6)(3,8,7,5), (1,7,4,3)(2,8,6,5), (1,3,4,7)(2,5,6,8),
(1,5,4,8)(2,7,6,3), (1,8,4,5)(2,3,6,7) ]

Even though the cycle notation reveals more of the structure of the group
(such as the order of each of the elements), it takes Mathematica longer to
work with cycles. On the other hand, GAP requires working with the cycles
notation, since it cannot form a group from transformations.

This section introduces a way to work with permutations in Mathematica
or GAP that combines succinctness and speed. Mathematica has a preset
order in which it lists the permutations.

1st permutation = P [ ]
2nd permutation = P [2, 1]
3rd permutation = P [1, 3, 2]
4th permutation = P [3, 1, 2]
5th permutation = P [2, 3, 1]
6th permutation = P [3, 2, 1]
7th permutation = P [1, 2, 4, 3]

· · · · · ·
24th permutation = P [4, 3, 2, 1]
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Notice that the first 2 permutations give the group S2, the first 6 give S3, and
the first 24 elements give S4. This pattern can be extended to higher order
permutations, so that the first n! permutations gives the group Sn.

The order of the permutations are designed so that Mathematica or GAP
can quickly find the n-th permutation on the list. For example,

NthPerm[2000]
P [4, 1, 7, 6, 3, 2, 5]

gap> NthPerm(2000);
(1,4,6,2)(3,7,5)

finds the 2000th permutation on this list without having to find the previous
1999. Notice that Mathematica returns a permutation, whereas GAP returns
the answer in terms of cycles. Mathematica and GAP can also quickly deter-
mine the position of a given permutation on this list. The command

PermToInt[P[4,1,7,6,3,2,5]]

gap> PermToInt( (1,4,6,2)(3,7,5) );
2000

converts the permutation back to the number 2000.
Rather than spelling out each permutation, we can now give a single num-

ber that describes where the permutation is on the list of permutations. This
will be called the integer representation of the permutation. Although this
representation hides most of the information about the permutation, Math-
ematica and GAP can quickly recover the needed information to do group
operations.

For example, we can multiply the 3rd permutation with the 21st on the list
with the command

NthPerm[3] . NthPerm[21]

gap> NthPerm(3)*NthPerm(21);
(1,2,3,4)

If we wanted this converted back to a number, we would type

PermToInt[ NthPerm[3] . NthPerm[21] ]

gap> PermToInt(NthPerm(3)*NthPerm(21));
19

Hence the 3rd permutation times the 21st permutation gives the 19th per-
mutation. If we had multiplied in the other order, we would get 23 instead,
indicating that the group is non-abelian.

Mathematica provides a shortcut to the previous types of calculations. By
entering the command
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InitPermMultiplication

we can use the dot product to multiply numbers as if they were permutations.
Thus

3 . 21
19

multiplies the 3rd and 21st permutations, and automatically converts this
back to a number. Also, the command

23̂(-1)
18

finds that the inverse of the 23rd permutation is the 18th permutation. Notice
that we need to leave a space between the number and the dot, to distinguish
the dot from a decimal point.

This integer representation of the permutations allows us to find other
groups within the permutations easily. For example, the quaternion group
was generated by the elements

P [2, 4, 8, 6, 3, 1, 5, 7] and P [3, 5, 4, 7, 6, 8, 1, 2].

Converting these to integer representations

PermToInt[ P[2,4,8,6,3,1,5,7] ]
7159
PermToInt[ P[3,5,4,7,6,8,1,2] ]
34587

we find that the quaternion group can be represented by

TABLE 5.3: Integer representation of Q
· 1 7159 12569 18499 23992 25576 34587 37277

1 1 7159 12569 18499 23992 25576 34587 37277
7159 7159 18499 23992 25576 34587 1 37277 12569
12569 12569 37277 18499 34587 7159 23992 1 25576
18499 18499 25576 34587 1 37277 7159 12569 23992
23992 23992 12569 25576 37277 18499 34587 7159 1
25576 25576 1 37277 7159 12569 18499 23992 34587
34587 34587 23992 1 12569 25576 37277 18499 7159
37277 37277 34587 7159 23992 1 12569 25576 18499
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InitPermMultiplication
G = Group[{7159, 34587}]
{1, 7159, 12569, 18499, 23992, 25576, 34587, 37277}

This gives the whole group on a single line which encodes the entire structure
of the group. Finally, the command MultTable[G] produces table 5.3.

Unfortunately GAP cannot redefine the product of two integers. However,
we can still use the succinctness of the integer representation when displaying
the multiplication tables by setting the variable IntPermMultiplication to
true.

gap> Q := Group( (1,2,4,6)(3,8,7,5), (1,3,4,7)(2,5,6,8) );;
gap> List(Q, x -> PermToInt(x) );
[ 1, 18499, 25576, 7159, 12569, 34587, 37277, 23992 ];
gap> ResetTableOptions();
gap> IntPermMultiplication := true;
true
gap> MultTable(Q);

* |1 7159 12569 18499 23992 25576 34587 37277
-----+------------------------------------------------------
1 |1 7159 12569 18499 23992 25576 34587 37277
7159 |7159 18499 23992 25576 34587 1 37277 12569
12569|12569 37277 18499 34587 7159 23992 1 25576
18499|18499 25576 34587 1 37277 7159 12569 23992
23992|23992 12569 25576 37277 18499 34587 7159 1
25576|25576 1 37277 7159 12569 18499 23992 34587
34587|34587 23992 1 12569 25576 37277 18499 7159
37277|37277 34587 7159 23992 1 12569 25576 18499

This integer representation of the permutations allows us to form such a table,
and has many other advantages over cyclic permutations, especially when we
are working with extremely large subgroups of a symmetric group. Note that
the command

gap> ResetTableOptions();

puts the MultTable options back to their default mode.

Problems for Chapter 5

Interactive Problems

5.1 Use Mathematica or GAP to find a pair of 3-cycles whose product is a
3-cycle. Can there be a product of two 4-cycles that yields a 4-cycle?

5.2 Use the proof of Cayley’s theorem (5.2), with GAP’s or Mathematica’s
help, to find a subgroup of S8 that is isomorphic to the dihedral group D4.
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5.3 Use Cayley’s theorem (5.2) to find a subgroup of S8 that is isomorphic
to Z∗24.

5.4 Find the elements of A4 converted to the integer representation. Is there
a pattern as to which positive integers correspond to the even permutations,
and which correspond to odd? Does the pattern continue to A5?

5.5 Use Mathematica or GAP to find all elements of S7 whose square is
P [3, 5, 1, 7, 6, 2, 4] = (13)(256)(47).

Hint: Use a “for” loop to test all of the elements of S7:

For[i = 1, i <= 5040, i++,
If[ NthPerm[i]̂2 == P[3,5,1,7,6,2,4],

Print[NthPerm[i]]]]

In GAP, the corresponding commands are

gap> for i in [1..5040] do
> if ( NthPerm(i)^2 = (1,3)(2,5,6)(4,7) ) then
> Print( NthPerm(i),"\n" );
> fi;
> od;

5.6 Use Mathematica or GAP to find all elements of S6 whose cube is
P [3, 5, 6, 1, 2, 4] = (1364)(25). (See the hint for problem 5.5.)

Non-Interactive Problems

5.7 Compute the product(
1 2 3 4 5 6
5 1 6 3 2 4

)
·
(

1 2 3 4 5 6
4 2 1 6 3 5

)
.

5.8 Form a multiplication table of S3 using the permutation notation for the
elements. That is, use the elements

S3 =
{(

1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
,

(
1 2 3
3 2 1

)}
.

5.9 Find the six elements of S4 that are of order 4.
Hint: All four of the numbers must move.

5.10 Find a nontrivial element of S5 that commutes with the permutation

x =
(

1 2 3 4 5
4 2 3 5 1

)
.
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5.11 Find a permutation x in S4 that solves the equation

x ·
(

1 2 3 4
1 3 4 2

)
=
(

1 2 3 4
4 1 3 2

)
· x.

(There are in fact three different answers.)

For problems 5.12 through 5.15: Find the product of the cycles without using
GAP or Mathematica.
5.12 (1 5 6) · (3 5 2 4) · (1 4 3 5)
5.13 (2 4 7) · (1 3 6 4) · (1 7 5 3 6)

5.14 (1 7 2 3 8 4) · (1 3 5 2 4 6) · (2 4 3 5 8)
5.15 (1 9 3 5 2 4 8) · (2 7 3 9 5 4) · (4 7 6 8)

5.16 Simplify the product of the cycles

(1 3 2)(2 4 3)(3 5 4) · · · (n− 1 n+ 1 n)(n n+ 2 n+ 1)

for n > 1.
Hint: Try it with n = 2, n = 3, and n = 4 to see a pattern. Then prove

using induction that the pattern persists.

5.17 Find the order of the permutations

(1 2 5)(3 4) and (1 2 5)(3 4 6 7).

5.18 Prove that the order of a permutation written in disjoint cycles is the
least common multiple of the orders of the cycles.

5.19 Show that A8 contains an element of order 15.
Hint: See problem 5.18.

5.20 Show that if H is a subgroup of Sn, then either every member of H is
an even permutation or exactly half of them are even.

5.21 Find a subgroup of S4 that is isomorphic to Z∗8 .
Hint: Look at the proof of Cayley’s theorem (5.2).

5.22 Find a subgroup of S5 that is isomorphic to Z5. (Do you really need
Cayley’s theorem (5.2) for this one?)

5.23 According to Cayley’s theorem (5.2), the quaternion group Q is iso-
morphic to a subgroup of S8. Show that Q is not isomorphic to a subgroup
of S7.

Hint: Assume that a subgroup is isomorphic to Q. Is the permutation
corresponding to −1 = i2 odd or even? How many disjoint cycles can it
contain? What possible permutations can i, j, k, −i, −j, and −k be mapped
to? From this, produce a contradiction.
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5.24 In the text we found a group isomorphic to D4 actually contained in
S4, which is a much smaller group than S8 used by Cayley’s theorem (5.2).
What is the smallest symmetric group that contains a subgroup isomorphic
to Z∗24?

5.25 Mathematica views the permutations(
1 2 3 4 5
2 1 4 3 5

)
and

(
1 2 3 4
2 1 4 3

)
as being the same permutation, P [2, 1, 4, 3]. But are these really the same?
If not, why can Mathematica use the same notation for these two elements?

5.26 The function φ(x) defined in section 5.3, which used RightMult in-
stead of LeftMult, was seen not to be a homomorphism. Show that

φ(x · y) = φ(y) · φ(x).

A function with this property is called an anti-homomorphism.

5.27 Let SΩ be the collection of all one-to-one and onto functions from Z+

to Z+ that only move a finite number of elements. Prove that SΩ is a group.
Show that we can write

SΩ =
∞⋃
n=1

Sn.

How should we interpret this union?

5.28 Let S∞ be the collection of all one-to-one and onto functions from Z+

to Z+. Prove that S∞ is a group. Find an element of this group that is not
in SΩ. (See problem 5.27.)

5.29 Consider the set G of all one-to-one and onto functions f(x) from Z+

to Z+ such that there is some integer M for which

|f(x)− x| < M ∀x ∈ Z+.

(The value of M is different for different elements of the group.) Prove that
G is a group containing SΩ. Find an element of G that is not in SΩ. Find an
element of S∞ that is not in G. (See problems 5.27 and 5.28.)

5.30 Show that if G is a group of order 35, and H is a subgroup of order 7,
then H is normal.

Hint: Use corollary 5.2.

5.31 Use corollary 5.2 to show that if G is a group of order p ·m, where p is
prime and p > m, then any subgroup of order p is normal.
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5.32 Let G be a group, and H be a subgroup containing exactly 1/3 of the
elements of G. Use corollary 5.2 to show that either H is normal, or exactly
half the elements of H form a normal subgroup of G.

5.33 How many elements of order 5 are there in S6?

5.34 A card-shuffling machine will always shuffle cards in the same way
relative to the order in which they were given. All of the spades arranged in
order from ace to king are put into the machine, and then the shuffled cards
are re-entered into the machine again. If the cards after the second shuffle are
in the order 10, 9, 4, Q, 6, J, 5, 3, K, 7, 8, 2, A, what order were the cards in
after the first shuffle?

5.35 A subgroup H of the group Sn is called transitive on B = {1, 2, . . . , n}
if for each pair i, j of elements of B, there exists an element f in H such that
f(i) = j. Show that there exists a cyclic subgroup H of Sn that is transitive
on B.

5.36 Let φ denote an r-cycle in Sn, and let x be any permutation in Sn.
Show that x−1 · φ · x is an r-cycle.

5.37 Let φ and f denote two disjoint cycles in Sn, and let x be any permu-
tation in Sn. Show that x−1 · φ · x and x−1 · f · x are disjoint cycles. (See
problem 5.36.)



Chapter 6

Building Larger Groups from
Smaller Groups

6.1 The Direct Product

In this chapter, we will use the smaller groups that we have previously
studied as building blocks to form larger groups. We will discover that all
finite abelian groups can be constructed using just the cyclic groups Zn.

One way in which we can create a larger group from two smaller groups is
to consider ordered pairs (g1, g2), in which the first component g1 is a member
of one group, and the second component g2 is an element of a second group.
We then can multiply these ordered pairs component-wise.

DEFINITION 6.1 Given two groups H and K, the direct product of H
and K, denoted H ×K, is the group of ordered pairs (h, k) such that h ∈ H
and k ∈ K, with multiplication defined by

(h1, k1) · (h2, k2) = (h1 · h2, k1 · k2).

The four group properties for the direct product are easy to verify. Certainly
H × K is closed under multiplication, since the component-wise product of
two ordered pairs is again an ordered pair. If e1 is the identity element for H,
and e2 the identity element for K, then (e1, e2) would be the identity element
of the direct product. Also, the inverse of an ordered pair (h, k) is (h−1, k−1).
Finally, the associative law would hold for H ×K, since it holds for both H
and K.

Example 6.1

Let H = Z4 and K = Z2. Consider the direct product G = Z4 × Z2. Since
Z4 consists of the elements {0, 1, 2, 3} and Z2 consists of {0, 1}, the set of all
ordered pairs (h, k) with h ∈ Z4 and k ∈ Z2 is

{(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)}.

135
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The multiplication table for Z4 × Z2 is given in Mathematica©R by the fol-
lowing group of commands:

InitGroup[0];
{x , y }.{z , w } := {Mod[x+z, 4], Mod[y+w, 2]}
MultTable[ {{0,0},{0,1},{1,0},{1,1},{2,0},{2,1}, {3,0},{3,1}}]

(Note that curly braces are used here instead of parentheses.) In GAP, we
have to first define Z4 and Z2 separately, and then form the direct product.

gap> f:=FreeGroup("a");; a := f.1;;
gap> Z4 := f/[a^4];;
gap> Z2 := f/[a^2];;
gap> G := DirectProduct(Z4,Z2);
<fp group on the generators [ f1, f2 ]>
gap> List(G);
[ <identity ...>, f1, f2, f1^2, f1*f2, f1^3, f1^2*f2, f1^3*f2 ]
gap> NumberElements := true;;
gap> MultTable(G);

* |1 2 3 4 5 6 7 8
-------+-----------------------
e |1 2 3 4 5 6 7 8
f1 |2 4 5 6 7 1 8 3
f2 |3 5 1 7 2 8 4 6
f1^2 |4 6 7 1 8 2 3 5
f1*f2 |5 7 2 8 4 3 6 1
f1^3 |6 1 8 2 3 4 5 7
f1^2*f2|7 8 4 3 6 5 1 2
f1^3*f2|8 3 6 5 1 7 2 4

Notice that GAP picks f1 and f2 as the generators of this new group. As a
result, the multiplication table is slightly too large to display unless we set
the NumberElements to true. Nonetheless, we see that this group of eight
elements is abelian, has an element of order 4, yet has no element of order 8.
Thus by process of elimination, this group must be isomorphic to Z∗15.

PROPOSITION 6.1
Let H and K be two groups. Then H × K is commutative if, and only if,

both H and K are commutative.

PROOF First, suppose that H and K are both commutative. Then for
two elements (h1, k1) and (h2, k2) in H ×K, we have

(h1, k1) · (h2, k2) = (h1 · h2, k1 · k2) = (h2 · h1, k2 · k1) = (h2, k2) · (h1, k1).

So the two elements in H ×K commute. Hence, H ×K is commutative.
Now suppose that H×K is commutative. If we let e1 and e2 be the identity

elements of H and K, respectively, then we have

(h1 · h2, e2) = (h1, e2) · (h2, e2) = (h2, e2) · (h1, e2) = (h2 · h1, e2)
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and

(e1, k1 · k2) = (e1, k1) · (e1, k2) = (e1, k2) · (e1, k1) = (e1, k2 · k1).

Thus, h1 · h2 = h2 · h1 and k1 · k2 = k2 · k1 for all h1 and h2 in H, and all k1

and k2 in K. Hence, both H and K are commutative.

It is easy to find the number of elements in a direct product. If H has order
n, and K has order m, then the number of ordered pairs (h, k) would be n ·m.
We can generalize the direct product to a set of more than two groups. Let

G1, G2, G3, . . . , Gn

be a collection of n groups. Then we define G1 × G2 × G3 × · · · × Gn to be
the set of ordered n-tuples (g1, g2, g3, . . . , gn) with multiplication defined by

(g1, g2, . . . , gn) · (h1, h2, . . . , hn) = (g1 · h1, g2 · h2, . . . , gn · hn).

The direct product of more than two groups can also be defined by taking the
direct product of direct products. That is, given three groups G, H, and K,
we could define both (G×H)×K and G× (H ×K). But the mappings

f : (G×H)×K → G×H ×K

and
φ : G× (H ×K)→ G×H ×K

given by f(((g, h), k)) = (g, h, k) and φ((g, (h, k))) = (g, h, k) are clearly sur-
jective isomorphisms. Thus,

(G×H)×K ≈ G×H ×K ≈ G× (H ×K).

It also should be noted that there is the natural mapping

f : H ×K → K ×H

given by f((h, k)) = (k, h). This shows that H ×K ≈ K ×H.

DEFINITION 6.2 Let G be a group. We say that G has a decomposition
if G ≈ H ×K, where neither H nor K is the trivial group.

For example, the group Z∗15 has a decomposition, since we saw in exam-
ple 6.1 that this group is isomorphic to Z4 ×Z2. We would like to find a way
of testing whether a general group can be decomposed into smaller groups.
The following theorem gives us this test.

THEOREM 6.1: The Direct Product Theorem
Let G be a group with identity e, and let H and K be two subgroups of G.

Suppose the following two statements are true:
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1. H ∩K = {e}.

2. For all h ∈ H and k ∈ K, h · k = k · h.

Then H ·K ≈ H ×K.

PROOF First, let us show that every element in H ·K can be uniquely
written in the form h · k, where h ∈ H and k ∈ K. Suppose that

h1 · k1 = h2 · k2.

Then h−1
2 ·h1 = k2 ·k−1

1 . Since this element must be in both H and K, and
the intersection of H and K is the identity element, we have that

h−1
2 · h1 = k2 · k−1

1 = e.

Thus, h1 = h2 and k1 = k2. Therefore, every element of H ·K can be written
uniquely as h · k, where h is in H, and k is in K.

Next, we need to show that H · K is a group. Since h · k = k · h for all
h ∈ H and k ∈ K, we have that H ·K = K ·H. Thus, by lemma 4.4, H ·K
is a subgroup of G.

We can now define a mapping

φ : H ·K → H ×K

by φ(x) = (h, k), where h and k are the unique elements such that h ∈ H,
k ∈ K, and x = h · k. It is clear that φ is one-to-one, since the element
(h, k) can only have come from h · k. Also, φ is onto, for the element h · k
maps to (h, k). All that remains to show that φ is an isomorphism is that
φ(x · y) = φ(x) · φ(y). Let x = h1 · k1, and y = h2 · k2. Then

φ(x · y) = φ(h1 · k1 · h2 · k2)
= φ(h1 · h2 · k1 · k2)
= (h1 · h2, k1 · k2)
= (h1, k1) · (h2, k2)
= φ(x) · φ(y).

Thus, φ is an isomorphism, and so H ·K ≈ H ×K.

We can use this theorem to define the direct product of two groups in
Mathematica. Suppose we wish to generate the direct product S3 × Z∗8 . We
first must define the two groups in Mathematica using the same identity ele-
ment and different letters for the generators. The group S3 is defined by the
commands
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InitGroup[e];
Define[â3, e]; Define[b̂2, e]
Define[b.a, a.a.b]
Define[1/a, â2]; Define[1/b, b]
H = Group[{a, b}];

Now let us define Z∗8 , using c and d for the two generators.

Define[ĉ2, e]; Define[d̂2, e]
Define[d.c, c.d]
Define[1/c, c]; Define[1/d, d]
K = Group[{c, d}];

Of course we did not use the InitGroup command before defining the second
group, otherwise we would have cleared the first group. Notice that

Intersection[H, K]

is just the identity element, so the first condition of the direct product theorem
is satisfied.

In order for the second condition of the direct product theorem to be satis-
fied, every element of H must commute with every element of K. This will be
true as long as all of the generators of H commute with all of the generators
of K. Since there are 2 generators of H and 2 of K, we can tell Mathematica
that the generators commute using 2 · 2 = 4 definitions:

Define[c.a, a.c]; Define[c.b, b.c]
Define[d.a, a.d]; Define[d.b, b.d]

We have to be consistent in the direction of these definitions. That is, we
must define an element of the form k · h to h · k, where h is in H, and k is in
K. This informs Mathematica to express all elements as h · k.

According to the direct product theorem H ·K is now the same as H ×K.
Here, then, is the direct product:

H . K

Alternatively, we could find the smallest group that contains all of the gener-
ators:

G = Group[{a, b, c, d}]

In GAP, we have the option of defining the groups separately, and use the
DirectProduct that we used for Z4 × Z2. But to have more control as to
the names of the generators, we can define the direct product as we did in
Mathematica.
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gap> f:=FreeGroup("a","b","c","d");;
gap> a := f.1;; b:=f.2;; c:= f.3;; d:=f.4;;
gap> g:= f/[a^3,b^2,b*a*b*a,
> c^2,d^2,c*d*c*d,
> c*a/(a*c),c*b/(b*c),d*a/(a*d),d*b/(b*d)];;
gap> List(g);
[ <identity ...>, b, c, d, a, b*c, b*d, a^2*b, c*d, a*c, a*d,
a^2, b*c*d, a^2*b*c, a^2*b*d, a*b, a*c*d, a^2*d, a^2*b*c*d,
a*b*c, a*b*d, a^2*c*d, a*b*c*d ]

gap> Size(g);
24

This gives us a group of 24 elements. Since S4 also has 24 elements, we could
ask if these are isomorphic. But recall that S4 had exactly 9 elements of order
2, whereas the computation

Ĝ2
{e, a · a, e, e, e, a, e, a · a, a · a, e, e, e, e, a, a, e, e, a · a, e, e, e, a,
e, e}

gap> SetReducedMultiplication(g);
gap> List(g, x -> x^2);
[ <identity ...>, <identity ...>, <identity ...>,
<identity ...>, a^-1, <identity ...>, <identity ...>,
<identity ...>, <identity ...>, a^-1, a^-1, a, <identity ...>,
<identity ...>, <identity ...>, <identity ...>, a^-1, a, a,
<identity ...>, <identity ...>, <identity ...>, a,
<identity ...> ]

reveals that G has 15 elements of order 2. Thus, S4 is not isomorphic to
S3 × Z∗8 .

This trick of counting the number of solutions to gn = e for some n is an
efficient way of showing that two groups are not isomorphic. We essentially
used this with n = 2 to show that S3×Z∗8 is not isomorphic to S4. In fact, it
is rather easy to count these solutions for direct products.

PROPOSITION 6.2

Let H and K be finite groups, and let n be a positive integer. If there are r
elements of H such that an is the identity in H, and s elements of K such
that bn is the identity element of K, then there are r · s elements of H ×K
such that cn is the identity element of H ×K.

PROOF Let e1 denote the identity element of H, and e2 denote the
identity element of K. An element c = (h, k) in H ×K solves the equation
cn = (e1, e2) if and only if

hn = e1 and kn = e2.
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Since there are r solutions to the former, and s solutions to the latter, there
are r · s ordered pairs (h, k) that solve both of these equations. Thus, there
are r · s elements of H ×K for which cn = (e1, e2).

For example, there are 4 elements of S3 satisfying the equation x2 = e, and
4 elements of Z∗8 that satisfy this equation. Thus, there are 16 elements of
S3×Z∗8 that satisfy x2 = e, one of which is the identity. Thus, we quickly see
that there are 15 elements of order 2.

As powerful as the direct product theorem (6.1) is, it is often difficult to
check that h · k = k · h for all h ∈ H and k ∈ K. Here is a more convenient
way of showing that a group can be expressed as a direct product of two
subgroups.

COROLLARY 6.1

Let G be a group with identity e, and let H and K be two normal subgroups
of G. Then if H ∩K = {e}, then H ·K ≈ H ×K.

PROOF The first condition of the direct product theorem (6.1) is given,
so we only need to show that the second condition holds. That is, we need to
show that h · k = k · h for all h in H, and k in K. Let h ∈ H and k ∈ K.

Since K is a normal subgroup of G, h ·k ·h−1 is in K. Thus, h ·k ·h−1 ·k−1

is in K.
But H is also a normal subgroup of G, so k · h−1 · k−1 is in H. Hence,

h · k · h−1 · k−1 is in H.
We now use the fact that the only element in both H and K is e. Thus,

h · k · h−1 · k−1 = e, which implies h · k = k · h. Therefore, the second
condition of the direct product theorem (6.1) holds, and so by this theorem,
H ·K ≈ H ×K.

6.2 The Fundamental Theorem of Finite Abelian Groups

In this section, we will show how we can construct any finite commutative
group by considering the direct products of the cyclic groups Zn. We will
even be able to find all abelian groups of a given order.

Let us begin with a simple example, Z6. Can we express this as the direct
product of two smaller groups? By the direct product theorem, we must find
two subgroups of Z6 whose intersection is just the identity element, and whose
product is the whole group. It is not hard to see that the subgroups

H = {0, 3} and K = {0, 2, 4}
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satisfy these two conditions. Thus, Z6 ≈ Z2×Z3. This is easily verified using
Mathematica or GAP. We can first define the group Z2 × Z3:

gap> f:= FreeGroup("a","b");; a:=f.1;; b:=f.2;;
gap> g:= f/[a^2, b^3, b*a/(a*b)];; a:=g.1;; b:=g.2;;
gap> Order(a*b);
6
gap> StructureDescription(g);
"C6"

Since we have an element of order 6, the product Z2×Z3 must be isomorphic
to Z6. GAP’s StructureDescription command is another way to verify this.
GAP uses “C6” instead of Z6 for the cyclic group of order 6.

Observe the groups H = {0, 3} and K = {0, 2, 4} in this example. Notice
that H consists of all of the elements such that h2 = 0, and K consists of all
the elements such that k3 = 0. These two subgroups had only the identity
element in common. We can extend this observation to general abelian groups.

LEMMA 6.1
Let G be an abelian group of order mn, where m and n are coprime. Then

H = {h ∈ G | hm = e}

and
K = {k ∈ G | kn = e}

are both subgroups of G, and G ≈ H ×K.

PROOF To check that H and K are indeed subgroups simply observe
that since G is commutative the functions φ(x) = xm and f(x) = xn are both
homomorphisms of G. Then H and K are the kernels of the mappings φ and
f .

To show that H and K have only the identity element in common, we
consider an element x in the intersection. By the Chinese remainder theorem
(1.3), there exists a non-negative number k < m · n such that

k ≡ 1 (Mod m) and k ≡ 0 (Mod n).

Then k = (1 +mb) for some number b. Thus,

xk = x(1+mb) = x · (xm)b = x · eb = x

since x is in H. Yet k = nc for some number c, so

xk = xnc = (xn)c = ec = e

since x is in K. Thus, x = e, and so H ∩K = {e}. Since G is abelian, the
direct product theorem (6.1) proves that

H ·K ≈ H ×K.
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All that is left to prove is that G = H ·K. Let g be an element in G. Since
m and n are coprime, by the greatest common divisor theorem (1.2) there
exists a and b such that

an+ bm = GCD(m,n) = 1.

Then
g = g1 = g(an+bm) = gan · gbm.

Now, (gan)m = (ga)nm = e, so gan is in H. Likewise, gbm is in K. Thus,
every element of G is in H ·K, and so

G ≈ H ×K.

Unfortunately, the lemma does not tell us that H and K are proper sub-
groups. It is conceivable that either H or K from lemma 6.1 is the whole
group, and the other is just the identity element. We would still have G =
H ×K, but this would not give a decomposition of G. The next lemma uses
induction to show that, in fact, H and K must be nontrivial subgroups.

LEMMA 6.2
If G is a finite abelian group and p is a prime that divides the order of G,

then G has an element of order p.

PROOF We will proceed using induction on the order of G. If |G| = 2
then p must be 2 and G must isomorphic to Z2, and so there is an element of
order 2 in G.

In fact, whenever |G| is a prime number, then p must be |G|, and G must
be isomorphic to Zp. So again, there would be an element of order p in G.

Suppose that the assumption is true for all groups of order less than |G|.
If G does not have any proper subgroups, then G would be a cyclic group of
prime order (which we have already covered.) Thus, we may assume that G
has a subgroup N that is neither G nor {e}.

Since G is abelian all subgroups are normal. Thus we could consider the
quotient group G/N . Since |G| = |N | · |G/N |, p must divide either |N | or
|G/N |. If p divides N , then because N is a smaller group than G, by induction
N must have an element of order p, which would be in G.

If p does not divide |N | it must divide |G/N |. Since G/N is a smaller group
than G, by induction G/N must have an element of order p. This element
can be written a ·N for some a in G.

Since a · N is of order p, a cannot be in N , yet ap must be in N . If the
order of N is q, we would have by corollary 3.2 that (ap)q = e.

If b = aq is not the identity, then bp = e, and so b would be the required
element. But if b = e, then (a · N)q = N . But a · N was of order p, and so
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p must divide q. But we assumed that p did not divide q = |N |. Hence, b is
not the identity, and so G has an element of order p.

Later on we will see that lemma 6.2 is true for all groups, not just abelian
groups. However, the result for abelian groups is sufficient for this chapter.
This lemma guarantees that the subgroups H and K generated by lemma 6.1
must be proper subgroups. In fact, there are times when it is possible to
predict the size of the subgroups H and K.

LEMMA 6.3

Let G be an abelian group of order pn ·k where p is prime, k is not divisible by
p, and n > 0. Then there are subgroups P and K of G such that G ≈ P ×K,
where |P | = pn, and |K| = k.

PROOF Since pn and k are coprime, we can use lemma 6.1 to form the
subgroups

P = {x ∈ G | x(pn) = e}

and
K = {x ∈ G | xk = e}.

By lemma 6.1 these two subgroups have only the identity in common, and
G ≈ P ×K. If p divided |K|, then by lemma 6.2, K would contain an element
of order p. But this element would then be in P as well, which contradicts
the fact that only the identity element is in common between P and K. So p
does not divide the order of K.

Also note that the order of every element of P is a power of p. Thus,
lemma 6.2 tells us that no other prime other than p divides |P |.

Finally, note that |G| = pn · k = |P | · |K|. Since p does not divide |K|, we
have that pn must divide |P |. But no other primes can divide |P |, and so
|P | = pn. Hence, |K| = k.

Lemma 6.3 is a tremendous help in finding the decomposition of abelian
groups. To illustrate, suppose we have an abelian group G of order 24. Since
24 = 23 · 3, lemma 6.3 states that G is isomorphic to a direct product of a
group of order 8 and a group of order 3. Thus, G must be one of the groups

Z8 × Z3, Z∗15 × Z3, or Z∗24 × Z3.

If we can find all abelian groups of order pn for p a prime number, then we
will in a similar manner be able to find all finite abelian groups.

Hence, our next line of attack is abelian groups of order pn, where p is
prime. If this is not a cyclic group, we can find a decomposition for this group
as well.
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LEMMA 6.4
Suppose P is an abelian group of order pn, where p is a prime. Let x be an

element in P that has the maximal order of all of the elements of P . Then
P ≈ X × T , where X is the cyclic group generated by x, and T is a subgroup
of P .

PROOF We will use induction on n. If n = 1, then P is a cyclic group
of order p, and hence is generated by non-identity element x in P . We then
have X = P , so we can let T = {e}, and P ≈ X × T .

Now suppose that the assertion is true for all powers of p less than n. Notice
that the order of every element of P is a power of p. Thus, if we let x be
an element with the largest order, say m, then the order of all elements in P
must divide m. Hence, gm = e for all elements g in P .

We now let X be the subgroup generated by x. If X = P , then we can
again let T = {e} and we are done. If X is not P , we let y be an element of P
not in X which has the smallest possible order. Then since the order of yp is
less than the order of y, yp must be in X. This means that yp = xq for some
0 ≤ q < m.

Since y is in P , ym = e. But

ym = (yp)(m/p) = (xq)(m/p) = x(mq/p).

Because x is of order m, this can be the identity only if mq/p is a multiple
of m. Hence, q is a multiple of p.

If we let k = x−(q/p) · y, then k is not in X because y isn’t, and

kp =
(
x−(q/p)

)p
· yp = x−q · yp = x−q · xq = e.

Therefore, we have found an element k of order p that is not in X. If we let
K be the group generated by the element k, then X ∩K = {e}.

Consider the quotient group P/K. What is the order of xK in P/K? We
see that

(xK)n = K ⇐⇒ xn ∈ K ⇐⇒ xn ∈ X ∩K ⇐⇒ xn = e.

Therefore, the order of xK is the same as the order of x, which is m. Also
note that no element of P/K can have an element of higher order since am = e
for all elements a in P .

Now we use the induction! Since the order of P/K is less than the order of
P , and xK is an element of maximal order, we have by induction that

P/K ≈ Y ×B,

where Y is the subgroup of P/K generated by xK, and B is a subgroup of
P/K such that only the identity element K is in the intersection of Y and B.
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Let φ be the canonical homomorphism from P to P/K given by φ(g) = gK.
Let T = φ−1(B). Then T is a subgroup of P .

If g is in both X and T , then φ(g) is in both Y and B. Since the intersection
of Y and B is the identity element, we have φ(g) = g ·K = K. Thus, g is in
the subgroup K. But X ∩K = {e}, so we have

X ∩ T = {e}.

Thus, by the direct product theorem (6.1), we find that X · T ≈ X × T .
We finally need to show that P = X · T . Let u be an element in P , and

since P/K ≈ Y × B, we can write φ(u) as (xbK) · (kK) for some number b,
and some kK in B. Then

u ∈ xb · k ·K ⊆ X · T.

Thus, P = X · T , and so P ≈ X × T .

To illustrate the application of lemma 6.4, consider the group Z∗24. All non-
identity elements of Z∗24 are of order 2, so this is the maximal order. Thus,
lemma 6.4 states that Z∗24 can be decomposed into Z2 and a group of order
4. Since we have seen that Z4 × Z2 ≈ Z∗15, the only other choice is Z2 × Z∗8 .

Now we apply lemma 6.4 to Z∗8 . This is of order 4, and all elements besides
the identity are of order 2, so Z∗8 can be decomposed into Z2 and a group of
order 2, which must be Z2. Thus, Z∗8 ≈ Z2 × Z2, and so

Z∗24 ≈ Z2 × Z2 × Z2.

We have found a way to decompose any abelian group, as long as its prime
decomposition consists of at least two different primes. But now we want to
address the issue as to whether a decomposition is unique. Can two different
decompositions be isomorphic?

The main tool for testing whether two groups are isomorphic is to count
elements of a given order. It is natural to ask how many elements there are
of a given order for a decomposition of cyclic groups.

LEMMA 6.5
Let p be a prime number, and G be the direct product of cyclic groups

Z(pm1 ) × Z(pm2 ) × · · · × Z(pmj ) × Zr1 × Zr2 × · · · × Zrs
,

where m1,m2, . . . ,mj are positive integers, and r1, r2, . . . , rs are coprime to
p. Then the number of elements of G of order pn is given by

p(
∑j

k=1 Min(mk,n)) − p(
∑j

k=1 Min(mk,n−1))

where Min(mk, n) denotes the minimum of mk and n.
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PROOF We begin by noticing that the number of elements of order pn is
characterized by the elements y of G such that

y(pn) = e, but y(pn−1) 6= e,

where e is the identity of G. Thus, if we can find the number of solutions
to the first equation, y(pn) = e, we are on our way to finding the number of
elements of order pn.

Since G is expressed as a direct product we can use proposition 6.2 and
find the number of solutions to y(pn) = e for each factor in the product,
and multiply these numbers together. Since each factor is cyclic, we can use
corollary 2.1. For all of the factors Zr1 , Zr2 , . . .Zrs , there is only one solution
to y(pn) = e, since GCD(rk, pn) = 1. On the other hand, the number of
solutions to y(pn) = e in Z(pmk ) is

GCD(pmk , pn) = pMin(mk,n).

Thus, the number of solutions to y(pn) = e for the group G is the product of
the above for factors 1 through j of G, which gives us a grand total of

p(
∑j

k=1 Min(mk,n))

solutions. However, not all of these solutions will be elements of order pn. We
have to subtract the number of solutions to the equation y(pn−1) = e giving
us

p(
∑j

k=1 Min(mk,n)) − p(
∑j

k=1 Min(mk,n−1))

elements of G of order pn.

We are now ready to show that all finite abelian groups can be represented
as the direct product of cyclic groups. However, we would like to show at the
same time that such a representation is unique. To this end we will use the
previous lemma in conjunction with the following.

LEMMA 6.6

Let m1,m2,m3, . . . ,mj be a set of positive integers, and define f(n) as

f(n) =
j∑

k=1

Min(mk, n)

where Min(mk, n) denotes the minimum of mk and n. Then the number of
times that the integer n appears in the set of integers m1,m2,m3, . . . ,mj is
given by

2f(n)− f(n− 1)− f(n+ 1).
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PROOF Let us begin by observing the value of the expression

2 Min(mk, n)−Min(mk, n− 1)−Min(mk, n+ 1).

When mk < n, then Min(mk, n) = Min(mk, n − 1) = Min(mk, n + 1) = mk,
and so the above evaluates to 0. On the other hand, if mk > n, then the
above expression simplifies to be

2(n)− (n− 1)− (n+ 1) = 0.

However, if mk = n, then Min(mk, n) = n, Min(mk, n − 1) = n − 1, and
Min(mk, n+ 1) = n. Hence, we have

2 Min(mk, n)−Min(mk, n− 1)−Min(mk, n+ 1) = 2n− (n− 1)− n = 1.

Thus, we see that

2 Min(mk, n)−Min(mk, n− 1)−Min(mk, n+ 1) =
{

1 if mk = n
0 if mk 6= n

.

Thus, if we sum the above expression for k going from 1 to j, we will count
the number of terms mk that are equal to n. Hence this count will be

j∑
k=1

2 Min(mk, n)−Min(mk, n−1)−Min(mk, n+1) = 2f(n)−f(n−1)−f(n+1).

We can now use lemmas 6.3 through 6.6 to prove the following.

THEOREM 6.2 : The Fundamental Theorem of Finite Abelian
Groups
A nontrivial finite abelian group is isomorphic to

Z(p
m1
1 ) × Z(p

m2
2 ) × Z(p

m3
3 ) × · · ·Z(pms

s ),

where p1, p2, p3, . . . , ps are prime numbers (not necessarily distinct). Further-
more, this decomposition is unique up to the rearrangement of the factors.

PROOF We will proceed on induction on the order of the group. If the
order of the group is 2, then the theorem is true since the group would be
isomorphic to Z2. Let G be a finite abelian group and suppose the theorem
is true for all groups of order less than G. Let p be a prime that divides the
order of G. By lemma 6.3, G ≈ P ×K, where P is the subgroup containing
the elements of order pm for some m.

Furthermore, if x is an element of maximal order in P , and X is the group
generated by x, then by lemma 6.4, G ≈ X × T × K. Since X will be a
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nontrivial cyclic group the orders of T and K will be less than G. Thus, by
induction, T and K can be written as a direct product of cyclic groups whose
orders are powers of primes. Since X is also a cyclic group of order pr, G
can be written as a direct product of cyclic groups whose orders are powers
of primes.

We next have to show that this decomposition is unique. We will do this by
showing that the number of times Z(pn) appears in the decomposition, where
p is a prime, is completely determined by the order of the elements in the
group G. From lemma 6.5, the number of elements of order pn is given by

p(
∑ Min(mk,n)) − p(

∑ Min(mk,n−1))

where the sum is taken over all k such that pk = p. Thus, we see that

fp(n) =
∑
pk=p

Min(mk, n)

will be completely determined by the order of the elements of G, and hence
determined by the group G. But then by lemma 6.6 the number of times that
Z(pn) appears in the decomposition is given by

2fp(n)− fp(n− 1)− fp(n+ 1).

Hence, the decomposition of G as a direct product of cyclic groups of the form
Z(pn) is unique.

From this theorem, we can easily find all non-isomorphic abelian groups of
a given order. For example, to find all non-isomorphic abelian groups of order
16, we note that all such groups are direct products of the cyclic groups of
orders 2, 4, 8, or 16. This gives us five combinations:

Z2×Z2×Z2×Z2, Z2×Z2×Z4, Z4×Z4, Z2×Z8, and Z16.

Since the fundamental theorem (6.2) also states that the representation is
unique, these five groups must be non-isomorphic to each other.

COROLLARY 6.2
Let P (n) denote the number of ways in which n can be expressed as a sum of

positive integers, without regard to order. Then if p is a prime number, there
are exactly P (n) non-isomorphic abelian groups of order pn.

PROOF By the fundamental theorem of abelian groups (6.2), every
abelian group of order pn must be isomorphic to

Z(pm1 ) × Z(pm2 ) × Z(pm3 ) × · · · × Z(pms ).
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Also,
pm1 · pm2 · pm3 · · · pms = pn.

Hence m1 +m2 +m3 + · · ·+ms = n. Furthermore, the decomposition of the
abelian group is unique up to rearrangement of the factors. Thus, there is
a one-to-one correspondence between non-isomorphic abelian groups of order
pn and ways n can be written as a sum of positive integers without regard to
order.

We call P (n) the number of partitions of n. We can have Mathematica
count the number of partitions for us. For example, to find the number of
partitions of the number 4, we can enter

PartitionsP[4]

in Mathematica, or

gap> NrPartitions(4);
5

to find that there are five groups of order 24. The number of partitions
increases exponentially with n; in fact a Mathematica plot reveals that it
grows approximately like the function e

√
n.

We can now find the number of non-isomorphic abelian groups of any order.

COROLLARY 6.3
Let n > 1 be an integer with prime factorization

pm1
1 · pm2

2 · pm3
3 · · · pmk

k ,

where p1, p2, p3, . . . , pk are distinct primes. Then the number of non-isomor-
phic abelian groups of order n is given by

P (m1) · P (m2) · P (m3) · · ·P (mk).

PROOF We know from the fundamental theorem of abelian groups (6.2)
that each such group is isomorphic to a direct product of cyclic groups whose
order is a power of a prime. If we collect all factors involving the same primes
together, we find that such a group is isomorphic to a direct product of a
series of groups of orders pm1

1 , pm2
2 , pm3

3 , · · · , pmk

k .
We know from corollary 6.2 that there are exactly P (r) non-isomorphic

abelian groups of order pr. Thus, there are P (mi) possible groups for the i-th
factor in this decomposition. Therefore, there are

P (m1) · P (m2) · P (m3) · · ·P (mk)

possible ways of forming a product of groups with orders

pm1
1 , pm2

2 , pm3
3 , . . . , pmk

k .
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Since the fundamental theorem of abelian groups (6.2) also states that the
decomposition is unique up to the rearrangement of the factors, every group
thus formed is isomorphically different. So we have exactly P (m1) · P (m2) ·
P (m3) · · ·P (mk) non-isomorphic abelian groups of order n.

For example, suppose we wish to find the number of non-isomorphic abelian
groups of order 180 billion. Since 180,000,000,000 = 211 ·32 ·510, we have that
the number of groups is

PartitionsP[11] * PartitionsP[2] * PartitionsP[10]

gap> NrPartitions(11) * NrPartitions(2) * NrPartitions(10);
4704

giving us 4704 abelian groups of order 180 billion.

6.3 Automorphisms

We have already studied several examples of homomorphisms and isomor-
phisms between two groups, but suppose we considered a mapping from a
group to itself. For example, we could consider the following mapping from
Z8 onto itself:

DefMultMod[8]
CircleGraph[{0,1,2,3,4,5,6,7}, Mult[3]]

which produces figure 6.1. This mapping could be considered as the permu-
tation

F = P[3, 6, 1, 4, 7, 2, 5]

since the element 0 is left fixed. We can now treat F as a function, and ask
whether this is a homomorphism on Z8. The command

DefSumMod[8]
Z8 = Group[{1}]
CheckHomo[F, Z8]

verifies that F is a homomorphism from Z8 onto itself.
In GAP, we have to first define a group for which a8 = e. Then we find a

map that sends a to a3.

gap> f:=FreeGroup("a");; a := f.1;;
gap> g:=f/[a^8];; a := g.1;;
gap> F := GroupHomomorphismByImages(g,g,[a],[a^3]);
[ a ] -> [ a^3 ]
gap> List(Kernel(F));
[ <identity ...> ]
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FIGURE 6.1: Multiplying by 3 in Z8

This shows that in fact the homomorphism is one-to-one and onto.

DEFINITION 6.3 An automorphism of the group G is a homomorphism
from G to G which is one-to-one and onto.

We can find another automorphism of Z8 by sending a to a5 instead of a3.
In fact, it is possible to define the product of two automorphisms as follows: If
f and φ are both automorphisms of G, then f ·φ is the mapping x→ φ(f(x)).
This leads us into the proof of the following.

PROPOSITION 6.3

Given a group G, the set of all automorphisms on G forms a group, denoted
Aut(G). In fact, Aut(G) is a subgroup of the group of permutations on the
elements of G.

PROOF The mapping i(x) = x for all x in G is obviously an automor-
phism on G, so the set of all automorphisms on G is non-empty. Also, each
automorphism is a permutation on the elements of G. Suppose φ and f are
two automorphisms on G. Then φ(f(x)) is a one-to-one and onto mapping
from G to G.

Furthermore,

φ(f(x · y)) = φ(f(x) · f(y)) = φ(f(x)) · φ(f(y)).

So φ(f(x)) is a homomorphism on G, so f · φ is an automorphism of G.
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Also, since f is one-to-one and onto, f−1 exists on G, and

f
(
f−1(x) · f−1(y)

)
= f

(
f−1(x)

)
· f
(
f−1(y)

)
= x · y.

Taking f−1 of both sides of the equation gives us

f−1(x) · f−1(y) = f−1(x · y).

So f−1 is a homomorphism. So f−1, and thus φ · f−1 are automorphisms
of G. Therefore by proposition 2.2, Aut(G) is a subgroup of the group of
permutations on the elements of G.

Let’s see if we can find the automorphism group for Z8. The element 1 must
be mapped by an automorphism to an element of order 8. Thus, 1 is mapped
to either 1, 3, 5, or 7. But since 1 is a generator of Z8, this would completely
define the automorphism. Thus, there at most four elements of Aut(Z8). But
we have already seen three nontrivial automorphisms (multiplying by 3, by 5,
and the product of these two), so we have exactly four automorphisms of Z8.
This automorphism group can quickly be seen to be isomorphic to Z∗8 .

GAP can find the automorphism group of Z8 as follows:

gap> f:= FreeGroup("a");; a:=f.1;;
gap> Z8 := f/[a^8];; a:=Z8.1;;
gap> SetReducedMultiplication(Z8);
gap> G := AutomorphismGroup(Z8);
<group with 2 generators>
gap> L := List(G);
[ IdentityMapping( <fp group of size 8 on the generators [a]> ),
[ a ] -> [ a^3 ], [ a ] -> [ a^-3 ], [ a ] -> [ a^-1 ] ]

We see that the automorphism that we first defined is the second one in this
list. We can evaluate one of the automorphisms at an element of Z8 by using
the notation x^f, where f is the automorphism, as we did for cycles.

gap> a^L[2];
a^3
gap> (a^3)^L[3];
a^-1
L[2] * L[3] = L[4];
true

This last command shows that we can multiply automorphisms in GAP, and
produce another automorphism. This means that we could display a mul-
tiplication table of G, but each element has a very long name in GAP. A
better alternative is to find a permutation group isomorphic to G using the
NiceObject command.

gap> H := NiceObject(G);
Group([ (1,4)(2,3), (1,3)(2,4) ]}
gap> ResetTableOptions();
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gap> MultTable(H);

* |() (1,4)(2,3) (1,3)(2,4) (1,2)(3,4)
----------+----------------------------------------------
() |() (1,4)(2,3) (1,3)(2,4) (1,2)(3,4)
(1,4)(2,3)|(1,4)(2,3) () (1,2)(3,4) (1,3)(2,4)
(1,3)(2,4)|(1,3)(2,4) (1,2)(3,4) () (1,4)(2,3)
(1,2)(2,4)|(1,2)(3,4) (1,3)(2,4) (1,4)(2,3) ()

This multiplication table clearly shows that Aut(Z8) ≈ Z∗8 . It is not hard to
generalize this result.

PROPOSITION 6.4

Aut(Zn) ≈ Z∗n.

PROOF Consider the mapping

φ : Z∗n → Aut(Zn)

given by φ(j) = fj , where fj(x) = j · x (Mod n). Then given two elements j1
and j2 in Z∗n, we have that

fj1(fj2(x)) = j1 · (j2x) (Mod n) = (j2 · j1)x (Mod n) = fj2·j1(x).

So
φ(j2) · φ(j1) = fj1 · fj2 = fj1·j2 = φ(j2 · j1).

Hence, φ is a homomorphism from Z∗n to Aut(Zn). To see that φ is one-to-
one, note that fj(1) = j, and so fj1 = fj2 only if j1 = j2. To see that φ is
onto, we consider a general automorphism f of Zn. Since 1 is a generator of
Zn, f(1) must also be a generator of Zn. But f will be completely determined
by knowing f(1). Thus, the number of automorphisms is at most the number
of generators in Z∗n. But we have an automorphism for each such generator,
accounting for all automorphisms of Zn.

So far, the automorphism group is smaller than the original group. But let
us look at a non-cyclic group, Z∗8 .

InitGroup[e];
Define[â2,e]; Define[b̂2,e]
Define[b.a, a.b]
Define[1/a, a]; Define[1/b, b]
G = Group[{a, b}]
There are in fact six automorphisms of this group. The automorphism

f(e) = e

f(a) = b

f(b) = a

f(a · b) = a · b
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can be represented as a transposition (a b). Note that here, we are using the
cycle notation with elements in place of numbers. This is allowed in Math-
ematica, but not in GAP. So this function can be entered into Mathematica
simply as

F = C[a, b]

Mathematica can check if this is an automorphism of Z∗8 .

CheckHomo[F, G]

The other automorphisms of Z∗8 can be found quicker in GAP.

gap> f:= FreeGroup("a","b");; a:=f.1;; b:=f.2;;
gap> g:= f/[a^2,b^2,b*a/(a*b)];; a:=g.1;; b:= g.2;;
gap> SetReducedMultiplication{g};
gap> G := AutomorphismGroup(g);
<group with 4 generators>
gap> L := List(G);
[ IdentityMapping(<fp group of size 4 on the generators [a,b]>),
[ a, b ] -> [ a, a^-1*b^-1 ], [ a, b ] -> [ b, a ],
[ a, b ] -> [ b, a^-1*b^-1 ], [ a, b ] -> [ a^-1*b^-1, a ],
[ a, b ] -> [ a^-1*b^-1, b ] ]

gap> List(NiceObject(G));
[ (), (1,2,3), (1,3,2), (2,3), (1,2), (1,3) ]

The automorphism we found earlier is the third one in this list, and when GAP
converts this to a subgroup of a permutation group, we get the six elements
of S3. Hence Aut(Z∗8 ) ≈ S3.

For the next example, let us look at the automorphisms for the quaternion
group Q.

InitGroup[e];
Define[î4, e]; Define[ĵ2, î2]
Define[j.i, i.i.i.j]
Define[1/i, î3]; Define[1/j, i.i.j]
Q = Group[{i, j}]

If f is an automorphism of Q, then f(e) = e, but also f(i2) must be i2, since
this is the only element of order 2. All of the other elements are of order 4, so
f(i) could be any one of the remaining six elements. Once f(i) is determined,
we have that f(i3) = f(i)3. Then f(j) would be one of the remaining four
elements. Since i and j generate Q, f will be determined by knowing f(i)
and f(j). Thus, there is a maximum of 6 · 4 = 24 automorphisms.

For non-commutative groups, there is a quick way to find many of the
automorphisms. Let G be a non-commutative group, and let x be any element
in G. The mapping fx : G→ G defined by

fx(y) = x−1 · y · x
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will always be an automorphism, for

fx(y · z) = x−1 · y · z · x = (x−1 · y · x) · (x−1 · z · x) = fx(y) · fx(z).

Also, fx is one-to-one and onto, for its inverse is fx−1 .

DEFINITION 6.4 An automorphism φ(y) of a group G is called an inner
automorphism if there is an element x in G such that

φ(y) = x−1 · y · x for all y ∈ G.

The set of inner automorphisms of G is denoted Inn(G).

It is fairly easy to find the inner automorphisms on Q. If we choose x = i,
we have the mapping

f(e) = i3 · e · i = e f(i3) = i3 · i = i3

f(i) = i3 · i · i = i f(i · j) = i3 · (i · j) · i = i3 · j
f(j) = i3 · j · i = i2 · j f(i2 · j) = i3 · (i2 · j) · i = j
f(i2) = i3 · i2 · i = i2 f(i3 · j) = i3 · (i3 · j) · i = i · j

In GAP, the command InnerAutomorphism allows us to enter this mapping.

gap> f := FreeGroup("i","j");; i := f.1;; j := f.2;;
gap> Q := f/[i^4, i^2*j^2, j*i/(i^3*j)];; i := Q.1;; j := Q.2;;
gap> SetReducedMultiplication(Q);
gap> F := InnerAutomorphism(Q,i);
^i
gap> j^F;
j^-1

In GAP, this inner automorphism is simply referred to as ^i. This is mainly
because GAP uses an abbreviation xy for y−1 · x · y.

In Mathematica, the automorphism has to be entered as cycles containing
the elements of Q.

F = C[j, i.i.j] . C[i.j, i.i.i.j]

If we use x = j or x = i · j instead of x = i, we get the automorphisms

G = C[i, i.i.i] . C[i.j, i.i.i.j]
H = C[i, i.i.i] . C[j, i.i.i]

In fact, these three automorphisms, along with the identity automorphism,
form a group. These are the only four inner automorphisms.

However, there are many more automorphisms of Q. The commands

Homomorph[X]
Define[X[i], i]
Define[X[j], i.j]
CheckHomo[X, Q]
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show that there is another homomorphism from Q to itself, which can be
shown to be one-to-one and onto. Also, the commands

Homomorph[J]
Define[J[i], i.j]
Define[J[j], j]
CheckHomo[J, Q]

show that there is yet another automorphism on Q. These two automor-
phisms, along with the group of 4 previously found, generate a total of 24
automorphisms. We can get all of the automorphisms in GAP as follows:

gap> A := AutomorphismGroup(Q);
<group of size 24 with 4 generators>
gap> L := List(A);;
gap> L[2];
[ i^-1, i^-1*j^-1 ] -> [ i^-1, j^-1 ]
gap> L[3];
^i

Although there are too many automorphisms to list here, we can notice that
the inner automorphisms are embedded in this list. What is this group iso-
morphic to? We can have GAP provide the answer.

gap> StructureDescription(A);
"S4"

In fact, Aut(Q) ≈ S4, as can be seen by figure 6.2. Each rotation of the
octahedron represents an automorphism of Q. For example, rotating the front
face 120◦ clockwise corresponds to the automorphism

(i j ij)(i3 i2j i3j).

So the automorphism group is isomorphic to the octahedral group, which we
saw was isomorphic to S4.

Although the inner automorphisms did not produce the full automorphism
group, this set of inner automorphisms turns out to be a very important
subgroup of the automorphism group. Let us discover the first main property
of this subgroup.

PROPOSITION 6.5
Let G be a group. Then Inn(G) is a normal subgroup of Aut(G).

PROOF First we need to show that Inn(G) is a subgroup. Let fx(y) =
x−1 · y · x be an inner automorphism. The inverse can be easily found by
observing

y ∈ f−1
x (v)⇐⇒ x−1 · y · x = v ⇐⇒ y = x · v · x−1 ⇐⇒ y = f(x−1)(v),
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FIGURE 6.2: Labeling the octahedron to show Aut(Q)

so the inverse of fx is also an inner automorphism.
If we consider two inner automorphisms fx and fy, then

(fx · fy)(v) = fy(fx(v)) = y−1 · (x−1 · v ·x) · y = (x · y)−1 · v · (x · y) = f(x·y)(v).

Thus the product of two inner automorphisms is also an inner automorphism.
So by proposition 2.2, Inn(G) is a subgroup of Aut(G).

Finally, we need to show that Inn(G) is normal in Aut(G). Let φ be any
automorphism and let fx = x−1 · y · x be an inner automorphism. Then

(φ · fx · φ−1)(v) = φ−1(fx(φ(v))) = φ−1(x−1 · (φ(v)) · x).

Since φ−1 is a homomorphism, this will simplify.

φ−1(x−1 · (φ(v)) · x) = φ−1(x−1) · φ−1(φ(v))φ−1(x)
= (φ−1(x))−1 · v · φ(x)−1 = fφ−1(x)(v).

So φ · fx · φ−1 is an inner automorphism of G. Therefore, by proposition 3.4,
Inn(G) is a normal subgroup of Aut(G).

For example, we found four inner-automorphisms of Q. By looking at the
multiplication table for these four elements, we see that Inn(Q) ≈ Z∗8 .

DEFINITION 6.5 We define the outer automorphism group to be the
quotient group

Out(G) = Aut(G)/Inn(G).
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The outer automorphism group of Q must contain six elements, and with
some experimenting in Mathematica, one finds that Out(Q) is non-abelian.
Therefore, Out(Q) ≈ S3.

Let us look at one last example—Z∗24. We can load this group into Mathe-
matica with the following commands:

InitGroup[e];
Define[â2, e]; Define[b̂2, e]; Define[ĉ2, e]
Define[b.a, a.b]; Define[c.a, a.c]; Define[c.b, b.c]
Define[1/a, a]; Define[1/b, b]; Define[1/c, c]
Y = Group[{a, b, c}]

Suppose φ(x) is an automorphism of Z∗24. Naturally φ(e) = e, but φ(a) could
be any of the seven remaining elements of order 2. Also, φ(b) could be any one
of the remaining six elements. Then we would have φ(a · b) = φ(a) ·φ(b). But
φ(c) could be any of the four elements left over. Since the group is generated
by {a, b, c}, there are at most 7 · 6 · 4 = 168 possible automorphisms.

One possible automorphism would be to send a to b, b to c, and c back to
a. This is represented by the permutation

F = C[a, b, c] . C[a.b, b.c, a.c]
CheckHomo[F, Y]

which Mathematica verifies is an automorphism. Another automorphism,
given by

G = C[b, a.b] . C[b.c, a.b.c]
CheckHomo[G, Y]

indicates that there may indeed be many automorphisms. These can be
checked by GAP as follows:

gap> f:= FreeGroup("a","b","c");; a:=f.1;; b:=f.2;; c:=f.3;;
gap> g:= f/[a^2,b^2,c^2,a*b*a*b,a*c*a*c,b*c*b*c];;
gap> a:= g.1;; b:=g.2;; c:=g.3;;
gap> F := GroupHomomorphismByImages(g,g,[a,b,c],[b,c,a]);
[ a, b, c ] -> [ b, c, a ]
gap> List(Kernel(F));
[ <identity ...> ]
gap> G := GroupHomomorphismByImages(g,g,[a,b,c],[a, a*b, c]);
gap> List(Kernel(G));
[ <identity ...> ]
gap> A := AutomorphismGroup(g);
<group with 4 generators>
gap> Size(A);
168

GAP has indicated that the automorphism group is indeed as large as we had
predicted it could be. It would be more concise if we could use permutations
for a group this large. If we order the non-identity elements a = 1, b = 2,
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c = 3, a · b = 4, a · c = 5, b · c = 6, and a · b · c = 7, we can convert F and G
to standard permutations (1, 2, 3)(4, 5, 6) and (2, 4)(6, 7). Once we have all of
the elements as permutations, we can use the integer notation to list them.

gap> A := Group( (1,2,3)(4,6,5), (2,4)(6,7) );
Group([ (1,2,3)(4,6,5), (2,4)(6,7) ])
gap> List(A, x->PermToInt(x) );
[ 1, 244, 149, 918, 2380, 1732, 2002, 735, 2183, 1475, 1649,
1079, 2471, 3936, 3195, 3817, 4753, 5023, 3595, 4190, 2632,
1881, 1311, 2847, 4309, 4904, 3476, 3358, 2677, 2107, 1123,
404, 496, 670, 1432, 3991, 4616, 3032, 2918, 3622, 4384, 4558,
775, 2240, 1537, 1662, 1014, 2476, 3898, 61, 331, 231, 953,
2345, 1775, 1992, 1851, 1229, 2787, 4205, 4817, 3372, 3276,
3177, 3755, 4713, 4931, 3486, 4098, 2562, 3973, 4581, 3019,
2900, 3662, 4366, 4476, 2647, 2042, 1088, 374, 548, 640, 1362,
1807, 1202, 2761, 4226, 4874, 3412, 3298, 1837, 1267, 2821,
4269, 4847, 3455, 3336, 4035, 4657, 3099, 2981, 3689, 4428,
4498, 4017, 4595, 3059, 2963, 3702, 4410, 4536, 753, 2201,
1461, 1582, 970, 2418, 3876, 793, 2258, 1496, 1622, 1052,
2510, 3958, 3151, 3776, 4735, 4970, 3508, 4156, 2602, 3133,
3741, 4695, 4965, 3573, 4151, 2592, 2691, 2069, 1133, 437,
593, 684, 1402, 2721, 2151, 1185, 467, 558, 714, 1392, 87,
357, 187, 908, 2366, 1796, 2032, 27, 270, 122, 856, 2304,
1692, 1962 ]

In Mathematica, we can merely note that F is the 149th permutation, and G
is the 735th. Thus, we get the same result with the commands

InitPermMultiplication
A = Group[{149, 735}]
{1, 27, 61, 87, 122, 149, 187, 231, 244, 270, 331, 357, 374, 404, 437, 467,
496, 548, 558, 593, 640, 670, 684, 714, 735, 753, 775, 793, 856, 908, 918,
953, 970, 1014, 1052, 1079, 1088, 1123, 1133, 1185, 1202, 1229, 1267, 1311,
1362, 1392, 1402, 1432, 1461, 1475, 1496, 1537, 1582, 1622, 1649, 1662, 1692,
1732, 1775, 1796, 1807, 1837, 1851, 1881, 1962, 1992, 2002, 2032, 2042, 2069,
2107, 2151, 2183, 2201, 2240, 2258, 2304, 2345, 2366, 2380, 2418, 2471, 2476,
2510, 2562, 2592, 2602, 2632, 2647, 2677, 2691, 2721, 2761, 2787, 2821, 2847,
2900, 2918, 2963, 2981, 3019, 3032, 3059, 3099, 3133, 3151, 3177, 3195, 3276,
3298, 3336, 3358, 3372, 3412, 3455, 3476, 3486, 3508, 3573, 3595, 3622, 3662,
3689, 3702, 3741, 3755, 3776, 3817, 3876, 3898, 3936, 3958, 3973, 3991, 4017,
4035, 4098, 4151, 4156, 4190, 4205, 4226, 4269, 4309, 4366, 4384, 4410, 4428,
4476, 4498, 4536, 4558, 4581, 4595, 4616, 4657, 4695, 4713, 4735, 4753, 4817,
4847, 4874, 4904, 4931, 4965, 4970, 5023}

Notice that Mathematica orders the numbers, making it easier to find a par-
ticular element. The group Aut(Z∗24) has some special properties that we will
explore in the next chapter.
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We have now seen several examples where the group of automorphisms is
larger than the original group. But this group of automorphisms can also be
used as a tool for connecting two groups to form an even larger group, in much
the same way that two groups formed the direct product. The next section
will explore this methodology.

6.4 Semi-Direct Products

We have already seen one way to combine two groups H and K to form the
direct product H ×K. In this section we will see another way to combine to
groups H and K. Once again the larger group will have isomorphic copies of
H and K as subgroups, but only one of the two subgroups will be a normal
subgroup.

Suppose that H and K are any two groups, and suppose that we have a
homomorphism φ : H → Aut(K). Because the function φ returns another
function, we will write φh instead of φ(h). The expression φh(k) represents
the automorphism φh evaluated at the element k. That is, if h1 and h2 are
two elements of H, then φh1(k) and φh2(k) will be two automorphisms of K,
and also φh1·h2(k) = (φh1 ·φh2)(k) = φh2(φh1(k)). (Recall that φh1 ·φh2 means
we do φh1 first, then do φh2 .)

There will always be at least one homomorphism from H to Aut(K), the
trivial homomorphism. However, there will often be several nontrivial homo-
morphisms from H to Aut(K). For each such homomorphism, we can define
a product of H and K.

DEFINITION 6.6 Let G be the set of all ordered pairs (h, k), where h is
in H and k is in K. Let φ be a nontrivial homomorphism from H to Aut(K).
Then the semi-direct product of K with H through φ, denoted Hn

φ
K, is the

set G with multiplication defined by

(h1, k1) · (h2, k2) = (h1 · h2, φh2(k1) · k2).

PROPOSITION 6.6

The semi-direct product of K with H through φ is a group.

PROOF It is clear that the product of two ordered pairs in G is an ordered
pair in G. If we let e1 denote the identity element of H, and e2 denote the
identity element of K, then

φe1(k1) = k1,
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since φ must map e1 to the identity automorphism of K. Thus

(h1, k1) · (e1, e2) = (h1 · e1, φe1(k1) · e2) = (h1, k1),

and
(e1, e2) · (h2, k2) = (e1 · h2, φh2(e2) · k2) = (h2, k2).

So (e1, e2) acts as the identity element of G.
Next we note that the element (h, k) has an inverse (h−1, φh−1(k−1)), since

(h−1, φh−1(k−1)) · (h, k) = (h−1 · h, φh(φh−1(k−1)) · k)
= (e1, φe1(k−1) · k) = (e1, k

−1 · k) = (e1, e2),

and

(h, k) · (h−1, φh−1(k−1)) = (h · h−1, φh−1(k) · φh−1(k−1))
= (e1, φh−1(k · k−1)) = (e1, φh−1(e2)) = (e1, e2).

The final thing we need to check is that the multiplication on G is associa-
tive. Note that

(h1, k1) · [(h2, k2) · (h3, k3)] = (h1, k1) · (h2 · h3, φh3(k2) · k3)
= (h1 · h2 · h3, φh2·h3(k1) · φh3(k2) · k3)

while

[(h1, k1) · (h2, k2)] · (h3, k3) = (h1 · h2, φh2(k1) · k2) · (h3, k3)
= (h1 · h2 · h3, φh3(φh2(k1) · k2) · k3)
= (h1 · h2 · h3, φh3(φh2(k1)) · φh3(k2) · k3)
= (h1 · h2 · h3, φh2·h3(k1) · φh3(k2) · k3)

Hence the multiplication on G is associative and so G forms a group.

We can define a semi-direct group in GAP using the definition. Suppose
that we wish to find a semi-direct product of the form Z4n

φ
Z∗8 . The first step

is to define both Z4 and Z∗8 . We will use a for the generator of Z4, and b and
c for the generators of Z∗8 .

gap> f:= FreeGroup("a");; a:=f.1;;
gap> Z4 := f/[a^4];; a := Z4.1;;
gap> f:=FreeGroup("b","c");; b:=f.1;; c:=f.2;;
gap> g:=f/[b^2,c^2,b*c*b*c];;

Now we find the automorphism group of Z∗8 .
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gap> A := AutomorphismGroup(g);
<group with 4 generators>
gap> L := List(A);
[ IdentityMapping(<fp group of size 4 on the generators [b,c]>),
[ b^-1, c^-1 ]->[ b^-1, c*b ], [ b^-1, c^-1 ]->[ c^-1, b^-1 ],
[ b^-1, c^-1 ]->[ c^-1, b^-1*c^-1 ],
[ b^-1, c^-1 ]->[ c*b, b^-1 ],
[ b^-1, c^-1 ]->[b^-1*c^-1, c^-1] ]

A homomorphism that maps Z4 to this group must send the identity element
to an element of order 2 or 4, but Aut(Z∗8 ) has only six elements, so we must
find one of order 2. The third element in this list will do, since it exchanges
b−1 and c−1.

gap> phi := GroupHomomorphismByImages(Z4,A,[a],[L[3]]);
[ a ] -> [ [ b^-1, c^-1 ] -> [ c^-1, b^-1 ] ]

Notice that we now have a mapping that sends elements of Z4 to mappings.
With this, we can define the semi-direct product Z4n

φ
Z∗8 with the commands

gap> Size(Z4);
4
gap> S:= SemidirectProduct(Z4,phi,g);
<pc group with 4 generators>
gap> NumberElements := true;;
gap> MultTable(S);

* |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-----------+-----------------------------------------------
e |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f4 |2 1 4 3 6 5 8 7 11 12 9 10 15 16 13 14
f3 |3 4 1 2 7 8 5 6 10 9 12 11 14 13 16 15
f3*f4 |4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13
f2 |5 6 7 8 1 2 3 4 13 14 15 16 9 10 11 12
f2*f4 |6 5 8 7 2 1 4 3 15 16 13 14 11 12 9 10
f2*f3 |7 8 5 6 3 4 1 2 14 13 16 15 10 9 12 11
f2*f3*f4 |8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9
f1 |9 10 11 12 13 14 15 16 5 6 7 8 1 2 3 4
f1*f4 |10 9 12 11 14 13 16 15 7 8 5 6 3 4 1 2
f1*f3 |11 12 9 10 15 16 13 14 6 5 8 7 2 1 4 3
f1*f3*f4 |12 11 10 9 16 15 14 13 8 7 6 5 4 3 2 1
f1*f2 |13 14 15 16 9 10 11 12 1 2 3 4 5 6 7 8
f1*f2*f4 |14 13 16 15 10 9 12 11 3 4 1 2 7 8 5 6
f1*f2*f3 |15 16 13 14 11 12 9 10 2 1 4 3 6 5 8 7
f1*f2*f3*f4|16 15 14 13 12 11 10 9 4 3 2 1 8 7 6 5

Before the SemidirectProduct command will work, we must calculate the
size of the first group, Z4 in this case. Finding the size of the group establishes
the elements of the group. Other commands that list the elements of the first
group would also work, such as the List or MultTable commands.

GAP defines this non-abelian group of order 16 using four different gener-
ators f1, f2, f3, and f4. But if we look carefully, we see that f1 generates a
copy of Z4, while f3 and f4 generate a copy of Z∗8 . It appears that the semi-
direct product, like the direct product, contains copies of the two original
groups within the product.
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LEMMA 6.7
Let G = Hn

φ
K be the semi-direct product of K with H through the homomor-

phism φ. Suppose that e1 is the identity element of H, and e2 is the identity
element of K. Then

H = {(h, e2) | h ∈ H}

is a subgroup of G, and

K = {(e1, k) | k ∈ K}

is a normal subgroup of G. Furthermore, H ≈ H, K ≈ K, and H ∩K is the
identity element of G.

PROOF We will use proposition 2.2 and observe that

(h, e2)−1 = (h−1, φh−1(e2)) = (h−1, e2),

so

(h1, e2)·(h2, e2)−1 = (h1, e2)·(h−1
2 , e2) = (h1·h−1

2 , φh−1
2

(e2)·e2) = (h1·h−1
2 , e2).

Thus, whenever a and b are in H, a · b−1 is in H. So H is a subgroup.
Also,

(e1, k)−1 = (e1, φe1(k−1)) = (e1, k
−1),

so

(e1, k1) · (e1, k2)−1 = (e1, k1) · (e1, k
−1
2 ) = (e1, φe1(k1) · k−1

2 ) = (e1, k1 · k−1
2 ).

Thus, a · b−1 is in K whenever a and b are in K. So K is also a subgroup by
proposition 2.2. To show that this group is also a normal subgroup we look
at

[(h, k1) · (e1, k2)] · (h, k1)−1 = (h, φe1(k1) · k2) · (h−1, φh−1(k−1
1 ))

= (e1, φh−1(k1 · k2) · φh−1(k−1
1 ))

= (e1, φh−1(k1 · k2 · k−1
1 )).

Since g · k · g−1 is in K whenever k is in K, by proposition 3.4 K is a normal
subgroup of G.

Finally, the two mappings

f1(h) = (h, e2) and f2(k) = (e1, k)

are isomorphisms from H onto H and K onto K, respectively, as seen by the
above computations. Also, it is clear that the intersections of the two groups
give just {(e1, e2)}.
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Since the semi-direct product contains copies of the two smaller groups
within itself, the natural question is whether an arbitrary group G can be
expressed as a semi-direct product of two of its subgroups. The conditions for
which this happens is set forth in the following theorem.

THEOREM 6.3: The Semi-Direct Product Theorem
Suppose that a group G has two subgroups H and N whose intersection is the

identity element. Then if N is a normal subgroup of G and H is not a normal
subgroup of H ·N , then there exists a nontrivial homomorphism φ from H to
Aut(N) such that

H ·N ≈ Hn
φ
N.

PROOF Note that sinceH is a subgroup ofG, and N is a normal subgroup
we have by lemma 4.5 that H ·N is a subgroup of G. We next want to define
the homomorphism φ. For each h in H, we define

φh(n) = h−1 · n · h

for all n ∈ N . We first need to show that φh is an automorphism on N for each
h in H, and then we need to show that φ itself is a nontrivial homomorphism.
Note that

φh(n1 · n2) = h−1 · n1 · n2 · h = (h−1 · n1 · h) · (h−1 · n2 · h) = φh(n1) · φh(n2).

So φh is a homomorphism from N to N . Since

y ∈ φ−1
h (n)⇐⇒ h−1 · y · h = n⇐⇒ y = h · n · h−1

we see that φh is a one-to-one and onto function. Thus, φh is an automorphism
of N .

Next, we need to see that φ itself is a homomorphism from H to Aut(N).
Note that

(φh1 · φh2)(n) = φh2(φh1(n))
= φh2(h−1

1 · n · h1)
= h−1

2 · h
−1
1 · n · h1 · h2

= (h1 · h2)−1 · n · (h1 · h2) = φh1·h2(n).

So φh1 · φh2 = φ(h1·h2) and we see that φ is a homomorphism. In fact, the
homomorphism must be nontrivial, because if φh(n) = n for all h and n, then
since φh(n) = h−1 · n · h = n we have that n · h = h · n for all h in H, and
n in N . This would indicate that H is a normal subgroup of H · N , which
contradicts our original assumption. Thus, φ is a nontrivial homomorphism.

We can now proceed in a similar way that we proved the direct product
theorem (6.1). However, it will be easier if we first show that every element
in H ·N can be uniquely written in the form h · n, where h ∈ H and n ∈ N .
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Suppose that we have
h1 · n1 = h2 · n2.

Then h−1
2 · h1 = n2 · n−1

1 . Since this element is in both H and N , which has
just the identity element in the intersection, we must have

h−1
2 · h1 = n2 · n−1

1 = e.

Therefore, h1 = h2 and n1 = n2. Thus, we have shown that every element of
H ·N is written uniquely as h · n, where h is in H, and n is in N .

We now want to create a mapping

f : H ·N → Hn
φ
N

defined by
f(v) = (h, n),

where h and n are the unique elements such that h ∈ H, n ∈ N , and v = h ·n.
The function f is one-to-one since the element (h, n) can only come from h ·n.
Also, the element h · n maps to (h, n) so f is onto.

The final step is to show that f is a homomorphism. Let v = h1 · n1, and
w = h2 · n2. Then

v · w = h1 · n1 · h2 · n2 = (h1 · h2) · (h−1
2 · n1 · h2 · n2).

Since N is a normal subgroup, h−1
2 · n1 · h2 is in N , and so h−1

2 · n1 · h2 · n2 is
in N while h1 · h2 is in H. Thus,

f(v · w) = f((h1 · h2) · (h−1
2 · n1 · h2 · n2))

= (h1 · h2, h
−1
2 · n1 · h2 · n2)

= (h1 · h2, φh2(n1) · n2)
= (h1, n1) · (h2, n2) = f(v) · f(w).

So f is an isomorphism, and we have H ·N ≈ Hn
φ
N .

Note that if both H and N are normal subgroups of H · N , we have by
corollary 6.1 that H ·N ≈ H ×N .

We will use the semi-direct product theorem to define this product in Math-
ematica. After defining the two groups H and N using the same identity
element, we must find the homomorphism φ from H to Aut(N). As in the
case of the direct product, We will want to express every element of the form
h · n, where h is in H, and n is in N . From the definition, we see that

(h, e2) · (e1, n) = (h · e1, φe1(e2) · n) = (h, n),

So for each generator a of H, and each generator b of N , we can calculate
how b . a should be defined by evaluating (e1, b) · (a, e2) = (a, φa(b)). Thus
we make a definition in Mathematica of the form
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Define[b.a, a . φa(b) ]

where we replace the expression φa(b) with its element of N .
Suppose we want to find a semi-direct product of Z5 with Z2.

InitGroup[e];
Define[â2, e]
Define[1/a, a]
Z2 = Group[{a}]
Define[b̂5, e]
Define[1/b, b̂4]
Z5 = Group[{b}]

After loading the groups Z2 and Z5, we want to find a nontrivial homomor-
phism φ from Z2 to Aut(Z5). But Aut(Z5) ≈ Z∗5 ≈ Z4. Since the element a
is of order 2, φa must be of order 2 to keep the homomorphism from being
trivial. But it is easy to find the one element of Aut(Z5) of order 2:

φ(n) = n−1.

In fact, this will always be an automorphism whenever N is an abelian group.
As long as N has an element that is not its own inverse, this automorphism
will be of order 2. If we let φa(n) = n−1, then φa(b) = b4. Thus, the definition

Define[b.a, a.b.b.b.b]

completes the definition of the semi-direct product.

G = Group[{a, b}]
{e, a, b, a · b, b · b, a · b · b, b · b · b, a · b · b · b, b · b · b · b, a · b · b · b · b}

The corresponding GAP commands are

gap> f := FreeGroup("a","b");; a := f.1;; b := f.2;;
gap> g := f/[a^2, b^5, b*a/(a*b^4)];; a := g.1;; b := g.2;;
gap> L := ListGroup(g);
[ <identity...>, a, b, a*b, b^2, a*b^2, b^3, a*b^3, b^4, a*b^4 ]
gap> ResetTableOptions();
gap> MultTable(L);
* |e a b a*b b^2 a*b^2 b^3 a*b^3 b^4 a*b^4
-----+----------------------------------------------------------
e |e a b a*b b^2 a*b^2 b^3 a*b^3 b^4 a*b^4
a |a e a*b b a*b^2 b^2 a*b^3 b^3 a*b^4 b^4
b |b a*b^4 b^2 a b^3 a*b b^4 a*b^2 e a*b^3
a*b |a*b b^4 a*b^2 e a*b^3 b a*b^4 b^2 a b^3
b^2 |b^2 a*b^3 b^3 a*b^4 b^4 a e a*b b a*b^2
a*b^2|a*b^2 b^3 a*b^3 b^4 a*b^4 e a b a*b b^2
b^3 |b^3 a*b^2 b^4 a*b^3 e a*b^4 b a b^2 a*b
a*b^3|a*b^3 b^2 a*b^4 b^3 a b^4 a*b e a*b^2 b
b^4 |b^4 a*b e a*b^2 b a*b^3 b^2 a*b^4 b^3 a
a*b^4|a*b^4 b a b^2 a*b b^3 a*b^2 b^4 a*b^3 e

which show that this is a non-abelian group of order 10. If we ask GAP what
this group is,
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gap> StructureDescription(g);
"D10"

we find that this group is D10, which is GAP’s way of saying the dihedral
group that has 10 elements, or D5.

DEFINITION 6.7 Let n > 2, and let φ be the homomorphism from
Z2 = {e, a} to Aut(Zn) given by

φe(k) = k, φa(k) = k−1.

Then the semi-direct product Z2n
φ
Zn is called the dihedral group of order 2n.

It is denoted Dn, and is a non-abelian group of order 2n.

The commands

InitGroup[e];
Define[â2, e]
Define[b̂n, e]
Define[1/a, a]
Define[1/b, b̂(n–1)]
Define[b.a, a.(1/b)]
Dn = Group[{a, b}]

define the group Dn. The corresponding GAP commands are

gap> f := FreeGroup("a","b");; a := f.1;; b := f.2;;
gap> g := f/[a^2, b^n, a*b*a*b]; a := g.1;; b:= g.2;;

The symbol n must be replaced with an integer before executing these
commands. When n = 3, we get a non-abelian group of order 6, so D3 ≈ S3.

Note that the semi-direct product may greatly depend on the choice of the
homomorphism φ. Consider finding the semi-direct products of Z8 with Z2.
Since Aut(Z8) ≈ Z∗8 has three elements of order 2, there are three nontrivial
homomorphisms from Z2 to Aut(Z8). One of these produces the dihedral
group D8 above, but the other two homomorphisms produce the groups

InitGroup[e];
Define[â2, e]; Define[b̂8, e]
Define[1/a, a]; Define[1/b, b̂7]
Define[b.a, a.(b̂3)]
G = Group[{a, b}]
and
InitGroup[e];
Define[â2, e]; Define[b̂8, e]
Define[1/a, a]; Define[1/b, b̂7]
Define[b.a, a.(b̂5)]
M = Group[{a, b}]
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in Mathematica. These two groups along with D8 can be entered in GAP at
the same time as follows:

gap> f:= FreeGroup("a","b");; a := f.1;; b := f.2;;
gap> D8:=f/[a^2, b^8, b*a/(a*b^7)];;
gap> G := f/[a^2, b^8, b*a/(a*b^3)];;
gap> M := f/[a^2, b^8, b*a/(a*b^5)];;
gap> StructureDescription(D8);
"D16"
gap> StructureDescription(G);
"QD16"
gap> StructureDescription(M);
"C8 : C2"

GAP’s structure description shows that these three groups are all different.
The group G is called a quasidihedral group, whereas the group M has no
special name. GAP uses the colon to show a semi-direct of C8 with C2.
GAP uses “C8” for the cyclic group of order 8, that is, Z8. Thus, structure
description of M shows that it is a group of the form Z2nZ8.

Here is another way of showing that the three groups are different:

gap> SetReducedMultiplication(D8);
gap> SetReducedMultiplication(G);
gap> SetReducedMultiplication(M);
gap> List(D8, x -> x^2);
[ <identity ...>, <identity ...>, b^2, b^-4, <identity ...>,
<identity ...>, <identity ...>, <identity ...>, b^-2, b^2,
b^-4, <identity ...>, <identity ...>, <identity ...>, b^-2,
<identity ...> ]

gap> List(G, x -> x^2);
[ <identity ...>, <identity ...>, b^2, a^-1*b^-1*a^-1*b^-1,
<identity ...>, a^-1*b^-1*a^-1*b^-1, <identity ...>,
<identity ...>, b^-2, b^2, a^-1*b^-1*a^-1*b^-1,
a^-1*b^-1*a^-1*b^-1, a^-1*b^-1*a^-1*b^-1, <identity ...>,
b^-2, a^-1*b^-1*a^-1*b^-1 ]

gap> List(M, x -> x^2);
[ <identity ...>, <identity ...>, b^2, a^-1*b^-1*a^-1*b,
<identity ...>, b^-2, a^-1*b^-1*a^-1*b, <identity ...>, b^-2,
b^2, a^-1*b^-1*a^-1*b, b^2, b^-2, a^-1*b^-1*a^-1*b, b^-2, b^2]

This simple test shows that D8 has nine elements of order 2, while the group
G has five elements of order 2, and the group M has only three elements of
order 2.

We see that the semi-direct product Z2n
φ
Z8 depends on the choice of the

homomorphism φ. In fact, even though the three elements of Aut(Z8) of
order 2 are essentially equivalent (since the automorphisms of Z∗8 included
all permutations of these three elements), we see that the three elements
produced three different semi-direct products.

This example is really more of an exception rather than a rule. Part of what
makes this example unusual is that the automorphism group Z∗8 is abelian,
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and hence does not have any nontrivial inner automorphisms. If two homo-
morphisms φ and f from H to Aut(N) are related through an inner automor-
phism of Aut(N), then the corresponding semi-direct products will if fact be
isomorphic.

PROPOSITION 6.7
Let φ be a homomorphism from a group H to the group Aut(N). Suppose

that f is another homomorphism such that

fh(n) = w(φh(w−1(n))),

where w(n) is an automorphism of N . Then Hn
f
N ≈ Hn

φ
N .

PROOF Let us write G = Hn
φ
M , and M = Hn

f
N . These are two

different groups, even though they are both written using ordered pairs. Let
us define a mapping

v : G→M

defined by
v((h, n)) = (h,w(n)).

Because w(n) is one-to-one and onto, certainly v is one-to-one and onto. All
we would have to check is that

v((h1, n1)) · v((h2, n2)) = v((h1, n1) · (h2, n2)).

We have that

v((h1, n1)) · v((h2, n2)) = (h1, w(n1)) · (h2, w(n2))
= (h1 · h2, fh2(w(n1)) · w(n2))
= (h1 · h2, w(φh2(w−1(w(n1)))) · w(n2))
= (h1 · h2, w(φh2(n1)) · w(n2)).

On the other hand,

v((h1, n1) · (h2, n2)) = v((h1 · h2, φh2(n1) · n2))
= (h1 · h2, w(φh2(n1) · n2))
= (h1 · h2, w(φh2(n1)) · w(n2)).

Since these are equal, we have an isomorphism.

It is also clear that two homomorphisms φ and f are related through an
automorphism of H, the semi-direct products must be isomorphic since we are
merely relabeling the elements of H. As a result there will be many instances
in which there will be only one non-isomorphic semi-direct product of K by
H. In this case, we can denote the semi-direct product as HnN , without
having to specify the homomorphism φ.
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Problems for Chapter 6

Interactive Problems

6.1 Use GAP or Mathematica to define the group Z2 × Z6. Show that this
group is not isomorphic to Z12.

6.2 Define the group S3×Z2 in Mathematica or GAP. Show that this group
is not isomorphic to A4.

Hint: Count elements of order 2.

6.3 Use Mathematica’s PartitionsP command or GAP’s NrPartitions
command to find the number of abelian groups of order 120,000.

For problems 6.4 through 6.7: Find all of the automorphisms of the following
groups.

Hint: For the non-abelian groups, find the inner automorphisms first.

6.4 S3 6.5 Z∗15 6.6 D4 6.7 D5

6.8 Show that there is only one semi-direct product Z2nZ∗8 . Which of the
five groups of order 8 is this isomorphic to?

Hint: Use proposition 6.7.

6.9 Use Mathematica or GAP to find the only semi-direct product Z∗8 nZ∗8 .
Is this group isomorphic to any of the three groups of order 16 found by
considering Z2n

φ
Z8?

6.10 Use Mathematica or GAP to define the only possible semi-direct prod-
uct Z4nZ3. Show that this group is different than both A4 and S3 × Z2.

6.11 From problems 6.1, 6.2, 6.10, and section 6.4, we have found six groups
of order 12: Z12, Z2 × Z6, A4, D6, S3 × Z2, and Z4nZ3. Yet table 4.4 in
chapter 4 indicates that there are only five non-isomorphic groups of order
12. Which two of these groups are isomorphic? Use Mathematica or GAP to
show the isomorphism.

Non-Interactive Problems

6.12 We have shown by process of elimination that Z4 × Z2 is isomorphic
to Z∗15. Demonstrate the isomorphism by giving multiplication tables for the
two groups with the same pattern.

6.13 Demonstrate that Z3 × Z2 is isomorphic to Z6.
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6.14 Construct a multiplication table for Z2 × Z∗8 .

6.15 Construct a multiplication table for Z3 × Z∗8 .

6.16 Let G = H ×K, and define

H = {(h, e) | h ∈ H}

and
K = {(e, k) | k ∈ K}.

Prove that G/H ≈ K and G/K ≈ H.

6.17 Let n be any integer greater than 1. Prove that Zn×Zn is not isomor-
phic to Zn2 .

For problems 6.18 through 6.20: Find, up to isomorphism, all abelian groups
of the following orders:

6.18 |G| = 32 6.19 |G| = 210 6.20 |G| = 200

6.21 What is the smallest positive integer n for which there are exactly four
non-isomorphic abelian groups of order n?

6.22 Calculate the number of elements of order 4 in the groups

Z16, Z8 × Z2, Z4 × Z4, and Z4 × Z2 × Z2.

6.23 How many elements of order 25 are in Z5 × Z25? (Do not do this
exercise by brute force.)

6.24 An abelian group G of order 256 has 1 element of order 1, 7 elements
of order 2, 24 elements of order 4, 96 elements of order 8, and 128 elements
of order 16. Determine up to isomorphism the group G as a direct product of
cyclic groups.

Hint: Use lemma 6.5 to determine the value of the function

f(x) =
j∑

k=1

Min(nk, x)

for x = 1, 2, 3, and 4. Then use lemma 6.6 to determine how many times Z2,
Z4, Z8, and Z16 appear in the decomposition.

6.25 If an abelian group G of order 40 has exactly three elements of order
2, determine up to isomorphism the group G.

6.26 Classify the integers n for which the only abelian groups of order n are
cyclic.
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6.27 Prove that if G is a finite group of order n, then Aut(G) is isomorphic
to a subgroup of Sn−1.

6.28 Prove that any finite group of order greater than 2 has at least two
automorphisms.

6.29 Prove that if G is not abelian, then Aut(G) is not cyclic.

6.30 Find Aut(Z).

6.31 Find two non-isomorphic groupsG andM for which Aut(G) ≈ Aut(M).

6.32 Let φ : Z∗8 → Aut(Z∗8 ) be defined as follows: φ1(x) = φ3(x) = x for all
x in Z∗8 . φ5(1) = φ7(1) = 1. φ5(3) = φ7(3) = 5. φ5(5) = φ7(5) = 3. φ5(7) =
φ7(7) = 7. Compute the following in Z∗8 n

φ
Z∗8 : (5, 3) · (3, 5), (3, 5) · (5, 3),

(7, 5)−1.

6.33 Show that there is only one semi-direct product of the form Z3nZ∗8 .
Form a multiplication table of this group. You have seen this group before.
Do you recognize it?

6.34 Show that there is only one semi-direct product of the form Z2nZ.
Describe this group.

6.35 Show that there is only one semi-direct product of the form ZnZ.
Describe this group.

6.36 Let G be any group, and let i be the identity mapping from Aut(G)
to itself. We can define the semi-direct product H = Aut(G)n

i
G. The group

H is called the holomorph of G. Show that every automorphism of G is the
restriction of some inner automorphism of the holomorph H.
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Chapter 7

The Search for Normal Subgroups

7.1 The Center of a Group

We saw several instances in the last chapter in which the structure of a group
hinges on its normal subgroups. Thus, we will want to develop techniques for
finding all of the normal subgroups of a given group G. We will discover in
the process that some of the normal groups have additional properties. We
will naturally concentrate our attention to non-abelian groups, since every
subgroup of an abelian group is normal.

Let us begin by considering the quaternion group Q. This can be created
in GAP by the command InitQuaternions().

gap> InitQuaternions();
#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns
‘true’ for [ i, j ]
gap> MultTable(Q);

* |(-1)*e (-1)*i (-1)*j (-1)*k k j i e
------+-------------------------------------------------------
(-1)*e|e i j k (-1)*k (-1)*j (-1)*i (-1)*e
(-1)*i|i (-1)*e k (-1)*j j (-1)*k e (-1)*i
(-1)*j|j (-1)*k (-1)*e i (-1)*i e k (-1)*j
(-1)*k|k j (-1)*i (-1)*e e i (-1)*j (-1)*k
k |(-1)*k (-1)*j i e (-1)*e (-1)*i j k
j |(-1)*j k e (-1)*i i (-1)*e (-1)*k j
i |(-1)*i e (-1)*k j (-1)*j k (-1)*e i
e |(-1)*e (-1)*i (-1)*j (-1)*k k j i e

The equivalent in Mathematica©R would be

InitGroup[e];
Define[î4, e]; Define[ĵ2, î2]
Define[j.i, i.i.i.j]
Define[1/i, î3]; Define[1/j, i.i.j]
Q = Group[{i, j}]
MultTable[Q];

which produces table 7.1.
There is only one element of order 2 in this group, namely (-1)*e (or i2 in

Mathematica.) But this element has another important property. Notice that

175
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TABLE 7.1: Multiplication table for Q
· e i j i2 i · j i3 i2 · j i3 · j
e e i j i2 i · j i3 i2 · j i3 · j
i i i2 i · j i3 i2 · j e i3 · j j

j j i3 · j i2 i2 · j i i · j e i3

i2 i2 i3 i2 · j e i3 · j i j i · j
i · j i · j j i3 i3 · j i2 i2 · j i e

i3 i3 e i3 · j i j i2 i · j i2 · j
i2 · j i2 · j i · j e j i3 i3 · j i2 i

i3 · j i3 · j i2 · j i i · j e j i3 i2

the locations of the i2 in table 7.1 form a symmetrical pattern along the main
diagonal. This indicates that whenever a · b = i2, then b · a = i2 in Q. Hence
b = a−1 · i2 = i2 · a−1. Therefore, i2 commutes with all of the elements of Q.

DEFINITION 7.1 Given a group G, the center of G is defined to be the
set of elements x for which x · y = y · x for all elements y ∈ G. The center
of a group G is customarily denoted Z(G) because of the German word for
center, zentrum. [1, p. 150]

From this definition, we see that i2 ∈ Z(Q). It is also clear that e ∈ Z(G)
for all groups, since e · y = y · e. By examining table 7.1 we find that there
are no other elements of Q in Z(Q), so Z(Q) = {e, i2}. This is obviously a
subgroup, but it turns out to be a normal subgroup because of the following
proposition.

PROPOSITION 7.1
Given a group G, then Z(G) is a normal subgroup of G.

PROOF First, we need to show that Z(G) is a subgroup of G. If x and
y are in Z(G), and a is any element in G, then

x · y · a = x · a · y = a · x · y.

So x · y commutes with all of the elements of G. Thus, x · y is in Z(G).
Also, we have

x−1 · a = (a−1 · x)−1 = (x · a−1)−1 = a · x−1,

So x−1 must also be in Z(G). Thus, by proposition 2.2, Z(G) is a subgroup
of G.



The Search for Normal Subgroups 177

Next, we can see that

a · x · a−1 = x · a · a−1 = x.

So a · x · a−1 is in Z(G) whenever x is in Z(G) and a is in G. Thus, by
proposition 3.4, Z(G) is a normal subgroup of G.

We use the command GroupCenter to find the center of a group in Math-
ematica. For example, the command

Z = GroupCenter[Q]

verifies our earlier observation that Z(Q) = {e, i2}. In GAP, the command is
simply Center or Centre.

gap> List(Center(Q));
[ (-1)*e, e ]

Although the center always produces a normal subgroup, this subgroup is not
always interesting. For example, Mathematica or GAP can show that the
center of the group S3 is just the identity element.

gap> S3 := Group( (1,2), (1,2,3) );
Group([ (1,2), (1,2,3) ])
gap> List(Center(S3));
[ () ]

Whenever the center is just the identity element, we say the group is centerless.
In fact, all of the permutation groups Sn bigger than S3 are centerless. Since
the proof involves an even permutation, we will find the center of An at the
same time.

PROPOSITION 7.2
If n > 3, then the groups Sn and An are centerless.

PROOF Suppose that φ is an element of Sn or An which is not the
identity. We need to show that φ cannot be in the center of either Sn or An,
which amounts to finding an element of An that does not commute with φ.

Since φ is not the identity, there is some number x that is not fixed by φ,
say x is mapped to y. Since n > 3, there is at least one number not in the
list {x, y, φ(y)}. Let z be one of these remaining numbers. Finally, we let f
be the 3-cycle (xyz).

Since f is an even permutation f is in An. Then φ ·f sends x to z, but f ·φ
sends x to φ(y) 6= z. Thus, f · φ 6= φ · f , and φ is not in the center of either
An or Sn.

The other extreme is if Z(G) is the entire group G. This happens if, and
only if, the group G is abelian.
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Since Z(N) is a normal subgroup of G, what is the quotient group? The
answer is rather interesting.

PROPOSITION 7.3
If G is a group, then G/Z(G) ≈ Inn(G).

PROOF We begin by observing that the mapping

φ : G→ Inn(G)

given by
φx(y) = x · y · x−1

is a homomorphism, as we saw in the proof of the semi-direct product theorem
(6.3). By the definition of the inner automorphisms, this mapping is surjective.
However, this mapping is not necessarily injective. Let us determine the kernel
of φ.

Suppose that φx is the identity homomorphism. Then φx(y) = y for all y
in G. This means that x · y · x−1 = y, or x · y = y · x, for all y in G. Thus, x
is in the center of G.

Now, suppose x is in Z(G). Then φx(y) = x · y ·x−1 = y ·x ·x−1 = y, so φx
is the identity homomorphism. Thus the kernel of φ is precisely the center of
Z(G). Therefore, by the first isomorphism theorem (4.1), we have

G/Z(G) ≈ Inn(G).

The center of a group possesses a characteristic that is even stronger than
that of a normal subgroup. To illustrate this characteristic, consider the next
proposition.

PROPOSITION 7.4
Let N be a normal subgroup of a group G. Then Z(N) is a normal subgroup

not only of N , but also of G.

PROOF Let g be an element of G, and z an element of Z(N). We need
to show that g · z · g−1 is in Z(N). Since N is a normal subgroup of G, we
certainly know that g · z · g−1 is in N , so the way to test that it is in Z(N) is
to show that it commutes with every element of N .

Let n be an element of N . We want to show that g ·z ·g−1 ·n = n ·g ·z ·g−1.
Let h = g−1 ·n ·g. Then h is in N , since N is normal in G. Also, n = g ·h ·g−1,
so

g · z · g−1 · n = (g · z · g−1) · (g · h · g−1) = g · z · h · g−1 = g · h · z · g−1

= (g · h · g−1) · (g · z · g−1) = n · g · z · g−1.
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Hence, g ·z ·g−1 commutes with every element n in N , so g ·z ·g−1 is in Z(N).
By proposition 3.4, we have that Z(N) is a normal subgroup of G.

This proposition demonstrates a rather unusual property of a center of a
group. In general, the normal subgroup of a normal subgroup is not necessarily
a normal subgroup. Consider M = {( ), (12)(34), (13)(24), (14)(23)}, which is
a normal subgroup of S4, and H = {( ), (12)(34)}, which is a normal subgroup
of M .

gap> S4 := Group( (1,2),(1,2,3), (1,2,3,4) );
Group([ (1,2), (1,2,3), (1,2,3,4) ])
gap> M := Group( (1,2)(3,4), (1,3)(2,4) );
Group([ (1,2)(3,4), (1,3)(2,4) ])
gap> H := Group( (1,2)(3,4) );
Group([ (1,2)(3,4) ])
gap> IsNormal(S4,M);
true
gap> IsNormal(M,H);
true
gap> IsNormal(S4,H);
false

So H is not a normal subgroup of S4.
However, the center of a group Z(N) is a normal subgroup of G, even

though Z(N) contains no information about the larger group G. Any group
that contains N as a normal subgroup, such as a semi-direct product of N by
another group, will have Z(N) as a normal subgroup.

7.2 The Normalizer and Normal Closure Subgroups

In the last section, we found a subgroup of N that was not only normal,
but also was normal in any group G for which N was a normal subgroup. In
this section, we will essentially turn the question around: Given a subgroup
H of G, can we find a subgroup N of G for which H lies inside of N as a
normal subgroup?

DEFINITION 7.2 Let S be a subset of a group G. We define the
normalizer of S by G, denoted NG(S), to be the set

NG(S) = {g ∈ G | g · S · g−1 = S}.

Notice that this definition allows for S to be merely a subset of G, not
necessarily a subgroup. We will later find uses for having a more generalized
definition. For now, let us show that the normalizer has some of the properties
that we are looking for.
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PROPOSITION 7.5
Let S be a subset of the group G. Then NG(S) is a subgroup of G.

PROOF Suppose x and y are in NG(S). Then x · S · x−1 = S, and
y · S · y−1 = S. Thus, S = y−1 · S · y, and so

(x · y−1) · S · (x · y−1)−1 = x · (y−1 · S · y) · x−1 = x · S · x−1 = S.

Thus, x · y−1 is in NG(S), and so by proposition 2.2, NG(S) is a subgroup of
G.

If, in addition, S is a subgroup of G, then the normalizer lives up to its
name.

PROPOSITION 7.6
Let H be a subgroup of the group G. Then NG(H) is the largest subgroup of
G that contains H as a normal subgroup.

PROOF First, we must check to see that H is a normal subgroup of
NG(H). But this is obvious, since g ·H · g−1 = H for all g in NG(H).

Next, we must see that NG(H) is the largest such group. Suppose that
Y is another subgroup of G that contained H as a normal subgroup. Then
y ·H · y−1 = H for all y ∈ Y . Thus, Y ⊆ NG(H).

Since any subgroup of G that contains H as a normal subgroup is itself
contained in NG(H), we have that NG(H) is the largest such group.

The Mathematica command

Normalizer[G, H]

finds the normalizer NG(H) of the set H in G. Suppose we consider the
quaternion group Q.

InitGroup[e];
Define[î4, e]; Define[ĵ2,î2]
Define[j.i, i.i.i.j]
Define[1/i, î3]; Define[1/j, i.i.j]
Q = Group[{i, j}]

Let begin by finding the normalizer of a single element i. The Mathematica
command

H = Normalizer[Q, {i}]

gives the subgroup of order 4 generated by i, namely {e, i, i2, i3}. We could
now consider the normalizer of this subgroup by Q.
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Normalizer[Q, H]

This gives us the entire group Q, the largest subgroup of Q for which H is
normal. In general, whenever H is a normal subgroup of G, the normalizer of
H by G will be the whole group G.

In GAP, we have two different commands to do what the Mathematica
command Normalizer does. If we have just a single element, we use the
Centralizer command to find NG({g}). When the GAP’s Normalizer com-
mand is used with a single element, GAP finds the normalizer of the subgroup
that is generated by this element, hence NG(H), for H = [g].

gap> InitQuaternions();
#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns
‘true’ for [ i, j ]
gap> List(Centralizer(Q,i));
[ (-1)*e, (-1)*i, i, e ]
gap> List(Normalizer(Q,i));
[ (-1)*e, (-1)*i, (-1)*j, (-1)*k, k, j, i, e ]

This points out that NG({g}) is not the same thing as NG([g]), the normalizer
of the group generated by g.

In Mathematica, we can find the normalizer of any subset, even one that is
not a subgroup. For example, the normalizer of the subset {i, j} is

Normalizer[Q,{i, j}]
{e, i · i}

which contains neither i nor j. Only when H is a subgroup or a single element
can we be assured that NG(H) will contain H. In the latter case, when H is
a single element g, NG({g}) will consist of all elements of G that commute
with g.

We have seen that the normalizer of a subgroup H by G finds the largest
subgroup of G that contains H as a normal subgroup. What if we asked for
the smallest subgroup containing H that is a normal subgroup of G? Whether
H is a subgroup or a subset, we can use the following proposition.

PROPOSITION 7.7
Let S be a subset of a group G. Then the smallest group containing S that

is a normal subgroup of G is given by

N∗ =
⋂
N∈L

N,

where L denotes the collection of normal subgroups of G that contain S.

PROOF The group G itself is in the collection L, so this collection is not
empty. Thus, by proposition 2.3, N∗ is a subgroup of G.
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Also, since each N in the collection contained the set S, the intersection
will also contain S. All that needs to be shown is that N∗ is normal.

If n is an element of N∗, and g is an element of G, then since each N is a
normal subgroup of G, and n would be in all of the groups N ,

g · n · g−1 ∈ N for all N ∈ L.

Thus, g · n · g−1 is in the intersection of all of the N ’s, which is N∗. Hence,
by proposition 3.4, N∗ is a normal subgroup of G.

We will call this subgroup the normal closure of S. The Mathematica
command

NormalClosure[G, S]

computes this subgroup for the subset S. In GAP, S must be a subgroup for
this to work. So ironically, we first have to find the subgroup generated by a
set before finding the normal closure. Thus, for a single element, we use

gap> List(NormalClosure(Q, Group(i) ) );
[ (-1)*e, (-1)*i, i, e ]

With this command we can systematically find all normal subgroups of a given
group. For example, suppose we want to find all of the normal subgroups of
S3, using the generators a and b. We would like to see if there are any other
normal subgroups besides the two trivial groups. Since a proper subgroup
must contain one of the elements {a, b, a · b, b2, a · b2}, we have five groups to
try.

gap> f:=FreeGroup("a","b");; a:=f.1;; b:=f.2;;
gap> S3:=f/[a^2,b^3,b*a*b*a];; a:=S3.1;; b:=S3.2;;
gap> List(NormalClosure(S3,Group(a)));
[ <identity ...>, a, b, a*b, a*b*a, b*a ]
gap> List(NormalClosure(S3,Group(b)));
[ <identity ...>, b, b^2 ]
gap> List(NormalClosure(S3,Group(a*b)));
[ <identity ...>, a, b, a*b, a*b*a, b*a ]
gap> List(NormalClosure(S3,Group(b^2)));
[ <identity ...>, b, b^2 ]
gap> List(NormalClosure(S3,Group(a*b^2)));
[ <identity ...>, a, b, a*b, a*b*a, b*a ]

We see that using b and b2 produces the normal subgroup of order 3, A3. The
other elements produced the whole group. In fact, if we considered a normal
subgroup generated by two elements, it is obvious that this would have to
contain a normal subgroup already found. But the smallest found was A3,
and no larger subgroup could still be proper. Thus, we have used GAP to
prove that the only proper normal subgroup of S3 is A3. Similar commands
will also work in Mathematica.
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This method of exhaustion works well for small groups, but one can imagine
that this method would be time consuming for larger groups. In the next
section, we will find a shortcut so that we will not have to try every element
of the group, but rather just a handful of elements.

7.3 Conjugacy Classes and Simple Groups

In the last section, we used the GAP command NormalClosure(G, S) to
find the smallest group containing the subset S that was a normal group of G.
Let us look closely at how this command works. We know that if the element
a is in this normal group, then g−1 · a · g must also be in the group for all g in
G. Many of the elements that must be in the normal subgroup can be found
in this way.

DEFINITION 7.3 Let G be a group. We say that the element u is
conjugate to the element v if there exists an element g in G such that u =
g−1 · v · g.

Note that every element is conjugate to itself, for we can let g be the identity
element. Also note that if u is conjugate to v, then v is also conjugate to u.
Finally, if u is conjugate to v, and v in turn is conjugate to w, we can see that
u is conjugate to w. This is easy to see, since there is a g and h such that
u = g−1 · v · g and v = h−1 · w · h. Then

u = g−1 · v · g = g−1 · (h−1 · w · h) · g = (h · g)−1 · w · (h · g).

Recall that in definition 3.5, we defined an equivalence relationship as any
relationship having three properties:

1. Every element u is equivalent to itself.

2. If u is equivalent to v, then v is equivalent to u.

3. If u is equivalent to v, and v in turn is equivalent to w, then u is
equivalent to w.

These were called the reflexive, symmetric, and transitive properties. We
used the equivalence relationships of cosets in section 3.4 to form a partition
of the group, which gave us the quotient groups. In the same way, we can use
the equivalence relationship of conjugates to form a different partition of the
group, called conjugacy classes. Unlike cosets, though, the conjugacy classes
will not be all the same size. The conjugacy class containing the element u is
given by

{g−1 · u · g | g ∈ G}



184 Abstract Algebra: An Interactive Approach

The command for finding all of the conjugacy classes of a group G for
both Mathematica and GAP is ConjugacyClasses. Let us find the conjugacy
classes of S4, which are generated by the cycles (1 2) and (2 3 4).

gap> S4 := Group( (1,2), (2,3,4) );
Group([ (1,2), (2,3,4) ])
gap> L := ConjugacyClasses(S4);
[ ()^G, (1,2)^G, (1,2)(3,4)^G, (1,2,3)^G, (1,2,3,4)^G ]

GAP lists five conjugacy classes, but abbreviates each in the form x^G. Recall
that GAP uses x̂y to represent y−1xy, so it makes sense that x^G would
mean {g−1 · x · g | g ∈ G}. Yet one must use the command

gap> ConjugacyClass(S4, (1,2));
(1,2)^G

to enter a particular conjugacy class into GAP. To see all of the elements in
each conjugacy class, we can use a nested List command.

gap> List(L, x -> List(x));
[ [ () ], [ (1,2), (1,3), (1,4), (2,3), (2,4), (3,4) ],
[ (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) ],
[ (1,2,3), (1,3,2), (1,4,2), (1,2,4), (1,3,4), (1,4,3),
(2,4,3), (2,3,4) ],

[ (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,3,4,2), (1,4,2,3),
(1,4,3,2) ] ]

The corresponding Mathematica commands for listing these conjugacy classes,
albeit in a different order, are as follows:

S4 = Group[{C[1,2], C[2,3,4]}]
ConjugacyClasses[S4]

The identity element is in a class by itself since g−1·e·g will always produce e.
But the cycle notation reveals an interesting fact about the other four classes:
one contains all of the transpositions, one contains all of the 3-cycles, one
contains all of the 4-cycles, and one conjugacy class contains the products of
two disjoint transpositions. Problems 5.36 and 5.37 may help shed some light
on why this happens.

The conjugacy classes are very useful for finding normal subgroups, since
whenever one element of a conjugacy class is in a normal subgroup of G, the
entire conjugacy class must be in the normal subgroup. Thus, in order to find
all normal subgroups of S4 we only have to try the different combinations
of the conjugacy classes. Furthermore, the identity element is guaranteed to
be in every subgroup. So to find all of the nontrivial normal subgroups, we
only have to consider using one element from each conjugacy class besides the
identity. Using GAP’s list of the conjugacy classes shows that it selects the
elements

S = {(1, 2), (1, 2)(3, 4), (1, 2, 3), (1, 2, 3, 4)}.
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So we can consider taking the normal closure of any nontrivial subset of S.
Thus, any nontrivial normal subgroup of S4 must be one of the 14 possible
groups:

NormalClosure[S4, { C[1,2] }]
NormalClosure[S4, { C[1,2].C[3,4] }]
NormalClosure[S4, { C[1,2,3] }]
NormalClosure[S4, { C[1,2,3,4] }]
NormalClosure[S4, { C[1,2] , C[1,2].C[3,4] }]
NormalClosure[S4, { C[1,2] , C[1,2,3] }]
NormalClosure[S4, { C[1,2] , C[1,2,3,4] }]
NormalClosure[S4, { C[1,2].C[3,4] , C[1,2,3] }]
NormalClosure[S4, { C[1,2].C[3,4] , C[1,2,3,4] }]
NormalClosure[S4, { C[1,2,3] , C[1,2,3,4] }]
NormalClosure[S4, { C[1,2] , C[1,2].C[3,4], C[1,2,3] }]
NormalClosure[S4, { C[1,2] , C[1,2].C[3,4], C[1,2,3,4] }]
NormalClosure[S4, { C[1,2] , C[1,2,3] , C[1,2,3,4] }]
NormalClosure[S4, { C[1,2].C[3,4], C[1,2,3] , C[1,2,3,4] }]

The 15th combination

NormalClosure[S4,{C[1,2], C[1,2,3], C[1,2,3,4], C[1,2].C[3,4]}]

obviously would give us the whole group. We can try these out in GAP as
follows:

gap> Size(NormalClosure(S4,Group( (1,2) ) ) );
24
gap> Size(NormalClosure(S4,Group( (1,2)(3,4) ) ) );
4
gap> List(NormalClosure(S4,Group( (1,2)(3,4) ) ) );
[ (), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) ]
gap> Size(NormalClosure(S4,Group( (1,2,3) ) ) );
12
gap> List(NormalClosure(S4,Group( (1,2,3) ) ) );
[ (), (1,3,2), (1,2,3), (1,4,3), (2,4,3), (1,3)(2,4), (1,2,4),
(1,4)(2,3), (2,3,4), (1,3,4), (1,2)(3,4), (1,4,2) ]

gap> Size(NormalClosure(S4,Group( (1,2,3,4) ) ) );
24

Although this only does 4 of the 14 combinations, with a little logic we see
that all other combinations will produce one of the groups we see here. If
either (1 2) or (1 2 3 4) is included, we would have all 24 elements. If (1 2 3) is
included, then we might as well include (1 2)(3 4), since this was in the normal
subgroup. Note that lemma 5.2 predicts that the normal closure of (1 2) is S4,
and the normal closure of (1 2 3) is A4 as guaranteed by proposition 5.1. The
normal closure of (1 2)(3 4) produces a normal subgroup of order 4 isomorphic
to Z∗8 . Thus, by using the conjugacy classes we have found that the only
proper normal subgroups of S4 are A4 and the group isomorphic to Z∗8 .
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If we repeat this procedure with the group A5 (which also has only five
conjugacy classes), GAP or Mathematica shows that there are no proper nor-
mal subgroups of A5. (See problem 7.19 for a non-computerized way to prove
this.)

gap> A5 := Group( (1,2,3), (3,4,5) );
Group([ (1,2,3), (3,4,5) ])
gap> ConjugacyClasses(A5);
[ ()^G, (1,2)(3,4)^G, (1,2,3)^G, (1,2,3,4,5)^G, (1,2,3,5,4)^G ]
gap> Size(NormalClosure(A5, Group( (1,2)(3,4) ) ) );
60
gap> Size(NormalClosure(A5, Group( (1,2,3) ) ) );
60
gap> Size(NormalClosure(A5, Group( (1,2,3,4,5) ) ) );
60
gap> Size(NormalClosure(A5, Group( (1,2,3,5,4) ) ) );
60

Since the normal closure of any of these four elements yields the whole group,
there can be no nontrivial normal subgroups of A5.

DEFINITION 7.4 A group is said to be simple if it contains no normal
subgroups besides itself and the identity subgroup.

The groups Zp, for p a prime number, are the first examples we have seen
of simple groups. We now have seen an example of a non-cyclic simple group,
A5. In fact this is the smallest non-cyclic simple group! (See problem 7.39.)
GAP can prove that the group is simple in one step.

gap> IsSimple(A5);
true

Let us find other simple groups. The natural place to look is higher order
alternating groups. We begin by showing that all 3-cycles are in one conjugacy
class.

LEMMA 7.1
If n > 4, any two 3-cycles are conjugate in An. Furthermore, the conjugate

of a 3-cycle is again a 3-cycle.

PROOF We begin by showing that the conjugate of a 3-cycle is again a
3-cycle. Let (a b c) be a 3-cycle, and let φ be any permutation in An. Define
the values x = φ(a), y = φ(b), and z = φ(c). Then we can compute

φ−1 · (a b c) · φ = (x y z).

Thus the conjugate of a 3-cycle is another 3-cycle.
Next we will show that any 3-cycle is conjugate to the element (1 2 3) in

An. Let (u v w) be a 3-cycle. Since n > 4 there must be at least two numbers
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not mentioned in this 3-cycle, so we will call two of them x and y. Consider
the permutation

φ =
(

1 2 3 4 5 · · ·
u v w x y · · ·

)
.

Here, the dots indicate that when n > 5, we can complete the permutation in
any way so that the numbers on the bottom row will be a permutation of the
numbers 1 through n.

Now φ will either be an even permutation or an odd permutation. If φ is
an odd permutation, we can consider instead the permutation

φ =
(

1 2 3 4 5 · · ·
u v w y x · · ·

)
.

So we may assume that φ is an even permutation. Thus φ is in An, and we
can compute

φ−1 · (1 2 3) · φ = (u v w).

Therefore, any 3-cycle is conjugate to (1 2 3), and so any two 3-cycles are
conjugate to each other in An whenever n > 4.

With this lemma, we can show that An will be a simple group whenever
n > 4. This was originally proved by Abel using a long case-by-case argument.
Since GAP or Mathematica has already shown that A5 is simple, most of the
cases can be covered at once.

THEOREM 7.1: Abel’s Theorem
The alternating group An is simple for all n > 4.

PROOF Suppose that N is a proper normal subgroup of An, and let φ
be an element of N besides the identity. By proposition 7.2, An is centerless.
Since proposition 5.1 tells us that An is generated by 3-cycles, there must be
at least one 3-cycle that does not commute with φ, say (a b c). Thus, φ · (a b c)
is not equal to (a b c) · φ, or equivalently, (a b c) · φ · (a c b) · φ−1 is not the
identity element.

Since N is a normal subgroup, (a b c) · φ · (a c b) must be in N . Therefore,
(a b c) ·φ · (a c b) ·φ−1 must also be in N . But φ · (a c b) ·φ−1 is the conjugate of
a 3-cycle, so by lemma 7.1 this is also a 3-cycle, say (x y z). Thus, N contains
a product of two 3-cycles, (a b c) · (x y z), which is not the identity.

Suppose that the cycles (a b c) and (x y z) are disjoint 3-cycles. Then we
can conjugate the product by the 3-cycle (c z y) to get another element in N :

(c y z) · [(a b c) · (x y z)] · (c z y) = (a b z) · (c y x).

We now have two elements of N that consist of two disjoint 3-cycles. If we
multiply these two elements together we get

[(a b z) · (c y x)] · [(a b c) · (x y z)] = (a c z b x) = (a c x) · (x z b).
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This must also be in N . Thus N contains a product of two 3-cycles that are
not disjoint. In essence we can say that there is a non-identity element of N
that moves at most five numbers, labeled a, b, c, x, and z.

Here’s where we can take advantage of the fact that A5 is known to be
simple. Consider the subgroup H of An consisting of all even permutations
of the five numbers a, b, c, x, and z. We have just showed that there is a
nontrivial intersection of N and H. Let this intersection be M . Whenever x
is in M and h is in H, then h · x · h−1 is in both H and N . Thus h · x · h−1 is
in M . Hence M is a nontrivial normal subgroup of H.

But H is isomorphic to A5 which we have proven using Mathematica or
GAP to be a simple group. Thus M must be all of H. In particular M
contains a 3-cycle, and so N contains a 3-cycle. By lemma 7.1 all 3-cycles of
An are conjugate, so N contains all 3-cycles of An. Finally, by proposition 5.1
the 3-cycles generate An, so N must be all of An. Therefore, An is simple
whenever n > 4.

COROLLARY 7.1
If n > 4 then the only proper normal subgroup of Sn is An

PROOF Suppose that there were another normal subgroup, N . Then
the intersection of N with An would be another normal subgroup of Sn, and
so would be a normal subgroup of An. Since An is simple for n > 4, this
intersection must either be the identity or all of An.

Suppose that the intersection is all of An. Then N contains An, and if N is
not equal to An, N would contain more than half of the elements of Sn. But
this would contradict Lagrange’s theorem (3.1) unless N = Sn.

Suppose that the intersection of N and An is just the identity element.
Then since both N and An are normal subgroups, we have by corollary 6.1,

N ·An ≈ N ×An.

If N is not just the identity element, this quickly leads to a contradiction, for
N could have order of at most 2, telling us that Sn was isomorphic to Z2×An.
But this is ridiculous, for we saw in proposition 7.2 that Sn was centerless,
whereas Z2×An has both (0, ( )) and (1, ( )) in its center. Therefore, the only
normal subgroups of Sn for n > 4 are Sn itself, An, and the identity element.

We now have found two sequences of simple groups, namely Zp for p being
a prime number, and An for all n > 4. Are any of the other groups that we
have looked at simple groups? Consider the group Aut(Z∗24), a group of order
168 generated by the 149th and 735th permutation elements.

InitPermMultiplication
A = Group[{149, 735}]
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As large as this group is, Mathematica can still quickly find the conjugacy
classes.

ConjugacyClasses[A]
{{1}, {27, 61, 87, 122, 270, 404, 593, 640, 714, 735, 775,

1582, 1807, 2380, 2691, 3032, 3151, 3755, 4017, 4476, 4498},
{149, 187, 244, 357, 374, 467, 548, 558, 856, 1014, 1123, 1311,

1362, 1392, 1402, 1432, 1461, 1622, 1649, 1775, 1851, 1881, 2032,
2151, 2258, 2345, 2366, 2510, 2592, 2647, 2677, 2821, 2918, 3019,
3099, 3177, 3195, 3276, 3412, 3508, 3689, 3741, 3817, 3898, 3973,
3991, 4098, 4205, 4366, 4384, 4410, 4428, 4616, 4713, 4817, 4970},
{231, 331, 437, 496, 670, 684, 753, 793, 908, 1079, 1088, 1229,

1496, 1662, 1692, 1837, 1992, 2042, 2201, 2304, 2476, 2632,
2721, 2787, 2900, 3059, 3133, 3298, 3476, 3595, 3702, 3776,
3876, 4035, 4151, 4269, 4536, 4558, 4595, 4735, 4874, 4931},
{918, 970, 1185, 1267, 1475, 1796, 2002, 2069, 2240, 2471, 2562, 2761,

2981, 3336, 3372, 3573, 3622, 3958, 4156, 4309, 4581, 4753, 4904, 4965},
{953, 1052, 1133, 1202, 1537, 1732, 1962, 2107, 2183, 2418, 2602, 2847,

2963, 3358, 3455, 3486, 3662, 3936, 4190, 4226, 4657, 4695, 4847, 5023}}

So we have six conjugacy classes of this group, one of which is just the
identity. The other five classes can be represented by first element in each
list, which in Mathematica are the 27th, 149th, 231st, 918th, and 953rd per-
mutations. To get this list in GAP, we can first define the group generated
by the permutations (1, 2, 3)(4, 6, 5) and (2, 4)(6, 7).

gap> A := Group( (1,2,3)(4,6,5), (2,4)(6,7) );
Group([ (1,2,3)(4,6,5), (2,4)(6,7) ])
gap> L := ConjugacyClasses(A);
[ ()^G, (3,5)(6,7)^G, (2,3,4,5)(6,7)^G, (2,3,6)(4,5,7)^G,
(1,2,3,4,6,7,5)^G, (1,2,3,5,7,4,6)^G ]

gap> List(L, x->Size(x));
[ 1, 21, 42, 56, 24, 24 ]

Once again, we see six conjugacy classes, one being the identity element,
and the other five represented by the permutations (3 5)(6 7), (2 3 4 5)(6 7),
(2 3 6)(4 5 7), (1 2 3 4 6 7 5), and (1 2 3 5 7 4 6). We can then verify that the
normal closure of each of these five elements yields the whole group.

gap> Size(NormalClosure(A, Group( (3,5)(6,7) ) ) );
168
gap> Size(NormalClosure(A, Group( (2,3,4,5)(6,7) ) ) );
168
gap> Size(NormalClosure(A, Group( (2,3,6)(4,5,7) ) ) );
168
gap> Size(NormalClosure(A, Group( (1,2,3,4,6,7,5) ) ) );
168
gap> Size(NormalClosure(A, Group( (1,2,3,5,7,4,6) ) ) );
168
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Thus, any proper normal subgroup cannot contain any of these five elements;
we have shown that there are no proper normal subgroups, so Aut(Z∗24) is a
simple group. This is slightly easier in Mathematica:

NormalClosure[A, {27}]
NormalClosure[A, {149}]
NormalClosure[A, {231}]
NormalClosure[A, {918}]
NormalClosure[A, {953}]

This is the second largest non-cyclic simple group. (A5 is the smallest and A6

is the third smallest.) See problems 7.22 through 7.25 for more examples of
simple groups.

In fact, Aut(Z∗24) is the beginning of yet another infinite family of sim-
ple groups, called the Chevalley groups. We will not go into all of the
ways this group can be generalized to produce these other groups, but we
will mention an important result that has taken place during the 20th cen-
tury. It was once thought that all finite simple groups were either the cyclic
groups of prime order, the alternating groups, or one of the Chevalley or
twisted Chevalley groups. (One of these groups turns out to be not quite
simple. Yet taking half of the elements forms a new simple group, just as
we took half of the elements of Sn to form the simple groups An.) But
there were several other simple groups that were discovered, called sporadic
groups. In the 1960s and 1970s it was proved that there are exactly 26 spo-
radic groups, ranging in size from a mere 7,920 elements to the monstrous
808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 ele-
ments! These 26 sporadic groups are listed in [13]. Because these have been
proven to be the only sporadic groups, all finite simple groups are now known.

7.4 The Class Equation and Sylow’s Theorems

In working with the conjugacy classes from the last section, we may have
noticed a pattern in the size of each of the conjugacy classes. For example,
the conjugacy classes of S4 are given by

gap> S4 := Group( (1,2), (2,3,4) );
Group([ (1,2), (2,3,4) ])
gap> L := ConjugacyClasses(S4);
[ ()^G, (1,2)^G, (1,2)(3,4)^G, (1,2,3)^G, (1,2,3,4)^G ]
gap> List(L, x -> List(x));
[ [ () ], [ (1,2), (1,3), (1,4), (2,3), (2,4), (3,4) ],
[ (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) ],
[ (1,2,3), (1,3,2), (1,4,2), (1,2,4), (1,3,4), (1,4,3),
(2,4,3), (2,3,4) ],
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[ (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,3,4,2), (1,4,2,3),
(1,4,3,2) ] ]

The first class has only the identity element, the class with the transpositions
has exactly six elements, while the other classes are of orders 3, 8, and 6. Im-
mediately we see that the number of elements in the classes may be different.
We have the obvious relationship

1 + 6 + 3 + 8 + 6 = 24,

the order of the group, since every element in the group belongs to one and
only one conjugacy class. Is there another pattern? Let us compare this with
the conjugacy classes of Aut(Z∗24). There were six conjugacy classes of size 1,
21, 42, 56, 24, and 24. We can check that

1 + 21 + 42 + 56 + 24 + 24 = 168.

But another pattern is becoming clear that is akin to Lagrange’s theorem
(3.1). Notice that the number of elements in each class is always a divisor of
the order of the group.

LEMMA 7.2
Let G be a finite group, and let g be an element of G. Then the number of

elements of G that are conjugate to g is given by

|G|
|NG({g})|

,

where NG({g}) denotes the normalizer of the single element {g}.

PROOF We saw in proposition 7.5 that NG({g}) is a subgroup of G. We
want to determine all possible conjugates of the element g. Note that if u and
v are two elements of G, then u · g · u−1 and v · g · v−1 will represent the same
element if, and only if,

u · g · u−1 = v · g · v−1 ⇐⇒ v−1 · u · g · u−1 · v = g

⇐⇒ (v−1 · u) · g · (v−1 · u)−1 = g

⇐⇒ v−1 · u ∈ NG({g})
⇐⇒ u ∈ v ·NG({g})
⇐⇒ u ·NG({g}) = v ·NG({g}).

Thus u · g · u−1 and v · g · v−1 represent the same element if, and only if,
u and v belong to the same left coset of NG({g}). Therefore, to count all
of the possible conjugates of g, we merely count the number of left cosets of
NG({g}), which is

|G|
|NG({g})|

.
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We have already observed that the sum of the number of elements in each
of the conjugacy classes must give the number of elements in the group. Since
we now know how many elements are in each conjugacy class, we can derive
what is called the class equation.

THEOREM 7.2: The Class Equation Theorem

Let G be a finite group. Then

|G| =
∑
g

|G|
|NG({g})|

,

where the sum runs over one g from each conjugacy class.

PROOF We simply observe that every element of G appears in exactly
one of the conjugacy classes. Thus, |G| is the sum of the sizes of all of the
conjugacy classes. We have by lemma 7.2 that the size of each conjugacy class
is

|G|
|NG({g})|

where g is a representative element of the conjugacy class. Thus we get the
class equation.

We will see many very important applications of this equation, but let us
begin by learning what this has to say about groups whose order is a power
of a prime.

COROLLARY 7.2

If G is a group of order pn where p is a prime and n is a positive integer,
then Z(G), the center of G, is not just the identity element.

PROOF First we observe that an element g is in the center of G if, and
only if, y · g · y−1 = g for all y in G, which would happen if, and only if, the
conjugacy class of g consists of just g by itself.

Now suppose G is centerless. Then the only conjugacy class that contains
just one element would be the class {e}. All other conjugacy classes would
have a size that is a divisor of pn, so the number of elements in the other
conjugacy classes would be a power of p. But this is impossible since the
sum on the right hand side of the class equation (7.2) would be congruent to
1 (Mod p), while the left hand side of the class equation would be pn which
is congruent to 0 (Mod p). Therefore, G is not centerless.
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This corollary is useful in finding all non-isomorphic groups of order pn,
where p is a prime. For example, we can easily find all non-isomorphic groups
of order p2.

COROLLARY 7.3
If p is a prime then there are exactly two non-isomorphic groups of order p2,

namely Zp2 and Zp × Zp.

PROOF If G is a group of order p2, then by corollary 7.2, G has a
nontrivial center. Since the number of elements of Z(G) must divide p2, so
|Z(G)| is either equal to p or p2.

Suppose that |Z(G)| = p. Then there exists an element g not in Z(G).
Then NG({g}) denotes the set of elements that commute with g. Certainly

Z(G) ⊆ NG({g}),

and also
g ∈ NG({g}),

so NG({g}) contains at least p+ 1 elements. But this is a subgroup of G, so
the number of elements must divide p2. Hence, NG({g}) contains all of G, but
this would say that g is in the center Z(G), which contradicts our assumption.
Thus, there are p2 elements in Z(G) and hence G is an abelian group.

Finally, we can use the fundamental theorem of finite abelian groups (6.2)
to say that G must be isomorphic to the direct product of cyclic groups. It is
easy to see that there are exactly two possibilities for such a product to have
p2 elements, namely Zp2 and Zp × Zp.

In particular we can use corollary 7.3 to see that there are only two non-
isomorphic groups of order 9, Z9 and Z3 × Z3.

One of the keys for finding all groups of a certain order is knowing whether
there is a normal subgroup or a certain order. The next proposition will allow
us to know that there will be a normal subgroup without knowing the structure
of the group.

PROPOSITION 7.8
Let G be a group of order pn. Then G contains a normal subgroup of order
pn−1.

PROOF We will proceed by using induction on n. Note that if n = 1,
then there is obviously a normal subgroup of order p1−1 = p0 = 1, namely
the trivial subgroup {e}.

Suppose that we know that every group of order pn−1 has a normal subgroup
of order pn−2. Let G be a group of order pn. Then by corollary 7.2, the center
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of G is not just the identity element. Since p would then divide the order of
Z(G), by lemma 6.2 there is an element of Z(G) of order p, say x. Then
the group generated by x would be of order p, and since x is in the center,
all elements of G would commute with x. Thus, X = [x] would be a normal
subgroup of G.

We then can consider the quotient group G/X. This would have order
pn−1, and we would have the canonical homomorphism

φ : G→ G/X

whose kernel is the subgroup X. By the induction hypothesis, G/X is a group
of order pn−1, and so has a normal subgroup of order pn−2, say Y .

We will now “lift” the subgroup Y back to the original group. Since φ−1(Y )
is the inverse image of a normal subgroup, by corollary 4.2, this is a normal
subgroup of G. Note Y is a set of cosets, and that g ∈ φ−1(Y ) if, and only if,
g is contained in one of the cosets of Y . Since each of the cosets of Y contains
p elements, it is clear that the size of φ−1(Y ) is p · pn−2 = pn−1. Therefore,
we have proved by induction that there is a normal subgroup of G of order
pn−1.

We now are ready to start finding normal subgroups of a more general
group, knowing only the group’s order. The most important set of theorems
that tackle this problem are by a Norwegian high school teacher named Ludwig
Sylow (1832-1918). [1, p. 324] Before we work on finding normal subgroups
let us see if we can find a subgroup of a given order within a group.

THEOREM 7.3: The First Sylow Theorem

Suppose that G is a group of order pn · m, where p is a prime, and m is
coprime to p. Then G has a subgroup of order pn.

PROOF We will proceed by using induction on the size of the group G.
That is, we will assume that the theorem is true for all groups smaller than
G.

If pn divided |H| for some proper subgroup H of G, then by our induction
hypothesis, H would have a subgroup of order pn, which would be a subgroup
of G for which we are searching. So we may assume that pn does not divide
the order of any proper subgroup of G.

In particular, if g is not in the center of G, then NG({g}) will not be all
of G. Hence, pn does not divide |NG({g})|. But since pn does divide |G|, we
have from lemma 7.2 that the number of conjugates of g is |G|/|NG({g})|,
which must be a multiple of p.
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Now we can use the argument that we used in corollary 7.2. The class
equation theorem (7.2) states that

|G| =
∑
g

|G|
|NG({g})|

,

where the sum runs over one g from each conjugacy class. For those g in the
center of G, |G|/|NG({g})| will be 1, while for all other terms, |G|/|NG({g})|
will be a multiple of p. Since the sum is pn ·m which is a multiple of p, the
number of elements in Z(G) must be a multiple of p.

Since Z(G) is an abelian group and p divides Z(G), we have by lemma 6.2
that there is an element of Z(G) of order p, say x. We now can proceed in the
same way as we did in proposition 7.8. Since x is in the center, all elements
of G would commute with x, and so X = [x] would be a normal subgroup of
order p.

The quotient group G/X would then have order pn−1 · m, and we would
have the canonical homomorphism

φ : G→ G/X

whose kernel is the subgroup X. By the induction hypothesis, G/X is smaller
than G, and so has a subgroup of order pn−1, say Y . We can then lift Y back
to the original group. Since φ−1(Y ) is the inverse image of a subgroup, by
corollary 4.2, this is a subgroup of G. But the kernel of the homomorphism is
of order p, so the size of φ−1(Y ) is p · pn−1 = pn. Therefore, we have proved
by induction that there is a subgroup of G of order pn.

Since the first Sylow theorem guarantees the existance of at least one sub-
group of order pn for a group of size pn · m, we will give a name to these
subgroups.

DEFINITION 7.5 If G is a group of order pn ·m, where m is coprime
to the prime p, then a subgroup of order pn is called a p-Sylow subgroup.

Let us give a quick application of the first Sylow theorem (7.3). Suppose we
have a group G of order 10. There is guaranteed to be a 2-Sylow subgroup,
say H, and a 5-Sylow subgroup, say K. Obviously,

H ≈ Z2 and K ≈ Z5.

Furthermore, the intersection of H and K must just be the identity element,
since Z5 does not have any elements of order 2. Also, K is a subgroup of G
with index 2, so by proposition 3.5, K is a normal subgroup of G. If H is also
normal, we have by the direct product theorem (6.1) that

H ·K ≈ H ×K ≈ Z2 × Z5 ≈ Z10.
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On the other hand, if H is not a normal subgroup, then by the semi-direct
product theorem (6.3)

H ·K ≈ Hn
φ
K

for some nontrivial homomorphism φ from H to Aut(K). But in chapter 6, we
found that there was only one nontrivial homomorphism, yielding the dihedral
group D5. In either case, H ·K is of order 10, so G is either isomorphic to
Z10 or D5.

Even though Sylow’s first theorem (7.3) guarantees that there will be at
least one p-Sylow subgroup, there may be more than one. The next of Sylow’s
theorems shows that any two p-Sylow subgroups are related.

THEOREM 7.4: The Second Sylow Theorem
If H and K are two p-Sylow subgroups of G, then there exists an element u

in G such that H = u ·K · u−1.

PROOF Let G be a group of order pn · m, where m is coprime to the
prime p. We begin by showing that whenever K is a p-Sylow subgroup of G
then u ·K · u−1 will also be a p-Sylow subgroup for all u in G. Note that the
number of elements in u ·K · u−1 is also pn, and if u · k1 · u−1 and u · k2 · u−1

are two elements of u ·K · u−1, then

(u · k1 · u−1) · (u · k2 · u−1)−1 = u · k1 · u−1 · (u · k−1
2 · u−1) = u · (k1 · k−1

2 ) · u−1,

which is in u ·K ·u−1. So by proposition 2.2, u ·K ·u−1 is a p-Sylow subgroup
of G.

If there is only one p-Sylow subgroup ofG there is nothing to prove. Suppose
H and K are two subgroups of order pn. Let us call two elements u and v of
G to be “related” if u = h · v · k for some h in H and k in K. Note that every
element is related to itself, for u = e · u · e, and e is in both H and K. Also,
if u is related to v, then v is related to u, for

u = h · v · k ⇐⇒ v = h−1 · u · k−1.

Finally, if u is related to v, and v is related to w, then u = h1 · v · k1 and
v = h2 · w · k2, and so

u = h1 · (h2 · w · k2) · k1 = (h1 · h2) · w · (k2 · k1),

so u and w are related. Therefore, we can partition the group G into “fami-
lies,” where each family consists of all elements related to one element.

Now suppose that there are j families, and we select one element ui from
each family. Each of the families can be described as H · ui ·K. Hence, we
can write

G = (H · u1 ·K) ∪ (H · u2 ·K) ∪ · · · ∪ (H · uj ·K).
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Since each of the families have no elements in common, we have

|G| = |H · u1 ·K|+ |H · u2 ·K|+ · · ·+ |H · uj ·K|.

How many elements are in each family? We note that H · ui · K has the
same number of elements as H · ui ·K · u−1

i . We saw that u1 ·K · u−1
i is a

group, and so even though the product of two groups was not always a group,
proposition 4.9 gave us the number of elements in the set to be

|H · ui ·K| = |H · ui ·K · u−1
i | =

|H| · |ui ·K · u−1
i |

|H ∩ (ui ·K · u−1
i )|

=
pn · pn

|H ∩ (ui ·K · u−1
i )|

.

If we plug this formula into the equation above it, we have that

pn ·m =
pn · pn

|H ∩ (u1 ·K · u−1
1 )|

+
pn · pn

|H ∩ (u2 ·K · u−1
2 )|

+· · ·+ pn · pn

|H ∩ (uj ·K · u−1
j )|

.

Note that the intersection of two groups is a subgroup of both the groups,
and so the denominators will all be powers of p. Dividing both sides of the
equation by pn, we have

m =
pn

|H ∩ (u1 ·K · u−1
1 )|

+
pn

|H ∩ (u2 ·K · u−1
2 )|

+ · · ·+ pn

|H ∩ (uj ·K · u−1
j )|

.

Since m is not a multiple of p, there must be some term on the right hand
side of this equation that is not a multiple of p. But this can happen only if
one of the denominators is pn, that is,

|H ∩ (ui ·K · u−1
i )| = |H|

for some i. Since H and ui · K · u−1
i both have pn elements, we must have

H = ui ·K · u−1
i . Therefore, for any two p-Sylow subgroups of G, there is a

u such that H = u ·K · u−1.

The second Sylow theorem (7.4) allows us to know exactly when a p-Sylow
subgroup is normal.

COROLLARY 7.4
The group G has only one p-Sylow subgroup for a given prime p if, and only

if, G has a p-Sylow subgroup that is normal.

PROOF Suppose that H is the only p-Sylow subgroup of G. Then for
any element u in G, u ·H · u−1 will be a p-Sylow subgroup of G. But since
there is only one p-Sylow subgroup, we have u ·H · u−1 = H for all u in G.
Hence, H is a normal subgroup.
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Now suppose that H is a normal p-Sylow subgroup of G. By the second
Sylow theorem (7.4) every other p-Sylow subgroup is of the form u ·H · u−1.
But since H is normal, u · H · u−1 = H. Therefore, H is the only p-Sylow
subgroup.

The natural question that corollary 7.4 raises is, “How do we know if there
is only one p-Sylow subgroup?” The next lemma allows us to find the number
of p-Sylow subgroups in terms of the size of the normalizer. In fact it allows
us to find the number of p-Sylow subgroups of a certain type.

LEMMA 7.3
Let G be a group of order pn ·m, and let P be a p-Sylow subgroup of G. Let
H be any other subgroup of G. Then the number of p-Sylow subgroups that
can be written as u · P · u−1 with u an element of H is given by

|H|
|NG(P ) ∩H|

.

PROOF Since P is a subgroup of G, NG(P ) is a subgroup of G, so the
intersection of NG(P ) and H will be a subgroup of G. We can use the same
argument as lemma 7.2, and note that if u and v are two elements of H, then
u · P · u−1 and v · P · v−1 will represent the same p-Sylow subgroup if, and
only if,

u · P · u−1 = v · P · v−1 ⇐⇒ v−1 · u · P · u−1 · v = P

⇐⇒ (v−1 · u) · P · (v−1 · u)−1 = P

⇐⇒ v−1 · u ∈ NG(P ) ∩H
⇐⇒ u ∈ v · (NG(P ) ∩H)
⇐⇒ u · (NG(P ) ∩H) = v · (NG(P ) ∩H).

Thus, u · P · u−1 and v · P · v−1 represent the same p-Sylow subgroup if,
and only if, u · (NG(P ) ∩ H) and v · (NG(P ) ∩ H) are the same left cosets
of NG(P ) ∩ H. Therefore, the number of p-Sylow subgroups that can be
expressed as u · P · u−1, with u an element of H, is

|H|
|NG(P ) ∩H|

.

We now are ready to prove the last of Sylow’s theorem, which in many cases
will tell us the number of p-Sylow subgroups of a group.

THEOREM 7.5: The Third Sylow Theorem
Suppose that the number of p-Sylow subgroups of G is k. Then k divides |G|,

and k ≡ 1 (Mod p).
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PROOF Suppose that we label the p-Sylow subgroups of G as P0, P1,
P2, . . . , Pk−1. Let us partition all of the p-Sylow subgroups of G into different
categories where two p-Sylow subgroups Pi and Pj are in the same category
if there is an element u in P0 such that

Pj = u · Pi · u−1.

Note that P0 would be in its own category while the number of p-Sylow
subgroups in the other categories would be, according to lemma 7.3,

|P0|
|NG(Pi) ∩ P0|

where Pi is one p-Sylow subgroup in the category.
Recall that the normalizer of each Pi contains Pi as a normal subgroup,

so NG(Pi) is divisible by pn, and hence by corollary 7.4 the only p-Sylow
subgroup of NG(Pi) is Pi. Thus, the intersection of NG(Pi) with P0 is smaller
than P0 when i > 0. Since the order of P0 is pn, we have that the number of
p-Sylow subgroups in each category, besides the category containing just P0,
is a power of p, and hence is a multiple of p.

Therefore, the total number of p-Sylow subgroups is one more than a mul-
tiple of p, so k ≡ 1 (Mod p).

Finally, if we let H = G in lemma 7.3, we find that the number of conjugates
of P0 is

|G|
|NG(P0)|

.

By the second Sylow theorem (7.4), this would give us all of the p-Sylow
subgroups. Therefore, k is also a divisor of the order of the group G.

These three theorems of Sylow provide a means of finding normal subgroups
of a group G just from knowing the order of G. For example, suppose that a
group is of order 45. Since 32 divides 45, there is a 3-Sylow subgroup of order
9. We also know that the number of 3-Sylow subgroups divides 45, so this
number must be 1, 3, 5, 9, 15, or 45. However, the number must be congruent
to 1 (Mod 3). Thus, the only possibility is that there is only one subgroup of
order 9, say H. But then this subgroup is normal.

We can use the same argument to find a normal subgroup of order 5. Again,
the number of 5-Sylow subgroups must be 1, 3, 5, 9, 15, or 45. But this number
must also be congruent to 1 (Mod 5), so there is only one subgroup of order
5, and this group must also be normal.

Although the Sylow theorems are powerful tools, when combined with the
tools of semi-direct products and the computational power of GAP or Math-
ematica, we can determine most of the groups of a given order. For example,
let us see if we can find all of the groups of order 12.

If G is a group of order 12, since the divisors of 12 are 1, 2, 3, 4, 6, and 12,
by the third Sylow theorem there are either one or four 3-Sylow subgroups and
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there are either one or three 2-Sylow subgroups. Let H be a 3-Sylow subgroup,
and let K be a 2-Sylow subgroup (which will be of order 4). Certainly the
intersection of H and K is just the identity element since K cannot contain
an element of order 3.

Let us show that either H or K is normal. If H is not normal, there must
be four 3-Sylow subgroups of G. Each of these 3-Sylow groups contains two
different elements of order 3, so G would have eight elements of order 3. But
that would leave only four elements left over, and so K must be composed of
all of those four elements. Then there would be only one 2-Sylow subgroup,
which would be normal.

By the direct product theorem (6.1) and the semi-direct product theorem
(6.3), H ·K would have to be of one of the following forms:

1. H ·K ≈ Z3 × Z4 ≈ Z12,

2. H ·K ≈ Z3 × Z∗8 ≈ Z3 × Z2 × Z2,

3. H ·K ≈ Z3n
φ
Z4,

4. H ·K ≈ Z3n
φ
Z∗8 ,

5. H ·K ≈ Z4n
φ
Z3,

6. H ·K ≈ Z∗8 n
φ
Z3.

In all six cases H ·K contains 12 elements, and so G = H ·K. Let us work
these six cases separately. The first two give the two possible abelian groups
of order 12. Case 3 is actually impossible, since Aut(Z4) ≈ Z∗4 has only two
elements, and therefore has no elements of order 3. Therefore, there is no
nontrivial homomorphism from Z3 to Aut(Z4). The other three cases are as
follows:

Case 4
An element of order 3 in Z3 must map to an element of order 3 in Aut(Z∗8 ),

which is isomorphic to S3. There are two elements of order 3 in S3, and these
two elements are conjugates. By proposition 6.7, it does not matter which
element of Z3 maps to which elements in Aut(Z∗8 ), so the semi-direct product
Z3n

φ
Z∗8 is unique up to isomorphisms. But A4 is a group of order 12, has a

normal subgroup isomorphic to Z∗8 , and does not have a normal subgroup of
order 3. Thus, A4 must be this unique semi-direct product Z3nZ∗8 .
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Case 5
The homomorphism φ must map a generator of Z4 to a nontrivial element

of Aut(Z3). But Aut(Z3) has only two elements, so this homomorphism is
uniquely determined. The group is generated by the Mathematica commands

InitGroup[e];
Define[â3, e]; Define[b̂4, e]
Define[1/a, â2]; Define[1/b, b̂3]
Define[b.a, a.a.b]
M = Group[{a, b}]

or the GAP commands

gap> f := FreeGroup("a","b");;
gap> a := f.1;; b:=f.2;;
gap> g := f/[a^3,b^4,b*a/(a*a*b)];;
gap> NumberElements := true;
true
gap> MultTable(g);

* |1 2 3 4 5 6 7 8 9 10 11 12
-------+-----------------------------------
e |1 2 3 4 5 6 7 8 9 10 11 12
b |2 3 5 6 1 7 9 10 4 11 12 8
b^2 |3 5 1 7 2 9 4 11 6 12 8 10
a |4 10 7 8 12 2 11 1 5 6 3 9
b^3 |5 1 2 9 3 4 6 12 7 8 10 11
a^2*b |6 11 9 10 8 3 12 2 1 7 5 4
a*b^2 |7 12 4 11 10 5 8 3 2 9 1 6
a^2 |8 6 11 1 9 10 3 4 12 2 7 5
a^2*b^3|9 8 6 12 11 1 10 5 3 4 2 7
a*b |10 7 12 2 4 11 5 6 8 3 9 1
a^2*b^2|11 9 8 3 6 12 1 7 10 5 4 2
a*b^3 |12 4 10 5 7 8 2 9 11 1 6 3

From the multiplication table, this non-abelian group has only one element of
order 2. Thus, it is not isomorphic to any group we have seen before. If we
ask GAP for the description of the structure,

gap> StructureDescription(g);
"C3 : C4"

which can be interpreted as Z4nZ3. This is how we will identify this group.

Case 6
Since Aut(Z3) contains only two elements, the homomorphism φ is com-

pletely determined by its kernel. The kernel of φ cannot be just the identity,
since there is not an isomorphic copy of Z∗8 in Aut(Z3). On the other hand,
the kernel of a nontrivial homomorphism cannot be all of Z∗8 . Thus, the ker-
nel contains exactly two elements, and because there are automorphisms of
Z∗8 mapping one subgroup of order 2 to any other, it will not matter which
subgroup of order 2 we pick. Thus, there is a unique semi-direct product
Z∗8 nZ3.
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The obvious group of order 12 that we have yet to consider is Z2 × S3.
This has a normal subgroup of order 3, so by process of elimination must be
Z∗8 nZ3. In summary, we have found five possible groups of order 12:

Z12, A4 Z2 × Z2 × Z3 Z2 × S3 and Z4nZ3.

Let us summarize our findings formally with a proposition.

PROPOSITION 7.9
There are exactly 28 non-isomorphic groups of order less than 16.

PROOF The trivial group is the only group of order 1, and since 2, 3, 5,
7, 11, and 13 are prime, we have only one non-isomorphic group of each of
these orders.

In chapter 4 we found that the only non-isomorphic groups of order 4 were

Z4 and Z∗8 ,

the only non-isomorphic groups of order 6 were

Z6 and S3,

and the only non-isomorphic groups of order 8 were

Z8, Z∗15, Z∗24, Q, and D4.

By corollary 7.3 the only two non-isomorphic groups of order 9 are

Z9 and Z3 × Z3.

We have already used the first Sylow theorem (7.3) to find all of the non-
isomorphic groups of order 10:

Z10 and D5.

We just found all of the groups of order 12:

Z12, A4, Z2 × Z2 × Z3, Z2 × S3, and Z4nZ3.

We can use the same argument to find all of the non-isomorphic groups of
order 14. If |G| = 14, there must be a 7-Sylow subgroup of G, say K. Since
K contains half the elements, by proposition 3.5, K is normal. We also must
have a 2-Sylow subgroup, H. Since K cannot have an element of order 2,
H and K have only the identity element in common. If H is normal, then
H · K ≈ H × K ≈ Z2 × Z7 ≈ Z14. If H is not normal, by the semi-direct
product theorem (6.3),

H ·K ≈ Hn
φ
K
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for some homomorphism φ from H to Aut(K). In either case H ·K has 14
elements, and so G = H ·K. Also, φ is determined by where the non-identity
element of H is mapped. Since this must be an element of Aut(K) of order
2, and since

Aut(K) ≈ Aut(Z7) ≈ Z∗7 ≈ Z6

has only one element of order 2, there can only be one such homomorphism.
Since D7 is a non-abelian group of order 14, this must be the one semi-direct
product that we found. Thus, the only two groups of order 14 are

Z14 and D7.

Let us move on to find all groups of order 15. Suppose |G| = 15. Then
the number of 3-Sylow subgroups and the number of 5-Sylow subgroups must
both divide 15, so both of these numbers must be one of 1, 3, 5, or 15. But
1 is the only number in this set that is congruent to 1 (Mod 5). So there is
only one 5-Sylow subgroup, K. Likewise, 1 is the only number in the set that
is congruent to 1 (Mod 3). So there is only one 3-Sylow subgroup, H. By
corollary 7.4, both K and H are normal subgroups of G, and the intersection
must be just the identity element. Thus, by corollary 6.1,

H ·K ≈ H ×K ≈ Z3 × Z5 ≈ Z15.

Since this has all 15 elements, this must be all of G, and so there is only one
non-isomorphic group of order 15, namely Z15.

Therefore, counting all of the groups of order less than 16, we find that
there are exactly 28 of them.

Unfortunately, finding all the groups of order 16 is a difficult problem. Even
though proposition 7.8 tells us that there must be a normal subgroup K of
order 8, there is no guarantee that there would be a subgroup H of order 2
such that H · K gives the whole group. Thus, we would not be able to use
the semi-direct product theorem (6.3) to find all of the groups of order 16
(although we can find many of them, as we did in the last chapter).

Problems for Chapter 7

Interactive Problems

7.1 Use Mathematica or GAP to find the center of the group D6. This can
be loaded in Mathematica by

InitGroup[e];
Define[â2, e]; Define[b̂6, e]
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Define[b.a, a.b.b.b.b.b]
Define[1/a, a]; Define[1/b, b̂5]
D6 = Group[{a, b}]

or in GAP by

gap> f := FreeGroup("a","b");; a := f.1;; b := f.2;;
gap> D6 := f/[a^2,b^6,b*a/(a*b^5)];; a := D6.1;; b := D6.2;;

What familiar group is the quotient group D6/Z(D6) isomorphic to?

7.2 Use Mathematica or GAP to find the normalizer ND6({x}) for each of
the 12 elements of the group D6 listed in problem 7.1. For which elements is
the normalizer the same subgroup?

7.3 Use Mathematica’s or GAP’s NormalClosure command to find all of the
normal subgroups of the group D6 given in problem 7.1.

7.4 The following commands load a group of order 20 into Mathematica.

InitGroup[e];
Define[â4, e]; Define[b̂5, e]
Define[1/a, â3]; Define[1/b, b̂4]
Define[b.a, a.b.b]
M = Group[{a, b}]

Here are the commands to load the same group in GAP:

gap> f := FreeGroup("a","b");; a := f.1;; b := f.2;;
gap> M := f/[a^4,b^5,b*a/(a*b^2)];; a := M.1;; b := M.2;;

Find the conjugacy classes of this group, and use this to find all of the normal
subgroups of M .

7.5 Use Mathematica or GAP to find all of the 2-Sylow and 5-Sylow sub-
groups of the group M defined in problem 7.4. How many of the subgroups are
there? Does this agree with the prediction given by the third Sylow theorem?

7.6 Using GAP or Mathematica, find all non-isomorphic groups of order 21.
Hint: What can you determine from Sylow’s theorems? Which semi-direct

products are possible?

Non-Interactive Problems

7.7 Find the center of the group D4.

7.8 Find the center of the group D5.
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7.9 For each element g in D4, find the normalizer ND4({g}).

7.10 For each element g in D5, find the normalizer ND5({g}).

7.11 Must the center of a group be abelian?

7.12 Must the normalizer of an element NG({g}) be abelian?

7.13 Find all of the conjugacy classes of the group D4.

7.14 Find all of the conjugacy classes of the quaternion group Q. (See
table 4.3 in chapter 4 for the multiplication table of Q.)

7.15 Find all of the conjugacy classes of the group D5.

7.16 Let G be a group and Z(G) the center of G. Prove that G is abelian
if, and only if, G/Z(G) is cyclic.

Hint: Use proposition 7.3.

7.17 Let G be any group. Prove that

Z(G) =
⋂
g∈G

NG({g}).

7.18 Let G be a group, and let g be an element of G. Prove that

NG({g}) = NG({g−1}).

7.19 Mathematica and GAP showed that the group A5 had conjugacy classes
of orders 1, 12, 12, 15, and 20. Using this information alone, without using
Abel’s theorem (7.1), prove that A5 is simple.

Hint: A normal subgroup must contain the union of several conjugacy
classes, including {e}. But the number of elements must satisfy Lagrange’s
theorem (3.1).

7.20 GAP showed that the group Aut(Z∗24) had conjugacy classes of orders
1, 21, 24, 24, 42, and 56. Using this information alone, prove that Aut(Z∗24)
is simple.

7.21 The group A6 has seven conjugacy classes of orders 1, 40, 40, 45, 72,
72, and 90. With this information alone, without using Abel’s theorem (7.1),
prove that A6 is simple.

7.22 The group L2(8) has 504 elements, and has nine conjugacy classes of
orders 1, 56, 56, 56, 56, 63, 72, 72, and 72. Prove that L2(8) is simple. This
is another example of a Chevalley group.
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7.23 The group L2(11) has 660 elements, and has eight conjugacy classes
of orders 1, 55, 60, 60, 110, 110, 132, and 132. Prove this group is simple.
This group, the fifth smallest non-cyclic simple group, is related to the group
Aut(Z11 × Z11).

7.24 The group M11 has order 7920, and has 10 conjugacy classes of orders
1, 165, 440, 720, 720, 990, 990, 990, 1320, and 1584. Prove that M11 is simple.
This is the smallest of the 26 sporadic simple groups.

7.25 The group L3(4) has 20160 elements, and has 10 conjugacy classes of
orders 1, 315, 1260, 1260, 1260, 2240, 2880, 2880, 4032, and 4032. Prove that
this group is simple. Show that even though A8 is a simple group with the
same order, these two groups are not isomorphic.

Hint: How many 3-cycles are in A8? What does lemma 7.1 say about the
3-cycles?

7.26 Find a representative element for each of the seven conjugacy classes
of the group A6. The number of elements in each conjugacy class is given in
problem 7.21.

Hint: Are (12345) and (12354) in the same conjugacy class? Why are
(12)(3456) and (12)(3465) in the same conjugacy class?

7.27 Using the counting methods used to estimate the 168 elements of
Aut(Z∗24), find the maximum number of elements of Aut(Z2 ×Z2 ×Z2 ×Z2).
This group is in fact simple, and contains the number of elements predicted
by this estimate. Are there any other simple groups that we have seen of this
order?

7.28 If G has order pn for some prime p, show that every subgroup of order
pn−1 is a normal subgroup of G.

7.29 If H is a subgroup of G, and H has order pi for some prime p, show
that H is contained in a p-Sylow subgroup of G.

Hint: Mimic the proof of the second Sylow theorem (7.4).

7.30 Use Sylow’s theorem to show that all groups of order 33 are cyclic.

7.31 Prove that no group of order 56 is simple.

7.32 Show that if p is an odd prime, then any group with 2p elements is
isomorphic to either Z2p or Dp.

7.33 Determine all non-isomorphic groups of order 99.

7.34 Show that there are exactly four non-isomorphic groups of order 66:

Z66, D33, D11 × Z3, and D3 × Z11.

Hint: Use Sylow’s theorems along with problem 7.30.
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7.35 Show that all groups of order 255 are cyclic.
Hint: Use lemma 4.5.

7.36 Let |G| = p ·q, where p > q are both primes. Show that G has a normal
subgroup of order p.

7.37 If |G| = p2 · q, where p and q are different primes, show that G must
contain a normal subgroup of either size p2 or q.

Hint: Generalize the case |G| = 12 done in the text.

7.38 Show that a group of order p3 · q, where p and q are different primes,
cannot be simple.

Hint: Use corollary 5.2 for the case |G| = 24. Then do the case q < p. With
these out of the way, you can assume that q > p+ 1.

7.39 Use the results of problems 7.36 through 7.38 to show that no non-cyclic
group of order less than 60 is simple.
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Chapter 8

Solvable and Insoluble Groups

8.1 Subnormal Series and the Jordan-Hölder Theorem

In this chapter we will study the concept of solvable groups. But first
we must make some preliminary definitions. We have already encountered
situations in which we had a normal subgroup of a normal subgroup, such
as in the second isomorphism theorem. But suppose we have a whole series
of subgroups of a group G, each one fitting inside of the previous one like
Russian dolls.

DEFINITION 8.1 A subnormal series for a group G is a sequence
G0, G1, G2, . . . Gn of subgroups of G such that

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn = {e},

where each Gi is a normal subgroup of Gi−1 for i = 1, 2, · · ·n.

A subnormal series is called a normal series if it satisfies the stronger con-
dition that all of the groups Gi are normal subgroups of the original group G.
We will be mainly interested in subnormal series, but there are a few of the
exercises regarding normal series.

The group S4, for example, has a normal subgroup of order 4, namely

K = Group[{P[2,1,4,3], P[4,3,2,1]}]

gap> K := Group( (1,2)(3,4), (1,4)(2,3) );
Group([ (1,2)(3,4) ])
gap> List(K);
[ (), (1,2)(3,4), (1,4)(2,3), (1,3)(2,4) ]

The identity element is of course a normal subgroup of K, so we can write

S4 ⊇ K ⊇ {( )}

which would be a subnormal series of length n = 2. Is there a way that we can
make a longer series out of this one? Because A4 is also a normal subgroup of
S4, and K is a normal subgroup of A4, we can slip this group into our series.
Also, the group K contains the subgroup

209
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H = Group[{ P[2,1,4,3]}]

gap> H := Group( (1,2)(3,4));
Group([ (1,2)(3,4) ])
gap> List(H);
[ (), (1,2)(3,4) ]

which is a normal subgroups of K since K is abelian. Therefore, we have a
longer subnormal series of length 4:

S4 ⊇ A4 ⊇ K ⊇ H ⊇ {( )}.

We say that this new subnormal series is a refinement of the first subnormal
series.

DEFINITION 8.2 We say that a subnormal (or normal) series

G = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hk = {e}

is a refinement of the subnormal (or normal) series

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn = {e}

if each subgroup Gi appears as Hj for some j.

Is there a way that we can refine our subnormal series to produce an even
longer chain? Our definition did not exclude the possibility of two groups in
the series being the same, so we could consider

S4 ⊇ A4 ⊇ A4 ⊇ K ⊇ H ⊇ H ⊇ H ⊇ {P [ ]}.

Although this is a longer subnormal series, it is usually pointless to repeat the
same subgroup in the series.

DEFINITION 8.3 A composition series of a group G is a subnormal
series

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn = {e}

for which each subgroup is smaller than the proceeding subgroup, and for
which there is no refinement that includes additional subgroups.

There is a GAP command CompositionSeries that finds one possible com-
position series for a given group.

gap> S4 := Group( (1,2), (2,3,4) );
Group([ (1,2), (2,3,4) ]);
gap> L := CompositionSeries(S4);
[ Group([ (3,4), (2,4,3), (1,3)(2,4), (1,2)(3,4) ]),
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Group([ (2,4,3), (1,3)(2,4), (1,2)(3,4) ]),
Group([ (1,3)(2,4), (1,2)(3,4) ]), Group([ (1,2)(3,4) ]),
Group(()) ]

gap> List(L, Size);
[ 24, 12, 4, 2, 1 ]

GAP selected the composition series

S4 ⊇ A4 ⊇ K ⊇ H ⊇ {( )}.

We see that since no subgroups are repeated, and there simply is not enough
room between two of these subgroups to slip in another subgroup, that this
indeed is a composition series for S4. In fact, we can easily test to see whether
a subnormal series is a composition series.

PROPOSITION 8.1
The subnormal series

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn = {e}

is a composition series if, and only if, all of the quotient groups Gk−1/Gk are
nontrivial simple groups.

PROOF Note that if there are no repeated subgroups in the subnormal se-
ries then Gi−1/Gi must contain at least two elements. Likewise, if Gi−1/Gi is
nontrivial, then Gi−1 is not equal to Gi. So the quotient groups are nontrivial
if, and only if, there are no repeated subgroups in the subnormal series.

Suppose that the subnormal series is not a composition series yet does not
repeat any subgroups. Then there must be an additional group H that we
can add between Gk−1 and Gk, so that

Gk−1 ⊇ H ⊇ Gk,

where H is a normal subgroup of Gk−1 and Gk is a normal subgroup of H.
Then by lemma 4.3, H/Gk will be a normal subgroup of Gk−1/Gk, and since
H is neither Gk−1 nor Gk, we have a proper normal subgroup of Gk−1/Gk.

Now suppose that there is a proper normal subgroup N of Gk−1/Gk. Can
we then lift N to find a suitable subgroup H to fit between Gk−1 and Gk? If
we consider the canonical homomorphism φ from Gk−1 to the quotient group
Gk−1/Gk we can take H = φ−1(N). Then since N is a normal subgroup of
Gk−1/Gk, by corollary 4.2 H will be a normal subgroup of Gk−1. Also, Gk
will be a normal subgroup of H, for H is in Gk−1. Because N has at least
two elements, H will be strictly larger than the kernel of φ, yet since N is
not the entire image of φ, H will be strictly smaller than Gk. Therefore, the
subnormal series is not a composition series.

Thus, a subnormal series is a composition series if, and only if, the quotient
groups Gk−1/Gk are nontrivial simple groups.
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The quotient groups Gk−1/Gk in a composition series for G are called the
composition factors of the composition series.

For example, the composition factors for the composition series

S4 ⊇ A4 ⊇ K ⊇ H ⊇ {( )}

are

S4/A4 ≈ Z2, A4/K ≈ Z3, K/H ≈ Z2, and H/{( )} ≈ Z2.

These are displayed in GAP by the command DisplayCompositionSeries.

gap> DisplayCompositionSeries(S4);
G (4 gens, size 24)
| Z(2)
S (3 gens, size 12)
| Z(3)
S (2 gens, size 4)
| Z(2)
S (1 gens, size 2)
| Z(2)
1 (0 gens, size 1)

It is certainly possible for a group to have more than one composition series.
For example, we could have picked the subgroup B = {( ), (1, 4)(2, 3)}, given
in Mathematica©R by

B = Group[{ P[4,3,2,1]}]

instead of H, producing the composition series

S4 ⊇ A4 ⊇ K ⊇ B ⊇ {( )}.

Even though this is a different composition series, the composition factors
are isomorphically the same. Our goal for this section is to prove that this
happens all of the time. However, we have yet to see why two composition
series must have the same length. Even if we can prove that the composition
series are the same length, the composition factors may not appear in the
same order. For example, the group Z12 has the following two subnormal
series:

Z12 ⊇ {0, 3, 6, 9} ⊇ {0}.
Z12 ⊇ {0, 2, 4, 6, 8, 10} ⊇ {0, 4, 8} ⊇ {0}.

No matter how we refine these series, the quotient group isomorphic to Z3 in
the first series will come before any other nontrivial quotient groups, yet any
refinement of the second series will have the last nontrivial quotient group
isomorphic to Z3.

It helps if we use a diagram to demonstrate the strategy that we will be
using. Suppose that we have a group G with two subnormal series, one of
length 2, and one of length 3, as pictured in figure 8.1.

G = A0 ⊇ A1 ⊇ A2 = {e}, G = B0 ⊇ B1 ⊇ B2 ⊇ B3 = {e}.



Solvable and Insoluble Groups 213

........

........

........



..............................

..............................


........
........
......

........

........

........

......
G = A0 ⊇ A1 ⊇ A2 = {e}

G = B0 ⊇ B1 ⊇ B2 ⊇ B3 = {e}

FIGURE 8.1: Two subnormal series of different lengths

It is immediately clear that A0 = B0 and A2 = B3, but A1 does not have to
be either B1 or B2.

The goal is to refine both of the subnormal series by adding two subgroups
within each gap of the A series, and one subgroup within each gap in the
B series. Here, we will allow the possibility of duplicate subgroups in the
refinements. Nonetheless, both series will have length 6, which we can express
as follows:

G = A0 ⊇ A1,1 ⊇ A1,2 ⊇ A1 ⊇ A2,1 ⊇ A2,2 ⊇ A0 = {e},

G = B0 ⊇ B1,1 ⊇ B1 ⊇ B1,2 ⊇ B2 ⊇ B1,3 ⊇ B0 = {e}.

Figure 8.2 shows these set inclusions, and also gives a hint on how we are to
define these intermediate subgroups.
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FIGURE 8.2: Strategy for the refinement theorem

The next step will be to show that the quotient groups for each interval of
the A series is isomorphic to a quotient group for an interval of the B series,
as shown by the arrows in figure 8.2. Note that this scrambles the order of
the quotient groups, so that the i-th subinterval of the j-th interval in the A
series corresponds to the j-th subinterval of the i-th interval of the B series.
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Although it is clear that

G ⊇ A1 ·B1 ⊇ A1 ·B2 ⊇ A1 ⊇ A1 ∩B1 ⊇ A1 ∩B2 ⊇ {e}, and
G ⊇ A1 ·B1 ⊇ B1 ⊇ (B1 ∩A1) ·B2 ⊇ B2 ⊇ A1 ∩B2 ⊇ {e},

it is not at all clear that each is a normal subgroup of the previous group, or
even that all of these sets are subgroups of G. Before we show this, we will
need the following lemma.

LEMMA 8.1
Let X, Y , and Z be three subgroups of the group G, with Y being a subgroup

of X, and Y · Z = Z · Y . Then

X ∩ (Y · Z) = Y · (X ∩ Z) = (X ∩ Z) · Y.

PROOF Note that (X ∩ Z) ⊆ X, and since Y ⊆ X, Y · (X ∩ Z) ⊆ X.
Also, (X ∩ Z) ⊆ Z, so Y · (X ∩ Z) ⊆ Y · Z. Hence,

Y · (X ∩ Z) ⊆ X ∩ (Y · Z).

All we need to do is prove the inclusion in the other direction. Suppose
that x ∈ X ∩ (Y · Z). Then x is in X, and can also be written as x = y · z,
where y is in Y , and z is in Z. But then z = y−1 · x would be in both X and
Z. Thus,

x = y · (y−1 · x) ∈ Y · (X ∩ Z).

Therefore, we have inclusions in both directions, so

Y · (X ∩ Z) = X ∩ (Y · Z).

So far, we haven’t used the fact that Y ·Z = Z · Y . By lemma 4.4, Y ·Z is
a subgroup of G, and so the intersection of X with Y · Z is a subgroup of G.
So by lemma 4.4 again, we have

Y · (X ∩ Z) = (X ∩ Z) · Y.

We will need one more lemma that will help us to show the isomorphisms
indicated by the arrows in figure 8.2.

LEMMA 8.2
Let X, Y , and Z be three subgroups of the group G, with Y being a normal

subgroup of X, and Z a normal subgroup of G. Then Y · Z is a normal
subgroup of X · Z, and

(X · Z)/(Y · Z) ≈ X/(X ∩ (Y · Z)).
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PROOF Since Z is a normal subgroup of G, both Y · Z and X · Z are
subgroups of G by lemma 4.5. If we let y · z be in Y ·Z, and x ·w be in X ·Z,
then

(x · w) · (y · z) · (x · w)−1 = x · (y · x−1 · x · y−1) · w · y · z · w−1 · x−1

= (x · y · x−1) · (x · (y−1 · w · y) · z · w−1 · x−1).

Now, x ·y ·x−1 is in Y , since Y is a normal subgroup of X. Likewise, y−1 ·w ·y
is in Z, since y is in G. Then (y−1 ·w · y) · z ·w−1 is in Z, and so x · (y−1 ·w ·
y) · z · w−1 · x−1 is in Z, since x is in G. Therefore, (x · w) · (y · z) · (x · w)−1

is in Y · Z, and so Y · Z is a normal subgroup of X · Z.
We now can use the third isomorphism theorem (4.3), using K = Y ·Z. We

have that X ·K = X · Y · Z = X · Z since Y is a subgroup of X. So

(X · Z)/(Y · Z) = (X ·K)/K ≈ X/(X ∩K) = X/(X ∩ (Y · Z)).

We are now ready to put the pieces together, and show any two subnormal
series can be refined in such a way that the quotient groups are isomorphic.

THEOREM 8.1: The Refinement Theorem
Suppose that there are two subnormal series for a group G. That is, there

are subgroups Ai and Bj such that

G = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An = {e},

and
G = B0 ⊇ B1 ⊇ B2 ⊇ · · · ⊇ Bm = {e},

where each Ai is a normal subgroup of Ai−1, and each Bj is a normal subgroup
of Bj−1. Then it is possible to refine both series by inserting the subgroups

Ai−1 = Ai,0 ⊇ Ai,1 ⊇ Ai,2 ⊇ · · · ⊇ Ai,m = Ai, i = 1, 2, . . . n,

Bj−1 = Bj,0 ⊇ Bj,1 ⊇ Bj,2 ⊇ · · · ⊇ Bj,n = Bj , j = 1, 2, . . .m

in such a way that
Ai,j−1/Ai,j ≈ Bj,i−1/Bj,i.

PROOF We let

Ai,j = (Ai−1 ∩Bj) ·Ai and Bj,i = (Bj−1 ∩Ai) ·Bj .

To see that these fit the conditions we need, we first want to show that
these are groups. Note that both

X = (Ai−1 ∩Bj−1) and Y = (Ai−1 ∩Bj)
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are subgroups of Ai−1, Y is a subgroup of X, and Z = Ai is a normal subgroup
of Ai−1.

So by lemma 4.5, both Ai,j−1 = X · Z and Ai,j = Y · Z are subgroups of
Ai−1. We can now use lemma 8.2, using G = Ai−1. Since Bj is a normal
subgroup of Bj−1, Y is a normal subgroup of X, so by lemma 8.2, Y · Z is a
normal subgroup of X · Z, and

Ai,j−1/Ai,j = (X · Z)/(Y · Z) ≈ X/(X ∩ (Y · Z)).

Now lemma 8.1 comes into use. Since Y is a subgroup of X,

X ∩ (Y · Z) = Y · (X ∩ Z) = (Ai−1 ∩Bj) · (Ai−1 ∩Bj ∩Ai)
= (Ai−1 ∩Bj) · (Ai ∩Bj−1)
= (Ai ∩Bj−1) · (Ai−1 ∩Bj).

Thus,

Ai,j−1/Ai,j ≈ (Ai−1 ∩Bj−1)/[(Ai−1 ∩Bj) · (Ai ∩Bj−1)].

By switching the roles of the two series we find by the exact same argument
that

Bj,i−1/Bj,i ≈ (Bj−1 ∩Ai−1)/[Bj−1 ∩Ai) · (Bj ∩Ai−1)].

Notice that these are exactly the same thing, so

Ai,j−1/Ai,j ≈ Bj,i−1/Bj,i.

If we now apply the refinement theorem to two composition series we find
that the composition factors will be the same.

THEOREM 8.2: The Jordan-Hölder Theorem
Let G be a finite group, and let

G = A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ An = {e}

and
G = B0 ⊃ B1 ⊃ B2 ⊃ · · · ⊃ Bm = {e}

be two composition series for G. Then n = m, and the composition factors
Au−1/Au are isomorphic to the composition factors Bv−1/Bv in some order.

PROOF By the refinement theorem (8.1), there is a refinement of both
composition series such that the quotient groups of the two subnormal series
are isomorphic to each other in some order. In particular, the nontrivial quo-
tient groups of one subnormal series are isomorphic to the nontrivial quotient
groups of the other. But these are composition series, so any refinements
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merely repeat a subgroup a number of times. Thus, by eliminating these rep-
etitions, we eliminate the trivial quotient groups and produce the original two
composition series. Thus, the quotient groups Au−1/Au are isomorphic to the
quotient groups Bv−1/Bv in some order. The fact that n = m merely comes
from the one-to-one correspondence of the nontrivial quotient groups.

The Jordan-Hölder theorem (8.2) shows that the composition factors do
not depend on the composition series, but rather the finite group G. This is
reminiscent of the unique factorization of integers, where every integer greater
than one can be written as a unique product of prime numbers. Since the
composition factors are always nontrivial simple groups, in a sense the simple
groups play the same role in group theory that prime numbers play in number
theory. The correspondence is heightened by the fact that Zp is a nontrivial
simple group if, and only if, p is a prime number. However, we have seen
that there are other simple groups, such as Aut(Z∗24) and An for n > 4. Since
these groups are rather large (at least 60 elements), they will only show up as
composition factors for very large groups.

For example, a composition series for S5 is given by

S5 ⊃ A5 ⊃ {( )}, S5/A5 ≈ Z2, and A5/{( )} ≈ A5.

gap> S5 := Group( (1,2),(2,3,4,5) );
Group([ (1,2), (2,3,4,5) ]);
gap> CompositionSeries(S5);
[ Group([ (1,2), (2,3,4,5) ]),
Group([ (1,3,2), (1,4,3), (1,4,5) ]), Group(()) ]

Since Z2 and A5 are both simple groups, this is a composition series, and so
the composition factors of S5 are Z2 and A5.

The composition series will play a vital role in determining whether groups
are solvable or not. However, we will hold off on the definition of a solvable
group until we have defined another tool in group theory, the derived group.

8.2 Derived Group Series

In this section we will find a method for producing a composition series
that is easily implemented using Mathematica or GAP.

DEFINITION 8.4 Given two elements x and y of a group G, the com-
mutator of x and y is the element x−1 · y−1 · x · y, and is written [x, y].

Notice that if G is an abelian group the commutator will always give the
identity element. We can also consider the commutator of two subgroups of
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G. If H and K are two subgroups, then consider the set

{x−1 · y−1 · x · y | x ∈ H and y ∈ K}.

Unfortunately, this set will not always form a group. The simplest example
is found in S4. We can consider the two subgroups

H = {( ), (1 2)}, K = {( ), (2 3 4), (2 4 3)}.

Then the set

{x−1 · y−1 · x · y | x ∈ H and y ∈ K}

can be found by making a table for possible values of x and y.

x−1 · y−1 · x · y ( ) (2 3 4) (2 4 3)

( ) ( ) ( ) ( )
(1 2) ( ) (1 2 3) (1 2 4)

So we get {( ), (1 2 3), (1 2 4)}, which is not a subgroup. However, we can
consider the group generated by all of the commutators, which of course will
make a subgroup.

DEFINITION 8.5 Given two subgroups H and K of a group G, we
define the mutual commutator subgroup of H and K, denoted [H,K], to be
the subgroup generated by the elements

{x−1 · y−1 · x · y | x ∈ H and y ∈ K}.

We can find the mutual commutator with the Mathematica commands

H = Group[{C[1,2]}];
K = Group[{C[2,3,4]}];
MutualCommutator[H, K]

or the GAP commands

gap> H := Group((1,2));;
gap> K := Group((2,3,4));;
gap> C := CommutatorSubgroup(H,K);
Group([ (1,2,3), (1,4,3) ]}
gap> Size(C);
12

So the commutator [H,K] in this case is A4. Note that whenever an element
u is in [H,K], we cannot say that u = x−1 · y−1 · x · y for some x ∈ H and
y ∈ K. Rather, we must write

u = u1 · u2 · · · · · un,
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where either ui or u−1
i is x−1

i · y
−1
1 · xi · yi. In spite of this difficulty, we will

be able to discover some important properties with the mutual commutator
groups.

PROPOSITION 8.2
If H and K are normal subgroups of G, then [H,K] is a normal subgroup of
G.

PROOF Let u be an element of [H,K], and v an element of G. Then
u = u1 · u2 · · ·un, where either ui or ui−1 is x−1

i · y
−1
i · xi · yi. Then

v · u · v−1 = (v · u1 · v−1) · (v · u2 · v−1) · · · (v · un · v−1),

and

v · x−1
i · y

−1
i · xi · yi · v

−1 =
(v · x−1

i · v
−1) · (v · y−1

i · v
−1) · (v · xi · v−1) · (v · yi · v−1) =[

v · xi · v−1, v · yi · v−1
]
.

If H and K are both normal subgroups of G, then v · xi · v−1 is in H,
and v · yi · v−1 is in K. Thus, [v · xi · v−1, v · yi · v−1] is in [H,K]. Since
(v · ui · v−1)−1 = (v · u−1

i · v−1), if one of these is in [H,K], they both are.
Hence v · ui · v−1 is in [H,K] for every ui, and v · u · v−1 ∈ [H,K]. By propo-
sition 3.4, [H,K] is a normal subgroup of G.

Many times one of the two groups H or K will be the whole group G. We
call the subgroup [G,H] the commutator subgroup of H in G. In this case
Mathematica can find the commutator subgroup faster with the simplified
command

Commutator[G, H]

which takes advantage of the fact that H is a subgroup of G. In fact, Math-
ematica will correctly find the commutator subgroup if only the generators
of H are specified. For example, suppose we wish to find the commutator
[S4, A4].

S4 = Group[{ C[1,2], C[1,2,3,4] }]
A4 = Group[{ C[1,2,3], C[2,3,4] }]

It is faster to use only the generators of A4:

Commutator[S4,{ C[1,2,3], C[2,3,4] }]

which gives us A4 again. The commutator [S4, S4] is given by

Commutator[S4,{ C[1,2], C[1,2,3,4] }]
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which is also A4. However, the commutator [A4, A4] is

Commutator[A4,{ C[1,2,3], C[2,3,4] }]

which gives a subgroup with only four elements. This is exactly the subgroup
K from the last section. The GAP commands for this are

gap> S4 := Group( (1,2), (2,3,4) );
gap> A4 := Group( (1,2,3), (2,3,4) );
gap> List(CommutatorSubgroup(S4,A4) );
[ (), (1,2,3), (1,3,2), (1,4)(2,3), (2,3,4), (1,2)(3,4),
(1,3,4), (1,4,3), (2,4,3), (1,2,4), (1,3)(2,4), (1,4,2) ]

gap> List(CommutatorSubgroup(S4,S4) );
[ (), (1,2,3), (1,3,2), (1,4)(2,3), (2,3,4), (1,2)(3,4),
(1,3,4), (1,4,3), (2,4,3), (1,2,4), (1,3)(2,4), (1,4,2) ]

gap> List(CommutatorSubgroup(A4,A4) );
[ (), (1,4)(2,3), (1,2)(3,4), (1,3)(2,4) ]

DEFINITION 8.6 We define the commutator subgroup of G with itself,
[G,G], to be the derived group of G, denoted G′.

Since G is a normal subgroup of itself, proposition 8.2 states that the derived
group will be a normal subgroup of G. Since the commutator of any two
elements in an abelian group is e, [G,G] will be the trivial group whenever G
is abelian.

We can denote the derived group of the derived group G′ as G′′. Likewise,
the derived group of G′′ will be denoted G′′′, and so on. Because each of these
groups is a normal subgroup of the previous one, we have the series

G ⊇ G′ ⊇ G′′ ⊇ G′′′ ⊇ · · · .

This is called the derived series for the group G. The derived series is in
fact a subnormal series as long as the groups keep getting smaller and smaller
until they finally get to the trivial subgroup. In GAP, we can use the shorter
command DerivedSubgroup for [G,G]. For example, the derived group series
of G = S4 is

gap> Gp := DerivedSubgroup(S4);
Group([ (1,3,2), (1,4,3) ])
gap> List(Gp);
[ (), (1,2,3), (1,3,2), (1,4)(2,3), (2,3,4), (1,2)(3,4),
(1,3,4), (1,4,3), (2,4,3), (1,2,4), (1,3)(2,4), (1,4,2) ]

gap> Gpp := DerivedSubgroup(Gp);
Group([ (1,4)(2,3), (1,2)(3,4) ])
gap> List(Gpp);
[ (), (1,4)(2,3), (1,2)(3,4), (1,3)(2,4) ]
gap> Gppp := DerivedSubgroup(Gpp);
Group(())
gap> List(Gppp);
[ () ]
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So G′ = A4, G′′ = K, and G′′′ = {( )}, since K is abelian. So we produce the
series

S4 ⊇ A4 ⊇ K ⊇ {( )}.

However, if we start with the group A5, then [A5, A5] must be a normal
subgroup of the simple group A5. Since the derived group is not the identity
element, we see that the derived group is all of A5.

gap> A5 := Group( (1,2,3),(3,4,5) );
Group([ (1,2,3), (3,4,5) ])
gap> Size(DerivedSubgroup(A5) );
60

Thus, the derived series for A5 is

A5 ⊇ A5 ⊇ A5 ⊇ A5 ⊇ · · ·

which never gets to the trivial subgroup.

DEFINITION 8.7 A group G is called solvable if the derived series

G ⊇ G′ ⊇ G′′ ⊇ G′′′ ⊇ · · ·

includes the trivial group in a finite number of steps. If the derived series
never reaches the trivial group, G is said to be insoluble.

By our experiments, we see that S4 is a solvable group, whereas A5 is not.
In fact that GAP command IsSolvable bears this out.

gap> IsSolvable(S4);
true
gap> IsSolvable(A5);
false

Whenever we have a solvable group G, the derived series is in fact a subnormal
series for G. So it is natural that the derived series would shed some light
as to what the composition factors of G are. First we will need the following
lemma, which characterizes the derived group.

LEMMA 8.3
Let G be a group. Then the derived group G′ is the smallest normal subgroup

for which the quotient group is abelian.

PROOF First we need to show that G/G′ is abelian. Consider the canon-
ical homomorphism φ from G onto G/G′. Then for x and y in G, x−1 ·y−1 ·x·y
is in G′, and so φ(x−1 · y−1 · x · y) is the identity element in G/G′. But then

φ(x−1 · y−1 · x · y) = φ(x)−1 · φ(y)−1 · φ(x) · φ(y) = e,
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so φ(x) ·φ(y) = φ(y) ·φ(x). Since φ is surjective, we see that G/G′ is abelian.
Now suppose that N is another normal subgroup of G for which G/N is

abelian. To show that G′ is a smaller group, we will show that N contains
G′.

For any x and y in G, note that x−1 · y−1 · x · y is certainly contained in
x−1 ·N · y−1 ·N · x ·N · y ·N . But since the quotient group G/N is abelian,
we have

x−1 ·N · y−1 ·N · x ·N · y ·N = x−1 ·N · x ·N · y−1 ·N · y ·N = N ·N = N.

Thus, x−1 · y−1 · x · y is in N for all x and y in G. Since G′ is generated by
all such elements, G′ is contained in N .

We now can express a relationship between the composition factors of a
group and the derived series of a group.

THEOREM 8.3: The Solvability Theorem
Let G be a finite group. Then G is solvable if, and only if, the composition

factors of G are cyclic groups of prime order.

PROOF Suppose that the composition factors of G are all cyclic groups
of prime order. Then there exists a composition series for G:

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn = {e}.

Since G0/G1 is an abelian group, we have from lemma 8.3 that G′ is contained
in G1. But since G1/G2 is also abelian, by lemma 8.2 we have G′1 is in G2,
and so

G′′ ⊆ G′1 ⊆ G2.

Proceeding in this way we find that the n-th derived group, G(n), must be
contained in Gn = {e}. Thus, the derived series produced the trivial group
in at most n steps, so G is solvable.

Now suppose that G is solvable and finite, and so the derived series can be
written

G ⊇ G′ ⊇ G′′ ⊇ G′′′ ⊇ · · · ⊇ G(n) = {e}.

If G(n) is the first term in the derived series equal to {e}, then this subnormal
series can never repeat any two subgroups. Because this is a finite group,
there are only a finite number of ways this series could be refined without
repeating subgroups. Thus, by the refinement theorem, we can refine this
to produce a composition series. Because each of the quotient groups of the
derived series is abelian, the quotient groups of the refinement must also be
abelian. But by proposition 8.1, the quotient groups of the composition series
must be nontrivial simple groups. The only nontrivial simple groups that are
abelian are the cyclic groups of prime order. Thus, the quotient groups for
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this composition series are cyclic groups of prime order. By the Jordan-Hölder
theorem (8.2), all composition series are the same way.

From the solvability theorem we see that for finite groups, solvability can
be defined in terms of the composition factors. Does this hold true for infinite
groups as well? That is, is an infinite group solvable as long as there is
no non-abelian simple group (finite or infinite) lurking somewhere within its
structure, either as a subgroup or as a quotient group? To shed some light on
this problem, we will first need the following lemma.

LEMMA 8.4
If N is a normal subgroup of G, and H is a subgroup of G, then

(H ·N/N)′ = (H ′ ·N)/N.

PROOF We first note that since N is a normal subgroup of G, H ·N is a
subgroup of G, and so N is a normal subgroup of H ·N . Two typical elements
of H ·N/N are h · n ·N and k ·m ·N , where h and k are in H, and n and m
are in N . Then (H ·N/N)′ is generated from the elements of the form

(h · n ·N)−1 · (k ·m ·N)−1 · (h · n ·N) · (k ·m ·N) = h−1 · k−1 · h · k ·N.

But these elements are also in (H ′ ·N)/N . In fact, (H ′ ·N)/N is generated by
the elements of the form h−1 ·k−1 ·h ·k ·N . Therefore, the groups (H ·N/N)′

and (H ′ ·N)/N are equal.

With this lemma we will be able to show the relationship with a solvable
group to its subgroups and quotient groups.

PROPOSITION 8.3
Suppose that G is a group and H is a normal subgroup of G. Then G is

solvable if, and only if, both H and G/H are solvable.

PROOF We begin by showing that if G is solvable, and H is a subgroup
of G, normal or not, then H is solvable. Since H is contained in G, we have

H ′ ⊆ G′ =⇒ H ′′ ⊆ G′′ =⇒ H ′′′ ⊆ G′′′ · · · .

Thus, since G(n) = {e} for some n, H(n) = {e}, and H is solvable.
Next we want to show that if H is normal, then G/H is solvable. Since

G = G ·H we can use lemma 8.4 to find (G/H)′ = (G′ ·H)/H. But since G′

is a subgroup, we can continue to use lemma 8.4 to find

(G/H)′′ = (G′ ·H/H)′ = (G′′ ·H)/H,
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(G/H)′′′ = (G′′ ·H/H)′ = (G′′′ ·H)/H, · · · .
Since G is a solvable group, G(n) = {e} for some n. Thus

(G/H)(n) = (G(n) ·H)/H

would be the identity group H/H. Therefore, G/H is a solvable group.
Now suppose that both H and G/H are solvable. Then (G/H)n is the

identity for some n, so (G(n) ·H)/H is the identity. Thus, G(n) is a subgroup
of H, and since H is solvable, G(n) must be solvable. Therefore, G(n+m) is
the identity for some m, and so G is a solvable group.

From this proposition, we see that for an infinite solvable group there cannot
be any non-abelian simple groups within its structure whether as a subgroup,
a quotient group, a subgroup of a quotient group, etc. Thus the current
definition of solvability for infinite groups agrees with the historical notion of
a group that does not contain non-abelian simple groups in the composition
factors.

Why do we want to know whether a group is solvable or not? Notice that
the solvable groups could be entered into Mathematica using the InitGroup
and Define commands, whereas the insoluble groups, such as Aut(Z∗24), had
to be considered as a subgroup of a symmetric group. In the next section, we
will show why the solvable groups were the only groups that could be entered
into Mathematica using the Define commands.

8.3 Polycyclic Groups

Throughout these notebooks, we used Mathematica’s InitGroup and De-
fine commands or GAP’s FreeGroup command to produce many of the groups
we have been studying. Only occasionally did we have to use permutations to
represent groups, such as the groups A5 and Aut(Z∗24). However, the method
for converting a finite group into a set of Mathematica or GAP commands
has never been fully explained. We know that the groups can be represented
by a small number of generators. Why was S4 defined in Mathematica with
three generators when only two generators would generate the group?

The method for defining a group G in Mathematica using a set of gener-
ators stems from the composition series for a solvable group G. However, a
composition series is actually more than we need. We will still insist that the
factors of a series be cyclic, but not necessarily of prime order.

DEFINITION 8.8 A subnormal series

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn = {e}
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is a polycyclic series if the quotient groups Gi−1/Gi are all cyclic groups. The
number n is called the length of the polycyclic series.

It is obvious that a group with a polycyclic series must be solvable, since the
cyclic quotient groups would be solvable. Although any finite solvable group
has a polycyclic series, it should be noted that an infinite solvable group may
not always have a polycyclic series. The groups that have a polycyclic series
are called polycyclic groups.

Given a polycyclic series for a polycyclic group,

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn = {e},

we can find a set of generators and relationships between the generators that
will allow us to define the group in Mathematica or GAP. Since Gi−1/Gi is
cyclic, we can choose an element gi ∈ Gi−1 such that giGi is a generator
of Gi−1/Gi. Then if Gi−1/Gi has order ni, then gni

i ∈ Gi. Also, if j > i,
then [gj , gi] ∈ [Gi−1, Gi−1] ⊆ Gi. Since j > i, gj ∈ Gi, so we have that
gj · gi ∈ giGi. This means that for each pair 1 ≤ i < j ≤ n, we can define a
relation of the form

gj · gi = gi · ( element of Gi).

This definition would allow Mathematica or GAP to unravel a combination of
generators that are “in the wrong order.” That is, if we consider the generators
g1, g2, . . . gn as “letters,” going in alphabetical order, then these definitions
would find a way of expressing the element of the group as a product of
generators such that the generators are in alphabetical order.

In Mathematica, the groups must be defined in a form similar to a polycyclic
representation. In fact, the groups defined using InitGroup and Define so
far are either polycyclic representations, or a mirror image of such a represen-
tation. For example, if we wish to use a polycyclic series to define the group
Q, we could use

G0 = Q ⊇ G1 = {1, i,−1,−i} ⊇ G2 = {1},

and let g1 = j and g2 = i. Since G0/G1 is of order 2, we know that g2
1 is in

G1, and indeed j2 = −1 = i2. Also, i4 = 1 ∈ G2. Finally, we need to compute
[g2, g1] = [i, j] = −1 = i2. Thus, i−1 · j−1 · i · j = i2, so i · j = j · i3. Thus, the
commands

InitGroup[e];
Define[iˆ4, e]
Define[jˆ2 , iˆ2]
Define[i.j, j.i.i.i]
Q = Group[j, i]

will define the group Q. This puts the elements in “alphabetical” order,
because g1 = j is considered to be before g2 = i. Of course, it makes more
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sense to have i come before j, so we can take the “mirror image” of this
definition

InitGroup[e];
Define[iˆ4, e]
Define[jˆ2 , iˆ2]
Define[j.i, i.i.i.j]
Q = Group[i, j]

which of course will define an isomorphically equivalent group.
Here is a more complicated example. We have a polycyclic series for S4,

G0 = S4 ⊇ G1 = A4 ⊇ G2 = K ⊇ G3 = H ⊇ G4 = {( )}

and we would like to enter this into Mathematica or GAP using genera-
tors. Since there are four cyclic quotient groups, we will need four generators
g1, g2, g3, g4 such that giGi is a generator of Gi−1/Gi. Some obvious choices
are g1 = (1, 2), g2 = (1, 2, 3), g3 = (1, 3)(2, 4), and g4 = (1, 2)(3, 4).

Next, gni
i ∈ Gi, where ni is the order of Gi−1/Gi. Looking at the polycyclic

series for S4, we find that n1 = 2, n2 = 3, n3 = 2, and n4 = 2. Hence we
calculate g2

1 = ( ), g3
2 = ( ), g2

3 = ( ), and g2
4 = ( ). In this case, all of these

turned out to be the identity element, but we are only promised that gni
i will

be in Gi, and hence expressible in terms of gi+1, . . . gn.
Finally, we calculate [gj , gi] ∈ Gi for each combination j > i, and express

each of these in terms of gi+1, . . . gn. We find that [g2, g1] = (1 2 3) = g2,
[g3, g1] = (1 2)(3 4) = g4, [g4, g1] = ( ), [g3, g2] = (1 4)(2 3) = g3 · g4. [g4, g2] =
(1 3)(2 4) = g3, and [g4, g3] = ( ).

We are now ready to enter this into GAP as a polycyclic group. We can
use a, b, c, and d as the four generators, and use GAP’s Comm command for
the commutator of two elements.

gap> f:= FreeGroup("a","b","c","d");;
gap> a:= f.1;; b:=f.2;; c:=f.3;; d:=f.4;;
gap> g:=f/[a^2,b^3,c^2,d^2, Comm(b,a)/b, Comm(c,a)/d, Comm(d,a),
> Comm(c,b)/(c*d), Comm(d,b)/c, Comm(d,c) ];
<fp group on the generators [ a, b, c, d ]>
gap> List(g);
[ <identity ...>, a, b, c, a*b*a*c*b, a*b, a*c, b*a*c*b, a*b*a,
b*c, c*b, a*c*a, b*a, a*b*c, a*c*b, c*a, a*b*a*c, b*c*b,
b*a*c*a, b*a*c, a*b*c*b, a*b*a*c*a, a*b*c*a, b*c*a ]

GAP is expressing each element as a product of generators, but not always in
alphabetical order. But since we used a polycyclic series to define this group,
we can convert it to a polycyclic form with the PcGroupFpGroup command.
This converts an fp group (defined using commutators as we did) to pc groups.

gap> h := PcGroupFpGroup(g);
<pc group of size 24 with 4 generators>
gap> a := h.1;; b:= h.2;; c:= h.3;; d:=h.4;;
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gap> List(h);
[ <identity> of ..., d, c, c*d, b, b*d, b*c, b*c*d, b^2, b^2*d,
b^2*c, b^2*c*d, a, a*d, a*c, a*c*d, a*b, a*b*d, a*b*c,
a*b*c*d, a*b^2, a*b^2*d, a*b^2*c, a*b^2*c*d ]

Now every element besides the identity is expressed as a product of generators
in alphabetical order. GAP can work with polycyclic groups (pc groups)
much more efficiently than with general groups defined using the FreeGroup
command. In fact, very often GAP will express a group as a polycyclic group
by default.

Here is another example. Table 8.1 shows a multiplication table for a non-
abelian group that we will simply call A.

TABLE 8.1: Multiplication table for the mystery group A

· 1 Z Y X W V U T S R Q P O N M L

1 1 Z Y X W V U T S R Q P O N M L
Z Z Y X 1 T W V U R Q P S L O N M
Y Y X 1 Z U T W V Q P S R M L O N
X X 1 Z Y V U T W P S R Q N M L O
W W V U T S R Q P O N M L 1 Z Y X
V V U T W P S R Q N M L O X 1 Z Y
U U T W V Q P S R M L O N Y X 1 Z
T T W V U R Q P S L O N M Z Y X 1
S S R Q P O N M L 1 Z Y X W V U T
R R Q P S L O N M Z Y X 1 T W V U
Q Q P S R M L O N Y X 1 Z U T W V
P P S R Q N M L O X 1 Z Y V U T W
O O N M L 1 Z Y X W V U T S R Q P
N N M L O X 1 Z Y V U T W P S R Q
M M L O N Y X 1 Z U T W V Q P S R
L L O N M Z Y X 1 T W V U R Q P S

Because there are no elements of order 8, this cannot be one of the groups
of the form Z2n

φ
Z8 studied in section 6.4.

Finding a polycyclic series is not hard, but finding a short series of length 2
is a little trickier. We find that {1, Z, Y,X} is a normal subgroup isomorphic
to Z4, and the quotient group is also cyclic. Thus, the series

G0 = A ⊃ G1 = {1, Z, Y,X} ⊃ G2 = {1}

is a polycyclic series of length 2. By using this series, we need only two
generators, a and b. Since G1/G2 has two generators, {Z} and {X}, we can
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let b represent either element, say b = Z. Then b4 = Z4 must be in G2 = {1},
so

InitGroup[e];
Define[b̂4, e]

defines b = Z in Mathematica. Next, we notice that both {W,V,U, T} and
{O,N,M,L} are generators of G0/G1. Thus, we can let a be any of these
eight elements, say a = W . Then a4 = W 4 must be in G1, and in fact the
table shows that a4 = e.

Define[â4, e]

Finally, we need to let Mathematica know how to handle the combination
b·a. We know that the commutator [b, a] is in G1, and using the multiplication
table we have that b−1 ·a−1 ·b ·a = Z−1 ·W−1 ·Z ·W = Y = b2. So b ·a = a ·b3.
While we are at it, we can also define the inverses of the two generators a and
b.

Define[b.a, a.b.b.b]
Define[1/a, â3]
Define[1/b, b̂3]
A = Group[{a, b}]

This same strategy can be used to define this group as a pc group in GAP.

gap> f:= FreeGroup("a","b");; a := f.1;; b:=f.2;;
gap> g:= f/[a^4, b^4, Comm(a,b)/b^2];;
gap> h:= PcGroupFpGroup(g);
#I You are creating a Pc group with non-prime relative orders.
#I Many algorithms require prime relative orders.
#I Use ‘RefinedPcGroup’ to convert.
<pc group of size 16 with 2 generators>
gap> a := h.1;; b:= h.2
gap> List(h);
[ <identity> of ..., b, b^2, b^3, a, a*b, a*b^2, a*b^3, a^2,
a^2*b, a^2*b^2, a^2*b^3, a^3, a^3*b, a^3*b^2, a^3*b^3 ]

GAP gives a warning that we did not use a composition series to define the
group, and so some of the features will not be available to us. Of course, using
a composition series would require four generators, and hence more work.
Most of the operations will still work for this group, such as multiplication
tables, but to analyze the group

gap> StructureDescription(g);
"C4 : C4"

we have to use the fp version. We see that this group is a semi-direct product
of Z4 with itself. In fact, it is the only such semi-direct product, so we can
refer to this group as Z4nZ4.
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Both GAP’s pc groups and Mathematica’s groups are rewriting systems.
That is, the fundamental methodology is to replace certain combinations of
generators with other combinations until no more possible replacements are
possible. But there is still one question that has not been addressed. How do
we know for certain that the computer will not get hung in a loop? Consider
the following Mathematica commands:

InitGroup[e];
Define[x̂3 ,e]
Define[ŷ6, e]
Define[y.x, x.x.y.y]
y.y.x

Mathematica would blindly make the following “simplifications”

y · y · x→ y · x · x · y · y → x · x · y · y · x · y · y → x · x · y · x · x · y · y · y · y → · · ·

indicated by the Define statements, creating longer and longer expressions
and never stopping. The problem is not that the group does not exist; in fact
problem 8.28 asks you to find a group of order 24 for which there are elements
x and y such that x3 = e, y6 = e, and y · x = x2 · y2. The above infinite
loop stems from trying to define this group in terms of subgroups that are not
normal subgroups. Whenever we use a polycyclic series to define a group in
Mathematica or GAP this type of infinite loop will never happen.

PROPOSITION 8.4
Let G be a finite solvable group, and let

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn = {e}

be a polycyclic series for G. If the group is defined in Mathematica or GAP
using n generators and the procedure described above, then Mathematica or
GAP will simplify any combination of generators to a point where no further
reductions are possible.

PROOF This is not really a proof about Mathematica or GAP, but about
the structure of polycyclic groups. However, the proposition can best be
stated in terms of how Mathematica handles the elements of the group.

First consider the case where n = 1. The group G is will then be a cyclic
group, say of order m > 1. The only Define statement would replace gm1
with e, so each substitution would reduce the number of g’s in the expression,
and hence would eventually come to the point where no more substitutions
are possible.

We can now proceed by induction on the length of the polycyclic series of
G. That is, we will assume that the proposition is true for all groups with
shorter polycyclic series, in particular, G1.
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Since G0/G1 is cyclic, we will let u·G1 be a generator, and let m = |G0/G1|.
We will then let g1 be one element from u ·G1. Since gm1 is in G1, by induction
we can let gm1 = b, where b is defined in terms of the generators {g2, g3, · · · , gn}.
Also, g−1

1 · gi · g1 is in G1 for each of these generators, and so we can define
ki = g−1

1 · gi · g1 for i = 2, 3, . . . , n in terms of the generators {g2, g3, · · · , gn}.
We then have the additional n Define commands:

Define[g1ˆm , b]
Define[ g2 · g1, g1 · k2 ]
Define[ g3 · g1, g2 · k3 ]
· · · · · · · · ·
Define[ gn · g1, g1 · kn ]

We will call these n new Define commands “first category substitutions,” and
all previously defined definitions as “second category substitutions.” Certainly
these definitions are compatible with the group structure of G, so if we can
simplify every combination to a unique form, this form will be the correct
representation of the element.

The only thing that would go wrong is if there was some expression for
which there existed an infinite sequence of substitutions from either category.
Suppose that this was the case. That is, suppose we have an infinite sequence
of expressions

u1, u2, u3, . . .

where each expression ui is formed from a substitution of either of the two
categories applied to ui−1. Note that the ui’s do not represent elements of G,
but rather expressions that are products of the generators {g1, g2, . . . , gn}. In
fact, all of the ui’s are different ways of expressing the same element of G. If
such an infinite sequence of expressions existed, the computer would have the
potential of running into an infinite loop.

Let d represent the number of times that g1 appears in the expression
u1. Note that if d = 0, then the u1 is expressed in terms of the generators
{g2, g3, . . . , gn} of G1. But by induction, G1 does not form any such infinite
sequences. Thus, we may assume that there is at least one occurrence of g1

in the expression u1. By the same argument, we can suppose that there is at
least one occurrence of g1 in all of the expressions ui.

Consider the first appearance of the generator g1 in each expression ui. If
we let vi be the part of the expression occurring before this first g1, and let
wi represent the part of the expression occurring after it, we can express ui
as vi · g1 · wi. Note that vi and wi may be empty expressions.

Since v1 contains no g1’s, it is in G1 and so by our induction hypothesis,
there is only a finite number of expressions that could be produced using
substitutions from the second category. Let s denote the number of generators
in the longest such expression.

We now will show, using induction on the number d, that an infinite se-
quence of substitutions is impossible. That is, we will assume that an expres-
sion with only d−1 occurrences of g1 could not appear in an infinite loop. Note
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that we are already using an induction hypothesis, so this is an “induction
inside of an induction.” We will keep the two induction arguments straight
by referring to them as the “inner induction” and the “outer induction.”

Notice that the first substitution of the first category,

Define[g1ˆm , b]

reduces the number of g1’s by m. All other substitutions of the first category
preserve the number of g1’s while all substitutions of the second category
do not affect any of the g1’s. Thus, if gm1 is ever replaced by b, the resulting
expression would have only d−m occurrences of g1, and by the inner induction
hypothesis would not get into an infinite loop. Hence we can suppose that the
number of g1’s that appears in any of the expressions ui is the same, which is
d.

For each expression vi · g1 · wi, there are three types of substitutions that
can be done:

1. A substitution of the second category applied to vi.

2. A substitution of either category applied to wi.

3. A substitution of the first category applied to the last generator of vi
and the first occurrence of g1. The resulting vi+1 will be shorter than
vi by one symbol.

By the outer induction hypothesis, since vi is in G1, only a finite number
of substitutions of the first type can be done before doing one of the third.
Likewise, by the inside induction hypothesis, since wi contains only (d − 1)
occurrences of g1, only a finite number of substitutions of the second type can
be done before performing before one of type 3. But the size of vi goes down
by one each time the third type of substitution occurs, which could happen
only s times. Thus, the computer will not go into an infinite loop when the
generator g1 appears d times. Thus, by the inner induction, the computer
will not go into an infinite loop making substitutions on any combination of
generators in {g1, g2, g3, . . . , gn}.

We now can close the outer induction argument. Since we have shown
that there cannot be an infinite number of substitutions on a combination of
generators in G0 provided that the same was true for G1, and that G0/G1 was
cyclic, we can see by induction that no such infinite number of substitutions
is possible on the original group G.

Because this result is the foundation that allows this set of notebooks to
exist in Mathematica or GAP, it is included here. It gives a good example
of how the tools that we have learned throughout the course, such as induc-
tion and reductio ad absurdum, can be applied consecutively to solve harder
problems.
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8.4 Solving the PyraminxTM

In section 2.3, we introduced a very large group called the PyraminxTM

group, formed from the different actions that can be performed on the puzzle
in figure 2.3.

This group was described by four generators, r, l, b, and f , which rotated the
right, left, back, or front corners 120◦ clockwise. The size of the group (933120
elements) makes it infeasible to list the elements in either Mathematica or
GAP, but we still can use the tools we have learned to analyze this group.
Does the group has a nontrivial center? Notice that the four corner pieces
will never change location in the puzzle. The sequence of moves

ResetPuzzle
RotatePuzzle[f.r.f.r.r.f.r.f.r.r]

rotates one of these corner pieces, returning all other pieces to their original
positions. It is clear that this sequence would commute with all other se-
quences performed on the puzzle. Since the four corners act independently,
we would find at least 34 = 81 elements in the center of the group. Let us call
this subgroup K.

Are there elements in the center besides those in K? The sequence

ResetPuzzle
RotatePuzzle[l.l.b.f.l.l.b.f.l.l.b.f ]

returns the four corner pieces to their place, while putting all the edge pieces in
the right position, but reversed. If a further sequence of moves was performed
from this position rather than the original position, the difference in the end
positions would be that all six edges would be reversed. Thus, the above
sequence of order 2 will commute with all other elements of the group. It is
clear that there can be no more elements in the center, for such an element
would have to keep the edge pieces in place. Hence, the center is a normal
subgroup isomorphic to the group Z2 × Z3 × Z3 × Z3 × Z3.

Suppose we consider the subgroup E of actions that return all of the corners
to their original place. If x is an element of E, and y is a general element, say
y rotates the front corner n degrees. Then y · x · y−1 rotates the front corner
n + 0 + (−n) = 0 degrees, so the front corner would return to its original
position. Since the same is true for the other three corners, we see that E is
a normal subgroup.

The intersection of E and K would be the only element that leaves both
the edges and the corners fixed, the identity element. Since both E and K
are normal (since K is in the center), by the direct product theorem, E ·K is
isomorphic to E×K. Yet any action on the PyraminxTM can be performed by
first moving all of the edge pieces, and then moving all of the corners. Thus,
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FIGURE 8.3: The PyraminxTM without the corners

the entire group is in E ·K, and so the PyraminxTM group is isomorphic to

E ×K ≈ E × Z3 × Z3 × Z3 × Z3.

To find the structure of the subgroup E, we analyze the puzzle without the
corners, as in figure 8.4 created by Mathematica’s HideCorners command.

Since there are only 12 triangles remaining, it is clear that each action could
be described as a permutation of the 12 triangles. In fact, notice that turning
one corner 120◦ moves 6 triangles—two sets of 3 triangles rotate places. Thus,
each turn produces an even permutation of the 12 triangles, so E is a subgroup
of A12.

Let us now try to find a normal subgroup of E. What if we considered
the subgroup of actions that returns the edge pieces to their place, but may
reverse some of them? Let us call this subgroup H. Let x be an element of
H, and y an element of E. The action y−1x · y may temporarily move an
edge piece out of position, but will return it to its proper place after possibly
flipping it. Therefore, H will be a normal subgroup of E.

Let us determine the structure of H. At first one might think that each edge
piece can be reversed independently of all of the others, but this is not true.
An action that reverses only one edge piece would be an odd permutation of
the triangles. So every element of H must reverse an even number of edge
pieces. The sequence of moves

ResetPuzzle
RotatePuzzle[l.f.l.b.l.b.f.b.f ]

reverses the two front edge pieces, hence it is possible to reverse two edge
pieces when they are touching. Using routines like this one, we can reverse
any combination of edges as long as the number of edges reversed is even.

How many elements of H will there be? If we had considered the edge pieces
to be reversed independently, there would have been 2×2×2×2×2×2 = 64
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elements. Of these 64 possibilities, half of them reverse an even number of
edges. By noticing that all elements of H besides the identity are of order 2,
we find that the 32 elements of H are isomorphic to Z2×Z2×Z2×Z2×Z2. The
quotient group E/H can now be visualized by ignoring whether the six edge
pieces are reversed. Certainly this would be a subgroup of the permutations of
the six edges. But again we can only consider even permutations, for the edges
are moved three at a time. Thus E/H must be isomorphic to a subgroup of
A6. It is fairly clear that we can position four of the six edges in any position,
so E/H ≈ A6.

Is E isomorphic to a semi-direct product of H with A6? To see that it is, we
need to find a copy of A6 inside of E that contains no elements of H besides
the identity. Such a subgroup is generated by the three actions

RotatePuzzle[f ]
RotatePuzzle[b]
RotatePuzzle[r.f.f.r.r.f ]

so the group K generated by these three sequences is isomorphic to A6. Since
it is impossible to reverse any edges with the elements of K, the intersection
of K and H is the identity. Every arrangement of the edges can be obtained
by first putting all of the edges into position, and then reversing several edges.
Thus, E = K ·H. Therefore by the semi-direct product theorem (6.3), E is
isomorphic to a semi-direct product of H with K. If we let φ represent the
homomorphism from K to Aut(H), we have that

E ≈ A6n
φ
(Z2 × Z2 × Z2 × Z2 × Z2).

Surprisingly, there is only one semi-direct product of this form! Let’s sketch
a proof of this remarkable statement.

We begin by finding all nontrivial homomorphisms from A6 to the group G
= Aut(Z2 × Z2 × Z2 × Z2 × Z2). The kernel of such a homomorphism would
have to be a normal subgroup of A6. But A6 is simple, so the kernel must be
just the identity. Thus the homomorphism is an isomorphism from A6 onto a
copy of A6 in G. Let us look for copies of A6 within the group G.

Although the groupG is huge (9,999,360 elements), there are some shortcuts
to this process. Consider the single element of G given by f , where

f(A) = B, f(B) = C, f(C) = D, f(D) = E, and f(E) = A,

and A, B, C, D, and E are five generators of the group Z2×Z2×Z2×Z2×Z2.
The element f is of order 5, and using Mathematica, we can find that there
are exactly 15 elements of G that commute with f . These 15 elements form
a cyclic group that is generated by the element g, where

g(A) = A · C · E,
g(B) = A ·B ·D,
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g(C) = B · C · E,
g(D) = A · C ·D,
g(E) = B ·D · E.

Notice that g3 = f , and hence g commutes with f . By lemma 7.2, the number
of elements of G that are conjugate to f is 9,999,360/15 = 666,624. All of
these elements would be of order 5, so there are at least 666,624 elements of
G of order 5. By the second Sylow theorem (7.4), all 5-Sylow subgroups of G
are conjugate. Thus each 5-Sylow subgroup would contain 1, 2, or 4 elements
conjugate to f . But the third Sylow theorem (7.5) eliminates the first two
possibilities. Therefore, all 666,624 elements of G of order 5 are conjugate.

For each of these elements of order 5, let us determine the number of copies
of A6 in G that contain that element. Because the elements of order 5 all
conjugate, we only need to consider the number of copies of A6 in G that
contain the element f . Since A6 is generated by (12345) and (13)(46), it is
logical to look for elements in G that are of order 2, and that together with
f generate a copy of A6.

Mathematica can find exactly 6975 elements of G of order 2. Notice that
(12345) · (13)(46) = (1465)(23), which is of order 4, and (12345) · (12345) ·
(13)(46) = (15246), which is of order 5. Thus, to determine which of these
elements of G could correspond to the element (13)(46), we need to find the
elements µ of G such that f · µ is of order 4, and f · f · µ is of order 5.
By searching though the 6975 elements, Mathematica found exactly 90 such
elements. Each of these 90 elements, together with f , generated a copy of A6.
However, each copy of A6 contained 10 of the 90 elements. Thus, Mathematica
came up with nine copies of A6 in G that contain the element f .

Even though there may be many other copies of A6 in G, all copies must
contain an element of order 5, and we already mentioned that all such elements
would be conjugate to f in G. Proposition 6.7 tells us that two semi-direct
products are isomorphic if the images of the φ’s are conjugate. Thus, we may
assume that the image of φ is one of the nine copies of A6 in G that contain f ,
which we will call H. But notice however g−1 ·H ·g and g−2 ·H ·g−2 would also
be copies of A6 containing the element f , and H cannot be the same subgroup
as g−1 ·H · g, since this would imply that A6 has an automorphism of order
15, which is not true. Thus, the nine copies of A3 in G containing the element
f appear as three collections of three subgroups, with the three subgroups in
each collection being conjugate to one another. Therefore, by proposition 6.7
there are only three semi-direct products we will have to consider.

Because these groups are insoluble, these semi-direct products must be
represented using 5 × 5 matrices instead of using generators. In all three
cases, the orders of the elements are given in table 8.2.

Although this gives some strong evidence that the three possible semi-direct
products are in fact isomorphic to each other, the actual isomorphisms had to
be verified by Mathematica. Therefore, there is only one semi-direct product
of A6 and Z2 × Z2 × Z2 × Z2 × Z2. We then can describe the PyraminxTM
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TABLE 8.2: Orders of
A6n(Z2 × Z2 × Z2 × Z2 × Z2)

1 element of order 1,
391 elements of order 2,
800 elements of order 3,

2520 elements of order 4,
2304 elements of order 5,
1760 elements of order 6,
1440 elements of order 8,
2304 elements of order 10,

11520 elements total.

group as being the group isomorphic to

(A6n(Z2 × Z2 × Z2 × Z2 × Z2))× Z3 × Z3 × Z3 × Z3.

Knowing the structure of the group allows us the solve the puzzle! Here is
the strategy based on this decomposition of the group.

1. First put all of the edge pieces in place. We can begin with the bottom,
then rotate the front and back corners until the back two edges are in
the right place (they may be reversed). Finally, rotate the front corner
until all six edges are in place.

2. At this point, an even number of edges will be reversed. We can find
routines that will flip two, four, or six of the edges. These may rotate
corners in the process.

3. Now only the four corner pieces are out of position. We can find routines
to rotate these into position.

To find a combination of the four moves f , b, r, and l that will accomplish
these goals, we can have GAP help us. First we can number the 24 triangles, as
in figure 8.4. Then the permutation (4 23 14)(5 24 15)(6 19 16) can represent
r, l = (8 16 21)(9 17 22)(10 18 23), f = (1 13 7)(2 14 8)(6 18 12), and finally
b = (2 10 19)(3 11 20)(4 12 21). We can then enter the PyraminxTM group
as a subgroup of S24.

gap> r := (4,23,14)(5,24,15)(6,19,16);
(4,23,14)(5,24,15)(6,19,16)
gap> l := (8,16,21)(9,17,22)(10,18,23);
(8,16,21)(9,17,22)(10,18,23)
gap> f := (1,13,7)(2,14,8)(6,18,12);
(1,13,7)(2,14,8)(6,18,12)
gap> b := (2,10,19)(3,11,20)(4,12,21);
(2,10,19)(3,11,20)(4,12,21)
gap> p := Group(r,l,f,b);
<permutation group with 4 generators>
gap> Size(p);
933120
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FIGURE 8.4: The PyraminxTM with numbered faces

Now that we have the group representing the puzzle entered into GAP, The
natural question is how to express any given permutation in this group in
terms of f , b, r, and l in the most efficient way. For example, suppose we
want to find an efficient way to rotate just the right corner piece clockwise,
that is, the permutation (5,24,15). Here is how we can do it:

gap> phi:=EpimorphismFromFreeGroup(p:names:=["r","l","f","b"]);
[ r, l, f, b ] -> [ (4,23,14)(5,24,15)(6,19,16),
(8,16,21)(9,17,22)(10,18,23), (1,13,7)(2,14,8)(6,18,12),
(2,10,19)(3,11,20)(4,12,21) ]

gap> PreImagesRepresentative( phi, (5,24,15) );
r*b*r^-2*b^-1*r*b*r*b^-1

This creates a homomorphism from the group generated by the letters f ,
b, r, and l to the permutation group of the puzzle. By finding the inverse
homomorphism of a permutation, we get a sequence of letters, which tells us
how to accomplish this task on the puzzle. This particular task of rotating
the corner piece, and leaving everything else fixed, is done in eight moves.

r*b*r*b^-1*r*b*r*b^-1;
(5,24,15)

In flipping edges, we have the advantage that we do not care if corners are
rotated in the process. So we can enter versions of r, l, f , and b that ignore
the corner pieces. For example, to flip the top and front left edges, we look
for the permutation (2, 12)(8, 18).

gap> r := (4,23,14)(6,19,16);;
gap> l := (8,16,21)(10,18,23);;
gap> f := (2,14,8)(6,18,12);;
gap> b := (2,10,19)(4,12,21);;
gap> p := Group(r,l,f,b);;
gap> Size(p);
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11520
gap> phi:=EpimorphismFromFreeGroup(p:names:=["r","l","f","b"]);;
gap> PreImagesRepresentative(phi, (2,12)(8,18));
r*l^-1*b^-1*l*r^-1*f^-1
gap> r*l^-1*b^-1*l*r^-1*f^-1
(2,12)(8,18)
gap> PreImagesRepresentative(phi, (6,14)(10,21));
r^-1*b*l*b^-1*l^-1*r^-1*b^-1*r^-1
gap> r*b*r*l*b*l^-1*b^-1*r;
(6,14)(10,21)

Note that in the last example, we took the inverse of the combination that
GAP gave us to produce a simpler looking combination. We summarize the
necessary moves in tables 8.3 and 8.4.

TABLE 8.3: Flipping edges into position
l−1 · b · f · l−1 · b · f · l−1 · b · f flip all six edges
f · b · r−1 · l · r · b−1 flip two front edges
b · l · b · r · l · r−1 · l−1 · b flip top & bottom edges
f · r · l−1 · b · l · r−1 flip top & front left edges
r · l−1 · b · l · r−1 · f flip top & front right edges
r · b · r · l · b · l−1 · b−1 · r flip left rear & front right edges
l · r · l · b · r · b−1 · r−1 · l flip right rear & left front edges
r · b · l−1 · f · l · b−1 flip bottom & front right edges
l · b · f−1 · r · f · b−1 flip bottom & front left edges
b · r · f−1 · l · f · r−1 flip top & left rear edges
b · l · r−1 · f · r · l−1 flip top & right rear edges
b · f · l−1 · r · l · f−1 flip rear two edges
l · f · r−1 · b · r · f−1 flip bottom & left rear edges
r · f · b−1 · l · b · f−1 flip bottom & right rear edges
l · r · b−1 · f · b · r−1 flip two left hand edges
r · l · f−1 · b · f · l−1 flip two right hand edges

TABLE 8.4: Rotating corners into position
f · r · f · r−1 · f · r · f · r−1 rotate front corner 120◦ clockwise
l · r · l · r−1 · l · r · l · r−1 rotate left corner 120◦ clockwise
r · b · r · b−1 · r · b · r · b−1 rotate right corner 120◦ clockwise
b · r · b · r−1 · b · r · b · r−1 rotate back corner 120◦ clockwise

By applying these four routines once or twice, we can get all four corners
into position, and have solved the puzzle!

Notice that our three steps can be expressed in terms of a subnormal series
for the PyraminxTM group:

(A6n(Z2 × Z2 × Z2 × Z2 × Z2))× Z3 × Z3 × Z3 × Z3 ⊃
Z2 × Z2 × Z2 × Z2 × Z2 × Z3 × Z3 × Z3 × Z3 ⊃ Z3 × Z3 × Z3 × Z3 ⊃ {e}.
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This same type of analysis can be used to solve other puzzles, such as the
Rubik’s Cube©R. Several problems in the homework relate to this puzzle. Thus,
we can see a practical application of the properties of groups that we have
studied throughout the course.

Problems for Chapter 8

Interactive Problems

8.1 Use Mathematica or GAP to find the derived series of the group Q:

InitGroup[e];
Define[î4, e]; Define[ĵ2, î2]
Define[j.i, i.i.i.j]
Define[î(-1), î3]; Define[ĵ(-1), i.i.j]
Q = Group[{i, j}]

or, in GAP,

gap> f := FreeGroup("i","j");; i := f.1;; j := f.2;;
gap> Q := f/[i^4,j^2/(i^2),j*i/(i^3*j)];; i := Q.1;; j := Q.2;;

Add any subgroups necessary to make this series a composition series.

8.2 Use Mathematica’s Commutator or GAP’s CommutatorSubgroup com-
mand as an alternative way to show that Aut(Z∗24) is insoluble. Load this
group with the commands

InitPermMultiplication
A = Group[{149, 735}]

or

gap> A := Group( (1,2,3)(4,6,5), (2,4)(6,7) );
Group([ (1,2,3)(4,6,5), (2,4)(6,7) ])

and find A′. Note that both Mathematica and GAP can find the derived
group quickly.

8.3 Find the derived group series of the following group:

InitPermMultiplication
G = Group[{6782, 10159}]

gap> G := Group( NthPerm(6782), NthPerm(10159) );
Group([ (1,6,4,2)(3,8,7,5), (2,3,5)(6,7,8) ])
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TABLE 8.5: Mystery group B used in problem 8.5
· 1 I J K L M N O P Q R S T U V W

1 1 I J K L M N O P Q R S T U V W
I I L K N M 1 O J Q T S V U P W R
J J O L I N K 1 M R W T Q V S P U
K K J M L O N I 1 S R U T W V Q P
L L M N O 1 I J K T U V W P Q R S
M M 1 O J I L K N U P W R Q T S V
N N K 1 M J O L I V S P U R W T Q
O O N I 1 K J M L W V Q P S R U T
P P Q R S T U V W L M N O 1 I J K
Q Q T S V U P W R M 1 O J I L K N
R R W T Q V S P U N K 1 M J O L I
S S R U T W V Q P O N I 1 K J M L
T T U V W P Q R S 1 I J K L M N O
U U P W R Q T S V I L K N M 1 O J
V V S P U R W T Q J O L I N K 1 M
W W V Q P S R U T K J M L O N I 1

What group is G′ isomorphic to? Is G a semi-direct product of two familiar
groups?

8.4 Use a polycyclic series of A4 to enter this group into GAP or Mathemat-
ica.

8.5 Find a polycyclic series of group B of order 16 given in table 8.5, and
use this to enter the group into GAP or Mathematica.

8.6 Find a polycyclic series of group C of order 16 given in table 8.6, and
use this to enter the group into GAP or Mathematica.

8.7 Find a polycyclic series of group D of order 16 given in table 8.7, and
use this to enter the group into GAP or Mathematica.

Non-Interactive Problems

8.8 Show that any group of order pn, where p is prime, is solvable.
Hint: See corollary 7.2.

8.9 Let
G = Z12 ⊇ A1 = {0, 3, 6, 9} ⊇ {0}
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TABLE 8.6: Mystery group C used in problem 8.6
· 1 F G H I J K L M N O P Q R S T

1 1 F G H I J K L M N O P Q R S T
F F 1 H G J I L K N M P O R Q T S
G G H 1 F K L I J O P M N S T Q R
H H G F 1 L K J I P O N M T S R Q
I I K J L M O N P Q S R T 1 G F H
J J L I K N P M O R T Q S F H 1 G
K K I L J O M P N S Q T R G 1 H F
L L J K I P N O M T R S Q H F G 1
M M N O P Q R S T 1 F G H I J K L
N N M P O R Q T S F 1 H G J I L K
O O P M N S T Q R G H 1 F K L I J
P P O N M T S R Q H G F 1 L K J I
Q Q S R T 1 G F H I K J L M O N P
R R T Q S F H 1 G J L I K N P M O
S S Q T R G 1 H F K I L J O M P N
T T R S Q H F G 1 L J K I P N O M

TABLE 8.7: Mystery group D used in problem 8.7
· 1 L M N O P Q R S T U V W X Y Z

1 1 L M N O P Q R S T U V W X Y Z
L L M N O P Q R 1 T U V W X Y Z S
M M N O P Q R 1 L U V W X Y Z S T
N N O P Q R 1 L M V W X Y Z S T U
O O P Q R 1 L M N W X Y Z S T U V
P P Q R 1 L M N O X Y Z S T U V W
Q Q R 1 L M N O P Y Z S T U V W X
R R 1 L M N O P Q Z S T U V W X Y
S S Z Y X W V U T O N M L 1 R Q P
T T S Z Y X W V U P O N M L 1 R Q
U U T S Z Y X W V Q P O N M L 1 R
V V U T S Z Y X W R Q P O N M L 1
W W V U T S Z Y X 1 R Q P O N M L
X X W V U T S Z Y L 1 R Q P O N M
Y Y X W V U T S Z M L 1 R Q P O N
Z Z Y X W V U T S N M L 1 R Q P O
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and
G = Z12 ⊇ B1 = {0, 2, 4, 6, 8, 10} ⊇ B2 = {0, 4, 8} ⊇ {0}

be two subnormal series for Z12. Find all of the subgroups shown in fig-
ure 8.2, and show that the quotient groups indicated by the arrows are indeed
isomorphic.

For problems 8.10 through 8.18: Write out a composition series for the
group.
8.10 Z∗15

8.11 Z∗24

8.12 Z∗21

8.13 Z12 × Z18

8.14 The quaternion group Q
8.15 D4

8.16 D5

8.17 D6

8.18 S6

8.19 Show that there are exactly three possible composition series for A4.

8.20 Show that Sn is solvable for n < 5, but is insoluble for n > 4.

8.21 Find an example of two non-isomorphic groups for which the composi-
tion factors are isomorphic.

8.22 Find two groups of the same order with composition series of different
lengths.

8.23 Find a non-simple group for which all of the composition factors are
non-cyclic.

8.24 Show that [z · x · z−1, z · y · z−1] = z · [x, y] · z−1.

8.25 Let G be the group from example 1.4 in section 1.4, the group of linear
functions of the form f(x) = mx + b, with m, b ∈ R, m 6= 0. By finding the
derived group G′, show that this group is solvable.

8.26 Show that if G is a non-cyclic simple group, then G′ = G. Is it true
that if G′ = G, then G must be simple?

8.27 Throughout this course, we have encountered a number of groups of
order 16. Here is a list of some of these groups:

Z16, Z8 × Z2, Z4 × Z4, Z4 × Z2 × Z2, Z2 × Z2 × Z2 × Z2,

three groups of the form Z2n
φ
Z8 in section 6.4 (one is D8),

Z2 ×Q, Z2 ×D4, Z4nZ4 studied in this chapter,

and three mystery groups B, C, and D found in problems 8.5, 8.6, and 8.7.
Show that these 14 groups are all non-isomorphic. (In fact, these are all of
the non-isomorphic groups of order 16.)

Hint: Find the number of elements of order 2 in each of the 14 groups. Note
that group B has only 1’s and L’s along its diagonal, whereas group C has
three different elements along its diagonal.
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8.28 Show that there is a group of order 24 for which there are two elements
x and y that generate the group such that x3 = y6 = e, and y · x = x2 · y2.

Hint: What are the orders of the elements x · y and y · x? Determine the
subgroup generated by these two elements.

8.29 Let G be an infinite group such that every element besides the identity
has order 2. Show that G is solvable, yet G does not have a polycyclic series.

8.30 Let H and K be two subgroups of G. Prove that the mutual commu-
tator [H,K] is a normal subgroup of the group generated by the elements of
H and K.

For problems 8.31 through 8.33, find the derived series of the group.

8.31 D4 8.32 D5 8.33 The quaternion group Q

8.34 If G is a group, define the sequence G1 = [G,G], G2 = [G,G1], G3 =
[G,G2], . . .. G is said to be nilpotent if |Gn| = 1 for some n. Prove that if G
is nilpotent, then G is solvable.

Hint: Prove that Gn contains the n-th derived group of G.

8.35 Find a solvable group that is not nilpotent. (See problem 8.34.)

8.36 Show that a group of order pn, where p is prime, is nilpotent. (See
problem 8.34 and corollary 7.2.)

8.37 Prove that if the refinement theorem (8.1) is applied to two normal
series, the resulting series will be normal. That is, if Au and Bv are such that

G = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An = {e},

and
G = B0 ⊇ B1 ⊇ B2 ⊇ · · · ⊇ Bm = {e},

where each Ai and Bj is a normal subgroup of G (not just the previous
group), then the Ai,j and Bj,i given by the refinement theorem will all be
normal subgroups of G.

Hint: Use the result of problem 4.21.

8.38 A chief series is a normal series for which no refinements produce
normal series. Show that the Jordan-Hölder theorem (8.2) applies to chief
series as well as to composition series. That is, show that if

G = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An = {e}

and
G = B0 ⊇ B1 ⊇ B2 ⊇ · · · ⊇ Bm = {e}

are two chief series, then n = m, and the quotient groups of the first series
are isomorphic to the quotient groups of the second in some order. (Use the
result from problem 8.37.)
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8.39 A group is called supersolvable if there is a chief series with cyclic fac-
tors. Show that if G is supersolvable, then G′ is nilpotent. (See problems 8.34
and 8.38.)

8.40 Using the orders of the subgroup E of the PyraminxTM group given
in the chapter, determine the number of elements of the PyraminxTM group
that are of order 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 24, and 30. Verify that the sum
of these numbers totals 933,120.

8.41 Consider a 2 × 2 × 2 Rubik’s Cube©R, consisting of just eight corner
pieces. Determine the size of the group of actions on this cube. Express the
group of actions as a semi-direct product of two familiar groups. You do not
need to show that this semi-direct product is unique.

Hint: It is impossible to rotate just one corner, and leave the others in
place. Is it possible to move just two of the corners?

8.42 Consider a standard Rubik’s Cube©R. What is the size of the group of
actions? What is the center of this group?



Chapter 9

Introduction to Rings

9.1 Groups with an Additional Operation

Many of the groups studied in the previous chapters possessed some addi-
tional structure. From now on, we will consider those groups that have not
just one, but two operations defined on the set of elements. In other words,
not only will we be able to multiply elements together as we did for groups,
but we also will be able to add elements together.

The simplest example to consider is the group of integers, Z. This is a
group under addition, but we can also multiply two integers together. This
extra operation gives Z a richer structure than standard groups.

Subgroups of Z should also be considered. A typical example would be the
set of even integers. Once again, we have both addition and multiplication
defined on this set, since both the sum and the product of two even integers
yield even integers.

Another example of a group possessing two operations is the group of all
rational numbers Q of the form p/q, where p is an integer and q is a positive
integer. Although Q is an abelian group under addition, it is almost a group
under multiplication as well. The multiplicative inverse exists for all elements
except 0. If we consider the remaining elements Q−{0}, denoted Q∗, we have
a multiplicative group.

One way to illustrate the rationals graphically can be seen by executing the
command

ShowRationals[–5, 5]

which draws figure 9.1. This figure helps to visualize the rational numbers
from −5 to 5 using a sequence of rows. The n-th row represents the rational
numbers with denominator n when expressed in simplest form. In principle
there would be an infinite number of rows, getting closer and closer to each
other as they get close to the axis.

Figure 9.1 suggests the following.

PROPOSITION 9.1
If a and b are any two different real numbers, then there is a rational number

between a and b.

245
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FIGURE 9.1: Plot depicting the rational numbers

PROOF Let x = |a− b|. Since x is not zero, we let q be any number that
is greater than 1/x. Then |a · q− b · q| = q ·x > 1, so there must be an integer
between a · q and b · q, which we will call p. But then p/q will be between a
and b, and the proposition is proved.

From this proposition, we can keep dividing the interval up into smaller and
smaller pieces to show that there are in fact an infinite number of rational
numbers between any two real numbers. This would make it seem that the
number of rational numbers is “doubly infinite,” since there are an infinite
number of integers, and an infinite number of rational numbers between each
pair of integers. But surprisingly, the set of rational numbers is no larger than
the set of the integers. To understand what is meant by this statement, let
us first show how we can compare the sizes of two infinite sets.

DEFINITION 9.1 A set S is called countable if there is an infinite
sequence of elements from the set that includes every member of the set.

What do sequences have to do with comparing the sizes of two sets? A
sequence can be considered as a function between the set of positive integers
and the set S. If a sequence manages to include every member of the set S,
then it stands to reason that there are at least as “many” positive integers
as there are elements of S. The shocking fact is that even though it would
first appear that there must be infinitely many more rational numbers than
integers, in fact the two sets have the same size.
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FIGURE 9.2: Beginning of a path that will hit every rational number

PROPOSITION 9.2
The set of rationals forms a countable set.

PROOF In order to show that the rationals are countable, we need a se-
quence that will eventually contain every rational somewhere in the sequence.
Equivalently, we can connect the dots of figure 9.1 using a pattern that would,
in principle, reach every dot of figure 9.1 extended to infinity. There are of
course many ways to do this, but one way is given in figure 9.2. This path
starts at 0, and swings back and forth, each time hitting the rationals on
the next row. Since there are an infinite number of rows, we can extend this
pattern indefinitely, and every rational number will eventually be hit by this
path. This path gives rise to the sequence

{0, 1, 1
2
,
−1
2
,−1,−2,

−3
2
,
−2
3
,
−1
3
,

1
3
,

2
3
,

3
2
, 2, 3, . . .}

which contains every rational number, so we have shown that the rationals
form a countable set.

Even though we have shown that there are an infinite number of rational
numbers between any two numbers, the natural question to ask is whether
there are numbers that are not rational. The first discovery of a number that
was not rational was

√
2, proven by the Greeks. [12, p. 82]

PROPOSITION 9.3
There is no rational number p/q such that (p/q)2 = 2.
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PROOF Suppose that there was such a rational number, p/q. Let us
further suppose that p/q is in simplest form, so that p and q are integers with
no common factors. We could rewrite the equation (p/q)2 = 2 as

p2 = 2q2.

This would indicate that p2 is an even number, which implies that p is even.
Next, we make the substitution p = 2r, where r is an integer. Making this

substitution for p, we get

(2r)2 = 2q2 or 2r2 = q2.

This would indicate that q2, and hence q, is even. But this contradicts the
fact that p/q was written in simplest form. Thus, there is no rational number
whose square is 2.

This proof is an example of a reductio ad absurdum proof. These types of
proofs are particularly effective to prove that something is impossible.

The real numbers R that are not rational are called irrational numbers.
Irrational numbers are characterized by the fact that their decimal represen-
tation never repeats.

We have already proven that there is, in essence, the same number of ra-
tional numbers as integers. This may not come as too much of a shock, since
both sets are infinite, so logically two infinite sets ought to be the same size.
But the set of real numbers is also infinite, so one might be tempted to think
that there is the same number of real numbers as integers. However, the num-
ber of reals is “more infinite” then the number of integers. In other words, we
cannot construct a sequence of real numbers that contains every real number,
as we did for rational numbers. This surprising fact was proved by Georg
Cantor (1845-1913) using a classic argument. [11, p. 670]

THEOREM 9.1: Cantor’s Diagonalization Theorem
The set of all real numbers between 0 and 1 is uncountable. That is, there

cannot be a sequence of numbers that contains every real number between 0
and 1.

PROOF We begin by assuming that we can form such a sequence

{a1, a2, a3, . . .}

and work to find a contradiction. The plan is to find a number b that cannot
be in this list. We can do this by forcing b to have a different first digit than
a1, a different second digit than a2, a different third digit than a3, and so on.
The only technical problem with this is that some numbers have two decimal
representations, such as

0.348600000000000000 . . . = 0.3485999999999999999 . . . .
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For these numbers, all we need to do is require that both representations are
in the list. (That is, some rational numbers will appear twice on the list with
different decimal representations.)

We now can find a number b using any number of procedures, such as
letting the n-th digit of b be one more than the n-th digit of an, modulo 10.
For example, if the list of numbers is

a1 = 0.94837490123798570 . . .
a2 = 0.83840000000000000 . . .
a3 = 0.83839999999999999 . . .
a4 = 0.34281655343424444 . . .

then b = 0.0499 . . .. Certainly b is missing from the list, since it differs from
each member of the list by at least one digit. This contradiction proves the
theorem.

Not only do Z, Q, and the real numbers R allow for an additional operation
to be defined on them but also some groups from chapter 1. Take for example
the groups formed by modular arithmetic, such as Z6.

DefSumMod[6]
MultTable[{0, 1, 2, 3, 4, 5}]

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

This multiplication table can be displayed in GAP by the command

gap> MultTable([0..5]);

+|0 1 2 3 4 5
-+----------------
0|0 1 2 3 4 5
1|1 2 3 4 5 0
2|2 3 4 5 0 1
3|3 4 5 0 1 2
4|4 5 0 1 2 3
5|5 0 1 2 3 4

A natural second operation would be multiplication modulo 6, defined by

DefMultMod[6]
MultTable[{0, 1, 2, 3, 4, 5}]
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TABLE 9.1: (·) Mod 6

· 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

which produces table 9.1. In GAP, we can display this table except for the 0
row and column with

gap> MultTable([1..5]);

*|1 2 3 4 5
-+-------------
1|1 2 3 4 5
2|2 4 0 2 4
3|3 0 3 0 3
4|4 2 0 4 2
5|5 4 3 2 1

Even though this table does not possess the “Latin square” property we have
seen in the group tables, the second operation need not have this familiar
property.

Here is one last example of appending an additional operation on a group.
The following command produces the quaternion group Q of order 8 which
we studied in chapter 4:

gap> InitQuaternions();
#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns
‘true’ for [ i, j ]
gap> MultTable(Q);

* |(-1)*e (-1)*i (-1)*j (-1)*k k j i e
------+-------------------------------------------------------
(-1)*e|e i j k (-1)*k (-1)*j (-1)*i (-1)*e
(-1)*i|i (-1)*e k (-1)*j j (-1)*k e (-1)*i
(-1)*j|j (-1)*k (-1)*e i (-1)*i e k (-1)*j
(-1)*k|k j (-1)*i (-1)*e e i (-1)*j (-1)*k
k |(-1)*k (-1)*j i e (-1)*e (-1)*i j k
j |(-1)*j k e (-1)*i i (-1)*e (-1)*k j
i |(-1)*i e (-1)*k j (-1)*j k (-1)*e i
e |(-1)*e (-1)*i (-1)*j (-1)*k k j i e

The corresponding Mathematica©R commands

InitQuaternions
Q = {1, I, J, K, −1, −I, −J, −K}
MultTable[Q]
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produce table 4.3 that we have seen before. When written in this way, the
quaternion elements are reminiscent of the cross product between two vectors.
In fact, in order to get a second operation on this set, we can consider adding
multiples of these elements together like vectors, forming such elements as

gap> (i - 2*j - k) + (3*i + j - 2*k);
(4)*i+(-1)*j*(-3)*k

which represents the vector 〈4,−1,−3〉. Unfortunately, as we multiply these
“vectors” together, we find elements of the form

gap> (i - 2*j - k) * (3*i + j - 2*k);
(-3)*e+(5)*i+(-1)*j+(7)*k

which would represent the four -dimensional vector 〈−3, 5,−1, 7〉.

PROPOSITION 9.4
The set of nonzero four-dimensional vectors forms a non-abelian group using

the multiplication table for the quaternion group Q.

PROOF If
x = a+ bi+ cj + dk

is nonzero, then

x−1 =
a

a2 + b2 + c2 + d2
+

−b
a2 + b2 + c2 + d2

i

+
−c

a2 + b2 + c2 + d2
j +

−d
a2 + b2 + c2 + d2

k

forms a multiplicative inverse, since it is a simple exercise to show that x·x−1 =
1, the multiplicative identity. (See problem 9.15.) Note that since x 6= 0, the
common denominator a2+b2+c2+d2 > 0. It is easy to see that multiplication
is closed. The only hard part is to show that the associative law holds, which
is best done via a program like Mathematica.

Given that the associative law holds, it is easy to see that the product of
two nonzero vectors must be nonzero. If x · y = 0, and x 6= 0, then

y = (x−1 · x) · y = x−1 · (x · y) = x−1 · 0 = 0.

Thus, if both x 6= 0 and y 6= 0, then x · y 6= 0.

We call the group of four-dimensional vectors of the form a+bi+cj+dk the
quaternions, denoted by H after their discoverer, William Rowan Hamilton
(1805-1865).

We have now seen several examples of groups that have additional structure
in the form of a second operation. In the next section we will tie all of these
examples together, discovering which properties all of the examples have in
common.
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9.2 The Definition of a Ring

In the preceding section we saw many examples of groups that exhibit not
one but two operations defined on them. One of these operations is rep-
resented with the plus sign, and the other is usually denoted with a dot.
However, some of the different groups we looked at possessed additional prop-
erties. To help us organize our findings, let us construct a checklist from
table 9.2. This checklist is already started, since all six of these groups are
closed under addition. Before going on, please try to complete table 9.2.

We want to pay special attention to the properties that hold for all of the
groups studied so far. In fact, let us define a ring as a group possessing all of
these properties. In this way, we force all six of the above groups to be rings.

DEFINITION 9.2 A ring is an abelian group with the operation (+) on
which a second associative operation (·) is defined such that the two distribu-
tive laws

(a+ b) · c = (a · c) + (b · c)

and
a · (b+ c) = (a · b) + (a · c)

hold for all a, b, and c in the ring.

For any ring we will use the symbol 0 to denote the additive identity of a
ring, and the notation −x for the additive inverse of x.

Even though we defined a ring such that all six of the groups in table 9.2 are
rings, you may also have noticed that many of the groups possessed additional
properties. We will give names to rings with some of these extra properties.

DEFINITION 9.3 A ring for which x · y = y · x for all elements x and y
is called a commutative ring.

DEFINITION 9.4 A ring for which there is an element e such that

x · e = e · x = x

for all elements x in the ring is called a ring with identity. The element e is
called the multiplicative identity of the ring.

Using only the definition of rings, we can prove a few things that are true
for all rings.
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TABLE 9.2: Property checklist for several groups

Property Z Even
Integers Q Reals Z6 Quaternions

Closed under
√ √ √ √ √ √

Addition

Closed under
Multiplication

(a+ b) + c =
a+ (b+ c)

(a · b) · c =
a · (b · c)
Additive

Identity (0)

Multiplicative
Identity (1)

Additive
Inverses Exist

Multiplicative
Inverses Exist
Except for 0

a+ b = b+ a

a · b = b · a
a · b = 0 only
if a or b = 0

(a+ b) · c =
a · c+ b · c
a · (b+ c) =
a · b+ a · c
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LEMMA 9.1

If x is any element in a ring, then 0 · x = x · 0 = 0, where 0 is the additive
identity.

PROOF This proof is just a little tricky because there are no other propo-
sitions to rely on. Thus, every step must directly use one of the nine properties
of rings. (The temptation is to rely on some property we suspect is true, but
haven’t yet proven.)

Note that
(0 · x+ 0 · x) = (0 + 0) · x = 0 · x,

so
(0 · x+ 0 · x) + (−(0 · x)) = 0 · x+ (−(0 · x)) = 0.

Hence
0 · x+ (0 · x+ (−(0 · x))) = 0,

so
0 · x+ 0 = 0 · x = 0.

Similarly,
(x · 0 + x · 0) = x · (0 + 0) = x · 0,

so
(x · 0 + x · 0) + (−(0 · x)) = x · 0 + (−(0 · x)) = 0.

Hence
x · 0 + (x · 0 + (−(0 · x))) = 0,

so
x · 0 + 0 = x · 0 = 0.

This proof shows that we can get the equivalent of subtraction by adding the
additive inverse. But although we can add, subtract, and multiply elements in
a ring, we cannot, in general, divide elements. In fact, we can find some rings
for which the product of two nonzero elements produces 0, such as 3 · 2 = 0
in the ring Z6.

DEFINITION 9.5 If x is a nonzero element of a ring such that either
x · y = 0 or y ·x = 0 for a nonzero element y, then x is called a zero divisor of
the ring. If a ring has no zero divisors, it is called a ring without zero divisors.

We see from this definition that 2 and 3 are zero divisors of the ring Z6,
since 3 · 2 = 0 in this ring. A related definition stems from the product of two
elements equaling the multiplicative identity.
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DEFINITION 9.6 If, for the element x in a ring with identity, there is
an element y such that

x · y = y · x = e,

we say that x has a multiplicative inverse, or is invertible.

Just because an element is not a zero divisor does not mean that it is
invertible. For example, 2 is not a zero divisor of the ring Z, yet 2 is not
invertible in this ring.

The smallest possible ring is the trivial ring, which is defined by the Math-
ematica commands

DefMultMod[1]
AddTable[{0}]
MultTable[{0}]

+ 0

0 0

· 0

0 0

Both of these tables are displayed in GAP by the command

gap> MultTable([0]);

+|0
-+-
0|0

This ring is rather unusual because the multiplicative identity is 0. Also, 0 is
actually invertible in this ring, because 0−1 = 0. These two facts are true for
no other ring.

DEFINITION 9.7 A ring for which every nonzero element has a multi-
plicative inverse is called a division ring.

PROPOSITION 9.5
A division ring always has a multiplicative identity and has no zero divisors.

PROOF We just saw that the trivial ring has an identity and has no zero
divisors, so we may assume that the ring has a nonzero element y. Then y
has a multiplicative inverse z, so we have y · z = e, the identity. Thus, every
division ring must have an identity.

Now suppose that x · y = 0 in a division ring, with both x and y nonzero.
Then y has a multiplicative inverse z, so that y · z = e. But then

x = x · e = x · (y · z) = (x · y) · z = 0 · z = 0,
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which contradicts the fact that x is nonzero. Thus, a division ring has no zero
divisors.

DEFINITION 9.8 A nontrivial division ring for which x · y = y · x for
all x and y is called a field. A division ring for which multiplication is not
commutative is called a skew field.

We can now classify each possible type of ring. For example, the ring Z is a
commutative ring with an identity and without zero divisors. The ring of even
integers, however, has no identity element, so we would call this a commutative
ring without zero divisors. Both Q and R satisfied all 13 properties, so these
two rings are fields. The ring Z6 has zero divisors, so we would call this a
commutative ring with identity. The quaternions H have all the properties of
a field except that multiplication is not commutative, so this is an example of
a skew field.

9.3 Entering Finite Rings into GAP and Mathematica

In the first eight chapters, we entered finite groups into Mathematica by
using the generators of the group. If we consider a finite ring simply as an
abelian group under addition, we can find a set of generators B for this group
(ignoring the multiplicative structure). For each element in B we determine
the additive order of the element. That is, for each generator x we want to
find the smallest number n such that

x+ x+ · · ·+ x+ x︸ ︷︷ ︸
n times

= 0.

DEFINITION 9.9 If n is a positive integer, and x is any element in a
ring, we define nx inductively by letting 1x = x, and

nx = (n− 1)x+ x.

We also define (−n)x to be −(nx) for n a positive integer. Finally, we define
0x = 0.

Because “multiplication by an integer” is merely a shorthand for repeated
addition, we immediately see that

(m+ n)x = mx+ nx and (mn)x = m(nx)

for any element x and any integers n and m.
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LEMMA 9.2
Let x and y be any two elements in a ring, and let n be an integer. Then

(nx) · y = n(x · y) = x · (ny).

PROOF We will proceed by induction. The statement is certainly true
for n = 0 or n = 1. Suppose that the statement is true for the previous case
n− 1. But then

((n− 1)x) · y + x · y = (n− 1)(x · y) + x · y = x · ((n− 1)y) + x · y.

Hence, by the distributive law,

((n− 1)x+ x) · y = ((n− 1) + 1)(x · y) = x · ((n− 1)y + y),

and so
(nx) · y = n(x · y) = x · (ny).

Hence, the statement is true for all positive integers.
For negative integers, we can merely show that

(nx) · y + ((−n)x) · y = (nx+ (−n)x) · y = ((n− n)x) · y = 0 · y = 0.

n(x · y) + (−n)(x · y) = (n− n)(x · y) = 0(x · y) = 0.

x · (ny) + x · ((−n)y) = x · (ny + (−n)y) = x · ((n− n)y) = x · 0 = 0.

Thus,((−n)x) · y, (−n)(x · y), and x · ((−n)y) are the additive inverses of
(nx) · y, n(x · y), and x · (ny), respectively. But since these latter three are
equal for positive n, we have

((−n)x) · y = (−n)(x · y) = x · ((−n)y).

Hence the lemma is proven for all integers n.

We can now use this notation within Mathematica to generate a finite ring.
To define a ring whose additive group is isomorphic to

Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14},

we find two elements that generate this group: a = 2 and b = 14.
We see that a4 = 1 and b2 = 1 in this group. But in our new notation, we

write 4a = 0 and 2b = 0, since 0 is the additive identity of the ring.
To define this group in Mathematica, we define both 4a and 2b to be 0. The

following three commands do this.

InitRing
Define[4 a, 0]
Define[2 b, 0]



258 Abstract Algebra: An Interactive Approach

TABLE 9.3: Addition table for the ring R
+ 0 a 2a 3a b a+ b 2a+ b 3a+ b

0 0 a 2a 3a b a+ b 2a+ b 3a+ b

a a 2a 3a 0 a+ b 2a+ b 3a+ b b

2a 2a 3a 0 a 2a+ b 3a+ b b a+ b

3a 3a 0 a 2a 3a+ b b a+ b 2a+ b

b b a+ b 2a+ b 3a+ b 0 a 2a 3a
a+ b a+ b 2a+ b 3a+ b b a 2a 3a 0
2a+ b 2a+ b 3a+ b b a+ b 2a 3a 0 a

3a+ b 3a+ b b a+ b 2a+ b 3a 0 a 2a

This defines the group structure of the ring. The eight elements of the group
are denoted as follows:

R = AddGroup[{a,b}]
{0, a, 2a, 3a, b, a+ b, 2a+ b, 3a+ b}

The addition table can be displayed using AddTable[R], producing table 9.3.

The first statement, InitRing, tells Mathematica that we are defining a
ring instead of a group. This allows the use of the plus sign instead of the dot
for the additive operation. The additive identity will always be 0, so this is
not needed in the command.

Although this defines the additive group very quickly, we must be selective
in choosing the generators. Suppose we had instead chosen the generators
a = 2 and b = 7. These two elements generate the group Z∗15, but both are
of order 4. So the Mathematica commands for entering these two generators
would be

InitRing
Define[4 a, 0]
Define[4 b, 0]
R = AddGroup[{a, b}]
{0, a, 2a, 3a, b, a+ b, 2a+ b, 3a+ b, 2b, a+ 2b, 2a+ 2b, 3a+ 2b, 3b, a+ 3b,

2a+ 3b, 3a+ 3b}

This gives 16 elements instead of 8! The problem is that Mathematica is not
using the identity 2a = 2b, which is true since 22 = 72 (Mod 15). One solution
would be to add an additional Mathematica command defining 2a = 2b, but
this produces some potential problems later on. A better solution is simply
to make the following restriction on the set of generators.
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DEFINITION 9.10 Let G be an abelian group. A basis is a set B =
{x1, x2, x3, . . . xk} which generates the group such that the only way in which

n1x1 + n2x2 + n3x3 + · · ·+ nkxk = 0

for integers n1, n2, n3, . . . nk is if

n1x1 = n2x2 = n3x3 = · · · = nkxk = 0.

For a finite group, it is clear that every combination of the form

n1x1 + n2x2 + n3x3 + · · ·+ nkxk,

where each ni is non-negative and less then the order of xi, forms a distinct
element. Also, every element of G could be put in that form. Thus, the
product of the orders of all the elements of B equals the order of the group.

It should be noted that any finite abelian group has a basis, as shown in
problem 9.30.

Once we have found a basis for the additive group, and have defined the
additive structure into Mathematica, we are ready to consider the multiplica-
tive definitions. If we have two generators {a, b}, we will need to define 22 = 4
multiplications: a · a, a · b, b · a, and b · b. These four products could be de-
fined to be any of the elements of the ring. Thus, for ring with the additive
structure of Z∗15, there are up to 84 = 4096 ways to finish defining the ring!
However, very few of these ways of defining the products will satisfy both
the distributive laws and the associative laws. Here is an example of a set of
definitions that does not produce such a contradiction:

InitRing
Define[4 a, 0]; Define[2 b, 0]
Define[a.a, a]; Define[b.b, b]
Define[a.b, 0]; Define[b.a, 0]
R = Ring[{a, b}]

The addition table was given above in table 9.3, while the multiplication table
is given by

MultTable[R]

producing table 9.4.
The tedious task of verifying the distributive and associative laws can be

handled by Mathematica by the command

CheckRing[{a, b}]

Notice that it suffices to give Mathematica just the basis for the additive
group. This allows CheckRing to run much faster than if the entire ring
were used for the argument.
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TABLE 9.4: Multiplication table for the ring R
· 0 a 2a 3a b a+ b 2a+ b 3a+ b

0 0 0 0 0 0 0 0 0
a 0 a 2a 3a 0 a 2a 3a
2a 0 2a 0 2a 0 2a 0 2a
3a 0 3a 2a a 0 3a 2a a

b 0 0 0 0 b b b b

a+ b 0 a 2a 3a b a+ b 2a+ b 3a+ b

2a+ b 0 2a 0 2a b 2a+ b b 2a+ b

3a+ b 0 3a 2a a b 3a+ b 2a+ b a+ b

To enter a ring into GAP, we can use the InitRing command to identify
the names of the generators, as the FreeGroup command did for groups.
Then we define the ring in one step using the DefineRing command, which
takes three arguments: the name of the new ring, a list showing the orders
of the generators, and an array defining the possible products of two of the
generators. For example, if "a" and "b" are the two generators, then the
array would consist of [[a*a, a*b],[b*a, b*b]]. To define the ring that
we defined in Mathematica, we would enter

gap> InitRing("a","b");
gap> DefineRing("R",[4,2],[[a,0],[0,b]]);
gap> List(R);
[ 0*a, b, a, a+b, 2*a, 2*a+b, 3*a, 3*a+b ]
gap> CheckRing(R);
This is a ring.
gap> AddTable(R);

+ |0*a b a a+b 2*a 2*a+b 3*a 3*a+b
-----+------------------------------------------------------
0*a |0*a b a a+b 2*a 2*a+b 3*a 3*a+b
b |b 0*a a+b a 2*a+b 2*a 3*a+b 3*b
a |a a+b 2*a 2*a+b 3*a 3*a+b 0*a b
a+b |a+b a 2*a+b 2*a 3*a+b 3*a b 0*a
2*a |2*a 2*a+b 3*a 3*a+b 0*a b a a+b
2*a+b|2*a+b 2*a 3*a+b 3*a b 0*a a+b a
3*a |3*a 3*a+b 0*a b a a+b 2*a 2*a+b
3*a+b|3*a+b 3*a b 0*a a+b a 2*a+b 2*a

gap> MultTable(R);

* |0*a b a a+b 2*a 2*a+b 3*a 3*a+b
-----+------------------------------------------------------
0*a |0*a 0*a 0*a 0*a 0*a 0*a 0*a 0*a
b |0*a b 0*a b 0*a b 0*a b
a |0*a 0*a a a 2*a 2*a 3*a 3*a
a+b |0*a b a a+b 2*a 2*a+b 3*a 3*a+b
2*a |0*a 0*a 2*a 2*a 0*a 0*a 2*a 2*a
2*a+b|0*a b 2*a 2*a+b 0*a b 2*a 2*a+b
3*a |0*a 0*a 3*a 3*a 2*a 2*a a a
3*a+b|0*a b 3*a 3*a+b 2*a 2*a+b a a+b
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We notice several things from this example. First of all, the zero element
is listed as 0*a, not just 0. GAP interprets 0 to mean only the integer 0, so
the zero element of a ring needs a different notation. Of course, 0 · a would
give us the zero element for any generator a, so GAP picks the first generator
mentioned.

As with Mathematica, the command CheckRing will see whether the object
constructed obeys the distributive and associative laws. The command

gap> Identity(R);
a+b

will search the ring for a multiplicative identity. There is such an identity in
this ring, even though we did not use the identity element to construct the
ring. The corresponding Mathematica command is

FindIdent[R]

The multiplication table shows that many elements of R do not have inverses.
Hence, this is not a division ring. Nonetheless, GAP can try to take inverses
of some of the elements.

gap> (3*a+b)^-1;
3*a+b
gap> (2*a+b)^-1;
fail

We can try to define a non-commutative ring using Z∗15 as the additive group.
If a · b = b, yet b · a = 2a, then the ring will not be commutative. To define
this in Mathematica, we type in the following:

InitRing
Define[4 a, 0]
Define[2 b, 0]
Define[a.b, b]
Define[b.a, 2 a]
Define[a.a, ???]
Define[b.b, ???]
CheckRing[{a, b}]

or in GAP by

gap> InitRing("a","b");
gap> DefineRing("R",[4,2],[[???, b],[2*a, ???]]);
gap> CheckRing(R);

There are actually two ways of replacing the ???’s with elements so that a
ring is formed. Here are several attempts to fill in the ???’s.
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gap> InitRing("a","b");
gap> DefineRing("R",[4,2],[[0, b],[2*a, 0]]);
gap> CheckRing(R);
Associative law does not hold.
gap> InitRing("a","b");
gap> DefineRing("R",[4,2],[[a+b, b],[2*a, a]]);
gap> CheckRing(R);
Ring is not left distributive.

It would seem as though there would be 64 possibilities to check, but we can
narrow the search by using the associative property. For example, (a · b) · a
must be a · (b · a), so 2a = 2a2. This forces a2 to be either a or 3a. With this
extra information, try to see if you can fill in the ??? using either GAP or
Mathematica so that a ring is formed.

It is relatively easy to see why such a ring cannot have an identity ele-
ment. GAP’s Identity function or Mathematica’s FindIdent will return
fail, showing that there is no identity element. In fact, every nonzero ele-
ment will be a zero divisor.

PROPOSITION 9.6
If a ring with identity has an additive structure that can be generated with

less than three elements, then the ring is commutative.

PROOF Suppose that x and y are two elements of the ring that generate
the group under addition. That is, every element can be expressed as mx+ny
for integers m and n. In particular, the identity element

e = mx+ ny

for some integers m and n. Since e commutes with both x and y, we have

mx · x+ ny · x = (mx+ ny) · x = e · x = x · e = mx · x+ nx · y,

so ny · x = nx · y.
Likewise,

mx · y + ny · y = (mx+ ny) · y = e · y = y · e = my · x+ ny · y,

so mx · y = my · x.
By the greatest common divisor theorem (1.2), there are integers u and v

such that
um+ vn = GCD[m,n].

If we let c denote the greatest common divisor of m and n, then

c(x·y−y ·x) = (um+vn)(x·y−y ·x) = u(mx·y−my ·x)+v(nx·y−ny ·x) = 0.

What we need to show is that (x · y− y · x) = 0. The tempting thing to do is
divide by c, but this operation is not allowed in rings. Instead, we will again
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utilize the identity element. Since c = GCD[m,n] there are integers a and b
such that m = ac and n = bc. Then

x · y − y · x = e · (x · y − y · x) = (acx+ bcy) · (x · y − y · x)
= (ax+ by) · (c(x · y − y · x)) = (ax+ by) · 0 = 0.

So x · y = y · x, and the ring is commutative.

If we were to find a non-commutative ring with an identity, we need an
additive group that requires more than two generators to define. The smallest
such group is Z∗24. We may suppose that the additive group is generated by
the multiplicative identity e, along with two other elements a and b. Suppose
that a ·b = a, while b ·a = b. This would make the ring non-commutative. We
still need to discern what a2 and b2 should be. But a2 = (a ·b) ·a = a · (b ·a) =
a · b = a, and b2 = (b · a) · b = b · (a · b) = b · a = b.

The Mathematica command for defining this ring would be

InitRing
Define[2 e, 0]
Define[2 a, 0]
Define[2 b, 0]
Define[e.e, e]
Define[e.a, a]
Define[e.b, b]
Define[a.e, b]
Define[b.e, b]
Define[a.b, a]
Define[b.a, b]; Define[a.a, a]; Define[b.b, b]
CheckRing[{a, b}]

Likewise, the GAP commands would be

gap> InitRing("e","a","b");
gap> DefineRing("R",[2,2,2],[[e,a,b],[a,a,a],[b,b,b]]);
gap> CheckRing(R);
This is a ring.
gap> Identity{R};
e
gap> MultTable(R);

* |0*e b a a+b e e+b e+a e+a+b
-----+------------------------------------------------------
0*e |0*e 0*e 0*e 0*e 0*e 0*e 0*e 0*e
b |0*e b b 0*e b 0*e 0*e b
a |0*e a a 0*e a 0*e 0*e a
a+b |0*e a+b a+b 0*e a+b 0*e 0*e a+b
e |0*e b a a+b e e+b e+a e+a+b
e+b |0*e 0*e a+b a+b e+b e+b e+a e+a
e+a |0*e a+b 0*e a+b e+a e+b e+a e+b
e+a+b|0*e a b a+b e+a+b e+b e+a e
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9.4 Some Properties of Rings

One of the simplest rings to study are the rings Zn for n > 1. We have
already learned how to define the addition structure in Mathematica with
a DefSumMod command, and the multiplication can be defined using a
DefMultMod command. We actually can define both of these at once in
Mathematica with the command

DefMod[15]

This defines both the addition and multiplication operations at the same time.
The elements of Z15 are

Z15 = Ring[{1}]
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

since the group is generated by the identity element, 1. We can perform simple
operations in Z15 such as

7 + 9
7 . 9
1/7

The GAP commands that perform these calculations are

gap> (7+9) mod 15;
1
gap> (7*9) mod 15;
3
gap> 1/7 mod 15;
13

This last operation shows that we can take multiplicative inverses of some of
the elements. Even though multiplicative inverses are not guaranteed to exist
for rings, some elements may be invertible.

LEMMA 9.3
Let x be an element in a ring with identity. Then if x has a multiplicative

inverse, the inverse is unique. We denote the multiplicative inverse of x by
x−1.

PROOF Suppose that y and z are two inverses of x. Then

y = y · e = y · (x · z) = (y · x) · z = e · z = z,

which is a contradiction.
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PROPOSITION 9.7
If R has an identity, then the invertible elements of R form a group under

multiplication. This group is denoted R∗.

PROOF Since the identity element is invertible, R∗ is non-empty. Also,
if x is invertible, then (x−1)−1 = x, so x−1 is also in R∗. Finally, if x and y
are both invertible, then since

(x · y) · (y−1 · x−1) = x · x−1 = e,

we see that x · y is invertible. Thus, the set of invertible elements forms a
group.

From this, we can find out when Zn is in fact a field. The first step is to
determine when Zn will have zero divisors.

PROPOSITION 9.8
For n > 1, the ring Zn has no zero divisors if, and only if, n is prime.

PROOF First suppose that n is not prime. Then we can express n = ab,
where a and b are less then n. If e represents the identity element of Zn, we
would then have

(ae) · (be) = (ab)(e · e) = (ab)e = ne = 0.

But since a and b are both less than n, (ae) and (be) are both nonzero. Hence,
these would both be zero divisors in Zn.

Now suppose that n is prime, and that there are two nonzero elements (ae)
and (be) such that (ae) · (be) = 0. Then

(ae) · (be) = (ab)(e · e) = (ab)e = 0.

This would imply that ab is a multiple of n. But since n is prime, we would
have to conclude that either a or b is a multiple of n. But this contradicts
the fact that both (ae) and (be) are nonzero. Thus, if n is prime, there are no
zero divisors in Zn.

Even if n is not prime, one of the observations that can be made while
studying Zn is that the zero divisors were precisely the nonzero elements that
did not have an inverse. This is true for many of the rings we have studied.

LEMMA 9.4
Let a, b, and c be elements of a ring. If a is nonzero, and is not a zero

divisor, and
a · b = a · c,



266 Abstract Algebra: An Interactive Approach

then b = c. Likewise, if
b · a = c · a

for a nonzero and not a zero divisor, then b = c. This is called the cancellation
law for multiplication.

PROOF The tempting thing to do is to multiply both sides of the equation
by a−1. But the inverse of a may not exist, so we have to use the properties
of rings instead.

If a · b = a · c then we have

0 = a · b− a · c = a · (b− c).

But since a is not a zero-divisor and is nonzero, we must have that b− c = 0.
Hence b = c.

Likewise, if b · a = c · a, then

0 = b · a− c · a = (b− c) · a

and since a is nonzero and not a zero divisor, b− c = 0, and so b = c.

Notice that in the ring Z, the element 2 is not invertible, but neither is it
a zero divisor. This example seems to break the pattern that we have been
observing, but also notice that Z is an infinite ring. Perhaps if we consider
only finite rings we will be able to prove a relationship between zero divisors
and invertible elements.

PROPOSITION 9.9
Let R be a finite ring. If b is a nonzero element of R which is not a zero

divisor, then R has an identity element and b has a multiplicative inverse in
R. Hence, every nonzero element in R is either a zero divisor or is invertible.

PROOF To utilize the fact that R is finite, let us construct a sequence of
powers of b:

{b1, b2, b3, . . .}.

Since R is finite, two elements of this sequence must be equal, say bm = bn

for m < n. Using the law of cancellation, we have bm−1 = bn−1. Continuing
this way, we eventually get b = bn−m+1. (It is tempting to use lemma 9.4 one
more time to get e = bn−m, but unfortunately we have yet to prove that R
has an identity.)

If we now let a = n−m+ 1, we have that a > 1 and ba = b.
Next, let us show that ba−1 is an identity element in R. For any element x

in R, we have
x · ba = x · b,
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and since b is nonzero and not a zero divisor, we can use the law of cancellation
to get

x · ba−1 = x.

Likewise, since ba · x = b · x, we have that ba−1 · x = x. Hence, there is an
identity element in R, namely ba−1.

Finally, we need to construct an inverse for the element b. If a = 2, then we
have just shown that b = e, and hence b is its own inverse. If a > 2, consider
the element ba−2. We have that

ba−2 · b = ba−1 = e and b · ba−2 = ba−1 = e.

So ba−2 is the multiplicative inverse of b.

COROLLARY 9.1

Every finite ring without zero divisors is a division ring.

PROOF The trivial ring is already considered to be a division ring, so we
may assume that the ring is nontrivial. Then there exists a nonzero element
that is not a zero divisor, so by proposition 9.9, the ring has an identity. Also
by proposition 9.9, every nonzero element will have a multiplicative inverse,
so the ring is a division ring.

We finally can determine which Zn are fields.

COROLLARY 9.2

The ring Zn is a field if, and only if, n is prime.

PROOF If n = 1, then the ring Zn = Z1 is the trivial ring, which we did
not consider to be a field. We may suppose that n > 1. If n is prime, then
by proposition 9.8 Zn has no zero divisors, and so by corollary 9.1 Zn is a
division ring. Since Zn is obviously commutative, this tells us that Zn is a
field.

Now suppose that n > 1 and n is not prime. By proposition 9.8, Zn has zero
divisors, which cannot exist in a field according to proposition 9.5. Therefore
Zn is a field if, and only if, n is prime.

To conclude this chapter, let us find an example of each of the 11 different
types of rings that could exist. First we define the two rings T4 in table 9.5
and T8 in table 9.6. Then every ring will fall into one of the categories given
in table 9.7.
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TABLE 9.5: The non-commutative ring T4

+ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

· 0 a b c

0 0 0 0 0
a 0 a a 0
b 0 b b 0
c 0 c c 0

TABLE 9.6: The smallest non-commutative ring T8 with an identity
+ 0 e a b c d f g

0 0 e a b c d f g

e e 0 d f g a b c

a a d 0 c b e g f

b b f c 0 a g e d

c c g b a 0 f d e

d d a e g f 0 c b

f f b g e d c 0 a

g g c f d e b a 0

· 0 e a b c d f g

0 0 0 0 0 0 0 0 0
e 0 e a b c d f g

a 0 a a a 0 0 0 a

b 0 b b b 0 0 0 b

c 0 c c c 0 0 0 c

d 0 d 0 c c d f f

f 0 f c 0 c d f d

g 0 g b a c d f e

TABLE 9.7: Examples for each possible type of ring

Type Name Example(s)
I The trivial ring Only one such ring, {0}.
II Fields R, Q, Zp with p prime.
III Skew fields H = the quaternions.

Commutative rings w/ identity Z, polynomials.
IV and w/o zero divisors, but These rings are called

are not fields integral domains.
Non-commutative rings w/ Integer quaternions:

V identity and w/o zero divisors, a+ bI + cJ + dK,
but are not skew fields with a, b, c, d ∈ Z.

VI Commutative rings w/o Even integers,
identity and w/o zero divisors multiples of n, n > 1.

VII Non-commutative rings w/o Even Quaternions.identity and w/o zero divisors

VIII Commutative rings w/ Zn whenever n > 1
identity and w/ zero divisors and n is not prime.

IX Non-commutative rings w/
T8 in table 9.6.identity and w/ zero divisors

X Commutative rings w/o The subset {0, 2, 4, 6}
identity and w/ zero divisors of Z8.

XI Non-commutative rings w/o
T4 in table 9.5.identity and w/ zero divisors
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Problems for Chapter 9

Interactive Problems

9.1 Notice that in Mathematica, the plot of rational numbers between 0.03
and 0.1,

Z = ShowRationals[0.03, 0.1]

shows most of the points lying on a curve. Try to find the equation of this
curve, using the fact that each dot is three fourths closer to the x-axis than
the previous dot. Verify your answer by plotting the curve with the points,
using the following command:

Show[Z, Plot[function goes in here , {x, 0.03, 0.1}]]

Hint: Scale the function so that f(0.1) = 1.

9.2 Use Mathematica or GAP to define a ring of order 2 that has no identity
element. Show both the addition table and the multiplication table.

9.3 Use Mathematica or GAP to find a non-commutative ring of order 8, for
which the additive group is isomorphic to Z∗24, formed from the basis {a, b, c},
and for which a · b = a, b · a = b, a · c = c, and c · a = a.

Hint: Using the associative law, determine what a2, b2, and c2 must be.
Then show that c · b must commute with a. Use trial and error to determine
b · c.

9.4 Define in GAP or Mathematica the smallest non-commutative ring, T4

defined by table 9.5.

9.5 Define in GAP or Mathematica the smallest non-commutative ring with
an identity, T8 defined by table 9.6.

Hint: The basis can be chosen to be e, a, and b.

Non-Interactive Problems

9.6 Prove that the square root of 3 is irrational.

9.7 Prove that the cube root of 2 is irrational.

9.8 Prove that if a is rational and b is irrational, then a+ b is irrational.

9.9 Prove that between any two distinct real numbers, there is an irrational
number.

Hint: Use problem 9.8 along with proposition 9.1.
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9.10 Prove that if a is rational and nonzero, and b is irrational, then a · b is
irrational.

9.11 Prove that y =
√

2 +
√

3 is irrational.
Hint: First show that y2 is irrational.

9.12 Is the sum of two irrational numbers always irrational? If not, find a
counter-example.

9.13 For the quaternions, H, we define the conjugate of an element x =
a+ bi+ cj + dk to be x = a− bi− cj − dk. Prove that x1 + x2 = x1 + x2 for
all x1 and x2 in H.

9.14 Prove or disprove: x1 · x2 = x1 · x2 for all x1 and x2 in H. (See
problem 9.13.)

9.15 Prove that for x in H, x·x = x·x = a2+b2+c2+d2. (See problem 9.13.)

9.16 For all x in H, we define the absolute value of x to be |x| =
√
x · x.

Prove that |x1 · x2| = |x1| |x2|. (See problem 9.13.)

9.17 Prove or disprove: For all x in the quaternions H, (x+1)·(x−1) = x2−1.

9.18 Prove or disprove: For all x in the quaternions H, (x+i)·(x−i) = x2+1.

9.19 Let
Z[
√

2] = {x+ y
√

2 | x, y ∈ Z}.

Prove that Z[
√

2] is a ring under the ordinary addition and multiplication of
real numbers.

9.20 Prove that a ring can have at most one multiplicative identity.

9.21 Show that the non-commutative ring T4 given by table 9.5 has two
elements r such that x · r = x for all x in the ring, yet has no element for
which r · x = x for all x in the ring.

9.22 Prove that a ring with a cyclic additive group must be commutative.

9.23 Prove that if n is an integer, and x is an element of a ring, then n(−x) =
−(nx).

9.24 Let x be an element of a commutative ring R which has an inverse x−1.
Let y be another element of R such that y2 = 0. Prove that x + y has an
inverse in R.

9.25 Suppose that G is an abelian group with respect to addition. Define a
multiplication on G by x · y = 0 for all x and y in G. Show that G forms a
ring.
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9.26 Find a specific example of two elements x and y in a ring R such that
x · y = 0, but y · x is nonzero.

Hint: Which of the 11 types of rings would R have to be?

9.27 Let R be a ring for which x2 = x for all x in the ring. Prove that
−x = x for all elements x. Such rings are called Boolean rings.

9.28 Let R be a ring for which x2 = x for all x in the ring. Prove that the
ring R is commutative. (See problem 9.27.)

9.29 Define new operations of addition and multiplication in Z by x ⊕ y =
x+ y − 1 and x⊗ y = x+ y − xy. Verify that Z forms a ring with respect to
these new operations.

9.30 Use the fundamental theorem of abelian groups (6.2) to show that every
finite abelian group has a basis.

9.31 An element a in a ring R is idempotent if a2 = a. Prove that a nontrivial
division ring must contain exactly two idempotent elements.

9.32 Show that if R is a commutative ring, and x and y are elements of R,
then

(x+ y)2 = x2 + 2xy + y2

and
(x+ y)3 = x3 + 3x2y + 3xy2 + y3.

9.33 Let R be a commutative ring. Define the binomial coefficient(
n

k

)
=
n · (n− 1) · (n− 2) · · · (n− k + 1)

1 · 2 · 3 · · · k
, (0 ≤ k ≤ n).

Using induction, prove the binomial theorem in R:

(x+ y)n = xn +
(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n

)
yn.
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Chapter 10

The Structure within Rings

10.1 Subrings

It is natural to ask whether we can have smaller rings within a larger ring,
just as we saw smaller groups inside of a larger group. This suggests the
following definition.

DEFINITION 10.1 Let R be a ring. A non-empty subset S is a subring
if S is a ring with respect to the addition (+) and multiplication (·) of R.

We have already seen some examples of subrings. For example, the set of
even integers is a ring contained in the ring of integers, which is contained in
the ring of rational numbers, which in turn is contained in the ring of real
numbers. The next proposition gives us a quick way to determine if a subset
is indeed a subring.

PROPOSITION 10.1

A non-empty subset S is a subring of a ring R if, and only if, whenever x
and y are in S, x− y and x · y are in S.

PROOF Certainly if S is a subring, then x − y and x · y would be in S
whenever x and y are in S. So let us suppose that S is non-empty, and is
closed with respect to subtraction and multiplication. If x is any element in
S, then x−x = 0 is in S, so S contains an additive identity. Also, 0−x = −x
would also be in S, so S contains additive inverses of all of its elements. Then
whenever x and y are in S, x − (−y) = x + y is in S, so S is closed with
respect to addition. The commutative and associative properties of addition,
as well as the associative and two distributive laws for multiplication, come
from the original ring R. Finally, S is closed with respect to multiplication,
so S is a subring.

Notice that from the definition every nontrivial ring R will contain at least
two subrings: the trivial ring {0} will be a subring, as well as the entire ring

273
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TABLE 10.1: Tables for the subring S
+ 0 a 2a 3a

0 0 a 2a 3a
a a 2a 3a 0
2a 2a 3a 0 a

3a 3a 0 a 2a

· 0 a 2a 3a

0 0 0 0 0
a 0 a 2a 3a
2a 0 2a 0 2a
3a 0 3a 2a a

R. These two subrings are called the trivial subrings.
Let us look at an example. Here is the ring of order 8 we defined by

tables 9.3 and 9.4:

InitRing
Define[4 a, 0]; Define[2 b, 0]
Define[a.a, a]; Define[b.b, b]
Define[a.b, 0]; Define[b.a, 0]
R = Ring[{a, b}]

The set

S = {0, a, 2a, 3a}

can be seen to be a subring from the addition and multiplication tables in
table 10.1. To generate these tables in GAP, we use the following commands:

gap> InitRing("a","b");
gap> DefineRing("R",[4,2],[[a,0],[0,b]]);
gap> S := Ring(a);
<ring with 1 generators>
gap> List(S);
[ 0*a, a, 2*a, 3*a ]
gap> AddTable(S);

+ |0*a a 2*a 3*a
---+------------------
0*a|0*a a 2*a 3*a
a |a 2*a 3*a 0*a
2*a|2*a 3*a 0*a a
3*a|3*a 0*a a 2*a

gap> MultTable(S);

* |0*a a 2*a 3*a
---+------------------
0*a|0*a 0*a 0*a 0*a
a |0*a a 2*a 3*a
2*a|0*a 2*a 0*a 2*a
3*a|0*a 3*a 2*a a

One can see that S is closed with respect to both addition and multiplication.
Furthermore, additive inverses exist for all elements, so S is also closed with
respect to subtraction. Thus, by proposition 10.1, this is a subring.
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Ironically, the subring S has an identity element,

FindIdent[S]

gap> Identity(S);
a

which is different than the identity element for R. In general the existence of a
multiplicative identity of a subring is totally independent of the multiplicative
identity of R.

Recall that the intersection of a number of subgroups was again a subgroup.
We could ask whether the same is true for subrings.

PROPOSITION 10.2

Given any non-empty collection of subrings of the group R, denoted by L,
then the intersection of all of the subrings in the collection

H∗ =
⋂
H∈L

H

is a subring of R.

PROOF First of all, note that H∗ is not the empty set, since 0 is in each
H in the collection. We now can apply proposition 10.1. Let x and y be two
elements in H∗. Then, for every H ∈ L, we have x, y ∈ H.

Since each H is a subring of R, we have x − y ∈ H and x · y ∈ H for all
H ∈ L. Therefore, x− y and x · y are in H∗, and so H∗ is a subring of R.

As with subgroups, we now have a general method of producing subrings
of a ring R. Let S be any subset of R. We can consider the collection L of
all subrings of R that contain the set P . This collection is non-empty since it
contains the subring R itself. So by proposition 10.2,

[S] = H∗ =
⋂
H∈L

H

is a subring of R. By the way that the collection was defined, [S] contains S.
Actually, [S] is the smallest subring of R containing the subset S.

DEFINITION 10.2 We call [S] the subring of R generated by the set S.

Just as in the case for the Group command, the command Ring finds [S]
for any set S in either Mathematica©R or GAP. For example, we can find some
subrings for the non-commutative group of order 8,
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InitRing
Define[4 a, 0]; Define[2 b, 0]
Define[a.a, a]; Define[b.b, 0]
Define[a.b, b]; Define[b.a, 2 a]
R = Ring[{a, b}]

with the commands

Ring[{0}]
Ring[{a}]
Ring[{2a}]
Ring[{2a, b}]

gap> InitRing("a","b");
gap> DefineRing("R",[4,2],[[a,b],[2*a,0]]);
gap> List(Ring(0*a));
[ 0*a ]
gap> List(Ring(a));
[ 0*a, a, 2*a, 3*a ]
gap> List(Ring(2*a));
[ 0*a, 2*a ]
gap> List(Ring(2*a,b));
[0*a, b, 2*a, 2*a+b]

In this way, we can find all subrings of the ring R. In fact, GAP has a
command Subrings that finds all of the possible subrings.

gap> L := Subrings(R);
[ <ring with 1 generators>, <ring with 1 generators>,
<ring with 1 generators>, <ring with 1 generators>,
<ring with 2 generators>, <ring with 2 generators>,
<ring with 2 generators>, <ring with 3 generators> ]

gap> List(L, List);
[ [ 0*a ], [ 0*a, b ], [ 0*a, 2*a ], [ 0*a, 2*a+b ],
[ 0*a, b, 2*a, 2*a+b ], [ 0*a, a, 2*a, 3*a ],
[ 0*a, a+b, 2*a, 3*a+b ],
[ 0*a, b, a, a+b, 2*a, 2*a+b, 3*a, 3*a+b ] ]

So we see that there are six nontrivial subrings for this ring.
We can easily find all of the subrings for the infinite ring Z.

PROPOSITION 10.3
A subring of the ring of integers Z consists of all multiples of some non-

negative number n. This subring is denoted nZ.

PROOF First of all, the trivial subring {0} can be considered the set of all
multiples of 0. Also, the entire ring Z could be considered all of the multiples
of 1. Let S be a nontrivial subring, and let x be in S. Then −x is also in S, so
S must contain some positive integers. Let n be the smallest positive integer
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contained in S. Certainly all multiples of n would be in S, but suppose that
some element m in S is not a multiple of n. Then by the greatest common
divisor theorem (1.2), there exist two integers u and v such that

un+ vm = GCD(n,m)

Since S is closed under addition, this implies that GCD(n,m) is in S. But
m is not a multiple of n, so GCD(n,m) < n. But this contradicts the fact
that n is the smallest positive integer in S. Thus, S consists exactly of all of
the multiples of n, and so S = nZ.

Although the subrings of Z are easily classified, this is not the case with
the ring of real numbers. Consider the set S of all numbers of the form

x+ y
√

2

where x and y are rational numbers. We can have Mathematica verify that
the product of two such numbers

ClearDefs
Expand[(x1 + y1 2̂(1/2)) (x2 + y2 2̂(1/2) )]

produces a number in this form. Since S is obviously closed with respect to
subtraction, S is a subring of R.

To define this subring in GAP, we can let e represent 1, and a represent
√

2.
These two elements are both of infinite additive order. We can convey this to
GAP by entering “0” for the order of each of the elements. Then a2 = 2e, so
the ring can be entered into GAP by the commands

gap> InitRing("e","a");
gap> DefineRing("R",[0,0],[[e,a],[a,2*e]]);
gap> Size(R);
infinity
gap> (e+2*a)*(4*e-3*a);
-8*e+5*a

This last statement demonstrates that

(1 + 2
√

2) · (4− 3
√

2) = −8 + 5
√

2.

Clearly, the subrings of the real numbers can be much more complicated
than the subrings of the integers.

10.2 Quotient Rings and Ideals

When we studied group theory, one of the most important concepts we
discovered was being able to form a quotient group out of the cosets of certain
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subgroups—namely the normal subgroups. A natural question is whether it
is possible to form quotient rings out of the cosets of a subring.

Let us look at an example. Here is the non-commutative ring of order 8
from the last section.

InitRing
Define[4 a, 0]; Define[2 b, 0]
Define[a.a, a]; Define[b.b, 0]
Define[a.b, b]; Define[b.a, 2 a]
R = Ring[{a, b}]

gap> InitRing("a","b");
gap> DefineRing("R",[4,2],[[a,b],[2*a,0]]);

We found this ring has six nontrivial subrings.

S1 = {0, a, 2a, 3a}, S2 = {0, 2a}, S3 = {0, b},
S4 = {0, a+ b, 2a, 3a+ b}, S5 = {0, 2a+ b}, S6 = {0, 2a, b, 2a+ b}.

We would expect the additive structure of the quotient ring to be the additive
quotient group R/S. We can use Mathematica or GAP to find the cosets of
S under the operation of addition. Since left and right cosets are the same
when working with rings, we will simply use the Coset command for both
GAP and Mathematica.

S1 = {0, a, 2a, 3a}
Q = Coset[R, S1]

gap> S1 := Ring(a);
<ring with 1 generators>
gap> Q := Coset(R,S1);
[ [ 0*a, a, 2*a, 3*a ], [ b, a+b, 2*a+b, 3*a+b ] ]

We can add two cosets together using the following definition:

X + Y = {x+ y | x ∈ X and y ∈ Y }.

This gives us a natural way to add the elements of the quotient Q, which is
shown in table 10.2.

TABLE 10.2: Addition for the quotient ring Q
+ {0, a, 2a, 3a} {b, a+ b, 2a+ b, 3a+ b}

{0, a, 2a, 3a} {0, a, 2a, 3a} {b, a+ b, 2a+ b, 3a+ b}
{b, a+ b, 2a+ b, 3a+ b} {b, a+ b, 2a+ b, 3a+ b} {0, a, 2a, 3a}

This table can be produced using the AddTable[Q] command in either
Mathematica or GAP.
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gap> AddTable(Q);

+ |[0*a,a,2*a,3*a] [b,a+b,2*a+b,2*a+b]
-------------------+----------------------------------------
[0*a,a,2*a,3*a] |[0*a,a,2*a,3*a] [b,a+b,2*a+b,2*a+b]
[b,a+b,2*a+b,2*a+b]|[b,a+b,2*a+b,2*a+b] [0*a,a,2*a,3*a]

The natural way to define the product of two sets is the way we defined such
a product for groups:

X · Y = {x · y | x ∈ X and y ∈ Y }.

Will such a product of two cosets in Q yield another coset? Here is GAP’s
response:

gap> MultTable(Q);

* |[0*a,a,2*a,3*a] [b,a+b,2*a+b,2*a+b]
-------------------+----------------------------------------
[0*a,a,2*a,3*a] |[0*a,a,2*a,3*a]
[b,a+b,2*a+b,2*a+b]|[0*a,a,2*a,3*a]

Unfortunately no! The multiplication tables in Mathematica or GAP reveal
black or blank squares—which indicate that the product of two cosets is not
a coset. The problem lies in the product

{0, a, 2a, 3a} . {b, a+b, 2a+b, 3a+b}

gap> Mult(R,[0*a,a,2*a,3*a],[b,a+b,2*a+b,3*a+b]);
[ 0*a, b, a+b, 2*a, 2*a+b, 3*a+b ]

which produces extra elements. To ensure that S acts as the zero element
in the product of cosets, we need to have S times any element of R needs to
produce only elements in S.

Suppose we found a subring S for which S ·x always was a subset of S. By
the same argument we would also require that x · S be a subset of S. Using
Mathematica or GAP

S2 = {0,2a}
S2 . R
R . S2

gap> S2 := Ring(2*a);
<ring with 1 generators>
gap> Mult(R,S2,R);
[ 0*a, 2*a ]
gap> Mult(R,R,S2);
[ 0*a, 2*a ]

we see that both R · S2 and S2 ·R are subsets of S2, so this ensures that the
additive identity of the quotient group {0, 2a} will behave as the zero element
in the product of cosets. The multiplication table for the quotient group is as
given by the commands
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Q = Coset[R, S2]
MultTable[Q]

which produce table 10.3.

TABLE 10.3: Multiplying cosets of S2

· {0, 2a} {a, 3a} {b, 2a+ b} {a+ b, 3a+ b}
{0, 2a} {0} {0, 2a} {0} {0, 2a}
{a, 3a} {0, 2a} {a, 3a} {b, 2a+ b} {a+ b, 3a+ b}
{b, 2a+ b} {0} {0, 2a} {0} {0, 2a}
{a+ b, 3a+ b} {0, 2a} {a, 3a} {b, 2a+ b} {a+ b, 3a+ b}

The corresponding GAP commands are
gap> Q := Coset(R,S2);
[ [ 0*a, 2*a ], [ b, 2*a+b ], [ a, 3*a ], [ a+b, 3*a+b ] ]
gap> MultTable(Q);

* |[0*a,2*a] [b,2*a+b] [a,3*a] [a+b,3*a+b]
-----------+--------------------------------------------------
[0*a,2*a] |[0*a] [0*a] [0*a,2*a] [0*a,2*a]
[b,2*a+b] |[0*a] [0*a] [0*a,2*a] [0*a,2*a]
[a,3*a] |[0*a,2*a] [b,2*a+b] [a,3*a] [a+b,3*a+b]
[a+b,3*a+b]|[0*a,2*a] [b,2*a+b] [a,3*a] [a+b,3*a+b]

This multiplication table is non-commutative, even though all of the subrings
of R are commutative. So this quotient is unlike any of the subrings of R.

However, not every product yields a coset—sometimes it yields only a subset
of a coset. One way to rectify this slight blemish in our multiplication table
is to add the identity coset to each entry in the table. That is, instead of
defining the product of the cosets X and Y to be X ·Y , we define the product
of two cosets to be

X ∗ Y = X · Y + S.

The command

QuotientRing = True

creates a multiplication table using this new definition of the product of two
cosets. Thus, MultTable[Q] produces a similar table as table 10.3, only
every {0} is replaced by {0, 2a}.
gap> QuotientRing := true;
true
gap> MultTable(Q);

* |[0*a,2*a] [b,2*a+b] [a,3*a] [a+b,3*a+b]
-----------+--------------------------------------------------
[0*a,2*a] |[0*a,2*a] [0*a,2*a] [0*a,2*a] [0*a,2*a]
[b,2*a+b] |[0*a,2*a] [0*a,2*a] [0*a,2*a] [0*a,2*a]
[a,3*a] |[0*a,2*a] [b,2*a+b] [a,3*a] [a+b,3*a+b]
[a+b,3*a+b]|[0*a,2*a] [b,2*a+b] [a,3*a] [a+b,3*a+b]
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The key to getting the quotient ring to work lies in the fact that S2 · R and
R · S2 were subsets of S2. Let us first define the special type of subring that
will allow quotient rings.

DEFINITION 10.3 A subring I of a ring R is called an ideal of R if
both I ·R and R · I are contained in the subring I.

We already observed that if a subring is not an ideal, then the quotient
ring cannot be defined. Let us now show that a quotient ring can be defined
provided that I is an ideal.

PROPOSITION 10.4

Let R be a ring, and let I be an ideal of R. Then the additive quotient group
R/I forms a ring, with the product of two cosets X and Y being X ∗ Y =
X · Y + I. This ring is called the quotient ring R/I.

PROOF The quotient group R/I is an abelian group, so we need only
to check that the multiplication is closed, and that the associativity and two
distributive laws hold.

Let X and Y be two cosets of R/I. Let x be an element in X, and y an
element in Y . Then the product of the cosets X and Y is

X ∗ Y = X · Y + I = (x+ I) · (y + I) + I = x · y + I · y + x · I + I · I + I.

Because I is an ideal, I · y, x · I, and I · I are all subsets of I. Hence, the
sum I · y + x · I + I · I + I will be a subset of I. But since the last term of
this expression is I, I · y + x · I + I · I + I contains the ideal I, so this sum
equals I. Thus,

(x+ I) ∗ (y + I) = X ∗ Y = X · Y + I = x · y + I,

which is a coset of R/I.
Now suppose that X, Y , and Z are three cosets of R/I with x, y, and z

being representative elements, respectively. Then

(X ∗ Y ) ∗ Z = ((x+ I) ∗ (y + I)) ∗ (z + I)
= (x · y + I) ∗ (z + I)
= ((x · y) · z + I)
= (x · (y · z) + I)
= (x+ I) ∗ (y · z + I)
= (x+ I) ∗ ((y + I) ∗ (z + I))
= X ∗ (Y ∗ Z).
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So multiplication is associative. Also,

X ∗ (Y + Z) = (x+ I) ∗ (y + z + I)
= (x(y + z) + I)
= x · y + x · z + I

= (x · y + I) + (x · z + I)
= X ∗ Y +X ∗ Z,

and

(X + Y ) ∗ Z = (x+ y + I) ∗ (z + I)
= ((x+ y) · z + I)
= x · z + y · z + I

= (x · z + I) + (y · z + I)
= X ∗ Z + Y ∗ Z.

Thus, the two distributive laws hold, so R/I is a ring.

This shows that the ideals play the same role for rings that normal sub-
groups did for groups, namely that subsets with an additional property allow
for quotients to be defined.

Let us consider the ideals of the ring Z. By proposition 10.3, all subrings
are of the form S = nZ for some n. Yet any multiple of n times an integer
yields a multiple of n, so S · Z = Z · S = S. Therefore, every subring of Z is
an ideal.

The cosets of the quotient ring Z/(nZ) can be expressed in the form

a+ nZ,

where a = 0, 1, 2, . . . n− 1. Clearly the quotient ring behaves exactly like the
ring Zn. We say that the quotient ring is isomorphic to Zn.

In contrast, let us consider a ring like the rational numbers Q. Even though
there are a host of subrings of Q, the only ideals are the trivial subrings. This
can be generalized by the following proposition.

PROPOSITION 10.5
Any field or skew field can only have trivial ideals.

PROOF Let K be a field or skew field, and suppose that there is a
nontrivial ideal I of K. Then there is a nonzero element x in I, and hence
x−1 exists in K. Thus

1 = x · x−1 ∈ I ·K ⊆ I.
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So the multiplicative identity 1 is contained in I. But then,

K = 1 ·K ⊆ I ·K ⊆ I.

Hence, I = K, so the only ideals of K are the trivial ideals.

We have already observed that the intersection of two subrings is again a
subring. The natural question is whether the intersection of two ideals gives
an ideal.

PROPOSITION 10.6
If L is a non-empty collection of ideals of a ring R, then the intersection of

all of these ideals
I∗ =

⋂
I∈L

I

is an ideal of R.

PROOF Since I∗ is an intersection of subrings of R, by proposition 10.2
I∗ is a subring of R. Thus, we only need to check that I∗ · R and R · I∗ are
contained in I∗.

Suppose that x is an element of I∗. Then x is in each I ∈ L, and so x · R
and R · x are subsets of each I in the collection. Thus, x · R and R · x will
both be subsets of I∗. Since this result is true for every x in I∗, we have that
I∗ ·R and R · I∗ are both subsets of I∗. Therefore, I∗ is an ideal.

We can now define the smallest ideal of R that contains a subset S. We
proceed as we did for subrings, and consider the collection L of all ideals of
R containing S. Then the smallest ideal of R containing S would be

(S) =
⋂
I∈L

I.

We call (S) the ideal generated by S. Notice the distinction between this
notation and the notation [S] of the subring generated by S. If S contains only
one element, say a, we will use the notation (a) rather than the cumbersome
({a}) to denote the ideal generated by a.

This proposition allows us to quickly find all ideals of a ring. For example,
in the non-commutative ring R of order 8, which we were working with above
in this section, we can have Mathematica or GAP find (S) using the command

Ideal[R, S]

for different subsets S. For example, when S = {a},
gap> I := Ideal(R,[a]);
<two-sided ideal in <ring with 2 generators>, (1 generators)>
gap> List(I);
[ 0*a, b, a, a+b, 2*a, 2*a+b, 3*a, 3*a+b ]
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we find that this command produces the whole ring, so a cannot be contained
in any nontrivial ideal. Likewise, 3a, a+b, and 3a+b cannot be in a nontrivial
ideal. The three remaining nonzero elements, 2a, b, and 2a + b, generate
different ideals.

gap> List(Ideal(R,[2*a]));
[ 0*a, 2*a ]
gap> List(Ideal(R,[b]));
[ 0*a, b, 2*a, 2*a+b ]
gap> List(Ideal(R,[2*a+b]));
[ 0*a, 2*a+b ]

These three ideals will be denoted by (2a), (b), and (2a+ b). It is clear that
any ideal containing two out of three of these elements must contain b, and
therefore must be (b). Hence, there are exactly five ideals in this ring: the two
trivial ideals that can be denoted (0) and (a), and the three ideals (2a), (b),
and (2a + b). We can verify this in GAP with the command Ideals, which
gives a list of all the ideals of a finite ring.

gap> L := Ideals(R);
[ <ring with 1 generators>, <ring with 1 generators>,
<ring with 1 generators>, <ring with 2 generators>,
<ring with 3 generators> ]

gap> List(L, List);
[ [ 0*a ], [ 0*a, 2*a ], [ 0*a, 2*a+b ], [ 0*a, b, 2*a, 2*a+b ],
[ 0*a, b, a, a+b, 2*a, 2*a+b, 3*a, 3*a+b ] ]

Notice that all five ideals can be generated with only one element.

DEFINITION 10.4 An ideal of R that is generated by only one element
of R is called a principal ideal . If all of the ideals of R are principal ideals,
then the ring is called a principal ideal ring .

The ring of integers Z is a principal ideal ring, since all ideals (in fact all
subrings) are of the form nZ, which is generated by the single element n.
Since Z is also an integral domain, we will combine the two terms and call Z a
principal ideal domain, or PID. We will talk more about PIDs in section 12.3.

10.3 Ring Isomorphisms

As we work with different rings, it is natural to ask whether we can consider
two rings to be “equivalent” if the elements of one ring can be renamed to
form the other ring. We have already seen that the quotient ring Z/(nZ) was
essentially the same ring as Zn. We will proceed the same way we defined
isomorphisms with groups.
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DEFINITION 10.5 Let A and B be two rings. A ring isomorphism from
A to B is a one-to-one mapping f : A→ B such that

f(x+ y) = f(x) + f(y) and
f(x · y) = f(x) · f(y)

for all x, y,∈ A. If there exists a ring isomorphism from A to B that is
surjective, then we say that the rings A and B are isomorphic, denoted by
A ≈ B.

For example, we can define a mapping for the quotient ring Z/(nZ) as
follows:

f(a+ nZ) = a (Mod n), a = 0, 1, 2, . . . , (n− 1).

Then clearly f is an injective and surjective function from Z/(nZ) to Zn.
Furthermore, f(a + b) = f(a) + f(b), and f(a · b) = f(a) · f(b). So we have
that Z/(nZ) ≈ Zn.

Let us look at another example of a ring isomorphism. Consider the follow-
ing Mathematica commands that define a ring of order 10, and produce the
addition and multiplication tables shown in table 10.4.

InitRing
Define[10 a, 0]
Define[a.a, 2 a]
A = Ring[{a}]
AddTable[A]
MultTable[A]

TABLE 10.4: Addition and multiplication in the ring A
+ 0 a 2a 3a 4a 5a 6a 7a 8a 9a

0 0 a 2a 3a 4a 5a 6a 7a 8a 9a
a a 2a 3a 4a 5a 6a 7a 8a 9a 0
2a 2a 3a 4a 5a 6a 7a 8a 9a 0 a

3a 3a 4a 5a 6a 7a 8a 9a 0 a 2a
4a 4a 5a 6a 7a 8a 9a 0 a 2a 3a
5a 5a 6a 7a 8a 9a 0 a 2a 3a 4a
6a 6a 7a 8a 9a 0 a 2a 3a 4a 5a
7a 7a 8a 9a 0 a 2a 3a 4a 5a 6a
8a 8a 9a 0 a 2a 3a 4a 5a 6a 7a
9a 9a 0 a 2a 3a 4a 5a 6a 7a 8a

· 0 a 2a 3a 4a 5a 6a 7a 8a 9a

0 0 0 0 0 0 0 0 0 0 0
a 0 2a 4a 6a 8a 0 2a 4a 6a 8a
2a 0 4a 8a 2a 6a 0 4a 8a 2a 6a
3a 0 6a 2a 8a 4a 0 6a 2a 8a 4a
4a 0 8a 6a 4a 2a 0 8a 6a 4a 2a
5a 0 0 0 0 0 0 0 0 0 0
6a 0 2a 4a 6a 8a 0 2a 4a 6a 8a
7a 0 4a 8a 2a 6a 0 4a 8a 2a 6a
8a 0 6a 2a 8a 4a 0 6a 2a 8a 4a
9a 0 8a 6a 4a 2a 0 8a 6a 4a 2a
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The multiplicative structure of this group is different than Z10, since there
is no multiplicative identity. Yet the additive group is isomorphic to the group
Z10. This is not surprising, since there is only one abelian group of order 10.

We can easily find other rings of order 10. Suppose we let b be the generator
of the additive group, and define b2 = 6b.

Define[10 b, 0]
Define[b.b, 6 b]
B = Ring[{b}]

The addition table is virtually the same as for the ring A, but the multipli-
cation table looks different. This time let us load both rings into GAP, using
different generators for the two rings.

gap> InitRing("a");
gap> DefineRing("A",[10],[[2*a]]);
gap> InitRing("b");
gap> DefineRing("B",[10],[[6*b]]);
gap> List(A);
[ 0*a, a, 2*a, 3*a, 4*a, 5*a, 6*a, 7*a, 8*a, 9*a ]
gap> List(B);
[ 0*b, b, 2*b, 3*b, 4*b, 5*b, 6*b, 7*b, 8*b, 9*b ]
gap> MultTable(B);

* |0*b b 2*b 3*b 4*b 5*b 6*b 7*b 8*b 9*b
---+------------------------------------------------
0*b|0*b 0*b 0*b 0*b 0*b 0*b 0*b 0*b 0*b 0*b
b |0*b 6*b 2*b 8*b 4*b 0*b 6*b 2*b 8*b 4*b
2*b|0*b 2*b 4*b 6*b 8*b 0*b 2*b 4*b 6*b 8*b
3*b|0*b 8*b 6*b 4*b 2*b 0*b 8*b 6*b 4*b 2*b
4*b|0*b 4*b 8*b 2*b 6*b 0*b 4*b 8*b 2*b 6*b
5*b|0*b 0*b 0*b 0*b 0*b 0*b 0*b 0*b 0*b 0*b
6*b|0*b 6*b 2*b 8*b 4*b 0*b 6*b 2*b 8*b 4*b
7*b|0*b 2*b 4*b 6*b 8*b 0*b 2*b 4*b 6*b 8*b
8*b|0*b 8*b 6*b 4*b 2*b 0*b 8*b 6*b 4*b 2*b
9*b|0*b 4*b 8*b 2*b 6*b 0*b 4*b 8*b 2*b 6*b

There are enough similarities between A and B to ask whether they are
isomorphic. It is not immediately clear what the isomorphism should be.
One way to help find an isomorphism between A and B is to show that both
of these are isomorphic to a subring of the Zn for some n. For example,
consider 2Z20, the even elements of Z20.

gap> InitRing("e");
gap> DefineRing("Z20",[20],[[e]]);
gap> R := Ring(2*e);
<ring with 1 generators>
gap> List(R);
[ 0*e, 2*e, 4*e, 6*e, 8*e, 10*e, 12*e, 14*e, 16*e, 18*e ]

or in Mathematica,
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TABLE 10.5: Multiplication in 2Z20

· 0 2e 4e 6e 8e 10e 12e 14e 16e 18e

0 0 0 0 0 0 0 0 0 0 0
2e 0 4e 8e 12e 16e 0 4e 8e 12e 16e
4e 0 8e 16e 4e 12e 0 8e 16e 4e 12e
6e 0 12e 4e 16e 8e 0 12e 4e 16e 8e
8e 0 16e 12e 8e 4e 0 16e 12e 8e 4e
10e 0 0 0 0 0 0 0 0 0 0
12e 0 4e 8e 12e 16e 0 4e 8e 12e 16e
14e 0 8e 16e 4e 12e 0 8e 16e 4e 12e
16e 0 12e 4e 16e 8e 0 12e 4e 16e 8e
18e 0 16e 12e 8e 4e 0 16e 12e 8e 4e

Define[20 e, 0]
Define[e.e, e]
R = Ring[{2 e}]
MultTable[R]

which produces table 10.5. (The reason why we did not use the DefMod
command to load Z20 in Mathematica is because we would erase the rings A
and B.) In Mathematica one can see that the color patterns for A and R are
the same, so that A ≈ 2Z20. To prove this in GAP, we can construct a function
f mapping A to Z20 using the RingHomomorphismByImages command, which
works basically the same as its group counterpart. Since A has only one
generator, a, we tell GAP where a will be sent to, which is obviously 2e.

gap> f := RingHomomorphismByImages(A,R,[a],[2*e]);
[ a ] -> [ 2*e ]
gap> List(Image(f));
[ 0*e, 2*e, 4*e, 6*e, 8*e, 10*e, 12*e, 14*e, 16*e, 18*e ]

As one might expect after working with group homomorphisms, if we can
prove that a function is a homomorphism, and that it is one-to-one, then
we have an isomorphism. Since GAP successfully defined a homomorphism,
and the image contains 10 elements, then it must be one-to-one, so GAP has
verified that A ≈ 2Z20. We can now generalize this example as follows.

PROPOSITION 10.7

Let R be a finite ring whose additive structure is a cyclic group of order n.
Let x be a generator of the additive group. Then x2 = k · x for some positive
integer k ≤ n, and

A ≈ kZkn.
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PROOF If x2 = 0, we can let k = n, so that k will be positive and
k · x = 0 = x2. If x2 is not zero, then since x generates the additive group,
there is a k such that x2 = k · x with 0 < k < n.

Now the natural mapping is one that sends f(a · x) = k · a (Mod kn). This
is obviously one-to-one and onto, since the value of a ranges from 0 to n− 1.
To check that this is an isomorphism, note that

f(a · x+ b · x) = f((a+ b) · x) = k · (a+ b) (Mod kn)
= k · a (Mod kn) + k · b (Mod kn)
= f(a · x) + f(b · x).

Also,

f((a · x) · (b · x)) = f(a · b · x2)
= f(a · b · k · x)
= k · a · b · k (Mod kn)
= (k · a (Mod kn)) · (k · b (Mod kn))
= f(a · x) · f(b · x).

Therefore, f is an isomorphism, and R ≈ kZkn.

This proposition shows not only that A ≈ 2Z20, but also that B ≈ 6A60,
since b2 = 6b in this ring.

DEFINITION 10.6 A cyclic ring is a ring whose additive group is cyclic.

Note that this definition of cyclic rings also includes the infinite rings Z and
its subrings kZ.

In order to prove that in fact A ≈ B, we will need a few lemmas about
number theory. Once these are proven, we will be able to determine all non-
isomorphic rings of order 10.

LEMMA 10.1
Let d be a positive divisor of n, and let f be the largest divisor of d that is

coprime to (n/d). Then if q is coprime to both f and (n/d), then q is coprime
to n.

PROOF Suppose that GCD(q, n) is not 1. Then there is a prime number
p that divides neither f nor (n/d), yet divides n. Thus, p must divide d.

Now f · p will be coprime to (n/d) since both f and p are. Also, since f is
not a multiple of p while d is, f · p will be a divisor of d. But we defined f
to be the largest factor of d coprime to (n/d). This contradiction shows that
GCD(q, n) = 1.
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LEMMA 10.2
Given two positive numbers x and y, there exist u and v in Z such that

ux+ vy = GCD(x, y),

where u is coprime to y.

PROOF The greatest common divisor theorem (1.2) would give us values
for u and v, but there would be no way to guarantee that u would be coprime
to y.

Let k = GCD(x, y). Then (x/k) and (y/k) are coprime, so (x/k) has an
multiplicative inverse in Z(y/k), say n. That is,

x

k
· n ≡ 1

(
Mod

y

k

)
.

Let f be the largest divisor of k that is coprime to (y/k). By the Chinese
remainder theorem (1.3), there is a number u such that

u ≡ n
(

Mod
y

k

)
and

u ≡ 1 (Mod f).

Since n is coprime to (y/k), u is coprime to (y/k). Also, u is coprime to f ,
so by lemma 10.1 u is coprime to y. Also,

u · x
k
≡ 1

(
Mod

y

k

)
so there is a v such that u · xk + v · yk = 1. Multiplying both sides by k gives us

u · x+ v · y = k = GCD(x, y).

THEOREM 10.1: The Cyclic Ring Theorem
If x and n are positive integers, then

xZx·n ≈ kZk·n,

where k = GCD(x, n).

PROOF Since k = GCD(x, n) by lemma 10.2 we can find integers u and v
such that u ·x+ v ·n = k, where u is coprime to n. We now define a mapping
f from kZkn to xZxn as follows:

f(k · w (Mod kn)) = u · x · w (Mod xn).
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Note that this is well defined, since if k ·w is equivalent to k ·p (Mod kn) then

w ≡ p (Mod n) =⇒ x · w ≡ x · p (Mod xn)
=⇒ u · x · w ≡ u · x · p (Mod xn).

Next we need to show that f is a homomorphism from kZkn to xZxn. If
a = k · w (Mod kn) and b = k · z (Mod kn), then

f(a+ b) = f(k · w + k · z (Mod kn)) = u · (x · w + x · z) (Mod xn)
= u · x · w + u · x · z (Mod xn) = f(a) + f(b).

f(a · b) = f(k · w · k · z (Mod kn)) = u · x · w · k · z (Mod xn)
= u · x · w · (u · x+ v · n) · z (Mod xn)
= (u · x · w · u · x · z + u · x · w · v · n · z) (Mod xn)
= (u · x · w) · (u · x · z) (Mod xn) = f(a) · f(b).

So f is indeed a homomorphism from kZkn to xZxn.
Since u is coprime to n, u has an inverse, u−1 (Mod n). Then we see that f

is onto, since any element x · a (Mod xn) in xZxn can be obtained by taking

f(k · a · u−1 (Mod kn)) = u · x · a · u−1 (Mod xn) = x · a (Mod xn).

Finally, both xZxn and kZkn contain n elements, so by the pigeonhole
principle f must be a one-to-one function. Thus, f is an isomorphism, and
xZxn ≈ kZkn.

Because 2 = GCD(6, 10), we see that A ≈ 2Z20 is isomorphic to B ≈ 6Z60.
But what is the isomorphism? Theorem 10.1 does not explicitly give a formula
for where a should map to in B, so we have to use trial and error. Since a is
an additive generator of A, we know that it should map to one of the additive
generators of B, {b, 3b, 7b, 9b}.

gap> g := RingHomomorphismByImages(A,B,[a],[b]);
fail
gap> g := RingHomomorphismByImages(A,B,[a],[3*b]);
fail
gap> g := RingHomomorphismByImages(A,B,[a],[7*b]);
[ a ] -> [ 7*b ]
gap> List(Image(g));
[ 0*b, b, 2*b, 3*b, 4*b, 5*b, 6*b, 7*b, 8*b, 9*b ]

Since the image is all of B, GAP finally found an isomorphism between A and
B.

In fact, since the only rings of order 10 are cyclic rings, there are four
possible non-isomorphic rings of order 10:

Z10, 2Z20, 5Z50, and 10Z100.
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It is easy to see that these rings are all distinct by looking at the multiplication
tables.

COROLLARY 10.1
The number of non-isomorphic cyclic rings of order n is precisely the number

of divisors of n (including 1 and n).

PROOF By proposition 10.7 every cyclic ring of order n is isomorphic
to kZkn for some value of k. By the cyclic ring theorem, we see that this is
isomorphic to dZdn, where d = GCD(k, n). Hence d is a divisor of n. We need
to show that two different rings of this form are non-isomorphic. Consider
the rings A = dZdn and B = fZfn, where d and f are different divisors of
n. Perhaps the easiest way to show that these are different is to count the
number of elements in A and B that can appear in the multiplication tables.
The elements that can appear in the table for A are

d2, 2d2, 3d2, . . . , nd = 0

while the elements appearing in the multiplication table of B are

f2, 2f2, 3f2, . . . , nf = 0.

Thus, there are n/d such elements of A, and n/f elements of B. Since d and
f are different, we see that the rings A and B are not isomorphic. Therefore,
there is a one-to-one correspondence between the factors of n and the cyclic
rings of order n.

Although this corollary seems to be a big help in finding all finite rings, there
are, in fact, many non-cyclic rings. For example, there are 8 non-cyclic rings
of order 4, which when combined with the 3 cyclic rings from corollary 10.1
gives a total of 11 rings of order 4. There are 52 rings of order 8 (4 cyclic, 20
with additive group Z∗15, and 28 with an additive group Z∗24).

Table 10.6 shows the number of rings of a given order. There are at least
18,590 known rings of order 32, but it has not been proven that these are all
of them.

In GAP, we can load any of the rings of order 8 or less. The command
NumberSmallRings will produce the number of rings of a certain order, as
given in table 10.6. Then SmallRings will load one of the rings. The following
shows how we can load the 51st ring of order 8.

gap> NumberSmallRings(8);
52
gap> R := SmallRing(8,51);
<ring with 3 generators>
gap> MultTable(R);
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* |0*a c b b+c a a+c a+b a+b+c
-----+------------------------------------------------------
0*a |0*a 0*a 0*a 0*a 0*a 0*a 0*a 0*a
c |0*a c b b+c c 0*a b+c b
b |0*a b b+c c b 0*a c b+c
b+c |0*a b+c c b b+c 0*a b c
a |0*a c b b+c a a+c a+b a+b+c
a+c |0*a 0*a 0*a 0*a a+c a+c a+c a+c
a+b |0*a b+c c b a+b a+c a+b+c a
a+b+c|0*a b b+c c a+b+c a+c a a+b

TABLE 10.6: Rings of order n
n rings n rings n rings n rings
1 1 9 11 17 2 25 11
2 2 10 4 18 22 26 4
3 2 11 2 19 2 27 59
4 11 12 22 20 22 28 22
5 2 13 2 21 4 29 2
6 4 14 4 22 4 30 8
7 2 15 4 23 2 31 2
8 52 16 390 24 104 32 ???

10.4 Homomorphisms and Kernels

Since we defined a ring isomorphism in a similar fashion as group isomor-
phisms, we naturally will define ring homomorphisms by mimicking group
homomorphisms.

DEFINITION 10.7 If A and B are two rings, then a mapping f : A→ B
such that

f(x+ y) = f(x) + f(y),

and
f(x · y) = f(x) · f(y),

for all x and y in A is called a ring homomorphism.

Note that a ring homomorphism will also be a group homomorphism from
the additive group of A to the additive group of B. Thus, we can immedi-
ately apply the results of group homomorphisms to see two properties of ring
homomorphisms.
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If f is a ring homomorphism from A to B, then

f(0) = 0

and
f(−x) = −f(x) for all x ∈ A.

Any isomorphism is certainly a homomorphism. But let us see how to define
a homomorphism between two non-isomorphic rings. Consider a homomor-
phism between Z3 and Z6. We define Z3 and Z6 simultaneously by using two
different generators.

InitRing
Define[3 a, 0]; Define[a.a, a]
Define[6 b, 0]; Define[b.b, b]
Z3 = Ring[{a}]
Z6 = Ring[{b}]

gap> InitRing("a");
gap> DefineRing("Z3",[3],[[a]]);
gap> InitRing("b");
gap> DefineRing("Z6",[6],[[b]]);
gap> List(Z3);
[ 0*a, a, 2*a ]
gap> List(Z6);
[ 0*b, b, 2*b, 3*b, 4*b, 5*b ]

The homomorphism is determined completely by the value of f(a). A natural
choice would be to let f(a) = 2b.

gap> f := RingHomomorphismByImages(Z3, Z6, [a], [2*b]);
fail

GAP shows that this would not produce a homomorphism. One way to correct
this problem would be to send f(a) to the zero element of Z6, which GAP
writes as 0*b.

gap> f := RingHomomorphismByImages(Z3,Z6,[a],[0*b]);
[ a ] -> [ 0*b ]
gap> List(Image(f));
[ 0*b ]

or, in Mathematica,

Homomorph[F]
Define[F[a], 0]
CheckHomo[F, Z3]
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DEFINITION 10.8 If A and B are any two rings, then the mapping
f : A→ B

f(x) = 0 for all x ∈ A

is called the zero homomorphism from A to B.

We define f(S), where S is a set of elements in the domain of f , to be the
set of all values f(x), where x is in S. We can also define the inverse image
of an element y to be f−1(y), the set of elements such that f(x) = y. In fact,
we can define the inverse image of a set of elements in the same way: f−1(T )
is the set of elements such that f(x) is in T . We can use Mathematica to
find the image of a set by merely entering F [S], rather than having to bother
with F [{S}] as we did with the group theory notebooks. We can find the
inverse image of an element or a set in Mathematica just as we did for group
homomorphisms.

PROPOSITION 10.8
Suppose f is a homomorphism from the ring A to the ring B. Then if S is

a subring of A, then f(S) is a subring of B. Likewise, if T is a subring of B,
then f−1(T ) will be a subring of A.

PROOF Suppose S is a subring of A. We will use proposition 10.1 to
show that f(S) is a subring of B. The element f(0) = 0 is in f(S), so f(S) is
non-empty. If u and v are two elements of f(S), then there exist elements x
and y in S such that

f(x) = u

and
f(y) = v.

But x · y and x− y are also in S, and so

f(x · y) = f(x) · f(y) = u · v

and
f(x− y) = f(x)− f(y) = u− v

must be in f(S). Thus, by proposition 10.1, f(S) is a subring of B.
Now suppose that T is a subring of B. Since 0 is contained in f−1(T ), we

have that f−1(T ) is non-empty. If x and y are two elements of f−1(T ), then
f(x) and f(y) will be two elements of T . Thus,

f(x · y) = f(x) · f(y)

and
f(x− y) = f(x)− f(y)
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would be elements of T . Hence, x · y and x − y are in f−1(T ). Thus, by
proposition 10.1, f−1(T ) is a subring of A.

We can define the kernel and the image of a homomorphism in the same
way that we did for group homomorphisms.

DEFINITION 10.9 Given a homomorphism f from the ring A to the
ring B, the kernel of f is f−1(0), denoted Ker(f). The image of f is f(A),
denoted Im(f).

In GAP, the kernel of a homomorphism can be found with either the Kernel
command or the PreImages command.

gap> List(PreImages(f,0*b));
[ 0*a, a, 2*a ]
gap> List(Kernel(f));
[ 0*a, a, 2*a ]

In Mathematica, we can use the HomoInverse command to find the kernel
of a homomorphism, or we can use the command

Kernel[F, Z3]

as we did for group homomorphisms. The images are even easier to find using
Mathematica:

F[Z3]

When we have a homomorphism from A to B, we have by proposition 10.8
that the image will be a subring of B. Likewise, the kernel of a homomorphism
will be a subring of A. However, we can say even more about the kernel.

PROPOSITION 10.9

If f is a homomorphism from the ring A to the ring B, then the kernel of f
is an ideal of A. Furthermore, f is injective if, and only if, Ker(f) = {0}.

PROOF Suppose that x is in the kernel of f , and y is any other element
of A. Then

f(x · y) = f(x) · f(y) = 0 · f(y) = 0,

and
f(y · x) = f(y) · f(x) = f(y) · 0 = 0.

Hence, x · y and y · x are in the kernel of f , so the kernel is an ideal of A.
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If f is injective, then f−1(0) can only contain one element, which must be
0. On the other hand, if f−1(0) = {0}, then

f(x) = f(y) =⇒ f(x)− f(y) = 0
=⇒ f(x− y) = 0
=⇒ x− y = 0
=⇒ x = y.

Therefore, f is injective if, and only if, Ker(f) = {0}.

We have yet to find a nontrivial homomorphism from Z3 to Z6. Yet there
is one possibility we haven’t tried yet.

gap> g := RingHomomorphismByImages(Z3, Z6, [a], [4*b]);
[ a ] -> [ 4*b ]
gap> List(Kernel(g));
[ 0*a ]

This shows that Z3 is in fact isomorphic to a subring of Z6.
Let us look at another example of a homomorphism, considering the non-

commutative ring R of order 8 used throughout section 10.2. If we wanted to
define a homomorphism from R to some other ring S, the kernel would have
to be an ideal of R. But R has only three nontrivial ideals:

gap> InitRing("a","b");
gap> DefineRing("R",[4,2],[[a,b],[2*a,0]]);
gap> List(Ideals(R), List);
[ [ 0*a ], [ 0*a, 2*a ], [0*a, 2*a+b ], [ 0*a, b, 2*a, 2*a+b ],
[ 0*a, b, a, a+b, 2*a, 2*a+b, 3*a, 3*a+b ] ]

InitRing
Define[4 a, 0]; Define[2 b, 0]
Define[a.a, a]; Define[b.b, 0]
Define[a.b, b]; Define[b.a, 2 a]
I1 = {0, 2 a}
I2 = {0, 2 a + b}
I3 = {0, 2 a, b, 2 a + b}

To produce an interesting homomorphism, we would use one of these ideals
as the kernel. To which ring should we map R?

The natural answer would be the quotient ring. Since there is a natural
group homomorphism from R to R/I, we can ask whether this group homo-
morphism extends to become a ring homomorphism.

Let us define Q = R/I1.

R = Ring[{a,b}];
Q = Coset[R, I1]
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We wish to define a homomorphism i(x) which maps an element in R to the
coset of Q containing that element.

Homomorph[i]
Define[i[a], {a, 3 a}]
Define[i[b], {b, 2 a + b}]

We can see if this works with the CheckHomo command.

CheckHomo[i, R]

The kernel of this homomorphism,

Kernel[i, R]

is of course I1 = {0, 2a}.

LEMMA 10.3
If I is an ideal of the ring R, then the natural mapping i : R→ R/I defined

by i(x) = x + I is a surjective ring homomorphism from R to R/I with the
kernel being I.

PROOF It is clear that the rule i(x) = x+ I defines a surjective mapping
i from R to R/I, and that Ker(i) = I. We need only to check that i(x) is a
homomorphism.

Since

i(x+ y) = (x+ y) + I

= (x+ I) + (y + I)
= i(x) + i(y)

and

i(x · y) = x · y + I

= (x+ I) · (y + I)
= i(x) · i(y),

we see that i(x) is indeed a surjective homomorphism.

We can define this natural homomorphism in GAP using only the ideal of
the ring.

gap> I1 := Ring(2*a);
<ring with 1 generators>
gap> f := NaturalHomomorphismByIdeal(R,I1);
[ a, b ] -> [ q1, q2 ]
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This actually does two things. It defines a new ring R/I, using a whole new
set of generators q1, q2, . . .. Then it defines the map f from R to this new
quotient ring. We can display the quotient ring by looking at the image of f .

gap> Q := Image(f);
<ring with 2 generators>
gap> MultTable(Q);

* |0*q1 q2 q1 q1+q2
-----+--------------------------
0*q1 |0*q1 0*q1 0*q1 0*q1
q2 |0*q1 0*q1 0*q1 0*q1
q1 |0*q1 q2 q1 q1+q2
q1+q2|0*q1 q2 q1 q1+q2

In the homomorphisms produced by lemma 10.3, the image of the homo-
morphism is isomorphic to R/Ker(f). The first isomorphism theorem studied
in the volume on groups shows that the additive group on Im(f) would be
group isomorphic to the additive structure of R/Ker(f). It is easy to show
that the ring Im(f) is isomorphic to the ring R/Ker(f) as well, giving us an
isomorphism theorem for rings.

THEOREM 10.2: The First Ring Isomorphism Theorem
Let f be a ring homomorphism from a ring R to a ring S, whose image is
H. If the kernel of f is I, then there is a natural surjective isomorphism
f : R/I → H which causes the diagram in figure 10.1 to commute. (Here,
i(x) is the homomorphism defined in lemma 10.3.) Thus, H ≈ R/I.

R R/I
i

φf

H

......................................................................................................... ..............

...........................................................
......
...........
...

.........
.........
.........
.........
.........
....................
..............

.................................................................................................................
...
........
......

FIGURE 10.1: Commuting diagram for theorem 10.2

PROOF Figure 10.1 actually helps us determine how φ needs to be de-
fined. For each coset (x+ I) in R/I, we need to have

φ(x+ I) = f(x)

in order for the diagram to commute. To prove that this rule defines a map-
ping, we need to show that this is well defined. That is, if x + I = y + I it
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needs to be true that f(x) = f(y), or else there would be a contradiction in
the definition of φ. But

x+ I = y + I ⇐⇒ x− y ∈ I
⇐⇒ f(x− y) = 0
⇐⇒ f(x) = f(y)
⇐⇒ φ(x+ I) = φ(y + I).

So we see that the definition of φ will not produce any such contradictions.
To show that φ is a homomorphism, we have that

φ((x+ I) + (y + I)) = φ(x+ y + I)
= f(x+ y)
= f(x) + f(y)
= φ(x+ I) + φ(y + I),

and

φ((x+ I) · (y + I)) = φ(x · y + I)
= f(x · y)
= f(x) · f(y)
= φ(x+ I) · φ(y + I).

So φ is a homomorphism from R/I to H. It is apparent that this homomor-
phism is onto, and

φ(x+ I) = 0 ⇐⇒ f(x) = 0
⇐⇒ x ∈ I
⇐⇒ x+ I = I.

So the kernel of φ is {I}, the zero element of R/I. Thus, φ is an isomorphism
from R/I onto H, so R/I ≈ H. Since the mapping φ was defined so that the
diagram in figure 10.1 commutes, the theorem is proved.

It should be noted that there are second and third ring isomorphism theo-
rems. These are considered in problems 10.46 and 10.47.

Although most of the rings we have defined in this chapter have been finite
rings, it should be pointed out that whenever we defined a finite ring in
Mathematica, we also have defined an infinite ring in the process. Consider
the example of the non-commutative ring of order 8:

InitRing
Define[4 a, 0]; Define[2 b, 0]
Define[a.a, a]; Define[b.b, 0]
Define[a.b, b]; Define[b.a, 2 a]
R = Ring[{a, b}]



300 Abstract Algebra: An Interactive Approach

There is no multiplicative identity for this ring. Mathematica can multiply
any element of R by any integer, and simplify it to an element of R:

(3 a + b) . 7

But we can add an integer to an element of R, such as:

(3 a + b) + 7

This is not an element of R, but could this be an element of a larger ring?
Suppose we let M denote the set of all expressions of the form (integer +
element of R). The Mathematica operations cause M to be a ring in its own
right.

DEFINITION 10.10 We say that the ring R is embedded in the ring S if
there exists an injective homomorphism f : R→ S. The mapping f is called
an embedding of R in S.

Mathematica has demonstrated that the ring R is embedded into a much
larger ring that contains a multiplicative identity. In fact, the integers are
also embedded into this ring. We can do this with any ring.

THEOREM 10.3: The Embedding Theorem
Let R be a ring. Then R can be embedded in a ring S that has a multiplicative

identity.

PROOF Rather than expressing elements as an integer plus an element
of R, we will use an order pair (n, x), where n is an integer and x is in R, to
denote the elements of our new ring. Thus, we define S to be the set

S = {(n, x) | n ∈ Z, x ∈ R}.

We define addition and multiplication on S as follows:

(n1, x1) + (n2, x2) = (n1 + n2, x1 + x2),

(n1, x1) · (n2, x2) = (n1n2, x1 · x2 + n1x2 + n2x1).

It is clear that S forms an abelian group under addition, with the zero
element being (0, 0). The product of two elements of S is clearly in S, so we
only need to check the associativity of multiplication, and the two distributive
laws. We have that

((n1, x1) · (n2, x2)) · (n3, x3) = (n1n2, x1 · x2 + n1x2 + n2x1) · (n3, x3)
= (n1n2n3, (x1 · x2 + n1x2 + n2x1) · (n2, x3) +
n1n2x3 + n3(x1 · x2 + n1x2 + n2x1))

= (n1n2n3, x1 · x2 · x3 + n1x2 · x3 + n2x1 · x3 +
n1n2x3 + n3x1 · x2 + n1n3x2 + n2n3x1).



The Structure within Rings 301

Also,

(n1, x2) · ((n2, x2) · (n3, x3)) = (n1, x1) · (n2n3, x2 · x3 + n2x3 + n3x2)
= (n1n2n3, x1 · (x2 · x3 + n2x3 + n3x2) +
n1(x2 · x3 + n2x3 + n3x2) + n2n3x1)

= (n1n2n3, x1 · n2x1 · x3 + n3x1 · x2 +
n1x2 · x3 + n1n2x3 + n1n3x2 + n2n3x1).

These two are equal, so multiplication in S is associative. We also have

((n1, x1) + (n2, x2)) · (n2, x3)
= (n1 + n2, x1 + x2) · (n3, x3)
= (n1n3 + n2n3, x1 · x3 + x2 · x3 + n1x3 + n2x3 + n3x1 + n3x2)
= (n1, x1) · (n3, x3) + (n2, x2) · (n2, x3),

and

(n1, x1) · ((n2, x2) + (n3, x3))
= (n1, x1) · (n2 + n3, x2 + x3)
= (n1n2 + n1n3, x1 · x2 + x1 · x3 + n1x2 + n1x3 + n2x1 + n3x1)
= (n1, x1) · (n2, x2) + (n1, x1) · (n3, x3),

so the two distributive laws are satisfied. Thus, S is a ring.
Furthermore, the element (1, 0) in S acts as a multiplicative identity, since

(n, x) · (1, 0) = (n · 1, x · 0 + n · 0 + 1 · x) = (n, x),

and
(1, 0) · (n, x) = (1 · n, 0 · x+ 1 · x+ n · 0) = (n, x).

All that is left is to show that the ring R can be embedded into S. We
can define a mapping from R to S simply by letting f(x) = (0, x). This is
certainly an injective mapping, and it is easy to check that

f(x) + f(y) = (0, x) + (0, y) = (0, x+ y) = f(x, y),

and

f(x) · f(y) = (0, x) · (0, y) = (0, x · y + 0 · y + 0 · x) = (0, x · y) = f(x · y).

So we have an embedding of R in S, which completes the proof.

We call the ring S used in this theorem the extension of R by the integers.
This ring is important because it allows us to treat any ring as though it has
a multiplicative identity by using the ring S in place of the ring R.

To define the extension ring of R by the integers in GAP, we have to re-
define it using an additional generator, say e, for which e · x = x · e = x for
all generators, and for which the order of e is infinite. Thus, to define the
extension ring of the above example, we get
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gap> InitRing("e","a","b");
gap> DefineRing("R",[0,4,2],[[e,a,b],[a,a,b],[b,b,2*a]]);
gap> Size(R);
infinity

Notice that to indicate that the generator e was of infinite order, we entered
a 0 in the array position for that generator. The reason of course is that one
cannot enter ∞ on the keyboard, and GAP can interpret order 0 to mean
that no positive number times e will equal 0.

Problems for Chapter 10

Interactive Problems

10.1 Find all of the subrings of the ring of order 8:

InitRing
Define[4 a, 0]; Define[2 b, 0]
Define[a.a, a]; Define[b.b, 0]
Define[a.b, b]; Define[b.a, 0]
R = Ring[{a, b}]

gap> InitRing("a","b");
gap> DefineRing("R",[4,2],[[a,b],[0,0]]);

Which of these subrings are ideals?

10.2 Load the rings Z12 and Z6 into Mathematica or GAP simultaneously
with the commands:

InitRing
Define[12 a, 0]; Define[a.a, a]
Z12 = Ring[{a}]
Define[6 b, 0]; Define[b.b, b]
Z6 = Ring[{b}]

gap> InitRing("a");
gap> DefineRing("Z12",[12],[[a]]);
gap> InitRing("b");
gap> DefineRing("Z6",[6],[[b]]);

Show that I = {0, 6a} is an ideal of Z12, and display addition and multipli-
cation tables of the quotient ring Z12/I, showing that Z12/I is isomorphic to
Z6.
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10.3 Use Mathematica or GAP to find the eight non-isomorphic non-cyclic
rings of order 4.

Hint: The additive group must be isomorphic to Z∗8 , so the ring is defined
by:

InitRing
Define[2 a, 0]; Define[2 b, 0]
Define[a.a, ???]
Define[b.b, ???]
Define[a.b, ???]
Define[b.a, ???]
CheckRing[{a, b}]

gap> InitRing("a","b");
gap> DefineRing("R",[2,2],[[???,???],[???,???]]);
gap> CheckRing(R);

Fill in each ??? with a member of {0, a, b, a + b} to see whether a ring is
formed. Is there a faster way than trying all 44 = 256 combinations?

10.4 Use Mathematica or GAP to display the multiplication tables of all
rings of order 6.

Non-Interactive Problems

10.5 Let y be an element of a ring R. Let

A = {x ∈ R | x · y = 0}.

Show that A is a subring of R.

10.6 Show that 2Z ∪ 3Z is not a subring of Z. (The symbol ∪ denotes the
union of the two sets.)

10.7 If X and Y are ideals of a ring, show that the sum of X and Y ,

X + Y = {x+ y | x ∈ X and y ∈ Y }

is an ideal.

10.8 In the ring of integers, find a positive integer n such that

(n) = (12) + (16).

(See problem 10.7.)
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10.9 If X and Y are ideals of a ring, show that the product of X and Y ,

X · Y = {x1 · y1 + x2 · y2 + · · ·+ xn · yn | xi ∈ X and yi ∈ Y, n > 0},

is an ideal.

10.10 In the ring of integers, find a positive integer n such that

(n) = (12) · (16).

(See problem 10.9.)

10.11 Let X and Y be ideals of a ring. Prove that X · Y ⊆ X ∩ Y . (See
problem 10.9.)

10.12 Let R be a ring and let p be a fixed prime. Define Ip to be the set of
elements for which the order of the element is a power of p. Show that Ip is
an ideal.

10.13 Find all of the subrings of the commutative ring of order 8 defined by
tables 9.3 and 9.4 in chapter 9.

Hint: There are eight subgroups of the additive group Z∗15. Find the eight
subgroups, and determine which subgroups are in fact subrings.

10.14 Find all of the ideals of the commutative ring of order 8 defined by
tables 9.3 and 9.4 in chapter 9. (See problem 10.13.)

10.15 Find all of the subrings of T4 in table 9.5.

10.16 Find all of the ideals of T4 in table 9.5.

10.17 Find all of the subrings of T8 in table 9.6.
Hint: First find all 16 subgroups of the additive group, Z∗24.

10.18 Find all of the ideals of T8 in table 9.6. (See problem 10.17.)

10.19 Verify that {0, c} is an ideal of the ring T4 in table 9.5. Construct
addition and multiplication tables for the quotient ring T4/{0, c}.

10.20 Verify that {0, 2a} is an ideal of the commutative ring R of order 8
which is defined by tables 9.3 and 9.4 in chapter 9. Construct addition and
multiplication tables for the quotient ring R/{0, 2a}.

10.21 Verify that {0, b} is an ideal of the commutative ring R of order 8
which is defined by tables 9.3 and 9.4 in chapter 9. Construct addition and
multiplication tables for the quotient ring R/{0, b}.

10.22 Verify that {0, c} is an ideal of the ring T8 in table 9.6. Construct
addition and multiplication tables for the quotient ring T8/{0, c}.
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10.23 Find a subring of the ring T8 in table 9.6 that is isomorphic to the
ring T4 in table 9.5.

10.24 Determine all elements of T8 in table 9.6 that have a multiplicative
inverse.

10.25 Determine all elements of the ring defined by tables 9.3 and 9.4 in
chapter 9 that have a multiplicative inverse.

10.26 An irreducible element p of a ring R is one for which the only way for
p = a · b is for either a or b to have a multiplicative inverse. Determine the
irreducible elements of the ring defined by tables 9.3 and 9.4 in chapter 9.

Hint: Cross out the rows and columns corresponding to the invertible ele-
ments. Which elements are no longer in the interior of the table?

10.27 Does T4 or T8 in tables 9.5 and 9.6 have any irreducible elements?
(See problem 10.26.)

10.28 A prime element p 6= 0 of a ring R is a non-invertible element such
that, whenever a · b is a multiple of p, either a or b is a multiple of p. (A
multiple of p would be any element that can be expressed as either x · p or
p · x.) Find a prime element of the ring T8 in table 9.6.

Hint: To determine if p is prime, first find all the multiples of p. Then cross
out the rows and columns of the multiplication table corresponding to those
elements. If there are no more multiples of p remaining, then p is prime.

10.29 Find a prime element of the ring defined by tables 9.3 and 9.4 in
chapter 9 that is not irreducible. (See problems 10.26 and 10.28.)

10.30 Let R be a non-commutative ring. Define the operation x ∗ y = y · x.
Show that the set R forms a ring using the operations ∗ and + instead of ·
and +. This new ring is called the transpose of R, and is denoted Rt.

10.31 Show that the ring T4 in table 9.5 is not isomorphic to its transpose.
(See problem 10.30.)

10.32 Show that the ring T8 in table 9.6 is isomorphic to its transpose. (See
problem 10.30.)

Hint: First construct the multiplication table for T t8 , then determine how
to rearrange the elements of T8 so that the patterns match.

10.33 Prove that a non-commutative ring of order 4 or less must be isomor-
phic to either T4 from table 9.5 or T t4 . (See problem 10.30.)

Hint: Use problem 9.22.

10.34 Is the ring 2Z isomorphic to the ring 3Z? Why or why not?
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10.35 Let A = (6) be an ideal of the ring Z. Construct addition and multi-
plication tables of the quotient ring Z/(6). What does this ring remind you
of?

10.36 Let A = (2) and B = (6) be two ideals of the ring Z. Construct
addition and multiplication tables of the quotient ring A/B.

10.37 Let A = (2) and B = (8) be two ideals of the ring Z. Show that the
group A/B is isomorphic to Z4, but the ring A/B is not isomorphic to the
ring Z4.

10.38 Find all ring homomorphisms from Z6 to Z6.

10.39 Show that if φ(x) = 2x, then φ is not a ring homomorphism from R
to R.

10.40 Determine all ring homomorphisms from the rationals Q to Q.
Hint: What are the possible kernels? If φ(1) = 1, show that φ(n) = n.

10.41 Let C denote the set of numbers of the form a + bi, where i =
√
−1

and a and b are real. (C is in fact a subring of the quaternions H.) Let
φ(a + bi) = a − bi. Show that φ is a ring homomorphism from the ring C to
itself.

Hint: Let x = a+ bi, and y = c+ di.

10.42 Let R be the extension of the ring 2Z8 = {0, 2, 4, 6} by the integers.
Find an ideal I of R such that R/I ≈ Z8.

Hint: Find a homomorphism from R onto Z8, and use the first ring isomor-
phism theorem (10.2).

10.43 If R is a commutative ring and y is a fixed element of R, prove that
the set

I = {x · y | x ∈ R}

is an ideal of R.
Hint: Note that if there is no multiplicative identity, y may not be in I.

10.44 If R is a commutative ring and y is a fixed element of R, prove that
the set

A = {x ∈ R | x · y = 0}

is an ideal in R. (See problem 10.5.)

10.45 An element x of a ring R is called nilpotent if xn = 0 for some positive
number n. Show that the set of all nilpotent elements in a commutative ring
R forms an ideal of R.

Hint: See problem 9.33.



The Structure within Rings 307

10.46 Prove the second ring isomorphism theorem: If K and I are two ideals
of a ring R, where K ⊆ I, then K is an ideal of I, I/K is an ideal of R/K,
and

(R/K)/(I/K) ≈ R/I.

10.47 Prove the third ring isomorphism theorem: If K and I are two ideals
of a ring R, then

K/(K ∩ I) ≈ (K + I)/I.

(See problem 10.7 for the definition of K + I.)
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Chapter 11

Integral Domains and Fields

11.1 Polynomial Rings

One major source of integral domains are the polynomial rings. We can
construct a polynomial ring from any ring, but the polynomial rings with the
familiar properties are formed either from fields or integral domains.

DEFINITION 11.1 Let K be a commutative ring. We define the set of
polynomials in x over K, denoted K[x], to be the set of all expressions of the
form

k0 + k1x+ k2x
2 + k3x

3 + · · ·
where the coefficients kn are elements of K, and only a finite number of the
coefficients are nonzero. If kd is the last nonzero coefficient, then d is called
the degree of the polynomial.

Notice that if d = 0, we essentially obtain the nonzero elements of K. These
polynomials are referred to as constant polynomials. The degree for the zero
polynomial

0 + 0x+ 0x2 + 0x3 + · · ·
is not defined.

By convention, the terms with zero coefficients are omitted when writing
polynomials. Thus, the second degree polynomial in Z[x]

1 + 0x+ 3x2 + 0x3 + · · ·

would be written 1 + 3x2. The one exception to this convention is the zero
polynomial, which is written as 0.

We can define the sum and product of two polynomials in the familiar way.
If

A = a0 + a1x+ a2x
2 + a3x

3 + · · · and
B = b0 + b1x+ b2x

2 + b3x
3 + · · ·

then

A+B = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x2 + (a3 + b3)x3 + · · ·

309
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and

A ·B =
∞∑
i=0

∞∑
j=0

(ai · bj)x(i+j).

Although this looks like a double infinite sum, only a finite number of the
terms will be nonzero. If fact, this product could be written as

A ·B = a0 · b0
+(a0 · b1 + a1 · b0)x
+(a0 · b2 + a1 · b1 + a2 · b0)x2

+(a0 · b3 + a1 · b2 + a2 · b1 + a3 · b0)x3 + · · ·

so each coefficient is determined by a finite sum.

LEMMA 11.1
Let A and B be two nonzero polynomials in x over K of degree m and
n respectively, where K is a field or an integral domain. Then A · B is a
polynomial of degree m + n, and A + B is a polynomial of degree no greater
than the larger of m or n.

PROOF Let A be a polynomial of degree m,

A = a0 + a1x+ a2x
2 + a3x

3 + · · · amxm

and B be a polynomial of degree n,

B = b0 + b1x+ b2x
2 + b3x

3 + · · · bnxn.

Here, am and bn are nonzero elements of K. The product is determined by

A ·B =
∞∑
i=0

∞∑
j=0

ai · bj xi+j .

Note that ai and bj are zero for i > m and j > n. If i + j > m + n, either
i > m or j > n, and in either case ai · bj = 0. Thus, there are no nonzero
terms in A ·B with coefficients larger than m+ n. However, if i+ j = m+ n,
the only nonzero term would be the one coming from i = m and j = n, giving

ambn x
m+n.

Since there are no zero divisors in K, am ·bn is nonzero, so A·B is a polynomial
of degree m+ n.

Next we turn our attention to A + B. We may assume without loss of
generality that m is no more than n. Then the sum of A and B can be
expressed as

(a0 + b0) + (a1 + b1)x+ (a2 + b2)x2 + · · · (am + bm)xm + bm+1x
m+1 + · · · bnxn.
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If m < n, this clearly is a polynomial with degree n. Even if m = n, this still
gives a polynomial whose degree cannot be more than n.

We still have to show that K[x] will be a ring. But if K is an integral
domain or field, we will be able to say more about K[x].

PROPOSITION 11.1
Let K be an integral domain or a field. Then the set of polynomials in x over
K forms an integral domain.

PROOF We have seen that K[x] is closed under addition and multiplica-
tion. By the commutativity of K, addition and multiplication are obviously
commutative. It is also clear that the zero polynomial acts as the additive
identity in K[x]. Also, the additive inverse of

A = a0 + a1x+ a2x
2 + a3x3 + · · ·

is given by

−A = (−a0) + (−a1)x+ (−a2)x2 + (−a3)x3 + · · · ,

since the sum of these two polynomials is

A+ (−A) = 0 + 0x+ 0x2 + 0x3 + · · · = 0.

The polynomial with b0 = 1, and bj = 0 for all positive j,

I = 1 + 0x+ 0x2 + 0x3 + · · · ,

acts as the multiplicative identity, since

I ·A = A · I =
∞∑
i=0

∞∑
j=0

ai · bj xi+j =
∞∑
i=0

ai · 1 xi = A.

To check associativity of addition and multiplication, we need three polyno-
mials

A = a0 + a1x+ a2x
2 + a3x

3 + · · · ,
B = b0 + b1x+ b2x

2 + b3x
3 + · · · , and

C = c0 + c1x+ c2x
2 + c3x

3 + · · · .

Then

(A+B) + C = (a0 + b0) + c0 + ((a1 + b1) + c1)x+ ((a2 + b2) + c2)x2 + · · ·
= a0 + (b0 + c0) + (a1 + (b1 + c1))x+ (a2 + (b2 + c2))x2 + · · ·
= A+ (B + C).
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Also,

A · (B · C) = A ·

 ∞∑
j=0

∞∑
k=0

bj · ck xj+k


=
∞∑
i=0

∞∑
j=0

∞∑
k=0

ai · (bj · ck)xi+j+k

=
∞∑
i=0

∞∑
j=0

∞∑
k=0

(ai · bj) · ck xi+j+k = (A ·B) · C.

The two distributive laws are also easy to verify using the summation notation.

A · (B + C) = A ·

 ∞∑
j=0

(bj + cj)xj

 =
∞∑
i=0

∞∑
j=0

ai · (bj + cj)xi+j

=
∞∑
i=0

∞∑
j=0

(ai · bj + aicj)xi+j

=
∞∑
i=0

∞∑
j=0

ai · bj xi+j +
∞∑
i=0

∞∑
j=0

ai · cj xi+j = A ·B +A · C.

We can use the fact that multiplication is commutative to show that (A+B) ·
C = A · C +B · C. Thus, K[x] is a commutative ring with identity.

Next, let us show that K[x] has no zero divisors. Suppose that A · B = 0,
with both A and B being nonzero polynomials. Say that A has degree m
and B has degree n. Then by lemma 11.1 A · B has degree m + n, which
is impossible if either m or n were positive. But if A and B are constant
polynomials, then a0 · b0 = 0, which would indicate that either a0 or b0 is 0,
since K has no zero divisors. Thus, either A or B would have to be 0, so we
have that K[x] has no zero divisors.

Finally, let us show that K[x] is not a field, by showing that the polynomial
(1 + x) is not invertible. Suppose that there was a polynomial A such that
A · (1 + x) = 1. Then A is not 0. So suppose A has degree m. Then
by lemma 11.1, we have m + 1 = 0, telling us m = −1, which is impossible.
Thus, (1+x) has no inverse in K[x], and therefore K[x] is an integral domain.

Although this proposition holds for polynomials defined over a integral do-
main, there is no reason why we cannot have Mathematica©R or GAP work
with polynomials defined over any commutative ring. However, we will dis-
cover that the familiar properties of polynomials radically change!

Let us consider the commutative ring of order 8 from tables 9.3 and 9.4 in
chapter 9.
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InitRing
Define[4 a, 0]; Define[2 b, 0]
Define[a.a, a]; Define[b.b, b]
Define[a.b, 0]; Define[b.a, 0]
R = Ring[{a, b}]

gap> InitRing("a","b");
gap> DefineRing("R",[4,2],[[a,0],[0,b]]);
gap> List(R);
[ 0*a, b, a, a+b, 2*a, 2*a+b, 3*a, 3*a+b ]

We form a polynomial ring over R by defining a new symbol x. In GAP one
uses the command Indeterminate to show that x is a variable over the ring
R.

gap> x := Indeterminate(R,"x");
x

If there is a warning message, just ignore it. In Mathematica the symbol x is
already available, but we must declare that x commutes with every element
in R. This is done with the two definitions

Define[x.a, a.x]
Define[x.b, b.x]

which force the coefficients to appear in front of the power of x. A typical
polynomial would be

Y = a.x + b

If we consider raising this polynomial to a power,

Ŷ4

we find that Mathematica writes the powers of x as x.x. . . . .x. GAP does not
have this difficulty:

gap> y:= a*x + b;
a*x+b
gap> y^4;
a*x^4+b

This polynomial ring has a rather bizarre property. Sometimes the square of
a first degree polynomial is not a second degree polynomial! Consider

gap> (2*a*x + a+b)^2;
a+b

which yields the identity element in R. Furthermore, polynomials may be
“factored” in more than one way. The two products
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gap> (b+2*a*x)*(b+a*x);
2*a*x^2+b
gap> (b+2*a*x)*(2*a+b+a*x);
2*a*x^2+b

or, in Mathematica,

(b + 2 a.x) . (b + a.x)
(b + 2 a.x) . (2 a + b + a.x)

yield the same quadratic polynomial. Because of the bizarre properties of
polynomials over general rings, we mainly will focus our attention to polyno-
mial rings K[x], where K is an integral domain or field.

As we work with polynomials in Mathematica we would like to use the
standard multiplication notation instead of using the dot. There is a property
of integral domains and fields that lets us enter these rings into Mathematica
another way.

DEFINITION 11.2 Let R be a ring. We define the characteristic of R
to be the smallest positive number n such that n · x = 0 for all elements x of
R. If no such positive number exists, we say the ring has characteristic 0.

PROPOSITION 11.2
Let R be a nontrivial ring without zero-divisors. If the characteristic is 0,

then for n an integer and x a nonzero element of R, n · x = 0 only if n = 0.
If the characteristic is positive then it is a prime number p, and for nonzero
x, n · x = 0 if, and only if, n is a multiple of p.

PROOF Suppose that n · x = 0 for some nonzero x in R. Then for any
other nonzero element y of R,

0 = (n · x) · y = n · (x · y) = x · (n · y).

But x is nonzero, and the ring has no zero divisors, so we have n · y = 0.
This argument works in both ways, so

(∗) n · x = 0⇐⇒ n · y = 0 if x 6= 0 and y 6= 0.

If n was not zero, then |n| would be a positive number such that n · x = 0 for
all x in the ring. Hence, if the ring has characteristic 0, then n · x = 0 implies
that either x = 0 or n = 0.

Now suppose that the ring has positive characteristic, and let x be any
nonzero element of R. Let p be the smallest positive integer for which p·x = 0.
If p is not prime, then p = a · b with 0 < a < p and 0 < b < p. But then

(a · x) · (b · x) = (a · b)
(
x2
)

= (p · x) · x = 0 · x = 0.
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Since the ring has no zero divisors, either a · x = 0 or b · x = 0. But this
contradicts the fact that p was the smallest number such that p ·x = 0. Thus,
p is prime. By (∗) we have that p · y = 0 for every element in R, and since
this cannot be true for any smaller integer, we have that the characteristic of
the ring is the prime number p.

It is easy to see that if n is a multiple of p, then n = c · p for some integer
c. Thus, for any element x in R,

n · x = (c · p) · x = c · (p · x) = c · 0 = 0.

Suppose that n·x = 0 for some n that is not a multiple of p. Then GCD(n, p)
must be 1, and so by the greatest common divisor theorem (1.2), there are
integers u and v such that u · n+ v · p = 1. But then

x = 1 · x = (u · n+ v · p) · x = u · (n · x) + v · (p · x) = u · 0 + v · 0 = 0.

So for nonzero x, n · x = 0 if, and only if, n is a multiple of p.

Characteristics are important because they provide a new way of defining
integral domains and fields in Mathematica. We begin by telling Mathematica
the characteristic p of the ring we want to define. For example, to define a
ring with characteristic 3, we enter

InitDomain[3]

which does three things. First, it tells Mathematica that the ring to be defined
is commutative, so the regular multiplication notation can be used instead of
the dot. Mathematica defines the identity element to be 1. Finally, Mathe-
matica assumes that the ring to be defined has no zero divisors, and takes into
account proposition 11.2, defining three times anything to be 0. For example,
the commands

2 + 2
2 i + 5 i

simplify to 1 and i. Let us try imitating the complex numbers, and tell
Mathematica that i2 = −1.

Define[î2, –1]
K = Ring[{i}]
CheckRing[K]
AddTable[K]
MultTable[K]

This produces tables 11.1 and 11.2. We can define this ring in GAP as follows:

gap> InitRing("e","i");
gap> DefineRing("K",[3,3],[[e,i],[i,-e]]);
gap> CheckRing(K);
This is a ring.
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TABLE 11.1: Addition of “complex numbers modulo 3”
+ 0 1 2 i 2i 1 + i 2 + i 1 + 2i 2 + 2i

0 0 1 2 i 2i 1 + i 2 + i 1 + 2i 2 + 2i
1 1 2 0 1 + i 1 + 2i 2 + i i 2 + 2i 2i
2 2 0 1 2 + i 2 + 2i i 1 + i 2i 1 + 2i
i i 1 + i 2 + i 2i 0 1 + 2i 2 + 2i 1 2
2i 2i 1 + 2i 2 + 2i 0 i 1 2 1 + i 2 + i

1 + i 1 + i 2 + i i 1 + 2i 1 2 + 2i 2i 2 0
2 + i 2 + i i 1 + i 2 + 2i 2 2i 1 + 2i 0 1
1 + 2i 1 + 2i 2 + 2i 2i 1 1 + i 2 0 2 + i i

2 + 2i 2 + 2i 2i 1 + 2i 2 2 + i 0 1 i 1 + i

TABLE 11.2: Multiplication for “complex numbers modulo 3”
· 0 1 2 i 2i 1 + i 2 + i 1 + 2i 2 + 2i

0 0 0 0 0 0 0 0 0 0
1 0 1 2 i 2i 1 + i 2 + i 1 + 2i 2 + 2i
2 0 2 1 2i i 2 + 2i 1 + 2i 2 + i 1 + i

i 0 i 2i 2 1 2 + i 2 + 2i 1 + i 1 + 2i
2i 0 2i i 1 2 1 + 2i 1 + i 2 + 2i 2 + i

1 + i 0 1 + i 2 + 2i 2 + i 1 + 2i 2i 1 2 i

2 + i 0 2 + i 1 + 2i 2 + 2i 1 + i 1 i 2i 2
1 + 2i 0 1 + 2i 2 + i 1 + i 2 + 2i 2 2i i 1
2 + 2i 0 2 + 2i 1 + i 1 + 2i 2 + i i 2 1 2i

Unfortunately, this ring is just a little too large to display the addition and
multiplication tables in GAP using the standard format (unless one resizes
the screen). So we will number the elements to display the addition and
multiplication tables.

gap> NumberElements := true;
true
gap> AddTable(K);

+ |1 2 3 4 5 6 7 8 9
-------+--------------------------
0*e |1 2 3 4 5 6 7 8 9
i |2 3 1 5 6 4 8 9 7
2*i |3 1 2 6 4 5 9 7 8
e |4 5 6 7 8 9 1 2 3
e+i |5 6 4 8 9 7 2 3 1
e+2*i |6 4 5 9 7 8 3 1 2
2*e |7 8 9 1 2 3 4 5 6
2*e+i |8 9 7 2 3 1 5 6 4
2*e+2*i|9 7 8 3 1 2 6 4 5
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gap> MultTable(K);

* |1 2 3 4 5 6 7 8 9
-------+--------------------------
0*e |1 1 1 1 1 1 1 1 1
i |1 7 4 2 8 5 3 9 6
2*i |1 4 7 3 6 9 2 5 8
e |1 2 3 4 5 6 7 8 9
e+i |1 8 6 5 3 7 9 4 2
e+2*i |1 5 9 6 7 2 8 3 4
2*e |1 3 2 7 9 8 4 6 5
2*e+i |1 9 5 8 4 3 6 2 7
2*e+2*i|1 6 8 9 2 4 5 7 3

Even with the abbreviated version of the multiplication table, we can see that
this ring has nine elements and has no zero divisors. By corollary 9.1, K is a
field. We could call K the field of “complex numbers modulo 3.”

We can now form polynomials in K in Mathematica using the standard
multiplication.

Y = (1 + i) x + 2;
Z = (2 + i) x̂2 + 2 i x + 1 + 2i;
Ŷ2
(2 + (1 + i)x)2

Y Z
(2 + (1 + i)x)(1 + 2i+ 2ix+ (2 + i)x2)

Mathematica leaves the last two expressions in factored form. If we used the
dot notation

Y.Y
1 + x+ ix+ 2ix2

Y.Z
2 + i+ 2x+ ix+ 2x2 + ix2 + x3

instead, Mathematica expands the expressions. To do these same operations
in GAP, we first define x to be an indeterminate in the ring K.

gap> x := Indeterminate(K,"x");
x
gap> y := (e+i)*x + 2*e;
(e+i)*x-e
gap> z := (2*e + i)*x^2 + 2*i*x + e + 2*i;
(2*e+i)*x^2+2*i*x+(e+2*i)
gap> y^2;
2*i*x^2+(e+i)*x+e
gap> y*z;
x^3+(2*e+i)*x^2+(2*e+i)*x+(2*e+i)

Mathematica and GAP can factor polynomials defined over any finite field.
In the next chapter we will prove that such factorizations are unique. Even
though the polynomial x2 + 1 is irreducible over the integers, we can factor
the polynomial over the field K:
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Factor[x̂2 + 1, K]

gap> Factor(x^2 + 1, K);
[ x+i, x+2*i ]

The polynomial rings defined over integral domains are the basic building
blocks used for forming new integral domains and fields.

11.2 The Field of Quotients

In the last section, we found a way to form integral domains by imitating
the familiar polynomials from high school algebra. In this section we will
show how we can form a field from an integral domain, imitating grade school
fractions.

We view a standard fraction as one integer divided by another. We want
to extend this idea, and form fractions out of any integral domain. However,
even with standard fractions there is a complication, since we consider

2
4

=
3
6
,

even though both the numerators and denominators are different. What we
mean to say is that these two fractions are equivalent , where we define

x

y
≡ u

v
⇔ x · v = y · u.

This forms an equivalence relation on the set of fractions x/y. We have already
seen equivalence relations while working with cosets of a group. What we call
a rational number is really a set of fractions of the form x/y that are all
equivalent.

DEFINITION 11.3 Let K be an integral domain, and let P denote the
set of all ordered pairs (x, y) of elements of K, with y nonzero:

P = {(x, y) | x, y ∈ K and y 6= 0}.

We define a relation on P by

(x, y) ≡ (u, v) if x · v = y · u.

LEMMA 11.2
The above relation is an equivalence relation on P .
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PROOF We need to show that the relation is reflexive, symmetric, and
transitive. Let(x, y), (u, v), and (s, t) be arbitrary elements of P .

Reflexive:
(x, y) ≡ (x, y)

is equivalent to saying x · y = x · y which is, of course, true. So this relation
is reflexive.

Symmetric:

(x, y) = (u, v) =⇒ x · v = y · u =⇒ u · y = v · x =⇒ (u, v) ≡ (x, y),

so this relation is also symmetric.
Transitive:

If (x, y) ≡ (u, v) and (u, v) ≡ (s, t), then

(x, y) ≡ (u, v) =⇒ x · v = y · u =⇒ x · v · t = y · u · t,

(u, v) ≡ (s, t) =⇒ u · t = v · s =⇒ u · t · y = v · s · y.

These two statements imply that x · v · t = v · s · y. Notice that in the last
step we had to use the commutativity of multiplication. Using commutativity
again, we have x · t · v = y · s · v, and since K has no zero divisors and v is
nonzero, we can use lemma 9.4 to say that x · t = y · s. Then

x · t = y · s =⇒ (x, y) ≡ (s, t),

so we have the transitive law holding. Therefore, this relation is an equivalence
relation.

DEFINITION 11.4 Let K be an integral domain, let P denote the set

P = {(x, y) | x, y ∈ K and y 6= 0},

and let the equivalence relation on P be

(x, y) ≡ (u, v) if x · v = y · u.

For each (x, y) in P , let
(
x
y

)
denote the equivalence class of P that contains

(x, y). Let Q denote the set of all equivalence classes
(
a
b

)
. The set Q is called

the set of quotients for K.

This definition allows us to replace an equivalence of two expressions with
an equality. We now have that(x

y

)
=
(u
v

)
if, and only if, x · v = u · y.

The next step is to define addition and multiplication on our set of quotients
Q. Once again, we will use the rational numbers to guide us in the definition.
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LEMMA 11.3
Let K be an integral domain, and let Q be the set of quotients for K. The

addition and multiplication of two equivalence classes in Q, defined by(x
y

)
+
(u
v

)
=
(x · v + u · y

y · v

)
and (x

y

)
·
(u
v

)
=
(x · u
y · v

)
,

are both well defined operations on Q. That is, the sum and product do not
depend on the choice of the representative elements (x, y) and (u, v) of the
equivalence classes.

PROOF The first observation we need to make is that the formulas for
the sum and product both form valid elements of Q, since y · v is nonzero as
long as y and v are both nonzero.

Next let us work to show that addition does not depend on the choice of
representative elements (x, y) and (u, v). That is, if

(
x
y

)
=
(
a
b

)
, and

(
u
v

)
=(

c
d

)
, we need to show that(x

y

)
+
(u
v

)
=
(a
b

)
+
( c
d

)
.

That is, we have to prove that(x · v + u · y
y · v

)
=
(a · d+ c · b

b · d

)
.

Since
(
x
y

)
=
(
a
b

)
and

(
u
v

)
=
(
c
d

)
, we have x · b = a · y and u · d = c · v.

Multiplying the first equation by v · d and the second by y · b, we get

x · b · v · d = a · y · v · d

and
u · d · y · b = c · v · y · b.

Adding this two equations together and factoring, we get

(x · v + u · y) · b · d = (a · d+ c · b) · y · v.

This gives us (x · v + u · y
y · v

)
=
(a · d+ c · b

b · d

)
,

which is what we wanted.
We also need to show that multiplication is well defined, that is(x

y

)
·
(u
v

)
=
(a
b

)
·
( c
d

)
.
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But since x · b = a · y and u · d = c · v, we can multiply these two equations
together to get

x · b · u · d = a · y · c · v,

or
(x · u) · (b · d) = (a · c) · (y · v).

Therefore, (x · u
y · v

)
=
(a · c
b · d

)
,

so multiplication also is well defined.

THEOREM 11.1: The Field of Quotients Theorem
Let K be an integral domain, and let Q be the set of quotients for K. Then Q

forms a field using the above definitions of addition and multiplication. The
field Q is called the field of quotients for K.

PROOF We have already noted that addition and multiplication are
closed in Q.

We next want to look at the properties of addition. From the definition,(x
y

)
+
(u
v

)
=
(x · v + u · y

y · v

)
=
(u
v

)
+
(x
y

)
,

we see that addition is commutative. Let z be any nonzero element of K.
Then

(
0
z

)
acts as the additive identity:(u

v

)
+
(0
z

)
=
(0
z

)
+
(u
v

)
=
(0 · v + u · z

z · v

)
=
(u · z
v · z

)
=
(u
v

)
.

Likewise,
(−u
v

)
is the additive inverse of

(
u
v

)
:(u

v

)
+
(−u
v

)
=
(−u
v

)
+
(u
v

)
=
(−u · v + u · v

v · v

)
=
( 0
v · v

)
=
(0
z

)
.

The associativity of addition is straightforward:((x
y

)
+
(u
v

))
+
(a
b

)
=
(x · v + u · y

y · v

)
+
(a
b

)
=
(x · v · b+ u · y · b+ a · y · v

y · v · b

)
,

while (x
y

)
+
((u

v

)
+
(a
b

))
=
(x
y

)
+
(u · b+ a · v

v · b

)
=
(x · v · b+ u · y · b+ a · y · v

y · v · b

)
.
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So Q forms a group with respect to addition.
Next we look at the properties of multiplication. Multiplication is obviously

commutative, since(x
y

)
·
(u
v

)
=
(x · u
y · v

)
=
(u · x
v · y

)
=
(u
v

)
·
(x
y

)
.

We also have associativity for multiplication:((x
y

)
·
(u
v

))
·
(a
b

)
=
(x · u
y · v

)
·
(a
b

)
=
(x · u · a
y · v · b

)
=
(x
y

)
·
(u · a
v · b

)
=
(x
y

)
·
((u

v

)
·
(a
b

))
.

The element
(
z
z

)
acts as the multiplicative identity for any z 6= 0.(z
z

)
·
(x
y

)
=
(x
y

)
·
(z
z

)
=
(x · z
y · z

)
=
(x
y

)
.

If x = 0, then
(
x
y

)
=
(

0
z

)
. Otherwise, the multiplicative inverse of

(
x
y

)
is(

y
x

)
, since (x

y

)
·
(y
x

)
=
(x · y
y · x

)
=
(z
z

)
.

Thus, every nonzero element ofQ has a multiplicative inverse. Finally, we have
the two distribution laws. Because of the commutativity of multiplication, we
only need to check one. Since((u

v

)
+
(a
b

))
·
(x
y

)
=
(u · b+ a · v

v · b

)
·
(x
y

)
=
(u · b · x+ a · v · x

v · b · y

)
,

while (u
v

)
·
(x
y

)
+
(a
b

)
·
(x
y

)
=
(u · x
v · y

)
+
(a · x
b · y

)
=
(u · x · b · y + a · x · v · y

v · y · b · y

)
=
(u · x · b+ a · x · v

v · y · b

)
,

we have the distributive laws holding, and therefore Q is a field.

In the construction of the field Q, we never used the identity element of K.
Hence, if we started with a commutative ring without zero divisors instead
of an integral domain, the construction would still produce a field. We can
mention this as a corollary.
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COROLLARY 11.1
Let K be any commutative ring without zero divisors. Then the set of quo-

tients Q defined above forms a field.

Although the field of quotients was designed from the way we formed ra-
tional numbers from the set of integers, we can apply the field of quotients to
any other integral domain. What happens if we form a field of quotients for
the polynomial ring K[x]?

Let us first consider the most familiar polynomial ring Z[x]—the polyno-
mials with integer coefficients. An element in the field of quotients would
be of the form p(x)/q(x), where p(x) and q(x) are polynomials with integer
coefficients. But we consider two such fractions p(x)/q(x) and r(x)/s(x) to
be equivalent if p(x) · s(x) = r(x) · q(x). For example, the two fractions

ClearDefs
A = (3 x̂2 + 5 x – 2) / (2 x̂2 + 7 x + 6)
B = (3 x̂2 – 4 x + 1) / (2 x̂2 + x – 3)

can be seen to be equivalent, since

Expand[(3 x̂2 + 5 x – 2) * (2 x̂2 + x – 3)]
Expand[(3 x̂2 – 4 x + 1) * (2 x̂2 + 7 x + 6)]

yield the same result. Other ways of showing that A and B are equivalent is
by computing either of these two commands:

Simplify[A – B]
Simplify[A/B]

GAP has no problem is seeing that these rational functions are equivalent.
gap> x := Indeterminate(Integers,"x");
x
gap> A := (3*x^2 + 5*x - 2)/(2*x^2 + 7*x + 6);
(3*x-1)/(2*x+3)
gap> B := (3*x^2 - 4*x + 1)/(2*x^2 + x - 3);
(3*x-1)/(2*x+3)

We call the field of quotients for the polynomials Z[x] the field of rational
functions in x, denoted Z(x).

It should be mentioned that a rational function, in this context, is not
a function! The rational functions A and B are merely elements of Z(x),
which may in turn be arguments for some homomorphism. To say that “A is
undefined when x = −2” or “B is undefined at x = 1” is meaningless, since x
is not a variable for which numbers can be plugged in. Rather, x is merely a
symbol that is used as a place holder. This is why we can say that A and B
are truly equal, even though the “graphs” would disagree at two points.

We can form rational functions from any integral domain K. This produces
the field K(x), the rational functions in x over K.

For example, let us use the field of order 9 that was defined by tables 11.1
and 11.2.
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InitDomain[3]
Define[î2, –1]
K = Ring[{i}]

Here is a typical rational function in x over K:

A = (i x̂2 + x̂2 + 2 x i + 2 x + 2)/(x̂2 + i x + 1)

We can have Mathematica factor this over a finite field K with the command

Factor[A, K]

According to this factorization, the rational function A does not simplify. Or
does it? Consider a simpler rational function.

B = (2 x – i) / (x – i x + i)
Simplify[A–B]

Mathematica shows us that these two expressions are the same rational func-
tion in K(x). Again, GAP has no problem finding the simplification.

gap> InitRing("e","i");
gap> DefineRing("K",[3,3],[[e,i],[i,-e]]);
gap> x := Indeterminate(K,"x");
x
gap> A := (i*x^2 + x^2 + 2*x*i + 2*x + 2)/(x^2 + i*x +1);
((e+i)*x+(2*e+i))/(x+(e+2*i))

As you can see from this experiment, the definition of the quotient field
does not depend on whether elements in the integral domain can be factored
uniquely. However, unique factorization is an important property that we will
study in depth in chapter 12.

11.3 Complex Numbers

We have already seen some examples of complex numbers in the form a+bi,
where i represents the “square root of negative one.” Mathematica uses a
special blackboard i to display the imaginary number, but this can be entered
into Mathematica as I. This allows us to perform standard arithmetic on
complex numbers.

(2 + 3 I) + (4 – I)
6 + 2i
(2 + 3 I) * (4 – I)
11 + 10i
(2 + 3 I) / (4 – I)
5
17 + 14i

17
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GAP gives a more mysterious notation for the square root of −1:

gap> Sqrt(-1);
E(4)

The short explanation for this is that i is the fourth root of 1, that is, i4 = 1.
E(4) is GAP’s notation for e4, the principal fourth root of 1. Later in this
section we will see how to find en for general n.

In spite of the unusual notation, we can still perform complex arithmetic
in GAP, using E(4) for i.

gap> (2 + 3*E(4)) + (4 - E(4));
6+2*E(4)
gap> (2 + 3*E(4)) * (4 - E(4));
11+10*E(4)
gap> (2 + 3*E(4)) / (4 - E(4));
5/17+14/17*E(4)

In either presentation it is not at all clear where the “i” or e4 came from. This
gives the complex numbers a rather mysterious quality that is compounded
by their common misnomer, “imaginary numbers.”

Instead of considering quantities of the form a+bi, we will consider ordered
pairs (a, b). We will declare the following properties for ordered pairs of real
numbers:

1. (a, b) = (c, d) if, and only if, a = c and b = d.

2. (a, b) + (c, d) = (a+ c, b+ d).

3. (a, b) · (c, d) = (a · c− b · d, a · d+ b · c).

We define C to be the set of all ordered pairs of real numbers.

PROPOSITION 11.3
The set C forms a field, called the field of complex numbers. This field con-

tains a subfield isomorphic to the real numbers.

PROOF Because the real numbers are closed with respect to both addition
and multiplication, it is clear that both (a+c, b+d) and (a ·c−b ·d, a ·d+b ·c)
would be defined for all real numbers a, b, c, and d. Thus, C is closed with
respect to both addition and multiplication. Furthermore, since

(c, d) + (a, b) = (c+ a, d+ b) = (a+ c, b+ d) = (a, b) + (c, d)

and

(c, d) · (a, b) = (c · a− d · b, c · b+ d · a) = (a · c− b · d, a · d+ b · c) = (a, b) · (c, d),



326 Abstract Algebra: An Interactive Approach

we see that both addition and multiplication are commutative. The element
(0, 0) acts as the zero element, since

(0, 0) + (a, b) = (a, b).

The addition inverse of (a, b) is (−a,−b), since

(a, b) + (−a,−b) = (0, 0).

Note that the order on the last two sums is irrelevant, since addition has
already been shown to be commutative.

To show that addition is associative, we note that

(a, b) +
(

(c, d) + (e, f)
)

= (a, b) + (c+ e, d+ f) = (a+ c+ e, b+ d+ f),

while(
(a, b) + (c, d)

)
+ (e, f) = (a+ c, b+ d) + (e, f) = (a+ c+ e, b+ d+ f).

To show that multiplication is associative is a little more complicated. We
have

(a, b) ·
(

(c, d) · (e, f)
)

= (a, b) · (c · e− d · f, c · f + d · e) =
(a · c · e− a · d · f − b · c · f − b · d · e, a · c · f + a · d · e+ b · c · e− b · d · f),

and(
(a, b) · (c, d)

)
· (e, f) = (a · c− b · d, a · d+ b · c) · (e, f) =

(a · c · e− b · d · e− a · d · f − b · c · f, a · c · f − b · d · f + a · d · e+ b · c · e).

By comparing these two, we see that they are equal, so multiplication is
associative.

We need to test the distributive laws next. The left distributive law we can
get by expanding:

(a, b) ·
(

(c, d) + (e, f)
)

= (a, b) · (c+ e, d+ f)
= (a · c+ a · e− b · d− b · f, a · d+ a · f + b · c+ b · e)
= (a · c− b · d, a · d+ b · c) + (a · e− b · f, a · f + b · e)
= (a, b) · (c, d) + (a, b) · (e, f).

Thus, the left distributive law is satisfied. However, the right distributive law
follows from the left distributive law, and using the commutative multiplica-
tion: (

(a, b) + (c, d)
)
· (e, f) = (e, f) ·

(
(a, b) + (c, d)

)
= (e, f) · (a, b) + (e, f) · (c, d)
= (a, b) · (e, f) + (c, d) · (e, f).
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We have now shown that the set C forms a commutative ring. To show that
this ring has a multiplicative identity, we consider the element (1, 0). Since
the ring is commutative, we only need to check

(1, 0) · (a, b) = (1 · a− 0 · b, 1 · b+ 0 · a) = (a, b).

Finally, we need to show that every nonzero element has an inverse. If (a, b)
is nonzero, then a2 + b2 will be a positive number. Hence(

a

a2 + b2
,
−b

a2 + b2

)
is an element of C. The product

(a, b) ·
(

a

a2 + b2
,
−b

a2 + b2

)
=
(
a2 + b2

a2 + b2
,
−a · b+ a · b
a2 + b2

)
= (1, 0)

verifies that

(a, b)−1 =
(

a

a2 + b2
,
−b

a2 + b2

)
since multiplication is commutative. Therefore, the set C forms a field.

The second part of this proposition is to show that C contains a copy of
the real numbers as a subfield. Consider the mapping f , which maps real
numbers to C, given by

f(x) = (x, 0).

To check that f is a homomorphism, we check that

f(x) + f(y) = (x, 0) + (y, 0) = (x+ y, 0) = f(x+ y)

and

f(x) · f(y) = (x, 0) · (y, 0) = (x · y + 0, 0 + 0) = (x · y, 0) = f(x · y).

Thus, f is a homomorphism from the reals to C. It is clear that f is one-to-
one, since (x, 0) = (y, 0) if, and only if, x = y. Thus, f is an embedding of
the reals into C, and thus the image of f :

{(x, 0) | x ∈ R}

is isomorphic to the real numbers.

LEMMA 11.4
There are exactly two solutions to the equation x2 = (−1, 0) in the field C,

given by (0,±1).

PROOF If (a, b) solves the equation x2 = (−1, 0), we have that

(a, b)2 = (a2 − b2, 2a · b) = (−1, 0).
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Thus, a and b must satisfy the two equations

a2 − b2 = −1

and
2a · b = 0.

The second equation implies that either a or b must be 0. But if b = 0, then
the first equation becomes a2 = −1, which has no real solutions. Thus, a = 0,
and −b2 = −1. There are two real solutions for b: ±1. Thus, (0, 1) and
(0,−1) both solve the equations for a and b, and so

(0, 1)2 = (0,−1)2 = (−1, 0).

We can now convert ordered pairs to the customary notation by defining
i = (0, 1), and identifying the identity element (1, 0) with 1. Then any complex
number (a, b) can be written

(a, b) = (a, 0) + (0, b) = a · (1, 0) + b · (0, 1) = a+ bi.

We can rewrite the rules for addition and multiplication in C as follows:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

(a+ bi) · (c+ di) = (a · c− b · d) + (b · c+ a · d)i.

In working with groups, we found that the group automorphisms revealed
many of the important properties of the group. This will also be true for
rings. Let us extend the group automorphisms to apply to rings.

DEFINITION 11.5 A ring automorphism is a one-to-one and onto ring
homomorphism that maps a ring to itself.

LEMMA 11.5
The set of all ring automorphisms of a given ring forms a group.

PROOF We first note that if f(x) is an automorphism of a ring R, then
f−1(x) is well defined, since f(x) is both one-to-one and onto. We see that

f(f−1(x) + f−1(y)) = f(f−1(x)) + f(f−1(y)) = x+ y,

so f−1(x+ y) = f−1(x) + f−1(y). Also,

f(f−1(x) · f−1(y)) = f(f−1(x)) · f(f−1(y)) = x · y,
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so f−1(x · y) = f−1(x) · f−1(y). Thus, f−1 is a ring homomorphism. Since f
was both one-to-one and onto, f−1 is both one-to-one and onto. Therefore,
f−1 is a ring automorphism.

If f and φ are two ring automorphisms, then

f(φ(x+ y)) = f(φ(x) + φ(y)) = f(φ(x)) + f(φ(y))

and
f(φ(x · y)) = f(φ(x) · φ(y)) = f(φ(x)) · f(φ(y)).

The combination f(φ(x)) is also one-to-one and onto, so this product, which
we can denote f · φ, is a ring automorphism. Since the set of all ring auto-
morphisms is closed with respect to multiplication and inverses, and the set
of all ring automorphisms is a subgroup of the set of all group automorphisms
with respect to addition, we see that this set is a group.

The natural question that arises is determining all of the group of ring
automorphisms of C. This is in fact a difficult question to answer in general,
but if we only consider the automorphisms that send each real number to
itself, the question becomes easy to answer.

PROPOSITION 11.4
Besides the identity automorphism, there is another ring automorphism on

C, given by
φ
(

(a, b)
)

= (a,−b).
In fact, these are the only automorphisms for which φ(x) = x for all real
numbers x.

PROOF We check that

φ
(

(a, b)
)

+ φ
(

(c, d)
)

= (a,−b) + (c,−d) = (a+ c,−b− d)

= φ
(

(a+ c, b+ d)
)

= φ
(

(a, b) + (c, d)
)
.

φ
(

(a, b)
)
· φ
(

(c, d)
)

= (a,−b) · (c,−d) = (a · c− b · d,−a · d− b · c)
= φ

(
(a · c− b · d, a · d+ b · c)

)
= φ

(
(a, b) · (c, d)

)
.

Thus, φ is a homomorphism. Since (a,−b) = (0, 0) if, and only if, a and b are
both 0, the kernel of φ is just {(0, 0)}, and so φ is one-to-one. Also, φ is onto,
since φ

(
(a,−b)

)
= (a, b). Therefore, φ is an automorphism.

To show that there are exactly two such automorphisms, suppose that
f(x) is an automorphism of C for which f(x) = x for all real numbers x.
Then f

(
(0, 1)

)2 = f
(

(0, 1)2
)

= f
(

(−1, 0)
)

= (−1, 0), so by lemma 11.4
f
(

(0, 1)
)

= (0,±1). If f
(

(0, 1)
)

= (0, 1), then f(x) = x for all x ∈ C, and if
f
(

(0, 1)
)

= (0,−1), then f(x) = φ(x) for all x.
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The ring automorphism found in proposition 11.4 is called the conjugate.
The conjugate of z is generally denoted by z. That is, if z = a + bi, then
z = φ(z) = a− bi. The conjugate automorphism is defined in Mathematica as

Conjugate[3 + 4 I]

or in GAP by

gap> ComplexConjugate(3 + 4*E(4));
3-4*E(4)

It is an easy computation to see that

z · z = (a+ bi) · (a− bi) = a2 + b2.

Thus, z · z is always a non-negative real number.

DEFINITION 11.6 We say the absolute value of a complex number
z = a+ bi is

|z| =
√
z · z.

The geometric interpretation of |z| is the distance from (a, b) to the origin.
In Mathematica, the function Abs[z] gives the absolute value for both real
and complex numbers. There is no corresponding function in GAP, because
GAP’s square root function only works for rational numbers, and puts the
answer in a nonstandard format.

PROPOSITION 11.5
For any two elements x and y in C,

|x · y| = |x| · |y|.

PROOF We have

|x·y| =
√
x · y · x · y =

√
x · y · x · y =

√
x · x · y · y =

√
x · x·

√
y · y = |x|·|y|.

Thus, |x · y| = |x| · |y|.

From polar coordinates it is known that any point in the plane can be
located by knowing its distance r from the origin, and its angle θ from the
positive x-axis.

Since r is the absolute value of (x+yi), perhaps the angle θ is also significant
to the complex number. By using trigonometry in figure 11.1, we have that

x+ yi = r(cos θ + i sin θ).

This form is called the polar form of the complex number x + yi. The angle
θ is called the argument of x+ yi. We can find the approximate argument of
a complex number (in radians) with the Mathematica command
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FIGURE 11.1: Polar coordinates for a complex number

N[Arg[3 + 4 I]]

Mathematica always finds an angle θ between −π and π, but we can also
consider the angles

. . . , θ − 6π, θ − 4π, θ − 2π, θ, θ + 2π, θ + 4π, θ + 6π, . . . .

All of these angles have the same sine and cosine, and hence are interchange-
able in the polar coordinate system. We call these angles coterminal . The set
of angles coterminal to θ can be written

{θ + 2πn | n ∈ Z}.

For example, the polar form of −
√

3− i is given by

2
(

cos
(
−5π

6

)
+ i sin

(
−5π

6

))
,

as seen from the commands

Abs[– Sqrt[3] – I]
2
Arg[– Sqrt[3] – I]
− 5π

6

However, we could have used any coterminal angle instead of the one Mathe-
matica gave us. Thus,

2
(

cos
(

7π
6

)
+ i sin

(
7π
6

))
, 2

(
cos
(

19π
6

)
+ i sin

(
19π
6

))
, . . .

are also polar forms of −
√

3−i. The usefulness of the polar form of a complex
number is hinted at by the next lemma, which makes use of the trigonometric
identities

cos(A+B) = cos(A) cos(B)− sin(A) sin(B), and
sin(A+B) = sin(A) cos(B) + cos(A) sin(B).
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LEMMA 11.6
If z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2), then

z1 · z2 = r1 · r2

(
cos(θ1 + θ2) + i sin(θ1 + θ2)

)
.

So the argument of the product is the sum of the arguments.

PROOF We note that

z1 · z2 = r1(cos θ1 + i sin θ1) · r2(cos θ2 + i sin θ2) =
r1 · r2((cos θ1 · cos θ2 − sin θ1 · sin θ2) + i · (cos θ1 · sin θ2 + sin θ1 · cos θ2)).

Using the trigonometric identities, this simplifies to

z1 · z2 = r1 · r2

(
cos(θ1 + θ2) + i sin(θ1 + θ2)

)
.

THEOREM 11.2: De Moivre’s Theorem
If n is an integer, and z = r(cos θ + i sin θ) is a nonzero complex number in

polar form, then
zn = rn

(
cos(nθ) + i sin(nθ)

)
.

PROOF Let us first prove the theorem for positive values of n. For n = 1,
the statement is obvious. Let us assume that the statement is true for the
previous case. That is,

zn−1 = rn−1
(

cos((n− 1)θ) + i sin((n− 1)θ)
)
.

We want to prove that the theorem holds for n as well. Using lemma 11.6, we
have

zn = zn−1 · z
= rn−1

(
cos((n− 1)θ) + i sin((n− 1)θ)

)
·
(
r(cos θ + i sin θ)

)
= rn(cos((n− 1)θ + θ) + i sin((n− 1)θ + θ))
= rn(cos(nθ) + i sin(nθ)).

Thus, the theorem is true for n, and hence by induction it is true whenever n
is positive.

If z is nonzero, then letting n = 0 gives

r0(cos(0 θ) + i sin(0 θ)) = 1(1 + i · 0) = 1 = z0.

So the theorem holds for n = 0. If z is nonzero, then r > 0, and so(
r−n

(
cos(−nθ) + i sin(−nθ)

) )
·
(
rn
(

cos(nθ) + i sin(nθ)
) )

=

r−n+n
(

cos(−nθ + nθ) + i sin(−nθ + nθ)
)

= r0(cos 0 + i sin 0) = 1.
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Now, if n < 0, then the theorem holds for −n, and so

z−n
(
rn(cos(nθ) + i sin(nθ))

)
= 1,

hence
rn(cos(nθ) + i sin(nθ)) = zn

even when n < 0.

De Moivre’s theorem (11.2) allows us to quickly raise a complex number to
an integer power. For example, we can compute (−

√
3− i)5 to be

25

(
cos
(
−25π

6

)
+ i sin

(
−25π

6

))
= 32

(√
3

2
− i

2

)
= 16

√
3− 16i.

We can also use De Moivre’s theorem (11.2) to find the n-th root of 1. We
first define

en = cos
(

2π
n

)
+ i sin

(
2π
n

)
.

For example, e1 = 1, e2 = −1, e3 = (−1 + i
√

3)/2, and e4 = i, which we
have seen before. Then

(en)n = cos(2π) + i sin(2π) = 1,

so en is indeed one n-th root of unity. In fact, all n-th roots of 1 are given by
the numbers en, e2

n, e
3
n, . . . up to (en)n = 1.

Let us look at an example. The eighth root of unity, e8, can be entered into
Mathematica using the commands

InitDomain[0]
e8 = (1/2 + I/2) Sqrt[2]

The InitDomain command clears the previous fields that were defined, and
allows us to use the dot for the product. This allows us to consider the group
generated by e8:

G = Group[{e8}]

This gives the eight roots of unity, and shows that these elements form a
group. In fact, the n-th roots of unity will form a cyclic group isomorphic to
Zn.

By rearranging the elements of G, we can create a circle graph as in fig-
ure 11.2 with the elements in the proper positions in the complex plane.

G = { I, (1/2 + 1/2 I)Sqrt[2], 1 ,(1/2 – 1/2 I)Sqrt[2],– I,
(–1/2–1/2 I)Sqrt[2],–1,(–1/2+1/2 I)Sqrt[2]}
CircleGraph[G, Mult[e8]]
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FIGURE 11.2: The eight roots of unity

We are mainly interested in those elements of this subgroup that are gen-
erators.

DEFINITION 11.7 A complex number z is called a primitive n-th root
of unity if the powers of z produce all n solutions to the equation xn = 1.

It is clear that en is a primitive n-th root of unity, but also (en)k is a
primitive n-th root of unity if k and n are coprime.

We have already seen that GAP displays
√
−1 as e4, which is a primitive

root of unity, but GAP also calculates other square roots in terms of primitive
roots of unity. Consider

√
2:

gap> Sqrt(2);
E(8)-E(8)^3

Since e8 = (1 + i)/
√

2 and e3
8 = (−1 + i)/

√
2, indeed e8 − e3

8 =
√

2. Here is a
less obvious example.

gap> Sqrt(7);
E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23+E(28)^27

Apparently
√

7 can be expressed in term of e28. In fact, the square root of
any rational number can be expressed in terms of some root of 1.

We have seen that we can use De Moivre’s theorem 11.2 to raise a complex
number to an integer power, or even a rational power. Is it possible to use
this formula to raise a complex number to any real number, or even raise a
number to a complex power?
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In most fields, raising an element to the power of an element is absurd.
Even in the real number system we will discover that we must utilize the
exponential function ex to compute quantities such as 2

√
2. We use that fact

that 2 = eln 2, and so

2
√

2 =
(
eln 2

)√2
= e((ln 2)

√
2).

The key algebraic property of the exponential function is that

ex+y = ex · ey for all x, y ∈ R.

This indicates that the exponential function is a group homomorphism map-
ping the additive group of real numbers to the multiplicative group of real
numbers. This homomorphism enables us to consider raising an element of
the real numbers to the power of an element.

Can we extend the exponential function into a group homomorphism from
the additive structure of C (denoted C+), to the multiplicative structure C∗?
If such a group homomorphism exists, then

ea+bi = ea · ebi = ea · (ei)b.

Mathematica indicates that the value of ei is (cos 1 + i sin 1). Problems 11.21
through 11.23 show three ways of proving this, all involving calculus. There
is in fact no way to prove that ei = cos 1 + i sin 1 without calculus. But given
that this is true, we then have by De Moivre’s theorem (11.2) that

ea+bi = ea · (ei)b = ea · (cos b+ i sin b)

whenever b is an integer. We will define this as the exponential function for all
complex numbers. Notice that radian measure must be used in this formula.

PROPOSITION 11.6
For z = a+ bi, the function

f(z) = ea · (cos b+ i sin b)

defines a group homomorphism from C+ to C∗, which is an extension of the
standard exponential function. This function is called the complex exponential
function, and is also denoted ez.

PROOF If z1 = a1 + b1i, and z2 = a2 + b2i, we observe that

f(z1 + z2) = ea1+a2(cos(b1 + b2) + i sin(b1 + b2)).

By lemma 11.6, this equals

ea1(cos(b1) + i sin(b1)) · ea2(cos(b2) + i sin(b2)) = f(z1) · f(z2).
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Thus, f is a group homomorphism from C+ to C∗.

This allows us another way of expressing en. Notice that

e2πi/n = cos
(

2π
n

)
+ i sin

(
2π
n

)
= en.

So we now have a more succinct way of defining the n-th root of 1.
The real exponential function is one-to-one, but is not onto since there is

no number for which ex = −1. However, the complex exponential function
is onto, since for every nonzero complex number in polar form, z = r(cos θ +
i sin θ), there is a complex number whose exponential is z, namely ln(r) + iθ.
The drawback of the complex exponential function is that it is not one-to-one!
The kernel of this homomorphism is the set

N = f−1(1) = {2kπi | k ∈ Z}.

DEFINITION 11.8 For any nonzero complex number z, we define the
complex logarithm of z, denoted log(z), to be the set of elements x such that
ex = z.

Notice that we use the function ln(x) to denote the real logarithm, while
we use log(z) to denote the complex logarithm. We have already observed
that when z is written in polar form, z = r(cos θ + i sin θ), that one value of
x that satisfies the equation is x = ln(r) + θi. We also know that f−1(z) will
be a coset of the kernel of f . Thus, we have log(z) = ln(r) + θi+N .

For example, log(−1) is the set

{πi+ 2kπi | k ∈ Z} = {. . . , −5πi, −3πi, −πi, πi, 3πi, 5πi, . . .}.

The Mathematica Log function works for complex numbers, but only gives
one element of the set. Thus, we must add the kernel N to this result to
obtain the set given by log(z).

We can now define a complex number raised to a complex power, by saying

xz = (elog(x))z = ez·log(x).

Notice that this gives a set of numbers, not just a single number. Although
there will at times be an infinite number of elements in the set xz, this will
not always be the case.

PROPOSITION 11.7
For each integer n > 0, and any nonzero complex number z, then there are

exactly n values for z(1/n). Thus, there are exactly n solutions for x to the
equation xn = z.
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PROOF Let z have the polar form

z = r(cos θ + i sin θ).

Then log(z) is the set

{ln(r) + θi+ 2kπi | k ∈ Z}.

Thus, log(z)/n is given by the set{
ln(r)
n

+
(θ + 2kπ)i

n

∣∣∣∣ k ∈ Z
}
.

Thus, the exponential function of the elements of this set is given by{
e(ln(r)/n ·

(
cos
(

(θ + 2kπ)
n

)
+ i sin

(
(θ + 2kπ)

n

)) ∣∣∣∣ k ∈ Z
}

=
{
r(1/n) ·

(
cos
(

(θ + 2kπ)
n

)
+ i sin

(
(θ + 2kπ)

n

)) ∣∣∣∣ k ∈ Z
}
.

Notice that for two different values of k that differ by n, the arguments of the
cosine and sine will differ by 2π. Hence, we only have to consider the values
of k from 0 to (n− 1). This gives us the set{
r(1/n) ·

(
cos
(

(θ + 2kπ)
n

)
+ i sin

(
(θ + 2kπ)

n

)) ∣∣∣∣ k = 0, 1, 2, . . . , n− 1
}
.

However, these n solutions will have arguments that differ by less than 2π so
these n solutions are distinct.

Finally, we must show that x is an element of z(1/n) if, and only if, x solves
the equation xn = z. But for any element in the above expression, we have
that

xn = rn(1/n) ·
(

cos
(
n(θ + 2kπ)

n

)
+ i sin

(
n(θ + 2kπ)

n

))
= r(cos θ + i sin θ) = z.

Likewise, if xn = z, we can raise both sides to the (1/n)-th power to get that
the two sets (xn)(1/n) and z(1/n) are equal. Since the element x is certainly
in the first set, it must also be in the set z(1/n) that we have just computed.

This last proposition is very useful for finding square roots and cube roots
of complex numbers. This turns out to have some important applications
in finding the roots of real polynomials! In fact, complex numbers and the
functions we have defined in this section also have many applications in the
real world. The complex exponential function was fundamental to the inven-
tion of the short wave radio. The complex logarithm can be used in solving
real valued differential equations. So even though these numbers are labeled
“imaginary,” they are by no means just a figment of someone’s imagination.
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11.4 Ordered Commutative Rings

The integers, the rational numbers, and the real numbers all have one prop-
erty that most rings do not have. Given two different elements in the ring, we
can say that one of them is greater than the other. Most rings do not have
such an ordering, but we will find that some rings can be ordered in more than
one way! The orderings of a ring can give us new insight into the structure of
the ring.

We begin by making a formal definition of an ordered ring R. If there is
a way to tell whether one element is greater than another, we should be able
to distinguish those elements that are greater than zero, called the positive
elements P .

DEFINITION 11.9 A commutative ring R is ordered if there exists a
set P such that the three properties hold:

1. P is closed under addition.

2. P is closed under multiplication.

3. For each x in R, one and only one of the following statements is true:

x ∈ P, x = 0, −x ∈ P.

The third property is sometimes called the law of trichotomy. With this
law, we can define what it means for one element to be greater than another.

DEFINITION 11.10 We say that x is greater than y, denoted x > y,
if x − y ∈ P . Likewise, we say that x is smaller than y, denoted x < y, if
y − x ∈ P . By the law of trichotomy, either

x > y, x < y, or x = y.

LEMMA 11.7

If x, y, and z are elements in an ordered ring, then we have the following
three properties:

1. If x > y, then x+ z > y + z.

2. If x > y and z > 0, then x · z > y · z.

3. If x > y and y > z, then x > z.



Integral Domains and Fields 339

PROOF To prove the first statement, note that since x > y, we have that

x− y ∈ P.

But then
(x+ z)− (y + z) ∈ P

and so x+ z > y + z.
For the second statement, we have that x > y and z > 0, and so (x−y) ∈ P

and z ∈ P . Since P is closed under multiplication, we have that

(x− y) · z = x · z − y · z ∈ P,

and so x · z > y · z.
Finally, if x > y and y > z, then both x− y ∈ P and y − z ∈ P . Since P is

closed under addition, we have that

(x− y) + (y − z) = x− z ∈ P,

and so x > z.

Given a ring that has an ordering, one of the great challenges is determining
the set of positive elements P . There are at least some elements that must be
in P .

PROPOSITION 11.8
For any nonzero element x in an ordered ring, x2 is in P .

PROOF Since x is nonzero, by the law of trichotomy either x > 0, or
−x > 0. If x > 0 then

x2 = x · x > 0.

On the other hand, if −x > 0, then

x2 = (−x) · (−x) > 0.

Thus, in either case x2 is in P .

An immediate consequence of this is that if the ring has an identity e, then
e > 0, since e = e2. An additional statement can be proved if the ring is an
integral domain.

COROLLARY 11.2
If R is an ordered integral domain with multiplicative identity 1, and n is any

positive integer, then n · 1 is in P . In particular, the characteristic of R must
be 0.
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PROOF Since 12 = 1 we have from proposition 11.8 that 1 > 0. Proceed-
ing by induction, let us assume that (n− 1) · 1 > 0, and show that n · 1 > 0.
But this is easy, since

n · 1 = (n− 1) · 1 + 1 · 1 = (n− 1) · 1 + 1 > 0.

Thus, we have that n · 1 > 0 for every positive number n. This immediately
implies that the characteristic is zero, for if R had a positive characteristic p,
then p · 1 = 0, and we would have 0 > 0, a contradiction.

The standard examples of ordered rings are the integers, the rationals, and
the real numbers. It should be noted that the complex numbers do not form
an ordered ring, since i2 = −1 < 0, and by proposition 11.8, any square must
be positive.

Here is an very different example of an ordered integral domain. Consider
all numbers of the form x + y

√
2, where x and y are integers. This forms a

ring, since the product of any two such numbers yields a number of the same
form. We will call this ring Z[

√
2], the ring formed by adjoining

√
2 to Z. By

proposition 9.3, this ring has no zero divisors, so this is an integral domain.
The standard ordering of Z[

√
2] would be to let P consist of all numbers

that are positive when viewed as a real number. But let us try to find a
nonstandard ordering of Z[

√
2]. By corollary 11.2, the positive integers must

be in P , but there is no way of proving that
√

2 is in P . Thus, we can consider
an ordering where −

√
2 ∈ P . We can determine whether any other element

was in P or not in P . For example, 1 +
√

2 would be negative, since

(1 +
√

2) · (1−
√

2) = −1 < 0,

and 1−
√

2 is the sum of two numbers in P , so this term is in P .
To see what is really going on in this example, it is helpful to look at the ring

automorphisms, which were introduced in the last section. The automorphism
of particular interest is as follows:

f : Z[
√

2]→ Z[
√

2],

f(x+ y
√

2) = x− y
√

2.

This automorphism can be defined in Mathematica. We define the ring Z[
√

2]
with the command

InitDomain[0]

Since Mathematica already knows that Sqrt[2] · Sqrt[2] is 2, this is all we
need to define the ring in Mathematica. We now can define the homomor-
phism:

Homomorph[F]
Define[ F[Sqrt[2]] , – Sqrt[2] ]
CheckHomo[F,{ 1, Sqrt[2] }]
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Since we are working with an infinite ring, we included only a basis for the
ring instead of the whole ring as the second argument of the CheckHomo
command.

To define this homomorphism in GAP, we need to first define Z[
√

2], of
which GAP will express the elements in terms of e8.

gap> K := Field(Sqrt(2));
NF(8,[ 1, 7 ])
gap> f:=AlgebraHomomorphismByImagesNC(K,K,[Sqrt(2)],[-Sqrt(2)]);
[ E(8)-E(8)^3 ] -> [ -E(8)+E(8)^3 ]
gap> Image(f, 2 + 3*Sqrt(2));
2-3*E(8)+3*E(8)^3

The NC (no check) version is needed to define this homomorphism because
GAP has a problem showing that e8 − e3

8 generates the ring. Also, GAP’s
definition of the “ordering” of the elements is different than one would expect.

Sqrt(2) > 2
true

(In fact, GAP’s inequalities treat all rationals smaller than irrationals.)
If we let P denote the set of positive elements using the “standard” ordering,

and let P ′ be the set of positive elements under the unusual ordering we saw
above, then P ′ = f(P ). In fact, for any automorphism φ on an ordered ring,
we can construct an alternative way to order the ring by using φ(P ) instead
of P for the set of positive elements.

While we are working with the integral domain Z[
√

2] we might mention
what happens if we consider the field of quotients of this ring. In fact, the
resulting quotient field would be the set

x+ y
√

2, x, y ∈ Q.

Mathematica can check that multiplicative inverses exist for this set, with the
command

CheckField[{1, Sqrt[2]}]

The argument of the CheckField command is a basis for the additive group.
Mathematica finds that the inverse of C[1] + C[2] Sqrt[2] is

C[1]− C[2]
√

2
C[1]2 − 2C[2]2.

We will call this field Q[
√

2].
The command CheckField not only verifies that a field is possible, but

also defines all of the field operations into Mathematica. Thus the expression

1/(1 + Sqrt[2])
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now simplifies to
√

2− 1.
As one might guess from the Field command, it was really Q(

√
2) that we

defined earlier in GAP. Hence we can do divisions in this field.

gap> 1/(1 + Sqrt(2));
-1+E(8)-E(8)^3

In fact, we can do basic arithmetic over any combination of the en without
having to define the field separately. The smallest field containing all roots of
1, that is, Q(e3, e4, e5, e6, e7, . . .), is called the field of cyclotomics.

The automorphism f that we discovered earlier on Z[
√

2] extends to an
automorphism on Q[

√
2]. Thus, the unusual ordering that we gave to Z[

√
2]

extends to the field of quotients.

PROPOSITION 11.9

Let R be an ordered integral domain, with P the set of positive elements. Then
if Q is the field of quotients on R, then the ordering on R can be extended
in a unique way to an ordering on Q. That is, there is a unique set P ′ that
forms an ordering on Q, with

p ∈ P ⇒
(p

1

)
∈ P ′.

PROOF We will begin by showing that the ordering is uniquely deter-
mined. Since for any p in P , we have(1

p

)
·
(p

1

)
=
(p
p

)
=
(1

1

)
= 1 ∈ P,

(
1
p

)
must be considered to be positive in the new ordering. But then

(
n
p

)
must be positive whenever n and p are in P . Thus P ′ contains at least those
elements of the form

(
n
p

)
, where n and p are in P . Note that every nonzero

element in the field of quotients Q must be of one of the four forms(n
p

)
,
(−n
p

)
,
( n

−p

)
,
(−n
−p

)
,

where n and p are in P . But the first and the last expressions are equivalent,
and the middle two are also equivalent. Thus, for every nonzero element of
Q, either that element or its negative is of the form

(
n
p

)
, with n and p in P .

Thus, P ′ cannot contain any more elements besides those of the form
(
n
p

)
,

and hence P ′ is uniquely determined.
Now, suppose we consider the set of elements P ′ that can be expressed in

the form
(
n
p

)
, where n and p are in P . Does this form an ordering on Q? We

have already seen that the law of trichotomy has already been demonstrated.
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All we need to show is that P ′ is closed under addition and multiplication.
But this is clear by looking at the formulas(x

y

)
+
(u
v

)
=
(x · v + u · y

y · v

)
and (x

y

)
·
(u
v

)
=
(x · u
y · v

)
.

Thus, P ′ forms an ordering on Q, and is an extension of the ordering P .

What if we consider numbers of the form

x+ y
3
√

2 + z
3
√

4, x, y, z ∈ Q?

We can define this field in Mathematica with the command

InitDomain[0]
CheckField[{1, 2̂(1/3), 2̂(2/3)}]

We may now perform operations in this field, such as

1/(1 + 2̂(1/3) – 3 2̂(2/3))

Unfortunately, 3
√

2 is not in the field of cyclotomics, so we have to define
this field in GAP using a totally different way. We let a be an element for
which a3 = 2, that is, a will be a root to the polynomial x3 − 2.

gap> x := Indeterminate(Rationals,"x");
x
gap> K := FieldExtension(Rationals,x^3-2);
<algebraic extension over the Rationals of degree 3>
gap> a := PrimitiveElement(K);
(a)
gap> 1/(1 + a - 3*a^2);
(-7/87-17/87*a-4/87*a^2)

As one can see, 3
√

2 is entered as a, and 3
√

4 is entered as a2.
This field does not have a nontrivial automorphism, since the only element

in the field for which x3 = 2 is 3
√

2. Thus, an automorphism f on this field
sends 3

√
2 to itself, and hence f(x) = x for all x in this field. It is not surprising,

then, that this field does not have an unusual ordering, as the field Z[
√

2] did.
Let us look at one more example of a field with several possible ways of

defining an ordering on the field. Consider the set S of numbers of the form

x+ y cos
(π

9

)
+ z cos

(
2π
9

)
, x, y, z ∈ Q.

Using trigonometric identities we can multiply two such numbers together to
get a number in the same form. This can be verified by the command
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Expand[(x1 + y1 Cos[Pi/9] + z1 Cos[2 Pi/9])
* (x2 + y2 Cos[Pi/9] + z2 Cos[2 Pi/9])]

x1x2 +
y1 y2

2
+
y2 z1

4
+
y1 z2

4
+
z1 z2

2
+ x2 y1 Cos

[π
9

]
+ x1 y2 Cos

[π
9

]
+

1
2
y2 z1 Cos

[π
9

]
+

1
2
y1 z2 Cos

[π
9

]
+

1
2
z1 z2 Cos

[π
9

]
+

1
2
y1 y2 Cos

[
2π
9

]
+ x2 z1 Cos

[
2π
9

]
+ x1 z2 Cos

[
2π
9

]
− 1

2
z1 z2 Cos

[
2π
9

]
We can have Mathematica check that this is a field.

InitDomain[0]
CheckField[{1, Cos[Pi/9], Cos[2 Pi/9]}]

This command allows us to simplify rather complex divisions.

1/(4 + 3 Cos[Pi/9] – 5 Cos[2 Pi/9])
2

163

(
45− 58Cos

[
π
9

]
+ 48Cos

[
2π
9

])
Since cos(π/9) can be expressed as (e18 + 1/e18)/2, and cos(2π/9) = (e9 +
1/e9)/2, this field is a subfield of the field of cyclotomics.

gap> a := (E(18) + 1/E(18))/2;
-1/2*E(9)^4-1/2*E(9)^5
gap> b := (E(9) + 1/E(9))/2;
-1/2*E(9)^2-1/2*E(9)^4-1/2*E(9)^5-1/2*E(9)^7;
gap> K := Field(a);
NF(9,[ 1, 8 ])
gap> 1/(4 + 3*a - 5*b);
-48/163*E(9)^2-90/163*E(9)^3+10/163*E(9)^4+10/163*E(9)^5
-90/163*E(9)^6-48/163*E(9)^7

Since the elements of this field are all real there is a natural ordering of the
elements of S. Are there other ways to order this field? We want to look for
automorphisms on the field S. But consider the following homomorphism:

Homomorph[F]
Define[ F[Cos[Pi/9]], – Cos[2 Pi/9]]
Define[ F[Cos[2 Pi/9]], Cos[Pi/9] – Cos[2 Pi/9] ]
CheckHomo[F,{1, Cos[Pi/9], Cos[2 Pi/9]}]

gap> f := AlgebraHomomorphismByImagesNC(K,K,[a],[-b]);
[ -1/2*E(9)^4-1/2*E(9)^5 ] ->
[ 1/2*E(9)^2+1/2*E(9)^4+1/2*E(9)^5+1/2*E(9)^7 ]
gap> Image(f,b);
1/2*E(9)^2+1/2E(9)^7
gap> a-b;
1/2*E(9)^2+1/2E(9)^7

Notice that by defining f(a) = −b, we automatically get that f(b) = a− b in
GAP. Furthermore, we could consider the homomorphism f2(x) = f(f(x)):
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F[F[Cos[Pi/9]]]
F[F[Cos[2 Pi/9]]]

gap> f^2
[ -1/2*E(9)^4-1/2*E(9)^5,
-1/4*E(9)^2-1/2*E(9)^3-1/4*E(9)^4-1/4*E(9)^5-1/2*E(9)^6

-1/4*E(9)^7,
-1/8*E(9)^3-3/8*E(9)^4-3/8*E(9)^5-1/8*E(9)^6 ] ->

[ -1/2*E(9)^2-1/2*E(9)^7,
-1/2*E(9)^3+1/4*E(9)^4+1/4*E(9)^5-1/2*E(9)^6,
-3/8*E(9)^2-1/8*E(9)^3-1/8*E(9)^6-3/8*E(9)^7 ]

gap> Image(f^2,a);
-1/2*E(9)^2-1/2E(9)^7
gap> Image(f^2,b);
1/2*E(9)^4+1/2*E(9)^5

This shows, among other things, that f(f(a)) = b− a and f(f(b)) = −a. Are
there any other automorphisms on the field S? We can show that this is all of
them. We will take advantage of the trig identity cos(3x) = 4 cos3 x− 3 cosx.

Thus,
1
2

= cos
(

3π
9

)
= 4 cos3

(π
9

)
− 3 cos

(π
9

)
.

Thus, cos(π/9) satisfies the polynomial equation 4x3−3x = 1/2. Because f
is an automorphism, we have to have f(cos(π/9)) satisfying the same polyno-
mial equation. But there are only three roots to a cubic equation, and so there
are only three possible values for f(cos(π/9)). Each of these three solutions
produces a unique automorphism on S. By lemma 11.5, we see that the group
of automorphisms of this ring is isomorphic to Z3. The three automorphisms
give us three ways to define an ordering on the field S:

1. a >1 b if a is larger than b as real numbers.

2. a >2 b if f(a) >1 f(b).

3. a >3 b if f(f(a)) >1 f(f(b)).

Thus, we have seen that some fields may have many ways of assigning an
order to the elements, while others have only 1. The key is the number of
ring automorphisms. These ring automorphisms will play a major role in the
following chapters.

Problems for Chapter 11

Interactive Problems

11.1 In the field of “complex numbers modulo 3”:
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InitDomain[3]
Define[î2, –1]
CheckField[{1, i} ]
K = Ring[{1, i}]

gap> InitRing("e","i");
gap> DefineRing("K",[3,3],[[e,i],[i,-e]]);

Factor the polynomials x3 + 1, x3 + 2, x3 + i, x3 + 2i. What do you notice
about the factorizations? Knowing how real polynomials factor, explain what
is happening.

11.2 Consider a rational function A in the field of “complex numbers modulo
3”:

InitDomain[3]
Define[î2, –1]
CheckField[{1, i} ]
F = Ring[{1, i}]
A = (x̂2 + x + i x + 2 + 2 i)/(x̂2 + i x̂2 + x + 2 i x + 1)
Factor[A, F]

Although A does not seem to simplify, there is a quotient of first degree
polynomials that is equivalent to A. Find such a simplification.

Hint: Multiply the denominator by a constant so that the coefficient for
the highest power of x is 1. Note that GAP would immediately find this
simplification.

11.3 Follow the example of Z[ 3
√

2] to define the integral domain Z[
√

5] in
Mathematica or GAP. Then define F to be a nontrivial ring automorphism
for this domain.

11.4 Using the commands

InitDomain[0]
CheckField[ {1, Cos[ Pi/5 ] } ]

verify that all numbers of the form x + y cos(π/5), where x and y are in Q,
form a field. Find a nontrivial ring automorphism on this field.

Hint: Use Mathematica to compute cos(π/5). How is this field related to
the integral domain in problem 11.3?

11.5 Explain why the ring “complex numbers modulo 5”:

InitDomain[5]
Define[î2, –1]

gap> InitRing("e","i");
gap> DefineRing("F",[5,5],[[e,i],[i,-e]]);



Integral Domains and Fields 347

does not form a field. Can you determine a pattern as to which integers
“complex numbers modulo n” form a field?

11.6 Use GAP to calculate Sqrt(5) in terms of E(5). Use this information
to express

√
5 in terms of cos(2π/5) and cos(4π/5).

11.7 Use GAP to calculate (Sqrt(17)-1)/4 in terms of E(17). Use this
information to express (

√
17− 1)/4 in terms of cos(nπ/17).

Non-Interactive Problems

11.8 Find the characteristic of the ring defined by tables 9.3 and 9.4 in
chapter 9.

11.9 Find the characteristic of the ring T8 in table 9.6.

11.10 Prove that if n > 1, the characteristic of Zn is n.

11.11 Let R be a ring with identity. If the identity element has a finite order
in the additive group, show that this order is the characteristic of the ring.

11.12 A Boolean ring is a nontrivial ring in which all elements x satisfy
x2 = x. Prove that every Boolean ring has characteristic 2.

11.13 Prove that if a ring R has a finite number of elements, then the
characteristic of R is a positive integer.

11.14 If Q is the field of quotients of an integral domain, show that
(−a
b

)
is

the additive inverse of
(
a
b

)
in Q.

11.15 If Q is the field of quotients of an integral domain, show that the left
distributive property holds for Q:(u

v

)
·
((x

y

)
+
( z
w

))
=
(u
v

)
·
(x
y

)
+
(u
v

)
·
( z
w

)
.

11.16 If Q is the field of quotients of an integral domain, show that the
multiplication in Q is associative.

11.17 Investigate what happens if we compute the field of quotients of a
ring that is already a field. Let K = Z3, and let P be the set of ordered pairs

P = {(x, y) | x, y ∈ Z3 and y 6= 0}.

Write a list of all ordered pairs in P , and determine which pairs are equivalent
under the relation

(x, y) ≡ (u, v) if x · v ≡ y · u (Mod 3).

If Q is the set of equivalence classes, construct addition and multiplication
tables for Q and show that Q is isomorphic to Z3.
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11.18 Prove that if K is a field, then the field of quotients of K is isomorphic
to K.

11.19 List all polynomials in Z3[x] that have degree 2.

11.20 Of the second degree polynomials in Z3[x] listed in problem 11.19,
which ones cannot be factored?

Hint: A quadratic polynomial in Z3[x] cannot be factored if neither 0, 1,
nor 2 are roots.

11.21 Assume that the Taylor series for the exponential function

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ · · ·

is valid for complex numbers as well as for real numbers. Prove that ei =
(cos 1 + i sin 1).

Hint: Recall the Taylor series for sin(x) and cos(x).

11.22 Suppose we can write eix = u(x) + iv(x), where u(x) and v(x) are
real functions of a real variable x. If we assume that

d

dx
eix = u′(x) + iv′(x) = ieix,

use differential equations to prove that u(x) = cos(x) and v(x) = sin(x).
Hint: Since e0 = 1, we know that u(0) = 1 and v(0) = 0.

11.23 Assume that the limit from calculus

ex = lim
n→∞

(
1 +

x

n

)n
is valid for complex values of x as well as real values. Prove that ei = (cos 1 +
i sin 1).

Hint: Convert (1 + i/n) into polar form using an arctangent.

11.24 Find all possible values of log(−1).

11.25 Find all possible values of log(
√

3− i).

11.26 Find all possible values of 11/6.

11.27 Find all complex solutions to the equation z4 + 1 = 0.

11.28 Find all complex solutions to the equation z3 + 8 = 0

11.29 Find all possible values of (8i)1/3.

11.30 Find five values of the expression ii.
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11.31 Find five values of the expression (−i)(i/2).

11.32 Show that when x and y are both complex, the set of all values of the
expression xy forms a geometric sequence:

{. . . , a · r−3, a · r−2, a · r−1, a, a · r, a · r2, a · r3, . . .}.

11.33 Find complex numbers x and y such that the set of values for xy are
the powers of 2:

{. . . , 1
16
,

1
8
,

1
4
,

1
2
, 1, 2, 4, 8, 16, . . .}.

(See problem 11.32. There will be more than one solution to this problem.)

11.34 Show that for a fixed n, the set of all n-th roots of 1 forms a group
with respect to multiplication.

11.35 Prove that the group in exercise 11.34 is cyclic, with

en = cos
(

2π
n

)
+ i sin

(
2π
n

)
as a generator. Show that any generator of this group is a primitive n-th root
of unity.

11.36 Prove or disprove: For all complex numbers x, y, and z,

(xz) · (yz) = (x · y)z.

Note: xz and yz may both represent sets of complex numbers, so the left
hand side of this equation is the set of all possible products formed.

11.37 Prove or disprove: For all complex numbers x, y, and z,

(zx)y = z(x·y).

(See the note on problem 11.36.)

11.38 Prove or disprove: For all complex numbers x, y, and z,

(zx) · (zy) = z(x+y).

(See the note on problem 11.36.)

11.39 Show that the equation x2 +e = 0 has no solutions in an ordered ring.

11.40 Prove that if a is an element in a nontrivial ordered ring, then there
exists an element b such that b > a.
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11.41 Prove that if x and y are two elements in an ordered ring,

x2 + y2 ≥ 2xy.

11.42 Prove that if x and y are two elements in an ordered ring,

x2 + y2 ≥ −2xy.

11.43 In the integral domain Z[x], let (Z[x])+ denote the set of all poly-
nomials whose leading coefficient is positive. Prove that Z[x] is an ordered
integral domain by proving that (Z[x])+ is a set of positive elements for Z[x].

11.44 Show that in the integral domain Z[x], there is a ring automorphism
that sends x to −x. Hence, there is a second way to order the integral do-
main Z[x]. Describe the set of positive elements in this new ordering. (See
problem 11.43.)

11.45 Show that the ring of real numbers R does not have a nontrivial ring
automorphism.

Hint: First show that there is no nonstandard ordering on R.



Chapter 12

Unique Factorization

12.1 Factorization of Polynomials

Last chapter, we defined the integral domain F [x] of all polynomials with
coefficients in a field F . In this section we will investigate how such polyno-
mials factor.

We say that f(x) factors if there are two non-constant polynomials g(x) and
h(x) such that f(x) = g(x) ·h(x). We also say that both g(x) and h(x) divide
the polynomial f(x). But g(x) and h(x) may also factor into non-constant
polynomials. We want to show that we can factor f(x) into polynomials
that cannot be factored further. We also want to lay down the groundwork
for showing that the polynomials produced by this factorization are in some
sense uniquely determined.

One of the standard techniques from a standard algebra course is doing
“long division” on polynomials. A sample problem would be x3−3x2 +4x−5
divided by 2x2 − 5, done as figure 12.1. This shows that x3 − 3x2 + 4x − 5
divided by 2x2 − 5 yields x/2 − 3/2, with a remainder of 13/2x − 25/2. We
can write this as

x3 − 3x2 + 4x− 5 = (2x2 − 5) · (x/2− 3/2) + (13/2x− 25/2).

x/2 − 3/2

2x2 − 5
)
x3 − 3x2 + 4x − 5
x3 − 5/2x

− 3x3 + 13/2x− 5
− 3x3 + 15/2

13/2x− 25/2

FIGURE 12.1: Sample long division problem
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Fortunately, Mathematica©R and GAP can do this tedious long division for
you.

PolynomialQuotient[x̂3 – 3 x̂2 + 4 x – 5, 2 x̂2 – 5, x]
− 3

2 + x
2

PolynomialRemainder[x̂3 – 3 x̂2 + 4 x – 5, 2 x̂2 – 5, x]
− 25

2 + 13x
2

gap> x := Indeterminate(Rationals,"x");
gap> LongDivision(x^3 - 3*x^2 + 4*x - 5, 2*x^2 - 5);
[ 1/2*x-3/2, 13/2*x-25/2 ]

GAP makes a list of two polynomials, the first being the quotient, and the
second the remainder. This “long division” algorithm works for any field, not
just the rational numbers Q. We can prove this by induction on the degree of
the dividend.

THEOREM 12.1: The Division Algorithm Theorem
Let F be a field, and let F [x] be the set of polynomials in x over F . Let f(x)

and g(x) be two elements of F [x], with g nonzero. Then there exist unique
polynomials q(x) and r(x) in F [x] such that

f(x) = g(x) · q(x) + r(x)

and either r(x) = 0 or the degree of r(x) is less than the degree of g(x).

PROOF We begin by showing that q(x) and r(x) exist, and then prove
that they are unique. If f(x) = 0, or if the degree of f(x) is less than the
degree of g(x), we can simply let q(x) = 0, and r(x) = f(x). So we may
suppose that the degree of f(x) is at least as large as the degree of g(x). Let
n be the degree of f(x) and let m be the degree of g(x).

If n = m = 0, then f(x) and g(x) are both nonzero constants in the field F ,
so we may pick q(x) to be the constant polynomial f · g−1, and pick r(x) = 0.
Thus, we can find a suitable q(x) and r(x) when n = 0.

Now let us proceed by induction on n. That is, we will assume that we can
find a suitable q(x) and r(x) whenever the degree of f(x) is less than n. Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a0,

and
g(x) = bmx

m + bm−1x
m−1 + · · ·+ b0.

Since n is at least as large as m, we can consider the polynomial

p(x) = anb
−1
m xn−m
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of degree n−m. By lemma 11.1, p(x) · g(x) has degree n, and in fact, since

p(x) · g(x) = anx
n + anb

−1
m bm−1x

n−1 + · · ·+ anb
−1
m b0x

n−m,

the coefficient of the xn term would be an. Thus, f(x)−p(x) ·g(x) is of degree
less than n. So by the induction hypothesis, there exist polynomials z(x) and
r(x) such that

f(x)− p(x) · g(x) = z(x) · g(x) + r(x)

with the degree of r(x), less than the degree of g(x). Thus,

f(x) = (p(x) + z(x)) · g(x) + r(x).

By letting q(x) = p(x)+z(x) we have proved that suitable q(x) and r(x) exist.
Next, let us prove that q(x) and r(x) are unique. Suppose that there is a

second pair q(x) and r(x) such that f(x) = q(x) · g(x) + r(x). Then

q(x) · g(x) + r(x) = q(x) · g(x) + r(x),

or
(q(x)− q(x)) · g(x) = r(x)− r(x).

The left hand side is either 0 (when q(x) = q(x)), or has degree at least m,
since g(x) is of degree m. The right hand side is either 0, or has a degree less
than m. This is a contradiction unless both sides of the equation are 0. Thus,
q(x) = q(x) and r(x) = r(x), and the uniqueness has been proven.

This theorem not only shows that the quotient q(x) and remainder r(x) are
unique, but the proof basically follows the procedure that it used in figure 12.1.
This means that the familiar long division algorithm used for real polynomials
will in fact work for polynomials over any field. In many circumstances, we
can do this algorithm on polynomials over any integral domain.

COROLLARY 12.1
Let R be an integral domain, and let f(x) and g(x) be two polynomials in R[x].

If there is a field F containing R such that g(x) divides f(x) as polynomials
in F [x], and if the leading coefficient of g(x) is 1, then g(x) divides f(x) in
R[x].

PROOF The only time that we needed to use a division in the proof
of the division algorithm theorem (12.1) is when we divided by the leading
coefficient of g(x). Thus, if the leading coefficient of g(x) is 1, we can do all of
the operations in R[x] instead of F [x]. The result is that there are polynomials
q(x) and r(x) such that

f(x) = g(x) · q(x) + r(x)
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in R[x]. But g(x) divides f(x) in the ring F [x]. So there is an h(x) in F [x]
such that

f(x) = g(x) · h(x).

But q(x) and r(x) can also be viewed as polynomials in F [x], and the division
algorithm shows that these are uniquely defined, even in F [x]. Thus, q(x) =
h(x) and r(x) = 0. Therefore, g(x) divides f(x) in R[x].

We are used to thinking of polynomials as functions, rather than as elements
in a domain. If we want to “evaluate” a polynomial f(x) at a particular value
y, we run into a technical problem, since f(x) is not a function. The division
algorithm comes to our rescue on the occasion when we do need to evaluate
polynomials at a particular value.

DEFINITION 12.1 Let K be a field or integral domain, and let K[x]
be the set of polynomials in x over K. For a fixed element y in K, define
the mapping φy : K[x]→ K by φy(f(x)) = the remainder r(x) when f(x) is
divided by the first degree polynomial (x − y). Since either r(x) is 0 or is of
degree 0, r(x) is in fact in K.

PROPOSITION 12.1
The mapping φy : K[x] → K is a homomorphism, called the evaluation

homomorphism at y.

PROOF Let f1(x) and f2(x) be two polynomials in K[x]. By the division
algorithm theorem (12.1) there exists q1(x), q2(x), φy(f1(x)) = r1(x), and
φy(f2(x)) = r2(x) such that

f1(x) = (x− y) · q1(x) + r1(x),

and
f2(x) = (x− y) · q2(x) + r2(x).

Then
f1(x) + f2(x) = (x− y)(q1(x) + q2(x)) + r1(x) + r2(x),

and

f1(x) · f2(x) = ((x− y) · q1(x) + r1(x)) · ((x− y) · q2(x) + r2(x))
= (x− y) · ((x− y) · q1(x)q2(x) + q1(x)r2(x) + q2(x)r1(x)) + r1(x) · r2(x).

By the uniqueness of the division algorithm, we have that

φy(f1(x) + f2(x)) = r1(x) + r2(x) = φy(f1(x)) + φy(f2(x)),

and
φy(f1(x) · f2(x)) = r1(x) · r2(x) = φy(f1(x)) · φy(f2(x)).
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Thus, φy is a homomorphism.

We will often denote φy(f(x)) by the conventional notation, f(y). However,
whenever we want to emphasize the homomorphism property, we will use the
notation φy(f(x)) for the evaluation homomorphism. In GAP, one can use the
Value function to find the value of a polynomial in one variable at a particular
number. To evaluate the polynomial x3 + 5x2 + 4x− 4 at x = 3, enter

gap> x := Indeterminate(Rationals,"x");
gap> Value(x^3 + 5*x^2 + 4*x - 4, 3);
80

This homomorphism is a bit more complicated in Mathematica. We can use
the command ReplaceAll. This actually replaces every appearance of one
symbol with another expression.

ReplaceAll[ x̂3 + 5 x̂2 + 4 x – 4, x –> 3]

Notice how a minus sign and a greater than sign make up the arrow in this
command. Mathematica also provides an abbreviation for this command:

x̂3 + 5 x̂2 + 4 x - 4 /. x –> 3

Here, the /. is an abbreviation for ReplaceAll, but it appears after the
polynomial.

The Value and ReplaceAll commands suggest a way to determine what
it means for a polynomial to have a root.

DEFINITION 12.2 Let f(x) be a polynomial over the field or integral
domain F . If r is an element of F such that φr(f(x)) = 0, then r is called a
zero, or a root , of f(x). Of course this is equivalent to saying that (x− r) is
a factor of f(x).

Example 12.1
Consider the polynomial x2 + 1 in Z5[x]. We can visually evaluate this poly-
nomial at x = 2 to see that

φ2(x2 + 1) = 22 + 1 = 0

in the field Z5. Thus, 2 is a root, or zero, or x2 + 1.

As one can imagine, the factorization of a polynomial over an arbitrary
field can be more cumbersome than the customary factorization. For a finite
field (such as Z5), almost the only way to find roots is by trial and error.
Fortunately, Mathematica can do this very quickly. However, the good news
is that if we have found enough roots to a polynomial, we already have the
factorization.
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PROPOSITION 12.2
Let f(x) be a polynomial over the field F that has positive degree n and leading

coefficient an. If r1, r2, r3, . . . rn are n distinct zeros of f(x), then

f(x) = an · (x− r1) · (x− r2) · (x− r3) · · · (x− rn).

PROOF Again, we will proceed by induction on the degree of f(x), which
we will call n. If n = 1, then f(x) = a1x + a0, and since r1 is a root,
a1r1 + a0 = 0. Thus, a0 = −a1r1, and hence

f(x) = a1x− a1r1 = a1(x− r1).

So the proposition is true when n = 1.
Now we will apply the induction hypothesis on n. Since rn is a root of f(x),

we have that
f(x) = (x− rn)g(x)

for some g(x), which by lemma 11.1 is of degree n−1. Furthermore, g(x) and
f(x) have the same leading coefficient, an. For i = 1, 2, . . . , n− 1, we have

0 = φri(f(x)) = (ri − rn) · φri(g(x)).

Since (ri− rn) is not 0, we have that g(x) has n− 1 distinct roots, namely r1,
r2, r3, . . . , rn−1. Thus, by induction,

g(x) = an(x− r1)(x− r2)(x− r3) · · · (x− rn−1).

Thus,
f(x) = an(x− r1)(x− r2)(x− r3) · · · (x− rn).

COROLLARY 12.2
A polynomial of positive degree n over the field F has at most n distinct zeros

in F .

PROOF Suppose that f(x) has at least n + 1 roots, r1, r2, . . . , rn, rn+1.
From proposition 12.2,

f(x) = an(x− r1)(x− r2)(x− r3) · · · (x− rn).

Since rn+1 is also a root, we have

0 = φrn+1(f(x)) = an(rn+1 − r1)(rn+1 − r2)(rn+1 − r3) · · · (rn+1 − rn).

But all of the terms on the right hand side are nonzero, which is a contradic-
tion. Thus, there can be at most n distinct zeros of f(x).
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We can use proposition 12.2 to do some factorizations in different fields.
For example, both 2 and 3 can be seen to be roots of the polynomial x2 + 1
in Z5[x]. Thus

x2 + 1 = (x− 2)(x− 3) in Z5.

Here is an application of corollary 12.2 that has many applications even
using the real number field.

COROLLARY 12.3
Let F be a field, let x0, x1, x2, x3, . . . xn be n+ 1 distinct elements of F , and

let y0, y1, y2, y3, · · · yn be n + 1 values in F (not necessarily distinct). Then
there is a unique polynomial f(x) with degree at most n such that

f(x0) = y0, f(x1) = y1, f(x2) = y2, . . . f(xn) = yn.

PROOF To prove uniqueness, suppose that f(x) and g(x) are two such
polynomials. Then h(x) = f(x)−g(x) will have roots at x0, x1, x2, x3, . . . , xn.
But h(x) would have degree at most n, which contradicts corollary 12.2. Thus,
the polynomial f(x) is unique.

To show that this polynomial exists, we will first construct the n-th degree
polynomial

f0(x) =
(x− x1) · (x− x2) · (x− x3) · · · (x− xn)

(x0 − x1) · (x0 − x2) · (x0 − x3) · · · (x0 − xn)

for which f0(x0) = 1 but x1, x2, x3, . . . xn are roots of f0(x). (Note that since
all of the xi are distinct, the denominator is not 0.)

We can likewise define f1(x), f2(x), f3(x), . . . , fn(x) such that

f1(x1) = f2(x2) = f3(x3) = · · · fn(xn) = 1,

yet the remaining n xi’s are roots for each polynomial. Finally, we construct
the polynomial

g(x) = y0f0(x) + y1f1(x) + y2f2(x) + y3f3(x) + · · ·+ ynfn(x).

Clearly g(x) will be a polynomial of degree at most n, and also g(x0) = y0,
g(x1) = y1, g(x2) = y2, g(x3) = y3, . . . g(xn) = yn. Thus, we have constructed
the required polynomial.

This corollary shows, for example, that knowing just three points of a
quadratic function is sufficient to determine the quadratic function. Math-
ematica and GAP have built-in functions that find this polynomial. For ex-
ample, both the commands

InterpolatingPolynomial[{{1, 2}, {2, 4}, {3, 8}}, x]
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gap> InterpolatedPolynomial(Rationals,[1,2,3],[2,4,8]);
x^2-x+2

find the polynomial in x such that f(1) = 2, f(2) = 4, and f(3) = 8. The
format is slightly different in the two systems—in Mathematica, one gives
a list of points, whereas in GAP one first lists the x values, and then the
corresponding y values. Also the names of the functions are slightly different.
Although this has the obvious applications to graphing polynomials, we will
find in the next section some surprising real world applications when we apply
this corollary to different fields.

We are now ready to define the polynomials that in many ways act as the
prime numbers of number theory.

DEFINITION 12.3 A polynomial f(x) in F [x] is said to be irreducible
over F if f(x) has positive degree, and f(x) cannot be expressed as a product
f(x) = g(x) ·h(x) where both g(x) and h(x) have positive degree. If f(x) has
positive degree and is not irreducible, it is called reducible.

We saw above that x2 + 1 was reducible over Z5. However, Mathematica
and GAP will claim that this polynomial is irreducible.

Factor[x̂2 + 1]

gap> x := Indeterminate(Rationals,"x");
x
gap> Factor(x^2 + 1, Rationals);
[ x^2 + 1 ]

The reason of course is that Mathematica and GAP are viewing this poly-
nomial as an element of Q[x], not Z5[x]. Yet this polynomial does have a
factorization if we were allowed to work with complex numbers:

Expand[(x + I)(x – I)]

gap> (x + E(4))*(x - E(4));
x^2+1

Thus, x2 +1 is reducible over C, the field of complex numbers. Thus, whether
a polynomial is reducible or irreducible over F greatly depends on the field
F .

It should be noted that if g(x) and h(x) both have positive degree, then
g(x) · h(x) has degree at least 2. Thus, all polynomials of degree 1 must be
irreducible. Constant polynomials, however, are not considered to be irre-
ducible.

Although it can be tricky to decide whether a polynomial is reducible or
irreducible, there is a way to test polynomials of low degree.
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PROPOSITION 12.3
If f(x) is a polynomial of degree 2 or 3 over the field F , then f(x) is reducible

over F if, and only if, f(x) has a zero in F .

PROOF Suppose that f(x) has a zero in F , say r. Then

f(x) = (x− r)q(x)

where q(x) has degree one less than f(x). This shows that f(x) is reducible.
Now suppose that f(x) is reducible. Then f(x) = g(x) · h(x), where the

degree of g(x) plus the degree of h(x) is 2 or 3. Thus, either g(x) or h(x) has
degree 1. We may suppose g(x) has degree 1, and so

f(x) = (a1x+ a0)h(x).

Then −a0a
−1
1 is a root of f(x), and the proof is complete.

We can use this proposition to determine whether polynomials of degree
less than 4 are irreducible over a finite field. Simply plug in all elements of
the field, and see if any of them produce 0 in that field. For example, consider

x3 + 2x2 − 3x+ 4 over Z5.

We have:

x̂3 + 2 x̂2 - 3 x + 4 /. x –> 0
x̂3 + 2 x̂2 - 3 x + 4 /. x –> 1
x̂3 + 2 x̂2 - 3 x + 4 /. x –> 2
x̂3 + 2 x̂2 - 3 x + 4 /. x –> 3
x̂3 + 2 x̂2 - 3 x + 4 /. x –> 4

gap> x := Indeterminate(Rationals,"x");
gap> Value(x^3 + 2*x^2 - 3*x + 4, 0);
4
gap> Value(x^3 + 2*x^2 - 3*x + 4, 1);
4
gap> Value(x^3 + 2*x^2 - 3*x + 4, 2);
14
gap> Value(x^3 + 2*x^2 - 3*x + 4, 3);
40
gap> Value(x^3 + 2*x^2 - 3*x + 4, 4);
88

One of these, namely when x was replaced by 3, produced a multiple of 5,
which is equivalent to 0 in the field Z5. Thus, this polynomial is reducible.

PROPOSITION 12.4
If F is a field, then all polynomials in F [x] of positive degree are either

irreducible, or can be expressed as a product of irreducible polynomials.
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PROOF If f(x) has degree 1, then we have seen that it is irreducible. Let
us proceed by induction on the degree n of f(x). If f(x) is not irreducible,
then we can express f(x) = g(x) · h(x), where g(x) and h(x) are polynomials
of degree at least 1. But g(x) and h(x) must have degree less than n. Thus,
by induction, g(x) and h(x) are either irreducible, or can be written as a
product of irreducible polynomials. Thus, f(x) can be written as a product
of irreducible polynomials.

One last tool we have to help us find irreducible polynomials is the Greatest
Common Divisor (GCD) of two polynomials. The proof of the next theorem
mimics the proof of the greatest common divisor theorem for integers (1.2).

THEOREM 12.2 : The Greatest Common Divisor Theorem for
Polynomials
Let F be a field, and let F [x] be the polynomials in x over the field F .

Given two nonzero polynomials f(x) and g(x) in F [x], there exists a nonzero
polynomial h(x) such that

1. h(x) divides both f(x) and g(x).

2. There exist polynomials s(x) and t(x) such that

f(x) · s(x) + g(x) · t(x) = h(x).

Furthermore, the polynomial h(x) is unique except for multiplication by a
constant.

PROOF Let us consider the set of all polynomials that can be produced
by

f(x) · s(x) + g(x) · t(x)

where s(x) and t(x) are in F [x]. Call this set A. Both f(x) and g(x) are in
A, so A contains nonzero polynomials. Consider a nonzero polynomial h(x)
in A of the lowest degree. By the division algorithm theorem (12.1), we can
find polynomials q(x) and r(x) such that

f(x) = q(x) · h(x) + r(x),

where r(x) is either 0, or has lower degree than h(x). But then

r(x) = f(x)− q(x) · h(x) = (1− q(x) · s(x)) · f(x)− q(x) · g(x) · t(x),

which is in A. But if r(x) is not zero, the degree of r(x) would be less than the
degree of h(x), and we picked h(x) to be of the lowest degree. Thus, r(x) = 0,
and h(x) divides f(x). By a similar argument, h(x) divides g(x).
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To prove that h(x) is unique, note that since h(x) divides f(x) and g(x),
then h(x) divides all polynomials in A. So if there is another polynomial d(x)
in A that divides both f(x) and g(x), then h(x) would divide d(x). But d(x)
would also divide h(x). Thus, h(x) and d(x) would have to have the same
degree, and

d(x) = u · h(x)

where u is a constant polynomial. Thus, h(x) is unique up to multiplication
by a constant.

DEFINITION 12.4 Given two polynomials in F [x], the greatest common
divisor is the polynomial given in the above theorem whose leading coefficient
is 1.

The Mathematica command PolynomialGCD or GAP’s Gcd will find the
greatest common divisor of two polynomials. For example, GCD(x4−1, x3−1)
is found by the commands

PolynomialGCD[x̂3 - 1, x̂4 - 1]

or the GAP command

gap> x := Indeterminate(Rationals,"x");
x
gap> Gcd(x^3 - 1, x^4 - 1);
x-1

Thus, there are two polynomials s(x) and t(x) such that

(x3 − 1) · s(x) + (x4 − 1) · r(x) = x− 1.

COROLLARY 12.4
Let F be a field, and let f(x), g(x), and h(x) be polynomials in F [x]. If f(x)

is an irreducible divisor of g(x) · h(x), then either g(x) or h(x) is a multiple
of f(x).

PROOF Suppose that f(x) divides neither g(x) nor h(x). Then the
greatest common divisor of f(x) and g(x) must have degree less than the
degree of f(x). But the GCD must divide f(x), and f(x) is irreducible.
Thus, the greatest common divisor of f(x) and g(x) must be 1. Likewise the
GCD of f(x) and h(x) must be also be 1. By the greatest common divisor
theorem (12.2), there exist polynomials r(x), s(x), t(x), and u(x) such that

f(x) · r(x) + g(x) · s(x) = 1,

and
f(x) · t(x) + h(x) · u(x) = 1.
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By multiplying these two together, we have

1 = (f(x) · r(x) + g(x) · s(x)) · (f(x) · t(x) + h(x) · u(x))
= f(x)2 · r(x) · t(x) + f(x) · r(x) · h(x) · u(x)

+ f(x) · g(x) · s(x) · t(x) + g(x) · h(x) · s(x) · u(x).

Note that all of the terms on the right hand side are multiples of f(x) (includ-
ing the last term, since g(x) · h(x) is a multiple of f(x)). But the left hand
side is 1, which cannot be a multiple of f(x). Thus, we have a contradiction,
and so either g(x) or h(x) is a multiple of f(x).

The irreducible polynomials will play the same role in the domain F [x] as
prime numbers play in the domain Z. The key property of integer factoriza-
tions is that every positive number greater than one can be factored uniquely
into a product of primes. We would like to prove something similar for poly-
nomials in F [x], but find we will have to modify our definition of unique
factorization. In the next section, we will explain what it means for a general
ring to have a unique factorization, and apply this to both polynomial rings
and integers.

12.2 Unique Factorization Domains

In this section we wish to determine a general definition of unique factor-
ization that would apply not only to F [x], but for any ring. We will mainly
be interested in integral domains for which factorizations are unique.

DEFINITION 12.5 Let R be a commutative ring. We say that an
element x in R is a unit if x has a multiplicative inverse.

In proposition 9.7 we defined the set of invertible elements of R as R∗, and
showed that they formed a group under multiplication. The units of R will
play the same role as the constant polynomials do in the ring F [x]. In fact,
we can model the definition of reducible and irreducible elements of a ring on
the definition of irreducible polynomials in F [x].

DEFINITION 12.6 Let R be a commutative ring. If a nonzero element
x in R is not a unit, and can be expressed as a product x = y · z, where
neither y nor z are units, then we say that x is reducible. If a nonzero element
is neither a unit nor reducible, we say it is irreducible.

Although this definition is mainly applied to integral domains, we can apply
the definition to any ring with an identity. Consider the ring defined by
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tables 9.3 and 9.4 in chapter 9.

InitRing
Define[4 a, 0]; Define[2 b, 0]
Define[a.a, a]; Define[b.b, b]
Define[a.b, 0]; Define[b.a, 0]
R = Ring[{a, b}]

gap> InitRing("a","b");
gap> DefineRing("R",[4,2],[[a,0],[0,b]]);
gap> ResetTableOptions();
gap> MultTable(R);

* |0*a b a a+b 2*a 2*a+b 3*a 3*a+b
-----+------------------------------------------------------
0*a |0*a 0*a 0*a 0*a 0*a 0*a 0*a 0*a
b |0*a b 0*a b 0*a b 0*a b
a |0*a 0*a a a 2*a 2*a 3*a 3*a
a+b |0*a b a a+b 2*a 2*a+b 3*a 3*a+b
2*a |0*a 0*a 2*a 2*a 0*a 0*a 2*a 2*a
2*a+b|0*a b 2*a 2*a+b 0*a b 2*a 2*a+b
3*a |0*a 0*a 3*a 3*a 2*a 2*a a a
3*a+b|0*a b 3*a 3*a+b 2*a 2*a+b a a+b

The units of this ring are a+ b and 3a+ b. But there is an irreducible element
in this ring. Can you find it?

Let us consider the more familiar ring, Z. The only two elements with
multiplicative inverses are ±1. The irreducible elements are of course the
prime numbers 2, 3, 5, 7, 11, 13, . . .. But by this definition, the negative of a
prime number is also irreducible. But by introducing negative primes, we find
that numbers can be written as a product of primes in more than one way:

12 = 2 · 2 · 3 = 2 · (−2) · (−3) = (−2) · (−2) · 3.

Because we now are including negative primes, we also have to redefine what is
meant by unique factorization. The first step is to understand the relationship
between these different factorizations.

DEFINITION 12.7 Let R be a commutative ring with identity. We say
that the element x is an associate of an element y if there is a unit z such
that y = x · z.

Note that if x is an associate of y, then x = y ·z−1, so that y is an associate
of x. Even though we saw three different factorizations of 12, note that these
are related via associates. We now can explain what unique factorization
means for a general ring.

DEFINITION 12.8 A ring R has unique factorization if the following
two conditions are satisfied:



364 Abstract Algebra: An Interactive Approach

1. If x is nonzero, and is not a unit of R, then x can be written as a product
of irreducible elements of R.

2. If
x = y1 · y2 · y3 · · · ym = z1 · z2 · z3 · · · zn

are two expressions of x as a product of irreducible elements, then m = n
and it is possible to reorder z1, z2, . . . zn so that each pair (yi, zi) is
associates.

Furthermore, if R is an integral domain, then R is a unique factorization
domain, abbreviated as UFD.

We would like to find a quick way to determine whether an integral do-
main is a UFD. The needed tool will be the definition of the prime elements.
Although we have already defined a prime element in the integers Z, for a
general ring we wish to define a prime element as one that satisfies a different
property.

DEFINITION 12.9 A nonzero element x of a commutative ring is prime
if x is not a unit, and whenever y · z is a multiple of x, then either y or z must
be a multiple of x.

Although primes and irreducible elements are the same in Z, for many
other rings they are totally different. Consider the above ring of order 8. The
irreducible element is also a prime element, but there are prime elements in
this ring that are not irreducible. Can you find them? Although this ring
has prime elements that are not irreducible, we can show that this can only
happen when the ring has zero divisors.

LEMMA 12.1

If K is an integral domain, and x is a prime element of K, then x is irre-
ducible.

PROOF Since x is prime, it is neither 0 nor a unit. Suppose that x = y ·z,
where neither y nor z are units. Since x is prime, we have that either y or z
is a multiple of x. Suppose that y is a multiple of x. Then y = x ·w for some
number w. Then

x = y · z = x · w · z.

Since K is an integral domain, we know that x is not a zero divisor, so we
can use lemma 9.3 and say that

1 = w · z.
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But this indicates that z is a unit, which contradicts the original assumption
that neither y nor z were units. Thus, x is irreducible.

Even though a prime element is irreducible in an integral domain, it is
not true that an irreducible element is prime! Consider for example the ring
Z[
√
−5], whose elements are the numbers of the form x+ y

√
−5, where x and

y are integers. To determine the irreducible elements of this ring, let us define
the following function on Z[

√
−5]:

N(x+ y
√
−5) = (x+ y

√
−5)(x− y

√
−5) = x2 + 5y2.

Notice that N(z) is the product of the number z with its complex conjugate.
We can observe that if a and b are in Z[

√
−5], N(a · b) = N(a) · N(b). This

function will help us to determine the irreducible elements of Z[
√
−5].

Let us begin by finding the units of Z[
√
−5]. If a = x+ y

√
−5 is invertible,

then N(a) must be invertible. Hence x2 + 5y2 = 1. The only integer solution
to this equation is when y = 0 and x = ±1. Thus, ±1 are the two units of
this ring.

Next, let us find an irreducible element. Since N(2) = 4, the only way
a product of non-units a and b could equal 2 is if N(a) = N(b) = 2. But
the equation x2 + 5y2 = 2 clearly has no integer solutions. Thus, 2 is an
irreducible element in this ring. By the same reasoning, 3 is also irreducible.

However, neither 2 nor 3 is a prime element of this ring! Consider the
product

(1 +
√
−5)(1−

√
−5) = 1 + 5 = 6.

This product is a multiple of 2 and 3, but neither factor is a multiple of 2 or
3. Thus, 2 and 3 are not prime in this ring.

This example shows a ring that is not a unique factorization domain. We
have seen two ways of factoring the number 6 that are not equivalent in terms
of associates. But the fact that neither 2 nor 3 is prime is a clue as to why
this ring is not a UFD.

PROPOSITION 12.5
An integral domain is a UFD if, and only if, all nonzero, non-units can be

written as a product of primes.

PROOF We begin be showing that if K is a UFD, then all irreducible
elements are prime. Suppose w is irreducible, and x · w = y · z is a multiple
of w. Then x, y, and z have factorizations into irreducible elements:

x = x1 · x2 · · ·xn,

y = y1 · y2 · · · ym,

z = z1 · z2 · · · zk.
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Thus,
x1 · x2 · · ·xn · w = y1 · y2 · · · ym · z1 · z2 · · · zk.

Since a factorization is unique, and all terms in this product are irreducible,
we have that w is an associate to one of the terms on the right hand side.
Thus, either y or z is a multiple of w, and hence w is prime.

Since a nonzero element that is not a unit in a UFD can be expressed as a
product of irreducible elements, we have shown that all such elements can be
expressed as a product of primes.

Now let us suppose that all nonzero, non-unit elements in an integral domain
can be expressed as a product of primes. The first part of the definition of a
UFD is obviously fulfilled since the prime elements are irreducible. Suppose
we have another factorization in terms of irreducible elements.

p1 · p2 · p3 · · · pn = z1 · z2 · z3 · · · zm.

Here, the pi are prime elements, while the zj are merely irreducible elements.
We need to prove that n = m, and that, after a rearrangement of the zj ’s, we
have that pi and zi are associates. We will proceed by induction on n, the
number of primes in the factorization. If n = 1, then m = 1; otherwise we
would have a prime number (which is irreducible) expressed as a product of
two or more irreducible elements. Also, p1 = z1, and so trivially the P ’s are
associates of the z’s.

Next, we will consider the general case. Since the right hand side of

p1 · p2 · p3 · · · pn = z1 · z2 · z3 · · · zm

is a multiple of pn, one of the z’s must be a multiple of pn. Suppose that

zk = pn · u.

Since zk is irreducible, we find that u is a unit, hence zk and pn are associates.
We now can write

p1 · p2 · p3 · · · pn−1 · pn = z1 · z2 · · · zk−1 · pn · u · zk+1 · · · zm.

Since the ring is an integral domain, we can use lemma 9.3 and cancel out the
pn.

p1 · p2 · p3 · · · pn−1 = z1 · z2 · · · zk−1 · (u · zk+1) · · · zm.

The unit u may be multiplied by any of the irreducible elements z to produce
another irreducible element. We now can apply the induction hypothesis,
which says that there are n − 1 z’s left, and that a rearrangement of the z’s
would make pi and zi associates. Therefore, m = n, and some rearrangement
of the z’s in

p1 · p2 · p3 · · · pn = z1 · z2 · z3 · · · zm
will allow pi and zi to be associates, proving that the ring is a UFD.
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This proposition will help us greatly in determining whether an integral
domain is a UFD. We usually will proceed in two steps: proving that any
element can be written as a product of irreducible elements, and then proving
that any irreducible element is prime.

COROLLARY 12.5
If F is a field, then the ring F [x] is a UFD.

PROOF From proposition 12.4, every polynomial of positive degree is
either irreducible, or can be expressed as a product of irreducible polyno-
mials. By corollary 12.4, all irreducible polynomials are prime. Thus, by
proposition 12.5, F [x] is a UFD.

Although this corollary proves that polynomials over the rational numbers
have a unique factorization, we still have not proven that Z[x], the polynomials
over the integers, is a unique factorization domain. Corollary 12.5 will not
help us, since Z is not a field. Yet is seems plausible that we could prove that
Z[x] is a UFD, merely by using the fact that Q[x] is a UFD. In the process,
let us prove that R[x] is a UFD whenever R is a UFD. First, we will need
to prove a few lemmas. This next lemma, commonly referred to as Gauss’
lemma, uses the formula for the product of two polynomials.

LEMMA 12.2: Gauss’ Lemma
If R is an integral domain, then a prime element of R is also a prime element

of R[x].

PROOF We need to show that if p is a prime of R that divides h(x) =
f(x) · g(x), then p must divide either f(x) or g(x). Suppose that p does not
divide all of the coefficients of f(x) nor does p divide all of the coefficients of
g(x). Let

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · ,

g(x) = b0 + b1x+ b2x
2 + b3x

3 + · · · ,

h(x) = f(x) · g(x) = c0 + c1x+ c2x
2 + c3x

3 + · · · .

Let ai be the first coefficient of f(x) that is not divisible by p, and let bj be
the first coefficient of g(x) that is not divisible by p.

Since h(x) is divisible by p, we know that the coefficient ci+j must be
divisible by p. But

ci+j = a0bi+j + a1bi+j−1 + · · ·+ ai−1bj+1 + aibj + ai+1bj−1 + · · · ai+jb0.

Note that all terms on the right hand side except aibj are divisible by p
(since a0, a1, . . . ai−1 and b0, b1, . . . bj−1 are all multiples of p). So aibj is also
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a multiple of p. But this contradicts the fact that p is a prime element of R,
and neither ai nor bj is a multiple of p. Thus, p is prime in R[x].

With Gauss’ lemma (12.2), we can see that whenever a product of several
polynomials in R[x] is divisible by a p, a prime number of R, then one of those
polynomials must have been divisible by p. We can use induction to extend
this argument to any element of R.

LEMMA 12.3

Let R be a unique factorization domain, and let

g1(x), g2(x), g3(x), . . . , gn(x)

be polynomials in R[x] that are not divisible by any prime element of R. Let
f(x) be a polynomial in R[x], and let c and d be two elements in R such that

c · f(x) = d · g1(x) · g2(x) · g3(x) · · · gn(x).

Then d is divisible by c in R.

PROOF If c is a unit in R, then obviously d is a multiple of c. We will
now use induction on the number of prime factors of c in the ring R. If c
contains a prime p, then by lemma 12.2, one of the terms on the right hand
side must be a multiple of p. But none of the gi(x) are divisible by a prime,
so we find that d is a multiple of p. Then we have

c

p
· f(x) =

d

p
· g1(x) · g2(x) · g3(x) · · · gn(x),

where c/p and d/p are both in R. Since c/p contains one less prime factor
than c, we can use induction to say that d/p is a multiple of c/p. Then d
would be divisible by c in R.

The next step in proving that R[x] is a UFD is to find the irreducible ele-
ments of R[x]. If there is a field F that contains R, we can use the irreducible
elements of F [x] to find the irreducible elements of R[x].

LEMMA 12.4

Let R be a unique factorization domain, and let F be a field containing R.
Then if f(x) is a polynomial in R[x] that is irreducible in F [x], then f(x) can
be written

f(x) = c · g(x),

where c is an element of R, and g(x) is irreducible in R[x].
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PROOF We want to first show that we can express

f(x) = c · g(x),

where the only elements of R that divide g(x) are units. Let a0 be the constant
coefficient of f(x). Notice that if an element of R divides f(x), then that
element must divide a0. Since R is a UFD, there are only a finite number of
primes in the factorization of a0. Let us proceed by induction on the number
of primes in this factorization.

If there are no prime elements of R that divide f(x) we can let c = 1 and
g(x) = f(x). If there is a prime element of R that divides f(x), we can write

f(x) = p · h(x),

where p is a prime in R, and h(x) is in R[x]. But then the constant coefficient
of h(x) will contain one less prime in its prime factorization, so by induction
we have

h(x) = d · g(x),

where the only elements of R that divide g(x) are units. Then we let c = b ·d,
and

f(x) = c · g(x).

All that is left to show is that g(x) is irreducible in R[x]. Suppose that

g(x) = r(x) · s(x),

where r(x) and s(x) are in R[x]. We then have

f(x) = c · r(x) · s(x).

But there is a field F containing R such that f(x) is irreducible in F [x]. Thus,
either r(x) or s(x) are units in F [x], which are constant polynomials. But we
designed g(x) so that the only constants in R[x] that divide g(x) are units of
R. Thus, g(x) is irreducible in R[x].

Although this lemma refers to some field F that contains R, there is a
natural field to use—the field of quotients in R. We can use this field to show
that, in fact, the irreducible elements of R that we found in lemma 12.4 are
in fact prime elements of R[x].

LEMMA 12.5
Let R be a unique factorization domain, and let F be the field of quotients

for R. Then if g(x) is irreducible over R[x] and F [x], then g(x) is prime in
R[x].

PROOF Suppose that r(x) · s(x) is divisible by g(x) in R[x]. We need
to show that either r(x) or s(x) is divisible by g(x) in R[x]. Yet g(x) is
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irreducible in F [x], which is a UFD since F is a field. Thus, either r(x) or
s(x) is divisible by g(x) in F [x]. Suppose that r(x) is divisible. Then we have

r(x) = g(x) · k(x),

where k(x) is in F [x]. The coefficients of k(x) are in the quotient field of R,
so we may write

k(x) =
a0

b0
+
a1

b1
x+

a2

b2
x2 +

a3

b3
x3 + · · · an

bn
xn.

Let c be the product of b0 ·b1 ·b2 ·b2 · · · bn. Then j(x) = c·k(x) is an polynomial
in R[x]. Thus we have

c · r(x) = g(x) · (c · k(x)) = g(x) · j(x),

where g(x) and j(x) are in R[x]. We now can apply lemma 12.4 to j(x) and
write

j(x) = d · q(x),

where q(x) is not divisible by any prime in R. Then

c · r(x) = d · g(x) · q(x),

so we can apply lemma 12.3, since neither g(x) nor q(x) is divisible by a prime
of R. Hence, d is divisible by c, and

r(x) =
d

c
· g(x) · q(x).

Therefore, r(x) is divisible by g(x), and hence g(x) is prime in R[x].

At this point all of the major battles have been fought. All that is left to
do is put the pieces together to show that R[x] is UFD.

THEOREM 12.3: The Unique Factorization Domain Theorem
R[x] is a unique factorization domain if, and only if, R is a unique factor-

ization domain.

PROOF First of all, if R is not a UFD, then there is some element c of R
that is not expressible as a product of primes. But then c cannot be expressed
as a product of primes in R[x], since such a product must consist of constant
polynomials, and this would contradict the fact that c cannot be expressed as
a product of primes in R. Thus, R[x] would not be a UFD.

Now suppose that R is a UFD. We need to show that any nonzero poly-
nomial f(x) in R[x] is either a unit, or is expressible as a product of prime
polynomials. If f(x) has degree 0, and is not a unit of R, then since R is a
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UFD, the constant f(x) can be expressed as a product of primes in R. By
lemma 12.2, any prime in R is also a prime in R[x]. Thus, if the degree of
f(x) is zero, f(x) is either a unit, or can be expressed as a product of primes
in R[x].

Now suppose f(x) has positive degree. Let F be the field of quotients over
R. Then F [x] is a unique factorization domain by corollary 12.5. Thus, we
can write

f(x) = g1(x) · g2(x) · g3(x) · · · · · gn(x),

where each gi(x) is irreducible in F [x]. For each gi(x), let ci be the product
of the denominators of all of the coefficients. Then hi(x) = ci · gi(x) will be
in R[x], and we have

c1 · c2 · c3 · · · · · cn · f(x) = c1g1(x) · c2g2(x) · c3g3(x) · · · · · cngn(x)
= h1(x) · h2(x) · h3(x) · · · · · hn(x).

Since ci is a unit in F [x], the hi(x) will still all be irreducible in F [x]. We can
now apply lemma 12.4 on each of the hi(x) and find an element di in R such
that

hi(x) = di · ji(x),

where the ji(x) are irreducible in R[x]. By lemma 12.5, the ji(x) are prime
in R[x]. We now can express

c1 · c2 · c3 · · · · · cn · f(x) = d1j1(x) · d2j2(x) · d3j3(x) · · · · · dnjn(x).

Let C = c1 · c2 · c3 · · · cn and D = d1 · d2 · d3 · · · dn. We can then write

C · f(x) = D · j1(x) · j2(x) · j3(x) · · · jn(x),

where C and D are in R, and the ji(x) are prime polynomials in R[x]. We
can now apply lemma 12.3, which states that D must be a multiple of C in
R. Thus

f(x) =
D

C
· j1(x) · j2(x) · j3(x) · · · jn(x),

where D/C is in R. Since R is a UFD, D/C can be expressed as a product
of primes in R, which by lemma 12.2 are primes in R[F ]. Thus, f(x) can be
expressed as a product of primes in R[x] and so by proposition 12.5, R[x] is a
UFD.

Not only does this theorem determine when we can consider polynomial fac-
torization to be unique, but this theorem also applies to factoring polynomials
in more than one variable.

Since R[x] is an integral domain, we can consider another variable y, and
consider the polynomial ring R[x][y]. A typical element of R[x][y] would be

c0(x) + c1(x)y + c2(x)y2 + c3(x)y3 + · · · cn(x)yn,
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where each ci(x) is a polynomial in R[x]. If each ci(x) is written

ci(x) = d0 + d1x+ d2x
2 + d3x

3 + · · ·

we find that the polynomial in R[x][y] could be written

d0 0 + d1 0x+ d0 1y + d2 0x
2 + d1 1x · y + d0 2y

2 + · · · .

If we make the convention that x · y = y · x, we see that R[x][y] = R[y][x].

DEFINITION 12.10 We will denote the polynomial ring of two vari-
ables by R[x, y] = R[x][y]. The variables x and y are called indeterminates.
Likewise, we denote the polynomial ring of n indeterminates by

R[x1, x2, x3, . . . , xn].

COROLLARY 12.6
Let R be a unique factorization domain and let x1, x2, x3, . . . xn be indeter-

minates over R. Then R[x1, x2, x3, . . . xn] is a unique factorization domain.

PROOF We will use induction on n. If n = 1, the unique factorization
domain theorem (12.3) shows that R[x] is a UFD. Otherwise, we write

R[x1, x2, x3, . . . , xn] = R[x1, x2, x3, . . . , xn−1][xn].

By the induction hypothesis, R[x1, x2, x3, . . . , xn−1] is a UFD. So by the
unique factorization domain theorem (12.3), R[x1, x2, x3, . . . , xn] is a UFD.

Polynomials in several variables are of considerable importance in geome-
try, since curves and surfaces are described by equations in several variables.
Although Mathematica’s Factor command will be able to factor polynomi-
als in many variables, its ability is limited to when R is either Z or Q. For
example, Mathematica can factor

ClearDefs
Factor[x̂3 ŷ2 + x̂2 y – x ŷ2 – 2 x + y]

over the integers, but cannot factor this over any other ring, even a finite field.
Yet we will not have a need for factoring polynomials in two variables over
any other field.

GAP’s ability to factor polynomials in two variables is still in development.
A preview of the multivariable factorization package is included in the file
“multivar.g” in the gap directory. In GAP 4.4.12, we must first read in this
extra package before the multivarible factorization will work. This package
will probably be included in future versions of GAP.
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gap> Read("c:/gap/multivar.g");
gap> x := Indeterminate(Rationals,"x");
x
gap> y := Indeterminate(Rationals,"y");
y
Factors(x^3*y^2 + x^2*y - x*y^2 - 2*x + y);
[ x*y-1, x^2*y+2*x-y ]

12.3 Principal Ideal Domains

Although we have found that polynomial rings created from unique factor-
ization domains produce more unique factorization domains, there still is the
question of how to tell whether a given ring is a unique factorization domain.
The answer lies in the ideals of the ring. In fact, the ideals were discovered
by Kummer in 1835 in an attempt to prove that certain rings were unique
factorization domains. [4, p. 157] In this section we will explore the intercon-
nection between the ideals of a ring, and the prime and irreducible elements
of the ring.

We begin by recalling that many ideals can be generated with only one
element. In fact, many rings, such as the integers Z, are such that every ideal
is generated by only one element. We called such rings principal ideal rings,
or PIRs. When the ring is also a domain, we call it a principal ideal domain,
or PID. In fact, PIDs are so common that it is somewhat tricky to find an
example of a UFD that is not a PID.

Consider the ring R = Z[x, y]. We saw by corollary 12.6 that this is a
UFD. We would now like to show that this is not a PID. Consider the ideal
of elements without a constant term. This ideal can be expressed as (x, y),
but since both x and y are in this ideal, we cannot express this ideal as
the multiples of some polynomial. Thus, it requires at least two elements to
generate this ideal in Z[x, y]. Thus, this ideal is not a principal ideal, so Z[x, y]
is not a PID, even though it is a UFD.

DEFINITION 12.11 Let R be a commutative ring, and let P be a
nontrivial ideal of R. (Thus, P is neither {0} nor R.) We say that P is a
prime ideal if, whenever x and y are in R, and x · y is in P , then either x or
y is in P .

When we first defined a prime element of a ring, we were careful to mention
that the ring did not have to be an integral domain. By defining prime
elements for all commutative rings, we open the door to showing a connection
between prime ideals and prime elements.
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PROPOSITION 12.6

Let R be a commutative ring with an identity. Then p is a prime element of
R if, and only if, the principal ideal (p) is a prime ideal.

PROOF Suppose that p is prime. Then p is neither 0 nor a unit, so (p)
cannot be the zero ring. If (p) = R, then there must be some element of R
that makes p · x = 1. But this is impossible, since p is not a unit. Thus, (p)
would be a nontrivial ideal of R. Now suppose that x · y is in (p). Then there
must be some z such that x · y = p · z. Since p is prime, either x or y is a
multiple of p. So either x or y is in (p), making (p) a prime ideal.

Now suppose that (p) is a prime ideal. Then (p) is neither {0} nor R, so p
is neither 0 nor a unit. If x · y is a multiple of p, then x · y would be in (p).
Since (p) is a prime ideal, either x or y would then be in (p). But this would
indicate that x or y is a multiple of p. Thus, p is a prime element of R.

Although this proposition refers to principal ideals, it is certainly possible
for an ideal to be a prime ideal without being even a principal ideal. For
example, the ideal (x, y) of the ring Z[x, y] is not a principal ideal, yet it is a
prime ideal. To see this, note that we can characterize the ideal as

(x, y) = {f(x, y) ∈ Z[x, y] | f(0, 0) = 0}.

Thus, if f(x, y) · g(x, y) is in (x, y), we have f(0, 0) · g(0, 0) = 0, so either
f(0, 0) = 0 or g(0, 0) = 0. So (x, y) is a prime ideal.

Although proposition 12.6 gives us a test for determining whether an ele-
ment is prime, to implement this we need a way to see whether an ideal is a
prime ideal.

PROPOSITION 12.7

Let R be a commutative ring with identity, and let P be a nontrivial ideal of
R. Then P is a prime ideal if, and only if, the quotient ring R/P has no zero
divisors.

PROOF Assume that P is a prime ideal. Let us suppose that the product
of two elements of R/P , a+ P and b+ P , is the zero element. That is,

(a+ P ) · (b+ P ) = a · b+ P = 0 + P.

This implies that a · b is in P . Since P is a prime ideal, either a or b is in P .
Thus, either

a+ P = 0 + P or b+ P = 0 + P.

Thus, we have shown that R/P has no zero divisors.
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Now suppose that R/P has no zero divisors. If a · b is in P , then we have
the following holding in R/P :

(a+ P ) · (b+ P ) = a · b+ P = 0 + P.

Since R/P has no zero divisors, either a+P or b+P must be equal to 0 +P .
Thus, either a or b is in P , and since P is a nontrivial ideal, P is a prime
ideal.

Let us try to use this proposition to find the prime elements of the following
familiar commutative ring:

InitRing
Define[4a, 0]; Define[2b, 0]
Define[a.a, a]; Define[b.b, b]
Define[a.b, 0]; Define[b.a, 0]
R = Ring[{a, b}]

gap> InitRing("a","b");
gap> DefineRing("R",[4,2],[[a,0],[0,b]]);

We determined that the element 2a + b was irreducible in this ring. Let us
determine whether 2a+ b is prime by computing the quotient ring R/(2a+ b).

First, we find the principal ideal generated by 2a+ b:

S = Ideal[R,{2a + b}]

gap> S := Ideal(R,[2*a+b]);
<two-sided ideal in <ring with 2 generators>, (1 generators)>
gap> List(S);
[ 0*a, b, 2*a, 2*a+b ]

This forms a nontrivial ideal, so we can now consider the quotient ring.

Q = Coset[R, S]
{{0, 2a, b, 2a+ b}, {a, 3a, a+ b, 3a+ b}}
Q[[2]].Q[[2]]
{a, 3a, a+ b, 3a+ b}

In GAP, we can either list the cosets, or we can have GAP create a isomorphic
copy of the quotient ring through the first ring isomorphism theorem (10.2).

gap> f := NaturalHomomorphismByIdeal(R,S);
[ a, b ] -> [ q1, 0*q1 ]
gap> Q := Image(f,R);
<ring with 2 generators>
gap> MultTable(Q);

* |0*q1 q1
----|----------
0*q1|0*q1 0*q1
q1 |0*q1 q1
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The quotient ring has only two elements, and in fact is isomorphic to Z2. So
2a+ b is a prime element of R.

We are mainly interested in finding the prime elements of an infinite ring.
Mathematica can still often help us out, since the quotient ring R/(p) will
usually be finite.

Consider the ring Z[
√
−5]. We saw in the last section that 3 was an irre-

ducible element. To see whether this is a prime element, we need to determine
the ring Z[

√
−5]/(3). Since 3 is in the ideal (3), every element multiplied by

3 in the quotient ring must be 0. Thus, the characteristic of the quotient ring
is 3. We can start by defining the quotient ring as a domain:

InitDomain[3]

If we denote the element
√
−5 + (3) by a, then a2 = −5 + (3). Thus, we can

define

Define[â2, –5]

We now can see the quotient ring as the ring generated by 1 and a:

R = Ring[{1, a}]

This ring has nine elements. However, the command

CheckField[{1, a}]

reveals that this quotient ring has zero divisors. Thus, 3 is not a prime element
of Z[

√
−5]. We can form this same ring in GAP, but we have to plan ahead

to see that the quotient ring will have nine elements.

gap> InitRing("e","a");
gap> DefineRing("R",[3,3],[[e,a],[a,-5*e]]);
gap> NumberElements := true;
true
gap> MultTable(R);

* |1 2 3 4 5 6 7 8 9
-------+--------------------------
0*e |1 1 1 1 1 1 1 1 1
a |1 4 7 2 5 8 3 6 9
2*a |1 7 4 3 9 6 2 8 5
e |1 2 3 4 5 6 7 8 9
e+a |1 5 9 5 9 1 9 1 5
e+2*a |1 8 6 6 1 8 8 6 1
2*e |1 3 2 7 9 8 4 6 5
2*e+a |1 6 8 8 1 6 6 8 1
2*e+2*a|1 9 5 9 5 1 5 1 9

At this point you may be wondering whether there are any prime ele-
ments in the ring Z[

√
−5]. Consider the element 3 + 2

√
−5. Defining the

ring Z[
√
−5]/(3 + 2

√
−5) in Mathematica or GAP is a bit trickier since the

characteristic must be an integer. But note that

(3 + 2
√
−5) · (3− 2

√
−5) = 29.
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Thus, 29 is in the ideal (3 + 2
√
−5), which we can use for the characteristic.

To reduce the elements further, we would like to find an integer within the
coset

a+ (3 + 2a) =
√
−5 + (3 + 2

√
−5).

After experimenting, we find that the integer 13 is in this coset. This experi-
ment shows that the element

√
−5 is equivalent to 13 in the ring Z[

√
−5]/(3+

2
√
−5). Thus, every element in the ring is equivalent to an integer. The

quotient ring will have 29 elements, which is obviously isomorphic to the field
Z29. Thus, we have found a prime element for this ring.

We have seen that proposition 12.7 is a useful way of determining whether
an element is prime. Let us use this proposition to show that in a principal
ideal domain, irreducible elements are also prime elements. This amounts to
showing that R/(p) has no zero divisors whenever p is irreducible. However,
we can actually prove more, which will be very useful later on.

LEMMA 12.6
Let R be a principal ideal domain, and let p be an irreducible element of R.

Then the quotient ring R/(p) is a field.

PROOF Since R is an integral domain, it is clear that R/(p) is a commu-
tative ring, and contains the identity element 1 + (p). Thus, we have to show
that all nonzero elements of R/(p) have an inverse. Let x+ (p) be a nonzero
element of R/(p). We immediately have that x is not a multiple of p. Thus,
we can consider the ideal generated by both x and p, that is, (x, p).

Since R is a PID, there is some element d in R such that (x, p) = (d). Then
both x and p would be multiples of d. But we already observed that x is not
a multiple of p, so d cannot be a multiple of p. But p is irreducible, so d
must be a unit. Then (d) = R, and so (x, p) = R. This means that there are
elements u and v in R such that

x · u+ p · v = 1.

We now claim that u+ (p) is our sought-after inverse. Note that

[x+ (p)] · [u+ (p)] = x · u+ (p) = x · u+ p · v + (p) = 1 + (p).

Since every nonzero element of R/(p) is invertible, we have that R/(p) is a
field.

From this lemma, it is easy to see that an irreducible element of a PID must
also be a prime element. Thus, we are on our way to showing that a PID is a
unique factorization domain. By proposition 12.5, we only need to show that
every non-invertible element can be expressed as a product of irreducible fac-
tors. In order to eliminate the possibility of an “infinite chain” of irreducible
elements, each one dividing the previous, we will use the following lemma.
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LEMMA 12.7
Let R be a principal ideal ring. If there is an infinite sequence of larger and

larger ideals of R satisfying

I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ In ⊆ In+1 ⊆ · · · ,

then there exists an integer m such that In = Im for all n > m.

PROOF Since we have an infinite sequence of ideals, we can consider
taking the union of all of them:

I =
∞⋃
n=1

In.

Let us show that I is an ideal of R. Note that any element of I is in Ik for
some integer k. In fact, if x and y are two elements of I, we can pick the larger
of the two values of k to show that x and y are both in Ik. Then x± y is in
Ik, since Ik is an ideal. Thus x ± y is in I. This shows that I is a subgroup
of R under addition. Now let z be in R. Then x · z and z · x are both in Ik,
so x · z and z · x are in I. Therefore, I · R = R · I = I. This shows that I is
an ideal.

Since R is a principal ideal ring, there is some element a in R such that
I = (a). Then a is in Im for some m. But Im is contained in I, so we must
have that I = Im. Thus, In = Im for all n > m.

We now have all we need to show that a PID is in fact a UFD.

THEOREM 12.4: The Principal Ideal Domain Theorem
Every principal ideal domain is a unique factorization domain.

PROOF Our strategy is to first show that an irreducible element is a prime
element, and then show that every element is a finite product of irreducible
elements. Let p be an irreducible element of R, which is a PID. By lemma 12.6
R/(p) is a field, so it certainly has no zero divisors. Thus, by proposition 12.7,
(p) is a prime ideal, so by proposition 12.6, p is prime. Let us now show that
every non-invertible element of R can be written as a product of irreducible
elements. Suppose this is not true for some element x0. Then x0 is not
irreducible, so we can find elements x1 and y1 in R such that x1 · y1 = x0.
But x1 and y1 cannot both be irreducible, so we can assume x1 is reducible.
By induction we can continue this process to form a sequence

{x0, x1, x2, x3, · · ·}

for which each term in the sequence divides the previous term. Then we have
an infinite chain of ideals,

(x0) ⊆ (x1) ⊆ (x2) ⊆ (x3) ⊆ · · · .
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By lemma 12.7, there is a number m such that (xn) = (xm) for all n >
m. But this contradicts the fact that all of the xn are reducible. Therefore
every element of R can be expressed as a product of irreducible elements. By
proposition 12.5, R is a unique factorization domain.

This theorem reveals the most important use of principal ideal domains—it
enables us to find unique factorization domains. For example, Z was proven
to be a PID from proposition 10.3, so we now can see that Z is a UFD, a
result that was promised in section 1.3.

It should be noted that not all unique factorization domains are PIDs—in
fact we discovered that Z[x, y] is not a PID, even though it is a UFD. However,
many of the important unique factorization domains are also principal ideal
domains.

Of course, there still is the problem of how to determine whether an integral
domain is a PID. In the next section, we will find the main way of determining
whether a certain domain is in fact a PID, which would then prove that it is
a UFD.

12.4 Euclidean Domains

We have already seen the importance of principal ideal domains to deter-
mine whether a ring is a unique factorization domain. However, we still have
the problem of determining whether a given integral domain is a principal
ideal domain. This can usually be done quite easily.

For example, to show that F [x] is a PID for any field F , we examine what
the ideals could be. If I is a nontrivial ideal of F [x], we can find a nonzero
element f(x) in I with the lowest degree. If g(x) is also in I, then by the
division algorithm

g(x) = f(x) · q(x) + r(x),

with the degree of r(x) less then f(x). But r(x) would also be in I, and since
f(x) has least degree of all the nonzero elements in I, we must have r(x) = 0.
Therefore all elements of I are multiples of f(x), so I = (f(x)).

Rather than making this a formal proposition, we want to study this exam-
ple, since we can prove that many different domains are PIDs the same way.
There were two keys to the proof that F [x] was a PID: the fact that every
polynomial had a degree, and the division algorithm. Whenever we have an
integral domain that has a property like a division algorithm, there is a good
chance that we can use this division algorithm to prove that the ring is a PID.
Let us formulate what we mean by a “division algorithm.”

DEFINITION 12.12 An integral domain R is called a Euclidean domain
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if there is a function µ(x) defined on the nonzero elements of R such that the
following three properties hold:

1. µ(x) is a non-negative integer for every nonzero x in R.

2. Whenever both x and y are nonzero, µ(x · y) ≥ µ(x).

3. For and x and y in R, with y nonzero, there exist elements q and r in
R such that

x = q · y + r,

where either r = 0 or µ(r) < µ(y).

The function µ(x) is called the Euclidean valuation on R.

Let us first look at some examples of Euclidean domains. Since this defini-
tion was modeled after the ring F [x], it is expected that F [x] is a Euclidean
domain. The function µ(f(x)) would be the degree of the polynomial f(x).
Properties 1 and 2 come from the definition of the degree, and lemma 11.1.
Property 3 we observed in the division algorithm theorem (12.1). Thus, F [x]
is a Euclidean domain whenever F is a field.

However, there are many other examples of Euclidean domains. Consider
the set of integers, Z. We can use the absolute value for the valuation: µ(x) =
|x|. Clearly properties 1 and 2 hold, and the third property comes from
modular arithmetic. Thus, Z is also a Euclidean domain.

Whenever we have a Euclidean domain, we can prove that the domain is a
PID, using the exact same argument as we did for F [x].

THEOREM 12.5: The Euclidean Domain Theorem

Every Euclidean domain is a principal ideal domain.

PROOF Let R be a Euclidean domain, and let µ(x) be the valuation. If
I is an ideal, we consider the set

P = {µ(x) | x ∈ I, x 6= 0}.

The set P consists of non-negative integers, so there is a smallest number in
P . Pick an element y in I so that µ(y) is the minimal number in P . Then for
any other x in I, we have

x = y · q + r

for some q and r in R, with µ(r) < µ(y). Then r is in I, but if r were nonzero,
then this would contradict the minimality of µ(y). Thus, r = 0, and so x is
a multiple of y. Since this is true for all x in I, we see that I = (y). Thus,
every ideal of R is a principal ideal, so R is a PID.
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We started this section by showing that F [x] is a principal ideal ring when-
ever F is a field, but let us formally make this a corollary of the Euclidean
domain theorem.

COROLLARY 12.7

Let F be a field. Then the ring of polynomials F [x] is a principal ideal
domain.

PROOF We have already seen that F [x] is a Euclidean domain whenever
F is a field. By the Euclidean domain theorem (12.5), F [x] is a PID.

The only problem with this definition of the Euclidean domain is that it
gives no help in determining what the valuation function µ(x) should be.
In fact, there may be many possible valuation functions for a given integral
domain. See problem 12.29 for an alternative definition of a Euclidean domain
that does not involve a valuation function.

For the remainder of this chapter, we will consider an interesting class of
integral domains, some of which are Euclidean domains, and some that are
not. This class of domains will help us to see some general techniques for
finding a valuation function for a domain.

DEFINITION 12.13 Let n be an integer that is not divisible by the
square of any integer other than 1. Then the ring Z[

√
n] is called a quadratic

domain.

We have already worked with some examples of quadratic domains. For
example, we found two possible ways to order the ring Z[

√
2], using ring

homomorphisms.
The quadratic domain Z[

√
n] will always have two automorphisms, the iden-

tity mapping, and the automorphism

f(x+ y
√
n) = x− y

√
n.

We define the function N as the product of the two automorphisms:

N(x+ y
√
n) = (x+ y

√
n) · (x− y

√
n) = x2 − y2n.

Note that N(a) will always an integer.
At first glance it may be difficult to see what the N(a) has to do with the

Euclidean domains. Our goal is to construct a valuation function from N(a).
We first need to verify some elementary properties of this function. In the
process, we will notice that these properties are still valid if we extend N(a)
to be defined on Q[

√
n].
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LEMMA 12.8
Let Z[

√
n] be a quadratic domain, and let N(x+ y

√
n) = x2− y2n. Then for

the rings Z[
√
n] and Q[

√
n],

1. N(a) = 0 if, and only if, a = 0.

2. N(a · b) = N(a) ·N(b).

3. N(±1) = 1.

PROOF

1. It is easy to see that N(0) = 0 by definition. If N(x+ y
√
n) = 0, then

(x+ y
√
n) · (x− y

√
n) = x2 − y2n = 0.

If y is nonzero, then we find that
√
n = |xy |, which is ridiculous since n

is not a perfect square, and so
√
n is irrational. Thus, y = 0, and hence

x is also 0. So N(a) = 0 if, and only if, a = 0.

2. A quick computation shows that if a = x1 + y1
√
n, and b = x2 + y2

√
n,

then

a·b =
(
x1 + y1

√
n
)
·
(
x2 + y2

√
n
)

= (x1·x2+y1·y2·n)+(x1·y2+y1·x2)
√
n.

So

N(a · b) = (x1 · x2 + y1 · y2 · n)2 − (x1 · y2 + y1 · x2)2 · n
= x2

1x
2
2 + 2x1x2y1y2n+ y2

1y
2
2n

2 − x2
1y

2
2n− 2x1x2y1y2n− y2

1x
2
2n

= x2
1x

2
2 + y2

1y
2
2n

2 − x2
1y

2
2n− y2

1x
2
2n

= (x2
1 − y2

1n) · (x2
2 − y2

2n) = N(a) ·N(b).

3. This is easy, since ±1 = ±1 + 0
√
n. So N(±1) = (±1)2 − 0 · n = 1.

We can use the N(a) function to prove that Q[
√
n] is a field.

COROLLARY 12.8
Let n be an integer that is not divisible by the square of any integer greater

than 1. Then the ring Q[
√
n] is a field.

PROOF Since Q[
√
n] is obviously a commutative ring with an identity, all

we need to show is that every nonzero element has an inverse. Let b = x+y
√
n

be a nonzero element. Then N(b) is nonzero by lemma 12.8. Consider the
element

c = (x− y
√
n)/N(b).
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Then
b · c = (x+ y

√
n) · (x− y

√
n)/N(b) = N(b)/N(b) = 1.

So every nonzero element has an inverse. Thus, Q[
√
n] is a field.

Using these three properties of the function N(a), we are able to determine
at least some of the irreducible elements of the ring Z[

√
n].

PROPOSITION 12.8
Let Z[

√
n] be a quadratic domain, and let N(x+ y

√
n) = x2 − y2n. Then

1. N(a) = ±1 if, and only if, a is a unit in Z[
√
n], and

2. If N(a) is a prime number in Z, then a is an irreducible element of
Z[
√
n].

PROOF Suppose that N(a) = N(x+ y
√
n) = ±1. Consider the element

b = (x− y
√
n)/N(a).

Then
a · b = (x+ y

√
n) · (x− y

√
n)/N(a) = N(a)/N(a) = 1.

So a has an inverse, and therefore is a unit in Z[
√
n].

Now suppose that a is a unit in Z[
√
n]. Then a has an inverse, a−1. Then

1 = N(1) = N(a · a−1) = N(a) ·N(a−1),

which shows that N(a) must be ±1.
Now suppose that N(a) = p, a prime number in Z, and that a = b · c. Then

p = N(a) = N(b · c) = N(b) ·N(c).

Since p is prime, either N(b) or N(c) is ±1. So either b or c must be a unit
in Z[

√
n], so a is irreducible in Z[

√
n].

We can now use the Euclidean function µ(x) = |N(x)| to prove the follow-
ing.

PROPOSITION 12.9
The integral domains Z[

√
−2], Z[

√
−1], Z[

√
2], and Z[

√
3] are Euclidean do-

mains.

PROOF Let us work with all four domains at the same time by considering
Z[
√
n], where n = −2,−1, 2, or 3.
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If we let µ(x) = |N(x)|, then clearly µ(x) is a non-negative integer. Fur-
thermore, µ(x) = 0 only when x = 0. Thus, if u and v are two elements of
Z[
√
n], then

µ(u · v) = |N(u · v)| = |N(u)| · |N(v)| = µ(u) · µ(v) ≤ µ(u) · 1 = µ(u).

So the first two conditions for the valuation function are easily satisfied. The
last condition is harder to prove. We need to show that for any x and y in
Z[
√
n], with y nonzero, there are elements q and r such that

x = q · y + r,

with either r = 0, or µ(r) < µ(y). We can consider x and y to be in Q[
√
n],

which is a field from corollary 12.8, so we can compute

t = x · y−1 = u+ v
√
n.

Of course, t will be in Q[
√
n] instead of Z[

√
n], so we cannot use this for our

q. However, we can find an element “closest” to t in Z[
√
n] by finding the

integers p and k nearest to u and v. That is, we will select integers p and k
such that

(∗) |p− u| ≤ 1
2

and |k − v| ≤ 1
2
.

We now let q = p+ k
√
n, which is in Z[

√
n]. The remainder r would be given

by q · y − x. All we need to do is show that r = 0, or µ(r) < µ(y).
Now, the norm N(x) is valid on Q[

√
n], so we can compute

N(q − t) = N
(
(p− u) + (k − v)

√
n
)

= (p− u)2 − n(k − v)2.

By (∗) we see that if n > 0,

−n/4 ≤ (p− u)2 − n(k − v)2 ≤ 1/4.

On the other hand, if n < 0, then

0 ≤ (p− u)2 − n(k − v)2 ≤ (1− n)/4.

Thus, as long as −2 ≤ n ≤ 3 we have that

|N(q − t)| = |(p− u)2 − n(k − v)2| ≤ 3/4 < 1.

Thus,

µ(r) = |N(r)| = |N(q · y − x)|
= |N((q − x · y−1) · y)|
= |N(q − t)| · |N(y)|
< |N(y)| = µ(y).
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Therefore, the function µ(x) serves as a valuation function on Z[
√
n], and so

Z[
√
n] is a Euclidean domain for n = −2,−1, 2, or 3.

One of these four domains has special applications. The ring Z[
√
−1] = Z[i]

is called the domain of Gaussian integers. Mathematica’s FactorInteger
command can find the prime factorization over the Gaussian integers by set-
ting a condition “GaussianIntegers” to true. For example, we can factor the
number 5 as follows:

FactorInteger[5, GaussianIntegers –> True]

The GAP Factor command allows one to put the ring as the second argument.

gap> Factor(5, GaussianIntegers);
[ 2-E(4), 2+E(4) ]

This reveals that 5 = (2− i) · (2 + i). By investigating further the divisibility
properties of Z[i], one can prove the classic “two squares theorem” of Fermat:
Every prime number of the form 4n + 1 is the sum of two squares. (See
problem 13.18.) It is interesting that the study of domains other than the
familiar integers yields new information about the integers.

Since every Euclidean domain is a PID, the natural question to ask is
whether there is a PID which is not a Euclidean domain. There actually
are such domains, although known examples are rare. The simplest exam-
ple is Z[(1 +

√
−19)/2], but it is tricky to prove that this example works for

two reasons. First of all, to show that this ring is not a Euclidean domain,
we must show that no valuation function µ(x) can be defined whatsoever.
Problem 12.29 gives an alternative way to define a Euclidean domain that
does not depend on a valuation function, and hence helps in showing that
Z[(1+

√
−19)/2] is not a Euclidean domain. But then we must show that this

ring is still a PID, which is especially hard since the main tool for proving
that a domain is a PID is the Euclidean domain theorem (12.5). For a sketch
of how this is proven, see problems 12.46 to 12.53. A similar proof can be
used to show that Z[(1 +

√
−43)/2], Z[(1 +

√
−67)/2], and Z[(1 +

√
−163)/2]

are PIDs, but not Euclidean domains.

Problems for Chapter 12

Interactive Problems

12.1 Use the Mathematica command InterpolatingPolynomial or GAP’s
InterpolatedPolynomial to find a third degree polynomial such that f(n) =
n! for n = 1, 2, 3, and 4. How close is f(5) to 120?
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12.2 Use GAP or Mathematica to determine whether x3 + 2x2 + 3x + 2 is
irreducible over Z5.

12.3 Use GAP or Mathematica to determine whether x3 + 2x2 + 3x + 5 is
irreducible over Z7.

12.4 Define the domain Z[
√

6] in Mathematica as follows:

InitDomain[0]
Define[â2, 6]

Show that the element u = 5 + 2a is a unit by finding its inverse. Use the
element u to find yet another unit of Z[

√
6].

12.5 Use Mathematica to show that the ring Z[
√

6]/(11) has no zero divisors.
Use this to prove that 11 is a prime element of Z[

√
6].

12.6 Use the Mathematica command

FactorInteger[2, GaussianIntegers –> True]

or the GAP command

gap> Factor(2, GaussianIntegers);

to determine whether 2 is prime in the domain Z[i]. Try this using the numbers
3, 5, 7, 11, 13, 17, 19, 23, 29, and 31 in place of 2. Which of these numbers
are prime in the domain Z[i]?

Non-Interactive Problems

12.7 Use the division algorithm to determine polynomials q(x) and r(x) in
Q[x] such that

2x3 + 3x2 − 5x+ 4 = (2x2 − x+ 1) · q(x) + r(x),

where r(x) has degree less than 2.

12.8 Use the division algorithm to determine polynomials q(x) and r(x) in
Z2[x] such that

x5 + x3 + x2 + x = (x3 + x2 + 1) · q(x) + r(x),

where r(x) has degree less than 3.

12.9 Find a quadratic polynomial f(x) such that f(−1) = 6, f(1) = 2, and
f(2) = 9.

Hint: Either solve three equations for three unknowns, or use the proof of
corollary 12.3.
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12.10 Find a quadratic polynomial in Z3[x] such that f(0) = f(1) = 2, and
f(2) = 0.

12.11 Prove that x2 + 5 is irreducible over the field R of real numbers.

12.12 Prove that x3 − 3x + 3 is irreducible over the field Q of rational
numbers.

Hint: Prove that it is irreducible over the integers, and use lemma 12.4.

12.13 Show that x3 − 9 is irreducible over the field Z13.

12.14 Find the factorization of x3 + 2x2 + 2 over the field Z3.

12.15 Find the factorization of x3 + 2x2 + 2 over the field Z5.

12.16 Find the factorization of x3 + 2x2 + 2 over the field Z7.

12.17 Find the factorization of x4 + 2x2 + 2 over the field Z5.

12.18 Let F be a field that is contained in a larger field K. Let f(x) and
g(x) be two polynomials in F [x] that are coprime in F [x]. Show that f(x)
and g(x) are also coprime in K[x].

12.19 Show that Z[
√
−5] is not a principal ideal domain by finding an ideal

of this ring that is not a principal ideal.
Hint: Consider the ideal (2, 1 +

√
−5).

12.20 Find all of the irreducible elements of Z12.
Hint: First find all of the units. Construct a multiplication table of the

non-units. Which elements do not appear in the interior of the table?

12.21 Find all of the prime ideals of Z12. (Note that this ring has zero
divisors.)

12.22 Find all of the prime elements of Z12. (Note that this ring has zero
divisors. See problem 12.21.)

12.23 Find all of the irreducible elements of Z18. (See the hint for prob-
lem 12.20.)

12.24 Find all of the prime ideals of Z18.

12.25 Find all of the prime elements of Z18. (See problem 12.24.)

12.26 Show that the ring Z8 has unique factorization, even though it is not
an integral domain.

12.27 Can a field have irreducible or prime elements? Explain.
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12.28 Let R be an integral domain. Prove that if every nontrivial ideal of
R is a prime ideal, then R is a field.

Hint: If x is an element of R, show that x is contained in x2R.

12.29 Suppose that R is an integral domain. Let S0 be the set containing
all units of R, along with the zero element. Let S1 be the set of all elements
x such that either x = 0 or

(x) + S0 = R.

(That is, every element of R can be written as a multiple of x plus an element
of S0.) Define Si inductively as the set of elements x such that either x = 0
or

(x) + Si−1 = R.

Prove that R is a Euclidean domain if, and only if, every element of R is in
Sn for some n.

Hint: Let µ(x) be the smallest value of n for which x is in Sn.

12.30 Let R be a commutative ring, and let I be an ideal of R. If P is a
prime ideal of I, prove that P is an ideal of R.

12.31 Let R be a PID. Prove that every element that is neither 0 nor a unit
is divisible by some prime element.

12.32 Show that the elements q and r in part 3 of the definition of a Eu-
clidean domain are not necessarily unique.

Hint: In Z[i], let x = −4 + i, y = 5 + 3i. Consider q = −1 + i and q = −1.

12.33 Consider the subring of the elements of Q[x] for which the constant
term is an integer. Show that this subring is not a UFD.

Hint: Show that the only units are ±1, and that 2 is irreducible. Consider
the sequence x, x/2, x/4, x/8, . . . x/(2n), . . . .

12.34 Let D be a Euclidean domain, and let µ be the valuation function.
Show that u is a unit in D if, and only if, µ(u) = µ(1).

12.35 Let D be a Euclidean domain, and let µ be the valuation function.
Show that if a and b are associates, then µ(a) = µ(b).

12.36 Show that Z[
√
−6] is not a unique factorization domain.

Hint: Factor 10 in two ways.

12.37 Prove that 7 is prime in Z[
√

6].
Hint: First show that x2 − 6y2 ≡ 0 (Mod 7) only when x and y are both

0 (Mod 7).

12.38 Show that if n ≡ 3 (Mod 4), then n cannot be expressed as the sum
of two square integers.
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12.39 If a2 + b2 is a prime number in the ordinary sense, prove that a+ bi
is a prime number in the domain Z[i].

Hint: Use proposition 12.8.

12.40 If p = a2 + b2 is a prime number in the ordinary sense, find the prime
factorization of p in the domain Z[i]. (See problem 12.39.)

12.41 Let p > 0 be a prime number in the ordinary sense. Show that p
factors in the larger domain Z[i] if, and only if, there are two integers a and
b for which p = a2 + b2. (See problem 12.40.)

12.42 Suppose that n is an integer for which
√

4n+ 1 is irrational. Let

q =
1 +
√

4n+ 1
2

,

and consider the domain Z[q] = {x+ yq | x, y ∈ Z}. Define the function N(a)
on Z[q] by

N(x+ yq) =
(
x+ y

(
1 +
√

4n+ 1
2

))
·
(
x+ y

(
1−
√

4n+ 1
2

))
= x2 + xy − ny2.

Show that N(x) satisfies the properties of lemma 12.8, that is, N(a) = 0 if,
and only if, a = 0, N(a · b) = N(a) · N(b), and N(±1) = 1. These domains
are called semi-quadratic domains.

12.43 Prove proposition 12.8 for the semi-quadratic domains Z[q] of prob-
lem 12.42.

12.44 Show that Z[(1 +
√
−3)/2] is a Euclidean domain. This is the ring of

Eulerian integers. (See problems 12.42 and 12.43.)
Hint: Use the same trick used in proposition 12.9. Since Q[q] = Q[

√
−3] is

a field by corollary 12.8, we can find t = x · y−1 = u + vq in Q[q], and then
round u and v to the nearest integer to find an element in Z[q].

12.45 Show that Z[(1 +
√

5)/2] is a Euclidean domain. This ring is called
the Golden ratio domain. (See the hint for problem 12.44.)

12.46 Show that the only units of Z[(1 +
√
−19)/2] are ±1.

Hint: Use problems 12.42 and 12.43 with n = −5.

12.47 Show that 2 and 3 are prime numbers in Z[(1 +
√
−19)/2].

Hint: Use problems 12.42 and 12.43. When can x2 + xy+ 5y2 be even or a
multiple of 3?
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12.48 Use problem 12.29 to show that Z[(1 +
√
−19)/2] is not a Euclidean

domain.
Hint: Use problems 12.46 and 12.47 to show that S1 = S0, and hence

Si = S0 for all i.

12.49 For every complex number z, show that there is a x ∈ Z[(1+
√
−19)/2]

such that |Re(z − x)| ≤ 1/2 and 0 ≤ Im(z − x) ≤
√

19/2.
Hint: First find an x for which 0 ≤ Im(z−x) ≤

√
19/2, then add an integer

to x to get |Re(z − x)| ≤ 1/2.

12.50 For every complex number z, show that there is a y ∈ Z[(1+
√
−19)/2]

such that either |z − y| < 1 or |2z − y| < 1.
Hint: First pick a y using problem 12.49, and draw a picture in the complex

plane to show where y could be. Show that three circles of radius 1 centered
at (1±

√
−19)/2 and 0, and two circles of radius 1/2 centered at (1±

√
−19)/4

cover this region.

12.51 Let I be an ideal of R = Z[(1 +
√
−19)/2], and let m be a nonzero

element of I for which N(m) is as small as possible. (See problems 12.42
and 12.43 for the definition of N(m).) Show that if x ∈ I, then there is a
y ∈ R such that 2x = my.

Hint: Let z = m−1x ∈ Q[
√
−19]. We can extend the N(x) function to

Q[
√
−19], so problem 12.50 shows that there is a y ∈ R for which N(m−1x−

y) < 1 or N(2m−1x− y) < 1.

12.52 Let I be an ideal of R = Z[(1 +
√
−19)/2], and let m ∈ I, m 6= 0

have minimum N(m) as in problem 12.51. Show that if x ∈ I, but x 6∈ (m),
then m is a multiple of 2, and that x = (m/2)y for some y ∈ R that is not a
multiple of 2.

Hint: Problem 12.47 shows that 2 is prime in R.

12.53 Show that Z[(1 +
√
−19)/2] is a PID.

Hint: Use problem 12.52 to show that if I is an ideal that is not a principal
ideal, and m is the element of I with the least nonzero N(m), then (m/2)yy ∈
I, and hence m/2 ∈ I, but N(m/2) < N(m).



Chapter 13

Finite Division Rings

13.1 Entering Finite Fields in Mathematica©R or GAP

In this section we will experiment with finite fields using GAP and Mathe-
matica. Although we have seen how integral domains can be entered into GAP
and Mathematica, fields have additional properties that allow for shortcuts in
this process.

We have already seen several examples of finite fields. The first example
was the discovery that whenever p is prime, the ring Zp forms a field with
p elements. In chapter 3 we found another example of a finite field—the
“complex numbers modulo 3.” This ring was defined in Mathematica with
the commands

InitDomain[3]
Define[î2, –1]
K = Ring[{i}]

or in GAP by

gap> InitRing("e","i");
gap> DefineRing("K",[3,3],[[e,i],[i,-e]]);

Let’s show that there is a connection between this field and the polynomials
in Z3. Since Z3 is a subfield of K that was previously entered, we can enter
the subfield simply as

Z3 = {0, 1, 2}

gap> Z3 := [0*e, e, 2*e];
[ 0*e, e, 2*e ]

We can also factor polynomials in the subfield Z3[x]. In GAP, we will define
the variable x to be over K.

gap> x := Indeterminate(K,"x");
x
gap> Factor(x^3 + x^2 + e, Z3);
[ x-e, x^2-x-e ]

391
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Factor[x̂3 + x̂2 + 1, Z3]
(2 + x)

(
2 + 2x+ x2

)
Notice in particular that the polynomial x2 + 1 is irreducible in Z3[x].

gap> Factor(x^2 + e,Z3);
[ x^2+e ]

Each element of the field K can be thought of as evaluating some polynomial
in Z3[x] at x = i. Even though i is not an element of Z3, we can consider any
polynomial in Z3[x] as being also a polynomial in K[x]. This suggests that
we should use the evaluation homomorphism

φi : K[x]→ K.

However, we can restrict this homomorphism to apply only to polynomials in
Z3[x].

φ′i : Z3[x]→ K.

The image will still be all of K, since φi(x) = i. The kernel of this homo-
morphism will consist of all polynomials in Z3[x] that yield 0 when evaluated
at x = i. For example, x2 + 1 is in the kernel, as are all multiples of x2 + 1.
In fact, if f(x) is an element of the kernel, then GCD(f(x), x2 + 1) must be
in the kernel, and x2 + 1 is irreducible in Z3[x]. Thus, the kernel must be
precisely the multiples of x2 + 1. This ideal can be described as (x2 + 1), the
ideal generated by x2 + 1.

By the first ring isomorphism theorem (10.2), we now have that

K ≈ Z3[x]/(x2 + 1)

since the field K is the image of the homomorphism φ′i.
We can try a similar process to produce other fields. Recall that we tried

to form a field by extending Z5 by an element i, where i2 = −1. However,
we failed to produce a field, since the ring had zero divisors. We succeeded in
producing the ring

K ≈ Z5[x]/(x2 + 1)

but x2 + 1 factors in Z5: (x+ 2)(x+ 3). This factorization apparently causes
the zero divisors to appear in the quotient ring. Perhaps we should try us-
ing a polynomial that is irreducible in Z5. We first define Z5 in GAP or
Mathematica:

InitDomain[5]
Z5 = Ring[{1}]

gap> InitRing("e");
gap> DefineRing("Z5",[5],[[e]]);

Next, we find a polynomial that is irreducible in Z5.
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Factor[x̂2 + 2 x + 3, Z5]

gap> x := Indeterminate(Z5,"x");
x
gap> Factor(x^2 + 2*e*x + 3*e,Z5);
[ x^2+2*e*x+3*e ]

So x2 + 2x+ 3 is irreducible over Z5. To find a new field for which x2 + 2x+ 3
has a zero, we will denote one of the zeros by the letter w. Then it is clear
that w2 = −2w − 3, so we can enter this into Mathematica.

Define[ŵ2, –2 w – 3]

Mathematica can now generate the ring containing w.

H = Ring[{w}]

In gap, we have to define the ring from scratch.

gap> InitRing("e","w");
gap> DefineRing("H",[5,5],[[e,w],[w,-2*w-3*e]]);
gap> Size(H);
25

Although the ring formed has 25 elements, we can have the Mathematica
command

CheckField[{1, w}]

verify that this is indeed a field. In GAP, we can list the inverses of all of the
elements.

gap> List(H, x -> 1/x);
[ fail, e+2*w, 3*e+4*w, 2*e+w, 4*e+2*w, e, 2*e+2*w, 3*e+2*w, w,
3*e+w, 3*e, 3*w, e+w, 4*e+3*w, 4*e+w, 2*e, e+4*w, e+2*w,
4*e+4*w, 2*w, 4*e, 2*e+4*w, 4*w, 2*e+3*w, 3*e+3*w ]

Since only one element fails to have an inverse (namely 0*e), this is a field.
As in the case of Z3[x]/(x2 + 1), we can describe this field as

Z5[x]/(x2 + 2x+ 3).

Thus we have found a way to form fields out of polynomial rings.

PROPOSITION 13.1
Let K be a field, and let f(x) be an irreducible polynomial of K[x]. Then
K[x]/(f(x)) is a field that contains K as a subfield.

PROOF Since K is a field, by corollary 12.7 K[x] is a principal ideal
domain. Since f(x) is an irreducible element of K[x], we have by lemma 12.6
that the quotient H = K[x]/(f(x)) is a field.
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Finally, we need to show that the field H contains K as a subfield. Consider
the mapping f : K → H given by

f(y) = y + (f(x)).

This is certainly a homomorphism, since it is a restriction of the natural
homomorphism from K[x] to K[x]/(f(x)). The kernel of f is just 0, so the
image is isomorphic to K. Thus, K[x]/(f(x)) contains K as a subfield.

DEFINITION 13.1 The field formed in proposition 13.1 is called the
extension field of K through the irreducible polynomial f(x).

The first step is to determine the size of this new field.

PROPOSITION 13.2
Let p be a prime number, and let A(x) be an irreducible polynomial in Zp[x]

of degree d. Then the field Zp[x]/(A(x)) has order pd.

PROOF By the division algorithm theorem (12.1), every element f(x) of
Zp[x] can be written

f(x) = q(x) ·A(x) + r(x),

where either r(x) is 0, or the degree of r(x) is less than d. Thus, the typical
element of K,

f(x) + (A(x)),

could be written as r(x) + (A(x)). Furthermore, the r(x) is uniquely deter-
mined from the division algorithm theorem. Thus, there are as many elements
in K as there are polynomials in Zp[x] with degree less than d, counting the
zero polynomial. All such polynomials can be written

a0 + a1x+ a2x
2 + a3x

3 + · · ·+ ad−1x
d−1,

with each ai between 0 and p−1, inclusively. Since there are d coefficients, each
of which can be p different numbers, there are exactly pd possible polynomials
of degree less than d. Thus, |K| = pd.

Whenever a finite field is defined by an extension through an irreducible
polynomial, the order of the field will be a power of a prime. We would like to
show that all finite fields are produced in this way. So naturally we begin by
showing that all finite fields have an order that is a power of a prime number.

PROPOSITION 13.3
Suppose K is a finite division ring. Then |K| = pn for some prime p and

some integer n.
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PROOF Let q be the order of K. From the additive structure of the ring,
we see that q · x = 0 for all x in K. Thus, the characteristic is positive, and
by proposition 11.2, the characteristic is a prime number, p.

Suppose that q has a prime factor r other than p. Then the additive group
of K must have a subgroup of order r, according to lemma 6.2. Hence r ·x = 0
for some element x in K. But this contradicts proposition 11.2, since r is not
divisible by p. Therefore, q has no prime factors other than p, so q = pn for
some integer n.

According to this proposition, it is impossible to find a field of order 6.
However, it is still possible to find a field of order 4. An irreducible polynomial
of degree 2 in Z2[x] is x2 + x+ 1. Thus the commands

InitDomain[2]
Define[â2, –a – 1]
F = Ring[{a}]

TABLE 13.1: Field of order 4
+ 0 1 a 1+a

0 0 1 a 1+a
1 1 0 1+a a

a a 1+a 0 1
1+a 1+a a 1 0

· 0 1 a 1+a

0 0 0 0 0
1 0 1 a 1+a
a 0 a 1+a 1

1+a 0 1+a 1 a

find a field of order 4 shown in table 13.1. The multiplication tables can be
found in GAP.

gap> InitRing("e","a");
gap> DefineRing("F",[2,2],[[e,a],[a,-a-e]]);
gap> ResetTableOptions();
gap> AddTable(F);

+ |0*e a e e+a
---+------------------
0*e|0*e a e e+a
a |a 0*e e+a e
e |e e+a 0*e a
e+a|e+a e a 0*e

gap> MultTable(F);

* |0*e a e e+a
---+------------------
0*e|0*e 0*e 0*e 0*e
a |0*e e+a a e
e |0*e a e e+a
e+a|0*e e e+a a
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As we see from this example, it is fairly easy to enter finite groups into Math-
ematica or GAP, as long as they can be expressed as an extension field of Zp
through some irreducible polynomial of Zp[x]. In the next section, we will
show that all finite fields can be obtained in this way. In fact, our goal will be
to classify all finite fields, which will give us a more natural way of defining
the fields in GAP.

13.2 Properties of Finite Fields

In the last example we starting looking at examples of finite fields. In this
section we want to explore the properties that all finite fields have in common.

We begin by observing that if F is a finite field, that the multiplicative group
F ∗ must be a finite abelian group. If the field is of order pn, the group F ∗ has
order pn − 1. For example, the field of order 4 has a multiplicative group of
order 3, so this group must be isomorphic to Z3. By studying the other fields
that we created in the previous section, we discover that the multiplicative
groups have one feature in common.

PROPOSITION 13.4

If F is a finite field, then the multiplicative group F ∗ is a cyclic group.

PROOF F ∗ is abelian, and so by the fundamental theorem of abelian
groups (6.2),

F ∗ ≈ Zd1 × Zd2 × Zd3 × · · · × Zdn
,

where the di are all powers of prime numbers. Let d be the least common
multiple of the set {d1, d2, d3, . . . , dn}. Then for all x in F ∗, we have that
xd = 1. Thus, the polynomial xd − 1 has |F ∗| solutions. By corollary 12.2, d
must be at least |F ∗|. But we also have

|F ∗| = d1 · d2 · d2 · · · dn,

so d is at most |F ∗|. Thus, d = |F ∗|, and so d1, d2, d3, · · · , dn are coprime.
Therefore, the group F ∗ is cyclic.

Now that the multiplicative group is completely understood for a finite field,
let us turn our attention to the group of automorphisms on the field. We have
previously seen examples where the group of automorphisms gave us insight
into the structure of a ring, and finite fields are no exception. We begin by
proving some basic lemmas in number theory.
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LEMMA 13.1
If p is a prime, then

np ≡ n (Mod p)

for all integers n.

PROOF Since Z∗p is of order p− 1, we have by corollary 3.2 that

np−1 = 1

for all elements n in Z∗p . (This result is commonly called Fermat’s little
theorem.) If we multiply both sides by n,

np = n,

we have a statement that is true for n = 0 as well. Thus, np = n for all n in
the ring Zp. This statement, when converted into modular notation, becomes

np ≡ n (Mod p).

LEMMA 13.2
If F is a field of characteristic p, then for all g ∈ F , the polynomial

f(x) = (x+ g)p − xp − gp

is the zero polynomial in F [x].

PROOF If g = 0, f(x) = xp − xp = 0, so the result is trivial. Let us
suppose that g is nonzero.

Note that the leading term of (x+g)p is xp, which will cancel in f(x). Thus,
f(x) has degree at most p− 1. Yet for every n, n · g is a root. Observe that

f(n · g) = (n · g + g)p − (n · g)p − gp = ((n+ 1)p − np − 1) · gp.

By lemma 13.1,
(n+ 1)p ≡ (n+ 1) (Mod p)

and
np ≡ n (Mod p).

Thus,
(n+ 1)p − np − 1 ≡ (n+ 1)− n− 1 ≡ 0 (Mod p).

So because F has characteristic p, we have f(n · g) = 0. Since g is nonzero,
the values

{0, g, 2g, 3g, · · · , (p− 1)g}
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are all distinct in F . Thus, f(x) has p distinct roots. But corollary 12.2 shows
us that if f(x) were nonzero, there would be at most p− 1 roots. Thus, f(x)
must be the zero polynomial.

We are now ready to produce one automorphism on a finite field, which we
will use to generate all other automorphisms.

THEOREM 13.1: The Frobenius Automorphism Theorem
If F is a finite field of characteristic p, then the mapping

f : x→ xp

forms an automorphism of F to itself. Furthermore, f(y) = y if, and only if,
y is in the subfield Zp. This automorphism is called the Frobenius automor-
phism on F .

PROOF We first need to show that f is a homomorphism. If F is a field
of characteristic p, then by lemma 13.2 we have that

(x+ g)p − xp − gp = 0

for all g in F . Thus, we have the identity

f(x+ y) = (x+ y)p = xp + yp = f(x) + f(y).

It is also obvious that

f(x · y) = (x · y)p = xp · yp = f(x) · f(y).

So f is a homomorphism. The kernel of f is obviously just 0, since xp = 0
implies that x = 0, since F has no zero divisors. Therefore, the mapping is
one-to-one. Since F is a finite field, we can use the pigeonhole principle to
show that the mapping is also onto. Therefore, f is an automorphism.

Finally, we need to show that f(y) = y if, and only if, y is in the subfield
Zp. Note that this subfield is generated by the multiplicative identity, 1:

Zp = {0, 1, 2, 3, · · · , p− 1}.

By lemma 13.1, for any element in this subfield, f(x) = xp = x. On the other
hand, by corollary 12.2, the polynomial xp−x in F [x] cannot have more than
p roots in F . We have already found p solutions, so there cannot be anymore.
Therefore, f(y) = y if, and only if, y is in Zp.

Once we have one automorphism f(x), we can consider creating other au-
tomorphisms such as f(f(x)) and f(f(f(x))). It is not hard to determine the
order of f(x).
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COROLLARY 13.1
Let F be a finite field of order pn. Then the Frobenius automorphism is of

order n in the group of automorphisms.

PROOF Note that the multiplicative group F ∗ has order pn − 1. Thus,
by corollary 3.2, for every element x in F ∗, we have

x(pn−1) = 1.

Multiplying both sides by x gives us xp
n

= x for all x in F ∗, and also x = 0.
Thus, this statement is true for all x in F .

We now note that

fn(x) = f(f(f(· · · (f(x)) · · ·)))︸ ︷︷ ︸
n times

= xp
n

= x.

for all x in F , so fn yields the identity automorphism.
To show that the order of f is not less than n, suppose that the order was

d < n. Then fd(x) = xp
d

would be x for all x. But then the polynomial

xp
d

− x

would have pn solutions. This contradicts corollary 12.2, since n > d. There-
fore, the order of the Frobenius automorphism is n.

We next need to show a simple lemma to indicate how to apply the Frobe-
nius automorphism to the set of polynomials over the field.

LEMMA 13.3
Any isomorphism f that maps an integral domain K to an integral domain
M extends to an isomorphism mapping K[x] to M [x], with f(x) = x.

PROOF Suppose f(x) is an isomorphism mapping K to M . If w(x) is in
K[x], with coefficients ai, we can define f(w(x)) by

f(w(x)) = f

( ∞∑
i=0

aix
i

)
=
∞∑
i=0

f(ai)xi.

If v(x) is another polynomial in K[x] with coefficients bi, then

f(w(x) + v(x)) = f

( ∞∑
i=0

(ai + bi)xi
)

=
∞∑
i=0

f(ai + bi)xi.

=
∞∑
i=0

f(ai)xi +
∞∑
i=0

f(bi)xi = f(w(x)) + f(v(x)).
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Likewise, we have

f(w(x) · v(x)) = f

 ∞∑
i=0

∞∑
j=0

(ai · bj)xi+j


=
∞∑
i=0

∞∑
j=0

f(ai · bj)xi+j =
∞∑
i=0

∞∑
j=0

f(ai) · f(bj)xi+j

= f(w(x)) · f(v(x)).

Thus, f extends to a homomorphism mapping K[x] to M [x]. But the kernel
of f is just the identity element, since f preserves the degree of any nonzero
polynomial. Thus, f extends to an isomorphism from K[x] to M [x], and
f(x) = x.

We can apply lemma 13.3 to the case where f is an automorphism on K[x],
such as the Frobenius automorphism. By extending the Frobenius automor-
phism to a polynomial, we can generate irreducible polynomials in Zp[x].
These irreducible polynomials are important, since we can define the field in
terms of these polynomials.

PROPOSITION 13.5
Let F be a finite field of characteristic p. For any y in F , let n be the smallest

number such that yp
n

= y. Then

g(x) = (x− y) · (x− f(y)) · (x− f(f(y))) · · · (x− fn−1(y))

is an irreducible polynomial of degree n in Zp[x].

PROOF Consider the extension of the Frobenius automorphism onto F [x],
as given in lemma 13.3. If we apply this mapping to the polynomial g(x), we
get

f(g(x)) = (x− f(y)) · (x− f(f(y))) · (x− f(f(f(y)))) · · · · · (x− fn(y)).

Recall we picked n to be the smallest number such that fn = y. Thus,

f(g(x)) = (x−f(y)) ·(x−f(f(y))) ·(x−f(f(f(y)))) · · · · ·(x−fn−1(y)) ·(x−y),

which after rearranging the factors gives us g(x) again.
Since g(x) is fixed by the Frobenius automorphism, each coefficient of g(x)

must be fixed by f(x). But the only elements fixed by f(x) are those in Zp.
Thus, g(x) must have all of its coefficients in Zp, and so is a polynomial in
Zp[x]. To show that g(x) is irreducible, suppose that

g(x) = h(x) · j(x),
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where both h(x) and j(x) are polynomials in Zp[x] of positive degree. Then
f(h(x)) = h(x) and f(j(x)) = j(x) since the Frobenius automorphism fixes x
and the elements in Zp. By the unique factorization in F [x], (x − y) has to
be a factor of h(x) or j(x), but not both, since (x− y) is a factor of g(x) but
(x−y)2 is not. Let us suppose that h(x) has (x−y) as a factor. Any factor of
j(x) would have to be a factor of g(x), so such a factor would have the form

(x− fm(y))

for some m > 0. Thus, fm(y) is a root of j(x), but y is not. But this is im-
possible, since fm(j(x)) = j(x), and so fm(j(y)) = j(fm(y)) = 0. Therefore,
g(x) is an irreducible polynomial in Zp[x].

DEFINITION 13.2 The polynomial produced by proposition 13.5 is
called the irreducible polynomial of y over Zp. If y is in Zp, this polynomial
is simply x− y.

We can now use proposition 13.5 to show us that every finite field can be
produced as an extension of Zp over an irreducible polynomial. While we are
at it, we will prove a statement that is true for all fields, not just finite fields.

PROPOSITION 13.6
Let K be any field, and F be a subfield of K. Suppose there is an element
y of K such that there are no proper subfields of K containing both F and y.
Suppose that there is a polynomial f(x) in K[x] with coefficients in F such
that f(y) = 0. Suppose further that f(x) is an irreducible polynomial when
treated as a polynomial in F [x]. Then K is isomorphic to F [x]/(f(x)).

PROOF Consider the evaluation homomorphism

φy : K[x]→ K

restricted on the ring F [x]. In other words, we can consider the homomor-
phism φ′y as the restriction of φy on F [x]. Let us consider the kernel of this
homomorphism. Because f(y) = 0, f(x) is certainly in the kernel of φ′y. But
the kernel cannot be all of F [x], since the constant polynomials are not in the
kernel. We know that the kernel is an ideal, and by corollary 12.7, F [x] is a
PID, so the kernel can be written as (g(x)) for some g(x) in F [x]. Yet f(x) is
in the kernel, so g(x) divides f(x). But f(x) is irreducible in F [x], and g(x)
cannot be a unit, since we have already observed that (g(x)) is not all of F [x].
Therefore, the kernel of φ′y is (f(x)).

From the first ring isomorphism theorem (10.2), the image of φ′y is isomor-
phic to

F [x]/(f(x)).
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We have already mentioned that F [x] is a PID, so by lemma 12.6 the image
is a field. But the field must contain F , since this is the image of the constant
polynomials, and also must contain y, the image of the polynomial x. The
only subfield of K that contains both y and F is K itself, so F [x]/(f(x)) is
isomorphic to K.

One immediate application of proposition 13.6 is to show us that every finite
field can be produced as an extension of Zp over an irreducible polynomial.
We will use the polynomial derived in proposition 13.5.

COROLLARY 13.2
For every finite field K of characteristic p, there is an irreducible polynomial
f(x) of Zp[x] such that K is isomorphic to Zp[x]/(f(x)).

PROOF If K is a finite field, by proposition 13.4, the multiplicative
group of K∗ is cyclic. Thus, there must be an element y that generates K∗

as a group. Since K must have finite characteristic p, we will let F be the
subfield Zp. Let f(x) be the irreducible polynomial of y over Zp given by
proposition 13.5.

Even though f(x) is irreducible in Zp[x], f(x) has (x− y) as a factor when
viewed as a polynomial in K[x]. Note that since y generates all of K, we
see that the conditions for proposition 13.6 are satisfied. Therefore K is
isomorphic to Zp[x]/(f(x)).

We have already seen one field of order 9, produced by the polynomial
x2+1. But there are two other irreducible second degree polynomials in Z3[x],
x2 +x+ 2 and x2 + 2x+ 2. What if we formed fields using these polynomials?
Note that both of these polynomials factor in the field Z3[x]/(x2 + 1):

InitDomain[3]
Define[î2, –1]
K = Ring[{ i }]
Factor[x̂2 + x + 2, K]
Factor[x̂2 + 2 x + 2, K]

gap> InitRing("e","i");
gap> DefineRing("K",[3,3],[[e,i],[i,-e]]);
gap> x := Indeterminate(K,"x");
x
gap> Factor(x^2+x+2,K);
[ x+(2*e+1), x+(2*e+2*i) ]
gap> Factor(x^2 + 2*x + 2, K);
[ x+(e+i), x+(e+2*i) ]

Proposition 13.6 hints at what must be happening. The field Z3[x]/(x2 + 1)
is the smallest field of characteristic 3 for which x2 + 1 factors. But this field
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also happens to be the smallest field of characteristic 3 for which x2 + x + 2
and x2 + 2x+ 2 factor. This suggests that Z3[x]/(x2 + 1), Z3[x]/(x2 + x+ 2),
and Z3[x]/(x2 + 2x+ 2) are in fact the same field. Could this be so?

The first step in proving this is to find a large field containing both fields.

LEMMA 13.4
Let F and K be two finite fields with the same characteristic p. Then there

is a field that contains isomorphic copies of both F and K.

PROOF Since F is a finite field, by corollary 13.2 there is a polynomial
f(x) in Zp[x] such that F is isomorphic to Zp[x]/(f(x)).

Since F and K have the same characteristic, we can consider f(x) to be a
polynomial in K[x] as well. Let g(x) be an irreducible factor of f(x) over the
domain K[x]. Of course, f(x) may already be irreducible in K[x], in which
case we let g(x) = f(x).

Now consider the ring E = K[x]/(g(x)). Since K[x] is a PID, by lemma 12.6
E is a field. In fact, E contains an element that is a root of the polynomial
g(x), namely

y = x+ (g(x)),

since
g(y) = g(x+ (g(x)) ) = g(x) + (g(x)) = 0 + (g(x)).

We can now consider the evaluation homomorphism

φy : E[x]→ E.

Let us first consider the restriction of this homomorphism to the ring Zp[x],
which we will call ψ. Thus ψ is the homomorphism

ψ : Zp[x]→ E : f(w(x)) = w(y).

Since y is a root of g(x) in the field E, and g(x) in turn is a factor of f(x),
we see that y is a root of f(x) in the field E. Thus, f(x) is in the kernel
of the homomorphism ψ. Since Zp[x] is a PID, the kernel can be written as
(h(x)) for some polynomial h(x) in Zp[x]. But since f(x) is in the kernel,
h(x) must divide f(x). But f(x) is irreducible, and h(x) cannot be a unit, or
else the kernel would be all of Zp[x], which is impossible since the constant
polynomials are not in the kernel. Therefore, the kernel must be (f(x)), and
so by the first ring isomorphism theorem (10.2), the image of ψ is isomorphic
to

Zp[x]/(f(x)),

which is in turn isomorphic to F . Thus, there is a subfield of E isomorphic
to F .
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All we have to do is show that there is a copy of the field K inside of

E = K[x]/(g(x)).

But we can consider the natural homomorphism

i : K[x]→ E

given by
i(p(x)) = p(x) + (g(x)).

If we restrict this homomorphism onto the constant polynomials, we get

i′ : K → E.

Since g(x) is not a unit, it is clear that the kernel of this homomorphism
is just 0. Thus, there is a subfield of E isomorphic to K. Therefore, we
have constructed a field that contains isomorphic copies of both F and K as
subfields.

We can now use this lemma to show that there is only one non-isomorphic
field of a given order.

COROLLARY 13.3
Any two finite fields of the same order are isomorphic to each other.

PROOF If two fields F and K have the same order, by proposition 13.3,
both must have order pn for some prime number p, and some positive integer
n. Thus, both F and K have characteristic p, so by lemma 13.4 there exists a
field E that contains isomorphic copies of both F and K as subfields. Let F ′

and K ′ be the subfields of E isomorphic to F and K, respectively. Consider
the polynomial

f(x) = xp
n

− x

in E[x]. Since F ′ is a subfield of E, the Frobenius automorphism is of order n
on this subfield. Thus, every element of F ′ is a root of f(x). Likewise, every
element of K ′ is also a root of f(x). But by corollary 12.2, f(x) can have at
most pn roots. Thus, the subfields F ′ and K ′ must coincide. Hence F ′ and
K ′ are isomorphic, since they are identical, so F and K must be isomorphic.

This proposition explains the strange behavior of fields that we discovered
in our experiment. Whenever a finite field F is extended though an irre-
ducible polynomial, all irreducible polynomials in F [x] of the same degree
factor completely in the new field. The reason is now clear: The field

F [x]/(f(x))
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only depends on the degree of the irreducible polynomial f(x).
We have already seen fields of order 4, 9, and 27 in this chapter. We in

fact can refer to them as the fields of order 4, 9, or 27. However, there is one
question we have yet to answer. Given a prime number p and an integer n, is
there a field of order pn? It seems like all we would need to construct such a
field is an irreducible polynomial f(x) in Zp[x] of degree n, and then the field

Zp[x]/(f(x))

would have order pn. The only problem with this argument is that we have not
shown that there is an irreducible polynomial of degree n in Zp[x]. In order to
construct such irreducible polynomials, we will need to utilize a special class
of polynomials—the cyclotomic polynomials. These polynomials have many
different uses that crop up in unexpected places.

13.3 Cyclotomic Polynomials

We now pause from our work on finite fields to discuss a special class of
polynomials in Z[x]. These polynomials occur in the factorizations of the
simple polynomial xn−1. Although these polynomials are constructed easily,
they have a tendency to appear in many different applications, and hence are
very useful.

To introduce the cyclotomic polynomials, we will begin by noticing a pattern
in the following factorizations:

ClearDefs
Factor[x–1]
Factor[x̂2–1]
Factor[x̂3–1]
Factor[x̂4–1]
Factor[x̂5–1]
Factor[x̂6–1]

gap> x := Indeterminate(Rationals,"x");
x
gap> Factor(x-1,Rationals);
[ x-1 ]
gap> Factor(x^2-1,Rationals);
[ x-1, x+1 ]
gap> Factor(x^3-1,Rationals);
[ x-1, x^2+x+1 ]
gap> Factor(x^4-1,Rationals);
[ x-1, x+1, x^2+1 ]
gap> Factor(x^5-1,Rationals);
[ x-1, x^4+x^3+x^2+x+1 ]



406 Abstract Algebra: An Interactive Approach

gap> Factor(x^6-1,Rationals);
[ x-1, x+1, x^2-x+1, x^2+x+1 ]

In each factorization there is exactly one polynomial that appears that has not
appeared in any previous factorization. Our plan is to find a formula for the
irreducible polynomials produced in these factorizations. A natural starting
place would be to find all of the complex roots of the polynomial xn− 1. But
we have already seen that the primitive n-th roots of unity are of the form
ekn, where k is coprime to n.

How are the primitive roots of unity related to the factorizations of xn− 1?
It is clear that the primitive roots are precisely the complex zeros of xn − 1
that are not zeros of xm − 1 for m < n. Thus, if we wish to find the factor of
xn−1 that does not appear in any previous factorizations, we should look for
a polynomial whose only complex roots are the primitive n-th roots of unity.

For example, the primitive eighth roots of unity were found to be

e8, e8
3, e8

5, and e8
7.

Thus, the simplest polynomial that has these four complex roots would be

InitDomain[0]
e8 = (1/2 + I/2) Sqrt[2]
(x – e8).(x – e8̂3).(x – e8̂5).(x – e8̂7)

gap> x := Indeterminate(Rationals,"x");
x
gap> (x-E(8))*(x-E(8)^3)*(x-E(8)^5)*(x-E(8)^7);
x^4+1

which simplifies to x4 + 1, which is a factor of x8 − 1. Apparently not only
did the imaginary part cancel, but also the square roots simplified. We can
use this example for our definition.

DEFINITION 13.3 For n > 0, we define the n-th cyclotomic polynomial
to be the product

Φn(x) = (x− enk1) · (x− enk2) · (x− enk3) · · · (x− enki),

where k1, k2, k3, . . . , ki are the integers between 0 and n that are coprime to
n.

It is sometimes convenient to use a special notation for a product of many
terms. Just as the sigma can be used to denote the sum of many terms, a
large Π (the upper case π) is used to denote such a product. Thus, we could
write

Φn(x) =
n∏

k=1
GCD(k,n)=1

(x− enk).
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In this product, the index k ranges from 1 to n, but we only consider the
values of k for which GCD(k, n) = 1. It is apparent from the definition that
the degree of the n-th cyclotomic polynomial is φ(n), where φ is Euler’s totient
function.

Although this definition uses complex numbers, we observed that the poly-
nomials always produced integer coefficients. The next proposition shows us
how to find the cyclotomic polynomials without having to work with complex
numbers.

PROPOSITION 13.7
For any positive integer n, we have

xn − 1 =
∏
k|n

Φk(x).

Here, the product is taken over all values of k that divide n.

PROOF We will first show that each n-th root of unity is a primitive k-th
root of unity for exactly one positive divisor k of n. If z = en

s is an n-th root
of unity, we can let k = n/GCD(n, s). Then k · s = n · (s/GCD(n, s)) is a
multiple of n, so zk = 1. Yet if zm = 1, then s ·m must be a multiple of n,
so (s/GCD(n, s)) ·m is a multiple of n/GCD(n, s). But (s/GCD(n, s)) and
(n/GCD(n, s)) are coprime, so m would be a multiple of k. Thus, ens is a
primitive k-th root of unity, with k = n/GCD(n, s).

Since

xn − 1 = (x− en) · (x− en2) · (x− en3) · · · · · (x− enn),

we can collect those factors (x− ens) for which ens is a primitive k-th root of
unity. The result is the formula

xn − 1 =
∏
k|n

Φk(x).

To help understand this notation, let us look at the case where n = 12.
Then proposition 13.7 states that

x12 − 1 =
∏
k|12

Φk(x) = Φ1(x) · Φ2(x) · Φ3(x) · Φ4(x) · Φ6(x) · Φ12(x).

We can observe this factorization using Mathematica or GAP.

Factor[x̂12 – 1]

gap> x := Indeterminate(Rationals,"x");
x
gap> Factor(x^12-1, Rationals);
[ x-1, x+1, x^2-x+1, x^2+1, x^2+x+1, x^4-x^2+1 ]
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Proposition 13.7 at least explains our observation that the factorization of
xn − 1 always produces a new factor. However, we have not proven that the
cyclotomic polynomials are irreducible in Z[x]. They are indeed irreducible,
but we will not need this for our work with finite fields.

COROLLARY 13.4
The n-th cyclotomic polynomial Φn(x) has integer coefficients for all n > 0.

PROOF We will prove this using induction on n. Obviously the first
cyclotomic polynomial is x − 1, which has integer coefficients. Let n > 1,
and suppose the claim is valid for all previous cyclotomic polynomials. By
proposition 13.7, we can find the n-th cyclotomic polynomial as

Φn(x) = (xn − 1)/f(x)

where
f(x) =

∏
k|n
k<n

Φk(x).

Since all previous cyclotomic polynomials have integer coefficients, we see by
induction that f(x) has integer coefficients. Furthermore, from the definition
of the cyclotomic polynomials we see that the leading coefficients must be 1,
hence the leading coefficient of f(x) is 1. So by corollary 12.1 the quotient
(xn− 1)/f(x) must in fact have integer coefficients. Therefore, all cyclotomic
polynomials have integer coefficients.

It is actually very easy to generate the n-th cyclotomic polynomial in Math-
ematica or GAP. The commands

Cyclotomic[3, x]
Cyclotomic[6, x]

gap> CyclotomicPolynomial(Rationals, 3);
x^2+x+1
gap> CyclotomicPolynomial(Rationals, 6);
x^2-x+1

find the third and sixth cyclotomic polynomial, x2 + x + 1 and x2 − x + 1.
Notice that the coefficients for these cyclotomic polynomials are either 0 or
±1. This is the case for n ≤ 100, but for larger values of n, the coefficients of
Φn(x) can be larger. For example, there are two coefficients of −2 in Φ105(x).

gap> CyclotomicPolynomial(Rationals, 105);
x^48+x^47+x^46-x^43-x^42-2*x^41-x^40-x^39+x^36+x^35+x^34+x^33+\
x^32+x^31-x^28-x^26-x^24-x^22-x^20+x^17+x^16+x^15+x^14+x^13+x^\
12-x^9-x^8-2*x^7-x^6-x^5+x^2+x+1
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The next corollary is another easy consequence of corollary 13.4.

COROLLARY 13.5
If n is divisible by m, with n > m, then the polynomial xn − 1 is divisible by
xm − 1 in Z[x]. Furthermore, Φn(x) divides

xn − 1
xm − 1

in Z[x].

PROOF Since n is divisible by m, whenever m is divisible by k, then n
is divisible by k. Thus, every factor appearing in

xm − 1 =
∏
k|m

Φk(x)

also appears in
xn − 1 =

∏
k|n

Φk(x).

In fact, the quotient would be the product of the cyclotomic polynomials
Φk(x) for which k is a divisor of n, but not of m. Since the cyclotomic
polynomials have integer coefficients,

xn − 1
xm − 1

would have integer coefficients. Furthermore, Φn(x) is one of the cyclotomic
polynomials in the factorization of xn − 1 which is not in xm − 1. Thus, the
n-th cyclotomic polynomial divides (xn − 1)/(xm − 1) in Z[x].

We now want to find some properties of the cyclotomic polynomials. One
of the most important properties is that two different cyclotomic polynomials
cannot share a root in the complex numbers. (This is obvious from the def-
inition.) However, we will be working with other fields besides the complex
numbers, so we could ask whether a cyclotomic polynomial has multiple roots
in any field.

DEFINITION 13.4 If r is a root of a polynomial f(x), and (x − r)2

divides f(x), we say r is a multiple root of f(x).

We would like to determine when xn − 1 has multiple roots. Our strategy
is to discover the form of the quotient

xn − 1
x− 1

.
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For example, (x4 − 1)/(x− 1) is given by

gap> x := Indeterminate(Rationals,"x");
x
gap> (x^4-1)/(x-1);
x^3+x^2+x+1

In Mathematica, is takes more work to get the answer to simplify.

Expand[Factor[(x̂4 – 1)/(x–1)]]

which yields x3 + x2 + x + 1. By observing other quotients in Mathematica
or GAP, we can see the general pattern. Using this pattern, we can prove the
following lemma.

LEMMA 13.5
If F is any field, then the polynomial xn − 1 has a multiple root if, and only

if, n is a multiple of the characteristic of F .

PROOF We first will ask whether 1 is a multiple root of xn − 1. Since 1
is clearly a root,

xn − 1 = (x− 1) · f(x)

for some polynomial f(x). But we can use the division algorithm to produce
f(x). We claim that

f(x) =
n−1∑
k=0

xk = 1 + x+ x2 + x3 + · · ·+ xn−2 + xn−1.

To see this, note that

(x− 1) · f(x) = x · f(x)− f(x)
= (x+ x2 + x3 + · · ·xn−1 + xn)
− (1 + x+ x2 + x3 + · · ·+ xn−2 + xn−1)

= xn − 1.

To see whether 1 is a double root, we observe that

f(1) =
n−1∑
k=0

1k = 1 + 1 + 12 + 13 + · · ·+ 1n−2 + 1n−1 = n.

Thus, f(1) is zero if, and only if, n is a multiple of the characteristic of
F . Therefore, 1 is a double root of f(x) precisely when the characteristic is
positive and divides n.

Now suppose that n is not a multiple of the characteristic, and that r is a
double root of xn − 1. Then

xn − 1
(x− r)2
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is a polynomial in F [x]. If we replace x with x · r we get

(x · r)n − 1
(x · r − r)2

=
xnrn − 1

(x− 1)2 · r2
=

xn − 1
(x− 1)2 · r2

since rn = 1. However, we have already shown that 1 is not a double root of
xn− 1, so the right hand side of this equation cannot be a polynomial. Thus,
r is not a double root whenever n is not a multiple of the characteristic.

This lemma can now be used to generate irreducible polynomials in Zp[x]
of any degree. In fact, these irreducible polynomials are the key to proving
that a field of order pn exists.

PROPOSITION 13.8
Let p be a prime integer, and let n > 1. Consider the cyclotomic polynomial

Φ(pn−1)(x)

of order φ(pn − 1). Let us consider g(x) to be this polynomial modulo p in
Zp[x]. Then g(x) factors in Zp[x] into irreducible polynomials, all of which
have degree n.

PROOF Let h(x) be an irreducible factor of g(x), and let K be the
field Zp[x]/(h(x)). We wish to show that the order of K is pn, since by
proposition 13.2 this would indicate that the degree of h(x) is n. Let y be the
element

y = x+ (h(x))

in the field K. Then h(y) = 0, and hence g(y) = 0 in the field K. In fact,
g(x) would be a factor of

x(pn−1) − 1,

and so yp
n

= y. In other words, if f(x) is the Frobenius automorphism on K,
then fn(y) = y. In fact, fn(1) = 1, and Zp[x] is generated by x and 1, so we
find that fn(x) = x for all x in K. Thus, the polynomial

xp
n

− x

has at least |K| roots. By corollary 12.2, |K| can have at most pn elements.
To show that |K| = pn, let us suppose that |K| = pm, where m < n. Then

m is the smallest number for which fm(x) = x for all x in K. It is clear that
m would have to divide n, since fn(x) is also x for all x in K.

Since fm(y) = y, we see that y is a root of the polynomial

x(pm−1) − 1.
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By corollary 13.5, Φ(pn−1)(x) divides

x(pn−1) − 1
x(pm−1) − 1

in Z[x], since (pm − 1) divides (pn − 1). Thus, in Zp[x], g(x) divides

x(pn−1) − 1
x(pm−1) − 1

.

Since g(y) = 0, and also y(pm−1) = 1, we see that y would be a multiple root
of x(pn−1) − 1. But by lemma 13.5, this polynomial can only have a multiple
root if (pn − 1) is a multiple of p, which it clearly isn’t. Thus, m = n, and so
|K| = pn. By proposition 13.2, the irreducible factors of g(x) over Zp[x] all
have degree n.

We can now prove what we had suspected was true from the experiments:
that there is precisely one field of order pn, where n > 0 and p is a prime
number.

COROLLARY 13.6
If p is a prime number, and n is a positive integer, there exists a unique field

(up to isomorphism) of order pn.

PROOF We have already shown in corollary 13.3 that finite fields of the
same order are isomorphic, so all we have to show is that there is a field of
order pn. By proposition 13.8, the cyclotomic polynomial

Φ(pn−1)(x)

factors in Zp[x] into irreducible factors of degree n. If we let A(x) be one of
those irreducible factors, then by proposition 13.2, the field

K = Zp[x]/(A(x))

has order pn.

DEFINITION 13.5 If q = pn, where p is prime and n > 0, then the
Galois field of order q, denoted GF (q), is the unique field of order q given in
corollary 13.6.

For example, the official name for the “complex numbers modulo 3” we
have been working with is GF (9). Whenever p is prime, we can write GF (p)
for the field Zp.

We can enter finite fields into GAP using this notation. For example, the
faster way to enter GF (9) in GAP is
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gap> K := GF(9);
GF(3^2)
gap> List(K);
[ 0*Z(3), Z(3)^0, Z(3), Z(3^2), Z(3^2)^2, Z(3^2)^3, Z(3^2)^5,
Z(3^2)^6, Z(3^2)^7 ]

A bit of explanation is in order here. We have established in proposition 13.4
that the multiplicative group is cyclic, so we can let Z(9) be a generator of
the multiplicative group, so that all nonzero elements can be expressed as a
power of Z(9). In GAP 3, the elements were listed as

[ 0*Z(9), Z(9)^0, Z(9), Z(9)^2, Z(9)^3, Z(9)^4, Z(9)^5, Z(9)^6,
Z(9)^7, Z(9)^8 ]

but this causes a problem in thatGF (3) should be automatically a subgroup of
GF (9). Hence, Z(9)4 should simplify to Z(3), and the multiplicative identity
is listed as Z(3)0 instead of Z(9)0.

If we list the elements in the order of increasing powers of Z(9), the multi-
plication table becomes easy to understand.

gap> L := [0*Z(9), Z(9)^0, Z(9), Z(9)^2, Z(9)^3, Z(9)^4, Z(9)^5,
> Z(9)^6, Z(9)^7 ];
[ 0*Z(3), Z(3)^0, Z(3^2), Z(3^2)^2, Z(3^2)^3, Z(3), Z(3^2)^5,
z(3^2)^6, Z(3^2)^7 ]

gap> NumberElements := true;
true
gap> MultTable(L);

* |1 2 3 4 5 6 7 8 9
--------+--------------------------
0*Z(3) |1 1 1 1 1 1 1 1 1
Z(3)^0 |1 2 3 4 5 6 7 8 9
Z(3^2) |1 3 4 5 6 7 8 9 2
Z(3^2)^2|1 4 5 6 7 8 9 2 3
Z(3^2)^3|1 5 6 7 8 9 2 3 4
Z(3) |1 6 7 8 9 2 3 4 5
Z(3^2)^5|1 7 8 9 2 3 4 5 6
Z(3^2)^6|1 8 9 2 3 4 5 6 7
Z(3^2)^7|1 9 2 3 4 5 6 7 8

Except for the zero element, we have diagonal streaks of elements in the mul-
tiplication table, indicative of a cyclic group. What is not so self-explanatory
is the addition table.
gap> AddTable(L);

+ |1 2 3 4 5 6 7 8 9
--------+--------------------------
0*Z(3) |1 2 3 4 5 6 7 8 9
Z(3)^0 |2 6 4 9 8 1 5 7 3
Z(3^2) |3 4 7 5 2 9 1 6 8
Z(3^2)^2|4 9 5 8 6 3 2 1 7
Z(3^2)^3|5 8 2 6 9 7 4 3 1
Z(3) |6 1 9 3 7 2 8 5 4
Z(3^2)^5|7 5 1 2 4 8 3 9 6
Z(3^2)^6|8 7 6 1 3 5 9 4 2
Z(3^2)^7|9 3 8 7 1 4 6 2 5
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The addition table is hard to understand because we have yet to determine
which of the generators GAP assigned to Z(9). In other words, we must
determine which irreducible polynomial of degree 2 over Z3 should be used to
define the field. There are in fact six such polynomials: x2 + 1, x2 + x + 2,
x2 + 2x+ 2, 2x2 + 2, 2x2 + 2x+ 1, and 2x2 + x+ 1. This list can be reduced
to three polynomials if we insist that the leading coefficient be 1. But if we
use x2 + 1 for the defining polynomial, as we did for the “complex numbers
mod 3,” then the roots of this polynomial, ±i, would not be generators of the
multiplicative group, and hence could not be used to define Z(9).

DEFINITION 13.6 A polynomial f(x) over a finite field F is a privative
polynomial if it is irreducible, has a leading coefficient of 1, and x+ (f(x)) is
a multiplicative generator of the finite field F [x]/(f(x)).

Although we can rule out using x2 + 1 to define Z(9), there are still two
primitive polynomials x2 +x+2 and x2 +2x+2. The roots of these two poly-
nomials in GF (9) are all multiplicative generators. Both of these polynomials
will work equally well, so we define the following “tie breaker.”

DEFINITION 13.7 The Conway polynomial of degree n over Zp is the
primitive polynomial of degree n in Zp[x] for which

1. The polynomial is compatible with the way that the subfields of GF (pn)
are defined. To be compatible, for all divisors d of n less than n, the(
pn−1
pd−1

)
th power of the zeros of the polynomial must be zeros of the

Conway polynomial of degree d over Zp.

2. If two or more primitive polynomials satisfy the compatibility condition,
let d be the highest power of x for which the coefficients differ. If
n − d is even, pick the one with the smallest coefficient from the set
{0, 1, . . . p− 1}. If n−d is odd, pick the largest, unless there is one with
a coefficient of 0.

This definition at first seems counter-intuitive. Logically, a zero coefficient
is always preferred over a nonzero term, but sometimes we pick the polynomial
with the largest coefficient, and sometimes use the one with the smallest. But
to understand why this is so, consider the first degree Conway polynomials.
Since all of the primitive polynomials are of the form x+ c, with c 6= 0, they
differ only in the constant term. Hence d = 0, so n − d will be odd, and we
should select the primitive polynomial with the largest c. This in turn will
make the root of this polynomial be as small as possible. So for p prime, Z(p)
will represent the smallest generator of the group Z∗p . For example, Z(5) will
be GAP’s way of representing 2 in the field Z5, and Z(7) will represent 3 in
the field Z7. In general, the Conway polynomial is designed so that the roots
will be minimized.
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Let us use this definition to find the Conway polynomial of degree 2 over
Z3. In order to understand the compatibility condition, we must first find the
Conway polynomial of degree 1 over Z3. Since there is only one generator of
Z3, namely 2, there is only one primitive polynomial of degree 1, x−2 = x+1.

Now in order for a primitive polynomial of degree 2 to be compatible, the
4th power of the roots must be a root of x + 1 ((32 − 1)/(31 − 1) = 4). But
the 4th power of all four generators in GF (9) produces 2, so both x2 + x+ 2
and x2 + 2x+ 2 satisfy the compatibility condition, but x2 + 1 does not, since
i4 = 1 6= 2 in GF (9).

Of the two possible primitive polynomials remaining, we look for the largest
power of x for which these differ, (x1), and since n−d = 1 is odd, and neither
x1 coefficient is 0, we pick the larger of the two possible coefficients. So the
Conway polynomial is x2 + 2x+ 2.

GAP has many Conway polynomials precomputed, since they are time con-
suming to compute from scratch. These Conway polynomials f(x) are then
used to define GF (pn) = Zp[x]/(f(x)).

gap> x := Indeterminate(GF(3),"x");
x
gap> ConwayPolynomial(3,2);
x^2-x-Z(3)^0

GAP expresses the polynomial in terms of Z(p), so this is x2 − x − 1 =
x2 + 2x + 2. Thus, if we define the field Z3[x]/(x2 + 2x + 2), and order the
elements in powers of the generator,

gap> InitRing("e","a");
gap> DefineRing("K",[3,3],[[e,a],[a,a+e]]);
gap> L := [0*a, e, a, a^2, a^3, a^4, a^5, a^6, a^7 ];
[ 0*e, e, a, e+a, e+2*a, 2*e, 2*a, 2*e+2*a, 2*e+a ]
gap> NumberElements := true;
true
gap> AddTable(L);

+ |1 2 3 4 5 6 7 8 9
-------+--------------------------
0*e |1 2 3 4 5 6 7 8 9
e |2 6 4 9 8 1 5 7 3
a |3 4 7 5 2 9 1 6 8
e+a |4 9 5 8 6 3 2 1 7
e+2*a |5 8 2 6 9 7 4 3 1
2*e |6 1 9 3 7 2 8 5 4
2*a |7 5 1 2 4 8 3 9 6
2*e+2*a|8 7 6 1 3 5 9 4 2
2*e+a |9 3 8 7 1 4 6 2 5

we find that the pattern of the addition table matches that of the addition
table for GF (9). Of course the multiplication tables would also have the same
pattern, since both are defined in terms of a generator.

Mathematica also has the ability to find Conway polynomials, but the rou-
tine is much slower than GAP’s, since they are not precomputed.
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ConwayPolynomial[3, 2, x]
2 + 2x+ x2

The Galois fields have many applications. A code very similar to the RSA
code studied in chapter 3 of group theory was developed using Galois fields
of characteristic 2. For a long time the field of order 2127 was used, since the
multiplicative group is of order 2127− 1, which happens to be prime. (Primes
of this form are called Mersenne primes.) This code had the advantage that
the key was much shorter than the RSA key, and multiplication in this field
could be quickly implemented in binary hardware. However, due to the special
properties of finite fields, this code was recently cracked. In order to ensure
safety of the encryption, the size of the field had to be upped to order 22201,
which diminished the advantage over the RSA code.

But there is another type of code based on Galois fields, called the Reed-
Solomon code, which is not used for security but rather for the storage or
transfer of digital data. All digital information, such as the storage of a file in
a computer or a song on a compact disc, is stored as a string of “bits” that are
either 0 or 1. We will let K denote a finite field of characteristic 2. For exam-
ple, if K = GF (256), then each element of K would correspond to a computer
“byte.” (Each byte is eight bits.) A string of n bytes (a0, a1, a2, a3, . . . , an−1)
is encoded as a polynomial in K:

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · an−1x
n−1.

The encryption of this list of elements is simply the evaluation of this polyno-
mial at the 256 elements of K. That is, if g is a generator of the multiplicative
group K∗, then

f(0), f(g), f(g2), f(g3), . . . , f(g255)

is transmitted in place of the numbers a0, a1, a2, . . . an−1. We know from
corollary 12.3 that we can reconstruct the original list of elements from any n
of the numbers transmitted. Thus, if there are some errors in the transmission,
the original list can still be determined. Using combinatorial reasoning, Reed
and Solomon showed that as many as (255−n)/2 errors could occur, and yet
the original list of elements can be decoded.

For example, if n = 251, then every 251 bytes is converted to a 250 degree
polynomial, which is evaluated at the 256 elements of K. Even if two of
these bytes are transmitted incorrectly, the 251 original bytes can be correctly
reconstructed. This is an example of what is called an “error-correcting code.”
This code was used by the Voyager II spacecraft to transmit pictures of
Uranus and Neptune back to Earth. [16] A version of this code (using a
larger field K) is used to store the digital music on a compact disc. Current
CD players can cope with errors as long as 4000 consecutive bits on the CD,
typically caused by a scratch on the CD surface. The Reed-Solomon code also
allows over 500 channels of digital television.

The ironic part of this code is that, when Reed and Solomon first discov-
ered the code in 1960, [15] it was described as “interesting, but probably not
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practical.” It wasn’t until hardware technology advanced to the point that
the code could be implemented before the real value of this code was evident.
As with most mathematics, the usefulness of a particular result is not seen
until long after the result is published.

One final application of finite fields arises from the study of simple groups.
Almost all of the simple groups besides the alternating groups are the Cheval-
ley groups, which are defined in terms of finite fields. For example, the simple
group Aut(Z∗24) can be expressed as the 3 by 3 matrices in the field Z2 with
determinant 1. This example can be generalized to a group G of m by m
matrices over any finite field of order pn. When pn > 2, there may be a
nontrivial center Z formed by diagonal matrices. However, we can form the
quotient group G/Z. The group generated, denoted Lm(pn), will be simple if
m > 2, or if m = 2 and pn > 3. [9, p. 223]

There are several other ways of forming simple groups using finite fields. In
fact, besides the alternating groups, there are only 26 finite simple groups that
are not expressed using finite fields. Thus, finite fields are of key importance
in the classification of all finite simple groups.

13.4 Finite Skew Fields

Since we have completely classified all finite fields, a natural question is
whether we can classify all finite skew fields, and whether these can be easily
entered into Mathematica. At first this seems like it would be a harder prob-
lem, since there are many non-abelian groups, and many non-commutative
rings. However, a surprising result is that there are no finite skew fields.
In this section we will prove this remarkable result, known as Wedderburn’s
theorem.

We begin by carrying over some ideas from group theory. One of the ways
we studied non-abelian groups was to find the center of the group, since this
was always a normal subgroup. We can ask whether the set of elements of a
skew field that commute with all of the elements forms a special set.

DEFINITION 13.8 Let K be a skew field. Then the set of all elements
x of K such that x · y = y · x for all y ∈ K is called the center of K.

Let us look at an example. The only skew field we have seen is the ring of
quaternions, H. The Mathematica command

InitQuaternions

allows us to experiment with this skew field. What is the center of this skew
field? To answer this question, let us first define two typical elements in H.
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A = u0 + u1 I + u2 J + u3 K
B = v0 + v1 I + v2 J + v3 K

These will commute as long as A ·B −B ·A = 0. By computing

A.B - B.A

to be
−2u2v1k + 2u3v1j + 2u1v2k − 2u3v2i− 2u1v3j + 2u2v3i,

the only way that this could be zero for all v1, v2, and v3 is for u1 = u2 = u3 =
0. Thus, the center of H is basically the field of real numbers. (Since GAP
only works with indeterminates over a commutative ring, this computation
can only be done in Mathematica.)

LEMMA 13.6
The center of a skew field forms a field.

PROOF Let K be a skew field, and let Z be its center. We first will show
that Z is a subring. If x and y are two elements in Z, and k is any element
in K, then

(x− y) · k = x · k − y · k = k · x− k · y = k · (x− y)

and

(x · y) · k = x · (y · k) = x · (k · y) = (x · k) · y = (k · x) · y = k · (x · y).

Thus, both x− y and x · y are in Z. By proposition 10.1, Z is a subring of K.
Both 0 and the identity element are obviously in Z, so Z is nontrivial. Since

Z is commutative, all we have left to prove is that every nonzero element of
Z is invertible. If x 6= 0 is an element in Z and k is in K, then x · k = k · x.
The inverse of x exists in K, so we can multiply both sides of the equation on
both the left and the right by x−1:

x−1 · (x · k) · x−1 = x−1 · (k · x) · x−1.

Thus,
k · x−1 = x−1 · k

for all k in K, and so x−1 is in the center Z. Thus, Z is a field.

Another concept from group theory that carries over into the study of fields
is the normalizer. Recall the definition of a normalizer of a subset S of a group
G. We defined

NG(S) = {g ∈ G | g · S · g−1 = S}.
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We would like to apply the normalizer to the multiplicative group of a field.
In particular, we would like to consider the normalizer of a particular element,
that is, when S = {y}.

Let us find the normalizer of the element I in the nonzero quaternions.
This consists of all elements A such that A · I · A−1 = I. The Mathematica
command

Simplify[ A.I.(Â(–1)) – I ]

shows that these are equal whenever

2((u1u2 + u0u3)j + (−u0u2 + u1u3)k − i(u2
2 + u3

3))
u2

0 + u2
1 + u2

2 + u2
3

is zero, which can only happen if u2 = u3 = 0. In fact, if A is nonzero, this is
sufficient, so we see that the normalizer of i is the set of nonzero elements of
the form u0 + u1i.

The normalizer does not quite form a field, since it does not include the
zero element. Yet if we added the zero element to NH(I), we get a field
equivalent to the complex numbers. It is not hard to show that for any skew
field, whenever we add the zero element to the normalizer, we will either get
a field or a skew field.

LEMMA 13.7
Let K be a skew field, and let k be an element of K. Then if we let

Yk = {0} ∪NK∗(k),

then Yk is a division ring containing the center of K.

PROOF Let us begin by rewriting the set Yk. Because

NK∗({k}) = {x ∈ K∗ | x · k · x−1 = k},

we can simply sayNK∗({k}) consists of all elements ofK∗ such that x·k = k·x.
Of course 0 satisfies this equation as well, so we can write

Yk = {x ∈ K | x · k = k · x}.

When written in this form, it is obvious that the center is in Yk. Further-
more, if x and y are in Yk, then

(x− y) · k = x · k − y · k = k · x− k · y = k · (x− y)

and

(x · y) · k = x · (y · k) = x · (k · y) = (x · k) · y = (k · x) · y = k · (x · y).
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Thus, by proposition 10.1, Yk is a subring of K.
Finally, if x is a nonzero element in Yk, then x · k = k · x. Thus,

x−1 · (x · k) · x−1 = x−1 · (k · x) · x−1,

so
k · x−1 = x−1 · k.

Thus, every nonzero element of Yk is invertible, so Yk is a division ring.

We now can apply the center and normalizer to finite division rings. We
first need a lemma that will help us out regarding the divisibility of the orders
of finite fields.

LEMMA 13.8
Let y, n, and m be positive integers, with y > 1. Then

yn − 1
ym − 1

is an integer if, and only if, n is divisible by m. Furthermore, if n is divisible
by m, with n > m, then

yn − 1
ym − 1

is divisible by the number Φn(y).

PROOF First suppose that n is divisible by m. Then by corollary 13.5,
xm − 1 divides xn − 1, and in fact Φn(x) divides

xn − 1
xm − 1

.

Note that since y > 1, ym > 1, so ym − 1 > 0. Thus, y is not a root of
xm − 1, so we can apply the evaluation homomorphism φy and find that

yn − 1
ym − 1

is divisible by Φn(y).
Now suppose that n is not divisible by m. Then n = m · k + p for some

0 < p < m. But note that

yn − 1 = y(m·k+p) − 1 = ym·k · yp − 1 = yp(ym·k − 1) + yp − 1.

Thus,
yn − 1
ym − 1

= yp · y
m·k − 1
ym − 1

+
yp − 1
ym − 1

.
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We have already seen that y(m·k − 1)/(ym − 1) is an integer, but yp < ym, so
the last term cannot possibly be an integer. Therefore, (yn − 1)/(ym − 1) is
an integer if, and only if, n is a multiple of m.

This lemma reveals the possible orders of division rings within a finite di-
vision ring.

COROLLARY 13.7
Let K be a finite division ring of order pn, and let F be a subring that is a

division ring of order pm. Then n is a multiple of m.

PROOF Consider the multiplicative groups K∗ and F ∗. Certainly F ∗ is
a subgroup of K∗, since F is a subring of K. Notice that K∗ contains pn − 1
elements, while |F ∗| = pm − 1. By Lagrange’s theorem (3.1), pm − 1 must be
a factor of pn − 1. So by lemma 13.8, n must be a multiple of m.

Note that this corollary has applications in finite fields. For example, it
shows that the field of order 16 cannot have a subfield of order 8.

There is one more tool that we need from group theory, which stems from
the normalizer. We discovered in section 7.4 that the class equation was a
powerful tool in analyzing groups. In fact, all three Sylow theorems hinge
on the class equation. So let us observe how this tool applies to skew fields.
Recall that the class equation theorem (7.2) stated that when G is a finite
group, then

|G| =
∑
g

|G|
|NG({g})|

where the sum runs over one g from each conjugacy class.
If K is a finite skew field, we can apply the class equation theorem to the

multiplicative group K∗, and find that

|K∗| =
∑
k

|K∗|
|NK∗({k})|

.

We can make the obvious substitutions |K∗| = |K| − 1, and |NK∗({k})| =
|Yk| − 1. The equation now looks like

|K| − 1 =
∑
k

|K| − 1
|Yk| − 1

where the sum runs from one k from each conjugacy class of K∗.
We are almost ready to use the class equation to prove that finite skew

field cannot exist. But first we need to prove a simple inequality about the
evaluation of a cyclotomic polynomial at a positive integer.
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LEMMA 13.9
If n > 1, then the cyclotomic polynomial evaluated at y ≥ 2, Φn(y), is greater

than y − 1.

PROOF From the definition,

Φn(x) =
n∏
k=1

GCD(k,n)=1

(x− enk).

Plugging in x = y, and taking the absolute value of both sides, we get

|Φn(y)| =
n∏
k=1

GCD(k,n)=1

|y − enk|

>

n∏
k=1

GCD(k,n)=1

(y − 1) ≥ (y − 1).

Here, the inequality |y − (en)k| > (y − 1) comes from the fact that real part
of enk is less than 1 when n > 1.

The final step is to use lemma 13.9 to prove a contradiction in the class
equation for finite skew fields.

THEOREM 13.2: Wedderburn’s Theorem
There are no finite skew fields.

PROOF Suppose that K is a finite skew field. By proposition 13.3 K is of
order pm for some prime p and some m > 0. Let Z be the center of K. Since
Z is a subring of K which is a field, by corollary 13.7, Z is of order y = pa,
where m = n · a for some n > 0. Thus, |K| = pn·a = yn. Note that since K
is a skew field, n must be greater than 1. We have from the class equation
theorem (7.2)

|K| − 1 =
∑
k

|K| − 1
|Yk| − 1

,

where the sum runs from one k from each conjugacy class of K∗. Note that
when k is in Z∗, k is in its own conjugacy class, and Yk = K. Thus, the
terms in the sum corresponding to elements in Z∗ are equal to 1. There are
of course |Z∗| = y − 1 such terms. For the other terms in the sum, Yk is a
proper subring of K that contains Z. By lemma 13.7, Yk is a division ring,
and so by corollary 13.7, |Yk| = yr for some r which is a factor of n. If we let
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w = Φn(y) we see by lemma 13.8 that w divides the term

|K| − 1
|Yk| − 1

=
yn − 1
yr − 1

.

Furthermore, w divides the left hand side of the class equation, |K| − 1. In
fact, the only terms in the class equation that are not divisible by w are the
y − 1 terms that are equal to 1, coming from the invertible elements of the
center Z. Thus, y − 1 must be divisible by w. But this is impossible, since
y − 1 < w by lemma 13.9, for n > 1. This contradiction proves that finite
skew fields cannot exist.

In a sense, the non-existence of finite skew fields is sad, since there would
have been plenty of applications for finite skew fields in cryptography and
group theory had they existed. On the other hand, this result, when combined
with the classification of all finite fields, means that we have found all finite
division rings.

Problems for Chapter 13

Interactive Problems

13.1 The polynomial x4 + x + 1 is irreducible in the field Z2. Use this
polynomial to define a field of order 16 in Mathematica or GAP. Show that
there is a subfield of order 4 in this field. Is there a subfield of order 8 in this
field?

13.2 First define the field Z2 in Mathematica or GAP,

InitDomain[2]
Z2 = {0, 1}

gap> InitRing("e");
gap> DefineRing("Z2",[2],[[e]]);
gap> x := Indeterminate(Z2,"x");
x

and then show that the cyclotomic polynomial Φ(23−1)(x) factors in the field
Z2 into irreducible polynomials of degree 3. Show by process of elimination
that the only irreducible polynomials of degree 3 are the ones given in this
factorization.

13.3 First define the field Z2 in GAP or Mathematica as in problem 13.2.
Then show that the cyclotomic polynomial Φ(24−1)(x) factors in the field Z2
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into irreducible polynomials of degree 4. Find one more irreducible polynomial
of degree 4 besides the ones given in this factorization.

Hint: Factor the polynomial x24 − x.

13.4 First define the field Z2 in GAP or Mathematica as in problem 13.2.
Then show that the cyclotomic polynomial Φ25−1(x) factors in the field Z2

into irreducible polynomials of degree 5. Does this factorization give all of the
irreducible polynomials of degree 5 over Z2?

13.5 First define the field Z3 in Mathematica or GAP:

InitDomain[3]
Z3 = {0, 1, 2}

gap> InitRing("e");
gap> DefineRing("Z3",[3],[[e]]);
gap> x := Indeterminate(Z3,"x");
x

and then show that the cyclotomic polynomial Φ32−1(x) factors in the field
Z3 into irreducible polynomials of degree 2. What irreducible quadratic poly-
nomial in Z3 have we seen that is not in the list of factors?

13.6 First define the field Z3 as in problem 13.5. Then find the factorization
of the polynomial x33 −x. Show that all irreducible polynomials with leading
term of x3 are in this factorization. For an explanation see problem 13.26.

13.7 Mathematica can be used to explore skew fields besides H. Consider
the following ring of characteristic 0:

InitRing
Define[â3, 3 a+1]
Define[b̂3, 2]
Define[b.a, 2 b – a.a.b]

This produces a ring that is a 9-dimensional extension of Q. A basis for this
ring would be {1, a, a2, b, a · b, a2 · b, b2, a · b2, a2 · b2}. If

w1 = C[1] + C[2] a + C[3] a.a
w2 = C[4] + C[5] a + C[6] a.a
w3 = C[7] + C[8] a + C[9] a.a
w = w1 + w2.b + w3.b.b

then w is the general element of this ring. To show that this ring is in fact
a skew field for rational values of C1, C2, . . . C9, perform the following opera-
tions:
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v1 = b.w1.b.w1.b – 2 b.w2.b.w3.b
v2 = 2 w3.b.b.w3.b – w2.b.b.w1.b
v3 = w2.b.w2.b.b – w3.b.w1.b.b
v = Expand[v1 + v2.b + v3.b.b]
R = v.w

Using this value of R, find a formula for w−1. Can you prove that R is never
zero if C1, C2, C3, . . . C9 are rational?

Hint: If R = 0 for rational values of C1, . . . C9, we can multiply by the
common denominator to find a solution to R = 0 for integer values. In fact,
we may assume that C1, C2, C3, . . . C9 have no common factors. Show that
the first three constants must be even. After a substitution, show that C4,
C5, C6 must be even. After yet another substitution, show that the remaining
constants are even, leading to a contradiction.

13.8 Use Mathematica or GAP to find the Conway polynomial of degree 6
over Z2. Show that raising a root of this polynomial to the 9th power produces
a zero of the Conway polynomial of degree 3 over Z2, and raising this root
to the 21st power produces a zero of the Conway polynomial of degree 2 over
Z2. Hence, the compatibility condition is satisfied.

Non-Interactive Problems

13.9 The polynomial x2 + x+ 1 is irreducible in the field Z2. Write out by
hand the addition and multiplication tables of the field Z2[x]/(x2 + x+ 1).

Hint: There are only four elements.

13.10 The polynomial x3 +x+ 1 is irreducible in the field Z2. Write out by
hand the addition and multiplication tables of the field Z2[x]/(x3 + x+ 1).

13.11 The polynomial x2 +x+ 2 is irreducible in the field Z3. Write out by
hand the addition and multiplication tables of the field Z3[x]/(x2 + x+ 2).

13.12 Construct addition and multiplication tables for a field with 16 ele-
ments.

13.13 Using table 11.2 in chapter ch:intdomain of the field of “complex
numbers modulo 3,” find the generators of the multiplicative group of this
field.

13.14 By proposition 13.4, the nonzero elements of Zp form a cyclic group
under multiplication. Any generator of this group is called a primitive root of
p. Find the primitive roots of the primes 17, 23, and 31. For a given prime,
how many primitive roots will there be?
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13.15 Show that if F is a field of characteristic p, and x is a generator of the
multiplicative group, then xp is also a generator of the multiplicative group.

13.16 If p is a prime number of the form 4n+1, show that there is a solution
to the equation

x2 ≡ −1 (Mod p).

Hint: By proposition 13.4, Z∗p is isomorphic to Zp−1. A solution to the
equation would have order 4.

13.17 Use problem 13.16 to show that a prime of the form 4n + 1 is not
prime in the domain Z[i].

Hint: Let x be the solution to the equation in problem 13.16. What is
(x+ i)(x− i)?

13.18 Use problem 13.17 to prove the two square theorem of Fermat: Every
prime number of the form 4n+ 1 can be expressed as the sum of two squares.

Hint: Since p is not prime in the domain Z[i], and Z[i] is a UFD, p is
reducible in Z[i]. If a+ bi is one factor, what is the other factor?

13.19 Let F be a field of prime characteristic p. Show that the intersection
of all of its subfields of F is a field of order p.

13.20 Let F be a finite field of characteristic p. Show that F (x), the field of
quotients of the polynomial ring F [x], is an infinite field of characteristic p.

13.21 Let F be any field. Show that no two finite subfields of F can have
the same number of elements.

Hint: See the proof for corollary 13.3.

13.22 Let F be a field of order pn. Show that if K is a subfield of F then
K has order pd for some number d that divides n.

13.23 Let F be a field of order pn. Show that if d divides n, then there is a
unique subfield of order pd.

Hint: See problem 13.21 for the uniqueness part.

13.24 Let p be prime and f(x) an irreducible polynomial of degree 2 in
Zp[x]. If K is a finite field of order p3, show that f(x) is also irreducible in
K[x].

13.25 Prove that the group of automorphisms of a field of order pn is iso-
morphic to Zn. That is, prove that there are no other automorphisms other
than the ones generated by the Frobenius automorphism.
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13.26 Let p be a prime number. Show that every irreducible polynomial
with a leading term of xn in the field Zp is found in the factorization of the
polynomial xp

n − x.
Hint: If f(x) is an irreducible polynomial of degree n, then Zp[x]/(f(x)) is

the Galois field GF (pn). Show that every element in this field is a root of the
polynomial xp

n − x. Therefore, the roots of f(x) in the field GF (pn) are also
roots of xp

n − x.

For problems 13.27 through 13.30: Find the cyclotomic polynomial.

13.27 Φ6(x) 13.28 Φ9(x) 13.29 Φ10(x) 13.30 Φ13(x)

13.31 Prove that the constant coefficient of the n-th cyclotomic polynomial
Φn(x) is equal to −1 when n = 1, and is 1 when n > 1.

Hint: Use induction along with proposition 13.7.

13.32 Prove that the n-th cyclotomic polynomial Φn(x) is a “palindrome
polynomial” when n > 1. That is, the list of coefficients read the same going
forward or backward.

Hint: Whenever x is a primitive n-th root of unity, x−1 will also be a
primitive n-th root. What happens if we replace x with 1/y in the polynomial?
You may use the result of problem 13.31.

13.33 Prove that if p is a prime, and n > 0, then

Φpn(x) = Φp(xp
n−1

).

13.34 Prove that φ(pn − 1) is divisible by n, where φ is Euler’s totient
function.

Hint: See proposition 13.8.

13.35 Prove that the primitive polynomials of degree n over Zp are precisely
the factors of Φpn−1(x) over the field Zp.

13.36 Prove that every element in a finite field can be written as the sum
of two squares.
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Chapter 14

The Theory of Fields

14.1 Vector Spaces

In order to study fields in depth, we will first need a few results from a first
year linear algebra course. However, most linear algebra courses work with
vectors and matrices with real numbers for entries, whereas we will generalize
the notations to allow arbitrary fields. Nonetheless, most of the proofs will
follow the same way for arbitrary fields as for real numbers.

DEFINITION 14.1 Let F be a field. We say that V is a vector space
over F if V is an abelian group under addition +, and for which there is
defined a multiplication a · v for all a ∈ F and v ∈ V such that:

1. Whenever a ∈ F and v ∈ V , a · v ∈ V .

2. When a ∈ F , and v, w ∈ V , then a · (v + w) = a · v + a · w.

3. When a, b ∈ F , and v ∈ V , then (a+ b) · v = a · v + b · v.

4. When a, b ∈ F , and v ∈ V , then (a · b) · v = a · (b · v).

5. If e is the identity of F , then e · v = v for all v ∈ V .

The members of V are called vectors. The best way to get a feel for vector
spaces is to give some examples.

Example 14.1
Consider the set of 3-tuples 〈u1, u2, u3〉 where u1, u2, and u3 ∈ R. Addition
of two vectors is done componentwise, and k · 〈u1, u2, u3〉 = 〈ku1, ku2, ku3〉
when k ∈ R. This is a vector space over R, and can be denoted by R3.

Example 14.2
We can generalize the previous example using any field F in place of R, and
consider n-tuples 〈u1, u2, . . . , un〉. Addition is still defined componentwise,
and k · 〈u1, u2, . . . , un〉 = 〈k · u1, k · u2, . . . , k · un〉. This will give us a vector
space over F , which we can denote by Fn.

429
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Example 14.3
Let K be a field, and F any subfield of K. Then K is a vector space over F ,
defining a · v as a product in the field K. Property 5 follows from the fact
that the identity of F must also be the identity of K. The other properties
follow from the distributive and associative properties of K.

This last example demonstrates the usefulness in studying vector spaces
over a field F . In fact, this is the example that we will concentrate on for the
remainder of the chapter.

The next definition is the key to understanding the properties of a vector
space.

DEFINITION 14.2 Let V be a vector space over a field F . We say that
a finite set B = {x1, x2, . . . xn} of vectors in V are linearly dependent if there
are elements c1, c2, . . . cn ∈ F , not all zero, for which

c1x1 + c2x2 + · · ·+ cnxn = 0.

We say that the vectors are linearly independent if they are not linearly de-
pendent, that is, if the only way for c1x1 + c2x2 + · · · + cnxn = 0 is for
c0 = c1 = · · · = cn = 0.

Example 14.4
The vectors 〈1, 4,−1〉, 〈2,−3, 1〉, 〈4, 5,−1〉 are linearly dependent, since there
is a nonzero solution to c1〈1, 4,−1〉 + c2〈2,−3, 1〉 + c3〈4, 5,−1〉 = 0, namely
c1 = 2, c2 = 1, and c3 = −1. On the other hand, 〈2, 0, 1〉, 〈0, 0, 3〉, and
〈1, 4, 0〉 are linearly independent, since in order to get c1〈2, 0, 1〉+ c2〈0, 0, 3〉+
c3〈1, 4, 0〉 = 0, we need 4c3 = 0, 2c1 + c3 = 0, and c1 + 3c2 = 0. This forces
c3 = 0, c1 = 0, and c2 = 0, so there are no nonzero solutions.

DEFINITION 14.3 Let V be a vector space over a field F . A finite set
of vectors {x1, x2, x3, . . . xn} in V is called a basis of V over F if the set is
linearly independent, and every element of V can be expressed in the form

a1x1 + a2x2 + a3x3 + · · ·+ anxn

with a1, a2, a3, . . . , an in F .

Here are some examples, all of which are fairly routine to check:

1. The complex numbers C have a basis {1, i} over the real numbers R.

2. The quaternions H have a basis {1, i, j, k} over R.

3. The field Q[
√

2] has a basis {1,
√

2} over the rational numbers Q.
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4. From example 14.3, the set of real numbers R is a vector space over the
rationals. However, there can be no finite basis {x1, x2, x3, . . . xn} in R
for which every real number could be expressed as a1x1 +a2x2 +a3x3 +
· · · + anxn, with a1, a2, . . . an ∈ Q, lest the set of reals be countable,
which contradicts Cantor’s diagonalization theorem (9.1).

There is an easy way to determine if a particular set of vectors is a basis.

LEMMA 14.1
B = {x1, x2, x3, . . . xn} is a basis of a vector space V over F if, and only if,

every element of V can be expressed uniquely in the form

v = c1x1 + c2x2 + c3x3 + · · ·+ cnxn.

The ordered n-tuple 〈c1, c2, c3, . . . , cn〉 is called the coefficients of v with respect
to B.

PROOF If B is a basis, then every element v ∈ V can be expressed in the
form c1x1 + c2x2 + c3x3 + · · ·+ cnxn. Suppose that v = a1x1 + a2x2 + a3x3 +
· · ·+ anxn is another such expression. Then

(a1 − c1)x1 + (a2 − c2)x2 + (a3 − c3)x3 + · · ·+ (an − cn)xn = v − v = 0.

But the vectors in B are linearly independent, so the only way that the com-
bination of vectors could be 0 is for ai − ci = 0 for all 1 ≤ i ≤ n. Hence,
ai = ci for all i, and the representation is unique.

On the other hand, if every v ∈ V can be uniquely represented as c1x1 +
c2x2 + c3x3 + · · · + cnxn, then in particular 0 has only one representation,
namely 0 = 0x1 + 0x2 + 0x3 + · · ·+ 0xn. Thus, the vectors in B are linearly
independent, and so B is a basis.

We can define a basis in Qn in GAP using the Basis command. To find a
basis using example 14.4, we enter

gap> B := Basis(Rationals^3, [[1,4,-1],[2,-3,1],[4,5,-1]]);
fail
gap> B := Basis(Rationals^3, [[2,0,1],[0,0,3],[1,4,0]]);
Basis( ( Rationals^3 ), [ [ 2, 0, 1 ], [ 0, 0, 3 ],
[ 1, 4, 0 ] ] )

In Mathematica©R, we use the command ToBasis, and enter in “1” for the
first argument whenever we are using rational or real numbers for the base
field.

B = ToBasis[1, {{1, 4, –1},{2, –3, 1},{4, 5, –1}}]
Error: linearly dependent.
False
B = ToBasis[1, {{2, 0, 1},{0, 0, 3},{1, 4, 0}}]
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The first attempt failed because the vectors were linearly dependent. Once we
have defined the basis, we can find the coefficients c1, c2, . . . cn for any element
of the vector space.

Coefficients[B,{2,3,4}]

gap> Coefficients(B, [2,3,4]);
[ 5/8, 9/8, 3/4 ]

This shows that

〈2, 3, 4〉 =
5
8
〈2, 0, 1〉+

9
8
〈0, 0, 3〉+

3
4
〈1, 4, 0〉.

LEMMA 14.2
Suppose that V is a vector space over F , and B = {x1, x2, x3, . . . xn} is a

basis of V over F . Then any set {y1, y2, y3, . . . yn, yn+1} of n+ 1 elements of
V is linearly dependent.

PROOF Suppose that Y = {y1, y2, y3, . . . , yn, yn+1} are linearly indepen-
dent, so that all of these vectors are nonzero.

Our goal is to show, with a suitable rearrangement of the vectors in B,
that {y1, y2, . . . yk−1, yk, xk+1, . . . , xn} is a basis for every 0 ≤ k ≤ n. If
k = 0, then this set is the original set B, which is a basis. So let us
use induction to assume that it is true for the previous case, that is, that
{y1, y2, . . . yk−1, xk, xk+1, . . . , xn} is a basis.

We then can express

yk = a1y1 + a2y2 + · · · ak−1yk−1 + akxk + ak+1xk+1 + · · ·+ anxn.

Since the vectors in Y are linearly independent, we see that at least one of ak,
ak+1 . . . an is nonzero. By rearranging the remaining elements of B, we can
suppose that ak 6= 0. Then

xk = ak
−1(yk − a1y1 − a2y2 − · · · − ak−1yk−1 − ak+1xk+1 − · · · − anxn).

Any element v ∈ V can be expressed as v = c1y1 + c2y2 + · · ·+ ck−1yk−1 +
ckxk + · · · + cnxn. By substituting for the value of xk, we see that v can
be expressed as a linear combination of {y1, y2, . . . , yk−1, yk, xk+1, . . . , xn}. If
this set were linearly dependent, there would be a nonzero solution to

c1y1 + c2y2 + · · ·+ ck−1yk−1 + ckyk + · · ·+ cnxn = 0.

Then ck 6= 0, lest there also be a nonzero solution to

c1y1 + c2y2 + · · ·+ ck−1yk−1 + ckxk + · · ·+ cnxn = 0,



The Theory of Fields 433

but we are assuming that {y1, y2, . . . yk−1, xk, xk+1, . . . , xn} is a basis. But
substituting the value for yk gives

ck (a1y1 + a2y2 + · · · ak−1yk−1 + akxk + · · · anxn)
+c1y1 + c2y2 + · · · ck−1yk−1ck+1xk+1 + · · · cnxn = 0.

This is a nonzero solution to

b1y1 + b2y2 + · · ·+ bk−1yk−1 + bkxk + · · · bnxn = 0,

since bk = ckak 6= 0. Thus, the set {y1, y2, . . . yk−1, yk, xk+1, . . . , xn} is lin-
early independent, and hence is a basis of V .

Now we can use the induction to say that {y1, y2, . . . , yn} is a basis of V ,
but then yn+1 can be expressed in terms of {y1, y2, . . . , yn}, which shows that
Y is in fact linearly dependent.

We can now use this lemma to show that any two bases must have the same
number of elements.

PROPOSITION 14.1
Let V be a vector space over F . If the sets X = {x1, x2, x3, . . . xn} and
Y = {y1, y2, y3, . . . ym} are both bases of V over F , then n = m.

PROOF Suppose that n is not equal to m. By exchanging the roles of X
and Y if necessary, we can assume that n < m. Then we can use lemma 14.2
to show that {y1, y2, y3, . . . yn+1} is linearly dependent, hence Y is not a basis
of V . So we must have n = m.

This proposition allows us to make the following definition.

DEFINITION 14.4 Let V be a vector space over F . If there is a basis
{x1, x2, x3, . . . xn} of V over F , we define the dimension of V over F to be the
size n of the basis. If there does not exist a finite basis, we say the dimension
of V over f is infinite.

Looking back at our examples, we see that R3 is a 3-dimensional vector
space over R, C is a 2-dimensional vector space over R, H is a 4-dimensional
vector space over R, and R is an infinite-dimensional vector space over Q.

Here is another example. Since Z3 is a subfield ofGF (9), we can viewGF (9)
as a vector space over Z3. Let us see if we can find a basis. In Mathematica we
need to know that the Conway polynomial of degree 2 over Z3 is x2 + 2x+ 2,
or Z(9)2 = Z(9) + 1. We can see if {1, Z(9)} forms a basis of GF (9) over Z3.
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ConwayPolynomial[3, 2, x]
2 + 2x+ x2

InitDomain[3]
Define[Z9̂2, Z9 + 1]
B = ToBasis[1, {1, Z9}];
Coefficients[B, Z9̂3]
{1, 2}

gap> B := Basis(GF(9), [Z(9)^0,Z(9)]);
Basis( GF(3^2), [ Z(3)^0, Z(3^2) ] )
gap> Coefficients(B, Z(9)^3);
[ Z(3)^0, Z(3) ]

This shows that indeed {1, Z(9)} is a basis of GF (9) over Z3, but also that
Z(9)3 = 1 + Z(3) ∗ Z(9). It is logical that GF (9) will be a 2-dimensional
vector space over Z3, since there are 32 elements. Likewise, GF (81) is a 4-
dimensional vector space over Z3. But we also can consider GF (81) as a
2-dimensional vector space over GF (9). In GAP we can use AsVectorSpace
so that GAP will view GF (81) as a vector space over GF (9) instead of the
natural GF (3).

gap> V := AsVectorSpace(GF(9),GF(81));
AsField( GF(3^2), GF(3^4) )
gap> B := Basis(V, [Z(81),Z(3)]);
Basis( AsField( GF(3^2), GF(3^4) ), [ Z(3^4), Z(3) ] )
gap> Coefficients(B,Z(81)^2);
[ Z(3^2)^3, Z(3^2) ]

This shows that Z(81) and Z(3) form a basis of GF (81) over GF (9), for
example, the element Z(81)2 can be expressed as Z(9)3 ·Z(81) +Z(9) ·Z(3).

To do this in Mathematica, we must enter in a basis for the root vector
space as the first argument for the ToBasis command. Also, we have to define
Z(81) in Mathematica so that the original Z(9) will generate a subfield. We
can borrow the result from GAP, that

Z(81)2 = Z(9)3 · Z(81) + Z(9) · Z(3) = (1 + 2Z(9)) · Z(81) + 2Z(9).

Define[Z81̂2, (1 + 2 Z9)*Z81 + 2 Z9]
B = ToBasis[{1, Z9}, {Z81, 2}];
Coefficients[B, Z81̂2]
{1 + 2 Z9,Z9}

This last example shows that it is possible to have a vector space over a vector
space, if the later vector space happens to be a field. What can we say about
the dimension of a vector space over a vector space?

PROPOSITION 14.2
If E is a vector space over F of dimension m, which also happens to be a

field, and V is a vector space over E of dimension n, then V is a vector space



The Theory of Fields 435

of F of dimension m · n. Furthermore, if {x1, x2, x3, . . . xm} is a basis of E
over F , and {y1, y2, y3, . . . yn} is a basis of V over E, then the set

S = { x1y1, x2y1, x3y1, . . . xmy1,

x1y2, x2y2, x3y2, . . . xmy2,

x1y3, x2y3, x3y3, . . . xmy3,

· · · · · · · · ·
x1yn, x2yn, x3yn, . . . xmyn}

is a basis of V over F .

PROOF Since {y1, y2, y3, . . . , yn} is a basis for V over E, we can write
any element of V in the form

c1y1 + c2y2 + c3y3 + · · ·+ cnyn,

where c1, c2, c3, . . . , cn are in E.
Since {x1, x2, x3, . . . xm} is a basis of E over F , we can in turn write

c1 = a1,1x1 + a2,1x2 + a3,1x3 + · · · am,1xm,
c2 = a1,2x1 + a2,2x2 + a3,2x3 + · · · am,2xm,
c3 = a1,3x1 + a2,3x2 + a3,3x3 + · · · am,3xm,

· · · · · · · · ·
cn = a1,nx1 + a2,nx2 + a3,nx3 + · · · am,nxm,

where each ai,j is in F . Combining these, we see that every element of E can
be expressed in the form

a1,1x1y1 + a2,1x2y1 + a3,1x3y1 + · · ·+ am,1xmy1

+ a1,2x1y2 + a2,2x2y2 + a3,2x3y2 + · · ·+ am,2xmy2

+ a1,3x1y3 + a2,3x2y3 + a3,3x3y3 + · · ·+ am,3xmy3

· · · · · · · · ·
+ a1,nx1yn + a2,nx2yn + a3,nx3yn + · · ·+ am,nxmyn.

Thus, to show that the set S is a basis of V over F , we merely have to show
that these vectors are linearly independent. Let us switch to a summation
notation for the remainder of the proof. Suppose that there is a nonzero
linear combination of these vectors that produces 0, that is

m∑
i=1

n∑
j=1

ai,jxiyj = 0

for ai,j in F . Then we have

0 =
m∑
i=1

n∑
j=1

ai,jxiyj =
n∑
j=1

(
m∑
i=1

ai,jxi

)
yj .
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Since {y1, y2, y3, . . . , yn} is a basis of V over E, the only way that the right
hand expression could be zero is if

m∑
i=1

ai,jxi = 0

for all j = 1, 2, 3, . . . n. Now {x1, x2, x3, . . . xm} is a basis of E over F , so the
only way that each of these sums could be 0 is if ai,j = 0 for all values of i
and j. Since all of the coefficients must be 0, the vectors in S are linearly
independent, and therefore the S is a basis of V over F of dimension m · n.

The main use of vector spaces in abstract algebra is in the case where the
vector space happens to be a field. We will explore this possibility in the next
section.

14.2 Extension Fields

In the last section, we found that many of the examples of vector spaces
turned out to also be fields. We will give a special name to this situation.

DEFINITION 14.5 If F is a nontrivial subfield of K, and K is a
finite-dimensional vector space over F , we say that K is a finite extension
of F . We say the degree, or dimension of the extension is the size of a basis
{x1, x2, x3, . . . xn} of K over F .

For example, the complex numbers C are a 2-dimensional extension of R.
The quaternions H are a 4-dimensional extension of R. The field GF (27) is a
3-dimensional extension of Z3, regardless of which basis we use.

It seems intuitively obvious that isomorphic fields have the same dimension
over some field F contained in both of the fields. Yet this is only true if the
isomorphism φ maps the base field F to itself.

PROPOSITION 14.3
If K and E are two finite extensions of F , and suppose that there is an

isomorphism φ from K onto E such that φ(x) = x for all x in F , then K and
E have the same dimension over F .

PROOF Suppose that {x1, x2, x3, . . . xn} is a basis of K over F . We want
to show that {φ(x1), φ(x2), φ(x3), . . . , φ(xn)} is a basis of E over F . If v is in
E, then φ(u) = v for some u in K. Since K is generated by the elements in
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the basis, we have

u = c1x1 + c2x2 + c3x3 + · · · cnxn

for some c1, c2, c3, . . . , cn in F . Then

v = φ(u) = φ(c1)φ(x1) + φ(c2)φ(x2) + φ(c3)φ(x3) + · · ·+ φ(cn)φ(xn)
= c1φ(x1) + c2φ(x2) + c3φ(x3) + · · ·+ cnφ(xn).

Thus, {φ(x1), φ(x2), φ(x3), . . . , φ(xn)} generates the field E. Also, if

c1φ(x1) + c2φ(x2) + c3φ(x3) + · · ·+ cnφ(xn) = 0,

then φ(c1x1 + c2x2 + c3x3 + · · · cnxn) = 0, which implies that

c1x1 + c2x2 + c3x3 + · · · cnxn = 0

since K and E are isomorphic. But since {x1, x2, x3, . . . xn} is a basis for K,
this can only happen if c1 = c2 = c3 = · · · cn = 0. So

{φ(x1), φ(x2), φ(x3), . . . , φ(xn)}

is a basis for E over F , and hence K and E have the same dimension over
the field F .

If K is a finite extension of a field F , then F is a subfield of K. Of course
there will probably be many other subfields ofK, and we need a way to identify
these subfields. We have already seen how to find the smallest subgroup or a
subring that contains certain elements, and we can follow the same logic for
subfields.

DEFINITION 14.6 Let K be a field, and let E be a field containing the
field K. Let S be a set of elements in E. Let L denote the collection of all
subfields of E that contain the field K, along with the set S. Then we define

K(S) =
⋂
H∈L

H.

That is, K(S) is the intersection of all subfields of E that contain both K and
S. If S = a1, a2, a3, . . . an, we will write K(a1, a2, a3, . . . an) for K(S). Thus,
if S consists of a single element a, we can write K(a) for K(S).

LEMMA 14.3
Let K be a subfield of E, and let S be a collection of elements of E. Then
K(S) is the smallest field that contains both K and the elements S.
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PROOF First, we must show that K(S) is a subfield of E. If x and y
are in K(S), y 6= 0, then x and y are in each of the subfields in the collection
L. Then x− y and x · y−1 are also in each of the subfields in this collection.
Thus, x− y and x · y−1 are in K(S), and so K(S) is a subfield of E.

To show that K(S) is the smallest field containing both K and the elements
S, note that K(S) is one of the subfields in the collection L. Thus, any subfield
containing K and the elements of S must also contain K(S).

For example, If K is the real numbers, and i =
√
−1, then R(i) gives us the

complex numbers C. The field Q(
√

2) is the smallest field containing Q and√
2, which happens to be the same as the ring Q[

√
2].

The strategy for defining a field extension in GAP or Mathematica is very
similar to that of defining a finite field. We begin by finding an irreducible
polynomial f(x) in the field F , and creating the field K = F [x]/(f(x)).

PROPOSITION 14.4
Let F be a field, and let f(x) be an irreducible polynomial in F [x] of degree
d. Then the field K = F [x]/(f(x)) is a finite extension of F of dimension d.

PROOF From proposition 13.1, K = F [x]/(f(x)) is a field that contains
F as a subfield. Let y = x+ (f(x)) in K. If we treat f(x) as a polynomial in
K[x], we find that f(y) = 0. Consider the set {1, y, y2, y3, · · · yn−1}. We wish
to show that this set is a basis for K. That is, we wish to show that every
element of K can be expressed uniquely as

k = a11 + a2y + a3y
2 + · · ·+ any

n−1,

where the a1, a2, a3, . . . , an are in F . Any element k ∈ K can be expressed as
k = g(x)+(f(x)) for some polynomial g(x) in F [x]. By the division algorithm
theorem (12.1), there exist unique polynomials q(x) and r(x) such that

g(x) = f(x) · q(x) + r(x),

where either r(x) = 0, or the degree of r(x) is less than n. Then

r(x) = a1 + a2x+ a3x
2 + · · ·+ anx

n−1

for some a1, a2, a3, . . . , an in F . Note that we can now write

k = g(x) + (f(x)) = r(x) + (f(x)) = a1 + a2y + a3y
2 + · · ·+ any

n−1.

Since r(x) is unique, k is uniquely determined as a linear combination of
{1, y, y2, . . . , yn−1}. Thus, by lemma 14.1, {1, y, y2, . . . , yn−1} is a basis.

Let us look at an example in Mathematica. Let F be the field of rational
numbers, and let f(x) = x3 − 2. Since the characteristic of Q is 0, we begin
the definition by the command
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InitDomain[0]

Next, we let a be a root to the equation x3− 2. That is, we define a3 to be 2.

Define[â3, 2]

That’s all there is to it! The basis of this extension field is {1, a, a2}. We can
verify this with Mathematica.

CheckField[{1, a, â2}]

CheckField actually does more than just verify that the ring is a field. It also
allows us to do divisions in this field.

1/(a + â2)

will compute 1/( 3
√

2 + 3
√

4) = (2 3
√

2 + 3
√

4− 2)/6.
In GAP, we must first define x to be an indeterminate over the rationals,

so that we can express the polynomial x3 − 2 in Q[x]. We then can use the
command FieldExtension to create the extension field.

gap> x := Indeterminate(Rationals,"x");
x
gap> A := FieldExtension(Rationals,x^3-2);
<algebraic extension over the Rationals of degree 3>
gap> a := PrimitiveElement(A);
a
gap> 1/(a+a^2);
1/6*a^2+1/3*a-1/3

This introduces the command PrimitiveElement, which defines the letter a
to be the element of the field for which a3 = 2. We see that GAP is already
able to compute divisions in this new field. We can verify that {1, a, a2} is a
basis.

gap> B := Basis(A,[a^0,a,a^2]);
Basis( <algebraic extension over the Rationals of degree 3>,
[ !1, a, a^2 ] )

Note that GAP writes !1 for the identity element of this new field. This
distinguishes it from the rational number 1. However, you do not enter !1
into GAP, but rather â0.

Although this example demonstrates that any extension field of the form
F [x]/(f(x)) can be entered into GAP or Mathematica, we would like to show
that any extension field can be entered into Mathematica or GAP in the same
way. That is, we must show that any finite extension of F is isomorphic to
F [x]/(f(x)) for some polynomial f(x).

PROPOSITION 14.5
Suppose a field K is a finite extension of F of dimension n. Let y be an

element of K. Then there is an irreducible polynomial f(x) in F [x] of degree
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at most n such that f(y) = 0. That is, when f(x) is treated as a polynomial in
K[x], y is a root of f(x). Furthermore, there is a unique polynomial of lowest
degree that satisfies these conditions and for which the leading coefficient is
equal to 1.

PROOF Consider the set {1, y, y2, y3, . . . , yn}. Since there are n + 1
elements in this set, and K has dimension n over F , by lemma 14.2 these are
linearly dependent, so there is a nonzero solution to

a0 + a1y + a2y
2 + a3y

3 + · · ·+ any
n = 0

with a0, a1, a2, · · · , an in F . Thus, there is a nonzero polynomial

a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n

in F [x] for which y is a root when treated as a polynomial in K[x].
Let us now show uniqueness. Let f(x) be a polynomial of lowest possible

degree in F [x] such that f(y) = 0. Since F is a field, we can divide this
polynomial by its leading coefficient to obtain a polynomial with a leading
coefficient of 1. Now, if there were two such polynomials, f(x) and g(x), then
by the division algorithm theorem (12.1), there exist polynomials q(x) and
r(x) such that f(x) = g(x) · q(x) + r(x), where either r(x) = 0 or the degree
of r(x) is strictly less than the degree of g(x). But note that

0 = f(y) = g(y) · q(y) + r(y) = 0 + r(y) = 0.

Thus, y is a root of the polynomial r(x). But the degree of f(x) and g(x) was
chosen to be minimal. So r(x) = 0, and f(x) is a multiple of g(x). Finally,
since both f(x) and g(x) have the same degree and have the same leading
term of 1, we have f(x) = g(x). Therefore, there is a unique polynomial in
F [x] of minimal degree and leading coefficient of 1 such that f(y) = 0.

The unique polynomial in proposition 14.5 will be given a special name.

DEFINITION 14.7 If a field K is a finite extension of F , and a is an
element of K, we define the polynomial f(x) given by proposition 14.5 that
has a leading coefficient of 1 to be the irreducible polynomial of a over F ,
denoted IrrF (a, x).

For example, IrrQ(
√

2, x) = x2 − 2, since x2 − 2 is the simplest polynomial
with rational coefficients for which

√
2 is a root. Note that if we were to allow

real coefficients, we could come up with a simpler polynomial: IrrR(
√

2, x) =
x−
√

2. Finally, consider the number cos(π/9). We found in section 11.4 that
this number is a root of the polynomial 4x3 − 3x− 1

2 . However, we want the
leading coefficient of the polynomial to be 1, so we write

IrrQ(cos(π/9), x) = x3 − 3x
4
− 1

8
.
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Once we find the irreducible polynomial for an element a, it is not hard to
program Mathematica or GAP to mimic the field Q(a). For example, let us
enter the field Q(cos(π/9)) into Mathematica. If we let a = cos(π/9), we can
enter the field by the commands

InitDomain[0]
Define[â3, 3 a/4 + 1/8]

The first command tells Mathematica that we are working with a field of
characteristic 0, and the second command identifies a as one solution to the
equation x3 − 3x/4 − 1/8. We can check that this is a field with the Mathe-
matica command

CheckField[{1, a, â2}]

which will also allow division operations to be performed in this field.
The corresponding commands in GAP are

gap> x := Indeterminate(Rationals,"x");
x
gap> A := FieldExtension(Rationals,x^3-3*x/4-1/8);
<algebraic extension over the Rationals of degree 3>
gap> a := PrimitiveElement(A);
a

Have we really defined the field Q(cos(π/9))? Actually, we have defined the
field

Q[x]/(x3 − 3x/4− 1/8)

in GAP or Mathematica, but we can prove that these two fields are isomorphic.

PROPOSITION 14.6
Let F be a subfield of K, and suppose f(x) is an irreducible polynomial in
F [x] that has a root w in the larger field K. Then

F (w) ≈ F [x]/(f(x)).

PROOF Let us consider the evaluation homomorphism φw that maps
polynomials in F [x] to elements in F (w):

φw(g(x)) = g(w).

By proposition 12.1, φw is a ring homomorphism. The image of this ho-
momorphism contains both F and w, and since F (w) is the smallest field
containing both F and w, the image is all of F (w). The kernel of φw is the
set of polynomials in F [x] that have w as a root. But f(x) is an irreducible
polynomial in F [x] containing w as a root. Thus, any polynomial in the kernel
is a multiple of f(x). Thus, the kernel of φw is (f(x)). Finally, by the first
ring isomorphism theorem (10.2), we have that F (w) ≈ F [x]/(f(x)).
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It is now easy to see that the dimension of the field extension F (u) will be
the dimension of the irreducible polynomial f(x) = IrrF (u, x).

COROLLARY 14.1
Let K be a finite extension of a field F , and let u be an element in K. If
f(x) = IrrF (u, x) has degree n, then F (u) has dimension n over F .

PROOF By proposition 14.5, f(x) = IrrF (u, x) exists. By proposi-
tion 14.6, F (u) is isomorphic to the field F [x]/(f(x)). By proposition 14.4,
F [x]/(f(x)) has dimension n over F . Finally, by corollary 14.3, two isomor-
phic extensions of F must have the same dimension over F provided that
the isomorphism fixes the elements of F , which the isomorphism in proposi-
tion 14.6 clearly does. Thus, the dimension of f(u) over F is n.

Notice that we never had to tell Mathematica or GAP that a = cos(π/9)
in our definition of Q(cos(π/9)). Rather, we merely entered the information
that a satisfies the equation a3 − 3a/4− 1/8 = 0.

But there are two other solutions to this equation, namely − cos(2π/9)
and cos(4π/9). How does Mathematica or GAP know that the field is not
Q(− cos(2π/9)) or Q(cos(4π/9))?

The answer is of course that these fields are both isomorphic to Q(cos(π/9)),
so Mathematica or GAP didn’t need to know the exact value of a. In fact, we
can prove that if we start with isomorphic fields, and extend both of them by
two elements for which the irreducible polynomials correspond, then the two
field extensions will be isomorphic.

PROPOSITION 14.7
Let f be an isomorphism between a field K and a field E. Let M be a finite

extension of K, and let u be in M . Let

p(x) = c0 + c1x+ c2x
2 + c3x

3 + · · ·+ cnx
n

be IrrK(u, x). Define

h(x) = f(c0) + f(c1)x+ f(c2)x2 + f(c3)x3 + · · ·+ f(cn)xn

which is in E[x]. Suppose there is a finite extension of E for which there is
a root of h(x), called v. Then there is an isomorphism µ from K(u) to E(v)
for which µ(u) = v, and µ(x) = f(x) for all x in K.

PROOF By lemma 13.3, we can extend f to a isomorphism from K[x]
to E[x]. By proposition 12.1, φv is a ring homomorphism from E[x] to E(v).
We can combine these homomorphisms to produce the homomorphism

f · φv : K[x]→ E[x]→ E(v).
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Since the isomorphism in lemma 13.3 sends x to x, we have that (f ·φv)(x) =
φv(f(x)) = φv(x) = v. So v is in the image of this combination of homomor-
phisms, as well as the subfield E. Thus, the image of f · φv is E(v). The
kernel of φv is the set of polynomials in E[x] with v as a root. But h(x) is
an irreducible polynomial in E[x] for which h(v) = 0. Thus, the kernel of φv
is the ideal (h(x)). Since h(x) = f(p(x)), we have that the kernel of f · φv is
(p(x)). Thus, by the first ring isomorphism theorem (10.2),

K[x]/(p(x)) ≈ E(v).

By proposition 14.6, we also have

K(u) ≈ K[x]/(p(x)),

and in this isomorphism, u mapped to the coset x+ (p(x)). If we let µ be the
combination of these two isomorphisms,

µ : K(u)→ K[x]/(p(x))→ E(v),

then µ(u) = φv(f(x)) = v, and µ(x) = f(x) for all x in K.

The usual application of this proposition is when K and E are the same
field, as in the case Q(cos(π/9)) and Q(− cos(2π/9)), in which case we not
only can prove that Q(cos(π/9)) and Q(− cos(2π/9)) are isomorphic, but we
can impose further conditions on the isomorphism.

COROLLARY 14.2

If K is a finite extension of a field F , and u and v are two elements in
K such that IrrF (u, x) = IrrF (v, x), then there is an isomorphism µ between
F (u) and F (v) such that µ(u) = v, and µ(x) = x for all x in F .

PROOF We simply let f be the identity mapping from F to itself, and
use proposition 14.7. Then p(x) and h(x) are both equal to IrrF (u, x). Since
v is another root of h(x) the conclusion follows from the conclusion of propo-
sition 14.7.

We discovered in section 13.2 that every finite field could be expressed in the
form Zp[x]/(f(x)), with f(x) an irreducible polynomial in Zp[x]. It is natural
to ask whether any finite extension of a field can be represented in the form
F [x]/(f(x)) for some polynomial f(x) in F [x]. Although there are some fields
that are exceptions, Q and R are not among them. Once we have proven this,
we will be able to enter any finite extension of Q or R into Mathematica using
the same technique that was used for finite fields.
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14.3 Splitting Fields

We have already seen that given an irreducible polynomial f(x) in F [x], we
can construct a field F [x]/(f(x)) for which f(x) has a root in this new field.
This raises an interesting question: Can we construct a field for which f(x)
factors completely in the new field? Let us demonstrate with some examples.
Let f(x) = x3 + x2 − 2x − 1. We begin by showing that this polynomial is
irreducible over the rationals.

Factor[x̂3 + x̂2 – 2 x – 1]

Unless otherwise specified, Mathematica will factor polynomials over the field
Q.

In GAP, we must first declare x to be a variable over the rationals

gap> x := Indeterminate(Rationals,"x");
x
gap> Factor(x^3+x^2-2*x-1,Rationals);
[ x^3+x^2-2*x-1 ]

Since the output is essentially unchanged, this indicates that the polynomial
is irreducible.

If a is one root of this polynomial, we can define Q(a) in Mathematica as
follows, and find the factorization by including the a as a second parameter
of the Factor command.

InitDomain[0]
Define[â3, – â2 + 2 a + 1]
Factor[x̂3 + x̂2 – 2 x – 1, a]

In GAP, we have to do a few more steps. First we define the extension field
over this polynomial.

gap> A := FieldExtension(Rationals,x^3+x^2-2*x-1);
<algebraic extension over the Rationals of degree 3>

In order to factor the polynomial over the new field, we must first declare a
new variable y to be an indeterminate of this new field.

gap> y := Indeterminate(A,"y");
y
gap> Factor(y^3+y^2-2*y-1,A);
[ y+(-a), y+(-a^2+2), y+(a^2+a-1) ]

This shows that the polynomial x3 + x2 − 2x− 1 factors completely as

(x− a)(x− a2 + 2)(x+ a2 + a− 1)

in the field Q(a). Notice that GAP automatically displays the root of the
polynomial as a, even though we never specified this. In fact, GAP always
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uses a to display the primitive element, but to enter an expression involving
a, we must first set a to the primitive element.

In this case, creating an extension field allowed the polynomial to factor
completely in the new field. In fact, this is very similar to what we discovered
for finite fields. However, this will not always be the case. Consider the
irreducible polynomial x3 − 2. The factorization of this polynomial in Q( 3

√
2)

is
(x− 3

√
2)(x2 + 3

√
2x+ 3

√
4).

Since the other two roots are complex, the quadratic term must be irreducible
over Q( 3

√
2), since it is irreducible over the real numbers.

gap> x := Indeterminate(Rationals,"x");
x
gap> A := FieldExtension(Rationals,x^3-2);
<algebraic extension over the Rationals of degree 3>
gap> x := Indeterminate(A,"x");
x
gap> Factor(x^3-2,A);
[ x+(-a), x^2+a*x+a^2 ]

Here, we reused the variable x, even though this overwrites the original x,
since we no longer need the original x.

In Mathematica, this factorization can be found by entering

InitDomain[0]
Define[â3, 2]
Factor[x̂3 – 2, a]
(−a+ x)(a2 + ax+ x2)

How can we get the polynomial x3− 2 to factor completely into linear terms?
We can define a new element, b, to be a root of the irreducible quadratic.
That is, we use the “extension of an extension” Q( 3

√
2, b), where b satisfies

a2 + ab+ b2 = 0, that is, b2 = − 3
√

4− b 3
√

2.

Define[b̂2, –â2 – a b]
Factor[x̂3 – 2, a, b]
(−a+ x)(−b+ x)(a+ b+ x)

gap> a := PrimitiveElement(A);
a
gap> B := FieldExtension(A, x^2 + a*x + a^2);
<algebraic extension over the Rationals of degree 6>
gap> x := Indeterminate(B, "x");
x
gap> Factor(x^3 - 2,B);
[ x+(!-a), x+(-a), x+(a+a) ]

Notice that Q( 3
√

2) is a 3-dimensional extension of Q, and Q( 3
√

2, b) is a 2-
dimensional extension of Q( 3

√
2). Thus, by proposition 14.2, Q( 3

√
2, b) is a

6-dimensional extension of Q.
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Since GAP always displays the primitive element as a, this gets a little con-
fusing when we have an extension of an extension. Sometimes the distinction
is shown with an extra ! sign, but not always. In this case we can figure out
logically that the factors must be (x− a)(x− b)(x+ a+ b), but a much easier
way is to use the command

gap> ViewFactors(last,B,["a","b"]);
[ x-a, x-b, x+a+b ]

The middle argument is the field that the factors are in, and the list of strings
shows how the primitive elements are to be displayed.

A longer example of this process is the polynomial x4 − x+ 1.

gap> x := Indeterminate(Rationals,"x");
x
gap> Factor(x^4-x+1,Rationals);
[ x^4-x+1 ]
gap> A := FieldExtension(Rationals,x^4-x+1);
<algebraic extension over the Rationals of degree 4>
gap> x := Indeterminate(A,"x");
x
gap> Factor(x^4-x+1,A);
[ x+(-a), x^3+a*x^2+a^2*x+(a^3-1) ]
gap> a := PrimitiveElement(A);
a
gap> B := FieldExtension(A, x^3 + a*x^2 + a^2*x + a^3 - 1);
<algebraic extension over the Rationals of degree 12>
gap> x := Indeterminate(B,"x");
x
gap> Factor(x^4-x+1,B);
[ x+(!-a), x+(-a), x^2+(a+a)*x+(a^2+a*a+a^2)]
gap> ViewFactors(last,B,["a","b"]);
[ x-a, x-b, x^2+x*a+x*b+a^2+a*b+b^2 ]
gap> b := PrimitiveElement(B);
a
gap> a := a*One(b);
!a
gap> C := FieldExtension(B, x^2+x*a+x*b+a^2+a*b+b^2 );
<algebraic extension over the Rationals of degree 24>
gap> x := Indeterminate(C,"x");
x
gap> Factor(x^4-x+1,C);
[ x+(!!-a), x+(!-a)), x+(-a), x+(a+(a+a)) ]
gap> ViewFactors(last,C,["a","b","c"]);
[ x-a, x-b, x-c, x+a+b+c ]

GAP has a problem multiplying the primitive element of A with an element
of C, since C is not a direct extension of A. This is why we had to replace a
with a*One(b), which is the corresponding element of B.

Not only is the polynomial irreducible, but each time we create an extension
in Mathematica or GAP that forces another root to the equation, the remain-
ing polynomial refuses to factor in the new field extension. Thus, it requires
three field extensions before it finally factors completely. By this time, the
final extension is a 24 dimensional over the rational numbers Q. Yet from this
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example it is easy to see that this procedure could be carried out over any
polynomial.

LEMMA 14.4
Let F be a field, and let f(x) be a polynomial in F [x] of degree n whose

leading coefficient is cn. Then there is a finite extension K of F such that

f(x) = cn · (x− u1) · (x− u2) · (x− u3) · · · (x− un),

where u1, u2, u3, . . . un are elements in K. Furthermore, the dimension of K
over F is at most n!.

PROOF The proof is by induction on n. If n = 1, then f(x) is a linear
function, so its only root is in F . Thus K = F , and the degree of K over F
is 1 = 1!.

Suppose that this is true for polynomials of degree less than n. Let p(x)
be an irreducible factor of f(x), and consider the field E = F [x]/(p(x)). By
proposition 14.4, E is a finite extension of F whose dimension over F is the
degree of p(x), which is at most n. Then un = x + (p(x)) is a root of p(x)
in the field E, and since p(x) is a factor of f(x), (x − un) is a factor of f(x)
in the field E. Thus, we can write f(x) = g(x) · (x − un) for some g(x) in
E[x]. Note that g(x) has degree (n− 1), and has the same leading coefficient
as f(x). Thus, we can use the induction hypothesis to show that there is a
field K that is a finite extension of E with dimension at most (n − 1)! such
that g(x) factors completely as

g(x) = cn · (x− u1) · (x− u2) · (x− u3) · · · · · (x− un−1).

Thus,

f(x) = cn · (x− u1) · (x− u2) · (x− u3) · · · · · (x− un−1) · (x− un).

By proposition 14.2, the dimension ofK over F is the product of the dimension
of E over F times the dimension of K over E. Thus, the dimension of K over
F is at most n · (n− 1)! = n!.

DEFINITION 14.8 If K is a field for which the polynomial f(x) in F [x]
factors as

f(x) = cn · (x− u1) · (x− u2) · (x− u3) · · · (x− un),

then the field F (u1, u2, u3, . . . un) is called the splitting field for the polynomial
f(x).

For example, the splitting field of x3+x2−2x−1 was found to be Q(a), where
a is one root of the polynomial. Thus, the splitting field is a 3-dimensional
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extension of Q. The splitting field of x3 − 2 turned out to be a 6-dimensional
extension of Q. The splitting field of x4 − x + 1 turned out to be a 24-
dimensional extension of Q. Lemma 14.4 points out that this is the largest
possible dimension of a fourth degree polynomial.

The splitting field for the polynomial x5 − 5x + 12 turns out to be rather
interesting. When we factor this over the field Q(a), where a is a root of the
polynomial,

InitDomain[0]
Define[â5, 5 a – 12]
Factor[x̂5 – 5 x + 12, a]

(−a+ x)
(

2− 5a
4
− a2

4
− a3

4
− a4

4
+ x+

3ax
4
− a2x

4
− a3x

4
− a4x

4
+ x2

)
(
−1− a

2
− a3

2
− x+

ax

4
+
a2x

4
+
a3x

4
+
a4x

4
+ x2

)
we find it doesn’t split completely. We can let b be a root to the last polyno-
mial, and try again.

Define[b̂2, 1 + a/2 + â3/2 + b – (a + â2 + â3 + â4) b/4 ]
Factor[x̂5 – 5 x + 12, a,b]

(−a+ x) (−b+ x)
(
−1 +

a

4
+
a2

4
+
a3

4
+
a4

4
+ b+ x

)
(

3
2

+
a

4
− a2

4
− a3

4
− a4

4
− b

2
− ab

2
+ x

)(
−1
2

+
a

2
+
b

2
+
ab

2
+ x

)
This time, the polynomial factors completely in Q(a, b). Hence the splitting
field is 10-dimensional over Q. To do this in GAP, we enter:

gap> x := Indeterminate(Rationals,"x");
x
gap> Factor(x^5-5*x+12,Rationals);
[ x^5-5*x+12 ]
gap> A := FieldExtension(Rationals,x^5-5*x+12);
<algebraic extension over the Rationals of degree 5>
gap> x := Indeterminate(A,"x");
x
gap> Factor(x^5-5*x+12,A);
[ x+(-a),
x^2+(-1/4*a^4-1/4*a^3-1/4*a^2+3/4*a+1)*x+
(-1/4*a^4-1/4*a^3-1/4*a^2-5/4*a+2),

x^2+(1/4*a^4+1/4*a^3+1/4*a^2+1/4*a-1)*x+(-1/2*a^3-1/2*a-1) ]
gap> 4*ViewFactors(last,A,["a"]);
[ !4*x+(!-4)*a,
-x*a^4-x*a^3-a^4-x*a^2-a^3+!4*x^2+!3*x*a-a^2+!4*x+(!-5)*a+!8,
x*a^4+x*a^3+x*a^2+(!-2)*a^3+!4*x^2+x*a+(!-4)*x+(!-2)*a+(!-4) ]

gap> a := PrimitiveElement(A);
a
gap> B:=FieldExtension(A,x^2+(a^4+a^3+a^2+a)/4*x-x-a^3/2-a/2-1);
<algebraic extension over the Rationals of degree 10>
gap> x := Indeterminate(B,"x");
x
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gap> Factor(x^5-5*x+12,B);
[ x+(!-a), x+(-a), x+(a+(1/4*a^4+1/4*a^3+1/4*a^2+1/4*a-1)),
x+((1/2*a+1/2)*a+(1/2*a-1/2)),
x+((-1/2*a-1/2)*a+(-1/4*a^4-1/4*a^3-1/4*a^2+1/4*a+3/2)) ]

gap> ViewFactors(last,B,["a","b"]);
[ x-a, x-b, !!1/4*a^4+!!1/4*a^3+!!1/4*a^2+x+!!1/4*a+b-!!1,
!!1/2*a*b+x+!!1/2*a+!!1/2*b+(!!-1/2),
(!!-1/4)*a^4+(!!-1/4)*a^3+(!!-1/4)*a^2+(!!-1/2)*a*b+x+!!1/4*a+

(!!-1/2)*b+!!3/2 ]

Yet if we had let b be a root of the other quadratic, would we get the same
splitting field? The answer is yes, since the splitting fields are uniquely de-
termined up to isomorphism. In order to prove this by induction, we actually
have to prove slightly more.

PROPOSITION 14.8
Let φ be an isomorphism from the field F to a field E. Let

f(x) = c0 + c1x+ c2x
2 + c3x

3 + · · ·+ cnx
n

be a polynomial in F [x]. Then

g(x) = φ(c0) + φ(c1)x+ φ(c2)x2 + φ(c3)cx3 + · · ·+ φ(cn)xn

is a polynomial in E[x]. Suppose that K is a splitting field of f(x) over F ,
and L is a splitting field of g(x) over E. Then there is an isomorphism µ
from K to L, such that µ(x) = φ(x) for all x in F .

PROOF If f(x) has degree 1, then the roots of f(x) are in F , and the roots
of g(x) are in E. Thus, K = E, and L = F , and so the function µ(x) = φ(x)
satisfies the necessary conditions.

Let us use induction on the degree of the polynomial f(x). That is, we
will assume that the proposition is true for all polynomials of degree (n− 1).
By lemma 13.3, the isomorphism φ extends to an isomorphism from F [x] to
E[x] in such a way that φ(x) = x. Thus, if p(x) is an irreducible factor of
the polynomial f(x), then φ(p(x)) is an irreducible factor of the polynomial
g(x) = φ(f(x)). Note that every root of p(x) is also a root of f(x), so that
p(x) factors completely in the field K. Likewise, φ(p(x)) factors completely
in the field L.

Let u be a root of p(x) in K, and let v be a root of φ(p(x)) in L. By
proposition 14.7, there is an isomorphism θ mapping F (u) to E(v), such that
θ(u) = v, and θ(x) = φ(x) for all x in F .

Since u is a root of f(x), we can write f(x) = (x − u) · h(x), with h(x) in
F (u)[x]. Then

g(x) = φ(f(x)) = θ(f(x)) = θ(x− u) · θ(h(x)) = (x− v) · θ(h(x)).
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Since h(x) has degree (n−1), we can use the induction hypothesis. Obviously
K is the splitting field of h(x) over F (u), and L is the splitting field of θ(h(x))
over E(v). Thus, by the induction hypothesis the proposition is true for the
polynomial h(x), so there is an isomorphism µ such that µ(x) = θ(x) for all
x in F (u). Since θ(x) = φ(x) for all x in F , we have found an isomorphism
with the necessary properties.

COROLLARY 14.3
If f(x) is a polynomial in F [x], then all splitting fields of f(x) are isomorphic.

PROOF Simply let F = E, and let φ(x) = x for all x in F . Then by
proposition 14.8, any two splitting fields of f(x) = g(x) will be isomorphic.

In section 13.3, we studied the properties of cyclotomic polynomials. It
will be important later on to determine the splitting fields of these polyno-
mials. For example, the ninth cyclotomic polynomial is given as x6 + x3 + 1.
The splitting field found by GAP or Mathematica is only 6-dimensional—the
splitting field is simply Q(a), where a is one root of the polynomial.

gap> x := Indeterminate(Rationals,"x");
x
gap> A := FieldExtension(Rationals, x^6 + x^3 + 1);
<algebraic extension over the Rationals of degree 6>
gap> x := Indeterminate(A,"x");
x
gap> Factor(x^6 + x^3 + 1, A);
[ x+(-a), x+(-a^2), x+(-a^4), x+(-a^5), x+(a^4+a), x+(a^5+a^2) ]

We can quickly generalize this result to apply to all cyclotomic polynomials.

PROPOSITION 14.9
The splitting field of the n-th cyclotomic polynomial has dimension at most
φ(n) over Q, where φ(n) is Euler’s totient function. In fact, the splitting field
is given as Q(en), where en is a primitive n-th root of unity.

PROOF From the definition of the splitting field, the generator

en = e(2πi/n) = cos
(

2π
n

)
+ i sin

(
2π
n

)
is a root of the n-th cyclotomic polynomial

Φn(x) = (x− (en)(k1)) · (x− (en)(k2)) · (x− (en)(k3)) · · · · · (x− (en)(ki)),

where k1, k2, k3, . . . ki are the integers from 1 to n that are coprime to n.
Thus, the splitting field contains Q(en). Note that all powers of en are in this
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field, and so the n-th cyclotomic polynomial factors completely in Q(en). To
find the dimension of Q(en) over Q, we first let g(x) = IrrQ(en, x), and use
corollary 14.1 to show that the dimension of Q(en) over Q is the degree of
g(x). But en is a root of Φn(x), which has dimension φ(n) and is in Q[x] by
corollary 13.4. So the degree of g(x) is at most φ(n). Therefore, the dimension
of the splitting field of Φn(x) is at most φ(n).

In fact, the n-th cyclotomic polynomial will always be irreducible, so in fact
the splitting field of Φn(x) will in fact have dimension φ(n) over Q. However,
we never officially proved that these polynomials are all irreducible.

We now will show that splitting fields have special properties that most
field extensions do not have. For example, we can define the splitting field of
x3 − 2 as follows:

InitDomain[0]
Define[â3, 2]
Define[b̂2, – â2 – a b]

Note that x2 + 3 factors in the splitting field, as does x6 + 108. In fact, both
polynomials factor completely in this field Q(a, b).

Factor[x̂2 + 3, a, b]
Factor[x̂6 + 108, a, b]

gap> x := Indeterminate(Rationals,"x");
x
gap> A := FieldExtension(Rationals,x^3-2);
<algebraic extension over the Rationals of degree 3>
gap> x := Indeterminate(A,"x");
x
gap> a := PrimitiveElement(A);
a
gap> B := FieldExtension(A,x^2+a*x+a^2);
<algebraic extension over the Rationals of degree 6>
gap> x := Indeterminate(B,"x");
x
gap> Factor(x^2+3,B);
[ x+((-a^2)*a-!1), x+(a^2*a+!1) ]
gap> ViewFactors(last,B,["a","b"]);
[ -a^2*b+x-!!1, a^2*b+x+!!1 ]
gap> Factor(x^6+108,B);
[ x+(a+2*a), x+(!2*a+a), x+(a+(-a)), x+(-a+(-2*a)),
x+((!-2)*a+(-a)), x+(-a+a) ]

gap> ViewFactors(last,B,["a","b"]);
[ x+!!2*a+b, x+a+!!2*b, x-a+b, x+(!!-2)*a-b, x-a+(!!-2)*b,
x+a-b ]

This last example suggests a startling fact: Whenever an irreducible polyno-
mial in Q[x] has just one root in a splitting field, then the polynomial factors
completely in the splitting field. This property characterizes splitting fields
from other extensions of Q.
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LEMMA 14.5
Let K be the splitting field of a polynomial f(x) in F [x]. Then if p(x) is

an irreducible polynomial in F [x] for which there is one root in K, then p(x)
factors completely in K.

PROOF Let u1, u2, u3, . . . , un be the roots of f(x) in K. Then

K = F (u1, u2, u3, . . . , un).

Suppose that p(x) has one root v in K. Consider p(x) as a polynomial in K,
and let L be the splitting field of p(x) over K. Let w be any other root of
p(x) in L besides v. To show that K = L, we need to show that w is in K,
which would show that all roots of p(x) are in K.

By proposition 14.7, there is an isomorphism φ from F (v) to F (w) such
that φ(v) = w, and φ(x) = x for all x in F . (We let f(x) = x, the identity
map, and let E and K both be the field F .) By lemma 13.3 we can extend φ
to an isomorphism from F (v)[x] to F (w)[x], and φ(f(x)) = f(x).

We now want to consider the field K(w). We have

K(w) = F (u1, u2, u3, . . . , un, w) = F (w, u1, u2, u3, . . . , un).

Thus, K(w) is the splitting field of f(x) over the field F (w). Since v is in K,

K = K(v) = F (u1, u2, u3, . . . , un, v) = F (v, u1, u2, u3, . . . , un),

so K is the splitting field of f(x) over the field F (v).
Consequently proposition 14.8 shows us that the isomorphism φ from F (v)

to F (w) extends to an isomorphism µ from K to K(w), and µ(v) = w. Also,
µ(x) = x for all x in F . Thus, we can use corollary 14.3 to show that K and
K(w) have the same dimension over F . By proposition 14.2, the dimension
of K(w) over F equals the dimension of K(w) over K times the dimension of
K over F . Therefore, the dimension of K(w) over K must be 1, so w is in K.
Therefore, every root of p(x) is in K, so p(x) factors completely in K.

The fact that the splitting field of x6 + 108 is the same as the splitting
field of x3−2 reveals another curious property of splitting fields. Rather than
having to make an “extension of an extension” to define the splitting field
Q(a, b), we could have defined the same field using a single extension of the
element w = 6

√
−108.

DEFINITION 14.9 We say that a finite extension of a field K is called
a simple extension if it can be expressed as K(a) for some element a.

The splitting field of x3 − 2, even though it was originally described as an
extension of an extension, is in fact a simple extension of Q of dimension 6.
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Let us show, using the splitting fields, that an extension of an extension
will usually form a simple extension.

PROPOSITION 14.10
Let F be a field, and let K be a finite-dimensional extension of F . Suppose

that K = F (u, v) with u, v in K. Let L be the splitting field of the polynomial
g(x) = IrrF (v, x), and suppose that there are no multiple roots of g(x) in the
field L. Then there is an element w of K such that K = F (w).

PROOF If F is a finite field, then K will also be a finite field, and
we can simply let w be a generator of the multiplicative group K∗, using
proposition 13.4. Thus, we will assume that F is an infinite field. Let f(x) =
IrrF (u, x) and g(x) = IrrF (v, x). Let E be the splitting field of g(x) over the
field F (u). Since g(x) factors completely in L without double roots, g(x) will
also factor completely in E without double roots. Let v = v1, v2, v3, . . . , vk be
the distinct roots of g(x) in E.

Since u is in E, there is at least one root of f(x) in the field E. Even though
f(x) may not factor completely in the field E we can let u = u1, u2, u3, . . . , un
be the roots of f(x) over E.

Since F is an infinite field, we can pick some element y of F , such that

y 6= ui − u
v − vj

for all 1 ≤ i ≤ n, 1 < j ≤ k.

Finally, we let w = u+ yv. Let us show that K = F (w). To show that v is
in F (w), let h(x) = f(w−yx), and note that h(v) = f(u+yv−yv) = f(u) = 0
so v is a root of h(x). If one of the other roots of g(x) is a root of h(x), then
w − yvj = u+ yv − yvj = ui for some j and i, which would give us

y =
ui − u
v − vj

,

and we specifically chose y so that it would avoid these values. Thus, there is
only one root in common between g(x) and h(x) in the field E.

Let r(x) = IrrF (w)(v, x). Then r(x) divides the polynomials g(x) and h(x),
since both polynomials have v as a root. In fact, we have seen that g(x) and
h(x) have no other roots in common, so r(x) has only one root in the field E.
But g(x) splits completely in E, and has no multiple roots in E. Thus, r(x)
has degree 1, and in fact r(x) = x− v. This proves that v is in F (w). To see
that u is in F (w), we note that u = yv−w. Thus, F (u, v) is contained in F (w)
while F (w) is obviously contained in F (u, v). Therefore, F (u, v) = F (w).

COROLLARY 14.4
Let K be a finite-dimensional extension of F , with K = F (u1, u2, u3, . . . un)

and suppose that none of the polynomials IrrF (ui) have multiple roots in each
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of their splitting fields. Then there exists an element w in K such that K =
F (w).

PROOF We will proceed by induction on n. If n = 1, we can let w = u1,
and there is nothing to prove. If n = 2 we can use proposition 14.10 to find
w. Suppose that the corollary is true for the previous case, so that we found
a u is K such that F (u) = F (u1, u2, u3, . . . , un−1). Let v = un, and since
g(x) = IrrR(uk+1) does not have a multiple root in its splitting field L, we
can use proposition 14.10 to find a w in K such that F (w) = F (u, v). But
then F (w) = F (u1, u2, u3, . . . , un−1, un). Thus, the corollary is true for all
positive values of n.

Mathematica and GAP have a function SimpleExtension that finds one
of the many elements w for which the field Q(a, b, . . .) = Q(w). For example,
the splitting field of x3 − 2 is Q(a, b), which is defined above. We then can
find an element w by the command

SimpleExtension[a,b]

which returns a+ 2b. Thus, Q(a, b) = Q(a+ 2b), which is a simple extension.
This element turns out to be a sixth root of −108. GAP’s SimpleExtension
does even more. It forms a new field extension, which is a simple extension,
and then provides a way to map back and forth from the original field to the
new field. For example, using the B defined above,

gap> L := SimpleExtension(B);
[ <algebraic extension over the Rationals of degree 6>,
!2*a+a, [ 1/18*a^4, -1/36*a^4+1/2*a ] ]

gap> ViewFactors(last[2],B,["a","b"]);
a+!!2*b

This produces a new field, in which the new primitive element is w = a+ 2b,
and a = w4/18 and b = w/2 − w4/36. How does this command work? The
key is in the proof of proposition 14.10. Within the proof, we found that
F (u, v) = F (u+ yv), where y is any number such that

y 6= ui − u
v − vj

whenever ui is a root of IrrF (u, x), and vj is a root of IrrF (v, x).
Let us try another example. Consider Q( 3

√
2,
√

2). This is not a splitting
field, but it is contained in the splitting field of f(x) = (x3−2)(x2−2), which
does not have multiple roots, so we can still apply proposition 14.10 to show
that Q( 3

√
2,
√

2) = Q(w) for some element w. But what is that element?
Note that IrrQ( 3

√
2) = x3 − 2, which has roots of 3

√
2, e3

3
√

2, and e2
3

3
√

2.
Likewise, IrrQ(

√
2) = x2 − 2, which has roots of ±

√
2. Hence, we must pick a
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rational value of y that is not equal to

ei3
3
√

2− 3
√

2√
2±
√

2
.

That is, y cannot equal 0, (e3 − 1) 3
√

2/(2
√

2), or (e2
3 − 1) 3

√
2/(2
√

2). Any
other rational value of y will do, so for convenience we can take y = 1. Then
w = u+ yv = 3

√
2 +
√

2.
We can also have Mathematica or GAP find an element for us.

InitDomain[0]
Define[aˆ3, 2]
Define[bˆ2, 2]
SimpleExtension[a,b]
a+ b

gap> x := Indeterminate(Rationals,"x");
x
gap> A := FieldExtension(Rationals,x^3-2);
<algebraic extension over the Rationals of degree 3>
gap> x := Indeterminate(A,"x");
x
gap> B := FieldExtension(A,x^2-2);
<algebraic extension over the Rationals of degree 6>
gap> SimpleExtension(B);
[ <algebraic extension over the Rationals of degree 6>, a+a,
[ -12/155*a^5-9/310*a^4+16/31*a^3+78/155*a^2-76/155*a+182/155,
12/155*a^5+9/310*a^4-16/31*a^3-78/155*a^2+231/155*a-182/155] ]

There is in fact an easier way to find a simple extension in this case. Merely
note that 6

√
2 ∈ Q( 3

√
2,
√

2), since 6
√

2 =
√

2/ 3
√

2. Yet
√

2 = 6
√

2
3
, and 3

√
2 =

6
√

2
2
. So Q( 3

√
2,
√

2) = Q( 6
√

2).
The fact that we can convert an extension of an extension to a simple exten-

sion will simplify many of the proofs involving splitting fields. In particular,
it will allow us to explore the automorphisms of the splitting fields. In the
next chapter we will discover that the automorphisms of the splitting fields
determine much of the information about the roots of the polynomial, and
whether they can be expressed in terms of square roots and cube roots. This
beautiful correlation is referred to as Galois theory.

Problems for Chapter 14

Interactive Problems

14.1 Use Mathematica or GAP to find the coefficients of the vector 〈3,−2, 5〉
in R3 using the basis {〈2,−1, 4〉, 〈5, 2, 1〉, 〈4,−3, 2〉}.



456 Abstract Algebra: An Interactive Approach

14.2 Use Mathematica or GAP to find the coefficients of the element Z(27)5

in GF(27) over Z3 using the basis {Z(3)0, Z(27), Z(27)2}. Note that the
Conway polynomial of degree 3 over Z3 is x3 + 2x+ 1.

14.3 Define the field Q(
√
−3) in GAP or Mathematica, then find 1/(5 +√

−3). Note that in Mathematica, you must first use the CheckField com-
mand to show that {1,

√
−3} is a basis.

14.4 Define the field Q(
√

5) in GAP or Mathematica. Does the polynomial
x2 + 4x− 1 factor in this field?

For problems 14.5 through 14.8: Define the splitting field of the polynomial
in Mathematica or GAP. Determine the dimension of the splitting field over
Q.

14.5 x3 + x2 − 4x+ 1
14.6 x5 + x4 − 4x3 − 3x2 + 3x+ 1

14.7 x5 − 2
14.8 x5 + 20x+ 16

Non-Interactive Problems

For problems 14.9 through 14.14: Find a basis for the following fields over
Q.

14.9 Q(
√

2)
14.10 Q(

√
5)

14.11 Q(
√

2,
√

3)
14.12 Q(

√
2,
√

3,
√

5)
14.13 Q( 3

√
2)

14.14 Q(e9)

14.15 Find a basis for the field Q(
√

2,
√

3) over the field Q(
√

2).

For problems 14.16 through 14.21: Find the following irreducible polynomi-
als IrrQ(y, x).

Hint: Set x = y, and work to eliminate the roots.

14.16 IrrQ(
√

5, x)
14.17 IrrQ( 3

√
5, x)

14.18 IrrQ(
√

2 +
√

3, x)

14.19 IrrQ
(√√

2− 1, x
)

14.20 IrrQ
( 3
√√

5− 1, x
)

14.21 IrrQ

(√√√
2− 1 + 1, x

)
For problems 14.22 through 14.25: Find all of the roots of the polynomial.

14.22 IrrQ(
√

2 +
√

3, x). (See problem 14.18.)
14.23 IrrQ

(√√
2− 1, x

)
. (See problem 14.19.)

14.24 IrrQ
( 3
√√

5− 1, x
)
. (See problem 14.20.)

14.25 IrrQ

(√√√
2− 1 + 1, x

)
. (See problem 14.21.)

For problems 14.26 through 14.29: Find a single number w such that the
following field can be written as Q(w).

14.26 Q(
√

2, 5
√

2)
14.27 Q(

√
2,
√

5)
14.28 Q(

√
2,
√

3,
√

5)
14.29 Q( 3

√
2, i)

14.30 Q( 3
√

2, e3)
14.31 Q(e3, e5)
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14.32 Show by direct computation that if a and b are two distinct roots of
x3 − 2, then (a+ 2b)6 = −108.

Hint: Use the fact that b2 = −ab− a2 to simplify as you go along.

14.33 Use either a calculator’s Solve function or De Moivre’s theorem (11.2)
to find decimal approximations of the three roots of x3 − 2 = 0. Verify that
a2 + ab+ b2 = 0 whenever a and b are two of the three roots.

14.34 The polynomial x3 + x − 1 has one real root a ≈ 0.6823278038 . . ..
Show that the splitting field of this polynomial is 6-dimensional over Q.

Hint: If (x−a) is one factor, what is the other? Show that this other factor
is irreducible in R, and hence is irreducible in Q(a).

14.35 Find the splitting field of x4 + x2 + 1 = (x2 + x+ 1)(x2 − x+ 1).

14.36 Let F = Z2(t) be the rational functions of t modulo 2. Let K be the
splitting field of x2 − t (that is, K = F (

√
t)). Show that K is isomorphic to

F , even though K is an extension of F of order 2.
Hint: Let φ be a homomorphism that sends

√
t to t.

14.37 Find the multiplicative inverse of 3
√

4− 3
√

2− 3 in Q( 3
√

2).

14.38 Let a be a root of the equation

x5 +
√

2x3 +
√

3x2 +
√

5x+
√

7.

Show that Q(a) is a finite extension of Q with dimension at most 80.

14.39 Let K be a finite extension of a field F . If u and v are in K, prove
that F (u)(v) = F (v)(u).

14.40 Suppose f(x) and g(x) are two polynomials in Q[x]. Suppose that
the splitting field of f(x) is of dimension n over Q, and the splitting field of
g(x) is of dimension m over Q. Prove that the splitting field of f(x) · g(x) has
dimension no more than n ·m.

14.41 Let m and n be distinct integers. Show directly that Q(
√
m,
√
n) =

Q(
√
m+

√
n).

Hint: (
√
m+

√
n), (
√
m+

√
n)2, and (

√
m+

√
n)3 are all in Q(

√
m+

√
n).

Find a way of obtaining
√
m and

√
n from these three expressions.

14.42 Prove that Q(
√

2) is not isomorphic to Q(
√

3).

14.43 Find all of the automorphisms of Q(
√

2,
√

3).
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Chapter 15

Galois Theory

15.1 The Galois Group of an Extension Field

In the last chapter, we explored the extensions of a field, and found that any
finite extension could be entered into Mathematica©R fairly easily. In particular,
we explored the splitting fields of several polynomials. In this chapter, we
will explore the automorphisms on the field extensions, and discover that the
group of automorphisms contains much information about the polynomial.
For example, it will tell us if the roots of the polynomial can be expressed in
terms of square roots and cube roots.

DEFINITION 15.1 Let K be a finite extension of the field F . An F -
automorphism of K is a ring automorphism φ on the field K that fixes every
element of F . That is, φ(x) = x whenever x is in F .

Note that there is at least one F -automorphism of K, the identity automor-
phism. Since we have seen that the set of group automorphisms of a group
forms another group, it is not surprising that the same thing happens for
F -automorphisms of a field.

PROPOSITION 15.1

If K is a finite extension of a field F , then the set of all F -automorphisms
of K forms a group under the operation of composition of functions.

PROOF By lemma 11.5, the set of all ring automorphisms of a ring
forms a group. So we only need to show that the set of F -automorphisms
of K is a subgroup of the group of all automorphisms. If φ1 and φ2 are
two F -automorphisms of K, then φ1(x) = φ2(x) = x for all x in F . Thus,
(φ1 ·φ2)(x) = φ2(φ1(x)) = x for all x in F . Thus, φ1 ·φ2 is an F -automorphism
of K. Note also that φ−1

1 (x) = x for all x in F , so φ−1
1 is also an F -

automorphism of K. Since the set of all F -automorphisms of K is closed
under multiplications and inverses, this set is a group.

459
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DEFINITION 15.2 The set of all F -automorphisms of K is denoted
GalF (K), and is called the Galois Group of K over F .

For example, the set of complex numbers C, according to proposition 11.4,
has two automorphisms that fix the real numbers: the identity automorphism,
and the automorphism that sends each number to its complex conjugate.
So there are exactly two elements of GalR(C). In other words, GalR(C) is
isomorphic to Z2.

We want to find a way to compute the Galois group of any finite extension
of a field F . Since we can define finite extensions in terms of polynomials, it
is natural to ask what must happen to the roots of a polynomial.

LEMMA 15.1
Let K be a finite extension of F , and let f(x) be a polynomial in F [x]. If u

is a root of f(x), and φ is in GalF (K), then φ(u) is also a root of f(x).

PROOF Let f(x) = c0 + c1x+ c2x
2 + c3x

3 + · · ·+ cnx
n. Since u is a root

of f(x) we have that

c0 + c1u+ c2u
2 + c3u

3 + · · ·+ cnu
n = 0.

Since φ is a ring homomorphism, we have that

0 = φ(0) = φ(c0 + c1u+ c2u
2 + c3u

3 + · · ·+ cnu
n)

= φ(c0) + φ(c1)φ(u) + φ(c2)φ(u2) + φ(c3)φ(u3) + · · ·+ φ(cn)φ(un).

Since c0, c1, c2, . . . cn are in F , we have

0 = c0 + c1φ(u) + c2φ(u)2 + c3φ(u)3 + · · ·+ cnφ(u)n.

Therefore, φ(u) is also a root of f(x).

Let us use this lemma to find the Galois group of the splitting field of x3−2.
The splitting field is defined by letting a3 = 2, and b2 = −a2 − ab.

InitDomain[0]
Define[â3, 2]
Define[b̂2, – â2 – a b]
Factor[x̂3 – 2, a, b]

gap> x := Indeterminate(Rationals,"x");
x
gap> A := FieldExtension(Rationals,x^3-2);
<algebraic extension over the Rationals of degree 3>
gap> a := PrimitiveElement(A);
a
gap> x := Indeterminate(A,"x");
x
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gap> B := FieldExtension(A,x^2 + a*x + a^2);
<algebraic extension over the Rationals of degree 6>
gap> x := Indeterminate(B,"x");
x
gap> Factor(x^3-2,B);
[ x+(!-a), x+(-a), x+(a+a) ]
gap> ViewFactors(last,B,["a","b"]);
[ x-a, x-b, x+a+b ]

The three roots of x3− 2 are a, b, and −a− b. Thus, lemma 15.1 tells us that
if F (x) is an automorphism on Q(a, b), then F (a) is either a, b, or −a − b,
while F (b) is either a, b, or −a− b. Let us try to find an automorphism such
that F (a) = b and F (b) = a.

Homomorph[F]
Define[F[a], b]
Define[F[b], a]
CheckHomo[F, {a, b}]

gap> b := PrimitiveElement(B);
a
gap> a := a*One(b);
!a
gap> F := AlgebraHomomorphismByImagesNC(B,B,[a,b],[b,a]);
[ !a, a ] -> [ a, !a ]
gap> CheckHomo(F,[a,b]);
true

We have successfully defined one automorphism of the Galois group. (Any
nonzero homomorphism on a field must be an automorphism in light of
proposition 10.5, and the fact that the kernel is always an ideal.) We can
similarly define an automorphism G(x) on Q(a, b) such that G(a) = b, and
G(b) = −a− b.

gap> G := AlgebraHomomorphismByImagesNC(B,B,[a,b],[b,-a-b]);
[ !a, a ] -> [ a, -a+(-a) ]
gap> CheckHomo(G,[a,b]);
true

With these two automorphisms we can actually produce three more: G(G(x)),
F (G(x)), and G(F (x)). Mathematica or GAP can show us that all five of these
automorphisms are different, and if we include the identity automorphism, we
have found six automorphisms on Q(a, b). Note that the Galois group is not
abelian, since F (G(x)) 6= G(F (x)).

gap> Im(F,Im(G,a));
!a
gap> Im(F,Im(G,b));
-a+(-a)
gap> Im(G,Im(F,a));
-a+(-a)
gap> Im(G,Im(F,b));
a
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This introduces a new GAP command Im that finds the image of a homomor-
phism at a particular element.

It seems as though we must have found all of the automorphisms at this
point, but this still needs to be proved. We begin by showing that there will
always be an automorphism that moves one root of an irreducible polynomial
to another.

PROPOSITION 15.2

Let K be the splitting field of some polynomial f(x) over F , and let u and
v be two elements of K. Then there exists an F -automorphism φ such that
φ(u) = v if, and only if, IrrF (u, x) = IrrF (v, x).

PROOF If there is some φ such that φ(u) = v, we can let g(x) = IrrF (u, x)
and h(x) = IrrF (v, x). Then u is a root of g(x), and v is a root of h(x). By
lemma 15.1, u is a root of h(x) and v is a root of g(x), since v = φ−1(u). So
g(x) is a multiple of h(x), and vice versa. Since both have a leading coefficient
of 1, we have that g(x) = h(x).

Now suppose that IrrF (u, x) = IrrF (v, x). Then by corollary 14.2 there is
an isomorphism φ from F (u) to F (v) such that φ(u) = v, and φ(x) = x for
all x in F . Since K is a splitting field of f(x) over F , it is a splitting field of
f(x) over both F (u) and F (v). Therefore φ extends to an F -automorphism
of K (which we will also denote φ) by proposition 14.8. Therefore, φ is in
GalF (K), and φ(u) = v.

The next lemma will be important in determining the subgroups of the
Galois group.

LEMMA 15.2

Let K be a finite extension of F , and let φ be an F -automorphism of K. Then
the set of all elements x such that φ(x) = x forms a subfield of K containing
F .

PROOF Let E be the set of all elements x such that φ(x) = x. Since φ
is an F -automorphism, by definition E must contain the elements of F . If x
and y are in E, note that

φ(x+ y) = φ(x) + φ(y) = x+ y,

φ(x · y) = φ(x) · φ(y) = x · y,

φ(−x) = −φ(x) = −x,

φ(x−1) = φ(x)−1 = x−1, if x 6= 0.
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Thus, x + y, x · y, and −x are in E whenever x and y are, and x−1 is in E
whenever x 6= 0 is in E. Thus, E is a subfield of K.

Next we want to work on finding an upper bound on the number of elements
in GalF (K).

PROPOSITION 15.3
Let K = F (u1, u2, u3, . . . , un) be a finite extension field of F . If φ1 and φ2

are two F -automorphisms in GalF (K), and

φ1(u1) = φ2(u1), φ1(u2) = φ2(u2), . . . φ1(un) = φ2(un),

then φ1(x) = φ2(x) for all x in K. In other words, an F -automorphism in
GalF (K) is completely determined by its action on u1, u2, u3, . . . , un.

PROOF Consider the F -automorphism φ−1
2 (φ1(x)). It is clear that

this automorphism fixes u1, u2, u3, . . . un, as well as the elements of F . By
lemma 15.2, the set E of all elements x such that φ−1

2 (φ1(x)) = x forms
a subfield of K. But K is by lemma 14.3 the smallest field containing u1,
u2,u3, . . . , un, and F . Thus, K = E, and so φ1(x) = φ2(x) for all x in K.

We can now apply this proposition to the field Q(a, b). Any Q-automor-
phism is determined by where it sends the elements a and b. By lemma 15.1,
these elements can only be sent to a, b, or −a − b. Yet an automorphism
cannot send two elements to the same element. Thus, there are at most
six Q-automorphisms on the field Q(a, b). Yet we have found precisely six
Q-automorphisms of Q(a, b). Thus, we have found all of the Q-automor-
phisms, and the Galois group of Q(a, b) contains exactly six elements. Fur-
thermore, we observed that GalQ(Q(a, b)) was non-commutative, so we find
that GalQ(Q(a, b)) must be isomorphic to S3.

We can find an upper bound for the number of F -automorphisms in any
splitting field using a similar argument.

COROLLARY 15.1
If K is the splitting field of a polynomial f(x) of degree n in F [x], then

GalF (K) is isomorphic to a subgroup of Sn.

PROOF Since f(x) has degree n in F [x], there are at most n roots of f(x)
in K. Call these roots u1, u2, . . . , um. Since K is the splitting field of f(x)
over F , we can write K = F (u1, u2, u3, . . . , um). If φ is in GalF (K), then
φ(u1), φ(u2), φ(u3), . . . , φ(um) will be distinct roots of f(x) by lemma 15.1.
Hence, φ will act as a permutation on the roots of f(x). By proposition 15.3,
φ is completely determined by this permutation on the roots of f(x). Thus,
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GalF (K) is isomorphic to a subgroup of Sm, and since m is not larger than
n, GalF (K) is isomorphic to a subgroup of Sn.

We immediately see from this corollary that the Galois group of a finite
extension must be a finite group.

Let us look at one more example of a Galois group of a field. Consider the
field Q( 3

√
2), which is a subfield of the field Q(a, b). Note that in this subfield

all of the elements are real . Thus, in this field Q( 3
√

2) there is only one root
to the polynomial x3−2. Hence, if φ(x) is a Q-automorphism of Q( 3

√
2), then

φ( 3
√

2) must be 3
√

2. By proposition 15.3, the Q-automorphism is completely
determined by where φ sends 3

√
2. Thus, GalQ(Q( 3

√
2)) is merely the trivial

group.
In order to find the Galois group of a field, it is very helpful to know ahead

of time the exact size of the Galois group. The next proposition allows us to
compute the size of the Galois group for an important class of field extensions.

PROPOSITION 15.4
Suppose K is the splitting field of a polynomial f(x) in F [x], and that K can

be expressed as a simple extension K = F (w). If IrrF (w, x) has no double
roots in K, then the number of F -automorphisms in GalF (K) is precisely the
dimension of K over F .

PROOF Let d be the dimension of K over F . Then if g(x) = IrrF (w, x),
then g(x) has degree d. Since K is a splitting field and contains one root of
g(x), by lemma 14.5 g(x) splits completely in K. Since there are no double
roots of g(x) in K, then there are d roots w = w1, w2, w3 · · ·wd. Since g(x)
is irreducible, IrrF (wi, x) = IrrF (w, x) so proposition 15.2 states that there is
an F -automorphism that sends w to wi for 1 ≤ i ≤ d. Hence, there are at
least d F -automorphisms. But by proposition 15.3, the F -automorphism of
F (w) is determined by where it sends w, which must be one of the d roots.
So |GalF (K)| = d.

We are ready to try a more complicated example. Suppose we want to find
the Galois group for the splitting field of the polynomial x4 − 2x3 + x2 + 1.
First we verify that this polynomial is irreducible.

Factor[xˆ4 – 2 xˆ3 + xˆ2 + 1]

gap> x := Indeterminate(Rationals,"x");
x
gap> Factor(x^4-2*x^3 + x^2 + 1,Rationals);
[ x^4-2*x^3+x^2+1 ]

Mathematica and GAP show this polynomial is irreducible over Q. Let us
define a to be one root of this polynomial, and see how this polynomial factors
over Q(a).
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InitDomain[0]
Define[aˆ4, 2 aˆ3 – aˆ2 – 1]
Factor[xˆ4 – 2 xˆ3 + xˆ2 + 1, a]
(−a+ x)(−1 + a+ x)(−a+ a2 − x+ x2)

Here is how we do this in GAP:

gap> A := FieldExtension(Rationals,x^4-2*x^3+x^2+1);
<algebraic extension over the Rationals of degree 4>
gap> x := Indeterminate(A,"x");
x
gap> Factor(x^4-2*x^3+x^2+1,A);
[ x+(-a), x+(a-1), x^2-x+(a^2-a) ]

This tells us that if a is a root, then 1 − a is another root. However, it
didn’t factor completely, so we have to define b to be a root of the irreducible
quadratic.

Define[bˆ2, b + a – aˆ2]
Factor[xˆ4 – 2 xˆ3 + xˆ2 + 1, a, b]
(−a+ x)(−1 + a+ x)(−b+ x)(−1 + b+ x)

gap> a := PrimitiveElement(A);
a
gap> B := FieldExtension(A,x^2-x+a^2-a);
<algebraic extension over the Rationals of degree 8>
gap> x := Indeterminate(B,"x");
x
gap> Factor(x^4-2*x^3+x^2+1,B);
[ x+(!-a), x+(-a), x+(a-!1), x+(!a-1) ]
gap> ViewFactors(last,B,["a","b"]);
[ x-a, x-b, x+b-!!1, x+a-!!1 ]

So the four roots are a, 1 − a, b, and 1 − b. Any Q-automorphism will map
each of these roots to another root, and so the Galois group will be a subgroup
of S4. But which permutations will give rise to a Q-automorphism? A little
trial and error will help.

Proposition 15.2 says that there will be some Q-automorphism that sends
any one of these four roots to any other of the four roots. So there is a Q-
automorphism that sends a to 1−a. But where would it send the other three
roots? Note that if f(a) = 1 − a, then f(1 − a) = f(1) − f(a) = a. So we
only have to determine if f(b) is b or 1 − b. Mathematica or GAP can show
that both of these work, and Mathematica can draw a picture of how these
two Q-automorphisms act on the four roots of the polynomial.

gap> b := PrimitiveElement(B);
a
gap> a := a*One(b);
!a
gap> e := One(b);
!!1
gap> f := AlgebraHomomorphismByImagesNC(B,B,[a,b],[e-a,b]);
[ !a, a ] -> [ !-a+1, a ]



466 Abstract Algebra: An Interactive Approach

........

........

........

........
........
.........
.........
.........
.........
..........
..........

...........
............

.............
...............

...................
.....................................

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
...................

...............
.............
............
...........
..........
..........
.........
.........
.........
.........
........
........
........
........
........
.•

•

•

•
a

b

1 – a1 – b
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

........
......................................

...........................
...................

..........
..........
......................................................................................
..........................

.............................
..........
...........
...............................................................

................... ........
........
........
........
........
.........
.........
.........
.........
..........
..........

...........
............

.............
...............

...................
.....................................

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
...................

...............
.............
............
...........
..........
..........
.........
.........
.........
.........
........
........
........
........
........
.•

•

•

•
a

b

1 – a1 – b

.....................................................................................................................................................................
........
......................................

...........................
...................

.....................................................................................................................................................................

...........................
...................

........
......................................

FIGURE 15.1: Two automorphisms of Q(a, b)

gap> CheckHomo(f,[a,b]);
true
gap> g := AlgebraHomomorphismByImagesNC(B,B,[a,b],[e-a,e-b]);
[ !a, a ] -> [ !-a+1, -a+!1 ]
gap> CheckHomo(g,[a,b]);
true

Note that we had to define e to be the identity element of B, because 1-b
would cause a problem in GAP, since 1 is not an element of B.

If we number the four roots

1) a 2) 1− a 3) b 4) 1− b

we can view these two Q-automorphisms as P [2, 1] and P [2, 1, 4, 3]. The circle
graphs of these two automorphisms are depicted in figure 15.1. But proposi-
tion 15.4 indicates that we must have eight Q-automorphisms, so let us try
mapping a to b. Then 1 − a would have to map to 1 − b, but b could map
to either a or 1 − a. Mathematica shows that mapping b to a yields another
Q-automorphism, which would correspond to the permutation P [3, 4, 1, 2]. If
we find the subgroup generated by these three Q-automorphisms

M = Group[{P[2, 1], P[2, 1, 4, 3], P[3, 4, 1, 2]}]

gap> M := Group( (1,2),(1,2)(3,4), (1,3)(2,4) );
Group([ (1,2), (1,2)(3,4), (1,3)(2,4) ])
gap> Size(M);
8

we see that we have at least eight Q-automorphisms. Since this is the number
predicted by proposition 15.4, we are done. Hence, we found the Galois group
as a subgroup of S4 of order 8. The multiplication table
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MultTable[M]

gap> NumberElements := true;
true
gap> MultTable(M);

* |1 2 3 4 5 6 7 8
----------+-----------------------
() |1 2 3 4 5 6 7 8
(1,2) |2 1 4 3 6 5 8 7
(1,3)(2,4)|3 7 1 5 4 8 2 6
(1,4,2,3) |4 8 2 6 3 7 1 5
(3,4) |5 6 7 8 1 2 3 4
(1,2)(3,4)|6 5 8 7 2 1 4 3
(1,3,2,4) |7 3 5 1 8 4 6 2
(1,4)(2,3)|8 4 6 2 7 3 5 1

shows that this group is non-abelian, and has five elements of order 2. Thus,
the Galois group is isomorphic to D4.

This example shows the usefulness of proposition 15.4 in finding the Galois
group. In fact, sometimes the Galois group can be determined using only
corollary 15.1 and proposition 15.4.

One of the tools we will use for finding the Q-automorphisms is the close
connection between the subgroups of the Galois group, and the subfields of
the field extension. We begin by showing a way to produce subfields of a field
extension using the subgroups of the Galois group.

PROPOSITION 15.5
Let K be a finite extension of F , and let H be a subgroup of GalF (K). Let

fix(H) = {k ∈ K | φ(k) = k for all φ ∈ H}.

Then fix(H) is a subfield of K containing the field F .

PROOF For each φ in H, let Eφ be the set of elements that are fixed
by φ. By lemma 15.2, Eφ is a subfield of K containing F . By taking the
intersection of all Eφ with φ in H, we obtain a subfield of K containing F .

DEFINITION 15.3 The field fix(H) is called the fixed field of the sub-
group H.

Let us go back to the example of the Galois group of Q(a, b), where a and
b were two roots of x3 − 2.

The Galois group can be described as

{I(x), F (x), G(x), G(G(x)), F (G(x)), G(F (x))},

where I(x) represents the identity automorphism that sends every element to
itself. The subgroups of GalQ(Q(a, b)) are as follows:

H1 = {I(x)}, H2 = {I(x), F (x)}, H3 = {I(x), F (G(x))},
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H4 = {I(x), G(F (x))}, H5 = {I(x), G(x), G(G(x))},

H6 = {I(x), F (x), G(x), G(G(x)), F (G(x)), G(F (x))}.

Let us find the six fixed fields of Q(a, b). The field fix(H1) is the set of
elements fixed by the identity mapping, which is of course all of Q(a, b). The
field fix(H2) contains the elements fixed by the mapping F (x), which maps a to
b, and b to a. Notice that the third root, −a−b, is fixed be the automorphism
F . Thus, fix(H2) = Q(−a− b). By a similar argument, we see that fix(H3) =
Q(a), and fix(H4) = Q(b). The field fix(H5) is a little bit trickier, since G(x)
moves a, b, and −a− b. With a little bit of experimenting, we notice that

G(a2b) = b2(−a− b) = (−a2 − ab)(−a− b) = a3 + a2b+ a2b+ ab2

= 2 + 2a2b+ a(−a2 − ab) = a2b.

If we substitute two of the roots of x3− 2 for a and b, that is, let a = 3
√

2 and
b = e3

3
√

2, we find that a2b is 2e3 = −1 +
√
−3. This agrees with our previous

observation that
√
−3 is in the field Q(a, b). Since −1 is already rational, we

can write the fixed field fix(H5) as Q(
√
−3).

Finally, the only elements of Q(a, b) that are fixed by all Q-automorphisms
are the elements of Q. Hence fix(H6) = Q. Notice that we have found six
different subfields of Q(a, b) by using the six subgroups of the Galois group.
We will discover in the next section that this is all of the subfields of Q(a, b).
Thus, we have found a convenient way of finding all of the subfields of a given
field.

Here is another example, although a bit easier. Consider the field Q( 3
√

2).
Since the only Q-automorphism is the identity automorphism, which fixes the
whole group, the only fixed field of Q( 3

√
2) is Q( 3

√
2), even though there is the

obvious subfield Q within this field. We were hoping to be able to find all
subfields of a field by looking at the fixed fields, but in this example we failed.
We will understand why the field Q( 3

√
2) is not as well behaved as Q(a, b) in

the next section.

15.2 The Galois Group of a Polynomial in Q

To demonstrate Galois groups, let us concentrate on polynomials with ratio-
nal coefficients. By working with rational numbers, we will avoid the problem
of a splitting field having multiple roots. (In fields of finite characteristic, this
can cause a problem.) This situation will never happen if we work in the field
of rational numbers.

One advantage of working with a familiar field is that we can borrow a tool
from calculus, namely the derivative. It isn’t often that we will use a calculus
result in algebra, but in this case it greatly simplifies the proof.
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LEMMA 15.3
If f(x) is an irreducible polynomial on Q[x], then f(x) does not have multiple

roots in the splitting field of f(x).

PROOF Since we are working in Q[x], we can use the familiar tools of
calculus. Suppose that K is the splitting field of f(x), and u is a multiple
root of f(x) in K. Then

f(x) = (x− u)2 · g(x).

Since we are working in a field extension of Q, we can take the derivative
of both sides to get

f ′(x) = 2(x− u) · g(x) + (x− u)2g′(x).

Thus, u is a root of f ′(x), which has lower degree than f(x). Note that
f ′(x) is not 0, since it has degree of at least one.

Since f ′(x) is also in Q[x], we see that IrrQ[u, x] has degree less than the
degree of f(x), and so IrrQ[u, x] is a divisor of f(x). But this contradicts the
fact that f(x) is irreducible. Therefore, f(x) cannot have multiple roots in
its splitting field.

Because of this lemma, we know from proposition 14.10 that any splitting
field can be expressed as a simple extension Q(w), and also we will be able
to use proposition 15.4 to predict the size of the Galois group of the splitting
field. We can relate the Galois group of the splitting field directly to the
polynomial.

DEFINITION 15.4 Let f(x) be a polynomial in Q. The Galois group
of f(x) is the Galois group of the splitting field of f(x) over Q.

We have already seen some examples of Galois groups of splitting fields.
The splitting field of x3 − 2 was isomorphic to S3. We also computed the
Galois group of the splitting field of x4 − 2x3 + x2 + 1, and found that the
Galois group is isomorphic to D4. Let us compute the Galois groups of some
other polynomials.

Consider the polynomial x3 + x2 − 2x− 1. This polynomial is irreducible,
as Mathematica or GAP can verify:

Factor[x̂3 + x̂2 – 2 x – 1]

gap> x := Indeterminate(Rationals,"x");
x
gap> Factor(x^3+x^2-2*x-1,Rationals);
[ x^3+x^2-2*x-1 ]

Thus, we can let a denote one of the roots, and try to factor this in Q(a).
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InitDomain[0]
Define[â3, – â2 + 2 a + 1]
Factor[x̂3 + x̂2 – 2 x – 1, a]

gap> A := FieldExtension(Rationals,x^3+x^2-2*x-1);
<algebraic extension over the Rationals of degree 3>
gap> x := Indeterminate(A,"x");
x
gap> Factor(x^3+x^2-2*x-1,A);
[ x+(-a), x+(-a^2+2), x+(a^2+a-1) ]

Since this factors completely, we see that the splitting field of x3 +x2−2x−1
is Q(a). This is a 3-dimensional extension of Q, so by proposition 15.4, the
Galois group has three elements. Thus, the Galois group is isomorphic to Z3.

Consider the polynomial x5 − 5x+ 12. In the last chapter, we were able to
find a splitting field by making two extensions, one of dimension 5, and one
of dimension 2.

InitDomain[0]
Define[â5, 5 a – 12]
Define[b̂2, – 2 + 5 a/4 + â2/4 + â3/4 + â4/4 – b – 3 a b/4 +
â2 b/4 + â3 b/4 + â4 b/4]

gap> x := Indeterminate(Rationals,"x");
x
gap> A := FieldExtension(Rationals,x^5-5*x+12);
<algebraic extension over the Rationals of degree 5>
gap> x := Indeterminate(A,"x");
x
gap> a := PrimitiveElement(A);
a
gap> e := One(A);
!1
gap> B := FieldExtension(A,(4*x^2+8*e-5*a-a^2-a^3-a^4+4*x+3*a*x
> -a^2*x-a^3*x-a^4*x)/(4*e));
<algebraic extension over the Rationals of degree 10>

If we define

c = Expand[(â4 +â3 + â2–3 a–4 b–4) / 4]
d = Expand[
(a–4–â2+â3–â4–4 b–a b+â2 b–â3 b +â4 b)/8]
e = Expand[
(12–3a–â2–3â3–â4+4b+a b–â2 b+â3 b–â4 b)/8]

gap> x := Indeterminate(B,"x");
x
gap> b := PrimitiveElement(B);
a
gap> a := a*One(b);
!a
gap> e := One(b);
!!1
gap> c := (a^4 + a^3 + a^2 - 3*a - 4*b - 4*e)/(4*e);
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-a+(1/4*a^4+1/4*a^3+1/4*a^2-3/4*a-1)
gap> d := (a-4*e-a^2+a^3-a^4-4*b-a*b+a^2*b-a^3*b+a^4*b)/(8*e);
(1/8*a^4-1/8*a^3+1/8*a^2-1/8*a-1/2)*a+
(-1/8*a^4+1/8*a^3-1/8*a^2+1/8*a-1/2)

gap>e:=(12*e-3*a-a^2-3*a^3-a^4+4*b+a*b-a^2*b+a^3*b-a^4*b)/(8*e);
(-1/8*a^4+1/8*a^3-1/8*a^2+1/8*a+1/2)*a+
(-1/8*a^4-3/8*a^3-1/8*a^2-3/8*a+3/2)

we see that the product

(x–a).(x–b).(x–c).(x–d).(x–e)

gap> (x-a)*(x-b)*(x-c)*(x-d)*(x-e);
x^5+(!!-5)*x+!!12

simplifies to x5−5x+12. Thus, the five roots are a, b, c, d, and e. (Note that
we reused e, so this is no longer the identity element.) Any Q-automorphism
on the splitting field must send a and b to one of these five roots. Let us try
to define a homomorphism f that sends f(a) = b, and f(b) = a.

Homomorph[F]
Define[F[a], b]
Define[F[b], a]
CheckHomo[F, {a, b}]

gap> f := AlgebraHomomorphismByImagesNC(B,B,[a,b],[b,a]);
[ !a, a ] -> [ a, !a ]
gap> CheckHomo(f,[a,b]);
true

Not only does Mathematica verify that this is a homomorphism, but it can
also draw a circle graph describing how this homomorphism acts on the five
roots. The left side of figure 15.2 is produced by the command

CircleGraph[{a, b, c, d, e}, F]

GAP is not able to form circle graphs, but the command ChartHomo will
show where the five roots are mapped to. This command uses two lists: the
first gives the roots, and the second gives the corresponding names for these
roots.

gap> ChartHomo(f,[a,b,c,d,e],["a","b","c","d","e"]);
[ a -> b, b -> a, c -> d, d -> c, e -> e ]

Not every possible way of mapping a and b to the roots a, b, c, d, and e will
produce a homomorphism. However, there is a homomorphism that maps
f(a) = a and f(b) = c. The commands

Homomorph[G]
Define[G[a], a]
Define[G[b], c]
CheckHomo[G, {a, b}]
CircleGraph[{a, b, c, d, e}, G]
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FIGURE 15.2: Two automorphisms for x5 − 5x+ 12

produce the right side of figure 15.2. In GAP, we must be content with just
knowing where a, b, c, d, and e are mapped to.

gap> g := AlgebraHomomorphismByImagesNC(B,B,[a,b],[a,c]);
[ !a, a ] -> [ !a, -a+(1/4*a^4+1/4*a^3+1/4*a^2-3/4*a-1) ]
gap> CheckHomo(g,[a,b]);
true
gap> ChartHomo(g,[a,b,c,d,e],["a","b","c","d","e"]);
[ a -> a, b -> c, c -> b, d -> e, e -> d ]

Once we have found two Q-automorphisms, we can find more by considering
the group generated by these two elements. By corollary 15.1, the Galois
group is a subgroup of S5. We already have a natural ordering of the five
roots, so the first permutation can be written P[2,1,4,3], or (1 2)(3 4), while
the above permutation can be described as P[1,3,2,5,4], or (2 3)(4 5). Since
the Galois group is a subgroup of S5, we can ask Mathematica or GAP to find
the subgroup generated by these two permutations.

G = Group[{P[2,1,4,3], P[1,3,2,5,4]}]

gap> G := Group((1,2)(3,4),(2,3)(4,5));
Group([ (1,2)(3,4), (2,3)(4,5) ])
gap> NumberElements := true;
true
gap> MultTable(G);

* |1 2 3 4 5 6 7 8 9 10
-----------+-----------------------------
() |1 2 3 4 5 6 7 8 9 10
(1,2,4,5,3)|2 3 4 5 1 10 6 7 8 9
(1,4,3,2,5)|3 4 5 1 2 9 10 6 7 8
(1,5,2,3,4)|4 5 1 2 3 8 9 10 6 7
(1,3,5,4,2)|5 1 2 3 4 7 8 9 10 6
(2,3)(4,5) |6 7 8 9 10 1 2 3 4 5
(1,2)(3,4) |7 8 9 10 6 5 1 2 3 4
(1,4)(3,5) |8 9 10 6 7 4 5 1 2 3
(1,5)(2,4) |9 10 6 7 8 3 4 5 1 2
(1,3)(2,5) |10 6 7 8 9 2 3 4 5 1
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This produces exactly 10 permutations. Proposition 15.4 states that the size
of the Galois group is equal to the dimension of the splitting field. Since
the splitting field is a 2-dimensional extension of a 5-dimensional extension,
the Galois group contains exactly 10 elements. Thus, we have found all of
the Q-automorphisms of the splitting field. The multiplication table of the
Galois group reveals that the group is non-abelian. Since there is only one
non-abelian group of order 10, the Galois group of x5− 5x+ 12 is isomorphic
to D5.

Here is another example that illustrates the variety of groups that can
be produced by a Galois group of a polynomial. Consider the eighth degree
polynomial x8−24x6 +144x4−288x2 +144. This is an irreducible polynomial,
as Mathematica or GAP can quickly verify. Thus, we can define a to be one
root of this equation. GAP or Mathematica can then factor the polynomial
in the field Q(a).

InitDomain[0]
Define[â8, 24 â6 – 144 â4 + 288 â2 – 144]
Factor[x̂8 – 24 x̂6 + 144 x̂4 – 288 x̂2 + 144, a]

gap> x := Indeterminate(Rationals,"x");
x
gap> A := FieldExtension(Rationals,
x^8 - 24*x^6 + 144*x^4 - 288*x^2 + 144);

<algebraic extension over the Rationals of degree 8>
gap> x := Indeterminate(A,"x");
x
gap> Factor(x^8-24*x^6+144*x^4-288*x^2+144,A);
[ x+a, x+(1/24*a^7-5/6*a^5+5/2*a^3+a),
x+(-1/12*a^5+3/2*a^3-3*a),x+(1/12*a^7-11/6*a^5+17/2*a^3-10*a),
x+(-a), x+(-1/24*a^7+5/6*a^5-5/2*a^3-a),
x+(1/12*a^5-3/2*a^3+3*a),x+(-1/12*a^7+11/6*a^5-17/2*a^3+10*a)]

The factorization can also be found by evaluating the following:

b = a + 5 â3/2 – 5 â5/6 + â7/24
c = 3 a – 3 â3/2 + â5/12
d = 10 a – 17 â3/2 + 11 â5/6 – â7/12
(x–a).(x+a).(x–b).(x+b).(x–c).(x+c).(x–d).(x+d)

gap> a := PrimitiveElement(A);
a
gap> b := a^7/24 - 5*a^5/6 + 5*a^3/2 + a;
1/24*a^7-5/6*a^5+5/2*a^3+a
gap> c := a^5/12-3*a^3/2+3*a;
1/12*a^5-3/2*a^3+3*a
gap> d := -a^7/12 + 11*a^5/6 - 17*a^3/2 + 10*a;
-1/12*a^7+11/6*a^5-17/2*a^3+10*a
gap> (x-a)*(x-b)*(x-c)*(x-d)*(x+a)*(x+b)*(x+c)*(x+d);
x^8+(!-24)*x^6+!144*x^4+(!-288)*x^2+!144

This shows that the roots are ±a, ±b, ±c, and ±d, which are all expressed
in terms of a. Hence, the splitting field for this polynomial is simply Q(a).
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Since this is an eighth dimensional extension of Q, the Galois group will have
eight elements. But which group is this isomorphic to? Let us find a couple
of Q-automorphisms to find out.

By proposition 15.2, there is a Q-automorphism f for which f(a) = b. Let
us find this Q-automorphism.

Homomorph[F]
Define[F[a], b]
CheckHomo[F,{a}]

gap> f := AlgebraHomomorphismByImagesNC(A,A,[a],[b]);
[ a ] -> [ 1/24*a^7-5/6*a^5+5/2*a^3+a ]
gap> CheckHomo(f,[a]);
true
gap> ChartHomo(f,[a,b,c,d,-a,-b,-c,-d],
["a","b","c","d","-a","-b","-c","-d"]);

[ a -> b, b -> -a, c -> -d, d -> c, -a -> -b, -b -> a, -c -> d,
-d -> -c ]

We can have Mathematica draw a circle graph to find where the other seven
roots are mapped to,

CircleGraph[{a, b, c, d, –a, –b, –c, –d}, F]

producing the left hand side of figure 15.3.
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FIGURE 15.3: Two automorphisms for x8 − 24x6 + 144x4 − 288x2 + 144

We can express this element of the Galois group as P[2,5,8,3,6,1,4,7], or
(1256)(3874).

By proposition 15.2, we can also find a Q-automorphism that sends a to c.
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Homomorph[F]
Define[F[a], c]
CheckHomo[F, {a}]
CircleGraph[{a, b, c, d, –a, –b, –c, –d}, F]

This produces the circle graph on the right side of figure 15.3. In GAP, we
can see where the elements b, c, and d are mapped to.

gap> g := AlgebraHomomorphismByImagesNC(A,A,[a],[c]);
[ a ] -> [ a^5/12-3*a^3/2+3*a ]
gap> CheckHomo(g,[a]);
true
gap> ChartHomo(g,[a,b,c,d,-a,-b,-c,-d],
["a","b","c","d","-a","-b","-c","-d"]);

[ a -> c, b -> d, c -> -a, d -> -b, -a -> -c, -b -> -d, -c -> a,
-d -> b ]

This element of the Galois group acts like the permutation (1357)(2468)
or P[3,4,5,6,7,8,1,2]. With these two permutations, we can see if we can
generate the whole Galois group.

G = Group[{P[2,5,8,3,6,1,4,7], P[3,4,5,6,7,8,1,2]}]

gap> G := Group((1,2,5,6)(3,8,7,4),(1,3,5,7)(2,4,6,8));
Group([ (1,2,5,6)(3,8,7,4), (1,3,5,7)(2,4,6,8) ])
gap> Size(G);
8
gap> NumberElements := true;
true
gap> MultTable(G);

* |1 2 3 4 5 6 7 8
--------------------+-----------------------
() |1 2 3 4 5 6 7 8
(1,5)(2,6)(3,7)(4,8)|2 1 4 3 6 5 8 7
(1,6,5,2)(3,4,7,8) |3 4 2 1 7 8 6 5
(1,2,5,6)(3,8,7,4) |4 3 1 2 8 7 5 6
(1,7,5,3)(2,8,6,4) |5 6 8 7 2 1 3 4
(1,3,5,7)(2,4,6,8) |6 5 7 8 1 2 4 3
(1,4,5,8)(2,7,6,3) |7 8 5 6 4 3 2 1
(1,8,5,4)(2,3,6,7) |8 7 6 5 3 4 1 2

The programs produce eight elements, so this is the entire Galois group. The
multiplication table reveals that this group is isomorphic to the quaternion
group Q.

Here is one more example that at first seems difficult because the splitting
field is so large, but it is in fact easy to find the Galois group.

x4 − x+ 1.

In the last chapter we saw that the splitting field was 24 dimensional over Q.
We know from corollary 15.1 that the Galois group is a subgroup of S4. But
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S4 has 24 elements, so the Galois group of x4 − x+ 1 must be isomorphic to
S4.

GAP has a way of determining the Galois group, up to isomorphism, for
polynomials up to degree around 15 (although some polynomials of degree 14
cause a problem). Applying GaloisType to a polynomial produces a number,
and then applying TransitiveGroup to this number, along with the degree
of the polynomial, gives the name of the Galois group.

gap> x := Indeterminate(Rationals,"x");
x
gap> GaloisType(x^8-24*x^6+144*x^4-288*x^2+144);
5
gap> TransitiveGroup(8,5);
Q_8(8)
gap> GaloisType(x^5-5*x+12);
2
gap> TransitiveGroup(5,2);
D(5) = 5:2

In this way, we quickly redid the last two examples. However, this only gives
an isomorphic group to the Galois group, instead of explicitly showing the
elements of the group. Here is one last example.

gap> GaloisType(x^5-x+1);
5
gap> TransitiveGroup(5,5);
S5

Thus, GAP says that the Galois group for the polynomial x5 − x+ 1 is S5.
Finally, we wish to explore a whole class of polynomials at one time. In the

last chapter, we computed the splitting field of the cyclotomic polynomials,
and determined that K = Q(en), where

en = e(2πi/n) = cos
(

2π
n

)
+ i sin

(
2π
n

)
.

We can use proposition 14.9, along with some of the facts observed from
section 13.3, to find the Galois group of the n-th cyclotomic polynomial.

PROPOSITION 15.6
Let en be the primitive n-th root of unity, and let K = Q(en). Then GalQ(K)

is isomorphic to a subgroup of Z∗n.

PROOF Let g(x) = IrrQ(en, x). Then g(x) is a factor of the n-th cy-
clotomic polynomial, so the roots of g(x) are of the form (en)k, where k is
coprime to n. Hence, K is the splitting field of g(x).

To show that GalQ(K) is isomorphic to a subgroup of Z∗n, note that every
φ in GalQ(K) is determined by where it sends en, and that it must send it
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to one of the roots (en)k for some k coprime to n. Thus, there is a natural
homomorphism

f : GalQ(K)→ Z∗n

defined by f(φ) = (the value k for which φ(en) = (en)k). This mapping is well
defined since (en)n = 1. This mapping is a homomorphism, for if f(φ) = k
and f(µ) = m, then

(φ · µ)(en) = µ(φ(en)) = µ((en)k) = (en)k·m,

so
f(φ · µ) = k ·m = f(φ) · f(µ).

Finally, an element in the kernel of this homomorphism sends en to en, so
Ker(f) is just the identity element of GalQ(K). Thus, f is an isomorphism
from GalQ(K) to a subgroup of Z∗n.

In fact, the Galois group of the n-th cyclotomic polynomial is equal to
Z∗n, but this is harder to prove. (It requires knowing that Φn(x) is always
irreducible.) The result given here will be sufficient for our work in the final
section.

From all of these examples, we have seen a host of different groups produced
as Galois groups of polynomials: S3, Z3, D5, Z5, Q, D4, S4, and all groups of
the form Z∗n. It is natural to ask whether all finite groups can be expressed
as a Galois group of some polynomial in Q[x]. This is still an open problem,
known as the inverse Galois problem. There has been much progress made
on this problem, and it is very likely to be solved soon.

While we are working with cyclotomic polynomials and n-th roots of unity,
let us prove one more proposition that will be useful later on.

PROPOSITION 15.7

Let F be a finite extension of Q that contains the n-th roots of unity. Then
if u is a root of the polynomial f(x) = xn − c for some c 6= 0 in F , then
K = F (u) is the splitting field of f(x), and GalF (K) is abelian.

PROOF Since u is a root of xn − c, we have that un = c. But (en)k · u is
also a root of this polynomial for all integers k = 0, 1, 2, · · · , n− 1, since(

(en)k · u
)n

= (en)k·n · un = 1 · c = c.

Since there are n distinct roots of the polynomial xn−c inK, the polynomial
factors completely in K[x]. Thus, K is the splitting field of f(x).

To show that GalF (K) is abelian, note that any F -automorphism is de-
termined by where u is sent, which must be of the form (en)k · u. Thus,
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if φ1 and φ2 are two F -automorphisms of K, where φ1(u) = (en)k · u and
φ2(u) = (en)m · u, then

(φ1 · φ2)(u) = φ2(φ1(u)) = φ2((en)k · u) = (φ2(en))kφ2(u) = (en)k · (en)m · u.

while

(φ2 ·φ1)(u) = φ1(φ2(u)) = φ1((en)m ·u) = (φ1(en))mφ1(u) = (en)m · (en)k ·u.

Thus, φ1 · φ2 = φ2 · φ1, and so the Galois group is abelian.

To introduce the problem of whether a fifth degree polynomial can, in gen-
eral, be solved in terms of square roots, cube roots, or fifth roots, we will have
Mathematica try to solve some polynomial equations for us. Mathematica can
solve polynomials with the command

Solve[x̂2 – x + 2 == 0]{{
x→ 1

2
(1− i

√
7)
}
,

{
x→ 1

2
(1− i

√
7)
}}

which obviously uses the quadratic equation. Note that the “double equals”
== is Mathematica’s way of expressing an equation. Let’s try changing the
x2 to an x3:

Solve[x̂3 – x + 2 == 0]{ {
x→ −

3
√

9−
√

78
32/3

− 1
3

√
3
(
9−
√

78
)
}
,

{
x→

(
1 + i

√
3
) 3
√

9−
√

78
232/3

+
1− i

√
3

2 3

√
3
(
9−
√

78
)
}
,

{
x→

(
1− i

√
3
) 3
√

9−
√

78
232/3

+
1 + i

√
3

2 3

√
3
(
9−
√

78
)
}}

Mathematica was still able to solve this, but what a mess! The answer involves
the square root of 78. Apparently Mathematica is using a formula that finds
the roots of any cubic equation.

Let us try a forth degree equation:

Solve[x̂4 – x + 2 == 0]

The answer can be expressed as{ {
x→ −1

2

√
−A− 2√

A
−
√
A

2

}
,

{
x→ 1

2

√
−A− 2√

A
−
√
A

2

}
,{

x→
√
A

2
− 1

2

√
2√
A
−A

}
,

{
x→ 1

2

√
2√
A
−A+

√
A

2

}}
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where

A =
3

√
1
2

(
9 + i

√
6063

)
32/3

+
8

3

√
3
2

(
9 + i

√
6063

) .
Once again, Mathematica was able to express the answer in terms of square
roots and cube roots, yet this seems even more of a mess.

The equations for the cubic equation and the fourth degree equation were
discovered in 1539 and 1545. [4, p. 2] The natural question is whether there
is a similar formula for fifth degree polynomials. Let us try to solve a fifth
degree polynomial in Mathematica.

Solve[x̂5 – x + 2 == 0]{ {
x→ Root

[
2−#1 + #15 &, 1

]}
,
{
x→ Root

[
2−#1 + #15 &, 2

]}
,{

x→ Root
[
2−#1 + #15 &, 3

]}
,
{
x→ Root

[
2−#1 + #15 &, 4

]}
,{

x→ Root
[
2−#1 + #15 &, 5

]}}
N[%] { {

x→ −1.26717
}
,
{
x→ −0.260964− 1.17723i

}
,{

x→ −0.260964 + 1.17723i
}
,
{
x→ 0.894548− 0.534149i

}
,{

x→ 0.894548 + 0.534149i
}}

Mathematica does not know of any formula for the fifth degree polynomial,
but it can find the approximate solutions. The problem is not that Math-
ematica is not smart enough to solve the equation exactly, but rather it is
impossible to find a formula for the roots of a fifth degree polynomial in terms
of square roots, cube roots, or any other roots. The reason why is based on
the properties of the Galois groups. The next section will reveal how the
Galois groups are related to the splitting field.

15.3 The Fundamental Theorem of Galois Theory

In this section we will clarify the relationship between subgroups of the
Galois group, and the subfields of the extension field. The natural correlation
is to map to each subgroup of GalF (K) the fixed field of the subgroup. How-
ever, we ended section 15.1 with what seemed to be a bad example—Q( 3

√
2).

The only fixed field was Q( 3
√

2), even though there was the obvious subfield.
The way we will deal with exceptions like this one is to consider only field
extensions for which the original field appears as one of the fixed fields.
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DEFINITION 15.5 Let K be a finite extension of F . We say that K is
a Galois extension if the fixed field of GalF (K) is the field F .

Although this definition successfully rules out Q( 3
√

2) from being a Galois
extension, we need to find a simple test for determining whether a finite
extension is a Galois extension. The following proposition takes us one step
in that direction.

PROPOSITION 15.8
Let F be a field, and K a Galois extension of F . If f(x) is an irreducible

polynomial in F [x] that has at least one root in K, then f(x) factors completely
in K. Furthermore, f(x) has no multiple roots in the field K.

PROOF Since f(x) has at least one root in the field K, we will let
u1, u2, u3, . . . , un be the set of all roots of f(x) in K. Consider the polynomial

g(x) = (x− u1) · (x− u2) · (x− u3) · · · (x− un).

By lemma 13.3, any automorphism in GalF (K) extends to an automorphism
on K[x] with φ(x) = x. Thus,

φ(g(x)) = (x− φ(u1)) · (x− φ(u2)) · (x− φ(u3)) · · · (x− φ(un)).

By lemma 15.1, φ(u1), φ(u2), φ(u3), . . . , φ(un) will all be roots of f(x) and so
this list is a permutation of the list u1, u2, u3, . . . , un. Therefore, φ(g(x)) =
g(x) for all φ in GalF (K).

Now, since K is a Galois extension of F , the fixed field of GalF (K) is the
field F . Thus, g(x) is a polynomial in F [x]. Since g(x) certainly divides the
polynomial f(x), and f(x) is irreducible in F [x], we have that f(x) and g(x)
have the same degree. Thus, n is the degree of f(x), and so f(x) factors
completely in the field K. Furthermore, f(x) has no multiple roots in the
field K.

This proposition allows us to immediately rule out certain field extensions
from being a Galois extension. Clearly Q( 3

√
2) is ruled out because Q( 3

√
2)

is not a splitting field. But there are even some splitting fields that are not
Galois extensions according to this proposition. Let Z2(t) be the field of
rational functions in t, with coefficients in Z2. This field can be defined in
Mathematica by the command

InitDomain[2]

and considering rational expressions involving t. Note that there is no element
whose square is equal to t.

Factor[x̂2 – t]
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Suppose we define a new element a that solves this equation.

Define[â2, t]

Now x2 − t factors in Z2(t)(a) as (x+ a)(x+ a). Note, however, that there is
a double root in this factorization! Thus, by proposition 15.8, Z2(t)(a) is not
a Galois extension of Z2(t).

One immediate consequence from proposition 15.8 is that a Galois extension
can be written as a simple extension.

COROLLARY 15.2
Let F be a field, and let K be a Galois extension of F . Then there exists an

element w of K such that K = F (w).

PROOF Since K is a Galois extension of F , K is finite dimensional over
F . Thus, K = F (u1, u2, u3, . . . , un) for elements u1, u2, u3, . . . , un in K. But
the polynomials IrrF (ui, x) all have a root in K, and so factor completely in
the field K without multiple roots. Then we can use corollary 14.4 to show
that there is an element w in K such that F (w) = K.

In order to introduce the correlation between the subgroups of the Galois
group and the subfields of the Galois extension, let us consider the familiar
splitting field of x3− 2. Since 3

√
2 and 3

√
2e2πi/3 are two roots, we can express

the splitting field as Q( 3
√

2, 3
√

2e2πi/3). The subfields of this Galois exten-
sion are Q, Q( 3

√
2), Q( 3

√
2e2πi/3), Q( 3

√
2e4πi/3), Q(

√
−3), and the whole field

Q( 3
√

2, 3
√

2e2πi/3). We can draw a diagram of these subfields, showing which
subfields are subfields of other subfields. This is shown in figure 15.4.

Q

Q( 3
√
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FIGURE 15.4: Subfields of Q( 3
√

2, 3
√

2e2πi/3)
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The dotted lines in this diagram indicate which subfields are Galois exten-
sions of the subfield above it. Also, whenever we have a Galois extension, the
corresponding Galois group is shown in boldface. For example, this diagram
indicates that the splitting field of x3 − 2 is a Galois extension of Q(

√
−3).

This is true by proposition 15.7, since Q(
√
−3) contains the cube roots of

unity.

S3
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{e}

Z2S3

Z2 Z2 Z2 Z3

...............................................................................................................................................................................................................................................................................................................

..........................................................................................................................................................................

..........................................................................................................................................................................

.............................................................

....
....

....
....

....
....

....
....

....
....

....
....

....
....

....
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

....
....

....
....

....
....

....
....

....
....

....
....

....
....

....
.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

FIGURE 15.5: Subgroups of S3

Now let us compare this figure with the subgroups of the Galois group S3,
shown in figure 15.5. Once again, we draw lines connecting two subgroups
if one subgroup is contained in the other subgroup. We draw a dotted line
to indicate that the smaller subgroup is a normal subgroup of the larger.
Whenever the subgroup is a normal subgroup, the quotient group is indicated
in boldface.

The pattern is now obvious. The two pictures are the same, except that the
subfields are replaced by a subgroup of S3. This feature of Galois extensions
is the heart of Galois theory. In fact, there is a natural way that the subfields
of K and the subgroups of GalF (K) are related: For each subfield E of K, we
can consider GalE(K), the set of automorphisms of K that fix E. This is a
subgroup of GalF (K). On the other hand, given a subgroup H of GalF (K),
we can consider the fixed field fix(H), which is a subfield of K. To show that,
indeed, the two pictures will be essentially the same, we need four steps.

1. Show that if we start with a subfield E, then form the Galois group
GalE(K), and find the fixed field of this subgroup, we get back E.

2. Show that if we start with a subgroup H of GalF (K), find the fixed field,
then find the Galois group of the fixed field, we get back H. These first
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two steps establish a one-to-one correspondence between the subfields
and the subgroups of the Galois group.

3. Show that if a subgroup N is a normal subgroup of another subgroup
H, then the corresponding subfields form a Galois extension. Thus, a
dotted line on the second picture corresponds to a dotted line on the
first.

4. Show that if one subfield E is a Galois extension of another, L, then
the corresponding Galois groups will have a normal subgroup relation.
Furthermore, the quotient group of the Galois groups will be isomorphic
to the Galois group of the Galois extension. Thus, a dotted line on the
first picture corresponds to a dotted line on the second, and the boldface
groups in the pictures will be isomorphic.

Let us begin by proving the first step.

LEMMA 15.4
Let K be a Galois extension of F , and let E be a subfield of K containing F .

Then K is a Galois extension of E. That is, the fixed field of GalE(K) is E.

PROOF Let H = GalE(K), which is a subgroup of GalF (K). Let E0 be
the field fixed by H. Certainly E0 contains the field E, since every automor-
phism in H fixes E. Suppose that u is an element of K which is not in E.
Let f(x) = IrrE(u, x). Since u is not in E, f(x) has degree at least 2. Note
that g(x) = IrrF (u, x) is a polynomial in F [x] for which f(x) is a factor in
the domain E[x]. Since F is a Galois field over F , g(x) factors completely in
K with no repeated factors. Thus, f(x) also factors completely in K with no
repeated factors, so there are at least two solutions to the equation f(x) = 0
in K. One solution is of course u, so let v be another solution. By proposi-
tion 15.2, there is an E-automorphism in H such that φ(u) = v. Thus, u is
not in E0. Therefore, E0 = E, and so K is a Galois extension of E.

We are now ready to proceed to the second step.

LEMMA 15.5
Let K be a Galois extension of F . If H is a subgroup of the Galois group

GalF (K), and E is the fixed field of H, then H = GalE(K).

PROOF Let n be the dimension of the field K over E. By lemma 15.4, K
is a Galois extension of E. Thus, by corollary 15.2, there exists an element w
in K such that K = E(w). If f(x) = IrrE(w, x), then the degree of f(x) is n
by corollary 14.1. Since K is a Galois extension of E, by proposition 15.8, the
polynomial f(x) factors completely in the field K, and there are no multiple
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roots. Thus, by proposition 15.4, the number of E-automorphisms of K is the
dimension of K over E, which is n.

Suppose that H contains m E-automorphisms. Let v1, v2, v3, . . . , vm be the
images of w under the automorphisms in the subgroup H. That is, for each
vi there is an f in H such that vi = f(w).

Consider the polynomial

g(x) = (x− v1) · (x− v2) · (x− v3) · · · (x− vm).

If φ is an automorphism in H, then φ(vi) = φ(f(w)) = vj for some j. Also,
since φ is one-to-one, the images of φ(v1), φ(v2), φ(v3), . . . , φ(vm) must all be
distinct. Thus, each φ in H is a permutation on the elements v1, v2, · · · vm.
Hence, φ(g(x)) = g(x). Since E is the fixed field fix(H) of the subgroup H,
we see that g(x) is in E[x]. Thus, f(x) = IrrE(u, x) divides g(x) so m is at
least n. Thus,

|H| ≤ |GalE(K)| = n ≤ m = |H|.

Therefore, H = GalE(K).

Lemmas 15.4 and 15.5 show that there is a one-to-one correspondence be-
tween the subgroups of GalF (K) and the subfields of K containing F . We
now consider the special significance of the normal subgroups of GalF (K).

LEMMA 15.6
Let K be a Galois extension of F , and let E be a subfield of K containing

another subfield L. Suppose that GalE(K) is a normal subgroup of GalL(K).
Then every L-automorphism of K maps elements of E to elements of E.
Furthermore, E is a Galois extension of L.

PROOF First, we want to show that if u is in E, and φ is in GalL(K),
then v = φ(u) is in E. Since GalE(K) is a normal subgroup of GalL(K),
for any f in GalE(K) we have that ψ = φ · f · φ−1 is in GalE(K). Then
φ · f = ψ · φ, or f(φ(u)) = φ(ψ(u)).

Since u is in E, ψ(u) = u, so

f(v) = f(φ(u)) = φ(ψ(u)) = φ(u) = v.

Thus, v is fixed by every automorphism f in GalE(K). By lemma 15.4, K is
a Galois extension of E, so the fixed field of GalE(K) is E. Thus, v is in E.

To show that the fixed field of GalL(E) is L, consider an element u in E that
is not in L. By lemma 15.4, K is a Galois extension of L. Since u is not in the
fixed field of GalL(K), there is an L-automorphism φ that moves u to another
element, v. But φ moves all elements of E to elements of E, so we can consider
the restriction of φ on the field E, denoted φ′. This is an automorphism of
E, since the inverse is (φ−1)′. Thus, there is an L-automorphism of E that
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moves the element u, so the fixed field of GalL(E) is only L. Therefore, E is
a Galois extension of L.

There is only one step left to show why figures 15.4 and 15.5 are so similar.

LEMMA 15.7
Suppose that K be a Galois extension of F , and let E be a subfield of K that is

also a Galois extension of a smaller subfield L. Then there exists a surjective
homomorphism f from GalL(K) to GalL(E) whose kernel is GalE(K).

PROOF By lemma 15.4, K is a Galois extension of L. We begin by
showing that if φ is an F -automorphism of K, and u is in E, then φ(u) is in E.
Let g(x) = IrrF (u, x). Since E is a Galois extension of L, by proposition 15.8,
g(x) factors completely in E[x], which is of course the same factorization in
K[x]. By lemma 15.1, φ(u) is a root of g(x) in K, but all of the roots are also
in E. Thus, φ(u) is in E.

Next, we define the mapping f that sends an L-automorphism of K to its
restriction on the field E. We denote the restriction of φ on the field E by
φ′. Since φ maps elements of E to elements of E, we see that φ′ is an L-
automorphism of E. However, (φ−1)′ is also an L-automorphism of E, and
(φ−1)′ · φ′ is clearly the identity mapping on E. Thus, φ′ is an element of
GalL(E).

To show that f is a homomorphism, note that

f(φ1 · φ2) = (φ1 · φ2)′ = φ′1 · φ′2 = f(φ1) · f(φ2).

The kernel of this homomorphism is simply the L-automorphisms of K that
fix the elements of E, which is of course GalE(K).

Finally, so show that this homomorphism is surjective, let ψ be an L-
automorphism of E. Since K is a splitting field of E, we can use proposi-
tion 14.8 to extend ψ to an L-automorphism of K, which we will call φ. Then
f(φ) = ψ, and we have shown that f is surjective.

Lemmas 15.4 through 15.7 explain the amazing similarity in the diagrams
of the subfields, and the subgroups of the Galois group. By putting these four
pieces together, we get the fundamental theorem of Galois theory.

THEOREM 15.1: The Fundamental Theorem of Galois Theory
Let K be a Galois extension of the field F . Then there is a one-to-one

correspondence between the subfields of K containing F and the subgroups of
GalF (K), given by mapping E to the subgroup GalE(K). The dimension of
K over the subfield K is |GalE(K)|. Furthermore, a subfield E is a Galois
extension of L if, and only if, GalE(K) is a normal subgroup of GalL(K), in
which case GalL(E) is isomorphic to GalL(K)/GalE(K).
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PROOF If GalE(K) = GalL(K) for two subfields E and L of K, then
by lemma 15.4, both E and L are the fixed field of the subgroup GalE(K) =
GalL(K), so E = L. Thus, the mapping E → GalE(K) is one-to-one. But if
H is any subgroup of GalF (K), then we can consider E to be the fixed field
fix(H), and by lemma 15.5 GalE(K) = H. Thus, the correspondence is also
onto. Also by proposition 15.4, the dimension of K over E is |GalE(K)|, since
K is a Galois extension of E.

If E is also a Galois extension of another subfield L, then by lemma 15.7
there is a surjective homomorphism from GalL(K) to GalL(E), whose kernel
is GalE(K). Thus, GalE(K) is a normal subgroup of GalL(K), and by the first
isomorphism theorem (4.1), GalL(E) is isomorphic to GalL(K)/GalE(K).

Finally, suppose that GalE(K) is a normal subgroup of GalL(K). By
lemma 15.6 E is a Galois extension of L.

The fundamental theorem of Galois theory has many applications. With
this theorem one can prove that it is impossible to trisect an angle with only
a straight edge and a compass, and also that it is impossible to construct
a line 3

√
2 times the length of a given line. [6, p. 433] This finally puts to

rest two of the three famous unsolved problems introduced by the ancient
Greeks. [12, p. 109] (The last problem involves showing that π is not in an
algebraic extension of Q.) Both of these problems require a field extension
of order 3, while any straight edge and compass construction involve a series
of field extensions of order 2. Of course 3 does not divide any power of 2, so
a field extension of dimension 3 cannot be a subfield of a field created by a
sequence of extensions of order 2. The next section shows another important
application of Galois theory—showing that a fifth degree equation cannot be
solved in terms of radicals.

15.4 Solutions of Polynomial Equations Using Radicals

The main result of Galois theory is that one can demonstrate that it is
impossible to find a formula for the solutions to a fifth degree polynomial in
terms of square roots, cube roots, of fifth roots. We will spend this section
exploring this problem. In fact, we will determine exactly when a polynomial
can be solved in terms of radicals, and when it can’t. The first step is to show
that, in Q, a Galois extension is the same thing as a splitting field.

PROPOSITION 15.9

Let E be a finite extension of Q. If f(x) is a polynomial in E[x], then the
splitting field of f(x) is a Galois extension of E.
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PROOF Let K be the splitting field of f(x) in E[x]. If u is an element
of K not in E, then g(x) = IrrE(u, x) has degree > 1. By lemma 14.5, g(x)
factors completely in the field K. Thus, the splitting field of g(x) is contained
in the field K. However, g(x) is a factor of IrrQ(u, x), which by lemma 15.3
does not have multiple roots in K. Therefore, g(x) cannot have multiple roots
in K, so there exists at least two roots of g(x) in K. Let v be a root of g(x)
different from u. Then g(x) = IrrE(v, x), and so by proposition 15.2 there
exists a φ in GalE(K) such that φ(u) = v. Thus, u is not in the fixed field
of GalE(K). Since E is obviously contained in the fixed field of GalE(K), we
find that the fixed field is E so K is a Galois extension of E.

The next step is to give a clear definition of what it means for a polynomial
to be solvable by radicals.

DEFINITION 15.6 A field K is called a radical extension of F if K =
F (u1, u2, . . . , un), where a power of each ui is contained in F (u1, u2, . . . , ui−1).

Here is an example of a radical extension. Suppose we considered the split-
ting field of the polynomial x4−8x2−8x−2. We can have Mathematica solve
for the roots explicitly.

Solve[x̂4 – 8 x̂2 – 8 x – 2 == 0]

{ {
x→ −

√
2−

√
2−
√

2
}
,

{
x→ −

√
2 +

√
2−
√

2
}
,{

x→
√

2−
√

2 +
√

2
}
,

{
x→

√
2 +

√
2 +
√

2
}}

How would we express the splitting field as a radical extension? It is apparent
that we first must include

√
2 in this field. But then it seems we need to include√

2 +
√

2 and
√

2−
√

2 in our field. Note, however, that the product of these
two numbers is

√
2. Thus, all four roots are in the field Q(

√
2,
√

2 +
√

2).
This is a radical extension of Q of dimension 4, and the splitting field of
x4− 8x2− 8x− 2 must be at least 4. Hence, we have found that the splitting
field is a radical extension of Q.

DEFINITION 15.7 The polynomial equation f(x) = 0 is said to be solv-
able by radicals if there is a radical extension of Q that contains the splitting
field of f(x).

This definition agrees with our intuitive understanding of what it means for
a polynomial to be solved in terms of radicals. For example, Mathematica’s
solution to the equation
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Solve[x̂3 – x + 2 == 0]

{ {
x→ −

3
√

9−
√

78
32/3

− 1
3

√
3
(
9−
√

78
)
}
,

{
x→

(
1 + i

√
3
) 3
√

9−
√

78
2 · 32/3

+
1− i

√
3

2 3

√
3
(
9−
√

78
)
}
,

{
x→

(
1− i

√
3
) 3
√

9−
√

78
2 · 32/3

+
1 + i

√
3

2 3

√
3
(
9−
√

78
)
}}

reveals that the splitting field is contained in radical extension

Q
(√

78,
3
√

9−
√

78, 3
√

3,
√
−3
)
.

This is in fact overkill, since the splitting field is at most a 6-dimensional ex-
tension of Q, while the above radical extension may be up to a 36-dimensional
extension of Q. Yet the point is that there is some radical extension of Q that
contains the roots of x3 − x+ 2, because the roots can be solved in terms of
square roots and cube roots.

Not all radical extensions of Q are Galois extensions. For example, Q( 3
√

2)
is not a Galois extension, since this extension is not the splitting field of a
polynomial. In order to utilize Galois theory, we need to show that a radical
extension is contained in some extension that is both a radical extension and
a Galois extension.

LEMMA 15.8
Let E be a radical extension of Q. Then E is contained in a radical extension
K of Q such that K is a Galois extension of Q.

PROOF Let E = Q(u1, u2, u3, . . . , un) be a radical extension of Q. Then
for every i = 1, 2, 3, . . . , n, there is a ki for which

(ui)ki = v, for which v ∈ Q(u1, u2, u3, . . . , ui−1).

Note that if n = 0, then E = Q, and the lemma is obviously true. We will
prove this by induction on n. That is, we will assume that the lemma is true
for the field

Q(u1, u2, u3, . . . , un−1).

That is, this field is contained in a radical extension L of Q that is also a
Galois extension of Q.

By corollary 15.2, there exists an element w of L such that L = Q(w).
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Let g(x) = IrrQ(w, x) and p(x) = IrrQ(un, x). Let K be the splitting field
of g(x) · p(x) over Q. By proposition 15.9 K is a Galois extension of Q. Since
w is in K, L is a subfield of K. The only thing left to show is that K is a
radical extension of L.

Let v1, v2, v3, . . . , vm be all of the roots of p(x) in K. Since p(x) is irre-
ducible, by proposition 15.2 there is a Q-automorphism φi that sends vi to
un. Since (un)k = b is in L, we have

(vi)k = (φi(un))k = φi((un)k) = φi(b).

Now, L is a Galois extension of Q, so by the fundamental theorem of Galois
theory (15.1), GalL(K) is a normal subgroup of GalQ(K). So by lemma 15.6
Q-automorphisms of K map elements of L to elements of L. Thus, φi(b) is in
L, and so K = L(v1, v2, v3, . . . vm) is a radical extension of L.

Lemma 15.8, when combined with the definition of a polynomial solvable by
radicals, tells us that if a polynomial is solvable by radicals, then the splitting
field of the polynomial is contained in a field extension of Q that is both a
radical extension and a Galois extension. What can we say about such an
extension? Startlingly, the answer has a connection with the Jordan-Hölder
theorem (8.2).

LEMMA 15.9
Let K be a Galois extension of Q which is a radical extension, and let E be

a subfield of K. If E is a Galois extension of Q, then GalQ(E) is a solvable
group.

PROOF Since K is a radical extension of Q, we can write

K = Q(u1, u2, u3, . . . , un)

where some power of each ui, (ui)ki , is in Q(u1, u2, u3, . . . , ui−1).
Let m be the least common multiple of all of the ki, and let u0 be a primitive

m-th root of unity. We would like to add u0 in the front of the sequence of
u’s to get a larger field

M = Q(u0, u1, u2, u3, . . . , un).

Since (u0)m = 1, we see that M is still a radical extension of Q. To show that
M = K(u0) is a Galois extension of Q, note that by corollary 15.2, K = Q(w)
for some element w in K. If f(x) = IrrQ(w, x), then M is the splitting field
of the polynomial f(x) · (xm − 1). Thus, by proposition 15.9, M is a Galois
extension of Q.

Consider the sequence of subfields

E0 = Q(u0),
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E1 = Q(u0, u1),
E2 = Q(u0, u1, u2),
E3 = Q(u0, u1, u2, u3),

· · · · · · · · ·
En = Q(u0, u1, u2, u3, . . . , un) = M.

By proposition 15.7, each of these fields is a Galois extension of the previous
field, since the m roots of unity were designed to be in all of these fields. Also,
by proposition 15.6, E0 is a Galois extension of Q.

We can now apply the fundamental theorem of Galois theory (15.1). We
find that GalEi

(M) is a normal subgroup of GalEi−1(M), and the quotient
group

GalEi−1(M)/GalEi(M)

is isomorphic to GalEi−1(Ei).
By proposition 15.7, each of these quotient groups are abelian. Also, by

proposition 15.6, GalQ(E0) is isomorphic to a subgroup of Z∗n, which is abelian.
Thus, the sequence of subgroups

GalQ(M) ⊆ GalE0(M) ⊆ GalE1(M) ⊆ · · · ⊆ GalEn
(M) = {e}

is a subnormal series for which all of the quotient groups are abelian. There-
fore, the composition series of GalQ(M) will consists of only prime, cyclic
factors. By the solvability theorem (8.3), GalQ(M) is a solvable group.

To finish the theorem, we note that E is a Galois field of Q, so by the fun-
damental theorem of Galois theory (15.1), GalE(M) is a normal subgroup of
GalQ(M), and GalQ(E) is isomorphic to GalQ(M)/GalE(M). Using proposi-
tion 8.3 we see that GalQ(E) is solvable.

The light is beginning to appear at the end of the tunnel. We know that
any subgroup of a solvable group must be solvable. Thus, we can immediately
tell whether a polynomial is solvable by radicals from its Galois group.

THEOREM 15.2: Galois’ Criterion Theorem

Let f(x) be a polynomial with rational coefficients. Then the equation f(x) =
0 is solvable by radicals only if the Galois group of f(x) is a solvable group.

PROOF Suppose that f(x) is a polynomial that is solvable by radicals.
Let E be the splitting field of f(x). By lemma 15.8, there is a field K contain-
ing E which is a Galois extension of Q, and also is a radical extension of Q. By
proposition 15.9, E is a Galois extension of Q. Thus, we can use lemma 15.9
to show that the Galois group of f(x), GalQ(E) is a solvable group.
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Galois’ criterion theorem is able to show us that there are some polynomials
whose roots cannot be expressed in terms of square roots, cube roots, and
other roots. In fact we found one of them using GAP, namely x5 − x+ 1.

COROLLARY 15.3

There is no formula, using only the field operations and extraction of roots,
for the zeros of all fifth-degree polynomial equations.

PROOF We have already shown that the Galois group of x5 − x + 1
is isomorphic to S5. But S5 is not solvable, since it contains the non-cyclic
simple subgroup A5. Thus, by Galois’ criterion theorem (15.2) this particular
equation cannot be solved with a formula involving only field operations and
extraction of roots, so certainly there can be no general formula.

Galois’ criterion theorem ended the long search for a formula that finds the
roots of a fifth degree polynomial. In fact, Galois’ criterion theorem works the
other direction as well—if the Galois group is solvable, then the polynomial is
solvable by radicals. [2, p. 558] Since a fourth degree equation is a subgroup of
S4, which is solvable, there must be a formula for the roots of a fourth degree
polynomial. The change of the structure between S4 and S5 is what changes
the behavior of fifth degree polynomials from fourth degree polynomials.

Problems for Chapter 15

Interactive Problems

For problems 15.1 through 15.6: Use Mathematica or GAP to find the Galois
group of the polynomial. Determine the number of elements in the Galois
group, and display a multiplication table of the subgroup of Sn isomorphic to
the Galois group.

15.1 x4 − 2
15.2 x5 − 2
15.3 x5 + 15x+ 12

15.4 x5 + x4 − 4x3 − 3x2 + 3x+ 1
15.5 x4 − 10x2 + 1
15.6 x8 − 108x6 + 1548x4 − 3888x2 + 1296
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15.7 Use GAP or Mathematica to find the Galois group of x5 + 20x + 16.
How many elements are in the Galois group? (This may take longer than the
above problems.)

Non-Interactive Problems

15.8 The Galois group GalQ(Q(
√

2,
√

3)) is given by {φ0, φ1, φ2, φ3}, where

φ0(
√

2) =
√

2 and φ0(
√

3) =
√

3,
φ1(
√

2) =
√

2 and φ1(
√

3) = −
√

3,
φ2(
√

2) = −
√

2 and φ2(
√

3) =
√

3,
φ3(
√

2) = −
√

2 and φ3(
√

3) = −
√

3.

Give the multiplication table for GalQ(Q(
√

2,
√

3)).

15.9 The Galois group GalQ(Q(
√

2,
√

3)) is given in problem 15.8. Find the
five subgroups of the Galois group, and for each subgroup H find the fixed
field fix(H) of that subgroup.

15.10 The four solutions of x4 − 2 = 0 are 4
√

2, i 4
√

2, − 4
√

2, and −i 4
√

2.
Thus, K = Q( 4

√
2, i) is the splitting field of x4 − 2. Determine the eight

automorphisms of the field K, by finding where each automorphism maps the
four roots.

Hint: If φ(r1) = r2, then φ(−r1) = −r2.

15.11 Label the three solutions of x3 − 3 = 0 as 3
√

3, r2, and r3. Determine
the six automorphisms of the splitting field of x3 − 3 by finding where each
automorphism maps the three roots.

15.12 Find the Galois group of the field Q(
√

2,
√

5) over Q.
Hint: Use problem 15.8 as a model.

15.13 Find all of the subfields of the field Q(
√

2,
√

5).
Hint: First do problem 15.12, and use the fundamental theorem of Galois

theory, as was done in problem 15.9.

15.14 There are 10 subfields of the field K = Q( 4
√

2, i): Q, Q( 4
√

2, i), Q( 4
√

2),
Q(i), Q(i 4

√
2), Q(

√
2), Q(i

√
2), Q(

√
2, i), Q((1 + i) 4

√
2), and Q((1 − i) 4

√
2).

Match each of the 10 subfields with the 10 subgroups of GalQ(K) so that each
subfield is the fixed field fix(H) of the corresponding subgroup of GalQ(K).

Hint: See problem 15.10 to find GalQ(K). Next find the 10 subgroups of
this group, which is isomorphic to D4. Finding the fixed field for some of the
subgroups is obvious. Can the fundamental theorem of Galois theory help
with the remaining subgroups?
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15.15 Find a polynomial whose Galois group is Z6.
Hint: See proposition 15.6.

15.16 Let F be the splitting field of Φ5(x) = x4 + x3 + x2 + x + 1 over Q.
Show that there is only one nontrivial subfield of F , and find this subfield.

Hint: Use proposition 15.6 to find GalQ(F ), and find that there is only one
nontrivial subgroup of this group.

15.17 Prove that if a fourth degree polynomial in Q[x] has a Galois group
isomorphic to Z4, then the roots of the polynomial can be rearranged as r1,
r2, r3, and r4 such that

r2
1r2 + r2

2r3 + r2
3r4 + r2

4r1

yields a real rational number.
Hint: There is a Q-automorphism such that the roots map in a four-cycle:

r1 → r2 → r3 → r4 → r1. Note that the Q-automorphisms fix the above
expression, so the result must be in the fixed field of the Galois group.

15.18 Prove that if a fifth degree polynomial in Q[x] has a Galois group
isomorphic to D5, then the roots of the polynomial can be rearranged as r1,
r2, r3, r4, and r5 such that

r1r2 + r2r3 + r3r4 + r4r5 + r5r1

yields a real rational number.
Hint: See the hint for problem 15.17. Note that here we must also consider

a “flip” that exchanges r1 ↔ r4 and r2 ↔ r3.

15.19 Find a way similar to problem 15.17 to test whether a Galois group
of a fifth degree polynomial is isomorphic to Z5.

15.20 Find a way similar to problem 15.18 to test whether a Galois group
of a fourth degree polynomial is D4.

15.21 The roots of x4 − x3 − 4x2 + 4x + 1 are approximately 1.827090915,
1.338261213, −1.956295201, and −0.209056927. Use trial and error to find an
arrangement of these four roots such that

r2
1r2 + r2

2r3 + r2
3r4 + r2

4r1

yields an integer. (See problem 15.17.)

15.22 The roots of the equation x5−5x−12 are approximately 1.842085966,
0.351854083±1.709561043i, and −1.272897224±0.7197986815i. Use trial and
error to find an arrangement of these five roots such that

r1r2 + r2r3 + r3r4 + r4r5 + r5r1

yields a real integer. (See problem 15.18.)
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15.23 The roots of x4 − x3 − 4x2 + 4x + 1 are approximately 1.827090915,
1.338261213, −1.956295201, and −0.209056927. Show that whenever a is a
root, then a2 − 2 is also a root. Show that, in fact, the operation a 7→ a2 − 2
permutes the four roots in a 4-cycle. Using this, prove that the Galois group
must be isomorphic to Z4.

Hint: If a is one of the roots, the splitting field is Q(a).

15.24 The irreducible polynomial x3 + x − 1 has one real root and two
complex roots. Using just this information, show that the Galois group is
isomorphic to S3.

Hint: The complex conjugate, which switches the two complex roots, is one
of the Q-automorphisms in the Galois group.

15.25 The irreducible polynomial x5 − 5x + 2 has three real roots and two
complex roots. Using just this information, show that the Galois group is
isomorphic to S5. (See the hint for problem 15.24.)

For problems 15.26 through 15.31: Find a group isomorphic to the Galois
group of the polynomial

15.26 x2 − 3
15.27 x3 − 3
15.28 x2 − 4

15.29 x3 − 8
15.30 (x2 − 2)(x2 − 3)
15.31 (x− 1)2(x− 3)3(x2 − 5)

15.32 Let E be a finite extension of a field F with dimension n. Show that
|GalF (E)| = n if, and only if, E is a Galois extension of F .

15.33 Let E be a finite extension of a field F , and let φ(x) be an F -automor-
phism in GalF (E). Suppose that φ(u) = u for some element u in E. Show
that φ is in GalF (u)(E).

15.34 If E is a finite extension of Q, and φ is an automorphism on E, show
that φ is a Q-automorphism of E.

Hint: φ(1) = 1 implies that φ(n) = n for all integers n.

15.35 If E is a Galois extension of F , show that there can only be a finite
number of subfields of E that contain F .

15.36 Show that if E is a Galois extension of F with dimension p, where p
is a prime, prove that GalF (E) is isomorphic to Zp.

15.37 Find, up to isomorphism, all possible Galois groups of a cubic poly-
nomial ax3 + bx2 + cx+ d.

15.38 Find, up to isomorphism, all possible Galois groups of a fourth degree
polynomial ax4 + bx3 + cx2 + dx+ e.

Hint: The only subgroup of S4 of order 8 is D4.
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15.39 Prove that if G is a group of order n that is isomorphic to a Galois
group of some polynomial in Q[x], then G is isomorphic to a Galois group of
an n-th degree polynomial in Q[x].

Hint: Use corollary 14.4.
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Answers to Odd-Numbered
Problems

Chapter 1

1.1) Stay = FlipRt·FlipRt, RotRt = FlipRt·FlipLft, RotLft = FlipLft·FlipRt,
Spin = FlipRt·FlipLft·FlipRt.

1.3) n = 5, 8, or 12.

1.5) (a.a).b 6= a.(a.b).

1.7) 12 steps.

1.9) y = y · e = y · (x · y′) = (y · x) · y′ = e · y′ = y′, so y = y′.

1.11) 50% (18 of 36).

1.13)
1 3 5 9 11 13

1 1 3 5 9 11 13
3 3 9 1 13 5 11
5 5 1 11 3 13 9
9 9 13 3 11 1 5
11 11 5 13 1 9 3
13 13 11 9 5 3 1

1.15)
1 5 7 11 13 17 19 23

1 1 5 7 11 13 17 19 23
5 5 1 11 7 17 13 23 19
7 7 11 1 5 19 23 13 17
11 11 7 5 1 23 19 17 13
13 13 17 19 23 1 5 7 11
17 17 13 23 19 5 1 11 7
19 19 23 13 17 7 11 1 5
23 23 19 17 13 11 7 5 1

1.17) 100 · 4 + 36 · (−11) = 4.

1.19) First find 0 ≤ q ≤ u · v such that q ≡ x(Mod u) and q ≡ y(Mod v).
Then find k so that k ≡ q(Mod u · v) and k ≡ z(Mod w).

1.21) No, inverses would produce negatives.

1.23) If (a · b)2 = a2 · b2, then a · b · a · b = a · a · b · b.
1.25) If a3 = e then (a−1)3 = e. Furthermore, if a 6= e, then a−1 6= a. So the
non-identity solutions pair off, and with the identity we have an odd number
of solutions.

1.27) (n− 1)((n− 1) + 1)/2 + n = n(n+ 1)/2.

1.29) (n− 1)((n− 1) + 1)(2(n− 1) + 1)/6 + n2 = n(n+ 1)(2n+ 1)/6.

1.31) (n− 1)((n− 1) + 1)((n− 1) + 2)/3 + n(n+ 1) = n(n+ 1)(n+ 2)/3.

1.33) If n is not prime, then n = a · b, with a < n and b < n.

Chapter 2

2.1) 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20.

2.3) The group has 20 elements.

2.5) b · f has order 15, b · f · r · f2 has order 6, f · b · r has order 24.

497



498 Answers to Odd-Numbered Problems

2.7)
1 5 7 11 13 17 19 23

1 1 5 7 11 13 17 19 23
5 5 1 11 7 17 13 23 19
7 7 11 1 5 19 23 13 17
11 11 7 5 1 23 19 17 13
13 13 17 19 23 1 5 7 11
17 17 13 23 19 5 1 11 7
19 19 23 13 17 7 11 1 5
23 23 19 17 13 11 7 5 1

2.9)
gap> f := FreeGroup("a","b");; a := f.1;; b := f.2;;
gap> g := f/[â3, b̂5, (a*b)̂2];; a:= g.1;; b := g.2;;
gap> Size(g);
60
2.11) 3 and 5.
2.13) 40.
2.15) 288.
2.17) For φ(n) = 14, either pi − 1 or p(ri−1)

i must be a multiple of 7 for some
prime pi. In the first case, pi ≥ 29, so φ(n) ≥ 28. In the latter case, pi = 7
and ri ≥ 2, so φ(n) ≥ 42.
2.19) b2 · a = b · (a · b2) = (a · b2) · b2 = a · b · b3 = a · b.
2.21) Answers will vary depending on how the elements are labeled. The
group will be isomorphic to A4.
2.23) {0}, {0, 2, 4, 6, 8, 10}, {0, 3, 6, 9}, {0, 4, 8}, {0, 6}, and the whole group.
2.25) {1}, {1, 2, 4, 8}, {1, 4}, {1, 4, 7, 13}, {1, 11}, {1, 14}, {1, 4, 11, 14}, and
the whole group.
2.27) Because the corners can only rotate, every third repetition will bring
the corners back to the initial state. If all 6 of the edges move, then after
6 repetitions the edges will be back in the right place, but possibly flipped.
But then after 12 repetitions the edges will also be back to normal, making
the order at most 12. If 5 of the edges move, then it will take 5 repetitions
to get the edges into place, possibly flipped, so 10 repetitions to get the edge
pieces into the right position, but then the corners may be twisted, so the
order could be at most 30.
2.29) Six elements for which x6 = e, three elements for which x3 = e, two
elements for which x2 = e, so two elements of order 6. (6 − 3 − 2 subtracts
the identity element twice.)
2.31) When n = k, an element is of order k if, and only if, it is a generator.
If k is a divisor of n, and m is a divisor of k, then the number of solutions to
xm = e will be the same in both Zk and Zn. Thus, computing the elements
of order k in both Zk and Zn will give the same results.
2.33) If g is a generator, than only g and g−1 have finite order.
2.35) If a and b are of finite order, then am = bn = e for some m > 0 and
n > 0. Then (a · b−1)mn = e, so a · b−1 is of finite order.
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2.37) (y · x · y−1)2 = e, but y · x · y−1 6= e, so y · x · y−1 = x.

Chapter 3
3.1) Answers will vary.
3.3) Answers will vary.
3.5) Subgroups are {e}, with cosets {e}, {a}, {a2}, {a3}, {b}, {a · b}, {a2 · b},
and {a3 · b}; {e, a2}, with cosets {e, a2}, {a, a3}, {b, a2 · b}, and {a · b, a3 · b};
{e, a, a2, a3}, with cosets {e, a, a2, a3} and {b, a · b, a2 · b, a3 · b}; {e, b, a2, a2 · b},
with cosets {e, b, a2, a2 ·b} and {a, a ·b, a3, a3 ·b}; {e, a ·b, a2, a3 ·b}, with cosets
{e, a · b, a2, a3 · b} and {a, b, a2 · b, a3}; and the whole group, with one coset
containing the whole group.
3.7) {e, b, a · c, b2, c2, a · b · c, b · c2, a · b2 · c, a · c3, b2 · c2, a · b · c3, a · b2 · c3}.
3.9) 521 = 13 (Mod 7), 721 = 7 (Mod 10).
3.11) Since y ∈ Hx, y = hx for some h ∈ H, soHy = H ·(hx) = (H ·h)x = Hx.
3.13) If n = pqr, φ(n) = (p − 1)(q − 1)(r − 1). If x is coprime to n, use
proposition 3.1, otherwise suppose x is a multiple of p, but not a multiple
of qr. Then xrs ≡ x (Mod p), and since rs ≡ 1 (Mod (q − 1)(r − 1)),
proposition 3.2 shows that xrs ≡ x (Mod qr) as well. Finish with the Chinese
remainder theorem (1.3).
3.15) Let g1 = x1 · y1 and g2 = x2 · y2 be two elements of X · Y . Then
g1g
−1
2 = (x1 · x−1

2 ) · (y1 · y1
2) ∈ X · Y .

3.17) {0, 4, 8},{1, 5, 9},{2, 6, 10}, and {3, 7, 11}.
3.19)

{0, 4, 8} {1, 5, 9} {2, 6, 10} {3, 7, 11}
{0, 4, 8} {0, 4, 8} {1, 5, 9} {2, 6, 10} {3, 7, 11}
{1, 5, 9} {1, 5, 9} {2, 6, 10} {3, 7, 11} {0, 4, 8}
{2, 6, 10} {2, 6, 10} {3, 7, 11} {0, 4, 8} {1, 5, 9}
{3, 7, 11} {3, 7, 11} {0, 4, 8} {1, 5, 9} {2, 6, 10}

3.21)
{1, 4} {2, 8} {7, 13} {11, 14}

{1, 4} {1, 4} {2, 8} {7, 13} {11, 14}
{2, 8} {2, 8} {1, 4} {11, 14} {7, 13}
{7, 13} {7, 13} {11, 14} {1, 4} {2, 8}
{11, 14} {11, 14} {7, 13} {2, 8} {1, 4}

3.23) Since Q is abelian, Z is a normal subgroup. If g ∈ Q/Z, then g = (p/q)Z
for some rational number p/q, so gq = pZ = Z.
3.25) Let f(x) = mx + b ∈ G, and t(x) = qx ∈ T , so f−1(x) = (x − b)/m.
Then (f · t · f−1)(x) = f−1(t(f(x))) = qx+ (qb− b)/m /∈ T . If f(x) = 2x+ 3,
then fT is the set of functions k(2x + 3), whereas Tf is the set of functions
kx+ 3.
3.27) If xN and yN are two elements in G/N , then (xN) · (yN) = x · y ·N =
y · x ·N = (yN) · (xN).
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Chapter 4
4.1) The groups are Z10:

0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 0
2 2 3 4 5 6 7 8 9 0 1
3 3 4 5 6 7 8 9 0 1 2
4 4 5 6 7 8 9 0 1 2 3
5 5 6 7 8 9 0 1 2 3 4
6 6 7 8 9 0 1 2 3 4 5
7 7 8 9 0 1 2 3 4 5 6
8 8 9 0 1 2 3 4 5 6 7
9 9 0 1 2 3 4 5 6 7 8

and the group:
e a a2 a3 a4 b a · b a2 · b a3 · b a4 · b

e e a a2 a3 a4 b a · b a2 · b a3 · b a4 · b
a a a2 a3 a4 e a · b a2 · b a3 · b a4 · b b
a2 a2 a3 a4 e a a2 · b a3 · b a4 · b b a · b
a3 a3 a4 e a a2 a3 · b a4 · b b a · b a2 · b
a4 a4 e a a2 a3 a4 · b b a · b a2 · b a3 · b
b b a4 · b a3 · b a2 · b a · b e a4 a3 a2 a
a · b a · b b a4 · b a3 · b a2 · b a e a4 a3 a2

a2 · b a2 · b a · b b a4 · b a3 · b a2 a e a4 a3

a3 · b a3 · b a2 · b a · b b a4 · b a3 a2 a e a4

a4 · b a4 · b a3 · b a2 · b a · b b a4 a3 a2 a e

4.3) Z∗20 = {1, 3, 7, 9, 11, 13, 17, 19} ≈ Z∗15 with order {1, 2, 8, 4, 11, 7, 13, 14}.
4.5) Many solutions, since b can map to either RotLft or RotRt, and a can
map to FlipLft, FlipRt, or Spin. Any of these combinations will work.
4.7) If f(x) = a and f(y) = b, then f−1(a · b) = x · y = f−1(a) · f−1(b).
4.9) 1 7→ 0, −1 7→ 2, ±i can go to either 1 or 3.
4.11) Z6 = {0, 1, 2, 3, 4, 5} ≈ Z∗9 with order {1, 2, 4, 8, 7, 5}.
4.13) Z6 = {0, 1, 2, 3, 4, 5} ≈ Z∗18 with order {1, 5, 7, 17, 13, 11}.
4.15) Z10 = {0, 1, 2, 3, . . . , 9} ≈ Z∗22 with order {1, 7, 5, 13, 3, 21, 15, 17, 9, 19}.
4.17) Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} ≈ Z∗26, using the arrangement
{1, 7, 23, 31, 9, 11, 25, 19, 3, 21, 17, 15}.
4.19) Not true if G is not abelian.
4.21) x · (H ·N) = (x ·H) ·N = (H · x) ·N = H · (x ·N) = (H ·N) · x.
4.23) If g is a generator of G, and x ∈ Im(φ), then x = φ(gn) = (φ(g))n for
some n, and hence φ(g) generates Im(φ).
4.25) φ(x · y) = φ(x + y) = 2(x + y) = 2x + 2y = φ(x) + φ(y) = φ(x) · φ(y),
since · is addition in this group.
4.27) φ(x · y) = φ(x + y) = x + y + 3, but φ(x) · φ(y) = φ(x) + φ(y) =
(x+ 3) + (y + 3) = x+ y + 6.
4.29) φ(x · y) = 2(x · y) = 2xy, but φ(x) · φ(y) = (2x) · (2y) = 4xy.
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4.31) φ(x · y) = φ(x+ y) = ex+y = ex× ex = φ(x) ·φ(y). Image is the positive
real numbers.
4.33) φ(f · g) = φ(f(t) + g(t)) = f(3) + g(3) = φ(f) + φ(g) = φ(f) · φ(g). The
kernel is the set of polynomials with 3 as a root, hence t− 3 is a factor.
4.35) φ(1) = 1, φ(7) = 13, φ(11) = 1, φ(13) = 7, φ(17) = 13, φ(19) = 19,
φ(23) = 7, φ(29) = 19.
4.37) φ(x · y) = [x · y (Mod n)] Mod k = x · y Mod k = φ(x) ·φ(y). The kernel
is the multiples of k, so there are n/k elements in the kernel.
4.39) Ten homomorphisms, one sending all elements to e, three sending {1, 3}
to e, {5, 7} to a, a · b, or a · b2 respectively, three sending {1, 5} to e, {3, 7} to
a, a · b, or a · b2 respectively, and three sending {1, 7} to e, {3, 5} to a, a · b,
or a · b2 respectively.
4.41) Since {0, 2, 4} and {0, 3} are normal subgroups of Z6, φ−1({0, 2, 4}) and
φ−1({0, 3}) are normal subgroups of G.

Chapter 5
5.1) 3-cycle example: (123)(324) = (143); but 4-cycles are odd.
5.3) By using the ordering {1, 5, 7, 11, 13, 17, 19, 23}, we get the permutations
(), (12)(34)(56)(78), (13)(24)(57)(68), (14)(23)(58)(67), (15)(26)(37)(48),
(16)(25)(38)(47), (17)(28)(35)(46), (18)(27)(36)(45).
5.5) P [7, 6, 4, 1, 2, 5, 3] = (1734)(265) and P [4, 6, 7, 3, 2, 5, 1] = (1437)(265).

5.7)
(

1 2 3 4 5 6
3 4 5 1 2 6

)
.

5.9)
(

1 2 3 4
2 3 4 1

)
,
(

1 2 3 4
2 4 1 3

)
,
(

1 2 3 4
3 4 2 1

)
,
(

1 2 3 4
3 1 4 2

)
,
(

1 2 3 4
4 3 1 2

)
,
(

1 2 3 4
4 1 2 3

)
.

5.11) x =
(

1 2 3 4
2 4 1 3

)
,
(

1 2 3 4
3 2 1 4

)
, or

(
1 2 3 4
4 3 1 2

)
.

5.13) (16453)(27).
5.15) (1568)(37).
5.17) 6 and 12.
5.19) (12345)(678) ∈ A8, since this is an even permutation.

5.21)
{(

1 2 3 4
1 2 3 4

)
,
(

1 2 3 4
2 1 4 3

)
,
(

1 2 3 4
3 4 1 2

)
,
(

1 2 3 4
4 3 2 1

)}
.

5.23) −1 must map to a product of two transpositions, like (12)(34). Then ±i,
±j, and ±k map to one of (1324), (1423), (1324)(56), (1324)(57), (1324)(67),
(1423)(56), (1423)(57), or (1423)(67). But no combination of these allows
i · j = k.
5.25) Technically,

(
1 2 3 4 5
2 1 4 3 5

)
∈ S5, and

(
1 2 3 4
2 1 4 3

)
∈ S4, which are totally different

groups. However, there is a natural mapping from S4 to S5 that allows us to
consider elements of S4 to also be in S5.
5.27) If φ1 and φ2 only move a finite number of integers, then φ1 · φ−1

2 will
move a finite number of integers. Also, if n is the largest integer that φ1

moves, then φ1 ∈ Sn in the sense of problem 5.25, so SΩ ⊆
⋃∞
n=1 Sn ⊆ SΩ.

5.29) If φ1 has |φ1(x) − x| < M for all x, and φ2 has |φ2(x) − x| < N for
all x, then |φ−1

2 (y) − y| < N for all y = φ−1(x), and |φ1(φ−1
2 (x)) − x| <
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M + N for all x. Examples: (12)(34)(56) . . . (2n − 1 2n) . . . ∈ G, but /∈ SΩ;
(12)(46)(9 12)(16 20) . . . (n2 n2 + n) . . . ∈ S∞, but /∈ G.
5.31) Applying corollary 5.2: p ·m divides m! · |N |, so p divides |N |, hence
H = N , and H is normal.
5.33) 144.
5.35) Let H be the subgroup generated by the n-cycle φ = (123 . . . n). Then
φj−i will map i to j.
5.37) If φ = (i1 i2 i3 . . . ir) and f = (j1 j2 j3 . . . js), then x−1 · φ · x =
(x(i1) x(i2) x(i3) . . . x(ir)), and x−1 · f · x = (x(j1) x(j2) x(j3) . . . x(js)).

Chapter 6
6.1) Z2×Z6 has three elements of order 2, whereas Z12 has only one element
of order 2.
6.3) 55.
6.5) Eight automorphisms: {1, 2, 4, 7, 8, 11, 13, 14} 7→ {1, 2, 4, 7, 8, 11, 13, 14},
{1, 2, 4, 13, 8, 14, 7, 11}, {1, 7, 4, 2, 13, 11, 8, 14}, {1, 7, 4, 8, 13, 14, 2, 11},
{1, 8, 4, 7, 2, 14, 13, 11}, {1, 8, 4, 13, 2, 11, 7, 14}, {1, 13, 4, 2, 7, 14, 8, 11},
or {1, 13, 4, 8, 7, 11, 2, 14}.
6.7) There are 20 automorphisms, generated by f(a) = a, f(b) = b2, and
g(a) = a · b, g(b) = b.
6.9) A nontrivial homomorphism from Z∗8 to Aut(Z∗8 ) ≈ S3 must be two-to-
one, and send two of the elements to a 2-cycle. Proposition 6.7 shows that it
does not matter which 2-cycle, and since the non-identity elements of Z∗8 are
essentially equivalent, there is isomorphically only one Z∗8 nZ∗8 ≈ Z2 ×D4.
6.11) D6 ≈ S3 × Z2.
6.13) {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)} 7→ {0, 3, 4, 1, 2, 5}.
6.15)

(0, 1) (0, 3) (0, 5) (0, 7) (1, 1) (1, 3) (1, 5) (1, 7) (2, 1) (2, 3) (2, 5) (2, 7)
(0, 1) (0, 1) (0, 3) (0, 5) (0, 7) (1, 1) (1, 3) (1, 5) (1, 7) (2, 1) (2, 3) (2, 5) (2, 7)
(0, 3) (0, 3) (0, 1) (0, 7) (0, 5) (1, 3) (1, 1) (1, 7) (1, 5) (2, 3) (2, 1) (2, 7) (2, 5)
(0, 5) (0, 5) (0, 7) (0, 1) (0, 3) (1, 5) (1, 7) (1, 1) (1, 3) (2, 5) (2, 7) (2, 1) (2, 3)
(0, 7) (0, 7) (0, 5) (0, 3) (0, 1) (1, 7) (1, 5) (1, 3) (1, 1) (1, 7) (1, 5) (1, 3) (1, 1)
(1, 1) (1, 1) (1, 3) (1, 5) (1, 7) (2, 1) (2, 3) (2, 5) (2, 7) (0, 1) (0, 3) (0, 5) (0, 7)
(1, 3) (1, 3) (1, 1) (1, 7) (1, 5) (2, 3) (2, 1) (2, 7) (2, 5) (0, 3) (0, 1) (0, 7) (0, 5)
(1, 5) (1, 5) (1, 7) (1, 1) (1, 3) (2, 5) (2, 7) (2, 1) (2, 3) (0, 5) (0, 7) (0, 1) (0, 3)
(1, 7) (1, 7) (1, 5) (1, 3) (1, 1) (2, 7) (2, 5) (2, 3) (2, 1) (0, 7) (0, 5) (0, 3) (0, 1)
(2, 1) (2, 1) (2, 3) (2, 5) (2, 7) (0, 1) (0, 3) (0, 5) (0, 7) (1, 1) (1, 3) (1, 5) (1, 7)
(2, 3) (2, 3) (2, 1) (2, 7) (2, 5) (0, 3) (0, 1) (0, 7) (0, 5) (1, 3) (1, 1) (1, 7) (1, 5)
(2, 5) (2, 5) (2, 7) (2, 1) (2, 3) (0, 5) (0, 7) (0, 1) (0, 3) (1, 5) (1, 7) (1, 1) (1, 3)
(2, 7) (2, 7) (2, 5) (2, 3) (2, 1) (0, 7) (0, 5) (0, 3) (0, 1) (1, 7) (1, 5) (1, 3) (1, 1)

6.17) Since xn = e for all x ∈ Zn × Zn, we see that Zn × Zn is not cyclic.
6.19) Only Z210.
6.21) Four abelian groups of order 36.
6.23) 100.
6.25) Z4 × Z2 × Z5.
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6.27) Note that any automorphism must fix the identity element, leaving n−1
elements.
6.29) If Aut(G) is cyclic, then so is Inn(G) with a generator x 7→ g−1xg. For
each y ∈ G, y−1xy = g−nxgn for some n, plugging in x = g yields y−1gy = g,
or gy = yg. Since gy = gy for all y, Inn(G) ≈ {e}, and G is abelian.
6.31) Since Z∗3 and Z∗4 both have two elements, we can pick G = Z3 and
M = Z4.
6.33) A nontrivial mapping from Z3 to Aut(Z∗8 ) maps 1 to a 3-cycle, which
by proposition 6.7 doesn’t matter which. Z3nZ∗8 ≈ A4.
6.35) Since Aut(Z) ≈ Z2, we see that φ1(x) = −x. So (a, x) · (b, y) = (a +
b, x+ y) when b is even, but (a, x) · (b, y) = (a+ b, y − x) when a is odd.

Chapter 7
7.1) Center = {e, b3}, Quotient group D6/Z(D6) ≈ S3.
7.3) {e}, {e, b3}, {e, b2, b4}, {e, b, b2, b3, b4, b5}, {e, b2, b4, a, a·b2, a·b4}, {e, b2, b4,
a · b, a · b3, a · b5}, and D6.
7.5) Five subgroups of order 4, one subgroup of order 5.
7.7) {e, b2}.
7.9) ND4({e}) = ND4({b2}) = D4, ND4({b}) = ND4({b3}) = {e, b, b2, b3},
ND4({a}) = ND4({a · b2}) = {e, a, b2, a · b2}, ND4({a · b}) = ND4({a · b3}) =
{e, a · b, b2, a · b3}.
7.11) Yes, if x and y are in the center, then x · y = y · x.
7.13) {e}, {b2}, {b, b3}, {a, a · b2}, and {a · b, a · b3}.
7.15) {e}, {a, a · b, a · b2, a · b3, a · b4}, {b, b4}, and {b2, b3}.
7.17) x ∈ Z(G)⇔ x · y = y · x for all y ∈ G⇔ x ∈ NG({y}) for all y ∈ G.
7.19) If N is a nontrivial normal subgroup, |N | ≥ 13, so |N | = 30, 20, or 15
(divisors of 60). |N | 6= 15, so |N | is even, hence classes of size 1 and 15 are in
N . Since |N | ≥ 28, |N | = 30, but there is no class of size 14.
7.21) |N | ≥ 41, so |N | = 180, 120, 90, 72, 60, or 45 (divisors of 360). |N | 6= 45,
so |N | is even, hence classes of size 1 and 45 are in N , making |N | ≥ 86. 10
divides |N |, so both classes of order 72 are in N , making |N | ≥ 230.
7.23) |N | ≥ 56, so |N | = 330, 220, 165, 132, 110, 66, or 60 (divisors of 660).
|N | 6= 60, so 11 divides |N |, hence both classes of size 60 are in N , making
|N | ≥ 176. Five divides |N |, so both classes of order 132 are in N , making
|N | ≥ 385.
7.25) |N | ≥ 316, so |N | = 10080, 6720, 5040, 4032, 3360, 2880, 2520, 2240,
2016, 1680, 1440, 1344, 1260, 1120, 1008, 960, 840, 720, 672, 630, 576, 560,
504, 480, 448, 420, 360, 336, or 320 (divisors of 20160). |N | is even, so classes
of size 1 and 315 are in N , making |N | ≥ 1576. |N | 6= 2240, so |N | is a
multiple of 3, so the class of size 2240 is in N , making |N | ≥ 3816. Seven
divides |N |, so both classes of size 2880 are in N , making |N | ≥ 9576. Five
divides |N |, so both classes of size 4032 are in N , making |N | ≥ 16380. A8

has a conjugacy class of size 112 (all 3-cycles).
7.27) 20160 elements, same as A8 and L3(4) from problem 7.25. This group
is in fact isomorphic to A8.
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7.29) Let K be any p-Sylow subgroup of size pn, and divide G into families,
where u and v are related if u = h · v · k for h ∈ H and k ∈ K. Then
|G| = pn ·m =

∑
pi · pn/|H ∩ (uj ·K · u−1

j )|, so |H ∩ (uj ·K · u−1
j )| = pi for

some j, meaning that H is completely contained in a p-Sylow subgroup.
7.31) There are either one or eight 7-Sylow subgroups. If not unique, there
are 48 elements of order 7, leaving 8 elements for a unique 2-Sylow subgroup.
7.33) There is only one 3-Sylow subgroup H, and only one 11-Sylow subgroup
N , so both are normal, and G ≈ H ×N . Thus, G ≈ Z99 or Z3 × Z3 × Z11.
7.35) There is only one 17-Sylow subgroup N , 1 or 51 5-Sylow subgroups, and
1 or 85 3-Sylow subgroups. Either a 3-Sylow subgroup H or 5-Sylow subgroup
K is normal, so H ·K is a subgroup of order 15 ≈ Z15. Then G ≈ Z15×Z17 ≈
Z255, or G ≈ Z17n

φ
Z15. But there is no nontrivial homomorphism between

Z15 and Z∗17.
7.37) Factors of |G| are 1, p, p2, q, pq, p2q. There are either 1 or q p-Sylow
subgroups, and either 1, p, or p2 q-Sylow subgroups. If neither are unique,
q ≡ 1 (Mod p), implying p < q, so p2 ≡ 1 (Mod q). Then we have p2(q − 1)
elements of order q, leaving only p2 elements for a normal p-Sylow subgroup.
7.39) Only cases not covered by problems 7.36 through 7.38 or proposition 7.8
are 30, 36, 42, and 48. If G = 30, there aren’t enough elements for both 10
3-Sylow subgroups and 6 5-Sylow subgroups. If G = 36, there is a 3-Sylow
subgroup of order 9, and applying corollary 5.2 gives a normal subgroup of
size 3 or 9. If G = 42, there is only one 7-Sylow subgroup. If G = 48, there
is a 2-Sylow subgroup of order 16, and applying corollary 5.2 gives a normal
subgroup of size 8 or 16.

Chapter 8
8.1) Q ⊇ {1,−1} ⊇ {1}. For compositions series, add {1,−1, i,−i}.
8.3) G′ ≈ Q, which is a normal subgroup of G, and there is a 3-Sylow subgroup
H for which H · G′ = G. Hence, G is isomorphic to a semi-direct product
Qn

φ
Z3, and since Aut(Q) ≈ S4, Z3 must map to a 3-cycle in S4, but all

3-cycles are conjugate, so there is only one possible semi-direct product G ≈
QnZ3.
8.5) B ⊇ {1, L, P, T, I,M,Q,U} ⊇ {1, L, P, T} ⊇ {1}; if a = P , b = I, and
c = J , then a4 = 1, b2 = a2, c2 = a2, b · a = a · b, c · a = a · c, c · b = a · a · b · c.
8.7) D ⊇ {1, L,M,N,O, P,Q,R} ⊇ {1}; if a = L and b = S, then a8 = 1,
b2 = a4, b · a = a7 · b.
8.9) A1,1 = A1,2 = B1,1 = Z12, A2,1 = {0, 6}, A2,2 = B1,3 = {0}, B1,2 =
{0, 2, 4, 6, 8, 10}. The arrows show the isomorphisms Z12/Z12 ≈ Z12/Z12,
Z12/Z12 ≈ {0, 2, 4, 6, 8, 10}/{0, 2, 4, 6, 8, 10}, Z12/{0, 3, 6, 9} ≈ {0, 4, 8}/{0},
{0, 3, 6, 9}/{0, 6} ≈ Z12/{0, 2, 4, 6, 8, 10}, {0, 6}/{0} ≈ {0, 2, 4, 6, 8}/{0, 4, 8},
{0}/{0} ≈ {0}/{0}.
8.11) Z∗24 ⊇ {1, 5, 7, 11} ⊇ {1, 5} ⊇ {1}.
8.13) Z12 × Z18 ⊇ {0, 3, 6, 9} × Z18 ⊇ {0, 6} × Z18 ⊆ {0} × Z18 ⊇ {0} ×
{0, 3, 6, 9, 12, 15} ⊇ {0} × {0, 9} ⊇ {0} × {0}.
8.15) D4 ⊆ {e, b, b2, b3} ⊆ {e, b2} ⊆ {e}.
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8.17) D6 ⊆ {e, b, b2, b3, b4, b5} ⊆ {e, b3} ⊆ {e}.
8.19) A4 and {(), (12)(34), (13)(24), (14)(23)} must be in the series, and then
we have three choices, {(), (12)(34)}, {(), (13)(24)}, or {(), (14)(23)} for the
next term in the series.
8.21) Z4 ⊇ {0, 2} ⊇ {0}, and Z∗8 ⊇ {1, 3} ⊇ {1}.
8.23) A5 ×A5 ⊇ {e} ×A5 ⊇ {e} × {e}.
8.25) G′ = {φ(x) = x+ c | c ∈ R}, both G′ ≈ R and G/G′ ≈ R.
8.27) Z16, Z8×Z2, Z4×Z4, Z4×Z2×Z2, and Z2×Z2×Z2×Z2 are the only
groups that are abelian, and by the fundamental theorem of finite abelian
groups (6.2) these are all non-isomorphic. Z2 ×D8 has 11 elements of order
2, D16 has 9, G from section 6.4 has 5, and D from problem 8.7 has only 1
element of order 2. B from problem 8.5 and C from problem 8.6 both have
7 elements of order 2, but B has only 2 elements along the diagonal, whereas
C has 4. Finally, M from section 6.4, Z2 ×Q, and Z4nZ4 have 3 elements of
order 2, but Z2×Q has only 2 elements along the diagonal, M has 4 elements
along the diagonal, and Z4nZ4 has 3 elements along the diagonal.
8.29) By problem 1.22, G is abelian, hence solvable. But for G/N to be cyclic,
then G/N would be of order 2, and N would have the same properties. Thus,
a polycyclic series would not reach {e} in a finite number of steps.
8.31) (D4)′ = {e, b2}, (D4)′′ = {e}.
8.33) Q′ = {1,−1}, Q′′ = {1}.
8.35) If G = S4, then G1 = [S4, S4] = A4, but G2 = [S4, A4] = A4, so Gn will
never go to {e}.
8.37) Since all of the Ai and Bj are normal subgroups of G, then Ai,j =
(Ai−1 ∩Bj) ·Ai and Bj,i = (Bj−1 ∩Ai) ·Bj are normal subgroups of G using
problem 4.21.
8.39) If G = N0 ⊇ N1 ⊇ · · · ⊇ Nk = {e} is a chief series, then G′ ⊆ N1 by
lemma 8.3. Define G1 = G′, G2 = [G′, G1], G3 = [G′, G2], . . . , and suppose by
induction that Gi ⊆ Ni. We must show that [G′, Ni] ⊆ Ni+1, since this would
indicate that Gk = {e}. Since Ni/Ni+1 is cyclic, there is a generator nNi+1.
For x, y ∈ G, we have x·n·x−1Ni+1 = nqNi+1 for some q, and y ·n·y−1Ni+1 =
nrNi+1 for some r. Then y−1 ·x−1 · y ·x ·n−1 ·x−1 · y−1 ·x · y ·nNi+1 = Ni+1,
so [x−1 · y−1 · x · y, n] ∈ Ni+1. Thus, [G′, Ni] ⊆ Ni+1.
8.41) |S8n

φ
(Z3 × Z3 × Z3 × Z3 × Z3 × Z3 × Z3)| = 88179840.

Chapter 9
9.1) y = (4/3)10(3/4)(1/x).
9.3)
gap> InitRing("a","b","c");
gap> DefineRing("R",[2,2,2],[[a,a,c],[b,b,a+b+c],[a,a,c]]);
9.5)
gap> InitRing("e","a","b");
gap> DefineRing("T8",[2,2,2],[[e,a,b],[a,a,a],[b,b,b]]);
9.7) If p3/q3 = 2 with p and q coprime, then 2|p, but replacing p = 2r shows
2|q too.
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9.9) Given x and y, choose any irrational z, and find a rational q between
x− z and y − z. Then q + z is irrational by problem 9.8.
9.11) x2 = 13 + 2

√
6, and

√
6 is irrational, so x2 is too. If x were rational,

then x2 would be rational.
9.13) (a1 − b1i− c1j − d1k) + (a2 − b2i− c2j − d2k) = (a1 + a2)− (b1 + b2)i−
(c1 + c2)j(d1 + d2)k.
9.15) (a+ bi+ cj+ dk) · (a− bi− cj− dk) = a2 + b2 + c2 + d2. Replace x with
x to get the other half.
9.17) (x+ 1) · (x− 1) = x2 + x− x− 1 = x2 − 1.
9.19) If a = x1+y1

√
2 and b = x2+y2

√
2, then a−b = (x1−x2)+(y1−y2)

√
2 ∈

Z[
√

2], a · b = (x1x2 + 2y1y2) + (x1y2 + x2y1)
√

2 ∈ Z[
√

2].
9.21) Both x · a = x and x · b = x for all x in the ring, but there is no r for
which r · c = c, since r · c = 0.
9.23) Since n(−x) + nx = n(−x+ x) = 0, we have n(−x) = −nx.
9.25) Since G is an abelian group, we only need to check the associate law and
the two distributive laws. But these are both trivial, since both sides would
evaluate to 0.
9.27) x = x2 = (−x)2 = −x.
9.29) ⊕ and ⊗ are both closed, and both are clearly commutative. (x⊕y)⊕z =
x + y + z − 2 = x ⊕ (y ⊕ z), x ⊕ 1 = 1 ⊕ x = x so 1 is the additive identity.
x⊕(2−x) = 1, so 2−x is the additive inverse. (x⊗y)⊗z = x+y+z−xy−xz−
yz+xyz = x⊗(y⊗z), x⊗(y⊕z) = 2x+y+z−xy−xz−1 = (x⊗y)⊕(x⊗z).
9.31) Obviously 0 and 1 satisfy a2 = a. If a 6= 0, then a−1 exists, and
a = a2 · a−1 = a · a−1 = 1.
9.33) First show

(
n−1
i−1

)
+
(
n−1
i

)
=
(
n
i

)
. Then

(x+ y) ·
(
xn−1 +

(
n− 1

1

)
xn−2y +

(
n− 1

2

)
xn−3y2 + · · ·+

(
n− 1
n− 1

)
yn−1

)
= xn +

[
1 +

(
n− 1

1

)]
xn−1y +

[(
n− 1

1

)
+
(
n− 1

2

)]
xn−2y2 +

· · ·+
[(
n− 1
n− 2

)
+
(
n− 1
n− 1

)]
xyn−1 +

(
n− 1
n− 1

)
yn

= xn +
(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n

)
yn.

Chapter 10
10.1) Nontrivial ideals: {0, b}, {0, 2a}, and {0, b, 2a, 2a+ b}. Additional non-
trivial subrings: {0, 2a+ b}, {0, a, 2a, 3a}, and {0, a+ b, 2a, 3a+ b}.
10.3) R1 : a2 = a · b = b · a = b2 = 0; R2 : a2 = b, b2 = a · b = b · a = 0;
R3 : a2 = a, b2 = a · b = b · a = 0; R4 : a2 = a, a · b = b, b2 = b · a = 0;
R5 : a2 = a, b · a = b, b2 = a · b = 0; R6 : a2 = b2 = a, a · b = b · a = b;
R7 : a2 = a, b2 = a · b = b · a = b; R8 : a2 = a, a · b = b · a = b, b2 = a+ b.
10.5) If a, b ∈ A, then a · y = b · y = 0, so (a− b) · y = 0 and (a · b) · y = 0, so
a− b and a · b are in A.



Answers to Odd-Numbered Problems 507

10.7) If a ∈ X + Y and z ∈ R, then a = x + y for some x ∈ X and y ∈ Y .
Then a · z = (x · z) + (y · z) ∈ X + Y . Likewise, z · a ∈ X + Y .
10.9) If a ∈ X · Y , and z ∈ R, then a = x1 · y1 + x2 · y2 + · · · + xn · yn, so
a · z = x1 · (y1 · z) +x2 · (y2 · z) + · · ·xn · (yn · z) ∈ X ·Y. Likewise, z ·a ∈ X ·Y .
10.11) If a ∈ X · Y , then a = x1 · y1 + x2 · y2 + · · · + xn · yn ∈ X. Likewise,
a ∈ Y , so a ∈ X ∩ Y .
10.13) {0}, {0, a, 2a, 3a}, {0, 2a}, {0, b}, {0, a+ b, 2a3a+ b}, {0, 2a+ b, b, 2a},
and the whole ring.
10.15) {0}, {0, a}, {0, b}, {0, c}, and the whole ring.
10.17) {0}, {0, e}, {0, a}, {0, b}, {0, c}, {0, d}, {0, f}, {0, e, c, g}, {0, e, a, d},
{0, e, b, f}, {0, a, b, c}, {0, c, d, f}, and the whole ring.
10.19)

+ {0, c} {a, b}
{0, c} {0, c} {a, b}
{a, b} {a, b} {0, c}

· {0, c} {a, b}
{0, c} {0, c} {0, c}
{a, b} {0, c} {a, b}

10.21)
+ {0, b} {a, a+ b} {2a, 2a+ b} {3a, 3a+ b}
{0, b} {0, b} {a, a+ b} {2a, 2a+ b} {3a, 3a+ b}
{a, a+ b} {a, a+ b} {2a, 2a+ b} {3a, 3a+ b} {0, b}
{2a, 2a+ b} {2a, 2a+ b} {3a, 3a+ b} {0, b} {a, a+ b}
{3a, 3a+ b} {3a, 3a+ b} {0, b} {a, a+ b} {2a, 2a+ b}

· {0, b} {a, a+ b} {2a, 2a+ b} {3a, 3a+ b}
{0, b} {0, b} {0, b} {0, b} {0, b}
{a, a+ b} {0, b} {a, a+ b} {2a, 2a+ b} {3a, 3a+ b}
{2a, 2a+ b} {0, b} {2a, 2a+ b} {0, b} {2a, 2a+ b}
{3a, 3a+ b} {0, b} {3a, 3a+ b} {2a, 2a+ b} {a, a+ b}

10.23) {0, a, b, c} gives a copy of T4 inside of T8.
10.25) a+ b and 3a+ b.
10.27) Neither T4 nor T8 have irreducible elements.
10.29) a and 3a are prime, but not irreducible.
10.31) T t4 has an element c for which c ·x = 0 for all x, T4 has no such element.
10.33) Since a non-commutative ring must have a non-cyclic additive group,
the smallest such ring would have additive group of Z2 × Z2. If x2 = y for
two nonzero elements x and y, then x · y = y · x, and the whole ring would
commute. Thus, x2 = 0 or x for all x ∈ R. If two nonzero elements have
x2 = y2 = 0, then x · y 6= x or else (x · y) · y = x 6= x · (y · y), likewise x · y 6= y.
Also x · y 6= x+ y, or else x · (x · (x+ y)) = x+ y 6= (x ·x) · (x+ y). This means
that x · y = 0, and similarly y · x = 0, and the ring would commute. So there
are at least two elements for which x2 6= 0, call them a and b. Then a2 = a,
b2 = b. If (a + b)2 = a + b, then a · b = b · a, so we need (a + b)2 = 0. Then
a · b 6= a+ b, or else (a · b) · b = (a+ b) · b = a 6= a · (b · b). Likewise, a · b 6= 0,
otherwise (a+ b)2 = 0 would force b · a = a+ b. So for a · b 6= b · a, one must
be a, and the other b, yielding T4 and T t4 respectively.
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10.35)
+ A 1 +A 2 +A 3 +A 4 +A 5 +A
A A 1 +A 2 +A 3 +A 4 +A 5 +A

1 +A 1 +A 2 +A 3 +A 4 +A 5 +A A
2 +A 2 +A 3 +A 4 +A 5 +A A 1 +A
3 +A 3 +A 4 +A 5 +A A 1 +A 2 +A
4 +A 4 +A 5 +A A 1 +A 2 +A 3 +A
5 +A 5 +A A 1 +A 2 +A 3 +A 4 +A

· A 1 +A 2 +A 3 +A 4 +A 5 +A
A A A A A A A

1 +A A 1 +A 2 +A 3 +A 4 +A 5 +A
2 +A A 2 +A 4 +A A 2 +A 4 +A
3 +A A 3 +A A 3 +A A 3 +A
4 +A A 4 +A 2 +A A 4 +A 2 +A
5 +A A 5 +A 4 +A 3 +A 2 +A 1 +A

10.37) 2 + (8) is a generator of the additive group of (2)/(8), but for every
element x of (2)/(8), x2 = (8) or 4 + (8), so there is no multiplicative identity.
10.39) 2 = φ(1 · 1) 6= φ(1) · φ(1) = 4.
10.41) φ(x)+φ(y) = a+c− (b+d)i = φ(x+y), φ(x) ·φ(y) = (a−bi)(c−di) =
ac− bd− (bc+ ad)i = φ(x · y).
10.43) If a, b ∈ I, then there are x, z ∈ R such that a = x · y and b = x · z.
Then a− b = (x− z) · y ∈ I, and if c ∈ R, then a · c = c · a = (c · x) · y ∈ I.
10.45) If a and b are nilpotent, then am = bn = 0 for some m and n. By
problem 9.33, (a − b)m+n = am+n −

(
m+n

1

)
am+n−1b +

(
m+n

2

)
am+n−2b2 −

· · · + (−1)m
(
m+n
m

)
ambn + · · · bm+n = 0. So a − b is nilpotient, and if x ∈ R,

(a · x)m = am · xm = 0, so a · x is nilpotient.
10.47) The homomorphism φ : R 7→ R/I, given by φ(x) = x+ I, restricted to
the ideal K, produces φ′ : K 7→ (K + I)/I. The kernel of φ′ is K ∩ I, and so
by the first isomorphism theorem for rings (10.2), K/(K ∩ I) ≈ (K + I)/I.

Chapter 11
11.1) All factorizations reveal triple roots. Reason: For real numbers, (x +
y)3 = x3+3x2y+3xy2+y3, but since we are working mod 3, (x+y)3 = x3+y3.
11.3)

InitDomain[0]
Homomorph[F]
Define[F[Sqrt[5]],−Sqrt[5]]
CheckHomo[F,{1, Sqrt[5]}]

11.5) (i + 2)(i + 3) = 0 is this ring, so it is not a field. Primes that are one
more than a multiple of 4 will fail to form a field, but primes that are one less
than a multiple of 4 will form a field.
11.7) (

√
17− 1)/4 = cos(2π/17) + cos(4π/17) + cos(8π/17) + cos(16π/17).

11.9) 2.
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11.11) Let the identity e have order n in the additive group. Then the char-
acteristic cannot be less than n, but nx = n(x · e) = (ne) · x = 0 for all
x ∈ R.
11.13) Let n be the order of the ring R. Then nx = 0 for all x ∈ R, so the
characteristic would be at most n.
11.15)

(
u
v

)
·
((

x
y

)
+
(
z
w

))
=
(
u
v

)
·
(
xw+yz
yw

)
=
(
uxw+uyz
vyw

)
, whereas(

u
v

)
·
(
x
y

)
+
(
u
v

)
·
(
z
w

)
=
(
ux
vy

)
+
(
uz
vw

)
=
(
uxvw+vyuz

v2yw

)
=
(
uxw+uyz
vyw

)
.

11.17) (0, 1) ≡ (0, 2), (1, 1) ≡ (2, 2), (1, 2) ≡ (2, 1).
+ {(0, 1), (0, 2)} {(1, 1), (2, 2)} {(2, 1), (1, 2)}

{(0, 1), (0, 2)} {(0, 1), (0, 2)} {(1, 1), (2, 2)} {(2, 1), (1, 2)}
{(1, 1), (2, 2)} {(1, 1), (2, 2)} {(2, 1), (1, 2)} {(0, 1), (0, 2)}
{(2, 1), (1, 2)} {(2, 1), (1, 2)} {(0, 1), (0, 2)} {(1, 1), (2, 2)}

· {(0, 1), (0, 2)} {(1, 1), (2, 2)} {(2, 1), (1, 2)}
{(0, 1), (0, 2)} {(0, 1), (0, 2)} {(0, 1), (0, 2)} {(0, 1), (0, 2)}
{(1, 1), (2, 2)} {(0, 1), (0, 2)} {(1, 1), (2, 2)} {(2, 1), (1, 2)}
{(2, 1), (1, 2)} {(0, 1), (0, 2)} {(2, 1), (1, 2)} {(1, 1), (2, 2)}

11.19) x2, x2 + 1, x2 + 2, x2 + x, x2 + x+ 1, x2 + x+ 2, x2 + 2x, x2 + 2x+ 1,
x2 + 2x+ 2, 2x2, 2x2 + 1, 2x2 + 2, 2x2 +x, 2x2 +x+ 1, 2x2 +x+ 2, 2x2 + 2x,
2x2 + 2x+ 1, 2x2 + 2x+ 2.
11.21)

ei = 1 +
i

1!
+
−1
2!

+
−i
3!

+
1
4!

+
i

5!
+ · · ·

=
(

1− 1
2!

+
1
4!
− · · ·

)
+ i

(
1
1!
− 1

3!
+

1
5!
− · · ·

)
= cos 1 + i sin 1.

11.23)

1 +
i

n
=

√
1 +

1
n2

(
cos(tan−1(1/n)) + i sin(tan−1(1/n))

)
,

so (
1 +

i

n

)n
=
(

1 +
1
n2

)n/2 (
cos(n tan−1(1/n)) + i sin(n tan−1(1/n))

)
.

But

lim
n→∞

(
1 +

1
n2

)n/2
= 1 and lim

n→∞
n tan−1(1/n) = 1

by L’Hôpital’s rule.
11.25) ln 2− π/6 + 2kπi, where k ∈ Z.
11.27)

√
2/2± i

√
2/2, −

√
2/2± i

√
2/2.

11.29) −2i, ±
√

3 + i.
11.31) . . . , e−7π/4, e−3π/4, eπ/4, e5π/4, e9π/4, . . . .
11.33) (1)i ln 2/(2π).
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11.35) From DeMoivre’s theorem, all solutions zn = 1 are of the form z =
cos(2kπ/n) + i sin(2kπ/n) = (cos(2π/n) + i sin(2π/n))k. Thus, en generates
the group. A generator of this group would be ekn, where k is coprime to n,
hence a primitive n-th root of unity.
11.37) False: (22)1/2 = 41/2 = ±2, yet 2(2·1/2) = 21 = 2.
11.39) Since x2 ≥ 0 and e > 0, then x2 + e > 0.
11.41) Since (x− y)2 ≥ 0, x2 − 2xy + y2 ≥ 0, so x2 + y2 ≥ 2xy.
11.43) Let f(x) ∈ Z[x]+ have leading term axm and g(x) ∈ Z[x]+ have leading
term bxn. Then f(x) · g(x) has a leading term abxm+n which is in Z[x]+

since ab > 0. f(x) + g(x) will have leading term of either axm, bxn, or
(a + b)xm, depending on whether m > n, n > m, or n = m. In any case
f(x) + g(x) ∈ Z[x]+. Finally, either the polynomial is 0, or the leading term
is either positive or negative, so the law of trichotomy holds.
11.45) For x > 0 in the standard ordering, then x = (

√
x)2 > 0 in any ordering,

so there is no nonstandard ordering of R. Hence if there were a nontrivial
automorphism φ, then φ(P ) = P . Also, φ(1) = 1 since the identity must map
to the identity. Then φ(2) = φ(1) + φ(1) = 2, and likewise φ(n) = n for all
integers n. Then φ(p/q) = φ(p)/φ(q) = p/q for all rationals. If φ(x) = y 6= x,
then there is a rational p/q between x and y, but then φ(x− p/q) = y − p/q,
which contradicts φ(P ) = P .

Chapter 12
12.1) f(x) = 11x3/6− 19x2/2 + 50x/3− 8, f(5) = 67.
12.3) Irreducible.
12.5) In Mathematica:

InitDomain[11]
Define[â2,6]
R = Ring[{1,a}]
CheckRing[R]

Since Z[
√

6]/(11) is a field, (11) is a prime ideal, hence 11 is prime.
12.7) q(x) = x+ 2, r(x) = −4x+ 2.
12.9) f(x) = 3x2 − 2x+ 1.
12.11) If x2 + 5 has a root a in R, then a2 + 5 = 0. But a2 ≥ 0, so a2 + 5 ≥ 5.
Finally, apply proposition 12.3.
12.13) f(0) = 4(Mod 13), f(1) = f(3) = f(9) = 5(Mod 13), f(2) = f(5) =
f(6) = 12(Mod 13), f(4) = f(10) = f(12) = 3(Mod 13), f(7) = f(8) =
f(11) = 9(Mod 13), so proposition 12.3 applies.
12.15) (x+ 4)(x2 + 3x+ 3).
12.17) (x+ 1)(x+ 4)(x2 + 3).
12.19) (2, 1 +

√
−5) = {a + b

√
−5 | a + b = 0(Mod 2)}, so this is not all of

Z[
√
−5]. If (2, 1 +

√
−5) = (c) for some c, then c can’t be a unit, but both

2 and 1 +
√
−5 must be multiples of c. This is impossible, since both 2 and

1 +
√
−5 are irreducible.

12.21) {0, 2, 4, 6, 8, 10}, {0, 3, 6, 9}.
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12.23) 3 and 15 are irreducible.
12.25) 2, 3, 4, 8, 10, 14, 15, 16 are prime.
12.27) No, every nonzero would be a unit.
12.29) By letting µ(x) be the smallest n for which x ∈ Sn, then µ(x) ≥ 0 for
all x. If µ(x · y) = n, then (x · y) + Sn−1 = R, so (x) + Sn−1 = R, hence
µ(x) ≤ n = µ(x · y). If y is a unit, pick q = x · y−1 and r = 0. Otherwise,
let n = µ(y), so that x ∈ (y) + Sn−1, that is, there is a r ∈ Sn−1 for which
x = y · q + r. Then µ(r) < n = µ(y), so µ is a Euclidean valuation on R.

Now suppose R is a Euclidean domain with a valuation µ(x), and we want
to show that Sn contains all nonzero elements for which µ(x) ≤ n. Clearly if
µ(y) = 0, then y is a unit, so y ∈ S0. Suppose that it is true for all smaller
values of n. If µ(y) = n, then every x can be written as y ·q+r, with µ(r) < n,
so r ∈ Sn−1. Thus R = (y) + Sn−1, so y ∈ Sn. Since Sn contains all nonzero
elements for which µ(x) ≤ n, then every element of R is in some Sn.
12.31) A PID is a UFD, so every nonzero, non-unit x can be uniquely fac-
tored into irreducible elements, so x has an irreducible factor. But in a PID,
irreducible elements are prime.
12.33) In order for f(x) to be a unit, it must be a constant, but since fractional
constants are not allowed, the only units are ±1. Likewise, for 2 to factor,
one of the factors would be ±1, so 2 is irreducible. But x factors as 2 · x/2 =
2 · 2 · x/4 = · · · so 2 is a factor of x an unlimited number of times.
12.35) a = b · u for some unit u, so µ(a) = µ(b · u) ≥ µ(b), and µ(b) =
µ(a · u−1) ≥ µ(a).
12.37) x2 can be 0, 1, 2, or 4 (Mod 7), and likewise for −6y2. So the sum is
0 (Mod 7) only if x = y = 0. Now if (x + y

√
6) · (a + b

√
6) is a multiple of

7, then (x2 − 6y2) · (a2 − 6b2) is a multiple of 7, so one of these factors, say
x2 − 6y2, is a multiple of 7. But then both x and y are multiples of 7, so the
original factor (x+ y

√
6) is a multiple of 7.

12.39) Since N(a+ bi) = a2 + b2 is prime, proposition 12.8 shows that a+ bi
is irreducible, hence prime.
12.41) If a + bi is a factor of p, then a − bi will also be a factor, so (a + bi) ·
(a− bi) = a2 + b2 will be a factor of p. But p is prime in the ordinary sense,
so a2 + b2 = p. Problem 12.40 does the other direction.
12.43) Let q = (1 −

√
4n+ 1)/2, and x+ yq = x + yq. If N(a) = ±1, then

b = a is such that a · b = ±1, so a has an inverse. Likewise, if a has an
inverse a−1, then 1 = N(1) = N(a · a−1) = N(a) ·N(a−1), so N(a) = ±1. If
N(a) = p, and a = b · c, then N(b) ·N(c) = p, and so either b or c is a unit.
12.45) Let t = x · y−1 = u + vq ∈ Q(

√
5), and round u and v to the nearest

integers i and j. If p = i+ jq, then N(p− t) = a2 +ab− b2, where a and b are
both less than 1/2, so |N(p−t)| ≤ 3/4. Hence µ(r) = |N(r)| = |N(p ·y−x)| =
|N(p− t) ·N(y)| < |N(y)| = µ(y).
12.47) If a · b is a multiple of 2, then N(a) ·N(b) is a multiple of N(2) = 4, so
either N(a) or N(b) is even, say N(a). x2 +xy+ 5y2 can only be even if both
x and y are, so a is a multiple of 2, hence 2 is prime. To show 3 is prime,
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repeat the argument, but we need to show x2 + xy + 5y2 is a multiple of 3
only if both x and y are. This can be done via a small table for x, y ∈ 0, 1, 2.
12.49) Let b be the greatest integer not exceeding 2Im(z)/

√
19. Then Im(z −

bq) = Im(z −
√

19b/2) will be between 0 and
√

19/2. Let a be the closest
integer to Re(z − bq), and let x = a+ bq. Then 0 ≤ Im(z − x) <

√
19/2, and

−1/2 ≤ Re(z − x) ≤ 1/2.
12.51) Letting z = m−1x, we let y be as problem 12.50 so that either |z−y| < 1
or |2z − y| < 1. We can extend N(x) to Q(q) by N(a + bq) = a2 + ab + 5b2,
a, b ∈ Q. In fact, N(z) = zz = |z|2. So |m−1x − y| < 1 or |2m−1x − y| < 1,
or |x −my| < |m| or |2x −my| < |m|. But x −my and 2x −my are in I,
and we chose m to have minimum nonzero absolute value, so either x = my
or 2x = my. In the first case, we can double y to get 2x = my.
12.53) If I is an ideal that is not a principle ideal, we can let m be the nonzero
element of I with least N(m), and let x ∈ I, x 6∈ (m). From problem 12.52 we
can find a y (not a multiple of 2) such that x = (m/2)y. Then xy = myy/2 ∈
I, and yy is some odd number, say 2n+1. Since m(2n+1)/2 = nm+m/2 ∈ I,
and m ∈ I, then m/2 ∈ I, but this contradicts the fact that m was chosen to
have minimum N(m).

Chapter 13
13.1) {0, 1, y2 + y, y2 + y + 1} is a subfield of order 4, where y is the root of
x4 + x+ 1 in the field extension. There is no subfield of order 8.
13.3) Φ15(x) = (x4 + x+ 1)(x4 + x3 + 1). But Φ5(x) = x4 + x3 + x2 + x+ 1
is also irreducible.
13.5) Φ8(x) = (x2 + x+ 2)(x2 + 2x+ 2). But x2 + 1 is also irreducible.
13.7) R = 2(C3

1 − 3C1C
2
2 +C3

2 + 6C2
1C3− 3C1C2C3 + 9C1C

2
3 − 3C2C

2
3 +C3

3 +
2C3

4−6C4C
2
5 +2C2

5 +12C2
4C6−6C4C5C6+18C4C

2
6−6C5C

2
6 +2C3

6−6C1C4C7−
12C3C4C7+6C2C5C7+12C3C5C7−12C1C6C7−6C2C6C7−18C3C6C7+4C3

7 +
6C2C4C8−6C3C4C8+6C1C5C8−6C2C5C8+12C1C6C8+6C3C6C8−12C7C

2
8 +

4C3
8−12C1C4C9+12C2C4C9−18C3C4C9−6C1C5C9+6C3C5C9−18C1C6C9+

6C2C6C9−6C3C6C9 +24C2
7C9−12C7C8C9 +36C7C

2
9 −12C8C

2
9 +4C3

9 . Since
this is real, w−1 = v/R. To show R 6= 0, suppose R = 0 for some rational
C1 through C9. But multiplying by the common denominator, we can get
an integer solution to R = 0 , and by dividing by any common factors, we
can get an integer solution for which C1 through C9 have no common factors.
Then C3

1 +C1C
2
2 +C3

2 +C1C2C3 +C1C
3
3 +C2C

2
3 +C3

3 = 0(Mod 2). The only
combination for this to be true is if C1, C2, and C3 are all even. Substituting
C1 = 2B1, C2 = 2B2, and C3 = 2B3 into R, and factoring out 2 reveals that
C3

4 + C4C
2
5 + C3

5 + C4C5C6 + C4C
2
6 + C5C

2
6 + C3

6 = 0(Mod 2). This forces
C4, C5, and C6 to be even, so further replacing C4 = 2B4, C5 = 2B5, and
C6 = 2B6 into R, and dividing by 2, reveals C2

7 + C7C
2
8 + C3

8 + C7C8C9 +
C7C

2
9 + C8C

2
9 + C3

9 = 0(Mod 2), which once again forces C7, C8, and C9 to
be even. But this contradicts that C1 through C9 have no common factors,
so R 6= 0.
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13.9) Let y be a root of x2 + x+ 1 in the extension field.
+ 0 1 y y + 1
0 0 1 y y + 1
1 1 0 y + 1 y
y y y + 1 0 1

y + 1 y + 1 y 1 0

· 0 1 y y + 1
0 0 0 0 0
1 0 1 y y + 1
y 0 y y + 1 1

y + 1 0 y + 1 1 y

13.11) Let y be a root of x2 + x+ 2 in the extension field.
+ 0 1 2 y y + 1 y + 2 2y 2y + 1 2y + 2
0 0 1 2 y y + 1 y + 2 2y 2y + 1 2y + 2
1 1 2 0 y + 1 y + 2 y 2y + 1 2y + 2 2y
2 2 0 1 y + 2 y y + 1 2y + 2 2y 2y + 1
y y y + 1 y + 2 2y 2y + 1 2y + 2 0 1 2

y + 1 y + 1 y + 2 y 2y + 1 2y + 2 2y 1 2 0
y + 2 y + 2 y y + 1 2y + 2 2y 2y + 1 1 0 1

2y 2y 2y + 1 2y + 2 0 1 2 y y + 1 y + 2
2y + 1 2y + 1 2y + 2 2y 1 2 0 y + 1 y + 2 y
2y + 2 2y + 2 2y 2y + 1 2 0 1 y + 2 y y + 1
· 0 1 2 y y + 1 y + 2 2y 2y + 1 2y + 2
0 0 0 0 0 0 0 0 0 0
1 0 1 2 y y + 1 y + 2 2y 2y + 1 2y + 2
2 0 2 1 2y 2y + 2 2y + 1 y y + 2 y + 1
y 0 y 2y 2y + 1 1 y + 1 y + 2 2y + 2 2

y + 1 0 y + 1 2y + 2 1 y + 2 2y 2 y 2y + 1
y + 2 0 y + 2 2y + 1 y + 1 2y 2 2y + 2 1 y

2y 0 2y y y + 2 2 2y + 2 2y + 1 y + 1 1
2y + 1 0 2y + 1 y + 2 2y + 2 y 1 y + 1 2 2y
2y + 2 0 2y + 2 y + 1 2 2y + 1 y 1 2y y + 2

13.13) The generators are 1 + i, 1 + 2i, 2 + i, 2 + 2i.
13.15) The Frobenius automorphism f : x → xp must send a generator to a
generator.
13.17) We can let x be the solution given from problem 13.16. Then (x +
i)(x− i) = x2 + 1 would be a multiple of p, and clearly neither x+ i nor x− i
is a multiple of p. Therefore, p is not prime in Z[i].
13.19) All subfields contain the multiplicative identity, and this element gen-
erates a subfield of order p. So this subfield is in all of the subfields of F , and
since it is one of the subfields, there are no other elements in the intersection.
13.21) The subfields would have to have order pn for some prime p. Consider
the polynomial x(pn) − x. There are at most pn roots, but all elements from
both subfields would be roots.
13.23) If n is a multiple of d, then by corollary 13.5 pn − 1 is a multiple of
pd − 1, and so x(pn−1) − 1 is divisible by x(pd−1) − 1, and so x(pn) − x is
divisible by x(pd) − x in Z[x]. Since x(pn) − x factors completely in F with
no double roots, so does x(pd) − x, and these pd elements will form a subfield
since these elements are fixed by the automorphism x→ xp

d

. Problem 13.21
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gives uniqueness.
13.25) A field of order pn can be described by Zp[x]/(f(x)), where f(x) is
an irreducible polynomial in Zp[x] of degree n. An automorphism would be
determined by where it sends one of the roots of f(x), and there are n possible
roots. Thus, there are at most n automorphisms, and we found n Frobenius
automorphisms.
13.27) x2 − x+ 1.
13.29) x4 − x3 + x2 − x+ 1.
13.31) Φ1(x) = x−1 and Φ2(x) = x+ 1, so assume that it is true for previous
n. Plugging in x = 0 into proposition 13.7 gives 0n − 1 = −1 · 1 · · ·Φn(0), so
Φn(0) = 1.
13.33) Since x(pn) − 1 = Φ1(x) · Φp(x) · Φp2(x) · · ·Φpn(x), and x(pn−1) −
1 = Φ1(x) · Φp(x) · Φp2(x) · · ·Φpn−1(x), it is clear that Φpn(x) = (x(pn) −
1)/(x(pn−1) − 1) = (Y p − 1)/(Y − 1), where Y = x(pn−1). Since p is prime,
this is Φp(Y ) = Φp(x(pn−1)).
13.35) Let f(x) be an irreducible polynomial of degree n over Zp, and let r be
a root of f(x) in GF (pn). If rm = 1 for some m < pn−1, then f(x) cannot be
a factor of Φ(pn−1)(x), lest r be a double root of x(pn−1) − 1, and then would
contradict lemma 13.5. However, if rm 6= 1 for any m < pn − 1, then f(x) is
a factor of x(pn−1)− 1, yet not a factor of any xm− 1 for m < pn− 1, so f(x)
must be a factor of Φ(pn−1)(x).

Chapter 14
14.1) 〈41/36,−1/18, 1/4〉.
14.3) 1/(5 +

√
−3) = 5/28−

√
−3/28.

14.5) Splitting field = Q(a), where a3 = −a2+4a−1; 3-dimensional extension.
14.7) Splitting field = Q(a, b), where a5 = 2 and b4 = −ab3 − a2b2 − a3b− a4;
20-dimensional extension.
14.9) {1,

√
2}.

14.11) {1,
√

2,
√

3,
√

6}.
14.13) {1, 3

√
2, 3
√

4}.
14.15) {1,

√
3}.

14.17) x3 − 5.
14.19) x4 + 2x2 − 1.
14.21) x8 − 4x6 + 8x4 − 8x2 + 2.
14.23)

√√
2− 1, −

√√
2− 1,

√
−
√

2− 1, −
√
−
√

2− 1.

14.25) Eight roots: ±
√
±
√
±
√

2− 1 + 1, where each ± can be either + or −
independently of the other ± symbols.
14.27)

√
2 +
√

5.
14.29) 3

√
2 + i.

14.31) e15.
14.33) r1

.= 1.25992, r2
.= −0.62996 + 1.09112i, r3

.= −0.62996 − 1.09112i.
r2
2
.= −0.7937− 1.37473i, r2

3
.= −0.7937 + 1.37473i, r2r3 = r2

1
.= 1.5874.

14.35) Both quadratics factor in Q(
√
−3).
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14.37) ( 3
√

2− 4 3
√

4− 11)/43.
14.39) F (u)(v) is the smallest subfield containing both v and F (u), and F (u)
is the smallest subfield containing both u and F . Hence F (u)(v) = F (u, v),
the smallest field containing u, v, and F . By symmetry, F (v)(u) = F (u, v),
too.
14.41) If a =

√
m +

√
n, then

√
m = (a3 − (3m + n)a)/(2n − 2m), and√

n = (a3 − (3n + m)a)/(2m − 2n). So Q(
√
m,
√
n) is in Q(a), and clearly

Q(a) is in Q(
√
m,
√
n).

14.43) φ0(x) = x, φ1(
√

2) =
√

2, φ1(
√

3) = −
√

3, φ2(
√

2) = −
√

2, φ2(
√

3) =√
3, φ3(

√
2) = −

√
2, φ3(

√
3) = −

√
3.

Chapter 15
15.1) GalQ(K) ≈ D4, with 8 elements.
15.3) GalQ(K) ≈ Z5nZ4, with 20 elements.
15.5) GalQ(K) ≈ Z2 × Z2, with 4 elements.
15.7) GalQ(K) ≈ A5, with 60 elements.
15.9) fix({φ0}) = Q(

√
2,
√

3), fix({φ0, φ1}) = Q(
√

2), fix({φ0, φ2}) = Q(
√

3),
fix({φ0, φ3}) = Q(

√
6), fix({φ0, φ1, φ2, φ3}) = Q.

15.11) φ0(x) = x for all x; φ1 fixes 3
√

3, r2 ↔ r3; φ2 fixes r2, 3
√

3 ↔ r3; φ3

fixes r3, 3
√

3↔ r2; φ4: 3
√

3→ r2 → r3 → 3
√

3; φ5: 3
√

3→ r3 → r2 → 3
√

3.
15.13) Q, Q(

√
2), Q(

√
5), Q(

√
10), Q(

√
2,
√

5).
15.15) Since Z∗7 ≈ Z6, we can consider Φ7(x) = x6 +x5 +x4 +x3 +x2 +x+ 1.
15.17) Let φ be an automorphism that generates the Galois group. For an
element of S4 to have order 4, it must be a 4-cycle, so φ is a 4-cycle of
the four roots, φ : r1 → r2 → r3 → r4 → r1. Then φ(k) = k, where
k = r2

1r2 + r2
2r3 + r2

3r4 + r2
4r1. So k is in the fixed field of φ, and since φ

generates the Galois group, k ∈ Q.
15.19) If the Galois group is Z5, the roots of the polynomial can be rearranged
such that r2

1r2 + r2
2r3 + r2

3r4 + r2
4r5 + r2

5r1 is rational.
15.21) One solution: r1 = 1.827090915, r2 = 1.338261213, r3 = −0.209056927,
r4 = −1.956295201, r2

1r2 + r2
2r3 + r2

3r4 + r2
4r1 = 11.

15.23) If a is a root, then all roots are in Q(a), hence |GalQ(F )| ≤ 4. There
is an automorphism that sends a to a2 − 2, and this would send a2 − 2 to
(a2 − 2)2 − 2, which can’t be a or else a would satisfy x4 − 4x2 − x − 2 = 0.
So there is an automorphism that is not of order 2, hence GalQ(F ) ≈ Z4.
15.25) The first extension is of order 5, so the Galois group must contain a
5-cycle. Also, the complex conjugate automorphism switches two roots, so is
a single 2-cycle. Now any 5-cycle and 2-cycle in S5 generate all of S5, so the
Galois group is isomorphic to S5.
15.27) S3.
15.29) Z2.
15.31) Z2.
15.33) Since φ fixes F , and also u, then φ fixes F (u), and hence is in GalF (u)(E).
15.35) GalF (E) is a finite group, so it can only have a finite number of sub-
groups. Since the fundamental theorem of Galois theory shows a one-to-one
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correspondence between the subgroups of GalF (E) and the subfields of E
containing F , there are only a finite number of such subfields.
15.37) Z1, Z2, Z3, or S3. (Possible subgroups of S3.)
15.39) If some polynomial f(x) in Q[x] has Galois group G, then the splitting
field of f(x) can be written as Q(w) for some w (corollary 14.4). Then g(x) =
IrrQ(w, x) will have the degree n, and will have the same splitting field. Thus,
the Galois group of g(x) will also be G.
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